- LINING - UP TV SETS •

NOVEMBER
AND TELEVISION TIMES

COMPLETELY BUILT T. V. CONVERTER for the new commercial
stations, complete with 2 valves. Frequency can be vatves. Frequency can be set to any channel within
the $186-196 \mathrm{Mc} / \mathrm{s}$ band. I.F. will work into any existing T.V. recesver between 42 $68 \mathrm{Mc} / \mathrm{s}$. Input arranged for 80 ohm feeder. EF80 as RF amplifier, ECC81 as local osclllator and mixer. The gain of the first stage, RF amplifer 10 DB . Required power supply of 200 D.C. at 25 mA . 6.3v. A.C. at 0.6 amp. Lnput filter ensuring freedom from unwanted signals. Simple adjustments only, no instruments required for trimT.R.F. or superhet. Slze $4 \frac{1}{4} 2 \phi \mathrm{x} 2 \mathrm{in}$. P. \& P. 2/6. £2.19.6. Double wound mains transformer, Pri. $200 / 250 \mathrm{v}$. metal rectifier, and smoothing condenser to suit above. 18/6.

COMPLETELY BUILT SIGNAL GENERATOR

BOTH GENERATORS GUARANTEED FOR il MONTHS

PATTERN GENERATOR

Completely built Signal Generator, coverage $120 \mathrm{Kc} / \mathrm{s}-320 \mathrm{Kc} / \mathrm{s}$, $300 \mathrm{Kc} / \mathrm{s}-900 \mathrm{Kc} / \mathrm{s}, 900 \mathrm{Kc} / \mathrm{s}-2.75 \mathrm{Mc} / \mathrm{s}, 2.75 \mathrm{Mc} / \mathrm{s}-3.5 \mathrm{Mc} / \mathrm{s}, 8 \mathrm{Mc} / \mathrm{s}-$ $28 \mathrm{Mc} / \mathrm{s}, 16 \mathrm{Mc} / \mathrm{s}-56 \mathrm{Mc} / \mathrm{s}, 24 \mathrm{Mc} / \mathrm{s}-84 \mathrm{Mc} / \mathrm{s}$. Metal case $10 \times 68 \times 4 \frac{1}{2} \mathrm{in}$. Internal modulation of 400 and rechifer. A.C. mains $230-250 \mathrm{v}$. modulated or unmodulated R.F. output conth of 30 per cent. 100 milli-volts. C.W and mod switch varlable A F output and moving coil output meter. Black crackle-Anished case and white panel. Accuracy plus or minus 2% £ 418.8 or $34 /$-deposit and 3 monthis payments $25 /-$., P. \& P. $4 /$ - extra.
PERMEABILITY TUNED T.V. CONVERTER for new commercial stations Input 300 ohm balanced line or 80 ohm coax. Coverage 180 $200 \mathrm{Mc} / \mathrm{s}$. Vision I. F. : $10.7 \mathrm{Mc} / \mathrm{s}$. Valve line-up 6 AK5 R.F. $\mathrm{F}_{6} \mathrm{am}-$ plifler,
mixer,
6 AK 4 separate oscil-
 lator. This is a high gain unit, ideal for fringe areas. Can also be used as F.M. TUNER Frequency coverage $80-100 \mathrm{Mc} / \mathrm{s}$. I. F. $10.7 \mathrm{Mc} / \mathrm{s}$. Size 91 n . Wide, $6 \not 1 \mathrm{in}$. deep, 4 in . high, 9in. scale, width, including over${ }_{10}{ }^{10} \mathrm{Mc} 14 \mathrm{Mc}$. Complete with 3 valves. P. \& P. $3 /-$. £4.9.8.
USED Oin TUBE $10 / 14 \mathrm{C}$ wi
Meda gin.
Mazda CRM92A, used with heater cathode short, guaranteed for 3 months. P. \& P. 7/6. £2.17.6.
Used Mullard 9in. tube 22/17 and 18 ion burn. 25/- post paid.

A.C. mains 230/240. Comprising choke, powerfactor condenser, 2 tube holders, starter, and $3 /-$ starter-holder. P. \& P. 3/-.
20 watt A.O. or D.O. $200 / 250 \mathrm{v}$, Fluorescent kit, comprising trough In white stove enamel, 2 tube holders. starter, starter-holder and bar reter. P. \& P. 1/6. $12 / 6$.

Three speed automatic changer by B.S.R. MONARCH current model. Will take 7 in . 10 in , or 12 in , records mixed. Turnover crystal head. Cream finish. BRAND NEW
A.C. Mains 200/250. LIMITED $\begin{array}{ll}\text { £7.15.0. }\end{array}$
P. \& P. 3/-.

Line and E.F.T. Transformer, 9 kV . Ferrocart core. EY51 heater winding, complete with scan coils and frame output transformer and line and width control, 35/-, P. \& P. 3/-
As above but complete with line and frame blocking transformers. Ahenry 250 mA . choke, 100 mfd , and 150 mfd .350 wkg. 380 mA . A.C. ripple. \&2.9.6. P. \& P. $3 /$
Standard wave-change Switches. 4 -pole 3 -way, 5 -pole 3 -way: 3 -pole 3 -way, $1 / 8$ each: 9 -pole 3 -way, $3 / 6$: Miniature type, long spindle, 4 -pole 3-way and 4-pole 2-way $2 / 6$ each. 2-pole
1i-way twin wafer, $5 /-1$-wole 12 -way $5 /-$ P. 8 P. 3 d. 11-way twin wafer, 5/-: 1 -pole 12 -way. 5/-. P. \& P. 3d.
USED metal rectifier, 250 V . 150 mA . $6 / 6$.
Combined 12 in . Mask and Escutcheon perspex. New aspect, edged in brown. Fits on front of cabinet. 12/6. As above for 14m and 15 in. tubes, $17 / 6$.
Pollshing Attachment for electric drills, ing. spindle, chromlum plated 5 in . brush, 3 polishing cloths and one sheepskin mop mounted on a 3in. rubbe
sheepskin mops, $2 / 6$ each.

R. \& T.V. COMPONENS (ACTON) LTD.
 23 HIGH STREET, ACTON, LONDON, W. 3

$40-70 \mathrm{Mc} / \mathrm{s}$ direct calibration, checks frame and line time base, frequency and linearity, vision channel alignment, sound channe and sound rejection circuits and vision channel band wiath. white front conel black crackle-finished case $10 \times 64 \times 4$.in. and allgn any T y receiver mains 2ocy por minus 1% Cach pice £3.19.6 or $29 /$-deposit and 3 monthly payments of £1. P. \& P. 4/extra.
Line or Frame Osclilator Blocking Transformers, $4 / 6$ each. Smoothing Choke. $250 \mathrm{~mA}, 5$ henry, $8 / 6 ; 250 \mathrm{~mA}$, 10 henry. $10 / 6$; Wide Angle P.M. Focus Unit. Vernier adj., state tube. 15/-. P.M. Focus Unit for Mullard tubes with vernier adjustment. 15/-
Ion Traps for Mullard or English Electric tubes, 5/-. Post pald. T.V. Colls, moulded former. iron cored. wound for rewinding purposes only. Ali-can 1 in . x bin., $1 /$ - each: 2 Iron-cores Alican, $2 \min ^{x}$ ilin., $1 / 6$ each. These coll formers are suitable for the Prac. T.V. Converter
Dublier 00110 kV working. 3/6.
Primary. 200-250 v. P. \& P. $2 /=$
$300-\mathrm{G}-300,100 \mathrm{~mA}, 6 \mathrm{v} .3 \mathrm{gmp} .5$ v. $2 \mathrm{amp} .22 / 6$
Dron thro' 350 -0-350 v. 70 mA .6 v. 2.5 amp., 5 v. 2 amp. 14/6. Drop thro' $250-0-250 \vee .80 \mathrm{~mA}^{2}, 6$ v. 3 amp., $5 \% .2 \mathrm{amp} ., 14 / 8$. $280-0-280$, drov through, $80 \mathrm{~mA} .6 \mathrm{v} .3 \mathrm{amp} ., 5 \mathrm{v} .2 \mathrm{amp} ., 14 / 6$. $250-0-250.80 \mathrm{~mA}, 6 \mathrm{v} .4 \mathrm{amp} ., 14 /-$
Drop thro' $270-0-270{ }^{\circ} 80 \mathrm{~mA}, 6 \mathrm{v}^{2} .3 \mathrm{amp} .{ }^{4}{ }^{4} \mathrm{v} .1 .5 \mathrm{amp} ., 13 / 6$. Drop thro' 270-0-270 $60 \mathrm{~mA}, 6 \mathrm{v} .3 \mathrm{amp}$., $11 / 6$
250 v .350 mA .6 .3 v .4 a., twice 2 v. 2 a ., $19 / 6$.
Semi-shrouded drop-through $380-0-380120 \mathrm{~mA}, 6.3$ จ. 3 amp., 5 v. 2 amp., 25/-.
Auto Trans. Lnput 200/250, H.T. 500 v., $250 \mathrm{~mA}, 6 \mathrm{v} .4$ a., twice 2 v. 2 a., 19/6.
Auto Trans, Input 200/250. H.T. 350 v .350 mA . Separate L.T. Heater Transformp.. 5 V. 3 amp., 25/-. P. \& P. З/-
Heater Transformer. Pri $230 / 250$ v. 6 V. 11 amp., 6/-
$350-0-35075 \mathrm{~mA}, 6.3$ v. 3 a. tap, 4 v. 6.3 v. $1 \mathrm{a} ., 13 / 6$.
$500-0-500125 \mathrm{~mA} .4$ v. C.T. 4 a .. $4 \mathrm{v} . \mathrm{C} . \mathrm{T}_{4} 4 \mathrm{a} . .4 \mathrm{v} . \mathrm{C} . \mathrm{T} .2 .5 \mathrm{a}, 27 / 6$. $500-0-500250 \mathrm{~mA}, 4$ V. C.T. 5 a.. 4 v. C.T. 5 a., 4 v. C.T. 4 a., $39 / 6$. Chassis mounting or drop-thro, Pri $110 / 250 \mathrm{v}$. Sec. $350-0-350$ $250 \mathrm{~mA}, 6.3 \mathrm{v} .7 \mathrm{amp} ., 6.3 \mathrm{v} .0 .5 \mathrm{amp} ., 5 \mathrm{v} . \mathrm{C} . \mathrm{T} .0 .6 \mathrm{amp} ., 4 \mathrm{v} .4 \mathrm{amp} .$, 32/6. P. \& P. 3/6.
R.F. E.F.T. Osellator Coll. $6-9 \mathrm{kV}$ with EY51 rectider winding. and circuit diagram, 15/-
As above, but complete with 6V6, EY51 and associated resistors and condensers. Clrcuit diagram. 37/6.
The above unit completely built and tested in metal box size, $5 \times 5 \times 41$ io. $42 / 6$. P \& P 3/-
Used A.C. mains $200 / 250$ volts, 4 valve plus metal rectifier, medium wave superhet in polished walnut cabinet. size $14 \times 91 \times$ 7 in. complete with valves $6 \mathrm{~KB}, 6 \mathrm{KKm} 6 \mathrm{Q}$ anc 6 F 6 . $6 \pm 1 \mathrm{n}$. PM speaker. Funy guaranteed. P. \& P.
1.200 ft ligh impedance recording tape on alumintum spool, $12 / 6$ post pald.

250 mfd., 22 ॠ. wkg.
$16 \mathrm{mfd} ., 500 \mathrm{wkg}$.
$8 \mathrm{mfd}, 500 \mathrm{v}$ wkg., wire endi $3 / 3$ $8 \mathrm{mfd} ., 350$ y whs whe ends $2 / 6$ $100+150 \mathrm{mfd}$. . 350 . tag ends 1/6 280 m A Ciple wh
$100+200$ mf0
$16+16 \mathrm{mfd} .350$ wh
$16+16 \mathrm{mfd} .350 \mathrm{wkg}$.
$65 \mathrm{mfd} ., 220 \mathrm{wkg}$
8 mfd .150 wk
$60+100 \mathrm{mfd} .280 \mathrm{wkg}$ 50 mfd . 12 wkg . 50 mfd .50 wk
Miniature wire ${ }^{\prime \cdot}$ end. 1 moulded, 100 pf., 500 pf. and. 001 . ea. ...
$4 / 6$
$7 / 6$

Where cost and packing charge is not stated, please add $1 / 6$ up to 10/-2/-up to $£ 1$ and $2 / 6$ up to 22 . All enquiries S.A.E. Lists $5 d$. each.

COMMERCIAL T.V. NEWS

MIDLANDS IDDIIA NOW AVIILABIE parts or available separately price 2/6. When Our ADDITA Band III converter which is ordering please, state-whether for Midlands enhoying such a huge success in the south ds now available for Midlands viewers who will have heard that test transmissions are about to commence. Please be advised and order early, price is as for London model.
GTR VONEN-RACK GUAIRANIEN
"We guarantee to refund the full purchase brice if after giving our ADDITA Band III Convercer a fair trial it does not work to your complete satisfaction.
We are having such good results ourselves and receiving so many repeat orders that we can make the above ofer with complete contidence. Every post brings us letters like these

- I am receiring the commercial programmes loud and clear on my four-year-old Viewmaster. Please send anothor kit by return. -E. W. B., S.W.1.'
1SEIVRE THAN FHOM F.ICTORY-
Other constructors report betler results from tite converter than 1rom factorv buite Band III televisors. At Eastibourne one of the latest recolve the commercial signal on its own proper channel circuit despife trinming However, with the ADDITA a reasonably clea and loud signal was rereived on Channel 1 without any adjusitment.

PRIGEAND DEFAIS A
The price of the complete kit to buid the ADDIFA. acluding valves. ready wound colls. drilled and
prepared chassis. handsome prepared chassis handsome everything. inoluding transeverythene decorate the front and identily the controls is £4.5.0, or 45.5 .0 if mains components are also required. Post and insurance is 2,6 in carh case. Deta is included free with the Persona! shoppers, however, can call at

49-46 Winfimill Hill, Kuivlin. Middx. Phone : RUJSLLIP 5780 Half dav, Wednesday.

152-3. Heef suret,

Phone: ${ }^{\text {FIELEt }} 2833$
Phone: FLEAEt 2833
Half day, Satnrday.

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders shoufd be addresse:d to Dept. 5, 123, Terminus Road, Eastoourne.
29. Niroud (n pron IRoad, Finstim's Patk, N. 4. Phone: Aptchway 1049 Half day. Thursuay.

249 , 11igh RGOMA Killurn. Phone: MAIda Vale dg21 Hal day. Thurdsay.

PREMIER RADIO COMPANY

(Regd.) B. H. MORRIS \& CO. (RADIO) LTD
(Dept. P.T.) 207, EDGWARE ROAD, LONDON, W. 2

Telephone: AMBASSADOR 4033 PADDINGTON 3271

Rand Three (Commercial) For the Home Constructor

THE NEW PREMIER TELEVISOR 13 CHANNEL DESIGN
SUITABLE FOR USE WITH ANY POPULAR WIDE ANGLE TUBE

 variable $40-100 \mathrm{Mc} / \mathrm{s}$ and $170.225 \mathrm{Mc} / \mathrm{s}$. The Tuner is supplied wired and tested and is complete with Valves, all connecting leads and fixing brackets. THIS DESIGN MAY
BE BUILT FOR
£34. 9. 7
Plus cost o
C.R.T.).
DESIGN 2.
Channeis 1-5. tunable from $40-68 \mathrm{Mc/s}$ THISDESIGNMAY \quad (plus costo
$B E B U I L T F O R$ CR.T.).

* Constructors who have built Design 2 (5 Channels) may convert their Receivers to Design I for 66 : this price includes Multi-Channel Tuner, New Vision Input Coil and full instructians.
* All Coils supplied for these two Superhet Receivers are PRE-TUNED, ASSURING ACCURATE ALIGNMENT AND EXCELLENT BANDWIDTH.
* Duomag permanent magnet focusing with simple picture centring adiustment
* Exceptionaily good picture "hold" and interlace. *Noise suppression on both Sound and Vision.

The Televisor may be constructed in 5 easy scages : (1) Vision, (2) Time Base, (3) Sound, (4) Power Pack, (5) Final Assembly. Each stage is fully covered in the Instruction Book, which includes layout, circuit diagrams and point-to-point wiring instructions The Instruction Book also includes full details for converting existing Premier Magneric Televisors for use with modern wide angle tubes. All components are individually priced.

MVM290

For super tropical service
 '異ETABACK' PAPER CONDENSERS

This range has been developed for operation in high humidities and high temperatures. Their ability to withstand variations from $-40^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$. makes them the obvious choice for the most stringent conditions. Internal construction follows the well-proved T.C.C. technique of winding non-inductively two or more layers of paper dielectric to each layer of solid aluminium foil, all impregnated under vacuum, and finally hermetically scaled in aluminium rubes.

Cap. $\mu \mathrm{F}$	Wkg. Voits D.C.		Dimns. inches		Type No.	$\begin{aligned} & \text { List } \\ & \text { Price } \\ & \text { Each } \end{aligned}$
	$\begin{gathered} \mathrm{A}^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{At} \\ 100^{\circ} \mathrm{C} \end{gathered}$	L	D		
.005	1.000	750				
. 01	1,000	750	$1 \frac{1}{2}$	$\frac{1}{2}$	CP45W	$1 / 10$
. 02	750	600	$1 \frac{1}{2}$	$\frac{1}{2}$	CP45U	1/10
. 05	500	350	$1 \frac{1}{2}$	$\frac{2}{2}$	CP45S	2/1
1	. 500	350	2	$\frac{2}{2}$	CP46S	2/2
. 1	1,000	650	$2 \frac{1}{4}$	$\frac{3}{5}$	CP47W	2/6
. 25	350 350	175	2	$\frac{3}{4}$	CP48N	2/8
. 5	350	175	2 $\frac{1}{4}$	$\frac{3}{4}$	CP47N	3/-
. 5	500	350	2 $\frac{1}{4}$,	CP9IS	$3 / 10$
1.0	350	175	$2 \frac{1}{4}$	1	CP9IN	4/-

Editor: F. J. CAMM

Editorial and Adyertisement Offices: "rraetical Television," George Newnes, Lta, Tower House, Southampton Street. Strand, W.C.2. 'Phone: Temple Bar 4363. Telegrams: Newnes, Rand, Loudon. Registered at the G.P.O. for transmission by Canadian Matgarine Post.

Vol. 6 No. 66
EVERY MONTH
NOVEMBER, 1955

The Birth of I.T.A.

ON September 22nd a new era in TV entertainment was born-the first commercial TV programme to be broadcast in this country signalising the end of the BBC monopoly. Bearing in mind the technical excellence of the programme and what had been accomplished in the short space of nine months, it would be unfair adversely to criticise the maiden cffort. The pictures were out of focus for part of the programme, and the introduction was altogether too lengthy, boring and illconceived. The selection of the Halle Orchestra to play the new programme in was a mistake. If an orchestra was necessary at all, that was not the orchestra to pick. and the piece of music selected -Elgar"s "Cockaigne "-was incongruous to the excitement of a first night. As an aside, we would say that the day of mass orchestras producing a volume of sound which could be equalled by an octet has passed. The Victorian vanity of a conductor ruling his eapire has gone. The speeches also were not particularly brilliant for the occasion, and the guests at the Guildhall were obviously waiting for their dinner!

There can be no doubt that viewers generally appreciate this second choice of programme, notwithstanding the time occupied in drawing attention to commercial products. The quality of the advertising was poor and it was quite obvious that the firms concerned were anxious not to give offence by too blatantly hawking their wares. One couid almost perceive the restraining hand behind the scenes, as if publicity were an unclean thing. Bearing in mind the high costs of programme time it is difficult at this stage to see how advertisers will get their money back, considering the transient nature of this form of publicity, as compared with more permanent forms of advertising such as the printed word. The advertising section of the programme was well below the standard of ordinary cinema screen publicity.

All new ventures, however, have their teething troubles, and we have no doubt that the I.T.A. will analyse the criticisms and improve the
progranmes as time goes on. The first year is "a critical one, because if advertisers try the experiment and find that it does not pay, what then? Certainly, commercial programmes have had the effect of gingering up the BBC, and we may expect, with their longer experience, a great improvement in the quality of their programmes, and an elimination of fifth-rate matter served up to viewers on the take-it-or-leave-it principle. Perhaps we may also see in specialist programmes specialists instead of showmen, and a variety of them too, not just one man in charge of a particular subject in perpetuity. We do not think that the I.T.A. will make the mistake of presuming that all the housewives in this country should receive their instructions at the hands of one chef, excellent though he may be. There are dozens of ways of preparing a particular dish. or of doing a particular job, and viewers are entitled to this variety of experience. We hope the I.T.A. will avoid too many dance bands and concentrate only on the top notchers.

Last month's issuc of this journal which contained a free gift blueprint for an I.T.A. adaptor rapidly went out of print, providing evidence that viewers are interested in receiving the alternative programmes, which are good for the trade, good for the BBC, and, therefore, good for viewers.

SITUATION VACANT

THERE is an opening on the editorial staff of this journal and our associated journal, Practical Wireless, for an enthusiastic young man aged 21 or thereabouts, with a knowledge of radio and television, who is interested in journalism and in making a career in it. His education must be of at least matriculation standard, he must have a fair knowledge of elementary electricity and magnetism, and be able to use tools.

Letters of application should be addressed to the Editor, Practical Television, Tower House, Southampton Street, Strand, and be marked in the top left-hand comer "Vacancy."-F. J. C.

known as vestigial sideband) working, full details of the types of tuned circuits and their mode of alignment must be obtained before alignment is attempted.

In view of this, therefore, this article can only be of a general nature, though, nevertheless, in order to provide the experimenter with an insight as to how alignment of a commercial television receiver is tackled, we shall briefly consider the alignment process related to a typical receiver of modern styling.

Before we start considering the practical approach to the problem let us first get clear in our minds the overall response which is expected of a correctly aligned receiver. From the vision aspect the tuned circuits must be adjusted so that the overall response of the receiver embraces a frequency spectrum of sufficient width to avoid attenuation of the higher frequency picture signals. In the case of the British 405 -line system the highest frequency picture signals fall in the region of $3 \mathrm{Mc} / \mathrm{s}$. Therefore, if both sidebands are radiated by the transmitter they will extend to plus and minus $3 \mathrm{Mc} / \mathrm{s}$, about the carrier frequency as illustrated in Fig. 1.

Clearly, then, in order for a receiver to respond properly to a vision signal of this kind (double sideband) it is essential for the tuned circuits to be - aligned so that an overall vision response curve of the kind shown in Fig. 2 - full line - is produced. The main characteristics, as will be seen, are (1) a substantially level response within the vision passband,

Fig. 1.-A double sideband transmission in which the sidebands extend to plus and minus $3 \mathrm{Mc} / \mathrm{s}$ about the carrier frequency (fy). Showing also the sound transmission about the sound carrier (fs).
and (2) the limitation of response within the passband coupled with the response falling to a low level at the sound carrier frequency.

Such characteristics can be achieved in several ways so far as the arrangement of the tuned circuits is concerned. With T.R.F. receivers a popular method is to " stagger-tune" the inter-valve coupling circuits. This method consists of arranging the tuning point and response characteristic of each tuned circuit about the vision carrier frequency so that a substantially flat overall response curve is produced. The fall off in response at the sound carrier frequency is catered for by means of rejector circuits which, being. tuned accurately to the sound frequency, attenuate the response at the desired point. The overall response curve so formed by this method is shown in Fig. 3.

Less complex circuits simply make use of excessive damping of the tuned circuits, each being tuned on or near the vision carrier frequency. Excessive damping, of course, limits the response and widens the top of the response curve. It is for this reason that receivers using this method and employing a given number of valves are somewhat less sensitive than their stagger-tuned counterparts.

Moreover, although rejector circuits are employed to cause a fall in the response at the sound carrier frequency, the high-frequency end of the vision response tails off gradually. Therefore, receivers of this type are more prone to respond to interference which falls slightly outside the vision passband-such as sound interference from an adjacent television channel.

Nevertheless, receivers of this simple kind present few problems so far as alignment is concerned; generally speaking, it being necessary only to adjust the vision coils for maximum picture brightness, the sound coils for maximum sound output and the rejector coils for minimum sound interference on vision.

The Sound Response

The sound channel response (broken line) is also shown on the diagram of Fig. 2. The flat-top characteristic is less important here than in the vision section and, of course, the bandwidth is considerably
less. Even so, compared with bandwidths of broadcast receivers, bandwidihs in the region of plus and minus $0.5 \mathrm{Mc} / \mathrm{s}$ are often used for television sound channels.

Bandwidths of this magnitude are desirable for two reasons: first, if impulsive interference is permitted to pass through the R.F. section with the

Fig. 2.-The overall response curve of a typical receiver. The vision response full line, and the sound response broken line. The shaded area shows the sound response curve embracing the vision channel passband.
minimum of distorion it is considerably easier to suppress when it arrives at the detector end, and distortion of the interference pulses is introduced in a channel of limited bandwidth (the reader can obtain further information in this respect by referring to "Interference Suppression," Gordon J. King. Practical Television, November, 1951). Secondly, a wide sound bandwidth permits a certain tolerance of the oscillator frequency before distortion becomes evident. This, of course, applics only to superhet receivers, it being quite normal for the oscillator frequency to drift before the receiver has reached a reasonably stable operating temperature. A narrow sound bandwidth would show up such an effect in the form of sound distortion. something after the style of distortion produced on a broadcast receiver when it is tuned slightly to the side of a modulated carrier-this is often known as " sideband screech."

A conflicting factor in this respect is unfortunately that a wide sound bandwidth causes a section of the sound response curve to lall in the vicinity of the low-frequency end of the vision signal ; this is shown by the shaded area on Fig. 2. If an excessive response within the vision passband is registered on the sound response curve, some of the vision signal is obviously going to get into the sound R.F. circuits and arrive at the loudspeaker with the normal sound modulation. This is characterised by a buzzing or hum superimposed on the sound and which alters in intensity as the white-level content of the picture changes. The effect is referred to as "vision interference on sound."

For this reason it is essential to tune the sound circuits spot on frequency, for if there is any tendency for the response to rise towalds the high-frequency side of the sound carrier an even greater area of the sound response curve will fall within the vision passband. In practice the problem is further facili-

Fig. 3.-Showing how stagger-tuning in the vision channel can produce a substantially flat response curve. This is due to the added effect of five tuned circuits resonating about the vision carrier frequency.
tated by reducing slightly the response towards the low frequency side of the vision curve-this normally falls of between 2.0 and $2.5 \mathrm{Mc} / \mathrm{s}$ without seriously detracting fiom the quality of the picture.
The Alignment of Double Sideband T.R.F. Receivers
Now that we have in mind the overall response curves necessary for good television reception, and the factors which determine their shape, little difficulty should be experienced in aligning the less involved T.R.F. receiver.

To do the job properly we shall, of course, require a reliable signal generator which is capable of tuning into the television band, a means of indicating R.F. signal in the vision chamel and an indicator for determining either sound output or R.F. signal in the sound channel. Methods by which a multimeter can perform the last two functions were described in previous issues.
It will be remembered that we can either use an A.C: meter connected to the load of the sound output valve or we can obtain an indication of R.F. voltage in the sound channel by the use of a sensitive D.C. milliammeter connected in the detector load circuit. In the former case it is necessary to modulate the signal from the generator, though this is not essential with the latter method.

From the vision channel point of view an unmodulated signal is always used, and the output reading. is taken from the detector load or, in certain cases, from the video amplifier. The aligament data supplied by the manufacturer concerned stipulate the most reliable method of obtaining an output indication, and. where possible, this should be followed; in cases of doubt, however, a current or voltage indication should be taken from the detector load. If it is desired to use as an indication the voltage across the load the meter should possess a resistance of at least 20,000 ohms per volt.

Hig. 4.- Showing how a graphic representation of an overall response curve can be obtained by ploting the generator frequency within the vision passband against the reading given on the video output indicator.
The actual output levels given on the sound and vision meters should be limited to avoid overloading of the valves, and as each individual circuit is brought into alignment the output of the signal generator
should be reduced to keep the indicated output level substantially constant.

Generally speaking, it is desirable to align the vision before the sound channel, and this being the case a high resistance "multimeter can first be conlnected as a vision output indicator and then finally used as sound output indicator.

It should be mentioned that for all alignment procedures in which a signal generator is used-as opposed to a wobbulator and oscilloscope, which, incidentally, will be considered later in this seriesthe vision and sound output indicators are always connected as described above. The difference in alignment procedure between receivers lies solely in the mode of tuned circuit adjustment.

In a receiver which employs stagger-tuning it is general practice to align the tuned circuits, working back from the detector to the aerial. Each circuit is

Fig. 5.-A diagrammatic illustration of the dead-beat point.
tuned to a given frequency, and that signal given by the generator is injected into the control grid of the associated valve and the relevant coil adjusted (generally by means of an iron-dust core) for maximum output on the vision indicator.

The alignment frequency for each tuned circuit is normally given by the maker in the receiver's service data. It is not possible to offer any precise information in this respect, as the tuning frequencies vary from model to model. If alignment data seem non-existent, however, it is often possible to obtain a fairly linear response curve after experimenting, by tuning the circuits to various frequencies in an endeavour to get their individual responses to merge into the shape of Fig. 2.

It is often best to do this by tuning each circuit to the vision carrier frequency ($45 \mathrm{Mc} / \mathrm{s}$ in the case of London) and then altering the generator frequency, say, to $44 \mathrm{Mc} / \mathrm{s}$ and using this as a peaking frequency for one of the coils. The remaining coils should, of course, be detuned by a small. frequency plus or minus $45 \mathrm{Mc} / \mathrm{s}$ in the same way until the desired response curve is achieved.

The characteristics of the overall response curve can be fairly accurately assessed by connecting the signal generator to the aerial input terminal and observing the degree of rise and fall of the output indicator as the generator is tuned over the passband range of the vision channel. An excessive peak within the passband can often be flattened out by slightly altering the tuning of one or more of the coils. To give one an idea as to how the response curve looks on paper a graph can be readily resolved by plotting the frequency at, say, $0.25 \mathrm{Mc} / \mathrm{s}$ intervals within the passband against the reading given on the output indicator (see Fig. 4).

The alignment process must be concluded before making graphic measurements of this kind. To conclude, we have yet the sound rejector circuits and the sound tuned circuits to deal with. In some T.R.F. receivers the sound rejectors or sound traps operate in direct association with a tuned signal circuit, and in receivers of this kind it is often essential to adjust the rejectors before the signal circuits in order to avoid instability.

The rejectors are easily adjusted, however. by injecting a generator signal at the sound-carrier frequency ($41.5 \mathrm{Mc} / \mathrm{s}$ London) into the control grid of the associated valve, and then adjusting the core of the rejector coil for minimum reading on the video output indicator. It is essential that the generator frequency is spot on $41.5 \mathrm{Mc} / \mathrm{s}$ for this adjustment. To be absolutely certain on this point it is a good idea loosely to couple the output of the generator to the aerial coil in the receiver, and then, with the receiver switched on and receiving sound, tune the generator very slowly in the region of the sound frequency, as indicated on the scale, until a whistle is heard from the loudspeaker. If the generator is very carefully and slowly tuned over this point the pitch (frequency) of the whistle will be heard gradually to fall until it becomes inaudible; if the tuning is slowly continued over this point the whistle will be heard gradually to rise again in pitch until it goes outside the range of hearing.

This is known as heterodyning the generator signal with the sound signal, and when the generator is set to the position of inaudibility between the two whistles (the dead-beat point) the output of the signal generator is of exactly the same frequency as the sound signal $-41.5 \mathrm{Mc} / \mathrm{s}$ in the case of London. . This is illustrated diagrammatically in Fig. 5.

For alignment of the sound channel it is necessary to disconnect the video output indicator, reconnect it in suitable form to the sound detector or output stage, inject a signal from the generator to correspond to the frequency of the sound channel into the aerial terminal, and adjust the cores in the associated coils; working back from the detector, for maximum deflection on the output indicator.

(To be continued.)

THE PERFECT CHRISTMAS GIFT

What more appropriate Christmas present could you give TV enthusiasts among your friends than a year's subscription for PRACTICAL TELEVISION? All through the coming year your gift will bring them help in their constructional problems, and each new issue, as it arrives, will be a fresh reminder of your good wishes.

So easy to arrange, too. Simply send your friends' names and addresses with your own and remittance to cover (an annual subscription for PRACTICAL TELEVISION- 12 issues, including postage, costs 13 s . 6d.) to Subscription Manager (G.1), George Newnes Ltd., Tower House, Southampton Street, Strand, London, W.C.2. We will despatch first copies to arrive in good time for Christmas, together with an attractive Christmas Greetings Card, made out in your name, to announce your gift.

THESE receivers employ a 12 in . tube and are five channel superhets. The differences are in the cabinet presentation and the type of tube fitted. The T161 and TC162 employ a Mazda CRM121B, whilst the TC166 is fitted with a CRM123, which is an aluminised tube.

A very simitar model is the TU169 which is an A.C./D.C. receiver, the tube heater being series connected in the valve chain instead of being scparately heated from a small mains transformer as in the other models. Whilst on the subject of this transformer it may be of interest to note that an additional secondary winding supplies the heater sockets of the preamplifier pancl. Also the primary is tapped, the two series heater chains being taken from the lower voltage tapping. Fig. 2 shows the arrangement, and it will be noted that both heater chains are taken to chassis through the V13 6L18 frame output valve heater. Thus a .1 amp . chain and a .2 amp . chain combine to make the heater current of .3 amp., which is required by the GL18.

The method of using the U801 rectifier V16 is of interest. One section is used as an H.T. rectifier with two anodes comected to the high voltage tapping of the transformer via two 50 ohm surge limiting resistors, whilst the other section is utilised as the efficiency diode with its two arrodes strapped and connected to a winding on the line output transformer. This section supplies the H.T. to the line and trame timebases at approximately 255 volts.

Line Timebase

This is of the economical single valve type in that the 20P1 V14 is used as the line oscillator and amplifier output as shown in Fig. 3. It will be noted that tappings are provided on the line hold winding to enable the control to be sel at the centre of its travel. On carlier models a different arrangement was provided whereby the winding was optionally chassis connected. These coarse adjustments are to provide for variation in characteristics which may occur between various 20P1 valves. It will also be seen that the screen grid is fed via the line sean coils, a 3.3 K resistor, and the primary winding of the line oscillator trans-

No. 14.-EKCO T161, TC162 AND TC166

By L. Lawry-Johns

former. The secondary winding is connected to the control grid via a 22 K and to chassis via a 10 K resistor. The additional winding is used with L 19 line hold coil as the means of controlling the frequency of the timebase.

The primary winding of the line output transformer is fed from the cathode of the efficiency diode, tapped to the anode of the 20P1, whilst the overwind feeds the E.H.T rectifier (U25) anode. On the original type of transformer, the heater of the U25 was fed from an additional internal winding and more will be said of this in the fault-finding section of this article. The cathode of the U25 is taken to the C.R.T. anode via a 100 K resistor and the voltage is smoothed by a $.001 \mu \mathrm{~F} 12.5 \mathrm{kV}$. condenser. The bleeder resistor is of the Metrosil type, which ensures good E.H.T. regulation at 8.2 kV .

Coil L20 is the width control and the normal H.T. line voltage is prevented from reaching the line scan coils by the inclusion of the $50 \mu \mathrm{~F}$ condenser. A leak through this condenser would have the effect of shifting the picture horizontally.

Frame Timebase

This consists of a 6F15 (V12) oscillator, triode connected, i.e., screen grid is strapped to the anode, and the 6 L 18 triode output. On early models the frame oscillator transformer consisted of two wind-

Fig. 1.-The Frequency Changer Stage.
ings only, these being the primary in the anode circuit of V12, whilst the secondary connects the control grid to the frame hold control via a $2.7 \mathrm{M} \Omega$ resistor. On later models, however, a third winding is included, this being directly in the anode circuit of the sync separator V11 (20F2). The purpose of this winding is to obtain a better frame lock in weak signal strength areas. The frame output transformer is very straightforward, the primary being in the 6L18 anode circuit, whilst the secondary, shunted by a 470 ohm resistor, feeds the frame scanning coils. The cathode of the 6 L 18 is taken to chassis by a 1.2 K resistor, shunted by a $500 \mu \mathrm{~F}$ condenser. Linearity control is by varying the feedback from the anode to control grid as shown in Fig. 4. There are several faults which regularly occur and these will be itemised later.

Sync Separation

This stage is of conventional type; the screen voltage being held low by a potential divider consisting of a 220 K and a 33 K resistor from H.T. to chassis, the screen being fed from the junction and being decoupled by a $2 \mu \mathrm{~F}$ electrolytic condenser, line pulses are fed from the anode circuit to the control grid of the 20P1 via a 5 pF condenser, whilst the frame pulses are fed to the frame oscillator transformer as previously
described. Picture pulses are prevented by the self biasing action of the $.1 \mu \mathrm{~F}$ and 470 K grid components, and the extremely short grid base of the valve occasioned by the low screen voltage.

C.R.T.

This is cathode modulated from the anode of the video amplifier via a choke, resistor and capacitor network. A 100 K resistor joins the cathode to the heater and the purpose of this is to maintain the heater voltage at approximately the same potential as the cathode to minimise the risk of heater/cathode insulation failure. The control grid is maintained at the required voltage by the brightness network which consists of two 100 K resistors, the lower of which is variable ; this mears that the voltage is variable betweer approximately 110 volts and zero (chassis).

H.T. Supply

The rectifier arrangement has already been described and the cathode of the H.T. section is smoothed by a 64 by $120 \mu \mathrm{~F}$ condenser and the usual choke. Some 240 volts should be read at the $64 \mu \mathrm{~F}$, and 220 voits at the $120 \mu \mathrm{~F}$ section, this being the normal H.T. line. The fuses shown in Fig. 2 are 1.5 amp . and this rating should not be exceeded.

Fig. 2.-Mains circuit showing heaters and C.R.T. supply of the T161, TC162 and TC166.

Vision Section

The aerial input socket is of the coaxial type and the tuned aerial coils feed the control grid of V1 which is a 10F1 RF pentode, common to both sound and vision. The anode circuit of this valve is coupled to the frequency changer V 2 (10F1) via a 1.5 pF , a 30 pF and two 20 pF capacitors, Fig. 1 showing the actual connections. Signals at intermediate frequency are taken from the anode circuit via the first vision I.F. transformer to V3 (10F1). The contrast control operates in the cathode circuits of both V1 and V3. A further set of coils in the anode circuit of V3 couple the I.F. signal to the final vision I.F. amplifier V4 (10F1). The last set of.I.F. coils couple to the 20Dl double diode, one section of which used as the video detector (V5) whilst the other diode functions as the vision interference limiter. The detector circuit is conventional, the final I.F. secondary winding feeding the anode and the cathode being coupled to the video amplifier control grid via a choke/resistor network.

The video amplifier is referred to as V6 and is another 10F1 pentode. This has its cathode bias resistor shunted by two capacitors. One is a 680 pF fixed type whilst the other is a 700 pF maximum variable. This is fitted as a video corrector to ensure that the video response is that desired to obtain best picture quality. Whilst this is preset and should not require attention, a slight adjustment may help to remove "ringing."

This shows as black after white and white after black. A very small amount of this "ringing" is often beneficial as it appears to define outlines and therefore enhances the focus.

The anode of V 6 is connected to the sync. separator, cathode of C.R.T. and interference limiter by various means and to the H.T. line by a $6.8 \mathrm{k} \Omega$ resistor. Signals to the sync. separator are fcd via a 10 K resistor to the $.1 \mu \mathrm{~F}$ coupling and charging condenser, whilst the C.R.T. cathode receives its modulation via a resistance capacitor network and on most models through a filter choke.

As already stated, the second section of V5 is employed as the vision limiter and the cathode of this diode is connected direct to the V6 anode. The anode is connected to the cathode by a $4.7 \mathrm{M} \rho$ resistor shunted by a 1 MO which may or may not be in circuit depending upon the position of the interference limiter adjusting screw at the right-hand rear of the receiver. When this screw is screwed clockwise the limiter is less effective and therefore feak whites are passed to the C.R.T. Unscrewing will result in interference pulses being attenuated but the peak whites of the picture signal will also be slightly affected. The $1 \mathrm{M} \Omega$ resistor is shunted across the $4.7 \mathrm{M} \Omega$ by the screw action, a $.1 \mu \mathrm{~F}$
completes the circuit to chassis.

Sound Channei

A 2 pF capacitor couples the V2 anode to the control grid of $V 7$ which acts as the first sound
I.F. amplifier, a 10 K resistor decoupling the control grid of V7 which acts as the first sound anode and screen in conjunction with a
$003 \mu \mathrm{~F}$ capacitor to chassis. The first I.F. anode and screen in conjunction with a
$.003 \mu \mathrm{~F}$ capacitor to chassis. The first I.F.〔ransformer couples the sound signals to V8 which, as V7, is a 10 F 1 pentode. From the anode of this valve signals are fed to the sound detector, one section of a double diode detector, one section of a double diode connected to the anode of the diode, the connected to the anode of the diode, the resistor. A. $01 \mu \mathrm{~F}$ capacitor
couples the cathode of the resistor. A. $01 \mu \mathrm{~F}$ capacitor detector diode to the cathode of the second diode which as in the vision section is used as the interference limiter or as the interesence limiter or of this section is taken to of this section is taken to The sound signals are taken
from the anode of this section The sound signals are taken
from the anode of this section which is connected to H.T. by a $4.7 \mathrm{M} \Omega$ resistor. As in nearly all receivers employing this type of series limiter distortion of sound is often caused by this resistor going bigh. When its resistance rises to almost infinity, almost a complete loss of sound will result, perhaps only audible as a faint "cracked" response from the speaker sometimes leading one to suspect the sound output transformer. However, to return to the circuit, sound signals are passed from the limiter anode
to the output valve 10P13 (V10) via a $33 \mathrm{~K} \Omega$ resistor and a $.02 \mu \mathrm{~F}$ coupling capacitor. The grid leak of this valve is an $820 \mathrm{~K} \Omega$ resistor and the 33 K is shunted to chassis by two 300 pF capacitors for H.F. filtering purposes. The cathode of V 10 is taken to chassis by a resistor of 390Ω in series with one of 15Ω. The 390Ω is shunted by a $50 \mu \mathrm{~F}$ electrolytic capacitor, the 15Ω being only passed to chassis and a 10Ω resistor is taken from one side of the output transformer secondary to the junction of these cathode resistors for negative feedback purposes. The volume control is placed in the cathode circuit of the first sound I.F. V7. The control is a 25 K and smooth operation is ensured by the inclusion of a 150 K wired from H.T. to the "top" of the control thus rendering it less dependent upon the cathode current of V 7 .

Faults

A condition of no picture in these receivers is frequently met. Upon removing the rear cover the U25 E.H.T. rectifier will often be seen to be glowing blue. This would usually lead one to assume that the valve is "soft" and indeed this is often the case. However, this is not always so and a new valve will

give the same symptom. Nearly always this is due to a leak inside the line output transformer and a meter check will. often show a reading of $1 \mathrm{M} \Omega$ or less between the heater of the U25 and H.T. or chassis, with the set " off" of course!

This was and is a frequent fault on the original type of transformer and a replacement will be found to have an external winding beneath the U 25 valve position on the bakelite panel mounting. Less frequently this overloading of the E.H.T. rectifier may be caused by a defective $.001 \mu \mathrm{~F}$ condenser or the Metrosil bleeder, but these are easily checked by simply disconnecting them and seeing if the U25 lights normally and the E.H.T. reappears. A picture which persistently tears or slips horizontally may be caused by a leak between the heater and cathode of the tube. In more severe cases large areas of the horizontal scan may be unintelligible and discoloured until a point is reached where the picture cannot be held and is just a meaningless jumble. Tapping the tube neck will often clear the condition or worsen it, and this will prove the diagnosis. The cure is quite simple and well known. Fit a 2 volt secondary heater isolating transformer to the woodwork immediately above the tube neck and take the heater leads to it instead of to the receiver mains transformer. The primary should be connected to the receiver side of the on/off switch (as opposed to the mains side). The TU models will of course require a different voltage secondary winding on the transformer (assuming the set is being worked from an A.C. supply) and the heater leads cannot be just disconnected as they form part of the heater chain. A resistor of the correct value and wattage should be fitted to replace the tube heater's place so as to maintain the correct current through the valve chain.

When an isolating transformer is fitted it will be found best to short the cathode to heater, i.e., short out the 100 K resistor so as to ensure that no variation occurs as the leak comes and goes.

Blown Fuses

This can usually be traced to a defective U801 rectifier, a flashover occurring due to mains fluctuations or to some other more obscure reason. In any event, if a meter check shows no shorts and replacement fuses go again, it is reasonably safe to fit another U801.

Frame Timebase Troubles

Frame hold not locking with control at the end of its travel.-Replace the $2.7 \mathrm{M} \Omega$ resistor in series with the centre slider of the control. This often "goes high " and provokes this symptom.

Reduced frame scan, difficult to lock.-Check $1 \mathrm{M} \Omega$ resistor in anode circuit of V12, this being wired from one end of the frame oscillator transformer to the boosted H.T. line. Sometimes this is due to shorted turns in the oscillator transformer itself, and if the fault shows as a raster no higher than an inch or so with no hold at all and perhaps the picture upside down, the oscillator transformer will again almost certainly be at fault.

Foldover at the Bottom

This is usually due to a defective 6 L 18 , a leaky $.1 \mu \mathrm{~F}$ oscillator to output coupling condenser or perhaps the $4,700 \mathrm{pF}(.0047 \mu \mathrm{~F})$ linearity feedback capacitor developing a leak.

Weak Line Lock

This means that although the control is at its locked

Fig. 4.-Hrame Timebase and feed to sync separator. position, the picture continues to slip sideways, perhaps at varying intervals. The 5 pF line pulse feed capacitor from the anode of the VII sync separator may be found to have lost capacity and should be replaced. This is connected directly to the control grid of the 20 Pl V14.

No Picture

If a raster can be resolved but with little or no trace of a picture when the contrast is advanced, whilst at the same time the sound is normal, check the voltage readings on V3 and V4 and if no anode or screen voltage is present, check for shorts and if none are present change the $4.7 \mathrm{k} \Omega$ H.T. decoupling resistor. If a short has caused the original resistor to burn out, suspect the relevant $.003 \mu \mathrm{~F}$ decoupling capacitor.

If valves and valve voltages are in order check the continuity of the corrector choke from cathode of V5 detector to 150Ω and $3.9 \mathrm{k} \Omega$ in the control grid circuit of the
(Concluded on page 258)

 detalls of most of the surplus tubes now available

Tracing the Base Comnections

THE multiplicity of CR tubes produced during the war makes the identification of base connections a fairly difficult task. Certain rules can be applied, but the exceptions to these rules are many and varied.

The easiest type of tube to deal with, generally, is the magnetic tube which has heater connections, grid and cathode on the base with the final anode on a side cap near the screen. A standard octal base is usually employed with the heaters connected to pins 7 and 2 with (usually) the cathode on pin 8 . One of the remaining pins is the grid and in most cases it will be found on pin 5. If there is any doubt it is safer to connect all the remaining pins together and assume that they are the grid pins, then when the tube is under test they can be disconnected one at a time until the real grid is discovered.
The heater pins are easy to identify as they will present a very low resistance. A 4.5 v . battery in series with a 3.5 v . bulb and the pins should show the connections (Fig. 1).
Some tubes have electrostatic focusing and the conncction is made to one of the remaining pins of the group. Trial and error are the only satisfactory methods of dealing with these cases.

British tubes are almost invariably equipped with 4 v . heaters and the American tubes are gencrally 6.3 v .

Tube Bases

There are three main classes of tube bases. They are the small 9 -pin, the large 12 -pin spigot, and the 12-pin side contact such as is used in the VCR97 and 517.

The small base is used on the very small tubes such as the type employed in the G.E.C. Miniscope. These are the NC1, VCR 522 and the NC19. The numbering can be identified by the four closely spaced pins which are pins $3,4,5$ and 6 . These pins are numbered in a clockwise direction looking at the tube from the rear. (In all cases we shall quote the numbering of the pins as though the tube were being viewed from the rear, with the key, if any, at the top.)
The cathode is usually on pin 4 and the grid on pin 6 , with the heaters on pins 4 and 5 . Note that the cathode is usually tied to the heater and suitable precautions must therefore be taken in the circuitry.
In most cases the focusing anode is connected to pin 3 with final and accelcrating anodes on pin 7. The X and Y plates are usually arranged on pins 1 and 8 and pins 2 and 9 respectively. If it should be found that when connected in this fashion only
a diagonal trace is obtained, then the X and Y plates are cross connected. To verify which is which disconnect three of the plates and connect them to a bias potential from the E.H.T. bleeder. Apply a sawtooth waveform to the remaining plate and note if its direction is vertical or horizontal. This will distinguish one of the plates.
The next step is to connect that plate to the others and take off one of the other plates, connecting the sawtooth waveform to this plate. By this method it will be possible to identify each plate.
The 12 -in. spigot base is used with tubes of the VCR139 class. Usually the cathode is on pin I and the grid on pin 2 , with pins 3 and 4 for the heater. Anode 2 will generally be found on pin 5 and anodes 1 and 3 on pin 9 . The X plates are on pins 8 and 10 , while the Y plates are on pins 7 and 11 .
Once again the constructor is warned that there may be exceptions to this rule.
The 12 -pin side contact base is usually used for the larger tubes though some of the smaller classes such as the VCR138 also use this type of base as they were derived from the larger screened tube.

The cathode is generally on pin 2, with grid on pin 1, but note that some of the larger tubes in the 12in. class have this order reversed, the grid being on pin 2 with the cathode on pin 1.

The heater will usually be found across pins 3 and 4, with the focusing anode on pin 6 and anodes. 1 and 3 on pin 10. Note that in some cases pins 5, 7 and 10 are connected together internally within the bulb, the connections being anode 1, anode 3 and the internal coating. The x plates are on pins 9 and 11 and the Y plates on pins 8 and 12.

Not all tubes are connected in this manner; there are exceptions to the rule.

American Tubes

The American tubes which are generally available are mostly 6 v . heaters with 14 -pin bases. Bearing in mind the warning given previously about exceptions, the following guide to pin connections is given.

Heaters are usually found on pins 1 and 14 , with cathode on pin 2 and grid on pin 3. The focusing anode is on pin 5, anode 1 on pill 9 and anode 3 on

Fig. 1.-Circuit arrangement for identifying the heater pins.
the side cap. The X plates usually occupy pins 10 and 11 and the Y plates pins 7 and 8.

Non-standard Tubes

Certain tubes such as the ACR2 have the deffector plates brought out to side connections and not to the pin base. A little experimentation with the connections should enable them to be identified.

Unidentifiable Tubes

Quite often the home constructor obtains a cheap ex-Government tube which is rather a mystery, the connections being unknown. In this case, with a little care, it is generally possible to identify the connections.

The first important rule is that the tube is generally divided into two sections so far as the connections are concerned. They are the low voltage group of connections and the high voltage group. The low voltage groups are located near the heater and comprise the heater, the cathode and the grid.

In the case of the high voltage group (E.H.T. group) we have the accelerating anode, the focusing anode, the final anode, the two X plates and the two Y plates.

The first step is to identify the heater and the best method is to use a sensitive ohmeter. If this is not obtainable employ the circuit given in Fig. I. This will show which connections are low resistance. In some cases pins are connected together and this can often be verified by taking off the backplate in the case of the British 12-pin side-contact base.

So as not to mistake interconnected elements for the heater (assuming that the other method fails), then apply a voltage of 4 v . to the low resistance pins. (6 v . in the case of the American tubes.)

It should be possible to observe the heater light up.
So far, so good. In most cases the cathode and grid will be found adjacent. For example, if the heater is on pins 3 and 4, then the cathode and grid are most likely to be on pins 1 and 2 .

Connect the suspected heater and grid, together and then connect the remaining pins together. These should be the high voltage group.

A source of E.H.T. should be available with a bleeder network on the lines of that shown in Fig. 2. Make all the resistors in the chain 470 K except R 7 , which should be about 22 K .

A voltage of about $1,000 \mathrm{v}$. should be available, but if the supply is, say, 2.5 Kv such as obtained from many E.H.T. transformers, then tap the chain one-half way down at point "x."

The next important rule is to apply voltages for brief periods only. Having connected the heater and given sufficient time for warming up, connect the strapped cathode and grid to the bottom end of the bleeder chain and then tap the strapped E.H.T. connections to the E.H.T. supply. (Remember this is the tap if the high potential end of the bleeder is fed from a 2.5 Kv source.)
A glow should appear on the screen. If the glow is too bright tap the connections farther down the bleeder chain.

In order to identify the cathode and grid, separate the two, connect one to the bottom of the bleeder and the other to point "y" (Fig. 2). Once again apply the E.H.T. to the E.H.T. group and quickly tap the wire on " y " to the bottom of the blceder and back again.

If the wire on point " y " is the grid wire, then the trace on the screen will be brighter when it is on point
" y " than when it is at the bottom of the bleeder.
If the wire on point " y " is the cathode the trace will be brighter when the wire is at the bottom of the bleeder than when it is at point "y.". Point" y " is positive with respect to the bottom of the bleeder and it is, therefore, obvious that a positive applied to the grid will brighten the trace, while if applied to the cathode the trace will be darkened.

It is emphasised that this switching of connections must be done very rapidly.

Locating the Focusing Anode

The focusing anode requires approximately onefifth of the E.H.T. voltage. Take a tap from one of the resistors about one-fifth up the bleeder network. (In Fig. 2 this is actually about point "z.") The grid

Fig. 2.-Circuit for location of the focusing anode.
and cathode should be connected cathode to point "y" and grid to the bottom of the bleeder. R7 can be made variable if desired so as to ensure that the bias is not so high that the beam is cut off. Now take one of the E.H.T. group pins and connéct it to point "z" with the remainder connected to the E.H.T. point. If the wire is the wanted one (the anode 2 connection) the size of the trace on the screen will be altered. Repeat the process, if necessary replacing each wire in turn until the correct one is found.
The correct pin being found, then the wire can be left connected to point " z " provided the spot is not too small and too brilliant. If this is the case adjust R7 until the trace is moderately brilliant and adjust the focusing anode tap to a point on the bleeder where the spot is not too small.

The first anode must now be identified and this is simply done by disconnecting (and replacing after disconnection) the remaining wires in the E.H.T. group. When the final anode has been disconnected no trace will be observed. If there are now five pins left to identify one of them is likely to be the remaining anode, but this can be found in the final process while identifying the plates.

The Deflector Plates

The deflector plates may now be identified by taking. a tap a little way down the bleeder shown as point "d" in Fig. 2.

Disconnect one wire from the remaining E.H.T. group and tap it on point " d "; if this is a deflector plate the spot will move up or down or left or right. The appropriate movement indicates the appropriate plate. If it is the remaining anode, then no movement should be observed.
(Concluded on page 254)

EXPERIMENTAL CHASSIS
 CONSTRUCTION

THIS article is specifically intended for those readers who are capable of forming their own circuit arrangements and solving any problems which might be encountered in the course of their experiments. The " mixing " of circuits has long been discouraged both by responsible engineers and technical journals alike, and the reasons for this must be apparent. It is not possible (short of building an identical replica) to answer with certainty the multitude of faults likely to develop and to supply a certain cure for them. And even then the faull (il not present in the first instance) must be simulated in the replica. This is such a tall order that nobody could have the means or the time to deal with such matters. Having read this, most readers should rest content and pursue published designs in the full knowledge that a replica exists which has probably undergone exhaustive tests.
But there are, on the other hatnd, certain readers whose interest is aroused by some short article dealing with improved sync. separator circuits, or single-valve line limebases, interference limiters, etc. They may possibly proceed by way of a 9 in . cathode-ray tube, through to a 12 in . and finally use a 17 in . wide-angle screen. Their lot is by no means an easy one, but their enthusiasm remains undaunted. The total cost of their experiments exceeds by far the cost incurred by the average constructor who is content to follow a reliable published circuit with a known standard of performance. For them 1 offer this system of chassis construction which was evolved to take care of different sizes of tube and give scope for incorporating various improvements as these became more widely known and practised.

General Construction

A close study of Fig. ! will give the reader almost all the information he may need. The different sections are clearly marked (A) 10 (F) and these leiter references will be used throughout the text. (A) and (B) are made into two rectangular frames (or side-runness) from angle-section aluminium material (see Tig. 2). Upon these two side-runners all other sections are mounted and the appearance is similar to a bob-sleigh. Fig. 3 shows a side-on view of sections (A) and (B) which are cut and bent at the same time in order to keep the two sides truly parallel to each other. As actual measurements are a mater
for the individual experimenter those given are approximate only, but should be adequate to cater for a 17 in . rectangular tube.

Timebase Mounting

The section (C) is a single sheet of stout aluminium (say 18 -gauge) which is bent at right-angles across the width of the frame to form a "saddle" at the rear. It will be noted that this section can be fixed to the side-runners at any required distance back and

A SUGGESTION FOR A CHASSIS DESIGN FOR EXPERIMENTAL RECEIVERS

By F. W. Auslin : forth, thus accommodating tubes of widely varying length. In Fig. 1 cut-outs are shown for valvehoiders, cte., the line timebase being built up on the left-hand side and the frame timebase on the right. This is simply a guide and is the method used by the author to keep both line and frame timebases as far apart as possible (to guard against interaction), both terminating in a single four-pin socket at the centre for inserting a plug which is connected to the deflector coils. Other arrangements are possible, but this is one well worth contemplating. The arrangement shown in this drawing for the fimebase controls (speed, width and linearity) on the side panel (C) may be found unsuitable for installation in a cabinet, but has' the advantage of being able to view from the front whilst making adjustments. An alternative is given in Fig. 4 showing the same controls mounted on a hinged strip at the rear.
Alternatively these may terminate in sockets, and the controls placed on a front pancl later.

Fig. 1.-Ceneral view of the complete chassis framework.

Front Controls and Tube Support

Section (D) is a thin sheet of flat aluminium which is fixed to the front of the frame (A) and (B) and bent underneath the frame for screwing to the underside and, although of thin material, forms a substantial bracing piece for keeping the frame rigid. On this piece are mounted the volume/on-off and brightness controls. The section (E) is a further brace for the frame and can be about lin. wide by about
card packing placed around the neck to keep the magnet assembly central in relation to the neck of the tube. Section (G) is of strip aluminium and supports the front of the tube. This will have to be a matter for the individual and be decided by size and shape of tube, but small pieces of sponge rubber can be placed at various intervals: (fixed with Bostik) around the inner rim to relieve excessive pressure on the tube.

Connecting the Units

The power pack is made up on a chassis of suitable length and width to be accommodated beneath the timebase chassis (C). The arrangement used by the author made use of two differently shaped supply plugs and sockets; one for the timebase supply and one for the sound/vision receivers. The power pack itself held the two sockets thus safeguarding against "live" terminations on the plugs when these were dis-

Fig. 4 (above).-Alternative arrangement for the timebase controls, which are mounted on a hinged panel at the rear.
$3 / 16 \mathrm{in}$. thick. Suitable material is the shaped bar aluminium used for stair carpet retainers. Section (C), with (D) and (E), forms an extremely strong framework with space beneath for the sound and vision receivers and the power pack.
Section (F), to which the focus magnet assembly is fixed, is mounted on (C) by means of two square section right-angled brackets. This is quite adequate for supporting the neck of the tube. It would be

Fig. 2 (upper).-Angle aluminium used for side rumners A and B. (Lower) Method of finishing off "open" ends of side rumners by means of flat angle irons.
wise, if the experimenter intends at the outset to increase tube sizes, to use wide-angle focus magnets and make the central hole of section (F) of suitable width. Smaller tubes can have a small amount of
engaged from the sockets. The video output is taken via co-axial cable to the socket on timebase chassis (C) and thence to sync. separator valve

Fig. 3.-Details of one complete rumer.
(adjacent) and grid or cathode of tube (depending on method of modulation employed).

EX-GOVERNMENT C.R. TUHES

(Continued from page 252)
The movement of the spot shouid be noted and if it is from right to left it is X2 plate, or if from left to right it is the X1 plate. Similarly, if it is up to down it is the Y1 plate or if down to up it is the Y2 plate. Each plate can thus be identified.

All that is left to do now is to strap all the deflector plates to point " d " and then to adjust the focusing tap (point " z ") to obtain a small, sharply focused spot.

The tube can then be built into an E.H.T. network following lines similar to those in the test network.

Note that if the tube is 3 in . in diameter then do not apply more than 1.5 Kv to the final anode; if it is 6in. in diameter do not apply more than 2.5 KV to the final anode; if it is 12 in . in diameter then do not apply more than 4.5 Kv to the final anode.

If there is difficulty in obtaining any trace at all, then the E.H.T. of the test bleeder may be insufficient. A rough guide on the amount of E.H.T. required can be obtained by measuring the screen diameter in inches; take the square root of this figure and multiply the result by 500 .

TELEVISORS FOR THE RECEPTION OF EUROPEAN TRANSMISSIONS

By B. L. Morley
(Continued from page 202 October issue)

T1HE standards of Television Transmission in Europe appear to be settling down to a pattern decided by the C.C.I.R., and it is likely that the majority of the new stations will follow this pattern. The main features of the system are summarised in the following paragraphs.

Line Struchure

The system uses 625 lines and therefore the line frequency is rather higher than that of the 405 line British system. In our system the line frequency is of the order of $10,125 \mathrm{cps}$. but with the 625 line system the frequency is 15,625 cps. The frame frequency in each case is 50 cps .

Negative Modulation

The carrier is negatively modulated with respect to picture brightness. By this we mean that pealk whites drive the carrier voltage towards the zero level. Fig. 1 shows the scheme.

The British system is positive modulation, and if a negatively modulated signal is applied to such a receiver then the picture will be in reverse, blacks coming out as white, and whites coming out black as in a photographic negative.

One main difficuliy here would be to hold the picture as the sync pulses would be reversed in direction and would not trigger the timebases correctly.

Fandwidth

The bandwidth of the recommended standard is $5 \mathrm{Mc} / \mathrm{s}$ against our own $3 \mathrm{Mc} / \mathrm{s}$. It is doubtful if any real disadvantage lics here, as it should be possible to resolve the picture with the restricted bandwidth of existing televisor circuits. We are not after pictures of excellent quality, but any pictures at all!

F.M. Sound

Because the sound is frequently modulated it would not be receivable on our existing sound receivers. In any case, as the sound is spaced further from the vision carricr than is the case in our system it would appear that the solution to the problem would be in the provision of a separate sound receiver.

Non-Synchronous Mains

The frame frequency is not synchronised with the mains and for optimum reception the smoothing arrangements of the receiver must be first class. However, it is doubtful if a slight ripple down the side of the picture would be objected to, provided a picture was obtained at all!

Interlace

This is the same as in the British system of $2 / 1$.
The C.C.I.R. system is being adopted by most European countries. One notable exception is France, which is adhering in the main to its high definition system of 819 lines.

The French Systems

In France two distinct systems co-exist. There is the 44 I line system, similar in many respects to the British, and the 819 line system.

The 441 line system broadcast from Paris radiates on $46 \mathrm{Mc} / \mathrm{s}$ with the sound on $42 \mathrm{Mc} / \mathrm{s}$. The vision signal is double side-band, positively modulated and transmitted vertically with a power of 30 kW .

It is often receivable in Great Britain on televisors tuned to Channe! I when conditions are favourable.
The 819 line system operates in Band III and transmissions are made from Paris and Lille in Band 1II, actually with the vision on $185.25 \mathrm{Mc} / \mathrm{s}$ and the sound on $174.10 \mathrm{Mc} / \mathrm{s}$. The picture is positively modulated and the sound is A.M. as in the 441 line system. Polarisation is vertical and the line frequency is 20,475 cps.

Sidebands

As the C.C.I.R. system employs the upper sideband modulation, the lower sideband being suppressed we have yet another factor which points to the use of a separate sound receiver if reception is to be attempted.

American System

The American system which is common to practically the whole of the American continent including Canada and stations in South America is based on the 525 line scheme.
The vision signal operates with a bandwidth of $4 \mathrm{Mc} / \mathrm{s}$ the total channel width being $6 \mathrm{Mc} / \mathrm{s}$. Interlace

Horizontal Polarisation

The signals from the transmitters are radiated in the horizontal plane. It is possible to receive such signals under certain conditions, on a vertica! aerial, but these are freak cases. To attempt recepion seriously would involve the provision of a horizontally polarised receiving aerial.

Fig. 1.-Positive and negative modulation.
is $2 / 1$ as in the British system, but the frame frequency is 60 cps . with a consequent line frequency of 15,750 cps.

Vision modulation is negative and the sound is F.M. : the black level equals 75 per cent. of the peak carrier.

The Russian System

To complete the picture of the different systems the Russian system must be included. This is identical with the C.C.I.R. system excepting for the fact that the vision signal has a bandwidth of $8 \mathrm{Mc} / \mathrm{s}$ instead of $6 \mathrm{Mc} / \mathrm{s}$.

Two transmitters work from Moscow, one is at Leningrad and one is at Kiev.

These, then, are the different systems which may be encountered besides our own British system of 405 lines, 50 frames, $2 / 1$ interlace, 10,125 line frequency, positive modulation and A.M. sound.

Receiving Equipment for TV dx

It is fairly obvious that with the different systems likely to be encountered, either a separate receiver must be adapted for the reception of one particular system, or some switching system must be employed so that the receiver can be switched from one system to another. In some countries in Europe this is done with commercial receivers; in Belgium, for example, where transmissions 6 on the 625 and 819 line systems, switching gear is included so that a single televisor can be used on either system.

For the hobbyist who may regard TV dx work as a definite branch of his hobby it is considered that there is no better receiver than an adapted R1355 for the job. This receiver is extremely powerful, especially when used in conjunction with an RF26 or RF27, and is capable of pulling in signals from really long distances.
As indicated in a previous section, except for , the French transmissions the sound signals are F.M. and it is suggested that a second R1355 could be adapted for the sound signal.

Carrier Modulation

It has been noted that there are two methods of carrier modulation -positive or negative. In the former system (the British system is an example) peak white is represented as peak carrier amplitude, while in the second system peak
white is represented as maximum carrier modulation.
The net result of this is that a detector circuit arranged for positive modulation will produce a negatively modulated signal in reverse; blacks would come out white and white blacks and the sync signats would be of incorrect phase.

The phase of the signal at the output of the videc valve will depend upon the method of connecting the detector. All that is necessary to reverse the polarity of the signal is to reverse the diode detector.

The method of detector connection will depend upon the method of modulation of the C.R.T. If the grid is modulated (as in most electrostatic models such as the Simplex), then the input to the video output valve is negative, the peak whites driving the grid in a negative direction with a consequent positive uplift in the anode circuit by reason of the phase reversal within the valve circuit.

To ensure that the grid of the video valve is driven in the correct method, the anode of the detector is connected towards the grid of the video valve, as shown in Fig. 3; which, with the other illustrations, is repeated from last month's issue.

This circuit can be adapted for a negatively modulated signal by reversing the diode, as shown in Fig. 2.

Where cathode modulation of the C.R.T. is employed then the detector valve will be found connected in a similar manner to Fig. 3, and to receive a negatively modulated signal it should be reversed, as in Fig. 2.

It is possible to arrange switching so that either signal can be received, as indicated by the circuit in Fig. 4. The switch should be of the low-loss type and must be mounted as close to the accompanying. components as possible.

Fig. 3.-Positive grid input for
cathode-modulated tubes. (Positive modulated carrier.)

Tuning Arrangements

For serious work it is obvious that the R.F. mixer and oscillator stages should be tunable. When an RF26 or RF27 is used with the R1355 there is no problem beyond making the tuning unit cover the frequency band required.

There is no difficulty in doing this with either of the units for Band I, but there has, as yet, been no published design for using these units on Band III. However, most Band III tuning units or converters have a variable tuning

Fig. 2.- Negative grid input for grid-modulated tubes. (Negative modulated carrier.)

Fig. 4.-Switched grid input for positive or negative modulated carrier.
device in the form of an oscillator trimmer. The R.F. and mixer stages are usually very wide band (often $18 \mathrm{Mc} / \mathrm{s}$ and more), and tuning can usually be accomplished over the greater part of the band with the oscillator.

Where no separate tuner is fitted to a televisor then it is usual to find a frimmer on the oscillator, and

Where reception of 819 -line transmissions being attempted, halve the value of Cl and C 2 .

If an adaptable timebase is required then the principles of the oscilloscope can be adopted and a course frequency control fitted. This can be a dual switch arranged to switch in and out different valued condensers to cater for differing frequencies, as shown in Fig. 6.

Fig. 5.-Standard Miller oscillator.
careful adjustment of this trimmer will enable a large proportion of the band under inspection to be covered.

Preamplifiers

Undoubtedly a preamplifier will be an asset for this class of work, and it is preferable to use one of the low-noise type. Little will be gained by using more than two amplifying stages in the preamplifier and to avoid difficulties with the tuning it should be of the wide-band type.

In the case of fortunate viewers in the South Coast regions where consistent results may be obtained from certain continental stations, then a special preamplifier designed specifically for the desired channel may be employed.

Line Circuit Modifications

There are two cases to consider for modification of the line oscillator ; the first is where an electrostatic C.R.T. such as the VCR97 is being considered, and the second is where a magnetic C.R.T. is used which obtains its E.H.T. from the line flyback. In this case the value of the E.H.T. obtained depends to a certain extent upon the resonance of the associated circuits and modification of the line oscillator to a higher frequency may result in a reduction of E.H.T.

Most circuits employing electrostatic tubes use a Miller type of timebase. In some cases it may be found that there is sufficient control available in the line hold control to enable the line circuit to operate to 625 -line transmissions. If the line frequency cannot be made high enough, however, then the condenser Cl in Fig. 5 (a typical Miller circuit) should be reduced in value.

It may be found that this reduction causes foldover of the picture and in this case C 2 should be reduced in a similar manner.

Magnetic circuits are not quite so easy to modify and there are so many different circuits that it is difficult to give any concrete advice. Quite often it may be found that the tolerance of the line hold control will enable the 625 -line system to be received but where this is not possible further steps must be taken.

Where a blocking oscillator circuit is employed, then reduction of the condenser value may enable the desired line frequency to be obtained. In Fig. 7 is shown a typical circuit and the condenser " C " is the one concerned. In many cases the natural resonant frequency of the associated transformer is brought into the action of the circuit and in these cases it may be necessary to fit a transformer of lower inductance.

A typical example of the Multivibrator is shown in Fig. 8. This is the cathode coupled type and the condenser " C " shown in the circuit is the one which should receive attention.

It will be noted that in each case it is the condenser associated with the Iine hold control which has to be reduced in value and this can form a useful guide to the selection of the correct condenser in the circuit.

In the case of frame circuits the only variation in frame frequency is that of the American system which is 60 c.p.s. The normal operation of the frame hold control should cover this frequency for those bold enough to attempt such long distance reception.

Syac Circuits

There may be some difficulty with the sync circuits in the case of reception of negatively modulated carriers as noise effects (ignition, etc.), are inclined to affect the sync pulses.

Because of this the C.C.I.R. system recommends the use of flywheel sync circuits and it is worth considering the use of such a circuit where serious work is intended.

With negative modulation the interference drives the C.R.T. into the black level so that the spots of ignition interference appears as black dots instead of white ones, as in the British system. It is largely a matter of individual taste as to which is preferable but when this form of modulation is used, then the spikes of interference can cause large puises in the blacker than black level and give spurious sync pulses in the timebase.

The polarity of the sync pulses is automatically catered for in the modified detector stage and there is no need for any switching arrangements here.

Bandwidth

The R1355, good though it is in other respects, suffers from a rather narrow bandwidth and requires careful stagger tuning to enable the British system to be received at full quality. It is, therefore, difficult to adapt for quality reception of transmissions with a wider bandwidth, but this is of no real moment, as we are aiming at getting any signal at all.
With a receiver designed for the full $3 \mathrm{Mc} / \mathrm{s}$ bandwidth of the British system there is still likely to be a reduction in the quality but it is not considered worth while to extend the width of the I.F. stages for reasons mentioned previously.

One effect which must not be overlooked is that the reduction in bandwidth may affect the sync pulses and this is another good reason for the use of fiywheel sync where serious work is intended.

It should be noted that the gain of the receiver is improved with a narrower bandwidth and the net effect may be in favour of restriction in this direction.

Sound

Apart from this country, France and Belgium are the only ones with A.M. on the sound system, the rest being F.M.

It is considered that the best solution to the problem would be to provide a separate sound receiver and the detector stages could be arranged for reception of A.M. or F.M. as desired.

The provision of a combined sound and vision section where sound is taken from the vision I.F. stages is not practicable. Not only is the sound spaced at a rather larger distance from the vision carrier than in our system, but it may be in a different relation to the carrier according to whether the upper or lower sideband is suppressed.
The simple modifications suggested in the foregoing paragraphs are all that are really required to adapt the televisor to other systems. Circuits for F.M. reception of sound have not been given as these have been dealt with from time to time in our companion paper Practical Wireless.
It remains now to consider the aerial system which
 must be converted to a horizontal type for most of the European transmissions.

The Aerial System

The high-powered TV transmitters in Great Britain use vertical polarisation. The other European countries which use this system are France (the lowdefinition system at Paris) and Italy (the Turintransmitter). The remainder use horizontal polarisation.
It is obvious that to attempt reception a horizontally polarised aerial should be used for the majority of the transmitters.

For general use, two directors with dipole (folded) and reflector should be found suitable. It would be desirable to arrange that the system can be rotated so as to orient the aerial in the position for the maximum signal.

Where facilities are available a double-stacked array comprising two complete units of two directors, folded dipole, and reflector would be beneficial. Such an array would provide about 3 db gain more than the single array.
Standard construction principles should be employed and the dipole should be made for the centre of the band which it is desired to explore. Folding the dipole not only assists in effecting a good match but also broadens the bandwidth of the array.

For optimum results the elements should be spaced at 0.2 wavelength and the dipole, a folded one, with a 2 in . spacing between adjacent sections

It is important to take care in connecting the two members of a stacked array together. The best method is to run a length of coaxial cable from one array to a point midway between the two and then to run an exactly similar length of cable from this point to the second dipole.

The two cables can now be connected in parallel with the down lead.

Dimensions, etc., of the elements have not been given as they have been dealt with previously in these pages.

Fig. 7.-Typical blocking

Fig. 8.-Cathode-coupled multi-vibrator.

SERVICING (Continued from page 250)
video amplifier (V6). If the choke and the resistors are in order check continuity of I.F. transformer secondary windings, and if the anode voltage on V3 and V4 is much lower than the screen, also the primary windings as these are shunted by resistors which maintain a certain amount of voltage on the anodes even when the windings are O.C. If a very weak picture is evident and the brilliance control has to be advanced beyond its normal setting in order to display a raster check the anode load resistor of the video amplifier V6. This is a $6.8 \mathrm{k} \Omega$ and if it drops in value the C.R.T. cathode voltage will be raised with very little modulation and very weak, if existent at all, syinc pulses.

If, on the other hand, this resistor should "go high" excessive brilliance will result with a poor, smeary picture. Excessive brilliarice with no modulation should direct attention to the coupling components from the V6 anode to the C.R.T. cathode.

BUILDING THE "SIMPLEX"?

Thousands of enthusiasts are building the "Simplex"' Televisor, now being foatured in " Practical Telcusion." WHY NOT YOU? CONSMEUCHOEAG ENVELOPE containing full constructional details and Blue Print, additional notes and suggestions, and Query Service torm, sent for ONLY 5/-. All commonents available ex stock as follows
ALUMINIUM CIIASSIS. - 18 S.W.E. DRILLED, for VCR97 version with screens and tube holder bracket, 22/6.
TRANSFORMER, $-350-0-350$ v. 150 ma . 6.3 v. 5 a., 5 v. 3 a. tapped at 4 V., ONLS 37/6. (Postage 2 $/-$)
CHOKE.- $10 \mathrm{~h} .120 \mathrm{ma} ., 10 / 3$. (Post $1 /-$.) RECTLFIERS.-RM3 5/-ca., K3/40 6/- ea. VALVES.-EFF50 6/6, SP61 4/-, 6SN7 9/-, 6.55 5/6, EB34 3/6. EA50 3/6. VALVEHOLDERS.-B9G1 (EF50) 10d., I. O. and M.O. 6d.; DJode (EAEO) 6a., VCR97 2/6
VCK97 TUBE.-Tested full screen, 42/6. OONDENSERS.-Electrolytios 25 mfd . $25 \mathrm{v} .1 / 10,16 \times 8 \mathrm{mfd} .450 \mathrm{v} .5 / 6,32 \times 32 \mathrm{mff}$. 50 V. 6-. Mica, silver mica, and tubulars, 50 V. 6d, each.
POTENTLOMLIELES.-Ail values, preset $1 / 9$ each. long spindle 3/-. with switch, 4/6.
 1 watt 6d., 1.5 k .5 watt, 1/6.
COIL FOIEMERS.-in. 8i. sin. 10a. SPEAKER. ${ }^{3}$ in. P.M. less trans., 16:6 postage 2% -
O/P TRANSFORMER, $5 /$ -
All Components lirand. New and Unused. Full price List available on request. and

VALVES

16n	$6 / 6$	7 A 7	8/6	574	10/-
$1 \mathrm{E}^{\text {c }}$	6/6	7C. 5	$8 / 6$	5 U 4	101-
1LH4	$81-$	7F7	$8 / 6$	6AC7	$6 / 6$
1 L 129	8/-	7W7	$8 / 6$	6 K 7 G T	5/6
${ }_{287}$	$8 / 6$	$12 \mathrm{H3}$	$8 / 6$	807	516
3 A 4	$9 /$	12 J 5	6/-	807	76
$3 \mathrm{~B}^{7}$	$8 / 6$	12AH7	12/6	ECH3S	12/6
6 Aran	$7 / 6$	12SG7	$7 / 6$	EA50	$3 \cdot 6$
6AK7	$9 / 6$	12SK 7	8/6	EBC33	8/6
$6 \mathrm{B4}$	$7 / 6$	12SR7	$7 / 6$	EB34	$3 / 6$
6 Ba	$7 / 6$	28D7	$7 / 6$	EF36	$6 / 6$
6 CE	81-	32	$7 / 6$	EF33	
6GB	$6 / 6$	36	776	EF50	6/6
6H5	$5 /-$	$50 Y 6$	$8 / 6$	EFed	$6 / 6$
6 K 1	$91-$	${ }^{58}$	$8 / 6$	Sitved	8/6
6 L 7	776	1622 1626	11/-	EF91	12/6
$6 \mathrm{~N}^{7}$	$7 / 6$	1206 A	${ }_{7 / 6}^{4 / 1}$	EY51	15/-
6Ris	816	VR150/30	$8 / 6$	ENK2	15/6
6 US	$8 / 6$	VR137 ${ }^{\circ}$	$5 / 9$	EL32	7/6
6V6	$8 / 6$	KT44	$8 / 6$	SP61	4/-
6V6GT	7/6	KT2	$51-$	MU14	$10 / 6$
6S.17	$8 / 6$	VP23	$6 / 6$	RL37	6/-
6Sc7	7/6	HL23DD	$6 / 6$	VS70	$7 / 6$
6SE7	7/6	TP25	81.	954	6/-
6S57	$8 / 6$	TP25	$81-$	955	$6{ }^{6}$
6SE7	$7 / 6$	\%	$8 \cdot$	9003	6/-
6SL7	$9 /-$	1T4	8i=	9004	6/-
6557	7/3	1R5	8.-	931A	50/-

PYE 45 me/a 1.F. STIIIPS.-The strip that is ready made for the London Vision and 1 or CA 50 . BRA WD NEW valves EFSn and 1 OF EA50. BRAND NEW. ONLY 59/6.
R.F. UNITS TXRE 26 and 2% For use with the R. 1355 or any receiver with a 6.3 v . supply. These are the variable tuning units which use 2 valves EF54 and 1 of EC52. Type 26 covers $65-50 \mathrm{Mc} / \mathrm{s}$ ($5-5$ metres), and Type 27 covers 85-65 Mc/s ($3.5-5.0$ metres). Complete with valves, and BRAND NEW IN MAKER'S CARTONS. ONLY 29/6 each.

AMPLIFIER TYPE 223A, or 208A,

as described in the July issue of "Practical Television " for making a TV CONVERTER Complete with valves. ONLT 15/m (Postage. etc., 1/6). CHASSIS OF INDICATOR 233.Contains VCR97 C.R. Tube Hoider, 11 valveholders, resistors. condensers, etc., etc. BRAND NEW. ONLY 10/: (Carriage, etc., $5 /-$).
POCKEL VOLTMETERS.-Not ex Govt. Read 0-15 v. and 0-300 V. A. C. or D.C. BRAND NEW \& UNUSED. ONLY $18 / 6$

TRANSFORMERS.-Manufactured to our spocifcations and tully guaranteed. Normal Primartes. $425-0-425$ V. 200 ma . 6.3 v. 4 ฉ., 6.3 v. 4 a., 5 v. 3 a.. ONLX 65/-: 350 v. -3 v.350 v. 160 ma., 6.3 v. 5 a., $6.3 \mathrm{v} 3 \mathrm{a},. 5 \mathrm{v} .3 \mathrm{a}$, ONLL $47 / 6 ; 250 \mathrm{~V}-0$,
$250 \mathrm{~V} .100 \mathrm{ma}$..3 v. 6 a 250 v. 100 ma.. 6.3 v. 6 a.. 5 v. 3 a.. ONLI Y $5 \mathrm{v} .3 \mathrm{a} ., \mathrm{ONLX} 37 / 6,250-0-250 \mathrm{v} .60 \mathrm{ma}$., 6.3 v. 3 a., 5 v. 2 a., ONLY $21 / \mathrm{m}$. The above are fully shrouded, upright mounting. 5.5 kV. E.H.T. with 2 windings of 2 v . 1 . a., ONLE 79/6: 7 kV . E.F.T. with 4 v .1 a., ONLX 89/6. PLEASE ADD 2/-POSTAGE FOR EACH TRANSFORMER.

Open until 1 p.m. Saturdays, we are 2 mins. Prom High Holborn (Chancery Lane Station) 5 mins. by bus from King's Cross Cash with order, please, and print name and address clearly. Include postage as specified and on Component Orders under 22.

(Phone TERminus 7937.)

POST THE COUPON TODAY FOR OUB BROGHURE OH THE LATEST METHODS OF HOME TRAINING FOR OVEG 150 CAREEBS \& HOBBIES

PRIVATE AND INDIVIDUAL TUITION IN YOUR OWN HOHE
Clity and Guilds Grouped Ceytificates in Telecommanications: A.M.Brit,I,R.E. Examination, Radio Amateur's Licence, Badio and Teizyision Servicing Certificates, General Radio and Television Courses, Radar, Sound Recording, ete, Also Courses in all olter branches of Engineeritg abd Commerce.
The advantages of E.M.J.training. \star The teaching methods are planned to meet modern industrial requirements. $\$$ We offer training in all subjects which provide lucrative jobs or interesting hobbies. * A tutor is personally allotted by name to ensure private and individual tuition. \star Free advice covering all aspects of training is given to students before and after enrolling with us.

NEW LEARN THE PRACTICAL WAY. COURSES WHTHEQUIPMENT With many of our courses we supply actual equipment thus combining theory and practice in the correct educational sequence. Courses include: Radio, Television, Electronies, Draughtsmanship, Carpentry, Photography, and Commercial Art, etc.

Equipment supplied upon enrolment and remains your property.

Courses from
15/-per month

Send without obligation your FREE book.

E.M.l. INSTITUTES, Dept. I 38 K , 43 Grove Park Road, London, W.4.

NAME

ADDRESS
Theonly Postal Collegewhichis part of a world-wide Industrial Organisation.

11/55
SUBJECT(S) OF INTEREST

MAKE A SOLDER GUN
 gy solder gen was described in Mechanics." Only two essential parts are required : ${ }^{\text {ras }}$ the transformer and (b) the push switch. These wo can supply at 13/6, plus $2 /$-post. The rest of the parts "younk" box. Copy of the article concerned given free with the kit.

TRANSFORMER SNIP

THE TWIN 20
This is a complete fluorescent ballast and starters _- stove enamelled white and ready to enamelled white and ready to
work. It is an ideal unit for the kitchen, over. the work-bench, kitchen, over in similar location. It uses two 20 -watt lamps. Price, complete less tubes, 29/6. or with two tubes, 39/6. Post and insurance 5 -. . Extra 20 -watt tubes, 7/6 each.

MAINS-MINI

Uses high-efficiency coils-covers long and medium wavebands long fits into the neat white or brown bakelite cabinet-imited quantity only. All the parts, guantive ing cabinet. valves, in fact, everything, $\mathbb{Z} 4 / 10 /-$, plus $3 / 6$ post. Constructional data free with the parts, or available separately 1/6.

EAND III AERIAL KIT

- The Folded V was described in ine July number of this merazine. We tried this and found it to be most officient. The kit omprises alloy elements and connectors. neat plastic centre piece and saddle for mounting. 8/6. cost $1 / 6$.
W.W. BAND III KIT

One of the most successful circuits for Band ill . conversion. We offer complete kit of parts valves. wound coils, drilled valves. wound cols, in fact, everything inchassis. mo ract, everything ingram. Price only $42 / 6$, post $2 / 6$ extra: Mains components if requiped. 25- extra.

CLEVELAND-BAND III CONVERTER

Almost any television receiver, whether superhet or straight A.C. or A.C./D.C. home constructed or factory built, will is added. No modifications are is added. No modifications are simply plug in the aerial leads Simply plutg in the aerial lead. The converter is in a neat metal case with provision for fixing to the side or the back of the set. Price $£ 7.10 .0$, or £2.10.0 deposit and six payments of £1. London \& Midlands all made up and ready to work.

AERIALS
BND III Aerials-These aerials have alloy elements and polythene low-loss insulais AND III DOWNLEAD.8 kh. per, yard. or super low-
loss 1/4 per yard.

3 element array with swan-neok mast with oxistig clamp for in to min dia in. to 2in. da...
3 element array with cranked mast and wall mounting bracket
3 elemeat array with cranked mast and chimney lasking equipment...
5 element array, with swan-neck mast and "U" bolt clamp for fitting existing mast from in. to 2in. dia...
5 element array with cranked mast and chimney lashing equipment...
8 element array with swan-neck mast and "U " bolt clamp for fitting to fin . to $2 i n$. dia mast
8 element array with cranked mast and chimney lashing equipment.. 10 element array with cranked mast and chimney equipment
 NOW AVAILABLE FOR

LONDON \& MIDLANDS

Hundreds of our "Addita" converters are already in use in the south; esults have been well up to expectations and the converter has proved itself not only easy to build but most simple to an and realion stable in operation, Me complete unit with built in power pack.
Price. of all components, including stove cnamelled case and even transers for the iront, is $24 / 5 \%$, plus $2 / 6$ post. ol ex5/5/- if mains components also required. Data is included free with the parts or available separately price $2 / 6$.

3 INSTRUMENTS FOR 25/-

THE "ELPREQ" BANS III SIGNAL GENERATOR

1. Will provide the signal for tuning to any Band III station.
2. Can be used as grid-dip meter for checking the irequency of Eand III T.V. aerials, Coils, etc.
3. Can be made to give a pattern on T.V. Receiver screen. This instrument is very easy to correctily calibrate and all the necessary equipment to do this is included in the kit. All chassis are available as a Kitiat $25 /$ post free. Constructional data free with Kit or available separately, price $2 / 6$.

PRACTICAL T.V. BLUEPRINT BAND III CONVERTER

All parts to build this most successful converter are available. Price inc. valves, metal chassis, wound coils, avaiable. Price inc. valves, met
etc., $59 / 6$, post and packing $2 / 6$.

3-INCH ALUMINIUM TUBING

Iceal for making TV aerials, etc. 1/6 per foot, 6 feet lengths, $8 / 4$.

CAR STARTER/CHARGER KIT
All parts to build 6-and 12 -volt charger which can be connected to a "flat" battery and will nable the car to be started instantly. Kit comprising the Mollowing :-
Mains transformer .
Regulator Stud Switch
Resistance Wire
Resistance Former
Mains onf Former
$0-5$ amp. Moving Coil Meter $9 / 6$ or if bought all together price is 69/6, plus 2/-post and packing.
 valves, ready to wor'x. New and 40/- deposit and 9 monthly payments of 10/-(carr. and ins. 7/6).
THE CLEVELAND F.M. TUNER

This tuner is based upon the very successful circuit published by Data Publications. We have made up models at all branches and will gladly demonstrate. stability is extremely good and making and aligning most sim ple. Cost of all parts inchassis valves, prepared metal coils and stove enamelled wound colls and stove enametion drive, pointer. scane, slow-motion fact everything needed is $£ 8 / 12 / 6$. Data is included free with the parts or is available separately, price $2 /-$ Extra for fringe area model, $20 /$ -

ELECTRONIC PRECISION EQUIPMENT, LTD.
Post orders should be addressed to E.P.E. LTD., Depk. 5, 123, Terminus Road, Eastbourne. Personal shoppers to one of these addresses please.
42-46. Windmill mill,
Ruislip, Middx. Phone: RUISLTP 5780
Half day, Wednesday.
Half day, SLEt 2833
Haturday.

249, Kilburn Wigh
MAIda Vale 4921.

ThE FIFTH IN A SERiES ON THE PROBLEMS INVOLVED

IN THE RECEPTION OF COMMERCIAL PROGRAMMES ON
BAND 111 By Gordon J. King, A.M.I.P.R.E.
(Continued fiom page 207, October issue).

Channel Switching for Alternative Channels

TTHE mode of channel switching in Bands I and III varies considerably between individual manufacturers on both two-band receivers and on adaptor-type tuner-units which have been evolved for inclusion on certain recent Band I receivers.
A large number of manufacturers, however, are adopting the turret-type tuner-unit in the design of their recent two-band receivers and also as the basis of an add-on tuner-unit for specially prepared Band I receivers. This kind of tuner is manufactured in somewhat standard form and provides all the variable tuning necessary for 12 -channel reception-five channels in Band I and seven in Band III. They embody a cascode R.F. amplifier followed by a triode-pentode frequency changer--such as we have previously considered.
Channel switching is achieved by the use of 11 fixed phosphor-bronze spring contacts and a 12 -sided barrel-shaped turret. Each of the 12 sides forms the base of a pair of coil units, and each coil pair is equipped with 11 contact studs in a row. The desired channel is selected by rotating the turret by means of the channel-changing knob until the studs on the corresponding pair of coils come into connection - with the phosphor-bronze spring contacts.

The turret itself is divided into two sections along its axis by a metal screen ; one section carries the R.F. coils and the other section the associated oscillator coils. Each coil can be removed and each is independent of the other. At the present time it would appear to be general practice for the manufacturers to install only the pairs of coils corresponding to channels 1 to 5 in Band 1 and channels 8 and 9 in Band IIK, although there are some manufacturers who install only one pair of coils in Band I. Any additional pairs of coils can, however, very readily be fitted when required simply by removing the base screen from the unit and clipping the appropriate ones into the turret.

A " fine tuning conirol", is also fitted to these units, the spindle of which is nearly always brought out through the centre of the channel-changing spindle to permit the use of a dual control knob. the outer section of the knob indicating to what channel the receiver is switched and the inner section controlling the tuning capacitor.

While this latter control is effective on all channels, it is most effective on the channels in Band III owing to their higher frequency, and is incorporated mainly to balance tep the funing on all channels and to proyide a means of easily counteracting oscillator drift.

The tuning capacitor itself is quite interesting for, inslead of the usual method of variable vanes. it
consists of two small plates with air between them as the dielectric. An increase in capacitance is obtained by increasing the dielectric constant, and this is achieved by means of an eccentrically shaped piece of plastic material which enters the space between the two fixed plates as the tuning control is rotated. This dielectric method of varying the capacitance avoids the necessity of moving electrical contacts, and thereby eliminates noise and unsmooth operation which might otherwise occur at V.H.F. on the conventional type of variable capacitor as the contacts become dirty and wear. The usual kind of variable capacitor is rarely used as a fine tuning control on any pattern of V.H.F. tuner-unit.
A cascode R.F. amplifier, a triode-pentode frequency changer, and a 12 -position rotary channelchanging switch and fine tuning control form the basis of the two-band tuner-unit used in Pye, Invicta and Pam recsivers.
The channel-changing switch comprises four Yaxley-type ganged switch wafers which permit switching of the aerial circuits, the band-pass transformer couplings to the frequency changer and the oscillator circuits. The various coils corresponding to these circuits are self supporting and soldered directly between adjacent tags on the switch wafers. as shown diagrammatically in Fig. 15.
This is sometimes called the incremental system of channel changing, because as the channel switch is rotated a small alteration of the total inductance of the circuit occurs, the alteration being in small steps or increments.
For the five channels in Band I -switch positions 1 to 5 - the coils are made up of a number of turns that one is accustomed to in Band I. For the channels in Band III, however, the required inductance is formed by small wire loops, but since a frequency

Fig. 15.-A single section of the channel switching arrangement used in Pye, Invicta and Pam receiyers.
increment between channels of only $5 \mathrm{Mc} / \mathrm{s}$ is required more than enough inductance is provided by the loops, so the loops themselves are also shunted by a straight piece of wire!

The shunted loops are used for alignment purposes and answer as inductive trimmers, the adjustments being made during manufacture by bending and mancuvring the loops until the inductance of each section is balanced to provide the desired frequency deviation.

Arguing that it will be a very long time, if ever,

Fig. 20.-A circuit diagram of a tuned filter.
before 12 or 13 programmes will be available, some manufacturers incorporate only a three-position switch in their two-band tuner-units to give one programme in Band I and two in Band III. It is generally possible to preset the desired stations in both bands on this kind of unit so that any of a possible 13 may be tuned, but so that only three of them will immediately be available on the switch.

Other manufacturers use an ordinary five-channel preset tuner for Band I, and a band-change switch which when set to the Band III position disconnects the Band I tuner and brings into circuit a continuously variable Band III tuner.

Band III tuning on these units is usually carried out by means of iron-dust or brass cores which traverse the formers of the aerial, R.F. and oscillator coils and thus give rise to an alteration of inductance. The cores are accurately ganged and mechanically coupled to the channel-changing spindle. The channel - changing knob is marked off in channel numbers so that a given channel setting corresponds to a certain coil inductance which tunes to the relating frequency.

Aerial Input Circuits

On all turret tuners the aerial input socket is common to both Bands I and III, and the same applies to certain switched and continuously variable units. Other units, however, feature separate aerial input terminals
for Bands I and III. The impedance at both inputs, or at a common input, is now standardised at 75 to 80 ohms, and coaxial feeder is nearly always specified. On earlier two-band receivers a 75 to 80 ohm Band I input and a 300 ohm Band III input were sometimes used, but this, we understand, has now been modified to 75 to 80 ohms.

The aerial input circuits of the new range of Ferranti two-band receivers are shown in Fig. 16. These receivers ise a preset Band I tuner, a bandchange switch-S1A, SIB and SIC-and a continuously variable Band III tuner. They also feature separate aerial inputs for the two bands; for Band 1 a coaxial socket is fitted, and a three-pin socket is used for Band III. It is possible, however, to make use of a single input by shorting pins 1 and 2 on the three-pin socket. This arrangement permits the use of a common coaxial feeder to carry both the Band I and the Band III signals.

The Use of a Cross-over Unit

In areas where a very strong signal is available on Band III and little disturbance from signal reflections (" ghosting ") is experienced the use of a combined Band $1 /$ Band III aerial system will almost certainly suffice, in which case a common feeder may be used to carry both signals to the receiver.'

Now, if the receiver is fitted with a common twoband aerial input circuit all will be well, it simply being necessiary to connect the feeder to the receiver in the ordinary way. If, on the other hand, the receiver has separate input sockets for the two bands, then it will be necessary to split the feeder at the end and maintain correct matching at both input circuitssee Fig. 17:

Similarly, a method of combining the two signals while maintaining correct matching will be required where separate Band I and Band III aerials are fed to a receiver having a common input socket-see Fig. 18.. Such an arrangement may be necessäry in areas of relatively low Band III signal strength and where excessive " ghosting" is experi-

Fig. 16. - The two-band aerial input circuits used in Ferranti receivers.
ceding Power to the Converter

DORING the course of development of this converter it was in turn powered from several
conmercial receivers, and the results obtained were quite satisfactory. It was found, however, that if the rcceiver had a smoothing choke or filter resisto connected to the rectifier output, and the H.T. curren
of the converter was carried by this component, the receiver H.T. line voltage dropped by an amount sufficient to reduce the horizontal and vertical scans. If the H.T. to the converter was taken direct from the rectifier output (from the cathode in the case of a valve rectifier), through a resistor, this effect did not stantially constanti. Furthermore, tests revealed that the receiver H.T. rectifier was subjected to overload if the converter current exceeded about 23 mA ; this was on sets two to three years old.
Sets of earlier style -and it will be these on which Sets of earlier sylye-and it will be these on which being produced (and retailed-at -present) specifically for the receivers of more recent years (in some cases back to 1951/2)-have considerable reserve of H.T. power, and the addition of the converter
current has little effect on their operation.
current has little effect on their operation.
Nevertheless, to be on the safe side it is always check on the rating of the H.T. rectifier to make sure hat it is capable of delivering an extra, say, 30 mA . If it not, then either a larger rectifier should be used or a separate power unit should be made for the Where
receivers using a Brimar RM4 metal H.T. 260 mA average) the repectifier an RM5 which, at 250 volts, has a maximum mean urrent rating of 300 mA .
The circuit at Fig. 25 shows how the H.T. may be the rectifier itself, no other components in the receive are called upon to pass extra current. The value for \mathbf{R} can be found by dividing the difference between the \cdot H.T. voltage at the rectifier output and 180 by
0.028 . A slightly Iower value resistor may be used where extra Band III gain is essential, but on no account must the converter H.T. rise above 200 volts. An 8 or $16 \mu \mathrm{~F}$ capacitor C may be used to decouple the converter H.T. feed.
A large number of commercial receivers use a the H.T. negative lead and the receiver chassi

Fig, 25. - One method of feeding power to the P.T. converter.

Obtaiming Powew

Supplies for the

P.T. Converte

which was the Subject of Lust Month's Free Blueprint

FOR

BAND III

(Cominued from page 2.19, October issue)

have contact with one side of the mains supply. When the converter is connected to a receiver of this kind its chassis will also be in contact with one side of the shock, may be experienced during the considerable adjusting. It is important, therefore, to ensure that the chassis is connected to the neutral side of the mains; a neon bulb or A.C. voltmeter may be used or this purpose.
The coaxial sockets on the converter, being
insulated from the chassis and isolated by Cl insulated from the chassis and isolated by Cl and C 13 supply, so it is quite safe to operate the converte without fear of harning the associated Band receiver and without transmitting a dangerous main potential along the Band III feeder and into the aerial.
Once the converter has been properly installed in the cabinet it really does not matter which way
round the mains is connected, for it is thoroughly isolated from external controls and leads.

The L.T. Supply
Where the converter will be required to obtain its heater power from an A.C. receiver, and where the receiver heaters are 6.3 volts, the 6.3 type valves should be used in the converter and wired as in Fig. 3 -these valves are VI ECC84 and ter may then be connected across suitable heater winding on th mains transformer. In the case of an A.C./D.C. receiver which use 0.3 amp valves, either a small heater transformer will need to be used will be necessary to use the 0.3 amp equivalent type valves in the con-
verter and wire them in series with verter and wire them in series with
the heater chain in the receiver. the heater chain in the receiver These valves are PCC84 V1 and wired in the converter according to 26, where it may be seen that an additional heat choke is required
A transformer will almost certainly be necessary
if the heater supply is other than 6.3 volts in an A.C. if the heater supply is other than 6.3 volts in an A.C receiver. When a transformer is used the primary
winding should be connected to the receiver side of winding should be connected to the receiver side

Fig. 26. - Circuit showing how the converter heater
wiring is modified when iusing 0.3 A . valves.

Alignment

The output of the converter must be connected to the Band I receiver aerial socket by the shortest possible length of best quality close-braided coaxia feeder, and after inserting the Band I and Band II aerial leads the band-change switch should be
actuated to ensure that Band I reception is still possible and that no Band I break-through is cccurring when switched to the Band III position.
Having established that this' section of the cirouit is working properly, the band-change switch should be set to "Band III" position; the receiver contrast and sensitivity controls turned to maximum and the considerable "hiss" will now be heard from the oudspeaker which should be brought to a maximum by adjusting the core in L7/8.
An attempt should now be made to receive the and 111 sound signal by very slowly adjusting the ore in the oscillator coil L6 from its fully out position A picture may also be evidenced at this stage.
As soon as the sound signal has been established As soon as the sound signal has been established, the core in $L 5$ should be adjusted, from its fully out position, to bring it to a maximum. It will be found
that adjustment to $L 5$ will alter slightly the oscillator frequency and this should be kept on the sound signal by retuning L6 in step with the adjustments to
The core in $\mathrm{L} 1 / 2$ should next be adjusted for maxi mum sound. At this stage a picture should also be resolved, though it The correct balance between the sound and vision signals may be three-quarters to one and a half hree-quarters to one and a hal
turns the cores in coils $\mathrm{L} 1 / 2$ and L 5 - Finally, the core in L7/8 should be re-adjusted for optimum results, with a slight re-adjustment to L necessary.
With some types of receiver a different settings of the oscillator core, but it will be found that the sound signal will accompany the vision only at the correct setting.
Operating Notes
Provided the coils are made to specification and tunable over Channels $8,9,10$ and 11 and Channel

2 and 13 can be catered for by substituting threaded brass cores in place of the iron-dust ones. The output transformer tunes over Channels 1 to 4 ; for Channel 5 receivers it will be necessary either ore in $L 7 / 8$ or remove 25 turns from L7 Slight alteration of the inductance of the V.H.F coils can be effected by altering the turns spacing
For example, if it is found that a coil tends to peak

The unit mounted inside a commercial receiver.
when its core is screwed right in, the spacing between he turns should be reduced, and the spacing should be coming right out. If excessive Band
he Band III aeri I break-through is cxperienced, converter, and if this effects be removed from the should be installed in the aerial lead. If the breakhrough continues, however, attention should in the Band I receiver itself and in compartment C of the converter.

Definition and Picture quality

arternate black a white dots total number $=4 / 3$ (vertical fines)

FACTORS WHICH AFFECT•THE QUALITY OF THE TELEVISION PICTURE
By L. B. Moore
[N the photographic world we talk of the definition of a photograph, meaning the reproduction of the print. The greater the detail reproduced the better is the definition. It is not exactly the same as he " sharpness" of the picture, though the layman ften thinks it is. One of the reasons for this error perhaps, is that
In the television worid much the same principles apply, but here the difference between sharpness of focus and definition is more clearly seen. It is possible o have a finely focused televis picture yet the Definition depends also on
with very good sight being able to differentiate between minuter details than those with poorer sight. Generally speaking, the average person cannot detect a change in the detail of an image which subtends an
angle of less than one minute of an arc at the eye. angle of less than one minute of an arc at the eye. eye. Two spots which are less than half the diameter of one of the light sensitive cells in the retina of the ye will obviously not be separated by that cell Press Pictures
The inability to distinguish separate elements below a certain size is used to advantage in the reproduction
of pictures in newspapers. The original picture is oroken down into a large number of separate parts by laking a photograph of the picture to be reproduced hrough a finely divided screen.
The result is the production of a metal plate which s covered with a large number of elementary dots. the dots are closely bunched together; where the original showed bright lights the dots are very few and far between. Thus more ink is impressed on the paper in the place of the shadows than is the case is a fair imitation of the original
Where a paper is produced by high-speed presses it is essential that the dots should not be too fine or hey will become clogged and the resultant picture mudged. A limit is therefore set on the maximum reproduced image will not be as good as the original because if the original contained some detail which was smaller than one of the dots making up the plate hat detail would not be produced in the printed copy

mproving Definition

The definition of the printed photograph can be
improved fairly simply. First the metal copy can be

Mg. 1.-Checker board pattern

made so that it has a rather finer screen which produces many more dots per inch ; this plate could not be used on high-speed presses for newsprint so Such paper is very expenaine and its employmen increases the cost of the magazine. So the secon actor in reproduction of finer detail is the use of higher grade paper.

Television Definition

The same principles apply in television: Modern techniques make it possible to t I smit and receiv a picture with a much higher definition than then the costs of equipment would be enormously increased and this includes the increased cost of the elevision receiver
A compromise has to be struck between costs and quality of the picture, so that television become vailable to as many as possible. were to employ the French 819 -line high-definitio system, for example, the bandwidth of one station would occupy three of the present BBC channels In Band I, therefore, it would be possible to operat only

Definition and Bandwidth

There is a direct relationship between the definition of the produced
The photograph in the newspaper is divided into a large number of elements in the form of dots. The picture on the television screen is also divided into arge number of elements-the lines making up the of the screen and a large number of horizontal elements which are not so apparent.
The optimum viewing distance for a television screen is where the horizontal lines merge into on another so that they cannot be separately distin the image. The vertical section of the picture can be taken as alternate bright and dark bands, the brigh bands being those formed by the moving spot and he dark bands (black) being the spaces between th With
With, the 405 -line system the received picture con synchronising working lines (28 are taken up fo 377 lines high, and contains 377 separale vertical lemens high, and contains 377 separate vertical horizontal lo obtain the same sized elements in the horizontally as vertically), then we shall have to
sometimes known as a cross-over unit, splitler-box or arrangement permits special attention to be given
to the Band III system, which, in the majority It may be desirable to mount the unit close to the of locations for the time being. will receive consider eceiver in areas of low Band III signal strength in ably less signal than the Band İ aerial
order to permit the use of special ow-loss feeder from the Band Maerial : this, of course, would ill array is to be added to an existing Band I system.
Where a new two-band sys: em is to be installed in an trength and the receiver has a common input circuit, it may be desirable to mount the unit in proximity to the aerials and run just a single length of high qualit
set.

From the point of view of conomy it is sometimes worth white to utilise two cross-over units to enable a single length of coaxial feeder to connect wo separate inputs - Fig. 19. Several manufacturers a r producing cross-over units of
 tuned filters which have an in- -A cross-over unit is also required where separate Band $\mathrm{V} / \mathrm{Band}$. TiI aerials are verse characteristic to that at the
purpose is produced in printed-circuit form by 1.C.C., Ltd., and is used in a number of commercia filter is shown in Fig. 20.
Since all cross-over units introduce a certain degrec of attentuation it is good policy in fringe areas, and where separate inputs are available on the receive

Fig. 19.-It is sometimes worthwhile to utifise two cross-over units to enable a single length of coaxial feeder to connect two aerials to. a receiver having separate inputs
.Needless to say, at distances in excess of, say 25 miles from the transmitter it is most unwise to rect combination type aeriats, since the signal trength is extremely low and the combining nctwor matter the aerial manufacturer signals by as much as 6 db .
It is understood that all commercially produced cross-over networks are designed for an all-round terminating impedance of 75 to 80 ohms. This is of course, ideal for the majority of receivers, but with receivers which have a Band III input impedance but this in most cases can be neglected.
Quite reasonable results can, in fact, be obtained on both bands simply by splitting the end of a common coaxial feeder two ways and plugging one of the "Y" connections into the Band I aerial socket and Be other into the high impedance (possibly 300 ohms) again to split the common coaxial into two feeds plugging one as before into the 75 ohm Band socket, but this time introducing an 82 ohm resistor in series with the Band III connection.
(To be conimued.)

BOOKS RECEIVED

"Second Thoughts on Radio Theory," by "Cathode Ray "or Wireless World. Size $8 \frac{3}{3}$ in. $x 5 \frac{1}{2}$ in., 409 pages 250/- ne
"Guide to Broadcasting Stations 1955-56." Compiled by the Staff of Wircless World. Eighth Edition size $7 \frac{1}{3}$ in. $x 4_{4}^{3}$ in., 80 pages. Price 2 s . 6 d , net Both the above published by lliffe \& Sons. \qquad
multiply this figure by $\frac{4}{3}$ as the ratio of width to height is as 4:3.

Each horizontal line musi therefore contain $\frac{4}{3} \times 377$ $=503$ elements (Fig. 1).

The maximum difference between the elements making up the line is when one element is black and the other is white ; we shall thus have $\frac{1}{2}(503)=256 \frac{1}{2}$ cycles of alternation between black and white for each line. - The bandwidth of our transmitter must therefore cover a total of $256 \frac{1}{2} \times 377$ cycles per complete frame (Fig. 2). In other words, each frame will contain a total of 2561×377 alternate black and white elements.

Each frame is transmitted in $1 / 25$ of a second and therefore the total number of cycles of operation per second will be $256 \frac{1}{8} \times 377 \times 25=2,400,000$ (or 2.4 Mc / s).

Our transmitter must therefore have a bandwidth of $2.4 \mathrm{Mc} / \mathrm{s}$. (Actually a greater bandwidth than this is required as we have not taken into consideration all the other details, but the figure is sufficient to illustrate the principle.)

Supposing the vertical definition was improved so that there were 600 active lines in the picture, then, applying the reasoning given above, our transmitter will rcquire a bandwidth of $6.0 \mathrm{Mc} / \mathrm{s}$.

Fig. 2.-Alteruative black and white elements forming A.C.

By increasing vertical and horizontal deninition by half as much again we have more than to double the tandwidth.

It is clear that the definition and quality of the received picture are very much dependent upon the bandwidth. A receiver with a restricted bandwidth will not reproduce the detail of the original. In bad cases the picture will appear to be out of focus, or the blacks will be smeary.

Spot Size and Definition

In the printed photograph the size of the dots making up the picture decides the quality of the reproduced image. In television the size of the spot from the electron beam in the tube also decides the quality of the reproduced image. The smaller the spot the better the definition.

This factor is brought out very clearly when comparing a VCR97 with a larger magnetic tube. The VCR97 provides a small picture with very satisfactory definition. It is very difficult, however, to resolve completely the frequency fest bars on Test Card C which provide an indicaton of the bandwidth of the receiver. This tube will show the $1 \frac{1}{2} \mathrm{Mc} / \mathrm{s}$ bars clearly, and in most cases the $2 \mathrm{Mc} / \mathrm{s}$ bars, successfully indicating that the receiver has a bandwidth as wide as this figure. Only in exceptional cases will it resolve more than the $2 \mathrm{Mc} / \mathrm{s}$ bars, as at this point the size of the spot on the tube is larger than the width of the bars. The picture, however, appears of good quality because of its small size.

If a circuit designed for the VCR97 is nsed with a larger tube, then the definition is improved because of the smaller spot used with the larger tube. The
spot is smaller than the total area of the screen as compared with the smaller tube.

As a matter of interest it may be mentioned that the VCR97 has a lower sensitivity than the average magnetic tube; when changing from one to the other the extra gain available can be usefully employed in widening the bandwidth of the receiver.

A small spot requires a higher E.H.T. and a higher E.H.T. requires a greater power from the scanning circuits, and this in turn means higher production costs. Further, the finer the lines making up the picture the greater is the apparent distance between the lines; vertical definition may appear to be worsened.

Vertical Definition

The optimum viewing distance for correct perspective is given as four times the picture height. With a 17 in . tube this is 4 ft . lin. (height of picture on this class of tube is $12 \frac{3}{4} \mathrm{in}$.), but at this distance from the screen the horizontal lines are clearly visible. When sited at a distance from the screen where the lines are not seen separately, then the perspective of the viewed image suffers, and we do not get the feeling of being actually present at the scenc.
The question of perspective is quite important. In the cinema the size of the screen and seating arrangements have to be borne in mind to retain the illusion. In many shots the figures (or close-ups) on the screen are much larger than life-size, yet they do not appear so to the person in the cinema. The dearest seats are usually those which give the correct perspective.

If the number of lines of the television image are increased a noticeable improvement in the quality of the picture occurs at the optimum viewing distance. This improvement continues rapidly up to 600 lines and then tends to tail off. The difference between 400 and 600 lines is much more noticeable than between 600 and 1,000 lines.

It would appear, therefore, that a figure of about 600 lines represents a good compromise between costs and quality; this is probably one of the reasons for the choice of the 625 line system by the C.C.I.R.

Interlace

One of the most important factors which affect the definition of the received picture is accuracy of interlace. It is in this respect that many television receivers fail.

Where the interlace fails moderately, resulting in pairing of lines, the main detraction from the quality viewpoint is the apparent broadening of every other line. The screen has to be viewed from a greater distance in order to achieve welding of the line structure.

Where failure to interlace exceeds about 20 per cent., then alternate pairs of adjacent lines will touch and will at times overlap. Unfortunately very minor discrepancies will now revea! themselves in the alternate lines and the screen will have a slight tendency to fuzziness in the horizontal direction. Loss of horizontal definition results.
Where interlace is lost completely and the lines are superimposed, then the condition is worse than if only half the number of lines were used, as the superimposition is not perfect and the horizontal definition will be impaired.

The worst condition is where the interlace fails intermittently many times during the space of a few
seconds. The whole of the picture appears to be moving or shimmering and horizontal definition is very poor.

With the present British system perfect interlace is difficult to attain and many ingenious circuits have been devised to overcome what may appear to be a lack of development in the transmission of the frame pulses.

Impulse Excitation

Another feature which adversely affects the definition is the response of the circuits to impulse excitation.

The effect is produced when a black suddenly changes to white, or vice versa. In this case the carrier is instantaneously changed from 30 per cent. modulation to 100 per cent. and a signal with a good harmonic content is necessary to contain the change. It follows that the bandwidth of the video receiver must be adequate to cater for the harmonics.

Unfortunately adjustment of the circuits to produce this condition often results in the circuits " ringing": the effect on the picture is that of a black object being followed by an outline or may be several outlines.

This fault is very apparent on many commercia! receivers.

Astigmatism

This is the failure of the focusing system to focus the beam into a spot. The vertical focal point is not at the same distance from the source as the horizontal focal point. The tube can be made to focus in one or other of the two planes, but not in both simultaneously. The result is that the spot tends to be oval instead of round.

For this reason it is always wisest to focus the picture in the vertical plane. Instead of focusing on the horizontal lines use the vertical lines of Test Card " C" or the tuning-in signal.

When checking a receiver for bandwidth it is good practice to check the focus in the horizontal plane before attempting to increase the resolution of the test lines by tuning.

Summary

To obtain better definition than that which we enjoy at present it would appear that the adoption of the 625 line system would be very desirable.

Unfortunately in this country we are committed to a 405 line system, which is partly the result of us being pioneers in the field of high-definition television and partly because of the limitation of channels.
It is to be hoped that when Band IV is opened advantage will be taken of the greater bandwidth

New TV Valve Tester

THE M.O. Valve Co., Ltd., has developed a new table specially for conditioning and lesting Osram N339 and U329 valves. Both types are used in television receivers, the N339 as a line output valve and the U329 as a booster diode with exceptionally high heater-cathode insulation. The new table subjects them to the same high peak voltages and currents as they encounter in service, and ensures a uniform high standard of performance.

Two of the new tables are shown in the accompanying illustration. Each of them incorporates twelve test positions which will accommodate either type of valve. The valves are inserted and a Perspex window is drawn down over them. The peak voltages developed on the valves can then be increased from zero to maximum either manually or automatically to a preset sequence. Each valve is monitored by pressing the button located immediately below it, the peak output voltage being indicated on a meter let into the front of the table.

Circuit Details

The test circuit for each valve is very similar to the line timebase circuit used in television receivers. The line transformer is loaded with a dummy coil to simulate the effect of the deflection coils. All twelve test positions are driven by a negative $10 \mathrm{kc} / \mathrm{s}$ pulse at the grid of the N339 from a common driver unit, the output of which is kept at a constant amplitude.
The peak voltage developed on the anode of the N339 is dependent on thy rate of change of current through the valve at cut-off. The current flowing through the valve is controlled by a variable screen

Two of the new testing tables in action.
are allowed to build up quickly to the maximum rating. This is the treatment the valves receive in a television receiver and the conditioning process ensures that no flashing will take' place during testing and use.
VA／VALVES GUARANTEED NEW AND BOXED

$9 /-$	EY91	7／－	PCF80
9／－	EZ40	10／－	PCFS 3
8／6	EZ44	11／－	PL81
8／9	ETBSO	10／－	PLS＊
10／－	E1143	2／－	PL83
$8 / 6$	FW＇4／500	10／－	PP＋2\％
\％－	（273）	12／6	PYS！
$6 / 9$	H30	$5 /-$	YY81
5／6	H2L	5／6	PY83
$6 / 6$	HLis3DD	7／6	QP：3
101－	HP2ILC	B／9	SP2： 2
$12 / 6$	KL33	8／6	4P220
11／－	KT？	51－	TP26
11／－	KT33C	$10 / 8$	U10
11／6	K「6s	10／6	U 22
$13 / 6$	KT74	8／－	［ 5.5
1016	KTW6L	7／9	U22a
11／6	KTMけ3	816	U403
816	KTZ41	6／－	U404
10／－	LPP20	6／9	ยบ6
$18 / 6$	MH4	$5{ }^{5}$	UB4L
11／6	MSIPEN	$5 /-$	UBC＋1．
12／6	N78	10／6	UCHE
7／6	NT09	12／－	UF41
11／6	${ }^{P+1}$	9／－	UL4L
12／－	PENS3	$81-$	UY41
11／6	PEN45	$8 / 6$	VR21
11／－	PEN 2000 A	$4 i-$	YR ${ }^{\text {F }} 3$
13／6	PCC8 4	12／6	VR5！

12／6	VRins	$7 / 6$
12／6	VR3\％	6／－
1316	VR07 7	8／－
11／6	VReg	$3 / 6$
13／－	VR6．5A	3／3
51－	VR6t	$3 / 9$
10／－	VROt	5／6
11／6	VR9ISYL	$7 / 6$
1016	VR92	2／－
\％／6	YR105／80	$91-$
6／－	VRも16	4／－
$6 / 9$	VR 119	4／－
9／－	VR123	6／6
9／－	V¢134	71%
8／－	YR137	5／3
$13 / 6$	YR150／30	81－
$13 / 6$	VP9：3	$81-$
10／－	V1370	$3 /-$
91－	VT5S	$8 /-$
101－	V7ton	$6 /-$
$9 /$	VE39	$8 / 9$
11／－	V064	816
11／－	VU111	$3 / 6$
11／－	VU120A	$3 /-$
11／6	W77	$8 / 6$
10／6	V61 Y65	${ }_{8}^{81}$
	X ${ }^{\text {a }}$	$11 / 8$
$6 / 6$	Y6\％	$9 /$
2／－	130．A（B）	$1 / 0$

SANTERCEL RECTIFIERS RM1， $3 / 9$ ea．：RM2，4／2 ea．；RM9， 5／－eib ；RMt，16／＝عi．

METAL RECTIFIERS
$12 \mathrm{v} . \frac{1}{2} \mathrm{amp} ., 1 / 6 \mathrm{~cm} . ; 12 \mathrm{v} .1 \mathrm{amp} .$, $4 / 6$ еа．； 2 v． 7 аm引．， $3 /-$ еа．； 250 y ． $45 \mathrm{mA.}$, s／3 ea．； 250 v． 7.5 mA ， $7 / 6$ ea．； 300 ч． $60 \mathrm{~mA} ., 7 / 6 \mathrm{ea}$ ．
MAINS TRANSFORMERS 3－WAY MXI
Primary； $200-220-240$ 下．
Secondaries： $250-0-250$ v． 90 mA ． $0-6.3$ v． 4 amp． $11-3$ v． 2 amp．
Both tapped at 4 v．．．．．．．．．．．．iv／b ea． MT2
Primary ；200－220－240 v． $0-6.3 \mathrm{v}, 4 \mathrm{mp} 90 \mathrm{~mA}$ ． tapped at ty ．．．．．．．．．．．．．．．．．．．．．．．．17／6ea．

AMERRCIAN INDICATOR UNIT TYPE BC929A
Brand new incorporbting 3in．
tube $3 B P 1$, with mionetal tupe shiek 2－6sN7GT w－6HGE：T
 metrers， 24 F ．aeria！switch motor， meters， $2 \pm$ F．meria！switeh motor，
transformer，and a host of smali comsformer，and a host ot smant which jueasures only Sin．x 8in．x 13 iin．is brami new， enclosed in black crackie box， and can be supplied at $65 /$ ， plas $\overline{3} / \mathrm{p} . \& \mathrm{p}$ ．

PERSPEX IMPLOSION GUARDS Incorporating esenteheon and gilter lisin．type， $11 / 6$ ea． 1 lifin．type 14／6 есь．

PENCR RECTLIEERS
K3／25，5／8；K3／41，7／6：K3／45，8／2； К3／30，8／8；К3／60， $9 / 8$ ；K3／人00， 14／3．
CRYSTAL DIODES
Plastic case，wire ends， 2 for $2 / 1$.

Aluminum Undrilles with Rem－ forced Corners．Avalable in the fiowing sizes．
6in．$\times 4$ in．$\times 2 \frac{1}{2 n} \ldots \ldots$.
 10inn \times inn．$\times 2$ thin．．．．
2in．x Sin．x 2 in．．．． tin．x in．$\times 2$ bin．．．．．．．．． $9 / 6$ ea． lin．x ，12／－ea．
 rece．
230 v ．Input 2 volt ． B amp．
 230 v．Input 2 yult 3.0 anmp 230 v ．Input 4 volt 1.0 amp ．
v．Inplit
4
volt 3.0 amp ． 230 v．Inplit 4 volt 3.0 amp ． 230 V．Input 6 Yolt 2.0 amp．
230
F．Input 6.3 volt .5 amp． 230 v ．Input 6.3 volt I .5 amp anp． 330 \％luput 6.3 volt 3.0 amp 330 v ．Yoprst 12 volt .75 amp
standacd 1 tim．Brown Knobs，
per dozen．．．．．．．．．．．．．．．．．．．． each Erie Drupper，1，3＋5 ohmas， lof ohma，each．．．．．．．．．．．．．．
Bux．$\&$ BA Nuts asd Eolte， Bux．I BA Nuts ame bolta， Intervabive Transfurners $\mathbf{E} \mathbf{x}$ ． Gquip，each．．．．．．．．．．．．．．．．．． High to low impentantee hear－
phone units（insert in lead）， phone units（insert in lead）， carin
cering，rarious colours，I Mains Switeh， 2 thoie dxing， S．P．，each．．．．．．．．．．．．．．．．．．．． Yuxley Switch， 3 P．， 3 B．， 3 Y．，ewh．．．．．．．．．．．．．．．．．．．．． eacll …．．．．．．．．．．．．．．．．．．．．．．． each Carto．．．．．．．．．．．．．．．．．． 4，50 v．，eath．．．．．．．．．．．．．．．．．

5／6

WHEN ORDERING PLEASE QUOTE＂DEPT．P．T．＂

MOULDED MICA CONDENSERS All by well－known makers．T．C．C．， Dnb lier．Hunts，etc． $01601(100 \mathrm{pF})$ ，
 $0005(500 \mathrm{pF})$, （101（1，610 pF）， O1（ 10,000 IF），etce All 4de．each Filly insulatel．DUK ohms，i meg， 1 meg， 2 meg． $1 / 6$ ea．

MAINS TRANSFORMER
 somat fi． 3 r．．． 3 a． $11 / \mathrm{e}$ ea．
YAXIEY SWITCA 1 pole 9 －way， DRYDEX TORCHES AT BIG OPTS Penlight DCTIONS
2 PT ＇s Penlight，chrome，clips
into pocket like a pea．．．．．．．1／7 ea． 2×5 Handylite（colonred）
suitalle for ladies＇haradhugs $1 / 7$ ea． Yis Candieste（colonired）
ideal for child＇s bedroomn．．．3／6 ca． Prices inciude bulb but exclude baiteries．
colfaro High Fifelity Pick－up for staudard records．Listerl $46 / 5$ ．Our Price 35 －ent．
METAL TUBULAR CONDENSERS （WIRE ENDS）

 o0t ：1，（200）v．．．．4！d．car
T．c．C．Metaimite， .02 mill．
350 v．．．．．．．．．．．．．．．．．．．．．．．8d．ea
Sprague，akRIAL RODS
Copper Platerl Tubular Rods 12 in make any length Rool Acrials．4d．ea． CHOKES $1 /$ ea H．E．PII COIL FORMERS
Altadin Coll Formers fin．
Cores．．．．．．．．．．．．．．．．．．．．．．．．．．9d．ea． Altaslin Coil Formers in．
emaplete with Jron Dust
（＇ores．．．．．．．．．．．．．．．．．．．．．．．6d．ea． dia．lin．long． 4 Ribs．．．．．．．．．5d．ea． PUSH BACK WIRE
T／0176 size．Colours av wilable．
White．Blue，Gricen．．．．．．．．．2t．at．

Westectors，WX12，WXf，
shiver mica condensers ${ }_{30}$ Dozens of sizes available，inctur ${ }_{300}^{30} \mathrm{pF}, \mathrm{pr}$ ， 300 pF ，Price 3 dd．ca．

\star b．S．R．Monarch auto－ MATIC RECORD
＊These CHALS will autochange
on all thrce speeds， 7 in．，
on an．aud l2in．They \＆ plá MLXAis fin．，IUin．
thul 12 in．records．
\star They have separate
\star sapthires for L．P．and 78 into position by a simpl
＋switeh．
Minimumbaseboard size re－
\star \｛inires llin．\times 12！iti，with height ahove 5 fili．，and
height holow bateborrd
＊2jin－A bulf purchase erables in to offer these BRAND YEWY UVETS at
＊this exceptional．price． These inits tre beantifuly
k flnislied in erean enzmel with cream laketite ram． －NSTIUUCTIONA，88．19．6． p＇us：$: /$ cariage
大 大 \star 大 $*$ 大 LOUDSPEAKER UNITS R．\＆A．loin．Mint
plesser fin．hightwight unit $10 / 6$ ean Plessey 6 in．lightweight unit 18／8 ea．
Plessey Biti．．．．．．．．．．．．．．．．．．．．．．．17／6 ea． Plessey Bith ．．．．．．．．．．．．．．．．．．．．． 1 ？ fomer ．．．．．．．．．．．．．．．．．．．．．．．．．．．18／－e：e． Truver fifil．Wafer dype．．．．．20／－ea Plessey 8 in．liphtweioht unit $17 / 6$ ea Matins energised sia．unit，
 Mans energisel blin．unit，
fitio $17 / 6$ ea．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

TERMS：Cash with order of C．O．D．Postage and Packing charges extra，as follows： Orders value $10 /-$ add 9 d ． 20／－add $1 /-$ ； $40 /$－add $1 / 6$ ；$£ 5$ add $2 /$－unless otherwise stated． Minimum C．O．D．fee and MAIL ORDER ONLY

SMITH'S FOR TECHNICAL BOOKS

Books on radio theory, practice and maintenance for the beginner and books on new developments in circuit design, new components, reethods of application, and the established text books can be obtained through your local Smith's shop or bookstall. Books not in stock at the branch can be quickly oblained îrom Head Office.

W. H. SMITH \& SON

FOR BOOKS ON ELECTRONICS

Head Office: STRAND HOUSE, LONDON, W.C. 2

Commercial Television

 CONVERTER KITComplete kito oarts including valves. ready wound TELETRON punched down to the last nut, and bolt. Suitable T.R.F. or superhet receivers. PRICE E2 15s. Od. Circuit details, 6d. post paid.

DEMONSTRATION MODEL WORKING.
MIDLANDS READERS-Build this wel!-tried Telecron Convertor for your own programme-NOW.

```
                                    EAND III AERIALS
```

Single dipo'e loft or room use
3 element yagi loít aerial $\quad . . . \quad \cdots \quad$... \quad 7/6
5 element yagi loft aerial $\quad \ldots \quad . . . \quad . . . \quad . .$.
Belling Lee Diplany other rypes in stack Lee Diplexer tuned filter For H or X
Airspaced low oss coaxial cable TV aerial manual
... \quad.

SMALL POWER UNITS

No. I, A.C.mains. Output 250 V $50 \mathrm{~mA}, 6.3 \vee 1.5 \mathrm{~A}$. Ideal for F.M. Tuners, etc. Comp'ece kit. with diagram, ± 2. No. 2. A.C. mainz. Output 200 y . $25 \mathrm{~mA}, 6.3$ v. 0.6 A . Specially designed for Band III converters. Complete kit with diagram, $£ \mathbf{I} .10$.

HOME RADIO OF MITCHAM
187, London Road, Mitcham, Surrey. MIT 3282

SOLDERING?

 leating. Easy soldering on hard-to-reach jobs. Ready for action in 6 seconds. Permanent alloy ip - lasts indefinitely with normal use and care. Weighs only 24 ozs. Special loop for hanging. Available in $110,200 / 220,220 / 250 \mathrm{v}$ for A.C. only. $50 / 60$ cycles (60 w .)
The ideal tool for any Radio-TV-Telephone Mechanic or Amateur. Ons Year's Guarantee Sole Distritutors:-

S. KEMPNER ITD.

(Dept. P.T.), 29, Paddington St., London, W. 1 Phone: HUNTER 0755

THE FOREIGN MARKET

r HE special importance of filmed programmes can be realised from the fact that there are 14 or 15 countries which are "in the market " for products for their TV stations using English language. Many more countries are possible purchasers if the feature is of a "dumb" kind--i.e., visual comedy, not relying on dialogue or features to which local language commentary can be readily added. There are many TV films now being made in England at a cost far in excess of what their promoters will receive from ITA transmissions only. The makers are relying on the Empire and foreign market for their profits and merely hope to break even on the domestic TV field. "Packages" of 30 or 40 half-hour features are finding a ready sale. But costs are mounting and so is the demand in some countries for quotas or other protection against importation of foreign-made TV films.

ISLE OF MAN ENIGMA

0V a recent visit to the Isle of Man I was fascinated by the variety of TV aerials erected on the houses in various parts of the island. In some localities horizontally disposed dipoles were seen in the same street or even on the same house as vertical dipoles, and the multitude of variations in folded dipoles, directors, reflectors and so forth was quite extraordinary. This is accounted for by the geography of the island, which is dominated by the $2,000 \mathrm{ft}$.-high Snaefell mountain, which, with other high points, considerably restricts the range of the BBC 's relay station near Douglas Head. A leading radio dealer in Douglas agreed with the official statement that the Carnane transmitter on Channel 5 was probably reaching 60 per cent. of the island's popu--lation, but that was because 60 per cent. live in the neighbourhood
of Douglas. Many viewers on the east and south of the island still received the best pictures from Manchester on Channel 2, while the west and certain localities in the north and south obtained the best results from Belfast, which transmits horizontally polarised pictures on Channel 1. I saw excellent pictures on sets in Douglas tuned to the local relay station, and not once did I see the vertical line which is superimposed upon the picture when the relay quality is inferior for interference reasons or otherwise. This vertical line indicator finds great favour locally as a guide that one's receiver is not at fault. In due course, the erection of a permanent station on the top of Snaefell will solve all these problems, if difficulties of possible interference with the Ministry of Transport and Civil Aviation station on the same site can be overcome. I suppose that in due course, if the ITA extends its
activities to the island, the chimney stacks of the more ambitious viewers will carry many more aerial arrays of weird and wonderful shapes. And all this variation of reception takes place in an island which has an area of less than 230 square miles, 33 miles long and an average width of seven miles.

D-DAY

F VERY D-Day in history seems 1 to have carried with it some popular legend about its day before ; the anxieties, the mounting tension and the last minute changes of plans are usually forgotten in the light of some popular anecdote which may-or may not-be founded on fact. Drake's game of bowls before A-Day-minus-one and Wellington's eve-of-Waterloo Ball, are incidents which caught the public's fancy. Electronic engineers working on CTV faced up to their recent Waterloo with

Control desk at the new ITA station at Croydon. The main transmitter hall is visible through the control room window.
an equanimity which, in the light of many last-minute improvisations, verged upon oriental fatalism.

CTV-DAY-MINUS-ONE

THE technical plans had been worked out to the smallest detail, even to alternative alibis for technical hitches. The operation was in hand with all ranks at their posts. What, therefore, could be more appropriate on CTV-Day-minus-one than to discover several of the "top brass" of commercial television at a trade dinner at the Savoy Hotel, including Paul Adorian of Associated Rediffusion and Norman Collins of Associated Broadcasting Company. The dinner was given by the MoleRichardson Company, whose lastminute deliveries of studio lighting equipment at short notice, together-with the resources of their hire service and mobile generator equipment, were making CTV-Day possible. The newsreel-ah! the newsreel-that was the item which gave rise to most anxiety. For the highly specialised organisation of a newsreel is as complex as that of a daily newspaper, but in this instancé, built up largely on borrowed and improvised equipment owing to unforeseen delays in the delivery of much of its own plant. The result, however, was highly creditable, and the ITA News and Newsreel shows indications that it will be both more human and rather more sensational than the BBC newsreel. I must admit that I had expected a format on the lines of the first BBC news-reels-an all-motion picture reportage in magazine style, with lively musical background throughout. Visible newsreaders seem to have come to stay and there is no doubt that Chris Chataway scored a triumph.

The impact of that first night's ITA programme was felt by the radio dealers next morning; orders for converters and Band III aerials flowed in by the hundred. The cautious had awaited to see what it was like on their friends' sets before spending the $£ 10$ odd. Now they will have to wait. In some districts, dealers have waiting lists of hundreds who have suddenly decided to invest in the additional aerial ironmongery.

LONG SHOTS

OFTEN wonder whether some BBC producers have abnormally good eyesight or whether they
monitor their transmissions on extra large C.R. tubes. Many weekly features, variety shows and :TV ballets now include ambitious " production" numbers in which numerous performers cavort about elaborate settings like ants in anthills. At least, that is what it looks like on miy 12 in . screen at home. I realise that such ambitious stage mountings are probably impressive to the live audiences at the Television Theatre or al a Radio Exhibition but they leave a large proportion of viewers rubbing their eyes. Even that very experienced producer, Ernest Maxin, seems to have fallen into this trap in a recent Variety Parade. Lorral Desmond was a good enough singer and a strong enough personality not to require the elaborately contrived build-up with four immaculate dancers singing her on to the scene. Later in the same programme, Miss Desmond called Dave King up from the audience and put over an effective duet with him. But the best TV material for the viewer in this particular Variety Parade was the return visit of musical clown, Hal Monty, whose amusing antics were entirely concentrated upon the viewer, not the TV Theatre audience. Ernest Maxin kept his cameras close during this lum and the result was hilarious.

TELEVISION SOUND

DOOR sound mixing on the beginning of "Giselle " draws attention to the shortcomings of
this side of the business, both on the BBC and ITA. The principal fault appears to be that vocalists and commentators are drowned in a heavy sea of background music, which is often of a type that cuts through dialogue, however low it is monitored. Musical directors and producers, overwhelmed with the problems of the vision side, often forget elementary rules about these musical backgrounds. A musical background of brass, saxophones or pizzicato strings effectively snuffs dialoguc unless it is held down at a very low level. When a vocalist is putting over a numbeit in which the lyric is important, diction should be clear and the orchestral background subdued, mellowed with a little artificial echo. Orchestrations should be designed to assist the voice not compete with it. The CTV engineers have been sludying this problem carefully and, with recorded sound, are able to carry out careful pre-mixing when the scenes are photographed on film. The latest move is the adaptation of four-track magnetic sound for television film recording. Originally used for the stereophonic sound track that accompanies the magnetic sound versions of CinemaScope pictures, this provides a convenient form for recording separate tracks of dialogue, musical vocal, orchestral and effects tracks. When playing off for TV transmission the tracks can be mixed as desired.

General view of the scene at Wembley on opening day of the new ITA service.

BAND 3 T／V CONVERTER－ $186 \mathrm{Mc} / \mathrm{s}-196 \mathrm{Mc} / \mathrm{s}$ £2－5－0 post free．

This Unit comprising orilled chassis， $7 \mathrm{in} . x$ 4in．$x 2 \frac{1}{2}$ in．，two mimature valves and met． rect．，wound coils，res．，cond．，etc．，is a slightly modified version of the circuit shown in Wireless World，May，1954．It has proved itself highly succersful－over 1,000 sets have already been sold to buyers all over England． We invite you to vesit us and see it in operation for yourselves．Suitable for most types of T／V sets．T．R．F．or Superhet．Blueprint and circuit details will be sent on application by
return of post， $1 / 6$ ，post free．Supply voltages required $200-250$ ү．， 20 mA H．T． 6.3 v． 1 a． L．T．
Power pack components to fit chassis as illustrated， $30 /$－extra．Complete set wired， tested and aligned ready for use 20／－extra． Band 1，Band 3 Ae switching can now be added，switch kit，7／6．Full range of Band 3 aerials in stock．Adaptors from $7 / 6$ per set， dipole from $6 / 6$ each．
Band 1－Band 3 Cross－over filter unit， $10 / 6$.

Volume Controls Midget Eniswan type． long spindles．Guaran teed 1 year．All values 10,000
obms．
ohms．

No Srw．S．P．Sw．	D．P．s\％．	SP
3／－4／－	4／9	spaced polythene．SU
COAX PLUGS	．．．1／2	ohm Coax tin．dian．
SOCKETS	．1／－	Stranded core．Losees
COUPLER	1／3	cut 50\％．

80 ohn STANDABD UOAス Polythene zin．dian Polythene instated． 8d．yd．
SPECLAL．－Memi－air space polythene su Stranded core．Losees ent 50\％Of．Yd．

BALANCED TWIN FEEDER per ₹di．6d． 80 TWIN SCREENED FEEEDER per yd．1］－ ohm 50 OHM COAX CABLE 8d．per Yd．，1sin，dia． TRIMMERS，Geramic，\ddagger pí，jujui，gid 100 pf Bechive Type－m to 8 pf or 3 to 30 p／． $1 / 3$ each． RESISTORS．－Trei．values 10 ohms 10 megohms Ca\％CARBON

WIRE WOUND	
5 w	） 25 dhme－
10 w ，	10，000
15 y ．	）obins
$亏$ \％．	－ 75.000
	$\} \begin{aligned} & \text { is3，690 } \\ & \text { ohans }\end{aligned}$

 $1 / \sim .25$ Hunts．1／6． 5 Hents．1／9． 11 1，500 v．T．C．C （Rimplex）．3／6．．001， 6 kV ．，T．C．C．，5／6．． 00112.5 kV ＇T．C．C．，9／6
SHDER MICA CONDENSERS．－10\％

1% l． 5 pf．to 506 pf．， $1 / 9$ ，pit5 pf．to $5,000 \mathrm{pi}, 2 /-$

3 VALVE AMPLIFIER
With variahle Tone and Volume controls， 3 Midget B．V．A．vilves． 4 watts output．Neg．feedhack． Chassis isolated from Mains．A．C． 20 （h） 2501 v．A yuality amplifier at an ecombrical price．PRIGE \＆3．19．6．Ciut． $2 / f$ ．Wired and lested， $15 /=$ extra． Circuit and instr．iree．

ALTi WAVE RADIOGRAM CHASSIS THIEEE WAVEBANDS．FIVE VALYES
S．W．： $6 \mathrm{~m} . \mathrm{T}$ m．LATFEST MIDGET
M．W． $200 \mathrm{~m} .-5 \mathrm{~F} 0 \mathrm{~m}$ ．
L．W．Sut m．－2， 1000 m
B．V．A．
SERTES．
Brand tew and ciuamanteed．A．C． $600 ; 200$ y．Four position Wavechange Switch．Short－Metitim－Long－ （iram，Tick－up connections．Figh Q iron－dust cored conls．Latest circrit teebnighe，delayed A．V．C． and Neqative ieeduack．Output approx． 4 watts．
 4 4in．harisontal or rectical type arallable，lit by ： 2 pilot Thmps．Four Knobs suppled．Walnut or ivory tor choice，a igned and cal ibrated ready ior use．
Chassis isolated irom mains．PRICE fo 15,0

BARGAIN VALUE IN RECORD CHANGERS

kecommended for above chassis

B．S．R．MONARCH．－Iatest Molel 3 sp ．Auto－ Chamer Miser Unit．Prunous Mactidise， 7．Ini and Liin．Record telector．Moferl Hi－Fí reproduction．As usetl by leading Hanusacturers．Eargain price．
$9{ }_{2}^{1}$ Gns．post free．

HEW

$\begin{aligned} & \text { NEW } \\ & \text { BOXED } \end{aligned}$							
12.5	7	37	8／6	EF4？	1016	MU14	
18．7	$7 / 6$	68． 7	$81-$	EF50		1＇CC8	12
1T4．	$7 / 6$	6 V	$7 / 6$	Mndlard		PCFF	18
184	$7 / 6$	6X．	816		101－	PCl\％	12
33_{4}	81－	6 X 5	$81-$	ERat		1 LC 1	12／
3 V 4	81－	EA50	2／－	Eguip．	5／6	$1 \times 18:$	10
306	3／6	EBC41		E480	1016	L＇L83	12／
574	$8 / 6$		$10 / 6$	EPSG	13／6	EYSM	11／
AM6	$8 / 6$	ER91	$7 / 6$	EF91	S／6	PY8！	12／
ATS	8／6	LiBC53	8／6	EL」1．	11.6	PY83	10
Cid6	10／6	ECC83	12／6	FL84	12／6	SPil	
［6M	$3 / 6$	ECA 42	10／6	EM80	12／6	SP61	
$6 \mathrm{K7}$	8／6	ECLSO	12／6	EY51	12／6	U22	8
6 Ks	$9 /$	EF39	$7 / 6$	EX40	10／－	2.7	12

SPECIAL PRICE PER SET
1TR $9,1 T^{4} 4$ ，1S5 and 354 or 3 V 4 \qquad $27 / 6$ 6K8，6玉7，6Q7，6V6，5Z4 or 6X：

SPEAESER FREP．Expanded Bronze anotised

ELECTROLYTICS ALL TYPES NEW STOCK

\section*{Tubular Wire eur 18＋16／450 v．Hunts 5／} $25 / 25$ ．., $56 / 12 \mathrm{v}$ ．$\quad 1 / 9 \quad 16+16 / 450$ v．H．E．C． $5 / 6$ $34 / 50 \mathrm{r} .4,500 \mathrm{v} \quad 2 i-16+15 / 450$ v．T．C．C． $6 /$ 1019.5 v． 95109 v．，Dub． $5+8300$ v．Dub． St 40 ． ra ．Hunts A）Y．B．E．C． $32 / 350$ v．B．E．C． $32,300 \mathrm{v}$ D． pb $32+32 / 350$ y B C $5 /$ $32+343.50$ ．	Can Types，clips，3d．ea．	$1,000+1,000,6$
v．B．E．C．		
e／g		

 SENTERCEL RECTIFIERS．E．H．T．TYPE FLY－ BACK VOLTAGES．－K3／25 $2 \mathrm{kV}, 4 / 3 ; \mathrm{K} 3 / 403.2$
 K 3700 SkV ， $12 / 6$ ；K3／160 If kV ．， $18 /-$ ：MAINS T／9；RM3， 120 ma．， $5 / 9 ;$ HM4， 250 v． 275 ma．， $16 /-$ ． ENGRAVED CONTROL KNOBS for \ddagger in．Spindle 1 fin diann．Walut or Trory．fold flled． 16 Standard engravings， $1 / 6$ ea．Plain knobe to mateh above，labin．10d．ea．，han．तian．8d．ea．Superior Unmaken Knohs with（Gold Ring．Very stylisll and becoming highy popalar．halout or tvons $1 k \mathrm{im}, \mathrm{H}$ ，eat，；lin．，9d，ea．Pointer Knobs，Black with White Line，9d．
WEARITE＂P＂TYPE COMS．All ranges． 1 to 7 ， 2／8 ea：Osmor Q series Coils．Slag thneth．Al ranges irom $3 / 6$ ．Full range popular Conl Packs． REACTION COND．－． $0001, .0003, .0005 \mathrm{mil} ., 3 / \mathrm{B} \mathrm{em}$. MANS DROPPERS．－Silicone coated，with 2 slider elipg． 78 amp， 7,300 ohmer， $4 / 8 ;$ 1.000 ohms， $4 / 3$ ：．3 amp． 1,000 ohuns， $4 / 9 ; .3 \mathrm{amp}$ ． 750 ohwe non－crated，4／6：
LOUDSPEAKERS P．M．， 3 OHM．Richard Aller， Siv．， $16 / 6$ ： 61 in ．Goodmans， $17 / 6$ ： 7 xtin ．Ellipti－
 Plessey， $37 / 6$ ．

F．M．TUNER－UNIT（ $87 \mathrm{mc} / \mathrm{s}-105 \mathrm{mc} / \mathrm{s}$ ）by Jason． －As tested ancl appruved hy Radio constructor． Complete kit of parts to build this modem bighly successshat unit，drileal chaksis mald J．B．diat，woils and cans．t BVA mintahure ravees and all component TYPE GLASS DTAL－CAhimated in Mf／9 and edge lit by \because nilat lamps，12；extra．

Llustated handbook with 1 ull details，2／－post free．

ม.

(RADIO LTD.)

Complete Kit of Parts. Including $2-\mathrm{EF}^{\prime} 60$ and Chassis and Wiring Diagram. Voltage required 200 v at 30 mA 6.3 v. 6 amps. $48 / 6$, plus $2 /-\mathrm{P} . \dot{p}$. Or assembled and tested. 676, plus 2/-P.P. Power Supply Components. 29/..
The Unit Camplete with Power Supply. Tested and ready to plug in, $9 \boldsymbol{\sigma} / 6$.
Me/s

CATHODN RAY TUBES (Brand New) VCR97 (slight cut-off) 15/-
 VCR517C Picture full T/V Picture vCRIB9A, guaranteed T/V Picture
3BP1, guaranteed full T/V Picture Carr. \& packing on a, 301 tubes, 2/-.

BC966 A 1.F. ${ }^{2}$.

Containing 13 valvos 3-7193, 7-65H7, 3-686 and fan outpit 450 v . 69 mA with three-speed geared motor plus 4
relays, condensers and relays, condensers and dition. $35^{\prime}-$, carr. 5%.

Type FR CRSTARS Frequencit 243 Fundamental Spacing. Marked in fortit.
 $\begin{array}{lllll}5740 & 6205 & 6775 & 7650 & 8025\end{array}$ $\begin{array}{lllll}5750 & 6225 & 6873 & 7675 & 8040 \\ 580 \hat{6} & 6275 & 7000 & 7706.6 & 8250\end{array}$ $\begin{array}{lllll}5800 & 6275 & 7000 & 7706.68250 \\ 5840 & 6406 & 7175 & 7773.3 & 8375 \\ 5906 & 6425 & 7975 & 7750 & 8450\end{array}$ $\begin{array}{lllll}59066 & 6425 & 7975 & 7750 & 8425 \\ 6925 & 6500 & 7425 & 7775 & 8550\end{array}$ $\begin{array}{lllll}2985 & 6500 & 7425 & 7775 & 8550 \\ 6043 & 6625 & 7473.3 & 6809 & 8575\end{array}$ $\begin{array}{lllll}6040 & 6673 & 7475 & 7825 & 8650 \\ 6140 & & & \end{array}$ Th The above are
recutting.
Brand New \& Guaranteed 10/-ea Tive FT 241A. 54tle

2-Pin in. Spacing.

 Brand New \& Cuäranteed $\% / 6 \mathrm{ea}$. FT241A $200 \mathrm{Ke} / \mathrm{s} \quad . . \quad . . \quad 10 /-$ HOLDERS FOR CRŸSTAOLS $1 / 3$ SPECIAL PRICE FOR

QUANTITIES.
AUSTR. 3-SPEED
ACKO-CHANGIRS
These are brand new in original cartons. Plays finish. List pric Cream our Price erl19/6.

VALVES - VALVES - VALVES

VE IHAVG OYER 50,000 AMERICAN AND EXGLISII VALVES IN STOGK AT MFRY LOW PMIGES. SEND $3 d$ FOR 2S-PAGE MAUSTRA'TED CATALGGUE.

CHYSTAM. MECEOPEONH: MASEETS

Ideal for tape recordino and amplifiers. No matching trans former required.

62A INDICATOR UNIT Containing VCR97 with MuMetal Screen 21 valves: 12-EF50,
$2-$ ESB34,
4-SP1,
Plus
Pots.: 2-EB34, Plus Pots.,
Switches, H.V. Cont., ReSWitches, H.V. Cont. Re-
sistors. Muirhead S / M. sistors Muirhead S / M.
Dial, Xtal, Double Deck Dhassis. ORIGINAL CASES. 6\%/6. earr. 7'6.

> HNDICATOR TNIT Unit TYPE 182 A

> 4 CR 517 Unit contains $V C R 517$
Cathode Ray 6in. tulse complete with Mu-Metal. screen, 3 Errj0, $4 \mathrm{SP61}$, and
$15 \mathrm{U4C}$ valves, 9 wire1 5U4C valves, 9 wireand quantity of resistors and condensers. Suitable elther for basis of television tull picture guaranteed) or Oscilloscope. Ofered BRAND NEW (less relay) at 67/6. Plus 7/6 carr; scope circuit included.

NEWI

LEARN THE PRACTICAL WAY

Specially prepared sets of television parts (which you receive upon enrolment) with which we teach you, in your own home, the working of circuits and bring you easily to the point when you can construct and service a television set. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business this Practical Course is intended for YOU - and may be yours at very moderate cost.

EASY TERMS FROM 15/- A MONTH

A tutor is available to give individual help and guidance throughout the Course.

Posin His coopon I abAY

Please send me your FREE book on Practical Courses:
To: E.M.I. INSTITUTES, Dept. 138 X , Grove Park
Road, London, W. 4.

```
NAME..
```

ADORESS

SUBJECT(S)
... \qquad

EXPERIMENTAL

 OUTFITS:
TELEVISION-Instruction and equipment for building a Television

 ReceiverBEGINNER'S RADIO OUTFITS - A course in basic principles.
ADVANCED RADIO OUTFITS - Instruction and equipment from which you build a Radio Recsiver.
Also for Mechanics, Electrisity, Chemistry, Photography, Carpontry, Draughtsmanship. Gommercial Art, Amateur S. W. Radio, Languages.

Over $4^{\frac{3}{4}}$ Million Licences

DURING August the number of television licences increased by 60,832 .
14,124,587 broadcast receiving licences, including 4,786,415 for television, and 283,473 for sets fitted in cars, were current in Great Britain and Northern Ireland at the end of August, 1955.

Television Receiving Licences

STATEMENT showing the approximate number of Television Receiving Licences in force at the end of August, 1955, in respect of wireless receiving stations situated within the various Postal Regions of England, Wales, Scotland and Northern Ireland.

Region			Number
London Postal...	\ldots	\ldots	1,160,211
Home Counties	\ldots	\cdots	527,038
Midland...	863,250
North Eastern...	...	\ldots	703,793
North Western...		...	698,323
South Western.			278,761
Wales and Border	Counties	:.	261,618
Total England and	Wales	\cdots	4,492,994
Scotland	266,364
Northern Ireland	\cdots	*.	27,057
Grand Total	-.	\ldots	4,786,415

First Classified Commercial TV Directory

THE Kemp's Group of Publishing Companies have published the first ever Classified Commercial Television Directory. Issued as part of the new edition of "Kemp's Directory," and also as a separate Supplement (price 5s.) it is made up of classified headings for 33 different sections of the industry.
Compiled in alphabetical order, these include : Advertising Agents with TV Departments; Animation and Cartoons; Artistes' Managers and Agents; Libraries (Film and Effects); Libraries (Recorded Music) ; Process Photography; Sample Packaging; Rehearsal Rooms; Storyboards and Visuals; Studios (Floor Space); Studios (Recording) and Theatres (Projection).

Workers Seek Orders

T^{O} missals redundancy dismissals of about 150 , employees at the Ediswan factory at Brimsdown, Enfield, decided at a mass meeting recently to send
representatives to every foreign embassy in London to try to get orders for their firm's television cathode ray tubes. The factory had been producing 10,000 tubes a week.

BBC Television Films for the U.S.A.

A^{N}N agreement has been signed between the BBC and General Teleradio Inc. for distribution throughout the United States of the BBC Television Film series, "War in the Air," for showing on television.
Payment will be in doliars on a royaltics basis. This is the first time that a BBC Television Film series has been sold in the United States.

Underwater Television Trials

VFERY successful trials were recently held on the lake at Zurich, Switzerland, using an underwater television camera fitted with a specially designed multicore signal cable which also acts as a lifting rope. The trials were carried out by Pye, Ltd.

The tests showed that by using this type of cable the time taken to sink and lift an underwater camera is very much reduced. For instance, lowering a camera to the $400-500 \mathrm{ft}$. depth usually takes
about 45 minutes whereas the new cable enables this to be done in two minutes. This great reduction is due to the absence of the usual wire hawser which makes a slow descent imperative because of the danger of its fouling the electric cable.

New Wembley Television Studio Centre

WORK on the most up-to-date television studio centre in the world is now nearing completion at Wembley, where Associ-ated-Rediffusion, Ltd., the London weekday programme contractors, are setting up their permanent studios on a $2 \frac{3}{8}$-acre site.

The centre will consist of five studios, with a master control system designed specifically for commercial television and unique in this country.

Compactness is the keynote of the design, and among the highlights of the new centre are, for the first time : full remote control of all telecine facilities, comprehensive lighting control panels that can be operated single-handed, permanent viewing galleries overlooking the studios for visitors, and special equipment for achieving artistic effects of the "inlay" and "overlay" type.

An interested crowd round one of the television exhibits at the German Radio and Television Show.

First Station for India

ADEMONSTRATION of closedcircuit television has been given in Delhi, India. Dr. B. V. Keskar, India's Minister for Broad. casting, has stated that trans missions will begin from Bombay late next year or early in 1957 at an initial cost of $£ 35,000$.

The reception area will not be more than 25 square miles during the transmitter's experimental'stage.

Amalgamation in Mexico

BECAUSE Mexico's three commercial TV services have been transmitting programmes at a loss, they have decided to amalgamate into one group-lo be known as Tele Sistemax Mexicano

The immediate aim of the combined stations is to provide the public with clearer pictures and better programmes at less cost.

BBC Station in Jersey

THE BBC announced that the television service to the Channel Islands started on an experimental basis from the new station at Les Platons, Jersey, on Monday, October 3rd. The station operates on Channel 4 (vision $61.75 \mathrm{Mc} / \mathrm{s}$, sound $58.25 \mathrm{Mc} / \mathrm{s}$) and has an effective radiated power of I kW. The transmissions are horizontally polarised.
For the first few months the service from Les Platons will be experimental because the station will obtain the television programmes by radio reception from the temporary television transmitter at North Hessary Tor, in South Devon, or alternatively from the more distant station al Wenvoe, in Wales. This arrangement will enable the BBC to provide transmissions in the Channel Islands earlier than would otherwise have been possible, but it means that until North Hessary Tor is.working on full power early in 1956 there may be times when radio propagation conditions make reception from the mainland unsatisfactory. If during this experimental period reception of the picture becomes so poor that it cannot be re-broadcast, it will be
faded out completely and replaced by a local test signal which appears on the screen as a vertical white bar. This will be done so that viewers may know it is the rebroadcast which is at fault and not their sets. If the picture falls below standard, but is not poor enough to be switched off altogether, the white bar will be radiated for two seconds every three minutes so that the viewer may realise that the fault is not in his set.

Agreement with the British Horse Society

THE British Horse Society in conjunction with the British Show Jumping Association, announced here that they had antended their existing agreement with the BBC so that the BBC Television Service are given the exclusive television rights at the International Horse Show, Horse of the Year Show, and the Threeday Horse Trials at Badminton and Harewood until the end of 1956.

The BBC have emphasised that they are willing, subject to satisfactory payment, to make available a "feed" of part of their trans-
missions to any other organisation.
The BBC Television Service would also, in the best interests of the sport, continue to televise only excerpts of the various major competilions.

Television Test Transmissions from Lichfield

TT has become necessary to modify slightly the times of transmissions from G9AED, the "Belling-Lee" band 111 television test transmitter from the I.T.A. site at Lichfield.

The revised times are
Commencing Monday, October 10th, Monday to Friday 10 a.m. to 1 p.m., 3 p.m. to 6 p.m. and 7.30 p.m. to 8.30 p.m.

Saturday, 10 a.m. to 1 p.m.
No transmissions on Sundays or bank holidays.
It is the ultimate intention to commence transmission at 9.30 a.m. and as soon as this is practicable, viewers will be advised by vocal announcements from the transmitter and by announcements in the trade press.

This is not an I.T.A. transmitter nor are I.T.A. responsible for quality or material.

A general view of the permanent headquarters of the I.T.A. at No. 14 Princes Gate, Knightsbridge

The Editor will be pleased to consider articies of a practical nature suitable for publication in "Practical Telerision." Stuch articles should be written on one side of the paper on!y. and should contain the name and adaress of the sender. Whilist the Editor does not hold himself responsible for manuscripts, esery effort will be made to renirn them if a stamped and addressed envelope is pnciosed. All correspondence intended for the Editor should be addiressed to : The Editor," Practical Television," George Newnes, LId., Tower House, Southamptori Street; Strand,- W.C. 2.

[^0]
TASKYS RADTO
 "THE UNIVERTER"

A Band III Converter for home-constructed or factory-made Band 1 eceivers. Uses two 6AM6, one 12A7M one in Cabpinet. Post free d $9 / 9 /=$ The Book, containing circuit diagram, wiring instructions and $3 / 6$ components list. Post free sto prices on request.

TELETRON BAND II CONVERTER COIL SET

For use with r.R.F. and superhet Band I TV se Circuit, wiring fiagrams, aligaments and full detail. with each $\mathbf{1 5 / =}$ sel. Post
Complets Kit to build the Teletron Band III Conver er, including chassis.
condensers, vatwos. etz., with full condensers, valvos, ets., witi intructions ang diaram. $48 / 6$ Post 1/6.

42, TOTTENHAM CORRT ROAD, W.I.

THREE WAVEBANDS FIVE VALVES
M. W. 200 m . 200 m
 13 months Guarantek, yith luin, 1.M. Speaker. A.C. $200 / 2,200$ v. W/e switeh, fhort-Meailum-LongGram. A.V.C. and 符egative feedloack. 4.2 watts.
 horizontal or verticat available. 2 Pilot Lamps, Four Knobs, Yalnut, or Ivory. Aligned and cailbrated Chassis isolated fron mains. Phice $810 / 15 / 0$. Without 10in. Speaker, 29/15/0. Carr. \& Les., $4 / 6$. CONDENSERS. -Newi stock. 0101 mid. 7 kV .
 Micas, Bd.; Tuhular 500 5. 001 to . 0 m mid., gd.;
 CRRAMTC CONDENSARS.
CERAMLC CONDENSARS.-500 $\mathrm{v} .$, . 3 pi . to . 01 SILVER MICA CONDENSERS.-- 10%, $\overline{\text { B }}$ pf. to 500 p1., $1 /-\quad$; 600 pf . to 3,000 Dí. 1/3. DITTO 1%
 $2 / 450 \mathrm{v}$. $2 / 316 / 51500 \mathrm{~V} . \quad 4 /-18+16 / 450 \mathrm{v}$. 5
 $16 / 500 \mathrm{v} .4 /-$ SCREW BASE $32+32 / 400 \mathrm{v}$. 165/25 v. $1 / 9-1$ TYP $512(69+100 / 350$ v. $11 / 6$
 $100 / 25$ v. $2 /-116 / 100 \mathrm{v}$ 4/-15.01/6 v . $4 / 8$ 1: 1.25. 25% boost, 2 v., 106 : 4 v., 1016 ; 6.3 v., 10/6; 10.8 v., 10/8:13.3. Y., 10/6. Ditto mains primary 12/6. MALNS TYPE Multi Output.-2, ${ }^{21} 3$,
 put, $2,4,6.3 \mathrm{v}, 7,7$ \%., $10 \%, 13 \mathrm{r}$, two taps
boust output 25% or $0 \%, 21 /-$. boost output 25% or $0 \% \% 21 /-$

$$
\begin{aligned}
& \text { B.S.R. MONAREH 3-SPEED MIXER } \\
& \text { CHANGERS ACOS GP3\% XTAL HEADS,- } \\
& \text { New in Maker's 1ooxes, f9/19/6, post jree. }
\end{aligned}
$$ 3*0, HARROW ROAD, PADDIGGTON, W.S. Telephone: CUNingham 1975si24.

BAND III CONVERSION FOR ALL!

F. Consmercial TV has commenced and the demand for these Units is certain to exceed supplies. Order NOW to avoid disappointment.

MUSewn 2605
 contact panel peoviding the necessary comnections to the valves and circuit. Supplied with coils for tands I and If (Lonion and Eirmingham), BBC and ITA.
This type or tuner enables you to clip in prealigned coils for the reception of any station not already prowided for in Bands I, II and III, while afording raximum gain, high stability and minimum roise, which are essential in a modern tuner. I.F. output
other I.F. catputs.
other 1.F. cutputs.
Valves used : PCC $34, ~ R . F . ~ d o u b l e ~ t r i o d e . ~ c a s c o d e ~$ R.F. ampliner. PCF80 triode pentode f.c. and R.F ampliaer. PCrio triode pentode f.c. and tions and circuit diagram supplied. Price $\mathbf{9 9 / 6}$ tions and circuit ajagram supplied.
Post $2 / 6$. Knob, $3 / 6$ extra.

PLEASE ADDRESS MAIL ORDERS TO HARROW ROAD

Famous make. Covers Bands I and III. Complete with valves EF80 and ECC81. Ceramic valveholders, finest guality components. precision made. Switch and fine tuning. I.F. output $20-25$ and $40-50 \mathrm{Mc} / \mathrm{s}$. Frea. coverage with full details and dircuit dupple
$\underset{\text { Post }}{\text { LASKY'S }} \underset{3 / 6 \text { PICE }}{89 / 6}$
Knob, 2/9 extra

AERIALS OF ALL TYPES

Large stocks. Band I, Band III Band I/III and F.M. Indoor, loft or outdoor.
800 ohms Feeder, por yard, 9d. 80 ohms Co-avial, doz. yds., \%/6. At-eored Co-axial, per yd., 9d.

Any length supplied.

CHANNEL. TV TUNER

 with full£8-19-6 (Limited Period)

Brand new Plessey 8 -speed Autochanger Mixer Unit for 7, 10 and $12 i n$. Records. Twin Hi-Fi Xtal Head with Duopoint sapphire stylus. Plays 4,000 records. Sprung monuting. Baseboard required, 151 in . FAMOUS Hight 5 itin. Depth Rin. Superb Quality. Famous Make.-3 speed Single kecord unit plays 2,000 records. Starting Switch Antomaticelly places Pick-up on records, 7in., 10 in . or 12 in. Auto Stop. Basepiate 12in. x 8 in. Heigirt 2yin. Depth 1 inin. Price ${ }^{2} 7 / 15 / 6$, post iree.

T.V. PpeE-AMP.-Chmmel 1. Midget chassis

 Gin. I 5 n . x libin. Complete with coas. lead, plag ams EFsy or bFi3 whive. Brand tuew (boxed). Listed £3/15/-. Special clearance, 21/SIMPLEX TV. 12 gns. COMPLETTE KTT of parts with punched and drilled chassis ELECTE OST Gin. VCEM' Tested full picture, 22.

WIRE-WCHND POTS, 3 WATT. FAMOUS MAKES Pre-Set M-n. T.V. Trpe. Stediaril size Pote, 21 in . All ralues $\frac{11}{2} 5$ ohms to 30$)$ Spindle. 100 ohris to K., $3 /-$ en. $50 \mathrm{K},. 4 /-. \mid \overline{50} \mathrm{~K} .5 / 6 ; 100 \mathrm{~K} ., 6 / 6$. RECORDIIG TAPE. Exclusive Burgain. $1,200 \mathrm{ft}$. reels, Higlı Coercivity. Brand new, $17 / 6$.

RADIO COMPONENT SPECIALISTS

48 Hour Mail Order Service

 307, Whitehorse Raad West Croydon Open all das, THO 1665. Wed. 1 p.m.Post Bd. whers posi free. C.O.D. 1/6. Liste s.a.s.

All Boxa 1		LV		
		$3 / 6$ 3 Di 6Н6.	New \& Gaaranteed	
6/6	1/3		$2 / 8$	$5 / 8$
$6 \mathrm{AL5}$	ЕАล̆		2×2	5 Ac (1]
1555	7/6	$7 / 6$	$7 / 8$	${ }^{68} \mathrm{BP}^{\text {a }}$
6K79	O24	6F6	3-BEB	EFs\%
EB91	1 R 5	6E5	BCal	10/6
$8 / 6$	183	6 K 8	EF39	BAM6
$6 \mathrm{AC7}$	1 T 4	6SA7	12 $\mathrm{P}_{1} 2$	d.75
6 ATG	154	68 L 7	1:1.32	ECLBO
6 C 3	384	6 VGG	HVROA	EF\%
68N7	$3 \mathbf{4} 4$	6×4	122.	LFSM
7 7 7	6BE6	6×3	UF4	ELil.
ECH 42	际W6	12 AX 7	V123	YY32
126	All B. ${ }^{\text {P }}$	A. Jypes	at 1951	12 K 4
EYol	Lo	Tax Pr	ces.	2584

Volume Controls $60 \begin{gathered}\text { otum } \\ \text { CABLE } \\ \text { COAX }\end{gathered}$ eed ${ }^{2}$ pindes. gmarans | 10,010 | |
| :--- | :--- |
| No sw. S.P.Sw. D.P.Sw. | Stranded core. 9d. |
| Losses cut, $50 \% \%$. | | $3 /-\quad 4 /-\quad 4 / 9$

EXT. SPKR. TYPE $3 /-$ STANDARD 7. yd COAX PLUGS ... $1 /-$ DOUBLE SOCEET ... $1 /-$ BALANCED TWIN FEEDER, Yd. 6d. 80 or 300 ohms. TYANA.-Midget soliering fron. 2007220 v. or 20/2.50 v., 14, 11. Triple Three mori. With detachRESISTORS : All values: 10 ohms to 10 meg.
 100 ohms to 10 BLeg .
ALADDIN FORMERS and core. jin., 8d., \$in., 103. SENTERCEL RECTIFIERS.-EAT Jype. Fiy bitck Voltage.-K3/20., 2 kV., $4 / 3 ; \mathrm{K} 3 / 44,3.2 \mathrm{kV} .6 /-$ $\mathrm{K} 3 / 45,3.6 \mathrm{kY} ., \theta / 6 ; \mathrm{K} 3 / 50,4 \mathrm{kF} ., 7 / 3 ; \mathrm{K} 3 / 100,8 \mathrm{kV}$.

BAND 3 TV. CONVERTER KITS Suitable all T.V. malses
Ready-wound ponents, Punched Chessis. Cirgit diampam, 500\%F0 v. A.C. £3/101-
As Above lesy Power Pa

Punched Chassis and Wound Coils. Comnonent
list, circuit diagram, wiring jians, only is/s.

RADIO SUPPLY CO. (LEEDS)

R.S.C. TRANSFORMERS

 Fully Guarantoed.faterleaved and inminematated. Primaries 200-230-250v. 50 escereened TOP SHKOLDED, DBAD THEOLCLI 260-0-260 v 70 ma, 6.3 v 2 a, 5 v 2 a ... 169 $350+0-350$ ч $80 \mathrm{ma}, 6.3$ v $2 \mathrm{a}, 5$ v 2 a $\ldots . .1819$ 250-0-250 v $100 \mathrm{ma}, 6.2$ v 4 a, 5 v 3 a 23.9 $350-0-350$ v $100 \mathrm{ma}, 6.3$ v $4 \mathrm{a}, 5$ y 3 a 23.9 $350-0-350$ v 150 ma, 6.3 v 4 a, 5 v. 3 a $29 / 9$
 $250-0-250$ v $60 \mathrm{ma}, 6.3$ v 2 a, 5 v 2 a Midget type, $21-3-3 i n$. $250-0-250$ v 100 ma. 6.3 v 4 a, 5 v 3 a $\begin{gathered}186 \\ 26\end{gathered}$ $250-0-250$ v 100 ma, 6.3 v 6 a, 5 v 3 a. Ior R1335 Conversion$26: 9$ 31% $200-0-300$ v $100 \mathrm{ma}, 6.3$ v 4 a, 5 v 3 a 286 $350-0.350$ v $100 \mathrm{ma}, 6.0$ v 4 a, 5 v 3 a $23 / 9$ $425-0-425$ v 200 ma, 6.3 v 4 a, C.T. 6.3 v $425-0-425$ v 200 ma,
4 a. С.Т.. 5 v 3 a
4 a. С.T., 5 v 3 a
49/9
All with $200-250$ - 50 cis Primaries
1.5 a. 5/9: 6.3 v 2 a ri/6 $0-4-6.3$ y 2 : 6.3 y

$200-250 \mathrm{v} 0-9-15 \mathrm{~V} 1: 4,11 / 9 ; 0-9-15 \mathrm{v} 3$
0-9-15 v 5 a, 19/9;0-9-15v. 6a 22/9
OUTPET THANSHOKHFRRS
Standard Pentode 5,000 to 3 ohms $4 / 9$ Small Pentode 5,000 to 3 ohms ... $3 / 9$ Fi.H.T. TRANSTORMKiLS 200-230-250 v
$2 ; 500$ y 5 ma, 2-0-2 v $1.1 \cdot a, 2-0-2$ v 1.1 a
for
SHOO'FHLNG EIIOLEL
250 ma 5 h 100 ohms
100 ma 10 h 200 ohms
100 ma 10 h 200 ohms 80 ma 10 h 300 mms ma 10 h 400 ohms
 RHAR 250 V 250 ma , $11 / 9$; G. TC. 300 V $250 \mathrm{ma}, 12 / 9: 120 \mathrm{v} 40 \mathrm{ma}, 3 / 9 ; 6 / 12 \mathrm{v}$ 1 a F.W., $4 / 11 ; 240$ v 50 ma, $5 / 9: 6,12 \mathrm{v}$ F a W. W. $19 / 9$.
 All parts for converting any normal type of Battery Receiver to A.C. Mains 200-250 v $60 \mathrm{c} / \mathrm{s}$. Supplies 120 y 90 v or 60 v at 40 ma. bully smoothed and fully smoothed L. T. of $2 v$ at 0.4 a to 1 a. Price including curcuit 48.9. Or ready for use 89 extra.

ALI DRY RLCNOTHR EATLEFY HLIMINATOR KIN.-All paris tor the construction of a unit metal-case $53-4-2 i n$.) to supply Battery Portable receivers requiring 90 v , and 1.5 v . Fully smoothed. From 200-250 y 50 e/s mains. Price, inc point-to-point wiring diagrams, $38 / 9$. Or assemblod and tested at $45 / 6$
Tr. CONSOIIF CABINETG
Handsome well constructed with beautirul firured walnut veneer finish, Size 40in. high, $24 \dot{\text { in }}$. Wide, 20 in . deep. For iGin. or
17 in, Tube. Limmitubed
Limited number at only. GNS.
For callers only. Typen with fuli length doors. 10 gns. Table Model types with doors, S wns.

Dept. N.

32, THE GALLS, LEEDS 2.

 Areas. Brand New. Complete with 6FlS valve. Only $22 / 6$

Twin-Screened Feeder
44. 3 d
win-screened Feeder10dyut
 100 ma 10 h 250 ohms Tropicalised ... $\quad 3 / 11$ 50 ma 10 h 1500 hm
250 me 10 h 50 ohms
... 1199
$14 / 9$
 Primaries $230 / 250$ y 50 Sis. 48 y 1 a. $9 / 9$ 400 v C.'T. 150 ma 4 v $6 \mathrm{a}, 6.3$ v 6 а. 6.3 v $0.6 a$ 4 v $6 a, 4$ ч 3 a. 5 v 3 a, 4 v $3 a, 5$ у 2 a, $22 / 9$ $300-0-300$ v 120 ma 4 v 1 a, $17 / 6$.
EX-GOVW. T.ITT. SMOOTHENR
.02 mtd 8,000 v $1 / 11 ; 25$ mfd $4,000 \mathrm{v}$ (bluck). $4 / 9$; $.5 \mathrm{mpd} 3,500 \mathrm{v} \mathrm{Can} .3 / 6$.
HATTERY CIARGEREIIS.-COMsisting of attractive Green Crackle Caso. Transformer, F.W. Rectifier, Fuse, Tuseholder, Tag strip. Grommets, and Circuit. For mains input $200-230-250$ y .50 clo 6 v 2 a 2519 : 6 v or 12 v. 2 a. $316: 6$ v or 12 v. 4 a. 49/9. Any type assembled and tested for $6 / 9$ extra.
R.S.C. 6v or 12 v SATESRE CHARGLHE For normal A.C. $230-250$ v. $50 \mathrm{c} / \mathrm{s}$. Solector panel tor 6 vor 12 v charsing. Variable charge rate of ub to 4 AMrs. Fused, nad with meter. Well ventilated case with attractive

Guaranteed for 12 months, 69/6. Carr. 216. GATIERY CHARGWIRS.-Fov mains $200-250$ y 50 c/s. Outpat for charelng 6 v or 12 v at 1 amp. In strong metal case. Unly 19/9. Above can also be usod for electric train power supply.
K.F. NNIT TVPE 26.-Beand new. Car-
toned, 29/6. plus carr. $2 / 6$. .

To: THE BENNETT COLLEGE (Dept. K55), SHEFFIELD.
Please send me frec of charge and without obligation,
acopy of your prospectus on (subject/s)
NAME
ADDRESS
Age(if under 2 I) Please write in block letters.

The Bennett College can make you an expert TV technician

-IN YOUR OWN HOME!

Here's your big chance! The Bennctt College, famous the world over for its first-class postal tuition, now offers you a course in Television Servicing. Right away you can start adding to your knowledge of telcvision repairs and maintenance, increasing your technical ability-and making a sound investment for your future.
Studying with The Bennett College is a pleasure. You work in your own home, as quickly - or as slowly - as you like. Your personal tutor at the College sends you your lessons - and gives you his friendly help based on years of teaching experience. The College guarantees to continue teaching you until you reach the standard you wish - and all your text-books are provided free of charge.
 Send for a free prospectus today! Iust fill in the coupon opposite and post it off -The Bennert College zaill send you a prospectus free of charge and without obligation.
EXCELLENT COURSES
in the following subjects
are also offered by The Bennett College. Write on your coupon the course that interests you.

The Editor does not necessarily agree with the opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

COAXIAL HINT

IR,-The article by W. J. D. on "Coaxial Ends" on page 102 of your August issue is very good. It could be taken a bit further with advantage. Some of the generally available co-ax has a solid conductor which will snap off quickly when the feeder line sways. The multi-strand variety will have its individual small conductors corrode in no time.

Refer to the accompanying illustration. Get a piece of scrap braid, push it over the central dielectric and bring the inner conductor through as shown. Solder, but do not use too much to avoid making the braid too rigid at that point. Press the iron at point A to melt the dielectric into the brais. Allow to cool before handling.--C. MCCARTHY (Radio EI6G) (Cork).

Mr. McCarthy's coaxial hint.

BBC QUALITY

S
IR,-I would like to point out some points for the benefit of readers.
First, Mr. D. R. Boyd, on BBC quality, quotes that the BBC have " achieved the task of reproducing tape-recorded vision." As far as I know, and according to the BBC demonstration film, these telerecordings are nothing else but recording on film-just like the news reels in the cinema. The technique of recording of picture signals on tape is being developed in America (Bing Crosby Enterprise being one).

Second, Mr. L. D. Stuart on Test Card "C." The break in transmission at about 11 a.m. every day (except Sunday) is due to a change-over from low to high power (if a set has A.G.C. this would not be noticeable). The continuation of Test Card "C" after $12 \mathrm{a} . \mathrm{m}$, was announced some time ago-and as the demonstration film was made much before the extension of Test Card "C" up to l p.m.. the sentence quoted is not misleading.-P. J. Rood (Hull).

THE AURORA AND TELEVISION

SR,-For a long time I have held the view that the Aurora Borealis or Northern Lights affects television more seriously than any other natural source, such as sunlight, sun-spots, etc.

I have noticed for many weeks that, if the effect of the Aurora is blanketed out by heavy rain or snow clouds in the north, a good picture usually results.

From my experience and study of the Aurora within the arctic circle I consider that it is largely of an electrical nature in that it can, day and night, produce a standing current on telegraph circuits, as well as
affect wireless and telephone circuits or routes.
I have tried to get the BBC to do something in the matter, such as finding out the intensity of the Aurora, the height and thickness of the northerly clouds, and then include in the 7.25 p.m. Weather Report some idea of how much the picture will be affected, which would save many viewers fiddling with their sets when conditions are bad. As they refused even to consider the matter I have now submitted the idea to the Central Forecasting office at Dunstable.

Meanwhile, I have designed, made and patented a meter which gives a true reading of the actual aerial current without the use of valves or batteries, etc.

This enables me to compare one aerial with another, to judge the efficiency and pick-up and to observe fluctuations in the aerial current, brought about by the varying strength of the Aurora.

When fast-running horizontal lines appear instead of a picture, this indicates loss of signal strength due to the effect of the Aurora, sun, etc., and the aerial current drops to a low figure. This does not occur when the effect of the Aurora is blanketed out by thick, high northerly clouds.

Sometimes, when the sun has set, the aerial current will rise to a high figure for a very short time, indicating that the emission of the Aurora has. ceased momentarily, as I think it does now and then.

I find that a car with non-suppressed ignition, or a sewing machine, will cause an increase of up to 10 micro-amps in the aerial current, and it is very interesting to watch the instrument needle rise and fall as the car passes by.--J. W. Hobley (Wellington).

PICTURE DETALL

$S^{1 R}$IR,-I am rather annoyed by the repeated use by producers of crowd scenes; for instance in variety, the dancers, where they are at the back of the stage and as a result their eyes and other details are far too small to be reproduced. Is it not a fact that the spot size on most home-receivers is such that the eyes and perhaps even the mouth, under such conditions, cannot be reproduced because they are smaller than the spot, and as a result the chorus and crowd all have blank faces If I am not correct in my assumption how can one reduce the spot size so as to get these details. I might mention that on Card C I get the $2.5 \mathrm{Mc} / \mathrm{s}$ bars quite distinctly and, therefore, the smalf details I have mentioned should appear-if they are transmitted.-G. Bardon (Edgware).

BAND III RECEPTION

SIR,-I recently built your simple converter and although 1 got a picture it was very poor in quality. After much time and trouble I found that the aerial was to blame--I had made a simple dipole only. Someone told me I needed a Yagi, and on making three directors and fitting these in front of my dipole, it made all the difference. Unfortunately it also brought in London (BBC) but I am experimenting to cut this out, but I thought it worth passing on the hint about the aerial in case other readers find the same trouble.-S. T. Whitwell (N.19).

A Coilassisted POCUSSBME UNIII

AFTER some years' service a P.M. focussing ring tends to show signs of weakened flux. The adjustable magnetic shunt is eventually screwed out until it rests hard-up against the tube neck support. Correct focussing can no longer be achieved, and the unit must be replaced. A temporary remedy is to move the ring, farther back along the tube neck. But this procedure can be complicated by the presence of an ion-trap magnet which has to be positioned correctly.

Such a weakened magnet had been replaced by a series-fed electro-magnetic unit. Focus was again excellent and the extra control soon became an essential to comfortable viewing. But picture centring was no longer perfect. There was a small vacant space on the right of the screen which could not be filled. E.M. units are more cumbersome than their P.M. counterparts. They cannot be manoeuvred so easily and usually possess no provision for picture shift.

The focus component about to be described uses a discarded P.M. ring, which supplies most of the necessary field. The ring was dismantled for examination and with the view to placing a small "assisting" coil inside. But, obviously, there was insufficient space for this so it was re-assembled and considered as a whole. The measurements were: diameter, 2 inin.; width, lin.; excluding the rear pole-piece which projected slightly upwards.

The Modification

A shallow metal reel, 4 in . in diameter by 1 in . wide, was made, a good fit over the P.M. ring ; the rear pole-piece of which serves as a stop block. For insulation, two rings and a shallow tube of thin card were employed to cover the metal surface completely. This was securely glued to the metal, and well varnished with shellac. One hole was drilled low down in one side for the inner connecting wire. For shunt feed the reel is filled with No. 40 enamelcovered wire, interleaved with paper every thousand turns. Each layer received a liberal application of

Details of the device described above.

> OBTAINING BETTER FOCUS BY THE USE OF COMBINED PERMANENT MAGNET AND ELECTRO-MAGNET
> By C. E Gillingwater
shellac. To energise the coil a current of between 20 and 30 mA at 250 volts is required.

Testing

The " assisting" coil is placed in position but not connected until the P.M. focus ring has been adjusted for optimum results. The outer lead is earthed and the inner taken to H.T. positive via a 2,000 ohms wire-wound potentiometer by-passed with a $4 \mu \mathrm{~F}$ condenser. It is now necessary to ascertain that the coil is aiding and not opposingt he magnetic field of the focus ring. With minimum current passing through it, check with a voltmeter at junction with potentiometer, which must be rotated for maximum resistance. The picture will be defocused. If the gap requires closing to correct this, all is well. But if not, the leads must be reversed or the coil removed bodily and turned over.

Using the Unit

Now the control can be turned halfway and the P.M. gap closed a little. This unit was now moved forward to its original position along the tube neck and the old wooden spacer replaced. As the potentiometer is fully rotated there is a slight tendency for the picture to turn axially. But, when once the operating range has been found, and the deflection coils adjusted (if necessary), this tendency becomes very slight indeed. The coil has not been tested in a series-fed cirçit, but there should be no difficulty provided a stouter gauge of wire is used with a parallel control (500 ohms).

Results

This coil-assisted P.M. focus unit has now been in use for two months with no further apparent weakening of the P.M. ring. The focus control seldom needs touching, but it is interesting to make sure that the tube is giving the best possible picture. The over-all size of the unit is still less than that of a standard electro-magnet. Picture centring can be achieved easily with the further advantage of being able to adjust for any variations of focus from the front panel.

[^1]
LINE E.II.T. TRANSFORMEIBS REWOUND

PROMPTLY

Our 30 years' experience of winding and wave-winding enables us to provide the finest service in the Country for all types of TELEVISION COMPONENTS. We repair or manufacture all types of transformers singly or in quantity, and welcome your enquiries.

H. W. FORIREST

 (TRANSFOIEMERS) LTD.349 HASLUCKS GREEN ROAD, SHIRLEY, BIRMINGHAM.

Telephone: SHI 2483

"You can rely on Us" for . . .

ALL RADIO and EIECTRONIC COMPANENTS

One of Britain's Largest Stockists of all Leading Makes : Hunts, T.C.C., Haynes, Allen, Denco, Osmor, Weymouth, Morganite, Bulgin, Belling Lee, Teletron, R.E.P., Scotch Boy, Ellison, Elstone, Partridge, Wynall, Westinghouse, S.T.C., AVO, Taylor, Goodmans, J.B.. Wharfedale, Wearite, Acos, etc.
THIS MONTH'S BARGAIN : EF80, 9/6 each.
Suppliers to: Ministries, Development Laboratories, Education Authorities, etc.
Some of the more difficult parts you may not be able to acquire:
Tapped Vol. Controls, Linear C.T. $\frac{1}{4} \mathrm{mg}$., $\frac{1}{2} \mathrm{mg} ., 1 \mathrm{mg}$., 7/6. Linear 1 mg ., $\frac{1}{2} \mathrm{mg} ., 1 \mathrm{mg}$., 6/6. Post 6 d .
2 High Stab. $\frac{1}{2}$ w. Resistors. 2% Range, 100Ω to 2 meg., $1 / 6$ each. 1% Silver Micas up to 100 pf ., 1/-. 280 pf., 1/2. $500 \mathrm{pf}$. . 1/4. 1,000-5,000, 2/6. Post 6d. Teletron Band III Converter-Punched Chassis, 4/-. Post 6 d . Set of Coils and Circuit, 15/-. Band 111 Loft Acrials, 30/- plus $2 /$ - carriage.
Thousands of Valves, Condensers, Resistors-Caf We Help You?
SPECLAL OFFER.-B.S.R. Monarch Record Changers - New, Boxed, £8.17.6. Carriage 3/Catalogu'c, Book Lisis, S.A.E.

RADIO SERVICING CO.,

82, SOUTH EALING ROAD, LONDON, W. 5
Tel.: EAL 5737. Next Sth. Ealing Tube, 65 Bus. 1 p.m. Wed.

Band I Converters

We can supply kits or separate components for the following circuits.

practilal television

Described in the October issue. Free list available upon request. ...

THETRON

Complete kit less power unit, 55/-, Drilled chassis included.

VIEWMASTER

We shall be able to supply kits or components for this as soon as details are announced. Please write to us now, and we will forward fully detaited lise when available.

WATTS RADIO

8 Apple Market, Kingston-on-Thames, SUTHEX.
Telephone: KINgston 4099.

HANNEY of BATH offers:-

VHEVMASTER -Constructor's Envelope, 716; WB.103, 42/- : WB. 103A, $52 / 6$; WB. $104,16 / 6$; WB. $105,43 / 6$, WB. $109,25 / 6$; W.B.107, 32/6 ; WB. $108,33 / 3$; WB. $109 / 1,2$ or $3,29 / 6 ;$ WB.110, $7 / 6$; WB. $111,5 / 9$, Westhnshouse rectifiers $: 14 \mathrm{~A} 86,20 / 4$, 14D36, $11 / \%$ WX. 3 and wX. $3 / 10$ each: $36 \mathrm{FHF100}, 29 / 5$; 36EHT50, $26 / 1$;
 K3/45, $8 / 2$. Wearite Cotlsets with $L .9,30 /=$; Preamp coils, $4 /=$
pr. State channel.

TLEFKING:-Constructor's Envelope, 6/- ; Coilsets, 44/5; Chassis kit, $50 /=$ T.C.C. kit, £ $7 / 4 / 3$; RM4 rectifier, 21-; Allen Components, LO308, $40 /-\mathrm{FO} 305,21 / \mathrm{DC} 00 \mathrm{C}, 3919$; FC302, $31 / \mathrm{m}$; GLI6 and GL18, 'y/6 each ; BT314, 15/-; SC312, 21-; AT310, 301-: OP117, $9 / \mathrm{F}$
P.X.SUPIER VISOR. -T.C.C. Condenser kit, E8/6/4; Erie resistor kit, $54 / 4 ; 5$ w/w pots, $26 /-7$ Frie carbon pots, 35 /-; Allen coilGets, $44 / 6$; Allen DO/300C, 39/6; GL. 16 and GL. $18,1 / 6$ each ; SC. $312,21 / \mathrm{FC.302}$. 31/- OP. 117 output trans., $9 / \%$ Denco WA/FMA1, 21/- WA/LOT1, 42/: Denco chassis kit, 51/6; Westinghouse WX.6, 3/10; WC4A, \%/6: LW.7. 26/8: English Electric polystyrene mask, 45/8; perspex filter, 38/8; anti-coronal ring 618 : Tube sheath, 6/2; T.90L tube, inc, carriage and insurance, £29/14/10; Elac IT8 ion trap, 5/-.

MIAXI-Q (Deneo) F. MA. ELNHDER UNIT.-Constructors Technical Bulletin, 1/9, P. Free. Chassis set, r/6; Collset, 11/9:10.7 Mcts IF's, 6/ each ; Ratio discrim. trans., I'/6: Phase discrim. trans., 9/\%.

SUNDREES,-1st Quality 70/80 ohm co-axial cable, by famous maker, stranded core, 9t. yard, $8 / 9$ doz. yds. post paid. Fre-set controls, 3 watt wire-wound, all values, 10Ω to $30 \mathrm{Ka}, 5$ - each : MTO. 1 Test Oscillator, with valve, mst- ; Denco TPA. 1 TV perano with valve. 29/6: Elac ion traps. all types. $51-$ ALsio, over 100 ralues in close tolerance Silver Micas in stock from I. 5 Pr. to 5,000 Pf. 20,000 Erie resistors ex-stock in all proferred volues and wattage.
Send S.A.E. for 11 st. Please add $2 /$-postage to all orders under $\$ 3$ (any excess refunded).

L. F. HANNEY

77 LOWER BRISTOL ROAD, BATH

T.V. TUBES - 6 Months' Guarantee

14in. wide angle. £8.10.0. Picture shown to callers. $15 / 6$ ins. rarr. C.W.O. 17 m . wide angle, f18.0.0. 15/6 ins., carr. C.W.O. 12in., £5.0.0, 'Type $31 / 16$ or $31 / 74,6$ months' guarantee. Type
 T.V. Onassis S/het $97 / 0$
 fine trans. : 10 controls, etc. Famous mafr. Drawing FREE.
POSW 2/ER PACK, 29/6. 5KV. E.H.T. 325y.-250 m.a. Smoothed H.T. heaters 6 v.. 5 amp. 4 v., 5 amp, 4 v., 5 amp, with extra windmig or 2 or v. tuces. carr., 4%.
TV. SOLIND \& \&iSION STRIP, \&\%6. Superhet, 10 valve
holders. Pos i/G. II25 RECLIVER, \%/9. Complete with valves. New人.W.D. Fost $2 / 3$.
.H.F. 24 KECETSTER, 10/6. New X.W.D. Complete with aleso
DHNCO IRADIOGREAB CIIASSIS, $6 \% 6$, 4 w.band. 5 valve Sthet. Famous turret coil tuning complete with dial and knobs. Carr. A/6. Set of 5 valves 50/- extra. 8in. P.M. Speaker with O.P. Trans. to suit. I2/6 extra.

BRIDGES $\frac{1}{4}^{\prime \prime}$ all-purpose
 TOOL POWER DRILL
 An Engineer's tool at the Handyman's price!
 No more vedious hand labour ! TOOLPOWER simpli fies drilling, sawing, polishing, satding, turning and peint and rust removing. 'there's a Bridges accessory available for all these purposes-and all powered by the $\frac{1}{4}$. All-purpose Drill, the most advanced and nowerful of its kind in the world. Guaranterd. With G.P.O. approved suppressor.
 DEPOSIT $7 /$ ard 8 monthly payments of $28 /$
 Can price $87,1,{ }^{2}$
 LAFCO COMPOUNDS LTD.
 $\binom{$ Dapt. }{ PV2 }
 3, Corbetts Passage, Rotherhithe New Road, London, S.E. 16

SCANNING COILS, $6 / 10 \mathrm{kY}$. R.F., E.H.T. UNITS, E.H.T. and OUTPUT TRANSFORMERS, LINE FLY-BACK E.H.T. UNITS

Write for illustrated list (Publication 75)
Coil Kit of two for Aug "P.T." Band 111 Converter 5/Kit of three 7/5. Kit of four for October Band III Converter $6 /$

HAYES BADID LID, $\begin{gathered}\text { Queensway, Enfield, } \\ \text { Middlesex. }\end{gathered}$

SOME INTERESTING NOTES ON THE STEREOSCOPIC

EFFECT THAT CAN BE OBTAINED FROM VIEWING
NORMAL FLAT PICTURES
By W. Groome

THE three-dimensional effects which viewers occasionally claim to have seen on their screens are not always figments of fancy, for what they have observed by chance can be repeated by anyone receiving a reasonably good picture. It is not, of course, stereoscopy; that is only possible by the simultaneous presentation of separate pictures to each eye. But, as this article will attempt to show, and as the cinema is indisputably proving, effects that are strongly three-dimensional can be obtained without the inconvenience and discomferts of the usual forms of stereoscopy.

Because they are spaced about two and a half inches apart our two eyes receive different views of the same subject. This can be checked by looking at any object with one eye at a time. If the evidence of the eyes were accepted by the mind exactly as received we would "see double" even when sober, but fortunately the images are merged by a mental process. It is fortunate, too, that the process is an unconscious one, for the job of comparing and registering two angles of view would be beyond the abilities of our conscious minds.

Another feat of the mind is a kind of trigonometrical calculation which would baffle many if attempted consciously. When looking at any scene the eyes converge, i.e., they turn inwards, quite sharply for near objects and to lesser extents as the distance increases. The amount of movement is used by the mind as an indication of distance to reinforce the other clues of three-dimensional depth. Although this does not shout out loud that the distance is so many feet and inches, it does help to locate relative distances.
Of these two-eyed functions, the first is essential in stereoscopy-the simultaneous presentation of two views of the same scene, one to eack eye. The other, convergence, accounts for the disconforts of it, for the dégree of convergence imposed by the viewing system may conflict with the other evidence contained in the detail of the picture.

Contrary to the opinion of some stereo enthusiasts, the impressions of depth and distance are by no means entirely dependent upon the use of two eyes, and many indications are of a kind that can be appreciated by one only. On the other hand, a stereo pair which supplies these other clues inaccurately can be distinctly unconvincing. Some of the things that convey the third dimension when viewing a scene at first hand are : perspective, the diminishing of size with increasing distance, the vanishing of lines to the horizon, and the length and angles of cast shadows. 'These can all be accurately represented in a picture of the scene.

Convergence

Then why, if these are strongly indicative, does a picture having all things correct still appear flat? Convergence is one reason. In life it would indicate that the cottage at the end of the lane was further away than the bush in the foreground. When viewing a picture, however, we converge on the screen or paper and the range registered is the same for all parts of it-distant cottage, foreground bush, and infinite sky. Binocular vision gives the same misleading evidence, for whereas the original would supply two angles of view, the picture gives identical images to each eye. This can only be recorded in the mind as an unnatural state of affairs, thus supporting the impression that the picture is artificial, unreal, flat.

So these are the obstacles to the appreciation of the third dimension. Let us disconnect them. There is nothing drastic about it ; just close one eye. Without the conflicting impressions of the other eye the picture takes on a depth and solidarity that is strongly three-dimensional. Try it.

The viewers who, from time to time, claim that their screens have presented fleeting three-dimensional pictures have probably used only one eye during that brief observation. A blink or squint, a hand raised, or the movement of another person nearby, these and other obstructions could leave the viewer with the use of only one eye for a fraction of a second. In a few cases when a person is tired, it is possible for the mind to ignore the image of one eye, although no conscious knowledge of this would exist.
Apart from three-dimensional effects, blinking, "screwing the eyes," or peering through half-closed eye-lids sometimes produces an improvement in definition by reducing the effective aperture of the pupil or lens of the eye. As all photographers know, no lens gives its best definition or depth of focus at full aperture and a most noticeable improvement is obtained by "stopping down" the iris diaphragm.

Try It Out

If you want to try the " 3-D TV " effect for yourself, a simple gadget would be an old speciacle frame wilh black paper or card fitted to one eye-piece. The other may eilher be left open or, if you also wish to "stop down" for better definition, covered with black card in which a small hole has been pierced.
The writer suggests this novelly merely as a way of checking the statement that the third dimension is already presented quite strongly in the average run of pictures, but would emphasise his opinion that the eyes should not be subjected to it (or to any other optical gadget) for any length of time.

Whilst we are ahways pleased to assist readers with their technical difficulties, we regret that we are untable to supply diagrams or provide insirucrions for modifying surplus eatuipment. We camot supply altemative details for constructional articles which appear in these pares. WE CANNOT UNDERTAKE TO ANSW'ER OUERLES OYER THE TELEPHONE. The coupon from f. 287 must be aflached to all Queries, and if a posial reply is required a stamped and addressed envelope must be enclosed.

ULTRA (NO MODEL NUMBER)

I have an "Ultra" 15in. TV set, and with the advent of commercial television I should like to fit an adaptor suitable for receiving such broadcasts in this and other areas. Would you please advise me what type I should require and what the cost would be if I fit it or if I had it fitted by the supplier of the set.J. E. Watkin (Birmingham).

Assuming this to be a Model V817 or W817, a Band III tuner unit is available and this may be plugged in with little modification. The actual fitting instructions should be obtained when the unit is purchased. An approximate cost of converting the receiver with aerial, cable, etc., would be some $£ 10$. A dealer would naturally increase this sum to cover labour, overheads, etc., to something like £13. These figures are very rough and will vary according to the job on site.

BUSH TV22A

My set has developed a fault; the picture has shifted to the left about $1 \frac{1}{2}$ in.

First, it blew a fuse, and when I examined the set to find the cause I found the $30 \mathrm{~K} \Omega$ width-control would not function. It had overheated and melted the case and burnt a hole in the carbon track.

I have substituted the control by another, but the fault remains. There is a condenser in series with the control, but I cannot tell what capacity it is or what is its working voltage.-T. Connell (Liverpool).

The condenser in series with the 30 K width control is an 80 pF , and should be of the high-voltage rating type, as it is wired from the cathode of the PY81 efficiency diode. A rating at 2.5 kV is desirable, but lower could be used. The lack of width could well be due to leakage through this component, but if the replacement does not effect a cure the efficiency diode circuit should be checked generally.

MARCONI VT73DA

Could you kindly advise me regarding my Marconi set. The symptoms are as follows : Width, vert hold, height. and also focus controls fully out to obtain a
reasonable picture, but II am unable to get a full scam, horizontal and vertical. The horizontal hold control is approximately correct, but a very small movement of this control either way causes the picture to break up.

I have taken a voltage reading from the H,T. rectifier, at first suspecting this, being common to all circuits, and I find that it gives approximately 220 volts. If you suspect this could you please give me the type of this rectifier, because this is not stated in the circuit diagram,-H. Lees (Birmingham).

We would suggest that the B36 double triode is at fault and should be replaced. A 220 volt H.T. line is approximately correct, but should the metal rectifier require replacement in the future its number is 14A86. A.C. mains to centre plate, outers strapped to D.C. H.T.

MURPHY V150

My Murphy Television, Model V150 produces a pronounced buzz on the sound when the cameras change to bright studio close-ups. This buzz can be reduced by reducing the contrast, or of course reducing the volume of sound. This fault has always been present but is more pronounced recently so as to be very annoying. If you can indicate a method of removing this it would be most helpful.-B. J. Farrell (Eltham).

The "buzz" is due to vision on sound which may be removed by a slight adjustment to the oscillator core (L13). This is mounted adjacent to the valve 10 Cl (V3) which is the frequency changer. If too nuch movement of the core is made the condition will change to sound on vision, when loud passages of sound will affect the vision response. The correct setting is maximum sound consistent with clear vision.

R.G.D. 1800 (H)

I receive a perfect picture, but with a very pronounced hum on sound which never varies whatever the volume. New H.T. reservoir and smoothing condensers made no difference. Hum still persists with aerial disconnected.
I get a "Pssss" effect on sound, buî this is only very slightly noticeable on speech, otherwise sound is perfect.

The only way I get rid of this hum is when I remove the 6LD20 (sound detector and amplifier valve), but obviously this does away with the sound altogether.D. Bowker (Bradford).

This symptom is most likely caused by poor heater to cathode insulation in one of the valves associated with the sound department-and most probably the 6LD20 is to blame.

EKCO TS105

I am experiencing trouble with my set and I would be extremely grateful for your help.

As you are probably aware, the set is a combined radio and television, and the trouble lies in the radio section. On switching the radio section on, the set is completely dead on all stations. The valves light up and I have had thera tested. On switching on the vision section, the vision and vision sound are both normal, but now comes the trouble : on switching the selector switch from vision to radio, the radio section comes to life, but after approximately 30 seconds the sound slowly fades away and the radio section becones dead-no mains hum, absolutely dead.-R. John (Merton).
(Continued on page 287)

RADIO UNLIMITED offer : Band 3 Loft Aerials. 19/6; Co-ax Cable, 8/6 doz. yds.; Teletron Band 3 Coilset, 15/-: drilled Chassis, 3/9; complete Kit, incl. coils, valves, chassis, $50 /$. , with p/pack, 67/6; Valves, EF80, 12/6; Plessey $12 i n$. P.M., $31 /-i$ Elip. 7 in . X 4 in . P.M., $17 /-; 2$-vaive battery Amplifier, with valves, $35 / 6 ; 2$-valve + Rec Amplifier, AC or AC/DC, complete kit, incl. valves, 49/G, wired 59/6. New valve list ready. Stamp please. RADIO UNLIMITED. Elm Road London E17 (KEY 4813). also at 50, Hoe street, E. 17 (LAR 6377).

DIPOLE INSULATORS for lin, elements and jin. boom, Drilied, ready for fitting. 6/. P.O. with order. C. \& H. RADIO, 2a, Mona Street, Liverpool, 7.
B.S.R. MONARGH 3 -speed autochange units; new in maker's sealed carton; guarantee; complete with instructions, template. suspension springs, e9/15/-, carriage paid; immediate delivery. TOMLINS, 127 , Brockley Rise, Forest Hill, S.E.23.

GUARANTEED TELEVISION, 12 in . models, all identical new; 5 -channel, £24 each. carriage paid. THE GRAMOPHONE SHOP, 19-21, Brockley Rise. Forest Hill, S.E. 23.

SEVERAL EARLY MODELS gin.

 Television, complete, and mostly working, $55 / 5 /-$ cach; carriage paid. TOMLINS, 127, Brockley Rise, Forest Hill. S.E.23. (FOR. 5497.)PATENTING ADVICE. Qualified Consultant. C. L. BROWNE. 114, Greenhayes Avenue, Banstead, Surrey.

ARGUS H.M. in cabinet; working; needs slight attention; offers. Box No. 181, c/o Practical Teievision.
COMMERCIAL TELEVISION CONVERTERS, for any T.R.F. or Superhet TV, no mods. to set. £7/10/p. and p. $2 / 6$. WATSON WATCH CO., 29, Leigh Rd., London, N.5.
DISMANTLING all old T.V.s; all parts. S.A.E. 16 , St. Margaret's Terrace, Acton, W. 3
SIMPLEX T.V. 18 swg Chassis, with screens and valve punched, $17 / 6$, post $1 / 6$; fully wound Coil Sets, 15/-; post 1/-; Simplex Mains Transformer 27/6, post 2/-; Magnetic Chassis and Screens, 22/6; 0.1 uf 2.5 kV wkg., 7/6; Rectifiers, RM3, $5 / 9$; $3 \mathrm{~K} / 40$, $6 /-$; 14-way Tag Boards, 2/-. List for other items. Lynx-wound Coil Sets, 35/-, post 1/-. C.O.P.Y. WINDINGS Healey Lane, Batley, Yorks
DIREGT T/V REPLAGEMENTS offer the most complete Handbook of T / V
components and Rewinds, price $1 /-$. Components and Rewinds price $1 /-$ T/V Components for all kit sets in
stock. "Nuray" heater booster stock. "Nuray" heater booster
isolator for 2 -volt C.R.T.s, just plugs in. 27/6, plus 2/- packing and postage. 134-136, Lewisham Way, S.E.14. (TIDeway 3696-2330.)

PRAGTIGAL TELEVISION, NoS, 1-43. Offers. MAFONEY. 4. Hargreaves Rd., Liverpool.
PROMPT CASH offered for your surplus brand new Valves, Loudspeakers, Components, etc. Send list and prices to R.H.S. LTD., 155, Swan Arcade. Bradford. 1.

TIV IN PERFECT WORKING ORDER.

 All makes. 9in Pye £15, 10in. H.M.V. £15, 12 in. Ferguson £25, 12in. Bush \&20; many others. Complete list, including multi channel and 13 channel receivers. sent on request S.A.E., please. T/V needing attention from $£ 7$; 13 channel converters with instructions for wiring into set from 夫t. HIGH STREET RADIO. 284-6, High Street, Croydon, Surrey. (Tel.: CROydon 8030.)LhAcES: 4/- per line or part thereof, average five words to line, minimum 2 lines. Box No. $1 /$ - extra. Advertisements must be prepaid and addressed to Advertisement Maniager. "Bractical Televiston," Stramd, London, W.C.2.

VIEWMASTER" valves, exact to specification, guaranteed new and boxed, set of 12 £5/19/6; "TeleKing, ${ }^{2}$ complete set of $17, £ 8 / 19 / 6$; 1.4 y miniatures: 1S5, DAF'91, 1R5, DK91, 1T4. DF91, 3S4, DL92, DK92, any 4 for $27 / 6$, post $1 /-$; all new and boxed. For individual prices and other types see displayed advert. page 288. READERS RADIO, 24, Colberg Place. Stamford Hill, London, N.16. (STA 4587.)

TV SIMPLEX and other Coil Sets from 21/-; BEL, Marlborough Yard Archway, N.19. (ARC 5078.)
TV WITHOUT MAINS.-Absolutely first-class picture, plus DC circuit for lightirs; as supplied to the B.B.C. Iightirg; as supplied to the B.B.C. Speciail AC/DC "Chorehorse" Gener
ators, self-starting, compact, and complete, AC 220/250 volts, $50 / 60$ cyc.es. $250 / 350$ watts AVC. Will run radios vacuum cleaners, small too's, etc., $\mathbf{E 4 7 / 1 0 / . ,}$ plus $10 /-$ delivery.
BEIOWAGE BATTERIES, $12 v . \quad 75 \mathrm{AH}$ heavy duty, 19 plates, separate cells in hardwood cases; finest possible in hardwood cases; finest possible $12 \mathrm{v}, 22 \mathrm{AH}$, almost similar specification, surprisingly powerful, £2/14/, delivery 5/6. TEDDINGTON ENGXN EERING CO., LTD., Dept. "C," High St.. Teddington, Middx. (KiNgston 1193-4.)
PHILIPS Projection, optical. EFT, time base, power, units. with valves. 16 in . z 12in. screen. £18. COLLINS, 274, Longbridge Road, Barking, Essex.
MAKING YOUR OWN? Telescopes. Enlargers, Binoculars. Microscopes Projectors. or, in fact, anything Projectors. or. in fact, anything
that needs lenses. Then get our that needs lenses. Then get our Lenses \& Prisms." Nos. 1 \& $\& 2$, price $2 / 6$ ea. Also our stereo book, "3-D Withont Viewers," price $7 / 6$. Comprehensive lists of lenses, optical, radio and scientific gear free for s.a.e. H. W. ENGLISH, Rayleigh Road, Hutton, Brentwood. Essex.

ARE YOU SURE?

Only oue in a hundred home-built receivers, amplifiers and so on give of their best. Remember, just one inaccuate componen will rutn perrormance. is that 1,006 -ohm thing in between? with 20 per cent some ance iti could be any of these values.
Our Rus/Cap. Bridge complete in every detail fironly 31/6 will checkevery resistor detain ondy 31/6, wil checkevery resistor Here are other items from oir range famons: test gear kits, at the lowest prices in the world
Spot Frequency Sig. Gen., 35/-. Tunable I.F. Alioner, 17/6. Inductance Bridse, 42/b. Audio-prequency Bridge. 38/6. Twin Multi-comer. 25/-.
l'est and packing $1 / 6$ on all kits.
Stamp for illustrated lists.

RADIO MAIL, Dept. L

6, Raleigh Street, Nottingham

TELEVISION COMPONENTS

in stock for the
P.T. LYNX, P.T. SUPER-VISOR, TELE-KING. VIEWMASTER, E.E. TELEVISOR and BAND III and wide angle modifications
Price lists available on request to
J. T. FILMER, Maypole Estate, Bexley, Kent. Tel.: Eexleyheoth 7267

BRAND NEW. R.F. Units, Types 26 Or 27, 27/6; 24, 10/6 (postage 2/6); RF25, soiled. 10/6; Y.F. Amplifier 178, $16.5 \mathrm{mc} / \mathrm{s}$, with valves, $22 / 6$ post 2/- each). R1355 new improved type $37 / 6$ (carr. 7/6). RyP101, $45 \mathrm{mc} / \mathrm{s}$, with 10/VR91, 3/VR92. new, 45/- (carr. paid). Condensers, electrolytic, 13 samples, range 4 mfd to $1,000 \mathrm{mfd}$, 7/6 (post free); Bak. tubular, $0.1 / 1.2 \mathrm{kV}, \quad .5 / 800 \mathrm{v} .25 / 800 \mathrm{v}, 9 \mathrm{~d}$. each; $.03 / 2.5 \mathrm{kV}, .05 / 3.5 \mathrm{kVW}, .25 / 1.5$ kVw, 1/- each. USA Bathtubs. $600 \mathrm{vw}, 2 \mathrm{mfd}$. $1 / 6$; single, 1 or .25 , 9 d ; double, i or $25,1 /-; 1 \mathrm{mfd}$, 1/3; treble, .I. 1/6. List and $\underset{\text { Cash with }}{\text { enquiries }}$ S.A.E. please! Terms : immediate despatch. W. A. BENSON' 308, Rathbone Rd., Liverpool, 13.
TELEVISION. gin. models, $£ 6 / 10 /$-: 12in. models. £15; all makes; working; carriage paid. TOMLINS, 127. Brockley Rise, Forest Hill, S.E.23.

LOUDSPEAKERS repaired promptiy. MODEI LOUDSFEAKER SERVICE Bullington Rd., Oxford.

ALL DISTRICTS. An opportunity exists for Television Technicians to establish a business of their own. The business can be commenced in first instance in spare-time, showing an all the year round increasing income. Write, giving particulars of age, training, test equipment experience, to TELEPATROL LTD. Federation House, Epsom.

SITUATIONS VAGANT

The engagement of persons answering these advertisements mast be made through a hoval Office of the Ministry of Labour or a Scheduled Employment Agency if the applicant is a man aged 18-64, inclusive, or a womian aged 18-59. inciusive, unless he or she, or the emplowment. is excepted from the provisions of the Notificadion of Vacancies Order, 1952.
TESTERS REQUIRED for Television Production Line. Apply in writing, giving details of experience and rate required to PERSONNEL MANAGER McMichael Radio Ltd., Wexham Kd., Mlough. Bucks.

VALVES

ALL TYPES OF VALVES REQUIRED for cash. State quantity and condition. RADIO FACILIIIES LTD. 38, Chalcot Road, N.W.1. (PRImrose 9090.)

WANTED, Valves 6F13, 6Fi5, GU4 EY51, 5Z4, ECL80, KT61, 25A6, etc. prompt cash. WM. CARVIS LTD. 103, North Street, Leeds, 7.
GUARANTEED VALVES, boxed, PCC84, PCF80, U25, $20 \mathrm{P} 4,20 \mathrm{P} 3,10 / \mathrm{F}$ PL81, 20F2, U282, 6F17, 9/•; UU6, ECL80, EBF80, EF80, U281, 10C2, 10F1. PY81. 6K8, X150, 8/6; 6SNT, ECC81, PY82. U22, 7/6, W. FEWELL,' 19, Mapledene Road, Dalston, E.8.

EDUCATIONAL

EUILD YOUR OWN T/V and learn about its operation, maintenance and servicing. Qualified engineerintor available while you are learning and building. Free Brochure from E.M.I. INSTITUTES, Dept PT58, London, W.4. lassociated with H.M.V.)
FREE: Brochure giving details of Home Study Training in Radio, Television. and all branches of Elec tronics. Courses for the hobby enthusiast or for those aiming at the A.M.Brit.I.R.E., City and Guilds Telecommunications R.T.E.B., and other professional examinations other professional examinations. Train with the college operated by tion; moderate fees. Write to Dept PT28, E.M.I. INSTITUTES, London, W.4.

HYONS RADIO Ltd.

3, GOLDHAWK ROAD, Dept. M.T., EREPHERDS BUSH, LONDON, W. 12.

Telephone: SHEpherds Bush I729.

13AND III CONVEREWH,-Complete coil kit by Teletron Co. with circuit, point to point wiring diagrara, alignment instructions, etc. Provides the basis for an efficient, easy to make two valve converter which can be relied upon to give good results For use with TRF or Superhet Band I TV. receivers. PRICE 15/-, post 6d. Metal Chassis, ready drilled 39 . post 6d. Instruction data leaflet only 6d.
SPENKLR GIIIIIS:-Woven metal. three

 pold spray
H.T.IL.T. HATPERLES,-Ex-Goverment in perfect condition. 60 v. $11 \frac{1}{V}$. ($4 \times 3 \times 1 \frac{1}{2}$.). PRICE 4/6. 72 v. IA v. (6
3/9. Postage 9d. extra,.
HEAVY DUYY ADJUSTABKIF HESIST: ANCES- -2.7 ohms- 8.5 amp. Overall length tin. dia. handwheel. PRICE 7/6, post $1 / 9$. DiNAMOTORS TXPE D101.-Americanmade rotary transformers $10124 / 27 \mathrm{~V}$. D.C. input. long $x 2$ in. dja. In new condition. PRICE 10/6, post $1 / 6$.
TV\& VHE. ANRRAI, G.-A well illus trated and lucidly explained book containing gen on how to make 10 different designs bands I \& III. PRICE 2/9, post; paid.
1.'T. TRANSFORMIFRS,-Primary 2001250 v. 50 c.p.s. mains. Secondary 3, 4, 5, 6, 8, 9 . 10, $12,15,18,20,24$ or 30 v. att 2 amps. Excellent for Model Railways, Accumulator Charging. etc. Brand new and guaranteed. All connections clearly manked. PRICE 18/6. post $1 / 6$

Bentiey Acoussic Corp. Itid.

 38, CHALCOT ROAD, N.W.i. PRImrose 90901st grade goods ouly. No saconds or rejects. CGHUE, all 7/- each.

All hoxed and guaranteed. Post 6a. each. Sane day
 desprateh C.O.b.? Complete lifit tree S.A.L.

COVENTRY RADIO

189; DUNSTABLE ROAD, LUTON, BEDS.

Phone : Luton 2677

The Quality Component
Specialists offer you Kits of Parts for the following :Manual Osram " 912 " Amplifier ... 3/6 Mullard IO-watt Amplifier ... $3 / 6$
The Coventry
2-watt Amplifier
4-watt Amplifier $\left.\begin{array}{ll}\cdots \\ \text { an }\end{array}\right\} \quad 1 /-$ 6-watt Quality Amplifier
The Coventry A.M. Tuner Unit $1 /-$ Denco F.M. Tuner Unit ... $1 / 6$

Complete Component Price Lists will be supplied with each Manual.

Have you had a copy of our 1954/5 60-page illustrated Component Catalogue, price $1 / \%$ plus. 3d. postage ?

AERIAL FITTINGS for

Band III, Band I and Radio F/M.
Our increased range of Diecast Alloy Fittings include Band lil to Band I Mast Couplers, Reflector and Director Rod Holders, Insulators (both "Inline " and "H" types), Masthead Fittings, Miasts and Elements, Chimney Brackets, etc. together with useful Formulæ and Hints for constructing your own aerial quickly and cheaply.
Send 9d. in stamps to cover the cost of catalogue and postage to :

FRINGEVISION LTD.
 marlborough, wilts.

Phone: 657/8

RADIO AND TELEVISION

 COMPONENTSAll parts in stock for
Viewmaster, Soundmaster, Telefiny; eic. Easy Terms available.
2 d. stamp (only) for Catalogue.
JAMES H. MARTIN \& CO. FINSTIWATTE, NEWBY BRIDGG ULVERSTON, LANCS.

This fault is almost certainly due to the UY41 radio reclifier being inoperative. When switching from 'TV the cathode of the P230 rectifier is still warm and continues to become operalive for a brief period. If the UY4l is known to be good, inspect its 160 ohm anode series resistor. It may well be open-circuited.

BAIRD P2114

I bought a new Baird P2114 14in. TV set on December 10th, 1954, and on April 20th, 1955, I had to have the EY51 valve replaced by the dealer from whom it was purchased.

Last week-end this replacement valve, a U43, failed in exactly the same manner.

When these valves start to go and give notice of failure, the symptoms are as follows :

On the chassis there is a phosphor bronze spring strip which makes contact with the outside coating on the CR tube. I get a display of blue sparks, as if a condenser is discharging itself and the picture jumps about, also the EY51 valve lights up a violet colour.

In time this valve (EY51) lights up with a violet light and the picture goes away completely, leaving the sound only (perfect in all respects).

Will you please tell me for what reason these valves fail and can you suggest a remedy ?

Both these valves were returned to the manufacturer and were replaced free of charge.

I cannot help thinking that there is a fault somewhere, and it is a waste of time and money fitting new valves.-Cyril Mellie (Stoke-on-Trent).

The anode connection of the C.R.T. is apparently making intermittent contact with the Aquadag coating which is earthed to chassis via the clips. The C.R.T. may be defective and your dealer's attention should be called to this defect and the symptoms described to him. It may be found that there is an easy way of remedying the fault, but then again the C.R.T. may have to be replaced.

H.M.V. 2807

I recently bought a second-hand television set, H.M.V. 2807, designed for use on the Sutton Coldfield station. I would be obliged to you for your advice re the necessary replacements required so that the set can be used on the Holme Moss station. Would it be possible to use a converter ?-T. H. Barker (Blackpool).

Yours is a fixed channel receiver and one which is not very easily internally modified to receive a station on a different channel. Your best plan would be to use a superhet-type channel converter. This would also assist if at any time you wanted to use a Band III converter to receive the I.T.A. programmes. The Band III converter could then be arranged to provide a channel 4 output, and in this way you would avoid break-through from your local BBC station.

Channel converters can be obtained from most recognised TV dealers. The kind made by Spencer West, of Great Yarmouth, are suitable for your set. Alternatively, you could construct one yourself by following one of the designs given in past issues.

HOME-MADE ELECTROSTATIC

I have a fault on my electrostatic which is proving rather difficult to localise.

The fault is intermittent non-interlace. For some
programmes fly-back lines are correct but will vary even between different cameras sometimes. If contrast is kept right down interlace is O.K. Picture does not slip on line or frame.-R. Blackedge (Garston).

Your remarks indicate that some picture signal is gaining admittance to the frame oscillator. When the emission of the picture-tube is failing one is often tempted to obtain a brighter picture by advancing the contrast control. Unfortunately this practice causes overloading of the video amplifier and sync separator valve and often severely disturbs the frame synchronising. You should check this possibility in your case, and also check the condition of the resistors and capacitors used in the frame integrating circuit.

COSSOR 933-BAND III

With reference to Band III transmissions from the Midlands-I own a Cossor Model 933, purchased 12 months ago-could you please give me information as to the type of adaptor to be used and its method of incorporation in set? After reading the articles in previous issues of " Practical Television" I'm pretty sure of the type of aerial I shall require. I am fairly certain I shall receive a good signal, being situated in open country and having studied the terrain between here and Lichfield, although I shall welcome any information you care to give.-B. Butler (Gloucester).

A type A or B 13-channel turret tuner unit will be available for your Cossor shortly (you should put one on order immediately). The unit is built on a sub-chassis for inclusion in the cabinet of the receiver. Its power requirements are derived from the set by a four-pin plug and socket. It has an I.F. output appropriate to the receiver, incorporates two pre-set sensitivity controls for signal equalising' and uses valves type 7AN7 and 8A8. Service data is in the course of preparation.

HMV 2805

I recently purchased a 15 in . tube, the 10 in . being a TA10, the 15in. a TA15. This, as you will know, is an exact equivalent except, of course, for dimensions, etc. After modifications in fittings, etc., I switched on. The picture size is O.K. in every form. The only trouble is when turning up brilliance, or contrast even, the picture takes on a satin effect, then goes negative.

The E.H.T. is definitely up to standard and all bleeder network also. I have noted that the tube heater voltage is 3.8 volts, but surely .2 volts would not cause such a symptom. My only solution is tube emission.
Hope you can help as I have spent quite an amount of money on the set and after such an occurrence I am rather disappointed. -E. B. Sanderson (Sheffield).

The fact that the picture goes negative when turning up the brightness or contrast definitely indicates that the tube is being over-driven. You must remember that the picture brightness given by your TV cannot be compared with modern "daylight viewing" sets. -We would advise you to check the cause of the low tube heater voltage.

CDELCTES CDUPON

This coupon is available until NOVEMRER 21st, 1955, and must accompany all Queries.

PRACTICAL TELEVISION NOVEMBER, 1955.

MIDGET VOLUME-GONTROLS.-New, boxed. gramateed 1 year. Long spindles, lo, in) (1-2 meg ohtms. Less gwituh, 2/11; S.F. switeb, 3/11; ©.P switch, 4/6.
"TELETRON" BAND 3 COHLS.-Complete with iustruetions for making your owsi romsertar, I5/ per set. Chassis for above convertor, $8 / 9$ each.
"PHELIPS" INFRRAPHLL INFRA-RED LAMP. 5 gns.
B.S.R. MONARCH :-oped Autwomangar. e8-15-0. PERMANENT MAGNET SPEAKERS.-- Marnteed
 8เп., 23/6 : Juin., 87/6:] Pin., 35/-
6bin. WALNUT EXTENSION LOUDSPEAKER CABINETS - $15 / \mathrm{c}$ carh
WALNUT MIDGET CABINET. sige lvin. x sin.

ELECTRO-SERVICES \& CO.,

221, BATTERSEA PARK ROAD, LONDON, S.W.11.

MAC 8155.

THE MODEPN BOOK CO.

BRITAIN'S LARGEST STOCKISTS of British \& American Technical Books

Tolevision liecriver survicinas by A. A. W. Spreadtury Voh. I-TimeBase Circujte. 21s. Of., postage bd. 'relevision $1 k$ creiver Arvicibs. by E. A. W. Spreadbury Vol. II-Receiver and Power Supply Circuits. 21ヶ. Oul. postage 6d
Practice TV Arwial Manatal for bands land ill, hy Laidtaw. 4w, 6if., postage 3 d
Ifirh Qualits Sound Keprontarifon, by Mullards. 3s. 6ri., poslage 3d. Mullards. 10 . Gd. postiage 3d, Munards 10 s. 6 d., postage 30 .
2s. 6u.. postage 2d . . Spreadoury. 're Fault Findinar
Constructor. 5s. 0d... postare padio Telovision Dinginequ.. postage sat. by Molloy and Hawker. 10ヶ. 6u. postage sd.
Mostage sdifiers for Bamath Is III, by B. L. Morley 5s. Od. postage 3 d . An Introductign fo cobotr Teletixion, by G. G. Gotlelec, A.t.I.E. 8s. 6d. postage 3d.
The Oschloscope at Work, by A. Haas and R. W. Hallows. 15s. Od.. postace bd.
The Radio Amateur's llandmook, by A. R. R. L. 30s. Oul., postage 1

Thadio Valve Data. by W Wireless World." 3s. 6d.. postage :3d.
Please write or call for out new 1956 Catalogue.

19-23 PRAED STREET

 LONDON, W. 2Phone: PADdington 4185 Open 6 days $9-6$ p.m

BAND III CONVERTERS

TYPE 30

For Band ill reception with any type of receiver. A sensitive beaurifully designed unit complerely enclosed with its own power $\mathbf{8} \mathbf{8 . 5 . 0}$ com-
supply. Price

TYPE 32 SWITCH UNIT

A remote control for mounting in or on the television receiver permitting switching from B.B.C. to I.T.A. programmes with the Type 30 converter unit mounted in any conve- f1 50 comnient position. Price 01.5 .0 plete

TYPE 33 CONVERTER
A sensitive low noise converter unit as the Type 30 . but including remote switch panel for One Band 1 and Two
 Pric

Leaflets with pleasure on request.

SPENCER WEST L.TD.
Quay Works, Gt. Yarmouth.

CASCOIDE TYPE T/V PIBE-AMPS

NOW PROVENG VERS POPRLAR
Manufactared specially to suit frince and ultra-fringe conditions. In use 140 miles north of Kirk O° Shotts (check our position) and in many other distant locations and difackled reception areas. Complete in crackled steel case with ouit-in powerpowerpack, for inclusion in .15 or .3 amp heaver chains.

22.17.6

State heater current and channel used. or send 6it. stamp for illustrated detail.s and ome interesting iringe data.

TAN-ROSS-SIIRE-SCOTLAND
BAND III Converter Kit
(FOR.T.R.F. OR SUPERHET)
Complete kit of parts, including : Ready Drilled Chassis, 7in. x 3in. (2) Miniature Vaives, Ready Wound Coils, etc.,
£2-8-0 $0^{\text {Potage }}$
(Supply voltages required: 250 v . at 20 mA., 6.3 v. at . 6 a.)

Can be seen in operation at

TELEKIT SUPPLY

134. High Street, Beckenham, Kent. (BEC 3720.)

FIRST-CLASS TELEVISION and RADIO COURSES

GET A CERTIFICATE!
After brief, intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification or learn Servicing and Theory, Let us show you how!

FREE GUIDE

The New Free Guide contains 132 pages of information of the greatest importance to those seeking such success compelling qualifications as
A.M.Brit.I.R.E., City and Guilds

Final Radio, P.M.G. Radio
Amateurs' Exams., Gen. Cert. of Educ., London B.Sc. (Eng.) A.M.I.P.E., A.M.I.Mech.E. Draughtsmanship (all brarnches), etc., together with particulars of our remarkable Guarantee of
SUCCESS OR NO FEE
Write now for your copy of this invaluable publication. It may well prove to be the turning point in your career
FOUNDED 1885-OVER
. - - - - 150,000 SUCCESSES $-2=-=$ NATIONAL INSTITUTE OF ENGINEERING
(Dept. 462), 148, HOLBORN, LONDON, E.C.1.

VALVES
 SAME DAY SERVICE

All Guaranteed New and Boxed A.45: midget. 1R5. 155े. 1T4. 154, 3St. DAF91 DF91. DK91, DLaz, zi3: any 4 ior 26/6

 ${ }^{1 / 24}$

 $\begin{array}{llllll}6 A K 5 & 6 / 610 P 13 & 10 & -\mathrm{ECC81} & 10 & -14 \\ \text { U24 } & 18 / 6\end{array}$

 ${ }^{\text {GBX6 }}{ }^{7 / 76}$ 12K8GT

READERS RADIO 24, COLberg place, stamford MILL, LONDON, N.16. STA. 4587

SPEED UP your SOLDERING

 stand hard workshop treatment and ideal for continuous use. Features include rapid constant localised heat-solid sturdy construction-low current consumption-perfect balance-absolute dependability. A type and bit for every purpose from fine instrument to heavy industrial work. Each tool includes 5 feet tough rubber 3-core cable.

Obiainable from all leading tool merchants and factors. Fully descriptive Brochure on request

Type No. 51 is desizned specially for all assembly operations. Solder is fed automatically with triggeraction and two reels are supplied-one 15 ft. acidcored and one 15 ft . resincored.

WOLF ELECTRIC TOOLS LTD • PIONEER WORKS • HANEER LANE • LONDON • W. 5 Tel: PERIVALE 563I-4 Bronches: BIRMINGHAM MANCHESTER - LEEDS •RISTOL - NEWCASTLE GLASGOW

ARTHURS HAVE IT!

LARGE stocks of valves and c.r.t.s. AVO METERS IN STOCK

| Avo Model 7 | - | - | - | - | - | 19 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Full range Taylors Meters. List on request.
Leak-TL/IO Amplifier and "* Point One"
Pre-Amplifier - - Complete 2810
F.M. Kit of parts 65 less valves. Ref. Radio Constructor July, 1954.
Jason F.M. Tuner Unit and Power Pack - 1910
Chapman Tuning Units - - - Irom 1600
Aerialite Band 3 Unit - - - - 9100
LATEST VALVE MANUALS
MULLARD, OSRAM, \& BRIMAR No. 6, 5/- each,
MAZDA 2/- ea. OSRAM Part 2, $10 /$-. Post, ©d. ea. ex.
SCOPE SOLDERING IRON A.C.ID.C HEATING
TIME: 4 v. 6 sec. 6 v. $4 \mathrm{sec} .39 / 6$.
TRANSFORMER for 200/230 v. $37 / 6$
Terms C.O.D. OR CASH with order and subiea to price alterations and being unsold

PROPS: ARTHUR GRAY. LTD.
OUR ONLY ADDRESS: Gray House,
150-152 Charing Cross Road, London, W.C. 2
TEMple Bar $5833 / 4$ and 4765
TELEGRAMS- '" TELEGRAY, WESTCENT, LONDON." TELEGRAMS-'" TELEGRAY, WESTCENT, LO

Finest Soldering? Always specify ERSIN MULTICORE to be precise

Wherever precision soldering is essential, manufacturers, engineers and handymen rely on multicore. There's a multicore solder just made for the job you have in hand. Here are some of them.

TAPE SOLDER MELTS WITH A MATCHI	melts with 4 Matck
Real tinllead solder containing	Tape Soldow
cores of Ersin	
Flux. Needs no	[19\% ropanch
soldering iron	
or extrafluet	
1	
PER CARD	

Bib recordikg TAPE SPLICER These nickel-plated brass licers enable recording tape Splicers enable recorde ly so that to-be jointed, easily and a comprehensive no breaks or "clicks" occurin the record $18 / 6$ each (subject) leafiet is supplied with ever

MANUFACTURERS ARE INVITED TO
WRITE FOR DETALLS OF BULK PACKS AT BULK PRICES
MULTICORE SOLDERS LTD.
MULTICORE WDRXS, HEMEL HEMPSTEAD. HERTS (80XMOOR 3636)

B319/PCC84
Cascode R.F. amplifier
LZ319PCF80
Triode pentode frequency changer

Introduced to meet the special 'front end' requirements of V.H.F. television receivers, these new OSRAM valves enable a high performance to be obtained at these frequencies with simple and inexpensive circuitry.

B3|9/PCC84. Double triode designed for use as a series cascode R.F. amplifier with the accompanying advantages of high gain and good signal to noise ratio. The thigh slope at low anode voltage ensüres efficient operation at H.T. supplies of 180 y . The maximum heater-cathode has been increased to 250 V to meet the special requirements of this application.

LZ3 19/PCF80. Triode pentode designed for use as a frequency changer. following the B3I9/PCC84 cascode amplifier. The LZ319/PCF80 operates effic-- iently at H.T. voltage of 170-180, and gives a high conversion gain with standard circuitry.

\[

\]

Write to the Osram Valve \& Electronics Dept. for further information
THE GENERAL ELECTRIC CO. LTD.. MAGNET HOUSE, KINGSWAY, LONDON, W.C. 2

[^0]: Owing to the rapid progress in the design of radio apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus deseribed in our columns is not the subject of lesters patent.

 Copyright in all drawings, photographs and articles publisheă it "Practical Television" is specifically reserved diroughout the countries signatory to the Berne Convention and the U.S. A Reproductions or imitations of any of these are therefore expressly forbidden.

[^1]: A Standard Work
 TELEVISION PRINCIPLES AND PRACTICE 2nd Edition
 By F. J. CAMM
 Price 25/-. By post 25/8.
 From George newnes, LTD., Towar House, Southampion Street, Strand, W.C.2.

