KAYCOMP

LOWCOST

USED BY SCHOOLS COLLEGES & UNIVERSITIES U.K. & WORLDWIDE

PERFECT FOR ROBOTICS APPLICATIONS REQUIRING POWER AND SPEED

- Full 8MHz 68000 Processor with 16 bit data bus.
- Top-class monitor program included on two Eproms.
- Communicates via RS232 interface to terminal, BBC computer, P.C. computer etc.
- Use as a Trainer, or as a stand-alone computer system.
- Fast, powerful processing - ideal for real time control systems.

- Dual U.A.R.T. allows simultaneous connection of printer and terminal.
- Add-on options include: G64 Bus, 68230 P.I.T. 8k and 32K Ram upgrades, and line by line assembler.
- Available from stock now - with support literature and full technical back up.

STANDARD SYSTEM IN KIT FORM £110.00
STANDARD SYSTEM BUILT & TESTED £190.00
LINE BY LINE ASSEMBLER PROGRAM (IN EPROM) £ 27.00
POWER SUPPLY £ 11.99

MICROPROCESSOR TRAINER AND SINGLE BOARD COMPUTER

- 68000 MICROPROCESSOR
- TRAINING AND SINGLE BOARD COMPUTER
- OTHER OPTIONS, DATA PACKS, AND LITERATURE AVAILABLE - SEND FOR DETAILS.

SOLE SUPPLIER - MAGENTA ELECTRONICS - UK & WORLDWIDE

PE PROJECT KITS
ALL KITS INCLUDE CASES & BOARDS (UNLESS STATED), HARDWARE, WIRE, I.C. SOCKETS, KNOBS ETC ARE ALL INCLUDED.

760 - RS232C - MIDI CONVERTER Dec 87 £34.99
761 - TEACHER RADIO Dec 87 £16.99
733 - COMPUTER D.C. MOTOR DRIVER Nov 87 £24.49
BBC SOFTWARE £4.99
738 - TEACHER POWER Nov 87 £29.95

732 - TEACHER LOCKER Oct 87 £22.95
731 - GUITAR-TO-SYNTH Oct 87 £38.94
716 - SCOPE STORE July 87 £49.99
717 - SYNTHESISED A.F. GENERATOR Jun 87 £39.98
726 - BRIGHT FUZZ May 87 £16.69
714 - ULTRASONIC TAPE MEASURE Mar 87 £26.21
713 - VIDEO FADE April 87 £13.28
712 - VIDEO ENHANCER Dec 86 £29.80
551 - PASSIVE I.R. DETECTOR July 86 £38.46
552 - ECHO/REVERB UNIT July 86 £41.95
535 - THERMOCOUPLE INTERFACE FOR DVM June 86 £15.98
532 - TTL LOGIC CHECKER May 86 £20.95
520 - SCRATCH & RUMBLE FILTER (STEREO) April 86 £18.99
516 - SPECTRUM HARDWARE RESTART (Uncased) Mar 86 £28.49
452 - CYLINDER THERMOSTAT May 85 £23.95

REPRINTS
REPRINT OF ALL OF THESE (AND OTHER) P.E. PROJECTS ARE AVAILABLE AT 80p EACH

NOTE: KIT PRICES DO NOT INCLUDE REPRINTS WHICH MUST BE ORDERED SEPARATELY.

MAGENTA ELECTRONICS LTD
135 Hunter Street PE53
Burton on Trent
Staffs DE4 2ST
0283 66345

Prices include VAT add £1.00 p&p to all orders. Official orders welcome.

SHOP NOW OPEN
Callers welcome 9-5 MON-FRI
Access/Visa Phone or Post
24 hour answering phone.

CATALOGUE £1.00
This ad shows just a fraction of our wide range of Kits, Tools, Components, Books Etc. Our illustrated catalogue is a must for all electronics enthusiast
FREE TO SCHOOLS ETC. WHEN ORDERED ON LETTERHEAD

PRACTICAL ELECTRONICS JANUARY 1988
Power Selector Guide. J C J. Van de Ven. Babani BP232. ISBN 0-85934-180-1. £4.95. Many applications still need high voltage or high current semiconductors. This book is a guide to a very large selection of suitable devices. It offers a range of selection tables computer-complied so as to be of maximum use to all electronics engineers, designers and hobbyists. Component markings, colings, standards, symbols and outlines are presented, along with specifications of diodes, bridge rectifiers, thyristors, triacs, transistors and fets.

A Concise Introduction to MS-DOS. N. Kantaris. Babani BP232. ISBN 0-85934-177-1. £2.95. If you are a PC user and want to get the most out of your computer in terms of efficiency and productivity, then you must learn its MS PC DOS operating system. The aim of this small book is to help you do so in the shortest, most effective and informative way. It is written with the non-expert, busy person in mind and as such, it has an underlying structure based on 'what you need to know first, appears first'. It is also designed to be circular, meaning that you do not need to start at the beginning and read on to the end—the more experienced user can start from any section.

Electronics Manual to Industrial Automation. G R. Stone. Tab Books. ISBN 0-8306-2762-6. £14.50. Despite its title this book can be of considerable value to anyone needing basic electronic theory. The author originally began by writing weekly handouts to supplement the lecture sessions of an industrial training programme. Ultimately, after minor revisions, the handouts were compiled, forming this 344 page book. Its aim is to inform the reader, regardless of background, in three main areas of industrial electronics—functions, applications, repairs and servicing.

A Handbook of Fourier Theorems. D C. Chapmaney. Cambridge University Press. ISBN 0-521-26503-7. £25.00. This is a handbook comprising a collection of the most important theorems in Fourier analysis, presented without proof in a form that is accurate but also accessible to a reader who is not a specialised mathematician. It will be of particular value to most graduates and research workers in the physical sciences and electronic engineering.

Handbook of Practical I.C. Circuits. Harry L. Helms. Prentice-Hall International. ISBN 0-13-380833-5. £41.00. The book claims that its six chapters form a practical compilation of I.C. circuits, all of which are actual working designs using popular devices. The necessary component values are included, and there are descriptions of the circuit operations, together with examples of how to modify and adapt them to desired applications. Additional information is given on power supplies, circuit interfacing, and practical trouble shooting. It is a shame that this interesting 168 page book could not have been released at a lower price.

Sound Advice—Make Better Recordings. L. Woodland. Jay Books. ISBN 0-9510066-5-X. £5.50. This is a book that Les Woodland wishes he had when he started in radio and sound recording. He felt that everything was impossibly complicated—so he wrote it himself. (He is now a senior BBC producer.) It is intended to be a book for anyone who wants to save the sounds of a town for historical archives; record pop music or formal occasions; wants recordings of birds or badgers; or just wants to tape chat or recordings for interviewing, editing, compilation, and in simple terms, the history and scientific background. A very useful book.
VISIT OUR NEW SHOP IN BRISTOL
NOW OPEN AT
302 GLOUCESTER ROAD
Tel: (0272) 232014
CONSTRUCTIONAL PROJECTS

SANTALITE by John Becker .. 12
A festive firtree flasher interface with variable mod-tech random programming control.

TEACHER TALKBACK by Tim Pike 17
Talking in class is encouraged with this simple intercom, especially if you're studying for GCSE electronics.

CONSIDERATE MOUSETRAP by Terry Pinnell 22
Unmouseatably a talented answer to the ancient conflict twist mice and man.

LEGO BUGGY DRIVER by Robert MacFarlane 26
RAM that Hot-Rod – computerise your motorised Lego Buggy and automate your driving ambition.

FLASHY EGG-TIMER by Chris Bowes 28
Don't be hard-boiled – let LEDs flash the flow of time for culinary perfection, through technology in action.

SPECIAL FEATURES

SEMICONDUCTORS PART THREE by Andrew Armstrong 35
AA helps avoid driver distress with a straightforward discussion about junction devices.

CALENDER SOFTWARE – a perennial gift from your Ed 33
Fortell the future or prove the past with this Basic centurian calendar program. Plus PE's 1988-at-a-glance.

RECALLING HISTORY PART TWO by Barry Drake 40
The Crossbar telephone exchange of the 1960s overcame a few dilemmas, but electronic techniques now route the future of telecoms through System-X

LCD COLOUR TV – a consumer feature 44

ELECTRONIC LOCKS by The Prof 49
The Prof picks his way through some of the more exotic locking techniques that offer keys to satisfactory security.

REGULAR FEATURES

EDITORIAL – Weather beaten ... 9

LEADING EDGE by Barry Fox – D-MAC satellite transmission 8

SPACEWATCH by Dr. Patrick Moore – Supernova problems 46

INDUSTRY NOTEBOOK by Tom Iwall – Electronic centennial ... 57

MARKETPLACE – what's new, where and when 4

PCB SERVICE – professional PCBs for PE Projects 60

TRACK CENTRE – the PCB track layout pages 32

READERS' LETTERS – and a few answers 38

BAZAAR – Readers' FREE advertising service 45

ADVERTISERS' INDEX .. 62

NEXT MONTH . . .

WE RING IN THE BRIGHT NEW YEAR WITH –

LOGIC ANALYSING • MOTOR SERVO MIXER • TREMOLON • MORE
GCSE IDEAS • REAL WORLD INTERFACING • SEMICONDUCTORS •
AND A HOST OF OTHER FEATURES YOU'LL FIND APPEALING

THE RESOLUTION SOLUTION –

DON'T MISS THE FEBRUARY 1988 ISSUE
ON SALE FROM FRIDAY JANUARY 8TH

THE SCIENCE MAGAZINE FOR SERIOUS ELECTRONICS ENTHUSIASTS
We have recently received the following catalogues and literature:

Altai Electronics Catalogue. Nearly 200 pages of colour illustrated components, equipment, instruments, computers, audio-video, communications, accessories, tools and security - electronics for practically every purpose. This catalogue has been received simultaneously from Pops Electronic Components, and Henry's Audio Electronics. Pops are also stockists of Lorlin, AB and many other product lines, and are at Studio D, Unit 9A, Atlas Village, Oxgate Lane, London NW2 7HU. 01-450 46889.

Henry's Audio also sent information about Cubegate components, and are at 404 Edgware Road, London W2 1ED.

Tandy's 1987-88 colourful catalogue of ready-made equipment and accessories has been released. Its 140 pages are well worth examining and can be picked up from any Tandy store.

Concurrent Techniques have sent us their pamphlet called Concurrent News. This is a newsletter that publicises their low cost transputer modules and other hardware and software products. It also contains news, rumours and gossip about the transputer scene. Concurrent Techniques, 30 Baldslope Road, Hastings, East Sussex, TN34 2EY.

Globe Book Services have announced two new guides to the Electronic Component Industry. The International Directory of Active Component Manufacturers (ISBN 0333 455 401) spans 30 countries and provides comprehensive international manufacturer coverage, with 1000 entries. The International Passive Components report (ISBN 0333 451 139) covers markets, production and trade throughout 30 countries. At £90 and £300 each respectively these guides are obviously more suited to the Trade. Globe Book Services are a division of Macmillan Publishers Ltd, Brunel Road, Houndmills, Basingstoke, Hants. RG21 2XS.

Cirkit's bright new winter 87/88 catalogue for electronic constructors is good value at £1.20. Clearly laid out and illustrated it is presented in a livelier more exciting and totally different style. It is crammed with new product and ideas, and also features a special competition. Cirkit Distribution Ltd, Park Lane, Broxbourne, Herts, EN10 7NG.

Adam's Eden

ONCE upon a time getting fittings for cases or cabinets was not easy, and even if you could locate what you wanted, it could cost you an arm and a leg. Now we take the availability of fittings for granted, and quite rightly so. We need never go back to those bad old days, when you would have to be Sherlock Holmes to track down parts for cases and cabinets.

Adam Hall Supplies is one company that has done much to change the fittings market in Europe. Now, as well as manufacturing and distributing the best quality hardware and fittings, they also claim to be the most competitive.

For more information on all their products, give the sale desk a ring at Southend (0705) 613922 and ask for Rob, Jane or John, or write to Adam Hall Supplies Ltd, 3 The Cordwainers, Temple Farm Industrial Estate, Sutton Road, Southend-on-Sea, Essex, SS2 5RU.

Better BBC Fax

A contract has been agreed between the BBC and SofTel Ltd for the supply of a new Ceefax computer system. It will be installed at Television Centre later this year and will replace the one which began service in 1979.

The new system will enable the BBC to continue a policy of improvements to Ceefax. For example, a faster Ceefax service will be possible by using more spare lines of the TV signal. Ceefax will also be able to provide a clearer and more varied page front during "Pages from Ceefax" broadcasts.

The system will include direct links with other computer systems to give Ceefax staff rapid access to financial, travel and weather information.

Says Ceefax Editor, Graham Clayton, "Over the past few years the teletext audience has grown enormously and the BBC now needs a teletext broadcast system which will keep up with their demand in terms of speed of up-dating breadth of coverage and reliability".

Hieroscopy

Hewlett Packard's family of £1GHZ digitising oscilloscopes is available for hire from Electroplan Rental. These high-performance instruments perform precision time-domain analogue measurements on high speed logic waveforms, with the added benefit of colour for improved efficiency. A wide range of outstanding features makes the instruments suitable for design and test of high-speed (up to ECL) logic, data communications testing and general-purpose design applications.

For a free copy of their new 1987/1988 catalogue contact: Electroplan Rental, P.O. Box 19, Orchard Road, Royston, Herts.
High IQ Speech Station

A NEW complete low-cost intelligent speech output station is available from STC Mercator. Named the ISAS-P, it is based on solid-state CVSD (continuously variable slope delta modulation) speech technology and designed on a single Eurocard, outputting digitally-stored speech in response to externally-activated input signals.

The system provides exceptional speech quality, on-board CPU, digital vocabulary memory and direct connection facilities to an external loud-speaker or amplifier. The 3640Kb (max.) EPROM vocabulary memory will store up to 210s of speech depending on the sampling rate (17Khz - 43Khz) used during the recording. In addition, identical phrases/words for different messages only require to be stored once as the system restructures phrases using the words in the appropriate sequence, thus reducing memory requirement and allowing the construction of a large set of instructions.

Typical applications for this compact system include the telephone network for PBX messages, directory information, weather reports etc, and also for public address systems alarms and operator prompts in the industrial environment.

ISAS-P accepts ASCII code and binary information, and can be connected to the user system via either a parallel or single-line interfaces. Also available is the optional SDM 300-T speech synthesis development station which allows vocabulary generation by the end user.

Contact: STC Mercator, South Denes, Great Yarmouth, Norfolk NR30 3PX. Tel: 0493 844911

Mireau

With concern being shown for the quality of drinking, river, borehole and stored water, Kent Industrial Measurements, a Brown Boveri Kent company, have introduced a self-checking microprocessor based water quality monitor that can operate at an unmanned site for long periods without needing attention.

The monitor, model 7975, simultaneously measures up to six different parameters – water temperature, pH, conductivity, dissolved oxygen, turbidity and air temperature if required, with high and low alarm set points for each of the six channels. All this data plus other information can be automatically relayed to a central station via telemetry or landline, or fed into a local data logger.

By using microprocessor technology the monitor offers automatic two point checking of the pH measuring system at 4pH and 9pH, and automatic checking of the dissolved oxygen cell in air, plus automatic biocide cleaning of the entire system, all at customer-selectable intervals. Frequent checking of the nephelometric turbidity sensor, multi-electrode conductivity sensor and PT100 temperature sensors is not necessary.

To minimize running costs the monitor can be programmed to provide a discontinuous sampling mode with a choice of frequency and duration of sampling, in addition to continuous monitoring.

A further benefit built into the system is the use of small bore piping which reduces the amount of circulating water and hence the pump capacity, leading to a further reduction in energy usage. This is achieved by using an optional filter if the system is to be used on raw surface waters. Automatic cleaning of the filter is initiated by the water quality monitor electronics on an "as required" basis.

Another feature of the water quality monitor is a mimic diagram of the sampling flow path which incorporates leads to give the exact status of solenoid valves and pumps, the mode of operation being shown by a further series of leds.

Contact: Kent Industrial Measurements Ltd, Oldends Lane, Stonehouse, Gloucestershire GL10 3TA. Tel: (045 382) 6601

Portable Power Cleaner

OXBURGH Suppressors’ Portable Power Cleaner is a low-cost device which has been designed to prevent mains power surges from damaging sensitive electronics like computers, digital or analogue instruments, microprocessors and other equipment.

Suitable for use industrially, in the office, laboratory or workshop, the PPC is connected between the mains and the equipment requiring protection and can be rated at 2A or 6A, depending on the application. It is housed in a tough plastic case, 145mm x 75mm x 50mm, and is supplied ready to use with a 2m cable set and moulded I3A plug. Options include American and continental sockets and cable sets. The standard unit costs from £23.00.

Contact: Ruxburgh Suppressors Ltd., Haywood Way, Livhouse Lane, Hastings, East Sussex, TN35 4PL. Tel: 0424 442160.
STAN WILLETTS
DEPT P.E., 37 High St, West Bromwich, West Midlands B70 6PB
Tel. 021 553 0186
Radio, Television, Electronic Components, Aerials, TVs, Amplifiers, Videos, Multimeters, Intercoms.
TRADE ENQUIRIES INVITED

V2000 VIDEO FILMS Brand New & Boxed (VCC180 & VCC240) 3 for £10 (our choice) ... P&P £1.50

GRUNDIG INFRA-RED REMOTE CONTROL SYSTEM VIF-K1 consist remote control TRANSMITTER TPV 356 and the remote control RECEIVER VIF-E1 complete with battery. BRAND NEW and Boxed ... £4.99 P&P £2 VIF-E1 Infra Red receiver only Boxed in ten's £9.99 £3.50

GRUNDIG 440 REMOTE CONTROL (cable) 8 metres 10 core cable. Brand New & Boxed ... £3.75 P&P £1.99

GRUNDIG 2+4 SUPER (Stereo Panels) CROMA, SERVO, DFT. VIDEO Stereo/Ton Motorboard. Scanning Board. All £4.95 each P&P £1

POWERPACK ... £19.95 P&P £3

SCANNING BOX ... £7 P&P £1

TUNA (Stereo) ... £9.95 P&P £1

HEAD ASSEMBLY COMPLETE WITH HEADS £25 P&P £4

GRUNDIG CPB190 camera lead (7 metres) 6 core cable brand new & boxed ... £1.95

GRUNDIG TELEVISION battery lead 4½ metres with car cigarette lighter plug. Brand new ... 75p P&P 50p

PANEL METERS construction moving iron (other types in stock) AMMETERS 0-450 v approx. 25 AMP & 40 AMP AC or DC. £2.00 P&P £1.50 (other sizes)
92mm x 92mm 400/5 amp ... £4.99
Plain scale ... £4.99
All meters brand new & boxed P&P £1.50

STEREO 8-TRACK CARTRIDGE PLAYER COMPLETE WITH F/M MULTIPLEX STEREO TUNER plugs straight into cartridge player. BRAND NEW & BOXED ... £5.99 P&P £2.50

DATEX 20/64 DATA RECORDER suitable for use with COMMODORE VIC 20 & VIC 64 all tested working in original boxes (Manufacturers returns) ... £9.99, faulty £5.99 P&P £2

UNIVERSAL NI-CAD BATTERY CHARGER, CHARGES 4x HP2-11-7 & 1 PP3 brand new boxed ... £5.99 P&P £2 RECHARGEABLE BATTERIES HP7-85p, HP11 £1.65, HP2 £1.99 P&P 20p each.

“SHEAFFER” GOLD ELECTRO PLATED BALLPOINT SRP £32 our price brand new & boxed ... £12.99 P&P 50p PAPER MATE “DYNASTY” BALLPOINT SRP £15 our price brand new & boxed ... £7.99 P&P 50p

CHRONO ALARM LCD WATCH full makers 12 months guarantee brand new & boxed ... £2.99 P&P 50p

A/C mains Adaptor input 240v, Output 3.4-5.5-6.75-9-12 V Dc 300 M/A £4.99 P&P 50p 750 M/A £6.99, P&P £1 CAR POWER SUPPLY 12v/Dc to 3-4, 5-6-7.5-9-12V DC 800 M/A £3.99 P&P 50p DESOLDERING PUMP all metal body TEFLO NOZZLE 20 (dial X 195 m/m) ... £2.99 P&P 50p SOLDIER 18 SWG 3-core (BS219) 60/40 ½ KG reel ... £7.99 P&P £1

VHS VIDEO RECORDER FERGUSON 43 FUNCTION with full remote control £195 many others in stock from £79 please ring.

WE ARE INTERESTED IN PURCHASING ALL TYPES OF STOCK — PLEASE RING STAN OR BOB
Number One Analysis

“Education and industrial training of Britain’s electronics designers is being badly neglected in some fundamental areas”, according to Adrian Espin, Managing Director of the Cambridgeshire-based electronics and computer-aided engineering consultancy Number One Systems Ltd. “Too much emphasis is put on the black-box approach using ICs, without understanding the basic gain and impedance characteristics. Also the importance of simple circuit building blocks through the help of the teacher or sponsor organisations. They should be taken up commercially through simple building blocks.”

If the engineer understands these fundamentals, Espin believes that the potential of analogue circuit applications can be tackled with designs that are significantly more cost-effective, and offer a lower component count. To help in such training, Number One Systems has introduced a new version of its popular Analyser II electronic circuit analysis package which runs on the Research Machines’ Nimbus, an 8086-based MSDOS computer in use with a large number of educational establishments. This adds to the existing availability of analyser software.

Rewarding Young Designers

Twenty-five enthusiastic young electronic designers, ranging from 12 to 21 in age and representing sixteen different educational institutions, virtually all parts of Great Britain took part in the finals of the 1987 Young Electronic Designer Awards contest at the Institution of Electrical Engineers, Great George Street, London SW1 at the beginning of July.

Projects were designed to satisfy key requirements in everyday life, were judged on their commercial viability as well as presentation, technical competence and originality. They were created in response to the YEDA Scheme’s challenge for young people to apply electronics know-how in the development of world beating products, which are so important to the future prosperity of British industry. Organised under the auspices of the YEDA Trust, a registered charity, the annual contest is sponsored by Cambridge PLC and Texas Instruments Ltd. Winning finalists were awarded valuable trophies, cash and titles which could land them on responsibilities within the electronics industry, while the winning educational institution won a Texas Instruments computer system worth more than £10,000. Their project could also be taken up commercially through the help of the sponsoring organisations.

The 1987 awards were presented by Sir John Egan, Chairman of Jaguar PLC, who is a YEDA Trustee and the members of the judging panel were John Eggleston of Warwick University; Sir Alec Morris, British Aerospace; John Wesley, Investors in Industry PLC; Richard Renz, Editor BBC ‘Tomorrow’s World’.

For further information contact:
YEDA Trust, 24 London Road, Horsham, West Sussex, RH12 1AY; Telephone: 0403 211048.

School Kits

Westex Electronics are marketing electronic kits directed at the Primary/Secondary section of the market, and have secured a contract to supply one education authority with six Primary Electronics Kits for every primary school for which it is responsible. In 1986 they had the honour of meeting their Royal Highnesses the Prince and Princess of Wales at an industry exhibition, and presented them with one of their kits. At that exhibition Westex submitted a business plan for which it won £3,000 as the most promising new business.

The products marketed by Westex have since been extended to include a Electronics for GCSE Physics kit, and two very useful timer and operational amplifier boards.

Westex Electronics was awarded by a group of enterprising former students and staff from West Bank High School in Skelmarsdale following the success of winning the 1985 Whippet’s business challenge and a further new enterprise competition. It is a company whose primary aim is to produce electrical and electronic teaching aids, but also has the facilities for producing excellent printed material at competitive rates. All of the teaching kits have been extensively tested and have proved to be extremely popular.

Westex state that the advantages offered by their kits are: comparatively low cost; extremely robust; construction—-all kits are constructed on blue printed circuit board material which is virtually indestructible; all connections are made using 4mm screw terminals and therefore the kits are compatible with, or very easily adapted to link with, other kits; low cost dem onstration kits can be used; should transistors, capacitors, resistors etc. become damaged, they may easily be replaced through normal component supplies or direct through Westex. The kits may be easily adapted to the requirements of the teachers or pupil’s project and may be expanded as the project becomes more complicated; finally, no soldering is required.

The kits may be used in any of the following courses: Primary Science—the Westex starter pack is also an excellent resource for children with learning difficulties; Primary Technology courses, ‘Nuffield’ Secondary science—years 1, 2 and 3; G.C.S.E. Electronics; G.C.S.E. Physics—(Electronics sections) the kit may be easily adapted to verify Ohm’s Law; Modular Electronics—for the less able pupil; Control Technology.

Westex electronics will also adapt, where possible, their kits to meet the requirements of a particular school and produce mounted components required for specific experiments and projects.

For further information contact:
Westex Electronics, Peel House, Peel Road, West Pimbo, Skelmarsdale, Lancashire WN8 9PT.

Xcelent Tools

Cooper Tools have introduced a new range of five round blade, fixed handle Xcelite screwdrivers, which can be supplied as individual tools or as a complete set with pouch.

The recommended pre-VAT price for the set, Cat. No SDR-11 is £16.31, whilst the prices of individual screwdrivers range from £1.75 for the smallest (¼" blade) to £4.83 for the largest (¾" blade).

Contact: Cooper Tools Limited Sedling Road, Wear, Washington, Tyne & Wear NE38 9BZ.
A NEW MAC IN FASHION

Yet another change in direction dogs the tortuous development of direct broadcast satellite television.

After insisting for five years that direct broadcasting by satellite in Britain must use the C-MAC transmission system, because it is best, the British government has now said that a variant called D-MAC must be used, because it is best. Britain's previous insistence on C-MAC has split Europe, with West Germany and France favouring a third variant, called D2-MAC. All this has delayed design of the microchips which are essential for the manufacture of MAC satellite tv receivers and adaptors for existing sets. Without receivers there can be no market for dbs programmes.

The Independent Broadcasting Authority developed the basic MAC technology. In 1982, when the BBC was offered the chance to run a dbs service, the Home Office said it must use C-MAC. In 1986, after the BBC ducked out of dbs and the IBA offered a franchise, the Home Office re-affirmed the need to use C-MAC. The D-MAC and D2-MAC systems were developed on the Continent because C-MAC signals have too wide a band width to carry on most cable tv systems.

All the MAC systems handle picture signals in the same way, on a frequency modulated carrier with the color and black-and-white content sent in alternate bursts. They all send sound in digital code, along with digital data such as teletext. The MAC differences are in the digital coding.

For C-MAC a quite separate radio carrier wave from the picture carrier has its phase rapidly shifted in two steps, to signify binary ones and zeros; this is phase shift keying. A data stream of 20.25 Mbit/s copes with eight separate sound channels. The snag is that the signal spreads over 15MHz which is twice the width of conventional tv and much too wide for cable tv systems.

Also, for best results, the receiver needs two demodulators, one for the picture and one for the data and sound. This is expensive to the viewer. D-MAC also handles 20.25 Mbit/s and eight sound channels, but spreads over only 8.5 MHz. Also, the receiver only needs one demodulator for both picture and sound. This is done by putting the data on the same radio carrier as the picture signal. It slots in between the picture lines. Also duobinary coding is used, the data is coded in three small steps instead of two large ones.

The British government has now said that Britain must use the C-MAC variant called D-MAC. This is the same as D-MAC except that the data rate is halved, to 10.125 Mbit/s. The signal has even narrower bandwidth and can be distributed through old cable systems. But it can only cope with four sound channels. This could kill the idea of using satellite for radio broadcasts piggyback on tv. It also kills the long term idea of transmitting extra picture information in the sound channels for wide screen tv displays.

In an effort to break the deadlock, and give chip and set makers security to get on with their job, the IBA proposed Euro-MAC as an acceptable alternative to C-MAC. This was actually just D-MAC under a different name and the proposal caused confusion. Now the Home Office has bitten the bullet, dropped C-MAC and endorsed D-MAC, saving face with the vague explanation that certain "technical developments have taken place" which justify the climb down from an untenable position.

There has been so much talk about Mercury as an alternative to the awesome and awful incompetence of British Telecom, that sight has been lost of what Mercury actually offers. I phoned Mercury, asking what they could offer me.

I must pay £51.99 for a new telephone, and £8.62 each year for an authorisation code. The Mercury phone plugs into my standard BT phone socket and when I want to make a call on the Mercury network I press the Mercury button. The call then goes through BT's local lines to a BT exchange from where it is routed into Mercury for long distance connection.

Average savings on calls to America, Canada, Australia are 10%. Average saving on calls round Europe are only a measly 1% to 2%.

You cannot make local calls through Mercury at all and if there is a fault on the local BT line or exchange you still won't be able to make any calls.

The real breakthrough for Mercury will come if local cable tv stations start carrying telephone calls, by-passing BT lines altogether. Until that happens a small business would have to make a lot of long distance calls to save the costs of the Mercury phone and annual code fee.

The Ultimate DBS TV?
(drawing by Cork)
WEATHER BEATEN

The havoc wreaked across the south of England by the disastrous storm in October is unlikely to be forgotten easily, and its effects will mar the countryside for many years. It was a strong reminder that the brute force of nature still surpasses many of our technological abilities.

The resulting extended power failures firmly brought home the saying that you don't know what you've got till you've lost it. We have become so accustomed to the conveniences offered by mains operated appliances that few of us take action to avoid the problems associated with prolonged deprivation of electrical power.

Compared with many who suffered, I got away lightly, but despite my technological interests, even I was unprepared for such unexpected inconvenience.

When not compiling your epic monthly I'm usually working with equipment that can only run from the mains. In one workroom alone there are thirty five 13 amp sockets, and even more equipment-connected plugs. Following the storm, none of them could be used, and it was frustratingly obvious that the circuit I had intended to work on could not be pursued, since at the very least the soldering iron would not heat up. Even if I had a butane iron, the scope, psu and sig gen could not work, and both dvm's were without batteries. So that ruled out practical electronics.

Writing the lengthy text for the project was also impractical as the word processor had become illiterate, and the low tech typewriter had gone to a jumble sale years ago.

Nor could I do those things that normally fill idle-hours, like watching The Box, playing Mahler or Madonna, patching up the synth, or once more keeping Earth free of pixelled Aliens. Thankfully, cutting the grass was also off.

In fact nearly everything around the house was off — lights, telephone, freezer, microwave, washing machine, spin dryer, vacuum cleaner, the clocks and time switches. The central heating was dead, the fan heater immobile and the electric blanket stone cold. The toaster couldn't feed me, the shower wouldn't heat up, and I was unable to shave. At least the burglar alarm batteries were in good nick, and I could have securely gone out somewhere in the car; if only the drive had been free of a fallen tree. The power saw was off too.

There were only two things I could think of doing without hard physical labour; make coffee on the camping stove, and to draft this — in long hand. Such technological indignity!

Hopefully, by the time you read these lamentations, power supplied will be stabilised and you can while away your Christmas boardom by tracking through the current circuit line-up in this seasonal issue. Most are battery powered — a supply source that has a lot to recommend it!

Our practical publishing guardian Angelo joins us all in sending festive greetings to you, with the hope that your stockings will be well charged.

THE EDITOR
AMBS BMASTER £285 (b) AMG-B12 BMASTER £155 (a)
AMB2 Turbo (BSC - 32K) £285 (a)
AD11 737 (b) £19 (b)
AMB2 MASTER COMPACT A large packet of 3 x 3 D discs with each compact.
SYSTEM 128 Single 3 4K D and single software £385 (c)
SYSTEM 256 1 with a 12 hi Res RGB Monitor £469 (c)
SYSTEM 512 2 with a 14 Res RGB Monitor £2149
Second Drive Kit (99 £) Extension Cable for disc £35 (c)
with 3 cat User Guide £16 (c)
Basic Dual £450 £300
2 x Dual £450 £300
2 x 3 4K £450 £300
2 x 6K £450 £300
Dual £450 £300
with 2 dual drive with built-in monitor stand.
META Version III - The only package available in the micro market that will assemble 27 different processors at the price offered. Supplied on two 16K 23 and two discs and fully compatible with all BBC models. Please phone for comprehensive leaflet £145 (b).
we stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send us your letter.

PRINTERS & PLOTTERS

EPSON
EPSON LX-86 £190 (b)
Dot Matrix 86 £190 (b)
Sheet Feeder LX860 £43 (c)
FX1060 £439 (a)
FX850 £439 (a)
LQ2000 (90 col) £190
LQ2000 £190

COLOUR PRINTERS

KIP185 (160 col) £249 (a)
KIP185 (180 col) £385 (a)
JUNI £200 (Daisy Wheel) £259 (a)
NATIONAL PANASONIC £269 £450 (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeders etc.) in stock. Parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.

Plain Fulfold paper with extra fine perforation (Clean Edge). 2000 sheets 9.5” x 11.5” £1.85 (b) 11” x 17” £11.50 (b) Labels per 1000’s Single Row 3” x 1” £1.75 (b) £2.50 (e) Tripple Row 2.75” x 1” £1.16 (b) £5.00 (a)

MOMDES

All models carry a full BT approval

MIRACLE TECHNOLOGY WS Range
WS4000 V213/235 (Hayes Compatible, Intelligent, Auto Dial/Auto Answer) £149 (b)
WS3000 V213/235 Professional As WS4000 and with BELL standards and battery back up for memory £245 (a)
WS3000 V222 Professional As WS3000 V213/235 but with 1200 baud full duplex £450 (a)
WS3000 V222 Professional As WS3000 V213/235 and with 2400 baud full duplex £595 (a)
WS3022 V222 Professional As WS3000 but with only 1200/2400 £350 (a)
WS3002 V222 Professional As WS3000 but with only 2400/2400 £450 (a)
WS2000 V213/235 Manual £395 (a)
DATA Cable for WS series/PC or XT £10 (d)
DATA TALKCOMS Package "if purchased with any of the above models"
£170 (c)
PACE Nightguard Modem V21/23 Manual £75 (c)
Other cat to check with stocks

SOFTY II

This low cost intelligent expander program can be without the extra cost of 2M £2, 2S £1, 4S £1, 32K £1.50. Software is loaded on tape and requires a loader resident in 128K. No software costs included. £199.99 (b)
SOFTY II Special offer £25.00

SPECIAL OFFER
2764-25 (50.00); 2712-25 (75.00); 6245-LP £15.20 (d)

TEXTOSIL ZIF

8 Pin £1.00
28 pin £1.70

MISC CONNS

2 pin Select Connector £0.45
8 pin Select Connector £0.65

DISC DRIVES

5.25" Single Drives 40/50 switchable
TS400 40K/50K £145 (b)
TS400 £125 (a) £199 (a) £275 (b) £450 (b)
5.25" Dual Drives 40/50 switchable
TS500 40K/50K £225 (a)
PO8800 80K/128K with integral mains power supply £225 (a)
PO8800 £125 (a) £199 (a) £275 (b) £450 (b)
3.5" 80T DIS Drives
TS511 Single 40K/64K £145 (b)
TS351 Single 40K/64K with integral mains power supply £119 (a)
TS351 £125 (a) £199 (a) £275 (b) £450 (b)
PO635 Combo Dual 5.25/3.5" drive £225 (a)

3M FLOPPY DISCS

Industry Standard top class disks with lifetime guarantee. Disks packed in 10 packs of 5 disks.

FLOPPICLENE DRIVEHEAD CLEANING KIT
FLOPPICLENE Disc Head Cleaning Kit with 25 disposable cleaning discs ensures continued optimum performance of the drives 5.25/1.44 disk £12.50 (d)
3"/1.2MB £14.00 (d)

DRIVE ACCESSORIES

Single Disc Case £6 (d)
Dual Disc Case £8.50 (d)
20 x 5.25" Disc Lockable Box £8 (c)
100 x 5.25" Lockable Box £13 (c)

MONITORS

MICROTEC 14" RGB/PA/L Audio £259 (a)
1552 14" Std Res £199 (a)
1451A £225 (a)
All above monitors available in plastic or metal case.

VAXULATION SUPER II
"2" Hi Res with amber/green options £279 (a)
VAXulation Super III £379 (a)
MITSUBISHI
XC14/14 Med Res RGB, IBM & BBC compatible £219 (a)

SERIAL TESTS

UV17 Eater built-in in IBM monitors. Indicator built-in to monitor to avoid accidental damage to the resilient indicators. £14 (c)
RS232 Test Equino £249 £495 (b)
USB compatible £279 (a)

EXT SERIAL/PARALLEL CONVERTERS

Mains powered converters £40 (c)
Parallel to Serial £65 (c)
Bidirectional £135 (b)

USERS

UV17 Eater built-in in IBM monitors. Indicator built-in to monitor to avoid accidental damage to the resilient indicators. £14 (c)
RS232 Test Equino £249 £495 (b)
USB compatible £279 (a)

APPLIANCE CONNECTORS

36 way disc Centronics under 300 £9.00 £495 (b)
36 way disc Centronics £9.00 £495 (b)
24 way disc IEEE connector £75.00 £495 (b)
475p (IDC) £4.75p £495 (b)
Microcentronics Ltd £2.50 £495 (b)
350 p £1.50 £495 (b)
PM28 (IDC) £0.50 £495 (b)
Microcentronics Ltd £2.50 £495 (b)
350 p £1.50 £495 (b)
PM28 (IDC) £0.50 £495 (b)
Microcentronics Ltd £2.50 £495 (b)

RIBBON CABLE

10way 80pp £0.50 £495 (b)
12way 80pp £0.50 £495 (b)
16way 80pp £0.50 £495 (b)
20 way 80pp £0.50 £495 (b)
24way 80pp £0.50 £495 (b)
28way 80pp £0.50 £495 (b)
24way £0.50 £495 (b)
28way £0.50 £495 (b)
24way £0.50 £495 (b)
28way £0.50 £495 (b)

DIIL HEADERS

Solder £0.05 £495 (b)
10 pin £0.10 £495 (b)
16 pin £0.10 £495 (b)
20 pin £0.15 £495 (b)
24 pin £0.20 £495 (b)
30 pin £0.25 £495 (b)

DIL SWITCHES

24pin £0.50 £495 (b)
28 pin £0.50 £495 (b)
32 pin £0.50 £495 (b)

ATTENTION

Before using the switch please check the 50pp indication as follows: £8 (b) £2.50 (b) £1.50 (d) £1.00 (b)

Using "Prestel" type protocols. For information and orders - 24 hour service, 7 days a week.

TECHNOLINE VIEWDATA SYSTEM. TEL: 01-450 9764

PRACTICAL ELECTRONICS JANUARY 1988
No doubt you’ve noticed an appalling pun or two on the front cover of this Christmas celebratory issue. One of them plays on the similarity between the two words satellite and Santalite. The picture shows of course, a PE addict calling a high-tech Santa via a masing satellite communicator (or so I said to Jim Naylor, who drew it for me), though I think that gravitational anomaly interaction has not been totally overcome, looking at how the zigs are zagging. A shame about poor cyborged Rudolf!

Well, I regret that in one respect I’m going to disappoint you, the Santalite project I’m about to describe has nothing at all to do with expediting placement of your order with Father Christmas. Though he may well have micro controlled stock processing, orders must still be placed through the time honoured channels of notes up the chimney, visits to the Grotto, or trusting the GPO with North Pole letter delivery.

None the less, I couldn’t let a nice project title slip by without designing something that could be so named. Thumbing through the Thesaurus the answer came to light – Strobed Active Novel Tree Adorning Light Intensity Trigger Emitter – SANTALITE. How contrived can one get?

NIT BITS

Incidentally, I was amused to see in the science dictionary that there is a unit of luminance equal to one candle per square metre known as a Nit! Your editor may be full of illuminating ideas, but don’t anyone dare define my brilliance...

So what does this novel Noel nicety do I hear you carol in chorus. It flashes the Christmas tree lights of course.

Yes, I know that you can nip down to Woolies and buy a splendid set of lights that have their own built in flasher, or even wire up a car direction indicator unit to blink coloured bulbs on and off, but some might think the effect is a bit monotonous. Off-on-off-on-off, as regularly as the cork of the seasonal beverage bottle. How about a bit of blinking randomness to break the rhythm?

Right then, put down the cork screw for a moment, and concentrate on a few paragraphs of seriousness, starting with –

DISPARATE BI-METALLURGIC FOILS IN RECIROCATING THERMAL DEPENDENT CIRCUIT BREAKING APPLICATIONS WITH SPECIAL REGARD TO FUNCTIONAL INSTABILITY

No, that’s too serious, let’s try –

HOT BLINKERS

That’s better.
With normal automatic flashing light controllers as found in car indicators and commercial Christmas lights, it is usual for some kind of thermally dependent device to be used to create the switching action. Sometimes this may simply be a special bulb in circuit, or a separate unit, but in both instances a bi-metallic strip is involved.

As most of you must be aware metals expand when they are heated, and different metals have different expansion coefficients, meaning that they expand by dissimilar amounts. If two different metal strips are joined in parallel and are heated, both will try to expand by the required amount, but because they are joined, the expansion causes the strip to bend. If the heating is due to a current flowing through the strip, this bending can be used to open a contact which, when open, will stop the flow of current through the strip. Once the current ceases, the heating effect will also stop, and the strip will cool down again. Of course, as it does it will contract and straighten once more, to eventually remake the electrical contact. The cycle will then repeat itself, ad infinitum, power cuts permitting. If a lamp is in series with the current, then it will naturally flash synchronously with the opening and closing of the contact.

ARCHEOLOGY

There are problems though. First, if the current being drawn is fairly significant, arcing can take place across the opening and closing contacts. Sometimes this can result in the contacts actually welding themselves together, so forming a permanent connection. The arcing can also cause a build up of contaminants around the contacts. This can have the opposite effect, and prevent the contacts from making electrical connection, causing a permanent open circuit to occur. Thirdly, when metal is subjected to stresses, fatigue eventually sets in, cracks develop, and in extreme cases the metal can break. For any of these reasons, bi-metallic switching can be unreliable.

ELECTRON AND OFF

On the other hand, if the switching is done electronically, the life expectancy of an automatic switch can be regarded as potentially much longer. With electronic control, there is also the additional advantage that the rate of switching can be readily varied.

Christmas tree lights are usually powered by an a.c. supply of some sort. This is frequently supplied direct from the normal mains circuit, or sometimes comes from a low voltage transformer to provide isolation from the mains and give added safety.

In either instance, the electronic control can easily be performed using a thyristor or a triac. Thyristors simply conduct the a.c. supply during the
positive going excursion of its waveform. Triacs though will conduct both the positive and negative going halves of the cycle. The advantage of using a triac for lamp control is that since it conducts on both sides of the cycle, it will be triggered at twice the rate of the single sided thyristor. Since in the U.K. the mains supply operates at 50Hz, a triac will conduct 100 times per second compared with 50 for a thyristor. The greater switching frequency of 100Hz is less noticeable to the eye than a rate of 50Hz, and so the resulting lamp flicker is less obvious. For this reason the use of a triac for controlling the Christmas lights from the Santalite is preferable.

A triac has three terminals, two of which conduct the a.c. supply and are usually known as MT1 and MT2. The third terminal is the gate, which as the name implies can control whether or not the triac will conduct. Unlike a transistor, a triac needs to be continually triggered to respond to each cycle, and so needs to be driven from a pulse generator of some type. It is perfectly possible to use the a.c. supply itself, with suitable precautions, to perform the necessary triggering. For safety reasons though, it is best to keep the mains and the control circuit isolated from each other.

LIGHTLY LINKED

This isolation is often carried out by using a transformer between the two parts of the circuit. However, there are numerous devices available which can isolate circuits by optical methods. All that this means is that a light sensitive device can be connected to the gate of the triac, and then to send a pulse of light to switch it on.

Such a device is known as an optocoupler, and is simply an enclosed unit within which are an led and a light sensitive electronic switch.

![Fig. 1. MOC3020 Optotriac.](image)

In some devices the light sensitive switch may be a transistor, and these are ideal for switching d.c. supplies. For a.c. switching other devices that contain low power triacs are available. The device chosen for the Santalite is one of the latter (IC2 in Fig 2.) and is capable of switching up to about 50mA of current. Regretably this is insufficient to control the Christmas lights directly, but it is sufficient to gate the main triac CSR1 in Fig 2.

![Fig. 2. Circuit diagram for the Santalite](image)

The triac I used (as it was readily to hand) is capable of driving 3.5 amps of lamps, around 750 watts, but I've really only intended the Santalite to drive around 100 watts. If you propose to drive more, a bigger box than the one shown must be used, and suitable ventilation holes will be required, plus a heat sink for CSR1. A lower current triac may be substituted if only low wattages are to be controlled.

VIBRATION

Ignoring for the moment that we want a random flashing sequence in this unit, the triggering of the lamps can be done by simply sending a constant stream of pulses to the led in IC2. This will turn on at each pulse, and so remotely control the main lamps. Here the basic oscillator that generates the pulse stream is formed around IC1a and IC1b.

These are simply two CMOS inverting gates which when coupled in the fashion shown form an oscillator running at a frequency set by C2 and R2. The actual frequency produced is around 500Hz, but it is not critical as long as it is fairly well above twice the mains frequency of 50Hz.

Obviously it is no use having a gating frequency being constantly applied to the optocoupler. This would naturally keep the lamps on until either the mains was switched off, or the oscillator stopped. For practical use, the pulse stream has to be gated.

The main gating signal is produced by another oscillator, around IC1c and IC1d. The principle of oscillation is identical to that used with the first oscillator. The difference though is that the capacitor C3 has a larger value than C2, and that a variable control, VR1, has been included. This allows for different resistance values to be set from the control panel, and which affect the rate at which C3 will charge and discharge. A low resistance setting will produce a higher speed than a large resistance.

AND ALTOGETHER NOW

The outputs of both these oscillators are led to an AND gate. This could quite readily be a chip gate, but here it is just as simple to use a discrete gate formed around D2, D3 and R7.

If either of the oscillator outputs is in a low state, current from R7 will flow...
through the relevant diode instead of through the led of IC2. If however, both oscillator outputs are high, current will then flow through the led, causing the lamps to turn on. By turning VR1, thus varying the rate at which the oscillator toggles high and low, so the lamp turn on rate can be changed.

Earlier, I said that the flashing rate should appear to be random in order to remove the monotony of a preset rate. True randomness needs a somewhat more complex circuit than I feel is necessary to achieve a similar effect. Instead, the appearance of randomness can be created by gating the control signal at yet another rate.

The third oscillator around IC1e and IC1f is used for this additional gating. As you can see it works in the same way as the others, but with a different C-R value, causing it to run at a different rate. The AND gate is given a third input, via D4, so all three oscillators need to have their outputs high for the lamps to be turned on.

Since they are all running at different rates, the on-off timing points are constantly changing, which, although will be in a pattern that repeats itself, will not over the long length of time involved be noticeable to the casual observer. (Fig 4.)

POWER LESS

The CMOS chip IC1 hardly takes any current, and most of the power consumption is due to that required by the leds, less than 10mA. A PP3 battery can be used to supply the circuit power, and should last for several days of regular use. However, CMOS is also very forgiving of voltage supply levels, and the 4069 chip used will quite happily run from about 3V up to 18V. Consequently you are not limited to using just a 9V battery, and a 12V battery could just as well be used.

Also, I have allowed for the supply to come from a mains unit such as a battery eliminator, like those for use with cassette recorders. There is also no basic reason why a low voltage transformer should not be used. Virtually any mains transformer delivering between about 4.5V a.c. and 12V a.c. could be used. The inclusion of D1 provides half wave rectification of the a.c. and C1 gives sufficient smoothing to suit the simple needs of this circuit.

BOARD ALIGN

Two chips, eight resistors, four capacitors, four diodes, a triac, led and a handful of hardware, how much simpler can anything be? You should be able to put this lot together on the kitchen table somewhere between the mince pies and the turkey stuffing. Keep it away from the cake though, to minimise current consumption.

Fig. 4 shows how well I've presented the board for you; just slot in, solder on, clip joints and box cleverly. You could also socket well, if you prefer to use miniature mains sockets instead of soldering the mains leads to the PCB. If you don't use sockets, you must use grommets and cable clamps to secure the mains leads safely. Keep all leads well away from the triac, which may get a bit warm.

But wait - don't plug in yet! Check your handiwork first; thoroughly; in Sherlock Holmes style, with a magnifying glass. Look out for bad joins, solder shorts across tracks, chips in the wrong way round, and is the triac disorientated? Remember, it's mains that you're dealing with on part of the circuit. Your abilities may be strong, but we don't want you getting too powerful - it's the lamps that are meant to light up, not you. So please be sure of what you've done, and if in doubt ask someone who is qualified to help.

With the 4069 chip, which is CMOS, take the usual precautions, discharging static from yourself by touching something earthed (but a potted plant in not suitable). When you're sure of everything you can then check out that the circuit works, but initially just concern yourself with the battery operated section.

Guiding Light

Led D5 has been included for two reasons, one of which is so that a visual indication of the trigger rate can be seen without the main lamps being connected. The other, and more important reason is due to the diode AND gate nature. Since the diodes have a voltage drop of around 0.7V across them the lowest voltage never drops below that level. Consequently satisfactory switching of the led in IC2 cannot be accomplished. By including another led in series with it the relative bias levels are raised and the gate logic level changes then do their job properly.

Fig. 4 Timing waveforms: (a) HF trigger oscillator; (b) second oscillator; (c) third oscillator; (d) output of the AND gate with (a), (b) and (c) applied.

Fig. 5. Printed circuit board and wiring details (not to scale).
Also check the junction of the three except possibly as a half level voltage.

probably not register on the meter give you a visual indication that things the swing rate. You also have led D5 to give you a visual indication that things are swinging. Oscillator one will probably not register on the meter except possibly as a half level voltage.

The finest mag to have in sight. Please thank its Ed (so erudite?)

For his blinking Santalite.

Enjoy your gifted mod-tech yule tide optic communicator, (I'm hoping to be given a better poetry and pun prog for the PET micro)!

LIGHTENING

OK, go ahead, plug in to the mains, the functioning of this side of the circuit will be self evident. Do not touch anything inside the box whilst it is connected to the mains.

If your darkness is not intermittently brightened by festive flashing then you've probably not done your assembly and checking well enough. If the error is on the oscillator side it's unlikely that anything will have been demis. On the mains side though, if you find that the triac is in the wrong way round you will probably have killed it and also IC2. (Please use DIL sockets for both chips). It doesn't matter if MT1 and MT2 are reversed, but if the gate leg is in the wrong hole, you will need replacements.

There is a possibility of course that if your Christmas lamps are joined in series, then if one of them is dead, none of the others will work. In that case all you need is another bulb.

UNFUSED MUSE

However, I'm certain you've heeded my hints and checked things first, so I feel sure that your flickering festoon within the festive fir will, like a lighthouse in a sea of darkness, signal out its seasonal silent call. Who knows, Even Santa's eye may light

Upon that message flashing bright,
And rain dear gifts this Noel's night,
So then yule know you've got it right,
Without a chatty satellite,
And that PE is surely quite
The finest mag to have in sight.
Please thank its Ed (so erudite?)
For his blinking Santalite.

Enjoy your gifted mod-tech yule tide optic communicator, (I'm hoping to be given a better poetry and pun prog for the PET micro)!

GIFTOMETER

I hope you've got a multimeter, and if you haven't why not put it on the presents list? If you're serious about electronics you really should have a meter. It need not be expensive, and lots of PE advertisers sell them. Get one of at least 20k ohms per volt, with at least the basic ranges for measuring resistance, a.c. and d.c. voltages, and current in milliamps. If it has other facilities, so much the better. There's no need to go to the expense of a digital meter until you are past the novice stage; an analogue one with a moving needle meter will be quite enough until then.

It's not vital to have a meter for this unit, but if you have you will be able to check that the second and third oscillators are functioning by watching the meter needle swing up and down. Also check the junction of the three diodes to see that a small voltage swing occurs there. Varying VR1 should alter the swing rate. You also have led D5 to give you a visual indication that things are swinging. Oscillator one will probably not register on the meter except possibly as a half level voltage.

SWITCHES
S1 min s.p.d.t.
S2 mains s.p.d.t.

MISCELLANEOUS
Box 120 x 65 x 40mm, PP3 battery clip, fuse holder and fuse to suit lamps, cable clamp, grommets, knob, LED clip, PCB, 6-pin I.C. socket (or 8-pin), 14-pin I.C. socket, triac (see text), wire and solder.

CONSTRUCTOR'S NOTE:
The PCB is available from Phonosonics at £3.90 each incl. U.K. p&p and VAT, order as PCB 282A.

LIGHTENING

OK, go ahead, plug in to the mains, the functioning of this side of the circuit will be self evident. Do not touch anything inside the box whilst it is connected to the mains.

If your darkness is not intermittently brightened by festive flashing then you've probably not done your assembly and checking well enough. If the error is on the oscillator side it's unlikely that anything will have been demis. On the mains side though, if you find that the triac is in the wrong way round you will probably have killed it and also IC2. (Please use DIL sockets for both chips). It doesn't matter if MT1 and MT2 are reversed, but if the gate leg is in the wrong hole, you will need replacements.

There is a possibility of course that if your Christmas lamps are joined in series, then if one of them is dead, none of the others will work. In that case all you need is another bulb.
MICRONTA®

NEW PRECISION MULTITESTERS

[A] 28-Range FET VOM. Perfect for electronics testing! 10 meghms per volt DC sensitivity. Measures: 1000 volts DC in seven ranges and 1000 volts AC in five ranges. DC current to 10 amps, resistance to 100 meghms. Decibels: -20 to +62 dB. Fuse protected. Requires one 9V and one "C" battery. Measures: 71/16 x 51/2 x 23/4". £34.95

22-220

[B] 43-Range Multimeter. 50,000 ohms per volt DC sensitivity. Fuse and overload protected. Measures to 1000 volts DC in 12 ranges and 1000 volts AC in 8 ranges. DC current to 10 amps, resistance to 20 meghms. Decibels: -20 to +62 dB. Requires one 9V and one "AA" battery. Measures: 611/16 x 41/8 x 23/4". £29.95

22-214

For The Best In High Quality Electronics

Over 300 Tandy Stores And Dealerships Nationwide.

See Yellow Pages For Address Of Store Nearest You

Tandy UK, Tandy Centre, Leamore Lane, Bilston, Walsall, West Midlands, WS2 7PS

Practical Electronics January 1988
When I started thinking about an introduction to this article I was prompted to check on the origin of the word 'Intercom'. Interestingly the five dictionaries to which I went for guidance are of very different publication dates.

The oldest – Collin's Westminster Dictionary – was published in 1960. Perhaps not surprisingly, 'intercom' does not feature as a separately listed item. Instead the main reference is headed 'intercommune', from which the somewhat different verb 'intercommunicate' is developed. 'Intercom' has a mention and is defined as 'internal telephonic system – generally of aircraft'. By the late 1960s, copies of 'Chamber's Essential Dictionary' and 'The Penguin English Dictionary' both have a listed reference to 'intercom' as an 'internal telephone system'.

(PE first used the word in December 1964 in "The Two Way Intercom Unit" by K. Berry. Ed.)

The Concise Oxford Dictionary of 1976 has 'system of intercommunication by radio or telephone'. By 1987 the Readers' Digest Universal Dictionary describes 'intercom' simply as 'an internal communication system, as between two rooms'.

By now some readers may be wondering whether this is indeed a copy of PE or perhaps a new magazine of lexicography.

There is a point to all this, however. Dictionaries by their nature reflect the thinking and understanding of the times in which they are compiled. Bearing in mind that it is generally reckoned to take several years to put a new dictionary together, each of the examples quoted above gives a valuable insight into how the concept of an intercom has changed over the last thirty years or so. No longer is it regarded as a highly specialised piece of equipment found mainly in aircraft. No longer is it necessarily a hard-wired system joining two communicators. Indeed the use of radio techniques is now commonplace.

Very sophisticated hi-fi devices are now produced at incredibly low prices. Clearly our purpose is not to explore the latest developments but rather to go back to the beginnings of circuit design and to consider the minimum features of a system which can claim to be an 'intercom'.

Fig. 1. Minimum system specification for a one-way intercom

MINIMUM FEATURES

A simple analysis of the requirements of a one-way intercom leads us to conclude that it possesses the same minimum features as many other basic audio systems. An input transducer (in this case a microphone) converts acoustic energy (pressure waves) into an electrical signal. The signal must then be amplified sufficiently to drive the output transducer (in this case a crystal earpiece). All one-way intercom systems will have at least these three features (Fig. 1).

Given that we can acquire the input and output transducers, the design emphasis is placed wholly on the amplifier which will link them together. The very simplest amplifier consists of little more than a single transistor, for it is this one device which contains the inherent ability to amplify small signals. Let's use this as our starting point.
THE NEED FOR BIASING

One problem which is immediately apparent from Fig.2 is that any input changes which take the base voltage below about 0.7V will cause the transistor to stop conducting. By the same token any changes which would take the output below 0V will be lost. The output must lie between 0V and 9V at all times. Furthermore, if the output is to be allowed to swing both up and down in response to input signals then the starting point must be half-way between the power supply rails — in this case at about 4.5V. This process of setting the collector voltage at a specified level before the signal comes along is known as 'biasing' the transistor.

One way of achieving the correct biasing is to use a pair of resistors connected across the base to form a potential divider (Fig.3). By choosing the values for \(R_1 \) and \(R_2 \) carefully we can set the transistor so that it is neither switched ON nor OFF, but somewhere in between.

The inclusion of the one biasing resistor, \(R_1 \), will provide some negative feedback between output and input which will help to control the behaviour of the transistor. Suppose that the input signal is too high; this will cause the transistor to conduct more heavily and so allow a larger current through the load resistor, \(R_2 \). The output voltage will therefore drop below a reasonable level and current will be diverted from the input towards the output rather than into the transistor-base. This will have the desired effect of shutting down the transistor and therefore limiting the size of output which can be obtained.

If you build this circuit you will find that you might just be able to hear the output when someone speaks into the microphone, but it will certainly not be very loud. We need more amplification.

Fig. 4. Alternative biasing

In practice the actual values needed for \(R_1 \) and \(R_2 \) will vary, depending upon the particular transistor used. For example, the BC108 with which we are probably all so familiar can have a current gain anywhere in the range from 40 to 200. If we chose our values of \(R_1 \) and \(R_2 \) to suit a transistor with gain equal to 40 then it would not suit one with gain equal to 200 and vice versa.

One way around this is to use a slightly different method of biasing. Only one biasing resistor is needed and this should have a resistance of about one hundred times that of the load resistor, \(R_2 \). Fig.4 shows this arrangement with a suitable microphone and an earpiece connected correctly to input and output respectively.

The practical circuits given so far have used a crystal earpiece as the output device. Since it has a very high resistance (about 10M) it does not affect the proper working of the transistor.

Fig. 5. Two-stage amplification

Fig. 6. Three-stage amplification

The practical circuits given so far have used a crystal earpiece as the output device. Since it has a very high resistance (about 10M) it does not affect the proper working of the transistor.
CHANGING THE OUTPUT TRANSUCER

If, however, we wish to use a magnetic earpiece which has a resistance of only about 1k or a loudspeaker which has a resistance of 80 Ohms less then some changes are required.

The first problem is that with a load resistor of 1k in the output stage hardly any voltage would be developed across a loudspeaker say of 80Ω connected between the collector and the emitter. Instead we must replace the load resistor by the loudspeaker thus making the loudspeaker into the load. The problem now is that much higher collector currents are possible and we may well need to upgrade the transistor to cope with this. A BFY51 for instance, in place of the BC108 will certainly handle enough current to drive an 80Ω loudspeaker from the 9V supply. It is now necessary to change the biasing resistor on the third stage as well as to match the new output conditions. Fig. 8 shows just the output stage adapted to accommodate a loudspeaker.

TWO-WAY OPERATION

So far we have considered only a one-way communicator. There is no facility in any of these circuits for a proper two-way conversation to take place. If we wish to introduce this facility then perhaps our first approach would be to use two circuits, one having its microphone at the 'main station' and its output at the 'slave' or 'remote station'; the other having the input and output transducers swapped over. This system would then be represented by the block diagram of Fig. 9. This will work perfectly well but it is unnecessarily complicated and expensive in parts. Furthermore as it has an amplifier in both the master and remote stations, there would need to be an energy supply at both ends.

We can solve this problem if we move both amplifiers to the master station (Fig. 10). Having done this it now becomes even more obvious that we are still duplicating each of the three main features that we looked at in Fig. 1. The nature of a conversation between two people is that (usually) only one of them is speaking at a time.

BI-DIRECTIONAL TRANSDUCER

As one of our design aims is always to find the simplest (and cheapest) acceptable solution to a problem, we might now look for ways of doing away with the need for both a microphone and a loudspeaker at each station.

Bearing in mind that we are not concerned with high quality sound reproduction and that the only use of the system will be to convey speech, the range of frequencies which need to be handled is very limited indeed. Human speech has a frequency range from about 100Hz to 10kHz, but is quite intelligible when limited to a bandwidth of about 300Hz to 3kHz.

Since we are transmitting directly through a cable system, there is no modulation process involved and therefore the minimum bandwidth which needs to be transmitted corresponds to this reduced speech bandwidth, just as in our public telephone system. We will find then that either a small loudspeaker or the mouthpiece from a telephone receiver will perform adequately as both microphone and loudspeaker. Fig. 12 shows the simplified system requirements of a basic two-way intercom. You may like to compare this with Fig. 1, and note that the only differences are in the addition of the dpdt switch and the bi-directional flow of information.

INTRODUCING A 'CALL' SYSTEM

Apart from perhaps a more sophisticated amplifier which will give a better quality of sound than the simple cascaded three stage circuit of Fig. 6, the only other particularly useful development would be to introduce a
system for “calling” one station from the other.

Clearly the purpose of this facility is to gain the attention of the person at the receiving end before any conversation is started. According to the exact situation in which the device is being used, this may or may not be essential. Let’s suppose that we do need a “call” facility and that it must be available from either of the two stations. A simple press switch (push to make) or a touch sensitive switch at either end of the system will activate a buzzer or a lamp or both at the opposite end. In the master unit, the same power source can be shared with the amplifier circuit but in the remote unit, we must either provide a second power source or bring an extra wire to carry this supply from the master unit.

On balance, I prefer the former solution because we need to give some thought to minimising the number of wires needed to run between units. Already we must have the two connections necessary for the loudspeaker/microphone. One of these would be the 0V line for the battery as well. If we introduce a second battery to enable the remote station to call the master station regardless of the status of the other switches on the master station, then only one more wire between stations is required. If, however, we try to use the master station battery then two more wires will be needed to link the remote “call” switch into the circuit. The preferred solution then has only three intercon-nections between units as shown in the system diagram of Fig.13.

BRAIN TEASER

Very careful use of more sophisticated “call” switches could result in saving one more interconnection by using the same line for the signal and for the calls.

Clearly the buzzer must not be in circuit when the amplifier is working, nor must the loudspeaker/microphone be connected when the buzzer is required. I will leave it to the reader to sort out how this could be achieved. It is possible and it would cut down the interconnections to just two.

(This is a problem that beset Alexander Graham Bell, as discussed in last month’s article on telephone history. Ed.)

WIRE-LESS SYSTEMS

These days there is a growing market for intercom units which require no interconnections at all. One way in which this can be achieved within the confines of one building is to use the existing mains electricity cables to carry the signals.

Certainly there is no problem in using the mains earth as the common line for the intercom. The problem is how to make at least one connection without adding a signal to your domestic mains supply which might cause great problems for some other piece of equipment running from the mains.

There might also be unforeseen difficulties if your mains supply runs through a sensitive residual current device or an earth-leakage circuit breaker. I would have to advise strongly against dabbling with these ideas unless you know exactly what you are doing.

In any case the level of understanding required to implement such a system is well beyond the scope of GCSE and therefore of this article.

(For those with an interest in the subject, a project is scheduled for the near future. Ed.)

NEXT MONTH Tim Pike will look at further improvements that can be made, and describe a practical working intercom unit

WATT NO SINKS?

Dear Ed,

I should like to clarify a couple of points about Tim Pike’s put in the November issue. I believe that the current in the common line of the 7800 series is of the order of 5mA so an ordinary 44/1kVzener or 1N4148 diodes can be used to raise the voltage thresholds in Fig 13 and 14. Also, the regulators may need to be used with heat sinks if the dissipation rises above 2.5 watts.

Please don’t think I’m being critical – I think the articles are excellent and very practical – I only wish to be helpful.

W.A. Sawyer, Beaconsfield.

Thanks, you have been helpful. One extra point though, if heat sinks are used, they must not electrically connect to any other part of the circuit and the lcs should have insulated washers if the chassis is used as the sink. Ed.

Fig. 12. Use of bi-directional transducers

Fig. 13. Requirement for three interconnections between stations

PRACTICAL ELECTRONICS JANUARY 1988
EMELAST INSTRUMENT CASE

300 x 153 x 217 deep £10 ea (£20.30)

REGULATORS

LM137T PLASTIC TO-220 variable £1

LM2901 12V 1A £2.20

7805/12/15/24V plastic £50 100 + £2.70

7805/12/15/24V TO-220 £50 100 + £2.70

C2085 109 variable reg £5

LM388 5A variable £3

COMPUTER ICS

6808 PROCESSOR EX-EOPT £1.50

27256-30 ex-eopt £2.50

2725-30 £7.50

2721-45 USED £12 + £1.50

271945 EX EOPT £12 + £1.50

2114 EX EOPT 6FF1611 EX EOPT £7.50

6254-16k static ram £3

6711-3Q (TO517AP) £110

430 RAM £2.50

SURFACE MOUNTED TRANSISTORS

BCW30 BCW31 BCW72 N7A70 152826 min 50-type £25.50/100

POWER TRANSISTORS

POWER FET RFP531 6A 60V £2.80

2N3054 RCA HOUSE NUMBERED £5.20

2SC5215N SIM BF258 £3.95/100 £1.28/500 £1.25/1000

TIP141 60V £3.95/100 £1.28/500 £1.25/1000

TIP42 £4.75/100 £1.50/500 £1.45/1000

2N5055 EX EOPT TESTED £4/100 £1.35/500 £1.32/1000

PLASTIC 3036 OR 2959 equiv 50p/2k5 £1.75/250 £1.70/500 £1.68/1000

2N3772 NPN 25A 18V £1.90

10/each £1.85

QUARTZ HALOGEN LAMPS

A1216 24V 150WATTS £2.25

12V 50W (CAR SPOT) £2

MISCELLANEOUS

SMALL MICROVATE DIODES AEC DC1028A £1

RG21 CO-AX LEAD 2 METRES + BNC PLUG £1.50

D.L. SWITCHES 10 WAY £1.50 8 WAY £5.50 5WAY £6.50

180 volt 1 watt ZERNERS ALSO 12V £1

60 OHM MINIATURE CO-AXIAL CABLE RG316U £5/50m

OLIVETTI LOGOS CALCULATOR KEYBOARD (27 KEY) PLUS £2.50/100 £1.55/500 £1.50/1000

PLASTIC EQUIPMENT CASE 9 x 6 x 1 2 5 in with front and rear panels containing PCB with EPROM 2764-30 and ICs 74177 L3201 L567 L3267 LM117 7805 REG 9 WAY DIP, PUSHBUTTON SWITCH, D.I.N. SOCKET, £1.95/100 £1.70/250 £1.65/500

VINYL A4 A5A5 80 TO-62 models £4/100 £3.50/250 £3/500

MINI GLASS NEONS £15/100

RELAY 5v 2 pole changer looks like RS 355-741 marked TO 970016V £4

OMRON RELAY 3.5 Volts coil 2p e/o contacts marked £1.05/100 £0.90/250 £0.85/500

MC 040-379-8 BT2 £8/2k5 £7/1k2 £5/500 £4.50/100 £3.50/250 £3/500

MINIATURE CO-AX FREE SKT. RS 455-273 £1.50

MINIATURE CO-AX FREE SKT. RS 455-273 £1.50

CABLES AND LEADINGS £1.00/100 £0.90/250 £0.85/500

32A MAINS LIQUID CRYSTAL £2.50

$100-1 £50-1 £25-1 £10-0 £5-0 £2-0 £1-0 £0-5 £0-2 £0-1 £0-0

SOS

38A 120V £120-1 £60-1 £30-1 £20-1 £10-1 £5-0 £2-5 £1-2 £0-7 £0-4 £0-2

TRIACS

i000-1 £4000-1 £2000-1 £750-0 £500-0 £250-0 £125-0 £50-0 £25-0 £10-0 £5-0 £0-5 £0-1 £0-0

DIACS

10-0 £2-0 £0-5 £0-1 £0-0

CONNECTORS

CENTRONICS 36 WAY IDC PLUG £6.20

CENTRONICS 36 WAY IDC PLUG £6.20

SOLDER TYPE £6.20

USED CENTRONICS 36 W C/W CONNECTOR £5.50

WIRE WOUND RESISTORS

W21 or sim 2.5W 10 of one value £1

R109 1/2W 2R 20R 50R 100R 220R 470R 680R 1K 2.2K 10K 100K 1M £1.50

680R 100K 220K 470K 1M £1.50

1K 10K 100K 1M £1.50

5.1K 10K 100K 1M £1.50

PHOTO DEVICES

SLOTTED OPTO- SWITCH OCPA OCPB £1.30

TUBL PHOTO TRANSISTOR £0.60

TJLB INFRA RED LED £0.65

OP1029 OPTO ISOLATOR £1.50

PHOTO DIODE 50p £0.60

MELB (PHOTO DARLINGTON BASE) £0.55

RPV16A LDR 50p OHR12 LDR £0.65

LEDS RED 3 or 5mm £0.11

LEDS GREEN OR YELLOW £0.11

LEDS ASSORTED RG/DYW/IR £0.11

FLASHING RED OR GREEN LED £0.11

SUB MIN PRESETS HORIZONTAL

15/1 £1.25/1 £2.50/1 £10/1 £100/1 £250/1 £1000/1 £2500/1 £10000/1

MULTI TURN PRESETS ¾"

10D 250 1000 2200 5000 2500 2200 2500 2200 2500 £0.60

IC SOCKETS

74 SERIES 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 £1.50

80 SERIES 1 2 3 4 5 6 7 8 9 10 11 12 £1.00

74H SERIES £0.65

61 £0.35

80 £0.50

59 £0.30

74S SERIES £0.65

30 £0.30

42 £0.20

32 £0.15

FLASHER CAPACITORS

all types £5/50p

GREY 15.5 to 55.5 £0.60

GOLD 1000 to 2200 £0.50

TRIMMER CAPACITORS

all types £5/50p

GREY 15.5 to 55.5 £0.60

GOLD 1000 to 2200 £0.50

SMD TRIMMER CAPACITORS

2N3047 £0.50

Ferrite Core Film Capacitors £0.50

2N3047 £0.50

Ferrite Core Film Capacitors 100p £0.50

TRIAXIC MOLY CARBON FIBRE PRECIPITATION

100 £0.15

50 £0.07

25 £0.05

10 £0.03

MONOLECTIC CERAMIC PRECIPITATION

25 £0.10

10 £0.05

5 £0.03

2 £0.02

STEPPER MOTORS 4 PHASE 2.9V £3.69

EDIC MOUNTS £0.50 £3.60

ADD 15% VAT TO TOTAL
A sunny Sunday lunchtime at the village pub.

“We definitely have a mouse,” said our neighbour. “It keeps getting into the pantry. But I haven’t the heart to kill it,” she added “Even if I could bring myself to put a mousetrap down, the children certainly wouldn’t let me.”

“I’ll have to make you an electronic mousetrap.” I said, ever alert for a chance to slip into my Mad Inventor role. I didn’t see the tolerant smiles exchanged with my wife... my mind was already on the grand design as I reached for my lager.

TO CATCH A MOUSE

The problem was not really all that complex, but I thought I might stretch it out into a day or two if I worked at it.

Obviously I was going to need a box of some kind, in which I would lure the mouse with a traditional piece of cheese. The Sound Effects section of my reference files had yielded no Rodent Attractors or such-like. The closest was a “Fish Caller,” in a late 70s magazine, but I quickly dismissed that multivibrator in its watertight jar as unpromising for my more discriminating mammal target.

Needless to say, the device had to be electrically operated. A merely mechanical contrivance was not in the running... the merits of my hobby itself were at stake. Battery operation was another obvious criterion; mains sockets aren’t usually sited with mouse catching convenience in mind and the idea of using an extension reel was dismissed rapidly.

It was clear that I would need a door of some sort which would close when the mouse was starting its one course meal, remaining shut until its merciful release by A Kind Human some time later, presumably the following morning. So the first interesting design question was how to close the door.

A vertical, freely-sliding trapdoor was the obvious choice, given that it had to close quickly... our mouse was unlikely to linger over the cheddar, watching with interest while a conventional hinged door slowly shut. I decided to use a piece of hardboard or aluminium suspended at the sides in grooves, so that when suitably released it would fall sharply downwards.

This prompted some rough calculations as to how long the box should be. I did not want news of the successful capture of a mouse to be marred by hearing that its nether extremity had been amputated... a sting in the tail as it were. Unsure as to the upper size bounds of the local mouse populace, I was inclined to be generous. After all, I could limit the width of the box to discourage inquisitiveness from larger nocturnal prowlers (like Susie our cat or the occasional hedgehog). As you can see from Fig.1 the box eventually built was about 35cm long.

I then considered how to contrive some release method for the trapdoor. A small strip of wood, glued to the trapdoor and resting on a sliding rod of some kind, was the obvious approach. It would have to allow the trapdoor to be raised again of course, so this “ledge”...
was bevelled as shown in Fig. 2.

Next - how could the rod be withdrawn, allowing the trapdoor to fall under its own weight? Although a solenoid was my first choice, I knew that the only ones I had were specified as 24V types. I therefore thought about using a small dc motor, winding a length of nylon line around its spindle so that, on powering the motor, the line would pull in the rod. But the snag was, the rod would not return unaided to its holding position. A light spring was not strong enough to pull it back against the motor's resistance. A stronger spring would have prevented it pulling it inwards. Apart from that, this approach was basically inelegant and error prone anyway.

I therefore experimented with a solenoid and found that satisfactory operation could be obtained with 18V, despite the 24V specification, provided that friction between the solenoid's rod and the wooden catch was minimised by careful smoothing of the latter's surface and avoiding too heavy a trapdoor.

I turned next to the method of triggering the solenoid and listed these requirements:

1. To minimise current consumption (and hence maximise battery life) the solenoid should only be held in long enough to fully release the trapdoor. A monostable was probably needed therefore.
2. It should only be triggered once. Further operation once the door was shut would be redundant and waste power. This indicated using a bistable.

3. Triggering should occur when the mouse was fully inside, so that its tail would not be under the falling door. This meant positioning whatever switch was chosen well inside the box and ensuring reliable triggering.

Simplicity and reliability were the main reasons for quickly selecting a microswitch as the method of activation. An interrupted light beam was one alternative briefly considered, but widely varying expected ambient light levels would add complexity and possible spurious triggering, so this was rejected.

One other option, which had some attraction because it could be made relatively unobtrusive, was a proximity switch. This would be similar to those I'd built into lamps etc around the house. On touching or coming very close to a piece of metal or metal foil, the circuit is triggered by capacitive attenuation to ground of an hf oscillator (around 100 kHz). So a small piece of aluminium cooking foil covered with some cloth could possibly activate the solenoid circuit. However, although I was familiar with the sensitivity of this circuit to human proximity, I was by no means certain about mice. What is the capacitance of the average mouse anyway? (In MICEofarads of course.) In any case this rather high-tech trigger circuit would have needed continuous current, limiting useful battery life. It was better to go for a circuit with negligible standby current.

So as seen in Fig.1, I arranged a microswitch with its lever in such a way that when the mouse was on the hinged base section it would close the contacts.

CIRCUIT

A block diagram appears in Fig 3 and the circuit itself in Fig.4. It is very simple and operates as follows.

A dpdt switch supplies 9V to the logic circuits and 18V for the solenoid. When the power is applied a positive going pulse resets the bistable, ensuring its output does not therefore trigger the monostable.

When the microswitch is closed as a result of the mouse's weight, the bistable is set, triggering the monostable, the output of which goes high for a brief period set by R4 and C2. The preset allows adjustment to the shortest time consistent with reliable release of the trapdoor. In the prototype this was about 0.3 seconds.

As a further precaution against spurious triggering on power up, the monostable has a simple RC network on pin 13 to keep the output low for a short time.

![Fig. 3. Block diagram of the mousetrap control.](image)

PRACTICAL ELECTRONICS JANUARY 1988

23
MOUSETRAP

The high monostable output drives a darlington pair common emitter via R5, activating the solenoid. Diode D1 provides protection against possible high induced reverse voltages.

POWER SUPPLY
I experimented for a while with voltage multiplier circuits, trying to get the necessary 18V minimum for say 9V or even 6V. However the surplus solenoid I was using was a current hungry specimen consuming some 600 mA at 18V and such multipliers were not up to this sort of load.

Setting on 2x9V, I was indeed initially doubtful as to whether the small PP3 types would be adequate. While trials with some slightly used ones gave unreliable operation, fresh ones (especially alkaline) worked well. After all, they only had to deliver one good short burst, once a night.

CONSTRUCTION
Construction was straightforward and should be clear from the figures and photograph. Any reader actually making one of these would use materials to hand, adapting details as appropriate. A few particular points might be helpful.

A rear door was incorporated to assist in placing the cheese and cleaning out after the one night's unsolicited bed & breakfast.

The original version was given a perspex top so that any inhabitant could be clearly seen by The Kind Humans. However on the first night of use, captive Mouse Number One proceeded to eat this, thus securing his escape. It was then replaced with a wooden top some 1cm thick, on which Mice Numbers Two to Seven have made no apparent impact.

At the same time, duly impressed with the toothpower of my prey, I reinforced the trapdoor and the rear door with aluminium linings. This lead to some problems with the solenoid sticking, because of the increased friction, but sand-papering of the catch cured it.

In my case the battery compartment was made of two tobacco tins, mounted conveniently on top.

THE GADGET AT WORK
Within the first three days it caught six mice, excluding the escapee. They were apparently transported about half a mile before release. Scaling up to human levels this is about 10 miles, so it can be reasonably confident with the assurance that it was not the same mouse coming back a couple of times every night.

Anyway, the word must have spread because the pantry was mouse-free from then on.

And everyone lived happily ever after!

IMPRESSIVE PCW SHOW

The Tenth Personal Computer World Show held at Olympia during September was a huge success. There can be little doubt that it was the biggest yet, and of great benefit to visitors and exhibitors alike.

Your Editor was especially impressed by the proliferation of word processors and the extent to which desk top publishing is making its impact felt. The latter is rapidly becoming a feasible proposition even for small organisations, such as clubs and societies who produce regular news letters or magazines. Even dtp programs for use with existing computers are now capable of producing remarkable results. It's easy to speculate that the humble typewriter may have its days numbered. Similarly, CAD packages seem to threaten even the pencil as a means of drawing circuit diagrams, designing PCBs, or just doodling pictures!

Not surprisingly, computer games had a strong attraction, and many stalls drew the entranced attention of both young and old visitors. The quality of the graphics in many begins to rival live action video images in its colour and definition. Interactive participation of players and games is also coming into its own, offering a degree of real-time involvement that challenges both mental and physical capabilities. I must say that I admire the abilities of those who think up and design both the hardware and software for these games, whether they are for home or arcade use. Indeed I hope that many who enjoy playing with the machines may be inspired to become involved in systems design and programming as a career - there must be enormous satisfaction in it.

PE was also on display, hoping that we could inspire even greater involvement in the fascination of electronics. It was good to have the chance to chat personally with many of you who came to buy back issues and look at a few of the projects on show. I was pleased that several newcomers seemed to become enthusiastic converts to electronics.

PE is owned by Intra Press, under the auspices of Angelo Zgorelec. It was he who started the magazine Personal Computer World ten years ago, and also initiated the annual PCW exhibitions. The obvious success of the exhibitions is a real tribute to his interest and foresight.

Two of the other magazines that he has introduced were on equal prominence with PE. One of them, Astronomy Now, is edited by Patrick Moore and is a monthly magazine well worth taking by anyone interested in knowing what's happening in the Universe.

The other, Office at Home, is a really interesting magazine for those who are self-employed or working from home. For anyone intent on being successfully independent the information presented in its feature articles will be a valuable help.

In addition to the three already well established magazines, a new publication was being launched - Program. This is a brand new magazine introduced for the benefit of advanced programmers working in industry, education, or at home. It covers all aspects of a programmer's work, whatever the programming language being used, and its accent is on improving the techniques specific to any area of programming. As one who loves programming I highly commend it to you.

Inevitably, apart from showing off our magazine wares, some of us were there for scrutiny as well. For light amusement the photos prove part of the case in point. From left to right, top to bottom, the Intra Press Gang are Angelo (publisher), John (PE), David (All), John (Astronomy Now), Mary Ann and Jane (Office at Home). John (again - he cuts into everything!)

We look forward to meeting more of you again at PCW in 1988.

H.

24 PRACTICAL ELECTRONICS JANUARY 1988
K TIT T FOR CONVERTING OLD ENTRY TERMINAL TO NEW EXTENSION SOCKET
480-1 3A DOUBLE POLE MAGNETIC
464-2 PACKET RESIN FILLER/SEALER WITH CURE
454-2 21 IN. 80HM LOUDSPEAKERS
155-3 VARICAP PUSH BUTTON TUNERS WITH 104-1 40/403-1 6V
101-1 121
96-1 95-4 SKIRTED 89A VALVE BASES
94-5 B7G
93-4 11 PIN MOULDED BASES FOR RELAY
71-4 WIRE WOUND POTS
70-2
66- MAGNETIC
48-2 6V LOCKING MECHANISM WITH 2 KEYS
43-5 ROCKER SWITCHES 10 AMP SPD T CENTRE OFF
37-2 SOLID DIELECTRIC 2 GANG TUNING CONDENSORS
11-1 EXTENSION SPEAKER CABINET FOR 6” SPEAKER
9-2 MAINS TRANSFORMERS WITH 6V SECONDARIES
1-5 13 AMP MAIN JUNCTION BOXES

COMPACT FLOPPY DISK DRIVE EME-101
The EME-101 drive does not need any new circuitry which despite its small size provides a capacity of 500kB per disc, which is equivalent to the 1/30,000 of a 3.5” disc. We apply the Operating Manual and other information showing how to use this with popular computers. BBC, EEC, Sinclair Spectrum. All is a special offer of £17.50 including post and VAT. Details separate available if you purchase the drive.

DO'NT FREEZE UP!!
Here are the hottest standards for over 200 years and whether you have to be frozen for the cold winter, so if you haven't already protected your water pipes you should do it now. The hot water feed wire around the pipe to do it and will cost you only about £5 per week to run - it makes minimum length to connect to 220V/30A mains. For details see regulations.

PEO ELECTRIC TANK is an unusual, form, thus the pre-use by Madama Butterfield, thus the original form, if it does not rotate. The movement is caused by two revolving arms. It is an American made, precision, very economical and usually no maintenance. It is ideal for computer and instrument cooling. Price is only £1 (each Ref B650).

SPRING LOADED PERFORATED DISK DRIVE now made in your famous Bausch Company. Very good quality. Price for £1 for B660.

CURT LEAD four core, standard for telecommunication, extends to nearly two metres. Price £1.50 each Ref B699.

TELEPHONE BILLS - these will be off our standard mains through a transformer, but to sound exactly like a telephone, they must be fed with 25.5V. So also set to give a pole for a suitable power supply. Price 3 bets for £1.50 Ref B710.

ULTIMATE GEMINI PRINTERHEADS PACK OR LOT - carry one of these and so be always to less acidic woods to 1000, 125mm and have an introduction for circuit testing - will earn its cost in no time. Price only £1 Ref £722.

BLOW YOUR ROOF OFF - 440 watt speaker systems - new type you must not hide they have golden cones and golden surrounds and talk really "Buzzing" 12" Woofers, Midrange and Tweeter and comes with a crossover at a special introductory price of £15, carriage paid. Two sets for £25, carriage included. W4 Worcester only £20 carried package. It & 36 FLOPPY DISK DRIVES now in stock all new and made by famous Epson Company. All are double sided drives with storage capacity of 1 megabyte per side and standard connections and are completely compatible with conventional systems. Both are small size and weight and light. Price - either model is £19.50 plus £3 post. Price includes copy data.

APPLIANCE THERMOSTATS - Supplies adjust type suitable for converter heaters or similar size. Price £3 for 11" £15 plus £1 per.

120 V MOTOR BY SMITHS 24 Volt for mounting on 350W mains motor. Made for farms or industry. Size all very powerfully and readily available. Size 35" (11") £15 plus £2 post.

11 Volt Pressure 3 Switch
2. 25 watt pots from 400 to 1000 ohm.
3. 4 iron wire pots from 20 to 500 ohm.
4. 1 wear wire pots from 10 to 100 ohm.
5. 3 iron wire pots from 0.1 to 10 ohm.
6. 1 nickel wiper motor complete with 12" head - regular price £1.50 per spray can - our Price £1.99 per two cans with a 50p refresher offer.

RUBBER FEET - 10 P 19 = 120 alarm bell really loud, mains operated, on iron case + £5 post.

MINIATURE BCD THUMB WHEEL SWITCH - Mark black edge switches engraved white on black - gold plated, male before break contacts - size approx. 2mm high 8mm wide - £1.00 each + £0.50 post.

PIEZOELECTRIC FAN
Movement is caused by two vibrating arms. It is American made, Butterfly, than the conventional type, it does not rotate. The air has not already protected your water pipes you should do it now - at very low prices but not working £20 + £3 post, all are new and complete with mains P00. 300 watts. 24 volts. 2000 min output.

DEPT. F'. E., 250 PORTLAND ROAD, Hove.

PIEZO ELECTRIC FAN
Movement is caused by two vibrating arms. It is American made, Butterfly, than the conventional type, it does not rotate. The air does not work as a fan but rotates. It is American made, butterfly, than the conventional type, it does not rotate. The air has not already protected your water pipes you should do it now - at very low prices but not working £20 + £3 post, all are new and complete with mains P00. 300 watts. 24 volts. 2000 min output.

DEPT. F'. E., 250 PORTLAND ROAD, Hove.

PIEZO ELECTRIC FAN
Movement is caused by two vibrating arms. It is American made, Butterfly, than the conventional type, it does not rotate. The air has not already protected your water pipes you should do it now - at very low prices but not working £20 + £3 post, all are new and complete with mains P00. 300 watts. 24 volts. 2000 min output.

DEPT. F'. E., 250 PORTLAND ROAD, Hove.

SWEEPING POWER PUMP - A pump long mains operated originally intended to operate a CO2 charger unit for gas leak寻找价格

120 V MOTOR BY SMITHS 24 Volt for mounting on 350W mains motor. Made for farms or industry. Size all very powerfully and readily available. Size 35" (11") £15 plus £2 post.

11 Volt Pressure 3 Switch
2. 25 watt pots from 400 to 1000 ohm.
3. 4 iron wire pots from 20 to 500 ohm.
4. 1 wear wire pots from 10 to 100 ohm.
5. 3 iron wire pots from 0.1 to 10 ohm.
6. 1 nickel wiper motor complete with 12" head - regular price £1.50 per spray can - our Price £1.99 per two cans with a 50p refresher offer.

RUBBER FEET - 10 P 19 = 120 alarm bell really loud, mains operated, on iron case + £5 post.

MINIATURE BCD THUMB WHEEL SWITCH - Mark black edge switches engraved white on black - gold plated, male before break contacts - size approx. 2mm high 8mm wide - £1.00 each + £0.50 post.

PIEZOELECTRIC FAN
Movement is caused by two vibrating arms. It is American made, Butterfly, than the conventional type, it does not rotate. The air has not already protected your water pipes you should do it now - at very low prices but not working £20 + £3 post, all are new and complete with mains P00. 300 watts. 24 volts. 2000 min output.

DEPT. F'. E., 250 PORTLAND ROAD, Hove.

SWEEPING POWER PUMP - A pump long mains operated originally intended to operate a CO2 charger unit for gas leak寻找价格

120 V MOTOR BY SMITHS 24 Volt for mounting on 350W mains motor. Made for farms or industry. Size all very powerfully and readily available. Size 35" (11") £15 plus £2 post.

11 Volt Pressure 3 Switch
2. 25 watt pots from 400 to 1000 ohm.
3. 4 iron wire pots from 20 to 500 ohm.
4. 1 wear wire pots from 10 to 100 ohm.
5. 3 iron wire pots from 0.1 to 10 ohm.
6. 1 nickel wiper motor complete with 12" head - regular price £1.50 per spray can - our Price £1.99 per two cans with a 50p refresher offer.

RUBBER FEET - 10 P 19 = 120 alarm bell really loud, mains operated, on iron case + £5 post.

MINIATURE BCD THUMB WHEEL SWITCH - Mark black edge switches engraved white on black - gold plated, male before break contacts - size approx. 2mm high 8mm wide - £1.00 each + £0.50 post.

PIEZOELECTRIC FAN
Movement is caused by two vibrating arms. It is American made, Butterfly, than the conventional type, it does not rotate. The air has not already protected your water pipes you should do it now - at very low prices but not working £20 + £3 post, all are new and complete with mains P00. 300 watts. 24 volts. 2000 min output.

DEPT. F'. E., 250 PORTLAND ROAD, Hove.

SWEEPING POWER PUMP - A pump long mains operated originally intended to operate a CO2 charger unit for gas leak寻找价格

120 V MOTOR BY SMITHS 24 Volt for mounting on 350W mains motor. Made for farms or industry. Size all very powerfully and readily available. Size 35" (11") £15 plus £2 post.

11 Volt Pressure 3 Switch
2. 25 watt pots from 400 to 1000 ohm.
3. 4 iron wire pots from 20 to 500 ohm.
4. 1 wear wire pots from 10 to 100 ohm.
5. 3 iron wire pots from 0.1 to 10 ohm.
6. 1 nickel wiper motor complete with 12" head - regular price £1.50 per spray can - our Price £1.99 per two cans with a 50p refresher offer.

RUBBER FEET - 10 P 19 = 120 alarm bell really loud, mains operated, on iron case + £5 post.

MINIATURE BCD THUMB WHEEL SWITCH - Mark black edge switches engraved white on black - gold plated, male before break contacts - size approx. 2mm high 8mm wide - £1.00 each + £0.50 post.
ZX SPECTRUM PROJECT

LEGO BUGGY DRIVER

BY ROBERT MACFARLANE

BACK AND FORTH

This Spectrum-controlled motor driver will drive two small dc motors between 3V and 36V, using pulse width modulated square waves to control the speed.

This project will allow the ZX Spectrum to drive two independent dc motors in either forward or reverse directions and was originally designed to power the two 4.5V motors which form part of the Lego Buggy. The circuit will however drive any small dc motor provided the the 1A/36V rating of the bridge transistors in the output stage is not exceeded.

IC3 is a monolithic bridge driver which is used in full bridge configuration to drive a motor in both directions as shown in Fig.1. Using the logic inputs of the two channels as shown, the motor can be made to run clockwise, anti-clockwise or stop rapidly. The enable/inhibit input is used for a free running stop as it turns off all the four transistors of the bridge when low.

The motor speed can be controlled by switching the drivers with pulse width modulated square waves and this approach is particularly suitable for microprocessor control.

CIRCUIT DESCRIPTION

IC1a is one half of a five input NOR gate and is used to decode the IORQ, WR, A7, A6 and A5 signals from the Spectrum bus to the output port address of 1F hex (decimal 31).

On receipt of an OUT instruction to address 1F hex, pins 1, 2, 3, 12 and 13 of IC1 will be at logic zero and the output at pin 5 will go high. Pin 11 of IC2 therefore goes high enabling the contents of the data bus to appear on its output. When pin 11 returns to zero at the end of the write cycle the contents are then latched.

The 5V supply for IC1, IC2 and IC3 is derived from the Spectrum 5V line and is decoupled by C1. However, the motor supply is external and may be in the range 3V to 36V.

SYSTEM OPERATION

Independent control of the two motors can be achieved by driving the logic inputs of IC3 in accordance with Table 1. For example, if the motor driven

![Fig. 1. Bi-directional motor control](image)

![Fig. 2. Circuit diagram for Lego Buggy Driver.](image)

![Table 1](image)
by the lower half of the data bus is to run forward, then D0=1, D1=1 and D2=0 which is equivalent to 3 hex, or 3 decimal. Similarly, if the other motor has to run forward then, due to symmetrical connection to the upper half of the data bus, D4=1, D5=1 and D6=0 which is equivalent to 30 hex or 48 decimal. It follows therefore that to drive both motors in the forward direction the value which is required to be output onto the data bus with the OUT instruction is the sum of both the upper and lower data bit values. In this case 33 hex or 51 decimal.

A table of hex and decimal values which would drive the Lego Buggy in 8 compass directions is shown in Table 2.

CONSTRUCTION

The Spectrum 58 way edge connector should first be soldered to the upper and lower connections on the double sided printed circuit board taking care to align the polarising slot. The 101 socket headers for IC1 and IC2 can then be fitted followed by the decoupling capacitor C1, the legs of which must also be soldered on the component side. Similarly D1—D8 should be soldered on both sides where necessary to complete the through board connections. IC3 is soldered directly to the pcb where the large areas of copper track form some measure of heat sinking. Pcb linking pins are then soldered to the remaining holes and either pcb connectors or flying leads are taken to the 4.5V and motor outputs.

TESTING

With the power turned off, the board can be plugged into the ZX Spectrum and a short Basic program which controls the Lego Buggy using the Spectrum keyboard for directional control is shown in Table 3. Control of motor speed can be achieved by pulsing the enable input of IC3 with a square wave of variable mark to space ratio, but would require the use of faster machine code programs.

SPECIAL OFFER

Crofton Electronics are now able to offer C.C.T.V. cameras from as little as £60.50 + VAT carriage. These cameras have been refurbished to a high standard in our own workshop. They produce a standard composite output of 1 volt p-p and will work with any video recorder having a video input socket, digitiser, monitor, or with a domestic T.V. with the addition of a modulator which is available separately. These cameras are powered from the standard 240 volt ac mains supply.

The lens boss is a standard 'c' mount (1" diameter x 32 threads per inch) and will thus allow a very wide range of camera lens to be accommodated. The sensitivity of these cameras is in the order of 15 lux which allows their use in the domestic environment. Pictures can be produced with lower light levels but with a severe signal to noise ratio. Low light versions of this camera are available giving sensitivities of 0.1 lux which is equivalent to half moonlight. Typical cost is approximately £350 + VAT and carriage. Many lenses are available from stock. Please ask for details. Mouting of these cameras is by standard tripod bush (¼ Whitworth thread). Many other C.C.T.V. items are available from stock, ie Pan and Tilt units, Housings, Zoom lens both manual and motorised, video switches, line amplifiers, monitors both colour and monochrome as well as a complete range of surveillance and room listening devices. We are also able to supply from stock video plugs and sockets, camera tubes, monitor tubes and many specialised camera and monitor components. Equipment such as monitors we are able to offer, new or refurbished.

SPECIAL CLEARANCE

Brand new TTL/Composite monitor drive board and 12" professional panelled green P31 tubes at the give away price £50 + VAT and carriage £172.50 total. These monitor boards have a bandwidth of at least 24 mhz, and only require a power supply of 12 volts at 1.25 amps to have them up and running.

Refurbished 4:1 motorised zoom lens (22.5—30min) at the incredible price of £10 + VAT and carriage—£130.50 total. These lenses are by one of the world's largest manufacturers and have been made to a very high professional standard. The new price would be well over the £500 mark and thus represents a really good buy. The motorisation is for 240 volt ac and thus no special power supply will be required. All three functions have been motorised as focused, iris and zoom.

MOST MAJOR CREDIT CARDS ACCEPTED.

CROFTON ELECTRONICS

05448 557
"KINGSHILL", NEXTEND, LYNNSHALL, HEREFORDSHIRE HR5 3HZ.
FLASHY EGG-TIMER

BY CHRIS BOWES

TAKE 58 LEADS (HALF A CUP)

Any old egg timer can tell you when your eggs are ready, but how many can tell you when your eggs are only half ready? The leds of time are flowing...

Although there are a number of designs for electronic egg-timers which sound an alarm when the cooking time is over, most of them give little indication of the passage of time. This feature was a characteristic of the old fashioned sand glass type of egg-timer. The project described in this article combines the advantages of an electronic circuit, which sounds an alarm, with a display and method of operation which is very similar to that found in the old fashioned type of egg-timer.

The sand of the old fashioned egg-timer is mimicked in this design by a display which consists of a number of leds arranged so as to be like the sand in the traditional egg-timer glass. Electronic “sand”, in the shape of leds illuminated in sequence, is seen to “flow” from the top section to the bottom section, starting when the timer is raised to an upright position. When the correct time for the eggs to have cooked is reached an alarm sounds and the “sand” stops flowing, although the alarm continues until the egg-timer is laid down.

CIRCUIT DESCRIPTION

The circuit diagram for the Electronic Egg-Timer is shown in Fig. 1. The circuit is controlled by IC1 which is a mercury position switch. This component is mounted so that when the egg-timer is stood upright the switch closes and the circuit starts to function. In any other position the switch is open and the circuit is deactivated.

The timing for the entire circuit is obtained from IC1 which is a 555 timer configured as an astable multivibrator, with frequency set by VR1, R1, R2 and C1. With the values given, this frequency is approximately 2.5Hz but this is adjustable by altering the setting of VR1. The ability to adjust the operating frequency has been incorporated to enable the time between the egg-timer being set in operation and the alarm sounding to be varied. This allows the egg boiling time to be adjusted to suit the particular taste of the user.

The output pulses from the astable circuit are fed to two counter circuits each of which controls a different part of the electronic “sand” display.

FLOWING SAND

The effect of sand flowing from the top chamber to the bottom chamber of the “glass” is created by a six stage chase circuit driven by IC2. This is a 4017 Johnson counter which drives six leds (LED 1 to 6).

The clock pulses from the 555 timer circuit are fed to the CP0 input of IC2, the CP1 input of which is held at logic 0. Each clock pulse at CP0 causes the outputs 0 to 9 to be forced to a logic 1 state in succession. In this circuit only outputs 1 to 6 are used to imitate the sand. To prevent the circuit from over-running, output 7 (pin 6) is connected to the MR input (pin 15) of the ic via D1. R3 is a pull down resistor which is included to prevent the input floating to an indeterminate logic state when not connected to logic 1 through D1 or D2. As soon as this input goes from Logic 0 to logic 1 the ic resets to zero (with output 0 at Logic 1) within a very short time (typically 9 nano-seconds). The counter, as a result, goes through the sequence of outputs 0 to 6, each in turn going to the logic 1 in a continuous sequence. As output 0 is not connected to any led (for a reason which you will see later) this produces the effect of LEDs 1 to 6 being illuminated in sequence, followed by one “count” when none of the leds in the “tube” between the two glasses are lit.

FALLING SAND

In effect this display is a slower, and more complex, version of the flowing sand display. The clock pulses produced by the 555 timer are first fed to the CP0 input of one half of a 4518 dual BCD counter (IC3). Output 3 of the first half of the counter is connected to the CP0 input of the second half of the ic and the output pulses from output 3 of the second counter are fed to the rest of the circuit. R10 is included to provide a logic 1 level to the CP1 inputs of both halves of the 4518, and is necessary to enable the circuit to count. The effect of IC3 being connected in this manner is for it to divide the clock pulses from the 555 timer by 100.

The slowed down pulses are fed to IC4, which is another 4017 counter. This ic is used to control the leds which form the “sand” in the upper and lower chambers of the “glass”. This counter is set to zero when the circuit is switched on by means of a short positive going pulse generated by R11 and C3, and which is fed to the MR input of IC4. The CP1 inputs of both halves of IC3 are held at logic 1 by means of the pull up resistor R10.

The display formed by LEDs 7 to 58 is controlled by outputs 0 to 8 of IC4 through the matrix made up of diodes D3 to D72. The outputs from the diode matrix is used to drive transistors TR1 to TR16 through their associated dropping resistors. When one of the outputs of IC4 goes to a logic 1 state current flows from it, through the diodes in the matrix and the appropriate dropping resistor to the base of the transistor associated with the particular row of leds. Since the transistor acts as a switch the current flowing into its base causes the leds to light in sequence. In some of the led chains a resistor is connected in series with them, so dropping the voltage across each led to the correct working level.

The diodes in the matrix prevent the direct connections, which would otherwise occur between the outputs of IC4 at each transistor, from interfering with each other. In each case the one-
way action of the diodes prevents current from the outputs flowing back through the other connections made to an associated transistor.

Output 8 (pin 9) of IC4 is connected to the CP1 input of IC4. This input controls the counting action of IC4. As long as the CP1 input is at logic 0 the IC counts. When this input is forced to logic 1 the counter stops counting. The counter is set to zero when the circuit is first switched on. This sets all of the counter outputs, except the first, to logic 0. The CP1 input is thus set to logic 0 and remains in that state until the counter reaches the point at which output 8 switches to the logic 1 state. This only occurs when the time allowed for the egg to cook has elapsed and the timing sequence is complete. The change of state at the CP1 input causes the counter to stop and the display freezes with all the "sand" in the bottom of the "glass".

THE ALARM CIRCUIT

Output 8 of IC4 is additionally connected through resistor R33 to the base of TR16. When this output goes to logic 1, current from it flows through R33 and causes TR16 to conduct, illuminating LED 58 and activating the awd.

C2 is a decoupling capacitor which is provided to help prevent false counting problems in the logic ICs created by "glitches" which can occur as the circuits switch.

EGG-TIMER

COMPONENTS

RESISTORS
R1 2k2
R2 3k
R3 10k
R4 to R9 680 (6 off)
R10, R11 10k (2 off)
R12 to R17 150k (7 off)
R18 270
R19 150k
R20 470
R21 150k
R22 680
R24 to R29 150k (6 off)
R30 270
R31 150k
R32 470
R33 10k
R34 680
(All 1/4 watt 5%)

POTENTIOMETER
VR1 4k7 min horiz preset

CAPACITORS
C1 47µF 16V miniature pcb electrolytic
C2 2µ2 16V tantalum, 16 volt
C3 10n polyester or ceramic

SEMICONDUCTORS
D1 to D7 2N4148 (72 off)
LD1 to LD58 miniature yellow led (58 off)
TR1 to TR16 ZTX300 (16 off) or similar
IC1 555 cmos timer
IC2, IC4 4017 decade counter
IC3 4518 dual bcd counter

MISCELLANEOUS
S1 mercury position switch, B1 PP3 battery and clips, case to suit 150 x 80 76 mm, (RS 507-674) lettering and fixings for case, printed circuit boards (3 off), ribbon cable (20 way, 0.1in pitch).
CONSTRUCTION

The circuit occupies a fairly large area and is built on three single sided printed circuit boards in order to fit the design into the case. One PCB is used for the display LEDs and associated series resistors, while the other two PCBs are used to carry all the other components. The foil patterns of these PCBs and their associated component layouts are shown in Figs. 2, 3 and 4.

Although component insertion and soldering can be carried out in any convenient order, you will probably find that it is easier to do this in ascending order of component size. When inserting the mercury position switch (S1) it is necessary to leave sufficient length on its wires so that its position can be adjusted to ensure that the circuit is turned on when the board is raised with S1 uppermost.

The LEDs are best accommodated in sockets which are soldered in place along with the other components, but only insert the LEDs as the last task before testing out the unit.

WIRING UP

The boards are best not wired up until all the components, except for the LEDs, have been inserted and soldered. The connections between the display board and the other two boards are best made with flexible wires cut to approximately 20cm lengths. There are a fair number of connections to be made and the use of as many colours of wire as are available will reduce the risk of confusion at this stage.

The links between the two driver PCBs are intended to be made using ribbon cable. This must be carefully cut to the correct length to span the space between the slides in the case which are used to hold the PCBs. The ends must be prepared by tinning before the cable is inserted into the appropriate holes on the board and then soldered into place. The battery connector wires should also be similarly soldered.

TESTING

Once all the connections have been made the boards should be carefully checked for broken tracks, solder blobs and incorrectly placed components before attempting to insert the LEDs and test the unit. The LEDs should then be carefully inserted into their sockets, taking care to ensure that they are the correct way round. The battery may then be connected to the battery connector. The circuit can be tested by raising the PCB so that the mercury position switch is uppermost. The switch should then be adjusted so that the display starts to light. All rows of LEDs in the top part of the "glass" should be illuminated and one of the "flowing sand" LEDs (LEDs 1 to 6) should also light. After a short delay they should begin to switch off and on in a slow chasing pattern. After somewhere between 30 seconds and one minute the top row of LEDs should be extinguished and the bottom row of LEDs become illuminated. This sequence should continue until all of the top rows of LEDs are extinguished and all of the bottom rows of LEDs are illuminated.

When the last of these (LED 58) becomes illuminated the "flowing sand" LEDs should be extinguished and the audible warning device should sound. This state should continue until the PCB is laid down.

CALIBRATION

Calibration is easily achieved by timing, the duration between raising the PCB to an upright position and the audible warning sounding. VR1 should be adjusted until the time for the complete sequence is equal to the time for which you want the eggs to cook after the water starts boiling.
Fig. 4. Display printed circuit board.

CASING THE UNIT

The suggested case has been chosen because it has a transparent lid. This avoids the necessity of drilling 58 holes in the case lid for the display leds. If this case is used for fitting the display simply becomes a matter of marking the four mounting holes on its lid, so that the egg glass shape is in the centre. The holes are then drilled with a 3.5 mm drill and countersunk.

The front panel for the prototype was made by means of a photosensitive labeling system with the lettering and the egg-timer "glass" exposed so as to be clear. The front panel produced by the system was then stuck to the case lid with coloured transparent double sided adhesive sheets. This system has the advantage of masking the heads of the mounting bolts. However, if you do not have access to the means of making this type of label an alternative method which produces acceptable results is to carefully cut out the egg glass shape on a piece of black card with a craft knife. The card is then lettered and positioned inside the case lid, where it will be held in place by the display pcb and it's mounting nuts. Irrespective of which method of lettering used, care should be taken to make sure that the lettering is placed the correct way up to coincide with the direction of flow of the "sand", or else it will appear to flow upwards!

EGG TIMING

This timer is extremely simple to use. All that has to be done is for the case to be raised so that the egg-glass shape is upright, with the lettering the correct way up, when the water starts to boil. The eggtimer will start and will run through the display and alarm sequence. When the alarm sounds to indicate that the correct time has elapsed the egg can be removed from the pan. The unit is then laid down on its side to switch it off. When the unit is again raised it will automatically be reset ready to start the display and timing sequence again.

TEL 01-471 9338

Specialist Supplier of Digital Integrated Circuits

4000 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4541A</td>
<td>4541</td>
<td>4541A</td>
</tr>
<tr>
<td>4542E</td>
<td>4542</td>
<td>4542E</td>
</tr>
<tr>
<td>4543E</td>
<td>4543</td>
<td>4543E</td>
</tr>
<tr>
<td>4544E</td>
<td>4544</td>
<td>4544E</td>
</tr>
<tr>
<td>4545E</td>
<td>4545</td>
<td>4545E</td>
</tr>
</tbody>
</table>

74LS SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS00</td>
<td>74LS00</td>
<td>74LS00</td>
</tr>
<tr>
<td>74LS02</td>
<td>74LS02</td>
<td>74LS02</td>
</tr>
<tr>
<td>74LS03</td>
<td>74LS03</td>
<td>74LS03</td>
</tr>
<tr>
<td>74LS04</td>
<td>74LS04</td>
<td>74LS04</td>
</tr>
<tr>
<td>74LS05</td>
<td>74LS05</td>
<td>74LS05</td>
</tr>
</tbody>
</table>

TEL 01-471 9338

Specialist Supplier of Digital Integrated Circuits

24HC SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24HC02</td>
<td>24HC02</td>
<td>24HC02</td>
</tr>
<tr>
<td>24HC04</td>
<td>24HC04</td>
<td>24HC04</td>
</tr>
<tr>
<td>24HC08</td>
<td>24HC08</td>
<td>24HC08</td>
</tr>
</tbody>
</table>

TEL 01-471 9338

Specialist Supplier of Digital Integrated Circuits

EGG TIMER

The timer is extremely simple to use. All that has to be done is for the case to be raised so that the egg-glass shape is upright, with the lettering the correct way up, when the water starts to boil. The eggtimer will start and will run through the display and alarm sequence. When the alarm sounds to indicate that the correct time has elapsed the egg can be removed from the pan. The unit is then laid down on its side to switch it off. When the unit is again raised it will automatically be reset ready to start the display and timing sequence again.
THESE PRINTED CIRCUIT BOARDS MAY BE BOUGHT THROUGH THE PE PCB SERVICE (SEE PAGE 60).
The data is valid for any year from 1900 AD to 2000 AD, incl leap years.
The BRAINWAVE Monitor must be the most astonishing project ever to appear in the pages of an electronics magazine. It will allow you to hear your brainwaves and judge the relative levels of various tasks. It will also help you to control your mind more effectively, to be at peak performance in all situations.

Doesn’t my mind work perfectly well when left to its own devices?

If you’ve ever been confused, unsure of yourself, shy, unable to pass exams or to impress people at interviews, you know perfectly well that it doesn’t. Your mind (and everybody else’s) is full of bad habits, inappropriate responses, feelings of inadequacy all pulling you down. Why should you put up with it?

Mind training sounds like hard work!

It can be, but if you want it the hard way, go and study under a Zen master for fifty years or so. You’ll get there in the end! With the brainwave monitor it takes no effort at all. Just the opposite is true — trying is the one thing you mustn’t do.

How do I start?

At first you use the monitor’s internal indicator to exercise your mind. In direct mode you improve the time percentage, in integrate you concentrate on the amplitude. After that, the choice of direction is yours. With the Alpha Plan you can reach the core of your personality to root out the weakness and replace it with inner strength. Otherwise you can just enjoy the feelings of pleasure and clear headedness that alpha training brings, or the creativity and imagery of the theta state.

A friend told me I can use brain power to control light and things. I can’t believe it!

As a matter of fact, you can do more than that! This interface sockets on the monitor allow you to turn lights on and off, control toys and electrical gadgets, play computer games, all with your mind! Are we about to create a race of supermen? Only time will tell.

The BRAINWAVE Monitor is featured in the September, October and November 1987 issues of ETI. The approved parts sets contain: two PCBs, all components including three PMI precission amplifiers, shielded box for remote the bi-amplifier, attractive instrument case with tilting feet, controls, switches, knobs, plugs and sockets, leads and materials for electrodes, full instructions for assembly and use.

Parts are available separately. We also have a range of accessories, professional electronics tools, etc.

Please send a stamped, self addressed envelope if you want the lists. Otherwise, a SAE £2 will bring you hints, construction details and further information.

Are we about to create a race of Superman?
SEMICONDUCTORS

BY ANDREW ARMSTRONG

PART 3: JUNCTION TRANSISTOR APPLICATIONS

A short episode this month — but powerful. Power applications are the field in which junction transistors reign supreme.

In this second part of the section on junction transistors, we shall look at some power (as distinct from small signal) applications. Although ICs are produced to perform more and more tasks which previously required discrete transistors, in high powered applications discrete transistors are still supreme.

SWITCHED MODE

An application in which speed is essential, but where cascode is not appropriate, is the switching element of a switched mode power supply. An example of such a supply is shown in Fig. 29. This is a series regulator, sometimes called a buck regulator. The particular design from which this section is taken was required to operate with a toroidal mains transformer over a wide range of mains voltages.

The required operating range for mains input was 150V to 280V, a ratio of 1.8666:1. Because the transformer was less efficient at low voltages, and because the switched mode regulator draws more current at low voltages to maintain the power at the required level, the d.c. input range was approximately 3.5:1 including ripple on the reservoir capacitors.

One great advantage of a switched mode supply is that it can maintain its efficiency over a wide range of voltages. A conventional linear regulator gives good efficiency over a wide range of voltages. A conventional linear regulator gives good efficiency when regulating from 8V to 5V, but is woefully inefficient when it must regulate an input of 25V down to 5V, when the regulator must dissipate at least four times as much power as the load.

In this switched mode design, the series pass transistors dissipate very little power, but Q5 can dissipate significant power. The normal requirement to saturate switching transistors (switch them on so hard that the collector/emitter voltage falls to a minimum value, typically 0.1V to 0.2V) is to supply a base current of 10% of the maximum required collector current. If R6 is chosen to provide this current at the lowest specified input voltage, then the base current of Q1 to Q4 is much higher than necessary, and is a significant fraction of the input current, at the maximum specified voltage.

The solution adopted in this design to reduce the inefficiency was to choose switching transistors which can switch reasonably efficiently at lower proportional base currents. By using four ZTX50 transistors in parallel, with separate emitter resistors to ensure even current sharing, each transistor is operated at a low enough current to have a high gain at low collector voltages. This particular transistor type is optimised for saturated switching, and the four E-line transistors may be used without heat sinks, with a minimum base current of about 3% of the collector current.

If, instead, more ordinary transistors, such as BCY70s, were to be substituted, then no reasonable heatsink would prevent their destruction. This is one circuit design in which choice of transistor is crucial.

There are other solutions to the problem, of course. The configuration of Fig. 25 or of Fig. 30 (which is a variation on Fig. 26) could be used for the series pass element. In either case, the second transistor of the configuration, which carries most of the current, will not be saturated, and will therefore drop a considerable voltage and will require a substantial heatsink. Whichever design strategy is used, the overall efficiency is about the same.

FLYBACK

Perhaps the simplest switched mode power supply is the self oscillating flyback converter. The basic configuration for this is shown in Fig. 31. When the power is first applied, the base bias is sufficient to switch the transistor on to a moderate extent. The current in the collector rises at a rate determined by the supply voltage and the inductance of the winding in series with the collector. This generates a voltage in the base feedback winding, which adds to the base current.

Eventually the collector current rises to the point where the base current is no longer adequate to keep the
transistor in saturation, and at this point the transistor starts to turn off. As the collector voltage rises, the rate of rise of collector current slows, which reduces the base drive, which speeds the switch-off process. The transistor snaps off very quickly and, as the current in the flyback transformer falls, the voltage induced in the base winding is reversed, removing charge from the base region and aiding rapid switch off.

Of course, the average base current is set by the power supply voltage and the values of R1 and R2. (Generally R1 is much greater than R2, so R2 can be ignored.) The higher the value of R1, the shorter the on period of the transistor before it cannot remain in saturation any longer. There is an optimum value of resistor to give maximum power output, with a peak current just below the level which would saturate the core of the inductor.

This characteristic of the circuit may be used to regulate the output, as shown in Fig. 32. In this circuit, which is designed to give a +12V output with a -5V supply, the bias current of the switching transistor is reduced as the output voltage rises slightly above the optimum level. This lowers the mark/space ratio and hence the power output.

This circuit is taken from a working unit, and should work as shown. Some experiment may be required to get the best efficiency in any given application, in the choice of R2, R3, and the number of turns on the base winding. At switch on, Q1 is held firmly on by the current flowing in R1. When the output voltage rises above 12V, D1 and D2 start to conduct, and remove some of the bias from Q1, cutting down the collector current and hence the base bias to Q2. D2 is needed to take account of the fact that the base of Q1 is normally at a potential one diode drop below 0V.

Heavy circulating currents flow in this circuit, so it is important that the connections to C2 and C3 are short, and that they are connected to 0V near to the same point on the track. The use of a 1N4148 for D3 limits the maximum output current to 75mA, but within this limit the efficiency is high because the 1N4148 switches very fast. A 1N4001 would not work nearly so well.

The choice of a ZTX450 switching transistor is of interest as well. This type of transistor is ideal for use in saturated switching applications, because it has a very low voltage drop when saturated, and switches out of saturation fast. The choice of Q1 is, of course, immaterial. Almost any npn transistor on the list last month, and many weren't, would do the job.

A point worth noting for reference in the section on field effect transistors is that this very simple method of controlling a self oscillating flyback converter does not work with power mosfets, simply because it controls saturation by controlling drive current. To control the voltage of the gate drive pulses in a mosfet circuit is not quite so simple.

LINEAR POWER

Though often less efficient, the linear series voltage regulator is simpler to design and understand than the switched mode equivalent. With the easy availability of various types of regulator IC, there is little reason to design a discrete regulator for moderate currents and standard output voltages. It can still be useful to use a substantial power transistor as the series pass element for a regulator if heavy current or a non-standard voltage is required. Some of the same limitations apply to such designs as to switching regulators. Very often it is necessary to use darlington transistors, which raise the minimum forward drop of the regulator. This can cause a serious loss of efficiency in low output voltage circuits. For example, an extra one volt drop across a 5V regulator may force the use of a higher voltage, higher VA rating transformer than would otherwise have been required.

The switching speed of the series pass transistor(s) is no longer at issue, but if they are too slow, the delay in the control loop may cause oscillation unless the speed of response of the regulator is slowed down to the point where it cannot cope with sudden transient demands.

The same sort of problem applies to audio amplifiers, but here it is worse because of the wide range of frequencies to be handled, and the fact that small amounts of inaccuracy, which would cause a few millivolts error on the output voltage of a regulator, can cause unacceptable distortion in an audio amplifier. Just for the purpose of example, a simple audio power amplifier is shown in Fig. 33. The circuit, as it is drawn, would not work very well, because certain important refinements have been omitted. The circuit is suitable to illustrate the principles, though.

The first part of the circuit to design is the output stage, consisting of Q6, Q5, and the biasing transistor Q4. This stage is biased so that Q5 supplies current during positive parts of the output waveform, while Q6 is switched off, and the reverse happens during the negative part. At a precisely defined voltage in the middle, one transistor switches off and the other takes over cleanly. At least, that is what one would like to happen. It is not possible because, apart from the difficulty of maintaining such a precise bias point without drift, the transistors do not provide as much gain near the zero point as they do at several volts output.

To make the amplifier work reasonably well, Q5 and Q6 are biased so that at zero volts out, both transistors are conducting to some extent. The aim is to set the bias point so that the conduction of one transistor ceases at the point that the other one has taken over properly, and it is possible to make a fair approach to this in practice. Once the bias point is set, it will be maintained over a wide range of temperatures so long as Q4, Q5, and Q6 are all the same temperature. To this end, Q4 is normally mounted on the same heatsink as the other two transistors.

This class of operation of the output stage is referred to as class AB operation. In class B, the transistors switch
The voltage rating of Q4 is not important, but it must maintain its gain to low voltages and currents to keep the bias point stable. Q3, on the other hand, should have the same voltage rating as Q5 and Q6. With the component values shown, its quiescent state will be with 15mA flowing through it and 30V across it, which gives an average power dissipation of 450mW, so a transistor rated at 1W should be adequate. Q3 may need a small heatsink. Q1 and Q2, connected as a long-tailed pair, will not have over about half the rail to rail power supply across them, so a rating of 50V or greater should be safe.

Although the design shown here leaves something to be desired, certain features of the circuit deserve mention.

The use of two resistors, R7 and R8, in conjunction with in-phase feedback via C2, is referred to as bootstrapping. It is a means to keep the voltage across R8, and hence the current through it, nearly constant over the entire output voltage range of the output signal. This ensures a more even response at the extremes.

FEEDBACK

Overall feedback to set the gain of the amplifier, and to improve its linearity, is via R3 and R4, very much like the case of an op-amp. The output stage and the driver stage both have local feedback via emitter resistors, and are therefore inherently fairly linear. The long-tailed pair has no such feedback, and this could cause problems in some situations. Q1 and Q2 provide a lot of gain, and will act linearly if the feedback from the output is in step with the input signal. If there is too much time delay between an input signal and the corresponding feedback, the long-tailed pair may momentarily become very non-linear. It is non-linearity internal to a feedback loop which causes transient intermodulation distortion among other things.

Even though the output stage is biased to be fairly linear on its own, the gain of the stage is dependent on current. It is highest at medium currents, and lowest at zero and at the extremes of the signal. The speed of operation of the transistors is also affected by current. As a result, the overall feedback has a certain amount of non-linearity to correct for, and if the loop gain (total gain of all stages divided by the attention of the feedback components) is not high enough then significant overall non-linearity will persist.

Because of the change in speed of the transistors as the current changes, it is not unusual for such a simple design to burst into high frequency oscillation at some point on the waveform, unless capacitors are added to prevent this. Such capacitors are not shown here because this is just the skeleton of a design to enable explanation of the principles. By the same token, no protection circuitry is shown even though most practical amplifier designs would feature short circuit protection. Though the design as shown is just workable, do not try to build it.

OOP (SINGULAR)

It has come to my notice that I failed to include the "vanilla" transistor specification in the table which I included last month. Apologies. The BC108 is a suitable approximation for an npn standard type, and the BC212 for a pnp type.

Well that about wraps it up for junction transistors. This part is shorter than standard because a lot has to be fitted into this Christmas issue, so fets will have to wait until next month. Merry Crimble.
DAT COPYCODE
Barry Fox in his Leading Edge column of our September 1987 issue commented on the DAT Copycode proposals. The following statement throws further light on the situation. It is not a reply to Barry Fox, but was received as a normal press release from the IFPI secretariat. Ed.

Through its President, Nesuhi Ertug, Chairman and Co-Chief Executive Officer of WEA International, the Board of Directors of IFPI, representing the world recording industry, recently issued the following statement from its meeting in Hamburg:

"Cameraderie-quality copying of our copyrighted sound recordings by Digital Audio Tape (DAT) recorders threatens the future ability of our industry to create and produce recorded music. To defend the rights, careers, and incentives of all artists, composers, music publishers and record producers against the encroachments of DAT, the "Copycode" system was developed as an impediment to unauthorised DAT copying.

"Despite the fact that eminent scientists have developed the system, the makers of DAT equipment have launched a multi-million dollar world campaign of lobbying and advertising that misrepresents Copycode and its effects on recorded music.

"By false statements and contrived demonstrations the DAT industry maintains that Copycode will distort recorded music and thus will cheat consumers who buy it. Wrong! The Copycode encoding of a given recording is a totally controllable process. Yes, certain skilled encoding engineers can specifically avoid such sensitive passages and readily encode other non-vulnerable portions of a recording. DAT spokespersons avoid communicating these facts and avoid acknowledging that Copycode can guarantee an uncompromised sound quality.

"Our business is to make fine recordings that faithfully reflect the intents and talents of our musicians and vocalists. We have not and would not jeopardize that mandate or trifle with the trust of our consumers. Yet, the DAT makers claim otherwise in pursuit of their own commercial objectives. In the United States, they have demonstrated a system which is claimed to be the equivalent of Copycode technology. It is not authentic, nor are the demonstrated applications valid or equivalent to the intended Copycode applications of any recording company.

"Our industry is accused of thwarting new technology and consumer access to improvements. Wrong again! We prosper from beneficial technological change but not when we find it suicidal.

"The intent of IFPI and the world music industry is to proceed with Copycode and continue to seek implementing legislation. We welcome objective and impartial technical appraisal, such as that soon to be undertaken by the U.S. National Bureau of Standards.

"Although our confidence in the viability of Copycode is staunchly reaffirmed, we remain open to other alternatives that will protect our intellectual property. It seems incomprehensible, for example, that the genius of Japan's electronic industry that conceived DATcassettes will not produce technology that can protect the intellectual property and talent of the music constituencies on whose creativity they depend.

"Instead, the Japanese hardware industry declines even to address our concerns, masking its self-interest with a spurious "consumer interest". But where is that "consumer interest" where DAT is concerned? Press articles already report that one manufacturer's DAT cassettes are not necessarily compatible or interchangeable with other companies' DATcassettes. Until this problem is solved, why are the DAT makers so intent on the equipment's early introduction and marketing, to the total disregard of "consumer interest"?

"In summary, IFPI and the world recording industry will welcome DAT if its consumers will reasonably protect our copyrighted works, our creators and our producers. Copycode is an achievable solution to accomplish this objective – with no musical compromises."

For further details, contact: Dave Laing, Press and Information Officer IFPI Secretariat, 01-434-3521.

IRRESISTIBLE
Dear Ed,
I like your "new look" magazine, and am also glad that resistors are still zig-zag lines!
Good luck.
P. Ceighton, Radlett, Herts.

Any masterpiece needs an occasional face lift!
British Standards allow for resistors to be shown as either zig-zag or block as well since our illuminated artist says he's resistant to block-outs... Ed.

SIMPLY-FI
Dear PE,
I have been searching for a preamp which excludes all inputs except for CD player and FM tuner, and have approached several audio suppliers, including some of your advertisers.

Eventually, one company offered me a simplified kit in the form of a vacuum preamp that takes only CD inputs. I have now accepted their offer, and shall probably buy their hybrid amplifier as well. Apart from this offer though, I drew a blank.

I am writing to you as I feel that I may not be alone in having entered into DIY electronics through normal hi-fi interest, arising from buying a CD player to supplement radio listening.
There must be other people like myself who do not wish to involve themselves in the tortuous machinations of vinyl records or tape, and I hope that in time amplifier circuit designers may cater for our simpler needs.

Otherwise, I find that some of your articles and information are understandable and occasionally helpful to me. Any features dealing with audio hi-fi amps, speakers, and also aeroplanes will be particularly well received.

Hugh Haines, Sunderland.

No doubt your comments may set a few designers thinking, but I hope they won't totally forget that some of us still have favourite recordings from Noah's studio.
He was one of the first to recognize the importance of stereo reproduction. Ed.

BATTLING SCORE
Dear Ed,
I am interested in constructing a unit for detecting bats. Have you any info?

W. Bond, Warwick.
The Natural History Museum tells me that bats emit their cries in the so-called ultrasonic regions, between about 20kHz and 200kHz, though they are known to shriek as low as 4kHz, especially when some cries die away. Consequently, all you need is a microphone and an amplifier that can pick up these frequencies.
The Prof has at various times designed ultrasonic units, such as the Tape Measure in PE March 1987. I would think that its receiver could be used, feeding the output to a counter, like for example, the Event Counter in PE July 1987.

There is also a book that may interest you called 'Just Bats', by M.B. Fenton, published by the University of Toronto, ISBN 0-8020-2452-1. It gives details of a bat detector, and I expect that your library could obtain a copy for you.
If you vapour up either of these ideas, it's best to make them battery powered. Ed.

MAINLY BLANK
Dear Ed,
Would it be possible to print the PCB track layout on pages that are blank on the other side? This would mean that people could settle down and use a photocopier or effective transperantiser and use the page directly as a photo mask.

James Main, Glasgow
Certainly this could be done, but wouldn't you feel that you were getting less value out of your magazine? I am open to correction, but I don't think people want to pay for blank pages. It's true there is a trend towards the use of "creative white space" in other magazines, but I believe that readers prefer to have pages full of interesting material. Ed.

PUNCH LINE
Dear 'ed-litter',
I must set the record straight about electronic engineers. Most of us are real humane and caring people, with a sense of humour. Adopt one today!
Too much flippancy, Mr Duffill. Please have a sense of perspective. A little humour in the choice of a side heading, or in the writing of an article, normally serves to leaven a sometimes heavy subject matter. In no way does humour detract from the factual content – nor would contributors or editorial staff wish it to.
I would further argue that the mental attitude needed to gain new insights and develop novel designs is similar to that which generates humour. In the field of politics, too, a cartoonist can sometimes punch through the film-flam better than anyone else. Finally, any engineer who had no sense of humour would find it very difficult to cope with the real world where the only completely dependable physical law is Murphy's.

Andrew Armstrong BSc.,
Leighton Buzzard.
MORE LETTERS

COVER UP

Dear John,

I have a few, hopefully constructive, criticisms about the way PE looks on the newsagent's shelf.

I think the magazine itself is very good, but the layout does not do the contents justice. I know that this is a matter of taste, but the peculiar choice of background colours and the relatively small cover picture does make the magazine look less attractive and exciting.

This may not affect regular readers too much, but it means that new ones are less likely to be attracted. Unfortunately this undersees the magazine to people who may not be serious electronics enthusiasts. PE has a lot of appeal as a more general science and technology journal and it should be specifically setting out to attract these new readers.

Also, all readers, whether regular or occasional, would prefer to be associated with an exciting journal, an impression that the cover does not live up to. Given that there are limits to the extent to which you can dress up a project case, why not illustrate one of your feature articles on the cover? Say something taken from Spacewatch or one of the science-technology articles. Maybe it would be possible to commission an interesting piece of design artwork for its own sake.

Another problem seems to be that the magazine is not as stiff as others. It tends to end up flopping over on the shelves, which makes it less appealing generally, and creases it. I don't understand why this happens as it seems to have better quality paper than most. None the less, it does detract from the 'image' of the magazine.

Many thanks Richard for such a forthright criticism. (And incidentally, let me repeat my thanks for your splendid article 'Microbutler' in our July 87 issue.)

As many readers will have noticed, various interesting changes have been taking place within the pages of PE over the last several months. Further changes are still planned and will be introduced gradually. Amongst these plans is the intention to uplift the cover image, and active steps have already been taken. The cover of this January 88 (Christmas 87?) issue is one example of what could be done, though in fact that cover is only a one-off and our plans encompass rather different ideas.

We were not aware of the 'floppy' problem and are grateful for your comments. Practising bad-ups again, it seems that cover-ups are more revealing! Ed.

INFLUENTIAL EVENT

Dear John,

I bought the PE July issue and spotted your Event Counter, had an idea and so started my hobby in electronics. I then put the counter together and it worked! My first ever circuit as well.

Since then I have bought what books I can afford on dole money. With time on my hands I am eager to learn as much as I can.

I should also like to make the counter count for a fixed time, then display the result, reset the counter to zero leaving the count displayed, and repeat. I am hoping to connect this to my old car as a rev counter. A few experiments have been carried out but my knowledge is as yet insufficient to achieve my idea. Also, can pulses from different parts of the circuit be used to control additional gates?

I know you must be very busy, but a reply from you might just pave the right road to a new future for me. Please help!

C Gregory, Doncaster.

I am delighted that my influence has so well inspired you. It is a shame that space does not permit me to reply in as much detail as I would prefer.

Basically, it seems that you should take advantages of the Transfer and Reset pins of IC1. Using a squarewave oscillator or pulse generator (of which there are many examples in previous issues of PE), set the required period to trigger a monostable to give a short positive-going Transfer pulse to IC1 pin 23. Then use the trailing edge of the negative pulse to trigger another monostable to reset the counter with a brief pulse. The display will continue to show their last count until Transfer goes high again, whereupon the new value will be displayed.

A 4538 is a suitable dual monostable, and has a choice of input and output logic levels - ask your supplier to sell you a data sheet at the same time that you order the chip.

You can feel free to use any part of the circuit to drive any other circuit provided the logic levels and currents are satisfactory. A word of caution the - as other people can use, electrons can generate very high voltage spikes so take suitable precautions to stop these reaching your counter and killing it.

I can obviously see the satisfaction of experimenting with electronics, and I wish you all as much pleasure and success with your interest as I have found.

S. W. Gough, Morton.

It's the age old question of how to balance two contradictory rights to personal freedom - freedom for one's own actions, and freedom from the actions of others. In an ideal world, we should all consider the rights of others when implementing our own rights of action.

Using speakers with personal stereo seems like a good idea, providing they are used with regard to avoiding inconvenience to others. Even the use of headphones though, can be aggravating to others when the sound is not fully contained - as I sometimes find when travelling in to PE by train.

There is no way that I could confine interfering with another's right to play music, by for example, jamming the offending receiver or transmitter. Even if such a move were practical, it would be illegal to do it.

Seeking remedy under the Noise Pollution Act is probably the best solution when police requests fail. The Environmental Health Officer at the local town hall is the person to contact when you have a problem of this nature.

Should the interference come from a transmitter directly affecting your radio or TV receiver, then contact the Radio Investigative Service of the Department of Trade and Industry. Local post offices should be able to advise on how to do this.

The RIS can also advise on any reception problems that you have recently published a well set out booklet called How To Improve Television and Radio Reception. My local sub-post office gave me a copy and thought that a great deal of information and practical advice on the subject.

Ed.

SPEAKING OUT

Dear Sir,

I was appalled to read in the News and Marketplace of PE October 1987 that Binatone International are marketing an amplifying speaker device to enable users of personal stereos to dispense with the need for headphones.

There are already far too many people inflicting their musical tastes on everyone within earshot. It seems to me that such people who apparently cannot exist without a continuous diet of pop 'music' should be encouraged to use headphones.

J. E. Lawson, Ossett.

...which leads us straight on to Mr Gough...

RAM OR JAM?

Dear Sir,

I am being gradually driven to desperism by excessive loud music from a nearby radio, despite numerous and courteous appeals to turn it down.

Is there such a device available that I can build or buy that would transmit noise, or jam the offending station from around 20 to 30 feet?

Please say 'yes' and spare me some sore ribs (he's bigger than me)!

S. W. Gough, Morton.

I would be inclined to adopt the course of action which you suggest, but I feel that it should be known that these programs do exist at very reasonable cost.

A. Dean

18 Ley Crescent, Astley, Tyldesley, M29 7BD

ON FORM

Dear Ed,

I have been an avid reader of PE practically since its inception and I must say that I like the new format. Long live construction projects.

S. Gale, Ripham.
During the 1960s an improved type of exchange known as "Crossbar" became standard for new installations. Although within 10 years Crossbar was obsolescent with electronic exchanges being introduced, it deserves a mention, if only because according to Telecom engineer's gossip, Crossbar has the highest reliability of any exchange system, including the more modern electronic exchanges.

Fig. 8 gives an idea of the basic element of Crossbar, the so-called crossbar switch. In place of a uniselect or multiselect, a matrixed relay is used. One large solenoid selects the required row, and a second solenoid the column. While a simple matrix of ten by ten could be, and has been used to replace multiselectors in a design similar to the Strowger principle, it is more usual to have large scale switches; and switches having up to seventy or so rows, with up to twenty columns, are by no means unknown.

Referring to Fig. 8, operation first of row-select magnet M3, followed by bridge magnet Ma, will cause the contact at cross-point 3A, and that alone to be closed. (In a practical switch, each cross-point comprises a set of contacts rather than just a single contact as shown in the schematic.)

Crossbar has an advantage both in terms of speed, and of the number of connections that can be uniquely addressed by one switch, over all previous exchange architectures.

TONE DIAOLLING

There is an alternative signalling system to the impulse, or loop-disconnect system in use. This is the so called "Tone Dialling" system, (jargon term - DTMF; "dual tone multi frequency"), which is becoming available to subscribers along with the gradual replacement of Strowger equipment by electronic exchanges. The tone system being used is the dual-tone system; each digit being represented by a combination of two audio-frequency tones (Table 1). The principle of tone dialling is old, however, and to see the origin of this, a bit more history is in order.

As soon as telephony was required to take place over long lines, line-losses became a problem. In telegraphy with its even longer history, a device called the "repeater" had long been in use. Because of the slow digital nature of the signal, a repeater needed only to be a relay with a further power source. With audio frequencies to be handled however, something different was required. The recently invented thermionic valve was the answer, and by the time trunk lines were introduced soon after the turn of the century, a valve amplifier - still known as a repeater - had been developed.

The repeater was a transformer-coupled device with a cunning

TABLE 1A

<table>
<thead>
<tr>
<th>Tone A</th>
<th>Tone B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 900 Hz</td>
<td>-</td>
</tr>
<tr>
<td>2 750 Hz</td>
<td>-</td>
</tr>
<tr>
<td>3 900 Hz</td>
<td>750 Hz</td>
</tr>
<tr>
<td>4 600 Hz</td>
<td>-</td>
</tr>
<tr>
<td>5 500 Hz</td>
<td>-</td>
</tr>
<tr>
<td>6 900 Hz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>7 750 Hz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>8 900 Hz</td>
<td>600 Hz</td>
</tr>
<tr>
<td>9 600 Hz</td>
<td>500 Hz</td>
</tr>
<tr>
<td>0 750 Hz</td>
<td>600 Hz</td>
</tr>
</tbody>
</table>

Old tone signals. All digits are formed from two tones - either singly or in combination.

TABLE 1B

<table>
<thead>
<tr>
<th>Tone A</th>
<th>1209 Hz 1336 Hz 1477 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>697 Hz 1 2 3</td>
</tr>
<tr>
<td>O</td>
<td>770 Hz 4 5 6</td>
</tr>
<tr>
<td>N</td>
<td>852 Hz 7 8 9</td>
</tr>
<tr>
<td>E</td>
<td>941 Hz * 0 #</td>
</tr>
</tbody>
</table>

Current System. All digits are now a combination of two tones arranged in the above matrix.

VOICE-FREQUENCY DIALLING (TONE DIALLING) Tables showing frequency combinations in use.
arrangement of transformers to ensure that the amplified signal was not fed back—bearing in mind we have just one pair of wires carrying signals in both directions (Duplex operation). As such a device was not able to transmit the low frequency of the dialling pulses, a system of four tones in combination was used to transmit numbers as shown in Table 1a. At the distant exchange, four tuned relays responded to the tones, and contacts were wired in such a way that each of ten digits produced a unique condition. The two tone system in use today, shown in Table 1b is a development facilitated by today’s technology, but the principle is otherwise the same.

THE TYPE 706 TELEPHONE

At this point, a detailed description of a subscriber instrument is in order. Although becoming obsolescent, the 706 telephone is familiar to us all, and will be used for this purpose.

In Fig. 9, the dial contacts (D1, D2, D3, D4 and D5) are shown with the dial at rest, and the cradle—switch, (1, 2, 3, 4 and 5) shown with the receiver in position on its rest. As 4/5 is open, the circuit is effectively that of Fig. 10. There is no DC path but the 1kHz ringing signal can flow via capacitor C1a to the bell. On picking up the receiver, DC flows through the transmitter T, via the primary winding of the transformer. The DC thus flowing signals to the exchange that the call has been answered, and the connection is then established.

If a call is being made rather than answered, dial tone will be heard when the receiver is picked up. On operating the dial, contacts D1/D2 and D3/D4 close as soon as the dial begins to rotate, remaining in the closed position until the dial has completely returned. This shorts out the receiver and the transformer so that no excessively loud sounds, which might damage the ear of the user, can be produced in the receiver. Neither can high voltages be induced in the coils of the transformer due to the interruptions caused by the dialling impulses. The low impedance of the transformer winding across the bell coil prevents the bell from tinkling in step with the dialled pulses.

As the dial is released, it repeatedly breaks the circuit through D4 and D5 causing the dialling impulses to appear on the line. The internal capacitor is substituted by the capacitor in the Telecom master socket when the new plugs and sockets are used, but it will be found that the external capacitor appears in precisely the same place in the circuit. The transformer winding will always be in parallel with all the bells in an installation with more than one instrument, when any receiver is picked up. This prevents bell—tinkle on all the instruments when a dial is operated. The three windings of the transformer provide the 'anti—sidetone' arrangement mentioned above, and the regulator, which is a small printed circuit card which may be reversed when not required, serves to limit microphone current where the lines are short.

MULTIPLE PHONES

Up until the very recent introduction of the “Inphone” sockets by British Telecom, all phones were owned by BT and its predecessors (with the exception of Hull, but that’s another story). All phones previously contained a terminal strip with a number of links. These were used to adapt the phone to the various “plans” that could be provided. Referring to the 706 telephone diagram, in Fig. 9, you will see that a capacitor is shown between terminals 7 and 9, and is normally placed in series with the bell. Additional instruments (or extension bells) would have their internal links changed, and would be wired such that T8 and T19 would be in parallel with the main phone, across the line pair, but the bells in all subsequent instruments would be placed in series with the bell in the main instrument — the only capacitor used being the one in the main instrument. Up to six bells in series with one capacitor were permitted.
With pressure to design a subscriber system which could allow a number of sockets to be provided, with Telecom having little control over what might be plugged into them, the system of plugs and sockets which is now becoming familiar was introduced. The Telecom line pair is terminated in a master socket (Fig. 11), which contains the ringing capacitor and a surge suppressor, together with a resistor to allow a small ringing current to flow even when no telephone is plugged in. Subsequent sockets may then be connected in parallel with the master socket. These contain no further components, and for normal use require only three connections, 2 and 3 (the line pair), and 1 (the bell connection). If an old style 706 or similar phone is now to be used, it will need to be adapted using a Telecom plug and lead. Fig 12 shows the connections required. It will be seen that the internal capacitor is now not used. Instead, all bells are now in parallel (but they each have a 2k2 series resistor), and take their ringing current from the capacitor in the master socket.

THE R.E.N.

BT has introduced a concept called the Ringing Equivalence Number (R.E.N.). This is a unit in which an R.E.N. of one is the loading given by one 706 telephone bell. Different telephones may well have different R.E.N.s - modern electronic ones are likely to be much lower than one for example. The rule is simple. No more than a total of four R.E.N.s may be connected to a line at any one time.

It is now possible to ask Telecom to remove any equipment which you at present rent from them, and to have them install a master socket and, if you wish, additional sockets. You will then have no subscriber equipment rental to pay, only line rental, and are free to go out and buy your own phone. You may also wire up your own extension (in the approved manner with approved equipment).

ELECTRONIC EXCHANGES

The majority of so-called electronic exchanges at present in use in this country are in fact semi-electronic, using reed-relays as the switching element under the control of transistor electronics. Very much an interim measure, occasioned by the lack of electronic analogue switches of suitable design until the last few years, these exchanges did at least make possible the concept of digital logic of all signalling and selection, with only the speech connection needing a mechanical element (the reed relay). With recent monolithic circuit techniques making available fully electronic analogue switches, the way was clear for the development of the current standard - System X.

Sales literature from Plessey about the melting pot and System X is seen as the ultimate result.

Transmission over long distances is by means of a high speed digital signal (up to 40 Mbs being used on fibre optic links). Ordinary telephone signals and other types of information are time-multiplexed into large capacity digital paths of this form, and are demultiplexed at the local exchange. In addition to providing greatly improved speech paths, paths for computer generated information at up to 64 Kbs can be provided from within the system to a subscriber along existing copper wires.

While signalling can easily be converted electronically from impulse (loop disconnect) to tone and vice-versa, it seems likely that a gradual change to tone dialling will continue until all impulse dialling is phased out along with the gradual replacement of older exchanges by System X.

THE FUTURE

Your bank, your building society, your shops and your place of work will make use of tone dialling to access their computer - the computer will talk to you and you will tap out the information on the dial. It's happening already. You may well have a computerised system of your own, but how convenient to pop into a phone box and carry out that little transaction on a computer that you forgot to do before you left home.

Finally, a little fantasy. You phone the railway station. A pleasant computer generated voice offers you first the North of England; there is a tone; you wait. You are offered the South. Another tone. You press the "a" key on your phone - area by area you are quickly led to the station which is to be your destination. Do you require information or do you wish to book a ticket? You press "x" for information - you are immediately told the time of departure of the trains - and so on

Of course, the above is very cumbersome compared with a menu-driven program on your VDU - so how about this one:

You insert your credit-card (plastic money) into a slot on the outside of the communication kiosk. You identify yourself on a keypad (or maybe a fingerprint scanner, or even a retinal pattern recognition unit). The kiosk opens. You make use of a full communication facility - which includes a VDU; and of course, everything is automatically billed to you later.

What I am saying is simply that System X holds the communication technology for all of the above and a great deal more. The changeover to a fully digital system is expected to be completed in the first quarter of the next century - that should be in plenty of time for the humble telephone's two-hundredth birthday party.
* Amplifier Power Meter, 10 LED indicators from 0-255-100 Watt Input—9 volt operation. £7.92

** Light sensitive relay unit; variable sensitivity trigger control; senses light or dark—selectable. Kit £3.45

ALL KITS CONTAIN FULL INSTRUCTIONS, P.C.B.s and COMPONENTS.
ALL PRICES INCLUDE VAT AND POSTAGE & PACKING.
OVERSEAS ORDERS ADD £10 ABOVE PRICES.
PLEASE SEND CHEQUE OR POSTAL ORDERS WITH ORDER.

Zenith Electronics Ltd
14 Courtland Business Centre
Hailsham, E. Sussex, U.K. BN27 1AE
Tel: 01223 847927 Telex: 878334

PRACTICAL ELECTRONICS JUNE 1988
Ferguson have launched the PTV01, a new pocket sized LCD colour television, the first to be on sale in this country. This is a most exciting area of product development and the sets will become available through retailers of Ferguson products from November.

The PTV01 is priced at around £250, and its launch is timed to benefit from the Christmas gift market. In addition to its use as a watch-anywhere television, it can also be used as a colour monitor for Ferguson VideoStar camera cassette recorders with playback capability. The comprehensive range of accessories comprises a rechargeable battery pack, a car adaptor, an external aerial adaptor, and an a.c. adaptor/charger.

THE FACILITIES

It is a smart, compact set, measuring only 85mm × 145mm × 35.33mm and very light, weighing just 330g. It has a 52.4mm × 39.6mm screen using the new TN liquid crystal, and can be viewed from a wide angle, enabling more than one person to watch simultaneously.

There is automatic channel selection by press button electronic sweep tuning; on-screen indication of channel tuning; press button adjustment of volume; a socket for private listening through the earphone supplied; built-in telescopic rod aerial with socket for connecting an external aerial in difficult reception situations; a socket for connecting a mains adaptor or 12 volt battery adaptor (optional accessories); a socket for audio-visual input from Ferguson VideoStar camera cassette recorders.

The set is truly portable. Using the a.c. mains adaptor/charger, it can be plugged into the main, or run off the car battery via the cigarette lighter socket (but it's strictly for passengers when the car is in motion!). Six 'AA' size alkaline batteries will give up to two and a half hours of operation, or there is a rechargeable battery pack available which can be charged by the a.c. mains adaptor/charger, giving one and a half hours of use.

A soft carrying case, complete with a carrying strap which loops into an anchor point on the case, and six standard batteries are included in the price. There is also a tilt stand at the rear of the unit which, when pulled out, enables the television to stand freely, so allowing comfortable viewing.

LCD TECHNOLOGY

The PTV01 uses the latest tried and tested LCD technology to achieve a high resolution, quality colour picture. In order to appreciate the benefits of this technology it is appropriate to explain briefly how LCD screens work.

Current liquid crystal display television technology uses TN (Twisted Nematic) liquid crystal, the name referring to the arrangement of molecules in the crystal. There are two types of TN liquid crystal: 'Normal' which is rela-tively unsophisticated and inexpensive and 'Super-twist'. Normal TN together with an active drive matrix can be used on LCD television screens. In its passive state, TN liquid crystal consists of twisted molecules which similarly twist the polarisation of light so that it will not pass through a polarised filter. When an electric field is applied, the molecules align and in effect become transparent, so allowing polarised light to shine through.

There are two ways in which an electric field can be applied to liquid crystal.

PASSIVE MATRIX

With the passive matrix method, the liquid crystal is sandwiched between two pieces of glass. On each inner side of the glass, in contact with the liquid crystal, there is a coating of almost transparent indium tin oxide which acts as a conductor, passing the voltage to the liquid crystal.

The oxide is laid on horizontally on one side and vertically on the other, forming a grid. Where the rows and columns cross and a voltage is passed to the liquid crystal it allows the picture element (pixel) to become transparent.

This works well on a small area, where the number of pixels is limited, as with a watch, but as the number of pixels increases the process starts to break down.

THE ACTIVE MATRIX

The active matrix system imposes another layer on the glass, this time of silicon semiconductors. The original conductor crosspoint no longer controls the pixel directly through the liquid crystal, but activates the semiconductor allowing more rapid switching, or lighting up, of the pixels.

There are two technologies currently used in active matrix systems: TFT (thin film transistor) which uses transistors as the semiconductor, and MIM (metal insulator metal) which uses a diode-like device. The metals and insulator are tantalum, tantalum oxide and chromium. It is thought that MIM is less likely to produce chemical faults in the production process, due to impurities for
example. These could render the entire product useless, and therefore MIM is more cost effective.

COLOUR FILTERS

In order to achieve a colour picture, red, blue and green filters are laid over each group of three pixels and when the liquid crystal is transparent the colour shines through.

The PTV01 has the colours arranged in a triangular pattern with an additional new high degree colour filter which fills each gap with black. This gives brilliant reproduction of primary colours and a screen without patches.

BACK LIGHTING

Because the active matrix system needs yet another semiconductor layer on the glass, the screen has to be lit from behind to ensure that it can be viewed, especially in dim light. Consequently this TV has a highly efficient back light to give a brilliant picture even in a darkened room.

PIXEL QUANTITY

High level resolution on an LCD screen depends on the number of pixels. Some early monochrome monitors had only 10,000 pixels on a 1/2 inch screen. With a colour picture, this would need to be tripled to introduce the three colours just to stay at the same level of resolution. The PTV01 screen however, has 56,000 pixels.

GREY SCALE

Many criticisms of monochrome LCD screens have been targetted at their low level grey scales. This does not render the picture unwatchable, but it would provide problems for colour development where grey scale performance is paramount.

The MIM device secures an active grey scale by virtue of the fact that by varying the amount of voltage applied to each pixel via the twisted molecule, differing shades of light can pass through. This helps to achieve greater contrast and more faithful colour reproduction.

MORE INFORMATION

Your local Ferguson dealer will be pleased to tell you more about the PTV01. Should you have difficulties finding a stockist, contact either Claire Dickson at Copeland Turner PR, 6 Rickett Street, London SW6 1RU, tel: 01-381 8811, or Anne Waterman, Ferguson, Cambridge House, Great Cambridge Road, Enfield, Middlesex, EN1 1UL, tel: 01-363 5353.

PE BAZAAR

Wanted: Unfinished projects or kits with instructions and diagrams. Anything considered. Also unwanted components for beginner. C. Barron, 54 Gerrard Street, Newtown, Birmingham, B19 2BS.

I suggest Messers Barron and Ellis get together! Ed.

Electronic equipment and components for sale. Tel: Histon 3095. Mrs D. Nettleship, 22 Longstanton Road, Oakington, Cambridge, CB4 5BB.

Two ‘Early’ oscilloscopes, Cosor 1049 with spare tube and Hartley electromotives, working (just!). Offers. S. Gaskin, 6 Chevening Close, Tolgate Hill, Crawley, RH11 9QU.

Wanted - BBC Micro issue seven circuit diagrams, components, data sheets and any technical information. 0737 355140. S. Adams, 10 Downdale Way, Epsom, Surrey, KT18 8SG.

30 Amplifier, enhanced version, PE design, superb quality, fully built and tested. Surplus to requirements. Offers? R.G.C. Asher, Nottingham, 0602 253916.

Sharp GF8000, radio, high speed dubbing, ten bar graphical equaliser, clock-timer, double cassette. £200 o.n.o. R. Smith, 1 Huberd House, Manciple Street, London SE1 4DN.

Interested in swapping colour TV and electronic components for Zimbabwe curios of equivalent value. Please contact A.J. Ridders, PO Box 72, Harare, Zimbabwe, Africa.

PCBs filled with 2716 and other useful items for sale (not new but ok). R.A. Raza, PO Box 17930, Jeddah, Saudi Arabia.

Wanted: Editor Assembler and eprom programmer for Tandy colour computer. Urgently required to complete project. G. Moodie, 44 Seafield Road, Edinburgh, EH6 7LQ.

Required urgently: circuit diagrams and service manuals for Sinclair Spectrum computers. T. Lawlor, College Gardens, Callow Road, Kilkenny, Ire. Tel (056) 21301.

i7 computer pbcs for sale. Memory, CPUs, support chips, £25 the lot. Details 0625 873874 (eves). M. Belham, 100 Towers Road, Poynont, Stockport, Cheshire, SK12 1DF.

Spectrum 48K computer and extra £137. Tridaper grid dip meter £25. Numbrex C-R bridge £25. R. Hearn, 10 Speedwell Close, Pakefield, Lowestoft, Suffolk, NR33 7DU. Tel: 0502 66026.

Wanted: Acorn Atom, or Oric-1, or Atmos computer hardware and add-ons, broken and working. (Electronics student). J. Bull, Woodcroft House, Comeytrowe Road, Trull, Taunton, Somerset, TA3 7NF.

HELP. Spectrum, ULA (OOC01E-7). Will consider ANY broken Spectrum or just ULA. Will pay postage. M. Whitcombe, 1 Pen-y-waun Road, Trimant, Crumlin, Gwent, NP1 4JS. Tel: 0495 214994.

Wanted: Language card for an Apple II. R. Bolton, 29 Ballineaspg Lawn, Bishopstown, Cork, Ireland.

Circuits and service data required for Sony TC250A reel to reel tape deck. R. Clarke, 2 Northlands Street, Camberwell, London SE5 9PL. Tel: 01-737 4096.

Ultrasonic cleaner project PE or PW, any info appreciated. Would pay for relevant issues. I. Spearman, 18 Queensway, Shelley, Ongar, Essex, CM5 0BN. 0277 362197.

George Bray Ltd, brass encased heating elements, total qty 18, assorted lengths and wattages. Offers wanted. E.G. Priestly, 6 Lynden Avenue, Windhill, Shirley, W. Yorks, BD18 1HF. Tel 0274 593382.

Heathkit AO-1V AF signal generator £27, Nombrax C-R bridge £22, Tech grid dip meter £20. R.W. Hearn, 10 Speedwell Close, Pakefield, Lowestoft, Suffolk, NR33 7DU. Tel: 0502 66026.

Hello again Mr Hearn - I hope you’re not getting up electronics! Ed.

Oscilloscope with LED screen (unmade kit) £29.99, also case kit £9.99, scope lead £3.95. J.E. Ellis, The Flat, 18 Butter Hill, Wallington, SM6 2JD.

Oscilloscope dual trace Gould OS300 with case and probes. Hardy used, condition as new. £225. W. Mackay, 77 Erskine Hill, Polmont, Falkirk, Stirlingshire. 0324 713037.

Power supply 150V +5V @ 8A, +12V @ 4A, -12V @ .2A, +24V @ 1.7A. Overvoltage, overcurrent protection. Excellent value at £19. S. Cramp, 68 Heath Drive, Chelsfield, Essex, CM2 9HF. Tel: 0245 259027.

8080A and 8224 chips unused £5 the pair, o.n.o. R. Fletcher, 29 Hirst Close, Long Lawford, Rugby, Warks.

The Sky This Month

Mercury, which was favourably visible during November, is out now out of view, but Venus is becoming more and more obtrusive in the evening after sunset. It is still a long way south of the celestial equator, and is therefore rather low down, but the magnitude rises to -4 — much brighter than any other star or planet — and Venus cannot be mistaken. The phase is still well over 90 per cent, and no telescope will show anything definite upon its surface; what we are seeing is merely the upper cloud-layer.

Whenever Venus is brilliant around Christmas-time, many people ask "Can it have been the Star of Bethlehem?" The answer is an emphatic 'No', because Venus was a familiar object, and if the Wise Men had been deceived by it they would hardly have been wise. On the same grounds we can also dismiss other familiar bodies, and the theory of a planetary conjunction has been discredited, so that we can give no scientific explanation - even if the Star were really seen!

Mars is now a morning object, passing from Virgo into Libra. Its magnitude is +1.7, not a great deal brighter than the Pole Star, and the apparent diameter is still below 5 seconds of arc Jupiter, however, remains on view almost throughout the night. It is Pisces, well north of the celestial equator, and reaches magnitude -2.7, so that it dominates the entire area. A small telescope will show its belts, zones and bright satellites. Of the 'Galilean' satellites the inner three (Io, Europa and Ganymede) may be followed as they exhibit transits, shadow transits, occultations, and eclipses by Jupiter's shadow; but the fourth Galilean, Callisto, is further from Jupiter, and at present escapes these phenomena.

Saturn is in conjunction with the Sun on 16 December, and is not visible. Of the three outer planets, Uranus and Neptune are in the Sagittarius area, and out of view; Pluto is in Virgo, but its magnitude is only 14.

Two major meteor showers are active during December. The Geminids extend from the 7th to the 15th, with a maximum on the 14th; the ZHR (Zenithal Hourly Rate) is about 70, and the Geminids can usually be relied upon to provide a good display particularly when — as this year — moonlight does not interfere (The Moon is full on the 5th, and new on the 20th.) The Geminids are rich in fireballs, with many faint meteors also. The Ursids extend from the 17th to the 25th, with maximum on the 23rd; the maximum is not particularly sharp and the ZHR is usually no more than about 12.

There are no eclipses in December.

Orion has now come well into view, and dominates the night sky. Of its two leading stars, Rigel is brilliant white while Betelgeux is orange-red; Betelgeux is variable, and this month it is not much below maximum, so that there is not a great deal of difference between it and Rigel. Below the three stars of the Hunter's Belt, look for the Great Nebula, Messier 42 — a stellar birthplace, the hazy cloud is easily visible with the naked eye. Also in the Orion-Taurus area are the sky's two most famous open clusters, the Hyades, round Aldebaran, and the Pleiades or Seven Sisters. Capella, one of the brightest stars in the sky, is almost overhead; the Square of Pegasus, the main autumn constellation is descending in the west.

Mira Ceti, the first-known variable star, can reach the second magnitude when at maximum, as it almost did when it was last at its brightest in February of this year. Since its period of variation is 332 days, it is now increasing, and may well become a naked-eye object during December, below Jupiter. Like all stars of its kind, it is very red.
the supernovae could still be seen with the naked eye.

Supernovae are of two types. With Type I we are dealing with a binary system, of which one member is a very old star of the kind known as a white dwarf. A Type II supernova is due to the collapse and subsequent explosion of a single, very massive star, which blows most of its material away into space and leaves a small, super-dense core made up of neutrons. 1987 was certainly of Type II, but it did not follow the usual rules, and we now know it as the Mystery Spot—named, we are told, after a well-known bar and night-club!

Mystery Spot was discovered by a team from Imperial College, London, who went to Siding Spring Observatory in Australia to make speckle interferometry observations of the supernova. They hoped to measure the diameter of the supernova, but instead they found a 'blob' about two light-weeks from the main outburst, and we have to admit that we still do not know just what it is. Initially it was thought to be a cloud of gas which had been illuminated by the explosion — certainly it could not be material from the supernova itself, but it must have been associated, because it was brighter than any object seen in the region before the outburst.

Professor Martin Rees, of Cambridge, has now suggested that the pre-outburst supernova (the progenitor) had a binary companion. As the material from the outburst spread outward, some of it was "blocked" by the companion. Then, as the companion moved along in its orbit, there was, so to speak, a "hole" left in the expanding shell — and radiation from the supernova poured through this "hole" falling upon a cloud of gas and lighting it up. This could well explain Mystery Spot, but it is no more than a theory at the moment.

Neither do we know whether the outburst will produce a pulsar or a black hole. Some astronomers are pinning their faith in a black hole; but we must simply wait and see. Since the supernova is declining slowly, we may hope to keep track of it for some years, and within reasonably short time we may well know just what its end product will be.

Astronomy Now

Number 6

January 1988

FREE! ASTRONOMY NOW 1988 YEAR PLANNER

large wallchart with details of all astronomical events, weekend courses and meetings throughout the year.

Articles in an advanced state of preparation:

ASTRONOMY AND THE MEDIA by Denys Parsons

- a sideways look at some of the amusing astronomical stories that have appeared in the Press.

CHOOSING BINOCULARS FOR ASTRONOMY by Jack Coleman

THE STAR OF BETHLEHEM by Patrick Moore

IS THE SUN SHRINKING? by Leslie Morrison and Paul Murdin

plus a host of regular features including:

The Night Sky
Sky Watch Down Under
Picture Gallery
Foreign News
Society News
Yours Views
Book Reviews

Also, the ever-popular Newcomers' Guide for beginners to astronomy

News Update will include details of the recent observations carried out with the William Herschel Telescope on La Palma.

ON SALE at all good newsagents — Price £1.25

(Also available on subscription)

ISSUE NUMBER 6 ON SALE TUESDAY DECEMBER 22nd

Space Watching

MULTIPOINT Communication are marketing what they claim to be the world's most powerful satellite TV receiver available for use with all international satellites.

The ultra low threshold receiver operates at 5dB carrier/noise ratio representing a reduction of 30% in the size of dish antenna required. It contains three internationally patented methods of threshold extension and was developed for use with European Ku band satellites, however, a C-band version has been produced in response to considerable international demand. This means that the receiver can also now be used in the USA Central America, Caribbean, Pacific, Africa and the Middle East.

The receiver which is currently being used by many organisations including British Telecom in the UK and TDF in France, operates with PAL, SECAM and NTSC international television standards.

This TV system should allow many developing counties in the world to receive satellite TV transmissions of re-broadcast quality, where previously this has not been practical.

Contact: Multipoint Communications Ltd, Satellite House, Eastways Industrial Park, Witham, Essex, CM8 3YQ.

Tel: 0376 510881.
ANALYSER

1. Analyse and compute the A.C. FREQUENCY RESPONSE of linear (analog) circuits. GAIN and PHASE, IMPEDANCE, OUTPUT IMPEDANCE and GROUP DELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1Hz and 1.2GHz. The effect on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.

Circuits containing any combination of RESISTORS, CAPACITORS, INDUCTORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated — up to 96 nodes and 180 components (IBM version). Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS, etc.

STABILITY CRITERIA and OSCILLATOR CIRCUITS can be evaluated by "breaking the loop." Simulated output, increased circuit size and active component library facilities on Analyser II.

Check out your new designs in minutes rather than days.

ANALYSER

1. Can greatly reduce or even eliminate the need to boardroom new designs.

Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service. Used by INDUSTRIAL, GOVERNMENT and UNIVERSITY R & D services. IDEAL FOR TRAINING COURSES. VERY EASY TO USE.

Prices from £20-£195.

For further details on example computations please write or phone:

Ref PE Harding Way, Somersham Road, St Ivor, Huntingdon, Cambs PE17 4WR

RESISTORS

- (¼ watt 5% toll)
- V24 range 5R6 to 10M mixed value pricing
- 1+ 0.01p each
- 1000+ 0.008p each
- 5000+ 0.007p each

PRESETS (Miniature size)

- V12 range 10R to 2MR mixed value pricing horizontal or vertical
- 1+ 0.100p each
- 1000+ 0.090p each

Standard size

- Description/pricing same as miniature size

POTENTIOMETERS

- Available in the following values only:
 - 470R, 1K, 4.7K, 10K, 22K, 47K, 100K, 220K, 470K, 1M
- Lin or log. Mixed value pricing.
 - 1+ 0.39
 - 50+ 0.32
 - 100+ 0.30
 - 25+ 0.32
 - 250+ 0.29

LARGER QUANTITIES

- Phone for Quote
- ALL PRICES ARE TRADE ONLY AND EXCLUDE VAT
- PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Please £1.00 carriage to all orders

Catalogue/Lists available upon request

Terms: Cash/Cheque/PO with order

We are also able to supply, in quantity, Semiconductors from the following manufacturers:

- FAIRCHILD RCA MOTOROLA SGS
- MULLARD ELECTRONICS (MEXICAN)
- TOSHIKA

Please PHONE FOR QUOTE

Please call Nigel Turner on 091-386 4500 with your requirements NOW
ELECTRONIC LOCKS
PART ONE BY THE PROF

LOCK BEFORE YOU LEAP

There are more ways of securing property with electronics than is generally realised. The Prof. looks at lock-and-key methods, opto-locks, capacitor-resistor operated locks and active-oscillator circuits.

At the mention of electronic locks, I suppose most people think of electronic combination locks. These have now become quite commonplace, and while they are far from the stage at which they could be said to have ousted mechanical locks, they seem to be steadily gaining in popularity. You could be forgiven for thinking that push button combination locks are the only form of electronic lock, but there are actually numerous other types. In fact there are almost limitless possibilities for anyone interested in designing this sort of thing. A number of push button combination and “tumbler” style electronic lock circuits have been published in the past including Tim Pike’s GCSE idea in PE September 87. In this month’s article we will continue the policy of exploring the less well known aspects of electronics by looking at alternatives to these.

KEY TO SUCCESS

The types of lock we will be concerned with here are mostly of the “key” in “keyhole” variety. We are not necessarily talking in terms of something directly comparable to a mechanical key and lock mechanism, although devices which are directly analogous to these are possible. However, most electronic “key” style locks consist of a plug containing some electronic components, and a “mechanism” that is actually a matching socket plus some electronics. There are other possibilities though, as we shall see later.

Systems of this type can offer a level of security at least as good as a push button combination lock, and can probably be better in this respect. There is the obvious drawback of having to carry the key around, and it can become stolen or lost. On the other hand, people have been known to forget combination numbers, and writing them down is probably a greater security hazard than the possible loss of a key.

A basic “key” and “lock” system could consist of nothing more than a multi-pin plug with two of the pins short circuited, and a matching socket wired so that with these two terminals short circuited power is supplied to a relay, solenoid, or whatever. This approach is slightly more simplistic though, and anyone trying short circuiting a few terminals of the socket together would, in all probability, soon chance across the right two pins and “crack” the system. However, with the addition of some simple electronics it is not difficult to produce a virtually crack-proof lock.

What is needed is a system whereby the lock is only opened if the terminals of the socket are wired together in the appropriate manner. This can be easily achieved, and a simple circuit of this type is given in Fig. 1.

IC1 is central to the operation of this unit, and it is a four to sixteen line demultiplexer. In other words, it has four inputs numbered 0 to 3, and sixteen outputs, numbered 0 to 15. All but one of the outputs are at the low state, and which output goes to the high state depends on the binary number fed to the inputs. For example, if inputs 0 to 3 are taken (respectively) to logic levels 0, 1, 0, and 1, this 101 in binary, or ten if converted to decimal. Therefore, output ten is the one that assumes the high state.

In this application the basic idea is to feed a simple relay driver circuit from one output of IC1, and to use resistors to take the inputs to any state that causes this output to assume logic 0 under standby conditions. The “key” must be wired so that it takes the four inputs to the correct logic levels to send this output high, switching on TR1 and actuating the relay. As wired in Fig. 1, all four inputs of IC1 are taken to the high state by the input resistors (R1 to R4). This renders output 15 unusable as this is the one which will go to the high state under standby conditions. For the sake of this example we will assume that output 4 is connected through to R5. The “key” should therefore be a plug wired so that it connects D0, D1, and D3 to V-, and D2 to V+. Actually, D2 could simply be left unconnected, since it is pulled to logic 1 by R3 anyway.

This simple system gives quite good security, although I suppose it is far from crack-proof. Someone who got lucky might just find a suitable method of connection fairly quickly, and someone prepared to work methodically through all the possible methods of connection would presumably manage to activate the unit sooner or later.

One way of obtaining improved security is to use the same basic system, but with more inputs. The circuit diagram of Fig. 2 shows a simple means of achieving this.

The front end of the circuit is essentially the same as the original circuit of Fig. 1, as is the relay driver. However, two 4514BE demultiplexer chips are used, and their outputs are combined by an AND gate formed from two of the NAND gates in IC3. Thus, in order to activate the unit the selected output of IC1 and the selected output of IC2 must both be high. By increasing the number of “key” terminals from six to ten, the chances of fortuitous or conscientious “cracking” of the lock are greatly
ELECTRONIC LOCKS

OPTO-LOCK

The circuits of Fig 1 and Fig 2 can be used as the basis of a simple optical lock.

As the circuit stands, the “key” must be kept in the lock in order to keep RLA1 activated. This might be perfectly satisfactory in some applications, but in others it could be much more convenient to have sequential operation. In other words, inserting the “key” and removing it would activate RLA1, inserting and removing the “key” again would switch it off, and so on. This merely requires the addition of a flip/flop divide by two circuit between the output of IC3b and R5/R9, plus possibly some debounce circuitry. A circuit described later on in this article shows how a CMOS 4013BE can be used to give successive operation of an electronic lock.

-row angle of view together with good sensitivity. In this case a TIL81 has been specified, and this represents a relatively inexpensive and readily available choice. However, similar devices such as the BPX25 should work just as well. The collector to emitter resistance of TR1 is used as a sort of light dependent resistance. Under dark conditions the leakage level through TR1 is very low level (typically under 1 microamp) that is normally associated with silicon transistors. Under bright conditions the leakage level increases substantially, and can become as high as a few tens of milliamps. Under quiescent conditions the light output from D1 causes TR1 to switch on and then produce a very low output voltage. With the light output from D1 blocked, TR1 switches off and the output goes high. D1 is an infra-red LED having a narrow dispersion angle. The lack of any output in the visible light spectrum aids security by not giving away the nature of the lock. A narrow angle infra-red LED also enables a low LED current to be used successfully. Remember that most photo-transistors have peak sensitivity at wavelengths that

![Fig. 2. An improved version of the electronic lock.](image-url)
in paper tape readers, as these are now pretty well obsolete.

This is a very simple idea, and is obviously not a particular new one, but it is one which has definite attractions. The key is very straightforward and is the type of thing that can be carried around with you without being a major inconvenience. Security is aided by the fact that few people would recognise it as a key at all. From my experiments it would seem that even the most simple locks of this type are very difficult to "pick". It is a system that is perhaps better suited to locks than to data storage. It is certainly an interesting idea that is well worth trying, and costs very little. The main point to watch is that ambient light cannot get into the lock at a high enough level to block the circuit and hold it in the off state.

C-R Lock

The circuits described so far could be considered as just a variation on the combination lock theme, but this next design certainly is not. Any electrical quantity, or anything that can be measured electronically, is a potential basis for electronic locks. Many types of lock that would be possible would also be rather impractical. As an example, it would be possible to have a circuit with a number of temperature sensors, with each one having to be taken to the right temperature in order to unlock the device. It would be possible to produce a "key" to do this, but it would hardly be worth the effort. While being virtually "crack" proof, the more way-out set ups of this type are likely to be inconvenient from the user's point of view. Also, reliability could be poor, with the user being as firmly locked out as potential intruders for much of the time!

It is probably sensible to keep things relatively simple. This aids good reliability, keeps down the cost, makes it easier to produce a system that is convenient in operation, and still gives a high degree of security. Simple electronic locks are quite easy to "pick" when you know how they work, but potential intruders are unlikely to have any idea what particular principle a given lock works under. With no idea where to start, successfully "picking" such a lock is highly unlikely.

The design featured here uses a resistor and a capacitor as the "key". It is not specific resistor and capacitor values that activate the unit, but a particular time constant. The block diagram of Fig. 4 shows the basic arrangement used in this system.

The "key", as explained above, is a resistor and capacitor with values that give the appropriate time constant. When connected to the "lock", these form the main timing elements in a C-R oscillator. The purpose of the rest of the unit is to detect whether or not the oscillator is operating at (or very close to) the frequency produced with the correct C-R time constant connected.

A monostable multivibrator is the first stage in the frequency determining circuit. This is triggered by the brief negative pulses from the oscillator, and the mark-space ratio at its output depends on the frequency of the trigger pulses. As the input frequency is increased, the output pulses become bunched together, and the average output voltage rises. A lowpass filter at the output of the monostable smooths the output pulses to give a reasonably well smoothed d.c. signal at the average output voltage of the monostable. The monostable and lowpass filter thus provide a basic but quite effective frequency to voltage converter.

Two voltage comparators fed from separate reference voltages monitor the signal from the lowpass filter. The voltage comparators feed into a NOR gate, and these three stages combine to form a window discriminator. The output of the NOR gate goes high when the input voltage is between the two reference voltages, and in practice these are separated by only a couple of hundred milli-
volts. The frequency from the oscillator therefore has to be within quite narrow limits in order to produce an output voltage from the lowpass filter that will send the output of the NOR gate high and activate the output stage. The accuracy of the C-R network in the "key" needs to be correspondingly accurate.

The full circuit diagram for the C-R lock appears in Fig. 5.

OSCILLATOR
A standard 555 oscillator forms the basis of the circuit, but a low power version of the device will often be desirable in order to keep the current consumption of the circuit down to a reasonable level. R1 and C1 are the C-R network in the "key", but they are not the only timing components for IC1. A standard 555 astable requires two resistors, and R2 is the second one. It has been given a low value so that the discharge period is kept very short, and the output waveform is the series of brief negative pulses needed to operate the monostable stage properly. R9 forms part of the charge resistance, but it is really only included as a safety measure. With this resistor included, anyone connecting pieces of wire across the "keyhole" terminals will be unable to short circuit the supply lines. A second low power 555 acts as the basis of the monostable, and this is again a standard configuration. VR1 is adjusted to give the correct output voltage from the lowpass filter when the correct "key" is connected to the unit. The filter is a simple single stage passive type (R4 - C3). Note that if more than one "key" is made, it is essential to use 1% toleranced components for both R1 and C1 in each "key", or it is quite likely that it will not be possible to adjust the unit so that it will respond properly to every "key". Alternatively, the resistor could be replaced by a preset type so that it could be trimmed to give precisely the required time constant.

Two operational amplifiers are used as the voltage comparators, and the potential divider formed by R5 to R7 provides the reference voltages. It is the value of R6 that determines how discriminating (or otherwise) the "lock" is. In practice it is unwise to make the value of this component much lower than the specified value as this could reduce reliability and would probably not aid security very greatly. IC4 is the NOR gate which combines the outputs of the voltage comparators. The other three gates of IC4 are left unused. TR1 is the relay driver, which is a standard type apart from the inclusion of C4. With the original circuit there was a slight problem in that pushing bits of wire into the "keyhole" in an attempt to pick the lock resulted in TR1 switching on momentarily. These output pulses were so brief that they failed to operate the relay, but C4 totally suppresses them and avoids any possible problem they might otherwise cause.

The circuit does not seem to require a highly stable supply for reliable operation. Although variations in the supply voltage result in changes in the output voltage from the frequency to voltage converter, the reference voltages alter by a similar amount. The supply only needs to be regulated if it is otherwise likely to fluctuate by several volts.

This type of lock seems to be quite effective. Being realistic about it, if someone knows that a C-R network is needed in order to operate it, then a little experimentation would probably soon enable them to activate the unit. The solution to this is to simply not let anyone know the nature of the lock (which applies equally to any electronic lock). It is then virtually proof. Also bear in mind that a few dummy pins on the "keyhole", as described previously, will help to make the unit more difficult to defeat.

ACTIVE-KEY LOCKS
For the ultimate in electronic lock security, without resorting to anything highly exotic (such as finger print or retina pattern identification), there is probably nothing to better active-key circuits. These differ to the circuits described earlier in that the "key" is not merely a plug plus a few wires or other passive components, but instead contains an active circuit such as an oscillator.

The circuit of Fig. 5 could easily be changed to make it operate as an active lock. This is really just a matter of transferring IC1 and its associated components into the "key". The "key" then has to provide the appropriate input frequency and a suitable waveform to pin 2 of IC2. The "key" can be powered from the "lock" circuit, and it is preferable to do so rather than provide it with its own power source. This makes the "key" smaller and lighter, and avoids the possibility of problems due to any supply voltage mis-matches.

An interesting form of active-key lock is the type where the lock is on the inside of the car or building, and it is operated from the outside. The three obvious ways of doing this are to use ultrasonics, infra-red, or radio links. Ultrasonics has the disadvantage that the high frequency sound waves are not very good at passing through even quite thin materials, and this method is probably not practical. A radio link would be a perfectly good way of tackling the problem, but might not be licenable (I have not checked to ascertain whether it would fall within the current radio control license provisions). An infra-red link almost certainly provides the most practical solution, as it can be implemented using quite simple and inexpensive circuitry. Infra-red signals seem to pass quite well through the glass used in ordinary windows, and even lace curtains might allow sufficient signal through to allow the lock to be activated. A range of as little as 150 millimetres could be quite usable in this application.

The block diagram of Fig. 6 shows the arrangement used in my infra-red lock design.

The "key" is merely on audio oscillator driving an infra-red LED Note though, that the frequency of the oscillator must be within quite narrowly defined limits if it is to operate the lock. This is an important factor, since there would otherwise be a strong possibility that the carrier link would be a perfectly good way of tackling the problem, but might not be licenable (I have not checked to ascertain whether it would fall within the current radio control license provisions). An infra-red link almost certainly provides the most practical solution, as it can be implemented using quite simple and inexpensive circuitry. Infra-red signals seem to pass quite well through the glass used in ordinary windows, and even lace curtains might allow sufficient signal through to allow the lock to be activated. A range of as little as 150 millimetres could be quite usable in this application.

The block diagram of Fig. 6 shows the arrangement used in my infra-red lock design.

The "key" is merely on audio oscillator driving an infra-red LED Note though, that the frequency of the oscillator must be within quite narrowly defined limits if it is to operate the lock. This is an important factor, since there would otherwise be a strong possibility that

Fig. 6. Block diagram for an infrared lock.
Practical Electronics January 1988

The Archer Z80 SBC

The SDS ARCHER is the Z80 based single board computer chosen by professionals and OEM users:

- Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM & battery backed RAM.
- **Options:** On board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O & memory extension cards.

The Bowman 68000 SBC

The SDS BOWMAN is the 68000 based single board computer for advanced high speed applications:

- Extended double Eurocard with 2 parallel & 2 serial ports, battery backed CMOS RAM, EPROM, 2 counter-timers, watchdog timer, powerfail interrupt, & an optional zero wait state half megabyte D-RAM.
- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

BI-PAK BARGAINS

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPA</td>
<td>200 S1 8-42 Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK6</td>
<td>200 S1 8-42 Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK5</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK3</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK2</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK1</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VPA</td>
<td>200 S1 8-42 Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK6</td>
<td>200 S1 8-42 Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK5</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK3</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK2</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
<tr>
<td>VK1</td>
<td>9 x assorted Nixie Tubes</td>
<td>£1.95</td>
</tr>
</tbody>
</table>

BI-PAK ELECTRONICS

Send your orders to Dusk PE, BI-PAK PO Box & Ware, HERTFORDSHIRE. CASH WITH ORDER DUE DAY. CREDIT ACCOUNTS ACCEPTED. BARGAIN CASH FOR CASH! CASH ORDER: CASH ONLY TEL. 02814-5067. ALSO 15% VAT AND £1.50 PER ORDER POSTAGE AND PACKING. Use your credit card! Ring us on 0783 48951-50 and get your order even faster. Goods normally sent 2nd class Mail. (Excludes some items and VAT at 15% on your order). Total postage and VAT are 15% on your order.
6V 16 Ah
Sealed Batteries
A sealed, maintenance free, lead acid gel battery, the EP1610 is manufactured by Elpower and delivers a massive 6 volt 16Ah capacity from a package measuring only 10 x 4.5 x 76mm. Useful for many standby or portable applications, the EP1610 is ideal for deep cycle use and is chargeable from a constant voltage charger.

BRAND NEW
£15 +VAT £13.00

Easy Power

Measuring over 85 x 20 x 200mm the GSH40 converter delivers 7 Watts at 4 Amps from an input range of 8-48 Volts DC. The use of modern switched mode circuitry enables an efficiency of 70% and the use of a compact, high density heatsink. Simple to use, the GSH40 is offered with full data sheet, and all application information is available.

BRAND NEW
£10

SUPER SAVINGS ON SWITCHMODE

Switchmode
5 4

BARGAIN PRICE £4.00

A high reliability multistage supply carrying UL and CSA approvals. Built on a rugged SWITCHE application, the EP6160 is suitable for deep cycling use.

REDEFINED TO CLEAR only £30 + VAT £28.00

Price Breakthrough!
68000 Processors

The Signetics SCN9000 CHU4 is an 8086 68000 cpu in a 64 pin Ceramic DIL package. Due to its advanced design features the 68000 has become an industry standard in true revolution. When you order a complete purchase enables you to offer this popular device at the unbelievable price of

MASSIVE STOCKS MUST BE CLEARED
£5 +VAT £4.50

Siemens V30141 300 Watt Open Frame

SWITCHMODE

A high reliability multi stage supply carrying UL and CSA approvals. Built on a rugged chassis the V30141 accepts 110 or 220Vac input and delivers five outputs.

+ 5V/15A + 12V/3.3A + 15V/0.5A - 12V/0.5A - 5V/2A

All units built in and tested
Offered BRAND NEW & boxed
Overall size 393 x 225 x 70mm

REDUCED TO CLEAR only £30 + VAT £28.00

BRC DISK INTERFACE leads, 34 way speed-bloc socket to 34 way connector. Available in single or twin drive configurations.

SINGLE DRIVE £1.50 TWIN DRIVE £3.50

UM 1080 modulator - High quality UHF modulators for interface of computer and video signal to TV systems when used in conjunction with video data signals.

Data supplied
BROADCAST UNIT £4.00

Semiconductors

Part No
DAC70-CBL-V
KJ1425A
KX1172070
LG271
EP501IV
DL314R
MA83031AH-P2
JASS5K
inis608-1N
D6075A
AV195B
hN802CA

 abort the attachment of semiconductor diodes by allowing various applications in portable and standby situations. Suitable for cyclic and standby use the sealed construction ensures long life and no electrolyte leakage. All batteries are brand new and available ex-stock at highly competitive prices.

B6 Volt 1A... £4.00 +10 Volt 1.3Ah £11.00
B6 Volt 1.2A... £7.25 +12 Volt 1.9Ah £13.00
B6 Volt 2.5A... £8.00 +12 Volt 2.5Ah £15.00

12 Volt 6A2 10... £15.00 all prices + VAT

CAPACITORS

J/g 280Vac Filmcap ACT Polypropylene
100025V Ett Bk41CCT £1.00 4702 25V Multi 0.82
200016V Rapas M52 £1.05 220063 V T7 T810A £5.00
200016V Mallory COS £1.05 33300G5 Mantine COS £1.05
4702 16V Ax Mull 03A £0.25 4702 16V Multi 0.95
200016V Procion 50K £1.10 4702 16V Ax Bad Nick £0.95
200025V Mallard 111 £4.00 4702 50G90 LCR £4.30

We carry a full range of Ceramic, Polyester, Polypropylene, Tantalum, Electrolytic, Variable and Trimmed capacitors.

Industrial Timers

A range of high reliability electromagnetic timers by EUZUMI Denko. All units 240V and have 5A, contact sets. WEISER-ONCAI base, 2 contact sets, start on power-up, power-off reset. 0-1sec, 0-10sec, 0-2sec.

978-372 - 7mm square panel mount. Screw terminals. Spects as above. 0-3sec, 0-7sec, 0-10sec, 0-20sec, 0-30sec, 0-60 sec, 0-210min. WEISER-OGS as above but separate clutch and motor connections. Reset on power-off 0.1sec, 0.1sec, 0.2sec, 0.3sec.

Application sheets available. All timers only £10.00

£££££ WE BUY COMPONENTS FOR CASH £££££

... stop press ... SOLAR PANELS

12 ins x 13 ins x 12 Volt 200mA output in British sunlight. Bargain price... BRAND NEW £15.00 + A £2.00 F/P

Fuselodge Ltd.

267 ACTON LANE
CHISWICK, LONDON W4 5DD
Telephone: 01-994 6275

Terms of business Cheque/PO with order. Major Order phone for details of p/d charges for large orders. Callsers Welcome. Shop Hours: 9.00-5.30pm. 6 days a week PLEASE ADD 15% VAT TO ALL PRICES

Strictly no promises.
HART Hi-Fi Kits

400 SERIES LINTSEY HOPE ULTRA HIGH QUALITY AUDIOFREQUENCY TUNER SYSTEM

START AT SECURITY and fenice tapes. Very easy to assemble on plug-in PCBs. Complete component price.

Complete record and replay circuits for very high quality professional cassette recorder. Circuits are optimised for our HS 16 Super Quality Standard Audiophile Head. Switches are the ultimate in PCB packagings. Very easy to assemble on plug-in PCBs. Completes with full instructions.

LINTSEY-HOOD CASSETTE RECORDER CIRCUITS

Personal callers are always very welcome but please note that we are closed all day Saturday

24 Hour Sales Line
(0691) 652894

ONLINE SECURITY

Complete with rear view mirror and safety sound giving you the extra security you need when on the road. Easy to fit and adjust for maximum rear view safety.

LED SECURITY SYSTEMS START AT

ONLY £39.95 + VAT

RISCOMP LIMITED

THE SECURITY SPECIALISTS

PE SERVICES

BACK NUMBERS

(Subject to availability)

UK OVERSEAS

£1.50 £2.00

PHOTOCOPIES

(Please price per article, per issue)

UK OVERSEAS

£1.00 £1.50

BINDERS

(Each holds 12 Issues)

UK OVERSEAS

£5.95 £7.95

Prices include post and packaging

PC CASINGS

OEMs/TRADE WELCOME

SOFTMACHINE DISTRIBUTION LTD

UNIT F25, HARBERT ROAD, EDMONTON

LONDON, ENGLAND, N18 3LJ

NEW TLX: 9312100158 – TD G

Office Hours: 10.00am–6.00pm

Tel: 01-807 7644

Fax: 01-807 2748

(25 3)

PRACTICAL ELECTRONICS JANUARY 1988

55
The year 1988 which we are just moving into is the centenary of the world electronics industry. A hundred years ago Heinrich Rudolf Hertz, the German physicist, announced to the world in the _Annalen der Physik_ (Annals of Physics) that he had produced electromagnetic waves and detected them at a distance. Actually he called the phenomenon an "outspreading of electric force". It was Lord Kelvin, in a translation of Hertz's work, who introduced the word 'waves', and in the English-speaking world they were initially known as 'Hertzian,' 'electric' or 'aether' waves.

Thus Hertz proved experimentally the actual existence of something that James Clerk Maxwell had shown mathematically, in 1865, to be theoretically possible. And fairly soon the new Hertzian waves were found to have the properties of light. This too was an experimental proof of Maxwell's electromagnetic wave theory. Maxwell had said that there were "strong reasons to believe that light itself ... is an electromagnetic disturbance in the form of waves" propagated as in his theory. Some people might disagree that Hertz's discovery was the birth of the electronics industry. They might argue that it really began in 1882 with Edison's discovery of thermonic emission—the Edison Effect. Or they might say that everything started with the invention of the thermonic valve—Fleming's diode of 1904. Or they might point out that the diode didn't permit amplification or control and only became really significant when, in 1946, Lee de Forest added a third electrode to produce the triode valve.

TURNING POINTS

These were undoubtedly great turning points in the development of electronics technology. And one could reasonably go right back through the history of electrical science to the ancient Greeks rubbing pieces of amber (elettron in their language) to produce negative electric charges. But here I'm not concerned with the science or technology but with the electronics industry—the social activity of manufacturing useful things. And in arguing for 1988 as the true birth year of this industry I'm really saying that Hertz's discovery of electromagnetic waves led directly to the formation of the radio industry (in the late 1890s) and it was the radio industry, that gave birth to the electronics industry.

But if we look at the hard, irrefutable facts of history, what made the electronics industry possible as a manufacturing and trading business was the ready availability of cheap, mass-produced radio components. Valves, resistors, capacitors, inductors, and transformers used in manufacturing domestic radio sets on a large scale in the 'twenties and 'thirties suggested other kinds of applications. One early definition of electronics was: "Radio-like techniques applied to non-communication purposes." As a young boy I remember leafing through back copies of the American magazine _Electronics_, which started up in the 1930s, and seeing lots of articles on the use of photoelectric cells and valve amplifiers for industrial control purposes.

UNRESPECTABLE

Of course, electronics was not "respectable" in those early days. One reason was that it wasn't recognised and taught as a legitimate subject in colleges and universities. Consequently it was largely pushed forward by untrained experimenters and entrepreneurs—at any rate in the industrial field. That's not to say these people lacked intelligence, intellect or resourcefulness. Often they were much brighter than the official qualified engineers and technicians of the electrical world.

Another reason why electronics was initially considered slightly disreputable was that its products were often unreliable in use. In industrial environments especially, radio valves were fragile devices, connections proved to be vulnerable to shock, vibration, humidity and corrosion, capacitors became short-circuited and resistors went open-circuit.

No wonder that the electrical engineering establishment looked askance at electronics in those early days. Perhaps, too, they saw its brash liveliness as some kind of threat. In a sense they were right, for the electronics industry is now expanding faster, both in market size and rate of innovation, than the conventional electrical industry. In some big electrical companies and in professional bodies like the IEEE and IEEE it has become the tail that wags the dog.

What brought about the change and finally transformed electronics into a serious industrial business that nobody could afford to ignore was the sheer impact of three developments in the late 1930s—television, radar and computers. Surrounding these were numerous other innovations from that period which we now take for granted, such as the use of sensitive electronic amplifiers to provide diagnostic medical instruments like the electrocardiograph and the electroencephalograph.

1948 REVOLUTION

The more recent history, especially the semiconductor revolution started by the invention of the transistor in 1948 and leading to the integrated circuit, must be well known to all readers of PE. What seems to be happening now is that the original "hardware" part of the electronics industry is merging with the old telecommunications industry and with the new software industry that arose from the digital computer. All are concerned with processing and transmitting information.

So in a sense the wheel has turned full circle. From its early beginnings in simple control devices, electronics has emerged as an industry which makes a living by handling much of the world's information. The first impact of Hertz's discovery was that it led straight to a new way of transmitting information. Appropriately, one of the most familiar names for measurement units in the electronics industry is the hertz. His name has acquired the ultimate distinction of becoming a generic term, written with a lower-case initial letter in its full form.
B SYSTEMS
y ou l o c k e d u p i f t h e y k n e w w h a t y o u r e a l l y t h o u g h t .
on t h i n g s y o u d o n ' t b e l i e v e i n , w i t h p e o p l e w h o ' d w a n t

B E A R D 6 9 6 7 1

E X C H A N G E R E S O U R C E S
R E C R U I T M E N T A G E N C Y & B U S I N E S S C O N S U L T A N C Y

B U S I N E S S E S
H o w w o u l d y o u l i k e t o t r y a n a g e n c y t h a t r e w a r d s y o u f o r e t h i c a l d e c i s i o n s ? A n d d e a l w i t h b u s i n e s s e s w h i c h r e s p e c t y o u r v i e w s?

B A T H 0 2 2 5 6 9 6 7 1

T R O D I R A L & E . I . T r a n s f o r m e r s
A s m a n u f a c t u r e r s w e a r e a b l e t o o f f e r a r a n g e o f q u a l i t y t o r o l a t e a n d l a m i n a t e d t r a n s f o r m e r s a t h i g h l y c o m p e t i t i v e p r i c e s

T o r o d i r a l M a i l O r d e r P r i c e L i s t
p r i c e s i n c l u s i v e o f VAT & P o s t a g e
1 5 v a 9 . 1 8 , 5 0 v a 1 0 . 1 6 , 8 0 v a 1 9 0 5 . 2 5
1 1 5 v a 1 7 . 1 5 , 2 2 0 v a 3 3 4 . 2 0 , 4 4 0 v a 8 1 2 . 4 0
8 0 0 v a 1 6 2 4 . 8 0 , 1 0 0 0 v a 3 1 2 9 . 6 0

A v a i l a b l e a l s o 1 2 0 , 1 7 5 , 2 3 5 , 5 7 3 a n d m o r e . P r i c e s o n r e q u e s t .

Q u a n t i t y p r i c e s a n d d e l i v e r y o n r e q u e s t
A ir L i n k T r a n s f o r m e r s
2 8 B u f f i l l e s , S a w b r i d g e w o r t h .
H e r t s . C M 2 1 9 D D T e l : 0 2 7 9 7 2 4 4 2 5

A T T E N T I O N
C o m p o s i t e b u y e r s : S e r v i c e e n g i n e e r s
M a n u f a c t u r e r s : P r o j e c t d e s i g n e r s
A l s o h o b b y i s t s
S A V E T I M E ! S A V E M O N E Y !
W e o f f e r o n e o f t h e l a r g e s t r a n g e s o f s e m i c o n d u c t o r a n d p a s s i v e c o mpon e n t s a t l o w l o w p r i c e s ! A l s o w e a r e a b l e t o s u p p l y t y p e s f r o m a n y m a j o r m a n u f a c t u r e r s
S O R I N G 0 1 - 9 6 5 5 7 4 8
N e x t t i m e y o u r e q u i r e c o mpon e n t s w h o t h e r t h a n t h e q u a n t i t y i n t h e 1 6 t h w i l l b e a m a z e d a t o u r s e r v i c e a n d p r i c e s !!

O M E G A E L E C T R O N I C S 2 5 2 A 4 S T , L O N D O N N W 1 0 4 T D

A T T E N T I O N
C o m p o s i t e b u y e r s : S e r v i c e e n g i n e e r s
M a n u f a c t u r e r s : P r o j e c t d e s i g n e r s
A l s o h o b b y i s t s
S A V E T I M E ! S A V E M O N E Y !
W e o f f e r o n e o f t h e l a r g e s t r a n g e s o f s e m i c o n d u c t o r a n d p a s s i v e c o mpon e n t s a t l o w l o w p r i c e s ! A l s o w e a r e a b l e t o s u p p l y t y p e s f r o m a n y m a j o r m a n u f a c t u r e r s
S O R I N G 0 1 - 9 6 5 5 7 4 8
N e x t t i m e y o u r e q u i r e c o mpon e n t s w h o t h e r t h a n t h e q u a n t i t y i n t h e 1 6 t h w i l l b e a m a z e d a t o u r s e r v i c e a n d p r i c e s !!

O M E G A E L E C T R O N I C S 2 5 2 A 4 S T , L O N D O N N W 1 0 4 T D

P R A C T I C A L E L E C T R O N I C S J A N U A R Y 1 9 8 8
FULL-TIME TRAINING COURSES

2 YEAR
BTEC National Diploma (OND) ELECTRONICS AND COMMUNICATIONS ENGINEERING

(TV, Video, CCTV)

COMPUTING TECHNOLOGY
(Microprocessors, DataComms, Interfacing)

INFORMATION TECHNOLOGY
(Telecoms, Satellite TV CD, Networks)

SOFTWARE ENGINEERING
(Assembler, BASIC, PASCAL, CAD/CAM)

COURSES COMMENCE
11th January & 25th April 1988

LONDON ELECTRONICS COLLEGE

Dept: AA, 20 Penywen Road, London SW5 9SU. Tel: 01-373 8721

THE SCIENTIFIC WIRE COMPANY
611 Forest Road, London E17. Telephone 01-883 1568

ENAMELLED COPPER WIRE

SWG 18 20 22 24
36 4 oz 2 oz

3 6.32 2.90 1.18 0.68
30 1.82 2.31 1.27 0.93
46 6.00 3.20 2.25 1.61
48 8.72 5.80 3.00 2.75
46 15.96 9.40 6.38 3.69

SILVER PLATED COPPER WIRE

14 to 30 10.10 5.25 2.93 1.97
14 to 30 3.97 2.41 1.39 0.94

Post Free. Please add VAT at 15%. Orders under £10 add 50p. SAE for free colour & engineering wire.

Quality enquiries welcome.

QUALITY COMPONENTS AND ACCESSORIES
Wide range of Multimeters from £8.00
Altai ETC/350 Multi-meter w/0423 $26.00
Altai Solder Pump £4.50 post free
12" 150 watt 80m Guitar Power Speaker only £25 + £2.50 P&P
SEND FOR FREE LISTS
STRACHAN ELECTRONICS
9 CROALL PLACE
EDINBURGH EH4 1LT
Tel. 031-556 9549

KAYCOMP expansion board provides full access to buttons to allow off-board memory expansion of megabytes. Compatible with 16 286 micros. Price £45.00
Motorola 1C's, 6881 Maths Chip & Sckt £195.00
68000/68008 8MHz Processor £19.00
68001/12 12MHz Processor £50.00; £6820
P.I.T. £6.95; 68681 Duart £5.95; Data £2.00
Haav Microwave, 9096, Channel Crescent, Leigh Park, Havant, Hants POP 4PT.

MISCELLANEOUS

DISKS - CF2, Maxell @ £1.90
3.5" DS, unbranded @ 85p
5.25" DS, 96 tpi unbranded @ 35p
D Connectors, 25W plug, socket or shell 73p
DIN plug or socket 5/67 way @ 22p
Leds 3 or 5 mm, red, green, yellow 9p
Prices include p&p, please add VAT @15%
Access card accepted, tel: 0689 22196

T: Systems Ltd, The Signal Cabin, 6 High Street, Orpington, Kent BR6 6JF.

Professional Film Equipment Facility require a Electronic Engineer to work on Rolls Royce of movie camera. Specialised training will be given but applicant should have recognised electronic qualifications.
Although not essential, previous experience as Micro Processor Technical would be ideal.
Please reply in confidence to:-
Mrs M. McDonald, 60 Farrington Road, London EC1R 3BP.

VISIT THE SUNNY SOUTH COAST
It's worth it to see the biggest display of ELECTRONIC COMPONENTS in the South

FRASER ELECTRONICS
42 ELM GROVE - SOUTHEAST - HANTS COME AND BROWSE BEFORE YOU BUY

Access Bournemouth

QUALITY HAND TOOLS
Genuine, original Micro-Shear Side Cutters, Plug, Screwdrivers, Nut Spinners, etc., etc. at Competitive Prices. S.A.E. for listing to: Quinot Tool Supplies, Dept PE, 52 Graywood Park Road, Birmingham, West Midlands B32 1HE.

Brand new coin operated video game PCB. Konami "Pong Pong", just connect up your RGB monitor or modulate for your TV set. Only £25 + £2.50 carriage + VAT. Zilec Electronics Ltd. Hawkins Lane, Bexley-On-Trent, DE14 1P7. Tel 0283 33355. Telex 342260. Fax 0283 35427.

SERVICES
PCB's, Cheap quotes for fine quality boards. Fast service. Send track layout, photocopy, or enquiry to: PCS, 290 Stanstead Road, Hoddesdon, EN11 ORX.

The most economical PCB service available. Professional quality boards dispatched within 48 hours. Just send design and payment (2p per cm² single sided, 12p per cm² double sided). £1 postage and packing to Etch-Tech Boards, P.O.Box 17, Totton, Southampton SO4 3XK.

PRACTICAL ELECTRONICS JANUARY 1988 59
READY-MADE P.C. BOARDS

Simplify your project assembly – use a ready-made printed circuit board. All are fully drilled and roller tinned. Just slot in the components as shown in the project texts, and solder them. PCBs are the professional route to project perfection.

MAIL ORDERING
Select the boards you want, and send your order to
PE PCB SERVICE, PRACTICAL ELECTRONICS,
193 UXBORIDGE ROAD, LONDON W12 9RA.

Prices include VAT and postage and packing. Add £2 per board for overseas airmail. Cheques should be crossed and made payable to Intra Press.

Quote the project name and PCB Code Number, and print your name and address in BLOCK CAPITALS. Do not send any other correspondence with your order.

TELEPHONE ORDERS (OPEN 24 HOURS)
Use your Access card and phone your order to
0268 289923

clearly stating your name and address, Access number, and order details.

All orders receive priority attention, but allow 28 days for delivery in case a PCB is temporarily out of stock.

WE CAN ONLY SUPPLY THE PCBs LISTED HERE

CHECK LATEST ISSUE FOR PRICES BEFORE ORDERING

PHOTOCOPIES OF THE TEXTS MAY BE BOUGHT FROM THE
EDITORIAL OFFICE AT £1.00 EACH. PART (£1.50 OVERSEAS), P&P INCLUSIVE.

COMPONENTS ARE AVAILABLE FROM ADVERTISERS.

MAY 86
NOTCHER EFFECTS - unusual harmonics
107 £5.99
TTIL LOGIC CHECKER - for 14 and 16 pin chips
108 £4.59
DF BEACONTIMER - accurate navigation aid.
109 £6.18

JUN 86
GUITAR TRACKER - transforms a guitar for sound synthesis.
111 £6.98
THERMOCOUPLE INTERFACE - transforms a DVM into a thermometer.
112 £3.90
BBC LIGHTPEN - inhibiting, enhancing and visual feedback.
114 £3.90

JULY 86
PASSIVE IR DETECTOR - burglar detection
115 £3.90
200MHZ COUNTER - professional specification
100D £30.88

SEP 86
FIBRE-OPTIC LINK - computer commns.
ODE £10.14

OCT 86
DRUM SYNTHESISER - variable dynamic sound triggered effects.
121 £7.67
MAINS DELAY TIMER - selectable 15 to 120 mins. Set of 2 PCBs.
122 £7.92
MAINS DIMMER - touch control up to 400W.
123 £3.90

NOV 86
REMOTE JOYSTICK - infrared computer controller. Set of 2 PCBs.
124 £10.86
BABY ALARM - through-the-mains transceiver.
125 £10.71

DEC 86
VIDEO ENHANCER - manually adjustable video improvement
126 £8.76

JAN 87
VIDEO FADE - simple inexpensive video mixer
127 £4.50
VOICE SCRABBLER - confidential trans.
128 £8.06

FEB 87
HI STAB - good variable workshop PSU
132 £8.79

MAR 87
4 CHANNEL ENHANCER - adapts stereo to 4 channels
135 £4.60
LIGHTPEN - uses fibre optics for high accuracy
136 £4.10
PHONE REPEATER - extra bell interface
137 £3.90
ULTRASONIC TAPE MEASURE - resolution to one centimetre
138 £9.50

APR 87
VIGILANTE CAR ALARM - keeps cars alert to intruders
139 £5.90

INDUCTIVE LOOP TRANSCEIVER - remote control for models:
Transmitter
143 £3.90
Receiver
144 £3.90

MAY 87
BRIGHT FUZZ - Foot operated overdrive
145 £3.90

JUN 87
AUDIO SIGNAL GENERATOR - uses frequency synthesising techniques
146 £10.20

JUL 87
WORD GENERATOR - produces binary words of up to 16 bits
147 £13.42
SCOPE STORE oscilloscope add-on data storage
148 £11.94

AUG 87
PSEUDO STEREO - mono to simulated stereo
149 £7.37

SEP 87
SPEECH PROCESSOR - clarifies transmitted speech quality
150 £5.86

GCSE TIMER UNIT - versatile variable delay
151 £5.18
AWD and switching

FUNGREN - triple waveform signal generator
152/153 £9.69

LIGTH CONTROLLER - delayed switching
154 £4.64

OCT 87
TEACHER LOCKER - digital lock control
155 £7.50

POWER SUPPLY - stabilised ±15V
156 £7.50

GUITAR TO SYNTH - music interface
157A/B £9.95

NOV 87
DUAL POWER SUPPLY - GCSE
158 £0.00

MIDI EXPANDER - Music Interface
159 £0.00

DEC 87
RS232C TO MIDI
160 £6.43

TEACHER RADIO - GCSE
161 £5.58

THIS MONTH'S BOARDS

JAN 88
EGG TIMER
162A-C £12.44
LEGO BUGGY DRIVER
163 £6.42

PRACTICAL ELECTRONICS JANUARY 1988