TRANSISTORISED
ELECTRONIC
BRAKEMETER

...... tests braking
ability of your car

Other Projects...
* ELECTRIC FENCER UNIT * THE HARMONAPHONE
ILLUSTRATED

THE PEAK OF EFFICIENCY!

WIDELY USED BY INDUSTRY &
THE DISCERNING ENTHUSIAST FOR RADIO,
T.V. & PRINTED CIRCUIT WORK

FROM YOUR LOCAL DEALER
OR SEND DIRECT TO:
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON. S.W.4.
TELEPHONE 01-622-0291

Send coupon for latest leaflet
Name
Address
P.E.159.
NEWS FLASH

LASKY'S GREAT 36TH YEAR AUDIO-TRONICS PICTORIAL OUT NOW!
This year we celebrate our 36th anniversary by bringing to you this great new issue of our "AUDIO-TRONICS PICTORIAL" NOW 16 colour pages in large 16" x 11" format, simply packed with 1,000's of items from our vast stocks of EVERYTHING for the Radio and Electronics Hobbyist, Hi-Fi Enthusiast, Service-man and Radio Ham. Plus 100's of Lasky's exclusive SPECIAL PRICE Bargains.

All items are available by Mail Order or from any of our branches.

FREE JUST SEND YOUR NAME AND ADDRESS AND 1/ for POST ONLY.

SPECIAL INTEREST ITEMS!

MIDLAND Model 10-502 VHF AIRCRAFT BAND CONVERTER

An entirely new item for the radio enthusiast bringing instant reception of the ground-to-air, air-to-ground waveband. For use with any standard AM or FM radio covering 635 to 1,606 kc/s, 88 to 108Mc/s respectively—with no electrical conversion or connection required. The Model 10-502 (self powered by one 9V (F27 type) battery) is merely placed close to the receiving set and then tuned over 110 to 150Mc/s which covers the whole aircraft communications band. Volume and reception effectiveness is adjusted by moving both sets to the most favourable position and balancing the volume controls of each accordingly.

The Model 10-502 has a smartly designed black plastic cabinet with brushed metal front panel and chrome chrome telescopic antenna, size only 4½ x 2½ inches (inc. knobs). Complete with battery and full instructions.

Lasky's Price £79.6 Post 3/6

SPECIAL TRANSCRIPTION MOTOR OFFER – FAMOUS CONSTRUCTORS BARGAINS

LASKY'S ENCAPSULATED SOLID STATE MODULES

8 completely new special function circuit modules. Eight modules of each type 21 x 11 x 1½. Ready for immediate use—just connect to power source (usually 9V batt.), input and output. Encapsulated modules are shockproof and almost indestructible. Comp. with full leads. Post 1½ each.

CONSTRUCTORS BARGAINS

CLEAR PLASTIC PANEL METERS

Precision made in Japan by TTC. Each meter boxed and packed in its own plastic case. Size only 4½ x 1½ x 1/4. For use with any electronic circuit. 5 types of meters available. 5 types of meters available. 5 types of meters available.

HIGH FIDELITY AUDIO CENTRES

207 EDGWARE ROAD, LONDON, W.2 Tel.: 01-723 3271

Open all day Saturday, early closing 1 p.m. Thursday.

33 TOTTENHAM CT. RD., LONDON, W.1 Tel.: 01-650 2605

Open Monday to Saturday, early closing 1 p.m. Thursday.

152/3 FLEET STRE, LONDON, E.C.4 Tel.: FLEet St. 2833

Open all day Saturday, early closing 1 p.m. Tuesday.

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL ST., TOWER HAMLETS, LONDON, E.1 Tel.: 01-790 4821

SPECIAL INTEREST ITEM JUST ARRIVED

TTTC Model A.1009 AM TUNER ADAPTOR PACK FOR CASSETTE RECORDERS

An amazingly ingenious AM Tuner that looks like and is exactly the same size as a standard tape cassette—brings instant tape cassette recorder/player instantly into a radio! The tuner pack is a completely self-contained unit with built-in ferrite rod aerial, power source (small battery). Ready type 12V3 giving approx. 150 hr operation. All you do is take out the tape cassette and slip in the tuner. Under £50. Fully guaranteed. Complete with instructions and service data.

Lasky's Price £39.15.0 Carriage and Packing 12/6
If you're between 17 and 30 it's wide open to you. Army life's varied enough to make every day full of interest. Look into it. If you're between 17 and 30 it's wide open to you.
NEW ADASTRA "DOUBLE 5" STEREO AMPLIFIER.

NEW STEREO/MONO HEADPHONES 3947: Self rubber earpieces with adjustable switch for mono/stereo listening. Individual volume controls. Only 1 per a e.

CALL IN AT OUR NEW —

LIND-AIR (OPTRONICS) LTD

18 Tottenham Court Road, London, W.1. Tel. 01-580 2255
25 Tottenham Court Road, London, W.1. Tel. 01-580 7679
53 Tottenham Court Road, London, W.1. Tel. 01-580 4534
Open 9-6 p.m. Monday to Saturday, Thursday until 7 p.m.

LIND-AIR (OPTRONICS) LTD

18 Tottenham Court Road, London, W.1

All MAIL ORDERS
To Dept. PE269

18 Tottenham Court Road, London, W.1

- Hi-Fi DEMONSTRATION ROOM
- RECORDING SCIENCE CENTRE — wonderful selection of Microscopes. Enquiries. Tel. 01-580 4534

At 18 Tottenham Court Road, W.1

LIND-AIR (OPTRONICS) LTD

18 Tottenham Court Road, London, W.1

- Hi-Fi DEMONSTRATION ROOM
- RECORDING SCIENCE CENTRE — wonderful selection of Microscopes. Enquiries. Tel. 01-580 4534

At 18 Tottenham Court Road, W.1

SOLDERSMITH 12-18

"ADASTRA" 80-200 RUBBER HEADPHONES

Look What's New from HEATHKIT

Low-cost FM Stereo Receiver, AR-17
Kit K/AR-17
£39.0.0
P.P. 10-6
Cabinet walnut or teak finish £3.10.0 extra

28 transistor, 7 diode circuit, 14 watts music power, 10 watts r.m.s. from 25–35,000Hz at 1dB. Automatic stereo indicator light. Adjustable phase control. Complete front panel controls. Flywheel tuning. Factory assembled and aligned FM front-end. Circuit board assembly. Compact 10⅛" deep x 3" high x 12" wide. Use free standing with Heathkit cabinet optional extra.

Quality FM Stereo Receiver, AR-14
Kit K/AR-14
£54.0.0
P.P. 13/6
Cabinet walnut or teak finish £4.10.0 extra

31 transistor, 10 diode circuit can deliver 1dB, 15 to 50,000Hz at 10 watts per channel (20 watts total) 15 watts per channel 1HF music power (30 watts total). Wide-band FM/FM stereo tuner plus two preamps, two power amplifiers. Compact only 3½" high x 15⅞" wide x 12" deep. Install in a wall, free standing or in Heathkit cabinet optional extra.

Low-cost FM Mono Receiver, AR-27
Kit K/AR-27
£22.10.0
P.P. 10/6
Cabinet walnut veneered £3.10.0 extra

13 transistor, 6 diode circuit, 7 watts music power. 0–1dB, 25 to 60,000Hz at 6 watts. Input connectors for phono and aux. Complete front panel controls. Flywheel tuning, factory pre-aligned FM tuner. Circuit board assembly. Compact bookshelf size. Install in a wall, free standing or in cabinet optional extra.

Solid-State Volt-ohm-Milliammeter, IM-25
Kit K/IM-25
£48.10.0
P.P. 10/6

9 a.c. and 9 d.c. ranges 150mV up to 1,500V f.s. 7 resistance ranges, 10 ohms centre scale with multipliers x1, x10, x100, x1k, x10k, x100k and x1Meg.... measures from 1 ohm to 1,000Mohms. 11 current ranges from 15µA full scale to 1.5A full scale. 11Mohm input impedance d.c. 10Mohm input impedance a.c. 6" 200µA meter. Internal battery power or 120/240V a.c. 50Hz supply. PCB construction.

Solid-State Volt-ohm Meter, IM-16
Kit K/IM-16
£28.8.0
P.P. 10/6

8 a.c. and 8 d.c. ranges 0–5V to 1,500V f.s. 7 ohmmeter ranges with 10 ohms centre scale with multipliers x1, x10, x100, x1k, x10k, x100k and x1Meg.... 11Mohm input on d.c., 1Mohm on a.c. Internal battery power or 120/240V a.c. 50Hz supply.

Solid-State Low Voltage Power Supply, IP-27
Kit K/IP-27
£46.12.0
P.P. 10/6

0-5 to 50V d.c. with better than ±15 Millivolts regulation. Four current ranges 50mA; 150mA, 500mA, and 1-5 amperes. Adjustable current limiter: 30 to 100% all ranges. Panel meter for output voltage or current.

PLEASE USE COUPON ON RIGHT FOR FREE CATALOGUE
Build Your Own HEATHKIT Electronics!

STEREO RECORD PLAYER, SRP-1
Two built-in speakers
Suitcase portability
Kit £28.6.0 P.P. 10/6

CAR RADIO, CR-1
High performance at low cost.
12 v pos. or 12 v neg. operation.
4 watts output
Kit (incl. spkr.) £14.12.0 P.P. 4/6

STEREO TAPE RECORDER, STR-1
Built-in speakers. Many features unobtainable elsewhere at this price
Kit £58.0.0 P.P. 10/6

MANY OTHER INSTRUMENTS FOR TEST AND SERVICE IN RANGE

BERKELEY
Slim-line SPEAKER SYSTEM
Kit £21.4.0 P.P. 13/6

See these and many more in the Latest CATALOGUE . . . it’s FREE

MANY SHORTWAVE RECEIVERS including:

4-BAND RECEIVER, GR-64E
Cover 1 MH/2 to 30 MH/2 plus 550 kHz to 1620 kHz AM broadcast band.
Built-in speaker. Handsome low-boy styling.
Kit £22.8.0 P.P. 9/-

PORTABLE RADIO UXR-1
Kit coloured case
£12.8.0 P.P. 4/6
Kit leather case
£13.8.0 P.P. 4/6

PORTABLE RADIO UXR-2
In black or natural leather
Kit £15.10.0 P.P. 6/-

SEE HEATHKIT MODELS

in LONDON
233 Tottenham Court Road

BIRMINGHAM
17-18 St. Martin’s House, BULL RING

GLOUCESTER
Factory and Showroom:
Bristol Road, GLOUCESTER

DAYSTROM LTD.
Dept. P.E.2
GLOUCESTER. Tel. 29451

Please send me FREE CATALOGUE □ Tick
NAME ________________________________
ADDRESS ________________________________

Prices and specifications subject to change without notice
Take your Wellerchoice

LOW INITIAL COST

Marksman irons to cover all your soldering needs. 25W, 40W, 80W, 120W, 175W. Nickel-plated factory pre-tinned tips in stainless steel shanks.

INSTANT HEAT FOR RAPID SOLDERING

THE tool for intermittent work such as servicing. Working heat in a few seconds. The job is done in less time than it takes a normal iron to heat up. Expert dual-heat and Heavy Duty models.

TEMPERATURE CONTROL FOR RELIABILITY

For sophisticated production line soldering or to replace several conventional irons. No dry joints. Control of temperature without inhibiting performance. Mains or low voltage.

Send for full information

Weller Electric Limited
Redkiln Way, Horsham, Sussex Tel: 0403. 61747

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid reflectors.

BCC - ITV AERIALS

BBC (Band 1), Telescopic loft, 30/-, External S/D, 80/-, "3", 85/-.

ITV (Band 2), 3 element loft array, 30/-. 5 element, 46/-. 7 element, 56/-. Wall mounting, 3 elements, 47/6, 5 element, 59/.

Combined BBC/ITV, Loft, 1+5, 46/; 1+5, 59/; 1+7, 60/-. Wall mounting, 1+3, 57/6, 1+4, 67/6; Chimney 1+3, 67/6, 1+5, 70/.

YHF transistor pre-amps, 59/.

COMBINED BCC-ITV—BBC2 AERIALS

1+3, 9/-; 1+4, 9/-; 1+5, 9/-; 1+6, 14/-; 1+7, 14/-.

Loft mounting only. Special leaflet available.

CALLERS WELCOME

OPEN ALL DAY SATURDAY

K.V.A. ELECTRONICS (Dept. P.E.)
27 Central Parade, New Addington
Surrey—CRO-018
Lodge Hill 2244

IT'S A MUST

OUR CATALOGUE JOIN THE THOUSANDS
OF SATISFIED CUSTOMERS SEND NOW FOR

OUR NEW 1968/69 illustrated catalogue now available
(send 2/- in stamps for your copy)

ALPHA RADIO SUPPLY CO

103 Leeds Terrace, Leeds 7. Tel. 25187
BIPRE-PAK

TRY OUR "X" PAKS FOR UNQUALLED VALUE

XA PAK
Germanium PNP type transistors, equivalents to a large part of the OC range, i.e. 44, 45, 71, 72, 81, etc.

XB PAK
Silicon TO-18 CAN type transistors NPN/PNP mixed lots, with equivalents to OC200-1, 2N706a, BSy27/29, BSy59a.

XC PAK
Silicon diode miniature glass types, finished black with polarity marked, equivalents to OA200, OA205, BAY31-29 and DK10, etc.

ALL THE ABOVE UNTESTED PACKS HAVE AN AVERAGE OF 75% OR MORE GOOD SEMICONDUCTORS. FREE PACKS SUSPENDED WITH THESE ORDERS. ORDERS MUST NOT BE LESS THAN THE MINIMUM QUANTITIES QUOTED PER PACK.

FREE PAGIEN AND LISTS

PRE-PAK LTD
DEPT. A, 222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX
TELEPHONE: SOUTHEND (0702) 46344

NEW UNMARKED UNTESTED PAKS

<table>
<thead>
<tr>
<th>Price</th>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 BSY59A</td>
<td>NPN Silicon</td>
</tr>
<tr>
<td>10 OC45-OC81 Mull. Glass PNP</td>
<td></td>
</tr>
<tr>
<td>25 BY26.27 NPN Silicon</td>
<td></td>
</tr>
<tr>
<td>10 2N3907 Wall Silicon All Voltages</td>
<td></td>
</tr>
<tr>
<td>25 BSF50-1.2 NPN Silicon</td>
<td></td>
</tr>
<tr>
<td>25 BC977-9 NPN Silicon</td>
<td></td>
</tr>
<tr>
<td>40 1NO4-6 OA200/202 Sub. Min. Silicon</td>
<td></td>
</tr>
<tr>
<td>150 Min. Germ. High Quality DIODES</td>
<td></td>
</tr>
<tr>
<td>25 2N706 A NPN Silicon</td>
<td></td>
</tr>
</tbody>
</table>

PRE-PAK N 605 POWER TRANSISTOR EQUIVALENT TO NK7301-2-34

COMPLIMENTARY SET RPNI/PNP GERM. TRANS.

FREE CATALOGUE AND LISTS FOR:

- ZENER DIODES
- TRANSISTORS, RECTIFIERS
- FULL PRE-PAK LISTS & SUBSTITUTION CHART

MINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

THERE IS ONLY ONE BI-PRE-PAK LTD BEWARE OF IMITATIONS

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS

FULLY TESTED AND MARKED

AC107 2/- OC170 3/-
AC126 2/- OC171 4/-
AC127 2/- OC200 5/-
AC128 2/- OC201 6/-
AC171 3/- 2G301 7/-
AF114 4/- 2G302 8/-
AF115 3/- 2N707 9/-
AF116 3/- 2N1302-3 10/-
AF117 3/- 2N1304-5 11/-
AF118 3/- 2N306-7 12/-
AF119 3/- 2N308-9 13/-
AF186 10/- 2N3844A 14/-
AF139 10/- Power
BKY50 4/- Transistors
BSY20 7/- OC90 15/-
BSY24 3/- OC23 16/-
BSY27 3/- OC25 17/-
BSY28 3/- OC26 18/-
BSY29 3/- OC18 19/-
BSY95A 3/- OC35 20/-
OC14 1/- OC14 21/-
OC43 1/- OC14 22/-
OC45 1/- OC14 23/-
OC72 2/- Diodes
OC73 3/- OA36 2/-
OC81 2/- OA70 2/-
OC81D 2/- OA70 2/-
OC83 4/- OA81 2/-
OC136 4/- OA71 2/-
OC140 3/- 2N194 1/-

FREE PACKS OF YOUR OWN CHOICE UP TO THE VALUE OF 10/- WITH ORDERS OVER £4

TRANSISTORS ONLY 1/- EACH

SILICON • PLANAR • N.P.N. • P.N.P

All these types available

2N4929 2N706 2S131 2S103 2N696 2N1613 2S733 BFY10
2S601 2N706A 2S1512 2S104 2N697 2N1711 2N726 2S731
BC108 2N3011 2S1502 2N2220 2N1507 2N1893 2N2484 2S732

All tested and guaranteed for gain and leakage—unmarked. Manufacturers' fall outs from the new PRE-PAK range.

SPECIAL OFFER

Stock clearance of Manufacturers' Rejects. Limited Number. UHF/VHF Tuner Units, consisting of AF186, 2 AF178, Tuning Condensers, Coils and Components. Price 10/- each. Post & packing U.K. 2/6d.

FREE! A WRITTEN GUARANTEE WITH ALL OUR SEMICONDUCTORS

BI-PRE-PAK LIMITED

EM TELEPHONE: SOUTHEND (0702) 46344

PRE-PAK LTD

Selection from our lists

<table>
<thead>
<tr>
<th>Price</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/-</td>
<td>B1</td>
</tr>
<tr>
<td>10/-</td>
<td>B2</td>
</tr>
<tr>
<td>10/-</td>
<td>B6</td>
</tr>
<tr>
<td>10/-</td>
<td>B74</td>
</tr>
<tr>
<td>10/-</td>
<td>B75</td>
</tr>
<tr>
<td>15/-</td>
<td>C2</td>
</tr>
<tr>
<td>15/-</td>
<td>C35</td>
</tr>
<tr>
<td>20/-</td>
<td>A1</td>
</tr>
<tr>
<td>20/-</td>
<td>A21</td>
</tr>
</tbody>
</table>

BRAND NEW PAK • JUST RELEASED

REPLACES OUR VERY POPULAR B.39 PAK. SHORT LEAD COMPONENTS ALL FACTORY MARKED AND MOUNTED ON PRINTED CIRCUIT PANELS.

60 TRANSISTORS & DIODES ALL 50 HIGH TOLERANCE RESISTORS 20 VARIOUS CAPACITORS FOR PLEASE STATE WHEN ORDERING PAK P.I. 2/- & P. P. WITH THIS PAK.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any 0-1mA meter into a linear and accurate rev. counter for any car. State 4 or 6 cylinder. 20/-each

FREE CATALOGUE AND LISTS for:

- ZENER DIODES
- TRANSISTORS, RECTIFIERS
- FULL PRE-PAK LISTS & SUBSTITUTION CHART
SINCLAIR Q.14

World's smallest radio receiver

The most challenging hi-fi speaker development in years

It is more than a matter of saving money when you choose the Q.14. This is the loudspeaker that delights experts and critics alike for its fine forward quality, its clarity and exceptional adaptability. Designed on original lines and from unusual materials, the Q.14 will carry up to 14 watts and has very smooth response from 60 to 16,000Hz. Size—9in square × 41in deep, with matt black finish and solid aluminium bar embellishment. Input impedance—8 ohms. A pair used with Z.10s or Z.12s and the Stereo 25 will give you superb high fidelity to stand comparison with far costlier equipment. Try the Q.14 in your own home. If it does not delight you, send it back and your money including cost of postage will be refunded in full.

£7.19.6

SINCLAIR Z.12

12 watt hi-fi amplifier/pre-amp

This eight transistor amplifier is the most successful of its kind ever designed and is easily adapted to a wide variety of applications. The Z.12 is supplied ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the Z.12 to your precise requirements. Two may be used for stereo. Size—3in × 2½in × 1½in. Class B Ultralinear Output: Frequency response from 15 to 50,000Hz ±1dB: Suitable for 3 to 15 ohm loudspeakers. Two 3 ohm speakers may be used in parallel: Input 2mV into 2kΩ. Output 12 watts R.M.S. continuous sine wave (24 watts peak); 15 watts music power (30 watts peak) Power requirements 6—20V d.c. from battery or PZ.4 Mains Supply Unit.

89/6

SINCLAIR STEREO 25

Pre-amp/Control Unit for Z.12, IC.10 and other good Stereo assemblies. Switched inputs for P.U. (equalised to R.I.A.A. curve from 50 to 20,000Hz ±1dB), Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/Balance/Input are solid aluminium. Size—6½ × 2½ × 2½in plus knobs. Built, tested and guaranteed.

£9.19.6

SINCLAIR PZ4 STABILISED MAINS POWER SUPPLY UNIT

Heavy duty transistorised power supply unit to deliver 18V d.c. at 1.5A. Designed specially for use with two Z.12 or IC.10 Amplifiers together with Stereo 25. Built, tested and guaranteed.

99/6

SINCLAIR MICROMATIC

This fantastic little British pocket receiver is available in kit form or ready built, tested and guaranteed. Its range, power and selectivity must be experienced to be believed; its quality everything you could wish for. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio I easier. The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

Kit in fitted pack with earpiece, solder and instructions

49/6

Built, tested and guaranteed

59/6

Mallory Mercury Cells RM 675 (2 reqd) each 2/6

SINCLAIR RADIONICS LIMITED
22 NEWMARKET ROAD, CAMBRIDGE
Telephone OCA-3 52731
Leadership is not the easiest course to take. From being a very small adventurous minded group in 1963, determined to bring fresh thinking to electronics design, the Company has succeeded to the extent that today, it occupies a position of pre-eminence due entirely to the unremitting pursuit of this policy.

But design is only the beginning. Sinclair Radionics maintains a design and research department worthy of an organisation many times larger, and through this, has been able to introduce many original designs. However, even we cannot make everything involved in the manufacture of the products we design and should a totally unforeseen hold-up occur in supplies to us, our most carefully timed schedules can go adrift. Such has been the case with the IC.10 and we can only thank the many thousands of purchasers for their patience in waiting. From the efforts of our suppliers to meet our carefully stipulated requirements, it should not be long now from the time this announcement appears until the much sought after Sinclair IC.10 is available. Our advertisements have to be planned months before they appear, which explains how difficult it can become if a hold-up does occur.

Meanwhile there is full availability of all our other products and, despite the totally unforeseen delay in getting the IC.10 out on time, we promise that 1969 will be the best year yet for Sinclair users.

MICROMATIC POCKET RADIO
Z.12 AMPLIFIER
Q.14 LOUDSPEAKER

STEREO 25 PRE-AMP
PZ.4 STABILISED POWER PACK
SYSTEM 2000 HI-FI EQUIPMENT

NEOTERIC 60 DE LUXE HI-FI AMPLIFIER

and very soon now — the IC-10

To: SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD, CAMBRIDGE.
Please send POST FREE
NAME
ADDRESS
For which I enclose cash/cheque/money order.

GUARANTEE
Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.
Hi-Fi Solid State Audio Amplifier

10 Watts continuous signal wave output. 15 Watts music power.

Output 3-16 ohms impedance. Frequency response 15 Hz to 18 KHz—1 DB.

Distortion at full power <0.15%.

This instrument comes to you with pre-amplifier, main amplifier and power unit (A.C. Mains) in modern styled aluminium stellite case. Factory built and tested for the amazingly low price of 15 GNS. P. & P. 5/6.

STEREOGRAM CABINET £19

An elegant Stereogram Cabinet in modern veneered Mahogany and birch covered for elegance.

BLACK LEATHERETTE SIDE PANELS

Dimensions: 52" x 17¼" x 12". Speaker positions for Twin 5" x 7" Speakers

OTHER MODELS—SEND FOR LIST

SPEAKERS 6/6 2"—75Ω 2½"—35Ω P. & P. 2/6.

ACOS MICS. 35/-—STANDARD

ASSORTED CONDENSERS 10/- for 50. P. & P. 7/6.

TRANSISTORS MULLARD MATCHED OUTPUT KIT 9/- OC81.D—2 OC81's. P. & P. FREE.

FERRITE RODS 3/6

6", 8" x 8" complete with LW/MW COILS. P. & P. FREE.

DUKE & CO. (LONDON) LTD.

821/3 Romford Road, Manor Park, E.12

Telephone 01-478 6001-3

Stamp for Free List.

RELIABLE COMPONENTS!—AT THE RIGHT PRICE!!

SUBMINIATURE TAGBOARDS (11in. wide).—6-way at 1/3; 18-way at 1/3, ea.

CAPACITORS—CERAMIC TUBULAR (Standard values).—4-7pF to 0.01μF.

RESISTORS—CARBON FILM.—1 watt 5%, 10 ohm to 10 megohm.—3rd, ea. or 3/3 per doz.

POTENTIOMETERS—MINIATURE CARBON.—5kΩ, 10kΩ, 25kΩ, 50kΩ.

100kΩ, 250kΩ, 500kΩ. ±1%. 1mΩ, 2mΩ, LOG. 5kΩ, 10kΩ, 25kΩ, 50kΩ, 100kΩ, 250kΩ, 500kΩ. ±1%. LIN, Less Switch.—all at 1/4, ea. or 3/3 in quantities of 4 or more of the same value.

DIODES—OBO7, OBO8, OBO9, OAO10, OAO12, OAO15, OAO16, OAO17, 600V.

PACKAGE AND POSTING is charged at 1½ in the £ (Minimum 2/- per order).

M. R. CLIFFORD & COMPANY (Components Department)

209a MONUMENT ROAD, EDGBaston, BIRMINGHAM 16

Terms: C.W.O. (or C.O.D.—over £3 only).

Telephone 021-454 6515

AVO CT.38 ELECTRONIC MULTIMETERS

AM/FM SIGNAL GENERATORS

Oscillator Test No. 3. All frequency precision instru-
ments and equipment delivered by airmail. Frequency range: 20-30Mc/£1. FM/AM incorporates precision dial, level meter, pre-adj. a.m. receiver, 1µV-100mV. Operation from 20 Hz to 30Mc. £1.25 per month. In stock now. Carriage 9/0. Supplied in brand new condition complete with all connectors fully tested. £45. Carriage 20/6.

MARCONI CT44/ TP5056 AF ABSORPTION WATTMETER

1/2 jaw to 6 watts. £50. Carriage 20/6.

TE-16A TRANSISTORIZED SIGNAL GENERATOR

T.M.C. 1000 SERIES KEY SWITCHES

Brand new with knobs as follows. 1 way, 2 way, 3/4 way, 4 way, 5 way, 7 way, 7/6 way, 2. £50. Carriage 7/6.

Variable Voltage Transformers

Brands new, guaranteed and carriage paid. High quality construction. 100-0u cycles. Output full variable from 0 to 260. R.m.s. bulk quantities available.

ADVANCE TEST EQUIPMENT

Brand new and boxed in original sealed carton.

VM76. VALVE Voltmeter

R.F. measurements in excess of 100 Mc. and d.c. measurements up to 1,000V with accuracy of ±2.5%. D.c. range 3000V to 0.01µA. 5 track heads. ±5000 ohms. 300mV to 300V RMS, Resistance 0.05-5000Ω. Price £73. £26. MILLION MICRO AMMETER. Transistored. 1µV to 300V. Frequency: 1 µs to 1ms. Price £55.

VM79. UHF MILLIVOLT METER

Transistored. A.C. range 0-200µV to 3V. D.c. range 0.01µA to 630nA. Resistance 1Ω to 1000Ω. Price £55.

RECORDING HEADS

Router 1-track. As fitted to Lullier Mk 1V and Studio Decks. High imp. record playback, low imp. low erase. £15.9/6.

TE22 SINE SQUARE WAVE AUDIO GENERATORS

Mini 250Ω to 200kΩ on 1 channel. Square: 2500Ω to 200kΩ in 2 bands. Square: 2500Ω to 200kΩ in 2 bands. Output impedi-

LAFAYETTE TE46 RESISTANCE CAPACITY ANALYSER

2.0µA to 20µA with probes. 50µwatts. Also che-

TE-20RF SIGNAL GENERATOR

Accurate wide range signal generator covering the 10Mc to 100Mc range. d.c. on 6 bands. Directly cali-

2N1024/6

2N17706A 41-

ADT140

A1)149 16/-

ADI40

AC165

AC128

IAQ6

3/9

MATI20 7/9

BSY96A 3/6

0C3

002

0C2

0112

0C202

0C201

0(178

11/4

6/6

4/6

2n1.1

NKT214 3/9

EAF42

DAF96

30L16

68M7

B8126

BC109

AF186 12/-

12AT7

6J8

19AQ5

11/4

6/6

4/6

EZ8I

0A91

0A70

XCI41

X/1112

0C202

0C201

0(171

EL96

2E86

11141

601/ d.c.

5A 11.c.

750mA

Brand New 217.10.0.
NEW CATALOGUE

Nearly 200 pages giving full details of a comprehensive range of components, test equipment, communication equipment and hi-fi equipment.

Each section greatly enlarged and fully illustrated. Thousands of items listed at bargain prices. **FREE DISCOUNT COUPONS VALUE 5S.**

UNR-30. 4-BAND COMMUNICATION RECEIVER

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering 560Kc to 20MC. Automatic tuning and electrical bandspread on 10, 15, 20, 40 and 80 metres. 6 valve plus 7 diode circuit. 4.5 cm output and phone jack. Supply 220/240V ac. Supplied new and guaranteed.

NEW LAFAYETTE SOLID STATE HA600 RECEIVER

5 band AM/CW/SSB AMATEUR and SHORT WAVE RECEIVERS TO 4000Mc AND 6000Mc TO 30MC.

NEW STAR SR-200 SSB AMATEUR RECEIVER

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

GARRARD

FULL CURRENT RANGE OFFERED. BRAND NEW AND GUARANTEED AT FANTASTIC SAVINGS

NR925 Mono

Price £10.00

NR925 Stereo

Price £10.00

1033 Mono

Price £7.50

1035 Mono

Price £7.50

1060 Mono

Price £14.90

1060 Stereo

Price £17.50

2037 Stereo

Price £18.10

2075 Stereo

Price £18.10

3020

Price £18.10

SL550

Price £20.00

SL650

Price £22.10

Ap70

Price £19.00

Sl75

Price £29.00

Sl80

Price £29.00

Carr. £5.00 each. **Special offer for cover and a cover available for these models at £4.00.**

E.M.I. SINGLE PLAYERS

4 speed with separate arm and cartridge

Price £8.00. Carr. £3.00

FIELD TELEPHONY TYPE L

Generator ringing, metal-cased. Operates from 1-5, batteries not supplied. Excellent condition. **£15.00 per pair.**

Carr. £5.00

SMITH & CO (RADIO) LIMITED

Phone: GARRARD 8204,9155. Cable: SMITHFEST LONDON.

Used and acclaimed by:
- SCIENTISTS
- ENGINEERS
- TECHNICIANS
- TEACHERS & STUDENTS

The latest edition of the famous Home Radio Catalogue is the result of eleven years of most careful selecting, compiling and indexing.

Of course, no catalogue is ever really finalised. As soon as we have one edition off the press, our researchers get busy finding out what is the latest and best in the world of Radio and Electronics—ready for the next printing.

This edition is without doubt the finest, most comprehensive we have ever produced—it has 300 pages, over 8,000 items listed, over 1,500 illustrations. It really is a must for anyone interested in radio and electronics. With each catalogue we supply a Book Mark giving Electronic Abbreviations, an Order Form and an addressed envelope. All this for only 8/6 plus 3/6 post, packing and insurance. By the way, every catalogue contains 6 vouchers, each worth 1/- when used as directed. Send the attached coupon today, with your cheque or P.O. for 12/-. You'll be glad you did!
POST OFFICE PRIVILEGE

When the Post Office Bill, at present before Parliament, becomes law, the present Postmaster General and his department will be replaced by two separate bodies: a new Minister of Posts and Telecommunications and a new public authority, the Post Office. This Minister will assume responsibility of the Postmaster General's wireless telegraphy functions. The Post Office will be sponsored within the Government by the new Ministry of Posts and Telecommunications and will run the Postal, Telecommunications, Giro, Remittance, and National Data Processing services.

Already a fair amount of comment and apprehension has been aroused by certain clauses in this Bill, concerning telecommunications. Clause No. 24 for example states that subject to certain provisions, the Post Office shall have, throughout the British Islands, the exclusive privilege of running systems for the conveyance of all kinds of communications through the agency of electric, magnetic, electro-magnetic, electro-chemical, or electro-mechanical energy.

Pretty daunting at first glance. However, the Post Office authorities have been at great pains to emphasise that the wording of this clause is merely a re-statement in modern terms, of the old Telegraph Act of 1869. At present the Postmaster General has the exclusive privilege of sending telegraphic messages, and this power is to be re-enacted in the current Bill by Clauses 24-27 and vested in the new Post Office.

There are many electronic devices and systems in everyday use which might be considered as coming within the scope of Clause 24. In order to allay fears and misunderstanding in this respect, we set out now what is believed to be the true position concerning the legality of such apparatus.

The Post Office exclusive privilege is not infringed provided the whole system is installed in a single set of premises (which can include outbuildings, i.e. greenhouse or garage), or in a motor car or private boat, and is for the sole use of members of the same household or firm. Thus intercom systems, intruder alarms, and devices for sensing, measuring or indicating physical phenomena, or for controlling equipment or electrical circuits are all permitted.

Almost every other kind of communication does infringe the Postmaster General's exclusive privilege at present, and will infringe the new Post Office exclusive

continued on page 133
Motor car brake wear occurs so gradually that, until the foot-pedal movement is excessive, or there is some other indication, the driver may well not detect it. The electronic brakemeter is intended to provide a periodical check of braking efficiency. Although the meter shown is a "go/no-go" device—i.e. showing the brakes to be either satisfactory or not—calibration can be carried out so that actual percentage braking efficiency is indicated.

The meter is, in fact, an electronic clock which measures the time during which the vehicle is being retarded (when the brakes are applied). If the initial speed is known, then the average retardation can be calculated; from this, the braking efficiency can be obtained. In practice, a speed of 30m.p.h. is used and the existing meter scale is not altered; one arbitrarily selected value represents the braking efficiency criterion.

BRAKEMETER THEORY

Braking efficiency is based on the retarding force that the brakes apply to the vehicle. From Newton's second law of motion, \(P = m f \) it will be seen that if the retarding force \(P \) is equal to the mass \(m \), then the retardation \(f \) is unity \((1g) \). This retardation is referred to as 100 per cent braking efficiency and means that the braking force is equal to the weight of the vehicle.

Under normal conditions braking efficiencies as high as this are unlikely, but with ideal conditions 100 per cent, or even higher, can be achieved. The law requires that the braking efficiency is at least 50 per cent \((0.5g)\) for foot brakes and 25 per cent for hand brakes. From the gravitational equation \(v = u - ft \) (where \(u \) and \(v \) are initial and final speeds respectively), we can calculate the retardation time \(t \).

For a vehicle at 30m.p.h. (44ft/sec) and 65 per cent brake efficiency, we can write:

\[
u = ft \text{ (since } v \text{ is zero)}
\]

\[
44 = 0.65 \times 32.2t \quad (g = 32.2ft/sec^2)
\]

\[
t = \frac{44}{20.93} = 2.1\text{sec.}
\]

Our electronic clock has simply to be able to measure this time with acceptable accuracy to indicate an average efficiency of 65 per cent. The electronic brakemeter performs two functions:

Fig. 1. Circuit diagram of the transistorised brakemeter
(a) it senses the instant the brakes are applied (as the vehicle decelerates) and the instant it stops, and
(b) it measures the time between these instants, i.e. when the retardation is taking place.

Thus the meter will give us the overall efficiency of the brakes during the time in coming to rest. Commercial meters give the maximum efficiency shortly after the brakes are applied and hence are inclined to give slightly better readings than the electronic brake-meter, due to brake fade. This must be remembered when testing and continuous braking applied until the vehicle stops.

CIRCUIT DESCRIPTION

The brakemeter circuit is shown in Fig. 1. S2 is a mercury switch mounted at a slight angle so that when the unit is horizontal, as it must be in the vehicle when being used, the contacts are not made. When the brakemeter is retarded from a constant velocity, the mercury moves up the slight incline and the contacts make. This condition is maintained until the vehicle stops, when the mercury drops back and the contacts open.

The actual timing element consists of the general-purpose audio transistor TR1 with the variable resistor VR2 and the milliammeter in the emitter circuit. VR1 forms the bias resistor and CI is a reservoir capacitor between the base and emitter.

The action of the circuit is as follows: when S1 is closed, the supply voltage is applied to the collector of TR1. Since no bias is applied via VR1, the collector current is very small and there is little or no indication at the meter. This would be the circuit condition just before applying the vehicle brakes.

The mercury switch is connected between the bias resistor and the supply voltage so that as the vehicle decelerates, the mercury closes the contacts and bias current flows through VR1. When this happens, CI, which is of the order of 800µF, starts to charge and the potential across it rises, increasing the bias of TR1. The emitter current Ie rises until the vehicle stops. The mercury switch then opens; current rise stops and the bias for TR1 is now dependent on the charge stored in CI. This decays, but so gradually that the meter needle falls very slowly—it may well be of the order of several minutes before zero is reached—giving ample time for a meter reading to be taken by the driver. The switch contacts across CI are part of the on-off switch S1 and ensure that the capacitor can be rapidly and completely discharged between checks.

COMPONENTS AND VALUES

The basic circuit component is the transistor. This is of the general-purpose type, of which there are many to choose from. The OC72 and the XC101 are the obvious of the npn types, but pnp types can be used if available. In this case, however, the battery and meter polarities must be reversed and the capacitor CI must be connected with its positive pole to the base. When choosing the transistor, the maximum emitter current (VR2 at a minimum) must be larger than the meter full-scale deflection.

The value of CI is by no means critical and anything between 500 and 1,000µF (or even higher) is perfectly suitable. The working voltage of such a capacitor will be low, if the component is to be compact, but there should be no problem here as the supply is only 9 volts. The important value in this part of the circuit is the RC product. VR1 can be increased for a smaller capacitor, but the disadvantage is that a small capacitor causes the meter needle to drop more rapidly when the mercury switch opens.

Potentiometers VR1 and VR2 are selected by checking in the completed circuit. VR1 must control the charging rate of CI and thus the emitter current rise (dIe/dt), so that the meter swing is not unduly fast or slow. If the vehicle is to be stopped from 30m.p.h. with a braking efficiency of 65 per cent, then the time involved, as we have already seen, is 2.1sec. If we arbitrarily select a suitable point on the scale (say 3, where the scale is from 0 to 5) to represent this efficiency, VR1 must be selected so that the needle will approach this point in about 2 seconds; 10 kilohms is a suitable value when the capacitor is 800µF.

VR2 controls the emitter current (Ie). If this potentiometer is too large, the adjustment will be critical and cramped towards one end, while if it is too small, current control may be limited. In practice, 5 kilohms is suitable. The mercury switch is a standard changeover component and operates as a make and break switch with only two of the three contacts used.

Emitter current is measured with the moving coil milliammeter—0 to 1 or 0 to 5mA, as available—it must be remembered though, that the full-scale deflection current must be less than the maximum TR1 emitter current. The meter shown is a miniature type (1in diameter face); this allows the final instrument to be compact, although a larger scale is more accurately and easily read.

The main function of S1 is to switch the 9V supply, however a changeover switch is used so that in the
Fig. 2. Manufacture of case from a plastics box: (a) Top of lid sawn off leaving frame—shaded section removed. (b) Frame joined and glued to sheet of plastics from original lid—edges trimmed when set. (c) Depth and width of box reduced by removal of shaded areas. (d) Sides joined together and reinforced with plastics strips. Final case size $5\frac{1}{2}$ in $\times 2\frac{1}{2}$ in $\times 1\frac{3}{4}$ in.

The width is then reduced by cutting as shown in Fig. 2. The first cut is along the centre line of the box as it will be; the unwanted section is cut out and the edges sandpapered flat and joined with cement. Since the box is now seamed, it is weaker than before and so reinforcement is provided by plastics strips stuck as shown.

The control face can be made neater by fitting a white card under the transparent lid. This is held in position by the potentiometer nuts, etc. and carries the title of the instrument and control indications. The two arrows (red) indicate the vehicle's direction of travel. VR2 is annotated I_e (emitter current), while the rate of change of emitter current (VR1) is annotated dI_e/dt.

Component layout is very much a matter of choice, the only significance being the position of the mercury switch. This must be arranged so that, when the meter is used, the switch tube is inclined slightly in the vehicle's direction of travel (Fig. 3). A satisfactory layout is shown in Fig. 4. Here, the components are arranged around a symmetrical control face layout.

The on/off switch and most meters carry their own fixing devices, but improvisation is necessary to mount the 9V battery, the mercury switch and the transistor. The battery mount consists of two lengths of 6B.A. threaded rod (or long bolts), held to the control face by means of nuts. The battery is held in position by a short strip of metal (in this case a piece of H-section curtain rail) and two 6B.A. nuts. The battery clip is simply the clip-plate from a discarded PP3 battery.

Mercury switches generally require a special mount as the basic switch is a glass tube, containing the mercury and the contacts. Fig. 3 shows how the switch is mounted on the lid. The glass tube is lashed with cotton to a small brass strip, which is bent to carry the switch at an angle. This angle must not be great enough to prevent the mercury from moving with a small retardation, and yet it must not be so small that vehicle vibration causes the switch to operate. In practice, an elevation of five degrees is found to be satisfactory.

The strip is held in position by two 6B.A. nuts and bolts. One of these is longer than the other and carries (between two 6B.A. nuts) a small strip of Veroboard, to which the transistor is soldered. Of the conducting strips, four are used; three carry the transistor and the fourth is a connection between the mercury switch and VR1.

The meter used had no fixing holes and has been positioned against the lid by means of a plastics strip and two 4B.A. bolts; however, the majority of meters

![Fig. 3. Details of mercury switch mounting](image-url)
COMPONENTS...

Potentiometers
VR1 10kΩ
VR2 5kΩ

Capacitor
C1 800μF elect. 15V

Transistor
TR1 XC101 or OC71

Miscellaneous
S1 Double pole change-over slide switch
S2 Mercury switch (Proops Bros. Ltd.,
52 Tottenham Court Rd., London, W.1)
BY1 9V battery, PP3
M1 0.5mA moving coil milliammeter
Small piece of Veroboard
Plastics case (see text)
18 s.w.g. brass strip and 6B.A. fixings

have a fixing flange. The capacitor is supported by its leads, though a small strap could be used if the component requires it. Fig. 4 is intended as a guide, since the actual wiring will depend on the relative positions of the components, as decided by the reader. Points to observe are the correct polarities of the capacitor and meter.

TESTING THE BRAKEMETER

Having completed the brakemeter, it is first necessary to check that the circuit is working correctly. For this, turn VR1 to a minimum and VR2 to a maximum, tilt the unit to operate the mercury switch and switch on S1. In this condition, there should be little or no meter indication. Adjust VR2 until the meter needle is at full scale deflection and observe that there is more adjustment available to take the emitter current above this value. Now increase the value of VR1 to about half its available sweep.

Switch off S1 to short-circuit any charge on C1 and then switch on. With the unit tilted, observe that the needle climbs steadily to full-scale deflection. Repeat the test with VR1 less and greater, checking that the needle climb is faster and slower respectively. If the meter behaviour is not, in principle, as described, then the wiring should be checked. Further failure should suggest that a component (probably transistor or capacitor) is faulty.

The reader will have observed the insistence that the maximum emitter current is greater than the meter full-scale deflection; there is a reason for this: the charge of C1 through VR1, and thus the current rise,
is exponential. This means that the needle moves rapidly at first, but slows down until it approaches the current representing full Cl charge very slowly. It will be clear that the time scale is non-linear and some difficulty would be experienced in obtaining accurate readings where the needle climb is very slow. By setting the limiting value of I_e above full-scale deflection, we ensure that the needle operates over the initial, and therefore more linear, part of the charging curve.

CALIBRATION—GO/NO-GO

The brakemeter can be calibrated in two ways:

(a) to provide indication of the minimum required efficiency; indication is thus that the brakes are efficient or inefficient;

(b) to provide an indication of the actual brake efficiency, meter readings being converted into percentages from a table.

Calibrating for minimum acceptable efficiency is useful as readings above indicate the brakes to be satisfactory, while those below indicate that some adjustment is necessary. The minimum acceptable efficiency can be determined by the legal requirement, or it can be higher to provide a better margin of safety. Suppose we accept a figure of 70 per cent (a retardation of 0.7g). From 30m.p.h., this would cause the vehicle to stop in 1.95 seconds. The obvious way to calibrate then, is to use a stopwatch; this should be an instrument with a large sweep if accuracy is to be obtained. To calibrate, proceed as follows:

1. Hold the brakemeter in the left hand and the stopwatch in the right hand.
2. Switch on the brakemeter, but do not tilt to operate the mercury switch.
3. Simultaneously tilt the brakemeter forward and start the watch. As the hand approaches 1.95 seconds, tilt the brakemeter back to open the mercury switch. Note the meter reading.
4. Adjust VR1 and repeat the test until this time coincides with some arbitrary reading.

CALIBRATION—ACTUAL EFFICIENCY

The second calibration method involves representing each value on the scale by a percentage of brake efficiency. The first step is to adjust the meter as above, so that the criterion of acceptability is at a convenient scale value. Having determined this, the time taken for the needle to reach other scale values is measured and the brake efficiencies calculated.

As an example, if the meter needle took 3 seconds to reach a scale value of (say) 4, what percentage brake efficiency would this represent? As far as the vehicle itself is concerned, this would represent stopping from 30m.p.h. in 3 seconds. From the formula $u = ft$, we can write $44 = 3f$ or $f = 14.6ft/sec^2$. Now $1g$ is $32.2ft/sec^2$ so that the retardation is

$$P = 14.6/32.2 = 0.45g.$$

A scale value of 4 then, represents 45 per cent braking efficiency.

Clearly, once VR1 and VR2 have been suitably preset, values of braking efficiency can be calculated for all scale values. It should be remembered that the higher the scale value, the lower will be the braking efficiency. To ensure that VR1 and VR2 are not moved after calibration, control knobs are not fitted and it is useful to seal the shafts with a small splash of paint.

CALIBRATION USING A PENDULUM

While a stopwatch is a quick and easy way of calibrating the brakemeter, it is not essential as there is another way of measuring small time periods—the pendulum. A simple pendulum consists of a small bob-weight suspended by a length of thread; the time t for a complete swing (back and forth) is given by $2\pi\sqrt{l/g}$, where l is the length of the thread (ft) and g is the gravitational constant ($32.2ft/sec^2$).

This can be re-arranged to the form $l = \frac{t^2}{(4\pi^2)}$, which it will be seen, gives us the length of thread required in terms of the time t. Now, we have already established that the retardation time for a braking efficiency of 70 per cent is 1.95 seconds. If we put this in the above expression we get:

$$l = \frac{32.2 \times (1.95)^2}{4 \times (3.14)^2} = 3.1ft$$

It will be noticed that this is quite a convenient length. The pendulum can be suspended from a pin pushed into the top of a door frame. The bob-weight should be physically small (to reduce air drag) and weigh a couple of ounces approximately. Once the
Table I: BRAKING EFFICIENCY AGAINST RETARDATION TIME AND PENDULUM LENGTH

<table>
<thead>
<tr>
<th>Braking Efficiency (Percentage)</th>
<th>Retardation Time (Seconds)</th>
<th>Pendulum Length (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.367</td>
<td>1.531</td>
</tr>
<tr>
<td>90</td>
<td>1.518</td>
<td>1.879</td>
</tr>
<tr>
<td>80</td>
<td>1.708</td>
<td>2.380</td>
</tr>
<tr>
<td>70</td>
<td>1.952</td>
<td>3.108</td>
</tr>
<tr>
<td>60</td>
<td>2.277</td>
<td>4.231</td>
</tr>
<tr>
<td>50</td>
<td>2.733</td>
<td>6.092</td>
</tr>
<tr>
<td>40</td>
<td>3.416</td>
<td>9.523</td>
</tr>
<tr>
<td>30</td>
<td>4.555</td>
<td>16.92</td>
</tr>
<tr>
<td>20</td>
<td>6.832</td>
<td>38.09</td>
</tr>
</tbody>
</table>

The pendulum has been rigged, it can be checked against the second hand of any watch or clock. With the duration of a complete swing as 1.95 seconds, there should be 30.71 swings per minute. In practice, approximately 31 is sufficiently accurate.

The pendulum should swing through a few inches only as the mathematical relation is accurate only for small displacements. To calibrate the brakemeter with the pendulum, proceed as follows:
1. Set the pendulum swinging.
2. Tilt the brakemeter forward to operate the mercury switch.
3. View the pendulum so that as it reaches the vertical—i.e., it is travelling at maximum speed—it passes some convenient mark on the wall or floor.
4. As it passes the mark, operate the on—off switch.
5. When it again passes the mark after one complete swing (travelling in the same direction), tilt the meter back to open the mercury switch.
6. Now observe the meter reading; this represents 1.95 seconds or 70 per cent braking efficiency.

A number of readings should be taken to ensure consistency and, where necessary, VR1 can be adjusted to bring the meter reading to some convenient value on the scale. Pendula can, of course, be rigged to represent the retardation times associated with any braking efficiency. Table I gives relevant information for a number of braking efficiencies.

BATTERY TEST

The performance of the brake meter is obviously dependent on the battery condition and the question arises of when the battery is considered to be exhausted. A partially exhausted battery will tend to recover when not used, but the current drain from it will gradually fall when it is switched on. This is indicated by a noticeable slowing of the meter response. The battery test then, is as follows:
1. Tilt the meter to close the mercury switch.
2. Switch on S1 and observe the needle rise to full scale deflection (timing it if possible). Leave the meter tilted and switched on for some 5 minutes and then switch off.
3. Now tilt the meter, switch on and observe that the needle response is not noticeably slower. If it is, then replace the battery.

The battery used in the brakemeter is a 9V transistor radio type PP3, though larger capacity batteries of the same supply voltage will give satisfactory performance for a longer period without replacement.

Meet Emma

Quite a clever girl is our Emma. She reacts to light and dodges obstacles. Give her the run of your home — she's a pet with a difference.

Who is Emma? Well, briefly, she's a practical development from our Bionics Series planned to put you a jump ahead in more ways than one. Her anatomy will be revealed in full detail next month. So don't miss meeting her then.

Also

PHOTORE CORDER

Reliable, accurate and costing little to build, this unit is mainly intended for photographic work, but can be used for many other applications. Timing range is variable from 0.1 second up to two and a half minutes, with an accuracy of better than 5%.

MARCH ISSUE, on sale Friday Feb. 14

ORDER YOUR COPY NOW!
Within the last few years, light emitting diodes have become an important source of coherent light. Gallium arsenide was the first material used for this purpose; gallium phosphide diodes are now in production; laser diodes using silicon carbide are more recent. The effect is not new (it was first reported in 1932) but only now has semiconductor technology advanced sufficiently to produce optical diodes with a usable output.

The Gallium Arsenide Diode

The appearance of some commercially available gallium arsenide diode lamps is shown in the photograph. Essentially the structure is of a pn semiconductor diode, surrounded by a sphere of resin which focuses the radiation into a narrow cone. This sphere may be regarded as a matching device which couples the gallium arsenide light source efficiently to air.

Electrically, the gallium arsenide diodes behave like any other semiconductor diodes, having a forward current/voltage characteristic as shown in Fig. 1. At forward currents of more than 2mA light is emitted and at higher current levels, the graph of light output against diode current is linear (Fig. 2). As with any other semiconductor device, the junction may be damaged by excessive current (due to local overheating) and a maximum continuous current is specified by the manufacturer (100mA in the case of the GAL 1). The diodes may also be used with short pulses, and a maximum pulsed current (3A for the GAL 1) is also specified.

Optically, the diodes behave as point sources of light with an extremely small time constant (unlike an incandescent filament lamp). These characteristics make it possible to obtain a beam which diverges very little from the parallel ray condition when the diode is placed at the focus of a lens, and to modulate this beam at high frequencies (flat response to modulation frequencies up to 75MHz is claimed).

Communications Using the Gallium Arsenide Diode

The range over which an effective beam can be sent is difficult to calculate; most published reports work on the assumption that the diode is slightly off the focal point of the lens and forms a focused image at some distance from the lens (Fig. 3). In this case, the magnification of the image is given by v/u, and the area of the image by a(v/u) where a is the area of the source. A better though more difficult approach is to calculate the divergence of beams from the focal point of the lens using a more accurate formula for lens refraction. This method indicates rather less beam divergence and agrees with the results found in practice, where divergencies of less than 1cm in three metres could be easily obtained using cheap lenses.

In practice, the gallium arsenide diode may be used for communications over a considerable distance, despite the very low power output of 0.5mW, provided that the transmitting diode is located accurately at the focus of a lens and that the receiver is equally able to focus the received beam on to a suitable receiving device.

The choice of receiving device is important, for the emission from the gallium arsenide diode is in the infra-red region. Although infra-red radiation is invisible to the naked eye, high power pulsed conditions can cause the eye to fluoresce giving the appearance of a red glow. Close viewing of a diode under these conditions may result in damage to the eye, but under the operating conditions described in this article, the diodes are rendered completely safe to use.
COMMUNICATION EXPERIMENTS

Where long-range working is not required, a phototransistor of the OCP71 family may be used as the receiving device; alternatively, the paint may be scraped off any glass encapsulated transistor. The phototransistor should be mounted at the focus of a parabolic mirror as shown in Fig. 4.

The focus is the point at which parallel rays all meet, and it is most easily found by placing a small light bulb near the mirror and adjusting its position until the projected beam is of the same size as the mirror; an old car headlamp reflector is ideal. The position of the focus is shown by the position in which the bulb filament was mounted.

The phototransistor may be mounted with Plasticine and the leads taken to an amplifier such as is shown in Fig. 5. The mirror should be earthed to avoid pick-up of mains hum. The gain should be high enough to give a loud noise output when the equipment is used indoors in darkness.

One difficulty should be mentioned here: if the phototransistor is exposed to sunlight, maximum current flows in the collector circuit of TR1 and the transistor "bottoms", hence no signal is available to the amplifier. If the phototransistor is exposed to light from an a.c. mains source, then a strong 50Hz

Fig. 1. Forward characteristic of the gallium arsenide diode GAL 1

Fig. 2. Typical light output of the GAL 1 diode when pulsed at 25° centigrade

Fig. 3. Focusing the beam—for the lens to focus all the radiation from the diode its diameter should be more than twice its focal length (u)

Fig. 4. Phototransistor mounted in the parabolic mirror

Fig. 5. Circuit diagram of optical receiver
filter as found on the older type of darkroom safelights from large photographic dealers; failing this, deep red outside the infra-red region.

A quick test method is to connect the diode to the milliammeter. The battery should be connected to the diode, and adjusting for the loudest note on the recorder, the beam width can be determined as shown in Fig. 7.

Fig. 7. Set-up for measuring effective beam-width. The boards are moved together until the output meter reading falls by 10 per cent, this is the effective beam width.

Fig. 8. Basic transmitter circuit for use with the GAL I gallium arsenide diode

Transistor should be replaced by a silicon photovoltaic diode, which has maximum sensitivity at the wavelength emitted by gallium arsenide diodes.

The main disadvantage of this type of communication system is that one cannot have both range and portability. For maximum range, the beam must be near parallel and the transmitter must be precisely aimed at the mirror of the receiver. This can be achieved only if both are fixed, having been lined up for maximum signal strength.

The beam can be broadened by removing the lens, or reducing the distance between diode and lens so that the beam spreads out. There is then little difficulty in locating the receiver with the beam but, since only a fraction of the spread beam is intercepted by the receiver, the signal is attenuated. This condition can be acceptable, but only for short range work.

ACTIVE COMMUNICATION SYSTEMS

To avoid the distortion due to diode rectification, sufficient standing current must be passed to prevent the diode from cutting off during audio peaks. Fig. 8 shows a suitable circuit for modulating a gallium arsenide diode from a dynamic microphone. It is also possible to transmit using a carbon microphone, battery, and diode, but the standing current is variable and the quality poor.

For maximum range, the parabolic mirror on the receiver should be fitted with a filter to exclude light outside the infra-red region. Such filters are obtainable from large photographic dealers; failing this, deep red filters as found on the older type of darkroom safelights may suffice. For maximum sensitivity the photo-

ACKNOWLEDGEMENTS

The author wishes to acknowledge the help given by the Alan Clark Research centre and the Components Division of Plessey Ltd. in the preparation of this article.

Fig. 6. Test circuit GAL 1. This should not be attempted if the radio or tape recorder chassis is not earthed or if one side of the mains is connected to chassis (live).
PRACTICAL!
VISUAL!
EXCITING!

A new 4-way method of mastering ELECTRONICS by doing — and — seeing . . .

1. OWN and HANDLE a complete range of present-day ELECTRONIC PARTS and COMPONENTS.
2. BUILD and USE a modern and professional CATHODE RAY OSCILLOSCOPE.
3. READ and DRAW and UNDERSTAND CIRCUIT DIAGRAMS.
4. CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .
 - VALVE EXPERIMENTS
 - TRANSISTOR EXPERIMENTS
 - AMPLIFIERS
 - OSCILLATORS
 - SIGNAL TRACER
 - PHOTO ELECTRIC CIRCUIT
 - COMPUTER CIRCUIT
 - BASIC RADIO RECEIVER
 - ELECTRONIC SWITCH
 - SIMPLE TRANSMITTER
 - A.C. EXPERIMENTS
 - D.C. EXPERIMENTS
 - SIMPLE COUNTER
 - TIME DELAY CIRCUIT
 - SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual method—no maths, and a minimum of theory—no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

FREE POST NOW for BROCHURE
To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to: we do not employ representatives
NAME: .. BLOCK CAPS
ADDRESS: .. PLEASE PE 2
or write if you prefer not to cut page
EMI are famous throughout the world for High Quality sound reproduction. Now our audio design engineers have developed loudspeaker systems suitable for home use.

These EMI Loudspeaker Systems, specifically matched, produce every detail of the original sound over the full audio spectrum, at high and low listening levels.

They have many exclusive features. The range includes the unique 950 system with a 19 inches x 14 inches bass unit, power output 50 watts R.M.S.

Send for literature and price lists to:

EMI SOUND PRODUCTS LTD., HAYES, MIDDX. TEL: 01-573-3888 EXT. 867

RESISTORS: All brand new, Hi-Stab, low noise, 5%, tol., carbon film; 2W E12 series 47—10M, 2W, each or 15p—per 100 of one value; 5W E24 series 47—10M, 2W, each or 15p—per 100 of one value; 1W E24 series 10M—100, 2W, each or 15p—per 100 of one value; 1W E48 series 100—1M, 2W, each or 15p—per 100 of one value.

PRE-SETS: Min. skeleton carbon track, low noise with good stability; Values—Lin 1k, 2k, 5k, etc., to 5M; Log: 5k, 10k, 25k, etc., to 1M, only 10k each; Sub-Mini skeleton Lin. track—1k, 2k, 5k, etc., to 5M, 6d, each; Slider presets wired 5W rating Lin. tracks 10 to 5k, 3/3; 3W wire-wound fully insulated Lin. tracks 10 to 30k, 3/3.

POTENTIOMETERS: Min. enclosed, carbon track and wiper contact only 5/6; Values—Lin 1k, 2k, 5k, etc., to 10M; Log: 5k, 10k, 25k, etc., to 1M; Min. with double pole switch, insulated conductors only 5/6; Values—Lin 25k, 50k, 100k; Log: 5k, 10k, 25k, 50k, 100k, 2M; 3W wire-wound Lin. track 50 to 100k, 7/4 each.

CAPACITORS: New genuine Mullard Electrolytics

<table>
<thead>
<tr>
<th>Value</th>
<th>Price (6 x)</th>
<th>Price (20 x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64V</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>32V</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>16V</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>8V</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>4V</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>2V</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

All values in µF

Send, with name and address to:

STUDENT ELECTRONIC SERVICES
196 Regent Road, Salford 5, Lancs.
Visit us at above address or call 061-872 5187
A simple electronic device for augmenting, in an unusual way, the sounds of guitars and many other instruments with magnetic pick-ups or microphones. Gives "fuzz" and "subs".

The colouring of the sound of a fundamental tone from a musical instrument depends on the number of harmonic overtones present, besides the fundamental, and the range over which these harmonics are spread. It is very rare for a note from a musical instrument to contain many sub-harmonics—frequencies lower than the fundamental note. Several electronic devices which are on sale to the general public produce changes in the sound of a note by artificial means; a treble booster, for example, can amplify the harmonics at higher frequencies to a greater degree than the lower ones, but this has the effect of reducing the fundamental tone to give the sound more "force".

On a large number of modern records, however, engineers often dub a piano or organ, playing along with a guitar in order to give the guitar a greater body of sound.

The "Harmonaphone" provides a simple means of augmenting the sound of a single instrument, without the use of additional instruments.

OPERATION

The "Harmonaphone" adds sub-harmonics \(f_1 \) and \(f_2 \) on to any note which is fed into it. The output of the device is controlled by the mixer unit, in which the relative volumes of the direct signal \(f_0 \), sub-harmonics \(f_1 \) and \(f_2 \) and a square wave signal of the fundamental frequency, can be adjusted to give a wide range of different effects. The square wave signal produces the standard "fuzz" effect.

"It will be found that a rather unpleasant sound is produced if more than one note is fed into the input at the same time. A foot-switch is therefore included to switch the Harmonaphone "in" and "out". This means that, with a guitar, for example, chords should only be played with the Harmonaphone switched out, and the Harmonaphone switched in for guitar "breaks" by means of the foot-switch.

The Harmonaphone has one input into which is plugged the magnetic or acoustic pick-up fitted to a guitar or similar instrument, or microphone placed in front of an instrument (e.g. oboe, flute, clarinet).

CIRCUIT FUNCTION

The input signal is fed into a pre-amplifier, which is connected to the input of a Schmitt trigger (see Fig. 1). This is turned on by the one edge of the "sine-wave" input, and off by the other edge (Fig. 2).

The two switching voltages are made distinctly different by the different values of the collector resistors in the triggering circuit. The reason for giving the trigger such a large hysteresis is that the input signal often contains harmonics of quite large amplitude, superimposed on the fundamental, and these can cause double triggering if the trigger has a small hysteresis.

By M.P.R. HAMER

The HARMONAPHONE

107
Fig. 1. Circuit diagram of the amplifier, squarer, and dividers (refer also to Figs. 3 and 4)

COMPONENTS...

Resistors

<table>
<thead>
<tr>
<th>Pre-amp</th>
<th>Trigger</th>
<th>Divider 1</th>
<th>Divider 2</th>
<th>Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 330kΩ</td>
<td>R9 12kΩ</td>
<td>R14 1.5kΩ</td>
<td>R20 1.5kΩ</td>
<td>R26 33kΩ</td>
</tr>
<tr>
<td>R2 22kΩ</td>
<td>R10 330kΩ</td>
<td>R15 10kΩ</td>
<td>R21 10kΩ</td>
<td>R27 33kΩ</td>
</tr>
<tr>
<td>R3 4.7kΩ</td>
<td>R11 10kΩ</td>
<td>R16 1.5kΩ</td>
<td>R22 1.5kΩ</td>
<td>R28 33kΩ</td>
</tr>
<tr>
<td>R4 220kΩ</td>
<td>R12 12kΩ</td>
<td>R17 10kΩ</td>
<td>R23 10kΩ</td>
<td>R29 100kΩ</td>
</tr>
<tr>
<td>R5 4.7kΩ</td>
<td>R13 4.7kΩ</td>
<td>R18 12kΩ</td>
<td>R24 12kΩ</td>
<td>R30 100kΩ</td>
</tr>
<tr>
<td>R6 100kΩ</td>
<td>R19 12kΩ</td>
<td>R25 12kΩ</td>
<td>R31 100kΩ</td>
<td></td>
</tr>
<tr>
<td>R7 22kΩ</td>
<td>R32 Resistor to reduce relay battery consumption. Find maximum possible value by experiment (see text)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R8 4.7kΩ</td>
<td>All ±10%, 1/2W carbon</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Pre-amp</th>
<th>Trigger</th>
<th>Divider 1</th>
<th>Divider 2</th>
<th>Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 0.1µF</td>
<td>C4 0.001µF</td>
<td>C5 0.001µF</td>
<td>C9 0.001µF</td>
<td>C13 0.05µF</td>
</tr>
<tr>
<td>C2 0.1µF</td>
<td></td>
<td>C6 0.001µF</td>
<td>C10 0.001µF</td>
<td>C14 0.1µF</td>
</tr>
<tr>
<td>C3 0.1µF</td>
<td></td>
<td>C7 0.001µF</td>
<td>C11 0.001µF</td>
<td>C15 0.05µF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C8 0.001µF</td>
<td>C12 0.001µF</td>
<td></td>
</tr>
</tbody>
</table>

All capacitors can be paper, polyester or polystyrene types

Transistors

<table>
<thead>
<tr>
<th>Pre-amp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1</td>
<td>TR2 (2N1302)</td>
</tr>
<tr>
<td>TR2 (2N1302)</td>
<td>TR3</td>
</tr>
<tr>
<td>TR4 (2N1302)</td>
<td>TR5 (2N1302)</td>
</tr>
<tr>
<td>TR6 (2N1303)</td>
<td>TR7 (2N1303)</td>
</tr>
</tbody>
</table>

Diodes

D1, D2, D3, D4 OA81 (4 off)

Potentiometers

VR1 25kΩ Linear
VR2, VR3, VR4, VR5 100kΩ Linear carbon
* One potentiometer (VR2) to have built in switch S1, unless a separate on/off switch is used

Dividers 2

<table>
<thead>
<tr>
<th>Pre-amp</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TR8 (2N3705)</td>
<td>TR9 (2N3705)</td>
</tr>
</tbody>
</table>

Miscellaneous

S2 Footswitch single-pole push button push on, push off
RLA 9V relay, two-pole, two-way (see text)
Two-pin socket or two single sockets
Standard jack socket
Standard jack plug
Printed circuit board 4in \(\times\) 2½in
Metal case (see text), knobs
Fig. 2. Waveforms, based on the fundamental tone, appearing at different parts of the circuit
(a) Input signal
(b) Output of Schmitt trigger (TR5 collector)
(c) Output of first divider (TR6 collector)
(d) Output of second divider (TR9 collector)
(e) Output after being fed through RC filter in mixer

Fig. 3. Mixer and filter circuit with relay contact, input, and output connections

Fig. 4. Independent relay circuit. The relay can be any type with two or more changeover sets. Battery voltage and R32 depend on the relay

A potentiometer (VR1) is included to adjust the amplitude of the signal fed into the Schmitt trigger. This is adjusted to ensure that the device works for the quietest notes, but is not sensitive to background noise. The output of the trigger, which is a square-wave of the same frequency as the input note, besides being used for the "fuzz" effect, is fed into two bistable frequency dividers in series. The output of each of these is taken from the collectors of one transistor in each divider.

In the mixer (Fig. 3) the square-wave signals from these dividers are passed through RC filters to produce sine wave signals. These two signals, and the square wave for the "fuzz" effect, are each fed to one of three potentiometers, which are used to vary the combination of signals in the output. The total signal generated by the device is then added to the original signal, which is taken from the collector of TR1, and whose volume is controlled by a fourth potentiometer. The final signal is fed via the output lead to a power amplifier.

COMPONENT NOTES
The pre-amplifier has three transistors, each having its emitter grounded, so as to give maximum gain. If the transistors used have low gains, or the input signal from the microphone or pick-up is very weak, it may be necessary to double the first stage of the pre-amplifier. This is mentioned later.

The gain of the pre-amplifier should be such that the device will oscillate through internal feedback with VR1 turned to the maximum sensitivity position. PNP transistors may be used in place of npn, and vice versa, provided that the battery connections and diodes are reversed. The printed board may also have to be altered.

The battery voltage for the device is given as 9V, but this is far from critical. A separate battery is used to operate a relay, switching the device "in" and "out". The relay is operated by a footswitch, which can be either on the front panel of the Harmonaphone, or in a remote position. The battery voltage for the relay is chosen according to the relay used and a resistor can be included to reduce the relay current if a convenient battery delivers too high a voltage (see Fig. 4).

The transistors used in the trigger and dividers need not be of particularly good quality, as they are only used for switching. Therefore, if substitutes are used for those suggested, a great deal of expense is not necessary.

The transistors in the pre-amplifier, however, should be of reasonable quality. The diodes can be of almost any type and component values in the dividers are not critical.
If the device is not housed in a metal case, it is advisable to use screened wire for some of the longer leads, especially in the input circuit.

CONSTRUCTION AND TESTING

As the circuit is fairly complex, a printed circuit board for the tone generator will greatly reduce the size and complexity of the device. The complete layout for such a board is shown in Fig. 5. All resistors are mounted vertically and transistor connections are planned for 2N1302, 2N1303, and 2N3705 transistors, as stated in the component list. Equivalent transistors may, of course, be used, but the 2N3705 was chosen because it is a small transistor, adequate for use in the divider circuits. In the prototype the printed circuit board was 4in × 2 3/4in and is shown full size.

The printed circuit board should be constructed, wired, and checked. When an input signal, say from a signal generator, is connected to the input, a square wave signal should appear on TR5 output when VR1 is adjusted to a suitable setting. At the same time, square wave signals one and two octaves lower should appear on TR6 collector and TR9 collector respectively.

Care should be taken in connecting the battery, as each side has to be connected at two different points on the board and confusion can easily occur.

Once the tone generator is complete and tested, the construction of a box for the device can be started. A suggested layout for the front panel is shown, as viewed from behind (Fig. 6). The mixer circuit is wired in the box, the tags on the potentiometers providing supports for the components. Both a footswitch and sockets for an external footswitch are shown in the diagram.

If extra contacts are available on the relay, these can be used to switch on the tone generator, in order to reduce battery consumption. This is, however, perhaps an unnecessary precaution and has the disadvantage that the footswitch may accidentally be left in the on position. The use of a separate on/off switch is therefore advisable. This can be combined with a potentiometer, for example, VR2.

If the battery provides a larger than necessary voltage for the relay, a resistor should be included to reduce battery consumption. The value of this must be found by experiment. When a suitable value has been found for a new battery, it should be checked with an old one.
Fig. 6. Layout and wiring of the mixer and relay circuits inside the box. Connections to the printed circuit board are also shown

and reduced if necessary. The actual relay type is not important so long as it has at least two sets of change-over contacts.

Two jack sockets can be mounted on the panel for output and input, or one socket for input and a lead (screened pair) with a jack plug for the output. The leads to the printed circuit board need not be screened if the box is metallic and connected to the earth line.

The board should be mounted in a manner that gives easy access to the back of the panel for alterations or repairs and for this the wires to the board should be long enough to enable the board to be withdrawn a few inches out of the box. If the top of the box faces upwards, it should be checked that none of the components touches the clips on the batteries or the components of the mixer unit or, indeed, the case.

The prototype fitted easily into a metal box, about 6in x 6in x 2in. The front panel was the top face of the box and a hinged lid formed the base of the Harmonaphone. The lid was fastened by one screw, so that the batteries could be replaced easily. None of the wiring under the front panel (the mixer unit) filled the box to a greater depth than the potentiometers on to which the wiring was attached. The potentiometers were mounted so that they formed ready-made battery retainers with the walls of the box (see Fig. 6). The relay was bolted to the side of the box.

The printed circuit board (tone generator) was insulated from the metal base of the box by means of padding, which also protected it against damage. It was found unnecessary to mount the board rigidly in the box. Instead a square piece of foam rubber, about \(\frac{\text{1in}}{\text{3in}} \) thick, was layed over the wiring of the front panel; the printed circuit board was sandwiched between this and the felt padding, which was glued to the lid of the box. Hence the board was both insulated from the wiring of the front panel and the metal box, and was cushioned against blows on the box itself. Also, of course, this arrangement makes access to both the board and front panel wiring very easy.

If one wishes to mount the board on rigid supports, the wiring in the box should be carefully planned and insulated, to ensure that none of it can touch the printed circuit board. Also, provision must be made for bolts or nuts fastening the board to these supports, possibly by making the board slightly larger. The supports
could be fixed to the front panel, but preferably to the lid, so that access to both the board and panel wiring is possible when the lid is lifted. In this case the wires to the board are best made a little longer.

If it is found that the gain of the pre-amplifier is not adequate, either because the transistors used have poor gains, or the pick-up used with the Harmonaphone has a very low output, an additional stage of the pre-amp can easily be added to the wiring on the back of the control panel.

An additional 2N1302 can be supported by soldering its emitter lead to any point connected to earth (negative), either on a potentiometer or the input socket. The original input line is then connected to its collector which is connected through a 4.7 kilohm resistor to the positive supply.

A 22 kilohm resistor is connected between emitter and base, which is connected to the input socket via a 0.1μF capacitor and through a 330 kilohm resistor to the positive supply line. This doubling of the first stage of the pre-amp should, however, be unnecessary if high gain transistors are used. A high gain 2N2926 could be tried.

Finally, rubber feet can be glued on to the base of the Harmonaphone case to prevent it sliding across the floor when the footswitch is used.

SETTING UP

In setting up the device, the pick-up or microphone is plugged into the input, and the output of the device into the amplifier. The amplifier volume is adjusted to the desired level. The on/off switch is then switched on and the foot-switch put in the “on” position.

The “fuzz” volume (VR2) is turned up slightly, then the sensitivity control (VR1) is turned up, while the instrument is being played, until suitable triggering is obtained. Then the “fuzz” volume is turned off, and the direct signal volume (VR5) adjusted to give the required direct signal volume, this being of the same order as that when the foot-switch is off. Then the three other volumes (“fuzz”, first octave, and second octave) are adjusted to give the desired sound.

The best results are obtained with instruments which produce the purest notes. If the harmonics are too strong, the Schmitt trigger may seem unable to “make up its mind” which signal it is responding to. The result is a yodelling sound, as the output changes from one octave to another.

In this case a filter can be put in the input. This will depend on the type of guitar and pick-up and is a matter of experiment. Often a bass-booster or treble-booster, included between the pick-up and Harmonaphone input, will eliminate many unwanted harmonics. If it is intended for use with one instrument only, then the filters found to produce the best input signal can be built into the Harmonaphone.

USE OF THE HARMONAPHONE

In small groups and bands the Harmonaphone provides an excellent means of producing a “full” sound. It may even be used to provide bass when the group is lacking a bass guitar or double bass, but does have an ordinary guitar. Also, it has the advantage that the output sound has only a slight dependence on the input sound. Consequently, even a very simple wind instrument, such as a recorder, may be used to produce a church organ sound if the amplifier, into which the Harmonaphone is plugged, has reasonable echo or reverberation facilities.
Complete precision soldering kit

This kit—in a rigid plastic "tool-box"—contains everything you need for precision soldering.

- **Model CN 15 watts** miniature iron, fitted 3/32" bit.
- Interchangeable spare bit, 3/32".
- Interchangeable spare bit, 3/16".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for storage of lead and plug
- PLUS 36-page booklet on "How-to-Solder"—a mine of information for amateur and professional.

From Electrical and Radio Shops or send cash to Antex. 49/6

CN 15 watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from 840" (1mm) up to 3/16". For 240, 220, 110, 50 or 24 volts.

From Electrical and Radio Shops or send cash to Antex.

Model CN240/2

15 watts - 240 volts

Fitted with nickel plated bit (3/32") and in handy transparent pack. From Electrical and Radio Shops or send cash to Antex.

ANTEX

PRECISION MINIATURE SOLDERING IRONS

made in England

Antex, Mayflower House, Plymouth, Devon

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk iv
SEVEN WAVEBAND PORTABLE
SEVEN TUNABLE WAVEBANDS—
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five
MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size 3½ x 2½ x 1⅛ in. Tunable on both Medium and Long Waves with extended M.W. band for easier tuning of Luxembourg, etc. All first grade components. Easy build plans and parts price list 1/6 (FREE with parts). Total building costs 44/6 P. & P. 3/6

transonia five
MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Size 4 x 2½ x 1⅛ in. 7 stages—5 transistors and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tone moving coil speaker plus Personal Earpiece with switched socket for private listening. Easy build plans and parts price list 1/6 (FREE with parts). Total building costs 47/6 P. & P. 3/9

super seven
THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size 7 x 4 x 1½ in. with gilt fittings. Covers Medium and Long Waves and Trawler Band. Special circuit incorporating 2 R.F. Stages, push-pull output, ferrite rod aerial, 7 transistors and 3 diodes, 3¼ in. speaker (will drive larger speaker) and all first grade components. Easy build plans and parts price list 2/- (FREE with parts). Total building costs 69/6 P. & P. 4/6

roamer six
SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gilt fittings, size 7 x 4 x 1⅛ in. Tunable on Medium and Long Waves, two short waves, Trawler Band plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitve ferrite rod aerial and telescopic aerial for Short waves. All top grade components. 8 stages—4 transistors and 2 diodes including Micro-Alloy R.F. Transistors, etc. Separate on/off switch, volume control, wave change switches and tuning control. Attractive case with carrying handle. Size 8 x 4 x 1⅛ in. approx. First-grade components. Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build. Total building costs 79/6 P. & P. 4/6

NEW LOOK

RADIO EXCHANGE LTD
61 HIGH STREET, BEDFORD. Tel.: Bedford 52367

I enclose £.......................... please send items marked

ROAMER SEVEN □ ROAMER SIX □
TRANSIONA FIVE □ SUPER SEVEN □
POCKET FIVE □ MELODY SIX □

Parts price list and plans for

Name
Address

Callers side entrance Stylo Shoe Shop.
Open 10-1, 2.30-4.30 Mon.-Fri. 9-12.30 Sat.
Roderic (from the Isle of Wight) is constructing a "fuzz box",
Paul (who began his electronic work in Belgium) is working with a digital frequency meter

The increasing demand for technologists, especially in electronics, is evident when scanning the Situations Vacant pages of the National Press. Headmasters of Secondary Schools and Technical Schools are beginning to introduce electronics in some form or other to boys who have a basic interest.

Some Colleges organise special courses in this subject while most tend to rely on the conventional City and Guilds or National Certificate courses. In the former category, the London College of Furniture runs an extensive two year course covering either Pianoforte and Harpsichord Construction and Tuning, or Electric and Electronic Musical Instrument Technology. The latter is an intensive course covering design and servicing, leading to the College Diploma and possibly the Graduateship of the Institute of Musical Instrument Technology.

The syllabus includes lectures from well-known experts who visit the College, including David Mawn, Ralph West, William Walker, Gerald Van Epps, Derek Underdown, R. Twydell, and L. R. Avery (all well-known in this field) as well as others who are experts in special branches.

Students have visited various firms who manufacture electronic musical instruments, such as the Hammond Organ Co., Selmer, Livingston, Hohners and Hill, Norman & Beard (pipe organs) as well as seeing educational films. A recent special course for service engineers was attended by forty men from all parts of the country, and ten firms sent their organs for demonstration by their leading designers; this was at the request, and had the full support, of the Association of Musical Instrument Industries.

The Lecturer in charge of the Musical Instrument Technology section, Mr J. W. T. Roope, will be pleased to offer any further information if interested readers would write to him at the London School of Furniture, Pitfield Street, London, N.1.

Students from London, Wales, Cornwall and Cyprus working on their various projects
Last month's article outlined the electronic methods used to determine depth, pressure, temperature, and salinity of the ocean. Special studies will now be described, including water flow speed (current), light absorption, topography, chemical analysis, and gravitational influences.

CURRENT MEASUREMENT

Originally current measurement was a simple task, one merely had to take down the sails of the survey boat and observe the drifting of the boat. However, the modern oceanographer is interested not only in surface currents but also those at all depths below the surface.

There are two distinct problems to be tackled here. First, path measurements, the following and charting of entire currents and measurement of current velocity in different places along the current. This may be done by a series of methods, including the use of polythene envelopes and weighted bottles, which rely on the assistance of fishermen, who recover the objects, record their position and time of recovery, and send them back to the research station.

For deeper work, a reject parachute or metal drogue may be moored to a radio buoy and pulled along by the current.

For accurate path measurements a "swallow float" is used. This is made up of two hollow metal tubes, one of which carries the electrical apparatus necessary to work a "pinger" and the other is weighted carefully in such a way that it maintains the required depth.

The pinger is a simple device (Fig. 12), giving a repetitive audio "ping" through the water. C1 is charged to 360V via R1. C2 is charged via R2 to the trigger voltage of the discharge tube, causing the tube to conduct, discharging C1 through the transducer, and discharging C2 to restart the cycle. The resultant output causes the transducer to go into severely damped mechanical oscillations of about 10kHz, giving a sound in the water similar to a muffled bell.

The repetition rate of the ping is controlled by the time constant of R2C2 and is of the order of one ping per second. By using two vertical arrays of hydrophones below a ship, the depth and position of the float may be followed from some distance away.

The second set of current measurements required are flow measurements—the variation of current velocity and direction with time at one point in the sea. The main problems involved here are those of mooring a current meter in one position, as mooring wires must be slack enough to allow for tidal and wave motions. However, once these problems are overcome, electronics offers us a variety of means for measuring currents.

CURRENT METER

The typical current meter has a layout similar to that of the salinity, depth and temperature probe described

![Fig. 12. Acoustic pinger](image1)

![Fig. 13. Direction transducer for current meter](image2)
earlier. Again, three frequency channels are used, for current direction, velocity, and depth. The depth sensor is usually a vibrotron as on the s.t.d. probe.

The current direction indicator consists of a compass needle stuck to a shaped card (Fig. 13). As the meter rotates due to the action of the current on its direction fins, the compass “follows” the North and South poles and the areas of the photocells illuminated by a light above the probe are varied. This alters the ratio of the resistance of one cell to that of the other cell, which in turn controls the frequency of the Wien bridge oscillator network—hence we get the direction of current analogued by the frequency of a signal.

The current is made to turn a savonius rotor (interlocking semi-cylinders, a form of rotor which is more sensitive than an ordinary propeller) which operates a series of switches via a magnetic coupling through the hull of the meter. These switches key a 100kHz oscillator, the pulses from which operate a 5.5kHz standard telemetry frequency. Hence in this case the information (current velocity) is given by the frequency of pulsing the carrier signal.

The three frequencies (including one for pressure) are fed up a cable via a swivel transformer. Coils are wound on each half of a split core, each half of which may rotate freely with respect to the other whilst maintaining electrical coupling to allow the meter to swing in the current.

Alternatively the frequencies may be stored on magnetic tape, dispensing with the need for heavy swivel transformers which may create a serious weight problem when many meters are on the same hawser. The discriminated signal may then be fed on to an X1, X2, Y recorder to give a plot of current and direction versus depth, or versus time at a known depth. The depth sensor is necessary due to the drifting of the hawser from the vertical position.

The circuit involves a simple self-latching relay device (Fig. 14). The relay switches on the flash and motor and changes the pinger rate. On completing the film wind-on, the motor switches off the relay (hence resetting the latch) and subsequently switches off itself.

Two more parameters, which are really geological, are the variations in the earth’s gravitational and magnetic fields with position on the surface. Ocean floor surveys of these parameters are very rewarding to the oceanographer, and the techniques used are worthy of mention here. The problem now is not to penetrate a hostile environment to take the measurements, but to measure minute but long period changes in the face of large and relatively short period fluctuation of the values to be measured.

For example, whilst the ship has been steaming for 15 minutes the acceleration due to gravity may have changed sufficiently to be measured, but during that time the apparatus on board ship will have been subjected to accelerations due to wave motion of up to 10,000 times gravity.
greater than the actual gravitational variations, say, once every 10 seconds. This difficulty is overcome by damping.

Fig. 15 shows a simplified gravity meter. The angle of the heavy pivoted boom varies with gravity. If it tries to move too quickly the magnet will induce eddy currents in the aluminium which damp the motion. In this way wave motion can be reduced by a factor of $1/250$ for a 6 second period. An electrical filter may then reduce this still excessive "noise" by $1/10,000$ or more.

The magnetic field variations across the Earth's surface are measured by variations in the rotational frequency of a proton about the field. This frequency is in the audio range.

Water is a good source of protons (hydrogen atom nuclei), and a plastic bottle full of it is towed behind the ship in a "fish" about 30 ft below the surface and far enough behind the ship to be out of range of its magnetic field disturbances. Rotation of the protons is stimulated by applying a very strong polarising field and removing it suddenly.

Direct current is passed along the cable to the "fish" (Fig. 16) where it polarises the coil until the relay switches the coil over to the cable preamplifier. The resultant rotational frequency is then amplified on board ship and passed into a pulse shaper. Dividing by 500 creates spaced pulses which are used to start and stop a counter fed with a 1MHz stabilised signal.

If the frequency of proton rotation is f, the interval between start and stop of the counter will be $500/f$ seconds, and so the count will be $10^6 \times 500/f$. This may be conveniently recorded on a digital readout, ready for computerisation. The initial voltage of each signal is about one microvolt, and this decays very rapidly (decay time of about 2.5 seconds), so the amplifiers must be tuned to the limits of the frequency variations to try to reduce noise.

ELECTRONICS IN CHEMICAL OCEANOGRAPHY

Chemical analysis techniques as applied to oceanography are becoming constantly more refined, and the chemist is relying more and more upon electronics.

The main use of electronics here is in temperature and light control, although there are other important uses. For example in a sensitive technique known as gas-liquid chromatography, the sample to be analysed is carried as a vapour in a stream of hot nitrogen through a tube packed with an absorbant powder coated in a suitable liquid solvent, which has the ability to separate the chemical components of the sample.

The tube, or column, must be kept either at an accurately constant temperature or else the temperature must rise at an accurately known rate. This is achieved using an electronic temperature programming unit.
which relies on an accurate thermostatic device linked with an electronic clock.

Once the components of the sample are separated they must be detected in the issuing nitrogen stream. The stream is passed through a hydrogen/air flame, and when one of the sample components passes through the flame it burns up, ionising the flame and hence lowering the electrical resistance of the flame. This causes the applied voltage across the flame to vary with the amount of sample in the flame at different times. This voltage is recorded against time on a pen recorder, giving a series of peaks, each one representing a component of the sample.

As well as a visual indication of the composition of the sample, a measure of the relative quantities of the components may be obtained by attaching an integrator to the recorder input. When the signal from the recorder passes a certain "cut-off" level above the ambient signal, the integrator switches the signal via a d.c. amplifier to a sawtooth (RC) oscillator, the frequency of which is determined by the signal voltage.

The output is shaped, amplified and fed to an electromechanical counter, which changes the figures on a printing block. Hence the larger the signal the greater the frequency, and the greater will be the count over a given period of time.

When the signal drops below the cut-off level, the counter automatically prints the count on to a tape. This print-out is directly proportioned to the weight of the component in the sample. The figures are then easily converted to a percentage composition which is most useful in this sort of analysis.

CHEMOSTAT

Digital readouts and integrators are very useful additions to many precise chemical analysing machines in which the required parameter is represented by an analogue voltage. However, as mentioned earlier, probably the most important electronic units in analytical chemistry are light measurement and temperature control units.

An interesting device which requires both these units is the "chemostat". One important aspect of chemical oceanography is the chemistry of marine life, in particular the minute plant-like organisms called phytoplankton. The chemostat is a device for growing these organisms in the laboratory.

Sea water in which these organisms are growing is turbid, and the population density of the growing culture may be estimated by measuring the absorption of a beam of light passing through it. They must be kept thermostated fairly accurately as they are quite delicate creatures.

The chemostat unit consists of three jars, one containing the sterile nutrient solution that the plankton require, connected via a syphon and a magnetic valve to the second vessel which contains the growing culture. This is illuminated by daylight tubes (phytoplankton are photosynthesisers like land plants) and kept at a steady temperature by a thermostating system.

Through the culture vessel a beam of light is passed so that it activates a photocell, the resistance of which forms part of a resistance bridge circuit. The output of this bridge is applied to an amplifier.

When the light intensity drops below a certain level corresponding to the optimum maximum growing density of the organisms, the amplifier causes the magnetic valve to open which causes the nutrient solution to enter the culture flask, replenishing the stock and sweeping the grown organisms into the third vessel, from which they may be periodically harvested.

The thermostat bath may contain a number of these units all operated from a central control device.

OTHER TECHNIQUES

The systems described above are, of course, just a representative sample of the direct uses of electronics in oceanography. There are also indirect uses such as radio-navigation, which enables the accurate fixing of survey spots in the ocean without having to resort to the stars as a means of navigation. Satellite telemetry can provide the rapid accumulation of results from a number of survey areas with the use of computers to analyse results.

Detailed examination of these techniques are, however, outside the scope of this article, the purpose of which is to illustrate the close link-up necessary between the two rapidly growing sciences of oceanography and electronics.
THE introduction of the electric fence was a milestone in farming progress. It offers a simple and inexpensive way of controlling livestock on a large scale, and can make the best use of available land. A typical installation will consist of a single run of bare wire, mounted at a height of approximately 3ft and supported by means of insulators on thin metal or wooden posts spaced about 20ft apart. The fence can be quickly set up or re-sited.

The fencer unit itself is usually battery powered and feeds a high voltage, low current pulse to the wire, at intervals of one to four seconds. Rechargeable accumulators, dry batteries, and air oxygen batteries give continuous day and night operation from three weeks up to six months depending on battery type and size. A single fencer unit is capable of energising a fence several miles long, if the post insulators are in good condition.

INTIMATE CONTACT

The fence relies for its action on intimate contact between the wire and the skin of the animal, especially in dry weather. The wire is therefore kept in tension, at a height where the animal must push hard against it when trying to pass through. Cattle quickly find that the wire can administer a sharp "sting" and learn to keep away from it, but animals insulated with thick hair or wool, such as sheep and some goats, may require a two strand fence for effective control.

The old type fencer employs a set of make and break relay contacts to establish a low voltage pulse in the primary winding of a step-up high tension transformer, and is characterised by an audible ticking sound when in action. However, the trend is now towards a new generation of all electronic fencers, where switching is performed by semiconductors. Such circuits bring economies in current consumption and increase the long term reliability of a fence.

SIMPLE PULSE GENERATOR

The silicon controlled rectifier, or thyristor, is a rugged device with a good current handling capability. However, once switched on, it can no longer be controlled by a gate signal and it is necessary to cut off the supply to reset the thyristor to its non-conducting state.

The function of the circuit shown in Fig. 1 is to obtain a train of high voltage pulses from the thyristor SCR1 by causing it to oscillate. When the battery is first connected, SCR1 will not be conducting and capacitor C1 will commence to charge relatively slowly through resistors VR1 and R2. When the potential across C1 equals the knee voltage of the Zener diode D1 plus a small voltage dropped across the thyristor gate junction the gate will go positive and SCR1 will suddenly switch on.

C1 is rapidly discharged into the low impedance winding of T1, and causes a steep sided, high voltage pulse to be developed in the transformer output winding. With C1 momentarily discharged, the voltage across SCR1 will be low. At the same time, due to the fast switch-on speed, overshoot occurs in the transformer winding, driving the thyristor anode negative and switching it off.

Thereafter the process will repeat, for as long as the battery is connected, and at a rate governed by C1 and the total resistance of VR1 and R2.

ELECTRONIC FENCER UNIT
DISADVANTAGES

Although Fig. 1 is a useful circuit, it does suffer from a number of disadvantages when considered for use as a fencer. As BY1 approaches the end of its useful life, and begins to drop in voltage, so the pulse rate alters.

A point will be reached where D1 no longer conducts and the circuit stops functioning. Also, spreads of thyristor sensitivity and Zener leakage resistance may necessitate individual adjustment of R1. In unfavourable circumstances the battery standing current consumption could be high.

T1 in Fig. 1 is a standard 90:1 pentode output transformer, of the type found in old attaché case portable radios. Note that the windings are here reversed, with the 3 ohm speaker winding acting as the primary.

Although the arrangement gives a good shock to the human hand, the voltage generated is hardly adequate as a deterrent to large animals with thick hides or long hair.

FENCER CIRCUIT

In the circuit of Fig. 2, the Zener diode of Fig. 1 is replaced by a unijunction pulse generator, and the pulse rate is now virtually independent of supply voltage. Notice also that the supply voltage is increased to 18 volts and the transformer ratio is now 1:250. Gate resistor R3 is only 10 ohms in the new circuit, low enough to ensure consistent operation over a wide range of thyristor sensitivities, and inter-base resistances of the unijunction transistor TR1.

When S1 is closed, C2 will charge through R4 to almost the full positive rail potential. Meanwhile, C1 is slowly charging through R1 and VR1. When TR1 triggers, C1 is quickly discharged through the emitter/base 1 junction of TR1 and R3, and a positive going pulse is applied to the gate of SCR1. This then conducts and C2 discharges into the transformer winding; the negative going spike will switch the SCR off, as with Fig. 1 circuit. VR1 and R1 determine the rate of charge of C1, and hence the pulse repetition rate. VR1 will allow adjustment of the pulse rate from one pulse a second to one every five seconds.

T1 is a modified output transformer of the type mentioned earlier, or may be specially wound. Full transformer details will be given in the next section.

With this circuit it is possible to generate sparks up to 1½in in length, but for fence purposes a spark of 1 or 2 millimetres is sufficient. If the fence voltage is too high, this could cause tracking across insulators in damp weather, and consequent shorting. Output voltage is regulated by a pre-adjusted spark gap.

The fencer circuit will give a useful output down to less than half the specified supply voltage, and will only stop operating when the batteries are virtually exhausted.

Several types of thyristor were tried in the fencer circuit, and all worked reliably. Generally speaking, a thyristor with a peak inverse voltage rating of 50–100 volts, and a current rating of 0.75–2 amps would be suitable.

There is no point in using a large thyristor with threaded screw mounting as wire ended types are preferred. Equally, a high priced thyristor would be a luxury, and the circuit is designed to tolerate inexpensive, unmarked devices, provided that the one employed is not faulty but only suffers a spread in characteristics.

TRANSFORMER

T1 can be a modified Wharfedale OP3 output transformer, prepared in the following way. Firstly, carefully unsolder the transformer leads and remove the tag panel complete with metal lamination cover. The 30:1 and 60:1 primary tappings are not used, so these leads may be cut short. To avoid dismantling the lamination stack, carefully slit and remove the bobbin outer insulation layers. The transformer secondary windings will now be exposed, consisting of about 28 turns of enamelled wire.

Remove most of the secondary by repeatedly threading the wire through the gap between the bobbin and the laminations, until ten turns remain. Cut short the loose end of the wire and terminate between a new layer of outer insulation. Lengthen the other transformer leads, if necessary, with extra wire and sleeving, taking care that the inner primary winding outlets are well spaced from each other and the laminations. All four leads may be anchored by tying to the bobbin with thin thread.

The next stage is to improve transformer insulation and damp resistance by dipping in a bath of hot paraffin wax. Candles can be melted in a small tin, which is removed from the source of heat when the resulting liquid is quite hot, taking care that the wax bath does not catch fire.

Totally immerse the transformer in the wax; it will be seen to bubble quite vigorously as the trapped air expands. Remove from the bath when all bubbling has stopped, and leave to cool. Bobbin slots may be sealed later by brushing with hot wax.
COMPONENTS

Resistors
R1 82kΩ
R2 1kΩ
R3 10Ω
R4 1kΩ
All 10%, 1/4 watt carbon

Potentiometer
VR1 250kΩ preset vertical skeleton

Capacitors
C1 15μF elect. 25V
C2 500μF elect. 25V

Transistor
TR1 2N2646

Thyristor
SCR1 C106F1 (Rastra Electronics Limited, 275 Kingstreet, Hammersmith, London, W6) or similar type (see text)

Transformer
T1 Wharfedale OP3 (see text)

Batteries
BY1, BY2 9V Vidor VT7 or Ever Ready PP7

Switch
S1 Single pole, on-off slide switch

Miscellaneous
Metal box 4in × 4in × 2in internal (see text)
Feed-through insulator 1/2in × 1in (Denco)
Copper clad s.r.b.p. board 4in × 2in
Two pairs of battery press studs

FENCER CONSTRUCTION

An etched circuit was considered worthwhile for a project of this type, to give extra rigidity where the circuit may be required to operate for several years out of doors in fairly arduous conditions. If the larger OP3 transformer is used it can be fixed to the etched panel by epoxy resin glue, to save the small amount of space normally occupied by the transformer frame.

To do this, remove all wax from the base of the lamination stack with a small wire brush, and similarly clean the area of circuit panel where the transformer is to be positioned. Apply a layer of resin mixed with hardener to the panel and laminations, and hold the transformer temporarily in place with a rubber band. The joint will harden very quickly if the assembly is placed on the top of a warm stove.

Mount the other components as in Fig. 3, taking care to observe the correct connections to TR1 and the thyristor leads, also the polarities of C1 and C2. Note that SCR1 is bent to one side to avoid contact with the high voltage terminal on the top of the fencer case.

The spark gap consists of two short, bare wires, from trimmed resistor leads, bent as shown in the diagrams. These spark gap wires should not be allowed to touch each other. Two 4B.A. solder tags are soldered to the negative copper lands on the underside of the circuit panel to serve as mounting brackets, as depicted in Fig. 4.

When the circuit panel is complete, but before fitting the high voltage output lead, it can be tested. Set the spark gap to about 2mm, and VR1 to mid-position.
Place the circuit panel on a spare piece of s.r.b.p., to prevent flashovers, and connect the batteries to the panel via a 0–30mA or 0–50mA meter and a switch.

On switching on, the current should rise to just over 10mA, then fall to approximately 3mA, whereupon a flash will occur across the spark gap and the current will again rise quickly to slightly more than 10mA, and the process repeats itself. The average current demand works out to around 7mA, depending on the pulse rate setting of VR1.

FAULT FINDING

If the current falls to 3mA or less and remains steady at that level, SCR1 will not have fired. First check that the unijunction transistor oscillator is functioning by connecting a pair of headphones, or a voltmeter, across R3 (Fig. 2). A regular "click" or meter needle "twitch" should be observed. It may be that the thyristor is of very low sensitivity, in which case the circuit should start to operate satisfactorily if R3 is increased in value to not more than 56 ohms.

Assuming, on the other hand, that SCR1 has triggered once, and has produced a single spark, but then refuses to re-set itself, this will almost certainly be caused by a thyristor of abnormally high sensitivity. Incidentally, the unit should continue to work when the transformer output terminal is shorted to earth. In the absence of a spark, a "click" will be heard from the transformer laminations. If it does not work when the output is shorted, this will again point to a thyristor of very high gate sensitivity as a likely cause of malfunction. Another indication of failure to re-set will be a steady standing current consumption of about 18mA. Although R3 has been selected to cater for a wide range of SCR sensitivities, the only cure for lack of re-set is to reduce R3 to approximately 5 ohms.

It is emphasised that the above faults will only be present where the thyristor characteristics are at extreme limits, and the circuit should work “first time” in the majority of cases.

INSTALLING THE PANEL AND BATTERIES

The fencer panel and batteries will fit into a standard metal conduit box as used in the electrical trade. Details are given in Fig. 4. It is an inexpensive box, and, as such, needs to be waterproofed at the corners, to prevent rain from seeping onto the circuit panel. Any cracks may be filled with putty, or with epoxy resin, and the joint between the feed-through output terminal and the box must be rendered leakproof.

Temporarily position the batteries and circuit panel inside the box and mark circuit panel mounting holes. A layer of thin s.r.b.p. strip is interposed between the underside of the circuit panel and the battery terminals to prevent short circuits.

Drill and file the box to take the high voltage output terminal, the two circuit panel mounting screws, SI, and the earth lead. The box can be sprayed afterwards with cellulose paint from an aerosol, to give a good finish and protection from the weather.

After fitting the short orange output lead to the circuit panel, mount the panel to the back of the box with two 4B.A. screws and nuts. The battery leads should be tucked between panel and box corner. Mount the feed-through terminal and connect to the orange lead. Fit SI and wire it in series with the positive red lead from the circuit panel.

Next, cut the battery leads to the right length and solder on the battery connectors. With the batteries in place under the circuit panel, check that the fencer works when SI is closed. Where metal covered batteries are employed, the SI terminals should be protected by a layer of insulating tape.

It only remains to fit a cork waterproof gasket to the inside of the box lid, and attach the earth lead. A metal meat skewer will serve as an earthing rod.

SETTING UP THE ELECTRIC FENCE

Insulation of the fence wire should be of the highest possible quality, consistent with low cost. Ordinary ceramic aerial egg insulators are excellent for mounting an electric fence wire to posts, as depicted in Fig. 5, and are widely used by farmers. Other types of insulator can be obtained from firms marketing electric fence units.

To achieve a high output strength with very long runs of fence, insulators should be cleaned every six months or so. Also, long grass or weeds must be cut back to prevent them touching the fence wire and reducing output strength.
The traditional method of testing a fence is to touch it with a long blade of grass. As the length of grass between the fingers and the wire is reduced, the shock experienced by the fingers will increase, and this gives a very rough estimate of pulse strength. Beware of doing this test in the rain, if not fairly immune to electric shocks.

The prototype fencer was checked with a proprietary electric fence tester, consisting of a control, calibrated from 0-6, and a neon bulb, contained in a small insulated tube. An output of strength 6 was obtained on a short fence, with the full complement of batteries, in dry conditions. The output fell to strength 1 when the supply voltage was reduced to 9 volts.

Further tests were then made, in wet conditions, on a long run of fence in daily use on a dairy farm. The prototype fencer gave an output corresponding very closely to the output from a standard size fencer, when coupled to the same fence.

The fencer unit can either be coupled to the fence wire with a lead terminated by a crocodile clip, as in Fig. 5, or else a simple aluminium bracket with slots, shown in Fig. 6, will allow the fencer to be suspended from the wire where it is supported by a post insulator. Normally, the spark gap will give an indication that the fencer is operating correctly since, if there is a short on the fence wire, or if the batteries are low, the "click" from the spark will not be audible. A final tip, in very dry conditions it may be necessary to pour water on the soil around the earth rod, to maintain a good connection.

AMORPHOUS SEMICONDUCTOR DEVICES

By Dr. R. F. Shaw
(Cavendish Laboratory, Cambridge)

A discovery in solid state physics that could have large scale repercussions in the electronics industry by making possible a relatively simple and inexpensive rival to the conventional semiconductor switch

The idea of a semiconducting device with an amorphous material, or glass, as the active element of the device is relatively new. The recent announcement by S. R. Ovshinsky of Energy Conversion Devices Inc., Troy, Michigan, of two such devices has aroused considerable interest.

ATOMIC STRUCTURE

Before describing these devices we should first look at a glass and see why it differs from the single crystal with which conventional semiconductor devices are made. Glasses, unlike most other materials, are not crystalline but are more like extremely viscous supercooled liquids. The atoms in a single crystal are bound in a very definite geometrical relation with all other atoms in the crystal, Fig. 1. However in a glass, due to its liquid like nature, there is very little long range order but there does exist considerable short range or nearest neighbour ordering, Fig. 2.

Quantum theory predicts that as a result of regular spacing of the atoms in a crystal an electron when described by a wave will have a definite wavelength and may move long distances in the crystal before it is scattered. In glasses, due to their irregular or aperiodic structure, the electron motion is severely restricted and may be only from atom to atom being scattered each time.

A crystalline semiconductor has very well defined energy states which an electron may occupy. If one knows these states or levels and their concentration in the crystal he can accurately calculate and predict the electrical and optical behaviour of the crystal. Some of these states are caused by impurities and defects in the crystal. By starting with a very pure crystal one may control its conductivity and the majority carrier, that is n- or p-type, by controlling the concentration of deliberately added impurities or dopants. The concentration is extremely critical and needs to be controlled to better than one part per million.
CONDUCTIVITY OF GLASSES

Glasses as a consequence of their structure do not have the well defined levels as in crystals. Instead the number of these states is much larger and they are exponentially distributed in an energy continuum. Because these levels do not extend through the crystals they are termed "localised states". The conductivity of glasses are determined mainly by the constituents of the "glassy" compound and may range from 10^2 ohm-cm to 10^{10} ohm-cm. Because of the localised states the addition of small amounts of impurities (up to a few per cent) has little effect on the conductivity. Radiation damage, which disrupts the lattice of a crystal resulting in large changes in its electrical characteristics, has little effect on amorphous semiconductors due to their inherent disorder.

In a switch of the type announced by Energy Conversion Devices Inc., the fabrication is very simple compared with conventional semiconductors. It consists of a thin film of the glass between two electrodes. The devices can be either of the form of two wires embedded in a glass bead and separated by a few microns, or as an evaporated—or “sputtered”—sandwich configuration consisting of an evaporated metal film, then the glass film, and finally another metal film as the top electrode. The electrodes are generally metal, but may be some other material such as graphite. The glasses can also be of different kinds. For instance, the Ovshinsky device uses a glass containing tellurium, arsenic, silicon and germanium, while in work at the Cavendish Laboratory the author has observed switchinge in amorphous arsenic triselenide.

BISTABLE OR MEMORY SWITCH

The phenomenon of switching can be described by the current-voltage characteristics of a device, Fig. 3. Take the bistable or memory switch now available from Energy Conversion Devices Inc. As the voltage across the device is increased from zero, the current also increases slowly in an ohmic fashion up to a threshold voltage, V_T. Up to this stage the device has a high resistance, of the order of megohms. Once V_T is exceeded the resistance drops extremely rapidly to just a few ohms. The former is termed the high resistance or “off” state, and the latter, the low resistance or “on” state—hence the name “switch”. This conducting state is believed to be due to conducting filaments formed due to high fields. They are thermally disrupted by the high power “erase” pulse.

Once the bistable switch is in the on stage the voltage may be removed and re-applied without changing the state, while the device may be switched back to the off state by a high voltage, high current pulse. The device therefore has the ability to function as a memory element for binary notation with the advantage of being capable of interrogation without destroying the existing memory state. This property is not exhibited by any present computer memory element. The ease of fabrication, very small size, low power consumption, fast switching speeds, and unique memory properties promise an interesting future for these bistable switches in computer memories and other applications demanding a memory state.

ASTABLE SWITCH

The other switch, the astable switch—such as the Ovonic threshold switch—has similar high and low impedance states. As the applied voltage is increased up to V_T the device is in the off state, Fig. 4. Once V_T is exceeded, the device switches to the on state in less than 1.5×10^{-10} seconds. As the current is reduced below a characteristic value, termed the holding current, the device switches back to the off or high impedance state. There is no memory state in the astable switch since it switches back to the high impedance state before the voltage can be reduced to zero. This behaviour is thought to be due to a tunnelling process, holes tunnelling at the anode and electrons tunnelling at the cathode.

The astable switch will find use in computer logic circuitry where fast switching is essential, in trigger circuits, as transient voltage and arc suppressors, and as staircase and other waveform generators. Other applications are being intensively investigated for military uses. One promising potential use is to provide an economic way to switch hundreds or thousands of individual electroluminescent elements in visual displays—such as a flat screen display for television that could conceivably be hung on the wall like a picture.

A.C. OR D.C. OPERATION

One of the important distinctions between these new devices and conventional crystalline devices is that the former are symmetric. Conventional semiconductor devices must be operated on d.c. and the correct polarity is essential. On the other hand the amorphous devices are symmetrical and exhibit the same properties regardless of the direction of the current flow. As a result, they may be operated from either a.c. or d.c., further enhancing their uniqueness as circuit elements.

Fig. 1. Atomic arrangement in a crystal
Fig. 2. Atomic arrangement in a glass
Fig. 3. Current/Voltage characteristic of memory switch
Fig. 4. Current/Voltage characteristic of threshold switch
Now that the dates and venue for this year’s Audio Festival and Fair have been settled (October 16 to 21, Olympia, London) the first question likely to be put by many hi-fi enthusiasts is: "How will the intimate atmosphere of the living room be simulated?" Mr. C. Rex Hassan, the organiser, assures us that foreseeable problems are not insurmountable when one considers the success of a similar show in Germany in comparable conditions.

The extended floor area available for display booths will doubtless be welcomed by most exhibitors, but does this mean that each will be fighting for competitive prominence in proportion to stand size, as is frequently seen at electronics trade shows. We are rather inclined to think not in view of the expense involved in special acoustic treatment to demonstration rooms. We can only wait and see!

Whilst we have become accustomed to the Easter holiday day out for this function in the past, it is often a puzzle to wonder "why in the Spring?"—just when people are on the threshold of seasonal outdoor activities.

Now if you turn up the diary of events, you can do the Motor Show and the Audio Fair in one day (bless your feet!) and take in the Photo-Cine Fair as well. Come to think of it, the Motor Show should be best timed for the Spring, but not at Hotel Russell, please!

AUTO-AUDIOPHILE

Hi-fi and stereo can be found in some cars these days—so they say. This may be fine for some, with adjustable reverberation (window winders), hum (engine), built-in cabinets (boot), and background noise (horn) but what about stereo! Speakers port and starboard, balance control indicator (speedo on 50), and three-dimensional sound effects outside as well as inside. The mind fair boggles! Still they could run the Audio Fair with the Motor Show, but this is sacrilege of a very high order.

FIRST I.C. F.M. TUNER

Probably one of the most interesting recent innovations is the first use of two integrated circuit packages in the Truvox f.m. tuner. These provide the basic requirements of the i.f. amplifier and f.m. demodulation stages, but they still require the addition of tuned transformers, capacitors, and supply resistors. Although size is not important in domestic equipment, the use of integrated circuits offers a considerable economy in assembly and testing procedures in the factory when compared with discrete component methods. Reliability is considerably improved as well, because the encapsulation protects a large portion of the circuit from environmental hazards.

Both integrated circuits used here come from R.C.A. The first is a wide-band amplifier type CA3012 with built-in power line regulation. Inside this tiny package (a little more than 8mm diameter) are the equivalent of 10 transistors, 7 diodes, and 11 resistors, giving 65dB gain at the 10.7MHz i.f. The second I.C., type CA3014 incorporates a three-stage d.c. amplifier-limiter, power line regulator, and components suitable for the f.m. ratio detector, with a Darlington pair output.
Sensitivity of the tuner is $2\mu V$ for 30dB quieting; 85dB i.f. rejection; 55dB image rejection; 50dB a.m. rejection; 30dB stereo separation at 1kHz; frequency response ±1dB from 20Hz to 15kHz. A stereo decoder and f.e.t. front end is incorporated and the price, matching claimed performance, is £59 10s.

SUPERSEDED RANGES

Armstrong have also produced a new a.m./f.m. tuner (type 523, £51 10s) and f.m. tuner (type 524, £39 10s). These will supersede the established 423 and 424 tuners and incorporate built-in stereo decoders and tuning indicators. The new 521 stereo amplifier (£52) has high and low pass filters for controlling rumble and hiss and a socket for stereo headphones. The use of symbols rather than words for the various controls is part of the current practice of international interpretation to help overseas buyers.

Three new items that were introduced at the Dusseldorf Hi Fi 68 Exhibition are the Goldring G800 Super E free field stereo magnetic cartridge (£25 11s), Lenco stereo pre-amplifier type VV7 for magnetic cartridges (£8 10s), and the GL75/P transcription turntable in teak cabinet and Perspex dust cover (£44 2s 8d).

Finally, a note on purchase tax. Readers will know that the “regulator” increase in purchase tax was imposed by the Chancellor of the Exchequer in November. Allowance should be made for this on the prices quoted in this article where applicable.
In the last article the reader will recall that it was said that this month we would attempt to introduce yet another faculty into our model—that of self-mutual recognition. In real animals this ability can of course be founded on quite complex learning sequences. We however, shall consider its exemplification from a point of view which only borders on this; a sort of reflex in fact.

We shall first consider the basic modifications that must be made to the breadboard model, and then discover the rather narrow range of characteristics it will display. Following upon these experiments we shall examine the possibilities for improving its differential acuity.

REQUIRED CHARACTERISTICS

Before attempting to incorporate this new ability, we must obviously settle on which of its special senses we require the model to recognise with. Also just which characteristics of a stimulus we expect it to respond to. Indeed, it may actually respond to stimuli in ways which we did not expect, so it is important that we realise just how specific we want the model to be.

Unless we expect the model to be very particular about what it “recognises”, we can only allow ourselves to be content with the impressions perceived through the already extant sensing apparatus. Put in another way, the “front end” of the model must of necessity have the ability to sense as many separate characteristics as possible, in order that a sensible vocabulary of classifications may be built up. To justify anything like the competence exhibited by biological examples, it would without doubt be essential to incorporate whole matrices of artificial neurons involving hundreds of thousands of individual cells. For the purposes of the amateur constructor, to build anything even remotely approaching this would of course be quite out of the question.

There are some compromises which can be accepted however, and these will be examined later. In the meantime though, we shall see to what degree the model (with as few changes to its anatomy as possible), can be apparently encouraged to produce something like the desired effect.

PHOTO-SENSE

To begin with then, let us consider how a type of recognition might be elicited through the agency of our model’s photo-sense. It must be appreciated, of course, that at best this sense in its present state is rather raw so far as being specific about quality of stimuli is concerned. However, this need not bother us, for at this stage any reaction on the part of the model in response to its “presence” would be a great enough temptation to admit of a recognition process.

In Fig. 4.2 the reader will see all the modifications necessary to bring about a sort of “recognition” in the existing breadboard model. But first look at Fig. 4.1. This shows in “A” how the schematic looks at present: the port and starboard sensors pulling their respective sides of a bistable “down” and producing a negative drive to the opposite “muscle” circuit, and positive pulses for the neutral stimulus part of the “learning” circuit.

This configuration has been adequate up till now, but in order that the new faculty can be sufficiently demonstrative and yet still preserve the existing functions, a few changes are necessary (“B” in Fig. 4.1). If the model is to recognise itself, we would expect to obtain some form of reaction to placing a mirror in front of it. This in fact occurs when the new circuitry is added.

RECOGNITION CIRCUIT OPERATION

In essence, the recognition circuit (Fig. 4.1 and Fig. 4.2) comprises a pilot lamp LP1 which can be controlled by the sensors and bistable via a mirror. The pilot lamp (in the emitter circuit of TR23 and normally on) is mounted in a reflector (a torch type would be ideal) at the forward end of the breadboard and is angled down (see Fig. 4.3) so that at a certain distance from a mirror placed in front the lamp beam would be directed at both sensors.

Once the sensors detect this condition both sides of the scansion bistable are driven “up” (i.e. collectors of both TR10 and TR11 go positive—a bistable will do that if “forced”); the result is that TR18 and TR19 are switched off, hence their common collector point goes to almost rail potential turning TR21 of the recognition
To muscle control circuits

Exposure
MUM +01
input pulse

LAMP
DRIVE

To muscle control circuits
-ve drive (individually/both)

B

LP1
Pilot lamp

To bot muscle control

RECOGNITION MONOSTABLE
-ve drive individually if both channels are driven

Fig. 4.1. Photo-sensing and scansion bistable. (a) existing arrangement. (b) after modification for “recognition” faculty

Fig. 4.2. Circuit diagram of the photo-sensing and scansion bistable with additional “AND” gating for recognition function. The value of C11 must be adjusted according to delay required and inherent backlash in drive system

monostable on. TR22, TR23 controlling the lamp are thus turned off and the source of illumination is extinguished. Simultaneously, as the collectors of TR10 and TR11 go positive, a reverse command is given to the muscle circuit and the model retreats. The command is strictly given by the recognition monostable. This is necessary since a short delay is required in order to observe the “recognition” effect.

However, the model will not back-away for long because the lamp has been extinguished by the mere action of reversing; the photo-sensors therefore no longer see the light and, following recovery of the recognition monostable, the muscle control circuits receive the command, “go forward”. But then the lamp comes on again, and when the model is within range of the mirror the whole process is repeated—the model will thus, when confronted with itself before a mirror, do a kind of “tango”. The reader by now will be aware that the word “recognition” has been used very much tongue in cheek—however, although crude, what we have just seen is something not so unlike a recognition process at work.

The remainder of the circuit although somewhat changed since its earlier conception, remains basically unaltered functionally during normal individual channel operation. A close scrutiny of the scansion bistable reveals that in order to achieve this we have, logically speaking, merely “double-negated” the command. The photo-response is therefore positively phototropic for single channel stimulation, but there is now additionally a negative tropism for simultaneous activation of the sensors. This last being extended during the recognition process, as previously indicated.

MUTUAL RECOGNITION

The so-called self recognition process also extends to “mutual” as well, for if we equip two or more models with this type of faculty they will end up interacting with one another, in a way similar to the mirror effect.

Fig. 4.3. Lamp and reflector mounting arrangement
Several beasts, though, reach the dilemma where they can neither approach too close to one another, nor yet completely extricate themselves from their initial introductions!

Hitherto, we have been very unspecific about this recognition process—let us see whether it is possible to conceive of a system which might be more rightly qualified in this way.

When looking for something more specialised in the realm of devices which "recognise", we incidentally come upon the problem that the "means-to-the-end" become smore and more complex. Take for example the problem of attempting to simulate the hearing process as demonstrated in mammals; first the perception of sounds, that is, not what they may eventually imply once they have stimulated the cortical level.

AUDITORY PERCEPTION

Biologically this task of auditory perception is carried out by what might be called an electro-chemico-mechanical process. Initially the pinna or external ear (relatively decorative in homo sapiens) picks up and focuses sound into the external auditory canal. The sound upon reaching the end of the canal mechanically disturbs the equilibrium of the ear drum and sets it in motion. On the other side of the drum, in the middle ear, three little bones connect it with the organ that is intimately concerned with the perception of sound, a tiny thing looking like a winkle shell called the cochlea. It is within the cochlea that all the basic processing is performed, and this is achieved in each ear by a device called Corti's organ, after its discoverer. This organ, in humans at least, is wedge shaped and measures a little under 35mm in length when unrolled.

Corti's organ is essentially a kind of super-filter, but in addition it is believed to possess other functions as well such as amplitude level detection. In conjunction with its mate in the other ear, it can perform such tasks as phase discrimination, amplitude differentiation, and pulse arrival-time detection. All this from a device about the size of an ear-wig—no apologies for the simile!

When we described the device as a super-filter, this was by no means an idle overstatement. In normal humans, it has been observed that, on average, the organ of Corti has the ability to detect differences in frequency, as small as 1Hz. Now the average frequency range of our hearing is about 60–16,000Hz. This in itself would imply an enormous quantity of filters; but do we fully realise the implication?

In addition to being able to differentiate between tones with only small differences, a healthy ear can generally perceive any tone within the normal range, not necessarily whole tones either. Thus the job this tiny organ has to perform is truly incredible; certainly it forces us to reconsider our opinions about our "remarkable" achievements in the field of integrated circuitry!

Having established to some extent what we would be up against were we to be presumptuous enough to attempt the construction of something approaching a biological hearing mechanism, we must now cut our coats according to the cloth and decide how poor the compromise will be. Remember, this still only relates to perception. Recognition implies having a memory, so that a current event may be co-related with similar occurrences in the past and acted upon, if necessary, according to the order of importance.

In electronics we mostly think of resonant filters in terms of RC and LC networks; occasionally quartz becomes involved too! We arrange for these networks to be very fussy about what they pass, and that which a filter ends up allowing through amounts to a measure of its selectivity. In general the LC networks can be made to be the most selective, but unfortunately, at the frequencies which interest us such filters become very bulky indeed. To contemplate employing a whole plexus of these would thus be ludicrous in the extreme.

PULSE COUNTING TECHNIQUES

Nevertheless, there are no end of dodges which can be employed to overcome this difficulty; most of them use pulse counting techniques. Some of the methods, although complicated (and not really applicable where only a few discrete frequencies are involved) need only the addition of a couple of gates or so and one can incorporate almost any number of filters at will.

To give the reader some idea of how this might be done, consider the electronic tachometer (rev'counter) with which so many cars are fitted these days. This generally utilises a pulse-to-voltage system. The impulses occurring at the contact breaker in the car distributor are fed to a diode (or transistor) pump integrator and the output voltage indicated by a meter is proportional to the input pulse rate. Some simple arithmetic and an elementary understanding of the internal combustion engine enable us to convert all this to r.p.m.

FREQUENCY TO VOLTAGE CONVERSION

Examine Fig. 4.4. This too uses much the same principle as the previous example. Here, we are interested in designing a device which might take the place of all those bulky LC filters. The notion here is to convert frequency to voltage, then have a number of

Fig. 4.4. Frequency to voltage conversion device, or property detector

![Diagram of frequency to voltage conversion device](https://example.com/diagram.png)
amplitude selectors respond accordingly, each operating at a higher threshold than the last. Providing we don't ask the device to separate several frequencies at once, no difficulties should arise.

Notice that two Schmitts are involved per filter—if this were no so, all the outputs would be active at the higher frequencies. This additionally provides a way of controlling the limits (bandwidth) between which each section will function.

Strictly speaking of course the device is not a filter, but a property detector—an output of “go”, or “no go”, being given dependent upon the input presented at each Schmitt pair. Thus if one particular Schmitt happens to be on and the signal frequency increases by more than some pre-determined amount, the voltage appearing at the property detector concerned will increase proportionally causing the second Schmitt of the pair to fire. The associated AND gate will therefore be inhibited and the output will change from “1” to “0”.

The first Schmitt of the next property detector in-line could be arranged to fire at the same threshold as the second Schmitt in the preceding stage—this would provide a smooth overall response for the range of input frequencies concerned. In this way, a gliding tone fed in at the input would result in the appearance of a series of “ones” rippling along the outputs of the property detectors.

PULSE COUNTER

Another method of filtering that might be employed could be based on the system used in electronic frequency/pulse counters. Assuming one wishes to measure the repetition rate of a train of pulses (and the p.r.f. is constant), it is only necessary basically to run the pulses into a register over some pre-set period of time (for convenience, say 1 second—generally much shorter), then switch off the input and read-out the register to obtain the answer. This scheme though is more complicated than the last, and also suffers from the same disadvantage in that it too can only look at one signal at a time.

PARALLEL T FILTER

Earlier we mentioned the use of RC filters. These certainly consume less space, but generally contribute pretty heavy degrees of attenuation requiring several stages of amplification to make their use a working proposition. A tentative scheme, suggested by one of the author's colleagues, amounts to the use of just one RC filter (a parallel “T” network) whose resonant frequency might be controlled by voltage. Fig. 4.5 shows the general idea.

If the three resistance arms of the normal “T” network are varied together the filter can be tuned. Now this filter is of the rejection type; that is it passes all the frequencies except the narrow range to which it is tuned. It is therefore necessary to invert its response for our purposes so that a sharp peak is produced at the resonant frequency.

This we arrange to do by utilising an amplifier whose loop gain is severely reduced by negative feedback at all frequencies except that to which the filter is tuned. At the resonant frequency the filter has a very high impedance, and as a consequence the feedback becomes negligible. As a result the amplifier gain “soars”, and we can now pick-off the desired signal just prior to its entry at the filter.

LIGHT CONTROL

Equal variation in value of the resistance arms in the filter will enable us to move the resonant point through quite a generous frequency range. If, as Fig. 4.5 suggests, we can effectively substitute the elements in the three arms of the network with light dependent resistors, it should be a relatively simple matter to control them using a light source whose output is proportional to a given current or voltage.

As the resistor in the “down stroke” of the “T” requires to be half the value of the other resistors, it would be necessary either to reduce the efficiency of the two cross bar resistors (by say lightly painting them with laquer), or to control each l.d.r. from a separate light source. Each lamp could then have its relative brilliance separately pre-set by a potentiometer.

An audio frequency, voltage controlled, filter of the type discussed could give rise to a particularly interesting property detector (see Fig. 4.6). Essentially, the device could utilise a time-sharing principle. The sweep generator causes the filter to progressively look through a whole range of input frequencies; simultaneously the Schmitt pairs (threshold detectors) will cause the output and gates to open and close. If during the sweep when one particular gate is open, a signal happens to appear at the filter output, a corresponding pulse will pass through the gate. This could be fed into a bistable memory controlling another AND gate. Further inputs at this frequency would result in the gate opening to indicate recognition of the signal.

It is true that the discussion has been largely hypothetical, but then the reader will remember that we threatened as much in the first article. If it does nothing else, it may well “fire” some constructors to jump clear of the beaten track.

ANXIETY NEUROSIoN

While we are still in this happy (?) inventive frame of mind, let's be really outrageous and chance to ponder upon the likelihood of designing a synthetic device that could display a kind of “anxiety neurosis”. Maybe though, we should first examine the expression “anxiety”.

Just what is anxiety? We have all experienced it at some time or another, but its description is somewhat difficult to pin down. By way of example let us take an imaginary situation involving the initial training of a dog.
One might suppose that the dog's owner, being a sensible individual, decides that as a prime objective he will attempt to teach the animal some curb drill. Now the dog is not likely to be very enthusiastic about sitting by the roadside when there are so many other interesting things going on across the other side; much less understand his master's reasons for wishing him to sit still. So, forgetting he is on a short leash, up jumps Rover to be rewarded by a sharp snap across the muzzle and the command of STAY! by his previously amiable companion. Pained and surprised by all this, the animal cowers down and resumes his former position. A little encouragement when the road is clear and the words OFF YOU GO! and the inhibition is removed.

It takes a while before an animal appreciates the curbside lesson, however, once it is established a dog of reasonable intelligence can often be left for minutes without "moving a whisker".

Suppose, having trained an animal up to this stage, we decide to give the command STAY! but then walk away and not come back. Dutiful beast though he may be, there will come a time when either due to hunger pangs or some other bodily function he will be forced to move. When he does, there will be an instant conflict between his immediate needs and the chances of punishment for disobedience. So Rover sits down again, only to come up against the problem of unsatisfied hunger. Up he gets again to be faced with the prospect of punishment—so he sits down. "Go and tell the poor chap he can move off now," you are probably saying! We are almost beginning to feel anxious for him!

PAVLOV'S EXPERIMENT

Obviously this kind of conflict phenomenon can be observed in any number of situations. The inducement of a similar type of effect, produced by more drastic means, has been demonstrated by Pavlov and others. Here an animal was conditioned to obtain its food only at certain times following a signal (a flash of light, or a particular sound).

The food was provided to the animal by way of a small trough arrangement with a lid covering the top. If, following the initial conditioning, the animal lifted the lid to the trough at any time other than when it was supposed to, it received no food. Often it might be given a mild electric shock into the bargain. Not surprisingly, the animal's reaction to this form of treatment was sometimes to completely reject offers of food, even following quite lengthy periods of starvation.

This rather peculiar response to a harmless shock has often been referred to as an "experimental neurosis". But is it neurotic? We know that the shock is harmless enough. However, the animal may well consider it to be a direct threat to its very existence. Its refusal to eat then might be accepted as normal, and so we must use the word "neurotic" with some caution.

A MACHINE WITH FOUR SENSES

Take a look at Fig. 4.7. Here we are examining a hypothetical machine's response to the type of situation discussed earlier involving the dog. Like the dog, the machine too needs to be fed—its source of energy though of course comes from a battery. In the diagram we have just about all the essential features for causing an anxiety syndrome to develop.

We will assume that the machine has four basic senses: (a) Auditory—sensitive to two tones. (b) Tactile—in this case able to sense "heavy blows" to its anatomy, or any traumatic affect directly, or indirectly, threatening its existence. For convenience we will call this a "pain" sensor. (c) Voltage (food)—able to sense when the battery voltage drops below a certain level—and in addition capable of sensing if the voltage falls to a

Fig. 4.6. A property detector based on an audio frequency voltage controlled filter
"dangerous level", i.e. that which would allow the machine to exist in mobile form for only a very short period of time. (d) Current—the ability to detect motor current above certain levels, indicating to the machine that it is mobile.

From Fig. 4.7 we can see that the normal responses to the various stimuli are shown as continuous lines. Dotted lines indicate "conditioning", while chain dotted-lines show "inhibition".

To begin with we will assume that the battery voltage is low and that the machine is pottering about in search of "food". Now during its rambles sound "A" occurs, resulting in the normal response of STOP! (this might be for only a few seconds). If we shortly follow this with a sudden mechanical jarring to the machine's anatomy ("pain"), and repeat the combination a number of times, a conditioning will result such that "to move FORWARD means sound "A", which means "PAIN" so REVERSE and TURN then STOP!"

Like any other conditioned reflex, if it is not reinforced, even though it is negative, at least with this sort of tactile stimulus, the result will be extinction of the conditioning. Assuming then that sound "B" appears, followed by this lack of reinforcement—sound "B" would ultimately become conditioned to the extinction condition. Hence for future occasions sound "B" would act as an "all clear".

Consider now the situation where the battery voltage is really low, but that TACTILE conditioning has taken place preventing the machine from obtaining a RE-CHARGE for its battery. In addition let us assume that the benison of sound "B" is absent. The machine would (like the dog) begin to move off in search of nourishment only to be confronted by sound "A" and possibly "pain". It would therefore have no alternative but to make the REVERSE and TURN then STOP procedure in order to overcome the present contingency. However, the battery voltage would still be dwindling, and as a consequence cause FORWARD motion again. It would thus run headlong into the old bogey, "pain".

A DILEMMA

We can realise now that the machine has been confronted with some dilemma indeed. A conflict has therefore arisen between "the need to move forward" versus "the need to remain stationary". This state of affairs would persist until either the machine "died" through lack of "food", or the source of hostile stimuli abated. Now because the machine reacted to the stimuli by oscillating in the way it did, is it in any wise prudent to suggest that the device had become neurotic—I think not! However, we might be forgiven for coming to the conclusion that the machine had developed an "anxiety state" of some kind.

The reader may be interested to know that this so-called "anxiety state" has actually been experimentally induced in a machine of the kind discussed. With a little ingenuity it would thus not be impossible to manufacture one of these "beasts".

Next month we shall be examining some of the fundamental components of biological neural systems and the properties they display, both separately and collectively. It will also be shown just how similar some of their operations appear to be in terms of logical functions and gating. Finally, some more thought will be given to other kinds of "property detectors.

To be continued

POST OFFICE PRIVILEGE

This extends to every form of telecommunication—radio waves, infra-red, visible light, ultra violet, gamma and X rays.

Undoubtedly this will come as a surprise to some readers for, in the past, wireless telegraphy licences have acted as licences to infringe the exclusive privilege so that many people were unaware that they had needed a licence and been granted it. In the future the Minister of Posts and Telecommunications will have the power to grant the same kind of wireless telegraphy licences.

Having, we believe, put the record straight in this matter, we would like to comment upon one particular kind of communication which is becoming of more and more interest in amateur circles.

Communication by infra-red radiation (beyond one's own premises) is obviously not permitted without licence. Does this mean that the promising field now opening up for private experimental work with gallium arsenide diodes and similar devices is in jeopardy, or will the Minister be persuaded to grant experimental licences for such purposes?

There are three further questions on this subject we would like to pose:

Will not the arbitrary split between the frequency range specified in the Wireless Telegraphy Act 1949 and that implied in the Post Office Bill lead to possible legal anomalies; if, for example, two similar infra-red equipments use different frequencies that happen to fall on one side of the arbitrary dividing line?

In view of it would thus not be possible for unauthorised infra-red transmissions, is the enforcement of any regulation a viable proposition?

Finally, in view of the non-interference properties of the narrow beam employed in infra-red transmission should not this method of communication be encouraged?

F. E. Bennett—Editor
MARKET PLACE

FIRST AID
Minor burns and scalds are one of the many hazards that one has to be on guard against in the workshop. The amateur dealing with tools isn't quite familiar with, the professional, with all his know-how, is sometimes careless, and the youngster is apt to get his fingers burnt prowling around the workshop.

To help solve this problem Potter and Clark Ltd., are producing a first aid spray for treating minor scalds and burns. Called the Burneze it is claimed to give instant relief to minor burns, but does not claim to heal. The spray cools the affected area, relieves the pain and neutralises any swelling. No lint, bandage or other dressing is necessary, but if a dressing is applied it will not stick if Burneze is used first.

Available from most chemists at 7s 3d Burneze would seem to be a most useful asset to have stored in a convenient place in the "lab" or "shack", as well as the home first aid kit. It must be emphasised that Burneze is a poison and should be kept well away from children's reach.

LIGHTING
A new lighting adaptor from AEI Heating Ltd., Redring Works, Peterborough, now makes it possible to control lighting levels for standard or table lamps.

The Soft'n Bright Lamp Adaptor can be easily plugged into an existing bulb holder and the bulb simply inserted in the adaptor in the usual way.

The adaptor uses a triac device in the circuit to interrupt the alternating current flow by an adjustable amount each half cycle so that an infinitely variable lighting intensity can be achieved. The light intensity control is mounted on the side of the adaptor. The circuit is fully suppressed against radio interference.

The recommended price of the Soft'n Bright Lamp Adaptor is £3 19s. 6d.

DESOLDERING TOOL
Every amateur and professional constructor and designer has probably experienced the exasperating task of trying to desolder a multiple lead component from a printed circuit or wiring board. The problem of trying to remove the solder from each lead and gradually easing the suspect, or wrongly wired component from the board is not new to most of us.

There are many types of desoldering devices available but most devices usually require two hands to operate or require to be spring loaded or foot pumped before they can be used.

The new Weller Electric Ltd., desoldering tool does not require an air line, or require to be controlled, the operation of desoldering is temperature controlled irons, making the desoldering tool also temperature controlled operation of desoldering can be easily accomplished one handed and can be successfully used with other irons, although here the use of both hands is needed.

The desoldering accessory costs £3 5s and should be ordered as follows: DS-TCP for the low voltage temperature controlled type and DS-W60D for the mains version. The desoldering accessory will shortly be available for all models of Weller's irons.

LITERATURE
With the impending changeover to the Metric System or SI (Systeme International d'Unites) as the system is known, Electrometer Instruments Ltd and Technical Supplies Ltd., are producing a metric conversion booklet and pocket chart suitable for students, apprentices, engineers and teachers.

The booklet from Electrometer Instruments Ltd., Fairfield Road, Droylsden, Manchester, contains sixteen pages of more than 1,000 conversions from units commonly used to their metric equivalents and vice versa. The booklet is available free to any reader who sends a stamped addressed envelope to Electrometer Instruments.

The Metricmaster pocket chart covers English and U.S. to metric equivalents for length, area, volume, weight and liquid capacity on one side and metric to English and U.S. measures on the other. It is claimed that the chart covers up to 10,000,000 to 1 measurements.

The Metricmaster costs 2s 11d, is distributed by Technical Supplies Ltd., Hudson House, 63, Goldhawk Road, London, W.12, and is available through Messrs W. H. Smith & Son.

The uses of the complete range of Kontakt aerosol sprays has just been published in booklet form and copies are available free from Special Products Distributors Ltd., 81, Piccadilly, London, W.1.

The range of aerosol sprays covers cleaning and freezing to antistatic and graphite sprays.

NOTICE
We regret that due to a printer's error in the Advertisement from Messrs Radio Exchange Ltd., on page 9 of the January 1969 issue the size of loudspeaker supplied with the Transona Five kit was wrongly quoted as being 3in.
BARGAIN STEREO/MONO SYSTEM

Adhesive Schrub) for N.R.E. CAS Deck, 4 AMPLIFIER and TWO matched LOUDSPEAKERS 10/9

(4 Only pair of wires to join).

NEW TUBULAR ELECTROLIES

<table>
<thead>
<tr>
<th>Type</th>
<th>CAP</th>
<th>CODE</th>
<th>VOLT</th>
<th>25°C</th>
<th>100°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/B</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/C</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/D</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/E</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/F</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
</tbody>
</table>

NEW MINIATURE LOAD SPEAKERS

BARGAIN STEREO/MONO SYSTEM

<table>
<thead>
<tr>
<th>Type</th>
<th>CAP</th>
<th>CODE</th>
<th>VOLT</th>
<th>25°C</th>
<th>100°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/G</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/H</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/I</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/J</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/K</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
</tbody>
</table>

FULL RANGE AMPLIFIER 10/9

<table>
<thead>
<tr>
<th>Type</th>
<th>CAP</th>
<th>CODE</th>
<th>VOLT</th>
<th>25°C</th>
<th>100°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/L</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/M</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/N</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/O</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/P</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
</tbody>
</table>

MINI-MODULE LOUDSPEAKER KIT

10 WATT **10/9**

CROSSOVER SPLIT

SUPERSUSCEPTIVE TUBES

P-AMP 10/9

BARGAIN STEREO/MONO SYSTEM

NEW TUBULAR ELECTROLYS

<table>
<thead>
<tr>
<th>Type</th>
<th>CAP</th>
<th>CODE</th>
<th>VOLT</th>
<th>25°C</th>
<th>100°C</th>
<th>250°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>45/Q</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/R</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/S</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/T</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
<tr>
<td>45/U</td>
<td>0.005</td>
<td>0.05</td>
<td>250,000</td>
<td>1500</td>
<td>750</td>
<td>375</td>
</tr>
</tbody>
</table>

FULL RANGE AMPLIFIER 10/9

MINI-MODULE LOUDSPEAKER KIT

10 WATT **10/9**

CROSSOVER SPLIT

SUPERSUSCEPTIVE TUBES

P-AMP 10/9
The easiest set of manuals it has been my pleasure to study.

Please accept my admiration for producing a long felt want in the
for a wonderful set of books.

A TECH-PRESS PUBLICATION

WALDON ELECTRONICS

value 16 gns. Negative or positive earth: Fully transistorised ideal for home,
switched) fully transistorised (12V) medium and office or workshop. Robust con-
long waves. Speaker and fitting kit supplied at construction, offered at fraction of
no extra cost. P/p 5/-.

Sonitone 9TA and 9TA/HC. Diamond Cart-
caroling brand new, boxed in manufacturers'
91-3 stereo compatible cartridges, new in
sealed manufacturers' cartons 22/6 + 2/6 p/p.

TR10 Stereo Moving Magnet Cartri-
idge Model AD76K. Diamond Stereo
LP Stylus. Frequency response 20-
20,000 c/s or worse. 1 gramme ±0.5 gmn. Fully guaranteed.
Price 85/- p/p free.

BASf TAPE
LONG PLAY DOUBLE PLAY
5in. 900ft. 17/- 5in. 1,200ft. 27/6
5in. 1,200ft. 21/6 5in. 1,600ft. 36/-
7in. 1,800ft. 33/- 7in. 2,400ft. 52/6

This month's Waldon offer 5 x SW transis-
torised stereo amplifier. Undoubtedly a most
remarkable offer—outstanding performance,
comparable with amplifiers in the £25-£30 price
range. Brief specification includes volume, bass,
trebles, balance control, stereo, mono, switch,
inputs, sockets, tape tuner pick up AUX. Being
manufacturers' distributors of this fine stereo
amplifier, as an initial promotion we are prepared
to offer this unit at fractionally above cost for a
limited period only. 15 gns. p/p free.

TR10 Stereo Moving Magnet Cartri-
dge. Model AD76K. Diamond Stereo
LP Stylus. Frequency response 20-
20,000 c/s or worse. 1 gramme ±0.5 gmn. Fully guaranteed.
Price 85/- p/p free.

Bargain—Changer Decks at Lowest Prices

Ever P/rec WP1 Garrard 1025 p/p 7/6 £8.00
Garrard 2025 p/p 7/6 £8.10
Cover SPC1 AT60 Mk. II p/p 8/6 £12.19.6
SP25 Mk. II p/p 8/6 £12.00.£10.10.0

This month's Waldon offer 5 x SW transis-
torised stereo amplifier. Undoubtedly a most
remarkable offer—outstanding performance,
comparable with amplifiers in the £25-£30 price
range. Brief specification includes volume, bass,
trebles, balance control, stereo, mono, switch,
inputs, sockets, tape tuner pick up AUX. Being
manufacturers' distributors of this fine stereo
amplifier, as an initial promotion we are prepared
to offer this unit at fractionally above cost for a
limited period only. 15 gns. p/p free.

HI-FI

THE BAKER SELHURST STAL

SPEAKERS With 12in, 12 Watt twin cone HI-FI
speaker as sold by leading manufacturers.
Usual price £5.7.6. Our price 87/6 p/p 5/-
Response 30/16,000 revs.

THE BAKER SELHURST guitar group
25, 12in. round, 25 watt rating, 12,000 lines GAUSS
3 or 15 ohms response 45-12,000 c/s Bass
resonance, 40-50 c/s, solid aluminium

KELETRON 12in, diam. 12 watt twin cone HI-FI
speaker as sold by leading manufacturers.
Usual price £5.7.6. Our price 87/6 p/p 5/-
Response 30/16,000 revs.

Beautiful oiled teak enclos-
ure to suit EMI 13 in speakers.
Retail value £15.0.
Our low-low price. Only 99/6 plus
8/6 p/p.

The Baker Selhurst stal
SPEAKERS With 12in, 12 Watt twin cone HI-FI
speaker as sold by leading manufacturers.
Usual price £5.7.6. Our price 87/6 p/p 5/-
Response 30/16,000 revs.

The Baker Selhurst guitar group
25, 12in. round, 25 watt rating, 12,000 lines GAUSS
3 or 15 ohms response 45-12,000 c/s Bass
resonance, 40-50 c/s, solid aluminium

KELETRON 12in, diam. 12 watt twin cone HI-FI
speaker as sold by leading manufacturers.
Usual price £5.7.6. Our price 87/6 p/p 5/-
Response 30/16,000 revs.

BARGAINS rating, 12,000 lines GAUSS
3 or 15 ohms response 45-12,000 c/s Bass
resonance, 40-50 c/s, solid aluminium

The ‘New Picture-Book’ way of learning BASIC ELECTRICITY (5 VOLS).

You’ll find it easy to learn with this out-
standingly successful NEW PICTORIAL
METHOD—the essential facts are explained
in the simplest language, one at a time, and
each is illustrated by an accurate, cartoon-
type drawing. The books are based on
the latest research into simplified learning
methods. This has enabled us to use this
PICTORIAL APPROACH to learning the most
quickest and soundest way of gaining mastery
over these subjects.

TO TRY IT, IS TO PROVE IT

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT 612 7HP

Please send me WITHOUT OBLIGATION TO PURCHASE, one of the
above sets at 7 DAYS FREE TRIAL, I will either return set, carriage paid,
in good condition within 7 days or send the following amounts. BASIC
ELECTRICITY 75/- Cash Price or Down Payment of 20/- followed by 3
fortnightly payments of 20/- each. BASIC ELECTRONICS 90/- Cash
Price or Down Payment of 15/- followed by 4 fortnightly payments of 20/-
each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.

Tick Set required (Only one set allowed on free trial)

BUY ELECTRICITY

BUY ELECTRONICS

Prices include Postage and Packing.

Signature

(If under 21 signature required of parent or guardian)

NAME

BLOCK LETTERS

ADDRESS

136
The nickel cadmium battery is initially expensive but since it can give a life of several years, if treated with care, it is obviously worthwhile treating it properly.

Regular and careful charging is a feature of careful maintenance of these batteries, just as it is with a car battery. This article describes the design of a simple constant current charger.

METHODS OF CHARGING

Batteries may be charged either by passing a constant current through them (this current remains constant irrespective of the state of charge of the battery) or by applying a constant voltage so that initially the charging rate is high, but as the battery becomes charged its terminal voltage rises and the current through it reduces to a trickle.

This design deals with a constant current source for charging Deac batteries.

CONSTANT CURRENT THEORY

The term constant current is self-explanatory, and can be understood by reference to Fig. 1a. If output terminals 1 and 2 are shorted, the current \(I = \frac{V_1}{Z} \), where \(V_1 \) is the applied voltage and \(Z \) is the total circuit impedance. In this case \(V_1 = 240V \), so

\[I = \frac{240}{Z} \text{ amperes} \]

Suppose, now, that a 10V battery is connected between terminals 1 and 2, the positive terminal being on 1, the short circuit being first removed (see Fig. 1b). The voltage across \(Z \) is equal to \((240 - 10)\) volts and \(I = \frac{(240 - 10)}{Z} = \frac{230}{Z} \text{ amperes} \)

If \(Z \) is 1 kohm, the short circuit current = 240mA. Charging a 10 volt battery, it falls to 230mA and a 20 volt battery would draw 220mA. The difference in current passed on short circuit, and when charging a battery with a charging voltage of 20V, is only about 8 per cent.

CURRENT LIMITATION BY CAPACITORS

A lot of power would be dissipated by a pure resistance in trying to drop 220 volts, and passing 220mA: \((220 \times 220 \times 10^{-3} = 48.4 \text{ watts})\) requiring a very large resistor.

The voltage supplied to the battery can be effectively dropped if subjected to a frequency selective circuit employing a capacitor. The reactance of a capacitor is expressed by \(X_c = \frac{1}{(2\pi fC)} \).

The current through the load is then given by

\[I = \frac{V_1}{X_c} = \frac{2\pi fCV_1}{2\pi} \]

For a 240V, 50Hz mains input supply the load current

\[I = 2\times50\times240\times10^{-3} \text{ mA} \]

Whence \(I = 75C \text{ mA} \) where \(C \) is in \(\mu \text{F} \)

<table>
<thead>
<tr>
<th>Capacitor ((\mu \text{F}))</th>
<th>Charging current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>0.5</td>
<td>37.5</td>
</tr>
<tr>
<td>0.33</td>
<td>25</td>
</tr>
<tr>
<td>0.1</td>
<td>7.5</td>
</tr>
<tr>
<td>0.05</td>
<td>3.75</td>
</tr>
</tbody>
</table>

In these calculations \(I = \frac{V_1}{X_c} \), where \(X_c \) is the reactance of the capacitor. In reality, \(I = \frac{V_1}{Z} \) where \(Z = \sqrt{(X_c^2 + R^2)} \) where \(R \) is the total circuit resistance, including the diode and series resistance. However, as this is only 100 to 2000 ohms, it is small compared with \(X_c \).

The smaller the capacitor the larger \(X_c \) becomes, and the approximation becomes more accurate.

PRACTICAL CIRCUIT

The component values shown in Fig. 2a have been chosen for charging a 225mAH battery of up to 12V.
The Zener diodes D5 and D6 prevent the output from rising above the level necessary for efficient charging. Without them, the output terminal voltage with no battery connected would rise to mains potential; the low voltage diodes used in the bridge rectifier would certainly be damaged as a result.

The maximum charging voltage per Deac cell (see Table 1) is 1.5V, so if a Zener diode is placed across the output terminals with a striking voltage above the charging voltage, the voltage across the diodes will rise only to the Zener voltage.

When the battery is reconnected, the battery starts to charge and the Zener diode is cut off.

Zener diodes OAZ247 can pass up to 25mA. For heavier currents a 7W or 10W device nominally 9-1V.

Components

- **Resistors**
 - R1 680kΩ 1/4W carbon
 - R2 220Ω 1/4W carbon

- **Capacitor**
 - C1 0.33μF 400V

- **Diodes**
 - D1-4 IS121 or any silicon diode with p.i.v. greater than 30V and current capacity greater than 20mA peak, 10mA average (4 off).
 - D5, D6 OAZ247 (2 off) see text

- **Miscellaneous**
 - Veroboard 2 1/16 x 1 1/16 with 0.15in matrix

Table 1

<table>
<thead>
<tr>
<th>No. of cells</th>
<th>Nominal output volts</th>
<th>Maximum charging current</th>
<th>D5</th>
<th>D6</th>
<th>Minimum Zener voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>1.5</td>
<td>OAZ247</td>
<td>Shorted</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>3.0</td>
<td>OAZ247</td>
<td>Shorted</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>3.6</td>
<td>4.5</td>
<td>OAZ247</td>
<td>Shorted</td>
<td>8.6</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>6.0</td>
<td>OAZ247</td>
<td>Shorted</td>
<td>8.6</td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
<td>7.5</td>
<td>OAZ247</td>
<td>Shorted</td>
<td>8.6</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>9.0</td>
<td>OAZ247</td>
<td>OAZ247</td>
<td>17-2</td>
</tr>
<tr>
<td>7</td>
<td>8.4</td>
<td>10.5</td>
<td>OAZ247</td>
<td>OAZ247</td>
<td>17-2</td>
</tr>
<tr>
<td>8</td>
<td>9.6</td>
<td>12.0</td>
<td>OAZ247</td>
<td>OAZ247</td>
<td>17-2</td>
</tr>
<tr>
<td>9</td>
<td>10.8</td>
<td>13.5</td>
<td>OAZ247</td>
<td>OAZ247</td>
<td>17-2</td>
</tr>
<tr>
<td>10</td>
<td>12.0</td>
<td>15.0</td>
<td>OAZ247</td>
<td>OAZ247</td>
<td>17-2</td>
</tr>
</tbody>
</table>

(such as ZS9-1) could be used in lieu of the OAZ247. For higher voltages, the ZS12 (11.4V min) could be used. Two in series will operate at 22-8V. This will protect a 14 cell battery with a maximum charging voltage of 21V.

It is not often that voltages higher than these would be used, but if they were, a third Zener could be added in series with the other two. Care must be exercised in selection by observing the minimum Zener voltage above that required for charging the battery.

Charging Current

The charging current should not exceed the 10 hour rate, i.e. for a 150mAH cell, the charge current is 150/10 = 15mA and at 225mAH, the current is 225/10 = 22.5mA.

Charging Time

The charging rate should be 1.4 times greater than the charge removed.

If current is being replaced at the 10 hour rate the total time required to recharge a fully discharged battery is 10 x 1.4 = 14 hours.

Similarly, at the 20 hour rate the total charge time is 20 x 1.4 = 28 hours.

Designing Your Own Charger

1. Check the capacity rating of the battery and decide what charging rate you require, e.g. 10hr, 15hr, 20hr, etc.
2. Calculate the charging current $I = \frac{\text{Capacity}}{\text{Rate (mA)}}$.
3. Calculate $C = \frac{I}{75} \mu F$.
4. Select the nearest available value of C below the calculated value.
5. If the battery is not to be connected permanently, protect the bridge rectifiers with Zener diodes.
6. If 25mA or less, select either one, two or three OAZ247 and wire in series across the output terminals.
7. If over 25mA, select one, two, or three ZS9-1 and wire in series.

The model shown in Figs. 2 and 3 is a 22mA charger with Zener diode protection for up to 10 cells. This is a compact circuit which could be fitted into equipment using Deac cells.

N.B. The battery should never be charged at a temperature of 32 degrees F or 0 degrees C (freezing point) or lower. Ideally, it should be charged indoors at normal room temperatures.
FOLLOW THE LEADERS

KING SIZE QUALITY-TESTED PAKS

<table>
<thead>
<tr>
<th>Pak No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Red Spot AF Trans. PNP</td>
<td>N2.91</td>
</tr>
<tr>
<td>19</td>
<td>White Spot RF Trans. PNP</td>
<td>N3.95</td>
</tr>
<tr>
<td>10</td>
<td>S11. Diodes Sub.</td>
<td>N2.95</td>
</tr>
<tr>
<td>2</td>
<td>10 A Silicon Rects. 200V</td>
<td>N5.00</td>
</tr>
<tr>
<td>1</td>
<td>12 A SCR 100V</td>
<td>N10.00</td>
</tr>
<tr>
<td>1</td>
<td>Si. Trans.</td>
<td>N10.00</td>
</tr>
<tr>
<td>12</td>
<td>250M W-2 3.5V</td>
<td>N10.00</td>
</tr>
<tr>
<td>1</td>
<td>Silicon Diodes 400W-2 31V 10%</td>
<td>N10.00</td>
</tr>
<tr>
<td>4</td>
<td>High Current Trans. OC45 Egty.</td>
<td>N10.00</td>
</tr>
<tr>
<td>1</td>
<td>Silicon Rects. 400V 25A</td>
<td>N10.00</td>
</tr>
<tr>
<td>1</td>
<td>2 Low Noise Trans. NPN 2N929/30</td>
<td>N2.00</td>
</tr>
<tr>
<td>4</td>
<td>0075 Transistors Mullard Type</td>
<td>N2.00</td>
</tr>
<tr>
<td>5</td>
<td>Silicon Recta. 400 PIV 250mA</td>
<td>N2.00</td>
</tr>
<tr>
<td>4</td>
<td>High Current Trans. 0042 Eqvt.</td>
<td>N2.00</td>
</tr>
<tr>
<td>2</td>
<td>0025 Power Trans. Germ</td>
<td>N2.00</td>
</tr>
<tr>
<td>2</td>
<td>0022 Power Trans. Germ</td>
<td>N2.00</td>
</tr>
<tr>
<td>3</td>
<td>NPN Germ. Trans. NKT773</td>
<td>N2.00</td>
</tr>
<tr>
<td>8</td>
<td>0075 Germ. Diodes Sub-min. IN69</td>
<td>N2.00</td>
</tr>
<tr>
<td>3</td>
<td>0T31 LF Low Noise PNP Trans.</td>
<td>N2.00</td>
</tr>
<tr>
<td>5</td>
<td>GET883 Trans. Eqvt. 0045</td>
<td>N2.00</td>
</tr>
<tr>
<td>4</td>
<td>MI. Recta. 400 PIV 500mA</td>
<td>N2.00</td>
</tr>
<tr>
<td>1</td>
<td>Power Trans. 0020 100V</td>
<td>N2.00</td>
</tr>
<tr>
<td>2</td>
<td>911. and Germ. Trans.</td>
<td>N2.00</td>
</tr>
<tr>
<td>3</td>
<td>2N1307 PNP Switching Trans.</td>
<td>N2.00</td>
</tr>
<tr>
<td>1</td>
<td>400mW (00-7 Case)</td>
<td>N2.00</td>
</tr>
<tr>
<td>2</td>
<td>5/- each</td>
<td>N2.00</td>
</tr>
</tbody>
</table>

KING OF THE PAKS

UNI-ЯUNION

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0025</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0075</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0022</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
</tbody>
</table>

BI-PAK GUARANTEE SАI'SIACTION OR MONEY BACK

FOLLOW THE LEADERS

ANOTHER CROWNING SUCCESS—

THIС MONTH'S BARGAIN PADS ALL FULLY TESTED AND GUARANTEED SATISFACTION

UNI-ЯUNION

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0025</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0075</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0022</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
</tbody>
</table>

FOLLOW THE LEADERS

ANOTHER CROWNING SUCCESS—

THIС MONTH'S BARGAIN PADS ALL FULLY TESTED AND GUARANTEED SATISFACTION

UNI-ЯUNION

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0025</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0075</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0022</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
</tbody>
</table>

FOLLOW THE LEADERS

ANOTHER CROWNING SUCCESS—

THIС MONTH'S BARGAIN PADS ALL FULLY TESTED AND GUARANTEED SATISFACTION

UNI-ЯUNION

<table>
<thead>
<tr>
<th>Type</th>
<th>Qty.</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0025</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0075</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0022</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>100</td>
<td>10/-</td>
</tr>
<tr>
<td>0020</td>
<td>500</td>
<td>10/-</td>
</tr>
</tbody>
</table>
Through this ICS 3-way Training Method:

1. MASTER THE THEORETICAL SIDE
 From basic principles to advanced applications, you'll learn the theory of electronic engineering, quickly and easily through ICS. That's because each course is set out in easy-to-understand terms.

2. MASTER THE PRACTICAL SIDE
 ICS show you how to develop your practical abilities in electronic engineering alongside your theoretical studies. It's the only sure way to success. All training manuals are packed with easy-to-follow illustrations.

3. MASTER THE MATHEMATICAL SIDE
 To many this aspect is a bitter problem. Even more so because no electronic engineer is complete without a sound working knowledge of maths. But new ICS teaching makes mathematics easier to learn.

Wide range of courses available include:
Radio/TV Engineering and Servicing, Closed Circuit TV, Electronics, Electronic Maintenance, Servo-Mechanisms, Computer Engineering, Numerical Control, Electronics, etc.

EXPERT COACHING FOR:
- INSTITUTION OF ELECTRONIC AND RADIO ENGINEERS
- CITY AND GUILDS TELECOMMUNICATION TECHNICIANS
- CITY AND GUILDS ELECTRONIC SERVICING
- R.T.E.B. RADIO TV SERVICING CERTIFICATE
- R.T.E.B. RADIO TV SERVICING CERTIFICATE

Build your own radio, transistor portable, and professional type test instruments with our ICS Practical Radio and Electronics Course. Everything simply explained and easy to handle. All components and tools supplied. For details post coupon below.

Member of the Association of British Correspondence Colleges

FOR FREE HANDBOOK POST THIS COUPON TODAY

I.C.S., Dept. 151, INTERTEXT HOUSE,
PARKGATE ROAD, LONDON, S.W.11

NAME

ADDRESS

OCCUPATION

AGE

INTERNATIONAL CORRESPONDENCE SCHOOLS

Hi-Fi Audio Transistor Amplifiers
Mains Powered 240V A.C.

ACS4 requires 250mV @ 1kΩ for 6½V r.m.s. into 8 or 15Ω load.
£5.10.0.

ACS5 requires 250mV @ 2kΩ for 12V r.m.s. into 8 or 15Ω load.
£10.0.0.

ACS2 Prem-Amplifier complete with treble, bass and volume controls to drive either ACS4 or ACS5: 250mV 800kΩ input (crystal p.u., radio, tape, etc.). £4.10.0.

ACS2 Prem-Amp with selector switch for magnetic pick-up (4mV 47kΩ R.I.A.A.), 50mV 50kΩ, 100mV 100kΩ to work into ACS4. £6.10.0.

Good range of modules and components for high quality audio work. S.A.E. for lists.

AUDIO COMPONENTS & SERVICES
Sound Studios, Bell Hill, Off Crown Hill Croydon, Surrey. 688 3706

KONTAKT 60
FOR INACCESSIBLE CONTACTS—More than just a cleaner, KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with today's technology.

KONTAKT offers the following advantages:
1. Dissolves oxides and sulphides the safe way without attacking contact substances.
2. Contains carefully selected solvents which do not attack plastics whereas they do dissolve resinified contact greases and dirt.
3. Contains no silicone.
4. Contains a light lubricant in order to avoid the contact paths being corroded.
5. Prevents further oxidation setting in.
6. Prevents "creep" current.

Because of these outstanding properties KONTAKT 60 is one of the best and most popular contact cleansing agents in the world.

Users include: Rolls Royce Ltd., C.E.G.B., South of Scotland Electricity Board, Trinity House Workshops, Kolster Brandes, Mullard, Plessey Cos., etc.

OTHER KONTAKT PRODUCTS ARE:
70 Protective Lacquer 80 Special Siliconized Polish 72 Insulating Spray 100 Antistatic Agent For Plastics 75 Cold Spray For Fault Location 101 Dehydration Fluid

Write for full details of above complete range of Kontakt products to:
SPECIAL PRODUCTS DISTRIBUTORS LIMITED
81 Piccadilly, London, W.1 01-629 9556

AMAZING MINI-DRILL
Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from 4½ volt external battery. So much more scope with MINI-DRILL.

Super Kit (extra power, interchangeable chuck) 79/6 p.p.

De Luxe Professional Kit with 17 tools 130/- p.p.

Money Ref. Guarantee.

MERLIN SUPPLY CO.
Dept. PE2D, Nailsea, Bristol BS19 2LP

140
IN AMERICA, father’s lair is in the basement, hidden away amongst the washing machines, water heaters, air conditioners and central heating plant: a holy of holies, safe from the mischievous fingers of the rest of the family.

A basement hideaway puts the American hobbyist ahead of his British counterpart. Certainly in Ohio the full basement is a feature of nearly all houses new and old, and gives the owner additional useable floor space at least equal to the living area of the floor above. The basements are adapted by the houseowner to his needs. In a new house, it is a bare empty space, concrete or brick walls, and concrete floor, a challenge to the do-it-yourself enthusiast. Basements finish up as anything from a machine shop or beer parlour to a children’s playroom, but always with space set aside where father can pursue his indoor interests. Here a workbench can be set up, and a project worked on and left until completed, without the chore of packing it away each evening to make room for the car, or for supper to appear on the kitchen table.

HOME-MADE INDIVIDUALITY

There is time to work at an indoor hobby all through the year. The whole country is nearer the Equator than Britain. Even with daylight saving time, the summer evenings are comparatively short, and it gets dark quickly, within half an hour of the sun going down between nine and ten local time.

Home-made articles have great attraction in America, where everything possible is mass produced. Although there is a great variety to choose from, there is a certain lack of individuality in products ranging from furniture to colour television. The only way to get a unique article is to make it, or follow the deplorable and costly way of instant “customising” with stick-on knick-knacks.

The average American earns between 130 and 200 dollars a week. Though the cost of living in some instances is higher than in Britain, basics like food, clothes, electricity are almost comparable, and with lower direct taxation, and much lower indirect taxation he has more to spend on himself or the family, not to consider instant credit and charge accounts. When pipes leak or domestic appliances fail it is much less costly to carry out repairs at home than to pay for expensive servicing, so that a workroom and tools are almost a necessity.

The selection of tools for the do-it-yourselfer is bewildering. He is very well catered for by a large number of manufacturers and, because of the scale of consumption, and the advantages of mass production, prices of both hand and power tools are very reasonable. Quality is proportional to price, and the range in quality is great, but the price of one particular article will vary from store to store, so that careful shopping can bring savings. Typical prices are: 10 dollars for a 1/4in power drill, 28 dollars for a 6in power handsaw. Soldering irons start at two dollars, a one inch micro-meter at 14 dollars. Hand tools made in America are marginally more expensive than British ones. They are very well made and finished.

SIMPLE ESCAPE

The electrical enthusiast has a wide range of multirange test meters of the volt/ohm/milliamp variety, to choose from. A number are imported from Japan and appear to be excellent value. A typical 20,000 ohm per volt meter with five a.c. and d.c. ranges, two resistance ranges and a leather case can be had for around seven and a half dollars. Such a meter will be surprisingly accurate, within one per cent of the readings given by an instrument similar to the Avo Model 8.

After waving the dollar wand and creating a work-shop the first thing that appears in it is the neighbour’s television set, which he has struggled with unsuccessfully, and the family have been deprived of “commercials” for weeks. There is a simple escape, put all the tubes, (sorry! valves)—or as one ham calls them “firebottles”—into a bag and take them to the nearest drug store which will have a comprehensive tester for free use by the customers. After showing him how it works he can pay for snacks until he is finished.

KITS AND BEDLAM ON C.B.

Building from kits can be a lot of fun and very informative. Kits can be purchased off revolving racks, similar to those selling postcards, for a few dollars. These are simple kits suitable for the beginner and contain everything to build a breadboard circuit like a two transistor a.m. radio, or a one tube radio or a code oscillator.

Kits cover ‘scopes, starting at 62 dollars for a 3in model, and such other useful items like wide-range oscillators from 54 dollars, and stabilised power supplies. There are, needless to say, kits for quality hi fi equipment and ham radio gear.

All sorts of kits are available from the major kit suppliers, of whom Heathkit will need no introduction. They market over three hundred different kits, ranging from decade resistance boxes to colour television sets. Other kit manufacturers have similar ranges of equipment.

If serious work is contemplated in the future, this is a very good way to pick up both knowledge and test equipment. Kits cover ‘scopes, starting at 62 dollars for a 3in model, and such other useful items like wide-range oscillators from 54 dollars, and stabilised power supplies. There are, needless to say, kits for quality hi fi equipment and ham radio gear.

In all cases savings of up to 50 per cent can be shown over buying similar equipment in the shops. Pocket transistor radios and small “walkie-talkies” are an exception. These are imported in quantity from the Far
East, and are very cheap. Nearly every child has one at just over three dollars for the radio and 12 dollars for a pair of walkie-talkies. The latter may be operated by anyone without a licence on the citizens' band, and no other, provided the power output does not exceed 100 milliwatts, result—bedlam!

COMPONENTS GALORE

The home experimenter can pick up components either locally, in which case the range may be limited, or from mail order firms. Local radio stores tend to cater for the button-pusher rather than the constructor, but may carry a limited range of components and packages of "goodies". Local component suppliers to industry will also sell to anyone. The mail order suppliers have inventories covering almost every component imaginable. All listed in annual 517-page catalogues sent free on request.

As they also supply industry, it is possible for the amateur to purchase the latest semiconductor and other devices that come on the market. He is not neglected, for they also supply bargain parcels of such things as 300 assorted ceramic capacitors for 24 dollars or 100 assorted transistors for 4 dollars, not to mention pots, switches and hardware similarly packaged. All are sold subject to money being refunded if unsatisfied.

The favourite home project is building or improving hi fi equipment, good quality off-the-shelf equipment is expensive, and kits are an immediate answer to reduce the cost.

For anyone engaged on such a project a 'scope and oscillator are a great help, and most hobbyists have built them from kits. Ham radio enthusiasts can assemble stations from a wide range of kits, this is probably a cheaper way to obtain equipment than building it from scratch, as components tend to come cheaper in a packaged deal like a kit than singly.

TUNE IN TO BIG BEN

There are people who still do it the hard way. Experimenters who run out of ideas will always find something in electronics magazines similar to **PRACTICAL ELECTRONICS**. Some of the features will describe equipment using integrated circuits or solid state modules available to the amateur here.

For the newcomer one project is a must. Build a short wave receiver and tune into Big Ben and the News, real news covering the big wide world, devoid of commercials, as only the BBC can cover it.

For Future Reference

An index for volume four (January 1968 to December 1968) is now available price 1s 6d inclusive of postage.

Easi-binders are available price 1s 5d inclusive of postage. State whether "Vol. 1", "Vol. 2", "Vol. 3", "Vol. 4" or "Vol. 5" is required.

Orders for Binders and Indexes should be addressed to the Binding Department.

Orders for copies of the Index only should be addressed to the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

NEWS BRIEFS

Post Office Transistors

A new generation of ultra-long life transistors, now being made by the Post Office, will be used in three North Sea telephone cables planned for the early 1970's.

The transistors, which will operate in a series of repeaters at seven mile intervals along the cables, will be capable of amplifying 1,260 telephone conversations. Testing of the transistors is carried out to ensure that not more than one in 500 will fail during a life period of 25 years, this means that up to 10,000 transistors have to be made for every 500 needed. All transistors go through a series of tests and some from each batch are tested over the equivalent of 1,000 years use; about half survive even this test.

Electronic Component Show

The 21st R.E.C.M.F. Electronic Component Show celebrates its majority this year by going fully international. The organisers, Industrial Exhibitions Limited, report a substantial influx of foreign exhibitors and a general increase in stand size making the show 25 per cent larger than before.

All stand space for the exhibition, which is to take place in May, is now booked and of the 400 exhibitors some 70 are from overseas.

Motorway Signalling System

A signalling system to be used on 62 miles of motorway in the West Riding of Yorkshire has been ordered from G.E.C. The system is designed around an Elliot computer and will enable police control of the volume and speed of traffic on all sections of the motorway.

When speed has to be restricted on part of the motorway the computer, on receiving an instruction, will automatically set different speeds on the signs leading up to the hazard so that the traffic is gradually slowed down. The system has been designed to allow the addition of surveillance and meteorological data acquisition equipment. Such equipment could actuate the warning signs automatically according to pre-set instructions to cope with fog, ice, or heavy traffic flow.

Logic System Course

Seven one-week courses in the theory and practice of integrated circuit logic system design arranged by Mullard Ltd., are being held at the Northern Polytechnic building in Holloway, London, N.7.

The courses will continue every month until May 1969 and are arranged to move progressively from a basic introduction on the theory of logic to the use of integrated circuits in typical systems. The photograph shows members of the first course taking part in individual projects involving the use of integrated circuits.

Course fees are £26 16s 9d inclusive of accommodation and meals. Further information is obtainable from Mullard Ltd., Mullard House, Torrington Place, London, W.C.1.
HARVERSON'S EXCLUSIVE BARGAIN!

HI-FI GUITAR AMPLIFIERS

- Rebuilt units with a peak to peak A.L.A. APPROX. 20 watts. R.T.A. mains 240/240, E.M.I. ECL72, Bridge Rectifier, 2 valves, 6V6, 6L6, via standard jack socket or gittern.
- Controlled by single volume control. Separate bass and treble controls. Tremolo circuit has variable speed control of standard jack socket for remote control of tremolo output from foot switch. Tremolo signal is available from either 0 to 15 or 12 ohm.
- Completely self-contained unit in instructive portable cabinet. Heavy gauge metal with attractive front panel, knobs, wipe, soldier, auto, etc. Two extra to Germany. Easy to use by step by step instruction enables any constructor to build an amplifier to be proud of. Special design. Price 20-29/- 50/20-minus A.P.

SPECIAL OFFER!

- **4-VALVE AUDIO AMPLIFIER MODEL**
 - Designed for Hi-Fi reproduction of records, A.C. and tape.
 - Main operation. Ready built on printed circuit panel size 6x1 1/2in. wide. With frequency response ± 3dB. 20-20,000c/a. Complete with knobs, valves, etc., wired and tested. A.C. mains rated 200/240V.
 - Special price 5/6. P. & P. 1/6 (Free with KB).

STEREO AMPLIFIER

- Incorporating 2 ECL72's and 1 EL84, heavy duty, double wound mains transformer. Output 4 watts per channel. Full tone and volume controls. Output Impedence 3 ohms.

HIGH GAIN 4 TRANSPORTER RECORD PLAYER

(Please see clearly)

SPECIAL OFFER:

- **AMPS**
 - **1014 WATT HI-FL. AMPLIFIER KIT**
 - A stylishly finished, battery operated vacuum tube amplifier. Output of 14 watts from 2 EL34's in push-pull. Super reproduction of all frequency sounds and music. Price 10/14 WATT, 20/14 WATT. Special price 10/14 WATT, 20/14 WATT.

PUBLIC ADDRESS AMPLIFIER

- **1000watt speaker for theatre, etc.**
 - Power requirement 200w at 0.6 amp.

HARVERSON'S SUPER MONO AMPLIFIER

A superb quality line amplifier using a double wound mains transformer, EL84 and ECC83 rectifier and controls. Complete with Knobs, valves, etc. Full circuit diagram of amplifier and tests special bulk parts. All parts sold separately.

SKYRAY ORF 007/1.0

- **DE LUXE QUALITY PORTABLE R/P CABINET**
 - Ready built and tested complete with std. parts. All parts sold separately. Only £27.9.6. P. & P. 8/-

Open all day Saturday

A few minutes from South Windleford.

Tube Station

Send STAMPED ADDRESS ENVELOPE WITH ALL ENQUIRIES

HARVERSON SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W.19

Tel. 01-540 3985

(Price write clearly)

PLEASURABLE BARGAINS QUOTED APPLY TO U.K. ONLY.

P. & P. OR CARRIAGE ORDERS CHARGED EXTRA.
AMPLIFIERS

Complete with circuit drawings.
SASK. 100W output. Three trans. TV/92.
Full chassis mounting. New and boxed.
Complete with circuit drawings.

JUST RELEASED

R.A.P. Receiver Type R8723. Details on request.
Mixer Units Type 18. H.P., M.F., L.F. Valve V853. 15C. P. & P. $1.99
Micro-Amplifiers for Instrument Mounting. etc. 0-100mV. 25C. P. & P. $1.99
Micro-Amplifiers Type Y. 0-100mV. Heavy duty in case complete with leads. 35C. P. & P. $1.99
Flexible Metal Tubing (100ft) Water tight. 25C. P. & P. $1.99
ELECTRO-METALSTIK. Low Inertia Motor 24V d.c. 2,000 r.p.m. 25C. P. & P. $2.99
CHASSIS UNIT. 2 valves ECC83 (3B), EB91 (3D), EF33 (1). 45 Capacitors. Resistors. etc. Valve bases and case. 25C. P. & P. $1.99
TRANSFORMERS (examples).
SMT9733. Fri. 220V, Men. 20V (0.5A), 6.92V (2A), 220-2-222V (27mA), oil filled. 25C. P. & P. $1.99
SMT9200. Pri. 30V, Sec. 0-60V (50mA), 4V (1A), 0.6-1.8V (2A). 25C. P. & P. $1.99
1,800 Transformers in stock.
CAPACITORS. 20 assorted 0.05uF to 1uf (our selection). 15C. P. & P. $2.99
CABLE. No core (100yd new) with drum assembly. 25C. P. & P. $1.99
TEST INSTRUMENTS. S.A.E. FULL LIST.

STATUS HOUSE, WILKINSON AVE., BLACKPOOL

BATTERY ELIMINATORS

The ideal way of running your TRANSISTOR RADIO, RECORD PLAYER, TAPE RECORDER, AMPLIFIER, etc. Types available: 9V: 712; 6V: 6x4 (single output) 396 each; P. & P. 3/9. 9V: 9V; 6V: 6x4 (two separate outputs) 426 each. P. & P. 2/9. Please state output required. All the above units are completely isolated from mains by double wound transformer ensuring 100% safety. 25C. P. & P. 5/9.
His instrument was designed to warn the busy housewife that rain had started falling, so that she could promptly rescue her laundry before it had become soaking wet. It is simple to operate and reasonably robust.

An audible warning is obviously more satisfactory than a visual one, unless the user is hard of hearing. A busy housewife would not normally be expected to stay in one room. She would be more likely to hear a bell, or buzzer, than to see a light, whilst moving about the house doing her chores; she might even be engrossed in her favourite magazine, or novel!

The finished instrument costs very little to make, especially if maximum use is made of components to hand.

The components used are displayed here on the printed circuit board sensor

TRANSISTOR SWITCH

The circuit in Fig. 1 was hooked up. To test this circuit a wire was connected to "A", and another to "B". A tiny drop of water was placed on a piece of glass, and the two wires touched on it. The minute current through the water was sufficient to result in the bell ringing. The circuit uses a current amplifier TR1, with TR2 acting as a switch. A current of about 65mA flows in the collector circuit of TR2 when the bell is ringing. This is well within the capabilities of the transistor used. VR1 is used to set the bias on TR1.

The separation of the printed circuit conductors, and the conductance of the rain will determine the operation of this circuit, which can be set by adjustment of VR1. The diode is inserted across the bell to prevent back e.m.f. through the bell contacts damaging the transistor TR1.

CONSTRUCTION

The instrument is housed in a cigar box or similar small housing to make the finished unit attractive. A small compartment is constructed in one corner of the box to house the small components; these are mounted on two three-way tag strips next to VR1.

The microswitch is fitted to the back of the box, and a small strip of metal attached to the lid is arranged to operate it (see photograph). A toggle switch can be used instead. TR2 is mounted on an aluminium
COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 3·3kΩ</td>
</tr>
<tr>
<td>R2 560Ω</td>
</tr>
<tr>
<td>Both 10%</td>
</tr>
<tr>
<td>½ watt carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRI 10kΩ</td>
</tr>
<tr>
<td>linear carbon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transistors and Diode</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR1 OC71</td>
</tr>
<tr>
<td>TR2 OC35</td>
</tr>
<tr>
<td>D1 OA81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY1 6V dry battery</td>
</tr>
<tr>
<td>Bell (see text)</td>
</tr>
<tr>
<td>Miniature microswitch or toggle switch single-pole, on/off</td>
</tr>
<tr>
<td>Tag strips</td>
</tr>
<tr>
<td>Battery connectors</td>
</tr>
<tr>
<td>Box</td>
</tr>
</tbody>
</table>

Bracket which is screwed to the side of the compartment. The battery is maintained in position by a small strip of wood stuck to the side of the box. All this can be seen in the photograph. The remainder of the space in the box is used to store the rain sensor, and the lead when not in use.

The sensor was made using a small piece of printed circuit board. The pattern can be etched by using a solution of four parts ferric chloride with one part hydrochloric acid and six parts water. This solution is poisonous and harmful to the skin. Paint the pattern of the copper to be retained with matt black paint, which is later cleaned off to reveal the copper. Alternatively a photographic negative of the pattern can be used to print direct onto the copper. The size of the sensor is 3¼in × 2¼in, and the width of the conductors is approximately 0·05in, and the spacing of the conductors about 0·025in.

OPERATION

The simplest method of setting VR1 is to breathe heavily onto the sensor to deposit a film of moisture. VR1 is then rotated to increase the base current of TR1 until the bell rings. The moisture is then wiped off with a piece of dry cloth. R1 will limit the base current of TR1 to a safe value if the sensor is short circuited. The microswitch is used to switch the unit off and on, this operation being performed by opening and closing the lid of the box. The bell is fitted inside the lid of the box which acts as a sounding board.

When in use the sensor should, of course, be placed well out in the open, away from walls, fence, or anything that may protect it from the first few drops of rain. The box can be kept indoors or under cover elsewhere, so long as the bell can be heard when set off.

When not in use, the lead to the sensor is coiled up and placed in the box with the sensor.

NOTES ON COMPONENTS

The only components that warrant an extra word or two, are the bell and the OC35. Almost any electromagnetic bell will suit if it will operate from a 6 volt battery. The one used in the prototype (see photograph) is an "under-dome" type drawing 65mA. It was decided to retain the OC35 so that the constructor could use almost any bell, the current of which can be handled adequately by the OC35. But if using the 65mA bell a lower current transistor such as the OC81 can be used.

Fig. 2. Wiring of components on the compartment panel and connections to TR2 looking at underside
MINIATURE WATER SHOCKS
4 pole, 2 way - 3 pole, 3 way - 4 pole, 2 way - 5 pole, 6 way - 1 pole, 12 way. All at 816 c. 3/4 gross, your assortment. (20/6 post free.

WATERPROOF HEATING ELEKTR.
20 plates length 6 '0" with regulating temperature control. 10-40 prize post free.

BLANKET SWITCH
Double pole with arc into side so luminous in dark.

PHOTO-ELECTRIC KIT
All parts to make light operated switch/bulb alarm/couner, etc. Including Bute, Brisco, Laminated Woods and chemicals. Latching relay. Infr-red sensitive Photocell and 6, 8 transistor, condensers and chemicals. Latching relay. Infr-red sensitive Photocell and 6, 8 transistors, condensers. Essential for use with waterproof element - new plastic case and instructions. (20/6.) (5 3/8 x 11.)

BEAKSETTAK
This small combination thermostat, simply plug your appliance into it and set its temperature. Adjustable setting for normal air temperature and sudden loading. Will save 30% of your bill. Postage and ins. 2/6.

KETTLE ELECT
230/240V 1800 watt. Made in the United Kingdom for the American market. 25% less. 21" dia.

QUICK CUP

MAIN TRANSISTOR POWER PACK
Designed to operate transistor sets and amplifiers. Adjustable output 4V, 9V, 12V for up to 200mA (class B working). Takes the place of any of the following batches and types. RF, FP4, FP6, PP7, PNP, and others. Kit comprises: mains transformer rectifier, smoothing and load resistor, condensers and infra-red. Red zone at 10/6, plus 6/2 post.

THERMOSTATS

Type "B". 15 amp. This is a 17m. long red type made for the American market by Co. Lieble adjust this from 60-020°F. Internal screw alters the setting so this could be adjustable over 200-1,000°F. Suitable for controlling furnace, oven, kiln, incinerator heater or to make flue-start or fire starter. Kit includes: thermocouple and insurance. Type "D". We call this the Ice-start as it cuts in and out at around 0°F. Internal screw alters the setting so this could be adjustable over 200-1,000°F. Suitable for controlling furnace, oven, kiln, incinerator heater, or to make flue-start or fire starter. Kit includes: thermocouple and insurance. Type "E". This is standard refrigerator thermostat. Adjustable from normal refrigerator temperature -70°F. plus 81/2" post.

PHOTO ELECTRIC KIT
This kit comprises: seven items: Choke, 2 tube socket, resistor, fuse box, 2 dials, switch, etc. Includes: 2 tube holder. Complete with wiring instructions. Sufficient for normal photoelectric tubes or the new "supercolor" tubes for fish tanks and indoor plants. Chokes are superhigh power neon flax. 10-20 volts. Kit B - 30-40 volts. 181/2. Kit C - 40-45 volts. 12. Kit D - 55-65 volts. 25. Kit E - 65-75 volts. 25. Kit F for flax, silk, and other miniature tubes. 181/2. Postage on Kits A and B 3/6 for each kit ordered. Kit C, D, E & F 31/2 for each two kits then 181/2 for each two kits then 81/2 for each two kits ordered. Kit F 181/2 on first kit then 61/2 on each kit thereafter.

THERMOSTAT WITH MICROPHONE
This has a sensor attached to a 15v. switch. A 14m. length of flexible capillary tubing - control range: 50°F. to 200°F. so it is ideal for controlling soil heating and pumping, etc., especially when in monitors or portable vessels as the unit may be made and fitted into the vessel. This thermostat could also be used to control a bell or other alarm and a set of heating elements if the critical temp. is reached in stack or heap subject to control. The electrical combustion or if liquid is being heated by gas or other means not controllable by the switch. Made by the famous Teddington Co., we offer them at 12/6 each, see note. (7 1/2 x 11.

MICRO-SONIC
7 transistor Key chain Radio in very pretty case, with stereo polymer, filled and charged and music. Includes: 2 tube holder. Complete with wiring instructions. Sufficient for complete set. (20/6.) (4 x 2 1/2 x 1 1/4.)

DRILL CONTROL
Electronically changes speed from approximately 10 rev. to max., using full power at all speeds by finger-tip control. Kit includes: one unit, all instructions for mounting and control. 81/2 post free plus 6/2 post. Insulator made up 20/6 post free.

TELESCOPIC AERIAL
For portable, car radio or transmitter. Chosen Plastics-11 sections from 3/8 to 11/2. Or longer pole is bottom for RBA screw 7/8.

ELECTRONICS (CROYDON) LTD
Dept. PE, 266 London Road, Croydon CRO-2TH
Also 10/3 Tamworth Road, Croydon
Radio Technicians

enjoy exciting new scope now in

Air Traffic Control

There are opportunities in the National Air Traffic Control Service, a Department of the Board of Trade, for you to play a vital part in the safety of Civil Aviation. You'll work on the latest equipment including Computers, Radar and Data Extraction, Automatic Landing Systems and Closed- Circuit Television, at Civil Airports, Air Traffic Control Centres, Radar Stations and other engineering establishments including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be £869 (at 19) to £1,130 (at 25 or over); scale maximum £1,304 (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

Write for details to: Mr. T. H. Mallett, B.Sc. (Eng.), C. Eng., M.I.E.E., Room 705, The Adelphi, John Adam Street, London, W.C.2 marking your envelope 'Recruitment'.

NATCS National Air Traffic Control Service

148

Silicon N.P.N. transistors. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at 1/6 each or £5/-. per 100.

12 VOLT TRANSISTORISED FLUORESCENT LIGHT * 8 WATT
Bin TUBE. Current drain only 700mA! Complete and tested £2/19/6 only! Or in kit form:

*Case 10/-
Transistor 10/-
Lamp holders—pair 5/-
Condensers, etc. 3/-
Transformer 13/6
Tube 8/-

POST AND PACKING 3/-

TRANSISTORS
OC200, OC203, OC204, all at 2/- each.

Transistors similar to OC44, OC71 and OC72, all 1/- each.

Unmarked, untested transistors, 7/6 for 50.

LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each.

30 watt transistors (ASZ71), 10/- each.

ORP 12 Cadmium sulphide light-sensitive resistors 9/-.

RECTIFIERS
BY100, 800 p.i.v., 2/- each, 2/- per doz., £7/10/- per 100, £50 per 1,000.

BYY13, 6-amp, 400 p.i.v., available on same terms.

MULBARD POLYESTER CAPACITORS
FAR BELOW COST PRICE!

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.001F</th>
<th>0.0015F</th>
<th>0.002F</th>
<th>0.0025F</th>
<th>0.003F</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 volts</td>
<td>3d</td>
<td>3d</td>
<td>3d</td>
<td>3d</td>
<td>3d</td>
</tr>
<tr>
<td>160 volts</td>
<td>15F</td>
<td>15F</td>
<td>15F</td>
<td>15F</td>
<td>15F</td>
</tr>
<tr>
<td>125 volts</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
</tr>
<tr>
<td>100 volts</td>
<td>125F</td>
<td>125F</td>
<td>125F</td>
<td>125F</td>
<td>125F</td>
</tr>
<tr>
<td>60 volts</td>
<td>320F</td>
<td>320F</td>
<td>320F</td>
<td>320F</td>
<td>320F</td>
</tr>
</tbody>
</table>

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers, Well assorted. Mixed types and values. 10/- per 100.

PAPER CONDENSERS, MIXED BAGS, 0.0001 to 1.0 pF, 10/- per 100.

WIRE-WOUND RESISTORS. Give-away offer! Mixed types and values, 1/4 to 1 watt. Mixed bags only. 16 for 10/-.

RECORD PLAYER CARTRIDGES
ACOS GP 91/2 Mono. 15/- complete with needles.

STEREO CERAMIC 91/3 Stereo Compatible 1/-.

STEREO CERAMIC 91/4 Stereo Ceramic 1/-.

STEREO COMPATIBLE 91/5 Stereo, 1/-.

STEREO COMPATIBLE 91/6 Small pick-up arms complete with cartridge and needle, 10/-.

TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F.

TRANSISTORISED SIGNAL TRACER KIT 10/- only.

TRANSISTORISED REV. COUNTER KIT 10/- only.

VEROBOARD
24in x 1in 0-15in matrix 1/6 17in 24in 0-15in matrix 1/- 1/6 7in 32in 0-15in matrix 1/6 4/- 1/6 1in 64in 0-15in matrix 5/6 2in 21in 0-15in matrix 2/- 5/- 1/10 1in 0-15in matrix 2/-

MULTIMETERS. 20,000 ohms per volt.

Ranges: a.c. 1,000V, 500V, 100V, 50V, 10V.
d.c. 250mA, 2.5mA, 50A.
d.c. 2,500V, 500V, 250V, 50V, 25V, 5V.

Resistance: 0.00kΩ and 0.00MΩ.

Special price 1/4/- only.

ELECTROLYTIC CONDENSERS

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.25F</th>
<th>0.5F</th>
<th>1F</th>
<th>2.5F</th>
<th>5F</th>
<th>10F</th>
<th>40F</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 volt</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
<td>4F</td>
</tr>
<tr>
<td>4 volt</td>
<td>10F</td>
<td>10F</td>
<td>10F</td>
<td>10F</td>
<td>10F</td>
<td>10F</td>
<td>10F</td>
</tr>
<tr>
<td>12 volt</td>
<td>20F</td>
<td>20F</td>
<td>20F</td>
<td>20F</td>
<td>20F</td>
<td>20F</td>
<td>20F</td>
</tr>
<tr>
<td>25F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
<td>40F</td>
</tr>
</tbody>
</table>

Gold plated leads for easy soldering. Unbeatable value at 1/6 each or £5/-. per 100.

SKELETON PRE-SET POTENTIOMETERS. 100Ω. 1000Ω. 200kΩ. 500kΩ.

SLIDERS. 680kΩ. 6d each.

SMALL TRANSISTOR OUTPUT TRANSFORMERS 2/6 each.

SMALL TRANSISTOR DRIVER TRANSFORMERS 2/6 each.

CRYSTAL LAPEL MICROPHONES 10/-.

TAPE RECORDER MICROPHONES 12/-.

Orders by post to: G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.

Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries.

For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.
Licence to move please!

Sir—As you know optical communication has always been a free medium for the experimenter. It is free of all restrictions because it cannot interfere with other systems. However, under the proposed act to make the GPO a corporation this situation will end! Not only will the GPO have absolute power of this free medium, they will also control all types of electric and electronic communications.

This is a disturbing idea as motorists will need a licence to flash their indicators, and telemetry systems will all need licences! Record players would need a licence also, and conceivably the human body would need permission to move a muscle (electro-chemical communication).

I strongly feel that your magazine should petition the government to get this clause removed before it is too late.

J. M. Perry, Wallasey, Cheshire.

See this month’s editorial comments—Ed.

When is zero not zero?

Sir—I am in the process of constructing a Frost alarm as described in the November 1968 issue of Practical Electronics. On reading the paragraph entitled Calibration, it strikes me that this method is unnecessarily complicated.

In our school physics lab, we frequently use a mixture of ice and iced water as a convenient 0°C Centigrade standard of temperature. As the circuit is required to be calibrated to 0°C Centigrade, it should be possible to immerse the thermistor and connector in a suitable water-tight plastic bag, in the ice and iced water mixture. Provided that the mixture is allowed five or ten minutes to attain an equilibrium, the calibration should be possible without the need to alter any refrigerator controls, and with the use of a thermometer simply as a reference instrument.

If it is desired to calibrate the device at 3 or 4°C Centigrade, it would be only necessary to allow the ice mixture to warm up in the normal way until the thermometer indicates the required reading. Calibration is then made at this point.

C. Leather, Haywards Heath, Sussex.

Switched on

Sir—It may be of interest to your readers to hear on my experiences with the Vari Windscreen Wiper as described in the October issue of P.E.

When the unit was completed, upon test it failed to operate correctly, the fault being that although delay was apparent at the moment of switch on, the unit failed to switch off the motor at the end of one stroke.

Voltage checks revealed the thyristor, although the correct type, was firing at 1.6V positive with respect to cathode. It was noticed also that when the parking switch contacts opened a transient voltage pulse sufficient to operate the thyristor appeared at the gate. Suppressing this with a 32µF capacitor across the parking switch cleared up the trouble completely. Although due to the low firing voltage of the thyristor used, the value of potentiometer VR1 used to give a maximum time constant of approximately 30 seconds, was 1 megohm.

P. J. Hawkins, Plymouth, Devon.

I.C. holder

Sir—I have found a plug-in base for the SL701C integrated circuit which forms a very rigid contact and facilitates easy removal and replacement. It is a Grundig Graupner 8-pin socket available at about 2s from radio control shops.

J. P. Cogan, Cork.

Try it for size

Sir—I was highly amused by a mental picture worked by the criticisms of Edinburgh University Professors W. E. J. Farvis and J. Murray, regarding the empirical approach to circuit design, see December 1968 Editorial.

Do they buy a hat by its volumetric capacity, or—whisper it—try it on?

Horton R. S. Canale, GM3XFC, Angus, Scotland.

Fab or fantasy

Sir—Soberly considering the implications of Sound Light and Music series, myself being an old square in the world of fab and fantasy, I am left wondering if in every sense, the end truly justifies the means.

Recently, my teenage grand-daughter having begun to learn typing, excitedly showed me some weird and wonderful patterns she had produced on paper by using all the characters and signs on the typewriter keys having caused them to form a geometric display by operating the machine in an extremely unorthodox manner.

Disregarding questions of originality or purpose, can that not be included as an example of “serendipic” graphic art produced without the extravagance or strained ingenuity of a cybernetic device.

About seventy-two years ago, I was invited to witness the enchanting colour patterns created through a large beautifully made kaleidoscope. This old fashioned toy calls for no great imagination to modify and extend its random capabilities whereby could compare more than favourably with results from the artistic exploitation of phenomena which is otherwise more purposefully employed.

Including electronic music with the foregoing observations, is it possible we are seeing the emergence of an electronic Carnaby Street. While still possessing a reverent regard for those engaged in the dignified furtherance of the sciences hereby concerned, it is with some intrepidation that I shall return to the controls of my oscilloscope lest its wavering green countenance should communicate some ecstatic abstract to remind me that I am not “with it”.

In conclusion I wish to express my warm appreciation of the many clear helpful contributions in your publication which have kept me abreast of the spectacular advances in solid state devices. I have been for many years an active practical constructor, now looking on and learning with added interest.

P. Ashdown, Lymm, Cheshire.
With or without it?

Sir—May I first of all say, I am a little puzzled by the heavy construction used in the “animal” described by Mr. G. C. Brown in his series Bionics, but the ideas which streamed through my mind on seeing the introduction, would need a ten ton chassis. This is to mean, I have not for many years felt the same interest in any possible project—it has no limit.

My memories went far back to the 1930’s, the scream of my breadboard circuit’s hand capacitance which caused young friends to jump back.

In the words of the song: “Those were the days my friend!” If young readers see the same interesting possibilities, this series could go on for years.

As I have no interest in a hundred watts hammering out modern beat, it may be that I am not “with it,” but thank you gentlemen for the visions of youthful interest returning. It is a long time since I could feel the same interest.

C. S. Burton,
Bulwell,
Nottingham.

But, sir, this series of projects is “with it” in an educational sense!—Ed.

I’m lost

Sir—I know that this is not normal procedure, but I am desperate. I have recently acquired what promises to be a very useful oscilloscope, but with one minor snag, it is u/s, and I am unable to locate the manufacturers, so therefore I cannot obtain a circuit diagram, and hence repair the unit.

I would be grateful if you could advertise on my behalf for assistance in obtaining a circuit diagram as it is possible that another of your readers may already own one of these units.

The information on the unit is as follows: There is no model number or make but a pattern No. 53259 and the unit is called a Minoscope. It can be operated on the standard three wire mains as well as 180V/500Hz or 12V d.c. It has a 2 in cathode ray tube of approximate sensitivity of \(Y = 4.5 \) and \(X = 4.0V/mm \). The timebase is 20-100-100-300, 300-1,000, 1,000-5,000 and 5,000-25,000Hz. Amplifier maximum gain is \(\times 400 \) from 50Hz to 10kHz.

The unit measures approximately 9in \(\times 6in \times 2in \) and is, as far as I can gather, ex-British services.

S.A.C. Munro J.R. V4285549,
c/o 20D Davaar Avenue,
Campbeltown,
Argyll,
Scotland.

Tolerant stockmarket

Sir—I was intrigued to read the article on the Electronic Stockmarket in your December 1968 issue, but I should like to point out that due to the wide manufacturing tolerances found in electrolytic capacitors, certain players’ positions could gain an unfair advantage during transactions. The smaller a player’s cash capacitor, the greater will be his voltage increase in a positive transaction, although of course his loss will also be greater in a negative one, which will tend to reduce this advantage.

However, in order to make the game as fair as possible, I should like to suggest a simple comparative test. Each of the twenty 200\(\mu \)F capacitors (for a four position game) is charged up to the full 9 volt battery potential, then allowed to discharge through a 180 kilohm resistor and the 50\(\mu \)A meter in series. The time for the discharge current to fall to half its initial value gives the time constant of the R-C combination (nominally 36 seconds), the initial value being found accurately beforehand by connecting the resistor and meter directly across the battery.

After this has been repeated for all the capacitors, four with similar time constants can be chosen for the “cash” capacitors, and another four for the “bank” capacitors. The remainder can still be used in the “Stock Exchange” as their inequality will merely add a further interest to the game.

If a 100\(\mu \)A meter is used, the resistor should be 100 kilohms giving a time constant of 20 seconds.

J. D. Archer,
Halifax.

From an engineering point of view, capacitor tolerances are of great significance, and I do not dispute the fact that, under certain unfortunate circumstances, it is possible to find certain bias toward one player’s position than another.

During the construction of the prototype game, I gave the matter fair thought and consideration, particularly when I found that the capacitors were given a tolerance of \(-10 \) to \(+50 \) per cent.

I took 50 of these capacitors at random and checked their capacitance on a proprietary tester: 47 showed capacitance of around 220\(\mu \)F. The remaining three components measured slightly under 200\(\mu \)F.

I produced the prototype without selecting matched capacitors and, once built, was found to produce convincingly random winnings over the course of many trial games. It was therefore decided to leave well alone so far as the prototype was concerned, but I did give further thought to the possibilities of capacitance tolerance. This brought to light a number of interesting factors.

The tolerance of a capacitor, expressed as a percentage, will not manifest itself in the same proportion so far as resultant voltage after “transfer to another capacitor” is concerned. In fact, the law of resultant voltage to difference between capacitances is inverse. This is partially compensated by a higher (or lower) voltage applied for the next transfer, but some loss (or gain) will result.

So far as the bank capacitors are concerned, the effect of deviation would seem more important. However, suppose that a player has a sub-normal “bank” capacitance. It will then be easy to charge this capacitor to the “million” threshold than if its value were either normal or above-normal.

However, from the standpoint of this Game, the “millions” monitor circuit is not without its limitations, and a certain degree is to be expected throughout the time of a game. The capacitor itself will have a certain amount of leakage proportional to its actual capacitance value.

Consider the monitor circuit leakage; the lower capacitor, whilst receiving more benefit from charge transfer to it, will suffer slightly higher losses from it during the course of play, due to its lower capacitance-to-leakage ratio. Here lies another levelling factor.

The progress of the game depends in essence on random occurrences. We can never know how random the randomness can be without studying events from the beginning of time to infinity! The “un-randomness” of randomness is so disposed as to veil the small effects these theoretically display. During games with various players, the predisposition to winning and losing was more apparently associated with position rather than the position at which each player placed.

The above factors weighed heavily against the inclusion of a capacitor selection procedure which might well add undue confusion to the already complicated text, particularly so far as newcomers to the subject are concerned.—B.H.B.
PEAK SOUND
Aids to economical high fidelity

ES/10-15
BAXANDALL SPEAKER

"A thoroughbred"

SAYS
RALPH WEST
HI-FI NEWS
OCTOBER '68

"The immediate impression was of a thoroughbred speaker, smooth and effortless ... voices were uncannily real. Once again we see the possibility of Rolls Royce standards ... when you know how."

A revolutionary advance in design logic

We can only quote briefly from the report in Hi-Fi News which goes thoroughly into the merits of this remarkable loudspeaker. We supply the kit exactly to the specifications described by the designer, P. J. Baxandall in Wireless World (Aug. and Sept.). These designer-approved Peak Sound Kits come ready for instant assembly. Frequency range—60 to 14,000 Hz (100–10,000 Hz ± 3 dB); impedance—15 ohms; loading up to 10 watts R.M.S.; size 18" x 12" x 10". Here indeed is quality performance of a very high order for a very modest outlay.

Equaliser assembly 36/- (P/P 1/6): Cabinet assembly, tea finished. 8/-3.6 +12/8 P.Tax (Carr. 8). X-over for woofer if required 22/6 (P/P 3/6) (Carr. in U.K. 11/6)

THE PEAK SOUND PA/12-15 (12 watts R.M.S. out into 15Ω) is for the constructor who appreciates both sensible design and genuine power and hi-fi performance. Available built or in kit form. Response 10 Hz – 45 KHz ± 0.5 dB Distortion at max. output –0-1% 43 dB neg. feed back. Size 5" x 3" x 1½". With full instructions. Pre-amp. details available. (P/P for kit or built 2/6)

BUILT AND TESTED £5.19.6 Kit loss heat sink 3% (P/P 5%-)

Seal 6/- (P/P 1%-)

From your dealer or direct in case of difficulty.

PEAK SOUND (HARROW) LTD, 32 St. Judes Road, Englefield Green, Egham, Surrey

Telephone: EGHAM 5316

Send S.A.E. for January, 1969 Catalogue
CURRENT TITLES FROM PITMAN

Pick-ups: The Key To Hi-Fi
Second edition
J. Walton
12s 6d net

"It can be highly recommended as a first-class introduction to the subject of high-quality record reproduction." HI-FI NEWS

Introduction To Telephony And Telegraphy
E. H. Jolley
75s net

This new book covers the joint paper "Telephony and Telegraphy "A", in the City and Guilds Telecommunications Technician's Course No. 49

Solution Of Problems In Electronics And Telecommunication
Third edition
C. S. Henson
55s net

Paperback edition 38s net

For this third edition the author has made very substantial revisions, introducing much more material in the electronics sections, particularly in relation to the semi-conductor field.

SIR ISAAC PITMAN AND SONS LTD
THE PITMAN PUBLISHING GROUP

DIOTRAN

SALES
P.O. BOX 5
WARE, HERTS.
TEL.: WARE 3442

1/-
TESTED TRANSISTORS

- One price only.
- Marked, fully tested and guaranteed.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>PIV</th>
<th>Amp</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1959</td>
<td>50</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N1958</td>
<td>100</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N1957</td>
<td>200</td>
<td>10/6</td>
<td></td>
</tr>
<tr>
<td>2N1956</td>
<td>300</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>2N1955</td>
<td>400</td>
<td>20/6</td>
<td></td>
</tr>
<tr>
<td>BTX30-300</td>
<td>500</td>
<td>22/6</td>
<td></td>
</tr>
<tr>
<td>BTX30-500</td>
<td>500</td>
<td>21/6</td>
<td></td>
</tr>
<tr>
<td>BTX30-600</td>
<td>500</td>
<td>25/6</td>
<td></td>
</tr>
</tbody>
</table>

POWER TRANSISTORS

- 1/6 each.
- Marked, fully tested and guaranteed.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>PIV</th>
<th>Amp</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1977</td>
<td>50</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N1976</td>
<td>100</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N1975</td>
<td>200</td>
<td>10/6</td>
<td></td>
</tr>
<tr>
<td>2N1974</td>
<td>300</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>2N1973</td>
<td>400</td>
<td>20/6</td>
<td></td>
</tr>
<tr>
<td>BTY79-150</td>
<td>500</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>BTY79-250</td>
<td>500</td>
<td>14/6</td>
<td></td>
</tr>
<tr>
<td>BTY79-400</td>
<td>500</td>
<td>16/6</td>
<td></td>
</tr>
</tbody>
</table>

THYRISTORS (S.C.R's), FULLY TESTED, BRAND NEW AND CODED

- TO-5 CASE

<table>
<thead>
<tr>
<th>Type No.</th>
<th>PIV</th>
<th>Amp</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3701</td>
<td>50</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N3702</td>
<td>100</td>
<td>7/6</td>
<td></td>
</tr>
<tr>
<td>2N3703</td>
<td>200</td>
<td>10/6</td>
<td></td>
</tr>
<tr>
<td>2N3704</td>
<td>300</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>2N3705</td>
<td>400</td>
<td>20/6</td>
<td></td>
</tr>
</tbody>
</table>

BATTERY TRANSISTORS

- Marked, fully tested and guaranteed.

<table>
<thead>
<tr>
<th>Type No.</th>
<th>PIV</th>
<th>Amp</th>
<th>Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N682</td>
<td>50</td>
<td>12/6</td>
<td></td>
</tr>
<tr>
<td>2N683</td>
<td>100</td>
<td>15/6</td>
<td></td>
</tr>
<tr>
<td>2N684</td>
<td>200</td>
<td>19/6</td>
<td></td>
</tr>
<tr>
<td>2N685</td>
<td>300</td>
<td>23/6</td>
<td></td>
</tr>
<tr>
<td>2N686</td>
<td>400</td>
<td>29/6</td>
<td></td>
</tr>
<tr>
<td>2N687</td>
<td>500</td>
<td>37/6</td>
<td></td>
</tr>
<tr>
<td>2N688</td>
<td>600</td>
<td>46/6</td>
<td></td>
</tr>
<tr>
<td>2N689</td>
<td>700</td>
<td>56/6</td>
<td></td>
</tr>
<tr>
<td>2N690</td>
<td>800</td>
<td>62/6</td>
<td></td>
</tr>
</tbody>
</table>

Printed circuit boards

- With usable length leads on both transistors and diodes.
- *All* Mullard devices with the exception of the 2G371, which are Texas.

Overseas quotations by return

- To anywhere in the world.

Transistor Eqty. Book

- 2,500 cross references of transistors—British, European, American and Japanese.
- A must for every transistor user.

Texas silicon alloy transistors

25302 Equ. OK200 VC840 Hfe 15-50 I = 49 off 3/6 each 25302 -0 VC825 Hfe 25-75 1=99 off 3/6 each

High quality silicon planar diodes

- Suitable replacements for QA200, OA200, BA130, BSY27, BSY28, etc. 500 off, £5, 1,000 off £6.60.

Introduction To Telephony And Telegraphy

E. H. Jolley
75s net

This new book covers the joint paper "Telephony and Telegraphy "A", in the City and Guilds Telecommunications Technician's Course No. 49

Solution Of Problems In Electronics And Telecommunication

Third edition
C. S. Henson
55s net

Paperback edition 38s net

For this third edition the author has made very substantial revisions, introducing much more material in the electronics sections, particularly in relation to the semi-conductor field.

SIR ISAAC PITMAN AND SONS LTD
THE PITMAN PUBLISHING GROUP
Printed Circuit Kit

Build 40 Interesting Projects on a Printed Circuit Chassis with Parts and Transistors from your Spare Box

Contents:
2. 1 Board for Matchbox Radios, 22/6.
3. 1 Board for Walkie Talkie, 22/6.
5. Resistor Solvent, 6/6.
7. 16-page Booklet Printed Circuits for Amateurs.
8. 9 Multi-Core Radio Dial, 28/6.
9. Also free with each Kit: Essential Design Data, Circuits, Chassis Plates, etc. for 40 TRANSISTORIZED PROJECTS.

A very comprehensive selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient designs published for the first time, including 16 new circuits.

EXPERIMENTER’S PRINTED CIRCUIT KIT

- **Size:** 8/6
- **Postage & Pack:** 1/6 (UK)

Commonwealth:
- **SURFACE MAIL 3/6**
- **AIR MAIL 1.00**

Australia, New Zealand, South Africa, Canada, New Zealand, America, Canada and U.S.A. Also Essential Data Circuits and Plans for Building 40 PHOTOELECTRIC PROJECTS.

PHOTOELECTRIC KIT

Contents:
- 2 P.C. Chassis Boards, Chassis, Etching Manual, Infra-red Photo-transistor, Matching Relays, 2 Transistors, Condensers, Resistors, Gain Control, Terminal Blocks, Elegant Case, Screws, etc. 160 Watts Max.

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Car Parkers, Door Openers, etc.

Size: 39/6
- **Postage and Pack:** 2/6 (UK)

Commonwealth:
- **SURFACE MAIL 3/6**
- **AIR MAIL 1.00**

Australia, New Zealand, South Africa, Canada, New Zealand, America, Canada and U.S.A. Also Essential Data Circuits and Plans for Building 12 PHOTOELECTRIC PROJECTS.

1. Steady-Light Photo-Switch/Alarm.
4. Relay-less Alarm.
5. Warbling-Tone Alarm.
6. Closed-Loop Alarm.
7. Project Lamp Radiator.
8. Infra-Red Electronic Project Modulator.
11. Automatic Headlamp Dipper.

Invisible Beam Optical Kit

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Car Parkers, Door Openers, etc.

Size: 2 leas, 2 mirrors, 2 45-degree wooden blocks, Infra-red filter, projector lamp holder, building plans, performance data, etc. 160 Watts. **Price:** 1/6 (UK). **Commonwealth:** Surface Mail 2/6; Air Mail 2/6.

Junior Photoelectric Kit

Transistor invisible-beam, Relay-less, Steady-Light Photo-Switch, Burglar Alarm, Door Opener, Counter, etc., for the EXPERIMENTER.

Contents:
- 3 Resistor Sensitive Phototransistor, 3 Transistors, Chassis, Plastic Case, Resistors, Screws, etc. 3 Full Size Plans, Instructions, Data Sheet + "10 Advanced Photodetector Designs.

Price: 1/6. **Postage and Pack:** 1/6 (UK). **Commonwealth:** 2/6; Air Mail 4/6.

Junior Optical Kit

Contents:
- 2 Lenses, Infra-red Filter, Lamp Holder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible-beam beam projector and photocell receiver for use with Junior Photoelectric Kit.

Price: 1/6. **Postage and Pack:** 1/6 (UK).

Photoelectric Parking Lamp Switch

Automatically turns parking lamp on at dusk, off at dawn. Protects your car. Saves the battery. Miniature construction. Simply insert in parking lamp lead. **Price:** 2/6. **Postage and Pack:** 3/6 (UK).

Thyristor Light Dimmer

Add a touch of luxury to your home. Adjust the light at parties, while watching TV, etc. Ideal for children’s bedroom. **100 Watts Max.** Replaces on-off switch. **Price:** 8/6. **Postage and Pack:** 9/6 (UK).

York Electrics

333 York Road, London, S.W.11
Send a S.A.E. for full details, a brief description and Photographs of all Kits and all Transistor Projects Assembled.
Practical Electronics Classified Advertisements

The pre-paid rate for classified advertisements is 1/3 per word (minimum order 15/-), box number 1/6 extra. Semi-displayed setting £4.2.6 per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL ELECTRONICS and crossed "Lloyd's Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL ELECTRONICS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

FOR SALE

TIME SWITCHES, 14 day clock, once on once off every 24 hours, preconditioned and fully guaranteed. 5 amp Hornsby 32/6, 15 amp Verner 42/6, P. & P. 4/6. A. R. B.ATCHLER (P. E. Dept.), 4 Park Road, Bromley, BR1 3HP.

ILLUSTRATED CATALOGUE. No. 17 Manufacturers' Surplus and New Electronic Components including Semiconductors. 3/- post free. ARTHUR SALLIN LTD., 28 Gardner Street, Brighton.

FOR SALE "Practical Electronics"—November 1964 to February 1966 complete. Offers to A. X. BLADES, County Laboratory, Dorchester, Dorset.

$6,000 IN VOUCHERS GIVEN AWAY. See free cat. for details. Tools, Materials, Mechanical, Electrical, thousands of interesting items. WHITNOX, Dept. PVE, New Mills, Stockport SK12 4HL.

HIGH GLOSS METALLIC HAMMERED ENAMEL MAKES FANTASTIC DIFFERENCE TO PANELS

say hundreds of enthusiastic users. 'Crackle' pattern appears like magic on wood and metal. No undercoat. Air dries 15 min. to hard glossy finish. Heat, liquid and scratch-proof. Bronze, Silver, Green, Black, Lt. and Dk. Blue. Send for Free List, or 8/- (+ 1/9 post) for trial pint. TIN, colour samples and instructions. Send NOW.

FINNIGAN SPECIALITY PAINTS Dept. P.E. INSTITUTE OF ELECTRONICS (Dept. 125K), Aldermaston Court, Aldermaston, Berks.

EDUCATIONAL

SITUATIONS VACANT

A.M.I.E.E, A.M.S.E. (Elect.), City & Guilds, G.C.E., etc., on "Satisfaction or Refund of Fee" terms. Wide range of Home Study Courses in Electronics, Computers, Radio, T.V., etc. 132-page Guide—FREE. Please state subject of interest. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 124K), Aldermaston Court, Aldermaston, Berks.

TECHNICAL TRAINING by I.C.S.

IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING

First-class opportunities in Radio and Electronics await the I.C.S trained man. Let I.C.S train YOU for a well-paid post in this expanding field.

I.C.S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for:

- C. & G. TELECOMMUNICATION TECHNICIANS' CERTS.
- C. & G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV SERVICING CERTIFICATE.
- RADIO AMPERES' EXAMINATION.
- R.M.G. CERTIFICATES IN RADIO PHOTOGRAPHY.

Examination Students Coached until Successful.

NEW SELF-BUILD RADIO AND ELECTRONIC COURSES

Build your own 5-valve receiver, transistor portable, signal generator, multi-meter and valve volt meter—all under expert guidance.

POST THIS COUPON TODAY and find out how I.C.S can help YOU in your career. Fill in all I.C.S courses in Radio, Television and Electronics will be sent to you by return mail.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

HOLIDAYS

HOLIDAY FOR BOYS 14/16 years August 1969, specialising in engineering, electronics, photography. Tuition and practical work including go-karts and motor cars. 11 days—£14.10.0.

Write for free brochure: INTER-SCHOOL CHRISTIAN FELLOWSHIP, 47 Marylebone Lane, London W.I.
CITY AND COUNTY OF BRISTOL
BRISTOL TECHNICAL COLLEGE

Applications invited for following post:—
REF. T686/49/2 SENIOR TECHNICIAN T.3

Salary Scale: £895 - £1,055

Starting salary dependent upon age, qualifications and experience. An additional £50 or £30 will be paid to a candidate with appropriate National Certificate or C. & G. qualifications.

Applicants should be over 21 and hold Intermediate City and Guilds in Electronics or Radio Communications, or other appropriate qualifications. Duties include servicing and maintenance of electronic and electrical equipment as used in Merchant Ships and Civil Aircraft.

38-hour, 5-day week with usual holiday and sick pay schemes. Permanent superannuable post.

Further particulars and application forms (to be returned within 14 days of this advertisement) from Registrar, Bristol Technical College, Ashley Down, Bristol BS7 9BU.

Please quote reference number T686/49/2 in all communications.

TRAINEE RADIO TECHNICIANS
A PROGRESSIVE CAREER IN THE FIELD OF RADIO AND ELECTRONICS

Applications are now invited for an intensive training course of 3 years, leading to appointment as a fully qualified RADIO TECHNICIAN, with further prospects of progression to the Telecommunication Technical Officer Class.

Generous Pay and Conditions while under training.

Candidates must be over 16 and under 21 years of age as at September 8th, 1969, on which date training commences.

Minimum educational qualifications required are passes at G.C.E. 'O' Level in English Language, Mathematics and Physics (already held or expected to be obtained in the Summer 1969). Equivalent passes in Scottish or Northern Ireland Certificates and C.S.E. Grade I passes are also acceptable.

Closing date for applications, 31st March, 1969. Interviews will be commenced about end of April.

Apply for full details and application form to:

THE RECRUITMENT OFFICER (TRT/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS
OAKLEY, PRIORS ROAD, CHELTENHAM, GLS.
GL52 3AU

AERIALS

Enthusiasts

THE T.M.P. EXPERIMENTAL AERIAL KIT

A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts and bolts, cables, even a compass! etc., to make up various experimental aerials to cover all bands.

This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police, etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor or outdoor. Robust construction with simplified detailed plans for easy assembly.

The Wonder T.M.P. Kit costs only £9.64—no extra for carriage.

Despatched to any address in UK within 7 days.

TUBULAR METAL PRODUCTS
7 LOWESMOOR TERRACE
WORCESTER
156

Price only 49.

A neat little superbet.

Motors for all applications.

For all types of lighting arrangements.

For pleasure.

Phone output a 9V battery that fits inside.

Civil depts.

1217 at 2A, 9/6 guaranteed.

Transformers at these ridiculously

Bulk purchase enables us to offer

Sale

Our prices 16.10.0

Also police fire/ambulance.

This small unit will fit anywhere.

Hear shipping from all over the world.

This unit is the same as the

I-E-D.T. model-replaces all 9 volt

batteries, i.e., PP3, PP4 PP5, PP6,

PP7, PP8 and all equivalents, or all 6

volt batteries, i.e., PPI and PP8

(please state which voltage).

The unit is the same as the

MK II version above with the added

refinement that all the outputs are

STABILISED making the unit most

suitable for running Hi-Fi and Test

Gear directly from the mains. Only

75/-, P. & P. 5/-.

All units available from Dept. P.E.

RHYTHM MODULES. Build your own

rhythm box—simply, cheaply. Realistic sound

BUILD IT in a DEWBOX quality cabinet

2in x 2in x any length. DEW LTD., Ringwood Road, Ferndown, Dorset. S.A.E. for leaflet. Write now—right now.

ELECTRICAL

ELECTRICAL (continued)

TWO TRANSISTOR d.c. to a.c. Converter Kit

12V d.c. input 240V a.c. output 40W suitable for running floor fans, etc. £25.9. post

paid (less case). Deluxe version of above FOUR TRANSISTOR d.c. to a.c. Converter Kit, lights, etc. £10 complete with case.

Circuits available—S.A.E. please.

J. ROBINSON (Radio TV) (Dept. P.E.), 6 Highcliffe Road

MANCHESTER 5 060-740 1175

240 volt ELECTRICITY ANYWHERE

most brilliant performance ever from

12-volt Car Battery, BRILLIANT HEAVY

DUTY 240 AMPERES MOTOR with BIG 220 WATT OUTPUT. Marvellous for

TELEVISION, ELECTRICAL LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for fluorescent fitting. Thousands of uses.

Tremendous purchase of this model makes fantastically low price possible.

ONLY £3.19.6 each plus 10/- delivery, C.O.D.

with pleasure. MONSTRO if not DELIGHTED. Please send S.A.E. for full illustrated details.

Dept. PE, STANFORD ELECTRONICS

Rear 84/85 North Promenade

BLACKPOOL, Lancashire

UNIVERSAL BATTERY ELIMINATOR

Run all your transistor equipment direct from a.c. mains. The most economical way of run-

ning Transistor Radios, Hi-Fi Equipment, Record-

Players, Amplifiers, etc. No more expensive bat-

teries to buy. All the units are contained in an

attractive case with a full set of accessories. MK I model—replaces all 9 volt

batteries, i.e., PP3, PP4 PP5, PP6, PP7, PP8 and all equivalents, or all 6

volt batteries, i.e., PPI and PP8 (please state which voltage).

Now only 30/- P. & P. 7/-.

MK 2 model—this unique model (with case) has quite an amazing range and

is ideal for cassette tape-recorders, price only 35/-, P. & P. 5/- extra. Extra

lead with DIN plug for Cassettes 6/6.

MK II—this unit is the same as the

MK II version above with the added

refinement that all the outputs are

STABILISED making the unit most

suitable for running Hi-Fi and Test

Gear directly from the mains. Only

75/-, P. & P. 5/-.

All units available from Dept. P.E.

GLOBE SCIENTIFIC LTD

DEPT. P.E., 254 COWDWAYS YARD,

MILL STREET, LEEDS 9

MICRO-COMPUTER PROGRAMS

Build your own personal computer.

Send 2/- for full details.

D.E.W. LTD., 254 Ringwood Rd., Ferndown, Dorset

SERVICE SHEETS

SERVICE SHEETS: RADIO, TELEVISION,

TAPE RECORDERS, 1925-1968, by return

post, from 1/- with free fault-finding guide. Catalogue 6,000 models, 2/6. Please send stamped addressed envelope with all orders/ enquiries. HAMITTOX RADIO, 54c London Road, Bexhill, Sussex.

C. & A. SUPPLIERS

SERVICE SHEETS T.V., RADIO, TRANSISTORS, TAPES, ETC.

Only 5/- each, plus S.A.E.

(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W.11

MAIL ORDER ONLY

RADIO TELEVISION, over 8,000 Models.

SERVICE SHEETS, Radio, TV, 5,000 models.

MICRO-COMPUTER PROGRAMS

Build your own personal computer.

Send 2/- for full details.

D.E.W. LTD., 254 Ringwood Rd., Ferndown, Dorset

ELECTRICAL

ELECTRICAL (continued)

AIRCRAFT—POLICE BAND

BROADCASTING. Listen to the thrills of aircraft, police and airports at work. Also police handiwork. Taxi and

airmail reports. Ideal for receiving 6 metre amateurs.

A fully transistorised receiver covering 97-108Mhz V.H.F. Broadcasting, short wave, black crackle finish, friendly 4 x 4. Operates from a 9V battery that fits inside. Speaker and headphones supplied. Ideal for listening to hours of pleasure. Our price £10.00 car. and inc. 10/-

C.O.D. or C.O.D.

AIR/SEA TRANS/REC.

RESCUE Compact V.H.F. Trans./Rec. Fits in the pocket. Complete with Mike/Speaker, amplifier, aerial, transmitter and receiver. Were made to operate up to 250 miles depending on terrain. Operate from dry batteries. Completely self-contained. Ideal for Land Yachts. Cost Coat, over 450 each. Regulations state must not be operated in UK so please state "For Dismantling purposes only" when ordering. Price £10.00 each. p. 2/- in lot. Two sets for £15.00, post free. Four sets £20, carriage free. Bulk sale of 10 sets £15, savings 2/. Export enquiries invited.

SHIPPING SOS BAND

RECEIVER Hear shipping from all over the world. Covers the complete maritime, trailer and amateur bands. A different black crackle finish case in pleasing case. MK I model—replaces all 9 volt batteries, i.e., PP3, PP4 PP5, PP6, PP7, PP8 and all equivalents, or all 6 volt batteries, i.e., PPI and PP8 (please state which voltage).

Now only 30/- P. & P. 7/-.

MK 2 model—this unique model (with case) has quite an amazing range and

is ideal for cassette tape-recorders, price only 35/-, P. & P. 5/- extra. Extra

lead with DIN plug for Cassettes 6/6.

MK II—this unit is the same as the

MK II version above with the added

refinement that all the outputs are

STABILISED making the unit most

suitable for running Hi-Fi and Test

Gear directly from the mains. Only

75/-, P. & P. 5/-.

All units available from Dept. P.E.

GLOBE SCIENTIFIC LTD

DEPT. P.E., 254 COWDWAYS YARD,

MILL STREET, LEEDS 9

MICRO-COMPUTER PROGRAMS

Build your own personal computer.

Send 2/- for full details.

D.E.W. LTD., 254 Ringwood Rd., Ferndown, Dorset

SERVICE SHEETS

SERVICE SHEETS: RADIO, TELEVISION,

TAPE RECORDERS, 1925-1968, by return

post, from 1/- with free fault-finding guide. Catalogue 6,000 models, 2/6. Please send stamped addressed envelope with all orders/ enquiries. HAMITTOX RADIO, 54c London Road, Bexhill, Sussex.

C. & A. SUPPLIERS

SERVICE SHEETS T.V., RADIO, TRANSISTORS, TAPES, ETC.

Only 5/- each, plus S.A.E.

(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W.11

MAIL ORDER ONLY

RADIO TELEVISION, over 8,000 Models.

SERVICE SHEETS, Radio, TV, 5,000 models.

RECEIVERS AND COMPONENTS

L.S.T. ELECTRONIC COMPONENTS LTD

BRAND NEW ELECTROLYTICS,
Cash with order.
formeriess class B audio amplifiers.
AMPLIFIER PACKAGES. Component kits
PA234 IW amp for 12V, 22 ohm load, 24)-.
IN/053
2.3055
2.3711
2.3703
111431.
FULLY TESTED
3/-
mAmA
9d
4/9 (4/-)
S/6
41//6
3/-(2/8)
I/6
726
- 2/3
AF102
AD10
ACI67
AAT30
25002
26311
1637111
2634.1

An 116

RF/IF stage

MANY OTHER

OFCTS0
1%13
S0123
KT.
ECM
ICICY31
ATZIO
MDR
ASTI.
BULK
QUANTITIES
37/

Low noise,

1%4

II: 1

I2/

STZ11

ELECTRONIC COMPONENTS

DISCOUNT TRANSISTORS
No "seconds". No "re-mark", Mint, guar-anteed to spec. No order too small, but note imperial “discount” prices (in brackets) for FIVE OR MORE, one type or MIXED. (L.K.) Stock based on orders 100 or over. Datasheets list with useful circuits 4d./free-

THTTRANSISTORS SCR
PV 1A 3A 10A
50 64 3 /-
100 5 /-
100 1/3 2/5 5/8
400 3 /-
600 3 /-
800 3 /-
1,000 4 /-

SPECIAL ZENER DIODE
OFFER
Type Yield Yards Yards
1N5242 1N5243 1N524 1N524 2V 200mW 2V 200mW 2V 200mW 2V 200mW
1N5259 1N5263 1N526 1N526 1V 200mW 1V 200mW 1V 200mW 1V 200mW
1N5267 1N5273 1N527 1N527 0.8V 200mW 0.8V 200mW 0.8V 200mW 0.8V 200mW

BARGAIN PANELS of new surplus Elec-

R & R RADIO
51 Burnley Road, Rawtenstall
Roscuslend, Lancs.
Tel.: Rosedale 3152

VALVES BOXED, TESTED & GUARANTEED

EB89 3/6
PCF80 3/6
ECC82 3/6
PG80 3/6
E80 1/6
PCB83 3/6
EB85 3/6
PCB84 3/6
EF183 3/6
PL64 3/6
50FS 5/6
EF184 3/6
PL64 3/6
50FS 5/6
EF86 3/6
EB86 3/6
50FS 5/6

COMPONENTS at GIVE-AWAY PRICES,
Digital Counters, Key Counters, Transistors, Valves, Tool Bags, Tracking Heads, Recording Tape, Aerials, Intercoms, Micro-

RADIO RECEIVING CENTRE

INTERNATIONAL RECTIFIER "SEMICONDUCTOR CENTRE"
Selection only. Battery BLM
0-1.6-V 2W 155.
Silicon Solar Cell SIM 0-1.6-V 2W
(Disc. 25%)
Special Pack of 4 Photocells
250mW at N71
(All include free instruction booklets)
Solar Drive Mirror 3W (For use with IR photocells)
KCS Zener Diode Experimental kit containing 12 Zeners 3-30V, 12V, 1W. Bargain price this month only 40.
Do-DIY Circuits Containing Silicon transistor or use on heatstuck spec-4.5V dry per tube 6.
FULL "SEMICONDUCTOR CENTRE" LISTS AND PRICES IN OUR FREE RETAIL CATALOGUE.

RADIO RECEIVING CENTRE

POSTAGE and packing by first class mail 1 - cash with order. Export enquiries welcome. Bulk quantity prices on application. Callers welcome at our retail shop and mail department:

RADIO RECEIVING CENTRE

L.S.T.
7 COPFOLD ROAD
BRENTWOOD
ESSEX

WE ARE BREAKING UP COMPUTERS
EX COMPUTER PRINTED CIRCUIT PANELS

L.S.T.

BRAND NEW ELECTROLYTICS, 15 Volt. Long Wires, 2, 6, 8, 10, 15, 20, 30, 40, 50, 100 Mfd.
T/B box, postage f-15. THE C.K. SUPPLY CO., 127 Chesterfield Rd., Sheffield, 50 ORN.

COMPONENTS at GIVE-AWAY PRICES,
Digital Counters, Key Counters, Transistors, Valves, Tool Bags, Tracking Heads, Recording Tape, Aerials, Intercoms, Micro-

RADIO RECEIVING CENTRE

NEW MIRRORED GLASS NEONS, 12/6 doz.
P. & P. 1/6.

RADIO RECEIVING CENTRE

KEYTRONICS, 52 Earls Court Road
London, W.8. Mail order only

10 TESTED GERMANIO TRANSISTORS 9/6.
Similar NKT23, NKT251, OCT2, etc. (new address) J. BLACKER, 32a, Mill Hill, Vicarage Lane, Leicester.
TAPE HEADS

<table>
<thead>
<tr>
<th>Tape Head Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS R36</td>
<td>2 Track</td>
</tr>
<tr>
<td>BS R39</td>
<td>2 Track</td>
</tr>
<tr>
<td>BS R56</td>
<td>2 Track</td>
</tr>
<tr>
<td>E306</td>
<td>2 Track</td>
</tr>
<tr>
<td>E315</td>
<td>2 Track</td>
</tr>
</tbody>
</table>

MICROPHONE HEADS

<table>
<thead>
<tr>
<th>Mic Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Microphone</td>
<td>Sensitivity 2.5 mV/Pa</td>
</tr>
</tbody>
</table>

FM TRANSMITTERS

<table>
<thead>
<tr>
<th>Transmitter Model</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>25250</td>
<td>Frequency range 88-108 MHz</td>
</tr>
</tbody>
</table>

TRANSISTORISED FM TUNERS

<table>
<thead>
<tr>
<th>Tuner Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 TRANSPORT</td>
<td>Frequency range 88-108 MHz</td>
</tr>
</tbody>
</table>

MULTI METER

<table>
<thead>
<tr>
<th>Multi Meter Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELAY</td>
<td>100 mA, 10 A</td>
</tr>
</tbody>
</table>

SUPER LUMINOUS LED

<table>
<thead>
<tr>
<th>LED Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Color</td>
</tr>
</tbody>
</table>

COMPUTER COMPONENTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Frequency range</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Resistor Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Film</td>
<td>Tolerance</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>Capacitor Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic disc</td>
<td>Frequency range</td>
</tr>
</tbody>
</table>

ALL GOODS BRAND NEW

<table>
<thead>
<tr>
<th>Good Type</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Cleaner</td>
<td>Model</td>
</tr>
</tbody>
</table>

ELECTROVALUE

Department P.E.2
32A St. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY
Telephone: EGHAM 5533 (STD 0784-3)
Limited number VOX High quality 10" Speaker Cabinets with provision for amplifier. Finished in Black with gold trim. Brand new. £7 each.

TIMER UNIT consisting of standard mains input transformer 200/240V 50 cycle; output 18V 4 amp (conservative) GEC bridge rectifier; detachable accurate 1 sec timer sub-chassis with transistor STC type T52, 2 x 12AU7, one 500 ohm relay, 3 contact makes 2 contacts; lamps, fuse switch, etc., in case size 10 - 10 - 5". Ideal for battery charger, one second timer, transistor power supply, etc.

Tested and guaranteed working £3.10.0. P & P £1.5.

BRAND NEW BOXED CHASSIS containing 3,900, 4,700, 5,600, 6,800, 8,200, 0.015. 80pF 270, 330, 390, 470, 560, 680, 820pF. 1,800, 2,200, 25,000 volts. 3/6 each, mostly 60V, 3,000 20 for 10/-.

2 x 30W, 500 ohm speakers, 3 selection switches, £20, 4.5m. 4.5m. £10. 5m. £20. 5m. £30. £30.

BRAND NEW UNMARKED transistors. Types OC71 and OC44. Tested and guaranteed 10 each. Min. order 2/6.

Callers welcome. Cash with order.

CHILTMED LTD.
22 Sun Street, Reading, Berks.
Tel. Reading 65916 (9 a.m. to 10 p.m.)
This advanced design considers high fidelity mono-sound stereo, with several features that set it apart from standard designs. Features include:

- Chassis Ready Kit.
- Pre-tuned Kit.
- For installation in your own cabinet.

TRS STEREO 4-4 INTEGRATED AMPLIFIER

A T.R.S. design based on a newly developed module, 16 watt output, with drive module. Suitable for speakers from 2 to 12 ohms. Bass and treble controls. Response: 60 to 14kHf ±3dB. The externally encased module requires only wiring between controls and modules. Complete with metal cabinet, instructions, and all necessary parts for the T.R.S. stereo amplifier. kit as described.

PLAYING UNITS BY GARRARD AND E.R.M.

LMS000 Record Player with ST. A. Stereo Chassis.

- **£10.00**
- **£10.00**
- **£10.00**
- **£12.10**
- **£13.10**

MAKE A BOOKSHELF SPEAKER

With a set of matched speakers and跨-cord from THX. Complete modern style high efficiency, compact, 8 ohms, 1/5th watt, and 1/8th watt for mounting into your own cabinet or baffle system. The LM3000 Record Player with ST. A. Stereo Chassis. Perfect for home use, or in any room of the house. Suitable for speakers from 2 to 12 ohms. Bass and treble controls. Response: 60 to 14kHf ±3dB. The externally encased module requires only wiring between controls and modules. Complete with metal cabinet, instructions, and all necessary parts for the T.R.S. stereo amplifier. kit as described.

RECORDING TAPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>1000'</td>
<td>5/-</td>
</tr>
</tbody>
</table>

THYRISTORS

- **1 AMP: 5OV 4A, 100V 2A, 140V 2A, 200V 2A**
- **30V 100W**
- **50V 250W**
- **250W 1/4 A**
- **500W 1/4 A**
- **1000W 1/4 A**

INTEGRATED CIRCUITS

- **CA3005, 3013, 3014, 3019, 3020**
- **CA3011, 3012 14/7 15/7 1A**
- **CA3121 14/7 15/7 1A**
- **CA3122 14/7 15/7 1A**
- **CA3123 14/7 15/7 1A**
- **CA3124 14/7 15/7 1A**

CASSETTE TAPE

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>1000'</td>
<td>2/-</td>
</tr>
<tr>
<td>4"</td>
<td>1000'</td>
<td>2/-</td>
</tr>
<tr>
<td>4"</td>
<td>1000'</td>
<td>2/-</td>
</tr>
</tbody>
</table>

SEND 6d STAMP FOR CATALOGUE

P.P. for Components

1/6 per order

A. MARSHALL & SON

28 CRIKLEWOOD BROADWAY, LONDON, N.W.3

01-452 016/2 CALLERS WELCOME
Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available—without charge— to all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION OR REFUND OF FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS YOUR PET SUBJECT?

Electronic Eng.
Advanced Electronic Eng.
Frequency Modulation—Transistors.

Electrical Eng.
Advanced Electrical Eng.

Mechanical Eng.
Advanced Mechanical Eng.

Civil Eng.
Advanced Civil Eng.
Gen. Civil Eng.—Municipal Eng.—Structural Eng.
Sanitary Eng.—Road Eng.—Hydraulics—Mining—Water Supply—Petrol Tech.

Radio & T.V. Eng.

Mechanical Eng.

Automobile Eng.

This book tells you

★ HOW to get a better paid, more interesting job.
★ HOW to qualify for rapid promotion.
★ HOW to put some letters after your name and become a key man . . . quickly and easily.
★ HOW to benefit from our free Advisory and Appointments Dept.
★ HOW you can take advantage of the chances you are now missing.
★ HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

122 PAGES OF EXPERT CAREER GUIDANCE

Practical Equipment

Basic Practical and Theoretical Courses for beginners in Electronics, Radio, T.V., etc., A.M.I.E.R.E. City & Guilds Radio Amateurs’ Exam.
R.T.E.B. Certificate
P.M.G. Certificate
Practical Electronics
Electronics Engineering
Practical Radio
Radio & Television Servicing
Automation

Including Tools

The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.

B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES"—send for your copy now—FREE and without obligation.

POST COUPON NOW!

TO B.I.E.T., 316A ALDERMaston COURT, ALDERMaston, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

NAME

ADDRESS

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

Published about the 15th of the month by GEORGE NEWNES LIMITED, Tower House, Southampton Street, London, W.C.2, at the recommended maximum price shown on the cover. Printed in England by THE CHAPEL RIVER PRESS, Andover, Hants. Sole Agents—Australia and New Zealand: GORDON & GOTCH (Australia) Ltd.; South Africa and Rhodesia: CENTRAL NEWS AGENCY LTD.; East Africa: STATIONERY & OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World £2 2s. Od.
SOLID STATE-HIGH FIDELITY

AUDIO EQUIPMENT

Mono or Stereo Audio. Equipment developed from Dinsdale Mk IX each unit or system will compare favourably with other professional equipment selling at much higher prices.

COMPLETE SYSTEMS FROM

£15.5.0

The finest value in high fidelity—choose a system to suit your needs and save pounds.

All units available separately.

SEND FOR FREE BROCHURE (NO. 21) TODAY!

DO IT YOURSELF MANUFACTURED PORTABLE

New printed circuit design with full power output. Fully tunable on both bands. 7 transistors plus diode push pull output fitted 5 inch speaker, large format printed and matured transistors. Easy to build with terrific results. All local and Continental stock held.

TOTAL COST

£6.19.6.

TO BUILD Send for brochure.

INTEGRATED SOLID STATE TRANSISTOR POWER AMPLIFIERS

MAKE

12 WATT STEREO

Made to the highest standard for home or portable Hi-Fi installation. Uses PP9 in each channel, giving you 24 watts per channel. Each unit comes complete with FULL BASS TREBLE, VOLUME AND SELECTOR CONTROLS. Also available with 20/20 push-pull circuit.

QUALITY CAR RADIOS

A precision engineered car radio that performs perfectly. Features include: automatic equalisation, tape loop, pre-set button tuning, chrome grille, rheostat volume control and excellent FM/AM reception. Total cost £46.19.0.

GARRARD RECORD DECKS

Brand new all below list prices.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>303 Mono</td>
<td>£59.10.0</td>
</tr>
<tr>
<td>303 Mono SL</td>
<td>£69.10.0</td>
</tr>
<tr>
<td>303 Mono SLX</td>
<td>£79.10.0</td>
</tr>
<tr>
<td>303 Mono SLX</td>
<td>£89.10.0</td>
</tr>
<tr>
<td>303 Mono SLX</td>
<td>£99.10.0</td>
</tr>
</tbody>
</table>

Send for illustrated brochures 16, 17.

Complete with 10/- worth discount vouchers.

CATALOGUE

The most COMPREHENSIVE—CONCISE—CLEAR COMPONENTS CATALOGUE

Complete with 10/- worth discount vouchers.

FULLY ILLUSTRATED

CATALOGUE

SEND TODAY 7/- POSTAGE ETC.

303 Edgware Road, London, W.2. Mail Order Dept. All types of Components, Organ Dept. (0) 732 1007. 303 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment. Record Decks (0) 723 5063.