PRACTICAL

Teleplay

 now presen TS: . COLOURCARTEFEAS WITH FREE STAR OFFERS

Electrical knowledge is not a necessity to assemble this project - just simple soldering.
Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number Queries and Technical Advice offered either by phone or by calling at our shop.
 All parts fully guaranteed.

CONSTRUCTIONAL PROJECTS

P.E. V.D.U. SYSTEM-1 by A. A. Berk, B.Sc., Ph.D.
Up to date "one chip" memory mapped system 1054
FUEL CONSUMPTION METER By J. McCarthy
An aid to economy, suitable for most cars 1060
HIGH PERFORMANCE POWER SUPPLY UNIT by R. Lawrence, B.Sc. Voltage control down to zero, plus current limiting 1070
ANALOGUE COMPUTER-2 by P.J. Kronis, B.Sc.
Construction details 1074
TWO RANGE TIMER byJ.D.Jardine
A portable, inexpensive general purpose unit 1088
GENERAL FEATURES
IMPEDANCE by Toby Bailey and Bob Whitaker
Do you understand it? 1066
MICROBUS by D.J.D.A bi-monthly focus on micro's for the home constructor1098
INGENUITY UNLIMITED
Capacitor Continuity Tester-Synthesiser Repetitive Waveform Generator Simple Fuzz-Accenting Metronome-Stereo Indicator External Input Unit for Synthesisers 1080
NEWS AND COMMENT
EDITORIAL 1049
MARKET PLACE
New products 1050
SPACEWATCH by Frank W. Hyde
Pluto, More from the USSR, Copernicus discovers Black Hole 1053
POINTS ARISING
Linear Capacitance Meter, Dimwit, Kiln Controller 1058
BOOK REVIEWS 1084
NEWS BRIEFS
Strain Gauge-Big Brother Check-Micro Power Pack-Computers Galore Club 1087
Underground Cameras-Steam Advice-Here's To Progress 1090
Teletext Course 1094
Disc Full of Holes 1102
HOW TO USE YOUR FREE STICKIES 1093
INDUSTRY NOTEBOOK by Nexus
What's happening inside industry 1097
PATENTS REVIEW
Thought provoking ideas on file at the British Patents Office 1100
READOUT
A selection of readers' letters 1102

Our November issue will be on sale Friday, 13 October 1978, price 50p

(for details of contents see page 1059)

[^0]| MINI CONSOLES
 Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. Incorporates slots for holding
 1.5 mm thick pcb 's
 Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes.
 MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 2.12(1.9)$ (includes VAT) MC $215 \times 130 \times 75 \mathrm{~mm} \quad £ 2.94$ (1.9) (Includes VAT) (Prices include VAT \&P.P.) | Stop wasting time soldering
 The NEW MW BREADBOARD accepts
 Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins | SC BOXES
 Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick peb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes.
 SC $85 \times 56 \times 35 \mathrm{~mm} \quad 97 \mathrm{\rho}(1.9)$ (Includes VATI SC $111 \times 71 \times 48 \mathrm{~mm} \quad £ 1.29$ (1-9) (Includes VAT) SC $161 \times 96 \times 59 \mathrm{~mm} \quad £ 1.81$ (1-9) (Includes VAT) Add $25 p$ per $£ 1$ order value for Post \& Packing |
| :---: | :---: | :---: |
| ECONOMY QUALITY LED's
 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours
 Full specification LED's also available
 Red (specify size) 75 p per pack
 Green, Yellow, Orange (specify size) $£ 1.20$ per pack Packs contain 5 LED's, mounting clips and data | Includes slot-in Component Support Bracket and has 470 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.)
 TYPE MP NEON INDICATOR
 Supplied with resistor for 240 Volts operation 150 mm leads, held in 6.4 mm hole by nut
 Red, Amber, Clear, Opal
 20 peach | 240 VOLTS MINI HAND DRILLS
 Ideal for drilling peb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks.
 £9.72 (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8$ th Drills, $3 / 32^{\prime \prime}$ Collet Price £1.75 (Includes VAT \& P.P.) |
| TYPE A NEON INDICATORS
 Supplied with resistor for 240 Volts operation Held in 8 mm hole by plastic bezel 150 mm wire leads | SEVEN SEGMENT DISPLAYS
 Economy quality Red, yellow and green Only 45p each Common Anode - 0.3"-Left Decimal Full specification displays also available as above Red @ 98p each Green and Yellow@ $£ 1.35$ each. Data supplied with full spec. displays only. | RC $100 \times 62 \times 25 \mathrm{~mm}$
 RC BOXES ABS and DIECAST
 1.5 mm pcb slots and close fitting flanged lids. ABS in orange, blue, black or grey colours. Diecast in natural or grey hammertone colour. Lid held by screws running into integral brass bushes.
 ABS
 Natural Hammertone
 Diecast 68p 70 p 93p |
| 12 VOLTS MINI HAND DRILL
 Ideal for drilling pcb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and $0.50^{\prime \prime}$ dia shanks. £7.56 (Includes VAT \& P.P.) | Quantity quotations on request
 P.P. Note Unless included in price add 25 p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date
 Mithael Williams Electronits
 47 Vicarage Av. Cheadle Hulme, Cheshire SK8 7JP | RC $112 \times 62 \times 31 \mathrm{~mm}$ 79 p 94 p 1.23
 RC $120 \times 65 \times 40 \mathrm{~mm}$ 88 p 1.22 1.59
 RC $150 \times 80 \times 50 \mathrm{~mm}$ 1.03 1.64 2.11
 RC $190 \times 110 \times 60 \mathrm{~mm}$ 1.77 2.53 3.08
 Polystyrene version
 in grey only, no slots, no integral brass bushes $R C(P) 112 \times 61 \times 31 \mathrm{~mm} 61 \mathrm{p}$
 All prices are 1.9 off , include VAT, but please add $25 p$ per $£ 1$ order value for Post \& Packing |

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
ASTRA-PAK \\
92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
All prices include V.A.T. Add 25 p \\
 E20 less 100 o over E 50 less \(15 \%\), Seral SAE for com \\
componemis. Complete list of components.
\end{tabular}} \\
\hline 7400 and 74LS Series TTL 74M 14t5N \& \& \& \\
\hline \(\begin{array}{lll}7400 \\ 7001 \& 0.12 \\ 0.12\end{array}\) \& (148888 \& \& \({ }_{\text {cosem }}^{\text {casaso }}\) \\
\hline \& \& \({ }^{37112}\) \& LM310N \\
\hline (lat \& \({ }^{\text {che }}\) \& (1ather \& Limplin \\
\hline \& \& \& \\
\hline \& \& (10, \& \\
\hline \({ }^{75098}\) \& 741008 \& \({ }^{74179}\) \& ¢ \\
\hline \({ }_{7411}\) \& \({ }_{7} 410505\) \& \({ }^{441181} 1\) \& \\
\hline \& \& \({ }^{24185882}\) \& \\
\hline \& \({ }_{1}^{1411010}\) \& \({ }_{\text {4,4i84 }}\) \& \\
\hline \& \& \& TAETIA \\
\hline 74220

1421 \& \& \& 析

\hline \& \& ${ }^{4} 419001085$ \&

\hline \&	741200
74.121	
0.25	
0.25	\& ${ }^{741929}$ \&

\hline \& | 74122 |
| :--- |
| 74.123 |
| 0.50 |
| 0.50 |
| 0.50 | \& ${ }_{7}^{741995}$ \&

\hline \& \& \&

\hline \& \& ${ }^{\text {che }}$ \& -

\hline \& \& \& (1m09

\hline \& ${ }_{7}^{174.35}$ \& 77424 \& ${ }^{14 \times 474}$

\hline ${ }^{7443}$ \& ${ }^{711336}$ 0.55 \& ${ }^{74251}$ \&

\hline ${ }^{1 / 445}$ \& \& ${ }^{74255}$ \&

\hline 7 \& ${ }_{74} 14.42$ \& ${ }^{14265}$ \&

\hline \& \& ${ }^{74265}$ \& เм300

\hline \& \& \&

\hline \& \& \& \%805

\hline | 77455 |
| :--- | :--- | :--- | :--- |
| 7060 |
| 0.13 | \& \& ${ }_{7}^{72289}$ \&

\hline (7400 \& \& \& ${ }_{\text {cose }}^{3095}$

\hline \& \& (14352 \& ${ }_{7915} 718$

\hline coll \& \& (17365 \& OHL soc

\hline \& \& 0,45 \& in 0.12

\hline \& coll \& \& 迷

\hline (17882 \& \& \& 27

\hline \& \& \& 30

\hline | 7885 | 0.78 |
| :--- | :--- | :--- | :--- |
| 0.07 | | \& 141878 \& \& ${ }_{10} 0^{\text {min }}$

\hline
\end{tabular}

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal.

Eagle Test Equipment gives the right answers

The range covers general multimeters, high voltage probes, clamp meters, insulation testers. Here are just four. Send the coupon for details of all the rest.

KEW 7 Multimeter 1000 OPV. DC volts up to 1000 , DC amps up to 100 mA . AC volts up to 1000 . Resistance up to 150 Kohms. Pocket size. "Off" damping. Complete with leads \& battery. R.R.P. £6.95 ex. VAT.

EM 1200 Multimeter 100,000 OPV. Taut band movement. Overload protection. Reversible DC polarity. AC amps: 15, AC volts to 1500 . DC amps up to 15, DC volts to 1500 . Resistance up to 200 megohms. R.R.P. £49.95 ex. VAT.

K 1400 Multimeter 20,000 OPV. DC and Aי: volts up to 5000. DC and AC amps up to 10. Resistance up to 20 megohms. "Off" damping. Overload protection. R.R.P f68.00 ex. VAT.

EM10, 20 \& 30 Multimeters
$10,20 \& 30,000$ OPV. All with antiparallax mirror scale. DC volts to 1000 (1200 for EM30). DC amps to 250 mA (600 for EM30). AC volts to 1000 (1200 for EM30) Resistance up to 6,5 and 60 megohms respectively. R.R.P.'s EM10 £12.40 EM20 £16.40 EM30 £ 18.95 ex. VAT.

TestEquipment: EAGLE $\times \overline{\text { P }}$

Please send me details of your complete range of Test Equipment.
Name \qquad Company

Address \qquad

EAGLE INTERNATIONAL
Precision Centre, Heather Park Drive,
Wembley, Middlesex HA0 1SU.

Havillearn aloft from Heath hit electronics causes.

Heathkit electronics courses are a most effective way to learn with fast, reassuring results.

Each course is a complete self-instructional package with clear, concise instructions in everyday language. You follow at your own pace using modern teaching aids and expert guidance.

Four basic courses to start with.

DC electronics, AC electronics, semi conductors and electronic circuits. These courses give you a thorough and practical understanding -the key to all knowledge in the field of electronics.

Microprocessors and digital techniques.

The advanced Heathkit courses take you on to higher levels of computer technology and advanced circuit design, using the same easy to -follow learning system.

Experimenter-Trainers.

With the benefit of increased practical guidance, these optional aids will help you through the courses with exceptional speed.

The finest way to learn.

Heathkit courses are used by home students, industrial concerns, technical colleges and schools. They're acknowledged as the finest way to learn. And the range of courses is complete from the earliest stages to the most advanced steps in specialist fields.

Send for the Heathkit Catalogue now.

As well as electronics courses, the Heathkit catalogue contains scores of electronics kits which you can build yourself. Burglar alarms, radios, digital clocks, car tune-up systems, test instruments, metal locators . and an exciting new range of personal computers!

Forty pages packed with exciting kits you'll be proud to make.

When yon receive your catalogue yon will get details of this free offer north approximately $£ 4.75$.

To Heath (Gloucester) Ltd., Dept:10/7\%, Bristol Road, Gloucester, GI. 2 bE, Please tick the literature you want and enclose the appropriate amount in postage stamps.
\square Heathkit Catalogue only (enclose 20p).
16 page Computer Brochure only (enclose 20p).
Name
Address

Registered in England. number 606177
There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

Our new 1978 catalogue lists a card frame system that's ideal for all your module projects - they used it in the ETI System 68 Computer. And we've got circuit boards, accessories, cases and boxes - everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERB ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

Put a Clamp on those small jobs with NODEX quick-grip vice

Dimensions

Overall length Overall width Overall height Jaw opening Jaw height Jaw width Weight

150 mm
130 mm
50 mm
70 mm
35 mm
70 mm

The patented locking system of the Nodex vice allows for instantaneous locking or loosening for use as a vice or as a press. Usable horizontally or vertically on the bench top or on the bench edge.

SPECIAL PRODUCTS DISTRIBUTORS LTD.
 81 PICCADILLY, LONDON W1V NHL

Tel: 01-6299556
Cables: Speciprod London W1

SAXON ENTERTAINMENTS THE PIONEERS OF MODULAR DISCO/P.A. EQUIPMENT NOW OFFER PACKAGE DEALS AT INCOMPARABLE PRICES

CENTAUR STEREO DISCOS C/W LIGHT SHOW \& DISPLAY, TWIN SPEAKERS \& LEADS

Standard 100W

$\mathfrak{Z} \mathbf{2 4 9}$ or Deposit $£ 57.12$ 12 Months e $£ 21.75$ or 24 Months @ $£ \mathbf{1} \mathbf{2} .26$

Super 200W £299 or Depasif 68.12
12 Months £ 25.86 or 24 Months © $£ 14.56$

GXL 200W ("misiom £389
12 Months e £33.31 or 24 Months @ £ 18.76 + carr. £15
BSR Decks - 17,000 Line Loudspeakers - Rugged Aluminium Trimmed Cabinets - Cue Light And Phones Output - Slave Output - Deck Lights/Motor Starts (GXL)

MINI DISCO 100 WATT MONO SYSTEM £179.50
 Deposit £41. 66
 12 Months $£ 15.56$ + carr. £15

Similar in appearance to the Centaur and complete with loudspeakers and leads.

Headphones to suit any system
EM507 Electret Mic ECM 8 ' Electret Mic Boom Stand
Carriage on all disco and PA systems (Included in H.P. Prices)

illustration shows GXL Centaur System

These systems feature full mixing for two decks tape \& mic with monitoring facilities - override and are supplied complete with sound to light sequencer, display, speaker leads etc.

JUST PLUG IN AND GO!

DISCO MIXERS - COMPLETE OR MODULAR

030000000000 $\Rightarrow \quad \mathrm{K}$	MONO OR STEREO WITH AUTOFADE	
	MODULES	
Available complete and ready to plug in or as on	Mono module	E22.50
eosy to connect module with oil controls except	Sterea module	E33.50
monitor switch alreody fitted - full instructions	Ponel	¢ 3.95
supplied.	Kit of knobs/sockets etc	f.5.50
	COMPLETE MIXERS (with case)	
FEATURES INCLUDE:	Mona 18V	£39.50
Twin Deck - Mic \& Tope Inputs - Wide ronge bass	Stereo 18V	E57.50
\& treble controls - Full heodphone monitoring -	Mono mains	£45.75
Crossfode - Professional standard performance.	Stereomains	¢63.75

D.I.Y. MODULES FOR ALL DISCO/P.A. AMPLIFIERS

SA308 30W 8 ohms 45V	£9.95*	ciner	£10.90*	
SA604 60W 4 ohms 50V	£13.25	sypry for		
SA60860W 8 olims 65 V	£14.25	suppr fors	£13.50	
SAl204 120W 4 ohms 75 V	£15.95	Sumy for		
SAl208 120W 8 ohms 95V	£21.00		£22.50	
SA2404 240 W 4 ohms 95V	£29.50	Suph toat		

COMPLETE LIGHTING CONTROL AT YOUR FINGERTIPS!

	Lighting Control Unit Mk II 4kW Sequencer - Sound Light + Dimmers		£44.50
	+ Ausomatic Level Integrated Logic Circuitry	Module Ponel	$\begin{array}{r} £ 32.50 \\ £ 2.95 \end{array}$
Smicherat	Three Channel Sound to Light		£26.75
3+1)	3kW 1-240W inpui - master	Module	£19.75
	Plus channel controls	Panel	$\underline{1} 2.95$

SPARES \& ACCESSORIES - LOUDSPEAKERS \& CABINETS Rope Lights - Red or Mulficolour £39.50 Melos Echo Chamber $£ 59.00$
per 30ft. Headphones £7.50*
Rope Light Controller for up to $120 \mathrm{f} £ 30.00$ Sirens: English Police, USA Police, Fuzz Lights-Red/Blue/Yeilow/Green £22.80 Destroyer, Alien Voice Simulator $£ 7.50$ Magnetic Cartridge Equalisers $£ 3.50^{*}$ Bulgin 8 way lighting plug/socker $£ 1.90$
100 Watt Chassis Loudspeakers $12^{\prime \prime} £ 23.50 \quad 18^{\prime \prime} £ 47.50 \quad$ (Addel. 50 corr.) Empty Loudspeaker Cabinets: Small $12^{\prime \prime}$ Large $12^{\prime \prime} £ 21.50$ Small $2 \times 12^{\prime \prime} £ 22.50$ $£ 15.50$, large $2 \times 12^{\prime \prime} £ 28 \quad 1 \times 18^{\prime \prime} £ 29.50$

Projector lamps: A1167 £2.90. M6 £5.65. 100W Spot lamps Red/Blue/Yellow/Green £ 1.50 ea $£ 13.50$ for 10
MD Spot Banks: 3-way 300W $£ 19.50$,
4-way $400 \mathrm{~W} £ 22.50$.
Bubble machines (optikinetics) £41.50

Strobe tubes 80W £8.50
ICI Vynide $50^{\prime \prime}$ wide $£ 3.50$ Metre Kickproof Grille $24^{\prime \prime}$ wide $£ 3.25$ Metre Kick Resistant Grill 50" wide E3.25 Metre FULL RANGE OF RE-AN PRODUCTS IN STOCK SEND FOR OUR BROCHURE NOW!!

STROBE UNITS

Pro-Strobe 4-6 Joules $£ 37.50$ Super Strobe 2-3 Joules $£ 22.50$ (Pro-Strobe has external trigger faciiity).

PROJECTORS - PLUTO - NEW LOW PRICES!!! CHOICE OF WHEEL/CASSETTE

P150 150 W Tungsten	$£ 37.50$	Liquid wheels	$£ 7.50$
P500 100 W Q.I.	$£ 74.95$	Cassettes	$£ 8.00$
P500 250W Q.I.	$£ 84.95$	Picture wheels from	
		(Wide choice available)	

PIEZO HORNS only $£ 7.50$ YES! - only $£ 7.50$
(As fitted to our package PA system) Direct from Motorola Inc., USA at an UNBEATABLE PRICE

AND PACKAGE P.A. SYSTEMS ($\left.{ }^{2 \text { Vuararree }}\right)$

Complete with PIEZO horn columns fitted with 100 watt units (100 watt system illustrated)

100 Watt £159.90 Deposit £38.46

12 Months © $£ 14.28$
Includes 4 Channel 100 Watt Amplifier with Treble, Bass and Master Controls plus Leads and Twin Piezo Horn Columns (shown on right).

200 Watt £249.00 Deposit £57.12

12 Months@ £19.11 or 24 Months@ £10.66 zsix Mixed Inputs plus Three Sets of Bass and Treble Controls plus Slave Output and Master Control.

ACCESSORIES

Melos Echo Unit $£ 59.00$
A high quality Cassette Tape Echo Unit giving long tape life, infinitely variable echo depth and speed control. Suitable for all mics. and instruments.
High quality Boom Stand $£ 15.50$. Floor Stand $£ 9.90$. ECM81 Condenser Mic. Removable Lead - Good Anti-Feedback £19.95.* EM507 Condenser Mic. - Good Value $£ 15.00$. Phasers $£ 19.80$
D.I.Y. MODULES FOR P.A. SYSTEMS Mono or Stereo Make your own mixer - Mono/Stereo - up to 20 channels with these, easy to wire modules - Available as PCB's or assembled on panels.

All prices subject to 8% VAT except where asterisked ($12 \frac{1}{2} \%$) Shop premises open Tues to Sat $9 \mathrm{am} \cdot 5 \mathrm{pm}$ Lunch $12.30,1.30 \mathrm{pm}$ Mail order dept open Mon to Fri $10 \mathrm{om}-4 \mathrm{pm}$ Ring. 01 -684 6385

TO ORDER

By Post Send your requirements with cheque crossed P.O. or 60 p COD charge to address below or just send your Access or Barclay Card Number NOT THE CARD
By Phone You may order COD, Access or Barclay Card
Post \& Packing 50p on all orders except where stated.
SAXON ENTERTAINMENTS 327 Whitehorse Road, Croydon, Surrey.
All Enquiries Large SAE Please Brochures on request
TRIAC BARGAINS
A 300W Lightdimmer with NO knob. Dimming and orvoff functions are controiled by touch. F

* No malns rewiring.
* Easy to build - uses one MOS 1C
* Switches on to preset brightness.
* Can be switched and dimmed
from many locations using TDE/K
C PAICE C9.67 TDEK C1.0B
LIGHTING CONTROL KITS (300W) TSD300K TOUCH SWITCH \& DIMMER combined. One touchplate for on/off. Small knob controls brightness. S300K TOUCHSWITCH Two touchplates, ON/OFF 54.32 SABDOK AUTOMATIC One tauchplate Preset time delay off.
DIGITAL VOLTMETER/THERMOMETER KIT

Based on the 7106 single IC $3 \frac{1}{2}$ digit D.V.M. the Kit contains a PCB. re sistors, capacitors, pre sers, I.C. and 0.5" liquid ponents are also included to enable the basic D.V.M kit to be modified to a Digital Thermomete using a single transisto the sensor. ONLY £23.75

MINI MANS
TRANSFORMERS
Standard 240V mains primary
100mA secondary
$6-0-6 \mathrm{~V}$
$9-0-9 \mathrm{~V}$
$12-0-12 \mathrm{~V}$

24HR CLOCK/APPLIANCE TIMER KIT

Switches any appliance of up to 1 KW on and off at preset tinees once a day. KIT contains: AY-5-1230 Clock/Appliance Timer IC, $0.5^{\prime \prime}$ LED display, mains supply, display drivers, switches, LEDs, triac complete with PCBs and full instructions. $£ 14.8$ undrilled $£ 2.38$

Quantity discounts on request. Add 25 p postage and packing. Mail order only to:
T.K. ELECTRONICS (PE) 106 Studley Grange Road, London, W7 2LX.

[^1]

STORAGE CABINETS

Metal cabinets with transparent plastic drawers. Ideal for components, smali parts, nuts, bolts etc. Many other uses in the home, workshop, laboratory etc.

Type 1118
Choose from the following range to suit your own needs:

| Type | Height
 (ins.) | No. of Drawers | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | Price All cabinets are finished Blue, $12^{\prime \prime}$ wide $\times 5 \frac{3^{\prime \prime}}{4}$ deep. Prices include VAT and Post. Satisfaction or money refunded. Cheque/P.O. to:

MILLHILL SUPPLIES (TOOLS)

35 PRESTON CROWMARSH, BENSON, OXON. OX9 6SL

electrovalue

If you have bought from Electrovalue, you will know fust how large and varied our stocks are. For those who have yar ro know, we are publishing a series of five ads, month by month to give up-to-date information and prices on the most important items we carry. These ads. will appear in stepped rotation in five journals - Pr. Electronics, Pr. Wireless, Evervday Electronics, Elactronics Taday Intntnl. and Elektor so that the complete sories will be available each month. In this woy, no matter which journals you read, bY DETACHING AND SAVING THESE PAGES, YOU WILL HAVE A VALUABLE AND COMPREHENSIVE MONEY SAVING CATALOGUE. ALL MERCHANDISE IS BRAND NEW AND GUARANTEED.

Section2

Capacitors

GOODS SENT POST FREE U.K. on C.W.O orders over $£ 5$ lisi value. If under, add $27 p$. handling charge.

- ATTRACTIVE DISCOUNTS on C.W.O. orders 5% where inst value is over $£ 10$; 10% where iist value is of $£ 25$
TOP QUALITY MERCHANDISE - ALL GUARANTEED
V.A.T. add 8% t
marked add $12 \frac{1}{2} \%$. Quantity prices available except for MDC.

ELEGTROIVTIC. TANTALUM BEAD			
Siemens B45134 series			
$\mu \mathrm{F}$	volts		
0.1	35	-	14p
0.15	35	-	12p
0.22	35	-	14p
0.47	35	-	14p
0.68	35	-	14p
1.0	35	-	14 p
2.2	16	-	14p
2.2	35	-	14 p
3.3	16	-	14p
4.7	16	-	16 p
4.7	35	-	18p
6.8	25	-	18p
10	6.3	-	16p
10	16	-	18p
10	25	-	20p
15	25		31 p
22	6.3	-	18p
22	16		22p
22	25		45p
33	10		22p
47	6.3		22p
47	16		35p
100	3	-	22p
100	6.3		45p
100	10		67p
ELECTROLVTIC. TANTALUM, AXIAL			
0.1/3	. $47 / 3$		35p
2.2/2	4.7/10		35p
2.2/3	4.7/35		37p
10/20	2/15		37p
47/10			66p

R1524. $28.0 \times 17.8 \mathrm{~mm}$	
$\mathbf{3 3 0}$	$\mathbf{1 8 p}$
$390,470.500$	$\mathbf{1 8 p}$
560,680	$\mathbf{1 8 p}$
820,1000	$\mathbf{2 2 p}$
2200	$\mathbf{2 4 p}$
3300	$\mathbf{3 6 p}$
$\mathbf{4 7 0 0}$	46 p
R2032. $35.6 \times 23.0 \mathrm{~mm}$	
1500.1800	$18 p$
2200.2700	$\mathbf{2 4 p}$
3600.3900	$\mathbf{2 9 p}$
4700,5000	$33 p$
6800	$\mathbf{4 1 p}$
8200.10 .000	$56 p$
MIXED DIELECTRIC.	

- For ACCESS or 8ARCLAYCARD orders, just phone

N write your number

- No discounts allowable on prices marked NET or N.
- tear out and take good care of this NEXT MONTH'S TO ADD TO IT.
- OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER
- COMPREHENSIVE PRICE LIST FREE ON REQUEST.

ELECTROVALUE LTD

28, ST. JUDES ROAD, ENGLEFIELD GREEN.
EGHAM,SURREY TW20 OHB
Telephone Egham 3603 Telex 264475
Northern Branch - 680,BURNAGE LANE,
BURNAGE, MANCHESTER M19 1NA(061) 4324945

AI devices so makers apec
MICRO POWER SUP.
PORT
All IUll sotc Grade I displays DL704 CC or 01707 CA $0.3^{* *}$

01747 Ca 11.25

Display PCB 5 Digil $0.6^{\prime \prime}$ £ LEDS. Brighl tull spec $0.2^{\prime \prime}$ or $0.125^{\prime \prime}$ Red 10p
Til209 Red 8 Cilp
0.2 Pa 2" Yollow or Grsen LEO 12 or 0.125 Oia. All2 22 vort fivorescenl ugh

Trimmer 0-B or 510 E1 25

Relay mini 3 Pole 12 volt
AS Type Bleaper 9 to $12{ }^{2}$
Oalo PCB Pen 2 nits $\begin{gathered}〔 1.50 * \\ 700^{*}\end{gathered}$ TUB Ferric CHL "/kg. E1* Decon Board Cleaner Pad 50 *

Vero Stncked All 10\% of
e. $3^{3} 4^{\prime \prime} \times 5^{\prime \prime} \times 0.1$ " Board

ELECTRONIC COMPONENT CENTRE
58-60 GROVE ROAD, WINDSOR, BERKS SL4 IHS (TRADE AND EXPORT WELCOME)
HOTLINE FOR TELEPHONE CREDIT CARD ORDERS
READERS OFFER: OVER E10 DISCOUNT 5\% OFF. (THIS MONTH)

TRANSIS Woll
look al our Pak T T

Power Orak C: 4×2 M3055 El Manng 20p*. has Kill 10p AC1?7 17p* 8FY50 16p $\begin{array}{lll}\text { C176 } & \text { 10p }{ }^{*} \text { 8FY51 } & 16 p^{*} \\ \text { C187 } & 20 p^{*} 8 F X 29 & 28 p^{*}\end{array}$ | 161 | $40 p^{*}$ | $8 S X 20$ |
| :--- | :--- | :--- |
| $18 p^{*}$ | $28 p^{*}$ | | 162 40p* MJ2955 E1 * AF239 42p* MJE340 44p*

 BC109 9p* MPU131 35p 8C109C 15p* 0AP12 55p BC147 12p*TIP41A 60p* BC14B 12p TIP42A 65p* BC199 12p TIP2955 600 CI58 15p IP3055 50p* C159 15p 1543 35p C167 15p 2N2646 39p* C16B 10p 2n2905 22p C169 11p 2n 2926 y 10p CI77 18p $2 \boldsymbol{p} 3053$ 16p Ci7B 16p
 CliB2 100 2243704 $\begin{array}{llll}\text { Clib3 } & 10 p & 243706 & 9 p\end{array}$ CO
C212 10 p 2M381ge 18p $\begin{array}{llll}\text { 日C213 } & 12 p & 233820 & 38 p \\ & 12 p & 243904 & 15 p\end{array}$ C214 12p 2239906 15p 0131 20p 37 p 24347 50p 132 37p 2W5457 32p 0069 69p * TH31 0696 69p* TH.63
IODES \& BRIDGE W4148 or IN91 0AB1 or 0a91 140011450

DIL SOCKETS $\quad 8$ pin 14 or 16 Pin $\quad 15 p$

CMOS TEP VALUE

TOP TWOSOME

 555 B Pin Timer 27p Branded Op Amp 19p"NEW LINEARS Data $10 p$ TL170 Hall eftecl TL011 Lo noise 74 T10B3 FFT 747 741 69p TLO8O FET 748/308 EI. 15

IC SUPERMARKET 3010 p Amp 555 Timer (MES 710 comparalor 723 Regulator 741 C 8 PIn OIL OPA 741C 1099 or 016 748 C 0 pmp 3900 Duad Op Amp 7805 т03|309\% | 7808 or 7812 781515 volt plastic 8038 Sin Generator $\mathbf{E 2 . 5 0}$ $\begin{array}{ll}\text { 20, } \\ 76013 \& 76023 & \text { £1.35 }\end{array}$ CA3130 \& CA3140 94p LM380 I walt Amp 85p
LM381 Owal Preamp E155 M387 Oual Preamp MC1310 Oercader MC1460. $1461 \& 146$ MCMOS 14433. A/0 NE536 FET OP NE556 Oual 555 ZM414 Aadio

Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brachure, without obligation to BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
P.O.Box 156, Jersey, Channel Islands.

NAME
ADORESS \qquad

PE SUSTAIN UNIT

 sutainBUILD A SUSTAIN UNIT EQUAL TO THE BEST COMMERCIAL MODELS COMPLETE KIT - £7.95 ALL HIGH QUALITY COMPONENTS AS SPECIFIED.
DESIGNER APPROVED

Complete set of semiconductors £4.99 LPI186 Tuner Head £9.60 Glass fibre PCB, printed with component locations

ORIONComplete set of semiconductors
Glass fibre PCB, printed with component locations

PE DIGITAL VOLTMETER (APRIL 1977) SPECIAL CLEARANCE OFFERS (while stocks last)

Set of semiconductor devices including all I.C.'s, transistors, diodes, regulators etc. but without displays.

Tomorrow's Electronic Organ Kit is Here

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE

Without doubt, the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features
The Flagship of the WERSI range of
Organs
WERSI is the first kit producing company applying the latest achievements of the space age technology.
This has decisive effects on the technical and musical quality of WERSI's electronic organs for the do-it-yourselfer.
The application of modern integrated circuits, so-called IC's, simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic components. In addition, IC's save a lot of space and they are extremely reliable devices.
WERSI, however, went a step farther yet. IC's which were not available on the open market were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result: economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities.

- Precision Master Generator, using MOS-LSI.
- Integrated electronic keying in $I^{2} L$ technology
- Unique-All switch functions are programmable.
- Even the smallest organ has drawbars in addition to fixed stops.
- Craftsman-made cabinets available in 5 veneers
- Ready-made wiring harnesses eliminate errors

Send now for the 104 page full colour catalogue and 16 page price list describing the 8 organs in the range, together with the complementary kits which WERSI produce.

To: AURA Sounds, P1., Copthorne Bank, Crawley, West Sussex.
Please telephone to arrange demonstration 0342713338 I enclose $£ 2 \cdot 00$, refundable against my first order to the value $£ 25 \cdot 00$. Please send the Wersi catalogue and price list.

NAME
ADDRESS

SEMICONDUCTORS POTS \& IRONS

SOCKETS	
16118 pin DIL	£0. 13
161214 pin DIL	£0. 14
1613 16 pin DIL	¢0. 15
161424 pin DIL	£0. 40
161528 pln DIL	¢0. 45
1616 TO18 Transistor	E0. 12
1617 TU3 Transistor	¢. 035
16117 TO5 Transıstor	¢0. 12
VOLTAGE REGULATORS	
Positive	
MVR7805 v.a. 7805 TO220	E1. 00
MVR7812 v.a. 7812 TO220	£1 00
MVR7815 v.a. 7815 TO220	£1.00
MVR7824 v.a. 7824 TO220	$\varepsilon 100$
Negative	
MVR7905 v.a. 7905 TO220	£1. 40
MVR7912 v.a. 7912 TO220	E1. 40
MVR7915 v.a. 7815 TO220	$\Sigma 140$
MVR7924 v.a. 7924 TO220	£1.40
v.a. 723C TO99	45p
7272314 pin DN	45p
LM309K TO3	¢1.50

ZENER DIODES

400 mw (Bzy B^{\prime} DO7 Glass encap.
sulated range of voltages avail
 $7.5 v, 8-2 v, 91 v, 10 v, 11 v, 12 v, 13 v$
$15 v, 16 v, 18 v, 20 v, 22 v, 24 v, 27 v$
30v, 33v, 39v
No. $248 p$ ea.
1w-1.6w Plastic and melal encau.
sulated Range oi vollages available. $1 \cdot 3 v, 22 v .27 v .3 \cdot 3 v$. $3 \cdot 9 v, 4 \cdot 3 v, 4 \cdot 7 v, 5 \cdot 1 v, 56 v, 6 \cdot 2 v$,
$6 \cdot 8 v, 7 \cdot 5 v, 88 \cdot 2 v .91 v, 10 v, 11 v$,
$12 v, 13 v .15 v .15 v, 18 v, 20 v, 22 v$,
$24 v, 27 v$ $12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v}$,
$24 \mathrm{v}, 27 \mathrm{v} .30 \mathrm{v} .33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}$.
$68 \mathrm{v}, 72 \mathrm{v} .75 \mathrm{v}, 82 \mathrm{v}, 91 \mathrm{v}, 100 \mathrm{v}$
No. Zi3 15 p ea.
10w Metal slud trpe SOBO co
Range of voltages avaifable, 1 $22 \mathrm{v}, 2.7 \mathrm{v}, 3.3 \mathrm{v}, 3 \mathrm{~g} 9 \mathrm{v}, 43 \mathrm{z}$. $9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$,
$18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v} 24 \mathrm{v}, 27 \mathrm{v}$. $30 \mathrm{v}, 33 \mathrm{v}$.
$43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}$. $91 \mathrm{v},{ }^{100 \mathrm{v}}$ No. 210 35p ea

SILICON RECTIFIERS

200 mA	
15920 50v	¢0. 06
IS921 100v	¢0. 07
IS922 150 V	c. 08
15923 200v	c009
15 324300%	c0 10
1 Amp	
IN4001 50v	E0.04t
IN 4002 l 100 V	¢0. 05
IN4003 200v	c.0.06
IN4004 400v	c0. 07
IN 4005600 v	¢0. 08
IN4006 800	£0. 09
IN4007 1000v	¢0. 10
1.5 A.mp	
1501550 V	¢0 09
15020100 v	£0. 10
15021200 v	£0 11
IS023 400v	£0.13
IS025 600v	C0. 14
IS027 800v	c0. 16
150231000 V	c.0 20
15031 1200v	c. 0.25
3 Amo	
IN5 400 50v	co. 14
IN5401 100v	co 15
IN5:02200v	£0. 16
1N5404 400v	£0 17
IN5 505 600\%	£0. 21
IN5407800	£0. 25
IN5 408 1000v	£0.30
10 A mo	
1S10/50 50v	£0. 19
1510/100 100v	£0. 21
15101200 290V	ع0.23
$1 \$ 10 / 400 \mathrm{400v}$	£0.35
IS 101600600 v	20.42
IS10/800 800v	£0. 51
IS10/1020 1000v	£0. 60
IS $10 / 12001200 \mathrm{v}$	£0. 69
3 u A mp	
$1530 / 5050 \mathrm{v}$	£. 56
1533/100 100\%	60.69
1533/200 200w	¢. 0.93
IS30/400 400v	¢1. 25
$1539 / 600600 \mathrm{v}$	£1. 76
$1533 / 800800 \mathrm{v}$	81.94
IS $39 / 10001000 \mathrm{v}$	¢2 31
IS30/1200 1200v	¢2-88
60 A mp	
1570/50 50v	c. 075
1570/100 100w	¢0. 84
1570/200 200v	f1-20
$1570 / 400400 \mathrm{v}$	¢1 75
1570/600 600v	¢.2. 25
1570/800 800w	¢2 50
IS70 10001000 v	E.3. 00
BYX38/300 6A 300v	¢0. 45
BYX $38 / 6006$ A 600 v	E0. 60
BYX $38 / 300$ Rev 6A 300 v	¢0 45
BYX $38 / 600$ Rev 6A 600 v	¢0 60

CARBON POTS (Linear Track

Single gang with w!re end lerminations $6 \mathrm{~mm}, 50 \mathrm{~mm}$ plastic shalt 10 mm bushes supplied with shake prool washer a nul
Tolerance $+20 \%$ of resistance
 1832 2k2hms $£ 026^{\circ} \cdot 1837100 \mathrm{kohms} £ 025^{\circ}$ 1834 10kohms $£ 026^{*}$ t 1839470 hahms £0.26 $183522 \mathrm{kohms} £ 0.26^{\circ} 18401 \mathrm{Mea}$ £0 26° 1861 2M2 \&0. 26^{*}

CARBON POTS (Log Track)
1842 ak7ohms $£ 026^{*} .1846100 \mathrm{kohms} £ 0.26{ }^{\circ}$ 1843 lokohms $£ 0.26^{\circ} 1817$ 220kohms $£ 0.26^{\circ}$
 $\$ 84547 \mathrm{kohms} 50.26^{\circ} 1849^{1} 1 \mathrm{Me}$.

DUAL CARBON POTS (Lin Track) Thesehigh quality dual gang pots are fitted These high quality dual gang pots are fitted
with wire end lerminations and 6 mm 50 mm plasilc shat 10 mm , bush ind sup olied with shake prool washer \& nut track tolerance \pm
20 D of each other. $V \mathrm{VC3}$
$18514 \mathrm{k7} \quad 5078^{\circ}$. 1855100 kahms £9 78° . 52 10kohms $£ 0.78^{\circ}$. 8856220 hohms £ 078° 853 22kohms $£ 078^{*}$. 1857470 kohms $\mathrm{f0} 78^{\circ}{ }^{\circ}$

DUAL CARBON POTS (Log Law)
1860 4k7ohms $£ 0$ 78: 1864 100kohnis f0 1861 lokohms $£ 078{ }^{\circ}{ }^{\prime} 1865$ 220kohms $£ 0.78^{\circ}$ 1862 22kohms $£ 0.78^{*}$. 1966470 kohms £0 $78{ }^{\circ}$ 86347 kohms £.0.78* 1867 Meg

SINGLE GANG SWITCHED (Lin Law) These potentiometers are fitted with ouble pole on-oft switches. The switch is pot. Specificatlon of pot is as VCl .
Switch rating $15 a m p s$ at 250 v AC .
$18704 \mathrm{k} 7 \mathrm{hmms} £ 0.60^{\circ} 1874100 \mathrm{hohms} £ 060^{\circ}$ 871 10kohms $£ 0.60^{\circ} 1875220 k o h m s £ 0.60^{\circ}$ 872 22kohms $£ 0.60^{*} 1876470 \mathrm{kohms} £ 0.60^{\circ}$ $97347 \mathrm{kohms} £ 0.60^{\circ} 18771 \mathrm{Meg} \quad £ 0.60^{\circ}$ $18782 \mathrm{M} 2 £ 0.60^{*}$

SWITCHED POT (Log Track)
Specification as VC2 but (rack having (log)
 1880 10khms $£ 060^{\circ} 1884220 \mathrm{kohms} £ 0.60^{\circ}$ 1881 22kohms $£ 060^{\circ} 1885470 \mathrm{kohms} £ 0.60^{\circ}$ $188247 \mathrm{kahms} \mathrm{£0.60*} 18861 \mathrm{Meg} \quad £ 060^{\circ}$

ANTEX IRONS

iron totally enclosed element in a ceramic shatt fitted with $3 / 32^{\prime \prime}$ bit $\mathbf{f 3} \mathbf{8 0}$ O/No. 1947 Replacement element for 1943 © 194490 O/No. 1944. Iron coated bit 3/32" tor 1943
iron. O/No. 1945 Iron coated bit $1 / 8^{\prime \prime}$ O/No. 1946 Iron coated bit $3 / 16^{\prime \prime}$ tor 194

O/No. 1948. General purpose 18 watt tron fitled with fron coated bit. $\quad \mathbf{£ 3 . 6 0}$ O/No. 1952. Replacement element for 1948
iron. O/No. 1949. Iron coated bit 3/32" for 1948 O/No. 1950. Iron coaled bit $1 / 8^{\prime \prime}$ for 1948 O/No 1951. tron coated bit $3 / 16^{\prime \prime}$ for 1948
Fon. 40

O/No. 1931. Highly popular "25 25 wats provide soldering iron ceramic shafts to vollage of 1500 volts AC and a beak-down
verin vollage of 1500 volts AC and a leakage stalnless steel to ensure strength. shation
$\mathbf{f 3 . 6 0}$ O/No 1935 Replacement element for 1931 O/No 1935 Replacement element for 1931
Iron. 1.60
 O/No 1933 Iron coated bit $3 / 16^{\prime \prime}$ Ior 1931
Iron. 0.50
IO O/No 1934. Iron coated bit $3 / 32^{\prime \prime}$ Ior 1931
E0.50 O/No. 1953. SK1 soldering kit-this kit con tans 15 watt soldering iron fitted with a $3 / 16^{\prime \prime}$ bit plus two spare bits, a reel of solder' In presentation display box. $£ 5.55$ ONo 1939. ST3 soldering tron stand ONO. 1939. ST3 soldering fron stand
Stand made from high grade bakelite material chromium plated strong steel spring, suitable tor all models, includes accommodation for six spare bits and two pon bits wean seve to keep the solderin
iron bits slean

$\begin{aligned} & \text { TR120 } \\ & \text { \& } 119 \end{aligned}$	TR101 E1 10	$\begin{aligned} & \text { TRO53 } \\ & \text { £1 } 10 \end{aligned}$	$\begin{gathered} \text { TR203 } \\ \text { £1 } 10 \end{gathered}$	$\begin{aligned} & \text { TR205 } \\ & \text { £1 10 } \end{aligned}$
-	-	-	-	
$\text { C1 } 50$			$\begin{aligned} & \{1 \mathrm{H}, 31 \\ & £ 175 \end{aligned}$	
0080	080	808	000808	
-808	808	808	000000	
Draw PAK et on the The tran complete	ur own -resist oard, rub fer will the	boards ransfers over adhere rcuit	with the s. Lay the with a sot to the bo with your	new Bt symbols fi pencil ard. Then BI-PAK

PCB TRANSFERS

-9898eogege
etch-resist pen. 11 different paks available illustration-approx. $\frac{1}{2}$ size-Special introductory Set, 1 pak each of above £12.00.

2nd GRADE LED
A pach of 10 standard sizes and coluurs which fall to pertorm to their very rigid specitication, but which are ideal for amateurs who do not require the 0 Of
O/no. 150790 p

NUMERICAL INDICATORS
Cold cathode ITT 5087ST Side viewing indicator lubes Operates from 180 v with 16 Kohnis series anode resisto Character heigit 16 firm Pin connectors and supply derail on pack.

O/no. 1513 . 5 for 60p

BRIDGE RECTIFIERS

ORDERING. Do not forget to state order number and your name and address.
V.A.T. Add $12 \frac{1}{2} \%$ to prices marked. 8% to those unmarked. Items niarked are zero rated. P\&P 35p unless otherwise shown

D.I.Y. P.C.B.

ACCESSORIES

609. Etch reslstant pen
610. Paks of etchant, complete with C26. 4 pieces 8
C26. 4 pieces 8 - 3!" (approx.) boards
SIngle-sided fibre glass C27. 3 pieces 7 * $3!{ }^{\prime \prime \prime}$ (apprax
${ }^{60}$ p
Double-sided fibre olass

BH-PAK

DEPT. PE10, P.O. BOX 6, WARE, HERTS. SHOP 18 BALDOCK ST., WARE, HERTS AT OPEN 9 to 5.30 MON-SAT.

TRANSISTORS
－諤
 AC C117K
AC121
AC122 AC122
ACC125
AC126．． AC127
AC128
AC128K AC132
AC134
AC137 AC141
${ }_{\text {AC1 }}$
AC141 AC142
AC142K
AC． 151 － 5 ごひ $A C 1$
$A C 1$ $4<$

$\frac{0}{2}$
$\frac{2}{2}$
1

Prict
Type Type
BD185
BD186 a．प्रफ
Price
$£ 06$
$£ 06$
$\begin{array}{lll}\text { Type } & \text { Price Type } \\ \text { BSY26 } & \text { £ } 016 & 2 T y 107\end{array}$

 Non
Price

${ }_{2}^{\text {Threper }}$

空

mmmmmmmmmmmmm

BSY25

 CMOS ICs

 $\begin{array}{llllllllll}\text { CD4009 } £ 0 & 58 & \text { CD4021 } & £ 0 & \text { 98 } & \text { CD4035 } & £ 1 & 30 & C D 4050 & £ 0 \\ \text { CD } \\ \text { CD }\end{array}$ CD4013 E0 52

$$
\begin{array}{l|l}
0 \\
0 & T_{y} \\
0 & \\
\hline
\end{array}
$$

LINEAR ICs

 $\begin{array}{llllllll}\text { CA3035 } & £ 1 & 70^{\circ} & \text { LM320－12v£1 } & 50 & \text { NE540 } & \text { £1 } & 50^{\circ} \\ \text { CA303 } \\ \text { C．}\end{array}$
 $\begin{array}{llllllll}\text { CA3052 } & £ 1 & 60^{\circ} \\ \text { CM M M }\end{array}$

完

DEPT．PE10，P．O．BOX 6，WARE，HERTS．
SHOP 18 BALDOCK ST．，WARE，HERTS． AT OPEN 9 to 5.30 MÖN－SAT．

KITS FOR SYNTHESISERS, SOUND EFFECTS

COMPONENTS SETS include all necessary resistors, capacitors, semiconductors. potentiometers and transformers. Hardware such as cases, sockets, knobs, keyboards, etc. are not included but most of these may be bought separately. Fuller details of kits, PCBs and parts are shown in our lists
CIRCUIT AND LAYOUT DIAGRAMS are supplied free with all PCBs unless "as published"

PHOTOCOPIES of P.E. texts for most of the kits are available-prices in our lists.

PHONOSONICS

MAIL ORDER SUPPLIERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET

P.E. MINISONIC MK. 2 SYNTHESISER

A portable mains-operated Miniature Sound Synthesiser. with keyboard circuits Although having sightly fewer facilities than the large PE Synthesiser the functions offered by this design give it gieat scope and versatility Consists of 2 log VCOs. VCF. 2 envelope shapers. 2 voltage controlied amps. keyboard hold and control circuits. HF oscillator and detector. ring modulator, noise generator. mixer. power supply.

Set of basic component kits from $\mathbf{£ 6 1 . 0 0}$
Set of printed circuit boards 18.99
P.E. SYNTHESISER (P.E. Feb. 73 10 Feb. 74)

The well acclaimed and highly versatile large-scale circuits. Other circuits in our lists may be used with the Synthesiser to good advantage.
The Maln Synthealaer: PSU. 2 linear VCOs. 2 ramp generators. 2 input amps. sample hold. noise generator reverb amp. ring modulator. peak level circuit. envelope Set of basic component k.t Set of printed circuit boards
$\mathbf{7 9 . 0 9}$
$\mathbf{~} 13.20$
The Synthesiser Keyboard Circuits (can be used without the Main Synthesiser to make an independent musical instrument: 2 logarithmic VCOs, divider, 2 hold circuits, 2 modulation amps, mixer, 2 envelope shapers and PSU.

Set of basic component kits
£7.66

GUITAR EFFECTS PEDAL (P.E July 75)

Modulates the attack. decay and filter characteristics of an audio signal not only from a guitar but from any audio source. producing 8 different switchable effects that can be further modified by manual controls Possibly the mos range Circuit does not duplicate effects from ths in ou range Circuit does not duplicate effects from the Guitar verd
Component set with special foot operated switches $\quad \mathbf{£ 7 . 6 9}$ Alternative component set with panel switches Printed circuit board
$\mathbf{£ 7 . 6 9}$
$\mathbf{£ 5 . 0 5}$

SOUND BENDER (P E. May 74)
A multi-purpose sound controller, the functions of which include envelope shaper. tremolo, volce-operated fader都
Printed circut seard
Oprional extra-additional Audio Modulator the El 1.8 which. in conjunction with the above component set, can roduce jungle-drum rhythms.
Component set (Incl PCB)

PHASING UNIT (P E. Sept. 73)
A simple but effective manually conirolled unit for introducing the phasing sound into live or recorded Component set (inct PCB)

PHASING CONTROL UNIT (PE Oct 74)
For use with the above Phasing Unit to automatically control Component sel
£4.74

SOPHISTICATED PHASING AND VIBRATO UNIT

A slightly modified version of the circuit published in utomatic control over the rate of phasing and vibrato
Component set
Pinted circult board
ع17.38
WAH-WAH UNIT (P.E Apr. 75)
The Wah-Wah effect produced by this unit can be conirolled manually or by the integral automatic controller
Component set (incl PCB)

AUTOWAH UNIT (P.E Mar 77)
Automatically produces Wah-pedal and Swell-pedal sounds
Component set PCB played
Component set and PCB, with panel switches $\quad £ 7.67$

POST AND HANDLING

U.K. orders-under $£ 15$ add 25p plus VAT. over $£ 15$ aod 50p plus VAT. Keyboards $£ 2.00$ plus VAT.
Optional Insurance for compensation against loss or damage in post. add extre 50p for cover up to E5O. £1-00 for E100 cover, E2.00 for E 200 cover.
Eire, C.I.. B.F.P.O., and other countries are subject to Export postage rates.

P.E. JOANNA PLUS ORGAN VOICING

The basic five octave electronic piano (P.E. May/Sept 75 and Sound Design! has switchable alternative voicings for Honky Tonk, ordinary piano, and Harpsichord or a mixture of any of these three, together with facilities including fast and slow tremolo loud and soft pedal switching, and sustain pedal switching. The modification retains all the circuitry associated with the piano but in addition provides an organ-voice enveiope facility with 5 switchable pitches, variable attack and sustain, phasing and ibrato.
Set of components (excl switches) for PSU. Frequency generator, Pitch and Note Divider. Envelope Shapers. Voicings and Control circuitries. (Order as KIT 71-5) $\quad \mathbf{~} 99.25$ Set of PCBs (Order as PCB SET 71-6)

SYNTHESISER TUNING INDICATOR (P.E. July 77)
A simple 4-octave frequency comparator for use with synthesisers and other instruments where the full versatility ore.
Component and PCB (but excl sw.) $\quad £ 7.45$

GUITAR FREQUENCY DOUBLER (P.E. Aug. 77)

modified and extended version of the circuit published.

SUITAR SUSTAIN (P.E. Oct 77)
Maintains the natural attack whilst extending note duration $\begin{array}{ll}\text { Component set. PCB and foot switches } & £ 5.13 \\ \text { Component set. PCB and panel switches } & £ 3.71\end{array}$

WIND AND RAIN UNIT

manually controlled unit for producing the above-named sounds.
Component set (iricl PCB)
GUITAR OVERDRIVE UNIT (P E. Aug. 76)

Sophisticated versatile fuzz unit, including variable and switchable controls affecting the fuzz quality whilsiaberaning the attack and decay. and also providing filtering Does noi duplicate the effects from the Guitar Effects Pedal and can be used with it and with other electronic instruments. Component set using dual slider pot $\begin{array}{ll}\text { Component set using dual rotary pot } & \text { £7.58 } \\ \text { printed circill } & \text { £6.89 }\end{array}$ Printed circult board \quad| | $£ 6.89$ |
| :--- | :--- |
| 1.62 | |

FUZZ UNIT
Simple Fuzz unit based upon P.E. "Sound Design" circuit.
Component set (incl. PCB)
TREMOLO UNIT
Based upon P.E Sound Design circuit
Component set (incl PCB)
E2.94

TREBLE BOOST UNIT (P.E. Apr 76)
Gives a much shriller quality to audio signals fed through it The depth of boost is manually adjustable.
Component set (incl. PCB)
P.E. TUNING FORK (P.E. Nov 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustic or electronic musical instruments.

Power supply set (incl. PCB)
$£ 14.93$

New Electronic Piano.
Elektor Aug. 1978
Details in our list.

CONSTANT OISPLAY FREQUENCY METER (PE AUG 78)
A 5 -digit frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout-does not count visibly or flicker due to display blanking.
Component set £24.05*
This kit \& PCB are at 8% VAT (all others are $12 \frac{1}{2} \%$

TAPE NOISE LIMITER

ery effective circult for reducing the hiss found in most tape cordings. All kits include PCB
Standard tolerance set of components
Regulated power supply (will drive 2 sets)
ENVELOPE SHAPER WITHOUT VCA (P.E. Oct. 75)
Provides full manual control over attack, decay. sustain and conirolled amplifier Component set (incl PCB)

ENVELOPE SHAPER WITH VCA (P.E. Apr 76)
This unit has its own voltage controlted amplifier and has full manual control over attack. decay, sustain and release Compon
f6.68
TRANSIENT GENERATOR (P.E Apr. 77)
An envelope shaper, without VCA. having the usual attack decay. sustain and release functions. and in addition it also provides a Repeat Effect enabling a synthesiser to be programmed to imitate such instruments as a mandolin or banjo
Component sel
£4.87

WAVEFORM CONVERTER

Slightly modified from a circuit published in "Elektor". Converts a saw-tooth waveform into four different wavetorms: sine-wave mark-space saw-tooth, regular triangle form. and squarewave Component set (incl. PCB but excl
Component set (incl. PCB but excl. sw/s)

VOLTAGE CONTROLLED FILTER (PE. Dec 74)
Part of the PE Minisonic now released as an independent
Component set (incl PCB) (Order as Kıt 65-1)
£7-17
RING MODULATOR (P.E Jan. 75)
Part of the PE. Minisonic now released as an independent
Component set (incI PCB) (Ord

NOISE GENERATOR (P.E. Jan. 75)
Part of the P E. Minisonic now released as an independent
Cit for use with other synthesisers.
Component set (incl. PCB) Order as Kit 60-1) $£ 3.64$
SOPHISTICATED POWER SUPPLIES
A wide range of highly stabilised low noise power supply kits
is available-details in our lists.
MICROPHONE PRE-AMP (P.E Apr. 77)
£3.82
VOICE OPERATED FADER (P.E Dec. 73)
For automatically reducing music volume during talk-over - particularly useful for Disco work or for Component set (incl PCB) £3.97

DYNAMIC RANGE LIMITER (P.E Apr. 77)
Automatically controls sound output to within a preset
Comporent set (incl. PCB)
£4.58

DON'T FORGET VAT!

Add $12 \frac{1}{2} \%$ (or current rate if changed) to full total of goods, post and handling. (Does not apply to export orders).

EXPORT ORDERS are welcome, though we advise that a current copy of our list should be obtained betore ordering as it also shows Export postage rates. All payments must be cash-with-order, in Sterling and preferably by International Money Order or through an English Bank. To obtain list send 50p.

AND OTHER PROJECTS

PHOTOGRAPHS in this advertisement show two of our units containing some of
the P.E. projects built from our kits and the P.E. projects built from our kits and PCBs. The cases were built by ourselves
and are not for sale. though a small selection of other cases is available

LIST-Send stamped addressed envelope with all U.K. requesis for tree list giving fuller details of PCBs. Kits and other components.
OVERSEAS enquiries for list Europesend 20p: other countries-send 50p.

KIMBER-ALLEN

KEYBOARDS AND CONTACTS

Kimber-Allen Keyboards as required for many published circuits. The manufacturers claim that these are the finest moulded plastic keyboards available. All octaves are C to C , the keys are plastic, spring-toaded, fitted with actuators, and nounted on a robust aluminium frame.
3 Octave (37 notes)
$£ 25.50$
$\mathbf{~ n ~}$ 3 Octave (37 notes) 4 Octave (49 notes)
5 Octave (61 notes) $\mathbf{E} 32.25$
$\mathbf{E 3 9 . 7 5}$

Corract Assemblies (gold-clad wire) for use with the above keyboards (1 required for each note):
Type GJ: Single-pole change-over
each $25 \frac{1}{2} p$
Type GB: 2 pairs of contacts, each pair normally open
each $28 \frac{1}{2} p$
Type GC: 3 pairs of contacts, each pair normally open
each $37 \frac{1}{2} p$
Type GE: 4 pairs of contacts, each pair normally open
Type GH: 5 pairs of contacts. each pair normally open
Type 4PS: 3 pairs of contacts plus single-pole changeover
each $58 \frac{1}{2} p$
each 57p
Printed Circuit Boards for use with GJ. GB and 4PS contacts (thus eliminating much interwir-
ingl are available. Details in our lists.

RHYTHM GENERATOR

15-Rhythm Tempo. Timing and Logic control unit |excl. sw's but incl. PCB)
10-Instrument Eftects circuits
PCB for Effects circuits
£9.75
£14.23
£4.25

128-NOTE TUNE-PROGRAMMABLE SEQUENCER
(P.E. Nov/Ooc 77)

Enables a voltage controlled synthesiser to automatically play pre-programmed tunes of up to 32 pitches and 128 notes long. Programs are keyboard initiated and note length and rhythmic pattern are externally variable. (Please use order codes quoted in brackets.)
Main Circuit (Nov) excl. sw's (KIT 76-1)
Power Supply (KIT $76-3$)
Trigger Inverter and Alt. Output (KIT 76-2)
LED Counter (KIT 76-4)
PCB (as published) for KITS 76-1 \& 3 (PCB 76A)
PCB for KITS 76-2 \& 4 (PCB 76B)
P.E. STRING ENSEMBLE (PE Mar-July 78)

The new keyboard string-instrument synthesiser.
Basic component sets:
Power Supply (KIT 77-1)
Tone Generator (KIT 77-2
Diode Gates (KIT 77-3)
Chorus Generator (KIT 77-4
Voicing System (KIT
Primied Circurt Boards:
Double-sided PCB for Power Supply, Tone Generator \& Diode Gates with most of the Matrix wiring as printed tracking PCB for Chorus Generator (PCB 77Cl PCB for Voicing System (PCB 77D)
Fuller details of kits \& PCBs are in our lists.
FORMANT SYNTHESISER (Elektor 1977/78)
Very sophisticated music synthesiser for the advanced constructor who puts performance betore price. Details in our lists.

DISCOSTROBE (P.E. Nov. 76)
4-channel light-show controller giving a choice of sequential. random, or full strobe mode of operation. Easic component se
£18.19 Printed circuit board 8.45

BIOLOGICAL AMPLIFIER (P.E. Jan/Feb. 73)
Multi-function circuits that, with the use of other external equipment. can serve as lie-detector, alphaphone, cardiophone etc. Pre-Amp Modula Components set (inct. PC̉B) £3.95 Basic Output Circuits-combined component set with PCBs, for alphaphone, cardiophone, frequency meter and visual feed-back lampdriver circuits. £6.59 Audio Amplifier Module Type PC7

10\% DISCOUNT VOUCHER (PE6B)

TERMS: Correctly costed, C.W.O.. U.K. orders over £50 goods value. Valid until and of month on cover of P.E. This voucher must accompany order.

ENGINEERS
LIU是

YOURSELF FOR A

 BETTER JOB "-Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

MORE PAY!

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

© WIRE WRAPPING CENTRE

3IN 1 WIRE DISPENSER
 easy to use packet size.

DIP/IC EXTRACTOR TOOL $£ 1.18$ The EX-1 Extractor is ldeally sulted for nobby enthusiast or lab engineer. Foaturing one plece spring steel construction. It will extract alles of from 8 to 24 pins. Extracior Tool EX-1.	DIP/IC INSERTION TOOL WITH PIN STRAIGHTENER £2.58 INS. 1416

WIREWRAPPING KIT

Tool WSU Hobby Wrap Dispenser wD. 30 -8, (
14 DIP's, (2) Hobly siora 16 DIP's
DIPIC Diplic insertion Tool
iNs.1416 and DIP/C

Extractor To Extractor Tool Ex-1. | $\begin{array}{l}\text { Wire-Wrapoing } \\ \text { Kit }\end{array}$ | $\begin{array}{c}\text { wK-4B } \\ \text { (Blue) }\end{array}$ |
| :--- | :--- |

£ 17.82
: : \%

FROM 75p
TERMINAL AND
DISTRIBUTION STRIPS
Bread boarding buildin
blocks with universal
matrices of solderless

- Faciultaseris
solgerless circult bulld-uo
chersa! -ut on matrix

Are offered in ten
contigurations.
accedt all components with leads
diameter.
Requir. cords.
snciudes integral non-
shorting instant mounting

DISTRIBUTORS WANTED****

OK Machine\&TOolU.K. Limited

$14 p$ DIP SOCKET Dual-In-line Dackage, 3
level wire-wrapping. phosphor branze cont $\{(2,54 \mathrm{~mm})$ sa.. 100

 \begin{tabular}{|l|l|}
\hline Socket Dip \& 14 Dip

\hline 16 Pin DiD \& 16 Dip

\hline

 RIBBON CABLE ASSEMBLY

With 14 Pin Dip Plug-2* Long \& DE 14.2

\hline With 14 Pin
\end{tabular} With 14 Pin Dip Plug . Cong DE 14.4

With 16 Pindip Plug-4 Long
With 16 Pin 16 Pip Plug - $8^{\prime \prime}$ Long OE 168

DISTRIBUTORS WANTED*** Telephone Southampton(0703) 38966/7 Telex 477222 Cablegram OKMAC

0

Wilmslow Audio

THE firm for speakers!

SEND 15p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC. AND DISCOUNT PRICE LIST

ACT - AUDAX - BAKER

BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON - JR - JORDON WATTS KEF - LEAK - LOWTHER - McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM - RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO (Dept. P.E. 8) SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

[^2]

SMUG

WE ALL like to feel a bit smug some times and we hope P.E. has a right to this month-though not for long! The V.D.U. System construction project which appears in this issue is believed to be the first design published in Britain, and makes use of an excellent Thomson CSF chip which has recently become available on the amateur market. The new chip incorporates most of the electronics required to produce a memory mapped system.

The unit provides, at a relatively low price, one of the most useful peripherals for the home computer man. All components, including the modulator, are on one "small" p.c.b. which includes 1 K of user RAM mounted in a novel way.

The second item which we feel is worthwhile is the sheet of STICKIES, free with this issue. We have said they are worth 60p, which is true, but in fact with postage etc. you would have to spend 80 p to get this product. Since they are so useful (see page 1093) we are sure most readers will consider them a very worthwhile gift. They are, of course, worth more than the cost of the issue!

VALUE

With the inclusion of more editorial pages per issue in recent copies of P.E.-and such items as the free STICKIES, 8-page supplement next month and some planned special offers etc., we have been doing our best to give good value for money and will, of course, continue in this way. However, as we said above, we won't be staying smug for too long as next month the price of P.E. will rise to 50 p.

The last price increase was with the November 1977 issue-exactly a year ago and, as we all know, inflation has and no doubt will, continue. Our costs go up and reluctantly these must eventually be passed on. We hope you will still consider P.E. good value for money.

SAVING

Over the years we have presented a number of projects to help readers to save money in one way or another and our Fuel Consumption Meter in this issue is no exception. The price of oil regularly makes the headlines and no doubt it will not be long before this happens again. With the aid of our consumption meter better fuel economy can be achieved-something
we can all benefit from in one way or another.

If readers have devised other cost saving circuitry we would be pleased to hear from them. Even if you have an idea for some equipment a letter to us could set a few minds going and maybe a designer working?

To give an idea, a spontaneous invitation for suggestions from the office brought forth the following:

An independent timing device to display the cost of a telephone call (local or distant), and along similar lines, a meter for mains power consumption reading pence per hour.

PARTICIPATION

We try to keep Readout interesting each month and publish the "bad" with the "good" and sometimes even the "ugly"-see page 1102—but so much depends on you transmitting your views and thoughts! It is good to see some interesting and constructive submissions to Microbus this month and, as always we have plenty of I.U.'s, but please don't forget that Readout is your page so keep the letters coming and we will keep publishing the interesting and informative ones.

Mike Kenward

EDITOR

Mike Kenward
Gordon Godbold ASSISTANT EDITOR
Mike Abbott TECHNICAL EDITOR
Alan Turpin PRODUCTION EDITOR
David Shortland TECH. SUB EDITOR

ADVERTISEMENT

MANAGER D.W.B.Tilleard

Jack Pountney ART EDITOR

Keith Woodruff SENIOR ARTIST
John Pickering SEN. TECH. ILLUSTRATOR
Isabelle Greenaway TECH. ILLUSTRATOR
Judith Kerley SECRETARY

Editorial Offices:
Westover House,
West Quay Road, Poole,
Dorset BH15 1JG
Phone: Editorial Poole 71191
We regret thet lengthy technical enquiries cannot be answered over the telephone.

Advertising Offices:
King's Reach Tower,
King's Reach, Stamford Street, SE1 9LS
Phone: Advertisements 01-2615000
Telex: 915748 MAGDIV-G
P.J. Mew representative
C. R. Brown CLASSIFIED MANAGER

Make Up and Copy Dept.
Phone: 01-261 6601

Subscriptions

Copies of PE are available by post, inland or overseas, for $£ 10.60$ per 12 issues, from: Practical Electronics, Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

Back Numbers and Binders

Copies of most of our recent issues are available from: Post Sales Department, IPC

Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 65p each including Inland/Overseas p \& p.

Binders for PE are available from the same address at $£ 2.85$ each to UK addresses, £3.45 overseas, including postage and packing, and VAT where appropriate. Orders should state the year and volume required.

Cheques and postal orders should be
made payable to IPC Magazines Limited.

Letters

Queries regarding articles published in PE should be addressed to the Editor, at the Editorial Offices, and a stamped, addressed envelope enclosed. We cannot undertake to answer questions regarding other items, nor to answer technical queries over the telephone.

WONDERBOARDS

Fresh in from across the big pond, Wonderboard is a solderless breadboard system using holes filled with a conductive elastomer (rubber) as the connecting points. The contact points are accessible from both sides of the board enabling components to be mounted one side and wire linking to be made on the other. Hole pitch is $0 \cdot 1$ in and there are six rows of 31 holes allowing up to a dozen 14 d.i.l. devices to be mounted. Each contact point will hold up to six wires.

Specifications given are as follows:contact resistance $10 \mathrm{~m} \Omega$, current capacity 7A, breakdown voltage 9 kV , insulation resistance $10,000 \mathrm{M} \Omega, \mathrm{min} / \mathrm{max}$ wire diameters 0.2 to 0.8 mm (32 to 20 gauge), contact life 150 insertions, useful temperature range -55 to $+100^{\circ} \mathrm{C}$. No noise/frequency figures were given but have been requested.

Wonderboards are available singly at $£ 2.50$ from Charcroft Electronics, and distributor enquiries are invited.
Charcrof Electronics, Charcrof House, Sturmer (Haverhill), Suffolk. Tel. 04405700.

COMPACT TEMP CONTROLLER

Capable of switching or controlling 3 kW directly, the CAL 6103 high power, compact temperature controller is a panel mounted unit with a DIN standard $48 \mathrm{~mm}^{2}$ bezel, and a ± 1 per cent accuracy (typical) under steady load conditions.

The CAL 6103 is available to order in temperature ranges from $0^{\circ} \mathrm{C}$ to $1,600^{\circ} \mathrm{C}$. Any specified thermocouple input, or PT 100, can be supplied.

Its proportional control system avoids the

unnecessary "hunting" encountered in other compact on/off temperature controllers. Time cycling is set to a "standard" 20 secs which suits most applications. However, CAL will supply units with cycle times from 5 secs to 120 secs to order.

For resistive loads the output/control relay will switch 14 A at a.c. mains voltages. A static output can also be provided to accommodate remote thyristor control systems.

For further information contact Controls \& Automation Limited, Regal House, 55 Bancroft, Hitchin, Herts.

3-RAIL POWER SUPPLY

A three-rail Eurocard power supply announced by Lascar Electronics is suitable for most circuits where digital and linear devices are mixed.

The supply features one output of 5 V 1 A , and dual tracking outputs adjustable between $\pm 5 \mathrm{~V}$ and 15 V with a maximum of 100 mA per

rail. The 5 V and twin-rail supplies are isolated from each other and feature short-circuit, over-temperature and fold-back over-current protection. Input voltages 220 V a.c. or 240 V a.c. The supply is fitted with terminal blocks on the input and outputs, and is assembled on a p.c.b. measuring $160 \times 100 \mathrm{~mm}$, with a maximum height of 47 mm .

For details contact Lascar Electronics Limited, PO Box 12, Module House, Billericay, Essex.

EXTRACTOR TOOL

Designed for the specific task of automatically extracting i.c.s from p.c.b.s on completion of the desoldering operation, the DIP-OUT tool from Vero Electronics eliminates the danger of damage to i.c. legs by virtue of its "even pull" action. When used with a desoldering block it provides a fast and efficient method of removing i.c.s. The price of the tool is $£ 5.67$ plus VAT.

For further information contact Vero Electronics Limited, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire.

MICRO-BOARD

With the increasing use of S 100 boards and bussing systems in microcomputers, Vero Electronics have released a universal $\$ 100$ bus-compatible prototyping board. Designed for the manufacture or breadboarding of microprocessor, memory or interface assemblies the board will, without modification, mount directly into any equipment using the S 100 bus system.

The board has an $\$ 100$ edge connector configuration (100 gold-plated contact fingers on $3.175 \mathrm{~mm} / 0.125$ in pitch) and is fully pierced with $1.02 \mathrm{~mm} / 0.040$ in diameter holes on a $2.54 \mathrm{~mm} / 0 \cdot 1$ in matrix. Provision is made for mounting up to four standard TO-220 plastic package regulators together with heatsinks for on board regulation, and the voltage plane is capable of being divided to provide up to four separate positive or negative supply rails. The component side of the board carries a ground plane which can be used for terminations or screening and the wiring side carries both voltage and ground planes, thus providing for up to five planes.

A wide range of compatible standard accessories such as DIP sockets, pins, headers, ribbon cables, etc. is available, enabling the prototyping board to cope with virtually any microprocessor or microcomputer circuit requirement.

For further information contact Vero Electronics Limited, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire.

£100 SCOPE

The Elmac 4810 single beam oscilloscope will interest many constructors because of its low cost ($£ 99.00$ plus VAT) and excellent specification which includes 4 in CRT, d.c. to 5 MHz bandwidth (vertical axis), $1 \mathrm{M} \Omega$ input impedance and a maximum input voltage of 600 V peak to peak.

For further information contact Gemini Electronics, Newton Building, Newton Street, Manchester 1.

PROGRAMMABLE TV GAMES

General Instrument Microelectronics have introduced a new set of MOS microcircuits for use in cartridge-based programmable TV games. Known as SYSTEM 8601, the circuits include a clock generator, colour encoder, modulator and a selection of cartridge microcircuits-enabling fully programmable games systems to be built at low cost.

Each games system will consist of a console into which individual game set cartridges are slotted. Each console will contain clock, encoder and modulator, as well as game controls, switches, power supplies, etc. Each cartridge contains individual games microcircuits,
plus interface circuitry, and all sets will feature realistic sound generation and on-screen scoring.

Some of the cartridge-mounted microcircuits are already available, including the 8610 "Supersport" (20 games), the 8765 "Motorcycle" (8 games) and the 8603 "Road Race" set (3 games). Three more circuits-the 8607 "Target" (12 games), the 8606 "Wipeout" (24 games) and 8605 "Warfare" (10 games)-will go into production within two months, with more to follow before the end of the year. For further information contact General Instrument Microelectronics, Regency House, 1-4 Warwick Street, London, W1R 5WB.

CRUSH PROOF DMM

A new series of true r.m.s. $4 \frac{1}{2}$-digit multimeters for bench and field use has been introduced by Systron-Donner Limited.

This new series consists of four models, available with a choice of d.c. accuracies of either 0.02 per cent or 0.05 per cent, and with a choice of current or dB measuring modes.

All models feature auto and manual range selection with a.c. and d.c. voltages from 10 microvolts to 750 V and $1,000 \mathrm{~V}$ respectively, measured in five ranges. A true r.m.s. a.c. converter permits accurate measurements of triangles, pulses, square waves or distorted sinewaves up to 20 kHz .

The resistance mode offers six ranges allowing measurements from 0.01Ω to $20 \mathrm{M} \Omega$. All ohms ranges are protected against input overloads of up to 350 V r.m.s.

This multimeter will also measure dB from -60 to +60 in five manual ranges. This capability is especially useful in checking long line voice communications. The dB mode is offered in place of the 5 d.c. and a.c. manual current modes which cover measurements from 1 microamp to 2 amps .

The cost of a DMM is directly related to the d.c. accuracy specification. Since applications can vary, Systron-Donner decided to offer its new Portable DMM with two different basic d.c. accuracies. The Model 7141 A , which is the lowest priced has a d.c. accuracy of ± 0.05 per cent of reading ± 0.05 per cent of full-scale for a full 6 months. The Model 7141B offers a basic d.c. accuracy of
± 0.02 per cent of reading ± 0.01 per cent of full scale for a full 6 months. Care was taken in designing the circuit to choose components that minimised drift.

Two extra cost options can be specified: one adds an analogue meter to the front panel. This gives the user the ability to make nulling and/or peaking measurements and the other is a battery pack. An internally mounted set of

six nicad batteries provides approx. $2 \frac{1}{2}$ hours of continuous operation between charges.

Portable DMMs need to be packaged to withstand frequent handling and accidental drops. To prevent damage, the unit is installed in a clamshell-shaped case made from Cycloy-the new ABS/Polycarbonate plastic alloy. The result is a case which is drop-proof and crush-proof.

For further information including price contact Systron-Donner Limited, St Mary's Road, Sydenham Industrial Estate, Leamington Spa, Warwickshire.

4-DIGIT PRESET COUNTER

A new 4-digit counter module claimed to be capable of almost all counting functions has been recently introduced by Lascar Electronics. Working from a +5 V d.c. supply, the module incorporates 0.43 in high efficiency 1.e.d.s and is capable of counting at rates up to 2 MHz . Besides normal counting from input pulses, the display can be set from external BCD sources.
The module also incorporates an internal register. When counter and register are level,

an "equals" output is produced giving many applications in batch counting, machine control etc. Thumbwheel switches can be used to set levels in both cases.

TTL/CMOS compatible, the module also features carry-borrow and zero outputs and count inhibit and store controls.

The count input has a Schmitt trigger making the module suitable for use in noisy environments.

For details contact Lascar Electronics Limited, PO Box 12, Module House, Billericay, Essex.

IRON CONTROLLER

Miniaturisation of components and increasingly complex printed circuit board design have brought in their turn the need for precise operator control of soldering irons. Apart from the likelihood of expensive damage caused by poorly earthed soldering instruments the operator now has to position the soldering bit more carefully, often in close proximity to heat or voltage sensitive components.

To provide maximum operator control, Adcola Products Ltd has designed a new Unit 101 TS model which features a far shorter and lighter soldering instrument.

The main circuit design is based on a thermocouple positioned at the rear of the solder-

VIDEO SYSTEM

The consumer's choice in video recorders is further extended this month with the arrival of National Panasonic's VHS (video home system) NV8600.

The unit, which is similar in operation to an audio cassette deck with controls for play, stop, rewind and fast forward also has a remote "pause" control to enable easy editing of unwanted material from a programme.

Three, two and one hour tapes are available at $£ 13 \cdot 50, £ 10.50$ and $£ 8.00$ respectively and these tapes can run on any of the other VHS recorders on the market in this country. Lining up with National Panasonic to offer video home systems are Akai, Hitachi, JVC, Mitsubishi, Sharp and Thorn.

The NV8600 which is priced at $£ 750$ including VAT is available through High Street TV retailers.
ing bit feeding an operational amplifier which is switched via a zero crossing integrated circuit. This design avoids the need for moving parts which may wear and eliminates voltage transients in "Spiking", RF interference and the generation of magnetic fields. Proportional control also ensures a precise temperature to within ± 2 per cent of the indicated dial temperature-the dial may be locked onto any specific temperature within the range of $120-380^{\circ} \mathrm{C}$.

The unit is earthed from the supply to the soldering bit to provide maximum safety against leakage currents, making the tool suitable for use with the majority of voltage sensitive components including FETs and CMOS.

For further details and a full specification on the unit contact Adcola Products Ltd, Adcola House, Gauden Road, London SW4 6LH.

ROCKWELL'S AIM

Rockwell, who recently announced a single chip microcomputer called the R6500/1, have just introduced a single board microcomputer system which features an on-board 20 column printer and display with a full alphanumeric keyboard.

Designated the AIM 65 the system is intended as an educational aid for first time users and a general purpose microcomputer for engineers.

The AIM 65 is available in 1 K and 4 K byte RAM versions, is designed around the 6502 CPU which has 64 K address capability with 13 addressing modes and is the microprocessor at the heart of other popular systems such as KIM 1, PET and

APPLE. An 8 K ROM resident monitor programme provides all peripheral control and user programming functions. Spare sockets are included to further expand on-board program memory via user PROM-based programs or Rockwell's assembler, text editor and BASIC interpreter plug-in ROM options.

The AIM 65 board also has a connector that allows external access to the system bur for memory and I/O expansion. A separate application connector interfaces a teletype and two standard cassette recorders, and includes a user-dedicated Versatile Interface Adaptor. The VIA features three 8 -bit bidirectional ports (two parallel, one serial) and two 16 -bit interval timer/event counters, thus allowing the user to interface his own system, in many cases without the need for extra interface devices.

The system which is priced at under $£ 250$ is stocked by Pelco (Electronics) Ltd., Enterprise House, 83/85 Western Road, Hove, Sussex.

FRANK W. HYDE

PLUTO

Once again doubts about the most distant planet yet to be discovered in the solar system arise. It is a reminder that each new set of data which becomes available can seriously upset previous ideas. There have been many expressed doubts about Pluto, more perhaps than in regard to the other bodies revolving round the Sun.

Only a short while ago the size of Pluto was re-assessed. It demoted the planet from an estimated size of near to that of the Earth and of the same density, to the size of the Moon. Quite plausible reasons were given for this. The density was suggested to be about $\cdot 01$ of that of the Earth.

The acceptance of this meant that in no way could the perturbations of Uranus be linked with the effects of Pluto and its proximity. As previously reported in SPACEWATCH about three years ago the Soviet Union had calculated that there were possibly two planets beyond Pluto.

The two planets were shown to respond to a position from the Sun, but no celestial coordinates were offered. The suggested distances were: one at a distance of 54 astronomical units from the Sun which would imply a possible diameter of 12,000 miles; the second was set at 100 astronomical units from the Sun with a diameter of 18,000 miles. In that event the period of the first one could be of the order of 350-370 years and that of the second of the order of 1,000 years. It must be remembered that the whole of these data represent a computer mode. No visual identification has been made.

Now a new situation arises as the, result of the discovery of a satellite associated with Pluto. This body has been named Charon, the name bestowed upon it by its discoverer. The present official designation is $1978-\mathrm{P} 1$. Until the details are truly confirmed retains the number. However there seems to be little doubt that it is a satellite and in accordance with custom the discoverer has the choice of
name. The discoverer was James Christy from the Naval Observatory, Washington, DC. It was part of a study to refine the data regarding Pluto's orbit which is a nominal 248 years. The plates examined showed an elongation of the planet.

This set Christy the task of confirmation from other photographs that had been taken. He made an examination of the photographs taken from the same observatory in 1970 and in 1965. The telescope used was that situated in Arizona (Flagstaff). These pictures had the same evidence but the observers then had decided elongation was due to a plate fault.

A confirming plate was taken with a 4 m telescope at Cerro Tololo Inter-American Observatory in Chile. Also a third confirmation has come from J. Derral Mulholland from photographs taken in 1977 at Macdonald Observatory in Texas. However as there has not been a plate so far that shows a division between the planet and the satellite, final confirmation cannot be assumed.

While resolution has not been attained the fact is that if it is not a satellite then it will have to be concluded that Pluto is several times longer than it is wide. In other words more like one of Mars' satellites. This would seem highly unlikely. The very existence of a satellite immediately provides atronomers with a tool to measure the parent body.

Robert Harrington, of the Naval Observatory, has given the centre to centre distance between the planet and the satellite as $17,000 \mathrm{~km}$. Its diameter is set at about 40 per cent of Pluto. If this is so, then the satellite is the largest, in proportion to its parent, such body in the solar system. The orbital period is 6.4 days. This means that it is stationary over one point on Pluto's surface, as Pluto's own period of rotation is calculated at 6.4 days. The estimate of density of the satellite indicates that Pluto has a density of 0.002 of Earth.

This alters entirely the current picture of the Planet. Now it confirms the model that Pluto (because its density is less than that of water) may well be nothing but a snowball. That is a snowball of frozen gases. The infra-red observations from Kitt Peak, showed that a plentiful covering of the gas methane (frozen) was apparent on the surface.

Brian Marsden of the Smithsonian Astrophysical Observatory who is responsible for the coordination of new discoveries has said that perhaps Pluto should be re-classified as a minor Planet.

Theories have been offered by Robert Harrington and T. Van Flandern of the Naval Observatory. The foremost hypothesis is that an unknown planet at some time in the past passed through the satellite system of Nep-. tune. If it had a mass of four times that of the Earth it would have disrupted the system and Pluto ejected as a result. The new satellite of Pluto could have been created then. If this were the case then the intruding body would have been violently thrown about and could now be a tenth planet at a distance of 50 to 100 astronomical units from the Sun. It would be too faint to be easily seen and a long programme of searching might be necessary to locate it.

This agrees with a previous study in 1972 when Rawlins and Hammerton were searching for another planet. They suggested
that the motion of Neptune was consistent with a body of 2 to 5 Earth masses at a distance of between 50 and 100 astronomical units. The suggested longitude would be between 310° and 350°. At the same time they made it quite clear that they did not think that there was such a planet. The reason for this was that at the time of the search for Pluto the Lowell Observatory covered so much of the sky in their search that if there had been a body of reasonable brightness it would not have been overlooked. However a spherical coverage was not made.

Here is the point where present space activity meets with astronomy and this recent discovery. August SPACEWATCH gave details of the mission for the exploring of the areas around the Sun out of the plain of the ecliptic. This could very well reveal such a body or indeed the two bodies suggested by the Russian astronomers.

The classical theory of Pluto's origin is that it was once a satellite of Neptune. It was thought that it orbited Neptune every 6.4 days but came to near collision with Triton, another Neptunion satellite. The result of this encounter threw Triton into its present retrograde and ejected Pluto to become a planet of the Sun.

There is another matter to be considered and that is whether in fact Pluto and its satellite is a binary unit. With the present figures it would suggest that the two bodies revolve about a centre 6800 km from the centre of Pluto. Thus there would be a system which behaved in the manner of a body $13,600 \mathrm{~km}$ in diameter. This aspect well deserves some consideration.

A mission to investigate seems a must. Could it be that the Halley comet probe might do this after the cometary encounter. There seems to be a good case for knowing once and for all whether Pluto does have a significance in the Solar system.

MORE FROM THE USSR

The success of the Soyus-30 and the Progress-2 mission is already established. The space-walk also marks another satisfactory point in the progress of Soviet ventures.

The new furnace known as Kristall has been in use to produce pure monocrystals by the zone-melting technique. The furnace was used to form a monocrystal of gallium arsenide from a high temperature solution. The new furnace is installed in the transfer tunnel of Salyut-6. The crew have also been working on the Splav furnace to obtain new semiconductor materials and compounds of aluminium and tin and molybdenum.

COPERNICUS DISCOVERS BLACK HOLE

Among the instruments on the Orbiting Astronomical Observatory known as Copernicus there is an X-ray telescope from University College, London. It is this instrument which observed the X-rays of the super-giant double star in the constellation of Scorpio. Work which began in the 70's under Norman Walker of the Royal Greenwich observatory had shown that the super-giant had an unseen companion. The star is about 5,000 light years from Earth. The amount of X-rays received indicate that the unseen object must be a collapsed star.

PRACILCAL EIECTRONICS DDDDDDD UU UU DD DD DD DODODOD yuv DDEDDD SYSTEM Part 1

LATEST DEVICE = LOWEST PRICE = SIMPLEST CONSTRUCTION = MEMORY MAPPED VDU

THIS project has been written to satisfy one of the most important needs of the home microcomputer constructor-an inexpensive output device for ASCII characters. The VDU shown here uses the very latest "one chip" VDU controller and provides, among other things:
(a) 16 lines $\times 64$ ASCII characters.
(b) Full memory mapping, enabling random access to any part of the screen.
(c) An extra 1 K bytes of user RAM.
(d) Full cursor control and screen scrolling in hardware
(e) High speed (limited only by MPU).
(f) An inexpensive and easily constructed design
(g) An excellent addition to an evaluation kit.

The output from the unit is either in the form of video information suitable for a video monitor (or modified TV), or UHF modulated information to plug straight into a TV aerial socket.

The VDU shown in Fig. 1 is a complete output peripheral for a computer of any type. The details described below are orientated towards microcomputer based machines of 8 bit (one byte) word length, but apply almost unaltered to any type of system. The machine contains a 1 kilobyte block of user random access memory (RAM) which forms an addition to the MPU's addressable memory. The VDU should be thought of as a "window" to this area of RAM where each character position is a memory location in the microcomputer.

This type of VDU design has several advantages over the straightforward video writer system which acts very much like a teletype, all information being sent sequentially, thus preventing the random selection of any character slot.

The design is based around the new chip by ThomsonCSF which carefully controls the display timing with a minimum of extra chips. This i.c. also generates a flashing cursor with full position control, and allows the screen to be scrolled in the fashion of a roll of teletype paper in action (all hardware functions within the chip). This is described in detail later.

The VDU has ten address, eight data and seven control lines which interface to the standard bus systems of most MPU designs. The timing of the unit is generated using a 1 MHz quartz crystal.

All character information is in standard ASC\|l character coding. It is advisable to keep, close at hand, a copy of the hexadecimal equivalents to each of the 64 characters in the 2513 character generator.

To interface a VDU to a computer system, some basic software is required. The VDU programme which suits your machine will depend upon its resident monitor. The basic elements, however, of a VDU programme will be common to most MPU systems. A general example is presented later to help with VDU utilisation.

OPERATION

The heart of the system is the Cathode Ray Tube Controller (CRTC). The clock requirements of this chip are supplied by a TL oscillator circuit which is then divided by eight and fed to the clock input of the CRTC. To understand the working of this device, it is necessary to appreciate that the brightness of a TV line is proportional to the voltage level applied to its video input.

Fig. 1. Block diagram of VDU. Connection of the data bus, address bus, and some common control lines will allow this system to work with most microcomputer systems

As the line of a TV picture strobes across and down the screen, it must lighten and darken at exactly the right moment to build up a complete picture. Only two levels are used here: logical one, and logical zero, giving white and black. These ones and noughts are stored in the 2513 readonly memory employing it as a character generator, and it is the CRTC which controls the exact moment at which these are available to be displayed on the TV screen. A TV line is continuous and needs the ones and noughts in a sequential manner, hence the use of the "parallel-in serial-out" device, whose speed of transmission is determined by the TTL oscillator.

In order to send the correct character to any position on the screen, the CRTC generates the addresses for the RAM block which sends back the characters for display in the form of ones and noughts along its data lines: These are latched and form the address inputs for the 2513. The CRTC places white regions between characters by disabling the 2513 in those time slots.

In this mode of operation, the address buffers between the CRTC and the RAM are enabled (at zero level), and the data buffers into the RAM and the address buffers from the MPU are disabled. The RAM is also held in a "read" condition, being a one on the read-write ($R \bar{W}$ W) line. When the MPU wishes to address the RAM, the states of these buffer-enables are changed to allow the MPU to read or write to or from the RAM. The $R \bar{M} \bar{W}$ line is controlled accordingly.

The final block of the system is a UHF modulator to allow the VDU to interface to an unmodified TV set. The definition of the display is always partly degraded by this technique. For those with a monitor or a modified TV set, a video output is provided which gives a highly stable and clear display.

CONTROLLINES

The VDU-select line is decoded from the upper address lines of the MPU system and is active-low. The enable line is a control generated by most MPU systems to enable only
when the address information is valid, thus preventing a false read or write. This line is fed from VMA \& Φ_{2} in a 6800 system and is also active-low. R/W is generated by MPU systems to distinguish between a read $(\mathrm{R} / \bar{W}=1)$ and a write ($\mathrm{R} / \overline{\mathrm{W}}=0$) operation.

This leaves only the CRTC control lines $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$ and $\overline{\mathrm{ST}}$. They are specific to this chip and allow hardware control of the cursor (a flashing character permanently on display). The cursor may be moved up, down, left or right, by applying the appropriate ones and noughts on $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2}. ST is used to inform the CRTC that a control word is present.

OPERATING SYSTEM

Displaying information on the screen is a very straightforward operation with this VDU. Characters are displayed by writing their ASCII codes to memory locations in the VDU. The exact addresses involved depends upon where in memory the VDU RAM has been placed.

It should be remembered that the display consists of 1024 ASCII characters arranged so that the top left position on the screen is the lowest address in the block. Thus, a user may decide to place this additional 1 kilobyte block of user RAM at address 0000 to 03FF (hex), for instance. These particular addresses are best used for other things in a 6800 system, however, and a better suggestion is to place it at, say, 1000 to 13 FF . This means that the ten lower address lines, A_{0} to A_{9} are necessary to distinguish between each address on the screen. The upper six lines must be decoded to address this particular block of memory as opposed to any other. This occurs when A_{15} to A_{10} have values 000100 respectively. That is, when the MPU places these six values on the respective address lines, the VDU Select line must go low. The first 10 address lines of the MPU are fed to the VDU and take care of addressing within the VDU RAM automatically.

A typical display operation is illustrated by the following example. Suppose the word "hello" followed by spaces, is to be displayed on the top line. The letters of "hello" are first converted into their hexadecimal equivalents in ASCII:

$$
\begin{aligned}
H & =48 \text { (hex) } \\
E & =45 \text { (hex) } \\
L & =4 C \text { (hex) } \\
O & =4 \mathrm{~F} \text { (hex) } \\
\text { SPACE } & =20 \text { (hex) }
\end{aligned}
$$

A small program is now written to store 48, 45, 4C, 4C, 4 F , in consecutive memory locations starting at 1000 , in the above system. This displays the word at top left of the screen. Another program is then written to store 20 in locations 1005 through 103F. This fills the rest of the top line with blanks. In this way, any program, while running, simply stores the ASCII equivalents of its output somewhere in the VDU RAM.

Another important use of the VDU comes in program writing. Several ways may be used to check on what has just been written. The program may simply be input to the MPU system by a bootstrap loader. This is the type most commonly found in MPU monitors.
A "dump" of the contents of a block of memory containing this program may then be displayed on the screen for checking. Some monitors already contain a formatted dump, and it is then simply a question of ensuring that the VDU RAM is enabled at the correct addresses for this monitor. The writing of this sort of software is quite straightforward and well worthwhile. Another important method of checking during program development is to display the program one byte at a time as it is written.

Fig. 2. Cursor control flowchart

Fig. 3. Scrolling flowchart

The experimental prototype VDU board. Next month a double sided p.c.b. layout will be published which incorporates all refinements including the modulator

Two examples of the type of display attainable

Resistors

R1	$8.2 \mathrm{M} \Omega$
R2, R3	$560 \Omega(2$ off $)$
R4	$47 \mathrm{k} \Omega$
R5, R11	$1 \mathrm{k} \Omega(2$ off $)$
R6	220Ω
R7	$3.3 \mathrm{k} \Omega$
R8	$1.2 \mathrm{k} \Omega$
R9	$2.7 \mathrm{k} \Omega$
R10	$1 \mathrm{k} \Omega$
(all $1 \mathrm{~W} 5 \%$ carbon film)	

Potentiometers

VR1	$100 \mathrm{k} \Omega \mathrm{min}$ vert preset
VR2	$100 \Omega \mathrm{~min}$ vert preset

Capacitors

C1	$0.22 \mu \mathrm{~F}$ Disc ceramic
C2	100 pF Sub min ceramic plate
C3	82 pF Sub min ceramic plate
C4	33 pF Sub min ceramic plate
C5	47 pF Sub min ceramic plate
C6	10 nF Disc ceramic
C7	$33 \mu \mathrm{~F} 10$ volt Tantalum bead
C8	$220 \mu \mathrm{~F} 16$ volt electrolytic
C9	$47 \mu \mathrm{~F}$ tant bead (10V)

Semiconductors

IC1	SFF96364 plus socket
IC2-IC9	2102 LF (350nS) (8 off)
IC10	2513 (single supply type) plus socket
IC11	74174
IC12	74165
IC13-IC16	81 LS97 (4 off)
IC17	74163
IC18	74 LS 132
IC19	7402
TR1	BC184
TR2	2 N 3663
XTAL 1	1 MHz

Miscellaneous

SK 1 chassis mounted coaxial TV socket plus nuts and bolts for fixing
Two pieces of Veroboard (0.1 in matrix) $46 \times 25 \mathrm{~mm}$ each
PP3 battery connector
0.5 metre of 8 -way ribbon cable

Pins for through-board connection
Switches: S 1 s.p.d.t. S2 s.p.s.t.

Constructor's Note

A complete kit of parts including a drilled plated through p.c.b. will be obtainable from Technomatic (01-204 4333). Details next Month.

A limited number of assembled and tested boards will also be available exclusively from Technomatic Ltd., 17 Burnley Road, London NW10.

Normally this would be done as follows. A byte is loaded from the keyboard into some memory location. A jump to a display routine is then performed, which puts the address just loaded plus its old and new contents onto the screen. This is repeated until some control character tells the load routine to end.

The importance of a cursor, plus good screen management or formatting in this process cannot be over emphasised. Fortunately, the CTRC has a set of quite sophisticated cursor control commands, as previously mentioned.

A particularly effective and striking feature of the CRTC is its hardware scrolling function. If a Cursor Down (line-feed) command is given when the cursor is on the bottom line, the entire screen's contents jump up one line with the top line jumping to the bottom. This also occurs if Cursor Right operation is commanded with the cursor in the last position on the screen.

After such a scrolling function, the lowest address of the 1 kilobyte RAM is no longer displayed at the screen's top left. Instead, it is at the extreme left of the lowest line. A write operation to this address causes a character to appear in a position on the screen dependent upon the number of scrolls which has been performed. However, the Cursor Home operation forces the whole display to "de-scroll" and the display reverts to normal, with the cursor at top left.

The cursor operation required at any time is converted into a code of ones and noughts and applied to $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} according to Table 1.

The technical specifications of the CRTC demand that the $\overline{\text { ST }}$ control line (normally in a high state) should complete a low pulse of at least $1 \mu \mathrm{~s}$ a minimum of 8.3 ms after any code is applied to $\mathrm{C}_{0}, \mathrm{C}_{1}$ and C_{2} (apart from Cursor Home). This informs the CRTC of the presence of a cursor control word. The Cursor Home command requires at least 132 ms between the control word and the ST pulse. This is best done in software by the simple loop shown in Fig. 2.

Table 1. Cursor control codes

OPERATION	Co $_{0}$	C_{1}	C_{2}
cursor home	0	0	0
cursor home left	0	0	1
line feed	0	1	0
cursor left	1	0	0
cursor up	1	1	0
cursor right	1	1	1

The speed of operation of your MPU decides whether you should load A in the above with 00 (hex) initially or some higher number which will revert to 00 in fewer loop steps. A simple VDU routine is shown in Fig. 3. This routine assumes that a character to be displayed is stored in ASCII code in a register (called the A register here). The cursor position address is also assumed to be stored in a register (called the X register). Characters are written to the bottom of the display and a carriage return operation causes the screen to scroll upwards. Spaces are then written to the end of the current line, and the cursor is moved to the start of the line. Information thus enters on the bottom line, following the cursor, and then scrolls up the screen.

This completes the description of the system and in the next issue, constructional details and setting up procedures will be given.

The reader is urged to obtain a copy of the data sheet for the CRTC and 2513 chips for additional information.

NEXT MONTH: Assembly of p.c.b. and construction of high density RAM module.

polint nitinle

DIMWIT (July 1978)
Some constructors may find that during the period between the dim-out sequence and when the relay drops out, the lamp flickers. A cure for this is to shunt the I.d.r. (R13) with a 220 k resistor.

LINEAR CAPACITANCE METER (June 1978)

Unfortunately another error in this article has come to light. IC4 and IC7 should be wired between +6 V and -6 V . In Fig. 4 they are shown connected to OV.

KILN CONTROLLER (June 1978)

In Fig. 2 page 733 the value of R8 should be $10 \mathrm{k} \Omega$ and the voltage rating of C2 in Fig. 4 should be 450 V .

The setting up procedure on page 734 refers to the output of IC2 instead of IC3.

Be the first one down your street to land on the moon. Sixty seconds to make a gentle landing with only a limited amount of fuel. You have a readout of height, velocity and fuel remaining but if your efforts fail you can still push the panic button and run on medicinal whisky.

PONER FAS

A feature on the new semiconductor technology which is challenging the supremacy of the bipolar transistor in many power applications.

PRACTICAL

OUR NOVEMBER ISSUE WILL BE ON SALE FRIDAY, 13 OCTOBER, 1978, PRICE 50p.

This unit does not show the average m.p.g., but gives an instantaneous fuel consumption related factor. You can check your driving efficiency. As your foot goes down on the accelerator, down goes the m.p.g., and up it comes again when your foot does!

THIS article describes a fuel consumption meter which has been operating successfully for many months. The attributes of the system are:
(a) Two digit digital display
(b) Mainly low-price TTL
(c) Interfaces to the car via a simple connection to the SU electric fuel pump, and an easy modification to the Car's speedometer.
An SU electric fuel pump may be fitted to any car using a mechanical fuel pump, provided that the former can provide the fuel at a satisfactory rate. In the author's case, a 1725 cc Hillman Hunter was fitted with a fuel pump borrowed from and aged side-valve Morris Minor. The Hunter never showed any signs of fuel starvation despite very hard driving. Fig. 2 shows a simplified diagram of such a pump. As the pump operates, the voltage at point " A " alternates between +12 V and $O V$ (for - ve earth vehicles).

The measurement system may conveniently be considered as two interconnected sections, as depicted in Fig. 1.Referring to this diagram, the distance monitor counts pulses derived from the speedometer, whilst pulses at a slower repetition rate derived from the fuel pump cause the generation of a series of internal control pulses which halt the speedometer counting process, store and display the count to date, and reset the counter. This effectively generates a measure of distance covered per operation of fuel pump, which it may be noted is of the same dimensions as miles per gallon, or for that matter, kilometres per litre, although it is clearly not in these units. Fig. 3(a) shows the counter module circuit, which utilises a total of six TL chips which drive a pair of 3015 F seven-segment displays. Its function is as follows: Provided that the reset line is kept low, pulses into the gated speedo input; or to be more specific, negative going edges, will cause the two tandemed 7490 s to count. Pulses to the strobe cause the 7475 s to latch their outputs to the count generated at their inputs by the 7490 s. The 7475 s outputs are converted by a pair of 7447 s into seven-segment display code.

The signals applied to this module, in relation to the signal received from the vehicle sensors, relative to time, are in Fig. 4 , which is not necessarily to scale. For each rotation of the speedometer cable, one pulse is applied to the gated speedo input, until the fuel pump operates, at which point the strobe and reset lines are sequentially pulsed in order to display the count since the last pump operation, and to reinitialise the counters.

Fig. 3(b) shows the second module; this circuit matches and converts the signals obtained from the speedometer and the fuel pump sensors into those suitable for TTL logic

SPEEDOMETER SENSOR

At this point, it is necessary to describe the method of application to the speedometer of a sensor. The method used by the author, which should be applicable to the majority of cars, was to mount a photo-sensitive device in the rear of the speedo in such a way that light is reflected from the speedometer illuminating bulb via a part of the rotating mechanism, onto the photo-device. The point at

Fig. 1. Simplified block diagram of Fuel Consumption Meter

Fig. 2. Diagram shows the fundamental arrangement of an electric fuel pump, and how the sense signal is derived. One-way valves direct the flow of fuel as the diaphragm oscillates
which this is mounted has to be carefully selected, and it may be necessary to paint parts of the internal workings of the speedometer with matt-black paint. It is also necessary to make a minor change to the speedometer illumination system, entailing severing the wire connecting the speedometer bulb to the sidelight system, and connecting it instead to the ignition switch, such that it is on, whenever the ignition is on. The photo-device is then connected to the module of Fig. 3(b) via screened cable. This precaution has been found to be essential in view of the high impedance nature of the phototransistor, when no light is falling on it.

The current changes caused within the phototransistor due to changes in the incident light are then used to drive a p.n.p. Darlington pair, the output from which is taken to a variable Schmitt trigger comprising a 741 with adjustable positive feedback, a level-shifting n.p.n. transistor, and finally a 7413 to generate suitable TTL levels, The setting of the three variable resistors will be described later. The signals from this section of the unit are then sent to the counter module for processing.

FUEL PUMP

The pulses from the fuel pump which have additional unwanted spikes in both the positive and negative sense, are first clamped to TTL levels by a pair of diodes, one of which prevents negative puises from entering the remainder of the circuitry, the other of which clamps the input level to less than 5 V . The pulses then go to a pair of retriggerable monostables, held in one package, the 74123. The two monostable multivibrators have periods of T1 and T2 where T1 is very much greater than T2. The output of the monostable of period T2 is used to drive the subsequent circuitry, while the output of the other monostable is used to inhibit false triggering caused by contact bounce, ringing and so on.

The subsequent circuitry comprises a pulse sequence generator to generate the reset and latch strobe pulses, and to inhibit the input of speedometer derived pulses. The heart of this system comprises a divide-by-eight counter, part of a 7490 (IC8) and a clock oscillator, part of 7413 (IC9). A pulse from the monostable driver will force the counter to reset, which allows the oscillator to function. This causes the counter to count from zero to four, in so doing, generating the required control pulses. When the counter achieves a count of four, the rising of IC8 pin 9 output inhibits the function of the clock oscillator.

Resistors

R1, R3	270Ω (2 off)
R2	$2.2 \mathrm{k} \Omega$
R4	$270 \mathrm{k} \Omega$
R5, R6	$240 \mathrm{k} \Omega 2 \%$ (2 off)
R7	$6.2 \mathrm{k} \Omega 2 \%$
R8	$27 \mathrm{k} \Omega$

All resistors $\frac{1}{4}$ W 5% uniess otherwise stated.

Potentiometers

 VR1, VR3 $100 \mathrm{k} \Omega$ vertical preset (2 off) VR2 $1 \mathrm{M} \Omega$ vertical presetCapacitors

C1, C2, C8, C9, C10	1 nF (5 off)
C3	$0.01 \mu \mathrm{~F}$
C4	$100 \mu \mathrm{~F} / 20 \mathrm{~V}$ electrolytic
C5	10 nF
C6	10 nF
C7	$22 \mu \mathrm{~F}$

Transistors and Diodes

TR1, TR2	OC200 (2 off)
TR3	2N3705
TR4	BP101, TDB7805T or equivalent
D1,D2, D3	OA202 (3 off)

Displays
X1, X2 2015 F (2 off)

Integrated Circuits

IC1, IC2, IC8	7490 (3 off)
IC3. IC4	7475 (2 off)
IC5, IC6	7447 (2 off)
IC7	7413
IC9	7400
IC10	7404
IC11	74123
IC12	741
IC13	7805 regulator

Miscellaneous

Three way plug and socket for sensor inputs. Metal case (prototype housed in box $162 \times 70 \times 50 \mathrm{~mm}$). Plug and socket for 12 V input. Veroboard. On/off switch. Integrated circuit holders if desired. Polarised display filter (for digital version).

- Not needed for meter display

Constructor's Note

The BP101 is available from Electrovalue. OC200 transistors are available from Watford Electronics, and Semiconductors Supplies, Orchard Works, Church Lane, Wallington, Surrey, SM6 7 NF.

SUPPLY PINS		
OV $+5 V$		
IC1 10 5 IC2 10 5 IC3 12 5 IC6 12 5 IC5 8 15 IC6 8 15		

Fig. 3(a). Counter module circuit (built on separate board)

Fig. 3(b). Interfacing module circuit diagram. This part of the system matches the sense signals to the TTL

Fig. 4. Sensor and control signals relative to time. These are not to scale

ANALOGUE DISPLAY

The author's unit employs a pair of seven-segment displays, but it might be felt preferable by some constructors to use an anologue meter display. These may easily be done by replacing the displays and their associated 7447 s with the circuit of Fig. 5. In this circuit, the inverted outputs of the two 7475 s are used to drive a 6-bit resistive digital to analogue converter, the resulting current from which is amplified by TR4, and used to drive a 1 mA meter movement. The emitter of TR4 is set to around 2.2 V below Vcc by the effect of the three diodes D3, D4 and D5 and

Fig. 5. Circuit diagram of meter display circuit. Devices marked with an asteriak in the main components list will not be necessary if this readout syatem is used

R15. This ensures minimum current flow when the outputs of the 7475s are high, thereby obviating the necessity of a set zero adjustment. VR4 is used to set the full-scale deflection value. This should be initially set to its maximum value, and when adjustment of the rest of the equipment has been made as next described, set to give the desired fullscale reading in use.

The use of a metal case is advisable for effective screening; the 5 V regulator can then be mounted on the rear of the unit for excellent cooling. The driver will probably be most curious about the fuel consumption reading when accelerating hard; a time when increased concentration on the road is required, and so care should be taken in the use on this instrument.

COMPONENTS . . .

CONSTRUCTION

The circuit layout is in no way critical, and in the author's case, the equipment was built on two small sheets of Veroboard, with each board corresponding to one of the modules described previously. The above having been said, it is important to observe two important rules: The decoupling capacitors on the 7490 s on the counter module board are essential to the counter chips' correct operation. They should be connected as closely as possible to the chip supply pins. In view of the electrically noisy environment within a car, due to ignition, and other radiation, the equipment should be constructed within an earthed metal box; failure to do so may result in spurious operation.

The author's Fuel Consumption Meter circuit was laid out on two pieces of Veroboard mounted one behind the other. Component layout is non-critical, and this photograph shows the basic arrangement of the counter section of the prototype unit.

Abstract

Interfacing section circuit board. Use Fig. 3 for interwiring. This board should be mounted so that the displays show through the front panel directly

SETTING UP

The only specific adjustment required in the system is that relating to the circuitry interfacing the speedometer to the TTL, and three preset adjustments have been found necessary.

Adjustment may most easily be done with the equipment in the car, and both driving wheels securely jacked-up clear of the road. With the engine started and idling slightly faster than normal, gently engage first gear. The three preset potentiometers should be initially set as follows:

> VR1 mid-position.

VR2 maximum resistance.
VR3 maximum resistance.
A test meter should be set to around the 5 V d.c. range, and connected to the output of the 741.

VR1 should be adjusted in either direction as necessary until the meter reading pulsates at a speed proportional to the speedometer reading. VR2 should then be adjusted until the pulsations just stop, and then increased by about 10 per cent. VR1 should be adjusted to the middle position of the range in which speedometer pulses are detected. So far, a centre point for the input pulses has now been determined, and by setting the positive feedback to the maximum acceptable, any rough tops to the waveform will be "ironed out". The number held by IC10 should now be checked; this should be the value 4 . If this is not the case, momentarily trigger the 74123 by connecting the pump sense wire to earth for a brief period. If after a very short period of time,
the 7493 does not halt in the mentioned rest state, something in this area is not in order and the circuitry should be checked. If all is well, transfer the test meter probe to the input of the 7413, and reduce the value of VR3 until the pulsations appear from the output of the 741, and then at the output of the 7413. The equipment is now ready for use.

INTERPRETING THE RESULTS

During normal driving, the readings presented by the equipment will fluctuate with changes in fuel consumption. It should be noted that two sources of inaccuracy can occur.

The first of these occurs because the float-chamber systems of most carburettors are gravity operated, and any violent disturbance in the car's motion, such as violent braking or cornering will affect the amount of petrol allowed into the float-chamber by the needle-valve, causing a momentary upset in the readings obtained.

Secondly, as is well known by Morris Minor, and doubtless other drivers, a marked lowering of the level of fuel in the petrol tank causes the pump to operate very rapidly as air, rather than petrol is ingested. The settings of the timing components on the 74123 is such that a cycle during which air is ingested occurs before the 74123° pulse of time T1 has finished, thus ensuring that the pulses from the pump are ignored when air is being drawn in. Accuracy is still effected by this phenomenon however, and the fuel level should not be allowed to fall this low in normal running if accurate results are required from the equipment.

WHEN learning about electronics, one of the earliest things that we find is that for a resistor the voltage across it and the current driven through it are related by Ohm's Law

$$
E=I R
$$

where E is the voltage across a resistor with resistance R and I is the current. These three quantities are generally measured in volts, ohms and amps respectively. We then discover that capacitors and inductors produce a similar relationship, which is written as $E=I Z$ where Z is the impedance of the component and E and 1 are assumed to be sinusoidally varying a.c. voltage and current respectively.

The reason for this assumption is that non-sinusoidal waveforms are effectively a mixture of more than one frequency. Since the impedance of many components varies with frequency, the current flowing will not then be directly proportional to the driving voltage. It is worthwhile noting, as an aside, that the way that nonsinusoidal waveforms are dealt with is to break them up into the sum of sinusoidal parts, each of a different frequency. Each of these parts can then be dealt with using $E=I Z$, the current flowing can then be reconstructed by summing the currents of the individual parts.

In order to use the above formula we need to know the value of the impedance Z for the circuit. For a capacitor the impedance (often called the reactance) is given by $1 / 2 \pi \mathrm{fC}$, where f is the frequency of the signal in hertz, C is the capacitance of the capacitor in farads (a unit which we soon find out is about a million times larger than is useful), π is $3 \cdot 1416$. Similarly the impedance of an inductor is $2 \pi \mathrm{fL}$ where L is the inductance of the inductor in henrys.

Given this starting point it soon becomes apparent that there is much more to the impedance of capacitors and inductors than their simple numerical value. Consider, for example, the case when we have a
capacitor and an inductor which both have an impedance of, say, 10Ω at a particular frequency that we shall apply. If we connect these components in series and apply an a.c. voltage we might expect that the impedance of the combination would be 20Ω, but this is not the case. The total impedance is in fact zero! Furthermore if we connect the components in parallel the impedance is not 5Ω, it is infinitely large.
The above example demonstrates that we require rather more information if we want to calculate the impedance of a combination of elements.

COMPLEX NUMBERS

We now introduce the concept of a complex number which consists of two parts: called the real part and the imaginary part. A complex number is written like this

$$
x+y i
$$

Here x is the real part and consists of a real number, whilst y is the imaginary part. i is the important symbol (j is often used instead) which represents a number which when squared gives minus one

$$
i \times i=-1
$$

If that is a little difficult to conceive of it doesn't matter-just think of it as a symbol which labels the imaginary part of the complex number. Examples of complex numbers are: $3+4 i$, $10-3 i,-3.6 \times 10^{4}+6.7 i$. Real numbers such as -7 and 43.6 may also be thought of as complex numbers whose imaginary part is zero. Similarly there are numbers such as $6 \mathrm{i},-0.2 \mathrm{i}$ or even i (which is the same as 1i) in which the real part is zero.

ARITHMETIC

Fig. 1 demonstrates a way in which complex numbers can be shown on a diagram. In the figure the complex number is $3+4 i$. It is represented by a line which goes from the origin of co-ordinates (marked 0) to the point which lies on the lines; real part $=3$
and imaginary part $=4$. This line has a certain length " r ", and makes a certain angle to the real axis " θ ". Note that the complex number can be specified in terms of r and θ, and these two numbers completely specify a particular complex number, just as x and y do.
Given the representation of a complex number as $x+y i$ or as an r and $\mathrm{a} \theta$, it is always possible to convert from one representation to the other.

Fig. 1
Applying Pythagoras' Theorem to Fig. 1

$$
r=\sqrt{x^{2}+y^{2}}
$$

This is by far the most often needed conversion. For the more mathematically minded we will give the other formulae

$$
\begin{aligned}
r \cos \theta & =x \\
r \sin \theta & =y \\
\tan \theta & =y / x
\end{aligned}
$$

Of these the last is the most important.
Addition of two complex numbers simply involves adding the real and the imaginary parts separately as shown below
$(x+y i)+(a+b i)=(x+a)+(y+b) i$
For subtraction you just subtract real and imaginary parts separatelybe careful to get the signs right!
$(x+y i)-(a+b i)=(x-a)+(y-b) i$

Multiplication is a little more complicated

$$
\begin{gathered}
(x+y i) \cdot(a+b i)= \\
(x a-y b)+(x b+a y) i
\end{gathered}
$$

Unfortunately dividing complex numbers is more difficult than the preceding cases-hopefully the following steps should make the process clear. Assume we want to evaulate

$$
\frac{x+y i}{a+b i}
$$

First we multiply both the top and the bottom of this expression by a - bi. Since this is the same as multiplying the original expression by one, our division can now be written as

$$
\frac{(x+y i) \cdot(a-b i)}{(a+b i) \cdot(a-b i)}
$$

If we now multiply out $(a+b i)$. ($a-b i$) we get $a^{2}+b^{2}$ which has no imaginary part at all, so our expression is the same as:

$$
\frac{(x+y i) \cdot(a-b i)}{a^{2}+b^{2}}
$$

and we know how to multiply the top to get

$$
\frac{(x a+y b)+(y a-x b) i}{a^{2}+b^{2}}
$$

and this is the same as

$$
\frac{(x a+y b)}{a^{2}+b^{2}}+\frac{(y a-b x) i}{a^{2}+b^{2}}
$$

There is just one more thing before we finish our maths lesson and that is how to multiply and divide complex numbers when they are in r and θ form. This is simpler than for numbers in $x+$ yi form: to multiply you multiply the " r " s and add the " θ " s; to divide you divide the " r "s and subtract the " θ "s.

In these examples the complex numbers are written as (r, θ); thus $\left(2,36^{\circ}\right)$ stands for the complex number with $\mathrm{r}=2$ and $\theta=36^{\circ}$.
(i) $\left(3,15^{\circ}\right) \cdot\left(4,-12^{\circ}\right)=\left(3 \cdot 4,15^{\circ}\right.$ $\left.-12^{\circ}\right)=\left(12,3^{\circ}\right)$
(ii) $\left(16,186^{\circ}\right) \cdot\left(\frac{1}{2},-26^{\circ}\right)=\left(16 \cdot \frac{1}{2}\right.$, $\left.186^{\circ}-26^{\circ}\right)=\left(8,160^{\circ}\right)$
(iii) $\frac{2,17^{\circ}}{5,27^{\circ}}=\frac{2}{5},-10^{\circ}$

But remember that 360° is a full circle, so that -10° is the same as

$$
+350^{\circ} \text { so } \frac{2}{5},-10^{\circ}=\frac{2}{5}, 350^{\circ}
$$

It is now time to use these numbers.

COMPLEX IMPEDANCES

Any impedance which is a combination of resistances, capacitances and inductances can be represented as one complex number. Sinusoidally
oscillating voltages and currents are also represented by complex numbers. Using the arithmetic of complex numbers that we have described, it is now possible to use Ohm's law to give the correct answer and we can combine impedances in the same way as we used to combine resistances. Let's see how this works.

Resistors have no imaginary part to their impedance, it is just their resistance R.

Capacitors have no real part to their impedance, it is given by $-\mathrm{i} / 2 \pi \mathrm{fC}$. The symbols all have the same meanings as before.

Inductors too have no real part to their impedance, it is given by $2 \pi \mathrm{fLi}$.

It is easiest to represent voltages and currents in r and θ notation. First it is essential that you know about the phase difference between two sinusoidal waveforms of the same frequency.

The phase difference is given by the distance between the peaks of the two waveforms and is specified by an angle which is worked out by defining the angle between two successive peaks of the same wave to be 360°. Reference to Fig. 2 should make this clearer.

Fig. 2
To describe a voltage or current in terms of a complex number it is necessary to take one waveform in the circuit as a reference to which all the others will be referred. This reference value has no imaginary part, and its real part is just its peak value. All other voltages or currents are represented in r and θ notation by a complex number with r equal to the peak value and θ equal to the angle by which the waveform "leads" the reference waveform. By leads we mean that the angle is measured from a peak of the wave to the next peak in time of the reference wave. See Fig. 3 for an example of this.

With the set up we have just described, almost anything that you could have done with resistances and d.c. voltages can now be done for impedances and sinusoidal (i.e. one frequency) a.c. voltages.

(a) LEADS (b) BY 60°

TUNED CIRCUIT

The complex impedance of the series tuned circuit in Fig. 4 (a) is found simply by adding together the complex impedances of the capacitor and the inductor to get
$\left(2 \pi f L-\frac{1}{2 \pi f C}\right) i$

Note that the impedance still has no real part. Hence in r and θ form it has

$$
\mathrm{r}=\left(2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}\right) \text { and } \theta=90^{\circ}
$$

You may notice that r might be negative in the above formula, in which case θ would be 270°-but negative r in the direction of 90° is the same as positive r in the direction of 270°. It isn't usually worth bothering about these things, they almost always work out alright in the end!

Now suppose that we want to know what current flows in the circuit. We know that $E=I Z$, so $I=E / Z$. Choose the input voltage to be the reference quantity for the circuit-it will then have $r=V$ (the peak value) and $\theta=0^{\circ}$. To work out the current flowing we divide E by Z, remembering to divide the "r"s and subtract the " θ.'s. So I has
$\mathrm{r}=\frac{\mathrm{V}}{2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}}$ and $\theta=0-90^{\circ}=-90^{\circ}$.

So the current is 90° out of phase with the voltage, remembering that leading by -90° is the same as lagging by 90°. We have a rather peculiar expression for the peak value of the current (r). Notice how this expression is positive for high frequencies but negative for low ones. Thus the arrangement of the waveforms ' in

Fig. 4 (b)
Fig. 4 (b) is only valid for high frequencies. As f decreases, I suddenly becomes very large (when the bottom of the expression for r becomes zero) and then smaller again. However r is now negative so the phase changes by 180°-this is the same as saying that the waveform of the current becomes inverted.

In practical circuits of this nature there is always some resistance present so the change occurs gradually. Note that the impedance of this circuit goes to zero when

$$
2 \pi f L=\frac{1}{2 \pi f C}
$$

i.e. when

$$
f=\frac{1}{2 \pi \sqrt{\overline{L C}}}
$$

which is the well known resonant frequency.

SIMPLE R.C. CIRCUIT

The circuit shown in Fig. 5 is a very basic high pass filter. To find the current which flows we need to know the impedance of the combination, which is given by

$$
Z=R+\left(\frac{-1}{2 \pi f C} i\right)=R-\frac{1}{2 \pi f C} i
$$

Choosing $V_{\text {in }}$ to be the reference quantity (which, you should remember means that $\mathrm{r}=\mathrm{V}_{\mathrm{in}}$ and $0=0^{\circ}$) we can then say that the current flowing
is given by

$$
I=\frac{V}{Z}=\frac{V_{i n}}{R-\frac{1}{2 \pi f C}}{ }^{i}
$$

Now the output voltage is produced by the current I flowing through the resistor R so, using Ohm's Law, we obtain

$$
V_{\text {out }}=\frac{V_{\text {in }} R}{R-\frac{1}{2 \pi f C} i}
$$

To evaluate this we had better put it into r and θ form. $V_{\text {in }} R$ is simplesince it is just an ordinary number with no imaginary part it has $r=V_{\text {in }} R$ and $\theta=0^{\circ}$. To convert the bottom half of the expression we need to use the formulae for r and θ in terms of x and y that we mentioned earlier: namely $r=\sqrt{x^{2}+y^{2}}$ and $\tan \theta=y / x$ (this last part can be done by scale diagram). Putting the x and y values of

$$
R+\frac{1}{2 \pi f C} i
$$

into these formulae gives the value of r to be

$$
r=R^{2}+\frac{1}{4 \pi^{2} f^{2} C^{2}}
$$

and θ is going to be the angle for which

$$
\frac{y}{x}=\frac{-1}{2 \pi f R C}
$$

Using the rule for division in r and θ form we can now calculate the value of $\frac{V_{\text {out }}}{V_{\text {in }}}$ - the r part is

$$
r=\frac{R}{\sqrt{R^{2}+\frac{1}{4 \pi^{2} f^{2} C^{2}}}}
$$

and the θ part is minus the angle for which

$$
\frac{y}{x}=\frac{-1}{2 \pi f R C}
$$

--if you draw a diagram you can see that this is the same as the angle for which

$$
\frac{y}{x}=\frac{1}{2 \pi f R C}
$$

The r value gives us the amount by which the amplitude of the voltage is decreased. When

$$
\mathbf{R}^{2}=\frac{1}{4 \pi^{2} 千^{2} \mathrm{C}^{2}}
$$

this attenuation factor is about $\cdot 707$ (or, using the decibel scale, about -3 dB). Rearranging this formula and getting rid of all the squares gives

$$
f=\frac{1}{2 \pi R C}
$$

This is often called the break point for the filter.

What do all these complicatedlooking formulae mean as regards the performance? Well, when the frequency is very high the

$$
\frac{1}{4 \pi^{2} f^{2} C^{2}}
$$

term is very small and so $\frac{V_{\text {out }}}{V_{\text {in }}}$ becomes very close to one. This indicates that high frequencies pass through the filter almost unobstructed. In contrast, when f is very small the

$$
\frac{1}{4 \pi^{2} f^{2} C^{2}}
$$

term is going to be far larger than the \mathbf{R}^{2} term so we can ignore the \mathbf{R}^{2} term without too much loss of accuracy. We then have

$$
\frac{V_{\text {out }}}{V_{\text {in }}} \frac{R}{\sqrt{\frac{1}{4 \pi^{2} f^{2} C^{2}}}}=2 \pi f R C
$$

Notice that the $\frac{V_{\text {out }}}{V_{\text {in }}}$ figure halves every time the frequency halves. This sort of relationship is best shown on a decibels versus logarithmic frequency plot as shown in Fig. 6 (a).

Fig. 6 (a)
Taking OdB at the input level, the output level of the filter is fairly constant down to just above the break point': the output then curves down, finally falling off at about 6 dB per octave (halving of frequency) which is 20dB per decade.

We have not yet used the information we have calculated about θ. For actual values of R,C and f, θ can be evaluated either by drawing a diagram or by working out

$$
\theta=\arctan \frac{1}{2 \pi f R C}
$$

on a scientific calculator. We can see roughly what is going to happen: at very high frequencies when the filter is passing almost all of the input voltage, y / x is very small which means that the output voltage has almost the same phase as the input voltage. As the frequency decreases it will reach
the break point where

$$
\frac{1}{2 \pi f R C}=1
$$

-this means that the output will lead the input by 45°. As the frequency keeps on decreasing the phase lead will continue increasing, getting ever nearer to 90° but never quite getting there as shown in Fig. 6 (b).

Fig. 6 (b)
When working with filters such as this one, it is generally true that the attenuation versus frequency graphs (on logarithmic scales) can be simplified considerably. To do this you just assume that the response is flat down to the break point, whereupon it falls off immediately at a rate of 6 dB per octave $=20 \mathrm{~dB}$ per decade. This approximation is shown dotted in Fig. 6 (a)--the approximation is very accurate except for a decade or so around the break point when it can be up to 30 per cent out.

MORE COMPLICATED FILTERS

As a slightly more complicated example let us try to design a filter which passes high frequencies unattenuated and attenuates low frequencies by 10 . We want the middle point to be at 1 kHz (the full attenuation is 20 dB so call the mid point the 10 dB attenuation point). We would also like some idea of the phase performance.

The obvious way to do this is shown in Fig. 7. At very low frequencies the effect of the capacitor is insignificant so

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{2}}{R_{1}+R_{2}}
$$

which we want to equal

$$
\frac{1}{10}
$$

Choose as fairly sensible values $R_{1}=$ $9 k \Omega, R_{2}=1 k \Omega$. Whether these are sensible will, of course, depend on the impedance of the source we are using to drive the filter and the impedance that is being driven by the filter. Say for the sake of simplicity that the driving impedance is a few ohms and that the driven impedance is at least several tens of kilohms. Now down to work:

Using the symbol $R_{1} \| C$ to mean the impedance of the parallel combination of R_{1} and C we have

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{R_{2}}{R_{2}+R_{1} \| C}
$$

But $R_{2}=1 \mathrm{k} \Omega$ and $R_{1}=9 \mathrm{k} \Omega$ so

$$
\mathrm{R}_{\mathrm{t}} \| \mathrm{C}=\frac{9000\left(\frac{-1}{2 \pi \mathrm{fC}}\right) \mathrm{i}}{9000-\frac{1}{2 \pi \mathrm{fC}} i}
$$

and

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{90000-\frac{5}{\pi f C} i}{90000-\frac{50}{\pi f C} i}
$$

The "r part' of this expression can be found by dividing the r part of the top by the r part of the bottom

$$
r=\frac{\sqrt{(90000)^{2}+\left(\frac{5}{\pi f C}\right)^{2}}}{\sqrt{90000^{2}+\left(\frac{50}{\pi f C}\right)^{2}}}=\frac{1}{\sqrt{10}}
$$

since we require this to be equivalent to an attenuation of 10 dB when $f=1 \mathrm{kHz}$ and 10 dB is a voltage ratio of $\sqrt{10}: 1$.

Square both sides and multiply out which gives

$$
9 \times 81 \times 10^{8}=\frac{2500-250}{\pi^{2} f^{2} \mathrm{C}^{2}}
$$

this is for $f=1 \mathrm{kHz}$ so

$$
\begin{aligned}
C^{2} & =\frac{2250}{9 \times 81 \times 10^{8} \times \pi^{2} \times 10^{6}} \\
& =3.127 \times 10^{-15}
\end{aligned}
$$

and finally we get to the value of the capacitance $C=5.6 \times 10^{-8}$ farads $=$ $0.056 \mu \mathrm{~F}$. If we substitute this value into the original formula for the r part we get
$\frac{\sqrt{(90000)^{2}+\frac{8 \cdot 1+10^{14}}{f^{2}}}}{\sqrt{(90000)^{2}+\frac{8 \cdot 1 \times 10^{16}}{f^{2}}}}=\frac{\sqrt{1+\frac{10^{5}}{f^{2}}}}{\sqrt{1+\frac{10^{7}}{f^{2}}}}$

A graph of this is the attenuation of the filter, as shown in Fig. 8 (a).

Fig. 8 (a)

PHASE PERFORMANCE

To get some idea of how the phase difference between the input and the output varies with frequency we see that at high frequencies the capacitor is going to have far more effect than \mathbf{R}_{1} and so the phase shift will go to zero, just as it did for the simple highpass filter. Also at very low frequencies the effect of the capacitor will be negligible and the phase shift will go to zero again. What happens in between? If we substitute the value for the capacitance into

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{90000-\frac{5}{\pi f C} i}{90000-\frac{50}{\pi f C} i}
$$

we end up with

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1-\frac{316}{f} i}{1-\frac{3160}{f} i}
$$

From this we can work out the phase shift for any frequency: for example at 1 kHz we have

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1-0.316 i}{1-3.16 i}
$$

Now θ for $1-0.316 \mathrm{i}$ is about $-17 \frac{1^{\circ}}{}{ }^{\circ}$ and θ for $1-3.16 \mathrm{i}$ is about $-72 \frac{1}{2}^{\circ}$, so θ for

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-17 \frac{1}{2}^{\circ}-\left(-72 \frac{1}{2}^{\circ}\right)=55^{\circ}
$$

Fig. 8 (b)
In fact this is the maximum phase shift for any frequency. A graph of phase shift versus frequency is also shown on Fig. 8 (b).

High Performance POWER SUPPLY UNTT

THIS article describes a high performance power supply with voltage control down to zero (yes, zero, not two and a half volts or five and a quarter or, as in the case of many supplies, whatever the Zener voltage used in the system happens to be) and current limit from a few milliamps to several amps.

This ability to have current limit down to such low values allows one to, for example, work with low power circuitry knowing that even if something drastic happens nothing will be destroyed. One can even use this facility for measuring the values of larger electrolytic capacitors!

SPECIFICATION

- Voltage Control 0-30V
- Current Control 2mA-2A
- Output Resistance Less than 0.001Ω
- Ripple and Noise Less than 1 mV
- Line Regulation Less than 0.001\%
- L.e.d. indicator current limit mode
- Sharp voltage/current mode transition
- Instant switch off

CIRCUIT ACTION

The reference voltage is generated in the circuitry around IC1 (see Fig. 1). D5 is a 5.6 V Zener diode run at its zero temperature coefficient current. Values of most Zener series (BZY88 in particular) exhibit positive temperature coefficient below 5.6 V and varying degrees of negative t.c. above this value.

R5 and R6 set the output of the reference generator at twice the Zener voltage and in addition a low output impedance feed to the rest of the p.s.u. is guaranteed by the high degree of feedback employed.

The circuit operates as follows; the output of the op amp IC1 increases until D8 conducts, whereupon the circuit stabilises with the Zener voltage appearing across R5. Negligible current flows into the non-inverting input of IC1 and therefore all the current in R5 flows into R6 yielding twice the Zener voltage at the output of IC1.

AMPLIFIER

Unlike most power supplies, instead of providing voltage control by means of varying the feedback factor in a control system, this design uses what is in effect a "uni-phase power amplifier" arrangement.

The reference section provides $2 \times 5 \cdot 6=11 \cdot 2 \mathrm{~V}$, and we require 30 V out, hence the gain of the amplifier is $30 / 11 \cdot 2$.

The resistors R11 and R12 determine the gain, and this is given by:

$$
\bar{A}_{v}=\frac{R 11+R 12}{R 11}
$$

which can be re-written in terms of $\mathrm{V}_{\text {ref }}(11.2 \mathrm{~V})$, and the output voltage $\mathrm{V}_{\text {out }}(30 \mathrm{~V})$ as the ratio of the two resistors:

$$
\frac{R 11}{R 12}=\frac{V_{\text {ref }}}{V_{\text {out }}-V_{\text {ref }}}=0.59
$$

PREFERRED VALUES

Two preferred values which give this ratio whilst at the same time approximately maintaining an equivalent impedance looking back from either the inverting or noninverting inputs of the op amp (this keeps temperature drift, effects in the input bias currents common-mode and therefore self-cancelling) are $33 \mathrm{k} \Omega$ and $56 \mathrm{k} \Omega$.

ADVANTAGES

One of the advantages of using a "power amplifier"-type system in the voltage section is that the control of output voltage down to zero can be achieved easily. Other designs allow this to be performed but solutions sometimes can appear somewhat contrived. With the amplifier system zero input means zero output.

For perfectionists a preset has been provided which allows one to trim out any remaining millivolts which can be caused by offset in the 741 or possibly the voltage control potentiometer not yielding exactly zero output voltage when turned fully anti-clockwise.

CURRENT LIMIT SYSTEM

The current limit system sets the maximum output current available from the p.s.u. and also provides an indication that the unit has shifted from constant voltage mode to constant current mode.

Current limit comes into operation when the voltage across a sensing resistor (R7) reaches a predetermined value. This value is set by VR3 and is derived from the reference voltage line from IC1.

OPERATION

All the current that flows from the output terminals must also flow through R7. If we now consider the circuitry around IC3: the inverting input is biased at OV via R21, whilst the non-inverting input can be adjusted to any voltage between 0 and 2 V . Say it is set at 1 V and the output voltage at several volts. If the load is increased the voltage output will be held at a constant value by the voltage amplifier section and the presence of R7 will have a negligible effect due
to its low value and because it is situated outside the feedback loop of the voltage control circuitry.

It is interesting to note that if the load is constant (a resistor for example) and the voltage output is constant, then the current through R7 is constant and substantially independent of any ripple in the incoming supply.

If the load is now increased to cause the voltage across R7 to reach 1V, IC3 comes into action.

COUPLING

The output of IC3 is coupled to the non-inverting input of IC2 (essentially the input to the voltage amplifier arrangement) with a diode. Thus the current control can "cut in" and override the voltage control, but at all other times is totally disconnected from it. Hence, when in our example the voltage across the sensing resistor reaches the predetermined 1V, IC3 adjusts the input to IC2 in such a fashion as to maintain this voltage across the resistor and thereby form a second dominant control system-except this time controlling output current and not voltage.

C8 provides compensation in this loop to maintain stability.

INSTANT"'SHUT-DOWN"

In order to prevent any spurious effects that may occur as the negative rail voltage decays away when power is removed from the unit, transistor TR1 removes drive to the outputstage as soon as the rail collapses.

Under normal operation TR 1 is held off by R14, but when the negative rail fades TR1 comes on and holds the output of IC2 low. This does no damage to the i.c. as the 741 has comprehensive internal output current limit circuitry built into it which limits its output current to a safe $15-20 \mathrm{~mA}$.

The fact that the output from the p.s.u. disappears virtually instantaneously can be an asset when doing test or experimental work. It allows one to kill the supply and perform circuit modifications without having to wait first for the power supply's internal capacitor to slowly discharge.

CONSTRUCTION

Construction should commence with the etching of the p.c.b. and then assembling components onto this as shown in Figs. 2 and 3. As this layout has been proven, it is wise to stick to it as much as possible to ensure stability. The remaining peripheral components should then be connected.

SUPPLY CURRENT

There is a small amount of current which flows through R7 which does not go to the load. This constitutes the negative supply current to IC1 and the Zener current. This is the reason for R17. It allows voltage appearing across R7 due to this current, and also any due to remanent resistance in VR3 (when fully anti-clockwise) to be offset. Normally it should lie in the range $0-100 \Omega$ (typically about 33Ω).

NEGATIVE RAIL GENERATOR

The circuitry around C2 and C3 forms the negative rail generator. This is required to enable IC2 to control the output voltage down to zero. Similarly since IC3 has to control the input of IC2 down to zero, it too requires a negative supply. IC1 is operating under fixed conditions, however, and therefore can be run between the positive unregulated input and earth.

The negative generator is simply a pump system with simple stabilisation on its output (R3 and D7).

TESTING

When building p.s.u.s, power amps. etc. initial switch-on can be a little nerve racking, as small mistakes can easily result in drastic burn-ups. Ideally a Variac should be used here, as then the input current to the system can be watched whilst the input voltage is slowly increased. If it is seen that the current has risen beyond a reasonable value then the circuit can be checked and the replacement of burnt, charred components is happily avoided.

However, in the absence of a Variac a low value resistor (20-50) of a Watt or so rating can be used in series with the secondary of $T 1$, together with a multimeter set to 1 A a.c.

When power is applied the meter should just give an initial kick and then settle down to a low value $(10-30 \mathrm{~mA})$. A fault condition exists if the resistor overheats and/or the current is substantially higher than the above readings.

Assuming the first switch on has been successfully accomplished and the unit is drawing the correct current,
short out the series resistor and make sure the current is still around 30 mA .

Now check that the output of IC1 is between 11 V and 12 V with respect to the negative output terminal. Check that pin 3 of IC2 varies in voltage with the position of VR1, and that when VR1 is fully anticlockwise there is in fact zero volts at this point.

Next check that the negative supply pins of IC2 and IC3 are at between -5 V and -6 V with respect to the negative output. After this check the output of the supply can be varied from zero to 30 V . With VR1 fully anit-clockwise adjust VR2 to trim out any remaining millivolts.

CURRENT LIMIT

Once the voltage system is known to be satisfactory the current limit system can be checked. Diode D9 connects the output of IC3 to the non-inverting input of IC2 and it is worth noting that if IC3 output is staying low for some reason this will override VR2. If it is suspected that there is a fault in the current limit system, D3 can be removed and the two systems isolated. It should of course be replaced before the current limit system is examined.

To check the current limit system, first make sure that pin 3 of IC3 varies from OV to about 2 V when VR3 is adjusted. Turn VR3 to a minimum. If D12 lights it means R17 is too

Fig. 2. P.c.b.

Fig. 3. Component layout. If bridge rectifier used R1 can be connected directly to C1
low. Ensure first though that it is not a fault condition.
Now turn VR1 to give zero output voltage (check this with a multimeter). Set the multimeter to about 100 mA d.c. and slowly turn up the output voltage with VR1. If all is well, D12 shouid light and the current should limit at a low value ($2-5 \mathrm{~mA}$). If this does not happen check D9 and IC3 and associated circuitry, with the usual attention being payed to such things as dry joints and solder splashes

When this stage has been reached a value can be given to R17 if D12 still comes on at VR3 minimum setting. As mentioned above it should allow current control down to $3-5 \mathrm{~mA}$.

METERING

A meter is a very useful feature to have on a power supply. It is possible to do without one by having calibrated voltage and current controls but this does restrict the unit somewhat.

A circuit which allows switchable current/voltage monitoring is given in Fig. 4. Current is measured by monitoring the voltage across $R 7$. This means the unit's very low output impedance is preserved

R_{x} and R_{y} are determined by the meter sensitivity and resistance. If the meter sensitivity is ImA for f.s.d. and it has a resistance of $R_{m} \Omega$, then R_{*} will be obtained from:

$$
R_{x}=\left(\frac{30}{1} \times 1000-R_{m}\right) \Omega
$$

Similarly R_{y} is obtained from:

$$
R_{y}=\left(\frac{1}{1} \times 1000-R_{m}\right) \Omega
$$

If two meters are available, of course, both voltage and current can be monitored simultaneously and S1 can be done away with.

HEATSINKING

Any linear power supply with a reasonable output should be equipped with generous heatsinks, and this is no exception. The worst-case condition for these "linear" type supplies is when they are supplying a high current at a low voltage. The dissipation in the series pass transistor can reach as high as 50 W in this case and to keep the junction temperature of the series transistor down to a safe value a heatsink of around one degree C per Watt or better should be used.

The constructor's discretion can be resorted to here: if it is apparent that the unit is severely overheating and the transistor TR3 far too hot to touch (don't get misled however, they can take junction temperatures in excess of 150 degrees C) then greater heatsinking should be employed. \star

COMPONENTS ...

Resistors

R1	$2 \cdot 2 \mathrm{k} \Omega 1 \mathrm{~W}$
R2	100Ω
R3	220Ω
R4	$4 \cdot 7 \mathrm{k} \Omega$
R5	$10 \mathrm{k} \Omega$
R6	$10 \mathrm{k} \Omega$
R7	$0.3 \Omega 2 \mathrm{~W}$
R8	$27 \mathrm{k} \Omega$
R9	$2 \cdot 2 \mathrm{k} \Omega$
R10	$330 \mathrm{k} \Omega$
R11	$33 \mathrm{k} \Omega$
R12	$56 \mathrm{k} \Omega$
R13	$10 \mathrm{k} \Omega$
R14	$1 \cdot 5 \mathrm{k} \Omega$
R15	$1 \mathrm{k} \Omega$
R16	$1 \mathrm{k} \Omega$
R17	$0-100 \Omega$ (33 Ω typ. see text)
R18	$56 \mathrm{k} \Omega$
R19	$2 \cdot 2 \mathrm{k} \Omega$
R20	$10 \mathrm{k} \Omega$
R21	$10 \mathrm{k} \Omega$
R22	$4 \cdot 7 \mathrm{k} \Omega$
All $\frac{1}{2} \mathrm{~W}$	carbon except where otherwise stated

Potentiometers

VR1 3 good quality $10 \mathrm{k} \Omega$ log.
VR2 $100 \mathrm{k} \Omega$ miniature carbon preset

Capacitors

C1 $4,700 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C2 $100 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C3 $100 \mu \mathrm{~F} 40 \mathrm{~V}$ elect.
C4 100 nF polyester
C5 220 nF 63 V plastic or ceramic
C6 47pF plastic or ceramic
C7 $4.7 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum (or elect.)
C8 330pF plastic or ceramic

Semiconductors

IC1-3 741 (any manufacturer as long as good quality, esp. for IC2)

TR1	BC182L
TR2	$2 N 3053$
TR3	$2 N 3055$
TR4	BC157

TR4 BC157
D1-4 Any 3A 50 V bridge (or 4 discrete 3A diodes) e.g. RS type 261-457
D5-6 1N4148, 1 N914
D7-8 BZY88-5V6
D9-10 1N4148, 1 N914
D11 1N4001
D12 Any suitable I.e.d. (TIL 209 etc.)

Miscellaneous

Mains transformer 240 V primary, 20 to $25 \mathrm{~V}, 2 \mathrm{~A}$ secondary. Heatsink for TR3, approx. 1 deg. C per Watt (plus mica insulation kit) RS type 401-807
Box to suit, on-off switch etc.
Meter (if required) see text
Switch (S1) if required (d.p.d.t.) $+\mathrm{R}_{\mathrm{k}} \& \mathrm{R}_{\mathrm{y}}$ values (see text)

HAVING formed a general picture of the workings of the analogue computer, the complete circuit of a computing element can now be described. This is shown in Fig. 2.1. The basic circuits of input and feedback, components connected around the op-amp can be readily recognised. The input comprises four resistors, R_{1} to R_{4}, which are connected to sockets in the patch panel and to the inverting input of the op-amp, via switches RLA2, S1c, and S1b. The feedback circuit consists of R5, C1 and C2, which can be selected by means of switch S1a and sockets (C7, B6 and C6) on the patch panel.

Consider switch S1a set so that R5 is selected in the feedback loop. The computing element now becomes a summer. By recalling the equation for the addition circuit that was described last month and by substituting the values for R5, R1, R2, R3, and R4 it can be seen that a voltage applied at inputs 1 and 2 will be multiplied by unity,

$$
\left(\frac{\mathrm{R} 5}{\mathrm{R} 1 \text { or } \mathrm{R} 2}\right)=\frac{1}{1}=1 .
$$

whereas inputs 3 and 4 will multiply an input voltage by 10 .

$$
\left(\frac{\mathrm{R} 5}{\mathrm{R} 3 \text { or } \mathrm{R} 4}\right)=\frac{1}{0.1}=10
$$

With capacitor C1 selected in the feedback loop, the computing element is converted to an integrator and if values are substituted in the equation for the integrator, it can again be shown that inputs 1,2 and 3,4 give a gain of 1 and 10 respectively. The selection of C2 in the feedback loop increases the gain of all inputs by a factor of 10. This is usually referred to as a nose gain of 10 . The symbols used to denote adders and integrators with the relevant gain values are shown in Fig. 2.2.

The "Initial Condition" resistors R6 and R7 are brought into the circuit by means of switches RLA2 and S1d. VR1 is a $10 \mathrm{k} \Omega$ potentiometer, which provides the op-amp with external offset nulling. This is connected across pins 1 and 5 ,
with the pot slider taken to the negative supply rail. The noninverting input of the op-amp is grounded via R8. The value of this resistor should be chosen for good thermal drift performance. The optimum resistance would be equal to the parallel value of the input and feedback resistances. Since in this case there are two values of input resistances, a compromise solution is necessary.

The circuit of Fig. 2.1 represents just one computing element and analogue computers may have many such elements. The prototype has ten computing amplifiers which is an adequate number for the solution of fairly complex problems.

Fig. 2.1. Circuit diagram showing one of the ten computing elements of the Analogue Computer

Fig. 2.2. Symbols used to denote adders and integrators

Mode Control is achieved by means of relay contacts RLA2 and RLB2. Relays are necessary because all ten amplifiers need to be controlled simultaneously. Table 1 shows the positions of relay and other switches for mode control of summers and integrators.

	SUMMER			INTEGRATOR		
SWITCH	COMPUTE	HoLD	RESET	COMPUTE	HOLD	RESET
RLA2	1	2	2	1	2	2
RLB2	1	1	2	1	1	2
S10		OPEN			Closed	
S1b		OPEN			closed	
Sic		closed			OPEN	
Sid	1	1	1	2	2	2

TABLE 1

Fig. 2.5 shows how the ten computing amplifiers are arranged on a printed circuit board with the component overlay shown in Fig. 2.7. At the extreme ends of the board the two four-quadrant multiplier i.c.s are accommodated. This main p.c.b. is connected to other points in the computer by means of edge connectors.

The Four-Quadrant Multipliers

So far it has been shown how to multiply a variable voltage by a constant. This is easily done, using the coefficient multiplier, in conjunction with the amplifier gain. The formation of the product of two variables is much more difficult to obtain. Of the many methods that have been devised, most have involved the use of devices with certain characteristics, e.g. a diode function generator can be set up to provide a square law action, or a log-antilog action. Opamps are usually employed with these circuits.

For the sake of simplicity and compactness it was decided to use two four-quadrant multiplier i.c.s in the prototype. As their name implies these can multiply in four quadrants,

Fig. 2.3. Circuit diagram of the Four Quadrant Multiplior
which means that either or both voltages can be positive or negative. This dispenses with the need to have an absolute value circuit preceding the multiplier, as is the case with other methods.

The particular device chosen for the prototype was the AD533JD integrated circuit (shown in Fig. 2.3). This is not the cheapest four-quadrant multiplier on the market, but it has the advantage of being simple to operate, with the minimum of external components. The i.c. comprises a transconductance multiplying element, a stable reference, and an output operational amplifier on a single monolithic silicon chip.
The AD533JD multiplies with a transfer function of $\frac{X Y}{10}$. The division by 10 should not worry the programmer but it should always be borne in mind when solving a problem. The op-amp output provides $\pm 10 \mathrm{~V}$ at 5 mA , and is fully protected against short circuits to ground or either supply voltage. The inputs are fully protected against overvoltage transients.

The Overload Warning Circuit

The operation of the overload warning circuit is very simple. The output of every computing amplifier is sampled and compared with a positive and a negative reference voltage. If the amplifier output goes higher than the positive reference voltage, an l.e.d. is switched on, to indicate that the amplifier is saturating in the positive sense. Similarly, if the amplifier output falls below the negative reference voltage another l.e.d. is switched on to indicate saturation in the negative sense. The prototype uses $\pm 11 \mathrm{~V}$ as the reference voltages. An overload warning circuit is shown in Fig. 2.4. Only one pair of comparators and l.e.d.s are shown but ten pairs are necessary to serve the ten computing amplifiers. This circuit is arranged on a separate p.c.b. shown in Fig. 2.6 with the component overlay shown in Fig. 2.8.

Fig. 2.4. Circuit diagram of the Overload Warning system required for each computing element
Resistor R9 and potentiometers VR11 and VR12 are connected across the positive and negative supply rails to form a potential divider that generates the positive and negative reference voltages of +11 V and -11 V . These voltages are applied to the inverting inputs of the twenty comparators as shown. The output of each computing amplifier is applied to the non-inverting inputs of the corresponding pair of comparators. The comparators drive the warning l.e.d.s, the brightness of which is set by preset potentiometers. The 741 op-amp was also used here as a comparator. Experience with the prototype has shown that the 741 is capable of driving the l.e.d.s with reasonable brightness without overheating.

Fig. 2.5. Main p.c.b. containing the ten computing elements and the two Fof

Fig. 2.6. The Overload Warning p.c.b.

Fig. 2.7. Component layout for the main p.c.b.

uadrant Multipliers

Fig. 2.8. Component layout for the Overload Warning Circuit

Fig. 2.9. P.c.b. design for the Relay Board

The Relay Mode Control P.C.B.

With ten amplifiers and two relay contacts per amplifier there is a need for twenty relay contacts. Complete mode control could be achieved with two ten-pole relays, one operating the RLA and C switches and the other the RLB and D switches. Ten-pole relays are difficult to find however and the prototype uses four six-pole relays operating in pairs. (The coil connections for the four relays are shown in Fig. 2.11.) This arrangement leaves four unused poles, which may become useful if it is decided to extend the computer.

Fig. 2.11. Coll diagram for reiays
The p.c.b. which accommodates the four relays is shown in Fig. 2.9. Connections to and from this board are also made via edge connectors.

Case Construction

The front panel requires a large surface area to accommodate the patch panel, potentiometers, switches, l.e.d.s etc. Because of this it will be difficult to obtain the right shaped case off the shelf. The prototype case was constructed from aluminium sheet. Two square panels form the front and the back of the case and the sides, top and bottom are cut and shaped as shown in Fig. 2.10, using the

same gauge aluminium sheet. A bench vice, folding bar, and a sheet metal mallet are useful for this purpose. Fig. 2.10 shows the positions and dimensions of the holes required in the front panel. A lot of patience is required for the process of drilling, due to the large number of holes and the fact that a badly positioned hole will be detrimental to the appearance of the layout. This is particularly true in the case of the patch panel holes. A pitch of 12 mm in both directions is enough to give a reasonable tolerance for positioning errors and at the same time avoid excessive gaps between the sockets. For the larger holes the use of sheet metal punches is recommended. Having drilled or punched all the holes, the front panel should then be labelled using dry letter transfers and sprayed with a clear lacquer fixative. The suggested labelling is shown in the photograph of the front panel.

The Patch Panel

The patch panel is constructed using 3.2 mm sockets arranged in a matrix and packed together as closely as possible. There are 148 of these sockets and because identifying each one is difficult a colour coding system was used. Fig. 2.12 shows the arrangement of the sockets for one amplifier, one coefficient multiplier and one fourquadrant multiplier.
The pattern for the amplifier and coefficient multiplier shown in Fig. 2.12 is repeated ten times for the ten computing elements. The eight coefficient multipliers use 16 sockets on the top row. Two of the remaining four sockets are connected to the two panel meters and the other two are connected to batteries to provide reference voltages. Both positive and negative reference voltages will be needed for the solution of certain problems.

$G-\operatorname{GREEN}$
$R-$ RED
$W-W H I T E$
$Y-$ YELLOW
$B-B L A C K$

Fig. 2.12. Patch panel layout for one computing element (rows B and C) and one Four Quadrant Multiplier (row A)

For the four-quadrant multipliers four sockets are needed per multiplier and these are positioned on the extreme left and right of the patch panel.

COMPONENTS . . .

Resistors

R1, R2, R5	$1 M \Omega \frac{1}{2} W 2 \%$ metal oxide (30 off)
R3,R4	$100 \mathrm{~K} \Omega \frac{1}{4} W 2 \%$ metal oxide (20 off)
R8	$270 \mathrm{k} \Omega \mathrm{T} W 5 \%$ carbon (10 off)
R9	$100 \mathrm{k} \Omega \frac{1}{2} W 5 \%$ carbon
R10	$7.5 \mathrm{k} \Omega \frac{1}{2} W 5 \%$ carbon (2 off)

Potentiometers

VR1, VR8 $4.7 \mathrm{k} \Omega$ (2 off)
VR2-VR7 $22 \mathrm{k} \Omega$ (6 off)
VR9-VR30 $22 \mathrm{k} \Omega$ (22 off)
VR31-VR40 10k $0.5 \mathrm{~W} \operatorname{Lin}$ (10 off)
All horizontal min. presets except where stated

Capacitors

C1 $\quad 1 \mu \mathrm{~F} 160 \mathrm{~V}$ (10 off)
$\mathrm{C} 2 \quad 0.1 \mu \mathrm{~F} 160 \mathrm{~V}$ (10 off)
Semiconductors
IC1-IC30 741 op amp (30 off)
IC31-IC32 AD533JD (2 off) D1-D20 TIL 209 (20 off)

Miscellaneous

4 off 6 way changeover relays 4 off mounting sockets for relays holders for i.c.s (if req.)

CONSTRUCTOR'S NOTE: The AD533JD Four Quadrant Maltiplier is available from Analog Devices Ltd., Central Avenue, East Molesey, Surrey.

Stage by Stage Construction

The computer has been designed so that it can be built in stages. At this point in the construction, ie, with the aluminium case and the p.c.b.s constructed and drilled, the constructor has to take a decision, as to whether he wants to opt for a stage construction. His choice can be very flexible. For example, one may decide that initially, all ten computing amplifiers are not absolutely necessary for the solution of simple problems with which the inexperienced programmer will be involved. Four amplifiers are enough to carry out fairly interesting experiments. Later, when more experience is gained, more computing amplifiers can be added as necessary. The same applies to the coefficient multipliers and the panel meters.

It should be mentioned that if four 6-pole relays are used for the mode control, as is the case with the prototype, at least two of these will be necessary even if only one or two amplifiers are used initially. Two 6 -pole relays can provide mode control for six amplifiers.

Another area in which stage by stage construction can be applied, concerns the overload warning circuit. Here, the comparators and the l.e.d.s can be added following the addition of more amplifiers. Alternatively it may be decided to leave the warning circuit out altogether initially. This will make life difficult for the programmer, but it will not affect the operation of the computer.
NEXT MONTH: WIRING AND TESTING

A selection of readers' original circuit ideas. It should be emphasised that these designs have not been proven by us. They will at any rate stimulate further thought. Why not submit your idea? Any idea published will be awarded payment according to its merits.
Articles submitted for publication should conform to the usual practices of this journal, e.g. with regard to abbreviations and circuit symbols. Diagrams should be on separate sheets, not inserted in the text.
Each idea submitted must be accompanied by a declaration to the effect that it is the original work of the undersigned, and that it has not been accepted for publication elsewhere.

CAPACITOR CONTINUITY TESTER

THE capacitor continuity tester is built around a 4011 i.c. using the basic oscillator circuit shown in Fig. 1. The frequency is approximately, $f=\frac{1}{1.7 \mathrm{RC}} \mathrm{Hz}$ and this relationship was used to determine the values of \mathbf{R} for a given value of C and a nominal frequency of 1 kHz .

The working values of R and the corresponding ranges of C are given in the table and the actual tester circuit in Fig. 2.

Fig. 2

Rather than leave the two unused gates idle. another oscillator was constructed and this formed the continuity tester, Fig. 3. The two testers were combined as shown in Fig. 4. The output was fed to the BC108/loudspeaker driver and the combined tester was powered by a PP3 battery.

This tester proved to be a very useful item especially when dealing with excomputer type components etc.
A. W. Cunningham,

Strathblane, Stirlingshire.

Capacitor Range	Resistor	
$0-1,000 \mathrm{pF}$	R 1	$3 \cdot 3 \mathrm{M} \Omega$
$1,000 \mathrm{pF}-0 \cdot 01 \mu \mathrm{~F}$	R 2	$430 \mathrm{k} \Omega$
$0 \cdot 01 \mu \mathrm{~F}-0 \cdot 1 \mu \mathrm{~F}$	R 3	$47 \mathrm{k} \Omega$
$0 \cdot 1 \mu \mathrm{~F}-1 \mu \mathrm{~F}$	R 4	$4 \cdot 7 \mathrm{k} \Omega$
$1 \mu \mathrm{~F}-10 \mu \mathrm{~F}$	R 5	$3 \cdot 3 \mathrm{k} \Omega$
$10 \mu \mathrm{~F}$	R 6	

Fig. 3

Fig. 6

THE circuit shown loads digital information into an 8 -bit shift register when S 1 is in position " B ". In this version the information is supplied from a telephone dial. The dialling contacts generate a number of pulses which are used to clock a 7490 decade counter.

IC2 and 3 provide contact bounce suppression. The length of the output pulse may have to be varied slightly by adjusting the relevant timing components.

When the dial is released the second set of contacts open and this is used to reset the counter and advance the shift registers. During the loading of information S3 should be in position A . When the 8 bits of information are loaded, $S 1$ is set to position A and S3 to position B. The shift registers are then advanced by the 555 astable at a rate dependent on VR1. The
output from the shift registers is then loaded into a digital-to-analogue converter, consisting of IC17 and 18 and associated components. The values assigned to each data bit can be varied by VR2-5. This enables the output to be "scaled" so that each word of digital information can be given the required value. The overall output level is controlled by VR6.

S2 is used to reset the shift registers to zero.
The circuit as shown lends itself readily to modification. The telephone dial circuitry could be replaced by any device producing digital information, as long as a means is provided for advancing the shift registers.

The 7490 counter could be replaced by a 7492 or -93 , giving a greater range of output values. The D-A converter could be
replaced by a $4-10$ line or $4-16$ line decoder, and with due regard to loading of the outputs could provide totally independent control over the value of each data word.

There are many more variations which could be added to this list. The final version chosen would depend on the application and on the equipment available.

The device could be expanded to handle multiples of 8 words by adding further shift registers in series with those already in circuit.
B. Hatton,

Southampton, Hants.

ACCENTING METRONOME

THE circuit shown produces the same effect as the Synchronome described in PE March 1976, but at less than half of the cost.

An astable multivibrator generates pulses variable from approximately 60 to 200 per minute which are fed to a NAND gate (IC3a) connected as an inverter. C3 and R5 converts the output pulses from IC3a to spikes which switch TR3 on, producing a distinct click in the speaker.

The accent is produced by three J-K master slave bistables arranged as a 3 bit
binary counter. The multivibrator pulses are fed directly to the clock input of ICla and depending on the position of Sl a pulse is sent via C4 and R6 to the base of TR4, on the second, third or fourth beat producing duple, triple and quadruple time respectively.

For example, consider quadruple time. In every fourth beat, the Q output of IC2a goes to logic I which resets the counter via IC3b. In every third beat from the reset condition an accent pulse is produced and applied to TR4. This is louder than the
single beats since a resistor is not included in the emitter of TR4. R7 reduces the current through the speaker on single beats. It should be noted that J-K bistables trigger on the trailing edge of the clock pulse, therefore IC3a was included so that the accent was synchronised with the single beats. $S 2$ is used to switch off the accent when it is not required.

[^3]REFERRING to the circuit diagram, TR1 is a simple variable-gain preamplifier. The amount of gain is controlled by VRI, and this in turn influences the sustain time produced.

TR2 and its associated components form the clipping stage which produces the fuzz effect. The coupling capacitors are kept small to prevent lower notes from the guitar overpowering the unit when chords are played. R3 and VR2 form a potential divider which provides bias for TR2. For the clipping stage to operate correctly, it is necessary for the bias to be set quite precisely (as described later).

The reason for this can be best understood by considering the graph. This shows the variation in the voltage at the collector of TR2 as VR2 is varied from zero resistance to $100 \mathrm{k} \Omega$. The limiting occurs if the resistance is set between the points A and B. If an a.c. voltage is then applied via C4, then positive half-cycles will cause the collector voltage to limit at about 0.3 V , and negative half cycles will cause limiting at 0.8 V . Between these two points, the gain is approximately linear and so the decay characteristic of the guitar note is preserved (after a period of sustain).
The simplest method of setting VR2 is to connect the unit to a guitar and am-

plifier and adjust VR2 until the note is audible. (The required position is approximately half-way). VR2 can then be finely adjusted so that the note decays without moving off or becoming distorted. Once set, the unit will only require adjusting occasionally, to compensate for falling battery voltage. Even so, it is advisable to have VR2 accessible from the outside of the cabinet.

The values of C^{*} and R^{*} depend on the tone required. In the prototype $0.002 \mu \mathrm{~F}$
and $2.2 \mathrm{k} \Omega$ were used to give a sharp, biting tone. A silicon diode can be substituted for the 0A81 but with a consequent loss of sustain time.

The unit is very simple, has a very low movement consumption (0.5 mA) and gives extremely good results, particularly when used with the Phasing Unit (PE 'Sound Design') or Treble Booster (PE April 1976).
D. McCabe, Manchester.

STEREO INDICATOR

THE following is a description of an AM/FM Stereo Indicator for use with a stereo radio tuner. It is based on a seven segment l.e.d. display.

The segments are so connected that an "A" lights up for AM, an "F" for FM, and an " S " for FM stereo.
A touch switch, identical to that which appeared in the April 1975 issue of "Everyday Electronics", actuates a relay.

This is connected in place of the AM/FM switch in the tuner. The voltage at the collector of TR3 is taken to a NOR gate connected as an inverter. A further signal is taken from the stereo decoder of the tuner in place of the stereo beacon which is removed. ICl encodes these two signals into a form suitable to give the required display.

It will be noticed that segments A, F
and G are permanently connected to the positive supply line. This should be at no more than 15 V , or else the i.c. will be damaged. The supply should be capable of supplying both the relay current and 60 mA for the l.e.d. display. The remaining circuitry consumes little current.

> D. P. Akerman,
> Dagenham,
> Essex.

EXTERNAL INPUT UNIT FOR SYNTHESISERS

THE unit shown will allow external inputs such as guitars, microphones etc. to be processed by the circuits within the synthesiser.

ICl is an amplifier and VRI should be adjusted to give 2 V r.m.s. at A with the output of the input source at maximum amplitude. This will give about 400 mV r.m.s. at the "signal output" which is adequate enough for most synthesisers.

IC1 also feeds a comparator IC2 whose reference level is variable and thus the length of time between the first and last positive pulses that will appear at the output is variable due to the nature of sound envelopes.

IC2 feeds another comparator IC3. The components D1, R7 and C3 make sure IC3 receives constant positive input level when a signal is inputted into the circuit. The time constant of R7 and C3 is about 100 ms which is more than adequate to cope with the negative half of each cycle of
the input frequency but is not too large as to impair performance if two notes are played very quickly one after another.

Thus with no input signal the output of IC3 will be sitting at positive saturation but when an input signal is applied the output of IC3 will go to negative saturation for a length of time determined by the duration of the input signa! and the setting of VR3 and will then go back into positive saturation.

If a synthesiser system is being used where a positive going trigger voltage is required for the envelope shapers the following changes should be made: R4 and R7 to +9 V instead of -9 V . R9 to -9 V instead of +9 V and DI should be reversed. If the trigger output is to go from 0 V to -8 V or from 0 V to +8 V then diodes can be put on the output as required.

With a normal electric guitar envelope VR3 can adjust the trigger pulse length from about 10 ms to about 3 s .

Many interesting effects can be obtained using an electric guitar with the unit from envelope reshaping to triggered "Wah" and triggered "Phase" if the synthesiser has a voltage controlled phaser. Also white noise can be triggered and mixed to create strange rushing sourlds with each note played.

The unit should work well with both the P.E. Sound Synthesiser and the Minisonic I and $I I$.
P. G. Ludgate,

Wycombe Marsh,
Bucks.

THE FIRST BOOK OF KIM-1

Edited by J. Butterfield, S. Ockers and E. Rehnke Published in Europe by Human Electron GmbH Available from Memec Ltd., The Firs, Whitchurch, Nr. Aylesbury, Bucks.
$210 \times 145 \mathrm{~mm}$. Price $£ 7.50$

THis is a book "Dedicated to the person who has just purchased a KIM-1 microprocessor system and doesn't know what to do with it ${ }^{\text {" }}$ and as such, it undoubtedly fills a very large void! The KIM-1 system itself is a microprocessor board based on the 6502 chip. It features a hexadecimal keyboard, a cassette interface, a full IK of program ram and a high standard of documentation. (A full review of KIM-1 was published in the Feb ' 78 issue.)

This new book makes the KIM-1 an even more attractive proposition because it takes the beginner by the hand with a chapter entitled "A beginner's guide to KIM programming" and then goes on to
discuss and document no fewer than twenty-nine different programs for "Games and diversions" and another thirteen "Utility" programs designed to expand KIM capabilities and aid system testing. After the programming section come further chapters on "Expanding your KIM", "Connecting to the world" and "Pot Pourri" which is a collection of useful information and tips.

The book is well written in an easy going style which does not assume that all readers already sport a degree or two in computer science and electronics, as do so many other microprocessor books! Despite its low-key approach and its accent on games and diversions though, this book is a mine of valuable knowledge which should prove both instructive and useful to all present or prospective KIM owners whether software or hardware orientated.

I feel that I can even recommend this book to readers who do not actually intend the purchase of a KIM system, but who thirst after this kind of knowledge for its own sake. All the programs in the book include a brief description and a full hexadecimal/mnemonic listing so that they can be easily understood and/or entered into a KIM system when required. Examples of the games programs listed are: Asteroid, Bandit, Black Jack, Clock, Farmer Brown, Lunar Lander, and Music Box. Utilities include: Directory, Hypertape, Relocate, Sort, and Verify Tape. Readers with a different microprocessor system should find these programs a source of inspiration and may even find it possible to convert some of them to run on a different system, with a little effort.

My last word comes from the Pot Pourri section of the book. Remember: Computers are dumber than humans but smarter than programmers!
R.C.

ALL PRICES INCLUDE VAT \＆P／P CATALOGUE 40p MIN ORDER $£ 2.00$
THE COMPONENT CENTRE 7 LANGLEY ROAD－WATFORD－HERTS－WD1 3PS Phone Watford 45335 Callers welcome 9．30－5．30 Mon－Sat．EC．Wad．
Ac

A【G゚ON
bring you the new CHINAGLIA

For details of this and other exciting Alcon instruments please write or phone：－

19 MULBERRY WALK．LONDON SW3 6DZ TEL：01－352 1897

News Briefs
 by Mike Abbott

STRAIN GAUGE

T is certainly nice to know if a bridge is likely to collapse due to fatigue, or any other structure come to that! The most common method of analysing stress distribution and resultant strain is to employ strain gauges, and the photograph shows the latest from Hottinger Baldwin and Messtechnik (HBM for short), the LY41. The wires soldered to these gauges give an indication of their size, and this new range of low cost strain gauges have a unique integration of etched foil and tinned soldering terminals fully embedded in a $40 \mu \mathrm{~m}$ thick polymide carrier, specifically designed for ease of application in the field of static and dynamic stress analysis.

They combine good continuous vibration response, low hysteresis, excellent linearity and wide temperature range with a flexibility that allows the gauge to be bonded to a 0.3 mm radius surface. Each of the types (LY4I with a temperature co-efficient that matches steel and LY43 that matches aluminium), are available in 9 different sizes in 120 ohm and 350 ohm nominal resistances.

BIG BROTHER CHECK

BEFORE it goes too far . . . Before what goes too far? Well, every organisation you deal with is, or will eventually have your details held by a computer. Banks, building societies, the taxman, your employer, vehicle licensing, police records, local authorities, hire purchase and finance companies, insurance companies . . . "all right, that's enough" I can hear you say. It is enough (or should be), but it will probably get worse. How? When these machines start conferring with each other. When judgements are made concerning your welfare, based on facts or past events, perhaps even forgotten by yourself, and through which doors are closed to you by nondescripts with your life history and status at their fingertips.

If this prospect frightens you (and it should do), you will be interested to learn of a new bimonthly journal from IPC Science and Technology Press, called "Information Privacy", and which sprung to life, guns at the ready, this September.
"Information Privacy" is an international journal which will cover the technical, legal and social issues of computer-based information systems and their use. Hardware, software and security considerations will be covered in detail as will the needs for and application of legal controls, codes of conduct and practice and social implications. The value and use of data information systems to individuals, organisations and the community will be important areas of discussion.

System analysts, designers, data processing managers and beneficial users now have to consider carefully the development and use of databases and databanks. Transnational dataflow poses worldwide problems of control.

Data has to be protected from unauthorised access and theft. Installations need to be protected from damage. Efficient measures are needed to ensure the smooth running of an organisation and to preserve competition. The type of information held may be subject to control. The effects of information systems on organisational structures and the consequent wider social implications will be significant.

Each issue of the journal will deal with a selection of the above topics and will contain five or six papers, industry news and international reviews of working groups, legislation and practice, conference reports, book reviews, calendar and literature reviews.

Topics. covered will include: Techniques; Legislation; Information Systems; Working Group Activities; Case Studies; Computer Crime Casebook; Organisational Aspects; Current Interest Section.

Readership will be international and aimed at: Computer Engineers and Designers; Systems Analysts and Programmers; Data Processing Managers; Management services and top management; Legal Advisers; Beneficial users; All professionals who deal with computer based information systems.

Further details can be obtained from G. W. Jones, IPC Science and Technology Press Ltd., IPC House, 32 High Street, Guildford, Surrey GUI 3EW.

MICRO POWER PACK

DESIGNED especially for Series/80 microprocessor-boards but applicable to other microprocessor systems, is a new multi-level power supply from the Computer Products Group of National Semiconductor, which combines precise line and load regulation with current limiting, over-voltage protection and power-failure detection.

The BLC 635 power supply provides +12 V at $2 \cdot 0 \mathrm{~A},+5 \mathrm{~V}$ at $14 \cdot 0 \mathrm{~A}$, -5 V at 0.9 A and -12 V at 0.8 A . Incorporated are circuits to limit current at 1.2 times rated values at all levels, and over-voltage circuits which trip at $I .16$ to 1.32 times rated voltage.

Load regulation is 0.1 per cent for a 50 per cent load change and line regulation is 0.1 per cent for a 10 per cent variation. Ripple is 10 mV peak-to-peak, from d.c. to 500 kHz , on all outputs. Stability is 0.05 per cent for 8 hours with constant line, load and temperature. Remote sensing is provided for the +5 V level and all outputs may be trimmed ± 5 per cent from nominal values.

An a.c. power failure detection circuit supplies a TTL compatible high-level signal when line voltage drops 10 per cent below normal. The signal returns low when line voltage reaches 8 per cent of normal value. For orderly shut-downs, all d.c. levels remain within specification for 2 ms after low line conditions and 7.5 ms after complete power loss.

The line transformer is tapped for $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}$ and 230 V a.c. The $100 / 115 \mathrm{~V}$ and $200 / 300 \mathrm{~V}$ lines are separately fused. Input frequency is 47 Hz to 63 Hz . The BLC635 measures $81 \times 161 \times 320 \mathrm{~mm}$ and weighs 5.9 kg (13lbs.).

COMPUTERS GALORE CLUB

The north London Hobby Computer Club will be opening on Wednesday, October 5. The Department of Electronic and Communications Engineering of the Polytechnic of North London will be making available much of their equipment for the club. They have two PETs, (third coming soon), four 6800 based computer systems, floppy disc, printers, VDUs, and some KIM and Motorola microcomputer systems. Can't be bad if you live in the area and are looking for some "hands on" experience, because the club is open to all, not just the students.

It is hoped that a few "home-brewed" activities get going before Christmas, and some meetings are expected to be centred around talks by manufacturers and discussions on programming. However, from the new year it is anticipated that three sets of activities will run concurrently (or sequentially depending upon membership numbers), and these are: short courses on programming in Basic, and at machine level, a home-brew section using the department facilities (up to 35 people can solder and test at the same time), and introductory talks and discussions for those intending to run their own systems.

The club is being organised by members of the Amateur Computer Club, as well as lecturers in digital electronics. If you are interested, hop on the Piccadilly Line to Holloway Road Station, and you'll find it all happening in Room 47 of the old polytechnic building opposite the tube station. The inaugural meeting starts at $6.30 \mathrm{p} . \mathrm{m}$.

THE unit to be described here is a two range timer which is capable of generating either $0-10 \mathrm{sec}$ or $0-100 \mathrm{sec}$ variable timing periods depending on the range selected.

The construction and calibration of the unit is straight forward with its output voltage capable of driving either an l.e.d. or small reed relay for the duration of the set time period.

The timer was originally constructed for photographic use where its good repeatability ensured consistent results when multiple print processing; but with it being portable and reasonably small, it has found many other general purpose applications.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Two Range Timer is shown in Fig. 1 with the range required being selected by S 1.

If when S 1 is in the position shown ($0-100$ second range) and S 3 is pressed C 1 is discharged and the timing period is initiated. After S3 has been released the output voltage of the comparator (ICI) is switched high and the relay energised.

IC2 which is connected as an integrator has its noninverting input (pin 3) held positive by the potential divider

R2, VR3 and VR4 with respect to its inverting input (pin 2). This causes the output to IC2 to generate a positive going ramp waveform the slope of which is determined by C1, R1, VR3 and VR4. With IC2 acting as a constant current generator the slope of the ramp is linear.

This ramp voltage is applied to pin 2 of the voltage comparator (ICI) which compares it with a reference voltage set by VR1 and VR2. When the positive voltage on pin 2 reaches a level which is a few millivolts positive of pin 3 the output of IC2 is switched low and the relay de-energised.

TR1, R3 and D4 provide a stable 11.5 V supply to the circuit and D1 eliminates the slight glow in the l.e.d. due to the saturation voltage of the i.c. when the unit has timed out.

CONSTRUCTION

In the prototype the components were soldered onto 0.1 in. Veroboard using the layout shown in Fig. 2. After soldering, the board and other components were fitted into 110 mm dia. metal case which should be drilled or punched as shown in Fig. 3.

The layout of the components inside the case is shown in the photograph with the push button mounted on the lid.

The cursor which is made of Perspex can be curved by warming it over a hot soldering iron and gently bending it to

Fig. 1. Complete circuit diagram of the Two Range Timer

Fig. 2. Veroboard layout
shape. The index line should be scribed using a sharp knife and then the small knob should be fixed to the cursor using an epoxy adhesive.

The scale is thin white card, cut to the size shown and marked off with 100 two millimetre divisions and it is mounted on the case with its mid-way point opposite the centre

COMPONENTS . . .

Resistors

R1	$1.5 \mathrm{M} \Omega$
R2	$2.2 \mathrm{k} \Omega$
R3	$3.9 \mathrm{k} \Omega$
*R	680Ω
All $\frac{1}{4} \mathrm{~W}$	5%
carbon	

Capacitors

C1 $1 \mu \mathrm{~F}$ polyester (C280 type)

Potentiometers

VR1	$10 \mathrm{k} \Omega$
VR2	$4.7 \mathrm{k} \Omega$
VR3	100Ω
VR4	$1 \mathrm{k} \Omega$

All horizontal sub-min presets except where stated

Semiconductors

D1	1N4001
D2	$12 V 400 \mathrm{~mW}$ Zener
*D3	$3.3 V 400 \mathrm{~mW}$ Zener
"D4	TIL 209 I.e.d.
TR1	BC107
IC1, IC2	741 op.amp. (2 off)

Switches

S1, S2
DPDT slide type (2 off)
S3 push to make (latching) switch

Miscellaneous

*Reed relay R.S. type 348-986
PP3 battery (2 off)
$0 \cdot 1$ " matrix Veroboard
Clear Perspex
Control knob
Battery clips (2 off)
110 mm dia. case
"See Fig. 1.

Fig. 3. Case drilling details
point of the potentiometers shaft rotation. Alternatively the scale can be left blank except for the 0 and 10 marks and calibrated as described in (b) (for more accurate time periods).

CALIBRATION

(a) Using a pre-marked scale.
(1) Switch on and set the range switch to the 10 second range.
(2) Set the cursor to 0 and push S3, and relay or l.e.d. should energise for a short while before dropping out; VR2 should then be adjusted so that when the button is pressed, the relay or l.e.d. is energised for as short a period as possible (less than 0.1 seconds).
(3) Set the cursor to 10 and press the button; using a stop watch or clock, time the period before the relay or l.e.d. drops out.
(4) Adjust VR4, press the button and re-time; adjust VR4 again if necessary. Repeat until a 10 second delay is obtained.
(5) Switch to the 100 second range and repeat steps 3 and 4 using VR3.
(b) Using an unmarked scale.

Go through items 1, 2, 3, 4, 5 then select an intermediate time (on either range) and set the cursor somewhere near; push S3, time it through and thus adjust the cursor closer to the desired point. Repeat until the time period is exact and mark to scale, other times are obtained by the same method.

OTHER RANGES

The timing range generated by the unit is a function of the value of VR3, VR4, C1 and R1.

Therefore to double the ranges (0 to 20 seconds 0 to 200 seconds) C1 could simply be doubled in value; although due to the new components tolerance a small recalibration may be required.

News Bricis

UNDERGROUND CAMERAS

N^{E}EVER jump to the conclusion that because you are alone, you are not being watched. We are beginning to take for granted those rooftop cameras watching busy junctions and stretches of motorway. We have reported in this column, remote control cameras monitoring bus queues as part of public transport schemes. You see them at automatic railway crossings, department stores and public places.

Here is another news brief concerning those ever accumulating eyes. A closed-circuit-television transmission and switching system is to monitor the three stations on London Transport's new Piccadilly Line extension to Heathrow Airport. Designed by British Relay (Electronics) to a London Transport specification, the system provides video switching facilities at each of the three stations for local monitoring, and a transmission system to Earls Court (a distance of 13 miles), for remote monitoring of the station platforms by the line controller.

It has been provided as an operational aid to control passenger flows, particularly during emergencies or abnormal traffic conditions. It is intended to enable incidents to. be detected and potential problems to be anticipated, thus allowing remedial action to be initiated quickly and station staff to be deployed more efficiently.

Cameras viewing strategic areas at each station can be selected by means of a new 12 -input/8-output matrix designed and produced by British Relay. The matrix design also allows any one camera to be monitored by all outputs without deterioration of the composite video signal.

Local monitoring facilities are provided at Heathrow Central and platform-only monitoring of all three stations is provided for the line controller situated at Earls Court.

The transmission system comprises a wide-band $30-\mathrm{MHz} 3$-channel stacked carrier multiplex system over a single coaxial cable running the whole length of the line between Earls Court and Heathrow Central (a type of system particularly immune from electrical track interference). The carrier frequencies of the two existing channels employed are 4.43 MHz and 13.30 MHz but a third channel of 24.7 MHz carrier frequency can be provided by the addition of an appropriate modulator at the required locations and a demodulator at Earls Court.

A feature of the system is that it can be easily extended by the addition of line repeater and directional coupler assemblies which would amplify and allow connection to other sites along the line without deterioration of the existing modulated composite video signal.

British Relay are also supplying London Transport with CCTV switching and transmission equipment for other important central area stations including the new ones being built under stage- 1 of the Jubilee Line.

Perhaps it will eventually become a way of life to be visually "monitored" whilst out and about.

STEAM ADVICE

MST people are by now aware that there are going to be some changes made in the ether on 23 November this year, when a new international frequency agreement comes into force. This provides for a considerable increase in the number, and power of transmitters used in Europe.

As a result of these new conditions, and to make best use of the frequencies available, the BBC is reorganising its arrangements for broadcasting Radios $1,2,3$, and 4 on the medium- and long-wave bands.
Radio 1 will be transmitted on 1053 and $1089 \mathrm{kHz}(285$ and 275 metres) MF instead of 1214 kHz (247 metres) MF. The low-power transmission on 1485 kHz (202 metres) MF at Bournemouth will be retained.
Radio 2 will be transmitted on 693 and 909 kHz (433 and 330 metres) MF instead of 200 kHz (1500 metres) LF and 1484 kHz (202 metres) MF (Scotland).
Radio 3 will be transmitted on 1215 kHz (247 metres) MF instead of 647 kHz (464 metres) MF .
Radio 4 will be transmitted on 200 kHz (1500 metres) LF instead of 692,908 and $1052 \mathrm{kHz}(434,330$ and 285 metres) MF. There will be additional transmissions on 603 kHz (498 metres) for Tyneside; 720 kHz (417 metres) for Northern Ireland; 1449 kHz (207 metres) for Aberdeen; and 1485 kHz (202 metres) for Carlisle.

Services that are unchanged (except for a very small increase in frequency):
Radio Scotland ($810 \mathrm{kHz} / 371$ metres)
Radio Wales ($882 \mathrm{kHz} / 341$ metres)
Radio Ulster ($1341 \mathrm{kHz} / 224$ metres)
Radio 1 Bournemouth ($1485 \mathrm{kHz} / 202$ metres).
There are no changes to the BBC's VHF transmissions. Only the BBC's MF and LF radio services are affected by the changes.

Further details on the above changes and their effects can be obtained from: Radio Changes, BBC, Broadcasting House, London W1A 4WW.

A number of additional transmitters are being installed and listeners should not assume that their present reception of a particular frequency is necessarily any indication of the reception it will provide under the new plan. Maps are being prepared to show which frequencies are expected to provide the best service in each part of the country.

If you are considering purchasing a wireless and would like some free advice on three-band receivers, aerials, car radios, tuning scales etc, send a 9 by 6 in. S.A.E. to Engineering Information Department, BBC, Broadcasting House, London WIA 1AA.

The Beeb will send you a booklet with six pages of useful recommendations, the most important of which is to get a three-band model.

HERE'S TO PROGRESS

RAse your glasses-but don't drink! Not if you're driving anyway, because technological progress might be waiting to nab you just down the road. A new portable instrument is out which makes instant analysis of breath alcohol giving accuracy to within $12 \mathrm{mg} / \mathrm{ml}$ of actual blood alcohol level. There's no marching you down to the local "nick" for a blood test, and it wouldn't be much good pretending you were too weak to blow a bag up because your co-operation is not required, other than to continue breathing. Indeed. the device can be used on the unconscious.

The instrument, called the Alcolmeter type AE-M2, was invented by Dr T. P. Jones, and a small hand-held version designed for initial roadside screening purposes has been in production for nearly two years. The new Alcolmeter overcomes the limitations in precision of the pocket sized version while remaining small in size, completely portable and very simple to use. The instrument enables on-the-spot breath alcohol analysis to be carried out by passing an accurately metered volume of expired breath over a specially-sensitised fuel cell, housed in a hand-held unit linked to the equipment.

The cell is activated by alcohol vapour and generates an electrical signal proportional to the alcohol content of the sample. The electrical signal is amplified and displayed on a panel meter.

The Alcolmeter is currently in extensive use with the Spanish police authorities and has also been accepted for use in Nigeria, Switzerland and several American states. The instrument is also widely used in hospitals and alcohol clinics throughout the UK.

The Sinclair PDM35.
 A personal digital multimeter for only $£ 29.95$

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM135 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PIDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM135 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read LED)
display, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
(0.0001 HA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 Mr . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ms input impedance.

Compare it with an

 analogue meter!The lPIM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of 10 Ms sis 50 times higher than a $20 \mathrm{ks} /$ /volt analogue meter on the 10 V.range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specification

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Ms input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V' to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: 1 s to 20 Mr .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 2 \mathrm{in}$.
Weight: $61 / 20 \%$.
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PI)M35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

When you buy your PDM35 it comes complete with leads and test prods, carrying wallet and comprehensive operating instructions.

The PDM35 is a new concept in multimeters - but over 20,000 have already been sold! If you'd like to know more about the PDM35, and how to get one, complete the coupon and post it to us. We'll send you detailed information by return. Send the coupon today!
Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England.

-20029 pracon inas
 components, materials. etc., in convenient packs.
 Just send $£ 1$ plus p\&p.

SAVE POSTAGE We pay UK postage \& pkg. on orders FOR ANY 5 PACKS!
BARCLAYCARD AND ACCESS ACCEPTED - ORDER BY PHONE OR POST.
MAIL ORDERS TO PROOPS BROS. LIMITED, Dept. PE,
The Hyde Industrial Estate, Edgware Road, Hendon, London, NW9 6JS. Tel. 01-205 8006.
PERSONAL SHOPPERS: 52 Tottenham Court Road, London, W1P 0BA. 9-6 Mon. to Sat.

SPADE \& RING CONNECTORS
as used in cars and domestic as used in cars and domestic
appliances. Pack of approx. 100 connectors, balanced selection, insulated and plain, $\mathrm{p} \& \mathrm{p} 25 \mathrm{p}$.

SPRINGS

generous and varied selection, compression and expansion springs, lengths from approx. $\frac{1}{5}$ in. to $2 \mathrm{i} \%$ n. and diameters from 青in. to 1 l in. Pack of approx. 100. p\&p 25p
RUBBER GROMMETS
good selection, always useful for the ment sin 1 in 1 . Pack of asprox 200 psp 200

SPACERS

Pack of approx. 100, good selection of usefu sizes, various lengths and diams., p\&p 25p.

CROC CLIPS

VIDAFLEX SLEEVING
Pack of 4×25 yard lengths, 1.5 mm bore p\& 30 p.

MAINS NEONS
in plastic holders, with leads and resistor Pack of 5. p8ıp $15 p$.

MAINS NEONS
miniature type with leads and resistor. Pack of 20 . p \& p 15 p .

Hair Trigger
SWITCH MATS
6 or 12 v . operation

- Wafer thin - undetectable under door mat or
carpet.

FRESNEL LENSES

2 for $£ 1.70$

carr. \& pkg. 30p
Supplied as two separate lenses or mounted together as condenser assembly - state prererence. Slightly imperfect but entirely suitFIERS, INTENSIFIERS, OVERHEAD AND BACK PROJECTION OPTICS CREATIVE LIGHTING EFFECTS.

PLASTIC TERMINAL BLOCKS
 5A, 2-way. Pack of 20, p\&p 20 p .

SLIDER POTS

47KLin.; 100 KLin .; 1 M Log.; 22 K Log: Pack of any 4, state choice. $p \& p$; p.
SELF TAPPING SCREWS
a generous 1 lb mixture of about 500 screws in useful sizes and lengths from $\frac{1}{4}$ in.., various heads. p\&p 50p.
STEEL WASHERS
about 500 in a useful 200z. mixed pack that every tool box needs. p\&p50p.
SHAKEPROOF \& STAR WASHERS
about 500 in a good. varied selection of sizes weighing 6ors.. p\& 20 p .

HOSECLIPS

pack of 25 in assorted sizes from bin. p\&p 25p.
POP RIVETS
approx. 100 in balance p\&p 25p.

SOLENOIDS

 $1 \frac{1}{2}$ volt. Small but relatively powerful solenoid with hundreds of uses for the prox. $25 \times 26 \times 10 \mathrm{~mm}$ prox. $25 \times 26 \times 10 \mathrm{~mm}$. long. Range of travel 10.5 mm appro varied if desired. Pack of 4. p\&ip 20 p.
MICROSWITCHES

useful pack of 8 switches, push to make break or changeover, $p \& p$ 20p.

MODEL MOTORS

$1 \frac{1}{2} v .-4 \frac{1}{2} v .$, powerfus compact units suitable for wide variety of modelling applications Pack of 6. p\&p 25p.

TRANSFORMER

double wound 240 v input. 12 v .200 mA output. Size approx. 1 zin. $x 1$ in. $\times 1$ ifin. Pack of $2, \mathrm{p} \& \mathrm{p} 55 \mathrm{p}$.
REED SWITCHES
\longrightarrow Ideal for burglar larms switches, position indicators. Introductory pack of 3 switches. rating 1A 3 circular magnets and reed switch coil. p\&p

CIRCULAR MAGNETS

Hin. diam, with $\frac{1}{6}$ in. square centre hole. Pack of 20, p\& p 25p. DIODES
low powered germanium diodes, forward current 85 mA . Pack of $25, p \& p 15 \mathrm{p}$. LIGHT GUIDES
yes, you can bend light round corners with these high quality glass fibre optics 1 mm active area, 2 metres, $p \& p 15 p$; OR 2 mm active area 1 metre, $p \& p$ 15p.
JACK PLUGS \& SOCKETS
2-way, pack of 4 plugs and 4 sockets, p\&p
T.T.L. 74 I.C.'s By TEXAS, NATIONAL, I.T.T., FAIRCHILD etc

7400	14 p	7426	25p	473	30 p	74121	30p	7415	65p	7417	14
7401	140	7427	25p	7474	30 p	7412	40p	74153	55p	741	100p
7402	14 p	28	40p	7475	30p	7412	60 p	74154	120p	7418	200p
7403	14 p	7430	15p	7476	30 p	74125	50p	74155	70p	7416	75p
7404	14p	7432	${ }^{25 p}$	7483	${ }^{85 p}$	74126	50p	7445	70p	7418	150p
7405	14 p	7437	25p	7485	100p	74130	${ }^{130} \mathrm{p}$	7415	70p	7418	150p
7406	40p	7438	25p	7486	30 p	74131	100p	74150	90 p	7418	350p
7407	40 p	7440	15p	7489	250p	74132	65p	7416	90 p	7418	350p
7408	$20 p$	7441	6sp	7490	35p	74135	100 p	74162	90 p	749	140p
7409	20p	7442	65p	7491	15p	7413	80 p	7416	90p	7419	140p
7410	15p	7445	80p	7492	45p	74137	100p	7416	125p	7419	120p
7411	20 p	7446	85p	7493	40p	74138	125p	74165	125p	7419	120p
7412	20p	7447	75p	7495	60p	74139	100p	74166	125p	7419	100p
7413	30p	7448	70p	7496	70p	74141	60 p	74167	325p	7419	100p
7414	60 p	50	15p	74100	95p	74142	270p	74170	200p	7419	100p
7416	30 p	7451	15p	74104	40p	74143	270p	74173	150p	7449	100p
7417	30 p	7453	1sp	74105	40p	74144	270p	74174	100p	74198	185p
7420	15p	7454	15p	74107	30 p	74145	75p	74175	75p	7419	p
7422	20 p	7450	15p	74109	50p	74147	230p	74176	100 p		
7423	${ }^{25 p}$	70	30p	74198	90p	74148	160p	74177	100p		
7425	25p	7472	25p	74120	90 p	74150	120p	74178	140p		
C. MO				IN4148 BY ITT/TEXAS 100 for $\mathbf{£ 1 . 5 0}$.				$2112-4256 \times 4$ BIT 450 NANO SEC. STATIC RAM. f2.95 each. $4 / £ 11.60$.			
4000	14p	4030	95								
4001	$14 p$ $14 p$	4033	1200	UNENCODED				8/£22.80.			
4006	$90 p$	4047	100p	HEXADECIMAL 19 KEY-				2513 GENERATOR CHARACTER UPPER CASE			
4007	16p	4048	55p	BOARD. 1-10 A.B.C.D.E.F. 2							
4009	$55 p$	4049	40p	OPTIO	AL K	S. SHI	KEY	GENERATOR UPPER CASE £7.00.			
4011 4012	14p	4050	120p	£12.50.				2513 CHARACTER GENERATOR. LOWER CASE £7.00.			
4013	50p	4055	140 p	555 Timer. 10 for $\mathbf{£} \mathbf{2 . 5 0}$.							
4015	90p	4056	135p	741 Op. amp. 10 for $£ 2.00$.							
4016	40p	4060	$120 p$ $55 p$					MM5 204 AO PROM 4096			
4017	$90 p$ $90 p$	4069	20p	RCA SCR TO3 case 100V 125 A £250.				8 IT READ ONLY MEMORY £8.00.			
4020	100p	4071	16 p					82128 BIT IN/OUT PORT f3.00.			
4022	90p	4072	16p	100V 12.5A £2.50.							
4023	16p		16p	MUAATA ULTRASONICTRANSDUCERS MAAOLIR				8831 TRI-STATE QUAD LINE DRIVER £2.00.			
4024	65p 16 p	4082 4510	${ }_{120 p}^{16 p}$	£2.50 each. ¢4.00 pair.							
4026	160p	4511	150p					8833 TRI-STATE T			
4027	50p	4516	110 p	2102AN-2L 1024×1 BIT 250 NANO SEC. STATIC RAM. £2.20 each. 4/£B.40. 8/£16.00.				CEIVER	ITRU	£2.00	
4028	90p	4518 4528	130p					8835 TRI-STATE TRANS CEIVER (INVERTING)			
4029	110p	4528	100p								
LEDS 125 OR 2 RED ONLY. 10 FOR $£ 1.20,100$ FOR £9.00, 1000 FOR f 60.00				2102AN-4L 1024×1 BIT 450 NANO SEC. STATIC RAM. f1.60. 4/£6.00. 8/£11.60.				AY5-1013 UAR/T £6.00. LM309K/LM340K VOLTAGE REGULATOR $\mathbf{I} \mathbf{1 . 0 0}$ each.			

306 ST. PAUL'S ROAD.
HIGHBURY CORNER, LONDON N. 1
Telephone: 01-226 1489
ALL PRICES INCLUDE POST AND V.A.T.

Connoisseur's New and Exceptional SAU4 PickUpArm

Especially designed for modern high compliance cartridges and featuring

1. Light weight metal headshell
2. Calibrated downforce pressure weight
3. Ball spirit level for visual indication of central balance
4. De-coupled counter balance weight
5. Viscous damped unipivot
6. Lateral balance weights
7. Viscous damped raise/lower device
8. Light weight aluminium tube

Connois:seur

A. R. Sugden \& Co. (Engineers) Lid.

Manufacturers of Connoisseur Sound Equipment,
Connoisseur Works, Allas Mill Road, Brighouse, West Yorkshire HD6 IES
Telephone: Brighouse (0484) 712142, Telex: 517144 Sugden G
Telegrams \& Cables: Connoiseur Brighouse.

No doubt you will by now have found your free sheet of STICKIES. The ones you have are for the popular 7400 series of TTL i.c.s plus a few blank 14 and 16 pin ones that can be filled in as required. Sheets of CMOS (4000 series) are also availabledetails later.

FAULT FINDING

Our photograph shows one of the main uses of these labels. Having constructed a piece of equipment it helps with circuit checking and fault finding if each i.c. has its corresponding label attached. Each pin is then either labelled or its internal connection is shown in schematic form.

P.C.B. LAYOUT

STICKIES are also very useful for designing p.c.b.s. Simply stick them down on a sheet of paper and join the pins with pencil lines. They then provide immediate identification of each i.c. and its pins and form a reference for the i.c. size and pin positions.

PROTOTYPING

Many amateurs and professionals employ some type of plug in breadboard for prototyping. When using unfamiliar i.c.s STICKIES can provide an immediate pin reference, helping to speed up interwiring and eliminate mistakes. Of course once the i.c. is labelled it can be used later and the STICKIES will always provide pin identification without recourse to charts or reference books.

STORAGE

STICKIES should be stored away from direct sunlight avoiding extremes of tem-
perature and humidity. The adhesive used is a general purpose removable type which is suitable for use between -40 and +70 degrees C.

The data printed on STICKIES has been carefully checked and is believed to be entirely reliable; however, no responsibility can be assumed for inaccuracies.

ABBREVIATIONS

Some abbreviations have been used on STICKIES which may not be obvious to all readers. These are:

Car Out	-	Carry out	"logically identical"; table below		
CIk	-	Clock	extended to 86 i.c.s.		
Clr	-	Clear	FOR		USE
EN	-	Enable	7403	-	7400
ext	-	External	7405	-	7404
G	-	GND	7406	-	7404
Inh	-	Inhibit	7409	-	7408
(L)	-	Left	7412	-	7410
MOD	-	Mode	7413	-	7420
Pre	-	Preset	7416	-	7404
(R)	-	Right	7417	-	7407
Rst	-	Reset	7422	-	7420
Sel	-	Select	7426	-	7400
SER IN	-	Serial In	7437	-	7400
Sh	-	Shift	7438	-	7400

The STICKIES given in this issue cover 61 different i.c.s, however, by the use of the "logically identical", table below this can be extended to 86 i.c.s.

Str	Strobe	7439	-
V $\quad V_{\text {cc }}$	7440	-	7401
Inverted functions are shown thus- \bar{A}; for	7443	-	7442
inputs this indicates active low, e.g. the cir-	7444	-	7442
cuit operates on the negative going transi-	7445	-	7442
tion.	7447	-	7446
A broken division line is used on i.c.s	7451	-	7450
which contain two circuits with identical	7454	-	7453
functions. Thus each function is connected	74132	-	7400
on one side of the line.	74145	-	7442
	74161	-	74160
	74162	-	74160
DIFFERENTMI.C.S	74163	-	74160

MORE!

We are sure you will find your 120 free ones very useful and will in due course need some more. Please don't write to P.E. be thankful for the 60p's worth we have given you and next time send your money to Concept Electronics, 8 Bayham Road Sevenoaks, Kent. The cost, including an information sheet, plastic wallet, VAT and postage is 80 p for a sheet of 120 (either 7400 or 4000 series-state which is required).

Alternatively, a 480 label pack is available for $£ 2.80$. Concept will also give discount for quantity, orders, their 'phone number is 0293514110.

by Mike Abbott

TELETEXT COURSE

You've probably seen Teletext by now, if not at an exhibition, then through a television dealer's window at least. Teletext could become the newspaper and magazine of the future, and if you're still not clear how this potentially revolutionising advancement works, there is still a chance to leap in on the course of lectures to be held at the main building of the South London College.

This short course of nine special lectures on receiver decoders will be held in the Lecturer Theatre on consecutive Tuesday evenings from 6.30 to 8.30 , commencing 10th October 1978. Slides will be shown and demonstrations given.

The course is intended for television and telecommunications technicians and engineers, and will be presented by specialists from Industry and a member of the College staff, as follows:
C. J. Chapman of South London College, October 10 \& 17: Introduction to digital terminology. Topics to be introduced will include: binary codes, gates, counters, decode-of-count and memories.
J. R. Chew of BBC Research Department, Tadworth, October 24: The Teletext signal; October 31: Character codes and generation. Technical facilities available.
J. R. Kinghorn of Mullard Central Applications Laboratories, Mitcham, November 7: Introduction to decoders-general requirements for reception of teletext; November 14: The decoder architecture; November 21: Data acquisition circuits; November 28: Memory circuits and character generation; December 5: Control of the system. Likely developments.

The course fee is $£ 6 \cdot 50$, and early enrolment is advised. Contact: \mathbf{A}. A. Rowlands, South London College, Knights Hill, London SE27 OTX.

PATENT VICTORY

The Japanese Patent Office has issued a patent to Texas Instruments Inc. covering virtually all miniature electronic calculators.

The patent is for personal-sized, battery-operated calculators which have their main electronic circuitry in a single integrated-circuit chip. The Japanese patent is based on US Patent $3,819,921$, which was granted to Texas Instruments on the 25th June, 1974.

The Japanese decision represents a significant milestone for Texas Instruments because its pocket calculator invention was subjected to stringent opposition by the patent system in Japan-where many electronic calculators are made, and was determined to be patentable over opposition arguments.
Official publication of the TI miniature calculator invention was made by Japan's Patent Office on the 24th August, 1974. Following this publication for opposition, 12 leading Japanese calculator companies objected. They cited a total of 25 references as a basis for their argument that the TI invention was not patentable. The Japanese Patent Office, on the 27 th June, 1978, rejected the opposition arguments, awarding a patent to TI .

Under the Japanese patent, Texas Instruments will have the right to claim royalties retroactively to the date that the TI miniature calculator invention was officially published by the Japanese Patent Office. Texas Instruments will actively seek to licence this patent.

To date, 19 countries have issued patents to Texas Instruments for the calculator invention, among them the United Kingdom.

The miniature calculator described in the Texas Instruments patent was the result of work done at TI in the mid-1960s. The US patent was originally filed in 1967. This miniature calculator, the world's first, employed a large-scale integrated semiconductor array containing the equivalent of thousands of discrete semiconductor devices. Measuring only $108 \times 155 \times 44 \mathrm{~mm}$, it was the first miniature calculator to have the high degree of computational power, found at the time only in much larger machines.

Other elements of this early example of the miniature calculator included a small keyboard with 18 keys and a visual display in the form of a semiconductor thermal printer for printing out calculations of up to 12 decimal digits.

No soldering. No de-soldering. No heat-spoilt components. No manual labour. No wasted time.

With a Proto-Board you can hook your circuit together as quickly as you can think.

And you can have second thoughts, and third thoughts. equally quick and easy, till you've got the whole thing right.

Then you can solder up if you want to, but most engineers don't because the Proto-Board push-fit connectors are highly reliable.

And everything is visible: come back next week and you 'read' the circuit immediately.

Model Number	No. of Solderless Tie-points	IC Capacity (14-pin DIP'sin DIP's)	Unit Price	Postage Package	vat	Total Price	Other features managed without it.
PB-6	630	6	$£ 9.20$	£1.00	$£ 0.82$	$£ 11.01$	Kit-10 minute assembly
PB-100	760	10	11.80	1:00	1.02	13.82	Kit-with larger capacity
PB-101	940	10	17.20	1.25	1.48	19.93	8 distribution buses, higher capacity
PB-102	1240	12	22.95	1.25	1.94	26.14	Large capacity, moderate price
PB-103	2250	24	34.45	1.50	2.88	38.83	Even larger capacity; only 1.73 pence per tie-point
PB-104	3060	32	45.95	1.50	3.80	51.25	Largest capacity; lowest price per tie-point
PB-203	2250	24	55.15	1.50	4.53	61.18	Built-in 1\%-regulated 5V, 1A low ripple power supply
PB-203A	2250	24	74.10	1.50	6.10	82.30	As above plus separate $1 / 2 \mathrm{Amp}+15 \mathrm{~V}$ and - 15 V internally adjustable regulated supplies

How to order. Telephone 01-890 0782 and give us your Access, Barclaycard or American Express number, and your order will be in the post that night. Or, write your order, enclosing cheque, postal order, or stating credit card number and expiry date. (Don't post the card!). Alternatively, ask for our latest catalogue. showing all CSC products for the engineer and the home hobbyist. (Prices are for UK only. For Europe add 10%, outside Europe add $121 / 2 \%$ to total prices.)

SPECIAL OFFER TO P.E. READERS

ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY In a superb STAINLESS STEEL case with MINERAL GLASS face. THIS MUST BE THE ONE YOU HAVE BEEN WAITING FOR!
If you could write the specification for your own ideal watch you would probably want everything this one has As for styling, without a close inspection nobody is going to be able to tell the difference between this watch and that world famous James Bond classic selling for E 145 . However, this one goes one better and has $\frac{1}{10}$ second measurement of net, lap and 1 st \& 2nd
place times, with dual time facility.

- Constant LCD display of hours and minutes, plus optional seconds or date display, plus day of the week and am/pm indication
- Perpetual calendar; day, date, month and year
- 24 hour alarm with on/off indication.
- $\frac{1}{100}$ second chronograph measuring net, lap and first and second place times.
- Dual time zone facility. Night light.
- Fully adjustable stainless steel bracelet
- STAINLESS STEEL CASE. MINERAL GLASS.

This watch is not to be confused with cheaper models with chrome plated cases and plastic lens Manufactured by National Electronics, it runs a close
second to Casio. Citizen and Seiko for quality and

OTHER LOW COST

NATIONAL WATCHES

AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH

 Hours, minutes, seconds, am/pm. 24 hour Alarm with sign. Stopwatch: Net times, lap times, 1 st \& 2nd place times trom $\overline{10}$ sec. 10 . signs. Calculator: 4 key memory,1 year batteries. ± 20 secs/month

RRP £26.95 Our price £21.95

NEW CASIO WATCHES

Experience has convinced us that for quality
reliability and value for money, CASIO are unbeatable. CASIO have now increased their superb range.
All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases water resistant to 100 feet (except Sports Watches 66 feet).
310R-208 Round, Stopwatch (£31.95) £26.95 $\begin{array}{llll}\text { 510R-19B } & \text { Round, } 6 \text { Digits. } & \text { (f35.95) } \\ \text { Selectable } 12 & \text { or } 24 \text { hour display } & \text { (} 29.95\end{array}$ $\begin{array}{llll}\text { Selectable } 12 & \text { or } 24 \text { hour display } & (£ 35.95) & £ 29.95 \\ 540 \text { (} & \text { (}-168 & \text { Square, as above } & (£ 44.95) \\ £ 34.95\end{array}$ $\begin{array}{llll}540 S-168 & \text { Square, as above } & (\mathfrak{£} 44.95 & £(\mathrm{E} 4.95 \\ 540 \mathrm{~S}-15 \mathrm{~B} & \text { Luxury version } & (\mathrm{f} 49.95) & £ 39.95\end{array}$
45CS-22BChronograph. Net
lap and 1st \& 2nd place times 12 or
24 hour dispiay. Dual time zone (£64.95) £49.95
Dress Watches. Square, stopwatch, dual time zone 53CS-18B Square (E69.95) £54.95 $\begin{array}{llll}53 C G S-17 L & \text { Bold plated strap } & (£ 84.95) & \text { (} £ 69.95\end{array}$ All these models and full details should
be available in early September.

reliability, with undeniable value for money. The first very limited quota will be available in midSeptember with a few more due in October. Orders wil be treated in strict rotation, so don't risk being disappointed

CQ-81 CALCULATING ALARM CLOCK

PLUS 2
ALARM/TIMERS
Two AA batteries last for $10,000 \mathrm{hrs}$ (1 year). LCD 6 digit clock, large angled display. 24 hr Alarm, also with countdown (one selfclearing, one repeats). Full clearing, one repeats). Full $15_{8}^{5} \times 2 \frac{3}{4} \times 5 \mathrm{in}$.

RRP $£ 22.95 £ 17.95$

ST- 24 CARD TIME 24 hour stopwatch (or time display) $\frac{10}{10}$ sec. to 10 hours 1 second to 24 hours Two Alarm/Timers Memory. $\%$ \% 1
$\frac{1}{1} \times 3 \frac{1}{2} \times 2 \frac{1}{8} \mathrm{in}$. RRP $£ 24.95$ £19.95

ALARM WATCHES. 25CR-16B (round) E49.95 25CS-14B (square) $\mathbf{E} 59.95$
WORLD TIME WATCH. 29CS-11B $£ 59.95$
SEIKO Calculator/Watch (f165) £135
CITIZEN Multi-Alarm ($\mathbf{f} 135$) £ 108
MAINS DIGITAL ALARM CLOCKS
Fairchild Timeband C500, Black or white $\mathbf{£ 9 . 9 5}$ CASIO CALCULATORS
ST-1 Stopwatch (four way) £24.95
LCD LC822 $£ 10.95$. LC78 $£ 16.95$
AQ-1000 Clock, alarm, stopwatch E 21.95
CASIO SCIENTIFICS
DIGITRON: FX- 31 £ 11.95 . FX- $39 £ 15.95$ FX-140 £17.95. FX-120 £19.95. FX-360 £49.95.

THE SINCLAIR PDM35 digital Multimeter
 with test leads, prods 8
wallet. D $\begin{aligned} & \text { D-luxe padded }\end{aligned}$

SINCLAIR DM235

$\mathbf{£ 5 2 . 8 0}$ inc VAT complete with test leads \& prods
A full range of optional accessories. (Prices include VAT) Eveready carying case with lead storage compartment....c8.95 Rechargeable battery units $£ 8.50$. AC adaptor/charger $240 \mathrm{~V} 50 \mathrm{~Hz} £ 3.50 .30 \mathrm{kV}$ voltage probe $f 18.04$ All Prices include VAT. Add 50p. Postage and Packing To all Orders
Also Availabe: The New Computer Chess Challenger with Sinclair Po llay 199.95 . SAE Sinclair Pocket Television. £199.95. SAE
ter Backgammon f149.95. SAE
The NEW ELMAC $4^{\prime \prime}$ oscilloscope f 109 inc. VAT + P\&P.SAE Full range of support chips e.g. intel 8080 fB inc VAT. SAE Intel MCS/80(SDK) kit f 190 + VAT. SAE

Modern, slim-line power panel, countless uses in home.
office, factory, showrowns. Pertectly safe, unbeatabl;e. Can be mounted on wall or trailed anywhere in room. Neat
rubber base. Smart PVC outer cover. Black $\mathbf{£ 3 . 1 0 \text { . }}$. rubber base. Smart PVC
White $£ 3.30$. P\&P 60 p each.

FLAIRLINE SUPPLIES (PE10) 124 Cricklewood Broadway, London N.W. 2 Telephone 01-450 4844

The Great Debate (2)

Since my comments last month on VLS| and its probable impact on life-style in the 1980 s and beyond, the Government have made a few announcements of intended aid to microelectronics producers and users. The Government's response, such as it is, is feeble in terms of financial aid and appears uncertain in intent. But can the Government be blamed when its input of information, not to mention advice, from well-meaning sources is itself confused and influenced, not by a masterplan carefully conceived for Britain, but largely by what other countries are doing?

Of course it is correct and prudent that we should keep an eye on what our competitors are doing but the level of government aid granted in Japan or France, West Germany or the United States is not necessarily the yardstick we need to adopt. A logical argument is that if VLSI is going to be a winner, then there should be plenty of private investment to support it without state aid. Unhappily there are other factors such as national self-sufficiency in the equation, and the high-risk element which deters private investment. Until some more clearly defined policy emerges it is reasonable that the few million pounds so far tentatively committed should be received with grateful thanks and in the hope that more is to come.

I remember ten or more years ago we all went through the same painful exercise in the early days of the integrated circuit. There was endless debate about what should be done and in the end the industry verdict was "too little and too late".

Today, we are going through even more agony because we have an even greater proliferation of official committees, working parties, think tanks, and other experts involved, not to mention powerful voices from non-experts like the unions and lesspowerful but nonetheless influential TV and radio commentators.

And so the mistakes of the past are likely to be repeated with much talk and little or no action and.in a technological situation in which hardly a day passes without advance. One rumoured plan for Britain is to set up and finance a mass-production unit for the 64 K RAM market and site it in a depressed area. Even with technical assistance from Silicon Valley it is extremely doubtful whether production could be obtained in meaningful quantity by the time that others are working on the 256 K RAM, expected to be on the market in a big way by 1982.

As far as MPUs are concerned the proposed government aid aimed at encouraging their application in new products should be well worth while. The MPU is just another chunk of silicon, worthless until it is programmed to a useful activity. The hardware costs are dropping dramatically while programming costs are relatively increasing. It will be the ingenuity in programming and application that could keep Britain ahead in world trade.

One positive step forward in the Great Debate is that the Government has now come to recognise that there is an electronics industry in Britain and, moreover. that it is important. And that can't be bad.

Postal Automation

The introduction of automation in the postal services is going at a snail-like pace according to a Mr J. Gombinski in a recent letter to The Times. Although a little out-ofdate (being based on information disclosed in 1975) his statistics are worth repeating.

Nine years after the introduction of automation, writes Mr Gombinski, only six per cent of machinable mail was sorted automatically and at the then rate of progress it would take 150 years to automate entirely. But while the Post Office hardly ever uses the postal codes he calculates that in 1975, given 150,000 million machinable items a week and allowing only 3 seconds to write in each of the unused codes, 750,000 working days were lost on a useless exercise in that year alone.

Talking Computers

Racal-Milgo could be on to a good thing taking on the marketing of Wavetek voice response systems in Europe, the Middle East and Africa. The system allows you to dial up a central computer by ordinary telephone, use a low-cost key-pad to enter your enquiry and the computer supplies the answer, not in data form but in a simulated human voice. It is a fast-response system, especially useful for verifying whether a credit-card customer is in credit and for similar routine enquiries.

The Consumer Market

If market analysts Frost \& Sullivan are right in their forecasts, the consumer electronics market in Western Europe is now due for a revival. Predictably the growth areas will be in the newer fields of videotape recorders. TV information services and TV games. Music centres are also tipped for big gains by 1985 and, perhaps
surprisingly, radio receivers will also do well. Table-top monochrome TV sets, however, will virtually become extinct except for the poorest homes in the poorest areas. The growth forecast is based on the assumption that Western Europe is not yet market-saturated in consumer electronics.

Meanwhile UK suppliers continue to have a rough time. Even well-managed GEC lost $£ 4$ million on TV last year and after drastic action to remedy overcapacity only a break-even situation is forecast for this year.

Encouragement

The Caroline Haslett Memorial Trust and the Institution of Electrical and Electronics Technician Engineers are putting up an annual award of $£ 250$ for "The Girl Technician Engineer of the Year'. The idea is to draw attention to electrical and electronics engineering as a worthwhile career for young ladies.

Fibre-Optic TV

Following long experimental tests of TV signal distribution by fibre-optic link in the UK by Rediffusion, the first consumer household in the world to receive its TV signals by fibre-optics is in Arnhem, Holland. The local company, Delta Kabel, is using the Dial-A-Program system developed by Rediffusion and operated by Delta Kabel under licence.

The optical link into the house is about 800 feet long and is intended to demonstrate that the idea is not only workable but can be achieved with lowcost components. Signal distribution by light duct could prove cheaper than copper wire and, having a wider bandwidth, will accommodate many more TV channels as well as stereo radio.

Satellite News

Marconi Space and Defence Systems has won an order worth $£ 12$ million for two new transportable earth terminals for NATO and for updates on a dozen existing earth terminals. The contract also includes the supply of the same updating equipment for five terminals being built in the USA by Ford Aerospace.

Racal Electronics Group, better known for manpack military radios and h.f. receivers and transmitters, has broken through into mobile satellite ground terminals with a substantial order from the Ministry of Defence. The Racal.design is a small terminal which can be accommodated in light field vehicles such as the Land Rover.

Transatlantic communications, shared amicably over the past few years by complementary submarine cables and Intelsat satellites, is now the subject of dispute. Intelsat want a larger share of the traffic and the FCC is objecting to further cables, such as TAT-7, which would increase cable capacity. Europe wants the new cable. So does the US Defence Department who see the transatlantic cable as a necessary backup should the satellites be blown out of the sky by possible enemy action.

Abstract

Appearing every two months, Micro-Bus will present ideas, applications, and programs for the most popular microprocessors; ones that you are unlikely to find in the manufacturers' data books. The most original ideas will probably come from readers working on their own microcomputer systems, and payment will be made for any contribution featured here. This is also the place to air your views, in general, on this new technology, so let's be hearing from you!

The three topics in this month's Micro-Bus are all concerned with minimization in some way or other, with a supremely simple cassette interface system, some improvements to the number-sorting routines given in April's Micro-Bus, and a diminutive program for finding prime numbers.

MINIMAL CASSETTE INTERFACE

The cassette interface system to be described was received from Nick Toop of Cambridge, and it overcomes one of the main drawbacks of the lower-cost microprocessor kits currently available; namely that they provide no way of permanently saving programs. The system described makes it possible to store and load programs and data using a standard domestic cassette or tape recorder, and although it is primarily designed for SC/MP, it should be possible to develop a similar system for use with any other microprocessor.
"The cassette interface and programs were originally designed for use with a SC/MP Introkit with the Keyboard Kit, but they are currently being successfully used with a Science of Cambridge Mk14. The main objective in developing the system was to make the load-from-tape program as short as possible since this would have to be entered at the keyboard on powering up each time.
"On the other hand the length of the store-to-tape program is not so important since this can be loaded from tape each time it is needed,
and so on this side the hardware was made as simple as possible. The programs were written to be relocatable so they can be fitted anywhere in memory without modification."

RECORDING FORMAT

> "Data is coded as a series of 1 kHz tone bursts; a zero bit is represented as a 4 ms burst followed by a 28 ms gap, and a one bit is coded as a 16 ms burst followed by a 16 ms gap. The bytes are transmitted low-order bit first, and there is no extra gap between successive bytes. To load from tape the start address is first entered at OFF9 (high-order byte) and OFFA (low-order byte) so that the monitor will put the address in P1 on entering the program.
> "In systems without a monitor some instructions will have to be added at the start of the program to set up P1 correctly. The tape is played until the blank interval in front of the data is reached, and then the LOAD program is executed. The tone bursts from the tape are processed by the circuit of Fig. 1 which uses a single 4001 (or 4011) CMOS gate package with the four gates wired as inverters.
> "The first inverter is biased into its linear region to act as a simple amplifier, and two more inverters form a demodulator which gives at its output the squared-up envelope of the pulse bursts. This is fed to the SENSE-B and SERIAL-IN inputs of the SC/MP microprocessor, and to an indicator l.e.d. which flashes to indicate correct operation and
helps in setting up the best level at the input potentiometer."

LOAD PROGRAM

"The LOAD program in Fig. 3 operates as follows. It first waits in a loop for an input at SENSE-B. On receipt of an input it delays for 14 msec . and then shifts whatever is present at SERIAL-IN into the extension register using the SIO instruction; this will be a 0 if the pulse was short and a 1 if the pulse was long. The program delays for a further 14 msec . and then returns to the previous loop.
"When eight bits have been shifted into the extension register the byte just formed is stored to the location pointed to by P1 using auto-increment addressing so that P1 is then pointed to the next address. When the indicator l.e.d has stopped flashing the reset button on the microprocessor should be pressed to escape from the program, and loading is complete.
"Since the load program allows you to specify any arbitrary starting address for the data being loaded, the cassette system also serves as a means of relocating programs in memory."

STORE PROGRAM

"To store to tape the start address is put at OFF9 (high-order byte) and OFFA (low-order byte), and the number of bytes to be stored is put, in hex, at OFFB; the address and length

Fig. 2. The store-to-tape clrcult, a simple adder which combines two algnale from the microprocessor

Fig. 1. Nick Toop's load-from-tape circult, a demodulator uelng a alngle CMO8 package

are loaded into P1 and P2H respectively by the monitor program. The maximum length is 256 bytes, represented as $\mathrm{X}^{\prime} 00$.
"The STORE program of Fig. 4 codes the data into a sequence of tone bursts at the FLAG-0 and FLAG-1 outputs on the SC/MP chip. FLAG-1 is set high between bursts so that when the two outputs are combined at the input of the tape-recorder using the simple adder circuit of Fig. 2 the gap between pulses is at a mean level; this avoids sharp transients due to the pulse onsets which would make an automatic volume control adopt an unduly Jow sensitivity.
"The program generates either four pulses for a zero or 16 pulses for a one, using the
together with the claim that they were believed to be the shortest programs possible. It now seems that this was a dangerous claim to make, and thanks are extended to all the readers, too numerous to mention, who sent in improvements.

The sort reutines all used the exchange-sort method to order an array of up to 256 numbers, and the condition was made that the address and length of the array should be passed down to the routine in suitable registers. The routine for the $\mathbf{Z 8 0}$, which was taken from the Z80-CPU Technical Manual, received the greatest hammering and the shortest version, sent in by Eric Baddiley of Cheshire, reduces the number of program bytes from 38 to 23 !
necessary to test them. This improvement can be incorporated in the program of Fig. 5 with no increase in size simply by changing the instruction at 0014 to "JR NZ, SORT-\$", and in the program of Fig. 5 by changing the position of the label AGAIN to the instruction "DEC A" in the previous line.

PRIME PROGRAM

Although the prime numbers are simple to define-they are numbers whose only divisors are 1 and the number itself-no explicit formula exists for generating them, and efficient programs to search for particular primes can be extremely complex. Note that 1 is not con-

location PULSES as a counter; the pulses are followed by the appropriate trailing space, namely 28 ms for a zero and 16 ms for a one. Eight such bursts of pulses encode each byte of data.
"As you can see, the recording format is extremely simple, and this helps to make the software short and the hardware cheap. Nevertheless the system has proven extremely reliable even with a low-cost cassette recorder, and it is amply fast for most purposes, loading or storing 256 bytes in under a minute."

BETTER SORTS

In the April Micro-Bus number sorting routines were given for four different micros

The new version, shown in Fig. 5, has the added advantage that it is relocatable because it makes no use of external store to hold data. A similar version was received from D. Ritchie of Essex University.

The shortest sort routine for the M6800 was submitted by Andrew Yeomans of Surrey, and this is shown in Fig. 6. It reduces the size of the program from 41 to 33 bytes by making use of the stack to store temporary variables.

Michael Blandford of Dorset pointed out that the sorts can be speeded up by decrementing the length of the block to be scanned after each pass; after one pass of the array the last element must be in its correct position, and after 20 passes the last 20 elements must be in order at the end, so it is un-
sidered to be a prime, so the first eight primes are $2,3,5,7,11,13,17$ and 19 . Consider the task of writing a routine to find the n'th prime where n is passed down in a suitable register.
A surprisingly short program will achieve this if efficiency is not important, and Fig. 7 shows one for the MCS6502 which will find all the primes up to 251 , the 54 th prime. The number of the prime required is supplied in the \mathbf{X} register and the prime is returned in the \mathbf{Y} register. By altering the program to use double-byte variables it could easily be extended to find primes up to 65535 . As it stands it is hard to see that the program could be shortened, but readers who find improvements are encouraged to send them in and some may be presented in a future issue.

Copies of Patents can be obtained from :

the Patent Office Sales, St. Mary Cray, Orpington, Kent Price 95p each

In the hi-fi world there is currently considerable controversy over the "musicality" of amplifiers, that is to say the possibility that two amplifiers which measure the same on even the most sophisticated test equipment currently available may sound different when reproducing music. In BF 1499939 Tokyo Shibaura Electric Company Limited of Japan patented an amplification circuit that is claimed to give improved results, through a particular connection of capacitors, but with the admission by the inventor that it is unclear why the improvement is achieved.

Essentially the claim is that the connection of extra nonpolar capacitors parallel with the electrolytics "can effectively improve the fidelity of reproduction", although the reason why "is not theoretically clear".

IMPROVING "MUSICALITY"

The audio amplifier of Fig. 1 is based on FETS 12,13 in a complementary pair. Electrolytic capacitors 20, 21 are used as filters for the d.c. source and also for decoupling. The capacitors are formed of an aluminium film and are of high value e.g. 5,000 to $20,000 \mu \mathrm{~F}$. To capacitor 20 is connected in parallel a pair of nonpolar capacitors 22,23 and to capacitor 21 is likewise connected a pair of nonpolar capacitors 24,25 . The capacitors $22,23,24,25$ are each chosen to have a capacity which is sufficiently low to leave the capacity of the electrolytics 20 . 21 largely unaffected but sufficiently large to allow a substantial proportion of the audio frequency range to pass through them.

Capacitors 22, 24 are of metallized paper in the value range 10 to $100 \mu \mathrm{~F}$ and the
capacitors 23,25 are of Mylar film type and similar value.

According to the inventor, "nothing is known about what effect is exerted on sound signals by the non-linearity of the inner loss of the capacitors relative to audio frequency" but he believes that electrolytics as used in audio amplifiers are non-linear in this respect.

He also believes that the connection of various given types of nonpolar capacitor in parallel with the electrolytics causes the collective inner loss-frequency characteristics of all the capacitors to be linear over the audio range. The number of nonpolar capacitors is not limited to two, and three or more may be used as necessary to provide linearity.

Fig. 4

EMI Ltd. in BP 1497394 describe an interesting approach to the eradication of low frequency noise or rumble from recorded or transmitted signals. The invention makes use of the fact that little or no directional information is derived from low frequency signals. EMI put the dividing line between high and low frequencies at 200 Hz and although it is arguable that this figure is too high (i.e. that frequencies below 200 Hz can carry directional information) this argument does not effect the basic theory of the invention.
As shown in Fig. 1 the recording or transmission system is fed with left and right channel signals L and R, each composed of high and low frequencies. Thus $L=L_{h}+L_{1}$ and $R=R_{h}+R_{1}$. The signals in the left channel $\left(L_{n}+L_{r}\right)$ frequency modulate a carrier frequency, eg. at 300 kHz , in modulator 3 . The signals in the right channel are inverted at 4 and the inverted signals $\left(-R_{h}-R_{1}\right)$ frequency modulate at 5 a carrier of the same (or different) frequency. The frequency modulated signals are recorded at 6 , which may be an f.m. tape recorder or disc.

The reproduction circuit is shown in Fig. 2. The f.m. signal is first demodulated at 8 , 9. The demodulated signals will inevitably now contain some unwanted low frequency noise which is represented by r. Because the two recorded channels have been derived from the same tape track, or record groove, the rumble components are virtually identical in magnitude and phase. Thus the signals in the left channel are, after demodulation, $\left(L_{n}+L_{1}+r\right)$ and the signals in the right channel are $\left(-R_{h}-R_{1}+r\right)$. The right channel signals are now inverted to produce $\left(R_{h}+R_{1}-r\right)$ so that the rumble components r in the two channels are now in exact anti-phase. They can thus easily be removed by the matrixing circuit 11 . The final output is thus free from all the low frequency noise introduced by the process.

RUMBLE ERADICATION

Fig. 1

An idea for a meter which automatically changes scale to avoid under and overload and provide the most accurate read out available, is patented by Lawrence Large of Sussex in BP 1507 466. Although the idea is simple it could well prove valuable.

As shown the meter scale 1 has a perforation 2 at the "higher" end. A photoelectric cell 7 lies underneath this perforation and normally receives light from source 8. The meter pointer carries a blanking plate 3 which is dimensioned to obscure the perforation 2 as soon as the pointer is driven towards the dial stops. In this way light to the photo cell is blocked and this change of state is sensed to switch the meter scale to the next higher range.

A similar approach can be adopted at the low end of the scale with obstruction of another light path sensed to switch the meter down to a more sensitive scale. If successfully adopted such a system could prevent overload of a dial meter while at the same time optimising accuracy by selecting always the most sensitive, but safe, scale for the reading in hand.

RANGE CHANGING

News Briefs

DISC FULL OF HOLES

Many developments have been made over the last few years on various picture recording and playback systems for television. In 1968, THOMsON-CSF considered that one of the best ways to solve this significant problem and offer new applications, was an optically scanned videodise system. The disc is recorded as a continuous spiral track. This track consists of a succession of $0.6 \mu \mathrm{~m}$ (approx.) wide micro-holes whose length and spacing varies in terms of modulation. The pitch between the spirals is about $1 \cdot 6 \mu \mathrm{~m}$. Upon reading, the light beam originating from a low power laser focused onto the spinning disc through a large aperture lens is modulated when passing through the holes (variable diffraction). A set of photo-electric sensors located underneath the transparent disc collects this modulation and changes it into an electric signal. After demodulation, the resulting signal reproduces the recorded video signal.

Each revolution of the disc corresponds exactly to one television frame which permits indefinite freeze-framing (videotape can only be held for two seconds) and, providing more than 50 copies are produced from any one master, discs are cheaper than tapes. In addition, there is speedy random access to any of the 45,000 frames on each disc (taking about two seconds from selection to presentation), and the disc can be played forwards or backwards at normal, fast or slow speeds without any wear. The recording is made, initially, on a polished glass disc covered with a $0.15 \mu \mathrm{~m}$-thick photo resist coating, the information being recorded on this photoresist by a modulated laser. The final, flexible PVC videodiscs, stamped by an electroformed die, give approximately 30 minutes continuous play, or access to 45,000 individual still pictures in full colour.

Readers requiring a reply to any letter must include a stamped addressed envelope. Opinions expressed in Readout are not necessarily endorsed by the publishers of Practical Electronics.

Cheaper Ports

Sir-I wonder if I might, albeit somewhat belatedly, comment on the Semiconductor Update of the July ' 78 issue. The method suggested of obtaining eight 8 -bit ports using eight 74251 s is of course valid, but is rather expensive, as according to one advertiser these will cost a total of $£ 12 \cdot 00$. A way of saving around a 'fiver' with no loss of elegance is to use 10 chips as follows:
$\begin{array}{lr}8 \times 74151 \text { exactly as described } & £ 6.48 \\ 2 \times 4016 \text { transmission gates } & £ 1.08 \\ & \begin{array}{l}£ 7.56 \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{l}£ 4.44\end{array}\end{array}$
All prices stated are from the same advertiser.
The two 4016 s are connected between the outputs of the 74151 s and the data bus and their eight control lines are connected to wherever the selects of the 74251 would have been connected.

A further advantage, over and above that of pure cost saving, is that, if a mishap should occur, and the databus drivers and the port controller should disagree as to who has the
bus, it is likely that it would be possible to get away with replacing $£ 1.08$ worth of CMOS rather than $£ 12.00$ worth of 74251 s .
J. McCarthy,

Dulwich, London.

Well-er!

Sir-I read with interest Mr D. J. Bradbury's article in the August issue concerning Weller soldering irons. A few months ago I was faced with the same problem, namely running a 24 V iron from a 12 V source. My solution is, I think, far more elegant. It does away with D 1, D2, D3, TR1, R1, C1 and C2 in Mr Bradbury's project. In fact the only component necessary is a 12 V element part number HE60 (12) for the TCP1 or part number HE2 (12) for the TCP2 iron. You must surely agree that the best circuit is always the simplest one!
N. Goldring, Reading.

We agree that the best circuit is the simplest-provided it does not have any drawbacks! The Weller element costs $£ 4.80$ and it is necessary to solder it in, so you must either purchase a complete 12 V iron (at greater ex-
pense) or change the element every timecould be difficult if you only have the one iron!

Seriously though, we were not aware that 12 V elements were available-nor was our contributor, who works for a large British equipment and component manufacturer! However, our unit can be built for approximately the same price as the element and is very much more convenient to use.

No oh!

Sir-A slip of the pen seems to have gone into print in Walter Hediger's neat little pH meter (August issue).

The scale is of course logarithmic in concept and so " 0 " should not appear on it. This may seem a small point but since all log. based scales can be divided ad infinitum it is a pity to spoil the effect by an error of principle.

Far better on log. scales to have a small space then start with " 1 ". In the case of pH a value of " 0 " would imply some "absolute acid" capable of dissolving anythingincluding the meter probe.
R. E. Hurst, Blackpool.

LOOK! Here's how you master electronics

the practical way

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.
You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Build an oscilloscope
As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will neeḑ not only for the course s practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams
In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television radio. computers and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

CANON COMPONENTS OFFER A FANTASTIC RANGE AT VERY COMPETITIVE PRICES inc/uding ...

- R.F.
- DIGITAL
- TRANSISTORS
- LINEARI.C.'s
- DISPLAYS
- LED's
- RESISTORS
- CAPACITORS
- HARDWARE
- CHASSIS
- BOXES
- S-DEC
- T-DEC
- TRANSFORMERS
- SPEAKERS
- CABINETS
- AMPLIFIERS
- MICROPHONES
- MIXERS
- HEADPHONES
- TURNTABLES
- LIGHT MODULATORS
- LIGHT BOXES
- SPOTS
- BULBS
- JINGLE MACHINES
- PACKS
- TWEETERS
- LEADS
- PLUGS
- JACKS
- POWER SUPPLIES
- METERS
- SURPLUS ITEMS
- TAPES
- RADIO's
- CALCULATORS
- TEST EQUIPMENT
- KITS
- VERO BOARD
- SOLDERING IRONS
- SOLDER

DHONE OP CEND S AFORIICTC ACCESS OR BARCLAYCARD ACCEPTED

322-324 WHITIEHORSE ROAD CROYDON SUBREY CBO 2LF
 OPEN DAILY 9.30 A.M. - 6 P.M

WORLD
 RADIO TV HANDBOOK 1978

by J. M. Frost
Price: $\mathbf{£ 8 . 0 0}$

A PRACTICAK INTRO. TO ELECTRONIC CIRCUJJEby M. H. Jones v Price: £4.60 THE TTL DATA BOOK FOR DESIGN ENGINEERS by Texas Price: $\mathbf{f 5} 5$ THE OSCILLOSCOPE IN USE

AUDIO AMPLIFIERS"FCR पE HOME CONSTRUCTOR by I R Sinclair Price: 5255

VIDEOTAPE RECORDING
by J. F. Robinson
Price: $\mathbf{£ 7 . 6 0}$
IC OP-AMP COOKBOOK
by W. G. Jung
Price: $£ 10.00$
LINEAR INTEGRATED CIRCUIT APPLICATIONS by G. B. Clayton Price: $£ 5.30$
FOUNDATIONS OF WIRELESS \& ELECTRONICS by M. G. Scroggie Price: £4.40 BEGINNER'S GUIDE TO ELECTRONICS
by T. L. Squires Price: £2.55
THE RADIO AMATEUR'S HANDBOOK 1978 by A.R.R.L.

- Prices include postage -

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of Bricish and American Technical Books
19-21 PRAED STREET LONDON W2 INP

Phone 01-723 4185
Closed Saturday I p.m

A Пеw PEB Drilling Machine

SINCLAIR PRODUCTS*

Microvision TV now in stock £200. PDM35 digital multimeter £27-25. Mains adapto £3-24. De-luxe pauded case 23-25. 30k meter $547-50$. Cambridge programmabl scientific calculator £13-15. Prog. library £2 95. Mains adaptor $£ 3-20$. Enterprise programmable calculator $\mathbf{~ 2 0 - 9 5 . ~}$
S-DECS AND T-DECS
S-DeC E3-39. T-DeC E4-44. u-DeCA £4-52 u-DeC8 f6-73. 16 dil or 10 TO5 adaptor with sockets E2-14.
CONTINENTAL SPECIALITIES
PRODUCTS
EXP 300 E 6 21. EXP 350 £3-40, EXP600 Ł6-80. EXP650 €3-89. EXP48 E2-48. P86
f9-94. P8100 E12-74. LM1 E30-99. LP1 £33-48. LP2 £ 19-44.
TV GAMES
Send sae for free data. New racing car TV games chip AY-3-8603 plus economy kit
E20-60. Tank battle chip AY-3-8710 plus economy kit $£ 13-95$. Stunt motor cycle chip
AY-3-8760-1 plus economy kit $£ 12-50$. 10 game paddle 2 chip AY-3-8600 plus econ: omy kit f12-50. AY-3-8500 chip plus economy kit €8-95. Modified shoot kit £4-96. Rifle kit $£ 4-95$. Colour generator
kit $\mathbf{\text { E }}$-50. Attractively cased, assembled TV games:- stunt cycle £25-95, tank war game t39-95, 4 game models tennis, football. squash, pelota):- black and white f11-95 colour f14-50. De-luxe 6 game b / w model with pistol attachment $£ 17-9$
MAINS TRANSFORMERS
 f2-89. 9-0-9V 75 ma 79 p . 1A $\mathrm{f} 1-99$, 2 A 1 A e2-49. 13 V , $\frac{1}{2} \mathrm{~A} 95 \mathrm{p}$. $\quad 15-0-15 \mathrm{~V} \quad 1 \mathrm{~A}$ €2-79. 30-0-30V 1 A $\operatorname{C3}$-59.
JC12. JC20 AND JC40 AMPLIFIERS A range of integrated circuit audio amplifiers supplied with frae data and printed circuits JC 126 watts $£ 1-60$. JC20 10 watts £2-95. JC40 20 watts $£ 4-20$. Send sae for free data on our range of matching power and preamp
kits.
FER
FERRANTI ZN414 IC radio chip £1-05. Extra parts and pcb for
radio $£ 3-85$. Case f 1 . Send sae for free data PRINTED CIRCUIT MATERIALS PC etching kits:- economy E 1-70, standard PC etching kits:- economy E 1-70. standard
$\mathrm{f} 3-82.50$ sq ins pcb 40 p . $1 \mathrm{lb} \mathrm{Fecle} 1-05$. Etch resist pens:- economy 45p, dalo 73p. Small drill bits. ins or 1 mm 20 p each.
Etching dish 68 p . Laminate cutter 75 p .

GATTERY ELIMINATORS
3 -way models with switched output and 4 $6 / 7 \frac{1}{2 v}$-ack.- $3 / 4 \frac{1}{2} / 6 \mathrm{l}$ 100 ma $22-92$ models same size as a PPo ma radio press stud connectors. 9 V £2-85. 6 V £2-85. $4 \frac{1}{V} £ 2-85.9 \mathrm{~V} \times 9 \mathrm{~V} £ 4-50.6 \mathrm{~V} \times 6 \mathrm{~V} £ 4-50$. $4 \frac{1}{2} \vee \times 4 \frac{1}{2} \vee 5^{2} 4-50$. cassette recordar maine unit $7 \frac{1}{2} V 100 \mathrm{ma}$ with 5 pin din plug $£ 2-85$. car convertors 12 V dc input. Output 9 V

BATTERY ELIMINATOR KITS
Send sae for free leaflet on range. 100 ma radio types with press stud connectors. $4 \frac{\mathrm{~V}}{}$ £1-80. 6 V £ $1-80.9 \mathrm{~V}$ £ $1-80$. $4 \frac{1}{2}+4 \frac{1}{2} \mathrm{~V}$
£2-50. $6+6 \mathrm{~V} £ 2-50.9 \times 9 \mathrm{~V}$ £2-50. cassatte type $7 \frac{1}{2} V 100 \mathrm{ma}$ with din plug $\mathrm{E} 1-80$. hoav-duty 13 way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 11 / 13$. $14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 Amp $£ 4-65$. 2 Amp f7-25. transistor stabilized 8-way
 age stabilized models. 2.18 V 100ma f3-60. 2-30V 1 A f6-95. 2-30V 2 A f 10-95. 300 convartors 12 V dc

BI-PAK AUOIO MODULES
BI-PAK AUOIO MODULES
Send sae for data. S450 tuner $£ 23-51$. AL60 Send sae for data. S450 tuner £23-51. AL60
£4-86. PA100 $£ 16-71$. SPM80 £4-47 8 MT80 £5-95. MK60 £38-74. Stereo 30 £20-12.

BULK BUY OFFERS
Minimum purchase $\mathrm{f3}$ any mix from this section. IN4 148 1.3p. IN4002 3.6 p 8 C 212 $8 p .7418$ dil 15 p. NE555 8 dil 29p. 723
14 dil 43 p. Dalo pens $59 p . A C 76023 \mathrm{~N}$ exac equiv of SN76023N with improved heat sink 79 p . Plastic equivs. of popular transis-tors:- BC108 3.8p, BC109 4.4p, 8 CY 71 $4.7 \mathrm{p}, 8 \mathrm{BCY} 72.4 .4 \mathrm{p}$, tuees $20 \mathrm{~mm} \times 5 \mathrm{~mm}$
certridge .25, $5, ~ 1, ~ 2 . ~ 3 . ~$ Amp. Quickblow type 0.7 p . Antisurge type 3.4 p . resistors 5%
 polyester cepacitors $250 \mathrm{~V} .01, .022, .033$, .047 mf
0.1 mf
$2.5 \mathrm{p}, 0.22 \mathrm{mf}$
$3 \mathrm{p}, 0.33 \mathrm{mf}$
$2.5 \mathrm{mf}, 0.47 \mathrm{mf}$
 $6800 \mathrm{pf} 2 \frac{1}{\mathrm{t}}$. coramic capacitors 50 V E12 22 pf to 1000 pf 1.7 p . E6 1500 to 33000 pp
1.7 p .47000 pf 2 p . 1 ectrolytics 50 V 47 1.7 p .47000 pf 2 p . alectrolytics 50 V .47 , 1
 470 mf 11 p .1000 mf 12 p . zeners 400 mW E24 $2 \mathrm{V7}$ to 33 VV 6.1 p . preser pots sub miniature 0.1 W horiz. or vert. 100 to 4 M 6.8 p . potentiometars 7 W 4 K 7 to 2 M 2 log
or lin. single 26 p . dual 76 p .

SWANLEY ELECTRONICS

DEPT, P.E., 32 Goldsel Rd., Swanley, Kent BR8 8 E2
Mail order only. Please add 30p to the total cost of order for postage Prices include VAT Oversass customers deduci 7% on izems marked "and 11% on others. Official credit orders welcome.

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTURED AND ASSEMBLED IN GT. BAITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

The expert and personel guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful, is the key to our outstanding record in the technical training field. You study at the time and pace tbat suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed.'

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for
Telecommunications Technicians
Radio. T.V. Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour T.V. Servicing
Electronic Engineering \& Maintenance
Computer Engineering and Programming
Radio, T.V. and Audio, Engineering \& Servicing
Electrical Engineering, Installations \& Contracting

Other Carcer Courses

A wide range of other technical and professional courses are available including GCE.

100 PIV 25 Amp S.C.R's Branded for 40 p
100 PIV 10 Amp BRANDED DIODES © 15p each
3 PIN PLUG AND SOCKET like RS European type with 2 metres of Cable. 75p pr
1Uf $25 \mathrm{v} . \mathrm{w}$. ELECTROLYTIC CAPACITORS 6 for 25 p .
MULLARD PRE-AMPLIFIER I.C. TYPE TAA 435 @ $40 p$
SUB-MINIATURE TANTALUM CAPACITOR. $4.7 \mathrm{Hf} 10 \mathrm{v} . \mathrm{w}$. © 6 for 25p.
$0.2^{\prime \prime}$ LED's Red @15p, Green @18p.
$1 T$ CAPACITORS TYPE PMT-2R Miniature 1 uf 100 v w. @ 20 p doz
DISC CERAMICS-14f $18 \mathrm{v} . \mathrm{w}$.@ 25 p doz.
5 TURN POTENTIOMETERS 5 K @ \&1, TEN TURN $1 \mathrm{~K}, 5 \mathrm{~K}, 100 \mathrm{~K}$ @ $\mathrm{C1} .50$
00 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}$, $10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$
GENERAL PURPOSE 40 p .
E113@12p. 5 for 50 p. ETS El11 @ 12p. 5 for 50p, E112 (a. 10p. 5 for $45 p$.
200 ASSORTED 50 P. E174 @ 22 p . 5 for 85 p , VHF 1310 @ 20 p .
50. 2 WATT ZENERS ASSOTRESISTORS for 75 p .

S44 SILICON DIODES Asorted untested for 57p.
10 ASSORTED MUITI at 25p dez
100 ASSORTED MULLARD C280 CAPACITONTIOMETERS (a) 60
TBA $120 S$ FM I.C's Untested with data. 6 for 60 p
MULLARD ELECTROLYTICS $2240 \mathrm{uf} 40 \mathrm{v} . w$. (a) 40 p . $4500 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$. (4) 40 p .

$12 \times$ BAND VARACTOR DIODES for $£ 1$
X BAND GUNN DIODES with data (a $£ 1.65$ each
ILIUMINATEDEDGEWISE $200 \cup$ MA METERS at 1.25 each.

MINIATURE ROTARY SWITCHES 2 Pole 4 way @ 20p.
50. BC 107-8-9 TRANSISTORS Untested © 57p.
50. AC 128 TRANSISTORS Branded but Untested 57 p .
50. AC 128 TRANSISTORS Branded but untested (3) 57 p .
ERIE RED CAP O1uf 100v.w. CAPACITORS © $5 p$ each.

ERIE RED CAP O 1 uf 100v.W CAPACITORS @ $5 p$ each.
1 Amp TAANSISTORS PNP 8CX36@ 12p. 8 CX 37 @ 10 p.
Amp TAANSISTORS PNP 8CX36 @ 12p. 8
100 ASSORTED DISC CERAMICS for 57 p .
$3010 X A J C R Y S T A L S$ Assorted between 5100 to 7900 KHz @ f 1.10.
5 WATT NPN DARLINGTON TAANSISTORS 20 a
5 WATT NPN DARLINGTON TAANSISTORS @ 20p, 3 for 50 p .
CLOCK P.C. BOARDS with Buzzar, Mercury Switch. Bridge Rectifier. Transistors etc.
No data E .
MEDIUM POWER TRANSISTORS MP 8112 15p, MP 8512 @ 15 p .
20 PHOTO TRANSISTORS DARLING dON © 35p.
MCMURDO 8 PINPLUGS © 20p, 8 Pin Sockets @ 20p, Covers @15p NKT 214 TRANSISTORS equivalent to OC 71 @ $10 \mathrm{p}, 6$ for 50 p
MAINS TRANSFORMERS 240 volt input Type $1.22-0-22$ volt 500 mA @ $\mathbf{E 1 . 6 0}$ (P\&P 25p), Type 2.24 volt Tapped at 14 volt 1 amp © $£ 1.30$ (P\&P 25p),
Type 3.50 volt 10 amp (485.50 ($\mathrm{P} \& \mathrm{P} 95 \mathrm{p}$) Type 4.50 volt 2 amp 45 volt 500 mA ($£ 3.50$ (P\&P 85p), Type 5.20 volt 1 amp Twice, 10 volt 1 amp
twice $£ 4.50$ (P\&P 95 p)
 2 GHOOuf 63v.w. ©0p. ELECTROLYYTICS.

Please add 20p for post and packing. unless otherwise stated, on U.K. orders under f 2. Overseas orders at cost

J. BIRKETT

RADIO COMPONENT SUPPLIES

25 The Strait, Lincoln LN2 1JF Tel. 20767

ACE MAITRONXX LTD
Dept $P E$ footar Street

COMPONENTS . Now over 1,000 types in stock. KITS . See the new range of low-cost 'ELEKITS' MODULES - New ready-built functions. SERVICE - 1st Class same day despatch. QUALITY - All guaranteed products. LOOK PRICES - Many reductions! MAGAZINE PROJECTS - Trouble-free!
Our 2nd edition illustrated catalogue is now avallable.
The much increased range shows many welcome The much increased range shows many welcome INTRODUCING

FABULOUS
Heklits
Easy build introduc. tion to electronics. Many hours of enjoy. ment.

The new range of easy build kits complete with simple to follow instructions. Battery powered (not supplied). With case. * burglar alarm *roulette * BICYCLE SOUND FLASHER * water level alarm *siren * BLINKER
※ TIME SWITCH

Many others in preparation - included

 in full ACE catalogue - send S.A.E. forNOW AVAILABLE! free brochure of kit range.

1 enclose $30 p^{*}$, please send catalogue
Name
Address \qquad

15-240 WAT

 P.C. board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up to date technology available
FEATURES: complete kit, low distortion short, open and thermal protection. easy to buld APPLICATIONS: updating audio equipment, guitar practice amolitier, test amplifier, audio oscillator SPECIFICATION: Output Power- 15 W R M.S. Into 8Ω Distortion- 01% at 15 W Input Sensitivity500 mV Frequency Response- $10 \mathrm{~Hz}-16 \mathrm{kHz}-30 \mathrm{~B}$ Price $\mathbf{£ 6 . 2 7 + 7 8 p}$ VAT. P. \& P. free
The HY50 leads I.L.P.s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World. FEATURES: low distortion. integral heatsink, only five connections. 7 amp output transistors. no external components.
APPLICATIONS: medium power hi-fi systems. Iow power disco. guitar amplitier
SPECIFICATION: Input Sensitivity- 500 mV Output Power-25W R M S into 8 L Load Impedance-$4-16$ 月 Distortion-0 04% at 25 W at 1 kHz Signal Noise Ratio- 75 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage- $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Price $58.18+£ 1.02$ VAT. P. \& P. free
The HY120 is the baby of I.L.P. s new high power range, designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: very low distortion integral heatsink load line protection thermal protection five connections, no external components
APPLICATIONS: hi-fi. high quatity disco public address monitor amplifier guitar and organ
SPECIFICATION: Input Sensitivity- 500 mV Output Power--60W R,M S into 8Ω Load Impedance-4-16 D Distortion- 004% at 60 W at 1 kHz Signal Noise Ratio- 90 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $- \pm 35 \mathrm{~V}$ Size $-114 \times 50 \times 85 \mathrm{~mm}$
Price £19.01 + £1.52 VAT. P. \& P. free
The HY200 (now improved to give an output of 120 watts) has been designed to stand the most rugged conditions such as disco or group while still retaining true hi-fi performance.
FEATURES: thermal shutdown very low distortion load Iine protection. Integral heatsink, no external
COMPONents
SPECIFICATION: Input Sensitivity- 500 mV Output Power-120W R M S into 8 L Load Impedance-$4-16 \Omega$ Distortion-0 05% at 100 W at 1 kHz Signal Noise Ratı- 96 dB Frequency Response- 10 Hz $45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage- $\pm 45 \mathrm{~V}$ Size- $114 \times 50 \times 85 \mathrm{~mm}$
Price £27.99 + £2.24 VAT, P. \& P. free
The HY400 is I.L.P.s Big Daddy of the range producing 240 W into $4 \Omega^{\prime}$ it has been designed for high power disco or public address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: thermal shutdown very tow distortion, load line protection no external components APPLICATIONS: public address. disco, power slave. Industrial
SPECIFICATION: Output Power-240W R M S. Into 4Ω Load Impedance-4-16 \cap Distortion- 01% at 240 W at 1 kHz Signal Noise Ratıo-94dB Frequency Response- $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ Supply Voltage $- \pm 45 \mathrm{~V}$. Input Sensitivity- 500 mV Size- $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 38.61$ + $£ 3.09$ VAT. P. \& P. free
POWER SUPPLIES: PSU36-suitable for two HY30S £6.44 + 81p VAT. P. \& P. free. PSU50-suitable for two HY50s £8.18 $+\mathbf{£ 1 . 0 2}$ VAT. P. \& P. free. PSU70-suitable for two HY120s £14.58 + £1.17 VAT. P. \& P. free. PSU90-suitable for one HY200 £15.19 + £1-21 VAT, P. \& P. free. PSU180-suitable for two HY200s or one HY $400 £ 25.42+£ 2.03$. VAT. P. \& P. free.
Free post + packing appllcable to U.K. only.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS

Please supply

I.L.P. Electronics Ltd.
 Crossland House, Nackington, Canterbury Kent CT4 7AD

Total Purchase price
I Enclose: Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square Account number
Name and Address

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid slate audio amp Aliter. Brand new components
inroughout 5 silicon transistors
plus
5 output transistors in
push-pull
Full push-pull Full wave
rectitication. rectification. Output
approx. 13 watis $\mathrm{r} . \mathrm{m} . \mathrm{s}$ approx. 13 watis r.m.s.
into 8 ohms. Frequency response 12 Hz . 30 KHz
$\pm 30 \mathrm{~F}$ Futly pro-amplitier fulty integrated arate Volume. Blase with sep.
boost and Sensitvity aporox 40 mV for full output. Supplied rysal cartriage estied. with knobs, escutcheon panel. mpul and rady built and 20en AC 200/250v PRICE $£ 15 \cdot 00 \mathrm{P}$ \& P. £1. 20

HARVERSONIC MODEL P.A. TWO ZERO

An advanced solid state general purpose mono amplifier suitable Gurtar. Gram. etce Features 3 Gudtar. Gram. etc eratures

input has a separate 2 stage pre-amp.). Input $1,15 \mathrm{mV}$ into 47 Input 2. 15 mV into 47 k (suitable for use with mic. or guitar etc.1. Input $3,200 \mathrm{mV}$ into 1 meg. suitable for gram. tuner, or tape etc.
Full mixing facilites with lull range bass $\&$ treble controls All inputs plug into standara jack sockets on fromi conel Output socket on rear of chassis for an 8 ohm or 16 ohm speaker Output in excess of 20 watts R M S Very attractively finished ourpose builf cabinet made trom black vinyl covered steel, with a orushed anodised aluminium front escutcheon For ac main
 Special packing.
Mullard LP1159 PF-IF module $470 \mathrm{kHz} \mathrm{©2.25} \mathrm{+} \mathrm{P} \mathrm{\&} \mathrm{P} \mathrm{20p}$ Full specification and connection details supplied. 10.7 MHz output. $7-8 \mathrm{~V}$ + arth. Supplied pre-aligned, with full circui diagram with pracision-geared F.M. gang and $323 \mathrm{PF}+323 \mathrm{PF}$ A.M. Tuning gang only $\pm 3.15+$ P. \& P. 35p.

STILL AVAILABLE
HA34 3 Valve Audio Amp. $4 \frac{1}{2} \mathbf{w o l p}$. Ready built and tested $\mathbf{\varepsilon 8 . 5 0}$ Also HSL . Four' Amp. Similar to above but in kit form. $\mathbf{\varepsilon 8 . 0 0}$
E1.40 P. \& P.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

Solid State F.M A.M. Stereo Tunner Covining M.W A.M
$540-1605 \mathrm{KHz}$ VH F $540-1605 \mathrm{KHz}$
$88-108 \mathrm{MHz}$
88-108MHz
Bultin Ferrite rod aerial for Bultin Furfite rod aerial for A.M and FM Stereo Beacon Lamp Indicator Buitt in Preamps with variable output
voltage adjustable by pre-set control Max o/p Voltage 600 my R.M S into 20 K Simulated Teak inish cabinet Will match aimost any amplifier Size $\boldsymbol{b}_{\dot{\mathrm{z}}}$ in wide 4in high = 9tin deep appro
Limited number only at $£ 2800+£ 1 \cdot 50$ P. \& P
MAINS TRANSFORMER. PRI. O. 110 and 240 . SEC. 28 V a 1.8 amps. Also tapped at $12 \mathrm{~V} \cdot 3 \mathrm{amp}$. Overall size 2 inh $^{2} \mathrm{~h} \times 3 \mathrm{t}^{\prime \prime} \mathrm{w} \times$ $2 \frac{13}{4} \mathrm{~d}$. $£ \mathbf{2} .50$ + P\&P $£ 1.00$

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output of 14 watts from 2 El84s in push-pull. Super reproduction of both music and speech, with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other 3-15 1 speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. valve line-up. 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet $25 \mathrm{p}+$ S.A.E. (Free with parts). All parts sold
separately. ONLY $£ 14.50$ P. \& P. §1.40. Also available ready separately. ONLY $£ 14.50$ P. \& P. § 1.40 . Also available ready
buil and tested 19.00 P. \& P. E1.40.
"POLYPLANAR" WAFER-TYPE, WIDE RANGE
ELECTRO-DYNAMIC SPEAKER
Size 11 in $\times 141$ it $\times 1$ fin deep. Weight 19 oz . Power handling 20W R.M.S. (40W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{KHz}$. Can be mounted on ceilings, walls, doors. under
tables, etc, and used with or without baffle. Send S.A.E. for full details. Only $£ 8.40$ each + P. \& P. (one 90 p, two $£ 1.10$). Now gvailable in either 8 in round version or $4 \frac{1}{2} \times 8 \frac{1}{2} \mathrm{in}$ rectangular. 10 watts R.M.S. $60 \mathrm{~Hz}-20 \mathrm{KHz} £ 5.25+$ P. \& . lone 65 p , two 75 p .).

MAGNETC PRE-AMP Lens. 3 mV in for 100 mV out. 15 to 35 V

 neg. earth. Equ. $+1 \mathrm{d8}$ from 20 Hz to 20 KHz . Input47 K . Size 1 gin $\times 2 \mathrm{in} \times 5$ 年in H . $2 \cdot 60+20 \mathrm{p}$. P. \& P.

2 in PLASTIC CONE HF TWEETER 4 ohm,
3.50 per makhed pair + SOD P. \&

HIGH POWER HI-FI 8 ohm Dome Tweeter. in voice coil. Magnet size 3 in dia. Suitable for use in up to 50 watt systems.
$\mathbf{f 4 . 5 0 \text { each } 6 0 \text { p P. \& P. }}$

HARVERSONIC SUPERSOUND
10 + 10 STEREO AMPLIFIER KIT
A reaily first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors Acluding Sithcon Transistors in the first live stages on each channel resulting in even lower noise level with improved controls Sultabie for use with Ceramic or Crystat cartridges Very imple to modity to suit magnetic cartridige-instructions included Outpul stage for any speakers from 8 to 15 ohms. Compact design. ir parts supplied including drilied metalwork, high quality ready driled printed circuit board with component identification clearly maked smart brushed anodised aluminium ront panel with matching knobs. wire, solder, nuts. bolts-no extras to buy amplifier to be proud of. Briet specitication. Power outout 14 watts A.M.S per channel into 5 ohms Frequency response $\pm 3 \mathrm{~dB}$ $12-30.000 \mathrm{~Hz}$ Sensitivity better than BOmV into 1 Mn Full power andwidth $\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}$ Bass boos 1 approx $10 \pm 120 \mathrm{~B}$ roble cut approx $10-1608$. Negalive loedback 18 dB over main Overall size 12 in wide $\times 8$ in deep $\times 2 \frac{3}{4}$ in high.
Filly detarled 7 page construction manual and parts list free with保

AMPLIFIER KIT components 33 pextra) POWER PACK KIT £13.50 P \& P 80p
65.50 P. \& P. 95p CABINET
55.50 P \& P. 95p

SPECIAL OFFER-Oniy E23. 75 Ir all 3 tom
ordered at one time plus E1.25 P. \& P.
Also avalable ready buitt and tested $£ 31.25 \mathrm{P}$. \& P \& 150
HARVERSONIC STEREO 44
A solid state stereo amplifter chassis. with an output of 3-4 watts integrated circuit amplitiets with built in short term thermai overload protection. Abl components including rectifier smoothing capacitor. fuse, tone control. volume controis. 2 pin din speaker ockets and Supplied brand new and tested. with knobs. brushed anodised aluminium 2 way escutcheon (to allow the amplitier to be mounted horizontally or vertically) at only 99.00 - 50 p P \& P Mains iransformer with an output of 17 V a.c at 500 m A can be supplied 21-50 * 40p P \& P if required full connection details upplied
STEREO OECODER
IZE $2^{\prime \prime} \cdot 3^{\prime \prime} \cdot 1^{\prime \prime}$ ready built. Pre-aligned and testect for 9-16V neg Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. E6.00 plus 20 p
P. \& P. Stereo beacon light if required 40 p extra.

Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday Closed Wednesday
Prices and specifications correct at time of press. Subject

HARVERSON SURPLUS CO.

(Dept. P.E.) 170 MERTON HIGH ST., MERTON, LONDON, S.W. 19 Tel: 01-540 3985
(Please write clearly)
please note: p. a p. charges QUOTED APPLY TO U.K. ONLY PH P. ON OVERSEAS ORDERS CHARGED EXTRA.

NO DISCO SYSTEMIS conplat whiout...

IP\&P $£ 100$ each! Please nore ropel
kits arg availabte only by Mail Order
PIEZO HORNS
FANTASTIC SPECIAL DFFER OREAOERS

Tweeters tor your disco. PA
system or Hi.Fi, Frequency range 5K.201 No x over required. They can be used in any PA system up to 100 W Why pay more? OUR PRICE ONLY £4. 99 each (P\&P 35 p each. PROJECTORS SQUIRE MULTIFECT 150 - Including rotator and effects wheel A truly versatile project
which uses a powerful 150 w Tungsten bulb, all effects tachments simply slot in ready for use A BARGAIN AT £ $£ 0.50$ (PRP $£ 1.00$)

ROPELIGHTS Ropelight kits now evailable from Roger Squire's - 22 feet long, 4 channel, including Tube Bulbs and Multipin connectors These ropelights are ex-demonstration stock and will require some bulb replacement - we will supply 20 spare bulbs tree with you
kit Additional sets of 20 bulbs cost $£ 488$ each

BULGIN OCTAL PLUGS AND SOCKETS
Thers alwars hundreds of Bulgin Rogal murtway plugs and sockers in stock your Sound to Light System. P552 SOCKET C0.65 (P\&P 35p) P551 PLUG £1.84 (P\&P 35p) Carriage on 10 or more nominal $£ 1.00$ Also availabl way multicore cable i6 Amps per corel ex stock O 85 per metre Please phone for carriage quot

Clef Products

P. E. JOANNA \& 'STRING ENSEMBLE'

Send S.A.E. for details of Kits \& P.C.B.s Please indicate which instrument required.

16 Mayfield Road, Bramhall, Cheshire SK7 1JU

01.4413527 (Hotline) 01.441 1919 /Switchboard) Open: Mon.Fri.9.5.30

Personal callers: ROGER SQUIRES OISCO CENTRES
LONOON: 176 Junction Road, Tufnell Park, N19 500. 01-272 7474

Understanding Digital Electronics New teach-yourself courses

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.
The contents of Design of Digital Systems include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and artithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and sychronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure. .
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts: interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowedge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it designer, execxutive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; con version between number systems; AND, OR. NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J.K flip flops; binary counters, shift regısters and half adders

CAMBRIDCE LEARNING ENTERPRISES. Unit 21, Rivermill Site, FREEPOST, ST. IVES, HUNTIICDON, CAMBS. PE17 4BR, ENGLAND, TEIEPHONE ST. IVES (0480) 67446. PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES. Giro Ac. No. 2789159.

REGD. IN ENGLAND NO. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show vour vehicle speed and fuel consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses, you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:
+90p post \& packing
And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:
+90p post \& packing $\{12+$ £1 post \& packing

Price includes surface mail anywhere in the world: Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT:
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
2295 + 45p post and packing by surface mail anywhere

GUARANTEE
If you are not entirely satisfied your money will be refunded.

Cambridge Learning Enterprises, Unit 21, Rivermill Site,
FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, England.
Please send me the following books:
.............sets Digital Computer Logic \& Electronics @ $£ 5.50, \mathrm{p}$ \& p included
inclutued
sets Design of Digital Systems @ $£ 9.00$, p \& p included
................. Combined sets @ $£ 13.00, p$ \& p included
...............The Algorithm Writer's guide @ $£ 3.40, \mathrm{p}$ \& p included
Name.
Address.
enclose a *cheque/PO payable to Cambridge Learning Enterprises for £....
Please charge my *Access/Barclaycard/Visa/Eurocard/Mastercharge/ Interbank account number.
Signature.
*delete as appropriate.
Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

PE 21

RST

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AA119 \& \[
\begin{aligned}
\& 50 \\
\& 0.20
\end{aligned}
\] \& BCY71 \& \[
\frac{5 p}{0.22}
\] \& *MPSU01 \& \({ }_{\text {¢ }} \mathrm{f}\) \& \& 7403 \& 0 \\
\hline AAY30 \& 0.13 \& BCY72 \& 0.17 \& -MPSU06 \& 0.40 \& 1 1N914 0.07 \& 7403 \& \\
\hline AAY32 \& 0.15 \& BCZ11 \& 1.50 \& -MPSU56 \& 0.45 \& \({ }^{+N 915} 00.07\) \& \& \\
\hline A \& 0.25 \& BD115 \& 0.60 \& NKT401 \& 2.00 \& 1N4001 0.05 \& 740 \& 0.25 \\
\hline A 215 \& 0.31 \& 8D121 \& 50 \& \& 1.73 \& \({ }^{\text {+ }} 440020.07\) \& 740 \& 55 \\
\hline A Z 17 \& 0.25 \& 8 B 123 \& 1.50 \& NKT404 \& 1.73 \& IN4002 0.07 \& 7407 \& 55 \\
\hline AC107 \& 0.75 \& BD124 \& \& NES55 \& 0.45 \& 1N4004 0.00 \& 7408 \& 0.23 \\
\hline AC125 \& 0.30 \& BD131 \& 0.51 \& OAS \& 0.75 \& 1N4005 0.13 \& 7410 \& 0.20 \\
\hline AC126 \& 0.25 \& 80132 \& 0.54 \& OAT \& 0.55 \& 1N4006 0.15 \& 7412 \& 0.25 \\
\hline \({ }^{\text {ACl27 }}\) \& 0.25 \& *80135 \& 0.35 \& OA10 \& 0.55 \& 1N4007 0.15 \& 7413 \& 0.45 \\
\hline AC128 \& 0.25 \& *80136 \& 0.38 \& OA47 \& 0.14 \& 1N4009 0.15 \& 7416 \& 0.40 \\
\hline AC141 \& 0.20 \& *BD137 \& 0.37 \& oato \& 0.30 \& 1N4148 0.07 \& 7417 \& 0.40 \\
\hline AC141K \& 0.35 \& *BD138 \& 0.40 \& OA79 \& 0.30 \& 1N5400 0.14 \& 7420 \& 0.20 \\
\hline AC142 \& 0.20 \& *BD139 \& 0.43 \& OA81 \& 0.30 \& IN5401 0.15 \& 7422 \& 0.25 \\
\hline AC142K \& 0.30 \& *BD140 \& 0.47 \& OA85 \& 0.30 \& 1544 \& 7423 \& 0.35 \\
\hline ACi76 \& 0.25 \& BD144 \& 2.00 \& oago \& 0.05 \& 15920 \& 7425 \& 0.35 \\
\hline AC187 \& 0.25 \& B0181 \& 1.34 \& OA91 \& 0.06 \& \(15921 \quad 0.08\) \& 7427 \& 0.35 \\
\hline \({ }_{\text {AC188 }}\) \& 0.25 \& BD182 \& 1.45 \& OA95 \& 0.05 \& 2G301 \(\quad 1.00\) \& 7428 \& 0.50 \\
\hline ACY17 \& 0.85 \& B0237 \& 0.80 \& OA200 \& 0.10 \& 2G302 \(\quad 1.00\) \& 7430 \& 0.20 \\
\hline ACY18 \& 0.65 \& BD238 \& 0.65 \& OA202 \& 0.11 \& 2G306 \(\quad 1.10\) \& 7432 \& 0.36 \\
\hline ACY19 \& 0.65 \& BDX 10 \& 0.75 \& OA210 \& 0.75 \& 2N404 0.80 \& 7433 \& 0.37 \\
\hline ACY\% \& 0.65 \& BDX32 \& 2.25 \& OA211 \& 0.75 \& 2N696 0.25 \& 7437 \& 0.42 \\
\hline ACY2 \& 0.65 \& BOYzo \& 1.42 \& OAZ200 \& 0.65 \& \(\begin{array}{ll}\text { 2N697 } \& 0.16\end{array}\) \& 7438 \& 0.37 \\
\hline ACY39 \& 1.25 \& BDY60 \& 0.75 \& OAZ201 \& 0.65 \& 2N698 0.30 \& 7440 \& 0.22 \\
\hline AD149 \& 0.70 \& BF115 \& 0.38 \& OAZ206 \& 0.65 \& 2 N 7050 \& 7441AN \& 0.92 \\
\hline AD161 \& 0.75 \& BF152 \& 0.25 \& OAZ207 \& 0.85 \& 2N706 0.12 \& 7442 \& 0.78 \\
\hline AD162 \& 0.75 \& BF153 \& 0.25 \& OC16 \& 1.25 \& 2N708 0.21 \& 7447AN \& 1. 20 \\
\hline AF 106 \& 0.45 \& BF154 \& 0.25 \& OC20 \& 2.00 \& 2N930 0.26 \& 7450 \& 0.20 \\
\hline AF14 \& 0.25 \& BF159 \& 0.35 \& 0 C 22 \& 2.50 \& 2N1131 0.26 \& 7451 \& 0.20 \\
\hline AFP15 \& \& BF160 \& 0.30 \& OC23 \& 2.75 \& 2N1132 0.28 \& 7453 \& 0.20 \\
\hline AF116 \& 0.25 \& BF167 \& 0.39 \& OC24 \& 3.50 \& \({ }^{2 N 1302} 00.37\) \& 7454 \& 0.20 \\
\hline AF117 \& 0.25 \& BF173 \& 0.39 \& OC25 \& 0.90 \& 2N1303 0.37 \& 7460 \& 0.20 \\
\hline AF139 \& 0.40 \& BF177 \& 0.34 \& \(\bigcirc\) \& 0.90 \& \(2 \mathrm{~N}+3040.0 .45\) \& 7470 \& 0.35 \\
\hline AF 186 \& 1.50 \& BF178 \& 0.45 \& \(\mathrm{OC}^{\circ 8}\) \& 2.00 \& 2N1305 0.45 \& 7472 \& 0.36 \\
\hline AF239 \& 0.45 \& BF179 \& 0.44 \& OC29 \& 2.00 \& 2N1306 0.50 \& 7473 \& 0.36 \\
\hline AFZ11 \& 2.75 \& CF180 \& 0.45
0.45 \& OC35 \& 1.50 \& 2N1307 0.50 \& 7474 \& 0.40 \\
\hline AFZ 12 \& 2.75 \& BF181
BF192 \& 0.45 \& OC36 \& 1.50 \& 2N1308 0.60 \& 7475 \& 0.59 \\
\hline ASY26 \& 0.45 \& BF182
BF183 \& 0.45 \& OC41 \& 0.50 \& 2N+309 O.60 \& 7476 \& 0.42 \\
\hline ASY27 \& 0.50 \& BF183 \& 0.45 \& OC42 \& 0.50 \& 2 N 1613 0.33 \& 7480 \& 0.60 \\
\hline ASZ15 \& 1.25 \& BF184 \& 0.39
0.37 \& \(\mathrm{OC}^{\mathrm{O}} 4\) \& 1.50 \& \(\begin{array}{ll}\text { 2N1671 } \& 1.50 \\ 2 N 1693\end{array}\) \& 7482 \& 0.05 \\
\hline ASZ16 \& 1.25 \& EF185 \& 0.37 \& OC4 \& 0.50 \& 2N1893 0.33 \& 7483 \& 1. 00 \\
\hline ASZ17 \& 1.25 \& - BF 194 \& 0.12 \& \(0 \mathrm{C45}\) \& 0.50 \& \(2 \mathrm{~N} 2147 \quad 1.40\) \& 7484 \& 1.00 \\
\hline Asz20 \& 0.75 \& * BF 195 \& 0.11 \& 0 C 71 \& 0.45 \& 2N2148 \(\quad 1.65\) \& 7486 \& 0.40 \\
\hline ASZ21 \& 1.50 \& - BF 196 \& 0.13 \& 0 O 72 \& 0.45 \& 2N2218 \(\quad 0.33\) \& 7490 \& 0.52 \\
\hline AU113 \& 1.70 \& * BF 197 \& 0.14 \& \({ }^{0} \mathrm{Cl}{ }^{\text {a }}\) \& 1.00 \& 2N2219 \(\quad 0.42\) \& 7491AN \& 0. 55 \\
\hline AUY10 \& 1.70 \& BF200 \& 0.32 \& 0 O 74 \& 0.75 \& 2 N 22200 \& 7492 \& 0.60 \\
\hline BA145 \& 0.15 \& *日F224 \& 0.20 \& \({ }_{0} 0 \times 75\) \& - 80 \& 2N2221 0.22 \& 7493 \& 0.70 \\
\hline BA148 \& 0.15 \& *BF244 \& 0.35 \& OC76 \& 0.50 \& 2N2222 0.25 \& 7494 \& 0.60 \\
\hline BA154 \& 0.10 \& 8F257 \& 0.37 \& ос7 \& 1.20 \& 2N2223 2.75 \& 7495 \& 0.80 \\
\hline BA155 \& 0.12 \& BF258 \& 0.42 \& OC81 \& 0.75 \& 2N2368 0.17 \& 7496 \& 0.90 \\
\hline BA156 \& 0.13 \& BF259 \& 0.45 \& Ocsiz \& 1.00 \& 2 N2369A \(\quad 0.21\) \& 7497 \& 3.67 \\
\hline Baw62 \& 0.05 \& - BF336 \& 0.50 \& OCAR \& 0.75 \& 2N2484 0.21 \& 74100 \& 1.75 \\
\hline BAX13 \& 0.07 \& -BF337 \& 0.53 \& OC83 \& 0.55 \& 2N2646 \(\quad 0.50\) \& 74107 \& 0.45 \\
\hline BAX16 \& 0.07 \& - BF338 \& 0.55 \& \(0 \mathrm{CB4}\) \& 0.80 \& 2N2904 0.35 \& 74109 \& 0.85 \\
\hline BC107 \& 0.12 \& BFS21 \& 2.27 \& OC122 \& 1.50 \& 2N2905 \(\quad 0.35\) \& 74110 \& 0.57 \\
\hline BC108 \& 0.12 \& BFS28 \& 1.34 \& OC123 \& 1.55 \& 2N2906 0.25 \& 74111 \& 0.46 \\
\hline BC109 \& 0.13 \& *BFS61 \& 0.25 \& OC139 \& 2.25 \& 2N2907 0.21 \& 74116 \& 1. \({ }^{\text {a }}\) 9 \\
\hline - BC 113 \& 0.15 \& - BFS98 \& 0.25 \& OC140 \& 1.05 \& \& 74118 \& 0.95 \\
\hline -BC114 \& 0.18 \& BFW10 \& 0.90 \& \({ }^{\circ} \mathrm{C} 141\) \& 2.85 \& *2N2925 0.17 \& 74199 \& 2.00 \\
\hline * \({ }_{*} \mathrm{BC} 115\) \& 0.19 \& BFW11 \& 0.90 \& OC170 \& 0.75 \& \(\cdots 2 \mathrm{~N} 2926\) 0.13 \& 74120 \& 1.10 \\
\hline -8C116 \& 0.19 \& BFX84 \& 0.34 \& OC171 \& 0.75 \& 2N3053 0.25 \& 74121 \& 0.45 \\
\hline \({ }^{-8 \mathrm{BC} 117}\) \& 0.22 \& BFX85 \& 0.41
0.35 \& Oc200 \& 1.00 \& \({ }^{2 N 3054} 00.50\) \& 74122 \& 0. 60 \\
\hline \({ }^{-8 \mathrm{BC} 118}\) \& 0.18
0.18 \& EFX87 \& 0.35
0.32 \& OC201 \& 1.50 \& 2 N 3055 0.65 \& 74123 \& 1.00 \\
\hline -8C125 \({ }_{-8 \mathrm{BC}}\) \& 0.18
0.25 \& BFX88
BFY50
Efer \& 0.32
0.28 \& OC202
OC203
O-2 \& \& \(\begin{array}{ll}\text { 2N3440 } \& 0.60 \\ \text { 2N3441 } \& 0.80\end{array}\) \& 74125 \& 0.80 \\
\hline -BC135 \& 0.25 \& BFY51 \& 0.26 \& \({ }^{\circ} \mathrm{OC204}\) \& \(1 \cdot 25\) \& \(\begin{array}{ll}\text { 2N3441 } \& 0.80 \\ 2 N 3442 \& 1.20\end{array}\) \& 74126
74128 \& 0.80
0.80 \\
\hline *BC136 \& 0.19 \& BFY52 \& 0.26 \& OC205 \& 1.75 \& 2N3525 0.90 \& 74132 \& 0.40 \\
\hline -BC137 \& 0.16 \& BFY64 \& 0.30 \& 0 O206 \& 1.75 \& 2N3614 1.20 \& 74136 \& 0.68 \\
\hline - BC147 \& 0.10 \& BFY90 \& 1.32 \& OC207 \& 1.25 \& -2N3702 0.15 \& 74141 \& 0.45 \\
\hline \({ }^{-8 \mathrm{BC}}{ }^{\mathrm{BC}} 149\) \& 0.10
0.13 \& BS \(\times 19\)
BS \(\times 20\) \& 0.34
0.34 \& OCP71 \& 1.25
0.83 \& -2N3703 0 O.15 \& 74142 \& 3.00 \\
\hline \({ }_{-8 \mathrm{BC} 149}\) \& 0.13
0.12 \& BS×21 \& 0.31
0.32 \& \({ }^{\text {ORP }}\) - 22008 B \& 0.83
2.25 \& \begin{tabular}{ll}
*2N3704 \\
-2N3705 \& 0.15 \\
\hline
\end{tabular} \& 74143 \& 3.00 \\
\hline - BC150 \& 0.11 \& BT106 \& 1.25 \& * R 2009 \& 2.25 \& -2N3706 \(\begin{array}{ll}\text { 2N3 } \& 0.14\end{array}\) \& \({ }_{74145}\) \& 3.00
1.00 \\
\hline \({ }^{-8 \mathrm{BC} 159}\) \& 0.13 \& BTY79/400R \& 3. 19 \& - A 2010 B \& \(2 \cdot 25\) \& *2N3707 0.18 \& 74147 \& 2.45 \\
\hline *BC167 \& 0.13 \& -8uzos \& 2.25 \& T1C44 \& 0.36 \& \(\bullet\)-2N3708 0.14 \& 74148 \& 2.00 \\
\hline *BC170 \& 0.16 \& * Bu 206 \& \(2 \cdot 25\) \& T1C226D \& 1.30 \& *2N3709 0.15 \& 74150 \& 1.75 \\
\hline *BC171 \& 0.14 \& - BU208 \& 2.50 \& T1L209 \& 0.25 \& -2N3710 0.14 \& 74151 \& 0.90 \\
\hline \({ }^{-8 \mathrm{BC} 172}\) \& 0.13 \& BY100 \& 0.45 \& - T1P29a \& 0.50 \& -2N3711 0.15 \& 74154 \& 2.00 \\
\hline \({ }^{-8 \mathrm{BC} 173}\) \& 0.15
0.19 \& BY 126
BY 127 \& 0.14
0.15 \& - T1P30A \& 0.60
0.62 \& \(\begin{array}{ll}\text { 2N3771 } \& 1.60 \\ 2 N 3772\end{array}\) \& 74155 \& 0.90 \\
\hline 8C177
BC 478 \& 0.19
0.19 \& BY127
BXX \& 0.15
0.20 \& T1P31A \& 0.62 \& 2N3772 1.70 \& 74156 \& 0.90 \\
\hline BC 178
BC 179 \& 0.12
0.20 \& Series \& \& T1P32A \& 0.75
1.00 \& \(\begin{array}{ll}\text { 2N3773 } \\ \text {-2N3819 } \& \text { 2.65 } \\ \text { 2.36 }\end{array}\) \& 74157 \& 0.90 \\
\hline *ВС782 \& 0.11 \& BZY88 \& 0.13 \& T1P34A \& 1.20 \& \begin{tabular}{ll}
-2N3820 \& 0.46 \\
\\
\hline
\end{tabular} \& 74159
74170 \& 2.50
2.60 \\
\hline *BC183 \& 0.11 \& Series \& \& T1P41A \& 0.70 \& -2N3823 0.60 \& 74172 \& 5.00 \\
\hline -BC184 \& 0.12 \& CRS \(1 / 05\) \& 0.45 \& T1P42A \& 0.90 \& 2N3866 \(\quad 1.00\) \& 74.73 \& 1.75 \\
\hline - BC212 \& 0.14 \& CRS1/40 \& 0.60 \& T1P2955 \& 1.00 \& -2N3904 0.21 \& 74174 \& 1.57 \\
\hline -BC213 \& 0.14 \& CRS3/05 \& 0.45
0.75 \& T193055 \& 0.50 \& -2N3905 0.22 \& 74175 \& 1.00 \\
\hline \({ }^{-8 C 214}\) \& 0.17 \& CRS3/40 \& 0.75 \& *T1S43 \& 0.35 \& -2N3906 0.22 \& 74176 \& \(1 \cdot 10\) \\
\hline -8C237 \& 0.17 \& CRS3160 \& 0.90 \& -2S140 \& 0.25 \& -2N4058 0.20 \& 74178 \& 1.65 \\
\hline \({ }^{-8 \mathrm{BC} 238}\) \& 0.12
0.45 \& GEX66 \({ }_{\text {GEX }}\) \& 1.50
1.75 \& *ZS170 \& 0.12
0.54 \& -2N4059 0.15 \& 74179 \& 1.65 \\
\hline \({ }_{*}^{\text {BC303 }}\) \& 0.60 \& Gu5M \& 0.75
0.75 \& -z5271 \& 0.22
0.55 \& *2N4061 \& 74190 \& 1.48 \\
\hline -8С308 \& 0.18 \& GMO378A \& 1.50 \& - ZTX107 \& 0.11 \& *2N4124 \(\begin{array}{ll}\text { 2N402 }\end{array}\) \& 74191
74192 \& 1.48
1.25 \\
\hline -BC327 \& 0.22 \& * \({ }^{\text {KS }}\) S 1004 \& 0.40 \& - \(27 \times 108\) \& 0.10 \& - 2N4126 \(\quad 0.17\) \& 74193 \& \\
\hline -BC328 \& 0.17 \& MJE340 \& 0.50 \& - \(27 \times 109\) \& 0.12 \& \& 74494 \& 1.25
1.25 \\
\hline -8C337 \& 0.19 \& MJE370 \& 0.85
0.81 \& - 2 Tx 300 \& \(0 \cdot 12\) \& -2N4288 0.25 \& 74195 \& 1.10 \\
\hline \({ }^{-8 \mathrm{BC} 338}\) \& 0.18 \& MJE371 \& \& - 2 Tx 301 \& 0.13 \& -2N4289 0.25 \& 74196 \& 1.20 \\
\hline BCY 30
BCY 31 \& 1.00
1.00 \& MJE520 \& 0.65
0.75 \& "ZTX302 \& 0.17
0.17 \& \& 74197 \& 1.00 \\
\hline BCY31
BCY32 \& 1.00
1.00 \& MJE521
MJE2955 \& 0.75
1.25 \& - \(21 \times 303\) \& 0.17
0.19 \& \begin{tabular}{ll}
*2N5458 \& 0.35 \\
\(* 2 N 5459\) \& 0.35 \\
\hline
\end{tabular} \& 74498 \& 1.25
2.25 \\
\hline BCY33 \& 0.90 \& MJE3055 \& 0.75 \& -2TX311 \& 0.12 \& 2N5459

3N125 \& ${ }^{7460139} 1$ \& 2.25
1.75

\hline BCY34 \& 0.90 \& *MPF102 \& 0.30
0.30 \& *2TX314 \& 0.20 \& 3N125 \& 16013 N \& 1.75

\hline BCY39 \& 3.00 \& *MPF103 \& 0.30 \& -2TX500 \& 0.13 \& \& \&

\hline BCY40 \& 1.25 \& *MPF104 \& 0.30 \& - 21×501 \& 0.14 \& integrated \& Plugs in so \&

\hline 8 BY 42 \& 0.30 \& *MPF105 \& 0.30
0.75 \& -ZTX502 \& 0.15 \& CIACUITS \& -low protil \&

\hline BCY43 \& $0 \cdot 32$ \& *MPSA06 \& 0.25 \& *2TX503 \& 0.17 \& 74000.20 \& ${ }^{8} \mathrm{pin} \mathrm{DIL}$ \& 0.15

\hline BCY58 \& 0.23 \& *MPSA56 \& 0.25 \& *ZTX504 \& 0.20 \& 74010 \& 14 pin DiL \& 0.15

\hline BCY70 \& 0.18 \& \& \& *ZTX531 \& 0.20 \& 7402 0.20 \& 16 pin ${ }^{\text {dil }}$ \& 0.17

\hline
\end{tabular}

[^4]CHINAGLIA DINO-ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

THE
$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c

A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEATURES YOU WILL EVER NEED

Accuracy: $0 . C$. ranges. $\pm 2.0 \%$. A.C. \& Ω ránges $\pm 2.5 \%$
39 ranges: d.c. V, $0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1.5 \mathrm{kV}$ d.c.I, $0.50 \mu \mathrm{~A}, 500 \mu \mathrm{~A} .5 \mathrm{~mA}, 50 \mathrm{~mA}, 0 \cdot 5 \mathrm{~A}, 5 \mathrm{~A}$; a.c. V. 5 V .15 V . 50 V 6 ranges: $\Omega 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega .50 \mathrm{k} \Omega .500 \mathrm{k} \Omega .5 \mathrm{M} \Omega .50 \mathrm{M} \Omega$. pF 50 kpF 500 kpl

Automatic overload protectlon and high current range fusing
Scale mirror and fine pointer for accuracy of reading. Single knob main range switching and all panel controls. C.E.I. Class 1 movement with sprung jewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case $125 \times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batteries. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional

Meter $£ 50.00$ incl. VAT ($£ 1$ P. \& P.)
30kV Probe $£ 12.85$ incl. VAT
For details of this and the many other exciting instruments in the Chinaglia range, including multi-meters, component measuring, automotive and electronic instruments please write or telephone

옫N

POST THIS COUPON
HOME RADIO (Components) LTD. 234-240 London Road. Mitcham. Surrey CR4 3 HD

QUAMTY II-FIATBUISHT inflation with these super Hi-Fi offers. Compare these prices with the recommended retail prices and you will see that you can save $£ £ £ £ £-$ and what is more, you will be purchasing quality equipment-that is why we are happy to give these amazing guarantees.

TREMENDOUS SAVINGS FOR THE HOME ENTHUSHST GOLDRING CK2 BELT-DRIVE TURNTABLE CONSTRUCTION KIT

Complete with arm, template and easy to follow instructions. Ready for operation in a short tıme Wow.'Flutter 0.15% peak Rumble. 60 dB werghted. Removable headshell. Viscous damped cueng device. Easily adjusted tracking force and bias setting.
Two speed 16 -pole synchronous motor Dimensions: $37.8 \times 28.3 \mathrm{cms}$. (Plinth, cover and cartridge available prices on application.) R.R.P £ 51.50 LION HOUSE PRICE 55 Postage and Packing
MANY MORE EXCITING BARGAINS ARE AVAILABLE AT LION HOUSE-BRITAIN'S HI-FI SUPERSTORE WITH THE SUPERB DEMONSTRATION FACILITIES.

SANKYO STD-1610 STEREO CASSETTE DECK

Features include Dolby noise reduction system, Autochrome, Input/ Output Level Control, Peak Indicator, Auto stop, Ferrox Heads, Tape-run Indicator, Hinged Dust CoverMORE FEATURES FOR LESS MONEY 12 MONTHS GUARANTEE A beautifully compact machine of highest quality. Another successful bulk purchase from Lion House at ONLY
(Recommended Retail Price £114).

The MATSI TFS60 Tuner/Amplifier
 Due to a successtul butk purchase, we are happy to offer this really top quality receivertrom one of Japan's leading manufacturers at less than half price. 15 watts per channel. FM/MW/LW. 12 MONTHS GUARANTEE. Recommended Retail Price $£ 144$ OUR PRICE
(Securicor delivery $£ 3.50$) quality attractive plinth and cover

RAMKO GULLIVER SPEAKERS
GIANT PERFORMERS OF
DWARF -LIKE DIMENSIONS

Two way mini hi-fistudio quality loud. speakers. Despite their minisize, their clean solid bass range is equal to that of much bugger systems, and the use of a high density. high temperature metal voice coll system greatly enhances durability. In a room filled with excitingly realistic sound. they seem almost und etectable
4 -nch wooters have high power handling capabilty and are as efficient as 6 -inch woofers
Extra-light 1 inch soft dome tweeters weigh only 0.2 grams. A powerful

10-ounce precision ceramic magnet. coupled to the dome, creates immense flux providing excellent transient responses. Acoustically suspended and impregnated with finest damping fuid. prolecting dome against distortion break up or coloration even after prolonged heavy loading. Dome shape and construction produces extrawide dispersion, smooth frequency response and high resolution of musical detail.

Highly precise crossover network, matched to component speakers. gives accurate separation of audio spectrum and stable trequence response
Specially designed cabinets made of high density chipboard with wood welded joints and individually tested. Finished in the finest lamınated rosewood veneer and crafted and oulfinished by hand to a distinctive lustre.
We are the sole agents and offer them direct to you at only $\boldsymbol{£} 79.95$ per pair. (Securicor delivery £3.50)

SPECIFCATIONS

Nominal impedance 8 ohms

System components $4^{\prime \prime}$ woofer

Frequency rang

Sensitivity

Nominal niput
Music powe

WARRANTY

Every RAMKO loudspeaker model is guaranteed for a period of five years
"' dome tweeter $50-25.000 \mathrm{~Hz}$.5-3 watt 35 watt 50 watt $8 \times 11.5 \times 12.5 \mathrm{~cm}$ 12 MONTHS GUARANTEE

Televis ons, Radios, Tape Recorders, Music Centres, Cassette Recorders, Earphones, Quality Audio and Video Equipment, Hi-Fi Accessories, Export Televis ons, In Car Equipment, Watches, Binoculars, Cameras, Calculators, etc and an entire floor devoted to Musical Instruments all at keen prices!

LONDON'S HI-FI SUPERSTORE 227 TOTTENHAM COUR1 ROAD LONDON WI Tel on 5807383 and 01.6371601 Telex 28394 LION G

[^5]> GODDARD'S COMPONENTS

Callers Welcome MON-SAT: 9.30-5.30
THURS: Closed all day
Lunch: MON-FRI: 1.30-2.30, SAT: 1.00-2.00

STEREO

CASSETTE RECORDER DECK

with + solenoid auto-stop +CrO 2 switch

+ piano key operation + twin level meters + mic. sockets

Tech. Spec.:
Bias and erase freq. 88 kHz
4 ICs 8 Transistors 1 SCR 10 Diodes

Diagrams and top panel template supplied

SHOCK-PROOF
POLYSTYROL IN GREY 4 mm thick walls
Larger sizes are pillar fixing
Smaller sizes are slotted
inside Measurements:

Box No.	Breadth mm	Length mm	Height mm	Weight gm
1001	60	90	50	100
1002	75	130	61	175
1003	90	160	71	285
1004	93	193	95	340
1005	125	220	110	575

1001-90p 1004-£2.00
$1003-£ 1.80 \quad 50 \mathrm{p}$ each p\&p. $£ 1.00$ for $3 p \& p$
LCD WATCHES

TOUCH GENTS CTG
544.95

UNISEX C 551
6 Colours
£11.95
ALL WATCHES 5 FUNCTION

LADIES S/S C652 £16.95

LARGE GENTS C 165 £9.95

1 YEAR GUARANTEE P\&P 50p per watch, Inc. Insurance

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

R.C.S. 10 WATT AMPLIFIER KIT

σ

This kit is suitable for record players, tape play back. guitars electronic instruments or small P.A. systems. Two versions are uses 22 semiconductors. Both kits have printed front panel and volume, bass and treble controls. Spec. 10W output into 8 ohms. 7 W into 15 ohms. Response $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{kc} / \mathrm{s}$.
(2)

Easy to build Full insiructions supplied

ELAC SPEAKER 10 inch £4.50
Large ceramic
magnet $50-16,000 \mathrm{c} / \mathrm{s}$
Bass resonance $55 \mathrm{c} / \mathrm{s}$. 10W . 8 ohm impedance.
RCS STEREO PRE-AMP KIT, All parts to build this pre-amp. inputs for high. medium or low imp. per channel, with volume 295 MAINS TRANSFORMERS ALL POST 75p each $250-0-250 \mathrm{~V} 70 \mathrm{~mA} .6 \cdot 3.2 \mathrm{~A}$, V or
 $350-0-35080 \mathrm{~mA} .6-3 \mathrm{~V} 3.5 \mathrm{~A} .6$ 3V 1A or 5 V 2 A 220 V 45 mA . 6.3 V 2 A HEATER TRANS. 63 V 3A. $£ 1.45$. t amp. GENERAL PURPOSE LOW VOLTAGGE Tapped outpuis

 $12 \mathrm{~V} 750 \mathrm{~mA} £ 1.30 .40 \mathrm{~V} 2 \mathrm{~A}$ tapped 10 V or $30 \mathrm{~V} £ 2.95$ (83.75 $20-0-20 \mathrm{~V} 1 \mathrm{~A} \mathrm{E} \mathbf{2} \cdot \mathbf{9 5}$. $30 \mathrm{~V} 2 \mathrm{amp} £ 2.95$.
 $30-0-302 A \subset 7.9 \mathrm{~V} 250 \mathrm{~mA}$ £ 1.30 .30 V 2 amp E3.
AUTO TRANSFORMERS. 115 V to 230 V or 230 V to AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V CHARGER TRANSFORMERS I OU 200% 1 1A €2.75; 4A €5.20. FOULL WAVE BRIDGE CHARGER RECTIFIERS. 6 or 12 V outputs
$1 \frac{1}{2} A 55 p ; 4 A \mathrm{E} 1.25$. HALF WAVE 12 V 11425 p . $1 \frac{1}{2} A 55 p: 4 A$ € $1 \cdot 25$. HALF WAVE $12 V 1 \frac{1}{2} A 25 p$.

GOODMAN'S COMPACT 12in BASS WOOFER
Standard 12 in diameter fixing with cut sides $12 \times$
10 in 14,000 gauss magnet 20 watt r.m.s. 4 ohm impedance. Bass resonance $30 \mathrm{c.p.s}$. Frequency

10 WATT PER CHANNEL STEREO AMPLIFIER in chassis form. A.C. mains operated. Volume, balance, treble and bass slider controls. Pick up and tape inputs. Recording output. Socket. Front panel size: $16 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. Chassis size: $13 \times 15 \mathrm{in}$. Bargain $\mathbf{1} 18.50$
HEATING ELEMENTS wafer thin Size ${ }^{10} \mathrm{i}^{1} 8_{7} \times$ in in Operating voltage $200,250 \mathrm{~V}$ a c 250 W approx Suitable for Heating Pads. Food Warmers. Convector Heaters. etc Must be clamped between two sheets of metal or asbestos ONLY 40 ÉACH (FOUR FOR $£ 1 \cdot 50$) ALL POST PAID-Discounts for quantity

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
10W Model \quad £7.95
15W model $£ 10 \cdot 50$

State 8 or 15 ohms. Post 75p

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A" $20 \times 13 \times 12 \mathrm{in}$.
For 12 in . dia. or 10 in . speaker lilustrated $£ 14.50$ Post $£ 1.60$ MODEL "B" BOOKSHELF
For 13×8 in. EMI \quad E8. 50 Post $£ 1$ Loudspeakers. R.C.S. BOOKSHELF complete with speakers. Size $14 \times 9 \times 6 \mathrm{in}$. approx.
Response 50 to $14,000 \mathrm{cps}$
12 watt rms 8 ohms $\mathbb{1} 9$ pair Post £ 1.50
ACOUSTIC WADDING 18 in . wide, 20 p ft.

MONO PRE-AMPLIFIER

A mains operated solid state pre-amplifier unit designed to compliment amplifiers without low level phono and tape input stages. This free standing cabinet incorporates circuitry for automatic R.I.A.A. equalisation on magnetic phono ON/OFF, PHONO/TAPE switches and pilot lamp are on the front panel; phono socket input and output are rear located. AC mains 240 V .
Sizest 50 p
$\times 3 \frac{1}{2} \times 2 \mathrm{in}$. £4.50 ea. -2 for £8.

BAKER MAJOR 12 INCH £16.88

$30-14.500 \mathrm{c} / \mathrm{s} .12 \mathrm{in}$ double cone, woofer
and tweeter cone together with a BAKER ceramic magnet assembly having a llux density o1 $14,000 \mathrm{gauss}$ and a total flux
of 145.000 Maxwells. Bass resonance of 145.000 Maxwells. Bass resonance
$40 \mathrm{c} / \mathrm{s}$. Mated 25 W NOTE 4 or 8 or 16 onms avalabla.

Module kit. 30-17.000 c/s with iweeter crossover. Daffle, 19×12 \&in.
instructions. As illustrated.
$\mathbf{2 0} 0.52$ lease state 4 or our 16 ohms Post $£ 160$

"BIG SOUND

BAKER SPEAKERS
Robustly constructed to stand up to long
periods of electronic power: As used by leading groups and discos Usetul response $30-13,000$ GROUP 12In 30 w
4. 8 of 16 ' 25 ohms. £12.96

GROUP ' 35
12 in 40 w
4.8 or 16 "

GROUP 50/12in

£22.68
GROUP 50/15in

£28.08
dieco, Group - PA Cabinets In stock. Send tor Leeflet. Cabinat Fittings, Hendles, Corner

BAKER 150 WATT
ALL PURPOSE
TRANSISTOR
AMPLIFIER

Ideal for Groups. Disco, PA and Musical Instfuments 4 inputs $4 / 8 / 16 \mathrm{ohm}$. a.c. Mains 240 V . mixing Output Separate trebie and base control f85 9 NEW "DISCO 100 WATT"' $£ 59$ ALL TRANSISTOR AMPLIFIER
inputs. ©outputs separate volume trebie and bass controls $£ 1$ disco or slave amplitier chassis. Made by Jennings
R.C.S. SOUND TO LIGHT DISPLAY MK II Complete kit of parts with R.C.S. printed circuit. Three CABINET extra £4. KiT =£17.00

GOODMANS CONE TWEETER
$18,000 \mathrm{c} / \mathrm{s} .25 \mathrm{~W}$ 各 ohm. Price E3. 25 3 WAY CROSSOVER WITH TREBLE \& MID RANGE
CONTROLS. 50 WATT. E5 POST $£ 1$.
R.C.S. 100 WATT VALVE AMPLIFIER CHASSIS

Protessional model, Four inputs. Trebie. Bass. Master Volume
Controls. Ideal disco. P.A. or groups. S.A.E. for

HIGH VOLTAGE ELECTROLYTICS

ROBUST BLACK PLASTIC BOX
Size $61 \times 3 \frac{3}{4} \times 2$ in with brushed aluminium 21.50
facia. Ideal for constructional projects.
Post 30p
R.C.S. LOW VOLTAGE STABILISED

POWER PACK KITS

All parts and instructions with Zener diode,
prined circuit rectifiers and double wound
mains transformer input $200 / 240 \mathrm{~V}$ a c Output
voltages available 6 or 75 or 9 or 12 V o c up
Size $3 \times 2 \downarrow \times 1+$ in Please state voltage required
ELECTRO MAGNETIC

PENDULUM MECHANISM

15 V c operation over 300 hours continuous on SP2 batrery. 1utly
adjustable swing and speed loeal displays. teaching electro
adjustable swing and speed loeal displays. teaching electro
magnetism or for metronome. strobe. etc.

 With STEREO/MONO CARTRIDGE $£ 12.95$ All Post 75p
 Single Player version

 R.C.S. DISCO DECK SINGLE RECORD PLAYER
 ritted with auto stop, stereo compatible cartridge. Baseplate. Size $11 \times 8+$ in Turntable. Size 7 in diameter a c mains 220.250 V 3 speeds plays all size records diameter 3 speeds plays all size records £7.95

HEAVY METAL PLINTHS
With P.V C. Cover. Cut out for most B.S R or 56.50
Garrard decks. Silver grey tinish

Extra Large Plinth and Cover. For transcription decks. Size
Exrra Large Plinth and Cover. For transcription decks.
$20 \times 17 \frac{1}{2} \times 9$ in. uncut board. Shop callers only $£ 18.50$.
TINTED PLASTIC COVERS ONLY
Sizes: $14 \frac{1}{2} \times 12 \frac{1}{2} \times 4 \frac{1}{4} \mathrm{in}, \mathrm{C} 3$.
$16 \frac{1}{4} \times 14 \times 4 \mathrm{in} . \mathrm{f} 4$.

Ideal for record decks, tape decks, et
BAKER HI-FI SPEAKERS
HIGH OUALITY-BPITISH MADE
SUPERB £24.75
12in 25 watt
Ouality toudspeaker. Low cone resonance
ensures clear reproduction of the deepest bass Special copper drive and concentric tweeter cone Full range reproduction with
remarkable efficiency in the upper emarkabie
Bass Resonance
Flux Density
Useful response
16.500 gauss
$20-17.000 \mathrm{c} / \mathrm{s}$

AUDITORIUM £22.68
12in 35 watt
A full range reproducer for high power
speaker systoms. electric organs ideal for
Hi -Fi and Discotheques
Blux Resonance
Flux Density
Useful response
8 or 16 ohms models
AUDITORIUM £28.08
15in 45 watt

BLANK ALUMINIUM CHASSIS. 18 s.w.g. $2 \frac{1}{2} \mathrm{in}$. sides $6 \times 4 \mathrm{in}$.

 14×9. $94 \mathrm{P} ; 12 \times 12 \mathrm{in}, \mathrm{E1;16} \mathrm{\times 10in} \mathrm{}. \mathrm{E1} .\mathrm{16} \mathrm{}$.
ALUMINIUMANGLE BRACKET, $6 \times$.
ALUMINIUM BOXES, MANY SIZESIN STOCK
ALUMNIUM BOXES, MANY SIZES IN STOCK
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times 1 \mathrm{in} .65 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in} .95 \mathrm{p}: \mathrm{B} \times 6 \times 3 \mathrm{in}$.
$£ 1.50 ; 9 \times 4 \times 4 \mathrm{in} . \mathrm{E}^{2} .70: 12 \times 4 \times 4 \mathrm{in} \mathrm{E} 1.95$.
THE 'INSTANT'' BULK TAPE ERASER £4.95
Suitable for cassettes. and all sizes of
tape reels a c mains $200 / 240 \mathrm{~V}$
tapeaflet $S A E$
Head demagnetiser £4.75

GREENWELD
 443 Milbrook Road Southampton

SO1 DHX
Tel: 1703
772501

All Prices quoted include VAT. Add from schoola, otc. (Minimum invoice despatched on day of recsipt. SAE with walcome. Whoresale liat now anquiries despatched on day of receipt. SAERER wolcome. Whotesale list now availabie VALUE fís Official orders accepted for boni-fide traders.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
- SAVE ON MONEY-Bu/k buying means lowest prices-just compare with others!
* HAVE THE RIGHT PART-No guesswark or substitution necessery!

ALL PACKS CONTAIN FULL SPEC, BRAND NEW. MARKED DEVICES- SENT B RETURN OF ~OO1
K00150V ceramir, plate capacitors, 5%. 10 K3.35
K 002 Extended range 22 pF to $0.1 \mu \mathrm{~F}, 330$

er capacitors. 10 each of these K003 Polyester capacitors, 10 each of these
values: $0.01,0.015,0.022,0.033,0.047$ valus. 0.1, 0.15, 0.22, 0.33, 0.47, 0F. 110 K004 Mylar capacitors. min 100 V type. 10
each all values from 1000 pF to 10.000 pF . each all values from 1000 pF to 10.000 p Total 130 for $£ 3.75$
from 10ps to $10,000 \mathrm{pF}$. E12 series 5% 160 V . Tolal 370 for $\mathrm{E12.30}$

K006 Tantalum bead capacitors. 10 each of | the following' | 0.1 | 0.15 .0 .22, | 0.33, |
| :--- | :--- | :--- | :--- |
| 0.68 | 0.47 | | | 15/16 22/16 33/10 47/6 100/3. Total 170 tants for $\mathbf{f 1 4 . 2 0}$

$K 007$ Elecrrolytic capacitors 25 V working, small physical size. 10 each of these popular values: $1 \cdot 2 \cdot 2 \cdot 4 \cdot 7,10,22.47$. 100 pf. Toral
K008 Extended range, as above, also including 220. 470 and $1000 \mu \mathrm{~F}$. Total 100 for f5. 90
K021 Miniature carbon film 5% resistors.
CR25 or similar. 10 of each value from 10 B to 1 M . E12 series. Total 610 resistors, $\mathbf{E 6 . 0 0}$ K022 Extended range, total 850 resistors from $1 R$ to $10 \mathrm{M} \mathbf{f 8} 30$
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 of each value from $2 \cdot 7 \mathrm{~V}$ to 36 V . E24
series. Toral 280 for $\mathbf{f 1 5} 30$ $K 042$ As above but 5 of each value $\mathbf{£ 8} 70$

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch
revealed about 70% useable devices - signal diodes. high voltage rects and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1000$ - or a bag of 2500 for $£ 2 \cdot 25$. Bag of $10.000 £ 8$. Box of
$25.000 £ 17.50$. Box of $100.000 \mathrm{f60}$.

SIGNAL INJECTOR
This handy little instrument made to a very high standard at a very attractive price is just he job for fault finding on radios, amps, etc. battery.
ONLY $£ 2.00$
74 SERIES PACK
Selection of boards containing many different
74 series IC's. 20 for $£ 1: 50$ for $£ 2.20 ; 100$ 4 series IC's. 20 for $£ 1 ; 50$ for $£ 2.20$; 100

DISC CERAMIC PACK
Amazing variety of values and voltages from
a few if to 2.2 uF 3 V to $3 \mathrm{kV} 1200 \mathrm{E1.500}$ €2.25, 1000 £4.00

EXPERIMENTERS

CALCULATOR
Based on the C500 chip, this pack of parts enables the more experienced constructor to
make an 8 digit 4 function calculator. The make an 8 digit 4 function calculator. The size layout of PCB required, types of suitable display and keyboard that can be used etc. Components included in the pack are C5OO calculator chip. driver IC. all components fo
inverter/clock circuits. R's C's etc. All for only £3.50.

TRANSFORMERS

 85p: $1 \frac{1}{2} A$ E2.40. 9-0.9V $75 \mathrm{~mA} 85 p$. 1 A
£2.10. Multitapped f 2.10 . Multitapped type $0-12-15-20-24-$
30 V . $\mathrm{A} £ 3.95: 2 \mathrm{~A} £ 5.35$; 3 A $£ 6.90 \mathrm{~V} 20 \mathrm{~V}$
 (1) 300 mA twice $\mathbf{£ 2} .50 ; 12 \mathrm{~V}$ (it 250 mA wice $£ 2.00$

RELAYS

W847 Low protile PC mint $10 \times 33 \times 20 \mathrm{~mm}$ 6V coil. SPCO 3 A contacts. 93 p . W832 Sub. min type. $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO 2 A contacts E 1.15 $20 \times 30 \times 25 \mathrm{~mm}$ Only 56 p
W817 11 pin plug in relay, rated 24 V ac, bu works well on 6 V DC. Contacts 3 pole c/o W819 12 V 12 W819 12 V 1250 R DPCO 1 A contacts. Size $25 \times 22 \times 18 \mathrm{~mm}$. min plug-in type 12 p
W 83950 V ac 24 V DC) coil. 11 pin type. 3 pole c/o 10A contacts Only 85 p W846 Open construction mains relay. 3 set 10A c/o contacts. f1-20
Send SAE for our relay list - 84 types listed

STEREO AMPLIFIEF

 CHASSIS £5.50Complete and ready built. Controls: bass, treble. volume/on-off, balance. 8 transistor Circuit gives 2 watts per channel output. Jus needs transformer and speakers for low cos
stereo amp. Suitable metal cabinet $(W 374$ stereo amp. Suitable metal cabinet
E2.00 - or buy the amp, case and trans former for $£ 10.00$ and get DIN speaker sockets and knobs free!

AMPLIFIER KIT £1.75

Mono gen. purpose amp with tone and Vol/on-off controls. Utilizes sim. circuitry io above amp. Output 2 W into 8 ohms. 4 transisto matched for crystal cartridge. 4 transistor be either battery or mains proviated. Ca be either battery or mains operated. (Fo
mains powered version add $\mathbf{~} 2.20$ for suit able transformer.) Blue vinyl covered aluminium case to suit (W372) £1.30

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time: 470 ns cycle time: single low compatible; Low power dissipation. Supplied with data £2.75

MISCELLANEOUS IC's Supplied with data if requested. MC3302 quad comp. 120p; 710 diff comp. TTO99 quad ZN1034E precision timer $£ 2.25$
LM7: 1 Dual diff comp 65p: LM1303 dual stereo Dual diff comp 65p: LM 1303 dua £1.50; UPC1025H: audio £3.50; 575 C audio £2.88: TDA2640 audio £2.92 CRCC gen POA

HEAT SINK OFFER

Copper TO5 sink 17 mm dia \times
$40 \mathrm{p} ; 100$ for $£ 3: 1000$ for $£ 25$
PC ETCHING KIT MK III Now contains 200 sq. ins. copper clad board 1 lb . Ferric Chloride. DALO etch-resist pen etching dish and instructions. $£ 4 \cdot 25$

VERO OFFCUTS
Pack A. All $0.1^{\prime \prime} \quad$ Pack B, All $0.15^{\prime \prime}$
Pack C. Mixed PackD. all $0.1^{\prime \prime}$ Plain Pack C. Mixed Pack D. all 0.1" Plain Each pack contains 7 or 8 pieces with a total area of 100 sq . in. Each pack is $\mathrm{E1.30}$. Also
available by weight. 1 lb f .20 , $101 \mathrm{lb} \mathbf{~} 32.50$. $17 \times 33^{\prime \prime}$ Strips: $0.1^{\prime \prime} \mathbf{£ 2 \cdot 2 0 ;}$; 10 for $\mathbf{£ 1 5}$ $0.15^{\prime \prime} £ 1.96$
$0.1^{\prime \prime}$ Plain $£ 1.83$

EDGE CONNECTORS
Special purchase of these 0.1" pitch doublesided gold-plated connectors enables us to sffer them at less than one-third of their
original list price
18 way $41 \mathrm{p} ; 32$ way $72 \mathrm{p} ; 40$ way 90 p.

CHBOMASOMID electronics

56 FORTIS GREEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE

 CONTAINS FREE45 pence WORTH OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS
TIMER
741
5 for
555
4 for

RED LED
TIL209
10 for

£1.00

£1.00
£1.00
VAT INCLUSIVE PRICE + 25p P. \& P.

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICsWORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

CRESCENT RADIO LTD.

1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON,
 01-888 4474

N22 4SJ (MAIL ORDER DEPT.)

TELESCOPIC AERIAL

8 Section Telescopic Aerial
ength, extended: $96 \mathrm{~cm} .(37$
Length. closed: $16 \mathrm{~cm} .\left(6 \pm^{n}\right)$
Nut and bolt fixing at base of aerial
Only 70p each $+12 \frac{1}{2} \%$ VAT

```
AN ELECTRONIC "FLIP"!'!
ON ELECTRONIC VER
We supoly a complete kit of parts which
includes a strong case and attractive front
panel to give the fainished game a long life
and professional appearance.
Full assembly instructions are suplied, if
you can solder you can make this great game:
An ideal first project to introduce you to
electronics.
Not only will Flup' start you on a great
hobby but you will own a game which will
Complete Kit: £5.25 +8% VAT
Post Free'
BARGAIN LOUDSPEAKER
Goodmans 5" 8 ohm long throw heavy duty
USPKR.
and has fixing holes with centres spaced a
\at" (diagonally)
2WAY }8\mathrm{ OHM
HEAVY DUTY XOVER.
A way 8 ohm H/D Xover suitable for L/S
systems Up to 100W. Input via, Screw ter-
switch which solects either Flat. -3dB or
-6dB.
8uy now while stocks last
```

	3 KILOWATT PSYCHEDELIC LIGHT CONTROL UNIT 1000W lighting per channel. max. A 3 channel sound to light unit housed in a for each channel i.e. Bass. middle and treble. Full instructions make this unit easy to connect to your present ampifier. S. AE. for spec. Sheet. Still only $\mathbf{~} 20.00+8 \%$ VAT.
	POWER SUPPLY UNIT
	PP1 - switched $3,4 \frac{1}{2}$, 6, $7 \frac{1}{2}, 9$ and 12 volts at 500 mA , with on $/$ off switch and pilot light. Size: $130 \times 55 \times 75 \mathrm{~mm}$ approx. Our Price: $\mathbf{£ 6 . 0 0 + 8 \%}$ VAT
	SIX-PIECE
	MINIATURE
	SCREWDRIVER
	SET
	Six precision screwdrivers in a hinged plastic box. Blade sizes: $0.8 \mathrm{~mm}, 1.4 \mathrm{~mm}, 2 \mathrm{~mm}$, $2.4 \mathrm{~mm}, 2.9 \mathrm{~mm}, 3.8 \mathrm{~mm}$.

PIEZO ELECTRIC HORN
UNITS
High Quality, High Power Tweeter. No Xover
reqd. Freq. Response: $3.8 \mathrm{kHz-28kHz}$. Spec. sheet sent on receipt of S.A.E.
Our Price: $£ 6.50+8 \%$ VAT.

BARGAIN TRANSFORMER
240 V Primary $12-0-12 \mathrm{~V} 500 \mathrm{~mA}$ sec. Approx. size: $60 \times 40 \times 50 \mathrm{~mm}$. Fixing centres: 75 mm .
Price:
$\mathbf{1} 1.50+8 \%$ VAT

All arders over $£ 10$ post free!
Please add V.A.T. as shown.
.A.E. with all enquiries please.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your require-
(B) That you have enclosed the right remittance
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
Thhis will assist advertisers processing and
This will assist advertisers
despatchi.2g orders with the

RECEIVERS AND COMPONENTS

BRAND NEW COMPONENTS BY RETURN Elactrolytic Capacitors $\mathrm{s}^{16 \mathrm{~V}}$ io 25 V . 50 V . $22.47-5 \frac{1}{2} p .(50 v-6 p) .100-7 p .(50 v-8 p)$. $220-8 p .\{50 v-10 p) .470-11 p .(50 v-10 p)$. $1000 / 15 \mathrm{~V}-15 \mathrm{p} .1000 / 25 \mathrm{~V}-18 \mathrm{p} .1000 / 50 \mathrm{~V}-22 \mathrm{p}$. Subminiature bead tantalum electrolytics. $0.1,0.22,0.47,1.0$ (a) $35 \mathrm{~V}, 4.7$ (a) $6.3 \mathrm{~V}-8 \mathrm{p}$. $2.2 / 35 \mathrm{~V}$ \& $4.7 / 25 \mathrm{~V}-9 \mathrm{p} .10 / 25 \mathrm{~V}$, $15 / 16 \mathrm{~V}-12 \mathrm{p}$. $22 / 16 \mathrm{~V}, 33 / 10 \mathrm{~V} .47 / 6 \mathrm{~V}, 68$ \& 100 (a) $3 \mathrm{~V}-14 \mathrm{p}$, Mullard Ministure Ceramic E12 Series 63V 2\%. 10 pf. to 47 pf.-3p. 56 pf. to 330 pf. 4 p. Vertical Mounting Ceramic Plate Caps. 50V. E12 22 pf.- 1000 pf. E6 1500 pf. 47000 pt.-2p. Polystyrane E1R Saries 63V. Hor. Mounting. 10 pf . to 1000 pf.-3p. 1200 pf. to 10000 pf. -4 p . Mullard Polyester 250 V Vert. Mig. E6 Series. .01 to $1-4 p$. $15, \quad .22-5 p$. $33, .47-8 p$. .68-11p. 1.0-14p. 1.5-20p. 2.2-24p. Mylar (Polyester) Film 100 V . Vertical Mitg. .001 . 002 . .005-3p. .01. 02 -4p. .04. .05-5p. Miniature Film Resistors Mighstab. E12 5\%. 0.125 watt 10Ω to $2 \mathrm{M} 2 \Omega \ldots$ 0.500 watt 10Ω to $2 \mathrm{M} 7 \Omega$... $1 \frac{1}{3} p$. 1.000 watt 100 to $10 \mathrm{M} \Omega$.. \qquad 1N4148-3p. 1N4002-5p. 1N4006-7p. 1N4007-8p. 8C107/8/9. BC147/8/9. BC157/8/9. BF194 \& 7-9p. 20 mm , fuses $15 .-25,5,1.0,2.0,3.0$ \& $5 \mathrm{~A}-3 \mathrm{p}$. Printed Circuit Holders for 20 mm . fuses-5p. Post 10p (Free over £4). Prices VAT inclusive. THE C. R. SUPPLY CO. 127. Chesterfield Road, Sheffield S8 ORN

VALVES. Radio - T.V. - Industrial - Transmitting and Projector Lamps. We dispatch Valves to all parts of the world hy return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Obsolete types a speciality. List 20 p . Quotation S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 chosed Wednesday 1.00 . We wish to purchase all types of new and hoxed Valves. Projector Lamps and
Semiconductors. COX RADIO (SUSSEX) LTD., Dept. Semiconductors. COX RADIO (SUSSEX) LTD., Dept.
P.W. The Parade, East Wittering. Sussex, PO20 8BN, West Wittering 2023 (STD Code) 024366 .

RECHARGEABLE BATIERIES

EXTENDED RANGE
 'AA') $£ 1.32 .9$ volt PP3 $£ 4.98 .9$ volt $P P 6 \in 11.65$, 9 valt $P P 7 £ 9.14 .9$
volt $P P 9$ f $£ 4.30$. All chargers $£ 7.97$ (excapt for $P P 3$ - is $£ 5-82$ and pencell volt PP9 $£ 14.30$. All chargers $£ 7.97$ lexcept tor PP3- is $£ 5-82$ and pencell

- is $£ 8.981$. 8 valt 8 Ah sealed lesd acid $£ 11.8 \mathrm{~B}$. New child's, $2-4$ mile range

ELECTRIC CAR

SAE tor all details and lists plus $£ 1.00$ for rec. braklet "Nickel Codmium Power". Add p\&p 10% (5% arders $£ 25-00$ and gvel) All prices include VAT Dept PE. Sandwell Plant Lid. 201 Manmouth Drive. Sutton Coldfield. West
Midlands Callers to: TLC 32 Craven Streel. Chating Crass, of to 2 Union Midlands Callers to:- TLC. 32 Craven Streel, Chating C.
Drive. Boldmere, Sutton Coidfield. Tel: $021-3549764$.

SMALL ADS
The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.60$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Electronics and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Electronics, Room 2337. IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the Bitish Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors of their consequences.

MAINS TOUCH SWITCH KIT. 400 watt load capacity. Details free. I. G. BOWMAN, (Dept. PE), 59 Fowey Avenue, Torquay, S. Devor.

EVERYONE'S A WINNER

WITH CODESPEED
Full Spec. Devices
Pack C1 5×12 pin Hybrid Circuits each containing 16 resistors/capacitors. Ideal for P.C.B. miniaturisation. With data. 5 for 50p
Pack DM1 5×14 pin dual in line chips each containing 23 quality matrixed signal diodes. With data. 50p Pack E2 A calculator style 8 d
O.33in high. With data $£ 2.95$
Pack E3 Same as Pack E2 but 0.5in high digits. With data $£ 4.25$
Pack E4 A $1 \frac{1}{2}$ digit 0.3 in high 7 segment gas discharge
display. Requires 180 V display. Requires 180 V Anode voltage. Makes an
excellent replacement for LED's in your mains operated projects. With full data - fantastic value at only 90 p Pack E5 Same as Pack E4, but dual digit. 90p Pack M1 Terrific value, two calculator keyboards. Only ${ }^{£ 1.00}$ Pack M2 1×2102 a 1024 bit static RAM. The most popular of all random access memories in professional and amateur electronics. With full data. $£ 1.25$
Pack T4 0.8 in Giant red LED 12 hour clock display. Pack T4 A O.Bin Giant red LED 12 hour clock display
Common cathode. $3 \frac{1}{2}$ digit. An ideal size for your clock project. With data. $\mathbf{\sum 4} \mathbf{4} .95$
Pack T2 Back by popular demand. A high contrast $3 \frac{1}{}$
digit Liquid Crystal wristwatch display with data. $£ 1.00$ digit Liquid Crystal wristwatch display with data. $£ 1.00$
Pack P1 $1 \times$ MM5330 Digital Voltmeter I.C. With full Pack P1 $1 \times$ MM5330 Digital Voltmeter I.C. With full
insiructions on how to build an extremely good digital multimeter or panel meter. £3.95
Palculator 1 MM5
Puild your Own Pack M3 Build your own calculator! MM5725 calculator chip and data book $\mathrm{f1} 1.00$
Full Spee. SNTG Senes SN74136 60p SN74 155

Satisfaction guaranteed or return complete pack for replacement or refund
MAIL ORDER ONIY - NO CALLERS PLEASE
Postage and Packing please add 25p

CODESPEED

P.O. Box 23, 34 Seafield Road

Copnor, Portsmouth. Hants., PO3 5BJ

TURN YOUR SURPLUS capracitors, transistors, etc., into cash. Contact COLES-HARJIING \& CO., 103 South Brink Wishech. Cambs, 0945.4183. Immediate settlement.

PCBs Paxolin $10 \frac{1_{2}^{\prime \prime}}{2} \times 4 \frac{3^{\prime \prime}}{4} 4-\mathrm{E} 1.25$. $12^{\prime \prime} \times 9^{\prime \prime} 70 \mathrm{p}$ $17 \frac{1}{2}^{\prime \prime} \times 9 \frac{1^{\prime \prime}}{2^{\prime \prime}} \mathbf{£ 1 . 1 5} \mathbf{1 5}^{\prime \prime}$ Fibre Glass Double Sided $13^{\prime \prime} \times 6^{\prime \prime}$ £1.30. $12^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} £ 2.10$. Unit with 8 Silicon Diodes 600 V 20 amp .8 SCRs 400 V 16 amp .6 Vinkors w.w resistors etc. £6.75. 300 Small Components Trans. Diodes $£ 1.30$. 7lbs. Assorted Components $£ 2.95$.
List 15 R Refundable. Post $20 p$ under E 1 . Insurance add 15 p.

J.W.B. RADIO

2 Barnfield Crescent, Sale, Cheshire M33 1 NL

COMPONENTS, pots, resistors, capacitors, valves, transformers, relays - plus lots more. Give away prices. $10 \mathrm{p}+$ S.A.E. for list. Stephenson, Chimney Mill, Newcastle upon Tyng A+EAAL. (0632) 610210.

SPECIFICATVAN COMPONENTS. Very competitive pri s. $44850 \% 789 £ 1.50,749335$ p. Send SAE for list
Road. Wellingborough Northants. 3 Winstanley Road, Wellingborough

ELECTRICAL

STYLI - illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices: leads, etc. Superb quality and service at lowest prices: ELECTRONICS (PE), Longley Lane, Gatley, Cheadle. Cheshire SK8 4EE.

SERVICE SHEETS

SERVICE SHEETS for Radio, Television, Tape Recorders, Stere, etc. With free Fault-finding guide, from $50 p$ and A Fataluque 250 and S.A.E. Hamilton Radio, 47 Bohemia Ruad, St. Lennards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV. etc: 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S 190 Kings Road, Harrogate. N. Yorkshire. Tel: (0423) 55885.

FOR SALE

SYNTHESISER, Separate Keybnard, Based on P.E and E.T.I circuits $£ 250$). Riggs, 95 Pickwick Road, Corsham, Wilts. Phone Corsham 712414.

HARTLEY CT316 Oscilloscope and TE-20D Signal Generator tugether for $\dot{5} \mathbf{0} 0$. n.n.o. Phone 021-353 2346.
2×61 Note Organ Keyboards complete with contacts 2:30.(0). Each. Selmar Clavinline $\mathfrak{d i 5 0 . 0 0 1}$. Lichfield 24870. ELECTRONIC KITS-SAE for new catalogue, and clearance list of whsulete kits. AMTRON U.K. ₹ Hughenden Road, Hastings. Sx.
RAOIOSPARES MAINS TRANSFORMERS ex-equipment. Twin 2 vnlt 4 amp Secondary. Huge saving, only $£ 5.95$ post paid. J. Hansom. 12 Torquay Avenue, Hartlepool, Cleveland.

NEW BACK ISSUES of "PRACTICAL ELECTRONICS" available 65 each Post Free. Open P.O./Cheque returned if not in stock - Bell's Television Services, 190 Kings Road Harrogate, N. Yorks. Tel: (0423) 55885.
OEWTRON SYNTHESISER modules 4 oscillators envelope shapers ring modulator 36 note keyboard $\mathbf{£ 7 0}$. Also Eagle reverb unit \mathbf{K}^{15}. Tel: Jarrow 892417.
CORE MEMORY PLANES, ex-equip $4 \mathrm{~K}(64 \times 64)$ per plane $99 p$ each +25 p P \& P. Eight for $£ 7.50$ post free. G. Langley 31 Bakers Lane, Woodston, Peterborough
"RUN YOUR OWN BUSINESS AS AN EXTRA HOME ACTIVITY. LARGE PROFITS. A GENUINE OPPORTUNITY TO SUCCESS." Full details on receipt of s.a.e. Industrial Supplies, 102 Parrswood Road, Withing ton, Manchester 20.

SEEN MY CAT? 5000 Odds and ends. Mechanical Electrical. Cat free. Whiston, Dept. PRE. New Mills, Stockport.
OIGITAL HEATH KIT Self-instruction course/Tutor, Working. Basics to Microprocessors. £65. Bristol 027-52 8379 .

BOOKS AND PUBLICATIONS

SIMPLIFIEO TV REPAIRS. Full repair instructions individual British sets $£ 4.50$, request free circuit diagram Stamp brings details unique. TV Publications, (AUSEPE) 76 Church Street. Larkhall, Lanarkshire.
THE ENO OF COMPUTER CONFUSION: what point have we reached - where are we going? Read Computer Lib/ Dream Machine by Ted Nelson. $\mathbf{5 5 . 9 5}$ from your Local Computer Store, or send $\mathbf{2 6 . 4 5}$ to Computer Bookshop Temple House (1), 43-48 New Street, Birmingham.

WANTED

WANTEO: Clean new semiconductors, I.C.'s etc. Good prices paid. Hewitts, 52 Barkby Road, Syston, Leicester.

LADDERS

LAOOERS. Varnished 25tft. Extd. £34.56. Carr. £2.70. Leaflet. Callers welome. Open Sat. Ladder Centre, (PEE4) Halesfield (1) Telford, Salop. Tel: 586644.

SITUATIONS VACANT

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over

STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with appropriate experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.

QUALIFICATIONS: Candidates must hoid either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.

SALARY (inc. supps.) from £2,927 at 19 to $£ 3,700$ at 25 (highest pay on entry) rising to $£ 4,252$ with opportunity for advancement to higher grades up to $£ 4,706$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

Recruitment Officer, (Ref PE/10) GCHQ. Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242)21491 Ext 2270

EDUCATIONAL

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
1)ept. 2722 Intertext House, Lorndon SW8 4IIJ

Tel. 01-6229911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS or delails of ICS specialist homestudy courses on Radio. TV, Audio Eng, and Servicing, Electronics, Computers: also self-build radio kits. Fuli details from

I(SSCHOOL OF ELECTRONICS
| eppt. 272Z Intertext House, London SW8 41!
Tel. 01-6229911 (all hours) State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians Radio Amateurs. Full details from:

ICS SCHOOL OF ELECTRONICS
Ihept. 272 Z Intertext House, London SW8 41 JJ Tel, $01-6229911$ (all hours)

State if under 18

MISCELLANEOUS

100 WATT GUITAR/PAVMUSIC

 AMPLIFIERWith superb treble, bass. Overdrive, slimline, 12 months guarantee. Unbeatable offer at $£ 39$. Also twin channel with
separate treble/bass per channel $£ 48$. Money returned if not absolutely delighted within 7 days. Also fuzz boxes great sound robust construction $\mathbf{E 8 . 6 0}$. Also 100 watt 12 in speakers $£ 22.50$.
All inclusive of P.P. Send shexpue or P.O. to: WILLIAMSON AMPLIFICATION
62. THORNCLIFFE AVENUE, DUKINFIELD,

CHESHIRE, TEL: 061-344 5007

CLEARING LABORATORY. Scopes, recorders, testmeters, hridges. audio. R.F. generators, turntables, tapeheads. stahilised P.S.U.s, sweep generators, test equipment, etc. Lower Beeding 236.

PRINTED CIRCUITS

and HARDWARE

Readily availabla supplies of Constructors' hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25 p for catalogue. From:

RAMAR CONSTRUCTOR SERVICES,
Masons Road, Stratford upon Avon, Warwicks. Tel. 4879.

ALFAC etch resist transfers and other p.c. board drawin materials available from stock, s.a.e. details. Ramar Con structor Services, Masons Rd, Stratford on Avon. CV37 9NF

PRACTICAL ELECTRONICS P.C.B.'s

```
c. }77\mathrm{ Car in glass fibre tinned and drilled
Mec. }77\mathrm{ Car Burglar Alarm 1412-188p
May 78 Moving Light Display £2.96.
May }78\mathrm{ Worksnop Power Suppy.
July }78\mathrm{ Dimwit £1.48.
Aug78 Touch Switch 85p. C.W.O. Please,
For full list and current boards please send S.A.E
P.C.B.'s also produced from customer's own master
please send for quote.
    PROTO DESIGN
14 Downham Road, Ramsden Heath, Billericay, Essex
```

ELECTRONIC KITS. A company serving the amateur electronics market is interested in purchasing electronic kits to widen its range. Companies selling such kits are invited to contact: Box No. 75 .

LOST THE TIME?

MSF 60 KHz RECEIVER, built-in antenna, sequential YEAR. MONTH. DATE DAY, HOURS MINUTES, SECONDS display $£ 24.40$.
MISSING LONG WAVE? NEW 200 KHz to Med. Wave Converter, built-in antenna, inductive Med. Wave Converter, buiti-in antenna, inductive
PROGRAM YOUR OWN tunes on a MUSICAL DOORBELL, new jingle every day, just needs bell transformer and speaker, £19.50.
Each easy-assemble kit includes all parts, printed circuit, case, postage etc, instructions and money
back assurance so SEND off NOW.

CAMBRIDGE KITS

45 (FK) Old School Lane, Milton, Cambridge

SUPERB INSTRUMENT CASES BY BAZELLI, manufactured from P.V.C. faced steel. Hundreds of people and indus trial users are choosing the cases they require from our vast range. Competitive prices start at a low Yop, chassis punching facilities at very competitive prices, 400 models to choose from, free iiterature (stamp would be appreci ated). BAZELLLI, Dept: No. 23, St. Wilfred's, Foundry Lane. Halton, Lancaster. LA2 6LT.

MAKE YOUR OWN PRINTED CIRCUITS

Etch Resist Transfers - Starter pack (5 sheets, lines, pods, I.C. pads/ $\{1,30$. Lorge range of single sheets in stock of 27 p per shee .
Ferric Chloride - 116 bags 80p (P\&P 40p)
Master Posilive Transparencies from P.C. layouls in magazines by simple photographic process. Futl instructions supplied 2 sheets ($20 \times 25 \mathrm{~cm}$) negative paper and 2 sheets ($18 \times 24 \mathrm{~cm}$) positive film $£ 1.20$. S.A.E. lists and information. P\&P 20p/order except** P.K.G. ELECTRONICS

OAK LODGE, TANSLEY, DERBYSHIRE

SINTEL FOR BOOKS, CMOS AND COMPONENTS

6800 Booklet 1.80. MOT CMOS Databk 3.50, 6800 App Man 12.95, 6800 Prog Man 5.35, SC/MP Introkit Man 0.75 NS ITL Dotobk 2.10, RCA CMOS Databk 5.45, 8085 User Man 5.15, 280 Ass Lang Prog Man 7.50, 280 CPU Man 5.60 , 280 CTC Spec 0.80 , 280 P10 Man 3.30. Alsa a fuli range of CMOS send for tree catalogue MPUs $\begin{array}{llllllll}\text { MEK } 680002 & 205.20, & \text { MC6820 } & 7.50 & 280 & 18.14, & \text { Z80A }\end{array}$ 24.19, ZBOCTC 10.96, ZBOP10 10.96. Memories 2102-A 2.00, 2112A-4 3.13. Displays: Type FND500 CC 1.40 Type TII321 CA. 1.40, StTO1 5.29. Crystols: 32.768 KHz 3.19. Clock ICs: AY51202 3.35, AY51224 3.73. MK 5025 5.83. Soldercon Pins: $1000.54,10004.32,300011.34$ VAT. Add 35 p p\&p. SINTEL, P.O. Box 75B, 209 Cowley Road, Oxford. Tel. 10865149791

 Complete TV Camera Kit for under $£ 100.00$ (excluding P/P and VAT). Offer includes Lens, Tube and FREE Modulator. Plugs directly into AE socket of TV or VCR. Reliable high performance design. Suitable for Security. Education, Industry etc. Fully compatible with other CCTV Equipment. Fully Guaranteed Parts. Buy it with your Credit Card.CROFTON ELECTRONICS LIMITED

TRANSFORMER PROBLEMS?
Send SAE with requirements for return of post quote.

TRENT, TRANSFORMERS LTD Chapel Street
Long Eaton, Nottm. 0607666716

REVOLUTIONARY

A MUST FOR EVERYHOME AND WORKSHOP
Can be used to test all fuses. filament lamps and electrical appliances for continuity.

* Tests High Resistance items (i.e. Li
appliances)
- Simple to use
* Go - No - Go indication
- Battery supelied.
- Battery supplied.
* Absolutely invaluable to
the handyman, amateur

and professional.
Price only $£ 2.50$ Inc. P \&i P.
VERSATILE THE ODIK MULTIVOLT
A General purpose power oupput voliages from a mains input. Suitable for the majority of radios. cassette plavers and other battery powered appliances. May also
 transformer to power a mode train etc
* Provides 12 v .9 v .7 .5 v . and 6 v outputs.
* Regulated output provides up to 400 m .
* Attractive, Robust METAL enclosure.
* Supplied with output lead together with 2.5 mm and 3.5 mm power plugs.

Price only $£ 6.95$ inc. P\&P OIRECT FROM THE MANUFACTURERS
ODIK ELECTRONICS
43. Meadowside, Nuneaton, Warwickshire

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{£ 9 . 7 5}$ plus 25p P. \& P.
'Brain-Freeze' 'em with a MINI-STROBE Kit, pocket-sized 'lightning flashes', vari-speed, for discos and parties. A mere $£ 4.30$ plus 20 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIC EAR sound-catcher; ready-made multi-function modules. £5 each plus 20 p P. \& P.

LOTS MORE! Send 20 p for lists. Prices include VAT. (Mail order U.K. only).

BOFFIN PROJECTS

Cunliffe Road, Stoneleigh Ewell, Surrey (P.E.)

PRINTED CIRCUIT BOARDS made to your requirements. Write for details and price list. Western Circuit Designs, 31 Great Hinton. Trowbridge. Wilts. BA14 6BY.

BELLS AND SIRENS CARTERS SIREN $£ 5.53$ INDUSTRIAL SIX INCH BELL £8.27 PRICES INCLUSIVE Send Cheque, P.O. to: CWAS ALARM 11 Denbrook Walk, 8 radford 8D4 0QS. 6 to 12v D.C. SAE for full Price List of 12 v.C. Professional Burglar Alarm Equipment

THE FABULOUS D2 MICROPROCESSOR EVALUATION KIT FROM MOTOROLA.

Featuring *24 key keyboard *Seven segment display *Cassette interface *Erom \& Ram Expandable *Interface Capability *Full Documentation * 5 Volt power supply Required *One years FREE membership of The Amateur Computer Club with every purchase*. $\mathbf{£ 1 7 6 +}$ $£ 1.50$ P \& P + 8\% VAT.

ENAMELLED COPPER WIRE

SWG	$\mathbf{1}$ lb	$\mathbf{8 0 z}$	$\mathbf{4 o z}$	$\mathbf{2 o z}$
10.19	2.60	1.40	.66	.55
20.29	2.80	1.60	.85	.65
30.34	3.00	1.70	.95	.70
35.40	3.35	1.90	1.10	.79
$40-43$	4.50	2.50	1.90	1.25
44.46	5.00	3.00	2.10	1.65
47	8.00	5.00	3.00	1.76
48	15.00	9.00	6.00	3.30

Tinned Copper, Even Gauges $14-30 £ 3$ per lb. Multicore $60 / 40$ Solder 18SWG $£ 3.24$ per lb. Prices include P \& P and VAT,
SAE brings list of copper and resistance Wires.

THE SCIENTIFIC WIRE COMPANY

PO Box 30 London E. 4.
Reg. Office. 22 Coningsby Gdns.

RADIO CONTROL SPECIALISTS
Kits for multi channel systems. Special parts and accessories.
S.A.E. FOR LEAFLETS Tel: 0602395418
MICRON R/C, Hayworth Road, Sandiacre, Nottingham.

CABINET FITTINGS

Stage Loudspeakersand Amplifier Cabs Fretcloths, Coverings, Strap \& Recess Handles, Feet, Costors, Jacks \& Sockets, Connons, Bulgin 8 ways, Reverb Troys, Locks \& Hinges, Corners, Trim, Speoker Botts etc.
Send $2 \times 9 \mathrm{p}$ Stamps for samples and illustrated Send $2 \times 9 \mathrm{p}$ Stamps for samples and illustrated catalogue. ADAM HALL (P.E. SUPPLIES) Unit 3, Carlton Court, Grainger Road
Southend-on-Sea, Essex.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine

INCREDIBLE WATCH BARGAINS

 ONLY £39.95
All prices include presentation case, 12 month guarantee, instructions, P\& P. Vat. Money back guarantee.

VIDEOTIME PRODUCTS

56 Queens Road, Basingstoke Hants RG21 1RE. Tel. (0256) 56417 Telex 858747
Trade \& Export Enquiries Welcome

PROGRESSIVE RADIO

LM380 80p. LM381 95p. 7418 PIN 23p, 74 is (wide bandwidth) 8 pin 35p. TIL 305 Alpha numerical display (with datal $\mathbf{£ 2} .50 \mathrm{p}$. B×504 opto isolators infra red led to photo cell, 4 lead $\mathbf{2 5 p}$. transistors 35p. FETS similar 10 2N3819 18p. MOSFET similar 40673 35p. Intel C1 1031024 bit mos rams 95p. CD4051 45p. 72314 pin I.C. 's. 35p.
 MAN 3 A 3 mm led displays 50p. Min. Nixie 587 OST 75p.
Pot core unit, has six pot cores including one FX2243 (45mm) and two FX2242 $(35 \mathrm{~mm}) 3$ TO3 si diodes and a 5 amp plastic SCR, $\mathbf{E 1 . 7 5}$ p plus 75 p postage
MOTORS, Model type $1.5-6$ volts 20p. 'BIG INCH' sub min motor 115 vac, 3 r.p.m. 25p. 24 Crouzet 115 VAC 4 pm. 95 p . 12 vdc 5 pole 35 p .
HI-SPEED MORSE KEY. ALL METAL £2.25p. PLASTIC MORSE KEYS. $95 p$.
PLESSEY WINKLER SWITCHES. 1 pole 30 Way 2 bank
PLESSEY WINKLER SWITCHES. 1 pole 30 way, 2 bank adj. stop 75p
Crystal microphone inserts 37 mm 45 p . Grundig electret condenser inserts with built in FET PLUG f2.85p. TIE CLIP CONDENSER MIKES OMNI. IK MMP (uses deaf aid battery, supplied

SOLDER SUCKER, high suction, eye protection shield $\mathbf{E 4 . 9 5 p}$ $95 \times 71 \times 3552 \mathrm{p} .115 \times 95 \times 3660 \mathrm{p}$
BUZZERS, GPO open type 3-6v30p. Large plastic domed type toud note 6 or 12 volts 50p, Solid
TAPE HEADS, Mo.
ped. heads f 1.75 p . TD 10 Dual head assemblies 2 heads both track A / P with built in erase mounted on bracket, £1.20p.
Relays. Min. sealed $12 v$ dc type 4 pole changeover 55 p . Min. 24 v dc 2 pole c/o 3 amp contacts 55p. Min sealed 220 v ac 2 pole c/o 40p. Open type 12 vdc 4 pole clo 50p, 4 pole reed relays N/O
20p.
CRYSTALs, 300 khz 40 p Aerosol 'Touch up' paint one colour yellow/grey, 60 can 35 p .50 v ac carm units, motor switching ten c/o micro switches. supplied with capacitor for 240 v ac us £1.95p plus 35 p postage.

£7.50p

TRANSFORMERS, $6-0-6 \mathrm{v} 100 \mathrm{ma}, 9-0975 \mathrm{ma}, 12-01250 \mathrm{ma} 75 \mathrm{p}$ each, $12-012100 \mathrm{ma} 95 \mathrm{p}$, 12v 500 ma 95p, $1: 1$ triac/xenon pulse transformers 30 p . CHOKES 6 MC 3 Amp 20 p . U.H.F TV Tuners, push button (not varicapl new and boxed $£ 2.50 \mathrm{p}$. Miniature toggle switches, SPST 8×5
$\times 745 \mathrm{p}$. DPDT $8 \times 7 \times 750 \mathrm{p}$. DPDT do $12 \times 11 \times 975 \mathrm{p}$. Min. push to make or push to break $16 \times 16 \mathrm{~mm} 15 \mathrm{p}$ each type. Stider switches, DPDT standard 15p. Min. 12p. Std. c/o 20p. Roller
001s
$\mathbf{~} 1.35$ p. Wall side cutters $\mathbf{5}^{\prime \prime}$ insulated handles $\mathbf{£ 1 . 3 5 p}$. Snub nosed pliers $5^{\prime \prime}$ insulated handies screwdrivers, fully insulated $8^{\prime \prime} \mathbf{4 4 p}$. Test lead jumper sets, 10 leads with insulated croc clips each end, ditterent colours B0p. Telephone pick up coil, suction type with 3.5 mm jack plug 50 p . 9 vol £245p. Edge connectors. 0.164 way 65 p. 34 way 4 op, 0.218 way 15 p. Murata MA401 KOKH2. Transducers Rec/Sender, $\mathbf{£ 3 . 2 5 p}$ pair. Tape head demagnetisers, 240 y ac with on/of TERMS hown, overseas post ai cost. VAT inclusive prices S. A.E. for lists

Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel: 051-236-0982

ITEs by texas							- Limear ica		. MC1495	${ }^{400 p}$	transistions	$8 \mathrm{FYS} 1 / 2$	22p		${ }^{78}$	${ }^{2} \mathbf{N} 38$		-aloges	日RTOEE	
7400		74116	200p	743681500	9302 175p	$4015 \quad 8{ }^{4}$	- Ar1.0212	${ }^{6000}$	-MC1496	${ }^{100 p}$	AC127/8 200	8FY56	33p	TIP42A	${ }^{70}$	- ${ }^{2 N 383868 / 4}$	90p	- ${ }^{\text {BY1 } 127 ~ 12 p ~}$	RECTIFIE	
7401	14 p	4118	1300	743900^{2009}	${ }^{9308} 3165$	4016	- AY\% -1313	${ }^{668}{ }^{\text {p }}$	-MC3340	${ }^{160 p}$	AD149 70p	8FF90	${ }^{9010}$	TIP42C	825	-2N3903/4	${ }_{208}^{180}$	*0447 9p	:14 50V	21,
7402	$14 p$	74119	210 p	${ }_{14393} \quad 200 \mathrm{p}$	$9310 \quad 2750$	4017 80p	-AY1-5050	212p	-MC3380	120 p	A0161/2 45p	8 8ı83	7009	TIP2905		2N3505/8		*0a81 15p	-1a loov	220
1403	14 p	74120	1100	74490 225p	9311 275p	$4018{ }^{89}$	-AY5-1315	${ }^{600} \mathrm{p}$	-mfC4000B	120 p	8C107/8 11p	8 8RY39	${ }^{45 p}$	-1119305	70	- 2 N4036	65p	-0a85 15p	-1A 400V	30p
7464	17p	74121	28 D	74 LS SERALSS	${ }^{9312}$ 160p	4019 45p	:AY5-1317	${ }^{636}$	MK50398	750 p	BC109 110	8S×19/20	20p	- IIS43	$3{ }^{34}$	-2N4058/9	12p	-0A90 90	- 2 A 50V	30\%
7405	18 p	74122	48 p		$9314 \quad 1655$	$4020 \quad 1000$	- AY5-1320	3200	- NE531	1309		-8U105	1908	- 7×108	12 p	-2N4060	120	$\because 0491$ 9p	-24 100V	35p
7406	32 p	74123	55p	74LS00 22p	$9316 \quad 2250$	4021 110p	-CA3019	80p	- Ne540	2009	- $\square_{\text {Cli49 10p }}$	-8U108	250p	- 2×300	130	:2N4081/2	180	- 0495 9p	- 28400 V	45p
7407	32p	74125	55p	74LS02 220	9322 1500	4022 100p	-ca3046	70 p	NE543K	2259		-8U205	220p	: 2×500	15	- $2 \mathrm{~N} 4123 / 4$	220	-04200 9p	-3A 200 V	60 p
1408	19 p	74126	60^{0}	744504 22p	$9368{ }^{\text {9 }}$	4023 22p	-CA3048	225p	NE555	309	-BC159 11p	- BU208	200p	-2Tx502	${ }^{18 p}$	- 2 N4125/8	${ }^{22 p}$	-0a202 10p	-3A 600w	12p
7409	19p	74128	75p	S098 220	$9370{ }^{200}$	4024 65p	CA3080E	72p	Ne556	700	- BCIE9C 12p	* Bu40s	145	- 2×504	30 p	${ }^{2} 2 \mathrm{~N} 4401 / 3$	278	:1N914 4p	-4a roov	950
7410	$15 p$	74132	75p	${ }^{741510}{ }^{24}{ }^{24}$	$9374 \quad 200 \mathrm{p}$	$4025 \quad 200$	- ca3099e	${ }^{2250}$	NE5618	4250	${ }^{8} \mathrm{BCL17}$ 12p	MJ481	1759	2N457A	${ }^{250}$	- $2 \mathrm{N4427}$	${ }_{500}^{90}$:1N916 70	-4A 400V	1000
7419	24 p	74136	75	$74.513{ }^{450}$	9601 100p	4026 130p	-ca3ogano	3750	NE5628	4250	$\mathrm{BC}^{\text {C177/8 }}$	M 4491	2000	${ }_{\text {2N696 }}$	$35 p$	-2N4871	${ }^{\text {b0p }}$	-1N4138 40	6450 V	90p
7412	20 p	74141	70p	74LS14 100p	9502 1750	402750 c	Ca3130S	100p	NE565	1300	. $\mathrm{BC179}$ 18p	M 22501	2250	2 N 897	25p	-2N5087	$27 p$	1N4001/2 $5 p$	6A 100 V	100p
7413	30 p	74142	200 p	741520 22p	9603 60p	$4028 \quad 848$	CA3140E	70p	NE566	1550		M. 12955	100p	$2 \mathrm{N698}$	450	- 2 N 5089	278	$1 \mathrm{~N} 4003 / 4{ }^{\text {3 }}$	64 400 V	1200
7414	60 p	74145	90 p	$7415222^{28 p}$		4079 100p	Ca3160E	100 p	- NE567	175p	${ }^{\text {BCC184 }}$	M.3001	225p	2 2N706A	20 D	${ }^{2} 2 \mathrm{N5172}$	270	1 N 4005 6p	10 A 400 V	200p
7746	27 p	74147	1900	741527 38 p 141530 22 p	ics	$\begin{array}{ll}4030 & 55 p \\ 4031 & 200 p\end{array}$	${ }^{\text {Kx209 }}$	$750 p$ 9250	- NE571	$4{ }_{4}^{4250}$		- MJE3340	${ }^{650}$	2N708A 2N918	${ }_{450}^{200}$	2 2N5179 2N5191	270		254400 V	400p
7417	23^{27}	${ }^{74148}$	${ }^{150}$	141530 741547 90	$\begin{array}{ll} \text { MC1488 } & 100 \mathrm{p} \\ \text { MC1489 } & 100 \mathrm{p} \end{array}$	$\begin{array}{ll}4031 & 200 p \\ 4033 & 180 p\end{array}$	$1 C 17106$ ICI 8038	9250 340	- RSM76003N	4000		MJE2955	1000 700	2N918 2N930	${ }_{18 p}^{45 p}$	2N5191 2N5194		1 1N5401/3 $14 p$		
7420	${ }^{17 p}$	74150	${ }^{100}{ }_{p}$	741555 ${ }^{7}$		4033 4034 2000 200	ICLB038	3400 360	-SN76013N	140p		-MPF102	740	$2 \mathrm{NT+131/2}$	${ }_{20 p}$	- 2 2N5245		$1 \mathrm{NS404/7} \mathrm{19p}$		
7422	22p	74153	${ }_{70 p} 7$	741573 50p	$\begin{array}{ll} 75107 & 160 \mathrm{p} \\ 75182 & 2300 \\ 75150 & 200 \end{array}$	4035 110	LM311	1909	-SN76013NO	120 p	$\begin{array}{ll}\text { 8C4777/8 } & 30 p\end{array}$	-MPF103/4	40^{5}	${ }_{2} \mathbf{N} 1613$	250	- 2 N 5298	55p	${ }^{-2}$ LEMERS	AIACS	
7423	34 p	74154	100 p	74L574 40p		4040 100p	LM318	2000	-SN76023N	1400	-8C516/7 50p	-MPF105/8	${ }^{40}{ }^{\text {p }}$	2N1711	250	-2N5401	50p	27v.33V		
7425	30p	74155	90p	741575 50p	$\left[\begin{array}{ll} 75450 & 1200 \\ 75451 / 2 & 720 \end{array}\right]$	$4041 \quad 80$	Lल324	70p	-SN78023N0	1200	-8C5478 16p	*MPSA06	30 D	2N2102	60 p	-2N5457/8	40 p	$400 \mathrm{~mW} \quad 9 \mathrm{~Pa}$	3A 300 y	60p
17426	$4{ }^{40}$	74156	90 p	741583 110p		4042	LM339	90p	-SNPE615	1759	-BC549C 180	-MPSA12	50 D	2N2160	1200	. 2 N5459	40 p	iw 15p	64.400 V	${ }_{70}$
7427	34_{p}	74157	70p	74 ts85 100p	75431/2 96p	$4043{ }^{400}$	(19348	${ }^{9} 950$	- T8a6al ${ }^{\text {S }}$	2250		-MPSA56	${ }_{69} 32$	${ }_{2} 2 \mathrm{~N} 2222{ }^{\text {a }}$	${ }_{200}$	- 2 N5485	440		64500 V	$8^{8 p}$
17428	36p	74159	${ }^{190}$	$\begin{array}{ll}7415890 & \\ 790 \\ 700\end{array}$	c.mos ics	4044 40960	- im330	1750 $99 p$	-tbagio	- ${ }^{220}$		-MPSU056	\% 680	2 N 2388 A	${ }_{16 p}$	- 2 N6027	44^{40}	CRYSTALS	84400 V	75p
7432	30 p	${ }_{71161}$	100 p	741593 90p		4047 100p	- Lm38ian	150 p	- tradio	100p	BCY71/2 22p	0 C 28	130 p	2 N 2484	300	2 N 6247	${ }^{1900}$	$100 \mathrm{kHz} 300_{p}$	9 Aa 500 V	950
7433	40 p	74182	1000	7415107 459		4048 55p	[IM389N	140 p	- Tba820	${ }^{9} 900$	B0131/2 ${ }^{50 \mathrm{D}}$	-C35	${ }^{130}$	2 N 2648	50 p	2 NB 254	130 p	$1 \mathrm{MHz}^{2} \quad 370$	12a 500 V	1050
7437	35 p	74183	1000	$7415112{ }^{1000}$	$\begin{array}{ll} 74 \mathrm{co4} & 23 p \\ 74 \mathrm{COB} & 27 p \end{array}$	4049 40p	LM709	35 p	- TCa940	1750	$80 Y 56$	- A 20088	200p	2N2904/5	250	$2 \mathrm{N6} 290$	65p	32768 Mht 350p	164400 V	
7438	35 p	74164	120p	$74{ }^{\text {c }} 123$ 75p	$\begin{array}{ll} 74 C 10 & 27 p \\ 74 C 14 & 90 p \end{array}$	4050	IM710	50	- \times a 206	609	BF200 320	R2010	2000	2 N 29068	24				184500 V	130p
7440	$17 p$	74165	100 p	${ }^{7415124} 180^{4}$		4051 ${ }^{405} 8$	[m733	${ }^{1000}$	XR2206 $\times \mathbf{R 2 2 0 1}$	${ }_{400 \mathrm{p}}$		-TIP29A	${ }_{5}^{400}$	${ }^{2 N} 2 \times 2928$ A	30 p	3 N128 3 N140	${ }_{100 p}$	WIRE WRap	,	
7443	12	74170	240 p	74151380^{60}	$\left\|\begin{array}{ll} 74 c 30 & 27 p \\ 74 C 32 & 36 p \end{array}\right\|$	$4055 \quad 125 p$	[m748	35p	X22240	400p	BF259 36p	-TIP30C	60	2N3054	$65 p$	3 N 204	1000	14 pIT 40p	15	
7444	112 p	74172	7200	$7415139 \mathrm{E0p}$	$\begin{array}{\|cc\|} 74 C 32 & 390 \\ 74 C 42 & 1100 \end{array}$	$4056 \quad 1350$	[M3900	70 p	- 2 N 14	${ }^{90 \mathrm{pap}}$	-BFR39 30p	tip31A	58 p	2N3055	48p	40290	250p	16 prn 55	50 V	40p
7445	100 p	74173	${ }^{120} \mathrm{p}$	7415151 100p	$\left\|\begin{array}{ll} 14 C 42 & 1100 \\ 14448 & 2500 \\ 74773 & 750 \end{array}\right\|$	4059600	LM3911	130p	2N424E	1350	-bFR40 30p	TIP3IC	62p	$2{ }^{\text {N }} 342$	140p	40360	40 D	24 pmin 80p	1 A 400V	${ }^{65 p}$
7446A	93 p	74174	93.	7415153 60p		4080115	[M4136	${ }^{120 p}$	2N425E	400p	- BRR41 30b	TiP32A	68p	2 23553	${ }^{240} \mathrm{p}$	40361/2	45p	$28 \mathrm{pin} \quad 100 \mathrm{p}$	TA B00	70p
7447A	70 p	74175	85p	7415157 600	$\begin{array}{cc} 14.488 & 250 p \\ 74 C 73 \\ 74 C 74 & 750 \\ 70 p \end{array}$	4063 1200	-mC1310p	1500	ZN10	200 p	$\because \mathrm{BFR79} 3$ 30p	TIP32C	820	- 2 N3565	30 p	40364	120p	$40 \mathrm{pin} \quad 120 \mathrm{p}$	84 600	140p
7448	8.9	74178	90 p	74LS158 120p	$\left\|\begin{array}{cc} 74 C 74 & 70 \mathrm{p} \\ 74 C 85 & 200 \mathrm{p} \\ 74 \mathrm{c} 86 & 65 \mathrm{p} \end{array}\right\|$	4066 55p	MC1458	55p	95490	00p	$\because \mathrm{BFABO}$	TIP33A	90 p	- 2 N3643/4		4.40408			12 A 400 V	
7450	17p	74177	-90p	7415161 100p		4068	voltage	ggulators				tip34A	1149 1150	- $2 \mathrm{~N} 3702 / 3$	12p	40410			16 A 100 V	800
7451	17 p	74178	${ }^{160 \mathrm{p}}$	7415162 140p	$\begin{array}{ll} 74 C 90 & 95 \mathrm{p} \\ 74 C 95 & 130 \mathrm{p} \end{array}$	4069	Fixed Plas	220			${ }_{\text {BFX }}^{\text {BFX } 29}$	IIP344	159p	- 2 N3 $3704 / 5$	12p	40411	300	PLEASE SEMO	18A	
7854 7460	17p	74182	200p	7415164 120p	74 C 150 250p 74 C15 1260	4072 22p	5V 7805	${ }^{90} \mathrm{p}_{\mathrm{p}}$	7905	115		T1P356	2900	- 2 N3708/9	12p	40595	$105 p$		${ }^{\text {B7 } 108}$	110 p
7470	35 p	741844	150p	74LS165 800		$4073 \quad 22 \mathrm{p}$	15 y 7815	90.p	7912	$115{ }^{\text {1 }}$	BEx88 30p	TIP36A	270p	$\sim^{2 N 3773}$	300 p	40603	\%		cra	45p
7472	30 p	74185	${ }^{150 p}$	7415173 1100	74 C157 250p	$4075 \quad 22 \mathrm{p}$	18 V 7818	${ }_{900}$	7918	1150		${ }_{\text {T1P36C }}$	340p	-2N3819	250	40673				
7473	34 p	74186	$700 p$	741S174 110p		40761070	24 V 7824	${ }^{90}$	7924	1150	BFY50 22p	IP914	65p		500			OUP MEW	2N5060	
7474	30 p	74190	100 p	74LS175 110p	$\left\lvert\, \begin{array}{ll} 74 C 160 & 155 p \\ 74 C 161 & 155 p \\ 74 C 162 & 155 p \end{array}\right.$	4080	100 mA to-9											AODA	2N5064	40%
${ }_{7476}$	36 p	7191	1009	${ }^{742} 19190100 \mathrm{p}$		4093 420	5V 78L05	35p	79105	${ }^{80} \mathrm{p}^{\text {p }}$	${ }_{2102}$ MEMARES 100 p	AY5.1013	450p	3205	320 p					
7480	350 50	${ }^{74192}$	100p	7415191 100p	74C164 120p 74C173 120p	4098 107p	12 V 78 l 12	${ }^{35 p}$	79112	${ }^{80 p}$	${ }_{2102-2}{ }^{2125 p}$	AY5-2	000p	3245	400p	Low P	E DIL	ckets by texas		
7481	1009	74194	100p	7415192 140p		4411 1050p	CTHEC 7	35 p	9 cts	dep	$21078 \quad 600 \mathrm{p}$	SN74S262			390p	8 pir	11 p	18 pin $25 p$	24 pin	
7482	84 p	74195	95p	74 S193		$4502 \quad 120 \mathrm{p}$	OTMER REG	1350			2111-2 315	TMse011	450p	4289 4801	9700	14 pin	12p	20 pin		
${ }_{7484} 7483$	${ }^{900}{ }^{\text {p }}$	74196	95	${ }_{7415196}$		4503 70	LM317T	200p	T1430	${ }^{1200}$	$\begin{array}{ll}2112.2 & 300 p \\ 2144 & 1500 p\end{array}$	EPROMS		48820	600p	16 pin	p	22 pin 30p	40 pim	51%
748	110 p	74198	150p	7415221 100p	74C192 150p 74C193 150p	4510 99p	LM323K	625p	78 HOSKC	$675 p$	5:01 510p	1702A	500p	6850	100p					
7496	34 p	7499	150p	7415240245	74C194 220p	$4511 \quad 150$	LM 723	37p		135p	$8810 \quad 4000$	2708	900p	8205	225	vousy				
${ }_{74909} 74$	2100	74221	160 p	7415241 245		4514	OPTO-ELECT	TROMICS			R0M/PROMs	${ }_{4} 2702$	${ }_{30000}$	8212 8216	2250			isule. complete kit F 4		
7491	${ }_{80 \mathrm{p}}$	74259	250p	7415243 245p	$74 \mathrm{Cz21} 175 \mathrm{p}$	4518 100	OCP71 13	5p			7451888			8224	400 p	963641		CB 55		
7492A	46 p	74265	90p	7415245300 p		$4520 \quad 1000$	0.125^{*}	LEDs 0			$74 \mathrm{S287}$ 400p	404		${ }^{8228}$	575p	1021)	Powe	nSi 160p.		
7493A	$33 p$	74278	290p	7415251 2000°	4000 St ${ }^{\text {Sp }}$	$4528 \quad 1000$	T1.32 1.9	750	TIIL220 Red	${ }^{168}$			$6{ }^{\circ}$	8251						
${ }_{7} 74994$ A	${ }^{84}{ }^{8}$	74279 74283	${ }^{140 \mathrm{p}}$	7415257 1209	$\begin{array}{ll}4001 \\ 4002 & 17 p \\ 17 p\end{array}$	$\begin{array}{ll}4543 & 1800 \\ 4553 & 4500 \\ 400\end{array}$	Til209 Red	13 p 20 p	IIL222 Gr TH228 Red	${ }^{18 p}$	${ }_{93436} \quad 650 \mathrm{p}$	6502 6800	1200 900 					at 8\% exce		
7496	$65 p$	74284	${ }_{4069}$	7415298 249p	4006 4007 15p 400 180	$4560 \quad 250$	T1L212 $\mathrm{Ye}^{\text {che }}$	25p	MV5491 TS	1209	$93448 \quad 65$	80804	600 p	9906	275p					
7497	7800	74285	${ }^{400}$	7415373 2009		4584	T12.216 hed 180 Clips 3p				Please Add 25p p\&p \& var									
74100	${ }^{1300}$	${ }^{74290}$	${ }_{1} 150 \mathrm{p}$	7415374 ${ }^{\text {81595 }}$	$4008 \quad 80 \mathrm{p}$	${ }^{4584} 40$	DISPLAYS FND357 120p													
${ }^{74104} 7$	${ }_{65 p}^{65}$	74294	${ }_{200 \mathrm{p}}^{150}$	${ }^{81596} 160{ }^{\text {8 }}$		40014 40085 4000 200	30155	${ }^{200} \mathrm{p}$	fNDS 00	120 p	Govt Colleges, etc. Orders accepted									
74107	349	74298	200p	811597160 p	4011 17p	40097900	${ }^{0.707}$ Red	${ }^{140 \mathrm{p}}$	FNOS07	120	Welcome ${ }^{\text {Caliers }}$ Saturday 10.30-4.30				17 BURNLEY ROAD, LONDON NW10					
74109	55 p	7436	150p	8 csseg 160	$\begin{array}{ll} 4012 & 18 p \\ 4013 & 50 p \end{array}$	$\begin{aligned} & 14433 \text { f11 } \\ & \text { SHIF AEG } \end{aligned}$	707 GI	140 p	IIL312/3	110										
74110	55	${ }^{74366}$	${ }_{1} 150 \mathrm{p}$				01747 Red	225p	Til321/2	130 p						452		-	280	
411	70 p	7436	150	9301 160p	4014 840	AM2833 ${ }^{\text {400 p }}$	7476	225p	Tll330	1400	2 mins 00 Llis HiL		Car P							

INDEX TO ADVERTISERS

Fotherby, Willis Electronics Ltd....

0	117
Gemini Electronics.	1096
George, Brian Engineer	1104
Goddards Components	1112
Greenweld Electronics	1

Harversons..C.S. Intertext1106, 1117
I.L.P. Electronics 1107
J.W.B. Radio 1116
K. \& A. Distributors. 1108
Lion House. 1111
Mantec Ltd 1119
Maplin Electronic Supplies cover iv
MHEL Electronics 1115
Micron R/C. 118
Mill Hill Supplies 1040
Minikits Electronics. 1118
Modern Book Co 1104Moulded Electronics Components Int. Ltd 1112
O.K. Machine \& Took (UK) Ltd 1048Odik Electronics1118
P.K.G. Electronics 1117
Personal Safety 1118
PhonosonicPowell T.
1046.
.. 1092

Sandwell Plant.. 1116
Saxon Entertainments 1038, 1039
Scientific Wire Co 1118
Sentinel Supply 1039
Service Trading........... 1091
Sintel Ltd 1117
Special Products Distributors Ltd
Special Products Distributors Ltd 1108
Sugden A R 1108
1092
Swanley Flectronic 1104
Technomatic Ltd 1120
Teleplay (Logic Leisure) cover ii
Tempus 1096
T.K. Electronics 1039
Trampus Electronics 1042
Trent Electronics 1118
T.U.A.C 1105
Vero Electronics. 1036
Videotime Products 1118
Williams, Michael Electronics 1037
Williamson Amplification 1117
Wilmslow Audio

RELAYS ${ }_{\text {chen }}^{\text {SIEMENS, Plessey, }}$ MINATURE RELAYS	VARIABLE VOLTAGE TRAWSFOBMERS	GEARED MOTORS +00 1 D. singl power Coninnuously motor gearbo \qquad \qquad
FT3		
		GEARED MOTORS
WHY PAY MORE?	LT TRANSFORMERS	 Crouzer $230 / 240 \mathrm{~V}$ AC 2 2RPM synchronous geared motor Brand new $\mathbf{f 2} 90$ p\&p 30 p (f 345 (ncl VAT) Qquantity discoun available. .90 pap 30p. (E3 45 incl VAT) \{quantity discoun
		FRACMO GEARED MOTOR
METERS (New) - 90 mm DIAMETER A.C. Amp. Type 62T2 0-1A 0-5A 0-15A. 0-20A Alypes £3.50 ea. +P \& P 50 (($£ 4.32$ incl VAT), excep $0-100 A$. D. C price $£ 5.00+50$ P \& \& P (55.94 inc) VAT)		
		parvalux geared motor n.m.s
NEW HEAVY DUTY SOLENOID. mt9为 EXLT. $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$	HY-LIGHT STROBE KIT MK IV 	
		PARVALUX 230/250V a.c. MOTOR 500 rprr. 3 lbs inch 2 right angled spindles $\mathbf{£ 1 1 0 0} \mathrm{p}$ f 100 (f1296 inc Vat \& P) nms.
Sat		
	WIDE RANGE OF DISCO LIGHTING EQUIPMENT SAE (toolscap) fol detatls	programme timers actan n.m.s.
	Superior Quality Precision Made NEW POWER RHEOSTATS	
		Time Switch 30 amp contact 2 ande swulch $200 / 250 \mathrm{~V}$ a c manually pre-set lime 36 hour Spring Reserve iricity Board specification Price $£ 7.75$ $\rho \& P$ P 75 ($\mathbf{£ 9 . 1 8}$). \& \& T
24 VOLT DC SOLENOIDS 	RESET COUNTER P.) 7 Fg 24 V d.c. non set $£ 1.50$. P \& P 25 p f. P. \& \& P. 25 p (f3.51 inc VAT \& P.)	SANGAMO WESTON TIME SWITCH R. \& T
VORTEX BLOWER AND VACUUM UNIT closed gin rotor with max air \qquad \qquad \qquad \qquad \qquad \qquad cospatch Pice §12. 		FRACMO MOTOR
	230 V a.c. FAN ASSEMBLY 	
		ROTARY VACUUM AIR COMPRESSOR \& PUMP and compressor. Approx. 20 inch Powered by 110 V a \qquad
CENTRIFUGAL BLOWER Smith type FFB $10 \times 4 \frac{1}{2} \mathrm{~cm}$ overall size $16 \times 14 \mathrm{~cm}$. Price $\mathbf{8 3} 75 \mathrm{p}$ \& 75 p IInc. VAT £486). Other		Yet another outstanding offer New IMFD 600V Dubilier wire enned canacior L. 50 p\&p 50p. 2 inc var \& p\&ipl iMin 10
INSULATION TESTERS N	AT CURRENT RATE MUST BE ADDED TO ALL ORDERS FOR. THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS otherwise stated SERVICE TRADINGGO. ACCOUNT CUSTOMERS MIN. ORDER £ 10.00	
All Mail Orders-Callers-Ample Parking Dept. PE, 57 BRIDGMAN ROAD CHISWICK, LONDON W4 5BB Phone 01-995 1560 Showroom open Mon.-Fri.		9 LITTLE NEWPORT STREET LONDON WC2H 7JJ Phone 01-437 0576

everything for the modern D.I.Y. electronics enthusiast and more.

100W RMS STEREO DISCO
A genuine 100 W RMS per channel (both channels

LOW-DISTORTION AUDIO OSCILLATOR The very low distortion sine wave ($<0.01 \%$) outpu
suitable for testing very high qually hi-fi audio equipment. Also includes square wave output. Range
20 Hz 10 26 kHz . Output OV to 1 V in three continuously
variable steps. Total cost variable steps. Total cost
around $\mathbf{~} \mathbf{2 1}$. Full construction details in our catalogue. Send the All prices include V.A. and p \& p l

PEDAL UNIT
A completely selt-contained pedal unit. 13 -note. 2 -Octave range. 4 organ stops It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue - post the coupon below now!

'PE' STRING ENSEMBLE
Unbeatable prices and finest quality components only when you buy from Maptin, All parts available to build this fascinating project. Component schedule available shortly (s.a.e.e appreciated). Demonstration model in our shop soon Phone now and compare our prices.

Look inside for our 4 page special pull out ${ }_{\star}^{\star}$ \star featuring the New ${ }_{\star}{ }_{\star} 79-80$ catalogue

SYNTHESISER
The International $\mathbf{4 6 0 0}$ Synthesiser. A very comprehensive unit. Over 400 sold We stock all the parts costing less than $£ 500$ including fully punched and printed metalwork and a smart teak cabinet. Far less than half what you'c pay for a ready made synthesiser of equal quality. Specification on request. Full construction details in our construction book $£ 1.50$. (All prices include V.A.T. and p \&)

MAPLIN ELECTRONIC SUPPLIES

P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR Telephone: Southend (0702) 715155

POST THIS COUPON NOW FOR YOUR CORY OF OUR 1977 CATALOGUE PRICE 60p

Ploase rush me a copy of your 216 page catalogue I enclose $\sigma \square p$, but understand that if i am not completely satisfied I may return the catalogue to you within 14 days and have my EDp refunded immediately.

[^0]: c) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden. All reasonable precautions are taken by PRACTICAL ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

[^1]: Motorola, 1 WATT AUDIO AMPLIFIER I.C. 9.16 V 8-16 $\Omega, 10-400 \mathrm{MV}$ sensitivity, S

 BARGAIN PACKS

 Donit let your erviranment dehydrote you. Buy a Honeywell Humidity Cantroller membrone operated with $\frac{1}{2}^{\prime \prime}$ shaft, deal for greenhouses. centrally heoted homes, etc. Build your own humidity olarm, 3.75 A . Contacts at 250 V \$1.50 each. 3 for $£ 4.00$
 4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for signal injectors, etc. \&1.00.
 100 miniature reed switches ideol
 burglar alarms, model roilwoys, etc. $£ 3.30$. burglar alarms, model railwoys, etc. $£ 3.30$.
 6×6-pole 12 volt reed relays on board 6×6 -
 £2.45
 High quality computer panels smothered in top grade components: 5 tbs $£ 4.75$; 10 lbs $£ 8.95$. Minioture edgewise panel mounting level melers 200 va. fsd 90p
 Miniature tronsistorised F .m. front end with integral tuning gong $88-108 \mathrm{MHz} £ 2.50$. New U.H.F. transistor TV tuners

 Rotary
 $\mathbf{~} 2.50$.
 £2.50
 Aluminium TV caax plugs. 10 for $£ 1.00$
 Hardware Packs each containing 100's of items including: $8 A$ nuts and balts, Nylon, Selftapping, Posidrive, "P" clips, Cable clamps,
 Fuse hotders Spire nuts etc. etc. $£ 1.00$ pes pound. Heavily insulated E.H.T. Discharging Probe with lead and earth connector 60p ea Ultrasonic transducers, transmitter and ceiver 14 mm diam. $40 \mathrm{kcs} £ 4.25$ per pair Magnetic earpieces with plug and lead 25 p each. 5 for $\$ 1.00$
 Crystal eorpieces with lead 40 p each. 3 for
 §1. 00 .
 0 assorted convergence pots £1
 12 quil, low profile I.C. sockets, 14 pin $£ 1$
 DE LUXE FIBRE GLASS
 DE LUXE FIBRE GLASS
 PRINTED CIRCUIT ETCHING KITS
 Includes 150 sq. ins. copper clod $\mathrm{f/g}$ boord
 lb ferric chloride, 1 dolo etch resist pen,
 obrasive cleaner, 2 mini dril
 instructions-only $£ 5.30$.
 150 sq. in. fibre gloss boord.
 150 sq. in. fibre gloss boord....
 Dolo pen.
 Dolo pen.
 1 lb ferric chloride to mil spec
 5 lbs ferric chlorid
 $40 p$ P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH
 ORDER TO SENTINEL SUPPLY, DEPT PE, 149A BROOKMILL RD., DEPTFORD SE8

[^2]: Discount HI-FI etc. at 5 Swan Street and 10 Swan Street
 Tel.: Wilmslow 29599 for Speakers
 Tel. : Wilmslow 26213 for Hi-Fi

[^3]: D. A. Seddon,

 Widnes
 Cheshire.

[^4]: Open daily to callers: Mon.-Fri. 9 a.m. -5 p.m. Valves. Tubes and Transistors. Closed Saturday Terms C.W.O. only. Tel. 01-677 2424-7
 Quotations for any types not listed S.A.E.
 Post and Packing 25p per order $+8 \%$ V.A.T. Items marked * $12 \frac{1}{1} \%$

[^5]: National Technics. NAD. Nakamichı, JVC, Autofon, Philips. Quad, Revox, Sansui, Sennheıser, Shure, SME. Sony, Sharp. Superscope, Tannoy, Teac, Thorens, Transcriptor, Yamaha, etc

