Full kits include pcb's, hardware, cases (unless stated otherwise), IC sockets, wire, nuts & bolts. Article reprints extra 70p each.
CONSTRUCTIONAL PROJECTS

ADA-POLYWHATSIT! by John Becker .. 12
Many exciting music effects can only be created using
digital techniques. Part one of this fascinating project
describes the essential audio to digital interface needed
for computer controlled creativity.

BIO-FEEDBACK by the Prof .. 19
Few can claim to be unaffected by the stress of modern
society, but in an untroubled fashion, professorial advice
on electronically aided mental control is offered through
experimental circuitry.

BRIGHT FUZZ by Robby Rockett 34
A foot operated overdrive distortion unit is a must for any
guitarist aiming to be top of the rocks. Robby's fuzzy
thinking brightens the prospects!

SPECIAL FEATURES

OSCILLATOR DESIGNS by Andrew Armstrong 26
Calculators, radios, multimeters, musical instruments,
many have oscillators at the control centre. The principles
governing their ups and downs are widely covered in this
authoritative feature.

SENSORS TECHNOLOGY - PART TWO by the Prof 40
Continuing on from last month's discussion on Hall effect,
gas, light and strain detectors, an uncensored look is
taken at pH probes, thermocouples, and pyro sensors.

ELECTRICAL SAFETY by Ray Stuart .. 48
Is your life always in safe hands when you are wiring
mains powered circuitry? If you do not know the correct
techniques, the consequences can be disastrous. Some
of the major points are heavily emphasised in this vital
feature.

BATTERY UPDATE by Rod Cooper .. 52
A follow-up article in response to the Better Use of
Batteries features that created so much interest during
mid 1986.

REGULAR FEATURES

NEWS AND MARKET PLACE .. 4
PCB SERVICE - professional PCBs for PE Projects 60
TRACK CENTRE - the PCB track layout pages 32
BINARY CHOP - a powerful mental logic tester 25

SPACEWATCH AND THE SKY THIS MONTH
by Dr. Patrick Moore OBE .. 46
THE LEADING EDGE by Barry Fox ... 8
INDUSTRY NOTEBOOK by Tom Ivall 57
ADVERTISERS' INDEX .. 62
POINTS ARISING .. 5

NEXT MONTH . . .
You really shouldn't miss the JUNE issue of PE.
Look at some of what we have in store for you -
MODERN TV RECEIVERS • FREQUENCY SYNTHESISERS •
SYNTHESISING AF SIGNAL GENERATOR • INFRA-RED
TRANSCIEVERS. • DIGITAL AND ANALOGUE SIGNAL TECHNIQUES
• POLYWHATSIT! • PRINTING PE

NOT ONLY ALL THIS, BUT ALSO our regular top line features of
Spacewatch, Leading Edge, Industry Notebook, plus lots more
exciting experimental ideas, and all the latest product information
from our advertisers.

PE JUNE 1987 ISSUE ON SALE FROM FRIDAY MAY 1st

THE SCIENCE MAGAZINE FOR SERIOUS ELECTRONICS ENTHUSIASTS
WHAT'S NEW

Shock Proof Meter

ITT Instruments have introduced an analogue multimeter fitted in a rubber shock-absorbing surround for greater resilience in field work. The MX112's ease-of-use design provides a mere two input sockets for all functions and ranges, and full protection up to 200V on all ranges, including the 10A current range.

The instrument has eight multimeter functions on forty two ranges, as well as capacitance and decibel measurement, and a dwell meter function for carrying out measurements on car engines. A.c. and d.c. voltages up to 1600V and current from 50mA to 10A can be measured, and resistance up to two meOhms. Sensitivity is 20 kilohms per volt on a.c. ranges. D.c. accuracy is ±2 per cent of full scale deflection, a.c. ±3 per cent.

The MX112 also incorporates shockproof movement and a parallax correction mirror behind the dial.

Contact: ITT Instruments, 346 Edinburgh Avenue, Slough, Berks SL1 4TU. Tel. 0753824131.

A Good Year for Grilles

A DAM Hall Supplies, manufacturer and distributor of flightcase and cabinet fittings and major distributor of Celestion loudspeaker, have had a successful year, and are pleased to announce that they are taking on more staff to improve service to their customers.

Among Hall's main lines are Palmer passive crossovers, and filters from Germany. However, to cut costs, Hall's own audio division, 3rd generation, has produced its own range which they will be showing at this year's Frankfurt Music Fair. Now into its fifth year, 3rd Generation is also plugging a new range of slim Mosfet slave amps as a follow up to their successful power amps, and also a new range of small ready-to-use kits.

Adam Hall Supplies manufactures selected cabinet fittings including speaker grilles (chrome plated) and stacking corners (plastic), as well as supplying a comprehensive range of other manufacturers' fittings, and is now moving into the American market.

Contact: Adam Hall Supplies Ltd., Unit 3, The Cordwainers, Temple Farm Industrial Estate, Sutton Road, Southend-on-Sea, Essex SS5 5RU. Tel. 0702 613922.

COBOL Core Classes

Two world experts in the business-oriented programming language COBOL are joining forces with Micro Focus, a company with a decade in developing COBOL compilers and software development tools, to found a COBOL training company called, appropriately enough, The COBOL Training Company. Well, they thought of it first.

The two experts involved are Jerome Garfunkel, the American author and organiser of COBOL seminars, and John Trance, researcher, lecturer and author, who now manages a development group within Micro Focus. The CTC will base its courses around Micro Focus applications development tools and will be aimed particularly at users of those products, but the company feels that it is now drawing on "an unrivalled core of expertise in COBOL" which goes beyond the application of a particular set of systems into the wider applications of COBOL programming. Garfunkel particularly has contributed to the evolution of COBOL in business through his work on various COBOL standardisation committees.

The three types of training which the CTC is offering are product training workshops, specifically relating to Micro Focus, key topic seminars, with expert-led discussions relating to the state of the art in COBOL, and skills acquisition workshops. Using one of the Micro Focus toolsets for in depth tuition aimed at professional programmers.

The company has already begun holding product training workshops on the continent, and plans operations in the UK and USA.

Sea And Shore

The Radiocommunications

Division of the Department of Trade and Industry has made two announcements of interest to radio users in January.

The first concerns the radio licensing of shipping. The new
Ship Radio Licence has replaced the former Ship Licence, the Hovercraft Licence and the On-Board ShipWireless Licence. The Ship Radio (VHF) Licence has also been updated. Another major change is the issue of a Licence Display Slip which must be displayed on the vessel to indicate possession of a current licence. (The DTI's announcement did not say whether it should be displayed on the windscrew, or not.)

Under the Wireless Telegraphy Act 1949 a licence from the Secretary of State is necessary for the use or installation of any radio, including handhelds, on a vessel. The Licence costs £50 a year, and authorises use of all international maritime bands (I.f., m.f., h.f., v.h.f. and satellite), as well as radar and lifeboat radio equipment. The Ship Radio (v.h.f.) Licence, which is aimed at small vessels, and only permits use of the international v.h.f. band, costs £17.50 a year. All equipment must meet the Department's type Approval Specifications, and all operators must hold the appropriate certificate of competence.

The second announcement concerns the re-issue of lapsed Amateur Radio licences with the original call signs.

The Department has decided on the basis of several individual cases to allow previously held licences to be re-issued to their original and legitimate owners, even where the original qualifications were not based on the current City and Guilds Radio Amateur Examination syllabus. The only exception involves the G5 plus three letter series, which has already been withdrawn for re-use.

Prior to this decision, policy only allowed the re-issue of old licences where a pass in the 1958 City and Guilds of London Institute syllabus had been obtained. This meant that amateurs who kept their licences current held on to them despite the revised syllabus, while those who did not were not allowed to re-commence radio operation without sitting a second examination.

This concession follows another recent concession (in June 1986) which extended a pass in the radio Morse test to lifetime validity, in line with the R of itself. The Department's obvious and acknowledged appreciation of the fact that a radio call sign is not just a 'name, rank and number' to its owner, but a personal signature by which he or she is known to other amateurs, puts a pleasantly human face on a government department which is often seen only through its regulations and fine print.

Former amateurs wanting to reclaim old call signs must themselves provide incontrovertible proof of their identity and title to the call sign, for instance, the original licence or a copy of it, and all details concerning the lapsed licence and its issue.

Full details can be obtained from the Department of Trade and Industry, Radiocommunications Division, Amateur Radio Section, Room 63, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

CAD Captured

COCAD Ltd., which supplies specialist software for computer aided engineering, is the worldwide distributor of ESP, a circuit diagram capture software tool for use with IBM PCs and DEC VAX computers, preferably in conjunction with a high resolution colour graphics monitor.

ESP was designed to meet the need for a technically advanced capture tool with local support, and a set of interfaces to popular simulators and routers. COCAD will be able to provide total support capability, including custom interfaces and consultancy on systems integration.

ESP is a 'very intelligent' schematic capture tool for analogue and digital design, including gate array and cell-based i.c. design. Unlimited levels of hierarchy in the system allow circuit functions to be represented by a functional block or series of blocks, each of which can contain any number of further blocks. Design can proceed from concept down to gate level unimpeded by undue shuffling of files. Signal integrity right through the hierarchies is checked out by the program. Extensive editing facilities allow horizontal or vertical movement of cells or groups of cells, with connections correctly maintained. All labelling texts can be entered from the keyboard and justified and located under user control.

ESP supports drawings up to A0 (65.5in) and multi-sheet drawings. A parameter file allows the user or system manager to customise some aspects of ESP to individual requirements.

Contact: COCAD Ltd., Ashford House, Tufton Centre, Ashford, Kent TN23 1YB. Tel: 0233 4345.

COUNTDOWN

If you are organising any electronic, computing, electrical, scientific or radio event, big or small, drop us a line. We shall be glad to include it here. Send details to COUNTDOWN, Practical Electronics, 16 Garway Road, Bayswater, London W2 4NH.

PLEASE NOTE: Some events listed here may be trade only, or restricted to certain categories of visitor. Also, please check dates, times and other relevant details with the organisers before settling out as we cannot guarantee information accuracy.

Apr 6-10. Saturn Workshops (several residential computer courses). Ludgrove Hall, Cockfosters, London. 0969 50449.

POINTS ARISING

Fibre Optic Light Pen (Mar 87) Page 37, Fig 2. TR1 and TR2 labels should be exchanged.

Telephone Bell Repeater (Mar 87) Page 35, Fig 3. Bridge Rectifier BR1, top right hand pin should be a.c., bottom right hand pin should be negative. C2 left hand pin is positive.

30 + 30 Amplifier (Mar 87) Page 69, Fig 1. R124 (middle LHS) should be R144. C32 and C33 go into spare holes alongside IC2 and IC102 respectively. R15 goes into spare holes below C5. C8 then goes where R12 is marked. (Vigilante — see page 29)

PRACTICAL ELECTRONICS MAY 1987
Sound Intensity

RUEL and Kjaer (UK) Ltd. have released a portable Sound Intensity Analyser, the Type 4433, which weighs only 12lbs and is battery powered.

The 4433 is easy to operate, with an automatic scan for sequential octave analysis and automatic ranging. There is a choice of three microphone sensitivities, and 200V, 28V or 0V microphone polarisation voltages.

Using sound intensity, sound power determination can be done quickly and without special screening or isolation. Measurements made at points over a surface are automatically averaged; a figure for the surface area then being entered into the analyser for calculation of the sound power. Corrections accounting for air density variations are automatically calculated from user-entered temperature and air pressure values.

Two sound intensity probes, type 3519 and type 3520, are available. These are both two-microphone probes using pressure gradient techniques. The 3520 includes a remote control handle. The phase and amplitude matched pair of microphones include newly developed phase corrector units. Very close and stable phase matching is maintained between the measurement channels to allow accurate measurements to be made in difficult environments.

One application of the device will be sound intensity mapping to locate noisy components among groups of components. Contact: Bruel & Kjaer (UK) Ltd., 92 Uxbridge Road, Harrow, Middx. HA3 6RZ. Tel. 01-954 2306.

Soldering stations, OK.

OK Industries has launched three new low price soldering stations. The cheapest model is the SA-20-230, at £59.00, a fixed temperature unit factory adjusted to 700 degrees F. It has a thermocouple sensor and burn proof cord, and operates at 24V, 48W.

The SA-3-230 is adjustable between 210 and 930 degrees F, has analogue temperature indication, and operates at 24V, 48W.

The top of the range model is the SA-10-230, a tri-temperature station with colour coded ranges: 850 degrees F (red), 750 degrees F (green) and 650 degrees (yellow). The control switch can be made operator secure, and the tips supplied operate over the complete range of temperatures. Also a 24V, 48W model, this one costs £96.63.

Contact OK Industries, Barton Hill Farm Industrial Estate, 72 Northolt Road, Harrow, Middx. HA2 0HE. Tel. 01-4222 3442.
Cerebral palsy is a movement disorder which appears when the victim is young, and is caused by damage or impaired development of the vital area of the brain which controls movement. Symptoms vary from person to person, and range from barely perceptible impairment to almost complete immobility.

However, with the help of a microcomputer and a customised interface (a conventional keyboard is too complicated) many children with cerebral palsy can communicate and learn for themselves. The ability to control and interact with the computer helps to build the children's self-confidence and their ability to make the most of their potential.

Since every child is affected differently by cerebral palsy, some able to control the movement of their arms, while some can only control their eyes, a wide range of specialised interfaces is needed to help them.

Entry forms for the Award Scheme are available from Mary Painter at Datasolve Ltd., 61-73 Staines Road West, Sunbury-on-Thames, Middx TW16 7AH. Tel. 0932 785566.

To attract the attention of the media and industry, the winning ideas will be unveiled in front of several hundred representatives from British computer companies at the 1987 Computer Industry Charity Ball on 11th June. Datasolve is the chief sponsor of this event, which in 1986 raised over £60,000 for Spina Bifida victims. The money raised by this year's ball will go to the Spastics' Society to provide customised accommodation for young palsy victims. Am Dahl (UK) is coordinating this year's event.

The scheme is setting a manufacturing cost limit of £1,000 on ideas submitted. Typical ideas could include low cost eye-movement detectors for use with a computer, or a speech recognition device which would translate speech which is hard to understand into easily recognisable words. The winning inventor will receive a Thorn EMI Liberator portable computer from Mr Douglas Shepherd, Chairman of the Spastics Society.

Award to aid handicapped research

A new award scheme to encourage the use of technology to help children with cerebral palsy has been launched by computer services company Datasolve, a Thorn EMI Technology company. The aim of the awards is to attract recognition, and ultimately funding and development, to inventive work being done by individuals and small groups to help child palsy victims. As is often the case where ways of applying new technologies to educate and stimulate, or simply make life easier for, mentally or physically handicapped children, ideas are often devised by people working directly with children, or closely related to a handicapped child. It is hoped that the awards will attract commercial funding where it will do most good.

To attract the attention of the media and industry, the winning ideas will be unveiled in front of several hundred representatives from British computer companies at the 1987 Computer Industry Charity Ball on 11th June. Datasolve is the chief sponsor of this event, which in 1986 raised over £60,000 for Spina Bifida victims. The money raised by this year's ball will go to the Spastics' Society to provide customised accommodation for young palsy victims. Am Dahl (UK) is coordinating this year's event.

The scheme is setting a manufacturing cost limit of £1,000 on ideas submitted. Typical ideas could include low cost eye-movement detectors for use with a computer, or a speech recognition device which would translate speech which is hard to understand into easily recognisable words. The winning inventor will receive a Thorn EMI Liberator portable computer from Mr Douglas Shepherd, Chairman of the Spastics Society.

Satellite receiver

A new satellite receiver, the model RSR 30, is being added to its range by Rediffusion Satellite Systems. This is an upgraded version of the receiver which they introduced in 1986, with a number of additional features.

The new receiver allows full remote control of polarity and skew, programmable into memory using an infra red remote control handset, and can be automatically recalled on individual channel selection. A new polariser, designated RPR1, is being released to work with the new receiver's remote control facilities. This has been designed to be simple to mount.

Various complete receiving systems are available from Rediffusion at the Satellite Systems Division, Rediffusion Radio Systems Ltd., Unit 9, Mole Business Park, Randall's Road, Leatherhead, Surrey KT22 7BA. Tel. 0372 379620.

IBM PC breadboard

The PB-88 Protoboard is a 1680 point breadboarding card, which plugs directly into an IBM PC card slot to enable the user to design interfaces. The bus strip allows breadboarded circuits to be connected directly to all the PC's signals, controls and data lines. The breadboarding area consists of two solderless bread-boarding sockets permanently attached to the base of the board. Each socket can take up to eight 14-pin d.d.i. i.e.s with four tie points per pin, and eight power rails with twenty five tie points each. All IBM signals are connected to the solderless interface socket, and an external DB-25 connector is provided for interfacing. Signals are labelled on the IBM bus and on the DB-25 interface sockets. The PB-88 is supplied by Global Specialities, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. Tel. 0799 26699.

Radio teletext

Six weeks of test transmissions in the London area, starting on 8 January, have been carried out by the Independent Broadcast Authority (IBA) in preparation for the launch of the UK's first radio teletext service. The data is broadcast using the TeleTate data system, from the IBA's v.h.f.f.m. transmitter on 97.3MHz. Another six week test period will be carried out by the TeleTeletex Ltd. on financial data service on the IBA's other v.h.f.f.m. transmitter in London on 95.9MHz.

Radio teletext uses techniques already well established in the USA, but only experimentally used in the UK up to now.

Technomatic Special Offer

Technomatic, one of the country's leading suppliers of components and equipment, have a special offer available to PE readers only. They are offering a 10% discount on all TTL and CMOS devices. A selection of their large range will be found on page 11 of this issue.

Technomatic Ltd., 17 Burnley Road, London NW10 1ED. Tel. 01-723 0233.

CHIP COUNT

This month's list of new component details received.

BLT70 series - 900MHz Cell Radio Power transistors (ML).
BTA140 series - High current motor ctrl triacs (ML).
BT640D series - Low cost Gate Turn Off thyristors (ML).
Cesson 10375 - VME fast data comms switch (CS).
HM63/28 - 1M-bit (world's largest) SRAM modules (HT).
IM3780 - UHP 2x2 5Mflop Transputer (RP).
ITEM4000 - 60 Mflop Transputer & evaluate module (IN).
LGA63645 LCD driver for IBM PC (HT).
LM215X8 - 'all round' viewing angle LCD (HT).
PAL32VX10 - High speed-density PAL (RP).
PCF8782 - 2Kbit CMOS EEPROM with 1C bus interface (ML).
PLH5301 - 3rd generation PML Random Logic Unit (ML).
WS5901 - CMOS 4-bit HS m-processor (RE).
WS5901A - CMOS m-program controller (RE).
WS9032 - CMOS 32-bit HS m-processor (RE).
WS95521, - CMOS multilevel pipeline reg. (RE).
ZL30 series - High Speed PLD programmers (RP).

Of the years I have seen several patents for methods of healing broken bones by enveloping the plaster cast in an a.c. magnetic field. The patents all claim that this speeds regrowth of the bone. It's flat the kind of claim you can test too easily for yourself. There are, however, some other ideas that can more easily be put to the test — although the tests are unlikely to be conclusive.

Both magnetism and air ionisation are supposed to be good for us. The word is that the ailments they may cure are non-specific; like aches, pains and general lassiness. As a doctor told me years ago, 'If you tell someone that standing on their head will make them feel better, it probably will; and there's no way of knowing whether they would have felt better anyway'.

The magnetism-makes-you-feel-better craze is now big business in America. The original idea was that a necklace did the trick. Now it's bracelets.

The magnetic necklace craze hit in Britain 10 years ago but petered out because the makers, TDK of Japan, were plainly rather embarrassed by the sale of their trinkets by a third party importer. TDK was at the time busy building up its business image as a reputable tape manufacturer. There was no place in TDK's tape marketing strategy for magnetic black magic.

TDK has started selling magnetic necklaces in Japan because the Japan Medical Journal published the results of research at the Izuju hospital in Tokyo, and the Tokyo University medical faculty. The researchers concluded that magnetism is good for humans because the earth's magnetic field is decreasing at a rate of 0.05% per year and this creates a "magnetic field deficiency syndrome". Doctors hung powerful cobalt magnets round the necks of patients suffering from shoulder stiffness, lumbago, constipation, insomnia, dizziness and chest pains. A similar number wore dummy necklaces. More people wearing magnets felt better than those with dummies.

Magnetic sticking plasters are claimed to relieve pains in much the same way as the TDK necklaces. One theory is that they work by attracting blood — which contains iron compounds — to the scene of the wound.

Recent adverts for magnetic bracelets placed in popular American newspapers by a firm in New Jersey claims that they are in "unprecedented demand on the Continent — thousands upon thousands of Europeans now wear them". At $15 a time the bracelet is "scientifically designed... 100% magnetically operational!"

"The moment you put on your bracelet" readers are assured, "you will feel a magnetic force field penetrate your body... feel a surge of energy". For why? Because the bracelet "will activate magnetic waves that give off charged energy signals to the brain... that is the start of the new life that lies ahead".

In the past some designers have increased the drive voltage to around 6 or 7 kilovolts, in an effort to increase efficiency. The ioniser may then produce ozone which is bad news for the human respiratory tract and may also kill plants. High voltages also produce nitrous oxides.

Professor Ronald Pethig of the Industrial Development Department of the University College of North Wales, has studied the technology.

"Cheap machines are unlikely to produce ozone", he says, "because their components could not cope with the high voltages needed. But, some early machines were so clumsily made, with diodes connected the wrong way round, that they produced positive ions instead of negative ones."

Do ionisers work? "I approached the subject with an open mind" says Professor Pethig "and I now know there is definitely something in it. Around 40% of the population are sensitive to ions — they get headaches when there is a positive build-up before a thunderstorm".

Others may benefit because any ions, positive or negative, clean the air by precipitating dust. Particles attract to earth, the walls and the floor. See how dusty it gets inside a TV set. Industrial plants use electrostatic charges to clean dust out of the air by clumping particles together.

Four disadvantaged Europeans agreed to wear one. Believe it or not (and some may find it hard) one made a profit, another landed a dream job, a third gained a great love life and a fourth became the picture of health.

Feeling tired, irritable and depressed, with criminal and suicidal tendencies and aching bones? Want to supercharge your body, increase mental awareness, make sleeping easier and speed plant growth? Then, if you believe what you read in other US adverts, and watered-down versions in the UK, all you need is an ioniser.

Ions form naturally in the atmosphere when energy, from natural radioactivity or cosmic rays, displaces an electron from an air molecule. The displaced electron joins another to form a negative ion and the stripped molecule becomes a positive ion. Polluted air in the cities neutralizes the ions, especially those with a negative charge. Natural winds, like the Fohn in Germany and Santa Ana in California have the same effect. The air becomes positively charged and people start feeling irritable and off colour. The same thing happens before a thunderstorm. The air becomes positively charged and people start getting headaches. After a storm the air is exhilarating, because lightning has generated negative ions.

Home ionisers produce negative ions by feeding a high voltage (several thousands of volts negative continuous or pulsed DC) to the tip of sharp needle electrodes. The trick is to make and keep the tips so sharp so that a supply of around 3.5 kilovolts can produce a high enough charge density to ionise the surrounding air. If the electrode is blunt, or of poor quality metal which erodes, the charge density falls and the gadget produces no ions.

"If you are doubtful about the benefits" advises Pethig "buy an ioniser which guarantees your money back if it does you no good".

Old sci-fi films had the villain generating sound waves to drive the victim mad. Maybe it wasn't so crazy.
Adverts. Enquiries should be addressed to:
Address Enquiries should be addressed to: Practical Electronics
Tel. 01-434 0689

Advertising

Advertising

Advertising
Advertising

ADVERTISEMENTS

Attention:

Attention:
WE HOLD A WIDE RANGE OF PRINTER ATTACHMENTS (SHEET FEEDERS, TRACTOR FEEDS ETC)

LABELS PER 1000s: SINGLE ROW 3' X 17/16', IN STOCK. SERIAL, PARALLEL, IEEE AND OTHER INTERFACES ALSO AVAILABLE. RIBBONS OPTIONAL.

OPTICAL TRACTOR FEED LX80/86, FX800 £319 (a)

J UK I
6100

WE STOCK THE T Z D P MULTI FORM Z80 2ND PROCESSOR £289 (b) AND THE ACORN INTERFACE £269 (a). ASSEMBLE 27 DIFFERENT PROCESSORS AT THE PRICE OFFERED. SUPPLIED ON TWO 16K METORCH 280 2ND PROCESSOR ZEP 100 £229 (a) I/O PAGE ON 2532, 2732, 2400 BAUD FULL DUPLEX.

WS300 V22/23 (Hayes Compatible)

EPSON

EPSON LX-68...£199 (a)

Optical Tractor Feed LX80/86...£39 (a)

Sheet Feed LX80/86...£49 (a)

FX1000...£49 (a)

FX100...£39 (a)

LQ800 (80 COL)...£49 (a)

LQ1000...£49 (a)

TAXAN

KPD150 (150 CPS)...£249 (a)

KPD15 (180 CPS)...£39 (a)

JUXI 6100 (Easy Wheel)...

NATIONAL PANASONIC KP1080 (80 COL)...

PRINTERS & PLOTTERS

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feedets etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above printers. Rolls with a tips of colours and also available in colours. Please also Colour. Error pages for details and prices.

Plain Fanfold Paper with extra fine perforation (Clean Edge): 2000 (5.5" X 17") (305 sheets: 14.5" X 11" £18.50)

Labels per 1000s: Single Row 3' X 17/16" £5.25 (a); Triple Row 2-7/16" X 17/16" £5.06 (a).

MODEMS

All modems carry a full BT approval.

MIRACLE TECHNOLOGY WS RANGE

WS4000 V21/23 (Hayes Compatible)

Intelligent, Auto Dial/Auto Answer)

£149 (b)

WS3000 V21/23 Professional As WS4000 and with DELL standards and battery backup up to 2400) £245 (b)

WS3000 V22 Professional As WS3000 but with 1200 baud full duplex...

£399 (b)

WS3000 V22 bis Professional As V22 and 2400 baud full duplex...

£359 (a)

WS3002 V22 Professional As WS3000 but with only 1200/2400...

£309 (b)

WS3024 V22 Professional As WS3000 but with only 2400/4800...

£450 (b)

WS2000 V22/23/24/25 Modem Modern...

£99 (b)

DATA Cable for WS series/PC or XT...

£10 (f)

DATATALK COMMS PACKAGE

- Purchased with any of the above modems...

£79 (c)

PAGE NIGHTMARE MODEM V21/V23 Manual

£75 (b)

TEXTOL ZIF

Sockets...21 pin £2.50 (d); 2624 LP-15 £2.80 (d);

D SPECIAL OFFER

2764-25 £2.50 (d)

27128-25 £2.75 (d)

2664 LP-15 £2.80 (d);

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feedets etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above printers. Rolls with a tips of colours and also available in colours. Please also Colour. Error pages for details and prices.

Plain Fanfold Paper with extra fine perforation (Clean Edge): 2000 (5.5" X 17") (305 sheets: 14.5" X 11" £18.50)

Labels per 1000s: Single Row 3' X 17/16" £5.25 (a); Triple Row 2-7/16" X 17/16" £5.06 (a).

MODEMS

All modems carry a full BT approval.

MIRACLE TECHNOLOGY WS RANGE

WS4000 V21/23 (Hayes Compatible)

Intelligent, Auto Dial/Auto Answer)

£149 (b)

WS3000 V21/23 Professional As WS4000 and with DELL standards and battery backup up to 2400) £245 (b)

WS3000 V22 Professional As WS3000 but with 1200 baud full duplex...

£399 (b)

WS3000 V22 bis Professional As V22 and 2400 baud full duplex...

£359 (a)

WS3002 V22 Professional As WS3000 but with only 1200/2400...

£309 (b)

WS3024 V22 Professional As WS3000 but with only 2400/4800...

£450 (b)

WS2000 V22/23/24/25 Modem Modern...

£99 (b)

DATA Cable for WS series/PC or XT...

£10 (f)

DATATALK COMMS PACKAGE

- Purchased with any of the above modems...

£79 (c)

PAGE NIGHTMARE MODEM V21/V23 Manual

£75 (b)

TEXTOL ZIF

Sockets...21 pin £2.50 (d); 2624 LP-15 £2.80 (d);

D SPECIAL OFFER

2764-25 £2.50 (d)

27128-25 £2.75 (d)

2664 LP-15 £2.80 (d);
TECHNOMATIC LTD
MAIL ORDERS TO: 17 BURNLEY ROAD, LONDON NW10 1ED
SHOPS AT: 17 BURNLEY ROAD, LONDON NW10
Telephone: 01-223 3414, Telex: 922880
305 EDGWARE ROAD, LONDON W2

PRACTICAL ELECTRONICS MAY 1987

11
A home computer can be used to process an audio signal to make a plethora of standard, strange and sampled sound effects. In all cases the signal must be converted from analogue to digital form, and back again. This interface works with audio units, any 8-bit I/O computer, and dedicated sound processors, such as the Polywahst!'s!

REGULAR readers of PE will be aware that a home computer can be used for considerably more than playing games and general computing, and that a vast range of audio effects can also be computer created and controlled. Indeed some effects can only be created by a computer or equivalent digital memory storage unit.

Many of these effects require an original audio signal to be fed to the memory unit, stored, retrieved and returned after a suitable delay. In this way standard effects such as echo, reverb, phasing and flanging can be created with suitable software. Other stranger effects can also be produced, such as pitch change, reverse tracking (playing backwards), repeated looping and robot voices, to name but a few examples.

For all of these effects it is necessary to convert the original audio analogue signal to a digital form that the computer or memory can accept, and to subsequently reconvert the digital representation back to an analogue signal. Since the basic requirements for A to D and D to A will be pretty much similar for most digitally produced effects, this project has been designed as a general purpose interface unit that can be used between audio units (such as musical instruments, high output microphones and recordings), and virtually any computer providing that it has a normal 8-bit input-output socket, such as the Commodore Pet series, C64, and the BBC etc. Additionally, and equally important, the board can also be used as the interface for digital processing units that are dedicated to particular sound modifications. An example of such a unit will be described in a second article, in the next issue.

From the block diagram of the unit (Fig.1), it will be seen that the project caters for most of the pre- and post digital processing requirements for effects modification. The basic facilities here are a variable level and gain pre-amp, feedback and feed forward mixing, and gated analogue converters, both of which can be controlled either internally or externally. Modulated filter and amplitude control is not included since this can be performed by a separate analogue unit.

Fig.1. Block diagram of Audio A-D-A Unit.

ANALOGUE TO DIGITAL

For audio signal processing the analogue to digital conversion needs to be a continuous process, repeatedly sampling the level of the signal and converting it to a digital representation. For a reasonable degree of accuracy the digital number should be represented by at least eight binary bits, any of which can be high or low, with a total combination of 256 variations. A higher bit count of 12 or 16 would produce greater accuracy, but since most computers available to the home user are designed as 8 bit machines, the converter used here also generates an 8 bit number.

The chip used for the conversion, IC2, (Fig.2.), has an internal oscillator, operating at about 1MHz as set by the value of C10. Upon receipt of a positive going transition (ATN) on its Convert input, pin 4, the oscillator clocks the conversion process through 8 steps. At each step the chip decides whether the associated bit should be high or low, depending on an internal comparison with the analogue signal level. After about 8 microseconds, once all bits have been set, the output at pin 1 goes from low to high. This transition can be used to tell the computer or other digital equipment that the conversion is complete.

During the conversion it is usually preferable for the outputs of IC2 to be in a high impedance state so that other circuits connected to the same output data lines are unaware of the conversion process. IC2 pin 2 controls the outputs, holding them closed in the presence of a high level, and opening them for a low level. The inverter IC4a is included between pins 1 and 2 so that the outputs are always closed during the conversion, and open only upon its completion. A link wire is included on the PCB so that this can be omitted and pin 2 controlled instead from the computer or other source. The maximum level on the audio input pin 6 that will produce the maximum binary output number of 255 is determined by an internal 2.5v reference voltage supplied from pin 8 to pin 7, in association with R14 and C11. Each binary step thus represents approximately 10mV of signal level.
DIGITAL TO ANALOGUE

The data lines from IC2, to and from the computer are also those that feed to the digital to analogue converter IC3. For any binary number from 0 to 255 this chip produces an equivalent voltage output. Since its reference level is the same as that supplying IC2, this will also lie in the range of 0v to 2.5v. As it is normally undesirable for the output of IC2 to be transferred to the output of IC3, the latter is latched so that the data passing through can be suitably synchronised to the data coming from the computer or processing unit, rather than from the A to D chip. The latch control here is normally directly coupled to the IC2 pin 1, so that when the outputs of one are closed, the outputs of the other are open. By omitting the link wire on the PCB between IC3 pin 4 and IC2 pin 1, the computer or other unit can alternatively be used to control this latching via IC3 pin 4.

A-D CONVERT CONTROL

IC4b-d form an oscillator with its frequency set by the value of C9 and R26 to about 18kHz. This square wave output repeatedly triggers the A to D conversion, and is also used to generate a negative voltage level that is simultaneously required by IC2 pin 5, and derived in association with C13, D1 and R11. The PCB has been designed with another link wire between this oscillator and IC2. If the link is omitted the conversion can alternatively be controlled by the computer or other source. If the internal oscillator is retained, its frequency could be made variable by the inclusion of a potentiometer between R26 and the junction of R13 and C9. The value of R26 can also be changed to give a different maximum frequency, but its value should preferably not be lower than 10K.

DATA VALID SIGNALLING

For use with a computer, the output of IC2 pin 1 can be used to signal that the conversion data is now valid (DAV) and that the output can be read. This changing voltage level can also be used to step the counter on any other digital processor, or to perform other synchronised functions. However, some equipment may prefer to have a short delay between a counter controlled address change, and the writing of the signal data into its memory. IC6 is consequently included, configured as two monostables in series. The first, IC6a is triggered by the positive going edge of the output from IC2 pin 1. The output at IC6 pin 10 at once goes high and remains so for about 4.5 milliseconds at the value of C25. At the end of the delay, the negative going edge from pin 10 triggers IC6b which immediately produces a negative going pulse at pin

Fig.2. Circuit diagram of Audio A-D-A Unit.
INPUT CONTROL

The audio signal to be processed is brought into the level control VR1, and then to the inverting stage around IC1a. With S2 closed, the gain is set at unity, but with S2 open R12 is brought into circuit, which the value shown gives a gain of about 13 to the audio signal. This allows for medium and high level signals to be catered for, but low level signals should be preamplified before being brought to the unit, in order to retain good signal to noise characteristics. Since IC2 will only satisfactorily process signals up to 2.5V peak to peak, the maximum level seen at IC2 pin 6 should not exceed this, otherwise clipping will occur. It is also preferable that the overall signal level should be fairly close to maximum so that a reasonable digital conversion representation can result. If the signal is too low, too few bits will be set resulting in low level distortion and noise. The original signal itself should also be as free from noise as possible.

FIRST FILTER AND MIXER

Since the A to D conversion is clock controlled, the maximum signal frequency that can be sampled satisfactorily is limited by the clocking rate. Ideally this should be at least three times as fast as the audio frequency. Frequencies above this rate are liable to result in sub-harmonic generation. The amplitude of upper audio frequencies is consequently given attenuation prior to the A to D conversion. This occurs at IC1b, with the upper limit set by C5 and C6. These are set to give a reduction to half level at 3.5kHz, and progressively more above this frequency. Since the main power in most audio frequencies is usually below 3kHz, the attenuation can be regarded as normally unnoticeable. To offset the effects of the second filter, pre-emphasis is given to mid range frequencies by R4 and C4, with bass frequencies effectively dropping to half level at about 120Hz. This stage also serves as a mixer for feedback processed signals for such effects as echo and reverb. VR2 presets the maximum level of feedback.

The output of IC1b goes to the analogue input of IC2 via C7. VR3 is used to supply an optimum bias to IC2 pin 6 so that the audio signal swings evenly to either side of this level, so maintaining an even waveform through IC2 at peak levels. In the absence of a signal, the output of IC2 will be at approximately half level, of 125 decibels.

SECOND FILTER

As will be seen from Fig. 3, the audio signal after conversion from digital is a series of steps. In order to restore this to a more regular shape, a filter is required after IC3. The circuit around IC1c performs this filtered reshaping, and has a frequency band pass level related to the sampling frequency of IC4b-d, and set by C16 and C17. If the sampling frequency is changed from that stated, these capacitors can have their values changed accordingly. The values shown allow suitable reshaping for a sampling rate as low as 9kHz.

From IC1c, the reconstituted signal can be fed back to IC1b via the elvel control VR5, or to the output stage IC1d, the original unprocessed signal can be mixed in via S3. If panel space permits, another level control could be inserted here, taking the output of IC1a via the coupling capacitor C3 to the pot, and then to IC28. From IC1d the mixed signal can go to any ordinary amplifier. If panel space still permits, a master output level can be inserted immediately after C20.

POWER SUPPLY

The maximum voltage level acceptable by IC2 and IC3 is 5 volts d.c., and this is supplied to the full circuit by the stabilised mains power supply shown in Fig 2. It can deliver about 300mA, of which about 50mA is drawn by unit, leaving a healthy margin for driving other circuits as well.

SETTING UP

Fig 4 and Fig 5 show the p.c.b. and control wiring connections. The choice of internal or external control of the A to D and D to A chips will depend on the purpose to which the unit is put. Whatever that purpose is, VR2 and VR3

fig.3. Sample filtering.

COMPONENTS AUDIO A-D-A UNIT

<table>
<thead>
<tr>
<th>RESISTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R4, R5, R6, R7</td>
</tr>
<tr>
<td>R8, R9, R11-R13</td>
</tr>
<tr>
<td>R14-R16, R27-R28</td>
</tr>
<tr>
<td>R17, R24</td>
</tr>
<tr>
<td>R18</td>
</tr>
<tr>
<td>R19, R20</td>
</tr>
<tr>
<td>All resistors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C15, C18</td>
</tr>
<tr>
<td>C20, C24, C28</td>
</tr>
<tr>
<td>C25, C19</td>
</tr>
<tr>
<td>C30</td>
</tr>
<tr>
<td>C31</td>
</tr>
<tr>
<td>C32, C33</td>
</tr>
<tr>
<td>C34, C35</td>
</tr>
<tr>
<td>C36, C37</td>
</tr>
<tr>
<td>C38, C39</td>
</tr>
<tr>
<td>C40, C41</td>
</tr>
<tr>
<td>C42, C43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POTENTIOMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1, VR4, VR5</td>
</tr>
<tr>
<td>VR2</td>
</tr>
<tr>
<td>VR3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
</tr>
<tr>
<td>REC1</td>
</tr>
<tr>
<td>IC1</td>
</tr>
<tr>
<td>IC2</td>
</tr>
<tr>
<td>IC3</td>
</tr>
<tr>
<td>IC4</td>
</tr>
<tr>
<td>IC5</td>
</tr>
<tr>
<td>IC6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWITCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
</tr>
<tr>
<td>S2, S3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISCELLANEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuseholder, PCB clips (4 off), 1A fuse, knobs (3 off), mains neon, printed circuit board 251A, 14-pin i.c. socket (2 off), 16-pin i.c. socket (2 off), 18-pin i.c. socket, Mono jack socket (2 off), Transformer 2 x 6VA 6V secondaries.</td>
</tr>
</tbody>
</table>

THE PRINTED CIRCUIT BOARD AND A FULL KIT OF PARTS IS AVAILABLE FROM PHONOSONICS. SEE ADVERT.
Fig. 4. Printed Circuit Board component layout.

Fig. 5. Wiring diagram for Audio A-D-A Unit.

OTHER PCB PIN CONNECTIONS (SEE TEXT)

<table>
<thead>
<tr>
<th>PCB PINS</th>
<th>1-8 data inputs/outputs in order (1 is MSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 9</td>
<td>DAOutput (Synchronised)</td>
</tr>
<tr>
<td>PIN 10</td>
<td>Pulsed DAOutput (Delayed)</td>
</tr>
<tr>
<td>PIN 14</td>
<td>+5v output</td>
</tr>
<tr>
<td>PIN 26</td>
<td>Access to PIN 4 IC2 (ConvertTrig) (link wire to PIN 11 IC4 must be omitted if used for external input control)</td>
</tr>
</tbody>
</table>

PIN 27	Access to PIN 2 IC2 (A-D Read Enable)
	(IC4 must be omitted if used for external input control)
PIN 28	Access to PIN 4 IC3 (D-A Read Enable)
	Link wire to PIN 1 IC2 must be omitted if used

(PRACTICAL ELECTRONICS MAY 1987)
can be set whilst listening to the output, starting off with them both in midway position. VR3 is then adjusted around its midway point until no distortion is heard at signal levels just below maximum. Alternatively if the unit is being used with a computer, the computer itself can be programmed to give a decimal read out from IC2, in which case, without any signal passing through, adjust VR3 for a read out of approximately decimal 128. This reading may be set to a place or two either side of the midway level, but it should also be set for minimum output noise that could result if the A to D converter is hovering close to the changeover between two numbers in the absence of a signal. This final setting is actually more critical than the exact midway point setting.

VR2 should be adjusted so that with VR5 fully up for maximum feedback, howl does not occur. Adjust this preset for maximum echo or reverb just below the howl point.

COMPUTER PROGRAM

The computer program listing shown on the previous page is an example of the type of control functions that can be created by coupling the Audio ADA unit to a computer. The listing is in Basic, but also consists of its own relocatable machine code mini-assembler. It has been written in PET Basic, but it additionally has data incorporated in it enabling the Commodore C64 to be used as the controlling micro. The difference between the PET and C64 as far as this type of program is concerned is minimal. This is largely true for the BBC computer, and very little change is needed for the program to be translated for it. The main differences are in the memory location codes used, and in a few dialect changes needed within the body of the program. A separate listing for the BBC, in which these changes have been made, is available from the PE editorial office if you send a large stamped addressed envelope (overseas readers please enclose one pound sterling, or the equivalent in international reply coupons, to cover postage). Listings for other computers are not available.

When using the unit with a computer and the listed program, a switch should be inserted into the DAV line, to switch out the synchronisation pulse, in the absence of which, the program will return to the menu options display.

Study of the listing will show the versatility of the program and the ADA unit. The principle functions are to sample an input audio signal, store it for a particular period of time, and then return the data back to the unit as a delayed signal. The amount of time for which it is stored determines the delay factor, and the method of reading it back sets the other functions. In this way, straight echo can be produced, or more complex functions such as replay speed variation, so increasing or decreasing the pitch. It will also be seen that the sampled signal can be frozen, or looped, and that the direction of signal replay can be reversed, in effect playing it backwards. Use of the panel controls can then help create some really remarkable effects.

DEDICATED CONTROLLER

Next month's issue describes a practical electronic example of one possible circuit that can be used with this unit in place of a computer, providing frequency shifting, reverse tracking, together with double tracking, echo and reverb. It is a highly versatile addition, and goes by the astonishing name of Polywhatsit!

P.E.
BIO-FEEDBACK ACCESSORIES

A METER MOVEABLE Base which can be built into your Bio- feedback system to make a perfectly self-contained system. Don’t count on having already drilled the terminal holes – the meter will cover them up!

SENSITIVE MOVEMENT ONLY £6.95

SPARE ELECTRODES AND GEL

5 sets of electrodes (10 electrode pads) and a sachet of conductive gel, all for £2.90.

PROJECT BOX WITH BATTERY COMPARTMENT

As used in our tachometer and biofeedback kits.

This attractive and versatile case can be used to house the experiment kit projects, or your own battery operated projects.

PROJECT CASE WITH PP3 BATTERY COMPARTMENT ONLY £2.60!

LEDs

RECTANGULAR LED

Green rectangular LEDs 10 per pack

30p each 100 for £5.50 500 for £25

DIGITAL AND AUDIO EQUIPMENT LEDS

Assorted 3mm LEDs: red, green, yellow and orange. 25 of each (100) LEDs for £6.80

HI-FI POWER METER

FEATURED IN ETI MAY 1987

Measure the output power of your hi-fi with this ETI power meter. The meters can be back lit for effect — the scale and power legend will grow green to contrast with the red pointer. Two (i.e. high) ranges give readings of 0-10W and 0-100W.

The set consists of meter movement, PCB, all components, range switch and lid.

MOMO POWER METER PARTS SET £9.90 STEREO POWER METER PARTS SET £7.20 SUITABLE CASE £7.90

TACHOMETER AND DWELL METER

FEATURED IN ETI JANUARY 1987

MOTORISTS QUIZ

You are driving along the road, and the sound of a horn makes you look behind. The driver of a milk float is queuing up, going slowly. Is the horn a hazard or an aid?

You could answer this, and many other questions, with our tachometer and dwell meter set.

The set includes: 71 component tachometer and dwell meter PCB, all components, range switch and lid.

TACHOMETER AND DWELL METER PARTS SET £12.90 (with terminals for external mount)

MATCHBOX AMPLIFIER

FEATURED IN ETI, APRIL 1986

No ordinary amplifier, when you purchase the amplifier, you also purchase the extra of a commercial product, that is, a commercial product which is a matchbox amplifier.

This amp is ideal for a Ecology student, or a hobbyist, but also for a WESPO matchbox. It is very reliable, and the innovation is placed into the mass. This amp is the first of its kind. When it is opened, the first thing you see is the transformer.

MATCHBOX AMPLIFIER PARTS SET WITH VIDEO £9.80

Complete Parts Sets for Top Projects

Mains Conditioner

FEATURED IN ETI, SEPTEMBER 1986

It is astonishing how many people buy an amplifier without knowing all about mains supply. Rather than buying it incase you might need it, buy a mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs. You might find that the mains supply unit is a good idea. You can then change the mains supply unit to suit your needs.

Mains Conditioner Parts Set Only £12.90

Credit Card Casino

FEATURED IN ETI, MARCH 1987

This wicked little pocket gambling machine measures only 3" x 4" x 1". It will play at least 10 kinds of casino games, including:

- Roulette
- Craps
- Pontoon

Our approved parts set comes complete with case, self-adhesive Stickers, Tinted and drilled pressfitted circuit board, all components, hardware, full instructions and three different games to play.

CASINO PARTS SET ONLY £8.90

LM2917 EXPERIMENTER SET

Contains all LM2917 IC, special printed circuit board and data sheet instructions with notes and charts for eight different projects to build. Can be used to experiment with the circuits in the TTL Data Book (Texas Instruments, 1980). LM2917 Experimenter Set £5.80

Powerful Air Ioniser

FEATURED IN ETI, JULY 1986

Ions have been described as "the air of the earth" by the health magazines, and are now being tried as a cure for hay fever, sinusitis and seasonal allergy, according to some of the enthusiasts who have tried them. They can be found in the air, and in the air, and in the air.

The DIRECT ION ioniser claims to give a great deal of evidence which it is preferred to as a constitutional ioniser in ETI. At last, an ioniser that can be relied on to provide a really meaningful and important amount of evidence that ions are good for people. We supply a matched set of parts, fully finished and tested. The ioniser is made to work on mains, and is also available as a mains-operated unit.

MATCHBOX AMPLIFIER

FEATURED IN ETI, APRIL 1986

No ordinary amplifier, when you purchase the amplifier, you also purchase the extra of a commercial product, that is, a commercial product which is a matchbox amplifier.

This amp is ideal for a Ecology student, or a hobbyist, but also for a WESPO matchbox. It is very reliable, and the innovation is placed into the mass. This amp is the first of its kind. When it is opened, the first thing you see is the transformer.

MATCHBOX AMPLIFIER PARTS SET WITH VIDEO £9.80

LM2917 EXPERIMENTER SET

Contains all LM2917 IC, special printed circuit board and data sheet instructions with notes and charts for eight different projects to build. Can be used to experiment with the circuits in the TTL Data Book (Texas Instruments, 1980). LM2917 Experimenter Set £5.80
Biofeedback measurement circuits.

"Biofeedback" has been used in lie detectors. The more nervous the subject becomes, the higher the meter rises. But these measurements can also be used to control the body's nervous reactions, with beneficial side effects such as a lower heart rate, a more relaxed posture, greater confidence – and possibly even greater intelligence and reduced hair loss. Would we lie to you??!!

With the seemingly ever increasing pace of modern life, and the increased stress that we all seem to suffer, there is growing interest in the subject of biofeedback. In case this term is new to you, it basically involves having a device of some kind, but usually electronic in nature, which gives an indication of how relaxed (or otherwise) the monitored person happens to be. The idea is for the subject to try to relax, and the monitoring device will provide an indication of some kind if he or she is successful. Then, by continuing to act in the same way, an ever deepening state of relaxation can, in theory at any rate, be achieved. It thus helps to relieve stress in those who otherwise find it very difficult to relax, and it does not require the use of any drugs which could be potentially addictive or in some way harmful in the long term. Although there is no electronic feedback path, this system is a genuine feedback type in that the user responds to the results indicated by the monitoring device, and forms part of a positive feedback loop.

There are various ways of measuring relative stress in the human body, and in this article we will consider three types of these 'strain gauges'. The circuits featured in this article are designed to monitor relative skin resistance, skin temperature, and heart rate. I am not making any great claims as to how effective these devices are or are not when used as aids to relaxation, but they are certainly interesting to experiment with, particularly the heart rate monitor circuits. All the circuits are reasonably simple and inexpensive to build, and are quite viable as projects to build just for the fun of it.

SKIN RESISTANCE

Many circuits for devices which respond to changes in skin resistance have been published in the electronics press, and these have most often been put forward as 'Lie Detectors'. The theory behind this has it that when the subject tells the truth he or she remains relatively relaxed, but they become exposed to increased stress when they tell a lie. Stress causes increased perspiration, which in turn results in increased resistance between two electrodes positioned on the subject's skin. Devices of this type seem to be virtually useless as lie detectors in that many people are able to fool them, and practically anybody can be trained to do so. Also, with any form of lie detection the method of questioning has to be more subtle than just asking a few questions and expecting reliable truth/lie indication. Despite its limitations for lie detection, a device of this type does represent an attractively simple introduction to the subject of biofeedback.

Obviously, measuring resistance does not provide a particularly difficult technical challenge. The resistance between the two electrodes is likely to be quite high at several hundred kilohms, and possibly as much as several megohms. This is within the capabilities of the average multimeter, and probably most readers could experiment with this type of sensor without building up a special monitor circuit. One word of warning though, for reasons of safety you should not try this with a mains powered multimeter, or any mains powered device, unless some form of isolation circuit is included between the electrodes and the measuring device.

There are alternatives to having meter indication, or to having any form of visual indicator come to that. A simple but effective approach is to have a circuit which produces a tone that increases as the subject's skin resistance decreases, and a state of deep relaxation is therefore induced by obtaining the lowest possible tone from the unit. The circuit for a monitor of this type is provided in Fig. 1.

There is nothing remarkable about the circuit, which is basically just a faithful old 555 astable driving a high impedance loudspeaker. R3 is used to attenuate the output somewhat so as to give a volume level that is quite low, which avoids having the unit induce stress instead of aiding relaxation. The skin resistance is placed in series with R1, and it consequently forms part of IC1's timing resistance. Thus, the lower the skin resistance, the higher the output frequency from the unit. The tone varies from a sub-audio 'clicking' sound with a skin resistance of many megohms to an audio tone of a few hundred Hertz with a short circuit between the electrodes. However, by changing the value of C1, the tone range can be altered if desired.

For the unit to stand any chance of functioning reasonably well, it is essential to have electrodes which operate effectively and reliably. Simply holding a couple of small metal electrodes, one in each hand, is unlikely to give good results. The problem here is simply that the tone would then vary over a wide
range of frequencies depending on how hard the electrodes were gripped. It is possible to buy proper electrodes complete with conductive jelly, and these are taped in place. This type of electrode does not lend itself well to the present application though, as the conductive jelly would ensure a relatively low resistance between the two electrodes regardless of how stressed or relaxed the subject happened to be. Taping the electrodes in place does seem to suit this application well though, and two small pieces of practically any sheet metal should suffice as the electrodes.

If you use aluminium, which most readers will probably have available in the spares box, it will not be possible to solder a lead direct to each electrode unless special aluminium solder is used. The alternative is to fix a solder tag to each electrode and then make the connections via these, but this type of electrode is likely to prove a little uncomfortable for the user, and the direct soldering method is preferable. The electrodes do not need to be very big, and anywhere in the region of 100 to 500 square millimetres should suffice.

quickly. Changes in the opposite direction seem to be somewhat less spectacular, and this is presumably because the subject produces increased perspiration almost immediately when introduced to increased stress, but reduced sweating takes a while to become apparent as any perspiration already present must first evaporate to some extent. This slightly devalues this type of device in a biofeedback application, but with practice it is still probably quite usable.

SKIN TEMPERATURE

I suppose that there is no obvious reason for skin temperature to vary according to the amount of stress to which one is subjected, but this does apparently occur. Although you might expect that under stress a faster heart-beat would result in increased blood flow to the body extremities and, just possibly cause increased skin temperature in the fingers and toes, this is in fact the opposite of what happens. Apparently stress results in reduced circulation despite any increase in the rate of one’s heartbeat, and this can be detected as a form of an audio tone. This reduces in pitch as the subject’s skin temperature falls. The idea is to try to obtain an output which is as high in pitch as possible, or if TH1 and R4 are swapped over, for the lowest possible output tone.

IC1 acts as the basis of the sensor part of the circuit, while IC2 operates as a voltage controlled oscillator which will operate over a wide control voltage range. Taking operation of the sensor circuit first, TH1 is a negative temperature coefficient device, and its resistance therefore decreases if the applied temperature is decreased. As TH1 is connected in a potential divider across the supply lines, it provides an output voltage which increases as the applied temperature is raised. Although thermistors are quite sensitive when compared to many other types of electronic temperature sensor, the change in output voltage is still only a small fraction of a volt per degree Celsius. IC1 is therefore used as a non-inverting amplifier to slightly boost any voltage changes produced by the sensor circuit. VR1 is initially adjusted to give an output at roughly mid-supply voltage.

The oscillator is almost a standard Miller Integrator/Schmitt Trigger type, but the configuration has been modified to operate as a voltage controlled oscillator. This gives a wide output tone range which varies from zero to 0 volts input, to a few hundred Hertz at +5 volts input. The value of C3 can be changed if a different tone range is required. The squarewave output at SK1 is used to drive a crystal earphone, or in this application where high volume is not really needed or desirable, the output signal could simply be connected to a ceramic resonator, such as the popular PB2720 type. Incidentally, triangular output signal is available from pin 1 of IC2.

It is important that the supply is fairly stable as any significant changes in the supply voltage would almost certainly give a shift in the output tone and therefore give misleading results. IC1 provides a well stabilised 5 volt supply from the 9 volt battery supply.
This is just a basic bridge type circuit the thermistor's resistance, and could have user's skin resistance in parallel with the style thermistor coming in contact with the surrounding air might produce more reliable results. Placing the thermistor close to the finger tip also seems to give best results. Raising the value of R5 to give increased sensitivity might also be an avenue worth pursuing.

HEART RATE

Perhaps heart rate monitors are the most interesting type of biofeedback circuit for the experimenter, and possibly this is the type of monitor which gives the best results. There must be numerous ways of detecting the heartbeat, but there are two normal electronic approaches to the problem. One is to detect the electrical signal in the body which is associated with the heartbeat, and the other is to use a photoelectric system. We will deal with the latter first, and the general idea is to use a sensor of the type outlined in Fig. 4. This method of sensing is known as photoplethysmography (now you know why they call me the 'Prof').

RA53 are obviously unsuitable, as are types which have very low resistances, which would result in a large current flow through the sensor circuit.

Of the three types of monitor circuit I tried, this one seemed the least effective, although it did seem to respond to changes in stress to some extent. Possibly the ambient temperature effects results, and some means of insulating the non-skin side of the thermistor from the surrounding air might produce more reliable results. Placing the thermistor close to the finger tip also seems to give best results. Raising the value of R5 to give increased sensitivity might also be an avenue worth pursuing.

Fig. 3. Adding meter indication to the skin temperature monitor.

METER OUTPUT

If meter indication is preferred to the audio tone method, the voltage controlled oscillator section of the original circuit (Fig. 2) can be replaced with the simple meter output circuit of Fig. 3. This is just a basic bridge type circuit with VR3 being used to provide a reference voltage of just under half the supply voltage. VR2 is the sensitivity control, and this is adjusted so that with VR1 in the original circuit adjusted to set the output of IC1 fully positive, and then fully negative, ME1 is driven to full scale A by painting over any exposed metal at each end of the component, and insulating the leadout wires with P.V.C. sleeving as well if necessary. Incidentally, the circuit should operate using virtually any thermistor provided the value of load resistor R4 is changed to suit the particular component used. However, self heating types such as the.

Fig. 4. Simple optical heart-beat sensor.

In theory everything is delightfully simple, with a light emitting diode shining a light beam through the finger tip, and a photocell on the opposite side of the finger then detecting the amount of light passing through. The blood-flow in the capillary bed of the finger causes variations in the amount of light received by the photocell, and these result in small changes in the resistance of the photocell. With suitable circuitry these resistance changes can be converted to small voltage pulses and then amplified to give a usable signal level.

In practice things are not quite as straightforward as this, and there are problems with such a simple set up. The first problem is getting a strong enough light source to transmit a significant amount of light through the finger-tip. Until recently it would probably have been necessary to resort to a small filament bulb, but these days ultra-bright light emitting diodes are available, and these seem to give good results if they are operated at a reasonably high current. The main problem is that of getting consistent results. It is quite easy to produce a set up that will give reliable pulses for a few seconds, produce a few glitches, operate properly for a short time again, glitch some more, and so on, but it is much more difficult to produce a sensor that will operate reliably for a reasonable period of time.

The first requirement is some form of finger rest to help keep the user's finger perfectly still, as any slight movement here can produce signals that are far stronger than those generated by the heartbeat. It is also important to have the smallest possible gap between the light emitting diode and the photocell, and this means a separation of only about 15 millimetres. The gap must not be so small that the finger-tip is wedged in place, as this would almost certainly prevent the unit from working at all. It is also important that the light emitting diode, photocell, and finger rest are all firmly fixed together so that these do not move significantly relative to one another. Finally, the light level received by the photocell is not likely to be very high, and as far as possible should be shielded from any ambient light.

As far as the circuit is concerned, basically all that is needed is an amplifier and a Schmitt Trigger circuit. Fig. 5 shows a suitable circuit diagram.

PCC1 is the photocell, and this is a cadmium sulphide type. This is almost certainly the best type of cell for this application where a fast response time is not needed, but good sensitivity is a decided asset. An ORP12 is suitable for the PCC1 position, but any fairly sensitive type should also be satisfactory. D1 is the light source, and this must be an ultra-bright type (not a standard or high brightness type) if the unit is to operate well. In fact the circuit is unlikely to work at all using an ordinary i.e.d. in the D1 position. The amplifier is a two stage type which has IC1 as an inverting amplifier and IC2 as a non-inverting type. The bandwidth is limited to only a few Hertz by the inclusion of C5 and C6, and this helps to give a low noise level while not attenuating any signal frequencies. Bear in mind that the heartbeat is at a frequency that will normally be little more than 1Hz. IC2b operates as a Schmitt Trigger which provides output pulses at the monitored heart rate. D2 flashes in sympathy with the user's heartbeat, but obviously the output pulses at pin 7 of IC2b can be fed to a pulse counter of some kind if preferred.
ELECTRODE METHOD

Monitoring the heartbeat by using electrical signals within the body as the signal source, is not as complex as many people seem to imagine. There are difficulties associated with this type of heart rate monitor, but they are far from insurmountable. There are numerous points at which the electrodes can be positioned, but for simple heart rate monitoring an electrode on each hand is quite sufficient. The signal levels involved are quite low, being typically less than a millivolt peak to peak, but there is no difficulty in amplifying them so as to give a more usable signal level.

There is a problem in obtaining reliable electrical contact with the skin. Use of the special electrodes and conductive jelly referred to earlier overcomes these problems, but although the electrodes and jelly are available to amateur users they are quite expensive. An inexpensive alternative which seems to work quite well is to use pads of cotton-wool soaked in a strong salt solution, and the connections to the pads can be made via crocodile clips.

Another problem is that of electrical interference which is picked up in the leads running to the electrodes, and more particularly, the electrical signals actually picked up in the body of the user. These signals are predominantly 50 Hertz mains 'hum' and radio frequency signals, and as the wanted signals are at frequencies of about 4 Hertz or less, these interfering signals can be considerably attenuated by lowpass filtering. The use of balanced input techniques can also contribute to rendering them insignificant.

Fig. 6 shows the circuit diagram of the heart rate monitor, and this consists of two preamplifiers (one for each electrode) driving a differential amplifier and a Schmitt Trigger output stage. IC1a and IC1b operate as the preamplifiers, and these are identical non-inverting types. The feedback arrangement is a little unusual in that a common shunt resistor (R7) is used for both stages, and it connects between the two inverting inputs, rather than having one side earthed by way of the series d.c. blocking capacitor (C5). This effectively eliminates the shunting effect of R7 for signals that are picked up at both inputs, and gives only a low level of voltage gain on these. As these in-phase signals are the hum and noise which will be virtually identical at the two electrodes, this system helps to attenuate the unwanted signals. The wanted signals are out of phase provided the electrodes are positioned at suitable points on the body, and with these R7 has the full shunting effect and each preamplifier exhibits a voltage gain of around 40dB. C6 and C7 introduce the lowpass filtering.

IC2 combines the two output signals, and this is a standard differential amplifier circuit, and it is followed by a conventional operational amplifier Schmitt Trigger circuit. C10 introduces a further stage of lowpass filtering. D1 is a l.e.d. indicator which flashes on and off in sympathy with the monitored heartbeat. The output pulses can be taken to a pulse counter circuit if required.

A little experimentation with the positioning of the electrodes should soon produce good results with reliable flashing of D1 at the correct rate. Once the electrodes are in place it will take a few seconds for the circuit to settle down and start to function properly though, and you must give it time to do so. Do not worry if D1 does not flash at a stable rate, as it is quite normal for the beat rate to vary slightly, and the heart rate when inhaling is different to that when exhaling for example. If D1 simply flashes more or less randomly though, this would suggest that the unit is faulty or, more probably, that the electrodes are not achieving good and consistent contact and that further experimentation is needed here. Note that although three electrodes are shown in Fig. 6, in most cases only electrodes 'A' and 'B' will be required. Electrode C is only needed for some of the more exotic electrode placement arrangements which are not normally needed for simple heart

Fig. 5. A circuit to provide photoelectric monitoring of the heart-beat.

Fig. 6. The circuit diagram of the electrode heart-rate monitor.

BIOFEEDBACK
rate monitoring, and which will not be discussed here.

The purpose of this series of articles is to present circuits which are worth building for their interest value if nothing else, and this is one which I would recommend as one of the most fascinating type of circuit. It is well worth a try, and costs very little to construct. This circuit can easily be breadboarded if you do not wish to construct it using more permanent methods.

PULSE COUNTER

For biofeedback purposes the heartbeat monitor circuits are far more useful if they are fitted with a pulse counter circuit, and a suitable circuit appears in Fig. 7.

This is just a non-retriggerable monostable multivibrator based on IC1, a simple smoothing circuit comprised of R2, C2, and R3, and a buffer amplifier to drive the meter circuit. The output pulse duration from the monostable is constant, and the average output voltage (which is what the meter registers) therefore rises and falls as the input frequency increases and decreases. VR1 is given any setting that gives a strong deflection of the meter in normal use, but does not result in it being driven beyond full scale at high heart rates. It is not necessary to use an expensive meter in the ME1 position, and an inexpensive battery state meter or something of this type is perfectly suitable. However, many of these have sensitivities of about 200 to 500 microamps for full scale deflection, and they need the values of R5 and VR1 to be reduced slightly in order to give adequate deflection.

IMPROVEMENTS

For anyone wishing to develop these circuits further, the heart rate monitors provide the greatest scope. The pulse counter circuit shown here is quite a crude type which does not give particularly stable readings. Better stability can be obtained by increasing the value of C2, but the circuit then becomes relatively slow at responding to changes in heart rate. One way of improving things would be to use a multi-stage active filter in place of this basic single pole type. Another approach would be to use a digital readout, with the pulse counter circuit measuring the duration between heart beats, or perhaps the time taken for a certain number of beats to be completed. This could give good accuracy with an instant response time.
Transistors

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC107</td>
<td>£15</td>
</tr>
<tr>
<td>BC107A</td>
<td>£15</td>
</tr>
<tr>
<td>BC107B</td>
<td>£15</td>
</tr>
<tr>
<td>BC108</td>
<td>£18</td>
</tr>
<tr>
<td>BC108A</td>
<td>£18</td>
</tr>
<tr>
<td>BC108B</td>
<td>£15</td>
</tr>
<tr>
<td>BC108C</td>
<td>£15</td>
</tr>
<tr>
<td>BC109</td>
<td>£18</td>
</tr>
<tr>
<td>BC109A</td>
<td>£18</td>
</tr>
<tr>
<td>BC109B</td>
<td>£18</td>
</tr>
<tr>
<td>BC182</td>
<td>£12</td>
</tr>
<tr>
<td>BC182B</td>
<td>£12</td>
</tr>
<tr>
<td>BC183</td>
<td>£12</td>
</tr>
<tr>
<td>BC183B</td>
<td>£12</td>
</tr>
<tr>
<td>BC184</td>
<td>£12</td>
</tr>
<tr>
<td>BC212</td>
<td>£12</td>
</tr>
<tr>
<td>BC212B</td>
<td>£12</td>
</tr>
<tr>
<td>BC213</td>
<td>£12</td>
</tr>
<tr>
<td>BC213B</td>
<td>£12</td>
</tr>
<tr>
<td>BC214</td>
<td>£12</td>
</tr>
<tr>
<td>BC327</td>
<td>£16</td>
</tr>
<tr>
<td>BC337</td>
<td>£16</td>
</tr>
<tr>
<td>BC548</td>
<td>£12</td>
</tr>
<tr>
<td>BCV70</td>
<td>£22</td>
</tr>
<tr>
<td>BCV71</td>
<td>£22</td>
</tr>
<tr>
<td>BD131</td>
<td>£60</td>
</tr>
<tr>
<td>BD132</td>
<td>£60</td>
</tr>
<tr>
<td>BD135</td>
<td>£34</td>
</tr>
<tr>
<td>BD136</td>
<td>£35</td>
</tr>
<tr>
<td>BF258</td>
<td>£60</td>
</tr>
<tr>
<td>BF4X8</td>
<td>£40</td>
</tr>
<tr>
<td>BF6X8</td>
<td>£40</td>
</tr>
<tr>
<td>BF6Y5T</td>
<td>£37</td>
</tr>
<tr>
<td>BF6Y5</td>
<td>£39</td>
</tr>
<tr>
<td>TI3P1</td>
<td>£42</td>
</tr>
<tr>
<td>TI3P1A</td>
<td>£48</td>
</tr>
<tr>
<td>TI3P3A</td>
<td>£56</td>
</tr>
<tr>
<td>TI3P3C</td>
<td>£54</td>
</tr>
<tr>
<td>TI3P3A</td>
<td>£42</td>
</tr>
<tr>
<td>TI3P3A</td>
<td>£100</td>
</tr>
<tr>
<td>TI3P4A</td>
<td>£63</td>
</tr>
<tr>
<td>TI3P4A</td>
<td>£55</td>
</tr>
<tr>
<td>TI3P55</td>
<td>£76</td>
</tr>
<tr>
<td>TI3P56</td>
<td>£76</td>
</tr>
<tr>
<td>ZTX300</td>
<td>£15</td>
</tr>
<tr>
<td>ZTX500</td>
<td>£17</td>
</tr>
<tr>
<td>2N3053</td>
<td>£60</td>
</tr>
<tr>
<td>2N3054</td>
<td>£160</td>
</tr>
<tr>
<td>2N3070</td>
<td>£12</td>
</tr>
<tr>
<td>2N3071</td>
<td>£12</td>
</tr>
<tr>
<td>2N3073</td>
<td>£12</td>
</tr>
<tr>
<td>2N3076</td>
<td>£12</td>
</tr>
<tr>
<td>2N30771</td>
<td>£140</td>
</tr>
<tr>
<td>2N30904</td>
<td>£15</td>
</tr>
<tr>
<td>2N30906</td>
<td>£15</td>
</tr>
</tbody>
</table>

TRIACS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Amp 400V</td>
<td>£75</td>
</tr>
<tr>
<td>8Amp 400V</td>
<td>£90</td>
</tr>
</tbody>
</table>

Opto Isolators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIL111 Transistor o/p</td>
<td>£110</td>
</tr>
<tr>
<td>TIL113 Darlington o/p</td>
<td>£120</td>
</tr>
<tr>
<td>3021 Triac driver</td>
<td>£150</td>
</tr>
</tbody>
</table>

LEDs

<table>
<thead>
<tr>
<th>Color</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>£18</td>
</tr>
<tr>
<td>Yellow</td>
<td>£18</td>
</tr>
<tr>
<td>Green</td>
<td>£18</td>
</tr>
<tr>
<td>Super bright T1 1/2 5mm Red</td>
<td>£35</td>
</tr>
</tbody>
</table>

Zener Diodes

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2Y58C 500m W</td>
<td>4V7</td>
<td>£10</td>
</tr>
<tr>
<td>B2Y55C 500m W</td>
<td>24V</td>
<td>£10</td>
</tr>
<tr>
<td>B2X85C 1.3 Watt</td>
<td>4V7</td>
<td>£20</td>
</tr>
<tr>
<td>12V</td>
<td>£20</td>
<td></td>
</tr>
<tr>
<td>24V</td>
<td>£20</td>
<td></td>
</tr>
</tbody>
</table>

Voltage Regulators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM317T + 1.2V to 37V</td>
<td>£150</td>
<td></td>
</tr>
<tr>
<td>LM341P + 5V</td>
<td>£60</td>
<td></td>
</tr>
<tr>
<td>LM7906 - 5V</td>
<td>£70</td>
<td></td>
</tr>
</tbody>
</table>

Bridge Rectifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Current</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOO4 1.5A</td>
<td>£50</td>
<td></td>
</tr>
<tr>
<td>6005 6A</td>
<td>£90</td>
<td></td>
</tr>
</tbody>
</table>

Capacitors

Electrolytic

<table>
<thead>
<tr>
<th>Value</th>
<th>Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>47uF</td>
<td>25V</td>
<td>£10</td>
</tr>
<tr>
<td>100uF</td>
<td>25V</td>
<td>£12</td>
</tr>
<tr>
<td>470uF</td>
<td>25V</td>
<td>£28</td>
</tr>
<tr>
<td>1000uF</td>
<td>25V</td>
<td>£36</td>
</tr>
</tbody>
</table>

Tantalum Bead

<table>
<thead>
<tr>
<th>Value</th>
<th>Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1uF</td>
<td>35V</td>
<td>£10</td>
</tr>
<tr>
<td>22uF</td>
<td>35V</td>
<td>£10</td>
</tr>
<tr>
<td>47uF</td>
<td>35V</td>
<td>£10</td>
</tr>
<tr>
<td>1uF</td>
<td>35V</td>
<td>£10</td>
</tr>
<tr>
<td>2.2uF</td>
<td>35V</td>
<td>£10</td>
</tr>
<tr>
<td>4.7uF</td>
<td>35V</td>
<td>£20</td>
</tr>
</tbody>
</table>

Ceramic Disc

<table>
<thead>
<tr>
<th>Value</th>
<th>Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>220pF</td>
<td>500V</td>
<td>£6</td>
</tr>
<tr>
<td>470pF</td>
<td>500V</td>
<td>£6</td>
</tr>
<tr>
<td>1000pF</td>
<td>100V</td>
<td>£6</td>
</tr>
<tr>
<td>2200pF</td>
<td>100V</td>
<td>£6</td>
</tr>
<tr>
<td>4700pF</td>
<td>100V</td>
<td>£6</td>
</tr>
</tbody>
</table>

Resistors

- **Metal Film 5% 1/2 Watt**
 - 100R 1000 1.5W £15
 - 220R 1000 1.5W £15
 - 1K 1000 1.5W £15

Skeleton Presets

- **Horizontal** £19
- **Vertical** £19

Linear ICs

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>741</td>
<td>£18</td>
</tr>
<tr>
<td>555</td>
<td>£30</td>
</tr>
<tr>
<td>556</td>
<td>£160</td>
</tr>
<tr>
<td>LM301</td>
<td>£28</td>
</tr>
<tr>
<td>NE5532</td>
<td>£120</td>
</tr>
<tr>
<td>TL081</td>
<td>£50</td>
</tr>
</tbody>
</table>

B.T. Approved Telephones

B.T. Statesman with last number redial
- Stone £31.26
- Brown £31.26
- Maroon £31.26
- Grey £31.26

B.T. Viscount with last number redial
- Beige £26.04
- Ice Grey £26.04
- Red £26.04
- White £26.04

B.T. cordless Freeway 700ft range Security coded, last number redial with base paging
- Ivory £85.00

Carriage on telephones and telephone accessories £1.50 Add 15% VAT to total allow ten days for delivery.

Super Alpha Guarantee

All components brand new and by top manufacturers to full specification.

ordering: Cash, Postal-Order, Access or Visa, orders despatched same day by first class post. Add 50p p&p to order then add 15% VAT. Telephone orders welcome with Access or Visa, orders accepted by answer service outside office hours. Overseas orders add £2.00 no VAT. Prices subject to alteration.

Dept BYH P.O. Box 21, Selsey, Chichester, West Sussex, PO20 0TH.

Tel: 0243 607108

PRACTICAL ELECTRONICS MAY 1987
BINARY CHOP - PUZZLE NO 2
TEST YOUR POWERS OF LOGICAL DEDUCTION AND WIN 12 MONTH'S SUBSCRIPTION TO PE!

Send your answer to this puzzle to:
Binary Chop No. 2,
Practical Electronics,
16, Garway Road,
London W2 4NH

to reach us before 1st May 1987.

12 month's subscription to Practical Electronics will be awarded for the first three correct answers opened. The Editor's decision is final.

Answer in the July 1987 issue.

Look out for another mental challenge next month!

THE SERIAL BINARY DATA CONVERTER OMITTED ALL LEADING ZEROS!
LETTERS A TO Z = ASCII 1 TO 26, NUMBERS 0 TO 9 = ASCII 48 TO 57.
COMMA = ASCII 44, FULL-STOP = ASCII 46. NO OTHER CODES ARE USED.

THIS SHORT BINARY-CREATING PROGRAM MAY HELP.
10 FOR A TO Z, 00 FOR DASHES AND 20 FOR THE SPACE.

25
Oscillator circuits are a basic frequency source for applications from radio frequency transmitters to the clock signals in microprocessor systems. Here we look at the most frequently used classes of oscillator, with some adaptable circuits.

Oscillators come in many varieties, and are used in more applications than you might think. Calculators, radios, digital multimeters, electronic musical instruments, oscilloscopes, are a few examples of items which rely on them. The oscillator circuits in these applications may be very different, but they all use the same basic principle.

Simply stated, the rule is that for oscillation to occur there must be a condition at some frequency where feedback occurs with a net phase shift of 0 or any multiple of 360 degrees and a loop gain of unity, and that condition must be frequency dependent.

This may seem surprising — surely some oscillator circuits have much more than unity loop gain. If not, how could the oscillation start? Well, nobody said that the gain had to be linear. The classical idea of an oscillator is of something producing a perfect sinewave, and exhibiting good frequency stability. In this case a linear gain of unity is helpful. If an oscillator is designed without special attention to control of the gain, then it will control its own gain by oscillating at an amplitude sufficiently above the clipping level so that the average gain is unity. The unity gain here may be composed of a gain of 100 in the linear(ish) region, and zero when clipping occurs.

There are often exceptions to such simple rules, and this rule is no exception in that respect. The relaxation oscillator, to name the only one I can think of, does not seem to fit perfectly, though with a little mental contortion it is possible to see how its fits. It can be viewed as employing an extremely non-linear negative resistance device, always running at clipping level.

Oscillator Design

How, then, shall we design an oscillator? The cynics among you may answer “Design an amplifier and it is sure to oscillate.” This is largely true, of course, because an oscillator must incorporate an amplifier whether or not it is recognisable as such, and it is often difficult to avoid unintended feedback in amplifier designs.

For most practical purposes, it is unnecessary to design an oscillator circuit from scratch for your application.

RF Oscillators

For the most part, radio frequency oscillators can be divided into those using a crystal, and those using an LC tuned circuit. Adjustable LC oscillators are not greatly used now, except in ordinary radio receivers, but in the times before the widespread use of synthesizers, the VFO (variable frequency oscillator) formed the heart of many an amateur radio transmitter. Even now, there can be useful applications in receivers where close in phase noise is of paramount importance.

A reasonably well built VFO still outperforms all but the very best synthesizers.

Fig. 1. shows a typical configuration for a radio frequency oscillator using one transistor. If the tuned circuit is serial tuned then the configuration is called a Gouriet-Clapp oscillator, if parallel tuned it is called a Colpitts oscillator. In this circuit, power is fed to the tuned circuit from the emitter of the transistor, then back from the tuned circuit to the base of the transistor. The loop gain provided by the transistor is current gain, not voltage gain. The tuned circuit acts like an autotransformer to give a higher voltage, lower current output than that fed to its tapping. The ratio of the voltage increase is determined by the ratio of the impedances of C2 and C3.

The frequency stability of this type of circuit is determined partly by the stability of the components forming the tuned circuit, and partly by its loaded Q. In this context, the loaded Q gives a measure of how much influence the transistor has on the waveform on the tuned circuit on a cycle to cycle basis. If the energy stored in the LC circuit is very much greater than the energy being transferred from emitter to base of the transistor per cycle, then little change can occur per cycle regardless of what the transistor does.

Conversely, if the losses in the tuned circuit are high, and the transistor has to replace a large proportion of the stored energy per cycle, then variations in transistor opening parameters can affect the oscillation dramatically. This type of effect could be manifest as a transistor radio drifting off tune as its battery voltage falls, for example.

The circuit shown in Fig. 1. will not give a sinewave output (save by sheer luck), but the circuit shown in Fig. 2. will do so. Here an extra transistor is used to stabilise the amplitude of oscillation so that clipping does not occur. This sort of technique can be useful to provide a stable and clean local oscillator for a receiver.
Many other LC oscillator configurations are possible, but most of them are just variations on a theme, and it is a theme of limited application now.

CRYSTAL OSCILLATORS

In both RF and logic applications, the crystal oscillator is widely used where a stable, well-behaved frequency source is required. A number of the standard LC oscillator circuits can be adapted as crystal oscillators, and in the case of overtone crystals, the original LC tuned circuit may also be retained. A quartz crystal has the major advantage over an LC circuit in that its Q is much higher.

Quartz is a piezoelectric crystal, which is to say that it deforms on application of voltage across its faces. When used as an oscillator element, the oscillation is mechanical in nature, with the coupling of the signal in and out of the crystal being electrical. The angle of cut of the crystal determines the precise nature of the deformation, and affects whether the crystal is more suitable for use on its fundamental frequency, or on an overtone (harmonic) of the fundamental. Overtone operation allows use of crystals at frequencies higher than can be obtained otherwise, because it enables the thinnest crystal which can be manufactured to behave as one still thinner.

Fig. 3. illustrates normal crystal resonance and overtone resonance.

The cut of the crystal affects its temperature coefficient, and certain cuts can exhibit almost no frequency change over a certain limited temperature range. This is of particular interest in digital watches, for example. The reasons for this are a specialist subject of their own, but it is worthwhile to remember that different temperature coefficient curves are available when selecting a crystal for a particular use.

LOGICAL OSCILLATORS

At present, probably the majority of crystals are used to provide clock signals in microprocessor systems. Current microprocessors cause no problem in this respect, you simply connect a crystal and a capacitor across the requisite two pins and think no more of it. There are occasions when a crystal is needed as a frequency reference in logic systems other than a microprocessor. In this case it can be difficult to get the result you want.

Fig. 6. shows a crystal oscillator circuit which is fairly dependable with 4000 series CMOS, and which should work well with 74HC00 series as well. In this circuit, R2 and C2 provide a phase shift which depends on the frequency, and thus sets the approximate frequency of operation of the circuit. The crystal is only allowed to operate near to its resonant frequency, thus spurious modes of oscillation are prohibited. R2 and C2 should be chosen to give about 45° phase shift at the required frequency, which occurs when the magnitude of the capacitive reactance equals the resistance.

Some crystals, in particular 32768Hz watch crystals, still exhibit spurious modes. The problem can be solved by reducing the value of R2 and adding an inductor in series with it, so that the approximate series resonant frequency is equal to the desired operating frequency. It is even possible to get overtone crystals to work on their correct overtone in this way. The value of R2 should be chosen partly by experiment, but a good starting point is to use a Q of about three, where Q = \(\frac{2\pi f L}{R} \). Q values used should be in the range of 1 to 10.

R-C OSCILLATORS

In applications where the frequency stability is not quite so important, R-C oscillator circuits are common. Fig. 7. shows a typical CMOS clock oscillator circuit. The frequency is approximately \(\frac{1}{2.2R2C1} \). The frequency depends on the gain of the inverters to some extent, as you may deduce from the rather soggy looking waveform shown as typical of the output from the first inverter. Fig. 8. shows a circuit which avoids this problem, though it is not always superior. Because it uses three inverters rather than just two, there is more propagation delay, which lowers the maximum frequency of operation.
The function of R1 is to prevent the charge on C1 being dumped rapidly into the input protection diodes of the first inverter. To minimise this effect, R1 should normally be chosen to be ten times R2. This can result in the impedance on the input of the first inverter being very high, in which case stray capacitance can cause spurious oscillations on the edges. This manifests itself as a double bounce on each clock edge, and only matters if the output of the circuit is used to clock a counter, which will merely count all the edges it receives. A 100PF capacitor in parallel with R1 prevents this from happening.

OP-AMP CIRCUITS

A wide range of RC oscillator configurations is possible using op-amps. Fig.10 shows the simplest useful oscillator circuit using an op-amp. In this circuit, C1 charges between voltages set by the positive and negative power supplies, and R2 and R3. If the supplies are equal, and the output voltage gets equally close to each of them, then the waveform will be symmetrical. Otherwise the mark/space ratio will not be 1:1. The waveform on the capacitor is a section of an exponential waveform, as shown in Fig.11, but if the ratio of R2 and R3 is chosen to restrict the voltage range on the capacitor to a small proportion of the output swing of the op-amp, then a good approximation can be made by assuming that the charging current through R1 is constant, and is equal to Vin/R1. The time for one half cycle can then be calculated using the formula \(t = \frac{V}{\text{RC}} \) where V is the total change in voltage on the capacitor. The frequency is little affected by voltage, because both the hysteresis and the voltage charging the capacitor are proportional to the output swing of the op-amp. The main effect of power supply voltage changes is to alter the performance of the op-amp.

Even with a restricted voltage swing on the capacitor, a sawtooth waveform on the capacitor still has rather bendy sides. A proper triangle wave can be generated by the circuit shown in Fig.12., where an integrator is used to ensure that the charging current of the capacitor is constant. The charging rate of the integrator, and the voltage range over which it works, both depend on the output swing of the second op-amp, so again the frequency is nominally independent of the power supply voltage. Assuming that the op-amp gives symmetrical output, the time for one cycle is:

\[t = 4RxR3/(R2+R3) \]

where T is the integrator time constant, R1xC1.

If good quality components are used, and the op-amp is not asked to run near to its maximum speed, then good frequency stability is possible.

If a sinewave is needed, several approaches are possible. One method is to build an oscillator which would produce a sinewave if only it did not clip, and then control the gain so that it does not clip. Fig.13 shows an example of this approach. The Wien bridge network forming the frequency dependent feedback has zero phase shift (not 360 degrees) at the frequency of oscillation. Unlike a straight piece of wire, however, it has a phase shift both above and below the operating frequency, and it is this phase shift which is the frequency determining factor.

The gain of the network at the zero phase frequency is 1/3, so that to maintain oscillation an op-amp gain of three is needed. With a gain of exactly three, oscillation could not start, but could continue if it had already started. Any tiny disparity in gain would cause oscillation to die away or build up to clipping level. The circuit of Fig.13. uses a junction f.e.t. as a variable resistor to adjust the gain according to the amplitude of the oscillation.

To adjust this circuit, set VR2 to its mid point, and VR1 to maximum resistance. Then reduce VR1 until oscillation starts, and adjust VR2 to achieve the required output amplitude. IfVR2 is turned up too far, the amplitude of the output may oscillate at about ten Hertz.

An alternative approach to sinewave generation is shown in Fig.14. In this circuit, clipping is deliberately applied to the waveform, but after the clipping it is filtered. This circuit works on the basis of 180° frequency dependent phase shift, and an inversion.

IC1A is connected as a second order filter, which will give a phase shift of 90° (delay) at its nominal corner frequency, where it will give about 3dB attenuation. IC1B is used to integrate the resulting waveform. This always produces 90° phase delay, but its output amplitude depends on the integrator time constant and the frequency. This stage also inverts the waveform. Its output is a good quality sinewave, in which almost all the harmonics have been filtered out by the
second order filter and the integrator.
The output sine wave is clipped by the zener diode in the bridge, so configured to give symmetrical clipping. Unmatched back to back zeners could work at slightly different voltages and add second harmonics to the signal. The gain of the integrator, and hence the amount of clipping, may be adjusted by VR1. The less the signal is clipped before being filtered, the fewer harmonics there are to filter out, and the cleaner the resulting sine wave. If good quality components are used, the output frequency can be very stable.

Another means of generating a sine wave is to generate a triangle wave, and then convert it to an approximation to a sine wave by means of a non-linear network. Such a network would have to give symmetrical progressive limiting of the waveform, so that the triangle shape of the waveform is bent into a piecewise linear approximation to a sine wave. If the circuit of Fig.12 is used for this purpose, then sine, square, and triangle wave outputs will be available and we have a function generator. This will not be covered in more detail here because it is slightly at a tangent to the subject of oscillators in general, but a function generator project is planned to appear soon.

VOLTAGE CONTROLLED OSCILLATORS

So far all the circuits shown would require the use of variable resistors or capacitors to adjust the frequency. It can be very useful to be able to control the frequency of an oscillator by varying a voltage. Some applications require tuning or frequency modulation an RF oscillator; to make a phase locked loop, to allow digital control of a signal generator, or to make some types of electronic musical instrument.

The frequency of an LC oscillator can be controlled by using a varicap diode instead of, or as well as, a variable capacitor. The problem with varicap diodes in oscillator circuits, where there may be a substantial signal level, is that the capacitance changes significantly during the oscillatory cycle. This distorts the cycle and generates harmonics. The solution is to use back to back varicaps as shown in Fig.15. The change in the capacitance of one varicap is almost exactly compensated by an equal and opposite change in the other.

A totally different method of frequency control is suitable for op-amp based RC voltage controlled oscillators. In the circuit of Fig.16, IC1A forms an integrator which integrates the d.c. control voltage input to produce a ramp. The direction of the ramp is controlled by TR1, switching on or off a resistor from negative input to OV.

At all times the non-inverting input of the op-amp receives half the input voltage. When the f.e.t. is off, the integrator input receives the full input voltage, which means that C1 has to discharge at a current of \(\frac{1}{2}V_{in}/R1 \) to keep the op-amp in balance. When the f.e.t. is on, the input to the integrator is equivalent to 1/3 of the input voltage fed through 1/3 the value of R1. This equivalent integrator input is now below the voltage on the non-inverting input, so the output of the integrator rises and the capacitor charges. The equivalent input voltage is \(\frac{1}{2} - \frac{1}{3}V_{in} \), and the effective input resistance is R1/3, so the charge current of the capacitor is the same as the discharge current calculated above.

The symmetry of the waveform is dependent on correct resistor ratios, so VR1 is included in the circuit to allow accurate adjustment. If there is not an oscilloscope available to carry out this adjustment, then VR1 can be replaced by a 1kΩ resistor.

RELAXATION OSCILLATOR

Having mentioned the relaxation oscillator earlier, it deserves further description. Fig.17 shows two possible relaxation oscillator circuits, the first using a diac and the second using a unijunction transistor. The diac switches on when the voltage across it exceeds about 30V, and remains on until the voltage falls to about five volts. This discharges the capacitor to five volts very rapidly, so that the period of this oscillator is determined by the time taken for the capacitor to charge from five to thirty volts.

The unijunction circuit works similarly, but the firing voltage is lower. Again the discharge is very fast, so that the oscillator frequency is largely determined by the capacitor charge time.

We have examined here a wide range of types of oscillator, and I hope that there is something to fit almost every constructor's needs. Most of the circuits have been shown with example component values, and they will work if built as shown. If there is any problem in adapting a circuit for a particular requirement, then it might be worth building the circuit as shown first and then modifying it.

POINTS ARISING

Vigilante Car Arising (Apr 87).

Gremlins crept in overnight on pages 24 and 25! Anybody who is puzzled about the wording continuity should send a stamped addressed envelope for a copy of the pages as they ought to have been.
EDWARD

VENNER TIME SWITCH

Mains operated with 20 amp switch, and one on and one off per 24 hours. This device is mainly used in telegraph and telephone offices for making sure the telephone is off during the lunchtime period. A similar device for 12 times a day is available.

- $	ext{Electric Board. Superseded 12 months.}$
 \[\text{At £2.30} \]

THIS MONTH'S SNIP

- **12 volt Motor by SMITHS**
 - For use on cars, etc., these are very reliable. They are hardened steel, with a life of 3-5 years if kept in good condition.
 - *T.V. tuner* (black & white T.V.)
 - *Fire alarm switch* for main junction boxes.

25A ELECTRICAL PROGRAMMER

For 300 amp mains, this unit is programmed to switch on and off at the times required. It is particularly useful for homes that have to be heated during the night. A good example is the Ford Motor Company, which uses it to control their heating system.

- **Electric Board. Superseded 12 months.**
 \[\text{At £2.30} \]

OVER 400 GIFS YOU CAN CHOOSE FROM

There is a total of over 400 gifts in our Baker's driven programs, and the value of each one depends on how much you spend. A list of these gifts is enclosed with your purchase, and you will automatically receive our next news letters.

E5 POUNDERS

- **200W bulb** with a 100W bulb.
- **200R. 5P-10P. 6P. 10P. 15P. 20P. 30P. 50P. 100P. 200P. 300P. 500P. 1000P.**

LIGHT CHASER KIT

Motor driven switch bank with connection diagram, in connection with electronic circuits. If you have a light that you want to make a very catchy display for, such as a house, shop or disco, only £5.95.

J & N BULL ELECTRICAL

Dept. 250, PORTLAND ROAD, Hove, SUSSEX BN3 5DT

- **All orders received by 12 noon will be despatched 24 hours.**

IONISER KIT

Refresh your home, office, shop, workroom, etc. with a light ioniser. It is designed to neutralise the static electricity that builds up in your system and works best in a complete mains operated kit. Size included.

- \[\text{At £3.50} \]

TELEPHONE BITS

- **250V. 1000A.**
- **450V. 1500A.**
- **600V. 2000A.**
- **800V. 3000A.**
- **1000V. 4000A.**

E2 POUNDERS

- **200W bulb** with a 100W bulb.
- **200R. 5P-10P. 6P. 10P. 15P. 20P. 30P. 50P. 100P. 200P. 300P. 500P. 1000P.**

OVER 400 GIFS YOU CAN CHOOSE FROM

There is a total of over 400 gifts in our Baker's driven programs, and the value of each one depends on how much you spend. A list of these gifts is enclosed with your purchase, and you will automatically receive our next news letters.

E5 POUNDERS

- **200W bulb** with a 100W bulb.
- **200R. 5P-10P. 6P. 10P. 15P. 20P. 30P. 50P. 100P. 200P. 300P. 500P. 1000P.**

LIGHT CHASER KIT

Motor driven switch bank with connection diagram, in connection with electronic circuits. If you have a light that you want to make a very catchy display for, such as a house, shop or disco, only £5.95.

J & N BULL ELECTRICAL

Dept. 250, PORTLAND ROAD, Hove, SUSSEX BN3 5DT

- **All orders received by 12 noon will be despatched 24 hours.**

IONISER KIT

Refresh your home, office, shop, workroom, etc. with a light ioniser. It is designed to neutralise the static electricity that builds up in your system and works best in a complete mains operated kit. Size included.

- \[\text{At £3.50} \]
Hello Practical Electronics!

C.M. HOWES COMMUNICATIONS is a specialist manufacturer of radio communications kits and modules, with the emphasis on simple, effective, amateur ("ham") radio equipment. We have been selling kits for over four years now, but this is our first advert in a more general interest electronics magazine. We wonder if our kits could tempt some readers into the exciting world of shortwave radio?

I am sure there must be a lot of home computers out there looking for something interesting to do! One of our DeRx Communications Receivers would not only enable you to listen to radio hams talking World-wide, but with a suitable interface, home computer and software, to read radio teleprinter, facsimile, and morse code signals too. The HOWES DeRx receiver kit is available in several versions for various amateur bands. The 20M band is the most popular for long distance communication, whilst the 80M band is very popular for UK communication during daylight hours, and longer distances at night. This band is also shared with the marine services. The DeRx kit costs £15.30, and £20.90 as an assembled module. A case and a couple of tuning capacitors are the only major parts you need to add. We have suitable tuning capacitors at £1.50 each. P&P is 90p. Why not send an SAE for more information?

All our kits are to build PCB modules, and contain a PCB, and all board mounted components, plus full instructions. You will be amazed what you can hear on one of our super little receivers! We also have companion transmitters available for licenced amateurs. These start at £13.40, so you don't have to be rich to take up the hobby!

We also stock kits for filters, speech processors, shortwave broadcast receivers, oscillators, amplifiers, transverters, antenna tuners etc. The catalogue is free, simply drop us a line enclosing an SAE, and mention Practical Electronics. We can also send an information sheet on any product you are particularly interested in.

"73" (best wishes) from Dave G4KQH, Technical Manager.

EASY TO BUILD KITS BY MAIL ORDER

LEARN BASIC ELECTRONICS

Camboard

Each kit contains the necessary work cards, circuit sheets or instruction manual along with components and suitable connecting wire which are all contained in a cardboard and plastic storage box system. The kits are based upon the Camboard CM-0 breadboard, this enables circuits to be made in a theory layout, no soldering is required and the components are re-useable. To use the kit, circuit sheets are placed onto the breadboard and you simply follow the circuit sheet to build the circuit, there are also work cards which have questions on each circuit.

Set A

The ideal introduction to basic electronics as it covers such topics as lighting a bulb, bulbs in series and parallel, switches, resistance, electromagnetism and the transistor. Work cards, circuit sheets and instruction manual plus three breadboards are included.

Set B

This set introduces electronics, the circuits use leds, a capacitor, reed switch and resistor. Work cards, circuit sheets plus instruction manual are also included.

CM-0 breadboard available separately or with plastic storage tray (CM-0T). Breadboards also available with mini breadboards to take integrated circuits.

Electronic Kits

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit Price</th>
<th>Item</th>
<th>Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set A</td>
<td>£19.95</td>
<td>Set B</td>
<td>£9.95</td>
</tr>
<tr>
<td>Worcester Circuit Set</td>
<td>£39.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breadboards

<table>
<thead>
<tr>
<th>Breadboard</th>
<th>Item Unit Price</th>
<th>Item Unit Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-0</td>
<td>£2.99</td>
<td>CM-3</td>
</tr>
<tr>
<td>CM-1</td>
<td>£3.49</td>
<td>CM-7</td>
</tr>
</tbody>
</table>

Breadboards with Component

Storage Tray

<table>
<thead>
<tr>
<th>Storage Tray</th>
<th>CM-0T</th>
<th>CM-3T</th>
<th>CM-3T</th>
<th>CM-3T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£4.36</td>
<td>£5.18</td>
<td>£4.79</td>
<td>£6.92</td>
</tr>
</tbody>
</table>

All prices exclude VAT but include Postage & Packing.

Export Prices add 10%. Official orders from schools and colleges welcome. For details of these and other Camboard products please write

To: Camboard

Unit 16, Barnwell Business Park, Cambridge CB5 8UZ

Please supply:

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VAT

Total

Name

Address

139, Highview, Vigo, Meopham, Kent, DA13 0UT England.

Fairseat (0732) 823129

PRACTICAL ELECTRONICS MAY 1987 31
HOW TO USE THESE TRACKS

FIRST MAKE TRANSPARENT COPY
(We regret that we cannot supply transparent copies of PCB track layouts.)

STUDIO COPY METHOD
Ask local photographic studio to produce high contrast 1 to 1 positive transparency.

HOME PHOTOGRAPHY METHOD
Using even, bright illumination, photograph track onto fine grain black and white negative film. Develop film for high contrast. Photographically enlarge image up to lifesize, and print onto high contrast lithographic cut film, such as Agfa Copyline HDU 3P Type 2. Develop in Agfa Litex G90T litho developer, or similar.

PHOTOCOPY METHOD
Ask local photocopy shop to make a good contrast copy onto acetate film. (Some copiers are better than others – shop around.) Then touch up tracks with dense black ink, or photographic opaque ink.

ISODRAFT METHOD
Have a normal photocopy made, ensuring good dense black image. Spray ISODraft Transparentiser onto copy in accordance with supplied instructions. ISODraft is available from Cannon & Wrin, 68 High Street, Chislehurst, Kent. Tel: 01-476 0935.

PAINTAKING METHODS
Draw image by hand onto clear film or drafting film using dense black ink. Draw direct onto copper surface of PCB fibreglass, using etch-resist inking pen. Use etch resist PCB tracks and pads, taping direct to copper surface, or onto drafting film.

NEXT PRINT ONTO PCB
Place positive transparency onto photosensitised copper clad fibre glass, cover with glass to ensure full contact. Expose to Ultraviolet light for several minutes (experiment to find correct time – depends on UV intensity). Develop PCB in Sodium Hydroxide (available from chemists) until clean track image is seen, wash in warm running water. Etch in hot Ferric Chloride, frequently withdrawing PCB to allow exposure to air. Wash PCB in running water, dry, and drill holes, normally using a 1mm drill bit.

(PCB materials and chemicals are available from several sources – study advertisements.)

* CAUTION – ENSURE THAT UV LIGHT DOES NOT SHINE INTO YOUR EYES. PROTECT HANDS WITH RUBBER GLOVES WHEN USING CHEMICALS.

ALTERNATIVE METHOD
Buy your PCB ready made through the PE PCB SERVICE, most are usually available – see page 60.
Fuselodge Ltd.

267 ACTON LANE, CHISWICK, LONDON W4 5DD

Telephone: 01-994 6275

SEMICONDUCTOR OFFERS

Motorola K13S6 Baud Rate Generators. 1/2 pin DIL metal can package. Suitable of supplying 16 different synchronous or a/sync stable reference frequencies for serial interface devices (modems, UARTS, keyboards etc). Baud rates of 50 to 19,200 can be generated from this versatile device.

AVAILABLE AT A FRACTION OF LIST PRICE.

£2.00 ea

Hewlett Packard HP0820-7730 Displays

0.3" Comm. Anode. Dual DP. Red.

10p

OTHER SPECIAL OFFERS

PAPST FANS

220/230V AC, 50/60Hz, 120 mm. Brand new & boxed . £7.00 each + VAT

UM1286 Modulators

High quality UHF modulators for interface of computers to TV sets. UM1286 is suitable for color or monochrome video & audio signals to generate a sound intercom facility. Premitted to Channel 36 and operates on 5V dc OUR PRICE £4.00 ea

IBM Floppies

40 Trk, DS DD, in boxes of 10. £13.00 /box

STC Attenuators

STC 7400B Precision Attenuators. 1 MHz bandwidth. Range 0100dB in 0.1dB steps. £20.00

ELMA Instrument Cases

Supplied in kit form, these easy to assemble units are ideally suited for both the hobbyist or OEM user. Cases are finished in an attractive Pacific Blue, and are designed for either modular components or Eurocards. Size 12 x 9 x 9. £9.00

Limited stocks are available at only £10.00

SLIDE POTENTIOMETERS

Metal body construction. By Alps and Tsubame

10K Lin. 60mm travel. 80mm f/c Mono. £6.00

10K Lin. 45mm travel. 65mm f/c Mono. Centre notch £6.00

10K Lin. 45mm travel. 65mm f/c. Stereo. Centre notch £1.00

Coloured tops for above sliders.

Black, Green, Yellow, White, Red . 10p each

KEYBOARD

Tatung VT4100 Professional Keyboard. Enclosed in white plastic case with feet and flexible connecting lead. Serial data output via standard 5way USA phone plug. Separate numeric keypad and 12 function keys. Supplied with full data sheet. **Only £10.00**

SWITCHMODE PLUS

multi-rail type.

TOP QUALITY

Brand new triple output switchers + 5V at 6 Amps + 12V at 4.75 Amps + 12V at 0.5 Amp

Semi-enclosed construction with switched ECE mains input on 0.186 Modex connector. Suitable for multi-disk use.

Switched high current multi-pole and

POWER SUPPLIES

Top quality second user units available ex stock.

All switchers tested to spec prior to sale.

SWITCHED MODE

Gould MG 5-20.5 volt 30 amp . £20.00

Gould MG 5-40.5 volt 40 amp . £35.00

Gould MG 5-60 volt 60 amp . £45.00

MICROHEC MVE 100.. 50VVA, +12V, +5V, -12V, £20.00

SWITCHED mode HIGH CURRENT

Advance Swoot 80 amp . £42.00

Farrell F2418, Swoot 10amp. £48.00

Powergen NSW 100-120A Swoot 10amp. £50.00

LINEAR

COURT GEPS050/12

12 volt (nom) 5 amp. Very smooth . £25.00

TP 125601/505 . Swoot 1.5 amp . £15.00

Swh 1/2 amp encap.

MULLARD Unex plus, to clear . £2.50

RELAYS

Continental Cradle Relays

2PCO-6, 12, 24 volt coils . £1.50

4PCO-6, 12, 24 volt coils . £2.00

Marvib BISE 240v3PCO3A, II-Pin . £3.00

AMF KUP44DS (2vot, 3PCO3A) . £3.50

PED 5vot 24v, 4PCO3A . £3.30

Izumi RHV21 6VPCO3A pcb £1.50

Izumi RCV31 12VPCO3A pcb £1.50

Izumi R01212PCO3A £1.20

DIL Reed relays in stock.5v,12v,24v Form A,B,C,2A etc. Prices on request.

Glass Reeds. 2",1",1/2" . £1.00

Quantum large quantities or relays in stock from DIL reeds to high current multi pole types and SSAs.

TERMS OF SALE

Terms of business and cheque/PO with order. Mail order... phone for details of p&p charges for your order.

Colours Welcome. Shop Hours.

9.00am to 5.30pm 3 days a week.

PLEASE ADD 15% VAT TO ALL PRICES

CAPACITORS

Commerical Grade

50p 470/16 Axial Mullard 25p

100m/30p 470/63 Can Picorcon 110p

25000/63 Gould 55c £4.00 10000/16 Rich Nicholson 35p

FUSELodge LTD.

267 ACTON LANE, CHISWICK, LONDON W4 5DD

Telephone: 01-994 6275

Terms of business and cheque/PO with order. Mail order... phone for details of p&p charges for your order.

Colours Welcome. Shop Hours.

9.00am to 5.30pm 3 days a week.

PLEASE ADD 15% VAT TO ALL PRICES
THE term “fuzz” seems to be going out of fashion and is being replaced by “distortion”, but whatever name is used the sound produced by an effects unit of this type is exactly the same, and is generated by clipping the input signal. Clipping is a very simple electronic process, and it simply entails preventing the signal from exceeding a certain voltage, and a voltage that is below the normal peak level of the signal. Distortion units normally process both half cycles of the signal, and give symmetrical clipping as shown is Fig. 1. As far as the sound is concerned, the clipping generates strong signals at harmonics (multiples) of the fundamental input frequency, giving a harsher and brighter sound due to the increased high frequency content.

This is the classic fuzz effect, and there have been many attempts to give an improved effect, or what could perhaps be more accurately described as variations on the basic distortion sound. These include simple modifications such as the use of soft clipping, where the signal is allowed to increase in amplitude to some extent once the clipping level has been reached, and the inclusion of filtering, such as a lowpass filter to remove the higher harmonics and give the so called “thick” distortion sound. More complex types include units which have envelope shapers to retain the normal dynamic characteristics of the guitar. Simple clipping tends to give a sort of sustain effect, with practically no variation in the volume of each note from its beginning until the output of the guitar has practically decayed to zero. With another form of up-market fuzz the output of each pick-up coil is processed separately. This avoids the intermodulation distortion that occurs if two notes are fed into a single clipping circuit, and the consequent non-harmonically related (and rather discordant) frequencies that would be generated. Most fuzz units are only suitable for monophonic use.

Fuzz or distortion is a classic effect for guitarists. This unit incorporates filtering to give a “bright” sound which can be used with polyphonic inputs, and a distortion control to give a variety of effects from a ‘natural’ guitar distortion to heavy over-drive.

CONSTRUCTIONAL PROJECT

BRIGHT FUZZ

BY “BOBBY ROCKETT”

Plug it in and grind it out!

The completed bright fuzz unit.

SYSTEM OPERATION

This distortion unit falls into the “improved” effect category, and the block diagram of Fig. 2. helps to explain the way in which the circuit functions. A buffer stage at the input gives the circuit a suitably high input impedance to match a guitar pick-up, and the output from the buffer is split two ways. Part of the signal is fed to one input of a mixer stage, and it is from here that the output signal is taken. The main output signal is therefore just the unprocessed input signal.

Some of the output signal from the buffer stage is fed to a clipping circuit which generates the “distortion” signal in the usual way. This signal is then processed by a highpass filter which removes the fundamental signal and the lower harmonics. If two or more notes are played simultaneously, the highpass filter also results in most of the intermodulation products being removed. The filtered signal is fed to the mixer via a gain control, and a controlled amount of distortion is added to the straight-through signal.

Fig.1. The standard “Fuzz” effect is produced using symmetrical clipping, as shown here.
Although this system may not seem to be much different to the standard type of fuzz unit, it does in fact give a somewhat different effect, and is not without its advantages. One of these is that the envelope shape of the original guitar signal is largely retained since much of the output signal is simply a buffered version of the input signal, but the circuit does not involve the complication and expense of an envelope shaper. The original envelope shape being retained is dependent on only a moderate amount of distortion signal being mixed into the straight-through signal. With a large amount of distortion added to the signal the fuzz effect is much stronger, and as the amplitude of the distortion signal is reasonably constant, this also gives a sustain type effect. The effect can therefore be varied from a mild distortion type, with the guitar's envelope being retained, through to a strong fuzz effect with sustain.

This gives a much more versatile and controllable effect than a conventional fuzz effect unit. These usually include a gain control which enables the degree of clipping to be controlled, but in practice it does not give much control over the effect. This is primarily due to the fact that there is little difference in the sounds produced by mild and heavy limiting. In either case the degree of distortion is severe, and although heavy limiting does generate stronger harmonics, much of the additional harmonic output is in the ultrasonic range and is therefore inaudible. Also, both mild and strong clipping give a marked degree of sustain. With the system used in this design, the distortion level can be set accurately at any desired level, from normal levels right down to zero. The highpass filtering is not an essential feature, and it results in a fairly "bright" rather than a "thick" distortion effect. The reason for its inclusion is that it is advisable to keep the degree of distortion to no more than a moderate level, as otherwise the distortion tends to mask the fundamental frequencies and the music.

CIRCUIT OPERATION

Fig. 3 shows the full circuit diagram of the unit. Although based on operational amplifiers, the circuit has a single 9 volt supply rather than a dual balanced supply rails. R1, R2 and C1 are used to provide a centre tapping on the supply rails, and which is used for biasing purposes.

IC1a acts as the input buffer stage, and this is a simple unity gain, non-inverting amplifier with R3 providing bias, and setting the input impedance at 220k. IC1b is the mixer stage, and this is a conventional summing mode type. R4, R5, and R6 all have the same value, and this gives nominally unity voltage gain from each input of the mixer to the output.

The clipping amplifier is built around IC2a, and this is basically just a non-inverting amplifier circuit. The voltage gain of the circuit is controlled by negative feedback, and this has R7, R8, and VR1 as its main elements. The voltage gain is equal to the total value of all three resistances, divided by the value of R7. VR1 therefore enables the voltage gain to be varied from two times at minimum resistance, to around 50 times at maximum resistance. This ignores the effect of D1 and D2, which are connected in parallel with the total resistance of R8 and VR1. These silicon diodes, and as such they do not conduct significantly until supplied with a forward bias of about 0.6 volts. Increasing the bias voltage above this level results in the resistance falling very rapidly.

Provided the output voltage of IC2a does not exceed about 0.6 volts peak, neither diode has any significant effect on the negative feedback circuit. In practice, though, the signal from the guitar will drive the circuit to the point where this level is easily reached. This brings D1 into conduction on peaks of negative going half cycles, and D2 into conduction on peaks of positive going excursions. When brought into conduction, the diodes greatly reduce the feedback resistance, and thus also the voltage gain of the amplifier. This introduces the required symmetrical clipping and distortion.

The highpass filter is a three stage (18dB per octave) type. In other words, below the cutoff frequency a halving of frequency causes the gain to be reduced by a factor of eight. The circuit is a conventional active type which has IC2b as the unity gain buffer stage. The cutoff frequency is in the middle of the audio band at about 1kHz, which is above the normal fundamental frequency output of a guitar. Consequently the output from IC2b is mainly harmonics (both the natural harmonic output of the guitar and those produced by the clipping).

The output from IC2b is coupled to
CONSTRUCTION

The printed circuit track pattern and component layout are shown in Fig.4. IC1 and IC2 are FET input devices, but as they are JFET rather than MOSFET types, no special handling precautions are required. On the other hand, they are not the cheapest of components and the use of (8 pin DIL) integrated circuit holders is recommended. Do not overlook the single link wire which fits just above VR1. The board is designed to accept miniature capacitors, and it is important to use the specified types or physically similar components. Otherwise, there could be difficulty in fitting the components onto the board, and in fitting the completed board into the case. There are a number of connections to off-board components to be made, but at this stage only fit pins on the board at these points.

A strong case is needed for a project of this type, which is likely to receive a certain amount of rough treatment in normal use. A metal type is also well suited to an application of this nature where electrical screening can help to prevent stray pick up of mains hum and other electrical noise. A diecast aluminium box is ideal as it provides both good screening properties, and great physical strength. The printed circuit board is designed to fit into a standard 150 by 80 by 50 millimetre diecast aluminium box, and it simply slots into the set of guide rails nearest the rear of the case, with the component side of the board facing forwards. If you decide to use a different case, which is a course of action I would not recommend, there are not likely to be suitable guide rails for the board, and it must then be bolted in place. M3 or 6BA fixings are suitable, and there are suitable vacant areas of board to accommodate these. If the case is a metal type it would be essential to use spacers to keep the connections on the underside of the board clear of the case.

The case is effectively used up-side-down, with the removable lid becoming the base panel, while S1 is mounted on the top panel of the case. S1 must be a heavy duty push button type so that it can be operated by foot. Ordinary push button switches are not recommended for this application as they would be unlikely to last long, even if used carefully. If a switch having SPST contacts proves to be difficult to obtain, then two contacts of a DPST or DPDT type will do just as well. S2 is a set of make contacts on SK1, and in common with many effects units, the device is automatically switched on when the jack plug is inserted into SK1, and switched off again when it is removed. This method is one which helps to avoid accidentally leaving the unit switched on. It might prove to be impossible to obtain a socket which has just one set of make contacts, but a type with DPDT contacts will suffice, with four tags simply being left unused. Of course, if preferred it is quite acceptable to use a separate on/off switch.

In order to complete the unit there is a certain amount of hard-wiring to be added, and details of this are included in Fig.4. Pieces of ribbon cable give a neat finish and are easy to fit, but ordinary multistrand PVC covered connecting wire is perfectly suitable. The battery fits into the space between VR2 and the printed circuit board. Some foam material can be used to keep it in place and to prevent it from rattling around inside the case.

![Fig.4. Details of the printed circuit board and wiring.](image-url)
IN USE

The guitar connects to SK1 using a standard jack lead, and a second jack lead is needed to couple the output from SK2 to the input of the guitar amplifier, mixer, or whatever. As explained previously, plugging a jack plug into SK1 automatically switches the unit on, and removing the jack plug switches it off.

With S1 set to switch in the effect and VR1 set at a roughly central setting, the unit should give a fuzz effect, with VR2 enabling the amount of distortion to be varied from zero to a high level. With a fairly low output guitar pick-up VR1 must be set for a high level of gain (set well in an anticlockwise direction). Inadequate gain will manifest itself as the distortion dying away quickly after a note has been played, or no distortion being produced at all. With a high output pick-up VR1 must be set for a low level of gain, or any slight vibration of a string will tend to give a strong output from the clipping circuit and give unwanted output signals. Finding the best setting for VR1 is really just a matter of trial and error, and with some experimentation a suitable setting should soon be found. There is a fair amount of latitude here. The unit should have sufficient gain available to suit even very low output pick-ups, but VR1 could be raised in value to give even higher maximum gain if necessary.

Interior views of bright fuzz unit showing component mounting details.
DIAGRAM

Still the only drawing program available for the BBC micro which gives you the ability to draw really large diagrams and scroll them smoothly around the screen stopping to edit them at any time if required.

Pineapple's unique method of storing the diagram information on disc means that the size of a diagram is limited only by the free space on disc and not the amount of computer memory you have available. (A blank 80 track disc will allow up to 39 mo pend drive screens of diagram.)

The superb print routines supplied with the program enable large areas of the diagram to be printed in a single print run in a number of different sizes and rotated through 90 deg. if required. Full use can also be made of printers which have a wider than normal carriage available.

PCB

This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any FX compatible dot-matrix printer.

The program is supplied on EPROM and will run with any 32k BBC mics (including master series). Also supplied is a disc containing a sample PCB layout to demonstrate the programs features.

By using an EPROM for the program code the maximum amount of RAM is available for storing component location and ASCII identification files etc. (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). This is not to the number of tracks for a given PCB, although the maximum size of board is restricted to 8" x 8.5".

Using a mode 1 screen, tracks on the top side of the board are shown in red, while those on the underside are blue. Each side of the board may be shown individually or superimposed. A component placement screen allows component outlines to be drawn for silk screen purposes and component numbers entered on this screen may be displayed during track routing to aid identification of rounds.

The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition 1:1 or 2:1 scale, enabling direct contact printing to be used on resist covered copper clad board.

This program has too many superb features to describe adequately here, so please write or phone for more information and sample printouts.

PRICE £85.00 + VAT

CONVERTER LEADS

Converter leads to enable the Trackerball to run mouse software and the mouse to run trackerball software (inc. DIAGRAM). Please state which way round when ordering.

PRICE £8.00 + VAT

MICROSPICE

A new addition to our range of engineering software. Microspice is a very powerful DC and AC analogue circuit simulation package for any model BBC computer.

As well as all the usual facilities available with this type of program, non-linear effects, small signal, noise measurements and sweeps may be performed. Component values may be swept, allowing component tolerances to be investigated as well as thermal performance etc. Comprehensive transistor modelling is incorporated using a 20 parameter Exact Model description.

The program is supplied on disc with a very comprehensive 40 page manual.

Please write or phone for more information

PRICE £99.00 + VAT P&P FREE

ALL ORDERS SENT BY RETURN OF POST

39 Brownlea Gardens, Seven Kings, Ilford, Essex IG1 3NL. Tel: 01-599 1476
CIRCUIT COUNTERS, REGISTERS, PATTERN RECOGNISERS AND 7-SEGMENT DISPLAYS
CAPACITORS AND WIRE)
AND EXPLAINS HOW TO DESIGN AND USE ADDERS, SUBTRACTORS, COUNTERS, REGISTERS, PATTERN RECOGNISERS AND 7-SEGMENT DISPLAYS.

DIGITAL COMPUTER LOGIC

£7.00

DIGITAL COMPUTER DESIGN

£9.50

MICROPROCESSORS & MICROELECTRONICS

£6.50

The SUPERKIT series is backed by our theory courses. DIGITAL COMPUTER LOGIC (DCL), the beginners’ course, covers the use and design of logical circuits, flipflops and registers. DIGITAL COMPUTER DESIGN (DCD), a more advanced course, covers the design of digital computers both from their individual logic elements and from integrated circuits. MICROPROCESSORS AND MICROELECTRONICS (MIC) teaches what a microprocessor is, how it evolved, how it is made and what it can do.

GUARANTEE. If you are not completely satisfied, return the item to us in good condition within 28 days of purchase. All goods include wartime package protection (ask for prepayment advice if normal). Orders dispatched within 48 hours. Overseas payment by international credit card or by check/draft on a London bank.

CAMBRIDGE LEARNING LTD. Unit 24, Rivermill Site, FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.

Telephone: 0480 674466.

Please send me (initial letters used)

SUP I £22.00 DCL £7.00
SUP II £16.00 DCD £9.50
SUP I + II £35.00 MIC £6.50

Full details of all your courses (please tick)

I enclose a cheque/PO payable to Cambridge Learning Ltd for £

Please charge my

credit card

No.

Expiry date

Telephone orders from credit card holders accepted on 0480 674466 (24 hrs).

Name

Address

Signature

CAMBRIDGE LEARNING LTD

Unit 24, Rivermill Site, FREEPOST
St. Ives, Huntingdon, Cambs PE17 4BR
England.
The effects of temperature on electronic systems are something that often have to be guarded against, with problems such as drifting in oscillators and precision d.c. amplifiers being quite common. As temperature affects practically any electronic device to some degree this makes it relatively easy to sense. In fact there are several types of temperature sensor in common use, and the thermistor type is one of the most common. These are constructed from a substance, such as a compound of nickel magnetite, which produces a large change in resistance for a given temperature change. All the thermists that I have ever encountered have been negative temperature coefficient (NTC) types. In other words, increased temperature produces a reduction in the component's resistance. Positive temperature coefficient thermistors do exist, but do not seem to be available to amateur users.

Thermistors can be used in temperature measuring applications, but their linearity over a wide temperature range is not equal to that of many other types of temperature sensor, and they are perhaps most used for temperature compensation. A typical application of this type would be as the bias stabiliser in the class B output stage of an audio power amplifier. The fact that these components provide true resistance and have a relatively high sensitivity, makes them well suited to applications where simplicity rather than great precision is called for. As an example of the sort of sensitivity that these devices achieve, the VA1066 rod type thermistor has a typical resistance of 47k at 25°C, but this falls to only about 940 ohms at 150°C.

Not all thermistors are intended for temperature sensing, and there are glass encapsulated devices of the so called 'self heating' variety. These are really current rather then temperature sensors, and a current flowing through a device of this type results in it heating up slightly, which in turn produces a reduction in its resistance. To aid their efficiency the glass envelope is often evacuated so that there is no air to conduct heat to, or from, the encapsulation. Probably the most popular application for this type of thermistor is in high quality audio signal generators where they are used to stabilise a sinewave oscillator so that it is maintained below the level at which clipping occurs. The R53 and (seemingly identical) RA53 types are intended for this type of circuit.

PLATINUM SENSORS

A more up-market form of temperature sensor uses a grid of platinum wire as the sensing element. Pure metals offer quite high temperature coefficients and are consequently well suited to temperature sensing applications. In the case of platinum types, the fine wire is these days more likely to be in the form of a track deposited on to a substrate made from an insulating material. Note that this type of sensor is a positive temperature coefficient type, and that increased temperature produces higher resistance. The main attraction of sensors of this type is their wide operating temperature range, with -100 to +500 degrees Celsius being quite typical. An accuracy of around 0.1% can be achieved over the greater part of this range.

These sensors are mostly of open construction, and care needs to be taken to avoid damaging the sensing element. The sheathed type, which are in the form of a stainless steel probe assembly, are more suitable for general and experimental use, but unfortunately this style of sensor seems to be substantially more expensive than the open construction type.

The usual type of circuit for this form of sensor is a standard four element bridge. This arrangement does not produce a very large output voltage per degree Celsius, and the exact voltage obviously depends on the supply voltage fed to the bridge circuit, and on the sensitivity of the particular sensor used. Typically a 100°C increase in temperature would give a rise of around 40% in the resistance through the sensor. A modest supply potential of a few volts is generally sufficient to give an output of around 1 millivolt per degree Celsius. Although this may not seem very much, platinum temperature sensors are often used over quite wide temperature ranges, and the total output voltage swing over the full temperature span of the circuit could be several hundred millivols. Also, the source impedance is generally quite low at around 100 ohms. This gives an output which is capable of directly driving many high quality digital voltmeter circuits. Direct driving of an ordinary (analogue) panel meter would also be feasible, but a good digital instrument is really needed in order to fully utilize the accuracy provided by this type of sensor.

THERMOCOUPLES

A thermocouple is one of those devices which practically everyone has heard of, but relatively few people have actually ever used. Like strain gauges, they are a standard form of sensor for industrial use, but are relatively little used in home constructor designs. In fact I can only recall seeing one home constructor project which included one of these devices.

Operation of a thermocouple relies on the fact that the number of free electrons in a metal is dependent on both the com-
position of the metal and its temperature. Two pieces of dissimilar metal can therefore be made to produce an output voltage that is a function of temperature, but in order to give usable results, this type of sensor has to utilize a differential arrangement rather than truly operating as an absolute temperature sensor. The trouble with a simple single junction thermocouple is that the connections to the device produce further thermocouples which seriously affect the output voltage.

Fig. 1 shows the basic arrangement used in a practical thermocouple, and in this form one soldered connection balances out the effect of the other. Unfortunately, the output from one thermocouple junction also balances out the signal from the other, and it is because of this that the differential approach has to be adopted. One end of the device must be kept at a stable reference temperature while the other is used for measuring purposes, giving an output voltage that is proportional to the temperature difference.

In practice, the refined set up of Fig. 2, is more common, and here the reference end of the sensor is allowed to take up any temperature, but it is monitored by a compensating element. This effectively adjusts the output voltage to compensate for changes at the reference end of the device, so that the output voltage then becomes a function of the absolute temperature at the measuring end. This system is likely to be less accurate than maintaining the reference junction at a fixed temperature, but it is generally much more convenient. Obviously a thermocouple is only well suited to the measurement of temperature that are substantially different to the ambient temperature, so that a reasonable temperature difference is present between the two junctions.

Thermocouples can operate well over very wide temperature ranges, and it is their ability to function at very high temperatures which makes them popular for many industrial applications. Devices which will operate at up to 600 or 700°C are quite common, and types which will work at up to 1000°C are readily available. Most other forms of temperature sensor are incapable of operating at temperatures anywhere near this figure. Linearity at these high temperatures is extremely good. At the other end of the scale most thermocouples will work down to -50°C, and some will operate at -200°C or even less. Linearity at low temperatures is generally relatively poor though.

Other points in favour of these devices are that they can be made very robust, or if made from fine wire, can have fast response times. Fast in this context means about 0.1 seconds, which is actually very slow by normal electronic standards, but compares well with the response time of several seconds which is associated with most other types of temperature sensor. They are available in a variety of styles ranging from bare wire types to enclosed and insulated probe assemblies. The output voltage is quite low at only about 40 microvolts per degree Celsius of temperature difference, and thermocouples have to be used in conjunction with high gain d.c. amplifiers having low levels of drift.

Anyone wishing to experiment with these devices could do worse than refer to the excellent 'Thermocouple Interface' article in the June 1986 issue of 'Practical Electronics'. This project uses a modern integrated circuit to take the hard work out of interfacing these devices.

SENSORS

Semiconductor temperature sensors are now very popular in both home constructor and industrial applications.

There are numerous sensors for both temperature measurement and control, and these all take advantage of the fact that the voltage across a forward biased silicon semiconductor junction varies with applied temperature. In other words the basic sensing element is just an ordinary silicon diode used in a configuration of the basic type shown in Fig. 3(a).

The voltage developed across a forward biased silicon junction is in the region of 0.65 volts, but the exact figure depends on the particular device and the junction temperature. The voltage reduces at a rate of approximately 2 millivolts per degree Celcius of temperature increase. For an instrument which is to cover a wide temperature range this gives what will often be a large enough output voltage to directly drive a digital or analogue panel meter. Where necessary, the standard bridge and differential amplifier configuration of Fig. 3(b), can be used to give a boosted output voltage with the offset potential removed. Although a humble 5p silicon diode may seem to be an unlikely sensor, it does in fact give reasonable accuracy over a wide temperature range (typically 1% over a 100 degree span). This is not adequate for the most demanding of applications, but is adequate for many other purposes.

There is now a wide range of integrated circuit temperature sensors available, and some of these provide a boosted output voltage (typically 10 millivolts per degree Celsius), but leave a large d.c. offset on the output voltage. In fact some devices are temperature dependent current sources rather than voltage generating devices, although they only require the addition of a load resistor at the output in order to convert them to temperature dependent voltage sources. Some of the more recent devices include a differential amplifier which removes the d.c. offset to give an output of so many millivolts per degree Celsius. The LM35DZ, for example (Fig.3(b)), is a three terminal device in a standard TO-92 plastic encapsulation which gives an output of 10 millivolts per degree Celsius over an operating range of 2 to 100 degrees Celsius.

The accuracy of semiconductor sensors is generally not as good as that provided by platinum types, and it has to
be remembered that the component at the heart of even the more up-market of these devices is still only a forward biased silicon junction. Even where there is a facility to trim the device for optimum linearity, the accuracy is unlikely to be much better than ±1% over a wide temperature range, although a much higher degree of accuracy can be obtained over restricted temperature ranges. Where high accuracy over a wide temperature range is required, a platinum type sensor would normally be more suitable than a semiconductor type.

Semiconductor temperature sensing devices are not restricted to simple temperature to voltage/current converters, and there are devices which include further circuitry on the chip. Perhaps the best known of these is the LM3911 which can be used as an ordinary temperature sensor, or when connected in the circuit of Fig. 4, it functions as a temperature operated switch (for use as a thermostat for example). The output terminal goes high if the monitored temperature falls below the threshold level set using VR1.

PYRO SENSORS

The shorter infra-red wavelengths (around 1 micron) can be detected perfectly well using ordinary photocells, such as cadmium sulphide phototresitors and silicon phototransistors. In fact many common types of photocell have peak efficiency in the infra-red part of the spectrum. Some applications require much longer wavelengths to be detected, and here we are talking in terms of wavelengths in the region of 5 to 15 microns. These devices are used in so called ‘presence’ detection applications, where the presence of a human or humans within the monitored area must be detected. Applications of this type include automatic lighting, automatic doors, and burglar alarms.

There are alternative methods available, such as ultrasonic and radar doppler shift systems, but these passive infra-red detectors are generally accepted as offering a very good compromise between cost and complexity on the one hand, and reliability and performance on the other. Note that these are passive devices which detect body heat, and not infra-red that has been transmitted to the target object and then reflected back to the receiver unit. It is this factor that helps to give these systems good reliability as they will not detect any object which moves across the monitored area, only those which produce significant amounts of infra-red radiation at suitable wavelengths.

These ‘pyro sensors’, as they are generally called, usually come in the form of twin sensors and a field effect transistor source follower buffer stage in a single encapsulation. The encapsulations are usually standard metal transistor types which have been modified by the addition of a suitable window at the top of the component.

Fig. 5. shows the standard arrangement, although there are alternative configurations available, including single sensor types, and devices which require an external source load resistor (RB). The sensors are made from a ceramic material such as lead zirconate titanate, and each one consists of a thin slice of the material with metal electrodes deposited on both sides. The ceramic material does not naturally have the required characteristics, and must be processed to give the desired effect. The crystals in the material act as small electrical dipoles, but they are normally just arranged randomly. They are made to line up by heating the material to a critical temperature (just below the Curie temperature, at which the crystals have no dipole moment), and then applying an electric field. Once the material has cooled the electric field can be removed, and the crystals will remain aligned.

Changes in the polarisation of the material cause small voltages to be generated across the electrodes, and changes in the amount of heat received by the device result in similar changes in polarisation. This can be caused by more than one factor, including an increase in the randomness of the dipoles orientation due to thermal agitation, and physical changes in the sensor. The general way in which the signal is generated is similar to the better known Piezo electric effect, where physical distortion of a suitable crystal material produces electrical output signals (as used in crystal microphones and ceramic pick-ups).

This type of sensor is only used to detect movement, rather than the presence or otherwise of suitable infra-red signals, as the bandwidth is very limited. The sensing elements are made thin so that they respond reasonably rapidly to changes in temperature, but a -12dB
In these days of MOS operational amplifiers this does not represent any real difficulty. Two points which should not be overlooked when using this type of sensor are that the output voltage depends to some extent on the temperature of the solution, and the response time can be quite slow when measuring strong solutions (in excess of one minute in fact).

The output voltage from the probe, although never more than a fraction of a volt, is quite respectable, but the available current is very limited. The output impedance of a pH probe is generally of the order of a few tens of megohms. It must therefore feed into an ultra-high input impedance buffer amplifier, and amplification are an example of this. Another trend is towards devices that provide a high degree of guaranteed accuracy so that calibration is greatly simplified, or in some cases is rendered totally unnecessary. This is a trend that seems likely to continue, with ever greater accuracies being offered.

Fig. 6. Typical construction of a pH probe.
The new PE 30 + 30 integrated Amplifier (featuring Practical Electronics Feb–April '87)

The PE 30 + 30 integrated amplifier is the first to benefit from Gibson Nais’s research into Temperature Generated Distortion in transistors. As a result it exhibits a smoothness and musicality normally only expected from expensive valve amplifiers. Advanced power supply circuits and the use of high precision resistors in critical positions realise its ability to give greater musical pleasure from your records, CDs and tapes. Yet you can buy the complete kit from AUDIKITS for under £60 to build it yourself.

Complete Kits
PE 30 + 30 standard 30W £54.50
PE 30 + 30 standard with Extra Output Transistors for 40W £62.50
PE 30 + 30 preamplifier improved version
40W Output £550

All parts for PE 30 + 30 are available separately.

VARIABLE VOLTAGE TRANSFORMERS

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
<th>SIZE</th>
<th>INPUT TO OUTPUT</th>
<th>NO.</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>220/500V AC</td>
<td>60/30V AC</td>
<td>8"</td>
<td>220V, 500V 60/30V</td>
<td>1</td>
<td>200V, 100V</td>
</tr>
</tbody>
</table>

SUPPLY CAMERA AND MONITOR TUBES FOR A WIDE RANGE OF MODELS, AS WELL AS SCANING YOKES GENERATORS ETC.

VAT and carriage, lens extra.

CAMERA LENSES TO BE ACCOMMODATED.

OUTPUT OF 1V P-P AND WILL WORK WITH ANY VIDEO RECORDER HAVING A VIDEO INPUT SOCKET, DIGITISER, MATRO2, F1-1, OP2767, 2N4403, M111015, BD244C, B0243C, BC547C.

CURRENTLY OFFER IS A PROFESSIONAL DRIVE BOARD AND TUBE TO MAKE A SUPER-B PROFESSIONAL 12" PROFESSIONAL

YOU CAN BUY THE COMPLETE KIT FROM AUDIKITS FOR UNDER £160 TO BUILD IT YOURSELF.

PNEUMATIC SOLENOID VALVE (24V, 5/2) FOR AIR, PNEUMATIC, COMPRESSED AIR, WATER, ETC.

CUDDLING EYES — BRAND NEW!

25W, 300W AMERICA. AMERICAN "MINI " 7" STROBE, HIGH QUALITY 2 METERS, 1000,000 LUMEN.

(£17.50 INC VAT)

AERIALS "B" & "C" MADE-UP UNITS.

KITS OF PARASITIC ANTENNAS AVAILABLE.

THE SOCIETY OF ELECTROSCIENCE

An association which is widely recognised and respected, which enforces the status of its members, protects and promotes their interests, assists their careers and encourages their ethical foundations is the foundation of every profession.

The Society of Electroscience is the specialist association for men and women who are professionally engaged in research, development, design, manufacture, control and test of electrical, electronic and micro-electronic projects and equipment.

Efficiently run in conjunction with the Institution of Analysts & Programmers, the Society of Electroscience has a low rate of subscription than any comparable professional body in Europe or North America. Additionally, no charge is to be made for the examination of a request for election where the Council concludes that a candidate has not reached the required standards of theory and practice.

Known and respected throughout the English speaking areas of the Free World, the two non-profit making organisations have members – December 1986 – in sixty-one independent states and 62 countries. Applications from other scientists, engineers and technicians who are making or intend to make a significant contribution to an industry which increasingly incorporates a branch of electroscience will be welcomed for consideration by the Council.

A guide to the gradings and requirements of membership and an application form is available free of charge upon request to the Society’s Co-ordinator either by letter or, in normal office hours, by telephone.

01-894 4411

THE SOCIETY OF ELECTROSCIENCE

GIBSON HOUSE, FOURTH CROSS ROAD, TWICKENHAM MIDDLESEX, TW2 7EL, ENGLAND
OVP POWER AMPLIFIER MODULES

Now enjoy a world-wide reputation for quality, reliability and price performance. Prefect for the hobby market - i.e. radio, Leisure, power supply, hifi, etc. When comparing prices, NOTE all models include Toroidal power supply housing, circuit with power capability to Vu meter. Open and short circuit proof.

BURLGAR ALARM

Better to be Alarmed than reptanted. Thandar's famous 'Mindet' Burglar Alarm System - magnetic micro-wave principle. Supplied complete with interconnection cable.

PRICE INCLUDES V.A.T. * PROMPT DELIVERIES * FRIENDLY SERVICE * LARGE S.A.E. 25p STAMP FOR CURRENT LIST.

LOUDSPEAKERS 5" to 15" up to 400 WATTS R.M.S.

Loudspeakers available including Cabinet Plans Large S.A.E. (28p) for details.

POWER AMPLIFIERS

50 WATTS R.M.S. Hi-Fi. Disc. 70 or over. 1/2" vinyl disc. Ground fixedby fixed output. Res. tfreq 40Hz. Res. to 6-5KHz. Sens. 98dB. Price £5.90 + 40p P & P.

PEIZO ELECTRIC TWEETERS

PIEZO ELECTRICAL TWEETERS

MOTOROLA

Join The Peace revolution. The law dynamic music, the voice coil of a Peace tweeter produces an improved transient response with a lower distortion levels than ordinary dynamic tweeters. As a consequence it is not required that parts can be added to existing speaker systems. (more of 2 put in smaller).

FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER

PRICE A ' (KSN2033A) 3" round to projecting wire mesh. Ideal for both shop window and medium sized hi-fi systems. Price £4.95 each + 40p P & P

PRICE B ' (KSN1016A) 3" horn tweeter. For general purpose speakers, disco and P.A. systems etc. Price £9.99 each + 40p P & P

PRICE C (KSN6016A) 2" x 5" wide dispersion horn. For high efficiency Hi-Fi systems and quality disco systems. Price £6.99 each + 40p P & P

PRICE D ' (KSN1032A) 3" horn tweeter with miniature slotted treble switch. For Hi-fi M.D. sound systems etc. Price £9.99 each + 40p P & P

STEREO DISCO MIXER

STEREO DISCO MIXER with 2 x 5 band eq. & 4 gain equalizers and twin 10 and 15 series vinyl channels. Ideal for both club and disco sound systems. Price £14.95 each + 40p P & P.

PIEZOELECTRIC AFC TWEETERS

Hobby kits. Proven designs including glass fibre printed circuit board and high quality low loss components detailed in instructions.

FM MICROTRANSMITTER (BUG) 30/106MHz with very sensitive microphone, Range up to 500 metres. 57 X 46 X 14mm (9 volt) Price £8.95 + 75p P & P.

3 WATT FM TRANSMITTER 3 WATT B/151MHz varicap controlled professional performance. Range up to 350 metres. 114 X 58 X 30mm (12 volt) Price £14.49 + 75p P & P.

SPACEWATCH

BY DR PATRICK MOORE OBE

Our regular look at astronomy

Probes are reaching further into and beyond the Solar System. Now a probe may be sent out to the Oort Cloud, more than a light year away.

All astronomers have been saddened by the death of Dr Richard van der Kruit Woolley, the last Astronomer Royal who was also Director of the Royal Greenwich Observatory. Woolley, a great administrator, was also a leading astrophysicist who achieved much valuable work. Yet, ironically, he may be most remembered for his off-the-record comment in the 1950s that space travel was ‘utter bilge’. This was said in the heat of the moment when he was being questioned by journalists after a long and tiring flight—and it is significant that later on he contributed largely to space programmes.

PROJECT TAU

Only a few decades ago it seemed futuristic to talk about sending probes to the Moon. Today we have explored the Solar System out as far as Uranus, and by the end of the 1980s only Pluto of the main planets will remain unvisited (assuming that Pluto merits true planetary status, which is becoming more and more doubtful). We have also carried out rendezvous missions with two comets.

The Sky This Month

April skies are not really rich in planets. Venus is the exception; it remains a brilliant object in the morning sky, and cannot be mistaken. Telescopically it is, unfortunately, an unrewarding object. Its phase is now over 80 per cent, and virtually no markings can be made out. Jupiter and Saturn are also morning objects, but are as yet badly placed, while Mercury is even more elusive—though on the 19th it may be located slightly south of Jupiter.

This leaves Mars, which remains visible in the western sky after dusk. The apparent diameter is now less than 5 seconds of arc, so that powerful telescopes are needed to show anything much on it; but earlier in the year the Martian atmosphere was very clear, and with my own 12-inch reflector during January and February I was easily able to draw the main dark features. There had been earlier reports of dust-storms, but I could see no sign of them.

The Moon is full on the 14th and new on the 28th. On the 14th there is a penumbral lunar eclipse, but the most that we can expect is a very slight dimming.

We have now virtually lost Orion and the brilliant winter star-groups, though part of the Hunter’s retinue remains visible after dark—notably Procyon, Capella and the Twins, Castor and Pollux. Ursa Major, the Great Bear or Plough, is not far from the zenith, which means that the W of Cassiopeia is low in the north, though from Britain it always remains above the horizon. In the South Leo, the Lion, is high, and the curved line of the Sickle, led by the first-magnitude Regulus, makes it very easy to identify. Following it round is Virgo, the Virgin, with the bright Spica and the ‘bowl’ which marks an area remarkably rich in faint galaxies. Also on view is Arcturus in Boötes (the Herdsman), a lovely orange star which is actually the brightest in the northern hemisphere of the sky; it is surpassed only by the southern Sirius, Canopus and Alpha Centauri, of which the last two never rise above our horizon.

Closer to the southern horizon is a wide area which is very efficient in bright stars. This is the constellation of Hydra (the Watersnake), actually the largest in the entire sky, but with only one conspicuous star—Alphard, which is of the second magnitude and is clearly orange. It is often nicknamed ‘the Solitary One’ because of its relative isolation. To identify it, first find the Twins and then use them as guides; a line from Castor, passed through Pollux and extended, will lead straight to Alphard.
But even so, the idea of probing as far as the Oort Cloud still seems more like fiction than fact. We may soon have to revise our thinking!

The Oort Cloud, named after Jan Oort, is believed to be a ‘reservoir’ of comets orbiting the Sun at a distance of more than a light-year. No doubt the present Pioneers 10 and 11 and Voyagers 1 and 2 will reach it eventually, but not for a very long time, and the chances of keeping in touch with them at such distances are nil. However, a new project, Tau, may alter the whole situation.

Tau stands for Thousand Astronomical Units. It has been formulated by scientists at the Jet Propulsion Laboratory in California, and involves what is in effect a robot space-craft which will travel out far beyond the known planets and may even reach the Oort Cloud. Its main task will be in astrometry – the positions, movements and distances of the stars and star-systems. If it can provide images of star-fields taken from a distance of a thousand astronomical units, we will have an immense ‘base-line’ which will be able to provide parallax measurements of objects so remote that their parallax shifts are undetected by our present techniques. (One astronomical unit is the distance between the Earth and the Sun; approximately 93,000,000 miles or 150,000,000 kilometres.)

The problems are tremendous. The main telescope will have an aperture of 1.5 metres, and will be only one of many instruments; but what about propulsion? If we are to send Tau out to such distances in a reasonable time, we must have something far better than our present rocket motor. The JPL design involves a low-thrust ion propulsion system, using some 25,000 pounds of frozen xenon fuel and slowly accelerating Tau to a peak speed of 225,000 mph in ten years – after which the unit will be jettisoned and Tau itself will continue to ‘coast’.

We will also need a nuclear reactor capable of supplying enough electricity to power ten thousand 100-watt light bulbs, plus a laser communications system which will be able to pump data across a distance of six light-days. Moreover, since the active lifetime is planned at 50 years, everything possible must be done to ensure against failure of even a single component.

All these considerations involve major advances in techniques, and any thought of launching Tau before the end of the century is discounted. However, the JPL team believes that it will be possible by around the year 2005. This is a mere eighteen years in the future – but look back at the situation as it was eighteen years ago, in 1969. At that stage a Moon landing was still no more than imminent, and even the nearer planets seemed out of range for soft-landing probes. If progress continues at a comparable rate, then the date for Tau starts to look a great deal more reasonable.

There is, of course, the undoubted fact that the team which sends Tau on its way will have no hope of seeing the results of all the work put into the planning and instrumentation. But astronomy has always been a science which looks ahead beyond single lifetimes; after all, Edmond Halley knew, when he predicted the return of ‘his’ comet for 1758, that by then he would no longer be alive.

Whether or not Tau will actually be built remains to be seen. But the JPL planners are confident that it will; and by the year 2087 we may well have the results sent back from as far away as the Oort Cloud.
SAFETY FEATURE

ELECTRICAL SAFETY

BY RAY STUART

How to become unshockable

Electricity can be dangerous if it is not treated with respect. The way to avoid electrical risk to yourself and others is to construct all mains-operated projects to the proper safety standards before bringing them into use. This is not difficult, and, here is how to do it:

CONSIDER the following scenario. You have just finished designing your latest electronic masterpiece. You have successfully built the circuit board and to your delight and surprise it works first time. You have a bird’s nest of switches, pots, connectors and lamps spread all over the kitchen table and you are threatened with divorce if you don’t move it within ten seconds.

Your immediate thought is to put it in a case as soon possible. You drill a hole for the mains lead, but forget to deburr it; you could not find a rubber grommet, so you push the mains cable through the metal box and tie a knot in it to stop it pulling out. The mains plug came fitted with a 13 amp fuse, so you use it, and in your rush to use the equipment you exchange earth and neutral. The circuit consumes 10 amps but the cable is only rated for three. When you turn it on for the final test the cable catches fire, the main fuse blows and the house is plunged into darkness.

The above may sound somewhat exaggerated, but it serves to illustrate how easy it is to make equipment unsafe. Now ask yourself how much consideration you give to safety when you design and construct mains powered equipment. We are all guilty of ignoring safety to some extent from time to time, perhaps without even realising it!

STRESSING THE OBVIOUS

The above example has safety errors of such obvious magnitude that PE readers should recognise them immediately. However, there are a number of areas where safety can be compromised and it is to these that this article will address itself. Remember that it is not only the constructor’s safety that is at stake, but also that of other unsuspecting persons.

The purpose of this article is to inform the reader of the importance of adopting a safe attitude to electrical work and the techniques that should be employed.

I make no apologies for stating the obvious even though experienced constructors may feel that this is teaching them to ‘suck eggs’. The importance of electrical safety cannot be stated too forcefully. I hope the experienced will regard this as a refresher course, and the newcomer as a useful reference.

MAIN'S PLUG

The most obvious safety factor related to mains plugs is to ensure that the correct colour coding is used, as shown in Table 1 and Fig. 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth – Yellow/Green</td>
</tr>
<tr>
<td>Live – Brown</td>
</tr>
<tr>
<td>Neutral – Blue</td>
</tr>
</tbody>
</table>

The earth lead is bi-coloured to allow easy identification by those who suffer from colour blindness.

![Fig.1. Typical mains plug with cover removed.](image)

The second thing to ensure is that the leads are cut to the correct length. These are sometimes shown on a data card supplied with the mains plug, and serve two purposes. Firstly they allow easy installation and secondly, and more importantly, they ensure that, should the lead be pulled from the plug, the Earth lead is the last to be removed.

There are two types of terminals commonly used, those with insert holes and those with wrap around terminals. When using the insert type it is important to ensure all the conductor strands go into the hole so that there are no loose strands that could short to other terminals. One should also ensure that the insulation covers any exposed conductor, and that the terminal screws are tightened sufficiently to hold the cable in place. In the wrap around type the conductor strands are wrapped around a screw post and a combined washer/nut assembly is used to clamp the conductor. The length of the exposed conductor should be such that it will create about one turn when wrapped around the post. In addition the conductor should be fitted in a clockwise direction around the post to ensure that the cable is drawn into the assembly when it is tightened.

Should the cable diameter be too small for the cable clamp to grip, the diameter should be increased until a suitable fit is achieved. This can be achieved by adding the outer covering from a larger diameter cable, or by using layers of heatshrink sleeving (or similar) until the required diameter is achieved. It should be noted that this technique can also be used for cable glands and plugs/sockets clamps (see below).

Mains plugs are fitted with cable clamps of varying designs. All are designed to prevent the cable from being pulled out. It is important that these are adequately tightened and that the clamp rests against the outer covering of the mains cable; another reason for cutting the leads to the specified length.

Mains plugs should be fitted with a fuse appropriate to the equipment with which it is being used. It is now common for plug manufacturers to fit 3 amp fuses as standard.

Mains plugs come in a range of shapes, colours and prices, and the old addage ‘you only get what you pay for’ is true. Ensure that the plugs you use conform to British Standard BS1363, which should be displayed on the plug.

![Fig.2. Cable entry using gland as grommet and strain reliever.](image)
CABLE ENTRY/EXIT

There are two methods generally used for mains cable entry into equipment. The first, and most elegant method is to use a plug/socket arrangement such as an IEC connector. This provides automatic earthing, and a version of this connector contains a mains filter, especially useful for digital equipment. The second method (Fig. 2.) is to pass the cable through the case and make connections inside. One should ensure that any burrs are removed from the entry hole and a grommet inserted to prevent the metal cutting into the mains cable. Provision should be made to secure the cable to the case, thus preventing the cable being pulled out thereby exposing live conductors. There are several devices available that clamp the cable, such as strain relief bushes and cable glands. One method sometimes seen is a knot tied in the cable (Fig. 3.). This is totally unacceptable as it can damage the cable which could cause the earth conductor to fracture and allow a metal case to become live under a fault condition.

Fig. 3. Incorrect cable entry.

EARTH CONNECTION

It is absolutely essential that exposed metal parts on equipment are earthed. Obviously it is easier to use a metal case as only one earth connection needs to be made. However, if a plastic case is used any metal parts that pass through the case, such as transformer mounting bolts etc., should be earthed. This may require the use of earthing straps as shown in Fig. 4. It should be noted that the earth connection to the case should have its own mounting screw and not rely on the mounting screw for another component.

Fig. 4. Use of earth straps in plastic case.

FUSES AND FUSEHOLDERS

It is quite common to fit a small value fuse in a piece of equipment when the 3 amp fuse in the mains plug is too large, or when one wishes to fuse the d.c. side of the power supply. In these instances a panel mounted fuseholder is used such as that shown in Fig. 5. It should be noted that the feed to the fuse should be to the rear of the fuseholder rather than the side. If the side terminal were used there is the possibility that one could get a shock as the fuse is removed. This is because a finger could touch the top of the fuse whilst the other end of the fuse touches the side terminal. It should also be noted that there are two types of fuseholder available, finger and screwdriver release. Some types of finger release types are not suitable for mains operation on domestic equipment as defined in the Electrical Equipment (Safety) Regulations 1975–76. Reference to manufacturer’s catalogues should indicate these types.

Fig. 5. Panel mounted fuseholder.

The purpose of a fuse is to protect equipment from serious damage arising from large currents due to fault conditions, for example line and neutral shorted together. If these currents were allowed to persist there is a strong possibility that a fire could occur, especially in the mains supply lead. The fuse should therefore be rated below that of the mains cable.

Another important aspect to note when a fuse is placed in the mains circuit, is that it should be fitted in the Line lead, not the neutral lead.

PLUGS AND SOCKETS

If it is necessary for mains to be supplied by equipment to external devices such as motors etc., a plug and socket arrangement provides an elegant solution. However it should be noted that not all types are suitable. Reference should be made to manufacturers’ catalogues to ensure that the types chosen are rated for the current and voltage that are to be used. Plugs and sockets that can be opened without the use of a tool should not be used for mains voltage. I prefer the IEC mains output connectors for use with currents up to six amps. The convention that must be adopted is that sockets supply power, whilst plugs accept power.

CABLES

There are two basic types of cable available, single and double insulated (Fig. 6.). Doubled insulated cables should always be used outside equipment, and it should be ensured that the inner insulation is not exposed when connection is made to plugs and sockets etc. (Fig. 7.). Cables can be categorised by their current rating, by cross sectional area, or by the number of strands in the core and their diameter. Table 2 shows the relationship between these factors for single core equipment cables that comply with BS 4808 part 2. Note that the current ratings are for 70°C.

Wherever possible the cable used should be suitably colour coded as shown in Table 1. This helps to prevent
TABLE 2

<table>
<thead>
<tr>
<th>Current amps</th>
<th>Strands/diameter</th>
<th>area mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>1/0.6</td>
<td>0.28</td>
</tr>
<tr>
<td>1.4</td>
<td>7/0.2</td>
<td>0.22</td>
</tr>
<tr>
<td>3.0</td>
<td>16/0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>4.5</td>
<td>24/0.2</td>
<td>0.75</td>
</tr>
<tr>
<td>6.0</td>
<td>32/0.2</td>
<td>1.00</td>
</tr>
</tbody>
</table>

errors and makes checking easier. Single stranded cables tend to crack much easier than multistranded cables. This is especially true when the single strand is slightly cut during stripping. For this reason I prefer the use of multistrand cables. The cable used should have a higher current rating than the maximum current required by the equipment.

VENTILATION HOLES

When constructing equipment containing components that generate heat, such as transformers in power supplies, it may be necessary to include ventilation holes in the case. Care should be exercised in the position and size of these holes as they could lead to an unsafe situation. The size should be such that a child’s finger cannot pass through the hole and touch any live components. One should also position these ventilation holes so that a screwdriver pushed through them cannot come into contact with live components. It is therefore better to use a number of small holes rather than one large hole, and to include a cover plate behind the holes as shown in Fig. 8.

SWITCHES

Although most switches appear to be adequate for mains use, closer examination may suggest otherwise. For example, two switches may look similar but one may only be rated for 50 volts d.c. use, whilst the other is suitable for 240 volt a.c. operation. One should also ensure that the switch is capable of handling the required current. It is common for switches to have two ratings quoted by manufacturers, for instance 1.5 amps at 250 volts a.c., and 2.5 amps at 125 volts a.c. In addition some switches have different current ratings for inductive and resistive loads. One switch I used recently was quoted as having a current rating of 16 amps resistive and only 4 amps inductive. One should therefore study the manufacturer’s data sheets before selecting a particular switch for a specific application.

Switches are commonly used in equipment as the mains on/off control. If a single pole switch is used it must be inserted in the Line circuit and never in the neutral circuit. However, if a double-pole switch is used both line and neutral may be switched as shown in Fig. 9. Under no circumstances must a switch be placed in the earth circuit. Fig. 9. Single and double pole switch circuits.

WIRING

Having decided which components and wire types are to be used, you can proceed with the actual wiring up. This is probably the area where the greatest number of mistakes can occur.

First the cable has to be stripped before any connection can be made. Care should be taken to prevent the inner copper strands from being cut. This is of particular importance when using single strand cable, as the cable is liable to break at a later date. If some of them are cut the current rating and mechanical strength will be reduced. The answer in this case is to start again. Common practice when using multi-strand cable is to twist the strands together and solder them. Any excess can be removed before the connection is made. It is good practice to ensure that there is as little exposed conductor as possible, as shown in Fig. 10. Terminal blocks are sometimes used as internal connectors. The wiring to these should be checked for stray strands that could short to earth, or to others from adjacent cables. In addition the terminal’s clamp should rest on the strands, not the insulation.

Cable runs not only look more professional, but are easier to trace later, if they are neatly routed. This can be achieved by planning the routing before you start and using cable ties to keep them together. Where possible colour code the cable and use the standard colour code for mains cables.

CASES

There are some aspects regarding safety that should be considered in the choice of a case. Generally there are two options available, metal or plastic. Metal cases may not be as attractive as some plastic cases, but they can have advantages. They are naturally conducting, thereby only requiring one earth connection, and can be mechanically stronger. Plastic cases are not normally conductive which means that, in order to earth any exposed metal components, a number of internal earth straps have to be provided. Exposed metal parts includes things such as mounting screws on transformers, as shown in Fig. 4. No matter what type of construction is used for the case, if it contains mains it should not be possible to open it without the use of a tool. This prevents it from accidentally being opened thereby giving someone an electric shock.

SAFETY CHECKS

When the construction is finished, conduct a few simple checks to ensure that the final system is safe. Firstly, give a visual check to establish that no silly mistakes are present. These include inspecting the mains plug connections and fuse rating, and that line and neutral are not reversed.

Secondly a few tests with a meter are required, which must be undertaken before plugging into the mains.

Earth continuity test. Using an ohmmeter set to a low range, test that the earth pin on the mains plug is connected to the exposed metal parts.

Short circuit test. Position the mains on/off switch to the ON position and connect the voltmeter across the line and neutral pins of the mains plug. The meter should show a high resistance value, indicating that line and neutral are not shorted.

When these prove satisfactory connect the equipment to the mains, and enjoy the satisfaction of having completed a successful and electrically safe project.

CONCLUSION

Safety is something that is not difficult to understand or implement, and is to a large extent a matter of common sense. But even when you know what should be done, you still require a positive safety attitude and the will to implement it.

Fig. 10. Insulated tagging.
1987 CATALOGUE

Out now!! Bigger and better than ever – 80 pages packed with components and equipment from humble resistors to high tech scopes! Bargain List Order Form is £1.50. Gigantic Vouchers all included for just £1.00 inc. post.

FREE KIT-CAT
24 pages illustrated catalogue with over 100 lists, from simple amplifiers to complex EPROM programmers – also computer interface kits enabling any popular computer to be linked to the outside world. Plus kits utilizing breadboards for beginners.

RECENT ADDITIONS
Full details in Bargain List 27

MICROVION

```markdown
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>9mm wide blade</td>
<td>Fully retractable and 115mm long.</td>
<td>£1.69 95p</td>
</tr>
<tr>
<td>Heavy duty version</td>
<td>18mm and wiring details. PCB is 333 x 90mm.</td>
<td>£1.99 95p</td>
</tr>
<tr>
<td>220/240V ac to heavy duty transformer</td>
<td>Accessible for mods etc.</td>
<td>£2.20 1.99 95p</td>
</tr>
<tr>
<td>16-way sequence kit</td>
<td>Designed to provide 4 outputs independently.</td>
<td>£5.80 4.30 3.00 2.50 2.00 1.50 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.00 0.00</td>
</tr>
<tr>
<td>8-way sequencing kit</td>
<td>Designed to switch up to 16 items with a single device.</td>
<td>£5.80 4.30 3.00 2.50 2.00 1.50 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.00 0.00</td>
</tr>
<tr>
<td>New brand stabilised supply</td>
<td>Designed for use with low power mechanisms (701 103) this kit will operate from a 9V 1.5VA supply drawing a maximum of 50mA.</td>
<td>£4.15 3.00 2.50 2.00 1.50 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.00 0.00</td>
</tr>
<tr>
<td>9V battery</td>
<td>Requires 3V supply.</td>
<td>£5.00 3.95 3.00 2.50 2.00 1.50 1.00 0.50 0.20 0.10 0.05 0.02 0.01 0.00 0.00</td>
</tr>
</tbody>
</table>

**TELEPHONE**

Non-NT approved single piece. Push button round plate with coordinating bracket. 4mm lead (half is coated...) £5.99

**CRAFT KNIVES**

Miniature type (22) snap off sections. 9mm wide blade is fully retractable and can be locked in place. Supplied with 90mm long blade. £1.00

**HEAVY DUTY VERSATILE CONTROL KIT**

Designed to provide a high level of pushbutton control and is suitable for a sensitve light indicator. £13.20 10.95 9.75 8.50 7.30 6.05 4.90 3.75 2.60 1.45 0.95 0.50 0.30 0.15 0.05 0.02

**LOGIC PROBE**

For TTL, CMOS etc. LED and sound indicator, Pulse width enlargement allows probe pulse down to 25ns. Max f = 20MHz. £6.99 5.99 4.99 3.99 2.99 1.99

**STEREO TUNER**

Z497 AM/FM STEREO TUNER PANEL Complete PCB with component positions for better selection for LW/MW/FM and ON/FM. Ferrite rod for LW & MW selection, co-axial cable. Supplied with main transformer and rectifier/smoothing circuit, and wiring details. PCB is 333 x 93mm. £11.95 10.95 9.95 8.95 7.95 6.95 5.95 4.95 3.95 2.95 2.00 1.00

**"NEWBRAIN" PANELS**

Z494 Motherboard microprocessor panel 258 x105mm. Complete PCB for computer. 280 pin EPROM etc. 68 chips altogether plus associated components, plugs etc. £6.50 5.95 5.45 4.95 4.45 3.95 3.45 2.95 2.45 1.95

**FLASH UNIT**

Z488 Complete apart from case. Xenon fibre, neon indicator, on/off switch, trigger wires. Recent model. 50 x50 x40 £10 for £4.00

**ALL PRICES EXCLUDE VAT**

**DISCO LIGHTING KITS**

*DL1000K* This value-for-money 4-way kit is perfect for callers and dimming. 1kW per channel. £17.50 15.95 14.95 13.95 12.95 11.95 10.95 9.95 8.95 7.95 6.95 5.95 4.95 3.95 2.95 1.95

**DUM/ULTRA SENSITIVE THERMOMETER KIT**

Based on the ICL 7126 and a 396 digit liquid crystal display, this kit will form the basis of a digital multimeter (only a few additional resistors are needed – details supplied), or a sensitive digital thermometer (±60°C to +10°C reading) 0.1°F. The kit includes a 200mA for a sensitivity of 0.01°C full scale. Automatic polarity and overload indication. Typical battery life of 2 years (PP3). £17.00 15.95 14.95 13.95 12.95 11.95 10.95 9.95 8.95 7.95 6.95 5.95 4.95 3.95 2.95 1.95

**SAVE ON PEOPLE!**

Send 50p* & SAE for CATALOGUE

ORDERS: RING (01) 567 8910 – 24 HRS.

*Prices may vary due to exchange rate fluctuations.*
Several queries were received about the dry-cell charger. I was surprised that some readers thought that the timer section of the charger could be disposed of in order to reduce cost. The photographs of overcharged cells in the July issue were meant to show that there was a safety advantage with charging, not that unlimited overcharging of the sort that could be done with a timer-less charger was permissible. Zinc-carbon cells are generally regarded as not being gas-tight, so gases from decomposed electrolyte due to overcharging escape to leave the dry cell even drier – and defunct of course.

On the other hand, alkaline gases are gas-tight and trying to stuff too much charge into them will result in the safety seal rupturing and the jelly-like electrolyte will ooze out. Being caustic, this can cause quite a mess. A timer is therefore essential not just to stop charging at the point where overcharge starts, but well before that. This is because the type of charger described gives essentially a constant-current charge. This is very safe as a short-circuit across the cell terminals caused by clumsy handling does no damage, but unfortunately it means that there is no significant reduction in the charging rate as the cell approaches full charge, which is what a dry cell requires.

So, it is best to stop short of full charge even if it means missing a small amount of capacity.

The component value given will give a satisfactory charge to the average zinc-carbon dry cell, which is what the charger design was primarily intended for. With alkaline-manganese cells, it is necessary to estimate the charge required, and experience will show what length of time is required for the particular type being used. The stripboard layout showed IC2 holder pins removed so that the track could pass under the holder and so that R15 could be conveniently connected to pins 1, 14 or 15 as required, and adjusting the timing period as needed. If you find you are unable to judge the charge required, then it is better to leave these cells alone, and stick to zinc-carbon.

Some of those who made a charger went to measure the current through the cells, or at least tried to! Although your meter scale may be showing readings in 'r.m.s.', the chances are that the scale is not only true for sine-waves over a very restricted frequency range. Most inexpensive meters, while a.c. take the mean average deviation and display this – but with r.m.s. values showing on the scale because this is usually the value that people want to use. This is fine for sine-waves, but useless for any other waveform because there is then no fixed relationship between m.a.d. and r.m.s. values.

Just try taking a reading with such a meter on a square-wave and you will see what I mean. Even my Solartron 7045 (a d.m.m. costing over £400) is average-reading r.m.s.-calibrated, and gave fictitious readings with the waveform shown in Fig. 7 on Page 16 of the July issue, which is anything but a sine-wave. The only way to measure such a waveform is with a true r.m.s. reading meter, and these are usually based on converting the a.c. to heat and then measuring the temperature rise, a method which is substantially independent of both frequency and waveform. I used a thermocouple-type instrument, and the reason the current values were not published was because I supposed (correctly, as it turned out) that few constructors would have one of these.

The current can be calculated by an indirect method, though. You can measure the peak value of voltage across R7/R10 by connecting a scope across this resistor and taking a reading, but be careful about earth-ion arrangements if you do this. You can then work out the r.m.s. value, take an average by assuming approximately equal on and off times, and then use Ohm's law to find the effective current through the resistor, and thus the cell. There are inaccuracies in this method, but it is better than using a false-reading meter. However, it is tedious.

The mains transformer used in the charger was a critical component. It was specified as the RS 207-627, available from Magenta or Electromail. Regrettably, this vital information did not get into print, and constructors who used other transformers had variable results. This is because transformers vary in their regulation. A good quality component from a British manufacturer may have a regulation of 5%, whereas a cheap Far Eastern import may be as bad as 20%, and this has a disproportionate effect on the charging current. The specified transformer was chosen because it was the lowest-voltage commercially available type with a reasonable regulation (10%) and availability. As the dissipation varies as to the square of the working voltage, a low voltage was considered an advantage.

At least one constructor connected the diodes D7 to D10 so that the large pulse of Fig. 7 (July issue) was the wrong way round, thus mysteriously causing the cells to come out with less charge than when they went in! Unfortunately the stripboard layout did not make it clear which way the diodes were inserted, although the circuit of Fig. 9 makes it quite clear. You can check with a scope that the cell is receiving the large pulse in the right direction for charging by connecting across R7/R10, and that the small pulse is in effect discharging the cell.

Now to the Verkon dc/dc converters described in the June issue which stepped up the 1.5V of a single cell to either 8V or 12V. Most users seem to have had great success replacing expensive NiCd and layer-type PP3 batteries with these cost-saving devices. However, it was inevitable that some converters were used for applications which were unsuitable or difficult, for example a.m. radios, where r.f. interference gave problems. The V6 and V12 are both switch-mode power supplies, so it is obvious some r.f. is going to be present, although the manufacturers have gone to the extent of putting the device inside a steel can. The leads, capacitors, etc. will all carry r.f. interference, so if you are going to use any dc/dc converter for an a.m. radio then you will need extra screening. It is
very easy to construct an r.f. shield which will enclose the cell, converter and other components from tinplate. There is plenty of literature around about r.f. screening so I won't repeat the standard text here except to say, on a purely practical note, that the rectangular cans of Colman's mustard make excellent r.f. shields with no extra work! Also, it helps if the converter is placed well away from the r.f. sensitive parts of the circuit, like the ferrite rod aerial. After all, no-one making an audio amp would put the mains transformer next to the phono input, and exactly the same principles apply even if you are using an r.f. screen. The leads from the converter should have small ferrite-type chokes in series, and these must have a low d.c. resistance and be enclosed along with the cell, the decoupling capacitors and all the other converter components inside the shield.

These problems occur with a.m. radio, but f.m. does not pose the same amount of difficulty. I have used Verkon converters on c.b. transceivers like the ones shown in the photo in the July issue, which were of course the legal f.m. type. I have also successfully used Verknos with no extra screening for replacing the PP3 battery in a resistance-capacitance bridge, a portable electronic thermometer, an AVO meter (for the resistance ranges), a frequency meter and for driving the 6v motor in a cassette mechanism, so it is safe to say that for most uses screening is not needed.

PHOTO 1. Cells 1 to 4 are different types and make of cell which have been overcharged by a factor of ten times to show how safe it is. The recharge current was 1amp (five times that recommended) for 24 hours (twice as long as that recommended). To make the test more severe, plain smoothed d.c. was used. Result: no sign of leakage, no sign of splitting or bursting. Cell No. 2 developed a slight bulge after 8 hours but nothing further happened. This cell was sectioned and compared with an uncharged cell.

PHOTO 2. Another set of cells was charged at 0.2amp using PCR for 5 days, an overload of ten times the recommended rate. No sign of leakage or splitting of the case was seen. A sectional view of one of these cells shown below on the right compared with an uncharged cell on the left, confirms no distortion of the case or internal components. As all these tests have been repeated many times it is safe to say that recharging with PCR at 1/10 of the charge rate used is harmless provided the rules set down in the text are adhered to.

CHARGE WITH CAUTION THESE ARE PHOTOS PUBLISHED IN PE JULY 1986.

MUSIC, EFFECTS AND COMPUTER KITS

MIXER (PE) SET 229M £44.45
4 chans, separate gains, levels, filters, twin outputs.

MORSE DECODER (EE) SET 269 £22.16
Computer* controlled morse code-motion, with variable rate and level controls.

PHASER (PE) SET 226 £42.36
Excellent phasing enhanced with modulated filtering.

POLYWHATSIT! (PE) SET 252 £122.69
Amazing effects unit, echo, reverber, double tracking, phasing, flanging, looping, pitch change, REVERSE tracking! 8K memory.

REVERB (EE) SET 232 £22.75
Mono, with reverber to 4 secs, echo to 60ms.

RING MODULATOR (PE) SET 231 £45.58
Fabulous effects generation, with LAC and ultrafast VCO.

STORMS! (PE) £29.50 each unit.
Raw nature under panel control! Wind & Rain SET 250W. Thunder & Lightning SET 250T.

* COMPUTER PROGS available for BBC, C64 and PET for kits marked *

MANY MORE KITS (Over 701) in catalogue.

ALL KITS incl. pcb's, parts, nice boxes, instructions, free wire and solder. Further details in catalogue.

CATALOGUE AND ENQUIRIES
Send £4 SAE for catalogue, and with all enquirers.
(Overseas send £1.00 or $1.50 C1).
**QUALITY BOOKS AT REASONABLE PRICES**

**WHY A BOOK SERVICE?**

We receive hundreds of letters from readers from all over the world complaining that they are unable to get hold of books or information on various subjects. The information is available if only you know where to look. Unfortunately, it's looking that takes so much time. By expanding our book service to include books from a variety of publishers we are able to keep you informed as to what is available on a wide range of subjects.

All the books in our service are available from our editorial office at the recommended retail price plus postage and package. (We are not allowed to sell them at below cover price.) In addition to our book service, we have commissioned some independent reviews of some selected titles in order to give a fair and balanced view as to their suitability, quality and value. These reviews will appear regularly to back up our service. Descriptions of books accompanying titles in the book service are not independent reviews but are merely indications of their contents.

### BOOK ORDER FORM

<table>
<thead>
<tr>
<th>BOOK DESCRIPTION</th>
<th>CODE</th>
<th>QTY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD £2 FOR OVERSEAS*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL ENCLOSED

NAME AND ADDRESS

---

**QUALITY BOOKS AT REASONABLE PRICES**

**A PRACTICAL GUIDE TO WORD PROCESSING ON THE AMSTRAD PCW 8256 AND PCW 8512**

There have been 1000's of Amstrad computers sold – this book is a guide to using the word processing facilities.


**TV-DXING HANDBOOK**


**GETTING THE MOST FROM YOUR PRINTER**

A guide to making the most of your printer, £3.45 inc p&p, Order code BP181.

**MICRO INTERFACING CIRCUITS BOOK 1**


**EASY ADD-ON PROJECTS FOR COMMODORE 64, VIC 20, BBC MICRO AND ACORN ELECTRON**

O. Bishop, 1985, 208 pages, £3.45 inc p&p, Order code BP134.

**EASY ADD-ON PROJECTS FOR AMSTRAD CPC 464, 6128 and MSX COMPUTERS**


**AN INTRODUCTION TO COMPUTER PERIPHERALS**

J.W. Penfold, 1985, 80 pages, £3.00 inc p&p, Order code BP170.

**MICROPROCESSING SYSTEMS AND CIRCUITS**


**AN INTRODUCTION TO COMPUTER COMMUNICATIONS**


**AN INTRODUCTION TO 68000 MACHINE CODE**

Price £3.45 inc p&p, Order code BP184.
LINSLEY-HOOD SYNCHRODYNE AM RECEIVER

A very high quality kit for the record player enthusiast. It is an all transistor system approved by the Author. Uses 2 double sided carbon plastic capacitors for low tracking and minimal noise. The module will form the AM section of an all high fidelity AM-FM set at a budget price. The kit comes complete with small speaker and motor. Using solid state technology this kit is an ideal project for the record player enthusiast.

Price: £13.50

VFL600 VERTICAL FRONT LOADING CASSETTE MECHANISM

This unit adds to your range in a much needed priced range for front loading cassette mechanism. This unit comes complete with stereo B.P. heads and motor. With front loading cassette mechanism this unit is ideal for anyone wanting to build or replace their cassette mechanism.

Price: £15.95

CAR RADIO FM IF AND STEREO DECODER

This kit is a complete and versatile receiver with very high quality harmonics. It is an all transistor kit and can be used with any standard radio. The kit comes complete with small speaker and motor. Using solid state technology this kit is an ideal project for the record player enthusiast.

Price: £17.95

LINSLEY-HOOD 300 SERIES AMPLIFIER KITS

Ultra high quality, homemade output, 15 transistor kits by the famous Linsley-Hood. All kits are designed for maximum output and minimum distortion. The kits come complete with datasheets and instructions.

Price: From £12.95

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS

Complete record and replay circuits for very high quality tape cassette recorder. Kits are optimised for our 6/80 Special Quality Standard Audio Head. Standard kit uses one microphone for both recording and replay. Very easy to assemble on a PC board. Kits come complete with full instructions.

Price: From £14.95

STUART TAPE RECORDER CIRCUITS

Complete record and replay circuits with very high quality microphone head. Kits are optimised for our 6/80 Special Quality Standard Audio Head. Standard kit uses one microphone for both recording and replay, giving optimum performance. Complete with full instructions.

Price: From £15.95

HIGH QUALITY REPLACEMENT CASSETTE HEADS

On your tape deck lack luster? A worn head could be the problem. Fixing one of these replacement heads could result in performance better than new on standard tape heads. Just plug it in and set the head on your machine and you're ready to go! We are the only ones who can service your equipment. For the best prices for your components, compare us with other suppliers and you'll see. The following is a list of our most popular heads, all are suitable for use on Decca machines and are in stock.

Price: From £4.95

HART TRIPLE-PURPOSE TEST CASSETTE T1

Our triple-purpose test cassette ensures that you have the right level output and head speed. It comes complete with a head tester, a signal generator, and a signal generator. The kit comes complete with all necessary parts and instructions.

Price: £6.75

PERSONAL CALLERS ARE ALWAYS VERY WELCOME BUT PLEASE NOTE THAT WE ARE CLOSED ALL DAY SATURDAY

PRACTICAL ELECTRONICS MAY 1987

Page 56
Taking over from human specialist and computerised robots and expert systems official information on individuals and inspire the launch of national campaigns. We also know that individuals and governments can get very worked up about it. People are accused of political bias, inciting young people to violence, undermining national security, incalculating all kinds of dangerous ideas, and so on. Earlier this year the police raided BBC offices over the Zircon spy satellite affair. Looking abroad, whenever there is a revolution or political coup one of the first things the insurgents do is to capture the TV broadcasting station.

All this could be cited as one example of how electronics, through television engineering, has an effect on society at large. The programmes couldn't exist without the electronics hardware - the broadcasting and receiving equipment - so the electronics industry is ultimately responsible. A parallel case could be set out for the powerful effect of electronic computers on our lives. One could instance the spread of cheaply manufactured computers into homes and schools, their use in small businesses, the data banks holding dossiers and official information on individuals, the computerised robots and expert systems taking over from human specialists, and so on.

In both these very public manifestations of electronics the sensitive element seems to be ideas and information - the domain of mental activity. Electronics is largely concerned with transmitting, storing and processing information (in the communication theory sense) and is therefore involved with the semantics - the matters that affect our feelings and thoughts - carried by the information. Reflective people are worried by these intrusions into their private mental worlds.

But I do not think these influences are fundamental to the way we actually live from day to day. Psychological security is certainly important to all of us, and anything that seems to be influencing our normal perceptions of the world and our place in it, our beliefs and prejudices, we might feel to be a threat. But such influences have been at work for centuries, through preachers, gurus, teachers, artists, writers, minstrels, actors and all their various media of communication. Now we have the electronic media, but all they provide is a big increase in the volume. The effect, whatever its nature, is on the superstructure of society.

Modern industrialised societies are built on capital and mass production assisted by technology, working together. Even communist countries are following the same basic principle. A characteristic of mass production is that it has an in-built necessity to keep going. Factories are initially set up to make goods. But eventually a reverse process takes place. The public is pressurised to keep buying the goods, which they may not necessarily need, in order to keep the factories running - and, of course, the workers in jobs, the managers managing and the shareholders benefiting from their capital investment. It is even useful to give unemployed workers money to help maintain demand.

Without this permanent pressure for consumption the whole system would collapse. So expedients like planned obsolescence of products are brought in to help. Karl Marx thought that capitalism would be ended by an inner contradiction - the increasingly exploited workers eventually rising up and overthrowing the owners of the capital. This didn't happen, of course, but there are now other contradictions to be seen.

Electronics is coming into motor vehicles more and more to improve their efficiency and convenience - and, of course, to provide further outlets for electronic products. In a comparable way this technology of information processing is insinuating itself, like the growth of a nervous system in a living organism, into the structure of industrial production and the societies formed around it. As such it is helping to sustain and strengthen the Juggernaut, this apparently unstoppable, self-fuelling vehicle which is lumbering along, full of the most extraordinary contradictions.

For example, as already mentioned, a characteristic feature of mass production is planned obsolescence. But planned obsolescence means that the ultimate purpose of production is waste. Peacefully we're manufacturing equipment for warfare. Skillfully we're designing machines to abolish skill. High intellects are turned to the creation of trash; and great bodies of technical knowledge, built up over centuries, to bringing forth more ephemera. We develop products to satisfy demands which don't yet exist, and sell these products to rich minorities in the midst of a poverty-stricken majority. Workers suffer intense boredom to produce goods, the images of which are used through advertising to excite and stimulate other workers. Worst of all, in pursuing endless consumption we behave as if we didn't know that the Earth's minerals and sources of energy cannot be renewed.

Electronics helps to keep these contradictory processes going, sometimes playing a central role. Through them it has a much deeper effect on the way we live than any amount of watching television, using computers, or accepting the benefits of the various domestic devices like microwave ovens and programmable washing machines. The inherent contradictions, looked at afresh, are sometimes quite crazy. But in industrialised societies the continual rise in the material standard of living anaesthetises us to accept them without question. Some people have become completely stoned, understanding human life solely in terms of getting and spending. So large populations live decently with what an observer from another planet might find completely incomprehensible.
HY-TEK ELECTRONICS... HY-TEK ELECTRONICS...

HY-TEK DIGITAL SOUND EFFECTS

This unit produces over 30 different sound effects, each of which can be filed under one of the main categories: sound effects, all over the UK. It features include: DIGITAL, LARGE, CLEAR.

150 WATT MONO POWER AMP

This unit can be used for maintenance and problem solving.

PROFESSIONAL POWER AMPS, CROSS-OVERS & GRAPHIC EQUALIZERS

HY-TEK ELECTRONICS 48 Dalston Lane, London E8 3AH. Tel: 01-249 4814

INSTANT CREDIT UP TO £1000 subject to status - ask for written details

PHONE 01-249 4814 for same day mail order dispatch

THREE INTO ONE WILL GO - WITH THE GROOTEK 3132

1 SCOPE:
DC — 20MHz Bandwidth
2mV/div Sensitivity
40ns — 0.2s/div Sweep
14 Trigger Functions
Including active TV trigger on line & frame

2 Active Component Comparator
(for checking Transistors, diodes and I.C.'s etc)
Test Voltage: 8.6Vrms (28mA)

For the price of a scope at £285*
* (Excluding Delivery and VAT)
Correct at time of going to press

DIGITAL DELAY, SAMPLERS & ECHO UNITS

HY-TEK ELECTRONICS 48 Dalston Lane, London E8 3AH. Tel: 01-249 4814

INSTANT CREDIT UP TO £1000 subject to status - ask for written details

PHONE 01-249 4814 for same day mail order dispatch

Crotech Instruments Limited

1. 2. 3.

100 PAGE CATALOGUE

1000's Major & Minor Electronic components
Audio, Hifi, Car Radios, Amps, Kits, Computer Bits, Meters scopes, Test Gear, Transistors, Disco, Hardware Tools.

Please send £1 for catalogue to:-

SMITH ELECTRONICS
157 CHAPEL STREET, LEIGH,
LANCS WN7 2AL. Tel: (0942) 606674.

F.I. Diag.E

Formed in 1981 in recognition of the special knowledge and skills required by persons involved in fault diagnosis, plant management, maintenance and problem solving.

At the present admission is based solely on competence and capability without regard to age or academic attainments.

To obtain further particulars send a fully stamped and addressed envelope to:

INSTITUTION OF DIAGNOSTIC ENGINEERS
3 Wycliffe Street, Leicester LE1 5LR28 England
**CRICKLEWOOD ELECTRONICS LTD**

**FREE** catalogue

It's no secret...

...that there is a real difference at CRICKLEWOOD Electronics.

That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE for sheer variety, competitive prices and service from the U.K.'s no. 1 component shop. No gimmicks, no gadgets or computers. Just components, millions of them, all easily available by mail order, calling or credit card telephone orders. Just pick up the phone (or pen) to get your FREE copy now (but S.A.E. required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED
40 Cricklewood Broadway, London NW2 3ET
Tel: 01-450 0995/01 452 0161
Telex: 914977

**OSCILLOSCOPES**

- TELEQUIPMENT D/5, Dual Trace 50MHz. Delay Sweep. With Manual. £325
- TELEQUIPMENT D/1, Dual Trace 35MHz. Solid State. Portable B x 10 cm display with manual. £290
- TELEQUIPMENT D/2, Dual Trace 10MHz. With Manual. £180
- TELEQUIPMENT D/4, Dual Trace 15MHz. Manual. £180
- SOLARTRON C/D40, Dual Trace 15MHz. Manual. £100
- TELEQUIPMENT SAA, Single Trace 15MHz. State. With Manual. £110

**COMMUNICATION RECEIVERS**

- RACAL RA1Y, 500kHz-35MHz. With Manual. £275
- Only £140 each
- EDYSTONE 7304. 48kHz-30MHz. With Manual. £110 each

**MULTIMETERS**

- AVO 9 Mk4 identical to Amel Mk4 but scaled differently. Complete with Batteries & Leads. £55
- AVO 9 Mk2. Complete with Batteries & Leads & 45p Above items in GOOD WORKING ORDER — appearance not A1 hence the price. £10
- AVO TEST SET No 1 (Military version of AVO 8). Complete with Batteries, Leads & Carrying Case £38
- AVO Model 7X. Complete with Batteries, Leads & Carrying Case. £27
- ANAPPOCKET MULTIMETERS, PHILIPS TAYLOR AVO etc. Complete with Batteries & Leads. £5 from £10

**STEPPING MOTORS**

- TYPE 1. 250 Steps per rev. 4 Phase 12 volt. (124/126) £16 each
- TYPE 2. 12 Steps per rev. 3 Phase. 12 volt (will work on 5v). £2 each
- TYPE 3. NORTH AMERICAN PHILIPS. 24 Steps per rev. £124/126 £16 each
- TYPE 4. 200 Steps per rev. 12v D. £19 each
- TYPE 5. BRABHAM 24 Steps per rev. 3 Phase. £16 each
- TYPE 6. 100 Steps per rev. 12v C. £24 each
- TYPE 7. MURPHY 24 Steps per rev. 3 Phase (6v). £16 each
- TYPE 8. 100 Steps per rev. 5v D. £22 each
- TYPE 9. 100 Steps per rev. 3v E. £25 each
- TYPE 10. 100 Steps per rev. 12v F. £26 each
- TYPE 11. 100 Steps per rev. 6v G. £27 each

**NEW EQUIPMENT**

- HAMEG OSCILOSCOPE 305 Dual Trace 50MHz. Delay Sweep. Component Testers. £583
- HAMEG/OSCILLOSCOPES 250 & Dual Trace 20MHz. Component Testers. £318
- All Other Models Available.

**SPECIAL OFFERS**

- B x 5 Pint Frezal CRT Restorer/reconditioner Model 467. Supplied with 2 bases and Manual (P&P £1) only £15 each
- LABEARG Colour Bar Generator KG1. 9 Test patterns (P&P £1) only £40 each
- RACIAL UNIVERSAL COUNTER TYPE 830. 37 MHz with Manual. £50
- ISOLATING TRANSFORMER 240V In — 240V Out. £350 each. (P&P £5) £15 each

**ACCESSORIES**

- Used equipment — with 30 days guarantee. Manuals supplied if possible. This is a V.E.R.Y. SMALL SAMPLE OF STOCK. SAE at Telephone Orders. Please check availability before ordering. CARTRIDGE all units £6. VAT to be added to Total of Goods & Carriage. Callers welcome 9 a.m. to 5.30 p.m. Mon-Fri (until 8 p.m. Thurs).

**PRACTICAL ELECTRONICS**

MAY 1987
Dear PE,

Please supply the following PCBs:

<table>
<thead>
<tr>
<th>Board description</th>
<th>Code</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClockTimer</td>
<td>027</td>
<td></td>
<td>£7.58</td>
</tr>
<tr>
<td>Fibre Optic Audio Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmitter</td>
<td>MAR'86</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of two boards</td>
<td>00B</td>
<td></td>
<td>£6.90</td>
</tr>
<tr>
<td>Hardware Restart</td>
<td>508-02</td>
<td></td>
<td>£8.35</td>
</tr>
<tr>
<td>Temperature/Analogue Interface</td>
<td>101</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Sound Activated Switch</td>
<td>102</td>
<td></td>
<td>£6.17</td>
</tr>
<tr>
<td>Photographic Trigger Unit</td>
<td>APRIL'86</td>
<td>00C</td>
<td>£7.89</td>
</tr>
<tr>
<td>Set of two boards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE1000 PSU</td>
<td>105</td>
<td></td>
<td>£5.28</td>
</tr>
<tr>
<td>Scratch and Rubble Filter</td>
<td>106</td>
<td></td>
<td>£5.13</td>
</tr>
<tr>
<td>Notcher Effects Unit</td>
<td>107</td>
<td></td>
<td>£5.99</td>
</tr>
<tr>
<td>Logic Checker</td>
<td>108</td>
<td></td>
<td>£4.59</td>
</tr>
<tr>
<td>D.F. BeaconTimer</td>
<td>MAY'86</td>
<td>109</td>
<td>£6.18</td>
</tr>
<tr>
<td>STEbus backplane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuitarTracker</td>
<td>111</td>
<td></td>
<td>£6.98</td>
</tr>
<tr>
<td>Thermocouple Interface</td>
<td>112</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>PE Hobby Board</td>
<td>113</td>
<td></td>
<td>£29.00</td>
</tr>
<tr>
<td>BBC Lightpen</td>
<td>114</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Passive IR Detector</td>
<td>115</td>
<td></td>
<td>£9.30</td>
</tr>
<tr>
<td>200MHz counter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main board</td>
<td>JULY'86</td>
<td>116</td>
<td>£19.14</td>
</tr>
<tr>
<td>Display board</td>
<td>117</td>
<td></td>
<td>£14.35</td>
</tr>
<tr>
<td>Set of two boards</td>
<td>00D</td>
<td></td>
<td>£50.86</td>
</tr>
<tr>
<td>Fibre Optic Data Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of two boards</td>
<td>00E</td>
<td></td>
<td>£10.14</td>
</tr>
<tr>
<td>PEBH D/A-A/D</td>
<td>120</td>
<td></td>
<td>£7.25</td>
</tr>
<tr>
<td>Drum Synthesizer</td>
<td>121</td>
<td></td>
<td>£7.67</td>
</tr>
<tr>
<td>Time Delay - Mains (Set of 2)</td>
<td>OCT'86</td>
<td>122</td>
<td>£12.92</td>
</tr>
<tr>
<td>Mains Dimmer</td>
<td>123</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Remote Joystick - Set of two boards</td>
<td>NOV'86</td>
<td>124</td>
<td>£10.86</td>
</tr>
<tr>
<td>Baby Alarm - Set of two boards</td>
<td>NOV'86</td>
<td>125</td>
<td>£10.71</td>
</tr>
<tr>
<td>Video Enhancer</td>
<td>DEC'86</td>
<td></td>
<td>£8.76</td>
</tr>
<tr>
<td>Video Fader</td>
<td>JAN'87</td>
<td>127</td>
<td>£4.50</td>
</tr>
<tr>
<td>Scrambler</td>
<td>128</td>
<td></td>
<td>£8.06</td>
</tr>
<tr>
<td>PE Promenader (double side) main board</td>
<td>DEC'86</td>
<td>129</td>
<td>£30.68</td>
</tr>
<tr>
<td>&quot; Power supply</td>
<td></td>
<td></td>
<td>£9.53</td>
</tr>
<tr>
<td>PE Promenader Playback Unit</td>
<td>133</td>
<td></td>
<td>£14.52</td>
</tr>
<tr>
<td>PE Promenader Extension Prom</td>
<td>FEB'87</td>
<td>131</td>
<td>£9.05</td>
</tr>
<tr>
<td>PE Hi-Stab</td>
<td>132</td>
<td></td>
<td>£8.79</td>
</tr>
<tr>
<td>PE 30 Plus 30</td>
<td>134</td>
<td></td>
<td>£29.50</td>
</tr>
<tr>
<td>4 Channel Enhancer</td>
<td>135</td>
<td></td>
<td>£4.60</td>
</tr>
<tr>
<td>Light Pen</td>
<td>MAR'86</td>
<td>136</td>
<td>£4.10</td>
</tr>
<tr>
<td>Bell Repeater</td>
<td>137</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Ultrasonic Measure</td>
<td>138</td>
<td></td>
<td>£9.50</td>
</tr>
<tr>
<td>PE Vigilante</td>
<td>139</td>
<td></td>
<td>£5.90</td>
</tr>
<tr>
<td>SMP/SU Stepper</td>
<td>140</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>&quot; Booster</td>
<td>APR'86</td>
<td>141</td>
<td>£3.90</td>
</tr>
<tr>
<td>&quot; Inverter</td>
<td>142</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Inductive Loop Transmitter</td>
<td>143</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>&quot; Receiver</td>
<td>144</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Bright Fuzz</td>
<td>MAY'87</td>
<td>145</td>
<td>£3.90</td>
</tr>
</tbody>
</table>

**TELEPHONE ORDERS**

(LINES OPEN 24 HOURS)

You can now order your printed circuit boards by telephone, quoting your Access credit number. The number to ring is: 0268 289923. In stock items will be despatched within 24 hours of receipt of order. If you ring out of office hours please state your order, credit card number and address clearly, as the order is recorded on an answering machine.

<table>
<thead>
<tr>
<th>Board</th>
<th>Code</th>
<th>Qty</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Control Interface</td>
<td>503-01</td>
<td></td>
<td>£5.31</td>
</tr>
<tr>
<td>Disc Drive PSU</td>
<td>504-02</td>
<td></td>
<td>£7.79</td>
</tr>
<tr>
<td>Modular Audio Power System</td>
<td>APRIL'85</td>
<td>504-09</td>
<td>£4.73</td>
</tr>
<tr>
<td>Pt-3 Test Signal Source</td>
<td>504-10</td>
<td></td>
<td>£4.70</td>
</tr>
<tr>
<td>Amstrad Synthesizer Interface</td>
<td>505-01</td>
<td></td>
<td>£4.77</td>
</tr>
<tr>
<td>Rugby Clock Pt-2</td>
<td>504-03</td>
<td></td>
<td>£3.84</td>
</tr>
<tr>
<td>*</td>
<td>MAY'85</td>
<td>504-04</td>
<td>£3.93</td>
</tr>
<tr>
<td>*</td>
<td>MAY'85</td>
<td>504-06</td>
<td>£11.70</td>
</tr>
<tr>
<td>*</td>
<td>MAY'85</td>
<td>504-07</td>
<td>£3.60</td>
</tr>
<tr>
<td>*</td>
<td>MAY'85</td>
<td>504-08</td>
<td>£12.60</td>
</tr>
<tr>
<td>CMB64 Music Keyboard</td>
<td>JUNE'85</td>
<td>506-02</td>
<td>£5.19</td>
</tr>
<tr>
<td>Main PCB</td>
<td>506-03</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>MTX8 Channel A to D</td>
<td>JULY'85</td>
<td>507-01</td>
<td>£4.37</td>
</tr>
<tr>
<td>Voltmeter Memory/Adapter</td>
<td>508-01</td>
<td></td>
<td>£3.90</td>
</tr>
<tr>
<td>Envelope Shaper</td>
<td>AUG'85</td>
<td>508-01</td>
<td>£4.11</td>
</tr>
<tr>
<td>Car Boot Alarm</td>
<td>SEPT'85</td>
<td>509-01</td>
<td>£3.90</td>
</tr>
<tr>
<td>RS232 To Centronics Converter</td>
<td>509-03</td>
<td></td>
<td>£5.70</td>
</tr>
<tr>
<td>Touch Control PSU</td>
<td>OCT'85</td>
<td>001</td>
<td>£4.90</td>
</tr>
<tr>
<td>Exp. with Robots (double-sided)</td>
<td>004</td>
<td>£21.30</td>
<td></td>
</tr>
<tr>
<td>Modulated Syndrum</td>
<td>005</td>
<td></td>
<td>£4.90</td>
</tr>
<tr>
<td>CBM User Expander</td>
<td>006</td>
<td>£4.38</td>
<td></td>
</tr>
<tr>
<td>Model Railway Track Control</td>
<td>010</td>
<td>£6.35</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>ROM Board (double-sided)</td>
<td>012</td>
<td>£15.89</td>
</tr>
<tr>
<td>ZIF Socket</td>
<td>003</td>
<td>£3.90</td>
<td></td>
</tr>
<tr>
<td>RAM Board</td>
<td>NOV'85</td>
<td>007</td>
<td>£5.70</td>
</tr>
<tr>
<td>Battery Backed RAM</td>
<td>008</td>
<td>£4.13</td>
<td></td>
</tr>
<tr>
<td>EPROM Board</td>
<td>009</td>
<td>£3.90</td>
<td></td>
</tr>
<tr>
<td>*Special Price - Complete set of 5 boards</td>
<td>00A</td>
<td>£29.25</td>
<td></td>
</tr>
<tr>
<td>Model Railway</td>
<td>DEC'85</td>
<td>Rec Board - A</td>
<td>016</td>
</tr>
<tr>
<td>Track Control</td>
<td>Rec Board - B</td>
<td>017</td>
<td>£5.60</td>
</tr>
<tr>
<td>Test Load</td>
<td>Rec Board - B Ext</td>
<td>018</td>
<td>£4.38</td>
</tr>
<tr>
<td>Exp. with Robots</td>
<td>022</td>
<td>£4.10</td>
<td></td>
</tr>
<tr>
<td>Spectrum Display</td>
<td>JAN'86</td>
<td>(double sided)</td>
<td>023</td>
</tr>
<tr>
<td>Burglar Alarm</td>
<td>Main Board</td>
<td>020</td>
<td>£5.73</td>
</tr>
<tr>
<td>Bell Driver</td>
<td>FEB'86</td>
<td>Logic Probe</td>
<td>021</td>
</tr>
<tr>
<td>Computer Movement Detector</td>
<td>509-02</td>
<td></td>
<td>£3.90</td>
</tr>
</tbody>
</table>

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

**CORRESPONDENCE WITH YOUR ORDER.**

Please note that when ordering it is important to give project title, order code and the quantity. Please print name and address in Block Capitals. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

Please send your order to PE PCB Service, Practical Electronics, 16 Garway Road, London W2 4NH. Cheques should be crossed and made payable to Intrappress.
**TWO GREAT HOBBIES**

...IN ONE GREAT KIT!

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.

THE KIT — simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.

THE DETECTOR — features Analytical Discrimination & Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer.

Ask at your local Hobby/Electronics shop or contact —

C-Scope International Ltd., Dept. PE,
Woburn Road, Aylesford, Kent TN23 2LN.
Telephone: 0203 6611.

**MAKE YOUR INTERESTS PAY!**

More than 8 million students throughout the world have found it worth their while. An ICS home study course can help you get a better job, make more money and have more fun out of life. ICS has over 80 years experience in home study courses and is the largest correspondence school in the world. You learn at your own pace, when and where you want, under the guidance of expert personal tutors. Find out how we can help you.

Post or phone today for your FREE information pack on the course of your choice (pick one only).

**INDEX TO ADVERTISERS**

We stock a wide range of components: transformers, switches, pots, ICs, capacitors, resistors, diodes, boxes, triacs, LEDs, cable, connectors, PCBs — in fact, all you need for your projects.

Send 2 x 18p stamps for a copy of the catalogue or call at our shop Mon — Fri 9am — 6pm, Sat 9am — 5pm.

174 Dalkeith Road
EDINBURGH EH16 5DX
031-667 2611

**OMNI ELECTRONICS**

★ NEW CATALOGUE NOW READY ★

**ELECTRONICS & COMPUTING**

**INDIVIDUALS**

You don't have to continue working on things you don't believe in, with people who'd want you locked up if they knew what you really thought...

Promoting Equality of Opportunity. For businesses and people who want a say in how their technology is used.

EIP Ltd., 28 Milson St, BATH BA1 1DP (0225) 69671

**EXCHANGE RESOURCES**

RECRUITMENT AGENCY & BUSINESS CONSULTANCY

**BUSINESSES**

How would you like to try an agency that rewards you for ethical decisions? And deal with businesses which respect your views?

BATH 0225 69671

**TRANSFORMERS** EX-STOCK

**INDEX TO ADVERTISERS**

We stock a wide range of components: transformers, switches, pots, ICs, capacitors, resistors, diodes, boxes, triacs, LEDs, cable, connectors, PCBs — in fact, all you need for your projects.

Send 2 x 18p stamps for a copy of the catalogue or call at our shop Mon — Fri 9am — 6pm, Sat 9am — 5pm.

174 Dalkeith Road
EDINBURGH EH16 5DX
031-667 2611

**INDEX TO ADVERTISERS**

A.D.M. Electronic Supplies 61
Audikits 44
Barric Electronics 62
Berwick Electronics 25
B/Pack Components 56
B.K. Electronics 45
Brewsiders 39
Bull, J. 39
Camboard 31
Cambridge Learning 39
C.L.L. 39
Coles Harding 61
Crocklewell Electronics 50
Crofton Electronics 44
Crotech Instruments 58
Croydon Disco 38
C.R. Supply Co. 61
C. Scope 62
Cybertekics 27
D.C. Electronics 61
Display Electronics 1BC
E.S.R. Electrical Components 61
Electronic Alarm Services 61
Exchange Resources 62
Fuslodges 33
Gatehouse Audio 55
G.C.H.O. 38
Granda 59
Greenwell Electronics 51
Hall Supplies, Adam 61
Ham Electronic Kits 56
C.M. Howes 51
Hy-Tek 58
I.C.S. 62
Inst. of Diagnostic Engineers 58
London Electronics College 61
Magenta Electronics 50
Maplin Electronics 0BC
No One Systems 39
Omni 62
Phonosonic 53
Pineapple Software 38
Riscomp 23
Scientific Wire Co. 61
Service Trading Co. 44
Smiths Electronics 58
Society of Electrosone 44
Specialist Semiconductors 18
Stewart of Reading 59
Super Alpha 24
Technomic 10,11
T.K. Electronics 51
OUR DIGITAL THERMOMETERS ARE GUARANTEED ALCOHOL FREE!

**Dual Scale Thermometer**
A neat digital thermometer with internal and external sensors displaying °C or °F. The external sensor is a waterproof probe (max. length 3m). Temperature range -5°C to 50°C (internal), -20°C to 70°C (external). Includes a 12 hour clock.
Order Code FD25C Price £9.95

**Pocket Thermometer**
A well made temperature meter displaying °C or °F and a 12 hour clock. Temperature range -5°C to 50°C (internal), -20°C to 70°C using external probe (max. length 900mm). High and low temperatures can be set and an alarm sounds when these are reached. A set/lock switch prevents accidental resetting.
Order Code FD26D Price £14.95

**Temperature Module**
Versatile thermometer module displays in °C or °F, includes a 12 hour clock and serial data output. Temperature range -5°C to 50°C (internal), -20°C to 70°C with external probe. Overall size 68 x 35 x 23mm deep. Probe (max. length 3m) and bezel also available.
Module Order Code FE33L Price £6.95
Probe Order Code FE34M Price £2.50
Bezel Order Code FE35Q Price 15p

All prices include VAT. Please add 50p towards postage. Prices firm until 15th August 1987. Subject to availability.

Pick up a copy of our 1987 catalogue from any branch of W.H. Smith for just £1.50. Or to receive your copy by post just send £1.50 + 40p p & p to Mail Order address. If you live outside the U.K. please send £2.50 or 11 International Reply Coupons.