## BAND III AERIALS

## PRACNICAL

 TDLIEVISION AND TELEVISION TIMESEOBOR F. J. CAMM


Inlay and Cuertay
V.1.F. Mixers

Making a Fringe Area
Eand ill Converter

Testing Line Output Transformers Receiving the I.T.A. Servicing tha Philips

Projection Receiver

# PREMIER RADIO COMPANY 

OPEN TILL
6 P.M. SATURDAYS
(Regd.) B. H. MORRIS \& CO. (RADIO) LTD
(Dept. P.T.) 207, EDGWARE ROAD, LONDON, W. 2

Telephone: AMBASSADOR 4033 PADDINGTON 3271
 13 CHANNEL DESIGN
SUITABLE FOR USE WITH ANY POPULAR WIDE ANGLE TUBE
 1ESIGN 1. includes a Mulsi-Channel Tuner (Channels 1-I3) consinuously wired and rested and is complete with Valves, all connecting leads and fixing brackers. THIS DESIGNMAY
$B E B U I L T F O R ~ 9.3 . ~$
(plus cose of
C.R.T.).
2.

Channeis 1-5, tunable from $40-68 \mathrm{Mc} / \mathrm{s}$. THIS DESIGNMAY 530 ipluscost os BE BUILTFOR C.R.T.).

* Constructors who have built Design 2 (5 Channels) may convert their Receivers ro Design 1 for $\mathbf{1 6}$; this price includes Multi-Channel Tuner. New Vision Input Corl and full instructions.
- All Coils supplied for these two Superher Receiveis are PRE-TUNED. ASSURING ACCURATE ALIGNMENT AND EXCELLENT BANDWIDTH.
* Duomag permanenc magner focusing with simple piccure cantring adiustment.
* Exceptionaily good picture " hold " and interlace. * Noise suppression on both Sound and Vision.
The Televisor may be constructed in 5 easy stages: (1) Vision, (2) Time Base, (3) Sound, (4) Power Pack, (5) Final Assembly. Each stage is fully covered in the Instruction Book, which inciudes layout, circuit diagrams and point-to-point wiring instrucsions. The Inseruction Book also includes full details for converting existing Premier Magnetic Televisors for use with modern wide angle tubes. All components are individuaily priced.

Specially useful for Television Work . . .

The (10) misignal generator A Signal Generator of wide range and aceuracy of pertomanee. designed to cope with modern radio and television work. Turret coil switching provides six frequency ranges covering $50 \mathrm{Kc} / \mathrm{s}-80 \mathrm{Mc}$ :s.

$$
\begin{array}{rl}
50 \mathrm{Kc}-150 \mathrm{Kc} / \mathrm{s} & 1.5 \mathrm{Mc} / \mathrm{s}-5.5 \mathrm{Mc} / \mathrm{s} \\
150 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Kc} / \mathrm{s} & 5.5 \mathrm{Mc}, \mathrm{~s}-20 \mathrm{Mc} / \mathrm{s} \\
500 \mathrm{Kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s} & 20 \mathrm{Mc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{s}
\end{array}
$$

Stray field less than $1 \mu \mathrm{~V}$ per metre at at distance of 1 metre l'rom instrument. General level of R.F. harmonic content of order of $1 \%$
Direct calibiation upon fundamentat trequencies throughout range, aswracy t-eing better than $1 \%$ of scale reaviag. 45 inches of directly calibrated lieita ney -cales with unique ilfuminated b.an'J selection. giving parlicularly good discrimination, when tuning television "staggered" circuits.
of pleasing external appearance with rubust internal mechanical construction
using cast aluminium screnning, careft: attention having been devoled to lavart of convonaents with subsidiaty sereentas to reduce the minimum siznil to negligible icvel even at 80 Mc,
four continuouly attemated rang: using well-designed double attenuator system.
Force output 0.5 volts.
Internal modulation at 400 ck , modulafion depth $30 \%$ with variable L.F. signal avaitahk for exterial use.
Mains irpur, $100-130 \mathrm{~V}$. and $299-260 \mathrm{~V}$ $50-60 \mathrm{c} / \mathrm{s}$. A.C.


MAINS MODEL, os specifed, or EATTERY MODEL, coverins 50 Kcis to 70 Mc's, powered by casily obtainadle batteries

See us at the RADIO SHOW STAND 116
Aug. 24th to Sept. 3 rd.

## BUILDING THE

Thousands of enthusiasts are huilding the "Simplex" Televisor, now being featured In "Practical Television ": Wily NOT containing fult constructional details and Blua Print, additional notes and suggestions. and query Service form, sent for ONLY 5 - All components avarlable ex stock as follows
AIDMN1: M CIIASEIS. - 19 S.w.g. DRILLLED, for VCR97 version with screens and tube holder bracket, 226.
THANSFOH: WLEIS.-350-2-350 v. 150 ma .i. 5 a. 5 V. 3 a. tapped at 4 v., ONLY $1115 \mathrm{ki} .-10 \mathrm{~h} .120 \mathrm{ma} ., 10$ 8. (Post $1 / \leftarrow$.) 1: PA THPIENX.-RM3 5/-еа. K3 406 - ea. 6J5 5/6. EBJ? 3/6. EA50 3/6.
 I.O. and M.O. Bil.. Diode (EA50) 6. 10. H1e9: IUBEF-Tested full sereen. $42 / 6$.
 $25 \mathrm{v}, 1 / 10$. $16 \times 8 \mathrm{mfd} .4504 .5 / 6$. $32 \times 32 \mathrm{mfd}$. 450 v . $6 /-\mathrm{Mica}$. silver mica, and tubulare. 350 v. 61 . each.
I'GTEMHGMHTGAS.-All valuea, preset $1 / 9$ each. long spindle $3 /$-, with switch, 4/8.
IEN:CISTORS.-1 watt 4d.. \& watt EA, watt $6.1 ., 1.5 \mathrm{k} .5$ watt $1 / 6$.
Cill FOEMEIAS.-Min. 8il.. sin. 104 sPL.NWPR, - in. F.M. less trans.. 16'6

 request.

INT NIT TVILS 26 ant 27. For ase with the R. 1335 or any recelver with a 6.3 v. supply. These are the varlable tuning units which use 2 valves EF5 and 1 of EC52. Type 26 covers $65-50 \mathrm{Mc} / \mathrm{s}$ (5-6 metres), and Type 27 covers 85-65 MC's (3.5-5.0 metres) Complete with
valves. and BRAND NEW IN MAKER'S valves, and BRAND NEW IN
CARTONS. WNi. $29 / 6$ cach.

## AMBLIFISR TVIPE 223 I. ar 208.

as described in the July issue of as practical Television "for malking a TV CONVERTER. Complete with valves. ONi.V 15 -(Postage. elc., 1/6).
 Contains VCR97 C.R. Tube Holder. 11 Contains VCR297 C.R. Tube Holder,
valveholders. reststors. Condenser valveholders. reststors, condenser
etc.. etc. BRAND NEW. WNI, 10 (Carriare. etc.. 5 :-).
PUKET VOITMGIEIS.-Not ex Govt. Read $0-15$. und $U-300$ v. A. O. or
D.C. BRAND NEW \& UNUSED. D.C. BRAND NEW \& LNUSED.
(NI.1 186.
rin.Ins Wi: MEISE,-Manufactured to our sieecifications and fully guaranteed 6.3 v. 4 a. 6.4 צ. 4 a.. 5 v. 3 u... $0 . \mathrm{In}_{1}$ $65-350$ v. -350 v. 160 ma. 6.3 v. 5 $3: 6$. 350 v- -350 v. 150 ma., 6.3 . 5 a. 6.3 vaa.. 5 v. 2 a. 6 . $250-0-250$ v. 60 ma . are fully shrouded. upright mounting. 5.5 KV, E.H.T. with 2 windidss of 2 v. $\frac{1}{2}$ a.. ON1. 896. PLEASE ADD 2-POSTACE FOR EACH TRANSFORMER.
 Cash with order. Mlease. ond print name and address clearly. Include postage as smevified and on Component Orders under $£ 2$.
E.E.B. CRPME RADIO CORNER, I38, GRAY'S INN ROAD. LONDON. W.C.I.
(Phone TERminus 7937.)



Braud new Plessey 3-speed Autochanger Mirer Unit Or i, 10 and 12in, Records. Twia Hi-Fi Xtal Head with Duopoint sapphire stylus. Plays 1,000 records Sprung monnting Baseboazd required, 15 (in. Burfain Price 5 in. Depth Zin. Superb Quality Bargau Price, $9!$ zas, post!ree
withous MAKE.-3 speed Single Record umit with Acos 37 Turnover Head, each Sapphre Stylus plapi 2.000 records. Startina Spritch Autoaratically places Piok-up on records. 7in. . 10in. of 12 in . Auto Stop. Baseplate 12 in . 8 in. Height 2 in. Dept T.ia. Price E. 15


 ELECTROSTATIC MODEL (lex, bulld bit.

MODEL (10N4 thie)
Gin. VCRO: Tested full picture. $£ 2$
WIRE-WOUND POTS, 3 WATT. FA MOUS MAKES

 RECORDING TAPE. Fixclusive liargait, $1,300 \mathrm{ft}$

## RADIO COMPONENT SPECIALISTS

48 Hour Mail Order Service
307. Whitehorse Road, West Croydon.
Open all day. THO 1685 .


Volume Controls 80 whin COAX

| mas ofudles. linamas- | Semi-air |
| :---: | :---: |
| leed I yeior. All vralized | thene insulasted. tin. dias. |
| 1 U . What ohmis to \% Meg. | Sirauder core. 9 |
|  |  |
| 3/- 4/0 4/9 | *TASHAR1] |
| EXT. SPKR, TYPE 3- | 13. Coas. |

COAX PLUGS ... 1 - DOUBLE SOCKET … $1 /$ BALANCED TWIN FERDER ET BOXES 36 DITTO SCREENED per yd 9d Sut whay or olith TRIMMELS, Ceramic, in, io 13f. 9d.: 100 14


 RESISTORS. All values: 10 ohms to 10 mee $i$ w., td.: i w., $8 \mathrm{~d} .: 1 \mathrm{w}, \mathrm{gd}$. : w.. 1
HIGH STABILITY, $w$. 1 . Preferred value 100 ohus to 10 Meq


ALADDIN FORMERS uti-l vore. tit, 9 d . : tito.. 10d thank Voltiane RECTIFIERS.




[^0]
## For maximum neliability

 'LECTROPACK'
## ETCHED FOIL ELECTROLYTICS

The Constructor depends upon the reliability of the components he uses. The fact that so many designers specify T.C.C. Condensers is evidence of their supremacy.
T.C.C. " Lectropack" Dry Electrolytic Condensers are robust yet compact and employ MLL-ALUMHNIUM non-corrosive internal construction. The range below is a useful guide to the types available.


# Your set deserves a Mullard 

 — LO|NG = Ll|FE TV TUBEIf you are building a television receiver, leave nothing 10 chance : choose a Mullard Tube. Mullard Television Tubes owe their high reputation for performance, reliability and LONG LIFE to the unrivalled facilities for research possessed by Mullard and to the complete control of manufacture from the production of raw materials to the finished product. For practical cvidence of performance and reliability, ask the people who use them.

```
                MULLARD LONG LIFE TUBES
                FOR HOME CONSTRUCTORS

> MULLARD LONG LIFE TUBES FOR HOME CONSTRUCTORS
\[
\begin{array}{llll}
16 & \ldots & \ldots & 9 \text { inch circular screen. } \\
74 & \ldots & \ldots . & 12 \text { inch eircular grey glass screen. } \\
24 & \ldots . & \ldots & 14 \text { inch recrangular grey-glass screen. } \\
1 & \ldots . & \ldots & 16 \text { inch circular screen. Meral cone. } \\
64 & \ldots . & \ldots & 17 \text { inch rectangular grey-glass screen. }
\end{array}
\]
```

MWV22-16
MVV31-74 MW36-24 MW4I-I MWV43-64




Editor: F. J. CAMM

  Renisteved at the G.P.O. for transmission by Canadian Majasins Post.

# Next Month-Free Blueprint of Band III Converter and our New Bacolour Cover 

AFREE bheprint of a Band Ill converter to enable the viewer to receive the I.T.A. programmes on an existing TV receiver will be presented with every copy of next month's issue. Easy to construct and low in cost, the mere operaton of the switch will enable you to switch from the BSC to the I.T.A. programmes.

We have already described two convertersone for the service area and one for the fringe area. Nex month's FREE GIFT BLUEPRINT, however, deals with a more compact design. The aerials are automatically switched in this new model, which is probably the most compact unit yet designed. We show how to make Band III aerials in this issue, and shall be describing yet another converter, so that there will be a model to suit any type of receiver owned by readers.

Commancing with next month's issue, this journal will now be contained in an attractive full three-colour cover each month, and it will depict some outstanding feature described within. This now brings Practical Television
into line with our companion journal, Practical Uireless, and the other journals in our Practical Group. There is bound to be a great demand for nex! month's Prictical Television in its new form containing the 1 s . FREE GIFT BLUEPRINT. It is important. if you wish to secure a copy, to order it to be delivered by your newsagent now.

## TV AND EDUCATION

IN the World Survey of Television recentiy published for Unesco by H.M.S.O., the important part that television is playing in education is supported by facts. In the United States. 13 educational television stations with a potential audience of 20 million poople were already in operation in January, 1955. Plans for 33 more were well advanced and applications for 48 more were pending. Broadcasts include regular courses for high school and college students, home-making course and broadcasts on cratis and hobbies.

## ${ }^{66}$ The Practical Howscholder"-our New Companion Monthly

WE have pleasure in announcing that on September Sth we shall publish the first issue of The Practical Householder. The newcomer joins our group of practical jourinals to cater for the pressing need for a monthly magazine which will co-ordinate the "do-it-yourself" movement which is sweeping the country, and which is now catered for by an important and growing industry. It will dea! with every practical aspect of the household and its equipment. It will teach you how to lay linoleum, repair and maintain the hot-water system, build a shed or garage, tile a roof, insta! and repair electrical apparatus, refrigerators and vacuum cleaners. how to re-upholster the suite, overhaul the sewing machine and the lawnower, how to re-enamel the bath, make furniture, do painting, graining and wallpapering. lay and repair brickwork, lay crazy paving, and how to make home fitments-to mention but a few of the subjects with which it will deal. As with all our group of practical journals the text will be illustrated on a generous scale. We shall deal more fully with the new journal next month, but it is essential to place an order with your newsagent for its regular delivery now. In these days of economy of paper we only print copies ordered by newsagents, and you will help your newsagent to assess demand by going to him to-day and placing a regular order with him. We are giving readers this early opportunity of avoiding the disappointment experienced by thousands of readers of the Practical Television who were unable to obtain the carly issues because they failed to take this elementary precaution. Do it now !-F. J. C.

# TELEVISIONAT EARLS COURT 

A PRE-VIEW OF SOME OF THE EXHIBITS

OWING to the fact that all manufacturers have not released details of their exhibits at the time of going to press, it is not possible to give a fully detailed account of all that might be seen and the following pre-vicw therefore deals only with those items which have been announced. As in previous years many manufacturers hold back "secrets" until the daty of opening, and although one or two rumours have been heard it does not appear that there will be anything outstanding or surprising. As is to be expected, howerer, the accent will this year be on the forthcoming I.T.A. transmissions. and the major part of the Show will be devoted to aclevision actials, tuners and converters to enable users of existing receivers to tune in to the new frequencies. As has already been stated in these pages, a new aerial is essential, but the mampfacturess have found ways of adapting existing aerials, whether indoor or oundoor models, and a number of "add-on" elements will be seen which may be clipped to different types of aerial so that either Band I or Band III signals may be lunedwifh a single aerial feeder.

Experiments which have been carried out during the past few months have shown that best results are obtained with a multiclement aerial, in order to preserve sufficient bandwidth, and four-and liveelement arrays, with the dipole folded, are now becoming a common sight in many parts of London. Small uniss incorporating the primited circuit technique, will aiso be seen, and these


Deca Iable Model with 14 in. tube.


This is the Marconiphone Model VC69A. a 17in. tube with 10 in . elliptical spaker.
are intended for inclusion either at the acrial end or at the receiver end, to enable a single lead to he used. They will be sold under various names.


## Tuners

In additiort to many special Band Hil tuners, produced by practically every set maker, there will also be a number of " 12 -channel units" or similar tuners. designed to replace existing tuning units, or to be atded to existing receivers. These provide a selection of any of the Band I channels and one or more of the Band III channels. An example of these is seen on the ne: page, and is an H.M.V. product. This sells at 6 guineas and is a 14 -point turer. designed for the H.M.V." Highlight "receivers. An important point with many of these tuners is that they are intended to erplace existing R.F. stages and theretore valves have to be removed from the receiver. Special plugs are then inserted in the empty valveholders. and in some cases the valies themselves are inserted in the tuner. In other cases different valves have to be employed. As the I.F. is now being standardieed in TV receivers, these types of tuner are only useful where that I.F. is used. and this precludes their uise in outite a large numher of receivers. A simpler type of unit is intended to be included between the acrial and the receiver, and calls for no modifications in the receiver itself. In faet in some cases it may not even be necessary to remove the back of the cabinct. The units in such cases are self-contained, with their own power unit and switch. and in most cases the two aerial leads are plugged into the unit, and a lead is oined from the unit to the receiver in place of the original aerial lead. Again the switching in some cases permits the receiver switch to be left in the "on "position, whilst in other cases hoth the


A group of rectangular tutes by Ferranti.
unit and the receiver will have to be separately switched. The control on the new unit then selects either the Band I or the Band III station. Under the test conditions which have been the only source of experiment so far, very little trouble appears to have been experienced from "patterns" due to the two transmissions becoming mixed in the converter, but whether or not this will hold good when the transmitter finally starts up on full power is not certain.

## Tubes

Among the tubes to be seen will be some truly " outsize " models, but the popularity of these large surfaces is in doubt. In order to keep down the overall size of cabinets a marked increase in the number of rectangular tubes appears to be the trend. The
metal cone appears to be on the way out, or at least has not increased in popularity. The aluminised surface is now the most popular, due no doubt to the brighter picture which results, but no details have been received of any change in screen colours, and projection receivers appear to remain in the same proportion as last year. It is doubtful to say what is the most popular size of picture, but it would appear to be now either 14 in . or 16 in ., these two sizes appearing to be more or less equatly popular.

## General Design

With the inclusion of the rectangular tube, and the consequent overall reduction in size, the general appearance of the receiver has been changed somewhat, and a much neater cabinet results. From the illustrations of the three table models seen on these pages, it will be noticed that the general trend is to a two-knob layout, with very little depth below the


## Peto Scott Model TVi416T, also a 14 in . Modet.

tube. Volume and Brilliancy appear to be the most popular controls for panel use, and band switches and other subsidiary controls are placed on the sides. There is also a growing tendency to replace the cabinet fronts by cloth and fancy materials in order to fit in with modern contemporary furnishings. This tendency has, in fact, been carried into some of the console designs, where also in the radio and loud-speaker cabinets a large sheet of cloth forms the front of the design.

There is a growing tendency to revert to the one-time popular multiknob for the controls where two or more knobs are arranged concentrically, and whilst this does make for a neat appearance on the panel front, it is not always convenient. Much depends upon the knob shape and size, but it is very easy to turn two knobs together and thus upset the setting of one when adjusting the other. One or two firms appear to
favour the edgew ise control which again, whilst making for neaness of appearance, may not be the ideal form for older people or those who want something easy and robust.

## Reproduction of Sound

Again we are surprised to note that of the designs of which we have so far been notified, no manufacturer has gone in for the "hi-fidelity" on the sound side. In view of the high quality which can be obtained from television, we would have expected some manulacturer to base made some atlempe 10 do justice to it, by thting at least a 12 in . speaker, and making some attempt to use the lower part of a console cabinet as a properly-designed speaker enclosure. The market for hiffidelity luners and amplifiers on the sound side is now quite large, and prite a lot of money is spent by enthusiasts on spoakers and speaker enclosures, and ve would have thought one or two makers would have found it worth while to produce a "hi-fidelity" television receiver, where the quality of reproduction was in kecping with that now available from records and F.M. radio. It might be argued that many cnthusiasts now own hi-fidelity loudspeakers and are fully equipped on the radio and gramophone side and that the existing equipment may be used with the radio receiver. But it is essential to reproduce the sound from the area of the tuhe in order to retain the illusion of realism, and athough it is possible


Ferguson Table Model with 1 tin. Tube
in many cases to lake the output from the sound detector to a quality amplifier, in most commercial receivers very little atlempt is made to develop the test from the sound chanmel and an Sin. speaker appears to be the more or less general rule.

## F.M. and Television

With further reference to the uucstion of quality of reproduction on television receivers, as this issue goes to press we learn that at least one firm McMichael's, will be showing a combined television and F.M. receiver. This takes the form of a 17 in . receiver and includes in its console a standard AM/FM receiver. Each uses its own separate valves and components, and separate speakers. No details are yet available, however, concerning the amplification problem, and we do not know whether


The Rilot 13 Chamel Tarret Thiner.
this does in fact utilise a single high-fidelity amplifier for the two units. If the refurence 10 "separate" indeates that each set (tclevision and radio) is complete, this still does not come within the category mentioned callier, where really high quatity is provided lor the elevision section. Incidentatly whilst dealing with the McMichacl products it is interesting to note that they have made a departure in the design of the line output design-a frequent source of trouble. A special lom of generator has been developed by Mothichacl's in which the leat is kept to a minimbim, and the resultant assembly is chamed to be safer and more reliable than many other high-voltage generators now in us? Thi; father is chelusite to the MoMichat receivers.


This aerial array by labgear is intended for moznting on an existing Band I aerial mast.

Producirso "fake." effects on "line" broadcasts

THE basic principle of Inlay is that the final picture, as seen by the viewer, is composed of parts of pictures from two separate cameras. (Either or both cameras can be a film scanner but for simplicity the term "camera" will be used throughout.) The choice of which part of the final picture comes from which camera is controlled by a simple operation with pieces of cardboard on the tace of a cathode-ray tube.

## An Example

An example of what can be done will perhaps clarify the process. Suppose Camera No. 1 is looking at a photograph of Julict's house and Camera No. 2 is looking at a real window in the television studio; then in the final picture seen by the viewer there will appear Jutict's house but the "photograph window" will have been removed and the real window substituted. Juliet will appear as if she were in a real house. Provided care is taken with the perspective of the two component pictures, such an illusion can be completely satisfactory.

The basic principle is simple, though, as is often the case with electronic equipment, the application is complicated.

At any instant in time the television picture consists of a single spot of light, modulated in intensity to give the appropriate brightness and displayed in position corresponding to the part of the scene being examined at that instant. Therefore, if we have a switch which changes over from Camera No. 1 to Camera No. 2, and back again, at the appropriate points of the picture (or the appropriate instants in time, which is the same thing) the output of the switch will contain the wanted composite picture.

## Synchronised Cameras

Looking at Fig. I. Camera 1 is "seeing " a photograph or model of the house and Camera 2 a real window on the studio Hoor. In the cameras the scanning spot is in exact synchronisin. Suppose we consider line No. 100 in the television picture (about halfway down the picture). At the start of the line the switch S is over to Camera 1. It stays there until the spot reaches the edge of the window $\mathbf{A}$, when it changes very rapidly over to Camera 2. The switeh remains on Camera 2 until the spot reaches the point B, when it returns to Camera I. It remains on Camera 1 to the end of the line. The teievision signal emerging
from the switch, therefore, consists of the picture from L to A from Camera 1, A to $\mathbf{B}$ from Camera 2, and B to R from Camera I; that is, the real window has been "inlaid" in the model of the house.

The switch requires to operate extremely rapidly (in about 0.1 microsecond) in order to avoid visitle transitions, and it is entirely electronic in its operation. It consists of about 20 valves and particular attention is paid to its design to make it stable and positive in its action. If the switch can be appropriately controlled any shape from the picture from one camera can be "intaid" in the picture from another camera.

The switch is controlled by a device knowit as the Sithouette Generator," which consists of a simple flying spot scanner. A cathode-ray tube (with a short afterglow phosphor) is mounted vertically with its face horizontal, facing upwards. Above the cathode-ray tube is a photo-electronic cell (see Fig. 2).

## Silhouettes from Paper

On the cathode-ray tube face is displayed a spot of light which is scanning in synchronism with the scanning spors in the television cameras. The light from this spot is collected by the photo-electric cell. causing a small current to flow. This current is


Fig. 1.-I'rinciples of the arrangement known as 'Inlay.' The Inlay equipment described in this article is installed in several television studios and is often used for Inlay, for Wipes, and for Overlay. It is a valuable adjunct to the television service.
amplified and used to operate the switch to (say) Camera 1. If the light is interrupted then the photoelectric cell current ceases and the switch changes over to Camera 2.

The method now becomes clear. If we want to
$\therefore$ ON CAMERA $/$


NAFSK ON SIL GEN.


ON CAMERA 2


Fig. 4.-How a "wipe" is effected.
inlay part of Camera 2's picture into Camera I's picture we need only to interrupt the light arriving at the photo cell from the cathode-ray tube at the appropriate place in the picture; thus, a small picce of black paper or cardboard of the riglit shape and size will cut the "photograph window" out of Camera I's picture and substitute the real window as seen by Camera?

Fig. 3 shows this process pholographed from a television picture monitor: 3 (a) shows the model house; 3 (b) the model house with the window cut away; 3 (c) the practical window on the studio floor: and 3 (d) the composite picture.
This method of controlling the inlaidatea by pieces of paper or cardboard placed on the cathodetay tube face is operationally simple and lends itself 10 other applications which, while being in cssence "Inlay," do not appear to be so. For example, a large piece of paper covering half the screen will give a composite picture with a dividing line down the middle. On the left-hand side will be the picture from Cameta 1 and on the right-hand side the picture from Camera 2 (see Fig. 4). This can be used for rrick effects: for instance, an artiste walking across Camera i's picture will pass out of sight as he crosses the dividing line, and appear to "vanish" in the middle of the picture.

Pictures " Wiped Off"
Another application of this method of controls

(a)

(b)
to use a large piece of paper and move it across the raster. As it moves across it will give the effect of a line moving across the composite picture, on the left of the line being Camera l's picture and on the right Camera 2's picture (see Fig. 5). This gives a transition, from camera to camera in the form of a "wipe" because the line " wipes off" Camera 1 and "wipes in" Camcra 2. This is sometimes asthetically preferable to a "cut" or "dissolve" change from camera to camera. More elaborate wipes, such as diamonds closing into the middle, diagonal wi es, and so on, can be obtained with different shapes of mask.

In the practical equipment installed at Lime Grove the optical system between the cathode-ray tube and the phow-electric cell is elaborated so that a small image of the raster on the cathode-ray tube is formed


Fig. 2.-Bloch diagram of the complete set-up for Inlay or Oierlay.
in a convenient plane. The light from the image is collected and passed to the photo-electric cell by a lens system. In this plane is a small motorised shutter which can travel at a selected speed across the image.


Fig. 3.-How the producer sees an Inlay effect on monitor screens.


Fig. 7.-Monitor views for an Overlay effect

This gives the necessary wipe effect, and because it is motorised the control can be extended to the vision mixing operator. Thus, in addition to the usual facilities of cutting, fading and dissolving from camera to camera, the new facility of wiping is added.

In the above description the operation of the electronic switch is dictated by the Silhouette Generator and is confined to static shapes (of any configuration which can be cut out of paper) or edges moving in simple ways. A further extension of the process enables the switch to be contiolled by the picture content of one of the cameras being used so that the part cut out of Camera l's picture conforms exactly to some part of Camera 2 's picture, even if it moves as, for instance, an artiste would. That is to say the image of the artiste moving about in front of Camera 2 operates the electronic switch so as to cut his own sihouette in the pieture from Camera 1. The composite picture will then give the etliect of the artiste moving about freely in front of the background as if he were actually in front of it.

## "Overlay"

This method is known as "Overlay" and operates as follows: Camera 2 looks at an artiste in from of a large white screen and the dress and make-up and lighting of the artiste are so adjusted that no part of him is as bright as the screen behind him. The television signal corresponding to this scene emerging from Camera 2 will be as shown in Fig. 6. It will be noted that the part of this signal AB corresponds to
the edges of the artiste, and if "window" or clipping circuit is used a pulse of exactly the same length as

## ON CAMERA 2



ON CAMERA /


SIGNAL FROM CAMERA I WITH SILHOUETTE


Fig. 6.-Princip!es of the arrangement hnownas "Overlay".
the with of the artiste is obtained. If the artiste moves across the picture, then this pulse will move, too. This pulse is used to control the switch so that now the composite scene comprises Camera l's picture, say, a photograph of a landscape, in front of which the artiste in front of Camera 2 appears to nove freely.

## Tricky Process

This method is tricky to use because of the difficulty of ensuring that the brightness of the artiste does not approach that of the white screen. A small amount of perspiration on the torchead will catch the light and give a light spot which will operate the switch with disturbing results.

Fig. 7 shows the overlay process on a television screen: (a) Shows the background photograpin of a ship; (b) Shows the artiste in from: of a white screen; (c) Shows the background photograph with the artiste's silhouette cut out : (d) Shows the composite picture.
[Reprodluced from Philips' Forum by permission of Philips and the $\dot{B} B C$.

# Testing Line Output Transformers 

A SIMPLE COMPONENT TEST USING AN OSCILLOSCOPE

By A. Bartholomew

WHEN a fault is suspected in a line output transformer, this cannot the ascertained by making a resistance test, as a single shorted turn in the windings will give no readable change in the specified D.C. resistance of the windings. Yet one shorted turn can so reduce the efficiency of the transformer that the E.H.T. voltage, when this is obtained from the line fly-back, is non-existent.


Fig. 1.-Exciting the transiormer from a transitron.
However, the damping effect on the transformer, caused by even one shoned turn can be measured by exciting the ransformer by a voltage pulse, and observing the ringing effect produced in the transformer on an oscilloscope.

## Voitage Pulse

The voltage pulse to initiate the ringing is obtained from the oscilloscope :imebase; if the 'scope has a ransitron timebase the pulse can be taken from the sync terminal as shown in Fig. 1.

In this type of timebase a pulse is available at the sync terminal, when the variable sync control $R$ is turned to maximum. A small condenser (anything from 100 pF to $1,000 \mathrm{pF}$ ) is simply connected bet ween the sync terminal and the input terminal of the scope. With other types of timebase, such is the thyratron, or, if the 'scope has a sync buffer stage, the tly-back pulse can be obtained from the timebase output, or from the horizontal deflector plates of the 'scope tube. In all cases the small coupling condenser is joined to the live input terminal.

The input terminals of the 'scope are then clipped across the primary of the line output transformer, and the scope timebase set to run at about $5,000 \mathrm{c}$.p.s.


Fis. 2.-Waveforms obained rom the fauly transform er.

This setting need only be very approximate. With the gain of the scope turned well up, a wave-form will be observed as in Fig. 2 (A) or Fig. 2 (B).

A faulty transformer will give an indication as in Fig. 2 (B). It should be remembered that any other component which may be faulty, and is connected across the transformer, can give the fault indication shown in Fig. 2 (B).

## Disconnect when Testins

When making this test the televisor must he disconnected from the power point. If on making the first test the fault indication is obtained, other components should be progressively removed from circuit. Disconnect the line-scan coils, then width coils, etc. If on removing a component from circuit the "no fault" indication Fig. 2 (A) shows on the scope, the part removed is faulty. For instance, it will sonnetimes be found when testing the Pye model V4, VT4 or VT7 Series Tclevisor that the shorted turn is in the width-adjusting coil. In this type of receiver, which has "high or ", medium impedance deflector coils, the "ringing" test can be made


Fig. 3.-Tag strip in some Pye Models.
across the deffector coils. In this receiver the line deflector coils terminate on a tay strip at the rear of the CRT support as shown in Fig. 3.

With most types of televisor however, the test is best made across the primary of the transformer. It is important to remember to disconnect the televisor completely from the mains supply before making the above tesis. Whenever possible the ringing lest should be made with another televisor of the same type which is known to be operating correctly, as the ringing effect varies slightly according to the efficiency of the transformer, but this will be constant with two receivers of the same type.

NEXT MONTH
FREE I/- BLUEPRINT of a compact BAND III CONVERTER

ORDER YOUR COPY NOW

By H. E. Smith (GoUH)

THE design and construction of a really ellicient mixer stage in a V.H.F. converter presents many problems, not only to the newcomer on these frequencies but also the professional V.H.F. eng neer. In the frequency range $100-200 \mathrm{Mc} / \mathrm{s}$ it is essential to keep mixer noise down to the lowest possible level.

It is often quoted in various books of reference that "t the noise figure of a mixer valve may be relerred to the grid of the first R.F. stage by dividing by the stage gain." This quotation implies that provided duc care is taken in designing a low noise R.F stage or stages, the mixer nay be belt to look after itsel.

This, of course, is quite wrong. It is the efficiency and noise figure of the mixer stage which will determine the ultimate performance of the converter. (The term mixer stage relers to the mixer value plus oscilator voltage. One cannot reler to the efficiency of a mixer stage without considering it in a working condition, with R.F. signal on the grid, and modulated with voltage from the local oscillator.)

If for operation on 144-146 Mc/s or Band III TV, the following points should be considered:
(a. What type of receiver will be used as the I.F. amplifier?
(b) Which circuit will provide frecdom lrom oscillator pulling, instability and parasitics?
(c) Should a pentode or triode be used?
(d) Should low noise or high gain be aimed at?

Taking the above points in the order given, let us see how one point depends upon another. It the converter is being built for operation on Band III it with alnost certainly be used ahead of a receiver


Fig. 1.-Pentode mixer, 100-200 Mc/s.
having one stage of R.F. preceding the mixer. When the converter is added. the R.F. stage becomes the first I.F. of a double superhet and, as such. should have a reasonable amount of gain in order that some sort of bandwidth can be obtained. A single valve will bardly be sufficient to provide this gain, so it is necessary to obtain the maximum gain from the


Fig. 3.- "Push-Push" twin triode mixer.
mixer stage. A pentode miver will therefore be the obvious choice.

Point "b". Slight oscillator pulling exists with most V.H.F. mixers and this is not serious as most circuits are pre-set tuned in any case. Instability and parasitics can both be calused by poor layout, unsuitable component values, unsuitable valve, or excessive oscillator injection voltage.

Point " $d$ ". In general it is better to aim at fow noise for lit Mc/s operation and high gain for Band III work.

## The Pentode Miver

Pentode mixers have a higher noise figure than triodes. but at the stme time they are capable of providing many times more gain. By careful adjustment of anode and scrien voltage, and using a good


Fig. 2.-Triode mixer, 100-200 Mc/s.
high "Q " inductance for the I.F, coil it is rossible to reduce the noise figure to reasonable proportions.

Fig. I shows a recommended pentode mixer circuit using a Mullard EF95 (6AK5). This circuit is suitable for operation on $144 \mathrm{Mc} / \mathrm{s}$ or Band III. If for the latter, LI may be shunted with 10 k olmm resistor. A similar resistor could be fitted across L2, but this is not recommended for weak signal conditions because damping the anode coil in this way not only lowers the gain but increases the noise figure. Pentode mixers require very little in the way of oscillator injection and it is most important to ensure that the oscillator section of the converter is completely screened from the mixer, and to be sure that the only way that oscillator voltage can reach the mixer grid is via the oscillator coupling condenser.


Fig. 4.-Twin triode push-pull oscillator. The coupling coil $L$ comprises two turns wound centrally over the anode coil.

## The Triode Mixer

When the converter is used ahead of a communications receiver for $144-146 \mathrm{Mc} / \mathrm{s}$ work, the triode mixer has sufficient gain to give a good account of itself. With the cheaper type of receiver it may be found necessary to incorporate an additional I.F. stage, but this is seldom required. The lower noise figure of the triode mixer allows the I.F. gain control of the main receiver to be increased to compensate for the lower gain.
The triode mixer circuit shown in Fig. 2 provides highly efficient mixing of both weak and strong signals. The 5 pF capacitor is connected from anode to cathode directly at the valveholder and prevents any tendency to oscillation on the sidebands of strong carriers. The twin triode mixer in Fig. 3, although often advocated for $144 \mathrm{Mc} / \mathrm{s}$ work, has very little
to recommend it. The noisc figure is more than twice as high, and the gain is far less than a single EC91 (654). Twin triode really come into their own


Fig. 5.-A mixer and oscillator combination with variable voltage control to oscillator (Vatues as Fig. 4).
when used as push-pull oscillators. Fig. 4 shows a really stable oscillator for all frequencies up to $200 \mathrm{Mc} / \mathrm{s}$. As with all self-excited oscillators it is essential to use a stabilised power supply.

Finally, Fig. 5 shows a more flexible triode mixer and oscillator combination with pre-set adjustments allowing the mixer to be set up for optimum performance under weak signal conditions.
(Note.-The mixer input circuits shown in the sketehes are all arranged for low impedance coupling. This is done for the sake of convenience only, and there is no reason why the mixer should not be coupled from the final R.F. stage by a capacitor of $20-50 \mathrm{pF}$ ).

## Television at Sea

THE personnel of the Shell-Mex and B.P., Ltd., coastal fleet will soon be able to watch television while they are at sea.

All 14 vessels of the fleet are being fitted with 17 in . screen, 13 -channel TV receivers, installed by Pye Marine, Lid. First vessel of the fleet to be fitted is the M.V. Shell Director, whose installation has just been completed at Newport (Monmouthshirc); other vessels will get their TV installations as they return to port for overhaul.
Although a number of other ships, outside the Shell-BP lleet, have so far had TV sets installed with excellent results, this is the first time that an entire Heet has been equipped by the owners, at their expense, for the benefit of personnel aboard. It is also believed to be the first time anywhere that a
fleet of vessels has been equipped to receive television while at sea.

## Special Acriat

Considerable rescarch and many experiments at sea have been undertaken to perfect the special omni-directional, omni-frequency aerial which must give satisfactory reception, even while the ship is rolling in a heavy sea, and regardless of the direction in which it is headed.
Vessels of the Shell-BP fleet operate from the Orkney and Shetland Isles in the north to the Channel Islands in the south, and also to Northern Ireland and the Republic of Ireland. The 13-channel TV receivers with which they are being equipped will enable the ships' personnel to watch any of the BBC transmitters at present in operation, as well as the bther BBC and Commercial TV programmes which will come into being.


THIS article will in the main be concerned with the E.H.T. Scanning and Protection circuits, with brief notes on the power supplies.
The 704 and 1700 atre 20in. screen models and the 1800 an 18 in .: all three use identical circuils developed from the Model 600.

Undoubtedly the most common fault encountered is that of no picture, no raster.

The fault can be difficult to trace and the following procedure should be adopted. Switch the set on and allow to fun for a few minutes, noting whether the high-pitched whine or whistle of the E.H.T. section is audible or not.

Then switch the set of and observe the screen. If E.H.T. is present on the C.R.T. anode an area of decaving illumination will be observed. If no illumination is seen and the rather loud whistle of the E.H.T. section is absent the fault is immediately localised to a relatively small part of the circuit. Looking in at the rear of the receiver an extension on the left-hand side of the main chassis carries the E.H.T. section, comprising, on the top of the chassis, the R.F. E.H.T. output transformer, the PL38, referred to as V4, and the UAF42, referred to as V3.

Of the two PZ30 sectifier valves on the left rear end of the chassis the left-tiand one is the E.H.T. voltage doubling rectifier (referred to as VI) supplying some 400 volts to the E.H.T. section.

This valve should be tested before proceeding further. The only other part of the receiver which draws current from VI is the focus coil and its series resistors.

If V 1 is in order the receiver should be turned so as to allow the bottom cover to be removed. Under the E.H.T. section will be found a small black transformer and numerous other small components. The transformer is the oscillator (V3) anode-to-control-grid coupling. the windings being refered to as S10, S11. S 10 is the primary and should measure 310 ohns. One end is connected to the strapped anode, G2, G3 grids and the other to the 400 volt supply line from VI. This winding very frequently "goes high" or open circuit, thus

No. 13.-PHILIPS PROJECTION RECEIVERS. COVERING MODELS 704, 1700 AND 1800

## By L. Lawry-Johns

causing V. to cease oscillating and the E.H.T. to fail. A variation on this, however, is for the primary winding to vary, causing large fluctuations of picture size, brilliance and focus.

The secondary winding SII is less likely to give trouble and the primary should always be measured first. The resistance of the SII winding should be 380 ohms. If the primary winding measures correctly attention should be directed to R14, which is wired across the valve base of $V+$, although? it may be tound displaced slightly away from it. It is a 390 K resistor connected from the 400 volt supply line to S10 and therefore supplies the control grid of V3 with an initial positive voltage. If this resistor is open circuited V3 will not oscillate. This is another frequent fault. V3 also contains a diode section, which is fed from a winding on the E.H.T. output transtornter. The purbose of this is to supply a D.C. voltage to the control grid of V 4 to improve the E.H.T. regulation. In this part ol the circuit are included two resistors. R18 and $19,620 \mathrm{~K}$ and 680 K ohm respectively.

Variations in picture size, brightness and focus can often be traced to these resistors when the SIo winding is blameless. It should be noted that most variations will occur on the white picture content.

As well as the various windings the output transformer can also contains the three EYSl rectifiers, which form the voltage tripler circuit. and their associated condensers. This part of the circuit is supplied as a complete unit and nust be replaced as such. The output voltage of this unit is 25 K volts and therefore should be treated with respect.

This high voltage is necessary to provide the intense brilliance on the tube face in order to allow the image to be projected by the optical system on to the viewing screen. The small $2 \frac{1}{2} \mathrm{in}$. C.R.T. is a Mullard MW6/2. In short, it may be said that the E.H.T. section consists of a blocking oscillator driving an R.F. E.H.T. generator, the output of which is voltage tripled to supply the anode of the C.R.T. Betore proceeding further a word of warning may be offered which may save some expense and possible confusion. If the VI PZ30 is suspected it is not advisible to change it with its neighbour V 2 .
$V 1$ is used as a voltage doubler whilst $V 2$ is a more conventional H.T. rectifier with strapped sections. After a period of use in their respective positions they are intolerant of a sudden change of voltagecurrent demand. Blown fuses and an extra PZ30 to buy will often be the result of a change over.

## Scanning and Tube Protection Circuits

If upon switching off the receiver the patch of light is observed and the whistle of the E.H.T. section is audible, the C.R.T. and E.H.T. sections may be assumed in order. Therefore the search may be directed to a part of the circuir which is rather complicated and which requires an understanding of the basic principles in order to localise the part of the circuit in which the fault exists. The timebases cannot be described in detail without reference to the tube protection circuit which is necessary on this type of receiver.

The purpose of this circuit is to prevent the tube face coating being burned by a concentrated beam of elect ons which would result if either or both of the limebases ceased to function. For example, if the frame timebase ceased to operate a horizontal line would appear on the screen of intense brilliance, and when the fault was cleared the raster would be marred by the same horizontal line, this time black instead of white where the coating of the tube face liad been burned. A vertical line ivould resuit from a line timebase failure, and a central spot would be imnediately burned if both timebases ceased 10 operate. The method of preventing this minor disaster is to apply a heavy negative bias to the control grid of the C.R.T. which is removed only when both timebases are working.

Thus it will be appreciated that an understanding of the circuit is essential in order to locate a fault which has caused this negative potential to be present on the C.R.T. The following rough description witl, it is hoped, enable the circuit to be understood so that fault location will be less tedious and perlaps less expensive.
An A.C. volage derived from the mains transformer is applied to the cathode of one section of a double-diode V11 (UB41). The rectified negative voltage present at the anode of this section is applied via a I MO resistor to one end of the hrilliance control, the slider of which is directly wired to the C.R.T. grid. Therefore, this negative voltage renders the tube inoperative. The I MO resisto is relerred to as R109. The same negative ooltage is applied to the G1, G3 grids of the line output UL44 (V21) which functions as a self-oscillating pentode. This voltage renders the valve inoperative and thus the line timetass is completely dead.
To allow the UL44 to oscillate a positive voltage must be applied to counteract the standing negative on the grids. The method of producing this voltage is as follows. Part of the frame-output pulses are connected via $1 \mu \mathrm{~F}(\mathrm{C8} 3$ ) condenser to the anode of V25B. double diode (EB91). The resulting D.C. pulses at the cathode are developed across R 116 and C81 (5.6 MO and . $015 \mu \mathrm{~F}$ ) and smoothed by R115 and C85 (1.5 M! and $.01 / \mathrm{F}$ ) before being applied to V 21 . When, and only when, this voltage is applied V21 will oscillate and the line timebase function normally. Thus, it is only left for the negative voltage on the C.R.T. grid to be removed and this is accomplished in the following way

A winding on the line output transformer is taken to the sccond anode of V25 and the resulting positive voltage at the cathode of this section is directly applicd to the oppositcend of the brilliance control to which the negative voltage from V11 via R109 is taken. Thus, the slider of the control can be adjusted so as to allow the C.R.T. to function normally.

## Frame Timebase

The triode section of V 23 (UCH42) functions as a conventional blocking oscillator. The blocking transformer is identical to that of the E.H.T. section and is referred to as $\mathrm{S} 46 / \mathrm{S} 47$. The same remarks apply to the primary S46, which can, and often does, go open circuit, causing the frame limebase to fail and the safety circuit to operate. The frame output valve is a UL41 (V24) connected as a triode. S46 caln also vary, causing loss of framehold, varying frame height and intermisacnt operation of the protection circuit.

There are several resistors in the fiame circuit which can give rise to various faults. R106 in series with the hold control is rated at $56(0) \mathrm{K}!$ and will cause the control to be at one end of its travel without securing a steady lock if it should go high in value. RIG1 is a 1.5 M? resistor, which is in series with one end of the height control and will cause an uneven frame-scan (poor linearity) if it should gain in value.

## Line Timebase

As already mentioned, a self-oscillating pentode is employed in conjunction wiht a UY41 (V22) efficiency diode. Several high-value resistors are used in the circuit, and if onc of these should go open circuit rather misleading symptoms result. For instance, R119 ( 10 MO) is the series resistor which conducts the negative voltage from V1I to bias back V2t until the frame timebase is operative. Assuming the frame timebase is working and R119 is fautty, a large positive voltage will he present on the grid's of V21, stopping it from working and cat:sing eacessive current to make the anode of this valve glow cherry-red. Under these conditions the valve cannot oscillate and thus the safey circuit causes the C.R.T. to be inoperative. In the Model 600A this resistor (R119) is valued at 6.8 M ? (blue/grev/green). R115 and R1.16 are resistors which can cause the line timebase to be inoperative; these are in the catiode circuit of one section of V25 and are vatued al R115 (1.5 M!?), R116( $5.6 \mathrm{M} \Omega$ ) (green/blue/green). The line oupput transformer can be a cause of failure of the line timebase and it is often difficutt to decide if this is at fault or not. If V21 and V22 are both in order, all resistors check, frame timebase is working and neither a heavy negative nor a licavy positive voltage is present on the grids of V 2 l the transionmer may fairly be suspected.
A fesistor combination or a singic resistor may be found on top of the line output transformer which may be too burned to have its colours identitied. This is R93, and whatever combination is used fer the replacement the total resistance should Ve 33 KI (wired from H.T. to cathode of V22 (UY+1). On Model 600 A the resistor combination is two 22 K ? resistors in parallel.

## Fault-finding

If, therefore, the C.R.T. is teing biased back to cut off by a heavy negatioc voltage. first ascertain whether the frame timebase is working. There are various ways of doing this without instruments. A $.01 \mu \mathrm{~F}$ condenser from the anode of V24 to the volume control will produce a loud hum which varies with the operation of the framehold control is one way. If the timebase is not working, check V23. V24 and \$46/S47 transformer as described.

If this part of the circuit is in order chock the line timebase for operation. A spark should be abie to be drawn from the anode connection of V2l on the top
of the line output transformer, and the cathode voltage of $V 22$ should be some $30-40$ volts higher than that of the H.T. voltage at the anode of this valve. If it is not functioning and the anode plate of $V 21$ is glowing red, suspect R119 ( 10 M ? ) of being open circuit. If there is no sign of life in V2I, check the screen voltage via R96 and R 105. R96 is a $27 \Omega$ resisto and R105 is made up of two 5.6 K resistors in parallel. A reading of approximately 130 volts should be present.

If a heavy negative voltage is present on the controlgrid (and suppressor) check V25, RIIS and Rll6. It is quite possible for one section of $V 25$ to be vult of action due to heater failure, as this valve lights up ver'y brightly when the set is first switched from cold. Also check V22 for emission, etc., and also V21. By his time the fault condition should have been rectified, unless the line output transformer is responsible. It should be noted that the C.R.T. can be burned if a fault develops in R109 which prevents the safety negative voltage being applied

## Transformer Tip

If the E.H.T. or frame blocking oscillator transformer has an open circuit winding it is olten worth while to strip back the covering to expose the outer connecting tag. The winding connecting wire will often be found disconnected from the tag, and resoldering or the addition of a small piece of fuse wire will render the transformer 100 per cent. efficient.

## Blown Fuses

Check both PZ30 valves for internal shorts, and if upon replacement of $V_{2}$ and fuses H.T. is still not present or is low, check R7 and R8 anode surge-limiting resistors of V2. These are 68 ohms each. if trouble persists check electrolytics C4 (100 $\mu \mathrm{F}$ ), C5/C37 ( $65 / 65 \mu \mathrm{~F}$ ) and others if these are in order.

## Negative Picture

Although this is normally a symptom of a failing C.R.T., it has been known for the anode load resistor of the video amplifier (V18) to caluse this faull ( 3.3 K ).

## Unsteady Sync

Inability to hold the line or frame timebases should first direct attention to the sync separator V19 (UF42) cireuit and then to the video amolifier
anode decoupling condenser ( $65, \mu \mathrm{~F}$ electrolytic).

## Microphonic Sound

A "gonging" noise on the sound is usually due to V10 (U.AF42) becoming mictophonic. If necessary its control grid-leak (1.5 M O) may be reduced in value.

If the sound is weak and/or has a vision hum audible the setting of $\mathrm{C}+1$ concentric oscillator trimmer should be checked, and if the trouble reoccurs check the associated 33 pF , screen-grid circuit of V14 (UF42) frequency changer, and the valve itself.


Fig. 1.-A simplified view of the under-chassis showing the main components.

The usual test for microphony or sound on vision maty be made, namely, when the humming is experienced, turn down the sound. If the noise ceases, it is a fairly good indication of a microphonic valve, and turning up the volume


Fig. 2.-Tos chassis view.

THE THIRD IN A SHORT SERIES ON THE PRCBLEMS
INVOLVED IN THE RECEPTION OF COMMERCIAL
PROGRAMNES ON BAND lli By Gcrdon J. King, A.M.IPRE.
(Cominued from page 106, August issue)

## The Noise Factor

AHOUGH the converter circuit described in last month's issue works quite well in relatively high Band III signal strength areas, and is fairly easy to get operational. it does tend to introduce a certain degree of " noise " into the Band I receiver, which is noticeable as grain on a Band 111 picture which is being received in an area of low signal strength.

It is true that litte " noise" is contributed by the aerial eircuits themselves at Band 111 frequencies, but at thase higher frequencies quite a lot of "noise"; is created by the R.F. amplifier valve following the acrial circuits. In the output circuit of the R.F. valve there is, therefore, developed the signal voltage and also a spurious voltage ats the result of this valve "noise." When the incoming signal is very weak it freguently happens that the "noise" voltage is equal to, or rises above, the amplified signal, and a limit is thereby imposed on the maximum useful sensitivity of the R.F. circuits.

As the frequency is raised, say, from Band 1 to Band III the "noise" level of a pentode valve increases partly as the result of random division of the electron stream between the screen gnid and "the anode (the partition effect). The totai" noise" is also contributed to by other factors, such as the irregular flow of electrons between the cathode and anode, and also the same node of electron flow in resistors and wires associated with the circuit.
"Noise" is. in fict, produced in all stages and in all components, but provided the first stage has a

Fig. 7.-A modern
cascode circuit.
common H.T. supply, and where it is in use in a modern receiver the H.T. across each section may not exceed 90 volts.

The D.C. circuit between the two triode sections is from H.T. negative (chassis) to the cathode of section (A) through R1; from the anode of section (A) via L3 to the cathode of section (B) ; and from the anode of section (B), through L4, to the H.T. positive line.

Section (A) is biased in part by the voltage drop across RI, and sometimes in part by an A.G.C. bias conveyed through R2. As the cathode of section (B) is held at a potential well above chassis it is necessary to arrange the grid of the same section to be slightly less positive than the cathode so as to obtain a grid potential suitably negative with respect to cathode. This is achieved by connecting the grid to a tapping on a potential divider which is connected across the H.T. supply-resistors R3 and R4 perform this function.

From the R.F. aspect, the grid of section (B) is properly earthed to chassis through capacitor C4.

In order to neutralise the first section and so maintain a high factor of input damping, a neusralising bridge circuit, comprising capacitors CI and C 2 . is adopted - although Cl is shown in Fig. 7 as a trimmer it is often only necessary to install a smali value fixed capacitor.

As a means of improving the gain of the stage and rendering it reasonably constant over the whole of Band III the peaking coil L3 is often incorporated. This is arranged to resonate with its associated stray capacitances in the V.H.F. region, when it has the effect of tuning out the output capacitances of the first triode and the input capacitances of the second. Its precise resonance frequency is not critical and no adjustment is usually provided.

## A Band III Frequency Changer

For use as a frequency changer at Band III frequencies, Mullard have also introduced an associate to the PCC84, namely, a triode-pentode type r'CF80. Both of these valves, incidently, have 0.3 amp. heaters and are, therefore, suitable for A.C./D.C. type receivers where the heaters are series connected; it should be noted, however, that the


Fig. 9.-An inductively coupled coil unit.
PCC84 heater is rated at seven volts and the PCF80 at nine volts. Equivalent type valves in the Brimar range. but having 6.3 volt heaters, are the ECC84 and the ECF82 respectively.

A Band 111 frequency changer circuit using a PCF80 is shown in Fig. 8. Here it may be seen that the insoming amplified Band III signal is applied to grid 1 of the pentode section, and that the triode section is arranged as a fairly conventional oscillator. Mixing takes place in the pentode section as the tesult of a suitable level of oscillator voltage being injected into the control grid circuit through Cl .

The reyuired sum or difference frequency is developed in the anode circuit and tuned by L2 and L3. It is here that the Band III signal is fed out at ether Band I frequency or, as we shall see later, at an intermediate frequency.

Since the oscillator frequency in Band Ill converters. adaptors and receivers is considerably higher than that hitherto used in TV equipment the possi-


Fig. 8.-A Band III frequency changer circuit.
bility ol oscillator drift is somewhat increased. So far as the valve itself is concerned this has a remarkable stability provided due attention is given to ventilation. It must be remembered however that at Band 111 frequencies only a slight alteration in the value of a circuit constant is liable to incite a frequency shift of several kilocycles. This is of course most marked in the oscillator section where the sound and vision may be severely disturbed as the result of such a frequency drift.

Capacitors are most affected by temperature rise and ordinary mica types tend to increase in value. Ceranic types on the other hand tend to reduce in value. It is, therefore, often necessary to use both types in the oscillator circuit so that the effect of one type outweighs that of the other type.

In order to keep the " noise" of a frequency changer as low as possible and to maintain optimum conversion gain it is most important to ensure that the correct oscillator voltage is being injected into the pentode section of the valve. This factor, unfortunately, cannot be easily checked by the experimenter, although measuring the grid current (control grid) of the pentode section aids in this respect. Normally this is something of the order of 40 microamps , but it is iable to vary slightly between units. As a further aid the anode current of the triode section and the cathode current of the pentode section may be measured, average current readings at these points are 8.5 mA and 6 mIA , respectively.

Capacitive coupling between the oscillator and the mixer section of the PCF80 is not always used. in fact some designers appear to favour inductive coupling where, instead of a coupling capacitor such as Cl (Fig. 8) being employed, the coils are mutually coupled together within a coil unit.

The scheme is illustrated by Fig. 9. which clearly shows the coil-unit coils substituted for those in the cascode and frequency changer sections of Figs. 7 and 8.

## A Cascode Band III Converter Unit

Fig. 10 shows a practical arrangenent of a Band I/ Band 11 converter, together witrdetails of the coils.

It should the found that the coils will tune to both Channels 8 and 9, but if this is not found possibie in practice the spacing between the coil turns should be altered as was deseribed in last month's instalment. So that any oscillator drift may be counteracted, a fine adiustment of oscillator tuning has been provided on this circuit, the control of which should be brought out at an accessible position on the converter panel.
Good quality components should be employed, and it should be borne in mind that successful operation will be achieved only if the unit is mechanically stable and the shortest possible wires are used to connect the coils and components to the valveholder lags-in this latter respect extra special care should be given in finding the most desirable layout of components and coils relative to the valveholders.
An A.C./D.C. yype power pack is shown, but this may be altered if desired and a transformer used instead, in which case 6.3 volt valves would be more suitable.
The line-cord should be cut to have a resistance
suitable for the local mains volage the resistances which correspond to the normal range of mains voltages are detailed helow:-

200 volts $=613$ - ohms
210 volts $=646 \mathrm{ohms}$
220 volts $=680 \mathrm{ohms}$
230 volts $=713$ ohins
240 vols $=746$ ohns
250 volts $=780$ ohms

## Tuning in the I.T.A. Programmes

If the A.C./D.C. power pack is used it must be, remembered that the converter chassis will be "live" to earth if the mains is incorrectly connected to the converter-special care should be given to this point, therefore.

Afier connecting the converter to the receiver, the receiver Contrast. Sensitivity and Volume controls should be turned to maximum, and the converter Band Swich set to the "Band III" position. A Band 1 II acrial suitable for the district should, of course, be plugged into the converter.

The oscillator coil L7 should then be carefully adjusted until the sound signal is heard-this may be
(Continued on page 176)


Fig. 10.-A cascode Band III converter circuit.

## All coils wound on Aladdin :ow-'oss !in. dust-cored formers. <br> 1.1-1 turn p.v.c. covered wire spaced $\frac{1}{8}$ in. from L2 <br> 1.2-2.5 turns 20 s.w.g. spaced in. <br> L3-4 turns 26 s.w.g. insulated, close spaced (selfsupporting).

L4-2 turns, wire and spacing as for L2.
15 - 24 turns $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. insulated, chose spaced.
1.6-2 turns p.x.c. covered wire, spaced $\frac{1}{\text { an }}$. from L5.
L\%-3.5 turns 20 s.w.g. spaced $\frac{4}{4}$ in.

# LEARN THE PRACTICAL WAY <br> Specially prepared sets of radio parts 

 from which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service radio sets. Whether you are a student for an examination; starting a new hobby; intent upon a career in industry; or running your own business - these Practical Courses are intended for YCU - and may be yours at a Very Moderate Cost.EASYTERMS FROM 15/-A MONTH With these outfits, which you receive upon enroiment, you are instructed how to build basic Electronic Circuits (Amplifiers, Oscillators, Power Units, etc.) leading to complete Radio and Television RecejverTesting and Servicing.

# EXP कRIMENTAL KITS in RadTo. IN eto 



TELEVISION_Withthis equipment you are instructed in the design, construction, servicing and testing of a modern high quality Television Receiver.

ALL EQUIPMENT SUPPLIED IMMEDIATELY AND REMAINS YOUR PROPERTY


## BEGINNER'S RADIO OUTFITS

- For carrying out basic practical work in Radio and Electronics, from first principles and leading to the design and building of simple Receivers


## ADVANCED RADIO

 OUTFITS - With this equipment. you are instructed in the design, construction, resting and servicing of a complete modern T.R.F. and Superhet Radio Receiver.

OTHER COURSES WITH OUTFITS INGLUDE:

## MECHANICS • ELECTRICITY GHEMISTRY • PHOTOGRAPHY CARPENTRY

ALSO DRAUGHTSMANSHIP • COMMERCIAL ART ANATEUR S.W. RADIO - LANGUAGES - ETG.

$$
\begin{aligned}
& \text { WOST THIS GOUFDN ToNOM } \\
& \text { Please send me your FREE book on Practical } \\
& \text { Courses: I am interested in Television } \square \text {. } \\
& \text { Radio: Beginners } \square \text {. Advanced } \square \text {. } \\
& \text { Other subjects } \\
& \text { (Plesse indicate Item(s) required) } \\
& \text { To: E.M.I. INSTITUTES. Dept. 138x, Grove Park } \\
& \text { Road, Landon. W. } 4 . \\
& \text { NAME } \\
& \text { ADDRESS }
\end{aligned}
$$

## CHANCE OF A LIFETIME



Corners Console A massive cabinet but being corner fitted is not out of place even in a modern small living-room. Overall dimensions of this
cabinet are fin. wide $x ~ 31 \mathrm{in}$. cabinet are fin. wide x 31 im .
deep to corner) \& 50 in . high. (deep to corner) \& 50in. high.
Made to house
15 Made to house Radio Unit, Amplifier. Tape Deck. etta. Originally car-out

## SNIPERSCOPE SENSITIVE LAVER FLUORESCENT SCREEN VIEWING WINDOW

Famous wartime " cats ese for seeing in the dark. This is an infrared cell with a screen -av tube) when the electrons strike it It follows that. as light is rich in infrared those cells will works as photo cell for : burglar alarms. counting circuits. Price $5 /$-each. Data
will be supplied with cells if requested.

RIIS5 YOURS FOR 30/-


The R1155 is considered to be one of the finest communicaton receivers available today its frequency range is $75 \mathrm{kc} / \mathrm{s}$ to $18 \mathrm{Mc/s}$. It is complete with black metal case. Made for the black metal case. Made for the R.A.F. so obviously a robust receiver Which will give sears of
service. Completely overhanded service. Completely overhauled and guaranteed in perfect workH. P. terms available on 196. or H.P. terms available on request if rerzuled. Carriage and Transit
Case 15/- extra. Nan Down Casio es 10 /- or in polished cabinet. $\mathbb{E} 6 / 15 /$

A SIMPLE AIJD USEFUL
TESTER

A very simple instrument for measuring E.HT. and perform ing many tests is described in the May issue of this magazine We will supply all the parts given In the parts list on Pare 532 (except the item Box Panels etc.) and the cost is 20 - post free. Paxclin panels available. 64. each.

## ADDITA-8AND III CONVERTER

 price $2 / 6$.

Cos erTHIS MONTHS SNIP $\qquad$
An interesting aerial. The Folded V was described in the Jul number of this magazine. We tried this and found it to reducing efficient. both for interference suength. It is simple to make. vive therefore. offer this aerial as a construetor's kit. The kit comprises alloy delemints and connectors, neat plastic centre pies with polythene insulators and saddle for mounting on existing mast or in loft. Window frame, drain pipe, etc.
etc. Price $8 \%$, post $\quad 6$. Construction data free with parts or available separ

## 3 INSTRUMENTS FOR 25 .

THE "ELPREQ" Band I\| SIGNAL GENERATOR

1. Will provide the signal for tuning to any Band $1 I t$ station.
2. Can be used as a grid-dip meter for checking the fireGurney of Band 11 ... aerials. Coils. etc
3. Can be made to give a pattern on \%. Receiver screen. This instrument is very easy 20 correctly calibrate and all the pessary equipment to to this is included in the kit. Alt chassis art available as a Kitat $25 /$ - post free. Constructional data free with Kit or callable separately, price $\mathbf{8} \mathbf{8}$.

## DEMONSTRATIONS AT ALL BRANCHES

In the ELPREQ F.M. Tuner four valves and two crystals are used. The last valve acts as a limiter so reducing the necessity of exact tuning and at the same time improving interterence rejection. Staiblity is extremely good and tuning most simple.
With only a simple indor aerial made by parting the ends of ordinary flexible cable this tuner works very well at Fast bourne (over 60 miles from London) and we await reports from even greater distances.
Cost of all parts including valves. prepared metal chassis, scale, slow motion drive pointer, fining knob. in fact everything needed to make the complete unit. is $£ 612 / 6$. data is included free with the parts or is available separately. price 2/-

## THE SENSITIVE TWO-VALVER

The circuit and constructional details of a small but useful portable high -gain all mains receiver appeared in the August issue of Practical Wireless. To constructors wishing to make this we will supply all parts listed on pages 481 and 482 at a special price of $5 \approx / 6$. plus 2,6 post.

## CHASSIS ASSEMBLY

 colour waveband scale covering standard long Medium, and Short wavebands. standard pan. chassis punched for stanley driving head, supernet. etc. to suit. scale size springs. $\times 3$ inn. Chassis size, 15 in . x $5 \operatorname{lin} . \times 2 \mathrm{n}$. deep. Price 15/plus 1/6 post.
lin. MICAOMETER Exceptional purchase enables us to offer a lin precision micro price of $10 /-$ a micro price of 10/- A micro meter manersential part of an chimer s equipment If you ret riulckly you cat remarkably low at the 10- post
10 - post free.
THE ELPREQ E.H.T
GENERATOR


This is a made-up unit power con sumption ( 6.3 volt 8 amp filament and approx 59 mA H.T.j con tans three BVA Valses, Output from 6 kV to $T^{3}$ ky with normal M.T. pall input but somewhat higher outputs can be obtained With hither H.T. supply. late output stare. Dimensions are output stage. Dimensions are packing, etc.,5/-


MADE FOR THE JOB This ex-W.I. 10 -valve superheat was designed to receive 20 mega cycles transmission so it will require virtually no conversion to receive the commercial I. V programmes.
These contain 6 valves type SP61. and one eacli RLT, LLL6 and EA50. Six IF transformers 12 Ales band, and hundreds of ot-lier useful components. Price 596, plus carriage and packing $7 / 6$. perfect.

meter to A.C. volts as well as D.C. volts. milliamps and ohms. Price for kit containing all the essential items including moving coll meter, metal rectifier, resistors, range selector. calibrated scale. etc. etc., is 19 '6, plus $1 /-$ post and packing. the D.C. only version is 15/- plus Md. post and packing

## ELECTRONIC PRECISION EQUIPMENT, LTD.

Posit order; should be addressed to Dept. 5, 123, Terminus Read, Eastbourne
Personal shoppers, however. can call at

42-45 Winhmis lIth.
RBi-lin. Virlid Plane : RUSLLIP 700
Half day. Wednesday.

152-3. Fleet Street. C. 4.

Phone: FLEET 2833
Half day. Saturday.
29. Stroud Great Hoad Pin=inry park. N. 4. Phone: ARChway 1049 Half day. Thursday
249. Ni fill Italy Killnurn.
Phone: MAId vale 4921 Half day, Thursday.

# High-Q Interference Rejectors 

aids in cléaring c.w. interference on television receivers

By "Serviceman"

TROUBLE is being experienced in many quarters from C.W. interference arising from general service transmitters in the 90 -metre band. These services cover taxi, ambulance and other mobile transmitters and their stationary commerparts.

Where R.F. televisors are used the interference can be particularly troublesonse, but even superhet circuits are not free especially in the case of the popular R1355 combination.

The first steps to be taken in such cases is to check the aerial system and, if possible, to re-orient it against the interference. In this connection it is as well to remember that the " H " aerial shows very little signal loss over a surprisingly wide are and can be turned so that its back is towards the interfering source. Much the same conditions apply to the " X " aerial.
In severe cases, where the constructor's apparatus is beyond criticism, the Radio Interference Branch of the Post Office can be called in. However, quite olten the constructor can cure the trouble himself by the application of a High-Q rejector inserted in the derial circuit. The cost is negligible and the elficiency can be extremely good.

The rejector described here is simply a section of coasial, or balanced twin cable connected in parallel with the aerial input circuit. Where the existing installation is coaxial then a length of similar cable should be used and where the existing input is balanced twin, then a balanced twin section of cable should be used.

The scheme is of the utmost simplicity: the length of cable used for the rejector is connected in paraliel with the aerial inpul socket as shown in Fig. F. The secret of its operation is in knowing the actual length of the rejector cable.

## Theory of Operation

A length of transmission line one-quarter of a wavelength long can present a low inpedance or high impedance to the frequency to which it is "tuned," according to whether the end of the section is left open-circuited or short-circuited. The reason for this is that the electric wave travelling down the line is reflected in part or in whole, when the line is terminated with an impedance other than the characteristic impedance of the line


Fig. 1.-Comection of the rejector.

In Fig. 2 we show the voltage and current on a line which is open-circuited at its far end. As the current reaches the end of the line it collapses as it has nowhere else to go. It drops to zero and the voltage rises to maximum. This is what we expect, but what is not always realised is that matters do not halt at that point. The current collapses to zero, and in doing so creates a changing nagnetic field which generates a current in the wire in the opposite direction to the original.

The current, therefore, travels back up the line in the reverse direction!
A litte thought will show that the current travelling back up the line (the reflected current) is out of phase with the original, the degree of the out-of-phase being dependent upon the degree of mismatch at the end of the cable.


Fig. 2.-Reflected current and voltage.
The current wave does not trave! back unaccompanied, of course, but has an associated voltage wave, the two being out of phase with each other.

It is possible to cut the line at any point and to obtain any relation between current and voltage which we require. For example, if the line were cut at point "a" (Fig. 3) we have the condition of rising voltage and falling current; this is if we look at the line from the "a" end. These are the conditions obtained with a capacitative reactance, and the line will, in fact, show capacitative reatance if cut at this point.
The point "a" has been chosen as being oneeighth wavelength from the end of the line.

Let us now cut the line at point "b." Here the voltage is at zero and the current at maximum, as it would be in a short circuit, or very low impedance. If the line were cut at this point, then, it would exhitit very low impedance. Point " $b$ " is one-quater wavelength from the end of the line.

If the line were to be cut at point " c " it will be seen that, looking at the line from the "a" end, the voltage is falling and the current is rising, which is the condition we get in an inductive reactance. If cut at this point, then, the line would exhibit an inductive reactance. This is at three-eighths wavelength from the end of the tine.

At one-half a wavelength we have zero current and maximum voltage (point " d ") which is the
same condition as at the end of the line. At this point the line would, therefore, exhibit a very high impedance.

From this point back to the beginning of the line the whole process is repeated, one cycle of the conditions being operative over each half wavelength. From this it follows that a line one-half a wavelengit long can exhibit any form of reactance which we require, simply by insertion at the appropriate point.

In Fig. 4 we have a line which is short-circuited at its distant and. In this case the current will suddenly rise to maximum as it encounters the shortcircuit and the voltage will drop to zero. This condition is the reverse at that of the open-circuited line, but the final result is eflectively the same, i.e., reflected current and voltage out of phase with each other, will travel back along the line.


Fig. 3.-An open-circuited line.
Suppose we were to cut the linc at " $c$ " then, looking at the line from the "a" end we have a rising current and a falling voltage which is what we would get from an inductive reactance. This is at one-cighth wavelength from the end. At point ${ }^{\prime} f^{\prime \prime}$ we have zero current and maximum voltage which is what we would get with a high impedance.

At point " g " which is three-eighth wavelength from the end we have a falling current and rising voltage which is the same as that in a capacitative reactanee, while at point " $h$ " we have zero voltage and maximum current which is the same condition as that obtaining at the end of the line.

If Figs. 3 and 4 are compared the following points will be noted: (a) if the line is cut at one-eighth wavelength it will exhibit capacitative reactance if the end is open-circuited or inductive reactance if the end is short-circuited; (b) if the line is cut at one-quarter wavelength it will exhibit a low impedance if the end is open-circuited, or a high impedance if the end is short-circuited.

It will be clear that a line one-quarter wavelength long can be made to exhibit a high impedance or a low impedance according to whether its end is shoitcircuited or open-circuited

Now note this most important fact : These conditions apply only at the frequency to which the line is cut.

A line which is one-quarter wavelength long at say $90 \mathrm{Mc} / \mathrm{s}$, will exhibit a low impedance to that frequency, if its end is left open-circuited It will not, however, cxhibit a low impedance to a frequency of (say) $80 \mathrm{Mc} / \mathrm{s}$.

Herein lies the key to the High-Q rejector. By connecting a length of coaxial cable directly across the aerial input socket, and adjusting its length so
that it is exactly one-quarter wavelength long at the interfering frequency, it will act a short circuit 10 that frequency, leaving the main signal practically inaffected.

## Cable Velocity Factors

The physical length in fect and inches, of a wavelength in free space. is not the same as its physical length when travelling along a cable.

Each cable will propagate the signal according to its own particular characteristics, and 10 arrive at the correct length of cable for any particular frequency it is necessary to multiply the free-space wavelength figure by a constant, which is termed the velocity factor of the cable (Vo).

For most of the cables used for television, both balanced twin and coaxial, we can lake the Vo figure as being 0.66 .

To cut a length of cable which is one-quarter wavelength long, it is necessary to divide $300,000,000$ by the frequency in eycles per second, convert the ansuer which is in metres to feet and inches, multiply this by 0.66 and this gives the actual physical length of the cable.

Under practical conditions it is simpler to use the formula:

$$
L=\frac{309}{f}
$$

Where $L=$ length in feet.
$\mathrm{f}=$ frequency in megacycles.
Add one foot to this length and then adjust the actual length to the true length by experiment.

Where the interfering frequency is actually known then it is a fairly simple matter to arrange the rejector. All that is required is 10 cut a onequarter wave-


Fig. 4.-A short-circuited line.
length section of cable which is resonant to the interfering frequency, and to connect the cable in parallel with the aerial socket.

If the actual frequency is not known, but the approximate band in which it is operating is known, then cut the cable for the lowest frequency in that band and conneet it in paraliel with the aerial socket. Now, by the exercise of patience, it should be possible to adjust it to reject the unwanted signal. Simply cut off 1 in . from the end of the cable ensuring that the ends are left open-cireuited and note the result on the screen. Repeat the process until the required length is obtained.

When the length of cable approaches that of the unwanted signal the latter will become progressively less and less strong; a minimum or null point should be reached and if cutting is continued beyond this point the unwanted signal will increase in strength.

# CONVFRTERS 

## THIS MONTH WE

 DESCRIBE THE CON. STRUCTION OF A FRINGE MODEL(Continued from page 122 August issife)

TO ensure neatness verify that the can is square with the chassis before the final tightening of the bolts.
The I.F. transformer is dealt with in a somewhat similar manner. This is L 6 . The number of turns will depend upon the local channel and should be as given in Table It. If the televisor has a five-channel switching unit which is easily accessible, then the coil should be wound for the channel to which it is intended to switch the televisor to avoid breakthrough as discussed in a previous paragraph.

To wind L6 a slighty different technique is required. First, wind on the main coil and fit the side wires for this coil. Take a note of the connections of the side wire so that no confusion results when the coil is mounted. If this is not done it may happen that the secondary winding is wired into the anode circuit of $V^{2}$ instead of the primary winding.

Now fit the remaining two side vires and wind on the small coil. This is two or three turns and it will be found quite an easy matter to thread the wire through the side wires.

The small winding should be wound in the same direction as the main winding and within $\frac{1}{8}$ in. of it.
Having soldered the ends to the side wires the coil mus: be fixed in position and then the can bolted on top of it.

A single tuning core is required for $\mathbf{L} 6$ and for $\mathbf{L} 2$.

## Wiring

We are now ready to commence the wiring of the unit and the novice is strongly recommended to use the wiring diagram. We would like to recommend the more experienced worker to this diagram also, as the layout must be adhered to.


The golden rule in the wiring is very short leads and good contact with the respective tags before the solder is applied. It is a good scheme to solder each wire as it is placed in position so as to avoid the possibility of dry joints, which nay be difficult to trate at a later stage.

Conmence work by winding LI. This is done with the coil form in position. 22 s.w.g. bate wire can

Fig. 6.-Details of coil L. 1 tor hoth models.

be used. Slip one end of the wire through the earth tag on VI holder and wind one complete turn; now slip the wire from the former and make a twist at half ia turn. Solder the twist and then replace on the former and wind the remaining lurns, taking the top end to L? Fig. 6 shows the method. The turns should be spaced about $\frac{1}{8}$ in. to $\frac{1}{4} \mathrm{in}$. apart.

The connection between the centre of the coaxial socket and the half-turn should be made with a piece of stiff straight wire.

Now wire in R1 and C2, followed by R2 and C4. Make the connection from the other side of LI to the valveholder and then wind $L 2$ in situ.

For this coit enamelled wire of the same gauge as used for LI can be employed.
This coil required five turns of wire spaced at tin. Start the winding by soldering the end of the wire to pin 8 of the valveholder winding in a clock wise direction and taking the far end to pin 1 of the valueholder

## The Oscillator Coit

The oscillator coil should be wound at this stage. It is not at all difficult, but the beginner is advised to follow the detailed instructions.
First wire one end of C6 to

length of wire as possible and hold the pliers on the wire between the tag and the condenser so as to convey away the heat generated by the soldering.

Now cut off the wire at the other end of the condenser, leaving about $\frac{1}{8}$ in. of wire from the condenser. On this solder the wire for the coil, which should be 22 s.w.g. and can be bare wire. Now wind on three turns in an anti-clockwise direction (don't bother with the spacing at this stage), and then slightly unwind the last turn and twist the wire so as to form a centre tap. A drop of solder will prevent the twist from unwinding. Now complete

(b)


Fig. 8.-Details of the I.F. coils. (a) and (b) winding are identical.
the correct number of turns (five and a half) and take the far end of the coil to pin 8 of V 2 .

The spacing between turns can now be adjusted so as to be about $\frac{1}{8} \mathrm{in}$.

At this point L4 can be wound. Wire of the same lype as used for L3 can be employed.

First solder one end of the wire to pin 6 of V1 and then wind three turns of wire spaced at $\frac{\mathrm{in}}{\mathrm{in} \text {. in an }}$ anti-clockwise direction. Actually two and a half turns are required for this coit so the next step is slightly to bend the first turn with the pliers so that the wire starts its winding half-way round the coil form. The top end of the wire can then be taken directly to the centre tap of L5 and it should be found that the coil has now two and a half turns as specified.

Now complete VI wiring.

## Wiring V 2

Wiring may now proceed on V 2 ; and commence by wiring C 7 . followed by R 5 and the carth wiring. Wire

R4 across the tags of the tag strip and follow this by C5, R7 and C9, which is mounted across the tag strip. Cl0 can be wired and then R3. C8 should be mounted vertically, the centre pin going to the centre section of the valveholder, which should be earthed.
The condenser must be mounted very firmly so that it will not shift.

R6 must be wired directly across the side wires from the coil. The coaxial cable can then be fitted.

The more experienced constructer may regard the detailed instructions on the winding of the coils as superfluous, but nevertheless he is advised to study them as by following this method the wiring up of the circuit will be found much simpler.

| TABLE II |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | Anoide coil | Coupling cont |
| Channcl 1 |  | $1!$ rurns | 3 turns |
| Chamel 2 |  | 10 turns | 3 turns |
| Channel 3 |  | 9 turns | 2 turns |
| Channel 4 | $\ldots$ | 8 turns | 2 turns |
| Channel 5 |  | 7 tutus | 2 turns |

If balanced twin cable is required from the output of the converter to feed the televisor, then the small coil of L6 can be wired directly across the ends of the balanced twin cable, no connection being made to chassis.

Check the wiring of the circuit and then solder the ends of a three-core cable to the tag strip. One wire is for the "live" heater, one for HT + and one for earth.

## Alignment

Connect a Band III aerial to the input socket and connect the output to the televisor. Confirm that a programme is being transmitted at the time of the test.

Set the cores midway on all formers and if regeneriltion is experienced adjust L3. Tap the Band I derial on to the grid of V 2 and adjust L 6 for maximum response.

Now adjust 1.5 with C8 set at its mid-position ontil the signal is recrived on the televisor, If nothing is heard, then adjust C8 to minimum and try again or adjust C 8 to maximum.

When the signal is received adjust L 6 for maximum


Underside view of the fringe model.
response and follow this by L. 4 and LI. If regeneration occurs further adjustments to L3 should cure it.

* Now adjust C8 for optimum response hetween sound and vision and L2 for zero breakthroueh of Band I stations.

L3 should normally be set at the mid-position between the two oscillatory points. This is the optimum position for minimum noise.

Note that plenty of time should be allowed for the convertor to warm up and under conditions of future use a minimum of five minutes should be allowed to let it settle down.

The unit can be fitted inside a television cabinet, the main precaution being to keep it away from excess heat. A console model is ideal as there is plenty of room availab!e.

## The Fringe Model

This model is for use on Band III, where the signal is weaker. It must be employed with a good aerial system so as to get as great a signal-to-toise ratio into the first stages as possible.

Greater gain has been oblained, first, by use of a separate triode oscillator and the provision of a preliminary stage of I.F. amplification. Amonget the many possible combinations of circuits it was considered that this would provide the best arrangemert. Another important factor is that the construetor of the normal service area model can convert to the fringe model if he finds that greater gain
is required. There is no wastage of components.
The R.F. stage is almost identical to that of the previous nodel and uses an ECC81 as the first valve. The EF80 of the previous model is used as the I.F. preamplifier in this


Fig. 9.-Theoretical circuit of the fringe model converter.

|  | LIST OF CONDENSER AND RESISTOR VALVES Resistors |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R1-150 $\mu$ | R7-2.2K | R12-1.5K | Cl-50pF | C7-470pF | C13-470pI |
| R2 470 K | R8-4.7K | R13-3.3K | C2-10pF | C8-470pF | C14-470pF |
| R3-1K | R9-6.7K | R14 3.3 K | C3-.001 $/ \mathrm{F}$ | C9-10p ${ }^{\text {c }}$ | C15-470pF |
| R4-4.7K | R9 $10-6.7 \mathrm{~K}$ | R14-3.3k | C4-50pr ${ }^{\text {c }}$ | C10-2pF | C16-470pF |
| R5-680 $\mu$ | R10-27K | R15-27K | C5-470pF | C11-0.30pF | C17-470pF |
| R6-2.2K | R1I-180 $\mu$ | R16-4.7K | C6-470pF | C12-470pF | C18-470pF |

The output from this stage is fed directly into the grid of the mixer, which is the pentode section of the PCF80. The oscillator is a standard Colpitis type and follows simitar principles to that of the previous model except that injection is made directly into the grid of the mixer by use of a small condenser with a capacity of 2 pF .

The first I.F. transformer is connected in the anode of the pentode section and is a bandpass coil using one of the Haynes coil units. Its output is passed to the I.F. preamplifier V3, which behaves as a normal amplification stage at intermediate frequency.

Output from this stage is taken from the second I.F. transformer, which has a step-down winding so as to match into the coupling cable connecting the unit to the televisor.

A power supply similar to that used for the service area model is employed with the addition of an autotransformer for providing a 9 volt supply for $V 2$.

## The Chassis

This is made from aluminium sheeting according to the diagram given in Fig. 10. The main holes should be drilled before the chassis is bent into shape.

The valveholders should be mounted in position, fitting an earthing tag under one of the bolts at each valve and taking carelul note of the way the valveholder faces.

The aerial socket and the Band III coils L1. L3, L4 and LS can be moumted in position. The coils are wound in sith.

## Construction

L2 should be made up first. This is exactly the same as for L 2 in the previous model. L 7 is made up identically to L 6 in the previous model. L6 in this model requires special comment.

L6 is-in effect two coils which are coupled together. The coils " $a$ " and " $b$ " should have the turns specified in Table II. The method of winding is as follows:

Use 28 s.w.g. enamelled or covered wire ; roughen the surface of the coil form to ensure that the turns
adhere to the surface. This can be done with some fine sandpaper.

The wire is slipped into one of the eyelets at the bottom and then the appropriate number of turns are closewound. The wire is then spiralled up to the approximate centre of the cojl form and 5 turns are wound on. From this point the wire is again spiralled to a point where the remainder of the turns as given in the Table can be wound on.

The side wires and top paxolin holder should be fitted and the beginning and end of the winding should be soldered to opposite side wires. Now cut the centre turn of the central winding of 5 turns and take one wire to one side wire and the other wire to the opposite side wire. The position should now be that two separate coils are on the former, one at the top and one at the bottom with a coupling section in the centre. The top section is tuned; the bottom section is luned: the centie section merely forms the couplings between the two coils (see Fig. 8).

Great care must be taken to note which side wires are connected to which coils so that no confusion arises when the circuit is wired. Coil "a " must go to the anode circuit of the mixer and coil " $b$ " to the grid circuit of the output valve

## Wiring

Having made the screened coils wiring can commence. First wire up the heater circuits as shown in the wiring diagram. Now mount the screened coils and proceed with the wiring of the circuit from VI.

LI should be treated exactly the same as L 1 in the previous model. Wire up this coil and 12 and then insert R1, C1, R2, C3. Now wind L3 as follows, using 28 s.w.g. enamelled wire. Solder one end of the wire to pin 1 of VI and wind on 5 turns in a clock wise direction : solder the far end to pin 8 of VI.

The neat stage is to bolt the small tag strip in position on the side of the chassis above L2 position. Now wind L4 with 28 s.w.g. enamelled wire, taking one end to pin 6 of V1, then where the wire meets the bottom of the former scrape the enamel from


Fig. 10. Chassis drilling data for the fringe modet.
the wire and tin it ready for soldering C4. Continue winding the coil in an anti-clockwise direction with lurns spaced about fin. apart. The top end is soldered to the tag strip above the coil: $2!$ turns are necessary.

F3, C5 and C6 can be wired and the complete wiring of VI checked. Now commence V2 circuit.

Wire in R4, R5 and C6. Mount the three-way tag strip adjacent to L 6 and wire in R 6 and R 7 with C 7 and C8. Wire in L6 and connect R 8 and R9
aerial to the grid ( $\operatorname{pin} 2$ ) of V2 and temporarily short circuit L5. Adjust $\mathrm{L} G$ for maximum response.

The next step is to connect the Band Ill aerial. Confirm that the Band 111 programme is being transmitted at the time of the test. Set all other coils so that the cores are midway and remove the short circuit from LS.

Adjust L5 with Cll set 10 mid-position until the Band III signal is heard.' If regeneration takes place


Fig. 11.-Wiring details of the fringe modet.
across the wires of the coil Wire in CI2 and follow this by wiring $C 4$ and then start on L5.

L5 should be wound with hare wire 22 s.w.g. Details follow.

## The Oscillator Coil

To wind this coil first solder one and of C9 10 pin $y$ of $\sqrt{ } 2$; cut off surplus wire from the other end, leaving $\frac{1}{5}$ in. of wire, and solder the coil wire to this. Wind on 5 turns of wire in an anti-clockwise dircetion and take the end to pin 1 of $V_{2}$. Where the wire leaves the coil solder the end of R9 to it, the other end of the resistor going directly to the H.T. + tag on the second tag strip.

Now connect C10 and R10 across the valveholder.
The linal work on this valve is to solder Cll vertrally as explained for the oscillator trimmer in the previous model. The condenser must be mounted very firmly.

## V3 Circuit

Wire in CI3, R11 and CI4 and the earth wiring on V 3 vaheholder. Connect the third tag strip and wire R13 from the tag strip to the side wire of L7 and nsert the decoupling condenser C15. R12 is wired from this point to pin 8 of $\sqrt{ } 3$ and the decoupling condenser Cl6 to earth.

Complete the wiring of the convertor and conned a four way cable from the last tag strip to the plug. This plug should be a four pin plug for fitting into a similat socket on the power pack. A standard octal plug and socket can be used if desired. The plug carrics H.T. + , Earth, L.T. I and L.T. 2.

## Aligrement

There is nothing difficult with the alignment. First check Let and L7 by using the existing televisor. Connect the Band I aerial to the grid of $V 3$ and the output of the converter to the televisor. Now tune L7 for maximum response. Transler the Band I
adjust L3. Tune in the signal as loud as possible and adjust LI, L4 and L3 for maximum response. Now adjust C1I for optim:m response between sound and vision and set L3 at a point midway between the two extreme positions where oscillation occurs.

Adequate time should be allowed for the converter to warm up.

ADDITIONAL COMPONENTS FOR FIG. 9.
Three B9A valveholders.
Four $\frac{1}{4}$ inch diameter coil forms with cores.
Three Haynes type coil forms with cans.
One Pye aerial socket.
Chassis as per data.

## Tag strips.

Valses : Onc ECC8I ; One EF80; One PCF80.

## General Hints

It is possible for two channels to become avaitable in the same area at a later date. Should this happen then CII can be replaced with a variable condenser, the spindle being extended outside the chassis and equipped with a knob.

In some cases it may be found beneficial to conneet a small trimmer of about $0-10 \mathrm{pF}$ between the aerial and the first coil so as to get perfect matching.

If rouble is experienced from oscillator drift then a condenser with a negative temperature coeflicient can be fitted in the oscillator circuit. A Dubilier type CTS 310 shotild be suitable. It should be connected across Cll.

To prevent tuning drift from the coils a drop of wax can be made on the cores, and the windings can be given a trace of polystrene dope.

In very difficult situations the first thing to do is 10 improve the acrial system, and when this has been done to the limit it is permissible to fit a preamplitier of the special low-noise type in front of the converter.
(To be contimued)

# CONSTRUCTIONAL DETAILS FOR AERIALS <br> FOR THE NEW BAND <br> By "Erg" 

BAND III AERIALS

IT is not possible to forecast what kind of results will be obtained in any particular area on Band III. It has been decided to employ vertical polarisation for the new band and this is a departure from the practice which has been accepted in other countries. New ground is being broken, the temporary Belling-Lee transmitter, at Croydon, being the first to transmit video signals in this band.

Data is being gathered on the performance of different types of aerials under these conditions. but the full facts will not be known until the permanent transmitter is operating at full strength.

It has been established that the attenuation of the Band III signals with distance, is much greater than those of Band I and simple aerials working with every satisfaction at about 30 miles from a Band I transmitter would be useless on Band III, if the two sransmitters were of equal strength.

The propagation of these high frequencies is rather unpredictable : we do know that the signal rapid!y decreases with increasing distance from the transmitter and we do know that reflections are likely to be a real problem. The higher the frequency the more prone it is to be reflected by static objects : the net effect is the production of one or more ghosts on the screen with possible triggering of the timebases and resultant break-up of the picture.

The simple dipole is likely to be useful only in those districts very close to the transmitter ; in districts farther away it appears that a direction aerial is necessary, not only from the point of view of increasing the pick up. but also so as to discriminate as far as possible against ghost reception.

For the constructor who is willing to experiment a, simple dipole may prove of value even if it is only to demonstrate the sagaries of the signal strength. Where the use of such an aerial is thought practical then it is worth while "probing" the immediate locality in an effort to find the best signal. It will often he found that the movement of the aerial a mere foot or so produces an appreciable variation in the strength of the signal.


Fig. 1 (left).—Basic dipole for Band III. Fig. 2 (right). -


Fig. 7 (left).—An "H" aerial. Fig. 8 (right).-Band I and Band III aerial.

## Basic Dipote

A dipole aerial is extremely simple to construct and can be made without the aid of special tools and at a very low cost.
All that is required is two rods fitted in the vertical plane with a connection made at the centre. The rods can be made of copper or duralumin tube $\frac{7}{8} \mathrm{in}$. diameter according to which is available. Copper is not really suitable for out-door work as it is subiect to corrosion: duralumin is better in this case. If copper is used, then it should be well-painted with several coats of good quatily paint. Battle-ship grey is a good colour to use as it becomes very inconspicuous against the skyline.
In Fig. I will be found a sketeh of the aerial. The rods should be lift. 3in. long (each) for Channet 8 and Ifi. $2 \frac{1}{2}$ in. long for Channel 9. Connection is made at the centre as shown in the diagram.

The type of cable used will depend very much upon the type used in the present televisor. It is bad policy to use coaxial cable when the receiver is designed for balanced twin and vice versa.
Some television receivers have a separate aerial socket for the Band III aerial, and where this is the case the aerial cable can be plugged in and left. The type of cable is generally indicated on the back of the televisor. A coaxial socket obviously demands a coaxial yype of cable and a twin socket, a balanced twin cable.
The two ends of the rods carr be brought into a junction box such as is used for electric cables and which is obtainable for a few pence from the multiple stores. The junction box which is circular in shape can be screwed to the end of a piece of wooden batten and the rods bolted through as shown in Fig. 2. The batten can be fitted to a shelf bracket and boitel to a wall or chimney stack.

It is important to keep the dipole clear of gutters, rain-water pipes and the like and also the wall itself. It is recommended that a distance of 3 ft . from the wall should be the minimum aimed at.

If litting the dipole to the side of the house do not fil it at the back of the house if the transmitter faces the front, or very little signal will be picked up. In Band $I$ it is often practicable to do this but not so on Band III.

T.V. (ond bisTEME for the new commercial stations. complete with 2 valves. Frequency can be set to any channel within We $186-196$ Mc s band. I.F. Will work into any existing T. V. recciver betwern $12-$
$68 \mathrm{Mc} / \mathrm{s}$. Input aryanet for 68 Michs . Input arranged for
f0 ohm leeder. EFB0 as RF 60 ohm feeder. EF80 as RF
amplificr. ECCal as local amplificr ECCD as local
cscillator and mixar. The cscinator and mixc. The
gain of the frst stare, RF gamplilier 10DB. Required power supp.3 of co at 0.6 amp. Input fiter ensurine irecdom from tunwanted sirnals. Simple adjustmenta only no instrumenta only, no instruments reduircd or trim

TR.F. or sup

 2/b. E9.19.6. Double wound mains transtover
CGMPLETELY BUILT SIGNAL GENERATOR

## BOTH GENERATORS GUARANTEED FOR 12 MONTHS

Coverase $127 \mathrm{Kes}-320 \mathrm{Kc}$ 's, $300 \mathrm{Kr} \mathrm{s}-900 \mathrm{Ke} \mathrm{S}$. $903 \mathrm{Ke} \mathrm{s-2.75} \mathrm{Mc} \mathrm{s}$. 2.75 Mc/s-9.5 Mc/e, 8.5 Mc - 25 Mc .s. $17 \mathrm{Mc}, \mathrm{s}-50 \mathrm{Mc} / \mathrm{s} .25 .5 \mathrm{Mc}$ g- 75 Mcis. Metal casc $10 \times 6 i \times 4$ in. size ot seale $6!x 3$ in. 2 values and rertitier, A.C. mains $230-250 \mathrm{v}$. Internal modulation of 407 c.p.s. to a depth of 30 per cent. . modulated or unmodulated, R.F. output continuously variable 100 milli volts. C.W. and mod. switch. variable A.F. output ana moving coil outpat meter Black crackle inish case and white pantl. Accurary plus or minus $24 \ldots$. $£ 4196$ or 34 /- deposit and 3 monthily paynients 25 -.

## PERMEABILITY TUNED T.V. UNIT <br> 

Input 309 ohm baiancod line. coverage $54 \mathrm{Mc} s-39 \mathrm{Mc}$ 's and 1 it Mc/s- 217 MCs Vision I,F, :- 55 McIs , sound 40.5 Mc S. Uses GAK5 RF valve, GAKS as mixer, and 6C4 oscillator. Provision for auto-kain control. Dimensions gin. wide, bilin. deep, qin. high. permeability tuned Compluding seale-overlap $14 i n$, Four stages permeability tuned. Complete with 3 valves. $\mathrm{H}^{3} \& \mathrm{H}^{3}$.- £2.1". 6 . Complete with rubber mask. Elac p heater short aluminised. Complete with rubber mask. Elac P.M. focus unit, scan colls
 Mazda CRM $92 A$, used with heater cathode shoit. guarantced for 3 months. P. \& P. 7/6. \&2.17.6.
40 watt Fluorescent $92217 \& 18$ ion burn. $25 /-$ post paid. 0 wat Fluorescent kit A.C. Mains 230/240. Comprising choke power-ractor condenser, ${ }^{2}$ tube holders. starter, and starter 20 watt $A \cdot C$ or $D C C=0020$
in white stove nd barrer $P$ namel, 2 tube holders, starter: starter-holder

Three speed automatic changer by a very famous manufacturer, current model. Will take 7 in .. 10 in . or 12 in . records mixed. Turnover crystal head. Cream finish VERY LIMITED QUANTITY
A.C. Mains 2001250. 1 £7.19.6.
P. \& P. 4/6.
 windins. complete with scan coiss and frame output transformer and line and width control. £2.5.0 P. \& P. 3.-.
As alrove but complete with line and frame blocking tranc formers, h henry 250 mA . choke, 100 mfd . and 150 mfd . 350 wkg 380 mA . A.C. ripple. f 2.19 .5 . P. \& P. $3^{\prime}$

 type. long spindle 3 -wole 4 -way, 4 -pole 3 -wav and 4 -pole 2 -way. $2 / 6$ each. 2-pole 11-way twin water, 5 ;- $;$-pole 12 -way single wafer. 5 - P. \& F. 3d.

(sil) motal reviller. 250 v .150 mA .6 .
 coil 175 ohms. Requires minimum 150 mA to energise maximum

 combinti 12 in .
pex. New appect, edged in brown. Fits on front of cabinct. 12/6. As above for 15 in . tube, $1 \% 6$.
> R. \& T.V COMPONENS (ACTON) LTD.

> 23 HIGH STREET, ACTON, LONDON, W. 3
> (UXBRIDGE ROAD) Telephone: ACOrn 5901

40-70 Mcis direct caljbration. checks fiame and ling time hase. trequency and linearitv. vislon channel alibnment. sound channel and sound rejecton circuits and sision ehannel pand wath. Silver plated coils, black erackle finished case $10 \times 6$ \& 4 in and wite front panel. A.C. mains 200250 volts. This instrument will
 extra.
 mosthingehokt. 220 mA . 5 henrs. $8.6: 250 \mathrm{~mA} .10$ henry, 10.6 on 'Trans for Mullard or Fnglish Elcotric ublues ste tube. 15:T.V. Colia, moulded former, tron cored. wound for rewinding purposes only. All-can lyin. x iin.. 1/- each ; 2 irun-cores Alican, 2 inn. $x$ án.. 16 each.
Hutilis $\quad$ (001 10kV working. $3 / 6$.
Primaty. 200-250 v. P. \& P
$300-0-300,100 \mathrm{~mA} .6$ v. 3 annp.. 5 v. 2 amp.. $22 / 6$.
1Drab 1 itru $350-0-350$ v. 70 mA .6 v .2 .5 amp. 5 v. 2 amp. $14 / 6$, ITrop 1 hr $0^{\circ} 250-0-250$ v. $80 \mathrm{mA}$.6 v, 3 amp.. 5 v. 2 amp.. $14 / 6$. 280-0-280, arop t.mrouch. 80 mA .6 v. 3 amp.. 5 v. 2 amp.. 146. 250-0-250 80 mA .6 v. 4 anmp.. 14-
1rod thru $270-0-27080 \mathrm{~mA} .6 \mathrm{v}, 3 \mathrm{amp} .4$ v. 1.5 amp. $13 / 6$.

stmi-uhrenallial drop-through 380-0-380 $120^{18 \mathrm{~mA}}$. 6.3 v. 3 amp. s. v. 2 amp.. 25/
anto-trank. Input 90050 . H.T. 500 v .250 mA .6 v .4 a. twice 2 v. 2 a.. 186.
250-0-250. 60 miA. 6.3 v. 1.5 at. 0-5-6.3 v. 1.5 a.. 10/6-
Ant" Trann, Input 200250 H.T. $350 \mathrm{v}, 350 \mathrm{~mA}$. Separate L.T.

 5.-. Input 210, $220,230,240$. Ser, $350-0-350110 \mathrm{~mA}$. with separate heater transformer. Pri. $210,220,230,240$. sec. 6.3 v. 2 amp.
 $350-0-35075$ н11. 6.3 צ. 3 a. tap. 4 v. 6.3 v. 1 a.. $13 / 6$.
 500-0-500 250 mı. 4 v. С.Т. 5 а.. 4 v. С. Г. 5 \&.. 4 v. С.T. 4 а., 39 '6.
 326. ${ }^{2}$. 6.
 and circuit diagram. 15
Andmone but complete with 6V6. EY51 and associated resistors and condensers, Circuit diagram. $37 / 6$.
and frame $p$ colls and frame O.P. transformer, £2.19.6. I. \& P. 3/
Foblishing itaththont for electric drills. in spindle, chromium plated oin. brusli. polishing cloths and one sheepskin mop mounted on a 3in. rubber cup. Pest \& pkg. 1/6. 12 6. Sbere heepskin mops, 2,6 eatch
 medium wave superhet in polishod walnut cabinet, size $11 \times 1 \% \times$ fin. complete with valves 6K8. $6 \mathrm{~K} 7.6 \mathrm{G} / \mathrm{and}$ 6F6. tin. 1'M

 sponl. 126 post paid.
 Mazda and lortal. $\sim$ r.t. "theh. 8 mfd.. 350 v . wkr.. tag end 16 paxolin. octal Mazda and 50 mid.. 25 v. wke. wire prads 1'9 37C 284 Noulded 100 mid. 400 . wke. 28! B7G mpulded with stleening|150 mfi.. 350 , wha $280{ }^{3 /}$ can. $1 / 6$ each.
$32 \mathrm{mtd}, 350 \mathrm{wk}$.
$16 \quad 24.350 \mathrm{wks}$
4 mfd . 200 wkg .
$40 \mathrm{mrd} . .450 \mathrm{wkg}$
1 \& $8 \mathrm{mid} . .500 \mathrm{wk}$.
$16 \times 16 \mathrm{mfd} ., 500 \mathrm{wkg}$.
$16 \times 16 \mathrm{mfd} .450 \mathrm{wkg}$. 32, $32 \mathrm{mfd} . .350 \mathrm{wk}$ $25 \mathrm{mfd} ., 25$ wkg. $250 \mathrm{mfd} .12 \mathrm{v} . \mathrm{wkg}^{2} \mathrm{~m}$
$16 \mathrm{mfd}, 500 \mathrm{wkir}$.

Where cost and packing charge is not slated. pleise aidl $1 / 6$ up to 1 f 2/-up to $£ 1$ und $2 / 6$ up to £2. All endulries S.A \& Lists 5 i. each

[^1]
## Viewmaster Owners

Write now for our leaflet giving the latest information on the conversion of your Viewmister for Commercial Television.

## BIND 3 CONVERTER hIT

We can supply a complete kit for the Teletron Band 3 Converter. This kit includes fully drilled chassis. full wiring and alignment instructions, two valves and every i:em required. An external power supply of $200 / 220$ volts at about 20 mA . and $6.3 \mathrm{v} . .6 \mathrm{amp}$ is required.

Instruction Leaflet, $4 \frac{1}{2} d$. , post free.

## WATTS RADIO

3 Apple Market, Kingston-on-Thames, SUIIBEE.
Telephone: KINgston 4099.


The two rods can be mounted at right angles and an " $L$ " shaped aerial made, as shown in Fig. 4a, or put at an angle of 120 deg., as shown in Fig. 4b. This latter may assist in avoiding reffections.

## Folding the Dipole

It is possible that the input to the television receiver on Band HIL is classified as being 300 ohms. If this is the case then the dipole should be folded and fed with balanced tivin cable with a characteristic impedance of 300 olims.

To fold the dipole, simply add another rod which is the overall length of the dipole itself and fitted at a distance of 2 in . from the dipole. The tho are connected together by shorting bars at the far ends, as shown in Fig. 5.

With a folded dipole it is possible to weld or braze the aerial to the supporting bracket, as shown in Fig. 6.

The weld is made between the metal sumporting bracket and the centre of the folded section. The dipole proper: is fitted with the junction box at its centre and the cable run from this along the metal brackel.

Note that in running the cable down to the televisor care should be taken to avoid sharp bends or reffections may occur in the cable itself.

## A Directional Aerial

The different types of acrials which can be employed on Band III are too numerous to mention in a short article of this nature and it has been decided to describe the construction of a straightforward "H" lype which forms the basis of many arrays.

This aerial is a well-tried favourite, and justly so, as it gives a gain of 3 db . over a straight dipole (half as much signal again) and has good stable characteristics. It is directional but not too directional so as to require careful setting, and it has the additional advantage of functioning over a wide are, so that the back (the reflector end) can be positioned against a source of interferenice, whether it be man-made interference or a reflection causing a ghost signal.

Fig. 7 shows the basic constructional principles. The aerial consists of a dipole proper with the addition of another element termed the "reflector." The additional element is simply a straight rod not connected to the aerial in any way. It "reflects" the incoming signal back on to the dipole and thereby increases the pick-up of the dipole.

The rod should be made 2 it . 7in. long for Channel 8 and 2 ft . 6 tin. long for Channel 9. The spacing between the dipole and the retlector should be Ift. 3 im . for Chamel 8 and ift. $2 \frac{1}{2}$ in. for Channel 9 .

Construction of the dipole follows the lines given previously. The cross-boom can be of metal or wood and is fastened to the mast at the centre.

It is possible to weld or braze the reflector directly at the cross-boom if the latter is made of metal, and it is permissible to do the same with eross-boom and mast if both are metal.

The cable is run along the cross-boom and down the mast in the usual manner. If the mast is a metal lube it is very tempting to conceal the cable by running it inside the tube. In practice the seheme is not so sound, as when the mast is vibrating in the wind the cable is liable to slap repeatedly against the sides causing a very annoying noise, especially at night time. It is picferable to rum the cable down the outside of the mast and to fasten jt at intervals of about Ifi. with a good layer of adhesive tape.

As in the case of the straight dipole it may the found that an aerial of 300 ohms impedance is required. The "H" acrial has a dipole impedance of aboul 60 ohms; if the dipole is folded as given previously, then the centre impedance will be in the region of 240 ohms which is a reasonable mateh to 300 -ohm cable. The method of folding is exaetly as given previously and. if desired, the dipole can be fixed to the cross-boom by welding at the centre of the foid.

The "H" aerial should the mounted as high as possible and at least 3 fi. from any Band I aerial. Because of the small size it is practicable to extend the mast of a Band I aeriat and to mount the Band HI acrial above it as shown in Fig. 8. The distance between any part of the Band 111 aerial and the Band 1 acrial should again be a minimum of 3 ft .

Note that it is not necessary for the two acrials to be in line as shown in the diagram. Either acrial can point in any direction.

Do not make the additional mast too tall or the array is likely to become unstable. About oft. is a good distance at which to aim.

## Alternative Fixing

An alternative fixing which can be made when the two transmitters (the Band I and Band III, transmitters), are more or less in the same direction, is by mounting a Band $111^{*} \mathrm{H}$ " of aerial within (so to speak) a Band laerial.
The system is shown in Fig. 9. The dipole and reflector for Band 111 are maderen the same lines as discussed in previous paragraphs and are mounted on the cross boom of the exisfing $H$ aerial. A scparate cable is used for the Band III dipole and the Band I cable must not be connected in parallel with it.

When lesting the aerial orthe ino Bands it should be positioned so as to obtain the greatest benefit from the weakest signal; this will generally be that of the Band 111 acrial.

## Ghost Prevention

One of the biggest headaches on Band III is the avoidance of "ghost " signals. These high frequencies are easily reflected and tall buildings, gasometers, trees, ctc. can reflect the signal back on to the aeriat.

Fig. 9 demonstrates the principle. The main signal is received at the house from the transmitter, in a straight line. A subsidiary signal is received from the reliection caused by the tall building at "A." The distance from the ransmiter to the house is rather less than from the transmitter to the building and


Fig. 3 (left).-Mounting the dipole. Fig. 4 (right).—"L" and "y" type dipgles.
thence to the house and, therefore, the second signal will arrive just after the first one.

On the television screen the result is that two pictures are received, one slightly displaced to the right of the other. The amount of the displacement will depend upon the distance which the reflected signal has to travel.

In some eases it is possible to get a signal which


Fig. 5 (left).-A simple method of making a folded dipole. Fig. 6 (right).-Welding the bracket.
is reversed in phase, the blacks appearing as whites, and the whites as black as in a photographic negative.

It is also possible to receive more than one reflection resulting in the appearance of several ghost signals. The picture is often thereby rendered useless.

In such cases a directional aerial such as the " $H$ " must be used and it must be oriented so that the back is, as far as possible, pointing in the direction of the reflection. If the actual source of reflection is not known then the position must be found by trial and error.

## RECEIVING THE I.T.A. <br> (Continued from page 162)

very weak until the other coils are tuned in properly. Once the sound signal is heard all the other coils should be adjusted until the sound is at maximum, and at this stage it may be necessary to turn down the Volume control and, in certain cases, the Sensitivity control.

## Balancing Sound and Vision

The Brightness control should next be turned up and an attempt made to resolve a picture. As soon as a picture or some form of nodulation can be seen on the screen, L1/2 and L4 should be readjusted towards the vision signal and an aim made to balance the sound and vision signals.

L5/6 should also be readjusted for sound and vision balance, consistent with optimum picture quality. Finally. L7 should be readiusted, with the fine tuning set to midposition, for maximum sound consistent with minimum sound interference on vision.

Additional notes on setting up Band Converters and Band Ajaptors will be given later in this series.

It should be pointed out that, although the converter circuits described so far incorporated power-units, Band converter units can readily be energised from the power-pack of the Band I receiver as most receivers are capable of supplying the 25 to 30 mA . of H.T. required. Moreover, if the Band 1 receiver has series-connected heaters-as most have these days-the heater circuit may be

Some constructors may find that the reflected signal is rather better than the direct signal and in this case the dipole of the aerial should be pointed towards


Fig. 9 (left).-A composite aerial for both Band I and Band III. Fig. 10 (right).-Reflected signals.
the rellection and not to the transmitter. Care must be taken when using this method, however; use of a reflected signal from a gasometer, for example, is liable to disappear when the gas supply is low!

In bad cases then something further than an "H" aerial may be necessary and the constructor may have to tuin to Yagi arrays, slot aerials and the like. If such aerials are used it is important to ensure good matching with the cable or the final result may be worse than the original!
broken and the heaters of the Band lll valves introduced into the chain : of course, it will be necessary then to wire the Band III valves in series, and ensure that their heaters match those in the receiver valves.
(To be continued).

## "PRACTICAL WIRELESS" SEPTEMBER ISSUE <br> Now on Sale, Price 1/-

The September issue of Practical Wireless contains constructional details of a 2-metre Walkie-Talkie for the licensed experimenter. The issue also includes "Switched Auto Station Selection," "Improving Amplifier Performance," "Diode-transistor L.S. Receiver," "Two and Three-valve Superhets,"," "Aligning and Servicing F.M. Receivers,", "Designing the Pi Network Tank Circuit" and "Small Mains Transformers."

Another article in the series on "Servicing Radio Receivers" deals in this issue with the G.E.C. BC4850 series receiver. Also included are a further article on "Using Test Instruments " and the conclusion of the short series describing the home construction of air-cored R.F. coils. In addition the issue contains features on world radio news and topics from the wireless trade.

## GUARANTEED NEW AND BOXED

| ＊ | $\star *$ | $\star$ | $\star \quad \star$ | $\star$ | ＊ | ＊ | ＊ | $\star$ | $\star$＊ | ＊ | $\star$＊ | $\star$ | $\star$ | ＊ | ＊ | $\star$ | ＊ | ＊ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＊ | AC／P | 619 | ELSI | 12／3 | 「ビざう | 8／－ | VTJ2 |  | 401 | 3）－ | 619 | \％／3 | めがす | 63 | 1003 | 13／6 | 1こざく | 6／6 | ＊ |
|  |  | $5 / 6$ | 151．91 | $81 /$ | P6S4i | $8 / 6$ |  | 8. | 42 | $8 .-$ | dPris | $8 / 6$ | （isla | $2 \cdot$ | 141） | 10．－ |  | 9／－ |  |
|  | A＇1＇4 | 816 | に，M3， | $9 /-$ | P1，\％｜ | 12／6 | 17501 |  | 51］4（155） | 8／6 | 4Pst | 7／ |  | 91. | $1 \mathrm{HF})^{\text {a }}$ | 13／－ | 1：20\％ | 818 |  |
| ＊ | 11njer | $71-$ | 15\％万1 | 13／6 | P63 | 10／． |  | 6, | ¢Y碞10 | $8 / 6$ | ti）${ }^{+1}$ ：${ }^{\text {a }}$ | 13／6 | 1， 217 | 4． | （t）1，1） 11 | 11／－ |  | $7 / 6$ | ＊ |
|  | 19131 | 4／－ | EY Y （1） | $7 / 6$ |  | 12／－ | V1）3！ |  | F\％ | 86 | \＃Fい！ | 123 | －1．at | 86 | 1upls | 11／6 | － | 91. |  |
| ＊ | 10H733 | 10，－ | 1：Z＋1） | 10／－ | P311： 4 | 10／－ | 11） | 8／6 | ．524： | 80 | ＋iFl 5 | 11／8 | （ivite | 76 | 11PP｜t | 11／6 | －\％ド， | 12／3 |  |
| ＊ | Difliji | 96 | 1 $2 \boldsymbol{H}$ | 11－ | PMos3 | 5／6 | VUtil | $3 / 6$ | ＋年 | 10／6 | ＋ibilid | 6.6 | divil： T | $\because 8$ | $\underline{\text {－}}$ Ati | 6／9 | － 21.1 | 10／． |  |
|  |  | $10 \%$ | 1：114＊ | $2 \cdot$ | M1：30） | 76 | 111：0A | 3／－ | 19．451： | 10／6 | dillis | $3 / 6$ | （1） | 15. | 12．A＇3 | 9／－ | $3 \cup 1.1$ | 11／－ |  |
| 片 | 边号 | $2^{-}$ | PW4／800 | 116 | Plsa | 96 | Wis | 9／－ | d．ac\％ | 66 | 15．）${ }^{\text {a }}$ | 5 － | $1)^{1}+$ | 8. | 12A17 | 9／－ | － 01$)^{\text {a }}$ ． | 11／8 | $\star$ |
|  | 15134 | 2／－ | ti233 | 12. | P141 | 108 | W ${ }^{\text {a }}$ | 96 | tiltis | 76 | to．lit？1 | $5 / 8$ |  | \％ 9 | 1147 | 10／－ | －11） 4 | 11 － | $\star$ |
| ＊ | E134 | 11．－ | c2：3： | 12. | 81.30 | 86 | $17 \%$ | 8／0 | 19．sJ | 9／－ | ¢．J．） 1 | $6 / 6$ | － HC | 9 | 1．2＇8 | 8／－ | －1．46\％ | 100 |  |
| ＊ | libesu | $2 / 6$ | 113： | 5／－ | N13209 | $6 / 9$ | 0／4 | 6／－ | 4，吅 | $7 /-$ | 6．1．19 | 8）－ | － $\mathrm{HSO}_{5}$ | 8.6 | 12111 | $5 /-$ | 2．51，it：T | 818 | ＊ |
|  | F\％Bで | 11. | H1．1： 0 | 39 | SPd | $3 / 6$ | 1A： | $9 /$. | 9，15 | $7 / 5$ | ti．JT： | $6 / 6$ | \％ CH | 86 | 123.7 | 6／－ | 2ちじいい | 12／－ |  |
| \％ | LBFS | 116 | HLごいい | 76 | s？ | 38 | 1 A万6t | 6.6 | （i） 115 | $\underset{\sim}{6}$ | けどから「 | 6／6 | 7117 | 8 － | 12127 | 9／－ | $10.0 K-16$ | 91／－ | ＊ |
|  | 18 5 | $6 / 3$ | $111210$ | 69 | T＇tar | $9 /-$ | 1 A 7 | $11 / 6$ |  | ${ }_{8} 6$ | やだっ！ | $8 / 8$ | －47 | 8. | ［2に88T | 106 | $25 \%$ | \％19 | ＊ |
|  | ECE:3,5 | 816 | Hr？ | 26 | 1＂111 | 9 － | 101： | 81. | tinuj | $8 / 6$ | bibeif | $8 / 6$ | － $1:$ | 8.6 | 1－2－919 | 明 | 湤1．6： | $8 / 5$ |  |
| ＊ | $\text { 相 } 13$ | 13／6 | 1118019 | 68 | 1ヵ2 | 8 | L．${ }^{\text {d }}$ | $\bigcirc 6$ | li．atit | 8／－ | いだい | $6^{49}$ | － | 86 | 12．207 | $7 / 6$ | $3.7104$ | $10 \%$ | ＊ |
|  | $\text { ECDI } 42$ | $10 / 6$ | KT， | $5 \cdot$ | 12 | 14.0 | 11.115 | $6 / 8$ | 1il3： | 6／－ |  | $8:$ | －\％4 | 88 | 12s147 | 516 | $3,3+67$ | $8 / 6$ |  |
| ＊ | ECL． 0 | $126$ | kT゙us | 11.6 | $1 \cdot \pm 21$ | 10／6 | 12． | 76 |  | $4 /-$ | が，ご「 | ${ }^{9} 16$ | \％ | $10=$ | 1383i | $8 / 6$ | 501，ibu | $8 / 8$ |  |
| ＊ | EFA | $6 / 6$ | $\mathrm{K} \mathrm{~T}_{1}$ | 9. | Uれい | 10／－ | 7 18 | 36 | 4i3 Ati | $8 / 9$ | til 1 | 11／6 | 77 | \＄：－ |  |  |  |  | ＊ |
|  | LAF36 SiF39 | 6／6 | K＇liti Kılutit | 116 79 |  | 9／－ | 174 | ${ }_{7} 6$ | b1BE」 dibe7 | $8 / 5$ $9 / 6$ | blit | $12 / 6$ | 911 | 86 |  |  |  |  |  |
| ＊ | RFP39 RF4 | $6 / 8$ $10 \%$ | Kıwit KTllits | 79 79 | 1．HLT CH\％ | 11／－ | 185 | 8. |  | $8 / 6$ $8 / 6$ |  | $\stackrel{9}{9}$ | 2117 -111 | 26 29 |  |  |  |  |  |
|  | Lrionsyl | 8／4 | KTZ＋1 | $6 / 9$ | LCH＋ | $13 / 6$ | －209\％ | $6 / 9$ | ＋ifl ${ }^{\text {a }}$ | 14\％ | Hi－ | － 6 | 11 | 2 |  |  |  |  | ＊ |
| ＊ | EFJT | 8／－ | 1.10311 | 69 | Cl． 1 | 11／6 | $\cdots \mathrm{X}$ | 3）－ | 㜞1 | $8^{\prime}-$ | 加：1； | 9／－ | 918\％ | 59 |  |  |  |  | 亩 |
|  | F\％F： | 71／8 | 1．1020， | $6 / 9$ | 1） 11 | 106 | 3．14 | $\underline{8}$－ | ＋30 5 \％ | $\stackrel{8}{8}$ | didat： | $9 /$ | （11114 | 5 |  |  |  |  |  |
| ＊ |  | 116 8 |  | $5 / 6$ | 1－2， 23 | 8／－ | 31） | 8－ |  | 86 | diti，n： | $8 /$ | ใ1／ 41 | 61. |  |  |  |  |  |
| ＊ | 812： | 12／6 | I'ccet | 126 | V1276530 | $5 / 6$ | 3424 305 | 10－ | nt latide | 86 136 |  <br> tivis | ${ }_{7 / 6}^{8 / 7}$ | ！！ | $2 i^{2}$ | Trne llil 3nh，3ist．atilas |  |  |  |  |
|  | ${ }^{121511}$ | 11／B | 1＇F\％ | 126 | ＋1 11111 | 4／－ | 345 | $8 / 6$ | \＆｜6； | 6. | क्यक1 | C／－ | （19\％） | 4／9 |  |  |  |  | ＊ |
| $x$ | 1－1，12 | 13／6 | ILFFS | $12 / 0$ | V1：151／20 | $9_{\text {：}}$ | 2 ${ }^{1}$ | 81－ | － $\mathrm{jam}^{\text {a }}$ | 73 |  | 8／－ | 554 | 36 | 1rnt． | $115 / 6$ |  |  |  |


|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


CPECIAL OFTEX
1 Peir 806A VALVES． $12 / \sim$ PAIR POST

LOUDSPEAKER UNIT3

## CRYSTAL DIODE 3

$25 / 6$ ta$16 / 6$ e
176 1\％ 6 en ． 18 －ed ．20／－ed

8：K：3／4t． 6 ：Kiltio．8／2 SELF－TAPPING SCREW（PK） JUNCTION BOXES OSAOR COIL PACKS
 40－－EARAGUE CONDENSER；
 9／－duz．

SPECIAL OF 2 ER
RCGフ TUBE 3 PICTURETESTED $20-$ EACH．CARR！AGE $3 / 3$.

MAINS TRANSFORMERS Q－WAY MOUNTING TYPE



MT2


$\qquad$

TERMS ：Cash with order or C．O．D．Postage any Packing charges extra，as follows：Orders value $10 /-$ add $9 d . ; 20 /$ add $1 /-; 40 /=$ add $1 / 6 ;$ \＆ 5 add 2／－unless ctherwise stated．Minimum C．O．D． fee and postage 2／3．

## MAIL ORDER ONLY

$8 \times 9$ minl． 4 in

## N．Jimal．

CONDENSER


## Unfailingly fresh

Tobacco at its best. Player's Medium Navy Cut is once again supplied in the familiar pocket tin, vacuum sealed, which means that absolute freshness is retained and enjoyment assured whenever you buy it.
2 oz. $\operatorname{tin} 9 / 1 d$.

## PLAYER'S MEDIUM navy cut tobacco

'The choice for a lifetime'

To open, sin:ply remueve small rubber seal.


POST THE GOUPON TODAY FOR OUR BROCHURE ON THE LATEST METHODS OF HOME TRAINING FOR OVER 150 CAREERS \& HOBBIES
private and individual tuition in your own hdme
Cify and Guilds Grouped Certifigates in Telecommunications: A.M.Brit.,.R.E. Examination, Ratio Amateur's Licence. Radio and Tetevision Serviciny Certilicates, General Radif and Television Courses, Radar, Sound Recortiling, elc. Alse Courses in all other branches of Emjineering and Commerce.

The advantages of E.M.I.training. $\star$ The teaching methods are planned to meet modern industrial requirements. $\star$ We offer training in all subjects which provide lucrative jobs or interesting hobbies. $\star$ A tutor is personally allotted by nama to ensure private and individual tuition. \& Free advice covering all aspects of training is given to students before and after enrolling with us.

> NEWLearn the PRACTICAL WAY COURSES WITHEQUIPMENT With many of our courses we supply actual equipment thus combining theory and practice in the correct educational sequence. Courses include: Radio. Television, Electronics, Draughtsmanship, Carpentry. Photography, and Commercial Art, etc.

Equipment supplied upon enrolment and remains your property.

Courses from 15/-per month

## 2057 TIIS gcumpon $700 \pi$

Send without obligation your FREE book. E.M.I. INSTITUTES, Dept. I38K 43 Grove Park Road, London, W. 4.

NAME

ADDRESS

## $9 / 55$

SUBIECT(S) OF INTEREST

## Air-to-Ground TV

THE BBC recently made successful test transmissions of air-to-ground live outside broadcast pictures. The tests were made in the course of a normal trating flight from a Royal Air Force " Varsity " aircraft.

All flying tests made in connection with these television experiments have been during normal R.A.F. training flights.

## From Earls Court

$B^{\mathrm{BC}}$ ten bigis outside broadcasts from the arena at the National Radio Show. They will include " Double Top "-a two-ring circus programme, "Youth in Command" -provided by 500 young people from youth organisations, "the Commonweallh Show"-an entertainment show representative of many Commonwealth countrics, and ${ }^{*}$ Sports dackpot ${ }^{-}$ including tests of skill between experts and well-known personalitios.

## Two ITPA Links

THE General Elcetric Co. Lid. is supplying the G.P.O. With equipment for wo new television links to help extend the coverage of ITA transmissions. The first is a microwatse radio link between Birmingham and Lichfield, for which the G.E.C. Lid. is supplying all equipment, and the second is from Birmingham 10 Wimer Hill. Bolton, for which the company will provide all the line equipment for transmission over at co-axial cable.

## Aberdeen Exhibition

A BERDEEN is to stage its own A television and radio exhibition in the Music Hall from October 12 th to $22 n d$.
it is hoped that the show will coincide with the opening of the TV transmitter and V.H.F. station at Corehill, Oldmeldrum.

## Journalists for Commereial TV

DRANK OWEN. MacDonald Daly and Godfrcy Winn, three personalities very prominent
in the journalistic field, have signed contracts with Associated-Rediffusion, ITA programme contractors for the London area.

All have had considerable television experience with the BBC.

## Flying Start

MR. C. McCOLLOUGH, one of America's outstanding television chiefs, has forecast that commercial TV in Britain will "take off like a jet rocket."

## ITA Headquarters

THE ITA which since October ol last year has been in temporary offices at Wood's Mews. Park Lane, London, W.I, moved on Friday, 29:h July, 10 is new permanent headquarters at 14. Princes Gate, London, S.W.7. The telephone number there is KNightsbridge 534 .

## Television Licences

THE following statement shows the approximate number of television licences in force at the end of June, 1955. The grand total of sound and television licences was $14,035,567$.

| Revion |  |  | Number |
| :---: | :---: | :---: | :---: |
| London Postal | $\ldots$ | $\ldots$ | 1.144.590 |
| Home Cosntie: |  | ... | $5: 2.744$ |
| Midland |  |  | 848.091 |
| North Eistern |  |  | 684.109 |
| North Western. |  | $\ldots$ | 682.740 |
| South Western |  | $\ldots$ | 265.993 |
| Wales and Border | Coumies |  | 256,066 |
| Total England and | ales |  | 4.394,3.33 |
| Scotand |  | .. | 256,639 |
| Northern Ireland | ... | $\ldots$ | 25.450 |
| G and Total |  |  | 4.676,422 |

## 1TA News Programmes

THE London ITA station will broadcast two news bulletins and reports per evening when lamsmisions commence on September 22nd.

Pye Undernater

## Equipment

$A^{\mathrm{T}}$Ta accent international trade lair held in Totonto, Pye underwater TV equipment was fealured prominently in a series ol demonstrations.

The cquipment, which included a Comet-type underwater camera, in conjunction with a slandard studio cameraandstandard $2,000 \mathrm{me} / \mathrm{s}$ Pye micro-wave equipment, was installed on H.M.C.S. Bearer, a Royal Canadian Navy reserve ship. The demonstrations were televised on the C.B.C. network.

## French Drama

VER fifly plays have been produced by French television churing the past season.


An operator uses an oscilloscope to check a pathel ou a two-channel transmit terminal at Telephone House, Birmingham. (See "Two ITA Links.")


This converted luxury coach is used as a television outside broadcast van by Tele-Monte Carlo authorities in Monaco.

It is not yet known what form these programmes will take.

## Polish TV Begins

TELEVISION broadcasts will be transmitted from Warsaw at the beginning of next year.

## "Higher" Purchase

TELEVISION ind radio sets are among the goods affected by the recent amendment to the Hire-Purchase and Credit Sale Agreements (Control) Order, 1955.

The main change is the increase in the minimum initial deposit from 15 per cent. of the cash price to 33 per cent. for these and other articles. The maximum periods for payment of the balance remain unchanged.

## More People Are Viewing

$I^{\top}$is reported that the number of television viewers in this country averaged $12,100.000$ over the first quarter of this year. an approximate increase of three million on the same period in 1954.

## Government Decree

THE BBC and the ITA have received details of a Government decree which rules that
neither may broadcast on sound or television discussions on Bills or lopics being dealt with by Parliament for 14 days beforehand.

## Good for Business

ASUBSTANTIAL increase in camera sales has been reported by the Photographic Dealers Association.

This is attributed to the interest created by Baron's recent television series entitled "Have You A Camera?

## Classies for ITA

IN his capacity of dramatic adviser to Associated-Rediffusion, John Clements is to put on five or six classical plays each year at the Saville Theatre, in London.

Then he is to have them filmed for showing on commercial television.

## Exclusive Services

R ADIO and television comedians who have signed contracts to remain with the BBC include such well-known personalities as Eric Barker, Peter Brough, Fied Emney, Humphrey Lestocq, Ted Ray and Dave King.

Others who have also done so include Gilbert Harding. Raymond Glendenning. Peter Cushing. Wynford Vaughan Thomas and Franklin Engelmann.

## British Films for the States

T
THE J. Arthur Rank Organisation has alranged for a number of top British films made since the war to be shown on American television.

The agreement will earn around two million dollars for the United Kingdom, and the films include "Odd Man Out." "Black Narcissus," and "Kind Hearts and Coronets."

## Signals from the Continent

VIEWERS in parts of Kent have reported pictures on their television screens believed to have originated from French and German transmitters.

This is probably due to unusual weather conditions.

## I onger Viewing Hours

THE BBC announce that as from September 4 th , evening television programmes will commence at 7 p.m. and finish between 10.30 and 11 p.m. On Sundays they will begin at 7.30 p.m.

Afternoon programme hours will be longer. 100. and tolal expenditure as a result will be increased by at least $£ 30,000$ a week.

## In Jupan

Iis estimated that 35,000 people out of a total population of $87,500,000$ in Japan watch television programmes regularty.

## Colour Receivers Ordered

THE BBC has ordered 12 colourte'evision receivers from a British tirm to be delivered by October.

These are for colour tests to be made by the BBC and there is detinitely no chance for some years of a colour TV service for the general public.

[^2][^3]

## BAND 3 T/V CONVERTER-186 Mc/s-196 Mc/s.

Complete Kit of Parts to build this mosi successfut Unit, with drilled chassis, valves, wound coils, and all components. Supply botages required 250 v. $20 \cdot \mathrm{~mA} \cdot$ H.T. 6.3 v. 1 a. L.T Wired and tested ready for $2255 . p 0 S t$ free Power Pack Comps. To
use, $15 /$ fithas chasis. $30 /$ extra.

Come and see this Unit in operation. Suitable for all types T/V sets TRF or Superhet and all channels $42 \mathrm{Mc} / \mathrm{s}-68 \mathrm{Mc} / \mathrm{s}$. Chassis $7^{\prime \prime} \times 4^{\prime \prime} \times 2 \underline{1}^{*}$
Prepare now for Commercial T/V.
Write today for blueprint and circuit details, 1/6 post free.

| Volume Controls | 80 ohm COBL COA |
| :---: | :---: |
| Sat | stis |
| leat |  |
|  | ${ }_{\text {sprctal }}^{\substack{\text { Smed }}}$ |
|  |  |
|  |  |

BALANCED TWIN FEEDER Der yd. 6d. ${ }^{80}$ TWIN SCREENED FEEDER per yd. $1 /-\}$ ohms 500HM COAX CABLE 8d., per yd. in. lia.
 liewhive Type-2 to 8 pi. or 3 to 30 yf . $1 / 3$ ewhe. RESISTORS.-Prei. valueg 10 ohins 10 megohms.

## CARBON

WIRE WOUND
$\frac{1}{2}$ w., 5d.; I w.. 8d.: 20., 9d.

0"' Type. $\frac{1}{}$ w.. 9d. 6" Type. ${ }^{3}$ w., $1 /-$ 1 ". Hi-Stab. w., $2 /-$.
WIRE-WOUND POTS. Pro. Ret Mir. T.V. Tyne. Kinnted Nlotted Knob. All valueg :i.) whms to 36 К., 3/- еа. sit K., 4/-. lilito varbon Track 50 K. to $\because \mathrm{Meg}$. $3 / \mathrm{F}$. COMDENSERS.-Mica. S. Mica, Ceramics. All ןref. vialaes. 5 pi . to ring pi., 8d, en. Tubulars,


 Himplex), $3 /$
SILNER MICA CONDENSERS.- $100^{\circ}$
5 pr , to 500 pi, , 1/- bity pi. to $3,060 \mathrm{pi} ., 1 / 3$.



## 3 VALVE AMPLIFIER

With variable Tone and Folitme controls. 3 Mhdypt IS. V.A. Vilves. 4 watts vutput. Neg, feedback. unasty amplifier at an tins. A.C.EOp/e., V. A £3.15.6. C'urr. :/6. Wired and tested, $\mathrm{m}_{6}$ PREE F.nestint, circuit and instr.: $1 / i$ (itee uith bit).

WAFECEANGE SWITCHES.-Mitget type, single Wafer ${ }^{2}$ pole, 2-way, 3 pole 2 -way, $2 / 6$ ea, ; 1 pole on way, ${ }^{2}$ pole 6-way, 3 pole f-way, $3 / 6$ ea. 4 -S Dole 4 -way, 6/9. SOUNDMASTER. -Set of 3 specilied switches, $25 /=$.


ALL WAVE RADIOGRAM CEASSIS THREE WAVEBANDS FIVE VALVES A. W. 16 m. - 5 m w. LATESTS MIDGET
 L.W. Wov in. 2.000 abinibs Hrand Now and (huaranteed. A.C. Qumeto v. Four mosition Whachnuge switeh. Short-Mndium-iong Gram. Pick-1]! comptectionv. High G tron-thas rored colls, Latent eirelit terhniume, helayed A. W. and Negative femlback. Ontjut appox. $\frac{1}{}$ watta
 i $\downarrow \mathrm{im}$. horizontial or ventical type available. lit ly jilot Lamps. Fuur kinobs supplied. Walnut of Ivory to chotce, nimised and calloratal ready for ase Chatsia isolated irom mains. PRICE fi. 15. 0 din. or Hin. sjeakers to mateh available.

## BARGAIN VALUE IN RECORD CHANGERS

Recommended for above chassis B.S.R. MONARCE.-Latest Motel 3 sp. AutoCbanger mixer Utito Fianoms Magibiac. 7. 10 and bein. Record Seleator. Mudern Crean styling lunk Xtan Cartridge stylus for Hi-fil reproduction. As used by leadia manulacturers. burginin Price.

## 9를 Gns. post free.



ELECTROLYTICS ALL TYPES NEW STOCK

Tubular Wire emis
 50/50 v., 4/500 v. 1101 20 8/500 v., I)uh.
 $\begin{array}{ll}8+16 & 4 \pi \\ 8+1 \\ \text { v. Hinits } 5 / 6\end{array}$
 $\begin{array}{ll}16+13 / 450 \\ 3-1850 \\ \text { v. B.E.C. C.C. } & 5 / 6 \\ 4 /-\end{array}$ $32 / 850$ v. B.E.C $32+32 / 351$ v. B. E.O. 5/6 $\begin{array}{ll}32+32 / 560 & \text { v. 131b. } 7 / 6 \\ 3\end{array}$ Can Types, Clips, 3d, ea,
$8+8 / 450$ v. T.C. $4 / 6$ $8+16 / 450$ צ. Himats $5 /$ $16+16 / 2 \%$ v, T.C.C. $4 / 6$ $15+16 / 4+15$ \&. B.E.C. $5 / 6$ $16+16 / 4$ ปै $v$. T.C.C. $6 /$
 32/350 \%. B.E.U. 4/ $32+32 / 450 \mathrm{v}$. B.E.C. 6/6 お $1 / 350$ v. R. L.C. 6/6 $00+100 / 850 \mathrm{w}$ $10+0.6 \%$ 12/6 $100+20012 \%$ \%. L. Fi. $12 / 6$ $1000+1000 / 0$ v. B.F.C $300 \mathrm{mfd} .12 \mathrm{8} \quad 3 /$. MAINS TRANSFORMERS. - Male in our own Horkshops to Top Grule spec. FullF interleaved Workshops to Top Grade spec Fim AMPLIFIER TYPE, - D.50 v., 6) ma. F.W. sec., 5 r. or ( 6.3 v. 1 a rect. 6.3 下. 2.5 a., вet Htrs. $21 /$-. ete, C.R.T. HTR. rect. fin r. TYPE. Bet Law lrakage with or without


 to order. SPECLAL TYPES, - To designers sthes. to orter. SPECIAL TYPES, - To designers spee simplex, $35 /-$ : Vewmaster, 35/- i Lynx, $30 /=$; Hullard Amp., 35/= ; Usrath ylz. 35\%. HEATER TRANSF. .or 14 v. 15 a. $7 / 6$; $6 . \mathrm{S}^{2}$ v. 3 a. or úv. 3 a . or 4 v . 4 a . $10 / 6$.
L.F. CHOKES. -10 H. gī̃ ma.. 5/-: 15 H. 100 ma.. $10 / 6$; 10 H.. $1 \geqslant 0$ ma., $10 / 6$; 20 H. 156 ma.. 15/6; Simplex, 10/6; thumimaster. 10/8: P/W U.K. Rraphex, 13/6. OUTP OT TRANSF.--sundmaster 6/6: P/W Quatity F'qram.. 35/-; Usraw 512 sectionalized withlings, 5\%.10.0. Mirs. gurphus ispes,
 small pentude, $3 / 9$; Midget battery peutorle ( $1>4$, 3 F 4 , ete.) 4/6.
SOLON SOLDERING IRONS ( $200-220 \mathrm{v}$. or $200-250 \mathrm{v}$ ) 25 watt, instrument type, 10/6: 63 watt, Yencil Bit Type, 25/-: ii, watt, Gval Bit Type, 23/Comprehensive stock of spares avaibable.
CRYSTAL DIODE_-Very sensitive. G.E.C., $2 \%$.

F.M. TUNER-UNIT ( $87 \mathrm{me} / \mathrm{s}-105 \mathrm{me} / \mathrm{s}$ ), by Jasou;
 Chmplete K it of narts to build this modern highly successiul unit, drilled chassis and J.B. dial. cuils amel etc. fur only, £6.10.0 post free. SUPERIOR
 restibrated in Me/s and lllustrated bablloul with fill details TOGGLE SWITCEES EX-GOVT.-" On-of." 9d. Ersit mow zoluer 60/40. lf g., 4d. Sd. : 18 g. 3d. yd., 3/- per $t$ ib. T.C. Wire, 18 to 2y E.H.g. 2d. St., PFC. Connecting wire. 10 colours. Single or strimite, wa- yni
ded 1 mm . and 9 mm .
2d. yd. 3 min. anm 4 mm., 3d. 5d. 6 ninn., 5d, 5d.

## Hiskis

## 12 CHANNEL TV． TUNER <br> 

Famous make．Covers Bands I and III．Complete with valves EFB0 and ECC31．Ceramic valveholders，finest quality components，precision made Switch and fine tuning．I．F．output $201-25$ and $40-50 \mathrm{Mc} / \mathrm{s}$ ．Freq．coverage 50－97 Mc／s and 175－215 Mc／s．Supplled with tull details and circuit diagram
LASkY
Post
$3 / 6.6$
89／6

## Knojo．2／9 excra

TUSIETEON IBAND HI CONVER TH：R COMI，NET．－For use with T．R．F and superhet Band 1 receivers．Uses two Z71）．Circuit．practical wiring diagram．allgnments．full details with each set． $15 /$ ．Post $1 / 6$ ．
the handsome＂rothesay＂cabinet
Absolutely rigid construction with Ain．finest laminated woods， veneered in walnut．polished light．
medium or dark shade．Fitted medium or dark shade．F＇itted gold anodised speaker，grille．The able．supplied to order to suit any Size tube．
Outside dim． 24 in．high． 21 in． wide． 211 in deep．Inside 181 ln ． wide $13 \mathrm{y}_{\mathrm{in}}$ deep．Size of top 224 in ．
 Carrlage $15 /$ extra． doors．£14．9．6．
Available on H．P．terms．

＂THE UNIVERTER＂－FOR BAND \｜ll CONVERSION OF BAND I RECEIVERS
Send for this new book just published．giving full details or a new Band III Converter for any TV recelver． home constructed or factory made．All conkonents and valves in stock．prices on request．Also availahle as a complete unit．Uses two 6AM6．one THE BOOK．containnt fult circuit diagram．winln instructions and component ！ists， $3 / /$ post frea


MULTI－TEST METERS
Basic ohms per volt． micro－amp．．3in．AC DC $0-5.003$ v． $0-1$ amp．I switched ranges ： 100.000 ohms and 1 meg．．also carlying case（ $6 \times 6$ ．$\times$ tin closed）．
Post． $3 / 3$.

95－
TEST LEADS． $3 / 6$.
LASKY＇S（HARROW RD．）LTD．

 Telephone：CUNningham 1979－7214．
Open all day Saturday．Half Dav ：Thursday Ald
MAIL ORDERS TO HARROW ROAD．PLEASE．

## MAKERS＇SURPLUS COMPONENT BARGAINS

## WIDL A VGit： 38 mut．

Line E．H．T．trans．，lerrox－
cube core $9-16 \mathrm{kV}$ ．．．．．．
Scanning Cotls．
line and frame
Frame Output Transformer $10 / 6$ Scanning Coils low imp．IIne
Frame or line blocking osc．
transformer ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Focus Magnets Ferrox－dure ．．． Cored
$4 / 6$
19／6
Duomas Focalisers ．．．．．． $29 / 6$
$300 \mathrm{~m} / \mathrm{a}$. Smoothing chokes
Electromagnetic focus coit
ith combined scan coils
STANI．<br>｛1？ 35 mun．
Line Output Transformers
line Dutput Transiormers $6-9 \mathrm{kV}$ ．E．H．T．and 6．3v．
Winding，Ferrox－cune … $19 / 6$
Scannim colis．Low imp．hne Ditto by Igranic
Ditto by Igranic ．．．．．．．14／6
Frame or line blocking oscil－
lator transformer ．．．
Frame output transtormer ．．．$\quad 7 / 6$
Focus Magnets ：
Without Vernior ．．．．．．12／6
With Vernler ．．．．．．．．．．17／6
Focus Colls．Electro－
or）m．a．Smoothing chokes ．．． $10 / 6$
H1v．（fysiv．1m113EX，glass type，wire ends．each 15.
iilix． $4 \overline{5}$ and equivalent types． various makes． 3.6 ．
DEIRIM．MInis． 2 teles sections． excending to $151 t$ ．Complete with Gレษョ．etc．，25／－Carr． 36.
ABIRIAI．BODS．steel．heavily copper－plated．Any number fit together．12in，long． $2 / 6 \mathrm{doz}$ ．，bost free．


 These are brand new in mixed records．Cream finish－List price £16． 10.0 ． Our Price 87．19．6．cart free．

62A INIICNTOIS UNTV Containing VCR9i with
 3－EA50．2－EB34．Plus pots．， switches．H．V．cond．Ie－ sistors．Muirhead S／M dial． double deck chassis． BRAND NEW．ORIGINAT， CASES，6\％＇6．Carriage 7／6．

PME 45 ME／S NTEID TVPE 3583 NVIR Size $15 i n . ~ x ~ 8 i n . ~ x ~$
Comn
Cote Commete with $45 \mathrm{Mc} / \mathrm{s}$ ． PYe Strip． 12 valves -10 EAVO．EB34 and E．A50． volume controls，and hosts of Resistors and Con－ densers．69／6．Carriaze paid．
 VCRG－（slighe cut－off VCR92 VCR9 VCRラ17C Fuarantee VCR1：39－guarantoed TVPicture opp1 Picture 3RP1 Fuaranteed full Care \＆packins … 30 carr，\＆packing on al

All ttems sold sepurately

## （RADIO LTD．）

＇rRF 26＂＇F．M．CONVERTER UNIT $88 / 100 \mathrm{Mc} / \mathrm{s}$

| This well－known RF23 Unit is now adaptable for F．M | nier drive．Can be con－ |
| :---: | :---: |
|  | verted at low cost of 92＇6． |
| reception using 2 l．F． | Send 1／6 or 8 －pase Descrip－ |
| stages and separate local | tive booklet contalning full |
| Oscillator and tuned by a | wiring instructions．cit－ |
| Muirhead graduated Ver－ | guits and layout diagrams． |
| COMPONENTS OFFERED | TO COMPLETE F．M．UNIT |
| New RFi26 UNIT | INSTRUCTION |
| WITH THREE | BOOK with tech－ |
| VALVES | nical eircuit and |
| VR137．EF5\％． | complete layout $\quad 1 / 6$ |
| PF5t Chassls | SPECIAL OFFER |
| stamped out for | OF ALL ABOCE |
| easy conversion ¢1．15．9 | ITEMS．  <br> CLUDING RF－2 |
|  | and book ．．．£6．5．0 |
| COMPLFTE SET | mostage |
| OF ALL COM－ | CHARGEFOR |
| PONENTS FOR | ALIGNMENT |
| CONVIRSION． | WHEN COM |
| jncluding 2－6BA5 | PLETED \％／6 |
| and EB91．tuning | COMPLETE SET |
| condenser． | as ahove and 6 |
| I．F．T．＇s and OSC． | valves－Aligned |
| coils resistors | and ready for use $£ 8.10 .0$ |
| and fiked con－ | N．B．VOLTAGE |
| densers．pluss． | REQUIRED 250 y ． |
| wire and tay | 50 ma ．and 6.3 v ． |
| strips ．．．．．．£4．12．6 | 2 amps． |

## VALVES－VALVES－VALVES

WE IIWF GVII：50，000 AMERICAN AND ENGLISII VALVE IX STOCK NT VERY MWWITICLS SENH 3 A． FOLS 28－IPME M，USTEATED CNTMLOGUE．



Ideal for tape recording and amplifiers．No matching trans－ former required



## TV NEWSREELS

MUST admit hat I haven't looked at the BBC News and Newsreel for a long time. Somehow it has lost its appeal. But I an looking forward to the ITA's newsreel, which is being organised by Philip Dorté and edited by Aidan Crawley. I hope that Mr. Crawley will resist the temptation to introduce still photographs, slides, dagrams and pretentious documentary; the original BBC newsreel format was snappy, entertaining and popular, and a return to this style would, I am sure, receive general approval.

## filmed plays

WHAT is the ideal length for a television play? The BBC has had a preference for long plays of 90 minutes or so duration. The TV plays now being slockpiled by the commercial television film makers fall into two precise categories: the long play of 54 minutes and the short play or "feature presentation" of 27 minutes - both timings being exact, the hour and half-hour in each case being made up by commercial announcements. Associated Rediffusion, whose Wembley studio is alnost ready for action, have in the meantime been filming quite a number of 54 -minute dramas at the Shepperton film studio. Titles include " The Inward Eye," "Summer in Normandy," "The House in Athens" and "A Glorification of Al Toolum." all of which will be teleased on the ITA programme during the autumn. The Associated Broadcasting Company, operating at Highbury Studios, have concentrated largely on $27-$ minute productions, and the first series of 39 under the general title of "Theare Royal" has almost been completed. The next series of 27 -minute dramas is to be produced under the title "Sunday at Three," which is the time they will be televised.

## THE SHORT PLAY

IHAVE always felt that 90 minutes playing time is 100 long for a TV play. Few of them really hold the viewers the whole of the hour and a half. This is the conventional length of a stage play in three half-hour acts which, with two 15 -minute intervals, makes an evening's entertainment at the living theatre. The BBC seems to have accepted this convention, substituting a short tea break" for the lengthy theatrical intervals. The ITA is unlikely to have any time to spare for intervals, and their producers have been instructed to make their productions lively, slick and snappy. I must say that I have a leaning towards the half-hour play. There is no denying the fact that it is much more difficult to write a first-rate short play than a long one. Short plays are like short stories; they require the pen of a master and I haven't noticed very many budding Arnold Bennetts, Somerset Maughams or Noël Cowards up to now.

## " THE ROMANTIC YOUNG LADY"

'THE ROMANTIC YOUNG minute BBC TV play, adapted by Helen and Harley Granville-Barker from the romantic comedy by Gregorio Marginez Sierra. Here was a comedy that was pleasint enough but whose plot was so gossamer as to be hardly worth bothering about. It moved at a slow steady tempo and had it not been for the pleasan personalities of the players it would have been exceedingly tedious. However, it scrved to introduce Sylvia Syms, at young repertory actress of great promise who, I note, has already been snapped up by Associated Rediffusion and is playing a leading part in "The House in Athens." Spanish drawing-room comedies of 20 years ago are no different, it seems, from English drawing-room comedies of the same period. The
leisurely pace, much-ado-atoutnothing, belongs to another age. Shortened by about 30 minutes and with strengthened dialogue and situations, il might have made the grade.

## THEATRES FOR TV

$T H E$ theatre has been the main source of supply for TV plays for a long time. And now, with so many suburban and provincial theatres closing down, it has become a refuge for television enterprise. Following the pattern of what took place in America at the start of the television service, a large number of theares and music halls in London are now under consideration for conversion into television theatres on the lines of the BBC's Shepherd's Bush Ennpire. The Granville Theatre, Walham Green, is now almost ready for use by Associated Rediffusion and the Wood Green Empire by Associated Broadcasting Company. These theatres will be wholly devoted to TV, as will the King's Theatre, Hammersmith, which will be taken over by the BBC. The Embassy Theatre, Swiss Cottage, has been bought by the Granata group for use on somewhat different lines. It will be used as an experimental live theatre for trying out plays on the public, with the ultimate object of regular use as a television theatre when the ITA's northern transmitter at Winter Hill conses into operation next March. I should imagine that quite a lot of snags have to be overcome to make a theatre equally satisfactory for a paying public and for a permanent TV theatre. The problems are quite different from those which are now so expertly dealt with by the mobile TV teams.

Apart from permanent workshops, offices and technical departments, facilities have to be proided for refinements of smooth tracking for cameras in the front of the stage, such construction frequently occupying the whole of the stalls

At the Wood Green Empire, the stage has been extended about 15 ft . over the former orchestra pit and a brick-built camera runway has been erected from the back of the theatre up to the front of the stage. Only the circle and gailery are available for spectators. The original stage has been entirely rebuill.

## TRAINING FOR TV TECHNICIANS

IN America the Society of Motion Picture Engineers became so involved intelevision that it changed its name to the Society of Motion Picture and Television Engineers. I wouldn't be at all surprised if our own British Kinematograph Society does not take the same step sooner or later. It has a growing nembership of BBC and other TV engineers and is shaping its programme of lectures and educational courses on lines which have special appeal to these new nembers. This autumn the B.K.S. has planned a special course of study under the main title "Film Production for Television." Some of the titles of the proposed weekly lectures and the names of the lecturers give an idea of the scope of the course: "Introductory Lecture on the Principles of Television and Kinematography." C. B. B. Wood of BBC Research Department: " Basic Lighting Requirements," W. R. Stevens, G.E.C. Laboratories: "TV Film Processing Requirements." H. E. B. Grimshaw, Kodak Laboratories: "Sound Recording for TV," John Byers : "Cartoons," Peter Sacks. This sounds to me to be a very practical approach by experts in various specialised fields and I should not be at all surprised if there is a capacity attendance.
"PARIS 1900"

IDID not see the original presentation in $195+$ of the historical film material collected together under the title "Paris 1900." The English-version transmitted last month, with an admirable spoken commentary by Monty Wooley, contained a lot of items from a much later period than 1900. Actually, only a small proportion of the film scenes were photographed in that year and not all of them were in Paris. But the wide range of personalities and places covered made the subject one of the most interesting items of the month. Films of French politicians, English Royalty, international
sporting figures, fashions and historic events were edited together in a smooth continuity that made 50 minutes of first-class entertainment. Once more, I noticed, the speed of projection and modern aspect ratio detracted from some of the early material: movements were jerky and the left-hand side of the picture was cropped a little. If this kind of item is to be transmitted regularly-and $I$ hope it will bethen the BBC should find it worthwhile to install specialised equipment for sending it out in the form it was originally photographed. Alter all. the archives of the British Film Institute are open to the BBC or other organisations as a source of early film material, as are the historical film libraries of the newsreel companies. Most of the early films were shot at 16 frames per second and should be projected at this rate. Alrernatively, special prints could be made in which every other frame is printed twice, to bring it up to 24 frames per second, near enough to the 25 frames which is the BBC's standard.

## OLD FILMS

0D films and not-so-old firms of feature standard are getting a new lease of life in the U.S.A. Paramount have sold 30 films of pre-1949 release to a TV organisation. In anorher deal 40 British victures of importance will be televised under the series title of "The Fabulous Forty." Titles include such popular successes as " The Sound Barrier."." The Captain's Paradise," "Tales of Holt. mann," "Gibert and Sullivan" and "Outcast of the Islands." A recent surprise deal has been for the rights to televise in America two Korda British films which have only recently been completed: Richard III, with Sir Laurence Olivier, and The Comstant Husband, with Rex Harrison. I wonder if the day will come when the BBC or one of the ITA contractors will transmit a feature American film prior to its release in England?

## VARIETY NIGMTS

II seems that Sunday night is to be Variety Night! At any rate, both the BBC and the ITA seem to be putting on their best possible variety programmes on Sunday nights! Contrast this state of affairs with the monastic type of Sunday programme broadcast in the earliest davs of the BBC. On

September 25th commercial TV sets the standard with a star programme headed by Gracie Fields from the London Palladium, and on October 9th the BBC will transmit a gala performance of the Grand Order of Water Rats in honour of the 93rd birthday of Fred Russell, known as the "Father of Variety." Tommy Trinder, Flanagan and Allen, Ben Lyon, Max Bygraves and many other stars will appear.

## MEDIUM CONQUEROR

THAT first-class entertainer Ted Ray has done it again. Whichever medium he turns his many talents to he succeeds, unlike many stars who have to concentrate their abilities on one medium only.
Ted was a pre-war variety artist but in those days he never gor the right breaks necessary to become a household name. For years be appeared frequently on radio variety bills and had only just begun really to establish himself when his big chance came in the form of a radio series of his own-
Ray's A Laugh " and if ever one series boosted a broadcaster's popularity then this one certainly did. The characters introduced by Ted in his show were copied by everyone. In the same programme, Peter Sellers and Kitty Bltett came right to the fore.

Now Ted has become a television star in his own right. His recent series on Saturday nights have been a rip-roaring success and his has that nice distinction between the slower and more sober English humour and the snappier Transatlantic style. When one considers his film appearances as well. one can realise why he is earning a reputation as "a conqueror of any medium."

## VIEWING TRENDS

INOTE from the latest statistics issued by the BBC Audience Research Department that, although the television viewing public is smaller than the sound radio public, television audiences tend to exceed those of sound broadcasting.

This piece of paradox is explained by the BBC Audience Research Department. They state that in the evenings television viewers spend far more of their time in front of their sets than radio listeners spend tuned in.
 Build your convertor now. Full constructional details including point to point diagram and parts list, etc., price 6 d., post paid. Complete kit, including valves, punched chassis, down to last nut and bolt sent by return pose paid, $£ 2$.15.0
Suitable for superhet or TRF receivers. Call and see this converter working on the new station.

IHADE IKADIO NF BETCEIT 187, LONDON ROAD, MITCHAM, SURREY. MIT. 3282
"The quality component specialists."

## HNE E.II.T.

 TLBANSFOIRMEIRS EEWUDUNI
## PREPISTLU

Our 30 years' experience of winding and wave-winding enables us to provide the finest service in the Country for all types of TELEVISION COMPONENTS. We repair or manufacture all types of transformers singly or in quantity, and welcome your enquiries

## HI. W. FDRREST

 (TIRANEDHDERS) ETD.349 HASLUCKS GREEN ROAD, SHIRLEY. BIRMINGHAM.

Telephone: SHI 2483

## IT'S 60\% CHEAPER!!

to construct your own aerial, whether

## TELEVISION or YAGI

Write for our catalogue, illustrating all firtings, prices, etc Included in the range we offer Alloy Masts, Insulacors, Reflector and Director rod holders. Mast head fittings, togecher with formulae, useful construction hints for designing your own aerial ece.
Send 9d. in stamps to cover the cost of postage and cotologue to :-


MARLBOROUGH, WILTS.
Fhone 657/8.

## IT PAVG TO SOLDER



TRIGGER FEED SOLDERGUN


Tupe No. 51 is designed specially for allassembly solder is operations. Solder with fed automatically with rrigget-action and two reelsaresupplied-and 15 it. acid-coied 15 resin-cored. 15 it . acid resin-core
one 15 t . onels of view, well able to withstand hard workshop treatment and ideal for continuous use. licatures include rapid constant localised heat-solid sturdy construction-low current consumption - perfect balance - absolute dependability. A type and bit for every purpose from fine instrument to heavy industrial work.

Each tool includes 5 feet rough rubber 3 -core cable.

Obtainable from all leading tool merchants and factors. Fully descriptive Brochure free on request.
WOLF ELECTRIG TOOLS LIMITED FIONEER WORKS. HANGER LANE, LONDON, W. 5 Telephone: PERivale 5631-4
Branches: Birmingham, Bristol, Glasgow, Leeds. Manchester, Rowcastle

## FIRST-CLASS TELEVISTON and rADIO COURSES

## GET A CERTIFICATE!

After brief. intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification or learn Servicing and Theory. Lee us show you how!

## ----FREE GUIDE-.......:

The Ne:w Free Guide contains 132 : pages of information of the greatest importance to those seeking such success compelling qualifications as A.M.Brit.I.R.E., City and Guilds Final Radio, P.M.G. Radio Amateurs' Exams., Gen. Cert. of Educ., London B.Sc. (Eng.), A.M.I.P.E., A.M.I.Mech.E., Draughtsmanship(allbranches). etc., cogether with particulars of our remarkable Guarantee of
SUCCESS OR NO FEE
Write now for your copy of this involuable publication. It may well prove to be the turning point in your

FOUNDED 1885-OVER .. . . . - 150,000 SUCCESSES. . . . ...! NATIONAL INSTITUTE OF ENGINEERING
(Dept. 462), 148, HOLBORN, LONDON, E.C.I.


PULLIN TEST METER AC/DC 10,000 ת/V 21 ranges $100 \mu \mathrm{~A}$ to 1000 V conact in itcoss coss wry hir tuas fulur suapanteeo

SENT POST FREE FOR $£ 2.10 \mathrm{~s}$. DEPOSIT AND ELEVEN FURTHER MONTHLY PAYMENTS OF £1. CASH PRICE \&12.7.6.

## VALVES <br> SAME DAY SERVICE

All Guaranteed New and Boxed 1.40 midget. 1R5, IS5. 1T4, 3S4, 3V4, DAF91 1.4* midget, 1R.5, IS5. 1T4, 3S4, 3V4, DAF91
DF91, Dh91, DL92, 7i3 ; any 4 tor $26 / 6$. 1A7GT GP25 14/6/B36 16/6/EL91
 $1 \mathrm{D} 5 \quad 11 / 6 \mathrm{GSNTGT}$ DAC32 GZ32 15/-








$\begin{array}{llllll}524 G & 9 / 10 \mathrm{P} 13 & 10 /-\mathrm{ECC83} & \mathrm{PZ3} & 1 \% \\ 6 A L 5 & 6 / 3 & 10 \mathrm{P} 14 & 12 / 6 & \end{array}$




$6 \mathrm{C} 3 \quad 8 / 6 \mid 2 \mathrm{Q} \cdot \mathrm{GT}$ EF39 6/6






READERS RADIO
24, COLBERG PLACE, STAMFORD HILL, LONDON, N.16, STA. 4587

ALUMINIUM, LIGHT ALLOYS, BRASS, COPPER, BRONZE, IN ROD. BAR, SHEET. TU3E, STRIP. WIRE, ANGLE, CHANNEL, TEE

3000 STANDARD STOCK SIZES
H. ROLLET \& CO., LTD.
6. CHESHAM PLACE.LONDON,S.W.I SLOane 3463 Woriss
36, ROSEBERY AVE., LONDON, E.C.t.
Branches at Liverpool. Manchester, Birmingham, Leeds.
"No Quantily too Small"

## 

## NEW-MAX

ELECTRONICS LTD.
307, EDGWARE RTAD
!UST PAST THE MET.)
Tel. : PAD. 5607
London's Rest T.V. and Radio Bargain Store
Special 0irur: T.V. Hubes- Ill vizes:
9 in., £4: 12ln. irom £4/10/-: 14in., $£ 6$; 15in.. E\%: 17 in . from $£ 9 / 10 /-$.

Every fube futuranteed.
Cinllers rian sec bicture before bimehtas. We have just completod a larse purchase of used and H.P repossessed T.V. sets-all prices. Speeial item: 1807 H.M.V. 101 L . chassis adapted to be used with Mazda 12117. tlibe. E18 10 includny tube. These chasaly transmitter. Also large selection of usei radios. Gram chassis, Instruments, ampliLers, tape recorders, etc
SiPEIAI, DFIJit G-valve 5 wavebant Radiogram Chassis includes R.F. sture. Beautiful. superbly made chassis complete P,P, £g/of=, Size: 12inn. long, 8in. high 8in. wide.

## RADIO AND TELEVISION COMPONENTS

Viewmasier, Soundmaster, Telexingictc. Easy Terms available
2łd. stamp (only) for Citalosus.
JAMES H. MARTIN \& CO. IINSTHWAITR, NEWISY IBRIDGE UH.VEIESTOV. HANGS.

## Are You Making Your Own Radio or Television?

We can make the cabinet for you in any slape, design or fivish you require. Work execulted by expert craftsmen.
Call or send dranings for gttoration.

## B. KOSKIE ( $\left.\begin{array}{c}\text { Depl. } \\ \text { ch }\end{array}\right)$

72-76, Leather Lane, HOLBORN, E.C.1.
Phone: CHAncery 6791/2.

## HR <br> QUALITY TELEVISION COMPONENTS SCANNING COILS 6/10 kV. R.F., E.H.T. UNITS <br> E.H.T. and OUTPUT TRANSFORMERS LINE FLY-BACK E.H.t. UNITS <br> Write for illustrated list (Publication 75) <br> HaYNES RADIO tid.. <br> Queensway. Enfield, Middlesex.

AERIALITE AERIALS for Band I/II Reception on "EP"

6. 1 ( 1 (Dessi 20:3)
3. CORBETTS PASSAGE. ROTHERHITHE NEW ROAD, LONDON, S.E. 16

The Editor does not meessarily agree wit the opilsions expressed by his correspundents. All letters must be accomparied by the mame and address at the sender (not neeessarily for pulbication).

## THE K/B. HF40

 IR,-Re the remarks of P. F. Harrington, E.II, and his K/B. HF40 in the August issue.The common cause of frame cramping at the botton is due to falling off of the two RM3 metal rectifiers placed side-by-side next to the RM4.

It will be noted that these two rectifiers supply H.T. to the sound O.P. and frame O.P. values and should your reader not have a suitable test meter I would suggest that he disconnects the H.F. feed to the sound O.P. transformer and looks to see if the frame still eramps; if there is no alteration these rectifiers require changing.-I. S. Eimonds (TV Engincer, Croydon).

## FOREIGN TRANSMISSIONS

SIR,-In reply to G. Little, N.W.5, on Foreign Transmission in July issue, on July 19th during Children's Television, I noticed patterns on the screen. I attempted to resolve same but Wenvoe was too strong. Programme having ended, at 6 p.m. I tried all channels but five was best. I succeeded in obtaining a picture of what appeared to be animal stitls. Later an announcer, ihree-quarter lengh, appeared. Sound was bad, an occasional burst of music and a few distorted words which seemed French. Picture was negative, i.e., reversed blacks and whites, and faded slightly but locked in quite strong. Programme shut down at $6.30 \mathrm{p} . \mathrm{m}$.

My set is an Ekcovision T.22I. Standard H aerial 15ft. high.-B. Snook (Somerset).

## RADIO AND TV INTERFERENCE

SIR,-Having studied Mr. J. Rayner's letter in the July issuc, I feel that he is a little confused over the regulations and the way in which the Post Office carries out its investigations. My own experience of the Post Office regarding TV interference with sound radio is quite the opposite of what Mr. Rayner states in his letter.

About two years ago the Post Office representatives called on my wile during one afternoon and asked if they might lest my TV set, a home-built Televisor with R.F.E.H.T. They found that the line timebaise was causing very bad interference with long-wave Light Programme reception in a neighbour's house on the opposite side of the road. My wife asked them to call and see me the same evening. They came as artanged, and together we quickly eliminated the interference, to the complete satisfaction of my neighbour and myself. facidentally, the suppression eircuit, a choke-capacitor filter supplied by the Posi Office, is inserted in the mains line at the points of entry into the mains transformer primary, and its action is two-way. Not only does it prevent line pulse entry into the mains, but it suppresses odd interference which is mains borne. As a result of this my picture was cleaner and more noisefree. I cannot remember the exact cost. but it was well under ten shillings. I was told that a large number of TV sets, both commercial and home-built, were bad offenders with the long-wave Light Programme, as $200 \mathrm{Kc} / \mathrm{s}$ is at harmonie of $10 \mathrm{Ke} / \mathrm{s}$, the line frequency, and the Post Office is kept quite busy with this problem.

Mr. Rayner should also note one more point. Now that F.M.V.H.F. is with us more listeners will be using this band for sound reception. and it is subject to the same forms of interference as TV.

In conclusion the P.O. engineers told me that it was very rate indeed to meet with obstruction and refusal to co-operate over interference, once a polite request with a concise explanation was given.H. G. Dines (Godalming).

## A COLOLR IDEA?

$\mathrm{S}^{12}$IR,-To my mind the problem of colour television is quite a simple one. But then I am a practical man and not a sery good mathematician.

And such a simply good idea going to waste.
The simple idea is to imagine the spot of a spotwobble outlit oscillating at the frequency of the individual colours and/or vibrating within the bandwidth of each colour, the latter giving depth.

Now let us take, for instance, the colour red (red being the slowest frequency), the frequency of which is $380-480 \mathrm{M} \mathrm{Mc} / \mathrm{s}$, or shall we say $380-480$ billion cycles per second.

And this is where the shags pile up.
What formulac can one use for oscillatory circuits in such circumstances?
And what valve can handle such frequencies?
And it was such a simple idea.-S. Window (Manchester).

## CHOICE OR HABIT?

S
IR,-Are we getling the television hatbit these days or do we view our entertainment instead of just ljstening through choice?

Iam tempted to ask this because of the case of my young son who has just left school and started work for the first time. When the Test matches are being broadeast simultaneously on radio and television, he arrives home at $6.30 \mathrm{p} . \mathrm{m}$. at the close of play too late to watch any cricket itself but in good time to hear 10 minutes or so of summing-up of the day's play. For this, he has two options. Switch on the Ty set and look it Peter West's lace while he describes the play, or, allernatively, tune in to the radio and just listen. He has nothing to gat by choosing the TV yet he always does. Is this choice, Sir, or habi!?H. G. Ross (Sevenoaks).

## TEST CARD C

SIR,--If other readers were to do what I have just done with my "Argus" receiver, they would certainly have a shock.

The set has given me good service for over two years and to mysclf and my family the picture has always looked well up to standard, that is considering focus, height and width, etc. Now 1 have had occasion to be at home in the morning during the test transmission period when Test Card C and film sequences are transmitted for the benefit of the trade and less knowledgeable amateurs like myself.

I switched on and was anazed at the itregularity of the Test Card C pattern. Athough blacks, whites and greys were all right, the shape of the whole pattern was "terrible" to say the least. It is well to give your receiver this test every few months or so, it seems.-I. Richards (Tooting).

## Your problems solved



## H.M.V. 1808

My problem is : I bought, second-hand, an H.M.V. television, model 1808, A.C./D.C.

Switching on for testing I found no raster so I decided to connect aerial to find if sound section was O.K.

I then found I had sound, also a picture, buf linehold control was at end of its travel and would not lock-timebase giving me multiple picture. I tried all service hints given in September, 1954, issue of "Practical Television "-all to no avail, but on insertion of approximately a 10 K resistor in parallel with the 25 K variable horizontal hold I now have picture which I can hold. Have you any suggestions? -R. Smith (S.W.11).

Although you say you have carried ou! all the hints advised, we would put the following possible causes:

1. Defective B36 (most likely).
2. $330 \mathrm{k} \Omega$ resisto on tag panel near KT36 valve base gone high.
3. $25 \mathrm{k} \Omega$ line-hold slider element open circuit (E.M.I. or Colvern).
4. Check brightness control ( 50 K . front panel). Also Parallel $47 \mathrm{k} \Omega$ resistor.

## VIEW-MASTER

I have recently completed a View-Master as a $12 i n$. console model. The tube is a Mazda 123, aluminised, with E.H.T. boost circuit. The frame amplitude is all right, but the recommended alterations to the linecircuit still does not have any appreciable effect and the scan is approximately 1 in . too narrow.

A second fault which I cannot overcome is foldover at the left-hand side of the screen of about $\frac{1}{2} \mathrm{in}$. width. J. W. J. Hurnen (Billingham).

The first fault is undoubtedly caused by the second. The linearity components of the line output and boost circuit should be tested and checked to ensure that they are all as recommended. It would appear that the line-output transformer is not matched properly with the line-scan coils or that a component failure is causing such a mismatch.

## SIMPLEX

I have carried out modifications as page 341 .January issue : normal type aerial, high, cleaned EF50 valve pins and fitted retaining clips. Result-picture perfect. No sound (with brass core in 12 only, other cores irondust). Replaced L2 with dust-core-perfect sound, no
Whilst we are ahomis pleused to assist rectiers with
their uechnical difficulties, we regret that we are whanle
to sumply diasrams or provide instructions for modifying
surnius equinment. The cannot supply atternative details
for constructional wricles which appear in these purges.
WE CANNOT UNDERTANE TO ANSIVER QUERIES
OIER THE TELEPHONE. The counon from p. 191
murs? be athached to all Queries, and if a pastal
reply is required a stamped and addressed envelope
must be enclosed.
trace of picture. The only adjustment necessary to obtain sound from vision is to replace $L 2$ as previously stated: no need to touch any other cores. Cannot seem to compromise with regard to core of L 2 , which seems to be the deciding factor.

Any advice would be gratefully received, as I am puzzled by the inability of covering sound plus vision, although either is perfect alone-V. F. Cooper (Norwich).

It would appear that L2 is not tuning broadly enough. Try taking one turn from primary and secondary, and then set LI to compromise between vision and sound.

## ARGUS

I am at present starting to build the "Argus" TV receiver.

On looking through your publication of February this year. I find that you give modifications of the "Argus" receiver for using the tube VCR511A. A friend has offered me a tube VCR511B.

I am unable to find the difference between the VCR511A and the VCR511B.

Perhaps you could let me know what difference, if any, exists.-Gordon B. Melville (Cambridge).

The only difference between the two tubes is in the screen. The "B" type can be used, but the screen has a slightly longer persistence than the " $A$ " type.

## MARCONI VT62DA

I have a Marconi table model television, No. VT62DA. This now requires a new tube. Is it possible to fit one of the new 16 or 17 in . daylight viewing tubes? If so, what modifications would be necessary and is the circuit worth rebuilding the timebases, etc.?

Can you suggest a circuit for modification? I was wondering if it would be possible to use something like the one described for the wide-angle View-Master. D. Farr (Caerphilly).

We cannot supply details of the involved mechanical alterations which you require. The increase in picture size would not be appreciably greater and the brilliance obtained with the original type of tube in good order is sufficient for daylight viewing. We regret we cannot advise you further.

## H.M.V. 2808

This model is arranged to work on the Midiand wavelength and I now wish to use it on the Lordo. wavelength. Could you please advise me what parts must be changed to enable me to use it in the London area ".

Could this be done by using the converter mentioned
(Continued on page 191)
＂RADIO UNLIMITED＂Cffer inci．circuits and data， 15 ：conlete kit for converter，incl drilled chassis nind values． $35 /$ ，with pover pack 52／6；valves EF80．11／－；drilled chassis only $4 / 6$ ；Munard Amplifier． exact 10 spec．．kit．incl．valves． 0 ens；complete 11 gins．High－gradc 3－staqe Gram．Mic．Amplifier kil incl values $59 / 6$ TRF receiver
 6／：；606 Motal，8／\％；EFPrA， 96 1A3．3A4．EYY1．ML6，ED2，9D2．4D1． $3 / 9$ ca．New lists availabie．MADIO UNLMMFED EIM Road．London 1．${ }^{17} \mathrm{KEY} 4813.1$ Also at 50 ，Hoe DATEL OF PRESTON．Sarvice Sheris atd Componemts for Radio ind Tele vision．S．A．E．cnquiries．please．171． Notrs S．．．Preston，Lancs
FADIO－GRAM CHASSIS，29／9，includ mog bin speaker 5 valve s het 3 valves．「ested，guaranteed：carr． 46. Set of Knobs to suit． 10 exim DUKE \＆CO．621．Romford Road， Mantor Park．E． 12. dard 3－5 ohms：guaranteed，post 19 Mnno Pirs．E．12．IGRA 6677.
HADIO－GRAM CHASSIS， $14 / 9$ A．C
 valves：otnerwise brieved to be work Ronford Road．Manor Park．E． 12
 Receiver 161． 160 220mes．．vaves 1／CViti． 2 EF54．${ }^{1}$ EC5？．17／6；1．F
 Ri355，new lype，simplifed switch metal conciensers，new． 376 tcarr 7／G．＇IR1196．less xtals，45／．（carr＇． anamires：immediste desiuatch．w a BFNSON，308．Rathbone Rd．，Liver－

WINWOOU FOR VALUE．Complete hit 1or Band 3 Converter：Coilset drilled ehassis values，etc．．every thing to the last nut and boit． $49 / 6$ uitis power pack，67／－i AC－mains 3－stitge Amplifier Chassis，éplete
i．it．incl．valves． $47 / 6 ;$ Vilve Sets $6 \mathrm{~K} \%$ ，6VE．EBC：33． $6 \mathrm{~K}^{\prime}, 5 Z 4,31 /-$ 1T4．1S5．125．3St．29／6：EL32．4／9： 6SN7．6SL7，7／6．Lisis．WTNWOOD 12．Calnarvon Road．London．E． 10

DIRECT TV REPLACEMENTS ofle， lie most con plete Handbook of Components and Rewinds．price $1 /$ T V Components for all kit sets it slock．＂Nuras＂heater booster isolator tor 2－volt C．R．I s．just plugs in． $27 / 6$ plus 2 paching and S．E．14．TIDeway 3696－2330．1
INDOOR TV．AERIAL，revolutionars design，latest slot lechnique using RMS 60．Portway，Warminster．
VIEWMASTER．expert constructed， new 12 in ．Console chassis．lined up sound and vision，Holme Moss；all matns 3－pin plug． 2 －pin inerial socket：guaranteed perfect：demon－ socket guaranteed perfect：demon－
strated：
f20． 34 Garswood


## R．F．OSC．E．H．T．COILS

WITH RECTIEIER ASSEM S5LAED 54：－ RNPE：F g－14 KV 30 ．
WITH RECTIFLER ASSEMBLED 59：．
Current avallable．1－2 mA．Ideal for oscillo－ scopes and relevision．Dimensions 3 im． xlin dia．Wave wound winding．Complete

29．LEIGH ROAD，LONDON，N． 5


TVs IN PERFECT ORDER，Many sets from £15，sets requiring atten－ tion from \＆f．Send S．A．E．lor lists． IUNERS：＇Thirteen Channel；suitable for wiring into leceivers with full instruchois．\＆G．When ordering stat Sound ind Vision I $F$ ，and Osc．Freq． or make and Model No．of set．Band Three paternal type just plug in for commerctal progtammes． $\boldsymbol{f 0 / 1 0 / -}$ Delivery is fiom six 10 eight weeks on some types．Orders are dealt with in sirict rotation．HIGH ST． RADIO $284-6$ High St．，Crosdon． Surres．CC．2O 8030．
TV SIMPLEX COILS 21／－：TV Sh Cammed Formers． 23 ea．BEL Marlborol＇s

TV WITHOUT MABSS Absolutely first－class picinte．plus DC circult for lighting：as supplied to the B．BC Special AC／DC＂Chorehorsc＊Grner ators self－starling compert ane complete，AC $220 / 250$ volts． $50 / 60$ cycles． 250350 wats AVC．Will run radios．vacuum cleaners．small 100：s

## Belon

e47／10／－，plus $10 /$ deliver
STORAGE BATTERIES，
， $12 v .75 .1 \mathrm{H}$ heavy duty， 19 platis．sepadite cells in hadrdwood cases；finest possible specification． $\boldsymbol{x} / 17 / 6,96$ delfery 12 v ．22AH，amost simifar specifica－ tion．sumpisingly powerfut，s2 14／－ delivery $5 / 5$ TEDDINGTON ENGIN． EERING CO LTD Dept．＂O．＂Hiyt St．．＇reddington，Midax．，Kingstun Sta．，Teddington，Midax．IKlNgstu：
LOUDSPEAKERS repaired promptly MODEL LOUDSPEAKER SERVICE Bulliniton Rd．Oxtord．
$171 \mathrm{~N} . \mathrm{T} . \mathrm{V}$ ．CABINETS． $39 / \cdot$ ，de luxe boxed．brand new，latest design．ex
famous manufacturer completemass famous manufacturer．complete masa glass．Iret．speaker baffe mounteu in front Size thin．B．．．2011．I 16 in ． d Large purchase enabez us to ofler these magnificem cabincis at only 39 －$p$ and 1）． 5 Dilto
 tical Speakers．Fin $x$ Ann．．to fit abover 166 linased．IECHNICAL
Portsmou
H AERIALS，COMPIETE． 35
Channel origina！wrappings．listed appros S4／5－all chimnes lashings and mast included．Piease state if for small or large chimney：carriage 4
exta．
Tested Valves．EFio．
 Tubes．guaranteed CRM 152．£5； £710 TECHNICAL TRADING CO

## BAND III Converter Kit

（FOR T．R．F．OR SUPERHET）
Complete kit of parts．including ：
Ready Drilled Chassis，7in．$x$ 3in． （2）Miniacure Valves，Ready Wound Coils，etc．，

## t2 $=8=0 \quad \begin{gathered}\text { Postage } \\ 1 / 6 .\end{gathered}$

（Supply voltages required： 250
20 mA．， 6.3 v．at 6 a．）
TELEKIT SUPPLY
104，High Street，Beckenham．Kent， （BEC 3720．）

R．F．UNITS，Types 26 at 27／6， 25 at $12 / 64$ at $11 \%$ prame nes with Valves：post $2 / 6$ ．E．W．S．CO．． 69. Valves：post $2 / 6$ E．W．S．CO．． 69.
Church Road，Moseley，Birmingham SERVICE SHEETS，Radio：TV，etc．． from $2 / 5$ p．i）．Lish ot 4.000 monels avail，1－G TELRAY，11，Maudand PREMIER TELEVISION is PictureI fu cabine Magnine snate bubes ckian Cres．

## VALVES

GUARANTEED VALVES EONEd PCC84．PCFE0．U25．20P4，20P3．प251 $10 /-$ LL81，20F2，U232， $0 /-$ ECI80 EF80．EBF80．U281．10C2，10F1．PY81． 6K8，X150．8，6；6SN7，6V6．ECC81 U23．7／6．W FEWELL，19．Mrpledene Road．Dalston，E．8．
WANTED，VaIVES CFIB．6E15．GU4． EY゙51．5Z4．ECL80．KTb1．25A6．ctc foompt casla WM．CARVIS LTD． ALL TYPES OF VALVES REQUIRED for cash Siate quantity and con dition RADIO FACLLITIES LTD． 38．Chatcol Road，NW．1．IPRImrose

## WANTED

PROMPT CASH offered for vour年plus buand new Valwes，Loud speakers．Componients，etc．Sent lisi and prices 10 P．H．S．LTD．， 155.

## SITUATIONS VACANT

Te enougement if persons ansurcing these Ofice uf the Ministry of thate through a Local Emplowment Mimistru of Labour or at schearliet Goect 18－84．binhusive of a upman uged 18 erverted fron the or she or the enplopment， hon of Tutancies Order． 1952.
ALL DISTRICTS．An opportunity exisls for lekevision Technicians to establish a business of their oun．
Tive business can be commenced in first instance in pare－time，ehowing an all the year round increasing ancome．Write giving particulars of age，t＂aining test equipment
exper：ence， 10 TELEPATROL LTD
Federation House．Epsom．
HEARING AID Service Mechanics regulred at once．Knowledge of L．F amplification and miniature circuits essential．Good wages and condi－ tioss．Applv Bos No． 179 ．C／o Practical．Thifision．or phone W．J．S．Welbeck 8.47
MAINS RADIO require men with good kriowledge of Radio as Padio and Television Tusters；good work－ ing conditions：stalf positions．Plense apply to the Persunnel Otficer MATiS RADIO GRAMOPHONES LTD．359．Manchester Road．Erad－ ford． 5.
TESTERS FEQUIRED for Television Production Line．Apply in writing giving details of exper ence and ra． required 1.0 PERSONVEL MavaGER McMichae！Pataio Ltd．Wexham Kid． Slough．Bucks

## EDUCATIONAL

BUILD YOUR OWN T／V and learn about its operation．maintenance and servicing．Qualified engineer tutor available while vou are learn－ ing and butding Fiee Eroohlure PT53．London．W．4．IAssoctated

## TELEVISION COMPONENTS

P．T．LYNX．P．T．©UPER－VISOR，TELE－K！NG VIEWMRTTER，E．E．TEIEVISOR and wide a：ngle modifications

Price lists avaitcble on request to：
J．T．FILIfER，Mavmle［state．B：rle\％．Kent． Tci．：Bexleyheoth 7267

## LYONS RADIO Ltd．

3，GOLDHAWK ROAD，Dept．M．T．， SHEPHERDS BUSH，LONDON，W． 12.

Telephone ：SHEpherds Bush 1729.
IRAMODNXIHBITINX．－Once again weare holding our SPECLAL SALE starting mencement of the Radto whith the com－ premises are only a ltole over a mile froin premises are only a ittie over a mile fom caris court．so ir $n$ town why not pay us gains which will be dlsplayed at CLEAR gains which will be displayed at CLEAR less meters．Prom $5 / 6$ ．Chassis incorporating A．C．mains Power Piacks from 25 －，Chassis for break－down from 25．Recelvers type R．1455＇s．models＂A＂and＂B．＂and liter－ ally hundreds of nthers．Despatch of pur－ chases eladly arranged．Please DON T write or phone for turcher details as we SHOPPERS
HANH III CONVIBTRAK－Complete coil kit by Teletron Co．with circuit．podnt to point wiring dtauram．alignment instruc－ tions．etc．Provides the basis for an ent－ cient．Masy to make．two－valve converter
for use wlth TRF．or Superhet Band 1 T．V． for use with TRF．or Superhet Band IT．
receivers．PRICE 15 －．post fid．Metal chassls recetver Priled．PRICG $\mathbf{3}^{\prime 9}$ ．post 6 d ．Instruc－ tions leafet only 541．．post padd．
 Designed to reproduce the higher tre－ quenctes and when connected across an existinz speaker of the movins coll type comblnes to produce that hish quality repro－ duction essential when recelving F．M transmissions or reproducing high quality
recordings and T．V．sound．Type LSH75 size $3 \times 3 \times$ ！ins．for output up to 6 watts． PRICE $12 /{ }^{\prime}$ ．Type LSHION size $5 x 4 x$ hins for outpues up to 20 watts．PRICE $2 \pm /$ ． FIAXX．－Tuin．flat．P．V．C．insulated，con－ ductor 14,36 tinned copper．Sultable for extenston speakers，telephones．bells，etc． Price $6 / 5$ for 25 vards． 116 for 50 yards．21／ for 100 yards．inc．postage．

## YOU

## can become

## a First Class

 RADIO EVGINEERWe can train you to earn good money in your spare－time，start a radio business of your own or qualify for well－paid employment Our Home－Scudy Courses in Radio Television and Mathematics are up－to－date and easy to understand The fees are very reasonable and

## T／C RADIO COLLECE

ESTABLISHED IN 1933
Send for free details．which will be sent in plain scaled package．Simply write your name and address inside the flap of an unsealed envelope （postoz？11d．）or on a postcard （postage 2d．）and address it to the Principal ：－ R．HEATH BRADLEY．
DUART HOUSE（T），ASHLEY ROAD． NEW MILTON，HANTS．

Benlley Acoustic Corp．Itd．<br>38，CHALCOT ROAD，N．W．I． PRImrose 909）

1st grade foods on！y．No seconds or rejects．

| 67． | Coravitat | $7 / 16$ | 719：2／6 | Кイサ \％\％ |
| :---: | :---: | :---: | :---: | :---: |
| 1 A． | 6／－1ix 4 | $7 / 6$ | M以リン $5 / 6$ | K＇W6ı 7 － |
| 111．1 | 10／6 dix | B／8 | 90035 | KTwfot 5／－ |
| 11）${ }^{\text {a }}$ | $8 / 6$ div6 | 101－ | 90以 $5 / 6$ | K\％\％＋t ${ }^{1} / 6$ |
| 1 li | $6 / 6$ 6Y\％ | 15／－ | A，C／H1，8／8 | ктスı3i 6／8 |
| 116 |  | 85 | AOP！ $8_{0}$ ． | LNら：10\％ |
| 1 L .1 | 6／－TANT | 11／－ | ACVI隹） | L1＋3 4／6 |
| 14．tm | 6／6 7 B | －1／8 | 10／8 | MF1！ 516 |
| 11．N5 | 6／7 7 CL | 8／－ | APt $7 / 6$ | M1．4 e／8 |
| 135 | 7－745 | 8／－ | A Rr＇3（A） $51-$ | ME1： $8 / 6$ |
| 1T4 | 7－708 | 8／＝ | ATIt 3／－ | \＄77 7／3 |
| $\because{ }^{-1} 5$ | 4／－7117 | 76 | A $7 \pm 110 / 8$ | N－4 11．6 |
| $\because 1821$ | 8 8 Tu＇ | $8 /$ | B30\％9／－ | N1514 10／6 |
| $\because \mathrm{X}=$ | 4／6 \％R 7 | $8 / 6$ | Bidy 11／－ | OMII $\quad 7 / 6$ |
| $\therefore$ A 4 | 716787 | $8 / 6$ | Blas $\quad$ \％ | OMAS 10／3 |
| 2136 | $2 / 84.48$ | 11. | 6К唽 $8 / 8$ | 0es $\quad 8 /-$ |
| $30^{3}$ | $9 / 8$ ता⿻口 | 26 | CK．32：3 $\quad 0 / 3$ | 01\％ 8.6 |
| ＊5 | 7－803 | $6 / 8$ | Chiso 6ib | 1＇CMA 11／． |
| 3Vd | $7 \%-106$ | 10／8 | CY：31 11／6 | 「Cト＂R0 11／－ |
| 叫 | 8／－10121 | 4／8 | $157 \%$ | PClA8：12／6 |
| 5 V ＋ |  | 10＇－ | DAM，8／6 | I＇en 2.5 6／6 |
| SY： | \％／8 1114．10？ | 9 － | 1） 4 ド，1 | Pen if |
| 5\％－1 | $8 / 6110{ }^{1 / 3}$ | 10\％ | ט1＞\％ | l＇ea 13 |
| 6A： | 10．612．46 | 8／8 | DP4．B／－ | 枋－ |
| 6A1s\％ |  | 12／6 | DHFi 8－ | 1.1 .81 10／－ |
| GA 138 | 10\％－12A Hix | 11／－ | 1）「！－\％ | PLB：9／6 |
| Mact | 6／6 1： 17 \％ | 81－ |  | 1・リスai 11／d |
| liat（1）： | $6 / 61 \geq 1^{\prime}$－ |  | 131， $15 \%$ | РМ1：4／－ |
| Giatio | 12／6 1 1－ | 9／＊ | 111．74 7－ | PM1\％ $6 / 6$ |
| tisk．̈ | －61：104 | 8／6 | 1）La：\％／6 | －リ－\％ $6 / 8$ |
| liAlsis | 8／－1こH | 12／9 | L3LAS 7／－ |  |
| falit | 81612181 | $301-$ | 小Laio 10／6 | lV\％a $9 / 8$ |
| 6A M1\％ | $6 / 61 \pm \begin{aligned} & 13\end{aligned}$ | $31-$ | Wllta ely | l＇vir 10／－ |
| 6av）： | 8／5 12．J3 | $8 /-$ | E．IT： $21-$ | PY゙， $7 / 8$ |
| （iA＇tio | 81－1こだ边 | 8／6 | FATG $0 / 6$ | 1＊Y＊；10／＝ |
| ［iB4 | 8）1－2MC： | $7 / 6$ | LACyl $0 /-$ | पp？${ }^{\text {P }}$ |
| lillaf | $7 / 81 \underline{2067}$ | $5 / 6$ | ERE： $2 /-$ | U1＂5： $1612 / 8$ |
| 6Вй： | $4 \% 12 \mathrm{cas}$ | 8／－1 | EH54 6－1 | Q $\times 14$ す， 10 |
| 61～8M | 9／8 1：24k 7 | 81 |  | 10／5 |
| 68 Lf | 6612847 | 818 | L＇B4：3 7／8 | Q 4150115 |
| tiluti | $6 / 812 \begin{aligned} & \text { ¢ }\end{aligned}$ | $7 / 8$ | EH0＇L 10：－ | 10／6 |
| GHRT | 9－1 $1+\mathrm{R}$ | 10／8 | Eç $\quad$－ | पV゙Oサな 9／6 |
| 6BW6 | 7151045 | 9／8 | HC以 $5 / 8$ | L1．at 6／－ |
| 613157 | 10／－17\％ | 10／－ | ECY： $210 / 6$ | （1） $81 /$ |
| （il：$\times 0$ | 10／6 16111 | 101－ | Wじく3：8／6 | \＄179 $\quad 5 / 6$ |
| （1） 1 | \％／8 19\％ 3 | 8，6 | ECCH\％8／8 |  |
| G ${ }^{\text {a }}$ | 6／8 \％ 4 i | 816 | Fichl 9／－ | SPG $6 / 3$ |

## COVENTRY RADIO

189，DUNSTABLE ROAD， LUTON，BEDS．
Phone ：Luton 2677

The Quality Component
Specialists offer you Kits of Parts for the following ：－

Manual
Osram＂ 912 ＂Amplifier ．．．3／6
Mullard 10 －watt Amplifier ．．． $3 / 6$
The Coventry
2－watt Amplifier
4－watt Amplifier The Coventry A．M．Tuner Unit I／－ Denco F．M．Tuner Unit ．．． $1 / 6$

Complete Component Price Lists will be supplied with each Manual．

Have you had a copy of our 1954／5 50－page illustrated Component Catalogue，price $1 /-$ plus 3d． postage？

## BAMO III CONVERTERS

## TYPE 30

For Band III reception with any type of receiver．A sensitive beautifully－ designed unit completely enclosed with its own power \＄8．5．0
supply．Price ．． plete．

## TYPE 32 SWITCH UNIT

A remore control for mounting in or on the telavision recaiver permitting switching from B．B．C．to I．T．A．pro－ grammes with the Type 30 converter unit mounted in any conve－
nient position．
Price
P1．5．0

## TYPE 33 CONVERTER

A sensitive low noise converter unit as the Type 30．but including remote switch panel for One Band I and Two Band III stations． £10．2．6 ${ }^{\text {comeme }}$

Leallets with pleasure on request．
＂STAND 21 at the Radio Exhibition．＂
Spencer West Lid．
guay works，gi．yarmouth．
in the June number of "Practical Television," so I could get the new I.T.A. programme as well? 1 E. C. Philbrow (New Malden).

To obtain Channel 1 (London) only, change four small capacitors and retrin oscillator and acrial circuits. 22 pF now across oscillator coil change to $30 \mathrm{pF} ; 22 \mathrm{pF}$ now fitted from pin 6 of $\times 78$ to oscillator coil change to 50 pF . Wire 15 pF from pin 5 to pin 6 on $\mathrm{VI}(\mathrm{Z77})$. Wire 10 pF from pin 1 on V1 10 chassis.

A "channel" or "Pam" or similar converter may be used as suggested with the output I.F. tuned to Midtand frequency. This may well be the better plan. so as to avoid breakthrough from London BBC on ITA programmes.

## SOBELL 17

Quite recently I have bought a "Sobell 17 " television set (the latest model) which embodies a 12 -channel tuner, and according to booklet supplied with the set, it should, by providing the requisite aerial, or a combined one, be capable of receiving the I.T.A. programme on Band III.

During the last two or three weeks I have had an aerial-made from information in your book-in the loft, then outside, but although I have turned the tuner to each number in tune and adjusted fine tuning knob, I have not been able to secure any indication whatever of the test card-just a blank screen all the time-and I wondered if there was some minor adjustment that had to be made before this test broadcast could be received.-Cyril Spruce (Harrow).

If the oscillator adjustments do not resolve a picture on position 9 the aerial and feeder should be checked. What type of aerial is being used? Depending upon the immediate locality and remembering that the teșt signal is only 1 kW , an efficient installation is essential and the use of low loss cable is most desirable. The height of the aerial is extremely important.

## BAND III AERIAL

My TV acrial is at present fixed in the loft of my house.

I now wish to install a separate Band III acrial and I would like to know if it is possible to use one feeder cable for both aerials.

If it is possible, then I should be obliged if you would let me have any necessary information as to bow it can lee done.-S. Baker (Sanderstead).

The feeder cable from each aerial may be taken to junction box, specially designed for this purpose. and a single cable then taken to the receiver. These boxes are known by various names, e.g., splitter boxes, erossover units, etc. They may be obtained from any recognised dealer.

## G.E.C. BT1093

The above had only a very faint grey picture with contrast and brilliance full on.

Raster alone is very faint and width is normal. E.H.T. seems sufficient.

I shorted cathode to heater on the tube, and in that condition it produced a better black and white picture. though very inferior. When brilliance was turned
full on picture had a " negative look" with ,bright Hy-back lines.

I notice that with and without cathode to heater " short," a bright spot appears on sereen when set is switched off. When set was in good working order I used to see a dull 1 in . by $\frac{1}{2} \mathrm{i}$. spot on switching off.

I hope I have given adequate information to enable you to suggest the cause of the fault.-B. Kennedy (N. Woolwich).

The anode load resistor of the video amplifier appears to have decreased in value and in doing so would cause loss of contrast and decreased brilliance due to a higher D.C. voltage being applied to the tube cathode. Also, the C.R.T. would appear to be failing on emission and it may be, if the load resistor referred to above is in order, that this is responsible for the whole fault condition.

## McMICHAEL 909

I have a McMichael Model 909 console TV which has been in service approximately three vears (tube two years). The picture is perfect in every way but for the fact that I cannot get enough black into it.

When the contrast control is advanced beyond a certain point tly-back lines appear.

The same thing happens when the brilliance control is advanced ; in fact, the only way to ohtain a reasonably black pisture is to run with no brilliance at all.

There is another point ; the width control will not reduce the picture sufficiently to show the broken black line at edge of screen-although the circle in test card " C" can be made round with the height control. All the other controls appear to be in order.

Hoping you will be able to help me with this problem. Thanking you in anticipation:-H. N. Stretch (Manchester).

V6 video amplifier may be slightly " soft" and drawing excess current, thus reducing the C.R.T. cathode D.C. potential. If the walve is in order check main chassis: R22, $5.6 \mathrm{~K}: \mathrm{R} 49$. 68 K : $\mathrm{R} 48,100 \mathrm{~K}$ : power pack R 83.5 .6 K : also C62, .5!? F and R 69.680 K . Excessive width is often caused by R79 15 K dropping in talue.

## DECCA 13I

I would be pleased if you could help me with a fault that has developed in my Decca 131 projection reeeiver. The top half of the picture is very dark. the bottom half crimped. The frame height control is at its maximum : any adjustment on this control makes matters worse. The line width seems to be O.K., plenty of adjustment still left. The power pack has just been recently overhauled, new condensers and rectifier G7.32 being fitted.-S. Scales (Otdham),

It is not stated whether the upper part of the scan is distorted. However, since it is dark, it is assumed so. The frame output components should be inspected, especially the cathode bias by-pass condenser, which is a large capacity electrotytic.

[^4]
## RADIO SUPPLY CO. (LEEDS) <br> LTD.




R.S.C. MAINS TRANSFORMERS (GUALINTEGD)

Interieaved and Impregnated. IPrimarie- $200-230-950 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ sereetcel.

TOP SIIROL DED, DROI THIROUGIt $260-0-250$ v 70 ma .6 .3 v 2 a. 5 v 2 a... $16 / 9$ $350-0-350$ v $80 \mathrm{ma}, 6.3$ v 2 a. 5 v 2 a... $18 / 9$ $250-0-250$ ४ $100 \mathrm{ma}, 6.3$ v 4 a. 5 v 3 a $28 / 9$ $\begin{array}{lll}350-0-350 & \text { v. } 100 \mathrm{ma}, 6.3 \text { v } 4 \text { a. } 5 \text { v } 3 \text { a } & 23 / 9 \\ 350-0.350 \text { vi } 150 \mathrm{ma} .63 \text { v a } 5 \text { v a } & 29 / 9\end{array}$
 $250-0-250$ v 60 ma .6 .3 v 2 a .5 v 2 a 250-0-250 tidget type, $2 \frac{1}{2}-3-3 \mathrm{in}$. 250-0-250 f100 ma. 6.3 v 4 a. 5 v 3 a $\ldots$ $250-0-250$ v 100 ma. 6.3 v 6 a. 5 v 3 a. for R1335 Conversion
R1335 Conversion
$300-0-350$ v 100 ma .6 .3 v 4 a. 5 y 3 a
$3.51)-0-350$ v 150 ma .6 .3 v 4 a. 0.4 y 3 a $425-0-425$ v 200 ma .6 .3 ソ 4 a, C.T. 6.3 v 4 a. C.T. 5 v3a
 All with $200-250$ y $50 \mathrm{c}^{\prime} \mathrm{s}$ Primaries All with $200-2,50$ vo cis Primaries 12 v1a, 11.63 v3a, $911 \cdot 63$ va 19

 $200-250$ v $0-9.15 \vee 1: 3.119 ; 0-9-15 \mathrm{v} 3$ $0-9-15$ v 4 a. $19 / 9 ; 0.9-15$ v 6 a. $22 / 9$ (1UTPET TRANSPMRMERS Standard Pentode 5.000 to 3 ohms Standard Peatode $7 / 8.000$ to 3 ohms Small Pentode 5.000 to 30 hms HELJNALU MHETAL IRKCTIEIFIS RM1 250 v 250 ma. 11/9: G.E.C. 300 v $250 \mathrm{ma} .12 / 9 ; 120 \mathrm{v} 40$ nia. $3 / 9 ; 6 / 12 \mathrm{~V}$ | $250 \mathrm{ma} .12 / 9 ;$ |
| :--- | :--- |
| 1 a F.W. 59 | 210 v 50 ma ma. $5 / 9 ; 6 / 12 \mathrm{v}$ 1 a F.W.. 59 ; 240 V 50 ma .5

2 a F.W. 89 ; $250 \mathrm{ma} .7 / 9$.
 AHL DKG IKFCLIVEAK ISATTEIT SEPI:IRALDEIR KIT.-All parts for the construction of a unit (metal case receivers requiring 90 v . and 1.5 v . Fully receivers requiring 90 V and 1.5 V Fully
smoothed. From $200-250 \mathrm{v} 50 \mathrm{c}$ s mains. Smoothed. From $200-250 \mathrm{~V} 00$ e's mains. grams. 38/9. Or assembled and tested at $45 / 6$.ival. 1 RINETS
Handsome well constructed with beautiful fleured wainut veneer finish. Size $40 i n$. hikh. $24 \ln$. wide, 20 in . deep. For 151 n . or 17in. Tube.
L. imitednumber at only 9 GNS. Carr. 30 - ( 10 - returnable on case).


Dept. N:
32, THE CALLS, LEEDS, 2.
 Areas. Brand New. Complete with $6 F 13$ valve. Only 22 '8
cu-iNiAL, (IBLI: in
75 ohms 14136
Twfn-Screened Feeder
7 d .51
Win-screened Feeder ... ... 10d yd
 100 ma 10 h 500 ohms Tropicalised 50 ma io $\mathrm{h} 1=0 \mathrm{hms}$ $\begin{array}{lllll}250 \mathrm{ma} 10 \mathrm{~h} \\ 250 \mathrm{ma} 10 \mathrm{~h} 50 \text { ohms } & . . & . . & \ldots & 149 \\ 149\end{array}$
$6 / 9$
$11 / 9$

EX-GUVI, M AIN THANSEOIKHEIES Primaries 230250 v 50 c/s. 48 v 1 a. 98 : 400 V С.T. 150 ma 4 v 6 a. 6.3 v̌ 6 a. 6.3 v 0.6 a v 6 a. 4 v 3 a. 5 v 3 a. 4 v 3 a. 5 v 2 a. 22 ヶ $300-0-300$ y 120 ma 4 v 1 a. $1 \% .6$.

102 mfd 8.000 v 111 : 25. mid 4.000 v (Block). $4 / 9$ : .5 mfd 3.500 v. $3 / 6$.
 ing of attractive Green Crackle Case. Transformer F W Rectifieq. Fuse Fuseholder. Tag strip, Grommets, and Circuit. holder. Tag strip, Grommets. and circuit. For mains input 200-230-250 v.50 c/s 6.2 a. 49,9 Ans type assembled and tested for 6/9 extra.
IR.N.C. 6v or 12vTEATTEIEY (IIAIRGFIR For normal A.C. mains input 200 . Selector $\mathrm{V}, 50 \mathrm{c} / \mathrm{s}$. Selector panel ior Gvor 12v charging. rate of up to 4 rate of up to 4 with meter Well with meter. Well ventilated case mackle attractive rackle for for 12 mo Guaranteed for 12 months, $69^{\prime} 6$. Carr. $2 / 6$. ItATTVIt JHAlkivils....For mains $200-250$ v 50 cis. Output for charging 6 v or 12 vat 1 amp. In strons metal casp. Only 199. Above can also be used for electric tratn power supply
If.F. INII TVI'f: 26.-Brand new. Cartoned. 29/6. plus carr. 26 .

## SOLDERING?

## You can't beat a

PRIMAX: 470)-

Balanced grip soldering gun in unbreakable case

Can be used semi-continuously without over heating. Easy soldering on hard-to-reach jobs. Ready for action in 6 seconds. Permanent alloy tip - lasts indefinitely with normal use and care. Weighs only 24 ozs. Special loop for hanging. Available in $110,200 / 220,220 / 250 \mathrm{v}$. for A.C. only. $50 / 60$ cycles ( 60 w.).
The ideal tool for any Radio-TV-Telephone Mechanic or Amateur. One Year's Guarantee Sole Distributors :-

## S. KEMPNER LTD.

(Dept. P.T.), 29, Paddington St., London, W. 1 Phone: HUNTER 0755

## VIDEO ELECTRONICS

Head office: 27, Bacon Street, London, E.I. Works: 16/22, Bacon Street, E.I. Telephones: Bishopsgate 0419/0410.

## T.V. Tubes

Cheap, reliable high grade seconds and reconditioned C.R.T's, as supplied to the trade and leading Television Insurance Companies, prices from E 3 .
Valves
Send at once for our useful list of cheap valves which will save money, we are the cheapest in the trade.

## Condensers

Electrolytics, bias, coupling, etc., etc., at giveaway prices. All types stocked.

## Resistors

A fine stock of these at very low prices.

## Radiograms

A few brand new salvaged table Radiograms, modern all wave, single player at $\mathbf{6 9}$. Cannot be repeated.
Send for stock list of speakers, valves, components and T.V. and Radio Spares. All goods are guaranteed.

## HANNEY of BATH offers:-

 WB.103A. $52 / 6$ WB. 164. 156 ; WB. 105 . 436 WH. 106, 25/6 W.B.107. 32.6 WB.108. 33/3; 1B.1091, 2 ,11. 3. 22.6 ; WB.110. $/ 6$ WB.111. 5 . Westinghouse rectifiers : 14A86. 20:4: 14D36. $11 / 7$ WR. 3 and WX. 310 each; HFEHTio. $295: 36 E H T 50.26 / 1$
 pr. State Channel.
THLLEKING.-Constructor Envelope, 6 $/+$ : Coilsets. 446 : Chassis
 nents, LOB08, 40, FO303, $21 /-\mathrm{DC} 300 \mathrm{C}, 396 ;$ FC302. $31 /-$ GL16 and GLi8, 7,6 each ; BT311, 15/-: SC $312,211-:$ AT310. $30^{\prime}$ OP117. 9i-
P.T.SUPEIR Visolk.-T.C.C. Condenser kit. £8,6.4: Erie resistor kit, 54 '4: 5 wiw pots. 26 - ; 7 Erie carbon pots. 35 -; Allen coil sets, $44 / 6$ : Allen DC, $300 \mathrm{C}, 396$ GL 16 and GL, 18. $7 / 6$ each
 WAFMA1. 21/ WA LOT1, $12 /-$ Denco Chassis kit. 516 : Westingharre wX.6. $3 / 10$ : WG4A, 6 ; LW. 26 , 8 : English Electrio potystyrene mask, $45 / 8$ : perspex nlter, 32,8 anti-coronal ring $6 / 8$ : rube sheath, $6 / 2$; T. 501 tube inc. carriage and insurunce £22/14710: Elac IT8 ion trap. 5:-.
MASIG (Demew) F. MI FEEDER I NIT,-Constructor's Technical Bulletin. 19. P. Frce. Cinasis set. 7/6: Coilset, $119: 10.7$ Mes $1 F$ s. 6 - each ; Ratio discrim. trans.. 12/6; Phase discrim. trans. $9-$
st NIDHIES.-1st Quality in 80 ohm co-axial cable, by famous malser stranded core, gri. vard. 8'9 doz. yds. post paid. Pre-ser controls, 3 watt wire-wound, all values, $10 \Omega 2$ to $30 \mathrm{~K} \Omega$. $3-$ each ditto watt carbon, all values $50 \mathrm{~K} \Omega$ to $2 \mathrm{Ni} \Omega \mathrm{B}, \mathrm{cach}$ bano MTO. 1 fest Osclllator, with vaive w- Denco, A. 1 with valve. 29/6: Elac ion traps, all types. 5- Also over 100 Pf. $2 n 079$ Erif resistors cr-stocis in all preferrel values and bativge.
send S.A.f. for list, Plese add 2'-postage to aljorimis under $£ 3$ 'an'y ext. refundes).

## L. F. HANNEY

77 LOWER BRISTOL ROAD, BATH. Tel.: 3811

## You can rely on Us"

## BARGAIN LINES

B mid. 530 v. Cardboard Blosk B.l., 2'6; 3 for 6 '6. $16 \mathrm{~m}^{\text {dd. }} 350 \mathrm{v}$. Aluminium Can, 2/-: 3 for 5 ;- 16 mfd .500 v.. $4 /$ each; 3 for $10 / \mathrm{h}$. 6 Aisorted Vol/Controls. Long Spindie, 10/6. 6 Assorted Vol./ Contro!s, with Switch, 13:6. $60 \mathrm{~m} / \mathrm{a}$ Smoothing Chokes. $4 / 3 \mathrm{ea}$ : 6 for 24 /-. $25 \mathrm{mfd} . \times 25 \mathrm{mid}$. at $12 \mathrm{v} . \mathrm{I}^{1 / 4 ;} 6$ for $5 \%$. Paper Tubulars. all popular values. Gd, each: 6 for 2/6. Switches, 8 p. 4-way, 3/9 4 p. 8 -way. with Screens between Wafers, $3 / 9$; I p. 12 -way, $3 / 6$; 2 p 6-way, $3 / 6,4$ p. 3 -way, 3 :- 3 p., 4 -way, 3!-. Six Assorted Ne:n Wirewound Preset Pots., 10/6. 24 Assorted Ceramic and Silver Miea Condensers. 7/6. . O1 infd. 5.005 v. Dubilier. $2 / 6$. 6 Assorted Radis Books. $10 \%$. Band Ill Multi Aerials (Loft Type). 30/-, carrage 26 Alr Drying Crackle Paint, Erown, Green or Elack, 3/-. Bib Tape Splicer. 13/6. Puretor:e Tape. I203ft., 20/-.

VALVES

| RIJ | 71- | 6BWS | 61- | 6AM6 | 6:- | 6BES | 6/- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12BE6 | 615 | SBW6 | 61- | 3A8G 1 | $2 / 6$ | ACGPEN | $3 / 6$ |
| 12 CC 7 | 4,6 | 6K7GT | 6/- | 6AT6 | 6/- | EMM 34 | 7/6 |
| 2524 | 9/- | 12AT7 | 7/- | 12AU7 | 7/- | 6 CHS | 616 |
| EF80 | 81- | 1303 | 3/5 | PL82 | 8/6 | 6AG5 | $5 / 6$ |
| $65^{\text {H }} 7$ | $5 / 6$ | KTZ4I | 5/- | 6K7G | 6/- | 6EW7 | 7/6 |

## VALVE MANUALS

Osram, 7/6. Erimar, 5/-, Mullard, 5/\%. Valve Dat3 Eook. 5/a Equivalent and Ex. Gov., 5/-. Post on any order, 9d.
$\equiv$ Radio Servicing Co., $\equiv$ 82, SOUTH EALING ROAD, LONDON, W.5. Eal. 5737.

## ARTHURS HAVE IT! <br> LARGE STOGKS OF VALVES AND G.R.T.S. AVO METERS IN STOCK  <br> Fuil range Taylors Meters. List on request. Leak-TLIIO Amplifier and "Point One" <br> Pre-Amplifier - - Complete 2870 F.M. Kit of parts $£ 5$ less valves. Ref. Radio Constructor July, 1954. <br> lason F.M. Tuner Unit and Power Pack - 1970 Chapman Tuning Units Aerialite Band 3 Unit latest valve manuals <br> MULLARD, OSRAM, \& BRIMAR No. 6, 5/- each, MAZDA 2/- ea. OSRAM Part 2, 10/., Post, 6d. ea. ex. SCOPE SOLDERING IRON A.C./D.C. HEATING TIME : $4 \mathrm{v}, 6$ sec. 6 v. 4 sec . $39 / 6$. <br> TRANSFORMER for 200/230 v. 37/6. <br> Terms C.OD. OR CASH with order and subject to price alterations and being unsold. <br>  <br> PROPS: ARTHUR GRAY. LTD. <br> OUR ONLY ADDRESS : Gray House, 150-152 Charing Cross Road, London, W.C. 2 TEMple Bar 5833/4 and 4765. <br> TELEGRAMS-" TELEGRAY. WESTCENT. LONDON. CABLES- "TELEGRAY, LONDON.'

## Fment Soldeving? ${ }_{\text {Always specify }}$ ERSIN MULTICORE to be presise

Wherever precision soklering is essential, manufacturers, engineérs and handymen rely on multicore. Fheres a mullticore: solder just made for the job you have in hand. Here are some of them.



## 8107cicin

Cascode R-T. amplifier 2317) 5 व80

Tinite pentode frequency chanqer

Introduced to meet the special front and' requirements of V.H.F. television receivers, these new OSRAM valves enable a high performance to be obtained at these frequencoes with simple and inexpensive circuitry.


B319,pCC84 Double triade designed for use as a series cascode $R+$. amplifier with the accompanying acevantages of high gain md goori signal to noise ratio. The high slope at iuw anode voltage ensures efficient operation at +1. T. supplies of IEOV. The maximum heater-cathode has been increased to 250'r to meet the sposial requirements of thir application.


LZ319/8CF80 Triode pentode designed for use as a frequeney changer following the B319 PCC81 cascode amplifier. The LZ3I9/PCFEO operates efficiently at H.T. voltage of 170.160 , and gives a high conversion gain with stand. ard eircuitry.

Write to the Osrein Valve \& Elecircnics Cetr. for forther ir formation


[^5]
[^0]:    :BAND 3 T.V. CONVERTER KIFS Hendyrnontm Coils, BVA Valves, ill cort Whents, Punched Cbassis, (ircuit diarram -umbititus. Complele As A s. A.C. es 10
    
    Puuched Chassis sad Wound Colls. Component list, circuit Itingrith. wirlug plase, ouly $1 \mu / \mathrm{B}$.

[^1]:    ## 1113: <br> ADCOLA <br> SOLDERING INSTRUMENTS

    Manufactured in all volt ranges. Bit sizes $\frac{1^{\prime \prime}}{8}$ to $\frac{1^{\prime \prime}}{4}$ with no extra cost for low voltages.
    

    Apply Catalogues
    HEAD OFFICE \& SALES
    ADCOLA PRODUCTS LTD. gauden ro., glapham high st., LONDON, S.W.4.

[^2]:    The Editor will be pleased to consider articies of a practical nature stuituble for publication in "Pracrical Television." Such arlicles should be writien on one side of the paper only. arnd should contain the name and address of phe sender. Whilst the Editor clues not hold himself responsible for manuscripts. every effort will be made to return then if a stamped and addressed enclope is enclosed. All correspondence intended for the Editor should be addressed to: The Editor, "Practical Telerision," Georse Newnes, Lid., Tower Hotse, Southampion Street. Sirand. W.C. 2.

[^3]:    Owing to the rapid progress in the design of radio apparatus and to our efforts to keep our readers in touch with the larest deveiopments, we give no warranty that apparatus described in our columns is not the subiect of letters potent.

    Copuright in all arawings, photographis and articles published in "Practical Television" is specifically reserved throughour the countries signatory to the Berne Convention and the U.S. A. Reproductions or imitations of any of these are therefore expressly forbidden.

[^4]:    CDEIEIRE COETPGA
    This coupon, is available until SEFTEMBER 21st, 1755, and must accompany all Qusiries.

    FRACTICAL TELEVISION SEFTEMBER 195;

[^5]:    THEGENERAL ELECTRIC CO. LTD., MAGNET HOUSE, KINGSWAY, LONDON, W.C. 2

