Décoteand Ilisulay Data trom Weather satalites withour Dacoiar Project!

bitarimitiva Marispomar bol Mopitors

HELP SERVE YOU BETTER!

Birmingham: Lynton Square, Perry Bar. Tel: 0213567292.
London: 159-161 King Street, Hammersmith W6. Tel: 017480926
Manchester: 8 Oxford Road. Tel: 0612360281.
Southampton: 46-48 Bevois Valley Road. Tel: 0703225831.
Southend-on-Sea: 282-284 London Road, Westcliff-on-Sea, Essex.
Tel: Southend-on-Sea (0702) 554000.

Before you send your next order to us by post, take a look and see if there's a Maplin shop near you. In our shops you'll find that personal service that even the best mailorder operations cannot match. And you can look at the products before you buy. If you're coming for a particular item, a quick phone call will enable you to be certain the shop has everything you want in stock.

Our shops are pleased to accept Access, Barclaycard, American Express and Mapcard, and also cheques up to $£ 50$ with a cheque guarantee card. We'll even accept ordinary money as well!

All our shops are close to excellent parking facilities, meters in London and Manchester, and free elsewhere.

The South

In the South our Southampton store is conveniently placed for easy access from all parts of Hampshire and surrounding counties and is just 15 minutes from Portsmouth.

London

Our London store situated just to the west of the pedestrian shopping centre in Hammersmith, is just 5 minutes from the end of the M4 and only a short walk from the

District, Piccadilly and Metropolitan lines' Hammersmith station.

The Midlands

In the Midlands our Birmingham store is just 5 minutes from the M6 on the A34, and only a little farther from the M5 (junction 1) on the A4040.

The North

Our self-service store in Manchester serves the North and is just off the Mancunian Way, opposite the BBC, about 5 minutes from the end of the M602 or junction 10 on the M63.
South-East
Essex and Kent are served by our

Southend shop which is night on the Al3, just 2 minutes before you reach the centre of Southend. And we're only 30 minutes from the M25 (junction 29) as well.

All our shops are open from 9 a.m. to 5.30 p.m. Tuesday to Saturday (closed all day Sunday and Monday) and do not close for lunch.

There's a friendly welcome in store for you at any Maplin shop. Our helpful staff may often be able to help with a technical problem or a constructional difficulty.

Call in at a Maplin store and get what you want today. We look forward to serving you.

September to November 1986
Volume 5 Number 20

C O NTENTS

PROJECTS

Wewher Sultate
 Deceder
 \qquad

 2

The second item of equipment for the Weather Satellite receiver system is the Decoder which enables the satellite picture to be displayed on a monitor by a home computer, from either a signal being directly received by the Receiver, or from a recording on cassette.

Imfru Red Proximity Delecter

 20

An infra red heat detector specialising in short range applications. It will serve as a detector guarding doorways and cornidors, etc. Ideal as a heat or movement detector where coverage of room sized areas is not required.

Fibre-Optic Audio link...... 37

Uses special on-board sending and receiving devices to transmit AC signals in the audio band along up to 20 metres of fibre-optic cable. Separate Transmitter and Receiver boards are used for coupling remote items of equipment. Although the project is aimed at educational and experimental applications, it may prove invahuable, for example, in electrically noisy environments.

Anotrad 8-8: Input Port.. 48

A simple 8-bit parallel input port for use with the CPC 464, and 664 and 6128 range of Amstrad computers. Can be used to interface to the Weather Satellite Decoder also in this issue.

Low-Z Microphone
 Preamplifier

 54For 200Ω to 600Ω impedance balanced or unbalanced microphones. The screened module also includes gain adjustment.

The newcomer to electronics cannot fail to have noticed the bewildering variety of different shapes, colours and specifications of all the range of capacitors available - even if they do happen to be of the same value. Why should the construction and composition of the different types, ostensibly so similar in value and voltage rating, be so diverse? Be prepared for some surprises . . .

Muins Power Control with TRIACS 24

The TRIAC has effectively revolutionised AC power control in recent times. However, powerful as these devices may be, they are not infallible. Before attempting to design such a control system some fundamentals have to be worked out first to ensure safe operation. This article presents a detailed insight into the intemal workings of the modern TRIAC.

The Siery of Reclio 44

Part 4, where the new-fangled science of the invisible rays quickly came of age during the Great War. Those involved in other similarly fast growing technologies, aviation for example, took to it immediately, as did the Royal Navy for whom it was to become a valuable and indispensible tool. Traditionalists couldn't, or wouldn't, understand how it could be properly used.

Toet Coenr and
 Meusurements

 80Part 2 continues this series with some indepth studies of how errors and tolerances are negated when taking measurements of real electrical properties. The principle of the measurement bridge circuit illustrates its wide range of applications.

Machine Code Programming with the 780
 59

Part 4 of this series describing the instructions for the ubiquitous Z80 CPU continues with conditional jumps, conditional calls and retums from subroutines, restarts, interrupts and the control group.

REGULARS

Catalogue Amendments 34
Classified.Advertisements 64
Corrigenda .. 29
Project Servicing Rules 64
New Books ... 63
Order Coupon .. 35
Price Changes List 31
Price list of Items Since Catalogue 30
Subscriptions .. 36
Top 20 Books .. 30
Top 20 Kits ... 29
Voyager Competition Results 58

Editorial \& Product	tion	Pabluliod iny
Eatior	Roy Smith	Trpeeething by
Production Manager	Mice Holmes	
Technicel Edtroys	Robert Sirsch, Deve Goodman	
Art Director	Peter Blackimare	Printed by
Art Ameltant	Greg Buckioy	
Teclurical arthen $^{\text {a }}$	Jobn Dudiey, Leeley Fonter	Distalbuted by
Secretary	Angele Clarke	

Maplin Electronic Supplies Led. Eseer Process and Engraving Ca. Graphic Honse, Stock Rond Southend-on-Sea, Emex. Mayhew MoCrimmon Iid. Sur Lane, Great Walbering, Epoor. Spotight Magerine Ditributica IdL, 1-11 Beawell Rd, Iondon NT.

[^0]

SATELLITE DECODER

by Robert Kirsch
 Part 2

The Decoder

This article describes the Decoder needed to demodulate the APT (Automatic Picture Transmission) signals transmitted from most of the orbiting and geostationary weather satellites. These signals can be received using the Receiver described in Part 1 of this series.

The Decoder accepts audio signals either from tape or directly from the receiver and converts them into an 8-bit digital format with necessary synchronising pulses for connection to a suitable computer or frame store for display on a television or monitor. Controls are provided to enable the contrast of the picture to be adjusted and various types of synchronisation may be selected to suit different satellites. Power for the decoder comes from an internal power unit which will also supply the receiver.

The APT Format

Pictures transmitted by most VHF American and Russian orbiting weather satellites, as well as WEFAX transmissions from the GOES series satellites (e.g. ESA METEOSAT 2), use the APT format. The radio frequency carrier is frequency modulated by a 2.4 kHz subcarrier whose amplitude is modulated by the picture information and synchronising signals. Figure 1 shows the subcarrier envelope for a typical line of APT information.

Peak white, it will be noted, corresponds to maximum subcarrier level, and black to the minimum. Picture lines are transmitted either 2 or 4 times a second, each line having 600 cycles of subcarrier ${ }_{i}$ thus the maximum horizontal definition is 600 pixels. The TIROS satellites send altemate lines of infra-red and visible information (when viewing the Earth in daylight) each line being preceded by synchronising pulses. Chaniel 1 (visible) sends 7 pulses at 1040 pulses per second and channel 2 (infrared) sends 7 pulses at 832 pulses per second. Meteosat sends 7 pulses at 840 pulses per second at the start of every line, as well as a 300 pulses per second start and a 450 pulses per second stop signal for frame synchronisation.

Decoder with the Receiver
The Russian Meteor satellites send approximately 2 lines per second with a synchronising tone of 300 Hz for every line. The decoder described in this article produces line synchronising pulses by dividing the $2: 4 \mathrm{kHz}$ subcarrier digitally, using a programmable divider to obtain the correct periods for various types of satellites. These pulses may be manually adjusted to correctly position the picture on the screen. (When using the optional sync tone decoder card this is achieved automatically.)

Circuit Description

Figure 2 shows a block diagram of the decoder, synchronising unit and power supply. Figure 3 shows the circuit diagram for the main circuit board. Live or recorded signals, selected by the receiver, enter via the 6 -pin DIN socket and are first fed to a master level control. The signal at this point splits into three paths; the first goes to the A / D converter, the second to the Level Meter and AM detector circuit, and the third to the Phase Locked Loop carrier regeneration circuit.

Figure 1. Typical APT information.

Figure 2. Docoder Block Schomatic.

The conversion from the analogue subcarrier level to a digital code is accomplished by IC2, an 8-bit A/D converter. This device requires two inputs, one is the analogue information, and the other is a 'start conversion pulse'. The analogue input range of IC2 is from 0 to 2.5 volts to give codes from black to peak white. It is therefore important to adjust the level of the incoming signal in order to obtain correct contrast on the displayed picture. This function is provided by the op-amp ICla. The gain of this device is adjusted by RV5 in the feedback circuit, this sets the white level. The output from ICla is about ± 2.5 volts but only the positive half cycle is fed to the \bar{A} / D converter. RV4 sets the DC reference of the op-amp, and this offiset is used to adjust the black level of the picture. Note, there is always a small amount of carrier at black level for synchronising purposes, so this circuit enables this level to produce true black on the display. The black and white level controls may also be used to enhance pictures particularly when only a few grey levels are available from the computer or frame store used.

The two light emitting diodes LEDI and LED2 are used to obtain the correct setting for the black and white level controls. The most significant bit from the output of the A / D converter is monitored and, when this bit goes high, TR2 turns on and causes LED2 to light, this indicates a level approaching peak white. All 8 bits are fed to the NOR gate ICS. When all 8 bits are low the output of this gate tums

TRI on, causing LED1 to light and indicate black level.

The second op-amp, IClb, is fed with the incoming signal via the input level control. The output from IClb is rectified by D3 and D4 to drive the level meter which should read full scale on a peak white signal. The AM detector formed by D1 and D2 is also fed from the output of IClb and this audio signal is fed to the sync tone decoder card.

The phase locked loop, IC3, is fed with the incoming modulated signal and locks to the 2.4 kHz subcarrier. The clean square wave output produced is used to generate the 'start conversion' pulse for the A / D converter and it is also fed to the programmable divider to produce line synchronising pulses.

The three counters IC6, 7 and 8 form the programmable divider whose division ratio is set by the data on pins $3,4,5$ and 6 of each IC. The rotary switch S2 selects one of two preset ratios (1200 for 2 lines per second and 600 for 4 lines per second) and also two ratios that may be set by programming the optional diode cards, the circuit of which is shown in Figure 4. The SLIP control, S3, temporarily raises or lowers the division ratio to enable the picture to be moved in relation to the line sync pulse thus shifting the display left or right in relation to the television screen. The phase locked loop will produce an output even when no input is present, and therefore line sync pulses will also occur. For this reason the HOLD switch is provided to stop the

Figare 4. Diode Card Cireati.

counter, thus preventing the current picture from being lost.

Four audio monitor points in the decoder are connected back to the receiver in order to help in setting up and testing. One of these is connected to the 2.4 kHz output from the phase locked loop and another to the output of the AM detector. The remaining two monitor points coming from the optional sync tone card.

The preset RV1, along with the TEST LINK are provided to help in testing and setting up the A / D converter, computer hardware and software. This potentiometer provides an adjustable source of voltage to the input of ICla which will simulate signal levels from black to peak white.

Sync Tone Card

This card is used to detect the line synchronising tone at the beginning of each picture line. Figure 5 shows its circuit, and it will be noted that a MF10 switched capacity filter (IC2) is used to select the tones. The frequency of this type of filter is determined by the frequency of the oscillator fed into pins 10 and 11 of the IC, in this case it is 100 times the required filter frequency. The two separate halves of IC2 have different bandwidths for optimum reception of different types of sync tones. The

Decoder Board

frequency of the voltage controlled oscillator, ICl , is controlled by the three multi-turn potentiometers RV3, 4 and 5 which are selected by S4 on the front panel.

The input level of IC2 is preset by RV1 and RV2, and the filtered output is buffered by TR1 and TR2. TR3 with D1, 2 and 3 form a threshold switching circuit whose output is used to reset the divider on the main board when the LINE SYNC switch is operated.

Construction

Referring to the Parts list and component overlay on the three circuit boards, Figure 6 shows the legend of the main decoder board, Figure 7 gives the tracks and overlay of the Sync tone card, as does Figure 8 for the Diode board; insert and solder all components in the following order: fixed resistors, capacitors, diodes and bridge rectifier, SLL resistors, IC holders, transistors and regulator IC's; veropins, preset resistors

and finally plugs, sockets and edge connectors. NOTE - observe the correct polarity of transistors, regulators, diodes, LED's, meter, electrolytic capacitors and the bridge rectifier. The white dot marked at one end of the SIL resistor package should correspond to the white dot on the board overlay. The tags of the Minicon plugs should be to the rear of the circuit board. The white rings on the overlays indicate where the boards should be soldered on both sides; in addition TRI on the sync card should be soldered on both sides also.

Insert the keys into the odge connectors, referring to the wiring diagram Figure 9. Carefully insert all integrated circuits into their correct holders ensuring that pin 1 marked on the board aligns with pin 1 of the IC. Carefully fit the clip-on heatsink to REG2.

Use the stick-on front panel as a template to mark out the front plate of the box, before drilling and cutting out, see Figure 1l. Remove the protective backing from the front panel and carefully position it on the prepared front plate, pressing down evenly all over, making sure there are no air bubbles trapped underneath. Mount all controls and switches on the front panel. Referring to the wiring diagram Figure 9, connect all level controls, toggle and rotary switches, LED's and the meter to their appropriate Minicon housings via the ribbon cable provided, allowing approximately 5 inches of cable from each housing to the front panel. Note that the Minicon housings will have their lugs towards the rear of the circuit board when installed. (Refer to the Receiver article for details of how to make terminations to the Minicon connectors, Maplin Magazine Issue 18.)

Mount the toroidal transformer with the rubber washers provided on either side and place a solder tag under the fixing screw, the PSU circuit is shown in Figure 10. Insert the rubber grommet into the hole in the transformer bracket and pass the red, blue, grey, and yellow wires from the transformer through the grommet. Referring to Figure 11, mark and drill the base plate and mount the transformer bracket, placing the mains label in a visible position on this bracket. You can make your own bracket if you wish according to the dimensions shown in Figure 12. Drill and cut out the rear plate of the box and mount the fuseholder. (Check that when the case is finally assembled, the fuseholder tags will be clear of any obstructions.)

Pass the mains cable through the strain relief grommet and then through its hole in the rear plate and secure grommet in position, then refering to Figure 9, connect the brown wire via the fuseholder to the mains switch. The blue wire connects straight to the mains switch and the green/yellow wire to the earth tag under the transformer mounting screw. Terminate the two orange primary wires from the transformer at the

Figure 6. Decoder PCB Overlay.

Figure 10. Power Supply Circuit.
mains switch. Insulate all exposed mains connections. Fix the main circuit board to the base plate, and solder the transformer secondary wires onto their respective pins.

The case may now finally be assembled and the front panel connectors plugged onto the circuit board. The decoder is now ready for testing.

Setting-Up and Testing

WARNING - Take care when working on the decoder with the mains supply connected. NOTE - Do not connect the computer, framestore or receiver until the following tests have been carried out.

Set all three front panel level controls anticlockwise. Insert the 1 Amp fuse and connect the Decoder to the mains supply. Switch on. The mains indicator light in the power switch should glow and the red 'Peak Black' LED should be illuminated. Using a suitable multimeter check the power supply outputs at the test points provided to obtain the following readings (to within ± 0.5 volts). All readings are relative to 0 volts (TP4) or chassis. TP1: +12 volts, TP2: +5 volts, TP3: - 12 volts.

If these readings are correct, connect the Decoder to the parallel I/O port of the computer/framestore and run the appropriate software. (When using the Amstrad or BBC software provided in this article, set the horizontal resolution to 4.) Set the TEST preset (RV1) fully clockwise and the sync switch to SCAN. The lines per second switch should be set to 2. Join the two TEST LINK pins (PLl) together and note that the 'Black Peak' LED remains alight.

Slowly rotate the TEST preset anticlockwise whilst observing the monitor screen. The brightness of the scan lines moving up the screen should be seen to

Syac Tone Card

Diode Board

Holes (a) 0.5 mm

Figure 11. Case Cut-oat Detaile.

Figure 12. Tranaformer Bracket.

| •Sync Tone Switch
 Position Frequency of
 Tone Frequency at TP1
 of Sync Tone Card
 TIROS 1
 (Channel A) 1040 Hz 104 kHz
 TIROS 2
 (Channel B) 832 Hz 83.2 kHz
 METEOR 300 Hz 30 kHz |
| :---: | :---: | :---: | :---: |

progressively increase as the control is rotated. Repeat this test and note that the 'Black Peak' LED goes out before the first grey level appears on the screen and that the 'White Peak' LED comes on as the maximum white is approached. When the full number of grey levels appear on the screen move the scan switch to 'HOLD' (this should stop the picture being scanned) and check that the correct number of levels appear on the screen depending upon the type of display system in use. (The Amstrad and the framestore should produce 16 levels including black and white, and the BBC 8 levels including black and white). The "TEST" link pins may now be disconnected.

The following tests should be carried out by using a good quality recording of the NOAA 6 or NOAA 9 satellites. Connect the Decoder to the Receiver via the 6-way audio DIN lead and the power lead. Connect the tape recorder to the Receiver, referring to the previous article (Issue 18). Play the recording of the satellite. Select TAPE OUT on the MONITOR switch of the Receiver and adjust the VOLUME to a comfortable level. Set the Decoder INPUT LEVEL control to minimum. Switch between TAPE OUT and PLL on the MONITOR switch, and adjust the preset RV2 on the Decoder board until the tone from the PLL is the same as that of the satellite's subcarrier.

To check this setting, the INPUT LEVEL may now be increased and the 'Black Level' LED should now flash or go out. Check that the LEVEL meter responds as the INPUT LEVEEL control is increased.

The basic Decoder is now ready for use but if the sync tone card has been installed the following setting-up is
required. The three multi-turn presets on the tone card are best adjusted using a frequency counter, with reference to Figure 13. Where no frequency counter is available, this adjustment may be carried out by using the audio monitor test points provided in the Receiver unit in the following manner.

When playing a recording of the NOAA satellites, the characteristic 'clipclop' of the synchronising tones will be noted. The first two positions of the LINE SYNC switch ('TIROS') select one or other of these two tones, the third position is for the Russian Meteor satellites.

Play the recording as before and adjust the INPUT LEVEL to give about half scale on the LEVEL meter. Select the first position of the sync detector on the MONITOR switch. Switch the LINE SYNC switch to TIROS 1 , and set the two presets RV1 and RV2 on the sync card to their mid-position, and adjust RV3 to obtain the loudest output for the higher tone.

Repeat this procedure with the LINE SYNC switch set to TIROS 2, and adjust RV4 to obtain the maximum output for the lower tone (RV5 may be adjusted in the same way when playing a recording of a Meteor satellite with the SYNC switch in the METEOR position).

Switch to the second sync detector position on the MONITOR switch and adjust RV2 on the sync card to obtain a short burst of noise that corresponds to every second sync tone of the recording. Check this setting in the other (TIROS) position of the SYNC switch. For the METEOR position of the SYNC switch, adjust RVI to obtain the noise burst for every sync tone when playing a recording of the satellite.

Decoder in Use

The following information refers to the use of the decoder with the BBC B and Amstrad computers. (Information for using the Frame Store will be published later).

Program 1 is for the BBC model B , Program 2 is the machine code created by the GENA 3 assembly program from Amsoft. From Program 2 you can create your object file which can then be loaded by Program 3. When loaded and run, these will ask for the Horizontal Resolution to be entered; this value determines not only the definition of the displayed picture, but also the proportion of the total picture width displayed across the screen. The first time a recording is run, select full width (4), and then any interesting parts may be re-run with a lower setting to obtain greater detail. The SHIFT switch may be used to move the picture to the desired position at the beginning of the run, and if required, the full scan may be re-started by holding the space bar. (The sync when set is not lost until the tape is stopped or the signal fails.) Synchronisation to the start of a line is provided by the Sync Tone Card. The

Program 1.

10. MODE 7

20 CLS: PRINT: PRINT
3C PRINT"INPUT HORIZONTAL RESOLUTION (1-4)";
40 INPUT HRES
50 MODE 2
GO VDU 23;8202;0;0;0
70 PRINT
80 DIM CODE\% 500
90 ROWBSE $=870$
100 ?ROWBSE=((HIMEM+20479) MOD 256)
110 ? (ROWBSE + 1) $=($ (HIMEM+20479) DIV 256)
120 DOTBSE=\$72
130 ?DOTBSE $=($ (HIMEM +20479$)$ MOD 256
140 ? (DOTBSE+1)=((HIMEM+20479)DIV 256)
150 SMPL $=874$
160 TEMP $=875$
170 RWBSSH=\&76
180 FINSCN $=878$
190 QUBRT=\&7A
200 ?FINSCN=((HIMEM)MOD 256)
210 ? (FINSCN+1) =((HIMEM)DIV 256)
220 PORT=\&FE60
230 FOR P=0TO2 STEP 2
240 P\%=CODE\%
250 [OPT P
260 LDA \#\#O2
270 LDX 珠\&○
280 JSR \&FFF4
290 . INIT LDA \#\&00
300 LDX \#\& \#0
310 LDY \#\$00
320 SEI
330 CLD
340 STA \&FEE2
350 STA SMPL
360 STA TEMP
370 . WTSYNC
380 LDA PORT
390 AND \#64
400 BEQ WTSYNC
410 .FINSYNC
420 LDA PORT
430 AND \#64
440 BNE FINSYNC
450 . WASTE BIT FORT
460 BMI WASTE
470. PING BIT PORT

490 BPL PING
490 INX
500 CPX*O1
510 BNE WASTE
520 LDX \#\&OO
530 . WTBUSY
540 BIT PORT
550 BMI WTBUSY
560 . WTSMPL
570 BIT PORT
580 BPL WTSMPL
590 INX
GOO.RESH CPX \#\&O2
610 BNE WTBUSY
620 LDA PORT
E30 AND \#\&OF
640 LDX \#*00
650 STX TEMP
660 LSR A
670 ROL TEMP
680 ROL TEMP
690 ROL A
700 ROL A
$710 \mathrm{ROL} A$
720 ROL A
730 ROL A
740 ROL A
750 ROL OUERT
760 ROL A
770 ROL TEMF
780 ROL TEMP
790 ROL A
800 ROL TEMP
810 LSR OUBRT
820 BCC TEST
830 LDA 21
840 STA TEMP
850. TEST LDA SMPL

860 LSR A
870 BCC ODD
880° ASL TEMP
890 LDA TEMF
900 ORA (DOTBSE, x)
910 STA (DOTBSE,X)
920 JMP NEWDOT
930. ODD

940 LDA TEMP
950 STA (DOTBSE, X) 960 . NEWDOT

970 LSR SMPL
$98 \circ$ BCS UNE
990 INC SMPL
1000 JMP WTBUSY
1010 . UNE
1020 LDA DOTBSE
1030 SEC
1040 SBC \#\$08
1050 BCS TWO
1060 DEC DOTBSE+1
1070 . TWO
1080 STA DOTBSE
1090 LDA ROWBSE+
1100 STA RWBSSH+1
1110 LDA ROWBSE
1120 STA RWBSSH
1130 SEC
1140 SBC *128
1150 BCS THREE
1160 DEC RWBSSH+1
1170 : THREE
1180 STA RWBSSH
1190 DEC RWBSSH+1
1200 DEC RWBSSH +
1210 LDA DOTBSE + 1
1220 CMP RWBSSH+1
1230 BNE WTBUSY
1240 LDA DOTBSE
1250 CMP RWBSSH
1260 BNE WTBUSY
1270 TYA
1280 PHA
1290 TXA
1300 PHA
1310 LDA \#\%g
1320 LDX \#\# \#
1330 LDY \#\$20
1340 JSR \&FFF4
1350 TYA
1360 BNE NEWLNE
1370 PLA:PLA: JMP EIGHT
1380. NEWLNE PLA

1390 TAX
1400 PLA
1410 TAY
1420 LDA ROWBSE
1430 SEC
1440 SBC \#\$01.
1450 INY
1460 BCS FOUR
1470 DEC ROWBSE+1
1489 .FOUR
1490 STA ROWBSE
1500 STA DOTBSE
1510 LDA ROWBSE+1
1520 STA DOTBSE+1
1530 CPY 制\&
1540 BEQ SIX
1550 JMP WTSYNC
1560. SIX

1570 LDA ROWBSE
1580 LDY \#\$00
1590 SEC
1600 SBC 120
1610 BCS FIVE
1620 DEC ROWBSE+1
1630 DEC DOTBSE +1
1640. FIVE

1650 STA ROWBSE
1660 STA DOTBSE
1670 DEC ROWBSE + 1
1680 DEC ROWBSE+1
1690 DEC DOTBSE+1
1700 DEC DOTBSE+1
1710 STY SMPL
1720 LDA RDWBSE +1
1730 CMP FINSCN+1
1740 BEQ SEVEN
1750 BCC SEVEN
1760 JMP WTSYNC
1770 . SEVEN
1780 JMP EIGHT
1780 JMP EIGHT
1790 LDA ROWBSE
1800 CMP FINSCN
1800 CMP FINSCN
1810 BEQ EIGHT
1820 BCC EIGHT
1830 JMP WTSYNC
1840.EIGHT

1850 CLI
1860 RTS
1870 J
1880 NEXT P
1890 IF HRES >0 AND HRES $\langle 5$ THEN $?($ RESH +1$)=$ HRES
1900 CALL CODE\%
1910 GOTO 90

Program 2.												
Hisoft	GENA3. 1	Assembler.					A0C7	210050	860		LD	HL, ${ }^{\text {a }} 5000$
							AOCA	3A449C	870		LD	A, (YREG)
							AOCD	CB3F	880		SRL	A
A028		10	ORG	41000			AOCF	CB3F	890		SRL	A
A028		20	ENT	*			AOD1	CB3F	900		SRL	A
F8FO		30 PORT:	EQU	*FBFO			AOD3	5 F	910		LD	E, A
$9 \mathrm{C40}$		40 TEMP:	EQU	40000			AOD4.	1600	920		LD	D, 0
$9 \mathrm{C41}$		50 LUM:	EQU	40001			AOD6	0608	930		LD	B, 8
9 C 42		60 XREG:	EQU	40002			AOD8	29	940	MULT:	ADD	HL, HL
9 C 44		70 YREG:	EQU	40004			AOD9	3001	950		JR	NC, NOADD
9 C 46		80 HXREG:	EQU	40006			AODB	19	960		ADD	HL, DE
$9 \mathrm{C4B}$		90 BLKADD:	EQU	40008			AODC	$10 \% A$	970	NDADD:	DJNZ	MULT
A028	3E00	100	LD	A, \#00			AODE	22489C	980	NDAD.	LD	(BLKADD), HL
A02A	32479C	110	LD	(HXREG+1), A			AOE1	3A449C	990		LD	A, (YREG)
A02D	CDOEBC	120	CALL	\#BCOE			AOE 4	CB27	1000		SLA	A
A030	219 FO	130 RERUN:	LD	HL, 159			AOE 6	CB27	1010		SLA	A
A033	224290	140	1.0	(XREG), HL			AOEB	CB27	1020		SLA	A
A036	210700	150	LD	HI, 199			AOEA	E638	1030		AND	56
A039	22449C	160	LD	(YREG), HL			AOEC	67	1040		LD	H, A
A03r.	DD2142A1	170	LD	IX, BYTEAD+15			AOED	2E00	1050		LD	L. 0
A040	3EOF	180	LD	A, \# 0 F			AOEF	ED4B489\%	C 1060		LD	BC, (RLKADD)
A042	32409C	190	LD	(TEMP), A			AOF3	09	- 1070		ADD	HL, Rr
A045	DD7E00	200 COLSET:	LD	A, (IX +)			AOF 4	01000	1080		LD	BC, \#COOO
A048	47	210	L.D	B, A			AOF7	09	1090		ADD	HL, BC
A049	4F	220	LD	C, A			AOFB	ED4B469C	C 1100		LD	BC, (HXREG)
A04A	3A409C	230	LD	A, (TEMP)			AOFC	09	1110		ADD	HL, BC
A04D	CD32BC	240	CALL	\#BC32			AOFD	34409 C	1120		LD	A, (TEMP)
A050	21409 C	250	LD	H. , TEMP			A100	DD21429C	C 1130		LD	IX, XREG
A053	35	260	DEC	(HL)			A104	DDCBOO46	6 1140		BIT	O, (I X +0)
A054	FASCAO	270	JP	M, WTFRM			A108	2001				
A057	DD2B	280	DEC	IX			A108	2001	1150		JR	NZ, PLOT
A059	C345AO	290	JP	COLSET			- A10A	B6	1160		OR	(HL)
A05C	CD19BD	300 WTFRM:	CALL	\#BD19			A10B	77	1170	PLOT:	LD	(HL), A
A0SF	CD19BD	310	CALL	*BD 19			A10C	010100	1180		LD	BC, \# 0001
A062.	$F 3$	320 LODP 1:	DI				A10F	2A429C	1190		LD	HL, (XREG)
A063	O1FOF8	330	LD	BC, \#F8FO	1		A112	B7	1200		OR	A
A066	ED78.	340 LINE:	IN	A, (C)			A113	ED42	1210		SBC	HL, BC
A068	CB77	350	BIT	F, A			A115	3806	1220		JR.	C,NEXY
A06A	28FA	360	JR	z,LINE			A117	224290	1230		LD	(XREG), HL
AO6C	ED78	370 ENLIN:	IN	A, (C)			A11A	C377AO	1240		JP	LOOP2
AO6E	CB77	380	BIT	6, A		,	A11D	219700	1250	NEXY:	LD	Hi, 159
A070	20FA	390	JR	NZ, ENLIN			A120	22429 C	1260		LD	(XREG), HL
A072	160A	400	LD	D, 10			A123	2A449C	1270		LD	HL, (YREG)
A074	15	410 DELAY:	DEC	D			A126	B7	1280		OR	A
A075	20FD	420	JR	NZ, DELAY			A127	ED42	1290		SBC	HL, BC
A077	F3	430 LOOP2:	DI				A129	3002	1300		JR	NC, NEWLIN
A078	1602	440	LD	D, 2			A12B	FB	1310		EI	
AO7A	01Fofe	450	LD	BC, \#F8FO			A12C	C9	1320		RET	
AO7D	ED78	460 SMPL:	IN	A, ($\mathrm{C}^{\text {) }}$			A12D	224490	1330	NEULIN:	LD	(YREG), HL
AO7F	CB7F	470	BIT	7, A			A130	C362AO	1340		JP	LOOP 1
A081	20FA	480	JR	NZ, SMPL			A133		1350	BYTEAD:		
А0日 3	ED78	490 ENSMP:	IN	A, (C)			A133	00010204	41360		DEFB	0,1,2,4
A085	CB7F	500	BIT	7, A			A137	0506080A	A 1370		DEFB	5,6,8,10
Аов 7	28FA	510	JR	Z,ENSMP			A138	OCOE1012	21380		DEFB	12, 14, 16, 18
A089	15	520	DEC	D			A13F	1416181A	A 1390		DEFB	20,22,24,26
AOBA	20F1	530	JR	NZ, SMPL								
A 08 C		540 GETLUM:										\}
ÁOBC	ED78	550	IN	A, (C)								
AOBE	E60F	560	AND	\#OF								
A090	32419C	570	LD	(LUM), A			BLKADD	9 C 48 B	BYTEAD	A133 C0	SET	A045
A093	$1 F$	580	RRA				DELAY	A074 E	ENLIN	A06C EN	Smp	A083
A094	CB18	590	RR	B			GETLUM	A A0BC H	HXREG	9C46 LI		A066
A096	$1 F$	600	RRA				LODP1	A062 L	LOOP2	A077 L		$9 \mathrm{C41}$
A097	CB18	610	RR	B			mult	AODS N	NEWLIN	A12D NE		A11d
A099	$1 F$	620	RRA				NOADD	AODC N	NOLFT	AOCO PL		A10B
A09A	CB19	630	RR	C			PORT	FBFO R	RERUN	A030 SM		A07D
A09C	$1 F$	640	RRA				TEMP	$9 \mathrm{C4O} \mathrm{~W}$	WTFRM	A0SC XF		$9 \mathrm{C42}$
A09D	CB18	650	RR	B			YREG	9 C 44				
A09F	1600	660	LD	D, 0								
AOA1	CBOO	670	RLC	B			Table	used:	307 f	from 35		
aoas	cbiA	680	RR	D			Execut	es: 4100	-			
AOAS	CB1A	690	RR	D			Execut	-5. 410				
AOA7	CBOO	700	RLC	B								
AOA9	CB1A	710	RR	D								
AOAB	cbiA	720	RR	D								
AOAD	CBO1	730	RLC	C			Program	m 3.				
AOAF	CB1A	740	RR	D								
AOB1	CB1A	750	RR	D			5 MEMO	ORY 30000	O: MODE	2		
AOB3	CBOO	760	RLC	B			10 LOA	AD"wefax 1	$1.0 \mathrm{~b}^{\prime \prime}$			
AOB5	CB1A	770	RR	D			20 INP	PUT"enter	or horiz	zontal res	solut	tion 1-4";resh
A0B7	3A429C	780	LD	A, (XREG)			30 IF	resth>0	AND resh	sh<5 THEN	POKE	\& 4079 ,
AOBA	$1 F$	790	RRA				resh E	ELSE CLS:	S:GOTO	20		
AOBB	3003	800	JR	NC, NOL.FT			40 CAL	LL 41000				
AOBD	B7	810	OR	A			50 CAL	L \& ${ }^{\text {a }}$				
AORE	CB1A	820	RR	D			60 GOT	T0 50				
AOCO	32469C	830 NOLFT:	LD	(HXREG), A								
A0C3	7A	840	LD	A, D								
AOC4	32409C	850	LD	(TEMP), A								

SATELLITE DECODER PARTS LIST

RESISTORS: All 0.6W 1\% Metal Film

R1	27k
R2,4,25	470k
R3,37,38,39,40	1k
R5,9,20,27	10k
R6,2,12,24	100k
R8	820Ω
R10	2201k
R11,17,26	2k2
R13	180k
R14,41	47k
R15	5.66
R16,21,22,23,28,	
30,31,34,36,36	4k7
R18	180k
R19	390Ω
R29	3300
R32,33	270Ω
SIL 1,2	SIL 4k7
RV1	10k Cermet
RV2	1k Hor. S-Min Preset
RV3	10k Por Lin
RV4	1k Pot Lin
RV5	1M Pot Lin
CAPACITORS	
Cl-3	220 nF Poly Layer
C4,5	10رF L6V Minelect
C6,11	47 nF Poly Layer
C7	100μ F 35V P.C. Electrolytic
C8,26,27	4 μ TF 35V Minelect
C9	$2 \mu 2563 \mathrm{~V}$ Minelect
C10	2n2F Poly Layer
C12	4nTF Poly Layer
C13-18,28	100 nF Minidisc
C19-22	$2200 \mu \mathrm{~F} 35 \mathrm{~V}$ Axial Electrolytic
C23	$10 \mu \mathrm{~F}$ 16V Tantalum
C24,25	100 nF Polyester

(M27K)

(M470K)

(M1K) (M10K)
(M100K)
(M820R)
(M220K)
(M2K2)
(M180K)
(M4TK)
(M5K6)
(M4K7)
(M180K)
(M390R)
(M330R)
(M270R)
(RA29G)
(WR42V)
(WRS5K)
(FW02C)
(FW00A)
(FW08J)
(WW45Y)
(YY34M)
(WW3TS)
(FF11M)
(YY33L)
(IY32K)
(WW24B)
(WW26D)
(MR75S)
(FB90X)
(WW68Y)
(BX76H)

SEMMICONDUCTORS

D1,2	OA91
D3-14	IN4148
ZD1	BZY88C3V3
LED 1	Red LED Chrome large
LED 2	Green LED Chrome large
TR1-3	BC548
BR1	W005
REG1	$\mu A 7912$ UC
REG2	μ A7812UC
REG3	μ A7805UC
IC1	LF353
IC2	ZN427E
IC3	NE565
IC4	74LS132
IC5	4078
IC6-8	74HCl63
IC9	74LS03

(OH72P)
(QL80B)
(OHO2C)
(YY60Q)
(QY47B)
(QB73Q)
(Ol37S)
(WO93B)
(QL32K)
(OL31J)
(WO31)
(UF40T)
(WQ56L)
(YF51F)
(OX28F)
(UB42V)
(FF03D)
MISCELLLANEOUS
$\begin{array}{ll}\text { M1 } & \begin{array}{l}\text { Signal Meter } \\ \text { T1 }\end{array} \quad \begin{array}{l}\text { Transformer Toroidal 30VA 15V } \\ \text { S1 }\end{array} \\ \begin{array}{ll}\text { Switch Sub. Min. Toggle SPDT (C) }\end{array}\end{array}$
S2,4
Switch Sub. Min. Toggle SPDT (C) 1
Switch Rotary 3 -pole 4 -way
(LB8OB)
(YK11M)
(FH03C)
(FF7BS)

Switch Sub-Min Toggle SPDT (D) 1	(FH03D)
Swrich Dual Rocker Neon 1	(RTJOM)
Fuse 1/ MS 1	(WR19V)
Minicon latch Plg 2-Way 2	(R.65V)
Minicon latch Plg 12-Way	(YW140)
Minicon latch Plg 6-Way	(YW12N)
Minicon latch Plg 8-Way	(YW13P)
R.A. D' Range 25-Way PCB Plg 1	(FG68Y)
Minicon latch Housing 2-Way 3	(HB59P)
Mincon latch Housing 12-Way 1	(TW24B)
Minicon latch Housing 6-Way	(BH65V)
Minicon latch Housing 8-Way	(1W23A)
Minicon Terminal 46	(YW25C)
6 -Pin PCB DIN Sociket	(FA90X)
Power Socket D.C. 2.Smm	(FE06G)
2x12-Way P.C. Edgeconn	(BE74R)
Polarising Key 0.156 in	(FD08J)
Bolt 6BA $\geq 1 \mathrm{lin} \quad 1$ Pkt	(BFOTH)
6BA x Yin Threaded Spacer 1 Pkt	(FD10L)
Nut 6BA 1 Pk	(BF18U)
Tag 2BA 1 Pk	(BF2TE)
Bolt 68A x x $1 / 8 \mathrm{in}$ (1 Pkt	(BF06G)
Mains Waming Label 1	(WH48C)
Cable Min Mains White 1 mtr	(XR02C)
Ribbon Cable 20-Way 1 mtr	(XROTH)
Grommet Small	(FW69P)
S.R. Grommet 6W-1	(LR49D)
Sleeving Heatshrink CP95 1 mtr	(YR1TT)
Clip-on TO220 Heatsink	(FG62G)
Decoder PCB 1	(GD22Y)
Veropin 2141	(FL21X)
DIL. Socket 8-pin 1	(BL1TT)
DIL Socket 14 -pin	(BL18U)
DIL Socket 16-pin 3	(BL19V)
DIL Socket 18-pin 1	(HO76H)
Safuseholder 20	(RX96E)
Knob K10B	(RE90X)
Transformer Mounting Bracket 1	(FD09K)
Constructor's Guide 1	(XH79L)
Instrument Case NM2H 1	(MM51F)
Decoder Front Panel	(FD05F)
Araldite	(FIA4X)
DIN Plug 6-pin 2	(HH29G)
Standard Power Plug 2.5	(H1462S)
Cable Single Core Screened Greyl mtr	(XR13P)
Multi-Core 6-Way 1 mtr	(XR26D)
Decoder Interface Cable 1	(FD1TT)

A complete kit of all parts, excluding optional items, is available for this project:
Order As LMOTH (MAPSAT Decoder Kit) Price $£ 79.95$ The following items included in the above kit list are also available separately, but are not shown in the 1986 catalogue: Sub-Min Toggle SPDT Order As FH02C Price $£ 1.20$ 6-Pin PCB DIN Socket Order As FA90X Price 50p 0.156 in Edgeconn Polarising Key Order As FD08] Price $12 p$ 1/4in x 6BA Threaded Spacer Order As FD10L Price 88p

Decoder PCB Order As GD22Y Price $£ 12.95$ MAPSAT Decoder Front Panel Order As FD05F Price £3.95 Transformer Mounting Bracket Order As FD09K Price £1.20 Instrument Case NM2H Order As YM51F Price £14.95 Decoder Interface Cable Order Rs FD17T Price $£ 6.85$ Constructor's Guide Order As XH79L Price 25p NV

DECODER SYNC TONE BOARD PARTS LIST

RESISTORS: All 0.6W 1\% Metal Film

R1	2k2	1	(M2K2)
R2,10,11,13,22	47k	5	(M4TK)
R3	100k	1	(M100K)
R4-1	33k	4	(M33L)
R8,9	470k	2	(M470K)
R12	68k	,	(M68K)
R14	82k	1	(M82K)
R15	18k	1	(M18\%)
R16,19	220Ω	2	(M220R)
R17,18,20,21	4 k 7	4	(M4KT)
R23	220k	1	(M220K)
R24	2k7	1	(M2K7)
RV1,2	47k Vert S. Preset	2	(WR700)
RV3-5	10k 23-Tum Cermet	3	(WR49D)
CAPACTTORS			
Cl,2,3,6	100nF Poly Layer	1	(WW410)
C3	2 n 2 F Poly Layer	,	(WW24B)

C4	10 nF Poly Layer	1	(WW29G)
C1	100μ F 16V Minelect	1	(RA5SE)
C8	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	1	(YY34M)
C9,10	320 nF Poly Layer	2	(WW45Y)
SEMICONDUCTORS			
D1-3	IN4148	3	(QL80B)
TR1-3	BC548	3	(QB730)
ICl	4046 BE	1	(QW32K)
IC2	MFIOCN	1	(QY350)
MISCELLINEOUS			
	Veropin 2145	1 Pkt	(FL24B)
	Sync 1 PCB		(GD23A)
	Track pin	1 Pkt	(F182D)
	DIL Socket 20-Pin	1	(HOTT])

The following item in the above kit list is also available separately, but is not shown in the 1986 catalogue: Sync 1 PCB Order As GD23A Price $£ 3.95$

Choosing the best type of capacitor for a circuit is not always easy. Manufacturers' data sheets are packed with helpful information like "Insulation resistance . $>5000 \mathrm{M} \Omega$ ", and "Power factor <0.013 at $10 \mathrm{kHz}^{\prime \prime}$, but unless you know what it all means - and why it matters you might just as well pick the cheapest component with an adequate voltage rating and hope for the best.

If you need a $0.1 \mu \mathrm{~F}$ capacitor, for example, the Maplin catalogue gives you twelve to choose from, see Table 1. They range from a tantalum electrolytic the size of a dried pea, right up to a polystyrene component as big as a cigar butt. Why are there so many different types? The answer, of course, is that each has been carefully optimised for one of the many different roles capacitors have to fill - coupling in audio circuits, interference suppression, tuning RF oscillators, decoupling digital logic circuits, and so on.

Value

Capacitors are generally sold as preferred values in the range from lpF to about $10,000 \mu \mathrm{~F}$. The lower limit is set by the inevitable stray capacitance around the component when it is used, and at the upper end of the range the components can store so much energy for such long periods that they are virtually batteries. Indeed, a 1 Farad capacitor is made especially to act as a short-term emergency power supply for computer memory boards.

The range of preferred values in each decade are often just $1,1.5,2.2,3.3$, 4.7 , and (sometimes) 6.8 , with a tolerance of typically 10%. This rather limited range is not always as restricting as it seems; after all, it doesn't really matter.if the value of a decoupling capacitor is slightly higher than it need be. Capacitors intended for use in circuits where precision is important - like filters and oscillators, for example - are available in a much wider range of values and with tighter tolerances.

by J.K. Hearfield

$\left.\begin{array}{|lcccccccc|}\hline \text { Type } & \text { Price } & \text { Material } & \begin{array}{c}\text { Working } \\ \text { Voltage }\end{array} & \begin{array}{c}\text { Toi. } \\ \%\end{array} & \begin{array}{c}\text { Power } \\ \text { factor } \\ \%\end{array} & \begin{array}{c}\text { insulation } \\ \text { Resistance } \\ \Omega\end{array} & \% \text { per }{ }^{\circ} \mathrm{C}\end{array}\right]$

Table 1. $0.1 \mu \mathrm{~F}$ capacitors summary.

Table 2. The three main familien of capacitor.

Figure 1 illustrates the range of capacitance offered by the types of capacitor in the Maplin catalogue, together with current prices for components at each end of the range.

Physical Size

Capacitors are used to store charge, and the maximum amount of charge each can hold is given by its CV product:

$$
Q=C \times V
$$

Where Q is the charge (in coulombs), C the capacitance (Farads) and V the voltage. One might expect a capacitor's physical size to be roughly proportional to its CV product, but as Figure 2 shows, this is by no means always the case.

Types

It is clear from Figure 2 that most capacitors belong to one of just three families: ceramic, plastic, or electrolytic. The important characteristics of each family are illustrated in Table 2.

Table 2 shows that, although the ceramic and electrolytic families between them cover the whole range from lpF to $10,000 \mu \mathrm{~F}$, capacitors with plastic dielectrics are a much better choice when the application requires high stability or low loss.

Identification

Like resistors, some capacitors carry gaily coloured stripes to indicate their nominal values; the colour code is the same as for resistors. But it is much more common for capacitor manufacturers to print the component's value on its case along with its rated working voltage and the manufacturer's name. The value may be expressed as a three-digit code for example, "154" would not mean 154 pF , but $15,0000 \mathrm{pF}$ (' 15 ' plus ' 4 ' zeros): that is, 150 mF .

Voltage

Manufacturers specify the maximum voltage that may be applied across their capacitors without damaging them, and it is essential to observe this limitation. But in the same way as a resistor is more reliable if it is not allowed to get too hot, a capacitor (especially an electrolytic) tends to last longer if the voltage across it is kept well below its rated voltage. It's also important to ensure that the voltage across any electrolytic (and tantalum) type is of the correct polarity. As a rule of thumb, it is prudent to choose a capacitor with a working voltage about 20% greater than the voltage it will actually see in practice.

Tempersfure

Capacitance varies with temperature, although usually not very much. Its temperature dependence is known as its 'Tempco' (short for 'Temperature Coefficient,' though it sounds more like the name of a secretarial staff agency!).

Figure 1. Capacitance range offered by different types.

Figure 2. CV product and volume of capacitor range.

Tempco is measured in parts per million per degree $C\left(p p m /^{\circ} C\right)$ or as the percentage variation from its value at room temperature. Table 1 shows that plastic film capacitors are the most stable - their value changes by less than 1\% between 0 and 50 degrees C. Over the same temperature range, electrolytics might vary by 5% or so, but ceramicbased capacitors could be as much as 25% less in value at 0° and at 50° than they are at room temperature!

Imperfections

The impedance of a perfect capacitor is always inversely proportional to frequency; its insulation resistance is infinitely large, and it never absorbs energy from the ripple current flowing through it. Unfortunately, perfect capacitors exist only in textbooks, and real capacitors suffer from all these defects to a greater or lesser extent. The capacitor's equivalent circuit, see Figure 3 , shows how the imperfections can be modelled as series and shunt resistances, and series inductance.

Insulation Resistance

Some applications demand a capacitor having a very high effective parallel resistance - timing circuits, or sample-and-hold circuits, for instance. But as Table 1 illustrates, all except electrolytic types have an insulation resistance measured in thousands of Megohms.

Electrolytic and tantalum types have a small but continuous leakage current flowing through them. This current increases with temperature (reaching about twice its room temperature value at $50^{\circ} \mathrm{C}$), and also with applied voltage.

Self-Resonance

The inductance of a length of straight wire is about 15 nH per cm . Simple theory says that if each lead of a perfect $0.1 \mu \mathrm{~F}$ capacitor is 5 mm long, the resulting tuned circuit will resonate at a frequency of 4 MHz . At frequencies below resonance, impedance falls as frequency rises and the combination behaves like a capacitor. But at frequencies above resonance the impedance rises with frequency: the capacitor behaves like an inductor! At the other end of the scale, if the component in question is a real $100 \mu \mathrm{~F}$ capacitor instead, then self-resonance occurs at just a few tens of kHz .

The moral is to use the smallest component with the lowest practical value, and to keep the leads (not forgetting the wiring and/or the PCB track) as short as possible if the selfresonant frequency must be high.

Powor factor and tam d

Manufacturers don't usually quote the size of the Effective Series Resistance (ESR) for their capacitors directly.

Figure 3. Capacitor equivalent circuit.
Instead, they define the component's power factor, where:
Power factor $=\frac{\text { Effective Series Resistance }}{\text { Total }}$
Total impedance
Or more commonly, its dissipation factor:
Dissipation factor $=\tan \mathrm{d}$
$\tan d=$
Effective Series Resistance
Capacitive Reactance
The two terms are almost identical provided ESR is small. Both are obviously frequency-dependent; they are often specified at a frequency of 1 kHz or 10 kHz .

It is straightforward to extract a value for ESR from the power factor. The $0.1 \mu \mathrm{~F}$ Poly Layer capacitor, for example, has a power factor quoted as 0.008 at 1 kHz . At this frequency the capacitive reactance is 1590 , so:
$E S R=0.008 \times 1590=13$ ohms.
Any current flowing through the capacitor flows also, by definition, through the ESR. Suppose the capacitor is carrying a ripple current of 50 mA at lkHz. The power dissipated in the ESR and, hence, in the component - is then:
$\mathrm{P}=0.05 \times 0.05 \times 13=33 \mathrm{~mW}$

Electrolytic \& Tantalum

Though they pack a lot of capacitance into a very small space, electrolytics are not precision components. They are generally sold with a tolerance of $\pm 20 \%$, or even $+50 \% /-10 \%$. They are polarised, and therefore are intended to work in situations where a constant DC bias appears across them (though some can withstand a small continuous reverse bias); the bias voltage causes a leakage current of typically $1 \mu \mathrm{~A}$ or so to flow continuously through them. Electrolytics are made in values from $0.1 \mu \mathrm{~F}$ upwards, although the high-frequency performance of the larger ones is often poor. A high frequency, for an electrolytic, can be as low as only a few kHz.

Ceramic

The properties of a ceramic capacitor depend very much on the type of
dielectric that it employs. So-called "low$\mathrm{K}^{\prime \prime}$ types are available at 5% tolerance from a few pF to a few nF . They have excellent temperature stability and a low dissipation factor.
"High-K" types by contrast may show a startling decrease in capacitance from the value quoted at room temperature. They are available in values from a few nF to $l \mu \mathrm{~F}$, and are used mainly in decoupling applications where their loose tolerance (10% or 20%) and poor dissipation factor are less important than their compactness, low inductance and low cost.

Polyester and Polycarbonate

Metallised film and foil capacitors are manufactured in values from 100 pF to a few $\mu \mathrm{F}$, usually at 10% tolerance. Their chief attraction is their low dissipation factor, particularly at low frequencies, but their performance may be good enough for some filter applications despite their relatively high Tempco (typically 300 ppm). They are often much cheaper than ceramic types, albeit physically larger.

Polystyrene

Their high stability and tight tolerance make polystyrene capacitors the obvious choice for precision work. They are available in 1% and 5% tolerances, from a few tens of pF up to 100 nF . They have a moderate Tempco (typically -150 ppm) and a low dissipation factor, even at high frequencies. At small values they can be much more expensive than equivalent ceramic types, but from about $\ln F$ upwards they have no real competition.

Silver Mica

Silver mica capacitors also have good stability and tight tolerance but their high price makes them difficult to justify for most applications. Like low-K ceramic types, they are available in values from a few pF to a few nF . The two types are physically much of a size, especially at low values, but silver mica capacitors can cost more than twice as much.

Summary

Each of the capacitor types described in this article is ideal for some particular task - and woefully inadequate for others. Picking the most suitable type involves deciding which properties matter most for the application you have in mind. Must the component fit into a very small space? Must its value be stable over a wide range of temperatures? Must it have very low loss? Armed with the answers to these questions, you can use the catalogue to identify just the component you need. Of course, it may not yet exist.....

> * Low Cost, Short Range, Heat/Movement Detector. * Ideal for Doorways, Stairs and Proximity Systems. * Low Power Consumption for Long Battery Lite.

Commercially available body heat, movement detection systems, although very sophisticated in their operation, can be rather expensive for use in limited applications where short range coverage is required. This I / R proximity detector has been designed as a simple low cost system for detecting heat changes, movement of a warm body, etc., such as those emitted from the human body. The unit responds to a definite change or disturbance in ambient - or background - heat levels and could be placed across a doorway or stairs to indicate movement in those areas.

Pyroelectrics

The F001P sensor uses a ceramic, ferroelectric element made from Lead Zirconate Titanate (PZT), which has the property of producing an electrical change at its surface when the temperature changes, due to a change in polarization intensity. If a moving object enters the field of view of this sensor, changes in infra red energy levels occur due to a difference in temperature between this object and the background. Infra red energy is converted into heat by the surface electrode of the element, thus causing a change in temperature within the element itself, and a small electric charge is created as a result (see Figure 1).

This small charge appears across the gate resistance Rg in Figure 2, and is impedance buffered by the FET source follower, where a change in voltage appears across source resistance Rs. A small DC bias voltage (IDRs) is produced

by Dave Goodman

Figure 1. Pyroelectric Element.
by the quiescent current (ID) Ilowing through the FET while no signal is present, as Figure 3, and output signals from the source terminal overlap this level with a +Ve voltage swing.

In use, the voltage swing is very small, its amplitude being determined by the amount of incident energy available, which becomes smaller with increasing distance.

Done with Mirrors!

A negligible amount of energy is emitted from the human body which limits the effective working range of the module down to four feet or so. This range could be extended by increasing the sensitivity of the amplifier and developing velocity related filter circuits which would determine a given range of movement speeds and size of body.

An even more effective method is employed on commercial systems, in the form of collecting lenses and optical

Maplin Magazine September 1986

Figure 2. Sensor Circuit.
amplifying concave mirrors. Problems associated with energy collecting systems are: movements in the air, sunlight 'modulated' through curtains and even small animals generating fluctuations in the infra red energy background. To help overcome these sorts of problems, a multi-faceted, concave mirror is often used, which has the effect of expanding (or narrowing) the field of view into bands.

As an infra red emitting source crosses the field of view, radiated energy bounces off these facets in a sequence. The sensor responds with a series of related output pulses, and detection electronics can determine the size, velocity and direction of the source while it is moving. Quite a sophisticated achievement, and such a system is available in our catalogue, being more suitable for security and alarm uses than this particular system.

However, many applications exist where a simpler system is called for, especially for the home constructor!

Cireuit Description

The circuit, shown in Figure 4, consists of two amplifying stages, with low pass filtering and a comparator threshold stage. Output voltage swings from the IRD are amplified by IClb, which is configured as a non-inverting amplifier. The IRD receives energy from many sources, and a mixed waveform would be produced at IClb output, therefore C3 integrates continuous low level signals and acts as a low pass filter.

The somewhat unusual arrangement of resistors R1 and R4 allow C2 to charge slowly during initial power up. C2 is necessary for isolating $\mathrm{IClb}-\mathrm{Ve}$ input from the OV supply rail. With single supply op-amps, it is common to genSeptember 1986 Maplin Magazine

Figure 3. Source Output Voltage Swing.

Figure 4. Proximity detector Circuit.

Figure 5. PCB Artwork.
erate a half supply DC voltage reference to bias the differential inputs, thus allowing output voltage swings about this level. The effect of integration on the continuous input signals produces a very low frequency output signal, which is applied to C 2 .

The charge across C2 varies with the magnitude of the output signal (from pin 7), and limits heavy transients from saturating this stage.

ICla is a standard inverting amplifier, again voltage referenced to half supply by R6 and R7. C7 decouples the reference voltage to prevent comparator supply spikes from being introduced into the stage. ICld and IClc serve as a simple comparator. The threshold voltage reference, determining when the comparators will trigger, is set by RV1 in the potential divider chain R9 and R10.

Positive voltage swings from ICla trigger the ICld comparator causing D1 to conduct, while negative swings trigger IClc causing D2 to conduct. From Figure 3 it can be seen that the output voltage swing from the $\mathbb{R D}$ is, firstly, in a positive direction and then secondly in a negative direction. The ultimate effect from the comparator output at R11 is therefore not one but two pulses turning on transistor TR1.

Either one of diodes D1 or D2 could be removed for single pulse output and which particular one to remove must be decided under full operational conditions. TRI is an open collector switch, and will sink external loads (sourced from their own external $+V$ supply) to the 0 V common rail when conducting.

Construction

For information on building details and components, refer to Figure 5 for the board layout and to the 'Constructor's Guide' supplied with this kit (if you do not intend to purchase the complete kit then see the Parts List for the order code of the Constructor's Guide, price 25p). Identify and insert resistors Rl to R12. Solder these components and remove excess wire before continuing.

Mount diodes D1 to D3, and insert veropins at Pin l to Pin 4 in the holes marked with white circles. Next, insert a 14 -pin IC socket in position ICl, and bend a few legs over the track pads to hold it in position. The PCB is quite small with tracks running close together, so care must be taken whilst soldering, as short circuits between tracks can easily occur.

Identify and insert capacitors Cl to C7. Polylayer type C3 should be fitted carefully to prevent breaking the lead out wires from each end of the package. Fit preset RV1, and solder all components in position. Again, cut off all excess leads, then fit TRI and the sensor IRD1 shown in Figure 6. One side of TR1 has a metal, heat transfer mounting plate fitted. Insert TR1 with this plate facing outward towards the edge of the pcb. The sensor IRDl, shown in Figure 7, could be

Figare 6. Sensor pin-outs.
mounted vertically from the pcb, or horizontally off the pcb as detailed. Mount the sensor as close as possible - in both cases - to the pcb in order to reduce noise induced into this area.

Either mounting position will have to take into account the boxing (case) requirements, and this is left to the fitting as required by the constructor. Solder any remaining components, cut off all excess wires and clean up the track area to facilitate inspection.

Testing

Supply requirements for the module are 9V DC @ 2mA. Current consumption is low, which allows long periods of use from small battery packs such as the PP3. Connect the battery + Ve to Pin 1 , and -Ve to Pin 2; diode D3 prevents damage to components in the event of accidentally reversed battery polarities.

Check the supply current with an milliammeter, which will be around 2.5 mA for a minute or so, dropping to 1 1.5 mA after this period. Current consumption increases by approximately $\operatorname{lm} A$ while the comparator stages are operating.

The output transistor TR1 does not source current, but being open collector will sink current from an external supply load. Figure 8 suggests various methods of switching external loads, and diagram (a) could be used for testing purposes. Connect the LED cathode (k) to collector Pin 4, and wire the battery to one end of a $1 \mathrm{k} \Omega$ resistor connected to the LED anode (a).

If using the same battery for both module supply and LED supply, then the second battery -Ve connection is not

Figure 1. Mounting arrangements.

Figure 8. External Circuit Connections.

Figure 9. Extemal PCB Connections.
required. Turn the comparator threshold control, RV1, to half travel (Figure 9), and after the initial 'warming up' period, move your hand across the sensor window. Do not poke the window with fingers as grease deposited will reduce sensitivity and may prevent operation completely! Figure 10 shows the spectral response expected in the window. The LED will light for a few seconds. If the LED is permanently aglow, turn the trigger level down by moving RVl wiper anti-clockwise.

Using the Module

TRI is not capable of switching
heavy loads and should be used on external systems up to 12 V DC, and current levels below 100 mA . Relays could be used for controlling larger voltage/current devices (Figure 8b), or a timer could be employed to generate long operating periods once triggered (Figure 8 c). On the prototype, a 6 V @ 35 mA buzzer was used, on a separate supply, to good effect. Any battery supplying the electronics should not be used for supplying the external devices as well, if more than a simple LED arrangement is to be used. Battery connections to Pin 1 and 2 should be kept short - a PP3 clip lead is ideal for this and mount both module and battery together in the same housing with a suitable ON/OFF switch.

Sensing range is 4 to 5 feet, depending upon the sensor's field of view and variations in the light/heat background levels. A whole room, for instance, could not adequately be covered by this system, but doorways, narrow hallways and corridors are suitable areas. Another use for the module could be in a shower cubicle, using a timer circuit for controlling the water pump. Obviously, low voltage switching systems are important in this application.

Figure 10. Window Spectral response.

INFRA RED PROXIMIIY DEIECTOR PARTS LISt

	0.6W 1\%	1	(MIK5)
20			
R2	3M3	1	(M3M3)
R3	470k	1	(M470K)
R4	100k	1	(M100K)
R5	220k	1	(M220K)
R6,7,9,10	10k	4	(M10K)
R8	1 MS	1	(M1M5)
R11,12	4k7	8	(M4KT)
RV1	47k Hor. Sub-min Preset	1	(WR600)
CAPACITORS			
C1,6	47 $\mu \mathrm{F}$ 16V Minelect	2	(YY37S)
C2,7	$22 \mu \mathrm{~F}$ 16V Minelect	2	(YY36P)
C3	100nF Polyester	1	(Ww41U)
C4	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	1	(TY34M)
C5	100 nF Minidisc	1	(YRTES)

SEMICONDUCTORS

D1-3	1N4001	3	(QL73Q)
TR1	BD139	1	(QFOTH)
IC1	TLO64CN	1	(RA66W)
IRD1	F001P	1	(FD13P)
MISCELLLANEOUS			
	IR Detector PCB	1	(GD27E)
	Veropins 2145	1 Pkt	(FL24B)
	DLL Socket 14-Pin	1	(BL18U)
	Constructor's Guide	1	(XH79L)

[^1]There are many useful devices, from greenhouse heating controls, through motor speed controllers to disco lights, that need some way of controlling mains power by means of low-level signals, either analogue or digital. Relays can be used for simple or/off control, and recent developments have made switching current ratings of the order of 20A available in small relays of reasonable cost. For many applications, however, solid-state control devices are preferable, on the grounds of physical size or cost, or because proportional control is required.

Thyristors are used for DC, and high-power AC/rectifier applications, while for other AC applications the triac, being a bi-directional device, is better. It can control powers up to at least 10 kW (single-phase), and substantially higher powers in multi-phase systems.

High power bipolar and MOS transistors are also available, at reasonably competitive prices, for power-control applications, and are useful with highfrequency supplies, or where controlled turn-off is required: in these cases gate-turn-off (GTO) thyristors are also used for powers up to about 100 kW .

In this article, however, we shall concentrate on a qualitative explanation of the working of the triac, and a look at design methods in some typical, basic applications.

Construction of the Triac

The triac is a four-layer semiconductor, but, being bi-directional, its structure is at first sight somewhat complex. We can build up an explanation of the structure and operation by first considering the thyristor.

The thyristor can be modelled by an interconnected complementary pair of bipolar transistors, as shown in Figure 1. From equation A. 1 of Appendix 1, the current in response to a positive voltage on the p-n-p emitter (anode) relative to the n-p-n emitter (cathode) is critically dependent on the product of the DC current gains, and becomes unlimited when the product is equal to 1 . This occurs at quite low values of the collector currents, in the region where the current gains are proportional to the collector currents. A small current injected at either base can therefore trigger the device into conduction. The n-p-n base, or 'gate', shown in Figure 1, is known as a cathode gate. A low power, four-layer device, BRY39 (page 294 of the 1986 Maplin Catalogue), is available which gives access to both anode and cathode gates. The device is very versatile, offering many small signal switching applications, but these are outside the scope of this article.

For full-wave AC power control, two of these model devices would be required, connected in inverse parallel. Luckily, it is possible to integrate the two devices on a single die, and an example of such a triac structure is shown

Figure 1.2 transistor equivalent of a Thyristor

Figure 2. Centre-gate Triac structure
diagrammatically in Figure 2. This is a centre-gate structure; other structures are manufactured, and the geometry has significant effects on the device characteristics.

Electrical
 Characteristics of Triacs

If the anode to cathode voltage applied to the model device of Figure 1 is increased sufficiently, the increased leakage currents will themselves raise the current gains to the critical values, and the device is then said to have 'broken down'. This is not a normal mode of operation however, and conduction is usually started by applying to the gate terminal a positive voltage (in the case of the model device) relative to the cathode.

The characteristics of the semiconductor materials used in a triac are different from those of a bipolar transistor (for example, the same region has to work both as a collector and as a base),

Figure 3. Triac main voltage/main current characteristics with gate current as parameter
and the gate input characteristics are rather different from those of a 'conventional' base-emitter junction.

Part of this difference can be represented by the resistors R1 and R2 in Figure 1. These differences in characteristics raise the gate voltage at, say, 10 mA gate current from the 600 mV of a typical silicon transistor junction to about 900 mV . The presence of Rl means that conduction in the main circuit cannot be stopped by connecting the gate to cathode or MTl; thus the gate current can be applied in the form of a short pulse. Conduction is normally stopped by allowing or forcing the main circuit current to fall below the minimum value necessary to hold the current gains at or above their critical values. This current is known as the holding current I_{H}, and, in AC applications, the current normally falls below this value as a matter of course once every half-cycle.

If the gate current is increased slowly from zero, with a resistive load in the main circuit (see Figure 3), the voltage across the main terminals falls, eventually to a low value, represented in the model by the saturation voltage of the p-n-p transistor plus the base-emitter voltage of the n-p-n transistor, or vice versa for an opposite supply polarity. This is the normal on-state of the device, and operation at lower values of gate current than is necessary to achieve it should normally be avoided, because the power dissipation in the device is considerably increased by this. Thus it is wise to ensure that, subject to the limits of peak and average gate dissipation, the worst-case gate current available from the trigger circuit comfortably exceeds the gate current required to trigger a least-sensitive device.

Capacitance within the device, between the main terminals and the gate, can cause the triac to trigger if the mainterminal voltage rise rate ($d V / \mathrm{dt}$) is sufficiently fast. This, too, is normally an undesired effect, but can be avoided by correct design. Some types of triac are very resistant to this sort of false triggening, having maximum dV/dt values of several hundred volts per microsecond, but are limited in their triggering modes (see below). Where the load is inductive, and the triac is required to go from the conducting to the non-conducting state, the maximum permissible $\mathrm{dV} / \mathrm{dt}$ is dependent on the current flowing in the main circuit and its rate of fall ($-\mathrm{dI} / \mathrm{dt}$), a high current or rate of fall reducing the permissible $d V / \mathrm{dt}$, which is then known as 'commutation $\mathrm{dV} / \mathrm{dt}$ '.

If we look at the main circuit voltage/current characteristics in Figure 4, we can see significant hysteresis: the main circuit current has to rise to I_{L}, the latching current, before the gate loses control, whereas the current can fall to I_{H}, the holding current, before conduction substantially ceases.

The off-state leakage current I_{D} is sufficient to disqualify the triac as a circuit isolator, and a mechanical isolator September 1986 Maplin Magarine

Figure 4. Dynamic main current/main voltage characteristics
switch should always be provided for maintenance and/or service operations!

The quadrants of the V/I graph are conventionally numbered I to IV. Operation in quadrant I is satisfactory with the gate either positive or negative with respect to MTl; and in quadrant III with a negative gate, but for a positive gate in quadrant III the gate sensitivity is, for most types of triac, much reduced, and this triggering mode may not be recommended by the device manufacturer. The latching current may also be different in the two quadrants, and decreases somewhat with increasing gate-current pulse width (see below). The data sheet values, rather than measured values, should be accepted for design work.

When the gate current is in pulse form, as is the case in many practical circuits, the rather large capacitance between the gate and MT1 effectively makes triggering dependent on the total charge at the gate, i.e. for a square pulse, the product of gate current and application time. The precise nature of this dependence is not linear however.

Figure 5. Peak gate trigger current as a function of trigger pulse duration

Typical characteristics are shown in Figure 5. Very short pulses of less than 1μ s duration should be avoided, because only part of the die area may be triggered. This will cause a hot-spot to form, and may destroy the device. The manufacturer may specify a pulse width, which should be regarded as a recommended minimum value. Once the device is properly triggered, complete conduction is established typically in about $l \mu \mathrm{~s}$. There is, however, a delay time of several microseconds before conduction begins, as shown in the timing diagram of Figure 6.

A group of characteristics which is not usually mentioned in data sheets describes the effects of the anode voltage and the main circuit current on the gate voltage. The gate drive circuit has to have a high impedance for these to be observed. For example, the continuity of the load in the main circuit can be confirmed, while the triac is in the blocking state, by monitoring the gate voltage. This is particularly of value where the load is a projector lamp,

Figure 6. Timing diagram for the triggering process
whose failure might spoil an audio-visual presentation, and the use of this technique is advocated in a draft international standard ${ }^{1}$.

The gate voltage in this condition is due to the capacitance between the gate and MT2. This is usually large enough to be practically useful only for triacs of 10A rating or greater, smaller triacs requiring an unreasonably high impedance at the gate. The effects of main circuit current on the gate characteristics depend on the triac geometry. When the gate voltage is of the same polarity as the MT2 voltage, the existence of main-circuit current simply reduces the gate current produced by a given voltage, see Figure 7a.

A transient appears at the onset of main circuit current, due to the gate to MT2 capacitance. If the gate polarity is opposite to that of MT2, (I- and III+ modes), there is spectacular disturbance of the gate voltage caused by transients in the main terminal voltage waveform, see Figures 7 b and 7c. This characteristic can be traced by applying an alternating voltage through a resistive load to the main circuit, and an out-of-phase current to the gate. Figure Tb shows the $\mathrm{Ig} / \mathrm{Vg}$ characteristic of a TIC226D, which has a high $d V / d t$ rating but is not characterised in the III+ mode. Figure 7c shows the behaviour of another type, which is characterised for all modes, but has a lower dV/dt rating. Figure 7d shows that the gate voltage of the TIC226D is affected by the MT2 voltage, even if the external trigger gate current is insufficient to trigger the device. The occurrence of fast pulses of reverse polarity gate voltage due to capacitive effects, and of negative resistance regions in the gate characteristics, can give rise to considerable r.f. interference. This suggests that operation in the reversepolarity modes (I- and III +) should be avoided, where possible, for all triacs, even if they are characterised for this service.

Thermal
 Characteristics

There are limits to both the peak power and the average power that can be dissipated at the gate, and care is necessary to design the gate drive such that fast and reliable triggering is achieved without exceeding these limits. This should always be verified by taking measurements.

The main power loss in the device is due, naturally enough, to the main-circuit voltage drop during conduction, and the manufacturer normally provides data on this, for both half-wave and full-wave operation, as well as for various triggering points along the waveform. When the power loss has been determined, an electrical analogue circuit, see Figure 8, can be used to calculate the heat-sink requirements (see Appendix 2).

The performance of the chosen heat-sink design, in its final environment or housing, should always be measured,

Figure 7 (a). Gate dymamic characteristics with gate and main currents in phase. (b). Gate dynamic characteristics of TIC226D with gate and main currents in phase opporition.
(c). Cate dymamic characteristics of BT139 with gate and main currents in phace oppoditon.
(d). Gate voltage waveforms in untriggered and triggered conditions.
allowing for worst-case conditions of load current, ventilation and ambient temperature.

Gefe Drive Techniques

For a simple switching circuit, it is possible to supply gate triggering current from a resistor connected between

Figure 8. Electrical analogne of thermal circuit

Figure 9. Simple Triac switch
gate and MT2, as shown in Figure 9. The device is switched on by closing the (low-power) switch. As the load current falls through zero each half-cycle, control is regained by the gate, so the load current will cease at the end of the halfcycle during which the switch is opened. This circuit has the advantage of simplicity and is widely recommended in American textbooks.

But with a British 240 V mains supply, it may be difficult to ensure reliable triggering of least-sensitive devices without exceeding the permitted peak gate dissipation. It is preferable to apply gate current in pulse form, and one common way of doing this is to use a device known as a diac, or Silicon Bilateral Switch (SBS).

This is the solid-state equivalent of a neon-tube, that is to say as far as its electrical behaviour is concerned, and has a V/I characteristic as shown in Figure 10, with prominent negative resistance regions. Its action can be likened to a bi-directional zener diode. Connected as a relaxation oscillator, shown in Figure 11, a series of current pulses are produced in the resistor R2,

Figure 10. Typical Diac characteristic

Figure 11. Diac relaxation oscillator Maplin Magaxine September 1986

Figure 12. Practical Triac switch for a motor-driven appliance (for component valuen soe Appendix 3).
representing the triac gate. For measurement of the gate-current pulse-width, an actual triac should be connected in place of R2, because the impedance at the gate is very non-linear and cannot be satisfactonily represented by a fixed resistor.

Figure 12 shows the resulting triac switch circuit. Normally the triac fires on the first gate pulse, but if it does not, trigger pulses continue to be applied until firing occurs. This is particularly significant with inductive loads, since the current may not rise above I_{L}, the latching current, until some milliseconds after the triac has first been fired. Operation of this circuit with highly inductive loads may in any case be unsatisfactory for other reasons. With partially inductive loads, the snubber network R3, C2, is necessary. C2 reduces the rise rate of the MT2 voltage ($\mathrm{dV} / \mathrm{dt}$) at current cut-off, while R3 controls the current dumped from C2 into the triac as it begins to conduct.

With resistive loads, it is necessary to add interference suppression components. The interference r.f. is generated by the rapid collapse of the voltage across the triac as it fires. The detailed design of this circuit is dealt with in Appendix 3.

A unijunction transistor may also be employed as a trigger-pulse generator, but this will require a DC supply. Note that to avoid operation (or non-operation!) in the III+ mode, any singlepolarity gate drive should consist of negative-going pulses.

In the triac switch circuit, it is necessary for the triac to fire as early in each half-cycle as possible, so as to minimise the loss of load power. Conversely, by varying the delay between the start of the half-cycle and the time at which the triac fires, the load power can be controlled. This can be done by varying the phase relationship of the gate voltage to the main terminal voltage, and this method is therefore called 'phase control'. Simple household lampdimmers use this technique, which has the considerable disadvantage of generating a great deal of r.f. interference, due to the sudden fall in the voltage across the triac as it fires. Suppression
components $\mathrm{Ll}, \mathrm{C} 4$ are essential, and a typical circuit is shown in Figure 13.

This is one of those circuits whose operation is more complex than appears at first sight. If the components R2, R3 and C2 were omitted, the dimmer control R1 would suffer from considerable hysteresis. The lamp comes on suddenly, and quite brightly, as the control is advanced (reducing the resistance). When the control is turned the other way, the lamp becomes much dimmer, until it finally goes out at a control position noticeably different from that at which it came on. This effect is due to the loss of charge from Cl into the triac gate when the diac breakover voltage is only just exceeded.

Suppose that the resistor Rl is set to a value such that the diac breakover voltage of, say, 34 V is just not exceeded. The capacitor Cl charges to +34 V on one half-cycle, then discharges to zero and charges to -34 V on the next halfcycle, giving a change of capacitor voltage of 68 V . If the resistor Rl is then slightly reduced, so that the diac conducts, this quickly reduces the voltage across the capacitor to, say, 28 V . Thus, on the following half-cycle, the change in capacitor voltage is only 62 V , so that the breakover voltage is reached at an earlier 'epoch' (i.e. time during the halfcycle), and, when the steady-state is reached, breakover is occurring considerably before the end of the halfcycle, and the lamp is quite bright.

Increasing R1 then smoothly reduces the conduction angle (firing time approaches the start of the half cycle), and, hence, the brightness of the lamp is reduced. This effect can be overcome with the additional components R2, R3 and C2. Gate current is drawn from C2, which is recharged via R2 from the much larger Cl , with hardly any effect on the voltage across Cl and consequently on the firing epoch. R3 serves to limit the discharge current from $C 2$, which is desirable on reliability grounds anyway, and reduces the recharging demand made of Cl . With these additional components, 'backlash' is practically eliminated. This circuit also works well as a speed-controller for series-wound commutator motors, such as are found in power tools. Speeds can be reduced by
around 10 times without an unacceptable loss of torque. A snubber network, R4 and C3, is included to avoid false triggering due to excessive $\mathrm{dV} / \mathrm{dt}$ from the inductive load and the commutator noise spikes, is necessary. However, the circuit is not ideal for phase-control of loads having significant inductance, because if the firing epoch is not precisely the same for both polarities of supply voltage, then the load current will contain a DC component due to the unbalance, and this may cause undesirable effects due to the saturation of the magnetic circuits of the load.

When resistive loads of greater than about 1 kW dissipation have to be switched or controlled, the r.f. interference generated by the circuits described above becomes a serious problem. For such applications as stage and discolighting, there are few alternative techniques, and relatively costly filters are used to eliminate the interference. But for heaters with a large thermal inertia, burst-firing with synchronous switching can be used.

Synchronous Switching

Synchronous switching is a technique for minimising the amplitude of the voltage transient across the triac as it fires, and it works best when the latching current of the triac is very much less than the full load current. Gate drive is applied in pulse form, the leading edge of the pulse occurring at, or preferably before, the zero-crossing of the supply voltage, so that the triac remains conducting as the load current falls below the holding current and goes through zero. The pulse must, of course, last long enough to maintain the device in the 'on' condition for the load current to rise in the next half-cycle, to a value exceeding the latching current.

There is then no voltage transient, and consequently no r.f. interference. The technique can also be applied to phase control, where detection of the zero-crossing of the supply voltage is used as a reference for timing the trigger pulses more accurately, and more controllably, than can be achieved with RC phase-shift networks.

Synchronous switching circuits can be designed using discrete transistors ${ }^{2}$, but integrated circuits are now available which offer improved performance, and usually a number of additional features. An example is the TDA 1024. This is an advanced phase-control device especially suitable for very low-differential temperature control or speed-control of series commutator motors. It can be powered either directly from the mains supply via a suitable voltage dropper, rectifier and stabiliser circuit, or from a local DC supply, and will control the conduction angle of the associated triac in accordance with a DC voltage, which may be obtained from a tacho-generator or a temperature sensor, for feedback control, or from a potentiometer, for open-loop control.

Synchronous switching also provides a solution to the problem, mentioned above, of firing-point asymmetry causing DC saturation in phase-controlled inductive loads. In this case, it is particularly important to use a synchronous switching circuit, or zero-crossing detector, which does not itself suffer from asymmetry. Most of the current integrated circuits satisfy this requirement.

Burst Firing

Burst firing, with synchronous switching, is a technique for controlling load power without generating r.fi. Instead of varying, as in phase control, the fraction of each half-cycle for which load current is allowed to flow, the current is allowed to flow for an exact number of half-cycles, followed by an interval, also an exact number of halfcycles in duration, when no current is permitted.

Isolated Driving Circuits

It is essential for safety reasons that low-level drive signals derived from microprocessors, remote sensors etc., should not be applied directly to the triac, if it is, as usual, connected directly to the mains supply. All low-level circuits must be isolated from the mains. If they are earthed, the isolated coupling (optoisolator, pulse transformer etc.) must withstand 2000 V for 60 seconds, but if not, then circuit isolation to withstand 3000 V for the same period is necessary. It should be noted that many opto-couplers and low-cost pulse trans-formers will not

meet these requirements!

Of the two devices mentioned, the opto-coupler is perhaps simpler to incorporate in a design, and there is little difference in cost. Furthermore, for AC applications, an optically-triggered triac is much easier to use than a coupler with a bipolar output device. Such a device is the Triac Isolator (Maplin Stock Code: QQ10L), and this can directly replace the switch Sl in Figure 12 and in similar circuits. The input of this device can be driven directly from TTIL logic, and easily interfaced with CMOS. There is also a version, Order Code RA56L, which includes a zero-crossing detector.

References

1. IEC Publication 574-3A: Audiovisual, video and television equipment and systems. Part 3A: Connectors for automatic slide-projectors with built-in triacs, for audiovisual applications. International Electrotechnical Commission, Geneva. (To be published.)
2. D.R. Armstrong, 'Zero-crossing detector circuits', Mullard Technical Communications No. 132 Page 63-68. October 1976.

Appendix I

In the model circuit, (Figure 1):

$$
\begin{gathered}
\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{cl}}+\mathrm{I}_{\mathrm{c} 3} \\
\mathrm{I}_{\mathrm{cl}}=\mathrm{I}_{\text {cool }}+\mathrm{I}_{\mathrm{b}} \mathrm{~h}_{\mathrm{FE} 1} \\
=\mathrm{I}_{\mathrm{cbol}}\left(1+\mathrm{h}_{\mathrm{FE} 1}\right)+\mathrm{I}_{\mathrm{cz}} \mathrm{~h}_{\mathrm{FE}}
\end{gathered}
$$

Similarly:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{c} 2}=\mathrm{I}_{\mathrm{cbo2}}\left(1+\mathrm{h}_{\mathrm{FE} 2}\right)+\mathrm{I}_{\mathrm{c} 1} \mathrm{~h}_{\mathrm{FE} 2} \\
\mathrm{I}_{\mathrm{c} 2}=\mathrm{I}_{\mathrm{cbo2}}\left(1+\mathrm{h}_{\mathrm{FE} 2}\right)+\left\{\mathrm{I}_{\mathrm{cbol}}\left(1+\mathrm{h}_{\mathrm{FE} 1}\right)\right. \\
\left.+\mathrm{I}_{\mathrm{ca}} \mathrm{~h}_{\mathrm{FE} 1}\right\} \mathrm{h}_{\mathrm{FE} 2} \\
\mathrm{I}_{\mathrm{c} 2}\left(1-\mathrm{h}_{\mathrm{FE} 1} \mathrm{~h}_{\mathrm{FE}}\right)=\mathrm{I}_{\mathrm{cbo2} 2}\left(1+\mathrm{h}_{\mathrm{FE} 2}\right) \\
+\mathrm{I}_{\mathrm{cbol}}\left(1+\mathrm{h}_{\mathrm{FE} 1}\right) \mathrm{h}_{\mathrm{FE} 2}
\end{gathered}
$$

Similarly:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{cl}}\left(1-\mathrm{h}_{\mathrm{FE}} \mathrm{~h}_{\mathrm{FE2}}\right)=\mathrm{I}_{\mathrm{cbo1}}\left(1+\mathrm{h}_{\mathrm{FE1}}\right) \\
+\mathrm{I}_{\mathrm{cbo2}}\left(1+\mathrm{h}_{\mathrm{FE} 2}\right) \mathrm{h}_{\mathrm{FE} 1}
\end{gathered}
$$

So, $\mathrm{I}_{\mathrm{cl}}+\mathrm{I}_{\mathrm{c} 2}$

$$
\begin{aligned}
& =\frac{\left(1+h_{\text {FE } 1}\right)\left(1+h_{\text {FE } 2}\right)\left(I_{\text {cbol }}+I_{\text {cbo }}\right)}{1-h_{\text {FE1 }} h_{\text {FE } 2}}
\end{aligned}
$$

Appendix 2

1. From a graph similar to Figure A.2.1, which will be found in the triac data sheet, find the power, P_{T}, dissipated by the triac at the given value of load current, I_{T}, and conduction angle a.
2. From the data sheet, substitute values in the electrical equivalent circuit, Figure 8.
$\mathrm{R}_{\mathrm{j}-\mathrm{a}}=$ thermal resistance of triac junction to ambient.
$\mathrm{R}_{\mathrm{j}-\mathrm{mb}}=$ thermal resistance of triac junction to mounting-base.
$\mathrm{R}_{\mathrm{mb}-\mathrm{h}}=$ thermal resistance between the mounting-base and the heat-sink. Allow $1^{\circ} \mathrm{C} / \mathrm{W}$ for a mica washer, $1.5^{\circ} \mathrm{C} / \mathrm{W}$ for contact resistance without thermal jointing compound, $1^{\circ} \mathrm{C} / \mathrm{W}$ for contact resistance with silicone grease, and $0.5^{\circ} \mathrm{C} / \mathrm{W}$ for

Figure I. 2. 1. Triac dinipation verses main current, with conduction angle as parameter.
contact resistance with oxide-loaded thermal jointing compound. These values apply for TO-220, TO-3 and similar encapsulations.
We have to find $\mathrm{R}_{\mathrm{ha}} \stackrel{1}{=}$ thermal resistance of the necessary heat-sink.
3. Substitute $I_{i}=P_{T}$, also $V_{j}=\left(T_{i \max }\right.$ - $\mathrm{T}_{\mathrm{amb}}$), where $\mathrm{T}_{\mathrm{j} \text { max }}$ is the maximum permitted junction temperature of the
triac, from the data sheet, and $T_{\text {amb }}$ is the maximum value of ambient temperature $\left(35^{\circ} \mathrm{C}\right.$ for the normal household environment). Preferably, reduce the value of V_{j} by $10^{\circ} \mathrm{C}$, for greater reliability.
4. From the equivalent circuit:

$$
I_{j}=\frac{V_{j}}{R_{j-a}}+\frac{V_{j}}{R_{J-m b}+R_{m b-h}+R_{h-a}}
$$

This is just Ohm's Law. For many devices and applications, $\mathrm{R}_{\mathrm{j}-\mathrm{a}}$ can be neglected (thereby adding a safety factor).

$$
\begin{aligned}
& \text { Then } R_{\mathrm{h}-\mathrm{a}}=\left(V_{j} I_{j}\right)-R_{\mathrm{j}-\mathrm{mb}}-R_{m b-h}= \\
& \left\{\frac{\left(T_{j \max }-T_{\mathrm{amb}}\right)}{\mathrm{P}_{\mathrm{T}}}\right\}-R_{j-m b}-R_{m b-h}
\end{aligned}
$$

Appendix 3

Referring to Figure 12, the triac, Tl , is chosen to have a V_{BO} rating greater than the peak voltage of the supply. For 240 V mains, a $V_{\text {BO }}$ of 400 V must be regarded as a minimum. The I_{T} rating obviously depends on the required load current. It is wise to choose a generouslyrated device, because this does not usually increase the cost greatly, and often gives a lower thermal resistance as a bonus. For example, a TIC226D, rated at $400 \mathrm{~V} / 8 \mathrm{~A}$ r.m.s., could be chosen for this circuit, and is quite inexpensive.

We next look at the snubber network, R3 and C2. In the absence of these components, the series inductive component L_{R} of the load impedance will cause a voltage spike to appear across the triac when it switches off. This spike may exceed the $\mathrm{dV} / \mathrm{dt}$ rating of the triac and cause it to remain conducting! To avoid this, C 2 is added to slow down the transient and reduce its amplitude, and R3 is included to ensure that the tuned circuit $L_{/} / \mathrm{C} 2$ is, at least, critically damped.

Unfortunately, the value of $L_{工}$ is often not known, and it is not easily measured because, being dependent on an ironcored component, it varies with the applied voltage and frequency. Under
these conditions, it is usual to choose an initial value for C 2 , such as 100 nF , and to examine the resultant voltage transient with an oscilloscope. Any necessary adjustment, to achieve a desired value of $\mathrm{dV} / \mathrm{dt}$, can then be easily made. If L_{R} is known, then:
$\mathrm{C} 2>2 \mathrm{~V}_{8}{ }^{2} /\left\{\mathrm{L}_{2}(\mathrm{dV} / \mathrm{dt})^{2}{ }_{\text {max }}\right\}$
Similarly, the value of R3 depends on that of L_{L} :

$$
\mathrm{R} 3>2 \mathrm{I} / \mathrm{C} 2
$$

and, in practice, is adjusted so that the voltage transient is observed to be well damped.

C2 should be rated for 250V AC working, and a self-healing 'X-type' capacitor should be used.

R3 has to pass a current transient greater than $3 \bar{A}$ if power is applied to the circuit at a voltage maximum, and should be chosen accordingly. Some low-cost metal-film resistors are unsuitable.

Dl, the diac, can be chosen from the few types (e.g. ST2 (QLO8J)) available. The symmetry of the breakover voltage is important in minimising the DC component in the load current. It is worth noting. that the prices of rather similar devices of this type vary considerably.

Cl is chosen to store enough charge to supply the gate current required for reliable triggering. Most samples of triac require typically one-tenth of the triggering current given in the data sheet, so an experimental approach is unwise here. Cl should not be made too large, as this will delay the triggering and cause loss of load power and increased r.f.i. A value of 47nF is satisfactory in this circuit. Again, a 250 V AC rated component of 'X-type' is preferred.

Rl should have a resistance much lower than the impedance of Cl , so that the triggering delay is minimised. But if Rl is made too low, a short-circuit in, or across, Cl may cause such a severe overload in Rl that it burns the printedcircuit board and adjacent components. A simple fault may thus destroy the circuit. Luckily, a value of $18 \mathrm{k} \Omega$ will avoid this problem, without delaying the trigger point unacceptably.

R 2 is required to adjust the trigger current pulse duration to exceed the minimum recommended value, which is $20 \mu \mathrm{~s}$ for the TIC226D. A value of 47Ω is satisfactory.

The switch Sl can be any form of low-current switch, such as a light-touch push or a reed switch, but it must be insulated for use in direct connection with the mains supply.

We can determine the heat-sink requirements using the final result from Appendix 2. From the device data-sheet, $\mathrm{T}_{\mathrm{j} \text { max }}=110^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{T}}=2 \mathrm{~W}$ at $\mathrm{I}_{\mathrm{T}}=2.08 \AA$, and $R_{j-m b}=1.8^{\circ} \mathrm{C} / \mathrm{W}$. Allowing for a mica washer, without thermal jointing compound, $\mathrm{R}_{\mathrm{mb}-\mathrm{h}}=2.5^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{T}_{\mathrm{amb}}=$ $35^{\circ} \mathrm{C}$ and the derated $\mathrm{T}_{\mathrm{j} \text { max }}=100^{\circ} \mathrm{C}$.

Then $\mathrm{R}_{\mathrm{ha}}=$

$$
\begin{aligned}
& \left\{\frac{\left(\mathrm{T}_{\mathrm{j} \max }-\mathrm{T}_{\mathrm{amb}}\right)}{\mathrm{P}_{\mathrm{T}}}\right\}^{-\mathrm{R}_{\mathrm{j}-\mathrm{mb}}-\mathrm{R}_{\mathrm{mb}-\mathrm{h}}} \\
& =\left(\frac{65}{2}\right)^{-4.3=28.2^{\circ} \mathrm{C} / \mathrm{W}}
\end{aligned}
$$

By comparison, $\mathrm{R}_{\mathrm{H}-\mathrm{a}}=62.5^{\circ} \mathrm{C} / \mathrm{W}$, from the data-sheet. This is not negligible compared with the heat-sink requirement, and would allow the use of a heatsink having a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$ rating. The final design should be checked by measurement.

CORRIGENDA

Vol. 1 No. 1
Combo Amplifier. In the power supply section of the Control Board circuit the junction of C59/ C60 should connect to pin 9, junction of D8/D9. Also the arrow going to the PSU supply from the junction of R72/R78 should be designated +15 V .
Vol. 5 No. 19
Amstrad PSU: In Figure 8, the legend of pcb GDOTH is incorrect. The circular shape designated REGI should be BRI, and the rectangular shape designated BRI should be REGI. In addition, in the text it is suggested that transformer YE10L could be used. Do not use YKIOL as the maximum unregulated DC voltage must be less than +27 V .
Mixer PSU: In the Parts List, a heatsink Penta (FG84) is called for, this is changed to two heatsinks Plastic types (FLS8N).
MAPLIN'S TOP

THIS LAST

 MONTH| ORDER | KIT | DETAILS IN |
| :--- | :--- | :--- |
| COODE | PRICE | PRONECT BOOK |
| LK63T | $£ 3.50$ | 14 (XA14Q) |
| LK75S | $£ 17.95$ | 15 (XA15R) |
| LW51F | $£ 17.95$ | Best of E\&MM |
| LW93B | $£ 9.95$ | Best of E\&MM |
| LW36P | $£ 5.95$ | Catalogue |
| LW78K | $£ 7.95$ | 4 (XA04E) |
| LW83E | $£ 10.95$ | 4 (XAO4E) |
| LK42V | $£ 7.50$ | Best of E\&MM |
| LK76H | $£ 15.95$ | 18 (XH18U) |
| LK54J | $£ 9.95$ | 12 (XA12N) |
| LK32K | $£ 11.95$ | 9 (XA09K) |
| LK43W | $£ 10.95$ | Best of E\&MM |
| LW57M | $£ 59.95$ | 2 (XA02C) |
| LK13P | $£ 14.95$ | 8 |
| (XA08J) | | |
| LK51F | $£ 8.95$ | 12 (XA12N) |
| YQ43W | $£ 6.50$ | Catalogue |
| LK79L | $£ 18.95$ | Best of E\&MM |
| LW86T | $£ 13.95$ | Best of E\&MM |
| LK45Y | $£ 10.95$ | 11 (XA11M) |
| LK05F | $£ 9.95$ | 7 |
| (XAA07H) | | |

Over 150 other kits also avallable. All kits supplied with instructions. The descriptions above are necessarily short. Please ensure you know exactly what the kit is and what it comprises before ordering, by checking the appropriate Project Book mentioned in the list above - see inside back cover for details.

1. (1) Loudspeaker Enclosure Design and Construction (WM82D) Cat. P52.
2. (4) Intemational Transistor Equivalents Guide, by Adrian Michaels. (WG30H) Cat. P45.
3. (3) Remote Control Projects, by Owen Bishop. (XW39N) Cat. P50.
4. (2) Power Supply Projects, by R.A. Penfold. (XW52G) Cat. P49.
5. (11) Electronic Music Projects, by R.A. Penfold. (XW40T) Cat. P53.
6. (8) How to Design and Make Your Own PCB's, by R.A. Penfold. (WK63T) Cat. P48.
7. (6) Radio Control for Beginners, by F.G. Rayer. (XW66W) Cat. P50.
8. (10) How to Use Op-amps, by E.A.Parr. (WA29G) Cat. P47.
9. (13) Counter Driver \& Numeral Display Projects, by F.G. Rayer. (XW34M) Cat. P52.
10. (9) IC555 Projects, by E.A. Parr. (LYO4E) Cat. P51.
11. (7) Mastering Electronics, by John Watson. (WM60Q) Cat. P48.
12. (16) How to Get Your Electronic Projects Working, by R.A. Penfold. (WA53H) Cat. P48.
13. (-) Electronic Science Projects, by O. Bishop. (WA49D) Cat P50.

14. (15) Audio Amplifier Construction, by R. A. Penfold. (WM31) Cat. P52.
15. (12) 50 Simple LED Circuits Book 2, by RN. Soar. (WG43W) Cat. P62.
16. (-) Oscilloscopes: How to use them, how they work, by Ian Hickman (WG34M) Cat. P51.
17. (-) Audio Projects, by F.G. Rayer. (WG46A) Cat. P82.
18. (14) Electronic Security Devices, by R.A. Penfold. (RLA3W) Cat. P50.
19. (20) Questions and Answers on Electric Motors, by A.J. Coker and P. Chapman (RR02C) Cat. P43.
20. (-) Easy Add-on Projects for Commodore 64, VIC20, BBC Micro and Acorn Electron, by Owen Bishop. (WP29G) Cat. P64.

These are our top twenty best selling books based on mail order and shop sales during April, May and June 1986. Our own magarines and publications are not inchuded. The Maplin order code of each book is shown together with page numbers for our 1986 catalogue. We stock over 500 different titles, covering a wide range of electronics and computing topics.

NEW ITEMS PRICE LIST

The following is a list of all items introduced since our 1986 catalogue, excluding new items in this issue.

AERUALS

YM56L Hi-Tech TV Aerial. Price $£ 10.95$ BOOKS
wP35O LIN CMOS Design Book
WP36P Radio Stations Guide. Price E5.cO NV
WP37S Comp Progs Running
Prdee 52.50 NV
Price 52.95 NV
Price EA.95 NV
WP40T Linear IC Equivalents.
WP4IU Proj in Microelect. Price 495 NT: WPHZV Wrd Proc Amstrad 8256, 8512. Price 55.98 NV 129 . Add-on Proj for Amstrad 464, 664 , 6128 \& MSX. Wryect More Adv Elec Music
WPrety Linear \& IF Circuit Applications.
Preen Top Pocker Micro Price 88.00 NV
Dictionary. Price E 1.50 NV Price $E 7.95$ NV
xw30E Cost Effective Construction. Prioe $\mathbf{E 5} .95 \mathrm{NV}$
xW31J Project: for Cay/Carage. Price $\mathrm{E5.50} \mathrm{NV}$
BOXPS
TMSIF Instrument Case NMBH.
CAPRCITORS
UFIIN Fitr $10.7 \mathrm{MH} w / 30 \mathrm{kHz}$. Price 95 p
CONNECTORS
FRITU 2×28 way Edge Con. Price Cl95
FA90X PCB 6 pin DIN Skt. Price 5 .
FRs3B Cold Phono Line Skt. Priop 65p
FRg4C Adaptor W. Price 950
OPTO ELECTRCEL
Plot
TK9SD Plastic Lens.
Price 48p

UF12P Ultrabri Red LED Min. Price 54p	CDOSF Amstrad Contrallar PCB. Price 111.95
PCB EOUIPMENT	GD06G Amstrad 6.8 Bit Pout PCB.
366W Transfer Sheet 1.	Price $£ 10.95$
2il6TX Transfer Sheet 4. Price 45p	GD0TE Amstrad Expansion PSU P
Kirss Transfar Sheet $8 . \quad$ Price 45p	Price
y:898 Trunsfer Sheet $9 . \quad$ Price 45p	GD10L Play Rlong Mixer PCB. Price ¢1.95
EHYOM Transter Sheet 14. Price 45p	GD11M Hi-Z Mic (Mono) PCB. Price $£ 1.95$
Kil112 Graphic Sheet Black. Prioe 45p	GD13P Lead Acid Bat Charger PCB.
X1:12P Graphic Sheet White. Price 45p	
[1730 2.8 mm Transfer Sheot Black.	CD140 Stepper Motor PCB. Prioe $¢ 1.45$
Price 45p	D180 Active Rerial PCB. Price \$11.95
ransfor Sheet White.	D19V ATU PCB. Price $\mathbf{E 3 . 5 0}$
Price	D20w ADA Echo PCB, Price f5.95
EI73S 3.8 mm Black No's Resist Transforn	GD21X ADA Echo PSU PCB. Price 82.50
Price 45	GD25C Mixer PSU PCB. Prioe $£ 3.95$
76E 3.5 mm White No's Recint Transfers.	GD26D Active Aerial Screen. Price 11.10
Price 45p	LE78E RSCII Reyboard Kin. Price $\mathbf{6 1 9 . 9 5}$
ITITJ 4.2mm Alphe-Numeric Black Resist	LK81C General Purpose Input Kit
Transfers. Price 48	LK82D General Purpose Input Eit.
T0178x 4.3 mm Rupha-Nurneric White Resist	(Stereo). Price 1.95
Transfers. Price 45p	LK83E Tone Control Kit (Mono). Price £3.95
62s 200g Positive PCB Photoresist.	LK84F Tone Control Kit (Stereo). Price 84.95
	856G Peak Overioad Detector Kit.
PROJECTS AND MODULE	Price $\mathbf{f l}_{2} 20$
FR85G Temperature Controller	LEse0T Mixer Amp Iit. PricesA.75
Front Panel. Price 1.80	Lratu line Amp Xit. Price 13.95
Frest 50 way Amstred Cable.	Lscosv VU Meter Kiit. Price E8.98
Price 12.98	Lceasw Headphone Monitor Xit. Price E6.98
F.r88V Amstrad Front Panel. Price 55p	LE90X Mixer PSU Kit. Price \$16.95
FH09W Amstrad Rear Panel. Price 45p	LE917 Hi-Z Mic Stereo Kit. Price 88.50
FS91Y Mapeat Front Panel. Price E3.s5	LT92月 Hi-Z Mic (Mono) Kir. Prioe E4.88
FR92n Mapeat Bracket. Price 80p	İs938 Play flong Mixer Kit. Price $£ 13.95$
FR99] Active Serial Froat Panel	Lrc94C Hoblyist's Temperature
Paice 13.95	Controller Iit. Price 124.95
FDOTA ATU Switch Mounting Plate.	He95D Video Digitisar Kit. Price E41.95
Price 78p	LTses Digitiser Controller Kit. Price E29.95
FD10L 6BA $\times 1 / 4 \mathrm{in}$. Threaded Spacer.	LE99TF Amstrad ROM Card Iit. Prope E39.es
Price	LTs98G Amstrad Motherbd Fit. Price 529.98
FDIIM Tuner Front Pand. Prioe 63.95	LEg9I Sat Receiver Eit. Price E59.95
G*PEE ASCII Keybourd PCB. Price $\$ 8.50$	
GB9TF BM Godtall Printer IF PCB.	LM013 L/Acid Bat Chrgr Eit. Price E39.95
Price ${ }^{\text {¢ }} 19.95$	LM02C Ammaded 6ェ8 Bit Port Kit.
G8e9] Amstrad Ertendiboard. Price $¢ 1.95$	Prioe 524.95
GDo0A Hobbyist's Tomp.	LM03D Kmatrad Expansion PSU Kit.
Contraller PCB. Prioe E2.9\%	Price EL95
CD018 High Vohs PCB. Price 12.85	LMOUE ADA Echo Kit. Frice EPL.95
GDozC Digitieer PCB. Price $¢ 11.05$	IMmest Active Rarial Kit. Price E4L.95
CDOsD Digitiear Controller PCB.	LMOSG ATU Kit. Frice 529.95
Prioe ¢11.95	RHeg Programmed Gollball
GD0AE Amstrad Motherboard. Price 59.95	EPROM 3716/M10. Prioe

Maplin Magazine September 1986

1986 CATALOGUE PRICE CHANGES

The price changes shown in this list are valid from 11 th August 1906 to 8 th November 1996 . Prices charged will be those ruling on the day of despatch.

For further details please see 'Prices' on catalogue page 15.

Price Changes

All items whose prices have changed since the publication of the 1986 catalogue are shown in the list below. Those where the price has changed since the last Price Change Leaflet (dated 12th May 1986) are marked 'e' after the price.
A complete Price List is also available free of charge - order as XF08J.

Koy
NYA Not yet available.
DIS Discontinued.
TEMP Temporarily unobtainable.
FEB Out of stock; new stock expected in month shown.
$\ddagger \quad$ An additional $£ 5.50$ carriage charge must be added.
NV Indicates that item is zero rated for VAT purposes.
$\star \quad$ See 'Amendments To Catalogue'. Note that not all items that require amendments are shown in this list.

Proo No.	Mro	$\begin{array}{lr} \text { 19es } & \text { VAT } \\ \text { Catalogee } & \text { inchuive } \\ \text { Puge No. } & \text { Prle } \end{array}$	Cintsloque Prole Prote	Pago No. Prie			
AERLALS		Books	Pege 71 	3080			
Pege 30 Xazas Mursic Mushkidiser FM1003 \qquad 14.40		Page 4 ${ }^{\text {Rasin }}$ Win Wati Undrandng Anto					
				\qquad			
				Capactiors			
					Ygest		
					kneme		
			${ }^{8100 c}$				
	Khtrpog	Page 48 Wweod Mastoring ElectronicE3.96 NV					
			pasic			Fonta Diak AA.	
				COMMUNICATIONS Page 86 XG10L IZV 3A Powar Unit. YB00A Low-Pass PF Fiter \qquad DIS Page 98 L8729 Intercom 2-Station \qquad .811 .86 Page 87 Afich \qquad . DIS COMPUTERS \qquad	ge 107 Cove Humer		
		WK45Y Undretn Phone Eictrn....... $\mathbf{E 1 3} \mathrm{GONV}$ Page 51					
		Page 52 RF122 Book Bra \qquad s. $1.8 \times N$	$\underset{\substack{\text { Plaz3 } \\ \text { Pasp }}}{ }$	COMPUTERS Page 100			
			pasp	YJ34M MPF-IP Speech Synth.-............ 580.25 Pege 101 XGe4U TV Monitor V7001. \qquad 294.95.	E		
				Xoivi NMontior CMM1			
			pabix				
		Page 56 R033L Book BP52..................... DIS	Facan		CONNECTORS		
				$\begin{aligned} & \text { Y774 } 10 \\ & \text { Page } 103 \end{aligned}$ YKg7U Fllp n File Minibx15 \qquad E8. 95			
					HF34M $4 m$		
		xweec look FT1070 \qquad \qquad 			Page 115 Hhozh Co-ex Plug Aly \qquad $32{ }^{\circ}$		
			PAFPA				
	LR14	Pege 58 MM92A Intro 8502 Mech Cdec2.50 NVe					
	Uroese PJose				mook Co-ux Une Skt		
			Page 78				
					NTMVM		
			(enter				
	N2	Page 82 WM71N Atar cooxL Prog Bk \qquad DIS		KBano Chens A Ballons Disk \qquad DIS			
					Pago 117 , sraid		
		Page ${ }^{6}$ 					
		Page 8 WMope Intro Spec Machina 67.95 Page 65					
				K8, 42 a Mentus Dite			
			-180				

		$\begin{array}{lr} \text { tive } \\ \text { Cromager } & \text { VAT } \\ \text { Page Mo. } & \text { Inctinite } \\ \hline \end{array}$		
	Pege 150			Pege 258
	Pa	（taseme		${ }^{\text {Bragre }}$ Page
Nor		Proge	arsac	
ugando				相
${ }_{\text {cosem }}$	HKe	（1x－2		
Ho Aldo siowy		Page 181		
（10）simy	Mroskt Heen			
	HK11M	KNOBS	${ }_{Q 10}$ \square	Pege 281
	Prege 158			
	Pago 150	Rxole knob NK2 \qquad ． $54 p$ ．		
难会号			\%	Page 202
			Deatrecte－	
Yxoox PCOIN Sth 2 －rin ．．．				Po
$\text { gec } 121$			 San 27 MHzTxPCB \qquad Paop 233	
\＆．e．	mo3iJ		Heat Comitrinf Pon－	
－				
				5
				N
${ }_{\text {Fseer }}$			\％	0 Hz
			6888	UriN Shard Sordif
			Pago 237	Pago 206
		MUSICAL		14010
${ }^{\text {P1／}}$		${ }_{\text {Prease }}$		Woy semm
	HMM ${ }^{\text {a }}$	Pag	（eases	
Mmincon				
		OPTO－ELECTRICAL		
			－	
	${ }^{\text {H／}}$		Pop	Page 20
	HMMOT	19	WWiN	Page 200
	HMmer		Pego 2	QAMer
			（xamo	${ }^{\circ}$
	HмM78		Pom	
	HMact			
Mrinctersh		${ }^{\text {Arese }}$ Solear		¢8320
		Mrin ski leorl PCB－Easo		LKoas zxal Modem Intico Kt．
	Heathik El			AAs
			CMOW Motem	PROTECTIO
				Page 273
Ment socien rean	嵒			
		PCB EQUIPMEN	247	
Prage 133	HMMJ Emik	Pege 218		
，				
ELECTRICAL				
	HMMzse		Page 251	
		Hxtact Trantut shoee		
		Hxest Trneat shee 5	${ }^{\circ}$	¢futpo A83000 \square－
			Ha	
	，	HKker Tranter shoem	Pego 252	
		HKasiz Trande	，	
HA	Mosso Mamer fer	PROUECTS ${ }^{\text {a }}$		
	－e			5
			arsox smmi smol	
en	Mosin	Proge 225		
	${ }_{\text {M }}$			\％
		L		N－500
	Moso	${ }_{\text {P }}$		Sticter
1 tranto－		L		IF
HEATHKIT				
				${ }^{6}$
			Pago 2	Soneme
	\qquad ${ }^{210}$			
－		－		
	Hogs HTETF Hegthler HMesis．			

AMENDMENTS TO 1986 CATALOGUE

PLERSE NOTE that the telephone number of MPS (Maplin Professional Supplies) is 0702-552961.
VEF/UEF DIPLEXERR BWS 15 (Page 34). Diplexer UF20 has been replaced by Diplexer UF23 which is a masthead (fastening to mast by nylon strap) or surface mounding diplexer for combining UHF/TV and VHF/FM signal from antenne downleads. Bandwidth (FM) 87-108MHz; (UHF) $470-860 \mathrm{MHz}$. Channel isolation: (FM) 22dB; (UHF) 38dB. Inservion loss: (FM and $U F F$) 0.5 dB .

NAP-TOGETEBER PLASTIC BOXXS

TK49C - YR51F (Page 68). These bores are now supplied with the base and top sections in cream, with the two end plates now in brown.
COLED MANS CABLES BL12P (Page 77. The extended length of Stretchflex 6 Amp is 3 metres.
AXIAL LEAD ELECTROLYTIC FBS3H
(Page 90). The working voltage of this
$100 \mu \mathrm{~F}$ adial electrolytic is now 200 V not 280V.
kngadom game crssetre (Page
104). This cassette game for the Atari has been listed as having the stock code KB97F, whereas it should be YGS5K SCREIENED CENTRONLCS PLUG FJ61R (Page 121). The 36-way contacts are not of he IDC type as stated in the catalogue, but re solder terminals.
EDGE CONNECTOR FOOT (CLOSED) FL.91I (Page 122). The Edge Connector End Bracket (YR58N) available for the Card Frame Edge Connectors is an open ended (slotted) type. FLig1Y is now also available and is a closed type, i.e. suitable for use as a pcb guide. Price 24p.
0.1 in. SERIIS PCB CONNECTORS

RY65V - TW301 (Page 123). Please note that although these minicon latch connectors are described as having 0.1 lin . spacing, the actual spacing is 0.098 in or 3.3 mm .

TELEPRONE WALL SOCKETS' LOCKING PLATE FV94C (fage 131). The Smali Locking Plate is for use with the Surface Mounting Jack Units $2 / 4 \mathrm{~A}$ and $2 / 6 \mathrm{~A}$, and not $1 / 4 \pi$ and $1 / 6 A$
PRDNTER CRRLES FG30H \& FG31J (Page 133). These 26 -way and 20 -way ribbon cables have had their lengths quoted as 30 cm , they should be 1 m as before.
STRARN REIIEF GROMMETS LRATB LR5OE (Page 143). Please note the amended sizes of these strain relie: gromunets. All dimensions in millimetres:

Type	B	A	D
3P-4	9.9	11.0	10.3
5M-3	11.7	12.7	11.0
6W-1	11.8	12.7	11.0
TK-2	19.6	22.2	19.0

GRAPHIC AND PANEL TRANSFERS

 (Page 144). A new range of transfer sheets are available as follows: 2.5 mm letters and numbers in black or white; XH73Q Transfer 2.5 Black, XH74R Transfer 2.5 White. 3.5 mm numbers only in Black or White: XH75S Transfer 3.8 Black, XH76H Transfer 3.5 White. 4.2 mm letters and numbers in black or white; XH77] Transfer 4.2 Black, XH78X Transfer 4.2 White. Sizes 2.5 and 3.5 are in medium typeface, size 4.2 is in light typeface.Two new graphic panel sheets are available: XH7IN Graphic Sheet Black, XH72P Graphic Sheet White. All of the above priced at 45p per sheet.
SPINDLE COUPLER RX29G (Page 184). The length of this brass coupler is 15 mm and not 22.5 mm .
ULTRA-BRGGTT RED LED QYBAF,
OT85C (Page 199). It is the anode and not the cathode that is denoted by the flat of
the package and the shorier of the two leads.
5x1 LRD ARRAT FT6IR (Page 201). The dimensions of the 5×7 LED array have been erroneously omitted trom the catalogue. The dimensions of the array are 53 $\times 38 \times 8.5 \mathrm{~mm}$ deep excluding pins. PCB TRANSFERS (Page 282). A new range of PCB transfers are now available. There are 14 sheets in the range, some will replace existing stock, others are completely new. Old Transfer Sheets 1 (HX45Y) 4 (HX48C), 8 (HX65V), 9 (HX66W) are discontinued. To replace them new transfer sheet numbers have been allocated thus: Transfer Sheet $1=$ XH66W, Transfer Sheet $4=$ XH6TX, Transfer Sheet $8=$ XH68Y, Transfer Sheet $9=$ XH69X and a new Transfer Sheet $14=\mathbf{X H} 70 \mathrm{M}$. The Transfer Kit (HX44X) now contains all 14 sheets. A brief run-down of each sheet follows:
Sheet 1: 2176 circle pads $1.6 \times 0.38 \mathrm{~mm}$ Sheet $2: 20$ straight lines $170 \times 1.61 \mathrm{~mm}$ Sheet 3: 260 circle pads $2.54 \times 0.45 \mathrm{~mm}$. Sheet $4: 351$ circle pads $3.6 \times 0.79 \mathrm{~mm}$. Sheet 8: 210 transistor pad sets, each circular pad is $2.4 \times 0.32 \mathrm{~mm}$.
Sheet 6: 45 rows of 16 pad DIL 1C's spaced at 0.3×0.1 inch, each circular pad is 2.16 x 0.38 mm .

Sheet 7: 90° bend lines, fifteen bends 2.35 mm wide, twelve bends 3.0 mm wide Sheet $8: 8$ rows of 68 pairs of pads with 'between-pad' tracks, pads are 2.54 mm diameter.
Sheet 9: 77 sets of 8 pads $1.6 \times 0.34 \mathrm{~mm}$ with through tracks.
Sheet 10:0.1 inch spaced edge conrector tingers, 12 rows of 32 fingers. Sheet 11: 21 traight lines $170 \times 0.65 \mathrm{~mm}$
Sheet 12: 90° bend lines, 24 bends 0.65 mm thick. 24 bends 1.61 mm thick.
Sheet 13: 33 sets of DU IC pads with leads and offset holes.
Sheet 14: 7 straight lines $170 \times 3.0 \mathrm{~mm}, 8$ traight lines $170 \times 2.25 \mathrm{~mm}$
XH67X to XH70M are priced at 45p each TERREO SINTE BOOX TFIIM (Page 253). Please note that details of metalwork and cabinet are no longer available and are not shown in the book
THERMEL FUSE RA180 (Page 274). Note that the Thermal Fuse 169 C is no longer being manufactured. It is replaced with ype l67C which for most purposes is suitable for the same applications as type $169 C$
AEPLACEMISNT STILI (Page 279). The prices for the styli shown on pages 279 and 280 of the 1986 catalogue have been omitted. For prices refer to a copy of the current price list
CRSSEITE CRRE KIT BK28F (Page 282) Please note that the cleaning head of the cassette in this Cassette Care Kit no longer includes a demagnetiser.
ML ROTARY POTENTIOMETERS (Page 290, 291). The shat length of all types (single, single with switch and dual gang) is $50 \pm 0.5 \mathrm{~mm}$ minimum. Also the thread length of the single and dual gang is 9 mm and not 7 mm . Note that the body length of the switched types is 22 mm not 20.8 mm , and that the switch rating is $4 \AA$ at 350V AC and not 2 A .
7028 PROGRRMDMABLE BIT RATE GENERHTOR (Page 296). The order code for this device is UF36P, not UF350.
74FC4316 UF13P (Page 297). In the semiconductors indez on page 297, the 74HC4316 IC has been listed as being described on page 328, it is in fact to be found on page 323.
TIYRISTOR BT149M IEPSD (Page 302). Replacement device TAG 84 may be supplied, please note that the anode and cathode are reverse of that shown for the

BT149M
ET149F Yz94C (Page 302). Please note that thyristor BT 149F is now no longer in manufacture, and has been replaced by this device BT149B. The specifications are identical except that PIV is rated at 200 V instead of 50 V . The specifications are: Case T092f, PIV 200V, $\mathrm{I}_{\mathrm{T} \text { (ms) }} 1 \mathrm{AA}_{1} \mathrm{I}_{\mathrm{T} \text { (av) }}$ $0.64 \AA_{\text {, }} \mathrm{V}_{\text {GT (max) }} 0.8 \mathrm{~V}, \mathrm{I}_{\text {GT (mar })} 0.2 \mathrm{~mA}, \mathrm{l}_{\mathrm{H}}$ ${ }_{(\text {max })} 5 \mathrm{~mA}$.
2402, $74 L 502,24 \mathrm{HCO2}$ END A001BE, 4001UBE QX39N - QL03D (Page 307). The captions for the pin-out diagram of the TTL devices have been accidentally transposed writh those for the CMOS diagram 14LS24, 14RC244, 14ECT244 OCTRL buffirs 0056L, UB65V, UB66W (Page 311). In the pin-cuts diagram for these octal buffers note that the control input via pin 19 should have an inverting input symbol at the control input buffer. 4040BE, 74FC4040, 4060BE
74IC4060 RIPPLE COUNTERS (Page 318). The pin-outs diagrams for these ICs have the wrong captions. The 4060BE and 74HC4060 devices are actually the 14 stage ripple counter with oscillator, and the 4040BE and 74HC4040 devices are the 12-stage nipple counter.
4051BE, 14 RC4051, 14 HC4351 (Page 322) The captions on the pin-out diagrams for these 1-pole 8-way analogue switches should be transposed.
EUDIO POWER AMP IC'S QH39N, WO33L, WO68W, WO6TX, TYTOM (Pages 335-337). Please note that although these devices are described as having heatsink mounting tabs that do not need to be electrically insulated from a chassis, this is on the condition that the chassis is the same potential as the most negative supply pin of the IC. The mounting tab is cornected to the $1 C$ substrate, and it is required that this be equal to or up to 0.6 V more negative than the negative supply pin voltage. If chassis = IC 'ground' potential, then the omission of an insulating kit will satisfy this condition, but do not overlook the possibility of earth related instability problems. If you intend to use a split-rail power supply, you must not bolt the tab direct to chassis without an insulating lcit!
TEMPERRTURE COMIPENSATED TWO STEP IEND FCID BRTTERY CERRGER (Page 364). In the circuit diagram a value is missing for R14, it should be 4k7. 6502 MICROPROCESSOR QOO2C (Page 366). The device being supplied is the 6502A
2732 EPROM OQ08] (Page 371). The programming voltage $V_{p p}$ at pin 20 of this IC should be 21 volts, not 25 volts. MID-RANGE SPERERER WIISR (Page 389). This mid-range unit is for use in systems up to 25 W and not 40 W . RIGET-RNGEED PCB ROTARI SWITCEIES FT56L, FTSTM, FTS8N \& FT59P (Page 395). The specifications of these switches should be amended as follows - FT56L is 1 -pole 12-ways, FT5TM is 4-pole 2 -ways (4 -pole changeover), FTS8N is 2-pole 5 -ways, and FT59P is 3 pole 3-ways.
PUSH BULTON LATCHSWITCEES
FH6TI- FE74R (Page 400). The operation of these switches has changed slightly. For push-or/push-off locking action the switches operate as before, but for momentary push-on non-locking, or for interlocking action with the use of a latchbracket, the locking/retainer clip must be replaced with the nylon retainer provided with each switch, otherwise the moving portion containing the moving contacts will entirely withdraw from the switch body. This may be useful for contact cleaning purposes.

ELECTRONIC MULTTNETER M-5050E Yj09X (Page 410). In that part of the description relating to measurements from centre zero scale, it should read 'In addition the meter pointer can be positioned to the centre of the scale so that + and - DC readings may be taken.'. In the table, the line 'DC volts' etc. should be followed with 'From centre zero \pm t.s.d; $\pm 150 \mathrm{mV}, \pm 0.6, \pm 1.5, \pm 6, \pm 15, \pm 60, \pm 150$ $\pm 600^{\circ}$.
PUSR BUITON DIGITML MULTIMETER M6000 1778I (Page 411). Note that the table of resistance ranges has been erroneously omitted from the catalogue. The resistance ranges for the M6000 are as follows, written as 'Range, Resolution, Accuracy:
$200 \Omega, 100 \mathrm{~m} \Omega, \pm(0.5 \%$ of $\mathrm{rdg}+1 \mathrm{~d}) ; 2 \mathrm{k} \Omega$, $1 \Omega, \pm(0.3 \%$ of $\mathrm{rdg}+1 \mathrm{~d}) ; 20 \mathrm{k} \Omega, 10 \Omega$, $\pm(0.3 \%$ of $\mathrm{rdg}+\mathrm{ld}) ; 200 \mathrm{k} \Omega, 100 \Omega, \pm(0.3 \%$ of rdg +1 d); $20 \mathrm{M} \Omega, 10 \mathrm{k} \Omega, \pm(1.5 \%$ of rdg $+1 d$). Max open circuit voltage drop across probes, $<3 V$. Overload protected to 250V DC or rms AC.
FLUEE METER HOLSTER YE8IC (F゙age 413). This holster no longer has a neck strap.
RDJUSTRBLE SPANNERS FT45Y,
FI46A (Page 420). The dimensions of these spanners have changed slightly. The small adjustable is now 150 mm in length with a maximum jaw opening of 19 mm and the large adjustable has an overall lengith of 800 mm with a maximum opening of 24 mm .
BOX SPANNERS FITIU \& FI42V (Page 420). Please note that these box spanners are no longer 4BA and 6BA respectively as stated in the catalogue, but are now metric M4 and M2.s.
SRTURN MANS DRILT TW65V (Page 423). Please note that the specifications in the catalogue are not quite correct. The mains supply voltage range is actually 220 -280 V , the off-load speed is 12,000 r.p.m, and the 3 -jaw pin chuck has a maximum capacity of 2.9 mm and not 1 bin.
SOLDERING IRON HOOK FT09X (Page 425). This clip-on hook/finger guard will fit the XS and MuXS soldering irons only, and not the CS type.
RT CEOKES WH2SC - WHATB (Page 432). Please note that due to a change of supplier these RF chokes will be supplied with colour code bands to denote the value, as stocks of the black bodied types become exhausted. The colour codes operate in the same way as the resistor 3 band colour codes, except that the unit value is the microhenry and not the ohm. For example: Red, Red, Silver $=20+2 \times$ $0.01 \mu \mathrm{H} ;$ Brown, Black, Gold $=10+0 \times 0.1$ $\mu \mathrm{H}$; Orange, Orange, Cold $=30+3 \times 0.1$ $\mu \mathrm{H}$; Brown, Green, Black $=10+5 \times 1 \mu \mathrm{H}$; Brown, Black, Brown $=10+1 \times 10 \mu \mathrm{H}$; Brown, Black, Red $=10+2 \times 100 \mu \mathrm{H}$; etc A fourth band is ahways silver. TOROIDAL TRANSFORMER YE33L (Page 436). In the case of the toroidal transfomer with $0-24,0-24,0-100 \mathrm{~V} \mathrm{sec}$. ondaries, the wire colour codes for the 100 V secondary have been omitted. They are: stant of winding, Black. Finish of winding, White.
TRANSFORMER ITIS (Page 436). The turns ratio quoted for the 20,50 , and 100 watt transformer kits are in the wrong order. Correct turns/volts ratios are as follows:-
$20 \mathrm{VA}-6.04$ turns per volt. $+1 \%$ for each multiple of 10 VA loading.
50VA -4.8 tums per volt, $+1 \%$ for each multiple of 10VA loading.
100VA - 4.16 turns per volt, $+1 \%$ for each multiple of 10VA loading.
STEPPER MOTOR KIT LK76H (Page
437). This kit now includes a pcb, GD14Q.

FOR A WHOLE YEAR'S SUBSCRIPTION TO 'ELECTRONICS - THE MAPLIN MAGAZINE'
\star Every issue sent to you as soon as it's printed, post free.

* Packed with interesting and novel projects that you can build with all components easily obtainable.
\star Many features on electronics subjects to keep you up-to-date with latest developments.
\star More pages to read than the monthly magazines.
\star And much, much cheaper too. Many of the monthlies are now $£ 1$ or more per issue!

BUYING A SUBSCRIPTION IS THE BEST WAY TO BUY 'ELECTRONICS'

'Electronics' is different from any other electronics magazine for two reasons:

1. It's quarterly, so it's hard to remember when a new issue is due out both for you and your newsagent.
2. We don't carry any advertising, which means that having lots of copies sitting on the newstands waiting for casual sales is of no advantage to us. The newsagent will normally have plenty in stock of those magazines which advertise because in almost all cases, he can return them if they are not sold - so he doesn't pay for them.
'Electronics' has no advertisers to pay for unsold copies, nor does it need to have an impressively large circulation, so the newsagent must buy all of his delivery of 'Electronics' and cannot return those he doesn't sell. Therefore, he may not want to take stock of too many. Before you know where you are, 'Electronics' has sold out! That's why you'll need to place a firm order with your newsagent to be sure of obtaining each new issue. Better still, place the order directly with us by sending $£ 3.00$ now and we will send you every issue for a year, post free.
Despite having very few casual sales, 'Electronics' sells as many copies as the top selling monthly magazines. So we can justly claim if not quite the largest, definitely the largest committed readership in the U.K. of any electronics magazine.

Please send me the next issues of 'Electronics The Maplin Magazine' at 75p per copy (minimum £3)*. Please start with issue number Overseas surface mail add 24 p per copy, air mail add 87 p per copy. I enclose cheque/P.O. for f.............
Customer No. (if known)
\qquad
\qquad
\qquad

[^2] increases until your subscription ends.

The Fibre Optic Audio Link serves as an interesting alternative to the traditional pair of wires carrying audio signals from one point to another. Fibre optics are used extensively these days in the fields of communications, TV and Radio, computer data transmission, medicine and even motor vehicles - to name but a few!

Optical Fibre

The light guide itself may consist of many strands of fine, drawn, glass fibres or a single, solid fibre made from polymethyl-methacrylate and enclosed with a polymer cladding and protective sheath. Unlike cables and wires, the fibres do not carry an electric current, but instead reflect light waves along their length.

Therefore electrical signals must be converted into light and sent along the guide. At the far end, the light waves are re-converted back into electrical signals, closely resembling the original. Unfor-

Characteristics

Frequency
Response $\quad-50 \mathrm{~Hz}$ to $20 \mathrm{kHz}(-6 \mathrm{~dB})$ Flat from 150 Hz to 3 kHz
Max I/P and
$0 / P$ Levels $\quad-\quad 0 \mathrm{~dB}(775 \mathrm{mV} \mathrm{ms}) @ 1 \mathrm{kHz}$
Minimum
IP Level $\quad-\quad-28 \mathrm{~dB}(30 \mathrm{mV} \mathrm{mms})$ for rated O / P
Noise Level - 10 mV
Signal to
Noise Ratio - 35 dB
T.H.D. @ $1 \mathrm{kHz}-1.0 \%$
P.L.L. Camer

Frequency - 95 to 120 kHz (110 kHz nom)
PSU (Tx) 4.8 to 6V DC @ 30 to 50mA
(Average)
Recommended, +5V DC @ 38mA
PSU (Rx) 4.8 to 12V DC @ 5 to 12mA
Recommended, +9V DC@8mA
All specifications apply to the prototypes and may vary between different modules. Use recommended supplies for optimum performance.
tunately, fibres exhibit the luminal equivalent of resistance which increases proportionately with length and limits the maximum length of guide which can be used in any particular system. Attenuation effects can be measured at 1.2 dB per metre, or approximately a 20% reduction with the light guide recommended for use with this project (XR56L).

The maximum useable range of these modules is limited to 20 metres (65 feet approx) provided that the fibre ends are 'polished' for optimum light transfer.

Fibre Optic Couplers

A simple system for connecting the light guide to each module is shown in Figure 1. Both Emitter and Detector units contain an Infra Red PIN Diode and lens contained in the FLCS housing. Prepared light guide ends are inserted through the cap, which is then screwed onto the housing, up to finger tightness. The cap contains a compression ring which grips the light guide tightly and prevents it from being easily pulled out, see Figure 2.

by Dave Goodman

* Transmitter and Receiver modules for use with Speech or Music Signal Sources
* Transmits over fibre optic light guide with up to 20 M range

Figure 1. Connecting Light Guide.

Figure 2. Emitter and Detector Pin-out and Construction.

Preparction of Light Guide

Both FLCS couplers are designed for use with 1000 micron (1 mm) core plastic fibre, which can be found in our catalogue or parts list (XR56L). Remove a short piece of sleeving from one end of the light guide, as shown in Figure 3, by gently cutting around the circumference, or by using 18 gauge wire strippers. Great care should be taken when cutting through the covering sheath, to prevent scoring the fibre core inside!

Remove the end covering and cleanly cut the fibre core two millimetres long. Try to make a single, straight cut thus keeping the end as smooth as possible, this being important for maximum light transfer to the couplers. Use a sharp knife for this. Very fine emery paper, or the striking edge of a matchbox (but not glasspaper types!) can be gently rubbed, squarely across the cut fibre end to polish the surface. Liquid metal polish also helps to develop a smooth finish and could also be used to finish off.

Figure 3. Preparing the Light Guide.
Alternatively, the cut fibre end could be placed close to a naked flame for a few seconds until the end begins to round off. Excessive heat will melt the fibre completely, and this should be avoided. This latter method has the advantage of producing a near perfect finish and develops a 'lens' in the fibre -
ideal for good light transfer. Whichever method is employed, aim for a mirrorlike finish on the fibre end if maximum range is required.

Circuit Description

The system has been developed for use with audio signals of a reasonably

Figure 4. Tranmitter Circuit.
high level to begin with. High impedance microphones could be coupled directly to the input of the Tx module, as could cassette or amplifier line outputs.

TR1 on the transmitter module (Figure 4) pre-amplifies the incoming signal and RV1 is adjusted to suit the input signal level from Pin 4. Because a low voltage supply is used here ($4.8-6 \mathrm{~V}$) the input range dynamics are somewhat limited and Cl has been chosen to roll off low frequency signals, which would otherwise produce distortion from the receiver output.

The low power, CMOS, Phase Locked Loop device, ICl, is used as a voltage controlled oscillator, operating at a centre frequency of 110 kHz . Audio signals from TR1 collector swing the VCO each side of the 110 kHz centre frequency, thus frequency modulating the 'carrier' signal. At test point TP2, a 5V square wave representing the modulated carrier is available, this being buffered by an emitter follower TR2 to the current switch TR3.

The Light Guide Emitter MFOE71 is an infra-red PIN diode, which is switched on and off, at the carrier frequency, by transistor TR3. R12, of 47Ω, limits current through the PIN diode at an average 40 mA . The diode is capable of taking up to 100 mA , made possible by reducing the value of R12 down to 22Ω or so, but power supply demands are then greater. If using a 4 cell nicad pack (5.2V) then the lower 40 mA current drain is preferable for longer battery life. The advantage of increasing current through the PIN-diode comes from an increased light output; the signal to noise ratio is improved and greater transmission distances are possible, although by only a few metres, but this is only practicable given the appropriate power supply.

Hence R12 is here optimised at 47Ω for a 40 mA collector current. Timing components C_{3} and R7 determine the VCO centre frequency and RV2, R5 allow a 25 kHz adjustment approximately over a 95 kHz to 120 kHz range. Light transmitted from the MFOET1 is in the infra-red band at a peak, spectral wavelength of 820 nM ; the full bandwidth extends from 400 to 1000 nM (nano-metres) with an 80% reduction in qutput power.

Receiver

- Audio signals in the form of frequency modulated, infra-red light now have to be amplified, detected, demodulated and filtered to reconstitute the original waveform. \bar{A} matching infra-red detector, MFOD71, is used in reversedbias mode with current limiting resistor Rl (see Figure 5). Output current to TRl is extremely small, so the front preamplifing stages have a very high gain. TR1 and TR2 are configured as a DC coupled amplifier, self biased by R2. C3 is the main AC feedback component, and this stage has a frequency response of up to 0.5 MHz .

With such a high gain, wide band pre-amplifier, noise levels are increased,

Figure 5. Receiver Cireath.
originating from the optical fibre itself, in addition to self-generated noise - therefore buffering amplifier TR3 is coupled by C2 and R6, which filter out much of the lower frequency noise signals. ICl is a schmitt trigger-NAND package used for 'cleaning up' the pre-amplified carrier signal, and the supply for this and IC2 is separated from the main supply rail by reversed supply protection diode Dl and C5.

The carrier square wave is made available at TP2, which is also one of the Phase Locked Loop's phase comparator inputs. The comparator output controls a voltage controlled oscillator, via R14 and C7 which filter out harmonics and maintain a 90° phase shift at the VCO centre frequency. VCO timing components are C6, R13 and RV1. With no carrier signal applied to the receiver input, the VCO is free running at 110 kHz ; this frequency can be varied by RV1. The VCO square wave output from pin 4 feeds back to a second phase comparator input at pin 3.

Figure 6. Waveforms.
With a 110 kHz carrier signal present on Pin 14, a digital error signal is output to the filter and VCO input Pin 9 (Figure 6). Signals well outside of the carrier frequency do not produce the error signal, and the loop (VCO-comparator) does not 'lock on'. The values of R14 and C7, therefore, are important and determine the loop capture range and bandwidth.

The low pass filter output is taken from Pin 10, which is a buffered output from Pin 9. R15 serves the internal FET buffer source load and R16, C9 form a first stage filter for the audio and carrier output. A further two stages of low pass and high pass filters are necessary to reconstitute the audio waveforms and remove much of the 110 kHz carnier signal. TR4 amplifies the filtered signal and TR5, emitter follower, buffers the signal for a low impedance output at Pin 4.

Transmitfer Construction

For information regarding component identification, assembly methods and soldering, please refer to the 'Constructors Gride' supplied with this

Figure 1. Transmitter Track and Legend.

Figure 8. Coupler Mounting.
kit (if you do not intend to purchase the complete kit then see the Parts List for the order code of the Constructor's Guide, price 25p). Begin construction by referring to Figure 7 and inserting seven vero pins, pins 1 to 4 and TPl to 3. Pin 2 (0 V - PSU) should be soldered to both side 1 and side 2 of the pcb in order to connect the screening earth plane on both sides. Referring to Figure 8, mount the emitter coupler MFOE71 on side 2.

Ensure both terminal leads pass completely through the pcb and both locating pegs enter their holes. Insert an

8BA $\times 1 / 4$ in bolt through the tab provided and tighten down with an $8 B A$ nut. Do not overtighten, as excessive force is not necessary and the plastic body may be damaged.

Refer to Figure 9 and fit power transistor TR3 (BD139). This device must be fitted correctly, with the metal heatsink mounting surface facing toward TP3 and the front edge of the pcb. Push all three leads down into the holes leaving a clearance of 3 mm between pab and the base of the paclage of TR3. Solder all these five leads in place and cut off excess ends.

Now identify and insent resistors Rl to R12, and capacitors Cl to C5. When fitting Cl , take care not to damage the leads on each end of the device, as they are very easily broken off. Note polarity markings on electrolytic and tantalum capacitors and insert correctly (consult the Constructor's Guide if in difficulty). Solder these components and again, remove excess wire ends.

Mount the 16-pin IC socket and TRI, TR2. Bend a few legs of the socket over beneath the pcb to prevent it from falling
out. Mount RV1 and RV2 - note that their values are not identical so be sure to put the correct value in the required position - finally solder all remaining component leads, remove excess wire ends and clean the pcb tracks, before inserting the P.L.L. device, ICl.

Transmifler Testing

A few checks can be made at this stage to ensure that the transmitter module is operating properly. Connect a 5V power source to $\mathrm{Pin} 2(0 \mathrm{~V})$ and +Ve via a milliammeter to Pin 1 . Set the wiper of RV2 to approximately half travel, and turn on the power source.

A current reading of approximately 30 to 40 mA should be obtained. Any readings well outside of this may well point to a fault, unless the test meter is not connected properly or the wrong range selected; double check and repeat the procedure. If the error is genuine and a frequency counter or oscilloscope is available, connect either to test point TP2. Adjust RV2 for 110 kHz , which will be some 45° displacement of the wiper of RV2 from its central position. The output stage can be monitored with a 'scope on

Figure 9. Mounting TR3.
TP3, where a $9 \mu \mathrm{~s}$ square wave of 3.25 V amplitude is present. The lower edge of the square wave will be approximately 0.7 V above 0 V , and the upper edge at +4 V .

If this waveform is not present and the VCO is running, then it is possible that the actual infra-red coupler devices could have been mixed up! Both devices look the same, except for an identification code printed along one side of the body housing - if it turns out to be the wrong device then swop it for the other and repeat the testing procedure.

With testing completed switch off the power source and continue with the Receiver.

Receiver Construction

In similar fashion to the transmitter module, refer to Figure 10 and insert 7 vero pins in the holes marked with white rings, and mount the infra-red detector coupler, as Figure 8. Identify and insert resistors R1 to R26, then solder their leads on side 1 of the pcb. Three of these resistors, R5, R9 and R1l, additionally have one of their leads soldered on side 2 , the component side, of the pcb, see Figure 11. Do not omit this as it extends the earth plane to 0 V .

Insert diode Dl , taking care not to damage the glass case, and semiconductors TR1 to TR5. TR2, TR3 and TR5 are identical devices and look similar to TR1, but must not be mixed as TRI has a different leadout configuration. TR4 has a silver, metal case with a marker tab against the emitter lead; push these devices down to within 3 mm clearance between pcb and base of the package.

Next, fit capacitors Cl to Cl , noting polarity markings on electrolytic types.

Figure 10. Receiver Track and Legend.
September 1986 Maplin Magazine

Poly-layer capacitors should be handled carefully to avoid their leads breaking off, as this is easily done.

Mount preset RVI and a 14 -pin IC socket at ICl position, and 16 -pin socket at IC2 position. Solder all components and leads and remove excess wire ends before inserting ICl and IC2 into their sockets.

A careful inspection of all resistors and track areas is advisable at this stage, and cleaning side 1 of the pcb is recommended.

Recoiver Testing

Basic checks and adjustments can now be made on the receiver module. Connect a 9 V power source with 0 V to Pin 2 and $+V$ via a milliammeter to Pin 1. A PP6 9V battery pack is useful for this. Set the wiper of RVl to approximately half travel, and turn on the power source.

A current reading of 7 to 9 mA should be obtained. With a frequency counter or oscilloscope, monitor the test point TP3, and adjust RVl for a frequency of approximately 110 kHz . The exact setting is not that critical, since the PLL will lock onto the transmitter signal (once detected) and pull the VCO within range. If monitoring TP3 with a 'scope, then a square wave form ($\simeq 50 \%$ duty cycle) should be evident of at least 8 V in amplitude with a 9μ s period. Check that TP2 is at logic $0(0 \mathrm{~V})$ whilst no carier signal is present, and TP1 is at approximately +2 to +4 V .

Monitoring the audio output, Pin 4, may produce a certain amount of carier

Figure 11. Some renistorm are soldered both sides.
'breakthrough' signal (at 110kHz) which can be reduced by turning RV1 clockwise. The signal is present due to a lack of input carrier to the receiver and is removed when the PLL locks onto the incoming signal. Remove the 9 V test power source.

Connecting the System

Figure 12 details both modules and should be referred to for the following. If the Fibre Optic Light Guide has not yet been prepared, then refer back to the Preparation of Light Guide section and Figures 1 to 3.

Slide a fluted cap from the coupler over the light guide - it will be quite a tight fit - leaving about 1 cm of prepared end protruding. Push the prepared end into the coupler, and offer up the cap. Tighten the cap with fingers only - do not use any tools to do this! Repeat the

Figure 12. Connecting up the System.
procedure on the opposite end so that both Tx and Rx modules are secured to the light guide. It must be emphasised that careful preparation of the light guide core end is of vital importance if maximum range is required. Poorly prepared ends will produce noisy Rx output and may well limit useable cable length to below 10 metres or less!

When installing fibre optic light guide in a permanent position, be careful with bends, see Figure 13. The absolute minimum radius of any bend in the fibre should not be less than 20 mm . Exceeding this limit will result in cracking of the fibre, which will completely refract light and result in zero throughput. If using clips to hold the guide in position, be careful not to pinch or damage the outer sheath in any way. Light will escape and/or enter from pierced sheathing and again poor results are inevitable. Excessive heat and some chemical solvents will also damage the guide and should be avoided.

Final Testing

Apply power sources to both modules and connect a suitable signal source to the transmitter input Pins 4 and 3 (0 V). Turn RV1 clockwise to approximately one-quarter of its travel and monitor the receiver output Pins 4 and 3 (0V). RV2 on the transmitter should be adjusted slightly for optimum signal level from the receiver, and RVI on the Rxpab can be turned clockwise if background noise level is excessive. The Tx input attenuator can be turned clockwise to

Figare 13. Bending the Light Guide.
increase the audio signal level through the system, but too high a level will produce a distorted audio output from the receiver.

Input signal levels to the transmitter should be kept as high as possible (at least 250 mV to 500 mV) for best signal to noise performance if using long (20 metre) lengths of light guide, although a fair amount of gain is available from the Tx input pre-amp.

Tests on the prototype produced quite good results using a $\mathrm{Hi}-\mathrm{Fi}$ cassette player line output as the signal source, and the line/Aux input of a $\mathrm{Hi}-\mathrm{Fi}$ tuner amp for the output of the receiver, with approximately 500 mV average signal
level applied. Very low frequency transients are limited by the input stage filtering, middle and upper ranges are reproduced very well

The modules are not designed to HiFi standards, but as a fairly low cost introduction to fibre optics for personal and educational uses. Really useful practical applications would be in communications through environments plagued with electrical noise and powerful electro-magnetic fields to which conventionally carried screened signals cannot remain immune. Much scope exists for the enthusiast to improve on the basic system. For example, an audio compressor could be used to limit and average-out applied signals to the transmitter. The pre-amp gain could then be increased for better signal to noise

performance, especially if an expander is used at the receiver output.

Another application could include computer data transmission. The system bandwidth will not allow very high baud
rates, but this could be improved on by removing much of the receiver output filtering components as required, and is a matter for some further experimentation by the enthusiast.

FIBRE OPTIC INK Rx PARTS LIST

RESISTORS: All 0.6 W 1\% Metal Film

R1,2	23k	3	(M22K)
R3,8,12,15,16,24	10k	6	(M10K)
R4,23	4k7	2	(M4ET)
R5	1k2	1	(MIE2)
R6,13,17,19	47k	4	(M47K)
R7,20	470k	2	(M470K)
R9,23,25	470Ω	3	(M470R)
R10,11	100k		(M100K)
R14	43k	1	(M43K)
R18	15k	1	(M15K)
R21	1k	1	(M11)
R26	100Ω	1	(M100R)
RV1	47k Hor S-min Preset	1	(WR600)

CAPACTTORS

C1,3,5,14	100رF F 10V PC Electrolytic	4	(FF10L)
C2	100pF Polystyrene	1	(BX28F)
C4	10 nF Polylayer	1	(WW29G)
C6	470.pF 1\% Polystyrene	1	(BX53H)
C7	330pF 1\% Polystyrene	1	(BX51F)
C8	$220 \mu \mathrm{~F}$ 16V PC Electrolytic	1	(FF13P)
C9,11,13	1 nF Ceramic	3	(WX68Y)
C10,15	100 NF Polylayer	2	(WW410)
C12	470 nF Polylayer	1	(WW49D)
Cl 6	10رF 50V PC Electrolytic	1	(FF04E)
SEMICONDUCTORS			
D1	1N4148	1	(OL80B)
TR1	BC650	1	(QB74R)
TR2,3,5	BC548	3	(QBT3O)
TR4	BC109C	1	(Q833L)
1 Cl	4093BE	1	(OW53H)
1 C 2	4046BE	1	(0W32K)
[R2	F/Optic Detector MFOD71	1	(FDI2N)
MISCELHANEOUS			
	E/Optic Rx PCB	1	(GD28F)
	Veropins 2146	1 Pkt	(F124B)
	Dn Socket 14-pin	1	(BL18U)
	DIL Socket 16-pin	+	(BLI9V)
	B8A $=1 / \mathrm{in}$ Boit	1 Pkt	(BFOB)
	8BA Nut	1 Pkt	(BF19V)

A complete kit of all parts is available for this project
Order As LMIIM (Fibre Optic Rx Kit) Price $£ 8.50$
The following items in the above lit list are also
available separately, but are not shown in the 1986 catalogue: Fibre Optic Detector MFOD71 Order As FD12N Price £1.98 Fibre Optic Rx PCB Order As GD28F Price $£ 1.80$

FIBRE OPTIC LINK TK PARTS MST

A complete kit of all parts, excluding optional item, is available for this project:
Order As LMI2N (Tibre Optic Tx Kit) Price 56.50
The following items included in the above kit list are also available separately, but are not shown in the 1986 catalogue: Fibre Optic Emitter MFOE71 Order As FD14Q Price $£ 2.35$

Fibre Optic Tx PCB Order As GD29G Price 1.25
Constructor's Guide Order As Xir79L Price 25p NV

The Story of Radio

In 1899, Marconi gave a demonstration of wireless telegraphy on Salisbury Plain. Present at this event were representatives of the Post Office, the Royal Navy and the Army, the latter including an officer of the Royal Engineers. As a result, some wireless sets were despatched to South Africa to help in the Boer War, which they failed to do and so were transferred to ships. The early military attitude to wireless was lukewarm; at best it might be considered an adjunct to the cavalry. Consequently, at the outbreak of war in 1914, the British Army was not particularly well equipped with the new technology.

By 1903, all ships of the Royal Navy had been fitted with Marconi wireless equipment.

The situation in the Royal Navy was much better. Some of their ships had been fitted with wireless as early as 1899 and, in 1900, a contract with the Marconi Company was signed for the supply of two shore stations and twenty-six shipboard installations. By 1903, all ships of the Royal Navy had been fitted with Marconi wireless equipment. The use of wireless had also become universal in the U.S. Navy, and quite widespread in the German Kriegsmanine.

Wireless with Wings

There was of course, in Britain at least, no separate air force prior to World War One. But experiments had been carried out to take wireless equipment aloft. The Royal Engineers, from which the Royal Flying Corps and, later, the Royal Air Force, emerged carried out some tests with their balloons. In 1907, Lieutenant C.J. Ashton ascended in a captive balloon and became the first person to receive signals from the ground. In the following year, two-way communication was established with a free balloon, the Pegasus, when signals were received from Aldershot, twenty miles away.

by Graham Dixey
 C.Eng., M.I.E.R.E.
 Part FourThe First World War

From balloons to airships was a natural step and, in 1911, the airship Beta was used, equipped with a transmitter and receiver. Captain Leroy of the Royal Engineers went up in her and made contact with the ground at distances up to thirty miles. A slight snag was that the airship's engines had to be stopped during reception! However, the value of the 'eye in the sky' was shown during exercises in 1912, when the airship Gamma reported consistently on the movements of the 'enemy' below. It pointed the way for the value of wireless in the conflict
to come, though during the Great War the Army used aeroplanes in the spotting role, as airships close to the ground were far too vuinerable.

The feasibility of equipping an aeroplane, as opposed to an airship, with wireless had been shown quite recently, in 1910 in fact. The demonstrations had taken place on both sides of the Atlantic. McCurdy in a Curtiss had effected two-way communication at Sheephead Bay, New York, while the well known British actor, Robert Loraine, had taken up a transmitter in his Bristol during the Salisbury Plain manoeuvres, and made contact with a receiver on the ground.

In 1907, Lieutenant C.J. Ashton ascended in a captive balloon and became the first person to receive signals from the ground.

Set used by Marconi during telephone experiments between vessels at anchor 10 kilometres apart in Italy 1914.

Not to be left out of the picture, the Royal Navy were busy putting wireless sets into some of their aircraft and, in 1912, there occurred the first instance of the rescue of an aircrew downed in the drink, as a direct result of wireless. This came about when Lieutenant Fitzmaurice and Commander Samson suffered an engine failure in their Short seaplane and had to put down on the sea. Because of the signals they sent when the trouble developed, they were soon rescued by the ship Hermes.

In the Beginning

During the opening months of World War One, the whole country was caught up in the most incredible spy mania. Most people, including those in positions of authority, had little idea of the potentialities of wireless and there was the fear that anyone who owned anything remotely connected with this 'dark art' was likely to be a German agent. As a result, everyone was required by law to register any equipment in their possession, even a simple crystal set! One young man who was an avid experimenter was found to have a roomful of apparatus and so languished in gaol for nine months because he hadn't registered it!

By the outbreak of war in August 1914, wireless had not developed sufficiently for Britain to possess transmitters with a world wide range. But, she did have an Empire and a number of cables. The combination of the two made communication with the Royal Navy possible, wherever the ships were to be found. So it was that, on August 3rd 1914, the following messages were received by ships of the Royal Navy.
'Admiralty to all ships - Urgent message. The war telegram will be issued at midnight authorising you to commence

The value of the 'eye in the sky' was shown during exercises in 1912, when the airship Gamma reported consistently on the movements of the 'enemy' below.
hostilities against Germany but in view of our ultimatum they may decide to open fire at any moment. You must be ready for this.'

Followed by a few hours later: 'Commence hostilities against Germany.'

Both the Royal Navy and the German Kriegsmarine had full wireless contact with their ships at sea. Cipher was used in the passing of messages of course but, right at the beginning of the war, the British gained an enormous advantage over their enemy by the most incredible stroke of luck.

At the beginning of September 1914, the German light cruiser, Magdeburg, was wrecked in the Baltic. The body of an unteroffizier was hauled out of the sea by the Russians a few hours later and, clasped firmly in his arms, held there by rigormortis, were the German Navy's cipher and signal books, together with detailed maps of the North Sea and the Heligoland Bight!

The whole country was caught up in the most incredible spy mania; most people had little idea of wireless and there was the fear that anyone who owned anything remotely connected with it was likely to be a German agent.

The Russians felt that Britain, as the leading naval power, should have the use of these important documents and so they were handed over to us.

As a result, we were able to monitor all communications between Germany and her warships for the early part of the war (until it was realised why we always knew where the German ships were!) and decipher them at ease. Then the Germans changed their codes.

Find the Direction

However, by the time that had happened, wireless was being applied in a new role, that of direction finding. DF stations were set up on the east coast, for example at Aberdeen, Flamborough and Lowestoft, and with them it was possible to pinpoint the activities of enemy vessels. This could only be done if the ships were actually transmitting, of course, but as it happened the Germans had not learnt the value of wireless silence.

In fact, the battle of Jutland came about because the British could follow the passage of the German High Seas Fleet and so were able to put to sea to intercept it.

Submarines were also equipped with wireless in order to maintain contact with their bases and, although the transmissions were brief, they were sufficient to allow the DF stations to plot the course of the German U-boats. By co-operating with the aircraft of the Royal Naval Air Service, it was possible to vector a seaplane or flying boat onto the enemy, with a fair chance of finding and destroying it.

Field Radio

As already mentioned, the British Army entered World War One in a much
less happy state than did the Royal Navy, from the point of view of wireless equipment. What the army did have had been designed with the Boer War in mind, and it was almost useless for its task. There were ten sets, supplied for use with the cavalry, that prestigious but largely ineffective arm of the army.

The cart set, to take an example, was mounted on two limbers, weighed two tons and required six horses to draw it. To get the station fully operational was a lengthy process, as it took twenty minutes to set up the aerial system. When it was working the selectivity, or lack of it, imposed severe limitations on its use. In fact, so bad was the situation that a special system had to be worked out, known as the 'period system', in which effectively only one station was on the air at a time!

It was not a system that worked very well and so it did little to inspire confidence in the use of wireless. Another problem was that, when the set was used in a 'forward' position, the aerial presented a rather nice target for the German gunners.

However, it was obvious that wireless properly developed and applied would be a useful asset to an army in the field. Telephone lines were used extensively in the trenches, but they were easily cut, and could also be tapped into. What was required was a shortrange portable set so, in August 1915, the British field wireless set was ordered.

These were first used at the Battle of Loos and actually worked very well. This set had a range of 4000 yards when it was used with a 180 foot long aerial, supported on 12 foot high masts, but gave a better range on a longer aerial! A crystal detector was used. It is interesting to note that, in London where Dr. W.H. Eccles was working on the use of the thermionic valve for wireless, he was able to pick up the transmissions from the Western Front in Flanders.

The early transmitters were of the spark type but when later, in 1917, it became possible to generate continuous oscillations (called CW for Continous Wave), CW transmitters appeared on the Western Front which gave a range of 6000 yards with an aerial system only 30 feet long and 2 to 3 feet high.

The big problem with wireless in the army was not the equipment as such, but the general attitude to its use. It simply wasn't trusted by those in command and, consequently, was never employed to the extent that it could or should have been. Nevertheless, it did have one particular use which was exploited effectively, and that was for artillery observation. In this application aircraft were used as spotters for the artillery, directing the fall of shot.

Wireless Aeroplanes

Two wireless sets were designated for aircraft use, known as the type L and L 1 respectively. The former weighed 50 lb and had a range of 15 miles for a power rating of 40 W ; the latter had the very much greater range of 80 miles, achieved using an aerial power of 500 W , but weighed 200 lb , which made it an unlikely proposition for the

Mobile wireless set 1916.
typical artillery observation aeroplane whose payload was very limited. However, of a number of methods tried for communicating the desired information to the ground, the use of wireless telegraphy turned out to be the most effective.

There were still some of the old problems though of mutual interference due to lack of selectivity. The answer was to use sets of low power and a minimum spacing of about 2000 yards between adjacent 'wireless aeroplanes'. An example of this type of set was the Sterling, which was manufactured by the Sterling Telephone Co Ltd to the designs of Lt. Leroy, an RNVR officer serving with the RNAS. It weighed only

It took twenty minutes to set up

 the aerial system . . . When the set was used in a 'forward' position, the aerial presented a rather nice target for the German gunners.201b, which made it possible for an observer to be carried, who could deal with its operation, leaving the flying to the pilot. Hitherto the pilot had had to handle the aeroplane, observe the effects of the artillery bombardment and pound out the relevant information in morse code at the same time!

A special wireless unit was built up, which later became No. 9 Squadron, Royal Flying Corps. Later still every battery of guns had its own spotting plane. By the end of the war about 600 British aircraft were fitted with wireless telegraphy equipment, and there were some thousand or so ground stations.

Wireless 'telegraphy' meant, of course morse code. However, there were experi-

Trench spark transmitter and receiver, 1916. The receiver aerial is laid along the floor of the trench while part of the transmitting section was hoist on a bayonet in the Parapet.
ments with radio telephony (RT) as early as 1914. A Captain Dowding, later Lord Dowding of Battle of Britain fame, while with No. 9 Sqdn. RFC, took a Maurice Farman biplane aloft, which was fitted with a telephony transmitter. He was assisted by a professional wireless engineer, one C.E. Prince, and was able to lay claim to being the first person in England to receive an airborne radio telephone transmission. The War Office decreed that such impracticable experiments must cease, but evidently relented later because, by 1915 a working RT set had been put into service which had a special microphone capable of working close to the aeroplane's engine.

For a long time transmission was a oneway affair, because the high noise level in the air made it difficult to understand messages received from the ground. However, by shouting into his microphone the operator could get a good enough

Maplin Magazine September 1986

DF bearings of Zeppelins over the North Sea.

> The body of an unterofficier was hauled out of the sea by the Russians a few hours later and, clasped firmly in his arms, were the German Navy's cipher and signal books

signal/noise ratio to make one-way working practicable. The other problem with airborne reception was the way in which the vibration of the airframe affected the stability of the contact between the 'cat's whisker' and the crystal. The introduction of balanced carborundum crystals improved this situation.

Another weapon of war appearing at this time was the tank. To direct the tank force effectively also meant control from the air. RT was tried, but the range was too limited to be effective. WT was much better but here there was also a slight snag. The
tank had to stop and set up an aerial whenever it wanted to communicate! There is much we take for granted today.

Signal Corp

Throughout the various theatres of operations of World War One, wireless was employed with a greater or lesser degree of usefulness, but it seems that the former was more prevalent because, by the middle of 1918, the army 'brasshats' realised that a separate organisation was needed to control the use of wireless, both WT and RT. Though too late to see service in the First World War, the Royal Corps of Signals was formed in 1920.

For the first time the civilians, well away from the battle lines, became involved in a major conflict between combatant powers. This was one of the less desirable by-products of the new age of aerial transportation. The Germans, as well as the

British, built some heavy bombers with a moderate war load and respectable range. However, the Germans, just across the Channel had an advantage, which they followed up.

While a substantial number of air raids were carried out on English towns, with the consequent loss of life and extensive damage to property, it is the Zeppelin that has captured the public imagination rather than the Gotha and Friedrichshafen bombers. Perhaps it is their immense size that accounts for this, the huge gas-filled envelopes droning above the cloud cover, dropping their explosive cargoes indiscriminately.

WT was much better but here there was also a slight snag. The tank had to stop and set up an aerial whenever it wanted to communicate!

Wireless was used by both sides in this form of warfare. The Zeppelins could only be attacked if the element of surprise could be achieved. This meant knowing sufficiently well in advance the likely course and height of the intruders. Thus, DF was used to plot the enemy's course and the use of wireless communication directed the defending fighters onto him. Although the little singleseater scouts used for air defence were nimble, the giant airships could rise very rapidly out of range, just by jettisoning ballast, carried in the form of water. It was very much a 'cat and mouse' game, but in the end the Zeppelins were too vulnerable. Although 'radar' had to wait for another war to bring it into existence, wireless played a similar and vital role during the Great War.

The Germans used wireless for communication between airships (and aeroplanes), for communication with their bases and also for navigation. For the latter purpose, the Germans set up a network of DF stations, able to take bearings on signals transmitted from an airship, that could provide a fix for an airship commander. It was, of course, this very provision that allowed the British to plot the enemy's

The Germans set up a network of DF stations, able to take bearings on signals transmitted from an airship, that could provide a fix for an airship commander.
incoming track and so scramble the defending fighters in time!

As wireless had assisted the purposes of war, in the end it was used to announce to a tired and waiting world the most welcome news of all.

On top of Marconi House in London a constant vigil was kept to listen out for the transmissions of the French station FL on the Eiffel Tower in Paris. At 0500 hours on November 11th, the following message was received and despatched to Downing Street.
'From Marshal Foch to All Allied Commanders - Hostilities will cease at 11.00 o'clock.'

AMSTRAD

8 BIT

 INPUT PORTT
his article describes a simple 8 -bit input port which plugs into the expansion connector on the rear of the Amstrad CPC 464/ 664/6128 range of computers and allows information from the outside world to be read and stored by the computer. It may be used, for example, to interface the weather satellite decoder described elsewhere in this issue with the Amstrad computers.

Circuil Description

In Figure 1, ICl decodes $\overline{\mathrm{IORQ}}$ and A5 - A7 to produce IOSEL, which is active for any valid external I/O address, enabling IC2 when $\overline{R D}$ is active and A4 is high.

This locates the port within the second block of 16 addresses in the valid external I/O area starting at \$F8E0, although the constraints imposed on the design complexity by the low cost specification precluded complete address decoding, so there are 'ghost images' of the port in the other I/O areas. For this reason, the port address may also be located at any two addresses within the block of sixteen by fitting one of the eight links as shown in Table 1.

By carefully choosing the link required, it should be possible to avoid overlapping the port with any other external I/O mapped device used within the system.

Finally, IC3, when enabled via the link fitted, gates any data present on P_{0} P_{7} onto the data bus to be read by the processor.

Construction

Referring to the Parts List and the legend, as shown in Figure 2, fit and solder the IC sockets, ensuring that the notch on each socket aligns with the legend. Locate and solder the three

by Mark Brighton

\star Inexpensive - Easy to Build and Fit
\star Compatible with BBC User Port Socket

Figure 1. Circuit Diagram.
$0.1 \mu \mathrm{~F}$ decoupling capacitors. Then fit PLl and the IDC cable of your choice, with the stripe on the cable at the pin l end of the legend! Lastly, fit the link previously selected from Table 1, and proceed to solder all connections and check the PCB for dry joints, short circuits, etc. Fit all IC's into their sockets, noting correct orientation. Figure 3 shows PLl pin connections looking into the connector, onto the pins.

Testing

There is a choice of cables given in the Parts List, but you will probably use cable FD22Y for most applications. Plug the IDC cable into the expansion connector on the Amstrad, with the stripe on the left side when viewed from the front of the computer. If an external disk drive or other peripheral is to be used, plug this into the socket mid-way along the alternate IDC cable (FD24B) which must be used in conjunction with our Reversiboard (GD37S) to ensure that the peripheral is connected correctly, see Figure 4.

Switch the computer on, switching off again immediately if the computer fails to initialise in the normal way of displaying the 'ready' prompt.

If all is well, reading the address chosen with an 'INP' command should return the number set-up on the port inputs (if nothing is connected to the port, 255 will be read).

Figure 2. Board Layout.

Figure 3. Header Plug.

Table 1.

Figure 4. Alternate cable.
AMSTRAD 8-BIT UP PORT
PARTS UST
CAPACTIORS
Cl3 100nF Minidisc 3
(YR7BS)
SEMICONDUCTORS
IC1,2 14LS138

1
(0086L)

MISCELLANTEOUS

1	(GD36P)
1	(FT72P)
2	(BL19V)
1	(HOTI)
1 Pkt	(BF06G)
1 Pkt	(BF18U)

OPTIONAE
Cableform Amstrad/interface 1
Cableform Amstrad/Disc/Interfacel
(FD22Y)
(FD24B)

A complete kit of all parts, excluding optional items, is available for this project:
Order A: LM14Q (Amstrad 8-bit I/P Port Kit) Price $£ 9.50$
The following items included in the above kit list are also available separately, but are not shown in the 1986 catalogue:

Amstrad Interface PCB Order As GD36P Price $£ 5.95$
Amstrad/Interface Cable Order As FD22Y Price $£ 7.20$
Amstrad/Disk/Interface Cable Order As FD24B Price £12.15 Reversiboard Order As GD37S Price $£ 2.50$

TEST GEAR AND MeAsUREMENTS

by Danny Stewart Part 2

Having established some internationally recognised standard units of measurement in Part 1 of this series, we shall now take a look at some actual practical methods of measuring electrical properties.

Wheatstone Bridge ${ }^{2}$ nis.

A basic bridge circuit is shown in Figure 1, where D is a detector, usually a galvanometer or any other sensitive current meter. The bridge is balanced when the voltage across the detector is zero volts and there is no current flowing through it. This can be expressed as:

Figure 1. Basic Bridge.
Equation 1.
$l_{1} R_{1}=I_{2} R_{2}$
And if no current flows through the detector, then it must flow through the resistance dividers making $\mathrm{I}_{1}=\mathrm{I}_{3}$ and $\mathrm{I}_{2}=\mathrm{I}_{4}$, also:
Equation 2.
$L_{1}=\frac{V}{R_{1}+R_{3}}$
and Equation 3.
$I_{2}=\frac{V}{R_{2}+R_{4}}$
Substituting for I_{1} and I_{2} in Equation 1
gives:
Equation 4

$$
\frac{R_{1}}{R_{1}+R_{3}}=\frac{R_{2}}{R_{2}+R_{4}}
$$

Simplifying Equation 4 gives Equation 5:

$$
\mathrm{R}_{1} \mathrm{R}_{4}=\mathrm{R}_{2} \mathrm{R}_{3}
$$

In general, if the arms of the bridge are not pure resistances then:

$$
Z_{1} Z_{4}=Z_{2} z_{3}
$$

R_{1} and R_{2} are ratio arms and are switchable from fractions of an ohm to several megohms. R_{3} is a precision standard which is also selectable. This leaves R_{4} as the unknown resistor and from Equation 5, Equation 6:
$R_{4}=\frac{R_{3} R_{2}}{R_{1}}$
Although this example illustrates the use of a bridge for measuring resistance, inductors and capacitors can also be measured. Indirectly, frequency and phase angle can also be measured.

Since the bridge method compares the unknown against a fixed standard, this is a highly accurate method. Also the measurements are independent of the characteristics of the null detector as long as the detector can detect a null with a reasonable degree of sensitivity.

Therefore any lack of accuracy will be attributed to tolerance of the three resistors and any heating effect of the current through the resistors, particularly for low values of resistance. Inaccuracy can also be due to an insensitive null detector. Inspite of all this, the basic Wheatstone Bridge is used to measure resistors from one ohm to one Megohm.

Kelvin Bridge ${ }^{\text {s ant }}$

To measure resistor values below 1 ohm requires a modification to the basic

Figure 2. Measuring Resistor Values below 1Ω.
Wheatstone Bridge. Figure 2 shows the problem. The resistance of the leads become significant in measuring the unknown resistance.

Connecting the detector to either x or z means increasing the resistance in the respective bridge arms. But if the detector is connected to point y such that:

$$
\frac{R x y}{R y z}=\frac{R_{2}}{R_{1}}
$$

then the bridge balance conditions are met and:

$$
R_{4}=\frac{R_{1}}{R_{2}} R_{3}
$$

Figure 3. Kelvin Double Bridge.
where R_{4} could be the unknown resistor.
Figure 3 shows a Kelvin double bridge, so called because it contains an additional pair of ratio arms to eliminate the effect of wire xz. As before:

$$
\frac{R x y}{R y z}=\frac{R_{2}}{R_{1}}
$$

The Kelvin Bridge can be used to measure resistors down to 0.00001 ohm. If R_{3} is the standard resistor then it could be arranged in steps of 0.001 ohm, as shown in Figure 4. A manganin bar of 0.0011 ohm provides a sliding contact for small adjustments and for good accuracy as much of the standard resistance must be included in the circuit. This depends on the ratio of R_{1} to R_{2}. As for the Wheatstone Bridge, R_{1} and R_{2} are switchable in decade steps.

Murrary Loop Test =atw

A modified form of the Wheatstone Bridge is used to detect wires shorting to earth in a telephone cable.

If a wire is shorting to earth at point x, Figure 5, it is connected to a good wire at the far end and both wires connected to a Wheatstone Bridge. In this way both wires will contribute towards two arms of the bridge, with point x the dividing point. The balance condition is given by:

$$
\frac{R_{1}}{R_{2}}=\frac{R_{L}-R_{X}}{R_{X}}
$$

where R_{L} is the total resistance of the two wires, R_{x} is the resistance from the bridge to point X .

$$
\text { Therefore, } R_{x}=\frac{R_{2} \cdot R_{L}}{R_{1}+R_{2}}
$$

length is proportional to resistance, so we can replace R_{X} and R_{L} above.

$$
L x=\frac{R_{2}\left(L_{1}+L_{2}\right)}{R_{1}+R_{2}}
$$

Also $L_{1}=L_{2}$

$$
\text { Hence } L x=\frac{R_{2}}{R_{1}+R_{2}} \cdot 2 L
$$

and the distance to the faulty point can be calculated.

Figure 4. Stepped Resistors.

Figure 5. Murrary Loop Test.

Varley Loop Test

This is a further modification of the Wheatstone Bridge and is also used to detect cable faults, e.g. crossed connections, short circuits or earth faults. This test is usually used to locate a fault down to a cable section and is capable of locating within 500 feet in a 50 mile section. The Murrary test can then be used to locate within the section, therefore the Murrary test set is usually of the portable variety, employing batteries.

The Varley test is a more complex test than the Murrary test and employs three wires with different connection arrangements, see Figure 6a, b, c

Compared to the Murrary Bridge, the Varley has resistors in three arms instead of two and the variable resistor is placed in the third arm. The ratio arms R_{1} and R_{2} are varied by a dial to give a ratio from 0.001 to 1,000 in decade steps.

Analysis of the circuits in Figure 5 yield:

$$
\begin{aligned}
& L x=\frac{R_{1} \cdot(B-A)}{R_{1}+R_{2}} \\
& \left(L_{1}-L x\right)=\frac{R_{1} \cdot(C+B)}{R_{1}+R_{2}}
\end{aligned}
$$

Substituting the results of the measurements in the above two equations gives the distance to the fault. It can be seen that one equation provides a check on the other.

A.C. Bridges whing counge

An a.c. bridge will require an a.c. power source and an a.c. detector, and is used for measuring inductors , capacitors, frequency, i.e. anything other than resistance which is the domain of d.c. bridges.

An a.c. bridge then, will have the general format of Figure 7 , where the Z values are capacitors or inductors with their associated resistive components. the detector can be a pair of headphones or magic eye (electron ray tube).

At low frequencies, the domestic mains supply is an adequate source but at higher frequencies an oscillator must be used at the frequency for which the component is designed.

For bridge balance, the potential difference across the detector has to be zero, as for d.c. bridges. This will occur when the potential difference across Z_{1} is the same as that across Z_{2} in both magnitude and phase.
i.e. $I_{1} Z_{1}=I_{2} Z_{2}$
also $I_{1}=\frac{V}{Z_{1}+Z_{3}}$
and $\quad I_{2}=\frac{V}{Z_{2}+Z_{4}}$
Substituting for I_{1} and I_{2} gives:

$$
z_{1} z_{4}=z_{2} z_{3}
$$

or using admittances

$$
Y_{1} Y_{4}=Y_{2} Y_{3}
$$

In complex rotation, the magnitudes are multiplied and the phases angles added:

$$
Z_{1} Z_{4} \angle\left(\theta_{1}+\theta_{4}\right)=Z_{2} Z_{3} \angle\left(\theta_{2}+\theta_{3}\right)
$$

and for balance, not only must $Z_{1} Z_{4}=Z_{2} Z_{3}$ but $\angle\left(\theta_{1}+\theta_{4}\right)$ must equal $\angle\left(\theta_{2}+\theta_{3}\right)$.

Figure 6. Varley Loop Test.

Figure 7. A.C. Bridge.

Capacitance Bridge

Figure 8 shows a bridge arrangement for measuring capacitance where Cx is the unknown capacitor and Rx its associated leakage resistance. These two components are reflected on the other side of the equation by standard capacitor Cs and a variable resistor Rs.

Now $Z_{1}=R_{1}, Z_{2}=R_{2}$,
$Z_{3}=R_{s}-\frac{j}{w C_{s}}, Z_{4}=R x-\frac{j}{w C_{x}}$
Substituting in $Z_{1} Z_{3}=Z_{2} Z_{4}$

$$
\begin{aligned}
& R_{1}\left(\frac{R_{x}-j}{w C_{x}}\right)=R_{2}\left(\frac{R_{S}-j}{w C_{S}}\right) \\
& R_{1} R_{x}-R_{1} \frac{j}{w C_{x}}=R_{2} R_{S}-R_{2} \frac{j}{w C_{S}}
\end{aligned}
$$

Figure 8. Bridge for Measuring Capacitance.
Such equations are solved by equating real and imaginary expressions separately. Equating real terms:

$$
R_{1} R_{x}=R_{2} R_{S}
$$

Equation 7.

$$
R x=\frac{R_{2} R_{S}}{R_{1}}
$$

Equating imaginary terms:

$$
\frac{j R_{T}}{w C_{x}}=\frac{j R_{2}}{w C_{s}}
$$

Equation 8.

$$
C_{x}=\frac{C_{S} R_{1}}{R_{2}}
$$

C_{x} is a precision standard capacitor that cannot be adjusted and since R_{S} does not appear in Equation 8, it can be made adjustable. One other variable component is required in order to balance the above two equations. Unfortunately, the choice is between R_{1} and R_{2} which appear in both equations.

If R_{1} is chosen, then R_{1} and R_{s} need to be changed alternately for minimum sound in the headphones until balance is obtained. This is called convergence.

Schering Bridge

Figure 9 shows a Schering Bridge which is one of the popular bridges for measuring capacitors and insulators.

For measuring insulation (phase angle nearly 90°), C_{s} is an air dielectric capacitor. Otherwise, $\mathrm{C}_{\mathbf{s}}$ is a mica capacitor which also has low loss and therefore, a phase angle of 90°.

Figure 9. Schering Bridge.

Substituting in the balance equation

$$
\begin{aligned}
Z_{x} & =\frac{Z_{2} Z_{3}}{Z_{1}} \\
\frac{R_{x}-j}{w C_{2}} & =\left(\frac{R_{2}-j}{w C_{s}}\right)\left(\frac{1+j w C_{1}}{R_{1}}\right) \\
\frac{R_{x}-j}{\bar{w} C_{x}} & =\frac{R_{2} C_{1}}{C_{S}}-\frac{j R_{2}}{w C_{S} R_{1}}
\end{aligned}
$$

Equating real terms $R_{X}=\frac{R_{2} C_{1}}{C_{S}}$
Equating imaginary terms $C_{x}=\frac{C_{S} R_{1}}{R_{2}}$

Inductance Bridge

The general form of an inductance bridge is shown in Figure 10 where $L x$ is the unknown inductor and Rx its resistive component. To balance these on the other side of the equation, the standard is in two parts, Ls and Rs.

Circuit analysis yields:

$$
\begin{aligned}
& R x=\frac{R x \cdot R_{2}}{R_{1}} \\
& L x=\frac{L s \cdot R_{2}}{R_{1}}
\end{aligned}
$$

In an inductor, the resistive component is larger than that in a capacitor, so the resistive adjustment must be made first.

When measuring inductors, Q values must be taken into account. The \mathbf{Q} of a coil is $\frac{w L}{R}$ and the Q of a capacitor $\frac{1}{w C R}$. For Q values above 10, a Hay bridge is used and for Q between one and ten, a Maxwell bridge is used. The reason for this will become clear below.

Hay Bridge

Figure 11 shows a Hay bridge. The impedances of the arms are:
$Z_{1}=R_{1}-\frac{j}{W C_{1}}$,
$Z_{2}=R_{2}, Z_{3}=R_{3}, Z_{x}=R x+j w L x$.
Substituting in $Z_{1} Z_{x}=Z_{2} Z_{3}$

$$
\begin{gathered}
\frac{\left(R_{1}-j\right)}{w C_{1}}(R x+j w L x)=R_{2} R_{3} \\
R_{1} R x=j w L x R_{1}-\frac{j R x}{w C_{1}}+\frac{L x}{C_{1}}=R_{2} R_{3}
\end{gathered}
$$

Equation 9.
Equating real terms $R_{1} R x+\frac{L x}{C_{1}}=R_{2} R_{3}$
Equation 10.
Equating imaginary terms $w L x R_{1}=\frac{R x}{w C_{1}}$
Equations 9 and 10 each contain both Rxand $L x$, therefore these equations need to be solved as simultaneous equations, yielding: Equation 11.

$$
R x=\frac{w C_{1}{ }^{2} R_{1} R_{2} R_{3}}{1+w^{2} C_{1}{ }^{2} R_{1}{ }^{2}}
$$

Equation 12.

$$
L x=\frac{C_{1} R_{2} R_{3}}{1+w^{2} C_{1}^{2} R_{1}^{2}}
$$

Figure 10. Inductance Bridge.
Substituting $Q=\frac{1}{w C R}$ in Equation 12 :
Equation 13.

$$
L x=\frac{C_{1} R_{2} R_{3}}{1+\left(\frac{1}{Q}\right)^{2}}
$$

If $Q=10$ then $(1 / Q)^{2}=0.01$ and is insignificant and Equation 13 reduces to: $L x=C_{1} R_{2} R_{3}$.

This final equation is the same as that for a Maxwell bridge, which has a different component arrangement.

Maxwell Bridge

A Maxwell bridge is suitable for coils with a Q between one and ten. Figure 12 shows the arrangement of components in a Maxwell bridge.

Now $Z_{1}=\frac{R_{1}\left(\frac{1}{j w C_{1}}\right)}{R_{1}+\frac{1}{j w C_{1}}}$

$$
=\frac{\frac{R_{1}}{j w C_{1}}}{\frac{j w C_{1} R_{1}+1}{j w C_{1}}}=\frac{R_{1}}{j w C_{1} R_{1}+1}
$$

$Z_{2}=R_{2}, Z_{3}=R_{3}, Z x=R x+j w L x$
Substituting in $Z_{1} Z_{x}=Z_{2} Z_{3}$
$\left(\frac{R_{1}}{j w C_{1} R_{1}+1}\right)(R x+j w L x)=R_{2} R_{3}$
Equating real terms:

Figure 11. Hay Bridge.

General purpose microphones are usually supplied as either high impedance or low impedance versions and occasionally, both. In the past, high Z (where ' Z ' represents 'impedance') microphones have been the most commonly used in non-studio applications, especially for stage mixing and PA amplification. Modern technology has allowed for very high quality Low Z microphones to be more readily available at much lower prices.

Matching these devices to High Z system inputs poses a problem, due to the inherent low signal levels, and resulting lack of high frequency response. In the absence of Low Z input facilities on amplification equipment, a pre-amplifier is required to match the mic' output impedance and amplify signals to a level suitable for driving into high Z inputs.

The Low Z mic' pre-amp module is intended for this purpose, and is available either in kit form, for home constructors, or as a ready-built module complete with its own screening case.

Impedance

The term impedance, abbreviated to ' Z ', is commonly used in electronics and the expression describes the joint opposition to the flow of current, caused by the presence of resistance and reactance, in the circuit. With microphones, be they dynamic or condenser types, it is

by Dave Goodman

* Use with Balanced and Unhalanced Microphones 300-600s Low Level Inpurt, High Level Outpurt
* Very Low Noise and Distortion Low Supply Current Drain

Low Z Mic

Pre-amp Module

MODULE SPECIFICATIONS

Input
Impedance - 600Ω Balanced
(300-0-300)
Typical
Signal Levels - 1.25 V out for lmV in
Maximum
Output Level - 2 V r.m.s (5.6 V Pk)
Input/Output
Gain
Signal to
Noise Ratio - 80dB
Distortion
(@lkHz) - 0.02\%
Frequency
Response - 50 Hz to 30 kHz (-1 dB)
PSU Requirement - 9V @ 3mA
necessary to know the capabilities of the transducer, under specific operating conditions.

For instance, if a microphone output is designed to deliver 10 mV of signal into a $47 \mathrm{k} \Omega$ load, then decreasing the load to $100 \mathrm{k} \Omega$ or more (remembering that a larger resistance is a lighter load) would allow a higher signal voltage, greater than 10 mV , to be developed. Alternatively, increasing the load to 600Ω or less would greatly reduce the signal level developed.

To standardise these variations, microphone specifications typically state voltage (signal) levels with a particular impedance value; usually $47 \mathrm{k} \Omega$ for high Z mic's and 600Ω for low Z mic's. With high impedance microphones, frequency is important when driving into a reactive circuit. Inductive and capacitive reactances effect the microphone signal level dramatically, and specifications often apply to voltage and impedance values at a frequency of 1 kHz .

Low Z Bealanced Lines

Figure 1 shows two typical configurations for balanced and unbalanced line connections to this module. Because Low Z mic signal levels are very low, in the order of 100 to $500 \mu \mathrm{~V}$, induced noise and hum becomes a very real problem especially where long connecting cables are used. Not all microphones have the facility for balanced line connection

Figure 1. Balanced and Uabalanced Liner.
however, and in this case the unbalanced system must be adopted, although with degraded noise performance. The step up transformer, Tl, can be used in either belanced or unbalanced systems with 600 and 300Ω microphones. 200Ω unbalanced lines can also be used, although output signal levels will be reduced by a few dB .

Circult Description

Figure 2 shows ICl which is a very low noise, instrument grade op-amp offering wide bandwidth, high slew rates and reduced low frequency noise performance.

For improved component noise figures, gain determining components, R2 and R3, have low values of resistance and C2 prevents RF breakthrough problems associated with local radio transmissions. Capacitor Cl limits HF response and R1 with Tl secondary determine the input impedance for optimum performance of ICl.

The preset potentiometer RV1 allows gain adjustment over a 20dB range, with resistor R 6 selected at 27k Ω. The signal output impedance is approximately 600Ω, but at a much amplified level, making for compatibility with high impedance equipment inputs, and DC isolation is maintained by C5. Diode Dl prevents circuit damage in the event that the power supply connections may be reversed, and the divider made up from R4, R5 provides a local 0 V ' central to the positive/negative supply rails, for the purpose of biasing the inputs of ICl. Input and output signals are consequently referenced to this 0 V tap, and not the negative rail, which is connected to a top earth plane of the PCB to ensure stability.

Figure 2. Circait Diagram.

Figare 3. Track and Overlay.

Construction

Reference should be made to the 'Constructor's Guide' supplied with this kat (if you do not intend to purchase the complete kit then see the Parts List for the order code of the Constructor's Guide, price 25p), and Figure 3 which shows the PCB track and legend.

Component assembly is quite straight forward and is best begun by inserting 14 vero pins as detailed in Figure 4. Fit each pin into holes marked with a circle, from track side 1 and solder all pin heads. Seven of these pins require to be soldered on both sides of the PCB for connection to the earth plane.

Identify and insert resistors R1 to R8, and capacitors Cl to C . Observe the polarity rules with electrolytics, and ensure there is adequate clearance between the leads of these components and the earth plane areas on top of the PCB.

Fit diode Dl and solder these components in position, removing excess wires. Mount ICl directly into position on the board and insert RVI. Carefully solder these components and mount transformer Tl firmly onto the board and solder in place. Do ensure that the five terminating posts on Tl do not touch the earth plane or short across to any components. Clean the track areas and inspect all joints, looking for short circuits, etc.

Testing

A signal source is required, such as a microphone or $A F$ signal generator, and also an amplifier or oscilloscope for monitoring the module output. Power supply requirements are low so a 9 V battery, such as a PP3 can be used for this project. Connect the negative supply to Pin 5 (Figure 4) and positive supply via a milliammeter to Pin 4. With 9 V applied, the current consumption is approximately 3 mA ; any large deviation from this figure will point to a fault condition such as Dl or ICl fitted incorrectly, so switch off immediately and recheck. If all is well, connect a signal source across Pins 1 and 3 , and wire Pin 3 to an adjacent 0 V terminal.

Take the signal output from Pin 6 tọ a 'scope, or to an amplifier. Pin 7, connected to 0 V , is the ground return connection for the 'scope or amp' cable screen/earth return. When using a signal generator, keep the peak-to-peak signal level at 5 to 10 mV maximum, to avoid excessive distortion of the audio output. Tum RVI clockwise for increased output signal or anticlockwise to decrease. When satisfied that the module is working, fit the screening case as follows.

Cuse Mounting Details

With reference to Figure 5 place a layer of insulating material cut to the size of the PCB ($85 \times 33 \mathrm{~mm}$) over the inside

Diagram 2

600R Unbalanced input

300R Unbalanced input

Figure 5. Mounting Module into Case.

Figare 6. Final Remmbly.
base area of the case. The material could be thin card, polythene or a few layers of PVC insulating tape. This insulation prevents the PCB tracks and joints from shorting to the case bottom. Insert the working module into the case with Pins 1 to 3 facing the case end panel that is drilled with a single hole only. If the module is a tight fit then the side plates can be spread apart or the PCB sides may be filed slightly to remove high spots, to help with this operation.

Push the module down towards the base until the transformer Tl just clears the top of the case, and does not obstruct the lid. Test that the module is still working correctly, and then apply small solder joints between all the 0 V pins and the case sides as shown. Do not overheat the earth plane area, or put excessive amounts of solder onto the board. All that's required is a few small joints connecting the case to OV , and to hold the PCB in position. The four comer edges can have a thin film of solder run along them, but electrically, this should not be necessary, especially if the module is required to be removed from the case later on.

Figure 7. WIring XLR Connectori.

Final Assembly

Input/output cables and battery/PSU connections can be made through the end panel holes of the case. Heat shrink sleeving can be fitted over thin wires to prevent them from chafing on the hole edges. Be careful when soldering wires to the PCB pins, as solder can run down onto the earth plane and cause a short circuit.

The input cable (from the microphone) screening braid can conveniently be soldered directly to the outside of the case as can the screened output cable from module to amplifier. Once wiring has been completed, fit the lid in position and distribute a few solder joints around the edges to seal the case, see Figure 6.

Figure 7 details various XLR phg and socket wiring arrangements for reference purposes; the terminals shown are standardised for most microphone/ mixer systems, and these connectors are recommended where smiall signal, low noise terminations are required.

LOW-Z MIC PRE-AMP PATIS 484

RESISTORS: All 0.6 W 1% Metal Plm			
R1	18k	1	(M188)
R2,8	1000	3	(M100R)
R3	6800	1	(MB80R)
24,5	10k	2	(M10K)
R6	371	1	(M2TK)
R7	100k	1	(M1002)
RV1	10k Cormet	1	(WR42V)
CAPACTTORS			
Cl	100pF Polystyrene	1	(3x285)
C2	860pF 1\% Polystyrene	,	(3x84)
C3	100 nF Minidisc	1	(\%RTSS)
C4	$100 \mu \mathrm{~F}$ 10V PC Electrolytic	1	(FF10L)
C8	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ Minelect	1	($\mathrm{YY34M}$)
${ }^{6} 8$	220MF 16V PC Electrolytic	1	(FF13P)
SEMaCONDUCTORS			
ICl	OP-27GNB	1	(RA74R)
D1	1N4001	1	(01730)
masctuhaneous			
T1	Mic Transormer 600/20	1	(FD23A)
	Low-2 Mic Pro-anp PCB	1	(CD34M)
	Low-Z Mic Pro-ump Case		(FD20w)
	Varopins 1148	1 Pxt	($\mathrm{FL248)}$
	Canstructor's Guide	,	(XH78L)
OPTIONAL			
	2 mm Syatolox Black PP3 Battery Clip	As re 1	$\begin{aligned} & \text { (BH00G) } \\ & \text { (HF28F) } \end{aligned}$

A complete kit of all parts, excluding optional items, is available for this project:
Order As LkBoB (Low-Z Mic Pre-amp Kit) Price $£ 14.95$
The following items included in the above kit list are also available separately, but are not shown in the 1986 catalogue: Low-Z Mic Pre-amp PCB Order As GD34M Price $£ 1.80$ Low-Z Mic Pre-amp Case Order As FD20W Price $£ 1.50$ Mic Transformer 600/20 Order fas FD23A Price $£ 5.95$ Constructor's Guide Order As XH79L Price 25p NV A ready-built version of this Kit is available: Order As YM14Q (Low-Z Mic Pro-amp Aseem) Price $£ 16.95$

The Maplin Voyagors' Bounty is Shared

Pictured below on the right is Mr S. Grimmer of Middleton in Manchester, who is the lucky winner of the recent Maplin shop customer competition. Seen shaking hands with Keith Evans, the Manchester Shop Manager, Mr Grimmer was surprised to find that his entry had been judged as the most accurate. He was nevertheless very pleased to accept the prize voucher saying that he may use it to get an upmarket home computer, something he has been wanting for some time.

Mr Grimmer was a regular Maplin mail order customer until Maplin opened a shop in Manchester. It was on one of his recent visits, getting parts to complete the Maplin burglar alarm project, that he was able to stake his claim in the competition. The solutions to the competition questions were as follows:

1. The Maplin Voyager was heading in a North Easterly direction.
2. There were 200 crew on board.

3. The treasure was found at the South Polar Zone.
4. Hebroth IV is 58 light years away from Earth.

Mr Grimmer was correct on the first three questions and only 2 light years out on the fourth

Second Prize was won by Mr J.E. Cousin of Highgate in London.

The five Runners-Up, who each receive a Maplin Digital Multimeter were:

Mr S.R. Flooks of Hedge End in Southampton; Mr A. Dance of Springfield, Chelmsford in Essex; Mr C.P. Mornson of Harlesden in London; Mr K. Burford of Great Barr in Birmingham; Mr J. Houghton of Warrington in Cheshire.

Maplin Magazine September 1986

MACHINE CODE

by Graham Dixey C.Eng., M.I.E.R.E. Part Four

More Jumps

The true jumps are $\sqrt{ } R$ and JP, discussed last time, but a number of related operations are included for convenience in the same table.

There is the CALL instruction, which is used when you want to access a subroutine. In assembly language, the operand for CALL is the label or symbolic address by which the subroutine is known. For example, a subroutine that develops a fixed time delay might be known simply by the label DELAY, and be located at an address \&SCC0. In assembly language we get:
CALL DELAY which, in machine code, is CD C0 5C.

However, CALL is much more useful than just that. The CALL to the subroutine can be made unconditionally (as in the above example) or subject to one of a number of conditions (carry, noncarry, zero, non-zero, etc.) just as for the jumps JP and some JRs. This raises an obvious question. If there is so much similarity between CALL and JP, what's the real difference? It's an important question and the answer is as follows.

When a jump, whether JP or JR, is made, the contents of the program counter PC are simply replaced by the address of the destination for the jump.

Figure 1. Use of the CALL and RET inntructions.

The old PC contents are lost and thus there is no provision for returning from whence you came. Usually this doesn't matter otherwise jumps would be of little use. The CALL instruction, on the other hand, recognises the fact that the main program is only being left temporarily (to execute the sub-routine) and a retum is intended. Thus, CALL does two things. It changes the PC contents to access the area of memory where the sub-routine resides and saves the old PC by 'pushing' it onto the 'stack'. This provides an opportunity to introduce another instruction from the set, RET (obviously short for RETURN), which must be included at the end of the sub-routine for, when it is executed, it 'pops' the old PC off the stack and the program continues from right after where it left originally when told to by the CALL instruction. Incidentally, the RET instruction is unconditional or subject to exactly the same choice of conditions as the CALL instruction. Figure I shows the use of CALL and RET.

There is a particularly useful instruction in this group, which has the mnemonic DJNZ (Decrement and Jump if Non-Zero). Decrement what? The answer is the B register. This register can be set up as a counter, loaded with any value from 800 to $\& F F$ that determines how many times the loop is to be executed. DJNZ is included within the loop and acts as a relative jump back to the beginning of the loop as long as B is not zero. Since, every time that DJNZ is encountered, B is automatically decremented, the program will eventually exit the loop when B becomes zero. Here's an example.

LOOP:	LD	B,20A	Load B with ten (\&OA)
	LD	C,20C	Load C with twelve (80C)
	LD	A, 800	Set A register to zero
	ADD	A, C	Add C to A
	DJNZ	LOOP	Decrement, jump if B not zero
	LD	DUMP,A	Send result out

This simple program causes A to increase in value by a fixed amount (twelve) each time it goes round the loop. Thus, by going round the loop a given number of times (in this case ten), the product of these two numbers is obtained. Obviously the application is limited but it does illustrate the way in which the DJNZ instruction works.

There are just two instructions left in this set, RETI and RETN, which are both retum instructions similar to RET discussed previously. However, they relate to 'retum from interrupt' rather than from a sub-routine.

So just what is an interrupt? In brief, it's a way of getting the computer to run a particular program and yet be able to handle peripherals, apparently at the same time. Suppose there are three peripherals, known as A, B and C, as in Figure 2. Each of these is connected via a wired-OR configuration to an 'interrupt pin' on the CPU. Each of these peripherals has a flag which is connected to an input port line on the computer. Suppose the latter is happily working away on some task and peripheral A has some data that it wants to send to the computer for processing. How can it let the computer know this? By interrupting!

Figure 2. Three peripherals A, B and C connected to a common interrupted line.

It takes the intermpt line low and this initiates a sequence of events that includes pushing the PC (and usually other registers as well) onto the stack and going to an Interrupt Service Routine. But the computer has to decide which of the peripherals actually intermpted, which it does by testing the flags, since the peripheral that interrupted will have its flag 'high'. Then having identified the intermpting peripheral, it will go to a service routine for that peripheral. The sequence is very much like that when a sub-routine is called. But there are important differences. The manner in which it is initiated is quite different. Also the peripherals can be assigned different priorities, thus ensuring that if two or more interrupts occur at once, the most important will be serviced first. Once the service routine is complete a return must be made to the original program. This is accomplished by using the RETI instruction, which 'pops' the PC and other registers off the stack.

However, this hasn't explained what the RETN instruction does. Well, it does the same thing as RETI but for what are called 'non-maskable interrupts'. The term 'mask' is used here in the sense of inhibiting an action, i.e. preventing an interrupt from having any effect on the CPU. Does this seem a strange thing to want to do? Not at all. If there are several peripherals, one of which has interrupted and is being serviced and another, less important one, decides to interrupt also, it shouldn't be allowed to until the previous peripheral has finished. Thus a mask bit is set to prevent this. However, if there is an emergency situation, this must be given top prionity, which is done by assigning it to a non-maskable interrupt. The 280 has two separate intermpt pins. Pin 16, INT, is where the regular interrupt line is connected. Pin 17, NMI, is used for the high priority non-maskable interrupts. The rule is, use RETI for INT interrupts, and RETN for NMI interrupts.

Skew Operations

This group of operations includes the 'shift' and 'rotate' instructions. The first four rotations are RLC, RRC, RL and RR. Rotations may be made to the left or to the right, and may be through the carry' or 'with the branch carry'. Figure 3 shows how the operations are carried out. There is a general pattern about them so, once one is understood, the rest follow easily enough.

Taking the rotations first, RLC is a 'circular left rotation', in which all bits shift left and bit 7 goes into the carry flag CY as well as 'round the loop' into bit 0 . RRC is simply a rotation in the opposite direction with bit 0 ending up in the carry llag. These rotations may be compared with the next two, $R L$ and $R R$, in which the carry flag is 'in series' with the rotation. In RL, whatever is in the carry flag goes into bit 0 and bit 7 goes into the carry flag; in RR the exact reverse happens. There are four instructions RLCA, RRCA, RLA and RRA that duplicate the four just desc-

Figure 3. Effects of the 'nkew' operations.
ribed but act on the A register only. They are a hangover from the 8080 from which the Z80 was.developed. The Z80 instructions allow all of the registers to be operated upon as well as memory locations addressed by HL, IX or IY.

Now for the shifts. These may be to the left or the right and also involve the carry flag. However, there is no closed loop, just a series chain. For example, SLA is the Arithmetic Shift Left; all bits shift left one position, bit 7 is 'caught' by the carry flag and a zero enters bit 0 .

The carry lag CY is often called a 'carry link' because it allows one register to be linked to another and data passed serially between them. For example:

	LD	A,800
	LD	C,80FF
	LD	B.808
LOOP:	SLA	C
	RL	A
	DJNZ	LOOP

This program will serially shift the contents of register C into register A with eight consecutive left shitts determined by the DJNZ instruction. However, serial shifting between registers (which includes memory locations) is not all that can be done. Every left shift multiplies a number by two, as the following sequence shows.
Original byte -
$00001011=11$ (denary)
lst shift left
$00010110=22$
2nd shift left
$00101100=44$
3rd shift left
$01011000=88$
4th shift left
$10110000=176$
At which point the carry flag must be used to link this byte to another register to avoid the m.s.b. falling off the end!

SRA is the Shift Right Arithmetic instruction, which is not a simple reversal of SLA. The difference lies in that, instead of a zero entering bit 7, the current value
of this bit remains unchanged, thus preserving the 'sign' of the number. The remaining seven bits can be transported across to another memory location, via the carry link, but using the RR instruction on the other location. Each successive shif right divides the number by two, for positive numbers only and only if no ones fall off the rightmost bit position a simple but limited means of performing binary division.

The difference between SRA and SRL is that the latter is a Logical Shift Right, and a zero enters bit 7 when shifting.

The two instructions RLD and RRD stand for Rotate Digit Left and Right respectively. They are used in Binary Coded Decimal (BCD) arithmetic, in which the digits 0-9 are encoded as fourbit binary groups (0000-1001) or 'nibbles'. They act on data in the A register and a memory location pointed to by HL . Figure 3 clearly shows the re-arrangement of nibbles that occurs for each RLD or RRD instruction, all data moving simultaneously.

Bit Manipulation
 Group

The instructions in this group allow bits in various registers or indirectly addressed memory locations to be tested for their value (BIT), set to logic 1 (SET) or reset to logic 0 (RES). This is done by specifying the bit number ($0-7$) and the register. For example:

SET 2,C
Will set bit 2 of register C to logic 1 .
RES 5,A
Will reset bit 5 of the A register (to logic 0), while:

$$
\begin{array}{ll}
\text { LD } & \text { HL,\&A200 } \\
\text { BIT } & 3,(H L)
\end{array}
$$

Will test bit 3 of memory location \&A200 and will set the zero flag in the flags register F if the bit is found to be zero.

The ability to manipulate or test bits in registers or memory locations on an individual basis is a very useful one.

General Purpose AF Group

There are just five instructions in this group, which are concerned solely with the A register or the flags (F) register.

The first of these, Decimal Adjust A register (DAA) is used when arithmetic is to be done in BCD. The problem arises because the CPU can only work in binary and special provision must be made to compensate for errors that may arise when working in another system. As we know, BCD uses four bits to encode the denary digits 0-9, i.e. uses the groups 0000 to 1001 . But what about the remaining possible groups, $1010-1111$? These can obviously occur in binary addition and subtraction yet have no meaning in BCD - they are 'illegal' codes.

It is possible to skip over these six illegal codes by adding six to the result whenever such a code occurs. Consider the following BCD addition of 35 and 22.

$$
\begin{array}{r}
00110101 \\
+\quad(35) \\
\hline 00100010 \\
\hline 01010111
\end{array}
$$

The answer 57 is obviously correct.
Now see what happens with the sum of 35 and 25.

$$
\begin{array}{r}
00110101 \\
+\quad(35) \\
00100101 \\
\hline 01011010
\end{array}
$$

The second nibble of the result is one of the illegal codes.

Now add 6 to the result and see what happens.

01011010
$+\quad 0110$
01100000

01100000 (60)
The corrected result is now right. Fortunately we don't have to worry about when to add six or whether it should be added to the low nibble or the high one, or even both. On receipt of DAA, the CPU tests the flags and decides for itself what to do.

The DAA instruction should follow when operating in BCD with any of the following instructions, ADD, ADC, INC, SUB, SBC, DEC, NEG.

CPL is a useful single-byte instruction which complements the contents of the A register, that is swaps 1 s for 0 s and vice-versa.

$$
\begin{aligned}
& \mathrm{LD} \quad \mathrm{~A}, \& 2 \mathrm{C} \\
& \mathrm{CPL}
\end{aligned}
$$

The above example means that the A register is loaded with 00101100 (2C) which, after the CPL instruction, becomes 11010011 (D3).

NEG means 'negate the \bar{A} register', e.g. if the number held is a positive one, then form the two's complement of it.

$$
\begin{aligned}
& \text { \&OF }(+15) \text { becomes \&F1 }(-15) \\
& \& E 2(-30) \text { becomes \&1E }(+30)
\end{aligned}
$$

The final instructions in this group are CCF (Complement Carry Flag) and SCF (Set Carry Flag). CCF inverts the value of the carry flag, while SCF forces it to logic 1.

Restarts

This group of eight instructions is a special set of sub-routine calls, whose origin addresses are $\& 00,880, \& 10, \& 18$, $\& 20, \& 28, \& 30$ and $\& 38$. Commonly used sub-routines can be called from these addresses and require only a singlebyte instruction.

For example, RST 20 calls the subroutine whose origin is at the address \&0020. Somewhat confusingly these restarts are sometimes referred to by their denary values, i.e. RST 32 may be used instead of RST 20.

Control
 Instructions

The first instruction in this group is NOP, which stands for No OPeration, meaning that the CPU does precisely nothing during the time of this instruction. It can be useful, however, to insert a few NOPs into programs sometimes, so that program changes can be accommodated more easily by changing them to active instructions. They can also be put into a loop to act either as a short time wasting program, or where an intermpt is anticipated and the machine must be idle, such as in keyboard input routines, thus:

WAIT: NOP
 JR WAIT

The CPU obediently cycles back and forth between the two lines until the interrupt breaks into the loop. HALT could be used instead, since this will stop the operation of the CPU until either an interrupt is received or the reset pin (pin 26) is taken low. The remaining five instructions are all concerned with interrupts and work as follows:
DI and EI stand for 'Disable Interrupts' and 'Enable Interrupts' respectively. Earlier it was said that various interrupts can have different priorities. Thus, if a high priority interrupt wishes to ensure that it cannot be over-ridden by one of lower prionity, the first thing it does when it goes into its Intermpt Service Routine is to disable further interrupts with the DI instruction. Then, when it has completed its routine it will issue the EI instruction to allow further interrupts to be acknowledged by the CPU. The last three instructions are concerned with the interrupt modes of the ZBO and require more detailed discussion. IMO sets mode 0 . This can be referred to as the 8080 mode, since it is compatible with the older 8080 CPU. In this mode, when an interrupt is received, the PC is pushed onto the stack and the Z80 passes control of the data bus to the interrupting peripheral. The latter responds by placing an instruction on the data bus, which is usually a sub-routine call to execute the service routine for that particular peripheral. One of the restart instructions may be used for this.
IM1 sets mode l, which is the 'polled response mode'. When an intermpt is received the CPU calls a sub-routine located at the restart address $\& 0038$. This will then poll the various peripherals to ascertain which one interrupted and then will service that peripheral.
IM2 is the most powertul of the $\mathbf{Z 8 0}$ interrupt modes. It uses a register, the I or Interrupt Vector register, which has to be loaded with the high byte of the intermupt vector. The low byte is supplied by the interrupting device itself. This complete vector then points to two consecutive locations

Figure 4. The z80 Mode 2 interrupts.
that give the start address for the service routine. This is not as complex as it may sound and is illustrated in Figure 4.

The Input-Output Group

And so to the final set of instructions for the Z80, those that deal with the transfer of data between the CPU and the outside world through interface chips such as the $\mathbf{Z 8 0}$ PIO.

Unlike the 6502, the input/output ports on a $Z 80$ system are not memorymapped, i.e. they do not have memory addresses on the main memory map of the computer. Instead they are identified by 'port addresses', which are usually in the range $800-8$ FF (which allows for 256 separate ports). In theory it is possible to have 65536 individual ports - the mind boggles! This is done by combining the number held in the \bar{A} register (the high byte) with the operand of the instruction (the low byte) to give an address range for the ports from $80000-8$ FFFF.

To fetch data from a port, the \mathbb{N} instruction is used together with the destination register and the port address, thus:

$$
\text { IN } \quad \text { A, } 802
$$

Will fetch the data at port $\& 02$ and place it in the A register.

Data is sent to the port by using the OUT instruction, the port address and the destination register, so that:

OUT 802, A
Will send the contents of the \bar{A} register to port \&02. The other general purpose registers can also be the subject of \mathbb{N} and OUT instructions, but by means of register indirect addressing, using the C register. Thus, to send data from the D register to port $\& 02$ and then input data from port 803 into the E register, the following program could be used.

LD	C, 802
OUT	(C), D
INC	C
IN	E, (C)

There is also a range of block transfers for IN and OUT', that work in essentially the same way as the block transfers described in Part Three. INI is used to fetch data from a port and load it into a block of sequential memory locations and vice-versa for OUTI. In both cases the I stands for Increment. If, instead, the instruction INIR or OUTIR is
issued the process of transfering data and incrementing to the next address is done automatically until the whole block has been transferred. In this type of transfer $H L$ is first loaded with the start address of the block, B with the number of bytes to be transferred and C with the port address. Consider the following program:

LD	$\mathrm{HL}, 8 \mathrm{~A} 200$
LD	$B, 832$
LD	C, 802
INIR	

This will load the block of memory
\&A200 - \&A231 with the fifty bytes of data, specified by the B register, from port 802 .

If INI is used instead of INIR only one byte is transferred, but $H L$ is incremented and B decremented ready for the next $\mathbb{N} I$.

In both cases the transfer is complete when $\mathrm{B}=0$ though, in the case of INI, this must be ascertained by testing the Z flag after each transfer to see if it now equals 1.

Analogous to $\mathbb{I N}, \mathbb{I N I R}$, OUTI and OTIR are IND, INDR, OUTD and OTDR. The D, of course, stands for Decrement
and refers to the fact that at each transfer HL is 'decremented' instead of being incremented. As a result, HL initially holds the 'top' address of the memory block, which is then loaded 'downwards'.

Some of the descriptions may have been fairly brief, but all of the 280 instructions have now been discussed. This means that future articles can deal entirely with the writing of a variety of programs in Z 80 code, on the assumption that all mnemonics may now have some meaning, even if it does sometimes mean a quick look back to earlier issues.

TEST GEAR A MEASUREMENTS Continued from page 53.

Equation 14.

$$
R x=\frac{R_{2} R_{3}}{R_{1}}
$$

Equating imaginary terms:
Equation 15.
$L x=C_{1} R_{2} R_{3}$
Since R_{3} is common to both Equations 14 and 15 , adjustment of R_{3} to balance the inductor, upsets the resistive balance. Using R_{1} and R_{3} in turn results in successive balance points such that convergence is obtained towards final balance.

The other bogey man of bridge circuits is stray capacitance between bridge arms. Up to now we have assumed that the arms of the bridge contain lumped impedances. In practice, stray capacitance couples the various arms and upsets the balance giving a false reading.

One way out of this is the Wagner ground where all the arms are shielded and the screens connected to ground. This does not get rid of the capacitances but does make them constant in value enabling them to be included in the calculation.

Figure 12. Maxwell Bridge.

Wien Bridge

This is a very useful bridge for measuring frequency, Figure 13. One of the drawbacks is that it requires a pure sinusoid, and any harmonics tend to upset the balance.

The Wien bridge is versatile and has been used in modified forms in oscillator circuits as well as notch filters in frequency analysers for extracting a particular frequency.

$$
\begin{aligned}
& Z_{3}=\frac{R_{3}}{j w C_{3} R_{3}+1} \\
& Z_{2}=R_{2} \\
& Z_{4}=R_{4} \\
& Z_{1}=R_{1}+\frac{1}{j w C_{1}}
\end{aligned}
$$

Substituting in $Z_{1} Z_{4}=Z_{2} Z_{3}$

$$
\begin{aligned}
& \left(\begin{array}{rl}
\left(R_{1}+\frac{1}{j w C_{1}}\right) & R_{4}=R_{2}\left(\frac{R_{3}}{j w C_{3} R_{3}+1}\right) \\
R_{1} R_{4}+\frac{R_{4}}{j w C_{1}} & =\frac{R_{2} R_{3}}{j w C_{3} R_{3}+1}
\end{array}\right. \\
& \begin{aligned}
R_{1} R_{4}\left(j w C_{3} R_{3}+1\right) & +\frac{R_{4}}{j w C_{1}}\left(j w C_{3} R_{3}+1\right) \\
& =R_{2} R_{3}
\end{aligned} \\
& \begin{aligned}
& j w C_{3} R_{3} R_{1} R_{4}+R_{1} R_{4}+\frac{R_{4}}{j w C_{1}}+\frac{R_{4} R_{3} C_{3}}{C_{1}} \\
&=R_{2} R_{3}
\end{aligned}
\end{aligned}
$$

Equating imaginary terms:

$$
\begin{aligned}
& w^{2} C_{3} C_{1} R_{1} R_{3} R_{4}=R_{4} \\
& w^{2} C_{3} C_{1} R_{1} R_{3}=1 \\
& w^{2}=\frac{1}{C_{3} C_{1} R_{1} R_{3}}
\end{aligned}
$$

$$
\text { if } \mathrm{C}_{1}=\mathrm{C}_{3} \text { and } \mathrm{R}_{1}=\mathrm{R}_{3}
$$

$$
\text { then } w^{2}=\frac{1}{C^{2} R^{2}}
$$

$$
w=\frac{1}{C R}
$$

Equation 16.

$$
f=\frac{1}{2 \pi C R}
$$

Equating real terms:

$$
\begin{aligned}
& \mathrm{R}_{1} \mathrm{R}_{4}+\frac{\mathrm{R}_{4} \mathrm{R}_{3} \mathrm{C}_{3}}{\mathrm{C}_{1}}=\mathrm{R}_{2} \mathrm{R}_{3} \\
& \frac{\mathrm{R}_{1} \mathrm{R}_{4}}{\mathrm{R}_{3}}+\frac{\mathrm{R}_{4} \mathrm{C}_{3}}{\mathrm{C}_{1}}=\mathrm{R}_{2} \\
& \frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}+\frac{\mathrm{C}_{3}}{\mathrm{C}_{1}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{4}}
\end{aligned}
$$

As before, if $\mathrm{C}_{1}=\mathrm{C}_{3}$ and $\mathrm{R}_{1}=\mathrm{R}_{3}$

Equation 17.
then $\frac{R_{2}}{R_{4}}=2$
This means that if R_{2} is twice the value of R_{4}, then R_{1} and R_{3} can be ganged together and altered in equal steps to achieve balance. Therefore only one control is sufficient, and can be calibrated in frequency according to Equation 16.

Figure 13. Wien Bridge.

A Universal Bridge

A portable impedance measuring instrument complete with handle and lid is standard in most development laboratories. In order to measure resistance, inductance and capacitance, such an instrument needs d.c. and a.c. power supplies as well as d.c. and a.c. detectors.

For a d.c. power supply, battery packs are used, and a.c. is supplied from an oscillator via $R C$ networks to select the frequency. A frequency of 10 kHz is the usual standard.

A suspension galvanometer with a sensitivity of $0.5 \mu \mathrm{~A}$ per division is used as a d.c. detector in resistance measurements. An electron ray tube (magic eye) is used as an a.c. detector. There is usually an external facility for connecting headphones, as well as an a.c. mains power supply input.

Now to the actual measurements themselves. What is the minimum number of bridges we can get away with? For inductance measurements, both the Hay and Maxwell bridges are required for Q above ten and less than ten respectively. For resistance measurements a Wheatstone bridge is adequate and a bank of standard capacitors is required for capacitance measurements. So about half a dozen different bridges will serve most requirements.

CLASSIFIED

Manous ronsan

PRPER TAPE PUNCE mechanism (Creed) £.50. Reader mechanism 75p. New paper tapea 50p. Audiovisual por in slot cassette unit with amplifier \&3. Coin operated telemeter unit $£ 3.0689$ 88963.

ONE VALVE TUNER AMP. Valves seem OK but unit doesm't work. £S. Buyer collects. 'Phone Graham on Edenbridge (Kent) (0732) 863089. HERTHIKIT SW711 SW radio £48. VDU cabinet with keyboard and VDU pcb (will hold computar pcb) £48. Maplin M-8080E electronic mukimeter £35. Maplin Wordmaker speech synthesiser incl PSU 580. AY-3-891 Sound Generator on pab 66 . Vero 17 inch recking cabinet with PSU £45. Computer speech recognition system £26. Watford Drum Rythm generator $£ 35$. Tal: Lowrestot (0502) 66026. RTIT MAPLIN TOI000 built and working, tested by Maplin, see page 228 of 1886 catalogue for photo. Complete with cese, cost to build E57, yours for 144 post freel 0612313025. THERMEL COPIER \&10. Oscilloscopes; Solartron CT316 $\{30$, Tektronix 848A (but with EHT fault) £75. Mulax D640GA facsimile receiver phus masuals, £78. Roneotronic 400T stencil cutter $£ 80$. Ditto, requiring transformer, $\{40$ plus carriage. Porthtowan (0809) 890688.

MAPLIN TENON FLRST TUBE DRTVER buik and tested, no case, $£ 14.50$ (P+P included). Call/write to M Dutte, 178 Bramhall Moor Lane, HazelGrove, Stockport, Cheshire SK7 SBE. Tel: 0614838659.

COMPUTERS

COLOUR GENIE 32K. Dust cover, dual joysticke and keypads, cassette recorder, IC24 data stabiliser, leads, filing box, $£ 280$ worth of softwere, 11 Genie magaines. In original boxes E113 ono. Tel: A. Fowiar (083783) 2100. BURNDEAT CTFAS 8085 controller pcb fully populated. 2E RRM, 4E ROM blown monitor ROM, UART, parallel port, diagrams. Unused, still in anti

If you would like to place an advertisement in this section, here's your chance to tell Maplin's 200,000 customers what you want to buy or sall, or tell them about your club's activities - absohutely free of charge. We will publish as many advertisements as we have space for. To give a fair share of the limited space, we will print 30 words free of charge. Thereatior the charge is 10 p per word. Please note that only private individuals will be permitted to advertise. Commercial or trade edvertising is
strictly prohibited in the Maplin Magazine.
Ploase print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send replies to Box Numbers to the address below. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag., P.O. Box 3, Rayleigh, Essex SS6 8LR.

For the next issue your advertisement must be in our hands by 6 th October 1806.
static bag. Any offers 0252542703 after 6 pm .
COLOUR MONTTOR Rediffusion system Ahphe. RGB and composite video inputs. Built-in audio amp/speaker. New April ' 86 . Sell $£ 150$ or swap portable colour TV. Tel: 0217083883. MFIPLIN 300 BAUD MODEM Cased, teeted, reliable. Inchuding cables, disk and ROM software for BBC micro. 580 . D.R. Boyd, Treuddyn Mill, Mold, Clwyd. CH7 4BD.
viczo Girtridge mapa
MIXMORT EXPRNSION IIT for
machine code use, etc. Inchudes board and instructions. Just add 25 RAM or 2-48 PROM. Only 54.96 from J. Seddon, 63 Portland Rood, Birmingham.
HERO 1 ROBOT with voice recognition and 48E memory. Lots of softwere. Bargain at $£ 2000$ o.v.r.o. 01-240-0868 day.

curs

BI-FI CLUB OF CAPRIOWN South
Africa issues monthly newsletter for members Workdwide. Join S. Atrica's Audio Club for 2 LRC.'s to P.O. Box 18262, Wysberg 7824, South Atrice MECHANICAL LOW DEITNITION TELEYEION revived 1978, ofters intereeting inexpensive hobby. Narrow Bandwidth Television Association (sub-
scription $£ 3.00$) provides quarterly newsletters and technical help. Write:Doug Pitt, 1 Burnwood Drive, Wollator, Nottingham.

musicn

ThMAER CSOl and Boss DRS5, both in mint condition and fully working. Boss DR5S fited with separate outputs. Offersl Tel: Dave on Southampton (0703) 433871.

ENSONLQ NILR GE owner seeks other users in the Southend aree, to exchange ideas, samples - Tony (0702) 66633.

MIES 53 ORGRN plus auto organ, 2×49 note keyboards, reverb, Lealie rotator, pedalboard, twin 50W amps \& speakers in home made mahogany effect cabinet, circuits with construction details. Cost $£ 700$, take $£ 250$ o.r. Buyer collects. Phone Canterbury 67931.

MRPLIN PLRNO plus amplifier. Professionally builk. Polished wood case. Brilliant tone. Offers over $£ 100$. Mr. Stanley, 9 Princes Street, Conrahs Quay, Clwyd. Tel: Deeside (0244) 810972.

MAPLIN 600 NOTE SEQUENCERR use with 3800 and 86005 synthesisers. All pcb's made, case and hardware 180. Instructions included. Mike, 24 Suther-
land Ave, Sunbury-on-Thames, Middlesex.
MAPLIN HRRMONY GENERETOR
built, cased and fully tested, never used after testing, £20. Maplin Computadrum pcb, built and fully tested, excellent condition (no case) $£ 12.50$ ($\mathrm{P}+\mathrm{P}$ inchuded). Call/write to M. Dutta, 178 Bramhall Moor Lane, Harel-Grove, Stockport, Cheshire SK7 8BE. Tel: 061 4835659.

WANTD

COULD SOMEONE SEXLL DT Scope, working or not, to person of limited means. Contact Mr. Matthews, 63, The Oval, Otley, West Yorkshire, LS31 aEE WLNTED TELETEXT DECODER in kit, pcb or ready built form. Write with details to J. Heywood, 19 Molyneux Road, Maghull, Liverpool L31 3DX IRMARHA CS70M data cards wanted. any number, preset or blank - if you have any please phone Dave on Southampton (0703) 433871.
WHNTED ET PYNELONIXR Maplin argan 51 , leaflets, MESS3, XHO4E, and MES54, XH31J. Willing to buy. Scott, 'Lilden', Lydfords Lane, Gillingham, Dorset.
WANTED CTRCUIT DLAGRAM or any information on the Hartley
Electramotives Lid. Oscilloscope type 13A Ref No. 108/831. N. Bradbrook, 38 Orchard Park, Laugharne, Carmarthen, Wales.
WHNTED HANDBOOK FOR
KHEMEC Oscillator type 858. Price etc to Rodley, 19 Warwicics bench,
Guildford, Surrey. Tel: Guildford 38796. WHNITED INSTRUCTION MINORE for D58 Telequipment 'scope, or any relevant information at all. Contact Paul Topping, 100 Longhill Road, Ovingdean, Brighton BN2 7BD, or tel: Brighton (0273) 31817.

WHNTED 2116/M3 ROM for 5600 sequencer, or complete unit working or not, with ROM. Also any dita book etc. on M108 organ. L.C. Millhouse, 7 Bentinck St, Mansfield. Tel: 0623 658234.

MAPLIN SERVICE

With most electronic projects, performance will depend on the conditions of use. Recommendations and suggestions made in the articles in this magazine are for guidance only, since conditions of use are beyond our control.

Repalrs and

Get-You-Working Service

Our 'Get-You-Working Service' is available for any of the projects published in this magazine, provided they are constructed on our ready-etched printed circuit boards, and that they use a majority of components supplied by us. We regret we cannot extend this service to the 'interest' circuits, for which we do not provide ready-made boards, or supply as projects or kits; nor for projects or kits that have been customised or modified by the constructor.
We cannot enter into correspondence with regards to fautt-finding, and recommend you return the unit to us for servicing if you are unable to rectify the fautt yourself.

Project Servicing

If the problem has been caused by a faulty component supplied by us, then there will be no charge for the work performed or the components used. If the fault has been caused by error(s) in

construction, then there will be a charge for the work performed at a rate of $£ 10$ per hour, or part of an hour plus the cost of any damaged components which need to be replaced. If no fault is found on the unit, then there will still be a charge of $£ 10$ per hour or part of an hour for the time invotved in establishing this fact.

Projects returned for repair should be addressed to:Service Department
Maplin Electronic Supplies Ltd
P.O. Box 3

Rayleigh
Essex
SS6 8LR

DID YOU MISS THESE ISSUES?

Project Book 1 Universal Timer. Programmable mains controller. Combo-Amplifier. 120W MOSFET power amp. Temperature Gauge. $10^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$, LED readout. Pass The Bomb! Pass-The-Parcel with a difference. Six easy-tobuild Projects on Vero-board. Car batt. monitor; Colour snap game; CMOS Logic Probe; Peak Level meter; Games timer; Multi-colour pendant. Order As XA01B (Maplin Project Book No. 1) Price 75p NV.
Project Book 2 Digital Multi-Train Controller. Controls up to 14 model trains. Home Security System. Six in-dependant channels. Digital MPG Meter. With large LED display, a must for more economical motoring.
Order As XA02C (Maplin Project Book No. 2) Price 75p NV
Project Book 3 ZX81 Keyboard. 43 keys, plugs directly into ZX81 with no soldering. Stereo 25W MOSFET Amp. 25W r.m.s per channel; Disc Tape, Tuner \& Aux. Radar Intruder detector 20 metres range, may be used with our security system. Remote Control for Train Controller. Remote control by infra-red, radio or wire Order As XA03D (Maplin Project Book No. 3) Price 75p NV
Project Book 4 Telephone Exchange. Up to 32 extensions on 2-wire lines. Remote Control for Amplifier. Volume, balance and tone controlled via infra-red link. Frequency Counter. 8 digit DFM, $10 \mathrm{~Hz}-600 \mathrm{MHz}$ range. Ultrasonic Intruder Detector. Areas up to 400 square feet can be covered.
Order As XA04E (Maplin Project Book No. 4) Price 75p NV.
Project Book 5 Modem. 300 baud transmission speed over normal telephone lines. Inverter. 240V AC 60W from 12V car battery. ZX81 Sound Generator. 3 tone generators fully controlled from BASIC. Central Heating Controller.
Optimised performance with this advanced system. External Horn Timer. Exterior intruder alarm. Panic Button. Add on to our Home Security System. Model Train Projects. Add on to our Multi-Train Controller. Interfacing Micro processors. How to use parallel I/O ports, with circuits.
Order As XA05F (Maplin Project Book No. 5) Price 75p NV.
Project Book 6 VIC20 \& 2X81 Talkbacks. Speech synthesis projects. Scratch Filter. Tunable active circuit 'reclaims' scratched records. Bridging Module. Converts two 75W MOSFET amps to one 400 W full bridge amplifier. Moisture Meter. Finds damp in walls and floors. ZX81 TV Sound and Normal/Inverse Video. TV sound and inverse video direct. Four Simple Veroboard Projects. Portable Stereo Amp; Sine Generator; Headphone Enhancer and Stylus Organ.
Order As XA06G (Maplin Project Book No. 6) Price 75p NV.
Project Book 7 CMOS Crystal Calibrator. For amateur radio receiver calibration. DX'er's Audio Processor. Improved sound from Communications Receivers. Enlarger Timer.
An accurate timer for the darkroom. Sweep Oscillator. Displays AF frequency response on an oscilloscope screen. VIC20 and ZX81 Interfaces.

RS232 compatable.
Order As XA07H (Maplin Project Book No. 7) Price 75p NV.
Project Book 8 Spectrum Modem/RS232 Interface. 2400 baud self contained operating system. Synchime. Simulates bells, gongs and other chiming sounds. Dragon 32 RS232/Modem Interface. Plugs into ROM expansion port. Codelock. Programmable electronic lock. CMOS Logic Probe. Digital display shows logic states. Minilab Power Supply. Versatile unit for the test bench. Dragon 32 I/O Ports. Two 8 -bit ports. Doorbell for The Deaf. Flashing lamp attracts attention.
Order As XA08J (Maplin Project Book No. 8) Price 75p NV.
Project Book 9 Spectrum Keyboard. 47 full travel keys. VIC Extendiboard. Three expansion ports, one switchable. Oric Talkback. Speech synthesiser for the Oric 1. TDA7000 FM Radio. Complete FM receiver on a chip. $\mathbf{Z X 8 1}$ High Resolution Graphics. 256×192 fine pixel display. Nine Projects! Personal Stereo Dynamic Noise Limiter; Logic Pulser; TTL/RS232 Converter: Pseudo Stereo AM Radio; and more.
Order As XA09K (Maplin Project Book No. 9) Price 75p NV.
Project Book 10 Spectrum Easyload. Helps cassette loading with the Spectrum. 80 m Receiver. Simple SSB direct conversion receiver. Fluorescent Tube Driver. 8W 12V for camping and caravanning. Auto-Waa. Automatic waa-waa effects unit. Digi-Tel Expansion. Expands Maplin Telephone Exchange to 32 extensions. Oric 1 Modem Interface. Adapts the Oric 1 to the Maplin Modem. Dragon 32 Extendiport. Makes the Dragon's cartridge socket more accessible. Order As XA10L (Maplin Project Book No. 10) Price 75p NV.
Project Book 11 Mapmix. Six channel audio mixer. Xenon Tube Driver. Xenon flash tube module with strobe. Enlarger Exposure Meter. Simple inexpensive tool for the darkroom 8 Channel Fluid Detector. Check/control fluid level in up to 8 containers. Servo \& Driver Module. Servo mechanism with driver module kit. Mk II Noise Reduction Unit. Improves signal/ noise ratio of tape recordings. Cautious Ni-Cad Charger. Controlled charging of ni-cad cells. Motherboard for The BBC Micro. Gives easy access to ports.
Order As XA11M (Maplin Project Book No. 11) Price 75p NV.
Project Book 12 RTTY Unit. The TU1000 receives/transmits Radio Teletype; connects to computer via RS232. Computadrum. Use your computer as a drum synthesiser. Light Pen.
Draw onto the TV screen or select menu options. PWM Motor Drive. Reversible model motor driver for 6 V and 12 V .
Order As XA12N (Maplin Project Book No. 12) Price 75p NV.
Project Book 13 Explosive Gas Alarm.
Flammable gas detector. Flash Meter. Get your exposure right when using your flash gun. Musical Announcer. A doorbell with a difference. Mains Controller. An add-on for the 8-Channel Fluid detector.
Order As XA13P (Maplin Project Book No. 13)

Price 75p NV.
Project Book 14 Live Wire Detector.
Invaluable aid for the handyman. Trundle. The line follower robot as featured on Channel 4. 4Channel PWM Controller. Digital control of motors and servos. Display Driver Module. How to use our LED bargraph display ICs. Control-ATrain. Full inertia control of model trains. Spectrum I/O Controller. Buffered 2-way 8-bit data bus and 8 control lines.
Order As XA14O (Maplin Project Book No. 14) Price 75p NV.
Project Book $15 \mathbf{Z 8 0}$ CPU Module.
Expandable CPU based controller. Sharp MZ-80K Serial Interface. Get into communications with this project. Ultrasonic Car Alarm. Stop car thieves. Active Crossover. Includes matched output power amplifiers. Guitar Equaliser. Specifically for six string electric guitatrs. Fabulous Five. A selection of interesting circuits. Order As XA15R (Maplin Project Book No. 15) Price 75p NV.
Project Book 16 Floodlight Controller. Both power supply and mains switching unit for the Infra-red Intruder Detector Kit. Spectrum Parallel/Serial Interface. Provides 8-bit I/P and O/P parallel or serial transfer with programmable UART. Mains Tx/Rx Data Communications System. Sends or receives data via the mains wiring. 16-Channel Logic IC Tester. Simultaneously displays logic states for any logic IC of up to 16 pin-outs on your ascilloscope.
Order As XA16S (Maplin Project Book No. 16) Price 75p NV.
Electronics Issue 17 Video Digitiser. Interface a TV camera to your computer. Mixing It. A comprehensive range of audio amplifier modules. Hobbyist's Temperature Controller. General purpose electronic mains power thermostat. ASCII Keyboard. Professional computer keyboard with standard ASCII output. Play Along Mixer. Play along to your favourite records and tapes on your own instrument.
Order As XA17T (Maplin Magazine Volume 5 Issue 17) Price 75p NV.
Electronics Issue 18 Weather Satellite
Receiver. Display regional weather systems on your TV or monitor. Mixing It Part 2. Mono/stereo $\mathrm{Hi}-\mathrm{Z}$ mic input, mixer and line amplifiers: VU/headphone driver. Stepper Motor Driver. How to build and start using the Stepper Motor Kit featured in the Catalogue. Amstrad Expansion System. The Maplin Amstrad External ROM Card System for the CPC 464, CPC 664 and 6128. Sealed Lead Acid Battery Charger. Special high stability output with automatic trickle charge mode for sealed lead acid batteries. Fantastic Five. Veroboard projects comprising HF tremelo unit, crystal checker, clap switch, low-Z ohmmeter, snooze timer.
Order As XA18U (Maplin Magazine Volume 5 Issue 18) Price 75p NV.
Electronics Issue 19 Active Aerial and Aerial Tuning Unit. get more from SW. Amstrad Expansion System. 6×8-bit parallel l/O card and PSU. ADA Digital Echo. RAM based low cost echo machine. Mixing It. Mixer Modulés' PSU. Order As XA19U (Maplin Magazine Volume 5 Issue 19) Price 75p NV.

[^0]:
 publishod as soon as possible atherwerds. Permienion to reproduce printed circuit board layouts commercinly or marketing of lite ment be soughin from the publishor. © Copyrigha 1906 Maplin Electronic Supplies Lamiod.

[^1]: A complete kit of all parts is available for this project: Order As LM13P (1/R Detector Kit) Price $£ 10.95$ The following items in the above kit list are also available separately, but are not shown in the 1986 catalogue: I/R Detector PCB Order As GD27E Price $£ 1.95$ I/R Detector F001P Order As FDI3P Price $£ 5.95$ Constructor's Guide Order As XH79L 25p NV

[^2]: * Order as many copies as you wish, you will not be affected by future price

