

II Nerolis $/ 1 /$ incrolts $/ 1 /$ Nenolis

CoNTENTG

EDITORIAL

TThis Project Book replaces Issue 30 of 'Electronics' which is now out of print. In addition one project from Issue 35 has been included in order to complete a series. Other issues of 'Electronics' will also be replaced by Project Books once hey are out of print.
For current prices of kits please consult the lalest Maplin Calalogue or thefree price change leaflet, order as CA 99 H

- Editor Roberl Ball AMMPRE

Contributing Authors 8 out Pentold, Dave Goodman, Martin Dearman, Chris Earlow, Joe Fulles
Production Co-ordinator Alan Wiraighl
Prinl Co-ordinator John Craddock
I Art Director Peter Backmore
1 Publications Manager Roy Smilt
Oevelopmenl Manager Dave Goodman Drawing Oltice Manager John Dudey. Typesetting Brian Lavezzari Published by Maplin Electrortics Flo
1 Printed by Maytew McCrimmon Punters Lotd.
I Mall Order P.O Box 3, Rayleigh, Essex SS6 8 L
ITelephone Retal| Sales (0702) 55416
Retall Enquiries: (07021557911
Irade Sales: (0702) 554171
Gasnce,(0702)55294
I Fax: (0702) 553935 IT Telex: 995695
Retail outlets:
Birmingham, Sutton Newr Road, Erdington Ielephone: (021) 3848411
Brighton, 65 London Road Telephone (0273) 620930 Bristol, 302 Gloucester Road Horticld Telephone (0272) 232014
Carditt, 29-31 Cily Road Telephone (0222) 464554

Coventry, 12 Bishop Street Teleptione (0203) 550504
Edinburgh, 126 Dalry Road Telephone (031) 313555
Glasgow, 264266 Greal Western Road
relephone , 241) 353333
lilord, 302 -304 Green Lane relephone (088) 5990100 ceeds, Carpet World Building. 3 Regend Street eicester, Otice World
Teiephone (0533) 623288
eicplone (0332) 623288 Telephone (081) 9510969
107-113 Stanstead Road, Forest Hill
Telephone (081) 2919192
120-122 King Sireet. Hammersmith
Telephone (081) 7480926
Manchester, 80×1 ord Road Telephone (061) 2360281 Midd elesbrough, Unill 1. The Forbes Bullding. 309321 Linthorpe Road Telephone (0642) 242900 Newcastle, Unit 4, Allison Court, Galeshead Telephone (091) 488955
Noulngnam, $80-8$ Lower Parl Lameni Stree
Pephene (6. 28 4 10042
Orismouth, 98-100 Kingsion Road
Repplane (0705)654411
Reading, 129-131 0xtord Road Telephone (0734) 566638 Shettield, 413 Langsett Road, Hillshorough Southamplon, 46-48 Be
Southamplon, $46-48$ Bevols Valley Road
Southend, 282-284 London Road, Wesiclifi-on-Sea Teephone 107031397000
All our shops are open from 90 cam to 530 pm Monday 10 Saturday (9 30am Friday) In addition Brightion, Newayaslle Saturday (9 30am Friday) In addoition Brighton. Newcasile, bermit and Manchester are open Sundays fl local conditions All shoos
shops are closed lor Public Holidays Shops do not close or lunct
Copyright All material is subject to warldonde copyright explection, ano tepr doliclion on imitaiun in wrove or pari is expressly Yorbioden. The Publishers, Madin Eiectionics PI any knd beng caused by any matree publisher in his Pionec Book Save insolar as prohibited by Endishlaw lizbility ol every kind including negligence is disclamed as iegards a person in respect thereol Where errors occur corrections will be published as soon as possible alterwards Permission to reproduce printed circuit toard layouls commercially or marketing of klits musi be sought trom line publisher - Copyright 1993 Maplin Electronics olc

2 DATA FILE: LM1875
IThe versatile, 20W LM1875 audio power amplifier IC.

I When using some video equipment a normal TV cannot be directly connected to the video signal, this project solves the problem

27 BOB'S MINI

- Four useful mini projects to build on stripboard: an Accented Metronome, Reaction Tester, Noise Gate and Electronic Die.

FOR MALL-ORDER ENQUIRIES,
PLEASE DO NOTCALLOUR
SHOPS AS THEY WILL BE UNABLE TOHELP YOU.
Send all mail to:
P.O. Box 3, Rayleigh, Essex, SS6 8LR.

11 DIGITAL SPEECH ROM EXPANSION MODULE

An ingenious add-on module that allows up to eight EPROMs to be connected to one Digital Speech Playback Module.

Features
\star Output Power up to 30W (rms)
\star Wide Range of Supply Voltages
* Split or Single Supply
\star Short Circuit Protection
* Thermal Protection
* Low Distortion
* 5 pin TO220 package
* PCB Available
Applications
* High Quality Audio Amplifiers
\star Servo Amplifiers
\star Bridge Amplifiers

General Description

The LM1875 is a general purpose audio power amplifier that offers very high quality output using a minimum of external components. The IC pin-out is shown in Figure 1. The device operates over a wide range of power supply voltages from 20 V to 60 V DC and will deliver 20 watts rms into 4Ω or 8Ω load when operated from a 50 V supply. If a 60 V supply is used, output powers up to 30W rms may be produced (if anincrease in distortion is acceptable). By using advanced circuit techniques the amplifier IC offers minimal distortion even at high power levels. Other features include wide bandwidth, high gain, large output voltage swing and overload protection. Table l gives the electrical characteristics of the LM1875 and Figure 2 shows some typical performance characteristics of the IC.

Stability and Distortion

The LM1875 is designed to be stable when operated with a closed loop gain greater than ten; however, as with any other high current amplifier, it may oscillate under certain conditions. Oscillation is often caused by poor circuit board layout or associated with input/ output connections. When designing a layout it is important to return the load earth and the signal earth to the main earth point via separate paths. Preferably the load earth should be connected directly to the OV terminal of the power supply. If the input and load earths are connected to 0 V via the same rail, high currents on the rail can generate voltages which effectively act as input signals, leading to high frequency oscillation or distortion. It is recommended that the earth (0V) rails are kept as short as possible and that decoupling capacitors and output compensation

Table 1. Electrical characteristics of the LM1875.

Figure 1. Pin-out of the LM1875.

Supply voltage ($\ddagger V$)

Supply voltage (\ddagger V)

Frequency $\left(\mathrm{H}_{2}\right)$

T_{A}-ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

Power output (w)
Thermal shutdown with infinite heat sink
*) Thermal shutdown with $1^{\circ} \mathrm{C} / \mathrm{W}$ heat sink

Figure 2. (a) Supply current vs supply voltage (quiescent). (b) Power output vs supply current. (c) THD vs frequency. (d) THD vs power ontput. (e) Device dissipation vs ambient temperature. (f) Power dissipation vs power output (4 ohm load). (g) Power dissipation vs power output (8 ohm load).
components are kept close to the IC to minimise the effects of track resistance and inductance. Sometimes oscillation can be caused by stray coupling between the output and input leads, especially if the leads are long and the source impedance is high; in order to avoid this, these leads should be kept as far apart and as short as possible. It is often possible to prevent oscillation due to stray input/output coupling by fitting a 50 pF to 500 pF capacitor across the circuit input terminals.

In addition to preventing problems with spurious oscillation, layout can also be an important factor in
achieving minimum distortion. For low distortion the power supply wiring is also important; this should be kept as far away as possible from the input wiring to help prevent nonlinear power supply currents being induced into the IC inputs. If possible the power supply wires should be kept perpendicular to the circuit board for a few centimetres.

Thermal
 Protection and Heatsinking

The LM1875 incorporates a sophisticated thermal protection system to help prevent any long term thermal stress to the device. If the IC

Split rail version.

Single rail version.
(die) temperature reaches $170^{\circ} \mathrm{C}$ the amplifier shuts down until the temperature drops to around $145^{\circ} \mathrm{C}$; if, however, the temperature starts to rise again the device will then shut down at around $150^{\circ} \mathrm{C}$. The effect of the above characteristic is to allow the device to rise to a relatively high temperature under short duration fault conditions but limit the temperature of the device if the fault condition is sustained; this helps to improve the long term reliability of the IC.

It is important that the amplifier is always operated with a heatsink because even when off load, the device may dissipate up to 6 W and when on load the dissipation may be as high as 30W. \bar{A} heatsink should be chosen that is
sufficient to keep the temperature of the device well below shutdown temperature. For reliability the heatsink should be the best possible for the space available.

If the amplifier is powered from a single rail supply, the IC mounting tab may be bolted directly to the chassis (0V). When the device is powered from a split rail supply, to avoid damage, it is important that the tab is completely isolated from OV; an insulating bush and a mica washer is usually used for this purpose. If the amplifier is powered from a split supply, a larger heatsink may be necessary because the thermal connection to the heatsink through a mica washer is less efficient than a direct connection.

In addition to thermal protection, the LM1875 also provides current limiting. A power amplifier can be easily damaged by excessive applied voltage or current flow. Reactive loads are often a problem due to the fact that they can draw large currents at the same time as high voltages appear on the amplifier's output transistors. To prevent any damage that may occur, the LM1875 limits the current to around 4 A and also lowers the value of this current limit when high voltage appears across the output of the device. Protection is also provided against the excessively high voltages that may appear on the output of the device when driving non-linear inductive loads.

Power Supply

The amplifier may be powered from either a single or split rail supply and will operate over a wide range of voltages between 20 V and 60 V (between $\pm 10 \mathrm{~V}$ and $\pm 30 \mathrm{~V}$ when powered from a split rail supply). Current requirements depend very much on output power and may range from a few $m A$ to over lA. It is important that the power supply is adequately decoupled to prevent the introduction of mains derived noise into the amplifier.

Printed Circuit Board

A high quality fibre-glass PCB with printed legend is available for the basic LM1875 audio amplifier application. Two different versions of the amplifier may be constructed using the same PCB; one version is for use with a single rail supply (see Figure 3) and the other is for use with a split rail supply (see Figure 4). A combined circuit diagram of both versions of the amplifier is shown in Figure 5 for reference purposes; this is the circuit used to produce the PCB which is shown in Figure 6. Provision is made for a PCB mounted heatsink bracket; power should not be applied to the amplifier until the bracket has been bolted securely to a suitable heatsink (for example, Maplin stock code FJ77] or a heatsink with at least $1500 \mathrm{~cm}^{2}$ surface area). Please note that if the amplifier is powered from a split rail supply, the IC tag

Figure 3. Amplifier for single rail supply.

Figare 4. Amplifier for split rail supply.

SUPPLY VERSIONS

Figure 5. Combined circuit to which PCB is designed.
must NOT be electrically connected to the chassis (0 V); an insulating bush and a mica washer should be used to isolate the tag from the heatsink (see Figure 7). It is recommended that heat transfer compound is smeared between the IC and the

heatsink to facilitate the conduction of heat away from the device. If a mica washer is used, the compound should be applied on both the IC and heatsink sides of the washer. \bar{A} larger heatsink may be necessary for the split rail version of the amplifier.

For connection information, refer to Figure 3 or Figure 4 as appropriate. The power supply is connected to $\mathrm{P} 3(+\mathrm{V}), \mathrm{P} 4(0 \mathrm{~V})$ and $\mathrm{P} 5(-\mathrm{V})$; if the amplifier is powered from a
single rail supply PS is not used. Heavy gauge wire should be used for the power supply and output connections and all leads should be kept as short as possible. The signal input is applied between Pl and P 2 using screened cable (XR12N) and the output is taken from P6, the load earth being connected directly to the 0 V terminal of the power supply. Finally, Table 2 gives the specification of the prototype amplifier that was built on the PCB (GE13P).

Figure 6. Track and layout of PCB.

SINGLE RFIL PRRTS LIST

Resistors: All 0.6 W Metal Film (unless specified)			
R1,2,3	22k	3	(M22K)
R4	4k7	1	(M4K7)
R5	150k	1	(M150K)
R6	1R3W Wirewound	1	(W1R)
LKI	Link Fitted		
Capacitors			
Cl	$1 \mu \mathrm{~F} 100 \mathrm{~V}$ PC Electrolytic	1	(FF01B)
C2	$22 \mu \mathrm{~F} 63 \mathrm{~V}$ PC Electrolytic	1	(FF07H)
C3	$2 \mu 2 \mathrm{~F}$ 100V PCElectrolytic	1	(FF02C)
C4	47nF Polyester	1	(BX74R)
C5	$2200 \mu \mathrm{~F} 63 \mathrm{~V}$ Snap-in	1	(JL38R)
C6	Not Fitted		
C7	220μ F 63V PCElectrolytic	1	(FF14Q)
C8	Not Fitted		
C9	100nF Polyester	1	(BX76H)
Semiconductors			
ICl	LM1875	1	(UH78K)
D1,2	1N4002	2	(QL74R)
Miscellaneous			
	PC Board	1	(GE13P)
	Bracket	1	(YQ36P)
	Pins		(FL21X)
	M3 Bolt x 12 mm		(BF52G)
	M3 Nut		(D61R)
	M3 Washer		(JD76H)

SPLIT RRIL PARTS LIST

Digital Record and Rlay butck. Module м.пи"

This project is based around the UM5 100 digital voice recorder and playback integrated circuit where speech is digitally recorded into memory and then played back. Digital recording has the advantage over tape recording, in that there is no mechanical wear and tear in the tape head or tape. Applications include voice message pads, security systems and telecommunications, and it can also be used in a vehicle, as it will run from a 12 V supply. For memory, either an 8 K byte CMOS Static RAM (SRAM), type 6264, or a 32Kbyte CMOS SRAM, type 62256, can be used and with the 32Kbyte SRAM súpplied, record and playback durations of between 5 and 20 seconds are possible. The module can be further expanded with an EPROM programmer board, and another option will be a replay only board for playing back pre-recorded messages stored on an EPROM (both of these addons will be published in a future issue).

Circuit Description

Figure 1 shows a block diagram of the record and playback module, and Figure 2 shows the circuit diagram. Speech is

Figure 1. Block schematic of the system.

Figure 2. Circuit of the record/playback module.
received at the electret microphone and amplified by ICla, which has a variable resistor RV1 in its feedback path, thus the gain of ICla can be altered to suit the sensitivity required from the microphone. ICla is also a bandpass filter (consisting of components $\mathrm{C} 1, \mathrm{R} 3, \mathrm{R} 5, \mathrm{ICla}, \mathrm{C} 5, \mathrm{R} 4$, RV1) and is used to reduce two problems from which an analogue to digital circuit can suffer. These two problems are called aliasing error and quantisation noise. Aliasing error occurs when the frequency being sampled (converted) is greater than half of the sampling frequency. The error occurs because the analogue to digital converter circuit (ADC) needs to sample the input signal at twice the frequency of the input signal (at least); i.e. to sample a 10 kHz sinewave, a minimum 20 kHz sampling rate will be needed to correctly convert the input signal. If, for example, the input signal now consists of 10 kHz and 20 kHz sinewaves mixed together, the ADC will correctly convert the 10 kHz sinewave and it will attempt to convert the 20 kHz sinewave, but it will not be able to
processor IC3, which converts the analogue speech to a digital representation of this signal.

The digital signal, now in a binary format, is placed into IC5, a static RAM IC, via the 8 bit data bus (pins 11, 12, 13 and 27 to 31 on the UM5100 IC). The UM5100 also generates the address that the RAM IC requires, starting with address 0 and incrementing (adding one) to this address every time a conversion has taken place, until the highest address of the RAM IC has been reached, 32767 or 11111111111111 with a 32 k byte memory device. When the RAM IC is full, i.e. address 32767 has been reached, the UM5 100 IC will stop converting the analogue speech signal, and be reset. Reset occurs when pin 16 of the UM5100 is at +5 V DC, and this happens when address lines A0 to A 14 (when using the 32 k byte RAM IC) are all high, i.e. at a logic ' 1 '. The 15 address lines A0 to A14, are logically ANDed together by components D3, D4, D5, R35, IC4, R32, TR2 and R29. Links 2 to 4(LK2 to LK4) are
pins 23 to 26 . The four signals coming out of the UM5100 IC are combined into one signal by differential amplifier IC2a. The signal is then low pass filtered by IC2b, to remove unwanted clock and noise signals, and output to pin P3. This signal will need to be amplified by an external amplifier, as the average level is only 250 mV RMS.
There is also a LED (LD1) indicator fitted that will light when speech is being received and played back by the UM5100. The record and playback module can be made to replay continuously by keeping pin 17 of the UM5100 shorted to ground.

PCB Assembly

The PCB is a double-sided, plated through hole, fibre glass type. Removal of a misplaced component is therefore quite difficult, so please double-check each component type, value and its polarity where appropriate, before soldering. The PCB has a printed legend to assist you in correctly positioning each item, see Figure 4. The sequence in which the components are fitted is not critical. However, it is

Figure 3. Bandpass filter response.
manage it successfully as it is not being sampled at a high enough rate. The bandpass filter has a frequency response characteristic such that it will reduce or entirely remove these unwanted higher frequencies as can be seen in the frequency response graph of Figure 3. Quantisation error occurs when there are too few bits being used to adequately represent the input signal. To reduce quantisation error, the input signal will need to have its amplitude increased and this is done by the bandpass filter which exhibits voltage gain at the frequencies being sampled. The speech signal is then fed to IC1b, which is a voltage comparator and compares part of the output signal (pins 23, 24, 25 and 26 of the UM5100 IC) with the input signal arriving at pin 5 of IClb. Part of this signal also reaches the output pin P3, so that the speech can be externally monitored. The speech signal now enters the voice
inserted to suit the size of RAM IC used, see Table 1 for link settings.

Table 1. Link settings.
Playback of the digital speech information in the RAM IC will occur when pin 17 of the UM5 100 IC is shorted to ground. This speech information is read (fetched) from the RAM via the data bus, then converted back to an analogue signal by the UM5100, and fed out of the IC on
easier to start with the smaller
components. Begin with the metal film 0.6 W resistors, then mount the five diodes D1 to D5, taking care to insert them the right way round as they are polarised; the cathode is indicated by a band at the end of the diode body. Next the four link wires, LK 1 to LK4, can be fitted and the pins P1 to P12 have to be inserted from the solder side of the PCB. Next insert all the polyester capacitors, then the two variable preset resistors RV1 and RV2, then fit the 470 pF ceramic capacitor. The nine electrolytic capacitors are polarised devices, so take care in inserting them into the PCB the correct way round; the negative lead is indicated by a minus sign down one side of the capacitor. There are five IC sockets to be fitted; make sure the notches on the IC sockets match up with the notches in the legend on the PCB. A little trick to hold the sockets in place

Figure 4. Layout of the PCB.
during soldering, is to bend two of the sockets legs over once it has been inserted into the PCB. This will hold the socket in place until all the other leads have been soldered, then straighten out the two previously bent legs and solder them. The ideal pair of legs to bend are the two at each end of the socket and diagonally opposite each other. Next fit the two

Figure 5. Mounting the regulator.

Figure 6. Mounting the electret microphone.
transistors TR1 and TR2, taking care to match the body shape of the transistor with the outline on the PCB, then the LED is inserted into the PCB; the cathode is indicated by a flat side on the body and by the shorter of the two leads. The regulator IC is fitted next and is bolted to the PCB using an M3 nut and bolt (see
Figure 5). The leads of the regulator have to be bent at an angle to get them into the PCB with the M3 nut and bolt as shown. Mount the electret microphone as shown in Figure 6, taking great care to wire it the correct way as it is a polarised device; the 0 V (ground) pin is connected to the microphone case.

Testing

All of the tests necessary can be made with the minimum of equipment. You will need an electronic digital (or analogue
speech occurs at the shortest duration of recording and playback time, i.e. 5 seconds. If you have an oscilloscope or better still a frequency counter, this record and playback time can be determined by measuring the frequency of the signal at pin 19 of the UMS 100 voice processor IC. The formula for working out the time is 8 divided by the frequency at pin 19 , multiplied by the memory capacity in
bytes, i.e. with $32 k$ bytes of RAM and a frequency, at pin 19 of the UM5100 IC, of 19.21 kHz , then the record and playback time is equal to $(8 / 19.21 \mathrm{kHz}) \times 32 \times 1024$ bytes $=13.65$ seconds. To playback the speech recording, P10 will have to be taken momentarily to ground by connecting P10 to P9. Note that socket SKl is only fitted when the optional EPROM programmer board is used.

Uses

The digital record and playback module has a variety of uses, including a burgler alarm in the home, a telephone answering system, in the car as an annunciator, in the office as an electronic message pad, and as a message system for the blind. Comments on other possible uses are invited from readers.

RECORD/PLAYBACK MODULE PARTS LIST

RESISTORS: All 0.6W 1% Metal Film (Unless specified)

R. $1,9,10,11,17,18$,

$28,29,31,32,35$	10 k	11	(M10K)
R2	33 k	1	(M33K)
R3,12,15, 16,26,27 47 k	6	(M47K)	
R4,5	1 k	2	(M1K)
R6,	12 k	2	(M12K)
R7	270Ω	1	(M270R)
R23	3 k 3	1	(M3K3)
R13,33	220Ω	2	(M220R)
R14	220 k	1	(M220K)
R20,21	100 k	2	(M100K)
R19	4 k 7	1	(M4K7)
R22,25	27 k	2	(M27K)
R34	100Ω	1	(M100R)
RV1	470k Hor Enclosed Preset 1	(UH08J)	
RV2	4k7 Hor Enclosed Preset	1	(UH02C)

CAPACITORS

C1	100nF Poly Layer	1	(WW41U)
C2,15	10 nF Poly Layer	2	(WW29G)
C3,9,16,18	$47 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	4	(YY37S)
C4	$100 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	1	(RA55K)
C5	470 pF Ceramic	1	(WX64U)
C6	47nF Poly Layer	1	(WW37S)
C7,8	4n7F Poly Layer	2	(WW26D)
C10	33 nF Poly Layer	1	(WW35Q)
C11	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	1	(YY34M)
C12-14	$1 \mu \mathrm{~F} 63 \mathrm{~V}$ Minelect	3	(YY31J)
C17	6 n 8 F Poly Layer	1	(WW27E)

SEMICONDUCTORS			
TR1,2	BC547	2	(QQ14Q)
D1-5	1N4148	5	(QL80B)
IC1,2	LF442CN	2	(QY30H)
IC3	UM5100	1	(UJ48C)
IC4	$74 \mathrm{HC133}$	1	(UB30H)
IC5	62256/43256 100ns	1	(UH40T)
RG1	μ A78M05UC	1	(QL28F)
MISCELLANEOUS			
LD1	LED Red	1	(WL27E)
MC1	Submin Omni Insert	1	(FS43W)
	8 -Pin DIL Socket	2	(BL17T)
	16-Pin DIL Socket	1	(BL19V)
	28-Pin DIL Socket	1	(BL21X)
	40-Pin DIL Socket	1	(HQ38R)
	Pin 2145	1 Pkt	(FL24B)
	Bolt M3 $\times 6 \mathrm{~mm}$	1 Pkt	(BF51F)
	Nut M3	1 Pkt	(JD61R)
	TC Wire 0.71mm 22swg	1 Reel	(BL14Q)
	PCB	1	(GD88V)
	Instruction Leaflet	1	(XU26D)
	Constructors' Guide	1	(XH79L)
The Maplin 'Get-You-Working' Service is available for this project, see Constructors' Guide or current Maplin Catalogue for details.			
The above items are available as a kit, which offers			
Order As LM80B (Record/Playback Kit).			
Please Note: Where 'package' quantities are stated in the			
Parts List (e.g., packet, strip, reel, etc.), the exact quantity required to build the project will be supplied in the kit.			

ROM EXPANSION MODULL FOR DIGITAL SPPECH PLAYBACK MODULE

 Your Seatbelt...Lights On...Intruder Alert...Petrol Low...Alarm System Deactivated!...Water Low... Fire!...Oil Low...Please Use Emergency Exit!... Danger!...There's Someone at the Door!... By Joe Fuller FEATURES

* Wide Range of Applications
* Up to Eight EPROMs may be used
* Plugs into Playback Module
* Octal or Binary EPROM Selection
* Internal or Exlerinal Address Latch
* Status Lines \& LED Indicator
* Can be used with 8K 16K or 32K EPROMs

Introduction

In issues 30 and 31 of 'Electronics', constructional details were given for a Digital Record and Playback Module, EPROM Programmer Card and Playback Only Module. These modules allow the recording and playback of words, phrases and sentences using digital technology; speech can be permanently stored in EPROM for recall at any time. Due to the enormous success of this series of projects a further module has been developed to increase the versatility of the system still further. In many applications it may be required to playback more than one phrase, for example, in a home or factory security and alarm system, with ham radio for repeating call signs, an annunciator device or even your own version of that famous talking car from the TV series 'Knight Rider'! If you have missed any of the issues order them now.

Speech ROM Expansion Module

The Speech ROM Expansion Module is intended for use in a wide range of applications where selection of speech phrases is required, the speech is held in EPROMs which are plugged into the module. The expansion module itself plugs into the Playback Only Module, this does not require any modifications to the playback module. To avoid any possibility
of overloading the playback module's on-board regulator a separate regulated 5 V supply is provided on the expansion module. Up to eight EPROMs can be accommodated on the expansion module, although any number less than this is permissible. The EPROMs used must all be of the same memory capacity i.e. $8 \mathrm{~K}, 16 \mathrm{~K}$ or 32 K and not a mixture, otherwise very odd things will happen!

Note that it is strongly advised that the EPROMs used are CMOS 'C' versions, i.e. $27 \mathrm{C} 64,27 \mathrm{Cl} 28$ and 27 C 256 . This is to keep the supply current low and hence minimise power dissipation in RG1. If, however, it is required to use standard NMOS EPROMs (2764, 27128 and 27256) then RGl should be mounted off-board, on an external heatsink of sufficient size to conduct away the heat produced. Alternatively, a separate regulated 5 V supply may be used and RGl omitted from the board. Power consumption of the EPROM expansion module with eight CMOS EPROMs fitted is approximately 7 to 10 mA whilst in standby and approximately 22 to 25 mA whilst being accessed by the playback module. To reduce current consumption during playback, TR2, R4, R5 and LD1 may be omitted if required. LDl serves as a visual indication of READ status. Current consumption with eight NMOS EPROMs fitted (dependent on type) is approximately 320 to 330 mA whilst in standby and approximately 400 to 410 mA whilst being accessed by the playback
module. Clearly CMOS EPROMs
consume much less power than NMOS!
Depending on the capacity of the EPROMs used, the link options on the playback module must be set accordingly, this will be described later in the article. The phrases will of course need to be recorded in the first place, this is achieved using the Digital Record and Playback Module in conjunction with the EPROM Programmer Card. As there are so many possible applications it was decided to make the module as flexible as possible, to this end, there are a number of different options open to the constructor. Selection of the EPROM, 1 to 8 (SK 1 to 8 respectively), can be achieved in either of two ways, Binary or Octal. In Binary mode the EPROM can be selected by feeding the module with a 3 bit binary word with a value of 0 to 7 , which will select EPROM l to $8(0=S K 1,1=S K 2$, etc.). In Octal mode the EPROM can be selected by taking one of eight input lines high (logic 1), which will select EPROM 1 to $8(1=$ SK 1, 2 = SK 2, etc.), if two or more lines are taken high, the most significant one (highest) will have priority over the other lines. Since the playback module accesses the EPROM continuously whilst it is 'speaking' the EPROM selected should not change, otherwise speech will become garbled. To avoid this an address latch is used, in the Internal latch mode, whenever the 'play' input on the playback module is taken low and the module starts to speak, a control signal latches the EPROM address

Figure 2. Circuit diagram of Playback Module.
and prevents it from changing during speech. If a new address is fed into the module it will be ignored until speech has finished. A secondary use of this is that the address need only be provided momentarily whilst the 'play' input is taken low. In External latch mode the address latch is under external control and for this reason the address should only be changed after speech has finished, to indicate whether speech has finished two status lines are provided, one active high and one active low. The READ line will be high during speech and the NOT READ will be low during speech, these lines, in conjunction with the LATCH and ADDRESS lines, may be used to facilitate control from a computer port. So as power consumption is kept as low as possible, the EPROMs are deselected when the playback module is not speaking. Connection to the playback module is via a 28 pin DIL IDC header plug, IDC cable and a transition header, this makes interconnection very simple. Note: Whilst the DIL header is 28 pin, the transition header and IDC cable are only 26 way, this is because 2 pins are not connected. For this reason please read carefully the construction details when assembling the cable to ensure correct location of the DIL header. (The speech ROM expansion kit includes a pre-assembled IDC cable form.)

Expansion Module Circuit

The circuit shown in Figure 1, at first glance seems quite complex, but in reality it is fairly simple. Connection to the playback module is via PL1, IDC cable and CN1. PL1 is a 28 pin DIL header plug, this plugs into SK 1 on the playback module, see Figure 2 for the circuit of the playback module. Pins 1 and 28 are connected to +5 V and since the expansion module has its own localized +5 V supply, no connection to these pins is made. This allows use of 26 way IDC cable and a 26 way IDC transition header (CN1). All the other pins are connected, these carry address and data information, A14 to A0 and D7 to D0 respectively, device control signals OE and CE, and last but not least the 0 V line. These lines with the exception of the device control signals are 'bussed' to EPROM sockets SKI to SK8, so the sockets are effectively wired in parallel. Only one EPROM is allowed to place information on the data bus at a time, this is achieved using the device control pins 22 and 20 (OE and CE) on SK1 to SK8. Pins 1 and $28\left(\mathrm{~V}_{\mathrm{pp}}\right.$ and $\left.\mathrm{V}_{\mathrm{cc}}\right)$ are connected to the +5 V line, and pin $14(0 \mathrm{~V})$ to the 0 V line. IC2, a 74 HCl 37 , is a 3 to 8 line decoder/demultiplexer and latch, this device is used to select the required EPROM. A 3 bit binary word is applied to pins 1,2 and 3(A0 to A2), and a low to high transition on pin 4 (LE) causes the binary address on A0 to A2 to be latched. The output from the latch is fed to the decoder/demultiplexer, where the binary input is decoded to a 1 of 8 octal output on pins $15,14,13,12,11,10,9$ and 7 (Y0 to Y 7), these outputs are fed to the OE and CE pins on SK1 to SK8. The outputs are
Figure 3. PCB layout.
active low and are under control of pins 5 and 6 (CS2 and CS1), when CS2 is low and CS1 is high the outputs are active, with any other conditions on CS2 and CS1 the outputs are inactive (logic 1). CS1 is pulled high via R3. In most cases the Internal latch mode will be used (LK1 fitted), when the 'play' line on the playback module is taken low, the NOT READ line from the UM5100 will go low, this signal is found on pins 22 and 20 (OE and CE) of PL1. The NOT READ signal is fed to P16 status output and the CS2 input on IC2. The CS2 input is used to deselect the EPROMs when they are not being accessed by the UM5 100. NOT READ is also inverted by TR1 to provide the READ signal, which fed to IC2 LE input, where it is used to latch the EPROM address. READ is also fed to P10 status output and is used to switch TR2, which drives D1. D1 lights when the UM5100 is accessing the EPROMs. When the External latch mode is used (LK1 not fitted) IC2's address latch is operated by an external signal applied to P15 LE. Status signals are still available on P16 and P10. IC1, a 4532 BE , is a priority encoder, this device converts a 1 of 8 octal input on pins 10,11 , $12,13,1,2,3$ and 4 (D0 to D7) to a 3 bit binary word output pins 9, 7 and 6 (Q0, Q1 and Q2). The octal input to the module is via P1 to P8 (D0 to D7). If more than one input is high, the most significant code is generated, for example, if D1 and D3 were taken high, the output would be 011 (binary). The outputs Q0, Q1, Q2, EOut and GS are active if pin 5 (EI) is high. EI is pulled high via R3. If any of the inputs (D0 to D7) are high then pin 14 (GS) will go high, if all of the inputs (D0 to D7) are low then pin 15 (EOut) will go high. EOut and GS are routed to P17 and P18 for external use. The outputs $\mathrm{Q} 0, \mathrm{Q} 1$ and Q2 are fed to IC2's inputs A0, A1 and A2 to provide the EPROM address and also to P12 (A0), P13 (A1) and P14 (A2) for external use, these pins also double as binary inputs when IC1 is removed. The +5 V supply is provided by RGl a 5 V 1 A regulator, this device is mounted on a vaned heatsink to aid heat dissipation.

Figure 4. Assembly of regulator and heatsink.

Figure 5. Assembly of IDC cable, DIL header and transition header.

Capacitors C 1 to C 9 provide supply rail decoupling, C 2 to C 9 are mounted adjacent to sockets SK 1 to SK 8. The +5 V rail is available for external use on P21; care should be exercised so that the power dissipation in RGl is not excessive.

Construction

Assembly of the module is very straightforward and should not present any difficulties. As the PCB is doublesided with plated through holes, removal of misplaced components is quite difficult so please double-check each component type, value and its polarity where appropriate, before soldering! The PCB has a printed legend to assist you in
locating where each component goes, see Figure 3 and refer to the parts list.

The sequence in which the components are fitted is not critical, but the following order will probably be found to be the easiest. First insert the pins (22 off!) into the track side of the board, then solder them in. Identify and fit the resistors and the capacitors, note Cl is a polarised electrolytic and must be inserted with correct polarity. Next fit the IC sockets ensuring that the orientation indicator lines up with the corresponding mark on the PCB legend, but do not fit any ICs or EPROMs. Insert the LED, transistors and fit the regulator RG1 and heatsink, see Figure 4. Referring to Figure

Figure 6. Connecting to Playback Module.

The ROM Expansion board connected to the Playback Module.

Figure 7. Connections to Speech ROM Expansion Module.

Figure 8a \& 8b. Connecting switches to Speech ROM Expansion Module.

5, make up the IDC cable, ensuring correct location of the 28 pin DIL IDC header plug on the 26 way IDC cable. The PCB IDC transition header may now be soldered to the PCB. LK1 is either inserted or left out depending on whether internal (LKl fitted) or external (LKl not fitted) latch mode is required. Before proceeding any further, check over the board, paying special attention for splashes of solder across adjacent joints and incorrectly placed components. Check also that the component leads are properly trimmed.

Testing

The initial testing is to check that the +5 V supply is functioning correctly and present on the supply pins of the ICs and sockets, this is done with the EPROM expansion module unplugged from the playback module and without any of the ICs or EPROMs plugged into the sockets! Connect a $7 \cdot 5 \mathrm{~V}$ to 12 V DC supply to P 19 $(+V)$ and $\mathrm{P} 20(0 \mathrm{~V})$, and using a multimeter (analogue or digital) check there is $+5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ present on $\mathrm{P} 21(+5 \mathrm{~V}$ out) with respect to 0 V (e.g., P22). Check pin 16 of ICl and IC2, pins 1 and 28 of SKl to SK8, for +5 V . Disconnect the supply and insert ICl, IC2. Insert some EPROMs programmed with speech into the vacant sockets, ensuring correct orientation and plug the IDC DIL header into SKl on the playback board, see Figure 6. Set the EPROM capacity selection links on the playback board to suit the EPROMs used, see Table 1. Remember, the playback module, as well as the EPROM expansion module, requires a power supply to operate; the supply can be common to both modules however. Connect a suitable amplifier to the playback board. Apply power and you should be greeted by silence. Using a flying lead, e.g., miniature crocodile lead, pull one of the octal inputs (Pl to P 8) high $(+5 \mathrm{~V})$. Momentarily connect pins 5 and 6 on the playback module. Dl should light and the unit should utter speech from the selected EPROM. When speech has finished Dl should extinguish. Now select another EPROM using the octal input and initiate playback, again speech should be heard, but should be from the new EPROM selected. Figure 7 and Table 2 show the module pin functions. Figures 8 a and 8 b show two ways of connecting switches to select EPROMs in octal. Figure 8a uses push to make switches and the connection from PI7 automatically initiates playback, whilst Figure 8b uses SPST switches and a separate push to make switch to initiate playback.

Using the Speech System

The speech system has many different applications and the modules have been made as flexible as possible to cater for a wide range of configurations. If you have used the speech system in an imaginative or ingenious way, please send in your ideas on how you have used the modules so we can print suggested applications.

Octal mode - IC1 fitted

Pin	Name	Description	P12	A0	Binary address out LSB
P1	D0	Octal address in LSD	P13	A1	Binary address out
P2	D1	Octal address in	P14	A2	Binary address out MSB
P3	D2	Octal address in	P15	LE	Status output, high during speech (LK1 fitted)
P4	D3	Octal address in			Latch enable input (LK1 not fitted)
P5	D4	Octal addres in	P16	NOT READ	Status output, low during speech
P6	D5	Octal address in	P17	EOut	Octal status, high on all inputs low
P7	D6	Octal address in	P18	GS	Octal status, high on any input high
P8	D7	Octal address in MSD	P19	+V	Positive DC supply input
P9	0V	Zero volt linc	P20	OV	Zero volt line
P10	READ	Status output, high during speech	P21	+5V	+5V DC output
P11	0V	Zero volt line	P22	OV	Zero volt line

Binary mode - IC1 not fitted		P11	0V	Zero volt line	
			P12	A0	Binary address in LSB
Pin	Name	Description	P13	A1	Binary address in
P1	D0	not used	P14	A2	Binary address in MSB
P2	D1	not used	P15	LE	Status output high during speech (LK1 fitted)
P3	D2	not used			Lath enable input (LK1 not fitted)
P4	D3	not used	P16	NOT READ	Status output, low during speech
P5	D4	not used	P17	EOut	not used
P6	D5	not used	P18	GS	not used
P7	D6	not used	P19	+V	Positive DC supply input
P8	D7	not used	P20	OV	Zero volt line
P9	0V	Zero volt line	P21	+5V	+5V DC output
P10	READ	Status output, high during speech	P22	$0 V$	Zero volt line

Table 2. Pin functions of Speech ROM Expansion Module.

SPEECH ROM EXPANSION MODULE PARTS LIST
RESISTORS: All $0.6 \mathrm{~W} 1 \%$ Metal Film (Unless specified)

Bolt M3 $\times 10 \mathrm{~mm}$ 1 Pkt (HY30H) Pin 2145 PCB 1 Pkt (FL24B)		
Instruction Leaflet	1	(GE23A)
Constructors' Guide	1	(XU28F)
OPTIONAL (Not in Kit)	1	(XH79L)
27C64 EPROM		
27C128 EPROM	As Req.	(UH43W)
27C256 EPROM	As Req.	(UH95D)
28-Way IDC DIL Header Plug If Req.	(UH44X)	(JP40T)
26-Way IDC DIL Header Plug If Req.	(FA49D)	
26-Way IDC Cable	If Req.	(XR75S)

The Maplin 'Get-You-Working' Service is available for this project, see Constructors' Guide or current Maplin Catalogue for details.
The above items (excluding Optional) are available as a kit, which offers a saving over buying the parts separately.
Order As LP05F (Speech ROM Expansion Kit).
Please Note: Where 'package' quantities are stated in the Parts List (e.g., packet, strip, reel, etc.), the exact quantity required to build the project will be supplied in the kit.

Design by Chris Barlow

$$
\left.\|^{\prime \prime}\right)^{(5)}
$$

(oSes)

Figure la. Audio and video connections.

Figure 1b. Video enhancer connections.
configurations of audio/video equipment connections to and from the finished boxed unit are shown in Figures la, lb, and 1 c .

Circuit Description

In addition to the circuit shown in Figure 3, a block diagram is detailed in Figure 2. This should assist you when following the circuit description or fault finding in the completed unit

The DC power is applied to PL2, positive voltage to pin 1 and negative to pin 4 (0 V). This supply must be within the range of 8 V to 16 V and have the correct polarity, otherwise damage will occur to the semiconductors and polarised components. To prevent this, a diode D2 has to have the positive supply voltage applied to its anode before the DC power can pass to the rest of the circuit.

Resistor R9 and capacitor C6 provide the main decoupling for the $+V$ supply rail, with C 5 giving additional high frequency decoupling. Further supply decoupling is provided by R15, C15 and C16 in the $+V 1$ audio supply rail. The red LED power on indicator, LD1 has its anode connected to pin 2 of PL2 and its cathode to pin 3. Resistor R8 provides current limiting to the LED thus restricting the drain to only a few mA .

The circuit incorporates two voltage regulators; an 11V Zener diode, 2D1 and a +5 V regulator IC, RG1. ZD 1 in conjunction with R 7 limits the voltage supply to the video buffer, this rail is decoupled by C 3 and C 4 . The +5 V output from RG1 is used to power the UM1286, MD1 (pin C) and also provides a voltage reference to RV2 the sound sub-carrier oscillator fine tuning control. Capacitors C 7 and C 8 are used to decouple this +5 V supply, with C9 decoupling the fine tune input of MD1 ($\mathrm{pin} A$).

For the audio circuit to function correctly a half +V 1 supply reference is necessary. This is provided by half of IC1 The voltage reference applied to the input of this op-amp is derived from the two resistors R13 and R14 which form a potential divider. The op-amp is merely used as a zero gain buffer to provide a low impedance half supply, its input being decoupled by C12, C13 and its output by C14. The other half of this IC is used as an audio amplifier which drives the sound input of the UM1286, MD1 (pin B).
Resistors R11 and R12 are used to set the gain of the op-amp with RV3 adjusting the level of audio signal applied to its input. The incoming signal from pin 6 of PL1 is AC coupled to this control via C10 with the input being loaded by R10 and C11. Pin 5 of PL1 is used as the ground or screen connection for the audio line.

The video signal is applied to pin 1 of PL1 and its ground is connected to pin 2 The input impedance of the video amp is approximately one million ohms ($1 \mathrm{M} \Omega$). However, this input can be reduced to 75Ω by operating switch $S 1$ on pins 3 and 4 of PL1. When the switch is closed a 75Ω resistor, R 1 is placed across the video input, this is known as a termination load.

000000000000000000000

Figure 1c. VU7000 connections.

The video signals are AC coupled via C 1 in to the gate of the Field Effect Transistor (FET) TR1, with diode D1 and resistor R2 used to maintain the correct bias level. TR1 and TR2 form a broad band buffer amplifier, with its gain set by the value of the negative feedback resistor R5. Resistor R4 is used as the source load for TR1 and the preset RV1 as the collector output load in TR2. The DC bias for TR2 is derived from R3, TR1 and a small amount of frequency compensation is provided by C 2 and R6.

The video output from the amplifier is tapped off by the wiper of RV1 and is fed to the video input pin (D) of the UM1286 modulator MD1. Inside MD1 the audio signal is converted into a 6 MHz FM modulated subcarrier. It is then mixed with the video signal and fed to the AM modulator where the UHF carrier is combined to produce the final modulated RF output

PCB Assembly

The PCB is a single-sided fibreglass type, chosen for maximum reliability and stability. However, removal of a misplaced component is quite difficult so please double-check each component type, value

Figure 2. Block diagram.

Figure 3. Circuit diagram.
and its polarity where appropriate, before soldering! The PCB has a printed legend to assist you in correctly positioning each item, see- Figure 4.

The sequence in which the components are fitted is not critical. However, the following instructions will be of use in making these tasks as straightforward as possible. It is usually easier to start with the smaller components, such as the resistors. Next mount the ceramic and electrolytic capacitors. The polarity for the electrolytic capacitors is shown by a plus sign (+) matching that on the PCB legend. However, on some capacitors the polarity is designated by a negative symbol (-). in which case the lead nearest this symbol goes away from the positive sign on the legend. All the diodes have a band at one end. Be sure to position them according to the legend, where the appropriate markings are shown. Next install the two transistors and the voltage regulator, matching each case to its outline on the legend. When fitting the eight pin IC socket ensure that you match the notch with the block on the board. Install IC1 making certain that all the pins go into the socket and the pin one marker is at the notched end. Next install the three preset resistors RV1, 2, 3 and set them all to their halfway positions. When fitting the 'Minicon' connectors ensure that the locking tags are facing inwards, see Photo 2. Using component lead off-cuts fit the wire links at the two positions marked LK on the PCB. Finally, mount the UM1286 modulator MD1, making certain that all four wire connections are in their correct positions (A, B, C and D). To secure MD1 to the PCB simply twist the four fixing tags through 90 degrees, and using a fair amount of solder, heat into place.

This completes the assembly of the PCB and you should now check your work very carefully making sure that all the solder joints are sound. It is also VERY IMPORTANT that the solder side of the circuit board does not have any trimmed component leads standing proud of the soldered track, as this may result in a short circuit when the unit is fitted into its metal die-cast box. Further information on soldering and assembly techniques can be found in the 'Constructors' Guide' included in the kit. Photo 3 shows the completed PCB in clear detail.

Wiring

If you purchase the hardware kit (Order Code LM79L) from Maplin it should contain a one metre length of hook-up wire. Once the PCB assembly has been fitted inside its die-cast box it becomes difficult to fault find on, for this reason it is advisable to make temporary connections to the PCB and chassis sockets, see Figure 5. At this stage the wires can be longer than required as they are cut to size during the final assembly. The starting point of each wire is taken from a terminal in the 'Minicon' connector PL1 or PL2. The terminals must be crimped then soldered to each wire before

Figure 4. Track and layout of the PCB.

Figure 5. Wiring.

Photo 2. Minicon connectors facing inwards.

Photo 3. Completed PCB assembly (with modulator lid removed).
it is inserted into the 'Minicon' housing, a locking tag on the terminal will ensure that it stays securely in place.

Testing

All the tests can be made with a minimum of equipment. You will need a multimeter, a UHF TV set and an audio/video source. To power the unit you will require a +8 V to +16 V DC supply, the unregulated $A C$ adaptor type XX09K set to its +9 V output is adequate. The readings
were taken on the prototype using a digital multimeter and some of the readings obtained may vary slightly depending on the type of meter you use.

Carefully lay out the PCB assembly on a non-conductive surface, such as a piece of dry paper or plastic. Position the chassis mounting components so they are clear of the circuit board and make sure the wires are as shown in Figure 5. The DC input jack socket is a type commonly used on Japanese radio equipment, where the
centre pin is the positive connection and the negative contact is the threaded body. The first test is to measure the resistance at this socket. With your multimeter set to read ohms, connect its red positive test lead to the terminal with the wire going to pin 1 of PL2 and connect the black negative lead to the other terminal. You should get a reading of approximately $1.8 \mathrm{k} \Omega$ and when the test leads are reversed, a much higher reading in excess of $20 \mathrm{M} \Omega$ should be present. These
readings are due to $D 2$, the component which protects the rest of the circuit from reverse polarity damage.

In the following tests it will be assumed that the power supply used is the unregulated AC adaptor set to its +9 V output. Select a suitable range on your meter that will accommodate a 300 mA DC current reading and place it in the positive power line from the jack socket. Connect the 3.5 mm jack plug of the mains adaptor to the power input, then plug the adaptor into the AC mains supply. The power indicator LD1 should light up, with a current reading of approximately 40 mA being observed. Unplug the adaptor from the mains, then remove the test meter and reconnect the positive line to the jack socket.

Now set your multimeter to read DC volts. All voltages are positive with respect to ground, so connect your negative lead to a convenient ground point on the unit. When the modulator is powered up, voltages present on the PCB should approximately match the following:

Pin 1 of PL2 $=+14 \cdot 5 \mathrm{VDC}$
Pin 2 of PL2 $=+2 V$ DC
$\operatorname{Pin} \mathrm{C}$ of MD1 $=+5 \mathrm{VDC}$
Pin 8 of $\mathrm{ICl}=+12 \mathrm{VDC}$
Pin 1 of $\mathrm{IC} 1=+6 \mathrm{VDC}$
Cathode of $\mathrm{ZD} 1=+11 \mathrm{VDC}$

This completes the DC testing of the audio and video modulator, now remove your multimeter from the unit.

Next connect a phono to coax lead (Order Code FV90X) from the RF output of the modulator to the aerial input of a UHF television, see Figure 1a. Using a spare channel selector tune to approximately 36 , where you should find a blank screen and a silent sound track. Connect an audio/video signal to the in/out of the modulator, if no other video connection is made to the unit then the termination switch must be on, see Figure 5 . To set the audio level, adjust RV3 until the sound level is the same as an off air transmission (BBC, ITV, CH4). Next set the video level so that peak whites don't
flare out and produce excessive buzzing on the sound channel. If this buzzing sound persists you can try tuning it out using RV2 the sound subcarrier fine tune. The final setting of the video level is up to you. However, the colour photographs in 1a, 16 and 1 c should provide a guide in setting it up correctly.

DO NOT make any attempt to adjust the presets inside the UM1286 modulator, as these are factory set using sophisticated test equipment.
Final Assembly
The unit is designed to fit into a die-cast metal box type M5004 (Order Code LH71N) which is also available ready drilled (Order Code YT64U). However, if you wish to make up your own box, drilling details are given in Figure 6.

Next remove all the chassis mounting components from the wiring and disconnect the 'Minicon' plugs from the PCB assembly. The PCB will only just fit inside the box so the following procedure must be used:

Figure 6. Box drilling.

Photo 4. Completed module (with screening lid removed).

1. Remove the metal screening lid of the UM1286 modulator, see Photo 4.
2. Position the PCB at an angle to the box so that the phono socket of the modulator passes through the hole in the side.
3. Carefully position the PCB and secure in to place using the M2.5 hardware.
4. Refit the screening of the modulator.

Install the BNC and phono sockets ensuring that all are tightly secured with their solder tags facing each other, see Figure 5. Next fit the video termination switch, S1 and the power input jack socket. The red LED power indicator LD1 is held in position by a 3 mm panel mounting clip which is simply pushed in to place.

This completes the assembly of the unit. Now refit the 'Minicon' plugs and rewire the chassis mounted components, see Figure 5. Before fitting the custom made stick-on top panel (Order Code

JL74R) test out the unit to ensure that all is well. Finally fit the lid of the box using the screws provided and stick on the four small rubber feet. The unit is now ready for use.
Using the Modulator
The audio/video modulator has been designed to be tolerant to varying supply voltages and differing interconnecting lead lengths. The following information should assist you in setting up your system.

AC-DC adaptor model XX 09 K .
Minimum voltage setting $=6 \mathrm{~V}$.
Normal voltage setting $=9 \mathrm{~V}$.
Maximum voltage setting $=12 \mathrm{~V}$.
Rev change $=$ Plus sign (+) on DC output plug to + on adaptor.

Phono to Coax lead length.
Minimum length = As short as you like. Normal length $=1.2$ metres (video lead 6). Maximum length $=10$ metres (good quality low-loss co-axial cable).

Phono audio lead length.
Minimum length $=$ As short as you like. Normal length $=1.5$ metres (video lead 4) or 1.2 metres (plugpak 279).
Maximum length $=4$ metres (good quality low noise cable).

BNC video lead length.
Minimum length $=$ As short as you like.
Normal length $=1.5$ to 1.8 metres (video lead 1,3 , or 5).
Maximum length $=4$ metres (good quality low-loss cable).

Unterminated video input to modulator.
Video termination switch $=\mathrm{ON}$ (see Figures 1 b and 1c).

Terminated video input to/from modulator.
Video termination switch $=$ OFF (see Figure 1a).

AUDIO/VIDEO MODULATOR PARTS LIST
RESISTORS: All $0.6 \mathrm{~W} 1 \%$ Metal Film (Unless specified)

RES	75Ω	1	(M75R)
R1	1 M	1	(M1M)
R2	$1 \mathrm{k5}$	1	(M1K5)
R3	1 k	2	(M1K)
R4,8	6 k 8	1	(M6K8)
R5	100Ω	1	(M100R)
R6	220Ω	2	(M220R)
R7,15	10Ω	1	(M10R)
R9	100 k	1	(M100K)
R10	4 k 7	3	(M4K7)
R11,13,14	27 k	(M27K)	
R12	1 k Hor Enclosed Preset	1	(UH00A)
RV1	2k2 Hor Enclosed Preset	1	(UH01B)
RV2	47 k Hor Enclosed Preset	1	(UH05F)

TR1	BF244A	1	(QF16S)
TR2	BC179	1	(QB54J)
IC1	LF353	1	(WQ31J)
MISCELLANEOUS			
MD1	UM1286 Modulator	1	(BK66W)
PL1	6-Way Latch Plug	1	(YW12N)
PL2	4-Way Latch Plug	1	(YW11M)
S1	Sub-Min Toggle A	1	(FH00A)
	6-Way Latch Housing	1	(BH65V)
	4-Way Latch Housing	1	(HB58N)
	Latch Terminal	1 Pkt	(YW25C)
	8-Pin DIL Socket		(BL17T)
	PCB	1	(GE09K)
	Instruction Leaflet	1	(XU27E)
	Constructors' Guide	1	(XH79L)
OPTIONAL (Not in Kit)			
	AC Adaptor Unreg. 300 mA		(XX09K)
	Preset Trimmer	1	(BR49D)
	Video Lead 6	1	(FV90X)
The Maplin 'Get-You-Working' Service is available for this project, see Constructors' Guide or current Maplin Catalogue for details. The above items (excluding Optional) are available as a kit, which offers a saving over buying the parts separately. Order As LM78K (Audio/Video Modulator Kit). Please Note: Where 'package' quantities are stated in the Parts List (e.g., packet, strip, reel, etc.), the exact quantity required to build the project will be supplied in the kit.			

MINT:CIRCUITS

Accenfed Metronome

The conventional pendulum type metronome now seems to be something of a dying breed, it has been superseded by electronic devices that generate the regular train of 'click' sounds. Some electronic instruments now have a built-in metronome, and it is quite easy to produce a simple stand-alone unit for use with instruments that lack this facility. The design featured here has a frequency range of approximately 0.5 to 5 Hertz , or about 30 to 300 beats per minute in other words. Some mechanical metronomes have the ability to emphasise every 'ninth' beat, usually by ringing a bell on the accentuated beats. This unit has a similar feature, but it produces a low-pitched 'thud' sound on the accented beats instead of the usual 'click' sound. Every second, third, or fourth beat can be stressed, or this feature can be switched out altogether if desired. The unit can easily be modified to accentuate anything from every second beat to every ninth beat if required.

A low-frequency oscillator generates the procession of 'click' sounds, and this oscillator is a simple 555 astable type based on ICl. RV1 is the frequency (beat rate) control. R2 has been made very low in value so that the output signal from ICl is a series of very brief pulses. This gives the required high-pitched 'click' sound. The loudspeaker is driven from the output via an emitter follower buffer stage (TR2). ICl provides short negative output pulses, but what we require here is positive pulses. This is nothing to do with the sound produced, which is the required 'clicks' in either case. It is a matter of ensuring that the current to the loudspeaker is switched off most of the time, and that it is only driven during the brief output pulses. This gives a low current consumption, whereas the alternative of having the loudspeaker activated for most of the time would give a massive current consumption. TRl acts as a simple inverter to provide the output stages with pulses of the correct polarity.

The accentuation is obtained by feeding the output pulses from ICl to a divide by ' N ' circuit. This is based on IC2 which is a decade counter and one-of-ten decoder. It is made to divide by two,

Accented Metronome.
three, or four by feeding the appropriate one-of-ten output to the reset input. The required division rate is set using $S l$. If no accentuation is required, Sl is set to the ' 0 ' position. The reset input is then connected to the ' 0 ' output, which holds the counter permanently in the reset state. When the accentuation is active the output pulses from output ' 0 ' are shaped by C3, D1, and D2 and mixed with the output pulses from ICl . Their longer pulse duration gives them a lower pitch than the ordinary output pulses, and they are also reproduced at a slightly higher volume level which helps to make them stand out still further.

The current consumption of the circuit is about 9 milliamps, which is mainly the current drawn by ICl. A small (PP3 size) battery is adequate as the power source, but if the unit is likely to receive a great deal of use, a higher
capacity type would give lower running costs.

Construction of the unit does not provide any major difficulties, but bear in mind that IC2 is a CMOS device, and that it consequently requires the standard antistatic handling precautions to be observed. RV1 should be fitted with a.

IC2 Pin Number	Division Rate
4	2
7	3
10	4
1	5
5	6
6	7
9	8
11	9

Table 1. Division rates.

Accented Metronome Circuit.

large control knob so that it can be equipped with a calibrated scale of reasonable accuracy. Finding the calibration points is a matter of counting the number of beats in a given period of time in order to determine the beat rate, plus a certain amount of trial and error in order to
get RVl precisely set to the desired calibration rates.

As pointed out previously, you can obtain accentuation on any beat from every second one to every ninth beat. It is just a matter of using a switch having the required number of ways and using the
appropriate outputs of IC2. Table 1 shows which output pins provide which division rates. Whether you consider such rates as seven and nine worthwhile is your own decision!

Reaction Tester

This reaction testing game gives a digital readout of reaction time on an arbitrary scale of 0 to 99 . In fact, the readings are approximately in hundredths of a second, but unless you have access to a suitable frequency meter it is not possible to set up the unit for really accurate results. Even without calibration, the unit provides an accurate relative indication of reaction times so that a number of people can see how their reactions rate against one another. The unit will also show how alcohol, fatigue, etc. affect ones reaction times. The influence of such factors on ones reaction time is probably greater than most people would imagine.

The unit is very easy to use. At switch-on the display registers ' 00 ', and after a delay of about ten seconds it starts to increment. The contestant must then operate a push-button switch as soon as possible so as to halt the count and display the reaction score. In order to use the unit again, it is just a matter of switching it off momentarily, in order to reset the circuit, so that a new sequence is started from the beginning.

IC2 is a standard 555 astable which acts as the clock generator. If access to a frequency meter capable of accurate results at audio frequencies is available, R7 can be replaced by a 47k preset in series with a 22 k fixed resistor. The preset is then adjusted for 100 Hz at the output (pin 3), of IC2. The counter circuit is a simple two digit type based on CMOS 4026BE decade counter/seven segment decoders (IC3 and IC4). These drive seven-segment common-cathode displays via current limiting resistors R9 to R22. The circuit is only suitable for use with commoncathode displays (not common-anode types), and for good results reasonably

Reaction Tester.

efficient types should be used (any reasonably modern type should be suitable). The pin numbering shown in the circuit is correct for standard 0.5 and 0.56 inch devices, which are probably the best types to use. C5 and R8 provide a reset pulse for the counter at switch-on.

The count can be enabled/disabled via an internal gate of IC3, using a control signal on pin 2 of this device. This must be taken high initially in order to prevent the counter from operating. It must be taken low after the ten second delay period, and then high again when the push-button

Reaction Tester Circuit.

switch is operated. The control signal is generated by a simple set/reset lip-flop formed from two gates of ICl. C3 and R5 provide the flip-flop with a reset pulse at switch-on. The other two gates of ICl , plus a simple C - R circuit, form a simple timer. This provides a positive set pulse to the flip-flop at the end of the delay period, and the count commences. The delay time can be altered by changing the value of Rl, and the delay is proportional to the value of this component. Operating Sl resets the flip-flop and 'freezes' the count. Dl ensures that timing capacitor Cl is largely
discharged when the unit is switched off, so that it is almost immediately ready to start a new timing run when it is swtiched on again. If a separate reset switch is required, simply add a push-to-break switch in series with the on/off switch S 2 .

Construction of the unit should not present any major difficulties, but remember that ICl, IC3, and IC4 are all CMOS devices, and therefore require the usual anti-static handling precautions to be taken. Some LED displays are vulnerable to heat damage, and I would recommend the use of a socket for these components
as well. Suitable sockets are not available, but it is not too difficult to cut a 20 pin DIL holder into two 10 pin SII types. Provided they are given the correct 0.6 inch spacing the displays will then plug into them without any difficulty. The current consumption of the unit is largely dependent on the number of display segments that are switched on, but is in the region of 75 milliamps. This fairly high figure necessitates the use of a high capacity battery such as a PP9 type or six HP7 size cells in a plastic holder.

Basic Noise Gate

A number of computers have an audio output socket that enables their internal sound generator circuits to be connected to a hi-fi system, or other amplifier/speaker combination. Using such a set-up can provide much more convincing 'zaps' and 'pows', but results can often be a little disappointing, \AA common problem is with noise from the computer's digital circuits finding its way into the audio output signal. This results in annoying background 'buzzes' and 'hums'. that can be surprisingly loud. There is no easy way around this problem, and computers are such prolific generators of electrical noise that a fairly high background noise level is perhaps only to be expected. Also, the basic signal to noise ratio of many computer sound generators is not very good anyway, even without any extra noise added by the computer.

One way of providing an improvement is to use a noise gate to process the audio output of the computer. The general idea of a noise gate is to let the signal pass unhindered when it is above a certain threshold level, but to switch it off (or

Basic Noise Gate.

Basic Noise Gate Circuit.

attenuate it) when it falls below a certain level. This system usually works well in a computer context where the 'zaps' and other sound effects are passed by the gate, but the background noise is cut off. Although the sound effects may be foreshortened very slightly by the noise gate, the nature of these sounds is such that this is unlikely to be apparent to the listener. Noise gates can be quite complex and expensive pieces of equipment, but for an application of this type something quite basic will give quite good results. The signals from most computer sound generators are quite simple types that do not merit such things as zero crossing switching.

In this circuit the main signal path is through an inverting mode amplifier based on IC2. R2 and R5 normally give this amplifier a gain of about -20 dB , or a reduction in the signal by a factor of about ten in other words. However, by
switching on electronic switch ICl it is possible to shunt R1 across R2, and this boosts the voltage gain of the circuit to about unity. A noise gate action can be obtained by activating ICl when the input level exceeds a certain threshold level. Note that the circuit does not provide a true gate action in that it does not fully mute the signal when it is in the 'off' state. This is a factor that is common to most noise gates though, and this method generally seems to give better results.

The control signal for ICl is obtained by first amplifying the input signal using IC3. After the signal has passed through the threshold level control (RV1) it is then further amplified by IC4. The output of IC4 is rectified and smoothed to give a positive DC bias that is roughly proportional to the amplitude of the input signal. The attack time is quite short, but the decay time is controlled by the values of R14 and Cll, and is easily changed. The
specified values should give good results though. This signal drives a trigger circuit based on IC5. A certain amount of hysteresis is provided by R15, and this helps to avoid repeated switching of the circuit when the input signal is near the threshold level.

The setting of RV1 is not likely to be too critical, and it is just a matter of adjusting it for a low switching threshold, but not one that is so low that the noise is not suppressed reliably. A little experimentation should soon come up with a suitable setting. Signal threshold levels of as little as a few millivolts are possible with RVI well advanced. The current consumption of the circuit is only about 5 milliamps or so, and a small (PP3 size) 9 volt battery should be adequate as the power source. Note that ICl and IC5 are both MOS input types, and they consequently require the usual anti-static handling precautions.

Electronic Die

Producing a simple circuit that will provide an electronic simulation of a die is one of those things which seems very easy until you try it. What starts out as a very simple idea can grow by the minute until it develops into what is really a quite complex final design. One of the main problems is that the circuit must count from one to six, whereas most electronic counter circuits are designed to count from zero to nine. Resetting the count early is not generally too difficult, but getting rid of the unwanted zero can be hard. If a display having the conventional spot patterns is required, rather than a seven-segment display, there is the additional problem of providing a suitable decoder for this non-standard form of digital readout.

After trying a number of approaches this circuit was finally devised. It is based on two inexpensive integrated circuits plus eleven diodes which provide the

Electronic Die.
display decoding. The display and decoding are simplified as far as possible by having the LED's driven in three pairs plus one single diode. This is possible because a 'corner' LED is only switched on when the LED in the opposite corner is also activated. Similarly, the middle-left and middle-right LED's are either both on or both switched off. If you wish to obtain the standard spot patterns, it is obviously essential to have the seven LED's in a suitable arrangement, such as the one shown in Diagram 1.

Diagram 1. LED pattern.
ICl is the clock oscillator, and this is a standard 555 astable operating at a frequency of a few kilohertz. However, it only oeprates whilst push-button switch Sl is operated. In practice Sl is pressed for a second or two and then released in order to 'throw' the die. The high clock frequency emsures that there is no way of predicting or controlling the number produced by the counter when the count is 'frozen', and the number 'thrown' is therefore a pseudo-random one.

The counter is a CMOS 4017BE one-of-ten decoder (IC2). In this case, output 6 is connected to the reset input so that four of the outputs are effectively eliminated, and a one-of-six action is obtained. The outputs go high, in sequence, one at a time. In order to obtain the desired action, it is just a matter of getting each output to activate the appropriate LED's. This is achieved using OR gates, which are formed from diodes (D8 to D18). If we take Dl as an example; this is the centre spot of the die, and it must

Electronic Die Circuit.

therefore be switched on when the counter is at 1,3 , or 5 . The outputs of the counter are conventionally numbered from 0 to 5 rather than 1 to 6 , and Dl is therefore connected via diodes to what would normally be considered as outputs 0,2 , and 4 of IC2. No diodes are required for D6 and D7 as these are only driven from a single output (they are only switched on when a six is 'thrown').

The pairs of LED's are connected in series rather than in parallel as this ensures that they receive the same current, and it also makes more effective use of the limited output current that can be provided by IC2. I used ordinary 5 millimetre diameter red LED's on the prototype, but due to the farily low LED current it is advantageous to use a high brightness type, although there is probably no point in going to the expense of 'ultra-bright' or 'super-bright' types. The current consumption of the circuit depends on the number of LED's that are switched on, but it is usually around 20
milliamps. A fairly high capacity battery such as a PP9 is needed in order to supply this economically.

When constructing the unit, bear in mind that IC2 is a CMOS device and that it therefore requires the standard anti-static handling precautions. Take reasonable care to ensure that' the diode decoder stage is wired up correctly. If you want to check that the decoder is correct and the proper counting action is being obtained, try adding a capacitor of a few microfarads in value in parallel with C 2 . When Sl is operated the count will proceed at a rate which is slow enough for the LED patterns to be clearly seen. This will show up any fault in the decoding so that it can be easily located and rectified. With S1 pressed and the counter operating at full speed all seven LED's will appear to light up continuously. What in fact is happening is that the display is running through 1 to 6 counts so rapidly that the human eye cannot perceive the flashing on and off of the LED's.

REACTION TESTER PARTS LIST

RESISTORS: Alll 0.6 W 1\% Metal Film			
Rl	1M8	1	(MIM8)
R2,3	5k6	2	(M5K6)
R4	100Ω	1	(M100R)
R5,8	100k	2	(M100K)
R6	10k	1	(M10K)
R7	47 k	1	(M47K)
R9 to R22 inc.	470Ω	14	(M470R)
CAPACITORS			
Cl	$10 \mu \mathrm{~F} 25 \mathrm{~V}$ PC Electrolytic	1	(FB22Y)
C2,4,5	100nF Polyester	3	(BX76H)
C3	47 nF Polyester	1	(BX74R)
C6	$100 \mu \mathrm{~F}$ 10V Axial Electrolytic	1	(FB48C)
SEMICONDUCTORS			
ICl	4001BE	1	(QX01B)
IC2	NE555	1	(OH 66 W)
1C3,4	4026BE	2	(QX15R)
Display 1,2	0.5 in Common Cathode LED	2	(FR4IU)
Dl	1N4148	1	(QL80B)
MISCELLANEOUS			
S1	Push to Make Switch	1	(FH59P)
S2	SPST Ultra-min Toggle	1	(FH97F)
B1	9 Volt PP9 Battery	1	(FMOSF)
	Battery Connector	1	(HF2TE)
	DLI IC Holder 8 pin	1	(BL17T)
	DLI IC Holder 14 pin	1	(BL18U)
	DLl IC Holder 16 pin	2	(BL19V)
	DLI IC Holder 20 pin	1	(HQ1T)

NOISE GATE
PARTS LIST
RESISTORS: All 0.6W 1\% Metal Film

R1	120k
R2	1M
R3,4,8	10k
R5,9,13	100k
R6,7	1M5
R10	5k6
R11,12	18k
R14	47x
R15	330k
R16	15k
R17	2k7
R18	18k
RV1	4k7 Lin Pot
CAPACITORS	
Cl	100 F F 10V PC Electrolytic
C2	330 nF Polyester
C3,6,8	$2 \mu 2 F 100 \mathrm{~V}$ PC Electrolytic
C4	$10 \mu \mathrm{~F} 50 \mathrm{~V}$ PC Electrolytic
C5	22 nF Polyester
C7,9,10	4μ TF 63V PC Electrolytic
Cll	1 $\mu \mathrm{F}$ 100V PC Electrolytic

SEMICONDUCTORS

ICl	4066BE
IC2,3,4	μ A741C $(8$ pin DLI $)$
IC5	CA3140E

MISCELLANEOUS

Sl	SPST Ultra-min Toggle
SK1,2	3.5mm Jack Socket
B1	9 Volt PP3 Battery
	Battery Connector
	8 pin DII Holder
	14 pin DL Holder

(QX23A)
(QL22Y)
(QH29G)
(QL80B)
(FH97F)
(HF82D)
(FK62S)
(HF28F)
(BL17T)
(BL18U)

METRONOME PARTS LIST

RESISTORS: All 0.6 W 1\% Metal Film			
R1	220 k	1	(M220K)
R2	100Ω	1	(M100R)
R3	10 k	1	(M10K)
R4	4 k 7	1	(M4K7)
R5	5 k 6	1	(M5K6)
R6	2 k 2	1	(M2K2)
RV1	2 M 2 Lin Pot	1	(FW09K)
CAPACITORS			
C1	100μ F 10V Axial Electrolytic	1	(FB48C)
C2	1μ F Polyester Layer	1	(WW53H)
C3	$2 \mu 2 F$ 100V Axial Electrolytic	1	(FB15R)

SEMICONDUCTORS

IC1	NE555	1	(QH66W)
IC2	4017BE	1	(QX09K)
TR1	BC547	1	(QQ14Q)
TR2	BFY51	1	(QF28F)
D1,2	IN4148	2	(QL80B)
MISCELLANEOUS	1	(FH44X)	
S1	4-way 3-pole Switch	1	(FH97F)
S2	SPST Ultra-min Toggle	1	(WF57M)
LS1	66mm Dia. 64 ohm Speaker	1	(FK62S)
B1	PP3 9V Battery	1	(HF28F)
	Battery Connector	1	(BLLTT)
	8 pir DIL IC Holder	1	(BL19V)

ELECTRONIC DIE PARTS LIST

RESISTORS: All 0.6W 1\% Metal Film

R1,2	47k	2	(M47K)
R3	10k	1	(M10K)
R4,5,6	390Ω	3	(M390R)
R7	470Ω	1	(M470R)
CAPACITORS			
Cl	100 $/$ F 10V Axial Electrolytic	1	(FB48C)
C2	2n2F Mylar	1	(WW16S)
SEMICONDUCTORS			
ICl	NE555	1	(QH66W)
IC2	4017BE	1	(QX09K)
Dl to D7 inc.	High Brightness Red LED	7	(WL84F)
D8 to D18 inc.	1N4148	11	(QL80B)
MISCELLANEOUS			
S1	Push to Make Switch	1	(FH59P)
S2	SPST Ultra-min Toggle	1	(FH97F)
B1	9 Volt PP9 Battery	1	(FM05F)
	Battery Clips	1	(HF27E)
	DIL IC Holder 8 pin	1	(BLITT)
	DIL IC Holder 16 pin	1	(BL19V)

