Ultrasonic Vision System

Stereo Cassette Deck

FREE! 8 PAGE SUPPLEMENT... 6 SIMPLE PROJECTS
For more than eleven years Powertran have been designing and manufacturing the finest quality electronic kits. All of our now considerable range have featured in the electronics press and literally thousands have been bought and built by contractors in the UK and World-wide.

Our philosophy is always the same – we offer ingenuity and originality in the construction phase by using only top class designers. We offer machines with power, versatility and performance – capability fully equal to their factory built rivals. We offer only the highest quality materials and components throughout to ensure years of useful and reliable service, we offer clear comprehensive and easy to follow construction manuals to place our kits within the scope of the careful first time builder as well as the dedicated enthusiast.

Our hallmark of success lies in the number of our clients who have built our whole range – many assembling several units for others to use often on the professional music scene.

We believe in taking every care throughout – months spent checking and testing the design and development. Vigorous checking of every component, constant pre-despatch quality control, careful packaging . . . even door to door delivery by Securicor!

We are naturally very proud of our Transcendent range of synthesizers designed by Tim Orr and regularly featured in ETI. They represent the best in constructional interest and in musical performance.

TRANSCENDENT POLYSYNTH – A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.
- Complete kit £275.00 plus VAT (single voice)
- Extra voice (up to three more) £42.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSCENDENT DPX – Offers a five octave keyboard with power to match.
- Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic.
- Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.
- Complete kit £295.00 plus VAT.

TRANSCENDENT 2000 – Although only a 3 octave keyboard the ‘2000’ features the same design ingenuity, careful engineering and quality components of its larger brethren. The kit is well within the scope of the first time builder – buy it, build it . . . play it! You will know you have made the right choice.
- Complete kit £165.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSITION – A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.
- Complete kit £275.00 plus VAT (single voice)
- Extra voice (up to three more) £42.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSCENDENT DPX – Offers a five octave keyboard with power to match.
- Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic.
- Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.
- Complete kit £295.00 plus VAT.

TRANSITION – A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.
- Complete kit £275.00 plus VAT (single voice)
- Extra voice (up to three more) £42.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSCENDENT DPX – Offers a five octave keyboard with power to match.
- Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic.
- Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.
- Complete kit £295.00 plus VAT.

TRANSITION – A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.
- Complete kit £275.00 plus VAT (single voice)
- Extra voice (up to three more) £42.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSCENDENT DPX – Offers a five octave keyboard with power to match.
- Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic.
- Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.
- Complete kit £295.00 plus VAT.

TRANSITION – A four octave polyphonic synthesiser with outstanding design characteristics and versatility and performance to match.
- Complete kit £275.00 plus VAT (single voice)
- Extra voice (up to three more) £42.00 plus VAT.

EXPANDER – A new matching 4 voice expander to team up with your polysynth for even a greater range and capability.
- Complete kit £249.00 plus VAT.

TRANSCENDENT DPX – Offers a five octave keyboard with power to match.
- Two audio outputs (can be used simultaneously) to give harpsichord and piano/honkytonk or reed with strings/brass and both are fully polyphonic.
- Other features include switchable touch sensitivity and a chorus ensemble unit with strong/mild effect switching. An advanced design made simple with our clearly laid out instruction manual.
- Complete kit £295.00 plus VAT.
CONSTRUCTIONAL PROJECTS

STEREO CASSETTE DECK Part 1
The latest separate for the PE Quasar Stereo System

ULTRASONIC VISION SYSTEM Part 1 by Jeremy Bentham and Fred Bentham
A radar style outlook for your computer

ENLARGER TIMER by Tom Gaskell BA
Photographic aid for the darkroom

MEDIUM RESOLUTION GRAPHICS by N. A. Climpson
User definable 4-times resolution for UK101

PE ROBOTS Part 6 by Richard Becker, Tim Orr and Richard Monkhouse
Conclusion—software, construction and wiring

TELECTRIC ELECTRICITY COST MONITOR Part 2 by Stephen Day BSc Eng MIEE
Microprocessor circuitry and software; constructional details

GENERAL FEATURES

SEMICONDUCTOR UPDATE by R. W. Coles
Featuring MC146818 TDS 934 6600

STRICTLY INSTRUMENTAL by K. Lenton-Smith
History of an organ pioneer

MICROPROMPT
Including a 48 x 32 video conversion for UK101

INGENUITY UNLIMITED
Overload cutout for thyristor speed control—Button selector—Switch de-bounce—Quality mic amplifier—9V power supply—Octave bank for VCOs—Sound-to-light converter

NEWS AND COMMENT

EDITORIAL

NEWS & MARKET PLACE
Including Countdown and Points Arising

THE MACROCHIP
Hot news of a piece of innovative technology

INDUSTRY NOTEBOOK by Nexus
Going off the rails?

SPECIAL OFFER—LOUDSPEAKERS
Hi-fi speakers at a very low price

BAZAAR
Buy, sell and swap service for readers

SPECIAL OFFER—CASSETTES
Starting a regular bargain offer on high quality cassettes

READOUT
Readers' criticism... and praise

SPACEWATCH by Frank W. Hyde

PATENTS REVIEW

SPECIAL SUPPLEMENT

FREE TRANSISTOR PROJECTS between pages 40 & 41
Logic probe, Light Delay Unit, Car Lights Reminder, Battery Monitor, Soil Moisture Meter, Snap Indicator

OUR MAY ISSUE WILL BE ON SALE THURSDAY, 8th APRIL 1982
(for details of contents see page 23)
WATFORD ELECTRONICS

33/35 CARDIFF ROAD, WATFORD, HERTS WD1 8ED, ENGLAND

Tel. Watford 0523 40588. Telex: 8956009 WAELC

ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERM OF BUSINESS: CASH/CHEQUE/P.O. OR BANKERS DRAFT IN PAYMENT. 10% DEPOSIT TO SECURE, CASH ON DELIVERY. ACCEPTED TELEPHONE ORDERS BY ACCES. NOW ACCEPTED Minimum £10.00 please. TRADE DISCOUNTS APPLIED TO ALL ORDERS UNDER £100. EXCL. VAT. OVERSEAS ORDERS POSTAGE AT COST.

VAT
Export orders no VAT. Applicable to U.K. Customers only. Unless stated otherwise, all prices quoted include VAT at 17.5% unless otherwise stated.

We stack many more items. It pays to visit us. We are situated behind Watford Football Ground. We have our own car parking. Opening hours 9 a.m. - 6 p.m. Ample Free Car Parking space available.

POLYESTER RADIAL LEAD CAPACITORS.
- **CM7217A**
- **CM7215**
- **CM7213**
- **CM7211**

POLYESTER RADIAL LEAD CAPACITORS.
- **CM7217A 790**
- **CM7215 1050**

SILVER MICA
- **475 1040**
- **476 1040**
- **478 1040**
- **479 1040**

SILVER MICA
- **475 1040**
- **476 1040**
- **478 1040**
- **479 1040**

MYLAR FILM CAPACITORS.
- **100V 1/4uf**
- **475 1040**

CERAMIC Capacitors:
- **50V**
- **100V**

Potentiometers:
- **Carbon Track**
- **500K, 1K & 2K** (LIN ONLY)

RESISTORS:
- **2.2W, 5% Carbon Film**
- **500K OHM**
- **100K OHM**
- **47K OHM**
- **10K OHM**

IC's:
- **NE515**
- **NE517**
- **LS240**

TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>50V</th>
<th>75V</th>
<th>200V</th>
</tr>
</thead>
<tbody>
<tr>
<td>4015</td>
<td>100</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>4040</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

Atari 5200

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5200</td>
<td>100</td>
</tr>
<tr>
<td>7800</td>
<td>150</td>
</tr>
</tbody>
</table>

TTL 7400

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>120</td>
</tr>
<tr>
<td>7404</td>
<td>150</td>
</tr>
</tbody>
</table>

74LS Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS</td>
<td>200</td>
</tr>
<tr>
<td>74LS1B</td>
<td>250</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4011</td>
<td>100</td>
</tr>
<tr>
<td>4012</td>
<td>150</td>
</tr>
</tbody>
</table>

Sound Generator

- Price - £2.50

Memo:

- Price - £2.50

Computer IC's

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1140</td>
<td>700</td>
</tr>
<tr>
<td>1230</td>
<td>850</td>
</tr>
</tbody>
</table>

74LS Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74LS</td>
<td>200</td>
</tr>
</tbody>
</table>

75 Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7510</td>
<td>125</td>
</tr>
<tr>
<td>7511</td>
<td>150</td>
</tr>
</tbody>
</table>

TTL 7400 (Texas)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7404</td>
<td>120</td>
</tr>
<tr>
<td>7400</td>
<td>150</td>
</tr>
</tbody>
</table>

4010 Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4010</td>
<td>100</td>
</tr>
</tbody>
</table>

CMOS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4001</td>
<td>100</td>
</tr>
</tbody>
</table>

Practical Electronics

April 1982
Computer Corner

- **VIC 20 Microcomputer.** Connects directly to a colour TV. 5K RAM expandable to 32K PET compatible graphics. £195
- **Cassette Deck** for VIC20 including a free 6 programme Cassette. £34
- **Epson MX Series Printers.** Full range available. Please phone for prices. £225-£250
- **Blip Printer.** The Printer, gives normal and double width characters as well as dot resolution graphics 8" Tractor feed. Parallel Interface. £99
- **Softy-2.** As reviewed in PE September 1981. The complete microprocessor development system for Engineers & Beginners. Powerful industrial strength kit, pin by pin compatible with EPROM. Supplied fully built, tested & enclosed in a black ABS case. Price inc. encapsulated plug in power supply. £279
- **Video Monitor** 9" fully cased. B&W. Fully guaranteed. Excellent value for money at only £69
- **Tex Eprom Eraser.** Erases up to 32 ICs in 15-30 mins. Electric timer £45
- **Tex Eprom Eraser** with integral 30 minute Electric timer £45
- **Spares UV lamp bulbs £9
- **5V/5A PSU** Ready built and tested £25
- **Attractive Beige/Brown ABS Case for Superboard/UK101 or Home Brew £26
- **Extra Loud Speaker cable £10**
- **Space Invaders for Superboard £6
- **Full ASC11 coded keyboard type '756 £39
- **4 x 4 matrix keypad (reed switch assembly) £40
- **C12 Cassettes in Library Cases 40p
- **8" Fan fold paper (500 sheets) (no VAT) £6
- **9" Fan fold paper (500 sheets) (no VAT) £6
- **Teleprinter Roll (no VAT) £6.15**

Special Offer

- **8" Tractor Feed £169
- Spot Face Cutter £118
- 4 x 18" £426

WATFORD'S Universal Micro Expansion System

Designed by Watford Electronics, this extremely versatile and economical Expansion System as published in E.T., starting from Dec. 81 issue, offers a low cost flexible expansion facility for ZX81, UK101, SUPERBOARD, ACORN ATOM, FET, TANGERINE, TRS80, VIDEO GENIE, VIC 20, ECT.

The Motherboard (Interfaces with the Computer) has capacity to accept up to five daughter cards and/or any combination of 2-4 daughter cards. All PCBs are of Computer grade finish and are supplied in Kit form.

Just look at the expansion possibilities:

- **Motherboard** – Accepts up to five Daughter Cards.
 - Full Kit: £36.50
- **Sound Card** – Utilising up to three AY-3-8910 Sound chips. (one supplied with every Kit)
 - Full Kit: £24.95
- **PIO Card** – Using two 6520 PIA chips, this Board offers Centronics parallel printer driver, digital to analogue converter and a host of other out put facilities.
 - Full Kit: £11.95
- **Programmer** – This simple but extremely useful card can blow 2716 or 2732 single rail EPROMS.
 - Full Kit: £25.95
- **Prom Card** – P.C.B. cards for housing four 2716 or two 2732 EPROMS.
 - Full Kit: £11.95
- **RAM Card** – 8K RAM card. Accepts 16x2114 RAMs. The Board is supplied fully populated.
 - Full Kit: £28.50

(N.B. P.C.B.s may be bought separately)
Has seven years of success gone to our heads?

NEW IMPROVED

MINIMAX 2

With the Minimax II, Videotone revolutionised the market by establishing an opening for small, high quality speakers. Natural evolution has brought about the new Minimax 2, retaining all the qualities of clarity and sensitivity. This ideal combination of size and performance is a proven success, acclaimed by the press and public for seven years.

POPULAR HI-FI
"Switching to the Minimacs' from any of the others produced an open and natural sound as though something had been taken away. It had, the colouration had gone." Comparative test OCTOBER 1975.

HI-FI ANSWERS
Their modest appearance and price disguise their startling abilities. Never have we heard such a small speaker sound so big!" JANUARY 1975.

PRACTICAL HI-FI & Audio
"The depth, clarity and openness of sound produced is quite astonishing". JUNE '75

WHAT HI-FI
"...the ability of the Minimax to take a lot of power and still sound good could be decisive" - Comparative test, APRIL 1977.

PRACTICAL HI-FI
The little Videotone scored highly for such a small inexpensive loudspeaker". JANUARY 1981.

Specification:
Recommended amplifier power: 10 to 40 watts rms into 8 ohms.
Frequency Response: 80Hz - 20KHz+5dB.
Finish: natural teak, veneer with black frets.
Size: 10 7/8" high, 6 3/4" wide, 7 1/2" deep.
Weight: 4.1 Kgs (9 lbs) each.

ONLY £69.95 A PAIR

We welcome callers to our South London Showroom for demonstrations.
Enquiries and information phone: 01-690 8511, Ex. 32.
All products are only available direct or from selected authorised dealers throughout the U.K.

VIDEOTONE
98 CROFTON PARK ROAD
LONDON SE4.
Send for our free brochure and details of outlets in the U.K.

Post to: Videotone, Crofton Park Road, London SE4.

NAME
ADDRESS

TRAIN FOR SUCCESS
in Radio, Television & Electronics

ICS have helped thousands of ambitious people to move up into higher paid more secure jobs in the field of electronics - now it can be your turn. Whether you are a newcomer to the field or already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:

Telecommunications Technicians
Radio, TV, Electronics Technicians
Radio Amateurs
Electrical Installation Work

Diploma Courses

Colour TV Servicing
CTV Engineering
Electronic Engineering & Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering & Servicing
Electrical Engineering, Installations & Contracting

Other Career Courses
A wide range of other technical and professional courses are available including GCE.

FREEX

BOOK

Post this coupon or 'phone today for free Electronics careers guide.

Name
Address
Age

To ICS, Dept 273T, Intertex House, London SW8 4UJ
or telephone 01-622 9911 (all hours)
The Garde Door: At your command

At last, a kit to enable your motorized garage door to be opened without setting foot from your car, and also on or off at the touch of a button. A momentary relay only while a valid code is transmitted (the relay closes switching 240V a.c. mains loads or via a reset for solid state switches (1kW minimum) a hand-held function keys Open/Close on 1, 2. OFF, giving a 24-hour control in the home appliances. This unit is ideal for those aged or disabled.

All prices exclude vat

THE PERFECT AID FOR "LAZYTIS"

Our Lamp Dimmer Kit with INFRA RED REMOTE CONTROL will enable you to switch the lights on or off, and set the brightness, at a push of a button without leaving your armchair. Used in the bath or bedroom you will save money, or in the office, and with your clothes and carpet wear alone would pay for this unit in approximately 1 907 years or more.

ราคาพิเศษปิดรับบี้

Last Prices Slashed

The Multi-purpose Timer Has Arrived

Now you can run your central heating, lighting, hi-fi system and lots more with just one programmable timer. In your selection it is designed to control four mains outlets independently, switching on and off at pre-set times over a 7 day cycle e.g. to control your central heating, including different switching times for weekends. Just connect it to your system program and set it and forget it—the clock will do the rest.

Features include:
- 15 min. LED 12 hour display
- Day of week, am/pm and output status indicators
- 4-Step voltage switched mains outputs
- 50/60Hz mains operation
- Batteries backup saves stored programmes and continues time keeping during power failures (Battery not supplied)
- Display back-up power during power failure to conserve battery power
- 18 programme time sets
- Display back-up power during power failure to conserve battery power
- 18 programme time sets
- 16 period operating times including different switching times for weekends
- Useful "sleep" function—turns on output for one hour
- Direct switch control enabling output to be turned on immediately or after a specified time interval
- Function keypad for programme entry
- Programme verification at the touch of a button

This unit is usable for 24x365x24 hours and is supplied with a clear plastic cover to prevent accidental switching.

24 Hour Clock/Appliance Timer Kit

Switches any appliance up to 1kW on and off at preset times per day. Kit contains AVR-7:120C IC 5.5-V LED display, mains supply display drivers, DVM, Lamps, tracs, PCBs and full instructions

CT100K Basic Kit £14.90
CT100K with white box (56:13:4:7:2:14) £17.40
(Reddy Blunt 4.30)

/railway postage & packing + 15% VAT 1st class Overseas Customers Add £18 (European) £4 (International) for p&p

Send S.A.E. for further STOCK DETAILS

Products return subject to availability

Fast Service £50.00

No circuit is complete without a call to:

Electronics PE
11 Boston Road
London W7 3SJ

Telephone: 01 579 9794/2842

Practical Electronics April 1982
Sinclair ZX81 Personal Computer
the heart of a system that grows with you.

1980 saw a genuine breakthrough – the Sinclair ZX80, world’s first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just £69.95 the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand – over 50,000 in the first 3 months!

Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.

Lower price: higher capability
With the ZX81, it’s still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM – the ‘trained intelligence’ of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements – the facility to load and save named programs on cassette, for example, and to drive the new ZX Printer.

Kit: £49.95

Built: £69.95

Higher specification, lower price – how’s it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4!

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

New, improved specification
- Z80A micro-processor – new faster version of the famous Z80 chip, widely recognised as the best ever made.
- Unique ‘one-touch’ key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animated-display facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function – useful for games as well as serious applications.
- Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: micro-processor, ROM, RAM, plus master chip – unique, custom-built chip replacing 18 ZX80 chips.

Kit or built – it’s up to you!
You’ll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) – a few hours’ work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor – 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.
16K-byte RAM pack for massive add-on memory.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16! Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software – the Business & Household management systems for example.

Available now - the ZX Printer for only £49.95

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumericics and highly sophisticated graphics. A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further instructions.

At last you can have a hard copy of your program listings – particularly useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZX Printer connects to the rear of your computer – using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long x 4 in wide) is supplied, along with full instructions.

How to order your ZX81

BY PHONE – Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST – use the no-stamp-needed coupon below. You can pay by cheque, postal order, Access, Barclaycard or Trustcard.

EITHER WAY – please allow up to 28 days for delivery. And there's a 14-day money-back option. We want you to be satisfied beyond doubt – and we have no doubt that you will be.

To: Sinclair Research Ltd, FREEPOST, Camberley, Surrey, GU15 3BR.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Item</th>
<th>Code</th>
<th>Item price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sinclair ZX81 Personal Computer kit(s). Price includes ZX81 BASIC manual, excludes mains adaptor.</td>
<td>12</td>
<td>£49.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ready-assembled Sinclair ZX81 Personal Computer(s). Price includes ZX81 BASIC manual and mains adaptor.</td>
<td>11</td>
<td>£69.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mains Adaptor(s) (600 mA at 9 V DC nominal unregulated).</td>
<td>10</td>
<td>£8.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16K-BYTE RAM pack.</td>
<td>18</td>
<td>£49.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinclair ZX Printer.</td>
<td>27</td>
<td>£49.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8K BASIC ROM to fit ZX80.</td>
<td>17</td>
<td>£19.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post and Packing.</td>
<td></td>
<td>£2.95</td>
<td></td>
</tr>
</tbody>
</table>
EXCITING OFFERS!

DIGITAL VOLTMETER MODULE

Fully built & tested
- Positive and negative voltages with an FSO of 999mV which is easily extended.
- Requires only single supply 7-12V.
- High overall accuracy ± 0.1% + 1 digit.
- Large bright 0.43" (11mm) LED displays.
- Supplied with full data and application information.

Using this fully built and calibrated module as a basis now means that you can easily build a wide range of accurate equipment such as multimeters, thermometers, battery indicators, etc. etc. at a fraction of the cost of ready-made equipment. Full details are supplied with each module showing how to easily extend the voltage range and measure current, resistance and temperature. Fully guaranteed, the unit has been supplied to electricity authorities, Government departments, universities, the P.D. and many companies.

Temperature Measurement £2.15 VAT
An easily constructed kit using an I.C. probe providing a linear output of 10mV/°C over the temperature range from -10°C to +100°C. The unit is ideal for use in conjunction with the above DVM module providing an accurate digital thermometer suitable for a wide range of applications.

Power Supply £4.95 VAT
This fully built mains power supply provides two stabilised isolated outputs of 9V providing current levels of up to 250mA each. The unit is ideally suited for power ing the DVM and the Temperature Measurement module.

In addition to the above a wide range of competitively priced electronic components is stocked. Please telephone your specific requirements.

PARDON ELECTRONICS LTD.
Dept. No. 21 44 Paddock Mead, Harlow, Essex CM18 7RR Tel: 0279 32700

RESISTORS: ±1% Carbon Film £24 range ±5% tolerance. High quality resistors made under strictly controlled conditions by automatic machines. Bandwound and colour coded:
- £1.00 per hundred mixed (Min 10 per value)
- £8.50 per thousand mixed (Min 50 per value)

DIODES: IN4148 39 each. Min order quantity - 15 items £1.60 per hundred

DIL SWITCHES: Gold plated contacts to fully sealed base - solves those programming problems
- 4 Way £1.60 each 8 Way £1.20 each

DIL SOCKETS: High quality, low profile sockets

ALL PRICES INCLUDE VAT & POST & PACKING - NO EXTRAS

Minimum order - U.K. £10 OVERSEAS £5 CASH WITH ORDER PLEASE

PARNDON ELECTRONICS LTD.
Dept. No. 21 44 Paddock Mead, Harlow, Essex CM18 7RR Tel 0279 32700

ONER KIT (MAINS OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions A suitable case including front panel, neon switch, etc. £12.50

HOURS: Mon to Fri. 9.5 pm. Sat. 9-4.30 pm.

T. POWELL, Advance Works, P.E., 44 Wallace Road, London N1 1PQ. Tel. 011 526 6890.

Please allow 14 days for delivery.

IONISER KIT (MAINS OPERATED)

This negative ion generator gives you the power to saturate your home or office with millions of refreshing ions. Without fans or moving parts it puts out a pleasant breeze. A pure flow of ions pours out like water from a fountain, filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions A suitable case including front panel, neon switch, etc. £12.50

HOURS: Mon to Fri. 9.5 pm. Sat. 9-4.30 pm.

T. POWELL, Advance Works, P.E., 44 Wallace Road, London N1 1PQ. Tel. 011 526 6890.

Please allow 14 days for delivery.
This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a self-employed servicing engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally for advice or help during your work. A Certificate is given at the end of every course.

You will do the following:
- Build a modern oscilloscope
- Recognise and handle current electronic components
- Read, draw and understand circuit diagrams
- Carry out 40 experiments on basic electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state ‘chips’
- Learn how to test and service every type of electronic device used in industry and commerce today. Servicing of radio, T.V., Hi-Fi and microprocessor/computer equipment.

Please send your brochure without any obligation to:

NAME
ADDRESS

I am interested in:

- COURSE IN ELECTRONICS
- RADIO AMATEUR LICENCE
- MICROPROCESSORS
- LOGIC COURSE

British National Radio & Electronics School
Reading, Berks, RG17 BR

Instant frequency indication from 5Hz to 100MHz; no range selection problems; a brilliant 8-digit LED display; mains or battery operation; an accuracy of 4 parts per million ±1 count; and totally automatic operation — all this for only £85.00* with GSC’s new Max-100 frequency counter.

Just take a look at our spec. Where else could you find anything similar at the price?
- Frequency range 5Hz - 100 MHz
- Input impedance 1M shunted by 10pF
- Sensitivity 30mV from 1KHz up to 50MHz; 120mV r.m.s. over full frequency range
- Timebase accuracy ±4 parts in 10^6 (from 5 to 45°C)
- Maximum aging rate 10 parts in 10^6 per year
- Over-frequency indication
- Low-battery-power alarm
- Operates from dry or rechargeable cells, or a car battery (via an adaptor)
- Dimensions: 45 x 187 x 143mm
- Options: 12V adaptor; battery eliminator; r.f. antenna; low-loss r.f. tap, carrying case.

Despatched within 48 hrs.

Fill in the coupon for further details...

Name
Address
I enclose cheque/P.O. for £
or debit my Barclaycard/Access/American Express card no.
exp. date

FOR IMMEDIATE ACTION - The G.S.C. 24 hour, 5 day a week service.

G.S.C. Limited, Dept. 5D, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

MAX 100
FREQ. COUNTER
Unit price inc. P&P 15% VAT £99.47

Practical Electronics April 1982
POWER DIMMING MODULES

A range of isolated digitally controlled dimming modules, complete with panels. Each type requires connection to the supply/reference board.

- **Slave power controllers (SPC)** Controls up to 1000W via the slider.
- **Remote slaves (RS) - (Preset)**
- **Supply/reference board**
- **Profitable products**
- **Multi channel sound dimmers**
- **Remote slaves (RS) - (Preset)**
- **Supply/reference board**
- **Profitable products**
- **Multi channel sound dimmers**

Prices

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC</td>
<td>£35.70</td>
</tr>
<tr>
<td>RS</td>
<td>£8.50</td>
</tr>
<tr>
<td>Supply</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

Features

- Multi channel common wiring lines
- Master dimming over banks
- Remote overrides
- Dipped 'kill' and 'all on'
- Low voltage fixed lines
- Common neutral or live outputs

Installation

- Place module in a suitable location for the main system or control in SPC.
- monks: Are available on power dimmers.
- Total your order and deduct.
- £110 to £119.20
- £320 to £393.30
- £460 - 40%

L & B ELECTRONIC MODULES

Programmable - 8

P/P INS £1.50

- Complete with blue panel/white letters
- 8 channel dimmers
- 16, 32, 64, 128 patterns
- Automatic program store
- Adjustable cycle on/off speed
- Either common Neutral or live lamps

Programmable - 5

P/P INS £1.50

- Complete with blue panel/white letters
- 5 channel dimmers
- 8, 16, 32, 64, 128 patterns

3 CHANNEL SOUND/LIGHT CHASER

LB31000SLC

- £35.70

STEREO DISCO MIXER/PREAMP

LBPA3

- £33.70

Additional Products

- Bass/mid/treble
- Automatic on/off switch
- 8 channels at 1000W each
- Automatic level filter control
- Reverse or random effects
- Super sensitive
- Zero reference triggering
- Suitable for LED driving

Ordering Information

- Send S.A.E. for list of separately available parts.
- Any amp and mixers available.
- £1 p&p includes VAT.

NEW! NEW! NEW!

4 CHANNEL SOUND LIGHT AUTO-CHASER (£49.90)

- Bass/mid/treble
- Automatic level filter control
- Reverse or random effects
- Super sensitive
- Zero reference triggering
- Suitable for LED driving

Contact Information

- CROFTON ELECTRONICS LIMITED
- 35 Grosvenor Road, Twickenham, Middlesex TW1 4AD
- Tel: 01-891 1513
- Telex: 295093
- VAT registered

NEW! NEW! NEW!

4 CHANNEL SEQUENCER

LB41000LS

- £19.20

PE CAR COMPUTER

This unit was described by Practical Motorist as: "One of the neatest, most comprehensive and most useful of these car computers that we have yet come across . . ."

The PE Car Computer was designed to exceed the specification of all others, both for number of functions and accuracy. As well as the usual functions, it can perform eleven "remaining" type calculations, has a unique "start-stop" mode (used for acceleration timing and the like) and has a combination lock for driving an alarm or ignition cut-out.

The unit is housed in a custom designed box with high quality printed panels having an overall size of 165 x 50 x 80mm deep, and can be fitted above or below the dashboard. The display is liquid crystal for clarity in all lighting conditions.

The kit includes all sensors, wiring, etc and is suitable for all cars except those fitted with diesel or fuel injection engines.

Kit price: £78.50 **Assembled price:** £88.50

+ £1 p&p includes VAT.

Send S.A.E. for list of separately available parts.

Send for details.

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham, Middlesex TW1 4AD

Tel: 01-891 1513
Telex: 295093

Up to 28 days for delivery.
BI-PAK BARGAINS

- **SCREWDRIVER SET** 6 precision screwdrivers in hinged plastic case - Sizes: 0, 1, 2, 5/32, 3/16, and 2 mm - Price: £1.78
- **NUT DRIVER SET** 5 precision nut drivers in hinged plastic case - With turning rod - Sizes: 3, 4, 5, 5.5, and 6 mm - Price: £1.78
- **TOOL SET** 5 precision instruments in hinged plastic case - Crosspoint (Phillips) screwdrivers: 5 precision instruments in hinged plastic case - Sizes: 1.5, 2, 2.5, 5, and 6 mm - Price: £1.75
- **SEMICONDUCTORS FROM AROUND THE WORLD**
 - **Resistors**
 - 22 ohms - 100 watts across 16 ohms - Price: £1.50
 - 220 ohms - 1 watt Carbon Resistors - Price: £0.83
 - 2.2 ohms - 8 watts Carbon Resistors - Price: £0.83
 - **Capacitors**
 - Disc ceramics - Price: £0.60
 - Polyesters - Price: £0.50
 - Electrolytics - Price: £0.50
 - **Transistors**
 - NPN Silicon General Purpose PNP Transistors TO -5 Case - Price: £1.50
 - PNP Silicon General Purpose NPN Transistors TO -18 Case - Price: £1.00
 - **Rectifiers**
 - 1 Amp Silicon Rectifiers - Price: £2.00
 - 5 Amp Silicon Rectifiers - Price: £25.00
 - **Semiconductor Kit**
 - Complete PCB Kit comprises boards. Then add to that 100 Semiconductors - Price: £8.95
- **TECASBOTY**
 - The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers, sirens and sirens - Price: £24.00
 - Resistors of mixed values 22 ohms to 2M2 - 1.8 to 2 Watt - Price: £2.50
- **MOBIL LA PIEZO ELECTRIC TWEEZER**
 - Maximum Amplification: 500 volts rms when equal to - 200 watts across 4 ohms - 100 watts across 8 ohms - 50 watts across 16 ohms - Price: £6.00

BI-PAK PCB ETCHANT AND DRILL KIT
- Complete PCB Kit comprises: 1 Explo Mini Drill 10, 000RPM 12V DC incl 3 colors & 1 x 1mm Twist bit - Price: £7.00
- 1 Sheet PCB Transfers 210mm x 150mm - Price: £3.00
- 1 Eight Reel Pen - Price: £1.00
- 1 x pack FERRIC CHLORIDE crystals - Price: £1.00
- 3 sheets copper clad board - Price: £1.50
- Full instructions for making your own PCB - Price: £2.00
- Retail Value over £16.00
- OUR BI-PACK SPECIAL KIT PRICE £9.78

BI-PAK SOLDER-DESOLDER KIT
- Kit comprises: 1 Explo Mini Drill 10, 000RPM 12V DC incl 3 colors & 1 x 1mm Twist bit - Price: £7.00
- 1 Sheet PCB Transfers 210mm x 150mm - Price: £3.00
- 1 Eight Reel Pen - Price: £1.00
- 1 x pack FERRIC CHLORIDE crystals - Price: £1.00
- 3 sheets copper clad board - Price: £1.50
- Full instructions for making your own PCB - Price: £2.00
- Retail Value over £16.00
- OUR BI-PACK SPECIAL KIT PRICE £9.78

Plastic Boxes
- Coloured Black - Case sizes: 6" x 4" x 1.5" - Price: £4.00
- 2" x 2" x 1" - Price: £2.00
- 3" x 2" x 1.5" - Price: £3.00
- 4" x 3" x 2" - Price: £4.00
- 5" x 4" x 3" - Price: £5.00

EXPERIMENTOR BOXES - ALUMINIUM
- Made with Bright Aluminium tested construction with deep lid and screws - Size: 7" x 5" x 3" - Price: £1.50
- Size: 9" x 7" x 5" - Price: £2.00

EXPERIMENTOR BOXES - PLASTIC
- Made with Bright Aluminium tested construction with deep lid and screws - Size: 7" x 5" x 3" - Price: £1.50
- Size: 9" x 7" x 5" - Price: £2.00

CAPABLE CAPACITOR PAIR
- Price: £1.00

EXPRESSOR BOXES - ALUMINIUM
- Made with Bright Aluminium tested construction with deep lid and screws - Size: 7" x 5" x 3" - Price: £1.50
- Size: 9" x 7" x 5" - Price: £2.00

EXPRESSOR BOXES - PLASTIC
- Made with Bright Aluminium tested construction with deep lid and screws - Size: 7" x 5" x 3" - Price: £1.50
- Size: 9" x 7" x 5" - Price: £2.00

SEMICONDUCTORS FROM AROUND THE WORLD
- **Resistors**
 - 22 ohms - 100 watts across 16 ohms - Price: £1.50
 - 220 ohms - 1 watt Carbon Resistors - Price: £0.83
 - 2.2 ohms - 8 watts Carbon Resistors - Price: £0.83
 - **Capacitors**
 - Disc ceramics - Price: £0.60
 - Polyesters - Price: £0.50
 - Electrolytics - Price: £0.50
 - **Transistors**
 - NPN Silicon General Purpose PNP Transistors TO -5 Case - Price: £1.50
 - PNP Silicon General Purpose NPN Transistors TO -18 Case - Price: £1.00
 - **Rectifiers**
 - 1 Amp Silicon Rectifiers - Price: £2.00
 - 5 Amp Silicon Rectifiers - Price: £25.00
 - **Semiconductor Kit**
 - Complete PCB Kit comprises boards. Then add to that 100 Semiconductors - Price: £8.95

TECASBOTY
- The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers, sirens and sirens - Price: £24.00
- Resistors of mixed values 22 ohms to 2M2 - 1.8 to 2 Watt - Price: £2.50
- Third Hand... always ready...
 - but have never got until now...

TOP QUALITY RESISTOR BARGAINS
- Price: £1.00

CAPABLE CAPACITOR PAIR
- Price: £1.00

TECASBOTY
- The Electronic Components and Semiconductor Bargain of the Year. A host of Electronic components including potentiometers, sirens and sirens - Price: £24.00
- Resistors of mixed values 22 ohms to 2M2 - 1.8 to 2 Watt - Price: £2.50
- Third Hand... always ready...
 - but have never got until now...
STEREO CAR
BIRD AUDIO
CAR KITSERIES
RADIO
PRACTICAL ELECTRONICS

Featured in April issue Practical Electronics, printed 50p. Free with Kit.

STEREO AMPLIFIER KIT

- 125W HIGH POWER AMP MODULE

KIT:
- +£11.15 p&p

The power amp kit is a module for high power applications - disco units, guitar amplifiers, public address systems and even high power domestic systems. The unit is protected against short circuiting of the load and is safe in an open circuit condition. A large safety margin exists by use of generously rated components, resulting in a highly powered rugged unit. The PC board is back printed, etched and ready for use for ease of construction and the aluminium chassis is preformed and ready to use. Supplied with all parts, circuit diagrams and instructions.

HI-LIGHT SPEAKERS AT Bargain Prices

GOODMANS TWEETERS
8 ohm soft dome tweeter. 50 watts R.M.S. (continuous). £17.95 per pair加上£1.15 p&p.

MONO SPEAKERS

- 50 WATT Six individually mixed inputs for two pick ups. +£3.80 P&P

MONO MIXER AMP

- 50 WATT Six individually mixed inputs for two pick ups +£3.80 P&P

TV SOUND TUNER KIT

- +£18.25 p&p

This easy to build 3band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July '81 issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. I.F. System. Features: VHF, MW, LW Bands, interstation tuning and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM - 350 ohms. Stabalised power supply with 'C' core mains transformer. All components supplied: ready made chassis and scale, plus power amp assembly kit and mains power supply. The kit incorporates a Mullard LP1183 pre-amp module, plus power amp assembly kit and mains power supply. Also features 4 slider level controls, rotary bass and treble controls and 6 push button switches. Silver finish fascia with matching knobs and contrasting cassettes. Includes PCB. U.P. £14.25. £17.95 each (p&p £1.15). £21.95 pair (p&p £3.80).

35-WATT MICRO 2-WAY SPEAKER SYSTEM

Unit comprises one 50w (4"app.) Audax soft dome tweener HD100 and one 5" Audax bass/midrange 35w driver. £7.95 each. £13.00 pair. £21.95. Complete with 2 element crossover. Total impedance of system 4 ohms.

P.E. STEREO TUNER KIT

- +£11.15 p&p

This easy to build 3 band stereo AM/FM tuner kit is designed in conjunction with Practical Electronics (July '81 issue). For ease of construction and alignment it incorporates three Mullard modules and an I.C. I.F. System. Features: VHF, MW, LW Bands, interstation tuning and AFC on VHF. Tuning meter. Two back printed PCB's. Ready made chassis and scale. Aerial: AM - ferrite rod, FM - 350 ohms. Stabalised power supply with 'C' core mains transformer. All components supplied to P.E. strict specification. Front panel size: 10" x 2 1/4" approx. Complete with diagram and instructions. £17.95 each (p&p £1.15). £35.99 pair (p&p £3.80).

TV SOUND TUNER KIT

- +£11.15 p&p

As featured in E.T.I. December '81 issue. Kit of parts including PCB, UHF tuner and selector switch with all components excluding case.

- Transformer £11.50 + £1.50 p&p (p&p free on transformer if ordered with kit).
- Ready built LP1183 Mod-

ALL PRICES INCLUDE VAT AT 15%.
FAME AT LAST!

Sharp-eyed readers will no doubt have noticed that Telelectric being put through its paces on a certain national TV programme (minus its name of course) and listeners to local radio stations in various parts of the country may have heard the PE Bandbox (a recent project) and also an interview with Steven Day and Peter Hutt of Response—the company supplying kits and ready-made Telecols. It's nice that our projects are attracting attention from the 'National media'.

Of course our projects can't all be new and innovative and many, like our PE Quasar Stereo Cassette Deck in this issue, have been around in similar commercial form for some time. However, this particular project is a first for PE and is one of the few cassette recorder designs available to the hobbyist in kit form—its also another project that may become a commercial success story in ready-built form at a later date. Hobbyists have the advantage of time and price, thanks to our project.

While talking about price it is interesting to note that when Telelectric was first designed about three years ago the cost of building it would have been around £300. We have come to expect microprocessors for £5 or less, though we still happily pay relatively high prices for everyday items.

PRICES
We are all well aware of prices these days and we hope that PE can be of assistance in this area. This month we start two new services to readers, the first is a special arrangement with Video Tone who are making their high quality cassette tapes available to PE readers on a regular basis at exclusive prices—see page 51—and the second is the appearance of the first readers' ads in PE Bazaar (page 45). You can't get an advertisement placed for less than our free readers' ad service! Judging by the early replies we have received there should be some bargains in PE Bazaar and we hope it will lead to the development of a greater interchange of information, components and equipment between hobbyists—we anticipate many more ads appearing next month when there has been more time for you to send them in.

CLUB
Interchange of information and assistance to all hobbyists are part of the aims of the British Amateur Electronics Club (BAEC) which has been run by dedicated volunteers for many years and offers its members a quarterly newsletter containing articles, letters, news and views on all aspects of our hobby, special concessions from many component retailers and meetings at various venues.

BAEC can give the informal contact between fellow hobbyists that we are unable to arrange via the magazine. It is, therefore, a valuable asset to all who have electronics as their hobby and, among other things, provides valuable help to beginners. They can give advice, loan practical aids and have an extensive library covering most magazines and many technical books. In case our overseas readers are wondering, the club is also open to them. A letter from Cyril Bogod—chairman of BAEC—appears on page 53, contact him for further information.

By the way, we have no formal connection with BAEC but, as a magazine dedicated to the electronics hobbyist, like to give them our encouragement.

Mike Kenward

EDITOR Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
David Shortland PROJECTS EDITOR
Jasper Scott PRODUCTION EDITOR

ADVERTISEMENT MANAGER
SECRETARY
AD. SALES EXEC.
CLASSIFIED SUPERVISOR
AD. MAKE-UP/COPY

Jack Pountney ART EDITOR
Keith Woodruff ASSISTANT ART EDITOR
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Colette McKenzie SECRETARY

D. W. B. Tilleard 01-261 6676
Christine Pocknell 01-261 6676
Alfred Tonge 01-261 6819
Barbara Blake 01-261 5897
Ian Sweeney 01-261 6601

Technical Queries
We are unable to offer any advice on the use or purchase of commercial equipment or the incorporation or modification of designs published in PE. All letters requiring a reply should be accompanied by a stamped, self addressed envelope, or international reply coupons, and each letter should relate to one published project only.

Components and p.c.b.s are usually available from advertisers, where we anticipate difficulties a source will be suggested.

Back Numbers
Copies of most of our recent issues are available from: Post Sales Department (Practical Electronics), IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 0PF, at 95p each including Inland/Overseas p&p.

Binders
Binders for PE are available from the same address as back numbers at £4.60 each to UK or overseas addresses, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Subscriptions
Copies of PE are available by post, inland or overseas, for £13.00 per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Cheques and postal orders should be made payable to IPC Magazines Limited.
Beckman Expansion means more jobs

Beckman Instruments is substantially expanding its resistor network manufacturing capacity at its plant in Glenrothes, Scotland. This expansion will provide a total of 100 new jobs.

The first phase of the expansion will immediately provide 40 new jobs for technicians, engineers, supervisors and assembly workers, and the second phase will involve further equipment and provide 60 more jobs.

The investment, backed by Locate in Scotland (LIS), is a result of the decision by Beckman Instruments Inc to concentrate the manufacture of selected models of resistor networks at the most efficient Beckman plants to meet the total worldwide demand for the products.

Managing director Eoin O'Cuillemain said: "the expansion, which represents a 25% increase in the workforce, is a reflection of the company's confidence in the future and on the quality of work produced by all employees in Scotland. This increase in production capacity will enable us to offer an even more efficient service, with faster deliveries, to our customers worldwide. Without the co-operation of the LIS and the Glenrothes Development Corporation, it is unlikely that the expansion could have been successfully achieved in the current depressed economic environment," he added.

STEP FORWARD

Casio's latest addition to their range of keyboard instruments, the Casiotone 701, represents a major step forward in bringing music making within the reach of the uninhibited.

The biggest advance is in the use of a bar code reader to read and programme specially scored music, enabling playback in three ways:
- Automatic playback of the entire piece;
- Manual melody playing, guided by lamps above each key (with auto accompaniment);
- 'One Key Play' which allows the melody to be played by touching one key. The 701 can also be programmed via the keyboard, and editing facilities are provided. Alternatively, the 701 can be played in the traditional manner, so its easy-play facilities do not limit it for use solely as a beginners instrument.

Features of the 701 include a five octave keyboard with eight-note polyphony, 20 pre-set voices, a chord system enabling one finger accompaniment, and 16 auto-rhythms. It is available at a price of £495 including VAT and p&p from Tempus, 38 Burleigh Street, Cambridge, CB1 1DG. (0223 312866)

Foiled again!

At a time of increasing concern that a limited nuclear war in Europe could be around the corner, a Wales based company appears to be cashing in on present fears with a claim that they have discovered the means of producing a lightweight radiation-proof material.

Sivoh Electronics Ltd., of Faol-Ydnah, Gwent, say that they discovered the materials while experimenting on alternatives to Mica Poli for capacitors. Sivoh claim that the material, known as PROLAFOIL, (for which Patents are at present being applied for) could probably be used to make totally radiation-proof suits. The only obvious drawback at present is cost - production costs are estimated to be around £500 per square metre, though Sivoh say that they are looking into ways to cut that figure by about half.

Whether or not Sivoh succeed in producing a marketable product, the moral question remains - are we, by producing the means to survive a nuclear war (i.e. radiation-proof suits, fallout shelters, etc.) thereby increasing the likelihood of a nuclear disaster?

For further details, see page 51.

TANDY BREAKS INTO 16-BITS

The Tandy Corporation (Branch UK) has announced the introduction of TRS-80 Model 16 to its range of microcomputers.

The Model 16 features sixteen bit technology, dual processor architecture and a multi-user operating system. It is capable of 512K internal RAM memory storage, and 2½ megabytes of disk storage may also be added. This combination of large RAM and disk memory capacity will allow the Model 16 to use more sophisticated software with large file capacities.

The Model 16 desktop computer will be available late in 1982 in two versions, both with 128K memory. A single drive version with 1½ megabytes of disk storage, and a two-drive version with a total 2½ megabyte storage capacity.

The new TRS-80 Model 16 uses two microprocessors' the Z-80A and the 16-bit MC68000.

For TRS-80 Model II owners, there is the Enhancement Option, which is an upgrade board to 16-bits.

The upgrade board set for the TRS-80 Model II microcomputer provides it with the 16-bit, dual-processor, multi-user power of the TRS-80 Model 16 computer, and will also be available by the end of 1982.

QUASAR CASE

Pictured above is the PE Quasar Stereo Tuner (constructional details published in PE, July '81) now resplendent in a simulated wood cabinet. The cabinet will be available at the end of March for £3.95 (plus £1.50 p&p) from RT-VC, who also supply kits for the Quasar Tuner itself. RT-VC, 21b High Street, Acton, London W3.
Two of the United Kingdom's microcomputing pioneers and founder members of the Computer Retailers Association (CRA), Tim Moore and Jon Day, have formed a new company called Kuma Computers to supply working microsystems, proven software, educational books and, it is claimed, unreserved personal service.

Blanket invitation goes out to anyone with marketable software to contact Kuma Computers, 11 York Road, Maidenhead, Berks SL6 1SQ.

Bruel & Kjær (U.K.) Ltd., have just issued their 1982 Short Form Catalogue which is free upon application.

It is a 60-page colour illustrated booklet describing the full range of instruments, transducers, microphones and other accessories available for the measurement, analysis and recording of sound (or noise), vibration, strain, acoustic emission, hydro-acoustic signals, mechanical balance and illumination contrast.

B & K are located at: Cross Lances Road, Hounslow, Middlesex TW3 2AE.

Grenson Electronics have informed us that they have had to increase the prices of kits for the Bench PSU, featured in our February issue. The complete kit is now priced at £35 plus VAT and £2.40 p&p. The price of the ready built unit has also been increased to £59 plus VAT and p&p.

Home Radio have recently moved premises. Personal callers should now go to 169 London Road, Mitcham, Surrey. Their mail order address is still the same: P.O. Box 92, 215 London Road, Mitcham, Surrey.

L & B Electronics have recently introduced another unit to their range of lighting control modules. The LB 41000SLC is an advanced 4 channel sound to light modulator with automatic chase, providing bass, middle, presence and treble separation. Using automatic level detectors, coupled with a choice of automatic gain control in the input stage, the unit requires virtually no setting-up procedure whilst making excellent separation.

As with the 31000SLC, in the absence of a music signal the module automatically switches to a forward then reverse running phase.

All the usual advantages of L & B modules are incorporated with the addition of LED monitor drivers for each channel. The fused triac output stage will handle resistive loads up to 750 watts/channel.

The price, £43.39 plus £6.57 VAT. A blue fascia panel complete with LED's, illuminated switch and controls is also stocked at £8.00 plus £1.20 VAT.

For further information contact: L & B Electronics, 45 Wortley Road, West Croydon, Surrey (01-689 4138).

DISCOM OF EVESHAM HAVE ANNOUNCED THE LAUNCH OF A NEW BRITISH MICROCOMPUTER, A MICRO WHICH THEY SAY “WILL TAKE ON THE WORLD AND WIN”.

The 'McCombo' computer has been designed and built by a U.K. development team after eight months' research into the micro market. Research identified a need for a powerful, CP/M based single board computer, small enough to fit inside a terminal or disk drive case. Using McCombo, terminal manufacturers can produce a fully integrated CP/M based system using their own product with little or no development cost.

The board incorporates state of the art technology, including 64k memory chips. It is multi-user in operation, handling up to 4 users.

For further details, contact Discom, Old Manor Farm, Ashton-under-Hill, Evesham, Worcs. (0386 881962).
IS YOUR MICRO BAUD STIFF?

There is a versatile memory machine on the market which features read/write speeds and data integrity comparable to disc, but at a fraction of the cost! With up to 64K bytes per side, it will replace disc where access time itself is not too critical.

What is this machine? The 220M Digital Tape Recorder! A low-cost, non-volatile data and program storage system, with rapid software controllable record/replay/fast-wind functions. The machine, which automatically renews to verify everything it records, is designed around the well proven Philips Mini-Digital Cassette Recorder, and is available from Currah. Anyone running a 6502 based microcomputer system who cannot afford disc, yet desires a fairly snappy bulk storage medium, should consider the 220M a viable proposition.

The memory unit snaps quickly into your PET or VIC etc., and will run immediately in command mode (no host software required), or can, of course, be manipulated under program control by your computer. Flags are generated by the unit to allow two-way communication. The interface is activated quite simply by SYSn, whereupon the screen will inform you that you are in conversation with the memory unit's operating firmware (CTOS). With no further ceremony there are twenty-one extra BASIC commands in addition to your existing interpreter's repertoire, such as: BS (Basic Save), BL (Basic Load), OF (Open File) or PD (Print Directory) — to identify the tape.

With firmware to handle the technicalities, the 220M may be thought of as a fast intelligent cassette recorder, except that it automatically builds up a directory of your named files or programs. At the end of a session the directory itself may be saved. The operator, therefore, types in which file he wants and the 220M automatically finds and loads it into its Cassette Buffer RAM. This Tardis-like 2K of RAM is memory mapped into the host computer. Individual variables may be read from a recovered file, and when storing program listings, chunks of software can be appended to each other, thus realising the possibility of a dynamic subroutine library.

Encountering the worst access time, when the sought after data is furthest from the directory, rewind might take 60 seconds, but normally would be only a few seconds. Reliability is boasted, and at the time of going to press a version for each of the following machines was anticipated, if not already available:

- PET 3000 series, 4000 and 8000, UK101, Superboard, AIM65, Tangerine, VIC20, Atari 400 & 800 and Atom etc.

The sluggish 300 Baud cassette loading of most rudimentary microcomputers makes them clumsy in response to multifarious needs. The 220M, however, would allow the computer to stand-by with no particular software in RAM, ready to load up and run a selected program promptly. The 220M costs £185, and is available from Currah Computer Components Ltd., Graythorpe Industrial Estate, Hartlepool, Cleveland TS25 2DF. Tel: 0429-72996.

Countdown . . .

Please check dates before setting out, as we cannot guarantee the accuracy of the information presented below.

Seminex Mar. 29–Apr. 2. Imperial College, London. H1
CAD Mar. 30–Apr. 1. Metropolie, Brighton. Z1
ETM Mar. 30–Apr. 1. The Forum, Wythenshawe. T
Peripherals Mar. 31–Apr. 2. West Centre Hotel, London. Z1
Laboratory Manchester Apr. 7–8. New Century Hall, Manchester. E
Communications Apr. 20–23. NEC Birmingham I
BEX Brighton Apr. 28–29. K
Comspec Europe May 4–6. Centre Int. Rogier, Brussels. Z1
Two Counties Fair Sep. 15–18. Plymouth Ex. Centre, Millibray, Plymouth. Devon. T
Compec Nov. 16–19. Olympia, London. Z1
A1 Institute of Electronics, Rochdale, Lancs. E
Evax Steadman, Saffron Walden f 0799 22612
H1 Seminex Ltd., Tunbridge Wells f 0892 39664
I Industrial Trade Fairs, Solihull f 021-705 6707
K Douglas Temple, Bournemouth f 0202 20533
L1 World Trade Centre f 01-488 2400
T Trident Tavistock f 01822 4671
V SDL f Dublin 763871
Z1 IPC Exhibitions, Sutton f 01-643 8040

BEAT THAT BURGLAR

To complement their Ultrasonic Burglar Alarm module (featured in News & Market Place, October '81) Risco Ltd have now introduced a siren module, known as the SL 157.

This siren module was developed to provide a high level warning signal for use with alarms in a wide range of applications. Its operating frequency has been chosen to provide the highest possible audible output when used with the horn type of speaker. It can, however, be used with a conventional type of loud speaker with slightly reduced output. A useful feature incorporated is the inhibit facility whereby the connecting of appropriate pins stops the alarm. This feature means that the module may be used as the basis of a simple alarm systems or security loop.

The module operates from supply voltages in the range 9–15V, although with reduced output at 9V. Such a supply may be provided from batteries or a suitable mains unit.

The SL 157 is priced at £12.59 including VAT, plus 50 p&p. It is available direct from Risco Ltd., 21 Duke Street, Princes Risborough, Bucks, HP11 OAT (08444 6326)
Velleman U.K. present their first list of electronic kits together with prices which include V.A.T. and postage and packing. They are listed in “difficulty grades”, for beginners and experienced kit-builders, with the lower skill level at 1, rising to 3. All include high-quality components, full instructions and technical data and come to you packaged in clear plastic boxes, ideal for component storage.

FREE Soldering iron with your first order of £10 or over

REMEMBER — We offer a free soldering iron with your first order over £10. Send today for the free Velleman Kit Journal.

THE VELLEMAN KIT RANGE

Difficulty Grade 1

- K017 2.2W Mono Amplifier 5.00
- K011 7W Amplifier 5.14
- K012 Dimmer 1000W 5.39
- K013 Dimmer 1000W (2 Pcs.) 12.96
- K1716 20W Amplifier 10.32
- K1717 FM Receiver 5.46
- K1803 Universal Pre-amp 3.62
- K1823 1A Power Supply 6.99
- K1851 Power Supply for 60W Stereo 12.94
- K2541 Single digit counter 4.10
- K2544 Complex Sound Generator 8.22
- K2554 CB Power Supply 26.32
- K2595 Tape Loop 5.66
- K2609 Synchro 3.96
- K2666 Infra-red Remote Controller 15.53
- K2697 Three Tone Bell 6.56
- K2750 Universal Stereo Pre-amp 6.56
- K2751 Series 10A 6.56
- K2752 Microprocessor Dooberbell with 10 tunes 10.53
- K2759 Universal Start/Stop Timer 6.21

Difficulty Grade 2

- K1619 Mono VU using LED’s 8.18
- K1799 Stereo VU using LED’s 16.91
- K1804 60W Amplifier 10.15
- K1786 Running Light Unit 12.56
- K2543 Transistor ignition 9.97
- K2549 Infra-red Remote Control System 10.83
- K2550 Infra-red Detection System 12.47
- K2551 FM Stereo Decoder 11.49
- K2557 Digital Precision Thermometer 26.57
- K2571 Light Computer 35.23
- K2574 Four digit up/down counter with comparator 34.16
- K2576 40W Audio Amplifier 12.89
- K2577 Universal AC Motor Speed Control 7.59

Difficulty Grade 3

- K1615 High Precision Stop Watch 53.13
- K1682 Microprocessor Universal Timer 45.37
- K1785 50W C.tv. 11.39
- K1796 Four channel Infra-red Remote Control (Transmitter) 17.32
- K1798 Four channel Infra-red Remote Control (Receiver) 23.12
- K1799 Infra-red Central Command Unit 18.76
- K1799 Four channel IR Remote Control (Transmitter) 17.32
- K1804 Two channel Infra-red Remote Control (Transmitter) 23.12
- K1805 Two channel IR Remote Control (Receiver) 23.12
- K1809 Remote Control Light Dimmer 12.23
- K1809 Two channel IR Remote Control Light Dimmer (Transmitter) 17.32
- K1810 Two channel IR Remote Control (Transmitter) 17.32
- K1824 Infra-red Receiver for K2598 38.50
- K1825 Infra-red Transmitter for K2598 19.11
- K1827 FM Stereo Display (Common Antenna) 21.06
- K1828 CM Display/Comparator Cathode 21.06
- K1837 Universal Selectable EPROM Programmer 241.50
THE PE Stereo Cassette Deck is a versatile low cost system designed around a single p.c.b. The unit has the unusual facility of a variable bias control for optimum recording of all types of tape.

In addition to the basic circuitry a f.e.t. Gate Noise Reduction system has been designed which works on playback in two modes: Flat, all noise reduced in the absence of any signal, and High Frequency, only h.f. noise is reduced at low or no signal levels. This system has proved highly effective with all types of tape; its operation is more fully described later in the text.

The unit is also unusual because most of the switching is carried out electronically, thus reducing the need for complex, noisy and often unreliable switches on the deck mechanism. This design feature enables the p.c.b. to be used with almost any deck since it does not have to be closely coupled to the mechanism for switching purposes. The p.c.b. design is additionally simplified by the use of a LM1818 low noise i.c. in each channel. This i.c. carries the record/play logic switching, pre amps for record and play and VU meter drive. The i.c. also contains an auto record level circuit which is not employed on the p.c.b. shown but can be added as an addition if required—details are given later.

TAPE RECORDING SYSTEM

RECORD: The record/playback and erase heads are inductors with circular metal cores. The cores have narrow gaps at the point of contact with the tape, so that the tape coating provides a low reluctance path to complete the magnetic circuit. The input signals are suitably amplified and are fed to the head, which converts them into a varying magnetic field. As the tape moves across the tape head gap the coating becomes magnetised.

Essentially there are two important factors required for recording—

BIAS CURRENT: As well as the audio signal a constant frequency above the audio spectrum (50 to 200kHz) is passed through the head. Its amplitude determines the "operating point" of the magnetic recording process. Its function can be compared to the biasing of a transistor. Incorrect biasing in either case will result in distortion, signal deterioration etc. in respect of the tape head severe h.f. loss will also occur.

FREQUENCY EQUALISATION: During recording the record head current is to be boosted at a rate of 6dB/octave below a standard low frequency, and attenuated by 6dB/octave above a standard high frequency. During playback the low frequencies are attenuated and the high frequencies are boosted so that the overall record/playback frequencies are flat. There are several standard sets of turnover frequencies—CCIR, NAB, EIA and DIN. The cassette equalisation standards defined by DIN are the most commonly used; for ferric oxide cassettes it specifies 3dB frequencies of 50Hz (3180µs) and 1326Hz (120µs). The upper turnover frequency for CrO₂ type tapes is 2274Hz (70µs). On the Quasar a separate switch is provided for selecting the equalisation. With CrO₂ type tapes a higher bias current is required for correct "operating point".

PLAYBACK: The recorded flux on the tape induces a proportional current in the playback head. Since the head is inductive it will have a voltage amplitude response that increases by 6dB/octave of frequency. The playback amplifier provides the equalisation necessary to obtain a flat frequency response and sufficient gain to raise the head signal to a usable level.

OTHER CONSIDERATIONS: In an “ideal” magnetic recording system the use of the described complementary equalisation would result in a flat record/playback frequency response. There are several losses and errors associated with tape recording and these must be compensated for.

GAP LOSS (OCURRS ON PLAYBACK): The easiest way to compensate for gap loss is to make use of the head’s inductance by tuning it with a capacitor to resonate at approximately 12kHz. During record mode this capacitor must be made ineffective.

ANOTHER SEPARATE FOR THE PE QUASAR STEREO SYSTEM
Tape thickness loss (occurs on record): Tape thickness loss occurs when the tape coating thickness becomes significant compared to the recorded wavelength, resulting in a 6dB/octave high frequency roll-off. The DIN standard equalisation compensates for this.

Bias Erasure (occurs on record): If an excessive bias current setting is used for the record head it will cause high frequency erasure.

Bias Noise: This occurs due to the characteristics of the bias oscillator. Any d.c. current flowing through the record head will be modulated as would a signal. Although it is d.c. its noise spectrum will extend into the audio range. An a.c. bias signal can cause an effect similar to d.c. if the a.c. signal contains even harmonics of the fundamental frequency. Distortion, variations of frequency and amplitude of the recording bias will also result in undesirable modulations. To avoid these problems a well designed bias oscillator circuit is essential.

Tape Modulation Noise: Ideally the coating on a piece of recording tape should be perfectly smooth. However in practice this is not the case. As the tape moves past the head variations in the coating thickness causes rapid changes in the tape speed. This modulation causes noise “side-bands” around the audio signal frequency. To minimise this problem always use good quality cassettes.

Noise Reduction System: In terms of signal-to-noise ratio the cassette deck is normally the poorest link in the home audio set-up. There are several types of noise reduction systems, each with their own particular drawbacks. Some are so expensive and complex they make the rest of the circuit appear like a “crystal set”—all just for a few extra dB’s of noise reduction. For evaluation purposes only, these systems were tried out with the Quasar. Likewise the D.N.R. (dynamic noise reduction) employing dual i.c. and several systems were tried out with the Quasar. Likewise the D.N.R. was not unlike the function of an h.f. filter.

After careful consideration and objective listening it was decided that the noise was acceptable during quiet passages but was disconcerting during no-signal conditions. From this it was obvious some sort of “gating” that is synchronised to the output signal on playback would offer the best compromise between cost, availability of components, and effectiveness. Indeed under no-signal condition this form of noise reduction will also result in undesirable modulations. To avoid these problems a well designed bias oscillator circuit is essential.

Circuit Description

The complete circuit diagram of the Quasar is shown in Fig. 1. The LM1818 is a linear low noise I.C. (Fig. 2) containing all the active components for building a tape recorder (excluding bias oscillator).

The electronic functions on the chip include mic. and playback preamps, record and playback amplifiers, Automatic Level Control (ALC) and meter driving circuits. Internal electronic switching automatically selects record or playback. A zero voltage at pin 3 switches on the record mode and a +ve (10V min) switches on the play mode.

Record

A recording signal is fed to the switched mic. input socket and when the mic. is used the input is connected directly to the level control VR2. The attenuating network R49 and R50 are connected into the circuit when the mic. plug is removed, thus allowing higher signal levels to be recorded via the 5 pin DIN socket. The input signal to IC1 is via pin 16 and the equalisation network for record and playback is shared. The value of C5 (6n2) and R6 (12k) give the required 70μs DIN equalisation for CrO2 tape, the addition of R48 (6k) extends it to 120μs for Fe type tape.

The output of the record pre amp is connected via C12 to pin 4 of the meter/ALC drive and via C11 to pin 12 of the main record amplifier. The amplified output to the head is via C17, L1 and C18; R19 and C22; L1 and C18 form the “bias trapping” circuitry. The resistors R19 and R23 reduce the non-linear effect of the head, while C22 increases the drive at high frequencies (resonance approximately 12kHz). C15 and R15 form a 3000μs equalisation-DIN I.f. end corner frequency. When S1 is in record mode pin 3 is at zero volts and the logic circuit connects pin 2 to earth and selects the record state inside the i.c. S1a also connects R47 to the -ve rail, thus enabling TR9 and TR10 to oscillate at a fixed frequency set by C43. The oscillator output is connected via bias preset PR3 (PR4) and C27 to the head. C27 is low value to prevent “cross-talk” recording between L and R channels.

The erase head voltage is taken from the tapped oscillator coil (L2) and earth with the time constant for meter-drive circuit set by C10 and R13 and the sensitivity via preset PR1. Note that meter is operational on both record and playback states.

Playback

In play mode S1a prevents oscillation by removing the earth from R47 and R12, and allowing the leakage voltage to switch the logic at pin 3 to “play” operation. Pin 2, which in record state was grounded, now “floats” and is connected to the play input at pin 17 via C4. The other side of the head
CHANNEL CIRCUIT
All components duplicated in other channel.

Fig. 1. Complete circuit diagram of the Stereo Cassette Unit

Connections to 2nd channel:
is earthed by S1. C7 is chosen to resonate at approximately 12kHz—thus compensating for "gap loss" previously mentioned. All other functions are the same as in the record state except the corresponding circuitry is selected inside the i.c.

The rotate switch is an integral part of the deck and is located under the "take up" mechanism. While rotating it is short-circuiting the motor supply. Under normal use TR5 can be operated without a heatsink but a small heatsink may be attached if excessive rewind or fast forward operation is required. (Note: the tab of TR5 is internally connected and must not be shorted nor any other component.)

The same voltage is current amplified by TR5 to provide the motor supply. Under normal use TR5 can be operated without a heatsink but a small heatsink may be attached if excessive rewind or fast forward operation is required. (Note: the tab of TR5 is internally connected and must not be shorted nor any other component.)

The same voltage is current amplified by TR5 to provide the motor supply. Under normal use TR5 can be operated without a heatsink but a small heatsink may be attached if excessive rewind or fast forward operation is required. (Note: the tab of TR5 is internally connected and must not be shorted nor any other component.)
NEC 12" MONITOR

- GREEN DISPLAY
- BUILT IN AMPLIFIER AND SPEAKERS
- £149.95 each excluding carriage (£10.00) and VAT (15%)
- EX-STOCK

EPROM PROGRAMMERS AND ERASER

- EPROM000 EMULATING PROGRAMMER
 - COPY/PROGRAMME/EMULATE 32768, 256K, 262144
 - 4K x 8 STATIC RAM
 - POWERFUL EDITING FACILITIES
 - COMPREHENSIVE (0/0 STI) SR232 TTL, 20/Parallell LED
- £550.00 excluding carriage (£10.00) and VAT (15%)
- EX-STOCK

P4000 PRODUCTION PROGRAMMER

- PROGRAMME UP TO 8 EPROMS SIMULTANEOUSLY
- COVERS SAME EPROMS AS EPROM000
- INDEPENDENT BLANK CHECK/VRFY PROGRAM MODES
- SIMPLE TO USE
- £1550.00 each excluding carriage (£10.00) and VAT (15%)
- EX-STOCK

UV141 EPROM ERASER

- 14 EPROM CAPACITY
- SAFETY INTERLOCKED
- ELECTRONIC TIMER
- £78.00 excluding carriage (£5.00) and VAT (15%)
- EX-STOCK

KEYBOARD AND ENCLOSURE

CASE Attractively styled personal computer enclosure constructed of structured foam top and steel base (similar to the top selling Apple). Finish in charcoal and black

£49.95 excluding carriage (£10.00) and VAT (15%)

KEYBOARD High quality electromagnetic ASCII envelope which can be fitted above case or used separately. Full upper and lower case provided

£49.95 excluding carriage (£2.00) and VAT (15%)

TRANSFORMER Mains transformer suitable for +5V at 2.5A and ±12V at 1A. Mounts on special lugs inside enclosure.

£10.00 excluding carriage (£1.00) and VAT (15%)

HEATSEINK Heat sink for 7032 Regulators which mounts inside rear of enclosure

£25.00 excluding V.A.T. (15%)

SPECIAL PRICE FOR CASE, KEYBOARD, TRANSFORMER & HEATSEINK IF PURCHASED TOGETHER

£99.95 excluding carriage (£15.00) and VAT (15%)
next month...

SPECIAL TEST GEAR ISSUE!

SIGNATURE ANALYSER

FUNCTION GENERATOR

FREQUENCY METER

Plus... FREE SUPPLEMENT

IEEE-488/IEC-625 INTERFACE BUS AND AUTOMATIC TEST EQUIPMENT

PRACTICAL ELECTRONICS

MAY ISSUE ON SALE THURSDAY APRIL 8th
THE ROBOT AGE is drawing closer, but the general use of robots is held up because of one major problem: how can a machine “see” the world around it? Research laboratories the world over are working on the problem, yet the systems produced are either elaborate and expensive, or simple and ineffective. This project is an advanced ultrasonic vision system which is within the means of the amateur constructor, yet is sophisticated enough to enable experimentation with computer measurement, image recognition, object tracking, and robot vision.

The use of ultrasonics for imaging is by no means new. It has long been known that bats emit ultrasonic squeaks, and use the resulting echoes to determine the range and position of nearby objects. Man has widely imitated this process, and many designs have been published for simple ultrasonic echo-rangers. Yet these designs ignore two important features of a bat’s vision system that make it so accurate. Firstly, a bat does not transmit a burst of one single frequency, since this frequency may be cancelled out due to the shape of the target. Instead, a burst of many different frequencies is transmitted, so that complete cancellation is unlikely. Secondly, a bat can intelligently move so as to determine the bearing of an object of interest. This permits a map of the surroundings to be formed.

This project incorporates these two improvements so as to form an ultrasonic vision system. The system consists of a rotating transducer unit, and an interface circuit. The system is designed to be coupled to a home computer, which processes and displays the incoming data. Depending on the complexity of the software written, the display can be anything between simple range and bearing information, or a complex radar-type plot. There is tremendous scope for experimentation with the way the incoming data is used: in view of the impending arrival of domestic robots, the unit might well find application as a robot vision system.

HARDWARE AND SOFTWARE

The vision unit consists of a circuit board, an ultrasonic transducer, and a stepper motor. The unit is designed to plug into the printer port of an Acorn Atom, but it can be driven by any computer with five output lines and one input line (5 volt logic). The unit can be powered from an external 5 volt supply, or from an unregulated supply using the optional onboard regulator. Simple driving software for the Atom is described in Part Two. A typical scan of a room using more complex software and the Atom hi-res graphics is shown in Fig. 4. It is hoped to make this software available on cassette.

DESIGN

In order to make the system as flexible as possible and to minimise the amount of hardware, it was decided to implement most of the required functions in software. This means that the computer generates the transmit pulse sequence, times the returning echoes, and generates the stepper motor signals. The hardware amplifies the transmit pulse sequence, processes the received echoes, and amplifies the motor drive signals.

Fig. 3 is a complete circuit diagram of the unit. The transmit pulses emerge from bit 6 of the Atom printer port as a normally low signal, pulsed high at the transmit frequency. This signal is fed to the base of TR1 via C1, which blocks any continuous d.c. signal. The high pulses turn on TR1 and drive T1 which is a transformer broadly tuned to 50–60kHz. During transmission the inductive “kick-backs” from the primary are collected by D5 so as to charge up C5 to about 8 volts. This voltage is used as a supply for IC1,2, since they require more than 5 volts. Approximately 350V peak-to-peak is produced by the secondary of T1 to drive the transducer. As the transducer is of the capacitive type, it also
requires a d.c. polarising voltage, which is supplied by D2 and C2. When the transmission has finished, the oscillations die away quickly due to the damping resistor R5, and the transducer can start receiving.

Echoes picked up by the transducer generate a small signal, which may be as low as 100 microvolts for a distant object. For amplification, the conventional 741 op-amp cannot be used, since it has inadequate gain at 60kHz. Instead, an LM301 is used, and it requires an external compensation capacitor C7. IC1 provides a voltage gain between 20:1 and 80:1 depending on the setting of gain control VR1. The output of IC1 feeds a 60kHz series tuned circuit. As those of you who have studied a.c. circuit theory will know, the tuned circuit not only filters out signals outside the passband, but also acts as a voltage multiplier at the resonant frequency. Since R8, C8, L1, give a Q-factor of approximately 10, we obtain a further voltage gain of 10 around 60kHz.

The amplified and filtered echo is fed to the non-inverting input of IC2, and a reference voltage is fed to the inverting...
input. The op-amp acts as a comparator: if the negative peaks of the received echo are more negative than the reference level, the output pulses low. Thus a stream of low pulses at the output indicates that a valid echo is being received. These pulses are fed to TR2, TR3 which stretch the individual pulses so that one echo is seen as one long pulse. (See Fig. 2). These echo pulses are fed into bit 7 (the most significant bit) of the Atom printer port. The input is normally high, and is held low for the duration of each received echo.

From the above description it can be seen the reference voltage at the inverting input of IC2 determines the overall sensitivity of the system: if the reference voltage is at 0 volts, the system is least sensitive, and if it is nearly 5 volts, the system has maximum sensitivity. Components D6, C6, R9, R10, R11, R12, TR4, all control the reference voltage so as to give the following features:

1) **Hysteresis.** When an echo is received, the field-effect transistor TR4 is turned off via R12. This raises the reference voltage, so that the circuit locks on to the incoming pulse.

2) **Gain profile.** During transmission, the switching of TR1 causes C6 and C9 to charge via D6, holding the reference voltage low. During reception, the reference voltage slowly rises as C6 and C9 discharge through R9 and R11. This means that the system gain is low after each transmission, and then slowly rises: this compensates for the fact that nearby objects give bigger echoes than far ones.

Bits 0, 1, 2, 3 of the printer port are outputs for the stepper motor drive. These signals are normally low; when one or more are switched high, the corresponding stepper motor coils are energised. Diodes D8, 9, 10, 11 are to protect the circuit against the inductive kick-back of the coils when de-energising. The stepper motor is a 4-phase unipolar type; although it is a 12 volt motor it is being under-run at 5V to save power. The angle per full step is 7.5 deg., but it can be half-stepped. The required drive signals are described next month.

COMPONENTS . . .

Resistors
- R1, R13: 22k (2 off)
- R2: ½W 5%
- R3, R12: 560k (2 off)
- R4, R15, R16: 1k (3 off)
- R5: 47k
- R6: 39k
- R7: 470
- R8: 150
- R9, R17, R19, R21, R23: 10k (5 off)
- R10: 1M
- R11: 15k
- R14, R18, R20, R22, R24: 3k3 (5 off)
All resistors ½W 5% unless otherwise specified

Potentiometers
- VR1: 2k2 min. hor. preset

Capacitors
- C1, C6, C11, C12: 100n/250V 10% (4 off)
- C2, C10: 10n/250V 10% (2 off)
- C3, C5: 470/63V elect. (2 off)
- C4: 680p silver mica
- C7: 3p3 sub. min. plate ceramic

Transistors and Diodes
- TR1, TR5-8: TIP120 (5 off)
- TR2: BC212 (not L version)
- TR3: BC107
- TR4: BF244B
- D1, D3, D4, D6, D7: 1N4148 (5 off)
- D2, D5, D8-11: 1N4006 (6 off)

Inductors
- L1: 5mH choke (Repanco CH2)
- T1: COMPVIS 1T

Integrated Circuits
- IC1, IC2: LM301 (2 off)
- REG 1: 7805 regulator (not supplied in kit)

Miscellaneous
- Polaroid ultrasonic transducer
- 8-pin d.i. socket (2 off)
- Stepping motor: Impex 9904-112-31004 12 volt
- Ribbon cable with 26-way header
- 30cm of coaxial cable for transducer
- Adaptor to mount the transducer
- P.c.b. Compvis 1

Constructor's Note
All parts (or complete kit) available from Technomatic Ltd.
Fig. 7. Printed circuit layout (actual size)

Fig. 8. Component layout
THE MACROCHIP

In recent years the phrase 'solid state' when applied to electronics has been almost universally equated with integrated circuitry and microminiaturisation. An advance in large scale solid state engineering is about to take industry by storm. This advance however has come from the most unlikely source.

The specialist firm of Puchemm & Long which produces conveyor belt systems for the confectionary trade is about to start production of its new solid state drive mechanism for conveyor belts. The principle is simple, but has required some sophisticated engineering to produce the hardware. The drive mechanism is a linear induction motor which instead of using magnetic induction uses an analogous system of electrostatic induction. A rubberized belt acts as an insulator with a high dielectric constant. A large scale solid state drive underneath the belt develops a rapidly changing pattern of electrostatic charge which induces the opposite charge on the belt above. As the driving charge changes the induced charge above it lags behind so that the two charges repel each other providing levitation and propulsion for the belt. A complex pattern of changing charges produced by the macrocircuit ensure a smooth controllable motion of the belt.

There are many advantages of this system over the conventional mechanical belt drive. Total solid state engineering means that there are no moving parts and hence greater reliability and less maintenance. The elimination of the noise and vibration of previous mechanisms improves the environment of the factory floor. The main advantage for the food industry however is the cleanliness of the system. The lack of moving parts means that 'dirty' lubricating oils can be eliminated from the track and little dust is stirred up by the mechanism.

It is not only on the factory floor that this system will find an application. Already P & L have started work on a personnel transport system. A high power version of the sweet makers continuous belts under development as a moving pavement although there is still a considerable number of problems to be overcome. This farsighted project is only the beginning of what could be a revolutionary move away from the wheel. Plans for the future include an electrostatically elevated and propelled automobile. In this development the drive 'chip' is turned upside down and induces its shadow charge on the dielectric which is the road.

The wheel-less car seems a very adventurous project but the P.L. planning department claim that this is only a beginning. However when pressed for details they would say no more than "The sky is the limit." An expression which may have referred to the fact that air itself has a moderately high dielectric constant, or... What is the dielectric constant of interstellar hydrogen?

See Page 51 for more details.
Step-by-step fully illustrated assembly and fitting instructions are included together with circuit descriptions. Highest quality components are used throughout.

SX1000 Electronic Ignition
- Inductive Discharge
- Extended coil energy storage circuit
- Contact breaker driven
- Three position changeover switch
- Over 65 components to assemble
- Patented clip-to-coil fitting
- Fits all 12V neg. earth vehicles

MAGIDICE Electronic Dice
- Not an auto item but great fun for the family
- Total random selection
- Triggered by waving of hand over dice
- Bleeps and flashes during a 4 second tumble sequence
- Throw displayed for 10 seconds
- Auto display of last throw 1 second in 5
- Muting and off switch on base
- Hours of continuous use from 2 x PP7 battery
- Over 100 components to assemble

SX2000 Electronic Ignition
- The brandleading system on the market today
- Unique Reactive Discharge
- Combined Inductive and Capacitive Discharge
- Contact breaker driven
- Three position changeover switch
- Over 130 components to assemble
- Patented clip-to-coil fitting
- Fits all 12V neg. earth vehicles

TX2002 Electronic Ignition
- The ultimate system
- Switchable contactless
- Three position switch with Auxiliary back-up inductive circuit
- Reactive Discharge. Combined capacitive and inductive
- Extended coil energy storage circuit
- Magnetic contactless distributor trigger head
- Distributor triggerhead adapters included
- Can also be triggered by existing contact breakers
- Die cast waterproof case with clip-to-coil fitting
- Fits majority of 4 and 6 cylinder 12V neg. earth vehicles
- Over 150 components to assemble

AT-80 Electronic Car Security System
- Arms doors, boot, bonnet and has security loop to protect fog/spot lamps, radio/tape, CB equipment
- Programmable personal code entry system
- Armed and disarmed from outside vehicle using a special magnetic key fob against a windscreen sensor pad adhered to the inside of the screen
- Fits all 12V neg. earth vehicles
- Over 250 components to assemble

VOYAGER Car Drive Computer
- A most sophisticated accessory
- Utilises a single chip mask programmed microprocessor incorporating a unique programme designed by EDA Sparkrite Ltd
- Affords 12 functions centred on Fuel, Speed, Distance and Time
- Visual and Audible alarms warning of Excess Speed, Frost/Ice, Lights-left-on
- Facility to operate LOG and TRIP functions independently or synchronously
- Large 10mm high 400ft-L fluorescent display with auto intensity
- Unique speed and fuel transducers giving a programmed accuracy of + or - 1%
- Large LOG & TRIP memories: 2,000 miles, 180 gallons, 100 hours
- Full imperial and Metric calibrations
- Over 300 components to assemble
- A real challenge for the electronics enthusiast!

EDA SPARKRITE LIMITED 82 Bath Street, Walsall, West Midlands, WS1 3DE England. Tel: (0922) 614791

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SELF ASSEMBLY KIT</th>
<th>READY BUILT UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SX 1000</td>
<td>£12.95</td>
<td>£25.90</td>
</tr>
<tr>
<td>SX 2000</td>
<td>£19.95</td>
<td>£39.90</td>
</tr>
<tr>
<td>TX 2002</td>
<td>£29.95</td>
<td>£59.90</td>
</tr>
<tr>
<td>AT 80</td>
<td>£29.95</td>
<td>£59.90</td>
</tr>
<tr>
<td>VOYAGER</td>
<td>£59.95</td>
<td>£119.90</td>
</tr>
<tr>
<td>MAGIDICE</td>
<td>£9.95</td>
<td>£19.90</td>
</tr>
</tbody>
</table>

Prices inc. VAT, postage & packing.

Please allow 28 days for delivery.

NAME

ADDRESS

I enclose cheque(s)/postal orders for

£

KIT REF

CHEQUE NO

24hr. Answerphone

PHONE YOUR ORDER WITH ACCESS/BARCLAYCARD

SEND ONLY SAE IF BROCHURE IS REQUIRED

CUT OUT THE COUPON NOW!
ASLEF Man

Perhaps unfairly, British Rail's modernisation programme has become a joke. The Advanced Passenger Train (APT) caused much merriment recently when its inaugural passenger runs were plagued with technical problems resulting in withdrawal from service. What should have been a technical triumph, though some years late, turned into a farce.

BR is typical of what remains wrong in British industry. On the one hand there is a dedicated team of scientists and engineers beavering away at Derby on developing and testing up-to-date systems with a view to improving efficiency and service. On the other hand, a trade union structure reluctant to admit any change in practices although paying lip-service to the need for progress.

ASLEF Man is the archetype of out-of-date attitudes. For the benefit of overseas readers, ASLEF is the acronym for the Associated Society of Locomotive Engineers and Firemen with a membership of little over 25,000, a sad decline since the great age of steam when, for example, in 1938 there were close on 20,000 steam locomotives running and only 43 diesel and 13 electric locomotives. By 1960 diesel traction was biting into steam and the switch from steam to diesel and electric traction was completed by 1968.

In some respects we can all sympathise with ASLEF Man. Not only has he declined in numbers but his elite qualities in the railway hierarchy of yesteryear are no longer needed. With steam, the driver and fireman, working as a team, were systems managers. Every locomotive was a self-contained energy converter from coal to heat to steam to tractive effort. There was constant balancing of water levels, firebox temperature, steam pressure, against the varying demands of speed, gradients, wind resistance and the clock. The team watched their gauges and, as part of the feedback loop, had to exercise technical judgement based on long experience throughout the journey. Starting as a boy engine cleaner, you could hope to be entrusted with an express passenger train by middle age. Apart from the exercise of technical skill, the job was physically demanding, uncomfortable, and dirty.

Modern ASLEF Man, in association with the guard, is responsible for train and passenger safety as before. The rest of his job, in air-conditioned comfort, is less demanding than driving a car. He can't forget he is no longer a locomotive engineer and as long as he can get away with it will insist on having a 'fireman' in his cab, for thus it was always so.

While ASLEF Man dwells mentally in the past, the electronic boffins at BR laboratories are far into the future. Too far, I suspect, because they have an obsession that modern electronics is the solution to everything. This was apparent at a recent IEE conference on Railways in the Electronic Age. It came out that 'old-fashioned' signalling using electro-mechanical relays has reliability and fail-safe characteristics not developed over decades of in-field experience, very hard to improve by electronic switching and control. If this is true, why bother to change? Our experience with automation and modernisation on British Rail has often been unhappy.

The railway boffins are so far ahead with dreams of microprocessor control for everything that they seem to have overlooked one application of electronics, cheaply and easily installed, that could have saved many accidents and deaths. A radio communications link with every moving train. Well, not quite overlooked, for the conference revealed as something quite remarkably novel that one single-track line in the north of Scotland is now so equipped since overhead lines were brought down by snow. What a breakthrough!

With one vital section of the workforce of the railways with heads mostly buried in the sand, and another with heads often in the clouds, it is no wonder the outfit costs the taxpayer £2 million a day to keep going — when it is going.

New Era

'We are well and truly launched into the competitive era' says Sir George Jefferson, chairman of British Telecom, commenting on the new circumstances under which BT has had its former monopoly powers curbed, if not yet extinguished. BT has accepted the challenge and the equipment suppliers will also need to be more competitive to hold their business with their largest single customer.

Nonetheless, wholly British or British-based companies should retain most of the business which will remain substantial for many years to come. Electronic telephone exchanges alone will account for £600 million over the next three years, spread between GEC, Plessey and STC. By then, BT will have spent £750 million on TXE4 and the improved TXE4/4A exchanges with STC alone.

Then there is BT's new digital network, which has already topped 100,000 miles installed, and this is only the start of a massive digital programme extending through the rest of the decade.

There still remains a big question mark over the highly publicised System X. At home, where BT is fully committed to System X, its full implementation according to some forecasts will not be before the turn of the century. This is not a reflection on BT who must, of course, get a full service life from exchanges such as TXE4/4As now being installed. Nor does it mean that subscribers on TXE4/4As will be denied the sort of extra services promised by System X. In fact, further enhancement of TXE4/4As will provide most, if not all, of the facilities of System X.

Where the disappointment arises is in export orders for System X. A business consortium of BT, GEC, Plessey and STC was formed some three years ago to promote exports but no sales have resulted — so far. The Department of Industry has been asked for a grant to adapt System X to better meet overseas requirements but DOI has commented as 'independent consultants are by consultants before committing itself.'

Joy in Boredom

When Racal Electronics Group yet again produced a record half-year profit, its pre-tax profits up 45 per cent, the City yawned. What an utter bore, why don't they improve 100 per cent, or even go broke?

The trouble with Racal is that for over a quarter of a century the company has enjoyed a continuous upward growth. None of the dramatic upheavals, the ups and downs so beloved by financial journalists looking for newsy headlines. Racal growth is so regular it has now become routine, if not downright monotonous. And Racal shares have become so blue-chip that they tend to be overpriced. The result is that, by ordinary standards, Racal produces a cracking result it can even provoke a 'Racal disappoints' comment. Racal shares dropped 33p the day after the results were declared.

The belief that Racal-style management would soon turn Decca round from loss to profit was confirmed in the figures. Most of the increased profit came from the turn-round, although some of the former Decca operations are not yet out of the red.

An interesting sidelight is the theory of horses for courses. Racal is a firm believer in sticking to what it knows it can do best, i.e. capital goods. Thus, having acquired Decca, one of the first tasks was to dispose of the domestic television manufacturing unit at Bridgnorth. This was bought by Taiwan's biggest electronics company, Tatung, who know the consumer side of the business and according to latest reports are making a real go of it, turning loss into profit within six months of taking over, production of TV sets having increased almost five-fold and still accumulating with substantial exports to the European mainland envisaged.

Another thoroughly boring outfit is GEC. Their current export order book stands at over £1,000 million, let alone the healthy home order book plus £800 million cash in the bank. Again, this is expected and causes little excitement.
SPECIAL PE LOUDSPEAKER OFFER.

£43.50 PER PAIR INCLUDING V.A.T
PLUS £5 POSTAGE & PACKING

This excellent offer has been arranged by PE as a result of a frustrated export order. The speakers employ Audax drive units and were produced in the UK for a leading European hi-fi company. They are “mirror image” speakers with h.f. drive units mounted to the outside of the sound area.

Specifically designed to meet the need for a high quality moderately sized enclosure these speakers have a high sensitivity, extended bass response and will handle up to 45 watts peak, although they can be used with amplifiers rated as low as 15 watts.

SPECIFICATION: Two way infinite baffle; HIF2OESM bass unit 20cm diam. treated paper foam edged cone; HD100 high frequency unit 25mm soft dome radiator; 8 ohm nominal impedance; 45 watts peak power (35W r.m.s.); 86dB 1 watt 1 meter sensitivity; frequency range 45Hz-22kHz; resonance 80Hz; harmonic distortion ref. 96dB. SPL at 1 meter 3% max. second harmonic 140Hz-22kHz; 1% max. third harmonic 100Hz-22kHz; finished in rosewood p.v.c.; size 470 x 264 x 225mm; capacity 18 litres; weight 8 kilos; connections, DIN sockets and screw terminals.

To: RTVC Ltd. (PE OFFER), 21b High St., Acton W3 6NG (all mail), callers to 323 Edgware Road.

Please send me pair(s) of speakers at £43.50 plus £5 post and packing (total £48.50) per pair.

I enclose P.O./Cheque No. Value

Make cheques payable to RTVC Ltd.

Name __________________________

Address ________________________

Please allow 28 days for delivery

PE OFFER CLOSES FRIDAY 14th MAY 1982

From: RTVC Ltd., 21b High St., Acton W3 6NG.

Practical Electronics April 1982
Simplifies the exposing of 'test strips'. A safelight socket is the starting value and counts down again. This arrangement, when the counter reaches zero, then the unit resets itself to switched to repeat. In this mode, a short bleep is sounded down period has ended. The count down facility can also be the bleeper can be used as an alarm for when the count up to 999.9 seconds duration; this permits can act as a straightforward stopwatch, counting with an accuracy of 0.1 seconds up to a total of 999.9 seconds duration; this is primarily for use when processing films or developing prints. It can also be made to count down from a preset number to zero, turning on an enlarger lamp during this counting period. To aid in the 'dodging' of prints (selective shading of part of the enlarger) a once-per-second 'bleeper' is provided; alternatively, this arrangement simplifies the exposing of 'test strips'. A safelight socket is provided so that when the enlarger control is in the 'focus' position (continuously on), the safelight is turned off. An enlarger meter can then be used to determine the relative brightness of the negative; normally, such meters are adversely affected by the illumination from a safelight. Finally, a brightness control is provided for the i.e.d. display to allow it to be dimmed sufficiently to prevent fogging of the printing paper. Turning this control fully off also turns off the safelight; ideal for use when colour printing.

Circuit Description

The whole enlarger timer is based on one LSI device, a CMOS 4 decade counter/driver i.e., type 7217. This is a 28 pin i.e., of considerable complexity; it isn't cheap, but it does replace dozens of simpler i.c.s.

The 7217 is, essentially, four up/down counters in one package. It has a built-in multiplexed i.e.d. driver circuit, which is fully buffered to remove the need for any external transistor or i.e., current driving stages. It has a tri-state input/output (I/O) bus, pins 4, 5, 6 and 7, capable of feeding in an input into the device to preset it, or an output from the device (to supply count data to other external circuitry). We shall only be using the 'input state' of the bus in this application. The preset information can be used to either preset the counter, or to preset a register which is then compared with the counter; when the two are equal, an output pin of the i.e., changes state. (We shall not be using this latter function, but you may be able to think of other applications for it!)

To provide an accurate source of clocking pulses for the 7217, a clock signal derived from the 50Hz waveform of the mains is used. D28, D29, D30 and D31 form a conventional bridge rectifier to supply the unregulated d.c. to the circuitry, but we also take one a.c. side of the bridge to IC9b, via R21. D25 and D26 limit the voltage excursions to within the supply rails, give or take a diode voltage drop, and C11 helps to filter out noise on the 50Hz waveform. IC9b is a Schmitt trigger NAND gate, which sharpens up the incoming waveform to the correct logic levels, with no noise spikes or other transient effects. IC2 is a presettable 'divide-by-n' counter, as discussed in the 'Digital Design Techniques' series. In this instance it is arranged to divide by 5; the Q2 and Q3 outputs are fed back to the input via IC7a and IC7b. This 'data' signal is the 10Hz waveform used to feed both the clock input to IC1, and to IC3. The latter is a decade counter used merely to divide by 10; the 'carry out' signal from IC3 is a 1Hz square wave used to control the 'bleep' oscillator when in the 'bleep seconds' mode.

IC8c and IC8d are connected as a latch. Pressing the 'start' button causes IC8d pin 11 to go to logic 1, which then enables IC9b and allows IC's 1, 2 and 3 to start counting. When the 'start' button is pressed, IC8c is forced to go to logic 0, causing a negative going pulse, derived by C3, D21 and R16, to feed into IC4c. This is pulse stretched by C5, R19 and D23, and is fed into IC5b. If S6 is in the 'up' position, the output of IC5a is at logic 0, so IC5b is disabled. (Pins 9, 10 and 14 of IC1 all have internal 75k pull up resistors.) If S6 is in the 'down/time' position, IC5b inverts the stretched pulse, which is inverted again by IC5d and used to strobe pin 12 of IC1. This loads (i.e., presets) the counter with the values of the BCD inputs to the i.e.,. The preset inputs are provided by S9, S10, S11 and S12; all BCD thumbwheel ('push-pull') switches. These are strobed by the digit strobe outputs of IC1 to ensure that each switch feeds data into IC1 in a multiplexed arrangement, in sequence with the multiplexing of the display. D1 to D16 prevent interaction between switches.

By this means, as soon as the start button is pressed (in the 'down/time' mode) the counter assumes the value determined by the thumbwheel switches, then counts down from that value towards zero. Pin 2 of IC1 goes to logic 0 when the value of the counter output is zero. (This happens briefly when the counter is loaded, so the load pulse on Pin 12 is also used to disable the zero output briefly, via pulse stretcher D27, R16, C4 and IC6c. This has a pulse derived from it by C2, D22 and R15. The pulse is enabled by IC4d in order that no output pulse is generated when the device is being reset to zero deliberately; if this were not done, unwanted effects would occur, for example, 'time-up' warning.
Fig. 1. Circuit diagram of the Enlarger Timer
bleeps, etc. When enabled, and with S7 in the 'one shot' position, the zero pulse finally feeds into the IC8c, IC8d latch, resetting it and hence preventing any further counting by pressing the 'stop' button. The output pin 4 of IC5b stops at zero. IC3 has its clock enabled by the 'stop-start' latch of IC8c and IC8d, so that the seconds only bleep when the clock is running. The 'zero' switch S5 is contact debounced by the latch formed by IC6a and IC6b; it requires of the 7217 i.c. that its reset input should be very clean, i.e. noise free. As well as resetting IC1 and gating off the pulse derived 'zero' output as already described, the debounced S5 signal also resets IC2 and IC3 via IC5c.

When S7 is in the 'repeat' position, the pulse-derived zero output of IC1 is fed to IC4c, IC4b form the latch of IC8c and IC8d, so that the seconds only bleep when the clock is running. The 'zero' switch S5 is contact debounced by the latch formed by IC6a and IC6b; it is a requirement of the 7217 i.c. that its reset input should be very clean, i.e. noise free. As well as resetting IC1 and gating off the pulse derived 'zero' output as already described, the debounced S5 signal also resets IC2 and IC3 via IC5c.

The safelight and enlarger light are both controlled by relays, rather than solid state triac or thyristor circuitry. This has been done because some enlargers (and a few safelights) have a complex and 'unusual' a.c. loading, and can respond badly to the slightly 'chopped' waveform of a solid state switched mains signal. Relay RLA is used to drive the safelight, primarily to obviate the necessity to pass mains voltages through S3a; a safety consideration. Note that S1b is used to switch the safelight off when the brightness control is turned off; S1b and S1a is the double pole switch fixed to the back of VR 1.

Relay RLB is used to control the enlarger, and is driven from TR 2; chosen to be a BC184L, to ensure that a high enough gain is obtained. Because of the BC184L's high gain, 65mA can be passed through Relay RLB with less than 0.3mA drawn from IC8d. IC1 has an internal oscillator to drive its multiplexing circuitry. In order to provide control over the brightness, though, we must provide an external oscillator with variable mark/space ratio (since this ratio determines the illumination duration of each display digit) and feed this into the IC1 'scan' input. IC4a and IC4b form the

<table>
<thead>
<tr>
<th>COMPONENTS . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R1</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>R3</td>
</tr>
<tr>
<td>R4, R9, R10, R11, R12, R14, R17, R18, R23</td>
</tr>
<tr>
<td>R5, R7, R16, R19, R22, R24</td>
</tr>
<tr>
<td>R6</td>
</tr>
<tr>
<td>R8</td>
</tr>
<tr>
<td>R13, R15, R21, R25</td>
</tr>
<tr>
<td>R20</td>
</tr>
<tr>
<td>All resistors ½ or ¼ watt, 5% Carbon</td>
</tr>
</tbody>
</table>

Potentiometers

VR1 47k lin., fitted with double pole single throw switch

Capacitors

C1, C3, C4, C5, C11, C13 10n polyester (6 off)
C2 100n polyester
C6 220p 25V electrolytic
C7 C9 100n 30V disc ceramic (2 off)
C8 1μ 35V tantalum bead
C10 1000μ 25V disc ceramic (2 off)
C12 470n polycarbonate (for miniature polyester)

Semiconductors

D1 to D18, D21 to D27 1N4148 (25 off)
D19, D20, D28, D29, D30, D31 1N4002 (6 off)
TR1, TR3 BC548 (2 off)
TR2 BC184L

Miscellaneous

- **Resistors**
 - 10k (9 off)
 - 100 (6 off)
 - 1k (2 off)
 - 10k (9 off)
 - 100k (4 off)
 - 15k
 - 47k lin., fitted with double pole single throw switch

- **Capacitors**
 - 10n polyester (6 off)
 - 100n polyester
 - 220p 25V electrolytic
 - 100n 30V disc ceramic (2 off)
 - 1μ 35V tantalum bead
 - 1000μ 25V disc ceramic (2 off)
 - 470n polycarbonate (for miniature polyester)

- **Semiconductors**
 - D1 to D18, D21 to D27 1N4148 (25 off)
 - D19, D20, D28, D29, D30, D31 1N4002 (6 off)
 - TR1, TR3 BC548 (2 off)
 - TR2 BC184L

- **Miscellaneous**
 - Mains transformer 9V r.m.s. secondary
 - 1N4002 (6 off)
 - DPDT, centre off, miniature toggle switch (2 off)
 - knob for VR 1
 - Miniature relay, 12 volt (nominal) coil, contacts capable of passing 240V a.c. at 1-6A or more
 - Piece of red gelatine or perspex (see text)
 - Mains fuseholder, FS1, fitted with 1A fuse (slow blow)
 - ‘European’ (reversed) shuttered mains chassis mounting socket, with mating plug halves
 - BCD thumbwheels, push-push type preferably, with mounting cheeks and a spacer (for the decimal point)

Threaded spacers, wire, screws, etc., to suit (see text).
oscillator with VR1 varying the mark/space ratio. S1a fully

disables the oscillator for the 'brightness off' position of VR1.

TR3 is used to gate on the 'decimal point' i.e. in the dis-

play only when the '3rd digit' of the display (units of

seconds) is being strobed; this is the only digit of the four

which needs the decimal point. Finally, the +5V regulated

supply is provided by IC10, a regulator i.c. with C8 and C9

preventing unwanted parasitic oscillations and R20

providing a local guaranteed loading. C10 provides the

smoothing for the unregulated d.c. supply, with C6 and C7

providing de-coupling for the +5V supply.

CONSTRUCTION

The p.c.b. design for the Timer is shown in Fig. 2 with the

component layout shown in Fig. 3.

The wire links should be added after all the other compo-
nents with the exception of the +5V supply link, see later. After
the p.c.b. has been soldered and checked the case

should then be drilled, cut and filed to suit the switches, con-
nectors, display, etc., to be used; see the photographs for a

suggested layout. The prototype used p.c.b. mounting

switches for stop, start and zero; so these needed a piece of
'Matchboard' held to the front panel of the case by threaded

spacers. The two relays, likewise, were mounted on an

aluminium base plate of the case should be drilled to enable the p.c.b. to be

screwed to it via yet more of those threaded spacers!

usually to very lightly glue the display to the 'perspex' or

plastic sheet, around the edges ONLY, to make removal easy

if necessary. A complete multiplexed, display module is

ideal for this. If individual 7-digit displays are to be used

they will have to be mounted on a spare piece of

'Matchboard, and wired together'). The aluminium base plate

of the case should be drilled to enable the p.c.b. to be

screwed to it. The

Practical Electronics April 1982
piezo sounder can also be mounted on the base plate, adja-
cent to the p.c.b., with a hole in the side of the case to let the
sound out.

All the component parts should be screwed into the case
and base plate, then the remaining interwiring can be added
(Fig. 4). Be careful; there is a lot of this and it is easy to make
mistakes. Be especially careful with the mains wiring; keep it
well away from the low voltage wiring, and preferably
shroud all mains carrying terminals. I suggest that
European(IEC) type 'reversed mains' shuttered facility
chassis sockets are used for the enlarger and safelight
sockets. These are safe outlet sockets for mains distribution,
and are readily available along with their mating halves.
Remember to earth all metal parts, e.g. the baseplate (via a
washer from 0 volts as shown), the transformer case, etc.

The short wire link between the output pin of the voltage
regulator and the +5V supply track of the matchboard is left
off initially, so that the operation of the +5V supply can be
checked without risk to the expensive IC1! Only when this
supply is proved to be of the correct voltage should the link
be added. Note that diodes D1 to D16 should be soldered to
the switches S9 to S12 directly, with the cathodes joined as
shown in Fig. 4. This arrangement is quite robust enough if
thick tinned copper wire is used to join the cathodes
together. D19 and D20 should be soldered across their
respective relay coils directly.

There is no setting up required for the enlarger/timer; it re-
quires only switching on and testing out to make sure that all
the functions operate correctly. Although the circuit descrip-
tion may sound complex, the use of an LSI 'chip' the 7217,
has vastly simplified the circuitry required to perform all the
functions required of such a unit.

Avoid a break in the middle

Make sure you get every issue when you're fol-
lowing projects in PRACTICAL ELECTRONICS
Use this order form for a year's supply to be
posted to you.
ANNUAL SUBSCRIPTION RATES (including
postage and packing) inland and overseas
(surface mail) £13.00.
THE SENSATION OF THE JAPANESE MUSIC FAIR

THE NEW CASIOTONE 701

- what is going to become THE instrument of 1982... probably the best instructive keyboard I have ever come across. It is also a top line musical instrument capable of satisfying even the most proficient musician... I suggest you place your orders now." (Keyboard & Music Maker).

... opens up home music making for all the family... one of the most advanced and teaching aids on the market... this instrument is going to be one of the biggest sellers of 1982." (Electronics & Music Maker).

CASIO FX-702P POCKET COMPUTER

"Can do the job of a micro costing four times as much"!
Personal Computer World

SYSTEM PRICES—Save up to £50 on RRP
PACK A: FX-702P + MCROM Professional Programming Pack £99.95
PACK B: FX-702P + FA-2 cassette interface + PPP + PROCOS £139.95
PACK C: FX-702P + FP-10 Printer + FA-2 + PPP + PROCOS £179.95

MICROM PROCOS for the 702P. Exclusive to TEMPUS. Now you can create powerful, reliable programs in just minutes with this advanced, integrated operating system, even if you have never programmed a computer before! "Visicalc-type" system answers "what if" questions and analyses trends. On ready-to-run cassette, with user manual.

CASIO FX-602P The World's Fastest Programmable? Aloha/numeric scrolling display. From 32 program steps with 88 memories, to 416 steps, the biggest data storage capacity (up to 226 memories), the widest range of math, science and statistics functions (55 in all, including Regression and Correlation), the most powerful English-like BASIC program-writing language and the fastest operation, for results without waiting! Subroutines: 10 levels. FOR: NEXT looping; 8 levels. Comprehensive edit, debug and trace modes. 240 hours battery life. 17 x 165 x 82mm. £229.5

CASIO FX-702P low cost programmable. 38 program steps, 7 memories, INTEGRALS AND REGRESSION. 240 hours battery life. ONLY £129.95.

CASIO FX-3600P low cost programmable. 5 levels. Comprehensive edit, debug and trace modes. 240 hours battery life. ONLY £129.95.

50M WATER RESISTANT

ANALOG/DIGITAL

Alarm chronograph with countdown alarm timer

CASIO AA-92W

ONLY £25.95

ONLY £99.95

Plus FREE MiCROM Professional Programming Pack (RRP £9.95) Or we will beat any lower advertised price by 5%.

EAT YOUR HEARTS OUT, H-P, Sharps and Texas!

The only programmable calculator with 226 memories, the biggest data storage capacity (up to 226 memories), the widest range of math, science and statistics functions (55 in all, including Regression and Correlation), the most powerful English-like BASIC program-writing language and the fastest operation, for results without waiting! Subroutines: 10 levels. FOR: NEXT looping; 8 levels. Comprehensive edit, debug and trace modes. 240 hours battery life. 17 x 165 x 82mm. £229.5

THE NEW CASIOTONE 701

CASIOTONE MT-31

* 22 lively and realistic built-in instrument sounds and voices.

CASIOTONE MT-40

* 61.6 x 58.4 x 178mm (2-7/16 x 23 x 7`). Weight: 2.2kg (4-91b).

3. ONE KEY PLAY facility, allows the melody line to be played, simply by stroking (RRP £55)

Complete Programmable Polyphonic Keyboard

(PPP £555)

ONLY £495

Input an entire piece of music, specially scored in bar code and read by a light pen attached to the instrument.

Alternatively, program your own melodies (max. 345 steps), chords (max. 201 steps) and tempo, via the keyboard, onto the extensive memory, up to 5 minutes playing or more) with full editing facilities.

1 x WAY PLAYBACK

1. Automatic playback of the entire piece: melody, chord, bass and rhythm with arpeggio. Follow the melody as it plays via lamps above each individual key.

2. Manual melody playback, guided by the keyboard lamps, with automatic bass and rhythm accompaniment.

3. ONE KEY PLAY facility, allows the melody line to be played, simply by stroking one key. Non-players can become Instant Musicians.

4. The 5 octave, 8-note polyphonic keyboard can be split into 2 x 3 octaves and a different voice can be selected for the accompaniment.

5. 'Breakthrough in clarity and brightness' pre-set instruments and voices.

6. 3-way chord section: Fingered, Memory and Casiocord auto accompaniment.

FREE CREDIT. 0% interest, 1 deposit. 12 monthly repayments. (Not MT-31, MT-40, or VL-1), or reduced rates for longer period.

DELCERY NORMALLY BY RETURN OF POST.

CASIOTONE MT-40

(RRP £125)

AN INCREDIBLE £99

* 8-note polyphonic playing of this 37 key, 3 octaves keyboard.

* 15 key bass keyboard with automatic synchronised bass function.

* 22 lively and realistic built-in instrument sounds and voices.

* 6 built-in auto rhythms, with dual "fill-in" rhythmic interludes.

* Sustain, Vibrato and Pitch controls. Line out and Headphone Jacks.

* Integral amplifier and speaker. Battery powered, or optional AC adaptor. Dims: 61 x 6 x 187mm (2-7/16 x 23 x 7`). Weight: 2 kg (4-91b).

CASIOTONE MT-31

(RRP £79)

ONLY £69

basically a revision of the MT-30 (one of my all time favourite electronic keyboards). Programmed by a laser. Played by amateurs professionally and by professionals superbly.

Price includes VAT and P&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to:

LEADING CASIO SPECIALISTS

Dept. PE.

38 Burleigh Street, Cambridge CB1 1DG

Telephone: 0223 312666

CATALOGUE ON REQUEST

14p stamp appreciated
MOTEL CLOCK

Anyone who has a disc based home computer such as the TRS80, the Apple or the PET, is probably familiar with the sort of interrupt driven "Real Time Clock" facility which many disc operating systems provide. Personally I have never found this facility at all useful because it is necessary to set the clock to the correct time of day each time the system is powered up and this can become quite a chore. Also, in some software clocks of this type, time is lost during disc access because the interrupts are temporarily disabled by this activity. What is needed is a clock which is independent of the processor power supply and processor interrupts and which will maintain an accurate time and date accessible from any program at any time.

This need has not gone unrecognised and hardware solutions have recently appeared from several CMOS chip manufacturers including National, Mostek, and Motorola. Each company has its own particular clock chip recipe. For the same money, the design which offers most is undoubtedly the Motorola MC146818. Inside the 24 pin plastic package of the Motorola clock chip there is a veritable cornucopia of desirable clock features not matched by any of the other devices available. Hook one of these on to your microprocessor bus and you will gain access to the time of day in seconds, minutes and hours, using either the twelve or the twenty-four hour format, date, month and year from a calendar which automatically compensates for very long periods from a simple standby battery supply even when system power is turned off.

Interfacing the Motorola clock to a microprocessor bus is made easier by a built in "MOTEL" circuit designed to provide control signal compatibility with both Motorola and Intel micros, but since the MC146818 uses a multiplexed eight bit data and address, bus interfacing is easiest to processors such as the Intel 8085 and the Motorola 6805 which also have a multiplexed bus structure. Before long a non-multiplexed version of the MC146818 will be available in a bigger package, but if you are eager to use the MC146818 now, it will only require a few extra gates to interface it to a processor such as the 6800 or the Z80. The device is very simple to access from a microprocessor program since the clock registers appear within 64 bytes of RAM memory, of which 14 bytes are read write clock registers containing time and control information. The other 50 bytes are available for whatever other use you can dream up. Another useful feature.

At about £15 each these chips will certainly be very popular!

FREE SPEECH?

Probably the most fashionable electronic technique at the moment is speech synthesis, with major semiconductor manufacturers such as Texas, National and General Instruments all championing their own particular clock chip recipes which allow human speech to be compressed into relatively few bytes of Read Only Memory (ROM).

Notice that all these manufacturers are from the USA which means that you get a trans-Atlantic "voice" and that specifying custom words or phrases can be expensive because most of the encoding work is done in the USA. For these reasons it is good to be able to welcome Triangle Digital Services as newcomers to the field, who are British and who have some unique advantages over the competition.

Triangle was set up by British engineer, Peter Rush, to develop a speech synthesis system which was as good as the competition's but more accessible to the smaller users who wished to specify their own vocabularies. The result is the unique TDS 934 chip set which consists of a synthesiser, a speech ROM, a memory decoder, two analogue filters and a regulator. When these chips are assembled as a system, a very versatile speech synthesiser results. The standard ROM supplied contains the words "Oh", one, two, three, four, five, six, seven, eight, nine, point, grammes, kilo, ohms, volts, and amps, and further ROMs can be added to extend the vocabulary to almost any level. Between 5 and 32 words will fit into each ROM, depending on the required quality and complexity, and Triangle will encode the words of your choice at a rate of £30 each.

Users who prefer a complete system can buy the chip set assembled on a Eurocard p.c.b. with space for up to eight ROMs and with a variety of useful features such as a built-in RS232 UART so that words can be selected over a standard serial link for easy interfacing.

The TDS 934 set can also be hooked up to a parallel bus from a microprocessor, or for simple applications the words can be selected by an array of up to 16 switches.

For more information on this British innovation contact: Triangle Digital Services Limited, 23 Campus Road, London E17 8PG.

SUPER SONICS

Despite the tremendous advances in multi-channel proportional radio control systems which have been made since the days of valves, miniaturised remote control devices seemed unlikely until I saw data on a new chip from Commodore International called the 6600. This chip changed all that, because it is actually a remote control transmitter intended for use inside a digital wrist watch, alongside the watch chip itself. The B600 is not capable of controlling a complete army just yet, but no doubt the Mark III version is already on the drawing board at Commodore, and so it won't be long I am sure! Two versions of the 6600 are already available, one working in the audio region and the other using Ultrasound to generate remote control signals and provide simple on-off switching for any two appliances equipped with suitable sound receivers.

The chips use ordinary piezo-electric watch alarm-transducers as transmitters and operate from 1-5 volt battery supplies. The audio version generates two tones, which can be individually selected by watch buttons, at 8KHZ and 5.4KHZ and these tones can be used to control appliances at ranges of up to 40 feet. The ultrasonic version uses a 32-768KHZ watch-frequency carrier which can be modulated at either 126HZ or 256HZ to achieve the same effect.

At present the 6600 devices are available only as chips for the use of watch manufacturers, but no doubt they will eventually appear in 8 pin mini-DIPs for more general use.
TOTAL ENERGY DISCHARGE electronic ignition gives all the well known advantages of the best capacitive discharge systems.

PEAK PERFORMANCE — higher output voltage under all conditions.

IMPROVED ECONOMY — no loss of ignition performance between services.

FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's ability to fire fouled plug.

ACCURATE TIMING — prevents contact wear and arcing by reducing load to a few volts and a fraction of an amp.

SMOOTH PERFORMANCE — immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK — 3½ times the energy of ordinary capacitive systems. — 3½ times the power of inductive systems.

OPTIMUM SPARK DURATION — 3 times the duration of ordinary capacitive systems — essential for use on modern cars with weak fuel mixtures.

BETTER STARTING — full spark power even with low battery.

CORRECT SPARK POLARITY — unlike most ordinary C.D. systems the correct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage triggered tachometers.

L.E.D. STATIC TIMING LIGHT — for accurate setting of the engine's most important adjustment.

LOW RADIO INTERFERENCE — fully suppressed supply and absence of inverter 'spikes' on the output reduces interference to a minimal level.

DESIGNED IN RELIABILITY — an inherently more reliable circuit combined with top quality components — plus the 'ultimate insurance' of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM

it provides a top performance electronic ignition system at less than half the price of competing ready-built systems. The kit includes everything needed, even a length of solder and a tiny tube of heatshrink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are provided — all you need is a small soldering iron and a few basic tools.

AS REVIEWED IN

ELECTRONICS TODAY INTERNATIONAL June '81 Issue and EVERYDAY ELECTRONICS December '81 Issue

FITS ALL NEGATIVE EARTH VEHICLES, 6 or 12 volt, with or without ballast

OPERATES ALL VOLTAGE IMPULSE TACHOMETERS

Some older current impulse types (Smiths pre '74) require an adaptor — PRICE £2.95

STANDARD CAR KIT £ 14.85
Assembled and Tested £ 24.95

TWIN OUTPUT KIT £ 22.95
For MOTOR CYCLES and CARS with twin ignition systems
Assembled and Tested £ 34.70

ELECTRONIZE DESIGN
Dept. B, Magnus Road, Wilnecote
Tamworth, B77 5BY

Phoné (0827) 281000

Prices Include VAT

BOSS
INDUSTRIAL MOULDINGS LTD
James Carter Road, Mildenhall, Suffolk IP28 7DE
Tel: Mildenhall (0638) 716101 Telex: 818758
LOGIC PROBE

This logic probe is suitable for checking voltage levels in TTL circuits. The probe is powered from the circuit under test and will indicate either a high or low logic level.

CIRCUIT DESCRIPTION

The circuit diagram of the Logic Probe is shown in Fig. 1. When the input voltage to the probe tip is above 2.1V (the 'high' logic state) transistor TR1 is turned on, the l.e.d. D1 is forward biased and illuminated, indicating a 'high' logic level. As TR1 turns on its collector voltage falls and because the input to the probe tip is also connected to one end of resistor R4 the base/emitter junction of the transistor TR2 and the l.e.d. D2 are reverse biased keeping TR2 and D2 turned off.

If the input voltage to the probe tip switches to zero volts (the 'low' logic level) then TR1 receives no bias current and is switched off. With TR1 turned off the l.e.d. D1 is also turned off and the collector voltage of TR1 rises, forward biasing TR2, switching it on and illuminating the l.e.d. D2 indicating a 'low' logic level.

CONSTRUCTION

The Veroboard layout for the probe is shown in Fig. 2. Solder the resistors and wire links first and then the

COMPONENTS...

Resistors
R1 470 (2 off)
R2 4k7
R3, R4 2k2
All resistors 1W 10% carbon

Semiconductors
D1 0.2in red l.e.d.
D2 0.2in green l.e.d.
TR1, TR2 BC171A (2 off)

Miscellaneous
Veroboard
Crocodile clips with red and black sleeves.
transistors and I.E.D.s. Take care with the orientation of the semiconductors.

In the prototype a green I.E.D. was used to indicate a 'low' logic level and a red I.E.D. for the 'high' level.

The probe can be made from a piece of tinned copper wire or a wiring pin and the supply leads should be fitted with miniature crocodile clips using red and black insulated sleeves. After soldering the components carefully check the Veroboard tracks for any solder splashes and then cut the tracks as shown in Fig. 2.

If the probe fails to operate when connected to a circuit check the orientation of the I.E.D.s and also check that the breaks in the copper tracks are completely cut.

Together the two devices act as a very high gain transistor with an overall gain determined by the product of their individual gains.

The switch S1 is a push button type and when it is pressed the capacitor C1 is charged to the potential of the supply voltage. The Darlington pair are turned on by the base current flowing through the resistor R1 and as the transistors saturate, their collector voltage falls, increasing the potential across the coil, energising the relay and closing its contacts RLA1.

When S1 is released the capacitor slowly discharges through the base bias resistor R1, maintaining the base current to TR1 and keeping the transistors and the relay turned on. The potential across the capacitor falls as it discharges and the base current to TR1 decreases until there is insufficient current flowing through R1 for TR1 to remain on. As the two transistors turn off, their collector voltage rises reducing the potential across the coil of RLA, de-energising

CIRCUIT DESCRIPTION

The two transistors TR1 and TR2 (Fig. 1) are connected as a Darlington pair. This combination uses the current amplified by the first transistor (TR1) as the base current for the second transistor (TR2) where it is again amplified.

COMPONENTS . . .

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>R1 820k</td>
</tr>
<tr>
<td>Capacitor</td>
<td>C1 22µF 16V</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>TR1, TR2 BC171A (2 off)</td>
</tr>
<tr>
<td></td>
<td>D1 IN4001</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>RLA 12V 180Ω heavy duty relay (RS348-920)</td>
</tr>
<tr>
<td></td>
<td>S1 push button switch</td>
</tr>
</tbody>
</table>

Fig. 1. Circuit diagram

Fig. 2. Veroboard layout
the relay and opening its contacts, turning off the power to the load.

The switch S1 must be placed so that the capacitor C1 and the resistor R1 are isolated from the relay coil, otherwise it will discharge through the coil and TR2 as well as into the base of TR1 resulting in a very small time delay.

Although the voltage across the coil falls very slowly and there should be no transient voltages generated as the relay turns off, the diode D1 was included in case the capacitor was accidentally shorted during testing.

The relay specified has heavy duty contacts and is capable of handling currents up to 3 amps. If necessary the contacts can be connected in parallel to increase their current carrying capacity.

CAR SPOTLIGHTS

If the unit is to be used to delay car headlights then the specified relay should not be used. A suitable relay is the RS type 348-835 which can handle loads up to 10 amps.

DELAY TIMES

The delay time for the circuit is determined by the values of R1 and C1 and with the values given a delay of approximately 40 seconds can be obtained before the load is switched off. To increase this time the value of C1 can be increased, but do not increase the value of R1 to a much higher value or there might not be enough current to turn on the relay.

CONSTRUCTION

The Veroboard layout for the delay unit is shown in Fig. 2. After soldering, carefully check all the track breaks have been included and then connect the unit to a 12 volt supply. When S1 is pressed the relay contacts should close and after approximately 40 seconds you should hear the relay drop out.

INSTALLATION

The unit can either be powered from a 12V d.c. mains p.s.u. or from a battery. To delay a house light the leads from the relay contacts should be connected directly across the light switch. This will enable the light to be switched on using the normal switch or delayed using the unit via S1.

When installing the unit in a car it should be powered directly from the battery and not through the ignition or the auxiliary switches otherwise the unit will not work unless the key is left in the ignition switch.

Before fitting the unit to a courtesy light check with the car manual for the suitable place to make the connections.

CAR LIGHTS REMINDER

Most car drivers have at some time returned to their car only to find it won't start because the lights have been left on. This system has been designed to overcome this problem by giving an audible warning as soon as the driver's door is opened, assuming the ignition has been switched off.

CIRCUIT DESCRIPTION

The circuit diagram of the Car Lights Reminder unit is shown in Fig. 1. The transistors TR1 and TR2 are connected as an astable multivibrator with the loudspeaker LS1 used as the collector load of TR2. Capacitors C1, C2 and resistors R3, R4 are the timing components of the circuit and determine the frequency of the output tone.

The positive supply to the circuit is obtained from the light switch via diode D1. The resistor R1 and the Zener diode D3 ensure the supply voltage remains at 9.1 volts.

The earth is connected via the interior light switch on the driver's door and the circuit is earthed only when the driver's door is opened.

Fig. 1. Circuit diagram
If we assume that the ignition is off and the lights are on, then as the driver’s door is opened the circuit will oscillate. As soon as the door is closed the earth is removed and the alarm is switched off. This enables the car lights to be left on for parking purposes without the alarm continuing to sound. The circuit is also disabled via D2 and R5 if the ignition switch is on.

CONSTRUCTION
The Veroboard layout of the unit is shown in Fig. 2. After the components have been soldered, cut the copper tracks as shown and then connect the speaker and the three switch supply leads.

TESTING
Before installing the unit, connect the door and light switch leads across the battery. This should produce an audible output from the loudspeaker, which should cease if the ignition switch lead is now touched to the positive terminal of the battery.

If the unit fails to operate, carefully recheck the resistor values are correct, the orientation of all the semiconductors and ensure the breaks in the copper tracks are in the right places.

A USEFUL addition to any piece of battery powered test equipment is an indicator to warn the user when the battery voltage is too low for reliable operation.

This circuit will monitor the supply voltage and illuminate an I.e.d. when the battery voltage falls below a preset level.

CIRCUIT DESCRIPTION
The circuit diagram of the voltage monitor is shown in Fig. 1. The unit is connected across the supply rails of the equipment to be monitored and VR1 sets the voltage at which the I.e.d. will be illuminated. When the supply voltage is above this preset value TR1 is turned hard on by R1 and part of VR1 with the result that the collector voltage of TR1 falls, keeping TR2 and the I.e.d. turned off.

As the supply voltage falls the bias current to TR1 decreases until it starts to turn off and its collector voltage rises. When the collector voltage of TR1 reaches 0.5 to 0.6V TR2 starts to turn on. As the base current to TR1 decreases its collector current decreases and TR2 takes more of the current flowing through R2. The collector voltage of TR1 rises until TR2 is turned fully on and TR1 is turned off. When TR2 turns on its collector voltage falls, the
COMPONENTS . . .

Resistors
- R1: 820k
- R2: 39k
- R3: 470
- VR1: 470k min. preset lin.

All resistors 3/4W 10% carbon

Capacitor
- C1: 100n polyester

Semiconductors
- D1: 0.2in red I.e.d.
- TR1, TR2: BC171A (2 off)

Miscellaneous
- Veroboard

CONSTRUCTION

A suitable Veroboard layout for the Monitor is shown in Fig. 2. The I.e.d. D1 is shown mounted on the board but can be mounted on a front panel and connected to the unit via connecting leads.

SETTING UP

The unit can be set up by connecting it across a supply voltage of the same value at which it is required to give warning. A suitable voltage level can be obtained using either a variable power supply unit or by connecting a preset across the terminals of a battery and then adjusting it’s wiper until the required voltage is obtained. The potentiometer VR1 should then be adjusted from the top end of its track until the I.e.d. just starts to glow. The monitor can then be installed into the equipment.

If it is not necessary to constantly monitor the supply voltage a push-to-test switch may be incorporated into the supply line.

SOIL MOISTURE METER

CIRCUIT DESCRIPTION

The circuit of the Meter (Fig. 1) has been designed around a differential amplifier which is sometimes referred to as a long tailed pair.

The amplifier has two inputs (via the bases of the transistors TR1 and TR2) and an output (taken from between the two collectors). When both transistors are equally biased...
and conducting they equally share the current flowing through the emitter resistor R3. Hence the voltages at their collectors are also equal and as no potential difference exists across the I.e.d.s they are both switched off.

If, however, the bias voltage applied to the base of either transistor is increased then the current through that particular transistor and the emitter resistor increases. This causes a rise in the voltage at the emitters of both transistors with the transistor to which the increased bias was applied still being turned on. At the same time the rise in emitter voltage reduces the base/emitter junction of the other transistor, turning it off. As one transistor turns on, its collector voltage falls, and as the other transistor turns off, its collector voltage rises, causing a potential difference across the collectors.

The transistor TR1 has a potential divider across its base formed by the preset VR1, whilst the resistor R1 and the resistance across the probes formed a second potential divider at the base of TR2.

PROBE RESISTANCE

The resistance across the probes when they are inserted into the soil is dependent upon the amount of moisture present, i.e. the more moisture the lower the ‘resistance’ of the soil and vice versa.

WET SOIL

When the probes are inserted into very moist soil the resistance across them is very low and so consequently is the voltage. If we assume that VR1 is set to a mid-range position when the switch S1 is pressed, TR1 will start to turn on. The current through R3 will increase causing the emitter voltages of TR1 and TR2 to rise, reducing the bias voltage across the base/emitter junction of TR2 (its base voltage being held by the potential divider R1 and the probe resistance) and TR2 will start to turn off.

As TR2 turns off, its collector voltage rises whilst the collector voltage of TR1 (as it turns on) falls.

When the difference between the two collector voltages reaches approximately 1-6V the I.e.d. D1 will start to turn on indicating the soil is ‘wet’ and I.e.d. D2 is reverse biased and remains off.

DRY SOIL

If the probes are now placed in very dry soil, the resistance across them increases and TR2 will start to conduct whilst TR1 will turn off. This will cause the collector voltage of TR2 to drop and the collector voltage of TR1 to rise, switching off D1 and switching on D2, indicating the soil is ‘dry’.

The soil ‘resistance’ value at which the I.e.d.s are illuminated is controlled by the preset VR1 and can be adjusted to suit different plants.

COMPONENTS...

<table>
<thead>
<tr>
<th>Resistors</th>
<th>4k7 (3 off)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R4</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>3k3</td>
</tr>
<tr>
<td>All resistors *W 10% carbon</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0-2in red I.e.d.</td>
</tr>
<tr>
<td>D2</td>
<td>0-2in green I.e.d.</td>
</tr>
<tr>
<td>TR1, TR2</td>
<td>BC171A (2 off)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Veroboard</td>
<td>keyboard switch</td>
</tr>
<tr>
<td>S1</td>
<td>9V PP3 battery</td>
</tr>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Battery connectors</td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION

The Veroboard design for the circuit is shown in Fig. 2. After the components have been soldered, cut the copper tracks as shown and carefully check the orientation of the I.e.d.s. The probes can be made of two suitable lengths of brass rod soldered to the tracks.

Connect the unit to a PP3 battery and set VR1 to its mid position. Check that when S1 is pressed D2 lights, then short out the probes and D2 should be extinguished and D1 should light.

SETTING UP

To adjust the unit, fill a plant pot with soil and add water until it is sufficiently moist. Insert the probes into the soil, press S1 and adjust VR1 until D1 is just off and D2 is illuminated.
DECIDING who was first when playing snap or quiz games often results in an argument. This circuit overcomes the problem by using an I.e.d. to indicate the winner. Each player has a push button and whoever presses first, lights their own I.e.d. whilst inhibiting the other players!

CIRCUIT DESCRIPTION

The circuit diagram of the Snap Indicator is shown in Fig. 1. With the battery connected the transistors (TR1 and TR2) are turned off because both switches (S1 and S2) are open and so no collector current flows through either transistor.

With both transistors turned off there is no potential difference across either of the I.e.d.s and they remain off.

If S1 is closed first transistor TR1 is turned on by the bias current flowing through resistors R4 and R3. The current flowing through TR1 illuminates the I.e.d. D1 and the collector voltage of the transistor falls as the transistor saturates.

If S2 is now closed there is insufficient voltage at the base of TR2 to turn it on and the I.e.d. D2 remains off. For TR2 to turn on TR1 must be off. Once either of the transistors is turned on then the other is automatically held off.

The current flowing through each transistor and their I.e.d.s is limited by the resistors R1 and R4. As soon as the push buttons are released the circuit returns to its standby state ready for the next go.

CONSTRUCTION

The Veroboard layout for the circuit is shown in Fig. 2. The switches are shown mounted on the board but they can be connected off the board using wires if necessary. If hand held switches are to be used then a more suitable type is the RS miniature push-button type (337-914).

Solder the components onto the Veroboard and then add the links using tinned copper wire. Carefully check the orientation of the I.e.d.s before soldering them into place. Remember there is a flat on the side of the I.e.d.s body nearest to the cathode and also the lead of the cathode is longer. After soldering cut the tracks of the Veroboard as shown and then solder the battery connector in position.

There is no need to include an on/off switch in the supply line as the current drawn by the Snap Indicator when both switches are off is negligible.

TESTING

After checking the components and track breaks connect the indicator to a PP3 battery. With both switches open the I.e.d.s should be off. Pressing either S1 or S2 should light its respective I.e.d. and once the I.e.d. is on pressing the other switch should have no effect on the second I.e.d. which should remain off.
Medium Resolution Graphics

N.A. Climpson

THE STANDARD UK 101 has an interesting character set consisting of the alphanumerics and 154 graphics characters with each character based on an 8x8 dot matrix. When displayed each row of the matrix is in fact repeated so that every column of the character is represented by 16 dots, although this will not concern us here. Whilst a certain amount of manipulation of the 154 graphics characters can give dramatic effects on the screen it is impossible to achieve very high pixel resolution and it is difficult to work out which character will fill a particular slot to the best effect. For plotting purposes some $\frac{1}{2}$ square graphics can be used but the $\frac{1}{2}$ filled characters are missing so that every possibility of plotting is not available. In addition the format of the characters is such that squares are not square but elongated vertically.

One method of achieving higher resolution is to use one of the recently available programmable graphics generators by which the precise character required to fill a slot to best effect can be defined in memory. One disadvantage is that these boards are expensive, and another is that the software to define and select a character to fit a specific situation is quite complicated.

FOUR TIMES RESOLUTION

This article describes an alternative approach, easily and cheaply implementing medium resolution pixel graphics on the UK 101 using a fixed set of 256 alternative characters, giving an improvement in resolution to four times over the standard character set.

If we imagine the standard character slot to be divided into two portions vertically and four horizontally we now have eight blocks to fill: the size of one of these blocks representing the ultimate resolution of this system. (See Fig. 2.) To fill these eight spaces with all possible combinations of characters will require 256 characters, and since each row of a character is defined by one 8-bit byte in the character generator (see Fig. 1), we will require 2048 bytes of storage for the new characters. By this means we can achieve a horizontal resolution of 4x48 and a vertical resolution of 4x16; a total of 6144 individually addressable points on the screen, and furthermore each picture element is now nearly square. The storage requirements for the 256 new characters are simply fulfilled by a 2716 EPROM.

The order in which the characters are stored in the EPROM is important so that the appropriate character can easily be selected by software. The system used here is shown in Fig. 2 where the number of the character is represented by a binary count starting in the top left corner. Thus for example character 0 would be all blank, 255 would be all white, 64 would have only the bottom left space filled and 5 would have the bottom left and top left occupied.

Having programmed an EPROM with the correct pattern of bits, the complete listing of which is shown in Table 1, it would be possible to plug it into the existing character generator socket with some minor wiring changes. This would mean however that the standard graphics set including the alphanumerics would not be available. The solution proposed here is to mount the standard and alternative character generators on a small sub-board which then plugs into the character generator socket on the main board. Selection of either one of the character sets is by software control, but it is unfortunately not possible to mix characters from the two sets on the screen at the same time.

HOW IT WORKS

The circuit design of the new board is shown in Fig. 3. You will notice that the address lines and data lines to the two chips are paralleled up and are fed from a d.i.l. plug. This d.i.l. plug is inserted in the character generator socket on the main board, the original character generator having moved to the sub-board. The chip selects for the two devices are wired differently from each other and are not connected to the main board. With pins 20 and 21 wired as shown it requires a high on pin 18 to select the standard character generator and a low on pin 18 to select the 2716. The signal for these pins is derived from the Q output of a 7447 D-type edge triggered flip-flop. This is acting as a latch in that it holds a high or low logic level on its output until it receives a clock pulse which transfers the data on the data input to the Q output and inverts the Q output. Since Q is back connected to the data input the output at Q is alternately high and low. The clock input is derived from an unused partially decoded line on the main board. There are several of these available and a convenient one is pin 14 on U20. This is decoded to a 1K block starting at D800 Hex or 55296 decimal. Any address issued in this range with a dummy POKE or PEEK will cause the 7447 to change state and hence select the other character set. The address 55555 decimal is in this range and is an easy one to remember.

The reset of the 7447 is connected to the reset line of the 6502 processor on the main board so that on RESET the standard character set is always selected.

CONSTRUCTIONAL DETAILS

The printed circuit design for the board is shown full size in Fig. 5. As you can see the board is tightly packed to keep the size to a minimum and will require some care in construction. An additional problem is that no suitable d.i.l. plug appears to be commercially available and it will be necessary to make your own directly onto the board. Proceed as follows.

Obtain a 24-pin d.i.l. header plug. These are rather like d.i.l. i.c. sockets except they have stronger pins and are designed to plug into i.c. sockets. Into each socket of the d.i.l. header (except 18, 20 and 21) is pushed a 1cm. length of 24 sw.g. hard brass wire. When complete the wires are put through the holes for the d.i.l. plug in the circuit board so that the d.i.l. header is on the plain side of the board. Solder the pins to the pads keeping the solder close to the board. Trim the pins on the circuit side of the board to an even 3.5mm. length, remove the d.i.l. header and push onto the trimmed pins. Put a blob of solder on the pins on the plain side of the board as close as possible to the board to take any removal strains and then trim the excess length of pin off as short as possible. Remove the d.i.l. header.
Solder on the two 24-pin and one 14-pin sockets in the usual way followed by the two flying wires. The wire from pin 11 on the 7474 should be soldered carefully to the top of the leg of pin 14 on U20. The wire from pin 10 should be soldered to the printed circuit track going to pin 40 on the 6502 processor U8. Fig. 4 shows the place to solder it, but remember that if you leave the 6502 in place while doing this you should be using a good quality soldering iron which has a well earthed tip.

Remove the character generator U41 from the main board and fit to the sub-board in its appropriate place and correct orientation. Fit the 7474 and 2716 EPROM and plug the sub-board into the character generator socket on the main board with the d.i.l. header in place. This completes the construction.

SOFTWARE

Although we now have higher resolution we are still using the old character slots to put one of 256 characters onto the screen at any one time. The heart of the software is to decide which character best represents the desired point to plot and to select the required character bearing in mind the character already occupying the slot.

Two programs are listed which use the character selection algorithm, one in BASIC to plot functions and a hybrid program in BASIC and machine code to draw pictures on the screen.

Table 2 is a program for plotting any mathematical function on the screen and will be described in some detail since it contains the routine needed for any plotting in medium resolution graphics.

The subroutine starting at line 1000 is the character selection and plotting portion.

X and Y are the new medium resolution co-ordinates relative to screen origin. X can range from -48 to +48 and Y from -32 to +32.

Line 1000 calculates the number of lines down the screen and the position across the screen of the standard character slot that X and Y fall in.

Line 1005 calculates the position of the individual character within the large character slot.

Line 1006 calculates the binary number of the character needed in this slot ignoring the character already there.

Line 1010 gets the present character in the slot.

Line 1012 decides the new character to put on the screen with reference to the one already there.

Line 1100 displays it.

Not strictly necessary in this program, but put in for completeness, are lines 1011, 1015 and 1017. These are used if the calculated graphics is to be deleted from the character that is already on the screen. The choice between subtracting and adding a character is controlled by flag D.

The function to be plotted is placed in a subroutine starting at line 2000, in this case an ellipse calculation, and the dimensions of the ellipse are controlled in lines 45-100.

POKE 55555,1 in lines 40 and 220 switches to the new character set at the start and back to the standard set at the end.
Lines 30-40 are a machine code subroutine to fill the screen with the zero character, which is a blank in the new set.

This program runs very slowly since it is in BASIC and contains long calculations to plot each point but it will give an idea of the method used to manipulate the 8 square graphics. Some experimentation with the functions and step sizes could prove most interesting.

In the second program the plotting algorithm is in machine code and only returns to BASIC for the option menu and instructions. Some examples of the sort of pictures that can be drawn are shown and have been photographed straight off the television screen.

<table>
<thead>
<tr>
<th>Table 1. EPROM program</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Table 2. Plotting program</th>
</tr>
</thead>
</table>
Table 3. Drawer in M/C and BASIC

Note to CEGMON users:

In the Plotting Algorithm program line 200 will need to read:

200 POKE 11,70:POKE 12,251:X=USR(X)

In the Graphics Drawer program line 5010 will be:

5010 POKE 11,70:POKE 12,251:X=USR(X):

CH=PEEK(533)-- 48:RETURN

In line 6280 change two occurrences of BAFF to 46FB

In line 6290 change BAFF to 46FB

If your character generator has been supplied as an EPROM, then cut the track joining pin 18 on IC1 and IC2, leaving IC2 connected to pin 9 of the 7474. Connect pin 18 of IC1 to pin 8 of the 7474.

Fig. 5. Printed circuit layout

Fig. 6. Component overlay

Fig. 7. Position of PL1
The program was originally intended for joystick control which explains the rather clumsy cursor movement keys, but on the standard keyboard I do not think there are any better options.

The subroutine at line 5000 is to clear the screen and can be substituted by a more rapid routine if available.

To sum up then, this is a method of implementing square graphics in a simple and non-destructive way. This system works equally well with the Superboard II but requires a differently encoded EPROM since for reasons best known to the manufacturers, the wiring between the character generator and the data serialiser is slightly different on two machines. The Superboard requires each character row to be encoded in reverse. The software illustrated here will also have to be adjusted.

Thanks are due to the author's colleagues Dr. J. Ogle and D. Hazelden for ideas on the hardware and software of this project.

The program was originally intended for joystick control which explains the rather clumsy cursor movement keys, but on the standard keyboard I do not think there are any better options.

The subroutine at line 5000 is to clear the screen and can be substituted by a more rapid routine if available.

To sum up then, this is a method of implementing square graphics in a simple and non-destructive way. This system works equally well with the Superboard II but requires a differently encoded EPROM since for reasons best known to the manufacturers, the wiring between the character generator and the data serialiser is slightly different on two machines. The Superboard requires each character row to be encoded in reverse. The software illustrated here will also have to be adjusted.

Thanks are due to the author's colleagues Dr. J. Ogle and D. Hazelden for ideas on the hardware and software of this project.
THIS month, which represents the final part of the Robots series of articles, we look at the software and final assembly procedures.

SOFTWARE DESCRIPTION

Here are brief notes on some aspects of the control software for the robot.

Decoding the keyboard data via an interrupt routine

The clock pulses from the keyboard decoder are fed to one of the PIA's interrupt inputs. Each time an interrupt occurs, the new data bit from the keyboard decoder is read and shifted into a temporary data store by the software. When 56 bits have been received, the micro's internal button status bytes are updated. Synchronisation with the transmitted sequence is assured by resetting the bit count when a 'start' bit is decoded by the keyboard decoder. See Fig. 6.1 a.

Jump node subroutine

To make button command controlled jumps from one part of the program to another easy to modify and expand, a special subroutine was written. This is entered with the X register pointing to the start of a particular jump table (Fig. 6.1c). If any of the listed button states are found, then the matched jump is made, otherwise the subroutine returns control to the part of the software it was called from. See Figs. 6.1b and 6.1c.

Servoing and deadband

On replay, the control of the robot to follow the stored data consists of a simple servo loop with a deadband, i.e. if the measured position is greater than the desired position plus the deadband, then the minus solenoid is activated.

\[
\begin{align*}
\text{i.e. } MP &> DP + DB \quad &\Rightarrow & -SOL \quad \text{ON} \\
\text{also } MP &< DP \quad &\Rightarrow & +SOL \quad \text{ON} \\
\text{and } \quad DP &< MP &< DP + DB \quad &\Rightarrow & \text{BOTH OFF}
\end{align*}
\]

As soon as an axis reaches the correct position, its appropriate solenoids are switched off. When all solenoids have reached their correct position, the software fetches the next position down from the sequence memory, and the process continues.

A full source listing (with comments!) of the control software is available from Powertran.

KITS

Constructor's Note

Complete kit of parts for this project can be obtained from Powertran Cybernetics, Portway Industrial Estate, Andover, Hants SP10 3WN. Andover (02641 64455).

Prices are as follows . . .

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genesis M101 4 axis model (excluding wheel base)</td>
<td>£295.00</td>
</tr>
<tr>
<td>Genesis M101 5 axis model (excluding wheel base)</td>
<td>£345.00</td>
</tr>
<tr>
<td>Genesis M101 wheel base</td>
<td>£79.00</td>
</tr>
<tr>
<td>Genesis P101 4 axis model</td>
<td>£450.00</td>
</tr>
<tr>
<td>Genesis P101 6 axis model</td>
<td>£545.00</td>
</tr>
<tr>
<td>Genesis S101 4 axis model</td>
<td>£355.00</td>
</tr>
<tr>
<td>Genesis S101 5 axis model</td>
<td>£405.00</td>
</tr>
<tr>
<td>Position detector coil set for M101, S101 4 axis models</td>
<td>£15.00</td>
</tr>
<tr>
<td>Position detector coil set for M101, S101 5 axis models</td>
<td>£19.00</td>
</tr>
<tr>
<td>Position detector coil set for P101 4 axis model</td>
<td>£15.00</td>
</tr>
<tr>
<td>Position detector coil set for P101 6 axis model</td>
<td>£24.00</td>
</tr>
<tr>
<td>Position detector board for M101, S101 4, 5 axis models</td>
<td>£6.50</td>
</tr>
<tr>
<td>Position detector board for P101 4, 6 axis models</td>
<td>£7.50</td>
</tr>
<tr>
<td>Motor drive board for M101 wheel base (2 required per machine)</td>
<td>£11.50</td>
</tr>
<tr>
<td>Control electronics for M101 (microprocessor board, interface board, display board and mounting bracket)</td>
<td>£135.00</td>
</tr>
<tr>
<td>Processor box for S101, P101 (microprocessor board, interface board, display board, power supply, interface cables, conduit, cabinet)</td>
<td>£175.00</td>
</tr>
<tr>
<td>Parts for RS232C interface (fits on microprocessor board)</td>
<td>£14.50</td>
</tr>
<tr>
<td>Hand held controller box for M101 (includes infra red transmitter and rechargeable battery)</td>
<td>£47.00</td>
</tr>
<tr>
<td>Hand held controller box for S101</td>
<td>£33.00</td>
</tr>
<tr>
<td>Hand held controller box for P101</td>
<td>£33.50</td>
</tr>
</tbody>
</table>

All prices subject to 15% V.A.T.
Fig. 6.1a. Interrupt Service Routines

GET KEY AND EXTERNAL DATA

```
KBEX JSR BUSIN
LDA B PIABD STA B PIABD
AND B $11111111 STA A PIAAD
STA B PIABD LDA A PIABD
SRP
OUT
RTS
```

TRANSFER/CHECK BUTTON DATA

```
TRNFER LDA B LDX BTS0
STX FROMX LDX #BUTNS
STX TOX JSR MOVE
RTS
```

INTERRUPT SERVICE ROUTINE

```
INTSER JSR KBEX
STA A KBEXD AND A $00000010
STA B BITCNT LDA A $56
STA A BITFLG JSR MOVE
INTL LDA A KBEXD
STA A KBEXD ROR A
ROL BT6
ROL BT5
ROL BT4
ROL BT3
ROL BT2
ROL BT1
ROL BT0 SHIF DATA IN
DEC BITCNT BEQ ALDON
RTI
```

**ALLDON LDA A BITFLG
BNE INT2
INC A STA A BITFLG
JSR TRNFER
INT2 RTI

INTERRUPT VECTOR

```
ORG $FF88
FDB INTSER
```

RESTART VECTOR

```
ORG $FFFF
FDB START
END
```

Fig. 6.1b. Jump Node Subroutine

*SEARCH JUMP TABLE POINTED TO BY
*X AND JUMP IF NECESSARY

```
NODE LDA A 0.X
CMPA $FF BEQ NODE2
BEQ TSTBUT
JSR TSTBUT
BEQ NODE3
INX
INX
INX
```

Fig. 6.1c. Jump Node Tables

INITIAL COMMAND NODE

```
F81C 00 80 JT1 FDB $0080, SQM
F820 01 80 FDB $0180, SQP
F824 00 10 FDB $0200, EDIT
F828 02 08 FDB $0208, CLRMEM
F82C 00 20 FDB $0220, RPTP
F830 00 40 FDB $0040, PLAY
F834 01 20 FDB $0120, MCOM
F838 02 80 FDB $0280, MCTRL
F83C FF FCB $FF
```

PLAYBACK CONTROL NODE

```
F83D 00 10 JT2 FDB $0010, EDIT
F841 01 20 FDB $0120, MCOM
F845 01 40 FDB $0140, PAUSE
F849 00 40 FDB $0040, PLAY
F84D 00 20 FDB $0020, RPTP
F851 FF FCB $FF
```

EDIT CONTROL NODE

```
F852 01 04 JT3 FDB $0104, STEPP
F856 00 04 FDB $0004, STEPM
F85A 01 20 FDB $0120, MCOM
F85E 00 08 FDB $0008, WAIT
F862 01 08 FDB $0108, INSERT
F866 01 10 FDB $0110, DELETE
F86A 00 20 FDB $0020, RPTP
F86E 00 40 FDB $0040, PLAY
F872 00 10 FDB $0010, EDIT
F876 02 40 FDB $0240, SLOW
F87A FF FCB $FF
```

PAUSE WAIT NODE

```
F87B 01 40 JT4 FDB $0140, PAUSE
F87F 00 10 FDB $0010, EDIT
F883 01 20 FDB $0120, MCOM
F887 00 40 FDB $0040, PLAY
F88B 00 20 FDB $0020, RPTP
F88F FF FCB $FF
```

MOTOR CONTROL NODE

```
F890 01 20 JT5 FDB $0120, MCOM
F894 FF FCB $FF
```
The plumbing of the solenoid operated valves of GENESIS P101

Position Detector Board fitted to side panel of GENESIS P101

Processor Box showing Interface Board, Processor Board, Data Display Board (mounted vertically next to switch), power supplies for electronics and hydraulic pump. The signals to and from the robot are carried in 2 flexible conduits.

More of the hydraulics of GENESIS P101

CONSTRUCTION OF THE ROBOTS

Despite the very large number of components making up each of the Genesis range of robots, construction is very straightforward, requiring no tools other than the screwdrivers and spanners found in most constructors' tool boxes. For convenience, in both packing and assembly, each kit is divided into a number of packs, each containing the parts for one section only of the machine together with its fixing components, so there's no chance of fitting the parts incorrectly. All details of assembly are covered in the handbook supplied with the kit. The prospect of assembling an hydraulic system may seem daunting, but with the components designed for these machines, no blowlamps, wrenches or similar tools of the plumbing trade are required. The fixed pipework is 8mm diameter flexible, clear polythene tube and the pipework on the arms is 5mm and 6mm flexible, clear nylon tube. The tube, which can be cut with scissors, is terminated with screw-on fittings (Figs. 6.2 and 6.3). The fittings which screw into the hydraulic cylinders are sealed with nylon washers whilst the larger fittings as used on the solenoid operated valves and non-return valve have tapered threads which are sealed by wrapping about 5 turns thin PTFE tape round them before screwing in.

After filling with oil, operation of the robots can be checked by applying 12V to the solenoids, either directly or via the Direct Solenoid Controller Board.

POWER-UP, TESTING AND CALIBRATION

There are several electronic units that comprise the robot system, and they are in some respects interdependent. That is, it will be difficult to test the boards in isolation, they have to be tested as a system. Wire up the interface board and the processor board (Tables 6.1–6.6). Do not insert any of the integrated circuits, other than the voltage regulators, which are soldered in anyway. Unplug index plugs PL2, 3, 5, 8, 9.

Power-up the unit and test the supply rails. Check that you have two lots of +5V, a +12V rail (approximate) and a −9V rail. Refer to the circuit diagram of the interface board for these voltages. There should be very little current drain and so none of the components should be getting hot! Turn off the power and insert all i.c.s up to number IC7 on the interface board. Recheck the power supply rails. Turn off, and insert the rest of the i.c.s except IC21. Turn on and recheck the power supply rails. If everything is okay then the interface board has been safely powered up. There are a few things that can now be tested. IC6 pin 8, should be a low distortion sinewave of about 4Vpp amplitude, 100Hz frequency. The same sinewave will appear at IC6 pin 4 which is the power driver i.c. Pin 7 of IC5 is a stable voltage reference of ±2.4V.

Now insert the i.c.s on the processor board. Power-up and test the supply rails. The heat sink on the interface board (+5V rails) will now begin to warm up but it should never
BSP TAPERED THREAD (SEALED BY WRAPPING WITH PTFE TAPE BEFORE ASSEMBLY)

Fig. 6.2. Pipe fitting used for connecting to solenoid operating valve

Fig. 6.3. Connection to hydraulic cylinder

Table 6.1. Input wiring of Processor Box

<table>
<thead>
<tr>
<th>Molex plug No.</th>
<th>DIN Skt pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL7-1</td>
<td>1</td>
<td>+12V</td>
</tr>
<tr>
<td>PL7-2</td>
<td>5</td>
<td>+5V</td>
</tr>
<tr>
<td>PL7-3</td>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>PL7-4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PL7-5</td>
<td>3</td>
<td>DATA INPUT</td>
</tr>
</tbody>
</table>

Table 6.2. Infra-red data link (Mobile only)

<table>
<thead>
<tr>
<th>Molex plug No.</th>
<th>Receiver PCB No.</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL7-1</td>
<td>1</td>
<td>+12V</td>
</tr>
<tr>
<td>PL7-2</td>
<td>2</td>
<td>+5V</td>
</tr>
<tr>
<td>PL7-3</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>PL7-4</td>
<td>4</td>
<td>-9V</td>
</tr>
<tr>
<td>PL7-5</td>
<td>5</td>
<td>DATA</td>
</tr>
</tbody>
</table>

Table 6.3. Display Board wiring

<table>
<thead>
<tr>
<th>Molex plug No.</th>
<th>Display Board Pin No.</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL5-9</td>
<td>1</td>
<td>DA3</td>
</tr>
<tr>
<td>PL5-3</td>
<td>2</td>
<td>DA0</td>
</tr>
<tr>
<td>PL5-10</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>PL5-7</td>
<td>4</td>
<td>DA2</td>
</tr>
<tr>
<td>PL5-5</td>
<td>5</td>
<td>DA1</td>
</tr>
<tr>
<td>PL5-6</td>
<td>6</td>
<td>DA5</td>
</tr>
<tr>
<td>PL5-1</td>
<td>7</td>
<td>+5V</td>
</tr>
<tr>
<td>PL5-8</td>
<td>8</td>
<td>DA4</td>
</tr>
<tr>
<td>PL5-2</td>
<td>9</td>
<td>DA7</td>
</tr>
<tr>
<td>PL5-4</td>
<td>10</td>
<td>DA6</td>
</tr>
</tbody>
</table>

Table 6.4. Baud rate wiring

<table>
<thead>
<tr>
<th>Molex plug No.</th>
<th>Switch Contact</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL11-1</td>
<td>12</td>
<td>9600</td>
</tr>
<tr>
<td>PL11-2</td>
<td>11</td>
<td>4800</td>
</tr>
<tr>
<td>PL11-3</td>
<td>10</td>
<td>2400</td>
</tr>
<tr>
<td>PL11-4</td>
<td>9</td>
<td>1200</td>
</tr>
<tr>
<td>PL11-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL11-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL11-7</td>
<td>8</td>
<td>600</td>
</tr>
<tr>
<td>PL11-8</td>
<td>7</td>
<td>300</td>
</tr>
<tr>
<td>PL11-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL11-10</td>
<td>c</td>
<td>select</td>
</tr>
</tbody>
</table>

Table 6.5. Interface Board wiring

<table>
<thead>
<tr>
<th>Molex plug No.</th>
<th>DIN skt pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL12-1</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>PL12-2</td>
<td>2</td>
<td>CTS</td>
</tr>
<tr>
<td>PL12-3</td>
<td>5</td>
<td>RXD</td>
</tr>
<tr>
<td>PL12-4</td>
<td>4</td>
<td>RTS</td>
</tr>
<tr>
<td>PL12-5</td>
<td>1</td>
<td>TXD</td>
</tr>
<tr>
<td>PL6-4</td>
<td>centre</td>
<td>RS232 Enable</td>
</tr>
</tbody>
</table>

Table 6.6. RS232 wiring
become too hot to touch. The CMOS battery back-up will eventually charge up from 3-6V to 4-0V, but this may take an hour or so. A few things can be tested. The microprocessor should be generating a clock. Test IC1 pin 37; a 1MHz TTL level square wave should be generated. If the RS232 interface parts are fitted then the Baud rate generator can be tested. Test the 'wiper' of the Baud rate selector switch. A TTL level squarewave at 16 times the Baud frequency will be seen. Next connect the position detector board into the system via molex connectors M8 and M9 on the interface board. There are 3 tags on the position detector coils. The braid of the screened cable goes to the common tag. As the coils are bifilar wound it does not matter which coil is the primary and which the secondary. Test the supply rails for a safe power-up and check for outputs which will be 100Hz sinewaves. The sinewave level will alter as the extension of the respective hydraulic actuator is changed. Next plug in the display board (molex connector M5). Upon power-up the bleeper will bleep several times. This will indicate that the program is in some extent operative. Pressing the Reset button on the processor board will repeat this event. Again recheck the supply rails. The next section to be tested is the Remote Control Unit. This will enable you to manipulate the robot and also to calibrate the presets in the system. There are two types of control unit: one is an infra-red device and the other is connected via a wire link. The infra-red unit has two analogue channels and an infra-red driver circuit, and is only intended for use with the M101 robot. All the test waveforms are shown in the timing diagram. Adjust VR1 for a clock frequency of 2KHz (IC10 pin 3). Presets VR2 to VR5 are only included on the M101 unit. Adjust VR2 so that the ramp waveform seen at IC8 pin 14 reaches a maximum of 2-4V. In fact, check that the Vref voltage is +2,4V. Put the steering pot (VR7) in its central position and adjust VR5 so that the potential on the wiper of VR7 is +1-2V. Repeat the procedure for VR3, IC8 pin 1, VR4 and VR6. These two circuits are both analogue to digital converters. VR6 and VR7 should produce full range changes in their output codes. This can be seen by monitoring the Q outputs of IC9 pins 2 and 12.

INFRA-RED RECEIVER

Next the infra-red receiver, which is only used on the M101 unit is to be tested. Plug in the unit (molex PL7) and test the power supply rails. Check that the voltage regulator on the infra-red board is working. Check that the potential between the +12V rail and the emitter of T1 is 15V. Turn on the infra-red transmitter and point it at the receiver, using a separation of about three feet. You will be able to see the received data at IC1 pin 8 and IC2 pin 7. This data is then squared up by the comparator IC2 pins 1, 2, 3. Look at IC2 pin 1 and adjust VR1 so that nice clean waveforms are seen. Now move the transmitter away to a distance of 12 feet and readjust VR1 for the best output. The i.e.d. D5 will indicate that data is being received. You can use this as an indication of data being received. If you adjust VR1 so that it is too sensitive then the receiver will pick up noise and so generate erroneous commands. If you make it too insensitive, then the operating range will be limited. Optimum operation is at about twelve feet. Now that the manual control system is working the system can be tested. Connect the solenoids to the interface board via molex connectors PL2, PL3, plug in IC21 and power-up. For the M101 unit do not connect the motor control molex's PL13 as this may result in the robot dashing off and destroying itself! Upon power-up the robot arm may move which will indicate that there is life in the beast. Try out the manual control unit. Press SEQ=+ a few times. The display should count up. SEQ-- should make it count down. If nothing happens then test that the data is being received correctly, Fig. 6.5. Once this is working press EDIT on the control unit. The record i.e.d. on the display board will turn on and a bleep will be heard. Now you can directly manipulate the robot arm. Try moving the arm in all its axes. If nothing happens ask the following questions:

- Is there any hydraulic pressure?
- Can you hear the solenoid valves clicking on and off?
- Is the common rail connected to the solenoids?
- Do any control voltages appear at the solenoid drivers inputs (IC15 to 18, of the interface board)?
- Do these voltages appear at the drivers output?
- Are the drivers red hot?

DETECTOR CALIBRATION

When the arm actions are working it is then time to calibrate the detector circuits. Measure the voltage on pin 9 of the ADC chip (IC20). It should be +1.25V. The input range of the ADC should be twice this; that is OV to +2.5V. Look at IC7A pin 4 and fully extend and then retract axis 0. The voltage at this point should move. Move the axis so that the voltage is at its most negative. Adjust VR2A so that the voltage is OV. Now move the axis to its other extreme and adjust VR1A so that the voltage is +2.5V. Now return to the OV end and readjust VR2A for an output voltage of −10mV, and then return to the +2.5V end and readjust VR1A for an output voltage of +2.51V. Now as the axis is moved, the position feedback voltage will change from −0.01V to +2.51V. Repeat this calibration process for all the other axes which have position feedback. The record mode can now be tested. Clear all memory locations. Enter EDIT mode. Move the robot arm to a position. Press INSERT. A bleep will be heard. Move the arm to another position, and press INSERT. This may be repeated until all 32 memory locations have been used up. When 24 have been used the memory full lamp will come on. When the sequence is complete, press the PLAY button. The robot will then step through the recording. The PLAY lamp will also come on. Press LOOP and the robot will repeat the sequence continuously. To use
an external computer to control the robot, make up a lead as shown in Fig. 6.7. Plugging this in automatically puts the processor into RS232 mode.

When testing the motor control (M101 version only), jack the robot up in the air on blocks—you don’t want the thing zooming off leaving a trail of destruction! Plug in the molex connectors (PL13) and turn on the power. Press MOTOR on the control unit. All three indicator l.e.d.s should turn on and the motors may start to rotate, this being determined by the speed and direction controls on the control unit. Centre the steering control and move the direction control. This should make the robot move forwards and backwards. There are three velocities which are obtained by using mark-space modulation. Steering is also obtained by using differential mark-space modulation, Fig. 6.6. Turn off the infra-red transmitter and the motors should stop. This is caused by the motor stop circuit IC2 pin 3 on the interface board which stops the robot when it travels out of control range.

THE MACROCHIP (page 28)
Did you fall for it? Puchemm & Long! Just remember, it is our April issue so please don’t ring us for more details like BBC Wales did the last time we published on April Fool.

Thanks to our reader Iain James for sending this in.

FOOLED AGAIN! (page 14)
You may have noticed that PROLAFOIL is an anagram of a particularly seasonal phrase—try reading the name and address of the company backwards.

C90LH CASSETTES
56p each (minimum of 5); 53p each (minimum of 25).
Prices include VAT and postage
Made by a leading European manufacturer for Videotone, these tapes are of excellent quality and we are pleased to announce this new PE service.

Over the last couple of years PE offers arranged with Videotone have proved highly successful and we have now been able to arrange special prices (only available to PE readers) on these high quality tapes. The offer is a result of Videotone’s direct selling policy; send in a current special PE coupon for prompt delivery of tapes.

We believe these tapes are the best value around and we are pleased to offer them to readers. They are covered by a money back guarantee (return within 21 days for refund). Not only are the tapes of high quality but the cassettes are of screw together construction and the case label has space for notes on the recordings.

Send valid coupon to: Videotone Ltd., 98 Crofton Park Road, Crofton Park, London SE4.

Please send me tapes (minimum of 5) at p each.
(56p for 5 to 24, 53p for 25 or more; including VAT & postage.)

I enclose cheque/PO for £

Name ..
Address ..

Coupon valid for posting before 8th April ’82
(or one month later for overseas readers).
THE American Federal Trade Commission once asserted that a certain inventor’s claim that his instrument was an "organ" and that it could produce an "infinite number" of tone combinations was questionable.

The inventor, a quiet person who normally kept out of the limelight, decided to contest the government. The Trade Commission decided on an impartial panel which would listen to both an expensive pipe organ and the electric organ in question to see whether they could detect any difference. Both players were hidden from view and the speaker cabinets were concealed among the organ pipes in the Rockefeller Chapel, University of Chicago.

The jurors heard a number of test pieces played on these instruments and their answers were wrong in 10 cases out of 30. The organ’s inventor was vindicated; it had been accepted as a true musical instrument. The Commission decided that the electro-mechanical device could be termed an organ but the company concerned should desist from claiming an infinite number of tones — as it could only produce 253,000,000!

THE ORGAN MAN

The year was 1937 and the inventor was Laurens Hammond. It was probably a turning point for electronic music (though Hammond called them electric organs) and was an enormous achievement in many ways, especially considering amplifier and speaker systems of the day.

Very few people have been responsible for creating an industry: George Eastman and Henry Ford are examples in other fields but undoubtedly Laurens Hammond laid the keel for the electronic music industry we have today. Born in 1895, he took an interest in engineering from an early age. He proposed a method of automatic transmission to the Renault Motor Co. when 14 years old and graduated from Cornell University with a degree in mechanical engineering in 1916. He served with the American Expeditionary Force in the First World War, acting as interpreter to the Commander, General Pershing.

Back in civilian life, Hammond became chief engineer to a marine engine concern but worked on his own ideas privately. Appropriately enough, his mother’s maiden name was Idea Strong. His first success, a ‘tickless clock’, provided money enough to set himself up in business.

MOTOR

His mind turned to making a motor that would revolve in phase with the 60Hz supply: having succeeded, he found that a patent had been filed elsewhere. Even so, he discovered an application for his small, efficient motor and applied for his first patent — a three-dimensional movie system. Public interest was intense only for a short period, despite his simplifying the method by using red and green spectacles (anaglyph principle).

Another early idea was a ‘power pack’ for operating dry battery receivers from the a.c. supply. This project went well — until complaints started to flood in that the converters were exploding and throwing acid over furniture and carpets! He was next to concentrate on perfecting a mains-driven electronic clock and in 1928 formed the Hammond Clock Company. Profits soared over three years but the Depression saw not only his competitors going out of business but his own clocks being given away as a promotion for Wrigley’s chewing gum.

Determined to survive, he produced a device for shuffling playing cards into four heaps: built into a bridge table, it was priced at $25 but even at this level was difficult to sell when money was scarce. Because of his connections with the cinema, he noted the revival of interest in the pipe organ. By studying the films of the day, cinema organs grew in complexity as more and more effects were required for silent movies. The quest for larger instruments culminated in the mammoth organ in the Convention Hall, Atlantic City: installed in 1932, it had seven manuals, over 1200 stops and 32982 pipes.

FLUTE

Surely, the organ was a product that could benefit from his synchronous motor, he reasoned. As a child, Hammond had seen the Teleharmonium (the first complex-tone generator), knew its principles and was determined to build a smaller and highly reliable instrument. After lengthy experimentation, he managed to produce a flute tone by using his motor to drive a contoured steel wheel in front of a permanent magnet.

Like those before him, he had produced an electrical waveform but he had also found out how it could be converted to a musical sound: the tiny current from a winding on the magnet was fed into a radio amplifier (the valve by now being well established). The very next day, he and his team began to explore the possibilities of conventional musical tones by electric synthesis.

Trial and error convinced him that 91 tone wheels were sufficient to produce all the musical sounds familiar to the ear. Accurate gearing had to be evolved for the twelfth-root of two ratios between tonewheel shafts but this was not a particularly difficult task for a clock company. An old piano keyboard was wired so that partials could be keyed with fundamentals — a veritable cat’s cradle! Hammond’s concept of an invention was coloured by his experience as a manufacturer: the product had to be rugged. The eventual solution was to key nine pitches and allow the player to mix these as he wished.

TRAILBLAZER

The patent for Model A was filed in 1934 and the instrument first available early in 1935. Many famous musicians bought the Model A, priced at $1250: though small compared with a pipe organ, the cost was three times that of a Plymouth car in 1935. The Model B was produced in 1936 (merely a change in cabinet styling) and it was the claims for this organ that led to the story heading this article. Because very few organs from other origins existed at the time, the Hammond Organ was by now a household word for a new and exciting experience in music.

Harmonic synthesis methods were used from the earliest Hammonds but the first purely electronic synthesiser was produced in 1939 — the Novachord. Another idea from the fertile mind of Laurens Hammond, this six-octave keyboard instrument was capable of producing woodwind, brass, plucked and bowed strings, piano and organ tones. Based on master oscillator and divider strings with a wide range of envelope control and harmonic content, the Novachord was extremely popular in the field of broadcasting at the time.

His next instrument appeared in 1940. This was the Hammond Solovox, with a three-octave keyboard (capable of six octaves) designed to supplement the piano. Small dance bands used these instruments, attached below the piano keyboard, to add extra solo voices (of which it had 12) to the ensemble.

During the war years, the company produced large numbers of organs for the allied services and was also designing and manufacturing flight control systems, gyroscopes, lightweight and infra-red sensing equipment and aerial cameras.

The few commercial organs available at the time had not been designed for use in the home as a first priority. Wartime servicemen had developed a taste for the Hammond, so the company decided to introduce the very first home spinet model in 1949 — the first of the M Series. Ethel Smith was among the many famous instrumentalists who helped to popularise these small, self-contained models. Their
great success prompted other manufacturers to follow suit.

By 1953 organs had outstripped clock manufacture, so the name was changed to the Hammond Organ Company. Laurens Hammond was determined to maintain his lead in the field and expanded his engineering staff. New instruments continued to make their appearance, percussion being introduced on Models B–3, C–3 and the M Series spinets. A self-contained console model, A–100, dispensed with the PR–40 tone cabinet required by earlier console organs. Model RT, a full concert instrument, was introduced and had an unique pedal solo system combining the synthesis methods used in the Novachord and Solovox.

The energetic founder retired in 1960, leaving others to continue the concern to which he had given so much impetus.

The Chip

Theatre organ sounds with an ultra-modern pedal console were introduced with the X–66 in 1965. The X–77 was produced in recognition of the influence of jazz upon the market. This was a new version of the popular B–3 but with extra tonal facilities and power output.

The beginning of the company’s watersheds was in 1967, when the J–Series all transistor organs first appeared: these were the first all-electronic tab-controlled Hammond. The Piper Autochord made its debut in 1970 as the first automatic chording instrument: the circuitry provided the bass line so no pedals were fitted.

LSI circuitry was first incorporated in the Phoenix organ in 1972. This was a tab-controlled organ but later that year the Concorde became the first LSI/drawbar instrument. Many Hammond enthusiasts averred that nothing would ever equal the sound from tonewheel generators although I was impressed when I heard this organ at its presentation concert.

The company had to march with the times — the call for greater portability and consideration of the steeply rising costs of precision engineering. In turning from tonewheels to LSI, the company had created its own challenge: it handled that situation with flair, as subsequent models have proved.

No doubt Laurens Hammond was also pleased that this radical changeover had been so successful as this happened a year before his death in 1973. He left behind him a massive international industry, part of which bears his name and has continued in his inventive vein with the success and prestige it has always merited.
SIMPLE SAVE BY NAME

Sir—This program enables you to name all your programs and load them back from tape by name. It will work on both the UK101 and Superboard 11 computers. To use it just add two lines to your programs both Rem's the first contains the program name the second is just padding eg: 5 REM* NAME#(Enclose the 6 REM program name with * and #)

After putting these two lines at the beginning of your program save in the usual way.

ie: Type SAVE (return) then LIST (return).

The program will then be stored on tape. When the computer comes back with OK stop the tape, type PRINT "POKE 515, 0" restart the tape and press return. (This is used when loading back the program to switch off the load flag to stop any other information being loaded.) If you use the same line numbers in your programs as in SEARCH program not only will it load but while loading the SEARCH program will be automatically deleted leaving the entire memory for use.

10 REM *SEARCH#
20 REM
30 FOR X = 1 TO 24: PRINT: NEXT:
40 PRINT "Press play on tape"
50 FOR T = 1 TO 3000: NEXT:
60 PRINT "Searching for";
70 INPUT "Programme name";
80 POKE 515, 0: PRINT "Loading";
90 XS = XS + CHR$(P): IF XS
100 IF P = 32 THEN 70
110 IF P = 35 THEN 160

SECRET SCREENWRITING

Sir—I wonder if your readers would be interested in a simple extension of the "secret" key polling sub-routine by J. M. Leach of Deal, Kent, for the UK101 published last March.

This program based on the New Monitor allows you to write direct to the screen with full control of the cursor, viz:

RUB OUT: Moves Cursor LEFT: Re-typing corrects any mistakes
CTRL RUB OUT: Moves Cursor UP SPACE: Moves Cursor RIGHT
CTRL /=: Moves Cursor DOWN RETURN: Moves Cursor to LEFT margin and DOWN one line ie. carriage return.

10 GOSUB 100
15 REM HAS RETURN BEEN ENTERED?
20 IF A = 13 THEN 60
25 REM HAS RUB OUT BEEN ENTERED?
30 IF A = 28 THEN 62
35 REM HAS CTRL RUB OUT BEEN ENTERED?
40 IF A = 220 THEN 64
45 REM HAS CTRL =/- BEEN ENTERED?
50 IF A = 237 THEN 66
55 ? CHR$(A); : GOTO 10
60 ? CHR$(10); : ? CHR$(13); : GOTO 10
62 ? CHR$(8); : GOTO 10
64 ? CHR$(11); : GOTO 10
66 ? CHR$(10); : POKE 10
100 POKE 110: POKE 12, 253: X = USR(X); A = PEEK

CTRL L clears the screen as normal and returns the cursor to the home position (top left hand corner). This program allows messages to be displayed on the VDU and changed as required.

The alteration of line 55 to 55? A; : ? CHR$(A); : GOTO 10 allows the values of A to be printed out so that new IF A = "#" statements can be devised.

Revd. P. R. Miller, Milton Keynes.

AUTO-RUN

Sir—When loading a BASIC program it is tedious to have to wait until the program is loaded from cassette to avoid loading unwanted noise at the end. Typing POKE515,0:RUN followed by Return in immediate mode after the program has been SAVED, records the latter on the tape. The recorder is then switched off and on loading the program, the LOAD flag is turned off, and the program RUNS AUTOMATICALLY.

Roger Darbishire, King's Lynn, Norfolk.
CEGMON COMPATIBLE TRACE

Here is a trace program for UK101 which runs under CEGMON without destroying the printing format. It should also run on the Superboard and under other monitors, providing the CTRL C routine is at HEX FB94. It takes advantage of the fact that BASIC stores any number to be output at locations HEX 0100 to 0105 in decimal digits.

After you've cold started, try this:

FOR I=256 TO 261: CHR$(PEEK(I)); NEXT

The result will be the last number output, i.e. the number of free bytes. The program is adapted from the one in the CEGMON manual.

0294 A9 FF LDA £FF
0296 85 5F STA £FF
0298 A9 80 LDA £80
0299 85 64 STA 64
029A 20 53 B9 JSR B953
029F A2 05 LDX £05
02A1 BD 00 01 LDA £000X: STA £D036X
02A4 9D 36 D0 STA £D036
02A7 CA DEX
02A8 00 6F BNE 02A1
02AA C6 64 DEC 64
02AC 4C 94 FB JMP FB94

If your screen is not 48 characters wide, then byte 02A5 can be changed from HEX 02A4 to 02A5. This works nicely even if the direction of scrolling is altered during the execution of the program, by POKEing 727 with 63 or 65 before calling the routine. It works by loading every screen byte in sequence starting at the bottom, and storing it at a location which is greater by HEX 40 (64 decimal). It ends when the byte loaded is equal to the top line of the screen, despite the fact that there are no memory locations from CFOO to CFFF.

20 FOR I = I TO 32 : X = USR(X) : NEXT

As it stands, the contents of the top line will be left over the other lines. An extra routine to clear the top line is:

02F0 A2 40 LDX £40
02F2 A9 20 LDA £20
02F4 9D 00 00 STA £D000X
02F7 CA DEX
02F8 00 81 BNE 02F4
02FA 80 60 RTS

POKE 11 with 240 to let X=USR(X) know where to jump.

The following gives an effect of travelling through stars:

10 S=53248; N=5
20 FOR I=0 TO N*RND(1): POKE S+63*RND(2,46 : NEXT
30 CALL 716 : CALL 752 : POKE S,32
40 GOTO 20

This works nicely even if the direction of scrolling is altered during the execution of the program, by POKEing 727 with 63 or 65, depending on which SHIFT key is pressed.

David Henniker, Edinburgh.

390 SUGGESTIONS

UK 101-to-Data Dynamics 390 problems?

Try the following:

1) Make either 110 Baud rate mod' of March/June 1980. Break connection between IC62/12 and R72/R63, then reconnect R72/R63 to TX DATA (IC62/13), to remove data inversion. At the inside rear of the 390 is a 4 terminal block. Connect twin cable to the two left-hand terminals (face down). Other end of the cable to R103 110 Baud. The 390 may require buffering and inverting. A circuit is supplied by R. J. Hill, Birmingham.

2) Clock IC57 from C5. Connect IC58/4 to IC58/5. Break between IC57/12 and IC58/4. AC1A will now transmit at 110 Baud.

3) Clock IC57 from C5. Connect IC57/12 and IC58/4. AC1A will now transmit at 110 Baud.

4) Clock IC57 from C5. Connect IC57/12 and IC58/4. AC1A will now transmit at 110 Baud.

5) Clock IC57 from C5. Connect IC57/12 and IC58/4. AC1A will now transmit at 110 Baud.

6) Clock IC57 from C5. Connect IC57/12 and IC58/4. AC1A will now transmit at 110 Baud.

Practical Electronics April 1982

55
THE UK101 displays 48 characters per line on 16 lines. This conversion allows the user to select an optional 48 x 32 format. The characters become much more legible, and the doubling of the vertical resolution on display is a useful improvement when plotting graphs or drawing diagrams. Program listings provide double the information per page.

The VDU RAM is increased from 1K to 2K bytes, and is controlled by a modified version of the new monitor PROM, so that the line edit facility is available.

In order to check that the display being used has enough resolution for 32 lines, take IC60 pin 12 to +5V momentarily: two identical 16 line pages are displayed.

This conversion includes a means of selecting the three different monitor PROMs, (old 16 line, new 16 line, and new 32 line). Whilst Reset is held, this switch may be operated without losing programs.

One p.c.b. would be required; 8 new i.c.'s and the new PROM are required. Power can be obtained from the existing PSU.

HARDWARE

The current machine has 1K VDU RAM from D000 to D3FF. The hardware counting chain scans this onto the screen. C7 is not used, so each horizontal line is repeated (see p7, Fig. 2 in the manual).

The converted machine has 2K VDU RAM, D000 to D7FF. C7 is now used, and C14 is used to select between the two half pages, D000-D3FF and D400-D7FF. All the other counters are used as before.

A three way switch is provided to select between the three monitors. Six t.t.l. i.c.'s, two 2114's (for the extra RAM) and a new 2716 EPROM are required. If Reset is held while switching monitors, followed by warm start, programs are not lost. Thus program development can be carried out with 32 lines while setting up display graphics for 16 lines eg. for games.

IC102 and IC105 switch the counter outputs from IC60, 61 and 30 so that C7 is brought into use for 32 lines. They are activated by the three way switch. A change is needed to the VA signal generated by IC56 (currently active low when D000–D3FF selected, to enable the CPU to access the VDU RAM). IC56/2 is taken to +5V, instead of A10. VA becomes VA' active for D000–D7FF, VA' is used to activate IC105, which takes the place of the switch formed by pins 9, 10, 11 of IC55. IC104 is used to decode A10 and X2 into the memory select signals M1S, M2S, for the two page “halves”.

The RWE and WVE signals also have to be changed to RWE', WVE' to allow 2K VDU RAM. IC106 provides this decoding replacing part of IC20's function.

IC101 provides six inverters required in various places in the circuit. IC107–110 are the 4 VDU RAM chips (two of which are already on the main p.c.b.: IC39, 40).

Besides the connections for data and address lines to the VDU RAM and the ROM’S, some 25 connections have to be made to the main p.c.b. along with a number of track cuts. (The prototype board is "piggy-backed" on two pillars on the main p.c.b. and the connections made with ribbon cable). The track cuts are needed to disconnect the lines from IC60, 61, 30 to
IC41, 54, 55, and to disconnect A10 from IC56, and WVE, WVE, RVE.

SOFTWARE
The program in the new monitor requires alteration to:
- Screen print routine — to allow 32 lines
- Clear screen routine — to allow 32 lines (and optionally remove the scroll when the top of the screen is blank)

More Display
- Up one line routine — to allow 32 lines
- Form Cursor Address routine — to allow 2K VDU RAM

A total of 36 bytes require to be altered.

The firmware changes required are detailed below. The new program should be put into a 2716 (2K) EPROM, using the same address as the existing monitors (F800—FFFF).

The monitor program is completely unchanged except for the 36 bytes detailed.

Additionally, the byte at FB5B (currently FF) can be changed to 00 if desired. This removes the rather irritating scroll up on the screen every time the top line becomes blank for any reason.

POWER SUPPLY
No problems have been found driving the new board from the existing PSU, although the regulator is already mounted on a large heat sink outside the case. A simple 5V, 1A PSU using a 7805 3-terminal regulator could however be constructed if required. All the i.c.'s should be LS types.

POWER
+5V IC101/14, IC102/16, IC103/16, IC104/14
 IC105/16, IC106/16, IC107/110-19, IC111-IC113/12
0V IC101/7, IC102/8, IC103/8, IC104/7, IC105/8
 IC106/8, IC107-110/9, IC111-IC113/12

CONNECTIONS TO NEW BOARD

Fig. 2. Firmware changes required

<table>
<thead>
<tr>
<th>ADDRESS (ABSOLUTE)</th>
<th>ADDRESS (PROM)</th>
<th>ROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUTINE</td>
<td>ADDR</td>
<td>FROM</td>
</tr>
<tr>
<td>SCREEN PRINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACA</td>
<td>2CA</td>
<td>10</td>
</tr>
<tr>
<td>FAF1</td>
<td>2F1</td>
<td>10</td>
</tr>
<tr>
<td>FB2D</td>
<td>32D</td>
<td>D4</td>
</tr>
<tr>
<td>FB61</td>
<td>361</td>
<td>D4</td>
</tr>
<tr>
<td>FB85</td>
<td>385</td>
<td>D3</td>
</tr>
</tbody>
</table>

SOFTWARE CHANGES (TO NEW MONITOR)

ADDRESS CHANGE BYTE

<table>
<thead>
<tr>
<th>ROUTINE</th>
<th>ADDRESS CHANGE BYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREEN PRINT</td>
<td>2CA 10 D4</td>
</tr>
<tr>
<td>CLEAR SCREEN</td>
<td>2F1 10 D4</td>
</tr>
<tr>
<td>MOVE DISPLAY</td>
<td>32D D4 D8</td>
</tr>
<tr>
<td>UP ONE LINE</td>
<td>361 D4 D8</td>
</tr>
</tbody>
</table>

POWER
-5V IC19/6 (MCS) FOR MONITOR SELECT SWITCH

SOFTWARE

MODIFICATION ON ORIGINAL p.c.b.
CONNECT IC56/2 TO +5V (VA0-VA9, VDO-VD7 (FROM IC39, 40 SOCKETS)

ALL CONNECTIONS FROM MONITOR (IC13)
SOCKET, EXCEPT PINS 18, 20

IC19/6 (MCS) FOR MONITOR SELECT SWITCH

- BUS CONNECTIONS

SOFTWARE
DETAILS of the display p.c.b. are shown in Figs. 9, 10, and 11. All links through the board should be soldered first and those underneath the I.E.D. displays should be cropped short on the component side. The top end of each seven segment display is marked with a coloured spot. The pins for attaching the connecting wires to the main p.c.b. are inserted from the component side so that they protrude inwards from the front panel. The legs of the push buttons are left full length and are also used to solder the connecting wires onto.

FRONT PANEL CUT-OUTS

Dimensions for the cut-outs in the front panel are shown in Fig. 12. The shape of the cut-out for the 13A socket can be adjusted to suit any particular make. The best way to mark out the front panel is first to cover it with strips of masking tape. This can then be drawn on and it also protects the surface from scratching during cutting. The rocker switch S1 is fitted through from the front of the panel before soldering the connecting wires to it. The display p.c.b. is held in place by making two plastic brackets from the spare plastic cut from the front panel holes as in Fig. 13. These are glued together with instant (cyanoacrylate) glue and then to the back of the front panel during final assembly after testing.

Fig. 14 shows how 1½ turns of the neutral lead to the 13A socket are wound onto the current transformer after removal of the low voltage winding with a knife or wire cutters. Correct loading of the current transformer was discussed in Part 1 of this article. The voltage developed across the load resistor should be measured with a high impedance meter >10k or else using an oscilloscope when the peak to peak voltage will be 2·83 x r.m.s.

THE MICROPROCESSOR

The 8035 microprocessor is one of a range of single chip microcomputers first manufactured by Intel. The internal architecture of the chip is shown in Fig. 15. The program counter contains the address of the next location to be read from the program memory. The contents of this memory location are decoded in the instruction decode register and then the instruction is executed, which might be to increment one of the data registers or to use the ALU to logical AND the accumulator with data contained in the next bytes of the program, etc. There are in fact nearly one hundred different instructions which the 8035 will execute making programming straightforward and efficient in program memory usage.
The on-chip data memory is 64 bytes and the division of this into two working register banks, stack and user RAM is shown in Fig. 16. The addressing modes for access to this memory area are also shown. The program is stored in EPROM and certain locations are reserved for special functions as shown in Fig. 17. When power is switched on the reset pin is held low by a capacitor until it has charged up and then the processor gets its first byte of program information from location zero. This will be a jump instruction to the start of the main program. As this is a two byte instruction, location 1 is also accessed.

The test inputs are provided which can be used to
monitor external functions, the T1 input being used to test when the ADC conversion is complete. A low input to the interrupt pin causes the processor to terminate its current program sequence, store the next program address on the stack and then jump to location 3 where it gets the address of the interrupt service routine.

The relative timing of the external memory control signals is shown in Fig. 18. The falling edge of the address latch enable is used to strobe the address into the latch for both external data and program memory cycles. Program store enable occurs only during a program memory fetch and is used to enable the tri-state output buffers of the EPROM. The read and write signals are used to strobe data to or from external data memory.

In this particular implementation the two I/O ports are used to drive the display so that data from the ADC and the switches is read by considering them to be external data memory (memory mapped I/O). Also, as there are only two devices to select, a single address line can be used for each (a technique known as linear selection). This makes decoding easy as it is necessary to have only address line zero low for the ADC (address = 11111110) and address line one low for the switches (address = 11111101).

THE A/D CONVERTER

The ADC 0804 is a CMOS, 8-bit, successive approximation A/D converter with an accuracy of ± 1 bit and it will convert with an input voltage in the range of 0 to 5V in about 100 microseconds. It has control signals and a bus drive capability which makes it directly compatible with the 8035 microprocessor. The timing diagram of Fig. 19 shows how it is controlled. When addressed with CS low, a WR pulse starts the conversion and INTR goes low when the conversion is complete. This is tested by the micro and the data is read from the outputs by addressing with CS and RD low.

THE SOFTWARE

The flowchart of Fig. 20 shows diagrammatically all the functions which must be implemented in the software. When power is turned on, the initialisation routine is first executed, which ensures that data memory is cleared and that the display buffer contains the letters E, n, t, for the initial display. The internal flags are set and interrupts enabled.

The processor then waits for the first interrupt by a sync pulse. When this interrupt occurs, the on-chip timer is loaded with a count value which will give a delay of 5 milliseconds in order to locate the peak of the sinusoidal mains voltage waveform and the counter is started. The next function is to change the data at output port 1 for the next digit in the display and then to shift the active bit of port 2 along one place to turn on this digit. The elapsed time is updated by one hundredth of a second.

Finally, before entering another loop to wait for the timer, the switches are scanned. If it is found that the switch conditions have changed, no immediate action is taken. Instead, the new switch condition is confirmed on the next mains cycle, 10ms later, to allow switch bounce to settle. The time to execute the above sequence is about 2ms so that there is a wait of 3ms for the timer to count out.

When the timer interrupt occurs, the ADC is started. The display is then updated as before and, as this is done every 5ms, it gives a flicker free multiplex frequency of 200Hz. The ADC is tested and when it is ready the digitised value of the current is read in via the bus. The sequence is completed by calculating the incremental charge for this half cycle and adding it to the running total for display. This calculation requires a four digit by four digit BCD multiplication and the time to execute this part of the program is about 3-5ms so there is a further wait of 1-5ms before the next sync pulse interrupt and the whole process is repeated.

Kits of parts and complete Telectrics are available for purchase. See advert in this issue for details. Although construction is straightforward, a full service facility will be provided for anyone who has problems.
A selection of readers' original circuit ideas. Why not submit your idea? Any idea published will be awarded payment according to its merits. Each idea submitted must be accompanied by a declaration to the effect that it has been tried and tested, is the original work of the undersigned, and that it has not been offered or accepted for publication elsewhere. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.

OVERLOAD CUTOUT FOR THYRISTOR SPEED CONTROL

This circuit was designed to protect a thyristor-based model railway speed control. When the current drawn exceeds the value set by VR1, the supply is cut off completely, and remains off until reset by S1. The circuit is fast acting—it will close down for a short-circuit at very low speed settings—thus providing some protection against running an engine up to a set of "closed" points.

TR1 is a conventional series regulator, but with deliberately poor regulation, so that the emitter voltage falls as the set maximum current is approached. TR2 compares the collector and emitter voltages of TR1. As the voltage on VR1 slider falls, TR2 switches on, switching on TR3, and shunting TR1 base current. The voltage on TR1 emitter falls further, and the process continues until TR1 is completely cut off.

C1 and C2 require some care in selection, since they provide partial smoothing of the voltages across TR2. C2 = 10µF gives a rapid response; C1 should be selected from nominal 100µF items to give minimal a.c. voltage across TR2 base-emitter at the chosen current limit. Although VR1 gives a fair range of adjustment, the value of R5 may need to be altered for wide variations. The value shown provides a range of about 0.5 A to 2 A, at the expense of high power dissipation in TR1 near the current limit. For current limits above about 1 amp, the value of R5 should be decreased, in order to limit dissipation.

The transistors selected are as follows:

TR1—any of ACY 17 to 21 or BCY 30 to 34 will do.

TR2—any of BFY 50, 51 or 52.

TR3—any of BFY 50, 51 or 52.

W.S. Lymath
South Wirral
Cheshire.
Often it is desirable to replace the function of a rotary multi-position switch with the equivalent in push buttons. The advantages are evident in the push button car radio, where it's better to jab than to twiddle.

The circuit presented here performs the same 1 of n selecting function as the multi-position switch, whilst similarly cancelling previous selections.

The circuit uses the 4017, 1 of 10 selector, but one can easily make it into a 1 of less-than-ten, by just ignoring superfluous components.

Assume the last button to be pressed was the '0' button (or that the unit has been reset). A logic '1' will be standing on the No. 3 pin, the '0' i.e.d. will be alight, and all other outputs will be low.

If now the No. 4 button is pressed. Because the '10' pin and its associates are low, a low will be put on the otherwise high ENABLE bar input. This will allow the unit to start clocking. When the logic '1' output steps up to the ten pin, it disenables the '13' pin, by placing a logic '1' on it. It remains so, whether or not the finger remains on the button.

Thus we have a 1 of n, self cancelling, remembering data selector.

The unit has a self resetting function at switch on, via the components R1, R2 and C1. By delivering a pulse to pin 15, it causes the stepper to stand with the '0' output line high, and all others low.

For eight or less outputs, the slightly cheaper 4022, 1 of 8 counter may be substituted.

Ron Mellor
Peakhurst, New South Wales.

SWITCH DE-BOUNCE

During the design and construction of a TV pattern generator, I decided to use electronic switching of the video output patterns. The device used was a CMOS 4013 decade counter. The clock input is a simple push button switch. In anticipation of nasty switch bounce problems, I devised this circuit shown. The aim is to set a latch when the switch is closed and not permit it to reset until after the switch has been released.

When the switch is closed the Q output of the 4013 will become latched up. An inverter and diode will prevent the reset input from going high. When the switch is released, the set input will bounce back to a low state and the inverter output will go high, permitting the Q output to charge up the capacitor on the reset input through the 100k resistor. When this charge reaches the threshold level of the reset input, the Q output will be reset and the circuit will be ready to do some more debouncing. The graphs show the input and output voltages. The choice of time constant 220n x 100k is arbitrary and subject to variation, depending on how bad the switch is.

B.T. Black
Upper Stratton
Swindon
OCTAVE BANK FOR VCOs

The use of multi-turn potentiometers for tuning the VCOs in synthesisers such as the Minisonic 2 is often not suitable for live performance situations. The octave bank described here gives quick, accurate and temperature stable octave switching.

The circuit consists of a Zener diode reference voltage, a resistor ladder and a buffer amplifier. The Zener value chosen is 5.6V since at this voltage the diode has an almost zero value of temperature coefficient, making the reference very stable. This voltage is then applied to the resistor divider which provides eight voltages at equal intervals from zero to -7V, the slider of VR1, the multi-turn cermet preset, being used as the -7V reference. The amplifier then provides buffered outputs at one volt intervals, which can be fed into the control nodes of the VCOs to be controlled.

The circuit is designed for use with synthesisers having a 1 volt/octave control law and thus for the Minisonic 2 the standard summing resistor of 47k should be used for R9. For synthesisers having a different control law relationship, R9 can be replaced by a preset of a suitable value, this can also be used to make the 'octave' span variable.

The circuit requires a stabilised supply of -9V and will draw just under 15mA from the rail.

All resistors should be 1% metal oxide or cermet film, if possible those in the ladder should be selected to be as close as possible. VR1 should be a cermet multi-turn preset potentiometer. The value of the summing resistor R9 is especially critical as this determines the actual span of the octaves provided by this circuit to the controlled VCOs. Trimming can be effected by replacing R9 with a cermet multi-turn preset potentiometer, in the case of the Minisonic 2 the value would be 100k.

In order to control more than one VCO, additional contacts should be added in parallel with S1, and a buffer amplifier/voltage follower as for IC1 added per extra oscillator.

Martin Russ, Manchester.

SOUND-TO-LIGHT CONVERTER

This circuit evolved from an idea in (PE) July 1976, for a simple sound to light converter in which the light was turned off in time to the music. This circuit is incorporated as one of the lamp drivers.

The potentiometer VR1 acts as a master level control for the unit which is connected directly to a loud-speaker. The transformer is used to protect the 'speaker' in the event of any short circuits. Transistors TR1 and TR2 form a buffer amplifier, the output of which is fed to VR2. This preset adjusts the balance between the two lamp drivers.

The bias on the driver transistors TR3 and TR4 is set by VR3 and VR4 respectively, and C3 ensures that the thyristor is normally turned on.

With the bias preset correctly set, careful adjustment of VR2 will yield a very pleasing light display when different coloured bulbs are used for each channel.

A. W. Cunningham, Leven, Fife.
This amplifier has a frequency response of 20Hz to 25kHz, with a noise figure of -62db, making it suitable for high fidelity applications. As will be seen, the output impedance is low, by virtue of the emitter follower, and may be connected via a (screened) lead to other equipment. If required the input transformer may be omitted, and microphones of 47/50k used in an unbalanced input arrangement, connected directly to the point marked 'X' on the circuit diagram. Using high impedance microphones will mean that the input lead must not be much longer than about 1 metre, otherwise the high frequencies will tend to become attenuated, and the input will be more susceptible to hum problems. The amplifier should be powered from a well smoothed, low impedance supply.

The input transformer used in the prototype has a turns ratio of 6.45:1. This represents a bonus because it gives a voltage gain in the order of 16db, and since the transformer does not contribute noise the input to the amplifier is increased by 16db before the possibility of any noise arises.

The first transistor base feed resistor R1, as will be seen, is 1M. In most cases this resistor on its own will be found to be too high a value, in order to obtain symmetrical clipping of the output. This should be experimentally paralleled with values of 2M2 or upwards. Using an oscilloscope, and before fitting the input transformer, check with a 1 kHz tone fed into the point 'X' that a resistor is chosen that gives a symmetrically clipped output. Once this has been established, it may be permanently soldered in. If a tone generator and oscilloscope are not to hand the 1M resistor may be used alone; however, the overload point will be reached more quickly.

The a.c. part of the feedback loop has a five way switch in series to select different series resistors. The overall gain is thus selectable from 20db to 60db in 10db steps. The resistors for the 30db and 50db positions will have to consist of two preferred values in series, as the actual values are unobtainable through normal retail outlets, and if more than one amplifier is to be built, it is suggested that they be 2% tolerance to match the gains.

Interference is inhibited by means of the 470p in parallel with the collector load of the second transistor. The fairly high values of base and collector resistance around the first two stages help to keep the noise down by reducing the d.c. current flow. The 1M at the output ensures there is no d.c. voltage on the output of TR3.

Tony Sercombe, Surbiton, Surrey.

9V POWER SUPPLY

This unit was originally designed to run battery driven items requiring 9V or less from a 12V car supply. The voltage output is adjustable and stable over wide load fluctuations—up to the current limit of the 2N3055 provided the sinking on this is adequate.

The Zener provides a stable reference at pin 3 of IC1 and VR1 is adjusted to provide the output voltage. Output from the i.c. is applied to TR1-TR2 turning on the latter sufficiently to maintain a constant voltage at the output irrespective of load. The output current flows through R4, which is made up of resistance wire. The design limit is fixed by the value of this resistor and when the load current reaches this the voltage developed switches on TR3 which in turn closes down TR1 and TR2.

S. A. R. Guest, Grampound, Truro.
MOBILE SERVICE IN SPACE

From time to time mention has been made in SPACEWATCH of the plan to service satellites in orbit or retrieve them from their orbits and carry out service on board a space station or even aboard the Shuttle as well as return them to Earth. This is now a well advanced pilot programme. A vehicle module has already been operated in simulated conditions for this work at heights of 300m.

The task is directed in the first instance to the servicing of the Solar Maximum Mission spacecraft which is already degraded. It is expected that the space shuttle astronauts will be the first to use the system. The date set is 1983. As with much of the space programme the whole scheme is dependent on the funding available.

The procedure adopted for the servicing activity will be as follows. The Shuttle will approach the spacecraft to be serviced and stand off at a distance of about 300 feet. The astronaut will be deployed from the orbiter and dock with the satellite. Maneuvering jets will be used to stabilise the satellite and the astronaut will attach himself to the satellite, then call for the orbiter manipulator arm to dock with the special attachment placed by the astronaut. When the orbiter takes over, the astronaut will detach and fly by the side of the satellite to photograph the operation. When the satellite is safely secured to the support cradle on board the orbiter the astronaut, still in the maneuvering unit, will carry out the necessary repairs. Having done this he will fly back into the payload bay and be released from the maneuvering unit. The replacement of the various fuses, which caused the degradation of performance, will then be carried out and the necessary checks with ground station completed, after which the satellite will be replaced in its correct orbital configuration and the observatory in full operation.

The maneuvering unit itself is rather like a special chair. The control and life support systems are carried in the cradle unit with the astronaut in a suit designed for extra-vehicular activities. In the case of the Solar Maximum Satellite the docking mechanism is carried in front of the astronaut and attached to the chest. The necessary controls are all within suitable controlling distance.

The docking and stabilising of a spacecraft for repair involves a number of special actions. For example in the case of the Solar Maximum Satellite which has a controlled rotation speed of the order of 0.8 to 0.9 deg/sec it would not present a great problem. Attachment by the astronaut of special clamps to the outer edge of one of the solar panels would be sufficient and up to much higher rates of rotation also. Having nullled the rotation the astronaut is then able to reset his position and attach the grappling unit to the spacecraft. A number of alternative techniques are being developed because it is possible that conditions will change for individual spacecraft. Also there is the condition prevailing for the Solar Maximum Satellite for there is no special provision for dealing with the screws holding the units in place. In zero gravity with a moving vehicle a special technique will be required.

There is some speculation too about the difference in dealing with a spacecraft retrieved for return to earth and one to be returned to the Shuttle for repair. The clearance for example in the case of the Solar Maximum vehicle can be as little as 5 inches for the solar panels so that great care will be needed to avoid damage. It is being considered now whether it would be more prudent to bring the spacecraft back to earth in any case. This would call for a greater load facility of some 4,000lb. It is clear that a number of options are available and it is necessary to be able to fly alongside and move round an orbiting vehicle without disturbing its flight parameters. There are hazards such as the orbiter's exhaust which could be heating up the vehicle and disturb control. So far many aspects have been studied and these will be dealt with in order of priority against time and financial options. What is important is that the thinking from the early days and dreams of fully manned units operating in space for maintenance is now in sight. This alone is a great fiscal advantage.

FRANCE AND SPACE

France is developing her Spot satellite system. It is an Earth observation programme and will be operated by SPOT IMAGE, a commercial marketing group privately financed. The technical details will remain with the French Government. They will retain, under the CNES (Centre Nationale d'Etudes Spatiales), 34% of the shareholding. CNES will be responsible for research of manufacture and development. A United States subsidiary will be established for the benefit of users in America. It is stated that this is not a move to compete with the United States LandSat system. The data available from SpotSat will be compatible with LandSat. The French hope that they have found a market for SpotSat data among users looking for a truly commercialised system which does not function with or is not associated with, government bureaux control. There have been approaches by some who are now in the LandSat market who are not happy with the possible influence that American Government policies might have on existing contracts particularly with regard to delays under the present administration.

The first of the operational satellites will be in 1984 launched by an Ariane-2 launcher. A second Spot vehicle has been approved by the French government to guarantee services throughout the 1980's. The design of the Spot vehicle will be a multimission platform. It will be fitted with two HRV (High Resolution Visible) range instruments. The optical instruments consist of a 20 metre resolution instrument in a multispectral mode and a 10m, mode resolution instrument in black and white. The multispectral mode covers green, red and near infra-red bands. These have been selected to satisfy several mission objectives.

-Consistent relationship between spectral reflectance and vegetational properties.
-Compatible interpretation of the spectral signatures obtained by the Spot satellite and the LandSat D8 mapper.
-Improved radiometric sensitivity and resolution for surface water work.
-Good discrimination within areas of vegetation of different types.
-At least one band to enable deep water penetration.

The markets expected to want these services are those of oil and mining exploration, topographic and land use, coastal studies and not least those who need crop and environment monitoring.

It is possible to provide stereoscopic images by processing two different orbital passes. Using the two resolutions, multispectral images can produce the appearance of enhancement better than the multispectral image.

CONTROL STATIONS

The central control will be at the CNES space centre at Toulouse. This will receive the direct transmissions from the spacecraft's earth coverage when in sight of the station. Images recorded earlier on tape recorders will also be collected during pass and transferred to a second ground station to be at Kiruna, Sweden, with identical facilities. Other ground stations operated by countries with their own stations will be able to receive data when the spacecraft is within the beam of their aerials.

A MEETING OF THE AMERICAN AERONAUTICAL SOCIETY

Speaking at a meeting Robert S. Cooper, director of Defence Advanced Research Projects Agency, said:

'We have built a fatal flaw into our satellite systems and it is time we recognised this fact!' He was emphasising his contention that not enough attention was being given to the development of robotics. He claimed that it was necessary to set up programmes to ensure that spacecraft could operate entirely independent of human ground control. He characterised current spacecraft operation as retarded technology. It was necessary to have suitable space systems. He claimed also that it was a tragedy that with all the current facilities available for launching in America, countries were turning to other centres for launching. He cited a recent Presidential directive in support of the Space Shuttle and space transport system.
MUSIC KITS

ALL WITH PRINTED CIRCUIT BOARDS!

128-NOTE SEQUENCER
A digital, 16-channel unit for most synthesizers.
Set-in Kid
SET-76 £20.46

16-NOTE SEQUENCER
Analog, panel controlled unit for most synthesizers.
SET-90 £34.64

3-CHANNEL STEREO MIXER
With left, right & master level controls & headphone monitor.
SET-107 £21.50

3-MICROPHONE STEREO MIXER
Improves stereo reality.
SET-108 £12.99

6-CHANNEL MIXER
High spec mixer with variable impedances.
SET-SET FROM £66.67

AUDIO EFFECTS UNIT
Variable stereo -
SET-105 £15.12

AUTOWAH UNIT
Automatic Wah & Swoosh sounds from each guitar note played.
SET-50 £14.01

CHOROSYNTH
20-note chorus with wide variety of voices.
SET-114 £25.04

COMPRESSOR
Variable level & decay-rate controls, line & microphone inputs with mixer.
SET-20 £25.05

DISCOSTROBE
4-Chan 200W unit for sequential, random strobe use.
SET-37 £19.78

DRUM SYNTHESISER
Extremely versatile synthesizer for conventional & extraordinary drum sounds.
SET-119 FROM £50.11

DYNAMIC NOISE LIMITER
Helps cut-up noises -
SET-97 £15.95

ENVELOPE SHAPER
A/D unit with own VCO.
SET-50 £14.96

10% OFF

10% OFF U.K., C.W.O. ORDERS OVER £20 FROM THIS ADU PT END OF COVER. (5% OFF FOR CREDIT CARDS). THIS COUPON MUST ACCOMPANY ORDER. CODE:PE23.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

KIMBER-ALLEN KEYBOARDS

Details in notes.
SET-56 £21.17

KIT CONTENTS
Suits include PCBs, U.K., P&P, 15% VAT, Res. Caps. B.c.s., F.ta Knobs, S.S. Knobs, Wire, Solder. Phononics of orig. nat., a crew unless marked "X". Most are battery operated, but PSU units are also available. More kits can be bought separately. Full details & more great kits are in our catalogue. Send S.A.E. for free copy. Prices correct at press, & E.S.O. subject to stock. Despatches usually 2 days on all ex-stock items.

MICROPHONE STEREO MIXER

With both, left & master level controls & headphone monitor.
SET-110 £21.50

3-MICROPHONE STEREO MIXER

Improves stereo reality.
SET-108 £12.99

12-CHANNEL MIXER

With left, right & master level controls & headphone monitor.
SET-110 £21.50

3-MICROPHONE MIXER

Improves stereo reality.
SET-108 £12.99

6-CHANNEL MIXER

High spec mixer with variable impedances.
SET-SET FROM £66.67

AUDIO EFFECTS UNIT

Variable stereo -
SET-105 £15.12

AUTOWAH UNIT

Automatic Wah & Swoosh sounds from each guitar note played.
SET-50 £14.01

CHOROSYNTH

20-note chorus with wide variety of voices.
SET-114 £25.04

COMPRESSOR

Variable level & decay-rate controls, line & microphone inputs with mixer.
SET-20 £25.05

DISCOSTROBE

4-Chan 200W unit for sequential, random strobe use.
SET-37 £19.78

DRUM SYNTHESISER

Extremely versatile synthesizer for conventional & extraordinary drum sounds.
SET-119 FROM £50.11

DYNAMIC NOISE LIMITER

Helps cut-up noises -
SET-97 £15.95

ENVELOPE SHAPER

A/D unit with own VCO.
SET-50 £14.96

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.

PHONOSONICS

Dept. PE24, 22 High Street, Sidcup, Kent, DA14 6EH.

Telephone: 01-302 6184.
PUSS-PROOF ALARM

British patent application 2 074 314, from American District Telegraph Company of New York, offers some interesting information on burglar alarms. The patent is aimed at improving passive infra-red detection systems, and lists a string of US patents on known systems of this type. Essentially an infra-red sensor trips an alarm if the infra-red reflection pattern in a room is disturbed by an intruder. But it has proved difficult to make the alarm sufficiently sensitive to detect an intruder on the other side of the room from the detector, but not so sensitive that it goes off accidentally, for instance if the office cat prowls past.

The patented solution (Fig. 1) is a complex arrangement of spherical mirror segments. A large segment 12, a smaller segment 14 and two still smaller segments 16 are all mounted round a common optical axis 18. The mirrors all focus on an infra-red detector 20 which is supported on a U-shaped arm 44 (Fig. 2) mounted on tabs 46. The mirror segments are made of acrylic, with a coating of aluminium.

Fig. 3 explains the basic circuit. Detector 20 is a dual thermopile with its two elements connected in phase opposition. The detector output is amplified at 120, fed to threshold circuit 122, integrated at 126 and fed to second threshold 128. Logic 130 trips alarm 132 when the thresholds are exceeded. Background disturbance indicator 124 senses slow variations in radiation and lights LED 134 if it exceeds a threshold level. Variations of sensitivity due to ambient temperature changes are compensated by the circuit of Fig. 4.

The mirror complex produces a sensitivity field pattern in azimuth shown in Fig. 5. Long central pattern 100 is created by large mirror 12 and has a range of 150ft. and beam width of 2.5°. Intermediate pattern 102 is provided by medium-sized mirror 14 and has a range of 80ft. and beam width of 5°.

The two short patterns 104 are provided by small mirrors 16 and have a range of 20ft. and 9° beam width.

The inventors claim that this arrangement provides the same sensitivity to an intruder at 100ft. range as to an intruder at 25ft. range, with the shorter, more divergent beams insensitive to small movements, for instance by animals.
WHY AN ILP MOSFET POWER AMP?

Because ILP MOSFET power amps give you ultra-hi performance without costing big money. Performance you thought you couldn't afford at a price you know you can.

All ILP modules are compatible with each other — you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the fastest possible slew rate, low distortion at high frequencies, better thermal stability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple — via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

ILP MOSFET power amps are now available with integral heatsink (an extra heatsink required) or ready for mounting on to your own heatsink or chassis. Full disclosure detail on data sheet available on request. Each carries a 5 year no quibble guarantee and comes with full correction data.

Send your order FREEPOST today on the coupon at the foot of this ad.

MOSFET Ultra-Fi with heatsinks

<table>
<thead>
<tr>
<th>Model</th>
<th>Output power</th>
<th>W & Hz</th>
<th>Load impedance</th>
<th>all models 4 ohm — infinity</th>
<th>Input impedance</th>
<th>all models 100K ohms</th>
<th>Input sensitivity</th>
<th>all models 500 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS-120</td>
<td>60W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>20%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-200</td>
<td>120W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-300</td>
<td>240W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>50%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-400P</td>
<td>MOS-170P</td>
<td>60W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-100P</td>
<td>MOS-000P</td>
<td>18W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-400P</td>
<td>MOS-100P</td>
<td>18W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
</tbody>
</table>

Protection: Adequate scope with complex loads without the need for any special precautions (no fuses unless required).

Ultra-fi specifications:

Slew rate: 20V/μs
Rise time: 2μs
Input voltage: 500mVrms
Input impedance: 100K ohms
Input sensitivity: 500mVrms
Damping factor: 400

How to order FreePost:

Use this coupon on separate sheet of paper to order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address to FreePost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd. Cash must be registered. COD orders are: 10% deposit at time of order. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.

ILP Electronics Ltd., FreePost 2, Graham Bell House, Piner Close, Canterbury CT2 7EP, Kent.

Please send me the following ILP modules:

<table>
<thead>
<tr>
<th>Total purchase price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclose Cheque</td>
</tr>
</tbody>
</table>

Please debit my Access/Barclaycard No:

Name

Address

Signature

Telephone: 0227 54778, Technical: 0227 64723, Telex: 965780

ILP ELECTRONICS LTD

STAY AHEAD. STAY WITH US

From HAMEG...

HM307

The first portable scope with a component tester.

Oscilloscope Specifications:

Y Deflection

Bandwidth: DC - 10 MHz (-3dB)
Overshoot: Less than 1%
Sensitivity: 5 mV - 20 V/cm
Auto + level control
Bandwidth: 2Hz - 1 MHz

X Deflection

Timebase: 0.2s - 0.2μs/cm
Triggering: 2 Hz - 30 MHz (3mm)
Auto + level control
Bandwidth: DC - 10 MHz (-3dB)

General Information

Component Tester:
For single components and in circuit
Calibrator: 0.2% ± 1% for probe alignment
Power Supplies: Regulated including high voltage
A.C. Input: 110, 127, 220, 237 V.A.C., 50 - 60 Hz
Weight: 8-1/2 lbs.
Size: 4½"H x 8-3/8"W x 10-7/16"D

For further information on HAMEG's full range of top performance oscilloscopes, contact:

HAMEG LTD.
74-78 Collingdon Street, Luton, Beds. LU1 1RX
Tel: (0582) 413174

UK LIST
EX VAT
£138

WHY AN ILP MOSFET POWER AMP?

Because ILP MOSFET power amps give you ultra hi performance without costing big money. Performance you thought you couldn't afford at a price you know you can.

All ILP modules are compatible with each other — you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the fastest possible slew rate, low distortion at high frequencies, better thermal stability. MOSFET power amps work with complex loads without difficulty and without crossover distortion. Connection is simple — via 5 pins. With other ILP modules you can create almost any audio system, whatever your age or experience.

ILP MOSFET power amps are now available with integral heatsink (an extra heatsink required) or ready for mounting on to your own heatsink or chassis. Full disclosure detail on data sheet available on request. Each carries a 5 year no quibble guarantee and comes with full correction data.

Send your order FREEPOST today on the coupon at the foot of this ad.

MOSFET Ultra-Fi with heatsinks

<table>
<thead>
<tr>
<th>Model</th>
<th>Output power</th>
<th>W & Hz</th>
<th>Load impedance</th>
<th>all models 4 ohm — infinity</th>
<th>Input impedance</th>
<th>all models 100K ohms</th>
<th>Input sensitivity</th>
<th>all models 500 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS-120</td>
<td>60W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>20%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-200</td>
<td>120W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-300</td>
<td>240W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>120 x 78 x 40</td>
<td>50%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-400P</td>
<td>MOS-170P</td>
<td>60W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-100P</td>
<td>MOS-000P</td>
<td>18W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
<tr>
<td>MOS-400P</td>
<td>MOS-100P</td>
<td>18W 4.8k</td>
<td>0.005% — 0.008%</td>
<td>120 x 78 x 40</td>
<td>40%</td>
<td>143-48</td>
<td>123-46</td>
<td></td>
</tr>
</tbody>
</table>

Protection: Adequate scope with complex loads without the need for any special precautions (no fuses unless required).

Ultra-fi specifications:

Slew rate: 20V/μs
Rise time: 2μs
Input voltage: 500mVrms
Input impedance: 100K ohms
Input sensitivity: 500mVrms
Damping factor: 400

How to order FreePost:

Use this coupon on separate sheet of paper to order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address to FreePost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd. Cash must be registered. COD orders are: 10% deposit at time of order. Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order.

ILP Electronics Ltd., FreePost 2, Graham Bell House, Piner Close, Canterbury CT2 7EP, Kent.

Please send me the following ILP modules:

<table>
<thead>
<tr>
<th>Total purchase price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclose Cheque</td>
</tr>
</tbody>
</table>

Please debit my Access/Barclaycard No:

Name

Address

Signature

Telephone: 0227 54778, Technical: 0227 64723, Telex: 965780

ILP ELECTRONICS LTD

STAY AHEAD. STAY WITH US

From HAMEG...
CELEBRATE 35 YEARS OF CITIZENS’ BAND RADIO AT CB RADIO MAGAZINE’S NATIONAL 10-4 DAY

THE 1982 CB SHOW

See & Buy the very latest in

- RIGS
- ANTENNAS
- SWR METERS
- MICROPHONES

and a whole lot more

Plus

Amateur Radio Equipment
In-Car Entertainment
& Communications

ENJOY COMPETITIONS, FOOD, BARS, ELECTRONIC GAMES & MORE

“A DAY OUT FOR ALL THE FAMILY” AT WEMBLEY CONFERENCE CENTRE APRIL 9th, 10th, 11th, 12th
Open from 10.00am every day

SEE CB RADIO MAGAZINE FOR FURTHER DETAILS
Practical Electronics

10 MHZ Bandwidth

P4 Standard. Also available with P31

PRICE ON APPLICATION

NEW PRICE MONITOR

High resolution

24 MHZ Bandwidth

P31 (green) Standard and P4 high resolution Standard.

PRICE ON APPLICATION

DEALER AND O.E.M. ENQUIRIES WELCOME

CROFTON ELECTRONICS LTD

35 Grosvenor Road, Twickenham, Middx TW1 4AD

01-891 1923/1513

Telex: 295093

BUY BRITISH—BUY DOUGLAS TRANSFORMERS

Mail Order from TITAN Transformers & Components

Central Hall Chambers, Duncombe Street, Grimsby, South Humberside DN32 7EG

Prices include 15% V.A.T. Send for our Catalogue.

ALL ILP MODULES

LOTS OF NEW ILP ENCAPSULATED PRE-AMPS—COMPATIBLE WITH

PRE-AMPS

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Module</th>
<th>What it does</th>
<th>Current required</th>
<th>Price incl. VAT</th>
<th>Price ex VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY 6</td>
<td>Mono pre amp</td>
<td>Provides four channels for mic/cassette/het/mono with volume/fader controls</td>
<td>10 mA</td>
<td>£7.41</td>
<td>£6.44</td>
</tr>
<tr>
<td>HY 9</td>
<td>Stereo pre amp</td>
<td>Two channels for mic/cassette/mic with volume/fader controls</td>
<td>10 mA</td>
<td>£7.71</td>
<td>£6.70</td>
</tr>
<tr>
<td>HY 12</td>
<td>Mono pre amp</td>
<td>Two channels for mic/mic with volume/fader controls</td>
<td>10 mA</td>
<td>£7.71</td>
<td>£6.70</td>
</tr>
<tr>
<td>HY 66</td>
<td>Stereo pre amp</td>
<td>Two channels for mic/mic with volume/fader controls</td>
<td>20 mA</td>
<td>£10.02</td>
<td>£8.19</td>
</tr>
<tr>
<td>HY 65</td>
<td>Mono pre amp</td>
<td>Two channels for mic/mic with volume/fader controls</td>
<td>20 mA</td>
<td>£10.07</td>
<td>£8.19</td>
</tr>
<tr>
<td>HY 71</td>
<td>Dual stereo pre amp</td>
<td>Provides four channels for mic/cassette with volume/fader controls</td>
<td>20 mA</td>
<td>£12.36</td>
<td>£10.75</td>
</tr>
<tr>
<td>HY 73</td>
<td>Guitar pre amp</td>
<td>Provides two channels for mic/lead amp with volume/fader controls</td>
<td>20 mA</td>
<td>£14.09</td>
<td>£12.5</td>
</tr>
<tr>
<td>HY 75</td>
<td>Stereo pre amp</td>
<td>Provides two channels for mic/ lead amp with volume/fader controls</td>
<td>20 mA</td>
<td>£12.36</td>
<td>£10.75</td>
</tr>
</tbody>
</table>

SEND TODAY 50p (Refundable with First Order) for Catalogue

DEPT. PE TITAN TRANSFORMERS & COMPONENTS

GRIMSBY DN32 7EG

MAIL ORDER ONLY—PRICES INCLUDE 15% VAT
ELECTROVALUE

CATALOGUE '82

A MUST FOR ANYONE USING A SCREWDRIVER OR SOLDERING IRON!

PACKED WITH INFORMATION ON MORE THAN 8000 ITEMS INCLUDING SIEMENS CAPACITORS, FERRITES AND SEMI-CONDUCTORS. ALSO SOLDER TOOLS, METERS ETC.

FOR YOUR COPY OF CATALOGUE 82 please send 70p (includes 70p voucher retrievable against orders valued £10.00 or over).

DISCOUNTS

5% on orders over £23.00 inc. VAT. 10% on orders over £51.50 inc. VAT. Most catalogue items but not for payments by credit cards.

NEW PRICE LIST

Send S.A.E. for latest issue valid 4 months. Many reduced prices.

YOU PUT MORE POWER IN YOUR V. WHEN YOU BUY FROM US!

NICADS AND CHARGERS

by Sanyo Cadnica

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M550C (8 cell)</td>
<td>£11.95</td>
</tr>
<tr>
<td>M550C (10 cell)</td>
<td>£13.95</td>
</tr>
<tr>
<td>M550C (12 cell)</td>
<td>£15.95</td>
</tr>
</tbody>
</table>

CAPACITOR PACK

170p ceramic capacitors from 1p to 1pF

RESISTORS IN HANDY PACKS

5% tolerance, each pack 100 items from one decade. Selection determined by popular demand.

ALUMINUM BOXES WITH LIDS

For sale are various metal boxes of differing sizes and prices.

COMPUTERS

Our computer business is now transferred to:

EV COMPUTING LTD.

700 BURNAGE LANE, BURNAGE, MANCHESTER M18A 1MA.

Phone 061-432 4945.

- A MICROVALUE FOUNDER MEMBER & DISTRIBUTOR.
- Enquiries and orders may be sent to ELECTROVALUE for passing on to EV COMPUTING who will deal with you promptly and efficiently.

PANEL METERS

£2.76 each instead of £2.69

SABTRONICS

FREQUENCY METER

Model SAB608: 6-digit 600MHz Frequency Meter.

OTHER SABTRONICS EQUIPMENT

1010A Bench DMM (LC0) £45.00

2015A Bench DMM (LC2) £50.00

OTHER SABTRONICS

THREE MICROVALUE FOUNDERS

COMPUTERS

ELECTROVALUE LTD

Dept. PE. 4-28 St Judds Rd., Enfield Green, Egham, Surrey.

TW25 5HP, Phone 01-898 5957.

- PHONE OR WRITE TODAY. THE SABTRONICS HARDWARE \& SOFTWARE FOR SALE.

FINANCIAL INDUSTRY

Join up with Litesold with our new "L" Series soldering iron — now at a bargain price.

Outstanding performance. Lightweight. Easy to maintain.

Elements are enclosed in Stainless Steel shafts, insulated with mica and ceramic. Non-seize interchangeable bits. Choose from "copper" or "long life". A very special tool at a very special "direct" price. Just £8.00 for iron fitted with 3.2mm copper bit. Just £2.40 for 3 spare copper bits (1.6, 2.4, 4.7).

A mere £5.00 for professional spring stand! Or buy the lot for £11.15 and save 10%.

LITE SOLDERING DEVELOPMENTS LTD

The ONE catalogue you MUST have!

- About 2,000 items clearly listed.
- Profusely illustrated throughout.
- Large A4 size.
- Bargain list, order form and 2 coupons each worth 25p if used as directed, all supplied free.

Price £1, plus 50p for post, packing and insurance.

Send cheque or P.O. for £1.50.

HOME RADIO Components Ltd

Dept. PE, P.O. Box 92, 219 London Road, Mitcham, Surrey.

0-1-543 5059

Silicon Speech Systems

(A Powertran Subsidiary)

PORTWAY INDUSTRIAL ESTATE, ANDOVER, HANTS. SP10 WN

EASY ORDERING BY TELEPHONE

- RING ANDOVER (0264) 644555
- AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBER

Goods normally despatched 7 days.
Get a great deal from Marshall's...

"PRACTICAL ELECTRONICS"

TV CAMERA PROJECT

We shall be pleased to receive enquiries for this fantastic Camera Kit, including Metal case, P.C. Board, Vidicon Tube Mounting and Screens, but excluding Lens and Power Supply, at £166.50 inc. Postage and Packing, plus VAT.

SPECIAL OFFERS THIS MONTH:

Integrated Circuits:--

Numbers: 7404, 7410, 7412, 7420, 7440, 7446, 7447, 7453, 7454 and 7472

at £1.50 for 10 of any number, plus 60 pence Postage and Packing, and VAT.

Transistors:--

Numbers: BC347, BC350 and BC171

at £1 for 10 of any one number, plus 60 pence Postage and Packing, and VAT.

SEND FOR OUR PRICE LIST, 50p Post Free.

A. MARSHALL (LONDON) LTD.,
Tel: 01-624 8582 and 01-624 0805.
CLEF ELECTRONIC MUSIC

ELECTRONIC PIANOS
SPECIALISTS SINCE 1972
Clef Pianos adopt the most advanced forms of Touch Sensitivity and key action, which simulates piano key inertia using a patented electronic technique.

7¼ OCTAVE DOMESTIC MODEL
COMPLETE KIT £97.20
COMPLETE KIT £339.90 MANUFACTURED (CE)

Two Domestic Models are available, including the 88 full-size version. Four interchangeable Valve Controls may be used, with the American Bongos and Claves. All with the same range of Voices and Effects as in the Professional Model. A power amplifier integrates into the Piano so that it may be removed from the Base for easy transportation.

SIX OCTAVE DOMESTIC MODEL
COMPLETE KIT £287.60
COMPLETE KIT £1111.10 MANUFACTURED (CE)

A professional version of the Core Piano, with Voicings for American Rhythm, and in the case of the American Bongos and Claves, with the same range of Voices and Effects as in the Professional. Six Octave Piano has same range of Voices and Effects as in the Professional and Amplifier and Speaker.

SIX OCTAVE STAGE MODEL
COMPLETE KIT £217.84
COMPLETE KIT £871.44 MANUFACTURED (CE)

Eight Octave Stage Piano has the same range of Voices and Effects as in the Professional, with an Externally Amplifier and Speaker.

Since 1972 Clef Products have consistently produced leading designs in the field of Electronic Musical Instruments, many of which have been published in technical magazines. With musical quality and reliability important, these new models have been successfully completed by constructors over a wide range of countries, including Japan, Brazil and India, who continue to order from Clef's large range of Kits available from the Dealer of all Kits advertised.

STRING ENSEMBLE
(Available in conjunction with "Piano Band-Box")
"COMPLETE KIT £119.97"

COMPLETE KIT £289

£399

£399 MANFD.

A Diecast in the field of Computer Music Generation!

A MUSICIANS INSTRUMENT FOR
SERIOUS HOMESTUDY AND PRACTICE
LIVE PERFORMANCE COMPOSITION

This BAND 100 provides an Electronic Backing Track consisting of Drums, Bass, and a Chord Instrument. A large variety of rhythms in over 300 different Rhythm patterns can be selected, all in a button press. An element for sounds and effects can be controlled by the Operator on to the back-sequencer, and entered by the Operator on to the back-sequencer, and entered by the Operator on to the back-sequencer. The Synthesizer Kit is for Group or Duo use.

THE Programmable DRUM MACHINE

A Diecast in the field of Computer Music Generation!

A MUSICIANS INSTRUMENT FOR
SERIOUS HOMESTudy AND PRACTICE
LIVE PERFORMANCE COMPOSITION

This BAND 100 provides an Electronic Backing Track consisting of Drums, Bass, and a Chord Instrument. A large variety of rhythms in over 300 different Rhythm patterns can be selected, all in a button press. An element for sounds and effects can be controlled by the Operator on to the back-sequencer, and entered by the Operator on to the back-sequencer. The Synthesizer Kit is for Group or Duo use.
FINAL RADIO AND ELECTRONICS EXHIBITION AT BELLE VUE
by the NORTHERN AMATEUR RADIO SOCIETIES ASSOCIATION
in the
LANCASTER HALL
BELLE VUE MANCHESTER
on Sunday 4th April 1982
doors open at 11 a.m.

The North's Premier Amateur Radio and Electronics Event.

The following traders have booked space:

- A.M. Ltd
- J. Biskett
- Radiocrafts
- Low Electronics
- P.M. Electronic Services
- D.S. Electronics
- Thurer Electronics
- Electrovit Ltd
- Elpham Electronics
- Sutton Electronics
- S. M. C. Jack Tweedy Ltd
- Wilson Valves
- Amateur Radio Exchange
- The Amateur Radio Shop
- Microwave Modules
- John's Radios
- New Cross Radio
- W.H. Westlake
- Telecom
- Leeds Amateur Radio
- Newton Engineering
- Parker Communications
- Micro Print Ltd
- Chris Moulding
- Gemini Communications
- S.M.C. (Jack Tweedy) Ltd
- R.S.G.B. Books
- Stepness-James Ltd
- Ishkwood Electronics
- Brophy Electronics
- Display Electronics
- SGS Electronics
- The Computer Junk Shop
- Arrow Electronics Ltd
- Royal Electronics
- Ace Mailtronix Ltd
- Gemini Electronic Components
- Tony's Radios
- J.M.C. Electronics
- Sota Comm. Syst Ltd
- M.K Electronics

Believe has ample car parks.
F.M.Talk in on GB3NRS & G8NRS/A on 145MHz Chs22 R2 R6
Free phone 0733 253447 (4 lines)

Circuit testing/alignment service available.
Various kits and projects always on hand

ADMISSION 60p BY RAFFLE TICKET AND EXHIBITION PLAN
ENTER AT REAR OF BELLE VUE OPPOSITE MAIN CAR PARK

The designers and manufacturers of the PE Camera Project offer technical club membership/certification to project enthusiasts.

Camera technical support and circuit testing/alignment service available.
Various kits and projects always on hand

Write for full parts list/club application forms (camera/electronics/security products) or ring:

Project “C” Engineer
on 0733 253447 (4 lines)

Access/Barclaycard accepted.
SMALL ADS

The prepaid rate for classified advertisements is 32 pence per word (minimum 12 words), box number 60p extra. Semi-display size is £1.00 per single column centimetre (minimum 2.5 cm²). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post.

NOTICE TO READERS

When Whilsts of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser to check both prices and availability of goods before ordering from non-current issues of the magazine.

TE £4 ELECTRIC

As featured in PE March & April 82
Self Assembly Kit £47.50 + VAT
Built and Tested £64.00 + VAT
Components available separately. SAE for details.
P&PC, CWO
Response Company,
Foxfield, Petersfield, Hants. GU32 1DX.

WHEN REPLYING TO ADVERTISEMENTS PLEASE MENTION PRACTICAL ELECTRONICS

THE OUTSTANDING PRACTICAL ELECTRONICS MINIATURE SCORPIO CAR IGNITION

NEAT & COMPACT
EASY TO INSTALL
AMAZING LOW PRICE
COMPLETELY WEATHERPROOF

All parts as specified in PE for only £14.85 inc. VAT, p&p.

T & J ELECTRONIC COMPONENTS quality components, competitive prices, illustrated catalogue 45p. 98 Burrow Road, Chigwell, Essex.

1000 ASSORTED CAPACITORS pre-formed for PCB mounting £2.50. 50 assorted full-spec LED'S. 3 & 5mm, all colours £1.20. 50 assorted full-spec transistors. BC182/212/237/308 etc. £3.00. 100 assorted PC mntg electronics £3.00. One of each pack 81. All post free. SAE Wholesale Ltd, PC Electronics, 2 Thorhill, Romsey Road, Whiteparish, Salisbury, Wilts.

SOFTWARE

Z 81 [16K] SOFTWARE. Champions Quiz – it’s fun for all ages. Four quiz programs on one cassette. All questions use RND functions £4.50. ROSE CASSETTES. 148 Welby Lane, Solihull, West Midlands.

FREE CATALOGUE. Everything for microcomputer users. Phone Croydon Computer Centre, 29A Briggstock Road, Thornton Heath, Surrey. 01 689 1280.

BUYERS AND SELLERS

A classified advertisement could solve your problem at very little cost.
RING LINDA
01-261 5846

SOLD OR BUYING

RECEIVERS AND COMPONENTS

300 SMALL COMPONENTS. Transistors, diodes £1.70. This assorted components £2.25, £5.75. 20 assorted neon £1.70. Forty 74 series ICs on panel £1.70. 500 capacitors £2.20. List 20p refundable. Post 60p, optional insurance 20p.

BOURNEMOUTH/ROCHESTER. Electronic components specialists for 33 years. Foresters (National Radio Supplies), 1st Floor Holdenhurst Road, Now at 16, Ashley Road, Boscombe. Tel. 502204. Closed Weds.

50 COMPONENTS, assorted. transistors, resisters etc £0.60 post paid. J & G Repairs. 100 Norman Rise, Livingstone, Boscombe. Tel. 302204. Closed Weds.

BOOKS AND PUBLICATIONS

NEW BACK ISSUES OF 'PRACTICAL ELECTRONICS'

Send £5.90 to Dept N46, Edenthorpe, Doncaster.

PERSONAL

SERVICE SHEETS

SERVICE SHEETS £1 each plus SAE. Individual T.V. repair data £6.50 (with circuits £8.50). Free electronics newsletter, priceless unique publications. Auspe, 76 Churches, Larkhall, Lanarkshire ML9 1HE.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, T.V., etc £125 plus S.A.E. Colour TV Service manuals on request. S.A.E. with enquiries to B.T.S. 190 Kings Road, Harrogate, etc £1.25 plus S.A.E.

EDUCATIONAL

CARERS IN MARINE ELECTRONICS. Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JZ. Tel. 03917 79123.

MISCELLANEOUS

SECURITY ALARMS KITS FROM £7. Full range of accessories. M.F.P. Ltd., Harrison Road, Erdington, Birmingham B24 9AB. 021 373 0450.

CLEARING LABORATORY: scopes, generators, P.S.U.'s, bridges, analysers, meters, recorders, etc. 0403-76236.

ULTRASONIC TRANSDUCERS, miniatures, 40KHz. £2.85/pair + 25p p&p. Dataplates Developments, 81, Cholmeley Road, Reading, Berks.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (6 sheets, lines, pads, 1/c. pack) £2.00. Large range of single sheets in stock at £3.35/pair. Master Positive Transparencies from P.C. layouts in magazines by simple photographic process. 2 sheets negative paper, 2 sheets positive film (A4) £2.10. Photo-resist spray (200 ml) £3.25 (g) £5.65. Drafting Film (A4) 25p. Precision Grids (A4) 65p. 25a p&p for free samples and information. P&P 50p per order except where indicated.

P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE.

CREDIT CARDS accepted: Visa, Mastercard, American Express.

Send to: Classified Advertisement Manager

PRACTICAL ELECTRONICS

G.M.G. Classified Advertising Dept., Room 2812, King's Reach Tower, Stamford Street, London SE1 9LS. Telephone 01-261 5846

Rate: 32p per word, minimum 12 words. Box No. 60p extra.

4/82
MICRO TRANSFORMER
VHF/FM, matchbox size, variable 70-150 MHz, complete kit. £4.50. Microtronics, 9, Ten-

PRACTICAL ELECTRONICS P.C.B.'s
D.C. 15V Glass filled Fibre Fry's Plastic Timed MCB.
NOV 81 UK (10) Minos charge 13p/400
DEC 81 Space Invaders E.A.03 £6.91 a pair
MAR 82 Emergency Light EP606. £1.56
APR 82 MCB for full load and current pub's. £1.55. Pots also produced in customers own ranges. Note: only one packet of 25. Pots were made. Write for prices. ON Price Perbag
and 350 package and packing in complete order. (Order 10).

PRICES
14 Downham Road, Ramsden Heath,
Essex CM7 1PS. Telephone 0274-780244

TRANSFORMERS
VAT 15%
30 VOLT RANGE (Split Sec)
<table>
<thead>
<tr>
<th>Amps</th>
<th>Ref</th>
<th>30V 50V Price</th>
<th>P&P</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>1</td>
<td>3.92</td>
<td>1.00</td>
</tr>
<tr>
<td>7.5</td>
<td>2</td>
<td>4.32</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4.92</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>5.52</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>6.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>7.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>8.92</td>
<td>1.20</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>31</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>32</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>34</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>37</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>39</td>
<td>8.92</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>8.92</td>
<td>1</td>
</tr>
</tbody>
</table>

UK Postages Overseas extra.
Voltages stand on full load Continuous Ratings

60 VOLT RANGE (Split Sec)

12 OR 24 OR 12 OR 12-12V

15V CT Range (7 5V-5 7V)

69-36V RANGE

250 VA

1000 VA

1 IC “supering” types for low voltage fluctuation hierarchies.

30 VOLT RANGE

1000VA

500 VA

2000W

250W x 25 £4.74 + 62 P&P . VAT.

TIME WRONG?
MST CLOCK is ALWAYS CORRECT—never gains or loses. **SELF SETTING** at switch-on. 8 digns show Date, Hours, Minutes and Seconds. auto GST/FIST and leap year, also parallel BCD output for computer etc. receives 100KHz atomic time signals, built-in antenna, 1000km range, GET THE TIME RIGHT, £62.80.
SIG. GEN. 10Hz-30kHz input and 0-1V sine and square wave outputs £25.00.
Each fan-to-fan kit includes all parts, printed circuit, easy instructions, postage etc. money back assurance if GET YOURS NOW!

CAMBRIDGE KITS
45/FE 105/Scot Lane,
Milton, Cambridge

When replying to Classified Advertisements please your requirements:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.
<table>
<thead>
<tr>
<th>COMPUTER COMPONENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>MEMORIES</td>
</tr>
<tr>
<td>INTERFACE ICS</td>
</tr>
<tr>
<td>CRSTIALS</td>
</tr>
</tbody>
</table>

| **VOLTAGE REGULATORS** | 7805 | 7814 | 7815 | 7816 | 7817 | 7818 |

| **TRANSISTORS** | BY56 | BY57 | BY58 | BY59 | BY60 | BY61 |

| **ZENERS** | 2.7V 3.3V | 5V | 15V |

| **DIL SWITCHES** | 5 Way | 10 Way | 15 Way |

| **ZIF SOCKETS** | 28 Pin | £10 |

| **TELETEXT** | SAA2030 | SAA2026 | SAA2025 |

| **LOW PROFILE DIL SOCKETS BY TEXAS** | 16 pin | 20 pin | 24 pin | 30 pin |

| **CONNECTORS** | 0.1" Pitch | 0.05" Pitch |

| **INDUCTORS** | 1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100μH |

| **SOP (Shrink-Owner Packages)** | 6 sop | 8 sop | 10 sop |

| **LAMPS** | 25A 400V | 6A 400V | 6A 100V |

| **THYRISTORS** | A 50V 70μH | 3A 400V 70μH | 6A 400V 100μH |

<table>
<thead>
<tr>
<th>TECHNOMATIC LTD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIL ORDERS TO: 17 BURNLEY ROAD, LONDON NW10 1ED</td>
</tr>
<tr>
<td>SHOPS AT: 17 BURNEY ROAD, LONDON NW10</td>
</tr>
<tr>
<td>TEL: 01-722 0233</td>
</tr>
<tr>
<td>305, EDGWARE ROAD, LONDON W2</td>
</tr>
</tbody>
</table>

STOCK ITEMS ARE NORMALLY AVAILABLE.
EXPRESSION from MAPLIN

COMBO-AMPLIFIER
Easy to build portable 120W MOSFET amp for all stage musicians. Built-in flanger, five step equaliser, two inputs for guitars, keyboards or microphones, low noise pre-amp.
Order As XAO1B.

STOP-WATCH
Multi mode 8 digit stopwatch accurate to hundredths of a second. Easy to build - complete kits available.
Order As XAO1C.

MILES PER GALLON METER
Digital display shows you how economical your driving is as you go along.
Complete kits available.
Order As XAO1C.

DIGITAL MULTI-TRAIN CONTROLLER
Control up to 14 trains individually on the same track with any four simultaneously! Low cost kits available.
Order As XA02C.

HOME SECURITY SYSTEM
Six independent channels - 2 or 4 wire operation. External horn. High degree of protection and long term reliability.
Order As XA02C.

MATINEE ORGAN
Easy-to-build, superb specification. Comparable with organs selling for up to £1,000. Full construction details in our book. Price £2.50.
Order As XX43W.
Complete kits available:
Electronics - £29.95.
Cabinet - £99.50 (carriage extra)
Demo cassette price £1.99. Order As XX43W.

NAME__________________________
ADDRESS__________________________

Don't miss out - get a copy of our catalogue now!
Over 140,000 copies sold already!
* On sale now in all branches of WHSmith. Price £1
* 320 big pages packed with data and pictures of over 5,500 items

Post this coupon now!
Please send me a copy of your 320 page catalogue. I enclose £1.25 inc. 25p p&p. If I am not completely satisfied I may return the catalogue to you and have my money refunded.
If you live outside the U.K. send £1.68 or 12 International Reply Coupons.

Note: Shops closed Mondays

MAPLIN ELECTRONIC SUPPLIES LTD.

All mail to:
P.O. Box 3, Rayleigh, Essex SS6 8LR
Tel/ Sales (0702) 552911 General (0702) 554155

Shops at:
159 King St., Hammersmith, London W6. Tel: 01-748 0926
284 London Rd., Westcliff-on-Sea, Essex. Tel: (0702) 954000

Note: Shops closed Mondays

PE482