

TTS MRSTER5 UDIEE

Now your VIC20 or ZX81 can talk for under $£ 25$ with the Maplin Talk-Back

DID YOU MISS THESE ISSUES?

Copies of issue 1 are now sold out, but a reprint of the projects from issue 1 is available and contains:

Universal Timer. A comprehensive programmable controller for up to 4 mains appliances. There is storage for up to 18 program times, ons or offs and relay outputs. Complete construction details.
Combo Amplifier. Superb 120W MOSFET power amp with low-noise BI-FET pre-amp having built-in flanger, inputs for guitars, keyboards or microphones, and five step equaliser. Complete construction details.
Temperature Gauge. Coloured LED indication of $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Complete construction details
Pass The Bomb! Low-cost easy to build electronic version of pass-the-parcel keeps the kids amused for hours!
Plus six easy to build projects on Veroboard: Car Battery Monitor - Colour Snap Game - CMOS Logic Probe - Peak Level Indicator - Games Timer -Multi-Colour Pendant.

All this for just 60p. Order As XA01B (Maplin Project Book Volume 1 No 1). Price 60pNV

Copies of issue 2 are now sold out, but a reprint of the projects from issue 2

 is available and contains:Digital Multi-Train Controller. Our superb digital train controller can control up to 14 locomotives individually on the same track. Any four loco's can be controlled simultaneously. The unit has automatic short-circuit protection and because it uses digital control a DC supply is present all the time for carriage lighting etc. The locomotive modules will fit in most modern 00 -scale engines. Complete construction details.
Multi-Mode Digital Stopwatch. Here's an easy-to-build stopwatch with accuracy and display to a 100 th of a second. There is a large 8 -digit display so that times of up to 24 hours can be shown. The unit can be operated in one of four modes: standard, sequential, split and rally. Complete construction details.
Home Security System. Full construction details of our new home security system offering a high degree of protection for domestic or commercial premises coupled with excellent long-term reliability. The unit's features are: six independent channels, 2-wire or 4-wire operation, detects open or short circuit or just resistance change, tamper-proof main cabinet and external cabinet. The external cabinet has its own protection as well. There are presettable entry and exit delay timers. With the extra peripherals being added each issue, this is a really versatile system.
Digital M.P.G. Meter. An easy to build device that will help you to make your motoring more economical. The unit has a large easy to read LED display. Complete construction details.

All this for just 60p. Order As XAO2C (Maplin Project Book Volume 1 No 2). Price 60pNV

Copies of issue 3 are now sold out, but a reprint of the projects

 from issue 3 is available and contains:ZX81 Keyboard. A full size, full travel 43 -key keyboard with the electronics to make graphic symbols, function mode and shift lock, single key selections The two-colour legend for the keys is the same as the ZX81 keyboard. The keyboard plugs directly into the sockets in the $\mathrm{ZX81}$ and a special adaptor is supplied to run the keyboard from the ZX81 power supply, so there's no soldering in the ZX81 at all. This full-size keyboard gives you fast, reliable entry - use it once and you won't be able to do without it again!
Stereo 25W MOSFET Amp. Supplied as a complete kit including wooden cabinet and printed and punched chassis, this superb 25 W rms per channel amplifier has inputs for magnetic pick-up, tape deck, tuner and auxilliary. The kit is extremely easy to build, all but 5 components mounting directly on the pcb There are only 7 interconnecting wires in all and when completed, no setting-up is required. With its superb frequency response, low noise, low distortion and the grandeur of MOSFET sound, the amplifier is second-to-none at the price.
Radar Doppler Intruder Detector. Home Office type-approved microwave unit gives coverage adjustable from about 2 m to 20 m . May be used on its own, or with our Home Security System.

Model Train Controller Remote Control Facilities. Full details of infra-red, radio or wired remote control units for our Digital Multi-Train Controller.
All this for just 60p. Order As XA03D (Maplin Project Book Volume 1 No 3). Price 60pNV

10 YEARS OF MAPLIN SERVICE

Maplin is ten years old! And how things have changed since we first opened for business in 1972. In those days our competitors were mostly selling cheap components of dubious origin and even though our prices were higher, customers quickly became aware that our top quality, first grade component guarantee in the end saved them time and money. Because Maplin has always stuck to this policy and combined it with our fast service (which we are ever striving to get better and better), we have grown over the ten years to be the biggest retail distributor of components in the UK.
Even though we have opened two shops in the last two years, the mail-order business has continued to boom and plans are well under way to open two new shops this year and many more over the next few years. Over the last year we have become very involved in the home computer market and were pleased to be made an official repair centre by Atari (UK) recently.
We are now able to service any Atari product, free of charge if still under guarantee or we can provide an estimate if out of warranty. Any faulty Atari item, whether you bought it from us or not, can be returned to any of our shops or by post to our Rayleigh address. Repairs can usually be effected within 3 to 4 days, but items taken to our London or Birmingham shop may take longer, depending on when our vans call. Remember to include proof of purchase date if the unit is still under guarantee.
In the years to come, with our increasing chain of shops, we hope to bring our personal service closer to you. We'll be adding lots of exciting new projects and products to our range during this coming year and we look forward to keeping you up-to-date with all the latest technological advances that are sure to happen in the next 10 years.

Cover illustration by Tony Worsfeld

Addresses

Mail Order.
P.O. Box 3, Rayleigh, Essex SS6 8LR

Telephone: (0702) 552911/554155

Shops at:

159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926.
Lynton Square, Perry Barr, Birmingham Telephone: (021) 3567292
284 London Road, Westcliff-on-Sea, Essex.
Telephone: (0702) 554000.
All shops closed Mondays.

March to May 1983 Vol. 2 No. 6 CONTENTS
 Projects

Bridging Module .. 22
Turns two 75W amps into one 400W amp
Four Simple Circuits ... 44
Practise what you learnt from Starting Point
Moisture Meter ... 40
Check your walls for damp
Scratch Filter ... 16
Take the 'clicks' out of old records
VIC20 Talkback... 2
Give your VIC20 the chance to answer back.
ZX81 Talkback
or let it talk to a $\mathbf{Z X 8 1}$ for a change
ZX81 TV Sound and Normal/Inverse Video ... 50
ZX81 sounds through your TV set

Features

Allophone Speech Synthesis Technique ... 4
Or how to use your Talkback properly
Basically BASIC58

The last word on this subject
First Base20
A beginners guide to digital techniques
Road Testing the M5 11
We look at the new computer from Sord
Say It With Satellites 54
Getting in touch with the Universe Within Your Scope 42
Achieve full utilisation of your test gear
Working With Op-Amps 48
The penultimate article in this series
News
Amendments to Catalogue 64
Classified Advertisements 63
Computer News 60
Corrigenda 64
Maplin Catalogue Prices Overseas 64
Maplin News 39
New Books 15
New Software 61
Next Issue. 57
Price List of Catalogue Items 28
Price List of Items Since Catalogue 39
Readers Letters 38
Special Offers 26
Subscriptions 64
Top Twenty Books. 57

Editorial \& Production

Editor
Production Manager Technical Editors

Art Editor
Technical Artists
Photography

Doug Simmons
Sue Clark
Robert Kirsch
Dave Goodman
Peter Blackmore
Roy Smith
John Dudley
Chris Bariow

Published by

Printed by
Typeset by Distributed by

Maplin Electronic
Supplies Ltd
P.O. Box 3, Rayleigh Essex
Eden Fisher
(Southend) Limited Quilset Typesetting Spotlight Magazine Distribution Limited $1-11$ Benwell Road London N7

[^0]
VIC20 TALK-BACK

by Mark Brighton

* Allows speech to be easily included in programs

* Allophone based system gives unlimited vocabulary

\star May be used with an unexpanded VIC - does not require large areas of memory

\star Speech output is direct to TV no additional amplification needed

This project is a 'plug-in' speech synthesizer for the VIC20, enabling the computer to 'talk' to the user in response to any programmed input. The synthesizer uses a system where words are put together from allophones, the basic 'building block' sounds of speech. In this way the sixtyfour allophones available from this synthesizer can be strung together to form any English word or phrase, thus avoiding the need for several EPROMS each containing a limited vocabulary, as used by some speech synthesis systems.

The synthesizer is under complete program control, and can therefore be used for any application, from remote I/O operations to making games sound more realistic, depending on the program used

Circuit Description

This circuit is built around the SP0256 speech processor chip, an N channel MOS device incorporating the following functions:

1. A programmable digital filter which simulates the human voice tract.
2. A 16K ROM which contains the data for the 64 allophones
3. A micro controller which controls the flow of speech data to the filter and the linking of allophones to produce words.
4. A pulse width modulator. This creates a digital speech output.
The speech processor is used by setting up an address on lines A0 to A5, to define one of 64 speech entry points, and pulsing ALD low to speak.

These address lines are connected, via a latch (IC1), to the address lines A0 to A5 on the VIC. The tatch is enabled by

IC2a when a block select pulse (I/O 3) is present, setting the speech entry points between 39936 and 39999.

IC2 forms a monostable that delays the block select puise which enables the speech processor chip after the address set up on A0 to A5 is latched into IC1.

R5, C5 and C6 form a 5 kHz low pass filter that converts the pulse modulated output of IC3 to an analogue signal. This is then amplified by TR1 and TR2. TR2 is a low output impedance emitter follower stage, which drives the VIC modulator.

IC4 is a voltage controlled oscillator, and provides the clock for IC3. The nominal frequency of this oscillator is set by C11 and R16 respectively. C3 and C4 prevent an abrupt change in clock frequency, and hence speech frequency, while R14 and R15 provide a discharge path for the capacitors.

The following status and control signals are provided on the board for ease of use and possible future expansion

1. Veropin 1 is connected to $\overline{\mathrm{LRQ}}$ on ICl, and is a logic 1 output while the speech processor is busy. This signal is

Figure 3.

Figure 4.
connected, via PL1, to the paddle port on the VIC
2. The RESET pin on IC1 is connected to the NMI line on the VIC. The chip is therefore reset when the VIC 'restore' key is pressed and an NMI pulse is generated
3. Veropins 2 to 9 are serial address, data and control lines which can be used by an external speech ROM.

Use

To use the speech synthesizer, the correct addresses for each allophone in the phrase to be spoken must be POKEd

Figure 5.
sequentially with a value between 0 and 255 (the speech chip is linked to the address lines of the VIC, not the data lines, so the value POKEd may be any legal quantity).

One of the easiest ways to do this is to use a data statement where each number corresponds to an offset from the base address, i.e. the address of the first allophone stored in the speech continued on page 7

 RLLOPHOIE SPEELH SYITHESIS technilaue

by Janet May

This article is reproduced by kind permission of General Instrument Microelectronics. Our many thanks to them.

Introduction

The General Instrument allophone speech synthesis technique is easy to use, has a remarkably low bit rate, and allows the user to synthesise any English word by concatenating individual speech sounds. Each allophone requires a six bit address. Assuming that speech contains ten to twelve allophones per second, allophone synthesis would require addressing less than 100 bits per second. Previous techniques have involved synthesising and storing entire words as units. The major disadvantage of this method is that, unless you want to use a very large memory, you are limited to a small vocabulary. For example, pulse code modulation (PCM), which is no more than digital recording, storage, and playback of speech waveforms, requires about 70 thousand data bits per second of speech. Another method, linear predictive coding (LPC), which predicts a speech sample from a weighted combination of previous samples, requires only one to two thousand bits per second to speech. Using this method, approximately $15-20$ words can be stored in 16 K bits of memory. While these methods require a large memory for a limited vocabulary, their big advantage is relatively high quality speech.

Allophone synthesis, on the other hand, has the major advantage of providing an unlimited vocabulary, since the stored units are not words, but individual speech sounds (allophones). The user merely has to become familiar with the speech sounds of English (which are different from letters) and the allophone symbols used to represent them. Another use for allophone syn-

One-sound-to-	Many-sound-to-
many-letter	one-letter
representation	representation

Vowels	meat feet Pete people penny	vein foreign deism deicer geisha
Consonants	ship tension precious nation	although ghastly cough

Table 1 - Spelling Irregularities

thesis is in a text-to-speech system in which the user inputs a string of text no different from what you are presently reading. The advantage of such a system is that the user does not have to learn the allophone symbols. Two sets of rules would be required: one which converts text to allophone symbols, and a second which converts those symbols to sounds. It is the second set of rules which we have already created and are discussing here.
One disadvantage of allophone synthesis, however, is that, although completely understandable, the speech quality is not as good as it is for PCM or LPC. The problem arises when concatenating the allophones to form words. This will be discussed further in the sections to follow.

Language

In order to successfully use a set of allophone sounds to synthesise words there are a few preliminary points which should be made about speech and language. First, there is no one-to-one correspondence be-
tween written letters and the sounds of a language; secondly, speech sounds are not discrete units as beads on a string are; and lastly, speech sounds are acoustically different depending on what position in a word they occur, and what sounds precede or follow them.

The first of these is a problem which a child encounters when learning how to read. Each sound in a language may be represented by more than one letter, and conversely, each letter may represent more than one sound. (See the examples in Table 1). Because of these spelling irregularities we must be very careful to remember to think in terms of sounds not letters, when dealing with speech.

The second point to be made concerns segmentation of the speech signal. An adult who has learned how to read usually thinks of the acoustic stream of speech as a string of discrete sounds which he calls by their letter names. But, in fact, speech is a continuously varying signal which cannot be easily broken into distinct sound-size units. For example, if one attempts to extract the b sound from the word bat by taking successively larger chunks of the acoustic signal from the beginning of the word, one at first hears a non-speech noise, and then at some point hears ba. In other words, there is no point at which the b sound can be heard in isolation; one hears either a non-speech noise or the syllable ba.

Finally, the most important point to make for users of an allophone set, is that the acoustic signal of a speech sound may differ depending on whether it occurs in wordinitial or word-final position; or in the environment of a vowel which is articulated in the front or back of the oral.cavity, a long or short vowel, or a voiced or voiceless consonant. For example, the initial p in pop will be acoustically different from the p in spy,

Table 2 - Consonant Phonemes of English**

High	Front	Central	Back
	$\begin{aligned} & \text { YR } \\ & \text { IY } \\ & \text { IH* } \end{aligned}$		UW\# UH*\#
Mid	$\begin{aligned} & \mathrm{EY} \\ & E H^{*} \\ & \mathrm{XR} \end{aligned}$	$\begin{aligned} & \mathrm{ER} \\ & \mathrm{AX}^{*} \end{aligned}$	$\begin{aligned} & \text { OW\# } \\ & \text { OY\# } \end{aligned}$
Low * Sho \# Rou	$A E^{*}$ s Vowels	AW\# AY AR $A A^{*}$	$\begin{aligned} & \text { AO*\# } \\ & \text { OR\# } \end{aligned}$

Table 3 - Vowel Phonemes of English
and may be different from the final p in pop. Furthermore, the ear will perceive the same acoustic signal differently depending on what sounds precede or follow it. The word cot can be made to sound like cod by lengthening the duration of the 0 , and conversely, the word cod can be made to sound like cot by shortening the duration of the 0 .

Phonemes of English

It will be useful to know what the speech sounds of English are. The sounds of a language are called phonemes, and each language has a set of which is slightly different from those of other languages.

Table 2 contains a chart of all the consonant phonemes of English, and Table 3 all the vowel phonemes of English.

Consonants are produred by creating a constriction or complete occlusion in the vocal tract which produces an aperiodic sound source. If the vocal cords are vibrat ing at the same time, as in the case of the voiced fricatives VV, DH, ZZ, and $Z H$ (see Table 4) there are two sound sources: one which is aperiodic and one which is periodic

Vowels are produced with a relatively open vocal tract and a periodic sound source (unless they are whispered) provided by the vibrating vocal cords. Vowels are classified according to whether the front or back of the tongue is high or low (see Table 3), whether they are long or short, and whether the lips are rounded or unrounded. In English al rounded vowels are produced in or near the back of the mouth (UW, UH, OW, AO, OR AW).

It will be useful to remember that sounds which have features in common behave in similar ways. For example, the voiceless stop consonants PP, TT, and KK (see Table 2) require $50-80 \mathrm{msec}$ of silence before them and the voiced stop consonants $B B, D D$ and GG require $10-30 \mathrm{msec}$ of silence before them. When you find a particular technique that works well with one sound, try using that same technique with similar sounds. For example, if you decide that KK1 sounds good before a front vowel (IY), use it before other front vowels (YR, IY, IH, EY, EH, XR, AE).

Allophones

So far we have been talking about phonemes, but in fact, a phoneme is an abstraction. It is the name given to a group of similar sounds in a language. Recall the statement that the phoneme PP will be acoustically different depending on whether it occurs in word-initial or word-final position, or after SS. Each of these different PPs are allophones of the phoneme PP. An allophone, therefore, is what occurs in the actual acoustic speech signal. A phoneme is the name of a group of related allophones. It is for this reason that our inventory of English speech sounds is called an allophone set.
How to use the allophone set

The allophone set (see Table 4) contains two or three versions of some phonemes. You may find that you need to use one allophone or a particular phoneme for word - or syllable - initial position and another for word - or syllable - final position. A detailed set of guidelines for using the allophones is given in Table 6. Note that these are suggestions, not rules.

DD2-AO-TT2-ER1	"daughter"
KK3-AX1-LL-AY-DD1	"collide"
SS-SS-IH-SS-TT2-ER1	"sister"
KK1-LL-AW-NN1	"clown"
SS-KK3-WW-XR	"square"
KK3-UH-KK1-IY	"cookie"
LL-EH-TT2-ER	"letter"
LL-IH-TT2-EL	"little"
AX1-NG-KK3-EL	"uncle"
KK1-AX1-MM-PP1-YY1-UW1-TT2-ER	
"computer"	
EH-KK1-SS-TT2-EH-EH-NN1-TT2 "extent"	
TT2-UW2	"two"
AX1-LL-AR-MM	"alarm"
SS-KK3-CR	"score"
FF-ER2	"fir"

Table 5 - Examples of words made from Allophones

Table 6. Guidelines for using the Allophones.

Decimal	Octal	Hex				Decimal	Octal	Hex			
Address	Address	Address	Allophones	Sample Word	Duration	Address	Address	Address			
0	000	0	PA1	PAUSE	10MS	32	040	20	/AW/	Out OU	370MS
1	001	1	PA2	PAUSE	30MS	33	041	21	/DD2/	Do D	160 MS
2	002	2	PA3	PAUSE	50 MS	34	042	22	/GG3/	Wig IG	140MS
3	003	3	PA4	PAUSE	100MS	35	043	23	/VV/	Vest V	190MS
4	004	4	PA5	PAUSE	200MS	36	044	24	/EG1/	Guest GU	80MS
5	005	5	/OY/	Boy OY	420 MS	37	045	25	/SH/	Ship S	160 MS
6	006	6	/AY/	Sky Y	250 MS	38	046	26	/ZH/	Azure Z	190MS
7	007	7	/EH/	End E	70 MS	39	047	27	/RR2/	Brain R	120MS
8	010	8	/KK3/	Comb C	120 MS	40	050	28	/FF/	Food F	150MS
9	011	9	/PP/	Pow P	210MS	41	051	29	/KK2/	Sky K	190MS
10	012	A	/JH/	Dodge G	140 MS	42	052	2 A	/KK1/	Can't C	160MS
11	013	B	/NN1/	Thin N	140 MS	43	053	2B	/ZZ/	Zooz	210 MS
12	014	C	/1H/	Sit 1	70 MS	44	054	2 C	/NG/	Anchor N	220MS
13	015	D	/TT2/	Tot	140MS	45	055	2D	/LL/	Lake L	110 MS
14	016	E	/RR1/	Rural R	170 MS	46	056	2 E	/WW/	Wool W	180MS
15	017	F	/AX/	Succeed U	70 MS	47	057	2 F	/XR/	Repair R	360MS
16	020	10	/MM/	Milk M	180MS	48	060	30	WH/	Whig W	200MS
17	021	11	/TT1/	Part T	100MS	49	061	31	MY1/	Yes Y	130 MS
18	022	12	/DH1/	They TH	290MS	50	062	32	/CH/	Church C	190MS
19	023	13	/YY/	See E	250MS	51	063	33	/ER1/	Fir IR	160MS
20	024	14	/EY/	Beige EI	280 MS	52	064	34	/ER2/	Fir ERR	300MS
21	025	15	/DD1/	Could ID	70 MS	53	065	35	/CW/	Beau AU	240MS
22	026	16	/UW1/	To 0	100MS	54	066	36	/DH2/	They TH	240MS
23	027	17	/AO/	Aught AU	100 MS	55	067	37	/SS/	Vest S	90MS
24	030	18	/AA/	Hot 0	100MS	56	070	38	/NN2/	No N	190MS
25	031	19	/YY2/	Yes YE	180MS	57	071	39	/HH2/	Hoe H	180MS
26	032	1 A	/AE/	Hat A	120 MS	58	072	3A	/OR/	Store OR	330MS
27	033	1B	/HH1/	HeH	130 MS	59	073	3B	/AR/	Alarm A	290MS
28	034	1 C	/BB/	Business BU	80MS	60	074	3 C	/YR/	Clear R	350MS
29	035	1 D	/TH/	Thin TH	180MS	61	075	3D	/EG2/	Got G	40MS
30	036	1 E	/UH/	Book 00	100MS	62	076	3E	/EL/	Saddle L	190MS
31	037	$1 F$	/UW2/	Food 00	260MS	63	077	$3 F$	/BB2/	Business B	50 MS

For example, DD2 sounds good in initial position and DD1 sounds good in fina position, as in "daughter" and "collide". (See Table 5 for instructions on how to create all the sample words mentioned in this section). One of the differences between the initial and final versions of a consonant is that an initial version may be longer than the final version. Therefore, to create an initial SS, you can use two SSs instead of the usual single SS at the end of a word or syllable, as in "sister". Note that this can be done with TH, and FF, and the inherently short vowels (to be discussed below), but with no other consonants. You will want to experiment with some consonant clusters (strings of consonants such as str, cl) to discover which version works best in the cluster. For example KK1 sounds good before LL as in "clown", and KK2 sounds good before WW as in "square". One allophone of a particular phoneme may sound better before or after back vowels and another before or after front
vowels. KK3 sounds good before UH and KK1 sounds good before $1 y$, as in "cookie". Some sounds (PP, BB, TT, DD, KK, GG, CH and JH) require a brief duration of silence before them. For most of these, the silence has already been added but you may decide you want to add more. Therefore, there are several pauses included in the allophone set varying from $10-200 \mathrm{msec}$. To create the final sounds in the words "letter" and "little" use the allophones ER and EL. Remember that you must always think about how a word sounds, not how it is spelled. For example, the NG allophone obviously belongs at the ends of the words "sing" and "long", but notice that the NG sound is represented by the letter N in "uncle". And remember that some sounds may not even be represented in words by any letters, as the YY in "computer".

As mentioned earlier there are some vowels which can be doubled to make longer versions for stressed syllables. These are the
inherently short vowels $I \mathrm{H}, \mathrm{EH}, \mathrm{AE}, \mathrm{AX}, \mathrm{AA}$ and UH. For example, in the word "extent" use one EH in the first syllable, which is unstressed and two EHs in the second syllable which is stressed. Of the inherently long vowels there is one, UW, which has a long and short version. The short one, UW1, sounds good after YY in computer. The long version, UW2, sounds good in monosyl!abic words like "two". Included in the vowel set is a group called R -coloured vowels. Theseare vowel + Rcombinations. For example, the AR in "alarm" and the OR in "score". Of the Rcolored vowels there is one, ER, which has a long and short version. The short version is good for polysyllabic words with final ER sounds like "letter", and the long version is good for monosyllabic words like "fir". One final suggestion is that you may want to add a pause of $30-50 \mathrm{msec}$ between word, when creating sentences, and a pause of 100-200 msec between clauses.

VIC20 TALKBACK continued trom page 3

chip (this base address has been set at 39936, by using the 1/0 3 block select pulse on the edge connector). An example of this method is shown in Listing 1.

A form of tonal inflection is also provided. To raise the tone of a given allophone, add 64 to the offset from the base address. To lower the tone, add 128. Best results will be achieved by experimentation.

Construction

Referring to figure 2 and the parts list, assemble the project as follows: First, bend and insert resistors R1 to R17, and fit capacitors Cl to Cl 6 . Insert all veropins and IC sockets, TR1 and TR2. Solder all components into place, clean and inspect the track for dry joints and short circuits, and fit the ICs into the holders. The connector leads are to be used with the plug-in board, and these should be wired to the plugs provided as shown in figures 3 and 4.

Testing

Using a meter switched to resist-

ance, measure between +5 V and 0 V on the board, to ensure that no shorts exist. With the computer switched off, plug the board into the memory expansion connector, and PLl into the control port (joystick socket) on the side of the VIC. PL2 is plugged into the modulator socket on the VIC, and PL3 into SK1 on
the speech synthesizer board. The VIC modulator is then plugged into SK2 on the synthesizer (see figure 5).

Switch the computer on. If the computer fails to display the 'CBM BASIC' and 'READY' messages switch off immediately and re-check all component placings and connections.

VIC20 TALKBACK PARTS LIST

Resistors: All $0.4 \mathrm{~W} 1 \%$ Metal Film

R1	18 k
R2,13	100 k
R3	4 k 7
R4,5	33 k
R6	1 M 8
R7,10	5 k 6
R8	150 R
R9	1 M 5
R11	22 k
R12	390 k
R14,15	10 k
R16	56 k
R17	2 K 2
Capacitors	
C1	1000 pF Ceramic
C2,	100 nF Minidisc
C3,4	$2 u 2 \mathrm{~F}$ Tantalum
C5,6	22.000 pF Ceramic
C8	$10,000 \mathrm{nF}$ Ceramic
C9	470 nF Minidisc
C10	220 nF Polyester
C11	100 pF Ceramic
C12-15 inc.	100 nF Disc Ceramic
C16	27 pF Ceramic

ZX 81 TALK-BACK

by Dave Goodman

\star Add speech to your programs
 \star Allophone set provides unlimited vocabulary
 * Plugs directly into expansion socket or motherboard
 * Entry from simple PEEK and POKE in BASIC
 \star Audio output to external amplifier or our 'Sound-on-TV'

For many years considerable research and development has been done in the field of human speech synthesis. All languages have their own complex speech sounds, or ALLOPHONES, which are strung together to form recognisable words. The SHAW alphabet gives an indication of speech sounds, as many schoolchildren are probably aware.

Simple words like 'cad' use the letters 'see', 'ae', and 'tee'. Stringing these allophones together will produce the sound 'seat', not at all like 'cat', so letters of the alphabet are pronounced differently according to where they are used!

General Instruments' SPO256 Ora-tor-Speech Processor makes use of the allophone system by storing sounds, with instructions, in 16K ROM. A Micro troller control data flow from ROM to a digital filter where speech elements are linked together, along with pitch and amplitude information. The resulting information is pulse width modulated, producing a digital output which has to be low pass filtered to produce recognisable speech.

Sixty-three allophones are available for use, and by concatenating individual sounds, reproduction of entire word lengths is possible. This is very flexible, although speech quality is not as good as systems where complete words are stored.

Circuit Description

Address lines A0 to A15 are decoded by ICl, 2 and 3 to give a memory mapped 'PORT' address of 16417 . This address has not been allocated to the working system of the ZX81, and as it also has a RAM location it is ideal for use in this application. Writing to this address (POKE 16417) places a negative puise on IC5 pin 20 Address Load input. Data written into IC5, on pins 13
to 18 , is then loaded onto the input port, where it is processed to give speech output on pin 24 . The circuitry of TR1 forms a low pass filter, to remove any H.F. content from the speech, and the resultant signal is amplified to a usable level of $100-500 \mathrm{mV}$ with the output on pin 1 (pin 2 is the OV or screen). Obviously, the computer can supply data at a far greater rate than it can be processed by IC5, so pin 8 (standby) is used to enable IC6 if the 'PORT' address is read (PEEKed).

With suitable programming IC6 will place $D \emptyset$ to $D 8$ to binary 0 and a software loop will prevent further data being entered to IC5 until the standby output resets. One problem, however, becomes apparent when the system is first switched on; R1 and C7 reset the SPO256 and pin 8 goes low. While the ZX81 CPU is resetting RAM locations, IC6 is enabled and data is prematurely entered, causing the computer to crash. IC4b, C13, and D1 hold IC6 pins 1 and 19 high to prevent this happening. Entering the command NEW can also cause this problem, but not if you are using 1 to 16K RAM. C13 may need to increase in value if larger RAM is used, and this is a subject for experimentation.

Construction

Insert all 48 track pins through the holes marked with a circle, and solder them on both sides of the PCB. Fit resistors R1 to R7; if using the new 1% resistors with 5 band colour codes make sure that the values are correct. Finally, fit all capacitors, noting the polarity marking on C10. Do not insert the ICs yet. Solder all components to the PCB, clean, and inspect your work. Many faults can be cleared by using thinners and a stiff brush to remove all flux and solder splashes from the PCB.

If you do not possess a mother-
board, fit a 2×23 socket (RK35Q) to the edge connector and solder all pins. Otherwise plug the module into your ZX81.

Testing

Apply power. If all is well the cursor will appear as normal. Use a voltmeter to check that the 0 V and +5 V rails are correct on the PCB. Switch off and insert the six ICs into their sockets. Reapply power. The cursor should appear again. You will need either an external amplifier or our sound/video project with connections to pins 1 and 2 on the module. Turn the amplifier or TV volume control to an acceptable level and type in POKE 16417, 197 followed by NEWLINE. You should hear the allophone 'oy' and a continuous ' e ' sound. Type POKE 16417, 0 NEWLINE and the sound will cease. Thus far, all should be well. Now enter program 1 and run it. Various prompts and directions appear during the program run and allophone sounds, not words, will be heard. Run the program several times to familiarise yourself with each sound and code number.

Using the Talkback

If you refer to the Sinclair Manual page 178 , you will see that address 16417 is not used by the working system. Fortunately this address, being part of the memory map, has a location in RAM which makes it ideal for use a a 'PORT'. Data POKEd to this address is read by the SPO256 chip, so the numbers entered must range from 192 to 255 to suit.

Table 1 gives a list of numbers and their equivalent allophone sound. Also shown is a list of ZX81 characters corresponding to each number and allophone. If a word, like COMPUTER, is phonetically split into a series of vowels

Figure 1. Circuit diagram.
and consonants the allophone equivalent will be something like this:

WORO	ALLO: PHONE	CODE	CHR
C	EER	233	DIM
0	AA	216	**
M	(MM	208	SQR
p	Pr	201	TAN
4	Yu*	241	LET
U	OgW	214	Curt
T	JT2	205	UN
Ef/	ERR	241	POXE

The SPO256 has 63 allophones, five of which are pauses of different duration, which leaves 58 to span the range of the English language. Because of this limitation compromises have to be made with pronunciation, but in practise it is not a real problem as long as you do not mind your computer speaking with an American accent!

The letter c in computer does not sound like 'see', but ' k ' as in kite. A short pause, e.g. code 194 (50 ms) inserted between C and computer enhances the C, as can be heard in program 2. If you ran the test program, you will have heard each allophone spoken, and be already familiar with the sounds available, so now enter program 2.

Figure 2. PCB artwork and legend.

CHRS	CODE	ALLOPHONE
"'"	192	PAUSE 10ms
AT	193	PAUSE 30 ms
TAB	194	PAUSE 50 ms
CODE	196	PAUSE 200ms
VAL	197	OY
LEN	198	AY
SIN	199	EH
COS	200	KK3
TAN	201	PP
ASN	202	JH
ACS	203	NN
ATN	204	IH
LN	205	TT2
EXP	206	RR1
INT	207	AX
SQR	208	MM
SGN	209	TT1
ABS	210	DH1
PEEK	211	IY
USR	212	EY
STR8	213	DD1
TABLE		

The technique used in this program relies on placing allophone code numbers as CHRS in line 1 after the REM statement. Altogether there are 18 CHRS in this line, including pauses. The first address after REM is 16514 , so each character has its own address up to 16532 . The value of each address is POKEd into variable A, this being the PORT address of the speech processor, and line 1 is scanned, a character at a time, by line 10 .

A software loop is set up by line 25 to allow time for each allophone to be spoken before continuing with the next instruction. Try removing line 25 from

CHRS	CODE	ALLOPHONE
CHRS	214	OOW
NOT	215	AO
**	216	AA
OR	217	YE
AND	218	AE
$<=$	219	HH1
$>=$	220	BU
$<>$	221	TH
THEN	222	UO
TO	223	UOO
STEP	224	OU
LPRINT	225	DD2
LLIST	226	GG
STOP	227	VE
SLOW	228	GU
FAST	229	SSH
NEW	230	SZ
SCROLL	231	R
CONT	232	FF
DIM	233	KER
REM	234	KU

the program and listening to the difference.

Maybe you have your own routines for POKEing numbers into port locations, so I won't go into programming techniques on the ZX81. Needless to say, if using this method the address must be found for the first character to be read after REM, otherwise your program may crash. Some of the allophone CHRS must be entered in command word mode. One way of doing this is to first enter THEN (shift CHRS) to change the cursor from L to K, and then enter the command word. Step the cursor back to THEN and RUBOUT.

FOR	235	ZER
GOTO	236	NA
GOSUB	237	LL
INPUT	238	WW
LOAD	239	RE
LIST	240	WH
LET	241	YUH
PAUSE	242	CH
NEXT	243	ERE
POKE	244	ERR
PRINT	245	UO
PLOT	246	DH2
RUN	247	SS
SAVE	248	NNN
RAND	249	HER
IF	250	OR
CLS	251	AR
UNPLOT	252	YR
CLEAR	253	GGG
RETURN	254	EL
COPY	255	BB

Step the cursor forward past the command word, and continue with the next CHRS. Always add a space (192 or "") at the end of the character string or insert POKE 16417,0 at the end of your program, otherwise speech will continue.

FOR-NEXT or PAUSE delays can be entered after the POKE 16417 command to slow down speech if you find that it talks too fast. Use codes 192 to 196 to add pauses between allophones where required. Previous sounds spoken can then be emphasised to suit the word formation, and speech made more intelligible.

```
Program 1.
    PEM TEST PROGRAM
    I,ET A = 197
    IFT PORT = 16417
    PRINT "PRESS NEWIINE "
    IF INKEYS = " " TIIEN GOTO 5
    PRINT "ALIOPHONE ""OY"" WIII, RE SPOKEN "
    PAUSE 250
    POKE PORT, A
    POKE PORT,O
O CIS
11 PRINT "NUMBER 197 TO 255 WIII PE DISPIAYED,
                    AND THE AILOOPHONE SPOKFN."
    PAUSE }50
13 FOR A = 197 TO 255
14 PRINT AT 10,14;A
15 POKE PORT.A
16 FOR B = O TO 10
17 NEXT B
18 POKE PORT,192
19 NEXT A
20 POKE FORT,192
21 PRINT AT 15,0;"PRESS IIVYIINE TO REPEAT TESTS"
22 INPUT AS
23 CIS
24 GOTO 11
```

```
Program }2
REM LEN "" AT AND SQR "" TAB USR DIM AT **
        SQR TAN LET CHRS LN NEXT ""
    L.ET A = 16417
    L.ET B = 16514
    RFM NUMBER OF CHIRS
O FOR C = B TO (E+17)
15 POKF. A, PEEK C
20 REM WORD IEENGTH
25 IF PFEK A=0 THEN GOTO 25
30 NEXT C
35 ClS
    PRINT " ""I AM A COMPUTER"" "
    PRINT AT 18,0;"PRESS NEWLINE"
    INPUT AS
    GOTO 1
```

2×81 TALKBACK PARTS LIST

Resistors	4W 1 \% metal 10 lm		(M100K)
82	4×7		(M4K7)
13	82 k		(M82K)
84	10k		(M10K)
R5	470\%		(M470K)
R5	212		(M2K2)
$R 7$	4700 R		(M470R)
R8	14		(M1K)
Caymettors			
CI. 7 inc	100nf Disc Cerarsic	7 off	(BX03D)
08	47 Onf Polycarbonite		(WW49D)
c9	$4 n 3 F$ Polycarbionate		(WH260)
C11	10uF 35V PC Electrointic		(FF04E)
011	Iuf 35V Tantalum		(WW500)
012	470pf Ceramic		(WX64U)
C13	2nzF Ceramic		(WX72P)
Semiconduy			
01	1/24148		(QLOC)
TRT	$8 \mathrm{cs4a}$		(Q2730)
1C1,4	\$4152?	2 ff	(VF18U)
10	74.528		(VF19V)
103	74.530		(VF2OW)
105	\$P0256		(QY50E)
res	7425840		(YF87U)
Maceilampous			
	14 Prin Dfor sht	4 㸷	(BL18U)
	29 pin Dil she		(HQ77)
	28.0 in Dris sk		(321x)
	2×81 voice pct		(6818U)
	Veroipin 2141	1 pha	(F121x)
	Track Pia	1 pkt	(FL.820)

[^1]

Within the last two years we have seen an explosion in the numbers of home computers competing for the money in our pockets. This year there will doubtless be many more. Most of them will be variations on the same theme, but one that we've been looking at recently really does seem to have something extra. It comes from the Japanese business microcomputer manufacturer Sord and is called the M5. It is in its graphics capabilities that the M5 really stands out, and we will look at that in depth later.

The M5 is a neat, lightweight and compact unit which has had to forego a full-size keyboard to remain compact. The keyboard has moving rubber keys, but they do have a nice feel and are as large as possible in the space provided. The worst thing about the keyboard is that the designers have seen fit to place the space and return keys next to each other, which can cause a lot of confusion at first.

Keyboard Functions

Fortunately the M5 boasts an excellent on-screen editor which allows you to move the cursor anywhere on the screen then change, add or delete characters at the desired point. As with most computers, each March 1983 Maplin Magazine
key (of which there are 55) has several functions.

Upper and lower case characters, a direct function call to BASIC, a graphics symbol and, because it is a Japanese machine, it aiso has a Japanese character set. The keyboard has 50 Japanese characters known as the "goju on", these are the fifty basic forms in the Japanese "alphabet" which has a total of 112 forms (a lot less than Chinese!) and the characters are displayed in the style known as Katakana. Since typing gobbledegook in Japanese has, however, a somewhat limited fascination, we'll move onto other things.

Making Connections

Along the back of the computer are two sockets for joysticks, a socket for a cassette recorder, an input socket for the power unit, a socket for connection to a standard UK PAL UHF TV set, and separate sockets for sound for connection to your hi-fi and composite video for connection to a monitor. In addition there is an 8 -bit parallel output socket for a electronics type printer or disk drive

But one of the most exciting features of this computer is found by flipping open the lid along the top rear of the unit. Here is unveiled the socket into which cartridge
programs can be plugged in. However, unlike most such sockets, this one has 56 internal lines connected to it giving access to just about every function in the computer. This means that just about everything you can think of can be added on to the computer, ranging from a Prestel interface to second processors or use as an intelligent terminal on a time sharing computer.

Inside the M5

Inside the computer we find a Z80A processor running at around 3.58 MHz and 8 K of ROM in which are the monitor program and the standard character sets. Only 4 K of RAM is supplied with the machine, but this should not be compared directly with the amount of RAM supplied in other machines as we shall see.

The reason is the amazing graphics capability of this machine. It has a separate processor to control the video display and this has its own completely separate RAM (VRAM) and a massive 16 K of it at that. This VRAM is not part of the memory that can be directly addressed by the $Z 80$ and therefore whether you are using hi-res or lo-res graphics the amount of RAM available to the main processor is the same, unlike any other home computer we know of.

System configuration diagram.

Video Processor

The video processor is a very powerful chip, the TMS9918A which has 16 -bit inter nal architecture, and, whilst even the Commodore 64 has only 8 sprites, this chip can generate no less than 32 at one time. At the same time a backdrop screen can be used and a further multicolour screen on which text or graphics may be displayed can be generated.

A sprite is a graphic symbol created by the program designer and is drawn on an $8 x$ 8 or 16×16 matrix. Sprites can be made bigger by combining them. Up to 32 sprites can be displayed at any one time and several of them may be moving at any one time.

The sprite screens are numbered 0 to 31 and move in front of and behind one another depending on their priority. For example a missile drawn on screen 6 will disappear behind clouds on screen 5 , but will move in front of clouds drawn on screen 7. An image larger than the screen can be created by using several screens and colours. The program could control this composite as one image.

Any image can be made to move automatically simply by specifying the start and end positions and the length of time during which this process will occur. The monitor is flagged whenever images on different screens collide and this can be detected by the program.

Behind the 32 sprite screens is a background plane which can be used in one of four modes. In Graphic 1 mode the screen has 32×24 positions where 8×8 characters can be specified. 256 different patterns are possible using 32 colours and in this mode characters can also be displayed. In multi-colour mode there are 64×48 positions where 4×4 characters can be displayed in 16 colours.

Text Mode

In text mode, 960 characters can be displayed in 24 rows of 40 columns. Each character is 6×8 dots, but only a single colour may be used and, in this mode, sprites cannot be used. In Graphics 2 mode you have complete control of every individual pixel and there are $256 \times 192(49,152)$ of them.

This background plane might be used for example to show a river or mountain as a background to a cartoon since the sprites can be used to create complete animated pictures, just as in a cartoon.

In addition, behind this plane is a backdrop plane. In this plane only one colour can be used in the example above, this plane would be blue and would look like the sky behind the river and inountain. Thus a whole image is made up of a combination of the 32 sprites, the background plane and the backdrop plane.

A Complete Cartoon

In a typical example the leaves of a tree are drawn in green on sprite screen 0 and the trunk of the tree is brown on screen 1. A car is drawn on screens 2 to 5 ; the tyres in black on screens 2 and 5 and the body of the car in two parts in blue on screens 3 and 4 . Clouds are drawn on screens 6,7 and 8. On the background plane is drawn grass in green, a grey road and mountains in brown. Now the car can be made to move smoothly along the road and

Program cartridge.

pass behind the tree, whilst the clouds in the sky move across, passing in front of and pehind each other, just like a real animated cartoon.

And the most exciting thing is the ease with which it can all be done. Everything described above can be executed from the special Graphics BASIC once you've got the hang of the machine. The excellent documentation allows even a novice programmer to achieve this kind of animation. You could even create your own complete cartoon stories!

Creating Sounds

Of course no cartoon would be complete without a musical backing and the M5 has a very comprehensive sound source. The Texas Instruments 76489 is the IC we used
in our Sound Generator for the ZX81 published in issue 5 of this magazine. The chip contains 3 tone generators with a five octave range each and a noise generator with three pitch levels. Envelope control of all four generators is available, which means that this computer contains a mini-synthesiser.

Three note chords can be generated and individual notes can be made to sound like particular instruments, violin, piano, etc., by controlling the envelope. This kind of control of the noise channel permits all kinds of sound effects, e.g. gunshots, explosions, car engines etc. In fact the sound generation possibilities with the M5 are very comprehensive indeed

The sound output is to both the TV speaker and to a separate output for connection to a hi-fi setup. The documentation we had (not the ones to be supplies with the unit unfortunately) hinted at the possibility of

The monitor also controls read from and write to the cassette tape. Any audio cassette recorder can be used with the M5 and the cable supplied plugs into the back of the computer. The three plugs on the other end of the cable connect to the earphone, microphone and remote sockets on the cassette recorder. Data transfer to the cassette recorder proceeds at an exceptionally fast rate. Speeds up to 3200 Baud are possible and the starting and stopping of the tape is under the computer's control.

Controllers

Two joysticks, or rather I should say joypads, can be connected to the M5. As with most computers these have to be purchased separately. Joypads, the manufacturers claim, are much easier to use than joysticks since they are less tiring in use and the smaller movements involved make them quicker. They are like a large round button on a flat box. Simply touching the edge of the button in the desired direction is all that is required. Movement can be controlled in eight directions as with a joystick. The fire button is just to the left above the movement button. Certainly they can be controlled with one hand unlike a joystick and are a lot less cumbersome. In addition a lefthanded person will find them just as easy to use as a right-hander.

Software Availability

Another major advantage with this machine is the large amount of ready-made software that will be available. Fifty different programs will be available when the machine is launched and CGL are promising to have 200 different titles available before the end of 1983. Of the first fifty, thirty will be games and twenty will be educational, business and utility programs.

The games should be first class since Sord have signed an agreement with one of the leading manufacturers of arcade games to reproduce their titles under licence. A very powerful Visicalc-type program called FALC will be available too. Most of the programs will be in cartridge form, but some will be on cassette.

The cartridges which plug into the 56 way edge connector, are about the size of an audio cassette tape. They may contain up to 16 K of ROM and many will also contain up to 4 K of RAM. The M5 is supplied with the BASIC - cartridge and one game cartridge.

Programming Languages

BASIC-I is an introductory integer BASIC which can be used to learn the fundamentals of programming the M5. In saying that, don't go away with the idea that it is a very limited BASIC. That is not the case. It contains most of the functions found in other BASIC's at this level, but it does not permit floating point

maths, and it does not give complete access to the graphics or sound functions in the M5, although simple functions for games are included.

In BASIC-I a variable name can be 256 characters long, but only the first two characters are significant. When this cartridge is inserted, BASIC-I is automatically booted. It is contained in 8 K of ROM and uses the 3.25 K of free RAM as work space. This amount of RAM permits about 150 program instructions to be written in one program.

Two other BASIC's are available in cartridge. One is BASIC-F, a floating point BASIC that allows extended use of real numbers. Various numeric values and functions can be used for advanced technical processing. Data can be shown in graphs directly from BASIC-F. This BASIC is contained in 16 K of ROM and contains an additional 4K of RAM.

The third BASIC is BASIC-G. With this

BASIC, the sprites, background plane, backdrop plane and monitor can all be controlled directly. BASIC-G is ideal for creating games and animated sequences and will be easy to use once BASIC-I has been mastered.

BASIC-G has special functions for controlling the sprites, sound and joypads. Writing good games programs requires imagination and creativity and can help children develop these powers. BASIC-G brings good programming within easy reach of novice programmers.

Memory Expansion

CGL will be making available memory expansion boards at a very reasonable cost. A 32 K expansion board will allow about 3000 program steps. It should be possible to expand the RAM so that all possible memory can be utilised. With BASIC-I a maximum of 35.25 K is directly addressable, though a further 12 K of memory addresses are avail-

continued on page 57

NEW BOOKS

Adventures With Digital Electronics by Tom Duncan
This book is a follow-up to Adventures With Microelectronics, and should provide a stepping-stone to discovery of microprocessors. The first part deals with logic gates, multivibrators, flip-flops, counters, shift registers, memories, adders, magnitude com parators, code converters, and displays. Part 2 gives construction details for eight devices, and an expla nation of how they work and things to try. There is no soldering in any of the projects.
1983. 64 pages. $189 \times 245 \mathrm{~mm}$ Order As WK10L (Book JM875)

Price £4.25NV

Practical Design of Digital Circuits

by lan Kampel
This book should instruct the reader with no previous knowledge of digital electronics in the practical aspects of digital design, only familiarity with basic electronic principles being assumed. It covers the principles of digital electronics, the wide range of devices available, how to use these devices in cost-effective designs (including two examples), and microprocessors, showing them to be particularly versatile and sophisticated devices.
1983. 300 pages. $215 \times 136 \mathrm{~mm}$.

Order As WK14Q (Book NB1183) Price £11.05NV

Mastering Visicalc

by Douglas Hergert
Whether you are a new or experienced user of Visicalc, this book will show you how simple it is to learn this important spreadsheet program. Based on the idea of learning by using, this is the complete guide to Visicalc, for business, science and personal applications.
1983. 216 pages. $228 \times 177 \mathrm{~mm}$.

Order As WK05F (Mastering Visicalc)
Price £12.95NV

Mastering CP/M

by Alan R. Miller
This book explains techniques for using, altering, and adding features to the CP/M operating system. It will give you a complete understanding of the CP/M modules, particularly the BIOS and BDOS. Macros, the powerful tools for developing and organising assembly language programs, are clearly presented. For advanced CP/M users and systems programmers, this book will enable you to explore the subtleties of $C P / M$, and to enhance the power of CP/M commands. Included is a comprehensive set of reference appendices.
1983. 398 pages. $227 \times 150 \mathrm{~mm}$.

Order As WK09K (Mastering CP/M)
Price £14.50NV

Hart's Dictionary of BASIC
by W. A. Hart
A complete programming dictionary, from ABS to ZER, with over 800 different commands, statements, and operators in plain English. This book atso gives you sections on: A systematic approach to translating BASIC programs; PEEK, POKE and memory map comparisons for the popular machines - PET, Tandy TRS 80, VIC, Sharp MZ-80K, Apple II, ZX81 and the BBC Micro; and free membership of a BASIC swap club.
1983. 160 pages. $210 \times 144 \mathrm{~mm}$

Order As WK06G (BASIC Dictionary) Price £6.95NV

VIC Innovative Computing
by Clifford Ramshaw
This book contains listings for thirty games in a specially designed, easy to-read format, as well as program structures, opening new dimensions in programming your standard VIC 20.
1983. 152 pages. $211 \times 140 \mathrm{~mm}$. Order As WK12N (VIC Innovative Computing)

Price £6.95NV
The Spectrum Games Companion by Bob Maunder
This book is aimed at the games player and programmer alike. Twenty-one games are included, with clear instructions on entry and play. Each program is explained fully, with complete details on how it was designed and written. Also shown is how to set up and use the Spectrum and how to create your own games. Later sections cover number games, word games, board games, simulation games, dice games, card games and grid games.
1983. 122 pages. $210 \times 147 \mathrm{~mm}$. Order As WK08J (Spectrum Games Companion)

Price £5.95NV

Understanding Your Spectrum

by Dr lan Logan
This book aims to explain, in simple terms, how the Spectrum works; to teach $Z 80$ machine code from first principles; and to give details of 'monitor entry points' so that efficient programs can be written. There is also a special section on ROM operation.
1983. 190 pages. $211 \times 140 \mathrm{~mm}$. Order As WK13P (Understanding Your Spectrum) Price £7.95NV
The Spectrum Pocketbook
by Trevor Toms
This book includes 6 programs, a number of hints and tips on how to get the best out of your Spectrum, and all the information you need to write machine code effectively.
1983. 160 pages. $210 \times 144 \mathrm{~mm}$.

Order As WK07H (Spectrum Pocket Book)

Price £7.50NV

Over the Spectrum

With the full listing of over 30 programs for your Spectrum, this book will show you how to use the computers facilities to the maximum. Utilities, business programs, educational programs, plus programming tips, hints on extending the graphics capabilities and many of the functions are fully explained, making this a definitive book for Spectrum Users. 1983. 164 pages. $211 \times 138 \mathrm{~mm}$. Order As WK18U (Over the Spectrum)

Price 66.95 NV

Introducing Spectrum Machine Code

 by lan SinclairThis book has been written for the complete novice, and you are carefully shown what to do in easy stages. Using machine code will enable your Spectrum to use ZX81 cassettes, allow you to renumber a whole set of lines quickly, send serial printer signals to the cassette output. etc. It will enable you to really master the Spectrum, and open up a fascinating range of extra facilities.
1983. 150 pages. $233 \times 154 \mathrm{~mm}$.

Order As WK19V (Book GP2082)
Price £8.95NV
Programming with Graphics
by Garry Marshall
This book covers the three major methods of graphics production, block, pixel, and line. It also considers topics such as colour movement and three-dimensional drawing, and the appendix summarises the graphics capabilities of various micros, although the book itself is machine independent.
1983. 120 pages. $233 \times 155 \mathrm{~mm}$.

Order As WK20W (Book GP2021)
Price 66.75 NV
Machine Intelligent Programs for the 16K ZX81
by Graham Charlton, Mark Harrison, and Dilwyn Jones
These programs will turn your T/S 1000 or ZX81 into an intelligent entity that will play a board game with you, discuss your problems, try your luck at dice, work out the value of resistors, compile an address book, or calculate exam results. You will find that your computer becomes an ally, opponent, or assistant.
1983. 154 pages. $197 \times 123 \mathrm{~mm}$. Order As WK21X (Book IP20)

Price $£ 5.25$
Games $\mathbf{Z X}$ Computers Play
edited by Tim Hartnell
This is a collection of 30 great ZX programs from the National ZX Users' Club, written by some of the most talented young programmers in the country. There are fifteen programs for the Spectrum and fifteen for the ZX81.
1983. 168 pages. $196 \times 126 \mathrm{~mm}$

Order As WK22Y (Book IP13)
Price £3.25NV

Assembly Language Programming for the BBC Microcomputer
by lan Birnbaum
This book assumes no prior knowledge of assembly language program ming, and takes the reader from the basics to complex implementation. It is also designed as a potential textbook for a structured approach to computer science, and contains some 73 listings, many of which are helpful utilities, such as a full machine code monitor, a suite of machine code sorting programs, a high resolution screen copy and a program compactor.
1983. 304 pages. $234 \times 153 \mathrm{~mm}$.

Order As WK11M (Book MM585)
Price f.9 5nnv

Programming the BBC Micro

by Peter Williams
This book concentrates on the programming and application of the machine, assuming little or no know. ledge on the reader's part. It covers functions, subroutines, procedures, program development, and program libraries. Features of BBC BASIC as applied to graphics, words, numbers, random numbers, and the machine's sound facility are also shown, as are machine code, hex, assembly language programming, interfacing and file handling. The final chapters deal with hardware, error code, ASCII codes, and the 6502 instruction set. 1983. 168 pages. $216 \times 137 \mathrm{~mm}$.

Order As WK15R (Book NB1302)
Price £7.25NV
Programming Languages for Micros by Garry Marshall
This deals with the common programming languages available for microcomputers - BASIC, Pascal. Lisp, Cobol, Forth, Comal, FORTRAN, Pilot, C, as well as some more specialised ones such as Prolog and Logo. It explains what each language is intended for, how to use it, and its main areas of application. Sample programs are given.
1983. 126 pages. $215 \times 138 \mathrm{~mm}$.

Order As WK16S (Book NB1185)
Price 66.75 NV
Programming Microcomputers with Pascal
by M. D. Beer
This book is an informal introduction to Pascal, and is built around the problems and applications of concern to the scientist and engineer. It deals with the way data are stored and manipulated, how to control the operation of a program, how to split it into manageable proportions, storage of data in files, structured programming, top down design, and the special problems of programming control systems.
1983. 242 pages. $233 \times 152 \mathrm{~mm}$.

Order As WK17T (Book GP1619)
Price $£ 7.50 \mathrm{NV}$

by Robert Penfold

Worn or dusty records produce a continuous "crackle" of background noise in use, and as this noise is largely at high frequencies it tends to stand out from the wanted signal and is consequently very obtrusive. However, due to its mainly high frequency composition the "surface noise" as it is often called, can be virtually eliminated using a filter which attenuates high frequency signals. Obviously there is some loss of the wanted signal at high frequencies and not just the noise is removed, but this loss is far less noticeable than the reduction in noise and a very worthwhile improvement in the subjective quality is obtained.

An ordinary treble tone control can be used to provide suitable filtering, but results are less than optimum with the low attenuation rate of 6 dB per octave provided by normal tone controls giving a relatively low level of noise reduction, plus a larger loss of the wanted signal than is really necessary. Much better results can be obtained using an active filter which has a flat response almost up to the cut-off frequency, with a high attenuation rate of about 12 to 24 dB . per octave above this point.

Even with a filter of this type results may often be less than optimum since the cut-off frequency is not usually variable. The frequency chosen must then be a compromise which inevitably gives less than maximum noise reduction with some programme sources, and unnecessary attenuation of the main signal with other sources. Ideally it should be possible to adjust the cut-off frequency to optimize results, but using conventional $\mathrm{C}-\mathrm{R}$ filters this would
require a four gang potentiometer for a stereo 12 dB . per octave filter, or an eight gang component for a stereo 24 dB . per octave type! Also, mismatching between the gangs of the potentiometer could result in irregu larities in the frequency responses of the filters, and a mismatch between the cut-off frequencies of the two channels.

Figure 1a. Conventional R-C low pass filter.

Switched Capacitor Filter

These problems can be overcome using a relatively new type of filter called a "switched capacitor" filter. An ordinary C-R lowpass filter uses the arrangement shown in Figure 1(a), and

Figure 1b. Switched capacitor equivalent.
here the resistor restricts the rate at which the input signal can charge and discharge the capacitor. At low frequencies where only a low rate of charge and discharge are necessary to permit the output to follow the input signal accurately the filter has no significant effect, but at high frequencies the capacitor cannot charge and discharge with sufficient rapidity to keep up with changes in the input voltage. Thus the signal is attenuated and the lowpass filter action is provided.

A switched capacitor filter works in a similar manner, but the rate at which the filter capacitor can be charged and discharged by the input signal is controlled by a switch and a low value capacitor rather than by a resistor. Figure 1 (b) shows the basic arrangement used.

Cl is first connected by switch S to the input and Cl is instantly charged to the input potential. Cl is then connected by S to C 2 , and C 1 discharges into C 2 but only partially charges it towards the input potential since Cl is much lower in value than C 2 . This process continues with Cl repeatedly charging to the input potential and then transferring its charge to C 2 . If the switching action is very rapid C2 quickly takes up a charge potential practically equal to the input voltage due to the numerous burst of current it receives from Cl , and provided the input potential only changes slowly S and Cl will be able to maintain the charge on C2 at almost the input potential. At high frequencies, as was the case with the C-R filter, the transfer of current from the input to the filter capacitor is inadequate and the amplitude of the output signal is much

Figure 2. Block diagram of the Tunable Scratch Filter.

Internal view of the scratch filter.

Figure 3. Circuit diagram of the Tunable Scratch Filter.
March 1983 Maplin Magazine
lower than that of the input signal.
The effective resistance provided by S and Cl depends on the value of Cl and on the switching frequency of S. In a practical circuit S would be formed by f.e.t.s. which would be on the same chip as Cl and C 2 (with the latter normally being replaced by an integrator). It would, of course, be possible to produce conventional passive or active filters on a single chip, but the high resistor values that would be needed would make a device very expensive, and the cut-off frequency of the filter would be preset. Using a switched capacitor filter the effective resistance of S and Cl (and therefore the cut-off frequency of the filter) can be controlled by the clock frequency used to control S. Furthermore, the filters can be constructed with a high degree of precision so that a number of filters controlled by a common clock oscillator will have cut-off frequencies matched to typically within about 1%.

Block Diagram

The switched capacitor filted used in this project is the National Semiconductors MF10CN, and this has an input operational amplifier followed by a form of mixer circuit and two switched capacitor filters in series. This enables the device to be used in various operating modes so that highpass, notch, and bandpass functions can be obtained in addition to straight forward lowpass filtering, although in this application it is obviously used in a lowpass mode. The MF10CN actually contains two filters of the type described above, and these can either be used as separate second order filters, or connected in series to provide a fourth order (24 dB . per octave) filter.

Figure 2 shows the block diagram of the "Tunable Scratch Filter", and the clock oscillator is at the heart of the unit. This has an operating frequency which is variable from about 150 to 750 kHz , and the cut-off frequency of the MF10CN is one fiftieth of the clock frequency. This gives the filter a cut-off frequency which is continuously adjustable from about 3 kHz to 15 kHz . The clock signal is used to control two MF10CN switched capacitor filters having a 24 dB . per octave attenuation rate, one device being used in each stereo channel. The two channels have responses that are accurately matched and they are tuned by a single gang potentiometer.

A simple lowpass filter is used at the input of each channel, and this is done merely to prevent stray coupling of radio frequency signals into the switched capacitor filters where heterodynes could be produced by an interaction with the clock signal. A simple lowpass filter is also used at the output of each channel to reduce breakthrough of the clock signal. The clock signal only breaks through at about 10 mV . at the output of an MF1OCN, but the output filter reduces this to less than 1 mV . and makes quite sure that this signal cannot
cause any problems with the equip ment that is fed from the output of the unit.

The Circuit

The circuit diagram of the scratch filter is shown in Figure 3. The clock oscillator uses IC2 which is a CMOS 4046BE phase locked loop, but it is employed here as a simple oscillator which has its operating frequency set by timing components C6, R11, and RV1. The latter is the tuning control of course. The 4046 is ideal for this application since its output levels are compatible with the MF1OCN, it will operate from the same 10 volt supply as the MF10CN, and it will operate reliably at the quite high maximum frequency needed here.

ICl is the filter device for the right hand channel, and this has pins 5,15 , and 16 biased to half the supply voltage by R1, R2, and C1. Pins 5 and 15 are unused inputs of the device, but they must be biased correctly or the circuit will not function properly. Pin 15 connects to the non-inverting input of the operational amplifier used at the input of each section of the device, and these amplifiers are used in the standard inverting mode. R8 and R7 set the input impedance and voltage gain of the amplifier at the input of the first stage at 22 k and unity respectively. R3 and R4 perform the same function in the second section of IC1, and R3 is direct coupled to the output of the first filter section. R5 and R6 control the Qs of the filter sections, and these could be given a value of 22 k to set both filters at a Q value of one. However, better results are obtained by giving the first filter section a lower value and a lower Q, and the second section a higher value and Q. This gives the first section a response that gives a rather gradual introduction of the attenuation, while the second section has a peak in the response followed by an abrupt introduction of the full attenuation rate. The combination of the two responses produces the excellent overall response shown in Figure 4. This is with RV1 set for a cutoff frequency of 5 kHz , but the shape of the response remains unaltered at other cut-off frequencies.

R9 and C3 are the input lowpass filter, and the output lowpass filtering is provided by R10 and C4. C2 and C5 are D.C. blocking capacitors. Pins 7, 8, 13, and 14 of IC1 are merely supply pins, and there are control terminals which also connect to one or other of the supply rails. Pin 9 is the "level shift" terminal and is connected to the negative supply rail for use with a single supply and a CMOS (or TTL) clock signal. Internal switches of the device are controlled by a voltage applied to pin 6, and for the mode of operation utilized here it must be taken to the positive supply. Pin 12 is also taken to the positive supply rail, and this gives a cut-off frequency at one fiftieth of the clock frequency. Taking pin 12 to half the supply voltage sets the cut-off

Figure 4. Frequency response of the filter when set for a 5 kHz cut off (-3 dB).
frequency at one hundredth of the clock frequency incidentally.

With some hi-fi systems it will be possible to bypass the unit using the tape monitor switch or some similar facility, but S1 can be used to bypass the unit if no other method is possible.

Note that Figure 3 only shows the filter for the right hand channel, but the circuit for the other channel is identical apart from the component identification numbers (which have one hundred added to the corresponding component number for the right hand channel). R1, R 2 , and Cl are used to bias the left hand channel as well as the right hand one, the clock oscillator is common to both channels, and a further two poles of S1 are used to bypass the right hand channel.

Mains Power Supply

The unit requires a stable, well smoothed 10 volt supply, and the supply current is only about 25 mA . This is provided by the simple mains power supply circuit which is shown in Figure 5. IC3 is an adjustable voltage regulator which has the output potential set at nominally the required level by R12 and R13.

Construction

Details of the printed circuit board and wiring are given in Figure 6. Construction of the printed circuit board is quite straight forward, but use Veropins at points where connections to off-board component will be made. IC1, IC101, and IC2 are all CMOS devices, and these should therefore be fitted into sockets, and should not be fitted into place until the board is in other respects complete.

The general layout of the unit can be seen from the photographs, and for ease of construction and to avoid problems with stray pick-up of mains hum it is recommended that a radically different layout should not be used. Mains transformer T1 is mounted using 1/4in 6BA bolts, and a soldertag fitted on one of these mounting bolts provides a chassis connection for the mains earth lead. The completed printed circuit board is mounted on the base panel of the case using lin 6BA bolts with $1 / 2$ in spacers to keep the underside of the board well clear of the case. LP1 is a snap-fit into a 12 mm diameter hole, and this must be the correct size if LP1 is to fit into place properly. The entrance hole for the mains lead is fitted with a small grommet which protects the cable.

Once everything has been fitted into the case the final wiring can be completed, and this is all quite easy, but be careful not to make any errors in the wiring to T1, S2, FS1, and the mains lead. Check this wiring very thoroughly when the unit has been completed and before switching it on.

Using The Unit

ideally the unit should be wired between the preamplifier and power amplifier stages of the hi-fi amplifier, and many amplifiers have a tape monitor facility or something of this nature that will enable the filter to be used in this way. An alternative way of using the unit is to feed the input from the record deck via a suitable preamplifier, and then feed the output of the filter to a high level input (tape, tuner, aux., etc.) of the amplifier. The audio noise output of the filter is about 300 uV , and this gives a signal to noise ratio of more than 60 dB . provided the

Figure 5. Circuit diagram of the mains power supply.

Figure 6. Legend and artwork.
unit is used to process a reasonably high level signal. It will not work properly if fed direct from the output of a pick-up since it would be handling a very low level signal and would give a very poor signal to noise ratio.

The filter can be used to good effect with tuners and cassette decks to combat noisy F.M. reception, or to reduce tape "hiss" when playing a nonDolbyised cassette. When used in this way the unit can simply be connected between the tuner or cassette deck and the amplifier, with S1 being used to bypass the filter when it is not needed.

The best setting for RV1 is found by trial and error, and it should be set for the highest cut-off frequency that gives good noise reduction. In most cases there is a well defined setting at which the offending noise becomes practically eliminated as RV1 is gradually backed-off from its highest setting. It should be borne in mind that a filter of this type is not suitable for combatting the large noise spikes produced by badly scratched records as these produce strong signals at quite low frequencies, and not just at high frequencies

Figure 7. Wiring diagram.

PARTS LIST FOR TUNABLE SCRATCH FILTER

FlROT

Introduction

This new series will explain to the novice some of the rudiments of Logic design using integrated circuits. Rather than simply being a theoretical approach, the series will look at practical designs which may be made up on Veroboard or a breadboard. Many of the circuits will use commonly available TTL devices, and this first article outlines the design of a simple 5 volt supply for use with. the experiments during the series.

Power Supply

Before you can venture forth on making any project in electronics you need a supply of electrons, you need lots of them, and they must be kept moving! Common sources are cells and batteries, like the zinc-carbon and alkaline-manganese ones, but these are becoming more and more expensive, have a fairly low capacity, and are definitely nonreturnable when empty! Many schools possess very rugged low-voltage power supply units (psu), which allow the mains supply to be used with safety. These units are able to deliver several amperes at a voltage which is variable between zero and about 17 volts. Such psu's are fine for lighting bulbs, driving motors and copper-plating Sir's door keys during Chemistry lessons, but sensitive electronic circuits like to be supplied with more refined electrons. This article describes how regulated power supply units operate and how to construct one suitable for the projects in this series.

Smoothing, or, when is DC not DC?

You may know that the 'mains' supply in this country is described as Alternating Current (AC); this means that the current, and the voltage, is constantly changing. This is not on an irregular basis, but smoothly and regularly 50 times every second. If you think that sounds fast it is really quite slow compared to radio frequency (RF) voltages which may alternate at anything up to many millions of times per second. So, we have this alternating supply, and a graph of the mains voltage against time would look like Fig. 1. Since the supply voltage alternates 50 times each second, its frequency is 50 hertz, hertz being the units used for describing frequency named after Heinrich Hertz, but that's another story. The voltage of 240 volts marked on Fig. 1 is the value used to describe the mains voltage, i.e. 240 volts AC. Some of you will have recognised the curve shown in Fig. 1 as a sinewave, and that the value of 240 V is the Root Mean Square value, or RMS for short. If you didn't know that don't worry, use it to impress your friends; it's actually the value of Direct Current (DC) needed to produce the same heating effect in a resistance. You may well be wondering what all this has to do with our little DC power supply unit, and it's this: AC is great for getting the electrons from the Power Station into our homes, because it means that transformers can be used to step up the voltage for transmission, and then back down again. The' heart of most psu's is a transformer which reduces the lethal 240 V mains to a safer 20V or so. However, AC is not much good for powering circuits designed to

Figure 1. Alternating current.
operate on DC, since the polarity of the supply changes every half cycle, and polarity sensitive components like transistors would be zapped on the first negative wave. The simplest way to convert $A C$ into a sort of $D C$ is to block these negative half waves with a diode. A simple circuit, shown in Fig. 2, will block the negative half waves, and the slightly more complicated ones in Figs. 3 and 4 will produce the waveforms shown alongside. However, you couldn't really call the outputs from any of these circuits DC, at least it's nothing like the steady voltage produced by a battery. The answer is to connect a capacitor, as shown in Fig. 5. This is called a reservoir capacitor and it serves to store up electrons and let themout in a more even stream, rather like a full-size water reservoir. The resistor marked as the Load in Fig. 5 represents the circuit being supplied with current by the psu; it may be just a resistor, but it's more likely to be a transistor radio, or even a whole computer, the effect is
just the same. The reservoir capacitor is charged up by the current from the diode rectifiers, then, as this falls back to zero, the capacitor is able to maintain a flow of current through the Load until it is charged again on the next half-cycle. The larger the Load, that is the smaller the resistance, so the more rapidly it will empty the reservoir, and hence it needs to have a fairly high value of capacitance. For small loads, taking just a few milli-amps of current, then values around 1000 uF to 4700 uF will suffice, but where larger currents are involved, such as in a computer, values of $20,000 \mathrm{uF}$ to $33,000 \mathrm{uF}$ (20 to 33 milli-farads) are needed.

All this may seem sufficient to produce a fairly respectable output, but, as Fig. 6 shows, it is still far from perfect. The output from our evolving design contains what is called 'ripple' (unfortunately, not the raspberry type!). What is needed is some clever device which can compensate for the variations in the waveform, to let more current through when it falls and block it off when it rises. Although the ripple may not have a very large value, often less than half a volt, it will make its presence felt in many circuits in no uncertain manner.

Zener Diode to the Rescue!

Possibly the simplest way of producing a constant voltage from one which varies is to use a zener diode. The characteristics of this device are shown in Fig. 7. In the forward biased direction it behaves like most other

Figure 2. Simple diode rectifier circuit.

Figure 3. Bridge rectifier circuit.

Figure 4. Full wave rectifier circuit.
diodes, nothing remarkable in that; however, in the reverse direction, the current passed remains very small until a certain voltage is reached, the zener voltage, then whoosh. a very large current will pass. To use such a device a resistance is needed in series to limit the current to a safe value, so that the diode doesn't get too hot and burn out. The zener voltage can be arranged during manu facture to be any value, and a quick look at page 277 of the Maplin catalogue will show that they are made with certain preferred values, rather like resistors. A very simple design, using a zener diode connected to the rest of the components used so far, is given in Fig. 8. This will produce a 'regulated' output, but there is a snag (there had to be a snag, life is never that easy!). Such an arrangement is only able to supply a limited current, and probably much less than any power supply unit worth the name. Ohm's Law will tell you the maximum current you can draw before the output voltage falis below the zener voltage. Suppose we want a 5 volt supply to run our home computer, and so we would choose a 5 V zener diode. Suppose also that having spent all the pocket money on the computer we can only afford a zener diode able to dissipate 400 milli-watts, about the cheapest available. This gives us a zener current of:-

$$
1=P / V
$$

therefore, $1=0.4 / 5$ which gives a zener current of 80 milli-amps. If our un-regulated supply produces 9 volts DC, the value of the series resistor will then have to be:-

$$
\begin{aligned}
& R=V / I \\
& \text { so, } \quad R=(9-5) / 0.08 \text { ohms } \\
&=4 / 0.08 \text { ohms }
\end{aligned}
$$

therefore, $\mathrm{R}=50$ ohms.
So, you may well be asking, where's the snag? So far we have not taken any current by an external load; if we attach a load resistance which will pass 50 milli-amps then this current will be diverted from the zener diode, so that the total current remains 80 mA , and the voltage dropped by the resistor is still 4 V . However, if we try to take more than 80 mA there will be nothing left for the zener (sighs!) and the voltage dropped by the resistor will be more than 4 V ; zip goes our regulated supply of 5 volts, for these currents are only a small fraction of that required by even a modest computer. This type of circuit is only suitable for providing a constant voltage for critical parts of a design, such as oscillators, where it helps to maintain frequency stability, and only a small current is taken. One solution to our problem would be to use a zener diode with a larger power dissipation, but, I can hear you say, there must be a better way that doesn't turn all our expensive electrons into heat before they have a chance to do any useful work.

Head them off at the Pass!

The zener diode is very good at providing a constant reference voltage, but what it really needs is more muscle. This is usually arranged by using the zener to control a
power transistor, such as the 2N3055, in an arrangement known as a Series Pass circuit shown in Fig. 9. Here, the original zener diode circuit is used to provide base current for the series pass transistor, which then amplifies the current available to the external load. This type of circuit is able to provide a fairly constant voltage output under varying load conditions. To go back for a moment to the example of the home computer, which may require several amperes, the transistor will drop the 4 volts, assuming the 9 volts remains the same, but pass a current which depends on the load resistance. The point to note is that although power dissipation in the zener is no longer a problem, you must take care that the limits of the power transistor are not exceeded, and this will normally be mounted on a heat sink if large currents are involved.

Figure 6.

Figure 7. Zener diode characteristics.

A Practical Design

All of the above theory can be put together to produce the design shown in Fig. 10. There is nothing remarkable about the design, and many will recognise it from similar commercial designs. The capacitor connected across the zener is to ensure that the base current to the power transistor is as smooth as possible, since small variations here will be amplified and make matters worse rather than better. The appearance of a couple of extra transistors in the final design also requires some explanation. Transistor TR1 is the power transistor, which is supplied with base current from the zener diode via TR2; this arrangement permits a lower zener current to be used, and TR2 is needed to increase the base current to the
power transistor. Transistor TR3 is included with R3 to provide some degree of short circuit protection. When the voltage deveioped across R3 due to the passage of load current increases beyond about 0.6 volts, TR3 will start to conduct and divert base current away from TR1 thus limiting the load current to around 2 amps. Finally, D5 is included to indicate that the unit is switched on.

Construction

The power supply unit may be constructed on Veroboard, remembering to mount the power transistor, TRI on a suitable heat sink. A better alternative is to use a printed circuit board.

Also, it is worth bearing in mind that since mains voltages are present at the input side of the transformer, great care must be taken to ensure that it is impossible to touch any of the 'live' parts. For this reason it is a very good idea to mount the unit in a proper project box which can be earthed, otherwise you are in danger of defeating the whole object of the exercise, which is to remove the hazard of mains voltages! This should also be borne in mind if it is
 to smooth the output

Figure 5. Use of reservoir capacitor to smoothe the output.
necessary to investigate any reasons why the unit does not function as intended; the golden rule here is make certain the mains is disconnected before probing with your fingers. A voltmeter applied to the output should indicate between 4.5 and 5.5 volts at worst, and should be close to the 5 volts required for TTL work if the unit has been put together correctly. If the voltmeter reading is outside these limits then switch off immediately and check your work; things to look out for are solder bridges across tracks on the circuit board, components incorrectly placed and the electrolytic capacitors the wrong way round'
If the metal box specified is used, then the power transistor may be mounted on the rear of the case along with an insulating mica washer; again, remember to use wire of adequate size and rating for those connections which carry the high currents.

Having successfully completed the power supply unit you will then be in a position to commence the experiments on logic design without any fear of destroying the integrated circuits due to inappropriate supply voltages.
continued on page 25

Figure 8. Use of a zener diode to provide a constant voltage output.

75W MOSFET Amp. Bridging Module

by Dave Goodman

The Maplin MOSFET power amplifier has proved an extremely popular project, and many requests have been received for increased power output levels. Power Bridging is an effective way of achieving this, but of course loudspeakers capable of handling high power levels cost more, and therefore protection from any possible damage becomes even more necessary. This system senses voltage offsets from the amplifier, and will switch the speaker out of circuit, as well as producing the inverted signals required for bridging two amplifiers together.

Power Bridging

Power bridging is a system where the output of two power amplifiers can be combined to provide a larger total output into a common speaker load (see figure 1).

If we assume that signal A is exactly 180 degrees out-of-phase with signal B, and that amplitude V of A and B is the same, then the combined signal amplitude across the speaker load in figure 1 will be 2 V .

It is usual to express amplifier power ratings as RMS or peak output levels, and for the purposes of standardisation I will refer to RMS power (that being the most commonly used) throughout this article.

The expression used for calculating powerinto agiven load is $W(A V)=\left(\frac{V_{\text {RMS }}}{R}\right)^{2}$, where $W=$ RMS power and $V=$ the RMS value of voltage measured across loudspeaker R.

Unfortunately the average power calculation does not consider true voltage and current RMS values, so calculations using this expression will be some 20% lower than the true RMS figures.

Now that we have an expression for power developed in a load for one amplifier, the two amplifiers shown in figure 1 will have the expression $W=\underline{\left(V_{\text {Rms }}(A M P 1)-V_{\text {Rms }}(A M P 2)\right)^{2}}$
because the load R is common to both amplifiers and W is the total power from both amplifiers.

Figure 3. Circuit diagram.

To understand these formulae in real terms it is necessary to convert the peak voltage across the load into RMS volts which can be calculated from $V($ Rмs $)=\frac{V(\text { Pк })}{2} \times 0.707$
Given a power supply of +50 V (or 100 V DC) connected to a MOSFET power amplifier (LW51F) and an 8 ohm speaker as in figure 2, full drive at 1% distortion at 1 kHz would develop 100 V peak or $\frac{100}{2} \times 0.707=35.35 \mathrm{~V}$ RMS signal across R. Therefore the average RMS power would be $(35.35)^{2}$, or 156 Watts.

This magical figure works only in theory, and in fact losses due to heat, output stage inefficiency, and supply regulation would reduce this figure to a more realistic 100W RMS.

Connecting a second MOSFET amplifier as in figure 1 , and referring to the expression $W=(V(A M P 1)+V(A M P 2))^{2}$
the RMS power output will be
$W=\underline{(35.35+35.35)^{2}}=624$ Watts, or a realistic 400 W .

All the above formulae show that bridging two amplifiers together doubles their combined power output, or quadruples a single amplifier output. Power supplies used for bridging must be capable of delivering 8 to 10 Amps at a well regulated 100 volts (+50 V) if high

PARTS LIST FOR MOSFET BRIDGE

Resistors - All 0.4W 1\% Metal Film unless specified

R1,2,10,11.25,26	100k	6 off	(M100K)
R3,4	470k	20 ff	(M470K)
R5,19,20	22k	3 off	(M22K)
R6	15k		(M15K)
R7	1M2 (\%WW 5\%)		(B1M2)
R8,9.27	1 k	3 off	(M1K)
R12,13	1k5	2 off	(M1K5)
R14,21,22,23,24	10k	5 ff	(M10K)
R15,17	4k7	2 off	(M4K7)
R16	1 M		(M1M)
R18	47k		(M47K)
RV1. 2	10k Hor sub-min preset	2 off	(WR58N)
Capacitors			
C1	10 nF disc ceramic		(BX00A)
C2.5	4u7F 16V Tantalum	2 off	(WW64U)
C3.4	100uF 25 V PC electrolytic	2 off	(FF11M)
C6	100pF ceramic		(WX56L)
C7	470pF polystyrene		(Bx32K)
C8	150 pf polystyrene		(BX29G)
C9	1 L 35 V tantalum		(WW600)
C10	100 nF disc ceramic		(8×030)
Semiconductors			
D1,2,5,6	1 N 4148	40 前	(QL80B)
D3,4	1N4001	2 off	(Q1730)
TR1.3	BC548	2 off	(QB730)
TR2	BC55\%		(QQ165)
TR4	BFY51		(0F28F)
1 Cl	UA741		(QL22Y)
1 C 2	4001BE		(Qx018)
1 C 3	LF34		(MQ29G)
Miscethimeous			
RLA	Power relay 12 V		(fxutc)
LEDI	Red LED		(WL27E)
	14-0in phi sht	2 䉼	(BL18U)
	B.pal ort skt		(8L17)
	Prated circuat ford		(GA) 7T)
	Veropin 2141	1. P\% ${ }_{\text {kt }}$	(FL2IX)

A complete set of parts is available for this project Order As LK03D.

Price $£ 9.95$
power outputs are required, and this may make transformers difficult to find Alternatively, two separate PSUs may be used, one for each amplifier, but they must track each other closely to avoid signal amplitude errors between amplifiers at full power outputs.

Circuit Description

Both amplifier signal outputs are present on pins 1 and 6 , which are mixed, then amplified by IC1. As both signals are out-of-phase with each other the expected output of $I C 1$ will be close to $O V$. If one signal input has a $D C$ offset, or has no signal at all, the the output from IC1 will be presented to either TR1 or TR2. TR1 will only conduct to positive signals, and TR2 will only conduct to negative signals, with reference to OV. TR3 inverts TR2 output, and, when conducting, pulls TR1 collector down from the positive supply rail to OV , via potential divider R12 and R13.

IC2a switches to C/R timer C2/R16, and gives a three second turn-on delay, preventing IC2a, b, and d from chang. ing state, and thus holding TR4 off. RLA will not operate during the timing period and a loudspeaker connected between pins 3 and 5 (RLA) will be out of circuit. When IC2c output finally goes high IC2b output will switch high and slowly charge C9. IC2a will switch high before C 9 has fully charged, and D 6 will conduct, causing IC2b outputto change state to OV and latch IC2a in a high state.

TR4 will now turn on and RLA will operate, presenting the loudspeaker to both amplifier outputs. If a fault condition turns on TR1 or TR3, IC2d output will switch high and D5 will conduct. IC2a output goes low and RLA will be released. IC2b then switches high, latching IC2a and holding TR4 off until reset by connecting pins 20 and 21 together. IC3c is a high impedance unity gain input buffer and IC3d is a low pass filter.

Our MOSFET amp has a large power bandwidth of some 70 to 100 kHz or more, and for audio use it is not desirable to reproduce high power levels at these frequencies, so a low pass filter, IC3d has been added with a cut off frequency of 25 kHz and a slope characteristic of 12 dB per octave. This prevents h.f. signals from being amplified by reducing their level above the cut off point. IC3a is a unity gain buffer producing a signal output at pin 13 in phase with the pin 11 input signal, while IC3b inverts and produces a unity gain signal 180 degrees out-of-phase with the input, at pin 15. The two signal outputs are then connected to both MOSFET amp inputs (figure 5)

Construction

Insert all six diodes, noting that D3 and D4 are different from the others. They all have a band on one end, which must align with the band on the legend. Insert all resistors and both preset potentiometers, followed by all the

Figure 4. Legend and artwork.
capacitors. C3 and C4 are electrolytics, while $\mathrm{C} 2,5$, and 9 are tantalum beads, and they all have polarity markings at one end. Mount the four transistors and three IC sockets, followed by the 21 vero pins. The relay is fitted last, and goes directly into the PCB. Bend the terminals over their track pads to hold in place. Solder all connections carefully and clean excess flux etc. from the board. Inspect the track face, looking for bad joints or short circuits, then fit all three ICs in their sockets.

Test and Use

Connect LED 1 between pins 9 and 10. The anode (positive) leg is usually the longest, and goes to pin 9. Turn RV1 and RV2 wipers so that their centres line up with the arrows on the legend. The indicators have been added for
guidance purposes only, and are not final adjustment positions.

Temporarily connect pin 13 to pin 1 and pin 15 to pin 6 . You will need a 50 Hz signal source for setting up the null point and also a voltmeter, or preferably an oscilloscope.

Connect a +12 V to +15 V power supply to pins 17,18 , and 19 as shown in figure 5, and switch on. RLA should operate after about three seconds. Place a DC voltmeter between OV and pin 8. Adjust RV2 for a reading of 0 V .

Set the voltmeter to read IV AC, and connect between OV and pin 11. Also connect a signal source to pin 11 and 12 V , and adjust the signal to 50 Hz and about IV RMS (3 V pk on a scope). If you are unable to do this don't worry, as adjustments can be made further on, when using the complete system. Remove the meter lead from pin 11 and
reconnect to pin 8 . Adjust RV1 for the lowest possible voltage, which will appear as a dip in the reading.

If using a scope, adjust RV1 for null or OV, whichever is the least. Switch off power and remove connections from pins $1,6,13$, and 15 , and the voltmeter.

Wire the bridging module to both MOSFET amps as shown in figure 5 , but do not connect a speaker yet. Use screened lead for all signal connections. Connect power supplies and switch on. Apply a music signal, or whatever you intend to normally use the system for. Remove signal wire from pin 13 , and RLA will release. It can be reset by briefly shorting pins 20 and 21 together. LED 1 also acts as a peak level indicator, coming on if signal levels reach clipping point at the output. RLA will also operate if this happens. Reconnect signal wire to pin 13 and remove the other input wire from pin 15. Again, RLA will release. Reconnect pin 15 to your amplifier and all will be ready to go.

The module pre-amp stages are exactly unity gain, and up to a maximum signal input level of about 10 V RMS can be handled, although the power amps would complain! Their maximum input for full output is 1.2 V RMS, and levels greater than this will clip the output.

Figure 5. Connections for two amplifiers and bridge module.

FIRST BASE
continued from page 21

Figure 9. Use of a series pass transistor.

Figure 10. PSU circuit.

P.S.U. PARTS LIST

R1	1×5 - R7 (MW SW) carlyon 0. 33 (3W) wrsewound 220 R		(M2K5)
R2			(B4R7)
R3			(wo 33R)
R4			(M220p)
Capacitors			
Cl	100 nF dibe cee amdc 2200uf 1Ey PC eleatrontio 100uF 10V PC electrovic	$\begin{aligned} & 20 \mathrm{off} \\ & 2 \mathrm{off} \end{aligned}$	(8x030)
C2,3			(FF600)
C4,5			(FF100)

4 off

(0.81C)
(QH09K)
(WL27E)
(BL.45V)
(OF03D)
(QB73Q)
(WBO 3 D)
(WR1青)
(FH1OL)
($\mathrm{P} \times 96 \mathrm{E}$)
(WR248)

SINGLE-BEAM OSCILLOSCOPE
Vertical Deflection
Deflection Coefficient: 5 mV /div to $20 \mathrm{~V} /$ div in 12 calibrated steps (1,2, 5 sequence).
Accuracy: 3\%
Bandwidth: DC $-15 \mathrm{MHz}(-3 \mathrm{~dB}) \mathrm{AC}$ coupled $10 \mathrm{~Hz}-15 \mathrm{MHz}(-3 \mathrm{~dB})$ AC coupled.
Rise Time: 23ns
Input Impedance: $1 \mathrm{M} \Omega$ and 35 pF (approx.)
Maximum Input Voltage: 400 V (DC + Peak AC)
Horizontal Deflection
Sweep Speeds: $0.5 \mathrm{us} /$ div to $200 \mathrm{~ms} /$ div in 18 calibrated steps (1,2,5 sequence).
Accuracy: 5\%
Variable: Extends maximum sweep rate to approx. $200 \mathrm{~ns} / \mathrm{div}$
continuously variable between calibrated steps.
External Horizontal Amplifier
Deflection Coefficient: 400 mV /div within 10%
Bandwidth: $4 \mathrm{~Hz}-1 \mathrm{MHz}(-3 \mathrm{~dB})$
Input Impedance: $1 \mathrm{M} \Omega$ and 35 pF (approx.)
$X-Y$ Operation: Input via external trigger socket
Triggering
Modes: Automatic or manual level selection. Automatic operation minimizes trigger adjustments and provides bright base line in the absence of an input signal.
Slope: Positive or negative
Source: Internal or external
Sensitivity, Internal: 0.5 div from 10 Hz to 1 MHz decreasing to 1 div at 20 MHz . Typical 0.4 div at 20 MHz .
External: 0.5 from 10 Hz to 1 MHz decreasing to IV at 20 MHz
Component Tester
Test Voltage: 8.6 V
Test Current: 28mA max.

To go with our article on oscilloscopes and their uses we are selling not only our scopes at a very special price, but we are cutting the cost of our probes too! For the next three months only we are offering $£ 10$ off our single beam and $£ 16$ off our double beam scopes, and reducing our probes to just $£ 12.75$, saving you almost $£ 3$. These are prices you may never see again!

Display
95 mm diagonal flat faced rectangular CRT P31 Phosphor 1 KV accelerating potential 8×10 div display area non illuminated red line graticule on greenish blue filter. Each div is 0.66 cm .
Calibrator: Output provided, 1 KHz at 200 mV p-p, for probe compenation. All Accuracies claimed at $25^{\circ} \mathrm{C}$.
Trace Rotate: Control located on back panel allows 5° of adjustment. Power Requirements: $110 \mathrm{~V} / 220 \mathrm{~V} / 230 \mathrm{~V} / 240 \mathrm{~V} 47 \mathrm{~Hz}-65 \mathrm{~Hz} 18 \mathrm{VA}$.

Dimensions and Weight
Height: 125 mm
Depth: 335 mm
Width: 240 mm
Nett weight: 4.6 kg without accessories
Accessories
Included Accessories: Instruction Manual. Input Lead, and power cord.
Our usual price $\mathbf{£ 1 6 7 . 9 0}$. Order As SP99H (Single Beam Scope) Price £157.90, and save $£ 10$.

DUAL BEAM OSCILLOSCOPE

Vertical Deflection (two identical channels)
Bandwidth:
DC $-15 \mathrm{MHz}(-3 \mathrm{~dB})$ DC coupled, $10 \mathrm{~Hz}-15 \mathrm{MHz}(-3 \mathrm{~dB}) \mathrm{AC}$ coupled.
Rise Time: 23 ns or less.
Deflection Coefficient:
$5 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div in 12 calibrated steps ($1,2,5$ sequence)
Accuracy: 3\%.
Display Modes:
Channel 1 only $\mathrm{CH} 1 \& \mathrm{CH} 2$ alternate or chopped mode (250 KHz)
Algebraic addition $\mathrm{CHI}+\mathrm{CHII}$, Algebraic Substraction $\mathrm{CHI}-\mathrm{CHII}$, CHII Invert and $X-Y$.
input Impedance: $1 \mathrm{M} \Omega$ and 35 pF (approx.)
Max. Input Voltage: 400 V (DC + Peak AC)
Internal Trigger signal: CHI or CHII signal

Horizontal Deflection
Sweep Speeds:
$0.5 \mathrm{u} / \mathrm{div}$ to $0.2 \mathrm{~s} /$ div in 18 calibrated steps in ($1,2,5$ sequence) Accuracy: 5\%. Variable:

Uncalibrated continuously variable between steps, extends fastest speed to $200 \mathrm{~ns} /$ div (approx).
$X-Y$ Operation: Horizontal Input via CHII (CHI) operates as Y. Deflection Coefficient: Same as CHII.
Bandwidth: DC-1MHz (-3dB).
Input Impedance: Same as CHII.

Triggering

Modes:
Automatic or normal with level selection. Automatic operation minimizes trigger adjustment and is useful above 30 Hz . With no input automatic triggering provides a bright base line at all sweep rates
Source: CHI or CHII, Line or Ext, and TV (frame).
Slope: Positive or Negative.
Sensitivity:
0.5 div deflection or IV pp external signal up to 20 MHz in Auto mode 2 div deflection or 3 V pp external signal from 10 Hz to 20 Hz in normal mode. Typical 1 div at 35 MHz in AUTO at normal mode.

Component Tester

Test Voltage: 8.6 V
Test Current: 28 mA max.
Test Frequency: Line Frequency.

Display

130 mm flat faced Mono accelerator CRT with P31 Phosphor. Z Modulation:
$20 \mathrm{~V} p$ signal up to 1 MHz modulates at normal intensity. Graticule:
8×10 div blue non-illuminated. Vertical and horizontal centre lines marked in 5 minor divisions per major division.

Calibrator:
Amplifier Calibrator 0.2 V at External socket accurate within 2\%, output resistance 50 ohms.
All accuracies claimed at $25^{\circ} \mathrm{C}$.
Trace Rotate:
Control located on rear panel allows 5° of adjustment.
Power Requirements:
$110 \mathrm{~V} / 220 \mathrm{~V} / 230 \mathrm{~V} / 240 \mathrm{~V} 47-65 \mathrm{~Hz} 23 \mathrm{VA}$

Dimensions

Height: 215 mm
Depth: 425 mm
Width: 265 mm
Weight: 8.5 kg

Accessories

Included Accessories:
Power Cord, Instruction Manual, Input Leads.

Note:

The component tester may be used to check components in circuit. Under these conditions it is recommended that the display obtained is compared with that obtained for a circuit known to be functional.

Our usual price £286. Order As SP00A (Dual Beam Scope) Price £270, and save £16.

PROBE FOR OSCILLOSCOPES

A very high quality probe suitable for use with almost any oscilloscope. Probe has a slide switch on body for immediate selection of either times 10 or times 1 or ground for instant position reference.

Specification

Bandwidth:
DC to 70 MHz
Rise time:
Overshoot:
Switch functions:
$<5 \mathrm{~ns}$
$<3 \%$
10:1 attenuation, $\pm 1 \%$ with 'scope of $1 \mathrm{M} \Omega$ input
resistance.
1:1 attenuation with bandwidth of 10 MHz approx.
Reference position, tip ground via $9 \mathrm{M} \Omega$, 'scope input grounded.
Input capacitance: 12 pF typical, depending on 'scope input capacitance.
May be used with 'scopes of up to 45 pF input capacitance by adjusting trimmer in probe body. Trim tool supplied.
500 V DC, 350 V AC rms.
Working voltage:
The probe is supplied with an ultra-flexible screened lead fitted, and an earth lead with crocodile clip attached. Lead is 1.2 m approx. long.

Supplied in strong seal-top plastic wallet with accessories: retractable sprung hook with fully insulating sleeve, insulating tip, IC test tip, trimming tool and BNC adaptor.

Our usual price £15.63. Order As SP01B (scope probe BNC) Price $£ 12.75$, and save $£ 2.88$.

PRICE LIST

All prices shown in this price list are valid from 14th February 1983 to 14th May 1983
 Please note new telephone number for Sales Only (0702) 552911

Prices shown in this list include VAT at 15% where applicable. Items marked NV are rated at 0% and the price shown applies both to inland and export orders. Overseas customers should add up the total cost of all items except those marked NV and deduct 13% to arrive at the total price excluding VAT. Alternatively multiplying the total price (except $N V$ items) by 0.87 will give the total price excluding VAT. Please add extra for carriage on all overseas orders. Carriage will be charged at cost.
Although postage charges to customers living in the Republic of Ireland and in the UK, but not on the UK mainland, are the same as to mainland addresses we regret that we must levy an additional charge of $£ 5$ on each order containing any items marked "Delivery by Carrier".
Will customers from the Republic of Ireland please add 40p and then 35% to the cost of their order now that the Irish pound is not equivalent to sterling, to cover the rate difference and negotiation fees. We will refund any difference; please state cheque or credit note. Alternatively if you pay by bank draft drawn in pounds sterling on a London bank, then you need add nothing extra. Bank drafts drawn in pounds sterling on a London bank should be readily available from your local bank.
All prices are for the unit quantity shown in the catalogue (unless shown otherwise on this list) i.e. each, per pack, per metre etc. All prites include postage and packing. There is a 50p handling charge which must be paid on all orders having a total value of under $£ 5.00$.

The price list is intended for use with our 1983 catalogue and applies to all mail orders. Prices in our shop are generally lower on heavy items as mail order prices include postage and packing costs.

Copies of manufacturers' data sheets are available for most IC's price 40p each

NYA
NA Not available
DIS Discontinued
TEMP Temporarily out of stock
OOP Out of print
FEB Out of stock, new stock expected in month shown $\dagger \quad$ While stocks last
NV Indicates that item is zero rated for VAT purposes

* See Amendments to Catalogue

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity. Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags. Most items in the price list have a letter in brackets after the price which indicates the trade quantity as follows:

(A)	Trade quantity	5
(B)	Trade quantity	10
(C)	Trade quantity	25
(D)	Trade quantity	50
(E)	Trade quantity	100
(F)	Trade quantity	250
(G)	Trade quantity	500
(H)	Trade quantity	1000

Prices charged will be those ruling on the day of despatch

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will neod tu order 500 packs which is equal to 5000 tags
March 1983 Maplin Magazine

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buyless than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less han the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
rade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.
March 1983 Maplin Magazine

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, boits, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

1983		VAT
Catalogue inclusive		
Page		PRICE
wF53H	20w Squsukes	8325 (C)
Wrisp	40w Squawker.	¢ 625 (8)
X602C	loudspeaker 121 n	
XE26D	Fane 50 8R	E21 45 (A)

READERS LETTERS

Bouquets and Brickbats

Dear Sirs,
After much delay herewith some brief bouquets and brickbats from one of your regular customers

1. I think your service, mail and phone is superb. When phoning it is wonderful to speak to someone pleasant, helpful, and intelligent - a rare combination these days. Keep it up! Also, the reply-paid envelope is a tremendous blessing - without it you might well lose a lot of orders just because of the sheer hassle of finding and addressing an envelope. In short, you've got it right.
2. I must confess to being slightly disappointed with the new catalogue. It's OK, but a supplement to the previous one might have done. Dare I mention loose-leaf again?
3. Could not the price list be produced in alphanumeric order, rather than page order? It would surely be easier for you - since the info must come from your computer system and I'm sure customers would find it easier to use. I mean alphanumeric order of your ordering codes, of course.
4. Why on earth have we had to get caught up in a new resistor colour code, when the industry standard code does all that is necessary? I nearly returned the last order to you, thinking Maplin had fallen on its face, untii I realised at the last moment what had happened. I dread to think of the confusion it must cause some people. Black mark to Maplin. Keep up the good straightforward service, and a happy and successful New Year to a!l at Maplin
H. C. BURFORD

Ryde, Isle of Wight

1. Many thanks for your comments, though a lot of customers have had a problem recently getting through to our sales desk. These phones have been incredibly busy, but if you get ringing, do hang on. We changed our phone system recently and whereas in the past you were answered and then had to hang on if sales were busy, under the new system your call enters a queue and you are answered in the order in which the calls arrived. The advantage to you, of course, is that there is no phone charge whilst you're hanging on, but you are in the queue just as you were before. However, by the time you read this our extra sales telephones may be operational and the problem relieved. 2. A catalogue supplement is difficult to use as you then have to look in two places for your choice of a particular type of item. Loose-leafis a good idea, but just too expensive.
2. We are very much against having the price list in alphanumeric order since it becomes very difficult to compare prices of similar items. Hopefully, however, our next catalogue due in November this year will have the prices printed on the page. 4. Unfortunately the five-band colour code is the international standard for 1% tolerance resistors. It has been the standard in industry for many
years, but hobbyists will not have seen it much due to the previously prohibitively high cost of close toler. ance resistors. But I have to agree that it's a blessed nuisance having to relearn resistor colour codes. The price of progress, I suppose

CB Projects

Dear Sir,
Re: Chris Walker's letter, letters page Nov-Feb price list
1 , too, as probably many other people, subscribed to the Maplin magazıne "Electronics" on the strength of the 27 MHz CB project and am most disappointed that it was not printed. However, I do see the logic of not including it due to the massive slump in CB rig prices which I think has caught everyone by surprise, including me. Why, though, should you leave people like me, who haven't had the time or money to take the RAE examination, without radio projects for CB. I am sure that there would be a great deal of interest if Maplin were to publish a 934 MHz band project for which the transceivers now made are either very hard to get or extremely expensive. This band has been entirely neglected since its announcement and one suspects left for the elite few. I understand that the range attainable with this equipment will be quite small despite the more efficient aerial systems, but in built-up areas after working hours (and not at 3.30 a.m.) the range on standard 27 MHz is very small (about 2 miles at the very maximum in my area), if one does not resort to illegal power amplifiers. So come on, Maplin, stop giving us dull Ultrasonic intruder projects for the $25,000,000$ th time (in the electronic press) or computer controlled railway systems and give us something we can get our teeth into (although we might need burglar alarms if we get a 934 MHz band transceiver by the way availability is going at present).
H. JAREMKO The problem with a project to build a $C B$ transceiver at 934 MHz is that the standard of construction will have to be exceptionally high for the project to work. Remember that a kink in a wire is a tuned circuit at these frequencies. Our technical editors think that it is beyond the capabilities of the average constructor. Not only that, but some very sophisticated test gear will be required to align it and ensure it is working correctly. Very few people will have access to such test gear. The only possibility is if we produced ready-made pre-aligned modules for the rf stages and let you build the rest. We'll have a look at the possibility of doing that. We were surprised to read your comment about the RAE exam. This is not very expensive to take and since it consists only of choosing the correct answer out of a list of possible answers for each question, anyone capable of making and faulting on a 934 MHz transceiver should be able to pass with no problem at all. Once you've passed, of course, the equipment and frequencies you can use far exceeds anything possible with CB.

Knowledge In The Wrong Hands

Dear Sir,
Having read Chris Walker's letter in your December/February edition I feel that to an extent that I must agree with some of his comments regarding the publication (or not as the case is) of the $2 \mathrm{~m} / \mathrm{CB}$ project. However, I sincerely trust that the Maplin Magaz ine is not going to lower itself by following so many other electronics based magazines and become another pseudo-CB publication. Very few CB operators and potential CB operators have either the knowledge or the equipment to construct satisfactory transceivers within the legal specification, and those that are capable are either in the communications industry or are licenced amateur band operators who are probably sick at the idea of constructing/ testing a project like that. The infered suggestion in your reply to Chris Walker's letter that you are going to publish a major transceiver project in a forthcoming issue makes me wonder just how much more illegal transmission such magazines as yours will allow before you realise that a lot of knowledge in the wrong (unqualified/unlicenced?) hands can spell serious problems for authorised users of certain frequency bands. E.g. Fire and Police radio which is just above the 2 m band. Ambulance service which is third harmonic of parts of 27 MHz band, etc.
However, I do appreciate the majority of contents of your magazine and, although contradicting myself to an extent, would like to see the publication of a 2 m synthesiser article including the 600 KHz repeater shift facility.
N. R. NEGUS
(Home Office Telecoms Engineer) Gloucester

Whilst we would be the last to advocate illegal transmissions, we do feel that there are a lot of licensed amateurs who would enjoy building a well-designed transceiver. We would almost certainly supply the of transmitter stage as a ready-built prealigned module, so this should eliminate interference problems which might otherwise arise. In the end I think it would really be up to us to produce a high quality design which was easy enough to build and sufficiently well documented that it could be built without causing problems to others.

Atari vs BBC

Dear Sir,
I have been amused, and rather irritated by your recent newsletter correspondence concerning the Atari vs BBC computer.
I was stunned by such sweeping generalisations as "for home use the Atari is a much better proposition" On what basis do you make this statement? In my opinion, whoever wrote that is either ignorant or stupid or both.
Computers are essentially for pro-
gramming - not for making pretty pictures! There can be no denying that the Atari has 256 "hues" avail. able, when the BBC Micro has only 8 colours (not colors!), but can the Atari handle recursive procedures with local variables, or complex (conditional) machine code macro-assem bly? Does it support structures such as Repeat/Until, or If/Then/Else? As regards your comment about languages ("the others [Unix, Fortran, Cobol] are not suitable for home use") - what is this gross generalisation supposed to mean anyway? No, Fortran and Cobol (at least the standard versions) are not suitable for playing Space Invaders - but they put to shame even the amazingly advanced BASIC of the BBC Micro, for programming power. Lastly. Unix is not a language, but an operating system, and is, by definition, suitable for any system on which it is implemented. Check your facts before generalising!
As to the "extra chips" in the Atart machine: Do you honestly believe that all the BBC graphics and sound capabilities are handled by one (albeit 2 MHz) 6502? Again, you have not checked your facts.
The BBC Micro has a custom de signed ULA (uncommitted logic array) which handles graphics making possible the excellent "palette" facilities, and a separate 4 channel sound generator, with an interrupt-driven queue, enabling processing to continue while sounds are being made.
Finally, your last comment in your reply to Mr Grimley Evans ("don't expect the basic machine . . .") is simply RUBBISH. l've used both, extensively, and in my opinion, the only ways in which the Atari is superior are the larger number of colours, and in sprite graphics ("player missile" graphics to Atari that sums it up!), and this latter can be achieved on the BBC by considered use of the "palette" facility. Please, Maplin, your customers expect better of you than the Sinclair trick of degrading other peoples' products on inaccurate or incomplete information. If you sold the best computer on the market, you would have no problem advertising!

GERAINT A. WIGGINS
Corpus Christi College, Cambridge We are not swayed by this letter from our opinion that the Atari is a better computer for home use than the BBC. Calling us ignorant or stupid does not alter the facts. You are quite right when you say that computers are for programming, but the most interesting programs are those which make the computer do something. The fact is that there is more hardware in the Atari for your programs to talk to, so your programs can do more interesting things. The BBC may have a ULA, but this is just an array of logic functions. In its place the Atari has a second real microprocessor driven by its own program and yet another dedicated chip to deal with the player/missiles or sprites.
We would be the first to admit that the BASIC supplied with the Atari is not

MAPLIN NEWS

Two Battery Holders

A pair of battery holders to supplement the range shown on page 27 of our catalogue. One to hold a single ' C ' type cell and one to hoid a single ' D ' type cell, both with solder-to-tag connections. Sizes are 61×28 $\times 25 \mathrm{~mm}$ for the 'C' type and $69 \times 35 \times 27 \mathrm{~mm}$ for the 'D' type.

Order As

BK45Y (HP11 Single Box) Price 19p
BK46A (HP2 Single Box) Price 19p

Display Box

A box moulded in black plastic with a clip-on battery cover. The case is snaptogether, and is ideal for projects which need to be hand-held. Dimensions are: 110 mm long $\times 80 \mathrm{~mm}$ wide $\times 30 \mathrm{~mm}$ high at the rear and 21 mm high at the front.
Order As HY25C (Display Box) Price 50p

Echo Machine EM-006

A high quality echo chamber using solid state bucket-brigade delay lines. The unit is finished in matt black, and the inputs are standard mono jack sockets. The MIC socket is the input jack for low impedance (-46 dB / 10k), and the INSTRUMENT socket is the input for an instrument or line output of hi-fi, organ, synthesizer etc. $(-20 \mathrm{~dB} / 220 \mathrm{k})$. There is a footswitch jack on the rear for a remote control switch.

The delay time control is variable between 20 and 200 msec , and there are three selections of output level ($0,-20$, and
-40 dB) to enable connection to any amplifier. There is also a peak level indicator, which will show when the input level is excessive and likely to cause distortion.

The balance control sets the mixture of echo and straight through sounds, with no echoat 'direct', total echo at 'delay', and even at the centre position. The repeat control sets the number of repetitions of echo sound, the dial being rotated clockwise to increase the repetitions.

Overall size: $220 \times 150 \times 55 \mathrm{~mm}$.
Order As XG30H (BBD Echo EM-006) Price $£ 55.00$

NEW ITEMS SINCE CATALOGUE

BK66W Modulator UM1286
BK67X Moisture Scale
GA16S Panic Button PCB
GA17T MOS-Amp Bridge PCB
GA69A Programmable Timer PCB
GB09K Modem Main PCB
GB10L Modem PSU PCB
GB11M Sound Generator PCB
GB12N Inverter PCB
GB13P Scratch Filter PCB
GB14Q ZX81 TV Sound/Inverse Video PCB
GB17T VIC 20 Talkback PCB
GB18U ZX81 Talkback PCB

LKOOA
Price $£ 11.90$
Price $\mathbf{E}^{0.20}$
Price $£ 1.25$
Price £1.96
Price £1.49
Price $£ 4.99$
Price $£ 1.75$
Price £2.25
Price £1.99
Price $£ 1.99$
Price £2.20
Price $£ 3.36$
Price $£ 2.25$
VIC20 Talkback Kit
ZX81 Talkback Kit
ZX81 TV Sound and Inverse
Video Kit
M0SFET Bridging Amp Kit
Scratch Filter Kit
Inverter Kit
Sound Generator Kit
Panic Button Kit
Programmable Timer Kit
Modem Kit
4412V
XR2211CP
SP0256
Inverter Transformer

Price $£ 24.95$ Price £24.95

Price $£ 29.50$
Price $£ 9.95$
Price $£ 24.90$
Price $£ 49.95$
Price $£ 10.95$
Price $£ 4.50$
Price $£ 6.95$
Price $£ 39.95$
Price $£ 8.00$
Price $£ 4.45$
Price $£ 8.98$
Price $£ 22.50$

Readers' Letters coninued

the most brilliant BASIC in the world That does not mean that a good BASIC would not be able to do what you said. After all, it is exactly the same microprocessor (6502) in both Atari and BBC. In fact, BASIC A+ does support structured programming and Atari Microsoft BASIC is also far superior to Atari's basic BASIC. Equally Atari's Macro Assembler is a very powerfulpiece of software. But in the end, even if the programs you write look nicer on the BBC than on the Atari, they cannot do as much as they would on the Atari because there just isn't as much hardware in the machine to do interesting things with. My comment about Unix, Fortran, Cobol etc. did not imply that theywere all languages; I said that they were large pieces of software, and they are not suitable for home use because for example a half decent Fortran comMarch 1983 Maplin Magazine
piler would fill all the RAM in an 8 -bit micro before you started to write a program. The same applies to Cobol. It would be nice to be able to run programs that use Unix, but having loaded the operating system, how much room would be left for the program? The answer is: very little.

The graphics features that you mention as available on the BBC are included on the Atari, but are rela. tively minor features in comparison to the special capabilities of the video processor in the Atari. The Atari can have its own second machine code program running simultaneously with, but completely unseen by the main BASIC or machine code program and linked to the 50 Hz TV frame rate via the video processor's interrupt system. The Atari could for instance move (rotate, pan in and out,
scroll through etc.) a complex three dimensional colour picture while the main program gets on with other work. Such complex, time critical calculations and processing can occur without disturbing the main program. Real time sharing on your own home micro!
Finally, let's look at your strange comment that "computers are essentially for programming - not making pretty pictures!" To produce anything meaningful, a computer must communicate with its user. Our eyes can assimilate vastly more information than any other of our senses. so any computer that can transfer its results by means of pictures is going to be far more interesting to interact with. This is probably not important in the office or schoolroom where it is the printed results that matter. But at home instead of writing purely academic
programs on the $B B C$, you can write programs on the Atari that will actually produce visually meaningful results as well as printed results. It may well be that the BASIC listing will look prettier on the BBC, but it won't do as much on the BBC as on the Atari, because it doesn't have the hardware to do it. And that's a fact! That's why we stand by our original statement. We are convinced that after carefully considering all the relevant points, the Atari stands out as the best computer available at the moment for home use.
If you have any interesting comments to make about your hobby in genera or Maplin in particular then please write to: The Editor, Maplin Mag, P.O. Box 3, Rayleigh, Essex SS6 8LR. Please write clearly and keep your letters brief and to the point. Thank you.

MAPLIN

 MOISTURE METERby Robert Kirsch

* Low cost
 \star Simple to use
 \star May be used on wood, brick, plaster, etc
 * Built-in calibration

The Maplin Moisture Meter is an electrically very simple instrument that enables the moisture content of various materials to be measured. The Moisture Meter has a function similar to damp meters of the type used by surveyors and builders. Its chief use is to detect dampness and rot in buildings, so that immediate remedial measures can be taken before irreparable damage occurs. Other uses include determining whether a wall is in a suitable condition for hanging wallpaper or painting, and these are explored in more depth later in this article.

Circuit Description

The circuit is shown in Figure 1, and it will be noted that the device is basically an ohmmeter using a transistor to make it more sensitive than the type found in an ordinary multimeter. TR1 forms a standard common emitter amplifier, whose gain is mainly determined by the collector load R1 and RV1. The gain is adjusted by RV1 to compensate for transistor tolerances, battery voltages, and thermal effects in the transistor before use.

The voltage drop across the collector load is measured by the meter M1, whose full scale deflection is set by the variable resistor RV2 and R2. R3 forms a meter shunt to help damp the meter movement.

The base of TR1 is fed via R4 to Sla, which selects the two calibrate and one working mode of the instrument. In position A the transistor is biassed hard on, and at this point full scale deflection is set by adjusting RV1 so that the meter reads cal A.

When the switch is in position B the transistor gain is set by RV2 so that the meter reads cal B. The fourth position of the switch connects the test probes to the base circuit of the transistor, which is then biassed to a point dependant on the resistance of the surface being tested.

Construction

There is no PCB in this design, and the components may be assembled as shown in Figure 2, taking care to sleeve all component leads to prevent short circuits. Ensure the transistor, meter, and battery are all connected with the correct polarities.

The probes may be made from any sharp steel needles, and should be as fine as practical to prevent dạmage to tested surfaces. The points from ordinary darts have been found very satis-
factory. These may be arranged to form a single unit or used as separate probes, but in both cases remember that in use they must be inserted one inch apart.

A new self-adhesive scale (BK67X) is available for the meter (RX54J), and this should be fitted as follows:

Remove carefully the plastic front of the meter and undo the two screws holding the scale to the meter body, noting roughly the positions of the two end stops. Remove the scale plate from

Figure 1. Circuit diagram.

MOISTURE METER PARTS LIST
Resistors - All 0.4W 1\% metal fim unless specified.

Rest	Resistors - All $0.4 \mathrm{~W} 1 \%$ metal fim unless specified.		(M330R)
R2	39k		(M391)
R3	1 ko		(M1K)
R4	10k		(M10K)
R5	470k		(M470K)
RV1	1 kO lin pot		(FWOOA)
RV2	100k lin pot		(fW05F)
Semiconductors TR1	BC548		(QB730)
Miscellaneous			
S1 ${ }^{\text {K1 }}$	Switch (Rotary Sw 68) Jack skt 3.5		$\begin{gathered} \text { (FF74R) } \\ (\text { HF82D } \end{gathered}$
PLI	Plug plas. $3-5$		(HF80B)
M1	Meter		(R×541)
	PP3 chip		(HF28F)
	Poting box small		(LH57M)
	Moisture scale		(BK67)
	Cable single black (2 metres)		(XR*2N)
	Wire (Hook up) black (as req.)		(BLOOA)
	Potting compound.		(L. 022 C$)$
	Isonuts M3	1 pkt	(BF58N)
	Isoshake M3	1 pkt	(BFF44)
	Systofiex 2 mm black	1 metre	(BH06G)
	Bax AB13		(LFF14Q)
	knob Kl0A	3 off	(RK89W)

Figure 2. Wiring.
the meter, taking care not to bend or damage the needle assembly. Remove the backing from the new scale and align it with the scale plate, pressing it down from one edge to the other and ensuring that no air bubbles are formed.

Reassemble the scale plate to the meter body, checking that the needle end stops are in the correct position by gently blowing the meter needle to its extremes and making sure that these are just beyond the extreme markings on the scale. The end stops should be adjusted if necessary before tightening the screws. Replace the front cover.

Calibration

The meter calibration should be checked before use. This is accomplished as follows:

1. With S1 to OFF check the zero reading of the meter and adjust the screw on the meter front if necessary. 2. With S1 to A adjust RV1 until the meter reads Cal A on the scale.
2. With S1 to B adjust RV2 until the meter reads Cal B on the scale
3. Switch to ON. The meter is now ready for use.

If these readings cannot be obtained a new battery may be required.

Use

The meter is used by pressing the two probes hard onto the surface under test, and holding them about one inch apart. The reading should then be taken from the appropriate scale. The tips of the probes should enter about a quarter inch into wood, if it is the surface under test. If there is heavy condensation then the surface should be wiped dry before taking measurements.

Scales

Any surface may be considered dry if the needle does not move from zero, or is less than 0.1 on the reference scale.
March 1983 Maplin Magazine

Figure 3. Typical probe detail.

Wood

The normal moisture content of timber varies with the temperature and type of wood. The upper two scales (WOOD 1 and 2) are used to test the following types of wood:
WOOD 1: Close grain types, e.g. ash, oak, beech, douglas fir. These woods are often found in older properties. WOOD 2: Open grain timber, e.g. whitewood, redwood, deal.

A normal reading for wood is about 10 to 12% in heated locations and 15% in unheated locations. Any reading above normal could indicate dampness
problems, any new timber may begin to deteriorate if left untreated when it is above this level. Dry rot can thrive in wood with a moisture content of 18% or above. When the reading is above 28% the wood has reached fibre saturation point, and this is marked on the scale as 'F.S.P.'

Reference

The reference scale is used as a guide to the moisture content of brick, plaster, concrete, and various building materials, although some types of building blocks have a high carbon content, and therefore will not give a true reading. If there is any doubt a known dry sample should be tested to make sure that no reading is obtained. The source of dampness may be found by taking several readings and noting the area(s) in which the highest reading occurs, this being nearest the source of moisture.

A surface reading of 1.5 on the reference scale indicates that the surface may be painted with emulsion or water-based paints, and a surface reading below 0.5 may be covered with oil-based paints. Any reading above 2 should definitely not be painted.
 siastic amateurs. However, in the last couple of years several manufacturers have done their best to fill the gap in the market, and have produced instruments which fit the needs and the pocket of the electronics hobbyist. This article has been written as an introduction to what a CRO is, how to use it, and what it can do for you

The Cathode Ray Tube

Although a modern (and expensive) professional oscilloscope may look very complicated, and have extra features not found on cheaper ones, all scopes consist of the same basic units, as shown in figure 1. The most important part of the scope is the cathode ray tube (CRT). This consists of four main parts: the cathode filament, the acceierator, the plates, and the screen. The CRT works by producing electrons at the hot cathode and forming them into a narrow beam, which is aimed at the fluorescent screen through deflection plates. By varying the electric potential of the deflection plates, the beam can be bent to produce a small fluorescent dot on the screen. This 'bending' of the beam can be done very fast to produce an apparently continuous line or 'trace' on the screen. This is exactly the same

technique as that used to produce a TV picture, although the beam bending is usually done electromagnetically with a TV CRT. The trace on most general CROs is usually green. This is because the phosphor with the highest brightness, known as P31, gives off green light, although other phosphors, used for special purposes, can be different colours. The part of the tube that
produces the electron beam is often called the electron gun, as it literally 'fires' electrons at the screen. As many modern scopes display two or more traces, it is necessary to have either more electron guns, or, more commonly, to switch the beam from one trace to the other so fast that the effect cannot be seen on the display. More of this later.

Figure 2. Timebase (sawtooth) waveform.

Display Methods

As previously mentioned, most modern scopes have two separate traces, usually derived from one electron gun. The elec tronic switching to obtain two traces takes two different forms. ALTERNATE and CHOP PED operation. The choice is left to the individual, as both have advantages over the other, hence the appearance of the CHOP/ ALT switch as part of display mode controls In alternate mode the upper and lower traces are scanned alternately (hence the name) i.e. the signal applied to channel one is displayed in one sweep time and then channel two waveform is displayed in the next. The vertical positions of the two traces can be altered of each other, allowing waveforms to be compared directly on top of each other if necessary. This mode of operation has the disadvantage of not necessarily displaying both signals in correct time relationship, i.e. two signals that are occurring at the same time may appear slightly displaced when alternate scanning is used. This is not a problem with chopped mode.

Instead of displaying a whole trace of one channel, then the other, as in alternate mode, a small part of one trace is displayed, then a small of the other. This continues until both traces are fully displayed. Thus the two traces are displayed together, and no distortion of the time relationship is possible The main disadvantage of chopped operation is that for a good clear display the 'chopping frequency' should be at least 100 times greater than the frequency to be displayed. As the chopping rate is normally fixed, this limits the maximum frequency at which it can be used. Exceeding this limitation results in the waveforms appearing as a series of dashes on the screen.

To use a scope as a measuring instrument the calibration of the scale must be known. The scale is usually a grid of 1 cm squares, with units of volts per cm vertically and seconds per cm horizontally. Both are variable, either in steps or continuously, giving typical scales of 50 V to 10 mV per cm and 5 sec to 0.1 us. The time and voltage divisions are calibrated during manufacture, and the manufacturers data should be studied to obtain accuracy figures for the scope in use. For the majority of scopes $\pm 3 \%$ of the displayed value is typical, and this should be remembered when deciding whether or not to use a scope for a parti cular measurement. As an example, if the display on the tube is 3 cm high and the vertical amplifier is set to 1 V per cm, the signal has an amplitude of $3 \mathrm{~V} \pm 3 \%$. Note that there is often additional error caused by the thickness of the trace, therefore there is no point in measuring the height of the waveform as 3.125 cm when the thickness of the trace is likely to be about 0.05 cm . The focus and brightness controls should be set to produce a fine and clear line to minimise this form of error. An important point to remember is that excessive brightness can cause the phosphor on the screen to 'burn', producing dark spots on the screen which are permanent damage that can only be rectified by replacing the tube (expensive, even on cheap scopes).

Probes

No scope is of much use unless it can be connected to the circuit to be tested, and a piece of leftover mains cable will not do! The reason for this is that the world is full of electro-magnetic waves, produced by anything that uses electricity (including the scope itse(f), that are all too easily picked up by an unshielded cable. Nearly all scopes have socket inputs of the BNC type, and for
the minimum requirements a scope lead may consist of about 2 m of coaxial cable with a BNC plug at one end and a pair of small 'croc clips' at the other. Generally it is much better to use a proper oscilloscope probe. These are priced at around $£ 15$. Only two types are usually available to the hobby ist, the X1 and X10 multiplier probes, some times combined in one unit with a switch. A Xl probe has no effect on the input signal, and only serves to match the impedance of the scope to that of the circuit under test in such a way as to minimise distortion of the signal. A X10 probe is used for the same purpose, but also increases the input impedance of the scope, typically from 1 M to $10 \mathrm{M} \Omega$. This is of use where the signal to be displayed comes from a high impedance source, i.e. very little current can be drawn without affecting the signal being studied. These probes also reduce the effective capacitance applied to the circuit, which is of greater value when higher frequencies are being used. The disadvantage of the X10 probe is that the signal into the scope is reduced by a factor of 10 , hence any measurement of voltage will be 10 times too small, and must be multiplied by 10 to give a correct result. Other probes the reader may come across are 'active probes', which are to produce a very high input impedance, and 'current probes', which, when placed around a wire, produce a voltage output propor tional to the current flowing in the wire Under no circumstances should an oscilloscope be connected to a voltage greater than the maximum indicated by the manufac turer, or serious damage may occur.

Another common mistake is to connect the 'ground' of the probe lead to a point which is not at ground potential. For safety, the scope is connected to the mains ground but it is not always true that the chassis of the equipment being tested is also grounded. Look at the circuit and make sure that you choose an earth point at earth potential, or current will flow in the earth conductor and probably blow a fuse, or worse!

Usage

Now that you have some idea of how a scope works, what can you use it for? DC voltage measurement is just a case of grounding the input, selecting DC coupling, setting the V / cm control to a suitable value and positioning the trace on one of the grid lines. Applying the probe to a point on a circuit will give a deflection which can be interpreted as a voltage using the scale (remember to connect the ground lead to zero or ground potential). If an AC voltage is present the waveform can be seen, and its peak-to-peak value obtained. This is the voltage from the top to the bottom of the waveform. Most volt-meters are calibrated in RMS (root mean square) volts, and so if an RMS reading is wanted it must be converted. For a sinusoidal voltage the RMS value is 0.707 times the peak value, which is in turn half the peak-to-peak value e.g. a waveform of peak-to-peak value 10 V has a peak value of 5 V and an RMS value of 3.535 V . Most scopes have a switch which allows the input to be either AC or DC coupled. When in the DC position both DC and $A C$ voltage can be measured, but if there is only a small AC voltage with a comparatively large DC (as with ripple on a DC supply) it may be difficult to measure the $A C$ component. By switching to AC coupling the DC can be removed and the ACcan be easily measured

As the X axis is calibrated in time, it is just as easy to measure the period, and hence the frequency, of a waveform. Once a stable display is obtained, using the trigger concontinued on page 53

FOUR

To follow on from his popular series Starting Point, Robert Penfold has produced some simple but useful circuits for the inexperienced constructor to try his or her
hand at. We show veroboard layouts, chrcuit
diagrams and parts lists - the rest is up to you.
All you have to do is follow the instructions.

Portable Stereo Amplifier

This amplifier is battery powered and is built into a case about 500 mm wide which also houses the two loudspeakers. It is intended for use with a personal stereo cassette player, radio, or radio/cassette unit, and it enables loudspeaker operation to be obtained without losing portability. In effect it converts a personal stereo unit into a conventional stereo radio or cassette unit, but when maximum portability is needed the personal stereo unit alone can be used.

The circuit is based on a LM377N dual audio power amplifier device, and the two power amplifiers in this device are rather like operational amplifiers having high current output stages. The amplifiers are used in the non-inverting mode with the non-inverting outputs biased to an internal potential divider circuit of the LM377N which has its output at pin 1. C9 provides decoupling of this bias voltage. The negative feedback loops give the amplifiers a voltage gain of only about 15 dB (5.5 times), and a higher level of voltage gain would be pointless since personal stereo units provide a fairly high output voltage of about 1 volt RMS. Using a 12 volt supply (eight 1.5 volt drycells or preferably ten AA NiCad cells) the circuit provides a maximum output power of about 1 watt RMS or so (per channel) at low distortion. The volume, balance, and tone are adjusted using the controls on the personal stereo unit.

When S2 is open R7 results in the two output signals being mixed together to a certain extent, but they are mixed in such a way that signals in both channels tend to partially cancel out one another, and this boosts the channel separation. With the limited loudspeaker separation of the unit this can produce a better stereo effect, but how well or otherwise this system works depends to a large extent on the programme source used. However, in most cases it seems to give a more spacious and realistic effect.

Figure 1. The portable stereo amplifier circuit diagram.

THE PORTABLE AMPLIFER VEROBOARD ASSY PARTS LIST

Sinewave Generator

Most Wien Bridge sinewave generator circuits use an expensive thermistor to stabilise the output signal level so that low distortion and no significant change in output amplitude with variations in output frequency are produced. This circuit uses an alternative approach with an automatic gain control circuit based on an operational transconductance amplifier being used to provide the output stabilisation. The noise and distortion performance is not equal to the best thermistor stabilised circuits, but at well under 1% it is more than adequate for most purposes including accurate frequency response measurements. There is no significant variation in the output level over the frequency range of the unit, which is approximately 15 Hz to 150 kHz in four ranges $(15 \mathrm{~Hz}$ to $150 \mathrm{~Hz}, 150 \mathrm{~Hz}$ to $1.5 \mathrm{kHz}, 1.5 \mathrm{~Hz}$ to 15 kHz , and 15 kHz to 150 kHz).

Normally circuits of this type use an operational amplifier with a controlled amount of negative feedback to maintain the voltage gain at the correct level,

Figure 6. The wiring for the sinewave generator.

Figure 5. The sinewave generator circuit diagram.
March 1983 Maplin Magazine

THE SINEWAVE GENERATOR VEROBOARD ASSY PARTS LIST

Resistors - All 0.4 W metal film 186			
R1,2	3 k 3	2 off	(M 3 K 3)
R3,4	10k	2 Off	(M1OK)
R5	4 k 7		($\mathrm{N} / \mathrm{S}^{\prime} \mathrm{K} 7$)
R6	100 R		(H L00R)
$R 7$	6 k 8		(\%6K8)
R8	22k		(M22K)
R9	39k		(M39K)
R10	15k		(M15K)
RVI	100k dual pot lin		(FW88V)
RV2	Itho pot lin		(FWOOA)
Capacitors			
$\mathrm{Cl}, 2$	100uF 25 V axial electrolytic	20 ff	(FE490)
C3,10	100pF 1\% polysty	2 off	(B×46A)
C4.9	1 nf polycarbonate	2 off	(WW22Y)
C5,8	10 nF polycarbonate	2 off	(WW29G)

$\mathrm{C} 6,7$
$\mathrm{Cl1}$
$\mathrm{Cl2}$
$\mathrm{Cl3}$

Semiconductors

D1,2	IN4148
TR1	8C109C
IC1	1458 C
IC2	CA3080E

Miscelitaneous

\section*{| S 1 |
| :--- |
| S 2 |
| |
| |
| 1 kl |
 JK1}

B1

100 nF polycarbonate	2 Off	(WW41U)
33 uF 150 эxial electrofytic		(F8350)
10 ¢f 25 V axial electrolytic		(FB22Y)
47 LF 25 V axial electrontic		(F839/6)
1N4148	2 off	(QL80B)
8C109C		(QB33L)
1458C		(QH46A)
CA3080E		(YH58N)
3-pote 4-way rotary $5 w 4 B$ SPST sub min togeie A		$\begin{aligned} & \text { (FF75S) } \\ & \text { (FHOOA) } \\ & \text { (HF90X) } \end{aligned}$
Jack socket mono plastic PP3 battery		
PP3 connector		(H [28F)
Veroboard holes strips		
0.1 inch matrix		
Plastic or metal case		
Connection wire as reg.		(BL09K)
Knob	3 ff	

but in this case a current controlled amplifier based on a CA3080E transconductance amplifier (IC2) is used. IC1 is used to provide buffering at the input and output of the amplifier so that it has a high input impedance and a low output impedance. R7 provides a strong bias to the amplifier input (pin 5) of IC2 so that the circuit has a high voltage gain and initially produces a high output level of low purity. Some of the output signal is coupled by Cl 2 to a rectifier and smoothing circuit which generates a positive bias which switches on TR1. This diverts some of the bias current from the amplifier bias input of IC2, and by a simple feedback action stabilises the output level of the circuit at approximately 2 volts peak to peak. RV1 enables the output level to be adjusted from this maximum figure down to zero.

The current consumption of the circuit is about 4.5 milliamps

Veroboard layout.

Headphone Enhancer

When headphones are used with an ordinary stereo (non-binaural) programme source proper stereo imaging is not obtained. The stereo image when using loudspeakers stretches from one loudspeaker to the other producing a
sound-stage in front of the listener, but when using headphones the soundstage is from one earphone to the other and therefore within the listener's head! This obviously gives far from realistic results, and the effect can be a little disturbing.

There are ways of obtaining a more spacious effect, and the most simple of these is to reverse the phase of one channel so that the two channels are out of phase and fail to produce a stereo image. With this method sounds tend not to have any definite apparent origin,

Figure 4. The veroboard layout and wiring for the headphone enhancer.
but have a vagueness in this respect. A better effect is produced using a compromise between normal stereo and out of phase stereo, with the two channels in phase at some frequencies and out of phase at others. This gives a more vague and spacious effect than normal stereo, but does not totally destroy the stereo imaging.

The circuit shown here is a simple phase shift circuit which can be used as a headphone enhancer. ICla is a straightforward inverter, and IClb is used as a conventional phase shifter. At low frequencies C4 has no significant effect and IClb acts as an inverter so that there is no phase shift through the circuit as a whole. At higher frequencies the coupling to the noninverting input through C 4 reduces the phase shift provided by the circuit. This gives zero phase shift at the highest audio frequencies, and a 180 degree phase shift through the circuit as a whole. R5 is used to control the point at which the transition from zero phase shift to 180 degree phase shift commences, and with this component at minimum the circuit gives no significant phase shift at audio frequencies (i.e. normal stereo). At maximum value a large phase shift is produced over much of the audio spectrum. In practice this component is set to give the best subjective results.

The enhancer can be used in either stereo channel, and the output will drive low, medium, or high impedance headphones satisfactorily.

Figure 3. The headphone enhancer circuit diagram.

THE HEADPHONE ENHANCER VEROBOARD ASSY PARTS LIST

Stylus Organ

Conventionally a stylus organ uses a simple oscillator in conjunction with low frequency amplitude or frequency modulation (tremolo or vibrato) to produce a more interesting and musical sound than that given by an unmodulated oscillator. This circuit uses an alternative approach and has two audio oscillators. One of these produces the main audio tone signal
while the other is a few hertz off-tune and mixed with the main signal at about -10 dB . This gives a much "richer" sound than using a single osciliator and in this respect the circuit is at least equal to conventional designs, if not superior.

The two oscillators each use a CMOS 4046BE device which is a low power phase locked loop, but only the voltage
controlled oscillator section of each 4046BE is used in this circuit, plus the internal 5 volt zener diode of IC2 which gives a stabilised supply for the tone generators in conjunction with load resistor R4 and decoupling capacitor C 1 . A number of 100 k preset resistors are used to provide a series of voltages which give the appropriate notes from the tone generator: Thirteen presets are continued on page 63

Figure 7. The stylus organ circuit diagram.
March 1983 Maplin Magazine

WORKING WITH OP-AMPS
 Part 5 by Graham Dixey C.Eng., M.I.E.R.E.

The circuits which follow are mainly concerned with measurements. The ability to measure various quantities to a reasonable degree of accuracy is vital in electronics. Because of the nature of a signal or its source, amplification is often needed, either to raise the signal level to a value high enough to drive a moving-coil meter, for example, or to 'buffer' a high impedance source. In other instances an amplifier may be used in such a way as to 'linearise' the measurement of passive quantities such as resistance and capacitance, so improving scale readability and accuracy. These are all possible applications for the ubiquitous opamp. Some of the circuits described point to possible applications of the op-amp in a particular role; others are complete instrument designs (albeit not very sophisticated) in themselves, ready to be engineered into useful tools for the work-bench. It is hoped that they are all of some interest.

Peak Signal Detector

Voltmeters for measuring a.c. are often 'mean-sensing, r.m.s. calibrated' for sinewave inputs. Sometimes there is a need for a meter that will read peak values of any waveform, the peak signal detector can be used as the basis for such an instrument.

The circuit is shown in Figure 1 and employs two op-amps. One of these, ICl , is the peak detector proper while IC2 is used as a voltage follower to isolate the detector from the output. The function of the circuit is to develop and retain (temporarily) the peak value of an input voltage, whatever the waveform of that input. As shown, the circuit responds only to positive peaks because of the polarity of diode D1. If this diode is reversed then the circuit will respond to the negative peaks instead. Of course, if the input waveform is symmetrical it hardly mattters which peak is being measured since both are the same. However, for asymmetric waveforms it may be useful to be able to measure either peak value at will or even total peak to peak value.

Now for the operation of the circuit. If it is
assumed that the capacitor Cl is initially uncharged (perhaps after re-setting with switch S1) then only if diode D1 conducts can Cl acquire any charge. This will be achieved for any positive input, no matter how small, since the high gain of the op-amp will ensure that D1 is forward-biased. To appreciate the scale of this statement, assume that the diode needs 0.6 V of forward bias and the op-amp gain is 10^{5}. Then the peak input signal to cause the diode to conduct (just) is $0.6 / 10^{5}=6$ microvolts. Thus, the circuit is capable of responding to very small signal levels though it will undoubtedly need some gain later to make use of it, even assuming that 'noise' doesn't get into the act. An essential feature of the circuit is that it remembers the largest peak applied to it; the voltage developed across Cl only changes upward, never downward (except that the charge on Cl decays slowly once the input level has been reduced). Thus, if three successive positive peaks, of values $1 \mathrm{~V}, 3 \mathrm{~V}$ and 2 V are applied to the circuit, it will store the 3 V peak and disregard the later 2 V peak. This happens because whenever the input voltage is less than the capacitor voltage, the diode becomes re-verse-biased and there is only the input impedance of the op-amp as the discharge path for C1. To answer the question, 'when does the capacitor stop charging up?', the answer is that it does so when the voltage at the inverting input equals that at the noninverting input.

Figure 2 shows the ideas of Figure 1 extended to measure peak to peak values of any waveform. IC1 and IC2 respectively measure the positive and negative peaks of the input waveform. These peak values, $V_{p 1}$ and $V_{p 2}$ may or may not be equal. The total peak to peak excursion is $V_{p 1}+V_{p 2}=V_{p t}$. This 'total' voltage is developed by using a 'subtractor' circuit, based on IC3. This works because the output of IC3 is the difference between its two inputs which are of opposite sign anyway. Thus, $V_{p t}=V_{p 1}-\left(-V_{p 2}\right)$
$=V_{p 1}+V_{p 2}$

The Linear Rectifier

This circuit, shown in half-wave form in Figure 3, uses the high gain of the op-amp to 'linearise' the conduction of a rectifier diode. As is well known, a silicon diode needs about 0.6 V in the forward direction before conduction commences; which means, of course, that at low signal levels the d.c. output may be negligible or zero. Linearising the operation means that the rectifier output is made to be directly proportional to the signal input, whatever its size. Characteristics for normal and linear operation are also shown in Figure 3.

The circuit acts as an inverter, the point being that the feedback loop is only completed when one or other diode conducts. Up to this point the op-amp operates at full open-loop gain. This means that if the openloop gain is, say, 10^{5} then the input required to start a diode conducting is about 6 microvolts. Once a diode is conducting the gain is unity since it is then defined by either R2/R1 (negative half-cycles) or R3/R1 (positive half-cycles), the usual expression for the gain of an inverter. Two outputs are available, either positive or negative going. The circuit does not have to be used at unity gain. For example, if R2 and R3 are both increased to $100 \mathrm{k} \Omega$, the gain is slightly less than five.

If a full-wave rectifier is required, the circuit of Figure 4 can be used. The two separate outputs of the original circuit are each given unity gain by a second op-amp IC2 and, at the same time, the negative halfcycles are inverted to give a full-wave output.

High Impedance d.c. Voltmeter

A limitation of moving-coil multimeters is their low terminal impedance for small voltages. For example, if a typical sensitivity of $20 \mathrm{k} \Omega / \mathrm{V}$ is considered when the voltmeter is on the 3 V range, then the impedance that the meter presents to the test circuit is only $20 \times 3=60 \mathrm{k} \Omega$, which may not always be

Flgure 1. Peak Voltage Detector

Figure 2. Peak to Peak Voltage Detector.

Figure 3. Linear Rectifier (Half-wave)

Figure 4. Linear Rectifier (Full-wave)
high enough. This is Decause the lack of any amplification means that the meter has to draw all of its current from the test circuit. Using the op-amp allows gain to be interposed between the test point and the meter. Hence, two advantages accrue; the input impedance is increased and smaller voltages can be measured with an accuracy not possible with conventional multimeters.

There are a variety of ways of achieving these aims and Figure 5 shows an approach based on the use of an op-amp in the noninverting mode. The gain is determined by R8, RV2 and R9 and is set at 200 by these values. Since this gain is only required at the lowest full-scale input value (100 mV), an input attenuator is used (R1-R6) to reduce the input level on other ranges. Any of the full-scale inputs will give 10 V d.c. at the output of the op-amp thus, if using a 1 mA meter, R7 and R10, together with the resistance of the meter should equal $10 \mathrm{k} \Omega$. The arrangement is not critical since RV2 is used to make slight gain adjustments i.e. is used to calibrate the instrument.

The result is an instrument that will measure direct voltages down to a few millivolts at an input impedance always better than $100 \mathrm{k} \Omega$.

A Linear Ohmmeter

The measurement of resistance is usually carried out in one of two ways, either with a bridge or, more likely, using the resistance facility of a multimeter. A bridge that is of any real use is likely to be expensive so that the amateur (and many professionals) resort to the multimeter to sort out the values of unknown resistors. Unfortunately, because of the basic principle on which it works deflection being inversely proportional to resistance - the scale is decidely nonlinear. This is acceptable for rough and ready checks but rules out measurements of any precision. Once again the op-amp comes to the rescue; since the gain of an inverting amplifier is directly proportional to the value of its feedback resistor then, for a constant and precise input, the output is directly dependent upon the value of this feedback resistor. By making the unknown resistance act as the feedback resistor, the output obtained, indicated on a movingcoil meter, directly relates to the unknown resistance. The idea can be extended to measure different ranges of resistance by switching in different values of input resistor. The circuit is shown in Figure 6.

The part of the circuit centred on
transistor Q1 provides a stable standard voltage - in this case IV. This is adjusted precisely by means of RV1 when a voltmeter is connected between its wiper and OV to set up this standard value. This stabilised voltage is the constant input to the inverting amplifier. The input resistors are R3-R6 and their values are equal to the full-scale resistance value of the range selected. Thus, as shown, there are four ranges, selected in decades, from $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ full-scale. Obviously alternative values could be used although those shown are probably as useful as any. A pair of terminals is provided for the unknown resistor Rx and these are shunted by a $1 k \Omega$ resistor R 8 in series with a normally closed push-button switch. Some arrangement like this is necessary to protect the meter because, if the Rx terminals are open while power is applied to the circuit, the amplifier will then have its full open-loop gain with the result that the output will go into negative saturation. The result would be that the meter pointer would endeavour to wrap itself around the end stop. With R8 equal to $1 \mathrm{k} \Omega$, the gain can never exceed unity when S2 is closed. Pressing S2 replaces the $1 k \Omega$ resistor with $R x$ and the meter will read its value. Similar reasoning
continued on page 53

by Dave Goodman

* Audio input for sound on TV speaker
 * Video reversing switch for normal or inverted display * Can be used with our sound generator or voice synthesis modules

Sound effects, whether they are taped voice for narration purposes or 'laser blasters' and 'photon zappers', will give an added degree of reality to computer programs. This is especially true for the ZX81, with its low resolution Graphics mode and Plotting displays, but unfortunately facilities for audio signal processing have not been included as part of the system hardware, and must be fitted externally.

Circuit Description

The heart of the system is MODULATOR 1, which produces a 591.5 MHz vision carrier. This is used to drive a UHF TV set (either monochrome or colour), but will only produce a black and white picture.

All necessary video modulation signals, along with frame and sync pulses, are produced within the ZX81 circuitry. Figure 4 shows the basic waveform connected to pin 4 (the video input).

An externally produced audio signal

Figure 1. Circuit diagram
is connected to pin 2, via C4, to MOD 1 , and this is used to frequency modulate a 6 MHz sound carrier that is generated internally. Both video and sound subcarriers are then added to the vision carrier, and the input to the TV set is via the aerial socket. RV3 can be adjusted to 'tune' the audio signal carrier if required, and RV1 can be set to give the desired contrast level on the TV display (see setting up details).

To achieve a satisfactory sound output from the TV speaker a minimum of 100 mV peak input level is needed, but signals in excess of IV peak may produce distortion, and will need to be attenuated with a suitable resistor. Note that Maplin sound modules develop the correct signal levels, and will not need adjusting.

REG 1 has been added so that the positive rail (pin 1) can be connected to a separate PSU or to the ZX81 PSU direct, with a dual 3.5 mm connector. This saves taking the computer +5 V rail into the outside world with possible disastrous consequences.

As an extra facility to this project, circuitry has been added to invert the produced display, for white printing on a black background. This effect can be invaluable if eyestrain is to be prevented when using the computer for long periods. To produce this effect it is necessary to invert the video waveform before connecting into MOD 1, but if the composite signal is inverted, the frame and sync pulses will be also, and the picture will be lost. The waveform in figure 4 shows the correct levels for operation and TR1 inverts both video and sync signals. RV2 sets the conduction point of TR1 so that the peak black and white signals can be adjusted March 1983 Maplin Magazine

Figure 3. Modulator pin-outs

Figure 4. Waveforms
for definition. TR2 conducts to the negative sync. pulse, and pulls the potential set at R4 and R5 down to 0 V , keeping the sync pulse negative but allowing the video to remain inverted. Sl selects either inverted or normal video, so that preprogrammed cassettes can be used without problems. Note that no facility exists for driving a monitor screen, although the video in, from $\$ 1$, could be connected by an emitter follower for this use, but this would be a matter for further experimentation.

Figure 2. PCB and legend

Construction

Building the project is quite straightforward. Ensure that the OV pins 3 to 5 and 6 are soldered to both sides of the PCB OV (earth plane). MODULATOR 1 has four legs, which go through the PCB and solder onto the track underneath. Make sure that REG 1, TR1, and TR2 have been inserted the right way round (see legend), and that D1, C2, C3 and C4 are correctly orientated.

When soldering make sure that no shorts exist between tracks on both sides of the PCB. Clean any excess solder from the PCB before use.

Assembly and Setting Up

I must stress here that extreme caution should be exercised when soldering to the $\mathrm{ZX81}$. It is very easy to damage the computer by faulty workmanship, and any manufacturing guarantees will probably be forfeit if this happens, so follow all the instructions carefully.

For all adjustments to pots and dust cores it is advisable to use a plastic trimming tool, as this will eliminate the possibility of damage occurring from breakages.

Set the wipers of RV1, RV2 and RV3 to central positions, then refer to figure 5 connection diagrams. Remove the ZX81 PCB from its case and snip the centre wire coming from the UM1233 modulator halfway between it and the PCB. Take a piece of connecting CO-AX cable, strip both ends about 15 mm down and separate the mesh screen from the inner conductor. Twist, tin, and solder the screen to the outside

PARTS LIST FOR 2×81 TV SOUND/ INVERSE VIDEO

A complete kit of parts is available for this project. Order As LK02C

Price $£ 19.95$
Figure 5. Connections to the $\mathbf{Z X 8 1}$ and TV
edge of the ZX81 modulator case. The inner conductor is then soldered to the cut video input wire protruding from the PCB. The other end of the CO-AX cable goes to pin 4 and pin 5 (OV) on the sound module.

For the positive supply it is advisable to use Plugpak Z (RK27E) and a 3.5 mm plug (HF80B) with the plug tip connecting to positive (pin 1). Supplies between +8 V and +30 V may be used here, so it can be safely connected to the ZX81 PSU using the recommended adaptor. Solder the plug sleeve to OV (pin 6).

Figure 6. Box drilling details and dimensions

The ZX81 Extendiboard.

Your Sinclair PSU will then plug into the remaining socket on the plugpak, which then connects into the ZX81 power socket.

Fit a phono to CO-AX lead between the sound module and TV set, then switch on both PSU and TV. Tuning should be around channel 35 . Position Sl to the 'NORM' mode and the ' K ' cursor will appear as normal, but if the picture is grey or lacking contrast then adjust RV1.

Set S1 to the 'INV' mode and adjust RV2 for peak black background and minimum white streaking. Try entering a CHR\$ SET print routine for full character display, then balance RVI and RV2 in appropriate modes for picture clarity. Note that TV contrast and brightness may need to be adjusted when switching between modes.

Audio signals should be connected to pins 2 and 3 (OV) with screened cable. Approximately 100 mV peak sig. nal is required, although levels up to IV peak may be acceptable. Applya sound source, either a signal generator or a sound producing module if you possess one, to the audio input. Slight retuning of the TV may be necessary to balance sound and video reception. Switch between modes (S1) and ensure that sound is available on both settings.

Figure 3 shows the UM 1286 MODULATOR and tuning cores. Although not advisable, slight adjustment of the two marked A and B can be made with a plastic trimming tool for improved sound and picture reception, but only do this if you feel there is real room for improvement. It is recommended that you fit this project into a box, and figure 6 shows drilling positions for the switches and sockets etc.

Figure 3. Using a resistor to see a current waveform.
trols, the period can be measured as the time taken for a given point in a waveform to re-occur, e.g. if a waveform completes one cycle in one cm on the screen and the time/division selector is at 1 ms per cm , then the period is one millisecond, and the frequency, given by the reciprocal of the period time, will be 1 kHz .

Time and voltage measurement are the basic functions of an oscilloscope, but it is not difficult to use it for other purposes. If you need to see a current waveform, then a known resistor, small enough not to greatly affect the circuit under test, can be put into circuit, and the scope connected across the resistor. The voltage waveform on the screen will then be proportional to the current flowing in the resistor, as $V=I R$ (see figure 3). A current probe uses a different principle, which does not affect the circuit, but these are very expensive, certainly much dearer than a resistor, and not widely available.

Another quantity of interest is phase. This can be seen on a scope by displaying the
waveforms on a dual beam scope (prefer ably using chopped mode) and measuring the time displacement by direct comparison. An alternative can be used when there is an external X input and both waveforms are sinusoidal. The two signals are fed to the X and Y inputs, producing what is known as a Lissajou figure. This will be a diagonal straight line if the signals are in phase, but will appear elliptical if there is a phase difference. Figure 4 shows the display and how to obtain the phase angle value.

Fault-Finding

To use a scope as a test or fault-finding instrument, it is of course necessary to know what waveform is to be expected of a given point in a circuit. This information can often be found in service manuals, but an understanding of how a circuit works is essential if a scope, or indeed any other instrument is to be used for fault-finding. Fortunately many of the circuits published in the hobbyist magazines have detailed descrip-

$C D$ is the maximum height of the trace. $A B$ is the height of the ellipse at its centre. For accuracy adjust gain for a large as possible display. The diagonal will be the other way if the signats are 180° out of phase.

Figure 4. Phase measurement using Lissajou

 figures.tions of how each circuit works, and these can be of great help. Often it is possible to 'follow' a signal through a circuit from input to output, and see with a scope what each part of the system is doing. In this way each part is checked until an unexpected result appears, indicating a fault.

There are many books on the subject of fault-finding with a CRO, and they cover in greater detail than is possible here how to check different types of circuits. With experience you may be able to quickly find faults in the most complicated equipment with only a scope. As the cost of these useful instruments decreases, a scope is more and more representing a worthwhile investment to any serious electronics enthusiast, and will help him or her to a greater understanding of their hobby.

WORKING WITH OP-AMPS

Figure 7. Linear-scale capacitance meter.

shows that, when the value of Rx is totally unknown, the highest resistance range should always be selected. To be absolutely safe, a circuit consisting of two germanium diodes in inverse parallel (e.g.0A91s) can be wired across the meter. Resistor R9 and the pre-set RV2 determine the current in the meter, calibration being effected by means of RV2. This is done by selecting the $10 \mathrm{k} \Omega$ range, using a close tolerance $10 \mathrm{k} \Omega$ resistor for Rx (e.g. a decade box or 1% type) and adjusting RV2 for precisely full-scale deflection. This assumes that RV1 has been adjusted already to give exactly IV at its wiper as mentioned earlier. If R3-R6 are all
close tolerance resistors, the instrument will now read correctly on all ranges.

Linear Scale
 Capacitance Meter

There are certain similarities between this circuit (Figure 7) and that of the linear ohmmeter. The obvious difference is that the unknown is in the input rather than in the feedback path. Since it is capacitance that is being measured, the technique will be an a.c. one so that a source of alternating signal will be required whose frequency is variable. Apart from this, the method depends upon
the 'reactance X ' of the unknown capacitor determining the amplifier gain when it is compared with a fixed resistor R2 whose value is $47 \mathrm{k} \Omega$. That is to say, amplifier gain G is equal to $\mathrm{R} 2 / \mathrm{X}$. When these are equal, the gain is unity and the meter can be calibrated to read full-scale under these conditions. Since G is proportional to $1 / X$ and X is proportional to $1 / \mathrm{C},\left(\mathrm{X}=1 / 2 \pi^{\prime} \mathrm{fC}\right)$, then G is directly proportional to C and the scale is linear. RV1 is used to calibrate the meter and can be adjusted to give full-scale with a known value of $C x=10 \mathrm{nF}$ in circuit and an input of IV r.m.s. at a frequency of 338 Hz . The range of capacitance quoted stops at 100 nF because a further decade up to $1 \mu \mathrm{~F}$ would mean an input frequency of only 3.38 Hz unless some other factor can be changed. This 'other factor' is the amplitude of the input voltage. If this is reduced $10: 1$ to 100 mV while the frequency is kept at 33.8 Hz , a further range up to $1 \mu \mathrm{~F}$ full-scale is created.

The main difficulty of the design is the need for a variable input frequency. The significance of this requirement depends upon one's facilities. If an audio-signal generator is available then this can be used, provided that both frequency and amplitude can be monitored with a reasonable degree of accuracy. Failing this, a switched-frequency oscillator with pre-set output amplitude would have to be constructed. This could be based on the op-amp Wien bridge circuit with the capacitor values switched to give the required frequencies. At least it gives one the chance to apply some of the ideas in Part Three of this series.

More Ups and Downs!

The interval between the appearance of these articles is a long time in terms of space exploration, and what follows may well be out of date by publication. Despite this not being the latest 'hot space news', it is useful to look back on some events of the recent past.

The U.S. Space Shuttle has now success fully launched its first commercial payload, a couple of communications satellites, and its future now looks reasonably secure. The Russians are never slow to miss a trick and were able to steal a march on the Americans by launching the first satellite in this manner. The tiny ISKRA-2 (Russian for 'spark'), satellite was launched from the airlock of the Salyut/Soyuz orbiting space station back in May 1982. It never really did anything worthwhile, and, due to its low orbit, fell back to Earth a few weeks later.

One of the more spectacular 'downs' of the last few months was the attempt to put a pay-load into orbit using the European Ariane launcfier. The two satellites, MarecsB and Sirio-2, unfortunately ended their flight at the bottom of the Atlantic Ocean, possibly due to the failure of a fuel pump. This has been something of a major set-back for the European launcher programme, which is intended as a commercial competitor to the U.S. Space Shuttle.

The launch site for this venture is at Kourou in French Guiana, South America. This site is interesting, being only about 5 degrees North of the Equator. By utilising the added velocity of the earth's rotation to the launch velocity, a 17% 'throw weight' advantage is obtainable over Cape Canaveral. At the moment, however, this must be cold comfort to those involved in prepar ing Ariane, which still seems beset by development troubles

OSCAR-9 is back!

Not that it ever went away, but this latest of a series of Amateur satellites has had its problems. During the time between this and the first article of the series, UOSAT/ OSCAR-9 has been effectively 'off the air'. At the time of its launch, now well over a year ago, it was expected to provide a stimulus for interest in satelites by schools and colleges. Fortunately, control of the craft has now been regained, and attempts to stabilise its orbit should have been completed successfully. This satellite contains a number of interesting scientific experiment packages, including a TV type camera and a Speech Synthesiser. The camera is intended to produce pictures with a resolution of about 2 km , but it remains to be seen if this hitherto untried method of obtaining a 'satellites eye - view' of earth will prove to be successful.

The second experiment mentioned above is intended to transmit data from some of the other experiments on board in the form of synthesised speech. Again, at the time of writing, this has yet to give a proper account of itself! If UOSAT/OSCAR-9 proves to be of continuing interest, and these experiments can be made to work properly, more details of their reception may be given in a subsequent article. In the mean time, its telemetry beacon may be heard on a frequency of 145.825 MHz , if you possess a suitable receiver; the signal strength from the satellite is quite good, and it can be picked up on a 'hand-held' receiver on close passes. This brings us neatly to the next problem, that of finding out when an orbiting satellite is passing overhead.

Part 3 by Mike Wharton

Figure 2.

Where are all the Satellites?

There are many ways of determining the path of an orbital satellite, from the use of special maps and projections to complicated trigonometry; a simple method is to set up a receiver tuned to the appropriate frequency and to wait for the arrival of the signal, hardly a method to be recommended, though. For anyone with access to a home computer, this possibly represents one of the most convenient ways, for even the much maligned $\mathrm{ZX}-81$ has better computing power in this respect than the Petappletandy machines. Before looking in more detail at this method, let us consider the problems involved, without getting bogged down in any maths.

The best 'viewpoint' from which to look at the problem is that of someone in outer space, when the earth/satellite system would look like that shown in Fig. 1. Most of the orbital satellites have trajectories which carry them in more or less circular orbits towards the North and South Poles; those satellites with highly elliptical orbits are difficult to predict, and will not be considered here.

In defining the orbit of a satellite there are certain parameters which must be known; the time taken for it to travel once round the earth is called the Period, and twice in each circumnavigation the satellite crosses the Equator. The time at which it crosses on its North-bound journey is a useful reference point, usually given as the Equator Crossing Time. It is also necessary to know the Altitude, or height above the earth's surface, of the satellite. Whilst the satellite is orbiting the earth, this, too, is rotating on its axis once every 24 hours and must be taken into account in the calculation. Thus if, for example, a satellite crossed the Equator at exactly midday, and its Period was 60 minutes, then it would cross the Equator going in the same direction at 13:00 hours.

During this time the earth would have rotated through 15 degrees, i.e. $360 / 24$. Thus if the Longitude at which the satellite crossed the Equator is known, then the crossing point and time can be predicted for subsequent orbits. Not everyone, of course, lives on the Equator, and we need to be able to preduct passes over the British Isles. For this we also need to know the Angle of Inclination of the orbit, shown as \emptyset in Fig. 1. The task of calculating the position of the satellite then resolves into two parts, that of finding its position over the surface of the earth, and then exactly which location will be underneath the path at a particular time.

It is not necessary to be directly below an orbiting satellite in order to receive a radio signal from it (incidentally, they are all too small, too high and moving too fast ever to be seen with the naked eye). Thus, depending on the altitude of the satellite, signals should be of adequate strength as it rises over the horizon and passes either to one side or the other, fading away as it then sets below the horizon. If one is attempting to receive the signals on a directional antenna, such as a 2 metre Yagi, then it is important to have some idea of the path which the satellite will describe as it passes by, so that the antenna may be tracked round to follow the source of the signal. To do this, one needs information on the Azimuth and Elevation of the satel. lite as it passes overhead. Fig. 2 explains these two terms; Azimuth is used to describe the position of the satellite with respect to an observer standing at the centre of a circle, with due North being zero (and 360 degrees) and South being 180 degrees. The Elevation is the 'height'. in degrees, which the satellite attains during its pass, with the horizon being at zero degrees and a point directly overhead being at 90 degrees. The use of a globe of the earth may be helpful in trying to visualise all these aspects of the problem.

In order to determine the Azimuth and Elevation of an orbital satellite as it passes close by then, one needs to know the time and Longitude of its Equator Crossing, the Period, its Inclination, its Attitude and your own Latitude and Longitude. These last two are fairly easy to find by using an Atlas, but the other information can be more difficult to come by. This is aggravated by the fact tha the parameters are constantly changing, for although space is usually regarded as being empty, there is sufficient material to exert a drag on the satellite and gradually slow it down. This means that it is not possible to predict satellite passes too far into the future without continually updating the relevant parameters. For this reason it is suggested that any preliminary attempts at satellite tracking be made on the above mentioned UOSAT/OSCAR-9, since the University of Surrey provide a source of up to the minute information. This can be obtained for the price of a phone call, to Guildford 61202. where a recorded message will give the latest orbital parameters. You may find it difficult to copy them down correctly the first time, as the information comes thick and fast, and it is suggested that a cassette recorder is rigged up to tape the message. Table 1 gives the orbital parameters and Equator Crossing time as of the 4th January 1983.

Table 1 Orbital Parameters and Data for 4th January 1983		
Period: 9 Inclinatio	08656 minutes 97.46°	MEAN ALTITUDE: 550 km Longitude increment: 23.93°
Orbit No:	Equator Crossing Time (hours:mins:secs)	Equator Crossing Point Degrees West of Greenwich
$\begin{aligned} & 6890 \\ & 6891 \\ & 6892 \end{aligned}$	$\begin{aligned} & 13: 09: 17 \\ & 14: 44: 59 \\ & 16: 20: 41 \end{aligned}$	$\begin{aligned} & 330.50 \\ & 354.43 \\ & 18.36 \end{aligned}$


```
*. }10\mathrm{ fEM AZIMUTH/ELEVATION TAELE FQf OSCAR-9
    20 CLS
    30 FFFINTTAE(12,2); "OSCAR 9 AZ-EL"
    40 FFINTTAE(3,10);"What is the LATITUDE of your statıon. Enter in Degrees NOF:
TH"::INFUT LA
    50 CLS
    60 FFINTTAE(3,10); "What is the LONGITUDE of your station" Enter in Degrees we
5t.":INFUT LO
    70 CLS
    日0 LET L=LA*FI/180
    90 LET G=LO#FI/100
    100 CLS
    110 FFINTTAE(こ.10);"FLEASE ENTEF THE TIME OF EQUATOR CFOSSING AS HHMM {EG I.ja4S
)"
    120 INFUT X$
    130 IF VAL X $0O OR VAL X$=2400 THEN GOTO 110
    140 CLS
    150 FRIINTTAE<3, 10);"FLEASE ENTEFi EQUATOF CFOSSING EEARING IN DEGFEES WEST (EG
*0.2)"
    160 INFUT W
    170 CLS
    1日0 FRRINTTAB{12,1);"OSCAR 9 AZ-EL"
    190 FifinTTAE(O,J); "EQX ";X$;" Eearing ";W;" Degrees West for Station at
    Long1tude ";LO;" and Latıtude ":LA,
    200 FFIMNTTAE(1,6)"TIME ";TAE(IJ):"AZIMUTH";TAE(こ巨): "ELEVATION"
    210 FRINT..
    220 LET T=6
    2こ0 LET E=ASN(0.99153*SIN(2*F'I*T/95.70日656))
    240 LET C=ACS((COS(2*FI*T/95.70日65G))/(COS E )) +(T/4+W)*FI//E0
    250 LET T=T+Z
    260 IF T>45 THEN GOTO 370
    270 LET Z=ABS (C-G)
    280 IF Z FFI THEN LET Z=ABS (2HFI-Z)
    290 LET D=ACS (SIN L*SIN E+COS L*COS E*COS Z)
    300 IF D%O.4 THEN GOTA 2.30
    *COS D)/(COS L#SIN D ))
    J20 IF C`G AND C<(FI+G) OF C (2*FI +G) OR C< (G-FI) THEN LET AZ=060-AZ
    M-<ATN(6921*SIN D/(6921*COS D-6371))))*57.3
    420
    350 FFINTTAE(2);T$;TAB(16);INT (AZ):TAB(29);INT(EL)
    360 GaTO 230
    360 GCITO 230
    370 FRINT "END"
    300 PFINT "Do you wish to process another set of data for this location? Answer
    Y/N":INPUTA$ :IF A ="Y" OF: A$="N" THEN GOTO З90 ELSE GOTO 3日0
    390 IFA&="Y"THEN GOTO 100
    400 FFINT "Do you wish to alter the latitude and Longitude?": INFUT A&:IF A&="Y
"THEN GOTO 20
    410 STOF
    420 LET X=VAL ( }\textrm{X}$\mathrm{ )
    420 LET X=VAL(X
    440 LET X }1=x-(\mathrm{ INT ( }x/1001)*10
    450 IF x1>=60 THEN LET }x=x+4
    450 IF x1>=60 THEN LET }x=x+4
    460 IF x 2400 THEN LET }x=x-240
    470 LET V ="0000"
    480 LET Y=4-LEN(T)
    490 LET Y=4-LEN(T$)
    500 LET Z$=LEFT$(V$,Y)
    510 LET T $=Z#+T*
    520. RETURN
```


APPENDIX 1

Computer Program

The program given in Appendix 1 has been written for the BBC Computer，but it is possible by taking account of changes in syntax to configure it for many other machines．The only possible problem will be with those machines which do not contain the functions for Arcsine（ASN），Arccos （ACS），or Arctan（ATN）．

When Run，the program should give a table of Times，and the corresponding Azi－ muth and Elevation over 2 minute intervals for the particular pass．Not every pass given in the UOSAT Bulletin will be visible from every point in the British Isles，but to obtain the Time and Equator Crossing Longtitude for consecutive orbits，it is only necessary to add on the time of one Period and then work out the angle through which the earth will have rotated in this time．

Using this method it is possible to work out the Equator Crossing Times for Longti－ tudes around 180 degrees West，and putting these into the program where requested will give the plot for those passes of a North－ South direction．Finally，Appendix 2 shows a sample plot for UOSAT／OSCAR－9 using the data for Equator Crossing Time and Longti－ tude given in Table 1，for an earth station located at 52 degrees North， 2 degrees West． It is recommended that a trial run be made with this data first，to make sure no errors have sneaked in during typing，and if these results cannot be reproduced then check the program before proceeding further． Good hunting！

ROAD TESTING THE M5
 continued from page 14

able, but we are unable to determine whether it was possible to address these locations directly with BASIC-I.

Many people will want to write machine code programs and an assembler will be available for this. Since BASIC is not built into the machine, a full 55.25 K of RAM (once extended) is available to the machine code programmer, and don't forget that none of this is wasted for screen display maps, since this can all be contained in the video processors own separate 16 K of RAM.

Utilities

Two utility programs will be available on cassette as an aid to using the video processor. With the first utility an image is created on the screen then saved to cassette. Sprites for animation are registered int the sprite area of the video processor before program execution, then the program is executed. The user can create any scene or design they wish

The second utility generates the back. ground colours and images. The program creates and registers the colours in the same way as the sprite utility. These utilities can be used with BASIC -I and so do not require either understanding or use of the more complex BASIC-G

Instruction Manuals

Although not yet printed, I was assured by the manufacturers that the technical documentation and instruction guide supplied with the machine reach a very high standard. Operation of the M5 is carefully and simply explained even for the absolute novice.

A separate book is available with the monitor listing and source listing for BASICI. The book explains how the monitor operates and how BASIC-I is programmed. A further book is available giving a complete description of the M5 hardware

Computer Games Limited, the people who sell Activision in the UK have won the rights to sell this remarkable little machine in the home computer market. It should sell for around $£ 190$ including VAT and offers a
lot of power for this price. Later in '83 a $31 / 2$ inch disk drive with over 100 K capacity selling for about $£ 100$ will become available, the first of a new breed of miniature disk drives. With high density storage available at this very low price, the M5 will be a very serious contender in the home computer market.

Maplin are expecting their first deliveries of the M5 in April or May this year.

1. (3) Games for the Atari by S. Roberts (WA47B) (cat. P62)
2. (1) De Re Atari (WG56L) (cat. P62)
3. (-) Master Memory Map (XH57M) (cat. P62)
4. (-) Audio Circuits and Projects by Gra ham Bishop (XW46A) (cat. P41)
5. (9) Cost Effective Projects around the Home by John Watson (XW3OH) (cat. P41)
6. (12) Projects for the Car and Garage by Graham Bishop (XW31J) (cat. P30)
7. (2) Atari Computer Operating System Users Manual and Hardware Manual (WA46A) (cat. P62)
8. (-) Atari BASIC Learning by Using by Thomas E. Rowley (WG55K) (cat. P62)
9. (-) The BBC Micro - An Expert Guide by Mike James (WK04E) (cat. P63)
10. (17) Atari Sound and Graphics by Herb Moore, Judy Lower, and Bob AI brecht (WA39N) (cat. P62)
11. (7) Programming the 6502 by Rodnay Zaks (XW80B) (cat. P54)
12. (-) VIC Programmers Reference Guide (WA33L) (cat. P63)
13. (8) Power Supply Projects by R. A. Penfold (XW52G) (cat. P38)

14. (6) Electronic Synthesizer Projects by M. K. Berry (XW68Y) (cat. P50)
15. (14) Adventures with Micro-Electronics by Tom Duncan (XW63T) (cat. P30)
16. (-) The TTL Data Book (WA14Q) (cat. P33)
17. (4) Towers' International Transistor Selector Update 2 by T..D. Towers (RR39N) (cat. P32)
18. (-) The Art of Programming the 1 K ZX81 by M. James and S. M. Gee (WA38R) (cat. P64)
19. (9) IC555 Projects by E. A. Parr (LY04E) (cat. P39)
20. (10) Newnes Radio and Electronics Engineers Pocket Book (RL06G) (cat. P30)

These are our top twenty best-selling books based on mail-order and shop sales during November and December 1982 and January 1983. Our own publications and magazines are not included. We stock over 450 different books relating to electronics or computing, and the full range is shown on pages 29 to 65 of our 1983 catalogue. For prices see page of this magazine.

COMING IN THE NEXT ISSUE. . .

* Modem Interface for not only the ZX81, but also the Atari, the VIC20, and the Dragon
* New series on programming in 6502 machine code
* CMOS crystal calibrator
* Sweep Osciliator
\star Logic Probe
* Enlarger Timer
- D'Xers Audio Processor

All these and more for only 70p. Still the best value for money.

BASICALLY Part 15
 Graham Hall, B.Sc.

In the final part of this series a summary of the most widely available BASIC statements, functions and operators will be given. The descriptions do not apply to any one version of BASIC, this can only be done by your system's user guide, but aim to give a general overview of the facilities available in BASIC; hence some of the statements or functions described may not be available in the version of BASIC that you are using

Statements

In the definitions to follow the format of each BASIC statement is defined in the context of a program line. A statement can consist of several 'elements' or portions - in these definitions, elements in angle brackets $<>$ are required, elements in square brackets [] are optional and elements in braces $\}$ represent a choice of elements, one of which is required

The elements and their abbreviations are:
variable (var) Any legally named BASIC variable
line number Any legal BASIC line number expression (exp) message condition (cond) argument (arg) statement string list dimension

Any legal BASIC expression
Any combination of characters
Any relational condition
A dummy variable name
Any legal BASIC statement
Any legal BASIC string constant or string variable
The legal list for that particular statement
One or two dimensions of an array

Statement Format and Example

REM (comment statement) line number REM [message]
10 REM COMMENTS ARE IGNORED BY THE COMPUTER
LET (assignment statement)
line number [LET] < var> [< var > , <var > ...] = < exp >
150 LET $B=4 * A * D$
$160 C=100$
DIM (dimension statement)
line number DIM $<\operatorname{var}$ (dimensions) $>[,<\operatorname{var}$ (dimensions) $>, \ldots]$ 50 DIM Z\$ (6, 10), A (50)
IF THEN, IF GOTO (conditional statement) line number IF <cond $>$ THEN < statement $>$

THEN < line number >
GOTO < line number $>$)
20 IF $X>Y$ THEN PRINT "WARNING!"
30 IF $Z=\emptyset$ THEN 990
40 IF $Z=0$ THEN GOTO 990
FOR (loop statement)
line number FOR $<$ var $>=<\exp >$ TO $<\exp >$ [STEP $<\exp >$] 70 FOR J $=-1$ TO 19 STEP 2
80 FOR J = A TO 10
The FOR statement initialises a loop. Together with its corresponding NEXT statement, it controls the execution of the statements between the FOR and the NEXT statement. A simple numeric variable must be used after the FOR, and the same variable must appear in the NEXT statement. The first numeric expression is the 'initial loop value'; the second expression is the 'terminating loop value'. The STEP expression is the optional 'loop increment value'. If it is not specified a default value of one is assumed. Transfer by a GOTO statement into an uninitialised loop is not allowed. Placing one loop inside another is called 'nesting'
BASIC allows several levels of nesting.

NEXT

line number NEXT < var>
10 NEXT J
The NEXT statement terminates a FOR loop. The variable must be the same as the variable in the corresponding FOR statement.
DEF (definition statement)
line number DEF FN < var $>$ (arg) $=<\exp (\arg)>$
30 DEF FNT $(X)=(9 / 5) * X+32$
The DEF statement establishes a user defined function. The function type is determined by the variable type following the characters FN (i.e. if a string variable is specified the DEF statement defines a string function)

GOTO (unconditional branch statement)
line number GOTO < line number >
20 GOTO 190
The GOTO statement unconditionally transfers control to a specified line number.
ON GOTO (semiconditional branch statement)
line number ON < exp> GOTO < list of line numbers > 15 ON X GOTO 10, 70, 90, 5
The ON GOTO statement is used to branch to one of a list of specified lines based on the result of an expression.
GOSUB (call subroutine statement)
line number GOSUB < line number>
30 GOSUB 600
The GOSUB statement transfers control to a subroutine that begins at a specified line number.
ON GOSUB (semiconditional branch to a subroutine statement) line number $\mathrm{ON}<\exp >\operatorname{GOSUB}<$ list of line numbers $>$ 35 ON Y GOSUB 600, 1120, 900
The ON GOSUB statement is used to transfer program control to one of a list of subroutines based on the result of an expression
RETURN (return from subroutine statement)
line number RETURN
70 RETURN
The RETURN statement is the last executable statement in a subroutine. It transfers control to the statement following the last executed GOSUB statement.
CHANGE (string conversion statement)
line number CHANGE $\{<$ array name $>$, TO $\{<$ string var >
< string var >
$<$ array name $>$
50 CHANGE A\$ TO F
80 CHANGE M TO R\$
The CHANGE statement converts a list of integers (real numbers are truncated) into a string of characters and vice versa. Element O of the list contains the value representing the length of the string.

READ (read data statement)
line number READ < list of variables >
35 READ $X, Y, Z \$$
The READ statement is used to assign data to variables from a list of values built into a data block by a DATA statement. The assignment is made as the program runs.
DATA (data specification statement)
line number DATA < list of values >
125 DATA 3.14, 8.21, "STRING", -1
The DATA statement is used to provide a pool or block of information to a program in conjunction with the READ statement. Each data item in the list is separated with commas
RESTORE (reset data statement)
line number RESTORE
90 RESTORE
The RESTORE statement enables the same values in the DATA statement to be used for more than one READ statement variable. It does this by moving a pointer which points to the next available data item in the DATA list, back to the beginning of the DATA list.
PRINT (output data statement)
line number PRINT [< exp>, < list>]
65 PRINT "RESULTS", G, H + 11
The PRINT statement outputs the specified data to the terminal. The expression list can be expressions, variables, or quoted strings separated by a comma or a semicolon. Commas cause the output to terminal fields or columns; semicolons ignore the fields. If the PRINT statement is used without a following expression a blank line is output to the terminal.
INPUT (data input statement)
line number INPUT [< string > .] < list >
30 INPUT "TIME \& DATE", T\$
The INPUT statement is used to assign data to a program from the terminal when the program is run. The program requests data by printing a question mark on the terminal and then waiting for characters to be input.
STOP (suspend program execution statement)
line number STOP
35 STOP

The STOP statement is used to temporarily halt program execution enabling the results of the program up to the point of the halt to be checked. Files remain open and a message indicating the location of the halt is printed on the terminal. The execution of the program can be continued by typing CONTINUE.
END (program terminator statement)
line number END
4095 END
The END statement terminates program execution. It must appear as the last statement in the program.
OPEN (open file statement)
line number OPEN < string > FOR INPUT /AS FILE \# <exp >
IFOR OUTPUT
10 OPEN "RESULTS" FOR INPUT AS FILE \# 1
20 OPEN "KEYDATA" FOR OUTPUT AS FILE \# 2
$3 \emptyset$ OPEN "DATES" AS FILE \# 3
The OPEN statement enables a new file, or an existing file, to be opened and associated with a file number which establishes a communication channel between the program and the file.
CLOSE (close file statement)
line number CLOSE \# <exp > [, \#<exp>]
175 CLOSE \#1, \#2, \#3
The CLOSE statement is used to close a file and dissociate it from a communication channel. When no file numbers are specified all opened files are closed.
PRINT \# (write data to file statement)
line number PRINT \# <exp>, < list>
90 PRINT \#3, A\$; ","; 日
The PRINT \# statement is used to write data to a file associated with the communication channel number specified.
INPUT \# (read data from a file statement)
line number INPUT \# <exp>, < list >
The INPUT \# statement is used to retrieve data from an opened file to use as input to the program. The INPUT \# statement line that retrieves data from a file must duplicate the format of the PRINT \# statement that wrote the data.

Functions and Operators

Functions are pre-written routines that perform commoniy used operations. The following tables list the Math, Print and String functions and the Logical, Arithmetic and Relational Operators available in BASIC.

Function	Description
ABS (X)	Returns the absolute value of X
ATN (X)	Returns the arctangent of the value X in radian measure
COS (X)	Returns the cosine of the radian value X
COT (X)	Returns the cotangent of the radian value X
EXP (X)	Returns the numeric constant 'e' (2.71828) raised to the
	power of X.
Returns the largest integer value of X	
IOG (X)	Returns the natural logarithm of the value X.
POS (X)	Returns the current position on the output line.

RND (X)
SGN (X)
$\operatorname{SiN}(x)$
SQR (X)
TAB (X)
TAN (X)

Returns random numbers.
Returns an indication of the sign (,+- or \varnothing) of X.
Returns the sine of the radian value X.
Returns the square root of X.
Causes output to be printed at the X column on the output line.
Returns the tangent of the radian value X.
Math and Print Functions.

Function
ASC (X\$)
CHR\$ (X)
LEFT ($X \$, n$)
LEN (X\$)
MID (X\$, n1, n2)
RIGHT ($X \$$, n)
SPACE \$ (n)
STRING \$ ($\mathrm{n} 1, \mathrm{n} 2$)

VAL (X\$)
String Functions.
Table 3. Arithmetic Operators.

BASIC symbol operator	Arithmetic operation
+	addition subtraction multiplication division exponentiat
Aor \uparrow or **	
Operator	Use
NOT	NOT X
AND	X AND Y
OR	XOR Y
XOR	XXOR Y

Logical Operators

Mathematical Symbol	BASIC Symbol
+	$=$
$<$	$<$
\leqslant	$<=$ or $=$
\geqslant	$>=\text { or }=>$
\#	<>or>

Relational Operators

Use
Converts the first character in the string, $\mathrm{X} \$$, to its equivalent ASCII value.
Converts the ASCII code number, X , to its equivalent character.
Indicates a portion of the specified string, $X \$$, in a range from the left-most character to the nth character. Indicates the number of characters in the specified string, X\$
Indicates a substring in the specified string, $X \$$, that begins at position nl and is n 2 characters long. Indicates a substring in the specified string, $\mathrm{X} \$$, in the range of n to the right-most character.
Produces a string of n spaces.
Creates a string that is nl characters long and is composed of the characters specified by the ASCII code, n2.
Computes the numeric value of the numeric characters contained in the specified string, $X \$$.

Example
$X+Y$
$X-Y$
$X \neq Y$
X / Y
X / Y

Meaning

logical negative of X
logical product of X and Y
logical sum of X and Y
logical exclusive OR of X and Y

Description
add Y to X subtract Y from X
multiply X by Y
divide X by Y raise X to the Y th power

Example

Meaning

$X=Y$	X is equal to Y
$X<Y$	X is less than Y
$X<=Y$	X is less than or

$X<=Y \quad X$ is less than or equal to Y
X is greater than Y X is greater than or equal to Y X is not equal to Y

COMPUĽR news

The Northern Computer Fair

Thank you to all the people who supported our stand at the Northern Computer Fair, we were amazed and extremely pleased at the response and hope to see all of you again next year. Manchester is definitely on our list of new sites for shops!

The organisers did an excellent job, the hall was light, spacious and airy, with plenty of room for everyone, the facilities were some of the best we have seen at an exhibition, and even the security guards were helpful! All these, plus the fact that we were extended such a warm welcome, combined to make this a highly enjoyable event.

Once again the Ataris, with their high degree of visibility, were the main attraction, but when people had been drawn to our stand a lot of interest was displayed in the books and software, with the Maplin Modem receiving quite a bit of attention. Our stand was also one of those filmed by Granada Television for their 'Granada Reports' programme, so we may have reached an even wider audience than originally hoped for

Our technical staff, who were on hand to

answer technical queries, found meeting the computer-using public 'face-to-face' a useful experience. They were also surprised at how knowledgeable everybody was, especially some of the children. The level of computer awareness in schools is obviously rising rapidly.

The 1983 Maplin catalogue proved very popular, and we sold all that we took with us,
which was a considerable amount. Fastest selling computer was the Atari 800 with 48 K RAM, and we noticed an increase in the sales of disk-based software, with Star Raiders still the favourite title, but being chased by Choplifter and SAM.

Thank you, once again, to everyone who came along to see us. We hope that you enjoyed it as much as we did.

conine soon

Bingley Hall, Birmingham April 28th to 30th 1983

Following the outstanding success of the Northern Computer Fair, Maplin are pleased to announce that they will also be exhibiting at the new Midland Computer Fair, which takes place at Bingley Hall, Birmingham, from the 28 th to the 30 th of April. The doors will be open from $10 \mathrm{a} . \mathrm{m}$. to $6 \mathrm{p} . \mathrm{m}$. on the 28 th and 29 th, and from 10 a.m. to 5 p.m. on the 30th. The fair is all about personal computers, home computing, and small business systems, and we hope that all our customers and readers in the Midlands will come and see us

The Maplin stand will be showing our extensive (and ever-increasing) range of computers and software, all of which will be available for purchase. If you come along you will be able to try out many of these for yourself, as we will be having our usual 'customer participation' displays.

You will also be able to buy not only the 1983 Maplin catalogue, but also a whole host of books and literature on computers and related subjects. Free leaflets on hardware and software will also be placed about the stand, so nobody should go away emptyhanded. Our technical staff will also be at hand to answer any queries you may have concerning computers and electronics in general.

MacRobert Pavilion, Edinburgh April 16-18, 1983

 both events available at a reduced rate, although details of pricing have not yet been finalised.All the usual Maplin goodies will be on demonstration and sale, including some items of software and hardware that are so new we don't even know their names yet! If you are finding it difficult to choose between the incredible variety of computers and software available, then our technical staff will be only too pleased to help you, and answer any questions you might have.

A representative of the Atari User Group will also be on hand to talk to those of you who have already bought, or are seriously thinking of investing in one of the Atari range of computers and peripherals. They would also be pleased to meet any current members of the group, and to hear their ideas for future issues.

THE NEW ATARI HOME COMPUTER

At the giant Consumer Fair in Las Vegas in January, Atari were showing for the first time their new 1200XL computer. Though it probably won't be launched in the UK until late 1984, the new computer is styled differently, but is otherwise almost identical to the 800 . It will come fully equipped with 64 K RAM which for normal use is the same as the 48 K 800 but perhaps allows you to change the operating system. It has one or two little extras such as one touch cursor controls, a key marked "Help" which can be used to give useful instructions on selected programs and an electronic keyboard lock that prevents accidental entries or tampering.

The new machine has a self-test function, say Atari, but we were unable to discover what this actually was, and a foreign
character set which Atari claim "lets you communicate in many European languages.' When it is first released Atari say it will sell for about $£ 550$ - rather expensive. Neverthe less it seemed clear to us that there can only be one reason why Atari have launched a new machine so little different from the 800

It doesn't become clear until you look inside the machine and when you see the single, neat circuit board it is obvious that it is much cheaper to manufacture than the 400 or 800 . The machine has been launched it seems to us so that it can eventually be priced competitively with the machines that will be around in 1985 and 1986 and we would not be at all surprised to see the 1200XL selling for much less than the current 800 price, in a few years time.

NEW VIDEO COMPUTER GAME PACKAGE HAS EXPANSION MODULES

but we'll be watching this new system carefully as it could become very popular.

CBS will also be releasing lots of new games on cartridge and all will be available for Atari, Mattel Intellivision and their own unit. Games include Bally Midway's Gorf and Wizard of Wor, Sega's Turbo, Zaxxon and Carnival, Exidy's Mouse Trap and Venture, Universal's Ladybug and Cosmic Avenger Peyo's Smurf Rescue in Gargamel's Castle and Nintendo's Donkey Kong.

The new system whose full name is CBS Colecovision is being distributed in the UK by Ideal Toys.

NEW SOFTWARE

A massive new selection of software has become available for our range of home computers since our 1983 catalogue was published. Unfortunately, there is insufficient space to describe it all, but issue 4 of our software leaflet (XH52G) will be published early March with descriptions of most of the new items. Alternatively many of the items for Atari, Commodore 64, Dragon, Spectrum and VIC20 are described in the new Mapsoft catalogue (XH60Q) price £1.
Atari
Choplitter
Embargo
Protector
Gorf
Stellar Shuttle
Stellar Shuttle
Deluxe Invaders
Rear Guard
Rear Guard
Stratos
Stratos
Space Games
Space Games

1E-16K-KB87U £34.95
1E-8K-KB43W £34.95 1E-16K-KB88V £34.95 1E-16K-KB44X £34.95 1C-16K-KB45Y £23.50 1D-32K-KB46A £23.50 1E-16K-KB89W £31.95 1C-16K-KB47B £14.50 1D-24K-KB48C £17.95 1C-16K-KB53H $£ 24.95$ 1D-32K-KB54J £24.95 1C-32K-KB55K £17.95 1D-32K-KB56L £17.95

Sea Fox Sea Dragon Sea Dragon Shamus Serpentine Bug Off Bug Of Tutti Frutti Tutti Frutti Genetic Drift Genetic Drift Claim Jumper Chicken Frogger Frogger Firebird
Apple Panic Labyrinth Labyrinth Crossfire Wizard Of Wor TT Racer Baja Buggies Baja Buggies David's Midnight Magic David's Midnight Magic Clowns \& Balloons Clowns \& Balloons Guns Of Fort Defiance Galactic Trader GFS Sorceress GFS Sorceress Journey To The Planets Journey To The Planets Escape From Vulcan's Isie Zork 111
Dragon's Eye Crypt Of The Undead King Arthur's Hei King Arthur's Heir The Nightmare Treasure Quest Starcross Battle For Normandy Battle For Normandy War
Cytron Masters Cytron Masters Knockout
Golf Challenge My First Alphabet Page 6

1D-48K-KB57M £23.50 1C-16K-KB58N £24.95 1D-32K-KB59P £24.95 1E-16K-KB90X £34.95 1E-8K-KB60Q £34.95 1C-16K-KB61R £21.95 1D-32K-KB62S £21.95 1C-16K-KB63T £17.95 1D-32K-KB64U £17.95 1C-16K-KB65V £23.50 1D-32K-KB66W £23.50 1E-16K-KB67X £34.95 1E-16K-KB91Y £34.95 1C-16K-KB68Y £22.95 1D-32K-KB69A £22.95 1E-8K-KB70M £29.95 1C-16K-KB92A £23.50 1C-16K-KB71N £23.50 1D-32K-KB72P £23.50 1E-16K-KB93B $£ 34.45$ 1E-16K-KB94C £34.95 1C-16K-KB73Q £19.95 1C-16K-KB74R £22.95 1D-16K-KB75S £22.95 1C-48K-KB95D $£ 27.50$ 1D-48K-KB78K £27.50 1C-16K-KB79L £23.50 1D-16K-KB80B £23.50 1D-32K-KB96E £18.95 1C-32K-KB25C £14.50 1C-48K-KB26D £2195 1D-40K-KB27E £25.95 1C-32K-KB28F £20.45 1D-32K-KB29G £20.45 1D-40K-KB3OH £20.75 1D-32K-KB31J £29.95 1D-40K-KB32K £20.75 1D-40K-KB33L £20.75 1C-16K-KB97F £20.75 1D-40K-KB34M £20.75 1D-40K-KB35Q £20.75 1C-16K-KB36P £10.95 1D-32K-KB37S £2995 1C-32K-KB38R £28.95 1D-40K-KB39N £28.95 1D-32K-KB40T £17.95 1C-32K-KB41U £28.95 1D-48K-KB42V £28.95 1C-16K-KB81C £14.95 1C-16K-KB82D £17.19 1D-32K-KB23A £29.95 1D-24K-KB24B £27.50

Syn Assembler
Basic Routines Basic Routines Diskey
Stime
Armour Assault
Alien Garden
Monster Maze
Hellfire Warrior (Part 1) Hellfire Warrior (Part 1) Danger In Drindisti (Part 2) 1C-32K-KF04E £13.80 Danger In Drindisti (Part 2) 1D-32K-KF05F £13.80 The Keys Of Acheron (Pt 3) 1C-32K-KF06G $£ 13.80$ The Keys Of Acheron (Pt 3) 1D-32K-KF07H £13.80 Galactic Gladiators
The Cosmic Balance
Defender
Galaxian
Plattermania
Picnic Paranoia
Morloc's Tower
Morloc's Tower
Qix
Dig Dug
Atariwriter
ET Phone Home
Zaxxon
Zaxxon
Moon Shuttle
Moon Shuttle
The Sands Of Egypt BASIC Compiler A.E.

Star Blazer
Arcade Machine
Rosen's Brigade
Rosen's Brigade
O'Riley's Mine

O'Riley's Mine
Fathoms 40
Graphic Master
Graphic Generator
Shadow World
Necromancer
Slamball
Drelbs
Fort Apocalypse
Reptilian
Music Lessons \& Player Piano 1C-16K-KF42V £19.95
Muic Lessons \& Player Piano 1D-32K-KF43W £19.95
Boulders \& Bombs
Mountain King
Time Trials
Juggles Rainbow
Juggles Rainbow
Juggles House
Juggles House
Speed Reading
Home Filing Manager
Candy Factory
Attack At Ep-Cyg-4
Princess \& Frog
Typo
Fortune Hunter
Ant Eater
Nitro
Sea Chase
Eliminator
Whiz Kid
Mama Mia
Beauty \& Beast
Astro Chase
Anti-Sub Patro
Anti-Sub Patrol
Jump Man
Disk Utilities
Character Graphics
Character Graphics
GTIA Graphics 9 to 11
GTIA Graphics 9 to 11

1D-48K-KB83E £39.95 1C-16K-KB84F £24.95 1D-32K-KB85G £24.95 1D-32K-KB86T £17.95 1E-16K-KB98G £34.95 1D-40K-KB99H $£ 27.45$

1E-8K-KFOOA $£ 27.45$
1E-8K-KF01B £27.45 C-32K-KFO2C 227.45 1D-32K-KF03D £27.45 1D-48K-KF08J £28.95 1D-48K-KF09K £28.95 1E-16K-KF10L $£ 29.95$ 1E-16K-KF11M £29.95 1E-8K-KF12N £27.45 1E-16K-KF13P £34.95 1C-32K-KF14Q £13.80 1D-32K-KF15R £13.80 1E-16K-KF16S £29.95 1E-16K-KF17T £29.95 1E-16K-KF18U £59.95 1E-16K-KF19V £34.95 1C-16K-KF20W £31.50 1D-16K-KF21X £31.50 1C-16K-KF22Y £27.50 1D-16K-KF23A £27.50 1D-16K-KF24B £31.50 1D-48K-KF25C £75.00 1D-48K-KF26D £27.50 1D-48K-KF27E $£ 24.95$ 1D-48K-KF28F £46.95 1C-16K-KF29G £27.50 1D-16K-KF30H £27.50 1C-16K-KF31J £27.50

1E-16K-KF45Y £34.95 1E-16K-KF46A £34.95 1C-16K-KF47B £22.95 1D-16K-KF48C £22.95 1C-16K-KF49D £22.95 1D-16K-KF50E £22.95 5C-16K-KF51F £59.95 2D-16K-KF52G $£ 34.95$ 1D-32K-KF53H £21.95 1E-16K-KF54J £34.95 1E-16K-KF55K £29.95 1E-16K-KF56L £29.95 1E-16K-KF57M £29.95 1E-16K-KF58N £29.95 1E-16K-KF59P £29.95 1E-16K-KF60Q £29.95 1E-16K-KF61R £29.95 1E-16K-KF62S £29.95 1E-16K-KF63T £29.95 1E-16K-KF64U £29.95 1E-16K-KF65V £29.95 C- -KF66W £15.95 1D- KF67X £24.50 1D-32K-KF68Y £27.45 1D-32K-KF69A £21.25 1C-16K-KF70M £21.25 1D-24K-KF71N £21.25
1C-16K-KF72P £21.25 1D-24K-KF73Q £21.25

1D-16K-KF32K £27.50 1D-48K-KF33L $£ 27.50$ D-48K-KF34M £33.50 D-32K-KF35Q £19.95 | 1E-16K-KF36P $£ 34.95$ |
| :--- |
| 1E-16K-KF37S $\mathbf{£} 34.95$ | 1E-16K-KF38R £34:95 1E-16K-KF39N £34.95 1E-16K-KF40T £34.95

Sound Effects
Sound Effects
Memory Map Tutorial Memory Map Tutorial kids 3 (4 programs) Kids 3 (4 programs) Kids 4 (4 programs) Kids 4 (4 programs) Brainbogglers

Brainbogglers

Prototype's Adventures Prototype's Adventures Music Major
Music Major
Graphics Machine Instedit
Instedit
Guess What's Coming To Dinner
1C-16K-KF91Y £17.95
Guess What's Coming To Dinner
1D-32K-KF92A £17.95
Number Stumper
C-16K-KF93B $£ 1450$ Number Stumper $\quad 1 \mathrm{D}-16 \mathrm{~K}-\mathrm{KF94C}$ £14.50 Adventureland with Graphics 1D-48K-KF95D £28.95 Pirate Adventure with Graphics

1D-48K-KF96E £28.95 Mission Impossible with Graphics

1D-48K-KF97F £28.95
Voodoo Castle with Graphics 1D-48K-KF98G £28.95 The Count with Graphics 1D-48K-KF99H £28.95 Strange Odyssey with Graphics

1D-48K-KH00A £28.95
Mystery Fun House with Graphics
1D-48K-KH01B £28.95 Pyramid of Doom with Graphics

1D-48K-KH02C £28.95
Ghost Town with Graphics 1D-48K-KH03D £28.95 Savage Island I with Graphics

1D-48K-KH04E £28.95
Savage Island II with Graphics
1D-48K-KH05F £28.95
Golden Voyage with Graphics
D-48K-KH06G £28.95
1C-16K-KHO7H $£ 17.95$
$\begin{array}{ll}\text { Curse of Crowley Manor } & \text { 1C-16K-KH07H } £ 17.95 \\ \text { Escape From Traam } & 1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KH} 08 \mathrm{~J} \\ £ 17.95\end{array}$ Escape From Traam

C-16K-KH08J £17.95
C-16K-KH09K £17.95

Stone Of Sisyphus
3D Tic-Tac-Toe
1D-40K-KH10L £24.95 1C-16K-KH11M £10.95
S.A.G.E." Pack aiso contains 48 K version on Disk

1C-32K-KH12N £35.95
1C-16K-KH13P £17.95
1D-32K-KH14Q £17.95 1C-16K-KH15R £11.95 1C-16K-KH16S £18.95 1D-40K-KH17T £21.95 C-16K-KH18U £11.95 1C-32K-KH19V £13.45 1D-40K-KH2OW £17.45 1C-48K-KH21X £17.45 1D-48K-KH22Y £19.95 1C-16K-KH23A £18.95 1C-32K-KH24B £14.95 1D-4OK-KH25C £18.95 Book £14.50NV Booklet £1.99NV Book £4.99NV

The Eliminätor
The Eliminator
Draw Poker
Controller
Controller
Tank Arcade
Andromeda Conquest Andromeda Conquest Telengard
Telengard
Moon Patrol
VC
Book of Basic Adventures
Quick Reference Chart
Book of Hints

Commodore 64

Temple of Apshai
Upper Reaches of Apshai
Curse of Ra
Sword of Fargoal
Crush, Crumble \& Chomp
Jump Man

Dragon
Alcatraz II
Mansion Adventure
Flipper
Planet Invasion
Defense
Space Monopoly
Scarfman
Escape
Space War
Calixto Island
Typing Tutor
Flag
Dragon Mountain
Chess
Astroblast
Black Sanctum
Galax Attax
Rail Runner
Breakout/Middle Kingdom
Dragon Trek
Wizard War
Golf
Vulcan Noughts \& Crosses
Games Compendium
Deadwood

1D-BC57M $£ 27.45$ 1D-BC58N £13.80 1D-BC59P $£ 13.80$ 1D-BC600 £20.75 1D-BC61R £20.75 1D-BC62S £27.45

1C-BC63T £8.00 1C-BC64U £8.00 $1 \mathrm{C}-\mathrm{BC} 65 \mathrm{~V}$ £8.00 1C-BC66W $£ 8.00$ 1C-BC67X £8.00 1C-BC68Y £8.00 1C-BC69A $£ 8.00$ $1 \mathrm{C}-\mathrm{BC} 70 \mathrm{M} \quad £ 8.00$ 1C-BC71N £8.00 1C-BC72P £7.95 1C-BC73Q £7.95 1C-BC74R £7.95 1C-BC75S £7.95 $1 \mathrm{E}-\mathrm{BC} 76 \mathrm{H} £ 24.95$ 1E-BC77J £19.95 1C-BC78K $£ 7.95$ 1E-BC79L £19.95 1E-BC808 £19.95 1C-BC81C $£ 7.95$ 1C-BC82D £9.95 1C-BC83E £7.95 1C-BC84F £7.95 1C-BC85G £7.95 1C-BC86T £7.95 1C-BC87U £6.90

Spectrum

The Hobbit (48 K)
Timegate (48 K)
Space Intruders
Meteor Storm
The Chess Player (48 K)
Speakeasy (48K)
1C-BC88V £14.95 1C-BC89W £6.95 1C-BC90X $£ 4.95$ 1C-BC91Y $£ 4.95$ 1C-BC92A £6.95 1C-BC93B £4.95

VIC20

Innovative Cassette Shark Attack

1C-BC94C £5.95
Shark Attack
Martian Raider
1C-BC95D £9.99
Martian Raider
Multisound Synthesiser
1C-BC96E $£ 9.99$
Junior Maths: Birds \& Apple Tree (+3 K
1C-BC98G £4.99
Junior Maths: Engineshed (+3 K)
$1 \mathrm{C}-\mathrm{BC} 99 \mathrm{H} \quad £ 4.99$
Junior Maths: Sub-Traction \& Lighthouse (+3 K)
1C-KKOOA $£ 4.99$
Skramble
Myriad (+3K)
Space Storm
Night Crawler
Hopper
1C-KK01B $£ 9.99$

Space Phreeks
Chess (+16 K)
Rescue At Rigel (+16 K)
1C-KKO2C $£ 9.99$
1C-KK03D $£ 6.99$
1C-KK04E $£ 9.99$
1C-KK05F £9.99
1C-KK06G £9.99

Sword of Fargoal (+16 K) 1C-KK07H £7.00
1C-KK08」 $£ 20.75$
Crush. Crumble \& Chomp $(+16 \mathrm{~K}$
Monster Maze
1C-KK10L £20.75
Monster Maze 1E-KK11M £27.45
Invasion Orion (+16 K) \quad 1C-KK12N £17.25
Datestones of Ryn (+16 K) \quad 1C-KK13P $£ 13.80$
Plattermania
Ricochet (+8 K)
Princess \& Frog
1E-KK14Q £27.45
1C-KK15R £13.80

Typo
1E-KK17T £29.95
Tank Arcade
1C-KH18U £1195

Note that some of the titles listed above will become available during the life of this magazine, so please check for availability.

JUPITER ACE IN OUR SHOPS NOW

For personal callers only, the incredibly fast Jupiter Ace microcomputer is now on sale in

VARIOUS FOR SALE

C.B. RADIO Superstar 360, AM/FM/USB/LSB/ CW high-mid-low bands, 5 kHz shift. Built in SWR Complete with antennae and mag mount. £120 ono. Phone West Drayton 47355.
NEW ICs packeted Tandy LS. TTL, LM series 90 total, 2 pre-amp stereo kits, list $£ 24.95$, mixer panel part built, list £69.95. Offers for lot. H. Catterson. Tel. 0642821176.
SENSORY CHESS Challenger 9 for sale, £150. It won the 2nd World Microcomputer Chess Championship and has an official US rating of $1771!\mathrm{Tel}$ (0302) 721456/49475

TRANSCENDANT 2000 Synthesiser, £150; Mini sonic Mk 2, $£ 125$. As new, built 2 DFMs $£ 15$ each. Ten boxes incomplete projects, kits, offers. Wayne Kerr LCR bridge, £25. Tel. Bridge 01-735 1862.
SOLARTRON DUAL Beam oscilloscope type CD 140015 MHz , spare plug-in modules, full working order, £70. Phone Graham, 01-651 5104 S. Croydon, Surrey.
30W VALVE AMPLIFIER, $£ 5$; record player, $£ 5$ l2in. speaker in double cabinet, offers; 'old' typewriter, $£ 5$; valves, $£ 1$ each. J. Weston, 47 Furnace Terrace, Pontyberem, SA15 5AE.

MUSICAL FOR SALE

I NEED to dispose of my matinee organ to make room for the next project. Any reasonable offer considered. Please telephone Dunblane 822841. MATINEE ORGAN for sale, fully assembled and working, £300. Lincoln 20332.
TWO, 60 NOTE keyboards, $£ 5$ each. One 25 note R/C pedalboard $£ 10$; wood pieces to make suitable console, $£ 5$. Buyer collects. Taylor, Lutter worth (045 55) 2781
MAPLIN MES53 organ, two 61 note manuals, short pedalboard, 50 stops, drawbars, MES55 auto rhythm, rotor sound, reverb, fully working, $£ 700$ ono. Phone Alan Perkin, Reading (0734) 883103 working hours.
MATINEE ORGAN, tested, ready to install in cabinet, $£ 325$ or exchange other electronic project. Telephone 'John' Wisbech (0945) 64805 evenings.
ORIGINAL MAPLIN MES 52 organ, two 49 note manuals, 13 note pedalboard, rhythm unit, attractive solid oak cabinet. Requires attention but has been working, £130 o.n.o. Burntwood 71594 evenings.

If you would like to place an advertisement in this section then here's your chance to tell Maplin's 140,000 customers what you want to buy or sell, absolutely free of charge. We will publish as many advertisements as we have space for. To give everyone a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is $10 p$ per word.
Please note that only private individuals will be permitted to advertise. Commercial or trade advertising is strictly prohibited in the Maplin Magazine
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag, P.O. Box 3, Rayleigh, Essex SS6 8LR
For the next issue your advertisement must be in our hands by 6th April 1983.

MAPLIN 3800 SYNTH. Fully built, tested and tuned. Complete with leads and manuals. Must sell, £250 o.n.o. Mr. T. Parkinson, 112, Oxford Road, Hartlepool, T52J 5RT
MARSHALL 4-INPUT 100W valve amplifier + pair 2 $\times 12^{\prime \prime}$ Celestion columns $£ 200$ ono; WEM Copicat Echo, £50 ono, also microphones. stands, mixers. etc., part exchange? Felixstowe (Suffolk) 3994
30 NOTE PEDALBOARD (radiating/conv.) £10; 30 K/A pedal jacks fitted series pots, wired 7 voices, £5; pair matching 61 note wooden manuals (angled fronts) $£ 10$ each; pair similar curved fronts, set (73) F/P chokes, A/D type C/T £10; set Ferrite chokes, Bobbins wound rocker switches, contact blocks. List with pleasure. Wolsey, Puffins. Seaview Lane, Seaview, I.O.W.

HI-FI FOR SALE

MAPLIN STEREO cassette deck kit, still in original box, £20 ono. Tel. Trowbridge 65245.
CRIMSON ELEKTRIK CPR1 preamp module with regulator PSU, and 2XCE1004 poweramp modules with instructions. All £40. Tel. Dave 051-4265742.

COMPUTERS FOR SALE

ZX81 SOFTWARE. Four programs in fast machine code. Breakout 3 K 3 levels, Hustle 2 levels, Othello 4 k play the computer football 3 k , $£ 4$ for cassette or s.a.e. For details to J. Hurley, 20 Dane Acres, Bishop's Stortford, Herts.
ATARI (VCS), 2 joysticks, 2 paddles, aerial switch box, adaptor and 4 cartridges (Space invaders, Missile Command, Space Ware \& Combat). Guaranteed till 5/7/83, only $£ 90$. R. Cyrus, 244, Latymer Court, Hammersmith Road, London, W6 7LB.
VIDEO GENIE EG3003 computer, 2 manuals, monitor, integral cassette recorder and 2 games, £230. Phone Crayford 528119.
ZX81 16K pools prediction program. Gives a 55 result prediction based on up to two years results. Lists any results, totally bombproof, on quality C 12 cassette, £3.50. D. Allsopp, 206B, Corsham Road, Whitley, Melksham, Wits.
ATARI EASTERN Front, $1941,16 \mathrm{k}$ cassette, in its box with instructions, £18. Stanford-le-Hope (0375) 672077, after 5 p.m.

3K RAM PACK for VIC20 computer, brand new and unused, £18. Tel. Tony Pandy (0443) 437859 after 6 p.m.

WANTED

WANTED URGENTLY, instruction manual (or good quality copy) for Telequipment Serviscope Minor oscilloscope. G. Sage, 33 Barn Meads Road, Wellington, Somerset TA21 9BD. Tel. 6795
WANTED GENUINE Leslie unit to install in organ cabinet. Would consider complete tone cabinet, exterior condition not important. Please contact Alford, 24 New Barn Lane, Alton, Hants. Tel. 84659.

WANTED, information on I.C.'s marked: 7214 KRE 1236-0574, 7215 KDO 1236-0590, 7215 KEU 1236-0582. Write 26 Clifferd Road, Penrith, Cumbria, postage costs etc. (within reason) refunded. Any items loaned will be returned
WANTED. Marble effect key tabs, flute $5 \frac{1}{3}$, flute 8 , flute 4' (white), reed 4' (yellow). M. Alder, Laurel Cottage, Brewery Lane, Thrupp, Stroud, Glos. GL5 2EA. Tel. 0453884451.
continued from page 47

THE STYLUS ORGAN VEROBOARD ASSY PARTS LIST

Resistors - All 0.4W metal film 1\%	
R1	$4 \mathrm{M7}$
R3	56k
R4	5608
$R 5$	10k
R6	18k
R	3 k 3
P8	47k
R9	12k
RY1	22k hor presel
RV2	4 kJ pot log
RV3. 28	100 k hor preset

needed for a single octave organ, and twenty-five are needed for a two octave type (this gives a complete scale including semitones in both cases). R2 enables the secondary oscillator to be set just off-tune from the main oscillator. The two oscillators will track with sufficient accuracy over a one or two octave range. Rl takes the control inputs of the oscillators to the negative supply potential and blocks oscillation March 1983 Maplin Magazine
when the stylus is not connected to one of the tuning presets.

A simple passive mixer circuit is used to combine the outputs of the tone generators at the correct relative levels, and the signal is then taken via volume control VR1 to a simple audio output stage using an LM380N. This gives an output power of about 100 mW RMS into a high impedance loudspeaker which should give adequate volume, but an

8 ohm speaker can be used if higher output power and volume are required. C4 and C5 are used to reduce the harmonic content on the output signal which is otherwise excessive due to the squarewave output signals from the tone generators.

The unit covers one octave either side of Middle C.

CORRIGENDA

On the frequency counter PCB (GB02C), two circles designating through pins have been omitted. One is situated just above R6, and the other is just below R6.

Owners of the Maplin Home Security System may be pleased to know that, with the addition of a minor modification, the requirements of British Standard 4737 can be met. Some insurance companies in sist that systems be to this standard, so the modification is well worth fitting. With reference to the drawing, connect a 10 k resistor, via a short length of wire, between pin 24 on the motherboard and the base connection of TR2. You may find it easier to connect onto the base resistor R7, just below TR2. Resistor R2 on the PSU PCB should be either shorted out or have a link connected in place of it.

ZX81 KEYBOARD MOD

For those who are experiencing difficulties connecting both keyboard ribbon cables to the ZX81 (Micro) PCB sockets we stock two right angled connecting plugs. a) RA LATCH MINICON PLUG 5 WAY
(RK67X)
b) RA LATCH MINICON PLUG 8 WAY (YW18U)
Although these plugs are a latching type, the plastic latching section can be removed on both plugs and the ribbon cables soldered to the shorter ends. Insert the plugs into both PCB sockets.

When connecting up your ZX81 keyboard, always ensure that mains power is removed before plugging the adaptor L (RK27E) connector into the ZX81 and the keyboard. When all connections have been made, switch mains power on. When dis connecting the system mains power should be switched off prior to unplugging.

AMENDMENTS TO CATALOGUE

Please amend your 1983 catalogue as follows:

Page 25

The Aerial Rotator (XB54J) is not supplied with cable. Use 4 -core mains (XR48C) Make no connections to terminal 2 of the controller. The wire from terminal 3 of the controller must be connected to terminals 2 and 3 at the rotator.

Page 66

The Snap-Together Plastic Boxes (YK48C, YK49D, YK50E, YK51F) dimensions stated are all internal.
Page 74
Laminate Aluminium large (XY20W) size is now $482 \times 190 \mathrm{~mm}$ ($19 \times 7^{1 / 2 \mathrm{in}}$)

Page 89

The sub-miniature single-ended electroly tic capacitor YY 35 Q is now only 35 V work. ing, not 40 V as stated

Page 99

The picture of the 2 m Rubber Duck (YG15R) shows a UHF plug, but the item is supplied with a BNC plug as stated in the text.

Page 104

The Atari 400 (AF36P and AF37S) sound generators can only be 'piped' to a TV speaker. There is no DIN socket available for connection to an amplifier.

Page 122

BC44X (Computavoice) is a cassette, and BC36P (Cave Hunter) and BC38R (Starship Chameleon) are both cartridges.

Page 257

The Sharp stylus STY117 is the same as our stylus HR97F (Stylus Sanyo 2611), not BK08J as shown in our stylus guide.

Page 259

The High Quality Cassette Head Cleaner (BK28F) is now being supplied with a tape head cleaning stick and a 30cc bottle of tape head and capstan cleaning fluid

Page 331

The 2732 EPROM (QQ08J) programming is achieved by applying +25 V to pin 20 and +5 V to pin 18 , not pins 20 and 21 as stated

Page 341

The mono headset (WF20W) is now terminated in a mono t/4in jack plug, not a 3.5 mm jack plug as stated.

Page 374

The utility knife (FYO2C) is shown incor rectly in the picture. This knife is NOT retractable.

Page 384

The overall size of the sub-miniature mains transformers (WB00A, WB01B and WB02C) is now $30 \times 27 \times 35 \mathrm{~mm}$, and fixing centres are 46 mm .

SUBSCRIBE NOW!

For just $£ 2.80$ a year we'll deliver every issue of the Maplin Magazine to your door.
We've got dozens of exciting projects and features coming in the next four issues. And more amazing special offers like the ones in this issue. Plus, of course, all our new products and our complete price list.

ALL THIS FOR JUST £2.80 A YEAR!
(Overseas: surface mail $£ 3.24$, airmail $£ 6.84$)
Don't delay - send your cheque or postal order now!!
P.S. Don't forget to renew your subscription, either! ISSUE SEVEN ON SALE 13 th MAY 1983

Send this coupon with your cheque/PO to:
Maplin Magazine Subscriptions Dept., Maplin Electronic Supplies Ltd.,
P.O. Box 3, Rayleigh, Essex SS6 8LR

I enclose $£ 2.80$ (plus post overseas) for 1 year's subscription to the Maplin Magazine.

Please start from Issue No.
Customer No. (if known)
Name
Address

MAPLIN CATALOGUE

Maplin's superb new 392 page catalogue for 1983 is now available. There are hundreds of new lines and two new sections. Communications section contains details of our CB accessories, intercoms, radios and telephone whilst our big new computer section has details of seven of the best home computers around with descriptions of masses of the best software
 around.
Pick a copy up at W.H. Smith or our shops for $£ 1.25$ or send $£ 1.50$ incl. post to our Rayleigh address.

Overseas Prices

Our current 1983 catalogue is available overseas by post at the following prices:

Europe surface mail	$£ 1.90$	
Europe air mail	$£ 3.06$	
Outside Europe surface mail	$£ 1.90$	
Outside Europe air mail		
(depending on distance)		
$£ 4.32 / £ 5.76 / £ 6.48$		

For surface mail anywhere in the world you may send 10 International Reply Coupons.

DID YOU MISS THESE ISSUES?

Copies of issue 4 are now sold out, but a reprint of the projects from issue 4 is available and contains:

Telephone Exchange: A complete telephone exchange with up to 32 extensions on 2 -wire lines. Ideal for the home, office, or small factory. Save $£ £ £$'s on rental charges. Full construction details for up to 16 lines in this book.
Remote Control for Amplifier: Adjust volume, balance, and tone whilst you sit back and relax with our infra-red remote control. Designed for use with our 25W MOSFET Amp, but can be fitted to most amplifiers.
Frequency Counter: This superb, easy-to-use, low-cost, 8 -digit frequency counter with superior specification covers the 10 Hz to 600 MHz band. Incorporates full push-button control, electronic switching, and one input for the whole range
Ultrasonic Intruder Detector: This easy-to-build ultrasonic transceiver covers up to 400 square feet; though more than one can be used for larger areas. The unit automatically adjusts itself to transmit at the frequency where the transducers give their maximum output. Up to three of these units may be connected to our home security system.
All this for just 60p. Order As XA04E (Maplin Magazine Volume 1 No 4). Price 60pNV

Copies of issue 5 are still available for just 60p, and include the following projects:
Modem. With this low-cost, high quality modem, transmission speeds of 300 baud are obtainable over ordinary telephone lines. Send data to your friends anywhere in Europe, or talk to our computer.
Inverter: Ideal for camping or caravanning, this inverter uses MOSFET transistors for the ultimate in reliability. During emergency power cuts, use the inverter to keep your central heating going
ZX81 Sound Generator: Here's a really noisy project for micro-computer enthusiasts. It plugs straight in to our ZX81 extension board and is really easy to make. Your ZX81 will have full BASIC control over three tone generators, with single address access.
Central Heating Controller: For our more experienced constructors, this project will give your central heating system optimum performance and could save you a lot of money this winter.
Panic Button. A useful add-on for our Home Security System that will give many of our older citizens peace of mind. Issue five also included features on the Compact Digital Disc, Interfacing Microprocessors, and choosing the right wires for projects, and the last part of the Starting Point series, along with Basically Basic, Say it with Satellites, and Working with Op-Amps.
All this for just 60p. Order As XA05F (Maplin Project Book Volume 2 Issue 5). Price 60pNV

LOTS OF EXCITING NEW PROJECTS AND FEATURES IN OUR NEXT ISSUE DON'T MISS IT! ON SALE 13th MAY 1983

YOUR FULL

COIOURGUIDE TO HOME COMPUTMR HARDWARE \& SORTWART

This superb new edition of the Mapsoft catalogue is now available from all good computer retailers price 85 p. Full details are given in the catalogue of all the best and newest software for the Atari, Commodore 64, Dragon 32, Sinclair Spectrum and VIC20 and includes descriptions and colour pictures of lots of hardware as well. Don't delay - get a copy now. It's fun to read and is an invaluable guide to

[^0]: Copyright: All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine but Maplin Electronic Supplies Ltd cannot be held legally responsible for its contents. Where errors occur corrections will be published as soon as possible afterwards. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the Publisher.' ${ }^{\text {c Copyright }} 1983$ Maplin Electronic Supplies Ltd.

[^1]: A set of parts is availabie to build the ZX81 Talkback. Order As LK01B Price $£ 24.95$

