Frel ! nsille! Blueprint of ITA GONVERTER

$\sqrt{8}$

T.V. CONVVERTER

for the new commercial stotions, complete with 2 Valves. Frequency can be the $186-196 \mathrm{Mc} / \mathrm{s}$ band within the $186-196 \mathrm{Mc} / \mathrm{s}$ band. I.F Will work into any existing $68 \mathrm{Mc} / \mathrm{s}$. Invut arranged 42 80 ohm feeder. EF80 as RF amplifier ECC81 as as RF oscillator and mixer. The gain of the first stage, RF amplifier 10DB. Required power supply of 200 D.C at 25 mA . 6.3 V . A.C. at 0.6 amp. Input filter ensuring freedom from unwanted signals. Stmple adjust ments only, no instruments required for trim-

COMPLETELY BUILT Pri 200 250 v. metal rectifer and manothing conden

SIGNAL GENERATOR

PATTERN

 GENERATORCompletely built Signal Generator, coverage $120 \mathrm{Kc} / \mathrm{s}-320 \mathrm{Kc} / \mathrm{s}$. $300 \mathrm{Kc} / \mathrm{s}-900 \mathrm{Kc} / \mathrm{s}$. $900 \mathrm{Kc} / \mathrm{s}-2.75 \mathrm{Mc} / \mathrm{s} .2 .75 \mathrm{Mc} / \mathrm{s}-8.5 \mathrm{Mc} / \mathrm{s}, 8 \mathrm{Mc} / \mathrm{s}$ $28 \mathrm{Mc} / \mathrm{s}, 16 \mathrm{Mc} / \mathrm{s}-56 \mathrm{Mc} / \mathrm{s}$. $24 \mathrm{Mc} / \mathrm{s}-84 \mathrm{Mc} / \mathrm{s}$. Metal case $10 \times 6 t \mathrm{x} 4$ in Internal modulation of 400 and rectifier. A.C. mains $230-250 \mathrm{v}$. modulated or unmodulated R.D.S. to a depth of 30 per cent. 100 milli-volts. C.W. and mod. output continuously variable and moving coll output meter. Black crackle-finished case and white panel. Accuracy plus or minus 2%. $£ 4.19 .6$ or $34 /$-deposit and 3 monthly payments $25 /-$ P. \& P. 4/- extra.
PERMEABILITY TUNED T.V. CONVERTER
for new commercial stations

Input 300 ohm balanced line or 80 ohm coax. Coverage $180-200$ Mo/s. Vision I.F. 10.7 Mc/s. Valve line-up 6 AK5 R.F. ampllfer, 6AK5 mixer, 6Ci separate osclllator. This is a high Gain unit, ideal for fringe areas. Can also be used as F-M. 91 n . wide, 6 kin . deep 4 in high 91 n . Mc / s. F, $10.7 \mathrm{Mc} / \mathrm{s}$. Size lap, 14in. Complete with 3 valves. P \& P. $3 /-$, 9 ding over$10.7 \mathrm{Mc} / \mathrm{s} \mathrm{I}$ F.s to sult above $4 / 6$ erch \& $\mathrm{P}, 3 /-$, £4.9.6.
USED gin. TUBE $22 / 14 \mathrm{C}$ with ton bu
arn, 17/6. Post paid
Mazda CRM92A, used with heater cathode short, guaranteed for 3 months. P. \& P. 7/6. £2.17.6.
Used Mullard 9 in. tube $22 / 17$ and 18 ton burn. 25/- post paid 40 watt Fluorescent kit A.C. mains 230/240. Comprising choke, power-factor condenser, 2 tube holders, starter, and starter20 watt A.C. or D.C. $200 / 250 \mathrm{v}$. Fluorescent kit, comprising trough in white stove enamel, 2 tube holders, starter, starter-holder and barreter. P. \& P. 1/6. 12/6.

Three speed automatic changer by B.S.R.. current model. Will take in. 10 m . or 12in. records mixed. Turnover crystal head. Cream finish.
A.C. Mains VERY LIMITED QUANTITY.

Line and E.H.T. Transformer, 9 kV . Ferrocart core winding, complete with scan coils and frame output transformer and line and width control. £2.5.0. P. \& P. 3/-
As above but complete with line and frame blocking transformers, 4 henry 250 mA . choke, 100 mfd . and 150 mfd .350 wkg , 380 mA . A.C. ripple. £2.19.6. P' \& P. 3/-
Standard wave-change Switches, 4 -pole 3 -way, 19 : 5 -pole 3 -way, $1 / 9$: 3 -pole 3 -way, $1 / 9$: 9 -pole 3 -way, $3 / 6$: Miniature type, long spindle 3 -pole 4 -way, 4 -pole 3 -way and 4 -pole 2 -way i/6 each. 2 -pole 11 -way twin wafer, $5 /-:$: 1 -pole 12 -way single wafer, 5/-. P. \& P. 3d.
USED metai rectifier, $250 \mathrm{\nabla}, 150 \mathrm{~mA} ., 6 / 6$.
R. and A, energised $6 \frac{1}{2}$. Speaker with O/P Trans,, fleld coll 175 ohms. $9 / 6$. P. \& P. $2 / 6$.
Conms field. $10 / 6$, plus $2 / 6$ P. \& P.
Combined 12in. Mask and Escutcheon perspex. New aspect, edged in brown. Fits on front of cabinet. 12/6. As above for 14in. and 15in. tubes. $17 / 6$
polishing Attachment for electric drills. tin. spindle, chromsum plated 5in. brush, 3 polishing cloths and one sheepskin mop mounted on a $3 i n$. rubber cup. Post $\& \mathrm{pkg} .1 / 6$. 12/6. Spare
sheepskin mops, $2 / 6$ each.

R. \& T.V. COMPNENTS (ACTON) LTD.
 23 HIGH STREET, ACTON, LONDON, W. 3

$40-70 \mathrm{Mc} / \mathrm{s}$ direct calibration, checks frame and line time base, frequency and linearity, vision channel alignment, sound channel and sound rejection circuits and vision channel band width. Shiver plated colls, biack crackle-finished case $10 \times 6 \neq 4 y i n$. and whiten any e3 196 , recever, accuracy plus or minus 1%. Cash price \&3.19.6 or $29 /$ deposit and 3 monthly payments of \&1. P. \& P. 4/extra.
Sine or Frame Oscillator Blocking Transformers, $4 / 6$ each. Smoothing Choke, $250 \mathrm{~mA}, 5$ henry, $8 / 6$: $250 \mathrm{~mA}, 10$ henry, $10 / 6$; Wide Angle P.M. Focus Unit, Vernier adj., state tube, 15/P \& P oeus unit for Mullard tubes with vernier adjustment. P. \& P. 2/-. $15 /$ T, V. Coils, moulded former, iron cored, wound for rewinding purposes only, Ali-can 1 iln. x iln.. $1 /$ - each: 2 iron-cores Alican, 2lin. x.
Primary, $200-250 \mathrm{kV}$ working, $3 / 6$
$300-0-300,100 \mathrm{~mA}, 6 \mathrm{v}, 3 \mathrm{gmp}$.
$300-0-300,100 \mathrm{~mA}, 6$ v. $3 \mathrm{amp} .5 \mathrm{v}, 2 \mathrm{amp}, 22 / 6$
Drop thro' $350-0-350$ v. $70 \mathrm{~mA}, 6 \mathrm{v}, 2.5 \mathrm{amp.}$,5 v .2 amp. $14 / 6$. $280-0-280$, drop through. $60 \mathrm{~mA}, 6 \mathrm{v} .3 \mathrm{amp}, 5 \mathrm{v} .2 \mathrm{amp} .14 / 6$. $250-0-250,80 \mathrm{~mA} .6$ v. 4 amp . $14 /-$
Drop thro' $270-0-27080 \mathrm{~mA}, 6 \mathrm{v}, 3 \mathrm{amp} ., 4 \mathrm{v} .1 .5 \mathrm{amp}, 13 / 6$. Drop thro' $270-0-27060 \mathrm{~mA}, 6 \mathrm{v} .3 \mathrm{amp}, 11 / 6$.
250 v. $350 \mathrm{~mA}, 6.3$ v. 4 a., twice 2 v. 2 a., $19 / 6$
semi-shrouded drop-through $380-0-380120 \mathrm{~mA}, 6.3$ v. 3 amp., v. 2 amp., 25

Auto-Trana. Input $200 / 250$, H.T. $^{2} 500$ v., $250 \mathrm{~mA}_{\mathrm{a}} 6 \mathrm{v}, 4 \mathrm{a}$, twice 2 v. 2 a., 19/6.
Auto Trans. Input 200/250. F.T. 350 v .350 mA . Separate L.T 6.3 v. 7 a., 6.3 v. $1 /$ amp, 5 v. 3 amp., 25/. P. \& P. 3/.

Henter Transtommer. Pri $250 / 250$ v. 6 v . $1 /$ amp., $6 /-$; 2 v .21 amp . $5 /$-. Input $210,220,230,240$, Sec. $350-0-350100 \mathrm{~mA}$, with separate heater uranstormer. Pri, 210, 220, 230, 240. Sec. 6.3 v. 2 amp. 6.3 v. 3 amp., 4 v. 6 amp, and 5 v. 2 amp., $30 / \mathrm{F}$. P. \& P. $5 /=$ $350-0-35075 \mathrm{~mA}, 6.3$ v. 3 a. tap, 4 v. 6.3 v. 1 a., $13 / 6$.
$500-0-500125 \mathrm{~m} .4 .4$ v. C.T. 4 a.. 4 v. C.T. 4 a., 4 v. C.T. 2.5 a., 27/6. $500-0-500250 \mathrm{~mA}, 4$ v. C.T. 5 a... 4 v. C.T. 5 a., 4 v. C.T. 4 a., $39 / 6$. Chassis mounting or drop-thro*. Pri 110/250 ∇. Sec. 350-0-350

R.F. F.H.T. Oscillator Coll, $6-9$ Kv with EY5l rectifier winding, and circuit diagram. 151-.
As above, but complete with 6V6, EY51 and associated resistors and condensers. Circuit diagram. 37/6.
The above unit completely built and tested in metal box size, $5 \times 5 \times 4 / 1 n_{.,} 42 / 6$. P. \& P. 3/=
Used A.C, mains 200/250 volts, 4 valve plus metal rectifier, medium wave superhet in polished walnut cabinet, slze $14 \times 91 \times$ 7in., complete with valves $6 \mathrm{~K} 8,6 \mathrm{~K} 7,6 \mathrm{Q}$ and $6 \mathrm{~F}, 6 \mathrm{in}$. 6 M Speaker. Fully guaranteed. P. \& P. 7/6. £3.15.0.
$1,200 \mathrm{ft}$ Hiwh impedance recording tape on alumanium spool. 12/6 post pald

Valve Holders, moulded octal Mazda and loctal 7d each Paxolín, octal Mazda and loctal. 41. each. Moulded B7G. B8A and B9A. 7d. each. B7G and B9A moulded with screening can. 1/6 each. 2 mfd. . 350 wkg 24, 350 wkg . mid. 200 wks. $6 \times 8 \mathrm{mfd}$. 500 mp $16 \times 16 \mathrm{mfd}, 500 \mathrm{wkg}$. $16 \times 16 \mathrm{mfd} .450 \mathrm{wkg}$ $16 \times 16 \mathrm{mfd} .450 \mathrm{wkg}$. 25 mfd., 25 wkg .
$250 \mathrm{mld} ., 12 \mathrm{v}$. whg. $16 \mathrm{mfd} ., 500 \mathrm{wkg}$ $8 \mathrm{mfd} ., 500 \mathrm{v}$. whg. wire ends $3 / 3$ 8 mid.. 350 v.,wkg., tag ends 1/6 $100+150 \mathrm{mfd}$., 350 v. Wkg. 200 ma. , A.C. ripple $100+200 \mathrm{mfd} .275 \mathrm{wkg}$ $16+16 \mathrm{mfd} .350 \mathrm{wkg}$. $50 \mathrm{mfd} ., 180 \mathrm{wkg}$. $65 \mathrm{mfd} ., 220 \mathrm{wkg}$ 8 mfd .150 wkg. $60+100 \mathrm{mfd}, 230 \mathrm{wkg}$. $50 \mathrm{mfd} ., 12 \mathrm{wkg}$. 50 midd. 50 wkg.
Miniature Minature wire ends moulded, 100 pf., 500 pf.., 7 ll
and .001 , ea.

Osram nine one two

the most successthl ampliten design

now... sram nine-one.two PLUS

This book gives details of how to modernise this popular Amplifier. Stage by stage wiring instructions are included for the improved ' 912 ', and there are many additional valuable features. By purchasing this book, you can read how to bring up-to-date your existincs Osram '912' or obtain full details for constructing this versatile and remarkable Amplifter for High Quality Sound Reproduction. It costs 4s. Od. from your dealer or by post 3 d . extra from Osram Valve \& Jlectronics Dept.

Six position fully screened Selector Switch, with or without preamplifier, to cater for all types of record, various types of pick-up, radio and miorophone inputs.

BUILDING THE
 "SIMPLEX"?

Thousands of enthusiasts are building the "Simplex," Televisor, now being featured in "̈ Practical Television:" WHY NOT containing full constructional details and Blue Print. additional notes and suggestions, and Query service form, sent for stock as follows: tock as follows
ALCHLNIUM CHASSIS.- 18 s.w.g. DRILLED, for VCR97 version with screens and tube holder bracket, 22/6.
TR. NNSFORMERE- $350.0-350$ v. 150 ma . i.3 V. 5 a., 5 V. 3 a. tapped at 4 v.. ONLY
 BLCTIFIEISS.-RM3 5/-єa., K3/40 6/- еа. VINES.-EF50 6/6. SP61 4/-, 6SN7 9/-, 6.55 5/6, FB34 3/6, EA50 3/6.
 I. O and M.O. 6d., Diode (EAA50) 6d., VCR972/6.
VH9r; TiBF.-Tested full screen, $42 / 6$. CONDENSERES. \rightarrow Electrolytics 25 mtd . 25 v. $1 / 10,16 \times 8 \mathrm{mid} .450 \mathrm{v} .5 / 6.32 \times 32 \mathrm{mfd}$. $450 \mathrm{Y}^{\circ} .6 /-\mathrm{Mica}$, silver mica, and tubulars. 350 v. 6d, each.
POTEVTIOMLTERES.All values, preset $1 / 9$ each, long spindle $3 /$-, with switch, $4 / 6$.
MESISFORS, -1 watt $4 d . .+$ watt 5d., 1 watt $601 ., 1.5 \mathrm{k} .5$ watt, $1 / 6$.
COLL FORDERS.-Iin. 8in. Hin. 10i. SPEAKER.-8in. ['M, less trans., 16:6 क/P TRANSFOIRMERS, 5/-
Alt Components frame New and Unused. Full lrice liat available on request.

VALVES

1 Ct	816	7 A 7	$8 / 6$	$5 \mathrm{Z4}$	101-
$1 \mathrm{E7} 7$	$6 / 6$	7С5	$8 / 6$	504	10/-
1LH4	$81-$	7F7	8/6	6AC7	$6 / 6$
1LN5	816	7 W 7	$8 / 6$	6K7GT	$5 / 6$
${ }_{2} 1 \mathrm{~L} 4$	$7 / 6$ $8 / 6$	12 HE	$8 / 6$	807	7/6
3 A 4	91.	1235	$6{ }^{-}$		-
3B7	$8 / 6$	12AH?	12/6	ECH3s	$12 / 6$
6AG5	\%/8	12SG7	r/6	EA50	3.6
6AK7	$9 / 6$	I2SK7	$8 / 6$	EBC33,	$8 / 6$
6B4	$7 / 6$	12SR7	$7 / 6$	EB34	316
6B8	7/6	$38 \mathrm{D7}$	r/6	EF35	$6 / 6$
608	8/-	32	\%/6	EF39	$6 / 6$
6G6	$6 / 6$	36	76	EF50	616
6H6	$51-$	50 Y	88	Efrod	6.6
6K6	$9 /-$	58	$8 / 6$	S"ylvani	8/6
6L7	76	1622	11/-	ETP91	12/6
6N7	$7 / 6$	1820	$7 / 6$	EYSI	15/-
6RG	816	VR150/30	$8 / 6$	EK32	6/6
$6 \mathrm{U5}$	816	VR137	519	EL32	2/6
6V6	816	KT44	$8 / 6$	SP61	4/-
6V6GT	$7 / 6$	KT2	$5 /-$	MU14	$10 / 6$
6SA7	816	VP23	$6 / 6$	RL37	6/-
6SG7	716	HL 33 DD	$6 / 6$	VS70	2/6
6SH7	716	TP25	81.	954	61-
6SJ7	86	153	8!-	955	$61-$
$6 \mathrm{KK7}$	7/6	15	$8 \cdot$	9003	6/-
6SL7	91-	1T4	$81-$	9004	61 -
6SS7	$8 / 6$	1R5	8:-	931A	$50 /$

PYE $45 \mathrm{me} / \mathrm{s}$ IF. STRIRS.-The strip that is ready made for the London Vision and 1 of EA50. BRAND NEW, ONLY 59/6.

Ik.F. UNITS TYIPE 26 annd 2\%, For 18.1 with For use with the R. 6.3 v . supply, These are the variable tuning units which ase 2 valves EF54 and 1 or EC52. Type 26 covers $65-50$ Mc/s and 1 of ecos. $5-5$ yetres), and Type 27 covers $85-65$ Mo's (3.5-5.0 metres). Complete w-ith yalves, and BRAND NEW IN MAKER'S CARTONS. ONIV 29/6 each.

AMPIIFIFR TITPE 223. Or 208. as described in the Julv issue of
 valves. ONLY lई, (Postage, etc., 1/6). CHASSIS OF INBICATOR 233.CHASSIS OF INWIGATOR 233.-
Contains VCRO7 C.P. Tube Holder, 11 Contains Veholders, resistors, condensers etc., etc. BRAND NEW, ONIY 10/(Carriage, etc., 5/-).
POCKIT VOLTHETERS,-Not exGovt. Read 0-15 v. and 0-300 v. A.C. or 0. BRAND NEW \& UNUSED ONILY 186.

TRANSFORMEETS.-Manufactured

 our specifications and lully guaranteed Normal Primaries. $425-0-425 \mathrm{v}, 200 \mathrm{ma}$ 6.3 v. 4 a.. 6.3 v. 4 a., 5 v. 3 a., ONL $65 /-350$ v. $0-350$ v. 150 ma. 6.3 v. 5 a., $3 \% / 6$. 550 r. $0-350$ v., 150 ma., 6.3 v. 5 at. 5 v. 3 a., GNIT $37 / 6.250-0-2 \overline{6} 0$ v. 60 ma . 6.3 v. 3 a., 5 v. 2 . ONLY 21/- The above are fully shrouded, upright mountinar. 5.5 OV, स.H.T' with 2 windings of 2 V . 1 a GNIT 89/6. PLFASEADD 2^{\prime}-POSTAGE FOR EACH TRANSFORMER.
 Cash with order, nkase, and print name and address clearly. Inciude postage as specified and on Component Orders under siz.
U.E.l. CORPN. the radio corner, ibs, gray's inn road, london, w.c.i.
(Phone TERrminus 7937.)

If you are building a television receiver, leave nothing to chance : choose a Mullard Tube. Mullard Television Tubes owe their high reputation for performance, reliability and LONG LIFE to the unrivalled facilitics for research possessed by Mullard and to the complete control of manufacture from the production of raw materials to the finished product. For practical evidence of performance and reliability, ask the people who use them.

MULLARD LONG life tubes
 FOR HOME CONSTRUCTORS

MW22-16
MW31-74
MW36-24
MW4I-I
MWV43-64
$\cdots \quad . . . \quad 9$ inch circular screen.
... ... 12 inch circular grey-glass screen.
... ... I4 inch rectangular grey-gláss screen.
... ... 16 inch circular screen. Mecal cone.

MVM290

PREMIER RADIO COMPANY

(Regd.) B. H. MORRIS \& CO. (RADIO) LTD
(Dept. P.T.) 207, EDGWARE ROAD, LONDON, W. 2

Telephone: AMBASSADOR 4033 PADDINGTON 3271

nanaxnd

DESIGN 1. Includes a Multi-Channel Tuner (Channels 1-13) continuousty wired and cested and yariable $40-100 \mathrm{Mc} / \mathrm{s}$ and $170-225 \mathrm{Mc} / \mathrm{s}$. The Tuner is supplied THIS and is complete with Valves, all connecting leads and fixing brackets. THIS DESIGNMAY 3 BUILTFOR 9. 7 (plus cost of
C.R.T.).
1EGIGN 2. Channels $1-5$, cunable from $40-68 \mathrm{Mc} / \mathrm{s}$.
THIS DESIGN MAY SPO (plus cost o BE BUILTFOR SESD Plus costo

* Constructors who have built Design 2 (5 Channels) may convert their Receivers to Design I for $£ 6$; this price includes Multi-Channel Tuner, New Vision Input Coil and full instructions.
* All Coilssupplied for these two Superhet Receivers are PRE-TUNED, ASSURING ACCURATE ALIGNMENT AND EXCELLENT BANDWIDTH.
* Duomag permanent magnet focusing with simple picture centring ad!ustment.
* Exceptionally good picture " hoid " and interlace. \& Noise suppression on both Sound and Vision

THE NEW PREMIER TELEVISOR

 13 CHANNEL DESIGN
\%

The Televisor may be constructed in 5 easy stages : (1) Vision, (2) Time Sase, (3) Sound, (4) Power Pack, (5) Final Assembly. Each stage is fully covered in the lnstruction Book, which includes layour, circuit diagrams and point-to-point wiring instructions, tubes. Ail components are individually priced.

Instruction Book 3/6. Post
Free. Includes details of toth désigns.
*

\& TELEVISION TIMES

Editor: F. J. CAMM

Editorial and Advertisement Onces: "Practical Telewision," George Newnes, Lid., Tower Ionse Southampton Street, strand, W.C'2. 'Phone : Temple Har 4363. Telegrams: Newnes, Rand, London.
Regisfered at the G.P.O. for transmission by Cunadian Magazine Post.

Vol. 6 No. 65

"The Practical

THE first issue of our new companion journal The Practical Householder, as briefly announced last month, will be published on September 8 th. A reproduction of the cover appears below.

Every issue will contain a 24 -page Practical. Householder's Reference Booklet to pull out and keep. It contains a mass of information on all daily aspects of home maintenance and repair.

The following list of contents will give you some idea of the practical household policy which this journal will follow. Paperhanging Made Easy; A Simply-made Table Lamp; Interior Decorating; Repairing Simple Plumbing Faults; Making an Electric Gas-lighter; Making Your Own Loose Covers; Enamelling a Bath; Uses for Repair Plates; Laying Linoleum: Reglazing and Painting on Glass; An Electric Water Heater; A Household Ozoniser; An Automatic Draught Excluder; Making Rugs; Building Your Own Bungalow; Concrete Paths and Floors; An Ash-pan Improvement; Making Pelmets; Legal Nôtes-Landlord's Fixtures; Checking Over Your Vacuum Cleaner; Passing It On; Painting, Staining and Varnishing Floors, etc.; Making a Hall Lantern; A Reliable Folding Table; Letters to the Editor; and The Home Mechanic's Shop Window.

You will only make certain of obtaining it month by month by placing a regular order with your newsagent now.

It is a " must" for every householder.

BATTERY TELEVISION

0NE of the surprises of the recent National Radio Show was the introduction by a famous maker of the first practicable portable television receiver operated by a battery. The receiver is designed for both battery and mains operation, and when operated from batteries it obtains its power supply from a 12 -volt battery, the necessary voltage increase being obtained through a rotary converter.

Householder"

Priced at $£ 60$, it represents a marked step forward and it brings television to those many thousands of homes still not equipped with supply mains.

The E.H.T. is, of course, obtained from the flyback in the usual way.

The late opening of the show due to the strike naturally affected the total attendances, and it caused many overseas buyers to cancel their visit. We hope next year that our advice is taken and an assurance secured from the Earls Court authorities that there will be no disputes after preparations for the show have commenced. It should be easy enough for the Earls Court people to obtain such assurance from all the unions concerned.-F. J. C.

R1124 Conversion for Sound

MODIFYING ANOTHER EX-GOVERNMENT SET FOR THE RECEPTION OF TELEVISION

By J. Stebbings

THIS .receiver appears on the surplus market from time to time in considerable numbers. Those seen by the writer have been excellent value for the money, since they appeared to be unused and in sealed cardboard boxes. They may be bought for as little as 4 s . without valves and 15 s . with valves. The set is a six-valve superheterodyne with narrow band I.F. stages and is switch tuned to cover a range from $30-40 \mathrm{Mc} / \mathrm{s}$. The valves have British seven-pin bases and their 13 volt 0.2 amp filaments are connected in parallel. The neat chassis has one side hinged to allow easy access to the interior and to a long tag board covering the whole of the hinged side. The top of the chassis is stepped, giving two different levels. Five coil cans for the R.F. and I.F. stages, together with a low-frequency transformer, are mounted on the higher level. The six valves and their screens are mounted on the lower step. The complete chassis slides into a container measuring $12 \mathrm{in}: \times 9 \mathrm{in} . \times 6 \mathrm{in}$., having aerial and earth sockets at the rear. On the front panel is the six-channel selector spindle and a multi-way socket. A removable panel on the side of the container gives access to the 24 preset tuning capacitors, mounted flush with the side of the chassis.

The Original Circuit

The R.F. and I.F. stages are shown in Fig. 1. L1
is the aerial coil tuned by any one of the $0-30 \mathrm{pF}$ preset tuning capacitors selected by one pole of the five-pole six-way channel selection switch. Only two positions of this switch are shown in the circuit diagrams for the sake of simplicity. V1 is an R.F. amplifier transformer coupled by $L 2$ to the frequency changer V2. Both the primary and secondary windings of L2 are tuned. The R.F. coil cans L1 and L2 are easily located on the top of the chassis. L3, the oscillator coil, is wound on a ceramic former which is attached to the six-way switch assembly below the chassis:

There are two inter-mediate-frequency amplifiers V3 and V4 operating at 7.0 Mc / s; L4, L5 and L6 are the coupling transformers. Automatic volume-control is applied to V1, V3 and V4.

The detector and output stages are shown in Fig. 2. V5 is a R.F. pentode detector, and one of the output transformers Tl is in its anode circuit. V6 is a mediumimpedance triode amplifier giving a second output by way of T2. There are two WX6 Westectors and one WX12, the original functions of which are not clear to the writer, but the A.V.C. line originates in this part of the circuit.

All components in the set bear numbers except those mounted on the tag board. A circuit number reference chart for this board is stuck to the opposite side of the chassis. The original circuit numbers are shown in Figs. 1 and 2.

Fig. 1. -The R.F. and I.F. stages. Circuit alterations are shown by the broken lines.

The New Circuit

It was decided to make a start on the output end of the set and work back to the input so that each section could be tested in turn with a signal generator as the alterations progressed. The writer, not being a radio engineer, confesses unashamedly that he was somewhat hazy as to the detailed workings of V5, V6, and the Westectors in the original circuit. The line of least resistance was therefore taken and those stages rewired on more conventional lines. Those readers having greater knowledge of circuitry might be able to make better use of the original layout.

It was at first decided to try the two WX6 Westectors as detector and A.V.C. diode. They are. however, designed for a maximum frequency of $1.5 \mathrm{Mc} / \mathrm{s}$, and their efficiency was found to be too low at the 1.F. of $7.0 \mathrm{Mc} / \mathrm{s}$. Two germanium crystal diodes were then wired in place of the WX6s, with excellent results.

Fig. 3 shows the circuit employed. V5 is a lowfrequency triode amplifier using the original 4 D 1 valve (originally V6). This is coupled to the new output pentode V6 for which a 7D8 was purchased.

A few minor alterations were required to the I.F. and R.F. stages as shown in Fig. 1. These will be listed in detail later. The R.F. and oscillator coils, of course, had to have turns removed, but before doing this the set was checked with a signal generator on the original $30-40$ Mc/s bānd.

Wiring the New L.F. Stages

A start on the removal of unwanted components was made by detaching the potentiometer R26 and the transformers T1 and T2. C26 and C30 were removed with Tl. The $2+2 \mu \mathrm{~F}$ block C19 and C20 with R29 attached was removed from the side of the chassis. The yellow and black lead attached to C20 was marked "A.V.C. line" for fulure identification.

Next, the components occupying the end nine rows of the tag board at the front end were removed, starting with the Westector W3 and finishing with C15 and R15. These parts can bo identified from Fig. 4. R31 was left in place to avoid disturbing adjacent capacitors, but the lead from it to R21 and R22 was removed. R32 and R33 were also detached.

The red H.T. positive line along the tag board was identified and marked; a brown lead to the cathode of V6 and a green lead to its grid were also identified for future use. The white leads from the cathodes of V3 and V5 to the power socket were next removed. Finally, R30 and R35 attached to the cathode of $V 5$ were removed.

TABLE 2

Reference Numbers of preset tuning capacitors

CT1-CT6 aerial tuning LI
CT7-CT12 H.F. transformer tuning L2 primary
CT13-CT18HF transformer tuning L2 secondary
CT19-CT24 oscillator main tuning
CT19A-CT24A oscillator fine trimming

The rewiring of V5 and V6 presented little difficulty. The new low-frequency volume control was mounted on the front panel above the chassis and a six-way tag strip was mounted vertically in the space previously occupied by T2 alongside L6. The two germanium crystal diodes, the 50 pF and 100 pF capacitors, and the 0.1 M and 0.5 M resistors were soldered to this six-way tag strip. The mauve lead from the top of L6 was convenient for reconnection, and the red lead from L6 which passed down below the chassis was led up again outside the can through a hole drilled in the chassis top.

The A.V.C. filter resistors $0.25 \mathrm{M}, 0.5 \mathrm{M}$ and the $0.1 \mu \mathrm{~F}$ capacitor together with the remainder of the components for V5 and V6 were mounted on the hinged tag board in the space previously cleared.

The removal of unwanted components left the side of the chassis next to the selector switch assembly clear. It was decided to fit a small loudspeaker in this space which measured $5 \frac{1}{4} \mathrm{i}$. $\times 4 \frac{3}{2 i n}$. Unfortunately this was just too small for a 5 in. diameter speaker but a slot was cut in the top of the chassis to allow the rim to project through above it. (The depth of the speaker from front to back had to be less than 2 in . to avoid fouling the spindle of the channel selector switch.) Four large holes were cut in the chassis with a tank cutter as seen in Fig. 6. The output transformer was mounted below the chassis on the front panel.

The 7D8. output valve employed has an optimum load of 8,500 ohms requiring a transformer with a ratio of 53 to 1 for a 3 -ohm speaker. An alternative which has not been tried is the 7D5 with an optimum load of 7,000 ohms and requiring a bias resistor of 410 ohms. By changing the valveholder to an inter-

Fig. 6. -The completed conversion. The loudspeaker mounting can ciearly be seen, and above, next to the I.F. coil can, is the tag strip carrying the detector components. The volume control mounted on the front panel is also yisible.
national octal a 12A6 could be used with a bias resistor of 370 ohms. The same output transformer would be suitable for these alternative valves.

- No plug was available to fit the power socket so this was removed. A threecore flexible lead was taken through the front panel for H.T. positive, 12 volts A.C. for filaments, and earth. The power required is 250 volts 85 mA and 12 volts 1.3 A .

Alterations to R.F. and I.F. Stages

The alterations to the R.F. and I.F. stages consisted of amendments to the biasing arrangements and connecting the oscillator anode to H.T. positive.

1. A 200 -ohm resistor was inserted between the cathode of V1 and the chassis and soldered between the pins of the valveholder. A $0.1 \mu \mathrm{~F}$ tubular capacitor with a $.002 \mu \mathrm{~F}$ mica type in parallel were also connected between the cathode and chassis. They were mounted on the end of the chassis.
2. A $0.1 \mu \mathrm{~F}$ tubular capacitor was connected in parallel with C5 on the tag board.

Fig. 5.-The underside of the chassis viewed with the hinged flap open. Above the six ceramic valveholders can be seen the channel selector switch and the new londspeaker with its separately mounted transformer.
3. The white lead from the cathode of V3 to the socket was removed. The original 10 k bias resistor R36 was removed and a 200-ohm resistor connected in its place between the valveholder pin and chassis.
4. A 200 -ohm resistor with a $.01 \mu \mathrm{~F}$ mica capacitor in parallel were inserted between the cathode pin of V4 and the chassis.
5. The red and mauve lead from the power sockct to

Fig. 2.-The detector and output stages of the original circuit.

R7 on the tag board was removed. A 22 k resistor was connected between the junction of R7 and C7 and H.T. positive.

When mounting new components on the tag board care was necessary to ensure that they did not foul the existing components or wiring when the hinged side of the chassis was closed.
quencies, to dispense with the switch unit altogether and get rid of some of the wiring self capacity. Trimmers could be mounted on top of the coil formers of L1 and L2 in a similar manner to the I.F. coils. A trimmer for the oscillator would have to be fixed below the chassis. The number of coil turns would have to be increased in this case.

W3	-
c 29.	R27
C23	R25
617	-
C16	R24
820	R21
Wi	R22
W2	P23
C15	R15
C/4	R14
C28	-
. 231	-
C/3	R/3
C12	R12
CII	R $/ 1$
610	R10
C9	R9
C6	$R \sigma$
C7	$R 7$
C5	R5
C4	R4
C3	P3
R34	-

Fig. 4. - Circuit numbers of components on tag board.

Fig. 3. -The new detector and output stages.

The set was then tested by applying the output of a signal generator at $7.0 \mathrm{Mc} / \mathrm{s}$ to the grid of V 3 followed by $30-40 \mathrm{Mc} / \mathrm{s}$ signal to the aerial terminal.

It now only remained to alter the R.F. and oscillator coils to enable TV sound to be tuned in. In the writer's case Channel 2 was required. The original coils tuned slightly above $40 \mathrm{Mc} / \mathrm{s}$ and those who require Channel 1 on $41.5 \mathrm{Mc} / \mathrm{s}$ would do well to see if it is possible to tune to this frequency before making any further alterations.

The oscillator coil L3 is the most difficult to get at because it is mounted at the bottom of the channel switch assembly. However, the complete unit may be removed if a careful note is made of the connections one by one as they are disconnected.

The aerial and H.F. transformer coils L1 and L2 are altered simply by removing the cans after unsoldering the grid cap connectors for V1 and V2. Table 1 shows the number of turns for each coil used by the writer on Channel 2. Figures are given as a guide for other channels. All these figures presuppose that the channel selector switch is retained in place. It might be an advantage, particularly on the higher fre-

Table 2 gives the reference numbers of the preset tuning capacitors which* are stamped on the cover plate. The oscillator main tuning will be found to be very critical and even a loud signal may be tuned through without noticing it unless the capacitor is tuned very slowly. The trimming tool must be of high quality material with no metal anywhere near the point. Even a plain ebonite rod was found to produce frequency shift so a 100 l was cut from $\frac{1}{4} \mathrm{in}$. thick Perspex sheet. Having got the main tuning somewhere near the required frequency, final trimming may be carried out with a metal screwdriver on the earthed CT19A-CT24A trimmers which are attached to the inside of the cover plate. The three bearing screws which prevent bending of the plate should not be touched.

Results

The receiver appears to be very sensitive and at 25 miles from Holme Moss the sound transmission can be heard weakly without any aerial. Full volume was obtained with a 3 ft . length of flex connected to the aerial terminal.

THE RECEPTION OF EUROPEAN AND LONG DISTANCE TV STATIONS By B. L. Morley

MANY enthusiasts consider that in the television world reception of a station at 150 miles is real TV DX and would probably be rather surprised to learn that it is possible to receive TV transmissions at over 2,000 miles-no ! not a misprint; the statement is over two thousand miles !
Some time before Band I was allocated to television, amateur enthusiasts were discovering that real DX (long distance reception) was possible on $56 \mathrm{Mc} / \mathrm{s}$, which is about the centre of the Band I frequencies; since then a great deal of investigation has been made into the phenomenon, but there is still much to be learned and there is a vast field of investigation open to the amateur.
Reception of the European stations is not impossible, indeed, at times signals from European stations have caused severe interference with our own

Fig. 1.-Propagation at V.H.F.
and during one rather foggy Christmas a few years ago the BBC apologised for interference which was apparently coming from a TV station in Moscow !
It is the author's opinion that with the right equipment, reception of transmissions from the Continent is well within the realms of possibility, especially at places on the South Coast, and while it would be foolish to imagine that the Continental stations could be tuned in like stations on a broadcast receiver, there is no reason why worth-while reception could not be obtained from time to time.
The enthusiast who wishes to investigate the possibilities of long distance reception requires four main items: firstly, a good aerial system, preferably rotatable so that it can be oriented in the direction of the incoming signal; secondly, a continuously tunable receiver which can tune, preferably with a dial, over the Band to be explored; thirdly, a receiver adapted for reception of the various types of transmissions likely to be encountered such as positive or negative modulated vision carriers ; and fourthly, some knowledge of the transmitting conditions.
All these items will be discussed in this article.
thusiasts are aware of the differences in the propagation of radio waves at frequencies in the medium-wave band and the short-wave band.
The radio waves emanate from the transmitting aerial partially along the surface of the earth and partially towards the sky. In the medium-wave band the normal reception area of the transmissions is that covered by the ground wave. However, some of the waves which travel skywards become reflected from a belt of ionised particles lying in the rarefied atmospheric regions surrounding the earth and get " bent" back down to the earth again.
The net result is that the signals are receivable at points well beyond the site of the transmitter and reception of Continental stations is possible in this country.

The layer of ionised particles (termed the E-layer) is in constant motion; it is affected by solar radiation and intense sunspot activity. It lends to become higher at night-time than during the day, and for this reason stations can be received at considerable distances during the dark hours.

One very noticeable effect of the variation in height of the layer is in the well-known "fading" experienced on distant stations, and to overcome this problem circuitry has been designed so as to maintain a fairly constant level of output of the receiver over a quite wide range of varying inputs.

On the short waves (from about 10 to 100 metres) it was found that the radio waves were apparently unaffected by the E-layer: they simply went through this barrier until they arrived at a somewhat similar barrier at a much greater distance from the carth's surface. This second layer has been termed the F-layer. Decause of its greater height the short waves reflected from this layer came back to earth at far greater distances than those of the medium waves, and moreover, by reason of the angle at which they came back they were reflected again into the atmosphere. The process, being repetitive, cnabled

Fig. 2.-Positive and negative modulation.
signals to be sent completely round the world. When still lower wavelengths came to be used, it was found that neither the E-layer nor the F-layer had any appreciable effect and it is generally accepted that reception is possible only when within sight of the transmitter.

As television signals are transmitted at the very low wavelengths of the order of 5 metres the accepted service area is taken as that within sight of the transmitter (we term this " line-of-sight " conditions). The waves radiate in straight lines from the aerial system and due to the curvature of the earth's surface become lost into space (Fig. 1).

Fortunately for viewers at some distance from the transmitters, a certain amount of refraction

Fig. 3.-Negative grid imput for grid-modulated tubes. (Positive modulated carrier.)
greatest, then the ionisation is intensely affected, with the result that the reflected radio waves behave in somewhat unpredictable ways.

Falling meteors also have an effect as they often leave trails of ionised particles behind them.

This sporadic ionisation of the E-layer can cause the radio waves used for television to be reflected back to the ground. In Band I reflection takes place over a distance of between 600 and 1,300 miles. Under these conditions it is possible to have an area between 100-600 miles from the transmitter where no signals are received (the skip distance), while good results are oblained at, say, 650 miles.

Tropospheric Ducts

Another phenomenon which contributes to longrange reception at V.H.F. is the production of tropospheric ducts. It appears that from time to time paths of propagation come into being between the two layers and the radio waves become trapped and travel great distances along these paths, until they encounter some atmospheric disturbance which may bring them back to the earth again.

It is probably due to this that we have the classic example of the South African " Ham " who received such good signals from Alexandra Palace that he imported a TV receiver!
"Ducting" takes place more with the Band III frequencies than with Band I, and it has been found that during certain periods the Band III transmissions are receivable at 500 miles.

Summarising the effects, it can be said that Sporadic-E DX enables Band I signals to be received at distances of 600 to 1,300 miles. Under exceptionally favourable conditions a double " hop" occurs and signals can be received as $\sqrt{2}, 200$ to 2,600 miles.

Ducting is more frequent on Band III and reception conditions can take place at distances of 500 miles-even further under very favourable conditions.

Sporadic-E ionisation by meteor trails can produce long-distance reception at phenomenal distances, but this usually takes place as short bursts of reception.

Reception may last a few seconds, a few minutes, or a few hours.

Fig. 5.-Switched grid input for positive or negative modulated carrier.

Atmospheric Variations

It has been observed that atmospheric variations
have a material effect on TV DX. Generally speaking, there are two main periods of the year during which conditions are favourable; these periods are early summer (May, June, July) and, to a lesser extent, early winter (November, December, January).
Sporadic-E DX appears to follow a lunar period,
able with those from the lozal transmitter.
For Sporadic-E DX the lower channels of Band I are the most favoured and can be received over considerable distances. In Band III ducting has to be relied on mainly, and in this band the distances obtained are not normally comparable with those obtaincd by Sporadic-E DX.
The bending of the waves which takes place in ducting usually takes place within a few thousand feet above the ground. In areas where settled seasons are the rule (not the British Isles!) consistent reception is often obtained by this means.
In America, where the weather generally follows a settled pattern, consistent results are obtainable. A phenominal record was achieved by the reception of the station at Sao Paulo, Brazil (PRF-3) at Halifax, Nova Scotia, and at Grand Rapids, Michigan - nearly 5,000 miles !

There is as yet (to the author's knowledge) no known verified reports of transAtlantic reception, but this as good conditions during one month are likely to be repeated about 27 or 28 days later.

Ducting is favoured by settled weather conditions, and long periods of settled weather with the barometer high are good periods for this class of reception.

There is a diurnal variation, conditions being better at about sunset and early morning than during the other periods of the day.

Pronounced aurora borealis displays are very frequently accompanied by Sporadic-E DX, and these periods should be watched.
A change in settled weather conditions is often favourable to TV DX. As an example, a long, dry period may be followed by a sleady fall in the barometer reading, and during the falling period Sporadic-E reception is possible.

A similar condition arises when a prolonged stormy period is beginning to give way to more settled weather with a steadily rising barometer.

The lowest periods in the cycle of reception may be in September, October, and March, April. During September, however, it may be possible to obtain TV DX in "bursts" by reason of the increased meteoric aclivity.

During the winter period, settled foggy conditions which may prevail over a large part of Europe can bring in exceptionally good signals of really high quality. These signals are often compar-

Fig. 8.-Typical blocking
(To be continued) may possibly be due to the difference in the two systems. It is thought that if experimental televisors couid be constructed so as to catcr for the differing conditions of fransmission, the reception of transmissions at a long distance could prove an interesting and valuable field of interest for the amateur.

In Part II we will discuss these differences and suggest methods of adaptation to existing equipment to enable TV DX to be received. Before we do this, however, let us be perfectly clear on the likely conditions.

Fig. 9.-Cathode-souphed multi-yibrator.

THE additional voltage drop across the Band 111 valves may be counteracted in this type of receiver by reducing the mains voltage tapping by 10 to 15 volts; e.g., if the receiver is operating on a 245 -volt supply the mains tapping can be taken down to 230 volts. Alternatively, provided the receiver is working on A.C. mains. a small mains heater transformer could be cmployed solely for energising the heaters of the Band III valves. In this case it would be desirable to use the 6.3 -volt type Band III valves instead of the 0.3 -amp type. The heater transformer should be wired to the receiver side of the mains on/off switch as shown in Fig. 11 so that this switch will control both the receiver and the converter.
If the receiver already employs a mains transformer with a heater winding the Band 111 valves may then simply be wired in parallel and connected across the heater winding on this transformer-there is generally a surplus power available here. In this instance it will also be necessary to use the 6.3 type valves unless, of course, the receiver's heater winding is other than 6.3 volts, in which case it would still probably be best to use the 6.3 -volt valves and make use of a separate heater transformer.

High-tension for the converter may be picked up from any convenient point on the receiver H.T. rail, though it is desirable to avoid tapping it off from a decoupling resistor in the receiver as these are critically rated and may overheat, and consequently disturb the working of the associated circuit if called upon to carry additional current.
It has been found best, where possible, to obtain H.T. from the main H.T. line via a resistor-capacitor combination as shown in Fig. 12. If the H.T. voltage at this point is above 200 , the value for R may be calculated by dividing the difference between the

- main H.T. line voltage and 200 by 0.03 , a 3 -watt resistor should be used. If the voltage is more or less 200 then a resistor may not be necessary.

Fig. 11.-The use of an additional heater transformer.

On certain older style receivers the main H.T. current is passed through the focus coil, in which case thet converter current may alter slightly the focus setting. This may be corrected by shifting the focus unit along the neck of the picture-tube until optimum focus is achieved with the focus control in its normal position.

It is nearly always necessary to connect the converter H.T. negative lead to the chassis of the receiver, but when this is done one must remember that most of the present-day receiver's have one side of the mains directly connected to chassis, and extreme care must be taken to ensure that this is the neutral side of the mains. It is well worth while to check this with a small neon tester or A.C. voltmeter.
The expense of band conversion is considerably reduced by energising the converter from the receiver power supply if this is possible, for it would appear pointless to employ a somewhat superfluous powerunit solely for the purpose of energising the converter valves.

The Double Superhet Principle

Where the receiver used with a band converter is a superhet, a double frequency-changing action will occur: ; once in the converter to change Band 111 signals to the frequency of Band I , and again in the receiver itself where the Band 1 signals are converted to an intermediate frequency. This is sometimes known as the "double superhet principle" and is extensively adopted in high-frequency communication receivers used by the Forces.

So far as sound broadcasts are concerned the system works very satisfactorily, but with wide-band television reception there is always the possibility of patterning due to the production of spurious signals acceptable by the pass-band of the system as the result of heterodyning of the two oscillators. Moreover, a complex state may exist where spurious signals generated by heterodyning (beating) of the fundamentals or harmonics of the two oscillators fall either in the normal pass-band of the Band III-Band I system, or in a second channel of the system as a

Fig. 12.-A decoupled H.T. feed for a band converter.
whole. It is also possible, of course, that the third harmonic of the Band I oscillator may fall within the Band III vision pass-band. These eflects will be considerably aggravated when more than one local Band JII programme is ayailable as the result of oscillator radiation from adjacent receivers tuned to different channels in Band 111.

We would add, however, that there is less likelihood of heterodyne patterns occurring in Band III as the result of conversion as is the case with channel converters in Band I.
with this, as a buffer, a Band III I.F. input valve (V2). This valve is already fitted in the receiver and its heaters are constantly energised ; it is not normally passing any current, however, as its screen grid is taken to a socket on the receiver chassis which is not connected to the H.T. line until the band adaptor is plugged in and switched to the "Band III" position.

- It will be seen that the receiver H.T. line is connected to pin three on the socket and that pin two is connected to the H.T. circuits of the Band I R.F. section-this is a part of the receiver, of course-
 of double-frequency changing, since the adaptor replaces the front of the receiver entirely, being designed to tune all channels both in Band I and Band III. This method is adopted in all current two-band commercial receivers, and the later type receiver which does not incorporate such an adaptor has provisions for easy fixing of one when required.
The Pilot TV87 is typical in this respect as may be seen by studying the circuit at Fig. 13. Here is shown the Band I frequency-change valve (V1), and in shunt
and to the oscillator circuit, via R1. Until the time when the adaptor is installed, pins two and three on the socket are shorted together and the receiver is then permitted to operate in the normal waythe alignment being such as to counteract the capacitances due to V2.

When the adaptor plug is installed in the socket, however, this link is removed and H.T. is applied to the Band 1 section only when the band change-over switch, which is fitted in the adaptor, is in the appropriate position. In this same position H.T. is removed from the adaptor, and the converse follows when the switch is in the Band III position.

The I.F. output from the adaptor is taken by way of a coaxial link to the tuned grid circuit of V2. The common I.F. transformer conveys either the Band I signals or the Band III signals to the I.F. stages of the receiver in the usual way.
It will be observed that this method permits the normal use of the Band I tuner section and permits of the simple inclusion of an adaptor which is tuned to Band III.

Most manufactures have deyeloped Band III tuner units, adaptors or converters which can be added to their Band I receivers with the minimum of trouble. Usually, however, the receivers which are covered by this modification are those which are no older than two to four years. This varies between manufacturers, so before contemplating the purchase or
(Continued on vage 207)

 DETAILS OF MOST OF THE SURPLUS TUBES NOW AVAILABLE
 By "Erg"

AS the supply of inexpensive ex-Government cathode-ray tubes becomes more restricted many constructors are trying to bring into use some of the lesser known types. There is some danger in this as good money can be spent on a worthless tube and such purchases must be made with discrimination.

The main classes of tubes to avoid are those of the gas focusing type, tubes with long persistence screens, and tubes intended for projection.

The war years saw the development of many classes of tubes, some of the experimental type and some which proved of little value in the field. The reader will appreciate that it is not possible to list every type likely to be encountered, nor is it possible to give base connections of each different type, though a method will be given which should enable the constructor to determine this latter point for himself.

Tubes to Avoid

Perhaps the most important of these are the gasfocused types such as the VCR84, VCR85, VCR87, NC2 and NC4. These tubes have a rather long afterglow and a very short life.

Following closely behind these tubes are those used for projection work. Those known to the author are the VCR520 and CV965. These were originally used as skiatrons; they have a dark screen subject to staining, have a 3 in. diameter screen and require about 10 Kv . for the final anode. They are interesting for experiment but of no value for television.

The final category of tubes to avoid are those with screens of long persistence. Here we come against a problem as the term" "long persistence" can be loosely applied. Some tubes classified as long persistence can be used in TV and should really come under the category of medium persistence. Generally, we can say that tubes with two coatings on the screen are unsuitable. These can often be recognised by the fact that the front of the screen appears yellowy while the rear appears blue.

The effect of long persistence is accomplished in this case by the blue layer on the screen being activated by the electron beam, and by re-radiation activating in turn the screen nearest the glass front.

Such tubes were often used in P.P.I. displays.
A second method which may be employed is distinguish these tubes is to hold the tube so that it faces bright sunlight; if the tube is then taken into the dark and then shows a green glow it is almost certain to be one with a long persistence.

Screen Persistence

The persistence of the screen is a vital factor in determining the use of a tube for TV. For this work screens of a short persistence are required.

By persistence of the screen we mean the time taken for the glow to subside after the activating electron beam has been removed. With a screen of short persistence the glow decays to zero in less time than the natural persistence of vision of the eye. With medium persistence tubes the glow is retained a little longer and while such tubes can be used for television they are not ideal. '

It may come as a surprise to many that the popular VCR97 is classified as a medium persistence tube. Some reveal the fact more than others, the degree of persistence depending to some extent upon the applied E.H.T.

The long persistence tube is useless for TV as the image is retained for a long period-in some cases as long as five seconds. In such cases persons walking about the scene would appear as ghost figures as the scenery would be seen through them; further, their outlines would be blurred. With long panning shots and fast action scenes such tubes are hopeless.
There is no reliable method known to the writer of changing a long persistence screen into one of short persistence.

Tubes with Similar Characteristics

Some tubes are similar in appearance and characteristics and they are listed below. It is not possible to give a fully comprehensive list for reasons stated previously, but this list should be a useful guide.

```
VCR87 = ACR19
VCR13I = ACR12 = NC20
VCR511 = ACR23
VCR520 = CV965
VCR97=NC12 (approx)
VCR517 = ACR21
```

In the case of the NC12 we have a tube similar to the VCR 97 but it will take up to 5 Kv. E.H.T. This tube is often sold as a VCR97 and will generally function quite well in normal VCR97 circuits. The VCR97 proper, however, is a Mullard tube having the number ECR-60, while the NCl 2 is a G.E.C. tube and has the number E-4504-B-16. (The two commercial numbers are the near equivalents.)

The VCR138 is really a VCR97 used with a smaller screen. It has the same gun structure as that tube and will operate on the same voltages. The screen diameter of 3 ins. makes it suitable for oscilloscopes, but to obtain the very best results an E.H.T. of 2.5 Kv . should be used. This means, of course, that the power of the timebase must be increased accordingly and if this E.H.T. is used then a paraphase system is the best type to employ in the timebase.

Following closely on the VCR138 is the VCR138A which has very similar characteristics but has a slightly longer screen persistence. The trace is green as is that of the VCR138 and 97.

Although the maximum anode voltages have been given as 2.5 Kv these tubes will work on as low as 1.2Kv.

The VCR139 is an excellent little tube having a similar construction to the ACR10; the two can be considered as being equivalent. The screen diameter is $2 \frac{3}{4} \mathrm{ins}$. and the maximum anode voltage is 1.5 Kv . Under service conditions it was intended to use this class of tube at 2.6 Kv but the life of the tube was comparatively short and gay. It functions very well at 115 Kv and will even provide a good trace at 800 v .

As this tube has a short persistence screen it is very suitable for miniature TV receivers and for oscilloscopes.
The VCRI39A, which has the near equivalent of the VCR526, is similar to the VCR139 excepting that it has a medium persistence screen. It can be used in similar circumstances and is sometimes known as the NC16. The near commercial equivalent is the G.E.C. E-4205-B-7.

A tube to avoid is the VCR $520=\mathrm{CV} 965$ which is a projection tube having a dark screen and short life. The diameter of the screen is $3 \frac{1}{2}$ ins.; it requires 10 Kv E.H.T. and is sometimes called the "Skiatron."

Tube Summary

Once again the writer would like to make the warning that it is not possible to give a complete classified list of all the tubes likely to be encountered; it would take up too much space and would prove rather boring. - Instead a selection of the tubes most likely to be encountered is given with a brief résumé of their chief points.

The VCR $84,85,87, \mathrm{NC} 2, \mathrm{NC} 4$ are gas focused tubes with short lives-avoid them.

VCRI31 is an electrostatic tube with 12 in . screen and can be used for TV. Its trace is green and it is actually a pre-war commercial oscilloscope tube. Circuits for its use have been given in Practical Television.

VCR138 screen 3 ins. diameter mentioned in previous paragraph.

VCR139 and VCR139A have been mentioned in a previous paragraph.

VCR140 is a very tempting tube for the home constructor. It is a magnetic tube with a. 12 in . screen and can be obtained quite inexpensively. The screen trace is inclined to vary in colour according to the E.H.T. supply but can be stated as being a blueygreen. When viewed from the rear the tube appears to have a blue screen; this is because it is of the two layer type, the blue layer being the primary layer activated by the electron beam and, emitting rays in the U.V. region, it actuates the rather slower layer which is on the glass of the screen and which is, therefore, seen from the front of the tube.

The front layer is, therefore, of long persistence and while the tube may be suitable for experimental purposes it is not, in the writer's opinion, suitable for TV and the constructor should think well before he decides to use it in a proposed television receiver.

VCR140A, very similar to the previous model but has an even longer persistence. It will operate with up to 8 Kv as E.H.T.

VCR511 and VCR511A. These two are 12in. tubes with electrostatic deffection and while the persistence of the green screen has been given as medium to long they have proved quite suitable for TV. The ACR23 is a near equivalent. Articles have been
given in Practical Television on the use of these tubes.

VCR516 and VCR516A. Both of these tubes are the 9in. equivalents of the VCR140 and VCRI40A (q.v.). They have magnetic deflection and can be used. experimentally in TV but are not recommended for a normal service receiver as they have screens which possess long persistence like .their VCR140 counterparts.

VCR517 and VCR517A. These two tubes can be classified practically as equivalents of the VCR97 and can be used in the same circuits. They are of medium persistence, however (especially the 517 A), and, in the writer's opinion, dọ not provide quite as good a picture as the popular VCR97. They are capable, however, of very good results.

VCR517C is a tube very similar to the VCR517 but it has a lower X plate sensitivity (more power is necessary in the line timebase to produce full width) and, what is more serious, it suffers from long persistence. It is not considered suitable for: TV except for experimental purposes.

VCR520 is a projection tube and has been mentioned in a previous paragraph.

VCR521 is somewhat similar to the VCR138A, having a small 3 in . screen but requiring up to 5 Kv E.H.T. Its screen is long persistence.

VCR522 is a rather small tube with a screen diameter of about 1 in . It is of the electrostatic type and requires 800 volts E.H.T. It is very similar to the G.E.C. E4103-B-4 which is used in the G.E.C. "Miniscope." It can be used for a rather small oscilloscope but the screen is rather too small for TV.

VCR530 is not suitable for TV, it has a long persistence screen. The CV254 was derived from this tube and it has electrostatic focus and is a 9in. tube.

VCR524 is very similar to the 522 , but it uses post deflector acceleration.

Some C.R.T.s are known by their NC numbers, and to assist the constructor the following notes are given:-

NCI similar to VCR 522.
NC6 is a rather queer looking tube as the Y plate connections are brought out to side caps. The tube has a medium persistence of screen which is 3 ins. in diameter.

NC7 is a worth-while tube if it can be obtained. It is an electrostatic tube with a 9 in. screen of short persistence and requires an E.H.T. of 6 KV .
NCl 2 is the G.E.C. version of the VCR97 and has been mentioned previously.
NC14 is similar to the VCR97 but has a blue screen of medium persistence. The maximum E.H.T. is 2.5 Kv .

NCI 5 is rather an odd man out as it is a 4 in . tube using a 12-pin base. It has a fairly long afterglow and is not considered suitable for television.

NC20 is the equivalent of the VCR131 q.v.
NC19 is very similar to the NCl and can be used in lieu.

American Tubes

The writer has not a great deal of information on these tubes but the following notes are offered as a guide.

3 FP 7 has a 3 in . screen and a long persistence. It is not suitable for television.

3GP1 is also a 3 in . tube of medium persistence and can be used for an oscilloscope or miniature TV.

3 BPl is a very useful little tube and very suitable for oscilloscopes. The screen is green and is or medium persistence.

3 EP 1 is similar to the 3 BPI and can be used in an oscilloscope.

5AP1 has a 5 in . scteen and is of medium persistence.
$5 B P 1$ is quite a useful tube for TV and can be used in similar circumstances to the VCR97. It operates best with a higher E.H.T. than the VCR97 and although the screen is a little smaller it provides a very good picture.

5BP4 has a white screen 5 ins. in diameter and of short persistence. Very few available.

5CP7 has a greenish yellow screen of long peirsistence and is not considered suitable for television.

5HP1, 5LP1, 5MP1 are all tubes of medium persistence having a green trace with a screen diameter of 5 in. There are very few available at the present time.

ACR Tubes

Most of this class of tube has been covered under their equivalents, but two which have not been so covered which deserve mention are the ACR2 and the ACR2X. These tubes are electrostatic and are a little longer than similar tubes of the VCR class. They have 6in. screens and the deflector plates are brought out to side contacts. Both tubes can provide a really good picture and are fairly cheap to buy when they are available.

VCR97

This tube, known to almost every constructor, deserves special mention as there are one or two hidden snags. It is classified as a medium persistence

RECEIVING THE I.T.A.

(Continued from page 204)
construction of a standard type converter it would be well worth while to find out whether a speciallydesigned unit is available for the receiver concerned -the manufacturers' agents can supply this information quite easily.

Various methods of Band III conversion exist, and as opposed to the Pilot scheme some manufacturers have available two band units which can be plugged in to replace the whole of the front section of the Band I receiver.

As previously intimated, the circuitry of a band adaptor is practically identical to that of the Cascode type converter, the essential difference being that with the adaptor the output is at an intermediate frequency (see Fig. 14).

The Intermediate Frequency

It has been recommended by, the British Radio Equipment Manufacturers' Association (B.R.E.M.A.) and the G.P.O. that in future twoband TV receivers a standard intermediate frequency of $34.65 \mathrm{Mc} / \mathrm{s}$ be adopted for the vision channel : the two concerns also suggest the use of an oscillator higher than the signal frequency, thereby making the sound I.F. channel correspondingly higher in frequency than the vision channel.

This choice of frequency, it is claimed, will reduce interference caused by harmonic radiation originating in the vision I.F. channel of the receiver itself to one isolated case resulting in a possible $1.85 \mathrm{Mc} / \mathrm{s}$ beat pattern in the fringe areas in Channel 12. Moreover, it is advocated that the above system will eliminate
tube, but, so far as general TV work is concerned, it has proved to be one of the most suitable types.

It is known also by its CV number which is CV1097, and if this is the tube number then it is certainly a VCR97.

As mentioned previously there are two makes of tubes which are sold as VCR97s, one made by Mullard and one made by G.E.C.

The Mullard tube has the following characteristics :
Heater 4 v . Heater current 1.0 A.
Va1-Va3, 2.5 Kv .
Va2, 260-450 v.
$\mathrm{Vg},-1$ up to -100 .
The G.E.C. tube (the E-4504-B-16) has the following characteristics :

Heater 4 v . Heater current 1.1 A.
Va1, $2.5 \mathrm{Kv} . \mathrm{Va}, 0.175 \times \mathrm{Va} 3$ mean.
Va3, 5 Kv max. (min. 1 Kv).
$\mathrm{Vg},-90 \mathrm{v}$.
The G.E. \dot{C}. tube can therefore be used with a higher E.H.T. voltage and is capable of giving a picture with greater detail.

One important point to note with these tubes is that some models suffer from "cut-off." This is the shadow thrown on the screen by the deflector plates which thereby prevents the full width of the screen being occupied ; the picture is cut off at the edges. In some cases the picture can be pulled into shape by the use of very long, thin magnets placed on the side of the screen, but generally speaking, the tubes are only suitable for oscilloscopes and can be obtained very cheaply for this purpose.

In Part II of this article we shall deal with methods of determining the contacts when these are not known.
(To be continued)
excessive interference in Band II (the F.M. band) which may otherwise occur as the result of radiation from television osciliators.

It would seem from current practice that TV designers are taking keen note of these recommendations, for the majority of two-band receivers are now employing an intermediate frequency within the range $34-35.5 \mathrm{Mc} / \mathrm{s}$. Two-band tuner units which are now available commercially, are also arranged to feed an I.F. channel of $38.15 \mathrm{Mc} / \mathrm{s}$ sound and $34.65 \mathrm{Mc} / \mathrm{s}$ vision.

Clearly, then, such tuners are not easily installed in existing Band I receivers in place of the original R.F. amplifier and frequency-changer stages. This is, of course, because the majority of older style receivers use intermediate frequencies within the range 12-19 Mc / s, and also in a large number of receivers the oscillator frequency is lower than the signal frequency, producing a vision I.F. $3.5 \mathrm{Mc} / \mathrm{s}$ above the sound I.F.

It may be possible to alter the sound and vision I.F.s in the receiver to correspond to the output I.F.s of a tuner unit, but such a modification will almost certainly demand the use of an accurately calibrated signal generator and a video output meter and, generally speaking, a conversion of this nature falls outside the scope of the average experimenter, that is, so far as commercial receivers are concerned anyway.

One may also be tempted to alter the tuner unit's oscillator frequency so that it will produce an I.F. output to match the receiver intermediate frequencies. This may be feasible in some cases, but to disturb the tuned circuits of such a device is a risky business.
(To be contintued)

Amateur Television Construction

SOME DETAILS•FOR THE NEWCOMER

By M. R. Harkneit

MOST radio enthusiasts interested in having their own television receiver will realise that it is an expensive business to construct one from scratch. Yet a secondhand receiver tuned to the London frequency, channel 1 , can be purchased very cheaply fa 9 in. screen set would cost about $£ 10$, less than the parts would cost alone).

To tune this receiver to another channel is comparatively simple, and when this has been done one has a receiver in a cabinet with a professional finish known only to commercial sets. Most home-made receivers never have the luxury of a cabinet, and whilst to the constructor the naked receiver is a beautifu! piece of workmanship it is hideous to his wife and non-technical friends and it spoils the appearance of any room.

Some people will remark that a 9 in . screen is too small. It is true that large screens are in vogue, but there is nothing more ludicrous than to enter a home and to see a couple viewing a 17 in . screen in a room which will only allow a viewing distance of 10 ft .
The only advantage of a large screen is to enable several people to see a good picture, which may suit those wishing to give over their home to public entertainment.
If one sits at a distance from the screen where the picture ceases to appear to be made up of horizontal lines (about 6 ft . in the case of a 9 in . screen), then one will have the same angle subtended at the eye by any size of screen, which is the only criterion.
The prospective purchaser of the secondhand set would be well advised to ensure that a raster is obtainable as this checks all of the expensive side of the receiver: picture tube, timebase coils, transformers and E.H.T. circuits, whether the latter be derived from line flyback or a mains transformer source. It is not quite so important that the radiofrequency circuits are working properly, since they can be repaired cheaply, but these circuits can be checked by connecting the receiver to any aerial and, with the gain full up, watch and listen for car noises.

Superhet Preferred

It is preferable to purchase a superhet for reasons which are explained later, but it is not easy to distinguish a superhet from a straight set merely by examining the chassis. A valve identifiable as a frequency changer is almost a certain indication of a superhet, but in some superhets a separate local oscillator is used, thes making identification difficult. The only certain method of identification is to refer to the service sheet which should be obtained in any case before attempting to retune. Service sheets can be hired for a very moderate sum in most towns.
Before attempting to retune the receiver, the difference between the present channel 1 and the other channels should be appreciated.
The vision transmission on channel 1 is an ordinary amplitude-modulated signal as is the sound. The vision for the other channels is
transmitted on the vestigial sideband system. This means that only one complete sideband is transmitted, the other sideband being cut off just above the carrier (Fig.1).

Conversion

The actual conversion will now be discussed, starting with superhets.
To retune most superhets only three tuned circuits have to be altered: aerial, mixer grid and local oscillator.
In general the best method of retuning these circuits is to remove turns from the tuning coil. Another method which can sometimes be used is to remove the dust-iron tuning slug and replace it with a copper or brass slug. This method saves an awkward job in the case of waxed-in and closely-coupled coils. The disadvantages of this mellod are: (1) the effect on the tuning is not readily calculable ; (2) it will only provide a sufficient change of inductance if the dustiron slug was well in the coil originally; (3) it is often found that at least one of the coils is already tuned by a copper slug or cylinder.
The number of turns on the coil has to be proportioned down inversely as the frequency, the frequencies considered being the sound frequencies of the two channels. It is important that the winding length of the coils be kept the same. The theory cornected with this modification is simple :

$$
\mathrm{L}=\frac{K n^{2} \mathrm{a} \mu}{1}
$$

Where $\mathrm{L}=$ Inductance of coil. $K=A$ constant.
$\mathrm{n}=$ Number of turns.
$\mathrm{a}=$ Cross-sectional area of coil.
$\mu^{\mu}=$ Permeability of core.
$=$ Winding length.
If a, $\mu, 1$ are kept constant, then $\mathrm{L}=\mathrm{Kn}^{3}$.

$$
\begin{align*}
& \text { also } \mathrm{f}=\frac{\mathrm{P}}{\sqrt{ } L C} \tag{1}\\
& \text { Where } \mathrm{f}=\text { Tuned frequency. } \\
& \mathrm{p}=\text { A constant. } \\
& \mathrm{C}=\text { Tuning capacity. }
\end{align*}
$$

Then since C is kept constant

$$
\begin{equation*}
\mathrm{f}=\frac{\mathrm{p}^{1}}{\sqrt{L}} \tag{2}
\end{equation*}
$$

Substituting (1) in (2) we get

$$
n=\frac{K^{1}}{f}
$$

Which result confirms the above-stated inverse proportionality, e.g., if there were 12 turns on a

particular coil in a receiver tuned to channel 1 , and the new channel was channel 3, i.e., the frequency is to be changed from $41.5 \mathrm{Mc} / \mathrm{s}$ to $53.25 \mathrm{Mc} / \mathrm{s}$, then the new number of turns will be

$$
12 \times \frac{41.5}{53.25}
$$

$=9.5$ to the nearest half-turn, which means that 2.5 turns have to be removed. it being borne in mind that the remaining turns must be spaced farther apart in order to maintain the original overall winding fength of the coil.

Oscillator Coil

In the case of an oscillator coil, the frequencies considered in the calculation should really be the two respective sound frequencies minus the intermediate frequencies. However, since the intermediate frequency is usually low the error due to not making this correction is small and can be corrected by the trinmer. For an oscillator coil which is centre tapped, turns should be removed from each end of the coil: in the example given, 1 turn should be taken off one end and 1.5 turns from the other end of the coil. If for mechanical reasous it is only possible to work to the nearest whole turn, the difference can be made up during the trimming by adjusting the slug or trimming condenser as the case may be.

When all the R.F. tuned circuits have been modified, the set can be connected to the appropriate aerial and switched on. If one is in a strong signal area both sound and vision should be received after slight adjustment of the oscillator trimmer. The vision signal will probatly at first only appear as dark patches flitting across the screen.

In the case of weak signal areas, a modulated signal generator will be very useful. This should be set to the sound carrier frequency and the local oscillator tuned for maximum audio response. Once the actual transmission can be received, the R.F. circuits can be trimmed for a good compromise between sound and vision signal strength. When any circuit is being tuned, care should be taken to ensure that a false maximum is not obtained. For example, when the inductance is on the low side a false maximum can be

Fig. 2.-Showing how a suitable trimmer may be filed from a broken knitting needle.
obtained when the slug is fully in the coil, since screwing the slug in any direction will cause a decrease in the output and will therefore give the impression that the optimum has been obtained. This is, of course, not the case and the addition of the appropriate capacity will enable the optimum tuning point to be reached.

When the optimum tuning position for the local oscillator has been found, the core can be locked in position since it will not require further adjustment. If the trimming adjustment is of the screwed dust-iron type it can be fixed in position by wax.

Great care must be exercised when adjusting this
type of slug, since the thread on the slug and the thread in the former is very delicate and therefore easily stripped. The slug must be screwed in with as little pushing action as possible. A non-magnetic trimming tool must be used in order that the tool will have no effect on the inductance of the circuit. A suitable trimmer can be made from a broken knitting needle filed as in Fig. 2.

If the above drill has been carried out correctly it should now be possible to lock the picture with the aid of the appropriate controls.

For the final adjustments it is best to use test card C when this is transmitted by the BBC, and adjust the trimmers for the best frequency response. The vision I.F. trimmers may have to be adjusted for a good response as the vision I.F. strip may have been tuned to receive the upper sideband of the channel 1 transmission.

Bandwidth

It is not usually possible to obtain a frequency response better than $2.5 \mathrm{Mc} / \mathrm{s}$, as shown by the boxes on the test card, due to trouble in the form of sound on vision and vision on sound. Sound on vision in a mild form will cause black bars to appear on the screen, the pattern of which can be correlated to the audio signal. In a bad case of sound on vision the whole picture will break up. In most receivers there are sound and vision rejectors which, of course, have to be adjusted for minimum interaction between the two channels. These circuits and their location will be explained in the service sheet.

Vision on sound is equally annoying, and gives rise to a $50 \mathrm{c} / \mathrm{s}$ hum in the loudspeaker. This hum will change with the picture and is worse when the picture is half plain black and half plain white as in the case of the black cross test signal.
One should not waste too much time trying to obtain a very high frequency response; even if only the. $2 \mathrm{Mc} / \mathrm{s}$ bars can be resolved this will give quite a good picture. Unnecessary adjustment might eventually lead to stripped threads. When a satisfactory picture has been obtained, lock or wax all the slugs into position. This will not only prevent the slugs from moving with vibration, but it will also discourage tampering.

T.R.F. Circuits

We now come to the retuning of T.R.F. receivers.
Almost all straight receivers were designed to take advantage of the double sideband transmission of channel 1, the vision R.F. circuits being tuned to receive the upper sideband only (Fig. 3a). This made it easier to separate sound from the vision. The receiver response required for channel 3 is shown in Fig. 3b. It is seen that the frequency differences between the centres of the two passbands will be different for the two types of transmission, being in fact (assuming $3 \mathrm{Mc} / \mathrm{s}$ bandwidth) $5 \mathrm{Mc} / \mathrm{s}$ for channel 1 , and $2 \mathrm{Mc} / \mathrm{s}$ for all the other channels.

Two things become immediately apparent from these considerations :
(1) The frequency spacing between the vision and sound R.F. amplifier responses will have to be reduced.
(2) It is very difficult to obtain a high-frequency response with low interaction between sound and vision channels.

It is much more difficult in the case of a straight set
to avoid interaction between sound and vision channel's, and usually one has to be contented with a modest vision frequency response. This is because, assuming the same Q for the coils of both types of receiver, the skirts of the response curves will be less steep in a straight set than in a superhet where the separation is carried out at a much lower frequency, i.e., I.F. For the same reason, the sound and vision rejection circuits will have a much greater selectivity in the case of a superhet.

It is recommended that to retune a straight receiver all the coils should be altered in the same manner as the R.F. coils in the superhet. Unfortunately there are many more coils to alter in this case, but it is the simplest method in the long run. One big disadvantage of this method, however, is that it is a permanent measure and the receiver is not easily reconvertible.

It is not recommended that the receiver be converted into :a superhet with I.F. frequencies corresponding to the channel 1 frequencies. To do this a very low local oscillator frequency would have to be used, the: harmonics of which would most likely fall within the passband of the sound and vision R.F. amplifiers.
A local oscillator on the high side cannot easily be used since it would invert the sound and vision channels, thus causing the sound I.F. to be higher than the vision I.F. Two oscillators on the high side could be used, but the drift would be intolerable unless special precautions were taken.
There is nothing to be gained from the selectivity
point of view by converting to a superhet in this fashion since the I.F" would be so high.
When modifying coupled pairs of coils, the spacing between coils need not be altered as this is not critical.
When all the coils have been altered, the receiver can then be connected to an aerial and switched on. -In a T.R.F. receiver there is usually a common sound and vision stage which should first be trimmed for

Fig. 3.-Vision and sound R.F. response curves for T.R.F. receivers.

$$
\text { (a) Channel } 1
$$

(b) Channel 3

maximum audio output; the sound channel can now be peaked up.

Once the sound is received it should be possible to see signs of a picture. The vision strip. should then be tuned for a reasonable-looking picture which can be locked by the appropriate controls. The common R.F. stage should then be trimmed for a good compromise between sound and vision amplitudes. One cannot. peak up the circuits too much in a straight set since, as all the tuned circuits in a particular channel are tuned to the same frequency, the channel is liable to oscillate.

The final tuning should be carried out, using test card C as before.

LIGHTNING

TTHE following interesting statement has been received from Messrs. Belling and Lee, wellknown aerial manufacturers. In view of the importance of the subject, we think readers will be interested in the statements.

Notices in some sections of the daily Press suggest that there is a measure of risk of television aerials being struck by lightning. One paper headed a notice in bold type "Television aerials attract lightning." In fact, nobody would dispute that one is in far greater danger of an accident in going out to post a letter. If there were any significant danger to property, the insurance companies would not be slow in adding a shilling or two to the normal householder's comprehensive premium. Each "Belling-Lee" aerial carries a three-year insurance against damage by lightring and this is passed on to the ultimate user. During the past 16 years well over a million and a half TV aerials, and "Skyrods" have been sold by "Belling-Lee" and erected, but claims for damage by lightning brought to our notice barely reach a dozen, and in no case was damage done to the fabric of the house but only to the receiver. In the same period many thousands of buildings without television aerials have been struck and damaged.

When lightning conductors are fitted to a high building the conductors are generally of very heavy copper strip about $1 \frac{1}{2}$ in. wide and $\frac{1}{8}$ in. thick. Cost of labour and material would be many times that
of a television receiver and its aerial. Such buildings are not immune, and if the lightning charge is heavy the copper will melt, but generally the copper is heavy enough to carry the charge. In the case of a television aerial, if the aerial is struck the feeder (lead-in) generally disappears. It is instantaneously melted and the charge follows the path of the metallic vapour.

The rising column of smoke, or even air, issuing from a chimney is more conductive than the normal air surrounding the roof. The influence of that smoke or air is greater than any aerial and if a static or lightning charge chooses to go to earth in the vicinity it will follow down that conductive air column and probably shatter the chimney (which is generally a carbon-coated tube), and perhaps destroy the fireplace on the way. In any case, the damage would be much more serious than if a television aerial were struck.

A NEW HANDBOOK

" PRACTICAL TELEVISION CIRCUITS"

$$
288 \text { pages, } 156 \text { illustration's }
$$

15/- net or $15 / 6$ by post from
GEO. NEWNES, LTD.,
Tower House, Southampton Street, Strand, W.C.2.

EASY TERMS FROM15/-A MONTH With these outfits, which you receive upon enrolment, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to complete Radio and Television ReceiverTesting and Servicing.

TELEVISION_With this equipment you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver.

E.M.I. INSTITUTES

The only Postal College which is part of a world-wide Industrial Organisation

ADDITA-BAND III CONVERTER

Our convetex has given very satisfactory results from the experimentai beulah Mili station, and we have had many satisfying reports regarding its periormance.
It is a very neat-looking unit and fits to the side or the back of the televisor. It is designed to convert any T.V. superhet or T.R.F. and no internal modifications of any kind are required. Simpiy plug in the aerials, connect to the mains, and you have switch. Price $£ 7 / 10 /-$ and $2 / 6$ post and insurance.

BUME IT YOURSELF
You can save at least $£ 2$ on the above if you build the converter yourself. Price of all components, including stove enamelled case and even-transfers for the front, is exfist-, plus $2 / 6$ post. or $£ 5 / 5 /$ - if mains components also required. Data is included free with the parts or available separately price $2 / 6$.

BAND 3 AERIAL KIT

An-interesting aerial, "The Folded V." was described in the July number of this magazine. We tried this rand found it to be most efficient, both for interference reducing and inereasing reception strength. It is simple to make. We, therefore, offer this aerial as a constructor's kit. The kit comprises alloy elements and connectors, neat plastic centre piece with polythene insulators and saddle for mounting on existing mast, or in loft, window frame, drainpipe, etc., etc. etc., etc. 8/6, post $1 / 6$.

W.W. Band III Kit

One of the most successful circuits for Band III conversion was published in the "Wireless World.' The results we have received in our Eastbourne laboratory have been momplete tit satisfactory and we consegtenty orer a woundrcoils drilled chassis in fact everything includinc a copy of the circuit diagram. Price only 42/6, post $2 / 6$ a copy of the crrcure diagra if required 25 - extra avalable separately,-price $1 / 5$.

READY-BUILT BAND III CONVERTER 59/6 This is a 2 -valve unit for conversion at aerial frequencies. It is largely based upon the "Wireless World "circuit described above. It's frequency can be set anywhere within the $186-196 \mathrm{mc} / \mathrm{s}$ band. It is pre-aligned so no instruments are required for adjustment, simply " fine" " tune. Price 59/6. post and. insurance $2 / 6$.

THE CLEVELAND F.M. TUNER

Ihis tuner is based upon the very successiul circuit published by up models at all branches and will gladly demonstrate. Stability is extremely grood and making and aligning most simple. With only a simple indoor aerial this tuner works very well at Eastbourne (over 60 miles from ondon) and. we await reports rom ever greater distances. Cost of all parts including valves. prepared metal chassis. wound colls and stove enamelled scale, slow-motion drive, pointer, tun.
Uses high-efficiency coils-covers long and medium wavebands and fits into the neat white or brown bakelite cabinet-limited quantity only. All the parts, inciuding cabinet, valves, in fact, Constructional diata flus $2 /$ post. parts, or available separately the

MULLARD AMPLIFIER "510"
A Quality Amplifer designed by Mullard. Power output exceeds 10 watts. Frequency response almost flat from 10 to 20,000 C.P.S. For use with the Acos "Hi G " and other good pick-ups. Made up and ready to work is cl2/10/- or 85/-deposit, plus 10/carrit form send in kit form. Send for Mullard

ELECTRONIC PRECISION EQUIPMENT, LTD.

Post orders should be addressed to E.P.E.: LTD., Dept. 5, 123 Terminus Road, Eastbourne. Post enquiries to Eastbourne with stamped envelope. please.
42-46. Wiadmill Hill, \mid 152-3, Flect Strect, 29, Stroud Green RA., \mid 249, Kilburn High Phone: R, Middx. Phone: RULSLIP 5780
Half day, Whone: FLEet 2833
Whone AR AROhway 1049

意-INCH ALUMINIUM TUBING

Ideal for making T.V. aerials, etc. $1 / 6$ per foot, 6 feet lengths 8/4.
GAR STARTER/CHARGER KIT
All parts to build 6 - and 12 -volt charger which can be connected charger which can be connected enable the car to be started instantly. Kit comprising the following \qquad
Mains transform \qquad \cdots -amp. rectifier
Regulator Stud Switch Resistance Wire
Resistance Former
Mains on off Switch
-5amp. Moving Coil Meter constructional Data or if bought all together price is 69/6, plus 2/-post and packing.

INFRAY LAMP WARMER

 1d. per unit) - Absolutely safe, no health Price 36:or fire risk. Post \& Packing 21-. - Ideal for many. other uses pup chicks basket, rearing bench. etc. All complete and ready to work.
Major 4 Lamp Madel $£ 6-10$ - 0
NOVELTY RADIO

5-VALVE SUPERHET YOURS FOR ONLY 40/-DOWN

Chassis size 7 approx .94 x class compo nents. A.C mains opera tion. Three wave (medium n n d
shorts
t
wom shorts). Com valves, ready to work wow five unused Cash vice es 19.6 ard 40 - deposit and 9 e 25.19 .6 , or ments of 10/-(carr, and ins. $7 / 6$).

FREE

so encourage customers to use oux post service, we are giving a set of B.A. ${ }^{4}$ and ${ }^{6}$ spanners free with all post orders of $10 /$ and over this
month.

品 Road, Kilbur's. Half day, Wednesday. Helf day, Saturday. ${ }^{\text {Half day. Thursday. }}$ Hatda Vale 4921.

IT.A-Lichfield Station

ADVANCE DETAILS OF THE PROPOSED MIDLAND AREA TRANSMITTER

TTHE map below shows approximately the areas in which the reception of the I.T.A's station at Lichfield will be possible, when the station conses into operation. This is expected to be in January or February, 1956.
Provided that the correct type of receiving aerial recommended for the various localities is used and the appropriate conversion of receivers to obtain the alternative programmes is made, reception conditions in the zones are expected to be as follows:

Hince: Unshaded Zone
(Primary Service Area)
Most viewers in this area, unless situated in specially unfavourable positions, for example, immediately behind high ground, or screened by high buildings. will receive a satisfactory service.

Shaded Zone (Secondary Service Area)
Within this zone a substantial proportion of viewers
will receive a satisfactory service, but there will be some local areas in which reception conditions will be poor.

Outside the Shaded Zone
Some favourably situated viewers will be able to obtain a,reasonable service.

Site Height	.. 500ft.a.s.l.
Mean Aerial Height	. . Scoft.a.s.l.
Channel	... 8
Frequencies $\left\{\begin{array}{l}\text { Vision } \\ \text { Sound }\end{array}\right.$	$\ldots 189.75 \mathrm{Mc} / \mathrm{s}$
E.R.P. ... \ldots	200 kW approx:
Population Served:	
Primary Service Area ...	4.83 mill. approx.
Secondary Service Area	1.24 mill. approx.

Primary Service Area

The map shows that the estimated Primary Service Area extends from the transmitter out to some 30 miles to the west (near Wellington) ; for about 35 miles to the north (near Matlock) ; for about 35 miles to the east (near Market Harborough) ; and for over 50 miles to the south (in the Vale of Evesham).

Extent of Secondary Service Area

The estimated Secondary Service Area brings into range places some 50 miles distant from the transmitter in the west (between Shrewsbury and Oswestry);

some 45 miles distant in the north (near Bakewell and Chesterfield) and in the east (near Grantham and Oakham), and nearly 60 miles in the south (near Gloucester and Cheltenham).

Population-Coverage

The population in the area which the station will serve is estimated as:

Signals will be transmitted from a* high-gain aerial which will" be carried on a 450ft. self-supporting tower. As the site is 500 ft . above sea level the total height of the mast above sea level will, therefore, be 950 ft .

Work Begun on Site

Work began on levelling the site and excavating the foundations for the building and the mast in the middle of July. The authority's architects are Messrs. E. R. Collister and Associates, and the work of preparing the site and erecting the station buildings

An arist's impression of the proposed new station. is in the hands of Messrs. James Crosby and Son. As previously announced the transmitting equipment is being built by Messrs. Pye, Ltd., and the mast and aerial system by Messrs. Marconi's Wireless Telegraph Co., Ltd.

Low Power Test Transmissions

Messrs. Belling and Lee, aerial manufacturers, who are at the moment putting out test transmissions on low power at the authority's' station at Croydon, have been invited by the authority to make similar transmissions from the site at Lichfield and have agreed to do so. It is hoped that these will begin in October. No intimation has been received at the time of writing as to the Call Sign or power which will be used.

High Power Transmitter Planned

The transmitter will start ori high power with an effective radiated power of 144 kW . or more. This may be increased later to 200 kW . or even more.

Programme Companies

As previously announced, Associated Broadcasting Co., Lid., will supply the programmes to be transmitted from the Lichfield station Monday to Friday.

Ekco Battery-mains Portable

B$3^{\text {RITAIN'S first mains/battery portable television }}$ set has been developed by E. K. Cole Ltd. and was shown for the first time at the National Radio Show.

This 9in. tube portable receiver, which weighs 30 lb . and measures $10 \frac{1}{2}$ in. wide $\times 13 \mathrm{in}$. high $x 15 \mathrm{in}$. deep, incorporates its own self-contained telescopic aerial and provides switch selection of BBC and commercial TV programmes as well as V.H.F. radio. It works from a 12 -volt car battery-consuming, on TV reception, the same amount of current as that used by one large car headlamp-or from A.C. mains, 230 volts. On V.H.F. radio reception the current consumption is lower.

Working from an average size car battery, this portable receiver (Model TMB272) will operate continuously for 10 hours before the former requires recharging. It will run for 15-20 hours on normal intermittent use.

The lightness of weight of the receiver has been achieved by using an aluminium cabinet, which is covered in an attractive plastic fabric. A carrying handle enables the receiver to be moved with ease.

The five-section telescopic aerial is mounted on the rear of the receiver and Band I, II and III transmissions are received by simply manually extending the length of the aerial (4ft. 6in. fully extended). A non-directional aerial is used, thus eliminating the

need for the receiver to face the direction of the transmitter: ' The price will be in the region of $£ 60$.
of 11.2 turns per volt (approx.). We shall, therefore, require $11.2 \times 6.3=72$ turns (approx.) for the 6 -volt tap with an additional 28 turns for the 9 -volt tap. The latter can be given two extra turns to cater for
losses (Fig. 20). losses (Fig. 20).
Twenty-two s.w.g. enamelled wire should be used the usual manner. A single layer of oiled silk can be aid between each layer.
Those who would prefer not to build the trans-

Fig. 15.-Chassis details for the power unit for the
former can use a separate heater transformer giving 6.3 volts with a centre tap. The centre tap will be at 3.15 volts and so can be used to couple in series with
the existing winding. This is shown in Fig. 16. Care must be taken to ensure that the coupled windings of such an arrangement are in phase and thus the total voitages additive.
Yet another arrangement is a heater transformer with a 4 -volt output having a 3 -ohm 1 -watt resistor connected in series with one of the leads, as shown in Fig. 21. Again the phase relationship must be watched.

OUR FREE GIFT BLUEPRINT!

Constructional Details of the P.T. Converter

OUR Free Gift Blueprint shows that the chassis means tin is divided into three compartments by screened output scransens and that, apart from the course, the screened valves, the components are housed within the chassis, which also has a tight fitting tin may be used. The screens are shown in Fig. 24.

Fig. 16.-Circuit of power supply for obtaining a .3 volt heater supply
In order that viewers with older style sets may have with two-band receivers, a band switch is incorporated in this design. This protrudes through the top of one corner of the chassis and is terminated on a spindlecoupler.

As shown on page 219 , it is intended for the lid to be drilled and screwed to the inside of the receiver cabinet. The lid should actually be stood-off from the woodwork by using sin. rubber grommets. This is
to aid ventilation as it is to aid ventilation as it is
desirable to drill a pattern of small holes in the lid. particularly in the region of compartment B (the centre
compartment).

Fig, 17 (left).-Details of chassis for a combined service area model and power Fupply. Fig. 18 (right). Chassis details for a combined fringe model and power
supply, and Eig. 19 (above).-Wiring. diagram of fringe model power sopply.

The chassis is thus mounted simply by pushing on to the lid. When so secured, a length of in. insulated spindle may be measured and fixed on the band switch coupler so that it protrudes by about $\frac{1}{2} \mathrm{in}$. hrough a hole drilled in the opposite side of the ecciver cabinet.
It will also be seen that a number of small holes re drilled near the oscillator coil on the top of

Fig. 20.-Transformer data.
compartment B , and also around the edge of the chassis, both in compartment A and compartment B. These, together with the ventilation holes in the lid of the chassis, permit a flow of air through the inside of the converter. The smaller components do airly hot and transmit heat through their holders and wiring to the inside of the converter
Compartment C (housing the band-change switch) does not require ventilating and it is not desirable to drill holes in this section of the chassis, for here it is essential to maintain optimum screening as a means of avoiding Band 1 signal pick-up. As an additional precaution in this respect, the wires adjacent coaxial sockets should also be screenedthin coaxial feeder is quite suitable here

anode of the second triode in V1, the heater supply oscillator, The previous remarks given concerning from V1 to V2 and an earth (chassis connection) to R4. These holes should accommodate small rubber
grommets, and the one used to pass the start of L5 should be as large as possible, in order to minimise shunt capacitance, and positioned on the screen so that the very shortest possible wire may be used to connect L5 to the anode.
The triode section of V2 operates as a Colpitts oscillacitor, L6 being the oscillator coil, C7 the couping section of V2 operates as a mixer The signal from the cascode stage is coupled in through C14 and the oscillator voltage through C15. It may be found easier to fit the small heater choke L 4 also in compartment B, the other components which should, on the circuit diagram
Compartment C should be really signal tight, for it is in this section that some Band I signal may gain admittance and cause patterning on the Band III picture. This section houses mainly the band-change
switch and the signal output and Band I coaxial sockets. The connections from the screened output transformer (L7/8) are brought down into this section, and two holes are drilled in the adjacent screen, one to pass the transtormer connection to the pentode anode of V2 and the other to carry the H.T.
lead to the top of winding L7. ventilation of compartment B should be strictly adhered to, and the tuning capacitor C 8 should
possess a negative temperature coefficient. These precautions have been found to render it unnecessary

Hig. 22.-Power supply for the fringe model. to install a manual tuning control as a means of correcting oscillator drift. Tests have proved that the converters frequency stability is quite satisfactory for normal use and that frequency drift is rennarkably small once the unit has acquired its normal operating
temperature. On no acco
On no account, however, must the applied H.T. exceed 200 volts-it is best, if possible, and if adequate
Band III signal is available, to work the unit on about

General Notes

stability of this converter is solely that of the

Fig. 23.-Details of the chassis and drilling data. If the screens are to be soldered in place tin-plate should be used

CONVERTERS

Constructional Details for tile P.T. Converter, the Subject of ont Free Gist

Appear on tire

Centre Pages

for

BAND III

Contimued from paze 17,
September iss

- The Power Pack for Simple Unit
${ }^{7}$ HIS power pack employs half-wave rectification and uses a standard type of pre-amplifier olts at 1-2 A. A metal rectifier, type MR64, 260 volts, is used (Fig. 12).
It is not strictly necessary to make a separate power pack as the main chassis can be enlarged to accommo-

Fig. 12.-Circuit of the simple power pack.
date the power unit and a diagram for this is given in Fig. 17, with a detailed drawing for separate powe pack at Fig. 14 .
Fig. 13 shows the wiring, from which it will be seen that the mains lead is led directly to the switch and 5 -amp. type. The plus from the converter fits into this socket.
The rectifier is mounted in a vertical position and the smoothing resistor is wired directly across the
electrolytic condenser.

The Power Pack for Fringe Model
This power pack is essentially the same as that for the previous model but in order to provide a 9 -vo supply for V2 a simple auto-transformer is included. Fig. 22 shows the circuit.
A chassis should be made, as given in Fig. 15. As with the previous model a single chassis can be
made if desired and details are given in Fig 18 Fig. 19 shows the layout and wiring of the power pack.

The Auto-transformer

This is quite easy to make and many constructors will have the necessary core available from an old
ransformer in the spares box. The core should have cross-sectional area of 0.5 sq . in., minimum, with a window area. of about $\frac{1}{2}$ in. by $\frac{1}{1} \mathrm{in}$.

Fig. 13.-Wiring diagram of the circuit in Fig. 12. The number of turns required can be calculated from the simple formula
where N is the number of turns required and A he cross-sectional area of the centre limb in sq. in With a centre limb of 0.5 sq , in . we have a figure

THE"PT." BAND III CONVERTER

PUELISHED BY GEO. NEWNES LTO., TOWER HOUSE, SOUTHAMPTON ST., STRAND, W.C. 2

LIST OF PARTS

CI 470PF CERAMIC
C2 SpF 5\% CERAMIC C3, CIJ 2.2pF 5\% CERAMIC C4, c5, c6, c9, c10, cII, c/2 ARE IOOOPF 20% CERAMIC C7 25pF S\% CERAMIC C8 IOPF NEG. TEM.' (N.750) C/3 470pF
C/4 IOPF 5\% CERAMIC

RI 47.K Ω I/8 WATT $R 2100 \Omega$ 1/8 WATT (MIN.) R3, R4 $100 \mathrm{~K} \Omega$ I/2 WATT (MIN.) RS IK $\Omega 1 / 2$ WATT (MIN.) R6 $10 \mathrm{~K} \Omega \mathrm{I} / 4 \mathrm{WATT}$ (MIN.) R7 $608 \mathrm{~K} \Omega$ I WATT R8 $100 \mathrm{~K} \Omega$ 1/8 WATt R9 $33 \mathrm{~K} \Omega$ 1/2 WATT (MIN.) RIO $5 \mathrm{~K} \Omega$ 1/4 WATT (SITUATED INSIDE LT,L8 SCREEN)

3 ALADOIN BAKELITE COIL FORMERS TYPE PPFS96I WITH GRADE 'F' CORE (PURPLE) TYPE PPSQ 40
1 COIL AND SCREENING CAN FOR COIL LT, LB...... HAYNES RADIO
2 B9A VALVEHOLDERS ANO SCREENING CANS.... MCMURDO
3 INSULATED COAXIAL SOCKETS BELLING-LEE L6O3/S
TWO-POLE DOUBLE-THROW

I SPINOLE COUPLER, 6 GROMMETS I INSULATED BAND-CHANGE SWITCH SPINDLE EXTENSION
5 TWO-WAY TAG STRIPS / CONTROL KNOB FOR BAND SWITCH VI MULLARD ECC84 (OR PCC84 OR EQUIVALENT FOR O. 3 AMP. HEATER) V2 MULLARD ECF82 (OR PCF82 OR EQUIVALENT FOR OOJ AMP. HEATER) I CHASSIS...... SEE TEXT
ITHASSI...... SEE TEXT

180 volts H.T. It does, in fact, work, although at reduced sensitivity, on 150 volts H.T. An excessive H.T. causes the unit to over-heat considerably and as a consequence provokes excessive frequency drift.
For the same reason, care must be taken when mounting the unit in the cabinet ; it must be mounted clear of the " hot " side of the cabinet, and as close as possible to the cabinet back, which should also be given additional ventilation holes.

It must be borne in mind, however, that when dealing with very high frequencies even a short length of wire will possess an inductance and distributed capacitances which may be liable to disturb severely the operation of the circuit. All coil connection wires must, therefore, be kept as

Fig. 24.-Details of the internal screens.
short as possible, and this can be arranged in practice only by carefully working out the precise positions of the valve-holders in relation to the coils before cutting the chassis.

Leads to the decoupling capacitors and resistors which are "hot" to R.F. must also be as which are "hot" to R.F. must
short as possible, and decoupling must be returned to a common earthing point for each section. This can be catered for by running a 16 s.w.g. bus-bar throughout the compartments, which may be supported by the earthed tag on the two-way tag strips. It should be earthed as frequently as possible along its length to avoid undesirable resonances.

Non-inductive ceramic capacitors only must be used for all positions in this converter. Paper type capacitors are useless at high frequency.

The Coils

The four coils L1/2, L5 and L6 are wound in Aladdin Tee-base bakelite formers of $6 \mathrm{~m} . \mathrm{m}$. diameter and use high Q dust cores. Coils L7 and L8 are wound on a totally screened Hayncs coil former. The two coils L3 and L4 are air-cored and of $3 / 16 \mathrm{in}$. diameter, both are wound with $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. tinned copper wire and are supported in the circuil wiring.

L1-1 turn of p.v.c. covered wire wound between the turns of L2.
L.2-2 turns of 18 s.w.g. tinned copper wire, the turns spaced approximately the diameter of the wire.

L3-4 turns, as described above.

L4-12 turns, as described above.
L5-2 turns of 18 s.w.g. tinned copper wire, the turns spaced approximately the diameter of the wire.

L6- 4.5 turns of 18 s.w.g. tinned copper wire, the turns spaced approximately the diameter of the wire.

L7-10 turns of $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. d.c.c. wire, close wound.
L8-2 turns of 26 s.w.g. d.c.c. wire, close wound and separated by approximately $1 / 16 \mathrm{in}$. from the earthy side of L7.

The coils are best first wound on a rod of $\frac{1}{4} \mathrm{in}$. diameter and then removed from the rod and carefully pushed on the formers after the formers are in position on the chassis. In order to obtain maximun adjustment by means of the dust cores. the coils should be situated so that their windings start approximately $\frac{1}{8} \mathrm{in}$. from the base of the formers.

It will be found that the coils are quite secure on their formers after they have been wired to the valveholder tags and into the circuit, and for this reason it is unnecessary to cement the turns in position. If it is decided to make Ll stable by this means, however, a good quality low-loss cement, such as Distrene, must be employed, and only the smallest possible amount used as it tends not only to dissolve the formers, but also causes them to become soft at a slight rise in temperature.

It is essential that L7/8 be perfectly screened in order that Band I pick-up may be kept at a minimum. Practically any make of good quality non-inductive ceramic capacitor is suitable and care must be taken to ensure that C 8 has a negative temperature coefficient.

Miniature $\frac{1}{2}$-watt resistors can now be obtained from most dealers. It should be noted that R5 and R7 operate fairly warm and it is desirable to use the largest type possible for these positions; this applies particularly to R7.
(To be continued)

The unit mounted inside a Cossor reseiver.

SERIALS

THE difference between a series and a serial is that each. instalment of a series is a complete story in itself, whereas the serial requires one's attention for every consecutive episode. This applies equally to "chapter plays" in periodicals, on sound radio or on TV. There is much to be said for the series type of production, of which Dixon of Dock Green is a good example. The popularity of Jack Warner, who looks far more like a London policeman than a real policeman does, and the first-class production work of Douglas Moodie have put this feature into the top class. It must be difficult, however, for the scriptwriter to ring so many variations week by week on the theme of the avuncular copper whose-philosophics solve so many problems. However, Sherlock Holmes and Sexton Blake each had their lengthy eras of crime detection into which they aired their own particular views of contemporary life without repeating themselves too often. I hope that Jack "Blue Lamp ". Warner will continue to do so for a very long time.

PRUNING THE PROGRAMMES

HETHER the ITA material has been good or bad it has always been well pruned in the cutting rooms and the scissors have been used ruthlessly to cut out pauses, slow business or dialogue which fails to register. Excepting with the High Definition system, film editors carry out this delicate operation before and after special previews to selected audiences who view the results in conditions comparable with home viewing. In some of the production organisations ingenious electronic devices have been devised to simulate reproduction on the average home set. At Highbury Studios, where the High Definition
electronic recording process is of this story is that every TV now in continuous use, the major sponsor is in favour of the BBC part of the editing is carried out during actual shooting by switching over from camera to camera. But shooting is still carried out in a way which permits further trimming by editors if required. The programmes will "certainly be slick ; it is the "commercials," the advertising plugs in between them, that worry me a little. It is not the advertising matter which repels, but, in many cases, the very low standard of ideas and presentation as compared with the entertainment part of the programmes. However, I have heard that there has been some ruthless scrapping and cutting in this side of the business, so perhaps the most repellent commercial three-minute plugs are already discarded into the cutting room waste bins. Let us hope so, at any rate.

THE SPONSORS

THE Sponsor, who pays a lot of money for programme time and its associated "commercial," has little or no say-so about the make-up of the programme itself. That, at any rate, seems to be the official theory. His principal interest will probably lie in what is on the BBC TV programme at the exact moment his own bought - and - paid - for transmission is sent out by the ITA. For instance, if his programme happens to commence about half an hour after the start of a BBC play such as The Vale of Shadows, then he is in luck. Few of my colleagues survived the first twenty minutes of this tedious version of the French dramatist Jean Anouilh's Eurydice; I stayed the course a little longer, but had to give up the struggle at about 55 minutes. If commercial TV had been operating the ITA would have surely reached about 95 per cent. of the viewers who had their sets switched on. The moral
transmitting as many ex-Third Programme plays as possible. The Vale of Shadows had, a good cast and a good producer, Rudolph Cartier, who, however, seems to have a penchant for selecting plays which have limited appeal.

PROVINCIAL TECHNIQUE

 SOME good programmes are now coming from BBC provincial studios, particularly Bristol and Manchester. The producers and technicians, however, are well behind their London colleagues in the mechanics of presentation. Lighting is often faulty, cameras seem to move about aimlessly and, worse still, the settings are much too busy and full of distracting furnishings, fittings and stage properties. Sooner or later the provincial art directors will learn that simplicity is the principal requirement; settings should not intrude in any way. Otherwise, the producer will have difficulty in placing his artistes in positions which avoid chandeliers, aspidistras or toby jugs appearing to grow out of the top of the actors' heads. In film studios the shooting of short individual shots permits special care to be taken of this contingency in authentic "busy" settings -by the simple expedient of cheating to one side or removing altogether the offending article in the background shot by shot. This cheating cannot be done during the progress of a long, live TV play. Simplicity in set design is the only -answer. And such simplicity which at the same time conveys the full atmosphere of the required scene demands art direction of great skill and experience. The art director must have the same, flair and eye as the artist or cartoonist who is able to convey ideas or personalities with the fewest possible strokes of the pen.

BAND 3 T/V CONVERTER- $186 \mathrm{Mc} / \mathrm{s}-196 \mathrm{Mc} / \mathrm{s}$ £2-5-0 post free.

This Unit, comprising drilled chassis, 7in. x $4 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$., valves, wound coils, etc., is a slightly modified version of the circuit shown in Wireless World, May, 1954. It has proved itself highly successfur-over 1,000 sets were sold in the first month to buyers all over England.
We invite you to visit us and see it in operation for yourselves, Suitabie for all types of T/V sets, T.R.F. or Superhet and all channels, $42 \mathrm{Mc} / \mathrm{s}$ to $68 \mathrm{Mc} / \mathrm{s}$. Blueprint and circuit
details will be sent on application by return of post, $1 / 6$ post free. Supply voltages required $200-250$ v., 20 mA H.T. 6.3 v .1 a . L.T.
Power pack components to fit chassis, as illustrated, 30/-extra.- Complete set wired. tested and aligned ready for use 15/- extra. Band 1, Band 3 Ae switching can now be added, switch kit 7/6. Full range of Band 3 aerials in stock. Adaptors from $7 / 6$ per set, dipole from $6 / 6$ each.

Volume Controls 80 ohm COAX Midget Ediswant type. SJANDARDD ini. diam.
Mong spindles. Guarmi-
Polythene insutated. long spindies. Guarmi- Polythene insutated.
teed 1 year. All valnes GRADE "A" ONI, teed 1 year. All values
10,000 ohms to 2 Meg0,000 ohms to 2 Meg Ohms
No Sw. A.P.Aゅ. D.P.sw. COAX PLUGS SOCKETS $\begin{array}{llll}\text { COUPLER } & \ldots & \cdots & 1 / 3 \\ \text { OUTLET BOXES }\end{array}$

ALL WAVE RADIOGRAM CEASSIS THREE WAVEBANDS: FIVE VALVES
S. W: $16 \mathrm{~m}-\mathrm{J} 0 \mathrm{~m}$. nt.

- LATEST KIDGET L. W. $800 \mathrm{~m} .-350 \mathrm{~m}$.
series Brand New and Guaranted. A.C. Qoo/250 \%. Four position Wavechange Switch. Short-Medium-LongGrams. Piok-pp connections. High Q iron-duat cored coils. Latest eircuit techaique, delayed A.V.C. and Negative teedhack. Output approx. \ddagger watts.
 4iin. herizontal or vertical type available, 3 lit by 2 Pilot Lamps. Fuur Knobs supplied. Walnut of lvory to choice, aligne! and calibrated remby for use. Chassiss isolated irom matins.
Carriage and Insumance, $4 / 6$. PRICE
d.

15. 0 Sin . or 10 i L . speakers to match available.

BARGAIN VALUE IN RECORD CHANGERS

Recommended for above chassis B.S.R. MONARCH.-Latest Model 3 sp. Anto. Changer Mixer Unit. Famous Magirlise, Cream sityling Dual stal Salector. Modern $\mathrm{Hi}-\mathrm{Fi}$ reproduction. as used sy fartus ior manuachorers. Bargain price.

91 ${ }^{\frac{1}{2}}$ Gns. post free.

NEW BOXED

VALVES
GUABAL] R5 $\quad 7 / 616$

 354 8/-6XJ 8/-Eruip.

SPECTAL PRICE PER SET
$1 \mathrm{RE}, 1$ 'T4, di.j, and 354 or 3Vt
f1K $5,6 \mathrm{~K} 7,6 \mathrm{Q} 7,616,5 \% 4$ or 6 X 5
SPEAKER FRET,-Enpande
metal sin. x sin., $2 / 3$; 1.2in. x 8in., 3/- anodised

ELECTROLYTICS ALL TYPES NEW STOCK Tubular Wire ends $\mid 8+16 / 450 \mathrm{v}$. Hants 5 | $25 / 25$ | $v .50 / 12$ | | |
| :--- | :--- | :--- | :--- |
| $50 / 50$ | $1 / 9$ | $16+16 / 450$ | v. B.E.C. $5 / 8$ | $100 / 50 \mathrm{v} ., 4 / 500 \mathrm{v} . \quad 2 /-14+16 / 450$ v. T.C.C. $6 /-$ $100 / 25 \mathrm{v}$

8,500 v., Dub. $8+8500$ ซ. Dub. $16 / 450$ v. B. Fic. $16 / 450$ V. B.S.C. $32 / 350$ Y. 8 E.C.C. $32 / 350$ Y. B.E.C.

$32 / 500$ v. Dub $32+30130$. | | $5 /-32 / 300$ | v. B.E.C | $5 / 8$ |
| :--- | :--- | :--- | :--- |

 Can Types, clips, 3d. ea. $6 / 6$ SEMTERCEL RECTIFIERS. FH T TYRE 3/BENTERGEA RECTIFIERS. E.H.T. TYPE FLIY. BACA VOLTAGES.-K3/25 2 kV . $4 / 3$; K $3 / 403.2$
 TYPE - RM1, 205 , 60 ma 4
 ENGRAVED CONTROL KNOBS for $\frac{1}{2}$ in. Spinile. 1 in. diam, Wannt or Ivory. Gulit Filled. (1) atandard engravings, l/6 ea. Plainknohs to match Thove lin. 10d. ea., 1 inn. dia, 8d. eat. Superior and becoming hichly popular. figu very stytish sin., 1/- ea. 1n 9d, en pointer Koobsor. with white Line ga WEARITE "P"
2/6 ea, Osmor TYPE COILS. All ranges. 1 to 7 , 2,6 eat. Osmor a series Coils. Slug tuned. All REACTION COND. - $0001, .0003$, REACTION COND. - $0001, .0003$, , 01045 mid., $3 / 6$ e. . MAINS DROPPERS.-Silicone coated, with 3 sliner clips. . 1.5 amp, $1 . \overline{\mathrm{n}}$ (1) ohms, 4/3; .2 anup. 1.090 ohms, $4 / 3 ; .3$ armp. 1,000 ohres, $4 / 9 ; 3$ анир. 754 ohms non-coated, 4/6.
LINE CORD.- 3 amp, 100 ohms per toot, .2 bmp,
 I.F. TRANSF-46. kc / s. Plessey Nemi Midget HiQ., oniy 6/9 prir. BERNARDS RADIO HAND-
BOOKS. Comprehcrisive Range irom $1 / 0$ ea.

F.M. TUNER-UNIT ($87 \mathrm{me} / \mathrm{s}-105 \mathrm{mc} / \mathrm{s}$), by Jason Complete As and approverl by Rathu Gonstractor. Complete Kit of parts to builu thes modem highly successmomit, drined chissis and J. B. thal. collsand can. tc.
 edge litby 2 pilot lamps, $10 / 6$ rated in we/s ami Illustrated hatoo lampe, $12 / 6$ extra.

SMITH'S FOR TECHNICAL BOOKS

Books on radio theory, practice and maintenance for the beginner and books on new developments in circuit design, new components, methods of application, and the established text books can be obtained through your local Smith's shop or bookstall. Books not in stock at the branch can be quickly obtained from Head Office.

W. H. SMITH \& SON

FOR BOOKS ON ELECTRONICS
Head Office: STRAND HOUSE, LONDON, W.C. 2

ARTHURS HAVE IT :
 LARGE STOCKS OF VALVES AND C.R.T.S. AVO METERS IN STOCK

Full range Tayiors Meters. List on request.
Leak-TL/IO Amplifier and "Point One"
Pre-Amplifier - - - Complete 2870
F.M. Kit of parts 65 less valves. Ref. Radio Constructor July, 1954.
Jason F.M. Tuner Unit and Power Pack - $\quad 1970$
Chapman Tuning Units - $\quad-\quad$ from $16 \quad 0 \quad 0$
Aerialite Band 3 Unit - - - - o 10 o latest valve manuals
MULLARD, OSRAM, \& BRIMAR No. 6, 5/- each, MAZDA 2/-ea. OSRAM Part 2, 10/-, Post, sd. ea. ex SCOPE SOLDERING IRON A.C.ID.C. HEATING

TIME: $4 \mathrm{v} .6 \mathrm{sec} .6 \mathrm{v} .4 \mathrm{sec} .39 / 6$.
TRANSFORMER for 200/230 v. $37 / 6$.
Terms C.OD. OR CASH with order and subject to price alterations and being unsold.

PROPS: ARTHUR GRAY. LTD.
OUR ONLY ADDRESS : Gray House,
150-152 Charing Cross Road, London, W.C. 2 TEMple Bar 5833/4 and 4765.
TELEGRAMS-"TELEGRAY, WESTCENT, LONDON." CABLES-" TELEGRAY, LONDON." \qquad

T.V. CONVERTER

FOR THE NEW COMMERCIAL STATIONS COMPLETE WITH 2 VALVES-EF80 and ECC8I

Will work into any existing TV receiver. Frequency can be set to any channel within the 186-196 band. Designed to work into any receiver between $42-68$ mos. Input 80 ohm feeder. Sensitivity $10 \mathrm{Mu} / \mathrm{V}$. These are ready builr and supplied with full instructions. Power required 200 v . D.C. 25 mA and 6.3 v. 0.6 A. Limited number.

PRICE E3.5.0 (Post $1 /$)

BAND \|ll TV CONVERTER KIT

Don't miss this new exciting television service. Build your converter now. Full constructional details including point to point diagram and parts list, etc., price $6 \mathrm{~d} .$, post paid. Complete kit, including valves, punched chassis, down to last nut and bolt sent by return, post paid, $£ 2.15 .0$.
Suicable for superhec. or TRF receivers. Call and see this converter working on the new station.
TELEVISION AERIAL. MANUAL for Bands \mid and III. Price 4/6

HOME RADIO OF MITCHAM

187, London Road, Mitcham, Surrey. MIT 3282

INTERFERENCE SUPPRESSION at Television Frequencies

CURING NOISE PRODUCTION AT THE SOURCE

By F. Sutcliffe

WITH more people than ever before now in a position to enjoy the benefits of television, the ever-growing production of inter-ference-making machines and equipment must be recognised as creating an acute problem. For there can be but few regular viewers who have not, at some time or other, felt like emulating the irate viewer on the BBC "Are you suppressed?" film, and hurling a brick through the screen of their receiver as those infuriating white lines proceed to tear the picture to pieces. Unfortunately, the apparatus which only too often spells ruination for good TV reception is, in itself, just as important-if not more so-as an uninterrupted TV, progranime. One would hardly expect factories containing electrical machinery to operate during non-transmission hours only, for instance, and even the neighbouring housewife may well be excused for not checking on the programme times before using her electric sewing machine or hair-dryer. What, then, are the alternatives? Having ascertained that with the present system of transmission certain articles by their very action must always be looked upon as interference generators, it would appear that two distinct methods of attack are open to us, i.e., suppression at the source of the trouble or suppression at the receiving end.

Studying the latter of these two possibilities first, it will be apparent that the measure of success achieved must depend upon the type of interference in question. As will be shown later in this article, over 99 per cent. of all TV interference is fed into the receiver via the aerial and feeder cable, and not via the mains supply lead. It is, unfortunately, not at present feasible to incorporate in the aerial feeder a device which will stop interference signals and pass TV signals on the same frequency. Therefore, this method of approach is only of use where the interference is on a different frequency to the TV transmission and is getting into the recciver via second channel, adjacent channel or I.F. breakthrough methods. In these cases a frequency filter or wavetrap fitted at the input to the receiver usually suffices to clear the trouble. The type of filter used will vary with individual cases, such factors as the difference between the TV frequency and the interfering frequency, the relative field strength of the two transmissions, etc.;' determining the complexity of the unit. In simple cases an ordinary parallel rejector circuit with one inductor and one capacitor will suffice whilst for more severe cases a multistage unit must be used.

Much thought has been given in recent years by manufacturers' associations, in conjunction with the G.i'O, and other interested bodies, to choosing oscillator frequencies and I.F.s which, together with their harmonics and image channel frequencies, will fall clear of other trànsmissions, such as police, ambulance and taxi networks, etc., and which will
also fall clear of those frequencies recommended to manufacturers of diathermy and R.F. heating equipment. Conferences have been held on an-international scale (e.g., Atlantic City 1947) from time to time in an effort to "Clear the air" on a world-wide basis, and although these steps are contributing a great deal towards the eventual goal of interference-free reception, a great amount of work remains to be done.

Quite apart from troubles of this nature, however, there remain the twin bugbears of ignition and commutation type interferences, which usually cover an extremely large band of frequencies, the TV Channels included, and it is fairly safe to say that these two types of interference are responsible for 95 per cent. of all cases of ruined television reception.

Although many extremely efficient and ingenious suppression circuits have been developed for incorporation into television receivers, it is generally agreed that the final result is only a compromise. Despite improvements such as "Black Spotter" circuits, "and the increasing use of time delay networks, the present-day suppression circuit is still, on the average, built around the peak limiter principle. This being so, the interference can never be elimininated, but only reduced, usually to the value of peak white on picture. In the writer's opinion this important point forms the over-riding factor in the question of suppression at the source versus suppression at the receiver. Although much can be done at the receiving end to minimise interference troubles, the only way to eliminate completely ignition and commutation interference is by suppressing them at the source. The remainder of this article will, therefore, be devoted to a consideration of how this may be achieved. Before examining practical suppression methods, it is important to remember that the extent to which any interference is experienced is not so much a matter of the amount of interference present, as the ratio of the television signal amplitude to the interference amplitude. In this connection it is found that a level of interference which may completely ruin reception in one area may pass almost unnoticed in another. Here also lies the explanation of the " suppressed" machine which gives trouble when

Fig. 1.-A symmetrical circuit.
moved to a new district. It is therefore essential to good TV reception that in all cases TV receivers be supplied with signals from an aerial which is of a type suitable for the district. The better the aerial installation the easier it is to eliminate interference, and the possibilities of directional arrays accepting a minimum of interference and/or a maximum of signal should be borne in mind.

Reverting now to the consideration of practical suppression techniques, it is necessary to examine the way in which the interference is first created and then transmitted. When the current flowing in an electrical circuit is suddenty caused to change, as is happeniñg continuously in a commutator type motor, the potential of some parts of the circuit changes
usually prove abortive, the damage having been done before the interference reaches the plug point. As the frequency goes still higher this effect is enhanced until at, say, $200 \mathrm{Mc} / \mathrm{s}$ all suppressors must be placed actually within the interfering device, and a suppressor placed 1 ft . down the flex lead from a motor to prevent interference on Band I may prove to be non-efficacious on Band III.

From the foregoing it will be obvious that the only way to achieve really good suppression is to prevent the interference pulses from travelling down the mains lead, i.e., to literally suppress at source and fix the suppression items on, or preferably inside, the interfering device.

It should be noted at this point that although

Fig. 2.-Case 1-Source low impedance, mains low impedance.
rapidly, causing pulses of energy to be both radiated and fed back into the leads supplying the circuit. The first important point now arises, i.e., the ratio in which the directly-radiated and the nains-borne interferences are propagated, and how this ratio compares with that 'at medium- and long-wave broadcast frequencies. It is a well-known fact that as the length of a radiating element becomes more and more comparable with the wavelength of the signal in question, the easier and more efficiently will energy radiate from it. Hence half-wave and quarter-wave aerials are much more efficient than, say, aerials which are $1 / 100$ th or $1 / 1,000$ th of a wavelength in length. Thus, the few feet or yards of wiring between an interfering device and the shielded mains cable act as a much more efficient radiator at TV frequencies than at medium- and long-wave broadcast frequencies. Indeed, if the flex lead of, say, a hairdryer happened to be 9 ft . or s n in length, it may actually resonate at the TV frequency and, acting as a half-wave dipole aerial, radiate the interference most efficiently. An additional factor which must be taken into consideration is that the attenuation cosfficient of the mains wiring and cable is considerably greater at $50 \mathrm{Mc} / \mathrm{s}$ than at $1 \mathrm{Mc} / \mathrm{s}$. Briefly this may be explained by imagining the flex lead or mains wiring as a transmission line with distributed series inductance and parallel capacitance. As the frequency of the wave form travelling along the line increases the series path impedance becomes increasingly high, whilst that of the parallel path falls, resulting in reduced pro pagation. For this reason propagation for more than a few yards along the mains cabling is seldom encountered at TV frequencies. Hence, except in rare circumstances, attempts to clear a given source of TV interference by use of a plug-point suppressor

(a) $v_{M}=5 v$ ference frequencies but not allowing the high intersupply. In making travel back along the mains ponents are up the filters two types of components are used, i.e., inductors and capacitors, and the method of selecting appropriate values and circuits will now be studied. Taking a closer look at the voltage which is propagated along the supply wires prior to radiation, this may be made up of two separate component parts, viz.:
(a) a symmetrical part or one which is propagated between the supply wires ; and
(b) an asymmetrical component, or one which is propagated between either conductor and earth.

The Symmetrical Component

The basis of design here is to create a potential

Fig. 3. - Case 2 - Here the source is high impedance and the mains low impedance.
divider network consisting of, say, two inductors and one capacitor, by means of which we can offer to the interfering voltages two alternate paths, one high impedance (back along the mains) and the other low impedance (effectively "short circuiting" the interferencé at its source, i.e., the brushes).

This system is illustrated in Fig. 1 where L1L2 are high-frequency chokes offering a very big impedance to the passage of the interference pulses generated at the brushes X and $\mathrm{Y} . \mathrm{Cl}$ offers a low impedance parallel path to the interference which is, therefore,
(Continued on page 227)
"OR.F. 26" F.M. $88 / 100 \mathrm{Mc} / \mathrm{s}$
We can now offer this self6 contained Unit comprising 6 valves: 2 -6BA6, EB91, F , EF54. EFFA. Two local oscillator, also Muirtiead Graduated Vernier Drive ensuring easy tuning Components offered to Complete F.M. unit New RF " 26 " Unit with 3 valves, VR137. EF54 EF5d. Chassis stamped out for easy conversion
Compleie set of all components for conversion iricluding $2-5 B A 6$ and EB91, tuning condenser, T.F.T.s and Ose. colls resistors and fixed condensers. plugs, wire and tag strips $\quad .$. e4.12.6 nstruction Book with technical circuit and complete lay:out diagrams
special offer of all above tems and RF26, including circuit. postage 3 -
Charge for alignment when Assembled, aligned \cdots... Assembled, aligned and and All Items sold separatelu.
U.S.A: Indicator Lamp (with 24 v . Bulb) Hallicrafter :-
I.F.T.s $455 \mathrm{kc} / \mathrm{s} 10 /$-pair Relays 6-12 volt Microphone Tran Output Transformers Modulation 5 -each 3-Gang Condonser 70 -each , 6 each H.S. 30. Lightweight Headphones 12/6 pain

Muirhead Precision Slow-
Motion Dial and Drive with
Cursor Type D132A $12 / 6$
Murhead Graduated
Vernier-Drive

"426" CONTROL UVTT Containing 4-Red EF50, 2-SP61 2-EA50, 1-EB34, 2-Single-gang 0005 Condensers, W/W Volume ontrols and Switches, etc
size 12in. x $35 /$-(carriage $3 /-$)
TB.S.IK. 3-SPYEDD These are brand new original cartons. Plays mixed records. Cream finish. List price $£ 16.10 .0$. Our price ey/19/6. carr. 8/-

I3C966A I.F.F Containing 13 valves $3-7193$. Containing 13 valves 3-7198 $7-6 \mathrm{SH} 7,3-6 \mathrm{~m}$ $\mathrm{metal} . ~$ 18 v 7-6SH7, 3-6H mator and fan output dynamotor and fan output $450 \mathrm{v} .60 \mathrm{~m} / \mathrm{a}$ with three 450 Y. 60 m/a with three 4 speed geared motor plas resistors, in good conresistors, in good

We have over 50,000 American and R.V.A. valves in stock ALL VALVES NEW AND GUARANTEED

1D8GT	101-	6AM6		12 SA	816	EF36		SP61	-
1 A 7 GT	12/6	42	816	12	,	EF39	$6 \cdot 6$	SP41	
1H5GT				12SJ7GT	816	EK32	6/6	D41	
1N5GT	101-	75	816	12SK7GI	18/6	EL32	$7 / 6$	PF	6
114				12SR7	${ }^{2} / 6$	EF50 (R	Red	HL23	
105GT	101-	6L6G	10/-	6D6	616		10/-		
1A5GT		6Q7GT	86	$6 \mathrm{C6}$	6/6	HL2	$3 / 6$	TP25	
$1{ }^{15} 5$		6SC7GT	$8 / 6$	6ATG:	$8 / 6$	LP2	4	PEN25	6/6
154		6SG7CT	$6 / 0$	6A8G	$8 / 6$	KT2	$51 /$	QP25	6
1 T 4		6SJTGT		TZ40	$351-$	VP2	$8 / 6$	QP21	$8 /-$
1R5	76	6SK7cT			7/-	SP2	816	TP22	$8 / 6$
354	7/6	6SN7GT		25Z5G	816	TDD2A	$8 / 6$	ATP4	
3 V 4		6SLTGT		2326G	816	VP2B	816	MS	
1LN5	8/-	$6 \mathrm{SC7}$	10/-	$35 Z 4 \mathrm{GT}$	816	215SG	$4 /-$	- PX25	12/6
1LD5		6V6G	$7 / 6$	$135 \mathrm{Z5GT}$	$8 / 6$	866 A	15)-	6A6	10/-
5U4G	8/6	GVOGT	$7 / 6$	\|35L6GT	8/6	354 V	5	46	10 -
5Z4G	$8 / 6$	6F6G		50L6GT			4'-	AC/PE	EN 10/-
5Z3G	$8 / 6$	6 AC 7	6/6	25A6G	$8 / 6$	9D2		FCl3C	10
MU14	816	${ }^{64 G 7}$	12/6	KT33C		8D2	4)-	- FCi3s	(c 10/-
$6 \mathrm{6B}$	$7 / 6$	6C5GT	$5 /$	KT65	12/6	PEN46	$8 / 6$		T 6/-
6K8G	9	6J5GT		EBC33	$8 / 6$	AC6PEN	N $6 / 6$	PEND	
${ }^{6 \mathrm{~K} 7 \mathrm{GG}}$	$6 / 6$	12A6 12K7GT		EF54	6/6	VP41	- $7 / 6$		12/6
${ }_{6157}{ }^{\text {6/ }}$	$\stackrel{6}{7 / 6}$	12 K 8 GT		EA50	${ }_{2} /$	TH233	10/-	$V T 501$	7/6
6L7	$7 / 6$	1207 GT				¢1MP			
EY51		-UL41				PL 81	12/6		$8 /$
FF41		- UY 41		EABC80	010%	$\mathrm{P}_{\mathrm{P} \mathrm{I} 82}$	10/-	12AT7	$9 /$
EL41		- UF41	11/-	ECC85	10/-	PY881	10/-	12AU6	$9 /-$
EZ10		- DK40		- E280	10/-	${ }_{\text {PCC84 }}$	12/6	12BE6	10\%
35 W 4		-50C5	10%	- ECL80	$12 / 6$	PCF82	12/6	6X4	8/6

PSE 45 MC/S S'TRIX Size $15 i n . x$ xin. x 2in. Size loin. x ith $45 \mathrm{Mc} / \mathrm{s}$. Complete with $45 \mathrm{Mc} / \mathrm{s}$. Pye Strip 12 and EA50. EA50, EB34 and EAS0, of Resistors and Condensers. 69/6. Carriage paid.

CAMBRIDGE ENPINO

CiALNONOMHTELR 3in. mirror scale: scaled $30-0-30$ F.S.D. 100° microamps. Brand new with leather case (original price.〔14/10/-). 79/6.

> THIE MTELETRON" MANi III CONVERKOI This converter which is type EF80 (Z719) is for use with T.R.F. or Superhet band 1 Television receivers. Complete set of Teletron coíls only. with practical and theoretical wiring diagram 15: post free. Chassis measuring 7in. x 3in. xilin: reacy drilled to specification, $3 / 9$ plus 9d. packing and post. Alterna tively construction details only with separate indiyidualy priced parts list. 60. post paid. all the specine valves etc down the lost nit and bolt, can be supplied at $48 / 6$ only. plus $2 /$ packing and post.

Input 12 v. output 24put 6 at 44 mA . 180 v. at 40 mA

Vibrator Transformers $6 \mathrm{v} .180 \mathrm{v} .40 \mathrm{~mA} \ldots$ Vibrator Transformer 6 v .250 v .80 mA Vibrator Transformers 12 v .250 v .80 mA .. Vibrators 6,12 or 24 V .
Vibrators 6 v. 7 pin synchronous
Vibrators 12 v. 7 vin synchronous
$\begin{array}{llll}\text { synchronous } & \text { pi.. } & 12 / 6 \\ \text { Vibrators } 2 & \text { v. } 7 & \text { pin }\end{array}$
\%/6

"TWFIVTLIRS" Electro-

 static H.F. Speakers for use with amplifiers or sets. Supplied with full data and circuit, diagrams. LSH75 7-18 kc/s. 20 dbs inherent cap. 800 p.f. Polarising voltage 300 v . D.C. maximum A.C. voltage 60 v. For outputs up to 126LSM100. As above, jnherent cap. 1.100 p.f. For outputs up to 20 watts Size $5 \times 3 \times 3$ in., $21 /-$ Post free

RECFIVER 'IYPE 25/73

 (The receiver section of TR1196). Supplied complete with full data for conversion to 3 -wave-superhet receiver. Unit is complete with 6 valves 2-EF39, -EF36, EK32 8 EEBC33, also standard 1.F.T.S 465 kc/s. TR1196 TRANSMITTRE POIRTIONVe can also supply the transmitter portion of the above receiver incorpora-
ting valves, EL32, EF50, CV50i. Type 600 relay CVansformer, coils, switehes etc. Limited quantity at ete. $12 / 6$ only. plus $2 / 6 \mathrm{P}$. and P .

CRYSTAL MICROPIIONE

INSERTS MICRO

Ideal for tape recording and amplifters. No matching transformer required.

R.F.UNT'S	
R.F. $24 \cdot 20 / 30 \mathrm{Mc} / \mathrm{s}$	12/6
R.F. 25 40/50 Mc/s	15/\%
F. F. $2650 / 65 \mathrm{Mc} / \mathrm{s}$	30
R.F. $2760 / 80 \mathrm{Mc} / \mathrm{s}$	35
Brand new	free.

CATHODF HAY TUBES VCR97 (Brand New) VCR97 (slight cut-of)
VCR 97 guaranteed VCR 97 guaranteed
full TIV Picture. VCR 517 C, Picture full TVV Picture VCR139A, guaranteed 3BP1, fuaranteed fuil Carr. \& packing on all tubes, $2 /$ - packing on al

WAEKIE-TALKTL
 SETS TYME 38

Complete with 5 valves, 4 VP23 and ATP4. Throat Microphone. Junction Box and Whip Aerial, all in good condition. All sets air tested and guaranteed.
$59 / 6$, carr. $5 /-$ (Suitable 59/6, carr. 5/- (Suitable new batter
$£ 1.2 .6$ set.)

24 v. Blower Motors, U.S.A. Type. Miniature
 Type Smail ors, U.S.A
 12 ype . Sman

> 1KT40/APNIX U.S.A. Altimeter contain3ng 13 valves, 3-12SJ7 $2-955,2-9004$ plus 4 relays magnetic sounder condensers and precision densers and precision
resistors. Also 12 volt dynamotor output 285 V . $75 \mathrm{~m} / \mathrm{a}$.
> ORIGINAL CARTONS 65\%

Send 5/- for your copy to : Publicity Dept.

Bramar

SUMMARY OF CONTENTS

Valve ratings and base connection symbols.
Classified lists of nearly 300 valves, teletubes and selenium rectifiers.
Germanium diode section including ratings in various circuits.
Brimistors section.
Radio engineering formulae and NEW circuits.
Brimarize section, Valves and teletubes.
Up-to-date substitution list of American types.
Equivalents and C.V. numbers. Details of Trustworthy types.
Valuable information on Transistors.

Standard Telephones and Cables Litnited FOOTSCRAY SIDCUP KENT Footscray 3333

POST THE GOUPON TODAY FOR OUA BROCHURE ON THE LATEST METHODS OF HOME TRAINING FOR OVER 150 CAREERS \& HOBBIES
PRIVATE AND IMDIVIDUAL TUITION in your own home City and Guifds Grouped Certificates in Telecommuaications: A.M.BrIT.I.R.E. Examination, Radio Amateurs Licence, Radio and Teievision Servicing Certificates, General Radio and Television Courses, Radar, Sound Recording, etc. Also Courses in all other branches of Engineering and Commerce.

The advantages of E.M.I. training. \star The teaching methods are planned to meet modern industrial requirements, \star We offer training in all subjects which provide lucrative jobs or interesting hobbies. \& A tutor is

NEW LEARNTHE
NEW ${ }^{\text {patacticit way }}$ COURSES WITH EQUIPMENT With many of our courses we supply actual equipment thus combining theory and practice in the correct educational sequence. Courses include: Radio, Television, Electronics, Draughtsmanship, Carpentry, Photography, and Commer. cial Art, ecc.
personally allotted by name to ensure private and individual tuition. \star Free advice covering all aspects of training is given to students before and after enrolling with us.
Equipment supplied upon enroiment and remains your property.

Courses from 15/-per month

confined to the local circuit X-C1-Y-X, and propagation along the mains lead is prevented provided the distance between source and suppressors is very small.

Unfortunately, however, although the foregoing reasoning holds true as a general principle, it fails to take into account the relative impedances of the interfering device, or source, and the mains. As will be seen from the accompanying series of sketches (Figs. 2-5) these impedances determine which side of the chokes the capacitor should be fitted, if at all. For ease of calculalion a hypothetical interference voltage of 10 v . has been chosen and for high and low impedances valucs of 10,000 ohms and 10 ohnms have been assumed.

Case. 1.-Source Low Impedance-Mains Low Impedance.

The first case is shown in Fig. 2, whare
(a) Unsuppressed-Voltage out to mains $(\mathrm{Vm})=5 \mathrm{v}$.
(b) Capacitor suppression $V \mathrm{~m}=3 \frac{1}{\mathrm{v}}$.
(c) Inductor suppression $\mathrm{Vm} \bumpeq .005 \mathrm{v}$.
important, therefore, that the inductance of the capacitors and the capacitance of the inductors be kept within very small limits. In practice a small amount may actually be an advantage, for then the self-inductance of the capacitor may be utilised to create a series resonant (Acceptor) circuit across the motor and the parallel capacitance of the inductors may be used to form a parallel or rejector circuit, thus increasing the efficiency of the filter many times. This is an excellent scheme if we are interested in one TV channel only, but in order to make the inductors effective over all the existing channels they are usually made to resonate around the highest channel frequency.: This means that they are then still inductive and therefore efficient on the other channels, as a parallel resonant circuit is inductive below the resonant frequency but not above. The " Q " of the inductors may be increased by winding them on ferromagnetic cores, and a typical item may consist of 18 turns of $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire on a $\frac{1}{4} \mathrm{in}$. former, though the gauge of wire will, of

Fig. 4.-Case 3. - Here the source is low impedance and the mains high impedance.

It should be borne in mind that in Figs. 2-5 the object is to make $V \mathrm{~m}$ as small as possible, so circuits should be chosen accordingly. In practicc it may be difficult to ascertain the relative impedances of the source and the mains, and the different circuits may sometimes have to be tried for comparison.

To come now to the actual values of the com-
course, depend upon the current taken by the machine to be suppressed. For the capacitors small layered mica and ceramic items are used. For instance a small flat type 470 pF mica unit with $\frac{1}{2}$ in. leads will give a series resonance at about $50 \mathrm{Mc} / \mathrm{s}$. No definite values can be laid down for these cómponents, but for Band I, capacitors of between 100 and 500 pF and inductors of approximately $5 \mu \mathrm{H}$ should be tried.

Fig. 5.-Case 4.-Here the source is high impedance and the mains low impedance.
ponents to be used it is essential that the capacitors and inductors should in practice as well as in theory act as such. For instance, a $0.1 \mu \mathrm{~F}$ paper capacitor has so much self-inductance that at TV frequencies the reactance would be quite formidable, and the low-impedance by-pass across the motor would disappear if such a component were to be used in this position. Similarly, if normal R.F. chokes, such as those found in medium-wave broadcast sets were used, their self-capacitance would form a lowimpedance path across them at TV frequencies thus destroying the " barrier" to the interference. It is

The Asymmetric Component

Reverting now to the asymmetrical portion of the interference, i.e., that part transmitted out along one wire and back to its source via the earth and distributed capacitances, it will be seen that similar reasoning to the symmetric. case can be applied. Series chokes and parallel capacitors will again, limit the interference, the capacitors this time being wired from brush to earth. Figs. 6 and 7 illustrate the paths for the asymmetric interference before and after suppression respectively.

It can now be seen that if a circuit is wired up along
the general lines of Fig. 8 it will be effective in suppressing both symmetric and asymmetric interference and this arrangement is to be strongly recommended wherever complex (i.e., containing both components) interference is encountered.

Fig. 6.-The path of asymmetric interference wefore suppression.

The three capacitors may be scparate or in the form of a specially made multi-unit containing, say, one 470 pF and two 100 pF capacitors. It should be noted that should the relative impedances make it

Fig. 7.-The path after suppression.
necessary, the capacitor connections may have to be made to points C and D instead of points A and \mathbf{B}.

In all cases where suppression is carried out care must be taken to keep the length of component leads down to an absolute minimum ; also for obvious safety reasons the components should never be hung inside a machine carelessly or wrapped with yards
and yards of insulation tape. Where room permits, small paxolin panels may be made up and housed inside the machine with the components neatly tagged on and soldered. Where space is strictly limited the items are soldered direct to the brush holders and may be covered with sections of insulated sleeving or, better still, rubber sleeves. Where no space exists at all then recourse must be made to fitting the suppression items in the mains lead at the point of entry into the machine. It is then essential that a robust case be used to house the suppressors of course, though the smaller and more compact the better, especially for portable appliances such as hair-dryers and shavers, etc.

Witth regard to ignition interference, i.e., the type experienced from cars, the solution is usually much

Fig. 8.-This arrangement will suppress both symmetric and asymmetric interference.
easier, a 5,000 -ohm resistor in the distributor lead sufficing in most cases. For better suppression still a 15,000 -ohm resistor is placed in series with each plug in addition. In each case the resistor acts in such a manner as to damp out, or to present a barrier to; the H.F. oscillations caused by the spark at the "points." Special resistors are obtainable for the purpose, which may be screwed or clamped in a few seconds.

Whilst on the subject of motor cars an interference generator which receives littic publicity is the windscreen-wiper, which should be treated as outlined above as for small motors. In closing, any reader who may be called upon to carry out suppression work is advised to study BSS613, which forms an invaluable guide for this type of work.

Australian TV Buy Marconi

TELEVISION will come to a fifth continent next year, when Australia's first television stations are due for completion. Two Government-controlled stations, together with studio centres, are to be built at Sydney and Melbourne, and are expected to inaugurate the planned national television service before the end of 1956.

Most of the equipment for the Sydney and Melbourne transmitting stations, including the transmitters themselves and the aerials, is to be provided by Marconi's Wireless Telegraph Company, Ltd., under the terms of a recently-signed contract worth more than $£ 250,000$. Each of the stations will have an installation consisting of two main transmitters, 18 kW . vision and 4 kW . sound, with two smaller transmitters as standbys.

Radio and TV Servicing

THE publication of a new booklè, "Radio and Television Servicing," by the Central Youth Employment Executive coincided with the opening of the National Radio Show, at Earls Court.

The booklet, which is fully illustrated, describes the training. qualities required, opportunities of employment and avenues of promotion.
Service engineers, the booklet states, are employed in shops which sell and repair receivers, in organisations which repair them for the shops, by the manufacturers of receivers and other radio and electronic equipment and by the organisations which relay radio and television by wire into homes and places of work. Details of opportunities in Airways Corporations and other firms engaged in air transport are also descrbed.

\section*{THE INSTRUMENT MODEL
 Specially designed for soldering operations in the compact assemblies used in present day radio, television and electronic industries. Weight 3 it oz. excluding flexible.
 Length 9 ins. 25 Watts. Voltage range:
 | 12-50 | 4 $4 /=$ each |
| :---: | :---: |
| 100-240 | $28=\text { each }$ |

The ALL-IN-ONE

 TELEVISION TESTER

THE

Tele ET

TYPE 877

Provides every facility needed for completely CHECKING, REPAIRING, OVERHAULING and ALIGNING A.C. AND A.C./D.C. Television Sets in Bands 1 and 3, both quickly and efficiently. It incorperates :-

COMBINED BOOSTER AND ISOLATING TRANSFORMERS

Cheap and easy to fit to any Receiver. they enable Tubes with low emission or with Cathode-Heater short to be used again. Supplied in any voltage from $2 v$.- 13.3 v .
OPTIQNAL BOOST ($12 \frac{1}{2} \%$ and 25%). Price 21;- (Retail)
Plus Postage and Packing.
H. W. FORREST (TRANSFORMERS) LTD. 349 HASLUCKS GREEN ROAD SHIRLEY, BIRMINGHAM. SHI. 2483

```
```

- WOBBULATOR

```
```

- WOBBULATOR
- A.M. SIGNAL
- A.M. SIGNAL
GENERATOR

```
    GENERATOR
```

VOLTMETER

```
PATTERN
```-C.W. SIGNALGENERATOR
```

OSCILLOSCOPE
A.C. \& D.C. VALVE

``` VOLTMETER
```

CRYSTAL CALIBRATION ..... € $66-10-0$

``` COMPLETELY PORTABLE LIST PRICE
```

```
* L.F. OSCILLATOR
```

* L.F. OSCILLATOR
* E.H.T.

```
* E.H.T.
```

Write for full details to:- DEPT, P

## ATRMEC CHMTEL

HIGH WYCOMBE, BUCKS

## Unfailingly fresh

Tobacco at its best. Player's Medium Navy Cut is once again supplied in the familiar pocket tin, vacuum scaled, which means that absolute freshness is retained and enjoyment assured whencver you buy it.

## 2 oz. tin 9/1d.



PLAYER'S MEDIUM NAVY CUT TOBACCO

To open, simply remove small rubber seal.

\author{

## 'The choice for a lifetime'

}

## TANKYS

"THE UNIVERTER" shows you how to build YOUR OWA GONVERTER A new book just published, giving full details of a Band III Converter for any $T V$ set, factoly made on one 19 AT7 one 6X4. Contains its own power supplies. All components and power supplies. All componenbs and Also available as a complete vinit Aso available as a complete containing full circuit $\begin{array}{ll}\text { diagram, wiring and instruc- } & 3 / 6 \\ \text { tions and components list. } & 3 / 6\end{array}$ Post free.
TELETRON BAND III
CONVERTER COIL SET
For use with T.R.F. and superhet
Band I TV sets. Uses bwo Z719.
Circuit, wiring diagram, alignments
and full details with each $15 / \mathrm{m}$
set. Post $1 / 6$.
Complete Kit to build the Teletron
Band III Converter, including chassis,
condensers, valves, etc., with fuil
instructions and diagram. 55/-.
Post $1 / 6$.

## BAND III CONVERSION FOR ALL!

Commercial TV has commenced and the demand for these Units is certain to exceed supplies. Order NOW to ayoid disappointment.



Famous make. Covers Bands I and III. Complete with valves FF80 and ECC31. Coramic valveholders, finest quality components, precision made Switch and fine tuming. I.F. output $20-25$ amd $40-30 \mathrm{Mc}$ is. Frea. coverage $50187 \mathrm{Mc}^{1} \mathrm{~S}$ and $176-215 \mathrm{Mc} / \mathrm{s}$. Supplied with full details and circuit diagram.

LASKIS PRICE
89/6
Post $3 / 6$.
Knob, 29 extra

## AERIALS OF ALL TYPES

Large stocks. Band I, Band III Band I/II and F.M. Indoor, loft of outdoor.

300 ohms Feeder, per yard, 9d.
60 ohms Co-axial, doz, yds., $7 / 6$.
Air-cored co-axial, per yd., 9a. Any length supplied.
Openall day
SAT.
Half day

Thurs.

HASKY'S (HAEROWTHOAD) LTBD.,
42, TOTTENHAM COURT ROAD. W..
Telephone : MUSEum 2605.
370, HALROW ROAD, PADDINGTON, w.8. Telephone : CUNningham 1979-7214.

PLEASE ADDRESS MALL ORDERS TO HARROW HOAD


Television Licences
$T$ HE following statement shows the approximate number of television licences in force at the end of July, 1955. The grand total of sound and television licences was $14,067,394$.

$\begin{array}{llll}\text { Region }\end{array}$			$\begin{array}{l}\text { Number }\end{array}$
London Postal....	$\ldots$	$\ldots$	$1,150,207$
Home Counties	$\ldots$	$\ldots$	518,897
Midand	$\ldots$	$\ldots$	$\ldots$

## From Ireland

$\mathbf{R}^{B C}$ Television is planning its first broadcasts from Ireland before the end of the year, subject to conditions being favourable. Plans are-in hand first for one or two programmes from Belfast in mid-November. On November 25th the BBC hopes to extend still further its television coverage of sport by the first television programme from Eire on the occasion of the Irish and British Amateur Boxing Association's match at the Dublin Sports Stadium.

## Coverage of Party Conferences

THE BBC Television Service will present three reports from the Conservative Party Conference at Bournemouth on the evenings of October 6th, 7th and 8th. The team will be headed by E. R. Thompson, the Parliamentary Correspondent.

The BBC has made a similar offer tothe Labour Party for its Margate Conference. The Labour Party has agreed to coverage of the sccond day's open session on October 11 th on an experimental basis.

## BBC Manchester Studio

${ }^{7}$HE BBC has contracted J. and J. Parish, Ltd., of Burton Road, Withington, Manchester, 20, for building work in connection with television studio accommodation. The work covers the conversion of an existing building in Dickenson Road, previously used by the Manchester Film Corporation, and
the erection of a new two-storey block on the same site to provide TV studio premises which will include a production unit, a small film unit and telecine facilities.

## With An Interval?

Iis learned that the average family in the United States spends five hours 24 minutes each day looking at TV, and two hours 26 minutes listening to the radio.

## 75 Different Types

TT is reported that in 1954 Western Germany produced 130,000 television receivers of 75 different types.

It is anticipated that production this year will increase to about 350,000 . The Television Service in Western Germany is available to 60 per cent. of the population and is comprised of six studios and 22 transmitters.

## TV in Africa

A MINIATURE television network is being installed to help maintain security on Dr. J. T.

Williamson"s diamond mine at Mwadui, Tanganyika.

Concealed TV cameras will enable the security staff to watch the workers and their handling of the diamonds on a central screen.

## Australian Order for Marconi's

THE Australian national television service is expected to be inaugurated towards the end of next year upon the completion of the first two Government-controlled stations and studio centres, at Sydney and Melbourne.

Most of the equipment for the Sydney and Melbourne transmitting stations is to be provided by Marconi's Wireless .. Telegraph Company Ltd, under the terms of a recently-signed contract worth more than $£ 250,000$ which was obtained through their Australian associates, Amalgamated Wireless Australasia) Ltd.

## Granada's Manchester Studio

MARCONI'S are to supply a large amount of television studio equjpment to Granada TV Network Ltd., the Monday to


The Associated Broadcasting Company Lave conducted a series of camera tests to discover which of the 18 finalists is to receive a contract as compere of the family programme "Week End," which will be seen every Saturday morning., The picture shows Barbara Lott, one of the entrants in a "Moch" interview with Bill Allenby, a BBC Commentator. The Monitor Screen showing the interview in progress can be seen.


A technician studies various monitor sereens in the main control room for transmitting faults. (See "Tèlevision Control Centre ".)

Friday programme contractors for the Manchester area. The equipment is to be installed in a studio in the Granada Television Centre, now being built in Manchester. Plans for the Centre were designed by Mr. Ralph Tubbs, who was responsible for the Dome of Discovery at the Festival of Britain, and $\mathrm{Mr}^{-}$R. Hammans, until recently Head of the Television Unit in the BBC Planning and Installation Department.

## Belgium-Germany Link

$\rceil$ HE Belgian Broadcasting Organisation has completed a television link hetween Liége in Belgium and Roetgen in Germany, enabling a direct exchange of programmes between the two countries to be effected.

Until recently, a long-distance route via the Netherlands has been used. A good piciure quality has been reported.

## Floating Transmitter

GOUTH African television engineers and businessmen are planning a floating TV station to
transmit signals to South Africa's four largest ports.

It will be operated in inteinational waters about three miles from shore and will transmit programmes to Capetown, Durban. East London and Port Elizabeth.

## Commercial TV for Midlands

I T- is probable that the I.T.A's Midands transmitter at Lichfield, Staffs, will be in operation by January or February next year with a radiated power of 144 kW .

## Television Control Centre

INSTALLATION is not yet complete of cables and equipment used for the linking of ITA studios. This link-up is controlled by the G.P.O. Television Control Centre in Howland Street, London, which was first originated when the BBC decided to extend its Television Scrvice to the provinces. The function of the centre is to operate and control the complex network of Post Office cable and radio links used to distribute the television programmes. A constant check is kept on the signals passing over
the circuits and tests are made at regular daily intervals to ensure a satisfactory service.

## Steady Output

THORN ELECTRICALINDUSTRIES, makers of Ferguson receivers, state that half a million TV sets have been produced at their Enfield factory since the end of the war. Present production rate is one new set every 30 seconds.

## Guatemala TV Begins

cONSTRUCTION of Guatemala's first television transmitter is well under way on top of the $11,000 \mathrm{ft}$. Agua volcano.

In the first eighteen months of the station's operation, 10,000 receivers are expected to be bought.

## Charity Appeals

THE BBC, on the recommendation of its Appeals Advisory Committee, has decided to broadcast appeals for charity at regular intervals in the Television Service. From the first quarter of 1956. there will be a short appeal on one Sunday in each quarter.

Organisations applying to the BBC for charity appeals will be considered equally for opportunities in the TV service as well as in The Week's Good Cause on Sound.

## B.I.R.E. Nominations

DEAR-ADMIRAL SIR PHILIP R CLARKE, K.B:E., С.B.,for D.S.O., has been nominated for re-election as president of the British Institution of Radio Engineers for 1955-56.
G. A. Marriott, B.A. (Cantab), L. H. Paddle, J. L. Thompson and Professor E. E. Zeplar, Ph.D. have been nominated for re-election as vice-presidents.

## Radio Debut in Britain

ALTHOUGH George Burns and Gracie Allen, whose films are being shown weekly by BBC television, are one of America's leading radio and TV teams, it was with the BBC that they made their radio debut some twenty years ago.

[^0]Owing to the rapid progress in the design of radio apparatus and to our efforts to keep our readers in touch with the latest developments. We give no warranty that apparatus described in our columns is not the subject of leiters patent.

Copuright in all drawings, photographs and articles published in "Practical Television" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imilations of any of these are therefore expressly forbidden.


ALL WAVE RADIOGRAM CHASSIS

THREE WAVEBANDS
S. 16 m .-50 mi.
M. W. $200 \mathrm{~m} .-550 \mathrm{~m}$.

ATEST MULLVES H. W. $200 \mathrm{~m} .-50 \mathrm{mn}$ ECH42, EF41, EBC41
LW. $800 \mathrm{ml}-2,000 \mathrm{~m}$. C 0010 y , A.C. ${ }^{200} 2.00 \mathrm{~V}$. W/c Switch, Short-Medium-Long Gram. A.V.C. and Negative feedback. 1.2 watts
 horizontal or vertical available. 2 Pilot Lamps, rated Chassis isolated frome mains PRICE $210 / 510$ brated Chassis isolated from mams. PRLCE sio/150 CONDENSERS. -New stock. . OU1 mid. 7 k V . .C.C. $5 / 6$. Ditto, $12.5 \mathrm{kV} ., 9 / 6 ; 2$ nf. to 500 k Micas, 6d., Iubular 500 v.. 001 to .01 mofd., 9 d .
 $1 / 600$ ₹., $1 / 3 ; 1.1 / 500$ v., $3 / 6$.
OERAMIG CONDENSERS.-500 v., . 3 pf. to . 01 mfu., 1
SMVER MICA CONDENSERS.- $10 \%$, o pf. to 500 $\mathrm{pf}, 1 /-; 600 \mathrm{pf}$, to $3,000 \mathrm{pf} ., 1 / 3$. DITTO $1 \%$ 1.5 pf. to 500 pi., $1 / 9: 51 \overline{i n}$ pi. to 1,000 pf., $2 /-$
TUBULAR CAN TYPES
CAN TYPES
 $3 / 450 \%, \quad 2 / 3500 / 12 \% \quad 3 /-32+32 / 350 \mathrm{v} . \quad 4 / 6$ 6/510 v. $4 /-$ SCREW BAST $32+32 / 450$ v. 6/6 $25 / 25 \mathrm{v}$. $1 / 9$ TYPE $512 \quad 60+100 / 350 \mathrm{v} .11 / 6$ $50 / 50$ v. $\quad 2 /-8 / 500$ Ү. $\quad 3 /-1,000+1,000 / 6 \mathrm{v} .6 / 6$
 G.R.T. LOW LEAKAGE ISOLATION TRANS. Ratio $10 / 6 ; 10.9$ v. $10 / 6$ : $13.3 \mathrm{v} ; 10 / 6.10 / 6 ; 6.3 \mathrm{v}$. 10/6; 10.8 v., 10/6: 13.3 v., $10 / 6$. Ditto mains pinary 12/8. MAINS TYPE Multi Output, - $9,2+$ $2 \frac{1}{2}, 2 ?, 3 \mathrm{v} .2$ app., 17/6. MALNS TYPE Multi Out ut, $2,4,6.3$ v., 7.3 v., 10 v., 13 v., tirp tenp cont

COMMERCIAL T.V. CONVERTER, BAND III. Jicady uuxde with power pack, attractive case, alteration to your set. $\mathbf{f 9} / 10 /$

## £8-19-6 (Limited Parioa)



Brand new Plessey 3-speed Autochanger Mixer Uni for 7, 10 and 12 in . Reoords. Twin Hi-Fi Xtal Head with Doopoint sapphre stylus e, Lays 4,000 records. Sprang mounting. Basebosrd required, 15tin. x 12tin. Height 5ijr. Depth 2in. Superb Quality FAMOUS MAKE.-3 speed Single Record unit with Acos 37 Turnover Hesd, each Sapphire Stylus plays 2,000 records. Starting Switoh Automatically places Piak-ap on records, 7in., 10in, or 12in. Auto Stop, Baseplate $12 \mathrm{in} . \mathrm{x} \cdot 8 \mathrm{in}$. Height 2 zin . Depth

T.V. PRE-AMP.-Channel 1. Midget chassis 6in. x 3 in . x 1 in. Complete with coax. lead, (boxed). Listed $23 / 15 /-$. Speciai clearance, 21/-.
SIMPLEX T.Y. 12 gas. COMPLETE KITS of parts with punched and drilled chassis screens and tube supports to build 6 in
6in. VCR97 Tested full picture, 22.
WIRE-WOUND POTS, 3 WATT. FAMOUS MAKES Pre-Set Min. T.V. Type. $\mid$ Standard \$ize Pots, 2 tin, $\mathrm{A}, 3 / \mathrm{e}$ en. $\quad 50 \mathrm{~K}, 4 /$. $\mathrm{F} 0 \mathrm{~K} .5 / 6 ;-100 \mathrm{~K} . ; 6 / 6$ R, 3/- ea. $50 \mathrm{~K}, 4 /-$.

## reels, Hich Coercitivity. Brand new, $17 / 6$

## RADIO COMPONENT SPECIALISTS

48 Hour Mail Order Service
307, Whitehorse Road, West Croydon. Open all day. THO 1665. Wed. 1 p.m.

## 7/6 VALVE SALE

7/6 R. $, 155,1 T 4,154,384,3 V 4,6 A T 6,6 T 12$
 6xt, 6X5, 7S7, S[83, 12Ax, 807, EC9!
 6C0, 66, 607 ,


## Volume Controls <br> 80 ${ }_{c}^{\text {ohm }}$ <br> COAX Jong spindles. Guaran10.000 ohme to 2 value 10,000 ohms to 2 Meg . Strandé core. 3/- 4/- 4/9 STFANUARD . yd. EXT. SPKR. TYPE 3/= ina Coax. <br> 7d. yd.

COAX PLUGS ... 1/- DOEBLE SOCKER SOCEETS $. . .1 / 1 /$ OUTLEF BOXES ... $3 / 6$ BALANGED TWIN FEEDER, 7d. 64. 80 or 300 ohus. DITTO SCREENED per yd. 9 d .50 ohins only
TYANA.-Midget soldering lron 200120 $230 / 550 \mathrm{v}$., 14/11. Triple Three mod. uith detarb able bench stand, 19/6. Solon Midget Iron, $22 /-$ RESISTORS. -All values: 10 ohms to 10 meg.
 100 ohms to 10 Me .

## B.S.R MONARCH B-SPEED MIXER CHANGERS. ACOS GP3\% XTAL HEADS.New in Maker's Boxes, e9/19/6. post iree

ALADDIN FORBERS and core, $\frac{1}{2} .1 ., 8 d$, ; in., 10d SENTERCEL RECTLIKIERS.-EH'T TYpe. Flyback Voltape.-K3/25, $2 \mathrm{kV} ., 4 / 3 ; \mathrm{K} 3 / 41 \mathrm{n}, 3.2 \mathrm{kV} ., 6 /-$ K3/40, $3.6 \mathrm{kV} ., 8 / 6 ; \mathrm{K} / 50,4 \mathrm{kV} ., 7 / 3 ; \mathrm{K} 3 / 100,8 \mathrm{kV}$. 12/6; $\mathrm{k} 3 / 160,14 \mathrm{kV} ., 18 /-$ MAINS TYPE, -RML 125 v., 60 ma., $4 /-; ~ R M 4,100$ man, $4 / 9 ; 12 \mathrm{M} 3$,

BAND 3 T.V. CONVERTER, KITS
Suitable all T.Y. makes.
Ready-wound Coils, BVA Valves, all cont ponents, Punched Chassis, Circuit, diagram, wiring plans. Complete Kit for mains operation, $200 / 250$ v. A.C., $£ 3 ; 10 /=$
As Above, less Power Paek. requires $200 \mathrm{v} .$, 20 mu., H.T. 6.3 v. 1 a. L.T., t2/5/-
Punched Chassis and Wound Coils.
punehed Chassis and Wound Cons. Component

## RADIO SUPPLY CO (LEEDS)

Post Terms (.W.O. or C.O. W. No C.O.D. under £1. Postage 1 - extra under 10/-; 1/6
 S.A. W. wift enquiries, DIease. Full list 5d. ; Trude List 6d

## R.S.C. TRANSFORMERS

## FuHy Gualanteed.

Interleaved and Impregnateri. Irimaries 200-230-250v.50 cfs sereened TOF SHIROUDHD, DROP THHOUGIL ..00-0-260 v 70 ma, 6.3 v $2 a, 5$ v 2 a... $16 / 9$ $350-0.350$ v $80 \mathrm{ma}, 6.3$ v $2 \mathrm{a}, 5$ v 2 a ... $18 / 9$
$250-0.250$ v $100 \mathrm{ma}, 6.3 \mathrm{v} 4 \mathrm{a}, 5$ v $3 \mathrm{a} 23 / 9$ $340-0350$ v $100 \mathrm{ma}, 6.3$ v 4 a, 5 v 3 a $23 / 9$ $350-0.350$ v $150 \mathrm{ma}, 6.3$ v 4 a, 5 v 3 a 23.9 FUK, SY SHROLDED UPIRIGIET Midget iype, 2 -3-3in. 2 a, 5 v 2 a $17 / 6$ $2500-250$ v 100 ma, 6.3 v 4 a, 3 v $3 a^{\cdots} \quad 18 /$ $250-0-250$ v $100 \mathrm{ma}, 6.3$ v $6 \mathrm{a}, 5$ v 3 a ,
for R1335 Conversion
$300-0-300 \mathrm{v} 100 \mathrm{ma}, 6.3$ v $4 \mathrm{a}, \overline{5}^{5} \mathrm{v} 3 \mathrm{a} \quad{ }_{26 / 9}^{31 / 9}$ $\begin{array}{lll}350-0-350 \text { v } 100 \mathrm{ma}, 6.3 \text { v } 4 \text { a, } 5 \text { v } 3 \text { a } \quad 23 / 9 \\ 350-350 \text { v } 150 \mathrm{ma}, 6.3 \text { v } 4 \text { a, } 0-4-5 \text { v } 3 \mathrm{a} & 31 / 6\end{array}$ $350-0-350$ v $150 \mathrm{ma}, 6.3$ v 4 a, 0-4-5 v 3a $31 / 6$ $425-(0-425 \mathrm{v} 200 \mathrm{ma}, 6.3 \mathrm{v} 4 \mathrm{a}$, C.T. 6.3 v 4 a, С.T., 5 v 3 a.
FHLAMENT 'TKANSFOIRNEIRS
All with 200-250 v 50 e/s Primaries ; 6.3 V 1.5 a. $5 / 9 ; 6.3$ v 2 a, $7 / 6 ; 0-4-6.3$ v 2 a, 7/9; 12 v 1 a, $7 / 11 ; 6.3$ v 3 a. $9 / 6 ; 6.3$ v 6 a, $18 / 9$. CIARGEE, TRANSFORVEIRS $200-250$ v $0-9-15$ v $1_{4}^{\frac{1}{4}}$ a. 11/9; 0-9-15 v 3a. $16 / 9$; $0-9-15$ v 5 a. $19 / 9 ; 0-9-15$ v 6 a, 22/9.
OUTPUT TRANSIORMERS
Standard Pentode 5,000 to 3 ohms $4 / 9$
Smail Pentode 5,000 to 3 ohms $3 / 9$
2.500 v $5 \mathrm{ma}, 2-0-2$ v 1.1 a. $2-0-2$ v 1.1 a
for VCR97. VCR517
SHOOTHING CHOKES
100 ma 10 h 200 ohms Pottod
80 ma, 10 h z50 ohms
119
0 ina 10 h 400 arm
SEEENIUM MET RM4 250 v 250 MEAL, HECTIFIEIRS $250 \mathrm{ma}, 12 / 9: 120 \mathrm{v} 40 \mathrm{ma}$ G.E.C. 300 V 1 a F.W., $4 / 11 ; 240$ v $50 \mathrm{ma}, 5 / 9 ; 6 / 12 \mathrm{v}$ 2 a F.W.. $8 / 9 ; 250$ v 80 ma, $7 / 9$.

BATTERY SET CONVRRTER KII All parts for converting any normal type of Battery Receiver to A.C. Mains 200-250 v $50 \mathrm{c} / \mathrm{s}$. Supplied 120 y 90 v or 60 v at 40 ma . fulis smoothed and fully smoothed L.T. $0 \Gamma 2$ y at 0.4 a to 1 a . Price including circuit $48 / 9$. Or ready for use $8 / 9$ extra.
ALI DHY HECEIVER BATHERY HLIMINATOR EIT.-All parts for the consuruction of a unit metal-case recoivers requiring 90 v , and 1.5 v . Fully moothed. From $200-250 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ mains Price, inc. point-to-point wiring diagrams. $38 / 9$. Or assembled and tested at $45 / 6$.
TV. CONSOLE CABINETS
Handsome, well constructed with beautifu? figured walnut veneer finish. Size 40 in. high, 241 in . wide, 20 in . deep. For 15 in . or 17in. Tube. 9 carr.30/-(10/-returnable on case) $\mathrm{g}_{\text {gns }}$


32, THE CALLS, LEEDS 2.

## TV. PREAMPLIFIEIR.-Tor Frin'se Areas. Brand New. Complete with 6F13

 valve. Only 226.
## CO-AXIAL 75 ohms $14 / 36$ <br> ${ }_{4}^{1} \mathrm{in}$.


$7 d . y a$
HX-G0VT SMOGTIING CHOKIS.
100 mal 10 h 250 ohms Tropicalised...
$\begin{array}{lll}100 \mathrm{ma} 10 \mathrm{~h} 250 \text { ohms Tropicalised... } & 3 / 11 \\ 150 \mathrm{ma} & 6-10 \mathrm{~h} 150 \mathrm{hms} & \ldots\end{array} . .$.
150 ma 10 h 150 ohms.
250 ma 10 h 50 ohms
$11 / 9$
$14 / 9$
EX-GOVT, MAINS TIEANGPORMERS
Primaries $230 / 25 \mathrm{G}, 50$ e/s, 48 v $1 \mathrm{a}, 8 / 9$;
$400 \mathrm{vC} \mathrm{~T} .150 \mathrm{ma} 4 \mathrm{v} 6 \mathrm{a},. 6.3 \mathrm{v} 6 \mathrm{a}, 6.3 \mathrm{v} 0.6 \mathrm{a}$,
400 vC.'T. 150 ma, $4 \vee 6 a, 6.3$ v $6 a, 6.3$ v $0.6 a$,
4 v $6 a, 4 v 3 a, 5$ v/3 a, 4 v 3 a, $5 v 2$ a, 22/9; 4 v 6 a, 4 v 3 a, 5 v 3 a, 4 v 3 a, 5 v
$300-0-300$ v 120 ma 4 v 1 a. $1 / 6$.
HX-GOVT. L.ILT. SMOO'HELES
(Block), $419 ; .5$ fhid 3,500 y Cand $4,000 \mathrm{v}$ (Block), 499.5 thid 3.500 v Can, $3 / 6$
BATCERY CHARGER KITS.-Consisting of attractive Green Crackle Case, Transformer, F. Wectifier, Fuse, Fuseholder. Tag striph Grommets, and Circuit, For mains input $800-230-250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s} 6$ v 2 a . $25 / 9 ; 6 \vee .12$ v or $2 a, 31 / 6 ; 6$ vor $12 \mathrm{v}, 4$ a,
$49 / 9$. Any type assembied and tested for $49 / 9$. Any
$6 / 9$ extra.
R.S.C. 6 V OV 12viBATHERY CRARGIEN For normal AC. $\operatorname{mains}_{230-250} \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$ Selector panel for 6 vor 12 v chargiras. Variabie chaige rate of up to 4 AMPS. Fused, and with meter. well ventilated cise
with ettractive
 crackle
Guaranteed for 12 montins, 69/6. Carr. 2/6. 13ATLELEY CHAIRGLRSS. For mains $200-250$ v $50 \mathrm{o} / \mathrm{s}$. Output for charging 6 v or 12 v at 1 amp. Th strong motal case. Only 19/9. Above cah also be used for electric train power supply. toned, 29/6, ples carr. 2/6. Brand now. Car

## HANNEY of BATH offers:-

VIEWMASTER.-Constructor's Envelope, 7/6; WB.103, 42/WB. 103A, $52 / 6$; WB. $104,15 / 6 ;$ WB. $105,43 / 6 ;$ WB. $106,25 / 6 ;$
W.B.107, $32 / 6$ : WB. $108,33 / 3:$ WB. $109 / 1,2$ or $3,22 / 6:$ WB. $110,7 / 6 ;$ W.B.107, 32/6; WB.108, $33 / 3$; WB.109/1, 2 or $3,22 / 6:$ WB.10, $1 / 6$
WB.111, $5 / 9$. Westinghouse rectifiers $14 \mathrm{~A} 86,20 / 4 ; 14 \mathrm{D} 36,11 / 2$

 $36 \mathrm{EHT} 45,23 / 8$. SenTerCel Rectiflers; K3/100, $14 / 8$; K3/50, $8 / 9$;
K $3 / 45,8 / 2$ Wearite Coilsets with L.,$~ 30 /-$ Preainp coils, $4 /-$ K3/45, 8/2. Wearit
pr. State channel.
TELEKING,-Constructor's Envelope, 6/- ; Coilsets, $44 / 6$; Chassis kit, $50 /-$ T.C.C. kit, £'/4/3: RM4 rectifier, $21 /-$ : Allen Compo-
 OP117, 9/-.
P.T.SUPER VISOR.-T.C.C. Condensor kit, e8/6/4: Erte resistor kit, $54 / 4$; 5 w/w pots. $26 /-$; 7 Erie carbon pots, $35 /$; Allen ooilKit, $54 / 4 / 5$ w/W pots. $26 /-7$ Erie carbon and GL. 18 , $7 / 6$ each ;
 WAFMA1, 21/ WA/LOT1, 42l- ; Denco chassis kit, $51 / 6$ : Westinghouse WX.5, $3 / 10$ : WG4A $7 / 6$; LW. $\mathrm{L}, 26 / 8$ : English Enal ring polystyrene mask, $45 / 8$; perspex filter. 328 , ane sheath, $6 / 2 ; 901$ tube, inc. carriage insurance, fa2/14/10: Elac ITG ion trap, 5/-.
MAXI-R (Deneo) F.BI. FEDdEIE UNIT.-Constructor's Technical Bulletin. 1/9, P. Free. Chassis set. r/6; Collset, 11/9; 10.7 Mc/s IF's, 6 i- each. : Ratio discrim. trans.. $12 / 6$; Phase discrim. trans., 81..
SUNDREES.--1st Quality $7013 n$ ohm co-axial cable, by famous maker, stranded core, 9d, yard, $8 / 9$ doz. yds post paid. Pre-set controls. 3 watt wirc-wound, all values. $10 \Omega$ to $30 \mathrm{~K} \Omega, 3 /-$ each : ditto, is watt carboa, all values 50 Ka to 2 Ma , $3 /-$ each. Denco MTO. 1 Test Oscillator, wlth valve, 7ol- : Denco TPA. TV pee-amo. with valve, 29/6: Elac ion traps, all types, 5/-; ALSO, over 100 values in ciose tolerance Silver Micas in stock fromin 1.5 palues and Pf. 20,003 Erie resistors ex-stock in all preferred values and wattage.
Send S.A.E. tor list, Please add 2' $^{\prime}$ - postage to all orders under ${ }^{2} 3$ (any excess refunded).

L. F. HANNEY<br>77 LOWER BRISTOL ROAD, BATH

Tel.: 3811

TECHNICAL TRADING CO. SPECIAL BARGAINS—SATISFACTION GUARANTEED

T. V. CABINETS. Laree purchase euables us to oner new, top-grade table cabinets at leepest Irices, famous 1954 models
complete mask, tiass, spkr., fret in front complete mask, tlass, spkr., fret in front
 1.) $35 /$ (çrr. 6/-). 17 in. size 19 ini. H. $x$ 181 in . W. x 18 in. D.), $39 /-$ (earr. $6 /-$ ). large 1904 te tuxe consoles with doors,
beoutimully matched watut finish, mask bemutifully matched watut finish, mask

(carr. tal- $)$ Spearepo $7 \times 9000$
ELLIPTICAL SPEAKERS. $7 \times 4,9,000$ limes, as used in ahove table cabiuets. $16 / 6$. (P. \& P. 1/F. 8in. speakers with trans. 17/B (P. \& P. 1/3).
F AERIALS. 35, completie all lashinge,

 rexime cases 16 gns (carr 10 ion
10/20 WATT AMPLIFMERS. Mobile 12 volt operation, 5 stage, push-pull fic. complete in compact case, cost approx. Esi. Cood contition, untested, s5/10/-, complete in compact case, cost ant SPEAKERS, famous manuracture, compact,
SOTND POWER MOCHEADSETS. Complete 9/B. Standard telephone hand. sets 7/6. (omplete soand power telephones, At. Pat., 35/- (carr. 3/-).
3 GANG CONDENSERS. Cer. iusul. 3/6. With trínmers 3/6. Smill tmang conds., $15+15,30+30,15,50,109 \mathrm{pi}, 11-$ Ebch.
MAYNS TRANS. $270-0.250$ imim.a. 6 v. 4 a. 5 v. a a, $17 / 6$ (post 1/6). Jilto less 5 voll winding, excellent rumity, new, $9 / 6$ ( 1 ost $1 / 6$ ).
CEROME-VANADIUM SCREWDRIVER KITS. 6 difterent heads, pocket case, 6/8. Ditto. 7 tool de linee, $9 / 6$ (post Mid.).
T.V. CHASSIS. With circuits of complete S . V. Comisting 3-valve R.F. unit and 4-valve T. F. strip, recent ianons make, using SFBl, ete. $25 /=$ less yalves.



 12AH7 9/6; $532,805,80317 / 6 ; 829 B 25 /-; 81345 /-$ etc.. cte.
1/20th H.P. A.C./D.G. series motors, long donble spitilie, 19/- (post $1 /-$ ). Mallory 12 ₹. vibrapackss, complete, $22 / 6$ ( $1 / 6$ post).
SEMI NIDGET CABFNETB. Revine back, dial, knobs, fret, new, $8 / 6$.
25 UNLTS, completa, $12 / 6$. fity 18 kV Yiseonol contensers $4 / 9$. 20H. 150 ma chokes $9 / 3$. Mu-metnivC'R97 screens 5/-, Resistors $\frac{1}{2} \cdot \frac{1}{2}$ w. $3 \mathrm{~d} ., 2$ w. 4a., 2/3 w. 8d. 1,000 other suips to callers.
Technical Trading Co., 181. Lake Road, Portsmouth PHONE: 5785

## LYONS RADIO Ltd.

3, gOLDHAWK ROAD, Dept. M.T., SHEPHERDS BUSH, LONDON, W. 12.

Telephone: SHEpherds Bush 1729.

BAND 111 CONVRETRE:-Complete coil kit by Teletron Co. with circuit, point to point wiring diagram, alignment instructions, etc. Provides the basis for an efficient, easy to make, two vaive converter for use with TRF. or Superhet Band I T. V. receivers. PRICE 15i-, post 6d. Metal chassis
ready driled $3 / 9$, post $6 d$. Data leafet ready dr
only $6 d$.
VALVE BARGANS.-All tested and guaranteed. 6SN7, 7/2. $12 \mathrm{~A} 6.6 / \% 6 \mathrm{HE}$ (Metal), 3/-. OD3! VRL50, M/6. HL1320. 5/660A, 126. BSST. ". Post any AMPLIFIER -vaive audio amplifict:s and can be used without any modincations as a can be used without or as a gramophone amplimike pre-amp. or as.a stamophene Valves fier, also one each VR2L and VR.35. Operate from 2 v . L.T. and 90 or 120 V . H.T. and 9 v from bias. Housed in metal cases $7 \times 5 \times 4$ ins In tood condition with wiring details provided. PRICE ONLY 12/6, post 2/6.
HLECTROMACNETIC MICROPHONES. -2 ins. dia. as fitted to flying helmets with onlof switch. Can be used in conjunction. with above amplifier, etc. PRICE 3/6. post 9d.
24 YOKT ACCUMULATORE.-American made, as new and unused. 11 amp.-hour capacity. Size 7 x $8 \times$ Bins. with terminal cover on one side projecting $2 \frac{1}{8}$ ins. PRICE 25/-, carriage 7! 5 .
MOVING COIL METEASS-Bakelite cased 2 mm . Sa. 0140 V. D.C. PRICE 6/6. 0/100 mA.

## FIRST-CLASS TELEVISION and RADIO COURSES

## GET A CERTIFICATE!

After brief, intensely interesting study -undertaken at home in your spare time-yOU can secure your professional qualification or learn Servicing and Theory. Let us show you how!
reo---FREE GUIDE--"---
; The New Free Guide contains 132 pages of information of the greatest importance to those seeking such success compelling qualifications as A.M.Brit.I.R.E., City and Guilds Final Radio, P.M.G. Radio Amateurs' Exams., Gen. Cert. of Educ., London B.Sc. (Eng.), A.M.I.P.E., A.M.I.Mech.E., Draughtsmanship (allbranches), etc.., together with particulars of our' remarkable Guarantee of
success or no fee
Write now for your copy of this invaluoble publication. It may well prove to be the turning point in your career.
FOUNDED 1885-OVER

NATIONAL INSTITUTE OF ENGINEERING
(Dept. 462), 148, HOLBORN: LONDON, E.C.I.

## VALVES SAME DAY SERVICE

All Guaranteed New and Boxed 1.4 v, midget, 1R5, 1S5, 1T4. 3S4, 3V4, DAF91 DF91, DK91, DL92, $7 / 3$; any 4 for $26 / 6$ 1A7GT 6L6G 9/650L6GTB/6EL41 11/5


1H



1 B
${ }_{3 \mathrm{Q} 5 \mathrm{GT}}{ }^{10}$
3 S
,


## 




6






[^1]
## SERVICING TV RECEIVERS

$\mathrm{S}^{1 \mathrm{R}}$
IR,-I feel I must write to thank you for an excellent journal. The features contained in each month's issue are both interesting and useful:

In particular, I much appreciated the article in the series "Servicing TV Receivers" in the June issue. This dealt with the G.E.C. BT7092 receiver, of which I have a model, and through your article I have been able to clear up a fault that had been troubling me for some time. In addition, it is a handy reference to have for one's set at any time.-D. K. Malling (Winchester).

## BBC QUALITY

SIR,--Why is it that the standard of sound quality is often comparatively low in BBC telerecordings? When the BBC have achieved the task of reproducing tape-recorded vision, which is now almost indiscernible from the original, there seems to be no excuse for the large degree of background noise and absence of high frequencies that is prevalent.-D. R. Boyd (Enfield).

## FIVE-CHANNEL TUNER

$\mathrm{S}^{1 \mathrm{R}}$R,-Referring to the article, " A Five-channel Tuner," by B. L. Morley, which appeared in Practical Television for July, 1955, it is apparent that there are different versions of this tuner unit, and readers should perhaps be made aware of this fact.

The actual unmodified version to hand differs from the original article as follows:

1. The series heater wiring is connected to tags Nos. B and F (using the same nomenclature as in the article).
2. Tag A is a separate osc. H.T. supply.
3. Tags Nos. D and H are earth connections.
4. The 33 -ohm cathode resistor to V 1 is nonexistent. In its place is a 180 -ohm resistor shunted by 680 pF to chassis.
5. R1 is $4.7 \mathrm{~K} \Omega$ instead of $10 \mathrm{~K} \Omega$.
6. R4 is $8.2 \mathrm{~K} \Omega$ instead of $15 \mathrm{~K} \Omega$.
7. R6 ( 10 K ) is paralleled by another 10 K to chassis (the reason for this is not apparentunless this was a mistake on the assembly line). Other connections remain as indicated in the original article.-V. M. Fiske (London, W.1).

## TEST CARD C

$\mathbf{S}^{\text {IR,--Your correspondent, Mr. I. Richards, of }}$ Tooting, need not necessarily blame his set, which may be quite capable of good reproduction on normal transmissions, though showing a poor testcard ; it depends which one he was receiving. Many a set will display distortion on that transmitted after 12 noon.

Isn't it about time some attention was drawn to the antics of these so-called test cards which disappear and return (e.g., at 11 a.m. on one Saturday) without a word of explanation?

Also, may we have some information regarding the card which (notwithstanding an earlier announcement to the effect that " this is the last time [a quarter of an hour of Test Card C will appear ") continues to take the air after 12 noon with quite different but unspecified parameters. What are they? Or

* should one say, "What are they supposed to be?" -L. D. Stuart (Hornchurch).


## HMV 2808

SIR,-I wish to apologise and point out that an error appears in the "Problems Solved" columns (September issue).

In reply to E. C. Philbrow, Neiv Malden (upon an HMV 2808 query), my advice to convert his receiver to London is in order, but the following paragraph suggests that the output of a Band III converter be aligned to give a " Midland "output in order to 1 el, prevent London breakthrough.

This is, of course, a silly suggestion, as the receiver when modified will only be tuned to Channel 1 , and thus the Band III unit will require to be tuned to give this frequency output.--L. L. J. (Gravesend).

## BAND III CONVERSION

SIR,--I note with interest that the August issue of Practical Television contains a design for a Band III converter designed around the Birmingham channel.
May I offer the following comment on converters for this channel for the benefit of any of your readers who may be considering conversion in anticipation of the I.T.A. Midlands transmitter ; viz.
It may not be necessary to have two aerials nor modify their existing aerial. (I note that on page 104 of your August issue you show a switching circuit for change of bands and display two aerials.)

A resonant half-wave aerial has also resonant characteristics at its harmonically related frequenciès.

In this respect the higher channels with frequencies which fall into or near the third harmonic can be received with a high degreee of efficiency on an aerial cut for the lower channel. The third harmonic function operates well because the acrial is still current fed at both frequencies.
It so happens that the Birmingham Channel 4 is harmonically related to Channel 8 in this manner.
I admit that it is not an exact third harmonic relationship in theory, but allowing for practical rod lengths it is more than likely that a Channel 4 aerial will operate on a channel where orientation and signal strength are favourable.--H. W. Critchley (Scarboro').

## BETTER PROGRAMMES ALL ROUND

 ,-I note that the BBC has announced its plans for better programmes and longer viewing hours this autumn as an effort to off-set the new challenge of the ITA. Also more outside broadcasts and bigger variety shows have been promised us.What I want to know is, why have we not had this vast improvement before? Why does it need a rival to take the BBC out of its rut and sit up? If these improvements have been possible in the past, why have they not been made? It seems that as far as the public is concerned, we are better off before the ITA begins. They have already served their purpose as a formidable rival to be reckoned with by the BBC. Yes, it seems that, whichever way we look at it, we are in for some better programmes all round whether the BBC or the ITA give them to us.G. D. Wallis (Catford).


Whilst we are always pleased to assist readers with their technical difficulties, we regret that we are umable to supply diagrams or provide instructions for nodiffing surphus equipment. Whe cannot supply alternative details for constructional articles which appear in these pages. WE CANNOT UNDERTAKE TO ANSWER QUERIES OYER THE TELEPHONE. The coupon from p, 2 S must be attached to all Queries, and if a postal reply is required a stamped and addressed envelope
must be enclosed.

## SWITCHED TUNING

I have purchased a London model and wish to convert it to Wenvoe. Could you kindly let me know the address of a firm that sells 5 channel switched tuners or 13 channel switched tuner, the latter being preferable ?-F. Brooks (Glamorgan).

The availability of a 13 channel switched tuner unit depends upon the type of receiver and the model number.

Any receiver can be converted to another channel by the fitting of a unit for that purpose. Messrs. Spencer-West, Quay Works, Gt. Yarmouth, regularly advertise such units in our pages. These are not 5 channel, however.

Anything more ambitious requires some modification to the receiver which, of course, depends upon that re eiver and we cannot always give the necessary modification instructions.

## ULTRA W7216

I have an "Ultra " W7216 television receiver which has the following fault:

With the width control fully advanced, the picture is $1 \frac{1}{2} \mathrm{in} .-2 \mathrm{in}$. short on the right-hand side of the screen (facing set), and is "pulled out" on the left-hand side of screen. The height of the picture is normal. The picture quality is perfect.

I have tried rotating C.R.T. and moving the deflector coils, but neither of these operations has any effect on width of picture.-W. Steadman (Nr. Barnsley).

This seems to be an efficiency diode fault, and V1 PZ30 (this is the one in the corner) should be tested. One half of this valve acts as an efficiency diode, contributing a large percentage of the total line scan.

Do not change over the PZ30's. This may result in at least one of them being damaged. If the PZ30 is in order, check $\mathrm{C} 2516 \mu \mathrm{~F}$ electrolytic condenser (wired cathode of VI (B) to H.T. line). These notes presume the line amplifier input control is properly adjusted (located just inside chassis adjacent to second PZ30 pre-set control).

## PYE FVACDL

The set was working perfectly on Children's Hour, but on switching on for the evening programme the sound was O.K. but the screen is blank from the bottom of the picture to halfway up ; the upper half of the screen is divided into three narrow pictures. I suspected frame timebase trouble. I have no test apparatus so I had V16 (B) ECL80 frame scan oscillator and V19 PL82 frame scan output valves tested, and was told the ECL80 was U.S. (low on emission). I bought a new one, which made no difference. Thinking it must be the PL82, I bought one of these to find a slight improvement. On rotating the vertical hold control in a clockwise direction viewed from the rear of the set, on reaching the end of its travel the picture jumps to full size, but will not lock, rolling slowly downwards about one frame per second with fly-back lines prominent. I tried adjusting the vertical linearity pot. R88, and vertical amplitude R87, with no success.

I would be much obliged if you could pin-point the fault. I did think of replacing R85 560 K . resistor, but having no method of checking the resistance in Iocation I decided to seek your aid,-Frank Ikin (Bolton),

The resistor 560 K . may be at fault and should be replaced to make sure. However, we have found in a great many instances that the T14 blocking oscillator transformer has been responsible for this fault. This is a small transformer, mounted on the top of the chassis, and this may have to be replaced.

## KB. HV40

I would be very grateful if you can tell me the value of the on/off brightness control on the Kolster Brandes HV40 and whether this should be a single- or doublepole switch. There appears to be a .5 megohn in at the moment which is faulty, causing picture to go on and off intermittently.--F. G. Goodland (Pontypool).

A double-pole switch should be fitted as a " live" chassis is employed. The value of the control is as suggested, . $5 \mathrm{M} \Omega$.

## DEFIANT TR949/T

At first there was a picture but after a short period it began to jump sideways in bands of 3 in . At the same time there was a crackling noise from the scamning coils. With no picture the frame scan would fill the tube, then collapse from top to centre. When the noise started in the coils the raster would fade leaving four balls of sparks, 2 in . to 3in. from the left of the tube, with sparks trailing of to the right. Then the raster came in to about 3 in . wide, the line whistle stopped and the E.H.T. dropped to 4,000 volts. (When a picture was on the focus would alter.)-J. Connell (Radcliffe).

There is litile that can be done apart from replacing the scanning coils. These may be ordered from any C.W.S. radio/television dept.

## EKCO TU142

I have a 12 in . Ekco TU142 A.C./D.C. TV running on A.C. and was wondering if you could solve my problem. I am getting a coarse harsh picture with contrast and brilliance fully advanced. This condition would improve after set was switched on about half an hour to a good picture some nights. Other times if would be bad all night. When the picture improved the controls were retarded to normal. I have had a
(Continued on page 239)

BRAND NEW R.F. UNITS. Types 26 or 27, 27/6; 24, 15/". (Postage 2'6.) RF25, Soiled, 12/6." RX161, 160.220 me/s with $2 / E F 54,1 / E C 52,1 / C V 66$. new. 17/6; I.F. Amplifier 178 for $\begin{array}{cc}\text { new, } & 17 / 6 ; \text { I.F. Ampifier } \\ \text { this) } & 16.5 \mathrm{mc} / \mathrm{s}, ~ w i t h ~ v a l v e s, ~ \\ 22 / 6\end{array}$ this) $16.5 \mathrm{mc/s}$ with valves, $22 / 6$
 all valves, less xtals, 45/- carr. 8/6). R1355, new improved type. 37/s (carr. 7/6), TR1143A-Tx. 50. 6 valyes. 17/6; Rx. 71, 8 valves, 27/6; Mod/amp. 165. 5 valves, $15 /$ (post $2 / 6$ each). Vibrapacks PCR.DC $\cdot 12 \mathrm{v}$. to 250 v . 80 mA . smoothed, $17 / 6$ (carr. 4/-). P. 101 Receiver $451 \mathrm{mc} / \mathrm{s}$. With valves P.101 Recelver $451 \mathrm{mc} / \mathrm{s}$. with valves 10/VR9. $3 /$ VR92, 22 ew, to $45 /$. carr. paid. Fil. Trans. Lis. potte $8 / 6$. List and enquiries. 1.5a. potted, 8/6. List and enquiries. order. Postage extra. Immediate despatch, W. A. BENSON, 308, Rathbone Rd.. Liverpool, 13 . WHरु WAlT? Watch.C/TV now; Cleveland AC mains Converter. complete, $£ 7 / \mathbf{1 0 / - ;}$ Defesco Converter Kit parts. $35 /-$, coils, extra $15 /$; Selfcontained P/Pack Converter Kit, including valves, coils. chassis. rectifier, transformer, etc., $£ 3 / 7 / 6$, post 1/6; Airspaced Co-ax. 8/6 dozen yds.; Teletron Band III Coilset. 15/per set. $17(\mathrm{KEY} 4813)$ and at 50 Hoe Street, E.17. (LAAR 6377) Walthamstow's Bright spots! ! ! DIPOLE INSULATORS for $\frac{1}{2}$ in. elements and lin. boom, Drilled, ready for fitting, 6/- P.O. with order. C. \& H. RADIO, $2 a$, Mona Street, Liverpool. 7.
RADIO.GRAM CHASSIS, 29/9, including 8in. speaker: 5 valve s/het, 3 w/band. A.C mains. Complete, less valves, Tested guarantced; carr. 4/6. Set of Knobs to suit, $1 / 6$ extra. RADIO-GRAM CHASSIS, 14/9. A.C. I.F.s, less dial, electrolytics and valves; otherwise believed to be working; carr. $3 / 6$
SPEAKERS, $10 / 9$ 8in. P.M. standard $3-5$ ohms; guaranteed; post $1 / 9$. DUKE \& CO. 621, Romford Road, Manor Park, E.12. (GRA 6677.)
SEE COMMERCIAL T/V NOWW! Teletron Band III Coilsets, 15/- set; Progress Converter with power pack, £8/2/6; Cleveland self-contained converter unit. $87 / 10 /-;$ Kit of parts, Band III self-contained converter, £3/8/9. Mail order only. WINWOOD, 12. Carnarvon Rd., Leyton. E. 10 .

ALL DISTRICTS. An opportunity exists for Television Technicians to establish a business of their own. The business can be commenced in first instance in spare-time, showing an all the year round increasing income. Write, giving particulars of age, training, test equipment, experience to TELEPATROL LTD. Federation House, Epsom.
AUTUMN CLEARANCE SALE, Bargains for everyone! Stock Parcels value $8 / 10$ times at $25 /-$ and $50 /-$ post free. List Examples: 277, 5/6; N77, $6 /-; 0.1 / 350 \mathrm{v}$. Metal pack, etc.. $7 / 6$ doz. Stamp for List, MELSON RADIO. 315, Ewell Rd., Tolworth, Surrey.
SIMPLEX T.V. 18 swg Chassis, with creens and valve punched, $17 / 6$, post $1 / 6$; fully wound Coil Sets, $15 / \mathrm{F}$, post $1 /-$ Simplex Mains Transformer. 27/6, post 2/-; Magnetic Chassis and Screens, 22/6; 0.1 uf 2.5 kV wkg., 7/6; Rectifiers. RM3, 5/9; 3K/40. 6/-; 14-way Tag Boards, 2/-. List for other items. Lynx-wound Coil Sets. $35 /$, post $1 /-$ C.O.P.Y. WINDINGS, Healey Lane. Batley, Yorks.

## LOUDSPEAKERS repaired promptiy

 MODEL LOUDSPEAKER SERVICE, Bullington Rd., Oxford.SIMPLEX T.V., £8, o.n.o. JONES,
9, Hillson Drive, Fareham, Hants.

RATES: 4/- per line or part hereof, average five wards to mine, minimum 2 lines. Box No. 1/-extira, Anderisements to Adrertisement Manaerer "Practical Television", Towar irouse, Gouthampton st Sower fouse, Southampton St.,

T/VS IN PERFECT ORDER. Many sets from $£ 55$, sets requiring attention from f7. Send S.A.E. for lists. TUNERS: Thirteen Channel; suitable for wiring into receivers with full instructions, \&6. When ordcring state Sound and Vision I.F. and Ose. Frea. ar inge and Model No of set Band Three external type, just plus in for commercial programmes. felin/. Delivery is from six to eight weeks Delivery is from six to eight weeks on some types. Orders are dealt with in strict rotation, HIGH ST RADIO, $284-6$, High St., Croydon, Surrey. (CRO 8030.)
TV WITHOUT MAlNS.-Absolutely first-class picture, plus DC circuit for lighting; as-supplied to the B.B.C. Special AC/DC "Chorehorse" Generators self-starting, compact, and complete, AC $220 / 250$ volts, $50 / 60$ cycles, $250 / 350$ watts AVC. Will run radios vacuum cleaners, small tools, etc., $\mathrm{f} 47 / 10 /$, plus $10 /-$ delivery. Below:-
STORAGE BATTERIES, $12 v, 75 A H$ heavy duty, 19 plates, separate cells heavy hardwood cases; finest possible in hardwood cases; finest possible specification, \&5/17/6, $9 / 6$ delivery;
$12 \mathrm{v}, 22 \mathrm{AH}$, almost similar specification, surprisingly powerful, £2/14/\% delivery 5/6. TEDDINGTON ENGINEERING CO., LTD., Dept, " C," High St.. Teddington. Middx. (KINgston 1193-4.)
DIRECT T/V REPLACEMENTS offer he most complete Handbook of T/V Components and Rewinds, price $1 /$ T/V Components for all kit sets in stock "Nuray" heater" booster isolator for 2 -volt C.R.T.s, just plugs in, 27/6, plus 2/- packing and postage. 134-136, Lewisham Way S.E.14. (TIDeway' 3696-2330.)

SERVICE SHEETS, T.V, and Racio over 2.000 models, sale or hire Valves and Components. S.A.F. with enquiries. W. J. GILBERT, 24. Frithville Gardens, London. W.12.

## NEW-MAX ELECTRONICS LTD.

 307, EDGWARE ROADgUST PAST THE MET.
Tel. : PAD 5607
London's Best T.V. and Radio Bargain Store

Special Offer of T.V. Tuhes from reclaimed and salvaged T.y. sets. Every tube guaranteed.
Callers can see picture before purchase.
gin. at ${ }^{2} 4$
CRM M12 ; MW22-7, MW22-14. ${ }^{22-18}$;
T/3, T/G.
$12 i n$. at $£ 5$
CRM121, 121A. 121B.
123 CRM122 A.C. 31-18: MWW31-74C, 16 : G.E.C 6703 A , 6704A. 6705A : MarConi 3/31. ${ }^{3} 18$; 46, T12-54, T12-56. 14in. at $£ 6.15 .0$ MW36-44. 36-24, 36-22. 15 im at $\mathrm{E}^{1} 10.0$ CRM151, 152, 152B: CRM153, Marconi 3/6A and 3/32: G.E.C. 885 K.
1"in. at $£ 9.10 .0$ MW63-64, 43-1, 43-64. MW43-43; C17E8M: G.E.C. 6901 A : Cossor

Packing, postage \& insurance. $10 /$ - per tube.
Also a large quantity of H.P. repossessed
T.V. sets of all makes and sizes.

Trade enquiries inviled.

MAKING YOUR OWN? Telescopes, Enlargers. Binoculars. Microscopes Projectors, or, in fact, anything hat needs lenses. Then get our booklets "How to Use Ex-Gov Lenses "\& Prisms," Nos. $1 \& 2$, price 2/6 ea. Also our stereo book, "3-D Without Viewers," price 7/6. Comprehensive lists of lenses, optical. radio and scientific gear free for s.a.e. H. W. ENGLISH. Rayleigh Road. Hutton. Brentwood. Essex.
TV SIMPLEX and other Coil Sets from 21/-; BEL, Marlborough Yard, Archway, N.19. (ARC 5078.1

PROMPT CASH offered for your surplus brand new Valves, Loudspeakers, Components. etc. Send list and prices to R.H.S. LTD.. 155. Swan Arcade, Bradford. 1.
DISMANTLING all old T.V.s; all parts. S.A.E. 16. St. Margaret's Terrace, Acton, W. 3.
VIEWMASTER, Expert constructed: New 12 in Console Chassis. lined up sound and vision, Holme Moss. All specined parts, speaker and valves. mains 3 pin plug, 2 pin aerial socket. Guaranteed perfect. Demonstrated. £26. 34. Garswood St., Liverpool, 8. (Tel.: LAR 3013.1
R,F. UNITS, Types 26 at 27/6, 25 at 12/6. 24 at $11 /$; brand new with valves; post $2 / 6$. E.W.S. CO.. 69 , Church Road, Moseley, Birmingham.

## SITUATIONS VAGANT

The engagement of persons answering these advertisements must be made through a Local Emplo the Mimistry of Labour or a scisaamed aged 18-64, inclusive, or a woman aged 18-59. inclusive, unless he or she or the employment. is arcepted from the provisions of the Notification of Vacancies Order, 1952.
TESTERS REQUIRED for Television Production Line. Apply in writing. giving details of experience and rate required to PERSONNEL MANAGER, McMichael Radio Ltd., Wexham Kd., Slough, Bucks.

HEARING AID Service Mechanics reqd. at once; knowledge of L.F. amplification and miniature circuits essential; good wages and conditions. Apply Box No. 189, c/o Practical Television, or 'phone W. J. S., Welbeck 8247.

## VALVES

ALL TYPES OF VALVES REQUIRED for cash State quantity and con38, Chalcot Road, N.W.1. (PRImrose 38, Ch
9090 .

WANTED, Valves GF13, 6F15. 6U4, EY51, 5Z4, ECL80, KT61, 25A6, etc.; prompt cash. WM. CARVIS LTD. 103, North Street, Leeds, 7.

## EDUCATIONAL

BUILD YOUR OWN T/V and learn about its operation, maintenance and servicing. Qualified engineertutor available while you are learning and building. Free Brochure fyom E.M.I. INSTITUTES, Dept. PT58, London, W.4. (Associated with H.M.V.)
FREE: Brochure giving details of Home Study Training in Radio, Television, and all branches of Electronics. Courses for the hobby enthusiast or for those aiming at the A.M.Brit.I.R.E. City and Guilds Telecommunications. R.T.E.B.. and other professional examinations Train with the college operated by Britain's largest electronic organisation ; moderate fees. Write to Dept PT28, E.M.I. INSTITUTES, London, W. 4 .


## BAND III CONVERTERS

TYPE 30
For Band III reception with any type of receiver. A sensitive beaucifully designed unit completely enclosed with its own power P8.5.f com-
supply. Price ... dib.

TYPE 32 SWYITCH UNIT A remote control for mounting in or on the television receiver permitting switching from B.B.C. to I.T.A. programmes with the Type 30 converter unit mounted in any conye- $f 15.0$ com-
nient position. Price

TYPE 33 CONVERTER
A sensitive low noise converter unit as the Type 30 , but including remote switch panel for One Band I and Two


Leaflets with pleasure on request.
SPENCER WEST LTD.
Quay Worics, Gt. Yarmouth.

## OPPORTUNITIES IN HITMEIOM



Television offers unlimited scope to the technically
qualified. Details of the easiest way to study for A.M.Brit.I.R.E., R.T.E.B. Cert., City and Guilds, Television, Television Servicing, Sound Film
Prolection,
Radio Projection, $\quad$ R adio
Diploma
Courses, are given in our rit-page Handbook "ENGINEERING OPPORTUNITES" which also explains the benefits of our Appointments Dept.

We Guarantee "NO PASS-NO FEE" If you are earning less than f15 a week you must read this enlightening book. Send for your copy NOW-FREE and without obligation.

## WRITE TODAY!

British Insitute of Engineering Technology 237. Collegs House, Te Th Th Th

THE VALVE SPECIALISTS

## Benlley Acousicicoro. Lid. 38, CHALGOT ROAD, N.W.1. <br> PRImrose 9090

ist grade goods only. No seconds of rejects.


ORYSTAL DIODES.-OA71, GEX34, CGGL, MI, CA10L, all 7/- each.

All hoved and gutranted. Post fid. each. Same day service, thop howrs 8.30 to $5, \% \%$, Sats. I bim. VIGy desmatich co.i)? Complete list free S.A.E

MIDEET VOLUME-CONTROLS.-New. hoxed. gumantead 1 vear. Long spindles, Lu.000-3 toeg. ohmas. Less switch, $2 / 11$; S.P. evitch, $3 / 11$; D.P. switet. 4/6.
"TELETRON" BAND \& CORLS.-Coinplete with instructions for making your own convertor. 15iper set. Chassis for abore couvertor, $3 / 9$ each.
"PHILLPS" INFRAPFIL INFRA-RED LAYP. 5 gns.
Twin Maroon Silk Fiex 14/33 ... 39/8 per 300yl. coil Twin Plastic Flat Fleg 14/38... 21/6 per loogd. coil PERMANENT MAGNET SPEAKERS.-Cumanteed Brond new' $3 \$$ in., 15/-; Sin. 16:6; 6in., 18/$8 \mathrm{in} ., 23 / 6: 10 \mathrm{in} ., 27 / 6$; $12 \mathrm{in} ., 85 /-$
Bdin. WALNUT EXTENSION LOUDSPEAKER CABINETS.-15:- etch
WALNUT MIDGET CABINET, size L2in. $x$ tin. $x$ Thi, complete with chassis, dial, drive, backplate and pointer, $29 / 6$.

GUARANTEED VALVET

OZ 4	B) GAG7	11/-7R7	7\%,20L5.	5
1A5	5/-16U5G	6/-707	6/-35L6	-
1LN5	4/-6N7	6/6767	\%/650L6	8/6
11,05	4)-6Conct	14;-7C6	$7 / 835 \mathrm{Z}+$	$8 /=$
1 Ea	7/-6V6a	7/-7C5	71650 Y 0	7/6
174	7/-6T	$8 /-7 \mathrm{X}+$	7/-807	6/-
153	7/m60	6/-803	10/61025	16
Cit	5/6.65\%	$7 /-902$	5/- VU30	6
2, ${ }^{\text {2 }}$	6/6 69473	$7 / \mathrm{B}$ 12A6	7\%-PEN46	716
$2 \mathrm{x} *$	5/6.640.	$7 / \sim 12 A T 7$	816 EF80	10/8
314	3/6 6AL5	7/-12k	9/- ECL30	14/6
4 Dl	4/-6AT6	8/-12J5	4/-PCCR-1	14/-
3 Y 3	7/6.0BA 6	8t-124 7	$9 /-\mathrm{UBC}+1$	7/6
5¢4C	8/B GAU6	9/- 129A7	8'- V41	$97-$
6 K 7 C	6/66BW6	$7 / 8$ 12sJ7	5/6 पCH4\%	8/8
6 Kg G	$8 / 617$ A 7	6/-19C8	7/-X17	9/-
6B8G:	6/817A3	8.6	1 )	
ern	CW.0. or	-0.i. P	c and	

orders under $£ 1$ add $9 d_{1}$; \&2 add $1 \%$; ょ5 add $1 / 6$ MAIK ORDER ONLY.
ELECTRO-SERVICES \& CO.,
221, BATTERSEA PARK ROAD, LONDON. S.W.11.

## Television Receiver Servicing Vol. 2.

hECEIVER ANO POWER SUPPLY CHECUTS
by E. A. W. Spreadbury
The Video Stage Vision A.G.C
Vision Interference The Sound Channel Thevpression Power Supplies Tuning Circuits Acrials and Feeders Tuning Circuits Reflections and
Tuners Circuit Alignment 21s. Oil, net, postage 9d.

TYPreamplifiers for sand I and itit, by B. L. Morley, 5s. Od., postage 3d. An Introduction to colonr tielevision, by G. G. Gouriet. A.M.I.E.E. 8 s . Gd., postage $\frac{4}{4}$.
Practical TV Acrial Manual for Thands I and III, by R. Laidlaw. 4s. 6d., postage 3A.
Teleyision keceiver servicing, bown - Timeriase circtits, by E. A. W. Spreadbury, 21s. Od., postage Radio and TV Test Instruments; by Gernsback, 12s. 0d., postage 4d. Purbic-Address Gnide, by Cuy S. Cornish, 6s. Od., postage 3d.

## THE

MODERN BOOK CO.
OF BRITSMMARGFST STGCIEST IECHEICAL IBOOKS
19-23, PRAED STREET
LONDON, W.2.
Phone: PADdinglon $418 \%$.
Open 6 days 9-6 p.in.
service engineer to it and first he re-activated the tube which gave a brilliant picture ; this lasted for a week then it went back as before. On servicing it a second time he raised the volts by .2 and got a perfect picture. He says if it goes again it is the tube.

Would it be possible to maintain this condition by a separate heater transformer, as 1 think it is returning back to the poor picture of my first trouble.

Could you please tell me if you think it is the tube, and if you think it would be necessary to insert a ballast resistor to take the place of tube heater. How could I work out the size of this resistor and what would be the volts required on the transformer as the heater of CRM122 is 7.3 volts, please? I have a service chart for TU169 which I believe is the same circuit.-F. Manning (Droylsden).

An isolating transformer with a 25 per cent. boost tapping available should be fitted. The full 9 volts should not be applied in the first instance if a good picture can be obtained with less. The extra voltage will come in useful later. Although there is a limit to the boosting a heater will take the value of the resistor is quite easily obtained by dividing the heater voltage (7.3) by the heater current (.3) this gives some 25 ohms 3 watt. The transformer is available from most dealers or may be ordered from one of the advertisers in practical Television.

## PHILCO 1551

I have a problem with a Philco 1551 TV receiver in which I think you can help. This receiver has just been fitted with a new C.R.T., Mullard 31-74, and I am experiencing trouble with the interference limiter which is only effective on sound.

The picture has the appearance of having maximum interference suppression which cannot be altered although the sound can. I have tried a new EB91. I have checked C21, R24, R25, R26, C36, C37; R83-C70 in V5 cathode. V5 has been renewed. Germanium diode, W1, was renewed before the tube was condemned-the old tube did prove faulty (soft) and I noticed that the interference limiter had no effect on that, either. All the valves have been substituted, all voltages appear within tolerance.

The contrast control cuts out immediately it is touched yet the continuity is all right.

The sound is good but there is room for improvement in the picture gain, even taking the noise limiter into consideration I have every facility for service including circuit diagrams.-Fredk. J. Hay (Stockton-on-Tees).

We have had this trouble several times with the very similar Ferguson $983-988 \mathrm{~T}$, etc., and in every case the cause has been traced to the H.T. negative to chassis, $100 \mu \mathrm{~F}$ condenser. This shorts out the bias which should be applied to the video amplifier control grid. If this is not the cause in this receiver, it would appear that the vision strip is oscillating and thus overloading the video amplifier.

## INVICTA T120

I have an Invicta Model T. 120 television set and wonder whether I can get a diagram of the circuit and servicing sheet.

Can you help me, please? The articles in your journal do not appear to have included this model.A. W. Vigor (Exeter).

In many respects this receiver is similar to the Pye V4, although there are many divergencies. The line timebase is similar, but the frame timebase different inasmuch that a blocking oscillator is employed in the Invicta, whereas the Pye employs a multivibrator circuit. Most of the notes -in the August issue, "Servicing TV Receivers" will apply to this receiver, but not the chassis layout diagrams.

Several firms advertise service sheets in Practical Television and these may be tried.

## FERRANTI T1325

I have a Ferranti 12 in . TV set. Would you kindly tell me what make of tube I could use besides a Ferranti.-T. Warr (Birmingham).

The tube fitted is a Ferranti T12/72V which has an 8 volt .3 amp. heater, an international octal base, external conductive coating, and a final anode voltage of 7-GRV:

As the receiver is of the A.C./D.C. type with series heaters the most important factor is the current rating of the tube heater. A large number of tubes have a .3 amp . heater, but few combine this with an International Octal base and external coating. The G.E.C. 6706A would appear to be the nearest and could be fitted with minor modifications.

## HMV 1824

I have a HMV 14in. table model television receiver. A fortnight ago it began to switch itself off. A flash would go across the centre of the screen from side to side, accompanied by a crackle and screen would go blank except for receding centre spot. If switch, which is also brightness contol was worked about a bit, then spot disappeared and set would be apparently normal again, and perhaps would not repeat the switching off for a night or two. Eventually it carried out the performance of switching itself off, and would not come on again. Being only a very inexperienced amateur I thought it was the switch which was at fault, so I obtained a new one. I wired it up and for a while it worked all right, but now every time I switch on it blows the fuses in the set and a flash emerges from the small transformer No. 41410 N which is nearest front of the set; and is connected through a valve LN152 and a condenser to the vertical hold and picture height controls at front of set. Incidentally before the switching itself off fault developed a $\frac{1}{2} \mathrm{in}$. gap at top and bottom of picture had developed, which remained at this whilst picture was on:G. Moss (Nr. Stowe).

From a simple (and hopeful) point of view it may well be that the wiring at the double pole switch is at fault, and of course this should be checked first if this has not already. been done.

If the flash comes definitely from the frame oscillator transformer the LN152 valve should be checked for internal shorts and, if this is clear, the transformer itself may have a short between the two windings. These alternatives may account for the loss of height when the set was working.

## QUERELES COUPON

[^2] instalments of $15 / 0$ LAFCO COMPOUNS trated irochire of aill Home LAFCO COMPOUNDS LTD, Constructor Ount fits...all ibtain (Dept. PV1); 3 Corbetts Passage, Rotherhithe New Rd., London, S.E. 16 .

## WOLF CUB

Heme consiructor Electrič Drill Fitted with G.P.O Approved T.V. Suppressor A beautifully efficient power unit for all home constructors, model makers and handymen Takesmil drudgery out of household repairs and construction jobs. With this as a basis you can soon build up a complete WOLF CUB Home Workshop. The Wolf Cucib Drill drives all Woll Cub Kits for Buffng, Vertical Bench Driling, Fretsawing. Woodturning. Polishing, Drilling. - Sawing, Wiré-brushing, wanding, Bench Planing, Grinding -and Bench Sanding. Send today for illus-

GRAM-PAK AMPLIFIERS


Fits neatly inside your record player or portable gramophone leaving room for speaker. Dimensions $10 \mathrm{in} . \times 3$ in. $\times 2 \mathrm{in}$. 4 watts quality output. Suitable for all speakers and with standard or L.P. pickups. Built-in power pack, 200-250 y. A.C. Valves 617 and 6 V 6 available at $20 /-$ for the pair if required.

6d, stamp brings illustrated details.
ELECTRO - ACOUSTIC LABS TAIN - ROSSSHIRE - SCOTLAND


## Are You Making Your Own Radio or Television?

We can make the cabinet for you in any shape, design or finish you require. Work executed by expert craftsmen.
Call or send drawings for quotation.

## B. KOSKIE (Dept.)

72-76, Leather Lane, HOLBORN, E.C.1.
Phone : CHAncery 6791/2.

## TELEVISION COMPONENTS

## in stock for the

P.t. LyMX. P.T. SUPER-VISOR, tele.king viewmaster, e.e. televisor and wide angle modifications
Price lists available on request to:
J. T. FILMER, Maypole Estate. Bexlev, Kent. Tel.: Bexleyheath 7267
R.F: OSC. E.H.T. COILS wTTE TYPE "F", 2-9 kV 25: wITG RECTIFERE ASSEM SO-
Current available 1.2 mA . Ideal for oschin courfes and television. Dimensions
 with oircuit. Terms : C.W:O. Posit orders only. THE WATSON WATCH CO. 29. Leigh road, LONDON, N. 5

## FREE CATALOGUE

New, guaranteed components by the leading makers. 58 pages illustrated .. on fine, art paper. Over 2,000: items listed with over 100 photographic illustrations. Special features for service work. Orders dealt with day received.

## SOUTHERN RADIO \& ELECTRICAL SUPPLIES

 SORAD WORKSS, REDLYNCH SALISBURYTelephone: Downton 207
ALUMINIUM, LIGHT ALLOYS, BRASS, COPPER, BRONZE,
IN ROD, BAR, SHEET, TUBE, STRIP, WIRE, ANGLE, CHANNNEL, TEE

3000 STANDARD STOCK SIZES
H. ROLLET \& CO., LTD.
6. CHESHAM PLACE,LONDONS, W.I. SLOane 3463 Works:
3G, ROSEBERY AVE., LONDON, EAC.1. Branches at Liverpool, Manchester, Birmingham, Leeds.
"No Quantity too Small"


SCANNING COILS, $6 / 10 \mathrm{kV}$. R.F., E.H.T. UNITS. E.H.T. and OUTPUT TRANSFORMERS, LINE FLY-BACK E.H.T. UNITS

Write for illustrated list (Publication 75)
Coil Kit of two for Aug "P.T.'" Band 111 Converters 5/Kit of three $7 / 6$ past free.
HAYNES RADID Litd., Queensway, Enfield,

BUILD YOUR OWN highly efficient aerial for f.m. COMMERCIAL T.V., etc.
We supply an ex-Radar Antennae display consisting of moulded bakelite Insulator, stand off mounting bracket, dipole elements, and director easily adjusted to suit whatever band required. These aerials have cost several pounds to manufacture. Our special price only 15/-, plus $1 / 6$ packing and postage.

## WALTON'S WIRELESS STORES 48, STAFFORD ST., WOLVEKHAMPTON

## "You can rely on Us"

## For All Radio and Electronic Components

One of Britain's Largest Stockists of all Leading Makes : Hunts, T.C.C., Haynes, Allen, Denco, Osmor, Weymouth, Morganite, Bulgin, Belling Lee, Teletron, R.E.P., Scotch Boy, Ellison, Elstone, Partridge, Wynall, Westinghouse, S.T.C., AVO, Taylor, Goodmans, J.B., Wharfedale, Wearite, Acos, etc.
Suppliers to: Ministries, Developmem Laboratories, Education Authorities, etc.
Some of the more difficult parts you may not be able to acquire
Tapped Vol. Controls, Linear C.T. $\ddagger \mathrm{mg}$., $\frac{1}{2} \mathrm{mg}$., 1 mg .,
7/6. Linear 1 mg., $\frac{1}{1} \mathrm{mg}$., $1 \mathrm{mg} ., 6 / 6$. Post 6d.
$2 \%$ High Stab. $\frac{1}{2}$ w. Resistors. $2 \%$ Range, $100 \Omega$ to 2 meg., $1 / 6$ each. $1 \%$ Silver Micas up to 100 pf., $1 /-$ 280 pf ., $1 / 2.500 \mathrm{pf}$., $1 / 4$. $1,000-5,000,2 / 6$. Post. 6 d . Teletron Band III Converter- Punched Chassis, 4/Post 6d. Set of Coils and Circuit, 15/-. Band III Loft Aerials, $30 /$ - plus $2 /$ - carriage.
Thousands of Valves, Condensers, Resistors-Can We Help You?
SPECLAL OFFER.-B.S.R. Monarch Record Changers -New, Boxed, £8.17.6. Carriage 3/-.

Catalogue, Book Lists, S.A.E.
$\equiv$ Radio Servicing Co., $\equiv$
82, SOUTH EALING ROAD, LONDON, W.5.
Tel. : EAL 5737. Next Sth. Ealing Tube, 65 Bus. 1 p.m. Wed.

## Viewmaster 0wners

Write now for our leaflet giving the latest information on the conversion of your Viewmaster for Commercial Television.

## BAND 3 CONVERTER KIT

We can supply a complete kit for the Teletron Band 3 Converter. This kit includes fully drilled chassis, full wiring and alignment instructions, two valves and every item required. An external power supply of $200 / 220$ volts at about 20 mA . and 6.3 v .6 amp is required.

## PRICE 55/-.

Instruction Leaflet, $4 \frac{1}{2} \mathrm{~d}$., post free.
WATTS RADIO
8 Apple Market, Kingston-on-Thames, SUERIEE.

Telephone: KINgston 4099.

##  621 ROMFORD RD. LONDON. E.I2.

## T.V. TUBES - 6 Months' Guarantee

14in. wide angle, 88.10 .0 . Picture shown to callers. $15 / 6 \mathrm{ins}$. carr. C.W.O. 17in. wide angle, f12.0.0 all makes. $15 / 6$ ins., carr C.W.O. 12 in 55.0 .0 Type $31 / 16$ or $31 / 74,6$ months' guarantee. 'Type 121. A or B, 122, 123. 3 months' guarantee. $15 / 6$ jns., carr. C. w .0


TIME IBASLS, $10 \%$. Contaiaing scanning coil, focus unit Ine trans. : 10 controls. etc. Famous mfr. Drawing FREE. Post $2 / 6$.
POWER PACK, 29/6. $5 K$ V. E.H.T. $325 \mathrm{~V} .-250 \mathrm{~m} . \mathrm{a}$. Smoothed H.T. heaters $6 \mathrm{v} ., 5$ amp. 4 v.. 5 amp, $4 \mathrm{v} ., 5 \mathrm{amp}$, with extra winding for 2 or 4 v . tubes. Carr. $4 / 6$.
T.V. SOUND \& VISION STRIP, 27/8. Superhet. 10 valve holders. Past 1/6.
V.H.F. 1125 RECEIVER, 7/9. Complete with valves. New
X.W.D. Post 2/3. 24 RFCEIVER, 10/6. New X.W.D. Complete with
valves. Post 2/3. "DENCO" RADIOGRAM CHASSIS, f5.17.9, S/het with famous Turret coil tuning. Modern Int.. Octal valves included. Front controls. 5 valve, 4 wiband. bin. Speaker with O.P. trans. to suit, 12/6 extra. Carr. $4 / 6$.

## Funeat Soldering?'Always specify ERSIN MULTICORE to be precise

Wherever precision soldering is essential, manufacturers, engineers and handymen rely on multicore, There's a multicore solder just made for the job you have in hand. Here are some of them.


## VALVES GUARANTEED NEW AND BOXED




MS/PEN	5/-	VR116	
PCC84	12/6	VR150/	0
PCFP80	12/6	VT52 (E	L32)
PCF82	12/6		-
PEN25	8/-	VT501	T11
PEN46	8/6		81
PL81	$12 / 6$	VU39	[012/
PL82	10/-	14)	81
PL83	12/-	VU111	$3 /$
PM12M	10/-	VU120A	3
PM22B	5/6	W61	9
PV30	$7 / 6$	W76	8
PY80	9/8	W77	8
PY81	10/6	OZ4	
8130	816	1A3	
SP220	6/8	1A5GT	8/
SP41	$3 / 6$	1 A7	11/6
SP61	$3 / 8$	1C5GT	$8 /$
TP26	$9 /$.	1 L 4	
U10	9/-	1LD5	8/
U22	81-	1R5	71
U25	14/8	135	
U281	10/6	1T4	
U404	10/-	1U5	
UB41	9/-	$2158 G$	
UBC41	11/:	220VsG	$6 /$
UCH42	13/6	2X2	
UF41	11/-	3 A 4	
UL41	11/6	3D6	
UY41	10/6	3 Q 4	)
VP23	8/-	805	10
VR105/30	5/	384	


4/.	3 V 4
9/6	4DI
2)	42
81-	$5 \mathrm{U4}$ (U52)
T11)	5Y3GT
81-	5Z3
12/	5Z40
816	6 A7
3/6	6A8G
3/-	6.407
9/-	6.AG5
9/6	6AJ5
8/6	6AK5
6/-	6AL5
9/-	6AM5
6/6	6AM6
11/6	6AQ5
8/-	6AT6
$7 / 6$	6B4
6/9	6B8G
716	6BA6
$7 / 6$	6BE6
7/6	6BR7
8/-	6B1F6
7/-	6 BX 6
6/0	6 C 4
5)-	6CagT
8/-	6 C 6
71-	6 C 9
8/	6CD6G
10/-	6D3
8/6	


8/.	6F6G	7/6	6857
3/.	6F6M	$8 / 6$	6SN7GT
$81-$	6 Fg G	71	6897
8/6	6 F 13	13/6	6UsG
$8 / 6$	6 F14	12/6	6V6a
8/6	6F15	11/6	6V6GT
8/6	6G6G	8/8	6W2
10/6	6K6	$3 / 8$	6X4
10/6	6 J 5 G	5/-	6X5GT
6/6	6J6GT	$5 / 6$	7B6
7/6	6 J 5 M	8/8	$7 \mathrm{B7}$
9/-	6J6	8-	7C6
7/	6, 76	6/8	$7 \mathrm{H7}$
7/-	6K6GT	6/6	797
7/6	6K7G	8/-	$7 \mathrm{B7}$
7/6	6K7GT	6/6	787
$8 / 6$	6K7M	6/9	7Y4
8/-	6K8G	81/	75
$8 /$ -	6K8GT	9/6	77
4/-	61.1	11/6	80
$8 / 9$	6 L 19	12/3	807
8/-	6L8G	9/-	8 D 2
$9 / 6$	6L.7M	$7 / 6$	9001
$8 / 6$	6N7	7/6	9003
14/6	6Q7G	9/-	9004
8/-	6Q7CT	9/-	9006
$7 / 6$	6R7G	8/-	954
8/8	6:37GT	81.	955
8/-	659G7	7/8	956
13/6	68H7	8/-	10 Ca
6/-	88.J7GT	$8 /$	10F1
7/3	69	6/3	10



10LD11	11/0	12SQ7	8/6
10P13	11/6	12887	7/16
10P14	11/6	20 DI	$91-$
12A6	6/9	20 F 2	$12 / 8$
12AT7	9/-	20 LI	10\%
12AU7	9/-	30LI	11/-
12 AX 7	10/-	20 P 3	11/6
$12 \mathrm{C8}$	8/-	20 P 4	11/
12H6	-5/-	2546 G	10/6
12J5	6/-	25L6GT	8/6
12K7	9/-	25U4GT	12\%
12K8GT	$10 / 6$	$25 Z+G$	12/\%
1297GT	9/-	2575*	-
12507	$7 / 6$	25Z	9
12817	5/8	351.fat	8/9
128.17	$8 / 8$	35. ${ }^{3} 4$	10/-
12sK7	616	35Z4GT	8/6
128L 7	9 O	50 LGGT	$8 / 6$
	OLET	VALVE	
All $3 / 8$ ea. LIMITED			
gTOCKS. ORDER NOW			
1626, 13D1, 1631, 37, 39/44,			
57. H	2018	2A6,	A7,
2C34, 220IPT, 6AB7, 34E.			
BARRETERS			
Type 161, 301. 304. ATLAS			
150 A .	5/6		

CAN CONDENBERS CKIP FIXING 8 mfd .350 ₹. T.C.C. 24 mfd. 350 \& B N. 8 I 8 mfd 350 TCC 16 mid. 450 v . T.C.C. $16 \times 16 \mathrm{mfd}$. 350 v. Hunts 32 mfd . 350 v. Dubllier. 32 mfd. 275 v. B.E.C. 8 mfd .450 v . B.I.

TUBULAR CONDENSERS
8 mfd .450 v
$16 \mathrm{mfd} .450 \%$
20 mfd . 000 v
BIAS CONDENSERS, ETC. 12 mid. 50 v. Tug Ends. 50 mfd .12 25 mfd. 25
25 mfd .25 v . Wire end 50 mid .12 y 50 mfd .50 V .
500 mtd .25 v .
100 mfd .50 v . Tag Ends
250 mid . 12 V .



AMERICAN INDICATOR UNIT TYPE BC929A
Brand new incorporating 3 in. $\begin{array}{lll}\text { tribe } & 3 B P 1, ~ w h t h ~ m u-m e t a l ~ \\ \text { shield, } & 2-6 \mathrm{BN}, \mathrm{GT}, & 2-6 \mathrm{EFGGT}\end{array}$ 6X5G, 2X2, 6G6G, potentiometers, 24 v . aerial aw itch motor transformer, and a host of small componente. The whoie unit which measures only 8 ins. $x$ $8 \frac{1}{2} \mathrm{in}$. x 13 i h . is brand new, enclosed in black crackle box, and csa be supplied ut $65 /-$. plus 5/- p. de P

LOUDSPEAKEF CABINETS


This attractive walnut finished cabinet is available for $6 \frac{1}{\mathrm{f}}$. or 8 in speaker unit.s. Meta! speaker fret complete with bick and rubber feet. 6 in. type: Meavures 81 in . $x 8 \frac{1}{\mathrm{in}}$. 4 lin. at base. Price 18/6 each. Post $1 / 6$. 8in. type: Measures $101 \mathrm{in} . \times 101 \mathrm{in}$ 5 in. th base. Price $20 / 8$ each. Post $1 / 6$

## CHASSIS

Alanimium Undrilledi with Reinforced Corners. Ivailabte in the following sizes.
$6 \mathrm{in} \times 4 \mathrm{~m} . \times 2 \mathrm{in}$
$8 \mathrm{in} \times 6 \mathrm{in} \times 2 \mathrm{in}$
$\begin{array}{r}\text { oin. } \times 6 i n . \times 2 i n \\ 10 \mathrm{in} . \times 7 \mathrm{in} \times 2 \mathrm{in} \\ \hline\end{array}$ $10 \mathrm{in} . \times 7 \mathrm{in} \times 2 \mathrm{in}$
$12 \mathrm{in} . \times 8 \mathrm{in} . \times 2 \mathrm{in}$ $12 \mathrm{in} . \times 8 \mathrm{in} . \times 2$ in
$14 \mathrm{in} . \times 8 \mathrm{n} . \times 2 \mathrm{in}$ $14 \mathrm{in} . \times 8 \mathrm{in}, \times 2 \mathrm{in}$.
$16 \mathrm{in} . \times 9 \mathrm{in} . \times 2 \mathrm{im}$. All are iour sided All are iour sided - ideal for radio ete

SENTERCEL RECTIFIERS
RM1, $3 / 9$ ea. ; RM2. $4 / 2$ ea. : RM3 5/- ea.; RM4. 16/- еа.

METAL, RECTIFIERS
12 v. 1 amp., $1 / 6$ ens : 12 จ. 1 amp $4 / 6 \mathrm{em}$; $2 \mathrm{v} .1 \mathrm{mmp}, 3 /-\mathrm{ea}$; 250 v 45 ma ., 8/3 eas. 250 צ. 75 mA ., 7/6

PENCIL RECTIFIERS
$\mathrm{K} 3 / 25,5 / 8$; K3/40, 7/6; K3/45 $8 / 2 ;$ K $3 / 50, \quad 8 / 8 ;$ K $3 / 60, \quad 9 / 8$;

## LOUDSPEAKER UNITS

R. \& A. 10in. unit......... $25 / 8$ ea Fiace 5in. unit
Rola 6 !in. standard type Lectrons biln. with trans former
Travox 6\&1n waler tyo.... 18/- ea. Truvox 6 1n, wafer type .... $20 / \mathrm{m}$ ea.
Plessey 8in. lightweloht unit $17 / 0$ en Plessey Rif. lightwelght unlt Mains energised 8in. unit, Mains energised 61 in. unit, $17 / 8$ ea Goodrons Stans 8tn. with out......... 17/6 ea. transformer.................... 22/6 ea. Goodman - 7in. $\times 4$ its. Eiliptica! 21/10ea. Goodmans 5 in. unit............. $18 / 6$ ea. Plessey 12 in . lightwelght
unit
$37 / 6$ AERIAL RODS
Copper Plated Tubular Rodg 12in. long. Will plug Into one another to make any length Rod aerials $4 d$ ea HF Pile tV COLVERN WIRE-WOUND CONTROLS. ALL $2 / 6$ es.
Type Value Spindle CLR5080/750 1,600 $\quad 1$ ilin. CLR4039/13 $500 \Omega$ in. $\begin{array}{lll}\text { CLR403 } \\ \text { CLR } 4074 / 1571 & 2,500 \Omega & i \mathrm{in} . \\ 5,000 \Omega & i \frac{1}{6} \mathrm{in} .\end{array}$ $\begin{array}{rrr}\text { CLR } 4074 / 371 & 5,000 \Omega & \text { i } \frac{1}{6} \mathrm{in} . \\ \text { CLR5003/68 } & 10,000 \Omega & \text { in. }\end{array}$ CLR3007/115 $250 \Omega$

## PUSH BACK WIRE

7/0076 size. Colours avail-
able: Whlte, Blue, Green 2d. yd.
FLEE MAINS TYPE Twin 14/0076. P.V.C. covered. 3d. per $\overline{\mathrm{y}}$.

MAGNETIC PICK-UP HEAD For conversion of Acoustic Gramophone to Electric reproduction. any type of Tone Arra. For use with Standurd size Needles. Highly pollshed plastic, brown finish. Tyige 112. 2,0n0 ohm resistance. Otutput 0.3 v. Special Price... 17/8 ea CONDENSERS HIGH VOLTAGF
C.C.C. 1 mid. 250 v. A.C.

Leads. Metal case Figin

B.S.R. MONARCH AUTOMATIO RECORD CHANGER These unita will autochange on all three speeda, 7 in .. 10 in . and 12in. They play MXED 7in. 10in. and liin. records. for have reparate sapphires for L.P. and 78 r.p.m., which are moved into position by a simple switch Minimum baseboard size requires luin. $\times 12 t i \mathrm{lu}$, With height ahove 5 tin., and height purchase enables in. A bulk purchase enablea lis to offer this exceptlonal price units are beautifully finished in cream enarnel with cream bake. lite arm. COMPLETE WITT FULL INBTRUCTIONS, 29.19 .6

HEATER TRANSFORMERS 230 v . Input 2 volt .5 amp . 230 v . Input 2 volt 3.0 amp amp. 230 v. Input 4 vole 1.5 amp. 230 \%. Input 4 volt 3.0 amp . 230 v. Input 5 polt 2.0 amp . 230 v . Input 6.3 volt .5 smp. 230 v . Input 6.3 volt 1.5 amp . 230 v . inpur. e volt 3.0 amp . MAINS TRANSFORMERS MT1
Primary : $200-220-240 \mathrm{~F}$
Secondaries: 250-0-250 ₹. 80 mA .
 uapped at 4 v. .................... $17 / 6$ ea. $1 T 2$
Primary : 200-22010-240
Secondarles : $350-0.350$ ₹. 80 mA $0-6.3$ ₹. 4 amp .0 .5 v. 2 amp . Both tapped at $\$ \mathrm{Y} . \ldots . .$.

[^3]
[^0]:    The Editor will be pleased in consider articies of a practical nature suitable for publication in "Practical Television." Such articles should be written on one side of the paper on'y, and should contain the name and address of the sender. Whilst the Editor don's not hold himself responsible jor monuscripts, every efforl will be made to rcturn them if a stamped and addressed cnrelope is enclosed. All correspondence intended for the Editor should he adtressed to: The Editor, "Practical Telvyision," Georse Newnes, Lid., Tourer House, Southampton Street, Strand, W.C.?.

[^1]:    READERS RADIO 24, COLBERG PLACE, STAMFORD HILL, LONDON, N.16. STA. 4587

[^2]:    This coupon is available until OCTOBR 2lst, 1955, and must accompany all Queries.

    FRACTICAL TELEVISION OCTOBER, 1955.

[^3]:    TERMS: Cash with order or C.O.D. Postage and Packing charges extra, as follows: Orders value $10 /-$ add 9 d . $20 /-$ add $1 /-; 40 /$ add $1 / 6 ; \leq 5$ add 2/- unless otherwise stated. Minimum C.O.D. fee and
    MAIL ORDER ONLY

