THE NO. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY \& COMPUTER PROJECTS EMERYDAY FEBRUARY 2002

£2.85

PIC SPECTRUM ANALYSER Analyse waveforms on your PC

GUITAR AMP Easy to build practice amp MT POMNER
SUPPLY
FOr battery
valve radios MT POMNER
SUPPLY
FOr battery
valve radios HT POMNER
SUPPLY
FOr battery
valve radios MT POMNER
SUPPLY
FOr battery
valve radios

RUSSIAN SPACE SHUTTLE REVISITED Will Buran fly again?

GAS
filter. E

Low | fiter. |
| :--- |
| Low |
| with in |
| ع109. | COBRA NIGHT VISION equipment also slocked, more info on our web site at www.cobra-optics.co.uk.

ELECTRIC SCOOTERS 18 kph . 24 V motor, 6 hour charge time,
 ESCOOT.
VOICE CHANGERS Hold one of these units over your phone the unit. 8 athery operated. 15 . Re
EMMINENCE LOUDSPEAKERS
peak. 16 ohm Inmpedance. Pack of 4 I ust $\ddagger 39.95$. Ret SPEAK 39 .
PIR SECURITY SWITCHES These brand PIR units will switch up to 2 kilowatts. Adjustable sensitivity, light level and time delay (9 seconds to 10 minutes). 15 m detection range. mains operated. waterproof. $£ 5.99$ Ref PIR1PACK or a
pack of 5 for $£ 22.95$ Rel PIR5PACK or 10 for $£ 39.95$ Ref 12 V 18 Ah SEALED LEAD-ACID BATTERIES, new and boxed, unused. pack of 4 £44.95 Rel CYC7 or $£ 15.95$ each Ref CYC6.
12V 6.5Ah SEALED LEAD-ACID BATTERIES, new and boxed. pack ofs ${ }^{\text {p }}$ £34.95 Rel CYC65A or Individually at £8.99 Ret $\times 95 m m$. 4 kg . FIT each. Ret SSLB.
SEALED LEAD-ACID CHAGER AND FLOAT CHARGER. SEALED LEAD-ACID CHARGER AND FLOAT CHARGER.
Complete unit will charge $12 V$ lead acids and maintan them with an autom atic trickle charge. Charger on is own is $£ 15$ Ref $L A C$ or
charger and a 12 V 12 An battery yall tully cased) is $£ 25$ Ref ACB. AERIAL PHOTOGRAPHY KIT. This rocket comes with a built-in Camera! It thes up to 500 feet ((150m), turns over and takes an aer-
ial photograph of the ground below The rocket then returns with its ial photograph ot the ground below. The rocket then returns with its
liim via its parachute. Takes 110 film. Supplied with everyhthing
including a launch pad and 3 motors ino Incluading a launch Pad and motors (no illm. £29.98 Rei Astro. gives step-by-step guide to bullding wind generalors and propel-
lors. Armed with this publication and a good local scrapyard could make you self-sutficient in electricity! £12. Rel LOTB1.
MAGETIIC CREIT CARD READESS AND ENCODING INFO, $£ 9.95$. Cased with tyleads, designed to read standard credit
cards! Complete with control electronics poc. and manual coverIng everything you could want to know aboout what's hidden in that
magnetic strip on your card! Just $£ 9.95$ Ref BAR31 magnetic strip on your card! Just $£ 9.95$ Ref BAR31.
77 K KLO LIFT MAGNET. These Samarium magnets measure
57 mm $57 \mathrm{~mm} \times 20 \mathrm{~mm}$ and have a threaded hole ($5 / 16 \mathrm{th}$ UNF) in the centre and a magnetic strengit of $2 \cdot 2$ gauss. We have tested these on
a steel beam running through the oftices and tound that they will a slee beam running trough ite ofices and
take more than 170 lb . (77 kg) in weight belore being pulled offi. lake more hinn
SupDlied with keeper. 1 19.95 ea. Ret MAG77.
HYDROGE FEELCELL PLANS. Loads of in
HYDROGEN FUEL CELL PLANS. Loads of information on hydro-
gen storage and production. Practical plans to buld tydrogen fue gen storage and production. Practical plans to bull hydrogen fuel
cell (giood workshop acilites required). E8 set. Rel FCP1. STIRLING ENGINE PLANS. Interesting information pack covering and
made from an aerosol can rumning on a candle! $£ 12$ STIR2.
12 V OPERATED SMOKE BMMS. Type 3 is a 12 V trigger and 3 smoke cannisters. each cannister will till a in a 12 V trigger and 3 space of time' $£ 14.99$. Ref SB3. Type 2 is 20 smaller cannisters
(suitable for mock equipment lires etc.) and 1 triger module for (suitable for mock equipment lires etc.) and 1 trigger module for
$£ 29$ Ref 82 . Type 1 is a $12 V$ trigger and 20 large cannisters. $£ 49$. Ref SBI. NEW NATO ISSUE RADIATION DETECTORS, SALE PRICE JUST K69.95. Current NATO issue standard emergency services unt. Used by most of the world's milliary personnel. New
and booxed. Normal retail price £400. Bulis bargan price just BASIC GUIDE TO BIO DIESEL. How 10 make diesel fuel from
 SAVE E\&ECES. RCB UNITS. Inline IEC lead with fitted RC break-
 VIBRATING WATCHES, vibrate when your phone rings, $£ 16.99$, PULSE WATCHES, display your pulse. $£ 16.99$. www .quemex.co.uk MINIATURE TOGGLE SWITCHES. These top quallty Japanese
panel mountung toggle swiches measure $35 \mathrm{~mm} \times 13 \mathrm{~mm} \times 12 \mathrm{~mm}$. are 2-pole changeover and will switch 1 A a 250 V a.c.,. or 3 A ai
125 V a.c. Complete with mounting washers and nuts. Supplied as a box of 100 switches for $£ 29.95$. Ret SWT35 or a bag ol 15 for
E4.99. Ref SW 34 . E4.99. Ref SWT 34.
STEPPER MOTORS.
S. Brand new stepper motors. 4 mm fixing
fixing centres. 20 mm shatt 6.35 mm diameter.

BASIC GUIDE TO LOCKPICKING. New publication gives you an Insight! 96 . Ret LPK.
NEW HIGH POWER
NEW HIGH POWER MINI BUG. With a range of up to 800 metres
 IR LAMP KIT. Suitable for CCTV cameras, enables the camera to Be used in toar darkness! E6. Hel Ef thd rellector, gives out powertul pure nifra-rect light' Pertect for CCTV YOUR HOME COULD BE SELF-SUFFICIENT IN ELECTRICITY.
 lighter socket and is fitted with a 13 A sockel so you can run your
mans operated devices from your car battery. $£ 49.95$. Rel SS66. THE TRUTH MACHINE. Tells in someone is ying by micro tremors in their voice, battery operated. works in general
on the phone and TV as well! $£ 42.49$. Rei T03.

AIR RIFLES FROM LESS THAN £40, CROSSBOWS, WIDE RANGE OF BB GUNS, AMMO, TARGETS, PISTOLS, REPLICA GUNS, UZI MACHINE GUN REPLICAS (BB), REPEATERS, LASER SIGHTS, ELECTRIC BB, GAS BB
www.alrplstol.co.uk

- inKuet cantilges FROM JUST £3 AT www.officebits.co.uk

INFRA-RED FILM. Sin square prece of fiexible infra-red fitm that
will only allow IR light through. Periect tor converting ordinary
 dard light bulbs. Easily cut to shape. 6in. square, $£ 15$. Ret IRF2 or
a 12 in , square for £29.95. Ref IRF2A. HYDROGEN FUEL CELLS. OUr new hydrogen fuel cells are $1 V$ at
up to 1 A output, hydrogen input, easily driven from a small electrolysis assembly or trom a hydrogen source. our demo mode-
uses a solar panel with the output eads in a glass of salt water to uses a solar panel with the output leads in a glass of salt waier to
produce the hydrogen! Each cell is designed to be completely taken apart, put back together and expanded to whatever capaci-
ty you like (up to 10 watts and $12 V$ per assembly). Cells cost $£ 49$. ly you like (up to 10 watts and 12 V per assembly). Cells cost 149 .
Ree HFC 11 . SMALL ALARMS. Mains powered, made by the famous Gent company. easy fit next to light fitings. power point. Pack of $5 £ 15$.
Ref SS23 . pack of 12 ¢24. Ret SS24.
CCTV CAMERS CCTV CAMERAS FROM ER2. Check out our web site at
wwwectustutt.co.uk and www.home-cetv.co.uk. Www.cetvstutt.co. uk and www.home-cct.co.uk.
14 WATT SOLAR PANELS. Amorphous silicon panel fitted in an anodised aluminum frame. Panel measures 3 th. by 1 ft . with 3 m
 solar power for just c99. 4 panels, each one 3tt. x 1tt. and proNucing 12 V 12in. SQUARE SOLAR PANEL. Kevlar backed. 3 watt Output. copper strips for easy solder connections. $\mathbb{2} 22$. Rel $15 P 42$.
NEW UNIVERSAL SOLAR CHARGER. Charges AAAs, AAs. Cs and D-type NiCads. £9.99, Ref UNISOL
$12 V$ SOLAR POWER WATER PUMP.
uses, from solar fountains to hydroponics! Small and compact yeit uses, rrom solar fountains to hydroponics! Small and compact yet
powertul, works direct rom our 10 W solar panel in bright sun. Max
 ages trom $3-12 \mathrm{~V}$ d.c. Worrs on our 6 V amorphous Gin panels and
you can run them from the sun! 32 mm dia.. 20 mm thick. $£ 1.50$ you can sun them from the sun! 32 mm dia... 20 mm thick. $£ 1.50$ out www.mamodspares.c.u.uk.
SUPERWIDEBAND RADAR DETECTOR. Whistler 1630 . Detects both radar and laser. X. K and $K A$ bands. speed cameras and all known speed detection systems. 360 degree coverage, tront and
rear waveguides. $1.1 \mathrm{in} \times 2.7 \mathrm{in} \times 4.6 \mathrm{in}$. fits on visor or dash new rear wavegudes, $1.1 \mathrm{in} . \times 2.7 \mathrm{in} . x \mathrm{x} .6 \mathrm{iin}$, fits on visor or dash, new
low price $£ 99$ Ret WH1630. Other models available at Ww..radargun.co.uk.
BUG DETECTORS. A new detector at a sensible pricel Detects BUG
bugs hidden in rooms. Computers etc., between 1.200 MHz ,
bit adjustable senstivity. 9 V PP3 battery required. £29.95. Ref BDET2.
GIANT WEATHER BALLOONS made by Totex. We blew one up to
7th. dlameter then it popped due to stones on the groundi $£ 13.99$, 7th. diameter then it popped due to stones on the ground $£ 13.99$,
Ref ITTEX
PHILIPS VP406 LASER DISC PLAYERS, sale price just $£ 9.95$. Scart output. just put your video disk in and press play, standard
 tone. $160 \mathrm{~mm} \times 135 \mathrm{~mm}$, finished in white with bracket. $£ 4.99$. Ret
$S \mid R 2 A$. FREEZER/MAINS FAIL ALARMS. Designed to fit around the mains cable on a treezer this alarm will sound if the device is
unplugged from the mains supply, battery operated. cased. built-in
 Check our our web site ai www.xbows.co. ©k,
HOT AIR BALOON KITS. Everylhing you need to buld a 1.7 m high. 4.5 m in circum. hot air balloon, launch over a small bumer or
healer $£ 12.49$. Rel $\mathrm{HA1}$. CROOKES RADLOMETER. Fascinating glass bulb contains
blades driven around by the sun. $£ 9.9$ Rel $\operatorname{SC} 120 \mathrm{~B}$.
 Ret SVGA2.
RADIOSONDES. Made by Valsala. unused, they measure presSure. temperature and humudity. Model RSBO, good stripper at $£ 15$.
Ret SONE. AIR WIND POWER MODULE. Produces nearly 400 watts of
power from the wind. 1.14 m blade. 12 V a.c. output, 3 year warranty, buill-n battery regulator 5549 , ReI AlR1.
WORMERIES. The ideal solution for your kitchen waste! Supplied complete with worms. Turn your rubbish into liquid feed' Two sizes
available, small (Ideal for $1-2$ people). E25.45. Ref WM2, and a

 new and boxed. Supplied with 18 -page Pellier design manual fieaturing circuit designs. design information etc. 1 module and manu-
al is $\Sigma 29.99$. Rel $\mathrm{PELT1}$. pack of 4 modules and manual is $£ 99.99$. Ref PELT2. The manual on its own is $\varsigma 4$. Ref PET3.
DC MOTOR. 12VC d.C. general purpose model mor 50 mm .12 V d. . . permanent magnet. $4 \mathrm{~mm} \times 25 \mathrm{~mm}$ shatt. $\varepsilon 6$. Ref GPM1. pack of io is just $£ 40$. Ref GPM2.
180R. P.M. MAINS MOTOR. Inducton
180R.P.M. MAINS MOTOR. Induction type. $90 \mathrm{~mm} \times 70 \mathrm{~mm}, 50 \mathrm{~mm}$
$\times 5 \mathrm{~mm}$ shatt. 12 A continuous rating, thermal protected. $£ 22$. Ret MGMM1. STATE RELAYS. PC.B. mounting. These relays require 3 -
SOLID
32V
 tray of 2 relay for ust Iq9.95. Res SPC.
EENNER TME COTROLS. Designed 10
VENNER TIME CONTROLS. Designed to be wired in permanent-
iy they will switch up to 16 A 240 V a.c. molorised with dial and pins 1.
New and boxed. $\{15$, Rel VTS. all the famly, complete with stand. string, box and into. $£ 6$. Ref EP70.
INNOVATIONS. We also sell a wide range of innovative products or the home. these are at www. seemans.co
NVERTERS. Convert 12 V d.c. into 240 V Wave). 300 watt (150 watt continuous). $₹ 59.95$. Ref VER3. 600
watt model (330 watt continuous). $£ 79.97$. Rel VER4.

BULL ELECTRICAL

UNIT D, HENFIELD BUSINESS PARK, HENFIELD, SUSSEX BN5 9SL
TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $\mathbf{~} 5.00$ P\&P (UK) PLUS VAT 2 24 HOUR SERVICE $£ 7.50$ (UK) PLUS VAT OVERSEAS ORDERS AT COST PLUS $£ 3.50$
(ACCESS/VISN/SWITCH ACCEPTED)
'phone: 01273491490 Fax 491813 Sales@bull-electrical.com

10 WATT SILICON SOLAR PANEL,
$365 \mathrm{~mm} \times 365 \mathrm{~mm} \times 26 \mathrm{~mm}, 14 \mathrm{~V}, 10 \mathrm{~W}, 1,8 \mathrm{~kg}$, ramed. 884,99 , Rei STICKY LABELS. Small address labels etc. are very useful and can be ordered online at www.stickon,co.uk
RED L.E.D.s. Hewlett Packard red l.e.d.s.s. 5 V operation. available
in a pack of 50 for $£ 8$. Rei SS 200 . or 500 ior 59.95 Rei $\$ \$ 201$
 Ballpoint this has 4 buttons. a trackball and PS2 connector. Will Work with most PCs. E 5.99 . Ret EP50.
MAXON WALKIE TALKIES, up to 2 mile range. UK legal, 300 channel, $2 \times$ walkie talkies. $£ 74.95$. Ref. Maxont. Chargers $£ 14$,
Ref. Maxonc, battery packs $£ 12$. Ret. Maxont (otherwise uses Ref. Maxonc, battery packs $£ 12$. Ret, Maxonb (otherwise uses 2. WAY MIRRO.

```
2.WWY MIRROR KIT. Contains enough) material to make up to a ,
```

Ret WFOO1. 22 AIR RFLE
.22 AIR RIFLE. Under lever type, powerful Chinese training rille.
E38.26. Ref A1047. 500 pellets, $£ 2.68$. Ref A1091
E38.26. Rel A1047.550 pellets, 2 2. 68 . Ref A1091.
.22 AIR RIFLE STANDARD TYPE, Chinese training rifle. on legal
limit for air rilles. £29.75. Ref A1040. Pellets $£ 2.68$. Ref A1091.
SHUT THE BOX. Check out www.bullybeef.couk for a range of
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We
have collated 140 business manuals that give you information on
setting up difiterent businesses. you peruse these at your leisure
enabling you to reproduce (and sell) the manuals as much as you

ANICS CO2 GAS POWERED PISTOL. Russian handheld pistol powered by Sparklets CO2 cylinders (give approx. 70 shots), fires Ref A1015. pack of 5 CO cartridges $£ 3.50$. Ref GASS. bolt on the back for easy mounting. Each magnet will lift 33 kilos. 4 magnets bolted to a plate will iit an incredible 132 kilos! $£ 15$. Ret BSA METEOR AIR PIFLE UK made 22 Lita BSA MMIEOR AIA RIFLE. UK made .22 ulile, top quality profes-
sional alr rifle. £84.15. Ref BSAMET 500 Lazapell pellets $£ 5$. Rei MAMOD 1313 TE1A TRACTION ENGINE. Altractive working nodelo lradionar sleam engine. 265. Rel 13
MAMOD STEAM ROADSTER (white). magnificent working steam model car. E1 12 . Ret 1319 .
MAMOD STEAM WAGON.
finished
POCKET SPY MONOCULAR. Clever folding monocular with $8 \times$ 21 magnification, made by Helios. with case. .14.49.. Ret MONOC,
KEVLAR BRITISH ARMY HATS. Broken or missing straps. hence ust E8 each. Ref KEV99.
CCTV SYSTEMS,
CCTV SYSTEMS. $£ 24.99$. Complete with camera. 20 metres of
cable, p.s.u. and info simple connection to scart. $£ 24.99$. Ref
FM BROADCAST BAND HIGH POWER TRANSMITTERS can be viewed and bought online at www.veronica-kits.co.uk
TONER CARRIDGE FR COPIERS AND PRINTERS can be VELOSOLEX, TTaditional French styl co.uk
VELOSOLEX, Traditional French style iwo-stroke moped (engine over front wheels). black only, £695. Ref VELO. Delivered direct in
a box, you need to fit the pedals etc. then register it with your local
HYDROPONIC GROWING SYSTEMS. Complete. everyling you need apart trom plants and Ight. contans grow tank, nutirients.
pump, tester etc. GT205 $710 \mathrm{~mm} \times 390 \mathrm{~mm}$. NFT system. $£ 31.45$.
 ELECTRIC BIKES, £679, Viking, bullt-n indicators, radio, lights. 26in. wheels. suspension, no licence needed, key operated. $£ 679$. Ref Viking
PIR PCBs. These contain a standard PIR detector circuit with all
components. easy to wire components. easy to wire up and use. Pack of $4 £ 6$. Ref PIR8.
NEBULISER, WATER ATOMISER. UItrasonic module that you applications from special effects to scientific. E69. Ref NEB6. PORTABLE X-RAY MACHINE PLANS. Easy to construct plans
on a simple and cheap way to build a home X-ray machinel Etfective device. X-ray sealed assemblies. can be used for experTELEKINETIC ENHANCER PLANS. Mystify and amaze riends by creating motton with no known apparent means gimmicks yet produces positive motion and effect. Excellent for science projects. magic shows. part demonstrations or serious
research and development of this strange and arnazing psychic ELECTRONIC HYPNOSIS PLANS \& DATA. This data shows several ways to put subjects under your control. Included is a full volassembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties et
only. by those experienced in its use. $£ 15 / \mathrm{set}$. Ref F/EH2. GRAVITY GENERATOR PLANS. This unique plan demonsitates a simple electrical phenomena that produces an anti-gravity effect.
You can actually build a small mock spaceship out of simple mateYou can actually build a small mock spaceship out of simple mate-
nials and without any visible means cause it to levitate. £10/set. Ref TESLA COILLIGHTENING DISPLAY GLOBE PLANS. Produces up to 750,000 volts of discharge, experiment with extraordinary HV
effects. 'Plasma in a jar'. St Elmo's lire. corona, excellent science project or conversation piece. £5/set. Rel F/BTC1/LG5.
COPPER VAPOUR LASER PLANS. Produces 100 mW of visible green light. High coherency and spectral quality similar 10 argon particular design was developed at the Atomic Energy
Commission of NEGEV in Israel. $£ 10 /$ set. Ref F/CVLI. VOICE SCRAMBLER PLANS. Minature solid-state system turns speech sound into indecipherable noise that cannot be under-
stood without a second matching unit. Use on telephone to prevent third party listening and bugging. £6/sel. Ref FNS9.
lechniques that will completely disrupt TV picture and soundl Works on FM too! Discretion advised. \&8/set. Rei FTTJ5.
BODYHEAT TELESCOPE PLANS. Highly directional long range device uses recent technology to detect the presence of
living bodies. warm and hot spots. heat leaks etc. Intended for security, law enforcement. research and development etc.
Excellent security device or very interesting science project.
BURNING, CUTTING CO2 LASER PLANS. Projects an invisible beam of heat capabie of burning and melting materials over a con-
siderable distance. This laser is one of the most efficlent, converting 10% input power into useful output. Not only is this device a is also a ihely candidate as an eftective directed energy beam Burning and etching wood, cutting. plastics, textiles etc. $£ \uparrow 2 / \mathrm{set}$.
www.bullnet.co.uk

ISSN 02623617

PROJECTS ... THEORY . . . NEWS . .
COMMENTS . . . POPULAR FEATURES . . .

VOL. 31. No. 2 FEBRUARY 2002
Cover illustration by Jonathan Robertson

Incorporating ELECTRONICS TODAY INTERNATIONAL
www.epemag.wimborne.co.uk
EPE Online: www.epemag.com

© Wimborne Publishing Ltd 2002. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our March 2002 issue will be published on Thursday, 14 February 2002. See page 75 for details

Projects and Circuits

GUITAR PRACTICE AMP by Bart Trepak 84
Enjoy playing in private without annoying the neighbours HT POWER SUPPLY by Robert Penfold 96
Provides up to 120 V d.c. to power your favourite antique valve radio! PIC SPECTRUM ANALYSER by John Becker
PIC-controlled PC interface for analysing analogue waveforms and displaying their harmonic content
VERSATILE CURRENT MONITOR by Terry de Vaux-Balbirnie 118 Monitors equipment current flow and warns if it significantly changes INGENUITY UNLIMITED hosted by Alan Winstanley 139
Smart Alarm Timer; L.E.D. Dynamo Torch; Walkman in a Car

Sexies and Features

NEW TECHNOLOGY UPDATE by lan Poole 90
Electrolytic capacitors using new polymers and a multi-foiled structure achieve lower ESR
INTERFACE by Robert Penfold
94
Producing a DIY MIDI Adaptor for your PC
NET WORK - THE INTERNET PAGE surfed by Alan Winstanley 112 Shopping online
RUSSIAN SPACE SHUTTLE REVISITED by Barry Fox
Buran was mothballed in 1988 but may soon fly again
CIRCUIT SURGERY by Alan Winstanley and lan Bell
Unconfusing Fuses; Electrolytics Unravelled
TEACH-IN 2002 - 4. Good Vibrations - Measuring Stress, Strain 128 and Vibration, with experiments by lan Bell and Dave Chesmore Continuing our tutorial and practical series - making sense of the real world: electronics to measure the environment

Regulars and Seroices

NEWS - Barry Fox highlights technology's leading edge 91
Plus everyday news from the world of electronics
READOUT John Becker addresses general points arising 102
SHOPTALK with David Barrington, 116
The essential guide to component buying for EPE projects
PLEASE TAKE NOTE - PIC Polywhatsit; Mains Failure Alarm 116
BACK ISSUES Did you miss these? Many now on CD-ROM! 121
CD-ROMS FOR ELECTRONICS 124
A wide range of CD-ROMs for hobbyists, students and engineers
DIRECT BOOK SERVICE137
PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE 141
ADVERTISERS INDEX 144

Readers Services • Editorial and Advertisement Departments 83

OBSOLETE SHORT SUPPLY - BULK
$10,000,000$ items EX STOCK
VIJEO MONITOR SPECIALS
One of the highest specification monitors you will ever see -

 sten tequencos VHF and UMF inchuling the HYPERBAND es used by
 (pactue n pidure) setups. For cormptote compathlity - even ior moniors wathout sound - an indegral is watt audio ampther and low it
TELEBOX ST tor composite undeo input type monitors
TELEBOX SIL as ST but futed with integual speaker
 or overseas PAL versions state 55 or 6 mHz sound sper $£ 69.95$

State of the an PAL UK Whith composild iV po video \& NICAM hi li steroq sound
m enable full funing control via a simple 3 wre link io ram and documentation Requirestes +12 V \& simple working proBRAND NEW - Order as MYOO. Only $£ 49.95$ coda (B)
 brand new equipment and are fully tested, aligned and stripped to wow. distol.co.ut for over 2000 unlusted dives for spares web site 31/" Mitsublahi MF355C-L 1.4 Meg Laptops only 3* Mitsublah MF F355C-D. 14 Mog Non laptop $5 \mathrm{~h}^{\prime \prime}$ Taac FD-55F-03.U 720 M (for IBM (Jor BC's) RFE Table top case with mitsubial PSU MF5018 360 K .
8^{n} Shugart socultot 8° SS ralubished \& tested 8^{n} Shugart 9108° SS HM Brand New
$8^{\prime \prime}$ Shugari 8518° double sided refurtushed \& tested

HARD DISK DAIVES 21/". 14"

2\%/" TOSHIBA MK1002MAV 1.1 Gb laptop (12.5 mm H) Now 579.95
 2\% TOSHIBAMK8409MAV 6.1 Gb laphop (12.7 mm H) Now E 190.00
 $3 \%^{\circ}$ CONNER CP3024 20 mF M VF RFE
$3 k^{\circ}$ CONNER CP 302420 mb IDE I/F (or equiv) RFE
3% " OUANTUM 40 S Prodil vo 42 mb SCSI IF. New RFE
$5 \%^{\circ}$ MiNISCRIBE 342520 mb MFM I/F (or equiv.) RFE
5\%. SEAGATE ST-238R 30 mb RLL VF Relutb
54205-51 40 mb HH MFM VF RFE test
5% " HP 97548850 Mb SCSI RFE lested
$5 \%{ }^{\circ}$ MP C 30102 Gbye SCSI
HP C30102 Gbyle SCSI attiterential RFE tested
NEC D2246 85 Mb SMD interrace. New
FUJTTSU M2322K 160 Mb SMD IF RFF tested
FUJTSU M 2322 K 160 Mb SMD IF RFF lested
FUJITSU M2392K 2 Gb SMD IF RFE tesied

 028 dor pict tube and sescoltion of 1024×768. A

 ARCCHEDE.S and APPLE Mary lafurues Elithed VGa cmid ior ism PC hovudor
 | Ex demo $17^{*} 0.28$ SVGA Mits ubishi Dismond Pro |
| :---: |
| monitors, Full multisync erc. |
| Full 90 day guaranfee. Only 1199.00 (E) |

Jusi in - Microvitec 20° VGA (800 $\times 600$ res.) colour monil
Good SH condiflon- from E 299 . CALL for info
PHILPS HCS35 (same style as CMBB33) attractively stited 14°
colour montitur with both AGB and standard compostye 15.625 Khz wideo inputs via SCART sockel and seporate pheno packs.
 Will connect drect 10 Amiga and Atsi BBC computers. Ideal hor ak
video monitoring / security appleations wath direct connection video monitoring / security applucations with difrect connection font concealed flap controts. VCA coriection bution etc Good usad condtion. Fully lested guaranteed Only $£ 99.00$
Dimensons: W14" $\mathrm{H} 12 \mathrm{~S}^{4} \times 15 \mathrm{~m}^{\circ} \mathrm{D}$.
PFHLIPS HCS31 Ulira compace $9{ }^{\circ}$ colour vndeo monitor mith standard composite 15.625 Knz video mpul wa. SCART socket ISea! liny lesied \& guaranteed (possitife minor screen bums). In altrac-
 KME $10^{\circ} 15 \mathrm{M} 10009 \mathrm{migh}$ defintion cotour moniturs with 028° (0)

Operates liom any 15.625 kHz syme RGB vireo
soucce, with RGE anatog and compossie smc Acchmedes \& 8 B Only $£ 125$ $20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS Suporbly made UK manulacture. Pll all solid stale colour monitors
compleet with composnio video i
 EXI ENT litie used condrition with tull 90 day guarantee. 20"....£135 22"....£155 26"....£185 (A$)$ Eutobery have the largest rango aviso DC POWER SUPPUES
Virtually every type of power
supply you can imagine.over
10.000 power Supplies Ex Stock
have ever sold. Racks may be stacked sthe oy side and therefore equire ony wo sode panels lo stand smgly or 4 muthple tays

19" RACK CABINETS
Superb quality 6 foot 40 U Virtually New, Ulitra Smart Less than Half Price!

 and loweted removabie siide panels. Fully adqustable miernal fixurg stults, ready purutied
lor any contiguation of equipmeall morning .plus ready mounted integral 12 way 13 amp
sucket swiched mams distribution strip make

32U - High Quality - All steel RakCab

ack leatures all steel construction wilh removable side fornt and back woors. rront ana Dack doois ad hingod dor eany accoss and ala are lockable wath is constructed of double walted steel with a enable status indicators to be seen through the panet. yed remam unobrusive Intemally the rack members to take the heaviest of 19" rack quipanent. The twon movable vertical fring struts 'cage nuts': A mains distribution panel internai-
hy mounted to the bottom rear. provides $8 \times$ IEC 3
pin Euro sockets and 1×13 amp 3 pin switched
pin Euro sockets and $1 \times 13 \mathrm{amp} 3$ pirn switched
utitity socket. Overall ventilation is provided utility socket. Overall ventilation is provided
with lop and sade louvtes The icp panel may be retion of iniegrel fans to the sub plate etc. Other features includer fited cable / connega tevelers. prepunched utitity paned al lower rear for condition with keys Colour Royat blue. External dimensions
$m m \times 1625 \mathrm{H} \times 6350 \times 603 \mathrm{~W} .\left(64^{-1} \mathrm{H} \times 25^{\circ} \mathrm{O} \times 23 \%^{-\mathrm{W}} \mathrm{W}\right)$

A superb buy at only $£ 245.00$ (G) 42 U version of the above only $£ 345$ - CALL 12V BATIERY SCOOP - 60\% offII A special bulk purchase from a canceliad export order brings you
the most amazing sevinga on these utita high spec 12v DC 14 Ah echargeable batteries Made by Hawker Energy Lid, Iype SBS15 teaturing pure lead plates which ofler a far supariar shell \& guaranteed 15 year sernce hte. Fully BT \& BS6290 approved. Supplad
BRANO NEW and boxed. Dimensions 200 wide, 137 tight, 77 deep. Me bon temmmais Fully yuaranteed Current makers price over $\mathfrak{Y T}$ RELAYS - 200,000 FROM STOCK covering ypees such as Mitarn. Octal, Cradie, Hermeticaly Seated

TEST ECUIPMENT \& SPECIAL INTEREST ITEMS

MITS. \& FA3445ETKL 14° Industrial spec SVGA monitor FARNELL $0-60 \mathrm{~V}$ DC 50 Amps, bench Power Supplies $1 \mathrm{~kW} 10400 \mathrm{~kW}-400 \mathrm{H} 3$ phaee power scurces - en mock tBM 8230 Type 1, Token ring oase unit driven Wayne Karr Razoo Audio frequency response analyser 18 M $53 F 5501$ Token Ring ICS 20 pon lobe modules
IBM MAU Token ing distritution IBM MAU Token ring disiribution pandi $8228 \cdot 23-5050 \mathrm{~N}$
AIM 501 Low distortion Oscillator 94 z to 330 Khz , IEEE ALLGON 8360.11805 -1880 MHz hybrid power comber Trend DSA 274 Data Analyser with $G 703$ (2M) 64 vo Marconl 6310 Programmable 21022 GHz sweep g
Marconi 2022 C 10KHz-1GHz AF signal generator Marconi 2030 opt $0310 \mathrm{KHz}-1.3 \mathrm{GHz}$ signal gen HP16508 Logic Analyser
HP3781A Pattern goneralor \& HP3782A Error Dctoctor HP6264 Rack mount variable 0.20 V Q 20 A metered PSU HP54121A DC to 22 GHz tour channet test set HP8130A opt 020300 MHz pulse generalor, GPIB etc HP A1. AO 8 ven HPGL. high speed dium plotters
HP DRAFTMASTER 18 pen hugh speed plotter EG + G Brookdeal 95035 C Precisicn lock wh anip

£245

CPOA
C760
$〔 2500$
$£ 750$
£95
$\mathbf{c 5 5 0}$
£250
EPOA view Eng. Mod 1200 computerised inspection system Keithley 590 CV capacitor / voltage analyser

HP6030A 0-200V DC \& 17 Amps Bench power Supply
Intel SBC $486 / 125 \mathrm{C08}$ Enhanced Mutitus (MSA) New Nikon HFX-11 (Ephiptoi)) exposure control unit
PHILIPS PM5518 pro PhiLiPS PM5518 pro. IV signal generator
Motorola VME Bus Boards Trio 0.18 voc hear, meleribd 30 amp bench PSU. New Fultisu M3041R 600 LPM high soeed band prinler
Fujitsu M30410 600 LPM printer Fujitsu M30410 600 LPM printer with network intertac Perkin Elmer 299 inlrared spectrophotometer
Perkin Elmer 597 infrased specirophotometer Porkin Elmer 597 inirazed speciropholometer LightBand 60 outpul high spec 2 u rack mount Video VDA Sekonic SO 150 H 18 chamel digual Hytrid chatt recor der B8K 2633 Microplune pre amp
Taylor Hobson Tallysur amphtiee / recorder
ADC SS200 Carbondinede
ADC SS200 Carbon droxde gas delector/monior
ANRITSU 9654 Optical DC-2.5G/ waveterm monitor
ANRITSU MS900 18106.177 UM opt
ANRITSU ML $93 A$ oplical power mete
ANRITSU Fible cuptic chatacterstic res
RES FTOZ Dual sound unt
RRS SBUF-E1 VIsion moduiator
WILTRON $66308124 / 20 \mathrm{GHz}$ RF sweep generator
TEK 2445150 Mry 4 race oschloscope
TEK 2465300 Mhz 300 Mr 1 z oscilloscope \qquad
dive, FFT
TEK TOS 380 400Mhz dignal reathime + disk drfve, FFT
TEK TOS 524 A 500 Athz digral reanme + colour orsplay
HP3585A Opt 90720 Hz to 40 Mhz spectrum analyser
PHHLTPS PWI 7301060 KV XRAY generato \&
PHILIPS PWIT30/10 60KV XRAY generatol \& accessorn
CLAUDE LYONS 12A 240Y sugfe phase auto volt regs
CLAUOE LYONS $100 A$? Fishers 45 KVA 3 ph On Line UPS ' Now batteries Emerson AP130 $2.5 K \mathrm{KVA}$ industral spec.UPS Menn Tally MT645 High speed hise prmier

 DISTEL on the web !! - Over 16,000,000 items from stock - www.distel.co.uk

Web ref = LK33 ONLY $£ 99.00$ or 2 for $£ 180.00{ }_{(8)}$

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 - COROM Not the latest - tut at this price 1 (B7) OOS 5.0 on $3 \%^{\circ}$ disks with concise bewis. ciw OBas $\quad \varepsilon 14.95$ Windows for Workgroups $3.11+$ Dos 6.22 on 3.5^{-}disks $£ 5.00$
Wordperfect 6 for DOS suppaed on $3 / 2^{2}$ disks whh manual $£ 24.95$

- EL ETTRANTS				02086533333 FAX 02086538888
($)^{\text {vSI }}$			deme	

PIC VIRUS ZAPPER

This simple PIC-controlled unit is based on the work of Dr Hulda Regehr Clark, who claims that it is a cure for many diseases. Enthusiasts for the device claim that it is effective in dealing with most viral infections, some going so far as to claim they haven't had even a common cold in years! Apparently they either "zap" every few days as a general precaution or they use it at the first signs of a cold or other illness before it has had time to take hold properly. Sounds worth trying at least, but the author is still waiting for the onset of a cold in order to experiment! This easy-to-build inexpensive project will allow anyone to try the idea for themselves, it provides the suggested electronic output plus the timing for each "treatment". Maybe EPE readers can prove or disprove the theory.

RELATIVE HUMIDITY METER

This Relative Humidity (RH) Meter (hygrometer) uses a new capacitive RH sensing element to give an accurate measure of the relative humidity of air. The sensor contains on-chip integrated signal processing to give a d.c. output proportional to RH. The element is laser trimmed to a preset output span so that a simple but very effective RH meter can be produced without the need for calibration in standard atmospheres.
The traditional analogue meter readout is a visually comfortable way of representing the ambient RH. But a ground referenced analogue output is provided for PC or PIC recording, processing or data logging.

MINI-ENIGMA

The Mini-Enigma was borne out of an interest in both encryption techniques and PIC microprocessors. The initial idea was to create a PIC-based unit, which would enable the user to type in a brief text message, which can then be encrypted at the press of a button. By the same token, if the encrypted message was typed into the unit it could be de-coded into the original text message. This enables two people to send secret messages to each other and be safe in the knowledge that the text is very difficult to decipher without using the unit.
The unit also has the unique capability of being able to connect to a "match-box memory", which enables the user to download a message into the box, the information from the box can then be retrieved by the other person at a later time by using their Mini-Enigma unit.

PROGRAMMING PIC INTERRUPTS

How to use Interrupts successfully with your PIC programs. The Microchip PIC family of microcontrollers supports interrupts. However, relatively few of the projects published in EPE to date have used interrupts.
Programming a PIC to use interrupts is not completely straightforward (but then sometimes neither is programming a PIC to do anything!). There are some special considerations that need to be borne in mind. This article gives a general introduction to the topic of writing PIC software to handle interrupts, with special reference to the PIC16x84 and PIC16F87x families, which are the most popular with hobbyists.

PLUS: TEACH-IN 2002, Part 5 AND ALL THE REGULAR FEATURES

NO ONE DOES IT BETTER

incorporating ELECTRONICS TODAY INTERNATIONAL

DON'T MISS AN ISSUE - PLACE YOUR ORDER NOW!
Demand is bound to be high

Qlasar ElECTRONICS LIMITED Unit 14 Sunningdale, घISHOPS STORTFORD, Herss. CM23 2PA
TEL: $01279467799 \quad$ FAXE 07092203496

PROJECT KITS

Oup electronic kits are supplied complete with all components, high quality PCB (NOT cheap Tripad strip board!) and detailed assembly/operating instructions

- 2×25 W CAR BOOSTER AMPLIFIER COnnects lo the oulput of an exising car stereo cassette player,

- CHANNEL WIRELESS LIGHT MODULATOR No electrical connection with amplitier. Light modulation achieved via a sensitive electret microphone.
Separate sensituity control Separate sensitvity control per channel. Power
handing $400 \mathrm{~W} /$ channei. PCB $54 \times 112 \mathrm{~mm}$. Mains powered Box provided. 6014 KT £ 24.95 light eftect ideal lor parties, discos, shop-windows \& eye-catchning signs PCB design allows replacement Adjustable rotation speed \& direction. PCB $54 \times+12 \mathrm{~mm} .1026 \mathrm{KT}$
tion) 2026 BX £9.00
- DISCO STROBE LIGHT Probably the most excil ing of all light effects. Very bright strobe tub
- ANIMAL SOUNDS Cat. dog. chicken \& cow, I - $31 / 2$ DIGIT LED PANEL METER Use for emperature, light, weight, movement, sound lev. als, etc. with appropriate sensors (not supplied).
various input circuit designs provided. 3061 KT 13.95
in REMOTE TOGGLE SWITCH Use any TVNCA onvot 3058KT £10.95
SPEED CONTROLLER for any common DC motor up - 100V5A Pulse widh modulation gives maximu crave a
$3 \times \operatorname{B}$ CHANNEL IR RELAY BOARD Contral eight 12V/ia elays by Inira Red (IR) remole control over a 20 m range anight 6 relays urmon only he ine i loggle orvar 300 tion ranges determined by funpers Transmmter case \& a componens
$\mathbf{L 5 2 . 9 5}$

PRODUCT FEATURE

COMPUTER TEMPERATURE DATA LOGGER PC serial port controlled 4 -channel temperature
meter (either deg C or F . Requires no external meter (either deg C or F). Requires no external
power. Allows continuous temperature data logging of up to four temperature sensors located $200 \mathrm{~m}+$ from
motherboard $/$ PC . Ideal use for old $386 / 4866$ computers. Users can tailor input data stream to suit the purpose (dump it to a spreadsheet or write your own BASIC programs using the INPUT command to grab the readings). PCB just $38 \mathrm{~mm} \times 38 \mathrm{~mm}$. Sensors con but only one DS18S20 sensor.
Kit software available free from our website. ORDERING 3145KT £23.95
Additional DSIBS20 sensors $£ 4.95$ each

- SOUND EFFECTS GENERATOR Easy to build Create an almost infinite variety of interesting unusuai sound ethects trom birds chirf
- ROBOT VOICE EFFECT Make your varce sound simitar to a robot or Darlek. Great fun for
discos, school plays, theatre productions, radı discos, school plays, thealre prouccions, fadio
slations \& playing jokes on your frends when
answering the phone! PCB $42 \times 71 \mathrm{~mm}$. 1131 KT £8.95 ty of one or more lights in response to an audio input. Sale, modern opto-coupler design
experience required $\mathbf{3 0 1 2 \mathrm { KT }}$ c8.95
- MUSIC BOK Acivated Dy light Plays 8 Cnnstmas songs and 5 other tunes. 3104 KT E7. 95
- 20 SECOND VOICE RECORDER volatile memory . no battery backup needed Recordreplay messages over \& over Playtack as
required to greet customers etc. Volume controt \& 3131 KT E12.95 bowing lea 4 selectable sounds: whistle sequence SG01M £6.95

2
 FACTOR PHIHICATIGNS

THE EXPERTS IN RARE \& UNUSUAL INFORMATIONI

Full delalas of all X. FACTOA PuBLCACIONS can be tound m cur calatague NB Minimm order charge for reports and plans
IS 550 PiUS nocmel Pas

- SUPER-EAR LISTENING DEvice Complete plans to culld your own parabolk dash merrophone Listen to distant Made from rexdily vavalable pant R 002 E .5 .50
- LCCKS. How whey work and how to prod them This fact
hited reaort will teach you more abourl bods and the an of ock pecong man many books we have seen at 4 Imes the
 - Re show of you houk fo PLans
ing show pectue and sound plus fM rabol May upsel your
TV nelighours 8 Ine authortiesil DISCRETON RESUIRED R017 83.50
-1 NFFNTM
- INFINTY TRANSMITTER PLANS Complete plans for

 Home:
- THE ETHER BOX CALL INTERCEPTOR PLANS Grabs lelephone calls oul of thin art: No need lo wre-m a phone
bug, Simply place this device near the phone lines to hear hhe

- CASH CREATOR BuSINESS REPORTS Need Ideas lor makng some cash? Weil lhis could be uss what you neesd
You get 40 reports (approx 800 pages) on flopey disk hat give you information on setting up different busnesses You also gel valuabtion reproduction and dupication nghts
you can sell ite manuals as you like Ro30 87.50

- pC COntrolled relay board automatic controler to independenty lues ored up to eight lights, molors \& other devices around the home, olfice. laboratory of factory using 8 240 VACH 12 A onboard reiays. DOS utlithes, sample lest program, full-teatured Windows stility $\&$ all
components (except cable) provided. 12 VDC. PCE 70x200mm 3074KT £31.95
- 2 CHANNEL UHF RELAY SWITCH Contalns the same transmither receever pair as 30 A 15 betow plus $240 \mathrm{VAC/10A}$ relays (also supplied) Ultra bright EEDs used to indicate relay status. 3082 KT £27.95 TRANSM. 3 H HeCEIVEA PAIA 2-button keyio style $300.375 \mathrm{MHz} \mathrm{T}_{\mathrm{x}}$ with 30 m range. Receiver ncoder module with matched decoder 3 . above, 30 A 15 £14.95 - imulaneously controd ly to 4 servo motors Sotware \& Simulaneousty ooniric up to s servo motors Sotware \& SVOC PCB 50x70mm 3102KT £15.95
- unipolar stepper motor driver for any 5/6/8 lead motor. Fastslow \& single step rates Direction control $\&$ onioff swich Wave, 2-phase \& hall-wave step modes
$50 \times 65 \mathrm{~mm}$. $3109 \mathrm{KT} £ 14.95$
- PC CONTROLLED STEPPER MOTOR DRIVER Control two unipolar stepper molors (3A max. each) na PC printer port. Wave, 2.phase \& hall-wave step modes Sotware accepts 4 digital inputs 'rom exter-
nal switches 8 will smgle step motors. PCB fits in D . nal switches \& will single step motors
shell case provived 313 KT E17.95
-12-BIT PC DATA ACQUISITIONC ONTROL UNIT Simiarro kit 3093 above but uses a 12 bir Analogue.
 Muttiplexor. Reads 8 singie endeot channels or inputs read 0.4 V . Four TTLCMOS compatible digitial inputioutputs. ADC conversion time <10us. Sotware (C. OB \& Win), extended D Shell case \& an compoE52.95
- liquid level sensorfain alarm will ind: cate flud levels or simpty the presence of hurd. Relay outpul to control a pump to addremove wa:er when in eaches a certan level. 1080KT $£ 5.95$
AM RADIO KIT 1 Tuned Radio Frequency fronend, single chip AM radio ic \& 2 stages of audio amplification. All components inc. Sp
ed. PCB $32 \times 102 \mathrm{~mm} .3063 \mathrm{KT}$ £10.95
- drill speed contholler adjust the speed
ar ach

ROOM SURVEILLANCE

- MTX - MINIATURE 3V TRANSMITTER Easy to build \& guar

MRTX - MINIATURE 9V TRANSMITTER OUr best selling bug Super sensitve high power. 500 m range o o VV (over 1 km with

£12.95
 HPTX - HIGH POWE stage transmitter slage transmiter gives greater stabury 8 mygher quat y reception 1000m range 6 -

S3032 118.95

- MMTX - MICRO-MINIATURE GV TRANSMITTER The Ultmale bug for it size, pentormance and price. Just 15125mm. 500 m range © 9 V G00
AS3051 14.95
- VTX - voice activated transhitter Operales only when sounds detected Low slandyy current Vanable Ingger sen stivity 500 m range. Peakng circut suppliec tor maximum RF out put Ondolf swich
AS 3028 E21 95
AARD-WIR
MARO-WIRED BuGTWO STATION INTERCOM Each slation has its own ampither, speaker and mic Can be set up as etiter
hard-wied bug of wo-station intercemm $10 \mathrm{~m} \times 2$-ope cate sup plied 9V opelation 3021 KT £15.95 (kin torm only)
- TAVS - TAPE RECORDER VOX SWITCH Used 10 antomat cally operate a lape recorder (nol suppleef) wa ts REMOTE sock et when sounds are detected. All conversations recorded AS3013 E21.,.55

700 W power. PCB: $48 \mathrm{~mm} \times 65 \mathrm{~mm}$, Box provided

6074 KT £17.95

- 3 INPUT MONO MIXER Independent level con ror tor each input and separate bassireble controls. 185 mm 1052KT £ 16.95
- NEGATIVEIPOSITIVE ION GENERATOR Standard Cockcrott-Walton muttiplier circuit, Mains ohtage experience required. $\mathbf{3 0 5 7 K T} £ 10.95$
- LED DICE Classic intro to electronics \& circuit
on a number at random. 555 iC circult. 3003 KT £9.9
- STAIRWAY TO HEAVEN Tests hand eye coation. Ptess switch when green segment of LED lights to climb the staiway - miss \& start again Good intro to several basic circuts. 3005 KT £9.95 - ROULETTE LED 'Ball' spins round the wheel slows down \& drops into a slot. 10 LED's. Good intro to CMOS decade counters \& Op-Amps. 3006 KT
- gV XENON TUBE FLASHER Transformer circui steps up 9 v battery to flash a 25 mm Xenon tube.
Adjustable tlash rate (0.25 .2 Sec's). 3022 KT £11.95 - LED FLASHER 15 ultra bright red LED's flash in 7 selectable patterns. 3037 MKT $£ 5.95$
- LED FLASHER 2 Similar to above but flash in

sequence or randomly. Ideal for model railways

052MKT £5.95

- INTRODUCTION TO PIC PROGRAMMING hardware a P46F84 cho and a two-par practical hands-on tutorial series are provided. 3081 KT
- SERIAL PIC PROGRAMMER for all $8 / 18 / 28 / 40$ pin D ware suppla program (registration costs $£ 14.95$) $3096 \mathrm{KT} £ 13.95$
- ATMEL 89Cx051 PROGRAMMER Simple-rouse yet powerful programmer for the Atmel $89 \mathrm{C} 1051,89 \mathrm{C} 20518$ 89C4051 uC's. Programme does NOT require spectal soltware other than a
terminal emulator program (built into Windows). terminal emulator program (built into Windows) Can be used with ANY computer/operating sys
- 3V/1.5V TO 9 V BATTERY CONVERTER Replace expensive 9 V batteries with economic 1.5 V batter les IC based circult steps up ${ }^{1}$
- STABILISED POWER SUPPLY $3-30 \mathrm{~V} / 2.5 \mathrm{~A}$ ideal for hobbyist \& protessional laboratory. Very rellable \& versatle design at an extremely reason
able price. Short circuit protection, variable DC voltages (3.30 V) Rated output 2.5 Amps Large heatsink supplied. You just supply a $24 \mathrm{VAC} / 3 \mathrm{~A}$ transformer. PCB $55 \times 112 \mathrm{~mm}$. Mains operation. 1007 KT §16.95.

TELEPHONE SURVEILLANCE - MTTX. MINLATURE TELEPHONE TRANSMITTER Allaches Tune:in your rado and hear Doth parties 300 m range Uses in
as aerial \& power source $20 \times 45 \mathrm{~mm} 3016 \mathrm{KT}$ c8.95 AS3016

- TRi - TELEPHONE RECORDING INTERFACE Automatically ecord all conversations Comnects between phone line \& lape recorsee (not suppled) Operales recorders with 15.12 V Dallery
sysilems. Powered from line $50 x 33 \mathrm{~mm} 3033 \mathrm{KT} 59.95 \mathrm{AS3033}$ sysiems. Powered from line $50 \times 33 \mathrm{~mm} 3033 \mathrm{KT}$ £9.95 AS3033
£19.95
TPA. TELEPHONE PICK.Up AUPLEIERNIELESS - TPA. TELEPHONE PICK.UP AMPLIFIERNWIRELESS
PHONE BUG Place prt up col on the phone ine or near phone

earpece and hear Doth scoss of the conversation 3055 KT £11.95 | earpece and hear |
| :--- |
| A 50055 and |
| 1055 | HIGH POWER TRANSMTTTERS

- 1 WATT FM TRANSMitTER Easy to construc: Delvers
t009kT C14.95
slages and an audio preamplifier slagie Piezoelectric slages and an audio preamplifier stage. Prezoelectric
microphone supplied or you can use a separate preamplifier cricult. Anterna can be an open dipole or Ground
Plane. Ideal propect for those who wish to get stanted in lhe Plane. Ideal propect ior those who wish to get started in ihe
tascinating world of FM broadcasting and want a good tascinating world of circuit to experment with 12.1 - 15 WATT FM TRANSMITTER (PRE-ASSEMBLED TESTED) Four transistor based slages with Philips BLY 88 in final stage. 15 Watts RF power on the alr.
iogsuHz Accepis open dipole, Ground Plane. 588 , needed for alignment 1021 KI 999.95
- smlar to above but 23W Oupur. 1031KT E109.95
- STABILISED POWER SUPPLY 2-30V/5A AS
1007 above but rated at 5Amp Requires 24VAC/5A transformer. 1096 KT £27.95.
- MOTORBIKE ALARM Uses a rellable vibration sensor (adjustabie sensitivity) to detect movement
of the blke to trigger the alarm \& switch the output elay to which a siren. bikes horn, indicators or
$6.12 \mathrm{VDC} . \mathrm{PCB} 57 \times 64 \mathrm{~mm}$. 1011 KT £ 11.95 Box
2011 BX £ 7.00
- CAR ALARM SYSTEM Protect your car from voltige drop sensor and bonnethoot earth swith sensor. Entry/exit delays, auto-reset and adjustable 1019KT \&11.95 Box 20198X $£ 8.00$
- PIEzo SCREAMER 110 dB of ear plercing noise. FIserr own resonant cavity. Use as an alarm siren or
then just for funt 6.9VDC. 3015KT £10.95
- COMBINATION LOCK Versatle electronic lock
comprising main circuit \& separate keypad for emole opening of lock. Relay supplied. 3029kt
- ULTRASONIC MOVEMENT DETECTOR Crystal locked detector frequency for stability \& relability. PCB
$75 \times 40 \mathrm{~mm}$ houses all components 4.7 m range. Adjuslable sensitivity Output will
- PIR DETECTOR MODULE 3 -lead assembled alarm systerms. 3076 KT £8,95
- INFRARED SECURTTY BEAM When the invisible IR beam is broken a relay is tripped that can be used to sound a bell or alarm. 25 metre range. Ma
rated relays provided. 12 VDC operation. 3130 KT
- square wave oscillator Generates square waves at 6 preset frequencies in factorss of 10
trom $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$. Visual outpul indicator. $5 \cdot 18 \mathrm{VDC}$. Box provided. 3111 KT £8.95
- PC DRIVEN POCKET SAMPLERIDATA LOG. up to 2 V or 20 V over periods from milli-seconds to months. Can also be used as a simple digital scope 10 examine aucio o ofther Signals up to
about 5 KHz . Software \& D-shell case provided. 3112KT £18.95
- 20 MHz FUNCTION GENERATOR Square, ranges using 'coarse' and 'fine' frequency adjustTTL controits. Adjustable output from 0.2V p-p. frequency meter. Uses MAX038 1C. Plastic case with printed trontrear panels \& al
provided. $7.12 \mathrm{VAC} .3101 \mathrm{KT} £ 69.95$

BARGYIN

. Ideal for the budding eles. tronics expert! Build a radio. burglar alarm, water detector morse code practice circuit, simple computer circuits, and much more! NO soldering, tools or previous electronics
knowledge required. Circuits can be built and unassembled knowledge required. Circuists can be built and unassembled
repeatedly. Comprehensive 68 -page manual with explanarepeatedly. Comprenensive 68 page manual wions, schematics and assembly diagrams. Suitable for age
tion lons, schematics and assembly dragrams. Sunatries.
$10+$. Excellent for schools Requires $2 \times$ AA batteries ONLY $£ 14.95$ (phone or bulk discounts).

LASAF
 ELEETRONIES
 Number

‘PICALL’ PIC Programmer
Kit will program ALL $8^{\circ}, 18^{\circ}, 28$ and 40 pin serial ANO parallel programmed PIC micro controllers. Connects to PC parallel port. Supplied with fully functional preregistered PICALL DOS and WINDOWS AVR software packages, all components and high quality DSPTH PCB. Also programs certain ATMEL AVR, serial EPROM 24 and SCENIX SX devices. New PIC's can be added to the sotware as they are released. Sottware shows you where to place your PIC chip on the board for programming. Now has blank chip auto sensing feature for super-fast bulk programming. "A 40 pin wide ZIF socket is required to program 8 \& 18 pin devices (available at $£ 15.95$).

$3117 K T$	'PICALL' PIC Programmer Kit	$£ 59.95$
AS3117	Assembled 'PICALL' PIC Proarammer	$£ 69.95$
AS3117ZIF	Assembled 'PICALL' PIC Prog'ammer Ciw ZIF socket	$£ 84.95$

ATMEL AVR Programmer

Powerful programmer for Atmel AT90Sxxxx (AVR) micro controller family. All fuse and lock bits are programmable. Cornects to serial port. Can be used with ANY computer and operating system. Two LEDs to indicate programming status. Supports 20 -pin DIP AT90S1200 \& AT90S2313 and 40-pin DIP AT90S4414 \& AT90S8515 devices. NO special software required - uses any terminal emulator program (built into Windows). The programmer is supported by BASCOM-AVR Basic Compiler software (see website for details).
NB ZIF sockets not included.

$\mathbf{3 1 2 2 K T}$	ATMEL AVR Programme	$\mathbf{£ 2 4 . 9 5}$
AS3122	Assembled 3122	$\mathbf{£ 3 9 . 9 5}$

Atmel 89Cx051 and 89xxx programmers also available.

PC Data Acquisition \& Control Unit

With this kit you can use a PC parallel port as a real worid interface. Unit can be connected to a mixture of analogue and digital inputs from pressure, temperature, movement, sound, light intensity, weight sensors, etc. (not supplied) to
 sensing switch and relay states. It
use the information to control $L \rho$ to 11 physical devices such as motors, sirens, other relays, servo motors \& two-stepper motors

FEATURES:

- 8 Digital Outputs: Open collector, $500 \mathrm{~mA}, 33 \mathrm{~V}$ max.
- 16 Digital Inputs: 20 V max. Protection 1 K in series, 5.1 V Zener to ground.
- 11 Analogue Inputs: 0-5V, 10 bit ($5 \mathrm{mV} / \mathrm{step}$.)
- 1 Analogue Output: 0-2.5V or 0-10V. 8 bit ($20 \mathrm{mV} /$ step.) All components provided including a plastic case ($140 \mathrm{~mm} \times 110 \mathrm{~mm} \times$ 35 mm) with pre-punched and silk screened frontrear panels to give a professional and attractive finish (see photo) with screen printed front \& rear panels supplied. Software utilities \& programming examples supplied

3093KT	PC Data Acquisition \& Control Unit	$£ 99.95$
AS3093	Assembled 3093	$£ 124.95$

ABC Mini 'Hotchip’ Board

Currently learning about microcontrollers? Need to do something more than flash a LED or sound a buzzer? The ABC Mini 'Hotchip' Board is based on Atmel's AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up. Experts will like the power and fiexibility of the ATMEL microcontroller, as well as the ease with which the little Hot Chip board can be "designed-in" to a project. The ABC Mini Board 'Starter Pack' includes just about everything you need to get up and experimenting right away. On the hardware side, there's a pre-assembled micro controller PC board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system programmer The pre-assembled boards only are also available separately.

ABCMINISP	ABC MINI Starter Pack	$£ 64.95$
ABCMINIB	ABC MINI Board Only	$£ 39.95$

Advanced Schematic Capture and Simulation Software

Serial Port Isolated I/O Controller

Kit provides eight 240VAC/12A (110VAC/15A) rated relay outputs and four optically isolated inputs. Can be used in a variety of control and sensing applications including load switching, external switch input sensing, contact closure and external voltage sensing. Programmed via a computer serial port, it is compatible with ANY computer \& operating system. After programming, PC can be disconnected Serial cable can be up to 35 m long, allowing 'remote' control. User can easily write batch file programs to control the kit using simple text commands. NO special software required - uses any terminal emulator program (built into Windows). All components provided including a plastic case with pre-punched and silk screened frontrear panels to give a professional and attractive finish (see photo).

$\mathbf{3 1 0 8 K T}$	Serial Port Isolated IO Controller Kit	$\mathbf{5 4 . 9 5}$
AS3108	Assembled Serial Port Isolated I/O Controller	$\mathbf{£ 9 . 9 5}$

FRUSTRATED!

Looking for ICs TRANSISTORs? A phone call to us could get a result. We offer an extensive range and with a worldwide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSW BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD CX CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDAJ MJE MJF MM MN MPS MPSA MPSH MPSU MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SV1 T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTS + many others

We can also offer equivalents (at customers' risk) We also stock a full range of other electronic components Mail, phone, Fax Credit Card orders and callers welcome

पू
Connect

Cricklewood Electronics Ltd

40-42 Cricklewood Broadway London NW2 3ET
Tel: 02084520161 Fax: 02082081441

STEWART of READING

110 WYKEHAM ROAD, READING, BERKS. RGS 1PL VISA
Telephone: (0118) 9268041. Fax (0118) 9361696 , Tolephone: (0118) 9268041. Faxc (0118) 9361608 www.stewart-of-reading.co.uk

[^0]

Used Equipment - GUARANTEED. Manuals supplied This is a VERY SMALL SAMPLE OF STOCK. SAE or Telephone for lists. Please check availability before ordering.
CARRIAGE all units $£ 16$. VAT to be added to Total of Goods and Carriage

E1 BARGATN PACKS Selected Items

PIEZO ELECTRIC SOUNDER, also operates efficiently as a microphone. Approximately 30 mm diameter, easily mountable, 2 for $£ 1$. Order Ref: 1084.
LIQUID CRYSTAL DISPLAY on p.c.b. with i.c.s etc. to drive it to give 2 rows of 8 figures or letters with data. Order Ref: 1085
30A PANEL MOUNTING TOGGLE SWITCH. Double-pole. Order Ref: 166.
SUB MIN TOGGLE SWITCHES. Pack of 3. Order Ref: 214.
HIGH POWER 3in. SPEAKER (11W 8ohm). Order Ref: 246.
MEDIUM WAVE PERMEABILITY TUNER. It's almost a complete radio with circuit. Order Ref: 247.
HEATING ELEMENT, mains voltage 100W, brass encased. Order Ref: 8
MAINS MOTOR with gearbox giving 1 rev per 24 hours. Order Ref: 89
ROUND POINTER KNOBS for flatted $1 / 4 i n$. spindles. Pack of 10. Order Ref: 295.
REVERSING SWITCH. 20A double-pole or 40A single pole. Order Ref: 343.
LUMINOUS PUSH-ON PUSH-OFF SWITCHES. Pack of 3. Order Ref: 373.
SLIDE SWITCHES. Single pole changeover. Pack of 10. Order Ref: 1053.
PAXOLIN PANEL. Approximately 12 in . $\times 12 \mathrm{in}$. Order Ref: 1033.
CLOCKWORK MOTOR. Suitable for up to 6 hours. Order Ref: 1038.
TRANSISTOR DRIVER TRANSFORMER. Maker's ref. no. LT44, impedance ratio 20 k ohm to 1k ohm; centre tapped, 50p. Order Ref: 1/23R4. HIGH CURRENT RELAY, 12 V d.c. or 24 V a.c. operates changeover cocntacts. Order Ref: 1026. 3-CONTACT MICROSWITCHES, operated with slightest touch, pack of 2. Order Ref: 861
hivac numicator tube, Hivac ref XN3. Order Ref: 865 or XN11 Order Ref: 866.
2IN. ROUND LOUDSPEAKERS. 50Ω coil. Pack of 2. Order Ref: 908.

5 K POT, standard size with DP switch, good length $1 / 4 \mathrm{in}$. spindle, pack of 2 . Order Ref: 11R24. 13A PLUG, fully legal with insulated legs, pack of 3. Order Ref: GR19.

OPTO-SWITCH on p.c.b., size 2in. x 1in., pack of 2. Order Ref: GR21

COMPONENT MOUNTING PANEL, heavy paxolin $10 \mathrm{in} . x$ in., 32 pairs of brass pillars for solderolin 10in. \times in., 32 pairs of brass pillars for so
ing binding components. Order Ref: 7RC26. ing binding components. Order Ref: 7RC26.
HIGH AMP THYRISTOR, normal 2 contacts from top, heavy threaded fixing underneath. thiak amperage to be at least 25A, pack of 2 . Order Ref: 7FC43.
BRIDGE RECTIFIER, ideal for 12 V to 24 V charger at 5A, pack of 2. Order Ref: 1070.
TEST PRODS FOR MULTIMETER with 4 mm TEST PRODS FOR MULTIMETER with 4 mm LUMINOUS ROCKER SWITCH, approximately 30 mm square, pack of 2 . Order Ref: D64.
MES LAMPHOLDERS slide on to $1 / 4 \mathrm{in}$. tag, pack of 10. Order Ref: 1054.
HALL EFFECT DEVICES, mounted on small heatsink, pack of 2 . Order Ref: 1022.
12 V POLARISED RELAY, 2 changeover contacts. Order Ref: 1032.
PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lid held by 4 screws, pack of 2 . Order Ref: 876.
LARGE MICROSWITCHES, $20 \mathrm{~mm} \times 6 \mathrm{~mm} \times$ 10 mm , changeover contacts, pack of 2 . Order Ref: 826.
COPPER CLAD PANELS, size 7in. x 4 in., pack of 2. Order Ref: 973

100M COIL OF CONNECTING WIRE Order Ref: 685.
WHITE PROJECT BOX, $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$. Order Ref: 106.
LEVER-OPERATED MICROSWITCHES, exequipment, batch tested, any faulty would be equipment, batch tested, any faulty would be
replaced, pack of 10 . Order Ref: 755 . replaced, pack of 10 . Order Ref: 755.
MAINS TRANSFORMER, $12 \mathrm{~V}-\mathrm{V}-12$
MAINS TRANSFORMER, $12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}, 6 \mathrm{~W}$. Order Ref: 811.
QUARTZ LINEAR HEATING TUBES, 306W but 110V so would have to be joined in series, pack of 2. Order Ref: 907.
REELS INSULATION TAPE, pack of 5 , several colours. Order Ref: 911.
LIGHTWEIGHT STEREO HEADPHONES. Order Ref: 989.
THERMOSTAT for ovens with $1 / 2 \mathrm{in}$. spinde to take control knob. Order Ref: 857.
MINI STEREO 1W AMP. Order Ref: 870

SELLING WELL BUT STILL AVAILABLE

 IT IS A DIGITAL MULTITESTER, complete with backrest to stand it and hands-free testprod holder. This tester measures d.c. volts up to 1,000 and a.c. volts up to 750 ; d.c. current up to $10 A$ and resistance up to 2 megs. Also tests transistors and diodes and has an
 and diodes and has an
tinuity tests. Comes complete with test prods, battery and instructions. Price £6.99. Order Ref: 7P29.
INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to read insulation directly in megohms. The multimeter has four ranges: ACIDC volts, 3 ranges DC milliamps, 3 ranges resistance and 5 amp range. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least 50 each yours for only 8750 with leads, carrying case $£ 2$ extra. Order Ref: 7.5P4
REPAIRABLE METERS. We have some of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply diagram, £3. Order Ref: 3P176. PHILIPS 9 in. MONITOR. Not cased, cut it is in a frame for rack mounting. It is high resolution and was made to work with the IBM 'One per disk' computer. price £15. Order Ref: 15P1.
METAL CASE FOR 9in. MONITOR. Supplied as a flat pack, price £12. Order Ref: 12P3.
ANOTHER PROJECT CASE. Should be very suitable for a non-recognisable bug or similar hand-held device. It is 150 mm long. 36 mm wide and 15 mm thick. Originally these were TV remote controls, price 2 for §1. Order Ref: 1068. A MUCH LARGER PROJECT BOX. Size $216 \mathrm{~mm} \times$ $130 \mathrm{~mm} \times 85 \mathrm{~mm}$ with lid and 4 screws. This is an ABS box which normally retails at around £6. All brand new, price £2.50. Order Ref: 2.5P28.
BTTELEPHONE EXTENSION WIRE. This is proper heavy duty cable for running around the skirting board when you want to make a permanent extension. Four cores properly colour coded, 25 m length only £1. Order Ref: 1067. HEAVY DUTY POT. Rated at 25 W , this is 20 ohm resistance so it could be just right for speed controlling a d.c. motor or device or to contraol the output of a high current. Price £1. Order Ref: 1/33L1
1mA PANEL METER. Approximately $80 \mathrm{~mm} \times 55 \mathrm{~mm}$, front engraved 0-100. Price £1.50 each. Order Ref: 1/16R2. VERY THIN DRILLS. 12 assorted sizes vary between 0.6 mm and 1.6 mm . Price £1. Order Ref: 128.

EVEN THINNER DRILLS. 12 that vary between 0.1 mm and 0.5 mm . Price £1. Order Ref:129
D.C. MOTOR WITH GEARBOX. Size 60 mm long, 30 mm diameter. Very powerful, operates off any vollage between 6 V and 24 V D.C. Speed at 6 V is 200 rpm , speed controller available. Special price $£ 3$ each. Order Ref: 3P 108.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should atways be seen. Uses a Xenon tube and has an amber coloured dome. Separate fixing ase is included so unit can be put away if desirable. Price £5. Order Ref: 5 P267. MOST USEFUL POWER SUPPLY. Raled at 9 , 1 , this plugs into a 13A socket, is really nicely boxed. $£ 2$. Order Rel: 2P733.
MOTOR SPEED CONTROLLER. These are suitable for D.C. motors for voltages up to 12 V and any power up to 1/6h.p. They reduce the speed by intermittent full voltage pulses so there shouid be no loss of power. In kit form these are £12. Order Ref: 12P34. Or made up and tested, E20. Order Ref: 20P39
BALANCE ASSEMBLY KITS. Japanese made, when assembled ideal for chemical experiments, complete with tweezers and 6 weights 0.5 to 5 grams. Price $£ 2$. Order Rel: 2 P44.
CYCLE LAMP BARGAIN. You can have 1006 V 0.2 A MES bulbs for just $£ 2.50$ or 1,000 for $£ 20$. They are beautifully made, slightly larger than the standard 6.3 V pilot bulb so they would be ideal for making displays for night lights and simitar applications.
SOLDERING IRON, super mains powered with long-lite ceramic element, heavy duty 40 W for the extra special job, omplete with plated wire stand and 245 mm lead, $\Sigma 3$. Order Ref: 3P221
HIGH AMP THYRISTOR. Normal two contacts from the top and heavy threaded fixing underneath. We don't know the amperage of this but think it to be at least 25A. Price 50 p each. Order Ref: $1 / 7 R C 43$.
THREE LEVEL PRESSURE SWITCH. All 3 are low pressures and the switch could be blow-operated. With a suitable tubing these switches could control the level of liquid, etc., price $£ 1$. Order Ret: 67
BREAKDOWN UNIT, Order Rel: BM41001. This is probably the most valuable breakdown unit that you have ever been offered. It contains the items specified below, just 2 of which are currently selling at $£ 3.50$ each. Other contents which
are:
Com
Computer grade electrolytics, $330 \mu \mathrm{~F} 250 \mathrm{~V}$ DC, you get 4 of these. $4,700 \mu \mathrm{~F}$ at 50 V DC, you get 2 of these. $1,000 \mu \mathrm{~F}$ at 16 V DC, you get one of these, and 16A 250 V double rocker switch. 115 V to 250 V selector switch. You also get a standard flat pin instrument socket, a 250 V 5 A bridge rectifier, $2 \times 25 A$ bridge rectifiers mounted on an aluminium heatsink but very easy to remove.
2 NPN power transistors ref. BUV47, currently listed by Maplins at $£ 3.50$ each, a power thyristor, Mullard ref. BTW69 or equivalent, listed at $£ 3$.
All the above parts are very easy to remove. 100s of other parts not so easy to remove, all this is yours for $£ 5$. Order Ref: $1 / 11$ R8.

RELAYS We have thousands of
relays of various sorts in stock, so if you need anything special give us a ring. A few new ones that have just arrived are special in that they are plug-in and come complete with a special base which enables you to check voltages of con-
 nections of it without having to go underneath. We have 6 different types with varying coil voltages and contact arrangement

Coil Voltage	Contacts	Price	Order Re
12V DC	4-pole changeover	$£ 2.00$	FR10
$24 V$ DC	2-pole changeover	$£ 1.50$	FR12
24 VC	4-pole changever	$£ 2.00$	FR13
240 V AC	1-pole changeover	$£ 1.50$	FR14

24 V DC 4-pole changeover MINI POWER REIAYS
For p.c.b. mounting, size $28 \mathrm{~mm} \times 25 \mathrm{~mm} \times 12 \mathrm{~mm}$, all have 16A changeover contacts for up to 250 V . Four versions available, they all look the same but have different coils:
6V Order Ref: FR17
12V Order Ref: FR18
24V Order Ref: FR19
48 V Order Ref: FR20
Price £1 each less 10% if
ordered in quantities of 10 ,

same or mixed values.
4 CIRCUIT 12V RELAY. Quite small, clear plastic enclosed and with plug-in tags, $£ 1$. Order Ref: 205N
NOT MUCH BIGGER THAN AN OXO CUBE. Another relay just arrived is extra small with a 12 V coil and 6A changeover contacts. It is sealed so it can be mounted in for $£ 50$. Order Ref: FR16.
BIG POWER RELAY. These are open type fixed by screws into the threaded base. Made by Omron, their ref: MM4. These have 4 sels of 25A changeover contacts. The coil is operated by 50 V AC or 24 V DC, price E6. Order Ref: 6P.
SIMILAR RELAY but smaller and with only 2 sets of 25 A changeover contacts. Coil voltage 24 V DC, 50 V AC, £4. Order Ref: 4P.
BIG POWER LATCHING RELAY. Again by Omron, their ref: MM2K. This looks like a double relay, one on top of the other. The bottom one has double-pole 20A changeover contacts. The top one has no contacts but when energised it will lock the lower relay either on or off depending on how it is set. Price $£ 6$. Order Ref: 6P.
RECHARGEABLE NICAD BATTERIES. AA size, 25p each, which is a real bargain considering many firms charge as much as $\Sigma 2$ each. These are in packs of 10 , coupled together with an output lead so are a 12 V unit but easily divideable into $2 \times 6 \mathrm{~V}$ or $10 \times 1.2 \mathrm{~V}$. £2.50 per pack, 10 packs for $£ 25$ including carriage. Order Ref: 2.5P34.

BUY ONE GET ONE FREE

ULTRASONIC MOVENENT DETECTOR. Nicely cased, free standing, has internal alarm which can be silenced. Also has connections for ex
light. Price $£ 10$. Order Rel: 10P154.
CASED POWER SUPPLIES which, with a few small extra components and a bit of modilying, would give 12 V at 10A. Originally $£ 9.50$ each, now 2 for $£ 9.50$. Order Ref: 9.5P4.
3-OCTAVE KEYBOARDS with piano size keys, brand new, previous price
Order Ref: 9.5P5.
1.5 V -6V MOTOR WITH GEARBOX. Motor is mounted on the gearbox which has range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds, £7. Order Ref: 7P26.
MINI BLOWER HEATER.
1 kW , ideal for under desk or airing cupboard, elc., needs only a simple mounting frame, price £5. Order Ref: 5 P23. IT IS VERY POWERFUL. In fact it is almost $1 / 4 \mathrm{~h} . \mathrm{p}$ and can be driven by a 12 V battery, so one on each wheel would drive a go-kart and its passenger. Made by the famous Smiths company, this motor should give a good, long, trou-ble-free service. Offered at $£ 12$ each or if you order a pair, then you can have the pair for £20. Order Ref: 12 P41.

TERMS

Send cash, PO, cheque or quote credit card number. I order under £25 and for heavy items add $£ 4.50$ carriage. lightweight add postage which you think will cover

EE234 135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST
Tel 01283565435 Fax 546932
http://www.magenta2000.co.uk
E-mail: sales@magenta2000.co.uk
All Prices include V.A.T. ADD £3.00 PER ORDER P\&P. $£ 6.99$ next day

MAIL ORDER ONLY • CALLERS BY APPOINTMENT

EPE MICROCONTROLLER P.I. TREASURE HUNTER
The latest MAGENTA DESIGN - highly stable \& sensitive - with I.C. control of all timing functions and advanced pulse separation techniques.
- High stability drift cancelling
- Easy to build \& use
- No ground effect, works in seawater

- Efficient quartz controlled
microcontroller pulse generation. - Full kit with headphones \& all hardware
KIT 847
. $£ 63.95$

PORTABLE ULTRASONIC
PEsT SCARER
A powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transiormer. Sweeping frequency output is designed to give maximum output without any special setting up.
KIT 842.
$£ 22.56$

- NEW PCB DESIGN
- 8 MHzz 68000 16-BIT BUS
- MANUAL AND SOFTWARE
- 2 SERIAL PORTS
- PIT AND I/O PORT OPTIONS
- 12C PORT OPTIONS

Stepping Motors
MD38...Mini 48 step... $£ 8.65$ MD35...Std 48 step... $£ 9.99$
 MD200... 200 step... 12.99 MD24...Large 200 step... 222.95

PIC PIPE DESCALER

- SIMPLE TO BUILD
- HIGH POWER OUTPUT • SWEPT
- AUDIO \& VISUAL MONITORING

An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, lissolve existing scale and improve ssorve exility by altering the way lathering ability by altering the way alts in the water behave.
it includes case, P.C.B., coupling coil and all components
High coil current ensures maximum effect. L.E.D. monitor.
KIT 868 \qquad $£ 22.95$ POWER UNIT......£3. 99

MICRO PEsT SCARER

Our latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets pests away from newly sown areas, play areas, etc. uses power source from 9 to 24 volts.

- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867. \qquad
KIT + SLAVE UNIT.

Plug-in power supply $\mathbb{L 4 . 9 9}$
£32.50
WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit £5.99 extra.
.£28.00

DUAL OUTPUT TENS UNIT

Set of
As featured in March ' 97 issue.
Magenta have prepared a FULL KIT for this. excellent new project. All components, PCB hardware and electrodes are included.
Designed for simple assembly and testing and providing high level dual output drive.
KIT 866. . Full kit including four electrodes $£ \mathbf{3 2 . 9 0}$

1000V \& 500V INSULATION
TESTER
Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848
$£ 32.95$

EPE TEACH-IN 2000

Full set of top quality NEW components for this educational series. All parts as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in introduction to Part 1.
"Batteries and tools not included.
TEACH-IN 2000-
KIT $879 £ 44.95$
MULTIMETER £14.45

SPACEWRITER

An innovative and exciting project.
Wave the wand through the air and your message appears. Programmable o hold any message up to 16 digits long. Comes pre-kaded win MERRY K includes PCB. ali components \& tublions for message loading.
instruct
KIT 849 \qquad .£16.99

12V EPROM ERASER

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400 mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV.
KIT 790
.£29.90
SUPER BAT
DETECTOR
1 WATT OIP, BUILT IN SPEAKER, COMPACT CASE $20 \mathrm{kHz}-140 \mathrm{kHz}$
NEW DESIGN WITH 40kHz MIC.
A new circuit using a
"full-bridge' audio amplifier i.c., internal speaker, and
headphoneftape socke
The latest sensitive transducer, and 'double transducer, and 'double
balanced mixer' give a
balable, high perfor-
stable, high perfor-
mance superheterodyne design.
KIT 861
£24.99
ALSO AVAILABLE Built \& Tested. . . $£ 39.99$

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A

Based on our Mk1 design and preserving all the features, but now with switching preregulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero Toroidal mains down to zero. Toroidal mains transtormer. Kit includes punched and printed case and all parts. As reatured in April 1994 EPE. An essential piece of equipment.

Kit No. 845

EPE PROJECT PICS

Programmed PICs for all* EPE Projects
16C84/18F84/16C71 All £5.90 each PIC16F877 now in stock E 10 inc. VAT \& postage ("some projects are copyrigh

ULTRASONIC PEST SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting ammals.

- KIT INCLUDES ALL

COMPONENTS, PCB \& CASE - EFFICIENT 100V

TRANSDUCER OUTPUT - COMPLETELY INAUDIBLE TO HUMANS
KIT 812

UP TO 4 METRES
RANGE
LOW CURRENT
DRAIN
DRAIN

SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE! Kit 857 §12.99

INCLUDES 1-PIC16F84 CHIP
SOFTWARE DISK, LEAD
CONNECTOR, PROFESSIONAL
PC BOARD \& INSTRUCTIONS
Power Supply $£ 3.99$
EXTRA CHIPS:
PIC 16F84 £4.84
Based on February '96 EPE. Magenta designed PCB and kit. PCB with 'Reset' switch, Program switch, 5 V regulator and test L.E.D.S, and connection points for access to all A and B port pins

PIC 16C84 DISPLAY DRIVER

Kit $860 £ 19.99$

Power Supply $£ 3.99$
FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE x 16 -character display, data ${ }_{\varepsilon}$ all components, and software to include in your own programs. Ideal development base for meters, terminals, calculaiors, counters, timers - Just waiting for your application

PIC 16 F84 MAINS POWER 4-CHANNEL CONTROLLER \& LIGHT CHASER

- WITH PROGRAMNIED 16F84 AND DISK WITH

SOURCE CODE IN MPASM

- ZERO VOLT SWITCHING

Now features full 4-channel chaser
MULTIPLE CHASE PATTERNS

- OPTO ISOLATED

5 AMP OUTPUTS

- 12 KEYPAD CONTROL
- SPEED/DIMMING POT

Kit 855 £39.95 software on DISK and preprogrammed PIC16F84 chip. Easily re-programmed for your own applications. Software source code is fully
'commented' so that it can be commented' so that it can be
followed easily. followed easily.
LOTS OF OTHER APPLICATIONS

8-CHANNEL DATA LOGGER

As featured in Aug./Sept. '99 EPE. Full kit with Magenta redesigned PCB - LCD fits directly on board. Use as Data Logger or as a test bed for many other 16 F 877 projects. Kit includes programmed chip, 8 EEPROMS, PCB, case and all components.

KIT 877 £ 49.95 inc. $8 \times 256 \mathrm{~K}$ EEPROMS

PIC Real Time In-Circuit Emulator

- Icebreaker uses PIC16F877 in circuit debugger
- Links to Standard PC. Serial Port (lead supplied)
- Windows ${ }^{\text {Tu }}(95+$) Software included
- Works with MPASM and MPLAB Microchip soltveare
- 16×2 L.C.D., Breadooard, Relay, I/O devices and patch leads supplied

As featured in March '00 EPE. Ideal for beginners AND advanced users.
Programs can be written, assembled, downloaded into the microcontroller and run at full speed (up to 20 MHz), or one step at a time.
Full emulation means that all I/O ports respond exactly and immediately, reading and driving external hardware.
Features include: Reset; Halt on external pulse; Set Breakpoint; Examine and Change registers, EEPROM and program memory; Load program, Single Step with display of Status, W register, Program counter, and user selected 'Watch Window' registers.

PIC TOOLKIT V2

- SUPER UPGRADE FROM V1 - 18, 28 AND 40-PIN CHIPS
- READ, WRITE, ASSEMBLE \& DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5V-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND

OSCILLATOR CONNECTIONS FOR ALL CHIPS

- INCLUDES SOFTWARE AND PIC CHIP

KIT 878 . . . £22.99 with 16F84 . . . £29.99 with 16F877

EPE PIC Tutorlal

At last! A Real, Practical, Hands-On Series

- Learn Programming from scratch using PIC16F84
- Start by lighting I.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security System.
- PIC TUTOR Board with Switches, I.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 £27.95, Built \& Tested £42.95 Optional: Power Supply - £3.99, ZIF Socket - £9.99 LCD Display £7.99 LED Display £6.99 Reprints Mar/Apr/May 98 - $£ 3.00$ set 3

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED-PIN SOCKETS FOR 18, 28, AND 40 PIN ICs
- SEND FOR DETAILED INFORMATION - A SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

Kit 862
£29.99
Power Supply £3.99
DISASSEMBLER SOFTWARE $£ 11.75$

PIC STEPPING MOTOR DRIVER

INCLUDES PCB, PIC16F84 WITH' DEMO PROGRAM SOFTWARE DISC, INSTRUCTIONS AND MOTOR.

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor - up to 24 V and 1 A . Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

All prices include VAT. Add $£ 3.00$ p\&p. Next day $£ 6.99$

Tel: 01283565435 Fax: 01283546932
E-mail: sales@magenta2000.co.uk

VOL. 31 No. 2 FEBRUARY 2002

Editorial Offices:

EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
WIMBORNE PUBLISHING LTD., 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND
Phone: (01202) 873872. Fax: (01202) 874562
Email: epee @ wimborne.co.uk
Web SIte: http://www.epemag.wimborne.co.uk
EPE Online www.epemag.com
EPE Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm
See notes on Readers' Enquiries below - we regret lengthy
technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS
MILL LODGE, MILL LANE
THORPE-LE-SOKEN, ESSEX CO 16 OED
Phone/Fax (01255) 861161
Email: epeads@aol.com

TURNING THE WORM

Whilst there has been plenty of popular press coverage about various viruses invading computers via the Internet, until recently we had not experienced any problems. However, over the course of one week at the end of November we received a number of virus-infected emails and two infected disks from regular contributors to our sister publication Radio Bygones. In both of these cases neither author was aware of the presence of a virus on their systems.

We know our On-Line Editor Alan Winstanley has frequently had virus attacks - all successfully repelled I'm pleased to say - but we guess because of his high level of internet activity he is more likely to be exposed to this type of problem.

The message is, if you are complacent about virus protection you will eventually be caught out. Don't take chances, the results of these electronic vandals can be expensive and time consuming to fix. Make sure you have some good virus protection software installed and keep it up to date. We use Norton AntiVirus in the main office, and Alan uses McAfee AntiVirus plus JBMail - which allows you to delete unwanted mail from your server before it is downloaded - he gave details of this in Net Work in the November issue.

Please be warned, these things spread like a rash (sorry, couldn't resist it!).

VIRUS ZAPPER

Speaking of viruses, next month we are publishing a Virus Zapper project - nothing to do with computers, more to do with colds and bodily diseases. This is an easy-to-build unit based on the ideas of Dr Hulda Regehr Clark. Our contributor Andy Find has developed an inexpensive PIC-based circuit that will provide the necessary output but which also times the various stages of treatment so it is easy to use (see page 75).

Whilst we make no claims for its effectiveness, many people have claimed benefit from such equipment and we will be interested to hear what readers' experiences are in due course. It's a fascinating subject and one that is popular, judging by the number of Internet sites dedicated to it. Our Google search turned up around 16,900 related sites. If you are interested make sure you also read the 'Quack watch' information. Whatever you believe, we will give you the chance to try the idea for yourself for very little outlay - see next month's issue.

AVAILABILITY

Copies of EPE are available on subscription anywhere in the world (see below), from all UK newsagents (distributed by COMAG) and from the following electronic component retailers: Omni Electronics and Yebo Electronics (S. Africa). EPE can also be purchased from retail magazine outlets around the world. An Internet online version can be purchased and downloaded for just $\$ 9.99$ (US - approx $£ 7.70$) per year available from www.epemag.com

SUBSCRIPTIONS

Subscriptions for delivery direct to any address in the

UK: 6 months $£ 15,12$ months $£ 28.50$, wo years $£ 52$ Overseas: 6 months $£ 18$ standard air service or $£ 27$ express airmail, 12 months $£ 34.50$ standard air service or $£ 52$ express airmail, 24 months $£ 64$ standard air service or $£ 99$ express airmail.
Online subscriptions, for downloading the magazine via the Internet, $\$ 9.99$ (US - approx $£ 7.70$) for one year available from www.epernag.com.
Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs. Dept., Wimborne Publishing Ltd. 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202873872 . Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Switch or Visa. (For past Mastercard, Amen, Diners Club,

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ p\&p (for overseas readers the postage is $£ 6.00$ to everywhere except Australia the postage is $£ 6.00$ to everywhere except Australia
and Papua New Guinea which cost $£ 10.50$). Normally and Papua New Guinea which cost $£ 10.50$. Normally
sent within seven days but please allow 28 days for sent within seven days but
delivery - more for overseas.
Payment in £ sterling only please. Visa, Amex, Diners Club, Switch and MasterCard accepted, minimum card order £5. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our UK web site. Overseas customers - your credit card will be charged by the card provider in your local currency at the existing exchange rate.

Editor: MIKE KENWARD

Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Administration: FAY KENWARD
EditoriaV/Admin: (01202) 873872
Advertisement Manager:
PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller:
PETER SHERIDAN, (01202) 873872
On-LIne Editor: ALAN WINSTANLEY
EPE Online (Internet version) Editors:
CLIVE (MAX) MAXFIELD and ALVIN BROWN

READERS' ENQUIRIES

E-mail: techdept ©epemag.wimborne.co.uk We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons. All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk). We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fire, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE

EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.

Constructional Project GUITAR PRACTICE AMP

 BART TREPAK
A low-cost amplifier that will allow the budding guitarist to improve his playing technique, without annoying the household or neighbours!

Commercial guitar amplifiers, even those intended for practising, tend to be fairly expensive and have many features such as gain and tone controls which are seldom used, while lacking more useful ones such as an extra input for a microphone or another guitar. The budding musician's money could be better spent on other accessories or even a better guitar, especially as a simple practice amplifier for use with headphones can easily be built around a cheap integrated circuit.
Even a more ambitious version for driving a speaker providing an output of a few watts, which would be quite loud enough to annoy the neighbours or for playing in a small hall, only requires the addition of a cheap power amplifier i.c and a few more components.

EASY-BUILD

Although the cost and number of components required is small, audio power amplifier circuits do not lend themselves to a simple stripboard layout and the problems associated with designing and making a suitable printed circuit board are likely to put off all but the most cost conscious or determined constructors. The simple project to be described here solves this problem and has
been designed for easy construction with virtually no off-board wiring apart from the mains transformer, speaker and an optional headphone socket.

Since the printed circuit board is readily available, the circuit can be "knocked up" in a very short time and you should have some change from $\mathfrak{£} 25$. The finished circuit can be mounted in the same cabinet as the speaker (these can be salvaged from a defunct hi-fi unit) and even if a speaker has to be purchased separately it should not set you back very much.

AMPLIFIER CIRCUIT

The full circuit diagram of the Guitar Practice Amp shown in Fig. 1 is very conventional and consists of an inverting preamplifier stage, IC1, feeding a single chip power amplifier, IC2. The op.amp preamplifier ICl has a variable gain set by preset VRI to enable this to be set to any required level (up to 100) and should, therefore, be suitable for even the most inefficient guitar pick-ups.

Many small commercial guitar amps often feature tone controls but these are really superfluous as most electric guitars have perfectly adequate tone controls fitted and so these have not been included in this design.

The output of the preamplifier stage (ICl pin 6) is fed via Volume control VR2 to the power amplifier IC2, which is based around the popular TDA2030. This device can supply up to 24 W of audio power depending on the supply voltage and speaker impedance used, provided we are not too bothered about the distortion which in this application can almost be considered to be an advantage.

With the lower supply voltage specified, a more reasonable output power would be about 6 W to 10 W which should be more than sufficient for our purpose. The power output can be easily increased if required by reducing the speaker impedance or increasing the supply voltage, and no changes in the component values are required.

It should, however, be remembered that the maximum supply voltage for both i.c.s is 36 V . The TDA2030 is a very well protected device featuring both short circuit and over dissipation protection although from a reliability point of view it is certainly not advisable to run the device in either of these conditions.

Music generally tends to have many peaks while the average power dissipated remains low so that in practice, despite the use of the relatively small heatsink specified, the temperature of the device will remain well within its safe limit even with prolonged loud playing. Also, as the circuit is permanently connected to the speaker (except when in headphone mode) the possibility of a short circuited output is much reduced.

An (optional) output socket SK3 is also wired in circuit to enable headphones to be connected in place of the speaker LSI.

This is arranged so that inserting the headphone jack plug automatically disconnects the speaker. It also switches in a resistor. R11. in series with the headphones to prevent overloading. see Fig. 1 and Fig.3.

Both the resistor and the headphone socket are mounted off the board and it will be noticed that the headphones which normally have an impedance of 32 ohms (each) are connected in series.

POWER SUPPLY

The circuit is completed by a conventional power supply consisting of mains transformer TI, bridge rectifier RECI and smoothing capacitors C12, C13. It provides a d.c. supply of +12 V and -12 V and although a single rail supply could have been used. the advantage here is that the usual large speaker coupling capacitor is not required

This may not seem to be such an advantage when it is realised that two capacitors are now required in the power supply. but it does mean that the annoying "switch-on thump" normally associated with these amplifiers (due to the speaker coupling capacitor charging up) is eliminated. The relatively low impedances in the circuit mean that hum and noise pick-up is low so that an l.e.d. D4 Power On indicator has been included to remind the user to switch ofi!

ELECTRET MICROPHONE

Most of today's top hits are songs and playing chords on their own does not sound very good. it is far hetter if the "artist" can sing along while playing. With an electric guitar a microphone is required to avoid having to shout rather than sing

Nowadays headphones which include a microphone are available from any computer store for around $£ 5$ and these are eminently suitable for this application. Many practice amplifiers however, have only one input and cannot easily accommodate a microphone but this deticiency has been rectified in this design by adding a simple mixer

The microphones incorporated in these cheap headsets are usually "electret" types. The microphone element constitutes in effect a very high impedance source and a buffer amplifier (consisting of a field effect transistor or f.e.t.) is normally incorporated within the microphone capsule as shown inset in Fig. 1

This requires a small supply voltage (between 1.5 V and 5 V) and a load resistor to operate and so the components associated with the microphone inpul have been added to supply this. A nominal 5 V supply is derived from the main supply rail via resistor R ! and Zener diode DI while R2 forms the load resistor for the f.e.t. inside the microphone capsule.

Note that a stereo jack socket (SK2) is used for the microphone with the second terminal supplying the +5 V while the signal is picked up from the centre pin (iip) and the outer earth ($0 \mathrm{~V}^{\prime}$) connection in the normal way. (The centre pin and the second terminal are connected inside the microphone). This allows a different microphone such as a dynamic type for example. which does not need a supply voltage or resistor, to be connected and in this case the 5 V supply will simply be

Fig.1. Complete circuit diagram for the Guitar Practice Amp.
shorted to earth by the microphone 's mono jack plug causing no damage to either the microphone or amplifier.

ALL MIXED UP

The signal from the microphone is fed to the input of the amplifier via another input resistor R4, the value of which together with the feedhack control (resistor) VRI defines the gain of this channel. A 10 kilohms resistor was found suitable in the prototype but this may be changed if required. a higher value resulting in a lower gain and vice-versa.

This stage (IC1) of the circuit forms an ideal signal mixer since the inverting input (pin 2) of the amplifier is a "virtual earth" so called because the op.amp IC1 maintains the voltage at its inverting input at zero volts. It does this by changing its output voltage when a change in the input voltage tries to upset this and as the feedback preset VR1 has a higher value than
of course. have to be chosen carefully to avoid over driving the amplifier. The output of a CD player for example would be much larger than that of a guitar so that its resistor would need to have a higher value.

Alternatively, each channel could have a separate volume control fitted as shown. It would also be a good idea to fit d.c. blocking capacitors to prevent any d.c. on the output of the CD player or other device upsetting the bias conditions of the op.amp.

No separate provision for controlling the volume of the microphone channel has been made in this version as the relative volume of the guitar can be controlled at the instrument itself while VR2 controls the overall volume.

CONSTRUCTION

This is a mains operated circuit and its construction should not be attempted by those who are not suitably experienced or supervised.

The use of a printed circuit board (p.c.b.) makes the circuit

Assembly of the board should begin by inserting the terminal pins which will be used to connect the speaker and transformer to the p.c.b. These usually require a certain amount of force to insert into the board which could damage adjacent components if this were done at a later stage.

Once the solder pins have been fitted, the board may be completed by mounting resistors, diodes, capacitors etc. in ascending order of height. Care should, of course. be taken to ensure that diodes and electrolytic capacitors are inserted the correct way around. Note also that a wire link (made from a discarded component lead) and a resistor (R10) are mounted under C 12 and C13 so that these components must obviously be fitted before the electrolytic capacitors are mounted on the board. A second wire link is also required between C6 and VR2.

Although IC1 is not a CMOS device, and thus not particularly sensitive to static, it is worth fitting an i.c. socket to prevent any possibility of overheating it during the soldering operation this will also facilitate its easy removal should this be required.

POWER AMP

The audio power amplifier IC2 is more difficult to fit and before this is done it is best to prepare the small heatsink according to Fig.4. In the prototype this was made from a piece of L -shaped aluminium extrusion normally sold in DIY shops but should this not be easily obtainable a suitable
piece of sheet aluminium bent to shape and drilled as shown will do just as well.

IC2 should be mounted on the board but its leads should not be soldered for the moment. Once this has been done, the heatsink can also be mounted on the board and secured to it using two nuts and bolts. When it is secure, IC2 should be bolted to it, via its metal tab, and it is here that the

Fig. 4 (top right). Heatsink dimensions and bending details.

Fig. 5 (top, far right). Pinout details for IC2, the TDA2030 audio amp.

Fig.3. Printed circuit board component layout, wiring and full-size copper foil master. The wiring to the microphone insert jack plug PL2 is shown inset below.

advantage of delaying the soldering of this device will be seen as this will allow a certain amount of tolerance in the final positioning of the device relative to the heatsink.

Once IC2 is secured to the heatsink, its leads can be soldered and trimmed in the normal way. Note that it may also be necessary to bend the leads slightly to enable it to fit the holes in the board, see Fig. 5.

Most devices are supplied with the leads already pre-formed although it should be noted that the TDA2030 is available with the leads formed for both vertical and horizontal mounting. Both types are identical but the vertical device is to be preferred as quite a lot of lead bending would be required to fit the horizontal device.

A smear of silicone grease between the heatsink and IC2's tab will help to conduct heat away from the i.c. but this was not found necessary on the prototype. What is important however is to ensure that there is a good electrical path between the tab and the negative supply p.c.b. copper track. For this reason no mica washers or any other insulation should be fitted between the tab of IC2 and the heatsink.

The heatsink is used as a negative supply connection to the chip and it must not be earthed or connected to any other part of the circuit. The pinout details of the TDA2030 are shown in Fig. 5 for reference.

The only other component worthy of individual mention is the bridge rectifier where a 2 A device is specified. A 1A device could also be used but this was not available in the author's spares box. These are available in many variants and shapes and although any of these devices will do, the board has been designed for an in-line package and so this type should be purchased if possible to avoid a lot of lead bending.

PRELIMINARY CHECKS

After careful checking of the board to ensure that there are no solder splashes between the tracks and that all the joints are sound, the speaker and mains transformer connections should be made to the board. The transformer used in the prototype had wire leads but if another type is used, then wires may need to be fitted.

Printed circuit board mounting types should be avoided as these usually lack mounting brackets and in this case the transformer will need to be mounted on a chassis or in the wooden cabinet containing the speaker. The final arrangement will depend to a large extent on circumstances and is therefore left to the individual to solve.

Care should be taken to ensure that a transformer with a centre tapped secondary (or with two secondary windings which can be connected in series) is used and although a voltage of $9 \mathrm{~V}-0 \mathrm{~V}-9 \mathrm{~V}$ is specified, a slightly higher output could also be used. It should be remembered that the output of a transformer is always
quoted as an r.m.s. value when delivering its rated current.
After rectification and smoothing the final d.c. output will be nearer the peak value (approximately 1.4 times the r.m.s. value) and as amplifier circuits of this type draw a relatively low current when no signal is present, the final supply

Fig. 6 (right).
Headphone jack plug PL3 wiring. The headphone jack socket (SK3) contacts break when the plug is inserted, disconnecting the loudspeaker LS1.
voltage could be even higher depending on the transformer used. The supply voltage should, therefore, be measured to ensure that it does not exceed the ratings of the i.c.s (i.e. plus and minus 18 V). The centre tap of the secondary must be connected to the 0 V rail (corner terminal of the p.c.b.) while the other two leads may be connected to the other two terminals either way around.

FINAL ASSEMBLY

The mains wiring should be carried out carefully and all joints well insulated to ensure that they cannot be touched inadvertently when the unit is in operation. A mains On/Off switch and a fuse should also be fitted in the live mains lead and the mains cable securely clamped to the box or cabinet using a suitable strain relief mounting bush.
The speaker will also need to be connected to the output terminals using suitable lengths of wire. If a socket for headphones is to be included, this should be arranged to disconnect the speaker when the jack plug is inserted so that a switched socket will be required (see Fig. 1 and Fig.6).
The finished p.c.b. is quite light and so no special mounting hardware is required. It should be adequately supported by the potentiometer spindle and the input jack sockets but the final details of this are left to the constructor and will depend to a large extent on the cabinet in which the p.c.b. and speaker are mounted.

FINAL TESTING

When fully assembled, check the wiring again, especially around the headphone socket and transformer primary and if all is well, connect the unit to the mains and switch on. The voltage across each of the two smoothing capacitors can be measured and this should be about 12 V d.c but no higher than 17 V .
A slight hum or hiss may be audible
from the speaker if the Volume control VR2 is turned up fully. Turn down the volume and connect a guitar which should now be heard.
The only adjustment to be made is to set the gain of the preamplifier stage (ICl) and this should be done with the volume turned up to maximum on VR2 and the guitar. Starting with preset VR1 turned fully clockwise the gain should be increased until distortion is heard when a string is played. An oscilloscope is useful here but not necessary as it is the final sound that is important and not the apparent purity of the output waveform.
If required, the headphones can be plugged in and, provided the wiring has been done correctly, this should switch off the speaker. With this "adjustment" complete, the stage act can be perfected without interference from the rest of the household. Take it away Eric . . .

wawn.labcenter.co.uk

Develop and test complete micro-controller designs without building a physical prototype. PROTEUS VSM simulates the CPU and any additional electronics used in your designs. And it does so in real time. *

- CPU models for PIC and 8051 and series micro-controllers available now. 68HC11 comming soon. More CPU models under development. See website for latest info.
- Interactive device models inciude LCD displays, RS232 terminal, universal keypad plus a range of switches, buttons, pots, LEDs, 7 segment displays and much more.
- Extensive debugging facilities including register and memory contents, breakpoints and single step modes.
- Source level debugging supported for selected development tools.
- Integrated 'make' utility - compile and simulate with one keystroke.
- Over 4000 standard SPICE models included. Fully compatible with manufacturers' SPICE models
- DLL interfaces provided for application specific models.
- Based on SPICE3F5 mixed mode circuit simulator.
- CPU and interactive device models are sold separately build up your VSM system in affordable stages
ARES Lite PCB Layout also available.

New Technology Update
 Will improvements in electrolytic capacitor technology and manufacture prove to be the demise of the tantalum? asks lan Poole.

LIKE other areas in the electronics scene. capacitor technology is moving forward apace. Capacitors are being made smaller as a result of the ever-increasing size restraints that are being placed on equipment, and in addition to this the performance is being improved.
One of the major types of capacitor is the electrolytic. It is capable of providing a very high capacitance density and as a result it is widely used where high levels of capacitance are required.
Unfortunately, all capacitors have some unwanted parasitic elements and electrolytic capacitors are no exception. One of the major unwanted effects is the equivalent series resistance or ESR. This exists because the conductive plates are not perfect conductors and there is a loss introduced by the dielectric.

Electrolytic Capacitors

Like any other type of capacitor an electrolytic has two plates. As the dielectric consists of a very thin layer of oxide on the anode plate in the capacitor it is hazardous to bring both the anode and cathode plates directly in contact with one another. To overcome this problem an electrolyte is placed between the cathode and the anode, see Fig.1. In this way a conductive path is provided whilst reducing the possibility of physical short circuits.

Fig. 1 Operational aspects of an electrolytic capacitor.
The traditional method of manufacturing electrolytic capacitors is to roll up a sandwich of the required layers and to place it into a metal can (casing). The layers consist of the anode formed from aluminium foil with its oxide layer, an absorbent spacer soaked with electrolyte, then the cathode plate and finally another spacer soaked with electrolyte, see Fig.2. The metal can is connected to the cathode and the anode connection is brought out through a seal at one end of the component.
The electrolyte soaked spacer is required to prevent abrasion, however slight, between the anode and cathode films breaking through the very thin oxide layer
on the anode and causing a short circuit. As a result this construction technique means that there is a relatively large gap between the foils in the structure. A much greater level of capacitance could be achieved if the two capacitor layers could be brought closer together.

ESR

The ESR in a capacitor reduces the performance of the component by effectively placing a resistor in series with the capacitor. It can also give rise to heat dissipation within the capacitor if it is used in applications such as power supply smoothing where the levels of current flowing in the component are relatively high. By improving the ESR of the capacitor its electrical performance can be improved in the circuit, and it can be used for higher current capability applications.
Most of the ESR is caused by the resistance of the cathode itself and arises chiefly from the electrolyte, although the foil does contribute as well. As a result any improvements in the materials that can be used for the cathode could give significant improvements in performance.

Polymer cathodes

In some new developments, conductive polymers can now be used in capacitors to overcome some of these problems. Their use in capacitor technology was originally proposed by some Japanese manufacturers where they were used as substitutes for the cathode connection.
The polymer has the advantage that it can now be chemically deposited onto the anode oxide in a fashion that will not cause abrasion that will break down the oxide layer. This is accomplished by generating a new stacked foil structure, see Fig. 3.

The foils are anodised, and then bonded to give a single structure. The bond connects all the foils together but leaves areas that are not insulated. To ensure that none of the anode areas are exposed an insulative coating is used to fill in this area.

Fig.2. Construction of a traditional aluminium electrolytic capacitor.

Next, the structure is dipped in a monomer solution. This flows between the foils and quickly polymerises to give the conductive coating. Once the solution has polymerised and dried it is dipped into a silver epoxy solution so that the cathode connection is extended over much of the polymer film. This silver epoxy is then bonded to the cathode lead frame whilst the anode lead frame is welded to the bonded area of the anode foils or plates.
The component is completed by moulding the device in a plastic epoxy. It then looks very much the same as a tantalum capacitor.

Fig.3. Construction of the new electrolytic capacitors.

Performance

Using the new techniques with the polymer film the new electrolytics show a vast improvement in the level of ESR. This is attributed to both the material change as well as the construction technique.
A typical $47 \mu \mathrm{~F} 6 \mathrm{~V}$ component shows the level of ESR falling below 0.01 milliohms with a useable frequency response extending above 10 MHz . Using standard electrolytic capacitors the frequency response was limited to operation below frequencies of 1 MHz , and usually much less.
Cost is another very important factor. The performance of the new device is such that it will enable cost reductions to be made on many boards, purely because its improved performance means that fewer capacitors will be needed in many instances.

In view of these factors it is likely that the new design of electrolytic capacitors will be appearing in the catalogues before long. Also as the same techniques can be applied to tantalum capacitors, similar performance improvements will be seen in this field as well. However, as tantalum is very expensive and supplies are not guaranteed, component manufacturers will be able to offer improved levels of performance using electrolytic capacitors, thereby reducing the reliance on tantalum.

Hews ;

 A roundup of the latest Everyday

 A roundup of the latest Everyday News from the worlid of News from the worlid of electronics

 electronics}

CYBER-TERRORISM

Operating systems and users alike are woefully remiss at maintaining adequate virus protection, reports Barry Fox.

sYMANTEC, the software company behind the Norton Citilities and AntiVirus program, warns that cyber-terrorism is the warfare of the future. The Carnegie Mellon University in Pittsburg has recorded 34,000 computer attacks this year alone, 90 per cent of them from malicious code viruses.

The best way to categorise an attack is to describe its effect, says Symantec and specialist security company, mi2g.
Piracy can result in credit card details being sucked from supposedly secure Web sites, and sold in batches of 1000 from Romania. Surrogacy is where hackers stea! someone's identity, for instance hijacking the BBC Web site for Kashmiri propaganda. Distributed Denial of Service means that Web sites like Ebay, Yahoo and CNN are flooded with spurious messages sent by hijacked computers round the world. Hazards can be an attack on a nuclear power station safety system, a power supply for an airport or the threat of publish. ing personal details of petroleum workers using false names in Nigeria.

Insider Raiding

Symantec estimates that 70 per cent of cyber attacks are made by insiders, for instance disgruntled employees; and hitech companies regularly lay off skilled workers. The Arabic version of Windows was developed in Cairo, so there is local knowledge of the code base and its weaknesses.
The new version of Windows, XP, does little to curb the spread of viruses which infect a PC when Outlook runs executable code in an arriving email. The default for XP is not to run them. "But if you click Yes when it asks whether you want to run embedded code it never asks again and goes on opening them", warns Robert Clyde, Symantec's Chief Technology Officer. "You get your streaming stock market quotes but you can also get viruses".
"Until recently the financial institutions have not shared information on attacks" says Clyde. "Each bank is its own silo".
The Wireless Ethernet standard 802.11 has already been hacked, so people can sit outside an office and eavesdrop on an office's internal wireless communications.

Viruses R Us

Anyone can be a hacker. There are now 30,000 Web sites at which would-be hackers can learn how to hack. Web site servers and any PC that remains permanently online, for instance with a broadband ADSL connection. can now expect to be scanned at least ten times a day by hackers with automatic probe software, looking for security loopholes.
Robert Clyde says that when Symantec surveyed Web sites. they found only 40 per cent had Level 7 (top level) fire wall
protection to keep out hackers. Only half the world's computers are protected against viruses. Of 200,00k PC users with anti-virus software, 48 per cent had not updated it to catch new viruses and one-third already had viruses in their PCs, but did not know it.

TETRA NOT PULSED

WE have previously reported on the suggestion that TETRA (Terrestrial Trunked Radio) signals might be hazardous to human health due to them being pulsed.
The National Radiological Protection Board (NRPB) have recently stated that measurements show that TETRA base station signals are continuous and not pulsed over time intervals that could cause power modulations at frequencies between 1 Hz and 200 Hz .
For more information browse www.nrpb.org.uk.

PHYSICS CONGRESS 2002

THE Brighton Conference Centre will host the 2002 Physics Congress from 7 to 11 April this year. We are informed that in addition to lectures for delegates, there will be public lectures and debates, plus handson physics exhibits and physics fun for all the family. There will also be a special programme of events for school children, including an astrodome and a cybercafe.
Amongst the family-orientated features, from Sunday 7th to Wednesday 10th there will be hands-on exhibits with puzzles, challenges and scientific marvels to enthuse and amuse, as Techniquest comes to Brighton.
There is a Madlab electronics workshop for children and adults who wish to learn how to use a soldering iron, and actually make and take home a working electronic circuit. You can also step into the world's largest mobile planetarium and watch a high-tech interactive show with computer graphics and NASA video clips. Furthermore, Science in a Suitcase is presented by Bob Ward and Julia Sherratt who will display "super science in simple scenarios".
It all sounds too good to miss - for more information browse http://congress.iop.org or contact the Institute of Physics, 76 Portland Place, London W1B 1NT. Tel: 020 7470 48000. Fax: 0207470 4848, Email: physics@iop.org. Web: www.iop.org.

MICROCHIP'S NEW OP.AMPS

MICROCHIP, the manufacturers of PIC microcontrollers, have announced new families of low voltage, low current op.amps having unity gain stability. The MCP602x and MCP604x families also have rail-to-rail invut and output, and are ideal for battery-powered applications.

The MCP602x devices support a voltage supply range from 5.5 V down to 2.5 V . The MCP604x voltage range is from +5.5 V down to 1.4 V and requires only a miserly 600 nA of quiescent current (IQ), which means that these devices can be used without cost stabilising circuitry. Those of you following the current Teach-In 2002 series will now appreciate how important op.amp stability is when dealing with d.c. outputs from sensors.

To support the MCP602x and MCP604x families, Microchip offer the FilterLab Active Filter Design Tool. It is available free from Microchip's web site and provides schematic filter circuit diagrams.
For more information browse www.microchlp.com.

CURIOUS how animals keep getting into the workshop - bulldog clips, crocodile clips, CATalogues, and now alligator clips with a difference! They have been introduced by Pomona Electronics and are wire-piercing clip test leads, basically for automotive testing but no doubt equally suitable for use with any insulated low-voltage leads ranging from 14 to 26 s.w.g.
Designed for use with multimeters that accept safety-shrouded banana plugs, these new test leads eliminate the need for insulation stripping and significantly reduce test time. They also attach to blade-shaped or threaded terminals, screw heads and bare wires.
Available in four model configurations to meet a variety of test requirements, the Alligator Clip Test Lead series features a variety of needle styles, including a "row of points" configuration, which minimises wire penetration and reduces the likelihood of wire breakage.

For more information of these and other test accessories, contact Pomona Electronics Europe, PO Box 1186, 5602 Eindhoven, Nederlands. Tel: $+31(0) 402678$ 150. Fax: +31 (0)40 2678 151. Web: www.pomonaelectronics.com.

SMART CARDS WITH 1MB

SHARP comment that Smart Cards are becoming increasingly powerful and that personal ID, credit, cash and phone cards and driving licenses are shrinking to Smart Card formats.

While some of these cards are still made from cardboard, more and more are becoming intelligent and already have chips to increase security and store critical data. Simple models operate by means of contacts, while the advanced ones use non-contact radio waves and induction. Traditional technologies typically offer 64 KB of memory, processor speeds of 1 to 2 MHz and data transfer rates of 9.6 (via contacts) to $106 \mathrm{Kbits} / \mathrm{sec}$ (non-contact).

Sharp say they have broken away from traditional models and now offer a powerful Smart Card system featuring a processor operating at speeds up to 24 MHz and having a 1 MB flash memory chip. Possible data transfer speeds are likely to exceed four to eight times that of old cards to take into account the increasing volumes of data to be exchanged during transactions.

For more information browse www.sharpsme.com.

LABCENTER AND IAR

LABCENTER Electronics and IAR Systems have announced collaboration on simulations for complete board designs. In a first step, IAR's UBROF debugging format will be supported by Labcenter's Proteus VSM tool to allow source level debugging of board designs featuring a PIC. AVR or HC11 microcontroller and peripherals.
Proteus simulates complete embedded systems, including the CPU and peripherals. Code compiled with any supported IAR compiler can be debugged in source code mode within the Proteus environment.
"By entering this partnership, we breakdown the barriers between software and hardware development", say IAR. Labcenter comment that "Proteus VSM is unique in combining interactive SPICE circuit simulation, animated components and detailed CPU models. Add to this a link-up with industrial strength compilers such as IAR's and you have something quite remarkable".
For more information contatt Labcenter Electronics, 53-55 Main Street, Grassington, N.Yorks BD23 5AA. Tel: 01756 753440. Fax: 01756 752857. Web: www.labcenter.co.uk.

YOU WON'T GET YOUR FINGERS B U R N T

It may surprise you but buying an Antex soldering iron costs less than you think in the long run. British made to exacting standards, they last significantly longer than imported brands. And with a wide range of thermally balanced soldering irons, you can pick up a "fixed temperature" or "in-handle" temperature model that will suit your needs perfectly.
None of which will burn a hole in your pocket.
If your hobby demands the best iron for the job but you don't want to get your fingers burnt by the cost, visit our website or your electronics retailer for the coolest models around.

Pick up an

BS2-IC
BS2-SX \square
\square BS2P/40

Parallax BASIC Stamps - still the easy way to get your project up and running!

Serial Alphanumeric and Graphic Displays, Mini-Terminals and Bezel kits

www.milinst.com

Animated Head

3-Axis Machine
Six-Legged Walkers

Robotic models for both the beginner and the advanced hobbyist

\square DMX Protocol
U/Sound Ranging
Animatronics and Specialist Interface-Control Modules

Quadravox
MP3 \& Speech Systems

Parallax
Ubicom Tool Kits

Tech-Tools
PIC \& Rom Emulators

Development Tools

INTER $A G E$
 Robert Penfold

PRODUCING A DIY MIDI ADAPTOR FOR YOUR PC

T
HE SUBJECT of suitable alternatives for the defunct TLC548IP A/D chip was covered in the previous Interface article Further experience with the TLC549IP and TLC548CP seems to indicate that either chip will work fine in the various $E P E$ circuits that were designed for the TLC548IP.

The TLC5491P is generally cheaper than the TLC548CP, and although its parameters are in some cases inferior, it is adequate for all the EPE circuits. If you are "doing your own thing" and need the highest possible conversion rate, the TLC548CP is the better choice.

Fun and Games

The subject of the PC's MIDI interface is one that crops up from time to time in correspondence from readers, and it is an aspect of the PC that is less straightforward than one might hope. As most readers are probably aware, virtually every PC soundcard has a built-in game port that also acts as a MIDl interface. An increasing percentage of PCs have the sound generator integrated with the motherboard, but the game/MIDI port is still included.
This is fine until you actually try connecting MIDI keyboards, drum machines, etc. to a PC. The obvious problem is that the standard MIDI connector is a 5 -way (180-degree) DIN socket, but XLR connectors can be used provided the equipment manufacturer makes suitable DIN to XLR adapters available.
The 15 -way D-connector used for the PC's combined game and MIDI port is clearly incompatible with standard MIDI leads. Readers sometimes request details of the ins and outs of this port so that they can make up PC MIDI leads.

Unfortunately, the lack of compatibility extends beyond the use of an inappropriate connector. The ports on modern soundcards are based on the early SoundBlaster cards, which omitted a few components from the MIDI port.

Some up-market soundcards do actually have the correct connectors and complete interfaces, but if your soundcard has a 15 -way D-connector, it is almost certainly a few components short of an interface. Consequently, wiring the port to a couple 5 -way DIN sockets is unlikely to get it working properly with a MIDI system.

DIY Adapter

Ready-made PC MIDI adapters are produced but can be difficult to obtain. There is more chance of finding one in a store that specialises in electronic music gear than at a computer shop.

It is not difficult to make your own adapter, and few parts are required. The functions of the game port's terminals, when it is used as a MIDI interface, are
shown in Fig.1. The MIDI input terminal replaces what is normally a +5 V supply pin on the game port. Similarly, the MIDI output terminal replaces what would otherwise be a ground (0 V) pin.
Connecting the output to a synthesiser, etc. is relatively easy, since MIDI does not require any opto-isolation on outputs. A simple arrangement for adding a MIDI output facility is shown in Fig.2. Only one

Fig. 1. The pin functions of the game port when it is used as a MIDI interface.
resistor is needed in addition to the connectors and screened lead. A male 15-way D-connector is needed to make the connection to the PC's MIDI port.
Probably the best type of cable for MIDI leads is a twin screened audio cable, and it is worthwhile getting a good quality type. The screen connects to a ground terminal at MIDI outputs, but it is not connected at MIDI inputs.
If the unit is built as an adapter that enables ordinary MIDI leads to be used with the PC, the DIN connector must be a socket. The connection represented by the broken line must then be included, so that the screen of the MIDI cable will be earthed at the PC. If it is built as a lead that permits the PC to be connected direct to a MIDI instrument, the DIN connector must be a plug.
The screen of the cable connects to pin 4 of the game port. There is no need to connect the screen to pin 2 of the DIN plug because this pin is not connected at MIDI inputs. Connecting the screen to earth at inputs would bypass the optoisolation.

MIDI Input

The opto-isolation is used to prevent digital noise from a device such as a computer finding its way into the audio circuits of a MIDI instrument. It has other

Fig.2. Adding a MIDI output facility. benefits, such as helping to avoid the audio "hum" that can result from earth loops.

Another important advantage is that it eliminates the risk of high voltages zapping devices when they are connected together. This can occur when using equipment that is double insulated rather than earthed, due to the high

Fig.3. Circuit diagram for the MIDI Input and Thru interfaces. IC1 is a sensitive, high speed split-Darlington opto-isolator.
voltages that can exist between the chassis of the various items in the system. Although the available current is strictly limited, the high voltages can destroy sensitive semiconductors.

A SoundBlaster style MIDI input is a straightforward logic input, and no optoisolator circuit is included. The circuit diagam of Fig. 3 puts in the missing components.
Opto-isolators are very slow by normal electronic standards, and
pin 4 of PL1. This cable should be no more than about one metre long.

Troubleshooting

A simple way of checking that the interface is working is to temporarily connect an l.e.d. across Thru socket SK2. Connect the anode (a) of the l.e.d. to pin 4 and the cathode (k) to pin 5.
With everything connected up and switched on, playing the instrument

MIDI ports therefore appear in Device Manager as an MPU-401 compatible device.
If this entry is present but there is a yellow exclamation mark against it, either the hardware on the soundcard is faulty or the device drivers have not been installed correctly. Try deleting the entry for the port and reinstalling it. Either the device drivers or the hardware is faulty if the MIDI port cannot be installed properly.
most are not suitable for use with MIDI signals. MIDI is a serial system that operates at 31,250 baud, which is well beyond the capabilities of "bog standard" opto-isolators.

The drive current is only 5 mA , so a fairly efficient opto-isolator is required. The normal choice of optocoupler is the 6 N 139 or a similar device. This is a sensitive, high speed "splitDarlington" opto-isolator in an 8 -pin dual-in-line (d.i.l.) package. Speeds of up to 300 $\mathrm{kbits} / \mathrm{s}$ are claimed for this device.

On the output side, this has a photodiode driving a common emitter output stage via a simple buffer amplifier. Note that this arrangement is not the same

Fig.4. There should be an MPU-401 entry in Device Manager if the MIDI interface is installed.
 as a Darlington pair, and that opto-isolators that use Darlington outputs stages are much to slow for this application.
Resistor R1, together with resistors at the MIDI output, limit the internal optoisolator l.e.d. current to 5 mA . Diode D1 is normally included to protect the l.e.d. against signals of the wrong polarity, but it is doubtful if it is of any real benefit.
Resistors R2 and R3 are respectively the load resistors for the common emitter output stage and the buffer amplifier. The output signal from pin 6 of IC1 is the correct polarity, and it can therefore drive the MIDI input of the game port without using any further signal processing.

Thru Port

Resistors R4, R5, and socket SK2 provide an optional Thru Port facility. This is simply an output that provides a replica of the input signal. It is common for PC MIDI software to include a Thru facility, which sends a copy of the input signal to the PC's MIDI output.
This method can be better in some circumstances, but it is useful to have a genuine Thru socket, and it requires few additional components. The circuit only requires a few milliamps of supply current, and this is obtained from the game port's supply pins.
No doubt the unit could be built as a MIDI lead with a box of tricks in the middle to handle the interfacing, but it is probably best to construct the unit as an add-on interface having sockets at the MIDI input and the Thru output. The unit is then connected to the rest of the system using standard MIDI leads.
The MIDI output socket and additional resistor can, of course, be included in the interface. PL1 is a 15 -way male D-connector at the end of a captive lead. Three-way screened cable is sufficient, with the screen carrying the ground connection to
connected to the MIDI input should result in flashes from the l.e.d. The pulses in a MIDI signal are very brief, so the flashes might not look very bright. Using a facility that produces masses of data should produce a more obvious response from the l.e.d. Pitch bend and some form of after-touch are two good ways of producing masses of MIDI data from a suitable instrument.

Installation

A lack of response when using MIDI recording and play software is more likely to be due to installation problems than a fault in the simple hardware of the interface. Having the MIDI interface hardware in place is not enough, and it must be correctly installed in Windows.
The MIDI port is often installed by default together with the other drivers for the sound system, but it sometimes has to be installed separately. The instruction manual for your PC or soundcard should make it clear if the MIDI port requires separate installation, and where appropriate there should be detailed installation instructions.
It is useful to check Device Manager for problems. First, go to the Start menu, select Settings and then Control Panel from the sub-menu. Next double-click on the System icon and then operate the Device Manager tab in the new window that opens.
Double-click on the icon for Sound, video and game controllers to expand it, and this should produce something like Fig.4. The number of entries here depends on the particular hardware in the PC, but there will usually be an entry for an MPU-401 compatible device if the MIDI interface is installed. Modern soundcards emulate the old Roland MPU-401 MIDI interface card, and the

Fig.5. Selecting the MIDI port for MIDI playback.

If there are no problems indicated in Device Manager, check that the applications software is set up correctly. For example, by default the soundcard's built-in synthesiser rather than the MIDI port is normally used to play back MIDI files.
The sequencer program will probably have a facility that permits the playback device to be altered, or the default playback device can be changed using the built-in facilities of Windows. Go to the Control Panel and double-click on the Sounds and Multimedia icon. Then operate the Audio tab in the window that appears.
Towards the bottom of this window there should be a menu where the required MIDI playback device can be selected (see Fig.5). With some soundcards the MIDI port does not have a separate entry in Device Manager, but there should always be an MPU-401 playback option here if the port is installed in Windows.
One final point worth noting is that the built-in MIDI ports of many motherboards are disabled by default. This is done to avoid wasting system resources on hardware that most users do not require. In some cases the MIDI interface can be enabled by adjusting a jumper on the motherboard, but in most cases it is enabled via the BIOS Setup program.

Constructional Project HT POWER SUPPLY ROBERT PENFOLD

Have you got the "bottle" for it?

Tthis power supply unit is primarily designed for use with battery powered valve radios that require a high tension (HT) supply of about 90 volts at a current consumption of up to 10 milliamps or so. The batteries for these receivers are now unobtainable, and they were pretty expensive when it was possible to buy them.
The solution used here is to have a d.c. to d.c. converter that steps-up the output from a 6 V battery to about 90 V . Unfortunately, a voltage step-up is inevitably accompanied by a step-down in current. The practical importance of this is that the current drain from the 6 V supply is much higher than the output current to the receiver.

With a theoretically perfect circuit there would be a fifteen-fold increase in the input current to match the fifteen-fold stepup in voltage. In practice there are significant losses in the circuit, and the input current is likely to be closer to 30 times the output current.

PRACTICAL
 PROPOSITION

Even so, 6 V at a relatively high current is a more practical proposition than 90 V at a modest power where battery operation is required. Ninety volts can be provided direct from batteries using something like ten PP3 size 9V batteries wired in series, but this is far from ideal.

Many simple valve radios only draw a few milliamps from the HT supply. This power supply, plus something like four C or D-size cells in series, are then practical as the power source. In fact, four humble AA cells are adequate with some receivers. With sets that require 10 mA or so the current drain from the 6 V supply is quite high at around 250 mA to 300 mA , and some form of rechargeable battery is then preferable.

Although primarily designed to provide an output potential of 90 V , the power supply unit has additional output potentials of 67.5 V and 120 V , which are also used with small valve radios. The maximum output current at 120 V is somewhat reduced, but currents of up to about 8 mA are available. The unit may be usable in other applications that require a high voltage at low supply currents, but it has only been tested with simple valve radios.

Although the inverter method is simple and inexpensive, it does have two or three drawbacks. One of these is that the final output voltage varies considerably with changes in loading and the input voltage.

Experience has shown that the output voltage from 90 V batteries was not particularly stable either. The output potential actually varied from about 100 V when new down to about 70 V when nearing exhaustion. While not desirable, a lack of accuracy in the output voltage of the supply is not too important either.

Another problem is the difficulty involved in obtaining several switched output voltages. In the absence of a transformer having several step-up ratios, some extra electronics is needed in order to provide the extra voltages. The third problem is a lack of efficiency. Simple inverter units tend to consume high input currents even if only a modest output current is being drawn.

HOW IT WORKS

The circuit finally evolved is based on a simple inverter, but it also uses switchmode power supply techniques to control the output voltage and give improved efficiency with low output currents. The block diagram for the HT Power Supply is shown

Fig. 1. Block diagram for the HT Power Supply.
in Fig.1. The triangular oscillator and the comparator form a standard pulse width modulator, and the waveforms of Fig. 2 help to explain the way in which this functions.

The pairs of waveforms represent the output signals of the triangular oscillator and voltage comparator stages. The triangular signal is fed to the non-inverting input of the comparator and a control voltage is applied to the inverting input. In Fig. 2 the line through each triangular waveform represents the control voltage. The output from the comparator goes high when the triangular waveform is at the higher potential, and low when the control voltage is at the greater potential.

Fig.2. Example pulse width modulation (p.w.m.) waveforms.

Initially the control voltage is set quite low, giving an output from the comparator similar to the one in the top pair of waveforms. The comparator drives the primary winding of the step-up transformer via an output stage that can provide the relatively high drive currents involved here.

A rectifier and smoothing circuit processes the a.c. output signal of the transformer to produce a high voltage d.c. supply. Some of this voltage is fed back to the inverting input of the comparator, and
as the output potential rises the voltage at the inverting input increases slightly as well. At first this has little effect, with a squarewave output being produced, as in the middle pair of waveforms in Fig.2. As the output voltage increases further the output signal from the comparator becomes a train of narrow pulses, as in the bottom pair of waveforms in Fig.2.
This gives a form of negative feedback that tends to stabilise the output voltage at a certain level. With the output only lightly loaded the output waveform becomes a series of very narrow pulses that result in little power being fed to the transformer At times the voltage at the inverting input of the comparator may even go above the peak potential in the triangular signal, resulting in the signal to the transformer being cut off.
With the output loaded more heavily the output voltage reduces, but the power fed to the transformer is then increased. This resists the fall in output voltage, keeping the voltage drop to a minimum. The regulation efficiency of this set-up is not very good, but as pointed out previously, highly stable output potentials are not really needed in this application.
A big advantage of this system is that it gives good efficiency at all output currents. With low output currents only brief pulses are fed to the transformer, giving a low average input current. As the load on the output is increased, the length of the pulses increases as well, giving a higher average input current. The input current therefore rises and falls in proportion to changes in the loading, avoiding large amounts of wasted power at low output currents.
Another advantage is that the output voltage is easily controlled. The feedback limits the maximum output voltage, and the more feedback that is used, the lower the maximum output voltage that can be achieved. With lower output voltages shorter pulses are needed to maintain the output potential at a given load current, and good efficiency is still obtained.

CIRCUIT OPERATION

The full circuit diagram for the HT Power Supply appears in Fig.3. Dual
op.amp IC1 is used in the triangular oscillator, which is a conventional design having ICla as the integrator and IClb as the trigger circuit. A squarewave signal is produced at the output of IClb and a triangular signal is available from ICla, but it is only the triangular signal that is needed in this application.
The transformer provides optimum results at a low frequency of around 50 Hz to 70 Hz . Timing components resistor R5 and capacitor C 4 set the output frequency at about 65 Hz .
A PMOS operational amplifier, IC2, is used here as the voltage comparator. The output of ICla connects direct to the noninverting input, pin 3, while resistors R6 and R7 provide an initial bias voltage to the inverting input at pin 2.
The output of IC2 drives the primary winding of step-up transformer Tl via common emitter switching transistor TR1.
The drive current to TR1 is less than a milliamp, but this is a power Darlington device that has a very high current gain. It is, therefore, able to supply a current of a few hundred milliamps to the primary winding of Tl (remember secondary equals primary here - see earlier note).
The secondary (primary) winding of Tl drives a full-wave bridge rectifier (diodes D1 to D4) and smoothing capacitor C5. Further smoothing is required, and resistor R10 plus the series capacitance of C7 and C8 provide this. A smoothing capacitor having a value of $220 \mu \mathrm{~F}$ and a maximum voltage rating of 200 V is needed, but a suitable component does not seem to be available. Instead, two $470 \mu \mathrm{~F} \quad 100 \mathrm{~V}$ capacitors wired in series are used. These provide a capacitance of $235 \mu \mathrm{~F}$ and a maximum working voltage approaching 200 V . Resistors R11 and R12 ensure that capacitors C7 and C8 more or less evenly share the output voltage.
Negative feedback is provided by way of diode D5, resistor R9, and whichever of the three preset potentiometers (resistors), VR1 to VR3, is selected using switch S1. The presets control the amount of negative feedback and they are adjusted to produce the required output voltages.

Fig.3. Complete circuit diagram for the HT Power Supply for use with battery powered valve radios.

CONSTRUCTION

The HT Power Supply is built on a piece of stripboard and the component layout, hard wiring and details of breaks required in the copper strips on the underside of the board are shown in Fig.4. The board has 36 holes by 39 copper strips, and it can conveniently be cut from one of the standard size boards that have 39 copper strips.

Stripboard is easily cut using a hacksaw or junior hacksaw, but use no more than moderate pressure since some stripboards are quite brittle. The three mounting holes are 3 mm dia. and will accept metric M2.5 mounting bolts.
The breaks in the copper strips can be made using a special tool or a twist drill bit of about 5 mm dia. Make sure that the

strips are cut across their full widths, but do not cut so deeply into the board that it is weakened.

Next, the link-wires and components can be added to the board. The CA31.40E used for IC2 has a PMOS input stage and therefore requires the standard anti-static handling precautions. The most important of these is to fit it on the board via a holder. The LM358N used for ICl is not vulnerable to static charges but it is also advisable to use a holder for this device.
Do not fit IC2 until the board and all the hard wiring has been completed, and try to touch the pins as little as possible. Keep this component away from any likely sources of static electricity once it has been removed from the anti-static packaging.
The link-wires are made from 24s.w.g. $(0.56 \mathrm{~mm})$ tinned copper wire. Some of the link-wires are quite long and should be insulated with pieces of sleeving to ensure that there are no accidental short circuits. Transistor TR1 is a power device, but in this circuit it does not dissipate much power, and no heatsink is required.
Capacitor C4 should be a type having 5 mm ($0 \cdot 2$-inch) lead spacing, and it should then fit easily into this layout. Capacitor C5 must have a working voltage of 200 V
or more. Unfortunately, you are not exactly "spoilt for choice" with high voltage electrolytic capacitors, and it will probably be necessary to use a component having a much higher voltage rating of 350 V or 450 V .
This component will probably be quite large, but the component layout has been designed to accommodate a large axial lead capacitor. A radial lead capacitor will probably not fit easily into this layout. Make quite sure that electrolytic capacitors C2 C5, C7 and C8 are all fitted into the board with their correct polarity. Mistakes here could cause costly damage and could even be dangerous.

BOXING UP

The prototype is housed in a slightly oversized instrument case, and a medium size case or one of the larger metal or plastic boxes is adequate to accommodate everything. It is assumed here that the 6 V battery will be a large external type. If the unit is powered from internal batteries a suitably large case will be needed, and a suitable on/off toggle switch must be added into the positive batiery lead. Sockets SK 1 and SK2 will then be unnecessary

Interwiring from the circuit board to the front panel mounted components and the "step-up" transformer.

Fig.4. Stripboard topside component layout, interwiring and details of underside copper track breaks.

There is no sensitive wiring so the layout of the unit is not critical. The circuit board is mounted on the base panel of the case using M2.5 fixings, which should include spacers about 6 mm or more in length. This is especially important if a metal case is used, as a gap of at least a few millimetres is then needed between the high voltage connections on the underside of the board and the case.

Transformer Tl can be a type rated at $3 \mathrm{~V}-0 \mathrm{~V}-3 \mathrm{~V}$ at 100 mA if output currents of no more than about two or three milliamps are required. The centre tap $(0 \mathrm{~V})$ is ignored and the input signal is applied to the two 3 V leads.

For higher output currents a transformer having twin $6 \mathrm{~V} \quad 500 \mathrm{~mA}$ windings is required. In order to obtain the highest possible output current at 120 V the two windings can be used in parallel. In other words, wire the two 0 V tags together and also connect the two 6 V tags together. For most purposes though, only one of the windings is needed and the other one can be left unconnected.

Terminal posts are used as for the input and output sockets on the prototype. These can be connected to bare wires and they will also accept 4 mm plugs. However, any sockets that are appropriate for a power supply can be used.

Switch S1 is a 12 -way single-pole rotary switch having an adjustable end-stop, which is set for 3-way operation in this case. Alternatively, a 3-way 4-pole switch can be used, with three sections of the switch being left unused.

With everything fitted in the case the small amount of hard wiring is added. This wiring is also included in Fig.4. The unit should then be given a thorough check for errors prior to testing.

ADJUSTMENTS

A multimeter is needed in order to set the correct output voltages, but even the cheapest of digital or analogue instruments will suffice. The multimeter is connected across sockets SK3 and SK4, and should be set to a suitably high voltage range, such as the 199.9 V range on a

Completed unit showing positioning of components and circuit board inside the metal instrument case.
digital type. Initially all three presets (VR1 to VR3) should be set for minimum output voltage, or fully counter-clockwise in other words.

After a final check of the wiring connect the 6 V battery to sockets SK1 and SK2, being careful to get the polarity correct. The voltage indicated by the multimeter should build fairly rapidly to around 60 V . If it does not, disconnect the battery immediately and thoroughly check the wiring. etc. for errors.

If all is well the presets can be set for the correct voltages. The loaded output voltages will be significantly different to the unloaded voltages, especially when high output currents are drawn. Therefore, it is best to set each output potential with the unit powering the appropriate radio receiver. It
can take as much as a few seconds for the output voltage to fully respond to changes in the settings of the presets, so wait for the reading to stabilise after each adjustment has been made.

The prototype was set for output voltages of $67.5 \mathrm{~V}, 90 \mathrm{~V}$ and 120 V , but the presets can be set for any desired output potentials from about 60 V to 120 V . You can also have the presets set for the same output potential, but with different levels of loading, so that (say) two 90 V receivers can both be operated with the optimum supply potential.

The output voltage of the unit is not dangerously high even when set to 120 V . However, it can supply a noticeable electric shock, and the output of the unit should be treated with due respect.

MAKE IT A GIFT EVERY MONTH - AND SAVE UP TO 68p AN ISSUE

Annual subscription rates (2002):
6 Months: UK $£ 15$, Overseas $£ 18$ (standard air service), £27 (express airmail)
1 Year: UK £28.50, Overseas $£ 34.50$ (standard air service) £52 (express airmail)
2 Years: UK $\mathbf{~} 52.00$, Overseas $£ 64.00$ (standard air service) £99 (express airmall)

Tel: 01202873872 Fax: 01202874562
Email: subs ©epemag.wimborne.co.uk
Order online: www.epemag.wimborne.co.uk

To: Everyday Practical Electronics, Wimborne Publishing Lid., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

SUBSCRIPTION ORDER FORM

1 enclose payment of £........... (cheque/PO in £ sterling only),

payable to Everyday Practical Electronics

My card number is:
Please print clearty, and check that you have the rumber correc
Signature
Card Ex. Date \qquad .Switch Issue No
Subscriptions can only start with the next avallable issue. For back numbers see the Back Issues page.

Name

Address
... Post code
If you do not wish to cut your issue, send a letter or a copy of this form \square

crownhill pic basic

Write and compile your first program in under 5 minutes
Distribute your applications ROYALTY FREE
Technical Support direct from the author
Dedicated user group mailing list
Easy to navigate Windows IDE
CDROM includes software and example programs
Book Includes worked examples and projects
Supports the popular PIC micro's including Flash devices

R
 E
 AD OUT
 E-mail: editorial@epemag.wimborne.co.uk
 John Becker addressos some of the gonoral points readors have ralsed. Have you anything Intoresting to say? Drop us a lino!

WIN A DIGITAL MULTIMETER

A $31 / 2$ digit pocket-sized I.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors.

Every month we will give a Digital Multimeter to the author of the best Readout letter.

\star LETTER OF THE MONTH \star

ELECTRONIC EPE, PLUS EMPLOYMENT

Dear EPE,
Reading your magazine and letters prompts me to write. This year I have purchased two electronic subscriptions to magazines, one for EPE and one for Circuit Cellar. I have also purchased EPE back copies (electronically) and EPE CD-ROMS. The service provides an immediate response for which I thank you.

The reason for purchasing electronically is simple - firstly the cost is much lower than obtaining the written copy, secondly being in Singapore 1 do not have to wait for shipment, and thirdly the content is very suitable to further understanding and updating on the level of technology you provide. Most important, the level of service is high with the response we order, pay by credit/debit card, and either download or within 10 days receive the CD.

Having brand names etc. does not sell in this field. For example, although I am interested in programming, I do not buy Microsoft magazines as the articles are not relevant.

I also notice the increased mailage from people regarding electronics employment. Having lived in Asia for nearly 40 years (1 am from UK coming over here initially at 19 during the Indonesian confronsi) and having worked for British, Danish and German owned companies, plus my own small business, my advice to all is simple - nobody has the right to work, only the opportunity remember even human rights activist groups are also being funded and staff is paid (employed).

Business has only one mission - to make money i.e. shareholders expect a retum - all other objectives, tasks etc. are orientated to this - if staffing costs 10% of product any drop in product (e.g. from 100% to 80% means quite simply reduction of staffing costs by 20%. For some firms this may mean pay cuts by 10% to 20%, for others to trim staff by this amount plus possible pay cuts for remainder.

Back to EPE - in the March ' 01 issue, the article under Interface on ADC mentioned the availability of Visual Basic software. However having checked this out I cannot find it. Can you please advise the location. Also, in the electronic download for November, I could not find the 16 -page supplement for PIC Toolkit TK3 - can you advise?
Once again I would like to thank you for a good Technology magazine.

William Rance, Singapore, via email
Thanks William for your appreciation, and for the observations on what (regrettably?) are the commercial facts of life.

Visual Basic as such is not available from us, it needs to be bought through normal software supply outlets. However, the program routines written by Robert Penfold for his Interface articles are available either on disk (Interface Disk 1) from the Editorial office (a small handling charge applies - see PCB Service page of any issue), or as free downloads via our ftp site (look for folder named Interface).

The TK3 supplement is available electronically (and free) via our Online site, browse the Library.

ONLINE AND INTERFACING

Dear EPE,

Thank you for your compact Online editions. Compared to a US mag, weighing in at between 16 and 20 Mbytes, EPE has always been between 4 and 5 Mbytes. I have learnt a lot from Robert Penfold's Interface pages, which are short and sweet, to the point and with valuable information. I find the examples are always adaptable so that I can implement the concepts to suit my needs.

I would greatly appreciate an article or tutorial series by Robert Penfold and/or John Becker dealing with the basics, not tangled in a huge project, on interfacing VB6 to various PIC devices (i.e. how would I implement setting a number on a VB6 screen and then send it through to the PIC using RS232 standards. This could be used in the same way as a keypad connected directly to a PIC port, but VB6 gives a better user interface for certain applications.

I am also interested in motion control (PID) and would like to see a tutorial or practical article on using the PWM within a PIC16Fxxx for servo control of a motor.

Daryn Smith, Port Elizabeth, South Africa, via email

Yes, Daryn, we know that our electronic editions are good value (as are the paper editions, of course!)

To do a PC-PIC RS232 interface would cer tainly be possible and perhaps Robert or I might one day do one if other readers tell us they'd find it useful. PID (Proportional plus Integral plus Derivative) devices, though, are unlikely to find wide readership appeal and are probably not something that we shall cover (although the subject has been covered in the Supplements of our sister publication Modern Electronics Manual email us if you'd like more information on MEM. The printed Base Manual is no longer available but we are working on a CD-ROM version).

TK3 AND 640×480

Dear EPE,
I am referring to the way that the right hand side and bottom of the main title screen is hidden (only half of the boxes can be seen).

1 am glad to see PIC Polywhatsit (Dec '01). I just happened to see your Oct 1989 article on the same subject as I was going through my books recently, while looking for some info.

Mike MacLeod, Mossel Bay, South Africa, via the Net

Most screens now have multiple display size options available via the Control Panel, as I discuss in the original text. Older screens like your 640×480 can never show the full TK3 screen. but all the essential data is still visible.

Glad you appreciate PolyW!

PCLATH

Dear EPE,
I suggest that you may want to disseminate the issues around PCLATH that were recently discussed on your Chat Zone. They could have a profound effect on program operation. If anyone plans to use more than the first 2 K of program memory in, say, the now ubiquitous PIC16F877, then they must understand the implications of setting the upper five bits in the program counter

The "call" and "goto" instructions only set the lower eight bits of the program counter. If such an instruction is called from the first 2 K of program memory to a label in the second 2 K , then the program will not work correctly as it will set the program counter to the label address, assuming its upper byte is still zero. The best outcome is that the program will appear to stop, and that will be obvious to the user. The worst outcome is that the program will do something that is plausible but incorrect, and the user will not notice.

The remedy is to set the upper byte of the label address into PCLATH prior to executing the "call" or "goto", and all will be well. The "HIGH" operator in MPASM may be used to do this during assembly, as given almost as a "throw-away" line in the Microchip Mid-Range manual. In the absence of the "HIGH" operator I have been trying to think how this might be done automatically, and it goes something like this:

1. Assemble the code as if the upper byte problem does not exist.
2. Parse the listing and identify where program bank/page boundaries are crossed by "call" or "goto" instructions. For each such instance add code to set PCLATH (two instructions)
3. Assemble the code again, potentially with a new lot of label addresses.
4. Parse the listing and identify if any new unsatisfied boundary crossing problems arose and check whether previously-set PCLATH instructions are now invalid. If yes, correct the errors and go back to step 3 ; if no, exit.

Hopefully this process would converge!
A safer alternative is to always include the two PCLATH-setting instructions, whether they are needed or not, and set them correctly from the listing after assembly. This is implied by the Microchip Mid-Range manual in that one of the two instructions is "MOVLW HIGH (address of destination label)" and the second is "MOVWF PCLATH". For safety's sake, they should always be included. Without the benefit of the "HIGH" operator, of course, the user makes the necessary changes after assembly, then re-assembles once only.

A compromise is to (mentally) use "near" and "far" "call" and "goto" instructions. For example, a delay loop would use a "near" "goto", that is, without the two PCLATH instructions, always checking that the whole of the delay function is within a given page/bank Of course, adding two instructions changes the value of the delay!

John Waller, via email
Since receiving John's email I have been in considerable contact with him. As a result he has agreed to write a feature aricle on PCLATH in more depth. He has also been "field-testing" my PCLATH upgrades to TK3 to which I refer in my reply to Alan Raistrick (see next page).

A SENSE OF EXCELLENCE

Dear EPE.
I think the current Teach-In 2002 series on sensors is an excellent idea for a tutorial series and I look forward to working through the course. Having played with the Pico ADC-40, I couldn't get it to playback a signal in real time once it has been recorded (e.g. showing a voltage creep up to a threshold level then back down again). This would be useful for demonstration purposes. Do you know if this is possible?

Brett Lowery, via email
Alan Winstanley. one of the three co-authors of TI responded to Brett:

Many thanks for your encouraging comments about Teach-ln 2002.
I don't think the Picoscope can automatically play back real-time data in graphical form perse. You have an option to monitor the waveform as a traditional CRO or as a chart recorder during the display mode. Click F5 in the Picoscope, then cheek Slow Sampling settings to choose
However. you can use PicoLog to capture data which can be exported into a spreadsheet. PicoLog Player will also open up a saved session for you to view as a waveform after the event. but you have to advance the waveform manually using the mouse. I think I'm right in saving it won't play back on its own.
Use PicoLog Recorder to capture data. then File/Sare As a .PLW file. Then in PicoLog Player. go File/Open and open the data file. Still in PicoLog Player. click the little bution on the right (a red zig-zag graph) to open the Graphical Display option. Click the button on the right, a little black Tick (options) - then choose "Scroll" for the time axis units. After which you can use the Forward/Backward arrows in the player comtrols to advance the waveform $1 / 4$ of the display each click
Not quite what you're looking for but it may be of he! p.

Instead of clicking that Graph button (red zugzag), you can also click the button to its right. which opens a simple table of data. You can copy and paste this into Excel to make your own graphs.

Alan Winstanley

TUTORIALS AND TK3

Dear EPE.

1 am slightly confused about the relationship between the PICtutor and PIC Toolkit MkI/2/3 boards available. I am new to PICs and would like to use John Becker's tutorial CD-ROM to make a start in understanding them. The PlCtutor Hardware (deluxe) is priced at $£ 99+$ VAT from Wimborne. Magenta seem to do a similar PIC Tutor board for about $£ 75$ (incl. VAT). Is there any major difference in functionality, or is it just price competition?

I like the look of the new PIC Toolkit Mk3. It appears to be inuch more versatile than the PIChtor hardware, and has a better interface to the Toolkit TK3. Is this board appropriate for use with the P/Chtror CD-ROM. albeit with fewer l.e.d.s and no l.e.d. 7 -segment display? This board. and the TK3 software, seem to be a much better option in the long run. In other words, what problems can I expect if 1 purchase the PIChtor CI)-ROM and the Toolkit M133/TK3 software and board?

David Brown, CEng MIEE,
via email
Thanks for you comments David. PICtutur is a board through which you experiment with my Tutorial exercises on the CD-ROM. It is not intended for use with Toolkit software. The Toolkits (of which only Mk3/TK3 is recommended now), are programming hoards for use by more experienced constmuctors. The Magenta board is their version of the original PIC Tutorial board published in EPE Mar-May '98. It is not an alternative to the PICtutor board.

TK3 AND CODE PROTECTION

Dear EPE.
Whilst the Toolkit TK3 assembler can have Config data included in its source (ASM) code it cannot have EEPROM data included in it. Ok, no problem, send it to the PIC separately. MPASM, however, can produce HEX files containing Config and EEPROM data, and the Send Hex button of TK3 can cope with this. But there is a problem if code protection is set in the HEX file.
During assembly MPASM sorts the HEX file into the following order:
Program code ($\$ 0000-\$ 1 \mathrm{FFF}$)
ID (\$20(K). \$2003)
Config (\$2() 7)
EEPROM (\$2100-\$21FF)
You will notice that it is sorted into ascending order of addresses. Program code is sent first. then ID (if specified), then Config, and herein lies the problem. The code protection being set instantly prevents any further programming, so if the HEX file includes EEPROM data, that data cannot be programmed.

A work-around is to change the source or HEX file to unprotected code then manually set code protection after programming using the Send/Read Config data button.

Peter Hemsley, via email
Thanks for the observations, Peter - you are a gold-mine of useful PIC info. Readers, there are several of Peter's helpfil program routines on our fip site in the PIC Tricks folder.
Sometime I may well give TK3 the ability to handle data statements intended for the Data EEPROM. Such a facility would have been useful when developing my PIC Magick Musick (Jan '02), allowing "tunes" to be imported as INC files during assembly. Using the Send Message option, however, was quite satisfuctor:

PICS WELL ARMED

Dear EPE.

Toolkit TK3 (Oct-Nov '01) looks an extremely useful piece of programming. A great deal of work and thought has obviously gone into it. I'll bet you got through some stock of coffee on the late nights sorting out the problems. It is very brave of you to put your code available for us all to look at.
Many thanks as well for the two Microchip CDs with October ' 01 issue. In spite of being an electronic subscriber to $E P E!$ actually bought a paper copy to get the CDs. I know it is all available on their website, but the time I've spent finding things on the CDs would have cost an arm and a leg on the lnternet.

Alan S. Raistrick, via email

TK3 actually became a hobby for me for many months and I enjoved adding the various facilities. Since publication l've been adding more still, hasically to improve the ease of what I do with it, but which I shall release to you all in due course. One thing in particular l've added is to extend TK3's ability to use PCLATH more effectivel:

The current version does not accept program addresses in excess of $2 K$, a matter I did not appreciate until trving to integrate two tables in excess of $I(O O()$ commands apiece into a PIC World Clock graphics I.c.d. design I'm working on.

And yes, coffee and late nights are frequently in use when writing complex software!

We felt extremely pleased that Microchip asked us to include their CD-ROMs with Oct '01. As you say, downloading such a wealth of material is costly and time consuming. Even thorgh Microchip periodically update their CDs to include new devices, the essential information remains the same and is of long term benefit.

In practically all cases we make our own software freely available in the belief that people can learn about programming by studying the code.

KIRLIAN CAMERA

Dear EPE.

1 am currently engaged on a Lakhovsky Multiple Wave Oscillator project. This consists of three separate sections, a normal PSU. a high voltage driver using a car ignition coil and a Tesla coil driving a pair of antenna. Over the last 30 years there have been many circuits, parts of which can be used but all have one or more unobtainable components. You may not believe this but a 60$)^{\circ}$ circuit used a Ford model T ignition coil, and l obtained a similar antique version.

I have built the Tesla coil after much difficulty in getting the gauge of wire and lists of American equivalents of Imperial s.w.g. I am continuing with the back end of a Kirlian Camera design from PE May 1989. (This was a delightful article, although I never built it.) Can you let me know where I might obtain a toroidal centre tap mains transformer $25 \mathrm{~V}+25 \mathrm{~V}$ 1.6A (ILP Electronics 3X016).

Your Special Supplement on The End to All Diseases (Apr '01) was of great interest as this is the same area that Lokhovsky was working on.

Mike Walker,
by email
Your Kirlian project seems fascinating, Mike. One day I migin dabble in such myself. In fact I was working with PE when the ' 89 rircuit was published and became intrigued with the idea as a result.

ILP Transformers still exist - email: ilp@btinternet.com or phone 01233750481.

CHEATS AGAIN

Dear EPE,
I am pleased to find that some teaders are making use of my math routines, as Gerard Galvin is (Cheats Shifted. Readout Dec '01). I also see that Gerard realised that binary division uses the same technique as the decimal long division you were taught at school, it reatly is that simple. The same also applies to binary multiplication.

Going by the book is not always best. For instance, the subtraction method would be better for small numbers as only a few iterations are required. Gavin states that his routine takes 798 cycles to execute. so I spent ten minutes modifying my binary-to-decimal routine to 10 bits. Although not optimised it executes in 480 cycles, which is a saving of some 300 cycles, and the code is probably a lot smaller too. John says he'll put it on the PIC Tricks disk/folder.

Peter Hemsley, via email

As indeed / have Peter. Thanks.

APPRECIABLE SKILLS

Dear EPE,
In the December issue is an email letter from Pat Walton in response to my earlier comments on skill shortages. Would you please forward to him my appreciation of his comments and perhaps also in your editorial make a plea for a response to overseas readers to express their views on the subject.

My local colleges tell me that when they try to run courses on technical subjects they get almost no entrants. I am advised that they cannot get sufficient enrolees to run courses on such as PLCs, for instance. Even at a local university they only offer electronics with another subject e.g. electronics and music (?) which 1 find a strange combination!

Jim of Derby,
via email
The question, then Jim, is why pupils at school are not being encouraged to think about pursioing electronics as a higher education subject and so subsequently enrol for appropriate college/university courses?

So what is the experience of our overseas readers regarding such matters?

Constructional Project PIC SPECTRUM ANALYSER

JOHN BECKER

Graphically displays frequency content of any waveform, using sophisticated, but automatic, mathematical analysis routines.

ASPECTRUM analyser is a sophisticated workshop tool that allows you to analyse a waveform of any shape and establish which frequencies it contains and at which relative amplitudes.
The design presented here analyses input signals up to about 50 kHz and displays frequency content to around 400 kHz . A signal interface board is controlled by a PIC microcontroller and outputs digitised data to a PC-compatible computer which analyses the data and displays it graphically on its VDU.
Such displays can assist in improving many types of electronic hardware design.

HARMONICS

By its nature and definition, a "pure" sinewave is comprised only of a single frequency. Other waveforms, although seemingly simple in appearance, are actually comprised of a whole variety of frequencies at different amplitudes. A frequency counter may show, for example, that a sinewave and a square wave are both occurring at the same given number of cycles per second, but it is the fundamental frequency of the waveforms to which the counter is responding. The counter ignores
the numerous minor frequencies implicit in a square wave.
In non-sinusoidal waveforms, frequencies that occur in addition to the fundamental are known as harmonics. A pure sinewave has no harmonic frequencies. In other simple waveforms, the harmonics and their frequency distribution are directly related to the shape of the waveform. They are always at a higher frequency than the fundamental.
Harmonics are most abundant in square waves, non-existent in pure sinewaves (which are not sinewaves if they contain harmonics!) and progressively less abundant as a square wave becomes increasing filtered to become sinusoidal. Waveforms such as triangles, ramps and pulses all contain varying quantities of harmonics.
Complex waveforms, such as occur in speech and orchestral music for example, not only have specific harmonic contents at a given moment in time, but also vary their content across time. This can result in harmonics being created at frequencies lower than the various fundamentals.

SPECTRAL DISPLAY

The aim of a spectrum analyser is to

Fig.1. Spectral analysis of a poorly shaped sinewave.
analyse the "spectrum" of the harmonic frequencies occurring in waveforms, simple or complex, and display the contents in various graphical forms. With the abundance of computers, the most convenient form of display is via their screens.
Armed with such a display, and possibly a screen dump of it to a printer, the frequency content of any signal can be assessed. This allows, for instance, a designer to modify the design of an audio circuit, or perhaps the settings of a signal generator, so that the desired response can be tailored.

ANALYSIS TECHNIQUES

So far as is known, there are three ways in which frequency (spectrum) analysis can be performed. One is to use a bank of numerous filters, each responding to a different frequency. Another is to repeatedly feed a recorded signal through a variable filter whose narrow passband is swept across the full spectral range. Such techniques can achieve incredibly accurate results. They are, though, complex and expensive to build.

The third option, as used here, is to analyse waveforms mathematically once they have been sampled. There is a drawback, however, to analysing waveforms in this way compared to using filtering techniques.
Sampled waveforms consist of discrete data values taken at separate instants in time. As such, the sampling process itself introduces its own harmonics. These can be ignored when the input signal consists of frequencies well below the sampling frequency.
As the two become closer, though, the accuracy of analysis becomes less reliable. Although harmonic data will be displayed, it will become increasingly influenced by the sampling rate.
While the unit described here will accept input signals in excess of 50 kHz , the analysis should be regarded as being more accurate for signals within the audio range.

FOURIER ANALYSIS

The theory of frequency analysis through mathematical techniques goes back to the early 1800 's, although it took modern computing to come along to really make it a practical proposition.
French mathematician Jean-Babtiste Joseph Fourier (1768-1830) was the man
who originated the idea, although variants of his technique have since evolved.

Fourier realised that a waveform could be analysed or broken down into component sinusoidal (sine or cosine) waves. Similarly. any waveform could be generated by combining selected quantities and amplitudes of these components. His technique is widely known as Fast Fourrier Transform, FFT

EXAMPLE WAVEFORMS

In Fig. 2 is a shown a "screen dump" of the spectral graph for a sinewave generated by a computer and analysed by the Spectrum Analyser software. It shows a large single peak at the left. Its position horizontally shows that it is placed fairly low in the audio spectrum. In this instance, the display has not been related to any scale

Fig.2. Analysis display for a pure sinewave.

The screen dump in Fig.1, though, shows the "real-time" analysis of an impure sinewave generated by a low-quality signal generator that has seen better days! Not only is the signal not truly sinusoidal. but it also has noise superimposed on it.

The signal frequency is nominally about 6 kHz (main peak), but a very distinct secondary peak is seen at about 181 Hz . reflecting the waveform's non-purity. There are also minor peaks across the range and most of these are associated with the signal's noise content, although at least one, at about 35 kHz , could well be caused by the waveform. Had the signal been truly sinusoidal, only the lefthand peak would have been shown, as in Fig.2.

In Fig. 3 is shown the analysis graph (on a broader display scale) for a square wave whose fundamental period is similar to

Fig.3. Harmonics contained in an analysed square wave.
that for the near-sinewave in Fig.1, but look at the harmonics now shown!

The fundamental is shown to the far left, while the harmonics extend across the full range, steadily decreasing in amplitude. This illustrates the nature of harmonics, those closest to the fundamental frequency have the greatest amplitude. Those furthest away have the least.

As commented earlier, some of the harmonics will have been created by the sampling process itself, but most are due to the nature of square waves. Note also that the upper window shows how the sampling process has resulted in the edges of the square wave deviating slightly from the vertical.

The graph in Fig. 4 shows a softwareamplified display of the same analysis peaks. Those to the far left have been clipped to keep them within the bounds of the screen window

Each harmonic has a direct relationship to the frequency of the fundamental and to other harmonics to either side of it. The reasoning is mathematical, though, and will not be discussed

Fig.4. Amplified display of square wave harmonics.

HARDWARE INTERFACES

The software described later has been designed principally for use with the PIC Spectrum Analyser hardware presented here. However, by intention, it can also be interfaced to the PIC Dual-Chan Virtual

Scope (P-VScope) - published in Oct ${ }^{\circ}(0)-$ without any modification to that design, although with a much lower frequency range.

As usual with many of the author's designs that interface external frequencies to a computer, the principle behind the PIC Spectrum Analyser hardware is that sampling is done at the fastest possible rate. The hardware temporarily stores it in a buffer memory, and signals to the PC when the buffer is full, in this case, after 32 kilobytes have been sampled.

On receipt of a signal from the interface, the PC extracts the data byte by byte, and stores it in its own memory When the full block has been received. the PC signals to the interface to start taking the next batch of samples. The PC then performs its analysis and displays the results on screen. The overall maximum rate of processing depends on the speed of the PC.

ANALOGUE BUFFER

The circuit diagram in Fig. 5 is for the simple analogue signal pre-conditioning "front-end" that is used prior to the sampling circuit. It comprises a single op.amp buffer, ICla, which has two levels of gain, set by switch SI between $\times 1$ and $\times 10$. Switch $S 2$ allows the signal to be a.c. or d.c. coupled, although in most instances only a.c. coupling will find significant use. The post-processed signal is output to the ADC's input (IC4. pin 8 in Fig.6) as a d.c. level.

Using a TL082 op.amp, as shown, the maximum output signal level obtainable is 3V peak-to-peak, after which clipping occurs. Other op.amps having rail-to-rail output swings could be used instead. The input to ADC pin 8 must always lie in the range 0 V to +5 V . DO NOT attempt to feed external signals that are outside this range directly into the ADC input. Note that the "scope" display in the upper area of the screen is also limited to about $3 \mathrm{~V} \mathrm{pk-pk}$ maximum

In a quiescent (no signal) a.c. state, the d.c. output level is approximately 2.5 V , as set by the potential divider formed by resistors R5 and R6, and smoothed by capacitor C6.

Fig.5. Circuit diagram for analogue signal pre-conditioning "front-end".

SAMPLING CIRCUIT

The circuit diagram for the signal sampling controller section is shown in Fig.6. The PIC16F877-20 microcontroller, notated as IC3 and running at 20 MHz , is in charge of the process. Its first task is to control the analogue-to-digital converter (ADC) IC4. The PIC's own internal ADC is not fast enough for use with this design.

The external ADC receives analogue audio signals at its Vin pin. The PIC repeatedly sends conversion pulses from its RAI pin to IC4's CLK pin. The effective sampling rate is approxinately 100 kHz .

Shortly after each CLK pulse. allowing a suitable conversion time to suit the 40 MHz ADC, the PIC sets the ADC's output enable pin ($\overline{\mathrm{OE}}$) low. In response, the ADC presents the converted data in 8 -bit binary
format to its D0-D7 outputs. These outputs connect to the D0-D7 inputs of the 32 kilobyte SRAM (static random access memory), IC5.

The memory's read/write input/output function pins WR and $O E$ are controlled by PIC pins RA4 and RA5. RA4 is biased via resistor R 7 to the +5 V line as it has an open-collector output.

To lach data into the memory, $\overline{\mathrm{WR}}$ is taken low while $\overline{\mathrm{OE}}$ remains high. The PIC then increments an internal 2-byte counter and outputs its value via Port B and Port C to the memory's address pins A0-A14. The memory is now ready to accept the next data byte at this updated address.

When the counter has reached its maximum and Port C pin RC7 goes high, the system now goes into readback mode in which the ADC is inhibited and data is
output from the memory back to the PIC and then to the PC, via parallel printer port connector SK3.

Via its BL'SY line connection, the PC responds to RC7 and starts issuing data retrieval commands, via its DA0 to DA3 data lines, to the PIC. In response, the PIC steps the memory through each of its addresses. retrieving bytes as it does so.

Each byte is output as two nibbles (four bits) to the PC via lines RC0-RC3 and the PC's "handshake" lines Error, Select, Paper and Ack (full credit to Robert Penfold for introducing us all some years ago to using the "handshake" lines).

On receipt of each data byle, the PC stores it and signals to the PIC to send the next byte. This continues unti? all bytes have been ransferred. The process then starts again.

Fig.7. Component layout and full-size underside copper foil master track pattern for the PIC Spectrum Analyser.

POWER SUPPLY

It is intended that the unit should be powered from a d.c. source between about 7 V and 15 V , preferably from a bench power supply, although a 9 V battery could be used for a short period. IC2 (Fig.5) regulates the d.c. source down to +5 V , as suits the digital circuitry (do not exceed 5V).

Current consumption of the complete unit is quite heavy, at around 73 mA .

CONSTRUCTION

Component and track layout details for the printed circuit board (p.c.b.) are shown in Fig.7. This board if available from the EPE PCB Service, code 334.

Insert and solder the inter-track links first, using 24s.w.g. enamelled copper wire. It does not need to be insulated if you ensure that the links are moderately straight and not in danger of touching each other.

Use sockets for the d.i.l. (dual-in-line) i.c.s, but do not insert these i.c.s until the correctness of the power supply has been fully checked. Regulator IC2 must be inserted, though. Insert and solder the other components in order of size.

Check the soundness of your assembly, including the adequacy of the soldering and the correct polarity of components as appropriate.

Connect the board to a suitable d.c. power supply and ascertain that +5 V exists at strategic points around the board, referring to the circuit diagrams as necessary.

When satisfied, power down and insert the remaining i.c.s. If the PIC has not yet been programmed, you can do so now via PIC Toolkits MK2 or Mk3 (TK3) (July '98 and Oct/Nov '01 respectively) and pinheader TB1. This has its pins in the author's standard order. (Alternatively, you can buy a preprogrammed PIC - see Shop Talk.) Referring back to Fig.6, it will be seen that resistor R12 and diode D1 permit the correct use of the PIC's MCLR pin 4, both during and after programming.

A case is not used with the prototype and the choice of a suitable one if required is left to the constructor. The author connected the switches using short lengths of 18 s.w.g. enamelled copper wire.

SOFTWARE SOURCE

Software for this design is available for free download from the EPE ftp site, or on
3.5 inch disk (for which a nominal handling charge applies) from the $E P E$ Editorial office. See the EPE PCB Service page for more details.
The PIC program is supplied in three file formats, the source code (ASM written in TASM), HEX code (MPASM) and OBJ code (TASM).
Software for the PC has been written in Visual Basic 6 (VB6) and is supplied as an "executable" (EXE) file that ideally requires VB6 to be already installed. However, if you do not have VB6, you need to also copy in the contents of the "VBRunTime" folder as well.

Create a folder called SPECTRUM (or any name of your choice) and unzip all files into it, (including the above VB files if necessary) using a facility such as WINZIP (available for free download from www.winzip.com).
Ensure that you use a recent edition of WINZIP otherwise filenames might become corrupted, causing a system crash. Older versions of some unzip facilities truncate file names to eight characters plus extension. Some file names for this design are much longer.
Readers familiar with VB6 will recognise that various VB6 source code files are included with the software. Other files are included that are for demonstration purposes from within the program.

PC INTERFACING

Connect the PC's parallel printer port via a standard Centronics printer cable to the p.c.b. and switch on power.

From within the SPECTRUM folder, double-click on the SPECTRUM icon to launch the program. (The full name of the icon, which might not be shown by your PC, is SPECTRUM.EXE.) You should be greeted by a screen similar to that shown earlier in Fig.1, but without any waveforms, of course!

This is the "front page" through which the primary data analysis is done. There are other options discussed in a moment. The program has been written for use with an 800×600 format screen. There will be a slight cut-off at the righthand side of the screen for users only having a 640×480 format, but all the essential click-options are visible.

DIRECTORY ACCESS

Some prerecorded and simulation waveforms have been included with the software, and it is worthwhile familiarising yourself with what spectrum analysis displays look like in action before you run the hardware.

The files available can be listed by clicking on the green ALL button at the bottom righthand side of the screen (see Fig.8). This calls up the directory (folder) sub-window which displays all files held in the Spectrum folder. Click the button now to reveal the display (see Fig.9). The files shown in Fig. 9 are the author's and not included with the software.

Demol Analysis Display Ede Scales V Amplity Γ Oveilay Γ Expand Γ Bargaph

Fig.8. Control panels of the Spectrum Analyser main PC screen.

This directory facility is a cut down version of that used in the author's PIC Toolkit TK3 software (Nov '01) and has many useful facilities included. It is too lengthy to discuss here, but notes about it can be viewed by clicking on its blue NOTES button. In a nutshell, though, double-clicking on any file name loads it into the Spectrum's allocated memory area.

Although all files having any extension are accessible by the ALL route, in practice you will normally only require files having the following extensions:

- ESA - waveform data recorded through the PIC Spectrum Analyser and its own software.
- Y?? - waveform data recorded by the author's previously mentioned P-VScope, where ?? represents the year number.
- SJM - simulation files created by his original EPE Virtual Scope (Jan/Feb '98)

The other green directory buttons have these extensions labelled on them (see Fig.8). This allows you to be selective in which of the three main file groups you wish to search for a file.

Folder paths may be accessed in the usual Windows fashion by means of the lefthand sub-window of Fig. 9.
Double-click on one of the file names having an SJM extension. This loads the file and returns you to the main screen.
Having selected and input a file, its name is shown alongside the button through which you accessed it. Until a file is loaded, other buttons will show No File Selected alongside.
On an 800×600 screen the file sizes will also be seen to the right. This is for information only and has no practical purpose.

SIMULATION EXAMPLE

To the left of the green buttons are four small circular "radio" buttons. On clicking them a black dot appears at their centre. This causes the named file to be run through the analysis routine. If no file has been selected yet, you will be reminded by a sub-screen message.
Processing of a sectional block of file data commences immediately the radio button is clicked. The data is interpreted as a waveform in the screen's upper "scope" window. It will be seen to be "refreshed" at regular intervals. At each refresh the next block of file data is processed, until the file end has been reached, whereupon it recommences from the start.
Each data block's processing results are displayed as spectral analysis peaks in the lower "scope" window. With waveforms having SJM and Y?? extensions, the analysis is not related to any frequency scales, because the files do not hold such information that the software can use.

Files having an ESA extension, however, which are recorded by the PIC Spectrum Analyser do have

Fig.9. Folder and directory selection sub-screen. associated frequency scale markings. These are shown below the analysis window (but hidden with other extensions), see Fig.I.

The Single Plot and Run options in the Disk Path zone allow you to single-step through waveform blocks, or run them continuously. A blue bargraph displays how far through the file data you have progressed.

LIVE ANAL YSIS

When you have viewed the analysis displays for several different files, turn your attention back to your completed board assembly.

Connect a signal generator into its input and set the signal amplitude output for somewhere between about IV and 3 V peak-to-peak, with the op.amp's gain switch S1 set to $\times 1$ and the coupling switch S2 to a.c.
Above the Disk Path zone are two other zones, marked P-Spectrum and P-VScope respectively. The latter should be empty of control options, with the message Not Selected shown, but the P-Spectrum zone should have three radio buttons visible (the default option when the program is first run).

The "Normal" button should be seen to be active, having a dot at its centre. The three butions control the rate at which the hardware samples its data (Normal, Slow, V.Slow). Slow is ten times slower than Normal, and V.Slow is ten times slower than Slow. Slowing down the sampling rates allows lower-frequency signals to be sampled to give greater detail.

PRELIMINARY HARDWARE CHECK

If you click between the three buttons now, the software will do a preliminary check that your cable is plugged in and the power switched on. If either situation is untrue an Error message will displayed telling you so.
Which brings us to setting the correct Port register used by your PC to access its printer port. There are three options likely, addresses 378 h (hex), 278 h and 38 Ch . It is probable that your PC will be set for 378 h , but not necessarily so.
If you see the said Error message, first double check that the power is on and the cable connected. Click the OK button and try again.
If the message appears again, and assuming that your assembly is satisfactory, try a different Port address. In the System zone at the top right of the screen, the three register addresses have dedicated option buttons. Button 378 h will currently have a tick mark. Click on 278 h to try that register. The previous message will reappear if it is not correct, in which case try 38Ch.
If still no joy, you are likely to have made an error in your board construction. Recheck it all and try everything again.
Assuming your board is OK and you have found the correct register (signified by the message not being shown), leave it selected. The information is stored to disk and will be recalled next time you load the program.

HARDWARE RUNNING

Refer now to the PIC Path zone above the P-Spectrum zone. This allows you to select live analysis as a continuous process, or to single-step between live plots when you wish. Click on Continuous.
The system should now input waveform data from the board and analyse its content in the same way it did for your simulation tests.

Clicking Single Plot will stop continuous running and do as the button says. To step between plots press any keyboard key, or click the button again.
To sample data and record it to disk for future recall, click the Save Next Sample tick-box. A 2 K block of live data will be stored at the end of the next batch. It is
filed with a unique date and time related name which is decoded when highlighting file names in the directory option and when a file has been selected. In the latter case, the information is displayed at the bottom of the Disk Path zone.

INPUT WA VEFORM DISPLAY

The Input Display zone allows you to select how the input waveform is displayed in the upper "scope" zone. This is purely for information and has no bearing on the analysis. You have currently been viewing it in its default style.

Clicking on Expand widens the screen width distance between plotting points, drawing a line between them. This enables a better view to be seen when input waveform cycles are closely spaced. It does not affect the actual sample rate - it is purely cosmetic. The scale values do not change so you must mentally divide them by ten in this mode. Clicking again on Expand returns you to normal input display mode.
The Sync button cause the start of the waveform at the left of the screen to occur at similar positions in its amplitude. The triggering point cannot be changed - it occurs on the upwards slope, at somewhat over the midway voltage level (as seen by the ADC). Clicking Sync again turns it off.

ANALYSIS DISPLAY

There are several options available through the Analysis Display zone.

The Amplify button amplifies the height of the analysis waveforms so that lower amplitude peaks can be more readily viewed (compare Fig. 3 with Fig.4).

The Expand button is similar in action to the Expand button for the Input Display. It allows you to view the low frequency lefthand side of the analysis graph in "closeup". It effectively expands the display by 10 times, with the high frequency end not shown (see Fig.10).

Fig.10. Analysis screen in Expand mode.

The Overlay button causes successive analysis data to be superimposed on the previous batches, allowing a complex display to be built up over time. This is useful when sampling signals whose content is constantly changing and you wish to know which frequency bands prevail most strongly (see Fig. 11).

Clicking Bargraph displays the analysis peaks as individual vertical lines, allowing frequency differences to be more readily seen (see Fig.12).

All four option buttons work on an on/off alternating cycle.

Fig.11. Analysis screen in Expand mode with overlay active.

Fig.12. Analysis screen Expand and Bargraph modes active.

EDIT SCALES

When in live sampling or ESA playback modes, frequency scales are shown below the analysis window. The actual values shown are those set for the prototype unit. Individual units may exhibit slightly different sample timings, due to normal variations in the exact frequency generated by the crystal. Consequently, the scales can be edited to suit.

Click on the Edit Scales button. Both scale markings will now be displayed with a white background rather than the usual grey. A yellow Save Scales button is also revealed (see Fig.13). Click the mouse cursor on the scale strip you wish to amend. The scale is now in "text" mode and information can be entered into it by any of the usual keyboard keys.

Fig.13. Typical scale editing display.
In the upper scale, graduation lines are shown. These may be pulled back by using the Delete key, or pushed forward by the space bar. This allows you to feed the unit with a signal (preferably a sinewave) of known frequency, from a signal generator. and the scale graduations can then be shifted if necessary to match the known frequency.

Similarly, click on the numeric scale and the values there can be shifted as required, and their values amended. Additional graduations and values can be entered if you want.

When satisfied, click on the Save Scales button in order to save the new data to disk. A confirmation message will then appear, "Scales saved OK". The revised scales will be recalled next time you run the program.

Note that there are five sets of scales available. The program automatically selects the correct scale for the hardware mode. Three are specifically for use when the PIC Spectrum hardware is used, with a pair for each sampling rate available.

If you use the P-VScope hardware, selecting it by clicking in the P-VScope zone, the other two pairs are used, again depending on the sampling rate chosen. All pairs can be independently amended and similarly saved to disk.

The P-VScope is a dual-channel design, and the Channel button included in its zone clicks between the channels. Should you wish to return to using the PIC Spectrum hardware, click on its zone, an action which then hides the P-VScope zone buttons again. Information on which hardware zone is currently being used is stored to disk for future recall.

POP-DOWN NOTES

All screen buttons and most captions have messages "behind" them which are activated when the mouse cursor is hovered over them. These give brief details of the functions performed via the associated screen areas. Moving the cursor away from the message hides it again.

The message options cannot be switched off, nor does VB6 appear to allow them to become hidden after a given time, unlike some programs the author has used. If the messages get in the way, move the cursor well away from active zones (to outside the main screen area, for instance).

DRIVE BUTTON

At the top right of the screen in the System zone is a Drive button. This allows you to tell the program which drive letter should be regarded as your hard drive. The options offered depend on the drives installed or partitioned on your machine. Do not select a drive into which you insert floppy disks or CD-ROMs.

The effectiveness of this option is not known since none of the author's machines have a partitioned drive. It seems to be a facility that could be useful, however. Reader feedback on this would be welcomed at EPE HQ.

PROGRAM EXIT

Two options for exiting the program are available. The most obvious is via the standard Windows X button at top right. Not so obvious is the option to click on the zone words EPE PIC SPECTRUM ANALYSER, which has the same effect. Either path may be used.

DEMOS

At the heart of the VB6 spectrum analysis software is a short mathematicallybased routine. This is a variant of a routine given in a three-part article, written by the late Paul Cuthbertson, for $E P E$'s sister publication the Modern Electronics Manual (appearing in quarterly Supplements 61 to 63). Part one was on the theory of spectral analysis. Parts two and three included various software examples
and an elementary hardware construction design.
Experimenting with the software, the author was so impressed by its apparent capabilities, it became the inspiration for this PIC controlled design.
The principle behind the analysis routine is too mathematical for the author to understand or describe. However, for the sake of those who might like to ponder how the analysis is achieved, the original MEM routine is supplied on disk with the other software for this PIC-based design.
Additionally, a demo program has been prepared and which can be accessed via the yellow Demo button in the Analysis Display zone. It needs waveform data to have already been loaded into the program before it can be run. This may be done via the Disk Path buttons, or directly through the hardware.

DEMO PANELS

With waveform data loaded, click on Demo to display another sub-windew. This contains four display panels (see Fig. 14).

Fig.14. Analysis process demonstration screen example.
proceeds through 10 rounds, each round the span being halved and the sample pairs doubled. Fig. 16 shows an example during the third round.

Fig.16. Example of the sample spans in the third analysis stage.

SINE VALUES

The second panel shows the calculated sine/cosine values being stored in position as they occur. Fig. 17 shows an example taken during the fourth round when sampling a square wave.
Paul Cuthbertson stated that some values are regarded as "Real" and others as "Imaginary", for reasons not understood. They are displayed in different colours. During analysis, the Real and Imaginary samples are combined in relation to their span positions, so reducing the number of calculated samples. while increasing the values of those retained.

The sample positions retained are directly related to equivalent frequency spectrum values, the higher the value, so the greater detected dominance of the equivalent frequency. Panel 2 (in normal node) shows all sample position values as they occur.

There is a "magnify" mode in which

The top one shows the basic waveform. On clicking the blue Start button. the first stage of analysis begins. Pairs of waveform values are sampled at successive intervals along the length of the full sample batch of 1024. The screen displays each span-line superimposed on the basic waveform, illustrating the points between which the sample values are being taken.
On the first round, the span between points is half the total number of samples (512). An example taken at an early stage when sampling a sinewave is shown in Fig.15. The analysis relates the difference between the sample values to specific (precalculated) sine and cosine values. Each result is stored in sequence.

Sampling at this span interval commences at sample 1 and proceeds for 512 samples. Round 2 then commences, again from sample 1, but this time the span is half the previous (256) and two pairs of samples are taken, the second pair commencing 256 places after sample 1 . The process

Fig.15. Example of the sample spans in the first stage of analysis.

Fig.17. Example of sine/cosine values display during analysis of a square wave, round 4.
only the retained values are shown in each round, and the sample values are also increased according to which round is being processed, to make the value differences more apparent. An example taken in round 6 for the square wave is shown in Fig. 18.
The third panel shows the "retained" analysis values, but "sorted" into their final frequency-related positions, which are determined according to a complex mathematical procedure. Fig. 19 shows panel 3 at the same point in time as panel 2 .
The mathematics are not understood by the author, but he analysed the relationship between the original and "sorted" positions and created a look-up table that is used to position the values in panel 3. The table is held in software file SpectrumTable.txt and may be examined via a text editor.

WELL SORTED

The final panel shows the graph of the final sorted spectral analysis values (refer back to Fig.14).

Fig.18. Example of panel 2 in round 6 for a square wave.

Fig.19. Panel 3 at the same point in time as Fig. 18.

The demo window has various control buttons. The rate at which the demo progresses is controllable via a "slider" at the top. At its slowest rate, you can study each step of the process. The fastest rate illustrates the overall process more clearly as it progresses from round to round.

The values generated in panels 2 to 4 can be "magnified" via the top-right tick-box, allowing the differences between values to be more readily appreciated (as was done for Figs. 14 to 20).
The demo may be restarted from the beginning at any time by clicking on the Start button. Apart from being informative, the demo can also produce some interesting patterns (three of which are shown in Fig.20).

Variants of the preceding paragraphs can be viewed by clicking the four yellow zones at the right of the demo screen.

Fig.20. Three examples of "interesting" analysis patterns.

Buttons and text labels have underlying "messages" when the mouse is hovered over them. A return to the main screen can be made by clicking on Exit or the Windows X button.
Paul's original QBasic routines (written for his own hardware) can be read as a text file, SpectrumMEM.txt, which accompanies this program. It has its own explanatory comments.

FURTHER READING

Modern Electronics Manual, Supplement 61. Paul Cuthbertson. Wimborne Publishing Ltd.
Charles Lepple describes FFT in simple terms and provides further links through his web site:

www.foo.tho.org/charles/fft.html.

The Fastest Fourier Transform in the West is at www.fftw.org. This site has its own FFT software and many links to other sites, plus a list of further reading, etc.
Note that Figs. 10 to 20 have been "reversed-out" (black on grey) for clarity when printed.

NET WORK ALAN WINSTANLEY

Happy Shopping

N RECENT columns I examined a number of shopping cart systems available to Internet users wishing to purchase electronic components online. The site of RS Components (rswww.com) stands out as a model of excellence, but it is unfair to compare this class-leading effort against the more modest web sites of those suppliers whose budgets for conducting e-commerce are more restricted.

One fundamental problem is that RS will charge postage for nonaccount holders, which can render the placing of small orders uneconomical, so it's best to plan ahead and group orders together, or shop around: after all, the pages of $E P E$ contain dozens of adverts from small, hardworking suppliers all of whom offer personal service and are eager to do business with you readers! Companies such as Magenta Electronics (www.magenta2000.co.uk) offer pre-programmed PIC chips for nearly all EPE projects, and ESR (www.esr.co.uk) are eager to help you with discrete components and semiconductors.

Readers will recall from last month that I highlighted problems with the site of RS Components' competitor Farnell (www.farnell.com), whose web site has in my view an unintuitive user interface. By comparison, their arch rival RS has stolen a very clear lead, and I can't help feeling that if Farnell's site had warned that my online order had not yet been placed, as RS Components' site does in big red letters, then my order would have been submitted successfully. Instead I had to phone it through.

It is sometimes less time-consuming and easier on the phone bill to try to prepare an order when offline, which can involve thumbing through catalogues or shopping lists and then jotting down part numbers. Occasionally I flick through a catalogue at leisure, tapping the part numbers into my Handspring Visor which I eventually upload to my PC. From there, part numbers can be pasted into a supplier's order form or email when I next go online.

However, a powerful online shopping cart system can make life far easier if it has a good search facility that enables part numbers to be tracked down by manufacturer or product name. The Internet was made for complex product searches as Amazon.com's web site demonstrates.

Screws Fixed Online

What has proved to be the fastest and easiest shopping cart system I have ever used, belongs to the online hardware mail-order company Screwfix Direct (www.screwfix.com). Their "Express Order" system really does work fast. By preparing a list of order numbers beforehand - for which you need the paper catalogue of course - it is easy to tap them into their Express Order form.

Results were returned instantaneously along with a small image of the products. This over a 56 k dial-up connection! Needless to say, my workshop is now bulging with boxes of screws, fasteners, grinding discs and drill bits all delivered promptly by Screwfix.

The point is this: the easier a supplier's web presence makes it for users to place an order online, the more likely they are to develop the habit of placing routine orders. If customers suffer any problems or dissatisfaction, it is likely to lose the supplier business and customers will go elsewhere. This will only ever become more apparent as Internet access continues to become more accessible. It's a cruel world but you have to please the customer if you want to keep them.

The DTI's UK Online for Business scheme, with which I am involved, is spending millions on TV and press advertising with the intention of encouraging industries to adopt Internet services and grab a piece of the action for themselves. In fact things have moved on from promoting the adoption of a mere "me too" static web site; that's old hat and companies are now being encouraged to go to the next level, e.g. integrating their stock records and accounting systems into an online strategy.

This could offer the potential of a sophisticated and complete end-to-end customer-facing ordering system. This is expensive technology to implement which is beyond the reach of many small companies. The implementation of the Euro currency in many EU member states is also a complication for exporters.

One problem we have in the UK, of course, is the failure to roll out broadband Internet services (i.e. cable, ADSL) quickly and cheaply enough, coupled with the complexities and the relatively high running costs of Internet access. These costs make many people think twice before going online, it inhibits the uptake of Internet usage and costs UK companies lost business.

It is said that Internet usage in the UK has recently levelled off for the first time. Perhaps the novelty has worn off and dial-up access is just too tiresome and slow. Home computers don't always come as second nature to the vast proportion of the population either; they depreciate very heavily and judging by what I overhear in out-of-town electrical stores, good practical and reliable advice for beginners is thin on the ground.

Thanks to the strangulation of Internet access and the fall-out amongst ISPs persevering in a difficult market, there is still a long way to go before we are ordering pizzas by Internet, as they have routinely done in the USA for several years.

You can contact the writer at alan@epemag.co.uk.

A COMPLETE RANGE OF INVERTERS
150W TO 2500W-12V \& 24V

A Complete range of regulated inverters to power 220 V and 240 V AC equipment via a car, lorry or boat battery. Due to their high performance ($>90 \%$) the inverters generate very little heat. The high stability of the output frequency $(+i-1 \%)$ makes them equally suitable to power sensitive devices.

These inverters generate a modified sine wave, which are considerably superior to the square waves which are produced by most other inverters. Due to this superior feature they are capable of powering electrical equipment such as TV, s, videos, desktop \& notepad computers, microwave ovens, electrical lamps, pumps, battery chargers, etc.
Low Battery Alarm
The inverters give an audible warning signal when the battery voltage is lower than 10.5 V (21 V for the 24 V version). The inverter automatically shuts off when the battery voltage drops below $10 \mathrm{~V}(20 \mathrm{~V}$ for the 24 V version). Fuse protected input circuitry.

Order Code	Power	Voltage	Price	
651.581	150W Continuous	12V	£36.39	EF D4
	150W Continuous	24V	£36.39	
651.582	300W Continuous	12V	£50.64	
651.58	300W Continuous	24 V	£50.64	
651.583	600W Continuous	12 V	£101.59	
	600w Continuous	24 V	£101.59	
651.587	1000W Continuous	12 V	£177.18	
651.602	1500W Continuous	12 V	£314.52	
351.605	1500 W Continuous	24 V	£314.52	
651.589	2500W Continuous	12 V	£490.54	
651.599	2500W Continuous	24 V	£490.54	mued

All prices are inclusive of Vha. in Gamiage sa.00 Per Ord
Many uses include:- * Fetes * Fairgrounds \& Airshows * Picnics * Camping * Caravans . Boats * Camivals * Field Research and . Amateur Radio field days ${ }^{*}$ Powering Desktop \& Notepad Computers.
B.K. ELECTRONNICS VISA
UNTMT 1, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL.: +44(0)1702-527572
delivery charges are $\mathbf{\varepsilon 6 - 0 0}$ PER ORDER. OFFICIAL ORDERS FROM SCHOOLS, COLLEGES, GOVT. BODIES, PLC,S ETC. PRICES ARE INCLUSIVE OF V.A.T. SALES COUNTER. VISA AND ACCESS ACCEPTED BY POST, PHONE OR FAX, OR EMAIL US AT SALES@BKELEC.COM ALTERNATIVELY SEND CHEQUE OR POSTAL ORDERS MADE PAYABLE TO BK ELECTRONICS.
For Full Specifications View our web site at:WWW,BKELEC.COM/INVERTERS.HTM

Special Feature

RUSSIAN SPACE SHUTTLE REVISITED

BARRY FOX

Buran - the Russian space shuttle - was mothballed after its only flight in 1988. Now there is talk of it flying again.

WHEN I first travelled to Moscow, a few years ago, to see Proton space rockets being mass-produced for satellite launches at the Baikonur Cosmodrome in Khazakstan, there was passing talk of Buran, Russia's answer to NASA's space shuttle. At Baikonur we were told that Buran had been mothballed after its one successful test flight, and there was no chance of it ever flying again, and nothing to see.

SPACE TOURISM

Since then work on the International Space Station has begun in orbit, with demand growing for larger cargo payloads in the NASA shuttle. Russia has discovered space tourism as way of making money, taking $\$ 20 \mathrm{~m}$ from rich American Dennis Tito when the Americans refused to take him up to the ISS. The satellite launch program, using Protons, has recovered from embarrassing failures and is raking in around $\$ 100 \mathrm{~m}$ a shot.

By the time I went back to Baikonur in June 2001, for another Proton launch (Astra 2C), there was talk of taking Buran out of mothballs. Perhaps stung by the sceptical reaction to this by Western aerospace engineers and press, the Russians decided at the last minute to throw open the vast hanger complex in the Steppes desert, where Buran still sits where she was assembled on rail tracks to the launch pad more than ten years ago. The Western visitors were given a tour of the hanger - even encouraged to climb onto the rocket launcher to see for themselves that the Buran beast is real, and is not the rusting pile of junk some people have been curiously anxious to insist it must be.

RUBBISHING

When I came back and reported that aerospace engineers in Russia think the world is at last ready for Buran's sledgehammer

Buran, the mothballed Russian shuttle, sits on top of the Energya launcher.
approach to rocket launching, some people were excited while others have gone out of their way to rubbish the idea. Reaction to news of the Russian's gung ho plans has brought a mixed reaction. Some of the rubbishing clearly stems from the intense rivalry between Russian space companies Khrunichev, who make Proton satellite launchers, Khrunichev's Western partners and Energya who built the launcher for Buran, but makes only the top, fourth, stage of the Proton and will soon be squeezed out by a Khrunichev re-design,
"The best space news in years...perhaps it will kickstart the other aerospace companies who seem to have no ambition to move forward in rocket design in anything other than baby steps" says a Western aerospace engineer. "A joke" says the Head of Marketing in Russia's Molniya. "Scrap metal" says a Russian Web site.

The Russian spokesman was not speaking on behalf of the Russian government, says International Launch Services, the American company which works with Khrunichev on Proton launches.

But who in the West - or the East for that matter - really knows what the Russian government is thinking?

Here is what I saw and heard. Form your own opinion, perhaps bearing in mind that ten years ago anyone suggesting Russia would soon start earning dollar currency by launching Western satellites from a hitherto secret military base on converted intercontinental ballistic missiles would have been laughed off as a fool. Check out the Russian web site, too (www.buran.ru).

ONE FLIGHT

Buran (Snowstorm/Blizzard) only made one flight, in 1988. The shuttle, which looks like a large utility version of the US design, was un-manned and landed successfully after twice orbiting the Earth. Russia had by then built two shuttles, and three Energya

The main fuel tank for Buran's Energya launch vehicle.

The main engine thrusters that lifted Buran into orbit.
launch boosters to carry them. Fonding continued because the military saw Buran as vital to any defence system similar to North America's Star Wars. The Russian PR line is that the only component imported was heat resistant paint. And it may very well be so.
In 1990 another Buran orbiter vehicle was built and used for fire tests; it still stands charred in the desert. In 1992 the cash-strapped Russian governnient cut off funds because Star Wars looked dead and there seemed to be no market for a non-American shuttle.

The Buran project was to have employed 30,000 Russians, with up to 30 launches a year. Some of the old buildings are being renovated to accommodate the Western engineers who now come regulary to Baikonur to launch commericial satellites on Russian Proton rockets.
The landing strip for Buran, called Yubileine ("Anniversary"), was 87 metres wide, and 4500 metres long, with a 500 metre emergency extension at each end. International Launch Services in San Diego recently spent $\$ 5$ million refurbishing it to land Russia's Antonov cargo-carrier, the only aircraft in the world large enough to fly in satellites from California. Even though Boeing makes these satellites, after buying the Hughes satellite companies, a Boeing Jumbo 747 does not have enough cargo space. (It carries the US Shuttle back to Cape Kennedy, piggyback on top.)

HORIZONTAL ASSEMBLY

Like all Russian space vehicles, and the nuclear missiles on which they were based, Buran and the Energya launcher are assembled horizontally, moved by rail to the launch pad and tilted to vertical. The process takes only a few days. The US system is quite different. Assembly is vertical, in a very tall hanger, and the massive tower is then mundled ever so slowly out to the launch site. The process can take weeks.

All the Buran machinery appears in good working order. The hangers are stacked with spare rocket motor parts and fuel tanks. Not ready to go, of course. But certainly not rusting scrap.

Tip to toe size of the Buran system is similar to the US Shuttle, but construction very different. The Buran orbiter is clad with 40,000 differently shaped ceramic tiles for heat protection. For launch it sits astride the Energya Heavy Lift Booster, with central core and strap-on Zenit boosters round the core - with parachutes and retro rockets for soft landing, recovery and re-use up to ten times.

All the propellants, in the core and side boosters, are liquid - no solid propellant is used. So the system is more controllable. The core fuel tank is 50 m tall, and 8 m in diamater. The Buran shuttle does not have any rocket engines of its own - so the cargo hold can be large enough to carry loads 17 m long, and 4.5 m diameter, with four crew and six passengers.

STRAP-ON BOOSTERS

The basic launcher had - and has - four strap-on boosters round the central core, powered by liquid oxygen and hydrogen. An eightbooster version, never tested, was dubbed Vulkan.

Says Leonid Gurushkin, director of launch operations at Baikonur: "There IS a future for this program. Buran is the only system with a 100 tonne payload. By extending the length we can carty 200 tonnes. There is no alternative to Buran and I don't see any coming. Buran can only be flown from here. The huge structures needed to launch it only exist here."

The launch tower used for space tourism.
"The launcher is powered by hydrogen, oxygen and kerosene engines" says Gurushkin, assuring it is environmentally friendly. "The strap-on boosters are re-useable. They drop back to the airstrip. In fact only the core unit is lost. The Americans spent billions of dollars getting men to the moon. And what for? To bring back a few kilos of rocks and stones."

Gurushkin believes Buran's time has now come because the International Space Station is creating the need to carry ever larger loads into low orbit. Western launchers carry less than 20 tonnes.
"We have been dreaming of this time" he says.
Although Russia's other state space company, Khrunichev, is a rival to Energya, its director Alexander Kondratiev, says he welcomes any opportunity for Russian space engineers to compete with the West on an equal footing. "Until 1990 we could not tell anyone what we were doing. But now we can show the world our worth."

MUSEUM

Energya has three launch pads at Baikonur and thinks the money to prime Buran's re-birth will come from the West. albeit indirectly. Seventeen Protons have been launched for Western operators in 17 months, and Russia earns over $\$ 100 \mathrm{~m}$ from each. A modern hotel, the Sputnik, has been built in the desert near Baikonur. There is now a museum in a renovated building near the cottages where Yuri Gagarin and most of the other cosmonauts stayed before launch.

The desert home of Sergei Korolev, anonymous chief designer of the Soviet space programb, is also now a museum - with "just as it was" books, fridge and furniture. Visitors to the museum get the chance to peer inside the Soyuz capsule where space tourist Denis Tito huddled in foetal position with excreta bags en route to Russia's part of the ISS.

And it's all spookily close to some of the 38 missile silos bull dozed at Baikonur under defence treaties. The remains of the sites have been left for all to see

But realistically it's highly unlikely that more than a few dedicated space buffs will make the pilgrimage just to visit the museum. Apart from anything else, Russian bureacracy remains a guaranteed deterrent to all but the most dedicated sightseer.

INCOMPETENCE

I was with the party of Western aerospace experts and executives who recently saw Buran. We arrived on a private flight via Moscow and were three times kept waiting for several hours in near-prison conditions at a transit airport, while too few immigration clerks checked, re-checked and stamped too many papers. At Khazakstan everyone - including the VIPs - were forced to stand for more hours in the scorching midday sun as even fewer immigration clerks X-rayed everything in sight while at the same time checking forms, permits, permits to apply for permits and lists they clearly could not read. The metal detectors were so sensitive that even trouser zips set them off.

Among the sunbaked victims was Len Dest, who heads ILS and pays Russia over $\$ 100 \mathrm{~m}$ a time to launch Proton satellite rockets. At a West-wooing banquet in Moscow, Dest was still so angry he broke all the rules of protocol and gave a speech accusing the host's immigration service of "staggering incompetence".

Desert home for the cosmonauts - now a museum.
But none of this will bother space tourists like Denis Tito. It niight make the two day crouch in Soyuz seem welcome - a bit like progressing from British public school to the real world.

And Leonid Gurushkin says that whatever NASA may say there will most definitely be more tourist space trips from Russia: "We already have many applications. We are currently considering them all

The Soyuz capsule used to transport space tourists.
and will take whoever pays most. We would like to talte a married conple to the space station. We need to continue biological experiments."

Now there's a potential money-spinner from the Western tabloids and a warning that it could be very unwise to discount Russia's chances of ever getting Buran out of the hanger aqain and up into space.

SHOP CHTALK with David Barrington

P1C Spectrum Analyser

Once again our intrepid Tech Ed has raided his RS spares box to bring us another fascinating PIC-based project. Most of the parts for the PIC Spectrum Analyser are, of course, RS types and can be ordered through any bona-fide stockists, including many of our advertisers. You can order direct (credit card only) from RS on 01536 444079 or through the web at rswww.com. A post and packing charge will be incurred.

The μ PD43256BCZ-70LL 32-kilobyte SRAM (code 265-465) and the TDA8703 analogue-to-digital converter (code 191-9754) both came from them. They also supplied the 36 -way fernale Centronics connector, right-angled p.c.b. type, code 239-1178.

For those readers unable to program their own PICs, a readyprogrammed PIC16F877-20 microcontroller car be obtained from Magenta Electronics (801283565435 or www.magenta 2000.co. $u k$) for the inclusive price of $£ 10$ each (overseas add $£ 1$ p\&p). The sotware is available on a 3.5 in . PC-compatible disk (EPE Spectrum) from the EPE Editorial Office for the sum of $£ 3$ each (UK), to cover admin costs (for overseas see page 141). It is also available Free from the EPE web site:
ftp://ftp.epemag.wimborne.co.uk/pub/PICS/spectrum
The printed circuit board is available from the EPE PCB Service, code 334 (see page 141).

Guitar Practice Amp

Some confusion could arise when purchasing the small p.c.b. mounting 3.5 mm stereo jack socket, with two switched break contacts, for the Guitar Practice Amp project. Each version looked at appears to have a differing pinout arrangement and the answer may be to "hardwire" the socket to the p.c.b. The one used in the model came from Maplin (www.maplin.co.uk), code JM20W. They also supplied the 6.35 mm ($1 / 4 \mathrm{in}$.) moulded mono jack socket, with break contacts, for the headphone option, code FJ00A.

The above mentioned company also lists a suitable sub-miniature omni-directional electret mic. insert, code FS3W. Almost any in-line bridge rectifier with a rating of 1A to 2A should be OK for this circuit. The author specifies a KBP204 type and ESR (ঞ 01912514363 or www.esr.co.uk) list two KBP equivalents rated at 2A 50V and 100V, codes 700-250 and 700-251 respectively. They also carry the TDA2030 audio amplifier chip; listed as just the type rumber.

The printed circuit board is available from the EPE PCB Service, code 336 (see page 141).

HT Power Supply

Not too many problems should be encountered when buying parts for the HT Power Supply. The stripboard will need to be cut down to size from a regular $2.54 \mathrm{~mm}(0.1 \mathrm{in}$.) matrix piece having 39 holes by 39 copper strips. The two i.c.s and the power Darlington transistor are widely stocked popular devices.

The "step-uD" transformer (mains) can be a type rated at 3V-0V-3V at 100 mA if output currents of no more than about 2 mA or 3 mA are required. However, for higher output currents, one having twin 6 V 500 mA secondary windings is needed. The standard type referred to in the article came from Maplin (客 08702646000 or www.maplin.co.uk), code WB06G

The single-pole 12-way sotary switch, with an adjustable end-stop, also came from the above source, code FF73Q. Marty suitable alternatives are also available.

Finally, be sure to keep to the minimum or greater working voltages of the output smoothing capacitors and follow the guidelines set out in the article.

Versatile Current Monitor

One or two minor items outlined in the Versatile Current Monitor project need considering when ordering parts. But generaliy speaking, the components should not be too rard to find at your local supplier's shop.

You will probably need to purchase a high voltage metal film or a 2.5 W to 3 W wirewound type to obtain a "sensing resistor (R1)" of the required low value Unfortunately, resisiors of a small physical size and low power rating in values of less than one ohm appear to be almost impossible to find.

The solid-state, 3 V to 24 V d.c. 10 mA max., buzzer used in the prototype came from Maplin (www.maplin.co.uk), code KU56L. No doubt, most of our component adverlisers will be able to offer a suitable equivalent. Some readers may have difficulty in locating the ICL7611 op.amp. The one on the circlit board carre from the above company, code AV65V. It is also listed in the latest ESR (01912514363 or www.esr.co.uk) catalogue.

The printed circuit board is available from the EPE PCB Service, code 335 (see page 141).

Teach-In 2002 - Lab Work 4

Two sources were found for the piezo ceramic "speaker" called-up in the Rain Sensor and Knock Three Times Sensor circuits, this month's Lab Work 4 Teach-In 2002 demonstration exercises.

The KPS-100 piezoelectric speaker (disc) is currently listed by Farnell (ঞ 01132636311 or www.farnell.com), code 926-966, and (credit card only) RS (今 01536444079 or rswww.com), code 172-7289. This is a plain piezo disc, without an in-built tone generator.

All the semiconductor devices should be readily available from most of our components advertisers.

PLEASE TAKE NOTE

Mains Failure Alarm
Dec '01
Page 839, Fig.2. A smal' supply link wire is missing from point A17 down to 817 on the stripboard component layoul. This is, of course, needed to power IC1 at pin 14.

PIC Polywhatsit

Dec '01
Page 870, Fig.2. The "ring" of the output socket SK2 should be connected to the OV rail and not $\mathrm{V}_{\text {REF }}$. Wiring diagram Fig. 5 is correct.

Learn About Microcontrollers

PIC Training \& Development System

The best place to start learning about microcontrollers is the PIC16F84. This is easy to understand and very popular with construction projects. Then continue on using the more sophisticated PIC16F877 family.

The heart of our system is a real book which lies open on your desk while you use your computer to type in the programme and control the hardware. Start with four very simple programmes. Run the simulator to see how they work. Test them with real hardware. Follow on with a little theory...

Our complete PIC training and development system consists of our universal mid range PIC programmer, a 306 page book covering the PIC16F84, a 212 page book introducing the PIC16F877 family, and a suite of programmes to run on a PC. The module is an advanced design using a 28 pin PIC16F872 to handle the timing, programming and voltage switching requirements. The module has two ZIF sockets and an 8 pin socket which between them allow most mid range 8, 18, 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The software is an integrated system comprising a text editor, assembler disassembler, simulator and programming sottware. The programming is performed at normal 5 volts and then verified with plus and minus 10% applied to ensure that the device is programmed with a good margin and not poised on the edge of failure. Requires two PP3 batteries which are not supplied.

Universal mid range PIC programmer module
 + Book Experimenting with PIC Microcontrollers
 + Book Experimenting with the PIC†6F877 (2nd edition)
 + Universal mid range PIC software suite
 .+ PIC16F84 and PIC16F872 test PICs. £.157.41
 UK Postage and insurance. 17.50
 (Europe postage \& Insurance. . £13.00. Rest of world. . £22.00)

Experimenting with PIC Microcontrollers

This book introduces the PIC16F84 and PIC16C711, and is the easy way to get started for anyone who is new to PIC programming. We oegin with four simple experiments, the first of which is explained over ten and a half pages assuming no starting knowedge except the ability to operate a PC. Then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the liquid crystal display, create a real time c'ock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven's Für Elise. Finally there are two projects to work through, using the PIC16F84 to create a sinewave generator and investigating the power taken by domestic appliances. In the space of 24 experiments, two projects and 56 exercises the book works through from absolute beginner to experienced engineer level.

Ordering Information

Telephone with Visa, Mastercard or Switch, or send cheque/PO for immediate despatch. All prices include VAT if applicable. Postage must be added to all orders. UK postage $£ 2.50$ per book, $£ 1.00$ per kit, maximum £7.50. Europe postage $£ 3.50$ per book, $£ 1.50$ per kit. Rest of Worid $£ 6.50$ per book, $£ 2.50$ per isit.
Web site:- www.brunningsoftware.co.uk

NEW 32 bit PC Assembler

Experimenting with PC Computers with its kit is the easiest way ever to learn assembly language programming. If you have enough intelligence to understand the English language and you can operate a PC computer then you have all the necessary background knowledge. Flashing LEDs, digital to analogue converters, simple oscilloscope, charging curves, temperature graphs and audio digitising. Kit now supplied with our 32 bit assembler with 84 page supplement detailing the new features and including 7 experiments PC to PIC communication. Flashing LEDs, writing to LCD and two way data using 3 wires from PC's parallel port to PIC16F84

Book Experimenting with PCs $£ 21.50$
Kit 1a 'made up' with software $£ 52.00$
Kit 1u 'unmade' with software $£ 45.00$

C \& C++ for the PC

Experimenting with C \& C++ Programmes teaches us to programme by using C to drive the simple hardware circuits built using the materials supplied in the kit. The circuits build up to a storage oscilloscope using relatively simple C techniques to construct a programme that is by no means simple. When approached in this way C is only marginally more difficult than BASIC and infinitely more powerful. C programmers are always in demand. Ideal for absolute beginners and experienced programmers.

> Book Experimenting with C \& C++ $£ 24.99$
> Kit CP2a 'made up' with software $£ 32.51$
> Kit CP2u 'unmade' with software $£ 26.51$

Kit CP2t 'top up' with software £12.99

The Kits

The assembler and C \& C++ kits contain the prototyping board, lead assemblies,components and programming software to do all the experiments. The 'made up' kits are supplied ready to start. The 'top up' kit is for readers who have already purchased kit 1a or 1 u . The kits do not include the book.

Hardware required

All systems in this advertisement assume you have a PC (386 or better) and a printer lead. The experiments require no soldering.

Experimenting with the PIC16F877

The second PIC book starts with the simplest of experiments to give us a basic understanding of the PIC16F877 family. Then we look at the 16 bit timer, efficient storage and display of text messages, simple frequency counter, use a keypad for numbers, letters and security codes, and examine the 10 bit AD converter.

The 2nd edition has two new chapters. The PIC16F627 is introduced as a low cost PIC16F84. We use the PIC16F627 as a step up switching regulator, and to control the speed of a DC motor with maximum torque still available. Then we study how to use a PIC to switch mains power using an optoisolated triac driving a high current triac.

Brunning Software

TERRY DE VAUX-BALBIRNIE

Keep an eye on the current situation!

THills neat little monitor module will allow the current flowing through some existing circuit or piece of equipment to be monitored. An audible or visible warning will then be given if it rises above or, alternatively, falls below some preset threshold value. Such a circuit will find numerous uses for power supplies, charging units and certain battery-operated devices.
The circuit draws current from the supply to the existing device so does not require a power supply of its own. The current drawn for its own operation depends on the applied voltage. However, in the prototype unit this never exceeds $100 \mu \mathrm{~A}$ on standby which may be regarded as negligible. While actually operating, the current rises by that required by the warning device.

MULTI-USE

If the existing circuit is powered using a fixed-vollage supply, it should be possible to provide a warning when the "normal" current varies by as little as five per cent. However, if the voltage varies to some extent (such as when batteries are used) such precision will not be available.

Even so, many readers will wish to use the monitor to react to relatively large changes in current (such as when a filament lamp connected to a circuit "blows"). If the applied voltage varies by, say, 20 per cent it should still be possible to use it for this type of application.

MOTORING ON

One typical example of an application would be to check that a small motor was not being overloaded. When running normally under a light load, the current will be relatively small. As the loading increases, the speed falls and the current will rise. When it exceeds the "normal" value, the current monitor circuit could provide a warning.

The current to be monitored should fall within the range of 40 mA to 2 A . The operating voltage (that is, the voltage used by the existing equipment) should lie between 3 V and 15 V smooth d.c. This covers a wide range of devices. However, check this point before starting construction work.

VERSATILITY

The operating conditions are determined by a set of small on-board switches. According to their setting, a warning will be given under one of the following conditions:

- When the current rises above a preset threshold value.
- When the current falls below a preset threshold value.
- Continuously if the current rises momentarily above the threshold value since last reset
- Continuously if the current falls below the threshold value momentarily since last reset.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Versatile Current Monitor is shown in Fig.1. The existing connections between the power supply and the equipment to be monitored (the load) is cut and the new ends connected to a section of terminal block TB1 on the new circuit panel.

Instead of flowing directly from the supply to the load, the current must now flow through resistor R1 (the "sensing resistor"). A small voltage (a few tens of millivolts) will then be developed across it. Although this is "lost" as far as the load is concerned, it is normally too small to have any practical effect.

The sensing resistor may be a single resistor or up to three of them connected in parallel to obtain the required value see Table 1. It may also be made up of a closed loop of printed circuit board (p.c.b.) copper track which has been "built into" the layout specially for the purpose.

The track "resistor" (nominal value 0.05 ohm) may be appropriate for any current between 400 mA and 2 A . Ordinary resistors will probably be needed for a current smaller than this. Sometimes the user will need to experiment to find the best method for a given application and more will be said about this later.

IN COMPARISON

The first active part of the circuit is a low-power operational amplifier (op.amp) ICl . By minimising the current required for its own use, that drawn by the circuit as a whole is reduced. The specified unit requires only $10 \mu \mathrm{~A}$ nominal.

Fig.1. Complete circuit diagram for the Versatile Current Monitor.

Op.amp ICl is used as a comparator which responds to the voltages applied to its two inputs. These are the inverting (-) input (pin 2) on the one hand and the noninverting (+) one (pin 3) on the other. If the voltage at pin 3 exceeds that at pin 2 , the output (pin 6) goes high. Otherwise, it remains low.

The inverting input (pin 2) receives the voltage developed across the load. This will be slightly less than the supply voltage - the difference being that existing across sensing resistor, R1. The noninverting input (pin 3) receives the voltage obtained from the potential divider consisting of preset potentiometer VR1 in the upper arm and fixed resistor R2 in the lower one.

MAKING
 ADJUSTMENTS

With VRl suitably adjusted, it can be arranged for the same voltage to appear at ICl pin 3 as at ICl pin 2 when the threshold current flows through the load. If the current drawn by the load now rises by a small margin, the voltage across sensing resistor R1 will increase slightly and that across the load will fall. The op.amp will switch on and the output (pin 6) will go high. With less than the threshold current flowing, the output will remain low.

In theory, this effect is independent of the supply voltage. This is because. if this rises or falls, the voltages at both op.amp inputs will be affected in the same proportion.

However, this is only partly true and then only with fairly small changes in voltage. The circuit will then not "see" changes in current due to a variation in voltage. The normal current may be regarded as rising or falling with small changes in applied voltage and the circuit arranged to trigger when it rises or falls for some other reason (such as a fault developing).

Imagine switch S1 is on and switch S2 off for the moment - the purpose of these switches will be described presently. Op.amp ICl's output is applied to the base of transistor TR1 via resistor R4. The low state here keeps the transistor off and the collector (c) is high. In this way, the original signal has been inverted.

Switch Sl contacts allow this state to be applied to the trigger input (pin 2) of a monostable centred on IC2, a low power timer i.c. The specified device has a very low quiescent current requirement $-60 \mu \mathrm{~A}$ approximately. This, again, minimises the current required by the circuit as a whole. However, with the trigger input, pin 2, kept high nothing further happens because it is a characteristic of this type of device that triggering occurs with a low state.

MOMENTARY ACTION

If the current flowing through the load increases, ICl will switch on and the high state of its output will allow current to enter the base of transistor TR1. The transistor turns on and its collector goes low. The low state applied to IC2 pin 2 now triggers the monostable and the output, pin 3, goes high for as long as the current remains above the threshold value.

If the current only rose momentarily above the threshold value and immediately fell again so that the high state on pin 2

Table 1

Threshold current (mA)	Value of R1 (ohms)
40	1
80	0.5 (2 off 1 ohm in parallel)
120	0.33 (3 off 1 ohm in parallel)
150	0.27
250	0.15
400	0.1

was restored, the monostable output would remain high for a time determined by the values of resistors R8 and R9 and capacitor C2.

Assuming that switch S4 is off for the moment so that capacitor C2 is operative, with the values specified, this time will be some 0.2 second. This sets the minimum operating period and is designed to prevent repeated short-period "chirping" from the buzzer near the threshold value. The timing could be increased by raising the value of resistor R 9 or capacitor C 2 .

The monostable output can be made to operate either the buzzer WDl or l.e.d. D1 (by closing switch S5 or S6 respectively). Resistor R10 is the l.e.d. currentlimiting resistor and will be chosen according to the approximate operating voltage of the circuit. A table of values is shown in Table. 2. These allow 15 mA approximately to flow through the l.e.d. at the voltage shown.

Note that when the warning device operates, this in itself causes a rise in current through the sensing resistor. It therefore assists triggering on rising current and to some extent reacts against it on falling current. However, the change is small and, in practice, is of little consequence.

INTO REVERSE

To reverse the operating condition so that triggering occurs when the current falls below the preset level, the inverting effect of transistor TR1 is removed. Switch Sl is now set off and S 2 on. The logic state of ICl output, pin 6, is now applied (via resistor R3) direct to the monostable trigger input.

If both switches S1 and S2 were to be switched on (by mistake), there would be a set of conflicting logic states and this should be avoided. If both switches were set off (again, in error), then IC2 pin 2 would be left unconnected or "floating". This would leave the i.c. vulnerable to damage by the pickup of stray static charge. This is avoided by including resistor R6 which maintains pin 2 in a high state under these circumstances.

The reset input (pin 4) of IC2 must be kept high to enable the i.c., resistor R 7 achieves this. However, when first pow-ered-up, this type of timer often self-triggers due to the sudden rise in voltage level. In an effort to avoid this, capacitor Cl

Table 2

Supply Voltage	Value of R10 (Ohms)
3	67
6	270
9	470
12	680
15	820

holds pin 4 low for a short time until it has charged sufficiently through R7. With the values specified, this will take 0.2 second.

When switch S4 is on, it short-circuits timing capacitor C2. This prevents it from charging and has the effect of turning IC2 into a latch. Once triggered, the output will then remain on until cancelled by taking the reset pin 4 low. This is done by operating Reset switch S3. This switch could be situated off-board if required.

CONSTRUCTION

Construction is based on a single-sided printed circuit board (p.c.b.). The topside component layout and full-size underside copper foil track master are shown in Fig.2. This board is available from the EPE PCB Service, code 335.

Begin construction by drilling the p.c.b. fixing holes and then solder the i.c. sockets, terminal block and switches in position. Note that the three switches S4, S5 and S6 are part of a four-way d.i.l. block. This is because groups of three such switches do not appear to be available. The second one from the left is not used.

COMPONENTS

If you wish to mount switch S3 offboard, the specified type of p.c.b. mounting tactile unit would probably not be convenient to use. In this case, use any other small pushbutton, push-to-make, switch.

Follow with all resistors, except R1, preset potentiometer VRI and the two capacitors. Preset VR1 is specified as a multi-turn type. This is definitely advised rather than using the single-turn variety because it greatly simplifies adjustment at the end.

FILL THAT GAP

If the anticipated operating current exceeds 400 mA (and up to the 2 A limit), solder the link wire (a short piece of singlestrand connecting wire) into the gap in the high-current loop as shown dashed in Fig.2. This puts the copper track "resistor" in the R1 position. The position reserved for fixed sense resistor(s) R 1 is left empty.

It was found in the prototype unit that the p.c.b. track could be used for a current as low as 200 mA . For values between 200 mA and 400 mA , it may therefore be worth experimenting to see whether it is necessary to use physical resistors for R1. Whether or not this is possible will depend on the width and thickness of the copper track on any particular specimen of p.c.b.
If the current to be monitored is expected to lie between 40 mA and 400 mA , leave the high-current link disconnected and, referring to Table 1, solder a resistor or resistors into RI's position(s) to make up the required value.

The table shows how 2 or 3 one-ohm resistors may be used to provide values of 0.5 ohm and 0.33 ohm respectively. Copper pads on the p.c.b. have been left for these. Of course, single units may be used if available.
Unfortunately, resistors of a small physical size (low power rating) in values less than one ohm are not easy to obtain. The alternative is to use units of, say, 3W rating in as small a size as possible. An additional pad has been left on the p.c.b. to allow one large unit to be mounted flat if required (see photograph).
The value of sense resistor R1 is not too critical. If the proposed threshold current is not shown in Table 1, use the nearest value.

PRECAUTIONS

Complete construction of the p.c.b. with the polarity-sensitive components, namely - transistor TR1, audible warning device WD1 and l.e.d. Dl. Finally, insert the i.c.s into their sockets.

Since the i.c.s are CMOS devices, they are vulnerable to damage by static charge such as may exist on the body. To avoid possible problems, touch something which is earthed (such as a metal water tap) before unpacking them and handling their pins.

TESTING

Switch S1 on and S2 off if triggering is required on rising current and S1 off and $\mathbf{S} 2$ on if it is required on falling current. Switch S4 off (for momentary triggering). Switch both S5 and S6 on so that the l.e.d. and the buzzer are both in circuit. Connect the supply wires and the load to the terminal block taking care to observe the polarity. The circuit will be damaged if the polarity is incorrect.

Fig. 2 (above). Printed circuit board component layout and full-size copper foil master. The completed board is shown in the photograph.

Allow the external circuit (load) to operate normally. The buzzer and l.e.d. may be operating already. Adjust preset VRI until the critical point is reached. If the switching point is not sharp (the buzzer "chirps" at the threshold value), it may be necessary to improve the degree of smoothing of the supply. In most cases, however, it will not matter.

Allow the current to rise or fall as appropriate to give the signalling condition and check for correct operation. Adjust VR1 so that this happens at a suitable point. If the circuit is operated from a battery you will need to check at the upper and lower voltage limits to arrive at the best setting for VR1.

BUILDING BRIDGES

It is possible that the high-current p.c.b. "resistor" is not physically identical to that in the prototype. Its resistance may therefore need to be modified. If using this method and the voltage drop is insufficient (see below), de-solder the link wire and include an extra short length of 20 s.w.g. bare copper wire. If the voltage drop is excessive, "bridge" sections of the track using single-strand connecting wire to reduce the resistance.

Apply a digital multitester between terminal block points TB1 and TB2 (that is, across the sensing resistor) to check the millivoltage drop at the threshold current. The circuit will work satisfactorily with a drop of only 20 mV to 40 mV . In the prototype unit, good operation was obtained down to 10 mV .
If it is much higher than this, it will involve an unnecessary loss to the external circuit. It may then be lowered by reducing the value of sense-resistor R1. Conversely, if the voltage is too small so that the circuit fails to work, Rl should be increased.

When the circuit is working correctly, switch on S4 to check that continuous mode works and that it can be cancelled by pressing switch S3.
Certain loads, such as filament lamps and motors, draw a current much higher than the rated value for a short time on switching on. The current then settles to the nominal value. This should be borne in mind if connecting this type of load especially if "continuous" mode has been selected. You may then need to manually reset the circuit once the current has returned to normal. Any violent changes in the load may cause triggering anyway and you may need to press the reset switch.

STORE YOUR BACK ISSUES IN YOUR WALLET!

features, news, IUs etc. from all eight issues). Note: No advertisements or Free Gifts are included. PIC PROJECT CODES - All the available codes for the PIC based projects published in these issues.

VOL 2 CONTENTS

BACK ISSUES - July 1999 to December 1999 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements or Free Gifts are included. PIC PROJECT CODES - All the available codes for the PIC-based projects published in these issues.

Order on-line from

www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA \$ prices)
or by phone, Fax, E-mail or Post

VOL 3 CONTENTS

BACK ISSUES - January 2000 to June 2000 (all the projects, features, news. IUs, etc. from all six issues). PIC PROJECT CODES - All the available codes for the PIC-based projects published in these issues.

VOL 4 CONTENTS

BACK ISSUES - July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues.

VOL 5 CONTENTS

BACK ISSUES - January 2001 to June 2001 (all the projects, features, news, IUs etc. from all six issues). PROJECT CODES - All the available codes for the programmable projects in these issues, including those for interface.

EXTRA ARTICLES - ON ALL VOLUMES

BASIC SOLDERING GUIDE - Alan Winstanley's internationally acclaimed fully illustrated guide.
UNDERSTANDING PASSIVE COMPONENTS - Introduction to the basic principles of passive components.
HOW TO USE INTELLIGENT L.C.Ds, By Julyan Hett - An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.
PhyzzyB COMPUTERS BONUS ARTICLE 1 - Signed and U-signed Binary Numbers. By Clive "Max" Maxfield and Alvin Brown.
PhyzzyB COMPUTERS BONUS ARTICLE 2 - Creating an Event Counter. By Clive "Max" Maxfield and Alvin Brown. INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS - A chapter from Intergraph's book that explains computer graphics technology in an interesting and understandable way with full colour graphics.

EXTRA ARTICLE ON VOL 1 \& 2
THE LIFE \& WORKS OF KONRAD ZUSE - a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.
NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobar Reader (available free from the Internet - www.adobe.com/acrobat)

BACK ISSUES CD-ROM ORDER FORM
Please send me (quantity) BACK ISSUES CD-ROM VOL 1
Please send me (quantity) BACK ISSUES CD-ROM VOL 2 :
Please send me (quantity) BACK ISSUES CD-ROM VOL 3 '
Please send me (quantity) BACK ISSUES CD-ROM VOL 3 !
Please send me (quantity) BACK ISSUES CD-ROM VOL 5 !
Price $£ 12.45$ each - includes postage to anywhere in the world.
Name
Address
\square
Post Code
\square I enciose cheque/P.O./bank draft to the value of $£$
\square Please charge my Visa/Mastercard/Amex/
Diners Club/Switch
E
Card No.
Expiry Date
. . Switch Issue No.
SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: $01202873872 . \quad$ Fax: 01202874562.
E-mall: orders ©epemag.wimborne.co.uk
Payments must be by card or in $£$ Sterling - cheque or bank draft drawn on a UK bank.
Normally supplied within seven days of receipt of order.
Send a copy of this form, or order by letter if you do not wish to cut your issue.

We can supply back issues of EPE by post, most issues from the past three years are available. An EPE index for the last five years is also available - see order form. Aternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price. Issues from Jan. 2001 onwards are also available to download from www.epemag.com.

DID YOU MISS THESE?

OCT ' 00

PROJECTS - Wind-Up Torch - PIC Dual-Chan Virtual Scope - Fridge/Freezer Alarm - EPE Moodloop Field Strength Indicator.
FEATURES - Teach-In 2000-Part 12 Interface - Ingenuity Unlimited - New Technology Update - Circuit Surgery - Peak Atlas Component Analyser Review - Net Work - The Internet Page.

NOV '00

PROJECTS - PIC Pulsometer - Opto-Alarm System - Sample-and-Hold • Handclap Switch. FEATURES - The Schmitt Trigger-Part 1 . Ingenuity Unlimited - PIC Toolkit Mk2 Update V2.4 \bullet Circuit Surgery \bullet New Technology Update - Net Work - The Internet - FREE Transistor Data Chart.

DEC '00

PROJECTS • PIC-Monitored Dual PSU-Part1 • Static Field Detector - Motorists' Buzz-Box Twinkling Star - Christmas Bubble - Festive Fader - PICtogram.
FEATURES © The Schmitt Trigger-Part $2 \cdot$ Ingenuity Unlimited © Interface - Circuit Surgery Now Technology Update - Quasar Kits Review Not Work - The Internet - 2000 Annual Index.

JAN '01

PROJECTS - Versatile Optical Trigger - UFO Detector and Event Recorder - Two-Way Intercom \& PIC-Monitored Dual PSU-Part 2. FEATURES - Using PICs and Keypads OThe Schmitt Trigger-Part 3-New Technology Update - Circuit Surgery - Practically Speaking Ingenuity Unlimiled - CIRSIM Shareware Review - Net Work - The Internet.

FEB 01
PROJECTS • Ice Alert • Using LM3914-6 Bargraph Drivers - Simple Metronome - PC Audio Power Meter.
FEATURES - The Schmitt Trigger-Part 4 Ingenuity Unlimited - Circuit Surgery - New Tectnology Update - Net Work - The Internet Free 16-page supplement - How To Use Free 16-page supplement
Graphics L. D.s With PICs.

MAR '01

PROJECTS • Doorbell Extender • Body Detector - DIY Tesla Lightning • Circuit Tester

FEATURES - Understanding Inductors - The Schmitt Trigger-Part 5 - Circuit Surgery intertace - New Technology Update - Net Work The Internet Page.

APRIL '01

PAOJECTS - Wave Sound Effect - Intrude Alarm Control Panel-Part 1 - Sound Trigger EPE Snug-Bug Pet Heating Control Centre. FEATURES - The Schmitt Trigger-Part 6 - Practically Speaking - Ingenuity Unlimited - Circuit Surgery \bullet Net Work - The Internet Page - FREE supplement - An End To All Disease.

MAY '01

PFOJJECTS - Camcorder Mixer • PIC Graphics L.C.D. Scope - D.C. Motor Controller - Intruder Alarm Control Panel-Part 2.
FEATURES - The Schmitt Trigger-Part 7 Intertace - Circuit Surgery • Ingenuity Unlimited Now Technology Update - Net Work - The Internet Page.

JUNE 01

PROJECTS - Hosepipe Controller - In-Circuit Ohmmeter - Dummy PIR Detector - Magfield Monitor.
FEATURES - Controlling Jodrell Bank • PIC1687x Extended Memory Use - Practically Speaking - Ingenuity Unlimited - New Technology Update - Circuit Surgery • Net Work - The Internet Page.

JULY '01
PROJECTS - Stereo/Surround Sound Amplifier - PIC to Printer Interface - Perpetual Projects 1-Solar-Powered Power Supply and Voltage Regulator © MSF Signal Repeater and Indicator. FEATURES - The World of PLCs e Ingenuity Unlimited - Circuit Surgery - New Technology Update - Net Work - The Internet Page.

AUG '01

PROJECTS - Digitimer - Lead-Acid Battery Charger - Compact Shortwave Loop Aerial Perpetual Projects 2 -L.E.D. Flasher - Double Perpetual Pro
FEATURES - Controlling Power Generation Ingenuity Unlimited - Interface - Circuit Surgery - New Technology Update - Net Work - The Internet Page.

SEPT'01

PROJECTS - Water Monitor - L.E.D. Super Torches \bullet Synchronous Clock Driver - Perpetual
Projects 3 -Loop Burglar Alarm - Touch-Switch Projects 3 - Loop Burglar Alarm - Touch
Door-Light - Solar-Powered Aain Alarm.
DEATURES - Controlling Flight - Ingenuity Unlimited © Practically Speaking © Circuit Surgery - New Technology Update - Net Work - The Internet Page.

OCT 01

PROJECTS • PIC Toolkit Mk3 - Camcorder Power Supply • 2-Valve SW Receiver • Perpetual Projects 4 - Gate Sentinel - Bird Scarer - In-Out Register.
FEATURES - Traffic Control - Ingenuity Unlimited - New Technology Update © Circuit Surgery Interface - Net Work - The Internet Page - Free 2 CD-ROMs - Microchip 2001 Tech Library.

NOV '01

PROJECTS • Capacitance Meter • Pitch Switch Lights Needed Alert - Teach-In 2002 Power Supply. FEATURES • Teach-In 2002 - Part $1 \bullet$ Practically Speaking - Circuit Surgery - Now Technology Update - Ingenuity Unlimited Net Work - The Internet Page - Free 16-page Supplement - PIC Toolkit TK3 For Windows

DEC 01

PROJECTS • Ghost Buster - PIC Polywhatsit • Twinkling Lights \bullet Mains Failure Alarm.
FEATURES - Teach-In 2002 - Part 2 - Marconi The Father of Radio - Interface - Ingenuity Unlimited - Circuit Surgery - New Technology Update - Net Work - The Internet Page - 2001 Annual Index.

Jan 02

PROJECTS • PIC Magick Musick - Time Delay Touch Switch - Versatile Bench Power Supply \bullet Forever Flasher.
FEATURES • Teach-In 2002 - Part $3-$ Practically Speaking • Ingenuity Unlimited - New Technology Update - Circuit Surgery • Net Work - The Internet Page.

BACK ISSUES ONLY $\mathbf{~} 3.30$ each inc. UK p\&p.

Overseas prices $£ 3.80$ each surface mail, $£ 5.25$ each airmail.
We can also supply issues from earlier years: 1998 (except Jan. to May, July, Nov., Dec.), 1999, 2000 (except Feb., July). Where we do not have an issue a photostat of any one articie or one part of a series can be provided at the same price.

ORDER FORM - BACK ISSUES - PHOTOSTATS- INDEXES

\square Send back issues dates
\square Send photostats of (article title and issues date)
\square Send copies of last five years indexes (£3.30 for five inc. p\&p - Overseas $£ 3.80$ surface, $£ 5.25$ airmail)
Name
Address
\square I enclose cheque/P.o./Dank drath to the value of $£$
\square Please charge my Visa/Mastercard/Amex/Diners Club/Switch £
Switch Issue No.
Card No.
Card Expiry Date

Note: Minimum order for cards $£ 5$.
SEND TO: Everydey Practical Electronice, Wimborme Publishing Lid., 408 Wimborne Road East, Ferndown, Dorset BH2Z aND. Tel: 01202873872 . Fax: 01202874562.
E-mall: orders epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.ca.uk/shopdoor.htm
Payments must be in £ sterling - cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order Send a copy of this form, or order by letter tf you do not wish to cut your issue.

DISTANCE LEARNING SHORT COURSES with BTEC CERTIFICATION

Analogue and Digital Electronics, Fibre Optics, Fault Diagnosis, Mechanics, Mathematics and Programmable Logic Controllers

- Suitable for beginners and those wishing to update their knowledge and practical skills
- Courses are very practical and delivered as self contained kits
- No travelling or college attendance
- Learning is at your own pace
- Each course can stand alone or be part of a modular study programme
- Tutor supported and BTEC certified

For information contact:
NCT Ltd., P.O. Box 11
Wendover, Bucks HP22 6XA
Telephone 01296 624270; Fax 01296625299 Web: http://www.nct.Itd.uk

Radio

 BygonesWheTher your interest is in domesiac radio and TV or in amateur radio, in military, aeronautical or marine communications, in radar and radio navigation, in instruments. in broadcasting, ir audio and recording, or in professional radio systems fixed or mobile, RADIO BYGONES is the magazine for you.
Articles on restoration and repair. history, circuit techniques, personalities, reminiscences and just plain nostalgia - you'll find them all. Plus features on museums and private collections and a full-colour photo-feature in every issue.
ITs mastly about valves, of course. but 'solid state' - whether of the coherer and spark-gap variety or early transistors - also has a place.
From the days of Maxwell, Hertz, Lodge and Marconi to what was the state-of-the-art just a few short years ago

There is also a selection of free readers' For Sale and Wanted advertisements in every issue.

Radio Bygones covers it all!

The magazine is published six times a year, and is only available by postal subscription. It is not available at newsagents.
To take out a subscription, or to order a sample copy, please contact:
Radio Bygones, Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: $01202873872 . \quad$ Fax 01202874562.
Web sites: www.radiobygones.co.uk
www.radiobygones.com

ELECTRONICS CD-ROMS

ELECTRONICS PROJECTS

Logic Probe testing

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix's CADPACK schematic capture, circuit simulation and p.c.b. design software is included. The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NE555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ANALOGUE ELECTRONICS

Complimentary output stage

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals - Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections). Op.Amps - 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers - Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections). Filters - Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Fitters (6 sections) Oscillators - 6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS

Virtual laboratory - Traffic Lights

Filter synthesis

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits \& Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, and bistables - including JK and D-type flipflops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. AD and D/A converters, traffic light controllers, memories and microprocessors - architecture, bus systems and their arithmetic logic units.

FILTERS

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of lowpass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, bandpass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

DIGITAL WORKS 3.0

Counter project
Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability.

- Software for simulating digital logic circuits
- Create your own macros - highly scalable
- Create your own circuits, components, and i.c.s
- Easy-to-use digital interface
- Animation brings circuits to life
- Vast library of logic macros and 74 series i.c.s with data sheets
- Powerful tool for designing and learning

ELECTRONICS CAD PACK

PCB Layout
Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICEbased simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules. (These are restricted versions of the full Labcenter software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. PROSPICE Lite (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots. etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an autorouter operating on user generated Net Lists.

"C" FOR PICMICRO MICROCONTROLLERS

C for PICmicro Microcontrollers is designed for students and professionals who need to learn how to use C to program embedded microcontrollers. This product contains a complete course in C that makes use of a virtual C PICmicro which allows students to see code execution step-by-step. Tutorials, exercises and practical projects are included to allow students to test their C programming capabilities. Also includes a complete Integrated Development Environment, a full C compiler, Arizona Microchip's MPLAB assembler, and software that will program a PIC16F84 via the parallel printer port on your PC. (Can be used with the PICtutor hardware - see opposite.)
Although the course focuses on the use of the PICmicro series of microcontrollers, this product will provide a relevant background in C programming for any microcontroller.

PRICES
Prices for each of the CD-ROMs above are:
(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

Interested in programming PIC microcontrollers? Learn with PICtutor

Hobbyist/Student

PICtutor CD-ROM Institutional 10 user (Network Licence) . $£ 199$ plus VAT
experimental a with special emphasis on the PIC16×84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop. This interactive presentation uses the specially developed Virtual PIC Simulator to show exactly what is happening as you run, or step through, a Simulator to show exactly what is happening as you run, or step through, a
program. In this way the CD provides the easiest and best ever introduction to the program. In this way the CD provides the easiest and best ever introduction to the
subject. Nearly 40 futorials cover virtually every aspect of PIC programming in an subject. Nearly 40 tutorials cove
easy to follow logical sequence.

HARDWARE

Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work.
Two levels of PICtutor hardware are available - Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials. The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus l.c.d. and 4-digit 7-segment l.e.d. displays. It allows users to program and control all functions and both ports of the PIC. All hardware is supplied fully built and tested and includes a PIC16F84.

harDWARE

Standard Development Kit 47 inc. VAT Deluxe Development Kit Deluxe Export Version

99 plus VAT .$\varepsilon 96$ plus VAT

ELECTRONIC COMPONENTS PHOTOS
A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as wel as worldwide web pages (subject to restrictions - see licence for full details).
Also contains a FREE 30-day evaluation of Paint Shop Pro 6 Paint Shop Pro image editing tips and on-line help included!

Price $£ 19.95$ inc. Vat
(UK and EU customers add VAT at 17.5\% to "plus VAT" prices)

Circuit simulation screen

ELECTRONIC CIRCUITS \& COMPONENTS V2.0

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ. A level and HNC). It also contains ooth European and American circuit symbols. Sections include: Fundamentais: units \& multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors transformers. Semicónductors: diodes, transistors, op.amps, logic gates. Passive Circults. Actlve CIrcults. The Parts Gallery will help students to recognise common eiectronic components and their corresponding symbols in circuit diagrams: Selections include: Components, Components Qulz, Symbols, r circuit diagrams: Selections include
Symbols Qulz, Circult Technology.
Symbois Quiz, Circuit Technology.
Included in the Institutional Versiors are multiple choice questions, exam style questions rycluded in the Institutional versiors are multiple choice quests.
Hobbyist/Student . 245 inc VAT Institutional (Schools/HE/FEAndustry) . $£ 99$ plus VAT Institutional Site Licence

ELECTRONICS IN CONTROL
Two colourful animated courses for students on one CD-ROM. These cover Key Stage 3 and GCSE syllabuses. Key Stage 3: A pictorial look at the Electronics section featuring animations and video clips. Provides an ideal introduction or revision guide, including multi-choice questions with feedback. GCSE Aimed at the Electronics in many Design \& Technology courses, it covers many sections of GCSE Electronics. Provides an ideal revision guide with Homework Questions on each chapter. Worked answers with añ access code are provided on a special website.

Single User £29 Inc. VAT. Multiple User $£ 39$ plus VAT
Student coples (avallable only with a multiple user copy) $\mathbf{5}$ plus VAT (UK and EU customers add VAT at 17.5% to "plus VAT" prices)

MODULAR CIRCUIT DESIGN

Contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symoois to design and build their own projects. Version 3 includes data and circuit modules for a range of popular PICs; includes PICAXE circuits, the system which enables a PIC to be programmed without a programmer, and without removing it from the circuit. Shows where to obtain free software downloads to enable BASIC programming Essential information for anyone undertaking GCSE or "A" level electronics or teçhnology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output modules are illustrated and fully described, together with delailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User £19.95 inc. VAT. Muitipie User £34 plus VAT
Single User £19.95 inc. VAT. Multipie User E34 plus Vat
(UK and EU customers add VAT at 17.5% to "plus VAT" prices)

Minumum system requiremens for these CD-ROMs: Pentium PC, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows $95 / 98 / \mathrm{NT} / 2000 \mathrm{ME}$, mouse, sound card, web browser.

Please send me:
 CD-ROM ORDER FORM

\square Electronic Projects
\square Analogue Electronics
Digltal Electronics
Fliters
Digital Works 3.0
\square Electronics CAD Pack
C For PICmicro Microcontrollers
PICtutor
Electronic Circuits \& Components V2.0
PICtutor Development Kit - Standard
PiCtutor Development KIt - Deluxe
Electronic Components Photos
Electronics In Control - Single User
Electronics In Control - Single User
Electronics in Control - Multiple User
Modular Circuit Design - Single User
Modular Circuit Design - Multiple User
Full name:
Address:
Version required:
\square Hobbyist/Student institutional Institutional 10 user Institutional site licence

Note: The software on each version is
the same, only the licence for use varies.

Note: The soltware on each Note: The solware on each
version is the same (unless stated otherwise above), only siated otherwise above), on
the licence for use varies.

Note: The CD-ROM is not included in the Development Kit prices.

ORDERING
 ALL PRICES INCLUDE UK POSTAGE
 Student/Single User/Standard Version price includes postage to most countries in the world
 EU residents outside the UK add 55 for airmail postage per order

Abstract

Institutional, Multiple User and Deluxe Versions - overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add $171 / 2 \%$ VAT or provide

 your official VAT registration number). 408 Wimborne Road East Ferndown, Dorset BH22 9ND> To order by phone ring

01202873872 . Fax: 01202874562
Goods are normally sent within seven days E-mail: orders 9 wimborne.co.uk
www.epemag.wimborne.co.uk/shopdoor.htm

$$
\begin{aligned}
& \text { Send your order to: } \\
& \text { Direct Book Service } \\
& \text { Wimborne Publishing Ltd } \\
& 408 \text { Wimborne Road East }
\end{aligned}
$$

I enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$ Please charge my Visa/Mastercard/Amex/Diners Club/Switch: \mathcal{E}.Card expiry date:

Card No: Switch Issue No.

CIRCUIT SURGERY

ALAN WINSTANLEY and IAN BELL

This month, our surgeons attempt to unravel the confusion surrounding the choice of fuse ratings, plus a positive answer to electrolytic capacitors.

Utterly Con-fused

An EPE regular reader, Malcolm Wiles, asks:
"The 'fuse ratings' letter of the month (Readout, December 2001) was interesting, but I have to say a bit over my head. From the info. given I would not be able to construct a suitable tester.

What's a peak reading a.c. ammeter or an audio-type PPM EMC-type quasi-peak voltmeter? As this is an important safety issue, I wonder if your circuit surgeons would consider going into this topic in a bit more detail sometime?"

Help is at hand, Malcolm. I thought it would be interesting to start by examining the problems faced by engineers working in the power generation industry, which might make it easier to relate to the ordinary fuses that we use ourselves every day. Then we'll examine the basic issues of trying to determine the best values for fuses used in home-built projects.
Imagine an electrical circuit breaker on an enormous scale, such as one used in an electricity power station that is used to control thousands of amperes and tens of thousands of volts. As readers will know, high voltages can "jump" quite a distance (many metres), which is why it is always extremely dangerous to go or play near any high-voltage equipment or pylons: even though you cannot see any perceptible "circuit", high voltage arcs can jump through the air and cause electrocution.
The same principle applies within a fuse, whose job it is to disconnect the supply when a fault condition arises. We all rely on fuses to melt in good time and disconnect the supply; in the UK a fuse is always built into a standard mains plug but this really only protects the mains cord. A fuse is needed in the equipment to prevent an electrical fire occurring.
When you remember that an ordinary fuse ultimately does the same job as an onoff switch (but isn't designed as one!), the same problems that are faced by "switchgear" also apply to fuses themselves. In the electricity power industry, fault currents that switchgear have to cope
with can reach a quarter of a million amperes at hundreds of megavolts: when a circuitbreaker is opened, the contacts separate and interrupt the current.
This generates an electric arc between the two contact points. It is possible for this arc to cause a current to continue to flow, because of the ionisation that takes place around it. A hot ribbon of electrically conducting vapour can be created so that although the switch contacts are "open", the circuit hasn't been interrupted properly.
In a modern power station, the circuit breakers are gas-filled to prevent this. Whilst in older systems, the switchgear generated large arcs several feet long, accompanied by a deafeningly loud bang. Some of the largest circuit breakers used a blast of air to open the contacts and also blow out the arc!
The problem of extinguishing that arc affects the design and choice of an ordinary fuse: on a much smaller scale, when a fuse melts, will it really interrupt the circuit properly? Will it be able to handle the magnitude of the fault current or will it explode like a burning resistor?
Or will it arc internally across the gap, even for a short time, so that the circuit is not properly isolated? This could allow the electrical fault to cause more damage to the apparatus, especially if semiconductors are involved, leading to component failure elsewhere.

Leaps and Volts

The first aspect we consider is the voltage rating of a fuse. If only the current is important, then why is a voltage rating also marked on fuses? What difference does it make? American users ask if it is all right to use a 230 V a.c. fuse instead of a 125 V a.c. fuse, and Americans currently in the UK wonder how safe is it to use their 125 V fuses on the British 230 V supply.
Strictly speaking, a fuse's voltage rating should not be lower than the circuit voltage itself, but it can safely be higher. Imagine a cartridge fuse designed for use in a 6 V a.c. system (I don't think there's such a thing, but imagine anyway). If it were used in a 230 V a.c. mains circuit instead, when a fault occurred it would not "melt" in a
controlled way but would probably explode instead.
The voltage value relates to a fuse's ability to interrupt a circuit efficiently without internal arcing or other forms of failure (shattering, explosion), and when a melting fuse is racing a power semiconductor to destruction then microseconds can matter. So a 230 V a.c. fuse can be used on a 125 V a.c. circuit, but not the other way round.

A comparison between a miniature 20 mm fuse and a $11 / 4 \mathrm{in}$. ($3 A G$) type. The smaller type is universally used in most European equipment

The manufacturer Siemens states that it is acceptable, for example, to use a 600 V fuse in a 480 V circuit, but a 250 V fuse could not be used in a 480 V circuit (www.sea.siemens.com/training/step 2000/courses). Nevertheless, people do use wrong voltage ratings in circuits at times, which means that they will not have the optimum protection.
In lower-output circuits, e.g. a d.c. supply, since the impedance of the circuit may restrict the maximum current that can flow anyway, then to ensure that the fuse will still blow properly should a fault current flow, a lower voltage fuse may be specified at that time. Equipment manufacturers would take account of such factors.

Currently Confused

The fuse's current rating is obviously the most critical aspect. There are actually several current ratings involved. Note that
the value printed on a fuse is its current carrying rating, i.e. the amount of current it can carry continuously without breaking! It is not the value at which the fuse melts! It is unreliable to constantly operate a fuse at its maximum rating, as it can age over time and then blow prematurely.
The next question is usually, "at what current will the fuse actually melt?" This depends on many factors including the duration of the fault and, very importantly, the ambient temperature around the fuse.
Overall the melting point is a function of $I^{2} t$ measured in ampere-squared seconds. which is why you cannot simply say that the fuse will blow at x amperes. It also takes time to melt and this in turn depends on several conditions including duty cycles, how much heat is being dissipated away from the fusewire in between times, and surge currents.

A 1in. 3A ceramic fuse as fitted into most UK mains plugs. They may be sand-filled to prevent internal arcing.

A breaking capacity figure may be quoted, which indicates the maximum instantaneous fault current at which the fuse will safely melt without rupturing (exploding). You can however calculate reasonable fuse values without too much difficulty, as I'll explain next.
The Teach-In 2002 Power Supply (see November 2001 issue) used a 250 mA quick-blow fuse on the mains primary. Since the project was built, the fuse has actually blown once due to nuisance tripping, probably caused by a surge on the d.c. side when the power pack was hot and the fuse was more "sensitive".
A crude way of choosing a fuse is to estimate the currents in the mains primary circuit by using $P=I V$, because the power input is the same as the power output by the mains transformer. Then select a fuse from there (say, 50% higher than the maximum working current, being mindful of mains wiring ratings etc. as well).
It was estimated that under 100 mA or so maximum mains current would flow in normal use and so a 250 mA 250 V 20 mm quick blow fuse was chosen. The mains plug is fitted with a 3 A lin. ceramic fuse as well, which will disconnect the supply in the event of mains power cord faults.
Clearly, too high a fuse value would be a fire hazard, but too low a figure results in annoying tripping. If necessary, use a slowblow fuse to protect against switch-on surges caused when the smoothing capacitors charge up for the first time. Glass anti-surge fuses often contain a coiled fusewire inside.

Better Fuses

A better way of fusing a circuit is to examine what is really going on in the circuit itself. In the case of a d.c. power supply, a higher r.m.s. current flows around
the secondary and bridge rectifier/smoothing capacitor circuit than is actually "seen" by the load at the d.c. output. As stated in the constructional article, this means that the total d.c. load allowed is only about 600 mA or so, but higher secondary r.m.s. figures (1 A) will be reflected by the current flowing in the primary.
It is possible to examine this by looking at the actual voltage developed across a series resistor in the mains lead: the Readout correspondent suggested using test equipment across a 0.1 ohm resistor, powering the whole lot via a mains isolation transformer. This is a very accurate method but is probably a bit risky for the average constructor. The most practical advice I have seen is to use a True RMS meter to measure the true r.m.s. current flowing in the mains side, then choose a fuse 50 per cent higher. (Reference: The Art of Electronics, Honowitz and Hill). This again is quite ambitious for many hobbyist designers.

The US manufacturer Littelfuse appears to suggest that you could take the maximum operating current and calculate a fuse by derating it 25% at $25^{\circ} \mathrm{C}$ to avoid nuisance blowing, so a 10A fuse would protect a 7.5 A load current. Therefore, the Teach-In 2002 Power Supply would require a slow-blow fuse of say 125 mA or 160 mA , both of which are readily available. I feel my 250 mA quick blow type is acceptable protection though. Designers are limited anyway in their choice, due to the range of fuse values they can buy off-the-shelf in the first place.

A 20 mm glass anti-surge fuse; the coil of fusewire prevents the fuse from melting due to any switch-on surge or inrush current.

As for the types of fuses themselves, in Europe and beyond we tend to use metric $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ diameter types for currents up to roughly 10 A or so. These are found universally within electronics equipment. Some fuses are filled with silver sand to extinguish the arc - an HRC (high rupturing capacity) fuse is sand-filled and is generally manufactured to tighter tolerances.

A larger size is the $11 / 4 \mathrm{in} . \times 1 / 4 \mathrm{in}$. diameter type which is available in higher current ratings (from 60 mA all the way up to 32 amperes). In the USA these are known as $3 A G$ types (AG means "Automobile Glass"). The smaller 8AG fuses measure lin. $x^{1 / 4} / \mathrm{in}$.

Again in Europe, letters may be used to designate their speed, with " F " meaning quick blow, and " T " meaning anti-surge. These letters are stamped on the metal end caps. Surface mount and semiconductor fuses are now available as well. A.R.W.

- An excellent document entitled "Fuseology" has been published by the fuse manufacturer Littelfuse, available for download as a PDF from wwwlittelfuse.com and definitely worth reading.

Electrolytics Unravelled

Tamer Salem emailed to ask "Electrolytic capacitors have positive and negative (polarised) terminals, so how do they pass a.c. current, as the a.c. is alternating between positive (+ve) and negative (-ve)?"

The simple answer is that electrolytic capacitors are not used where they can be exposed to the incorrect polarity - so they must not be used in circuits in which an a.c. signal will apply reverse polarity, however there are many situations where they can be used safely.
Electrolytic capacitors achieve their high density of capacitance per volume because the insulating layer (dielectric) is very thin. This is achieved using electrolytical-ly-deposited aluminium oxide rather than, for example, a thin sheet of plastic held between two metal foils.
However, the electrolytic nature of the dielectric means that it can be broken down electrically, which is what happens if you reverse the connections. The consequences can be severe, including fire and explosions - at the very least the capacitor will be damaged.
A typical application of electrolytic capacitors is in power supply smoothing. Electrolytic capacitors can be connected to the outputs of rectifiers because the rectification diodes ensure the signal polarity does not change, only the voltage amplitude varies.
Electrolytics can also be used to couple or filter a.c. signals (in amplifiers etc.) as long as the d.c. bias conditions in the circuit ensure that the polarity is never reversed. In this sense the capacitor will "pass a.c." but the bias ensures that the terminals are not "alternating between $+v e$ and $-v e$ ".
In oscillators for which electrolytic capacitors are suitable, the capacitors are charged and discharged as the circuit switches but again, the polarity does not change. It is possible for the plates of an electrolytic (or other) capacitor to be outside the supply voltage range (e.g. below 0 V in a single supply system) but this does not require a change of polarity.
For example, if an electrolytic capacitor is charged to +5 V , with 0 V on the negative plate and 5 V on the positive plate, and then the positive plate is quickly switched to 0 V with the negative plate free to vary, the negative plate will fall to -5 V , but the polarity of the voltage across the electrolytic will not have changed. I.M.B.

Two examples of electrolytics. The axial type (left) has "arrows" pointing to its negative $(-)$ end. The radial type (right) has a band or arrows on one side to indicate its negative $(-)$ lead. Some electrolytics indicate their positive connection with a plus (+) symbol.

TEACH-IN 2002 Part Four - Good Vibrations - Measuring Stress, Strain and Vibration

IAN BELL AND DAVE CHESMORE

Making Sense of the Real World: Electronics to Measure the Environment

LAST month, prior to examining humidity sensors, we discussed op.amps in relation to their offset voltages and bias currents and how these can affect the accuracy of sensor output measurements.
This month we examine strain sensors, which typically produce extremely small changes in output signal. Such small signals can easily be distorted by other external conditions. So it is appropriate to first discuss various ways in which signal errors and imperfections can be minimised. We then examine strain sensors themselves and also look at piezoelectric vibration sensors.

Then, in Lab Work, we describe how to build a simple rain intensity meter, and a novel knocker circuit.

SIGNALS AND NOISE

Sensors produce signals, that is varying voltages or currents, whose variation carries information about whatever we are sensing or measuring. These signals, and the signals within the circuits connected to the sensors, can take a variety of forms and are subject to various types of error and imperfection.

Last month we looked at the problem of offsets, which are basically d.c. or very low frequency errors. At frequencies higher than the slowly changing offsets, unwanted signals are usually referred to as noise or interference (see Figs. 4.1 to 4.4 for examples of various forms of noise or error). This may comprise random variations in the signal voltage or may have a very specific frequency, such as $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ mains hum, for example (Fig.4.4). We will look at random noise in more depth in a later part.

DIFFERENTIAL SIGNALS

The signals we have just discussed are called single-ended because a single wire (other than ground) is used to carry the signal. A possible problem with this approach occurs when the wire carrying the signal may pick up noise, acting as an aerial and picking up, say, radio frequency interference or mains hum.

To overcome this we can use a differential signal, which is carried on two wires (i.e. two voltages V_{1} and V_{2}) other than

Fig.4.1. A signal varying around OV. The peak value is 2 V and the peak-topeak value is 4 V . The frequency is 2.5 kHz . There is no noise or error present, although the digitised sampling steps are apparent.

Fig.4.2. The signal from Fig.4.1 with a -1V offset. If you consider the signal rather than the offset the true peak value is still 2 V , even though the signal "peaks" at +1V and -3V.

Fig.4.3. The signal in Fig.4.1 with superimposed noise of a higher frequency than the signal.

Fig.4.5. Differential signal. The signal is the difference between V_{1} and V_{2} and therefore has a peak value of 1 V and a peak-to-peak value of 2 V .

Fig.4.6. Differential signal with a common mode noise. The difference between these waveforms is the same as the signal in Fig.4.5.

Fig.4.7. Zooming in on the first part of Fig.4.6 to see more clearly that the noise is common mode - i.e. the error goes in the same direction on both waveforms.

Fig.4.4. The signal in Fig.4.1 with superimposed noise of a lower frequency than the signal. This is about 0.2 V peak of 50 Hz mains hum. Note that the waveform is displayed over a longer period than Fig.4.1 so that the noise is more obvious to see.
ground. Fig. 4.5 shows a differential signal with a peak voltage of 2 V and a peak-topeak voltage of 4 V . Note that this is the difference between V_{1} and V_{2}.

With a differential signal, if the signal voltage on one wire increases then the signal voltage on the other wire decreases by exactly the same amount. The actual signal is equal to the difference in the voltages on the two wires measured with respect to ground. So if the two voltages on the two wires are V_{1} and V_{2} the signal V_{s} is $\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$.

If the two wires run closely parallel, then the same error (e.g. mains hum, interference, etc.) will occur on each wire. If this error is δ (delta) then the voltage on wire 1 will become $\mathrm{V}_{1}+\delta$ and the voltage on wire 2 will become $\mathrm{V}_{2}+\delta$. The signal is the difference between the two wires, that is:

$$
\left(\left(\mathrm{V}_{1}+\delta\right)-\left(\mathrm{V}_{2}+\delta\right)\right)=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)
$$

which is the same as without the error! This is illustrated in Fig.4.6 and Fig.4.7.
The error voltage δ is common to both halves of the differential signal. It is therefore called a common mode voltage and noise of this form is called common mode noise. If the voltages on the two wires are V_{1} and V_{2} the common mode signal V_{cm} is $\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / 2$ (i.e. the average of the voltage on the two wires).

Differential signals quite often have d.c. common mode voltages, for example a 2 V peak-to-peak sine wave differential voltage with a 1.5 V common mode d.c. signal is shown in Fig.4.8.

Fig.4.8. 2 V peak-to-peak differential signal with 1.5 V common mode voltage.

DIFFERENTIAL SIGNALS AND SENSORS

Differential signals are used quite commonly in sensor systems. They have applications such as temperature compensation and reducing the effects of interference if signals have to travel over relatively long wires. Closely spaced long wires carrying a differential signal will pick up interference, but this will influence both wires equally and hence appear as a common mode signal.

For temperature compensation we arrange two sensors so that only one is subject to the condition we are measuring, but both are affected in the same way by temperature changes. Alternatively, we can use two sensors, configured so that the output of one will increase as other decreases under the influence of the measured quantity, but with both experiencing the same temperature.

In both cases the unwanted changes in sensor output due to temperature changes appear as a common mode signal, whereas the measured quantity is differential.

Fig.4.9. Basic Bridge Circuit

BUILDING BRIDGES

A common approach to generating a differential signal from a sensor, or sensor combination, is to use a bridge circuit. In its most basic form, the bridge circuit consists of two resistive potential dividers as shown in Fig.4.9.

The four sections of the bridge (shown here as four resistors, R1 to R4) are generally referred to as the arms of the bridge. The sensor or sensors may be in any one or more of the arms. Bridges do not have to be simply resistive, we can make capacitive and inductive bridges too.

A voltage, V_{s}, is applied across the bridge, in many cases this is simply the power supply of the circuit, although it may be some other voltage and may even be an a.c. signal. The output voltage is the difference between the two potential divider voltages.

In the simplest bridge circuit only resistor R1 is a sensor, the other resistors are fixed and typically all have the same value, equal to the nominal value of the sensor.

For temperature compensation, R1 is the active sensor and $\mathbf{R} 2$ is another sensor isolated from the measurement quantity, but at the same temperature as R1.

For some sensor systems, such as strain measurement, it is possible to arrange two sensors that have equal and opposite responses to the quantity being measured (i.e. one increases in resistance and the other decreases as the quantity changes).

In such cases we can build push-pull bridges in which either R1 and R2 are opposite sensors and R3 and R4 are fixed (single push-pull), or in which RI and R4 are equal (say) negative-response sensors and R2 and R3 are equal (in this case) pos-itive-response sensors (double push-pull). Single push-pull provides twice the output signal of a simple bridge and double pushpull four times as much.

SOURCE RESISTANCE AND LOADING

When connecting sensors or bridge circuits to amplifers (or other circuits) we need to be aware of the possible problem of loading the sensor or bridge with the amplifier input. If a sensor outputs a voltage we can view it as an ideal voltage source (V_{s}) in series with a resis. tance (R_{s}), called the internal or source resistance. This is

Fig.4.11. Sensor and amplifier.

Fig.4.12. Equivalent circuit for Fig.4.11 when the sensor resistance is 100 ks .
output using the full 0 V to 12 V range of the supply. The details of its implementation are not important, except to note that we know the input resistance of the amplifier is R_{r}.

The values in the equivalent circuit shown in Fig.4.12 vary depending on the resistance value, so we will just look at what happens when the sensor has a value of $100 \mathrm{k} \Omega$.

MORKED EXAMPLE

The value of V_{s} is simply the open circuit voltage - i.e. the output voltage with no load, which we have already mentioned. This is easy to calculate in this case, as it is simply the potential divider voltage. When the sensor has a value of $100 \mathrm{k} \Omega$ this is 4.80 V as previously stated.

The value of R_{S} is a little more difficult: It is calculated by taking the short circuit output current from the original circuit and finding the resistance that would give the same short circuit current with V_{s}.

The short circuit output current for our potential divider occurs when we connect the potential divider point to ground. The current is $12 \mathrm{~V} / 150 \mathrm{k} \Omega=80 \mathrm{~mA}$. To get 80 mA with 4.8 V we need $4.8 \mathrm{~V} / 80 \mathrm{~mA}=$ $60 \mathrm{k} \Omega$. So $R_{s}=60 \mathrm{k} \Omega$ when the sensor has resistance $100 \mathrm{k} \Omega$. Note that in this case the value of R_{s} is equal to the parallel combination of R_{1} and the sensor.

We can now draw the equivalent circuit as shown in Fig.4.12. From this, and using the loading equation (Equation 1) from earlier, we can see effect of R_{I}. If R_{1} is, say, $5 \mathrm{k} \Omega$ we get $4.8 \times 5 /(60+5)=$ 0.37 V input to the amplifier rather than the 4.8 V we would hope for. However, if we use an amplifier with an R_{1} of $50 \mathrm{M} \Omega$ we get 4.79 V at the amplifier input, pretty close to what we want. For other sensor resistance values we could perform similar calculations.

In this example we could use the equivalent circuit with the voltage source even though the sensor itself does not generate a voltage. Electronics designers often use equivalent circuits. Using sets of rules and often some approximations, they transform a "real" circuit into a simpler equivalent that behaves in the same way (at least with respect to something they are interested in).

Equivalent circuits contain fewer "components" (they are abstract rather than real components) which makes subsequent calculations a lot easier. Furthermore, comparisons between different circuits transformed into the same equivalent circuit are easy to make. The Thevenin equivalent circuit is good example of this approach as all "sources" are represented in a similar way.

PANEL 4.1. Stress and Strain

If we consider a metal rod of length L metres (m) and cross-sectional area A square metres (m^{2}) as shown in Fig.4.13 and we apply a force F Newtons (N) in such a way as to pull the rod apart, we can define the tensile stress as

Tensile Stress $=\frac{F}{A}$
the units are in Newtons per square metre Nm^{-2}
The strain is defined as the change in length due to the force divided by the length, i.e. the fractional change in length. The change in length is usually written as $\Delta \mathrm{L}$ where Δ means change. So the tensile strain is defined as:
Tensile Strain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}$
this has no units
Application of a force in the opposite direction so as to push the rod together gives compressional stress and compressional strain. A third form, shear stress/strain is obtained when we try to push the material sideways. In this case, the shear strain is defined as:
Shear Strain $=\frac{\Delta X}{L}$

FORCE EFFECTS

Having highlighted how small signals can be kept relatively free from errors and imperfections, we can now examine how small levels of stress and strain in materials can be measured.
Measuring force effects on materials is one of the most common applications for sensors. For example, all weighing machines rely on the weight of the object to be determined to produce a force that can be measured.

Pressure sensors operate in a similar manner, whereby the pressure difference between one side of a diaphragm and the other causes the diaphragm to move and experience a force. Accelerometers use changes in force caused by changes in speed.

In most cases, these forces cause changes in an elastic material, which in turn change its resistance or other properties, the change can then be measured to obtain the force.

STRESS AND STRAIN

Let's look first at the effects of applying a force to a solid object such as a bar of metal. Such a force is called stress but it is not the same stress we get when our computer stops working yet again, although we may very well want to apply considerable force to the computer!

If we look at the constitution of a metal at the atomic level, it is a lattice of atoms held together in equilibrium and the spacing between atoms determines the physical size of the object. When we apply a force, the atoms will re-arrange themselves in order to keep equilibrium. The atomic spacing will change and so will the physical dimensions, i.e. the object will deform. This resulting deformation is called a strain. Panel 4.1 and its Fig.4.13 give a detailed description of stress and strain.
where ΔX is the change in width and L is the width of the object. If we plot on a graph the change in strain for various values of stress we get a straight line until the point where necking occurs, i.e. the material suddenly becomes softer and thinner. The material finally breaks if stress is further increased.
The slope of the line is called the modulus of elasticity or Young's Modulus (E) and is equal to stress divided by strain. Different materials have different values of E . For example, aluminium has $\mathrm{E}=$ 6.89×10^{10}, copper 11.73×10^{10} and polyethylene (a form of plastic) $3.45 \times$ 10^{8}.

Fig.4.13. Forces on a rod of metal.

STRAIN GUAGES

So how do we create a sensor that can measure strain? As you may know, a length of wire of any metal has a resistance (R_{0}) which depends on its length (L_{0}), cross-sectional area (A_{0}) and resistivity (ρ in $\Omega \mathrm{s}$) as follows:

$$
\mathrm{R}_{0}=\rho \frac{\mathrm{L}_{0}}{\mathrm{~A}_{0}} \Omega \quad \text { (Equation 2) }
$$

When the wire is stressed, its length will increase by $\Delta \mathrm{L}$ and its area decreases because the overall volume of the wire remains constant. Without going through the mathematics, the approximate change in resistance due to the length and area changes is:

$$
\left.\Delta \mathrm{R} \approx 2 \mathrm{R}_{0} \frac{\Delta \mathrm{~L}}{\mathrm{~L}_{0}} \quad \text { (Equation } 3\right)
$$

This equation shows that the strain $\left(\Delta \mathrm{L} / \mathrm{L}_{0}\right)$ is converted directly into a change in resistance. A sensor based on this principle is called a strain gauge and is a length of metal wire or foil glued to the object whose strain is to be measured. When the object is deformed so is the strain gauge.

A typical strain gauge is illustrated in Fig.4.14 and consists of a wire or foil arranged in a specific pattern. The idea is to

Fig.4.14. Layout of a typical strain gauge

Example of a dual strain gauge module.
cause the wire to change length by as mucn as possible when a force is applied in one direction only, i.e. it is unidirectional. The pattern is designed so that the length of the strain gauge is as long as possible.

Before we start using strain gauges in circuits there is one more thing to consider - the gauge factor (GF). The GF of a strain gauge determines its operating characteristics and is an accurate measure of the strain-resistance relationship we have just described (Equation 3). Impurities in the metal, and indeed the type of metal, lead to small deviations from the ideal and the GF takes this into account. GF is defined as:

$$
\left.\mathrm{GF}=\frac{\Delta \mathrm{R} / \mathrm{R}}{\Delta \mathrm{~L} / \mathrm{L}} \quad \text { (Equation } 4\right)
$$

Gauge factor is always close to a value of two for metal strain gauges but can be as high as 10 for special alloys or gauges made of carbon. The larger the value of GF the better, since we get a larger change in resistance for a given value of strain. Typical resistance values for commercial strain gauges are $60 \Omega, 120 \Omega, 240 \Omega, 500 \Omega$ and 1000Ω.

How much does the resistance of a strain gauge change by? Strain values are usually very small as it requires a lot of force to stretch a wire A typical value might be 0.001 , corresponding to a change of 1 mm

Fig.4.15. Using a dummy strain gauge for temperature compensation.

PANEL 4.2. Strain Gauges in Use

Strain gauges are delicate components that need to be handled very carefully. They usually have two very fine wires and are supplied with miniature selfadhesive printed circuit boards carrying two copper tabs. Once a strain gauge has been affixed to the item to be measured, the p.c.b. should be attached close to the gauge and the fine wires soldered to one end of the tabs. Stronger wires can then be soldered to the other pads on the p.c.b., which can then be connected to the main measurement circuit.

Strain gauges must also be "matched" to the metal, i.e. if we are using aluminium then we must use strain gauges designed to be matched to aluminium. This is because the strain gauge will have the same temperature coefficient and will expand at the same rate as the metal if the temperature changes. The most common gauges are matched to steel or aluminium.

A strain gauge is attached to a metal substrate simply by gluing it. The adhesive
chosen should ideally be non-elastic (e.g. an epoxy adhesive) otherwise any strain experienced by the metal will be absorbed by the adhesive and the strain gauge will not register any changes.

The small terminal carrier p.c.b. may already be coated with an adhesive backing, so it can be applied nearby, always ensuring that the surface is completely free of grease and dirt. Should the p.c.b. fall away in use, this could eventually cause damage to the strain gauge.

We have already mentioned that the change in resistance, and therefore voltage, is very small and must be amplified 1,000 times or greater. This means that the circuit is susceptible to interference and the wires connecting the gauge to the measurement circuit should be shielded, i.e. coaxial cable should be used. If this is not available then the wires should be twisted together to help cancel any noise. We will offer a practical demonstration of strain gauges in next month's Lab Work.
in a length of one metre. and would lead to a change in resistance of only $0 \cdot 24 \Omega$ for a 120Ω strain gauge. Such small resistance changes are not easy to measure and can lead to many difficulties.

USING STRAIN GAUGES

As we have seen, the change in resistance is small and if we pass a current through the strain gauge, the resulting voltage change will also be small. We need a high gain amplifier to increase the voltage level to a usable value.

Strain gauges are also temperature sensitive and require some form of temperature compensation. However, we can use a dummy gauge placed close to the active gauge in such a way as to be insensitive to the forces (see Fig.4.15).

The two gauges are placed in a bridge circuit as shown in Fig.4.16. Any changes in temperature will be cancelled out. We can also increase the sensitivity in some applications.

Fig.4.16. Strain gauge circuit.
In next month's Lab Work we show how to build a crude weighing machine based on the bending of a metal bar where a gauge placed on the top will experience tension and a second gauge placed underneath will experience compression. Using these in a bridge will effectively give twice the output voltage, whilst also providing temperature compensation.

Example of a simple piezo disc sounder.

PIEZOELECTRIC MATERIALS AND SENSORS

Piezoelectric material produces a voltage if it experiences a force and also bends if a voltage is applied. This is the basis for all crystals (as used in oscillators) and also for piezoelectric sounders.

A crystal and a piezo-sounder have similar construction - a thin slice of piezoelectric material placed between two conducting plates forming a capacitor. If we apply a force to one plate, we get a transient voltage produced across the plates, and conversely if we apply a voltage across the plates, the plates will bend.

A sounder operates by applying a rapidly alternating voltage. This causes the plates to bend backwards and forwards, moving the air adjacent to the plates and producing a sound. Each sounder will have a resonant frequency at which the output sound level is much stronger.

This resonance is used in crystal circuits to produce highly stable and accurate frequencies. The magnitude of the piezoelectric effect varies depending on the material used. One of the best is lead zirconium titanate (PZT).

Another piezoelectric device is known as a bimorph which consists of two layers of piezoelectric material separated by a thin layer and with electrodes on the outside layers. If an electric field is applied across
the electrodes, the bimorph will bend in a similar way to a bimetallic strip in a thermostat. The bimorph will bend in the opposite way if the field is reversed.

Similarly, it will generate a voltage if it is bent and can be used as a vibration sensor. Inexpensive bimorph elements that are readily available are 15 mm long, 2 mm wide and less than 1 mm thick. They make very good vibration sensors but are fragile and can break easily.

BIMORPHS IN ADAPTIVE OPTICS

We have all heard of the Hubble Space Telescope which is in orbit around the earth and seen the spectacular images it produces. The reason for it being above the atmosphere is that it is immune from atmospheric effects such as diffraction and turbulence.
Recently, large telescopes have been built that use a new technique known as adaptive optics which attempts to remove these effects by continuously deforming the mirror by small amounts. This could be done by solenoids but their reaction time is long they and cannot operate at high
speeds. Bimorph elements can and have been used successfully in this application.

There are some other very interesting applications of bimorphs which include miniature actuators for tiny robots (walking legs) and developing cochlear implants for deaf people where the bimorph converts electrical energy from a microphone into movement within the ear. Bimorphs are also used when precise very small (micrometres) movements are needed for positioning.

PIEZOELECTRIC CHEMICAL SENSORS

One of the most unusual applications of piezoelectric material is to sense gaseous chemicals such as carbon dioxide and sulphur dioxide. These sensors rely on the fact that thin slices of piezoelectric material will have a resonant frequency depending on the area of the slice and its thickness, which is the principle behind crystals as used for timing purposes in oscillators.

If a crystal's enclosure is cut open, a circle of material with electrodes deposited on either side will be seen. This construction is turned into a chemical sensor by placing a
thin layer of a chemical on one side of the crystal that will react with, or absorb the chemical we are looking for. If the measurand (substance to be measured) is absorbed onto the crystal, the crystal's mass will increase and its resonant frequency will drop.
Similarly, if the chemicals react, again the mass and frequency will change. Such sensors can be very sensitive and are capable of measuring in parts per billion ($1,000 \mathrm{mil}-$ lion) (micrograms) but suffer from one major drawback - the reaction may not be reversible, i.e. the sensor can only be used once, or until all the chemicals have reacted.
There are many other sensors capable of measuring forces (such as force sensing resistors) but in this part of Teach-In we are only looking at piezoelectric sensors and strain gauges. In Lab Work we show how we can use commonly available piezoelectric sounders to measure forces such as vibration, by building a novel rain detector and a doorbell that is activated by knocking on the door three times!
We will also be looking in future instalments at other sensors that use strain gauges and piezoelectric materials such as pressure sensors.

TEACH-IN 2002 - Lab Work 4

Detecting Vibrations

LOUDSPEAKERS rely for their principle of operation on the fact that applying a signal voltage across them produces a movement in the speaker "cone" or diaphragm. This causes an air displacement that, depending on its frequency, is detectable as a sound wave by the ear. Different types of loudspeaker are designed to cope with high frequencies (tweeters), or the "long throw" needed for bass notes (woofers) or frequencies somewhere in the middle (mid-range loudspeakers).
Compare this with the principle of the microphone: it is in effect a loudspeaker in reverse: sound waves impinge on the microphone diaphragm or element, which could be a crystal, a static-charged electret membrane or a "dynamic" moving coil. The movement of the microphone element consequently generates a voltage across the microphone's terminals that can then be amplified.
This month's practical Labs use a form of loudspeaker (or sounder) as an effective electronic method for detecting vibration. We provide a couple of application circuits that could readily be adapted to other applications including monitoring and security applications.
A simple piezo disc element can be utilised as a form of microphone, which will generate a tiny voltage when it detects an impact, vibration or other pressure wave

Two types of piezo sounder are readily available. A simple piezoelectric disc is

Examples of piezo sounder elements. The outer two need an external oscillating signal. The centre one is selfcontained with its own oscillator circuit.
nothing more than the sound element itself. To utilise one as a sounder or alarm tone generator, a separate oscillator driver circuit is necessary. It should not to be confused with a self-contained piezo sounder which already has the necessary tone generator incorporated into a plastic enclosure and, therefore, only a supply voltage is required.

The efficiency of modern piezo alarms is extremely high, characterised by high output levels for a relatively low power consumption; even some small units can create ear-splitting sounds.

For the following Labs, we will be using a plain piezo dise which does not have a tone generator.

Lab 4.1 Rain Intensity Meter

It is easy enough to detect the presence of rain, and even the amount of rainfall, but how about discriminating between a light shower and a torrential downpour? A good way of doing this is to sense the impact of the raindrops themselves.
Lab 4.1 will detect such vibration or a series of impacts, and it produces a d.c. voltage that is proportional to the intensity of the raindrops. A heavy shower outputs a higher voltage. It is extremely sensitive and the circuit lends itself for use in other applications.

We rely on the impact of rain drops on a piezoelectric disc (which is actually affixed underneath a plastic or metal plate) to produce a short voltage pulse. Fig.4.17 shows the complete circuit, which consists of two op.amps, the first of which, ICla, acts as a non-inverting amplifier with a gain between 3.5 and 15.5 . This can be set by VR1 to allow different sounders to be accommodated.

The output of ICla is connected to a peak detector circuit built around diode DI, resistor R4, preset VR2 and capacitor Cl . This is a basic form of sample and hold circuit and its operation is straightforward.
Imagine a positive pulse being generated by ICla, therefore diode Dl will be forward biased and so capacitor Cl will charge rapidly to the voltage of the pulse (minus 0.6 V for the diode forward voltage drop). After the amplifier pulse has

Fig.4.17. Complete circuit diagram for the piezo-disc rain sensor.
returned to zero, the voltage on the capacitor will slowly fall as it discharges to 0 V through R4 and VR2.

The time taken to fall will depend on the setting of VR2 and can be varied from approximately 5 seconds to 15 seconds. The period can be made longer by increasing the value of Cl , to suit other applications. Multiple pulses caused by rainfall will keep the capacitor charged and the voltage will remain at a given level.
The second op.amp. IClb, acts as a unity gain buffer to ensure the peak detector circuit is not unduly loaded.
The output of the circuit is a d.c. voltage that represents the intensity of the rain, but the principle is quite crude since many light drops of rain or a single heavy drop may give the same reading. Also, since the piezoelectric sounder is in effect a capacitor, it will take time to respond and at very high rainfall rate the output of the sounder will be continuous.
This circuit is therefore only a simple indicator of rainfall rate, but could easily be expanded to make a comprehensive detector and logger. especially if the output is connected to an input of a microcontroller such as a PIC.

The circuit is straightforward to build on a solderless breadboard. It can be powered using the Teach-In 2000 power supply to provide 5 V d.c. For convenience, a TL082 was utilised in our experiments, but you could try any dual FET input type.

Different sounders have been tried and the best seems to be a large area sounder. such as the KPS-100 piezoelectric sounder Virtually any sounder will work however, but remember to use a "naked" piezoelectric disc and not a self-contained buzzer.
Use trimmer preset VR1 to adjust for sensitivity and VR2 to control the decay of the signal.

PICOSCOPING VIBRATIONS

The Picoscope ADC-40 can be used to measure the output directly at pin 7 of 1 C 1 b . Select a relatively slow timebase, e.g. five seconds per division. You can demonstrate this by directly inserting the leadouts of the piezo disc into the breadboard and resting the disc on the tabletop.
By experimenting with the gain, we found the circuit would easily register a finger tapping the tabletop or fingers drumming nearby. The screenshots (next page) show the Picoscope waveforms measured

Breadboard assembly for the circuit in Fig.4.17. The sensor is not shown, but its leads can be seen at the top left.

COMPONENTS

 Works

Resistors	
R1	560 k
R2	39 k
R3	100 k
R4	470 k

All 0.25W 5\% carbon film.
Potentiome
VR1
VR2
Capacitor
C1

470k sub-min preset, horiz

Capacitor
Semiconductors

D1	1N4148 silicon diode
IC1	TL082 or similar dual
	op.amp

Miscellaneous X1	KPS-100 electric speaker
	Lab 4.2

Semiconductors

IC1 OP177, CA3140 or similar FET input op.amp
IC2 4093 quad Schmitt trigger NAND gate IC3 4520 dual counter/divider IC4 4098 dual monostable

Miscellaneous
 X1, X2 KPS-100 piezoelectric speaker (2 off)

Approx. Cost
Guidance Only
during the experiment. Notice how the voltage rose and decayed slowly as the rate of impacts changed.

You could try connecting the output to the Picoscope data logger and log the intensity of rainfall over, say 24 hours. Only allow the sensor to be impacted by rain, everything else must be kept absolutely dry.

If you decide to build the circuit into a working project, we suggest gluing the sounder to the back of a plastic or a metal box to increase the surface area and increase the chances of capturing raindrops. The box should be placed at a slight angle to allow rain to flow off the surface.

It is also a neat idea to place the circuit inside the box to form a completely
self-contained vibration or impact sensor, preferably using coaxial cable to connect to other control circuitry as required. Use silicone sealant to seal any cable exits.
Can you think of any further applications for a completely solid-state, self-contained impact detector? How about a burglar alarm that detects an impact on glass, doors or floors? By setting the sample and hold component values accordingly, you could cater for false alarms caused by minor impacts. Perhaps it could be incorporated into vehicle alarms as well.

More experienced readers will be able to add on a variety of simple circuits, perhaps based on a Schmitt trigger or a thyristor, that could be triggered by the output voltage of IC1b.

Lab Work 4.2 - Door Knocker Circuit

The circuit for Lab 4.2 is a bit of fun but could be incorporated into a novel doorbell which is activated by a number of knocks (say three) on the door. Fig.4.18 shows the circuit diagram and the first thing to notice is that the "knock" sensor based around op.amp IC1 is virtually the same as the sensor for rain intensity described in the previous experiment.

"Smoothed" rainfall monitored at IC1b.

The only difference is that the gain is fixed at about $\times 13$ to ensure we get a good pulse out when someone knocks the sounder. There is plenty of scope for experimentation; we tested a variety of different op.amps including the OP177 and the CA3140. The latter has MOSFET inputs and bipolar outputs. Be prepared to experiment with the amplifier gain values to obtain the best results in your own breadboard experiments.

The rest of the circuit may seem complex but it is quite simple to analyse. Fig.4.19 shows the timing diagram which should make the circuit's operation clearer. We start with the output of the amplifier (point A), which is a short pulse when the sounder is knocked. This pulse is made longer (point B)

Picoscope display of rainfall monitored by the circuit in Fig.4.17 at the output of IC1a.
by the low pass filter formed around the RC (resistor-capacitor) network R 4 and Cl .

Gate IC2a is a Schmitt NAND gate connected as an inverter to form a clean pulse (point C). This pulse is input simultaneously into counter IC3 and one half of a 4098 dual monostable, IC4a. The latter is connected as a non-retriggerable monostable by connecting its Q_{1} output (pin 6) to its $+\mathrm{TR}_{2}$ input (pin 4). This stops any more pulses restarting the timing pulse.

The Q_{1} output of monostable IC4a will be high for two seconds when triggered. The inverted output, $\bar{Q}_{1}(\operatorname{pin} 7)$ is connected to the reset input (RST_{1}) of counter IC3 to enable it for a period of two seconds. The idea here is to count knocks for two seconds only and there must be (say) three knocks or more for the doorbell to be activated.

KNOCK THREE TIMES

Since the counter is disabled for the first knock, it will count to two for three knocks. Between them, gates IC2b and IC2c detect this and the output of IC2c (point D) triggers a second monostable, IC4b, for about one second.

The output of IC4b (pin 10) could be used to activate a relay to sound the doorbell. Here, though, we have illustrated the principle of operation by turning on a piezo sounder (X2) for about a second. NAND gate IC2d is connected as a modest audio oscillator which is enabled by the Q_{2} output of IC4b.

An important point to note is the fact that the second monostable will be triggered only if the count is three or four and only when the two second interval has passed. You can, however, vary the values by altering the monostable timing components (R6 and C3) to suit.

Fig.4.18. Complete circuit diagram for the "knock three times" sensor.

Fig.4.19. Timing waveforms for the circuit in Fig.4.18.

Above: Breadboard layout for the circuit in Fig.4.18. Below: Sensors connected to the above layout.

It is relatively straightforward to build this circuit on a long solderless breadboard, provided you work methodically through the circuit. Use fine long-nose pliers as necessary to help insert wires.

A pair of KPS-100 piezoelectric sounders were used both for the knock
sensor and the sound element, with both elements resting on the table alongside the breadboard. It was found that by giving the table several sharp raps in succession underneath the piezo disc "microphone", the sounder operated for a short period.

Do, however, be prepared to experiment with the amplifier, as this is the most critical aspect in ensuring that the circuit functions successfully. If necessary, monitor the circuit with a logic probe or your Picoscope to check what happens when the piezo disc X 1 is subject to a tap nearby. (It is best not to knock the quite delicate piezo element itself.)

The best approach to practical design is to put the outdoor knock sensor hehind a plate which has the words on it - "Knock here 3 times to ring the doorbell". We are sure there are many other applications of this simple circuit, such as detecting something thrown at it - you could make a throwing game similar to a coconut shy and ring bells or turn on lights if a ball hits the "coconut"

We hope you enjoyed learning about some more unusual uses for piezoelectric elements. With a more serious application in mind, the circuit values could readily be adapted to warn of a series of impacts or excessive vibrations, e.g. to detect a breakin, as the need to have a rapid succession of impacts before the sounder is triggered may help prevent false alarms.

Single "knock" waveform at Fig.4.18 point D.

Triple "knock" waveform at Fig.4.18 point A.

Multiple "knock" waveform at Fig.4.18 point C.

NEXT MONTH

Next month we offer a sensitive strain gauge circuit which uses some of the principles outlined in this tutorial section. We will also be moving on to describe instrumentation amplifiers, and in forthcoming parts we will be investigating the principles behind the detection of acceleration and pressure.

Measure pH, Voltage, Humidity, Sound \& Light, on your PC!

The DrDAQ is a low cost data logger from Pico Technology. It is supplied ready to use with all cables, software and example science experiments

DrDAQ represents a breakthrough in data logging. Simply plug DrDAQ into any Windows PC, run the supplied software and you are ready to collect and display data. DrDAQ draws its power from the parallel port, so no batteries or power supplies are required.

As well as the built in sensors, DrDAQ has two sockets for external sensors. When a sensor is plugged in, the software detects it and automatically scales readings. For example, if a temperature sensor is plugged in, readings are displayed in ${ }^{\circ} \mathrm{C}$. Details are provided to allow users to develop their own sensors.

To order the DrDAQ please choose one of the following options:
i) Visit our web site and place an order over the Internet,
ii) Place an order over the phone by ringing the number below,or,
iii) Fill out the order form and either fax it, or post it back to Pico Technology.

Pico Technology Ltd, The Mill House, Cambridge Street, St Neots, Cambridgeshire. PE19 1QB Tel: 01480 396395, Fax: 01480 396296, E-mail: post@picotech.com, Web: www.drdaq.com

EPE TEACH-IN 2000 CD-ROM

The whole of the 12 -part Teach-in 2000 series by Jwhn Becker (publishec in EPE Nov '99 to Oct 2000) is now available on CD-ROM. Plus the Teach-In 2000 interactive software covering all aspects of the series and Alan Winstanley's Basic Soldering Guide (including illustrations and Desoldering).

Teach-In 2000 covers all the basic principles of electronics from Ohm's Law to Displays, including Op.Amps, Logic Gates etc. Each part has its own section on the interactive sotware where you can also change component values in the various on-screen demonstration circuits.
The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface which allows a PC to be used as a basic osciloscope.
ONLY £12.45 including VAT and p\&p
Order code Teach-In CD-ROM

PROJECT
 CONSTRUCTION

PRACTICAL REMOTE CONTROL PROJECTS
Owen Bishop
Provides a wealth of circuits and circuit modules for use in cemote control systems of all kinds; ultrasonic, infrared. optical ribre, cable and radio. There are instructions projets. But his is not all practical remote oontron projects. But this is not an, as each of these projects cuits by simply modifying parts of the design sligntly to cuits by simply modifying parts of the design sligntly to surt your own raquirements. Tris book tells you how remote control system, the use of a microcontroller in remote control, as exemplified by the BASIC Stamp and the application of ready-made ype-approved 418 MHz radio ransmitter and raceiver modules to remote control radio trans

160 pages Order code BP413 £6,49
PRACTICAL ELECTRONIC MODEL RAILWAY

PROJECTS

R. A. Penfol

The aim of this book is to provide the model railway enthusiast with a number of useful but reasonatly simple projects that are easily constructed from readly available components. Stripboard layouts and wiring diagrams are provided for each project. The projects troller pushbution pulsed controller; pulsed centrolior with simulated inertia momentum and braking. whatic signals. steam whistle sound affect. bo-tone arn sound effect: automatic two-tone horn effect: horn sound effect, automatic chlter

The final chapter covers the increasingly popular subput including circuits for computer-based controllers our signaling systems. end

151 pages \quad Order code BP384
A PRACTICAL INTRODUCTION TO SURFACE MOUNT DEVICES

Bill Mooney

This book tates you from the simplest possible starting point to a high level of competence in handworking with suriace mount devices (SMO s). The wider ub) SiM technology is also introduced, so giving a teoing for its depth and fascination
Subjects such as p.c.b. design, chip control, soldering techniques and specialist tools for SM are fully explained and developed as the book progress
Whilst the book is mainly intended as an int
it is and involuation it is also and engrossing should find it engrossing.

120 pages \quad Order code BP411
$£ 5.49$

FAULT-FINDING ELECTRONIC PROJECTS

R. A. Penfold

Starting with mechanical faults such as dry joints, short-circuits etc, coverage includes linear circuits, using a meter to make voltage checks, signal tracing techniques and fauk finding on logic circuits. The final chapter covers ways of tesing a wide

DIRECT BOOK SERVICE

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

FOR A FURTHER SELECTION OF BOOKS SEE THE NEXT TWO ISSUES OF EPE.

All prices include UK postage

range of electronic components, such as resistors, capactiors, operational amplifiers, diodes, transistors, SCRs and triacs, with the aid of only a limited amount of test equipment
The construction and use of a Tristate Contiruity Tester, a Signal Tracer, a Logic Probe and a CMOS Tester are also included.
136 pages \quad Order code BP391

TEST EQUIPMENT CONSTRUCTION

R. A. Penfold

This book describes in detail how to corstruct some simple and inexpensive but extremely useful, piecoas of test equipment. wiring diagrams where appropriate, plus notes on construction and use.
The following designs are included:
AF Generator, Capacitance Meter, Test Bench Amplifer, AF Frequancy Meter, Audio Mullivoltmeter, Analogue Probe, High Resistance Voltmeter, CMOS Probe Transistor Tester, TIL Probe The designs are suitable for both newcomers and more experienced hobbyists.
104 pages
Order code BP248
$£ 4.49$

AUDIO AND MUSIC

VALVE \& TRANSISTOR AUDIO AMPLIFIERS
John Linsley Hood
This is John Linsley Hood's greatest work yet, describing the milestones that have marked the development of audie amplifiers since the earlies; days to the latest systems. Including classic amps with valves at their heart and exciting new designs using the latest comoonents, this book is the complete world guide to audio amp design.
Contents: Active components; Valves or vacuum lubes; Solid-state devices; Passive comoonents; Inductors and transformers; Capacitors, Resistors, Swriches and electrical contacts; Voltage amplifier stages using valves; Valve audio amplifier layouts; Negative feedback; Valve opetated power amplifiers; Solid state voltage amplifiers; Early solid-state audio amolifiers; Contemporary power amplifier designs; Preamplifiers; Power supplies (PSUs); Index.
250 pages \quad Order code NE24
£21.99

AUDIO AMPLIFIER PROJECTS

R. A. Pentold

A wide range of useful audio amplifier projects, each project features a circuit diagram, an explanation of the circuit operation and a stripboard layout diagram. All pirig list of cotails are provided aiong with a shoprequires the use of any test equipment in order to set up properly. Alt the projects are designed for straightforward assembly on simple circuit boards.
Circuits include: High impedance mic preamp, Low impedance mic preamp, Crystal mic preamp, Guitar and GP preamplifier, Scratch and rumble fi'ter, RIAA preamplifier, Tape preamplifier. Audio limiter, Bass and truble tone controls, Loudness filter, Loudness control, Simple graphic equaliser, Basic audio mixer, Small (300 mW) audio power amp, 6 watt audio power amp, 20/32 watt power amp and power supply, Dynamic noise limiter.
A must for audio enthusiasts with more sense than money!
116 pages
Order code PC113
ع10.95

RADIO / TV VIDEO

ELECTRONIC PROJECTS FOR VIDEO ENTHUSIASTS

R. A. Pentold

This book provides a number of practical designs for video accessories that will help you get the best results from your camcorder and VCR. All the projects use inexpensive components that are readily available, and hey are easy to construct. Full construction details are provided, including stripboard layouts and wiring diagrams. Where appropriate, simple setting up procedures
are described in detail; no test equipment is needed udio rixer cour channel book neluer Four channe limiter (DNL) Aumatic audio fader Video faders, Video miter (DiL), Aur wipers, Video crispener, Mains power supply uni 109 pages

SETTING UP AN AMATEUR RADIO STATION

I. D. Poole

The aim of this book is to give guidance on the decisions which have to be made when setting up any amateur radio or short wave listening station. Othen the experience which is needed is learned by one's mistakes, however, his can be expensive. To help overcome this, guidance is given on many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting licence.
Topics covered include: The equipment that is needed; Setting up the shack; Which aerials to use; Methods of construction; Preparing for the licence.
An essential addition to the library of all those taking their first steps in amateur radio
86 pages \quad Order code BP300 45

EXPERIMENTAL ANTENNA TOPICS

H. C. Wright

Although nearly a century has paśsed since Marconi's first demonstration or radio communication, there is still research and experiment to be carried out in the field of antenna design and behaviour.
The aim of the experimenter will be to maks a measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this, devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc. These materials are, in general, cheap to obtain and easily worked with simple tools, encouraging the trial-and-error philosophy which leads to innovation and discovery.
Although primarily a practical book with text closely supported by diagrams, some formulae which can be used by straightforward substitution and some simple graphs have also been included.

72 pages Order code BP278

£4.00

25 SIMPLE INDOOR AND WINDOW AERIALS
 \section*{E. M. Noll}

Many people live in flats and apartments or other types of accommodation where outdoor aerials are prohibited, or a lack of garden space etc. prevents aerials from being erected. This does not mean you have to forgo shortwave-listening, for even a 20 -foot length of wire stretched out along the skirting board of a room can produce acceptable results. However, with some additional effort and experimentation one may well be able to improve pertormance further.
This concise book tells the slory, and shows the reader the to construct and use 2 indoor and window aerials tha he aun is poven on shortur pands, aerial directivit mation is also given on short ime zones, dimensions etc
50 pages Order code BP136
$\varepsilon 2.25$

AN INTAODUCTIONTO PIC MICAOCONTROLLERS
Robert Penfold
Designing your own PIC based projects may seem a daunting task, but it is really not too difficult providing you have some previous experience of electronics.

The PIC processors have plenty of useful features, but they are still reasonably simple and straightforward to use. This book should contain everything you need to know

Topics covered include: the PIC register set; numbering systems; bitwise operations and rotation; the PIC instruction set; using interrupts; using the analogue to digital converter; clock circuits; using the real time clock counter (RTCC); using subroutines; driving seven segment displays. 166 pages

$\mathbf{8 6 . 4 9}$

PRACTICAL OSCILLATOR CIRCUITS

A. Filind

Extensive coverage is given to circuits using capacitors and resistors to control frequency. Designs using CMOS, timer i.c.s and op.amps are all described in detail, with a special chapter on "waveform generator" i.c.s. Reliable white" and "pink" noise generator circuits are also included.
Various circuits using inductors and capacitors are cov ered, with emphasis on stable low frequency generation. Some of these are amazingly simple, but are still very useful signal sources.
Crystal oscillators have their own chapter. Many of the circuits shown are readily available special i.c.s for simplicity and reliability, and olior severab oulput irequencies. Finally, complete constructional details are given for an audio sinewave generato
133 pages Order code BP393 $\quad \mathbf{~} 5.49$
PRACTICAL ELECTRONIC CONTROL PROJECTS
Owen Bishop
Explains electronic control theory in simple, non-mathematical terms and is illustrated by 30 practical designs suitable for the student or hobbyist to build. Shows how to use sensors as input to the control system, and how to provide output to lamps, heaters, solenoids, relays and motors.
Computer based control is explained by practical examples that can be run on a PC. For stand-alone systems, the projects use microcontrollers, such as the inexpensive and easy-to-use Stamp BASIC microcontroller.
198 pages
Temporarily out of print
PRACTICAL ELECTRONICS HANDBOOK -
Fifth Edition, Ian Sinclair
Contains all of the everyday information that anyone working in electronics will need.
It provides a practical and comprehensive collection of circuits, rules of thumb and design data for professional engineers, students and enthusaists, and therefore enough background to allow the understanding and development of a range of basic circuits.
Contents: Passive components, Active discrete components, Circuits, Linear I.C.s, Energy conversion components, Digital I.C.s, Microprocessors and microprocessor
systems, Transferring digital data, Digital-analogue conversions, Computer aids in electronics, Hardware components and practical work, Microcontrollers and PLCs, Digital broadcasting, Electronic security.
440 pages \quad Order code NE21 $\quad \mathbf{1 5 . 9 9}$

B DESICN

B. B. Babani

A complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and Although this book is now twenty years old, with the exception of toroids and pulse transformers little has changed in coil design since it was written.

96 pages
Order code 160
£4.49

OPTOELECTRONICS CIRCUITS MANUAL

R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as the electronics student and amateur. It deals with the subject in an easy-to-read, down-to-earth, and nonthe basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the i.c.s and other devices used are inexpensive and readily available types, with universally recognised type numbers.

182 pages
Order code NE14
$\mathbf{\Sigma 1 5 . 9 9}$

OPERATIONAL AMPLIFIER USER'S HANDBOOK R. A. Penfold

The first part of this book covers standard operational amplifer based "building blooks" (integrator, precision rectifier, function generator, amplifiers, etc), and considers the ways in which modem devices can be used to give superior performance in each one. The second part describes a number of practical circuits that exploit modem operational amplifiers, such as high slew-rate, ultra low noise, and low input offset devices. The projects include: Low noise tape preamplifier, low noise RIAA preampifier, audio power ampifiers, d.c. power controllers, opto-isolator audio link, audio millivolt meter, temperature monitor, low distortion audio signal generator, simple video fader, and many more.
120 pages Order code EP335 $£ 5.45$

A BEGINNERS GUIDE TO CMOS DIGITAL IC

R. A. Penfold

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously usetul applicaand the be of CMOS integrated circuits, uyl does not lose sigh of the mal diotal led mins, bul does nol lose sight of the lact the vorld applications.
The topics covered in this book include: the basic concepts logic "cuilding the functions of gates, imverters and other ogic building blocks": CMOS loguc i.c. characteristics, and mir advantages in pracical circuit design, oscilators and counters; decact counters and display drivers and binary counters; decade counters and display drivers.

119 pages Order code BP333
$\mathbf{\Sigma 5 . 4 5}$

INIRODUCTION TO DIGTAL AUDIO

(Second Edition) lan Sinclalr

The compact disc (CD) was the first device to bring digital audio methods into the home.
This development has involved methods and circuits that are totally alien to the technician or keen amateur who has previously worked with audio circuits. The principles and practices of digital audio owe little or nothing to the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers.
This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end product. 128 pages \quad Order code PC102 8.95

PROJECTS FOR THE ELECTRIC GUITAR

J. Chatwin

This book is for anyone interested in the electric guiinstrument work together, and includes information on

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add $£ 1$ per book, For the rest of the world airmail add $£ 2$ per book. Send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard, Amex, Diners Club or Switch - minimum card order is $£ 5$ - to: DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LIMITED, 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND.
Books are normally sent within seven days of receipt of order, but please allow 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see the next two issues of EPE.
Tel 01202873872 Fax 01202 874562. E-mail: dbs@epemag.wimborne.co.uk
Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

BOOK ORDER FORM

Full name:
Address: ..
\qquad
Post code: Telephone No:
Signature:

\square I enclose cheque/PO payable to DIRECT BOOK SERVICE for \&

Please charge my card $£$
Card expiry date
Card Number .. Switch Issue No.
Please send book order codes:
the various pickups and transducers that can be fitted. There are complete circuit diagrams for the major types of instrument, as well as a selection of wiring modifications and pickup switching circuits. These can be used to help you create your own custom wiring. Along with the electric guitar, sections are also included relating to acoustic instruments. The function of specialised piezoelectric pickups is explained and there are detailed instructions on how to make your own contact and bridge transducers. The projects range from simple preamps and tone boosters, to complete active controls and equaliser units.
92 pages Order code BP358
£5.45

VALVE AMPLIFIERS

Second Edition. Morgan Jones
This book allows those with a limited knowledge of the field to understand both the theory and practice of valve audio amplifier design, such that they can analyse and modity circuits, and build or restore an amplifier. Design principles and construction techniques are provided so readers can devise and build from scratch, designs that actually work.
The second edition of this popular book builds on its main strength - exploring and illustrating theory with practical applications. Numerous new sections include: output transformer problems; heater regulators; phase splitter analysis; and component technotogy. In addition to the numerous amplifier and preamplifier circuits, three major new designs are included: a low-noise single-ended LP stage, and a pair of high voltage amplifiers for driving electrostatic transducers directly - one for headphones, one for loudspeakers.
488 pages

VALVE RADIO AND AUDIO REPAIR HANDBOOK

Chas Miller

This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve tech nology enthusiasts the world over. The emphasis is firm ly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and alway explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more abou given to hands ens, wir benell rom the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of servicing. Repair techniques are also illustrated throughout.
A large reference section provides a range of information compiled from many contemporary sources, and includes specialist dealers for valves, components and complete receivers.
288 pages \quad Order code NE34 20.99 LOUDSPEAKERS FOR MUSICIANS
Vivan Capel
This book contains all that a working musician needs to know about loudspeakers; the difterent types, how they work, the most suitable for different instruments, fo cabaret work, and for vocals. It gives tips on constructing cabinets, wiring up, when and where to use wadding and when not to, what fittings are available, finishing how to ensure they travel well, how to connect multispeaker arrays and much more.
Ten practical enclosure designs with plans and comments are given in the last chapter, but by the time you've read that far you should be able to design your own!
164 page
Order code BP297
$£ 5.49$

WIN A PICO PC BASED OSCILLOSCOPE

- 50MSPS Dual Channel Storage Oscilloscope - 25 MHz Spectrum Analyser
- Multimeter - Frequency Meter
- Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours. Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners-up.

Smart Alarm Timer - Dund staod rcls

WHEN designing a timing circuit for a security alarm. one often has to face a compromise between functionality and circuit complexity. The Smart Alarm Timer circuit described in Fig.l, however, is a complete solution featuring an entry delay, a finite alarm time and protection against multiple triggering.

It utilises a standard 556 dual timer i.c. configured as two separate monostables. one with a much shorter time period than the other. The trigger inputs are tied together to give the timing diagram shown in Fig. 2.

It can be seen from Fig. 2 that the potential difference between the two timer outputs is similar to the alarm signal required. Since the output stages of the 556 are capable of both sourcing and sinking current. a piezo siren WDI (see Fig.1) can be connected simply between the two timer outputs, pins 5 and 9 . Although the drive capacity is limited to 200 mA , very loud multi-element piezo sirens are available which consume in the region of only 40 mA .

Delayed Entry

As the circuit uses the standard 555 monostable mode of operation, the constructor can choose the values of resistor R3 and capacitor Cl to set the entry delay, and R4 and C2 to set the total alarm time (including entry deiay). Low leakage tantalum capacitors for Cl and C2 will help improve accuracy.

Variable resistors (potentiometers) could be substituted for R3 and R4 (with 1 kilohms resistors in series to provide a minimum resistance) allowing the time delays to be set "in the field". The values shown gave an entry delay of about 12 seconds and an alarm time of about 5 minutes.
The normally-open Trigger switch Sl is connected slightly differently from normal, using the output of the long period timer to give the 0 V potential required to trigger the timers. This feedback allows the circuit to trigger as normal, but it is non-resettable, i.e. after triggering it blocks any further input until the timing cycle is complete.

Fig.1. Circuit diagram for the Smart Alarm Timer.

Fig.2. Circuit timing diagram.

The Reset switch S2, however, can be used to interrupt the cycle at any stage. You could use a keyswitch for this component.

Ben Weaver,
James College, University of York.

L.E.D. Dynamo Torch - Power fo fous Milo me

HAVING purchased a cheap Dynotorch, the author found that its 2.4 V filament bulb was hard work, needing a lot of continuous hard hand squeezes to give any useful light. It was decided, therefore, to convert it into a more efficient l.e.d. torch that could be illuminated readily by squeezing the "dynamo lever". A number of bright yellow l.e.d.s were to be utilised as they are good for reading and for night use, e.g. camping.
Much experimentation revealed that driving a load of 68 ohms, the Dynotorch gave 5 V to 6 V a.c. but trying to utilise this with a regulator i.c. meant the torch was very hard work. A constant-current circuit was therefore developed using a current booster circuit.
The resulting circuit diagram is shown in Fig.3. This is centred around ICl, an LM334 constant current source with transistor TR1 acting as an external current amplifier. The Schottky diodes D1 to D4 form a bridge rectifier with low drop-out voltage, and the Zener diodes D5, D6 clamp the voltage to eliminate spikes. The optional electrolytic capacitor C2 smooths the resultant d.c. supply.

The current through the l.e.d.s is measured by feeding the voltage across the resistor array R2 to R5 into IC1, whose positive supply is taken from the base of TR1. Hence, IC1 draws whatever current (TR1 base current) is

Fig.3. Circuit diagram for a L.E.D. Dynamo Torch.
necessary to give the correct current through the l.e.d.s. It was also found that due to the high efficiency of the l.e.d.s, the momentum of the dynamo rotor acted as a flywheel which helped to greatly reduce the effort needed to obtain a useful light.

The circuit was built on a hexagonal piece of stripboard which, with the silver lamp
reflector removed, fitted into the torch and was secured with Blu-Tak. If you dismantle the torch it is best not to remove the magnetic rotor from its metal armature for very long. Gears can be lubricated with a silicone-based grease suitable for plastics.

Alan Bradley,
Belfast, Northern Ireland

Walkman in a Car - Ninsic (on The Mooe

TIE circuit diagram of Fig. 4 came to life when the writer's car cassette chewed up another of his best tapes. Rather than replace the in-car unit with an upmarket (and thievable) system, it was decided to use a Walkman-type cassette player - a good, reliable tape transport system which was easy to remove to safety.
It could be coupled to the car player with a CD tape adaptor unit but not without problems: most Walkman-types run on 3 V and the car voltage can be anything from 10 V to 15 V . The simple circuit diagram shown in Fig. 4 produces a stable 3 V d.c. supply from a car's electrical supply which can power a Walkman-style player.
A configuration using a series pass transistor would require a heatsink to dissipate the wasted power ($10 \mathrm{~V} \times 0.5 \mathrm{~A}=5 \mathrm{~W}$). A far more efficient way needing no heatsink is to use a switching regulator such as the TL497. Only a few components are needed to create a neat $D C / D C$ voltage converter, the output voltage of which is set by multiturn preset VR1.
In practice the circuit seems to be able to cope with the demands of the Walkman very well, and the TL497 just gets slightly warm. To be sure that all is well, run the player through its functions using a voltmeter on the d.c. output. The only time the circuit seems to struggle is during fast forward/rewind and tape direction changeover, but for general playing the circuit is most acceptable.
A word of waming - a fair amount of shielding and decoupling will be needed if you want to use the Walkman radio section as the circuit is responsible for some nice broadband r.f. emissions.

Steve Dellow, Warwick

Fig.4. Circuit diagram for an In-Car Power Supply for a "Walkman" type cassette player.

INGENUITY UNLIMITED

BE INTERACTIVE

IU is your forum where you can offer other readers the benefit of your Ingenuity. Share those ideas, earn some cash and possibly a prize!

PCB SERVICE

Printed circuit boards for mos: recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872; Fax 01202874562 E-mail: orders ©epemag.wimborne.co.uk. On-line Shop: www.epemag. wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in f sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required - see the Back Issues page for details.
Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
EEPE Mood PICker L.E.D. Stroboscope (Multi-project PCB) JULY'g9	$\begin{aligned} & 233 \\ & 932 \end{aligned}$	$\begin{array}{r} £ 6.78 \\ £ 3.00 \end{array}$
Ultrasonic Puncture Finder \&-Channel Analogue Data Logger Buffer Amplifier (Oscillators Pt 2) Magnetic Field Delective Sound Activated Switch Freezer Alarm (Multi-project PCB)	236 237 238 239 240 932	$£ 5.00$ $£ 8.88$ $£ 6.96$ $£ 6.77$ $£ 6.53$ $£ 3.00$
Child Guard SEPT Ig9 Variable Dual Power Suppiy	$\begin{aligned} & 241 \\ & 242 \end{aligned}$	$\begin{aligned} & £ 7.51 \\ & £ 7.64 \end{aligned}$
Micro Power Supply * Interior Lamp Delay Mains Cable Locator (Multi-project PCB)	$\begin{aligned} & 243 \\ & 244 \\ & 932 \end{aligned}$	$\begin{aligned} & £ 3.50 \\ & £ 7.88 \\ & £ 3.00 \end{aligned}$
Vibralarm Demister One-Shot * Ginormous Stopwatch - Part 1	$\begin{aligned} & 230 \\ & 245 \\ & 246 \end{aligned}$	$\begin{aligned} & £ 6.93 \\ & £ 6.78 \\ & £ 7.82 \end{aligned}$
```#Ginormous Stopwatch - Part 2 DECT98 Giant Display Serial Port Converter Loft Guard```	$\begin{aligned} & 247 \\ & 248 \\ & 249 \\ & \hline \end{aligned}$	£7. 85   £3.96   £4.44
Scratch Blanker (Multi-project PCB) SAN 00 Flashing Snowman	$\begin{aligned} & 250 \\ & 932 \end{aligned}$	$\begin{aligned} & £ 4.83 \\ & £ 3.00 \end{aligned}$
Video Cleaner   Find it   - Teach-In 2000 - Parl 4	$\begin{aligned} & 251 \\ & 252 \\ & 253 \end{aligned}$	$\begin{array}{r} \Upsilon 5.63 \\ £ 4.20 \\ \mathbf{4} .52 \\ \hline \end{array}$
High Performance   Regenerative Receiver   * EPOE Icebreaker - PCB257, programmed   PIC16F877 and flopoy disc   Parking Warning System	$\begin{gathered} \left.\begin{array}{c} 254,255 \\ 256 \end{array}\right\} \\ \begin{array}{c} \text { Set only } \\ 258 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { £5.49 } \\ \text { Set } \\ £ 22.99 \\ £ 5.08 \end{gathered}$
Hicro-PICscope Garage Link - Transmitter Receiver	$\left.\begin{array}{l} 259 \\ 261 \\ 262 \end{array}\right\} \text { Set }$	$£ 4.99$ $£ 5.87$
	$\left.\begin{array}{l} 260 \\ 263 \\ 264 \\ 265 \\ 266 \end{array}\right\} \operatorname{set}$	$\begin{aligned} & £ 3.33 \\ & £ 3.17 \\ & £ 6.34 \end{aligned}$
* Canute Tide Predictor JUNE 00	267	$£ 3.05$
APIC-Gen Frequency Generator/Counter WULY $\mathbf{~ O O}$ g-Meter	$\begin{aligned} & 268 \\ & 269 \end{aligned}$	$\begin{aligned} & £ 5.07 \\ & £ 4.36 \end{aligned}$
太EPE Moodloop AUG 00   Quiz Game Indicator    Handy•Amp	$\begin{aligned} & 271 \\ & 272 \\ & 273 \end{aligned}$	$\begin{aligned} & £ 5.47 \\ & £ 4.52 \\ & £ 4.52 \end{aligned}$
Active Ferrite Loop Aerial *Remote Control IR Decoder Software only	274	£4.67
* PIC Dual-Channel Virtual Scope ( OCT ${ }^{\text {P } 00}$	275	$¢ 5.15$
Handclap Swich    $\star$ PIC Pulsometer Software only 00	270	$£ 3.96$
Twinkling Star DEC'00   Festive Fader    Motorists' Buzz-Box    \& PICtogram    PIC-Monitored Dual PSU-1 PSU   Static Field Detector (Multi-project PCB)     .	$\begin{aligned} & 276 \\ & 277 \\ & 278 \\ & 279 \\ & 280 \\ & 281 \\ & 932 \end{aligned}$	$\begin{aligned} & £ 4.28 \\ & £ 5.71 \\ & £ 5.39 \\ & £ 4.91 \\ & £ 4.75 \\ & £ 5.23 \\ & £ 3.00 \\ & \hline \end{aligned}$
	$\left.\begin{array}{l} 282 \\ 283 \\ 284 \\ 285 \end{array}\right\} \text { Set }$	£4.76 £6.19
Ice Alarm   Graphics L.C.D. Display with PICs (Supp)   Using the LM3914-6 L.E.D. Bargraph Drivers   Multi-purpose Main p.c.b   Relay Control   L.E.D. Display   - PC Audio Power Meter   Software only		$\begin{aligned} & £ 4.60 \\ & £ 5.23 \\ & \\ & £ 7.14 \end{aligned}$
Doortell Extender:Transmitter               Tecelver   Trans//Remote   Rec./Relay	$\begin{aligned} & 292 \\ & 293 \\ & 294 \\ & 295 \end{aligned}$	$\begin{aligned} & £ 4.20 \\ & £ 4.60 \\ & £ 4.28 \\ & £ 4.92 \end{aligned}$
EPE Snug-bug Heat Control for Pets Intruder Alarm Control Panel   Main Board   External Bell Unit	$\begin{aligned} & 296 \\ & 297 \\ & 298 \end{aligned}$	$\begin{aligned} & £ 6.50 \\ & \\ & £ 6.97 \\ & £ 4.76 \end{aligned}$
Camcorder Mixer $\star$ PIC Graphics L.C.D. Scope MAY 01	$\begin{aligned} & 299 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{E} 6.34 \\ & £ 5.07 \end{aligned}$


PROJECT TITLE	Order Code	Cost
Hosepipe Controller JUNE 01	301	£5.14
Magfield Monitor (Sensor Board)	302	£4.91
Dummy PIR Detector	303	£4.36
- PIC16F87x Extended Memory Software only	-	-
Stereo/Surround Sound Amplifier SULY 01	304	\$4.75
Perpetual Projects Uniboard-1   Solar-Powered Power Supply \& Voltage Reg.	305	£3.00
MSF Signal Repeater and Indicator		
Repeater Board	306	£4.75
Meter Board	307	£4.44
- PIC to Printer Interface	308	£5.39
Lead/Acid Battery Charger EAUG 01	309	£4.99
Shortwave Loop Aerial	310	£5.07
* Digitimer - Main Board	311	£6.50
- R.F. Board	312	£4.36
Perpetual Projects Uniboard-2   L.E.D. Flasher - Double Door-Buzzer	305	£3.00
Perpetual Projects Uniboard-3 ${ }^{\text {SEPT }} 01$	305	£3.00
Loop Burglar Alarm, Touch-Switch Door-Light and Solar-Powered Rain Alarm		
L.E.D. Super Torches - Red Main   - Display Red	$\left.\begin{array}{l} 313 \\ 314 \end{array}\right\} \text { Set }$	£6.10
- White L.E.D	315	£4.28
* Sync Clock Driver	316	£5.94
* Water Monitor	317	£4.91
Camcorder Power Supply	318	£5.94
PIC Toolkit Mk3	319	¢8.24
Perpetual Projects Uniboard-4 Gate Sentinel, Solar-powered Bird Scarer and Solar-Powered Register	305	£3.00
Teach-In 2002 Power Supply NOV 01	320	£4.28
Lights Needed Alert	321	£5.39
Pitch Switch	322	£5.87
Capacitance Meter - Main Board (double-sided)   - Display Board (double-sided)   $\star$ \& PIC Toolkit TK3 - Software only	$\left.\begin{array}{c}323 \\ 324\end{array}\right\}$ Set	£12.00
4-Channel Twinkling Lights ${ }^{\text {a }}$ DEC ${ }^{\prime} 01$	325	£6.82
Ghost Buster - Mic   - Main	$\left.\begin{array}{l} 326 \\ 327 \end{array}\right\} \mathrm{Set}$	$£ 5.78$
* PIC Polywhatsit - Digital   - Analogue	$\left.\begin{array}{l} 328 \\ 329 \end{array}\right\} \mathrm{Set}$	£7.61
Forever Flasher SAN 02	330	£4.44
Time Delay Touch Switch	331	£4.60
* PIC Magick Musick	332	£5.87
Versatile Bench Power Supply	333	£5.71
*PIC Spectrum Analyser (FEB \%2	334	£7.13
Versatile Current Monitor.	335	£4.75
Guitar Practice Amp	336	$£ 5.39$

## EPE SOFTWARE

Software programs for EPE projects marked with a single asterisk are available on 3.5 inch PC-compatible disks or free from our Internet site. The following disks are available: PIC Tutorial (Mar-May 98); PIC Toolkit Mk2 V2.4d (May-Jun '99); EPE EPE Disk 5 (Jan 2002 issue to current cover date); EPE Teach-In 2000; EPE Spectrum; EPE Interface Disk 1 (October 'OO issue to current cover date). $\boldsymbol{t} \boldsymbol{\rightarrow}$ PIC Toolkit TK3 software (Nov '01) is on CD-ROM. The 3.5 inch disks are $£ 3.00$ each (UK), the CD-ROM is $£ 6.95$ (UK). Add 50p each for overseas surface mail, and $£ 1$ each for airmail. All are available from the EPE PCB Service All files can be downloaded free from our Internet FTP site: ttp:/ftp.epemag.wimborme.co.uk.

## EPE PRINTED CIRCUIT BOARD SERVICE Order Code <br> Project <br> Quantity <br> Price

Name
Address

Tel. No.
I enclose payment of $\varepsilon$................ (cheque/PO in $£$ sterling only) to:


## Everyday Practical Electronics

 MasterCard, Amex, Diners Club, Visa or SwitchMinimum order for cards $£ 5$
Switch Issue No.
Card No.
Signature.
Card Exp. Date
NOTE: You can also order p.c.b.s by phone, Fax, E-mail or via our Internet site on a secure server:
http://www.epemag.wimborne.co.uk/shopdoor.htm

nncorponatima ELECTRONICS TODAY INTERNATIONAL

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last seventeen years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ ( + VAT) per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 OED. Phone/Fax (01255) 861161.
For rates.and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

```
Valve Output Translormers: Single ended 50mA, £4.50; pust/pulh 50 W , £38; 100 W , £53. Mains Transiormers: Sec 220 V 30 mA 6 V Voltage Caps: \(50 \mu \mathrm{~F} 350 \mathrm{~V}, 68 \mu \mathrm{~F} 500 \mathrm{~V}, 150 \mu \mathrm{~F} 385 \mathrm{~V}, 330 \mu \mathrm{~F} 400 \mathrm{~V}\) i \(470 \mu \mathrm{~F} 385 \mathrm{~V}\), all \(£ 3\) ea, \(32+32 \mu \mathrm{~F} 450 \mathrm{~V} £ 5,4 \mu \mathrm{~F} 800 \mathrm{~V}\) oil filled paper block. \(£ 10\). Postage extra.
Record Decks and Spares: BSR, Garrard, Goldring, motors, arms, wheels, headshells, spindtes, etc. Send or phone your want list for quote.
RADIO COMPONENT SPECIALISTS
```


##  

``` prome or send your wame lan for quom
```

Test Equipment


Service Manuals.
Contact
www.cooke-int.com
Tel: +4401243555590

TIS - Midlinbank Farm Ryeland, Strathaven ML10 6RD<br>Manuals on anything electronic Circuits - VCR £8, CTV £6 Service Manuals from $£ 10$ Repair Manuals from $£ 5$ P\&P any order $£ 2.50$ Write, or ring 01357440280 for full details of our lending service and FREE quote for any data

BTEC ELECTRONICS
TECHNICIAN TRAINING
VCE ADVANCED ENGINEERING ELECTRONICS AND ICT HNC AND HND ELECTRONICS NVQ ENGINEERING AND IT Next course commences 1st FEBRUARY 2002
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: (020) 73738721

## THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. M. P. Moses,
5 Park Vlew, Cwmaman, Aberdare CF44 6PP Space donated by
Everyday Pract/cal Electronics

## $\mathrm{X}-10^{\circledR}$ Home Automation We put you in control ${ }^{14}$

Why tolerate when you can automate?
An extensive range of 230 V X- 10 products and starter kits available. Uses proven Power Line Carrier technology, no wires required.

Products Catalogue available Online. Worldwide delivery.
Laser Business Systems Ltd. E-Mail: info@laser.com http://www.laser.com Tel: (020) 84419788 Fax: (020) 84490430


## LE3 Now VValasile wir

ALSO SPECTRUM AND QL PARTS
W. M. RICHARDSON \& CO.

PHONE/FAX 01494871319 AAVENSMEAD. CHALFONT ST PETER, BUCKS, SL9 ONB

## ROBOLOGIC

Hobby robotics components, sensors and microcontrollers
www.robologic.co.uk

## Miscellaneous

2002 CATALOGUE<br>PLEASE SEND SAE FOR A FREE COPY TO:<br>FML ELECTRONICS<br>FREEPOST NEA 3627 BEDALE<br>TEL: 01677425840<br>SUPPLIERS OF ELECTRONIC COMPONENTS, EPE KITS AND PARTS FOR TEACH-IN 2002

FREE PROTOTYPE PRINTED CIRCUIT BOARDS! Free prototype p.c.b. with quantity orders. Call Patrick on 02890738897 for details. Agar Circuits, Unit 5. East Belfast Enterprise Park. 308 Albertbridge Road, Belfast BT5 4GX.
EDUCATIONAL ELECTRONIC KITS, GCSE, Physics. Hobbyist. $2 \times 1$ st class stamps for catalogue. Electroteach, PO Box 2594. Cannock. WSI2 4YH. www.electroteach.com.
PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and production artwork raised from magazines or dratt designs at low cost, PCBs designed from schematics. Production assembly. wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5. East Belfast Enterprise Park. 308 Albertbridge Road. Belfast. BT5 4GX. Phone 0289073 8897. Fax $0289(0731802$.

E-mail agar@argonet.co.uk
G.C.S.E. ELECTRONICS KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics. 52 Sevem Road, Clacton, COIS 3RB, http://www.geocities.com/sirkituk/index.htm.
VALVES AND ALILIED COMPONENTS IN STOCK - please ring for free list, Valve equipment repaired. Geoff Davies (Radio), Phone 01788574774. ACTIVE FILTER COOKBOOK by Don Lancaster. secondhand, buy/borrow. Frank Cosgrove. (01202 432973.

POWER SUPPILY PARCELL, £16: assorted modules including amplifiers +200 new components. K.I.A., 1 Regent Road, IIkley LS29

## FPE MII ADDRESES

## EPE FTP site: ftp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:
PIC-project source code files: /pub/PICS
PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!

## EPE text files: /pub/docs

Basic Soldering Guide: solder.txt
Ingenuity Unlimited submission guidance: ing_unlt.txt New readers and subscribers info: epe_info.txt Newsgroups or Usenet users advice: usenet.txt Ni -Cad discussion: nicadfaq.zip and nicad2.zip

Writing for EPE advice: write4us.txt
You can also enter the FTP site via the link at the top of the main page of our home site at:
http://www.epemag.wimborne.co.uk
Shop now on-line:
www.epemag.wimborne.co.uk/shopdoor.htm

Ensure you set your FTP sottware to ASCII transier when fetching text files, or they may be unreadable.
Note that any file which ends in .zip needs unzipping before use. Unzip utilities can be downloaded from:
http://www.winzip.com
Ensure you use the latest version


## Suppliers of Electronic Components

Batteries, Buzzers, Capacitors, Connectors, Diodes, Cases, Ferrites, Fuses
Heatshrink, ICs, Inverters, L.E.D.s, P.C.B., Potentiometers, Power Supplies, Pesets, Rectifiers, Relays, Resistors, Soldering Equipment, Stripboard, Switches, Test Meters, Thermistors, Thyristors, Tools, Transistors, Triacs

Catalogue available NOW
Send 41p stamp or visit our website
Website: http:/hwww.bowood-electronics.co.uk sales 9 bowood-electronics.co.uk

## VISA



Mail Order Only
7 Bakewell Road, Baslow, Derbyshire, DE 45 1RE, UK Telephone/Fax: 01246583777


5 KVA ISOLATION TRANSFORMER As Now. Ex-Equipment, fully shrouded, Line Noism al covers and isolation Transtormer with Lerminal covers and knock-out cable entries. Primary
$120 \mathrm{~V} / 240 \mathrm{~V}$, Secondary $120 \mathrm{~V} / 240 \mathrm{~V}, 50 / 80 \mathrm{~Hz}$ $1200 / 240 \mathrm{~V}$, Secondary $120 \mathrm{~V} / 240 \mathrm{~V}$, $\quad 50 / 80 \mathrm{~Hz}$
0.005 pF Capactance. Size, $\mathrm{L} 37 \mathrm{~cm} \times \mathrm{W} \quad 19 \mathrm{cme} \times$ t 18 cm , Weight 42 kilos. Price c 120 + VAT. Ex-warehouse. Carrage on request
24 O
OC SIEMENS CONTACTOR Type 3TH $8022-082 \times$ NO 2 and $2 \times$ NC 230 V AC 10 A Contacts. Screw or Din Rain flxing. Size $\mathrm{H} 120 \mathrm{~mm} x$ $W 45 \mathrm{~mm} \times \mathrm{D} 75 \mathrm{~mm}$. Brand New Price $£ 7.63$ incl plp and VAT. 240 V AC westool solenoins Model $T_{2} 24$ Max. Stroke $16 m m$, 510 . pull. Base mourt Mod Rating 1. Model Trs Max. stroke 25 mm , 15 . pull. Base mounting. Rating; Serles $400^{\circ} \mathrm{Ma}$

aXial cooling fan 230 V AC 120 mm square $\times 33 \mathrm{~mm} 3$ blade 10 w Low Noise tan. Price 87.29 incl. p\&p and VAT. Oter voltages and sizes available from stock INSTRUMENT CASE Brand new. Manufactured by thhot. $L 31 \mathrm{~cm} x$ for easy assembly of your components. Grey tix: tured finish, complete with case feet. Price $£ 16.45$ incl. p\& p and VAT. 2 OH E2B. 20 inclusive.
DIECAST ALUMINIUM BOX DIECAST ALUMINIUM BoX
wish internal PCB guides. Internal size 265 mm with internal PCB guides. Internal size 265 mm
$165 \mathrm{~mm} \times 50 \mathrm{~mm}$ deep. Price 29.93 inct. p\&p $\mathrm{VAT}^{\top}$ off $£ 17.80$ incl.
230 V AC SYMCHRONCUS GEARED MOTORS Brand new Ovoid Gearbox Crouzet type motors
$65 \mathrm{~mm} \times \mathrm{W} 55 \mathrm{~mm} \times D 35 \mathrm{~mm}$, 4 mm dha. shall $\times 10 \mathrm{~m}$
 20 PPM anti cw . Depth 40 mm . $£ 11.16$ incl. pap of VAT,

16 RPM REVERSIBLE CHOCet $220 \mathrm{~V} / 230 \mathrm{~V}$ 50 Hz geared motor with ovoid geared box 4 mm dia. shaft. New manut. surplus. Sokd ing block and circ. Overall size: $\mathrm{h} 68 \mathrm{~mm} \times$ w $52 \mathrm{~mm} \times 43 \mathrm{~mm}$ deep

PRICE incl. PRP \& VAT 59.99 EPROM EGASURE KIT
Buld your own EPROM ERASURE for a fraction ot the price of a made-up unnt. Kit of parts less case inctudes $12 \pi$. $\mathbf{1}$ watt 2537 , Angst Tibe Ballast unit, pait of b-pin leads, neon indicator, on/ati switch, salefy microsuttoch
and circuit $\mathrm{C15.00+E.00} \mathrm{p} \mathrm{\&}$. C 19.98 inc VAT) and cricuit $\mathrm{C15.00+} \mathrm{E2}$.00 p8p. (£19.98 in
WASHING MACWINE WATER PUMP Brand new 240 V AC tan cooted. Can be used tir variety of purposess. Inte! $11 /$ in., outtet 1 ln . dia. Frice includes plp \& VAT. £ $\$ 1.20$ each or 2 for $£ 20.50$
inclusive.

Watch Slides on TV.
Make videos of your slides. Digitise your slides (using a video capture card)
"Liesgang diat" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SCART \& BNC adaptors are available). They are in very good condition with fow signs of use. More details see www.diatv.co.uk.
£91.91 + VAT $=£ 108.00$
Board cameras all with $512 \times 582$ pixels $8.5 \mathrm{~mm} 1 / 3$ inch sensor and composite video out, All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10 V and 12 V DC 150 mA .
47MIR size $60 \times 36 \times 27 \mathrm{~mm}$ with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) $£ 37.00+$ VAT $=£ 43.48$
30 MP size $32 \times 32 \times 14 \mathrm{~mm}$ spy camera with a fixed focls pin hole lens for hiding behind a very small hole $£ 35.00$ - VAT $=£ 41.13$
40 MC size $39 \times 38 \times 27 \mathrm{~mm}$ camera for ' $C$ ' mount lens these give a much sharper image than with the smaller lenses $£ 32.00+$ VAT $=£ 37.60$
Economy C mount lenses all fixed focus \& fixed iris
VSL1220F 12 mm F1.6 $12 \times 15$ degrees viewing angle $£ 15.97+$ VAT $£ 18.76$ VSL4022F $4 \mathrm{~mm} \mathrm{F1} .2263 \times 47$ degrees viewing angle $£ 17.65+$ VAT $£ 20.74$ VSL6022F 6 mm F1.22 $42 \times 32$ degrees viewing angle $£ 19.05+$ VAT $£ 22.38$ VSL8020F 8 mm F1.22 $32 \times 24$ degrees viewing angle $£ 19.90+$ VAT $£ 23.38$

## Better quality C Mount lenses

VSL1614F 16 mm F1. $630 \times 24$ degrees viewing angle $£ 26.43+$ VAT $£ 31.06$ WWL813M 8mm F1.3 with iris $56 \times 42$ degrees viewing angle $£ 77.45+$ VAT $=£ 91.00$ 1206 surface mount resistors E12 values 10 ohm to 1 M ohm
100 of 1 value $£ 1.00+$ VAT 1000 of 1 value $£ 5.00$ + VAT
866 battery pack originally intended to be used with an orbitel mobile telephone it contains 101.6 Ah sub C batteries ( $42 \times 22$ dia. the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily
$£ 7.46+$ VAT $=£ 8.77$


Please add $£ 1.66+$ vat $=£ 1.95$ postage \& packing per order

## JPG Electromics <br> Shaws Row, Old Road, Chesterfield, S40 2RB.

 Tel 01246211202 Fax 01246550959Mastercard/Visa/Switch
Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

## ELECTRONICS SURPLUS CLSARANCE SALE

FLUKE HANDHELD DIGITAL MULTIMETER MODEL 8024B. Cancelied export orde Brand new and boxed but with original purchasing organisation's small identifying mark on case. With test leads and handbook. List price $£ 150$. Our price £47.50. P\&P $£ 6.50$. A DIGITAL HANDHELD LCR METER. Measuring inductance, capacitance, resistance LCD display. Range 2mH to 20 H induclance. 2000 pF to $20 \mu \mathrm{H}$ capacitance. 200 orm 20 megohm resistance. Brand new with test leads and manual. £44.00. P\&P £3.50 MAGNETIC CREDIT CARD READER
Keyboard and laptop display system. Point of sale unit cosi over $£ 150$, our price $£ 13$ each. P\&P \&7. Two units $£ 35$ including post.
BARGAINS
1/4 watl metal/carbon film resistors
5 mm red l.e.d.s
BCY71
BCY72
BFX30
BC640
BC558
OC42 Military spec
2N4393
555 Timer chips
Cigh mains input chassis sockel
High votage capaciors, $0.1 \mu \mathrm{~F} 1000 \mathrm{~V}$ axial
$0.05 \mu \mathrm{~F} 600 \mathrm{~V}$ axial
50 Vintage carton one watt resistors. Useful values
15100 ohm wirewound resistors, 3W
5 Valveholders. Octal, B7G, B9A (state which)


## BOOKS:

ELECTRIC UFOs by Albert Budden, The effects of electromagnetic pollution, UFOs, fireballs, abnormal states. 286 pp , photos. $£ 10$.
MULLARD HIGH QUALITY SOUND REPRODUCTION. A constructional manual for building valve amplifiers, pre-amps, tuners, circa 1958.48 targe format pages, facsimile copy. £12.50.
MULLARD VALVE DATA AND EQUIV. HANDBOOK. Over 300 pages, tacsimile copy £16.50.
BUILDING AND DETAILING SCALE MODEL SHIPS ty Mike Ashley. A comprehensive guide, the most comprehensive book written on this sulbject. Il'ustrated. 111 large forma pages. £8.95

Send 2 first class stamps tor the Electronic Surplus Trader - our latest catalogue full of component bargains, valves, high voltage capacitors, obsolete semiconductors etc.

P\&P £1.60 under $£ 10$. Over Free unless otherwise atated.

(Dept E) CHEVET SUPPLIES LTD
157 Dickson Road, BLACKPOOL FY1 2EU


## COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receiver (Wireless). Cameras as above with colour.
Audio Surveillance Kits and Ready Built Units, Bug Detector etc.
A. 패토뭉․․
Please phone 01812036008 for free catalogue. Fax 01812015359
E-mail: surveillance@btclick.com www.uspy.com New DTI approved Video Transmitters and Receivers (Wireless) Major credit cards now taken

## SHERWOOD ELECTRONICS

## FREE COMPONENTS

Buy $10 \times £ 1$ Special Packs and choose another one FREE

SP1		SP135	$6 \times$ Miniature slide switches
SP2	$15 \times 5 \mathrm{~mm}$ Red LEDS $12 \times 5 \mathrm{~mm}$ Green LEDs	SP136	$3 \times$ BFY50 transistors
SP3	$12 \times 5 \mathrm{~mm}$ Yellow LEDs	SP137	$4 \times$ W005 1.5A bridge rectiflers
SP6	$15 \times 3 \mathrm{~mm}$ Red LEDS	SP138	$20 \times 2.2 / 63 \mathrm{~V}$ radial elect. caps.
SP7	$12 \times 3 \mathrm{~mm}$ Green LEDs	SP140	$3 \times$ W04 1.5A bridge rectifiers
SP8	10×3mm Yellow LEDS	SP142	$2 \times$ CMOS 4017
SP10		SP143	5 Pairs min. crocodile clips
SP11	$30 \times 1$ N4001 diodes		(Red \& Black)
SP12	$30 \times 1$ N4002 diodes	SP145	$6 \times$ ZTX 300 transistors
SP20	$20 \times$ BC184 transistors	SP146	$10 \times 2 \mathrm{~N} 3704$ transistors
SP21	$20 \times 8 C 212$ transistors	SP147	$5 \times$ Stripboard 9 strips $\times$
SP23	$20 \times$ BC549 transistors		25 holes
SP24	$4 \times$ CMOS 4001	SP151	$4 \times 8 \mathrm{~mm}$ Red LEDS
SP25	$4 \times 555$ timers	SP152	$4 \times 8 \mathrm{~mm}$ Green LEDs
SP26	$4 \times 741$ Op.Amps	SP153	$4 \times 8 \mathrm{~mm}$ Yellow LEDs
SP28	$4 \times$ CMOS 4011$3 \times$ CMOS 4013	SP154	$15 \times 8 C 548$ transistors
SP29		SP156	$3 \times$ Stripboard, 14 strips $\times$
SP34	$20 \times 1$ N914 diodes		27 holes
SP36	$25 \times 10 / 25 \mathrm{~V}$ radial elect. caps.	SP160	$10 \times 2 \mathrm{~N} 3904$ transistors
SP37	$12 \times 100 / 35 \mathrm{~V}$ radial elect. caps.	SP161	$10 \times 2$ N3906 transistors
SP39	$10 \times 470116 \mathrm{~V}$ radial elect. caps.	SP165	$2 \times$ LF351 Op.Amps
SP40	$15 \times$ BC237 transistors	SP166	$20 \times 1$ N4003 diodes
SP41	$20 \times$ Mixed transistors $200 \times$ Mixed 0.25 W C.F. resistors	SP167	$6 \times$ BC107 transistors
SP42		SP168	$6 \times \mathrm{BC1} 108$ transistors
SP47	$5 \times$ Min. PB switches	SP172	$4 \times$ Standard slide switches
SP49	$4 \times 5$ metres stranded core wire	SP175	$20 \times 1 / 63 \mathrm{~V}$ radial elect. caps.
SP102	$220 \times 8$-pin DIL sockets	SP177	$10 \times 1 \mathrm{~A} 20 \mathrm{~mm}$ quick blow fuses
SP103	$15 \times 14$-pin DIL sockets	SP182	$20 \times 4.7 / 63 \mathrm{~V}$ radial elect. caps.
SP104		SP183	$20 \times$ BC547 transistors
SP109		SP187	$15 \times 8 C 239$ transistors
SP112	$\begin{aligned} & 15 \times \text { BC557 transistors } \\ & 4 \times \text { CMOS } 4093 \end{aligned}$	SP189	$4 \times 5$ metres solid core wire
SP115	$3 \times 10 \mathrm{~mm}$ Red LEDs	SP192	$3 \times$ CMOS 4066
SP116	$3 \times 10 \mathrm{~mm}$ Green LEDs	SP193	$20 \times \mathrm{BC} 213$ transistors
SP124	$420 \times$ Assorted ceramic disc caps	SP195	$3 \times 10 \mathrm{~mm}$ Yellow LEDs
SP126	$8 \times$ Battery clips -4 ea.   PP3 + PP9	$\begin{aligned} & \text { SP197 } \\ & \text { SP198 } \end{aligned}$	$6 \times 20$ pin DIL sockets $5 \times 24$ in DIL sockets
SP130	$100 \times$ Mixed 0.5W C.F. resistors	SP199	$5 \times 2.5 \mathrm{~mm}$ mono jack plug
SP131	$2 \times$ TLO71 Op.Amps$20 \times 1$ N4004 diodes	SP200	$5 \times 2.5 \mathrm{~mm}$ mono jack sockets
SP133			
SP134	$415 \times 1 \mathrm{~N} 4007$ diodes	2002 Catalogue now available $\mathrm{\Sigma} 1$	
	RESISTOR PACKS - C.Film	inc. P\&P or FREE with first order. P\&P £1.25 per order. NO VAT	
RP3	$\begin{aligned} & 5 \text { each value - total } 3650.25 \mathrm{~W} \\ & 10 \text { each value - total } 7300.25 \mathrm{~W} \\ & £ 4.00 \end{aligned}$		
RP7			Orders to:
RP10	1000 popular values 0.25 W W $£ 6.15$		
RP4	5 each value-total 3650.5 W    10 each value-total 730    0.5 W $£ 4.00$   $£ 6.65$	7 williamson St., Mansfleld,	
${ }_{\text {RP8 }}{ }_{\text {RP1 }}$		7 wi	Hamson St., Mansfield,
RP11	1000 popular values $0.5 \mathrm{~W} \quad \mathrm{E}^{1.40}$		Notts. NG19 6TD.

## ADVERTISERS INDEX

A.L. ELECTRONICS ..... 144
ANTEX ..... 92
N. R. BARDWELL ..... 144
BITZ TECHNOLOGY ..... 113
B.K. ELECTRONICS .Cover (iii)/113
BOWOOD ELECTRONICS ..... 143
BRUNNING SOFTWARE ..... 117
BULL ELECTRICAL ..... Cover (ii)
CHEVET SUPPLIES ..... 143
CRICKLEWOOD ELECTRONICS ..... 78
CROWNHILL ASSOCIATES ..... 101
DISPLAY ELECTRONICS ..... 74
EPTSOFT ..... Cover (iv)
ESR ELECTRONIC COMPONENTS .....  82
GREENWELD ..... 123
ICS ..... 143
J\&N FACTORS ..... 79
JPG ELECTRONICS ..... 143
LABCENTER ..... 89
MAGENTA ELECTRONICS ..... 80/81
MILFORD INSTRUMENTS ..... 93
NATIONAL COLLEGE OF TECHNOLOGY ..... 123
PICO TECHNOLOGY ..... 136
QUASAR ELECTRONICS ..... 76/77
SERVICE TRADING CO ..... 143
SHERWOOD ELECTRONICS ..... 144
SKY ELECTRONICS ..... 123
SQUIRES ..... 78
STEWART OF READING ..... 78
ADVERTISEMENT MANAGER: PETER J. MEWADVERTISEMENT OFFICES:
EVERYDAY PRACTICAL ELECTRONICS, ADVER
MILL LODGE, MILL LANE, THOROE-LLE-SOKEN,
ESSEX CO16 OED.
Phone/Fax: (01255) 861161For Editorial address and phone numbers see page 83

POWER AMPLIFIER MODULES-LOUDSPEAKERS-MIXERS 19 INCH STEREO AMPLIFIERS-ACTIVE CROSS/OVERS.


Faccronil Kits
OMP XO3S STEREO 3 WAY ACTIVE CROSSOVER
SWITCHABLE 2WAY
 FEATURES:
Advanced 3-Way Stereo Active Cross-Over (Switchable two way), housed in a 19 " $\times 1 \mathrm{U}$ case. Each
channel has three level controls: Bass Mid channel has three level controls: Bass. Mid \& Top. The removable front facia allows access to the

 Please make sure you ask for the correct model when ordering. The $2 / 3$ way selector switches are also accessed by removing the front facia. Each stereo channel can be configured separately. Bass Invert Switches are incorporated on each channel. Nominal 775 mV inputoutput. Fully compatible with the OMP Rack Amplifier and Modules.

BCTH MODELS PRICED AT :- $£ 117.44+£ 5.00$ P\&P
OMP MOS FET POWER AMPLIFIER MODULES

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS AN ACTIVE SUB BASS AMPLIFIER WITH A TRUE 100 W
RMS OUTUT. SUPERB CONSTRUCTION WITH THE RMS OUTPUT. SUPERE CONSTRUCTION WITH THE HIFF OR HOME CINEMA SETUPS. USE THIS PANEL
PLUS ONE OF OUR LOUDSEAKERS TO NAKE YOUR OWN SUB WOOFER THAT WILL MATCH OR BEAT MOST COMMERCIALLY AVAILABLE SUB WOOFERS. FEATURES:- * 100W RMS INTO 8 OHMS HIGH AND LOW SHORT CIRCUIT PROTECTION TRANSFORMER PROTECTION * FREOUENCY ROLL OFF. LOWER 10 Hz , UPPER 60 Hz TO 240 Hz (FULLY ADJUSTABLE - ACB COMPATIELE FILER CAN BE BYPASSED FOR 5-1 FORMATS. AIRTIGHT CONSTRUCTION -TENS OF THOUSANDS OF OUR PANELS ALREADY
IN USE. COMPLETE WITH LEADS in USE. " COMPLETE WITH LEADS
SPECIFICATIONS:-* POWER 100W RMS @ 8 OHMS *FREQ RESP. 10 Hz 15 KHz 3dB * DAMPING FACTOR >200 * DISTORTION $0.05 \%$ * S/N A WEIGHTED $>100 \mathrm{~dB}$ * SUPPLY 230 V A.C. "WEIGHT 2.7 Kg * SIZE H254 X W254 X D94mm there are 2 VERSIONS OF The above panel available :-BSB100/8 8 OHM VERSION BSB100/4 4 OHM VERSION BOTH PANELS ARE PRICED AT $£ 117.44+£ 5.00$ P\&P INCL. V.A.T. CHECK WEBSITE FOR PANELS UP TO 500 W


DELIVERY CHARGES:- PLEASE INCLUDE AS ABOVE TO A MAXIMUM AMOUNT £30.00. CFFICIAL ORDERS FROM SCHOOL COLLEGES, GOVT, PLCS ETC. PRICES ORDERS ACCEPTED BY POST PHONE OR FAX.
(ih) FLIGHTCASED est landspo quality loudspeakers, designed to take advantage of fited grilles, witise high quality studio cast aluminum loudspeakers with factory ball oomer, coispersion poristant directivty homs, extuded aluminium comer protection and stee bo hats fors, compimented with heavy duty black covening. The endosures are fited as standard wit cabinets are fitted with Five models to choose fro
 12300 WATTS Fra 20 Price:- $£ 299.00$ per pair Size Price:- $£ 249.00$ per pair Price:- $£ 199.00$ per pair Size H546 W380 D300mm Price:- $£ 179.00$ per pair Size H4 18 W600 D385mm Price:- $£ 125.00$ Each
SPECIALIST CARRIER DEL:- $£ 12.50$ per pair, wedge monitor $£ 7.00$ each

 B.K, GLECTRONCS UNIT 1 COMET WAY SOUTHEND-ON-SEA, ESSEX. SS2 GTR Web:- http:Ilww.bkelec.com E-Mail sales@bkelec.com

## 'Electronics and Computing <br> A Complete PC Based Electronics and Computing Course.

ELECTROMICS - ELECTRICAL - MATHEMATICS - COMPUTER SCIENCE INFORMATIOW HECHNOLOGY - PIC MICRO CONTROLAEFS-PHYSICAL SCIENCE


More than a thousand fully interactive Electronics and Computing topics.
FREE V7.1 upgrade to add Computer Science and Information Technology.
Mathematics Principles from imple numbers to statistics.

11C Micro controllers, Toolbox, Components and Equipment Pleture Dictionary, Electrical taples all in one package.
-2tIOMAL EPT Electronics Lab Add-on unit for real tectronics experiments.

Used in hundreds of schools, colleges and universities in the UK and overseas.
Covers GCSE, A'Level, BTEC Nationals and Mniversity courses.

Etcremely easy to use for interactive learning with a unique approach to multiple choice Self-Assessment-Questions.

A huge source of dynamic electronics and computing information all in one place.
Select printing, clipboard, explanatory text, calculations and graphs from toolbar buttons.

OnLine £29.95 + VAT p.a.
Personal user CD-ROM £99.95 + + Education CD-ROM E299.95 +VAT
(Includes unlimited multi-usc site licence.)

FREE TRIAL DONHVLOAD
complete package with a descrition by Robert Penbld www.eptsoft. =om

Windows from '95 to XP
eptsoft limited. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ.
Tel: +44 (0)1376514008. Fax: +44 (0)870 0509660. Email: info@eptsoft.com.
Switch, Delta, Visa and MasterCard accepted.
No additional postage or airmail charges.


[^0]:    Callers welcome 9am-5.30pm Monday to Friday (other times by arrangemeni)

