

Thelargest selection

BRAND NEW FULLY GUARANTEED DEVICES

AC107	15p	AFIIS	17p	BCI40	35p	BCY31	22p	BF272	80p	EC403	15p	ORP60	40p	2N918	30p	2N2714	p	3704	15p
ACl13	20p	AFII6	178	BC141	35p	BCY32	$25 p$	BF273	30p	GET880	27p	ORPGI	$40 p$	2N929	22p	2N2904	25p	2N3705	12p
AC115	${ }^{21} \mathrm{p}$	AFlil	17p	BC142	45p	BCY33	$17 p$	BF274	10p	MATI00	150	\＄T140	12 p	2N930	25p	2N2904A	30p	2N3706	120
ACl25	170	AFII8	30p	BC143	40p	BCY34	20p	6F308	15p	MATIOI	17p	STIS	17p	2N1131	20p	2N2905	250	2N3707	130
ACl26	17p	AFI24	$21 p$	BC145	45p	BCY70	17p	8F309	31p	MATİIO	15p	TiS43	40p	2N1132	22p	2N2905A	10p	2N3708	8 p
AC127	17^{17}	AF125	20.	BC147	$17 p$	BCY7I	30p	BF316	75p	MATILI	17p	UT46	27p	2 N 1302	17p	2N2906	25p	2N3709	8 p
$A^{\text {Cli }} 28$	17p	AFI26	20p	BCI48	120	8 CY 72	15p	BFW10	550	MPFIO2	43．	V405A	25p	2 N 1303	17p	2N2906A	27	2N3710	10p
AClilk		AF127	20.	BC149	$17 p$	BCZII	20p	BF×29	27p	MPF105	4］p	V410A	45p	2N1304	20p	2N2907	25p	2N3711	10p
ACl42K	17 P	AF139	33p	BC150	17p	BDI21	65p	BFX84	20p	$\bigcirc{ }^{O} \mathrm{Cl} 19$	${ }^{30}$ p	2G301	19p	2NI305	${ }^{10} \mathrm{p}$	2N2907A	10p	2N3819	40p
ACISI	150	AFI78	90p	BCI51	20D	BDI23	85p	BF×85	27p	OC20	50p	$2 G 302$	19p	2 N 1306	22p	2N2923	$13 p$	2N3820	C^{1}
AC154	$15 p$	AF179	50p	BC152	17p	BD124	75p	BF×86	22p	$\bigcirc \mathrm{OC} 22$	30 p	2 C 303	19p	2N1307	22p	2N2924	13^{1}	2N3903	25p
ACIS5	17 p	AFIBO	50p	BC153	27p	BDI31	80p	BFX87	25p	OC23	33p	2G304	20p	2N1308	27p	2N2925	$13 p$	2N3904	27p
AC156	$17 p$	AF191	50 p	BC154	30p	80132	00p	$8 \mathrm{~F} \times 88$	22p	OC24	450	2 G 306	35p	2N1309	27p	2N2926		2N3905	250
AC157	17 p	AF106	45p	8C157	20p	BDY20	${ }_{6} 1$	Bfyso	20p	OC25	25p	2G308	35p	2N1613	17p	（G）	$12 p$	2N3906	27p
AC165	178	AF239	37p	BC158	17p	BF｜ 15	22p	BFYSI	20p	OC26	25p	2G309	35p	2N1711	20p	2N2926		2N40S8	13p
AC166	170	AFZ11	370	BC159	20p	BF 17	45p	BFY52	20p	OC28	40p	2G339	17p	2 N 1089	35p	（Y）	$11 p$	2N4059	10p
AC167	20p	AFZ12	45p	BC167	13 p	BFIIB	60 p	BfY53	$17 p$	OC29	40 p	2G339A	15p	2N｜ $\mathbf{N 9 0}$	45p	2N2926		2 N 4060	$12 p$
AC168	20p	ALI 102	85p	BC168	13p	BFII9	70p	B5 $\times 19$	$15 p$	OC35	33 p	2G344	15p	$2 \mathrm{~N}+893$	37p	（0）	100	2N4061	12 p
AC169	14p	Allo3	850	BC169	13p	BF152	35p	BS $\times 20$	15p	OC36	40 p	$2 G 345$	15p	2N2160	60p	2N3010	00p	2N4062	12p
AC176	23p	ASY26	25p	8C170	12p	BF｜53	35p	BSY25	15p	OC41	20p	2G371	13p	2 N 2147	75p	2N3011	20p	2N5172	120
AC177	20p	ASY27	10p	8C171	$13 p$	BFIS4	35p	BSY26	150	OC42	22p	2G371B	10p	2N2148	60p	2N3053	20p	2N5459	430
AC187	30%	ASY20	25p	BC172	13 p	BF｜57	45p	BSY27	150	OC44	150	2 G 374	17p	2N2192	30p	2N3054	50 p	2 SO 34	75 p
AC188	10 p	ASY29	25p	BC173	13p	8FIS8	25p	BSY28	15p	OC45	120	2G377	27p	2N2193	30p	2N3055	$63 p$	25301	50p
ACYI7	25p	ASY50	25p	BC174	13p	BFI59	30p	BSY29	15p	OC70	15p	2 G 378	15p	2N2194	27p	2N3391	17p	25302A	45p
ACYI8	20p	ASY5I	25p	8C175	22p	BF 160	30p	BSY38	150	OC71	90	2G382	15p	2N2217	20p	2N3391A	20p	25302	$45 p$
ACY19	$22 p$	ASYS2	25p	BC177	17p	BF162	30p	BSY39	15p	OC72	12p	2 G 401	30p	2N2218	25p	2N3392	17p	25303	$60 p$
ACY20	10p	ASYS4	25p	BC178	17p	BF｜63	35p	BSY40	30p	OC74	12p	2 G 14	10p	2N2219	27p	2N3193	150	25304	C1．10
ACY21	20p	ASY55	25p	8С179	170	BF｜ 64	35p	BSY41	15p	OC75	$15 p$	2 G 117	25p	2N2220	22p	2N3394	15p	25305	\＆
ACY22	19p	ASY56	25p	BC180	20p	BF165	35p	BSY95	12 p	OC76	150	2N3日时	30p	2N2221	22p	2N3395	10p	25306	＜1．10
$A^{\text {CY }} 27$	10	ASY57	250	BCI81	22p	BF167	22p	BSY95A	12p	OC77	25p	2N388A	50p	2N2222	27p	2N3402	22p	25307	（1） 10
ACY28	190	ASY58	250	BC182	10p	BF｜73	22p	BUIOS	4） 90	OC81	$15 p$	2 N 404	22p	2N2368	17p	2N3403	22p	25321	60p
ACY29	10p	ASY58	25p	BC182L	10 p	BF176	35p	CIIIE	${ }^{60} \mathrm{p}$	OC8ID	15p	2N404A	30 p	2N2369	15p	2 N 3404	32p	25322	$50 p$
ACY 30	15p	ASZ21	40p	8C183	10p	BFI77	35p	C400	10p	OC82	15p	2N524	35p	2N2369A	$15 p$	2N3405	45p	25322A	45p
ACY31	250	BC107	100	BC183L	10p	BF｜78	45p	C407	25．	OC82D	15p	$2 N 527$	60 p	2N2411	50口	2N3414	20p	25323	60 p
ACY34	10 p	BC108	10p	BC184	13p	BF｜79	50p	C 424	17p	OC83	20p	2 N 696	12p	2N2412	50p	2N3415	20p	25324	41.20
ACY35	$18 p$	BC109	11 D	8C184L	13 p	BFIBO	30p	C425	40p	OC84	20p	2 N697	$15 p$	2N2616	55p	2N3417	37p	25325	C1． 20
ACY 36	30p	$8 \mathrm{Cl13}$	25p	BCI86	27p	BF｜ $\mathrm{Bl}^{\text {l }}$	30p	C426	30p	OC139	15p	2N698	24p	2N2711	22p	2N3525	74p	25326	\＄1．20
ACY40	$15 p$	BCII4	30p	BC187	27p	BF182	30p	C428	20．	OC140	17p	2N699	55p	2N2712	22p	2N3702	12 p	25327	C1． 20
ACY41	18 p	8C115	10%	BC207	$11 p$	BFIB3	30p	C44！	27p	OCI70	$15 p$	2 N706	$7 p$	2N2714	25p	2N3703	12p		
ACY44	35p	BCII6	350	BC209	$11 p$	BFI84	25p	C442	350	OC171	15p	2N706A	${ }^{6 p}$	DIODES \＆RECTIFIERS					
ADI40	40 p	BC117	35 p	BC209	$11 p$	BFI85	30p	C444	170	OC200	250	2N708	12p						
ADI 42	40 p	BC118	25 p	8C212L	11p	BFI88	30p	C450	17p	OC201	27p	IN709	45p	AAll9	昭	BY130	15p	OA10	22p
ADI 49	43p	BCII9	45p	BC213L	$11 p$	BF194	23p	C720	12p	OC202	27p	2N711	40p	AA120	${ }^{8 p}$	BYZIO	35p	OA47	$7 p$
AD161	$15 p$	BCl25	35p	BC213L	11p	BF195	24p	C722	250	OC203	25 p	2 Nul 7	42p	BAl16	22p	BYZII	32p	OA70	$7 p$
AD162	150	BCI26	$35 p$	BC214L	120	BFI96	30p	C740	25p	OC204	25 p	2N718	24p	8A126	22p	BYZI2	30p	OA79	8p
AD161		BCI 32	25p	BC225	25p	BF197	35p	C742	17p	OC205	35\％	2N718A	50p	BY100	15p	BYZ13	25p	OABI	7p
$162(\mathrm{MP}$ ）	$63 p$	BCI34	30p	BC226	35p	BF200	450	C744	17p	OC309	350	2N726	27p	BYIOI	12p	8 8Z16	15p	Oabs	$7 p$
ADTI40	$50 p$	BCI35	30p	BC317	12p	BF222	${ }^{80 p}$	C760	17p	P346A	17p	2N727	27p	BYIOS	15p	BYZ17	35p	OA90	6p
ADZ11	12	BCI36	30p	BC318	12p	BF257	35p	C762	17p	P397	45p	2N743	$17 p$	BYII4	12p	BYZ18	30\％	OA91	$7 p$
ADZ12	C2－10	BC137	35p	BC319	12p	BF270	25p	C764	60p	OCP7：	43p	2N744	17p	BY126	15p	8YZ19	25p	OA95	7p
AFII4	17p	BC139	45p	BCY 30	20p	BF271	17p	EC401	15p	ORPI2	430	2 N 914	17p	BY127	17p	OA5	17p	OA200	$6 p$

74 Series T．T．L．I．C－s

DOWN AGAIN IN PRICE

Check our $i t$ Neries List hefure you huy any I．C＇s．Our mitres are $\underset{\text { Order No．}}{\text { BI－PAK }}$

 BPOU HY 703 18P04－8X748

 $3^{1} \mathrm{P}^{2} 10=8 \times \cos +10$ 13P13－8 $\mathrm{ST}+1 \mathrm{~B}$ $\mathrm{BP16}=\mathrm{MN} 716$
$\mathrm{BP17}=8 \mathrm{~K}+17$ BP20－8Y $1313: 30=8 \times 73.30$
$13 P 40=8 \times 7+10$ $13 P+40=8 \times 7+40$
$13 P+1-2 \times 4+1$

 BP4

Price and aty．prices

BI－PAK

	$\cdot 24$	5.4	14
	\＆	Ep	Ep
	015	0.14	0.12
BP53－8ヘ74	0.15	$0 \cdot 14$	0.12
BP34 $=\mathbf{8 3 7 5 4}$	0.15	0.1	0.18
BP＇tio－ 4×7460	0.15	$0 \cdot 1$	0.12
K3＊）－MN7471	0.28	0.26	0.24
	0.29	$0 \cdot 26$	0.24
	0.37	0.35	0.32
	0.37	0.35	0.32
P6－89745	0.47	0.45	0.42
	0.43	0.	0.38
	0.87	0.84	0.58
$3\}^{\prime 2} \times 1=8 \times 7+61$	087	0.94	0.88
EPML $-\mathrm{SN} 7+8 \mathrm{C}$	0.87	0.94	
$\mathrm{PRW}=\mathbf{8 C 7} 78: 3$	$1 \cdot 10$	1.05	
YMfi $=$ SNT480	0.32	0.30	0.28
$\mathrm{p} 901=8 \mathrm{NT}+90$	0.67	0.8	
13P91－SN7491AN	0.87	0.84	0.78
	0.67	0.84	0.58
13P9：$=$ SNT403	0.67	0.64	0.58
	0.77	0.74	0.88
	0.77	074	0.88
	0.77	0.74	0.88
	1.75	1.65	1.5
Plut ssitlot	0.97	0.94	

1

 18 P11
11
$1 P$
1 P
1 P
$1 P$
BP
13 P
 1

PRICE－MIX．Devices may he mivell（o）Itaflity for quantity prices． PRICES fur quantities in eveess of 500 pieces mined，on appliestion．

＊STOP PRESS \star ：NOW OPEN

 BI－PAK＇S NEW COMPONENT SHOPA wide range of all types of electronic com－ ponents and equipment available at competitive prices．Expert technical advice freely given． 18 Baldock St．（Al0），Ware，Herts．Tel．： $6 / 593$ OPEN 9．15－6 Tues．to Sats．FRIDAYS UNTIL 8 p．m．

ANOTHER BI－PAK FIRST！

THE NEW S．G．S．EA 1000 AUDIO AMPLIFIER MODULE ＊Guaranteed not less than 3 Watts RMS． Especially designed by S．G．S incorporating their proven Linear 1．C．Audio Amp．TA／621 providing unlimited applications for the Stereo units．Also ideal for intercom systems，monitoring applica－ tions and phone answering machines．OTHER USES Dortable
applications where suDply rails as fow as $9 V$ are of prime importance．
－Sensitivity 40 mV for 1 wate VOLT．
up to 73 dB for some applications． －Signal to Noise Ratio 86 dB ．
－Frequency response better than 50 Hz to 25 KHz for -3 dB ．
－Normal supply Voliage 9－24V
－Suitable for $8-16$ ohm loads．
－Typical Total
＊Supply Volrage（ V s）$=24 \mathrm{~V} 15$ ohm load．
Modual Tested and Guaranteed
Qty，I－9 £2．63：10－25 6228 Price each diagrams and complete technical data supplied iree with
10 p each．

All prices quated in new pence Giro No．388－7006 Please send all orders direct to warehouse and despatch department
 Postage and packing add $7 p$ ．
Overseas add extrafor airmaif．
Guaranteed Satisfaction or Money Back

LINE OUTPUT TRANSFORMERS

ALBA $1090,1135,1195,1235,1395,1435 \mathbf{£ 5} \mathbf{0 0}$.
ARGOSY $17 \mathrm{~K} 10,17 \mathrm{~K} 11.17 \mathrm{~K} 12,17 \mathrm{~K} 14,19 \mathrm{~K} 17,17 \mathrm{~K} 43 \mathbf{£ 4} \mathbf{0 0}$.
BAIRD All models price $£ 5 \mathbf{9 0}$ ．From model 600 quote part no．normally found on TX base plate．
BUSH TV53 to TUG69 £2．00．TV91 to TV139 £4．75．TV141 to TV186 please state part number $\mathbf{£ 4 \cdot 5 0}$ ．TV75 to TV86 $\mathbf{£ 4 \cdot 0 0}$（except TV80）．
COSSOR CT1700U to CT2378A $£ 5 \cdot 00$ ．
DECCA DM4C $\left(70^{\circ}\right)$ ．DR1，DR2．DR1 $21 £ 4 \cdot 50$ ．DR95．DR606 £4．50．
DEFIANT 9A40 to 9A63．Prices on request．
DYNATRON TV30．TV35．TV36，TV37，TV38，TV39．TV40．TV41，etc．£4．00．
EKCO T231，T284，TC267，T283，T293，T311，T326，T327，T330．TMB272，T344，T344F，T345，TP347，T348，T348F，TC 347, TC 349 ， TC356，T368，T370，TC369，T371．T372，TP373，TC374，T377A，T393，T394，433，434，435，436， 437 all at f4．00．
FERGUSON 306T，308T，406T，408T，416，436，438，506，508，516，518，536，546，604，606，608，616，619，636，646，648，725． $726,727,3600,3601,3602,3604,3611,3612,3614,3617,3618,3619,3620,3621,3622,3623,3624,3625,3626,3627$. 3629，£4－00．
FERRANTI T1001，T1002，T1002／1，T1004，T1005，T1023，T1024，T1027，T1027F，TP1026，T1071，T1072，T1121，TC1122，TC1124， T1125．TC1126 £4．00． $1154.1155 \mathbf{£ 4} 75$.
G．E．C．BT302．BT342 £3－50．BT454DST－456DST．2012．2013，2014．2015．2000DS．2001DS，2002DS £4．50．
H．M．V． $1865,1869,1870,1872,1874,1876,1890,1892.1894,1896$ ．All models to $2645 \mathbf{£ 4 . 0 0 .}$
KB OV30．NF70，NV40．PV40，QV10．QV30，RV10，RV20．RV30，PVP20 £4．50．Featherlight £4．50．VC1－VC2－VC3－VC4 £4．50．
MASTERADIO 4013 DST，D500 DST，D507 DST £4．50．
MARCONI VT153，VT155，VT156．VT157．VT159，VT161，VT163，VT165，VT170．4611．4800．4801，4803， 4615 £4．00．
MURPHY V 310 to 2149 £ $4 \cdot 75$.
PAM 600S to $5106 \mathbf{£ 4 . 0 0}$ ．
PETO SCOTT．Prices on request．
PHILCO 1019，1020． 2021 £4•13． $1100,1110,5600,5601,5602, £ 4 \cdot 00$.
PHILIPS 11TG190 to 24T301 £5．00．
PILOT PT450，452，455，650，PT651，P60A，P61 £4．00．
PYEV200，V400，200LB，210，220，300F，300S， $310,210 \mathrm{~S}, 410,510,530,600,620,630,700$ A or D， 710 A or D． 830 A or D or LBA £4．00． 11 U Series， 11 U－P／NO．AL21003， 21 F to 61 ．Part Nos must be given when ordering Pye LOPTS．
REGENTONE 197－198，298，TV402，TV401．TV501．TV502 £4－50．10－4－10－6．10－21，17－18，10－12，191－192 £4．00．
R．G．D．626．627．628，726，RV202，RV302 £4•50．519－619－620－621C． 723 £4．00．
SOBELL 1000DS，1002DS，1005DS，1010DST，1012．1013．1014．1018．1019．1020．1021．1032．1033． 1038,1039 £4．50．
STELLA T1011U to 2149A $\mathbf{£ 5} \mathbf{5 0 0}$ ．
ULTRA $1770,2170,1772,1782,2172,1771,2171,1775,2175,1774,2174,1773,2137,1980 \mathrm{c}, 1984 \mathrm{c}, 100 \mathrm{c}, 200 \mathrm{c}, 2380,2384,1984$ ， 1985，1986，1980，1980a，1780．2180，2181，2183，2182，1871，1783，6600．6625，6626，6628，6632， 6642 etc．£4．00．

VALVES

SAME DAY SERVICE NEW！TESTED！GUARANTEED！

1 R \％	－28	300215		BCx0	－32	EM R0	－38	PCLES	57	VAF42	50
18．7	－22	：0C17	$\cdot 76$	EAF42	－ 50	EMK1	－38	PCL4	－34	CBC41	52
174	－18	31618	－61	EB41	$\cdot 40$	EMH4	－32	PCL8	－38	CBF80	34
354	－26	30F5	． 64	EB91	－10	EM87	． 34	PCL6f	． 38	CBF89	32
314	.37	$: 0 \mathrm{FL} 1$	． 81	EBC33	． 40	EYis	－33	PClss	－65	LCCs4	－32
5 C 4 C	－31	30 FLL 2	． 69	EBC41	． 54	EY×1	． 29	PCLK00	． 75	UCCs5	． 35
5 F 46	－35	30 FL14	－68	EBCY0	－22	EZ＋0	$\cdot 43$	PJENA4	77	LCFm0	－32
5y：36T	． 28	30 Ll	． 29	ERF世0	． 32	EZ41	． 43	PEN36C	． 70	CCH 42	． 58
6\％4G	$\cdot 35$	30 L 15	57	EBFKY	29	E7x	22	PF＇L200	－ 52	CCHx1．	32
6／30122	－ 54	30 Ll 7	67	ECCx	17	E\％K1	23	PL：3！	． 49	CCL／2	32
6AL5	－11	30 P 4	57	ECCsz	20	（iZ3：	34	PLK1	－ 44	LCL83	55
6AM6	$\cdot 13$	30 P 12	． 72	ECCx3	$\cdot 35$	6\％32	． 40	PldiA	$\cdot 47$	UF41	56
6AQ5	． 22	30 P 19	． 57	ECC\＆	－ 34	ci／nt	． 48	PLKL	－31	UF89	30
6AT6	． 20	30 PL 1	． 80	ECCsta	． 54	KT41	.77	PLM：	$\cdot 33$	CL41	57
6AL6	． 20	30 PL 13	． 89	ECF80	$\cdot 31$	KT61	55	PLEH	30	U144	21.00
6BA6	－20	30 PLL 14	． 85	ECF42	－ 28	KT66	78	PL500	． 63	UL84	30
GHE6	． 21	35L6GT	． 45	ECH35	55	LN：319	63	PLうけ4	63	UM84	． 82
6BJ6	－41	35W4	25	ECH42	59	L－329	72	PMA4	38	UY41	． 42
$6 \mathrm{BW7}$	． 52	：5\％／4GT	． 25	ECH＊	． 29	LN3：3y	63	PX25	95	UY85	25
6 FH 4	40	K12	45	ECH83	40	N78	87	PY：32	55	－ P ¢ B	． 77
6F＇23	－68	Hoty：	． 62	ECH84	$\cdot 36$	P 61	40	${ }^{1} \mathrm{Y}$ Y ${ }^{\text {P }}$	55	1177	－43
6F25	． 53	$\mathrm{AC/3P}^{2}$	$\cdot 77$	EClat	－ 30	PABC80	34	PYK1	25	277	． 22
6J7：	． 24	13： 2414	． 65	ECLN2	.31	PC＇¢ ${ }^{\text {P }}$	． 47	PY／42	． 25	Transis	stors
6K7\％	$\cdot 12$	${ }^{13} 224$	． 62	FCls	． 35	PC＇s8	47	PY＊3	． 28	AClor	17
¢ $\mathrm{K} \times$（ ${ }^{\text {a }}$	－17	（2H：35	． 67	EF\％	． 38	PCY¢	－ 42		． 33	$\mathrm{ACl27}$	18
6076	－35	CY：31	.30	EF41	． 80	PC37	－39	$\mathbf{P}^{\text {Y \％K }}$	$\cdot 34$	A13140	37
$68 \times 7 \mathrm{GT}$	－ 30	JAF91	． 22	EF¢O	． 23	PCuon	31	PYK（1）	． 34	AF115	20
$6{ }^{6} 6 \mathrm{G}$	－28	DAF96	－ 38	Eゲメ5	． 28	PCCX4	29	R19	$\cdot 30$	AFlif	20
6vedt	． 28	DF：3：	$\cdot 38$	EJメt	． 30	PCCx．	． 25	（20）	． 56	AF゚17	． 20
fix_{4}	－23	bF91	－18．	Elfay	． 26	PCC\＆	$\cdot 40$	C．25	． 64	AF118	． 48
$6 \times 50 \mathrm{~T}$	－28	JFYf	$\cdot 38$	EFY！	$\cdot 13$	PCCx9	． 45		． 58	AF＇12．J	$\cdot 17$
］orlis	． 58	JH\％ 7	． 20	FFY\％	－ 30	PCCl 89	． 48	L47	． 64	AF127	． 17
12AT7	$\cdot 17$	1）K：32	$\cdot 33$	EP9\％	65	PCCH05	－ 58	1：4y	． 56	OC26	． 25
12Al＇ 6	－20	JK91	． 28	EF183，	． 28	PCFs\％	． 28	C． 30	26	OC＋4	． 12
$12 \mathrm{AU7}$	－20	1）K92	－38	EF184	$\cdot 31$	PCFs＇	． 31	Lis	31	0 C 4	－18
32AX7	－22	J）K96	$\cdot 38$	EH94	－35	PCF\＆ 6	． 45	C7m	$\cdot 24$	0 C 71	－12
198G6G	． 80	1）L3S	$\cdot 40$	EL3：3	$\cdot 55$	PCF800	58	L191	． 59	OC72	－12
$20 \mathrm{~F}^{\prime 2}$	$\cdot 67$	DL92	， 28	EL34	$\cdot 45$	PCF＇801	． 28	1：19．3	$\cdot 42$	OC75	． 12
20173	．77	DL94	$\cdot 37$	Flı 1	． 54	PCFma 2	． 40	－251	． 84	OCx 1	． 12
20 P 4	． 92	J） 196	． 38	ELX4	$\cdot 23$	PCF805	． 61	U：301	． 38	OC81D	12
$251.6 G T$	－19	DY86	． 24.	Elat	． 26	PCFsof	58	U：329	． 86	OC×2	12
25046 T	－57	DY87	$\cdot 24$	El95	$\cdot 38$	PCF＊08	． 68	U801	． 80	OC82D	12
30 Cl	． 28	1） Y ¢02	． 331	EL500	． 62	PCLS 2	－32	LABC80	32	OC170	23

READERS RADIO
85 TORQUAY GARDENS，REDBRIDGE，ILFORD， ESSEX．
lost／Packing on 1 valve $6 p$ ，on 2 or more valves In per valve extra． Any parcel insured against damage in transit 3p extra．

Từts＂VIDEOCHROME＂，từís FOR BRILLIANCE \＆DEFINITION

17＂ $55 \cdot 00$
19＂ $55 \cdot 50$
21＂$£ 7.00$
$23^{\prime \prime} £ 7 \cdot 50$
19＂PANORAMA $£ 6 \cdot 25$ 23＂PANORAMA £8－25

CASH OR CHEQUE WITH ORDER
TRADE SUPPLIED
ALL TUBES PRECISION REBUILT AT OUR OWN FACTORY BY SKILLED CRAFTSMEN EACH TUBE BENCH AND SET TESTED TO A VERY HIGH STANDARD BEFORE DESPATCH

2 Years guarantee－free DELIVERY ANYWHERE IN THE U．K．

VIDEOCHROME TUBES LTD． 25 BELLEVUE AVENUE
RAMSGATE，KENT．
Tel．THANET 52914

WILLOW VALE BY RETURN WHOLESALE SUPPLIERS OF:

COMPONENTS

Dubilier capacitors. Erie wirewound resistors. $\frac{1}{2}$, I and 2 watt carbon film hi-stabs. Sprague bias and smoothing electrolytics. Egen presets. $A B$ metal volume controls. Smoothing electrolytics. Printed circuit aerial panels. Valve bases. Belling and Egen co-axial plugs, Din Plugs and sockets. Thermistors (ITT).

TRANSISTORS AND SEMI-CONDUCTORS

Full range of current colour transistors. $\mathrm{AC}, \mathrm{AF}, \mathrm{BC}, \mathrm{BF}, \mathrm{BD}$, OC, etc., types always in stock. Rectifiers and VDRS. Full trade discount. Reputable makes. Mullard, Siemens, Valvo, etc.

VALVES

Entire range of entertainment types in stock at 41 per cent or 48 per cent discount. See catalogue for details. Twelve months' guarantee.

C.R.T.'s

Full range of monochrome and colour tubes. Rebuilt and new. 2 -year and 4 -year guarantees. All sizes from 17 in . to 25 in . stocked. Panorama, Rimguard, Mono and Twin-Panel.

LINE OUTPUT TRANSFORMERS

All makes supplied. Exchange units or new replacement transformers. (Subject to availability.) Bush, Philips, Pye, Ekco, Sobell/ G.E.C., Ferguson, Philco, Ferranti, Peto-Scott, etc., etc.

SERVICE AIDS

Electrolube, Servisol, Multicore Solders, tools, multi-meters in stock.

WE ARE THE ONLY SPECIALIST WHOLESALER TO THE SERVICE ENGINEER

 our catalogue, 20 p in stamps please. Refunded on first order. Strictly trade only.
TELEUISION SERVICING•CONSTRUCTION•COLOUR•DEVELOPMENTS

FOURTH CHANNEL

IF one can judge from the space given to the subject in the national press there is considerable agitation at present for the inauguration of a fourth television channel. Apart from giving the television correspondents something to write about, ITA has added fuel to the fire by publishing a 24 -page booklet, their "Submission to the Minister of Posts and Telecommunications for the establishment of ITV-2."
The arguments have raged for and against giving the ITA the go-ahead to start their "alternative" service. Some have urged that the fourth channel should go to the present ITA programme contractors. Others have suggested a system in which minority interests can operate under the aegis of the ITA without being dependent on the major programme contractors. Another idea is for a form of community television system, giving the regions the freedom to opt out of the network programme and involving large numbers of low-powered local stations. Then there are schemes for an educational service, for wired systems and so forth.
There is no doubt at all that the Minister for Posts and Telecommunications, Mr. Christopher Chataway, is being bombarded with proposals, plans and ideas. But it seems to us that there are two rather important factors in this apparent anxiety to allocate quickly the fourth television channel to its ultimate operatives. First, most of the vigorous lobbying seems to come from individuals and organisations who would have vested interests in the fate of the spare channel. Secondly, there appears to be little agitation (rather, apathy) from those who will be most affected by the end result of any decision-the viewers.

One could mount a strong case for or against any of the current proposals, but it is significant that there is no clamour from viewers to fill the vacant hole. It is all very well to say "we have a spare channel, let's use it," but quite another to find a natural contender who automatically fills one of those long-felt wants we hear about.

Let us hope therefore that the Minister will think very hard indeed before signing away this priceless channel-a public asset after all-to any service except one honestly and urgently required in the public interest. For our money nothing so far suggested meets these requirements and until it does we are perfectly happy to have a spare push-button on our tuner.
W. N. STEVENS, Editor

THIS MONTH

Teletopics

Renovating the Rentals-Part 1-Ferguson 405
line Models
by Caleb Bradley, B.Sc. 198
Long-Distance Television by Roger Bunney 202
Letters 204
A Closer Look at PAL-Part 4-More Colour Errors by E. J. Hoare 205
Colour Receiver Circuits-Reference Oscillator Circuits by Gordon J. King 212
Servicing Television Receivers-Bush TV103/ TV105 Series by L. Lawry-Johns 215
Receiving ORTF-Postscript by Roger Bunney 218
Colour Receiver Insight-1-ITT/KB CVC5
Chassis by S. George 220
Service Notebook by G. R. Wilding 224
ICs for Television-Part 6-Mullard TBA Series-1
by K.T. Wilson 225
Bilsdale West Moor UHF Service Area Map 228
Line Timebases for 110° Colour Tubes
by J. W. Thompson, B.Sc. 229
Your Problems Solved 232
Test Case 111 235

THE NEXT ISSUE DATED APRIL WILL BE PUBLISHED MARCH 20

Cover: Our cover photograph this month was taken by courtesy of Telecare Ltd., Tottenham, London.

[^0]

LOOKING TO THE FUTURE

Dr. Walter Bruch of Telefunken, inventor of the PAL colour system, speaking to the Royal Television Society in London has predicted the end of monochrome television after 1980. Dr. Bruch believes that in ten years' time colour will have taken over completely. Like many others Dr. Bruch does not see an early end to the shadowmask tube and believes it will be 20-30 years before a flat solid-state display device will be a practical alternative. Dr. Bruch predicts that most TV set circuitry will be packed into a couple of i.c.s well before then.

Rank-Bush-Murphy's TV development manager Walter Halliday has on the other hand predicted flatscreen TV sets suitable for wall hanging by the end of the present decade. This prediction follows the news that sets witih 110° deflection angle shadowmask tubes are expected to be introduced next year. Some of the problems of deflection and convergence with 110° colour tubes are described in an article later in this issue: the increased scanning power required by a 110° colour tube in comparison to a 90° tube is of the order of 2.2:1.

PAL DECODING: ANOTHER SYSTEM

The PAL system is not only robust, giving us very reliable colour reception as E. J. Hoare has been pointing out in his present series, but also seems to be capable of a great variety of approaches to decoding. Readers will by now be familiar with the usual system (see for example Colour Receiver Circuits, October 1971), the Sony approach (also described in our October 1971 issue) and the subtle variations on the usual technique used by RBM (see ICs for Television, November 1971). Other approaches that have not so far been used in practice have come to our notice but now comes another that is in use-in the Teleton Model VX1110 colour receiver now being distributed in the UK and produced by the General Corporation of Japan. The new approach is based on patented circuits originally developed by GC's technical director Yasumasa Sugihara for the Color-

Fig. 1: GC's approach to PAL decoding.
net system intended for use with single-gun tubes.
The heart of the GC system-where it differs from the usual approach-is shown in Fig. 1. As in the Sony system two subcarrier regenerator circuits (instead of the usual one) are used. Here the similarities end however. In the GC decoder one subcarrier regenerator operates at the normal $4 \cdot 43 \mathrm{MHz}$ subcarrier frequency, providing the \mathbf{U} reference signal for the U demodulator, while the other operates at 4.43 MHz plus 7.8 kHz (half line frequency) which is roughly $4 \cdot 44 \mathrm{MHz}$. As the bursts alternate $\pm 45^{\circ}$ from line to line in the PAL system $4 \cdot 44 \mathrm{MHz}$ is one of the sidebands of the burst signal present in a PAL transmission and can be selected by a suitably selective circuit. Now if the relationship between 4.43 MHz and 4.44 MHz is carefully examined we find that during the period of two lines there is exactly one extra cycle of subcarrier present at 4.44 MHz , i.e. we get an advance of one half cycle each line period relative to 4.43 MHz . What is happening is that the $4 \cdot 44 \mathrm{MHz}$ carrier completes an extra rotation of 360° every two lines: so if we can alternately retard this rotation for a line and then during the flyback period let the carrier advance to the position it would otherwise by then have reached we will get on alternate lines a signal which is $\pm 90^{\circ}$ relative to 4.43 MHz . And this is of course the switched V reference signal that is required for correct demodulation of the PAL alternate line $\pm \mathrm{V}$ signal. Retarding and advancing the 4.44 MHz carrier by the correct amount is achieved by modulating it with a line frequency sawtooth waveform. This is obtained by integrating the line flyback pulse and using this in a varicap phase-modulator circuit. Ident? V synchronisation is simply achieved by locking the V subcarrier regenerator to either the + or -7.8 kHz burst sideband.
For our next trick . . . !

TV FIRES: A WARNING

Mains-operated radio and television sets can cause fires as we should all be well aware. Now the Fire Protection Association has appealed to the BBC and ITA asking them to broadcast fire safety warnings every night in an effort to help reduce the 1,500 fires which it says occur every year in radio and television sets. As the FPA says, the simplest and most effective precaution is to switch off the set and then unplug the set from the wall socket after use.

UHF COVERAGE EXTENDS

The service available from the u.h.f. relay stations is being rapidly extended by both the BBC and ITA.

BBC-1 and BBC-2 are now being transmitted by the Lancaster relay on channels 31 and 27 respectively (vertical polarisation, receiving aerial group A). BBC-1 is now being transmitted from Skipton on channel 39 (vertical polarisation, receiving aerial group B), Salisbury on channel 57 (vertical polarisation, receiving aerial group C) and Halifax on channel 21 (vertical polarisation, receiving aerial group A). In addition the BBC announces that $\mathrm{BBC}-1$ from Sudbury is now being transmitted at full power, all three services from this station now operating at the same e.r.p. The latest ITA relay stations to come into operation are Rhondda, South Wales, carrying HTVWales programmes on channel 23 (vertical polarisation, receiving aerial group A), High Wycombe carrying the London area programmes on channel 59 (vertical polarisation, receiving aerial group C) and Sheffield carrying Yorkshire Television programmes on channel 24 (vertical polarisation, receiving aerial group A).

For experimental periods recently the $B B C$ and ITA London area transmitters have been using an electronic test "card" instead of the usual test card F. BBC-1 transmitters radiated the electronicallygenerated colour picture signal from January 24 th28th, BBC-2 transmitters from January 31st to February 4th and the ITA transmitters from February 7-11th.

TELEPLAYERS

Vidicord have introduced a teleplayer, the "Projector $8^{\prime \prime}$, which uses a TV camera tube to scan pictures on Kodak cartridges or spool-to-spool film and can supply a monochrome output to any number of TV screens. The teleplayer can also be used to project the film live with the camera tube removed from its mounting. It can be programmed to return to a preset spot and repeat the programme indefinitely. The recommended retail price is $£ 360$.

Meanwhile, what is going on with the much talked about EVR system? CBS, who invented the system, have withdrawn from the manufacturing and marketing side but "will retain an investment in the EVR Partnership by way of debt investment and the licensing of current and future patents and developments in the EVR field" and also distribution and exploitation rights in the USA and Canada. This does not look as though CBS is exactly brim full of confidence in the economic prospects of its brainchild. We understand that with all the new techniques involved it has not proved easy to get an EVR teleplayer production line into smooth operation.

TRADE NOTES

The 1972 RTRA conference is to be held at the Palace Court Hotel, Bournemouth, from April 23rd26th. Sets, both colour and monochrome, seem to be flooding in from all quarters to meet the current shortage. We understand that the Italian Indesit concern is shipping in some 10,000 sets, a mixture of 12 in . portables and 24 in . table models.

Decea say their 12 in . mains/battery portable is now available to the trade. The set has been given the name "Gypsy" and is intended to sell at around £66. Two new colour sets have been introduced by Ekco, both 22in. single-standard models fitted with the 693 chassis. They are the CT120 at $£ 282 \cdot 35$ and
the CT122 at $£ 292 \cdot 09$. A new portable with a difference is the JVC Nivico Videosphere Model 3240. The chassis and tube are mounted in a swivel-based sphere which can be rotated in any direction for convenient viewing. The set is fitted with a 9 in . tube, built-in rod aerial and earphone jack and weighs $11 \frac{1}{2} \mathrm{lb}$. It is distributed by Denham \& Morley (Overseas) Ltd.

AERIALS

There are new aerials from Antiference and Telecraft. From Antiference comes an addition to their Hi-Gain range: the HG7080 is a stacked version of their HG3540 and is equivalent to a 4×18 element Yagi. It is available for channel groups A, B and C/D and the recommended price is $£ 13.80$. The new Telecraft aerial is the Space Master, a continentalstyle aerial with H-type stacked director assemblies. The director and reflector assemblies fold flat for storage but click permanently into position for installation. There are three models, the Master 12 with 5 director assemblies at $£ 2 \cdot 70$, the Master 18 with 8 director assemblies at $£ 3.25$ and the Master 34 with 16 director assemblies at $£ 5 \cdot 50$.

RTS NEWS

Aubrey Buxton, an executive director of Anglia Television, has been elected a Vice-President of the Royal Television Society. Amongst the subjects at the Society's meetings during the first half of this year that may be of interest to readers are "TV and Chips -Integrated Circuits for TV Receivers" on March 16th, "Single-Tube Colour Cameras" on June 1st and the "Teldec Video Disc" on June 29th. These meetings will be held at the Conference Suite, ITA, 70 Brompton Road, London SW3, commencing at 7 p.m. and non-members are admitted on presentation of a signed ticket obtainable from the Society at 166 Shaftesbury Avenue, London WC2H 8JH.

EHT PROTECTION

The e.h.t. over-voltage circuit used in the RBM singlestandard colour chassis is to be modified to give additional protection. The present circuit comes into operation, shunting the line oscillator coil and thus removing the line drive, when the e.h.t. rises to a dangerous level as a result of a fault on the power board causing the h.t. line to rise above 200 V . The line drive is removed until the fault condition is rectified. Increased h.t. is not however the only possible cause of e.h.t. over-voltage and to take other possibilities into account the neon cut-out on future timebase panels will come into operation when the line flyback pulses exceed a certain level. A diode will be used to monitor the peak flyback pulse and provide a rectified output to operate the cut-out when the pulse exceeds a certain value.

LOCAL TV OVER CABLES

Greenwich Cablevision are seeking a one-year experimental licence to provide locally-originated programmes over the cable TV system they operate in Greenwich. Permission from the Ministry of Posts and Telecommunications is necessary to provide local programmes other than educational services over piped networks.

Anyone armed with some basic servicing ability can find bargains among the thousands of television sets now being sold off by rental companies and available from many sources. The sets include pre-BBC-2 405 -line models, dual-standard $405 / 625$ sets and even, for the bold only, dual-standard colour sets. Virtually all the models which were popular for rental are worth renovating since spares are not expensive and the restored performance can be very good.

In this series we will look at some of the stock faults which are regularly found on particular models and are worth putting on record for future servicing. This means that the emphasis is less on the faults which logical servicing would quickly locate and more on the type of fault which is unusual in either its cause or its cure. The over-riding importance however of an ordered, thoughtful servicing approach must not be forgotten and a section at the end of each article will therefore cover some aspect of rental renovation not restricted to any particular model.

The Ferguson 405 -line sets described here should be a pushover and are certainly cheap. They have all been around long enough in both rental and private use for their frailties to have become well known. Two good things about a 405 -line set are that it has no standards switch to go wrong, and that in those days they made decent cabinets.

Models 306T (17") and 308T (21")

Many of these venerable sets are still in use and with occasional servicing assistance some will doubtless survive their 21st birthdays-in 1977! (assuming 405 transmissions last that long). They are very deep sets since the curved ply cabinet goes back about as far as the tube base and they are also very heavy. Most of their faults are conventional and so need not be mentioned here but one to watch out for is change in value of Cl 23 which supplies line drive from the line blocking oscillator to the line output valve grid-see Fig. 1. This capacitor has been known to drop drastically in value to a few hundred pF ; in spite of this the set gamely goes on working but with greatly reduced picture width and brilliance. Of course the conventional causes of this should be vetted first. They are (referring to Fig. 1) V7, V8, the boost reservoir capacitor C124 and the screen feed resistor R136. If C123 and the line oscillator are both o.k. an Avometer on the 100 V a.c. range should show at least 15 V drive to V7 grid (pin 2).

Slow warm up on these and other sets using the PY32 h.t. rectifier, also lack of width and height, point to this valve being in need of replacement. It should
be replaced with the better PY33. The h.t. at pin 8 of this valve should be about $190-200 \mathrm{~V}$.

It is not generally known that the picture resolution on these sets can be varied by a clip-ended flying lead on the right-hand side of the chassis-see Fig. 2. This "picture quality adjustment" alters the total h.f. decoupling capacitance in the video output valve (V5 PCF80, pentode section) cathode circuit, affecting the fine picture detail. The original Ferguson instruction was that extra h.f. boost might be needed for sharp

Fig. 1: Line output stage, Models $306 T$ and $308 T$.

Fig. 2: Rear view, Models $306 T$ and $308 T$.
pictures ". . . in certain areas, particularly Scotland and Wales . . ."!

Here is a tip for dealing with line output transformers which arc over (but are not badly burnt): it applies to many models but is specially relevant to these as it is rarely worthwhile fitting a new line output transformer in them. First brush off all dust and any carbon that has formed, then saturate the area with Holts Damp Start spray for cars (Halfords, etc.). This has saved many 306Ts from oblivion.

On sets as old as these it is not unreasonable to boost the c.r.t. heater current to prolong decaying emission. Do this by wiring a $5 \mathrm{k} \Omega 10 \mathrm{~W}$ wirewound resistor from the mains dropper to the non-earthed heater pin on the c.r.t. base, making allowance for the fact that the resistor will run hot.

Vertical striations at the left of the picture and fading out towards the centre have been found to be caused by either the resistor across the line linearity control ($1.2 \mathrm{k} \Omega$) going open-circuit or a fractured line output transformer core.

Models 406T (17") and 408T (21")

These sets are more advanced, having a printed board and a Fireball v.h.f. tuner. There are numerous cabinet variations using the same chassis (Fig. 3) and also versions equipped with v.h.f./f.m. radio. These include the $416 \mathrm{~T}, 436 \mathrm{~T}$, HMV 1870, Marconiphone VT157 (all 17in.); and the 438T, HMV 1874 and Marconiphone VT160 (2lin.). There is a closed-loop sleeve under the scan coils for line linearity adjustment: its notch should be at the same angle as the e.h.t. connector and there should, taped to the top of the chassis, be a template which gives the correct spacing of the sleeve from the tube flare: Otherwise just slide the sleeve in or out for the best test card display.

If the pilot lamp behind the tuner knob should go open-circuit the set will go on working but the valve and c.r.t. heater currents will be below optimum.

These sets have the unusual feature (for monchrome sets) of a shunt e.h.t. regulator. It consists of an adjustable Metrosil v.d.r. (voltage dependent resistor) Z1-see Fig. 4(a)-in series with R132. The sliding clip on the Metrosil should be adjusted for 7 V at the test point with the brightness turned down (use an Avometer on the 10 V range). If in doubt, cut it outthe set will still work. There is another smaller Metro-

Fig. 3: Rear view, Models $406 T$ and 4087.
sil across the field output transformer primary for height stabilisation.

This series of sets is capable of a spectacular burnup in the video output stage-see Fig. 4(b). What sets it off is a short between the control and screen grids of the PCL84. This causes excessive currents in the divider chain of resistors which hold the screen grid and the cathode at the correct potentials. The $47 \mathrm{k} \Omega$ resistor may go up in smoke completely and C58 may be damaged. The hard-learnt lesson is that the valve must be replaced at the same time as these components or the trouble will happen again.

Another trouble with this stage is that some of the video chokes go open-circuit with monotonous regularity. When L41 or L42 go open-circuit all picture is lost and the valve goes unstable due to its open-circuit grid. When L43 goes open-circuit a thin streaky unlockable picture still just gets through. In all cases the picture returns but with reduced definition when the offending choke is shorted across. Usually the choke can be taken out and repaired.

The mains dropper troubles described at the end of this article are rife on these sets in which the dropper runs hot enough for its soldered connections to deteriorate.

Cramping or foldover at the bottom of the picture may seem to be cured by replacing the field output valve (V12 PCL82) but always check its cathode resistor (470Ω) and the decoupling electrolytic ($100 \mu \mathrm{~F}$) or the trouble may recur. The cathode should run at $14-15 \mathrm{~V}$. In cases of poor field lock replace the field sync feed diode W11 with an OA91.
"Scatchy" tuner switching can often be cured by

Fig. 4: E.H.T. circuit (a) and video output stage (b), Models $406 T$ and 408 . D.C. resistances are approximate.
cleaning the silver contacts on the Fireball tuner disc. The tuner cover is a spring fit and the disc is held on by a central nut at the back. Do not disturb the coils on the disc or the spring contacts inside the tuner.

Models 506T, 546T (17") and 508T (21")

With these models we enter the TV "boom age" of slimline sets made possible by 110° angle deflection tubes. The video output stage is very similar to that of the 406T series so similar faults occur except that L43 is absent (good riddance) and its h.f. peaking function is taken over by a 1.2 kpF capacitor from the pentode's cathode to chassis. This is more reliable but has been known to go short-circuit causing a lowcontrast picture with clipping of the whites-like when the vision interference limiter is mis-set.

Unstable height can be caused by poor rivet connections on the height control. Prodding its terminals will reveal if this is so. Otherwise the field troubles are similar to those of the 406T series, the important point to check being the cathode of the field output pentode (pin $2,15 \mathrm{~V}$ normal) which is connected to chassis via 330Ω and $100 \mu \mathrm{~F}$.

Access to the underside of the i.f. board seems impossible until you see that by removing two screws below its rear edge it can be lifted clear of the chassis, turned over and latched on again. The chassis layout is shown in Fig. 5.

General Fault : The No-Glow Set

This is the set where absolutely nothing happens on plugging in, not even a glow from the c.r.t. or valve heaters. With this set you can make progress with nothing more than a neon screwdriver since the fault is a break in the heater chain-see Fig. 6. But before touching any part of the chassis check that it is connected to mains neutral, not live. The history of an ex-rental set is unknown so do not rely on the redblack coding of the mains lead. Also never rely on the on/off switch alone to isolate the set from the mains: this is always a double-pole switch but one pole often fails and it may have been shorted across as a makeshift cure. Also note that if the set has a silicon or selenium h.t. rectifier there will be h.t. to all circuits even with the heater chain broken.

Heater chains vary from model to model but almost all have the basic features shown in Fig. 6. The c.r.t. heater is usually the closest to chassis (except for some BRC chassis) so that its heater-cathode insulation will not be unduly strained on negative swings of the mains. The order of the valve heaters varies, but the r.f. and i.f. valve heaters are generally together and have small decoupling capacitors.

The dropper resistor is a large wirewound component with adjustable tappings for different mains voltages and is a regular offender. Sections often burn

Fig. 6 (below): Typical heater circuit.

Fig. 5: Chassis layout, $506 T$ series.
out, breaking the heater chain. A neon tester will reveal the position of the break if this is not obvious, since it should light when touched to any of the tags on the dropper. It is usually easier to bridge an opencircuit section with a wirewound resistor of adequate wattage (the Radiospares replacement dropper sections are excellent service components) than to replace the whole dropper. Wire the new component securely to the dropper tags rather than relying on the solder for support since the operating temparature is often high enough to soften the solder. If in doubt about the value of a section to be replaced-or the correct tag setting for a particular mains voltage-the rule is that the current in the heater chain should be 300 mA (as a quick check on this there should be 6.3 V across the c.r.t. heater). Obtain the correct heater voltages of all the valves in the chain from a valve data book, add them together and subtract the resultant sum from the mains voltage in order to find the voltage which must be dropped. Ohm's law ($R=V / I$) then gives the total dropper resistance needed. The wattage of each resistor in the chain should be at least $\frac{1}{3}$ its value in ohms.

The thermistor TH1 may be present in the chain. It has a high resistance when the set is switched on from cold, so that excessive current does not flow in the cold heaters, but quickly warms up and settles at a lower resistance. Since a thermistor prolongs the lives of the valves and c.r.t. it is worth incorporating one in a set not so equipped. Thermistors generally give little trouble although sometimes the end connections break away. The following table gives characteristics of some common types for heater chains. The normal working resistance is the "hot" figure.

Equivalent types	Cold resistance	Hot resistance $($ at $300 m A)$
TH1, VA1015	930Ω	42Ω
TH2,VA1005, CZ1	$3.9 \mathrm{k} \Omega$	44Ω
TH3.VA1026	400Ω	28Ω

LAWSON brand new television tubes

SPECIFICATION: The Lowson range of new television tubes are designed to give superb performance, coupled with maximum reliability and very long life. All tubes are the products of Britain's major C.R.T. manufacturers, and each tube is an exact replacement. Tubes are produced to the original specifications but incorporate the very latest design improvements such as: High Brightness Maximum Contrast Silver Activated Screens, Micro-Fine Aluminising, Precision Aligned Gun Jigging, together with Ultra Hard R.F. High Vacuum Techniques.

A21-11W (P)	AW47-91 (M)	CI9/AK (M)	CME1902 (M) CME1903 (M) CMEI905 (M) CMEI906 (T) CME1908 (M) CME2IOI (M) CME2104 (M) CME2301 (M) CME2302 (M) CME2303 (M) CME2305 (P) CME2306 (T) CME2308 (M) CRMI72 (M) CRMI73 (M) CRM212 (M) CRM21I (M) 23SP4 (M) 171K (M) 172 K (M)	173 K (M) 212 K (M) 7205 A (M) 7405 A (M) 7406 A (M) 7502 A (M) 7503 A (M) 7504 A (M) 7601 A (M) 7701 A (M) CRM121 (M) MW31-74 (M) A50-120W $/ \mathrm{R}$ 	
A28-14W (P)	MW43-64 (M)	C21/1A (M)			
A31-18W (P)	MW43-69 (M)	C21/7A (M)			
A47-11 W (P)	MW43-80 (M)	C2I/AA (M)			
A47-13W (T)	MW52/20 (M)	C21/AF (M)			
A47-14W (M)	MW53/80 (M)	C2I/KM (M)			
A47-17W (P)	AW47-97 (M)	C21/SM (M)			
A47-18W (P)	AW53-80 (M)	C23/7A (M)			
A $47-26 \mathrm{~W}$ (P)	AW53-88 (M)	C23/10 (M)			
A59-11W (P)	AW53-89 (M)	C23/AK (M)			
A 59-12W (P)	AW59-90 (M)	CMEIIOI (P)			
A59-13W (T)	AW59-91 (M)	CMEl201 (P)			
A59-14W (T)	C1711A (M)	CME1402 (M)			
A59-15W (M)	CI7/5A (M)	CME1601 (P)			
A59-14W (T)	CI7/7A (M)	CME1602 (P)			
AW36-80 (M)	CI7/AA (M)	CME1702 (M)			
AW43-80 (M)	CI7/AF (M)	CME1703 (M)			
AW43-88 (M)	CI7/FM (M)	CMEI705 (M)			
AW43-89 (M)	C17/5M (M)	CMEI706 (M)			
AW47190 (M)	CI9/IOAP (T)	CMEI901 (M)			

LAWSON TUBES 18 CHURCHDOWN ROAD, MALVERN, WORCS.
Malvern 2100

YEARS' GUARANTEE FULL TUBE FITTING INSTRUCTIONS
Tubes are despatched day of order by passenger train, road or goods taking far too long for customers satisfaction.

REBUILT TUBES
LAWSON "RED LABEL" CRTS are particularly useful where cost is a vitol factor, such as in older sets or rental use. Lawson "Red Label" CRTS are completely rebuilt from selected glass, are direct replacements and guaranteed for two years.

	Brand New Tubes	$\begin{gathered} \text { Red } \\ \text { Label } \\ \text { Rebuilt } \end{gathered}$	Carr. Ins.
$17^{\prime \prime}$ (M)	± 6.25	¢4.97	$12^{\prime \prime}-19^{\prime \prime}$
$19^{\prime \prime}$ (M)	67.25	65.25	62p
$21^{\prime \prime}$ (M)	88.50	[6.95	
23" (M)	69.75	£7.25	
$19^{\prime \prime}$ Twin Panel (T)	$\underline{10.25}$	N.A.	$23^{\prime \prime}$
23" Twin Panel (T)	¢15.50	N.A.	7.5p
$19^{\prime \prime}$ Panorama (P)	$\underline{69.38}$	$\underline{6.95}$	
20" Panorama (P)	$\underline{6} 10.50$	¢7.50	
23" Panorama (P)	6.1.95	¢8.75	
$16^{\prime \prime}$ Panorama (P)	68.50		

STANDARD

E.H.T. WINDINGS
Replacement for most sets only 50p each, P \& P 15p

CHILTMEAD ITD. 1\&9 arthur Road Reading

Tel. No. Reading 582605

TM/7S 19" NOW £11.95

TWO YEARS GUARANTEE ALL MODELS 405/625: 19" £25-95, 23" £35-95 FREE CATALOGUE DAILY PEMONSIRATIONS FOR PERSONAL SHOPPERS carr. E1-95

COMPONENTS MUST BE CLEARED	$25!\$ 185 \cdot 00$
Transistor Radio Cases: 25p each. Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\circ} \times 3 \frac{1}{2}^{*}$. Post 15p.	19"¢145.00
Speakers: 35p. $2 \frac{1^{*}}{} 8 \Omega$. Brand new. Post 15p.	A selection of recent years models. U.K. manufacture.
Press Button Switching Units 4 Banks 25 p 6 Banks 35p P. \& P.5p.	y.
Precision Tape Motors: $\mathbf{£ 1 . 9 5}$. 200/250V. Famous German manufacturer. Post 20p.	TV TUBES REBUILT
Transistor Gang Condensers: 20p. Miniature AM. Post free.	
Modern Gang Condensers: 30p. AM/FM or AM only 20p. Post 10p.	
Transistors 15 p each. Post free. AC126. AC128, AFI14. AFI17. OC45, OC71, OC81, OC81D.	
Valve Elleo 30 p . Only stock in the country.	
Pote.: 25p each. Post 5p. D/SW $500 / 500 \mathrm{~K} \Omega$. D/SW $500 / 100 \mathrm{KK}$. D/SW i meg./100 K Ω. S/SW	$\begin{aligned} & 14^{n} \text { £3.95; 17" \& } 19 \text { " } 55.95 \text {; } \\ & 21^{\prime \prime} \& 23^{n} £ 6.45 \end{aligned}$
500/500 K Ω. S / SW 500/1 me	Bowls carr. 5

DUKE \& CO. (LONDON) LTD.

621/3 ROMFORD ROAD, MANOR PARK, E. 12 Phone 01-478 6001-2-3 Stamp for Free List

COMEDDISTANRE TEIEVISION

December has been a strangely active month. During the first and second weeks a settled anticyclonic weather system gave enhanced tropospheric reception over a wide area. One feature of this system was the ducting effects that occurred on several occasions. Our East Anglian friends report that this effect produced u.h.f. signals from Switzerland on a number of channels when little else was being received. Indeed we understand that one person received no less than eight Swiss u.h.f. transmitters. Graham Deaves also reports reception of an East German ch.E34 transmitter carrying an identification slide "Greifswald". From our current transmitter list this seems most likely to have originated from Rostok. If anyone has up-to-date information on the DFF u.h.f. network we would be pleased to hear as we have had some difficulty in obtaining accurate lists.

An encouraging sign for the next Sporadic E season has been the increase of signals via this propagation mode. Indeed there have been a number of minor openings logged, notably on the 19th when prolonged signals were received during the morning and afternoon. This is a good sign as midwinter openings were common in the active years of the early 1960 s so 1 feel we can look forward to a 1972 Sp.E season with signals greatly improved over those of recent years.

My own \log for the period under review is as follows:
1/12/71 DFF (East Germany) E4 (MS-meteor shower).
4/12/71 NOS (Holland) E4 (tropstropospheric).
5/12/71 TVP (Poland) R1 (MS); NOS E4.

6/12/71 WG (West Germany) E4; DFF E4 (both MS).
7/12/71 Improved troposphericsORTF etc.
9/12/71 DFF E4 (MS); NOS E4.
11/12/71 SR (Sweden) E2 (MS/Sp.E). 13/12/71 CT (Czechoslovakia) R1 (MS).
14/12/71 SR E2; CT R1; ORF (Austria) E2a (all MS); also Caen ch.F2 trops on 625line tests.
16/12/71 WG E2 (MS); unidentified signals at 1720 ch.R1 via Sp.E together with the familiar RTTY "whistling". Signals faded at 1730 although 1 feel Sp.E activity may have been experienced during the afternoon.
17/12/71 NRK (Norway) E3 (MS); SR E3 (MS).
18/12/71 WG E4 (MS); SR E2-long duration Sp.E signals.
19/12/71 SR E2 (MS); BRT (Belgium) E2 (trops); unidentified Sp .E signals at 1535 ch.R1-end of a Sp.E opening during the morning (see correspondents' letters).
20/12/71 SR E2 (MS).
22/12/71 SR E2, E3; WG E2 (all MS); unidentified Sp .E signals ch.R1 at 1825-long duration.
23/12/71 SR E2 (Sp.E).
24/12/71 DFF E4 (MS).
28/12/71 SR E2 (MS); unidentified Sp.E signals at $0910 \mathrm{ch} . \mathrm{E} 4$.
29/12/71 SR E3 (MS); BRT E2 (trops).
30/12/71 SR E2 (MS).
31/12/71 SR E2 (MS).
From December 10th I moved location from Romsey to the Southampton
area. For the present I am operating with a temporary aerial system (actually the omnidirectional X array featured in Practical Television July 1969) whilst the various problems on the domestic front are being sorted out. When the warmer weather arrives plans will be put into operation for a more substantial array. From initial observations the location appears to be an improvement despite the increased signal strength from the "local" on ch. B3 some 14 miles away at 100 kW . One problem that is being investigated is interference on ch.E4 from an r.f. welder thought to be some $2 \frac{1}{2}$ miles distant on the far side of Southampton Water. This gives some $3 \mu \mathrm{~V}$ peaking to $12 \mu \mathrm{~V}$ on ch.E4 during factory hours, as measured on separate signal-strength meters. Fortunately the GPO were able to observe the interference when they called and an end to the problem is anxiously awaited in the near future.

Sunspots: Smoothed predictions for the next six months are as follows: December 49, January 47, February 45, March 43, April 42, May 41. The actual mean value for November 1971 showed an increase to $60 \cdot 5$. Information courtesy Swiss Federal Observatory.

News /tems

Albania: The big news this month is that Albania is operating a transmitter within the OIRT Band II TV range. This means that given ideal conditions Albania will now be possible via Sp.E. Michele Dolci reports that his contact at Brindisi is receiving signals from a new Albanian Band II transmitter at reasonable strength. The test card and

Main Bulgarian news caption PO CBETA $И$ Y HAC. The letters rotate around the globe. Courtesy OIRT Prague.

Radio Bremen test card. Courtesy P. D. van der Kramer.

DATA PANEL 8-2nd series

France: The test card for both chains is similar, with an identification below the circle to indicate the chain. At present the test card above left is used by both chains though at times the alternative version with the horse may be used. The second chain colour card is shown below.

French second chain colour card.

Standard pattern: EBU colour test chart.

Photographs this month courtesy of Garry Smith and Michele Dolci.
programmes are different from those radiated by other Albanian stations. We do not know the exact channel in use but feel it may be ch.R4 as the signals are being received on an Italian receiver with I presume coils for Italian channels. The only Band II Italian channel is ch.IC with 82.25 MHz vision which is the nearest frequency to ch.R4 vision at 85.25 MHz . We have been promised photographs of the test card and as soon as these arrive we will print them ready for the coming season.
West Germany: Graham Deaves reports that Sudwestfunk have changed the identification on their test card from "Sudwestfunk" and "Sudwest 3 " to "SWF Band 1" and "SWF Band 3" for the first and third networks respectively. The Bayerischer Rundfunk third network test card now carries the identification " $B R$ Munchen". The ZDF network test card has been noted at times to carry the identification "ZDF".
Switzeriand: We understand that the test card carrying the identification letter \mathbf{L} has been received with an

Italian language programme. This card originates from the Lugano studio centre. In this month's Data Panel we are featuring an EBU colour pattern which is currently in use by both Switzerland and Italy.

A Correction

In the January 1972 column we mentioned that two new unlisted West German transmitters were in operation (in "Our Correspondents" section). I have subsequently discovered that the caption "Unter Brechung" indicates a pause or intermission! This is often used during periods when there is a breakdown or interruption to the main programme coming to the transmitter. We apologise if this error has caused confusion and appreciate the interest of a number of readers who contacted us to point out the error.

Lightning-flash Propagation

An interesting mode of propagation has recently been brought to our notice by the WTFDA TV-DX organi-
sation of PO Box 5001, Milwaukee, Wis., USA. Apparently there has been some activity in connection with lightning flashes. Such a flash can produce localised ionisation sufficient to reflect signals over several hundred miles at both v.h.f. and u.h.f. Such lightning flashes can give short bursts of signal (not unlike the more conventional Meteor Shower bursts) and there have been instances of signal reflection upwards of 10 seconds. Such reception is more likely to occur during severe electrical storms. The article indicates that reception may be possible from stations some 500 miles away. Rod Luoma of Detroit reported reception of WFLD-32 Chicago (Ch.A32) in June 1968 at a distance of 250 miles during a severe electrical storm to the West. The station was observed "during lightning strokes, apparently due to ionisation of the air around the charge, there being no signals between strokes". Certain v.h.f. frequencies were also affected. The WTFDA go on to say that the storm may not necessarily be at the midpoint between yourself and the transmitter, nor
indeed in the true direction. It certainly appears that this may be a field worth further investigation as there may be a connection with $\mathrm{Sp} . \mathrm{E}$ ionisation: we have all noted the tendency at times for enhanced Sp.E during thundery weather. A word of warning however: if the storm is overhead do not continue to operate the receiver!

Postbag

We have received a large postbag during December including a letter from our old friend A. Papaeftychiou of Palouriotissa, Cyprus. He has been noting various receptions from his part of Europe including a certain amount of Sp.E in early November. Of more interest to F2 enthusiasts is the news that during the last week of October he received the Rhodesian transmitter at Gwelo ch.E2 with the familiar checkerboard. Signals ranged from "normal" to the more characteristic fluttering
and multiple-image type. It appears that signals were received via the daytime F2 layer and the evening/sunset Trans-Equatorial skip modes.

Mark Tracy from his Newquay, Cornwall, home has received excellent signals from Radio Telefis Eireann. Signals were noted on both ch.B7 (405 lines) and ch.H (625 lines) from the Dublin transmitter. The drawing of the test card enclosed with Mark's letter indicates an alternative to that recently featured in our Data Panel. As soon as - have a photograph of the alternative type it will be included as a supplement to our main Panel.
J. Boswell of Hornsey, London N8 has been busy with his colour receiver and a long letter detailing u.h.f. recep-tion-all colour-has arrived here. The letter covers the period during October when conditions were good and by all accounts his location is extremely good, with 36 stations received in colour definitely identified and with "a lot more W. German stations that
could not be positively identified". Unfortunately Mr. Boswell adds that his DXing aerial system collapsed, the mast breaking just above the lashings. One point he thinks will assist some enthusiasts is that the Telefunken test card used by NDR, WDR, etc., often carries the initial of the transmitter at the centre lower frame, e.g. " N " indicating Nordhelle.

Finally this month Frank Smales of Pontefract, feeling a little better and encouraged with recent conditions, has sent us a letter telling of the recent Sp.E opening on December 19th. During this opening-lasting from 1150-1545-he logged USSR R1, 2; DFF E4; RAI (Italy) IA; NRK E4 and Iceland E4. Interesting to note a similar observation to my comment earlier regarding Wintertime openings: Frank notes that his last December Sp.E opening was on December 11 th, 1965. His final comment about the more recent opening-"What excitement" !

LETTERS

READERS' HINTS

After replacing the U25 e.h.t. rectifier in the oilfilled line output transformer and fitting a new tube and rectifiers a venerable Murphy V280C now works very well indeed. The $2 \mathrm{~V} 0 \cdot 2 \mathrm{~A}$ heater/cathode of the U25 had broken and shorted across to the anode, thus giving a.c. instead of the e.h.t. Replacement of the U25 in an oil-filled Murphy line output transformer is thus well worthwhile and can be done by the enthusiast without much trouble-no dealer will take this job on. If the curved-in edge of the transformer can is bent straight with a pair of thin-nosed pliers the transformer assembly can be lifted out of the oil. When soldering the wire leads of the new valve it is important to avoid any solder spikes as corona can occur even in the oil. After replacing the transformer in its can it is only necessary to re-bend the edge of the can gently (to avoid fracturing the metal) with the pliers: a final seal can then be made around the edge with "bath sealant" which sets like plastic rubber. John J. Widden (Aberdeen).
The following faults were experienced with a DER Model 129 but as this set is fitted with the Thorn/BRC 950 chassis readers may find similar trouble on many other models. The DER Model 129 has a motorised tuner and the mechanism is arranged so that during channel changes-when the motor is in operation-a muting switch comes into operation to isolate the sound, video and line stages from the h.t. supply. The switch was not working but although a raster and sound of a kind were present during channel changes the raster brightness was noticeably down. The main fault however was that bad vision distortion occurred when the volume control was advanced, disappearing again when the sound was reduced to minimum. Maximum sound was distorted and the video distortion turned into hum bars at maximum.

Since the main smoothing bank had a bulge this was replaced but without improving matters. Next the muting switch was examined and replaced as it was found to be damaged. The faults however were still
present. The h.t. was then measured at each contact of the switch. As expected with the switch closed the h.t. was present at both contacts: with the switch open the h.t. was naturally present at one contact-but was also found to be present, although down by about 40 V , when the switch was open! The wiring was traced back to the point where it is distributed to the tuner, sound, video and line stages since obviously there was a leak somewhere. The line, video and tuner feeds were disconnected and the leak was not in any of these directions. This left the sound circuit. This was disconnected and the h.t. leak disappeared, the muting switch now working correctly. Clearly the trouble was in the audio circuit. The audio output transformer was disconnected but voltage was still found to be present at the anode pin 6 of the PCL86. The valve was then removed and still the voltage was present. All that remained at the anode pin was the tone correction network- $12 \mathrm{k} \Omega$ plus 3000 pF -and according to the circuit these go back to the top end of the sound output transformer primary-which we had isolated. So where was the voltage coming from?

The circuit is shown in Fig. 1(a). Close inspection of the printed wiring however revealed that the tone correction network instead of being connected to the top of the output transformer goes to pin 3 of the valve as shown at (b). This pin is the screen grid and has 220 V on it. We then discovered a charred $12 \mathrm{k} \Omega$ resistor in series with a short-circuit 3000 pF capacitor as the tone correction network and all became clear. Other 950 chassis boards we had in stock were then checked and all were found to be printed in this way. -J. S. Anderson (Sheffield).

Fig. 1: J. S. Anderson's h.t. problem.

A CLOSER LOOK AT

PART4

E.J.HOARE

MORE COLOUR ERRORS

Last month we discussed in some detail the effects of decoding errors caused by incorrect alignment of the delay line matrix circuit and the phases of the reference carriers fed to the two colour-difference demodulators. It soon became clear that the first sign of trouble is usually the presence of hanover blinds and that a delay line PAL decoder in practice very seldom causes hue errors on the picture. If you followed the discussion in detail your understanding of PAL decoding processes should be pretty good and will stand you in good stead when thinking about other PAL decoding matters.

It is rather easy to fall into the trap of thinking that if the normal PAL decoding processes are correctly carried out then no chrominance errors will appear on the picture. Unfortunately this is not the case, and it sometimes causes mild bewilderment when certain critical hues fail to be displayed with the accuracy expected. First of all we blame the accuracy of the grey-scale tracking and when this proves to be correctly adjusted we recheck the purity and perhaps even tickle up the convergence again. If the colour-difference drives can be adjusted we do this too. When all these adjustments are correct there is no point in spending any more time on the problem: the receiver is giving the best performance of which it is capable and the chances are greatly in favour of the colour picture quality being of a high standard.

If we are still not completely satisfied however, there are three main likely causes of the deficiency. The producer of the programme may have different ideas of what constitutes correct colour rendering of the scene being televised; the c.r.t. phosphors may display slightly different primary colours compared with those of the studio camera filters and masking; or the trouble may be due to the partial failure of the principle of constant luminance.

Display Tube Phosphors

It is only possible to get completely accurate reproduction of the original scene if the display-tube phosphors are an exact match of the chromaticities of the primaries at the camera. The situation with regard to
the specification of the camera primaries is further complicated by the use of "masking" techniques in which the output of each tube is modified by the addition of a small amount of the outputs of the other two camera tubes. This is too big a subject to discuss here: suffice it to say that the c.r.t. phosphors used deviate slightly from the theoretical optimum in the interest of obtaining maximum light output. Furthermore they have appreciable manufacturing spreads in their characteristics. Thus a small hue error is introduced which is not very significant on its own but does have a cumulative effect when added to other minor deviations.

Constant Luminance Principle

Constant luminance working is an ideal state of affairs that cannot be achieved under the practical circumstances of normal television transmission and reception. However although the errors are quite substantial there are some compensating factors present and the quality of the displayed picture is not appreciably impaired. The constant luminance principle is one of those interesting side issues of colour television that many people find difficult to grasp although the principle is quite straightforward. It is simply that the luminance signal should carry only brightness information and the chrominance signal only the colouring information.

This means that if the luminance signal of a colour transmission is fed to an ordinary monochrome receiver you should get precisely the same picture as you would from an equivalent monochrome transmission. If on the other hand the colour transmission is fed to a colour receiver the luminance signal should provide the brightness information just as it does on the monochrome receiver and the chrominance signal should add the colouring information that turns the black and white picture into a colour one. You can prove this point quite simply by detuning a colour receiver until the colour killer operates. When the colour is killed the resulting black and white picture should look normal: the luminance carrier of the composite colour transmission appears to be displaying a normal black and white picture.
As we said earlier this principle of constant luminance cannot in practice be achieved perfectly so that in point of fact the black and white picture is not completely accurate. It is not panchromatic-to use a photographic term-i.e. areas of highly saturated colour are not reproduced in the exact shades of grey that would be obtained if a monochrome camera was used. What is happening is that part of the luminance (brightness) information in the composite colour signal is being carried by the chrominance signal and so is not available for a black and white display: this constitutes a partial failure of the principle of constant luminance.

Since this principle is obviously a sound one as it allows a colour transmission to give a perfect black and white picture on a monochrome receiver, why is it not used: why does it break down? The short and complete answer is "gamma".

Gamma Correction

The need for gamma (γ) correction arises purely and simply because the display device-the c.r.t.-has a non-linear input/output characteristic (or transfer

Fig. 1: How the gamma correction applied at the transmitter (top curve) compensates for the characteristics of the c.r.t. (lower curve). For simplicity it has been assumed that gamma is 2: in practice it is normally in the range 2.7-3.
characteristic). If a c.r.t. is just and only just cut off and we apply a positive grid voltage V the light output can be expressed as $K V^{\gamma}$ where K is a constant. For a long time γ was assumed to be 2.2 and you will find it given as this value in all the textbooks. However all modern c.r.t.s have a γ of $2 \cdot 7-3 \cdot 0$. So in practice the light output is proportional to the cube of the voltage drive. If you double the drive you get $2^{3}=8$ times the light output or thereabouts.

Clearly in colour television it is essential to have an overall linear system because varying proportions of red, green, and blue signal voltages are being added and subtracted at various stages of the signal processing. If these voltages are multiplied by a cube law at the end of the chain the proportionality between the red, green and blue channels will be lost and most hues will be seriously distorted. In order to obtain this overall linearity the outputs of the colour camera tubes are gamma corrected to the power ${ }^{1 / r}$. The camera outputs are $V^{1 / r}$, the c.r.t. gives $V r$ and overall we get V. See Fig. 1.

One of the important though incidental advantages of gamma correction is the improvement in signal-tonoise ratio. It is rather interesting to see how this comes about. If you look at Fig. 1 you will see that the dark greys of the transmitted signal (after gamma correction) are proportionately larger than the peak whites. A peak white signal of say 27 units is transmitted as 3 units (for $\gamma=3$) whereas a grey of say only 8 units is transmitted as 2 units. Thus if noise of the same amplitude is added to each part of the signal it will be a smaller proportion of the grey signal than would be the case if no gamma correction was employed: the eye is much more sensitive to noise in grey areas than white ones and a useful improvement in noise performance is obtained.

Partial Failure of the Constant Luminance Principle

Let us see what happens in practice when a gamma corrected composite colour signal is displayed on a normal monochrome receiver. The luminance signal is derived from the outputs of the three camera tubes (in a three tube camera) in the well known way:

Luminance signal $(Y)=0 \cdot 3 \mathrm{R}^{1 / \gamma}+0 \cdot 59 \mathrm{G}^{1 / \gamma}+0 \cdot 11 \mathrm{~B}^{2 / \gamma}$.
Now if to start with we assume a mid-grey tone then $R=G=B=0 \cdot 5$. So after gamma correction we get $\mathrm{R}^{1 / \gamma}=\mathrm{G}^{1 / \gamma}=\mathrm{B}^{1 / \gamma}=\sqrt{ } 0 \cdot 5=0 \cdot 71$. We have assumed $\gamma=2.0$ because this makes the arithmetic easy to follow. In practice $\gamma=2.7-3.0$ and so in practice any effects that we uncover will be disproportionately greater.

We now get $\mathrm{Y}=0.3 \times 0.71+0.59 \times 0.71+0.11$ $\times 0.71=0.71$.

Neglecting certain special effects the monochrome receiver only "sees" the luminance component of the composite colour signal. It ignores the chrominance information because it is coded in a way that the monochrome receiver cannot understand (except as an interference pattern). If the display tube is assumed to have a gamma of 2.0 (normally nearer 3.0 of course) it will treat the luminance signal Y in a non-linear manner so Y becomes $\mathrm{Y}^{Y}=\mathrm{Y}^{2}=0.71^{2}=0.5$.

We can immediately see from this that if this "colour" signal is displayed on a monochrome receiver we get correct reproduction. If we use a different gamma or a different tone the result is still correct. Note however that a difference in gamma between the transmitter and the receiver will cause an error on the displayed picture. This may of course be done deliberately by the producer in order to obtain a special effect.

Let us then take our investigation a stage further: what happens to the coloured parts of a scene when displayed on a monochrome receiver? Supposing we have a moderately saturated pure green field (not very common in practice, except perhaps in a cowboy film!). Then: $R=0, G=0 \cdot 5, B=0$. After gamma correction $\mathbf{R}=0, G=0.71, B=0$. And $Y=0.3 \times 0+0.59$ $\times 0.71+0.11 \times 0=0.42$. When displayed on a monochrome receiver we get $\mathrm{Y}^{\gamma}=\mathrm{Y}^{2}=0.42^{2}=0.177$.

Now is this correct or not? What should the correct luminance be? If we had no gamma problems and both the transmitter encoding and the display device were linear, i.e. gamma $=1 \cdot 0$, then the transmitted luminance would be:
$Y=0.3 \times 0+0.59 \times 0.5+0.11 \times 0=0.295$. This is what we ought to get but instead we have $\mathbf{Y}=0.177$ which is only 60% of the correct value. If we use a more normal gamma of 3.0 we get only 35%. Quite clearly a monochrome receiver simply cannot reproduce accurately in black and white the coloured areas of a picture. The colours are reproduced with a low value of luminance, i.e. a darker grey than the sensation of brightness that the eye would receive if it viewed the scene directly. The reproduction is not panchromatic.

Now to turn to the behaviour of a colour receiver where we shall see that part of the luminance information is carried by the chrominance channel thus demonstrating the partial failure of the constant luminance principle.

Taking the previous example (a moderately saturated pure green field) $Y=0 \cdot 42$. The colour-difference signals therefore are:
$\left(\mathbf{R}^{1 / \gamma}-\mathrm{Y}\right)=0-0.42=-0.42,\left(\mathrm{G}^{1 / \gamma}-\mathrm{Y}\right)=$ $0.71-0.42=0.29$ and $\left(B^{1 / \gamma}-Y\right)=0-0.42=$ -0.42 .

The colour tube displays these colour-difference signals added to the luminance signal, i.e. on red $-0.42+0.42=0$, on green $0.29+0.42=0.71$ and on blue $-0.42+0.42=0$. Thus of these three signals red and blue are zero and so these two guns are not driven and no red or blue light appears on the screen. The green gun receives 0.71 and if the tube's
gamma is 2.0 the light output is $\mathrm{G}^{\gamma}=0.71^{2}=0.5$. This is identical to the camera output signal and so both the hue and luminance are correct.

Now we saw earlier that the luminance signal Y should have been $0.59 \times 0.5=0.295$ whereas the displayed luminance was 0.177 . In a colour receiver the total luminance output is correct because the chrominance channel is carrying the balance of the luminance.

We can see this quite easily by considering the special case where the display tube gamma is 1.0 and so the transmitted gamma is also $1 \cdot 0$. In other words the television system has linear characteristics. This obeys the constant luminance principle as we saw earlier. The R, G, B and Y parameters now become $\mathrm{R}=0, \mathrm{G}=0.5$ and $\mathrm{B}=0$. Thus:
$\mathbf{Y}=0.3 \times 0+0.59 \times 0.5+0.11 \times 0=0.295$, say $0.3 . \mathrm{R}-\mathrm{Y}=0-0.3=-0.3, \mathrm{G}-\mathrm{Y}=0.5-0.3$ $=0.2$ and $B-Y=0-0.3=-0.3$.

In the colour receiver these are added to give for red $-0.3+0.3=0$, for green $0.2+0.3=0.5$ and for blue $-0.3+0 \cdot 3=0$. Note the difference in values between this and the previous case, where the $G-Y$ signal was larger and compensated for the small luminance (Y) signal to give the correct total of $(G-Y)$ $+\mathbf{Y}$.

Effects of Subcarrier Rectification

As a result of these simple calculations involving gamma correction and the constant luminance principle we have reached the conclusion that brightness errors occur on monochrome receivers but only in areas corresponding to coloured scenes when a colour signal is actually being displayed. The brightness in these areas is reduced. A colour receiver on the other hand reproduces all parts of the scene correctly, whether black and white or coloured.

Now these conclusions are partially incorrect: not because our calculations are wrong but because we have neglected another important contributory factor -subcarrier rectification. This is the process whereby the chrominance subcarrier in the luminance channel is partially rectified by the non-linear characteristics of the c.r.t. to give a d.c. output. This adds to the luminance signal and alters the c.r.t. drive and hence the light output.

We saw earlier that most modern display tubes have a gamma of about $2 \cdot 7-3 \cdot 0$. This is because a c.r.t. is in effect a large triode valve and so has a curved $\mathrm{Ia} / \mathrm{Vg}$ characteristic as shown in Fig. 2 (a). The value of gamma at any given operating point on the curve is given by the slope of the curve at that point (when plotted on a log scale). The luminance signal arriving at the grid or cathode of the c.r.t. has been gamma corrected to the power ${ }^{1 / \gamma}$ and so the light output at the screen is linear. The chrominance subcarrier on the other hand is added to the signal after gamma correction and so is distorted by the gamma of the c.r.t. to produce a non-linear output.

This process is illustrated in Fig. 2 (b). The subcarrier is applied to the c.r.t. as a sinewave voltage but because the $I \mathrm{a} / \mathrm{Vg}$ characteristic is curved the resulting anode (beam) current is as shown distorted. The mean value of this distorted waveform is higher than is the case when no colour is present and the subcarrier falls to zero. Clearly the amount of extra current present depends upon the amplitude of the subcarrier.

The light output from the screen of a c.r.t. is proportional to beam current and the presence of a chromin-

Fig. 2. (a) Beam current/grid voltage curves for a typical c.r.t. (b) The curved Ia/Vg characteristic of a c.r.t. causes an increased d.c. component of beam current output due to subcarrier rectification.
ance subcarrier causes an extra d.c. component of beam current which means more light. Is this a good thing or a bad thing?

On a monochrome receiver the brightness of coloured areas of the picture is too low. We can conclude therefore that the presence of the chrominance subcarrier in the luminance channel is a good thing as it produces extra light output from the c.r.t. and thus compensates for the partial failure of constant luminance. It can be shown that if the subcarrier is present at full amplitude the compensation produced is surprisingly accurate and the final result is quite satisfactory. There is a snag of course, as there nearly always is in such matters. The dot pattern caused by the subcarrier in coloured areas of the picture is rather objectionable. The subjective effect of this is however partially offset by the good resolution resulting from the wide bandwidth of the i.f. and video circuits. In practice it is desirable to compromise a bit and to attenuate the subcarrier by about $3-6 \mathrm{~dB}$ at the c.r.t.

In a colour receiver the situation is rather different. The drive to the c.r.t. is basically correct because the missing luminance information is carried by the chrominance signal. It is therefore undesirable to add an extra luminance component and from this point of view the amplitude of the subcarrier in the luminance channel should clearly be kept as small as possible. Unfortunately although this is easy to do the resulting restricted luminance bandwidth causes an undesirable loss of picture resolution unless an exceedingly narrow notch filter is used. Even then the return of the luminance response just below 5 MHz tends to pass rather more noise than extra picture information. Generally speaking it is probably better to tail off the luminance response in the region of the subcarrier so that it is attenuated by about 6 dB . If a common luminance and chrominance detector is used this is a convenient approach because the sound carrier at 6 MHz has to be attenuated by better than 35 dB in order to reduce the visibility of the sound/chrominance beat pattern at $6.0-4.43=1.57 \mathrm{MHz}$.

The decision on these parameters in practical designs tends to be a matter of opinion because they represent compromises between different subjective effects. Moreover we have not yet considered the other effects resulting from any attenuation of the luminance passband in the region of the colour subcarrier. These must be born in mind when choosing the best compromise.

In order to reduce cost and complexity it is fairly common practice to use a single i.f. detector for obtaining the luminance and colour subcarrier information from the composite i.f. signal. This is an attractively simple technique which works well in practice but needs

Fig. 3: Phasor diagrams of a carrier and its double sideband amplitude modulation. (a) A sinewave train. (b) Phasor representation of (a). (c) An unmodulated carrier "stopped" at the instant it reaches its peak, i.e. position 3 in (a). (d) The upper, higher-frequency sideband rotates faster than the carrier while the lower, lower-frequency sideband rotates more slowly. (e) It is convenient to regard the carrier as being stationary and to show, as here, the relative movement of the sidebands with respect to the carrier: this is a useful simplification. (f) An idealised curve showing the envelope of the modulated carrier.
care in application. This is because if the i.f. passband is attenuated in the region of the colour subcarrierfor the reasons discussed above-the colour subcarrier signal to the decoder will be distorted in the same way. It will become a partially single-sideband signal instead of a full double-sideband one as transmitted. To be in a position to assess the situation as a whole and to decide between the conflicting claims of good picture resolution, colour fidelity, and good colour resolution and transient response we need to know what happens to this distorted chrominance signal.
This situation does not arise of course if a separate chrominance detector is used, enabling full doublesideband operation to be achieved without penalty. The luminance response can then be tailored to give the best compromise between luminance resolution and correct amplitude. Unfortunately the extra cost of this approach is significant because it usually involves a complete extra i.f. stage, with two tuned circuits, in order to obtain a chrominance amplitude response which is independent of the luminance one.

Sideband Operation

We made the point in a previous article that the vector and phasor diagrams that are so freely drawn showing PAL signal components are of dubious validity: or at least that one has to treat them with a certain amount of reserve. This is because they are drawn as single carriers whereas we all know that the carrier has been suppressed at the transmitter! We pointed out that these diagrams are in fact representations of a more complicated state of affairs in which the vectors and phasors are equivalent to the sum of the sideband information. Now it is all very well up to a point to use this simplification and it is certainly
convenient for many purposes, but it does tend to hide some important factors that arise when the sidebands are distorted.

All the chrominance and luminance information of a PAL signal is carried by the sidebands and the chrominance subcarrier is suppressed at the transmitter without any ill effects because it carries no

Fig. 4: A phase-modulated carrier is of constant amplitude but the phase rocks to and fro. An envelope detector therefore cannot "read" the modulation. (a) Sideband phasors for a phase-modulated carrier. (b) The resultant of the carrier plus its sidebands is obtained as shown here. (c) Resultants of the carrier plus the sidebands shown in (a).
picture information. In the receiver it is reinserted because it is an essential tool in the process of extracting the colour-difference signals by demodulation. (The luminance carrier incidentally has to be transmitted in practical circumstances because of the complications that would arise if it was suppressed in the same way as the chrominance one.) The sidebands of the chrominance subcarrier extend for about $\pm 1.0 \mathrm{MHz}$ each side of the centre frequency of 4.43361875 MHz and these are present to some degree in all picture transitions. For large areas of constant hue the sidebands are restricted to about 100 kHz because the only information that has to be conveyed are the changes representing line and field sync intervals and blanking.

What we wish to find out now are the effects on the PAL chrominance signal of distortion of the amplitude response in the signal channel of the receiver. Typical response curves will give heavy attenuation at the top end of the upper sideband-near the sound carrierand may be sloping in the region of the centre frequency. In order to investigate this kind of situation we must have a clear understanding of the form of a carrier modulated with sidebands, whether a.m. or p.m. Remember that the chrominance subcarrier has both amplitude and phase modulation, changes in amplitude indicating changes in saturation while changes in phase indicate changes of hue.

Amplitude- and Phase-Modulated Carriers

Readers who waded patiently through the monologue on vector diagrams (and others who didn't need to!) will recall that any train of sinewaves (or cosine waves) can be conveniently represented by a rotating vector. This sweeps through a circle of 360 degrees corresponding to the phase angles of one cycle of the sinewave. Fig. 3 (a) and (b) illustrates this technique. So an unmodulated carrier can be represented by Fig. 3(c) in which it is assumed that the carrier has been "stopped" at one particular instant in time. The angle of the phasor indicates the phase of the carrier at the instant at which it stopped: in this case 90 degrees from a reference phase at 3 o'clock.

Now we come to sidebands. A sideband is at a higher frequency (upper sideband) or lower frequency (lower sideband) than the carrier. Hence it will be rotating faster or slower than the carrier. So if we start off, as in Fig. 3(d), with both sidebands in phase with the carrier and then "stop" the signal at successive intervals of time we get the phasor diagrams as shown. These are for amplitude modulation. We know that the carrier is rotating steadily and in order to simplify the diagram it is convenient to redraw it as in Fig. 3(e). This amplitude-modulated carrier is equivalent to a chrominance signal plus the reinserted carrier from a local reference oscillator. Suppose we carry out envelope detection: what is the result? Fig. 3(f) shows the detected output.

We can conclude from the phasor diagram of Fig. 3(f) that the amplitude of the demodulated output will vary, but the phase is constant. Remember that this is for the ideal case of full double-sideband operation, and our conclusion confirms what we already know from past experience and learning.
Now take the case of a phase-modulated carrier with full double sidebands. The sideband phasors are shown in Fig. 4(a) for several different instants in time, with the carrier stationary. Fig. 4(b) shows how we obtain the resultant of carrier plus its sidebands and Fig. 4(c)

Fig. 5: In practice there are innumerable sideband components for even the simplest signal. A few arbitrarily selected ones are shown here.
the resultant for each of the diagrams of Fig. 4(a). It can be seen that the amplitude of the carrier remains constant but the phase varies in sympathy with the phase of the modulation that was impressed upon it. An envelope detector would give zero output.

The resultants of Fig. 4(c) are rocking about the vertical centre line of the diagram and the maximum phase deviation is dependent upon the relative amplitudes of carrier and sidebands. Note once again that we are considering the ideal case of full doublesideband operation. The diagrams are perfectly symmetrical over a period corresponding to one cycle of the sideband frequency.

If we only had one pair of sideband components for each television signal, and they were undistorted, there would be no difficulty at all. The conventional PAL vector and phase diagrams would be the true representation of the signal voltages that many people assume them to be. In practice of course there are thousands of sidebands for every signal, and if we take just a few of them for an a.m. carrier we get the phasors of Fig. 5(a). For a p.m. carrier we get Fig. 5(b).

From the discussion so far we can see that the amplitude of the vectors in a PAL chrominance diagram is the sum of the individual sideband components, because the diagrams are symmetrical. Similarly the phase angle is the resultant of all the sideband phase components. The diagrams are substantially correct for an undistorted signal. However if a sideband is distorted, or missing altogether, the signal is changed too, and this is often glossed over or ignored.

Distorted Sidebands

Let us take an ordinary example of double-sideband operation of an amplitude-modulated carrier, as shown in Fig. 6(a). It is symmetrical and has no phase component in the output. Now remove one sideband, as in Fig. 6(b), and what is the result? Clearly there is an unwanted phase component in ihe output in addition to the wanted amplitude component. What is the significance of this unwanted phase modulation? The short answer is crosstalk, and readers of our discussion about decoding errors in the previous article of this series will know that this may well mean trouble. First of all let us establish this crosstalk problem more clearly.

Suppose that Fig. 6 represents one sideband component of a switched V signal and that the carrier is the reference carrier from the decoder local oscillator. The sideband phasor shows the phase of the sideband signal at the instant when the reference carrier sinewave is at its peak and demodulation is taking place. With double-sideband operation, as in Fig. 6(a), the resultant of the two sidebands would be in phase with the carrier

Fig. 6: A double-sideband signal (a) and a single-sideband signal (b) with the lower sideband removed.
and a pure V signal output would be obtained.
With single-sideband operation however only one phasor is present and this can be resolved into two components: one on the V axis and one on the U axis. See Fig. 7(a). On the next line the V sideband is switched 180 degrees and produces the PAL signal of Fig. 7(b). If these signals are fed to a delay line PAL decoder they will be matrixed in the normal way and passed to the V and U demodulator channels. What signals do these channels receive? Fig. 7(c) shows the effect of PAL sum and difference matrixing. Although a U component is present in the V signal it does not appear in the output (add circuit) to the U channel: this is because of the basic PAL feature that a switched component cancels in the matrix and produces no U output. So we can conclude that although a crosstalk component is undoubtedly present in the V channel it will not cause any trouble in the other channel. Furthermore if demodulation is correctly carried out on the V axis the only error will be the reduction of the output to one half due to the absence of the other sideband. The U signal will also be attenuated in the same way with single-sideband operation. Thus the overall result is a reduction of saturation but no hue error.

The effects we have just been discussing refer primarily to colour transitions where the full spectrum of sidebands is involved. If double-sideband operation occurs only in the region of the carrier, as in a practical case, then the saturation will be correct for large areas of colour which involve few sidebands but will be reduced at the boundary between colours when the number of sidebands present increases. Thus a strip of reduced saturation will be seen between colours and this will be spread out due to the loss of sideband energy causing a slowing down of the transition. It is worth noting that with NTSC no cancellation of the crosstalk can take place and the result will be a strip of incorrect colour instead of desaturation.

Now this is an important attribute of the PAL system and explains why PAL behaves so well under conditions of multipath reception where sideband cancellation occurs. It is of course very uncommon for a receiver to be operated under conditions where one sideband is completely absent, i.e. pure single-sideband operation. More commonly the upper sideband of the chrominance signal is attenuated by the sound carrier trap, or the carrier is placed on a sloping amplitude response. In the latter case an interesting situation arises if the carrier is at -6 dB : this is analogous to the vestigial sideband operation of the luminance carrier and minimum distortion is caused to the chrominance signal.

Differential Phase Distortion

Another form of distortion that requires a lot of care in engineering design is differential phase distortion. This is more descriptively called "level-dependent phase distortion" because with this form of distortion the phase error introduced on to the carrier is dependent upon the carrier's amplitude. There are many possible causes but an obvious one is where the input capacitance of an amplifier varies with input signal amplitude and results in a variable phase change (the junction capacitance of a transistor varies with the applied voltage).

Not all phase distortion is level dependent: in some cases the phase change is constant. The effect upon the accuracy of delay line PAL decoding is shown in Fig. 8. As shown at (a) the signal has been altered in phase to produce an apparently serious error (the effect on alternate lines is shown). However if we add and subtract these components in the decoder matrix we get the two signals shown together in Fig. 8(b). The resultant is identical to the original signal and this is what will appear at the output of the decoder, although at a reduced saturation. Fig. 8(c) confirms the absence of a phase/hue error in the output providing that the axes of demodulation are correct. Any quadrature error in the decoder will however produce an alternating component from line to line and hence blinds as we saw last month. This points the moral once again that the robustness of PAL is very good but is dependent upon the accuracy of alignment of the decoder.

Synchronous Demodulator Accuracy

In some of our discussions about PAL decoding and sideband operation we have been guilty of an oversimplification in so far as we have assumed that demodulation is carried out perfectly. Of course, in practice this is not the case and some circuits leave a great deal to be desired whilst others are really very good. It may be useful to describe rather more clearly the issues involved and to show how crosstalk can be caused by the combination of an imperfect signal and a poor demodulator.

In Fig. 9 we show an ordinary PAL chrominance carrier, in this case a V signal although it could equally well be U, with a phase error. This error could be caused by propagation defects, by a phase change in an amplifier, by misalignment of the delay line matrix or several other causes. Now if the V reference carrier is exactly on the V axis and synchronous demodulation is carried out perfectly we get a V output as shown. It is reduced in amplitude by a factor $V \cos \beta$. If instead of a simple phase error we had a V signal with an unwanted U component, for example from a misadjusted matrix circuit, the phasor diagram would look the same and we would get the same V output. The important fact here is that it would contain no U component. The imperfect V signal would still yield a pure V output.

In practical circumstances you have to look at things a little differently. Fig. 10(a) shows a carrier, in this case the V reference carrier, and a V signal component in correct phase. The instantaneous resultant is the sum of carrier plus signal as shown. Fig. 10(b) shows the case we have just discussed where the signal has a phase error β. The resultant now is different and the amplitude clearly depends not only upon the angle β but also the relative amplitudes of the carrier and signal. We see this again in Fig. 10(c).

Fig. 7: The effect of single-sideband operation on a PAL chrominance signal (carrier omitted).

Fig. 8: Phase distortion of the chrominance signal is cancelled in a delay line PAL decoder provided the demodulation axes are scrupulously accurate. The resultant decoder output shown at (c) is at correct phase (hue), but only if demodulation is correctly on axis: saturation is slightly reduced.

Fig. 9: Perfect demodulation of an imperfect V signal gives a pure V output although at reduced saturation.

The larger the carrier is in relation to the signal being detected the smaller are the errors. Common practice is to make the carrier about four times the signal amplitude. Another aspect of the problem is that the resultant of carrier plus signal contains some unwanted U component from the faulty V signal and this is U channel crosstalk into the V channel output with the consequent risk of hue errors and blinds.

You can see now why the ordinary PAL demodulator should be called an "envelope detector." It does not in practice carry out the instantaneous inspection of chrominance signal amplitude that we would like and -continued on page 219

(b)

(c)

Fig. 10: Imperfect demodulators are not immune to quadrature crosstalk or phase errors in the subcarrier. (a) Correct signal phase. (b) With phase error β the resultant is changed as shown here. (c) Using a larger amplitude reference carrier the effect of the errors shown at (b) is reduced.

Last month we saw how the chroma detectors work by sampling the V and U chroma signals when switched on by the reference signal. This month I propose to study some of the circuits used in the production of the reference or switching signal.

For the sake of continuity however mention should be made of the circuits which accept the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals from the chroma detectors and the matrix which recreates the missing G-Y signal: these colourdifference circuits were investigated in the June and July 1971 issues.

The reference signal is either generated by a crystalcontrolled oscillator or produced directly from the bursts in conjunction with a $4 \cdot 43 \mathrm{MHz}$ crystal filter. Both schemes are in current use and we shall be looking at them both. We will start with the more widely used active reference generator circuit, i.e. one in which a crystal-controlled oscillator is used.

Overall Scheme

The general idea is to produce for application to the chroma detectors a c.w. output signal of sufficient amplitude and of frequency and phase parameters exactly matching those of the suppressed subcarrier at the transmitter. It will be recalled that the phase of the bursts swings line by line 45 degrees either side of the $-U$ chroma axis, which means that the average phase is coincident with the $-U$ chroma axis. As a result the bursts can be used to automatically control the phase of the c.w. reference signal.

The overall scheme is illustrated in Fig. 1. The reference signal generator is the crystal oscillator, the crystal ensuring that the oscillator works exactly at the correct frequency when subjected to the control derived from the bursts. The crystal oscillator generally drives a buffer stage which in effect "isolates" it from the chroma detector circuits.

The crystal is shunted by a capacitance-diode (varactor) and although the introduction of capacitance across the crystal cannot change the frequency of the reference signal significantly a mild frequency change does in fact result from a capacitance change. Too little or too much capacitance across the crystal will prevent the oscillator working and a nominal value of about 20 pF is used for reasonable crystal drive and for the oscillator to work at the required $4 \cdot 43361875 \mathrm{MHz}$ (generally referred to as $4 \cdot 43 \mathrm{MHz}$).

Fig. 1: Block diagram of the reference signal channel.
capacitance across their leadout wires. A varactor however is designed specifically to exploit this effect. The capacitance is given by the depletion layer between the p-and n-type zones acting as the dielectric and the zones themselves which act as the plates. As the reverse bias is increased so the depletion layer widens and the value of capacitance falls.

The associated circuit elements provide a nominal value of reverse bias while a control potential from the phase detector circuit-see Fig. 1-alters the capacitance in the manner required to keep the oscillator at the correct frequency. The phase detector stage yields a d.c. output of magnitude and polarity

Fig. 2: Typical crystal-controlled reference oscillator circuit (Baird 700 series).

Fig. 3: D.C. amplifier which operates between the phase detector and the crystal oscillator circuits.
dependent on the phase error (if present) between the sampled reference signal and the bursts. This is applied to the varactor via a low-pass filter and often a d.c. amplifier.

Representative Circuits

A typical reference oscillator circuit is shown in Fig. 2. The crystal occupies the position which would normally be taken by the tuned circuit of a Colpitts oscillator and thus appears across the base-emitter junction of the transistor. For the oscillator to produce a signal at the crystal frequency the crystal usually needs to be shunted by about 20 pF as already noted: this is provided by the trimmer Cl and the varactor D1.

Feedback occurs via the collector-to-base impedance of the transistor, aided by the tank circuit L1/C2 which is tuned to the reference signal frequency. The transistor is biased by R1 and R2 in the base circuit while the standing bias for the capacitance-diode is obtained from the control circuit.

Figure 3 shows a biasing arrangement with the control obtained from a d.c. amplifier. The d.c. amplifier Tr1 is biased at its base by the network R1/R2/R3 in conjunction with the return resistance represented by the broken-line $R \mathbf{x}$ in the circuit. The capacitance diode sits between the collector potential of Tr1 with R4 on one side and R5 on the other. Since its cathode is positive with respect to its anode the diode is under conditions of reverse bias and since Trl collector potential depends on the current in R3/R4 it follows that by regulating the bias of the transistor by the preset R2 the value of the diode's reverse bias and hence its capacitance will vary. The standing bias is in this way adjusted to suit the optimum operating range of the capacitance-diode.

L1 in Fig. 2 is generally adjusted for maximum output at the reference signal frequency. Although the crystal oscillator will work without L1/C2 this tank circuit is desirable because it filters out the required fundamental frequency and removes harmonics.

A slightly different reference generator circuit is shown in Fig. 4. This is used in the Philips G8 chassis and comprises a tuned-collector feedback type of oscillator with the crystal located in the feedback path, an arrangement which keeps the current in the feedback path to a relatively low value. As a result a smaller oscillatory voltage is developed across the capacitance-

Fig. 4: The reference oscillator circuit used in the Philips G8 single-standard chassis. The crystal is in the feedback circuit.
diode and this enables a wide-range control voltage to be adopted.

It will be seen that feedback via T1 is from Trl collector to its base, the crystal being in the secondary circuit of T1. To reduce its effect on the crystal tuning the collector circuit is heavily damped by the $2.7 \mathrm{k} \Omega$ resistor R1 while to avoid the input impedance of Trl affecting the crystal tuning the base of the transistor is heavily swamped with the 68pF capacitor Cl. Amplitude limiting of the reference signal is provided partly by the emitter-to-base cut-off (set by the d.c. conditions) and partly by collector bottoming. Capacitors C2/C3 tap-down the reference signal across the primary of T 1 to a value of about $1 \cdot 2 \mathrm{~V} \mathrm{p}-\mathrm{p}$ and also provide the required d.c. isolation for the coupling to the following stage. The trimmer C 5 sets the required crystal capacitance while the combination L1/C4 tends to correct the crystal impedance so that oscillation is maintained even over the relatively wide control range provided by the capacitance-diode D1.

The circuit used in GEC/Sobell dual-standard receivers is shown in Fig. 5. Tr27 is the d.c. amplifier, Tr 28 the reference oscillator and $\operatorname{Tr} 29$ the buffer amplifier. In this circuit the capacitance-diode D305 is reverse biased from the 20 V 1.t. rail via R325, the control potential obtained from Tr27 collector varying this bias at the anode side of the diode. The collector tank L307 is shunted by R342 and the required level of reference signal is tapped-down from the collector of Tr28 by the capacitive potential-divider $\mathrm{C} 325 / \mathrm{C} 326$. This signal is then applied to the base of

Fig. 5: D.C. amplifier, reference oscillator and buffer amplifier circuits used in GEC dual-standard models.

Fig. 6: Complete reference signal channel (Decca dual-standard) from gated burst amplifier to buffer amplifier. In some circuits, as this one, two variable-capacitance diodes are used in the oscillator control section.
the buffer amplifier transistor Tr29 which is arranged as an emitter-follower to provide the reference signal at a relatively low impedance.

Some circuits use a pair of capacitance-diodes connected back-to-back as shown in Fig. 6 (D3 and D4). In this circuit the control potential is obtained direct from the phase detector, the standing bias for the diodes being obtained from VR1 which sets the initial oscillator frequency. From the capacitance aspect of course the two diodes are in series so that the effective capacitance is reduced (though it is possible to obtain a parallel coupling). From the control potential and biasing aspects however the diodes can be regarded as being in parallel, with the anodes connected together via the $470 \mathrm{k} \Omega$ resistor and the cathodes directly connected together and receiving the positive potential (relative to chassis) required for reverse biasing.

This brings us to the phase detector which is used with active reference generator arrangements to lock the oscillator to the phase and frequency of the transmitted bursts. A typical circuit is shown in Fig. 7. Trl is the final burst amplifier stage, the bursts having already been gated from the composite chroma signal. Thus this transistor is concerned with the amplification of the bursts alone and the collector-loading of the phase detector part of the circuit.

The phase detector consists of L1, the two diodes D1 and D2 and the associated components. Amplified bursts are injected into the circuit from Trl collector while a sample of the reference signal output is applied

to the cathode/anode junction of diodes D1/D2. This signal is applied from a low-impedance source represented by $R \mathbf{x}$.

To start with we will exclude the effect on the circuit of the sample reference signal and see what happens when the bursts only are injected into the circuit from L1. The bursts are fed equally but in phase opposition to the two diodes because Ll is centre-tapped. D1 thus conducts on each positive half-cycle, charging C 1 , while D2 conducts on each negative half-cycle and charges C2. The time-constant C1, R1 and C2, R2 is long compared with the period of the reference signal, which means that only a small amount of charge is lost during each cycle of the bursts and that the diodes eventually conduct for only a short period ${ }^{*}$ of each cycle to make good the charge loss.
Thus under correct conditions the middle preset R3 has at the top a negative potential from Cl via RI and an equal but opposite potential at the bottom from C2 via R2. With the circuit properly balanced therefore and R3 slider at mid-position the control potential output is zero.

When the sample reference signal is applied to the cathode/anode junction of the two diodes and its phase is correct this signal will also be handled equally by the two diodes so that the output will again add to give zero. Should the phase of the sample deviate from the correct value however either D1 or D2 will endeavour to pass a greater current than the other and a d.c. imbalance will result which of course will cause a positive or negative control potential to appear at R3 slider. R3 is adjusted for zero control potential when either the bursts or the sample reference signal is removed; that is, with the phase detector operating on only one signal.

To return to Fig. 6, this shows in addition to the oscillator we have already looked at the complete reference signal channel used in the Decca dualstandard Model CTV25. Tr2 is the oscillator transistor which is driven by the crystal and control is by the pair of capacitance-diodes D3 and D4 connected back-to-back as already explained. The phase detector consists of T1, diodes D1 and D2 and the associated components. The bursts are fed to the phase detector from $\operatorname{Tr} 1$ collector. This transistor is the burst gate and amplifier, the gating pulses at line rate being applied to its base through R1. During the line periods Tr 1 is switched off but when the gating pulse arrives-

On the evidence of our postbag it seems that the majority of sets which require more than a simple single repair conform to a regular pattern. They are approximately 10 years old if the chassis was a worthwhile one to start with. Hence we find over the past year a larger number of queries than usual relating to this Bush series. A simple repair is rarely enough to enable one of these sets to function as it should. One should therefore be prepared to check up on several common trouble spots. With a little care these receivers will give good results over a long period-probably as a second set as they have no provision for u.h.f. reception.
Essential spares must include some push-buttons as the star holes tend to wear away which prevents the tuning spindles being used.

Power Supplies

By this time most of these sets will have had a replacement h.t. rectifier fitted but it is worthwhile dwelling a little on this subject since it is something which has to be done sooner or later. The original type of rectifier fitted was an HT5-or an LW15 in some models (usually the 21 in . and 23 in . versions). The two faults which necessitate replacement are loss of efficiency (whereby the internal resistance rises causing excessive voltage drop-this results in a small picture and reduced all-round performance), and arcing between the plates which not only blows the fuse but also gives rise to the most horrible smell (literally a home-made stink bomb due to chemical reaction). You can send the dog outside but the smell will linger for quite some time!
In view of this it is not "on" to use the original rectifier as a mounting tag for a silicon diode replacement. Mounting the replacement is a matter of personal taste and we find many variations on the same theme-ranging from sheer elegance to an untidy mess of wires and solder. We are inclined to like the idea of bolting a 2082 dropper section on the chassis, wired to a small tag panel holding the rectifier. We fit the 20Ω section in order to limit the rise of h.t. voltage, bearing in mind the fact that all parts of the set will probably for some time have been used to working at a lower voltage and may not take kindly to the sudden increase which a vigorous young silicon diode will provide. Keep the diode away from the resistor which will tend to run rather hot although the chassis mounting will dissipate the heat to an extent.
It is essential to bear in mind the fact that the top centre dropper assembly is divided into two parts,
with a.c. for the heater circuit and d.c. for the h.t. smoothing etc. Any one section can become opencircuit but it is usually one of the h.t. resistors that does so. This results in the set becoming inoperative although the heaters are still glowing. The h.t. sections are on the left, the heater sections on the right. It is most important to identify the faulty section so that the correct value replacement can be used. A lowvalue section will result in poor smoothing and a picture which undulates as though blowing in the breeze-quite apart from the danger of a higher than normal h.t.

Picture Faults

Assuming that there is some sort of picture on the screen the most common trouble that can occur after a few years' service is inability to lock the picture properly combined with waving verticals and poor definition. This should immediately direct attention to the panel on the upper left side where the video resistors live. The top resistor is the anode load R34, $10 \mathrm{k} \Omega 2 \mathrm{~W}$. This may alter in value slightly but rarely enough to cause trouble.

It is the second one down-R31-which is the naughty one. This is (or should be) $33 \mathrm{k} \Omega 2 \mathrm{~W}$. Over a period of time this drops in value causing a heavy current to flow through it and thus through the video cathode bias resistor R35. As the bias increases the sync pulses become mutilated and the definition is lost. If this state of affairs is allowed to continue the current eventually becomes excessive, the resistor decomposes and the circuit then becomes a dead short across the h.t. line resulting in a blown h.t. fuse.

The value of $33 \mathrm{k} \Omega$ is not really critical and we feel happy in fitting a $47 \mathrm{k} \Omega 2 \mathrm{~W}$ type. Check the 220Ω cathode resistor if the current has been heavy.

Line Hold

A very frequent fault is that the line oscillator runs at the wrong speed. The line hold control may be at the end of its travel and the preset hold (TC1) also. This should direct attention not only to the ECC82 line oscillator valve V12 and the discriminator diodes MR5 but also to the capacitor C72 which feeds the reference pulses from the line output transformer to the discriminator. This $0.005 \mu \mathrm{~F}$ capacitor is on the tag panel on the left side of the line output section (far end) and tends to leak thus upsetting the hold circuit. A replacement should be rated at 1 kV . When replacing this capacitor also check the value of the resistor in series with it, R61 $91 \mathrm{k} \Omega$.

In some cases difficulty in obtaining reliable line lock is due to inefficient smoothing and this can be identified by the presence of curved verticals. Replacing the $200-300 \mu \mathrm{~F}$ main smoother C119-C120 should clear this condition. By and large however it can be said that the majority of line hold problems (indeed line oscillator problems in general) in this chassis centre around the ECC82 V12, the discriminator diodes and the capacitor C72.

The Line Output Stage

If there is no picture and a good deal of overheating taking place in the PL36 first suspect the line oscillator stage of non-operation. Change the

ECC82. If this is not at fault check the above-mentioned diodes and capacitor (severe unbalance in the discriminator stage will stop the ECC82 working) and also the preset line hold control which can short between the plates. If this latter condition is suspected unscrew the trimmer: this action alone will normally clear the short and start the stage oscillating.

If there is no overheating of the PL36 but the PY81 (PY800) is red hot suspect a short in the boost capacitors ($\mathrm{C} 114, \mathrm{C} 115$). In these models the "earthy" end of the boost capacitance is taken to chassis and not to the h.t. line. Therefore a short here will put the PY800 across the h.t. line which is hardly conducive to happy working. The h.t. fuse may fail if the PY800 can survive that long. The boost capacitors are two

Fig. 3: Circuit diagram, Bush Models TV103, TV105, TV108, T105c and T108c. Model TV109 (21in.) is similar.
$8 \mu \mathrm{~F} 500 \mathrm{~V}$ types in series. A 1 kV paper type of much less capacitance will enable the stage to function until the correct replacements are obtained.

Varying width with sparks across the screen can denote a shorting C107 $2 \mu \mathrm{~F}$ reversible electrolytic capacitor. Here again the value is not unduly critical if the correct item is not obtainable immediately.

Non-operation of the stage with no degree of overheating can denote a faulty PL36 or an open-circuit screen feed resistor R97. This component is located in a handy position on the bottom right tagstrip and a test resistor can easily be shunted across it to prove the point.

A very common fault on these receivers is corrosion on the EY86 valve base. Although the line whistle is normal with good supply to the EY86 top cap the valve will not light up until it is moved to one side. Wedging it in this position is of little use as the trouble will occur again. If a replacement base is to hand all is well since it is only a matter of removing the centre screw and the leads, resoldering the cleaned-up leads to the new base and replacing. If a teplacement base is not to hand remove the old one and with fine insulated wire connect pins $4,6,9$ and 1 together and pins 2,5 and 8 together.

CONTINUED NEXT MONTH

POSTSCRIPT

SOME time back we gave details of an installation for French TV reception on the south coast. This postscript describes subsequent developments.

Towards the end of 1970 a dual-standard Grundig receiver was obtained from Paris (dual-standard in this context means 819 -line v.h.f. and $625-$ line u.h.f. services, both with positive-going video). This set had a much higher gain with a full frame-grid valve line up and also flywheel sync which it will be recalled was not fitted on the previous receiver.

Because of this improved performance we decided to attempt feeding the vision and sound signals to the set's aerial input socket and not, as we had done with the previous receiver, split the i.f. strip into separate sound and vision units.

Diplexer

This necessitated the construction of a simple diplexing unit to combine the separate sound and vision aerial feeds (from the associated preamplifiers). The circuit is shown in Fig. 1. It will be noticed that the vision input contains a sound rejector circuit (L1, C1) while the sound input reciprocates with a vision rejector ($\mathrm{L} 2, \mathrm{C} 2$) thus ensuring that all signals pass through to the receiver.

Alignment is simple. Screw the dust-cores in half way. Then feed the signal from the vision aerial into the sound aerial input socket and adjust C2 to prevent vision signals passing to the receiver. C 1 is adjusted in a similar manner but with the signal from the sound aerial fed to the vision aerial input socket and C 1 then adjusted to reject the ch. F2 sound. At one stage we feared passage of ch. B3 sound through the ch. F2 sound preamplifier, producing splatter on vision. Accordingly a simple series acceptor circuit was connected to the sound input socket of the diplexer. Fortunately no problems were encountered and this filter was eventually removed.

Results

The receiver has been in use now for several months and only one problem has so far been encountered, poor sync on the weakest signals. Some modification was carried out to the field coupling and this improved matters. However, there did seem to be a problem inherent in the design itself and Grundig (in W. Germany) were eventually consulted in order to overcome the problem.

It is possible to obtain signals of entertainment value for a considerable amount of the time. Of course there are periods when due to poor weather conditions the signal is unusable and such periods

The photographs left and above have been included to show not best possible reception but average reception conditions using the equipment described by Roger Bunney in this and his previous article on receiving French TV on the south coast. The original article appeared in our April 1971 issue.
can last for several days. On the other hand a good service may at other times be available for several weeks without a break. Certainly if the Caen ch. F2 transmitter is operating signals of sorts can be observed at all times.

To give an idea of the quality of signals received several photographs are included. It should be

Fig. 1: Diplexer for channel F2.
pointed out that these shots were taken to illustrate French programme captions and were selected at random from a large number of shots taken over several weeks. Thus one can see the nature of the reception to be expected using quite simple equipment along the central southern coast of England given a good site and a clear take off to the South.

Conclusions

Although these articles have described in some detail equipment constructed specifically for a given transmitter, the general principles can be applied to any v.h.f. transmitter within a $100-150$ mile range assuming it uses a reasonable power with no reduction in your particular direction. The problems encountered were overcome reasonably easily and with minimum cost. The main ingredients required to achieve a fair success-assuming one isn't trying for the impossible-are time and patience.

One should also remember that with a project of this nature modifications may be required that would not normally be incorporated if the transmitter was only 15 miles away. Indeed with the Grundig receiver an example of this was the reduction of the video i.f. bandwidth by increasing the value of a damping resistor in one i.f. transformer. Although this reduced the bandwidth slightly it gave a worthwhile improvement in the picture quality on weaker signals by improving the signal-to-noise figure.

The project is thus virtually complete. Perhaps at a later date the aerial preamplifiers could be rebuilt using later type transistors. Then there is always the French 2nd chain on u.h.f.!

diplexer details

C1, C2	3-30pF Philips concentric trimmers
L1	14 turns close spaced
L2	11 turns close spaced
For b	th windings use $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelle
$\frac{1}{4} \mathrm{in}$. coil	formers with dust cores.
Three c	axial sockets, metal case, etc.

A CLOSER LOOK AT PAL

—continued from page 211
often assume. It measures instead the peak of the signal plus the carrier and thus produces an envelope of the signal modulation-which is not the same thing.
This difficulty can be partly overcome by using product detectors instead of simple diode ones. Then the equivalent of a low modulation depth is obtained with a high carrier-to-signal ratio. This reduces the amplitude of the quadrature or crosstalk component to more or less negligible proportions provided the phase error is not gross.

The foregoing explanation serves to show why it is that certain decoding errors are apparently cancelled in the PAL decoding process when analysed on paper and yet continue to cause blinds and transition errors in practice.

Summary

In this article we have drawn attention to a number of aspects of colour receiver design which do not always receive the understanding they deserve. If one is to get
the best results from a colour receiver at a minimum cost it is necessary to pick a rather careful path through the compromises involved between good picture resolution, colour fidelity, absence of beat patterns and good chroma transitions. It is only by doing this that full advantage can be gained of the rather impressive qualities of the PAL system. These qualities stem almost exclusively from the V axis switching, and the last two articles have described quite a number of ways in which this is put to good use.

We have not used up much valuable Television space showing what happens in the case of NTSC from which PAL is very closely derived, but you can see for yourself that there are some interesting contrasts. For example, every time a chrominance error is cancelled in the PAL system NTSC would show a hue error. Thus an NTSC demodulator must be very accurately aligned and stable, signal phase errors produce hue errors on the picture, and single-sideband working causes stripes of incorrect colour at picture transitions. Let us not labour the point, but it does provide valuable answers to the questions asked in the first article of this series about how good is the PAL colour system.
to be CONTINUED

ITT/KB CVC5 CHASSIS

Colour receivers are full of circuits and techniques new to the TV service engineer. Many of these are not adequately explained in the servicing literature so that anyone wanting to know exactly what is going on in certain sections of the receiver can spend many hours puzzling things out. The aim of this new occasional series is to take a look at the more novel and unusual circuitry in the various colour chassis and to provide a clear account of the basic operation of these circuits. We will start off with the ITT CVC5 single-standard chassis (used in KB colour sets) which contains many completely original features.

In contrast with the previous ITT $\mathrm{CVCl} / 2$ dualstandard chassis the CVC5 employs RGB drive to the shadowmask tube. Except for the audio and timebase circuits it is completely transistorised. The i.f. and decoder sections are operated from a stabilised 20 V rail while the BD115 RGB output transistors are operated from a 224 V h.t. rail.

Commencing with the tuner unit the more unusual and interesting technical features are listed below. Tuning: A varicap tuner unit to which a.f.c. is applied is used. A novel circuit is employed to equalise the pull-in performance over the wide Band IV/V coverage. This consists of an "amplitude-control transistor" whose base is d.c. linked to the tuning potentiometers while its emitter is taken to the input of the a.f.c. circuit. Its bias thus varies according to the channel selected, in turn adjusting the effect of the a.f.c. circuit. In this way the pull-in performance of the a.f.c. circuit is equalised to about 4 MHz throughout Bands IV/V, compensating for the changing voltage/frequency characteristics of the varicap diodes over this range.
I.F. Preamplifier: A common-base fixed-gain preamplifier immediately follows the tuner unit. Its output is taken via adjacent channel sound and vision rejectors to the three-stage vision i.f. amplifier.
Distribution Amplifier: Separate sound and luminance /chrominance detectors are used. The output of the latter is taken via a bridged-T 6 MHz trap to a cascode "distribution amplifier" which provides outputs to the luminance channel, the chrominance channel and the noise-cancelled sync separator and gated sync-tip a.g.c. circuit.
Beam Limiting: The beam limiter circuit reduces the
output to the luminance channel and also pulls back the saturation if the e.h.t. current exceeds a preset figure.
Chrominance Amplifier: The three-stage chrominance amplifier employs varicap diodes in the manual colour control circuit, derives the colour-killer turn-on potential from the bistable multivibrator and uses a saturated a.c.c. stage to give a wider control range.
Quadrature Conditions: The essential 90° difference between the reference signal feeds to the U and V synchronous demodulators is established in an entirely new way.
Line Generator: The PCF802 line oscillator stage operates without need of an exterior line hold control. Audio Muting: The audio circuit is muted from switch-on until the gated a.g.c. circuit comes into operation. This is done to prevent extraneous noise arriving via the i.f. stages producing an output when the i.f. stages are operating at peak gain.
Constructional Features: Major constructional features include the use of wideband i.f. transformers printed and wound through ferrite rings to obviate the need for adjustment (because of the close manufacturing tolerance) and screening (because the magnetic fields are concentrated in the ferrite), a removable convergence adjustment box, and a one-piece bottomhinged chassis which can be locked at 45° or placed horizontally to facilitate servicing.

As our main concern is with the colour circuitry Fig. l shows the three-stage chrominance amplifier and Fig. 2 the 180° PAL V switch and synchronous demodulator circuits.

Chrominance Circuits

Turning first to the chrominance stages (Fig. 1), the composite video from the distribution amplifier is first passed through a compound high-pass filter (L64, C148, L65 and C150) which sets the chrominance response and permits only the high-frequency chrominance content of the composite video signal to pass to the first stage Tr27. As the coils are shunted across the input they provide a low-impedance path to chassis to the luminance components of the signal-d.c. to 3.43 MHz - but offer a proportionately higher reactance to the chrominance signal centred on 4.43 MHz . The capacitors C148 and C150 function in the opposite manner, offering a high reactance to the luminance signal but a relatively low impedance to the chrominance information.

Automatic Chrominance Control

The first stage $\operatorname{Tr} 27$ is unusual in being operated in a highly saturated condition-as the close emitter and collector voltages show-and in being used as an emitter-follower direct coupled to the following stage $\operatorname{Tr} 28$. This way of operating the first stage is done in order to obtain a high degree of automatic gain control to maintain the saturation level constant with variations in input. Usually the gain of the controlled chrominance stage is varied by increasing or decreasing the collector current from its preset value for maximum amplification (forward or reverse a.g.c.). Although the forward bias applied to Tr 27 increases as the signal strength rises however its gain is mainly controlled (as it is already biased to a saturated state) by reduction of its input impedance. When the input impedance is reduced in this way a greater proportion

Fig. 1: The chrominance amplifier circuitry of the ITT/KB CVC5 chassis.
of the input signal is developed across the series base resistor R184: in effect the input impedance of the transistor forms with R184 a signal potential divider so that reducing the value of the former is equivalent to increasing the value of the latter. The a.c.c. potential is obtained in the usual manner, that is by rectifying the bursts at the collector of the burst gate; amplifier stage.

Second Chrominance Stage

The second chrominance stage $\operatorname{Tr} 28$ receives its signal input and bias from Tr27 emitter. Its output is developed across L66 which is capacitively coupled to L67. Both these coils are of the printed type mentioned earlier and together with the associated tuning capacitors and damping resistors form a double-tuned over-coupled circuit with a bandwidth in excess of the 1MHz required. Resistors R197 and R196 damp L67 (note earthed tap on L67) and provide a convenient take-off point for the feed to the burst gate/amplifier stage.

Saturation Control

A highly original method is used to adjust the amount of chrominance signal tapped off and fed to the final chrominance stage, the delay line driver $\operatorname{Tr} 29$. It will be seen that two varicap diodes D23 and D24 are in series with a preset capacitor C160, a $2 \cdot 2 \Omega$ resistor R198 and the d.c. blocking capacitor C157. Ignoring the slight loss across R198 and C157 therefore the proportion of the chrominance signal developed across C160 and fed via C161 to Tr 29 depends on the capacitive ratio of C160 to the two varicap diodes. That is, C160 with the two diodes D23 and D24 form a capacitive signal potential divider. The action of the colour control R202 is to vary the bias across the two varicap diodes and hence their capacitance. The smaller the setting of C160 or the larger the capacitance of the varicap diodes the greater is the amount of signal developed across C160 for application to Tr 29 : this is because for any given
charge the voltage across a capacitance increases directly as the capacitance is reduced.

The anodes of the two varicap diodes are held at a positive voltage by the potential divider R199, R195 while their cathodes are taken to a more positive potential set by the colour control R202, modified by the setting of the colour compensation control R207, which is ganged with the contrast control and returned to the beam limiter circuit. R207 and the contrast control are ganged to maintain optimum colour balance throughout the contrast range of the receiver. Decreasing the reverse bias applied to the varicap diodes increases their capacitance so that less signal is developed across them while a greater proportion of the output from L67 then appears across C160 so that the saturation level is raised.

Killer Bias

The method of obtaining the turn-on bias for $\operatorname{Tr} 29$ (i.e. the colour-killer action) is also new and interesting. Tr29 base is connected via R204 and R205 to the collector of one of the bistable multivibrator transistors Tr 37 . The bistable circuit is arranged so that in the absence of the ident signal, i.e. on monochrome reception, it is not triggered but rests with Tr37 bottomed. In this condition the collector potential of Tr 37 is near chassis potential and there is no turn-on bias for $\operatorname{Tr} 29$, i.e. the colour circuits are "killed". On colour reception the ident signal is present and the bistable circuit is brought into operation, a squarewave output appearing at Tr 37 collector. On the positive tips of this squarewave signal (almost full rail voltage) C162 charges via R205, providing forward bias for $\operatorname{Tr} 29$ via R204. The more usual arrangement is to rectify the ident signal to provide the turn-on bias. The arrangement used here however has the advantage of not being affected by variations in the amplitude of the ident signal which could cause saturation variations. Burst blanking is achieved by applying negative-going pulses from the line output stage to $\operatorname{Tr} 29$ base via R209 during the burst periods.
The PAL matrix circuit is incorporated in the DL20

Fig. 2: The chrominance synchronous demodulator and PAL V switch circuits.
delay line housing and the direct signal feed to this is adjusted in amplitude by R124 and in phase by L68. When these are correctly set pure U and V outputs are obtained.

Ditching the Killer

For servicing purposes the colour-killer action can be overcome, i.e. Tr29 brought into conduction, by connecting a $12 \mathrm{k} \Omega$ resistor between TP18 and the 20 V l.t. rail.

PAL V Switch

Figure 2 shows how the U and V signals obtained from the PAL delay line circuit are demodulated to obtain the $\mathbf{R}-\mathbf{Y}$ and $\mathbf{B}-\mathbf{Y}$ colour-difference signals. Here again we have a novel approach. We will look first at the PAL V switch. As the V signal is phase reversed on alternate lines at the transmitter in the PAL system it is necessary in the receiver to similarly and in synchronism invert the V signal before it is applied to the V demodulator (or alternatively to invert the V reference signal feed to the V demodulator on alternate lines). Both techniques are widely

(a)
used, the former being adopted in this chassis. The switch consists of transistor Tr30 and diodes D25 and D26. The V signal is fed to the base of this transistor, and opposite phase V signals are developed across its collector and emitter load resistors R218 and R220. Tr 30 is constantly operative, its base being forward biased by the potential divider R217, R216. The two diodes however are switched on on alternate lines by the squarewave signal fed to their junction via R224. Thus on one line the V signal passes via D25 to C172 and then to the V demodulator while on the next line the V signal in opposite phase is taken via diode D26 to C172 and the demodulator. The result is that the alternate line V signal phase alternations are removed before the V signal is applied to the V synchronous demodulator.

Quadrature Conditions

The next unusual feature is the unique way in which the quadrature relationship (90° shift) between the reference signals fed to the V and U synchronous demodulators is maintained. This is brought out by the block diagram shown in Fig. 3 which compares the usual system (a) and the arrangement adopted in

Fig. 3: The usual demodulation system (a) and the arrangement adopted in the CVC5 chassis (b).
the ITT chassis (b). The usual system is to take the reference signal from a buffer amplifier via a 90° shift network to the U demodulator and via the $180^{\circ} \mathrm{PAL}$ V switch (or direct if the V signal is switched instead) to the V demodulator. This basic arrangement is used because it is the general practice for the a.p.c. loop to lock the reference oscillator at 90° to the bursts (which have an average phase along the $-U$ axis). Thus the reference signal is along the +V axis and the 90° phase shifter needed to establish the correct quadrature conditions must be placed in the feed to the U demodulator so that this is on the $+U$ axis. As Fig. 3(b) shows however in this ITT chassis separate + and -45° shifts are introduced in the reference signal feeds to the V and U demodulators respectively, with a further $+45^{\circ}$ shift in the reference signal feed to the a.p.c. loop.

To return however to the practical circuit, Fig. 2, the reference oscillator feed to the V and U demodulators is via identical $C R$ combinations C173/R225 with C174/R226 and R230/C179 with R231/C180. It is in push-pull from the centre-tapped coil L77 in the load circuit of the buffer amplifier so that both diodes in each demodulator circuit switch on once each reference signal cycle. The only-and vital-difference between the feeds is that the feed to the V demodulator is taken via the capacitors and is developed across the resistors while the feed to the U demodulator is taken via the resistors and is developed across the capacitors. In short the components used in the feed to the V demodulator are arranged as differentiators while those used in the feed to the U demodulator are arranged as integrators. The component values used produce a 45° phase change. The net result is that the reference signal feed to the V demodulator is advanced by 45° while that to the U demodulator is retarded by 45°.

The required quadrature condition is thus established. If however the reference oscillator was locked at 90° to the bursts then both feeds to the demodulators would be displaced by 45° from their correct positions. The oscillator is therefore arranged to operate 45° in advance of this position by feeding the sample signal to the a.p.c. discriminator via a compensating $+45^{\circ} R C$ phase shifter C210/R286. Although this is labelled $+45^{\circ}$ the shifter actually advances the signal rather less than this to compensate for the phase shift which occurs as the chrominance signal passes through the chrominance channel. For this reason C 210 is 220 pF instead of 62 pF as used in the other phase shift networks, decreasing the capacitive reactance and reducing the angle of shift.

Synchronous Demodulators

The sychronous demodulators themselves are of the dual-diode clamp variety. The capacitors across which the colour-difference signals are developed, C178 for the $\mathbf{R}-\mathrm{Y}$ signal and C184 for the $\mathrm{B}-\mathrm{Y}$ signal, are "clamped" to the input fed via C172 and R232 respectively each time the demodulators conduct. The capacitors $\mathrm{C} 175, \mathrm{C} 176, \mathrm{C} 181$ and C 182 charge up to reverse bias the detector diodes so that they conduct only on the tips of the reference signal inputs. Resistors R228, R229, R233 and R234 limit the current in the diodes and provide a suitable time-constant with the associated capacitors just mentioned. The outputs are fed to the load capacitors C178 and C184 via 4.43 MHz rejectors.

NEXT MONTH IN TELEVISIOI

THE TELEVISION

COLOUR RECEIVER

Starting next month, full constructional details of a modern single-standard full PAL specification colour receiver. Arrangements have been made to ensure easy supply of all the components required. Features include:

- Strong, simply made cabinet.

- Printed circuit board construction.
- Front pull-out draw containing all convergence controls for easy adjustment.
Optional built-in crosshatch generator.
- A conventional, surplus or varactor tuner may be used.
- Automatic frequency control.
- Latest 22 in. Mazda flat-face squarecorner tube.
RGB tube drive.
Delay-line PAL decoder.
Fully integrated sound channel (using two i.c.s).
Make sure you don't miss this important project !

TWEAKING THE OLDER SET

How to get the most out of those old sets you're renovating. A simple guide to visual alignment adjustments using the test card.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW

то.
(Name of Newsagent)
Please reserveldeliver the $A P R / L$ issue of TELEVISION (20p), on sale MARCH 20, and continue every month until further notice.

NAME.

ADDRESS...

SERVICE NOTEBOOK

by G. R. Wilding

Poor Colour and Monochrome

There was poor monochrome and colour reception on a Murphy Model CV 1912 (RBM dual-standard colour chassis) while it was only just possible to obtain full brilliance. We turned first therefore to the luminance output stage (PL802) since the brilliance is controlled at the grid of this valve and though replacing the PL802 considerably improved matters the results were still far from normal.

On making voltage checks it was found that the cathode of this valve was at almost +5 V instead of +1 V . This voltage is developed across a seriesconnected 15Ω resistor (see Fig. 1) and BC108 flyback blanking transistor in the valve's cathode lead. During picture information the transistor is-or should beheld bottomed by heavy forward bias from 6R68 while during the flyback periods line and field pulses are applied to its base and momentarily render it nonconductive thereby cutting off the luminance pentode's anode current and raising its anode voltage sufficiently to black out the shadowmask tube. The 15Ω resistor was found to be in order and shorting the collectoremitter connections of the transistor resulted in only a fraction of a volt being developed at the pentode cathode. Clearly therefore the transistor was not fully bottoming (when bottomed the collector-emitter potential of a transistor is less than a volt).

The $10 \mathrm{k} \Omega$ forward bias feed resistor 6 R 68 was found to be of correct value and developed just under the scheduled +0.6 V at the transistor's base. It seemed therefore that the transistor itself must be faulty but we first disconnected the OA90 protection diode in case it had developed a low reverse resistance and was bypassing some of the current feed from 6R68. The diode proved however to be in good order-with a low forward but very high reverse resistance-and on then replacing the BC108 the normal IV appeared at the luminance pentode's cathode and the brilliance control returned to its usual operating range.

The function of the OA90 diode is to limit the value of the negative-going flyback pulses developed across the transistor's base-emitter junction since they could well exceed the maximum reverse base-emitter rating of the transistor. Although it might appear that the OA90 would completely short out the negative-going pulses in fact it only imposes amplitude limitation since a diode develops some voltage across it even when conducting - typically about $0 \cdot 2-0.3 \mathrm{~V}$ for germanium types and about $0 \cdot 6-0 \cdot 7 \mathrm{~V}$ for silicon types.

Fig. 1: Flyback blanking in the cathode circuit of the luminance output pentode.

They've stolen the camera!

COLOUR RECEIVER CIRCUITS

—continued from page 214

during the back porch period of the line sync pulseTr is switched on so that it accepts and amplifies the bursts. Sample reference signal is fed back from the emitter circuit of the buffer amplifier $\operatorname{Tr} 3$ to the phase detector through T2.

In this circuit the biasing of the capacitance-diodes is established initially by the preset VR1. Since this is connected across the supply line potential and its slider is d.c. linked to the capacitance-diodes it follows that D3 and D4 receive a variable positive reverse bias. The d.c. yielded by the phase detector is superimposed upon this standing bias.

The oscillator collector is loaded by Ll which is damped by $\mathbf{R} 2$, its output signal being coupled to the base of the buffer amplifier via the capacitive potentiometer C1, C2. The emitter of this stage feeds the reference signal to the V chroma detector via the PAL V switch (not shown), to the U chroma detector via the 90° phase shifter and to the phase detector via T2.

As the bursts swing $\pm 45^{\circ}$ in phase line by line a squarewave component at half line frequency is superimposed on the d.c. control potential delivered by the phase detector. This ripple signal is utilised for PAL line identification and for other purposes which we have still to consider. As there is no d.c. component to this squarewave signal the phase control circuit is not affected by it.

In summary therefore the phase detector produces an output only when the phase of the reference signal differs from that of the bursts. As this output is in the form of a direct current it can be used to alter the biasing of a capacitance-diode in the oscillator circuit. This capacitance-diode then corrects the frequency of the oscillator.

Next month we shall be looking at the circuits associated with the burst channel and the V chroma detector switching. We shall also be dealing with passive reference signal circuits.

PART 6

K. T. WILSON

MULLARD TBA SERIES—I
The TBA series of i.c.s developed by Mullard for use in TV receivers comprises the TBA500Q, TBA510Q, TBA520Q, TBA530Q, TBA540Q, TBA550Q, TBA560Q, TBA750Q and TBA990Q, the Q signifying that the lead-out pins are in zig-zag form as illustrated on our September issue cover. The operations the various i.c.s in this series perform are as follows.
TBA500Q: Luminance Combination. Luminance amplifier for colour receivers incorporating luminance delay line matching stages, gated black-level clamp and a d.c. contrast control which maintains a constant black level over its range of operation. A c.r.t. beam limiter facility is incorporated, first reducing the picture contrast and then the brightness. Line and field flyback blanking can also be applied.
TBA510Q: Chrominance Combination. Chrominance amplifier for colour receivers incorporating a gaincontrolled stage, a d.c. control for saturation which can be ganged to the receiver's contrast control, burst gating and blanking, a colour killer, and burst output and PAL delay line driver stages.
TBA520Q: Chrominance Demodulator. Incorporates U and V synchronous demodulators, $\mathrm{G}-\mathrm{Y}$ matrix and PAL V switch. This type will be superseded by

Fig. 1: Decoding with the Mullard TBA series i.c.s.
the TBA990Q (development of which is nearing completion) listed later.
TBA530Q: RGB Matrix. Luminance and colourdifference signal matrix incorporating preamplifiers. TBA540Q: Reference Combination. Decoder reference oscillator (with external crystal) and a.p.c. loop. Also provides a.c.c., colour killer and ident outputs. TBA550Q: Video signal processor for colour or monochrome receivers. This i.c. is the successor to the TAA700 which was covered in our October 1971 issue. It is very similar electrically to the TAA700.
TBA560Q: Luminance and Chrominance Combination. Provides luminance and chrominance signal channels for a colour receiver. Although not equivalent to the TBA500Q and TBA510Q it performs similar functions to those i.c.s.
TBA750Q: Intercarrier Sound Channel. Incorporates five-stage intercarrier sound limiter/amplifier plus quadrature detector and audio preamplifier. External circuitry for use with this i.c. was featured in our July 1971 issue.
TBA990Q: Chrominance Demodulator. Incorporates U and V synchronous demodulators, $\mathrm{G}-\mathrm{Y}$ matrix and PAL V switch. This is at the time of writing in the final stages of development and will be available from March onwards.

As we have given information previously on the TBA550Q and TBA750Q we shall concentrate in this and the concluding article in the series on the colour receiver i.c.s. Fig. 1 shows in block diagram form their application for luminance and chrominance signal processing. We will look first at the TBA520Q and TBA530Q which are in use in the Philips G8 single-standard colour chassis.

TBA530Q RGB Matrix-Preamplifier

The internal circuitry of this i.c. is shown in Fig. 2 while Fig. 3 shows the immediate external connections as used in the Philips G8 chassis. The chip layout is designed to ensure tight thermal coupling between all transistors to minimise thermal drift between channels and each channel has an identical layout to the others to ensure equal frequency response characteristics.

The colour-difference signals are fed in at pins 2, 3 and 4 and the luminance input is at pin 5. Trl and Tr 2 form the matrix in each channel, driving the differential amplifiers $\mathrm{Tr} 3, \mathrm{Tr} 4, \mathrm{Tr} 5$. The operating conditions are set by Tr 5 and Tr 7 , using an external current-determining resistor connected to pin 7. Pin 6 is the chassis connection and pin 8 the 12 V supply line connection (maximum voltage permitted 13.2 V , approximate current consumption 30 mA). External load resistors are connected to pins 1, 14 and 11 from a 200 V line and the outputs are taken from pins 16,13 and 10 . The output pins are internally connected to the load resistor pins via Tr6 which provides a zener-type junction giving a level shift appropriate for driving the bases of the external output transistors directly. External 10 kpF capacitors are required between the output and load resistor pins to bypass these zener junctions at h.f. Feedback from the external output stages is fed in at pins 15,12 and 9.

A common supply line should be used for this and any other i.c.s in the series used in the decoder, to ensure that any changes in the black level caused by variations in the supply voltage occur in a predictable way: the stability of the supply should be not worse than $\pm 3 \%$ due to operational variations to limit

Fig. 2. Internal circuit of the TBA530Q i.c.

Fig. 3: External connections to the TBA530Q i.c. as used in the Philips G8 chassis.
changes in picture black level during receiver operation. To reduce the possibility of patterning on the picture due to radiation of the harmonics of the demodulation process the leads carrying the drive signals to the tube should be kept as short as possible : resistors (typically $1.5 \mathrm{k} \Omega$) connected in series with the leads and mounted close to the collectors of the output transistors provide useful additional filtering of these harmonics.

TBA520Q Chrominance Demodulator

In addition to U and V balanced synchronous detectors this i.c. incorporates a PAL switch which inverts on alternate lines the V reference signal fed to the V synchronous detector. The PAL switch is controlled by an integrated flip-flop circuit which is driven by line frequency pulses and is under the control of an ident input to synchronise the V switching. Outputs from the U and V demodulators are matrixed within the i.c. to obtain the G-Y signal so that all three colour-difference signals are availableat pins 4,5 and 7. The internal circuit of this i.c. is shown in Fig. 4 while Fig. 5 shows the immediate
external circuitry as used in the Philips G8 chassis.
The separated U and $\pm V$ chrominance signals from the PAL delay line/matrix circuit are fed in at pins 9 and 13 respectively. The U and V reference signals, in phase quadrature, are fed in at pins 8 and 2. Taking the U channel first we see that the U chrominance signal is fed to Tr18 base. This transistor with Tr 19 forms a differential pair which drives the emitters of the transistors-Tr4, Tr5, Tr6 and Tr7-which comprise the U synchronous demodulator. The U reference signal is fed to Trl2 base, this transistor with Tr13 forming a further differential pair which drive the bases of the synchronous demodulator transistors. The $B-Y$ signal is developed across R3 and appears at output pin 7.

A similar arrangement is followed in the \mathbf{V} channel except that here the V reference signal fed in at pin 2 to the base of $\operatorname{Tr} 22$ is routed to the V synchronous demodulator ($\mathrm{Tr} 8-\mathrm{Tr} 11$) via the PAL switch $\mathrm{Tr} 14-\mathrm{Tr} 17$. This switch is controlled by the integrated flip-flop (bistable) $\operatorname{Tr} 24$ and $\operatorname{Tr} 25$ (with diodes D1 and D2). The bases of the transistors in the flip-flop circuit are driven by negative-going line frequency pulses fed in at pins 14 and 15 . As a result half line frequency antiphase squarewaves are developed across R13 and R14 and fed to the PAL switch via R57 and R58. The ident signal is fed into the base of $\operatorname{Tr} 32$ at pin 1. A positive-going input to pin 1 drives $\operatorname{Tr} 32$ on so that the base of Tr 24 is shorted and the flip-flop rendered inactive until the positive input is removed. In the Philips circuit a 4 V peak-to-peak 7.8 kHz sinewave ident signal is fed in at pin 1 to synchronise the flip-flop. The squarewave signal is externally available at pin 3 from the emitter-follower Tr 39 which requires an external load resistor. The $\mathbf{R}-\mathbf{Y}$ signal developed across $\mathbf{R} 9$ is fed via R10 to output pin 4.
The $G-Y$ signal appears at the output of the matrix network R4, R5 and R6 and is fed via R7 to pin 5. The d.c. voltages applied to pins 11 and 12 establish the correct $G-Y$ and $R-Y$ signal levels relative to the $B-Y$ signal. Pin 10 is internally connected and no external connection should be made to this pin.

The U and V reference carrier inputs should be about 1 V p-p, via a d.c. blocking capacitor in each feed. These inputs must not be less than 0.5 V . The

Fig. 4: Internal circuit of the TBA5200 chrominance demodulator, G-Y matrix and V switch i.c.

Fig. 5: External connections to the TBA520Q i.c. as used in the Philips G8 chassis.
flip-flop starts when the voltage at pin 1 is reduced below $0 \cdot 4 \mathrm{~V}$: it should not be allowed to exceed -5 V .

The amplitudes of the pulses fed in at pins 14 and 15 to drive the flip-flop should be between 2.5 and 5 V p-p.

For a colour-bar signal a U input of approximately 360 mV is required at pin 9 and a V input of approximately 500 mV is required at pin 13 . The supply is fed in at pin 6 and this also sets the d.c. level of the $B-Y$ output signal. The maximum voltage allowed at this pin is 13.2 V .

In early versions of the Philips G8 chassis a TAA630 i.c. was used in place of the TBA520Q.

The author wishes to acknowledge the help given by Mullard Ltd. in the preparation of this article.

TO BE CONTINUED

The approximate measured service area of the Bilsdale West Moor u.h.f. transmitter is indicated by the unshaded area of the above map. Channels: BBC-1 33; BBC-2 26; ITA 29; fourth 23. Maximum e.r.p. 500 kW . Receiving aerial group A, horizontal polarisation. Map courtesy BBC Engineering Information Service.

Fig. 1: Simplified drawing showing the way in which a toroidal deflection yoke is wound. This type of yoke is used with the ITT 110° deflection circuit described below.

ITT's approach to the problem is altogether different and was shown at last year's RECMF exhibition. A narrow-neck 110° tube is used (type A67-150X), the neck of this being little larger than that of a conventional 100° monochrome tube. Miniature, closely spaced electron guns are incorporated in this and thus the three electron beams are closer together from the very start and require less convergence-in fact a relatively simple passive convergence circuit can be used. To ensure that the scanning is precisely controlled a new type of deflection yoke is employed. The construction of this is toroidal (see Fig. 1) and both the line and field coils are similarly wound on it.

Perhaps the greatest innovation in the ITT circuic however is the use of thyristors in the line timebase (see Fig. 3). This type of circuit was originated by RCA in America and has been successfully used in over half a million RCA colour sets since 1968. The great advantages of the circuit are its relative simplicity (for a 110° timebase), its efficiency and reliabilitythyristors as used in this circuit are immune to picture tube flashover and to almost any fault condition which might occur (such as short-circuited scan coils).

Receiver manufacturers are thus faced with two basic alternatives and the final decision will take into account simplicity, reliability and cost. At first sight the ITT circuit appears to be the more attractive proposition but it must be pointed out that the narrowneck tube is not entirely proven and due to the miniaturisation of the electron-gun assembly there may be cause to suspect its reliability. Nonetheless it seems likely that thyristors will be widely used in both colour and monochrome timebases in the years to come so it is worthwhile understanding how they work.

Basic Thyristor Operation

It may be helpful to consider the relay analogy shown in Fig. 2(a). The relay contains two coils A and B arranged so that passing a current through either coil causes the relay contacts to make. Assuming that the contacts are initially open, what happens if we briefly close switch S ? A curreni passes through coil A and the relay contacts close, thus causing a current to flow through coil B since this is now also connected across the supply. Subsequently even if the current through coil A ceases to flow (S open again) the relay contacts will remain closed by virtue of the current through coil B. The relay is then said to be latched on

(b)

T3B
Fig. 2: Relay/thyristor analogy.

Fig. 3: Complete ITT 110° thyristor line output stage for colour receivers.
and can only be turned off by removing the current source completely. In terms of a "black box" with three terminals x, y and z therefore we can say that the characteristics of the device are as follows: if a transitory current of sufficient magnitude and duration is passed from x to z then a flow of continuous current will be initiated between y and z and this current will continue to flow for as long as the current source remains connected to the device. With a little elaboration this defining condition applies equally well to a thyristor-Fig. 2(b). The thyristor has three connections, anode, cathode and gate, and application of a pulse to the latter initiates conduction through the device.

Simplified Circuit

Let us look then at the thyristor line timebase circuit shown in simplified form in Fig. 4. As scanning is a continuous process we cannot take a certain moment in time and say "this is where the scan starts." Instead we must break in at a suitable point-say time $t 2$ during the waveform of the current through the scan coils shown in Fig. 5. At this point-and you will have to take my word for it! - which is of course roughly the centre of the line the top end of C4 is positively charged with respect to earth and current has just been passed into the gate of SCR2 from T1 via C 1 and L2. SCR2 is thus triggered into its latched on condition and current flows from C4 through SCR2 and through the scan coils. C4 is sufficiently large to provide a constant current, thereby producing a linear ramp current waveform, for the necessary length of time $-t 2$ to $t 3$.

At a point in time slightly before $t 3$ SCR 1 is triggered by a pulse from the line oscillator and suddenly drags current through L1 and C3 from the righthand half of the circuit. The current in L1 and C3 builds up in the form of a half-sinewave pulse (known as the commutating pulse) which results in SCR2 being briefly reverse biased. The excess reverse voltage at this instant is conducted to earth by D2. SCR2 however is switched off by the commutating pulse and is unable to pass further current until the next trigger pulse arrives at its gate terminal. We are thus left with a large amount of stored energy in the scan coils (at $t 3$) for which a discharge path must be found. SCR1 remains switched on after the commutating pulse has occurred, so the scan-coil current flows through L1, C3 and SCR1 (from $t 3$ to $t 4$). C3 charges during this

Fig. 4: Simplified thyristor line output circuit.

Fig. 5 (right): Current waveform through the
scan coils.
process, and when the current supplied by the scan coils is zero (at time t4) SCR1 unlatches and switches off. C 3 however has stored sufficient energy to pass a reverse current to the scan coils through D1 for the remainder of the flyback period ($t 4$ to $t 5$). At $t 5$ the charge stored in C3 is exhausted but the scan coils now have considerable stored energy for which a discharge path must again be found-in this case D2. When the current in the scan coils has decayed to zero at $t 6 \mathrm{C} 4$ is once again charged and the circuit is ready to repeat its cycle.

Energy to replenish the current reserves of the circuit is drawn via T 1 from the h.t. line. The secondary winding of Tl is connected through a pulse shaping network (C1, L2 and R1) arranged so that SCR2 is triggered by application of a pulse to its gate at times $t 2, t 6$ etc. This pulse is required at approximately the instant that the circuit draws current through the primary of T1. The function of C 2 has not so far been mentioned: it serves only to speed up the flyback. It should also be noted that C5 diverts a proportion of the scanning power into the primary of the transformer T2 from which are derived various high voltages including the e.h.t.

We thus have a very simple and elegant circuit. The principle of operation may at first sight seem to be exceedingly complicated but it is hoped that the reader will have gained from this admittedly simplified explanation a reasonable understanding of what happens.

Full Circuit

We must return now to the complete ITT line output circuit (Fig. 3). The principles as outlined for the simplified circuit just described are still valid although the complete circuit is inevitably more complicated. In addition to the basic thyristor timebase, width stabilisation $(\operatorname{Tr} 3, \operatorname{Tr} 4$ and the transductor $\operatorname{Td} 1)$ and East-West pincushion correction (Tr 2 and transductor Td2) are incorporated. Let us look first at the pincushion correction system.

Pincushion Correction

A typical 90° pincushion correction circuit is shown in Fig. 6. The heart of the circuit is the transductor which is a special type of transformer with three windings. A current passing through winding $A B$ increases the saturation of the ferrite core of the transductor and thus influences the effective impedance of the windings CD and EF. Similarly a current through $C D$ and EF alters the impedance of winding AB. The component acts as a bidirectional modulator. By suitable shaping of the modulation waveforms (this is the function of the phase and amplitude controls) it is possible to apply pincushion correction to the raster.

Looking at the raster as you would at a map, modulation of the vertical scan at line rate produces NorthSouth (or top-to-bottom if you prefer) pincushion correction while modulation of the line waveform at field rate gives East-West (side-to-side) pincushion correction. Electronic correction of the raster is necessary because we are not able in a colour receiver to use correction magnets-any stray magnetic fields around the neck of the tube make convergence and purity adjustments difficult if not impossible.

Now the arrangement just described only just works with a 90° tube: with a 110° tube it is not possible to

Fig. 6: Simplified 90° pincushion correction circuit.
use the circuit at all. Instead separate circuits for N-S and E-W pincushion correction are required. In Fig. 3 the base of $\operatorname{Tr} 2$ is fed with a parabolic waveform derived from the field timebase. The amplitude of the applied waveform is set by R26 and an amplified version of the waveform is developed at the collector of Tr 2 . The transductor Td 2 has three windings: one forms the collector load of $\operatorname{Tr} 2$ while the other two are connected across the primary winding of T 2 which is itself in parallel with the scan coil circuitry. Thus the collector current of Tr 2 modulates the line scan current to some extent and E-W pincushion correction is thereby obtained. N -S correction is incorporated as a separate circuit in the vertical timebase.

Width Stabilisation

The use of a nother transductor Tdi to obtain line output stabilisation is interesting. Information concerning h.t. voltage, scanning and e.h.t. current is obtained by the circuitry surrounding $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$. After amplification by Tr4 a direct current which is inversely proportional to timebase loading is passed through the primary winding of transductor Tdl. When the timebase loading increases (due perhaps to increased beam current in the c.r.t.) the current through the primary of Tdl decreases thus reducing the core saturation of the transductor. The impedance of the transductor's secondary windings-which are effectively in parallel with T1-thereby increases; T1 is in consequence less damped and the timebase efficiency increases to offset the change in loading. Stabilisation of width and e.h.t. is thus possible. The circuit is however rather more complicated than the good old v.d.r. method as applied to valve line output stages. Such is progress!

Finally it should be mentioned that one of the secondary windings (h-k) of T2 develops an 8.5 kV flyback pulse which is rectified to provide the focus potential and tripled to give the 25 kV e.h.t. The first anode voltage for the tube is obtained by rectification from a tap (i) on this winding.

Future Production

The full-scale production date of this type of circuitry? Probably 1973 at the earliest, so there is plenty of time to get to understand how it works. Keen constructors may be interested in experimenting with parts of the circuit in which case further details may be obtained from ITT Semiconductors, Footscray, Sidcup, Kent.

your PROBLEMS SOLVED

Requests for advice in dealing with servicing problems must be accompanied by a 10 p postal order (made out to IPC Magazines Ltd.). the query coupon from page 235 and a stamped, addressed envelope. We can deal with only one query at a time. We regret that we cannot supply service sheets or answer queries over the telephone.

ULTRA 6659

The fault with this set is intermittent field collapse and field jitter. The field timebase valve, heater chain rectifier and height control have been replaced; the mains smoothing and feed resistors from the boost rail to the field timebase have been checked and found to be OK.-T. Arkwright (Leicester).

A trouble spot in the BRC 1400 chassis fitted in this model is Cl 04 which decouples the boost feed to the field timebase. Although this component is shown as $0 \cdot 1 \mu \mathrm{~F}$ on the official circuit you will probably find that a $1 \mu \mathrm{~F}$ capacitor is fitted in this position. This higher value should be used for the replacement.

BUSH TV105

The set suddenly stopped working. A section of the mains dropper was found to have dropped away and was replaced but then another section burnt out. After further replacement we got sound but no e.h.t. The boost diode was replaced but as soon as the sound comes on it glows excessively.-J. Craddock (Rirmingham).

You will find two $8 \mu \mathrm{~F}$ capacitors in series at the upper right-hand side. These are the boost capacitors and have the effect of shorting the cathode of the efficiency diode to chassis if they are that way inclined. They are connected in series so as to double their voltage rating, i.e. two $8 \mu \mathrm{~F}$ electrolytics rated at 500 V are equivalent to one $4 \mu \mathrm{~F}$ one rated at 1 kV .

BRC 3000 CHASSIS

The fault in this colour set appears to be in the line timebase. The width starts to come in from the right, jerking in and out and finally coming in about $1 \frac{1}{2} \mathrm{in}$. The brightness varies as the jerking takes place. Subsequently the picture goes completely. Tapping the cabinet or anywhere around the line output stage brings the stage back into operation. At times the line sync seems to be affected with shadowy streaking from the right-as occurs with false line lock with flywheel sync.-E. Hodge (Canterbury).

It is difficult to pinpoint the likely trouble spot since the trouble is caused by a faulty connection of some sort-a dry soldered connection or a similar condition. You will have to look for obvious signs of
unsoldered joints or poor connections and resolder or remake as necessary. Check the plugs and sockets.

PYE V830A

This set is fitted with an automatic tuner which is now giving trouble. The fault is loss or intermittent loss of picture and can be cured by pushing in the fine tuner control and wedging it in this position.R. Sutton (Welwyn).

A loose rotor in the tuner unit can produce these symptoms: check that the 6BA nut at the end of the shaft is not loose.

HMV 1922

There is a jagged white band $\mathbf{1 - 2 i n}$. wide at the righthand side of the screen-the unmodulated raster is not affected in this way. The band can be partially removed with the fine tuner and with the width reduced by 2 in . each side it is no longer present. A new PL36-which makes it impossible to reduce the width-has not cured the trouble which it has been suggested is due to Barkhausen oscillation in the line output valve. There is no evidence of brushing or corona discharge.-K. Grayson (Preston).

There is definitely a discharge associated with the line output transformer or deflection coils. This is probably only noticeable on a signal if there is also some poor bonding between the tuner unit and the chassis or the outer coating of the tube and chassis. These points should therefore be carefully checked. The BK effect can be stopped by mounting a small magnet on the envelope of the PL36 or by wiring a small high-voltage capacitor from the top cap to chassis-this could be done with a short piece of twin wire, one side to the top cap and the other to chassis.

BUSH TV161U

The sync diode block-MR1-3-used in this chassis does not appear to be mentioned by any of your advertisers and I have had difficulty in finding a source of supply.-H. Dawson (Colchester).

The diodes with common encapsulation you mention are available from Willow Vale Electronics who advertise regularly.

EKCO 7418

Whilst in use a black bar appeared across the centre of the screen with the bottom of the picture at the top. The set was switched off. When again switched on the picture was very weak and neither the line nor field would lock.-A. Neil (Leith).

The usual cause of this trouble on these sets is a faulty PCF80 i.f. amplifier valve (V6) or a broken preset contrast control (R42).

PHILIPS 19TG170A

The picture was perfect on switching on but after a few minutes it moved very fast from right to left. The set was switched off and left. On switching on again later the picture was perfect once more but after a few minutes went to a small square. The line output valve screen resistor R 429 then started to burn and the picture went entirely.-G. Thomson (Chatham).

If the PL 500 screen feed resistor overheats it would appear that the valve's anode supply is either absent or low. Check the feed to the PY800 and see what happens when the top cap of this valve is removed. If the timebase then works after a fashion check the boost reservoir capacitor $\mathrm{C} 415(0 \cdot 1 \mu \mathrm{~F})$ and the line output transformer. Recheck the PL500 (PL504) for internal shorts. The unstable line hold may be due to a weak ECC82 valve or a faulty $27 \mathrm{k} \Omega$ resistor to pin 6 of the ECC82 in position V401.

PYE 15

A section of the dropper resistor was found to be open-circuit and the line output transformer looked as if it had been very hot. The dropper section was replaced and the PL36 then became red hot. A replacement and a new oscillator valve did the same. The short is now so low that the fuse blows or a section of the dropper burns out before the valves light up. The valves have been tested for shorts and the BY100 and reservoir capacitor disconnected but the short is still there. Could it be in the line output transformer?-E. Driffield (Gloucester).

The trouble could be in the line output transformer but you should first check for shorts on the h.t. line cold. Also suspect leakage in the ceupling capacitor to the line output valve, C 8710 kpF .

EKCO 1407

There is a minor fault on this set. On switching on the picture appears quite normally after warm up but then after $\mathbf{3 0}$ seconds it and the sound disappear-the raster remains. After a further $\mathbf{3 0}$ seconds the picture and sound reappear and remain good all èvening.F. Moorfield (Durham).

The trouble seems to be the 30 C 15 local oscillator valve in the tuner unit and we suggest you replace this.

BUSH TV 1915

There is distortion on sound-in fact the volume is so great that the volume control can only be advanced about $\frac{1}{2}$ in. The a.g.c. circuit has been set up correctly. -S. Jones (Pontefract).

It appears to us that the $250 \mathrm{k} \Omega \log$. volume control is faulty. Check the leads to the volume control-P/S3 1,2 and 3 -to ensure good earthing.

HMV 2629
There is vision-on-sound on BBC-1 (v.h.f.) though channel 9 is all right. The only way to stop the picture content getting into the sound channel is to mistune until there is hardly any sound at all.-M. Edwards (London W8).

First ensure that the local-distant control is turned anticlockwise to local. Then if necessary attenuate the 45 MHz Band I input with a tuned coil or stepped resistors.

BUSH TV166

If the brightness control is set so that the black level is correct on dark scenes the blacks on bright scenes are grey and washed out. Conversely if the brightness is set for correct bright scenes the dark scenes are far too dark with virtually nothing visible. There is plenty of contrast available. Also on f.m. sound there is a tendency for hissing on letters " s ".-G. Royle (London E14).

Check the PFL200 video amplifier valve and its associated components. The a.g.c. system could alternatively be at fault and you might find that the BC115 a.g.c. amplifier ($2 \mathrm{VT7} \mathrm{)} \mathrm{is} \mathrm{in} \mathrm{need} \mathrm{of} \mathrm{replacement}$. Slightly detune the final tuned circuits in the f.m. sound channel, i.e. 2L28 and 2L29, to reduce the stressed sibilants.

PETO SCOTT TV960

There are alternate light and dark vertical bands from the top to the bottom of the screen on u.h.f. The line output and oscillator valves have been replaced without affecting matters.-P. Bishop (Stroud).

If the striations are not present on 405 lines check the 625 -line S-correction capacitor C471 $(0 \cdot 1 \mu \mathrm{~F})$ in series with the line coils on this system. It would also be worth checking the boost reservoir capacitor C568 $(0 \cdot 25 u \mathrm{~F})$ and the electrolytic C564 $(100 \mu \mathrm{~F})$ in the anode circuit of the efficiency diode V9 (PY800).

FERGUSON 3638

This portable set has an intermittent fault. Sometimes after an hour or two the picture bows in at each side and the line whistle is then louder. The PL500 line output valve heats up when this occurs. On switching off and on again the picture returns to its normal shape for perhaps a day or so. The PL500 has been replaced without making any difference to the condition.-A. Howell (Crewe).

The fault could be due to C106 (100pF) which feeds pulses back to the width stabilisation circuit but we feel it is more likely to be the line output transformer that is at fault.

GEC 2001

When switched on from cold on u.h.f. the brightness control has to be continually adjusted anticlockwise for the first ten to fifteen minutes until eventually it is at the end of its travel. The picture then remains stable but is still too bright. This does not happen on v.h.f.-F. Dyson (Poole).

The different results on the two systems are due to the different bias conditions at the video amplifier stage on 625 and 405. You should replace the PFL200 video amplifier valve.

PYE CT72

This colour receiver has vertical bars down the lefthand side of the picture. I understand that this is due to ringing in the line timebase circuit and would be grateful if you could indicate the exact cause.E. Bonfleet (Southport).

The usual cause of this ringing is a disconnected line linearity coil L37-also check the $1.5 \mathrm{k} \Omega$ damping resistor across it. The line output printed panel should also be examined for dry-joints or shorts. If the bars are coloured green-mauve suspect the flyback blanking circuit-transistor VT28 in the PL802 luminance output valve cathode circuit-on the colour-difference amplifier panel.

BUSH CTV25

The fault with this set is loss of red on changing programmes. After four minutes warm-up the picture locks in but the red flickers on and off for about 10 minutes. Then everything is perfect until we come (on ITV) to adverts when the picture goes mostly green (one sympathises with the set-Editor). If I leave the set alone the picture returns to normal when the programme returns: alternatively if the tuning button is actuated the fault is corrected. Changing from one station to another causes the same fault which can be put right by pressing the tuning button several times. The tuner unit switching has been checked and the valves substituted.G. Carter (Chesterfield).

We are inclined to suspect a crack in the printed panel or a faulty capacitor somewhere in the $\mathbf{R}-\mathbf{Y}$ circuit. Disturbing the print around the $R-Y$ colour-
difference output valve 6 V 2 and moving the com-ponents-6C10, 6R28, etc.-in the circuit coupling the $R-Y$ signal to the appropriate c.r.t. grid should reveal the source of the trouble.

GEC 2000

Features appear excessively bright and distorted with constant line tearing at the top of the picture. Also the contrast control is inoperative although the control itself has been checked and found to be OK. The video and sync valves have been replaced without making any improvement.-B. Pertwee (Cheam).

It seems that the a.g.c. line is shorted or the action cancelled. Check by replacement the EF 183 which is the controlled stage and the a.g.c. line decouplers C 25 and C 26 both $0 \cdot 22 \mu \mathrm{~F}$.

BUSH TV191D

There is persistent field slip and also a narrow band of "interference" about $\frac{1}{2}$ in. wide which travels slowly up/down the screen, bending the verticals. This bending of the verticals can be minimised by adjusting the 625 -line preset hold control and the trouble is worse on 405 lines. All valves have been checked to eliminate the effects of heater-cathode shorts and the power supply circuits have been tested and given a clean bill of health.-T. Propert (Bristol).

We suggest you check all decouplers associated with the PFL200 video amplifier/sync separator valve -we make a point of checking these as a matter of routine. The $10 \mu \mathrm{~F}(2 \mathrm{C} 44)$ screen decoupler of the video amplifier section is the main offender though it more often causes trouble on the 625 -line standard.

HMV 2629
Operation on 405 is OK but on 625 lines there is vision-on-sound that gets worse as the set warms up over the course of an hour. With the contrast control and preset turned well down the trouble is still present. Adjusting the fine tuner improves matters but results in very bad vision definition. The alignment of the f.m. sound channel seems to be all right but the ratio detector balance control is hard over on its stop for least noise.-B. Seaford (Oldham).

The ratio detector diodes W6 and W7 appear to be out of balance and we suggest you check both, using an ohmmeter and taking back-to-front readings.

EKCO T441

We are having difficulty getting a full height picture with one of these receivers and understand that the height has gradually decreased over a period of years. The field timebase valves have been replaced with marginal improvement but the basic trouble persists. -C. Brown (Romsey).

Change of value of the $1 \cdot 2 \mathrm{M} \Omega$ resistor R109 in series with the height control or a dry-joint to the centre tag of the height control are common causes of this trouble in receivers fitted with the Pye group 368 chassis.

BUSH TV125

The picture pulls slightly to the left and there is a tendency for horizontal rolling for a few seconds every half hour.-W. Stevens (Chester).

The electrolytic capacitors generally should be checked, also the PCF80 video amplifier valve and the associated components in this stage.

MARCONIPHONE VT150

This set was stored for some time but has now been taken out and with a new set of valves works quite well. There are however a couple of faults. First the line oscillator. When the set is first switched on it is not possible to resolve a correct picture. With the hold control turned fully clockwise the oscillator seems to be running at an exact submultiple of the line frequency with about $\frac{3}{3}$ of the picture displayed on the screen. There is a small foldover at each side and the picture is completely out of focus. The drive control has to be fully clockwise. At the other end of the hold control travel two well-focused images can be resolved side by side. This trouble sorts itself out after about 20 minutes. The other fault is that when the set has been on for a couple of hours or so both sound and vision vanish.-G. Stoddard (Barnsley).

As the line hold fault rectifies itself after a period it is the line oscillator valve V11 Z152 that is most likely to be at fault and a good new one should be tried. The loss of signals is due to a defective decoupling capacitor. Check the $0.001 \mu \mathrm{~F}$ (may be 0.003 or $0.005 \mu \mathrm{~F}$) screen grid decoupler from pin 8 of the common vision and sound i.f. amplifier stage V3 Z152.

111
Each month we provide an interesting case of television servicing to exercise your ingenuity. These are not trick questions but are based on actual practical faults.

?The receiver was one of the fairly old though still widely used Ekco $T 433$ series and the symptoms were inadequate height and crushing on peak whites, the latter giving the effect of a flat picture. It was found that the height control was at maximum and, by studying the display of a Test Card, that the vertical linearity was not unduly impaired in spite of the incorrect aspect ratio. The first move was to get the height right, and accordingly the field output valve was checked by substitution, which made no difference at all. Neither did replacing its cathode electrolytic. The technician then replaced one resistor, and that
cleared the height trouble.
The peak white crushing was eliminated by the adjustment of one preset control.

Which resistor in the field circuits was most likely to have been responsible for the lack of height symptom and which preset needed adjusting to remove the peak white crushing? See next month's Television for the solution and for a further item in the Test Case series.

SOLUTION TO TEST CASE 110 Page 187 (last month)

The receiver in question employs a thermistor mounted inside the scan coil assembly for the purpose of compensating for the increase in resistance of the windings with increasing temperature. Earlier receivers without this tend to exhibit reducing height as the set warms up. The technician obviously realised the vulnerability of this hidden component-probably having been caught out with it previously-and his action was to short the first and second pins of the scan coil assembly together with the blade of a screwdriver thereby shorting out the thermistor. Since this brought back the full scan without judder-though with slight overscan-the component was proved to be defective.

[^1]
TELEVISION CLASSIFIED ADVERTISEMENTS

The pre-paid rate for classified advertisements is 5 p a word (minimum 12 words), box number 10 p extra. Semi-display setting $£ 3$ per single column inch. All cheques, postal orders, etc., to be made payable to TELEVISION and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Mariager, TELEVISION IPC Magazines Ltd., Fleetway House, Farringdon Street, London, EC4A 4AD, for insertion in the next available issue.

EDUCATIONAL

 COLOUR TELEVISION TRAINING
11 WEEKS' COURSE for men with Mono experience. Shorter appreciation courses by arrangement. Hours 10 a.m. to 1 p.m. Monday to Friday. Next course commences May lst. Prospectus from: London Electronics College, Dept. C3. 20 Penywern Road. London. SW5 9SU. Tel. 01-373 8721.

ENGINEERS get a technical certificate. Postal courses in Engineering. Electronics, Radio. TV. Computers, Draughtsmanship. Building, etc. FREE book from: BlET (Dept. H.6). Aldermaston Court. Reading, RG7 4PF. Accredited by CACC.

BECOME "technically qualified" in your spare time. Home study courses in Ridio. TV, Servicing and Maintenance. RTEB. City \& Guilds. etc. Informative FREE City \& Guilds. etc. Informative FREE guide-Chambers College (Dept. R. 105),
Aldermaston Court, Reading RG7 4PF.

TRAIN FOR SUCCESS wITH ICS

Study at home for a progressive post in Radio. TV and Electronics. Expert tuition for City \& Guilds (Telecoms Techn's Cert. and Radio Amateurs') R.T.E.B.. etc. Many non-exam courses incl. Colour TV Servicing. Numerical control \& Computers. Also self-build kit coursesvalve and transistor.
Write for FREE prospectus and find out how ICS can help you in your
carer
ICS. DEPT. 560, INTERTEXT
HOUSE, STEWARTS ROAD, LONDON SW8 4UJ.
Accredited by the CACC

AERIALS

GENUINE FULL SIZE
18 element TV aerial

as used by leading

 rental companies Receives BBCl. BBC2 and ITV on UHF 625 channels, colour and black/white. 8 element aerial with grid reflector for better reception. A proper aerial, usually supplied only by riggers. Buy now and cut out the middle man. An ideal aerial for the person who likes to do it himself. Complete with flxing clamp and instructions. Money back gusrantee. Use inside or out.
IMPERIAL TRADING (Dept PTIO)
45 Arkwright Street, Nottingham

AERIALS (continued)

BAINES tor high frequekcy aerials
Postage paid on all aerial orders inland UHF Aerials, Multibeams:
MBM $10 \pm 1-90$. MBM is $\pm 2 \cdot 65$. МBM 30 建 3 - bit MBM 38 \&
BBC Dipole $£ 1-75$. BBC H ± 2.50. ITA $\overline{5}$ element ${ }^{2} 2 \cdot 00$. ITA 8 element $t^{* 2} \cdot 70$. Dipule and 5 t2. 70 . FM Dipole $41 \cdot 40$. FM H $22 \cdot 00$.
Accesiories:
PAE fur list
 Please state channels on all orders.
B. BAINES, 11 Dale Cres, Tupton, Chesterfield.

MISCELLANEOUS

RECORD TV sound using our loudspeaker isolating transformer. Provides
safe connection to recorder. Instrucsafe connection to recorder. Instruc-
tions included. $£ 1$ post free. Crowborough Electronics (T), Eridge Road, Crowborough, Sussex

LADDERS

LADDERS, $24 \frac{\mathrm{ft} .,}{} £ 8.90$, order C.O.D. Phone 02.993 5222. Home Sales, Baldwin Road, Stourport, Wores. Callers welcome.

SERVICE SHEETS

SERVICE SHEETS

(1925-1971) for Radios, Televisions, Transistors, Radiograms, Car Radios, Tape Recorders, Record Players, etc. By return post with
FREE FAULT FINDING GUIDE PRICES FROM 5p

Over 8,000 models available. Catalogue $13 p$.

Please send stamped addressed envelope with all orders and enquiries.

Hamilton Radio

54 London Road, Bexhill, Sussex Telephone Bexhill 7097

SERVICE SHEETS. Radio, TV. etc. 8.000 models. List 10p. S.A.E. enquiries. TELRAY, II Maudland Bank, Preston

SERVICE SHEETS with Free Fault Finding Chart 35p, plus stamped addressed envelope. LESMAR, 15 Conholt Road, Andover, Hants.

TRADER SERVICE SHEETS

40p each plus postage
We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

OAKFILLD ENTERPRISES

LIMITED
29 CHURCH ROAD,
TUNBRIDGE•WELLS, KENT

Make	Model	RadiolTV
	-	
	-	

1971 List now available at $10 p$ plus postage

If list is required
indicate with X

From..
\qquad
enclose remittance of.
(and a stamped addressed envelope) s.a.e. with anquiries pleasb MAIL ORDER ONLY (May T)

SERVICE SHEETS (continued)

LARGE SUPPLIER

 of SERVICE SHEETS(TV, RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS)
Only 40p each.
PLEASE ENCLOSE LARGE S.A.E. WITH ALL ENQUIRIES AND ORDERS.
Otherwise cannot be attended to.
UUncrossed P.O.'s please, original returned if service sheets not available)

C. CARANNA
 71 BEAUFORT PARK, LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request with order.
MAIL ORDER ONLY.

RADIO, TELEVISION and Tape Recorders, 50 mixed odd sheets, 50 p , also large stock of obsolete and current
valves. John Gilbert Television, 1 b Shepvalves. John Gilbert Television, 1b Shep-
herds Bush Road, London, W.6. 01-743 8441 . S.a.e. enquiries.

FOR SALE

VALVES EX. TV from $5 p$, $3 p$ postage, speakers from 37tp, postage 10 p . Valve cartons. Globe Electrics, 151a Brighton Road, Surbiton, Surrey. 01-399 7333.

405 LINE 10 and 13 channel TVs. Not slimline. Complete untested. $£ 1+£ 1 \cdot 25$ p.p. P. Lunn, 64 Frensham Road, Bourne, Farnham, Surrey.

PHILIPS EL 3400 Video Tape Recorder, cost $£ 980 ; 18$ months old, as new, $£ 300$. 45 Reels $1^{\prime \prime}$ Tape $£ 175$ or $£ 4$ per reel. Boswell, 25 Ashford Avenue, Hornsey, London, N. 8.

NEWNES Radio and TV. All volumes available. S.a.e. for pricelist. We also purchase or exchange. Derwent Radio, Scarborough.

RADIO and T.V. Servicing 1965-69, 4 Vols. Unmarked and as new, £11, post free. Unfilled Money Order please. (Ei ABL) R. Casey, Foxfort, Tipperary, Co. Tipperary.

WANTED

CASH PAID for New Valves. Payment by return. WILLOW VALE ELEC TRONICS, 4 The Broadway, Hanwell. London. W.7. 01-567 5400/2971.

SERVICE SHEETS purchased, HAMILTON RADIO, 54 London Road, Bexhill.

TOP PRICES PAID
 for new valves, popular TV \& Radio Types

KENSINGTON SUPPLIES
(A), 367 Kensington Street Bradford 8, Yorks

WANTED: New valves especially TV types. Cash waiting. Bearman, 6 Potters Road. New Barnet. Herts. Tel. $449 / 1934$.

WANTED GEC BT1449 or BT2448 working or not. Cabinet condition immaterial. Good price paid. Tel. Leigh 6265. C. Dean, "Lynndene"' Johnathan Fold, Leigh, Lancs.

WANTED 625 Conversion Kit UTK 19, for REGENTONE PORTABLE. 16 London Road, Liphook, Hampshire.

SETS \& COMPONENTS

SETS \& COMPONENTS (contd.)

WITWORTH Transformers

LINE OUT-PUT TRANSFORMERS
Manufacturers of the largest range
in the country. All makes supplied. Free catalogue. Modern
BAIRD, BUSH, GEC, PHILIPS.
Replacement types ex-stock.
For 'By-return' service, contact your nearest Depot:
London: Ol-948 3702
Tidman Mail Order Ltd., Dept. PT. 236 Sandycombe Road, Richmond,
Surrey, TW9 2EQ.
Birmingham: 021-643 2148
Hamond Components,
89 Meriden Street,
Birmingham 5.
Valves, Tubes, Condensers, Resistors. Rectifiers and Frame out-put Transformers also stocked. CALLERS WELCOME

TESTED TOP 20 TV VALVES FROM 10 p . PL504, $17 \frac{1 \mathrm{p} \text {. }}{}$. New PL508's, 45p. Individually boxed, p \& p 4p per valve, 12 or over $2 \frac{1}{2} \mathrm{p}$, over $£ 3$ free. Resistors and capacitors by leading manufacturers at competitive prices. Stockists of "THE WONDER LEAD" colour C.R.T. tester. Send for leaflet. Trade enquiries welSend for leafiet. rade enquiries welcomed. S.A.E. for new free list. L. \& D. Wood Green, N. 22 6SA. 01-888 2701.

TV SCOOP PURCHASE!

FREE CIRCUIT DIAGRAM WITH EVERY SET

Only while present stocks last. Complete, untested TV sets.
3 Channel (BBC2) TVs (e.g., Ferguson 900 series) $19^{\prime \prime}$ Slimline (110° Tube) $\mathrm{fl} 11!$
3 Channel-only require UHF tuner for BBC2. 19" Slimline (110° Tube) $\mathrm{f8}$
2 Channel (with 405/625 timebase) 19" (110° Tube) 66
2 Channel 405 only, $17^{\prime \prime}\left(110^{\circ}\right.$ Tube) 63
(Carriage \& Packing, $£ 1-50$ extra, all models.) Special discounts for quantity. (S.A.E. for quote) TWO sets of the same model supplied if requested. (Deduct $\& 1$ from total price!!). Ideal 2 into 1 plus lots of spares for future use-you can't go wrong at these prices!
TRANSISTOR RADIO SCOOP!
Superhet with push-pull output to internal loudspeaker. Complete with carrying case, earphone and PP3 battery. These sets are BRAND NEW and complete, but may require slight attention. Hence bargain price of $\mathrm{El} \cdot 50$, plus 20 p P. \& P.
SUMIKS, 7 High St., Langley, Warley, Worcs.
CALLERS WELCOME.

SETS \& COMPONENTS (continued)

PHILIP H. BEARMAN

A leading name in valves and Tubes!
 (Mullard, Thorn, Telefunken, etc.)

NEW MOSTLY BVA VALVES! Huge range by post service well known to the trade. Brief list of television types herewith, full list S.A.E. All types ex stock!

DY86/7	40p	PCF86	60p	PY82	47p	20L1	90p
EB91	22p	PCF801/2	59p	PY800/1	47p	20 P 4	90p
ECC82	42p	PCF805	83p	R19	80p	30 C 15	86p
ECL80	47p	PCF808	80p	U25	91p	30 C 17	91p
EF80	39p	PCL82	48p	U26	91p	30F5	91p
EF85	41p	PCL83(S)	60p	U37	75p	$30 \mathrm{FL1}$ \& 2	62 p
EF183/4	54p	PCL84	57p	U191	86p	30 L 15	91 p
EH90	51p	PCL805/85	63p	U193	47p	$30 \mathrm{L17}$	86 p
EY51	60p	PCL86	63 p	U251	91 p	30 P 12	90p
EY86/7	40p	PL36/8	83p	U301	$85 p$	30 PL 1	86 p
PC86 \& 8	72p	PL81	75p	U801	99p	30P4MR	£1.00
PC97	42p	PL83	81 p	6/30L2	86 p	$30 \mathrm{P19}$	83p
PC900	52p	PL84	62p	6 AT6	52 p	$30 \mathrm{PL13}$	95p
PCC84	47p	PL500	86 p	6BW7	78p	30PL14/5	95p
PCC89	58p	PL504	86p	6CD6G	90p	etc., etc.	
PCF80	50p	PY81	47p	6F23	90p	Trade pric	

POST FREE OVER $£ 3.00$. $2 \frac{1}{2} \mathrm{p}$ PER VALVE BELOW $£ 3.00$
LATEST NEW BY100/127 type silicon rectifier $15 p .33 \Omega$ res $5 p$!
Large bulb /mported PCF80 30p! Note. Ask for separate component and tranPhilips PCL805/85 54p! sistor lists. Mullard/Mazda data books 20p.

LATEST PAL colour TV servicing manual $£ 3.50$ p!

6 POTTERS ROAD, NEW BARNET, HERTS.
 (Adjacent to Post Office)

Tel, 01-449/1934 \& 449/1935
(Robophone)
Special quantity terms, lists, s.a.e. GIRO 34.361.4006
(Suppliers to H.M. Govt. etc.)

SOUTHERN VALVE COMPANY

44 Earls Court Road, London, W. 8

SPECIALISTS IN QUALITY VALVES FROM MAINLY BRITISH MANUFACTURERS; WE DO NOT CLAIM THE LOWEST PRICE, BUT GENUINE VALUE!

All new and boxed, some BVA. Send s.a.e. for list.

DY87	37p	PC86 \& 8	50p	PCL805	45p	U193	35p	$30 \mathrm{L17}$	75p
DY802	45p	PC97	40p	PCL86	37p	U251	62p	$30 \mathrm{P12}$	70p
EB91	15p	PCF80	32p	PL36	52p	6/30L2	60p	30PL1	60p
ECC81	37p	PCF86	52p	PL81	46p	6BW7	60p	30P4MR	95p
ECC82	30p	PCF801	50p	PL84	55p	6CD6G	90p	30P19	70p
ECL80	40p	PCF802	50p	PL500/4	65p	6F23	75p	$30 \mathrm{PL13}$	75p
EF80	27p	PCF805	50p	PY81	35p	6F28	48p	30PL14	75p
EF183	37p	PCF808	60p	PY800	35p	$20 \mathrm{L1}$	85p	etc., etc.	
EF184	37p	PCL82	37p	PY801	35p	20P4	90p	NO	
EH90	45p	PCL83(s)	50p	U25	65p	$30 \mathrm{C15}$	70p	BYIOO/EY	
EY51	50p	PCL84	37p	U26	60 p	30FL1 \&	275p	equiv only	
EY86/7	37p	PCL85	45p	U191	65p	30 L 15	75p	with resist	

POST FREE OVER £2, BELOW $2 \frac{1}{2} \mathrm{p}$ EACH. MAIL ORDER ONLY.

TELEVISION TUBE SHOP	
BRAND NEW TUBES AT	
A28-14W (A28-13W)	¢12.75
A31-18W	£12.50
A47-11 W	$£ 9.95$
A47-13W	£12.50
A47-14W	¢8.25
A47-26W	£10.75
A50-120WR	£12.50
A59-11W	£12.9
A59-13W	£13.50*
A59-15W	f9.95
A59-16W	£13.50*
A59-23W	£14.75
A61-120WR	£16.50
AW-21-11	£7.00*
AW36-21, 36-80	£5.75
AW43-80	£6.95
AW43-88, 43-89	£6.75
AW47-90, 47-91	¢7.50
AW53-80	${ }^{\text {¢7.50* }}$
AW53-88, 53-89	¢8.25
AW59-90, 59-91	£9.00
C17LM, 17PM, 17SM	¢6.50
CME1201	£12.50
CME1402	¢5.75
CME1601	£10.50
CME1602	£12.00
CME1702, 1703	¢6.75
CME1705	¢7.75
CME1713/A44-120	£14.50
CME1901. 1903	£7.50
CME1906	£12.50
CME1908	¢7.75
CME2013	£12.50
CME2101, 2104	¢8.25
CME2301, 2302, 2303	£9.00
CME2305	£14.75
CME2306	£13.50*
CME2308	19.95
CME2413R	£16.50
CRM93, 124	${ }^{\text {¢5.50* }}$
CRM141, CRM142	¢5.50
CRM171, CRM172	¢6.50
CRM211, CRM212	¢7.50*
MW36:24, 36-44	¢5.50
MW43-69	¢6.75
MW43-80	¢6.75
MW53-20, 53-80	67.5
TSD217, TSD282	£14.00 \dagger
138P4 (Crystal 13)	E14.00†
190AB4	¢9.25
230DB4	£11.25
\dagger Rebuilt tubes also, at $\mathbf{£ 7 . 0 0}$ plus bulb	
*These types are FULLY rebuilt. all tubes are tested and guarANTEED FOR 12 MONTHS	
ADD 7BP FOR CARR COLOUR TUB	RE AND
19 in . and 22 in . having slight marks or scratches at $£ \mathbf{3 5}$ each	
New R.C.A. A49-15X $\mathrm{f}^{\text {c }}$	
New R.C.A. Scan Coils, Convergents, Yokes, and Blue Lateral, complete	
£5 per set.	
TELEVISION TUBE SHOP	
48 BATTERSEA BRIDGE ROAD,	
LONDON, S.W.11. 2286859	
WE GIVE GREEN SHIELD STAMPS	

SETS \& COMPONENTS (continued)

AERIAL BOOSTERS	19* TV 66.50
We make four types of Aerial	19** 405 Slingine Televisions in
Boosters. L45 625 U.H.F., L12	good working order, with com-
V.H.F. TV. LII V.H.F. Radio.	plete set of spare valves.
and L11 E2-95, L10 E2.45.	PRINTED CIRCUIT BOARD
VALVE BARGAINS	2.8 ins. by 4 ins. boards complete
5-45p, 10-70	with etching compound and
ECC82, ECL80, EF80, EF85,	instructions. 40 p . Price $\mathbf{6 6 : 5 0 .}$
EF183, EF184, EBF89; EB91.	Carriage \mathbf{x} 1.50
EY86, PCC84, PCC89, PC97.	
PCF80. PCF86, PCL82, PCL83	500MFD CAPACITORS
	500M-25\%/w Brand
30C15, 6-30L2.	trolytic with long leads. Ip each.
POST AND PACKING: Under CI. Sp. Over CI, IOp. S.A.E: for leaflets on all items. Money back guarantee if not completely satisfled.	
62A Bridge Street, Ramsbottom, Bury, Lanes.	

$\frac{1}{2}$ WATT Erie RESISTORS @ 8p for 10; preferred values stocked; minimum order 24 p; p. \& p. $7 \frac{1}{2}$ p cwo. SARNIA ELECTRONICS, 6 Lower Clarence Road, Norwich.

120 NEW ASSORTED Capacitors, Electrolytic, Mica, etc., and Resistors, $\frac{1}{6} / 20 \mathrm{~W}, 85$ p, Post Free. Whitsam Electrical, 33 Drayton Green Road, London, W. 13 .

REBUILT TUBES!

HERE IS WHAT YOU PAY:
12 in
 ISin. . . $\quad . \quad$ E5.25 Twin Panel \& Rimguard I7in. . . \quad E5.25 I9in. 68.00 Igin. 65.87 23in. 10.50

Cash or cheque with order, or cash on delivery COLOUR TUBES AVAILABLE

Discount for Trade
Each tube is rebuilt with a completely new gun assembly and the correct voltage heater.

* Each tube comes to you with a guarantee card covering it for two years against all but breakage.
* Each tube is delivered free anywhere in the U.K. and insured on the journey.
* Each tube is rebuilt with experience and knowhow. We were amongst the very first to pioneer the technique of rebuilding television tubes.

BEMEN ELECTRONIC TIBE
237 London Road, West Croydon, Surrey Tel. 01-689/7735

TUBES EX-EQUIPMENT TESTED

PERFECT SPEAKERS EX TV

Pm 3 ohm (minimum order two) 5 in. round. 8 in. bs 2 in . rectangular-12 $\$ \mathrm{p}$ each. Add $7 \$ p$ per speaker p. \& p. Special offer:- 100 speakers delivered for 215 .

VALVES EX EQUIPMENT

EB91	5p	30L15	1210	PL36	
EBF89	12 p	30P4	1210	PL81	171p
ECC82	127	PC97	17 p	PY81	$15 p$
ECl80	715	PCF86	17\%p	PY800	15p
EF80	12%	PC84	78	PY82	710
EF85	$12 . p$	PCF80	710	PY33	28tp
EF183	$12 . p$	PCC89	121p	U191	17 p
EF184	12¢p	PCL8s	$281 p$	6 F 23	1710
EY86	179	PCL82	17 lp	30PL1	281 p
90PL13	20p	PCL86	1715	30 Pl 2	80 p
630 LZ	12 ¢p	PCL83	121 p	30F5	10p

UHF TUNERS
For Ferguson 850900 chassis. Adaptable for most U.H.F. Chassis 28.50 , p. \& p. 50p.

TRADE
DISPOSALS (Dept. PT/TS)
Thorabury Roundaboat, Loeds Rd, Bradlard. Tolephone: 0R74-685670

U.H.F. TV AERIALS

Suitable for Colour and Monochrome Beoeption

LOFT MOUMTDIG ARRAYA. 7 element 82.25 . 11 element 82.75 . 14 element E3. 25.18 element $\mathrm{cy3} 75$. FALI AMD BRAGKET. 7 element A3.25. 11 element $\mathbf{~} 3.75$. 14 element $\mathrm{Et}+25$. 18 element E 4.75 . chimary HoUnting arrays e/m last amd lashIIGG KIT. 7 element \&4. 11 element $54 \cdot 50$. 14 element 44.75 . 18 element $45 \cdot 23$. MAST MOUSTmig arrays only 7 elerment 22.25 .11 element $t 2.75$. $1+$ element E 3.25 . 18 element $£ 3.75$. Complete arsembly lnstructions with every merin. BOOSTERS from $\mathrm{E}_{2} \cdot 75$. LABGEAR all band V.H.F.U.H.F.-F.M. radio mains operated preamps 87.50 . State clearly channel number required on all orders. P.p. on all serials 50 p . Accs. 15p. C.w.O. Min. C.O.D. charge 25p.

BBC-LTV-FI AERIALS
BBC (band 1) Wall $8 / D$ e2. LOFT inverted T " 41.25. EXTERNAL H^{\prime} array only e3. ITV
 WALL AID CHIMEY UMME AL 10 AVAIIABLE. Pre-amps from xy. 73. COMBDIRD U.H.F.V.H.F. serials $1+5+9 \quad$ \&4. $1+5+14 \quad \& 4 \cdot 50$. $1+7+14$ k5. Fid radio loft 8/D 81. at element 23.25. 4 element t3.50. Standard coasial pluga 9 p . Coaxial cable 5 p yd. Outlet box 30 p . P.p. all aerials 50 p . Aces. 30 p . C. W.O. Min. C.O.D. charge 25p. send 5 p for fully illustrated lists. CAILERS WELCOIRED
OPEI ALL DAY BATURDAX
K.V.A. ELECTRONICS
40.41 Monarch Parade

London Road, Mitcham, Surrey $01-6484884$

REBUILT TUBES

Colour:
Colour:
$19^{\prime \prime} £ 23$
$25^{\prime \prime} £ 28$
Also NEW 19"
vailable.)
Standard Types:

$17^{\prime \prime} £ 5$	$19^{\prime \prime} \in 5 \cdot 50$
$21^{\prime \prime} £ 6 \cdot 50$	$23^{\prime \prime} £ 7 \cdot 50$
Metal Band Types:	
$19^{\prime \prime} £ 7$	$23^{\prime \prime} £ 9$
Twin Panel Types.	

$19^{\prime \prime} £ 7 \cdot 50 \quad 23^{*} £ 10$
(Plus carriage all types.)
Complete new gun fitted to every tube. 2 years' guarantee monochrome, 1 year colour. 15 years' experience in tube rebuilding. Trade enquiries welcomed.
N.G.T. ELECTRONICS LTD
(Nu-Gun Teletubes)
22 Anerley Station Road, London, S.E.20. Telephone: 01-7789178

PHILIP H．BEARMAN， A LEADING NAME IN VALVES AND TUBES

LARGE STOCKS BY LEADING BRITISH AND FOREIGN MANUFACTURERS TUBES GUARANTEED 2 YEARS，COLOUR 4 YEARS！ALL EX STOCK Every tube tested before it leaves our premises．

＊Rebuilds only

COLOUR TUBES

4 YEAR GUARANTEE

＊19＂A49．11X，A49．120X £49．00 plus $£ 1$ carriage 22＂A55．141X，A56．120X $£ 53.00$ plus $£ 1$ carriage
＊ $25^{\prime \prime}$ A63．11X，A63．200X $\mathbf{£ 5 7 . 0 0}$ plus $£ 1$ carriage All prices net trade，old glass not required．

TSD282	11＊	£12．50
A28－14W	11＂	f．10．50
MW31－74	12＂	f．3．00
TSD290	12＂	f．9．80
13BP4	$13^{\prime \prime}$	f．14．00
MW36／24 \＆ 44	$14^{\prime \prime}$	£4．75
CME1601	16＂	£7．50
CME1602	$16^{\prime \prime}$	£10．15
CME1906 $\}$	19＊＇	f10．12
A47－13W	19	E10．12
A47－11W	19＂	£9．50
A50－120W	20＂	£．10．50
CME2306 $\}$	23＂	f15．00
A59－13W $\}$		21500
A59－11W	23＂	$\mathbf{£ 1 1 . 1 0}$
CME2413	$24^{\prime \prime}$	£13．00
CME2501	$25^{\prime \prime}$	£17．00

Plus carriage，but if sea journey，50p extra

We endeavour to maintain prices but all are subject to alteration without notice
6 POTTERS ROAD，NEW BARNET，HERTS．TEL：01－449／1934（Robophone）and 449／1935

COLOUR TUBES

STANDARD TUBES
METAL BAND TUBES
TWIN PANEL TUBES

Rebuilt with new Electron Guns at under 50\％normal list price

SUFFOLK TUBES

LIMITED
261 CHURCH ROAD， MITCHAM，SURREY 01－6403133

Britain＇s largest INDEPENDENT TV Tube rebuilder

Learn at home． First Class Radio and TV Courses

After brief，intensely interesting study－ undertaken at home in your spare time－ You can secure a recognised qualification or extend your knowledge of Radio and T．V Let us show you how． FREE GUIDE

Our Free Guide contains 120 pages of information of the greatest importance to both the amateur and the man employed in the radio industry．Chambers College provides first rate postal courses for Radio Amateurs＇Exam．，R．T．E．B．Servicing Cert．， C．\＆C．Telecoms．，A．M．S．E，（Elec．）．Guide also gives details of range of certificate courses in Radio＇TV Servicing．Electronics and other branches of engineering．

Write now for your copy of this valuable publication．It may well prove to be the turning point in your career．
Founded 1885 Over 150,000 successes
CHAMBERS COLLEGE
（Incorp．National Inst．of Engineering） （Dept．R58）Aldermaston Court，Reading．RG7 4PF

NEW VALVES！

Guaranteed and Tested 24－HOUR SERVICE

$11: 5$	． 25	1 FP 1	－14	1：FS9	－ 24	PCLRA	37
$1 \times$	－21	1）PW	$\cdot 35$	1：P？	－12		． 51
1 T ＋	－14	いた！	－25	EPOE	． 30	PLiki	47
：34	． 24	1）下！2	． 35		． 26	PLs ${ }^{\text {c }}$	． 43
：i 4	－37	1）に必	$\cdot 36$	Eriat	． 28	Plex	－29
	－25	1） 14.4	－24	WL， 3 ：	． 54	$P^{\prime} \mathrm{LN}_{3}$	． 31
4， 311.2	－53	11，4t4	$\cdot 37$	E，L，Mt	． 22	Plat	29
；i．tu）：	． 21	111，4i	$\cdot 36$	E¢5	． 30	P1．jtic	－61
（ibly	－50	1）5mi	． 23	E）${ }^{\text {Whij }}$	－28	Plaitu	． 61
（iF）	57	W1：87	． 23	1：\％ッ0	－20	PY゙，	． 23
－ires	－67	いinu－	－30	1：\％$\times 1$	． 21	P）x	． 24
6iPe，	－51	FiABCSO	30	КTぃし	． 54	Ficm	32
ciscitit	－28	F； $\boldsymbol{3}$ ： 1	9	6＂【仙	． 75	P＇xol	． 32
	－18	Fibe：3	－ 38	以－	． 85	It19	． 29
\％и＂1：	－56		． 27	1＇90；	． 45	12.1	． 63
：	.75	10以い	－15	川以	－45	1－21	－55
：я川	－59	ECCW－	． 18		， 30	［19］	． 57
：	$\cdot 63$	$\mathrm{PCO} \times$	． 21	10゙い	． 28	［2．）	． 63
： 61 －1．1	． 59	1：C＇F＇－2	． 26	Prest	． 43	T：	． 65
：0＋1．14	$\cdot 67$	1：Clla	－ 53	アツ「19	． 47	［＾011	78
： 111.1 .5	． 56	ECH4＊	． 58	P＇Pa＊	． 27	1Bトゥ9	29
： 11.17	－68	1：CHM1	． 26	P＇Crob	． 43	l＇cm	34
： 6 P！	－58	ECソっい1	－29	1＇Prot	27	10\％ 10	－30
：01914	－56	E（＇1，${ }^{\text {a }}$ ）	． 29	P＇Frow	． 38	1＇1込	31
：altal	－58	Picrant	－34	み＇rヵ号	． 59	1Fい	28
：arlat	－63	1：res	． 36	1やしぐ	． 30	1发い	． 29
1bAFM1	－21	1Pran	． 22	P11，k：	－55	119．j	－24
1－AF！	－35	H：Pros	． 26	PClat	． 33	11：7	． 42
－ ccam	－80	1：トratis	－ 28	1＇LLed	37		． 18

 value mata．Aly parcel imsurell acaint dimme int

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON
 LONDON N． 16

THE NEW UM4 "COLOURBOOSTER" UHF/625 LINE

CAN PRODUCE

 REMARKABLE IMPROVEMENTS IN COLOUR AND PICTURE QUALITY IN FRINGE OR dIFFICULT AREAS WITH SICNIFICANT REDUCTION IN NOISE (SNOW).HIGH GAIN-VERY LOW NOISE
FITTED FLY LEAD-INSTALLED IN SECONDS HIGHEST QUALITY COMPONENTS
IVORY PLASTIC CASE $3 \frac{1}{4} \times 3 \frac{1}{4} \times 1 \frac{1}{2}$ CORK BASE
CHANNELS: Group A, Red code 21-33 Group B, Yellow code 39-51 Group C-D, Green code 52-68
EQUALLY SUITABLE FOR BLACK AND WHITE
Also the M4 DUAL BAND VHF UNIT BOOSTS ALL BAND III and ANY SPECIFIED BAND I CHAANNEL SIMULTANEOUSLY
NOMINAL GAIN 17-18 DB BOTH BANDS PRICES BOTH TYPES:
£3.75 Battery model or $£ 5.87$ Self-contained mains version Postage and Packlng 13p
TRANSISTOR DEVICES LIMITED 6 ORCHARD GARDENS, TEIGNMOUTH, DEVON Telephone: Teignmouth 4757

rebuilt T.V. tubes for men of vision

Current types
$17^{\prime \prime}$
$£ 4 \cdot 75$
$21^{\prime \prime}$
£5.50
$19^{\prime \prime}$
£5.00
$23^{\prime \prime}$
£6.00
$\underset{£ 7 \cdot 00}{\text { Panorama }} \underset{\text { R }}{23^{\prime \prime}} \underset{£ 9 \cdot 00}{\text { Rimguard types }}$
Twin panel 19" $£ 7.50$
Cash or P.O. with order no C.O.D. Carriage free in England, Scotland, Wales. Add 75p for carriage Northern Ireland. For all enquiries please send S.A.E. Each tube fitted with new electron gun assembly. Fully guaranteed for two years against any fault except breakage.
T.V. Aerials U.H.F \& Colour.

5 elements $£ 1.25$ p, 10 elements $£ 1 \cdot 50$ p,
17 elements $£ 2 \cdot 25 p$, add $32 \frac{1}{2} p p$ \& p.
Please state channel or group.
Each aerial fitted with mast clamp.
Enquiries for other aerials welcome.
k.s.t. Itd.

Providence Mills, Viaduct Street, Stanningly, Nr. Leeds, Yorks.

UHF. COLOUR AND TELEVISION SPARES

COLOUR HHI ('HROMINANCE DEIAY UNIT £1.95 p.p. 25 p . J,OMNANCE DELAY YNIT £1.35 1PD. 1FM. PLENSEY SCAN COILA 55.75 ו.p. 35 p. ('ONVERGENCE (OILS $£ 3.80$ p.p. 25). BIX: LATLERAI £1-25 p.p. 9p, or Complete set £10 1.D. 50p. MULJARJ TYPE, SCAN COIDS £3-50 p.p. 35), (ONVERGENCE COHLS £1.75 p.D. 251, IUMINANCE/CHROMINAN('L
 1)WCODER UNIT including ('irenits £1-25 D.p. 10p. JINE OUTPUT TRANSFORMER including EH'T and FOC'U'S ASsEMBLS $£ 3.50$ p.p. 35 p . (Shop customers only. assortment Colour Panels of various makes.) A LSO ('OLOLR L'V CAMERA
COLOUR TV MONITOR PANELS Designed to highest BBC standards. PAL filter \& delay $\mathbf{8 6 \cdot 0 0}$, Chrominance $\mathbf{8 6 \cdot 0 0}$, Luminance $£ 4 \cdot 50$, Encoded Video Input $£ 2 \cdot 50$ incl. circuit. p.p. 30 p. UHF 625 conversion kits and tuners available at reduced prices. UHF 625 conve
UHF tuners transistd. incl. S/M drive, indicator $£ 3.95$, or pushbutton $£ 5 \cdot 25$. ' HF/VHF transistd basic tuner, latest type, incl. cirenit $£ 3.95$. ('lydon yalve type, $£ 1 \cdot 50 \mathrm{p}$.p. 2 mp ,
MURPHY $600 / 700$ series LHF conversion kits in cabinet plinth assembly can le used as scparate CHF receiver $\mathbf{5 7} \mathbf{- 5 0} \mathrm{p} . \mathrm{p}$, 50p. 625 IF amplifier incl. 5 valves and circuit $£ 3$ p. 1%. 35 p).
SOBELL/GEC Dual $405 / 625$ IF amp and o/p chassis juel. cirenit
 EKCO/FERRANTI UHF tuner kit, incl. valves, slow motion (lrive, knols, leads, acrial panel $£ 5 \cdot 50$ p.p. 30 p .
TV SIGNAL BOOSTERS. latert PYE/LABGEAR all station UHF/CHF transist 3 outlet Amplifier £6.50, L'HF Mastlead £4.85, P'owcr mit £3.25. 1.p. 25p.
FIREBALL TUNERS Ferg., HMV, Mareoni. New $£ 1.90$ p.p. $25 p$. PUSH BUTTON Plessy, Fkeo, Ferranti £1 p.p. 2j).
TURRET TUNERS. K B 'Featherlight'" 'Cli, Philips 170 series, ($\mathrm{EEC} 2010 £ 2.50$ A B bual Standard Suitable Ferguson, Bairl, Kls etc. 75p, Cyldon © 75p, Pye 110/510 Pam, Invicta, Miniature. incremental $£ 2 \cdot 50$. Peto Scott 960 , Cossor 1964, Decea 95;606 £2.00 pp 25 p
LINE OUTPUT TRANSFORMERS. Popular types available, brand new replacements, fully guar. A sclection which can be supplied j.p. 25p, C.O.b. 25 p .
MURPHY t70 to 530 (oiltilled)
M URPHY $\times 46$ to 939 . 153 to 189 PHILIPS $176 \mathrm{~K} / 216 \mathrm{~K}, 1796 / 2196$ PHILIPS 17 TG 100 Range STELLA 1011/1029 PHILIPS 19TGH11/12 PHILIPS 19TG121 to 150 PHILIPS 19TG170, 210 series PHILIPS 19TG170, 210 series
BUSHTV53to $69 £ 1.75105$ to 1%
EKCO 221 to 331 (U25 or U26)
FERRANTI 1001/19 (125 or U26)
EKCO 342 to 394 , FERRANTI 1021 to 1065
EKCO, FERRANTI 418 , i003 etc.
DECCA DM17, 3,4 (70 ;) DR95,
101/606

£3.75	Bush TV76/86	£2.50
£4.50	Bush 'l'95/90	£2.50
£4.50	BLiNll 14, 148,	
£3.90	EK(0) 40゙̇/41	${ }_{\text {¢2 } 2 \cdot 50}$
£4.00	FERR R. 10xt/1092	£2 50
£4.50	FERG 506 to 546	£1-50
£4.50	HMV 1890 to 1896	£1-50
£4.50	Murphy 149,	
£3-75	$159,15 \mathrm{KV}$	£2.50
£3•75	1REG 10-6, 10-17	£2-50
£3.90	R144 191, 192,	
£3.90	RGP 610, ${ }^{\text {a }} 1$	£2.50
	RGD 619, $6 \geq 0$	£2-50
£3.90		

FERG 305 to 436 , 606 to 927
FERG, HMY, MARCONI 1JTLRA, PHLLCO 3600, 2600, 4600 , 6600, 1100, Jellypot
KB RVOO, SV20, Veltovo MBRRCONI SVEO, To to
MARCONI 116
GEC 302 to 346, , 2250,448 to 4.5
GEC $454 / 6.2000$ series
PYE CTM/GW series (printed circuit) $17 / 21,17 / \mathrm{s}, 110$ to 510 , To0, N30, 1, 2, :3, 11 L to $4 \times$. PAM, INVICTA equiv. LOD'I's to ahove P'F.
PETO SCOTT $1+19$ to 1 宝 $£ 1$ 75, 73:3 to 73 x 3.3.
SOBELL/MCMICHAEL TPS 1%
1^0, Tथ $2,24,17 \times, 27 \times$, S('24, 270, $1 \times 0, \frac{1}{2} 23,24,178,2 \%$, N $724,2 \%$ TPS
 M75, $76,93,72 \pi, 280$, TPsilo 195, 2×2 to $288,762,763$
SOBELL $190 / 7,1000$ scrics SOBELL 1967, 1000 scri ULTRA 1750 to 2 S 34 PRACTICAL TV 625 RECEIVEA
Integrated push hutton transistorised tuner .. £4.50 p.p. 25] Transistorised IF' panel
s.50 line outmut transformer
sio) ficld output transformer
8i0 field outpu
8jo scan coils
${ }^{24} 75$ p.!. 2.11

850 scan colls p, \quad on compen set of 5 items \mathfrak{f}
THORN 850 Time Base I anel, Dual standard $£ 1$ p.p. 3010 THORN 850 Mains Jroppers $25 \mathrm{p}, \mathrm{pp} 10 \mathrm{p}$ (state approx. values) VALVE BASES B91) for 1PL500 serics and colour 12bp p.1. 5p

MANOR SUPPLIES

172 WEST END LANE, LONDON, N.W. 6
(Near W. Hampstead lube stn; 2B, 59, 159 Bus Routes) 01-794 8751 MAIL ORDER: 64 GOLDERS MANOR DRIVE, LONDON, N.W. 11

In just 2 minutes,find out how you can qualify for promotion or a better job in Engineering . . .

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book. B.I.E.T. has successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fastmakes learning easier and something you look forward to. There are no books to buy and you can pay-as-you-learn. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

THEY DID ITSO COULD YOU

"My income has almost trebled . . . my life is fuller and happier."-Case History G/321.
"In addition to having my salary doubled, my future is assured."-Case History H/493.
"Completing your Course meant going from a job I detested to a job I love."Case History B/461.

FIND OUT FOR YOURSELF

These letters-and there are many more on file at Aldermaston Court-speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you.

7ree!

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.

Dept B1 Aldermaston Court, Reading RG7 4PF.

[^0]: (C) IPC Magazines Limited 1972. Copyright in all drawings, photographs and articles published in "TELEVISION" is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by "TELEVISION" to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press, All correspondence intended for the Editor shouid be addressed to Fleetway House, Farringdon Street, London, EC4A 4AD. Address correspondence regarding advertisements to Advertisement Manager, Fleetway House, Farringdon Street, London, ECAA 4AD.

[^1]: Published approximately on the 22nd of each month by IPC Magazines Limited, Fleetway House, Farring don Sereer, London, EC4A 4AD. Printed in England by Fleetway Printers, Crete Hall Road, Gravesend. Sole Agents for Australia and New Zealand-Gordon and Goteh (A/sia) Led.: South Africa-Central News Agency Ltd., Rhodesia and Zambia-Kingstons Ltd.; East Africa-Stationery and Office Supplies Ltd. Subscription Rate (including postage): for one year to any part of the world, $\mathbf{f 2} 65$. "Television" is sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first having been given, be lent. resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold.
 hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade, or affixed to or as part of any publication or advertising, literary
 or pictorial matter whatsoever. or pictorial matter whatsoever.

