# Octoler 2001 : No. 166 

## Ideas into proit Projects to make

 Electronic themes Alternative tedinology Miero electronics

An Introatuction to Photorolitics

## BURNING UP

In the stat of a 3 part series we take a look at the The Techology of:CDS


Editor：
Malasta Higaoka
ng
Design and layout：
Iatn hauslon

News and Featares Editor：
Jonaithan Aldred

Marketing \＆Media Sates Executive ： Anna Penar

Customer Service Manager ：
Paula Mathews
01970621039
UK Newstand Sales ：
WF Smiths
0；793－322163
UK Hewstrade Distribution：
Kanda Systems Ltd
01970621030
Export Distribution ：
Comag Magazine Markeling
TSvistes

PBisix，UE7 70E
07895－43304
USA Distribution：
Logital Devices Inc
（603） $303 \div 56-2050$

## Subscrihe Totlay <br> Th： 01970821939 <br> Fax 01970：220060

Subscription queries：
Paula Matheys

Electronics and Beyond exputsheve meorithy



Eftuntirs ant Besmst

AFthent
5723210
Chatuacthoust tr modio pajtote io

Subscriptions： 01970621039



|  | 1 fec | 2 ）¢ats | ₹ yeis |
| :---: | :---: | :---: | :---: |
|  | £28 | E0 | 275 |
| Eumpe－ | 528 | 50 | 539 |
| Fatcentra | 552 | 5110 | こう行 |

©




## in this issue．．．



## alfernative

 technologn112
An Infroduction to Photovoltaics： The silent power of PV is explained
from information supplied courtesy of BPSolar．
Burning CD＇s：Part I：The Technology of CD＇s． Kevin Kirk looks at How CO＇s work from their origins to the present state－of－the－art burners．


## ideas finto profit

PIC Programmer：A Do－It－Yourself version：Part 1 from Malcolm Peill．

Constructor＇s Comer：Practical application of the AT90Sxxx AVR farnily of microprocessors．

Electric Guitar Sustain Circuiz by John Edwards．

Guitar Practice Amp．Keep the neighbours happy with Gavin Cheeseman＇s personal practice amp with fuzz feature．

Turnkey Service Solutions－The hest approach？
When organisations are managing more than one electronic device， should they look fo getting help from just one maintenance contractor．

## Regulars

4 News
8 Peter Brunning＇s Public Diary
9 Electronics Fonsm
10 Stray Signals by Point Contact
26 Web Electranics
28 Special Repart：TV Jobs Gloom
29 Air Your víevs
58 The Bookstop
66 Product Review：MiniDisc Walkman
72 What＇s On
78 Tech Watch
80 Beyond Betief

# Don't Miss a Thing. Subscribe Today! 



If you want diverse, reliable and up-to-date information on all aspects of electronics and its impact on the environment, new technology and the current business climate; globally, look no further than the new look Electronics and Beyond. Electronics and Beyond offers you hands on experience in radio, robotics, microcontrollers and other practical projects, plus the opportunity to revisit projects utilizing the latest technology.

Turn to page 53 for details or email: subscriptions@electronicsandbeyond.com

- Alternative Technology * Projects to Make - Ideas into Profit - Electronic Themes for all - Microelectronics *


## The Past, Present and Future of Electronics

## Jonathan Aldred BSc(Hons) - News and Features Editior

I was born in Wirral, Merseyside, and moved to Aberystoyth in 1993 to read Geography. My interesis inciude current events, new and emerging technologies, and the history and applications of the Periodic Table. My fiabbies are creative writing, science fiction in all its aspects, computer ast and listening to music. I am also a big fan of Formula $I$ and Formula 3000 motor racing.

You can contact me at ialdred@kanda.cim.

## Anna Penar - Media Sales Manager

I was born in a mountain area in Lower Silesia in Poland in February 1975. I studied Law in three countries: Poland, Germany and United Kingdom.

I have two law degrees and study at the moment a part-time MBA at the University of Wales (Aberystwyth).

I often worked for international organisations like Rëd. Cross in Poland, Konvoi 96 in Germany, but have work experience in administration (magistrate court and Internal and Foreign Ministry in Poland) and business as well (DEBET consulting and accounting company in Wroclaw, Kanda Systems).

Dne of my passions are foreign languages (Polish, Russian, German, English, Spanish and Itafian), Contact: apenar(ekanda.com.

## Natasha Nagaoka - Publishing Manager

I was bom in Aberystwyth, brought up on a welsh hill farm and then studied Politics at Leicester, then a year in Bilbao, Spain as a TEFL-Teacher .

I did an MBA and moved to Tokyo, where I worked for two diverse Japanese companies, studied on a Scholarship scheme at Keio University,

I relocated to the UK after 9 years in Tokyo, and joined Kanda in October 2000 as Marketing Manager, and am now in charge of Electronics and Beyond.

I enjoy horse-riding, oriental arts and learning new skills, I speek fluent Japanese and somé Spanish.

I can be contacted on 01970 621030, via Fax on 01970621040 , email to nragaoka@electronicsandpeyond.com and welcome any feedback on the contents of the magazine.

## Paula Mathews - Subscriptions Manager

I was born in Sutton Coldifield and have a BTEC in Business and Finance.
I worked as a special constable for 4 years in Aberystyyth and then joined Kanda Systems in 1997 as a reteptionist and later on as àn accounts assistant and customer service co-ordinator.
In my spare time, I enjoy films, reading and dining out and try to do some spost in betveen.
As Your Subscriptions manager, I handle all day to day queries on Electronics and Beyond, update all customer information and yous can ring the Electronics and Beyond Hotline on 01970621039 which is open between 9 and 5.30 pm on weekdays for zssistance.
$\$$ look forward to taking to you and helping you with any questions you have as a subscriber to Electronics and Beyond.


# As the leaves change colourr. 

Electronics and Beyond looks at what makes up photovotaic. material and why it is useful for consiruction purposes. We look at the mechanics of this practical green tectnology in part 1 of a special 3 part series from BP Solar.

If you like to sit by the fire and listen to the radio in the evenings then you may be interested in our new series on Discovering Amateur Radio in which Ian Poole takes a look at this area of electronics which crosses and links up continents. Talking about fire, see the first of our mini-series on Burning CD's, not literally CD's in flames, but the ins and outs of storing and copying limitess amounts of data.
Are you interested in photography? If you are then turn to Photographic oddity and leam about a unique camera made in a week! Another important question to ask yourself is: Do we Iearn from history? Maybe not, see Technology in Trouble as the spectacular rise and fall of internet billitonaires is documented. This boom and bust phenomena is somewhat reminiscent of the cyclical downturn of the 1930's! For those of you who believe in the power of the internet as a marketing tool and are planning to set-up your own website for commercial purposes then the first part of Build your own website may be of use as Mike Bedford brings commonsense to a complicated and often contusing topic.

In our special news feature, Martin Pipe looks at the decline of profitability and viability of manufacturing TV sets in South Wales and the shift of manufacturing from the high
to the low-end economies of the worló. Our News Editor recently bought a MiniDisc and please read what he says is an impartial review of this top-of-the-rane piece of ney technology.

In Constructors corner, we feature an electronic kit powered by the mighty AVR processor and you have the opportunity once ggain to purchase either the assembled or pre-assembled version. This month we look ai PIC so take a look at part 1 of the PIC programmer feature which was incidentally sent in by an Electronics and Beyond reader who asked me if I woutd be interested in publishing it. As PIC is a very popular choice of engineers worldwide, I hope in the future to publish further articles and practical application examples based around this versatile and economical sificon chip
This Dctober, we are pleased to announce the results of our recent competitions, so see if you are the lucky winner of either a ST7 Starter Kit, the book Programming and Customizing the AVR microcontroller or the grand prize of Matilda in our Robotwars short story competition. This month, why not read two rumer-up stories, one humorous, one serious from the Robotwars competition. Thank you everyone for entering and we hope you will continue to try your luck in future Electronics and Beyond competitians.
We hope you enjoy our autumnal issue and welcome your suggestions and contributions which we are always happy to publish.


## ELECTRONCSNEWS and BEVOND




Now talking heads can read your email


Is your web site incredibly boring? Many of them are, and Web developers iry to thide just how boring their sites or their products are by dressing the sites up with fiashy graphics. Now web site designers have a new option to distract potentias surfers from jusi how thin,

- t sounds like science fiction-a 20 million pixel screen 10 feet higin and 13 feet wide, capable of visưal definition that actually matches that of the human eye? You certainly wouldn't be able to get one for your living room, but such a screen has been created and is on proud display at the Sandia National Laboratories in New Mexico.

Sandia is a national security laboratory operated for the U.S. Department of Energy by the Sandia Corporation, a division of Lackheed Martin. They design all non-nuclear components for the USA's nuclear weapons, perform a wide variety of energy research and development projects, and work on assignments that respond to national security threats (both military and


Lefl: Behind the scresn
'if the devil is in these details, we'li find him,' says Sandia's Brian Wylie, alluding to the opportunity for finding minute but important deiails that would not show up on a standard resolution screen.

The Image is as detafled as if an aircraft at 21,000 feet mere imaging every ear of corn in a 100 -acre field', according to manager and program leader Philip Heermann. The image approaches the visual acuity of the eye: the eyeball is the limiting factor, not the computer. From ten feet away, the image is as good as your eyes are able to seet.

To display such an image must take a lot of processing power, so is there any measurable delay in rendering the images? Thanks to a process of massively parallel
computer imaging, the images are displayed is a matter of seconds rather than minutes or hours. Instead of being created from a single graphics card, the image is generated through the orchestrated outputs of 64 computers spliting data into 16 screens arranged as a $4 \times 4$ set. Each digital projector creates' a bright 1,280 by 1,024 pixe image on its designated part of the screen, with a resulting image that is easily discernible in ambient light conditions. The system is so well configuted that there is a total absence of image edge overlap.
'We are 100 times faster in producing an image than the fastest SGI graphics pipe, and to my knowfedge are now the fastest in the world in rendering
complex scientitic data sets,' says Mr Heermann (SGI being an industry leader in graphics performance).

There are, in fact, three of these screens and they are deliberately situated close to many of their potential users - a set of people that includes weapons analysts, engineering scientists and micro-technology developers - to whom they are available on a 24 hour basis. The screens were installed titrough an open wall during remodelling of the building and if they ever need to be removed or replaced, there is now an access port in the roof to allow them to be lifted in or out with the use of a crane.

By January 200 $\mathrm{I}_{\text {, the }}$ the Sandia team expects to reach the
project's second phase goal of building a screen with 64 million pixels. The need for this, and the present screen is explained by Heermann: 'It does not make serse to view a 20 million or 100 million cell simulation result on a standard 1 million-pixel display'.
Beyond that, Sandia have plans to build a version of the Visualisation Corridor that will be avalable for use outside of the classified environment in which it currently resides. One possible area in which it might be welcomed is the movie industry, where similar clesters of computers (or 'render farms') may take a half-hour or more to render an image equivalent in size to that of the Sandia screen.

## Samsung Electronics develops the world's first 40 inch TFT-LCD

This new 40-inch TFT-LCD wide screen irom Samsung hias approximately 980,000 pixels and can provide a display with XGA (Extended Graphics Array) definition. It aspect ratio is $15: 9$ and it has a viewing angle of 170 degrees.
TFT-LCD production processes become increasingly dificult as screen size grows larger. Various companies have been working on ways of making screens exceed the 30 -inch 'barrier' that previously existed and Samsung see their new product as a technolagical breakthrough for TFTHCDs.

Previous criticisms of TFTLCDs include low brightness and response times. Samsung have addressed both of these issues with a screen that displays at 500 candelas and has a response time of 12 milliseconds. There are larger screens available - namely the Plasma Display Panel, but Samsung's new screen hias much better picture clarity, requires only half the power of a PDPrand

NE
 tedious or long-winded the actual texturl content is Producer Lite from famous 30 (US retail price $\$ 295$ ):

With this entry-level version of the more expensive Producer suite of tools, you can create three-dimensional virtual characters that can read the text of the web site out foud and can even be incorporated into emails.
You can choose one of a large number of photorealistic and fantasy heads and then choose a voice to match it. Then siminply tyge in text and insert emoticons (e.g. :-), etc) to make the head talk and gesture. According to the company The content can be seamlessly inserted into websites and emails to be streamed oyer low bandwidth connections without the buffering experienced by video streaming'.

For an additionat $\$ 350$ you can buy famous 30 meNow , which allows you to create your own virtual head models for bse in Producer or Producer Lite. All you need is a front and a side facial photograph, which you import into the sofiware. Yous then move a set of points to specified places on the photo such as the tip of the nose, the cheekbones, etc, and the model is automatically created.

For further delails and to see the talking heads in action, go to
yww,famous3d.com.

# Britain's Unloved Robots Seek Better Relationships with Intelligent Humans 

## Tough times ahead for semiconductor sector

Recent 2001 projections from electronics industry analysts IC İnsights make gloomy reading for anyone involved in the semiconductor sector, with a 26 percent decline in revenue; I6 percent declìne, in unit volume; the first ever decline in the DSP market (28 percent), and the biggest ever

Not enough young britons are taking an interest in the current use of manufacturing robots in industry or their future development. According to BARA (the British Automation and Robotics Association), this is because of the poor intage most young people have of the industry.
BARA has decided to move to the Warwick Manufacturing Group at the University of Warwick, where it can use the Group's global contacts and technical reputation to attract. more interest towards British robotics from leading technical

and academic organisations and the people who work or study within them.
According to Dr Ken Young who leads WMG's automation application research group, the UK has been overtaken in its use of automation technology by a number oi other countries. 'If we are to maintain any
manulacturing industry here it is important that this trend is reversed, 'he says. 'This link will make independent advice on robot application available to industry and will ensure that automation is used appropriately'.
Dr Young believes that the new partnershīp between BARA and Warwick Manufacturing Group will help "build on the interest that has been created in robots by television programs such as 'Robot Wars' and atract a stream oi technicaly capable graduates.

# More women use the Internet, but a third of UK adults will never go online 

Intemet being women - a $6 \%$ increase on last year. Afso, almost 8 mpeople in the UK have now shopped online - up from Imi in the first survey:

It is not all good nevs for companies with ecommerce interests though - only 1 in 10 feel that the Internet offers better customer service than high street shopping, and whilst the total number of shoppers has increased, the percentage of the Internet population who shap online has remained broadly the same.

One of the more surprising findings of the survey is that the number of people who say that emall is their preferred means of communication has fallen from
$14 \%$ in last year's survey to only $5 \%$ in this. $67 \%$ preferred face-toface meetings, $19 \%$ their fand line phone, 4\% their mobile, only $1 \%$ the post, and $4 \%$ were indecisive.

But what about those people who say that they will never go online. Reader tohn Copeland, in out June issue, wrote 'Perthaps some people say that 1 am behind the times, but I have never used
the Intemet and don not see any reason to start now'. According to the survey, his is actually the most common view amongst those people who are not connected to the Internet. $60 \%$ of the 1,221 people without connections, whers faced with the question When, if at all, do you expect to be connected to the Intemet?' answerad 'Never'. When projected, this equates to a third of the population of Great Britain. Resistance to the Intemet does, however, increase dramatically with age. $33 \%$ of 15 34 year ofds $50 \%$ of $35-54$ s and $85 \%$ of over 55 s do not think they will ever get connected.

The strvey was carried out for Which? by the market research company Capibus. 2,044 people were interviewed and the resulting data was weighted for sex, age, sacial grade, region and warking status. The results, according to Capibus, can be taken $\overline{5}$ representative of the entire UK population over the age of 15 . You can see the survey for a limited time at
wwiwhich.net/survevsfintrohtrm. software from Flomerics

Sometimes, for the purpases of mutual publicity, two different companies team up to announce how the product from company A has created enormous benefits for company B. Here take company A as Flomerics, developers of Flotherm thermal management sofivare, and company 8 as PipingHot Networks, who develop broaỏband wireless access equipment for providing companies with access to the Internet and the ability to transfer large files without the need for cabling.
Pipinghot's new subscriber unit had to work at temperatures between -40 and $\pm 60$ degrees $\mathrm{C}_{\text {, }}$ and was to be shipped to both extremely hot and cold counties alke. As the unit might well be installed in direct surlight on the outside of a building, a cooling mechanism was an essential part of the design. PipingHot decided on a heatsink (see photo), and they used Flotherm from Fomerics to help in its design.
'We used Flotherm to examine the temperature rises for different heatsink designs, and to optimise the efficiency of fins
and pins,' said Clem Fisher, PipingHot's RF Manager. We settied upon a large 14 inch heatsink featuring cylindrical pins. Without Flotherm we would have had to build a large number of heatsinks, then put resistive loads on them and measure the temperature rise. One thing that Flotherm highlighted was that there was some airflow stailing in our design, which would have been difficult to tind out vithout Flotherm*. Without the software, PipingHot have estimated, it would have taken them nirfe months to design the assembly. Using the Fotherm simulations the whole process was completed in just six.
Flomerics can be contacted in the UK on 02089418810 , and their global web presence is at wava, flomerics.com.

## New compact Schrack relay from Easby

versions are available at $6 \mathrm{~V}, 12 \mathrm{~V}$ and 24V. The Ag/Ni contact coniguration can be bought direct from Easby as $\mathrm{C} / \mathrm{O}$, with N/O having to be ordered. The relay takes up 15 square millimetres ori the PCB, with a height above the board of 20 mm .

Contact sales@pasby.co,uk or telephone 01748850555 ( 850556 direat fax) for further details.

## Low ESR solid polymer electrolytics from Samwha Electric



Intended for general purpose Protection Class 1 use, such as in white goods and other domestic appliances, this general purpose mounting relay is designed as a replacement for 'sugar cube' typo relays with a typical reduction in footprint of 40 percent.
The Schrack PB relay is Ul \& VDE approved and rated for use up to 10 A at 250 V AC. Coil


Samwha Electric UK (a division of Easby Electronics) is now offering reflow-solderable 105 degree C solid conducting polymer cepacitors in both an SMD and a radial leaded series.
The radial leaded FA series ofiers capacitances in the range of 4.7 to 150 microfarats from $4 V$ to 16 V DC. The FC surface mount series is available in values from 2.2 to 15 microfarads, 6.3 to 16 V DC. Both series offer loy impedances and low ESRs at high frequency. For example, at $\mathbf{M H H z}$ the impedance of a typical FA capacitor is a fifteenth that of a standard aluninium electrolytic and a tenth that of a tantalum capacitor. The solid electrolyte ensures a long life as there is no liquid to dry out.

## ROW becomes

 the world's biggest semiconductor marketAlso according to IC Insights for the first time ever the Rest of Warld (ROW) semiconductor market will become the worid's biggest, exceeding those of Japan, America and Europe. China's indigenous semiconductor market hive fuelled a growth in their own industry, and this is also due to add to the current over-capacity problems that are troubling the semiconductor industry. China looks set to spend $\$ 23$ bilfion on building new rabs over the course of the next 5 years.

## Electronics firms still late to pay bills

Analyst company Experian has discovered that electronics and electrical companies are taking an average of three days longer to pay their bills than they were during 2000 . The figure given by the company is 64 days - over two months. In 1998 the Late Payments Of Commercial Debts (Interest) Act was introduced, but this has not made any improvement to payment times.

## Peter Brunnino's Public Diary

Mobile Phones

Natasta, our editor, and I get on very well. I rang her earlier taday to ask for some suggestions on what I should write about. Something controversial, topical and with an electronics therre she suggested. God! I thought that does not give much leaway. Whatever can I write that covers such a requirement. Mobile phores she suggested. Now what could I possibly write about mobile phones. Maybe I could liken their use to putting my head in a microvave oven, or perhaps as the only way to have a conversation when trayelling alone by train in the UK.

In Holland the trains are particulariy friendly but in England falking to one's fellow traveliers is not an option. I do hate the moderm trend of being forced to sit next to someone who insists on talking into my ear so that I can hear every word but none of which are intended for me to hear. I can understand to an extent the people who trayel day after day the same rail journey being too bored to worry about who they are travelling with. But mobile phones on trains should be banned, and for that matter in all other public places.
I am not a fan ot the latest trend. I do not own a mobile and see little chance that it vill change. So what about the fears of these machines creating health problems? This gives me the opportunity to introduce a move interesting topic, astrology! Work out the link if you can before I go on to explain!
One of my interests is studying people to see how their inner characteristics relate to their birthday. I have been at this for 20 years. I started by drawing many birth charts using standard astrological theory and rapidly concluded that mast of it was total rubbish. Yet there was an underiying theme which ran too true to be written off. I was forced to conclude that we do conform in general terms to our sun sign, and worse still the astrological trine (120 degrees) between signs is signiticant. Every fourth sign really does have a similarity. Three earth signs, three water signs, three iire signs and three air signs.

I had expected my investigation into that topic to rapidly run out of interest. I coukd not leave it there so I hypothesised a few îdeas and reached a fascinating conclusion. If we. assume that the key date is the moment of
conception not bistin then the explanation starts to become scientifically acceptable. The earth as it rotates round the sun does not fotlow a perfect circle. The distance from the sisn varies from month to month. So the intensity oi radiation received also varies. Add into this argument that different regions of our solar system will inevitably experience difference levels oi radiation from outside sources, and we have an explanation of how for example all people born on lst June have a general similarity to their underlying personality.
That is the easy bit but how do we explain a similarity between every fourth sign? The planets gaing rotend our sun cause a tidal effect on the suns surface in exactly the same way as the moon does to our surface. Mercury, Venus, Earth and Jupiter account for yirtually all the tidal fow of the molten larva. The other planets Mars, Saturn, Noptune, Uranus and Piuto have a small but insignificant effect. I wrote a programme many years ago to run on my first computer, a TRS80, to analyse the tidal flow due to these planet movements taking account of their radial position and varying distence from the suns surface.
The pattern of tidal flow when refated to the actual position of the earth gives a consistent 120 degree pattern for several years. It is easy to accept that basic sun sign characteristics are due to the different levels of radiation received at our surface due purely to the position of tile earth in its orbit. And we can stretch this itea a little to accommodate a relationship between every fourth sign due to the didal flow on the suns surface.
thave put this to the test over many years. While it is not surprising that the sun sigas characteristics do hold good, the 120 degree trine has proven in my limited evaluation to have an alarming degree of consistency, which suggests something more than planet movements.

I gave up seriously studying astrolagy because it is almost impossible, we are dealing with humzan characteristics. The sun sign gives an indication of the inner emotional forces which are driving each individual. The books are right in that respect and in linking every fourth sign but that is where it ends. Forget the effects of the moon. We are
relating the effect to conception not bith so the moon has no chance of being included.

Did anyone work out the link? The one thing my investigation has convinced me beyond ail doubt is that our underlying emotional characteristics are influenced by the rediation levels at the time we are conceived and to a steadily lessening extent as time goes on. Which particufar type of radiation causes the efiect is impossible to know.

The worry most often expressed about mobile phone hazards is cancer or memory loss, but simple logic suggests to me that personality change is a far more likely problem. We know so little about the working of the human mind.So the big question is whether a pover of 1 or 2 watts at around 1 or 2 gigahertz is enough to influence the development of our brains. My gut feeling is that while I cannot imagine a problem with hall a watt radiated 3 or 4 centimetres from my scull, I am not so happy about 1 watt or higher.
I decided at this point to ring my friend David Ayre and falf it over with another experienced ri man. 'It's all a question of heat being generated by the rf signol and at these power levels that would not be significant was his first input. 'But' I argued 'maybe an odd resonance could focus the energy into one spot: Maybe there is electrolysis'. 'Yes maybe' he conceded "but there is years of experience of exposure to rf and so far no significant evidence against at this very low level'.
The problem of course is that we do not know. If there are parts of the brain which act as semiconductor materiat, which is quite passible, then a DC current will be generated which will cause electrolysis. That would be a much greater worty. Low levels of heat can be conducted ayay, but electroiysis is a progressive effect.

Standard mobile phones produce 2 watts in the 900 Mhz band or 1 watt in the 1800 NW 2 band. I see it like this. The radiation that goes towards the user gets absorbed by his or her head. That is a stupid arrangement. The energy is not being put to use and may be causing damage to the person. I suggest that the shape of mobiles should be changed so that a metallic shield is between the antenna and the user. The idea being to give the antenna 270 degree coverage with a notch in
the direction of the user to achieve a ten times reduction in the radiation which reaches the head. Existing mobiles could be upgraded by adding a facia of metal coated plastic with an extended shape.
The question of mobile radio masts is more complex. At first sight the idea that any mobile phone mast could be a problem to child or adult is absurd. There is no point in the fixed mast having more than twice as much power as the mobile as the effect drops off at the rate of the square of the distance, but on reflection it is not a question of just one signat. One mast might handle 1000 channels and a significant number will be transmitting for 24 hours a day instead of 15 minutes or so.
Based on these figures ve can calculate the relative effect of the tixed transmitter compared to a mobile operating 5 cm from our head. A mast with 1000 cbannels operating at the equivalent power of two times the mobite power per channiel produces 2,000 times more radiation than the mobile. The actual power of the transmitter will be much fess but the radiator vill be a high gain antenna focused into the horizontal plain. The attenuation of the signal with distance wills depend an the terrain but we witl assume it is a true square law:-

I am dempanding a ten times reduction in the radiation towards the head so we need to multiply by 10 inside the square root:-

This figure of 7.1 meters is the distance where a base station with 1000 chamels operating creates the safne heating effect as a mobile modified with my proposed shield and operating 5 cm from our head.
For electroiysis total exposure is the important factor so in this case we need to use the average number of channels and the total time in our base units of 15 minutes. For example children are ait school for about 7 hours and over this period the 1000 channel base station might average 400 channels operating together:-

In this case as children ate in the radiation field my reduction factor of 10 needs to be increased to 100:-


What I have done is create an equation based on my years of rf experience related to my understanding of life. It is not $a$ true scientific solution but it is likely to be a good safety guide line. There are other effects such as the attenuation of buildings and the possibility of standing waves. One îs good and the other bad so ignoring both is a good compromise. For mobile phone masts near schools:-

where exposure time is in hours per day, the number of channels is averaged over the same period, and the distance calculated is in meters.
Mobile phones should never be used by young children, and anyone who uses a telephone for significantly longer than 15 minutes every day must use a fixed telephone. Finally, manufacturers get your finger out! Incorporate a shield between the moble phone antenna and the user's head. It takes 2500 watts 45 minutes to heat up nyy bath water but the lowest power light hulb will heat a fillament of tungsten to white beat in à quarter of a second using just one fifth of a watt!

# TO PARTICIPATE, GO TO WWW.ELECTRONICSANDBEYOND.COM AND CLICK ONTO THE FORUM PAGE. ALTERNATIVELY SEND A LETTER TO THE USUAL ADDRESS OR SEND YOUR REPLY VIA EMAIL TO JALDRED@ELECTRONICSANDBEYOND.COM. 

## Water Powered Watches

Question: About twelve years ago, I remember there being a short craze on water powered watches. I'nu not sure what principle these worked on (I'm guessing certrin) electrodes pick up free eiectrons from ians), but I wousd be interested in using it for my own projects. Any information you could give méabout this technology would be much appreciated. Perhaps someone remembers what company made the watches, and how to get in touch with them- Greville J. Kirk.

## Answer: The principle was that there were

 two electrodes of different metels that relied on the impurities in the water to create apotential difference. There was a problem in that the elecirodes tended to get oxidated and it stopped working fairly quickly. If you put a bit of lemon juice (or vinegar) int the water the problem went away. In fact Xilinx used this methodology to prove that their low power PLDs were really low powered by powering them with a zinc rod and a copper rod pushed into a lemen. - Steve Hawkins.

I think you refer to the former Philips 'CoolRunner' CPLD devices which were sold to Xilinx about 18 months ago. All the fiterature at that time showed the CPLD powered by injecting wo electrodes into an oratige. - lain King.

## Log. Amplifier

Question: Does anyone know how I can make an amplifier whose gain can be made variable logarithmically, like a log. expander? I am interested in logarithmic amplifiers or amplifiers where the gain could be set to a "function" i.e. output $=$ input squared or some other function. Frequency would be very low \& gain would not be extremely high. - Harold Goodwin.

[^0]
## Learn The Easy Way!



## PIC Training \& Development System

3The heart of our system is a real book which lies operi on your desk while you use your computer to type in the programme and control the hardware. Stert with tour very simple programmes. Aun the simulator to see how they work. Test them with real hardware. Follow on vilife a little theory.....

The best place to start leaming about microcontrollers is the PtC16FB4. This is easy to understand and very popular with construction projects. Then continue on using the mora sophisticated PIC 66 F 877 famity.

Our complete PIC training and development system consists of our universat mid ranga PIC programmer, a 306 page book covering the PIC16F84, a 212 paga book introducing the PIC16FB77 family, and a suite of programmes to run on a PC. The module is an ativanced design using e 28 pin PIC16F872 to handle the timing, programming and voltage switching requirements. The modufe has two ZIF sockels and an 8 pin socket which between them allow most mid range $8,18,28$ and 40 pin PiCs to be programmed. The plugboard is sired with a 5 voit supply. The soflware is an integrated system comprising a text editor, assembler disassembler, simulator and programming sofiware. The programming is performed at normal 5 volts and then verified with plus and minys $10 \%$ applied to ensure that the device is programmed with a good margin and not poised on the edge oif filiure. Requires two PP3 batteries which ase not supplied.

> Universal mid range PiC progranmer module
> + Book Experimenting with PIC Micrecontrollers
> + Book Experimenting with the,PIC16F977
> + Universal mid range PIC sotware suite
> $\div$ PIC16FB4 and PIC16F872 test PICs. . 157.41
> UK Posfage and insurance. .57 .50
> (Europe postage \& Insurance-Ei3.00. Rest of world - E22.00)

## Experimenting with PIC Microcontrollers

This book introduces the PIC 16 F8, and PIC16C71t, and is the easy way to get started for anyone who is new to PIC programming. We begin with four simple experiments, then having galned some practical experience we study the basic principles of PIC pregramning, leam about the 8 bit timer, how to drive the liquid crystal display, create a real time clock, exparment with the watchoog timer, sleep mode, beeps and music, including a rendition of Beethoven's Für Elise. Finally there are two projects to work through, using the PIC16FBs to create a sinewave generator and investigating the power taken by domestic appliarices.

## Experimenting with the PIC16F877

Wan start with the simplest of experiments to get a basic understanding of the PICicfF877 family. Then we look at the 16 bit fimer, eficient storage and display of text messagas, simple frequency counter, usa a keypad for numbers, letlers and securily codes, and axamina the 10 bit $A / D$ converter.

## Ordering Information

Telephore with Visa, Mastercard or Switch, or send chequa/PO for immediate despath. All prices inciude VAT if applicabla. Postege must be added to all orders. UK posiage fl2 50 per book, $£ 1.00$ per kit, maximum 87.50 . Etropa postage $£ 3.50$ per book, $£ 1.50$ per kit. Rest of world $£ 6.50$ per book, 2,50 per kit. Web site;- www,brunningsoftware.co.uk

## NEW 32 bit PC Assembler

Experimenting with PC Computers with its kit is the easiest way suar totearn assembly language propramming. If you have enough intelligence tounderstand the English fanguage and you ean operte a PC computer then you haveall the necessary beckground knowledge. Flashing LEDs, digital to analogueconvarters, simple oscilloscope, charging cluves, temperaturt grephs and audiodigitising.
ÉEFEKit now supplied with our az bit assembler with git page supplementdetailing the new features and including 7 experiments $P C$ to PIC communication, Fashing LFDs, writing to LCD and two way data using 3 vires from :PC's parallelport to FC16F解年


## C \& C+ for the PC

Exparimenting with © \& $\mathrm{C} \div \div$ Programmes teaches us to programme by using Cio drive the simple hardware circuits buit using the materials supplied in thekit. The circuits build up to a storage oscilloscope using relatively simple Ctechnitaues to construct a programme that is by no means simple. When approachedin this way $C$ is only marginally more difficult than BASIC and inimitely morepowerful, C programmers are always in demand. Ideal for absolvte beginnors andexperienced programmers.


## The Kits

The assembler and $\mathrm{C} \dot{\mathrm{E}} \mathrm{C} \div \frac{\mathrm{x}}{\mathrm{k}} \mathrm{k}$ s contain the prototyping board, iezd assemblies,components and programming software to do all trie experiments. The "rnade up' kits are supplied ready to start. The 'top up' kit is for readers tho havealreacly purchasad kit la or iu. The kits do not include the brok.

## Hardware Required

All systems in this adverisemant assume you thave a $P C$ ( $3 B 6$ or better) and a printar lead. The experiments require no soldering.


## Part Built PIC Training System

This has the same specificuion as the complete system but is supplisd without tire kzypari, 40 pIn ZIF socke! and plugboard, with just one book Expenimenting with PIC Micrecontrollers, and with soitware to pregramme the PiC 16 Fg ; \& PiCi6G7j1, Can ba upgraded later to the full specification.

Part built universal PIC programmer module +Ecok: Experimenting with PIC Microcentrollers tig $4 / 611$ software suite and PIC16F84. . . . 992.50 UK postege and packing. . . . . . . . . . . . . . . 5.00 (Europe posiage. . 87.50. Rest oi world . . . E13.00)

# Photographic 

 by Tony Haniliton GrayPHOTOGRAPHY IS SOMETHING WE KNOW MANY OF OUR READERS TO BE INTERESTED IN.

## HERE TONY <br> HAMILTON-GRAY OF PRINTS OF WALES INTRODUCES US TO SOMETHING THAT WILL MAKE EVEN THE MOST PROFESSIONAL OF OUR PHOTOGRAPHIC READERS SIT UP AND TAKE NOTICE.

1 t was a chance remark that led me to build this camera, white visiting a large camera fair at the NEC, Birmingham with a friend, a retired pro photographer. He was looking for, amongst other things a small format monorail camera. We found a very nice Swiss manufactured small mono-rail, GREAT! But at £1700 plus VAT with no lens or filter holder we walked̉ away. I saidd 'I'JI build you one ${ }^{2}$. We both laughed and the subject was forgotten until several months later during a quiet period in my shop. I recalled what I had said and started looking around my scrap boxes.

Finding a focusing stage of an old black and white enlarger I cut down the negative holder and rotated it 180 degrees around the rails and onto this I fixed a close-up focusing attachment. This would allow the camera body to swing left and right of the centre line of the finished camera. The lens holder was mounted on a ball and sucket, this gave the lens holder provision to swing left and right

and point up and down in many combinations.

An old Soligor 35 mm SLR
body fitted the bill as it had built in
through the lens metering and a removable prism giving a vaist level Finder. An alloy plate cut to fit the larger end of the bellows with a hole cut in the centre, with a part from the back end of an old lens with a 42 mm thread was used to fit the alloy plate onto the bady, contact adhesive secured the bellows to the plate. A brass Taylor Taylor Hobson 5.5 inch focal length lens, probably made before the var, was screved into a length of alloy tube and attached to the lens holder with araldite. As you can see; this required very iev sools; i.e. Hacksaw, File, Hand drill, Screwdriyer and a smali Adjustable Spanner.

This project was compleied in my retail photographic shop in-between customers; who got very curious about this strange tooking
object. It was completed within a week. Would it work? I loaned it to a friend and he enjoyed playing with it, it was so much so that it was three montits before I got it back. The results were good, due no doubt to his photographic skill rather than my engineering.

It now sits on a shelf in my werkshop. Every now and then I take it down and play with it, thinking that I should sell if or strip it down and fit a normal lens on the body and use it as a normal camera, but as I own many cameras from 35 mm StRs up to a huge $7 \times 5$ mono-rail I don't really need another camera.

If you have comments or questions about the construction of this camera I would be only too pleased and willing to answer them. I have also buit a couple of pinhole cameras which are really fun to use if F256, yes F256, is your idea of fun. Perhaps I'll write about that one day.
If you would iike to get in touch with Tony, you can do so via the usual magazine email and posial address. We will pass on to him any correspondence received.

## An Introduction to <br> In association with bp solar

 RAR THE CLEAN, GREEN BUILDING OF THE FUTURE IS HERE. THE USE OF BIPV, WHICH STANDS FOR BUILDING INTEGRATED PHOTOVOLTAICS, HAS PROVEN THAT MANY BUSINESSES AND HOMES CAN PRODUCE ALL, OR NEARLY ALL OF THEIR OWN ELECTRICITY, THEREBY REDUCING GREENHOUSE GASES THAT HARM THE ENVIRONMENT

If a material is said to be photovoltaic (PV), a voitage will be generated in it by the incidence of light upon its surface. It is a catalyst for the conversion of light energy into electrical energy. PV cells are not only environmentally friendly, but are silent as well because they do nat contain moving parts.

## What materials can be used?

Silicon (Si) is the most important photoveltaic material presently in use: It is benign. widespread and extremely sultable for use as a PV materiat. It does have disadyantages, though, and these are that it is expensive to purify and prepare in its photovaltaic form, and that this final form can be fraglle. Other materials - namely gallium arsenite (GaAs) and cadmium telfuride (CdTe) - can be used, but they are either too expensive or have not been proven over a 20 year period of use.

Monocrystalline silicon (where the atoms are regularly arranged within a single crystal) is the most effective form of siticon for use as a
photovoltaic. This form of silicon is grown as an ingot from a seed of crystal silicon within a molten silicon solution. A diamond saw is used to slice the ingot into pieces, which are then smoothed so as to remove the rough surfaces. A cheaper way of casting silicon is to pour the molten solution into a tray or mould. This produces polycrystalline silicon \{with its multifaceted appearance). This is, however, slightly less effective as a PV material than the single crystal form.

Using thin-fitm techriques, silicon can be coated onto the glass that will form the window area of the final PV module. This is the least expensive option, but does make the silicon amorphous and this means a lower eficiency and a degradation of the material over time.

Architects may consider the aesthetics of the material to be equally as important. Monocrystalline silicon is blue and regular, polycrystalline silicon is blue and patterned, and thin-film silicon (the kind that powers solar
calculators) is brown. Efforts are being made by manulactures to widen the choice of colours, but this is difficult because with any change in colour there must be some reduction in PV efficiency (as visible light scatered back is light that is lost to the PV process).

## How is a PV cell created?

To turn pV material into a PV cell, a pn junction needrs to be created just below the front surface (more on which to fallow). Two additional pracesses then need to be applied: The next stage is to bond metal contacts onto the front surface to 'gather' electrical charge without blocking the incoming light too much. Finally, so as to minimise the amount of light lost through reflection, an anti-reflection coating is applied to the silicon.

Silicon photovoliaic cells normalily generate up to 0.5 V and, providing they are sealed away from moisture in the atmosphere, can have a tong and productive lifespan.

## The photovoltaic process.

Figure 1 shows a schematic of the efectrically aclive layers within the crystal structure of a $P V$ cell. Pure silicon has a very low electrical conductivity because almost all of its electrons are immobilised in bonds. To increase the conductivity, a very small quantity of boron is introduced into the material. This process is known as 'doping'. Doping silicon with horon introduces positive charge carriers into the material. These can be thought of as gaps in the bonds of the crystal structure where efectrons would normally be expected to be. Silicon that has been doped with beron is referred to as being 'p-type', the ' p ' representing 'positive'. Similarly, 'n-lype' silican is silicon in which the main charge carriers are electrons (negative), and this is created in the same way but with phosphorous as the dopant instead of boron.
Most of the silicon in the PV cell is $p$-type, but the surface where the light enters - is $n-$ type. The most important part of the celt, however, is the interface bekveen the two. Just below the surface, this interface - known as the 'pn junction' - is where the negative and positive charge carriers combine, cancelling each other out. However, because the dopant atoms are fixed within the crystal structure, they cannot move to cancel each other's charge. Instead, they form a charged barrier - positive in the top part of the prijunction and negative in the boltom part.
When a photon is absorbed into a PV cell, it passes its energy to an electron in one of the bonds. The increase in its energy level liberates that electron from its bond, turning it into a charge carrier, free to contribute to electrical conduction. The gap left by that electron is effectively positively charged, and can also contribute to conduction.

The cell is designed so that most of the photons that hit it generate these carrier pairs of electrons and gaps in the junction. Because of their proximity to the unbalanced charges created by the dopant P and B atoms, the two types of carrier are forced to travel in opposite dikections. Electrons move away from the boron in the junction and towards the top, and the gaps move downwards into the p-type material.

When the PV cell is connected to a circuit, a route is provided for the electrons to flow from the front (or top) of the PV cell to the back, where they recombine with the gaps. This can

Figure 1.

alternatively be looked upon as a route for positive current flowing from the back to the front of the ceil.

## What is the difference between PV cells and solar panels?

Firstly, the name 'sotar panel', whilst instantiy recognisable by the layman as a panel for turning light into electric, can also metude solar
water heaters and, as such, should not be used. The preferred name for a group of PV cells is a 'module'. PV motules contain several cells always connacted in series. By doing this, the inconveniently low voltage created by a single cell can be added together with that of others, forming a more usefit value.

The front of a PV modute is a window of lowiron content glass. This both protects the cells and also ensures a high transmission efficiency. The cells are hermetically sealed with either silicone or EVA (ethylene vinyl acelate). A modale may or may not need a frame to stengthen it -if the glass is sufficient protection, the module is referred to instead as a 'laminate'.

Electrical connections, tabelled positive and thegative, are filted to each end of the series connected cells. The maximum voltage par module is usualiy $22 \mathrm{~V} d c$.
Madules can be connected togetier in one of two ways to iorm an array. A series connection of modules (or 'series string') will
increase the voltage. A parallel connection will increase the generating capacity without any increase in voltage.

Unfortunately, should one cell be shaded by, for example, the branch of a tree, it can have the same effect as shaüng the whole module. Parallel connections within an array are important for minimising any losses incurred in such a way.

## $\mathrm{I}-\mathrm{V}$ curves and peak power.

To examine the electrical characteristics of a PV module, an I -V curve (a graph of current against voltage) can be drawn. To obtain the WP (peak watts) value of a module, that modute should be illuminated using a solar simulating light source at a constant temperature. With no loads connected, the open-gircuit woftage can be measured. This will give a value on the $V$ axis because no current is flowing. The short circuit curreat can also be measured by shorting the terminals together vie an ammicter (this will give a value on the I axis, where $V=0$ ). Unlike a mains supply, which maintains its votlage irrespective of the number of appliances connected, the voltage of a PV module will drop as more current is allowed to flow. By varying the load, a series of values for $I$ and $V$ can be found and plotted on the I-V curve (see figure 2).

Power (in vatis) is simply the product of current and voltage. To fint he maximum pover we need to find the largest product of current and voltage, and on the I-V curve this can be represented as a rectangle touching both the origin and the 'tree' of the line dravn to comect up the plotted points. The 'peak power' of a module is taken in such a way using a standand solar imadiation of $1,000 \mathrm{~W} / \mathrm{m}^{2}$ and a cell temperature of $25^{\circ} \mathrm{C}$.


The term 'peak power' applies only to test conditionsthaximump power should be used under all other circumstances. lviaximum power is dependant on irrediance, which is in turn dependant on cloud conditions and time of day.

Test coniditions asides PV cells should be kept as cool as possible to maximise their power output. For ach ${ }^{\text {t }} \mathrm{C}$ rise in cell temperature, there is a decrease in power of $0.3 \%$. Modules are built witt minimal covering over their backs so that air can flow over them and keep them cool. However, the test irradiance mentioned above can cause a rise in cell temperature oi around $30^{\circ} \mathrm{C}$, resulting in an
actual temperature of $55^{\circ} \mathrm{C}$, and this will reduce the maximum power atitainable by approximately $10 \%$. Only if the ambient temperature is below $0^{\circ} \mathrm{C}$ might maximum power reach peak power at standard or peak levels of irradiance.

Though the maximum power can be derived for any vaiue of irradiance, can it jut as easily be extracted? It is now common for inverters to include a peak power tracker. In the de to ac conversion process, a peak power tracker constantly adiests is input voltage in order to maximise the product of I and $V$. The tracker is important because it maximises power extracted as the temperature and irradiance vary.

## What angle should the modules be tilted at?

If PV modules are to be incorporated into a structure that is already there and is immovable, such as the roof of a house, there may not be much of a choice. If, hovever, a PV array is to be incorporated into the structure of a building at the design stage, then there are some very clear choices to be made. Firstly, at what time of the year is the power going to be of most importance? The till angle can be optimised for, the summer, the winter or a compromise. To maximise annual yield, designers optimise the titt oi their arrays for the summer. This might usually be the latudude angle of the site minus about $20^{\circ}$. To raise the minimum output, designers optimise instead for the winter - the latitude angle of the site plus about $20^{3}$.
It is also possible to incorporate a system that will constantly adjust the tilt so as to give the best yield. This can be very expensive, but there is a cheaper alternative and that is to incorporate a hinge system into the mipdules so that tiney can be adjusted manually with each change of season.

## What about orientation and location?

In a northern latitude; a south facing array will collect the most light throughout the year and will thus produce the most energy. Failing this, east and west facing facades can still produce significant quantities of energy from PV.
When it comes to measuring the amount of sunshine available at the site, daily insolation is the measurement that needs to be looked at, rather than hours of sunshine. Daily insolation is messured ins $\mathrm{kWh} / \mathrm{m}^{2}$, othenvise referred to as 'peak-hours per day'. Because the standard irrodiance of the specified peak power of 1,000 $\mathrm{W} / \mathrm{m} 2\left(1 \mathrm{~kW} / \mathrm{m}^{2}\right)$ is also close to the maximum itadiance received by a surface lacing the sun, a figure for the energy received
during the day can be worked out from the equivalent number of hours in which a constant 1. $\mathrm{kM} / \mathrm{m}^{2}$ is received.

Meteorobogital records for daily insolation can be consulted, but these mostly measure from a horizontal plane. In some places, the daily insolation is ayailable for a plane tileed in respect to the angle oi latitude. PV arrays are rarely mounted harizontally - they are usually titted at an angle or set verticaily into the structure of larger buildings.
kilowatt-hour. The annual energy yield of the Oxford Solar House is around $3,000 \mathrm{k} 4 \mathrm{~h}$.

The total electrical output divided by the peak pover of the array gives another pararneter that can be used to compare systems and their refative performance - the 'annuat specific. yield'. The Oxford Solar House has a total array output of 4 kWP , so it annual specific yeld is $750 \mathrm{kWh} / \mathrm{yr} / \mathrm{KW}$.

The annual specific yield depends on the following jactors:


BP 'Saturn' Cell end wodule

The Oxiord Solar House (main photo) was set up in 1994 as a project for exploring the. issues surrounding the use of PV technology in the built environment. It has 3 series strings consisting of 16 modules each, and these fece due soution with a till angle of $40^{\circ}$ from horizontal (site latitude is $51.8{ }^{\circ}$ ). Horizontal surface daily insolation records for the Oxford area show an annual mean of 2.6 peak-hours per day, with means of 0.6 for mid-winter and 4.4 for mid-summer. Data is also available for the same area at a tilt of $45^{3}$, and this shows an anneal mean of 3.3 peak-hours per day, wfth 1.3 for mid-vinter and 4.5 for mid-5ismmer. This latter set of statistics is more relevant to the Oxford Solar House than the horizontal set, and the difierence between the two illustrates how important it is to use the right daily insolation data whilst stitl ait the planning stage.

If the required daily insolation figures are not available in that area for the tilt angle being considered, there are other ways of working them out, and these require more saphisticated calculations. In addition, jurther conversions are needed for directions of till other than due south.

## Measuring performance.

The amount of energy generated varies from day to day, so to simplify the problem of measuring performance, the total generation should be measured over the course of one year. A convenient unit of measurement is the

- Insolation: The annual insolation of the site at given angles of tilt and deviation from due south.
- Cell temperature: The aperating temperature of the cells - related to the ambient temperature, moment-to-moment insolation and the effectiveness of cooling.
- Electrical toupling efficiency: The effectiveness of peak power fracking and the inverter.

For the Oxford house, an estimate of the maximum attainable value for the annual specitic yield has been worked out as follows:
3.3 (peak-hours per day, anntal mean) $\times 365$ (days) $\times 0.85$ (a $15 \%$ reduction for the efiects of cell heating above the standard testing temperature) $\times 0.9$ ( $90 \%$ efficiency of inverter, including effectiveness of peak power tracking) $=921 \mathrm{kWh} / \mathrm{yr} / \mathrm{kWP}$.
The value of $750 \mathrm{kWh} / \mathrm{yt} / \mathrm{kWP}$ observed in the house compares well with this estimate of the maximum, although it may heve be set unattainably high by the estimate of the effects of cell heating being a little too conservative.

## PV integration on a larger scale.

BIPV (Building Integrated PV) is becoming more and more widely used in the construction / refurbishment of larger commercial buildings. BP Solar is a major manutacturer of PV arrays and tethmology, and their PowerWall panels have been designed to substitute directly for materials such as glass of granite, traditionally used in these buildings. As well as providing useful energy, these panels can also appear quite aesthetically pleasing when the building is designed with their inclusion in mind.

Wex montid we take a closer look at BIPV. courtesy of some real life buildings which utilise BP Solar's photovoltaic modules to create buildings that are not only environmentally friendly, but attractive to look at as well.

# WhatMONEYfrom <br> ELECTRON/CS? <br> 2: TECHNOLOGY TAKES A TUMBLE 

> IN RART 2 OF THIS SERIES ON THE SPECTACULAR FALL OF HIGH TECH SHARES, WE LOOK AT THE ENTREPRENEURS WHO MAYBE SHOULD HAVE KNOWN BETTER OR EVEN HAD MORE MODEST EXPECTATIONS OF WHAT INTERNET BUSINESS WOULD MEAN IN REAL TERMS. THEY DO SAY HISTORY REPEATS ITSELF! THE CRASH OF THE 19305 REINCARNATED...
horrendous 43\% and so stock which - in its glory moments - hatd been valued at $£ 41$ a share, was now
 Lynch went from being a billionaire to a round iigure worth of $£ 126$ million, a haemorrhage of EB74 million. There can be fey men around who've lost E56 mitlion in a day!

## Duo Disaster

Another high-wire act in the internet loss fietd is the services company Affinity Internet, founded in 1995 by friends Terry Plummer and Wayne Loctmer. Both men had mortgaged their homes and taken out loans to the fune of $£ 1$ million to launch their new venture which initiatly - enjoyed spectacular growth.

The company's product seemed a sure bet too, for it provided the technology for companies offering free access to the net, and having clients such as Vodaphone and Powergen helped of course. At the height of the internet euphoria in March 2000, Affinity Internet's shares rose to $£ 80.78$, giving its founders a total wealth of $£ 437$ million. A year later however, matters were very different.

The shares tumbled to $£ 3.55$ and the company's value plumrneted - if I can put it that way from $£ 1.8$ billion to $E 88$ million, leaving the founders with personal weath of some $£ 23$ millian apiece.

## The Off Line Auction House

Another casualty of the dot.com disaster is Tim Jackson, the founder of the on-line auction house QXL. A one-time financial journalist, he brought his business - which stands for Quick Sell - to market in October 1999.

The share price stormed to $£ 7.44$ and Jackson was - in short order - worth around

## by Gregg Gratt

E423milition. In fact, he marde £34million in one day when his company did a deal with the American on-line outfit Excite. All of this of course mirrored much of the share-trading and deal-making of the Great Crash of the early 1930s: it was all on paper.

Like last-minute, QXL was worth a fabulous amount at its height, despite low revenue. Its value of some $£ 2.5$ billion contrasted starkly with its monthly earnings of about $£ 500,000$.

The ultimate irony of course is that Jackson's original specialisation - financial iournalism - should have given him a headstart in the warnings department as to what could - and ia tact didf - happen when what could be called the North Sea Bubble burst. In no time af all QXL was not so much an online business as an off-line one and, as things stand at present, Tim Jackson is yorth a more modest E 5.8 milition.

## A Softer Shade of Hard, A Harder Shade of Soft

Hardware and software entrepreneurs too haye had a thin time of it lately. In fact, the greatest loss of all was made by an engineer-entrepreneur, Dr Andrew Rickman. An electronics scientist by profession, Rickman founded Brookham Technology in a room above his garage in 1988. It specialised in mânufacturing Integrated Circuits - ICs - for transmitting information across fibre optic liness thus greatly speeding up the Internet.

By mido-summer 2000, Rickman's stake in his creation was worth $£ 1.75$ billion, the shares were valued at $£ 54$ apiece and the company had a valuation of efbillion, more in fact than the mighty Sainsbury's grocery empite. This was the peak. It was to be short-lived. American companies were soon in the market and an ayalanche oi nearidentical products gave Erookham serious competition, resulting in a spectacular drop in the share price, which presently hovers around the $£ 3.20$ nark. Rickman's personal weatth is now a far more modest $£ 107$ miltion.

If the hardware men were finding the going difficult, life was equally as tough for the software entrepreneurs, a classic example being Gordon Crawford. In January this year, headlines such $\quad 5$ 'tondon Bridge faling down....' was but one take on Crawford's issuing a profits warning on behall of his company, London Bridige Software.

Crawford's company had developed software that enabled banks and other financial institutions to identily bad payers. With clients of the stature of Chase Manhatan and Lloyds TSB, the company rapidly attracted investors and - by Spring 2000 - the shares were trading at $£ \pm 5.58$, making Crawford's stake in his company worth a cool El.6billion. It looked like London Bridge would rapiidly become a FISE 100 star, its shares being avidly sought by virtually everyone, not least the banks themselves.

However, failure to rapidly secure Americian orders, at the time when technology shares were beginning to stumble, saw the stock crash from its peak to around the $£ 2.50$ at present. Currently; Crawford's $49 \%$ stake in the business is worth about $£ 196$ mililion, a massive fall by aryone's definítion.

Another man whose wealth rivalied

Crawford's was the Welsh billionaire Terry Mathews. He'd begun his working life at 16, in the British Telecom, BT, research laboratories before moving to Canada where he founded the electronies firm Mitel in 1972. Fourteen years lateri he sold this business and used some $£ 1.5$ million of his profits to set up Newbrioge Networks, in which he took a $25 \%$ stake.

Early in 2000, he sold this business also, this time to the French electronics giant Alcatel, for an impresisive $£ 4$.3billion, he taking a $3.1 \%$ holding in Alcatel itself; which subsequently proved to be one of his less successtul moves.

At the height of the technology boam, Matthews's litule slice of Alcatel was worth a handsome $£ 1.5$ billipn. The subsequent crash however has seen $\pm 810$ million of that sum vanish. Nor was this his only loss. He became involved in the internet security company Ncyphet, and also in Andrew Rickman's Brookham Technology. The former was worth £82milion at its height and Mathews's investment in Brookham was valued at £90million. Presently these investments are worth $£ 25$ million and $£ 5$ mitlion respectively.

Neverthefess, despite the horrendous fatls outlined above, all of these entrepreneurs are still very much in business and doubtless
have learned a great deal from their varied experiences. Therefore what future do the socalled Hi-Tech stares have, given their rags-to-riches- to-better-quality rags again performance over a very short period?

## The Permanent Plummet

Virtually none at allt, if the investrent banks are to be believed. Since March last year, some technology shares have fallen by as much as $90 \%$ and the Financial Times's Techmark Index has dropped by $48.1 \%$ from its high-point. More pertinently perhaps, America's Nasdap - 'the stock market for the next 100 years' as the adverlisement had it has fallen by a whopping $59.2 \%$ !

Indeed the bankers' take on the situation is dire. They envisage only about five of the major Hi-Tech players surviving. As to the shares, in the whew of one analyst, they will take years to even approach their former heights, if ever.

And the anoral in all this? Beware investment analysts hyping future killings not so much on companies for "carrying on undertakings of great adyantage, but nobady is to know what it is,' but on companies of ril advantage which they - the investment analysts - know not one damned thing aboun! entitted Beyond the Alternatives... Simple Breadboarding projects from the pen of Robert Penfold... Watch out for the Combat Robots from Ken Ginn!

> Don't miss your issue, ask your local newsagent to keep you a copy or alternatively ring the Subscriptions Hotline on 01970621030 today.


HEllo readers, it's nice to be back aiter a gap oi several years. Readers of my earlier ramblings like E. V. K. of Taunton, may recall that one of the bater ones was "penned" on my laptop, from an NHS bed. The series was discontinued shorty aiter, not - Tm glad to say - dup to a visitt from the Grim Reaper, but the exercise of an editorial new broom. (Actually, my last appearance in these pages was in 1997, in one of several of my technical articies the magazine has published, under a varieiy of other pen-names.) Now the magazine has a new editorial new broom, who has kindly agreed to provide space for some more Stray Signals.
You may have been fascinated, as Point Contact vas, to see a programe on the box recently, about hacking. Apparently, it started when some bright spark in telephone system development labs in the USA decided that the old loop-disconmect signalling could be replaced by in-band tone signaling (a silly decision as it turned out, but then silly decisions abound in commerce and business, not to mention politics). The earliest version seemed to replace the dial pulses with pulses of tone that, it transpired, could easily be mumicked using a plastic wisiste found in packets of a certain brand of breakfast careats. Later signalling used inband DTMF - dual tone mulif-frequency - each digit on the dial pad being represented by a different pair out of a set of audio tones. Hackers soon came tpp with the infamous "blue box", which was capable of playing such tone pairs into the mouthpiece of the hand set. With a knovletige of the control sequences, 'phone calls coufd then be made for free, at the risk of inpprisonment if caught with one of the iliegal boxes. Both DTMF and loop-tisconnect dialling are still in use, though presumably security arrangements have been beefed up to discourage free-caling.
The hackers with whistles or blue boxes were far from the first freecallers. I remember when on National Service in the RAF in the nineteen Fifties, one of us budding air radar technicians at the Number Two Radio School, RAF Yatesbury, had been a Post Office trainee before being calléd up. He shoved us how you could diaf around the system by tapping the handset rest up and down to simulate dial pulses, if you could get the

## by POINT CONTACT

speed and mark-space rationight and knew the right codes - which he could and did. He explained that this was not a good idea though, in a public phone box, as bobbies were trained to watch out for it. "Back dialling" was cleverer, and safer. With the aid or a cork and a pin (even those he did not need, being practised), one could ensure that the "off normal" contact never got reset Dialifing was then carried out working from the fulty ciockwofe " 0 " position, letting the dial return as far as 9 to dial 1 , to 8 to dial 2 and so on. From a phone box on the camp, with hali a dozen of us watching, he set up a call via Swindon, Birminghams and several other exchanges including ane in Scotland, fireally ringing the phone in anather box next door.
After leaving the RAF, I got a place as a sandwich student with the G.E.C., whose motto in those far-off days was "Everything Electrical". Visits were laid on for us students to various company sites, including the Telephone Works sites in Coventry. There we saw the just introduced "trigger dial", specially developed to prevent successiul back-dialling. We aiso saw ladies adjusting these rotary dials, to get them within the specified range of seven to fourteen pulses per second. Such was their skill that, watching the dial run back just once, with one tweak of the governor springs they would get it to ten pulses per second, straight off. How many skills and cratts disappear with every step of "progress"!
There has been a lot of discussion, and some concem, over the years, about the possibility of different types of radio signals interfering with each other. IETRA and TEIRAPOL (the Interpol version of TETRA) are likely to cause problems for SRDs (short range devices) operating in the obsofescent UK 415 MHz band, and even the Europe-wide 433 MHz band. And it is unforturate that the ninth hamonic of the 13.5 MHz TV subcarier falls an 121.5 MHz , an international marine distress frequency. Now, there is concerre bbout the various systems all operating in the 2.4 MHz ISM band, available wortdwide almost, on an unlicensed basis. It is already a Babel band inhabited not only by Industrial, Scientific and Medical users, but also by newer gemerations of cordless phones, and by millions of microwave ovens. Add to that three extra contenders, 8luetooth, HomeRF and the IEEE sponsored LAN standard 802.11 b for local area networks, and there is real cause for concern. Bluetooth is designed as a short range (up to 10 m ) link, to replace cables or infra red links between laptop computers, printers, digital cameras, cellular phones etc. The 802.11 b LAN standard was originaliy designed with corporate local area networks in mind, whereas HomeRF is designed for networking in the home, with a range up to 50 m . Like Biuetooth, it uses FHSS frequency hopping spread spectrum - hopefuliy to mintimise interference from other transmissions, though HomeRFs hop rate is much lower than Bisetooth's. Like a microwave oven, Bluetooth transmits whenever it feels like it - has data to send - there is no lister-before-send protocol. How all these systems will fare remains to be seen. The danger is that, in the earty days when not too many are deployed, it will all seem to work OK , and the existing systems will become entrenched anly to lind later, that with more and more items in use, operationat reliability becomes just too low and no-one knows what to do abous it.

Yours sincerely,
Point Contact.

## A D.I.Y.



## समा:

Have you ever had the idea of a project that could automate some task around the horme or your hobby that could easily be performed with same control logic. However the thought of designing a circuit that would involve many logic gates, analogue input operational arnpifiers and all their associated components was just too involved. Even having accomplished this, the project would be dedicated to one particular task and be very inflexible in trying to add any design improvements once these were found necessary. Of course your deskiop computer could do the job, but leaving your IGhz Pentium pc powered on 24 hours a day just to turn on the sprinkler system when the plants need watering seems a bit of an overkill.

The solution is to make use of a very useful yet under-appreciated device, the MicroControtler. These single chip devices are

[^1]

fix bugs and add enhancements to the software without having to dismantle or disturb the hardware.
There are several steps necessary to get an application running in your final project.

- First, write the assembler level program that will control your project (and remember it can be modified later if mistakes are made, so no devices have to be replaced).
- Secondly, the program currently in assembler mnemonics has to be converted into mathine code.
- Thirdly that machine code has to be transferred to the PIC.
Thankfully, Microchip has made the first two steps relatively painless in providing tools to do the job. Again on their web site they have, freety aveilable, the software application into which you write your code in mnemonics. This file is then saved and imported into a second application that assembles the program into machine level code. This produces a number of files, one being the listing file. Once this is done, this final code from the listing file is transferred to the PIC using the programmer detailed in this article that is based on the circuit given in Microchip's application note, using sotivare writuen by the author aveilable on $C D$ (see details in the Parts List section).
The PIC itself is programmed by a serial data stream into one of its digital I/O port lines, D7. Associated with the data is a serial clock used to gate the data into the device, and this is fed into a second digital I/O port line, D6. The only other connection necessary

to the PIC is a power supply, andid a signal to the MCLR line to indicate that the device is entering programming mode, or to reset the PIC as required. Once programming is complete, the diver lines from the programmer are placed in a bigh impedance state and the PIC momentarily reset to allow normal operation of the PIC, the programmer remaining connected to allow further modifications to the running code as necessary. of course the programmer can be removed once alt changes are complete.


## Theory of Operation

The programmer takes its drive signals from a pc parellel port. The parallel port can be configured as a standard port. What would normally be data directed to a printer is manipulated in such a way that individual bits within the 8 bit wide byte are driven to a logic one or zero as required in order to output data to the PIC. Data from the PIC via the programmer is fed into what woutd normally be a status line from the printer, but again can be interrogated to read back the appropriate information.

The circuit is quite straightforward. Data bit DO from the parallel port is used as the 'data' line and is simply buffered through a logic gate before being sent to the PIC 'programming data' input line on its RB7 pin. In the same way, bit D1 from the parallel
voltage without the use of the 13.5 v line. This provides a means of simplifying the programmer to some extent and eliminates the need for the external supply. However, in order that both types of PIC could be programmed, the supply remains necessary.

## Construction

Building the programmer is relatively straightionvard. The cable used to interface with the p.c. paralkel port only uses 11 of the I/O lines. This can either be buitt from component parts, or as an easy option you could utilise a spare printer cable, cutting off the Centronics connector and stripping back the appropriate wires as required.

| 25way 0 Tpe Faralles Pot PibNo: | StgalMame |
| :---: | :---: |
| 2 | D0 |
| 3 | O1 |
| 4 | D2 |
| 5 | D3 |
| 6 | D4 |
| 7 | D5 |
| 10 | Acknowledge. |
| 11 | Bưs |
| 12 | PE |
| 18 | Ground |
| 25 | Ground |

Table 1.

On the protetype built and shown in the photos, terminal strips were used to wire cables to the circuit boarrd. To save a little cost these could be eliminated and the cables wired direct to the p.c.b. Again, a d.c. power connector was used to feed the 13.5 v extemal supply to the unit. This could be dispensed with and flying leads used to connect to the p.s.u.
For the output cable that comnects to the PIC project board, a terminal strip was used that can plug directly onto terminal posts. These posts take up little room on the PIC board and are very useful as a means of reconnecting the programmer at a later date should you want to reprogram the PIC without disturbing your project in any way. The connector blocks are available from RS Components, part number 426-159, with mating terminal posts 426-165.
It has been left to the constructor to selact a suitable box to house the unit, only requiring sufficient holes to feed the input and output cables and power supply, together with 2 holes for the indicator. LED's.
The application note available from

Microchip goes into great detail on how to manipulate the lines to program a PIC. It includés flow charts that woutd allow you to write appropriate software to use with their programmer if you are that way inclined. For those looking for an easier life، the author has writen a software application that can be used directify with this circuit to allow you be program your PIC project with the minimum of effort (see Parts list).

## Testing the Unit

If you have elected to use the application software available here, it has the facility not only to program the PIC, but to enter a diagnastic made where the operation of the programmer can be checked prior to connecting to your first PIC project.
Firstly install the soffware and plug the programmer into the parallel port oif the p.c. Once you run the software it has the ability to manipulate individual lines from the p.c. parallel port and check that output lines switch state as expected. To enter this mode, click on the 'programmer diagnostic' button. You can then click on appropriate butions to toggle each line as required and observe the result using à stope or digital multimeter.
The result of switching each line is given in table 2.

## Where to Next

If all is well, you now have a functiona! PIC Programmer, and you may be happy to go away and start developing your complex control systems. With a jittle suring around the Microchip web site (www.microchip.com) you will find the tools and documents
necessary to create source code and program the PIC as required. On the other hand, you may just be wondering what on earth you need to do next. Tn the second part of this series we will go through the basics of what a PIC actually needs in terms of hardware and software in order to get the device to do something useful. We will discuss the contiguration requirements and the basic instruction set common to most of the PIC, family of devices, and then go through the actions necessary to write your very first PIC program.

## Parts List

Resistors all resistors 5\% ? wall

| R1, R2, R3, R4 | 2k |
| :---: | :---: |
| R5. R6 | 750 R |
| R7 | Ik2 |
| Capacitors |  |
| Cl | 22uf. 35v electrolytic |
| C.2 | 68uf. 10v electrolytic |
| ${ }^{2}$ | 0.047uf. 100v ceramic |

Semiconductors

| Q1 | 2N3906 |
| :--- | :--- |
| O2. O3 | 2N3904 |
| Ui | 78M05CT |
| U2 | 74 L. 5244 |

Miscelianeous
LED red
LED green
Di.02 IN414日

Terminal Blocks and cable as required.
The printed circuit boord is avalable from the author at a cost of $£ 10.00$.

The programimer soltware is available on CD at a cost of e 5.00 .

Post and packing for either or both of the above is $£ 1.00$. Allow 28 days delivery.

## Please send cheques

 (payable to Mr M Peili) to:Mr M Pelll. 65 High Rigg, Brigham. Cockermoulh. Cumbria, CAI3 OTA. e-mail: malcolm@peill.org, uk

## OPTANISE YOUUTINIK.



# Piok the right moment and try 

## Optama》'C' Compiler

## for plenifono

## GET YOUR DEMO FROM <br> optama.com or phone <br> +44 (0) 1970621030 <br> US 1-866-345-2632

# NANOTECHNOLOGY 

# How to convert mechanical sigmals into Electrical signalls <br> <br> by Rey Miles 

 <br> <br> by Rey Miles}

## RESEARCHERS AT NORTH CAROLINA STATE UNIVERSITY AND THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL HAVE DEMONSTRATED THAT ELECTRICAL RESISTANCE BETWEEN CARBON NANOTUBES AND GRAPHITE SURFACES THAT SUPPORT THEM VARIES ACCORDING TO HOW THE TUBES ARE ORIENTATED.

This discovery marks the first time scientists have been able to show that by rotating a nanostructure they can control its electrical resistance.

Junction resistance peaks six times as the end of a nanotube is rotated 360 degrees, the scientists iound. This is because the atoms in the nanotube and graphite are arranged in hexagons. This focility to alter the junction resistence by changing the tubes' position on a graphite substrate could be important to telecommunications and other efectronics industries, such as wiretess communications or micro-rabotics, by making it easier for them to design electronic devices and actuating systems - on/off power switches and the like - at the nenoscale level.
'By changing the angular alignment of the atamic lattices, we found that contact resistance varied by more than an order of magnitude in a controlled and reproducible fashion', said Dr. Marco Duongiomo Nardellita research associate in physics at NC State. "Being able to do this gives nanoscale device designers a controlable, continuous means of converting mechanical signals into electrical signals something they have long sought. 8eing able to adjust the electrical resistance in tilis way could, one day, lead to much faster, more energy efificient efectronic deyices.' In adidition to Buongiomo Nardelli, the seyen person research team includes Drs. S. Paulson, A. Helser, R.M. Taytor II, M. Falvo, R. Supertine and $S$. Washburn, all of UNC-Chapel Hill. (Paulson is now at Duke University.) The experiments were carried out at Chapel Hill.

Buongiomo Nardelli, from Rome, served as the tean's sole theoretical physicist. He believes that eyen without its long-term practical applications the discovery is significant bectause it represents another huilding block in modern science's understanding of nanotechnology fundamentals. The transier oi electrons from one material to another has almost always been thought of in terms of energy conservation, with no atiention being paíd to momentum conservation. These experiments show us that momentum conservation plays a role, two.'

According to Richard Superfine, associate professor of physits and astronomy, 'It is the most direct measurement that electriens in a material travel in particular directions and that those feroured difections need to be matched as you go from one material to another where they touch. This effect is pronounced in carbon nanotubes, threadlike molecules that conduct electricity and have the potential to be used for ultra-small circuits.' Researchers need to be sure when making such devices that the preferred directions are aligned when the devices are assembled, the scientist said.

Conversely, the effect can be used to make sensors that measure the rotation of nanometer-scale objects. 'Tunable resistance in nanotubes may be useful in molecular scale machinery where you have moving, sliding and ratating parts:' Superfine seid. 'You need to be able to sense the motion of those parts in an indirect way, such as through the measured current, because in an assembled device you will not be able to look directly at the part.'

Earlier research by the North Carolina at Chapel Hill team published in 'Nature' last year showed that carbon nanotubes roll across a surface rather than slide when the nanotube is put on graphite. A recent article in ${ }^{2}$ Physical Review showed that this rolling occurs hecause the atoms in the outermost layer of the nanotube interfock with the atorns on the graphite surface. When the atoms interlock, the nanotube rolls, and when the atoms are not enmeshed, the nanotube slides. This means that
the atoms are acting like gear teeth. Torgether with the present indings on the electrical properties of these atomic scale contacts, the UNC-CH researchers believe they are creating the foundation of the ultra-small scale engineering of machines.

The continuing experiments involve recording mechanical and efectricol properties of carbon nanotubes vitith a unique device the UNC-CH researchers invented. Known as the nanoMenipufator, the device combines a commercially available atomic force microscope with a force-feedbeck virtua! reality system. The former employs an atomically small, gold-tipped probe capable of bending and othervise manipulating moleculesized particles. The latter allows scientists to see and feet a representation of the surface a mililion times bigger than iss actual size.

According to Mike Falvo, research assistant professor of physics and astronomy, "People are talking about nanotechnology right now, but if you are gaing to engineer those kinds of systems, you have to know how they work, This is one potentially very important piece of that pizzle - how do really small contacts conduct electricity? We've shown that unlike in large contacts, in very small ones their relative orientation can have a profound effect on current ilowing through them. Knowing this could be critical to building the tiniest electromechanical switches, for example. ${ }^{\text { }}$

The experiments were supported ay The National Science Foundation, the National Institutes of Healtiland the Office of Naval Research (trust the military to be invofved!).

## For more information contact:

North Carolina State University:
Tim Lutas, News Services,
Phone: 919/515-3470
E-mail: tim_lucas@ncsu.edu
University of North Carolina, Chapel Rill:
David Winjiamson, News Services,
Phone: 919-962-2091
Fax: 919-962-2279
E-mail: newsserv@email.unc.edu

# Build a <br> <br> By Mike Betioui 

 <br> <br> By Mike Betioui}

Anyone and everyone who is anyone now has a presence on the Web - this, at least, is the common perception. Cleariy this is a gross over-simpliiincation and many successiul companies and organisations -especially those well removed from the computer industry - have yet to take this step. This isn't to say, of course, that a Web site is of no value to these companies - it could well be of great value. Indeed many wetlestablished companies have discovered that a home on the Web has improved their atready successtul businesses, This new series is aimed at those companies, clubs; charities, other organisations, and even individuals who are considering taking that step for the first time. It will atso be of interest to those who already have a Web site which has not brought in the expected benefits. Large companies, with huge financial resources, tend to employ the services of top-notch Web design consultancies - our target audience is quite different. The emphasis here is the DIY approach and we anticipate that this will be of interest to individuals and those small to medium-sized organisations who cantt afford to spend many thousands on a Web site.

## Why do you need a Web site?

It's been säid that if you fail to plan you plan to fail. This is undoubtedly true of designing a Web site. Planning applies at many levels but the most fundamental aspect of planining concerns the rationale for putting a site onlinge. Why do you need a Web site? If you cante answer this question adequately, it's almost certain either that you don't actually need a Weh presence or, if you do, that your site will not have the desired eifect. There are, of course, many different reasons for having a Web site. An ortline advertisement, a means of taking orders on-line, a resource for your existing customer base, and even a

# IN THIS NEW SERIES WE LOOK TO PROVIDING YOU WITH A PRACTICAL DOWN TO EARTH INTRODUCTION TO BUILDING A WEBSITE OF YOUR OWN FROM SCRATCH. PART I INTRODUCES YOU TO THE PLANNING STAGE. 


chances are that your site will be listed by search engines among hundreds of others offering similar products or services. However, if you carz provide some genuinely useful information on your site, this may be adequate to cause people to come flocking to it. Perhaps you have a business selling PC upgrade products and services. This isntt exactly rare and a simple Web site listing the various motherboards, processors, graphics cards, CD-RW orives and so forth wontt really stand out among all the sites belonging to your competitors. Now let's
vehicle for learning about Web authoring are all valid reasons and there are many others. Only when you know what you expect of your site, though, can you start to plan its structure and content to achieve that aim. Let me give an example.

Many small companies think of theit Web site as an electronic advertisement and are surprised that it doesn't bring in the same amount of business as an advertisement in the tocal paper. Certainfy a Web site can be a successful advertisement but this is by no means guaranteed. With so many millions of sites out there, how can you be sure that sufficient numbers of peaple will find yours? Certainify there are ways of increasing the chances that your site will come near the top of the list in searth engines and we'll look at this topic later in the seriess. But even so, unless your business addresses a very smail market niche, the
 assume that you write a PC Upgrading Guide and put it on your site. So long as this is informative, authoritative, and not overtly tailored to pushing your products, people will start to notice itt. And if they find it useful they'll put links to it from their sites. Very soon you could be achieving hundreds of hits per day. Adinittedly most of them will just take your free information and run. But if just two or three percent of them decide to buy products from you, that coutd add up to quite a few extra orders per day - far more than you'd get from the simple electronic advertisement approach. Needless to say, this is but one possible scheme but it illustrates haw gaining a clear understanding of what you want from a Web site is an essential first step.

## The Structure

Once you've decided what you want your Web site to achieve; you can then start to
make a list of the pages you'll need to do that job. And when you've got an idea of the page contents, the next job is to start planining the structure of the site. Unlike a printed book or magazine, in which all the pages are in sequence, Web publishing gives you much more scope because of the way pages are linked together using hyperlinks. Certainly you coutd arrange your Web site like a book, with pages in order, one after the other, but this is comparatively uncommon. A much more popular structure is the hierarchical one in which the home page is a top-level menu. This menu links to lowar level menus which, in turn link to yet lower level menus or actual pages of information. Exactly how many levels of ment you have will depend on the complexity of the site, indeed the depth may not he uniform throughout your site. For example, the home page may have links to coniact details, product listings and an order form. The contacts and ordering links may lead to single pages whereas the product listing link may lead to another menu listing categories of product. In reality, most sites are neither a pure sequence of pages nor a pure hierarchy. Instead, links often allow short cuts between pages without navigating back through the herachy, it's common to provide a link back to the home page from any page in the site, and certain parts of a bierarchical structure may include sequential pages to reduce the amount of information on screen at any one time.
The best way to plan the structure of your site is to draw diagrams with arrows indicating liaks. The diagrams reproduced here show a sequential site, a herarchical site, and a composite site which is probably more typical of real world structures.

## Registering a Dormain Name

Not so much planning, but another piece of preparatory work you'll need to do is to choose a domain name. Actually, you don't have to do this but if you don't the URL of your Web site wili end up as something like www.my_isp.com/my_user_name which doesn't look too professional. What you really need is a URL such as


Figure 3.


Figure 2.
to have large servers permanently connected to the Web via a high bandividth line and can, therefore host a Web site themselves.
Individuals, smäler companies and larger organfsations either use a dial-up line and/or have a low bandwidth connection. As such, the only solution is to find a company which provides a Web hosting service. Basically, they give you either a dedicated server or some disk space on a shared server, onto which yau can upload your Web pages to put them online.

Although there are companies whose sole business is Web hosting and, as I mentioned earlier, companies which register domain names will often host sites tod, as a recommend using the services of your ISP. Most ISPs now offer tree Web hosting to their customers and, whereas the service won't be as good as that provided by more specialist companies, it's a quick and simple way to get up and running. The limitations you'll tend to find are in the amount of disk space provided, in the scripting languages available (we'll look at this later in the series), in the amount
ww,my_company.com, wrww.my organisation.or.uk or something similar, And since you can now register domain лames for as little as $£ 15$ tor two years, this reaily isn't an area you shoufd skimp on-image is very important to the success of your Web venture. There are really just too many companies offering domain names to give any meaningful recommendations here-just do a search on-line. Most of these companies will also offer you a Web thosting service but you won't necessarily need thîs - the topic of Web hosting is coming up next.

## Web Hosting

The last of the major topics to be considered before we can get to work is where to have your Web site hosted. Large companies tend
 of logged information they can provide (e.g. how may people have visited your site, how long they spent on each page etc.), and the fact that you'll share a server. For a farge organisation which is totally dependent on its Web site, these disadyantages will discount the use of an ISP in favour of a dedicated Web hosting company. If you're just starting out, though, your current ISP probably provides a perfectly acceptable service And if you do end up moving, the company with whom you registered your domain name will be able to arrange for traffic to be fonvarded to your new ISP or Web hosting company so your domain name will stay the same and your customers worit notice the change.

## Next month in Part 2 Mike Bedford looks at Weh Design Software

 technology. Anything that does appear on the site is tikely to be found through an archive search rather than any main sections.
## Archive

The archive search facility on this web site allows you to specify the date or a range of dates that you want to search (through the input of one or several keywords). You can choose to sort the results by date or relevance. The archive dates back to 1998. We did a search for 'Marconi' and found 535 articles. 'Robot' generated 110, and 'Robotics' resulted in 22.

## The Electronic Telegraph www.telegraph.co.tk.



With such a name, you might expect more of an emphasis on the technological side of the news than is available in other newspapers and, thankfully, the Electronic Telegraph does not disappoint. Go to the main site and click on the Tefegraph Network pull down menu. Click on Technology' and you will be taken to Electronic Telegraph Connected.

Made up of features, regulars and nev/s items (After 100 years, the robol is about to clean up', 'Bpethoven's lost overture created by a computer', etc), this is more like a weekly web magiaine than a newspaper's online site. It does seern to be aimed tit the non-technically literate rather than serious electronics or sofiware protessionals, but that is no bad thing as most of its articles are extremely readable. Reguiar 'columns' include 'Hard Drive' by Professor Peter Cochrane and the tongue-incheek 'Sificon Valles, Diary' by Andy Goldberg.

## Archive

Every weekly edition of Connected dating back all the way to 6th August 1996 is avaitable for viewing. The mam Electronic Telegraph site is also searchable, with a search engine that is second to none in its layout and usability. It has three times the number of options available on the Guardian search page yet manages to seem much simpler. The articles in the archive date all the way back to 1994. There were 531 responses for 'Marconi's 195 for 'Robot' and 22 for 'Robotics'

Independent Digital www.independent co.uk.

## -Independent.co.uk

Like the Guardizn and Telegraph sites, the Independent has a lot of onlime content. The digital section has news, features and reviews, but the majority of this is web rather than technology related.

## Archive

Dating back to 1999 , this archive is searchable by date and also has an additional search box for the whole internet, provided by Ask Jeeves. There were $200+$ responses for 'Marconi', 108 for 'Robot' and 20 for 'Robotics'.

## The Times <br> uww.thetimes.co.uk.

From the puld-down menu bar, select
'Features' and then 'Science'. When we tried it, there were no more than five news stories and these were more 'New Scientist ${ }^{\text {r }}$ than' Electronics and Beyond.

## Archive

The archive of past anticles was not searchable by date and, odily, there was no indication on either the search or results page of just when the archive dated back to. We found 354 rasults for 'linarconi', 32 for 'Robot' and 2 for 'Robotics'.

Financial Times Online www.f.com.

It you want industry / company specific financial news and information: you are better off visiting the online presence of the Financial Times than any other newspaper-
related site on the Internet.
As well as comprehensive information on the markets and economy, the site is a good șource of up to date news relating to companies and industries from afound the world. lacking pictures, for the most part (just as you think it's starting to load up a picture it turns out to be an advert): and flasty graphics, it may appear a bit diry to the caseal surfer, but in all fairness it isn't aimed at thern and what it does it does well.

Click on 'Compenies' and you'll find a jist of afl the major companies currently in the news. There is also a search engine that aflovts you to type in the name of a company and call upits share price details and other financial information financral information
along with a list of recent news stories jnvolving the company. Click an 'Industries' and you will be able to call up ภews and analysis pages sector by sector. covered. But what about the Amerscan newspapers, or the French, German, Polish, etc? We don't have enough space to cover al! of these here, but for the benefit of those who are interested in going onto the net and finding national and local newspaper sites, we will now suggest a few Intemet directories that will allow you to find the sife you want easily and at the merest click of a button.

## Online Newspapers Directory www.onlinenewspapers.com.



This is a useful site that allows extremely quick access to thousands of newspaper sites all over the worldi. Select a region and choose the relevant country from a pull-down menu. This will then present you with a list of regional and national newspapers (most of which will, of course, be in the rative language or one of the native languages of that country). Select Venezuela, for example,
and you will get a list of 28 online papers. Clicking on 'El Nacional', for example, will take you to the web site of that newspaper.

This is an Australian site and it outs all of the UK's national newspapers under the heading of 'England'. It is extremely' comprehensive when it comes to local newspapers in the English, Scottish and Welsh regions, but as for Northern Ireland, we couldn't find any information dedicated to papers from there at all.

## Newspapers of the World on the internet www.actualidad.com.

This is similar to the Online Newspapers Directory but with continental silhouettes

instead of pult-down menus. England, Scotland and Northern Ireland are well represented, but this time it is Wales that is missed out. UK national newspapers are, again, listed under England rather than having a separate section tor the UK.

## US Newspaper Links www.usnewspapertinks.com.

This site is the best place to go if you want comprehensive state-by-siate coverage of local newspapers in the United States of America. It asso has links to tocal radio stations, TV stations and magazines.

## Yahoo UK \& Ireland Newspapers Directory <br> htip://uk.dir.yahoo.com/News_and_Me dia/Newspapers.

This is an extremely long : 1 K \& Ireland fisting in alphabetical order with a selection of major USA papers thrown in for good measure at the bottom of the page. A short synopsis of each site's coverage is included alongside, makking it easier for you to decide whether you want to go there pr not.

## biv Maritio Pipe

## THIS DECEMBER $\cdot$-HITACHI IS

 TO CLOSE ITS COLOUR TV FACTORY IN HIRWAUN, SOUTH WALES, WITH THE LOSS OF 174 JOBS. THE HISTORY OF THE FACTORY, WHICH HAS PRODUCED TVS RANGING FROM SMALLSCREEN SETS TO HIGH-END REAR-PROJECTORS, IS AS COLOURFUL AS THE PICTURES PRODUCED BY THE PRODUCTS THEMSELVES. ORIGINALLY SET UP BY GEC IN 1969 TO FULFIL THE COLOUR RENTAL BOOM, THE PLANT WAS SOLD TO HITACHI IN THE LATE 1980s.

ot that Hitachi is the only TV manufacturer to feel the pinch. Sony and Panasonic have both announced massive TV-rtanufacturing job cuts - 1,400 in the case of Panasonic's Cardiff factory. These tho mantafacturers will instead be producing TVs in the Czech Republic, where wage bills are considerably lower. Such are the effects of glabalisation, which has resulted in the widespread shift oí manufacturing activities to countries oi (relatively) poor living stanđ̛ards, like parts of Asia and exCommunist Eastern Europe.

This is alt because consumers demard lower prices, while shareholders want higher profit margins. TV manufacturing is a different kettle of fish to textiles, though everybociy in the country knows (even if they blindly accept it) that designer trainers and $T$ -
shirts cost text to nothing to produce in Indonesia, but sell for a fortune by the time they reach UK shops. All of the difference seems to be absorbed by obscene profits, flashy advertising and sponsorship deals.
TV prices, unlike those of clothing. have been driven artiticialiy low over the last: 30 years. Back in 1967, when colour broadcasting started, a colour set would have coss around $£ 300$ - the price of the minivan used to deliver it to the customer. The only jtem of transport you'tl be able to buy for the $£ 70$ now demanded for a supermarket colour TV is a cheap bicycle. Oh how things bave


> HITACHI Inspire the Nex́t

a time-consuming and expensive business, and so where will its sets come from once the Hirwaun-made stock dries up? Will we see TVs made by third-parties (possibly the same Turkish factories churning oul cheap sets for supermarkets) to Hitachi specification, or wil! Hitachit pull out of mass-market TV altogether? This wouldnit be without precedent. One only has to loak at firms like Nokia and - possibly more representative of Hitachi - Mitsubishi, both of which gave up TV manufacture in fayour of new product areas towards the end of the last millennium.

Hitachi's spokesman dectined to give me a definte answer, telling

According to a Hitachi spokesman, there's just no money in consumer electronics any more - he claims that Hitachi's TV operation bas lost 'millions' over the last five years. The same is likely to ring trae of the other manufacturers, who are forced to relocate just to survive- unlike the global fashion brands, who do $\begin{gathered}\text { ti out of greed. }\end{gathered}$

Hitachis smaller-screen (portable) sets are made, in Mexico, along with a range of other TVs destined for sale in the nearby US. Shipping sets any larger than this to Europe is likely to bo an expensive undertaking, and thus not financially-viable. Yet Hitachi has not, according to its spokesman, taken steps to set up a TV manufacturing facility elsewhere in Europe (Hirwaun was the only European factory). Setting up a TV iactory is
us father cryptically that his employer would be concentrating on the 'higher end' of the market-i.e. rear-projection and plasmawhere profits can stild be made. Funnily enough, these sets wili be made in dapan; their high value makes shipping viable. But if we enter a global decline - as many economists are predicting - who will have the money to spend an loxury TVs?

Finding the right component
I just bought for the first time 'Electronics and Beyond' and I found it very interesting.
I decided to build the low power audio amplifier featured on page 56 , but I had a problem in finding the 560pF polystyrene capacitor (Cl0). I tried RS, Farnell and Maplins but without luck, so I replaced it with a 470pF ane.
I wonder if you can suggest if this value is ok, or you coutd provide me with some information where to get the proper value.
Best regards and many thanks, Marco Di Giuliomarīa (via email)

Gavin Cheeseman replles:
Thank you for your query' regarding the 'lou pouer auchio amplifier' article in Electrontics and Beyond magazine. 1 anm sorry to bear that you bave been tunable to obtain the 560pF polystyrene capacitor (C1O). Unforthnately' components sometimes become difficulr to obtain affer a project bas been designed.
Moslifing the value to 470pF as youmention provides a good alternative. For most applications the eatue is nor particularly critical. The modified calue u'll slighty cbange ibc frequency response at the bigh frequency' end wben the capacitor is connected in circrit but in practice this is tulikely 70 canse any problein. Polyst1rene capactrors were specified for their superior performance but anotber onfion is to fit a 560 pF ceramic capactor.
One general poimt: when using differens capacitor calues or types in tbe circuit please follow the prectutions mentioned in ibe article regarding testing etc. $I$ would adivise you to alurgs check tbat the circuit operates correctly after the modification and is stable
$t$ bope this answers your question and lbat you contime to find the magazinte fnteresting and informatite.

## Geriatric Student's Diote Tester Question

This is a very interesting project and i've much enjoyed reading the straightorward instuctions.
However, there is one thing that has continued to puzzie me despite extensive headscratching (although, 35 a geriatric student of 72 summers, this may just be my personal limitations!]. No matter how I read it, I cannet see how the dual voltage supply can work.
Surely, with a 9 v supply across it the mid-point of the voltage divider will be 44.5 v ; and thus the buffer op amp will also show $\div 4.5 \mathrm{v}$ at its output?? Equally, the positive line will be at $\div 9 \mathrm{y}$ and the negative line at $0 v$ ?

Clarification would be greatly appreciated.

## Terry Snape (via email)

## David Clark replies:

The answer to your question lies in which point you use as a reference for your yoltage measurements.

If you are measuring your voltages relative to the negative terminal of the 9 voit supply you are right to say that the voltage at the output of the buffer will be płus 4.5 volts. In other words you are using the 9 volt supply negative terminal as the reference point and calling it 0 volts.
But you can also measure all your voltages relative to the output of the buffer op amp. In thits case you are using the output of the buffer amp as the reference point and defining that point as 0 volts.
So if you connect the 0 volt, or COMMON, terminal of your voltmeter or mulimeter to this reference point, the reading you get when you measure the
voltage at the negative terminal of the 9 volt supply will be minus 4.5 voits, and that at the positive terminal of the 9 volt supply will be plus 4.5 völts.

I'm pleased you found the project interesting and that you enjoyed reading $\mathrm{it}_{4}$ and I hope this clears matters up for you.

## Articles inspiring letters. letters inspiring articles

I would like to know if the magazine accepts articles froms non-staff authors; because the new-look format is particularly appealing. Specifically, I was inspired by several articles and letters in the carrent (August) issue to draft replies and comments which have already gone beyond the scope and length of a simple letter - even that of Dr. Oshoume's!
I aman electronic engineer with some years experience of designing and constructing instrumentation, both standatone and computer-interfaced. I have been working in environmental and plant sciences, meteorology, and the chemical industry - my recent interest has been in micropower and high-impedance circuitry, especially connected with atmospheric electricity and pollution studies, but I have also produced privatety in AV (including sėverat 'lightsculptures') and electranic musical instruments.
Jey Roger Knight (via emaii)
Thank you so mucb for your email and tbe ansuer is yes we value contributions from non authors or freelance writers. I uortd need to see a sample of any of the subjects you mentioned.
All material sbould be sent in ste follouting formats: Word for

If you have any views or queries. then send them in to:

> Air Your Views. Electronics And Beyond. 17/18 Glanyrafon Enterprise Park. Aberystwyth. Ceredigion. SY23 3JQ.

Ailematively, you can fax them to 01970621 c40, or e-trall them to jaldredekanda.com.
the Text, Diagrams should be EPS files witb tlje ammatations in Heluetica. if yon are hising Corel Drate please sate them as whr files. Images should be in JPEG. GIF or TIT or preferably original pbotos. For detailed information on acceptable flte types please contact our designer at ibouston(amadasafish com
I look formard to working with you and an very bappy you find tbe new' look appealing.

- The Editor


## Gaming Glove

There is an article on your 'August' cover regarding a gaming/computing glove. I can see the picture on your website, but can't seem to find the story online.

Christos Livadas, USA

The Pj glove unas fethured in aur Etent Kevieut but ue did not give a web address for the company ubro make it Essential Reatity: Their ueb adtress is
uwuessemialrealitycom. We referred briefly to the glowe as part of our etent review but hope to cover it more filly in a furture edtiton of the magazine.
Netus and Fentures Editor

> RAY MARSTON DESCRIBES THE BASIC NATURE AND BEHAVIOUR OF OPTICAL PRISMS AND LENSES IN EARI OF THIS OPTOELECTRONICS-RELATED 4-PART SERIES.

| Subsiance | Refractive Index |
| :--- | :--- |
| Free Space | 1.000000 |
| Air | 1.000293 |
| Ice | 1.31 |
| Water at $20^{\circ} \mathrm{C}$ | 1.333 |
| Glass | 1.5 to 1.9 |
| Diamond | 2.42 |

Firgure 1, Table tisling typical refradive index values for varieus transparent media.

MOst of last months opening episode of this mini-series described the basic nature and behavour of light, with particufar regard to its use in modern optoelectronic systems. The remaining part of that episode dealt with twa types of light-beam manipulators, namely, mirrors and retroreliectors. This month's episode contimes the 'light-beam manupulators' theme by describing the nature and behaviour of opticai prisms and lenses.

## Light-beam manipulatars.

## PRISMS.

In optics, a prism is a block of transparent materiat having two or more plane (ilat) surfaces. Prisms have an innate ability to bend the paths of light. A flat sheet of glass is a very simple prism.
When light travels through a transparent
material or medium other than free space, its velocity ( vl ) and wavelength (1) are lower than those that pertain in free space (v0 and 10). The ratio vo/vl or $10 / 11$ is known as the mediutn's refractive index, and is notated by the symbol $n$. Figure I lists some fypical $n$ values for various transparent media, including normal glass ( $\mathrm{n}=1.5$ to 1.9), which is transparent to all visible light and much of the lower IR spectrum, but blocks most of the UV spectrum.
Figure 2 illustrates the eifects that 'refraction'
has on a light ray when it travels through a pane of glozs with (for simplicity) an n value of 2. In Figure 2(a) the beam enters the glass at an incident angle of 00 , is slowed down (thus reducing the light's wayelength but not its frequency) as it passes through the glass, and then returns to normal "though air" speed as it leaves the glass at an angle of 00 .

In Fggure 2(b) the dashed lines represent the normal or zero degrees angular reference line. In this diagram the ray enters tie glass at an incident angle (ai) of (say) 300 and then, as it passes froms the thinner medium (air) to the denser one (glass), the ray bends towards the normal by a refrective angle (ar) of about 150 ; when the roy passes from the denser to the
$=\sin a \mathrm{i} / \sin$ ar.
Note in Figure 2(b) that the light ray leaving the glass is shown paraflel wite - but oifset from - the path of the original input ray, which is midicated by the dotted line. The degree of offset (parallax error) increases with the angle of incidence and with the thickness of the gless. Simple mirrors, in which light rays enter and leave the mirror via the same glass surface, afe subject to this type of paraliax esror.
Most prisms have plane surfaces that are angled away from each other: as shown in Figure $3_{\text {s }}$ in which two prisms each have their maior surfaces angled at 300 to one another. This diagram shows the efiects that the prisms have on a light ray that arrives at an incident

(a) A light ray and ils wavefronts passing through a sheet of giass afier amiving at an incident angle of zero degrees.

cer
(b) A light ray passing through a sheet of glass affer artiving at an incident angle of about thiriy degrees.
Figure 2 . Diagrams ithostrating the effects of refraclion lizough a shezt ipane) of glass.
thinner medium again as it leaves the glass, tite ray bends ayay from the normal again, returning to its originat angle of 300 , thes obeying the basic Laws of Reiraction. The
angle of zero degrees. In both cases the ray passes cleanly through the glass without bending. but on leaving the glass the ray bends away from the normal by about 150 , thus obeying the basic Laws of Refraction.

Note in Figure 3 that the degree of fay bending is independent of the thickness of the prism glass and fignoring n value efiects) is detemined mainly by the angle of incidence of the ray and by the angular difference bebween the prism's input and outout surfaces.

Regarding the "n value effects? mentioned in the above paragreph, it is importank to note that the refractive index values of all transparent media
values of ai, ar, and the $n$ values of the incident ( $n$ i) and refractive (n) regions are related by Snell's law of reiraction, which states that mr/ni other than free space vary with the wavelength of a light, and increases as wavefength shortens. The refractive index of glass is
normally measured using a yellow sodium tight with a wavelength of 589 nm ; the actual index value is higher than normal to violet light (400nm wravelengtif) and lower to red light ( 700 nm wavelength).
Figure 4 shows, in exaggerated form, the results of passing a narrow beam of white light through a symmetrical triangular prism. White light contains all the colours (wavelengths) of the wisible spectrum, and the prism thus (because its refractive index is wavelengthdependent) bends each individual colour of the beam by a different amount, giving the least bend to red light and the greatest bend to videt, light The prism's output thus takes the form of a vertically-expanded coloured spectrum. This scattering of white ligh's component colours is known as dispersion.
When a ray of light passes through air and enters a prism, it bends by an amount determined by its angle of incidence and by the reifactive index value of the glass. When the ray leaves the prism again and returns to the air, it bends by an amount determined by its angle of incidence and by the refractive index of the air (1.0) divided by that of the giass (say 1.5), and this value is invanably less than zero ( 0.667 in this example). Figure 5 shows the actual amounts of output refraction that occur on three different prisms that each have a refracìve index of 1.5 .

In Figure 5, the ray strikes the output surface of prism $A$ at an incident angle of 300 and leayes the prism at a refractive angle of 420; this prism thus bends the ray downwards by 120. In the case of prism B, the ray strikes its output surface at an incident angle of 400 and leayes at a refractive angle of 850 , thus bending the ray downwards by 450.

Note in the case of prism B that the ray leaves the prism at an angle that is only 50 less

320 at an n value of 1.9 .
Figure 5 shows, in the Primm C diagram, what happens to the light rays when they strike the prism's output face at an incident angle of 450 . i.e.- at an angle greater than the critical angle of the surface. Under this condition a phenomenon known as total internal reflection occurs and makes the intemal surface act like a
devices such as reflex cameras, binoculars; and automatic laser-aiming controllers.
Total internal reflection can occur whenever one tramparent material interfaces with another that has a lower refractive index. thus giving a less-than unity refractive index and a positive critical anigle value at the interface junction. All modern fibre optic cables rely on this 'internal reflection' basic principle for their very efficient low-loss operation (fibre optic cable principles will be described in Part 3 of this series).

## Lenses

Normal optical lenses are light-bending refractive devices that are selated to prismis but have curved (rather than flat) faces. Figure 6 shows the classic profile of a simple lens that

mirror that bends the rays by double their angle of incidence, thus (in this case) bending them through a 900 angle and projecting them through the lower face of the prism.
The insernally-reflecting type-C prism thus


Figure 7. Basic way of using two fenses in a light-bsem system.
than the angle of slope of the prism's output face, and it is obvious that if the angle of incidence is increased much more the ray will. be unable to penetrate the prism's output. suriace. The angle of incidence at which this
acts like a mirror that bends light through 900, but (since the light passes through separate inpui and output suriaces) does not sufier from parallex errors. This type of prism is widely used in high quafity optical instruments and
has two parallel faces that are each redially curved in two dimensions, to form a section of a sphere. This type if lens can focus a parallel bunde of light rays onto a single point (the focal print), as shown in Figure 6(a); the distance between the centre of the tens and the focal point is the focal length of the fens. If a lighrpoint-source is spaced from the lens by a distance equal to the focal length of this type of lens, the lens converts the light into a paraliel ('collimated') beam of light, as shown in Figure 6(b).

Figure 7 shows the basic way of using hyo simple lenses in a light-bearn alarm or commusication systern. At one end of the system, the left-fand lens converts the tranmitter's light point-spurce into a collimated (parallel) light beam, and at the other end of the system the right-hand lens converts the collimated beam hack into a point of light,


Figure 日. Four simple types of convergent spherital lors.
which is applied to the receiver's light-sensitive input. Identical lenses are used in the collimating and decollimating processes.
Systems of the above type only generate a perfectly pardlel beam if the light point-source is infinitely small, and this is an impossibility. In prectice, the beam widens with distances after leaving the collimating Iens; the amotnt of widening is proportional to the width of the light source and inversely proportional to the diameter of the lens. For minimum widening, the lens diameter must be large relative to that of the source.
Simple lenses with one or both faces shaped as a section of a sphere are known as spherical lenses and are available in convergent and divergent types; convergent types make a parallel beam of light converge towards a common focal point; divergent types make a parallel beam of light diverge outwards. Figures 8 and 9 show a variety of lenses of these types.
Figure 8 shows four simple types of convergent spherical lens. The thin biconvex lens shown in (a) is the same type as shown in Figure 6; it operates equally well either way around, but its sharp edges are rather fragile. The


Most spherical lenses are of the simple type already shown, but other types are also available. The cylindrical biconvex lens shown in Figure 10(a), tor example, is curved in one dimension only, and is used to focus a paraltel light beem into a thin line, rather than a spot, or to convert a
ten horizontal slices temoving the 'dead' material from each slice, and then bonding the tematnder onto a base of identical material that elso acts as the lens rim. In practice, most Fresnel lenses are moulded, in plastic or glass.
The foctsed images generated by simple spherical tenses suffer from spherical and chromatic defects or abberations. Spherical abberation makes a straight line appear curved in the focused image; if you wear spectactes, you can see a demonstration oi this effect by standing in front of a set of library shelves and noting how the shelves above and below your eye level appear curved when you have your glasses on, but not when finey are off.

In simple lenses, chromatic abberation makes faint coloured fringes appear around focused white or multicoloured images. The effect orcurs because the refractive index of the lens material (and thus the focal length of the lens) vares with the colour of light, as shown in Figure II (a), making it possible to sharply focals only a smatl slice of the colour spectrum; the rest of the specirtm is out of focus, producing the 'Tringe' effect. This problem cari be overcome by using a compound lens made of one converging and one diverging lens, each with a different reiractive index value, as shoun in Fgure 11(b). Such a lens can be made to give all colours the same overall focal fength, and is known as an achromatic or antispectroscopic lens.
The strangest and most recently developed lens is the graded-index (GRIN) rod lens, which is used in modem fibre optic applications and operates in a different way to a normal lens. A GRIN rod is a glass or fibre rod that has a thick biconvex type
shown in (b) gives the same performance as the (a) type, but is more rugged. The plano-convex type shown in (c) has one filat and one curved face and must be used the correct way around, with the flat face pointing in the direction of the parallee light beam and the curved face aimed towards the light's focal point. The convex mernisess type shown in (d) has a very long focal length; it is the type used in most spectacies and contact lenses.
Figure 9 shows three simple types of divergent spherical lens. The biconcave lens shown in (a) can be tssed either way around but the plano-concave type showe in (b) must be used the correct way around. A concave meniscus type is shown in (c). Lenses of these various types are often used in conjunction with convergent lenses, to make high-quality compound Jenses (as described shorily).

(a)

(b)

Figure 11. The compound achromalic tens shown in (b) is designes to minimize chromatic aterrotion of the lype suffered by the simple fol tens.
lens that performs almost es wetl as a normal lents in simple 'light-bean' types of application. Figures $10(\mathrm{~b})$ and (c) show - in cross-section form - how a plano-convex lens with a mounting rim is thensformed into its Fremel equivalent. Here, the Fresnel lens is made up by effectively dividing the original (b) lens into
refractive index that decreases progressively with distance from the rod akis. This index variation causes light rays to foliow a sinusoidal path as they travel along the rod, as shown in Figure 12(a). The length of one complete sinnusoidal cycle in the rod is called the pitch (P) of the rod; the $P$ value is determined mainly by

## Professional analogue and digital circuit design for the PC and Mac

## Accurate results that can be relied on



## Just a few of the features:

Uses the latest Xspice engine for accurate mixed mode simulation. Parameterised AC and transient sweep, Monte Carlo analyses, new Xspice simulations and new noise and distortion analyses. Plus all the mode! libraries are included in the price; over 7000 parts included.
$B^{2}$ Spice 2000 also comes with a powerfut model editing package that allows you to create and modify parts and make changes to the libraries.

The best way to see if this software is what you need is to try it - risk free for 30 days.

## Telephone 01603872331 or visit www.spice-software.com

(a).

(b)


Figure 12. Light rays follow a sinusoldal palh through a giraded-index (GRIN) rod (al. A quarier-pitch GRidy lens collimales the lighl from a paint-

in fully collimaied form, and in (c) that a collimated lighi beam entering the left face leaves the right face as a focused spot. The GRIN rod lens thus has some properties of a conventional lens, but has a very short focal length.

GRIN rod lenses are widely used in modern fibre optic and laser module applications.
Figure 13 shows an example that illustraies the advantages of a GRIN rod lens over a spherical lens in a simple fibre optic application in which the fibse optic cable's paint-source 'light' output needs to be
collimated when fed into the outside world. In the case shown in (a), the light is collimated by a conventional lens, which must be placed a precise fixed distance from the end of the crbbe, to which it is coupled by an air gap. In the case shown in (b), the GRIN rod lens is simply' bonded directly to the polished end of the cable, and no carefully spaced air gap is required.

More information on fibre optic and GRIN (graded index) operating principles will be given in next month's episode of this series. which will give an in-depth explanation of fibre optic principles and practice.
the rod's diameter and refractive index profile; the value is typically about 20 mm .

A GRIN rod lens is simply a slice of GRIN rod with a length !ess than a single pitch-length, so that its optical output signal is out of phase with the optical inout signal. The most interesting and widely used GRIN rod lens has a quarter pitch (giving it a length oir about 5 mm ) and has the interesting properties illustrated in Figures 12(b) and (c). Note in (b) that the light frome a point source in contact with the centre of the left ace of the lens emerges from the right face


Figure 13. Hethed of collimating the light output from a fore optic cable using tat a sphericallens and lbt a GRHW mity lens.

## by Pemermanit <br> and Trank Ervell

## Amtel AVR Programmer

This kit is a simple but powerful programmer for the Atmel AT90S kxx ("AVR) family of microcontrollers.
The Atmel Ave devices are a Jow-power CMOS 8-bit microcontroller using a RISC architecture. By executing instructions in a single clock cycle, these chips achieve throughputs approaching I MIPS per MHz. Get plenty of up-to-date information and data sheets on AVR Starter Kits from whw,avrforum.com.
These devices feature onboard Flash progrant memory, EEPROM for nonvolatile data storage, as well as a number of fuse and lock bits. They are electrically erasable; they can be se-programmed over and over again without the need for UV erasers.
Programming of all these features is supported with this programmer.

## Devices Supported

- AT90S1200 (20 pin DIP)

IK program, 64 bytes EEPROM

- AT90S2313 (20 pin DIP)

2K Flesh, 128 bytes EEPROM \& SRAM

- AT90S4414 (40 pin Dip)

4K Flash, 256 bytes EEPROM \& SRAM

- AT90S8515 (40 pin DIP)

BK Flash, 512 bytes EEPROM \& SRAM

- AT90S4434 (40 pin DIP)

4 Klash, 256 bytes EEPROM \& SRAM
(requires adaptor KI22ADT)

- AT90S8535 (40 pin DIP)

8K Fiash, 512 bytes EEPROM \& SRAM
(requires adaptor KI22ADT)
This programmer does not support In-System-Programming.

The programmer uses a serial port for communication, which has several advantages:

- The programmer does not require special software other than a terminal emutator pragram that can send an ASCII text file. Windows 3.11 \& $9 x$ come with this program - terminal or hyperterminal -built-in. Or you may use our term.exe from our website.

WELCOME TO OUR NEW HANDS-ON CORNER FOR ALL WHERE YOU CAN BUY AND BUILD YOURSELF A TOTALLY ORIGINAL ELECTRONIC KIT OR PERHAPS YOU WOULD PREFER TO CHOOSE THE PRE ASSEMBLED KIT OPTIONS AVAILABLE. WE AT ELECTRONICS AND BEYOND HOPE YOU HAVE LOTS OF FUN AND ENJOYMENT FROM THESE PAGES AND OUR AIM IS TO PROVIDE YOU WITH VARIETY EACH MONTH SO YOU ARE ABLE TO LEARN AS YOU MAKE THE PROJECTS.

- It allows the programmer to be used with any computer and operating system.

The kit is constructed on a double-sided, through hole plated printed circuit board (PCB) measuring $110 \mathrm{~mm} \times 69 \mathrm{~mm}$ ( $4.3^{7} \times$ 2.7). Protel Autotrax \& Schematic were used to design the PCB.

The kit is powered by a mains adaptor with an open circuit output voltage of at least 16VDC. Most 12VDC adaptors should supply this quite easily. Current capacity of the adaptor should be at least 150 mA .
Provision is made on the PCB to fit ZIF programming sockets. However these are not supplied with the kit.

## Assembly Instruction

A number of the components are physically similar and can be easily mixed up. Before starting, identity the following components:

- 1N4I48 diode IN4148 marked on body
- 5.6V zener diode 5V6 marked on body
- 12V zener 12 or 12V marked on body
- BC547 transistor
- BC557 transistor
- 78L05 regulator


## Corner

Using the component overiay on the PCB , insert the components in the folfowing order:

1. Resisiors and diodes

The diades must be inserted the correct way around. The "bar" on the diode body lines up vith the "bar" on the component overlay. The tot on the resistor network RP1 must go into the box marked on the overlay for RPI. RPl may be 10P9R or 9P8R.
2. Ceramic and monobloc capacitors
3. IC sockets (not the TF sockets ff used)
4. Transistors and 5 V regulator
5. LEDS
6. Eleciralytic capacitors Make sure that the electrolytic capacitors. are inserted the correct way around. The positive lead is marked on the overkay. The negative is marked on the body of the cappecitor.
7. Crystal, pushbutton switch and DC jack The switch has a flat side which lines up with the "bar" on the component overlay.
8. D25 connector and ZIF sockets (if used)
9. Proceed to "TESTING" before inserting any ICs.

## Circuit Description

The 78L05 regulator provides a stable 5 V supply for the ICs. Diode DI protects the kit against reverse polarity of the power supply. Transistors Q and Q 2 are used to control the programming voltage: Q2 switches the programming valtage on or off and is controlled via Q1. A high on the bāse of QI pults the base of $Q 2$ lov and the programming voltage is switched off.
A low on the base of Q1 causes zener Z1. and diode D2 to conduct and 12.6 V is applied to the base of $\mathrm{Q2}$. The programing voltage is now 12 V . Resistor R 2 limits the curfent supplied to the programming pin. With a 12 V programming voltage zener $Z 2$ conducts and the "Vpp On" LED lights.

Transistor Q3 switches the supply veltage to the programming socket. A low on the base supglies 5 V to the socket and the ${ }^{2} \mathrm{Vcc}$ On LeD lights.

The control soltware for this kit is contained in ICl, a pre-programmed 89C2051. It controls alts the functions for

reading, verifying and programming of the AUR chips, including the EEPROM, lock and fuse bits
Port pins P1.0 to PI. 7 are used to transfer
data to or from the programming socket. IC2, an 8 -bit addressable latch, provides additional outputs and is controlled via port pins 93.2 to P3.6 and P3.7. The in-built serial port on pins

P3.0 and P3.1 is used to communicate with the host PC. IC3 converts between TTL and RS232 signal levels.

## Testing

Sefore applying power, check that all parts are inserted in the correct pasition. Make sure the electrolytic capacitors and diodes are the right way around.
With no ICs inserted appiy power via the DC jack. The "VPP" LED should come on. Check the following:

1. +5 V rail - measure
between pins 10 and 20 of ICl socket.
2. VPP voltage approximately 12V on pin I of SKTI and pin 9 of SKT2 ("Vpp" LED in)


K122 Adsplor for $9054 / 34 / 8535$
3. VCC valtage - OV on pir

20 oí SKTI and pīn 40 oí SKT2.
4. Insert a wire link to pins 6 and 16 of the IC2 socket. The VPP valtege shoutd now be OV.
5. Move the wire link to pins 7 and 8 . The "Vcc" LED should be on and the voltage on pin 20 of SKT and pin 40 oi SKT2 should be 5 V .
If all is well, remove power and insert the
ICs. When power is then applied the Vcc LED will turn on for 0.5 sec then turn off. Both LEDs will be off.

## Operation and Use

1. Connect the pragrammer to the serial port of a PC or other host using a "straight through cable.
2. Start a 'terminal program' such as Windows Terminal, Windows 95/98 HyperTerminal or DOS Telix, ProComm, etc.
3. Set the communications parameters to 9600 baud, 8 data bits, 1 stop bit and no parity bit. If you use term.exe enter term 9600'. (Make a desktop icon with 'term.exe 9600' as the ending in the path.)
4. Apply power. A menu will appear and both LEDs should be off. (If the menu does not appear hit Reset on the K122 PCB, or Esc on the keyboard iollowed by Reset. Or Enter, followed by Reset.)
5. The programmer is teady for use.

NOTE: Do not insert or rerrove ICs in the programming sockets until the programmer is povered up. Once powered do not insert or remove ICs until both LEDs are off.

## Programming Commands

- Commands may be entered in upper or
lower case.
- There is no reed to select the chio being programmed. The programmer automatïcally identifies the device before any programmint option is executed. Ar error message is printed for unknown devices.

With term.exe using kit 122 to program AT1200 the usual keypress sequence is

## C P alt-S enter R P L

The first time we hit alt-S we have to put in the name of the file to be sent to the pragrammer ( 69 , 'kl29.hex') where kl29.hex is in the same folder as term.exe. The лext time you enter alt-S the entry is remembered. You might like to do V alt-S enter a after the $P$ alt-S the first few times to verify the program is correct. $X$ as the optional final commend shows the lock bits EB1 \& 1B2 status ( 0 for locked; 1 unlocked.) C may be omited if the Ics are new and known to be blank.

## Description of Commands

## P Program memory

This will program: the currently selected memory (flash or eeprom). You will be prompled to send the file, which must be in Intel HEX format. Use an ASCII or fexi transfer to send it.

Before programming a chip it should be erased.

Chips that have been "locked" cannot be programmed without erasing first. if an error occurs while programming, a message witl be printed and the programmer will stop. Stop the file
transfer and press the reset switch to continue.
$\checkmark$ Verify memory
Verify the selected memory (flash or eeprom) against an Intel tiEX file. You will be prompted to send the file. An error message will be printed if verification fäls.
Note: Verification should be performed BEFORE writing the lock bits. Writing the lock bits prevents the code from being read out. Alt data will read as FFh and veriincation will faî.


K!22 Adaplor Ior 50564348535

D Dump memory
Read the contents of the selected memory (tiash or eeprom) and send it to the PC. The data is converted into Inte! HEX format before sending. A terminal program with input capture or logging allows the data to be saved to a disk file.

## L write Lock bits

Used to program lock bits 1 and 2. Afl lock bits are programmed - there is no choice. Lock bits are set to '0' when they are programmed (locked).

## C Chip erase

Erase the device (electricalify). Erasing the device does NOT affect the fusee bits. These are erosed using the ' $S$ ' and ' $\mathrm{R}^{i}$ commands.

F address Flash memory
AVR devices have two types of programmable memory - flash (code) memary and eeprom (dala) memory. This command, together with the ' $E$ ' command, is used to select which memory type is being referenced by the ' $P$ ', ' $V$ ' and ' $D$ ' commands.
The command prompt will show which memory type is currently selected.

E address Eeprom memory
See 'F' command above.

Sx SPIEN fuse (P)rogram/(E)rase
Programs or erases the AVR luse bit ${ }^{*}$ SPIEND.
"SP" programs the iuse, "SE" erases it.
Rx RCEN (FSTRT) fuse (P)rogram/(E)rase
Programs or erases the AVR fuse "RCEN" ("FSTRT)
On the AT90S1200 chip it is called the
"RCEN" fuse. On each of the other chips it has a different function and is call the "FSTRT" fuse. In either case this command is used to program or erase this fuse bit.
"RP" programs the fuse, "RE" erases it

## $X$ display Fuse and Lock bits

This commend displays the current status of the fuse and lock bits.

## If it does not work

Peor soldering ("dry joints") is the mast commen reason for the circuit not working. Check all soldered joints carefully under a good light. Re-solder any that look suspicious. Check that ail components are in their correct position on the PCB. Are the
electrolytic capacitors and diodes the right way round? Is the power supply voltage at least l6VDC? Is the programming voltage (12V) correct? Is the reset switch the right way round? Check the resistor network RP1 is the right way around.

## Web Address \& Email

You can email us at peter@hetcrus.com if you have any problems or requests. Information on other kits in the range is available from our Web page at: fitp://kitsrus.com

## Notes:

## August, 2000.

We lound a problem programming date code 0016 of AT90S1200-12PC. This was tazed to the programming cycle for the chip being outside the max sperified of 0.9 msec . V1. 2 of the firmware with this kit allows a longer programming cycle of 1.2 msec and this fixed the problem.

## September, 2000.

An Adaptor Board for programming the ATY0S4434/8535 chips is now available. It is supplied with $2 \times 20 \mathrm{in}$ Sil headers and a 40 pin IC socket. The user can use a 40 pin д IF sacket if they wish.

## March, 2001

Correct connection of C8 on the seria! interiace. It was around the wrong way but it did not affect operation. The schennatic with this documentation is the correct one.
Small firmware bug fix for 2313 programming. Last hex byte was not programming properly.

| Parts List |  |
| :---: | :---: |
| Resistors (0.25W carbon) |  |
| R2,10 | 100 |
| R9 | 680 |
| R3.6.11 | 1 K 2 |
| R4 | 3 K 3 |
| R5. 8 | 4K7 |
| R1 | 8K2 |
| R7 | 10K |
| RP1 | 10K SIL resistor network 9 or 10 pin |
| Capacitors |  |
| C3. 4 | 27pF ceramic |
| C1.2,12,13 | 100nF monobloc |
| C5.6.7.8.9 | 110uF 25.5 V electrolytic |
| C10 | 100uF 25 V electrolytic |
| Semiconductors |  |
| D1 | 1N4004 |
| D2 | 1N4148 |
| D3.4 | LED. 5 mm , red |
| 22 | 5 V 6400 mW zener |
| 21 | 12V400mW zener |
| 01.2 | BC547 transistor. NPN |
| Q3 | BC557 transisior, PNP |
| 1C1 | AT89C2051. |
|  | Microcantroller. pre-programmed |
| IC2 | $74 \mathrm{HC259}$ |
|  | 8-bit addressable latch |
| 1 C 3 | MAX232 or equivalenl |
|  | Dual RS-232 |
|  | Lrarismitter/receiver |
| IC4 | 78L05 |
|  | +5 V regulator. TO-92 package |
| Miscellaneous |  |
| Yi | Crysial. 20.2752 MHz |
| Xl | D9 connector |
|  | PCB mounting, right-angle. female |
| SWI | Pushbutton switch |
| X2 | 2.5mm DC jack |
|  |  |  |
|  |  |  |
| 20 -pin IC socket for ICI. SKI 1 |  |
| 40-pin IC sockel for SKT2 |  |
| PCE. K122 1 |  |

## CONSTRUCTORS CORNER

Please order me the following Electronic Kits from Constructor's Corner:
$\square$ Order No: 3122 KT (Kit form) . 24.95 (inc VAT) $/ \$ 31.95$ (ex VAT) Order No:AS3122(assembled) £39.95(inc. VAT)/550.95(ex VAT) Seperate Adaptor Board: Order Code: 3122ADT £5.95/\$7.50 vat included

Credit Card No:
Expiry Date:

Quasar Flectromios lifi and quate Elt007
on any orde
All mejor credit cards $\begin{gathered}\text { cccepted }\end{gathered}$
Sexderd Stiprosion Pestic
EKK ..................................... 52


Ether Fax Back this form on: $+44(00) 1970621040$ or send to : Conslrucior's Cormer
Electronics and Beyanio
Units i7n Glan-yr-afor Enterprise Park
Romerystiryth
Ceredigion
5423310
Call: 01970621039 if you nest assistance with ordering


## projects to make

## simple circuits ideas

# Electric Guitar 

THERE ARE ALREADY MANY CIRCUITS AROUND WHICH PROVIDE THE SUSTAIN FUNCTION FOR GUITARS, AND HERE IS YET ANOTHER ONE. ESSENTIALLY, THIS IS AN AUTOMATIC GAIN CONTROL, WHICH IS ARRANGED SO THAT THE GAIN IS INCREASED AS THE INPUT SIGNAL DIES AWAY, SO SUSTAINING THE OUTPUT AMPLITUDE FOR AN EXTENDED TIME.

Pome of the other circuits are simple, some a are complex - this one is in the middle. 6. Some of the simple circuits are also functionally quite elegant, although perhaps a bit picky about the actual components suich as Fits used as gain control resistors. However, others are functionally a bit questionable and act more like limiters.

The described circuit can be adjusted over a very wide range of inpiut signal levels, and has the merit of being flexible in the choice of componenls. It is easy to 'special' part the LMi3080, on Operational Transcondiuctance Amplifier (OTA) which is used as the variable gain element. There is a quad op-amp too, which is shown as the common or garden LM324, but the TLC27M74 from Texas Instruments would be a good alternative if you have one. Both are low current drain devices. None of the op-amp inputs or outputs has to approach the supply rails very ciosely except ior one, which has to be able to go down to about 0.6 V above the negative rat, and both of the mentioned devices will do this.
An OTA is a variation on the op-amp circuit. A normal op-amp supplies a high voltage gain, the output voltage typicaily being up to 100,000 (or much mare) times the differential input voltage for OHz signals. The OTA, however, provides a current output proportional to the difierentiel īnput. It has a

transcontuctance (also known as 'gm') of $\mathrm{mA} / \mathrm{V}$ Inther than a gain of $\mathrm{V} / \mathrm{N}$. The valte of the gm is set by a bias current, and in the LM 3080 works out at around 20 times the bias current per volt inpus. So a bias current of $100 u$ will produce gm $=2 \mathrm{~mA} / \mathrm{V}$. This only works over a small input range though, as the maximum output current is about the same as the bias current, after which there is no further increase The voltage oppearing at the output doesn'ti affect the current, as long as it gets no closer than about IV to either supply. $\mathrm{So}_{\text {, for }}$ instance, a resistor comnected to the output will convert the current output directly to a voltage output, where the voltage gain is equal to (gm x resistance)
The circuit is shown with a single 9 V baltery supply, and an op-amp section is used to generate a ground reference set mid-way. The circuit will operate quite reasonably ovec a wide supply range without any changes, and even four AA cells should be just about possible. Not needing a true centrat tap in the
supply has the merit that even the on/off switch can be simple. Indeed, this could be on one of the level pots - 5omething you couldn's do with a tapped siapply.

## Operation

Power is supplied when SW1 is closed. The + line goes to ICl. 4 that is, the op-amp ICl pin 4) and IC2.7. The-- line goes to IC1.11 and IC2.4. Between them the current drawn is no more than a couple of mA. Op:amp section ICld generates a 'groundi reference for the signal on the output ICl.14. This is connected to the + ve supply by resistor R10, which draws a little current from the output stage of the apamp, 50 shifting it's operation just into class $A$, for the lowest impedance and fastest response. Little foad is placed on the output due to the ground referenced components.
The input signas is applied to IClb via C2, which with R4 provides a hígh impedence input with a low frequency -3dB sesponse set at 16 Hz . IClb is a non-inverting amplifier with the gain

set by VRI and R6. Only the section of VRI on the R6 side comes into the gain equation, providing a range of $x I$ to $\times 5.5$. The other part of VR1 adjusts the attenuation between opamp output IC1. 7 and the inverting input of the OTA. The attenuation ranges from $x \mathbf{l}$ to $x 21$ (i.e. a gain of $x 1$ to $x l / 22$ ). Combined, this gives a range of adjustment from the sigral input to the 07 A of $\times 1 / 22$ to $\times 5.5$.

The OTA is operated open-loop, and the maxirrum differential input voltage for linear operation is around 50 mV , depending on your definition of linear. Above this level in either polarity the output current will be reaching its limitt, which is the same as the bias current supplied to pin IC2.5. As the input signal increases above $+/-50 \mathrm{mV}$ the output current waveform will become increacingly clipped off. The maximum signal level for linear operation with the gain right down ( $x 1 / 22$ ) will thereiore be about ). 2 l peak (a OdBm signal in 600 ofms). With the gain right up ( $\times 5.5$ ) then 9 mV is all that is permitted. Beyond that, the circuit becơmes a limiter.

The adjusted input signal is passed to the OTA inverting input through C3 which with R8 acts as a high-pass filter set at 16 Hz . R8 also provides a DC path for the input bias current of the OTA. Assuming there is an OTA gm bias current into 1 C 2.5 , then there will be a current signal out of IC2.6, which is passed to the
inverting input of the op-amp IClc. This is operating as a normal inverting amplifier with the OTA substituted for the input resistor, and R5 the feedback resistor, with C 4 providing high-frequency cut above l6ktiz The IClc output is passed out fram the circuit through VR2, with isolation through C5. Pir ICl. 9 is held virtually at the level oi ICIc. 10 , which is the averaged op-amp output signal. This will be very near zero, and is fed back to null any offset drift due to OTA input bias changes. The averaging filter R9 and C7 has a high cut off frequency of 16 Hz , so it has little effect on the actual siegnal.
If part of the signal cycle from the final opamp stage exceeds about 560 mV positive, then diode D1 will be conduct, and the output of the integrator (ICa.1) will fall towards the negative supply. This reduces the voltage across the OTA bias resistor R2 (the OTA end of which is at 0.6 V above the negative supply), and so the bias current also reduces. This directiy lowers the $g m$ of the $O T A_{\mathrm{r}}$ and so the amplitude of the final output signai. This gain reduction continues until a batance is reacheor where there is just surificient current passed through Dl at the signal peak to counteract the deintegration current drain of Rl. If the input signal level now falls, (a note diès away), then the peaks witl also reduce, and DI will conduct less or not at all. The integrator output will rise
toward ground as Cl discharges, increasing the OTA bias and so tending to maintain the output signal fevel. Eventually, as the signal continues to fall, the integrator will arrive at oround and no further increase in OTA gain can be made. From this point, the output signal starss to track the input signal decay, and the sustains period is over.
The gain of the OT $A / \mathrm{op}-\mathrm{amp}$ stage is gm times R5. As gm is 20 times the bias current, which is about AV/R2 maximum, then the maximum gain of the stage is (20x4/47k $x 100 \mathrm{k}$ ) whie' is xl 70 . For an output signat at 560 mV peak, this means the input to the OTA would have to be 3.3 mV peak. If the input gain has been set to make the futl signal 50 mV at thet point, then the sustain will hold the full level until the input has decayed away to $1 / 15$ of the initial level. How long this is depends on the actual input signal decay rate. From that point, the ouriput level will start to follow the input signal down. Note that if the input starts at a lower level, then the circuit runs out of sustain earlier: reducing the input gain therefore has the effect of reducing the sustain time. This does NOT effect the peak output level, which remains a fraction of 560 mV as set by VR?.


## Training and Evaluation



## At the beginning there is the... Starter Kit

Evary professional enginear needs to be able to quickly evalugte a new device with minimum cost end carry out simple devalopment tasks using il. A simple, easy to use Stanter Kit is the ultimate training tool, which provides an evaluation piatorm for testing your particular choice of silicen.

The Karda Range of Starier kits for every application and eveny butcet... variety and cheice of pruiessional evaluation tools... simple easy eveluation tools for any application... For a wide range cit devicos.

ALL products come complete with:

- Free Technical support via tetephone, fax, e-meli \& web
- on day wartanty diter purchase
- Comprahensive intornetion package


## The ST Evaluation solution

ST Micronfectronics work cleschy with Kanda and we have developed a high class evaluation saries of tools for basic to advanced applications dssigned around the STI device. From the stanter kit, through evaluaion boards to in Systen Programmers andi Gerng Programming solutions, an equipment supplied by Kanda is ST approved.


## ST7 Starter Kit

The ST7 Siarter Kii provides you with everytiong you need to immedtately star derigning, developing anci evaluaing applicaions ai a reasmable cost.



## Features

ST7Flash, OTP and EPROM
development enviromment
Supporis 32 or 42 and 56 -pin devices
Programming IDE, Application
Builder, Full Function Editor
In Circuit Simulation
Professional Assembler

- programming keys)

Registration card

| Supported Devices | Order Code | Price $\$$ | Price E |
| :--- | :--- | :--- | :--- |
| 32-Pin EPROM and FLASH | ST7KND1-KIT2* | 160 | 115 |
| 42/56-Pin EPROM and FLASA | ST7KND2-KIT2* | 160 | 115 |
| "EU,-UK or -US Power Supplies | Supports Win95, <br> Win98 \&Win2000 |  |  |



| flem | Order Code | Price S |  |
| :--- | :--- | :--- | :--- |
| $32-$ Pin Board | ST7KND-EV1 | $\$ 99$ | $£ 71$ |
| $42 / 56-$ Pin Board | ST7KND-EV2 | $\$ 99$ | £71 |
| $32-$ Pin Board with ISP | ST7ISP32 | $\$ 125$ | $£ 89$ |
| $42 / 56-$ Pin Board wilh ISP | ST7ISP4256 | $\$ 125$ | $£ 89$ |
| Both Boards wilh IS? | ST7ISP | $\$ 198$ | £142 |

## ST7 Boards

For iasi project development, we also supply target bards iov 32-pin aric $42 / 56$-pin ST devices. We have specially designad tiese boards for use with the ISP and they are ideath suited ior ST7 projects. A the oscillator sefections of the STh family of divices ars fully supponted. unilke other STi colutions. Inchuced with each of the evaluation boards are schemaics providing a ilul reforence design for implementing your ST7 Froject. The on board fatures inciucta, an Anaicg reterence for Anatog to Digitai cowersion, LCD contrast, eic. All ports and pins brashit out io sien mard pith headers (0.17) to a user connigurable matrix area. Fully isokatione surtches and LFDs using the onhoard jumpers. The standard Karte box heeder connecion for seridill losysterm progranning is incuded for easy progremming. These boards can be purchased on their own or with an ST7 in Sysien Frogrammer.


## ST7 Motor controller Kit

Kandats naw comprehensive motor controfer divelopment kit makes tatrof brushless DC motors simple, using tixe ST72141 microcontrallef.
Just three EASY steps:
Step 1: Baroma an expar by practising with the supplied delaut notor at 24V Step 2: Test your oum motor, and work out your parameters Step 3: Program your ST device with selected parameters and monitor the results

- This board can be used with the ST72141 Emulator

The sysiem end controller works from 12 V to 300 V , but tine motor ant powef stage supplied are 24V Tne user can movitity the power stage to eccept a soov motor or can purchase a ready buil and iested 300 V power stage bord firm us.

## Package

Frogramming Board
Combroler board with preprogtamed OTP chip
Powtr siage (3-phase wimed) Low Vettage or High Voftage 24 V Gibc fan motor with standard foed
15 V Mains adapter
Parallet port cable
26-way ribbon cable wiin IDC
cornection
Bank EPROM chip
PC communtication adzapter
Whanual on contocl theory. motor control and other essential iniormation

## Features

Simple Sofitware Wizards Applicetion Eusidecr
Assembier
Simulation Environment Buila In Programmer.


| Itemi | Order Code | Price $\$$ |  |
| :--- | :--- | :--- | :--- |
| Motor Controller Kit - EU PSU | ST7MTC22EU | $\$ 695$ | £496 |
| Motor Contraller Kit - US PSU | ST7MTC2AS | $\$ 695$ | $£ 496$ |
| Motor Contraller Kit - UK PSU | ST7MTC2NK | $\$ 695$ | $£ 496$ |
| 300V Powar stage | ST7MTC2-PS300 | $\$ 135$. | E97 |



## 8051 Workshop

A complete low cost stanct kit fof enginsers and stutenis working with 8051 devices. The Systern uses Atmet ATS seris microcontrolers - semal programed 805 t type devices with on-board fash memory - to give ycu instant faprogramming

> End simple ICE This is a crillandy simiple yet complete develapment system.

## Features

| Order Code | Price S | Price E |
| :--- | :--- | :--- |
| STK8051 | 98 | 71 |

- Application board with LEDs,
switches, speaker and RS?3? connector plus easy amessible port pins.
- In system Progrerfineer
- Single step In Circuit Emulation
- 51 series Editor, Assarmber and finker
- Sample device


## For more products in our range of Starter Kits please call sales directly or log onto



## Xicor Development Systems

The Xicor Development hit provides a comphate develoghent environment for Xicor profluts. The Kit comes in separate versions for each Xicor cevica type, but cost- effective softvare upgrades are avalleble once you have one kit. The three kits support Xicor Sysitm Menagement. Mixed Signal and PF devices. All development kits fectures powerti, intuitive graphical interiace thet allous designers to quichty configure the user programmablo ieatures of Xicor's producis.

## The System Management Kit

This kit provides a common plationn io Suppori all Xicor real tion clockend CPU supervisor products. You can program bow voliage serse trip points, real tims clock सtam levets, and wnite to tye integrated EFFROM memory. A usef matrix siction allows you to implement key sections of your ciesign and expiore desion trarionifs.

## The Mixed Signal Kit

This kit provides a cormmon plaiont to stppart an Xicor XDCPTM and programmable analog products. You can progem XDCP resistance values; op amp gains, comparator ihresizold bvats and other key analog parameters. A user matrix area is included, Supplied with the X9250 deycice moctule as target silicon. Mixet Signal Squtware features Simple 'antiogus' feel solware with stiters and switches.

## The RF kit

A spaceial FF design kit piovides afl of the features of the mixed sigral design to plus a unique pre connigured RF board to allow customers to optimise Xicor mixed signal producis in AF applications. The $\times 9250$ difvice module is provided es tive evaluation silicon.


## AVR Microcontrollers

Kanca have for many yaers worker clesely whin Atriel to prodisc今 qualty starer kits and in recent years have added their own particular features to make a uniqua and very popular range of Starter fits. The success of the STK200 was the result of kanda's cormmitrent to design excellince and its abitity to crientate one kit to support an ever inctrasing number of ieatures intisi fetaining egee of uss, couplert with high lavels of quality controf and relabeifity in tre manulaciuring prowess.

## STK200+ Atmel AVR Starter Kit

## The best Starter Kit ever...

The STK200 designad by kanda for Atriel was fre mast successul sterter kit E/EA prodiced. Oni of the most popiter and best-zellers of the Atmel Siarier
 30,000 of the STK200 have been sold wordd-wide, now Kanda have enhanced the design to include more ieatures of this simple iut efiecive toof for AVB.

## Package

STK200 Board
Access to all peripherais the. ADC and LIART
$\angle C D$ interiace
3.3V/5V cparation

Brownout circuitry
Manuas on CD

## Features and Benefits

Classic Harcivare
AVRISP In Sysism Programmer
Application Bullder gives yous instent
source code :emplates and code.
axemples
Assemblet
Emulation includes a Debug package using the same hardwere as ISP Ircludes IAR Assember a Simple inSystem Detugger
Smple ICE


## STK300＋

The STK300－is a complate law cost sysiem for the Atmel ATMega AVF Range af Rash \＆－bit lr－system programable RISC microprocessors \＆incledes Application Euilder Sonware，

## STK 300 Blarci

ATMEga Eunder Sonware
 RS232 \＆ADC connection Switches，LED＇S 恋 Power Externai Reser
Dural Vottage operation
Brown cut detection
Feat time clack crystal

## Supports

Atmel Atrtega 103／L
Atrns Atrneyz $803 / \mathrm{L}$


| AVR Kit | Order Coda | Price S | Price E |
| :--- | :--- | :--- | :--- |
| STK200＋For Classic AVR | STK200PLUS | S59 | S42 |
| STK300 For MegaAVR | AVM0029 | S79 | $£ 57$ |

Fof improved device programming support and iaster programming times $\div$ WinivTNin2KWinise support also chect out the AvR FSI ISP which is compatiofe with this develoment board．


## PLD Starter Kit

AD you nowd to learn，teach or develop designs using Programmatz Logic． Devices．Complets hardware and sofvere packeyse for trainirg and develognent This package is usth exterively by universities all over tixe word
 asc preity nazat deveropment environment．

## Package

$1 \times$ ATF16V8
ix Device programmer
1x Trating Ensra
Ix Parallel Conmeclion Exard
tx Gei going with $P L D$
Brok
Kanda PLD Prograrnming
Sofware
Kanda／Atmel CUPL Interace

## Programmable Devices

Atricles \＆C
ATF22V10日 \＆C
ATF2OV8B \＆C

## The Ubicom Range Debugging the $S X$ range

In－System Datugging allows the whole development process io be carrici out on the same desktop，so you diont nead contiant hardvare ang software changes fust plug and go．The project－based IDE makes version control and code organsation quick and easy．

## Features

Application Builder：
Lises simple wizards to creaty all your set－up code incluaing ports，timars and internipte，as weil as cevice configutation （FUSEFISEXX）．

## Assembler：

Buitifin Assembler is called with onty 1 muse click or key press so you avoid DOS prompis
＊On－screan error listing and foghlehtirg in yout sowre codit means tixgs are fixad easity．

## Emulation

Debugger uses the smuflation functions of the SX chips giving genume emulation on your target Instantif：

## Benefits

Small $20 \times 55 \times 1$ Emm
Fexibe：Farallel \＆Serain For connection
Comprethentive：Froziaris all the
features of all the devices
Essy，inturtive develapment

Device Support
SX18AC
sxamic
$5 \times 284 \mathrm{C}$ Sx48ed 5X52ED
Win95． Wings，
Win2000 \＆WinNt

| liem | Order Code | Price S | Price 玉 |
| :--- | :--- | :--- | :--- |
| SX－In System Debugger | SX－ISD | S99 | I7！ |

ldeal
for use with $S X$ Evaluation Beard to give known target hardware

Ubicom

## SX Evaluation Board

 performance communications cortrcfla: This evaluation boend is specifically macie avalabis io serve as a terget emvironment for demenstration and development of Virual Peripheral" soflwars modulas.
see
Optama SX C compiler on www.kanda.com

| Starter Kit | Irder Code | Price $\$$ | Price E |
| :--- | :--- | :--- | :--- |
| SX In System Debugger | SX-ISD | S99 | \&71 |
| SX Evaluation Kit | EPAK-SXEVAL01-03A | S89 | E64 |

## Networking and Connectivity SX Stack Kit

Ideal for mplementing Internet Access it a simpte application - make you project telk to the web. The SX-stack is a configurable combination of stendard litemet protocol hayers optinized for the SX series communications controler. Supported Intemst protocols include PPP. TCPAP, HITP. SMIP and POP3. it provides the end-user with handr-on experiance using the SX-Stack's isX Web Server and ESX E-man Aoplance configurations. The iSX is an embedded Web server that implaments the hypertext transfer profocolhilfl and is capabse of communication with any web browser. The esx offers e-meal applance functions, yefth SMTP and POP3 protocols used at the applivation layer.

## Package

SX-Siack (SXX Weo Server and eSX E-mal Appliance) Demo Eoard
AC Power Supply
9 pin-to-9-pin serial cable
CD-ROM containing iSX/esX source code fles, support fles and docunnentation
User`s guide

## Ethernet SX Stack Evaluation Kit

Ideal iof simple Internet connectivity with network capabitity, using to-BaseT. The Etinemet SX Stack is a configurable combination of standard Internet protocol gyers optimizer for the SX communtations controller. Supported Internet protocats indude TCP, UDP, PP, ICMP, DHCP, AMP, HTTP, and STMP. The purpose of this evaluetion kit is to provide the user user with hands-on expenerne using the Ethernet SX Stack. The kit inchudes an inifgraied weo server and email appliance provided through implementation of the HITP (Hypertext Transter Frotocul and SMTP (Simple Mail Protcol) application protocols. APP (Address Resolution Protcooll and DHCP (Dynamic Host Control Protocol) protocols are implemented io deal with addrassing issues specinic to tore Ethemet envirnment. The SX commurications controller's in-sysiems programming feature enables the device to be reconfigurd easily for one of several implementations. To dowibad your own matental to ute demo boaro's EEPROM or to evaluate other stack application yanations, you nead SX DEEUG or SX ISP to reprogram the SX osvice.

## Features

- Ethemet SX Stack Deno Eiaird:
- SXE2RD 50 MHE COntunicalions contolen
- Piealtek 10Base-T (IEEES02.3) Ethernet device for phiysical and MAC taycr suppori
- 32kB EEPROM memory chip ior sioning retb content
- 24-pin wrie-body Dif socket ior Scenix' JMM (Lzva Vifual Machino) application prototyping ard expansion
- Two RS-232 commanication paris
- Clock crrcuit, power eni transmission staius LEDs, RESET bution
- VO zrd Detro syppert:
- Themistor for "tamote" ternperature senter danto
- LED montrol via butions on embsutued veb servar page
- 20 vOpin expansion header for customer application usage
- TCPAP Siark and Application Layer Solware

| Stanter Kit | Order Code | Price S | Prica E |
| :--- | :--- | :--- | :--- |
| Ethérnet SX Stack Evaluation Kit | EPAK-TCP/ETH01-02 | $\$ 139$ | 玉142 |
| SX- Stack Kit | EPAK-TCPIPPPO1-03 | $\$ 149$ | 玉107 |

## For CAN Starter Kit \& Module solutions call sales or visit wwwerandaicom for the latest demos and datasheets

## CAN Starter Kits and modules

Tho stantir kits are aveilabe for learning，svaluating and testirg CAN bus applications：The CAN modules are avalable for your anplications as 28－pin DPP pactiges and you can also purchase complete C and EASIC mbrary rostines．

Starter Kit 1 consist of one aciwily board and one CAN module plus sample programs wittertin C and $\mathrm{EA}, \mathrm{SiC}$ ，manuals and datashesis，Iteal for PC connection

Starter Kit 2 cunsists of two activity boards， 2 CAN mwdyes plus one RS－232 cable，one i m．CAN cable，AC／DC adiater（not irkiluded in ail countries）and more sample programs demenstrating distributed vo and the Phitips PefiCAN mode．Ideat for multiple rode development．

## Activity Boards

Each activity board has a sockei ior the CAN module with Power supply end comrsurications commectors plis jumpers，switches and LEDE and lerge user protctyping area with at CAN sqnals easily accessible．They are ideal for testing and developing applications．

## CAN modules

 28－pin DIP package，which you can simply plug into your spplieation．Each module werks at atrost AMiPS and is compleiely re－ pregrammable to your spmefication using In Sysiem Programming．Fach module also inas on－board Fis－232 tenseefvers and a FESET circuit that generates a propar reest atter power up and will also hat the microcontroler if the voltage drops betow 4.33 V ． Furibemare it hes a standand ISO－1t8os CAN transceiver on board，but could aso uss an external CAN transceiver with your own hardvare with e．g．OPTO isolation．
We vetsions are available，with or whout RS232．Earh module hes if I／O linss plus SPI and one extemal intemupt．

It is also possibte to buy source cods hbraries for comptete CAN implementation．
Library $t$ is in Obsest form and carnot bealtered or edjusted，but there are no linits to the speed．Both fifo queves are pressi to 4 CAN hames．This is an itiexpenEwe way of testing the CAN fibraries with full unctionelity and speed．

Library 2 is full woumented C source code for you to monjiy or add functions to suit yout needs． The source cois is treated ze a sire licence and you migy not difiribute or resel the soure code． Both AFO queques．cars teeset to suit your nesdis but cnly in size increments of $1,2,4,8,12, .512$ ．An you newd to do is to ircclude the WricAN．C and WhCAN．H tite to your profect and yos are up and זunimo Sample pragrams are Included to shaw how it works：

| Name | Order code | Price \＄ | Price I |
| :---: | :---: | :---: | :---: |
| Starter kit 1 | LAWSTKI001 | \＄119 | £85 |
| Stapler kit 2 | LAWSTK002 | S269 | ¢192 |
| CAN Module（with RS232） | LAWCANIOD1 | \＄64 | 546 |
| CAN Module（no RSz32） | LAWCAN／002 | \＄59 | ¢42 |
| CAN Library 1 （Object code） | LAWLIEJ001 | \＄999 | 971 |
| CAN Library 2 （Source code） | LAWLIB／002 | \＄500 | £357 |



## The Mitsubishi Range

The MIEC 三eries from Mitsublsixi offer a secure and extromely versazle range of to－bit
 inteifaces such as Difitel TV，Nobite Telephoncs and Digital carnozas．
Kenda woik clossty with Mitsubsifi arid Ere clitenlty wording to expand the range of toots available on the Kand shop．

| Name | Order code | Price $S$ | Price E |
| :--- | :--- | :--- | :--- |
| M16C US8 Starter Kit | $\mid$ M30240 | $\$ 299$ | C214 |

## Hardware

M30240 Starier Egarg
－RS232 canle for dmumbed of user－code \＆debugging from PC
USE cable
9 volt DC Power Supply

## Software

KDE30－PC sotware for detugging Tocl Manager－Integrated development emvironmentititial version） NiCso－C－compiert（tial versiun） AS3O－Assermbler（tipal versiom） Sampto programs

## Features

Low cost evaluation oi MJIEC USB Simplified Debugger
Comple，dowrload，execute and deoug programs
Access to UART，A／D，some VO and USB Includes all softrare and dixcuminntation neadnd

## FPGA Kits

 approadi to his solution. Kanda offets you a varjaty of options with the besic produti life and you can bvin purchase a completa fretical hands-on couse which coutd be your ricuta to a well paid carear.

Wh offer diferent options denending on your levis oi experise. lagis on a Eoand provides a simple design end coiware solution for users with FPMA experience. The FPran starer kit provides itl sotware, tutorals on how io use it and a complete hardwers applitalicns pachege and twe full traintig kit comes complete with an interactive VHDL utoral,

## FPGA Starter Kit


 sofwate using a comprinensive harvare phaivan, complete sotwars cifie and book on co.

## Starter Kit Package

Man Eoard
Programming Sofware Cable
Dongis
Sample Device
Comorehonsive FFGA back (on CD) Rogisuation Card
Adgoter Easra
AT40K20 device


## FPGA Training Kit

 with :

- Tutcrial, Cook Bock, Fiefermas \& Guitio
- 103: VHDL Examples
- 300 iully symitesisable examples iri in: Coak Eock
 your applicetions.


## Logic on a board

Filg and go frga zolution usiag standard 0. inch pin headers. Avoris surtax
 and comnestor albw imrinditte use with mo wiring headaches, Comes complete with PC DEsign Flow and bitstearn downloader soivware and parallel port adaper and cable ior instant programmirg. A complete FFGA sofutuon.

| FGPA Systems | Order code | Price S | Pricef |
| :--- | :--- | :--- | :--- |
| FPGA Training System | FP0050 | $\$ 295$ | F211 |
| FPGA Starter Kit | FP0020 | $\$ 139$ | E99 |
| Logic on aboard | $\because$ | FP0060 | $\$ 99$ |$|=71$

If you would like further information on any of the Range of Starter Kits please contact Sales or $\log$ on to www.kanda.com for the latest information on new products available today.

Kanda prides itself on its commitment to ensuring you the customer are able to choose the right option as we have the experience and expertise to provide you with a Starter Kit tailored to your budget and our aim is to design, manufacture and produce kits which are easy to use yet provide all the features you need depending on the complexity of your particular application needs. Please call sales if you need any assistance or datasheets on any product in our ranges

## Ordering Information

Please contact sales on:


## Introduction

Prowrammers and bumers is a largo section as we have brokn截 up into fine fellowing categories:

- In Systern Frogrammers
- Universat Prcgrammers
- Gang Programmers
- EPROM Crasers
- Programming Adaqters .


## In System Programming

18P (in System proxramming) is a poputar חew way to burn microcanimeters and ather frogrammeble kogic devices. [Some menutactures aiso cal it ISDASR or (CF).
 you to erace and reprogram a micrucontroller many times; thes simplifes the desion stage and adds flexibifty to proctuction and updare pheses.

ISP removes many of the restricions associhted with using e bumina mizrocentrollers. Using ISFF yot can now:

- Bum a device quickly withot remoring the device your profect or heve io use a UV eraser stc.
- Parioma formare upgrades in the inald
- Customize your firmware with Ssrial Numbers, Cafibration Data this could be-ntegrated into production statistics etw..
- Downtord teat \& diannostic routines grior to sinippiray yotr product.
- End of lite customization - regional product varimions and oinerent product comigurations can now be changed aitet projuction

| Order Code | Description | PC Connection | Operating System | Device Range | Price $\$$ | Price E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ST7ISP32 | ST7.ISP: \& 32 ріп evaluation board | Multiconnector | Win9X/ME NT4/2000 | ST72104,215,216, 254,124,314,334 and ST72171K2 | S125 | ¢89 |
| S771SP42/56 | ST7 ISP plus 42/56 pin evaluation board | Multiconnector | Win9XME NT $4 / 2000$ | ST72104,215,216. 254,124,314,334 and ST72171K2 | \$125 | ¢89 |
| ST7ISP | ST7 ISP | Multiconnector | Win9x/ME NT $4 / 2000$ | $\begin{aligned} & \text { ST72104,215,216, } \\ & 254,124,314,334 \\ & \text { and ST/2171K2 } \end{aligned}$ | \$45 | 832 |
| AVRUSB | AVA ISP SUPER | USB | WingxME 2030 | ALL AVR ISP. DEVICES | \$149 | 5106 |
| PSI-SP | AVR ISP | PRINTER PORT | WinsxiME NT4/2000 | ALL AVR ISP DEVICES | \$125 | £89 |
| AVF-is? | AVR PSI | Multiconniector | W/1995/98/3.1 | ALL AVA ISP DEVICES (EXCLUDING ATMEGA163, ATMEGA32, ATMEGAI61, TiNY 12, TINY 15 ) | \$39 | $\underline{9} 8$ |
| SX-ISP | SXISP | Multiconnector | Win9X/ME NT4/2000 | SX18/SX20/SX5a <br> SX4B/SX28 | S55 | ¢39 |
| COPBISP | COPB ISP | Multicönector | Win9X/ME NT4/2000 | COP8CBR9, COP8SBR9 | \$129 | $£ 92$ |

## Multiconnector

Some of our deskiop ISP solutions feature the muticonnecior. This unipue desion features ag-pin sersal port and PC printer port comsections, allowing you to attach the ISP to either port.

## ISP Connector

A west-designed ISP conrection is vital for progremming relebraty. The layout and pin usage of the ISP conmetor will change deonning on your target mirucsentroller.
The io pin connector has inferteaved ground lines to give better ncise immunity and allow the use of lorger cables. The cable supplist as stendard is over a metre in lerati, givire you flexibility in use.
The connector diagrams for our supporied targets are shew betow:

Scenix, COPE, Atmet, ST

## USB Connection

The AVR-ISP Super uitises the USB port, what are the advanteges of itre USB pori?
As increasing numbers of PC's are fited with a USB port as an indiustry standard, connecting to your FC wia the USB port enables you to keep your seriel and paralel ports ires in adrition you bercefit from USB flexplity and speed.
Ofder PC's can easily bemodifed usirg a phug-in cazd to provide quick, eesy upxyders. The USB pors can operate at up to 12 mbitis 's gining you a great advantege as programming times are incfeased enompushy.
USB is supported under Windows gQ/ME/2000.
Updates are avalable firm miprosofit to USE Enable Windows 95 \& NTA, however we can not oner tectnical support on these platorms.


## Keyfob Field Programmers

The ultionate programming tool for microcontroters, in the feld or on the production line - so easy a chidd can use th The smalsst stanc-atone programmer avelatio, just load it chce and then progren target devers again and agailn and apain.

Yourequire fisi cre stater hit for your PC and you can load as many keyfobs as you nesi. Just connect tie starer kit to your printer painat run the mester softwere: Sedect your program lie, device type and Fuse setings and now zou can load the keyfots win your program or fest code in seconds. As the Kayicb is battery powered during load, you don't neeri ary power supplies or cabling. just prug a Keyiob into the simple adapier Supplied. Once a Koyicb is loaded, it is complately portable and can be used wher youn new it, nof wifere your $P C$ is bcated.
Think how offen yuu need a simple upgrade to a vending machine, stot mechine of oiner equipment such as lits, security controls of madical equipmen - simple, except if is hundreds of mpes away. The rugged design and simple operation of this unique progemmer mears that you can "fit the Keyfob do the waking" ty sthing the Keyfob rather than en expensive engines. The Kerfob indutios: $12 V$ batiery so your target sysiem does not have to be powered tor cocasionall programming atiough you will need cower fom the target for multupae programming to save batitery life.
in order to configure the keyiob you need a Kegtibe siarter kit. This contains the PC Sohware \& Cennection lead required io serup your keviob.
Keyfob starter kits contain a Keytob, PC Configuration Softrare, Connecton leas and an adaptor,

| Order Code | Description | Device Family | Price $\$$ | Price E |
| :---: | :---: | :---: | :---: | :---: |
| ST7KF0010 | ST7-KEYFO8 STARTER KIT | ST7ISP DEVICES | \$99 | 569 (?) |
| KF0010 | AVR KEYFOB STARTER KIT | AVR ISP DEVICES | \$165 | £115 (?) |
| KF0040 | AVR KEYFOB STARTER KIT $\div 5$ KEYFOBS | AVR ISP. DEVICES | \$399 |  |
| COPaKF0010 | COP8 KEYFOS STARTE, KIT | COPB. | \$165 |  |
| COP8KF0040 | COP8 KEYFOB STARTEA KIT + 5 KEYFOBS | COP8 | \$399 |  |

Additional Keyfobs Packs

| Otter Code. | Pack Quantity | Description | Device family | Price \$ | Price E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| KF0030 | 5 | Additional AVR Keyfobs | AVR | S299 | crog (?) |
| KFOO20 | 1 | Additional AVR Keyiob | AVR | 599 | E69 (?) |
| COP8KF0030 | 5 | Addiliznal COP8 Keytobs | COP8 | 5299 | F209 (7) |
| COP8KF0020 | 1 | Additional COPB Keytob | COP8 | \$99 | 8.69 (?) |
| ST7KF0020 | 1 | Additional ST7 Koyiob | ST7 | \$50 | £35 (2) |

## Universal Programmers Chipmaster 5000 \& 6000 Series

Designed for toth fahoratory and mass-production applications the Chiphaster supports a wide range of diiferent devices, inctuding PAL, GAL, CPAL EEPD, PEFL, MAX, MACH, PLSI, microprocessors, EPROM, series EPROM, FROM, and Fish memory.

## Features

- 4B pin ZlF with insertion, contact chectory
- Self program w/ statistic reporting for mass prodeccion
- Support 3.3 V low vcitage chips
- Program 8-Mibit Fash within 60 seconds
- Windous 3.x. Windows 95, NT4 and DOS
- User comilidurable voltages and muliple verily passes

The chipmaster's on-boerd intelipence reduces systern ovarkead to a minimum. Progrem an 8-Mbit EPROM in less ihan 80 seconds. (depends
 slightly on the processing power of your PC \& Cnipmastar Moden The Chiphtaster is iaster thar its competitors and is much more productive wht today's high-densiyy, multi-megebit memory ciavices. The chipmasien performs device insertion and contact checks tefore it progranis each devite. It can deiect poor pirf contacis ard devioes frested upside down or in the wromp pasition. Proiect your pocketbook by prevering zxaensive acsiderbal chip damage.

| Hame | Order Gode | Number of Devices Supported | Socket Configuration | Price |
| :--- | :--- | :--- | :--- | :--- |
| Chipmaster 5000 | PROCM5-000 | 1,200 | $1 \times 48$-pin ZFF | S695: |
| Chipmaster 6000 | PROCM6-000 | 3,000 | $1 \times 48$-pin ZIF | \$1,795 |



## Shooter III

## FEATURES

- "Dumb Teminal' operation through PC Serial Port.
- Ulee a Cer Cizargar
- 1-hrs of battery opsetation with power saving sleep
- Masterflave socket compuration for quich copios.
- Host-hes oparation, no sofwara neaded.
- Recurit selection memory.

Hand-hald chip programing system that allows the use: to copy EPRONis in Stand Alone (Copier) mode or to dountoad a fe from any computer witian RS232 pont. Makito a copy of a chip hes never besn as simple. Piece a chip in the Masier sochei and a thank in the Stave, sefart tie target device from tie Shocter's

Gang Version available soon please call for details in-syetern liyary af over 300 devices. press copy. and you're done. All that power in the palm of your hand, Shmoter ill measues a mere $8 \times 4 \times 2$ inches. Shooier Il hes two 32-pin ZIF scckets capable of supporing $16 k$ to 8 -medzbit cetices.

## Figld Service Pack

The Strouter is aiso runillable as a field service pack, contanting the - Shooier ill, PainErase EFROM eraser and a shoutderhip-pack to cary thom aroumd in.


| Name | Order Code | Number of Devices Supported | Socket Coinfiguration | Price |
| :--- | :--- | :--- | :--- | :--- |
| Shooter III | PRG-SH3-000 | Over 300 | $2 \times 32$-pin ZIF | S375 |
| Shooter III Fiefd <br> Service Pack | OPT-SH3-FSP | As Shooter III |  | S465 |

## Gang Programmers Softec MP8011A

 modular programning head system. When you naed to use a new package or device simply purchase a new set of prcgremming heads. The unit supports 8 programming heads allowing you to program 8 devises concurenth.
The system is supported under Windows. $95 / 08 / \mathrm{WTh} \mathrm{M} / 2000$ and requises a printer printer port. The system is fully upgradeable and software uprates are avallable from the manufachers wedsite.
 user's miantal, fat least one pregramming head is required for operation.

| Product | Dascription | Order Code | Price S | Price e |
| :--- | :--- | :--- | :--- | :--- |
| Softec MP8011A | Gang Progranming <br> System for the <br> ST6 \& ST7 | MP8011A | $\$ 745$ | £539 |

Programming heads priced from $\$ 55$. Please call or visit our website for a complete ilist.


## Husky LC

Pugged, refiable and easy on the pocket brok, The Husky LC's at the ideal for devetopment and production cycles for a wide range of devices. The Husky LC's are etistom confargurable designed to provide fexibitity for the emourn of devices your can program at one time, and tixe size of the devices programmed. Dependimg on the canfiguration you choose the LC's can program up to 4, 8Mb 32-pin paits.

## Features

- Previama Eprowis, RLASH, OTP'S
- 4 x 32 pin ZFF Sockets
- Stipparis Flash 2日Fxox and 2FFsox
- Intel, Motordas, and binary fle support
- Supports High Speed Serial PS-232
- Windows 3.195/RT or DOS User Interiace.
- Fismote Command for Sun or Mac̣ PG
- Low Cosi and Compaci Design

The Husky LC is averable in a verity of memony and socket conligurations allowing you to choose the mosi cost effective conflymation for your nesds.

| Description | Memory | Num of Sockets | Part limmber | Price S | Price ${ }^{\text {E }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Husky LC. | 1 Mag | 1 Socket | PROHUL-D11 | \$445 | f.317 |
|  | 1 Meg | 4 Socket | PROHLL-DIA | \$545 | £389 |
|  | 4 Meg | 1 Socket | PROHUL-D41 | \$545 | £389 |
|  | 4 Meg | 4 Socket | PROHUL-D4S | \$645 | §460 |
|  | 8 Meg | 1 Socket | PAOHUL-081 | \$645 | \% 460 |
|  | 8 Meg | 4 Socket | PROHUL-084 | \$745 | £532 |

## Chipmaster 7000

 supports e wife variety of proprammable devices in aciofion to the capab解y of testing digital 6 c
The Chipmaster is the most sophisticated low-cost progarmar awalable tatay. A unique harduare'soivtare archacture trables the Chipmasier to eachy grow in suppori and





 Spoorts cievices up to 4-vitit.

| Name | Order Code | Description | Price \$ | Price E |
| :---: | :---: | :---: | :---: | :---: |
| Chipmaster 7000 | PROCM7 7000 | Chipmaster 7000 programming system | 5995 | E710 |
| CM7 Gang Module | OPT-CM7-8G | $8 \times 32$ pin gang expansion module | \$595 | ¢425 |
| CMD Rom <br> Emulator Module | OPT-CM7-ROM | ROM Ernulator exparision modufe. | \$395 | ¢282. |



## Gangstar Pro

## Features:

- Acto Programming Production mode
- 48 pin DF witir insartion, contact checking
- Auto Por coniguration
- Auto device selectican for many parss
- Device interion/pin contare checks

The GargStar-Pro is a one of a kind PC based parallel por GANG progammer with 8 fuly isolated $48-p i=$ ZF srokets. Each of the GangetarProts suckets are designed with dedicated FPGA保 for independent control. This independent desian gives the GangSiar-Pro ofss' semi-concutrent fogramming capatilies. For exampla you can progran four dswies while remomyfinsering devices in the remainint four sockels.
 coninue your programming while the other is retunexi for repar or replaciment.

## TURBO SPEED

The Gangtar-Fro has becn dubbed the Turbo Garg Programmer for a reason; use the Gang Star-Pro to program elght, ginb parta in under one minute. Progranmug times may vary sighty fom PC to PC dependig on tis PCts processing capabilies (programing time based on a $4860 \mathrm{c} \times \mathrm{6}$ system).

## SPECIFICATIONS

Power: 100 to 240 VAC. atho-switchitg
Power consumption: 25 W
Operating temp: 5 to $45^{\circ} \mathrm{C}\left(4,1\right.$ to $113^{\mathrm{t} F \mathrm{~F})}$
CE Certified

## NO MORE MISTAKES

Bindependerit, isotated 45-pin ZF sockets
Support for 3.3-5 Vort, Devices
Program 8, 8-MB Faseh in under EOsec
Åutu-sense, seli-stari
sermi-corucurrent made
Nodules allow fiexble conliguration
4RTSOP/:APSOP/4OTSOP
Fesh, MCU support
D*vice inseftion and contimity tesi
Propect file saveflaat funcion

## ANY APPLICATION

 MAX, WACHI, PISS, microprocessors, EPFOM, and Fiash memory

| Name | Order cade | Price S |  |
| :--- | :--- | :--- | :--- |
| Gangstar Pro | PAG-GSP-000 | $\$ 2,990$ | $£ 1,999$ |



## Eprom Erasers

## ULTRALITE ERASER

High capacity, high perionnarcs, Tiklusital EPROM Eraser, The Ulealle whll hold up to 50 , 2epin devices in the naximum UV exposiure area of the Eray. The Uitrai ite comines vith two UV nementis, timer swith and removable fryy for storage or quich swaping 로를 safe and secure with Uhal ite's auto sinuloin timer anc UV ight indicaior.

## T8 SERIES ERASERS

The CuV Family of erascre are foret for almost any stuation. The convenient pull out tray holds over a dozen dfvices and is completely removable to easily sivep whole trays of devices. Avaitable in threa models... (N) with no immer, (T) with timer/ and the Deluxe (Z) whth timer and parabolle refinctor to increass light iniensily and raxye. Average Eirase ime of 25 minufes, buif times may vary by device.


PALM ERASEA
The Palm-Erase is the pertect solution for the tech on the go. Farily fit this tiny but powntil creser lrio your sswice tow hit anc of you go. Erase EPROM's fron 24 to 40 pins in 5 minutes or less.

| Madel | WV Elements | Capacity | Timer | Tray Size | Average Erase Time | Special Features | Order Code | Pica USS | Price $\mathcal{E}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ullasalite | 1 | 比 to $50 \times 28 \mathrm{pin}$ DIP/100 $\times 32$ pla PICC | One Hour Auto 0ff Times | $5^{\text {a }} \times 9^{\text {n }}$ | 15 minutes | Tray interfock IV Light Indicator | ERA-ULT-000 | S299 | E214 |
| T8N | 2 | up to $25 \times 2 B p i n$ DIP / $66 \times 32 \mathrm{p}$ in PLCC | No | $4^{*} \times 8^{-}$ | 25 minutes |  | ERA-T8-00N | : 599 | E71 |
| T8T |  |  | Yes |  |  |  | ERA-T8-60T | S125 | 989 |
| T8Z |  |  |  |  | 10 minutes | parabolic seftewior | ERA-T8-00Z | \$150 | e109 |
| Pa!m <br> Eraser | \% | One 24-40 pin DIP EPAOM | No | $2^{n} \times 4^{4} \times 2^{\prime \prime}$ | 5 minutes |  | EA-PME-600 | \$69 | ¢49 |



Programming Adapters

## What are Adapters?

Most adapters are simple package converters. They altow QFP, SOIC, PLCC. TSOP and other devices to plug into the satas devices equivetent DIP footprint. There are edapters avalable for memory, logic, micro-controllers and more. And in many cases they can be used vith rultiple cevices from more than one manuiacturer, Mosi device specilic adetuters for micro-sontrollers and logic devices plug into a DIP footprint, for disvices that cannot use a generic iontprint we have aciapters designed to work with specific progremmers.

## How to Select an Adapter...

## what you need to know

- Fari Number and Manufacturer of the device
-The Device Packege i.e. (PLCC. SOIC etc.)
- Darice Fin Count
- Size of your programmars Zif socket (e0pin, 4Ephn, etc.)
- in some cases you may reod to krow your dzvicas package dimensions ior SOtC, SSCP ard TSOP

Please call or visit logical devices website www.logicaldevices.com for advice on ordering adapters. Logical Devices have the largest range of programming adapters in the world.

Instant Accounts available today?
Ring +44 (0) 1970621030 or in the US on 1-866-345-2632 for more information.

Please pliotocopy and use this page as often as required to order your products and request data sheets

| Tîtle | Initial |
| :--- | :--- |
| Position | Surname |
| Address | Company |
|  | Posicode |
| Telephone | Fax |
| Email |  |
| Customer Account Number (coill for datiens) |  |



Did you know that Kanda has a range of diverse engineening forums proviting you sith Therefive, Ip-to-date information These sites offer you a free and relible ennmeering senvibe, hatked by many of the wortis leading sticon compenies. Our worti=wite weh arenaprovides the firstpont of reference with lisis of frequentyaskedguestions, hintsfand tips for engheer and holibyist alke. Why not stop at oun six cugheering forum sites to ged experthem. to see what the wortils leathy silieon manufature have to mifer and deam ahouthie tatest euting edge technologies. Allour sites uffer youthemportanity to interact through otr discussion forinis...


## Call Sales on +44 (0) 1970621030 or USA on 1-866-345-2632 Log onto

## wwwhandasoom

for more product information and Customer support.

# Discovering AMATEUR RADIO 

 CAPTIVATED THE INTEREST OF COUNTLESS THOUSANDS OF PEOPLE SINCE THE EARLIEST DAYS OF WIRELESS. THE HOBBY HAS DEVELOPED WITH TECHNOLOGY AND MANY PEOPLE USE CUTTING EDGE TECHNIQUES, YET IT IS ALSO A PASTIME WHERE IT IS POSSIBLE TO RELAX AND CHAT TO FRIENDS ON THE OTHER SIDE OF THE GLOBE, OR JUST THE OTHER SIDE OF THE STREET.

|I fact there is a tremendous variety in the hobby and this provides the scope for a lifetime of interest. Technology, construction, research, operating, social and many other aspects make this a pastime that. can be enjoyed by virtually anyone.

## What is it all about?

In view of the many different areas of interest within the hobby, everyone can choose what they want to do and create their own flavour of the habby.
For many years; one of the main aturactions has been the possibility of hearing or contacting people many thousands of miles away, particularly on the short wave bands. This area of the hobby is still grosying. In fact many people enjoy what is cilted 'DXing' where they aim to hear or contact stations that are either far away or in interesting locations. They may be on a remote island in the middle of the Pacific Ocean or in darkest Airica. To be able to do this some people have stations with large antennas and sophisticated equïpment with which they can regularly make contacts with stations on all continents. Not eyeryone will be able to have such a grand station and there is no reason why they too cannot take
part in the action. By developing good operating skills and being able to make the most of the equipment available it is possible to make very many interesting confacts. In fact some people make a point of using low power equipment to give a further challenge to the habby. This shows that the short wave bands are truly open to all regardiess of the station they have.
Even though many people think of the short wave bands as the place where radio hams can be found this is not the full story. There is certainly plenty of activity on the short waves, but amateurs can be found on their bands on many different trequencies. For example there is a groving interest in operation on very low frequencies. There is a band just below the long wave broadcast band. Moying in the other direction there are many bands that are much higher in frequẹncy in the VHF and UHF portions of the radio spectrum, and some that are even higher. These are very different in character, presenting new challenges and areas of interest for those who are not as keen on the noise and activity o the short wave bands.
There are a number of other operating activities that can be enjoyed. At certain times of the year the bands come alive when
thousands of stations take to the air to participate in one of the contests that are organised. Whilst not everyone enjoys them, many people find thern exciting and great fun to enter fully, or just make contact with a few stations.
Alsa some people enjoy operating from interesting locations. Thase expeditions, commonly known as "DXpeditions" attract a great deat of interest on the bands and some may make many thousands of contects in a few days. For those participating in an expedition they can be hard work but very revarding and they are a good opportunity to see an unusual part of the world. For those scanning the bands they are a good opportunity to contaci a new country.
Another aspect of the hobby that has grown over the years is that of coltecting 'QSL' cards. These are postcard sized cards that are often exchanged to confirm a contact. The term 'QSL' comes from an abbreviation that is often used meaning 'I confirm reception*. This term has been used to give these cards their name. The first conirmations were sent in the 1920s around the time the first short wave transatlantic transmissions were made and peopte often wanted some form oif proof to show they had
actually made a contact. Cards started to be sent and soon their use became accepted and most stations used them. Some stations ever confirmed every contact, although this practice is not so common these days.

Today the cards are normally very colourful oiten having photographs of the covntry of origin, and as they may come from any country around the world dependent upon where the contacts have beer made they provide an interesting record of the places that have been contacted.
Many organisations offer awards to people who achieve certain operating challenges. These certificates can be very colourful, and working fowards gaining them can add a forther dimension to armateur radio operation. One of the most famous is calted the DX Century Club (DXCC) and it is gained for submititing proof of making contact with at least 100 countries. Endorsements are available for contacting more countries, and some stations have notched up scores of more than 300. Whilst this award may be one of the most famous, there are very many others that are available, but many others are ayailable for a great variety of operating achievements.
Operating equipment forms a large part of the hobby today, particularly as many people use it as a relaxation. However many people enioy constructing their own èquipment. Today, amateur radio manufactured equipment is very good value and much of it is very sophisticated. As a result it is difficult for the home constructor to build anything as good or for the same cost. Nevertheless there are still many areas where the constructor can excel. There is an ever-growing band of: people who enjoy constructing low power transmitters and their companion receivers. By keeping the equipment relatively simple it is possible for most people to make a transmitter or receiver on which they can make contacts. Whilst much of this equipment is relatively simple it is still possible to make a good number of contaris and there is an enormous sense of achieyement when it works and the first contact is made. Apart from this; it is atso possible to make a number of ancillary pieces of equipment.around the shack. All of this is interesting and greatly improves one's undërsianding of radio and radio technology.
For many years amateur radio has assisted in pushing forvard the frontiers of technology. It was radio amateurs who against the scientific thinking of the day proved that the short wave bands could be used ior long distance communications. Nowadays radio amateurs still have a
significant role to play in refining our knowledge about radio wave propagation. But this is not the whole story. Radio amtateurs are also involved in tooking at areas associated with new modes of transmission, new electronic design' techniques, and a host of other areas of technology.
Computer technology is playing an increasingly important place in the hobby. Not only are there many amateur radio related compuler programmes that carry out important tasks like station logging, predicting radio propagation conditions and the like, but it is also possible to link a computer to the transmitter and receiver and communiczfe over radio via the computers. Early data communications used large heavy teleprinters. Now computers are able to provide error resilient systems vith cansiderable degrees of flexibility to ensure amateur radio is truly in the computer age.
Amateur radio is also not just about enjoying oneself. In many areas it hetps the commenity and on many occasions it hes helped save liyes. It is an untortunate fact of life that disasters strike from time to time. Often in these situations communications beed to be set up swifily, sometimes under very difficult conditions. Radio amateurs are uniquely placed to helpat times like these. Having the equipment available, the knowledge required to set up a station, and the enthusiasm to help, radio hams are often able to provide a life saving service. On many occasions amateur radio has provided the only means of communication from a hurricane hit island because all the normal commurications systems have been puit out. Recently radio amateurs in India provided an essential and life saving service to the victims of the Gujarat earthquake. In the UK as well radio amateurs provide significant levels of help. In the UK an organisation known as Raynet has been set up, and under its banner radio amateurs frequently run exercises to ensure a high state of readiness.
For those looking for a career, amateur radio can provide an excellent grounding. Many electranic development engineers started by baving an interest in amateur radio. This stood them in good stead for further education. It is also a known foct that many employers look for radio amateurs because they are known to have good practical experience in redio and electronics.

## Amateur Bands

Radio amateurs, like other users of the radio spectrum ate allocated bands of frequencies within which they are allowed to operate.
There is a very large amount of commonality
between these allacations around the world, although there are a few differences. Howeyer these are normally small, enabling world-wide communication between amateurs to take place easily. Until recentiy the Jovest frequency band was the 160 Metre band that stretches from 1.81 MHz to 2.0 MHIz As it was the band with the longest Wavelength it is often referred to as Top Band. It is found just above the top end of the Medium Wave. Now bands are allocated in the VIF portion of the spectrum. One at 73 kHz was only aliocated on a femporary basis and now a permanent allocationi is avaifable at 135 kHz .

| 0.1375-0.1378 |  |
| :---: | :---: |
| 1.810-2.000 | 160 metres (top Baro) |
| 3.500-3.800 | 80 méres |
| 7.000-7.100 | 40 metres |
| 10.100-10.150 | 30 metres |
| 14.000-14.350 | 20 metres |
| 18.068-18.168 | 17 metres |
| 21.000-21.450 | 15 mexes |
| 24.890-24.990 | 12 rutues |
| 28.000-29.700 | 10 metres |
| 50.00-5200 | 6 metres |
| 70.00-70.50 | 4 गस्टाes |
| 144.00-146.00 | 2 mutus |
| 430.00-440.00 | 70 centimetres |
| Astreamassant |  |

Table 1. Amateur radio band ailocations in the UK up to 1000 MHz

There are many other bands in the short wave section of the radio spectrum. The most popular are the fifteen and twenty metre bands where large amount of long distance communications take place. However there are many other interesting and useful bands within this section of the spectrum.
For those wanting the challenge of communicating at higher frequencies there is a good variety of bands in VHF, UHF and higher portions of the spectrum. Here not only are the charecters of the bands different because of the dififerent ways in which the radio signals propagate, but the techniques used in the radio frequency circuits are different. A distinct advantage of using these frequencies is that the antennas or aerials are smailer, enabling even those in flats and apartments to have efficient anfenna systemis.

## Propagation

The way in which radio signals travel or propagate can be very interesting. Whilst electromagnetic waves tend to travel outwards from where they are generated or transmitted, and can be thought of as
travelling in straight lines, radio waves can be reflected and refracted in a number of ways around the earth making world wide transmission and reception possible.
Radio signals can be reflected and refracted in a number of ways. These often depend upon the frequencies in use. On the short wave bands the ionosphere; a layer ranging between about 50 and 300 miles above the eartors surface has a great effect. Signals can be reflected off the layers in this region enabling them to be heard over yast distances, often at the other side of the globe. The way in which this happens is fascinating and varies cependent upon many factors including the frequency in use, the time of day, the season, and the position in an eleven year sunspot cycle on the sun. In view of this many amaterrs take a great interest in studying this.

At higher frequencies signals may pass straight through the ionosphere, and other modes of propagation come in to place. It is


Figure 1. The etmasphere and the teyors in the lenosphere
frequencies well in to the VHF and UMF regions to trave! over distances of 1000 km and may be more.
There are many more ways in which radio signals can be made to travel over distances that are much greater than the ordinary line of sight. Learning about them and using them is ore of the many fascinating aspects of the hobby, and there is only sufficient romm here to very briefly touch on them.

## Summary

Amateur radio has many fascinating aspects to it. Next month we will take a look at listering on the amateur bands, what can be heard, and about moving towards obtaining an amateur radio iransmitting licence. It its really quite easy and many thousands of peáple in all walks of life have done it in the UK.
found that signals can be refracted by changes in the retractive index found in the Photos courlesy leom (UKI troposphere. These enable signals on
©ry
Antex haye a great trick record of offering high qually soldering irons atta low price So race off with a tixed semperaţire' tron or phe the in Handle temperature controlled model for a burn

Both offer tomal sifety with a chaice of a PVC or: burstiproof silfcone lead, and ievery model bas been manufaccured
in
the UK and meets CE conformity.
And with Ancex you get loads of extras from a wide variegy of lofg life bits to state of the art soldering suations.

So visit our web site or yourielectronics retailer 'and take one for a test drive JOUR poocen

## marases

HOTMSTANYODTRON

YOB CANINOWBUY ANTIEX EOUTPMENT ONLLINE
www.anitex.co.uk



Figure 1a. Siripe Filler

Virtualty all electronic cameras, consumer to broadcast, movie and still, analogue and digital, use a charge coupled device (CCD) as the image sensor. The exceptions to this rute normally use a complementary metal oxide semiconductor (CMOS) image sensor (although alternative technologies are under development). Recently, CMOS performance has improved, and that, combined with the intrinsically lower cost of producing them, has meant that the technology is showing promise in certain market areas, and is likely to assume some significance in the near future.

CMOS sensors have the advantage of being just a variation on standard cmos technology: the sensors thus benefit from the general improvements that are made to the widely used technology; and they can be produced in any of the narmal CMOS loundries. CCD sensors, conversely, use a specialised VLSI process; and their production is largely limited to the major electronits manufacturers. CMOS can also integrate a variety of peripheral functions onto the one chip, whereas it would not be economically feasible to do so with a CCD.
And a CMOS consumes less power than a $C C D$. But the $C C D$ does achieve a very good image quality with low noise; and it is avalleble in a wide variety of sizes, with pixel counts ranging from thousands to tens of millions.
Pixels, or discrete picture elements, are necessary for both types of sensor because neither is capable of recording a continuous electrical representation of an optical imape. A pixel in this context is a photon conversion site; and is normally a p-n junction
photadiode or occasionally a photogate which is just an MOS capacitor that is exposed to light. The photodiode is the more light sensitive, because the MOS gate partially absorbs light. - particularly blue. Incidentally, pixels are generatly rectangular for video use and square for just about everthing else.
If photons have an energy greater than lev or their wavelength is less than 1000 nm sufficient. energy can be transferred as they penetrate the silicon of the pixel to create electron-hole pairs. The electrons and holes are then separated: normally by applying an electrical field which, depending on the substrate, will either drain away the hales and leave the electron's, or vice versa. In most sensors it is the electrons that afe left behind to become the charge carriers. However, to be eifective they must be integrated into charge packets

## by Rey Milies

of sufficient quantity to provide a measurable output. Integration is achieved on the reverse-biased and etectricaily isolated junction capacitances. The number of charge carriers that a pixel can hold in its potential well is known as the well depth, and will vary between tens and hundreds of thousands.
This gives only the brightness of the scene.


Figure b. Wossic Filter To achieve colour reproduction the sensar must be filtered. Cameras with three sensors have dichroic filters coated onto a complex prism block so that each sensor receives onify red, green or blue light. The majority of cameras have only one sensor, and use dyer coated on in stripe or mosaic arrangements (see Figure la/b).
The colours used are normally red, green and blue (RGB); but can also be cyan, magenta and yellow (CMY); or any combination oir at least three colours - the only criterion is that



Figure th.
aiter processing they give the correct range of colours for the application.

Up to that point the CCD and CMOS are identical. Once the charges have been integrated though the resemblance ends.

To get the charges out of a CCD the horizontal rows of charge packets are moved down in paraliel by clock voltages applied to gates consisting oi a fine mesh of polysilicon electrodes that cover the CCDs surface. As each row reaches the bottom the charge packets are then clocked serially along a horizontal shift register. Each charge packet is then clocked via the output gate onto a floating in + region ('floating diffusion'), and the voltage changes are sensed by means of a sourcefollower. After each charge packet has been sensed it is cleared in readiness for the next by applying a positive puise to the resel gate which
clocked out a line at a time, through the horizontal shift register, simultaneausly with a new charge being integrated in the imaging area. The disaduantage of using the imaging pixels as a shift register is that new electrons produced by areas of bright light can infiltrate the charge packets as they pass causing smearing (athough modern designs minimise this).
integrated its frame rate is fower. And thîs makes it even more susceptible to smearing, requiring eptical shuttering or strobe lighting to prevent it.

The interline transier (IT) type, Figure 2c, reduces the tinne trom pixel to storage area to virtually zero by having adjacent opaque shift registers. The charges are read out sideways from the pixels, via a signal path, to the vertical shift registers. They are then clocked down the vertical shift registers, and out through the horizontal shift register, during one full fietd period - agzin, simultaneousiy with a fresh image being integrated. Smearing is thus much reduced. The disadventage is that the imaging area is no longer fifled entirely with light sensitive pixels.

The frame interline transfer (FIT) type, Figure 2 d , is a combination of the $F \mathrm{~T}$ and IT . The charges are moved rapidly down the adjacent shift registers to an opaque storage

flushes it out the reset drain.
This is the hasic principle. The details vary according to the type of CCD.

If a trame transfer ( FT ) type figure 2a, the charge packets are moved rapidly down through the imaging area, pixel by pixe!, to a similar, but opaque, storage area during the field blanking period. From there they are

This type of charge transfer is aiso used for the full-frame (FF) imaging type, Figure 20; but here the whole area is light sensitive with no opaque storage area (the signal will either be displayed directly or go to an external store). FF is thus smaller and cheaper. However, because the whole charge must be read out before a new charge can be
area during field blanking, and output while a new image is being integrated. It is thus as big as an Fo type, but with the feduced imaging area and added complexity of the IT - the worst of bath worlds, but for nonexistent smearing.

The timang will also vary according to whether scanning is interlaced or progressive, and whether it is providing still or mowing images (an increasing number of CCDs can be 5witched between both states).

With a Cimos the pixets are individually addressed, and the charge packets are switched to charge sensing amplifiers. There are two basic typer oi Cimos sensor - passive pixel and active pixel (active pixel sensor, or APS). The former has a buffered, charge sensing amplifier for each column of pixels, and a single transistor in each pixel that acts as a charge gate. In operation an entire row of pixels is switched to electrically isolated column bus lines for the amplifiers to sense the individual charges and convert them to an output voltage. With the active pixel type there is a source follower amplifier in each
pixel and the charge packet is switched directly to it before being oufput to the column bus. In bath types the vertical shift register clocks a line at a time to the sample and hold circuits and the forizontal shiiit register reads them out.
The active pixel usually contains at least three transistors - the additional ones being a reset transistor to control integration time and a row-select transistor. Because of this its fill factor (the ratio of light sensitive area to total pixel area) is less than that of the passive pixel. However, the direct amplification does rediute noise.
Whether passive or active, photodiade or photogate, CMOS is generally less light sensitive than a CCD of comparable size.
Not that CCDs are periect: in addition to the IT and FIT types having a redteced istaging area, the channel stops dividing the pixels vertically to prevent horizontal charge
insensitive areas by using finer fabrication Philips ${ }^{\text {t }}$ world ${ }^{2}$ s smaziest, 2.44! square CCD pixels necessarily employ fine fabrication, which can equally well te applied to larger pixels. Or larger pixels can be used at the expense of resolution (smaller pixets eahance resolution, but at the expense of quantum efficiency and well depth). Or an indirect approach can be used - improving the spectral characteristics of the dyes used for filtration, for example.

As witi all electranic devices CCD and CMOS sensors (particularly the latier) suffer from noise, and therefore incorporate some form of compensation.
In the case of a CCD this will probably be corre?ated dauble sampling (CDS). The output is reset to a reference value after each charge packet is flushed away, then the

A CMOS is more likely to employ optimised fixed pattern correction, because FPN is of more concern with CinoS than CCD wifere it has been much reduced. The FPN shows paticularly in the APS type with its muttiplicity of individual amplifiers, each with its own offset and gain value. Passive pixel is less susceptible, although the pixel's position on the column bus does affect the cherge level at the amplimier and the turn-on threstolds of the transistors do vary; but passive CMOS are used in products where noise is of less concern anyway - such as toys. In practice an on- or off-chip memory stares the offset values of the pixels, obtained by reading their output during reset, and subtracts the afiset noise from the image. It is also possible to use this method to correct for optical fluctuations and defects.
Photon Vision Systems has further reduced FPN by the invention of an alternative to APS, called Active Column Sensor. In addition to reducing FPN, ACS increases signal strength because the gain of each amplitier in an active pixel is typically only 0.84 . Unfortunately, the sotution to the low and varied gain, a unity gain amplifier (UGA), would require at least six transistors in each

For more general applications microlenses are being incfeasingly emoloyed on both CCD and CMOS to direct the photons onto the active areas oi the pixels (see Figure 3). These are produced by a photolithographic process. Another method of increasing pixel sensitivity is to reduce the size of the
pixel. What
Photon Vision Systems has done is to compromise with a shared UGA, with one dual input transistor per pixel and around four shared column transistors (Figure 4a shows the
difference between that value and the next charge parket becames the charge value for that particular pixel. This will largely eliminate fixed pattern noise (FPN) - the difference in dark current betveen individual pixels, in atdition to several types of temporal noise.

arrangement, Figure 4b shows a conventional APS layout). Typically, the ACS pixel will have over twice the fill factor and full well capacity, providing at least wice the S/N ratio. Integrated test chips, with 25 micron pixels, have only 0.08 FPN and a $S / \mathrm{N}$ ratio greater than 86 dB as measured on the output

be a range of about 140dB, by comparison with around half that figure in linear mode. However, in low light levels the responso - inme is slow, and with low contrast images the contrast is further reduced.

A somewhat similar approach to that of anti-blooming allows an electronic shutter to be incorporated into CCD and CMOS semsors. Here the pixels are held
of the sensor. A VGA format array with 10 micron pixels will have in excess of $70 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ at fu\{l video rates on the output of the sensor. Coupled with a CDS circutif to minimise offset variations, the company is claifing CCD performance at CMOS cost.

A photogate APS has noise conirol in each pixel. This is achieved by using the active circuitry to perform correlated double sampling. However, this is achieved at the expense of a reduced fill factor and greater complexity.

Both CCD and CMOS are also susceptible to blooming: where the well depth is insufficient to hold all the electrons and they spitl over into adjacent pixels, causing image higinlights to spread. This is countered by draining the excess to the substrate. But with the conseg̨uence of a reduced pixel area, smaller electron well depth and lower quantym etficiency. In afeas oir use such as astronomy CCDs may be used without antiblooming: countering the overspill by taking a series of strort exposures, then combining them into one by using image processing software.

The dynamic range in CMOS can be iņcreased by having pixels that operate in logarithmic mode, with direct readout and randorn 弓ixel addressing. There is no integration time, the logarithmic conversion circuit continnously converts current to an output voltage that will vary with the instantaneous light intensity (like a photographic exposure meter). The result will


Figure 7. in reset, with the charges draining away, tuntil the pre-set exposure time begins. CMOS
sensors can also vary the timing inputs to the sensor. Both can also have an increased integration period and employ a mechanical shutter.

There is now a rapidly growing need for sensors that can be switched betweer $4: 3$ and $16: 9$ aspect ratios. Some consumer camcorders olfer a $16: 9$ facility, but it is anly electronic (letterbox) masking of the 4:3 image, not a true $16: 9$ image from a $16: 9$ sensor. The CMOS with its XY addressing has no problem with switching - any aspect ratio can be easily achieved by building in the facility to select different pixels, With a $\mathrm{CCD}_{2}$ conversely, it requires major retiming to read out a $4: 3$ panel in a 16:9 chip.

This pixel selectivily of CMOS also enables the sensor to operate in reduced resolution, sub-sampled modes for a viewfinder display. This is achieved by writing to certain serial register bits in the sensor, which will then integrate and read out every second, fourth or eighth pair of lines, and every second pair of pixals. Keeping pixels in pairs naintains the arrangement of the colour illter blocks and, thus; the colour signal. A CCD cannot do this.

However, it can bin pixels (combine them) to increase the sensitivity at the expense of resolution. Binning is achieved by clocking the charge packets of individual pixels in both horizontal and vertica! directions to give one large 'super pixel': vertical binning by clocking multiple línes into the horizontal register and horizontal binning by clocking

multiple pixels under the summing gate. Thus, $2 \times 2$ binning combines four adjacent pixels - quadrupling sensitivity while halving both horizontal and vertical resolutions, $3 \times 3$ binning combines nine, and so on. However, it cannot be used with CCDs that have incividual colour filters an the pixels, because the colour would be mixed up.

This fimited flexibility of CCD 5 is going to become an increasing disadvantage. And, with its complex cloci requirement, something of an Aciilles heel. The clack amplitude and shape are critical for correct operation, and this requires clock drivers using multiple supply voltages. Also, CCDs normally require secondary cfips to implement the various functions such as clock drivers, timing logic, signal processing, etc.

Companies producing CMOS sensors used to be almost apologetic about their products. Now they are becoming quite buliish, with some predicting the imminent demise of the CCD and others, more cautiously, anticipating CMOS replacirg the CCD at the lower end of

| 5 | a | $B$ | $E$ | 9 | 8 | 8 | 8 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | i | 1 | $\stackrel{ }{*}$ | i | $\dagger$ | 1 | ； | 13 |
| 10 | 1 | 1 | $\dagger$ | 1 | 1 | 1 | 1 | 13 |
| i0 | 1 | 1 | 1 | 1 | i | 1 | 1 | 13 |
| 10 | i | 1 | 1 | 1 | 1 | 1 | 1 | 13 |
| 11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
| 10 | 1 | 1 | 1 | ； | 1 | 1 | 1 | 13 |
| 10 | f | 1 | 1 | 1 | 1 | 1 | ： | 13 |
| 18 | i | 1 | i | 1 | 1 | 1 | 1 | 13 |
| 10 | ； | 1 | $\dagger$ | 1 | 1 | 1 | 1 | 13 |
| 2 | 5 | 3 | 6 | 7 | 6 | 6 | 6 | 3 |

Figure 6.
the digital still camera market as a more realistic objective at this stage．In addition to a lot of small companies developing and／or producing CMOS，like VLSI Vision in Edinburgh（the firs！company to integrate a complete camera on a single chip），there are major names working，singly or in partnerships，on improving．the performance still further，such as Canon，Kodak，Motarola， Texas Insitruments and Toshiba．While NASA is experimenting with CMOS cameras to see whether they can get the performance of a CCD in a smaller，lighter camera that constames less power－an obvious advantage in space．
NASA＇5 det Propulsion Laboratory，the first to develop a practical CMOS APS，has developed the lirst fully digitai camera on a chip，needing only five wires for operation． And has recently invented an approach that will make APS compatible with siticon－on－ insulator（SOI）technology，that it is said will become the baseline for CMOS VLSI implementation．While in a separate development JPL is working on a high speed APS to be used as an integrated，＇smart sensor＇．
The CMOS people are getting very excited by the prospect of these＇smart sensors＇．They will combine the function of an imaging device with the integral facility for processing information acquired from those images to provide a result that can indicate position， motion，identity，etc；or be used in areas such as robotic vision；or to vary the charge integration time in individua！pixels for
adaptive exposure control．It will be possible to use a CCD ior some of these purposes；but the facility to integrate functions onto a single chip means that CMOS generally has a significant advantage in this area．

CMOS technology is also moving gradually upmarket，as typi⿻丅⿵冂⿰⿱丶丶⿱丶丶⿻丅⿵冂⿰⿱丶丶⿱丶丶⿻コ一𧘇边 by the announcement of the CreoScitex Leaf C－Mostsensor．This is the first CMOS with 6.6 milfion pixels （3150x2100）；and the first that equals the frame size of 35 mm film（see Figure 5）． The pixels measure $11.4 \times 11.4$ microns．It is said to be particularly suitable far integration in upmarket 35 mm ，medium and large format photographic equipment；and was shown at Photokina 2000 in a medium format back． Its ultra－thin packaging will allow it to fit exactly into the focal plane of a standard 35mm camera（see Figure 6）． CreoScitex collaborated with FillFactory for the design of the APS CMOS，with Tower Semiconductor for wafer fabrication and ShellCase for the packaging．The


Figure 9. technology is scalable so larger and smaller devices can be expected．

On the subject of smaller devices，Canon has already launched the EOS D3D digital SL．R with a $22.7 \times 15$ ． 1 mm image area CMOS．This has 3.25 million pixels，measuring $10.5 \times 10.5$ micronṣ．And incorporates a programmable gain amplifier to minimise noise．

But the CCD is far from finished．Research continues on finding new applications for it， and both furthering its performance and reducing its cost．

Phase One has shown a prototype of the LightPhese H20 digital back which incorporates a $4020 \times 4020$（ 16 million pixel）

CCD from Eastman Kodak \｛Figure 7 shows it aitached to a medium format camera）．It is expected to be made availeble in July．
But for sheer size and number of pixels nothing can beat the modular CCD from Philips．This takes the basic building block of a $1024 \times 1024$ FF chip：which，using standardised connections，can be produced in combinations of up to $7 \times 9-86 \times 110 \mathrm{~mm}$ and 66 mitilion pixets．The layout is produced using just four basic bfocks：imaging area blocks，vertical blocks，horizontal output register blocks and output amplifier blocks （see Figure 8）．The＇split＇arrangement allows readout through one，two or all four ampliniers．Production takes adyantage of the repelitive structure to use a step and repeat process；thus overcoming the present． inability of lithography equipment to produce fine details over a large area，Joining the individual parts electrically in the siticon is achieved by a patented＇suitching＇technique that is claimed not to prociuce any visible seams in the image．A．7x9 array is the maximum at present；the restlit of using $12 \times 12$ micron pixels and necessarily fitting it all onto a 6 inch wafer（see Figure 9）．And there can be any number betwieen one and the maximum to suit the customer＇s
requirements；with the only unique mask being that used to make the interconnect between the bonding pads．The particular configuration can thus be realised in production rather than design－greatiy reducing development time and costs．
Both FF and for devices can be produced（in the latter case with half of the sensor masked for charge storage）．If larger pixels are required then $2 \times 2$ or $3 \times 3$ can be obtained by binning． If the application requires colour，then a colour mask can be added to the CCD．
The fufl $7 \times 9 \mathrm{CCD}$ is initially being used for astronomy；and it is anticipated that it will also be used for digital photography，where the current maximum for an area array device is $6 \times 6 \mathrm{~cm}$（medium format in photographic termis）．A $1 \times 2$ FT CCD is already in production for progressive scan still imaging．While the modular device additionally bes the potential for high speed imaging，with one block receiving the image and eight blocks around it storing sequential frames．

On a much more modest scale, Minolta hâs also embraced a modular approach: their RD3000 camera uses two half CCDs to achieve almost 3 megapixets at lower cost. The image is divided by half mirror prisms and received by the two CCDs ; the slightly overlapping images are then pracessed to remove differences between them and seamlessly joined.

Fuifi has developed a significant change to the design of an $\Pi$ CCD, and called it the Super CCD. They have taken the pixels, turned them through 45 degrees, changed their shape from rectangular to octagonal and arranged them in a honeycomb formation (see Figure 10). The charge packets can now be fransferred directly to the vertical shift register, making the signa! path redundant. The pixels are also larger, due to both their shape and arrangement, so their lightgathering capacity is improved. They are also better shaped to make the most of microlenses. With the result that the sensitivity, $\mathrm{S} / \mathrm{N}$ ratio and ziynamic range are all claimed to be improved by $2.3 x$ as a result. The horizontal and vertical resolutions are also improved by the new, more closely packed, arrangement. In combination with Fuji's newly developed honeycomb signal processing LSI the effective resolution is claimed to be at least $1.6 x$ greater than a conventional IT CCD with the same number of pixels (the new FinePix 6800 Zoom camera (see Figure 11) is said to give a resoletion equivalent to a 6 million pixel IT from a 3.3 million pixel Super CCD). Conversely, the Super CCD can achieve the same resolution with fewer pikels - reducing power consumption and cost. Its colour reproduction is also claimed to be better. And, with R, $G$ and $B$ pixels in each horizontal line, alternate lines can be skipped for interlaced scanning - which will give better resolution than combining pairs of lines as is done conventionally for videa output. It is also possible to sub-sample the pixels, with any vertical ratio possible and $1 / 3$ herizontal ratio - speeding up the process.
Fiuji envisages digital cameras with picture quality approaching that of 35 mm film; cormbination digital cameras and camcorders giving high quality video as well as sitils; and, by miniaturising the CCD, an extremely compact digital camera.
Although the CCD continues to dominate, and is likely to do so for some time to come, and CMOS is working its way up the imeging pile, there are other contenders waiting. I will deal with those, and other variations on image sensors, in the second part of this article.
 SOME PEOPLE THAT WOULD BE A SCARY THOU̇GHT, BUT

NOT FOR THE STAFF OF THE LEG LABORATORY AT MIT.

$\|_{\text {f }}^{\mathrm{f}}$f robots could walk with the same ease as humans and animals just think of the possibilities for space travel, the rescue services and even medical prosthetics. Robotic scientists could be sent out to explore the moons of dupiter; robotic fire fighters coutd lie dormant within large buildings until the need arises for them to activate and start saving lives; people currently unable to walk could have robotic exoskeletal legs fitted, or skeletal ones implanted into their own.

Here we introduce you to the Leg Lab and
understanding intelijgence, and as such our laboratory is much more heavily biased in these directions thar many other Artificial intelligence laboratories:-

Part of the AI Lab at MIT is the MIT Leg Lab. This might sound like a strange name at first, but it is a very appropriate one because the Leg Lab is focussed almost exclusively on the subject area of legged locomotion in sobats.
'We are interested in simulating and building creatures which valk, run, and hop like their biological counterparts. We have with quotes from their web site and some of the creations they have already transformed from raw ideas into functional reality.

The Massachusetts Institute of Technology (MIT) is a privately entoysed research university with a faculty of over 900 and nearly 10,000 undergracuate and graduate students. Its Artificial Intelligence laboratory has been an active part of the university since at least 1959. The AI Lab's research goal is to understand the nature of intelligence and engineer systems that exhºt it. It ìs an interdiscipfinary laboratory of over 200 people that spans seyeral academīt departments and has active projects going on with members of every academic school in MIT.
'Our intellectual goas' is to understand how the humain mind works. We believe that vision, robotics, and language are the keys to


Figure 2.1 .122 atuuslor and $\log$ assembly.
three reasons for pursuing this research:
Very litte of the world is accessible by wheels. Legged robots may be useful for everything from exploring inaccessible or hazardous locations to providing service or entertainment in the places we live and work.


Figure 1. The Leg Libls M M 2 fotal
Understanding how humans and other animals walk and run is interesting scientifically and important medically. We do research in natural legged creatures and then model them both in simulation and in real robots.

It's lots of fun! Not only are our robots fun to work with, but they're pretty entertaining to watch'.

Robots, humans and animals when it comes to active balance and dynamics, the people at the teg Lab are interested in all three. Robots that cannot respond to their surroundings and adapt to differently spaced foothoids are unlkely to be of much use for anything more than the limited range of tasks they are entrusted with at the present. Simitarly, most robots in current practical use are slow and limited creations because they lack the ability to balance.

The Leg Lab aims to not anly create robots that can walk, but also ones that can nu without losing their balance and falling over when on the run and coming to a stop.
'The techniques usad to control each of the running machines derive from a single simple sei of control algorithms. They focus on support, posture, and propulsion. These agorithms have been adepted for hopping, pronking, biped runningt fast running, trotting, pacing, bounding, and simple gymnastic manoeधvres'.

As well as walking and running, the Lab robots are atso designed, wherever possible, to perform specific tasks - tasks that would add to their usefulness in real world situations.
'We have built a series of legged robots for experiments on active balance in dynamic legged locomotion.

Taken collectively, these robots have traversed simple paths, run with severa! different gaits (hop, run, frot, pace; bound), run fast ( 13 mph ), jumped over obstacles,
controlled step length, climbed a simplified starinay, walked over ramps, and periormed rudimentary
gymnastic
manouvres. Aithough no one robot performed all these tasks, the machines all use a common set of balance and control principles:

One of the Leg Lab's rabots-innprogress is Troody the robotic dinosaur (see last issue's News pages). Another is Mi2 - the 3D Bipedal Walker.
$M 2$ Isee Figures 1 \& 2) was inititated as a project in 1998. It has 12 active degrees of freedorr: 3 in each hip, 1 in eath knee, and 2 in each ankle. It will be used to investigate various walking atgorithms and motion, control and actuation tectoniques, and also the processes of automatic learning. Its goals are to walk fast ( 1 metre/second), efficiently, and be successful at least 9 times out of every 10 attempts. It shourd also have a large margin of stability and be robust to small disturbances (in other words; reasonable. pushes).

Completed robots include Spring Flamingo (in progress: 1996 to 2000) - a flamboyantly designed rabot used to study planar bipedat walking [see Figure 3]. This was the first Leg Lab robot to use feet and active ankles. Rotary potentiometers at the hips, knees, ankles; and boom measure the joint angles and body pitch. Linear compression springs are located in the actuators to implement Series Elastic Actuation and linear potentiometers measure the spring compression. In all, the robot has six actuators and thirteen semsors.
-'Spring Flamingo was initially designed to somewhat model a long legged bird like creature. Hence the bent-backward style "knees'. In a real bird, that joint would really be the ankle and the bird would kave an additional knee joint above it. Starting in September 1998, we decided to come up with algorithms which exploit the natural
dynamics of the robol. In particular we were interested in passive swing leg characteristics. In order to achieve these passive characteristics, the robot needed a bent-forward knee. Therefore we furned the

Figure 3. 5pring Flamingo.
funning, with the addition of a low-fevel leg co-ordination mechanism,

We considered only those quadruped gaits that use the legs in pairs: tratting (diagona! legs as pairs), pacing (lateral pairs), and bounding (front pair and rear pair). By restricting consideration to the pair gaits the control of the Quaciruped was reduced to the control of an equivalent virtual biped. We found that each of the gatits that use the legs in pairs can be transformed into a common underlying gait, a virfual biped gartt.

A more recognisable animal form can be seen in the hopping robot Uniroo (in progress: 1991 to 1993), which, despite its one-legged nature is kinemetically similar to a real kangaroo of mass 6.6 kg . Uniroo [Figure 5] consists of a body, a three-joint (hip, knee, ankie) articulated leg, and a single degree-ot-freedom tail. Its body is a bolted framework of aluminitum struts, and its leg is composed of welded alumfium tubes. Hydraulic actuators control each ioint and a steel coil spring at the ankle stores elastic energy ready for use.

The Uniroo differ from the previous robots in four important respects. The Unirgo is not symmetric; the leg is articulated instead of telescoping, the nip is offset from the centre of mass, and the leg is relatively heavy (onethird the mass of the body). Because of the asymmetry, the ground forces during stance affects the body pitch. A massive leg also affects the body pitch as the leg is swep: forward during flight. Finally, the kinematic redundancy of the leg must be addressed'.

The Leg Lab's work with the Uniroo robot feet around and had the robot walk the other direction with a human-style configurationt. Quadruped [Figure 4] (in progress: 1984 to 1987) was developed to explore running on four legs. It was programmed to trot, pace, bound, and do several transitions between gaits. The Leg Lab learned from Quadruped that principles for one-

legged hopping generalised to four-legged
Figure 4. Quadruped.
showed that it is possible to control the balance of legged robots that have a nonsymmetrical mechanical structure. Regulation of angular momentum allowed the robot to hop in a range of forward velocities from 0 to $1.8 \mathrm{~m} / \mathrm{s}$ for at least a minute.
'Although nothing proves that a steadily null angular momentum is part of an optimal hopping strategy, we observed that a small angular momentum is a characteristic of 'smooth' happing and underlies a very natural motion'.

As well as taking inspiration from nature, the Leg Lab also applies techniques from robotics to the contral of computer simulated creatures. Physics-based computer simulation is used by Leg to study rabat control systems and animal behaviour, and to create automated computer characters such as the one-legged kangaroos from On The Run [see Figure 6] - a computer animated cartoon that explores how techniques fram robotics can be applied to computer animation. The

provided each computer character with a control system and physics-based simulation so they could move on their own: no hand animation was used. In the future, such automated creatures may find roles in interactive education, engineering, and entertainment'.

Retuning Control Systerns (a video is awailable on Leg's web site) sets out to explore whether or not a control system that works for dogs, for example, will also work for giraffes or elephants. Other simulations include the motion of cockroaches and a human gymnast executing a flip and dismounting from a high bar.

Pjxar's Toy Story and new film Final

Figure 6. A still from the Dn The Run animation,
characters were animated atomatically, using a physics-based simulation which allowed the creatures to move with physical realism without needing an animator to speciify all the details.
"Task-level control allows the creatures to move in response to general instructions, such as the speed and direction of travel, chafiges of gait, and manoeuvres. The control systern knows how to regulate the low-level joint motions and muscle forces so the animatar is free to specify higher-level information. The idea is to let the animator work more like the director of a play who gives high-level instructions to skilled actors; who then control their own movements. We

Fantasy are no doubt the first in a long line of computer animated films to draw the crowds at the box ofiice. In the future, realistic physical simulations will become an increasingly integral part of the design of such films. They will indeed become essential as technology advances and computer generated big screen action becomes more and more reafistic, perhaps even to the point where the average cinema goer can no


Figure 5. Unirpa.
longer tell the diiference.
Whilst we are on the subject of cinema, cast your mind back anyone who has watched the film Rising Sun (featuring Sean Connery and Westey Snipes) to the scene where a bipedal robot is shown hopping along as if being laken for a walk by its owner. That robot was the Leg Lab's 3D Biped robot, shown in Figure 7 along with Uniroo and three MIT students; all of whom also had brief cameos in the film.

Clips from the film, along with other video clips, photographs and details of MIT Leg Lab rabots can be found at their web site, address given below. A video tour of the lab is also avaitable via their homepage.

## Related Links:

Leg Lab:
www,ai,mit.edu/arojects/leglab/home.html Arificial Intelligence Lab:
htto://veb.mit.edu/
Fassachusetts Instifute of Technoiogy: htto://web.mitedu


Figue 7. Uniroo، 30 Biped and minders on the sal of Rising Sun.

## EECTRONICS subscriptions and BEYOND

To order ELEGTRONICS AND BEYOND please fill out the relevant details below.

[ want a years subscription 12 issues for $£ 28$ or $\$ 45$.

Hy subscription has expired please renew it.


Dverseas subscriber
I want 6 months subscription
for $\$ 14$ or $\$ 23$


I want to change my details
1 want to buy 1 issue before subscribing. for $£ 3$ or $\$ 4$

Now all you need to do is to decide on the method of payment and fill in the relevant section below.

## PAYMENT BY GHE@EE

$\square$
I wish to pay by cheque made payable to
Electronics and Beyond.

## PAYMENTT BY CREEDIT CARD

$\square$ I wish to pay by Credit Card. Please debit my account.


Signature
Date
Please complete his form and relurn ta:
Electronirs and Beyond.
17/18 Glanyrafor Enterprise Park.
Aberystwylth. Ceredizigien.
sy23 3ju. UK

| YOUR ADDRESS |  |
| :---: | :---: |
| Hame |  |
| Addiess |  |
|  |  |
| - Postcededitip |  |
| e-mail |  |
| Phone |  |
| You've got the magzzine, now why not visit www.kanda.com and get your tools, accessories and much more on-line. |  |
| Phone: | 08708705328 |
| Fax | 88708705329 |
| e-mail | International +441970621840 subscripbionsemelectronitsandbeymicican |

## YOUR ADDR RESS

Instruction to your Bank or Building Society to pay by Direct Debit


Driginators identification Number


Reference Number


Instruction to your Bank or Building Sociely
Please pay KAHDA SYSTEMS LTD Direct Debits from the account detaited in His Instrution subject to the safeguards assured by the Direct Debit Guarante. I vnderstani that tis instruction
 BankBinding Sociely.


Bank and Building Secieties may not accept Direet Debit Instructions for some types of account
The Direct Debit Guarantee This Guaranter should the detached and retained by the Payer
 Debit scheme. The eficiency and security of the Scheme is menitiored and proteded ty your own Bank or Bididring Society.
 you 10 working dass in advence of your accourt being debited or as otherwise agreed.

- If an error is made by KAiva SYSTAMS LTD or your Bank or Bididing Society, you are guarattema a full and inelibite refund foon your branch ofthe amourt paid.
- You can cancela Direct Defititat aryy time ty witing to your Bank or Burding Society. Plesse also send a copy of your Letter th us.


THE CD HAS BECOME A UBIOUITOUS PART OF LIFE. THESE $4 \%$ INCH ( 12 CM ) POLYCARBONATE DISCS HAVE REVOLUTIONIZED THE WAY WE STORE LARGE VOLUMES OF DATA IN A RELATIVELY SMALL AREA. THEY ARE RANDOM ACCESS DEVICES, CAPABLE OF STORING LARGE AMOUNTS OF DATA AND ARE FAIRLY ROBUST YET ARE RELATIVELY EASY TO USE.

This mini series of articles looks at the technology behind CDs from their beginnings in the early 1980 s and howi: to produce good copies. It is split into three sections; which will be published over the hext 3 months:
Part 1: The technology of CDS
Part 2: How to create good CDs instead of coasters
Part 3: Copy protection methads and Frequentiy Asked Questions (FAQs)

## The Technology

The first manifestation of CDS was for Audio and Sony and Philips are credited with its creation in 1983. Folklore within the industry suggest that the length of the recording length on the CD ( 74 minutes) was chosen to satisty the wife of the President of Sony who wanted it to be able to hold her favourite symphony. Other rumbours suggest that it was designed to be able to hold the whole of Beethoven's ninth symphony. There are other theries which can be seen at:
Hrnv.urbanleqends.cem/mise/cd/cd_lengli_origin.

In order to create a standerd that could be adhered to by both the pressing plants and the CD player producers a standard was evolved which was called the 'Red Book' standard.

The principle adopted was that the data would be stored digitally and use a laser to read the data. The methodology is that a laser is shone at a reflective layer of aluminitm which has been mastered with pits such that the laser beam will not be returned if there is a pit but it will if there isn't (referred to as "land"). Therefore the data can be 'read' from the disc as a series of 1s or Os dependant on the way the pits have been produced.

It wạn't long before the computer industry recognised that here was a medium that could be used to transport farge amounts of data at a relatively small cost. The problem was that Audio CDs did not have to have a particularly good integrity whereas for computer data the integrity needed to be as perfect as possible: Moreover there needed to be a standard such that computer files could


THE TECHNOLOGY OF CDS
be stored in a particular fashion that was compatible across the industry. This resulted in an international standard called IS09660 (or the 'Yellow Book' standard). Not only did this standard encompass the fille structures but also clarified error correction and the format (such as interleaving, filename formats etc.)

This doesn't imply that Audio CDs have no error correction on them, they do but at a lower Jevel than required by Data CDs. Audio CDs store data in 2352 byte bilocks of data while Data CDs store 2048 bytes with the remainder being used for more complex error correction. All CDs use a method of encoding called CIRC (Cross Interleaved Solomon Code) which creates 'frames' of data which consist of 24 bytes per frame and 98 frames per block. The data is then interleaved (ie it is not consecutive) over a wide arc around the CD. Therefore if the disc is scratched the data can be interpolated using adjacent data in the strean to recreate a reasonable interpretation. Note that this means you should ALWAYS clean CDs from the centre out in straight lines rather than in a circular manner around the disc which can create scratches acfoss a number of frames thereby increesing the possibility of the interpolation not working successfully resulting in annoying 'clicks' as the error correction fails' to work.

CD-R (recordable Cds) first made its appearance in 1990 with the charecteristics being specified in the 'Orange Book'. These initialiy useed an arganic photosensitive compound (similar to those used in photography) calted Cyanine Dye which had its bond broken by heating using a laser, thus causing a 'pit' which would difiesse nather than reflect tight. A later development say the infroduction of another compound called Phthalocyanine which is a gold colour as opposed to the green of the Cynanine. There is a debate in the industry about the relative
merits of each dye with lifitsui (who manufacture Phthalocyanine based CDRs) stating that their storage life is 100 years as apposed to 20 years for Cynanine. Whatever the argument Phthalocyanine does appear to be less sensitive to degradation from sunlight or florescent lighting. This dye is usually coated in a very thin layer of proprietary silver alloy or 24 carat gold (50-100nM thick) which reduces the risk of oxidisation ant corrosion. Note that the original Orange Book (part 2) specification was baseñ around Cynanine developed by Taiyo Yuden (who produced the original 'godt' CDRs). The Silver/blue CDRs (based on à system patented by Verbatimi) came onto the markel in 1996, with Ricon's phthatocyanine based silver/silver discs became available in late 1998. There afe a lot of drive manufacturers but very few media manufacturers so if the Discs look the same over 2 different brands then the likelinood is that they were made by the same manufacturer.

## How CDRs are made

Like conventional vinyl discs CDs are based on a spiral track that is preformed onto the blank discs. This track has a width of 0.6 mm and a pitch of $1.6 m m$ but unlike the L.Ps of old it is read from the inside out. This spiral track makes 22,188 revolutions arounti the CD with approximately $600^{\circ}$ track revolutions per millimetre and if unwound the track length would be about 3.5 miles ( 5.6 Km ) long and the data is read at a rate of 150 Kb per second (on single spead drives). The dato is stored from 25 mm from the centre to 58 mm where the lead out starts. The construction is as follows:

- Label
- Scratch Resistant Coating
- UV Cured Lacquer
- Releckive tayer
- Upper Dielectric layer
- Recording layer (the bit that gest changed by the recording laser)
- Lower Dielectric layer
- Polycarbonate substrate

Note that the recording layer lies closer to the label side than the side from which the $C D$ is read therefore it is important not io scratch the label side of the CD or it may become unreadable.

The Orange Boak CDR standard essentiatly spliss the write-able sector into 2 areas. The first is the SUA (System Use Area) and the Information or User Data area. The latter is where your data is stored however the former, which takes up 4 mm of the CDs
surface, acts very much tike a boot area on a hard drive. It tells the CD reader what type of information is stored on the CD and what format this information is in. It is in itseli split into two areas which are the PCA (Power Calibration Area) and the PMA (Program Memory Area).

The use of a PCA is not a new concept when using lasers to engrave. Many years aga when I used CO2 lasers to engrave chrome oxide printing rollers we used to create a test area at one edge of the coller to determine the optimum power settings. These changed fram job to job depending on the gurity of the coating and the power of the laser (which is a dynamic variable, which changed according to the weather). On CDs the PCA is used as a lasef testing area which the recorder uses to determine the optimum power setting for that $\mathrm{CD}_{7}$ thereby allowing for different materials and general physical characteristics (such as recording speed, humidity, ambient temperature and the physical coating of the disc). Every disc will allow up to 99 power test burns and the ruming total is kept in BCD form on the disc itself.

The PMA is split ap into (up to) 99 tracks for Audio CDs with their corresponding start and stop times and into sector addresses for the data files on Data CDs.

The Information area is split into 3 areas which are the Lead in, the program area and the Lead out. The Lead in contains Digital silence on its main channel (there are up to 8 sub-code channets designated ' $P$ ' to "W' which are interleaved with the main data channel and are used for specialist functions on Audio and Data CD players, more on these anon) and the Table of Contents (TOC) in the ' $Q$ ' sub channel. Its primary role is to allow the !aser to synchronise with the pits on the Disc before the start of the data. Note that the length of the lead in is determined by the need to store the TOC for up to 99 tracks.

The Program area contains up to 76 minutes (650Mb) of diata which is divided into a maximun of 99 iracks. Data is not stored as sequential 8 bit byies as would be expected but is instead stored using an algorithm calted Eight to Fourteen modulation (EFM) which creates a 14 bit pattern plus 3 merging bits. The merging bits are used to ensure that the pit and land lengths are no more than 11 bits long and no shorter than 3 bits and Ricoh) came together to develop a rewritable CD designated CD-RW.

This new class of CD allowed the user to erase redundant data and delete individual files. It is classified using the Orange Book III standard and can usuaily be distinguished by its gun metal grey colour as opposed to the gold or green of CDRs.

The technology of CD-RW difiers from CDR in that rather than 'burning' a pit in the recording material it instead creates a phase change in the material. This is not to be confused with the magnetic phase changes as used in the 'supar floppies' where magnetic material has its polarity changed by heating with a laser until it surpasses its Curie point. The methodology employed uses an optical phase change which, unlike the dyes used in COR, uses a crystalline compoond of Indium, Silver, Tellurium and Antimony. This compound has one unique property and that is that if it is heated to a certain temperature (200 Degreas Centigrade) then cooled it becomes crystaline (where it will refiect light) whereas if it is heated to a higher temperature ( $>500$ Degrees Centigrade) and cooled then it becomes amorphous (ie it will absorb light).

In order to achieve this it requires that the writer (or 'burner') is capable of 3 power settings. These are High or Write power (used to create the amorphous state), Erase power (used to melt the recording layer $\because$ creating a crystalline 'erased' structure) and read power which does notalter the state of the recording layer. Beczuse of the necessity to remove the heat quickly from the heated area the structure of a CD-RW is more complex than the CDR. Its layers are:

- Label (optional)
- Printable coating \{optionał)
- Scratch Resistant Coating
- UV Cured Protective layer
- Reflective layer
- Dielectric layer
- Metal Film
- Diefectric layer
- Polycarbonate Substrate
- Protective Jayer (optional)

The advantages to this medium is that it can be erased and written to with a single pass of the laser beam (called direct overwriting) and the process can be repeated
on CDRs. Therefore if a CD player is to read both CD-RW and DVD for instance then it will need a dual wavelength read head. Moreover the media required for high speed ( $4 x$ and above) burning is different to that used for lower speed recordings and this data is encoded onto the Disc itself, Mare information on this topic can be obtained from wunn.emdiagro.net/EM2000/vriterll.htm1. The efiect for the user is that they must select the correct media for their recorder or it may not work.

## File Structure and the Standards

The standard that has been used to designate the data format on CD5 since their inception was ISO 9660 . Indeed writing a file in this format almost guarantees that almost any CD player can read it. It was however designed for pressed Discs or at best session at a time (ie the whole CD is written in one session) recording. It is notoriously inefficient for multi-session use (where data is added at a later date) as it uses at least l3Mb of Disc space for each session (even with tiny data files) and can only accommodate 99 tracks.

In addition its file structure can only allow the use of 8 character filenames, which must only use upper case letters, the numbers 0-9 and the ' ${ }^{\text {. }}$ tharacter and it can only support a directory riepth of 8 levels.

The Optical Storage Technology Association (OSTA) addressed this problem by implementing a new siandard designated ISO13346 UDF (Universal Disc Format) which is packet based, operating system independent and has an improved directory structure thups allowing a more flexible approach to the $\mathrm{CD}-\mathrm{ar}$ a storage medium.

UDF aliows files to be added incrementally with very little wasted overhead and so lends itself better to multi-session and archiving purposes. When writing to a Disc UDF creates a Virtual Alfocation Table (VAT) that is used to describe the physical location of each file. Every time the Disc is added to a new VAT is created which appends the previous VATs thereby creating a directory of pointers to every file written on that disc.

This standard is not compatible with IS09660 particularly as it needs to kriow which fles will be written during a session in


## Series PA20 and PA40 Logic State Analyser

- Ideal for Microcontroller-Based Systems
- $20 / 40 \mathrm{MSa} / \mathrm{s}$
- 16 / 32 Channels
- 128K Samples per Channel
- Advanced Trigger
- Serial Protocol Analysis: RS-232, RS-485, RS-422, SPI, I2C-Bus

SofTec Microsystems UK office
Unit 17/18, Glanyrafon Enterprise Park, Aberystwyth.SY23 3JQ Tel: +44 (0)1970 621030 Fax: +44 (0) 1970621040
Email: info@kanda.com
http://www.softecmicro.com


## Bookshop

## TO COINCIDE WITH THE FJRST PART OF IAN POOLE'S ARTICLE 'DISCOVERING AMATEUR RADIO', WE THOUGHT WE WOULD ASK HIM TO WRITE A REVIEW OF HIS OWN BOOK <br>  <br> 'BASIC RADIO PRINCIPLES AND TECHNOLOGY' FOR THIS MONTH'S BOOKSHOP. IN KEEPING WITH THIS THEME, ALL THE BOOKS COVERED ON THESE TWO PAGES ARE TO DO WITH THE SUBJECT OF RADIO AND AUDIO TECHNOLOGY.

## Basic Radio Principles and Technology by lan Poole <br> The idea for my book Basic Radio

 Principles and Technology came out of my interest in radio techniques and all the different types of applications radio is used ior these days. With the ilexibility that radio systems offer, radio tectnology will be used increasingly as time passes. This makes radio an increasingly ìmportant topic.The book assumes a basic knowledge of electronics Ohms Law, what filters are and such like, but buitds on this foundation. All the topics are described using the bare minimum oif mathematics. In this way it is not a textbook, but it is intended to be an informative text that describes the basic principles and technology behind radio today. To give a goopd view of what the book covers the chapter titeles are as follows: Radio today, yesterday and tomorrow; Radio waves and propagation; Capacitors, inductors and filters; Modulation: Receivers; Transmitters; Antenna systems; Broadcasting; Satellites; Personal communications; Appendix

The first chapter quickly sets the scene by describing where radio is today and how it arived there. From the very earliest attempts by pioneers at the forefront of technology in their

day at the beginning of the wwentieth century and before, to today's high technology scene, the devefopment has been a fascinating story.

The next chapter describes what radio wayes are and how: they travel. It details the different effects that various areas of the atmosphere have, and how radio signals travel over vast distances.
Moving on, the third chapter tells how resonant circuits work. Resonance and tuning is at the very heart of redio tectinology because the required signal on one frequency needs to be accepted whilst unwanted off channel signals need to be rejected. To achieve this there are a variety of different types of filter, and here the basic
concepts are described. Filters described range from simple inductor-capacitor (LC) filters through to high performence crystal filters and the ways of describing their performance.

Chapter four covers the different types of modulation that are used. In order that a radio signal can carry information in the form of sound, video, data or whatever it needs to be modulated. There are a variely of ways this can be done. Simpler forms suich as amplitude modulation (AM) that is used for long, mediurn and short wave broadcasting to some of the digital forms of modulation that are used in data transmission are covered. Receivers and Transmitters are naturally very important. In the following two chapters the basic concepts of both transmitters and receivers are described. The concepts sich as frequency conversion, írequency synthesis and phase locked loops are all covered. Typical block diagrams are given as are the specifications used to define their performance.

Antennas or aerials are also very important. Whilst the theory can become very complicated it is still possible to understand a great deal about this interesting area of radio technology with the minimum of mathematics. In this chapter many of the basics are. outiines with descriptions of many of the more popular forms of antenna. Antennas such as the simple dipole or vertical are detailed as is the Yagi that is almost universilly used for television reception.

There are many different applications of radio, ranging from broadcasting to mobile telecommunications. In the * remaining chapters many applications are described
including some up to date applicatiọns such as digital audio broadcasting or digital radio as it is: now termed. Cellular telecommunications are also described.

Pages: 272pp
Price: $5!5.99$


## Spatial Audio

Exploring the principles and practical considerations oi spatial sound recording and reproduction, Spatial Audio gives particular emphasis to the increasing importance of multichannel surround sound and 3D audio. The rise of increasingly sophisticated spatial sound systems presents an enormous challenge to audio engineers, many of whom are confused by the possibilities and unfamiliar with standards, tormlats, track allocationts, monitoring coniigurations and recording tectiniques.

This is a clear and informative book, which provides a comprehensive study of the current state of the art in spatial audio. It concentrates on the most wîdely used approaches and conilgurations and is an ideal book for anyone wishing to expand their understanding in this area.

Students and lecturers on sound recording and music technology degree courses will find this:an ideal text, and it will also be of major interest to film
and video producers, directors, audio engíneers, audio
technicians, and studio engineers anci technicians.
The Author: Dr Francis Rumsey is a Reader in Sound Recording at the University of Surrey and a Fellow of the Audio Engineering Society.

Pages. 25ipp Ffice: 224.9\%


## Valve and Transistor Audio Amplifiers

At the heart of any audio design is the audio amplifier. Îts performance detcrmines largely the performance of any audio system. Written by a well-known expert on audio technology, this book describes the milestones that have marked the development of audio amplifiers since the earliest days right through to the fatest systems.

Topics covered are as follows: active components; Passive components; Voltage amplifier stages using valves; Valve audio amplifier layouts; Negative feedback: Valve operated power amplifiers; Solid state volfage amplifiers; Early solid-state amplifiers; Contemporary power amplifier designs; Preamplifiers; and Power supplies.

Including classic amps with valves at their heart and exciting new desigas using the latest components, this book is the complete guide to the world of audio amplifier design.

The Author: John Linsley Hood is well known as an author and for being one of the finest audio designers around, having been a pioneer of design in the post-valve
err. He pomments en doyelapments in audio in magazines such as the Gramophone, Electranics in Action and Electronics \& Wireless World,

Feges: 272pp
Prics: $£ 19.99$


## Valve Radio and Audio Repair Handbook

This book is a practical manual made all the more interesting for the advice, opinions and recollections contained within. Aimed at professionals and enthusiasts, dealers and collectors, this is a vorthwhile. read for anyone who works with or has an interest in antique radio and gramophone equipment.

It places its emphasis on the practicalities of repairing and restoring, keeping technica! content to a minimum but explaining it where it arises in a way that can be followed by readers with no background in electronics. Readers vho have a good grounding in efectranics but wish to learn more about the practical aspects will benefit from the emphasis given to hands-on repair work, covering mechanical as well as electrical aspects of sewicing.
This book is an expanded and updated version of the author's classic Prectical Handbook of Valve Radio Repair. Chapter headings are as follows: Eleciricity and magnetism; Voltage, current, resistance and Ohn's Law; Real life resistors; Concensers; Tuning; Valves; Principles of transmission and reception; Practical receiver design; Mains valyes and power supplies; Special features of superhets; Battery and mains
battery portable receivers; Automobile receivers; Frequency modulation; Tools for servicing radio receivers; Safety precautions; Fault finding; Repaiting power supply stages; Finding fautts on output stages; Faults on detector/AVC/AF amplifier stages; Finding fauts on If amplifiers; Faults on frequency-changer circuits; Repairing American "midget" receivers; Repairing faults on automobile radios; Repairing battery operated receivers; Repairing FM and AM/FM receivers; Public address and high fidelity amplifiers; Common abbreviations; Appendices.

The Author: Chas Miller has been engaged professionally in radio work since 1948 and in technical journatism since the early 1970's. He is the editor of a bimonthly enthusiast's magazine called The Radiaphite.

Pages: 288pp
Price. E19.59

## Self on Audio

Douglas Self has been writing for Electronics World magazine for 20 years, offering his own insights into the scientific methods of electronics design. This book is a collection of the best of these articles, spanning two decades of amplifier technology but biased strongly towards more recent material. The articles include self-build projects as well as design ideas and guidance for the professional audio designer. The result is a


## Comperition NERS



## ST7 Starter Kit Compeition

Thank you to everyone who entered our free prize draw in the hope of winning one of five \$57 Flash Starter Kits, retailing at a value of $\$ 160$ each. We had lots of entries and the prizes are now on their way to the following five lucky people:

Donald Hopkins
R. P. Horstey

Graham Knott
dames K. Williams
Alex Young

## Reader Profile Survey.

A big thank you to everyone who toos the time to fill in and send to us July's Reader Profile Survey. All entries vere filed away in a folder and, because ve didn't want to fold them up, we delved into it at random and picked out an entry.
Unfortunately (for reasons you either know or will discover if you look back at that issue) it didn't have a name or address on it. The next one we picked did have these, and so
congratulations go to Mr J.
 Dussart of Morpeth tho wins the book 'Programming and Customising the AVR Micro Controller' by Dhananjay V. Gadre.

## Robot Wars Competition.

Whe had a lot of entries for this competition, afl of which were well thoughs out and obviously had a lof of work put into them. We finatly decided on nine winters, and
 we will run their stories in consecutive issues, starting with The Engineer's Dream' by Linton Rapid (undoubtedly the funniest of our entries; and certainly the most topical).
${ }^{\text {'The Hacking Robot' by }}$ Daniel Grogan was solected as the winning entry. Daniel is one of our youngest readers, aged just twelve.
Look out for his story in our Christmas issue.

## Winners - Robot Wars Pull-And-Go Models

 'Ramirez' by Davió ClarkThe Mage With No Name' by Nik Keliy 'Cold Harmony' by Belinda Lane 'Worlds Beyond Our Own' by Michael Oxford The Engineer's Dream' by Linton Rapid 'The Curious Lift' by Anthony T. F. Smith 'Atternative Technology' by Daniel Westman 'Mistaken Identity Chip' by L L. Winterfield

Winner - Robot Wars Remote Controfled Matilda
'The Hacking Robot' by Daniei Grogan

one reappeared immediately, 'Look, thîs might be your dream but it's my magazine - I'll have a little respect please'.
'Okay, I said. 'Sorry'. The keyboard paintedly refused to disappear. ${ }^{2} \mathrm{So}^{\text {r }}$ I $I$ continued, 'who else works on the magazina around here? ${ }^{\text {r }}$
'Well, there's sonathan oyer there - he's the one with the shirt made out of press releases.
'Because he's the news editor, right?'

## 'You're quick, aren't you'.

This is a tree story of a dream I had recenty. It began with Marvin the Paranoid Android reading excerpts from Electronics and Beyond magazine: 'Optocoupler Circuits? Don't talk to me abourt Optocoupler Circuits'. He went on to say he had a terrible pain in the all the diodes down his left hand side. I remembered about the lazy person's diode tester articte on page 28. I asked him about it, and he told tre he had been given the magazine by some ape-descended humanoid who didn't seem to realise that if he had a pain in all the diodes down his left hand side, there was obviously something wrong with all the diodes and it didn't take a brais the size of a planet to realise it. Ape-descended humanoids? Don't talk to him about apedescended humanoids.
I took a walk into the darkness and suddenly faund myself surrounded by a crowd of people. There was an anticipatory hush, and then the lights came on. Everybody cheered; but I couldn't for the life of me work out why. I turned and asked the man who was standing next to me. He was entirely in black-and-white fwhich did seem strange but it was a dream, after all). 'Dor't ask me,' he said, 'i'm still pondering the peculiarities of email',
I walked around, pushing my way through the crowd, and finaliy managed to get to something that looked a little bit like some sort of stand at an
exhibition. 'Oh,' I said', 'this must be the E3 expo in Los Angetes tilat I've been reading about'.
'Wo,' said the woman behind the stand, 'and, before you ask, zt's nat the Micromause event in South Wales either'.
'What is it, then?' I asked her.
'This is the August edition of Electronics and Beyond. You're inside it'. I am ? That's a bit weird isn't it?'
'Well, yes, but it is your dream'.
'Fair enough. Erms... Who am I imagining all these people are then?'
These? These are the readers. Oh, and I think there are a fev contributors in there as well. There's Gaxin Cheeseman; look'.
'Where?'
'Over there, knee deep in water'.
'Doesn't he realise? Why doesn't he get out of it?'
'He's got his flood alarm raund his neck and the water hasn't got that high yet'.
'Oh'.
'Make a lot of serise, your dreams, don't they'.
'I would say this has got to be somewhere near the benchmark. So who are you then?
'I'm Natasha Nagaoka, the magazine's editor'.
'Oh, so I suppose that would explain why you've got a keyboard on your head'.
'I have?' She reached up and snatched it off in annoyance. Another
...'I took a walk into the darkness and suddenly found my self surrounded by a crowd of people. lhere was an anticipatury hush, and then the lights came on. Everybody cheered...
'Okay, okay, no need to be sarcastic'.
Natasha went on to point out all the other people who wark on the magazine. She then turned into Marvin the Paranoid Android, who showed me the way to the airlock.

Outside the spacecraft there was a whole planet full of atternative fechnology. I parachuted to earth and, as was the case with the spacecraft, I had no idea from where the parachute came, nor was I going to ask.

The planet had wind powered green street lamps instead of trees. A semiconductor rabbit bounded past. I ran after it and grabbed it 'Where's all the trees?' I asked.
'They've been cut down to make pages for the Bookshop. We replaced them with yirtual trees, but they got cut down to make all the pages for Web Electronics. Now put me down, I'm late for the Geographic Information Systems Exhibition at Earl's Court, Landon'.

I put the semiconductor rabbit down and walked on for a little bit longer. This was a very strange dream, I told mysel. Now how exactly could I find my way out or it?
'Here you are,' said Chris Wade, CEO of Cambridge Positioning Systems, appearing suddenly from behind a wind powered green street lamp. This is CursortM, and it will help you find your way home again'.
'Thank you Chris,' I said, 'but I don't really think I need it now - I can hear my wireless of yesteryear going off in the real world'.
'Oh, well,' said Chris. 'Just think me up next time you are last in a dream and don't know how to get out of it'. I thanked him, woke up and switched my restored antique radio off.

Just as an epilogue to my dream, here is what happened next:
Whilst brusting my teeth I thought to myself: "that dream woutd make an excellent idea for a short story for the Electranics and Beyond Robot Wars competition'. But that had been in the July issue and I had been reading, the previous night, from the August one:

I humied high and fow, all around the house, but eventually realised that I had left July's issue of the magazine at work. When I eventually did find it, I discovered that the deadline for the competition was only a few days away. I had to act fast.

So here it is - written on my lunch hour and sent in with practically no proofreading at all. I hope it arrives in time. I would really like to win a miniature Robot Wars model. Don't give me the big one though, please! You vant to know why? Welt, that would be another story.

## The End.

 ewping it is. in the author's opinion, a rmuch more ridiculous parson than any of the ideas cratined in this stery.

The captain of The Pelican was is no hurry. In ail his lonely journeying he knew that this was the most dangerous part of his voyage Even ${ }^{\text {'Company }}{ }^{2}$ shipss, with the most sophisticated navigation technalogy could come to grief here. Room for manoeuvring was tight and, in places, the very movement of a spacecraft could disturb the difiting rocks and debris, tearing great boulders from their orbits.

More than one craft had been crushed here. More than one pilot hat cause to regret ever entering the Asteroid Belt.

Captain William Shuttleworth was nervous. He was sweating now. He had been here before and this journey to the facility on $P_{x}$ always gave him nightmares.

He had switched of his engines and was dififting towards the swirling debris, rocks and minor worlds. He drifted in and became part of the flow, the ship progressing by carefully balancing local gravitational fields, pullireg itseli towards the larger boulders and pushing the smaller rocks away.

It was a strange sight, had there been anyone there to observe it - an old freighter - an ex 'Company' ship sold off for scrap.

Its once smart blue and gold livery was now scraped and dented. Its rugby ball shaped hull had been patched and mended many times, and eacti time painted with whatever colour was available - mostly yellow, so that it now iesembled an overripe melon. A ridiculous object.

After several hours of skilful navigating: the pilot was extausted. He was flying in utter darkness. Here on the edge of the solar system the sun's weak rays could not penetrate through the footing rocks and rubble, and the ship's sparchligits would only have lis up the dense chouds of dust.

He was drifting from one navigation buoy to the next, picking up their radio signals which, although extremely powerful, hardiy reäthed from one beacan to the next. The entire electromagnetic spectrum was distorted here and communication was seldom possible.
largest asteroids and was probably the Company's grealest, engineering accomplishment. It was considered an essential step in the colonising of the major planets. .

These threa fragments of past worlds were now held together with the Company's Gravitation Manipulation Technology, which, although it had proved troublesome in other sectors, had here made it possible to make one planet large enough to build a base for the miners and a. farm to provide their food.

The pelican was now speeding over the rough, dusty terrain. The pilot had switched on his headlights and below his ship he could see the long manotonous rows of crops that stretched from horizon to horizon.

Here and there he could pick out the movement of automated tractors, busy cutting down and grinding up the crop of Giant-Cabbage-Trees. Another triumph for the Company's botanists, these grey-green, leathery plants were geneticalfy engineered to grow in this dark, airiess place. Once processed in the farm / factory they would provide all the food, oil and plastic products neecied by the miners on the other side of the planet.

The radio was working now. His ship had already identified liself to the farm's inhabitants and eager voices shattered the silence. It was a young andit's voice calling. Uncle Billy, Uncle Billy, îs that really you? Come in Uncie Blily'.

Then a slightly deeper voice joined in. 'Come in Pelican. You are cleared to land. Uncle Bill, it's great to see The Pelican again. Mum and Dad will be so pleased to see you, especiatly Mum. She's not been too welli but she always says your visits are a tonic'.

Later at the farmz the family sethled around the stove to prepare the special tea that Mery had prepared, but Captain Billy woutd eat none of it. He was on a strict dief $f_{2}$ he said. However, he partook liberally of the brandy, which he had provided and soon he was singing and dencing arounde the room. Uncle Billy certainly knew how to liven
Although he was expected, the people he was visiting did not know that he was coming today.

At last his

## instruments

detected the facility's call signal and computed his approach to 'Shutalewarth Farm',

Captatn William's brotiter, Victior, lived here. Together with his wife, Mary, their two sons, Peter and Mathew, and their one assistant, Mr Brown.

The Shuttleworths' Farm covered an area bigger than Australia. They were the only people living in the southern hemisphere and, epart from the mine complex, their farm/iactory was the only building on Px .

Px was a composite world. It had been assembled from the three

## A short story by Michael Oxforc

things up.
It had been two years since his last visil and the family wanted to know all about his woyages, especially if he had managed to visit Earth. He shook his head. 'Not this time, I'm afraid, but everybody's talking about the wonderibl work the Company has done there. 'New Earth', they're cailing it now. The restoration and repair work is siarting to have a marvellous result. I do believe everything is going to
pian. Your new farm on Earth will be ready and waiting for you when you retire. Five more years and you will be home on Earth. Your boys will be at The Academy. It will all have been worthwhilet.
'But what of you Billy?' she replied. 'I don't know why you tert the Company. You had a good job. Five more years and you too mould have been retiring with a nice fat pension'.

The captain just shrugged his shoudders. 'I'm happier doing what I do, traveliing around meeting people. I'm happy. What more do I want?'

But Peter wanted to know more. 'Did you really know The Chiairman?. Were you really his right-hand man like mother says you were? Can you really get me into The Academy to become a space-pilot?'
'Enough, enough,' chuckled his father. 'You will tire your uncle out. Off to bed with the pair of yous.

But Bitly fad suddenly become serious. 'Let them be,' he said, 'it's history, after all,' and, gathering the boys to him, he sat them down on the sola and began to tell a story.
'Long ago, when your father and' mother and myself yere just young paple, just starting out, I worked in the market selling meat from my tather's stall. Next to our stall there was a young man who sold organic vegetables. He was a man full of ideas and charisma. $\frac{3}{}$ remember, he kept saying, ${ }^{\text {TThere must be a greener way }}$ to do things'. We used to converse during sfack times and eventually he convinced me to become a vegetarian. We set up a busiress together and called it 'The Greener Way Company' later known as just The Company.

Malcolm was an idealist, but he was also a superb businessman. He hed, as they say, panache. Together we built the business up. We had our own farms, ve had our own supernarkets, transport and shïpping line. We operatad in every country on Erth and we vere bigger than many small countries. It was a time when people mistrusted big business. They blamed it for the politution and diseases that were plaguing the planet. But they trusted the company. They loved Maicolm. He had become a celebrity, always appearing on television chat shows, and always saying, 'believe in me , believe in the greener way'.

Well, the Company just kept growing, swallowing up many smaller firms and even gobbling up the multinationals. Then, one day, Malcolm announced he was giving everyone in the world a share in the company. The sceptics said it was just a gimmick, but the people were delighted. They asked Malcolm to become World President. When he accepted, the company became, effectively, the wofld government.
'Didn't giving those shares avay devalue your share in the company, Unele?'
'Oh yes, of course, in monetary terms is did; but we put fifty-one percent into a trust. That way we kept control and now we had the power we wanted. When 'we' told the countries to control their emissions, they ilmped to it. But it wasn't enough. The vorld was
dying, the sea already putrid and the land poisoned. Ninety-five percent of species had become exinct. It was a terrible time.
It was then that Malcolm had bis great inspiration. 'To save the Earth we must leave it. The world is tired,' he said. 'It must be allowed to rest and given time to renew itself. We already have bases on the Moon. Now we must colonise the planets'.

Thousands of spacecraft, more technically advanced than anything that had come before, were built and, everyone on Earih happily moved to live on Mars and on Jupiter's moons. That is why you and your family are living here on Px. Your parents signed a contract with the Company to wark her for thirty years. In return, the Company will provide them with a new farm and a pension when they go hame.
'Five mare Peter, anly five more years and you and Matthew here will be living on Earth and studying at The Academy'.
'Witl they reatly take me at The Academy, Uncle?'
'Sure to, Peier. Your parents are Company personnel. The Company always looks after its own. How oid are you now?
'Seventeen, Uncle and Matt is sixteen?
'Weli then, in five years, you will be just the right age to enter The Academy. If you really want to become a space pilot you must keep up on your studies. You will need very high grades. What about you, Mathew? Do you want to be a space pilot too?* 'Oh no, Uncle Billy. I'm studying electronics and computing. I'm going to be an engineer?.
> .'They blamed it for the pollution and diseases that were plaguing
> the planet. But they trustep tye company. They loved Malcolm.....
'Well now, I think your father is right; it is bedtime. Of you go, I'll see you in the morning'.

Despite his promise to the boys to see them in the morning, their uncle stayed only for one rest period. He was nervous that the miners would begin their periodic movement of ore through the asteroids. The Gravitation Manipulation Technique that they used created tunnels through the debris and long trains of ore were pushed through them to be collected by giant freighters waiting on the perimeter. At such times, the magnetic flux it created made navigation impossible.
'Kiss them goodbye for me,' he said, shaking Victor's hand and embracing his fearful sister-in-law. 'Telf them I'll be back is another fwo years'.

And then he was off. They watched his ship floating away over the grey-green cabbages until The Pelican's lights faded into the distance and were lost in the utter darkness of the endiess night.

It wasn't until much later that they discovered that Peter was missing. They assumed he had sneaked on board The Pelican. Frantically they tried to radio the departing ship, but the only sound that came from their radio was the strange whistles and clitks and wails that Matthew had often called the music of the stars.

The End.


# TURNKEY SERVICE SOLUThebest approach? 

## WHY SHOULD ORGANISATIONS LOOKING TO MANAGE MULTIPLE ELECTRONIC DEVICES CONSIDER A SINGLE MAINTENANCE CONTRACTOR? DARELL SMITHSON EXPLAINS.

Fis beyond doubt that a key part of the decision-making process when buying a new electrical appliance (be it a washing machine, in-car CD or network sever) is whether to take out a service management agreement. It's virtually an automatic decision in the case of a server $r_{\text {}}$ but the question stifl remains.
Hovever, with so many organisations looking for the best deals when buying new eģipment, it's unlikely anymore that every appliance will be supplied by the same vendory just look around your office... are all the PCsifrom the same vendor? Probably not:

In this situation, when an appliance does fais, people are left scrambing around looking for the right contact numbers, service agreement, department name etc, etc, al! for each and every individual brand of appliance. Whitst all this is taking place, the organisation is losing money and prodictivity. Surely there has to be a way for an organisation's overall service needs to be catered for under an umbrella. agreement, by one vendar?

## Minimising downtime

Despite manufacturers' claims, nothing is infallible! With the best will in the worid, there will be occasions (albeit infrequent) when problems arise and repairs are necessary. This is when the service engineer becomes your best friend.
With technology adyancing at exponential rates, and appliances now supporting more and more critical applications, the thought of downtime is unacceptable. As such, manufacturers offer numerous after-sales packages to provide users with the assurance that should a product suffer from a failure of some kind, a senvice engineer will be on sland-by to offer assistance. Domestically speaking, such service manayement agreements (usually defined as extended suarranty packages) may appear costly in the first-instance, but when weighed up against an independent engineer's cali-out and hourly charges, could reap benefits in only a single use.
Witwin the conporate arena, service management agreements play a more integrai role in the intital purchase of a product. When commiting to the purchase of a new piece of equipment, e.g. a departmental printer, one must be assured that not only is the organisation purchasing at the best price available, but that it is atso accompanied by a comprehenisive service package. In the event of failure, the cost to the oryantsation in loss of productivity alone could easily outstrip the initial capital outlay for the equipment.

## The grim reality

With more and more vendors offering competitive products both in ferms of price and functionality, gone are the days when an organisation bought 'brand-X' alone. In today's stereotypical organisation, mutitiple brands co-exist. Therefore, with several different vendors all operating within one organisation, one musi consider the ramifications on the service manager.
Each individual vendor may offer a uniqquely tailored service solution for its own range of products, which means that an organisation could realistically hold multiple agreements for multiple vendors. For example, consider the possibility that "brand-X' operates six difierent products within a particular company, as does four other vendors, each in turn offering a tritored service agreement for each product (email server, network printer; uninterruptible power supply [UPS], PC etc). In the event of one of these products failing and an engineering callout being required, the host orgànisation must sift through numerous contracts in order to find the correct contract for the correct piece of equipment manufactured by a particular vendor, and so on. The amount of time simply taken to identify the appropriate service department/contact may have potentially cost the organisation thousands in lost productivity. So, one must ask the all too obvious question. . why hasn't someane devised a better methodology for multiple product servicing?

## One for all, and all for one

An organisation neenis rapid reaction to any tectinical problem that it may iace, but cannot necessarity afiord the time to deal with multiple service contracts. To address this issue, a select number of organisations have begun to look at how à new service model can be executed. This has been particularly prevalent within the power and electronics industry.
Within this sector, the implications caused by downtime can be catastrophic. Take for instance the ramifications of an Internet Service Provider (ISP) suffering a power outage, and all of its servers being down for a period of time: The consequences to its tusiness, and the business of its users, could be costly.
As with any other organisation, when purchasing equipment ${ }_{2}$ companies in this sector look for the best specification and price no matter the brand, so it is likely that multiple brands co-exist side-by-side. Hovever, this is a niche market, and whilst different brands may offer similar performance (and be purchased on this basis), the exact mechanics are individual and require experts to maintain them. So, this then brings us back to the premise that many brands generally mean many contracts? Not necessarily. Enter the complete service solution.

## Total Assurance

In essence, the complete service solution is a simple idea - orie organisation to provide the complete service management for a!! devices. In practice, it is not quite that simple. For example, it is unlikely that a
 photocopier engineer could provide technical support for a server fault!
Behind the complete service solution lies the fundamental premise of service management - expert technical assistance. As such, the complete service solution offers expert assistance for a specific genre of products, be they photocopiers or UPSs. Let us take the UPS as our exariple. The UPS is niche product (particularly in the high-end segment where a single unit may involve a five figure capital outlay), and whist it may appear to the layman that a UPS is a UPS, in reality each untit can be fundamentally different. It is hard to directly compare tvo manufacturer's UPSS, as each unit integrates inherently individual technology and spectications around a commen design - that of offering $24 \times 7$ power protection and assurance. The UPS offers critical support so in furn needis service management to match its critical nature.

Within this market place, an immediate response to any service need is imperative. This is why certain manufacturers in the industry have paid close attention to the traditionat service management problems, and have devoted time to evolve this practice into a complete one-stop service solution.

One of the flaws of the traditional service madel is the time it may take for an organisation to source the correct service agreement for carrect product. Within the UPS industry, the problem of multiple brands co-existing is prevalent, which has led users to demand a more focused. solution. In response to this, the industry has devised two models of service management: Third party service management - within this model, a single manufacturer operates as the sole service provider to the custorner, thus providing direct service and support to every brand within the host organisation. In the event of a faiture, the user contacts the manufacerrer, and it will send one of its service engineers to address the technizal problem...in the RAC or AA mould! Despite the apparent advantages of this method fone contact for all servicing needs), the manufacturer must be able to service alt brands of UPS to a high level. As aforementioned, all UPSs encompats individual specifications and technologies, sa it would be essential for the managing organisation to employ expert engineers in all of the UPSS currently in the marketplace an impractical solution.
Outsourced management ('Total Support') - operating along simblar lines to the model above, the oftsourced management solution is executed through a single manufacturer acting as a service facilitator (or agreement host). In the event of a failure, the user contarts the chosen host manufacturer for technical support. Once the call has been received, it is then analysed to discover which particular brand of UPS is at fault and whether the agreement host is equipped to support the device in question. Instead of sending the host manufacturer's own
service engineer to service all manner of units, this service model means that the hast manufacturer will (where necessary) outsource the maintenance of a particular unit to the specific vendor. Through this practice, the user is benefitiong from cost-effective, vendor-specific service management whilst enjoying a centralised support contact process.
Of the two models above, the outsourced management method offers the user the advantages of a focused service management agreement without the aggrayation of having to deal with multiple contracts. Within the high-end UPS sector, Total Support has been recognised as the optimum sevvice management method and bas received recognition From organisations such as Telewest, Tesco and Bank of Scotiand. However, should this practice be restricted to just the high-end electraniss industry?

## No job too small!

Due to the critical nature of the UPS and its importance within an organisstion, users are demanding Total Support across the entire range (from small networks to enterprises). Traditionally, smaller units have not been covered by service management agreements such as Total Support, but with advancing technology aliowing smaller and smaller units to support larger systerms, users are demanding the same level of service management as their larger counterparts.
As such, manufacterers have adapted the Total Support model to cater for this sector. An example of how the applications for such a sevice model may operate is in supermarkets, where the organisation-wide EPOS cashier system may be supported by a large UPS, but individual tills have their own separate UPSs. Larger UPSS may require specialised support (from the host organisation or outsourced vendor), but in most cases surrounding smatler UPSS, immediate support can be offered by
the host organisation as the majority of failures in these units are to do with the natural life-span of the internal batteries. In cases such as these, the host is able to hot-swap the batteries on site no matter the brand of UPS. Through Total Support, the supermarket tould call on technical support for all size of UPSS, thus assorring power protection for all of its systerns.

## And the future . . .?

Through the development of Total Support service management agreements, the electrical and electronics industry is beginning to appreciate the needs of the user. Whereas vendor-specific service agreements offer excellent service and assurance, such provision is compromised by reality - the multiple brand conundrum.
However, within marketplaces such as the power sector, manufacturers are now offering customer-iriendly service packages. The provision of a centrally managed, outsourced service management agreement is a simple concept, and one that provides the customer with $24 \times 7$ assurance that no matter the fautt (in eilher small or large units), tectinical expertise will be available to offer comprehenisive service support. After years of operating within the constraints of the traditional service management agreement, one can only speculate that more and more customers will begin to migrate to a Total Support methodology.

Darrell Smilhson is Service Manager at MGE UPS Systems Ltd. MGE conceived the Total Support service model as part of a slritegic focus on the servicing side of the organisation. Since its inception. The model has contributed significantly to the company's overall growth and position in the markel, culminating in a 29 percent year ent increase in tumbver.

## Product Review



THE MINIDISC HAS NEVER REALLY TAKEN OFF IN THE WAY THAT THE DEVELOPERS WOULD HAVE LIKED IT TO, BUT HAS STILL SOLD QUITE CONSISTENTLY NEVERTHELESS. EVEN IF CURRENT AND EMERGING AUDIO TECHNOLOGY OUTPACES IT, THERE ARE ENOUGH PEOPLE OWNING MINIDISC PLAYERS NOW FOR BLANK MINIDISCS TO BE AVAILABLE THROUGH SHOPS WELL INTO THE FUTURE EVEN IF SALES OF THE PLAYERS DROP OFF AND DISAPPEAR ALTOGETHER. JONATHAN ALDRED RECENTLY BOUGHT A TOP-OF-THE-RANGE PORTABLE MINIDISC PLAYER. HERE HE NOT ONLY REVIEWS THE PRODUCT BUT ALSO EXPLAINS WHY HE CHOSE MINIDISC AS A FORMAT, WHEN HE HAD THE CHOICE OF TAPE, CD OR EVEN MP3 FLASH MEMORY CARDS.

1never liked vinyl as a recording medium. Some people still Swear that you get the best sound reproduction off a vinyl record, but if that inctudes hissing, crackling and the occasional neade-jump, then I'd rather not listen to the record at all. I still have a big stack of favourite records that I will never sell, but am aiso likely never to play on a record player ever again. I keep them for sentimental reasons and have well over half of the tracks that are on these records also on CD.

But I must admit that viryt does have one redeeming quality - with the lights down low or the room lit up by candlelight, the gentle hissing and crackling in the backgrosind of the right kind of music, played on a recoró player can be very fomantic indeed. Can anyone truly say the same of an audiotape?

The answer has got to be no. Tapes can be recorded on again and again, and it is a sale bet that if you lend a tape to someone he or she witl be able to go straight to a piece of audio equipment capable of playing it, but that is where the good points of the medium come to an end.
A few years ago it bought a nevy Hi-Fi. It was very expensive and had all the features I wanted three disc changer, fivespeaker Dolby surround sound... I could go on, but this is not a review of my Hi-F. Basically, though, I was happy that it had eyerything I needed. For about $£ 50$ more I cauld have had one with a MiniDisc player built into it. Why didn't I pay the extra? After alt I knew what a MiniDisc was and what advantages it could bring.
Well, the problem with the MiniDisc is that it has never really taken off in the way that Sony hoped it would. When it first came out it was hailed as the replacement for the audiotape - there were even aloums released on the format. And then it seemed to disappear very quickly into obscurity. You can lind blank MiniDiscs on sale in shops, but in the UK and elsewhere the MiniDisc remains a steady selier but with a presence that ranks quite low within the putlic's consciousness.
And now there are CD-writers on the market, and MP3 players that can store compressed audio data onto an almost unbelievably tiny fash memory card. Will the audiotope finally die out as a medium? Perhaps it will, but not in the foreseeable future. More importantly, how will the Minidisc fare agains! this new competition?
At the time I bought my Hi-Fi, the MiniDisc had such a low-key presence in general that I really did think it was on its way out, and if I wanted to record something I might as well record it on tape because then I would be able to play it on the car stereo or my walkman. Since then I have become increasingly fed up with autiotapes as, one after one, all my old concert recordings have gone distorted and, as a result of that, into the bin. It wasn't my Hi-Fi's fault - I know that because I checked on other cassette players. I still use the tape deck though - mainly because I have very little other choice.
Recently I decided to buy a CD Walkman. After only five minutes in the shop I had changed my mind - I had noticed the MiniDise players thal were placed next to them. I had also noticed the MP3 players. I decided to go aypy and think about it. The next week I came back and
bought the MiniDisc player featured in this issue's Product Review. The reasons - it was smaller and ligiter than the CD and tape players and because of its compression technology could store two or even four times the usual amount of music on' a MiniDisc - 160 or 320 minutes instead of 80.

I spurned the MP3 players for three reasons - firsily I can play MP3 on my computer at homes, as I have very good speakers built into the monitor. Secondly, I am not likely to want to put any of the MP3 files I download anto a Walkman, as the ones I play on the Walkman are all going to be off albums I have bought. Thirdly, MiniDiscs are extremely cheap nowadays and I can mix and match my CD collection as I please on any number of discs - why would I want my entire CD collection on one flash memory card? I am baroly going to want to listen to a hundred CDs or so all in one gö. It might offer a choice, but so does picking up a couple of MiniDiscs befare you go out wherever youtre going.

So which one did I buy? Well, I had decided that I wanted one with a buitit in radio and that left me with a choice of one (the Sony MZ-G750, E200). There may be other models by other manufacturers, but this one had all the features you could possibly have in a MiniDisc player and so it did not matier at all to me that it was the onfy one of its kind available in the shop. The MZ-G750 comes with an optical cable for connecting it to any digital source that allows an optical-out connection. There is also an optiona! analogue cable (RK-G136) for connecting it to Hi-F equipment with audio out jacks (not all HiFi's or radios will have these, so do be aware that you need these to record from radio or other analogue sources). You cannot record from the built in radio - which is actually located in the in-line remote - so that is also something you should be avare of before purchasing. If you do want to record from the radio, you need to be connected up to a suitable source by means of the optional analogue cable. I was horrifited, upon getting back home again, to discover that my Hi-Fi did not have the necessary analague-out connections. I was glad I hadn't bought the cable (if anyone out there can teil me if it is possible to connect my MiniDisc player to my Hi-Fi by means of the headphone socket, by the way, I wosld be extremely grateful). I will want to be able to record from the radio one day, so this is something I must eventually sort out.
Radio aside, the main reason I bought the Walkman was to listen to my oun selection of music from my own CDs. After charging up the rechargeable battery using the adapter supplied, I put in a blank MiniDisc and recorded the same track at each of the three different compression modes. LP4 did not sound quite as gooid as Normal - the best way I can describe it is that the sound sounded a tittle duli. LP2 however was just as clear as Normal, and this allowed for 2 hours and 40 minutes of recording time on each 80 minute disc. This equated to three Stereophonics albums, and a small selection of 'B-sides' (they were from a CD, soI suppose you might call them 'zdditional tracks' -'B-sides' sounds better though). Another compilation of tracks by

Radiohead, REM, Catatonia and three other bands equated to 42 difierent tracks on the one difc. Another disc that 1 recorded a few days later took up 29, but only because all those vere dance and garage music tracks, which tend to be considerably longer. You can mix and match between the different record/play mades if you want to - one track can be LP2, the next LP4 and the next one Normal. The ' remaining time left for recording, as shown on the display in recording-standby, changes every time you alter the default recording mode.

I tried the earphones out. They were good but uncomfortable. Other people might not lind them sa, but I prefer headphones and I had bought a new lightweight pair at the same time because my 'closed-cup' ones were too heavy and unsightly to take with me outside.

The shockprotection is excellent I tried it out on the tus, which was shaking about all over the place, but stopped short of giving it a more rigorous test. I had, after all, just bought it and was not going to siake it any more than 1 had to. The radio, which uses the in-line's connecting wire as an aerial, kept cutting out though. I was far from pleased with this but the problem disappeared the next time I charged up the main unit. The instruction manual reiglects to say that you should menuelly onto the disc using the unit) are not shown on the remote, like they are on other models. This is because of the radio circuit being in there, but there is a display that shows the track number and volume. The names, visible on the unit, can be as long as 200 characters and scroll smoothly across the screen whenever you select a track.

The remote can be used to select a track, play, stop, cuse, review, alter the volurne, change radio station or band, and switch the unit off altogether. It is well laid out and I very quickly learnt how to do all of these things without looking.

Tracks on a MiniDisc can, of course, be moved around or erased. This is easily done and the unit can be set so as to autornatically record on free space whenever a signal is received or record over a whole disc without havirg to go to the trouble of erasing. You can

choose to play tracks randomly or a number of times if you wish. You can also choose between three different hass settings. There is a decibel indicator on the screen and an indicator of remaining battery time.

The more money you pay for a MiniDisc Walkman, the more hours of music you can get out of the battery. For this model you will not need to recharge again for 14 hours if playing at LP2 (11.5 at Normal), or 6 (or 4) hours if recording. Normally, however, you would record with the adaptor plugged in. The times given far playing from the Walkman will reduce if you alternate between the disc and the radio but only slightly.

If you buy an optional microphone (mono or stereo), you can use the unit as a dictation machine. This has significant advantages over the use of chip-based dictation machines, as you can keep whatever you have recorded and will never have to erase over it.

All in all, this is a durable, light and stylish Minipisc player that I am very happy with and would recommend very highiy.

## What is a MinjDisc and how does it work?

Minibiscs were developed by Sony in 1992 and are made by a number of manufacturers. The Sony ones come in a range of five different colours, through which the actual disc itseli can be seen. Recordable MDs use magneto-optical technology, which allows you to retord a milkion times without any loss of quatity (remember that old advert where the skeleton was still recording on his videotape even though he had long lost his eyeballs, ears and brain? Can it be that the people at Sony actually did re-write over a MiniDisc that many times?). There is no distortion, hiss or noise interference - like a CD the MiniDisc is entirely digital.

A laser inside the recording unit heats up the disc and demagnetises its magnetic layer. A magnetic field is then applied and the demagnetised disc stores atl these 'zeros and ones' on one side only of the 2.5 inch, plastic enclosed diskette. A digital compression technology called ÄR ĂC (Adaptive TRansform Acoustic Coding) stores more sound in less space by extracting and writing onfy those frequency components of the audio source that can actually be heard by the human ear.

Positions, lengths and names of all the tracks on the disc are stored in an area of the disc called the TOC (Table Of Contents). The player reads this every time you insert a nev disc, or writes to it every time you secord, move, name or rename a track.

When buying MiniDises it is always advisable to buy the ones that can hold 80 minutes at normal record and play modes. The differente in price between these and ones that hoid less music is not all that great, and remember - unlike audiotopes, you can use and reuse these durable diskettes practically for aver.

## Practice Amplifier

- he design operates from a $9 V$ battery and features a '4uz' effect and basic tone controls. The circuit uses easily available components and may be constructed in just a few hours:


## How daes it work?

Figure 1 shows the circuit diagram of the amplifier. It effectively consists of a preamplifier stage (IC3) foltowed by a small power amplifier based around the LM386 IC (IC2). Power is switched to the circuit by toggle switch Sl. Diode DI provides protection if the power supply is accidentally connected with the incorrect polarity, Capacitor C4 provides high freguency supply decoupling close to ICL. The input signal (from the guitar pickup) is connected betveen terminals P3 (sigial) and $\mathrm{P4}$ (ground). The input signal is applied to the non-inverting input of operationat amplifier ICI via coupting capacitor Cl . Resistors R1 to R3 bias the op-amp input to approximately hatf of the supply voltage with C2 providing decoupling. The maximum gazin of the preamplifier stage is determined by the values of resistors R4 and $R 5$ together with variable resistor VRI. When the preamplifier output signal is at a relatively low level,
diodes D2 to D5 do not conduct and the output vaveform is simply an amplified version of that at the input. Adjusting the setting of VR1 alfects the gain of the prearnplifier. A bigher resistance setting results in increased gain. When the output signal level exceeds the point where the diodes start to conduct, the gain is feduced with the resuft that the output signal is effectively clipped. This part of the circuit is used to create a fuzz effect.

Switch 52 is used to select one of two different fuzz effect settings. With S 2 closed, diodes D4 and D5 are bypassed and the positive and negative halves of the waveiorm clip at approximately the same leve!. With S2 open, D4 and D5 are connected in series with D3 resulting in unsymmetrical clipping.


#### Abstract

THIS SIMPLE GUITAR AMPLIFIER PROVIDES A HEADPHONE OUTPUT AND IS IDEAL FOR USE IN THE HOME ENVIRONMENT WHERE IT ALLOWS THE GUITARIST TO PRACTICE WITHOUT BLOWING THE ROOF OFF!


Because of the difference in harmonic content this creates a different sound at the oritput. Output signats from ICl àre coupled to power amplifier IC2 via C5. Variable resistor VR2 controls the input level to the power amplifier and is used as the master volume control. Series resistor R6 helps to ensure that the amplifier is not overdriven. The power amplifier stage also incorporates basic tone controls VR3 and VR4. Tone control is achieved by adjusting the frequency response of the amplifier using resistors and capacitors connected in paratlel with the IC's internal teedback components. Capacitors C 6 and C7 provide supply decoupiing close to IC2.

The output of IC2 is AC coupled by C12 to output terminal P6. A limited output ví RLO is avaitable at P5.


[^2]

Figure 2 Semiconductor connection thatails

## Building the Amplifier

The amplifier can be built using standard constuction media such as matrix board, strip board or PCB. As with most high gain circuits, some attention should be paid to component layout if noise pickup and instability are to be ayoided. Interconnections betveen components should be kept as short as possible with input and output wiring kept separate. Input leads should be screened to rediuce the chance oit coupling the oufput signal back to the input and to avoid excessive levels of mains derived hum. It is sensible to run separate power leads to the preamplifier and power amplifier stages. The positioning of decoupling capacitors is critical. C4 should be connected as close as possible to IC1 whereas C 6 and $\mathrm{C7}$ are best positioned near IC2. Connections to pane! mounted controls such as the potentiometers (varable resistors) should be short and if the components are mounted . off board may require screened lead.
As always, it is essential to pay attention to component polarities. Figure 2 shows pinout details for the
semiconductors. The polarity of electrolytic capacitors is usually indicated on the component body. Normally, the negative lead is marked by a minus (-) symbol neariby on the case. The negative lead is also usually the shortest. Conventions may vary so please check if unsure. Similarily, make sure that the battery dip is connected the right way round. The positive lead is connected to terminal Pl ( +9 V ) and the negative lead to P 2 (OV).

## Hollsing

The circuit may be housed in a small plastic case or any other suitable housing. Adequate room must be allowed for the potentiometers, switches and battery. Always take care that none of the components short out when the case is fitted together. Allow sufficient space around the components for efficient cooling.

In normal use, with adequate ventifation, the components do not operate at an excessively high temperature. However, the power amplifier section may run at an elevated temperature when driven hard. Remember to allow for access so that the battery may be easily replaced when required.
gain access to the circuit if a fauth or error becomes apparent.
Check that S1 is sef to the 'off' position. Connect a suitable 9V battery (PP3 or equivalent) to the circuit as shown in the wiring diagram (Figure 3). Set VR1 to minimum resistance. Set VR2 to the minimum volume setting and VR3 and VR4 to the centre position. Close switch S2.

Connect a sine wave generator set to 1 kHz or other suitable audio signal source between $\mathrm{P3}$ (input) and P4 (0Y). The level of the signal source must be adjustable from zero up to a fiew tens of $m V$ and to start with should be set to minimum. Sume method is required to monitor the output of the amplifier. A pair of headphones is fine. To prevent possible damage to the beadiphones and your hearing when first testing the unit, it is recommended

that the headphones are connected in series between terminals P5 (limited output) and P7

## Testing the Amplifier

No special tools or equipment are required to test the amplifier but if a sine wave signal generator and an oscilloscope are available, these vill allow the correct operation of the circuit to be verified before connecting a guitar. If available, it is also useful to connect a multimeter in series with the positive power supply rail in order to monitor the supply current when the circuit is first tested.
To ensure personal safety, it is recommended that the circuit board is temporarily instailed in its housing during testing ab components can occasionally explode if they are incorrectly connected or under certain fault conditions. However, do not permanently install the circuit board until testing is complefe as it may be necessary to
(OV). An oscilloscope may also be used to monitor the output.
Switch on the amplifier (close Sl). After an initial click the dutput should zemain silent. Advance the setting of VR2 about a quarter of its travel and sfowly increase the input signal fevel. The signal should be clearly audible at the output, At low level, the output should faithfully reproduce the input signal without introducing a significant degree of distortion. If a sine wave is applied to the input, the output should also be sinusoidal. Adjust the setting of VRI so as to increase the gain of the preampliffer stage. As fong as the input signal tevel is sufficient, a point should be reached where the preamplifier stage starts to clip. The effect of diode clipping is illustrated in Figure 4. This creates an audibly
harsher sound at the output. When monitored using an oscilloscope, the clipping effect. should be clearly recognisable (see Photo 1). Opening S2 should result in a slightly different waveform and increased output level. Careful obseryation will show that the negative half of the waveform clips at a lower fevel than the positive haff. Photo 2 shows the sort of waveform produced.

The effect of tone controls VR3 and VR4 may not be immediately obvious when driving the amplifier with a single frequency fest signal and this feature is best tested with a guitar connected to the input. Altematively the frequency response may be checked by sweeping the frequency of the test signal oyer the audio frequency range whilst observing the level of the output signat compared to the input signal. For this test, the input sigmal level and the setting of VRI should be adjusted so that clipping does not occur.
When testing the amplifier for the first time, it is importent to watch out for signs of high frequency instability. If this problem is going to occur, it is more likely to be present when VR1 and VR2 are set for maximum gain and when the tone contrals are adjusted to provide treble boost. Instability may be present continuously or just on the peaks of the output waveiorm. The problem is best detected using an oscilloscope as the effect is not afways audible. If an oscilloscope is not available, pointers to look out for that may indicate the presence of high frequency 05cillation include a whistling sound from the headphones and a sudden rise in supply current level iit the gain of the amplifier is increased when there is no input signal. If instability is found to be present, switch off the amplifier and double check the component valses and wiring layout.

## Using the Guitar Practice Amplifier

The amplifier offers a simple way to practice at home with a minimum of annoyance to other occupants and is therefore primarily designed to be used with headphones. The


Figure 5. Connecting a loudspeaker
enclosed in the case but if the enclosure is relatively small there will tend to be a lack of bass response. Therefore, it is probably better to fit a suitable connector so that an external speaker cabinet may be connected. A switch may be fitted to select either the internal loudspeaker or the external output. The available power is limited, so don't expect too much volume.

Care should be taken never to short the main output to P7 (or any other part of the circuit) as this may result in irreparable damage. The drive current at P5 is limited by R10 and therefore this output may be used to drive low impedance headphones. The main output at P6 has no additional limiting resistor and therefore caution is required if the output is used to drive headphones. In either case, the output ground connection is made to P7 (0V).

In order to obtain the best sound it is usually necessary to play around with the valume and tone control settings. To use the amplifier without the fuzz efiect, set VRI to minimum gain position. Then adjust VR2 to a
input is relatively high impedance \{about 100k) and will accept the outpus from most types of transducer. However, always check that the guitar is compatible with this type of input before cannection.

In addition to use with headphones, the main output at P6 will drive an 8 ohm loudspeaker if required. The laudispeaker could be
suitable volume level. When the fuzz effect is required, carefully increase the setting of VR1 until the desired level of distortion is obtained. It is sensible to reduce the amplifier volume before adjusting VR1. Try both settings of S 2 and adjust tone controls VR3 and VR4 to see which sound is preferred,

## Experimenting with the Tone Controls

Some readers may like to experiment with the response of the tone controls but some caution is required as too much gain at high frequencies can resuft in instability. Changing the values of capacitors C 9 and CII will atter the Irequency response of the circuit. Similariy if the tone control components ( $R 7$, R9, VR3, VR4, C9, Cl1) are omitted, the response vill be flat over much of the audio frequency renge tailing off only at low and high frequencies. In this case the voltage gain of the amplifier is determined by the internal feedback components of IC2. So as to maintain stability, where R9 is fitted, the value should not be less than 10k.

## Battery Life

Battery life is dependent on how the amplifier is used. Tif the unit is used to drive a loudspeaker at fuli volume, it will drain the battery more quickly than when it is used at comparatively low volume tevels to drive headphones. For best periormance always use a tong life alkaline battery.

| Parts List |  |  |
| :---: | :---: | :---: |
| Resistors (minimum 0.5 W melal fim) |  |  |
| R1 | 100k | 1 |
| R2.3.9 | 10k | 3 |
| R4. 5 | Ik | 1 |
| R6 | 47k | 1 |
| R7 | 220R | 1 |
| R8 | 10R | 1 |
| R10 | 120R | 1 |
| VR1:4 | 100k variable pot lin. | 2 |
| VR2 | 10k variable pot log. | 1 |
| VR3 | ik variable pol lin. | 1 |
| Cagacitors (votlage rating 16 V or grealer). |  |  |
| C1, 4, 6, 8,9 | 100 nF Ceramic | 5 |
| C2,3,5 | 10uF Electrolylic | 3 |
| C7 | 100uF Electrolytic | 1 |
| C10 | 47 nF Ceramic | 1 |
| Cl | 10 FF Ceramic | 1 |
| Ci2 | 220uF Ceramic | 1 |
| Semicondiuctors |  |  |
| IC1 | LF351 | 1 |
| $1 C^{2}$ | LM386N-1 | 1 |
| 01 | INTOOT | 1 |
| D2-5 | 1N4148 | 1 |
| Miscellaneous llems. |  |  |
| 51.2 | SPST toggle switch | 1 |
| P1-P7 | $\overline{\text { PCB terminal pins }}$ | 7 |

waw workplace-suent.co.uk
2-4 October. NAC Stoneleigh, Coventry.
Oymomic Morehowse
Tઘl: 01322660070
Fax: 01322667633
2-4 October. Olympla, Lomdon.

Tel: 02079706561
Fax: 02079706740
2-4 October. NEC Airmingham.
Surfoce Wotid 2007.
T리: 01492878787
Fax: 01442870888
3-4 October. NEC Bimmingham.
Proticelluafo
(formenty Frwer Momazement Exhitwion)
Tel: 02085415040
wws imark, 6, uk/oroman
3-5 October. NEC Birmingham,
Protecting Grourndwater.
Tel: 0121 7115885

5-6 October. NEC Elrmingtiam,
Naticnal Funchise Show
Tel: 020 B394 5100
Fax: 02087853388
7 October. Shepton Mailetf, Somerset.
Foy \& Tran Codectus Faif
Tel: 01373452857
Fax: 01373462557
8-11 October, NEC Birmingham.
Matols Enginewing 2001.
Tef: 01737855528
wwy imovorldmefiala, com
9-10 October. SECC Glasgow.
Etctrical Engincering Exhtiden.
Tet: 01732359990
जww eceanthent.neq
9-30 October. Wembley Exnibition Centre, London.
Tatctusinges
Tel: 01244378888
wowne.advanstar.com
9- 11 October. Messe Stultgart, 5iuttgart, Germany.
Embedser Sjerms Conference [ESC) Emope
Te: 02078616330
www. B lembedited.com/esce
10-11 October, Olympia, Londen.

Tet: 01483469060
Fex: 01483534847
12-21 Octaber. SECC Glasgow.
fotal Finter sEow scoflarti.
Tel: 02085152000
yww, <imquarianediacom
14 Octeber. NEC Birminginam.
Toj' \& Frim Colleciors Foit,
Tel: 6194921374
16-17 October, ExCel, London.
Fropuriy Computer She:
Tel: 01273836800
wow, pesonline.co.dk
16-18 October. Olympla, London.
Eravolitic Communkations Eurgre.
Tel: 02076103001
www,broadband-conyention con
16-18 October. ExCel, Londen.
F: Expo,
Sorety. Fitalth En Envonmenr Solumens.
Tell: 01732377646
Fax: 020087473856

## Exhibitions


mimolfoir orcductronica.delenalisis


The 14th International Trade Fair for Electronic Production takes place in Munich this November under the banner of Productronica 2001. The last time it was held was in 1999, when some 57 r000 visitors came to view the ofierings of 1,793 exhibitars.
Producironica focuser on the entire electronics-manufacturing sector, including services. Yisitors will have access to 132,000 square meters of top international products as presented by the world's leading suppliers in this market.
Southern Germany is one of the lergest high-tech regions in Europe. Many of the fair's visitors are from this region, ant many also journey to Productronica írom many places all around the wortd. More than 15,000 visitors at the 1999 event came froms the United States and Asia.
The floorspace will be divided up into the Iollowing product sectors: manufacturing technologies for PCBs and other circuit carriers; test and measurement; materials processing; soldering technology; components manufacturing; produc: finishing; technologies in cable processing; component mount technology; microsystem technology; and semiconductors manufacturing.

##  Hunte thetisu Emphmit <br>   <br> Ter: 01224210122 <br> Email don(outor-morco uk muvedon-morco.uk

With the demise of the Lab Show in London earlier this summer, a new two-day trade event in Edinburgh looks set to take over as the industry's main showcase in the UK. LABtex is aimed at those who spaciily or insluence the buying of all types of laboratory and scientific equipment and services. The event, which is being held in association with BIA Scotland, the Scottish Optoelectronics Association, and the Institute of Nanotechnology, will inciude an exhibition, seminar programme and a conference, which witl address several topics of current concern (such as e-procurement; health and safety, recruitment and retention, and business growth and expansion).
'Positionning this event in Scotland makes sense,' explains Don Morrison, MD of DonMor Praductions Ltd, the organisers of the event. 'Scotland has à worldwide reputation for scientific research and is the logical choice for an event of this type. Whilst the IT and electronics sectors may be suffering from a downturn in the global market, recent nows in the biatech sector is extremely encouraging and the recent announcement of a E75m funding award to Scotuish universities (made through the Science Research Investment fund) will give a welcome boost to exhibitors'.

Visitors to LABtex will be able to see a wide range of equipment on display for analysing, testing, monitoring and measuring in the lab, the factory or the field. With around 100 exhibitors, this is expected to be the biggest event of its kind this year in the UK and it will be a major networking opportunity for lab technicians and scientists working in a diverse range of areas acadernic, medical, biosciences, pharmaceuticals, oil and gas, iood and drink, and many others.

## 

Bhaiberain

chtur
Tel: 01398323700
Fax: 01398323780
Email: dimev@pointoroms.co. 4 k bwu Sbes.com


The Sound Broadcasting Equipment Show is a frade event open exclusively to broadcast professionals. It has grown, over the past twenty-five years, into the most important event for broadcasting to be held in the UK.

Attracting manufacturers and suppliers of sound broadcasting equipment and services from around the worid, the SBES is now the only exclusively pro-audio show to held in the UK. As such, it is the ideal annual meeting place for sound broadcasters from independent radio, public service broadcasting, community and hospital broadcasting, TV sound, post-production, and freelance sound recorders and producers.

Running concurrent to the show wift be a series of seminars on topics such as digital audio networks for broadcast, audio plàyout and distribution systems, sound systems within live broacicast studios, digital audio mixers, studio construction and infrastructure, recording on location, 'Yebcasting: where have we got to?' and 'transmission: quality or quantity'.


For the first time, these wo extibitions will be runring alongside each digital solutions other. Entry will be free for the first 7,000 people to preregister online and visitors will be able to
move freefy between the two events, which are both located in the ExCeL exhibition venue, London.

Digital Solutions is aimed at buyers of digital print products and workflow technology. All the latest prodicis and services will be on display and there will also be free seminars and an education programme dedicated to helping newcomers further understand the benefits of 'buying in' to the digital process.

The Digital Camera Show will run a comprehensive education programme along similar lines to this. Like the Digital Solutions show it will also be free.

More digital cameras are now being bought than conventional 35 mm ones and it is predicted that there will be more digital cameras owned and in use than 35 mm cameras by the end of 2002. It you are planning to be part of either of these statistics, then The Digital Camera Show will be well worth visiting this Novernber.

## Engineering \& Graduate Recruitment Shows in October/November www.engineerjobs.co.uk



Targeting both experienced and graduate engineers throughout the UK, the National Engineering Recruitment Exhibition includes a series of company presentations given by exhibitors to introduce their companies and highlight job opportunities to potential candidates.

Recruiters common to bolh exhibitions will include BAE Systems, BOC Edwards, Cisce Systems, National Air Traffic Services, The Patent Office and the Royal Navy. Lockheed Martirn and Cranfield University will only be available at the London venue, whilst DERA, Honda LJK, and L.and Rover will only be available ín Birmingham.

Free shuttle services to the exhibitions will be available from Aston University, the

University of Birmingham and UCE every hour on the hour. A boaking form will appear on the website shortly before each event.


Like the NER exhibition, this is a free and convenient way of listening to and talking face-to-face with a wide range of graduate employerṣ. Over 130 graduate recruiters from all over the UK will be present, and they with be looking for graduates from many and varied academic disciplines. There will be free careers seminars and compeny presentations, and a quiet area will also be provided for those who just want to sit and think for a while, or need somewhere to fill out a form.

Free transport will be provided from a number of UK focations - details of which will appear on the site around the second week in October.
 the case with National Graduate Recruitment, free transpart will be provided and details will be placed on the web site four weeks prior to the date of the event.

Prease semd detait dovents and extilitionst to bldced 3kantacom

## Electronics and Technollogy Recruitment

Please use the template of Sales Markeïng \& Applications, with the contact details of Aaron Keep, e-mail - Solution is a specialist recruitment consultancy that has consultants focusing on set sectors of the technical market. Due to substantial growth and demand within the electronics division we are looking to hear from candiddees that have a strong. commercial background within sales and marketing, cupped with an electronics qualification and are ready to make the next move in their career.

We are seeking applicants from any of the following market sectiors:-

## SEMICONDUCTORS • PASSIVE COMPONENTS• PCB's • POWER SUPPLIES • BROADLINE DISTRIBUTION • CONNECTORS • FIBRE OPTICS • BLUETOOTH • RF \& MICROWAVE

The typical types of individuals that we would like to hear from are:-

## AREAS SALES MANAGERS • FIELD APPLICATIONS PRODUCT MANAGERS • FRANCHISE MANAGERS FIELD SALES ENGINEERS • INTERNAL SALES <br> CURRENT URGENT REQUIREMENTS

| Position | Salary | Ref |
| :---: | :---: | :---: |
| Internal Sales Executive (Aylesbury Based) | ¢17.5k | 3913 |
| Field Application Eng (Semi's) | £ Neg | 3930 |
| Area Sales Manager (Consumables) | 622k | 3939 |
| Technical Sales Eng (Telecoms) | f20k | 3771 |
| Internal Application Eng (Semi's Based in Bolton) | El7k | 3931 |
| Product Manager (Power) East-Sussex | 528k | 3934 |
| Sales Engineer Power Products UK Eire | EComp | 3863 |
| Account Managers (PCB) France / Germany | to $530 \mathrm{~K}+$ | 3941 |
| Business Development |  |  |
| Manager (3G/Wireless Technology) | tof50K + Bens | 3945 |
| Product Manager (Wireless Technology) | tote $40 \mathrm{~K}+$ Bens | 3946 |
| Business Manager (RF / Microwave Technology) | tof55K + Bens | 3926 |
| Sales Engineer (RF Systems) | tor $30 \mathrm{~K}+$ Bens | 3923 |
| Sales Manager (High Voltage Power Supply) | to $£ 45 \mathrm{~K}+$ Bens | 3904 |
| Technical Sales Eng'r (Technical Ceramics) | tor $30 \mathrm{~K}+\mathrm{Ben} 5$ | 3889 |

Email: aaronk@soljobs.com \& andyr@soljobs.com.Website: www.soljobs.com SOLUTIONTECHNICAL RECRUITMENI, The Tower House
High Street, Aylesbury, Bucks HP20 ISQ
Tel. Ol 296336036 Fax. OI 296336037

Solution are currencly working with a number of organisations recruiting for the electronics industry in sectors such as aerospace, automotive and telecommunications.
Our experienced consultants are always looking for skilled candidates who are working in these specialist areas:

## MANUFACTURING • PRODUCTION • QUALITY PURCHASING TEST: TECHNICAL•AUTHORSHIP SOFTWARE • PCB DESIGN (TEST \& DEVELOPMENT)

If you are looking for an exciting career opportunity, or a new challenge. Please call Nicola or jimmy on 01296-336036 for an informal discussion.

## PCB Designer

Salary: 亻́Excellent
Midlands
Ref: JF/5409
Our dient, who specidises in the Aerospace Industry seeks a PCB Designer.
The candidate will produce concept and detailed désign schemes from customer specifications, working to programme schedules and budgets alongside cutomers, suppliers and other disciplines in a team environment The candidate should be quelfied to at least HND level or equivalent in Electronic Engineering or similar discipline. Three to five year's experience of mult--layer PCB s, both surfice mount and plated through hole technology. He/the should have an understanding of EMC and signal noise control techniques. The candidate should be femiliar with SUN worktations and UNIX. He/she should be able to dernonistrate ingenuity using CAD (Cadence Allegro preferred) Strong communication and interpersonal skils and able to contribure effectively in a team environment.

## Project Engineers

Up to $\sum 20 \mathrm{~K}$
Buckinghamshire
Ref 5454
Our client is a well established sub contract manufacturer to the elecironic industry. They are currently looking to recruit 2 project engineers due to company expansion.
The candidate will have attzined academic qualifications in higher education relevant to the electronics industry and have had experience working in an electronic manufacturing environment The cancidate will be self-motivated with a high degree of initiative.
Responsibilities include:

- Assisting the test department with faut finding and problem solvirg.
- Assessing the suitability of aternative electronic componenis for the manuracturing process.
- Liasing between the company and the customer during new product introduction and io gather all details of the project required for manefacturing.
- Providing sales with quote details by gathering labour estimates for manufacture and test.
- Progress internal sales orders, prepare information for documentation control, identify and procure zooling jigs and fixtures.
- Assist in identifying and installing new manufacturing methods and processes and be effective in the training of supervisors and operators.
- Providing continuing product support for the life of the project


## SOFTWARE \& HARDWARE

Email: aaronk@soljobs.com \& andyr@soljobs.com. Website: www.soljobs.com SOLUTIONTECHNICALRECRUITMENT, The Tower House High Street. Aylesbury, Bucks HP20 ISQ
Tel. 01296336036 Fax. 01296336037

## 501 UTEO

## SOFTWARE/HARDWARE ENGINEERS

Is your current role repetitive?
Does your current company technologically restrain you?
Are you ready to rise to new challenges?
Is a secure career important to you?
Do you have a minimum of 2 years software / hardware experience?
Then we would like to hear from you.
Solution Technical Recruitment is a specialisi contutzacy focused purely on set sectors of the technical electronics market.

Due to rubsindial sucess and growth within the specialist efectronics arena, we are looking to hear from career minded engineers that have an impressive commercial and academic background and who are serious about their fiture. If you are dynamic, energetic and have the ambition to be part of some of the UK's most elite engineering teams, then we can help you with your next career move.

Candidates from the following areas are of interest:
IMAGE PROCESSING/GRAPHICS • AUDIOIVISUAL BROADCAST SET TOP BOX • DEVELOPMENT • WIRELESS LAN • DEFENCE MOBILE TELECOMMUNICATIONS • DATACOMMUNICATIONS HIGH SPEED DIGITAL DESIGN•INSTRUMENTATION• DIGITAL SIGNAL PROCESSING - WIRELESS COMMUNICATIONS BROADCAST/REMOTE NETWORKS •TELECOMMUNICATIONS AEROSPACE•AUTOMOTIVE

Typically, you will be one of the following:

## SOFTWARE ENGINEER•SENIOR SOFTWARE ENGINEER PROTOCOL ENGINEER•PROJECT MANAGER PRINCIPAL ENGINEER•ASIC DESIGNERS•FPGA DESIGNERS RF DESIGNERS •TEAM LEADER HEAD OF SOFTWARE DEVELOPMENT •ANALOGUE DESIGNERS MIXED SIGNAL DESIGNERS



## E-commerce is not just for big business any more...

Lise ecBulider Pro to create a professional Web site to accept orders and enguiries online. Point and click your sway to a seady-to-go business Web site as you work thtough the Wirad difiven input screens: Fill in your company and produra information Entare yaur site vitín logas, animations, product shois and other grephirs >-3 Add your cetatogue tems Thoose your template design and colous scheme Tupload your sies to the World Wice Webl
ecBullder Pro uffers you ovet 500 combinations of cusiomisable templetes. These templates ar designtad with business in mind, have dear navigational ieatues, small file size, and advanced functionality. This allows yous to create and exithlish yous own Web site and the flexiblity to menage it as and when you chouse, without having to rely or expensive extemal resources.
 anywhere in the wotd. The shopping catit enatles your oistaness to purchase multiple producs from you safe in tre knowledge that their details are protected using digitef centificates for serure trattartions.


Each Web site created by ecBullder Pro includes:


 - Buil-in browser: Simulate end meitain your Web site on your own comprat using the preview mudz四 Order and Enquiry forms: Each page or catague item links to a seure Web-based messaging system for customers to place orders and enquities with you E Site promotion: Your Wed site will be autonnticolly submiturit in litenet search engines based or the kavord you choore - ecDrderDesk: To actert emid decpati orders from yaur new online customers as well as creating safes repports.

Suncy your visitars. Theis valuzble shopper information with order or enquiry information ans trien be transietred to your accounting, and arstomet menegement progians such as Maximizer, for order processing and fultiment.

Multiactlye Soltware Liti
Bridge House, Bringe Ayenue
Wimidenhead, Berkshire SLE TRR England


Alternatively downioad this and other trial products from: WWW.multiaclive, co.uk


IVisilutr - Mithlict Pm
demonsination sticat whwectitildercorth


Fext iv: Multractiva Soflware Ltth
 Matrantex, Berkstive St 6 IR Enatand
$\div 44401628587777$
$\because$ OP) (0)1628587778
 Heb: wरow,mullacilive.co.uk

THE TELECOMS INDUSTRY MAY BE IN THE DOLDRUMS RIGHT NOW, BUT THE TECHNOLOGIES CONTINUE TO ARRIVE THICK AND FAST. THE TECHNOLOGY TO BE DISCUSSED THIS MONTH - BLUETOOTH, NAMED AFTER A 10TH-CENTURY VIKING KING ISN'T PARTICULARLY NEW, BUT THE FIRST PRODUCTS ARE NOW BEGINNING TO HIT THE MARKETPLACE.

Bluetooth is, in actual fact, the name of a cross-industry 'special interest group' (SIG) that mas founded back in 1998. The tounder members of Bluetooth, which has a web site at wwo.bluetooth.com, inciude Ericsson, Nokia, Intel, IBM and Toshibz. Since ifs formation, all menner of telecommunications and IT companies have jumped on board. At tine last count, nearly 2500 organisations had signed up to the SIG.

Blueteoth's raison dietre is a short-range point-to-point radio commusication standard that's slated to replace tangle-happy cabling and the less-than-reliable IrDA (tine-of-sight infra-red) system. The most most obvious applications are the transfer of data between mobite computers, hand-held peripherals and mobile phones. Nokia sells a ${ }^{\text {tr connectivity pack' that includes a pair of }}$ Bluetooth transceivers. One takes the form of a replacement battery pack for its 6210 GSM mobile phone, while the other is a miniPCMCIA card for a portable computer (unfortunately, the drivers onty cope for Windows 98 or later - and not, as one would logically expect, Windows CE devices). With this $£ 200 \mathrm{kit}$, you can use your 6210 as a truly wireless modem. Although the 6210 doesn't support GPRS, it is compatible with Orange's HSCSD system, which will deliver transier rates of up to 28800bps (against GSM's top rate of 96006 ps ).
iif our experience with the Nokia product is anything to go by, Bluetroth is going to be a resounding (and idiot-proof) success. The hardware is easy to install, Heing true 'plug-and-play'. Nor did we have any trouble with

the Windows software. After rebooting your notebook, you can ren the 'Bluetooth
Neighbourhood ${ }^{3}$ program, which seeks out any Bluetooth devices in the area - including your 6210, should it be powered up. If it is, it will appear in the program's main window. At the same time, an icon appears on the top-left of the phone's display to indicate that Bluetooth communication is now in effect. Clieking on the ' $6210^{\prime}$ 'icon invites you to enter its unique echnology Watehm $\square \rightarrow+\infty$ 'break' the connettion when it's not needed. This comment applins to any Bluetooth device, of course.
In terms of released products ${ }_{\text {I }}$ Nokia was pipped to the post by arch-rival Ericsson, A few months ago, the latter company sold a Bluetooth personal hands-free headset for some of its handsets (such as the T28). As with the Nokia kit, this consists of two components - the hands-free headset itself, and a transceiver 'passkey', which is printed on a supplied label (Bluetooth devices are individually-addressable, and the communication that goes on betveen them is 'secure'). This procedure onty has to be carried out once unless you have to reinstall the software for some reason, or have specified a 'bonding' (i.e. expiry) time in the program's set-up menu.
Before you can do any useftul vork, though, you have to run the tmodem setup' program that's located on the CD-ROM. Do this, and 'Nokia 6210 Bluetooth' then appears on your list of Windows modems. You can then assign this option to any program that needs it To get onifine, the Bluetooth Neighbourhood program must atways be running in the background. We found that the system was reliable in its operation, with no 'glitches' or crashes - we ware able to access our dial-up Internet connection through the Bluetoothed 6210 without any mishaps whatsoever. Even moving the phone to different rooms whilst on-line failed to break the connection.

To conserve phone battery life (the transceiver consumes 75 mA when operationat, against ImA when it's 'sleeping'), be sure to be sure to
 something that's normally bundled free with mobile phones nowadsys, but the Ericsson product does have some advantages. First of all, the headset can be separated from the phone by distances of up to 10 m - against the 50 cm or so of the average 'wired' hannts-free headset Secondly, the phone madute will communicate with other Bluetooth devices. We can expect to see these increase in number over time. Computers and printers with Bluetooth built in are on the harizon (lesi we forget, $H$-P sold an IrDA-equipped LaserJet not so long ago). Computer input devices, such as handwriting scanners the much-hyped CPen, for example) anci wireless mikes for yoice-recognition are also ripe for the Bluetooth treatment.
German computer peripheral company Elsa has announced a fully-blown car kit, albeit in prototype form. The system reproduces the incoming side of the call through the car's
audio systern - the driver's dulcet tones, meanwhile, are picked up via a tozenge-shaped microphone located somewhere convenient.


## Leil: 6210 connecivity kit

all of the reguired digital/RF circuitry. Owing to the tiny waveleng? ins involved, the aerial will be small enough to be etched onto the PCB. Product developers, meanwhile, will benefit from saftware development kits for product developers.Although Bluetooth currenily adds around $\$ 30$ to the manufacturing

The company presumably hopes to self the idea to the car mantiacturers (Elsa's kit was installed in an electric version of Forơ's Ka itself a prototype). Why? Thanks to Bluetooth, a car kit will work with any compattole mobife phone - regardless of manufacturer. Today's car kits, conversely, tend to be specific to a particular range of phones - if you change your phone, you'll need to rip out the car kit and replace it with one specific to the new model. Buy a car with a Bluetooth hands-free kit fizted as standard, and you'll be able to use it with your Bluetooth ghone as you drive it off the forecourt, no doubt telling your friends abouk how much the vehicle has depreciated as yous do so...

Mobile phones with integrated Bluekooth are already - Nokia reckons that by 2003, there will be 250 million of 'em globally. The recently-introduced Ericsson T 39 m is quite an impressive package - and a small one to boot. In addition to IrDA, it supports - amongst other things - IrDA, WAP, Internet (POP3/SMTP) e-mail, GPRS and HSCSO. Oh yes, and it's tri-band too. A great choice, then, for travellers to the US - some parts of which are spanned by GSM1900 coverage. Ordinary dual-band phones only cater for GSM900 and GSM1800. I had a chance to try out the T39m, which sells for $£ 100$ with contract, and was throroughly impressed with it. The GPRS capabilities of the T 39 m are 3 timeslots download, I timestot upload (also known as 3:1). Translated into English by Ericsson, this equates to a maximum download speed of 43.2 kbps (i.e. $4 \Omega$ times $\overline{5}$ fast as $G 5 \mathrm{M}$ data). One would presuppose that you would be able to surf the net quickly using your Bluetoothconnected notebook - but the networks won't let you. At this stage, GPRS has been 'firewalled' to let only WAP traffic through.

Bluetooth is ctrrently quite expensive, but We can expect to see a VLSI chip that conlains
cost of a mobile phone, the cost vill fall in time to undar $\$ 5$. The current 1.0 version of Bluetooth cannot manage a gross (the aggregate of transmit and receive paths) rate of more than 1Mbps the latest version of IrDA is therefore faster. Bluetooth is, however, easier to use. You don't need to bother with lining tp the infra-red windows of both devices as you do with IrDA. And because Bluetooth employs low-power radio rather than optical paths, there's no need for line-of-sight. As long as the two Biuctoolt devices are within ten metres or so of each other, then they should able to communicate. Walls won't prove obstructive either, unless they're fined with metal.

Frequencies? Bluetooth will operate on the licence-free 2.45 GHz industrial scientific and medical (ISM) band. In UK homes, these frequencies are used for the latest breed of video senders and - more importantly microvave ovens. One could imagine all sorts of problems if you have a leaky microwave oven, or there happens to be one in the immediate neighbourhoad. Hopefully, the impressive technolagy that underpins Bluetooth shoutd provide some guarantee of dependability. Spread-spectrum and frequencyhopping technology were, until recently, unheard of outside the

field of military communication. Bluetooth will use these techniques to autermatically find available radio channels (the standard currently specifies 79 of these), and retune if interference is experienced. Indeed, each 'packek' of data is transmitted on a different frequency 'hop' - which helps to reduce the possibility of unauthorised interception by hackers. As another deterrent, authentication and encrytion are also supported.

Frequency-hopping and authentification also addresses the issue of congestion - in some areas, there could be a lot of Bluetooth activity (hands-frea headsets, file transfer) going of within that ten-metre raditus. Bluetooth will afso support up to three simultaneous voice channels, or mixed data/voice. This opens up the worlds of multi-player gaming, technical support and simultaneous talk and fax/e-mail. Other potential future applitations are also quite exciting. In the automotive field alone, we could have automatic payment for petrol (pumps would be Bluetooth-enabled), automatic tollbooths (DART-Tags brought up to datel), security systems (Bluetooth 'keyfobs') and even engine management units that dial up roadside recovery operators via your mobile phone in the event of a breakdown. Then there are the other applications * school and home networking, digita! cameras and MP3 players.

Martin Pipe weicomes comments and ideas. E-mall him at: mantin@webshop,demon.co.uk Or look out for him onlinel His ICQ ID is: 15482544


THE STRANGE BUT TRUE STORY OF HOW AN AMUSING ACCIDENT IN THE DESERT INSPIRED A NEW AND HIGHLY UNUSUAL KIND OF MARS ROVER - A TWO-STORY HIGH INFLATABLE BALL DESIGNED TO EXPLORE THE PLANET WHilst being pushed along by martian AFTERNOON WINDS...

## The Tumbleweed Rover

Imagine the scene: you are out in the Mojave Desert testing the latest prototype Mars Rover when suddenty one of the spherical balloon tyres breaks loose and makes a run for it across the deesert. Fans of the cult 1960s TV series The Prisoner will appreciate the joke. In the series Patrick McGoahan was constantly thwarted in his attempts to escape the sinister Village by a giant white ball called Rover. Whilst the writers of The Prisoner were uncannily accurate in their depictions of a lot of technological devices which are commonplace today, they cannot possibly have foreseen that one day NASA scientists would be prototyping a giant inflatable Rover for possible future missions on Mars.
The 'Tumbleweed Rover' as it has been named, was one of those great inventions discovered entirely by accident - and that accident. was the ore in the Mojave Desert where the shoulder-high spherical wheel broke off and blew away in the wind.

Technician Tim Connors had to flag down a passing allterrain vehicle to chase after the wheel. The winds were only abocit 20 miles per hour but the wheel, in Tin's own words, "went a quarter of a mile in nothing flat'.
'It soared,' said colleague Jack Jones, "Tim was flying over the sand dunes trying to catch it. The ball went up steep, steep clifis of sand. Nothing stopped it'. Untik, that is Connors on the borfowed ATV managed to catch up and corral it.

Everyone who was witness to the event was impressed. The idea of


WInd-Blowi "Tumblewed"
$<$ Rever and Reyer - [ite imitztes ard bul which one 䩪 the strangest
making an inflatable spherical rover was not new, but previous prototypes had been small and tended to get stuck against kniee-high rocks. The answer, it seemed, was to make the tumbleweed-styie explorer as bin as possible. 'Thereîn was planted the seed,' said Lones, 'that if we make these tings big enougn, nothing will stop one'.
'Big enough', it seems, will eventuatly mean two storeys - enough to swallow six Patrick McGoohans, maybe more. In the thin winds of the Martian afternoan, the Rover could accelerate to speeds of about 10 metres per second. It will be equipped with waterdetecting instruments held in place by fension cords and will be able to stop and 'park' itself by partiatly deflating. To get going again, all it needs to do is re-inflate.

Mission controllers wouid be able to decide roughly where the Rover goes by waiting for the wind direction to change before reinflation, but there is a more precise means of control over the vehicie being discussed - a centre-of-mass control device that would atlow the ball to be steered by pumping fluid to its left, right or centre.


The Sphere-Whesled Rover whozè nunaway wheel inspired lina design of the Tumbleweed

Prototypes of the Tumbleweed at quarter size ( $\mathbf{3} .5 \mathrm{~m}$ ) have been fested out this summer with extremely encouraging results. The experiments confirm that a sphere of 6 m in diameter should be able to climb over or around one-meter rocks and travel up slopes of 25 degrees and higher in the thin, but breezy Mártian air.
Future tests in coming months vill include drop tests in the desert with a prototype Tumbleyeed made out of Vectran - the same material used for Pathfinder's airbag tanding system, and long-range testing of thousands of kilometres in a harsh Arctic or Antarctic environment.

For more information about Wars exploration you can go to marsipl, nasa.oov, and for more information on The Prisoner, you can wisit the UK and US appreciation society websites on waw, sixolone.org, uk and whe,ThePrisonerAppreciationSociety, com. All images on this page are courtesy of NASA except the photo from the set of The Prisoner, copyright Cáriton Internationê tedial Lid.

## Handling harmonic distortion is now plain sailing... Sinewave



No modern business environment, with its computers, lighting, communications, air conditioning and pumping systems can weather this electrical storm indefinitely and inevitably, traditional solutions are costly and difficult to ìmplement.

Now, SineWave, the revolutionary harmonic conditioner, signals an end to 'dirty electricity' and the arrival of a guaranteed, fit and forget solution.


UPS SYSTEMS

Nothing will stop you now

Telf 02088614040 http://www.mgeups.com



## To store and copy limithess amountes of valuable datae.

## You need a fast and reliable solution.

## Qur CD burners mave ahead of the pack.

LOGICAL
DEVICES
US: 1-800-331-7766
UK: +44 (0) 1970621030
wiww.logicaldevices,net sales@logicaldevicesinet


[^0]:    Lime Scale Remover
    Question: Can anybody help me inind a Module or Circuit Dingram for a swept frequency lime scale remover? My pond is futl of Blanket Weed. - Martin Baugh.

[^1]:    d

[^2]:    Figure 1. Citrovit diagram

