

DID YOU MISS ISSUE 1 OR 2?

Copies of issue 1 are still available for just 60 p , and include all these interesting projects:

Universal Timer. A comprehensive programmable controller for up to 4 mains appliances. There is storage for up to 18 program times, ons or offs and relay outputs. Complete construction details.

Combo Amplifier. Superb 120W MOSFET power amp with low-noise BI-FET pre-amp having built-in flanger, inputs for guitars, keyboards or microphones, and five step equaliser. Complete construction details.

Temperature Gauge. Coloured LED indication of $-10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ Complete construction details.

Pass The Bomb! Low-cost easy to build electronic version of pass-the-parcel keeps the kids amused for hours!

Plus six easy to build projects on Veroboard: Car Battery Monitor - Colour Snap Game - CMOS Logic Probe - Peak Level Indicator - Games Timer -Multi-Colour Pendant.

Issue 1 also included features on Videotext and How To Soider and feature series, Basically BASIC, Starting Point and Circuit Maker.

All this for just 60p. Order As XA01B (Maplin Magazine Volume 1 No 1) Price 60pNV

Copies of issue 2 are also available for just 60p and include the following projects:

Digital Multi-Train Controller. Our superb digital train controiler can control up to 14 locomotives individually on the same track. Any four loco's can be controlled simultaneously. The unit has automatic short. circuit protection and because it uses digital control a DC supply is present all the time for carriage lighting etc. The locomotive modules will fit in most modern 00 -scale engines. Complete construction details.

Multi-Mode Digital Stopwatch. Here's an easy-to-build stopwatch with accuracy and display to a 100 th of a second. There is a large 8 -digit display so that times of up to 24 hours can be shown. The unit can be operated in one of four modes: standard, sequential, split and rally. Complete construction details.

Home Security System. Full construction details of our new home security system offering a high degree of protection for domestic or commercial premises coupled with excellent long-term reliability. The unit's features are: six independent channels, 2 -wire or 4 -wire operation, detects open or short circuit or just resistance change, tamper-proof main cabinet and external cabinet. The external cabinet has its own protection as well. There are presettable entry and exit delay timers. With the extra peripherals being added each issue, this is a really versatile system.

Digital M.P.G. Meter. An easy to build device that will help you to make your motoring more economical. The unit has a large easy to read LED display. Complete construction details.

Issue 2 also included features on CB Equipment. Working with Op-Amps Part land our regular feature series Basically BASIC, Starting Point and Circuit Maker, Plus news of the Atari computer and video games, a small feature on solar cells and lots more.

INTEREST FREE CREDIT ON COMPUTER HARDWARE

In this issue we're pleased to announce details of an exciting new scheme. If you want to buy over $£ 120$-worth of computer hardware, we can now offer you nine months to pay - interest free! All you pay is 10% of the cash price when you collect the goods, then 10% a month for a further nine months. You end up having paid only what you'd have paid had you bought it cash, but with the payments spread over 9 months. Now you can afford today, the computer you always wanted, without having to pay crippling hire purchase charges. With our scheme there are no charges at all! At the present time we're planning to run the scheme until the end of August ' 82 , but we will extend it if it is very successful.
Talking of success, we still can't believe how many subscriptions we've received for this magazine. Though 1 must apologise for disappointing you by having to hoid over promised articles. Last time we didn't have space for the sequencer, so we've now published this as a leaflet (see page 5) and this time with much regret, we have to hold over the frequency counter, even though we are certain it will be very popular. Its unique digital switching system makes it unbelievably simple to use.
Finally, a plea to piease keep your letters coming. In this issue we were able to print every letter received. Usually we are able to choose from about 50 or 60 . It's hard to believe that we totally please our customers for every one of the 50,000 -plus orders we despatch every quarter. So if you can think of ways we could improve our service then please do write. Even if we don't publish your letter, you can be sure that all the directors at Maplin read and take note of what you have to say. We may well not agree with what you say, but we're happy to throw open the discussion through these pages.
As usual, we're well-advanced with the projects for the next issue - some really interesting things too, as you'li see if you take a look at the inside rear cover. Many of the projects for issue 5 are also well-advanced and we're really excited about a unique new service we're hoping to launch with issue 5 . The Maplin Magazine is always original and up-to-date. Don't miss it - send your subscription now!

June to August 1982 Vol. 1. No. 3 CONTENTS

Projects Page
Doppler Intruder Detector 6
Radar frequency coverage of rooms up to 20 m .
Doppler Control and Interface Unit 9
Permits up to four Doppler units to be used.
Stereo 25W MOSFET Amplifier 38
Superb quality, low-cost, easy-to-build design.
Train Controller Remote Control Facilities 16
Radio, infra-red and wired units and comouter interface
ZX81 Keyboard 2
Full-size, full travel keyboard with electronics.
Features
Basically BASIC 48
Another slice from this popular computing series.
Making Your Own PCB's 46
How to get professional results at home.
Starting Point 50
More from our series for beginners.
VIC 20 Colour Computer 13
We turn the VIC inside-out and tell you what's available. Working With Op-Amps Part 2 56
The second part of this useful introduction to op-amps.
News
Amendments to Catalogue 64
Atari Computer News 58
Atari Video Game 59
Back Issues IFC
Classified Advertisements 63
Corrigenda 64
Interest Free Credit 62
Maplin News 5/61
MPG Meter 64
New Books 45
Next Issue IBC
Price List of Catalogue Items 28
Price List of Items Since Catalogue 37
Price List of New Items in This Issue 15
Readers Letters 52
Special Offers 62
Subscriptions 64
Texas Instruments Data Library 53
Top Twenty Books 63
Editorial \& Production

Editor	Doug		282 London Road Westcliff-on-Sea Essex SSO 7JG
	Doug Simmons		
	lan Miller		
Technical Editors	Robert Kirsch	Printed by	Eden Fisher
	Dave Goodman		(Southend) Limited
Art Editor	Peter Blackmore		Quillset Typesetting
Technlesi Artats	Roy Smith	Distributed by	Spotlight Magazine
	John Dudley		Distribution Limited
	Lesley Foster		1-11 Benwell Road
Photography	Chris Barjow		11

[^0]
FULL-SIZE KEYBOARD

by Dave Goodman

Figure 1. Component overlay of electronies section of pab.

figure 2. Circuit diagram.
June 1982 Maplin Magazine

ZX81 KEYBOARD

Carefully solder all the components and links inserted so far, then fit the 44 key-switches in position. Place a piece of stiff card on top of the keys, then turn the whole assembly over and solder the keys in position. Make sure that every key is seated right down on the pcb and re-solder if necessary.

Check the pcb for solder splashes, dry joints etc, then double-check the position of every component and check that the polarised components (Cll and all semiconductors) are correctly orientated. Fit and solder the two LED's either externally with two lengths of wire or directly to the pcb. If using our case then the height of the two LED's will have to be carefully adjusted. See Figure 3 for details of lead connections to the LED's. Finally fit and solder the two sockets to the edge of the pcb.

Fit the white plastic caps to the keyswitches noting that two-position caps must be fitted in the 'rubout', 'print', 'newline', 'function' and 'shift lock' positions, and the three-position cap must be fitted over the two keys in the 'space' position. See Figure 4. Carefully cut the printed legend and fit the pieces into the clear caps referring to Table 1. Then turn the transparent covers over and snap them into position on the keys.

Connecting To ZX81

Careful inspection of the two flexible cables will show that at each end a small strip of the insulating cover has been removed one side of the cable. Plug the two cables into the sockets on the keyboard pcb so that this uninsulated strip faces the pcb. Carefully remove the feet on the $\mathrm{ZX81}$ and unscrew the screws beneath them. Remove the base from the ZX81.

Push the two new flexible cables through the slot in the $\mathrm{ZX81}$ case immediately above the ' 9 ' and ' 6 ' keys on the touch-keyboard. Then remove the five-way cable (from the touchkeyboard to the socket on the ZX81's $\mathrm{pcb})$ from the socket. With reference to Figure 6 plug the new 7 -way cable in so that the black stripe on the cable corresponds with pin 1 of SK1 on, the Keyboard pcb and KBD4 on the 2×81 pcb . Repeat this operation forthe 8 -way cable. The black stripe on the new 10 way cable corresponds with pin 1 of SK2 on the Keyboard pcb and All on the $\mathbf{Z X 8 1} \mathrm{pcb}$. Note that the new cables are 7 -way and 10 -way to ensure correct mechanical fit, though in each case the outer two wires are not used electrically.

Strip and tin (apply a thin layer of solder to) the ends of the piece of screened cable. Connect one end to the 3.5 mm jack plug as shown in Figure 5 and connect the screen at the other end through the hole (from above) on the pcb marked 'OV' and solder under the pcb. Connect a multimeter switched to 10 mA DC range or thereabouts with the positive lead connected to the unterminated centre lead of the cable and the negative lead to the track on the pcb 4

Figure 4. Fitting of 3 -way key cap.
immediately beneath the hole marked ' +V '.

Plug the adaptor into the 2×81 and plug the mains adaptor into one of the two sockets. Plug the keyboard into the other socket and switch on. LEDI should flash on and then off and the meter should then read less than 1 mA . If the meter reads negative or greater than ImA switch off immediately and re-check all your connections.

If all is well, switch off, remove the multimeter and connect the centre conductor to the pcb by passing the bare end through the hole in the pcb marked ' $+V$ ' from above and soldering it underneath. Switch on again and test that the keyboard functions correctly.

If the wrong characters are printed you have probably got the flexible cables plugged in the wrong way. Don't worry, this can't do any damage. Unplug the 7 -way cable in the $\mathbf{Z X 8 1 , ~ t u r n ~ i t ~ o v e r ~}$ and plug it in again. If it still does not work do the same for the 10 -way cable. If this does not work, reverse the 7 -way cable again.

When all is well, switch off and reassemble the ZX81, folding the old flexible cables back under the touch.keyboard so that they cannot short anything out on the ZX81 pcb. The new keyboard can now be mounted in its

Figure 5. Wiring of 3.5 mm jack plug.
box if required. Switch on again. LED1 will flash on and then off and the [K] cursor should appear on the TV screen as usual and you're ready to go.

Circuit Description

S11, the 'graphics 2' key is connected to a buffer/inverter IC1f which together with ICId acts as a monostable. Operating S11 causes the output of IClf to go low which in turn causes the output of ICld to go high, hoiding the input of IClf high for the period set by C1, R2.

The output of flip-flop IC2b now goes high and turns on the bilateral switch IC3a which operates the 'shift' function in the keyboard matrix. Also TR1 conducts, turning on LED1. C2 discharges through R3 which delays the output from ICla from changing state. When it does change over ICla operates IC3d which connects 'graphics 2' in the keyboard matrix. Further operation of S11 repeats this sequence except that this time IC2b switches low and IC3a and IC3d are released.

S22, the 'function' key is connected to IC1D. When operated, IC3b operates via D4 with C4 and R5 acting as antibounce components. D6 becomes reverse biased and C5 discharges via R6,

Continued on page 55

Figure 6. Interwiring.

MAPLIN NEWS

MAPLIN AT THE DAILY MAIL IDEAL HOME EXHIBITION

The "Daily Mail" Ideal Home Exhibition that was at Earls Court Exhibition Centre during March attracted over $3 / 4$ million people. Many of them visited our stand where our organ was on demonstration. The Atari computers were also being demonstrated and many of our more popular lines were available for sale. Several thousand leaflets describing our new burglar alarm were taken by interested visitors.

BREADBOARD 1982

Last year's Breadboard exhibition was not as successful as we would have hoped. The gate was well down on the year before and the swingeing increase in the entrance fee upset many people who came onto our stand to complain. The organisers did almost nothing in our opinion to justify to the visitors, the cost of the entrance fee. We therefore feel that we can no longer support this function and Maplin will not be exhibiting at Breadboard 1982 .
At the present time we are negotiating with another organiser, a new and better hobby electronics show, with computing and amateur radio thrown in. If all goes well, the new show will happen in December this year. More news in our next issue.

SEQUENCER FOR 5600 \& 3800 SYNTHESISERS

We regret that again there was insufficient space to include this project in the magazine. Therelore we are making if available on a leafiet which is avalable nows. Order As XH59P (Sequancer lsaflet) No ctuarge The contriete kit will also be avaliable shortly. Order As LWC6W (Sequencer Kil) Price \&125

AC Current
Ranges: $200 \mathrm{uA}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{~A}$
Resolution: 100nA on 200UA range
Accuracy: 45 Hz to 400 Hz
$3 \%+5$ digits on 200uA range
$2 \%+5$ digits on 2 mA range
$3 \%+2$ dugits on other ranges
Burden voltage: 250 mV max at full scale, 700 mV on $2 A$ range full scale Response time <2 seconds
Overload protect:on: A pair of fast switching, high current silicondiodes and a 2 A fuse

Resistance

Ranges: $200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega, 20 \mathrm{M} \Omega$
Resolution: 0.1Ω on 200Ω range
Accuracy: $0.5 \%+1$ digit on 200Ω range. $0.5 \%+2$ digits on $2 k$ to 2 M ranges, $2 \%+1$ digit on 20 M range
Open circuit woltage: Selectable - high $<2.8 \mathrm{~V}$, low $<0.54 \mathrm{~V}$
Overload protection: 63mA fuse
In addition to the various overload protection devices described above, the meter has transient protection on all voltage and resistance ranges up to 6 kV . Also the input to the AC converter is protected against overvoltage. The meter requires a standard PP3 battery (not supplied), but there is a socket for connecting a 9 V adaptor for mains operation and this input is protected against overvoltage.
The meter is supplied with a pair of test probes and a circuit diagram.
Order As YK32K (Multimeter D0601) Price $£ 39.95$

THE MAPLIN RTX3

by Dave Goodman

Home Office type-approved microwave Doppler detection system with up to 20 m range Single unit covers a wide area
 Not susceptible to instability or interference from sound or light
 \star Complete unit in $133 \times 70 \times 38 \mathrm{~mm}$ box can be placed anywhere in area to be scanned Unit may be hidden behind thin card or plastic

The Maplin RTX3 movement detector utilises a specially manufactured microwave transceiver module, the CL8960. The module is assembled and preset to transmit at the required legal frequency of 10.687 GHz $\pm 12 \mathrm{MHz}(10,687,000,000 \mathrm{~Hz})$ with a peak transmission power of 10 mW .

The extremely small wavelength (2.8 cm) makes a very sensitive movement detector with coverage of quite a large area. In this design the range is adjustable from about 2 m to 20 m and the edge of the range is fairly welldefined wherever it is set.

The unit when triggered operates an internal LED and switches on a transis-
tor which could switch up to 15 V at 1 A but does not latch. Normally the unit will be used with our controller unit to which up to four of the radar modules could be connected. This control unit can then be used to connect to our Home Security System via the standard Break Contact Module. The control interface is described later in this issue.

Circuit Description

The heart of the system is the CL8960 radar module which consists of two tuned cavities or waveguides and a separate antenna which when fixed to the module gives a gain of around 5 dB . One waveguide contains a Gunn diode
which produces X-band microwave energy. This diode requires an extremely precise and stable power supply which should be $7 \mathrm{~V} \pm 100 \mathrm{mV}$ at 160 mA . This is derived from the 12 V power supply by ICl , a precision voitage reference IC and two 1% resistors R3 and R4 that monitor the 7 V rail. The current is supplied by TR3, an emitter follower driven by TR1. C1 decouples any hf component in the power supply.

The other waveguide contains a mixer diode which acts as a receiver. There is a small hole between the two waveguides so that some of the transmitted signal passes directly to the

Figure 1. Circuit diagram of Doppter unit.
receiver. The reflected signals from the environment are at exactly the same frequency as the transmitted signal as one would expect. However, if an object moves within the sensitive area, the reflected frequency changes slightly due to the Doppler effect (see box). Even a small movement at this extremely high frequency can make changes of up to 50 Hz (although of course this is only a minute change in percentage terms - less than 1 part in a hundred million). For example a movernent of 1 metre per second will change the frequency by about 70 Hz .

This slightly changed frequency will interfere with the transmitted frequency in the receiver cavity and produce a beat frequency equal to the change. This low frequency beat is output from the mixer diode at the terminal marked 'AF'. The mixer diode requires biasing at about $38 u \mathrm{~A}$ with a low impedance (600Ω), therefore TR4 is required to be a common base amplifier with the bias current supplied by R5.

The AF signal is then AC coupled to IC2, a non-inverting amp and C5 ensures that only low frequencies are amplified. IC30 is a low-pass filter with a cut-off frequency around 40 Hz . If higher frequencies are allowed to pass, the unit is prone to false triggering from for example mains-operated lighting. especially fluorescent lamps. The combined filtering in IC2 and IC3b eliminates this possibility.

IC3a is a variable gain amplifier which is preset by RV1 to allow you to adjust the overall receiver sensitivity so that areas from 2 m to 20 m can be covered reasonably accurately. C11 and 12 and D1 and 2 remove the $A C$ component from the audio signal and provide a DC bias to switch TR2 and LED1. If no further movement is detected, LEDI turns off after about 3 to 4 seconds as set by R20.

Pins 7 and 8 will normally be left unconnected, but if the unit is not being used with our control interface then these two pins can be wired to an external switching system and an external power supply not exceeding 15 V at 1A must be used. See Figure 5

Construction

Insert the links and the 8 pins on the pcb , then taking care with the orientation of the diodes, IC's, transistors and C2, 3, 6, 9, 11 and 12 place the rest of the components except TR3 and TR5 and solder them all in position. Carefully align TR3 and TR5 above the holes in the pcb and then solder them in position, noting that no insulating washer is required. Drisl the box and make the cut-out as shown in Figure 3. then place a $6 B A 1 / 2$ in bolt in each of the four corner holes in the base and tighten a nut and washer on each bolt. Then sit the pcb on the nuts and fix with another nut and washer as shown in Figure 4.

Fix the antenna to the front plate of

Figure 2. Component overlay of Doppler unit.

THE DOPPLER EFFECT

In 1842 an Austrian physicist, Christian Doppler discovered that the velocity of a sound source cari change the frequency of that sound as perceived by an outside observer. For example if a car sounding its horn rapidly approaches an observer, the observer wiff note that as the car passes him the frequency of the horn droips. Attlough this is sound radiation, the same effect accurs with electro-mas netic radiation

The reason for this is that for sound or electro-magnetic radiation, the speed of propagation (in the same medium) does not change for electromagnetic radiation this speed is about 300 million metres per secund and senerally de noted as ' c '. Th speed remains the same regardiess of the velority of the source of the radiation relative to the observer

Thus if a stationary source radiates for one second, the wave train produced will be 300 million metres long. Now imagine that the source moves away from the observer during the second when the radiation is emitted. The leading edge of the wave train will be 300 million metres from where the source vas when the radiation started but the end of the wave train will be where the source is at the end of the second.
the box using two 6BA bolts. Now fix the CL8960 to this and tighten up. The CL8960 is supplied with two back-toback diodes and a capacitor connected across the mixer diode for protection. These components must NOT be removed. Mount C2 from the +7 V pin to the OV pin as shown in Figure 2. Fix the LED either directly to pins 5 and 6 or to the hole marked 'A' in Figure 3. Connect the two wires between the pcb and the CL8960 as shown in Figure 2.

The 12 V supply wires can now be connected; the positive to pin 1 and the negative to the CL8960 as shown in Figure 4. Make absolutely certain that you have connected the supply the right way round. Temporarily disconnect the wire from pin 3 on the pcb and connect

So the length of the wave tran is now 300 million.metres plus the distance travelied by the source in that seconc. Since the transmitted frequency did not change. there must still be the same number of waves in this longer wave trainas in the firstone. If the observer now "listens" to this zadiation for precisely one second; he will of course receive 300 million metres wonth of bath wave trains. The first wave train will contain all the waves transmitted, but the second wave train will not contain all the waves trans mitted (because as we've seen there is actually more than 300 million metres worth of them). If there are fewer waves in the same distance then the distance between each wave must be greater. In other words the wavelength is longer and if the wave. length is longer then the frequency is iower.
in fact the observer would never know (unless he had other information) that it was not a stationary source that transmitted both signals. in the second case he would think that the source actually transmitted a lower frequency signal for a stightly tonger time.
if the source had moved towards the observer during the transmission period, then the wave train would be shotter, the wavelength shorter and the irequency higher.
a voltmeter between that pin and the chassis (OV). Connect the power supply. The voltmeter should read within $\pm 1 \%$ of 7 V , but many lower cost multimeters have far less accuracy than TL430C and in fact if your multimeter reads within $1 / 2 \mathrm{~V}$ of 7 V then it is very unlikely that there is a fault in the circuit. If all is well, remove the power supply, reconnect the wire to pin 3 and switch on again. The unit is now functioning.

The completed module is ideally situated in the corner of a room, but could be placed almost anywhere and may be disguised by covering the front. Any such covering should be thin paper, card or polystyrene and must be positioned not less than 2.5 cm (1in) from the front of the box.

DOPPLER RTX3

Figure 3. Box cut-out and drilling.

Figure 5. Wiring of external alarm if not used with control unit.

Licensing
 Requirements

The Maplin RTX3 radar intruder detector has been approved by the Home Office if built from our kit of parts. The licence will only be issued if the following requirements are met:
i. The unit must be built from our kit and our construction details must be followed implicitly.
ii. The equipment must be clearly and permanently marked "MAPLIN RTX3" and the kit includes the adhesive label required.
iii. The equipment must only be used indoors.
iv. The equipment must not be used for any purpose other than intruder detection within buildings.
v. Any technical changes made to the design will render the equipment unacceptable for licensing.
Provided that the above conditions are met, the Home Office will issue a licence and the cost is only $£ 3$ for five years (at time of writing). You should note that it is illegal to operate the unit before you have a licence and to this end an application form is supplied with the kit. Otherwise application forms are available from:

Home Office,
Radio Regulatory Dept.,
R2 Division - Licensing Branch,
Waterloo Bridge House,
London SE1 8UA.
(Telephone 01-275 3058).
The application form must state that the equipment to be licensed is the MAPLIN RTX3 intruder detector otherwise a licence will not be issued.

We should like to thank those concerned at the Home Office for their assistance and for the prompt way in which our application for type-approval was dealt with. Continued on page 62

Figure 4. Assembly.

DOPPLER MODULE

CONTRC INTERFE

by Dave Goodman

This unit provides a power supply for up to four radar modules and an interfate for one radar module. Additional "extra channel" pcb's can simply be wired on to the side of the main pcb. Thus each interface module couid be wired to individual channels on the Home Security System (described in issue 2) so that after triggering, the actual unit that fired would be indicated. Alternatively if that facility is not required then simply connect the relays in series as shown in Figure la and connect them to just one channel on the Home Security System.

The module provides the facility to connect a standby battery pack. Twelve nickel cadmium batteries are required and they are trickle-charged all the time mains is present. When mains fails, the batteries take-over without triggering the alarm. The size of battery used will depend on how many radar units are being used and how long you wish standby to last after mains fails.

The current drain from the battery for each radar module is 170 mA . Thus with 12 fully charged ' C ' cells (1800 mAh types), four modules would
run for about three hours and a single module for about 12 hours. Alternatively, a single module would run from 12 'AA' cells (500 mAh) for about 3 hours.

If standby batteries are not used then although when mains fails the radar units cease to function and the alarm is not triggered, when mains returns, the radar units, in taking a few seconds to settle, wili trigger the alarm. So it is a considerable advantage to have standby batteries and avoid this kind of false triggering.

This unit could be used with any alarm system, but note that the relay contact does not latch. The maximum contact rating is 1 A at $24 \mathrm{~V} D \mathrm{C}$.

Circuit Description

The unit runs directly from 240 V AC mains via a 15 V 30 VA toroidal transformer. The secondary voltage is halfwave rectified and smoothed by C1 producing about 24 V off-load. TR1 forms a constant current charger for the standby battery with the current set to 6 mA by R2. Diode D3 is reverse

Figure 1.
June 1982 Maplin Magazine

DOPPLER INTERFACE UNIT

Figure 2. Circuit diagram of Channel/PSU PCB.
biased when mains and batteries are present, but when mains fails it becomes forward biased and the +24 V rail drops to +15 V . This is just sufficient to maintain the output of Reg 1 at 12V.

With a Doppler module connected to pins 13 and 14, the current through R9 and R10 in parallel provides a biasing voltage across RV1. With RV1 correctly adjusted, TR4 will be just turned on enough to light LED1, but not enough to operate TR3. TR2 will therefore not conduct and the relay will remain unoperated. If the Doppler module is triggered, the LED in the Doppler module lights and causes a tiny current change through R9 and R10. This change turns TR4 fully on and TR3 will turn on. This operates TR2 and the relay switches. The relay will only remain operated whilst the LED in the Doppler module is on.

The advantage of this system is that only two wires are required and the wires themselves are constantly monitored. The alarm will fire if the wires are cut or short-circuited.

The extra channel pcb's as shown in Figure 3 are identical except that the power supply prior to the regulator is not included.

Construction of Channel/PSU PCB

Fit all the resistors, R1 to R10 and fit RV1 and solder. Fit and solder diodes D1 to D4 and Zener diode D5 taking care with orientation. Fit and solder the 17 Veropins and the disc capacitor C3, then $\mathrm{Cl}, \mathrm{C} 2$ and TR1 to 4 taking care with the orientation.

Relay RLA will only fit one way round, but be careful not to force the terminals, they should be carefully straightened and should then fit easily. Reg 1 can now be fitted below the pcb, then soldered and bent up so that it lies parallel with the pcb as shown in Figure 5.

Bolt the 3-way connector block to the pcb using two 6BA $1 / 2$ in bolts and nuts, then bolt the fuseholder to the pcb using a 6BA $1 / 4 \mathrm{in}$ bolt and nut. LED1 and LED2 can now be connected as shown in Figure 4. These can be mounted directly to the pcb or externally depending on your requirements. LED2 shows that power is on and must be included if standby batteries are used. LED1 is used during testing, but can be omitted in use. If fitted, it lights when a Doppler module is connected.

Wire up the six colour-coded leads from the transformer as shown in Figure 4. Cut $8 \mathrm{~cm}(3 \mathrm{in})$ off the piece of mains cable (note that this is not

Figure 3. Circuit dlagram of Extra Channel PCB.

DOPPLER INTERFACE UNIT

supplied in the kit) and use the piece of brown wire to connect from the terminal block live to FS1. Use the piece of green/yellow to connect from the terminal block earth to pin l. These connections are shown in Figure 4. The mains cable itself can now be connected to the other side of the terminal block and this is also shown in Figure 4.

Construction of Extra Channel PCB's

Extra channel pcb's can now be constructed in the same way as the channel/psu pcb's, though of course there are less components. The LED on this board is exactly the same as LEDI on the channel/psu pcb and again although required during testing, it can thereafter be omitted if not required.

Assembly

Mount the transformer with the mounting kit supplied with the transformer and then fix the pcb's side-byside (if extra channel pcb's are in use) so that pin 9 on the channel/psu pcb is adjacent to pin 2 on the extra channel pcb and, if further extra channel pcb's are in use, so that pin 3 on the left-hand one is adjacent to pin 2 on the righthand one.

Fix the boards using four $1 / 2$ in spacers and four 6BA 1/2in nuts, bolts and washers. With reference to Figure 5 , bolt the regulator to the metal box using the mounting kit smeared with silicone grease e.g. Thermpath (not supplied in kit) and a 6BA $1 / 4 \mathrm{in}$ bolt, nut
and washer. The size of metal box in which the unit is mounted will depend on how many channels you require and whether you are having standby batteries, but whatever the size this will be a sufficient heatsink for the regulator.

When choosing a box, remember to leave room for the standby batteries. These can be fitted using our battery holders e.g. for ' C ' cells use three HF95D or HF96E and for 'AA' cells use two HQ01B or YR62S. There may be sufficient room for everything in the main box of the Home Security System in which case the back of the box will form the heatsink for Reg 1.

If more than one channel is in use, then wire the pcb's together with strapping wire by linking the pins as follows:

Channel/PSU

PCB
pin 9
pin 10
The extra channel pcb can then be extended on again as follows

> 1st or 2nd

2nd or 3rd Extra Channel

PCB
Extra Channel
pin 3
to
PCB
pin 4
to
pin 2
Setting-up
Switch the mains on and measure the voltage between pin 13 and 14 on the channel/psu pcb and between pin 7 and pin 8 on the extra channel pcb. The meter should read approximately 12 V . Note that pins 14 (and 8) are OV and the +12 V should be on pins 13 (and

7). The pin numbers in brackets are for the extra channel pcb.

If all is well, connect a Doppler module to pins $13(7):+12 \mathrm{~V}$ and $14(8)$: OV. Adjust RV1 so that LED1 lights and check that if the Doppler module is removed the LED extinguishes. Reconnect the Doppler module and continue adjusting RV1 until the relay operates i.e. the LED and relay are now both operated.

Now turn the preset back until it is roughly in the middle of the region between the LED operating and the relay operating, i.e. the LED is now operated and the relay released. Connect a 2 k to 3 k resistor across pins $13(7)$ and $14(8)$ with the Doppler module still connected and check that the relay operates. Otherwise further adjustment of RV1 will be necessary. Remove the resistor. The output can now be wired as shown in Figure 1.

CHANNEL/PSU PARTS LIST
Resistors - all aW 50 carbon unless specfifec

$R 3.8$	$1 k 5$
R2	220 R
R3,7	4 k 7
R4.6	2k2
R ${ }^{\text {c }}$	27 k
(e) 10	15R (7W mrewound)
RV1	2k2 horizontal sub.mon preset
Capacitors	
	4700uF 25 Y axial electrotytic
C2	10001 F 16 V axiab electrolytic
C3	100nt disc ceramic
Semicanductors	
01.23.4	1 N 4001
05	BZY8ECSN1
\{ FD ${ }^{\text {, } 2}$	LED red
TR: 2.4	BC212L
TE3	BC548
WEG1	UA78 M 12 U

20 ff	(M1K5)
	(H220R)
2 off	(M4K7)
2 aff	(M2K2)
	$(\mathrm{M} 27 \mathrm{~K})$
2041	(15 F)
	(WR561)
	(FB950)
	(F8820)
	(B)03D)
40 06	(04730)
	(QHG7H)
204	(WL2JE)
3 off	(08600)
	(00730)
	(QL296)

EXTRA CHANNEL PARTS LIST
Resistars - all sitv 5 of carbon unless specined

R1, 6	4 k 7.
R2. 1	2k2
R3	27.
$R 5$	1*5
R7. 8	1572 (7w wircoround)
RVI	2 K 2 newzontal sub-min preset
Capachars	
Cl	1000 f 16 V axal slectroylic
02	100nF disc ceramic
Semuconductors	
Di	1N4001 s2v83c5*1
LEO!	LED red
TRI. 3	BC2tal

THE VIC 20 COLOUR COMPUTER

by Chris Barlow

commodore, the manufacturers of the VIC20 are already a well known name in the micro-computer world. Their PET micro-computer has sold more than 50,000 units in the UK, mostly to schools and businesses. Its popularity in schools is probably due to Commodore's excellent programming language PET BASIC which is one of the easiest computer languages to learn. This same BASIC is supplied with the VIC20. In fact all the best features of the PET have been included in the VIC, but because a monitor is not included, the price is much lower.

The VIC20 is a full-fledged computer and is truly expandable into a very sophisticated computer system. Although it doesn't have its own monitor like the PET, it can be used with any ordinary domestic television (625line PAL) and simply plugs straight into the aerial socket like a video recorder or home games machine. With every computer there is a friendly guide called "Personal Computing On The VIC20" that explains to every owner, including the first-time user, exactly how to get good results from the VIC20.

The best way to get to know the VIC20 is to take a quick tour of the keyboard. The keyboard contains upper and lower case keys, numbers and symbols, just like a typewriter keyboard. In addition, there are special editing keys, and the famous "PET GRAPHICS" character set. Here then, is a brief "tour" of the VIC keyboard:

Graphics \& the Commodore Key

When you turn on the VIC, you're automatically in "graphics" mode which means you can type upper case letters AND the more than 60 graphics you see on the keys. There are two graphics on each key. To get the graphic on the right side, simply hold down the SHIFT key and type the key with the graphic you want. To get the graphics on the left side, hold down the "COMMODORE" key (the little flag). In this way, you can type upper case letters and the fuil graphics set at the same time!

Upper/Lower Case \& Graphics

To get into the "text" mode you simply press the SHIFT and COMMODORE keys together. This lets you use the VIC like an ordinary typewriter, with full upper and lower case letters, plus all the graphics on the LEFT side of the keys. These are the graphics which are most suited for charts, graphs and business forms

Colour

You can change the colours of the characters you type by pressing the CTRL key and one of the 8 colour/number keys. The colours are black, white, red, cyan, purple, green, blue and yellow. You can set - and change - colours inside or outside a computer program. In addition to the eight character colours, you can also change the colours of the border and screen on your television set, by typing a special command called a "Poke". For example, if you type the June 1982 Maplin Magazine

command Poke 36879, X where X is some number from 1 to 255 , you can get up to 255 different combinations of screen and border colours, including 16 screen colours and 8 border colours.

Special Editing Keys

Here are some of the other special keys which make the VIC such a powertul microcomputer:

CTRL - used to set character colours, and, in conjunction with special programs such as wordprocessing, to execute special commands.

Software writers can select their own "Control" commands and incorporate them into their programs.

Run/Stop - The run/stop key lets you automatically load programs into the ViC's memory from a cassette tape. Hitting this key without shifting (i.e. Stop) interrupts a running program or listing. If you stop a program and want to resume it where you left off, you can type "cont" and the program will "continue".

Shift - The VIC has two shift keys and a shift lock key, just like a typewriter, for typing long strings of upper case letters or graphics.

RVS on and RVS off - These two keys let you type reverse characters on the screen (for instance white on black instead of black on white).

Joystick Demenstration Program
 10 PRINT $\quad=\sim \cdot x=7660: z=g: V=1:$ POKE 37154. 127
 $20 \mathrm{FOR} \mathrm{C}=38400$ TO 38960 . PJKE C, 6 NEXT C
 $30 A=$ PEEK (37151): POKE X 224
 40 IF $A=122$ THEN $X=x-22: V=V-1$
 IF V ITHEN $\bar{x}=x+22, V+1$
 50 IF $\mathrm{A}=118$ then $\mathrm{x}=\mathrm{x}+22: \mathrm{V}=\mathrm{V}=\mathrm{E}$ If $V 23$ THEN $X=X-22: V=V-1$
 60IF $\mathrm{A}=120$ THEN $\mathrm{X}=\mathrm{X}-1: 2=2-8$ \&F 2 (THEN $n=x+1: 2=2-1$ 70if PEEK $(37152)=119$ THEN $X=x+1$ $z=Z+1$ if 2 21 THEN $x=x-1: z=z-1$ 80 GOTO 30

CLR/Home - This key makes the cursor move to the "home" position at the top left hand corner of the screen. If you type shift and CLR/home you "clear" the screen of all the characters that were present.

Inst/Del - This is a super editing key which lets you insert or (shifted) delete characters. It's great for correcting mistakes and inserting extra information.

Restore - This is a "reset" key. If you type the run/stop key and the restore key together, you complete reset the computer as if you had just turned it on ... with the benefit that any programs you had in the memory are retained and can be listed or run from the start.

Cursor Keys - Ability to move the screen cursor up and down and sideways by hitting single keys is a powerful feature of the VIC. Being able to move the cursor this easily is essential but not all computers include it as a feature.

Return - The returnkey is used primarily for entering commands and instructions to the computer.

Programmable Function Keys

One of the most unique features on the VIC is that mysterious vertical row of "function" keys on the far right side of the keyboard. There are four keys and (if you shift them) a total of eight functions. These keys are not defined when you turn on the computer, but you may assign any BASIC command or instruction set to them, under program control.

Inside the VIC20

Inside the VIC20 there are some very powerful integrated circuits. The micropro cessor chip itself is the 6502. The memory is divided into two parts. The first part is the ROM (read only mernory) that stores the BASIC, the aipha-numeric characters and the graphics characters, input and output routines and the operating system 'Kernal', The total amount of ROM supplied is 20 K , but this can be increased to 32 K , and addresses 40950 to 49151 are reserved for plug-in ROM such as VIC's game cartridges.

VIC20 COMPUTER

Colour Demonstration Pregram

10 PRINT "J POKE 36879, 5 20 FOR D $=7680$ TO 8185: POKE D, 224 NEXT D
$30 C=\operatorname{INT}($ RND $(1) \times 506)+38400$ $40 \mathrm{~A}=\mathbb{I N T}($ RND $(1) \times 8): 15 \cdot \mathrm{~A}: 1$ THEN 40 50POKE C, A: COTO 30

The second part of the memory is RAM The ViC20 contains $5 K$ of static RAM (2114) and 3.58 K of this is free space for your programs. More RAM can be added up to a total of 32 K and addresses 8192 to 32767 are reserved for further expansion of RAM The first part of RAM is allocated to BASIC working storage and tape buffer, screen storage etc.

The second important chip in the VIC is the one from which the name of the computer is derived. This chip, a 6561, is a video interface chip (VIC). It is a powerful colour graphics and sound generator and incorporates two 8 -bit analogue to digital converters for two paddles for playing arcadetype games. The VIC also generates the video sync., luminance and colour information needed by a standard UK television to provide a full colour picture.

To produce programmable colour characters, VIC accesses three areas of memory - display characters, character pointers and colour pointers. Eachcharacter is stored in a cell of 8×8 bits and it is this data that makes up each of the characters stored in ROM. However, it is possible under software control to write your own character set in

The VIC 20 Joystick.

RAM, remembering of course that a complete set will take up 4 K in the memory.

Most computer games use re-defined characters to create the special symbols and objects such as those used in Commodore's Alien Invaders or Tank Command or Air Sea Battle, etc. Re-defined characters could also be used though to make musical notes or the characters for foreign languages or scientific symbots etc.

The video screen is stored in RAM locations 7680 for the top left-hand corner of the screen to 8186 for the bottom right-hand comer. The position of this RAM will move if more RAM is added to the VIC20. If there is more than 8 K of RAM then the addresses change to 4096 to 4602.

Similarly the colour addresses for the screen display start at address 38400 for the top left-hand corner and go to 38906 for the bottom right-hand corner. The values stored in these addresses set the colour of the character displayed on the screen in each position. Again the addresses move if there is more than 8 K of RAM fitted. The new addresses are 37888 to 38394 . In the Colour Demonstration program shown in the panel, remember to change the addresses if you have more than 8 K of RAM.

The VIC chip has many more functions, but we have quickly covered here some of the more useful ones.

The VIC20 Joystick

The VIC2O has provision for a joystick and this can be used in games or simulation programs. Inside the joystick are five switches. Four switches are for joystick movement and one is the 'fire' button. When the joystick is in a diagonal position, two of the four movement switches will be closed and this sets a particular value in the VIC20. These joystick position values are stored in addresses 37151 and 37152 as shown in the diagram.

The value in address 37151 changes when the joystick is moved to close the switches for up, down and left and it also changes when the fire button is pressed. If the joystick is central and therefore no switch is closed then the value in 37151 is set to 126 . This changes to 94 if the fire button is pressed. if the joystick is moved to close the 'up' switch, the value changes to 122 or to 90 if the fire button is pressed and so on as shown in the diagram.

The fourth stick switch changes the value in location 37152, but this address is also used for keyboard scanning. To make this location 'see' the joystick, you have to POKE 127 at address 37154, not forgetting to return it to 255 when you want keyboard scanning to resume. Once 37154 is set to 127. location 37152 will contain the value 247 when the joystick right switch is open and 119 when the switch is closed. Clearly your program will need to contain a short algorithm to detect when the top right diagonal is called i.e. when top and right switches are closed, or when the bottom right diagonal is called. A short joystick demonstration program is shown in the panel.

The Actual Equipment

Here's a brief technical description of the computer itself and all the add-ons available at the moment.

The VIC20 Colour Computer

Specification

5 K RAM expandable up to 29 K (a further $3 K$ could be added, but this would not be addressable from BASIC).

RS232C interface capability.

8 border colours, 16 screen colours which can be mixed.

8 screen character colours generated directly from the keyboard.

3 audible tone generators, each of 3 octaves.

A white noise generator for sound effects.
22 characters wide by 23 lines deep screen display. .

88 character program line length.
64 ASClI character set, upper and lower case alphabetics plus numerics.

Full PET-type graphics character set generated directly from the keyboard

High resolution graphics capability either directly from defined keyboard characters or via a high resolution graphics cartridge.
176×158 pixels (27,808 in total) maximum resolution.

8 programmable special functions accessed via 4 special function keyboard keys.

Automatic repeat on space bar, insert, delete and cursor control keys (other keys can be programmed to repeat).

The console comes complete with a power pack and modulator and the necessary connecting leads and a users' handbook.
Order As AF47B (VIC20 Colour Computer). Price £199.99

VIC C2N Cassette Unit

This cassette unit plugs directly into the computer console and may be used to store your programs. It can also be used to run pre-recorded programs on cassette such as Commodore's 'Teach Yourself Programming.'
Order As AF48C (vIC20 Cassette C2N)
Price $£ 44.95$

VIC Printer

A tractor-feed 80 character-per-line, 30 characters-per-second printer that plugs directly into the VIC20 console or into the disk drive if that is in use.

Order As AF49D (VIC20 Printer)

Price $£ 230.00$

VIC Disk Drive

A disk drive that plugs directly into the VIC20 console. The drive may be used with standard single-sided, single density $5 / 4$ inch floppy disks and about 170 K bytes of storage is avaiiable.
Order As AF50E (VIC20 Disk Drive)
Price $£ 396.00$

Add-on RAM Cartridges

Any one of these add-on cartridges will plug directiy into the VIC20 console. However, if a plug-in ROM cartridge is used, the memory would have to be removed. If you wish to use more than one RAM cartridge or you want to keep the RAM connected when running
games, then you will need the Memory Expansion Board described below. The addon RAM is available in three sizes.
Order As AF51F (VIC 3K RAM) Price $£ 29.95$ AF52G (VIC 8K RAM) Price $£ 44.95$ AF53H (VIC 16K RAM) Price£74.95

VIC20 Memory Locations

0 to 1023 Workine storage RAM (1K)
1025 to 4095 Expansion RAM (SK)
4096 to 7679 User RAM (3.5\%)
7680 to 8191 Screen RAM (0.5 K)
8192 to 16383 Expans on RAM/ROM (aK)
16384 to 24575 Expans on RAM/ROM (8K)
24575 to 32767 Eipansion RAM/ROM (8K)
32768 to 36863 Character ROM (4 K)
35864 to 37135 VIC address (0.27 K)
37136 to $37887 / 1 / 01$ (0.73 K)
37888 to 38911 Colou RAM (1K)
38912 to 38935 //O2 (1K)
33936 to $40959 / 103$ (1K)
40960 la 49151 Expansion ROM (8K)
49152 to 57343 BASIC ROM (8 K)
57344 to 65535 Kemal ROM (8 K)

Memory Expansion Board

This board plugs directly into the VIC20 console and has four input sockets. Up to four of the following items can be connected: 3 K RAM, 8 K RAM. 16 K RAM, program cartridges, or any IEEE devices such as PET/CBM peripherals.
Order As AF54J (VIC Memory Expansion)
Price £ 125.95

Joysticks and Paddles

A pair of paddles or one joystick may be connected directly to the VIC20 console. (An expander will be availabie soon to allow two joysticks to be connected, however all the programs available at the moment that use joysticks, require only one). Most of the game cartridges require joysticks, except Super Slot where paddles are required.
Order As AC53H (Single Game Joystick)
Price x 7.50

AC37S (Pair of Joysticks)

Price $£ 13.95$ AC45Y (Le Stick) Price $£ 24.95$ AC30H (Pair of Paddles) Price $£ 13.95$

Programming Aid Cartridges

Three plug-in cartridges for the programmer. Super Expander contains 3 K of RAM and enables high resolution graphics up to 176×158 pixels to be obtained. Programmers Aid contains additional commands, function key programming and much more. The third cartridge is a machine code monitor.
Order As AC54.J (Super Expander)
Price $£ 34.95$

AC55K (Programmers Aid)

Price $£ 34.95$
AC56L (Machine Code Monitor)
Price £34.95

Introduction to BASIC

Two program cassettes with documentation to help you learn BASIC on the VIC. Order As AC57M (Intro to BASIC Part 1)

Price $£ 14.95$
AC58N (Intro To BASIC Part 2)
Price $£ 14.95$

Game Programs

The following game programs are available on cartridge except for Blitz which is on cassette.
Order As AC59P (VIC Avenger Game)
Price $£ 19.95$
AC60Q (VIC Star Battie Game) Price $£ 19.95$
AC61R (VIC Super Slot Game)
Price £19.95
AC62S (VIC Jelly Monsters Game) Price $\mathbf{£ 1 9 . 9 5}$ AC63T (VIC Alien Game) Price $£ 19.95$
AC64U (VIC Super Lander Game) Price $£ 19.95$ AC65V (VIC Road Race Game) Price £19.95 AC66W (VIC Rat Race Game) Price E19.95 AC67X (VIC Blitz Game)

Price $£ 4.99$

Books About VIC

Three books are available to help you really get to know the VIC computer.
Order As WA31J (Learn Programming On The VIC) Price £2.50 NV WA32K (VIC Revealed) Price $£ 11.50 \mathrm{NV}$
WA33L (VIC Programmers Reference Guide) Price $£ 16.50 \mathrm{NV}$

The Future

In our next issue we shall be giving more details about the VIC software. Lots more software will become available later this year. Game programs to be released include Sargon II, Chess, Pinball. Cosmic Jailbreak. Omega Race and Gorf. Adventure programs coming soon include Adventure Land, Treasure Island, Mission Impossible, Voodoo Castle and The Count. Business programs to be released are Simplicalc - a simplified version of Visicalc, Stock Control, File - a data-base handling program, and Letter Writer - a word processor. Also during this year 10 or 11 programs are being released on specific subjects to help with 0 - level and CSE revision.

NEW ITEMS USED IN PROJECTS IN THIS MAGAZINE

GA65V Sequencer PSU PCB
GA71N Stereo Amp PCB
GA78K Stereo Amp Switchboard
GA81C Channel/PSU PCB
GA82D Extra Channel PCB
GA83E ZX81 Keyboard PCB
GA84F Remote Data Latch PCB
GA85G Data Encoder PCB
GA86T Data Decoder PCB
GA87U Infra-red Transmitter PCB
GA88V Infra-red Receiver PCB
GA89W $\quad 27 \mathrm{MHz}$ Transmitter PCB
LW66W Sequencer Kit
LW71N Stereo Amp Kit
LW72P ZX81 Keyboard Kit
LW73Q RTX3 Doppler Kit
LW74R Channel/PSU Kit
LW75S Extra Channel Kit
June 1982 Maplin Magazine

QY17T 2716/M3
Price 84.60
Price 55p
Price $£ 1.85$
Price $£ 1.35$
Price $£ 2.95$
Price $£ 2.10$
Price 22.49
Price $£ 2.45$
Price El 1.25
Price $£ 1.25$
Price £1.50
Price £125.00
Price $£ 49.95$
Price $£ 19.95$
Price $£ 39.95$
Price $£ 13.95$
Price $\mathbf{5} 4.50$

RK25C
RK26D
RK27E
RK28F
RK29G
RK30H
RK31J
RK32K
XH58N
XG15R
XG16S
XG17T
YQ56L
YQ57M
YQ58N
YQ59P

Stereo Amp Heatsink
Axial 4700uF 40V
Adaptor L
RA Flexiconnector 5-way
RA Flexiconnector 8-way
Flexicable 7 -way
Flexicable 10 way
Sequencer Key Print
ZX81 Key Print
Stereo Amp Chassis
Stereo Amp Woodwork
ZX81 Keyboard Case
Sequencer PCB
Sequencer Display PCB
Sequencer Keyboard PCB
Sequencer Interface PCB

Price $£ 14.95$
Price £1.25
Price $£ 1.40$
Price 60p
Price 20p
Price 25p
Price 54p
Price 65p
Price 65p
Price 25p
Price $£ 5.95$
Price 66.25
Price 54.95
Price $£ 4.75$
Price £1.65
Price $£ 2.35$
Price 22.10

REMOTE CONTROL

for Digital Multi-Train Controller by Robert Kirsch

The second in this series of articles on model railway projects describes the addition of remote control facilities to the train controlier described in the previous issue. This addition enables arry or all of the four control boards to be commanded by an 8 -bit digital input either from the remote controller or a computer. The data for each controller is latched and thus one train can be set running and the command changed to another controller to enable up to four trains to be controlled simultaneously by the external input. Figure 1 shows the block schematic diagram of the remote control system.

Additions To Control Board Circuit

Figure 2 shows the complete circuit of the control board with the extra parts added. As described previously, the board works by allowing a group of TS pulses to be sent to the 6 common lines depending on the direction and train to be controlled. The length of this group of pulses determines the speed of the train; thus with no pulses the train is stationary and with a full ten pulses per group, the train is at maximum speed.

In the local mode, the number of pulses in the group is set by selecting one of the ten outputs from the 4017 decade counter (ICl) and using this to trip the output gate after the appropriate number of pulses have been sent. The same applies in the remote mode, except that in this case the
output gate is tripped when the output from the binary counter (IC101) is the same as the 4 -bit input from the external source. This is detected by the 4-bit magnitude comparator (IC102), The direction in travel in the remote mode is controtied by simply gating the TS pulses fed to the appropriate line

Figure 1. Block schamatic showing all aptions.

Figura 2a. Cireult diagram of complete Control board.

Figure 2b. Component fayout of Control board.

Irterior view of controller with Dita Latch board fitted.
June 1982 Maplin Magazine
under control of the fifth bit of external data.

Remote Data Latch Board

The data for each of the four control boards is stored by one of the four latches (IC1 to 4); see Figure 3. The control board to be commanded is selected by the conditions applied to the input lines 85 and $B 6$, and this is decoded by !C5 and the diodes D2 to D9 allowing the TS pulse to clock only the required latch.

The eighth bit of the control word may be used for any function required, but we have shown it connected to the power reset circuit. This requires an output only when the button on the remote controller is pressed, so no latch is needed.

Remote Control Data Encoder Board

This board enables any one of the four control boards to be selected and the speed and direction of the train selected by that board to be controlled.

TRAIN REMOTE CONTROL

Figure 3a. Circuit diagram of Latch board.

Flgure 36. Component layout of Latch board.

The information is turned into a serial 8 -bit word and may be transmitted by radio, wire or infra-red link to the decoder at the train controller.

The serial data sent consists of one long sync pulse followed by eight puises whose length is determined by whether the bit is at ' 1 ' or ' 0 '. A short pulse is sent for 0 and a longer pulse for 1 , but a gap is always left between bits to enable the counter in the decoder to step to the next bit.

All the pulses used in the encoder are derived from IC1 (Figure 4) whose mark/space ratio is set to give the critical 'on' period for data ' 1 ' transmissions. The output of this IC is fed to the decade counter (IC2) which serves two functions. The first is to select each one of the eight gates (IC3 and IC4) in their correct sequence and at the last two counts, send the sync pulse. The second function of IC2 is to provide sequential pulses to the speed control in decimal form at the same time as the binary counter (IC7) is counting up in binary.

When the decimal count reaches the selected speed, the binary data is clocked into the tatch (IC6). The data heid in this latch is sent at the appropriate time during the serial word's transmission. A simple diode encoder turns the information from the controller selector into the required two bits to be transmitted. Sync pulses and interword gaps are inserted by the gates (IC8) and the output is fed to the emitter follower (TR1).

Figure 4a. Circuit diagram of Encoder board.

Figure 4b. Component layout of Encoder board.
June 1982 Maplin Magazine

TRAIN REMOTE CONTROL

Figure 5a. Circuit diagram of Decoder board.

Data Encoder boand.

Data Decoder board.

Remote Control Data Decoder Board

The function of this board is to turn the serial information received from the encoder into a parallel 8 -bit word. The system must check that the data received is correct and reject false signals caused by interference. This is done by comparing the data received in
one word with the data received in the next word and clocking this data into the output latch only if both words are the same. A detector also monitors the output of the counter and if these pulses are not of the correct timing, the output latches are inhibited and no data transfer can occur.

The incoming signal is first buffered and amplified by TR1 (Figure 5) and

Figure 6 a. Circuit diagram of 27 MHz transmitter.
then squared and inverted by the Schmitt trigger (IC1A). At this point, the signal should be the same as that leaving the remote encoder.

The signal is now split into three paths. The first is via IC1 B and C which forms a sync detecting unit, giving an output only after the incoming signal has remained at a high condition for the appropriate sync period. This sync pulse is used to reset the binary counter IC 3 after it has completed its scan of the addressable latches. This binary counter is stepped by every positive transition of the input signal and its binary output is fed to the two addressable latches (IC4 and IC5); addressing each latch in the same sequence as the incoming bits of the serial signal.

The second path that the input signal can take is via Cl . This produces a test pulse, a fixed time after each clocking pulse is received and this is used to enable the selected one of the two addressable latches which are also being fed with incoming data. If the input is high at the time of the test pulse, a ' 1 ' is clocked into the addressed latch and if the input is low, a ' 0 ' is clocked into the latch.

Each of the two latches is selected alternatively every frame and they are controiled by dividing the sync pulse rate by two in IC2 and using this to inhibit one or other of the latches. At the end of every two frames only one of the latches is cleared back to all low outputs.

The two sets of eight outputs from both latches are compared by the exclusive-NOR gates (IC6 and IC7) and when both latches contain the same data they allow a pulse to clock the data into the two 4 -bit output latches (IC8 and IC9). This clock pulse is inhibited if the signal fail detection circuit sees an incorrect input pulse train.

Data Link

There are three methods of connecting the hand-heid remote unit to the decoder located at the train controller. The simplest is to use a 2 -wire cable which may be connected say, to several sockets located around the layout, to enable the remote unit to be plugged in wherever required.

The second method is by way of a 27 MHz radio link and the third via an infra-red link.

Figure 6b. Coll winding details for 27KOHz transmitter.

TRAIN REMOTE CONTROL

27MHz Radio

Data Link

Transmitter

The transmitter is a low-powered 27 MHz crystal-controlled circuit of fairly conventional design, TRi forms an untuned crystal oscillator which runs all the time that the controller is in operation. The output of this oscillator is fed to the base of TR2 which acts as an output amplifier and modulator. Incoming data is fed to the base of TR3 whose emitter is connected to the emitter of TR2. Thus, when the data is low, TR2 is turned on and passes the rf signal to its collector and the aerial circuit and when the data is high TR2 and TR3 turn off and little or no of is transmitted.

Receiver

This is built on a standard board designed for model control purposes. Due to the relatively short range required for this application, the of amplifier in the receiver is not used and is strapped out. This reduces the effect of high levels of external interference. The local oscillator is crystal controlled at 455 kHz below the incoming rf frequency and fed to the mixer where it meets the incoming signal from the aerial turied circuit L1. The 455 kHz intermediate frequency is amplified and fed to the detector (D1) via two tuned circuits (IFT1 and IFT2). The signal at the output of the detector is fed via Cl 6 to the data decoder and its DC level is used for controlling the receiver gain (agc).

Licensing Requiraments

Please note that a licence is no longer required to transmit and receive signals in the 27 MHz band being used for model control. Since the radio link described here meets all the requirements for transmitters and receivers in this band, it is perfectly tegal to use it without a licence. Indeed, a licence for this use is simply not available any more.

Infra-Red Data Link

Transmitter
IC1 forms an oscillator running at about 30 kHz with a very short, but high amplitude, pulsed output. This output is used to switch TR2 and thus pass high current pulses of about $1 / 2 A$ through the four infra-red emitting diodes (D2 to D5) for a very short period. These pulses are turned on and off by TR1 which is controlled by the data input from the encoder.

Receiver

The infra-red signal is received by the diodes D3 and D4 and the 30 kHz modulated pulses are amplified by TR1 and TR2. D1 and D2 form a detector and provide a signal relative to the modulation. This signal is amplified by TR3 and any 30 kHz is filtered out by its teedback circuit. This signal now feeds TR4 which forms an inverter and output stage.

Figure 6c. Component layout of 27MHz trantmitter board.

27MHz Transmitter beard.

Figure 7a. Circuit diagram of 27 MHz receiver.

Construction

Construct all boards referring to the board legend and the appropriate parts list, leaving the insertion of the IC's until last. Refer also to the special instructions below. Add the extra parts to whichever of the control boards you wish to control remotely.

Data Encoder Board

On this board, the Veropins have to be inserted from the component side to aid wiring when the board is mounted in
the box. Ensure that the two rotary switches are in the correct positions. S2 is the switch without the click-stops.

27 MHz Transmitter Board

This is a double-sided board with an earth-plane on the component side of the board. All the wires should be soldered on both sides of the board except where a clearance hole is provided for component leads on the earth plane side. Insert and glue the two Maplin Magazine June 1982

Fizure 7b. Componemt layout of 27MHz recsiver board.

27MHz Receiver board.
formers for $L 2$ and $L 3$ into the board and wind the coils using 28swg enamelled copper wire referring to Figure 6B.

Start the windings at points A and D and wind up the formers. When the windings are completed they should be fixed with cyanoacrylate adhesive and allowed to dry before setting up the transmitter. The aerial consists of a length of palladium wire about 45 cm long connected to pins.

27MHz Receiver Board

Ensure correct positioning of the two i.f. transformers IFT1 and IFT2, and also the two chokes L2 and L3. The positive end of D1 is the end with the band. Note that R1 and C3 are not used in this application and are replaced with a link as shown in Figure 78. An additional earth strap should be added under the board using a short length of tinned copper wire as shown in Figure 7C.

Wind the coil $L 1$ referring to Figure 7D using 28 swg enamelled copper wire. A length of tinned copper wire about 1.5 cm long should be soidered to each end of R4 to form TP1 and TP2. The aerial is made from a length of June 1982 Maplin Magazine
palladium wire about 45 cm long connected to pin 1 on the receiver board.

The crystals used in the transmitter and receiver must be a pair, though any colour will do. The crystal with the higher frequency is fitted in the transmitter. The receiver should be sited as far away from the layout as possible in order to reduce electrical interference problems.

Infra-red Receiver

The positioning of the infra-red receiver diodes will affect the range of the system. They should be shielded from direct light both artificial and sunlight. A simple reffector behind the diodes and a lens system will improve the range. Nevertheless, a range of about 6 metres can be expected with no additions with the transmitter pointing directly at the receiver diodes. The receiver must be mounted in a metal box with the box connected to OV , otherwise the very sensitive circuit will pick up radio interference.

Setting-up 27 MHz Transmitter \& Receiver Transmitter

Construct the rf monitor as shown in Figure 8a and connect to a suitable

Figure 7c. Addition of earth link to 27 MHz receiver board.

Figure 7d. Coil winding details for 27 MHz receiver.

Figure 8a. RF monitor for transmitter alignment.

Figure 8b. Weter connections for receiver alignment.

TRAIN REMOTE CONTROL

Figure 9a. Circuit diagram of Infra-red transmitter.

Infra-red Transmitter board.
meter. Install the battery in the handheld controller and hold the aerial near the wire attached to the monitor. When the transmit button is pressed, a reading should be obtained on the meter. Adjust $L 2$ for maximum reading.

Move the aerial away from the monitor wire until a reading is just present and adjust L3 for maximum reading. Keep moving the aerial further away until a peak setting is found at the greatest distance away from the monitor wire. The controller should be held in a position as near as possible to that in which it with be used during the setting up of L3 to obtain maximum output under working conditions.

Receiver

Connect the receiver to the train controlier and connect a suitable meter to TP1 and TP2 (Figure 8b) on the receiver board. Temporarily short out the transmit push button on the hand-held unit in order to provide a continuous transmitted signal. A reading should be obtained on the meter when the handheld unit is brought near the receiver aerial.

Move the transmitter away until the reading on the meter falls and then adjust L1, T1 and T2 in turn for

Figure 10a. Circuit diagram of infra-red receiver,

Figure 10b. Component layout of Intra-red receiver board.

Infra-red Recejver board.

COMTROL COOES Chat							
	Seio	onsecriow	cose $\cos ^{\text {cose }}$		Scrit	Drectiom	coot 0
							2
$\stackrel{\square}{8}$	+	romed	+	\mid	\downarrow	Formom	¢
-	19		∞	$\stackrel{\square}{1}$	10		42
:	-		${ }^{5}$	i	-	mom	48
$\stackrel{\text { \% }}{\text { ¢ }}$	\$	mevers	\$	B	\%	nemem	\%
${ }_{0}$	-	sownic	\%	\%	4	Formerid	\downarrow
$\stackrel{\square}{\circ}$	-		14	.	\square		100
i	0		${ }^{30}$:	\square		112
昌	\downarrow	Aavaso	\downarrow	:	+	Buverse	\downarrow
3	\therefore		90		10		122

Figure 11. Table of decimal codes for control functions.

TRAIN REMOTE CONTROL

maximum reading. Keep moving the hand-held unit further away and retuning the receiver until a maximum reading is obtained at the greatest distance. A good reading should be obtained with the transmitter at least 7 metres away from the receiver. Disconnect the temporary link on the transmitter and the system should now be ready for use.

Remote Control Operation

Select the train or trains to be controlled on the train controller and switch the appropriate control boards to 'Remote'. The control board to be commanded may now be selected on the remote unit. Press the transmit button and set the speed and direction of the train as required. Note that there is a short delay of about 1 second before the decoder decides a valid signal is being received, but after this initial delay all information is transferred immediately.

The selected train may be left running and another controlied by first releasing the transmit button and then selecting the next train, pressing the transmit button and controlling the speed and direction of the new train.

This process can be repeated until all four control boards are in use.

In the event of the power protection circuit being tripped, it may be reset by first pressing the transmit button, then pressing the reset button on the handheld unit. This facility may also be used as an emergency stop by releasing the transmit button before the reset button. The power will remain off until a new command is sent. Note that this condition overrides the manual reset control on the train controller, but it may be reset from that end by turning the mains switch off for about 10 seconds before re-applying power.

When using the 27 MHz link it should be noted that there is a minimum distance of about 2 metres where the transmitter will overload the receiver and no data will be transferred.

Computer Control

The 8 -bit digital input may be fed from any computer via a suitable inter. face unit. An interface for the $\mathrm{ZX81}$ will be described in our next issue. If the binary word required to control the system is converted into decimal form. programming is accomplished as follows.

The starting number for each of the four control boards is:

0 for Control Board 1

32 for Control Board 2
64 for Control Board 3 and 96 for Control Board 4

To control the forward speed of each board, add a number from 0 to 10 inclusive to the starting number. Zero is minimum speed and 10 is maximum speed. For the reverse direction, add 16 to the starting number and then add a further 0 to 10 to control the speed.

Power reset or 'all stop' may be accomplished by using the number 128. Note that as each train is controlled, the last data sent for that train is held in the associated latch, so to stop all trains, it is necessary to enter the four numbers 0,32, 64 and 96 . It does not matter in which direction the trains are travelling at the time the command is given.

The inertia or speed-up and slowdown rate of each train may be written into the program by arranging for the time taken to step up from zero to the required speed and back to zero to be varied. By using the input ports, the train controller can be made to control the speed of the train dependent on its position on the layout. Future articles will describe suitable detectors and interfacing for this and computer control of signals and points.

PARTS LIST OF ADDITIONS TO CONTROL BOARD FOR REMOTE CONTROL OR COMPUTER CONTROL (1)

DATA LATCH PARTS LIST (2)

27MHz DATA RECEIVER PARTS LIST (8)

Resistors - all wiw 5 co corbon			
R1	fot uted		
R2	150 a		(AI) 50R)
R3	1*5		(MLH5)
R ${ }^{\text {P }}$	10 k		(MIOK)
95	330\%		(103301)
R5	336		(N 33K)
R)	568		(latbk)
Capactors			
Cl	22 pf ceramac		(W)48C)
C2	12 pF deramic		(WK45Y)
63	itot uibed		
c4, 3	16ati 16y tantalum	20	(wwabn
C5. 6	Inf serimic	20 fif	(Wx63)
C7,8.12,15	100 nf disc ceramic	4 กी	(PY030)
c10.	Atpf ceramic		($1+\times 520$)
C1	100ur 100 nc evect rolytic		(F+10.)
C3, 3,14	inf malar	2017	(thws
Cl 1 c	10 F 35V iantaium		(WW600)
617	4\%uF 10 V tantalum		1\%W 7 S ${ }^{\text {a }}$
Semiconambtars			
D1	O492,		(QH72F)
	TSAS5:		(B. 350)
Miscetianeous			
\square	Farmer 351		(L6)
	Oust core type s		(L842V)
	Chove 3ßut		(82394)
18			($\mathrm{H}+388 \mathrm{C}$)
	Croke 1 mh		(WH47E)
13171$1 / 2$	FWCSIIY00.		(100) 42 V$)$
			$(+5 \times 43 \mathrm{~W})$
172	Crystal		ansmiter)
$\begin{aligned} & X J \\ & \text { SKII } \end{aligned}$	Gryster mochet		+ 1×600
		20.51	(eFos)
	Nut sea	2 dtt	(eriov)
	Washer 38A	2 all	(8) 23 A
	27M12 recener pob		(reoter

DATA DECODER PARTS LIST (3)

Resittars-ail sw 5% carton			
12.19	100k	7 of	(M100k)
R2,11.12.17	10 h	4 off	(MIDK)
R3, 15	1 M	2 ot	((41M)
P4. 5	47 k	2 df	(9476)
P6	880 k		(482010
$\stackrel{89}{144}$	330k		M33016 M2200
R36	820 R		(M8220R9
Capacitors			
	1.5nF polycaitonate		(WW23A)
039	InF polycirbonate	2 otf	(\mathbf{W} W2an
068.11	100 nF poly cirborate	3 off	(WW610)
$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{ClO} \end{aligned}$			(ww600) (EFOME)
Sammiconductors			
01 to 21	1N4148	21 ott	(94.800)
${ }_{\text {ted }}$	Fnd LED		(w/27e)
TR3	$\begin{aligned} & \text { BC548 } \\ & 401068 \mathrm{l} \end{aligned}$		(08730)
\|C1 102	$\begin{aligned} & 40106 B E \\ & 40138 E \end{aligned}$		(0w64)
103	40248E		(0xala)
$1 \mathrm{Cl}, 5$	40998 L		(0W57M)
106, 2	4077 BE	20%	(0W478)
1089	4042日E	2 ott	(exiav)
Mecrilaneous			
	PIN Prus 5 pien		(HH2]
	DiN pios 5 panin		(HH2ar) (GAEST)
	Vata secoser pco	20 off	

DATA ENCODER PARTS LIST (4)

	WS carbon uniess speci 100% 6504 220k 19 k 100k (4W 2201 (6aW) 470k	$7 \text { ofs }$ $\begin{aligned} & 2 \mathrm{gff} \\ & 2 \mathrm{cff} \end{aligned}$	
Capacitors Cl $\stackrel{9}{9}$ C3 C4,5	1.5 nF polycarborate 4.7nf polycartsonate iouf 25 V mial electrolytic 105 ceramis	2 Oft	(WW23a) WWW60) (FE225) (F63Y)
Somiconducters D1 to 17 TF1 191 109 1, $1,3,4,8$ ics ICs 167	$1 \mathrm{Mal48}$ NES55 40178 E 4072 ge 40428 E 40238 E	17 off 3 off	
Mispeilaneous 51 S 83 54 58	Alotary sentch 3 pole 4 way Smitchast 1 pole 12 way Sub mint tongle's Push iwitect Press switch Whob K78 (tor S1) Knob K7C (Tor S2) Eattery clip Pp3 battery		(FF440) (Fhooa) (4002c) (fifzar)
	Qata encoder pets Vernepin 2141	10.0 ff	$\begin{aligned} & (G A B B G) \\ & \text { (ILELV) } \end{aligned}$

*if this is to be used with the 27 Mar (r data link then make R5 a Min Res in even if you are usine if or wired links as will.

To make the function shown below, you will require all the parts shown in the parts list indicated

Computer interface : 1,2
 Wired remote control $\quad 1,2,3,4$
 Infra red remote control: 1. 2, 3, 4, 5, 6.
 Radio remote control: $1,2,3,4,7,8$

Note that parts list I will be required for each control board that you wish to modify.
As there are so many possible different combinations of these parts, It is not possible to offer kits.

INFRA-RED TRANSMITTER PARTS LIST (5)

Ressitors - al R1 8 183 ค4	w 5 carben 22 K 267 $270 R$ 10her		$\begin{gathered} (M 22 K) \\ (M 2 \times 7) \\ (M 2707) \\ (M 10 \%) \end{gathered}$
$\begin{aligned} & \text { Capactars } \\ & \text { ¢1 } \\ & \text { C } \\ & \text { C3 } \end{aligned}$	1200 pF 14 polyatyrane 1uF 63 V axial el inctrolytic lonuf 1dv axil atectrolitic		$\begin{aligned} & (\mathrm{BX} 57 \mathrm{M}) \\ & (\mathrm{FE12N)} \\ & (F 848 C) \end{aligned}$
Semiconducton D1 02 to 5 T91 192 icI	IN6148 71,38 Bcr12i BC461 NE355	4 oft	
Hivertineous	intra-red trantmitter pob Weropin 2141	4 off	(GAB\%) (F.21)

INFRA-RED RECEIVER PARTS LIST (6)

PRICE LIST

All prices shown in this price list are valid from 17th May 1982 to 14th August 1982 Please note new telephone number for Sales Only (0702) 552911

postage and packing. There is a 30 p handling charge which must be paid on all orders having a total value of under $£ 4.00$.

The price list is intended for use with our 1981 catalogue and applies to all mall orders. Prices in our shop are generally lower on heavy items as mail order prices include postage and packing costs

Copies of manufacturers' data sheets are available for most IC's - price 40p each.

Notes:	
NYA	Not yet available
NA	Not available
DIS	Discontinued
TEMP	Temporarily out of stock
OOP	Out of print
FEB	Out of stock, new stock expected in month shown
t	While stocks last
$*$	ltem is mentioned in "Amendments to Catalogue" elsewhere in
NY	this newsletter Indicates that item is zero rated for VAT purposes
	Price reduced

Prices charged will be those ruling on the day of despatch

Page 62

Page 63

CAR EQUIPMENT

Page 67

H618U	Ca	
	Car	
x $\times 375$	Car Aenai	E595
جस29	Plupock P	E195
OH	，${ }^{\text {a }}$	
1 M		
YB6BY	d	c2 25
	Map Luxty	－

Pate 69

Pace 65

W．57M	1 mm	
H 5 S\％	1 mm	
	1 mm Soche：Blatk	
HF38¢	${ }_{\text {l }}$	
HF39N		
HFALU	2 mm Pug	品
HF43\％	2mm	
H54 4 X	2 mm Sockut Buct	
	2 mm socket B	
Hf464	2 mm socke	
Hffect	3mm sxa	
HF490	emm Sockpl Yellow	
	Wancer Pus Bixa	
	Warder	
	waser Mug Green	
	tanuer of thn	

Mrses		
HF56		
HE57M		
	wan	
HF59P	Wander Sc－che：Re	D
Hetal	Wand	
HF62S		
HFGGT	Imm mix	
HF6\％	4 mm Fiug Brom	
Hff6\％	4mm fue Red	
HFEGY	mmm Aug Yelo	星
H\％694	smm Socker B	
hfrow		
H7TiN	Smm Socker Aro	
HFtip	4mm Soaket Gre	
H7739	4 mm Socket Red	
Hs 748	4 mm Socill White	
Hipess	4 mmm Socre Yeliom	
HF34M	4 mm Palchictic	
HCFSk	Scrum Cap pomitut	20
－558N	－tiv Cad poon	
	－Cap mono	
YW06．	noto Prono sur	号
	no Socket	
30		
	Frono socket Q－	
	Sockel 15．way	

Page 75

Page 76

CONNECTORS		Page 77		
Page 73		mimoit	BNC Solur so	10
	${ }_{\substack{1002}}^{\substack{102}}$	Mmac	Nict sitid	（e）${ }^{33}$ ¢5
	${ }_{25}^{129}$			
awte9a cuctesi kn	E195		utr peacers Sms：	${ }^{170}$
Hfitich pish on Rreaste	－ 3 330		${ }_{\text {Sm }}$	
Hf12N Pushon		Ex86\％	UHF Ellom Adasiox	32
	${ }^{35}$	${ }_{\text {expry }}^{\text {Expy }}$	UHF Sras entasatax	5
${ }_{\text {Hfozc }}^{\text {Hfo }}$ Teem	－ 37		chater 3 as	
－	${ }_{3}^{375}$	rxSIF		15
Hfoss rermina Ass Gen	$\underset{\substack{380 \\ 380}}{ }$	${ }_{\text {raje }}^{\text {res }}$	Anooc Can 3 3xy	35
HFOTH－emme Pax Ree			Auo Comn	
Hrogk fermin pail elion		Exisw	MLRLLAOP Plug	

Page 79

Pate 80

Pape 81

Wiol	Minicon ${ }^{\text {Prase }} 3$ an	200
W110	Minican	
Y＋13P	Manicon ${ }^{\text {Pa }}$	${ }^{39}$
W148	Winican prus 12．pn	${ }_{\text {deb }}$
VMISR	Ra Mnican Prom	310
${ }^{\text {Ywi }}$	RA N ntan A ¢ pan	${ }^{39}$
${ }^{\text {rwis }}$	RANnterin 6 din	478
H1194	PAMncorpr 8 gn	${ }_{740}^{28}$
	Mincesn Hsg 3 pn	
ru7ix	Mincon $4 s_{88} 4 \mathrm{p} n$	100
Ywiz2		${ }^{125}$
YN234	Mncombeyn	150
	－	
${ }^{\text {rw25C }}$	M niton Te－minal	30
${ }^{\text {Y }}$	Mricaty 3 way	
Ywiz\％	Mncon 5at 6 may	${ }_{36}$
－429G	yrincon 5n： $\mathrm{max}^{\text {my }}$	500
${ }^{\text {rasech }}$	vricon Sat 12 way	59

						－	
		－${ }^{\text {\％O}}$					
						（	
	mpin mix miximem			$\underset{\sim}{\text { Enginis }}$			

1981 Catalogue Page No．

$\underset{\substack{\text { VATlusive } \\ \text { PRICE }}}{\substack{\text { VAT } \\ \text { in }}}$

Qw96E	Sfuare LED Red	
PHEEO	Solar LEO	
YH62S		
M¢14	Large LEE Red	
Yy42y	Large leo Cio	210
Page 128		
rasy	Shape LED 91	
	Shape LEP ${ }^{\text {a }}$ G	
Y4478	Shape LERR1 Or	
Y490	Shape LEO S 2 Lea	
TH0E	Shape LEP 52 Green	27
Mrseg	Snape Leb ${ }^{\text {a }}$	
M53h	Smater 13 Yet：	
W¢4］	Srape Len T4 Red	
YY55k	5 nape LED 14 Green	265
YY5 ${ }_{\text {Y }}$	Shype Leota Yeli	
W43w	ilummutio Orange	YYA
yrus	Buminator Yelow	
	conte cear	
YH5SSK	Closiogren	号
YM57M	Cipite Ye	
Sol		
8Y654	Re	
raj3	Green Eargraph Dsipy	
YG350	Yrnge 3argrath insiy	${ }_{6}^{523} 3$

\section*{Page 129
 | ¢R365 | 7．Se | E10\％ |
| :---: | :---: | :---: |
| ${ }^{\text {FR375 }}$ | ${ }^{7}$ 7 Ser feed | |
| EPY38R | 7 lsig Red | |
| | $-1 / 2-2^{-1}$ | |
| FR414 | ＂1／2＇Dsotey Tyoe 4 | $f 107$ |
| | | |
| ${ }_{\text {BY／} 69}$ | ODC Dispiay Yype C | ${ }_{61}{ }^{\text {cga }}$ |
| Page | 30 | |
| | | |
| Br | | |
| | mult | |
| ${ }_{5}^{5832 \%}$ | | |
| | | |
| | $\stackrel{\text { fiter }}{\substack{\text { fit }}}$ | |
| Fre9k | Luat Cis slaid 0. | |

Page 132

Page 133

He6tr	MEL 12	
${ }_{4} 9625$	Xenon 1	52：00
Y \times ¢ 6565	Tayer Tanstmr	49P
x1119	User Iute	¢12400
	5kV Laser PCB	
H263］	tens	1215

organ parts

Page 126

	Rulo	
Kil7 ${ }^{\text {mid }}$	Bulb MES 6V 024 4	
W1791		硡
41808		
Misic	Sub MES 1ev 22 W	9 p
	EUID MES 2 SY	
	Coraysil Lamp	
Loism	12 T Tube	E139
Llusp	zaov inspection lam	E5 60
	Festoen Cable	
¢＊454	Festion Lampt	
He52G		
	formy ib	S
48250	5set Haider	63

Paye 127

Page 134

Page 135

Page 1.36

x Lor．	Shart Spring Line	E．5
x日gif	Long Soring Lune	¢11
$\times \mathrm{x} 5 \mathrm{C}$	VES Oniver Modu	Ef
	Rewere PSU Mac	64

WAT
inclusive
PRICE

VAT inclusive
PRICE

VAT
irclusive
PRICE

Page 181

Page 183

HR938	Stylus RIC 259 CD	[185
HRS 2 F	Scylus EF400	
HR965	Stylus am 500	ct 95
Yxzz\%	Styus Sanyo ST10.	¢4.95
HFS55	Stydus S.	¢495
Yx27a	StMus Sonsu SN41	4
Y $\times 248$	Stylus 5anya 5770	
H997\%	Stilui Sanyo 2611	
rasec	Stylus Saty NO128	¢ 220
225c	Styius Sharp 101	4495
MR98G	Stylus Snarp 706	2495
HP99H		
	Stylus 9TAHC DD	E1 $\mathrm{BS}^{\text {c }}$
HRop	Sly ul Sonotone V	
vxabo	Styus \#onotone wiol	
$68^{45}{ }^{\circ}$	Styius 2509	2185
	Styus 252900	
	Stylus MS40ADD	
HRE5K	Stus MSS18 D0	
HR57M	Stuus Fisic DD	¢185
YX27E	Sylut Sony XL 15	¢ 4
Yx2Sf	Sthilis 50nj ND126	
FG49D		C5 50
FO50E	Styut Fomy Nol34	¢) 50
F(6) F	3ty Trimel Nz001D	f. 2.95
Yx29*	Sty Tenoral Nzopio	
ES564	5ny Tencrel N2001E0	
Y 30 H	Stylus Terrad 51	E2
FO534	5frus Tothito ${ }^{\text {a }} 3 \mathrm{C}$	¢2
Y231]	Stylue Toshilaa M55	4495
$4 \times 32 \mathrm{k}$	Stylus Teshita N58	64

Pade 184

Calag
Cataloge

Page 167

Paga 1 159

Paga 170

Page 172

Page 173

protection
Pseg 17

RX96E	Salu sencoder 20
RY974	Saluseng der 11/4in
RX490	Chas515 F/H 20 mm
Rasee	Cmassis F/H 1 1/4 1 !
WH450	Fuse Clip
fex 19	F/H Ca
WR93R	Fuse 20 mm 50 m
Wfoon	fuse 20 mm 100 ma
WR94C	Fuse 20 mm 150 ma
WR018	ruse $20 \mathrm{~mm} 250 \mathrm{~mA}^{\text {d }}$
HRD2C	Fuse 20 mm 1500 mA
4 FO 3 S	Fuse 20 mm 1 A
Wrose	Fuse 20 mm 15 F
WRO5F	Fuse 20 mm 24
WROEG	Fuse 20 mm 3 A
WFO7\%	Fuse rormm 5a.
wirlau	Fuse A/S 500ma
WR19	Fuse A/S 1 A
WR20	Fusi: $A / S 24$
4. P 750	Fuse 1.1/4 50 mA
infors	Fuse $11 / 4100 \mathrm{~mA}$
Wh3GE	Fuse $11 / 4150 \mathrm{ma}$
H $=095$	Fusm $11 / 4250 \mathrm{~m}^{4}$
Wfiol	fuse $11 / 4500 \mathrm{ma}$
WRLIN	Fuse 1:1/41A
	Fuse 11/415
WR13P	Fuse $11 / 424$
WR140	Fuse $11 / 43$ 3
WR15k	Fuse 11/45A
WR165	Fuse $11 / 210$ a
	Fuse 11/415A
rig31」	Piua fise 2a
H032k	Pluâ Fuse 3 a
HQ33L	pluc fuse 3 A
1-034	plug fuse 13a.
HE	Fuse
	FF
H205F	RF Supe Choke 24
MWCes	RF supp Chine

Page 176

H413P	Marns trants Supp	5p
Hiwort	Oeltu Cap	970
YR90X	R.C Neturus	39
YW46A	Door Cantact Reed	¢149
YWSOE	W indow foil	C125
TW5 19	Fol Terms	5
PW478	Surace lia Repd	
Mustec	200 Lomp	¢1 75
Ywi490	Gm Junction Bot	59 p
YB9]Y	Ptessure Mat	355
XY33L	Smoke Dutictr Pype	¢1275
RECORD MND TAPE		
Page 177		
xgcoa	2uto hanger	92550
xe23a	Rer Drve Iumabe	$¢ 2990$
- $\mathrm{CE255}$	Be't Drive Turntable	¢. 3450

Page 178

Page 164

Page I65

Page 166

Amo Mit E14 95

V136
YE45
YE4

Pate 179

Page 180
1981
Catalogue
Page No
VAT
nclusive
1981
Catalogue
Page No．
VAT
Inclusive
PRICE
1981
Catalogue
Page No
inclussive
1981
Catalogue
Page No．

筑及 bis옹 둔 ํㅡํㅢํㅇ 0090

 \qquad
\qquad
\qquad

\qquad

8

NEW ITEMS PRICE LIST

The tollowing is a list of all items intreduced our $1981 / 82$ catalioguse and includes all special tems tor propects that appearea in the Marcf 198110 May 1982 issues of Elec tronics \＆Mus c Naker

AERIALS．AMATEUR RADIO AND CB
 AF46A CB FM Transcelver GT．868

HL94C 30W Oummy load Price 549.95 WG101 12 W Oumy Load Pricse6．75 KG113P 15 F CB Aerral YGG1U 27 MHZ Rubber Dech
YK00A 2 m S YK29G ExI CE Speaker YK30H Nonse filter $\$$ YL42V Filter Chake
Y $44 \times \mathrm{XB}$ Aenal Converter Ye730 CB／Radio Rerial Co
Y 74 CB Aerial Matcher Yq74R CB
gatmeres
Hw31］Nican PP3
Hw32K PP3 Nicad Charge：Price $£ 5.95$ H31）Unveral N ry Hilider Price 51.85 BOOKS，MAG AZINES AND LEAFLETS

 WGO2C Newnes Back of Videe by K．G Jackson
Zaks iniroduction ro Pascia by Rodnay
 Mullish
W GG05F
WG06G Consumers Guide－Price $\mathrm{E7} .95 \mathrm{NV}$ puline \＆M crocompultis Dy Freiberger Wgoth bea：The Odds by price £8．25NV WEOBJ BASIC With Eusiness Price Eplicationts wh lot WGagk Imroduction to Computer Music by
Bateman
Price $£ 15.60 \mathrm{NV}$ Baternen \qquad
WG11M Exactronice ty bl
WG12N BASIC Wy Albrectit Price 56.65 NV wg 33 B BASiC for Home Compulers by WG14Q TRSAO BASIC Dy Albrech
WG15R Using CP／M Dy Fernandez E 7.70 NV WG165 flow harting by N．Sterice $£ 6.65 \mathrm{NV}$ weics fiow haring by A．Price 86.85 NV WG27T The S． 100 Bus Mondbooh by D WGisul Telephone Accessaries You Can Bultu by $1 H$ Gidder Price E 6.45 NV
WG19v 6OC Chatienging Problems with BASIC Solutions by D Server Prie $£ 5.75 \mathrm{NV}$ wG20w The Best Book On CB by f．Herben wG21x 780 \＆ 8080 Assemblt Language Progamiming by K Spracklen Price $£ 6.75 \mathrm{NV}$
 Wc24B 8086 Primer by 5 Mricse Price $£ 7.65 \mathrm{NV}$ WG25C Writing interactive Compiers z Interpretert by P Brown Price E13．45NV
WG26D Foundotions of Programmung with WG26D Foundations of Programming with
Pascal by L Moore Pnce $E 624 \mathrm{NV}$ WG27E What To Do After You Hit Return by The Pesples Compuler Compary Price $E 13.45 \mathrm{NV}$ WG28F VMOS Prolects by Price A Pentod $\begin{gathered}\mathrm{F} \\ \text { Price } \mathrm{E} 2.15 \mathrm{NV}\end{gathered}$ Wg29G Digulal IC Prolects Price f 2.15 NV WG30H Internatomal Transistor Equy＂alents GGuide by Acrian Michaols Price £325N Lamotter Basic exercses Price E10．45 NV
 wG33．Leaning BAsic with Your Sinclar Zx8c by Roh \rightarrow Norman price 54.75 NV WG34M Osc．lloscopes．How To Lse Them How They Work by lan Hickman
wa35Q More Telephane Accessones You Can Build Ey Julfes H Gilder Prica E5．45Nu wg3tp The Jay of Minis And Micros by Philip Stein and Howard Shapre price $\mathbf{6 7 . 5 5 N V}$ WG37s Problem Sotuing Prnciples Fer Pro－ Rrammers by william E Lewis
WG38R Corrnputer Programe The：Work oy Lee，G．Beech and T D Lee 14.75 NV wG39N Sutcesstul Solitare For Small Computers oy Graham Beech Price $£ 7.00 \mathrm{NV}$
WG40T Musical Apphicat ons of Micrepro－ cessors by Mal Chamberlin
WG41U Apple II Users Gurie by Lom Pooe

WG42V An Inraduction To BASIC Frogram ming Techn ques by S ．Daly WGA3W 50 Simple LED CIreuits Beok 2 oy
 dux sud lair Lac：R Sinclar lenging Price E3．95．NV WGA5Y 33 Challenging Computer Cames For TRSB0／Apple／PET by David Chance WG46M ALdo Projects by Frice Rayer
 ments by Davd L Heiserman Price $£ 7.50 \mathrm{NV}$ WG48C BASLC Combuter Prosiams For Business vol 1 by Charties D ．Sternaere WG49D Inside BASIC Gamis by Fich hard Mateosian Price $£ 12.35 \mathrm{NV}$ wgsoe Electromic Projects in Phicioriaphy WG51F More Etectronic Propets in Home by And Flind Price $£ 3.95 \mathrm{NV}$ WG52G Prejecls in Amateur Radio by F G ． Raye： Price $£ 3.95 \mathrm{NV}$ Wos3H Electronc Test Equipment Proiects wh Alan C Ainslier Proerts For Home Secunty by Owen Bisiono Prols Price $\mathbf{E 3 . 9 5 \mathrm { NV }}$ by Cwen Bishop
WG5K Atari Basic Learning By Using Dy
Therlas E Rowle＇y Price $\mathrm{E4} 4.95 \mathrm{NV}$ WG56L Alari OPSYS Users Manual
WG57M The Giart Hardbock Price $1 \mathbf{1 6 . 9 5 \mathrm { NV }}$ Crisuls by Faymend A Coling
WG58N the Mas Price El2．99NV WG5sN The Master ic Conkbook by Clayton LG59P An introduction To Price EB．45．N．
 WGGOQ Model Ralway Profects by A A Pentold WGG1R A ndrod Design yy Matin Brasiey WG625 Wy Micm Speaks EASEX（And Loves
 Tom Swan WGG4U Prozarns Far Beginners On The wGgSV Karel The Robot ty fichard E Patus WG66w Introduction To BJRO Price E5．75N ly Lanisuage forramm Astivey Price 57.45 NV WG67X Programming in Basic－Pluc by
Swatzky／Chen
Prico 111.75 Ny SWatz Ky／Chen Price ill 1.75 NV
WG6BY Introducing Microprocessers ty lyn WG6BY Inroducing Microprocessors by linn
Prince E4．95 NV WG69A Public Address Handtooin Oy Yepian
Cace Eb．75NY WG70M The Ertish CB Book by Peter Chipindale Price E4．45．NV Boats by R．A．Fentold
 Rayyer
$W 6730$ ce Propects by R．A．Prentold Price £2 10 Ny wg74R ZX81 Easic Book by Robin Norman WG755 Understanding Your ZX81 RONby Dr lan Logan Computing by Peter Lefferty Price $£ 2.75 \mathrm{NV}$ WG7TJ Questions \＆Answers Pn Video by
 WG79L Minclarmprocessors Yource Questions Answered by Alec Woos Price 85.75 NV HGBOB How To Tune Helms Price $£ 5.75 \mathrm{NV}$ WEgic Teachnig Your Comoute：
 Own Speaker Syslem by D．B Weems WGg3E Byteing Deeper Imo Your 2×81 by wGgak Software Secrets by Graham Beech WG85G Guide To Solar Electricity xa00a Maplir Magazine Subscription Xa019 Mablin Mazazine Vo！ 1 No 1.40 NV xa02C Maclin Magaine You Prica 60pNV xa030 Madin Magazme Vol． 1 No． 3 IF45Y EsMM March 1981 IEsum
Xf46A E\＆MM April 1981 Is Price £1．00NV FF47日 E\＆MM May 1981 Pree E1．00NV XF48C E\＆MM fune 1981 tssue KF49D E\＆MM Juty 1981 Issue Price E1．00NV XFSOE E\＆MN AUS 1981 Prize E1．00NV XF51F E\＆MM September 1981155 P1．00NV XF52G E\＆MN Octoter 1981 Price fl LiONV Issue
Price en
£．00NV

Xf53H ÉSMM Nowember 1981 Issua Xf54］E6 MM December 1981 Price fle 1.00 NV XF5SK E\＆MM January 1982 Price 1 Isum 1.10 NV
 XF57M E\＆MM Mact 1982 Issue Price fl．10NV XF5BN E\＆MM April 1982 Issue
Xf59P E\＆MM May 1982 Issueprice $£ 1$ ． 20 NW $\mathrm{XH}_{\mathrm{H} 52 \mathrm{G}} \mathrm{Alarl}$ Soltware Leafiet（Issue 2）Free XH53H Matiree Componen：Identitication
 XH55X Matine Organ Beok Price E2．50N4
XH56L Spectrum Syalhesiser Bock XH56L Spectrum Synhesiser B00k
soxes
HYZSC Display Box Price 50p
YK248 Caticulator Stye Verobox Price 64.45
CONNECTORS
BH61R Mincon Latch Flug 17 ．Way Price 5月p日H65vMinican Lal－h Housing 5 Wray Pre 460 BH6fW Minican Latch housing 5 Price 13 ap BH67X Right－Angle Minican Plug 15．Way Bx96E Minicon Latch Plug 3 Way Price 23 p 6x97F iAnicon Latch Housing 3－Wa
BX98G Jumper Cable 17．Way Price £3．65 Fig9h RightAngle Latch Minicon Pluy
 EY92A Right－Angle Latch Minicon Piug FY93日 Mimeon Laten Plug 5 Way Price 260 FY94C Minicin Housing 10 Way Price 13 p HB58N Mnicon Latch Housing 4 －Way Price 10 p H059F Miricon Latch Housing 2 Way Price ip Hf98G Stereo Piastic 35 mm Plug
HL950 RA FL259 Piut HLS6E Quich Conneci PLa59 Pug
Hepse Mincon Plug 10 －Way Price 99p Pro
 YK02C UHF Adapior FM：A Prico $£ 1.75$

CONSUMER GOODS

AC41U Othello Video Game Cantidge
ACA2V V deo Pintarl Cartride Price $£ 18.95$ AC43W Asteloids videa Game Cantiogre AC44X War Lords Ga：ne Carlfage ACG5Y Le Stick $\quad \begin{aligned} & \text { Price } £ 29.95 \\ & \text { Price } £ 24.95\end{aligned}$ AC46A Missila Command video Ganie AC47B नag Capture Video Game Cantridge ACABC Suger Ereakout Game Cartrides AC49D K3boom！Game Cartridge Price $£ 29.95$ AC50E Laser Blast Game Cartridge $\begin{gathered}\text { Price } \\ \text { 1 } \\ 19.95\end{gathered}$ AC5If Freeway Came Carridge ac5zG Dragster Game Cartidge Price E 19.95 AF36P Atari 400 with 26% RAM
 AF3BR EbSon MX80T Price $£ 414.00$ AF39N Epson mx80F／T Price A 45 F .85 Af 40 t Epson mXedf／T Mk II Price £51635 af 41 U Cerlionics Intertace fo－Atary 400 AF42V Centranics interface to mar． 800 AF43W Versawriter tor Atari $400 / 800$
Af44X 32K RaM Masue Price £169．00 AF45y 32 K Upertade for Alari 400
HY24E 2－Roll Pack of Paper for Printee E 85.00
Software for Atari 400 and E0D：See back
couer．（Full details are on XH52G and ELECTRICAL
WY23A Timeteuch Electronic Time Swich
HY30H Isobolt M3 $\times 9 \mathrm{~mm}$（ pk of 10 ）
HY31J Stee Washer 4BA（ok of 10）Price 12 p KNOB
$\begin{array}{ll}\text { GYoun LC Cap Blath } & \text { Price 5p } \\ \text { orol } & \text { Price 5p } \\ \text { OYoze LC Cap Green } & \text { Price } 5 \mathrm{p}\end{array}$
orozelC can Green Price $5 p$
gYoad © Cap Grey
Price $5 p$
Price 50

YG40T Law Cost Collet Knob Price 27 MICROPHONES
HY331 Crystal Mic insest（metal body）

Price 84 p RK03D Power Mic DM313P Price E11．75 RKO3D Power MIC DRA 313 P Prica $£ 1.75$

PKO4E Power Mic DM311P Price $£ 13.95$ XG11M Base Station Mie DX357

Price $£ 33.50$ Xal2N Ease Station MrC ESA610A
rice $£ 33.50$ PTO－EIECTRICAL
QR54J Rectangular mulucolour LED Price 75p

	Price 75p
RK22Y Solar Panel 6V	Pricq 17.95
RK23A Soiar Fanal 9V	Price 88.95
FK249 sclar Panel 12 V	Price 68.95
ORGAN CB	
BH490 Tiblet Rocker Grey	Price 95p
Bft50E Tablet Rocher Orange	Price 96p
BH51F Tiblet Rocker Red	Price 96p
BH625 Spacer Bleck	Price 4p
－H635 heyboard Spac	Price 2p
BRBBG［ a woar blue	Price $¢ 1.55$
ER99H Drawbar Green	£1．55
F998G Rubber Coupling	Price 66p
QYozw Contact Spmins	Price 8p
X8950 Organ Stool	Price $£ 29.50$
xg00a Roll Top Gudes（mair）	Price E2．50
XG018 Muse Stand	Price £4．75
889w Switehed Swell Pedal	Frice E11．45
X	
	Price ¢49．90＊
XY97F K－ybaard Separator	Price
XY98G Swell Pedal	Trica
	Price £．3．75
KY99H Roll Top	Price $£ 19.50{ }^{\circ}$
PANEL MEIERS	
PK05F Quick－it Meler 100－0 10	100UA
	Price $£ 2.95$
RKO6G Quch－fit Meter 50uA	Price $£ 2.95$
R＊07 H Quick．fit Meter 100uA	Price 82.95
RK08．Qu ck－fit Meter 500uA	Price 12.95
9K09k Quck fit Weter 1 mA	Price $\mathbf{E 2 . 9 5}$
RK10L Otuchefit Meter 5ma	Price $£ 2.95$
RK11M Quick tit Meter 10mA	Price 12.95
RK12N Quick lit Meter 50 ma	Price 12.95
RK13P Quick－th Neter 100 mA	Price 52.95
RK14Q Quich－lit Meier 500 mm	Price £2．95
RK15R Qu ck $11:$ Meter 1 A	Price 82.95
RK165 Quith fil Meter 5：	Proce $£ 2.95$
RK17T Quich fit Meter 25 V	Price $£ 295$
RK18U Quich－t，Meter SOV	Price 12.95
RK19V Qurk hit Meter Vu	Price $£ 2.95$
uck lit Meter 500.50	

HQa4F Verctioc Bracket XX42V MP Lrobreadcoara	$\begin{array}{r} \text { Price 63p } \\ \text { Price } £ 21.75 \end{array}$
PROSECTS ARD MODULES	
日H600 Syntom Frons Panel	Price E．1．10
Ex99H Sylwave Front Panel	Price ¢1．10
ga00a diret Inpul PCB	Price E 1.10
GA01B Line Diver PCB	Price El .48
G402C Line Rectiver PCB	Price EL． 51
GA03D Spectrum PSU PCB	Price $£ 2.40$
GA04E Stopwatich PCE	Price $£ 2.95$
GA05F Symon PCE	Price E1．13
GAOEG PA Controiler PSU PCE	Price $\mathbf{1} 3.70$
GAOPH PA Controler Limiter P	
	Price f2．85
GA0g，Wabter PCE	Price C 2.00
GA09K 24 Way Contact PCB	Prica $\{2.80$
GA20L 25 －Wzy Coniact PCB	Price［2，B7
GA11M Continuly Tester PCB	Price 11.32
GA İN Crassower PCiB	Price E 2.50
GA13P Eaishcea Line Diver	Pricef2 10
Gris 14 PA Cantroller Display	Component
CB	Price 51.25
EA15R PA Controller Dispiay	y LED PCE
	Price El 1.45
GA18U Matinee PSU PCB	Price $\mathbf{1 2 . 1 0}$
GA19V Battery Morator PCE	Price 11.20
GA2OW Niorhshop PSU PCA	Price 54.30
GA21X workshop Conirol PCE	Price 52.20
GAz2Y Strobe Matn PCB	Price $\mathbf{1 2} 20$
GA23A Strode HT PCB	Price 11.20
GA2sy Gutur Turel PCB	Price $£ 1.65$
GA25C Power Control PCE	Price $£ 1.15$
GA26D Digila Tacho Man PCB	Price E1．75
GA27E Digulal lacho Display PCE	Pricex． 125
GA28F 75\％Noslet Amp PCB	Price El 180
GA29G Noslet Amp Mounting B	Brackel
30h Nase Reduction Man P	PCS
	Price 5.320
GA31J No．sfedumation PSU PCE	Price 11.60
GA32\％Hexadruln PCE	Price 52.80
GA33L Select－A－Niatch PCE	Price 51.80
ga3cal Powercento Perioheral	15 Ps 1 Pe
	Price $£ 3,95$
GA44X Buriar Alarmi PSU PCB	Price 52.40
GA45Y Eurglar Alarm Main PCS	S Price 16.75
GA46A Greah Contact PCB	Price $£ 1.95$
GA478 External Hom PCB	Prict $\mathrm{El}, 60$
GA48C Hammeny Gener3tor PCB	Price 22.25
GA50E Elfects Link PCB	Price $\mathrm{E} 2.20^{2}$
GA51F Sounctooster fCE	Prictef185
GA52G FX．Swrl PCE	Price $£ 1.35$
GR53H Speclu uril LFO FCE	Prive $£ 2.50$
GA54，Synclork CCB	Price $£ 165$
GA55K Spectrum Contrafler PCB	B Price 52.10
GA561 MPC Boara	Price $£ 575$
GA57 ${ }^{\text {a }}$ Spectrum VCF PCB	Price £295
GA58N The Borro PCB	Price 51.55
GA59P Spectrum Shaper PCB	Price 12.85
Gagop Percussion Sound Gen fer	
	Price ¢ ${ }^{1} .72$
Gagir Tumer Main PCB	Price E2．80

June 1982 Maplin Magazine

25W STEREO MOS-FET HI-FI AMPLIFIER by Dave Goodman

Complete kit ONLY £49.95

Figure 2. Circuit diagram of pre-amp and tone controls.

Specilication of prototype

Input sensitivities for max output (with preset adjusted for max. sensi(tivity).
Magnelic pick-up inout: 2 mvai 47 kg
Jape input $\quad 50 \mathrm{mV}$ at 100 k
Tuher input: $\quad 50 \mathrm{mV}$ at li00ks!
Auxiliaryinput: $\quad 50 \mathrm{mV}$ at 470 ks
Masnetic pick up input overtoad intes. hold: 40 mV
Tape output at rated input: 100 mV into 100kat
Power output: $>26 \mathrm{~W}$ per chaninel rms into 8 ! or 4 ar continuous at 1 kHz both channels driven.
also allows the cabinet to be low-profile and it has no open terminais making it intrinsically safer.

The transformer secondary is fullwave rectified by BR1 and smoothed by C36 and C37. The output via fuses FS2 and FS3 deliver $\pm 32 \mathrm{~V}$ to the MOSFET output stages only, whilst Zener diodes D5 and D6 and resistors R57 and R58 June 1982 Maplin Magazine

Fotal harmonic distortion: Better than 0.075% at 1 kHz at $>25 \mathrm{~W}$ cutput.
Frequency responise: 20 Hz to 40 kHz $\pm 1 \mathrm{~dB}$ (from magnetic pick-up input $\pm 10 \mathrm{~B}$ from RIAA)
Signal to nolse: Aetter than 60dB on magnetic pick-up input Better than 80dB on all other inputs
Channel separation: Better than 4048
Bass control: ± 1408 boost and cut at 100 Hz
treble control: $\pm 8 \mathrm{a}$ B boost and cut at 10 kHz
Balance controt -50 di to +154 b
produce $\pm 15 \mathrm{~V}$ to drive the remainder of the circuitry in the amplifier. IC2 and IC3 are supplied directly from these rails, but ICI has further decoupling provided by R11, R12 and C9.

ICla and b is a dual bi.fet op-amp whose non-inverting inputs are suitably matched for use with magnetic cartridges. A degree of protection from
stray if is also provided. The feedback circuitry about each input produces a response to within $\pm 1 \mathrm{~dB}$ of the recommended RIAA curve. This is achieved by using frequency selective feedback to boost the lower and cut the upper frequencies. Presets RV5 and RV6 control the gain of the pick-up input and allow fine adjustment of channel balance or reduction of volume of high output magnetic cartridges.

RV1 and RV2 perform the same function for the tuner input and RV3 and RV4 for the tape input. If not required simply turn them to the end that gives maximum volume. The auxiliary input level is not presettable, but is selected along with the other inputs by S2. IC2 is a mixer stage supplying the tape output and has an almost perfectly flat response over the audio spectrum.

The volume control, RV7, supplies the selected input signal to IC3 which looks after the tone compensation. RV8 gives boost or cut of the bass frequencies while RV9 controls the gain of

25W MOSFET AMPLIFIER

Figure 3. Circuit diagram of MOSFET power amp.
the treble frequencies. In their centre positions, this stage too has an almost perfectly flat response over the audio range. The balance control, RV10, simply shunts the audio signal to ground of the channel it is turned from.

Pins 4 and 5 are strapped to pins 6 and 7, but these straps can be removed if you wish to insert a graphic equaliser.

TR1 and 2 form a differential amplifier whose output is fed to TR5, a voltage amplifier/driver stage. TR3 is a constant current and impedance source which is controlled by TR4. The output of TR5 drives the power MOSFET's TR6 and TR7.

Power MOSFET's have a very low 'on' resistance and an extremely high 'off' resistance and display the characteristic channelling effect when driving into near short-circuits, since the forward resistance increases as the temperature of the device rises, unlike a bipolar transistor, where the opposite effect causes the destruction of the device. The effect allows circuit design to be simple and this in turn improves the distortion and noise figures.

Even further simplicity of design is achieved because the gates of MOS-

FET's having such a high impedance allows them to be connected and biased together without suffering from cross-over distortion. A small bias voltage is applied from a constant current set to around 20 mA , though this is not critical and hence no settingup is required.

The overall gain of the power amplifier is 33 as set by the ratio of R38 to R37. The power amp has a virtually perfectly flat response over the entire audio range with excellent stability and very fast switching or slew rate which gives an extremely wide power bandwidth, yet the damping factor is still very good.

The output of the power amp is fed to DIN sockets SK4 and SK5 which supply the external speakers, while JK1 disconnects this output and connects it via R55 and R56 to a stereo headphone when a plug is inserted.

The additional pins 1,2 and 3 have been included so that a remote control unit for volume, bass, treble and balance may be added. Details of this easy-to-construct addition will be published shortly - hopefully in the next edition if space is available.

Construction

Main pcb

With reference to Figure 4 insert the 28 Veropins from the track side, then push them firmly home with the tip of a hot soldering iron and soider to the pcb. Fit the thirteen links using 24 swg tinned copper wire as shown in Figure 4. This Figure also shows how to fit and solder the two straps required between pins 4 and 6 and between pins 5 and 7 and again this should be done with the tinned copper wire and soldered.

Resistors R1 to R54 and R57 to R59 can now be fitted to the pcb. Bend the leads before insertion and push them down on to the pcb. If you cannot read the colour code directly, use the chart in the resistor section of our catalogue or the colour wheel (XL05F). Note that R3, 4,8 and 9 must be 1% tolerance types and these are either marked 1% or they have a brown ring where the gold ring is found on 5\% types.

Next insert the 1 N4148 diodes, D1 to D4 and the two Zener diodes D5 and D6. These six diodes have a black band and must be placed on the pcb so that this band is at the same end as the white band printed on the pcb.

Maplin Magazine June 1982

RV1 to RV6 are preset potentiometers. Carefully check the values stamped on the wiper: RV1 to RV4 are 100k and RV5 and RV6 are 10k. Fit these to the pcb. By now quite a jungle of leads will be forming beneath the pcb, so solder these in position and cut off all remaining ends close to the ioint. It is advisable to check for shorts between tracks and soldered joints after each use of the soldering iron. Excess flux can be removed using cellulose paint thinner and a stiff paint brush, but use the thinners conservatively or a sticky deposit will be formed.

Next fit the ceramic plate capacitors. Their leads do not require bending and should fit straight in. Fit the tantalum bead capacitors C10, 11, 22 and 28 taking care that the '+' sign on the body of the capacitor lines up with the '+' sign printed on the pcb. The little box-shaped capacitors are the polycarbonates and should be fitted next. followed by the polystyrene capacitors whose leads should be pre-formed before fitting to the pcb.

This should also be done to the axial electrolytics C9, 34 and 35 which should be fitted next taking care that the '+' sign printed on the pcb is at the same end as the indentation that runs around the body of the capacitor. The vertically mounted electrolytics C2, 6, 25 and 31 are inserted straight into the pcb and again must be positioned so that the '+' signs are aligned

Now solder all the components in position, trim the leads, clean and check the pcb as before then mount the three integrated circuits. The small dot

Figure 4. Insertion of pins and links in peb. June 1982 Maplin Magazine

Component overlay of main pcb shown less than full size.

25W MOSFET AMPLIFIER

on the top of the IC body indicates pin 1 and should be positioned so that it is at the same end as the 'D' shape formed on the pcb legend. Take care to ensure that all eight leads fit through the pcb on each IC.

Next, fit the bridge rectifier BRI. One edge of the plastic package has a ' + ' sign painted on it and as before this must be positioned to align with the ' + ' sign on the pcb. Push the plastic body right down onto the pcb.

Transistors TR1 to TR3 and TR8 to TR10 are type BC 212 L and their ' D ' shaped package must line up with the pcb legend. Thesame applies to TR4, 5, 11 and 12 which are type BC182L. Push all these transistors down to about 0.5 to $\mathrm{lcm}(1 / 4 \mathrm{in})$ from the pcb otherwise they can be easily bent or broken. Fit the two polyester capacitors C27 and c33. These are usually colour coded and from the top the colours are brown, black, yellow, black or white, red or yellow. Now solder all these components as before.

Place the FET mounting bracket over the pcb on the component side and bolt in position with two nuts, washers and 6BA $4 / 4 \mathrm{in}$ bolts inserted from the track side. Ensure that the top of the bracket is perfectly smooth and clean. Carefully adjust the position of the bracket so that 16 holes (4 per FET) in the pcb are exactly centralised under the holes in the bracket, and then tighten the bolts. This operation is very important as misalignment will result in a short circuit between the FET and the bracket (OV). One bolt passes through a large area of track and to ensure that there is a good connection between this track (0 V) and the bracket, solder the bolt head to the track.

Smear a thin layer of Thermpath over both sides of a mica insulator and place it on one of the power FET's then repeat with the other three. Place each FET with its insulator over the mounting bracket noting that the two leads on the 2SK133's are towards the rear of the pcb (the bracket itself is on the rear edge) and on the 2\$J48's they mount towards the front.

With reference to Figure 5 insert two 68A $1 / 2 \mathrm{in}$ bolts from the track side up through each MOSFET and tighten up with 6BA washers and nuts. Solder the FET leads to the pcb and then solder all eight bolt heads to the pcb.

The four small fuseholder clips may now be fitted. The easiest way to do this is to clip a fuse between each pair and then place and solder the whole assembly to the pcb. Remove the fuses when this is completed.

Fit the three 5-pin DIN sockets, SK1 to SK3, ensuring that all seven pins (2 are securing pins) go through the pcb and none are left bent underneath. Sockets SK4 and SK5 should be fitted in the same way. The last two axial electrolytic capacitors C36 and C37 can now be fitted. They mount with polarities in opposite directions so take care to ensure that the indentation around the body is at the same end as

Figure 5. Mounting the MOSFET transistors.
the 't' sign on the pcb. Solder these last seven items to the pcb.

The four-way rotary switch $\$ 2$ has to be prepared before it can be mounted. Firstly, straighten all fifteen tags on the back of the switch then cut off the tags marked B, 5, 6, 7 and 8 close to the plastic moulding. Secondly, cut off the loops on the ends of the remaining ten tags leaving as much straight pin as possible. Refer to Figure 6 . The switch can now be fitted to the small pcb ensuring that all ten pins have come through and solder them in position.

On the main pcb there are ten Veropins situated near the front left side of the board. Lightly tin these pins with a soldering iron (i.e. cover each pin with a thin layer of solder). With reference to Figure 7, place S2 facing towards the front of the main pcb and offer the switch ocb up to the ten pins so that they align with the ten tracks on that pcb. Hold the board as upright as you can and solder one pin. Resolder if the

Figure 6. Preparing switch S2.

Figure 7. Mounting switch $\mathbf{5 2}$
board is not perfectly upright, then when satisfied, solder the remaining nine pins.

Finally, mount the four rotary potentiometers on the pcb checking the resistance values against the RV numbers to ensure correct placement, before soldering. The pcb is now complete and should be cleaned up. Re-check all components for correct values and correct orientation of polar. ised components. Check for dry joints and short circuits and carefully resolder any suspect joints.

If you possess a multimeter, check for short circuits between the pins and case of the MOSFET transistors and the mounting bracket. Switch to ohms and with one lead on the bracket check each lead and case in turn. If there are any short circuits then you will have to strip down the mounting bracket to find out why, but careful construction should have prevented this.

Figure 8. Jack socket wiring.

Assembly

Cut the four potentiometer spindles so that they are about $13 \mathrm{~mm}(1 / 2 \mathrm{in})$ long. Remove the nuts and washers from RV8 and RV9 but leave them on RV7 and RV10 and tighten up these two. Fit a grommet into the selector switch hole in the front panel, then slide the pcb into the chassis by guiding the control spindles in first, then lowering into position.

Bolt the mounting bracket to the back of the chassis using three 5BA $1 / 4$ in bolts and nuts, two washers and a solder tag with the bolts inserted from the outside. The tag washer fits on the boit nearest to the two 2 -pin speaker sockets. The two remaining pot mounting washers and nuts fit onto RV7 and RV10 and tighten up on to the chassis. Make sure that all five DIN sockets line up with the holes in the chassis and readjust to suit.

With reference to Figure 8 slide a piece of sleeving over each wire on R55 and R56 then solder them between tags 4 and 5 and tags 1 and 8 of the jack socket. Cut four pieces of wire each 125 mm long, and strip and tin a short length at each end of each piece. Solder these four wires to tags 2,3,6 and 7 on the jack socket. Fix the jack socket to the front panel then connect the four wires to the pcb as follows:

JK1 tag to	pcb pin	
2		10
3	13	
6		11
7		12

Keep all wiring as short as possible and neatly laid out. Thin wire or cable ties could be used to hold groups of wires together, but there is so littie wiring in this project that it is not really necessary and no problems should be encountered. Figure 9 shows the com. plete wiring arrangements.

Cut two pieces of wire each 150 mm long and strip and tin a short length at each end of each piece. Connect one wire to each lead on LED1. A tiny ' + ' and '-' sign is stamped into the plastic beside each lead, but for those who cannot see them the thicker lead is the negative and the thinner lead is the positive. See Figure 10. Fit the LED in the chassis next to the headphone socket and connect the two wires to the pcb as follows:

LED1	to \quad pcb pin	
+(thin)		17
- (thick)		16

Now mount the toroidal transformer T1 as shown in Figure 11. Insert the bolt (supplied with the transformer) from under the chassis base through the hole in the indent. Place one of the two rubber washers over the bolt, then the transformer with the wires uppermost. Put the remaining rubber washer on top followed by the clamping plate. Tighten in position with the nut and washer supplied with the transformer.

Carefully scrape the enamel coating off a short length of the end of each of the transformer's six wires. This can be

Interwiring in chassis.

Figure 9. Interwiring

Switch peb front view.

25W MOSFET AMPLIFIER

Internal view of completed amplifier.
done with a sharp knife or a piece of fine emery cloth or wet and dry. Twist together the blue and yellow wires and connect both to pin 18 on the pcb. Connect a short length of wire between pin 9 and the earth tag as shown in Figure 9. Form the red and grey wires around to the bridge rectifier and solder on to pins 14 and 15 on the pcb. It makes no difference which wire goes to which pin.

Fix the chassis fuseholder to the rear panel above T1 and fit a rubber grommet in the hole beneath it. Fix the rotary mains switch Sl to the front panel taking care that the small spigot fits into the matching hole. Cut the spindle to the same length as the other spindles. Also trim the spindle on S 2 to this length.

Connect one of the orange wires from Tl (it doesn't matter which one) to the side tag on the fuseholder FS1, after sliding the rubber boot over the wire first. Cut a piece of wire about 150 mm (6in) long, strip and tin each end then pass it through the rubber boot and connect it to the rear tag on FS1. Solder both wires, then push the rubber boot forward so that it completely covers the body of the fuseholder

Connect the other end of this wire to one of the top two terminals on switch $\$ 1$. Then connect the other orange wire from II to the other top terminal on SI Strip 80 mm (3in) of the outer covering of the piece of mains lead and strip and tin a short length of each of the three internal wires. Put the mains lead through the grommet in the rear panel and terminate the blue wire to the tag on S1 immediately below the orange wire from Tl and terminate the brown wire to the tag on $\$ 1$ immediately below the piece of wire from FSI.

The mains earth (green and yellow wire) should be connected to the earthing tag on the top of JK1. Ensure that all the connections you have made are properly soldered. Check carefully for dry joints and short circuits. Insert the $2 A$ antisurge fuse into FSI and ensure that the other two fuses are NOT inserted into their clips on the main pcb. Fit the control knobs on to the spindles as shown in the photographs.

Figure 11. Mounting the toroidal transformer.
Finally check that the last section of wiring is identical to all the diagrams. The amplifier is now ready for testing.

Testing

Fit the 13A mains plug to the mains cable. The rear of Sl could be covered with insulating tape if desired and it would then be quite safe to work in the amplifier with the mains connected without risk of a shock. On no account however, should children or untrained persons be allowed near the amplifier in this condition. Little fingers could easily unpeel your carefully applied insulating tape with potentially lethal results.

Do not connect any loudspeakers or inputs at this stage and fuses FS2 and 3 must not be fitted. Set all the front panel controls fully anticlockwise. Adjust presets RV5 and RV6 to half-way and set RV1, 2, 3 and 4 fully clockwise. Give the project a final visual inspection then connect the mains plug to the mains and switch the amplifier on by turning Sl clockwise.

LED 1 should light up. If it does not switch off, remove the mains and check fuse FS1. If it is still intact, try reversing the wires on pins 16 and 17 on the pcb. Switch on again. If all is well switch a multimeter to 50V DC or 100 V DC or thereabouts, connect the negative lead to the metal chassis or the tag on the top of JK1 and the positive lead to pin TPA on the pcb. The meter should read around $+32 \mathrm{~V}(\pm 5 \mathrm{~V})$. Now put the meter's positive lead to the chassis and connect the negative lead to pin TPB on the pcb. Again the meter should read the same voitage as before i.e. -32 V $(\pm 5 \mathrm{~V}$)

Switch off. If all is well the other two 2A fuses can now be fitted into the fuse clips on the pcb. If desired and you have sufficient knowledge, two further checks can be made. The +15 V rails can be checked on D5 and D6 and you should obtain a reading of above 100 mV DC between the cases of the four power MOSFET's and the chassis.

The treble, bass and balance controls can now be set centrally. Speakers may now be connected and inputs as required. The input connections are as follows:-
SKI Magnetic pick-up input (5-pin DIN 180°)
Pin 1 Left channel input
Pin 4 Right channel input
Pins 2, 3, 5 Common (OV)
SK2 Tuner/Aux input (5-pin DIN 180°)
Pin 1 Auxiliary left channel input
Pin 4 Auxiliary right channel input
Pin 3 Tuner left channel input
Pin 5 Tuner right channel input
Pin 2 Common (OV)
SK3 Tape input/output (5-pin DIN 180°)
Pin 1 Tape left channel output
Pin 4 Tape right channel output
Pin 3 Tape left channel input
Pin 5 Tape right channel input
Pin 2 Common (OV)
If when any particular input is selected there is an obtrusive hum, try disconnecting the earth from the plug at one end of the interconnecting lead. Check out the remaining functions of the amplifier and adjust the six presets RVI to 6 to suit your equipment if desired.

Carefully fold the wooden cabinet glueing the corners together with a PVA adhesive such as Evostik's "Resin W". Slide the chassis into the wooden sleeve when the glue is properiy set, so that the four holes in the bottom line up with the four holes in the base of the chassis. Then bolt on the four rubber feet using the four 4BA 3/in bolts supplied in the kit. If you have bought the parts separately, you will need to cut the excess length off the 4BA lin bolts. The amplifier is now complete and its reliable, superb quality shouid give many years of listening pleasure.

Continued on page 55.

NEW BOOKS

The Sinclair 2×81 (Programming For Roal Applications)
by Randle Hurley
The 7×81 with its 15 K RAM pack is quite a powerfulcomputer. The aim of this book is to provide "serious" applications without using machine code. All the programming is easy to follow and fully explained Discard the bellef that the XX81 is too small for real computing work - the flexible techniques described here are just the beginning.
1981 . 176 pages. $228 \times 152 \mathrm{~mm}$.
Order As WG99H (Book MM973) Price £7.45NV

Peek, Poks, Byte \& Ram?
by lan Stewart and Robin Jones
A light-hearted yet serious-minded introduction to the basics of programming in BASIC for the owner of the Sinclair ZX81. Topics covered include setting up the hardward. graphics, looping and branching, logic, character manipulation, subroutines and getting the bugs out. In addition, there are over 50 prograrns to use with your 1 K memory.
1982. 120 pages. $234 \times 156 \mathrm{~mm}$. Illustrated.
Order As Ma@30 (Peek Poke Byte \& Ram)

Price £5.25NV

The Softside Sampter

Edited by Joan Witham
Description and BASIC listing for TRS80 of 29 complex game programs. Tittes include 'Around The Horn', 'Battle Royal', 'Drag Race', 'Goblins', Jigssw', 'Magical Journey' 'Moving Maze', 'Sonic Torpedoes', 'Tenpin Bowling' and many more.
1982. 128 р2ges. $246 \times 176 \mathrm{~mm}$ illustrated.
Order As WAO1B (Book HD496)
Price $£ 8.25 \mathrm{NV}$
The Glant Book of Computer Software by 73 Magazine

Here are mundreds of programs designed to help electronics hobbyists and radio amateurs There are programs to help you design all kinds of filters. There's a reactance caicula tor, SWR calculator, antenna design aid. ground station antenna bearing calculator, SSTV pattern generator, RTTY filter design program, picture
June 1982 Maplin Magazine
titling. computerised antenna rotator and much, much more. American bock.
1981. 504 pages. $208 \times 130 \mathrm{~mm}$. lilustrated.
Order As WG90X (Book FT1369) Prica £10.50NV

The BASIC Conversions Handbook

 by 'Brain Bank'The boak shows how to convert BASIC in Applesolt, PET or TRS80, into either of the other two, as well as variations for TRS80 model 111 and Apple integer Easic. Variations in graphics capabilities, are also described as well as PEEK, POKE and CALL statements, cursor and control characters, memory decations and much more. American book.
1981. 88 pages. $228 \times 146 \mathrm{~mm}$. Order As wG98G (Book HD534)

Price $£ 6.95 \mathrm{NV}$

6502 Assembly Language

Subroutines
by Lance A. Leventhal \& Winthrop Saville

This book will help you kearn 6502 assembly language quickly. It pro. vides code for more than 40 common subroutines, including code conversion, string processing, array manipulation, bit mantpulation, 1/0 and interrupts. The book tells you how to adid instructions and addressing modes. You can use the routines shown to speed up a BASIC program and much more American book. 1982. 560 pages $234 \times 186 \mathrm{~mm}$. Iffustrated.
Order As WA05F (6502 Assembly Subs) Price $£ 12.45 \mathrm{NV}$

The 6809 Companion

by M. James
Written for the average assembly language programmer, this is not a beginner's book. The TRS80 colour computer uses the 6809 and it is becoming a very popular microprocessor since it was designed specifically with ease of programming in mind. The book covers all aspects: registers, addressing modes, instruction set, interrupt handling, programming style and converting 6800 programs.
1982. 96 pages. $180 \times 108 \mathrm{~mm}$.

Order As WG88V (Book EP102)
Price £1.95NV

68000 Assembly Language

Programming
by Gerry Kane, Doug Hawkins and Lance Leventhal

This book provides the information you need to tap the full potential of the most powerful microprocessor yet: the 68000 with its highly-evolved architecture and impressive resour. ces. Each of the 68000's instructions is fully explained and there is a wealth of practica! programming examples. Assembler conventions, 1/O device programming and interfacing methods are also included. American book.
1981. 624 pages. $234 \times 164 \mathrm{~mm}$. illustrated.
Order As WA04E (6800 Assembly Prog) Price $£ 14$.95NV

Computers For People

by Jerry Willis and Meri Miller
If you're thinking of buying a computer for home use then this is the book to read first. All the points you need to consider in your choice are carefully explained. There is also a comprehensive comparison chart between Atari, Apple. TRS80, PET, VIC20 and Texas 99/4A. American book.
1982. 208 pages. $212 \times 136 \mathrm{~mm}$. lilustrated in full colour.
Order As WaOOA (Computers For People)

Price £8.25NV

Don't (Or How To Care for

Your Computer)
by Rodnay Zaks
This book will show you the correct way to handle and care for all the elements of a computer system: the processor, CRT terminal printer, tape unit, floppy disks and hard disks. Software and documentation is also covered. American book.
1981. 240 pages. $228 \times 152 \mathrm{~mm}$. lllustrated.
Order As WG96E (Book C400)
Price E11.45NV

How To Design and Build Your Own
 Custom Robot

by David L. Heiserman
All the procedures for planning, putting together and programming a custom-designed artificial intellig. ence machine are here in this detailpacked guide. Electrical and mech-
anical subsystems including driving and steering mechanisms are fully covered. There are lots of electronic circuits and working plans for three microprocessor systems are given along with flowcharts and listings for 8080A, 8085 and 280 mnemonics. American book.
1981. 462 pages. $208 \times 130 \mathrm{~mm}$. Hilustrated.

Order As WG92A (Book FT1341)

Price $£ 9.75 \mathrm{NV}$

Data Converters

by G. B. Clayton
The book enables the reader to gain a thorough understanding of digital to analogue and analogue to digital converters. Principles of operation are explained in detail and considerations involved in connecting these devices to microprocessors are examined. Procedures for implementing practical applications are show and the book shows how to interpret data sheet specifications. An excellent text on this important new area in electronics.
1982. 256 pages. $234 \times 156 \mathrm{~mm}$ Illustrated.
Order As WAO2C (Book MM495)
Price 29.75 NV
How To Identify Unmarked IC's by K. H. Recorr

The chart shows how to plot the "Signature" of an unmarked IC. This should then enable the IC to be identified with reference to manufacturers' or other data or to be used in a specific application, without actually assigning a type number.
1982. Fold-out sheet $640 \times 450 \mathrm{~mm}$. Cover size $176 \times 120 \mathrm{~mm}$.
Order As WG87U (Booh BP101)
Price 65pNV

IC Projects For Beghners
 by F. G. Rayer

A series of projects for the less experienced hobbyist. All use IC's and projects include power supplies. radio and audio projects including a solar radio. Other projects include an audio generator, interval timer, light relay, sensitive eniarging meter and many more.
1982. 112 pages. $176 \times 110 \mathrm{~mm}$. lillustrated.
Order As WA30H (Book BP97)
Price 11.95
Continued on page 60

MAKING YOUR own PCBS

Printed circuit board construction is becoming increasingly necessary for many electronics projects, owing to circuit complexity and layout considerations. Whilst most magazines publish a printed circuit layout for some of their construction projects. this is of limited use to most constructors as they have no means of copying it. Of course, it is possible to trace the layout, but this is both untidy and time consuming, quite apart from being difficult and prone to errors. This article describes various ways in which the constructor, who has no previous photographic skill, can reproduce these layouts, and then make his own printed circuit boards (pcb's).

Large Scale PCB
 Production

Pcb's are produced professionally by making the artwork $2 \times$ or $4 \times$ size, and then reducing this to same size, in a large process camera. This increases the accuracy of the final copy by reducing any errors in the layout by a factor equal to the camera reduction. The resulting photographic negative (or positive) is used as a 'phototool' to produce a facsimile image of the layout on a copper-clad printed circuit board that has been coated with a light sensitive resist. When the board is etched, copper is removed from all those parts not protected by resist. This leaves a reproduction in copper of the circuit layout. Most published layouts are same size positives (i.e. the copper tracks are printed in black). These are quite easy to copy photographically without the use of a camera, or other expensive equipment. The principal used is that of reflex copying, and is illustrated in Figure 1.

Light passes through the photographic film or paper; it is reflected by the white areas and absorbed by the black areas. The photographic material therefore receives more exposure from the white parts of the copy than from the black. Processing the photographic material results in a same size copy of the artwork.

Two types of suitable photographic material are available; one is negative emulsion on paper and the other is a positive emulsion on film. The negative emulsion reproduces the artwork as printed, but laterally reversed. As all the photoresists available to the amateur at the moment are positive working (i.e. require a film positive of the artwork) it is much more economical in both time and materials to use the direct positive method.

The CM100 Circuit Maker

In order to produce a high quality printed circuit board, the film positive must have dense black lines and a clear background. This quality is achieved using a high contrast film processed in a special developer. Unfortunately until now. these products have only been available to the professional large scale user. However, Electrolube Limited are now introducing a printed circuit

by Peter Taylor

kit (CM100 - Circuit Maker) which makes them available in quantities suited to the needs of the small scale user.

The film used in this kit has the advantage that no darkroom is needed; it can be handled quite safely in normal room lighting.

The steps necessary to make a film copy from a published artwork are simple. First of all a piece of film is cut slightly larger than the circuit being copied. This is then laid over the circuit layout with the emulsion of the film (i.e. the blue/grey side) in contact with the drawing. The two are sandwiched between a piece of clear glass, and a backing plate covered by foam rubber. The whole of this is then put under pressure, so that the film and the printing are held in even, close contact. Electrolube supply, with the CM100 - Circuit Maker, a frame that has been specially designed for this purpose.

The frame is placed two feet away from a high intensity photoflood lamp, and a series of stepped exposures is achieved by progressively covering the film with a piece of
card. These exposures should range between 2 and 5 mins. in 20 second intervals. The film is developed for $21 / 2$ mins. in special developer at $20^{\circ} \mathrm{C}$, and then placed in a bath of photographic fixer for a minute or two. The processed film will show a series of steps going from very dark to quite light. It is helpful to remember when assessing the step wedge that the longer exposures produce the least density. One of these steps will have a nearly clear background with dense, sharpblack lines. The exposure given to this step should be noted, and used to produce a complete copy of the original.

When the final copy has been made, you may find that the background is not completely clear; it may be slightly darker at the corners (due to 'fall-of' of light used to expose the film). This background may be cleaned by taking the film straight from the fixer bath and wiping over the emulsion side with a swab of cotton wool dipped in Electrolube film clearing solution. The film is then refixed for a minute and washed in running water before being hung up to dry.

Figure 2. Copying using a photographic enlarger.

Alternative Method Using a Photographic Enlarger

Another method that can be used by constructors who have a photographic enlarger and a darkroom is to use the enlarger 'in reverse' as a camera. The enlarger will have been set up so that the lens and negative holder are parallel to the baseboard and is therefore ideal for producing accurate copies of the circuit layouts.

For this method, the circuit to be copied is placed under glass in the centre of the baseboard. A negative is then placed in the negative carrier, and the enlarger adjusted so that the image of this negative covers the artwork being copied and is sharply in focus on the page. The controls on the enlarger should then be locked in position, and the enlarger light turned off

The artwork is Illuminated by two lamps equally spaced from the centre of the copy and at 45° to it, as shown in Figure 2. The negative that was used for focussing should now be replaced by a piece of negative working photographic line or lith film, with its emulsion towards the enlarger lens, and a black cloth draped over the enlarger. The film is exposed by switching the two lamps that illuminate the baseboard. Correct exposure time is found by-trial and error initially. Providing the lamps are always kept at the same distance, and the lens aperture is not changed, this time should remain the same for future use.

The negative will normally be smaller in size than the original. It is therefore necessary to enlarge this to the right scale by using the enlarger in the conventional mode. The same type of film that was used for the negative is suitable for making this final film positive.

Normally layouts are publistied as seen from the copper side. In order to make the film positive the right way round, the negative should be placed in the enlarger with its emulsion side towards the light (i.e. the opposite way round to normal).

Producing The Printed Circuit Board

First we will briefly consider some ways of producing pcb's without the use of photography.

The most well known of these involves tracing the track pattern directly on to the copper laminate using carbon paper, and then filling in the areas that are to remain as copper with an etch resist pen, or painting with an etch-resistant material such as nail varnish

Although these both work well as etch resists, it is extremely difficult to produce clean accurate shapes (such as integrated circuit pads), or the fine, closely-spaced lines that are necessary in many circuits. Moreover, the pattern has to the redrawn for each board that is made; consequently modifications, etc become extremely tedious.

Some of the disadvantages discussed above can be overcome by using certain dry transfer symbols, but, of course, it is still necessary to redraw the artwork for each board or modification that is made.

Whichever of the above techniques is used, it is practically impossible to make a double-sided board, and very difficult to achieve any degree of accuracy.

Photographic methods overcome these problems easily and efficiently, as described below.

To begin with the copper laminate is coated with a light sensitive photoresist; this is then exposed through the photographic film copy ('phototooi') to ultra violet (i.e. a UV lamp or daylight). Areas that are exposed sufficiently are removed during subsequent development of the resist, leaving an image of the circuit layout which can then be etched.

The copper laminate is tirst cleaned by rubbing with a fine abrasive pad (as used for washing up). It is best to wet the surface of the board thoroughly with warm water to which a little washing up liquid has been added. When the copper surface appears shiny, the board should be rinsed in running water. If the cleaning has been successful, the water will form an even film over the board surface. If it forms dry patches, cleaning should be repeated.

Wipe away surface moisture with a lintfree cloth and leave the board to dry. Now apply photoresist by aerosol, or by wiping on with a special applicator (as in the Electrolube CM100 - Circuit Maker). The board should be kept horizontal until the resist has dried, otherwise run marks will occur. After coating, put in a dark cupboard until dry. The board should be ready for exposure to the film master in about $45-60$ mins. This is carried out in the same frame used to produce the film master. The film is laidon to the photoresist-covered board, and the two are clamped together. Exposure can be to daylight or to a UV lamp. Using the resist supplied with the Electrolube CM100 Circuit Maker, exposures in the region of $10-30$ mins. to daylight can be expected, depending on the strength of the light.

After exposure, the resist is developed in a weak solution of caustic soda. All the parts exposed through the clear areas of the film
are removed, leaving a positive copy of the circuit in resist

After a brief rinse the board can be etched straight away. Various substances can be used, the most common being ferric chloride. This is normally made into a solution containing lib of ferric chloride in 2 pints of water. Great care should be exercised when dissolving the ferric chloride - a lot of heat is generated and the reaction is quite violent. On no account should water be added to ferric chloride - ALWAYS add the ferric chloride to the water. If any solution should be splashed accidentally into the eyes or mouth. wash with plenty of water, and then seek medical attention.

The Electrolube CM100 - Circuit Maker makes use of a much safer process which is a buffered etchant supplied in a heavy duty polythene container. In this case water is added to the crystals in the bag and, when they are dissolved, etching can begin. The copper board is dropped into the bag, and the bag sealed with a special clip. It is then laid flat on the bench, and pressure is gently exerted with the palms of the hands alternately at each end. This agitates the solution sufficiently; the board should be etched completely in $10-15$ mins

The board is now rinsed thoroughly in running water. The residual photoresist is stripped by immersing the board in about 2% caustic soda. After a further wash. surplus surface moisture is wiped away, and the board put to dry.

It is necessary to protect the copper surface from tarnishing by applying a flux lacquer to the copper side of the board. This allows the board to be stored; it also gives excellent solderability. The flux lacquer in the Electrolube CM100 - Circuit Maker is applied in a similar way to the photoresist.

Making professionai-quality printed circuits at home is easy, providing it is tackled in a methodical way, and attention is paid to cleanliness throughout. The Electrolube CM100 - Circunt Maker, which is on special offer in this issue, facilitates this; it supplies everything necessary for the small scale user to make his own single or doublesided boards from his own or published artwork. Great care has been taken to make the kit complete. A feature that will prove invaluable to many constructors is that the specially designed frame can be used as an exposure frame for the photographic parts of the process, as well as a component assembly frame. The foam backing is of a special heat-resistant type which allows it to be used to clamp the components; this prevents the components dropping out of the board when it is turned over for lead cropping and soldering.

BASIC Strings

A BASIC string is a sequence of one or more letters or symbols in any combination, enclosed within quotation marks It is treated as a single collection of atphanumeric data which can be manipulated by means of string functions and assigned to string variables. The use of string variables, string assignment and string arrays has been described in previous parts of 'BASICALLY BASIC'. To understand how the computer represents alphanumeric data and can perform operations with strings, we need to look at the ASCII code (American Standard Code for Intormation Interchange).

ASCII Code

The ASCll code is a standard developed by the computer industry in which each symbol used in BASIC is assigned a unique binary digit pattern (bit pattern) When a symbol is typed on the keyboard, the terminal converts it to its binary code For example, if you type the letter A on the keyboard, the terminal converts it to 01000001 , which the computer recognises as A. Table 1 tists the set of ASCli character codes. The binary numbers have been converted to decimal numbers to make the assignments easier to understand.

The ASCll code is used to determine alphabetic precedence when alphanumeric data is compared with relational operators. This is described in the next section

String Operators

A relational operator is a symbol used to compare the value of one variable or expression to another variable or expression within a BASIC program The use of relational operators to determine numeric relationships has been described previously. Relational operators can also be used to compare alphanumeric data. The comparison is made in terms of the ASCII value of characters to establish alphabetical sequence. Consider the following program:
10 LET A\$ = "BAS"
20 LET B\$ = "SIC"
30 IF AS $<B \$$ THEN PRINT A\$:GOTO 50
40 PRINT B\$
50 END
Line 10 assigns the string BAS to the string variable called A\$.
Line 20 assigns the string SIC to the string variable called $B \$$.

Line 30 is a relational string expression. It compares string $A \$$ with $B \$$ to determine if $A \$$ occurs first in alphabetic sequence. The comparison is made character by character using the ASCII character code. In this case the first letter of the string $A \$$ is ' B ' which precedes ' S ', the first letter of the string $8 \$$, in the ASCII table. Therefore string A\$ precedes $B \$$ in alphabetic sequence so the condition is true and the string $A \$$ is printed on the terminal. If the first two characters are the same the comparison proceeds to the second two characters, until a difference is found. For example, if A\$ was assigned to the string BAY and B\$ was assigned to the string BAT, the first character in each string match. The next two characters also match. Finally the last character of the string $A \$$ is compared with the last character of the string $8 \$$. The ASCII code of $Y(89)$ is greater than the ASCII code of $T(84)$, hence the result of the comparison is false and line 40 prints the string $B \$$ on the terminal.

Table 2 lists the string retational operators available in BASIC and their meaning
Note: it is not permissible to compare a numeric or integer expression to a string expression using a relational operator. If this is attempted an error message will be output by the computer.

String Functions

BASIC provides a set of string functions (similar to the math and print functions described last month) to enable certain operations to be performed on strings. The following descriptions are intended to be general since the functions may perform differently for different computer systems. You should refer to your systems Language Reference Manual for a complete list of functions available in your version of BASIC. The string function names ending with a dollar sign $(\$)$ return a string value whereas function names not ending with a dollar sign return a numeric value.

ASCII Function

The ASCll function returns a numeric value that is the equivalent ASCII code for the first character in the string given as the argument to the function. The general format of the ASCII function is: ASC (string). where string is either a string constant or a string variable. For example, the command PRINT ASC ("P") will output 80, the decimal ASCII value of the character P, on the terminal. The following program uses the ASC
function with a string variable as an argument:
10 A\$ = "BASICALLY"
20 PRINT ASC (A\$)
30 END
When the program is run the ASCII function returns the decimal ASCII value of the first character in the string assigned to the string variable $A \$$, hence the decimal 66 will be output to the terminal.

CHR\$ Function

The CHRS (Character) function is the inverse of the ASCII function. It returns a single character string having an ASCII value of the numeric value specified as the argument to the function. The range of the ASCII codes is 0 to 127 If the value specified to the CHR\$ function is outside this range it is treated as modulo 127. This means that 128 is treated as 0,129 as 1 and so on. A non-integer argument to the $C H R \$$ function will be truncated and the character returned will be that represented by the truncated number.

The following program demonstrates the use of the CHR function with different arguments.
10 PRINT CHR\$ (70)
20 PRINT CHR\$ (198)
30 PRINT CHR\$ (10)
40 PRINT CHR\$ (60.1)

50 END

RUN
F
<

- Table 1. ASCII character code.

Decimal	Character
000	NUL
001	SO11
002	STX
003	ETX
004	EOT
005	ENQ
006	ACK
007	BEL
008	BS
009	HT
010	LF
011	$V T$
012	FF
013	CR
014	SO
015	St
016	Di.E
017	DCl
018	DC2
019	DC3
020	DC4
021	NAK
022	SYN
023	ETB
024	CAN
025	EM
026	SUB
027	ESC
028	FS
029	GS
030	RS
031	US
032	S^{p}
033	1
034	"
035	\#
036	\$
037	\%
038	
039	
040	,
041)
042	*

Meaning	Decimal
Null	043
Start of heading	044
Start of text	045
End of text	046
End of transmission	047
Enquiry	048
Acknowledge	049
Bell	050
Backspace	051
Horizontal tab	052
Line feed	053
Vertical tab	054
Form feed	055
Carriage return	056
Snft out	057
Shift in	058
Data link escape	059
Device control 1	060
Device control 2	061
Device control 3	062
Device control 4	063
Negative acknowledge	064
Syrchronous idle	065
End of transmission block	066
Cancel	067
End of medium	068
Substitute	069
Escape	070
File separator	071
Group separator	072
Record separator	073
Unit separator	074
Space or blank	075
Exclamation mark	076
Number, sign	077
	078
	079
	080
	081
	082
	083
	084
	085

Decimal	Character	Decimal	Character
043	+	086	
044	,	087	W
045	-	088	X
046		089	Y
047	1	090	2
048	0	091	[
049	1	092	\}
050	2	093)
051	3	094	\uparrow
052	4	095	\leftarrow
053	5	096	\checkmark
054	6	097	a
055	7	098	b
056	8	099	c
057	9	100	d
058		101	e
059	:	102	+
060	$<$	103	8
061	$=$	104	\%
062	$>$	105	1
063	?	105	J
064	@	107	k
065	A	108	1
066	B	109	m
067	C	110	n
068	D	111	0
069	E	112	p
070	F	113	a
071	G	114	r
072	H	115	5
073	I	116	t
074	J	117	u
075	K	118	v
076	L	119	w
077	M	120	\times
078	N	121	y
079	0	122	z
080	P	123	
081	Q	124	
082	R	125	
083	S	126	2
084	T	127	DEL
085	U		

Table 2. String relational operators.
The output from the program is as shown
Line 10 prints the characler represented by the ASCII code 70 (an upper-case F).
Line 20 specifies an argument of 198 . This is treated as modulo 127 ($198-128=70$) which is the ASCII code for an upper-case F
Line 30 outputs a line feed character on the terminal causing a blank line of output. The decimal number specified as an argument to the CHR§ function on line 40 is truncated to an integer. The truncated number (60) represents the character $<$ (Characters may be different with your micro.)

The remaining BASIC string functions will be described in the next 'BASICALLY BASIC'.

STARTING POINT

by Robert Penfold

Introducing the fundamentals of electronics for the constructor.

Classes of Amplification

The amplifiers considered so far in "Starting Point" have all been of the type where a transistor has been used in one of the three amplifying modes with a resistor as the collector or emitter load, as appropriate. A simple arrangement of this type is perfectly suitable for use in low level stages where powers of no more than a few milliwatts or so are involved, but the inefficiency of this class of amplifier is a severe drawback when an output power of a few hundred milliwatts or more is required.

For example, if we consider the simple output stage shown in Figure 1, this is a straightforward common emitter stage having R1 to provide base biasing, R2 as the collector load resistor, and input and output DC blocking provided by Cl and C 2 respectively

Figure 1. Simple Class A output stage.
As usual, the circuit is biased so that Trl has a collector potential of half the supply voitage, and with 8 volts across 8 ohm load resistor R2 there is obviously a current flow of 1 amp through R2 and Tr1. This gives an input power of 16 watts, with R1 and Tr1 each dissipating 8 watts.

The maximum output voltage from this stage is about 16 volts peak to peak, and will be a little less than this in practice since even with $\operatorname{Tr} 1$ switched fully on there is still likely to be a potential of about 1 volt at its collector. No practical transistor can produce a collector potential much below this figure when operating at a high collector current. We are also assuming that the circuit is driving an infinite load impedance, whereas it is in fact driving a load impedance of just 8 ohms. The load impedance is, in fact, equal to the 8 ohm output impedance of the amplifier, and this causes the output voitage to be loaded to just half the unloaded figure. In other words the maximum theoretical output voltage swing is only 8 volts peak to peak under load, and in practice would not even be as high as this. In terms of RMS output voitage this is only about 2.83 volts.

The output power of an amplifier is $E^{2 / R}$ where E is the RMS output voltage and R is the load impedance. In this example E^{2} is equal to 8 , and dividing this by the 8 ohm

Figure 2n. Basic Class 8 (AC coupled) output stage.

Figure 2b. Basic Class B (OC coupled) output stage.
load impedance obviously gives an output power of 1 watt RMS. In other words an input power of 16 watts is required to give a maximum output of only 1 watt RMS!

Higher output power can be obtained by reducing the value of R2 so that the output impedance of the amplifier is reduced, and the loaded output voltage is increased. However, this would cause the input current and power to rise, and would actually decrease efficiency. Increasing the value of R2 would reduce the input current and power, but would also give a lower loaded output voltage and maximum output power, and would again actually produce a reduction in efficiency.

There are a number of ways of improving the efficiency of simple amplifiers of this general type, which are known as 'Class A' amplifiers, but the efficiency of a true Class A stage is always rather low. The disadvantages of this low efficiency are the need for a substantial and expensive power supply to give even quite modest output powers, the need to use high power components in the output stage, and the generation of a substantial amount of heat. Battery operation also tends to be a little impractical using primary cells since the high current consumption results in expensive batteries becoming exhausted at an alarming rate.

Class B Operation

virtuatly all audio power amplifiers use some form of Class B operation, and Figure 2 (a) shows the basic Class B output stage on which most modern designs are based. Figure 2 (b) shows the DC coupled output version, and operation of the two circuits is essentially the same. However, the DC coupled version is a little easier to understand and we will therefore consider the operation of this circuit.

The circuit has dual balanced supplies, and the loudspeaker connects between the output of the amplifier and the OV rail. Trl and Tr2 are both emitter followers and therefore each provide approximately unity gain. RI biases the input and output of the amplifier to the OV rail potential, and under quiescent conditions there is thus no voltage present across LS1.

If a positive input signal is applied to the circuit Trl's emitter goes positive and Trl supplies power to LS1. The output impedance of the circuit is very low and despite the low load impedance Trl can supply virtually the full positive supply potential to LS1. Tr2 is cut off and plays no active role with a positive input signal.

With a negative input signal Trl is cut off and it is Tr2 that supplies power to LS1. Once again the output impedance is very low, and almost the full negative supply voltage can be delivered to LS1.

This system gives much better efficiency
than a Class A circuit since the maximum peak to peak output voltage is virtually equal to the sum of the two supply voltages, and the supply current is equal to the output current. Thus the average supply current varies in sympathy with the output, and is zero under quiescent conditions. This avoids high current consumption and heat generation under stand-by or low volume conditions, and when the amplifier is fully driven it is possible to obtain an efficiency of over 70%. This contrasts with the high continuous current consumption and low efficiency of a Class A circuit.

Quiescent Bias

In practice the circuits of Figure 2 would give very poor results due to what is termed "crossover distortion". This comes about due to the base-emitter potential of about 0.6 volts that is needed before a silicon transistor begins to conduct. This makes it necessary to have an input signal of at least +0.6 volts before there is any output signal at al!! Even with an output signal from the circuit there is severe distortion as the low voltage part of the waveform is absent. A triangular input waveform as shown in Figure 3(a) would emerge from the circuit as shown in Figure 3(b).

Crossover distortion is normally over come by incorporating some additional components at the input of the output stage, as shown in the circuit of Figure 4. Here the driver and output stages are effectively merged together, and practical designs are invariably of this type. Tr 1 is the driver stage and Tr2 plus Tr3 are the complementary emitter follower output stage. The amplifier is biased by R1 and R2, and the purpose of D1, D2 and RV1 is to give a quiescent bias voltage across the bases of Tr2 and Tr3.

RV1 is adjusted so that the bias fed to Tr2 and Tr3 is just sufficient to bring them to the threshold of conduction so that $\operatorname{Tr} 2$ is switched on if the drive voltage even marginally positive, and Tr3 is switched on as soon as the drive voltage from Tr 1 starts to go negative. In practice it is usually necessary to use a slightly higher bias than this so that under quiescent conditions there is a small but significant current flowing through $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$. This is necessary due to the comparatively low gein of practical transistors when they are only marginally above the threshold of conduction, and the relatively small but nevertheless significant amount of crossover distortion that this would produce By biasing the output devices beyond this low gain part of their transfer characteristics this crossover distortion is avoided.

It may, in fact, be necessary to use quite a large quiescent bias current through the output transistors in order to produce really low crossover distortion. Circuits of this type are generally called Class AB amplifiers, and this is simply because at low and medium output powers one transistor acts as the amplifying device and the other output transistor acts as its emitter load. This is, in fact, a form of Class A operation, and it is only at high powers that one transistor is cut off while the other drives the load, and true Class B operation is obtained. It is from this mixture of Class A and Class B operation that the term Class $A B$ is derived.

Most practical designs use only a low quiescent bias current through the output transistors, and this is quite understandable since Class AB working obviously partially loses the advantages of Class B operation Also, although Class AB amplifiers avoid crossover distortion this advantage is offset by an increase in other types of distortion.

Figure 3a. Triangular input waveiorm.

Figure 3b. Output waveform, showing crossover distortion

Fgure 4. Practical Class B power amplifier configuration.
Practical audio power amplifiers almost invariably use a low quiescent bias plus a generous amount of negative feedback to reduce crossover distortion and other types of distortion.

Thermal Runaway

The bias voltage supplied across the bases of Tr2 and Tr3 is extremely critical, with a marginally low potential giving severe crossover distortion and a slightly high bias producing a very large quiescent current through the output transistors. The position is mede worse by the heating that occurs in Tr 2 and $\operatorname{Tr} 3$ when the amplifier has been in use for a short while. Bearing in mind that Tr2 and Tr3 will inevitably have to handle substantial power levels a significant amount of heat generation in these transistors is inevitable.

As $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ heat up, their base-emitter threshold voltage decreases, and the quiescent bias current increases. The increasing bias current produces further heating in the output devices. which, in turn, gives an increase in the bias current, and this regenerative action continues until the output devices overheat and are destroyed unless suitable preventative measures are taken. This thermal feedback is called "thermal runaway"

D1 and D2 are used to prevent thermal runaway, and they achieve this by sensing the rise in temperature of the output transistors. They may actually be mounted on the same heatsink as the output transis
tors in order to ensure that they rapidly and properly sense the temperature changes. The voltage developed across D1 and D2 varies with temperature, and decreases as temperature is increased. This gives a strong stabilising effect on the quiescent bias current with the bias voltage automatically decreasing as the output transistors heat up.

There are other ways of providing thermal stabilisation, such as using a transistor in the amplified diode configuration, or a negative temperature coefficient thermistor. Whatever method is used the circuit must be carefully designed as there is otherwise a likelihood of over-compensation and consequent crossover distortion when the out. put transistors heat up, or insufficient thermal stabilisation which would simply result in slower thermal runaway!

Most low and medium power audio amplifiers these days are based on an integrated circuit, and thermal stabilisation is not a problem here since the output transistors and the temperature sensing components are on the same chip. This enables very predictable results and very accurate stabilisation to be easily obtained.

Power MOSFETs are becoming increasingly popular for use in the output stages of high power audio amplifiers, and amongst other advantages they require no thermal stabilisation. These devices have a positive temperature coefficient, like bipolar transistors, at low operating currents. However, this changes to a negative temperature coefficient at currents of more than about 80 mA . In other words, with a bias current of less than about 80 mA an increase in temperature produces a small increase in the quiescent bias current, but at more than about 80 mA an increase in temperature results in a decrease in bias current. The quiescent bias current therefore tends to be self-stabilising, and thermal runaway cannot occur.

Class C

Class C amplifiers are not often encountered, and are only applicable to radio frequency circuits. With this type of amplifier the amplifying device is reverse biased so that it only conducts during quite a small part of each output cycle. The load for the amplying device must be a tuned circuit which "rings" at its resonant frequency and effectively fills-in the missing part of the output waveform. A mechanical analogy of this is the periodic striking of a bell to produce a continuous ringing sound.

The advantage of Class C operation is the very high level of efficiency that can be attained, but a lot of filtering is normally needed at the output to produce a really pure output signal.

There are other modes of operation, and Class 0 for example is a form of high efficiency audio power amplifier. However, these other modes of amplification tend to be quite complex and are mostly just variations on one of the operating modes already described. Class D for example, uses what is really just aClass B output stage, and it is the preceding and following circuitry that give the higher efficiency.
it is worth noting that although the circuits shown here use only a single device in the outout stage, or a single device in each half of the output stage in the Class B designs, practical circuits often employ two devices in the Darlington Pair configuration or some simidar arrangement. This is often necessary in order to produce a really low output impedznce so that large output currents can be easily provided with only a modest drive current.

READERS LETTERS

4-Pole Slide Switch

Dear Maplin.
Please forgive me if I appear to be repeating myself, only l've just bought your new magazine 'Electronics' first issue and what a surprisingly good buy it is too!
Problem is, when I turned to page 63 'Amendments to Catalogue' there is no mention of the switch / mentioned a while back. and as my previous letter probably tell on stoney ground I shall briefly recap
FH38R 4 POLE 3 POSN SLIDE (PAGE 279)
Having used this switch once again am convinced at this error, rather annoying and repetitive.
Connection positions should be transposed as shown:

TO READ:

A DONALDSON
Walton-on-Thames, Surrey We reprinted the manufacturer's data, but unfortunately, not all of it. The missing piece of data shows the position of the knob for each number. We agree that without this vital piece of information, your drawing is more logical.

Removable Price List

Dear Sir,
I have only one criticism - hopefully constructive - to make about an otherwise excellent magazine: please arrange the pages so that the "Price List" can be removed without disrupting the magazine articles. Re. moving the latest Price List in its entirety takes Readers Letters and the first page of the Home Security System project. In the first issue, New Books and the first page of the Universal Timer project would go. In this panticular case, perhaps you could have "surrounded" the Price List with the two pages of Maplin News (pps 63/4 issue 1), much of which applies to the Catalogue aпуway.

P. HUNT

Wimborne, Dorset
Whilst I have some sympathy with your suggestion, I have to balance this with the overall look of the magazine. Breaking up Maplin News and siting it either side of the Price List makes the magazine look scrappy. Also it does not allow us to have a double-page spread to give extra impact to the article following the Price List. I would be interested to hear other people's views, but at the moment I am not sufficiently persuaded to change the layout.

Countdown Timer Circuit Wanted

Dear Sir,

As a regular reader of your magaz ine(s!) I write to ask if through the readers letters pages of your magazine any reader could help with the
source of a published circuit for a countdown timer. There does not seem to be a dedicated chip available for this purpose nor can Ifind details of a suitable circuit.
There must be many uses for such a device (sports, quiz games etc, etc) - perhaps you could consider developing such a device.
I. E. SHEPHERD

> Johnstone, Renfrewshire

Any offers?

Additions To Burglar Alarm

Dear Sir,
I must say that I was impressed with the excellent specification on the Maplin Burglar Alarm in the latest edition of the Maplin Magazine.
However, there are a few 'improvements' which, if they could be incorporated, would make for an even better security device.

1. PANIC SWITCHES with a latching operation that would operate the external alarm whether or not the main control was 'on' or "off'. 2. AN AUTOMATIC RE-SET for the external alarm, that would shut the alarm off after, say, 20.25 minutes. The re-setting to take account of the 'new' condition, i.e. the 'offending' door or window remaining open etc. 3. RE-CHARGEABLE CELLS for the external alarm box, instead of dry batteries, linked to a remote battery condition monitor (i.e. LED's) that would indicate their state of charge at a glance, so that the cells could be charged before they became exhausted.
I realise that this is a tall order, but if any other reader is abie to offer circuit modification to suit, I should like to hear from him/her.
M. MILLS London SE26 If a panic switch is practicable, then details will be published in issue 4. The same goes for the alarm cut-off timer. The rechargeable cells are not practical, I'm afraid. in any case unless your alarm goes off when the mains is off you will only need to replace the batteries once every two or three years. So for the cost of a set of hi-cads, you will get ten years worth of dry cell's. So we didn't think that the complication of charging cells in the external box was really worth the effort

Ideas For The Mag

Dear Sir,
Heve are a few suggestions for your new electronics magazine.
(a) Simple 7 channel Citizens Band radio.
(b) Inexpensive television space game unit featuring Invaders, UFOS. etc.
(c) Mint pocket sized alarm clock.
(d) Auto toaster cooking timer.
(e) Adaption of RK22Y, $23 A$, and 24 B
(6,9 and 12 volt output silicon solar panels) to AC converted stepped up voltages to result in 240 volts so that it couid be used on mains equipment.
P.S.: I think your magazine is helpful and very enjoyable to read.

DOMINIC LOUGHLIN
(age 11)

Chorley, Lancs

Your first three ideas would, I agree. be very interesting, but to pay for the develcpment costs, they would also have to be saleable and frankly, there is no way a kit of parts for any of these ideas could be assembled for less than the cost of a ready-made unit in the shops. Consequently, their sales potential would be very small we do think a kitchen timer, possibly with an add-on mains controlier (for loasters or whatever) would be an interesting little project.
Unfortunately your idea for the silicon cells is not practical at all. To gain a voltage increase there must be a similar decrease in current. With the 12 V panel we would require a 20 . times increase in voltage and there would then be a 20 -times decrease in current. Bacause of the inefficiencies in this kind of circuit in practice, the current would actually be much lower than this. Then we would need to drive an oscillator of some sort to convert to AC. I would think you woula be lucky to end up with 1 miA at 240 V AC. And there's not a lot you could do with that. For example a colour TV draws about IA from the mains, so you'd need a thousand I2V panels to run one. Clearly, an expensive proposition.

Congratulations

Dear Sir.
Another electronics magazine? NO. Congratulations on entering the field late in the day and beating the opposition hands down!
1 have been a satisfied mall order customer for some time and I still marvel at the speed with which you deliver the goods. I recently received my first copy of the Maplin Mag after long deliberation on whether to fork out on yet another electronics magyour introductory offers thpped the balance - and I am delighted I enjoy the wide range of projects from the absolute beginner's cinche up to the more demanding Timer project. In addition your range of teatures has something for everybody. Keep up the good work - I can't wat for the next issue!
J. E. MABBOTT

Rhosneigr, Gwynedd
Thanks Mr Mabbott. Hope you enjoy this issue too.

What About MES56?

Dear Doug.
Thanks for the new magazine - a very useful addition to the Maplin catalogue. Could one suggest for future inclusion an article on the growing Naplin empire, and also adding to that empire with a Leeds or Manchester stop.
Normally I crder from you by tele. phone and every time I get a reply paid envelope and order form which finish up in the rubbish bin. How about asking customers who tele-
phone if they require these and thereby saving on costs. Also I was sorry to see the discount voucher scheme discontinued but can under stand that as it operated it could be costly to administer. Could I suggest a) A discount scheme for quantily orders of the same part; b) Acuscount for large orders say over £ 30 . Maplin are very competitive, comoared with trade component suppliers, on a oneoff basis but not on large quantities. One of my main interests in electroncs is electronic organs, Some three years ago I started building an MES53 and have enjoyed this project but feel that further developments on this organ lave been pushed to one side to develop the Matinee. However. when I heard the MES organ at Bread. board ' 80 it had certain extra effects so ycu must have come some way to developing MES56 and 57 mentioned in the last catalogue but not the most recent. When can I took forward to more developments on the MES argan? I look torward to hearing.
I. D. MANZIE

Skipton, N. Yorks
You will be pleased to hear that we are considering opening a Maplin store in Manchester, once our Birmingharm shop (opening soon - the announcement will be in the Birmingham "Evening Mail") is open. Frankly, it's cheaper for us to have one pile of packs of order form and envelope and just put one in every order, than to have two piles, one without envelope. and scrt the orders; bearing in mind that this part of the packing is done very quickly: on an average day the team of packers completes an order every 20 seconds.
We have on many occasions considered quantity discounts, but it is an added complication to our throughput which is now a very speedy and efficient animal. We may implement a discount scheme one day, but not until we are certain we can cope at our usual speed, with the extra business this would generate.
We are stril hoping that we can fit MES56 into our schedule scon. A1though most of the design work was completed a long time ago, there is a considerable amount of documentation still to be done. At the present time it seems unlikely that MES57 will be produced.

Ultrasonic Burglar Alarm

Dear Sir,
I enjoyed the first publication of your electronics magazine.
Could you inform me if you have any articles in future editions relating to the buifoing of Ultrasonic Burglar Alarms, if not could you suggest any alternative reading matter on this subject.
M. J. ILSLEY

Bournemouth
Yes. You'll be pleased to hear that an uifrasonic intruder detector for use on its own or with ous Home Security System will be featured in our next issue.

Continued on page 54.

TEXAS INSTRUMENTS DATA LIBRARY

Full data sheets for T.I.'s range of dynamic and static RAM's and EPROM's. An interchangeability guide is included.
1980. 190 pages. $234 \times 170 \mathrm{~mm}$ Illustrated.
Order As Wange (TI MOS Memory Data)

Price £4.95NV

The Bipolar Memory Data Book

Full data sheets for TI's range of bipolar PROM's and RAM's. and TI's bipolar FFFO and character generator. A cross-reference guide is included 1981. 64 pages. $234 \times 170 \mathrm{~mm}$ Illustrated.
Order As WA07H (TI Bipolar Memo Data)

Price $£ 1.45 \mathrm{NV}$
The Optoelectronics Data Gook
Full data sheets covering TI's com plete range of opto products photodetectors. infrared emitters. optocouplers, sensor/emitter arrays, LED's, displays amplifiers for photodiodes, optical waveguide transmitter and plastic fibre-optic data links. Data sheets for Ti's thermal print heads are also included An interchangeability guide is included 1979320 pages. $208 \times 148 \mathrm{~mm}$ |llustrated
Order As WA08J (II Opto Data)
Price £5.25NV
Optoelectronics Theory and Practice A theoretical and practical introduction to many kinds of optoelectronic products. There is an abundance of practical hints and suggestions as well as the necessary theoretical background to enable users to develop their own circuits and applications
1976456 pages $208 \times 148 \mathrm{~mm}$. Illustrated.
Order As WA09K (Opto Theory/Prac. tice)

Price 57.50 NV
The Linear Control Circuits Data Book Full data sheets covering Tl's range of op-amps, comparators timers, video and log amps, vultage level detectors. A to 0 converter components, analogue switches and Hall-effect devices. Also covered are Ti's zerocrossing detector, doubiy-balanced mixer, precis:on level detector, over voltage sensing circuits and 3 -channel stepper-motor controlier. An interchangeability guide is included.
1980. 416 pages $232 \times 178 \mathrm{~mm}$ ifiustrated.
Order As WAIOL (TI Linear Control)
Price e5.25NV

The Voltage Regulator Handbook Full data sheets covering Tl's com piete range of voltage regulators. There is also a large section covering basic power supply design, extermai pass transistor considerations, input filter designs, woltage rectification techniques, and mounting and heat sinking techniques.
1977. 208 pages. $232 \times 172 \mathrm{~mm}$. lliustrated
Order As WRI 1 M (Ti Voltage Regula. tar)

Price $£ 5.65 \mathrm{NV}$

The Bipolar Microcomputer
 Components Data Book

Full data sheets covering Ti's range of 4-bit-slace Schottky processors and ${ }^{1} \mathrm{~L}$ microcomputer components. Also included are data sheets for Ti's fibre optic data link controllers, bipolar PRON's, RAM's and FIFO, some sup port functions and an 8 -bit by 8 -bit parallet byte multiplier.
1979. 368 pages. $232 \times 176 \mathrm{~mm}$. Illustrated
Order As WA12N (Ti Eipolar Micro)
Price 55.75 NV
The Interface Circuits Data Book
Full data sheets for Ti's range of peripheral drivers, line drivers, sense amplitiers. MOS Grivers, memory drivers, display drivers and IC sockets. An interchangeability guide is included.
1981752 pages $242 \times 172 \mathrm{~mm}$. lllustrated.
Order As WAL3P (TI Interface Data)
Price $£ 8.50 \mathrm{NV}$

The TTL Dala Book

Full data sheets covering TI's very large range of TTL IC's. An interchangeability guide is included. 19821184 pages. $210 \times 148 \mathrm{~mm}$. illustrated.
Order As WA14Q (TI TTL Data)
Price $£ 10.00 \mathrm{NV}$
The 9900 Family Data Book
Full data sheets covering TI's 9900 series microprocessors, 1/0 devices and memory support chips. A benchmark report is included.
1981. 776 pages. $208 \times 148 \mathrm{~mm}$. illustrated
Order As WA15R (TI 9900 Data)
Price £IL.50NV
Software Development Handbook
by Geoff Vincent \& Jim Gill
The book takes the reader through the elementary ideas behind software
development to a description of microprocessor Pascal, Power Basic and 9900 assembly language. The book's aim is to provide a text for the emerging discipline of software engineering for microprocessors incorporating all that will prove to be of lasting value.
1981. 455 pages. $276 \times 214 \mathrm{~mm}$. illustrated.
Order As WAl6S (TI Sohware Develop)
Price £14.40NV

Microsystems Designers Handbook

The book contans shortform data sheets of TI's range of single-chip microcamputers, microprocessors. microcomputer boards, speect synthesisers, development systems and software.
1981. 176 pages. $296 \times 208 \mathrm{~mm}$. Illustrated.
Order As WAL7T (TI Microsystems)
Price £4.95NV

Digital Integrated Circuit

Pocket Guide
A clearly arranged summary of T1's range of TIL IC's with brief data, logic and pin assignments.
1981. 352 pages. $184 \times 106 \mathrm{~mm}$. lillustrated
Order As WA18U (TI Digitall IC Guide)
Price $£ 4.50 \mathrm{NV}$

Linear Integrated Circuit

Pocket Guide
A clearly arranged summary of Tl 's range of linear IC's with brief data and pin assignments.
1981. 256 pages. $184 \times 106 \mathrm{~mm}$. IIlustrated.
Orter As WA19V (TI Linear IC Guide)
Price £4.50NV

Understanding Solid-State

Electronics

The book is destgned for the reader who wants to understand electronics quickly without resorting to mathe matics. The book teaches technical concepts in a way that makes it accessible to someone who would have trouble wiring a doorbell. Coverage runs from basic electricity to large scale integrated circuits. 1978. 280 pages. $208 \times 132 \mathrm{~mm}$. Mllustrated.
Order As WA2OW (Understanding Electronics) Price $£ 3.35 \mathrm{NV}$

Understanding Digital Electronics by Gene McWhorter
For those who understand the con cepts covered in 'Understanding Solid-State Electronics', this book will give you an understanding of the electronic circuitry in many types of digital electronics. from the basic idea of a transustor saying "yes" or "no", to entire digital systems made up of thousands of such circuits. 1978. 264 pages. $208 \times 132 \mathrm{~mm}$ Illustrated.
Order As WA21X (Understanding Digital Electronics) Price $£ 4.95 \mathrm{NV}$

Understanding Microprocessors

by Don L. Cannon and Gerald Luecke The book teaches how microprocessors work, and what they can do. The book covers tundamentals, system applications, programming concepts, an 8 -bit and a 16 -bit microprocessor application.
1979. 288 pages. $208 \times 132 \mathrm{~mm}$. lliustrated.
Order As Waz2Y (Understanding Mieros)

Price £4.95NV
Understanding Calculator Math .
This book goes tar beyond what you can find in your owner's manual Whether you're good at figures or not this book contains the basic informa. tion, formslae, facts and mathematcal tools you need to unlock the real power of your calculator. With scores of keystroke by keystroke examples the non technical tanguage wril heip you find solutions to problems you never imagined possible on your calculator.
1978224 pages. $208 \times 132 \mathrm{~mm}$ Hilustrated.
Order As Wa23A (Understanding Calc Math)

Price £4.95NV

Understanding Communications

Systems

by Don L. Cannon and Gerald Luecke An easy to understand look at the world of electronic communications. The book gives an overview of the types of systerns, the basic concepts of their operation and how they send and recerve information. There is an in-depth look at AM/FM radio TV telephones, computers and even satellite systems.
1980. 288 pages. $208 \times 132 \mathrm{~mm}$. Illustrated.
Order As Wa24B (Understanding
Cornms)

Price $£ 4.95 \mathrm{~N}$

What About An Article On PCB's

Dear Sir,
I have just received the first wo issues of your Maplin Mag with which I am greatiy pleased. One main advaniage to me is that most, if not all. of the components and hardware can be purchased through Maplin, whereas in some of the other electronics magazimes you have to search to find catalogues that have maybe one small item that another catalogue has not got in stock
As 1 am a bit of a newcomer to electronics I found your 'How to Solder' article in the first issue most useful. I would be pleased to see a similar article on how to make PCB's
S. BURDEN

Leicester
By an amazing coincidence this month we have an article describing how to make PCB's and a specir' offer to go with it. How's about that then?

CB Article A Big Help

Dear Sir,
I would like to say that I think your March issue of the magazine was a big improvement over the first issue much more interesting in every way One particular item that really made my day was your comment on ground planes for CB. I found how difficult it was to obtain an antenna for loft instaliation (I don't know why dealers are not stocking this line, because we all do not have gardens to put up a mast). However, I purchased a "Gig Chief" TBR140 and put it out of a skylight but could not get the SWR down until I read your article. purchased 10 metres from you of the 32/.02 wire and threw two and a bit metres out from each corner of the skylight connected to the base of the antenna and I am pleased to say 1 got the SWR down to 1.2. Thanks a lot. have since had 'copy' from here to Winter Hill, Liverpool, Southport and belleve it or not, Prestatyn. N. Wales One other point 1 would like to mention is why do you not cater for items or kits printed in E. E. or P.W magazines. Recently I wished to build PSU but found I could not get half of the items from you. so I decided on buying the complete kit from another firm offering a speedy service. How
sorry I am. If was over three weeks for delivery, not counting telephone calls at standard rate, five items were missing, more phone calls and letters and then when assembling I found a couple of the items were of the incorrect value or type. These I am now ordering from you. I must say that you do give a wonderful service and for this I thank you very much.
T. E. FLINT

Skelmersdate, Lancs
It just isn't practical for us to stock ail the parts needed for all the projects in all the magazines. Although we often notice magazines stating that such-and-such a part is only available from a particular supplier when in tact we sell it too; so it's always worth checking.

Interfacing Microprocessors

Dear Sir,
My compliments on a very interesting and well-balanced magazine. There may be nine others on the news stands but so far as I am concerned they will stay there.
My interest is mostly in digital elec. tronics, and i would welcome projects relating to the interfacing of microprocessors to the "outside" world. I am sure that if you published a few well-chosen projects for say, the ZX81 or the BEC micro (not to mention the Atari!) then sales would benefit and yet more readers wauld be made happy! Perhaps if you publish this letter this idea will be confirmed?
A. J. BYTHEWAY

Great Missenden, Bucks Your comments are much appreciated by everyone here at Maplin. We agree that interfacing is a very interesting subject at the moment and we have several articies and projects along these tines lined-up for the future

Four Questions

Dear Sir,
Would you please print this in the Maplin Mag
Will Maplin be stocking the BBC Microcomputer System?
Why are there no blue LEDs?
Will Maplin please consider stocking:

Casio calculators and watches batteries, TDK tapes and ready made ho.fi synthesiser equipment for those of us who aren't electronic geniuses? How about a review of the BEC Micro computer System in the Maplim Mag?
J. G. ASHDOWN Grays, Essex

1. Wedo not have any plans at present to sell the BEC micro. Truthfully, we are only interested in selling genuine home computers, not business machines. The BEC micro does not and will never have the kind of software backup being built up by Atari and Commodore and so in our opinion will never be a genuine home computer.
2. Blue LED's have been available for some years, but they are difficult to make and Siemens for example have been selling them for $£ 80$ each Prices have recently fallen owing to use of a different material and within few months we expect blue LED's to be avariable for about 55 each. Even at that price though, it's doubtful that we would consider stocking them 3. We certainly could stock all the items you mention, but with postage costs we'd almost certainly be deare than the electrical shop just down the road The big chain stores buy so many units that ther prices are very competitive and ldon't think we could compete.
3. We are not planning a review of the BBC micro at the moment.

Maplin Mag Should Be Monthly

Dear Sir
I would like to endorse C. W. Dudley of Kent, who mentioned it was a pity the Maplin Mag was not a monthly. Surely it would be possible to operate a monthly system, only entering the price list every three months. Also, 1 feel that the quality of the articles in this periodical are of a much higher standard than those of a large periodical such as Practical Electronics (who's mag I stopped buying in favour of Maplin!)
Unfortunately, I note there is a series called "Basically BASIC", I have both the December and March issues, but did this series begin before, and if so, how could I obtain "back numbers" of the series only.

Carry on the good work, Mapin 1. GREGORY Hadfietd, Cheshire A magazine without advertising gets most of its revenue from subscrip tions. Each issue costs a lot of money to produce and there's no way we could reduce the price from 60 p a copy. There is no doubt that our leve of subscriptions is as incredibly high as it is due to the fact that it costs onily $£ 2.40$ a year. If we went monthly this would rise to $£ 7.20$ a year, and we fear that we would see a substantial decline in subscriptions at that level So until we can think of some other way of financing the magazine l'm afraio we have to stay quarterly.
Basically BASIC has been a very pooular series. Parts 1 to 9 appeared in the March to November 1981 issures of "Electronics and Music Maker", back issues of which are still available. However, when the series is completed we hope to republish the whole thing in book form

MES56 Again

Dear Sir,
Congratulations on your 1 st and 2 nd editions of your magazine. It was very nice to see an interest taken in the Matinee update, which must prove very useful to readers building that organ. Would it be possible to do the same thing with the MES50 series organ which seemed to come to an abrupt haft with MES55. There must be more people than just yours truly still trying to build this organ, or even current owners who would like the goodies promised in the yet to be published MES56, nor the apparently now still-born MES57. This is quite an expensive project for most of us ($£ 1,200+$) for it not to have a piano voice etc.
Or has some enterprising reader added this on and would like to tell us how he did it? Personally, I am still trying to work out what could go on the " γ " pins on the tone boards. Good luck for the future and really keep the musical side going
N. SYLVESTER

Bexhill-on-Sea, Sussex
See the answer to Mr Manzie's letter. The Y pins on the tone boards were provided in case they were needed for the couplers, but they are not required at this stage.

TEXAS INSTRUMENTS
 DATA LIBRARY

(continued from page 53)

Understanding Computer Science

 by Roger S. WalkerExplains the scrence of how people use computers to solve problems Covers the fundamentals of hardware, software and applications including program design, languages, data structures and resource manggement. Written in easy-to under stand language with basic concepts illustrated by practical applications. 1981. 278 pages. $208 \times 132 \mathrm{~mm}$. Iliustrated
Order As WA25C (Underst Comp Science)

Price £4.95NV

Understanding Optronics

by Larry B. Másten and Billy R. Masten What is light and where does it come from? Starting with these questions the book goes on to explain why and how opto-electronic devices work. Such devices as LED's, liquid crystal displays, CRT's etc. Fibre optic links and tasers are also explained.
1981. 272 pages. $208 \times 132 \mathrm{~mm}$. Illiustrated.
Order As Wa26D (Understanding Optronics) Price £4.95NV

Basic Electricity and DC Circuits
by Ralph A. Oliva and Charles W. Dale A step by step approach for the beginning student. The book covers first concepts and terms, basic mathematics required in the study of basic electricity and direct current circuits. This is a comprehensive tex including cleariy. stated objectives and exercises with answers and is ideal for self-paced individualised learning.
1979. 924 pages $234 \times 184 \mathrm{~mm}$ lliustrated.
Order As Wh27E (Basic Elec \& DC

Basic AC Circuite

by Staniey R. Fulton and John Clayton Rawtins
Continuing the series begun in 'Basic Electricity and DC Circuits', this book goes on to explain simple and complex AC circuits. As with the first book it is a very comprehensive text and each new concept is carefully explained as it is introduced.
1981. 560 pages. $234 \times 184 \mathrm{~mm}$. Illustrated
Ofder As WA28F (Basic AC Circuits)
Price £10.95NV

ZX81 KEYBOARD Continued trom page 4

delaying the operation of IC1c. When it finally operates, it turns on IC3c which connects 'function' in the keyboard matrix. These time delays are provided to ensure that the 'shift' connection occurs before the 'graphics' or 'function' connection as required by the ZX81.

When 533 , the 'shift lock' key is operated, the output of ICle goes high. C3 and R4 are anti-bounce components. IC2a now operates which switches on IC3D via D3 and TR2 which causes LED2 to light. Re-operating S33 causes IC2a output to go low which releases IC3D and extinguishes LED2.

PARTS LIST
Restistors - ati hw 5\% carbon unless specified

3 oft	(M150K) (M1M)
2 off	(M100K)
3 cff	(M 10 K)
2 DH	(M560R)
	(WW4EC)
4 0ff	(WW4iU)
	(WW29G)
4 off	(YR755)
	(FE49D)
6 off	(QL808)
2 off	(WL,27E)
2 off	(Q8730)
	(QW54U)
	(QXi6S)
	(QX23A)

Masceflaneous

Plag 3.5mm plastic Keyswitch	44 off	(HF803) $($ FF61R)
Keytop 1-position	37 ofi	(FF62S)
Keytop 2-position	50 ff	(F563)
Keytop 3-position		(FF64U)
Keytop print ZX81		(X H 588 N)
2×81 ext keyboard pcb		(GAg3E)
Tinned copper wire 24 5wg	2 m	(el, 15R)
Adaptor L		(RK27E)
RA flexiconnector 5 -way		(RK28F)
RA fextconrector 8 way		(RK29G)
Flexicatie 7-way		(RK30H)
Frexicabie 10-way		(RK31)
Cable single black	4 m	(XR12N)

A complete kit for this propect excluding a case is available
Order As LW72P (ZX81 Keyboard Kit) Price £19.95
A case is also available
Order As XGI7T (XX 81 Keyboard Case) Price $£ 4.95$

25W STEREO MOSFET AMP Continued from page 44

PARTS LIST

WORKING WITH OP-AMPS
 by Graham Dixey C.Eng., M.I.E.R.E.

Part 2

The first part of this series introduced the op-amp and gave an insight into its versatile nature. Now its specific role as a waveform generator will be illustrated. The most useful waveforms are undoubtedly the sine-wave, square-wave, triangle and sawtooth, all of which can be produced by this device. As a result, it will be appreciated that what is being demonstrated is not only its linear use for generating sine-waves but also its switching mode when giving a square-wave output.

The Astable Multivibrator

This circuit (Figure 1) looks unfamiliar when compared with the discrete component equivalent. One obvious difference is that there is only one RC 'timing' circuit (R1, Cl). This saves components but means that the mark to space ratio of the square-wave output will always be $1: 1$. Adjusting either R1 or Cl only changes the frequency. The resistors R2 and R3 form a potential divider between the output and the OV line so that, whatever level exists at the output (+V s or -V s), the non-inverting (+) input is always at a fixed proportion of it.

The clue to the mode of operation lies in this last statement. The non-inverting input is held at a fixed reference voltage, either positive or negative, while at the instant that power is applied to the circuit, the inverting input is at OV since Cl is uncharged. As a result, the output goes to either $+V$ sor $-V s$ (it does not matter which, say $+V$ s), in which case the non-inverting input will be at a potential equal to $+V s[R 3 /(R 2+R 3)]$. Since there is zero phase-shift between this input and the output, the latter level is effectively 'latched' to $+V s$. The circuit is now resting in one of its two 'quasi-stable' states and will do so until something upsets the equilibrium. This 'something' will occur when the exponentially rising voltage at the junction of R1 and Cl reaches the potential of the noninverting input. Then, as this exponential voltage just becomes slightly more positive than the latter potential, the circuit will start to change state. The op-amp's very high gain ensures that the output switches rapidly from $+V$ s to $-V s$ and the potential at the noninverting input will now reverse its polarity, latching the circuit into the new state.

The current flowing in R1 also changes direction so that the potential of the inverting input begins to fall exponentially from $+V s[R 3 /(R 2+R 3)]$ towards -Vs. However, when it reaches $-V s[R 3 /(R 2+R 3)]$, the

Figure 1. Op-amp astable circuit.

circuit switches back into its original state and the cycle repeats indefinitely.

The time for which the circuit remains in one state is governed by the time constant of $R 1$ and Cl and the voltage at the junction of R2 and R3. Frequency can, therefore, be controlled in a number of ways: by using a potentiometer for Rl and/or switching the value of Cl to give several ranges, or using a resistor chain with a potentiometer instead of R2 and R3, so varying the point in time at which the circuit changes states

With the exponential law of growth as a basis, it is a fairly easy matter to derive an expression for frequency in terms of R1, R2, R3 and C1, thus stating precisely how frequency depends upon these circuit constants.

The time between instants of switching is found to be given by
ts $=$ C1.R1 $\log _{e}[1+(2 R 3 / R 2)]$ and $\mathrm{f}=1 /(2 \mathrm{ts})$

$\mathrm{Cl}(\mathrm{nF})$	Frequency (Hz)		Error
	Measured	Calculated	
10	1190	1371	-13\%
47	290	292	-0.7\%
100	143	137	+4.4\%
220	65	62.3	+4.3\%
470	30.8	29.2	+5.5\%
1000(1u)	14.3	13.7	+4.4\%

Table 1. Frequency vs. timing capacitor value for the circuit shown in Figure 1.

Figure 2. Illustrating 'stewing-rate'.

Having derived this expression for frequency, the next step was to verify it. Close tolerance resistors (5\%) were used for R1, R2 and R3 and values of Cl were set on a decade capacitor box, so as to give the results some credibility. The values chosen for the resistors were R1 = R2 $=100 \mathrm{k}$ and R3 was $22 k$. The results obtained are shown in Table 1, which also includes the calculated values of frequency and the percentage errors. Except at the highest frequency, the errors are within acceptable limits. Therefore, for generators up to a few hundred Hertz, the formula can be used with confidence

A limitation of the 741 is its inability to switch rapidly between opposite states. This limit is expressed in op-amps by the 'slewing rate', which is given in V/us. Figure 2 shows that slewing rate is simply the slope of voltage/time as the output tries to swing from one saturation level to the other. For the 741 the maximum slewing rate is usually quoted as $0.5 \mathrm{~V} /$ us so that, with a $\pm 15 \mathrm{~V}$ supply, a complete transition from, say, - 15 V to +15 V cannot be achieved in less than 30 x $0.5=15$ us, in the best case. Since switching circuits are being discussed, it is as well to be aware of possible limitations. For example, the astable circuit of Figure 1 while producing an acceptably square waveform at 1 kHz , showed a marked slope on the leading and trailing edges at 5 kHz

Figure 3 shows a slightly modified form of

Figure 3. Non-symmetrical astable circuit.

Figure 4. A 1 Hz TTL generator.
the astable circuit, in which the restriction of a unity mark to space ratio has been lifted. This is achieved by placing diodes Dl and D2 in the feedback paths so that the polarity of the output voltage selects which of the feedback resistors is in circuit on a particular half-cycle. This gives two time constants which are quite independent of each other $\mathrm{R4}, \mathrm{Cl}$ on positive half-cycles and Rl, Cl on negative half-cycles. With the values shown this gives a short mark and a long space of 11 ms and 52 ms respectively.

A 1 Hz TTL Generator

For digital experiments a low frequency square-wave generator is very useful, for example, for testing counters and shift registers. An output at about lHz is slow enough to allow events to be observed with ease and, using the op-amp astable circuit, a frequency of this value is easily achieved without the need for excessively large capacitor values.

The design is straightforward. As a starting point, let R2 $=$ R3 $=10 \mathrm{k}$ (quite an arbitrary choice, which could be adjusted later if necessary). The only other components to be decided now are the timing components and it is convenient to choose a value of capacitance first, then work out the corresponding resistor value; this allows greater freedom of choice in component values. The largest value of non-electrolytic capacitor is about luF, so this value is used with the previously derived formula to obtain the resistor value. The formula then looks like this:
ts $=0.5=10^{6} \times R 1 \times \log _{e}$ (at $1 \mathrm{~Hz} \mathrm{ts}_{\mathrm{s}}=0.5$ secs.) from which Rl $=455 \mathrm{~K}$
The nearest preferred value is 470 k , which actually gives a frequency of 0.97 Hz (neglecting component tolerances), which should certainly be close enough for most purposes. In fact, when the circuit was wired up, using 5\% resistors and a 10\% polyester capacitor, the error from the design value of 1 Hz was too small to measure.

The next step, after getting the circuit to perform at the right frequency, is to make it TTL compatible, which means converting a $\pm 14 \mathrm{~V}$ swing about 0 V (the output does not quite reach 15 V) into a wholly positive 5 V square-wave. A few additional components lead to the final circuit of Figure 4, which shows the attenuation of the op-amp output (R4 and R5) to a total swing of about 6 V , this then being 'clamped' to $O \mathrm{~V}$ by the action of Q1, which also 'buffers' the output to provide enough drive for a number of TTL circuits. Diode Dl also has a clamping action, but its true purpose is to protect the base-emitter diode of Q1 against excessive negative VBE on negative going output swings of the opamp. The emitter resistor of Q1 is a potentiometer (preset) so that the amplitude of the output can be adjusted to precisely 5 V .

Obviously the generator could be made to produce a range of frequencies by switching different values of Rl or Cl .

Figure 5. Op-amp bistable circuit.

Figure 6. Op-amp monostable circuit.

The Bistable Multivibrator

Bistable action may not normally be associated with the op-amp, i.e. a circuit which is capable of resting indefinitely in one of two stable states. But, as was seen with the astable circuit, feedback from the output to the non-inverting input, will latch the circuit into a state of either positive or negative saturation. If, meanwhile, the inverting input is held at $O V$, the circuit stays in this state until a trigger of some sort causes a change of state. This trigger is applied to the inverting input and the only stipulation is that its peak value must exceed the voltage at the non-inverting input; the circuit will even trigger on sine-wave inputs.

Figure 5 shows such a circuit. The inverting input is held at OV by resistor R1 while the non-inverting input is taken back to the junction of the divider R2 and R3 across the output. Thus, depending upon the current state of the circuit, the bistable is latched into this state by a voltage at the noninverting input equal to $\pm R 3 /(R 2+R 3) x$ output voltage. For the values given and a $\pm 15 \mathrm{~V}$ supply, this voltage is $(1 / 471) \times 14$, which is approximately 30 mV , more than enough to take the circuit into saturation.

The trigger input is capacitively coupled to the inverting input by Cl which, with Rl differentiates the input if it is a pulse or square waveform. This action produces a series of alternate positive and negative trigger pulses which, coinciding as they do with the leading and trailing edges of the original square-wave input, mean that the output is at the same frequency as the input but reversed in phase and of larger amplitude. There is no 'divide-by-two' action and the circuit acts effectively as a 'pulse amplifier'.

This bistable circuit is not particularly fast; frequencies up to about 300 Hz give a good square-wave output but, thereafter, the risetime suffers markedly.

Returning to the absence of an inherent divide-by-two action, this limitation can be removed if R2 is replaced by a parallel RC combination consisting of a 1 M resistor and a 100 nF capacitor, and R3 is replaced by a 470 k resistor. The 100 nF capacitor introduces a time constant whose purpose is to ensure that, when the circuit is initially switched, say, by the leading edge of a square pulse, it does not change state again on the trailing edge of that pulse but 'waits'

Figure 7.	Pulse length graph for monostable circuit shown in Figure 6.

for the leading edge of the next pulse. The value of 100 nF is large enough for pulses up to 50 ms in length but needs to be increased for longer pulses.

The Monostable Multivibrator

This, the last of the 'trio' of multivibrator circuits, has one stable state (in which it rests until triggered) and one 'quasi-stable' state (in which, after triggering, it remains for a pre-determined time, decreed by circuit constants). Although monostables can be realised with discrete components or obtained in TTL integrated circuits, it may now be appreciated that this circuit can also be produced with the ubiquitous op-amp. In this form it appears in Figure 6.

For a monostable to exist in a stable state, there must be a bias holding the circuit in that state. This bias is provided by taking the inverting input to -15 V through resistor R1 The output of the op-amp is, therefore, normally in positive saturation. It is then triggered into the quasi-stable state by a square-wave or pulse input. This is differentiated by Cl and R 3 , only the positive pulses produced having any effect on the circuit. As a result, the circuit switches over to negative saturation where it is held by the large negative potential instantly coupled back to the non-inverting input by C2. Of course, this state cannot be sustained for long because, at this initial instant, the full negative supply voltage exists across R2 so that a charging current flows through R2 and the potential of the non-inverting input rises exponentially towards OV. When it reaches the same value of negative voltage as at the inverting input (about -1.4 V), the circuit switches back to positive saturation.

The time constant for the recovery is CR, R2 and it is possible to derive a formula for the length of the positive pulse produced at the output as a result of this action. However, in this circuit, unlike the astable, there is a linear relationship between pulse length and capacitance value so that a useful graph can be plotted between these two quantities (Figure 7). This covers a range of pulse lengths from 0 to 50 ms , corresponding to values of C 2 in the range 0 to 2 uF . Obviously the range can be extended further by using higher values of C2 or a higher value of R2.

This type of circuit functions as a 'pulsestretcher'; a short pulse is used to generate a much longer pulse. Or it can be used as a regenerator of pulses since the input waveform is not too critical provided that it can cause the required change of state, but the output pulse will always be of good square form.

As waveform generators, these multivibrators all generate square-waves in one way or another; each has its own use. Op-amps can also be used to generate 'derived' waveforms, such as the triangle and sawtooth; they can also be used in sine-wave oscillators. Generators of these types will be the subject of the next article.

ATARI COMPUTER NEWS

 by Graham Daubney

 by Graham Daubney}

This has been a very busy period for those of us involved in computers here at Maplin. I'm sure that most of you will have heard by now that Ingersoll are no longer handling Atari products in the U.K. and that all Atari products are now being distributed by Atari themselves.
The change-over has been in the air for some time and I first heard rumours on the grapevine just before Christmas. Obviously a major change of this nature took several months for the parties involved to negotiate and the news was made official during March
We are pleased to see that the computer press are now taking the Atari seriously and there are many articles and features lined up for future issues.
The move made by Atari to distribute their own product means several things, firstly and most importantly, a number of facilities are being set up to support the machine both for hardware and software areas. This does not directly affect you as a customer, but indirectly it has a great bearing on the Atari's future in this country as it offers both software houses and developers assistance and better backup for the U.K. retailers.
You may have already noticed a new TV campaign on the VCS games console and due to start shortly is a large scale support program for the home computer system as well.
Atari Program Exchange software will be on sale in the U.K. by mid-May which is good news as although many of these titles are available from some locations in the U.K, the prices are at present a little inflated due to importation in small quantities.
I feel that the next quarter will see a maturing of the Atari market and from the discussions that we've had with Atari I can assure you that this move will be for your benefit and that Atari mean business.

Left to right: Jeff Burton, Assistant International Marketing Director of Atari; Roger Allen, Managing Director of Maplin; Graham Daubney, Computer Manager of Maplin; Fred Mitchell, International Sales Director of Atari pictured in Atari's spectacular headquarters at Sunnyvale, California.

Atari in California

Besides all the ingersoll-Atari goings-on, this quarter has seen many other activities here at Maplin. In January I made a further trip to California to visit the C.E.S. show in Las Vegas and also to Sunnyvale the birth place of Atari. During this trip I found many new items of software both from Atari and third party software developers. Some of these we have added to our extensive list already, but many more are planned. At the C.E.S. show 1 was given a sneak preview of both Pac-Man and Centipedes cartridges that are to be launched by Atari in the second quarter (remember you have to add 3 months because Atari calculate their launch dates whilst sitting in a time slip!!!).

The Atari 800 training room at Sunnyvale, California.
Whilst at Sunnyvale I visited the International Marketing Division and discussed the needs of the U.K. market in some depth. Atari's offices have to be seen to be believed, with fountains gatore and very pleasant settings to work in. Further to those meetings I was able to meet the User Group Support Division and register our Users Group.

Computar manager's office at Maplin.
Atari Users Group
February saw three of us here late in the evenings writing the first issue of the user group mag. We now have over 300 members and are getting some very valuable feedback as to what you want the user group to offer.
March saw the installation of a new member of staff in our sales office to deal with your machine enquiries and problems and the arrival of a VIC 20 in the office!

K-razy Shoot Out

Whilst in America, a new cartridge for the Atari computer systems was launched. The difference with this cartridge is that it was not developed by or manufactured by Atari. K-razy Shoot Out is the first thirdparty cartridge to be launched for the machine and won't be the last by all accounts. K-razy Shoot Out is a fast action game for one player. You are trapped in a series of rooms, with nasty little robots who shoot at you and converge on you. Points are scored by first staying alive (not easy 1 assure you) and secondly by shooting all the robots in the room. Problem is that when you have cleared a room and have run out, another room appears with more of the deadly assassins and, yes, you guessed it this time they shoot faster and move faster. If any of you get past the sixth roam you will be doing very well! The graphics on this game are very good and because each room is randomly generated it doesn't allow the development of a 'technique' and this leads to many frustrated hours of fun, but be warned this game is totally addictive.
Order As BQ63T (K-razy Shoot Out) Price £29.95
See outside back cover for details.

Ghost Hunter

Another game based on the ever popular maze chase theme has been launched called Ghost Hunter. The main advantage of this version over previous maze chase games is that it gives you many options and choices. The layout of the maze is selectable and also you may have two players 'head to head' i.e. both in the maze together. This adds a lot of cunning and much hostility as you compete together against the marauding ghosts.
Order As BQ64U (Ghost Hunter) Price $£ 24.50$
See outside back cover for details.

ATARI VIDEO GAME

Latest Cartridge Details

This month, details of three new cartridges.

Warlords

For one to four players using paddles. Note that a second pair of paddles is needed for three or four players. The cartridge contains 23 games. You are one of four Warlords behind your castle wall. You must break down your opponents casties by firing fireballs, then you can aim to hit the Warlord himself. There are four sets of five games. In each set, the first game is for one player, the second for two, third for three, fourth for four and the fitth game is for two players controlling two castles each.
In the first set of games, the ball speed is fast and the shields catch the balls, whilst in the second set the ball speed is slow. In the third set the ball speed is fast, but the balls ricochet off the shields and in the fourth set the ball speèd is slow again. Games 21 to 23 are special versions for four, three or two children respectively. You will find that fourplayer games are terrific because the action is fierce and extremely competitive.

Order As AC44X (Warlords) Price $\mathbf{£ 2 9 . 9 5}$

Pac-Man

For one or two players using joysticks, this game cartridge contains eight games. PacMan moves around a maze eating the video wafers. Four ghosts chase him and try to eat him up. However, located in the maze are four power pills, which when eaten by PacMan ailow him to eat the ghosts. Ingames 1, 2, 7 and 8 Pac-Man moves slowly

Haunted House

For one player using a joystick controller, this cartridge contains four different games. In this exciting game, players must search through a multi-storey, haunted mansion with many, many rooms to find pieces of long-lost treasure and get out again alive. There are giant tarantulas, vampire bats and a ghost to contend with and you need to keep lighting the match to see the objects you need. There are three pieces of a magic urn, a master key to move through doors and a silver cross to keep monsters at bay. And watch out for the secret passage, it could save your life.

Order As AC69A (Haunted House) Price $£ 18.95$

ATARI VIDEO GAME COMING SOON

The following titles are due to be released during the life of this magazine. Full details in our next issue.

AC70M From Demons To Diamonds
whilst in the remainder, he is fast-moving. in games 1 and 5 the ghosts move at jogging speed, in games 2 and 6 they move at running speed, in games 3 and 7 at crawling speed and in games 4 and 8 at walking speed. Games 3 and 7 are ideal for children, whilst game 6 is the most difficult variation.
Order As AC68Y (Pac-Man) Price $£ 29.95$

Price £18.95

AC71N Yar's Revenge	Price $£ 18.95$
AC72P	Berzerk
AC730	Price $£ 29.95$
AC7ender	Price $£ 29.95$
AC7R Adventure I	Price $£ 24.95$
AC75S Adventure II	Price $£ 24.95$
AC76H Raiders Of The Lost Ark	

Price £29.95

ATARI COMPUTER NEWS (continued from page 58)

Coming Soon

Lastly, a few explanations are necessary. Firstly, where is Jumbo Jet Lander and Sub-Commander. You may well ask and I only wish I knew. It appears that both of these products were announced far too early to yourseives, the press and us and I must apologise for the delay, even though it's not our fault. The latest news is that both are now in a playable condition and they are still coming down the pipeline. Those of you who have placed orders will receive your software the minute it is available.
Where are the Tech User Notes? - a question I have been asking for several months. It appears that the Americans are not as inquisitive as us English types and rarely buy the things. Thus Atari were caught with their slacks down! However, with the advent of the U.K. Division of Atari
we have negotiated what I feel is an amicable solution and ! hope you will agree. All those people waiting for Tech Notes will now receive De Re Atari. Although there is some information in the Tech Notes that is not in De Re Atari, the latter is a far better publication to learn from and offers very good explanations of a player missile graphics, scrolling, display list interrupts, vertical blank interrupts and the section on sounds has to be seen to be believed, I hope this arrangement will be acceptable to the majority of you and anyone who is unhappy at the prospect of receiving the world's most sought after Atari publication will of course be suitably reimbursed. I am still trying to tocate Tech User Notes and we will do our best to come up with some news for the next Quarterly.

ATARI PRICE CHANGES

We regret that owing to Atari restructuring their price list after the cover of this magazine was printed, some of the prices on the back cover are incorrect

Hardware
AF02C The $£ 599$ price is strictly while stocks last, then the price witl revert to: $£ 645$
AF08 64 K RAM Module $\quad \mathrm{E} 65.00$
AF28F Cassette Recorder $£ 50.00$
AF36P The $£ 299$ price is strictly while stocks last, then the price will revert to:
£345
AF41U Printer Interface for 400
Price 559.95
AF42V Printer Interface for 800
Price $£ 59.95$

Software

YG42V Word Processor Price £99.95 June 1982 Maplin Magazine

YG43W Invitation To Programming 1
Price $£ 15.95$
YG44X Conversational French Price £39.95
YG45Y Conversational German
Price $£ 39.95$
YG46A Conversational Spanish
Price $£ 39.95$
YG47B Conversational Italian Price $£ 39.95$
YG48C Music Composer Price $£ 35.95$
YG49D Touch Typing Price £.15.95
YG51F Graph-It Price £ 13.95
YG52G Statistics
YG53H Energy Czar
YG54J Hangman
YG55K Kingdom
YG56L States \& Capitals
YG57M European Capitals
YG58N Scram
YG59P Telelink
YG61R Basketball
YG62S Blackjack
YG63T Chess
YG67X Super Breakout YG68Y Assembler Editor YG69A Pilof (Consumer) YG70M Space Invaders

Price $£ 13.95$

Price $£ 9.95$
Price $£ 17.50$
Price $£ 21.50$
Price $£ 24.50$
Price $£ 9.95$ Price 224.50 Price $£ 24.50$ Price $£ 39.95$ Price £54.00 Price $£ 29.95$

NEW PROGRAMS FOR ATARI AVAILABLE SOON

BQ65V Personal Financial Management
Price $£ 49.00$
BQ66W Mortgage \& Loan Price f 13.95
BQ67X Invitation To Programming 2
Price $£ 22.95$
B068Y Invitation To Programming 3
Price $£ 22.95$
8Q69A Caverns Of Mars Price $£ 24.50$
B070M Centipede
BQ71N Pac-Man
BQ72P Video Easel
BQ73Q Macro Assembler
BQ74R Microsoft Basic
Price $£ 29.95$
Price $£ 29.95$
Price $£ 24.50$
Price $£ 59.95$
Price $£ 59.95$
Price $£ 79.95$

More details in our next issue or telephone our sales office.

NEW BOOKS (continued from pase 45)

How to Use Op-Amps
by E. A. Parr
This designers guide covering many operational amplifiers serves as a source book of circuits and a reterence book for design calculations. The book covers basic curcuits, oscillators, audio circuits, filters, power supplies and a large selection of miscellaneous circuits. There is also a shor section of constructional notes and fault finding details.
1982. 160 pages. $176 \times 110 \mathrm{~mm}$. illustrated.
Order As WA29G (Book BP88)
Price $\mathbf{£ 2 . 2 5}$

Popular Electronic Circuits Book 2 by R. A. Penfold

A further 73 projects to build covering a wide range of subjects. Chapter headings are: audio circuts, test gear circuits, radio circuits, house and car circuits and miscellaneous circuits. The book is suitable for those capable of bulding projects from just a circuit diagram, aithough a description of how it works and any testing or setting-up information is given. 1982. 160 pages. $180 \times 108 \mathrm{~mm}$. llustrated.
Order As WG86T (Book EP98)
Price £2.25NV

Microcomputers In Amateur Radio by Joe Kasser, G32CZ

The book describes how to use a computer as an accessory in an amateur radio station. Interlaces are described and programs are shown. Morse code generation and RTTY software are shown. The book is of interest to anyamateur radio operator who wants to ture in to the latest technical innovations. American book.
1981. 308 pages. $208 \times 130 \mathrm{~mm}$. lilustrated.
Order As WG95D (Book Fil305)
Price $£ 7.45 \mathrm{NV}$

The SWL's Manual Of
Non-Broadcast Stations by Harry L. Helms

From the basics of propagation to logging and verification this book shows you how to pick up non-broadcast stations all round the wortd. Listen to spy stations, standard time transmissions, aeronautical and space communications bands. An absolute wealth of information for SWL's. American book.
1981272 pages. $208 \times 130 \mathrm{~mm}$. Illustrated.
Order As WG93B (Enok FT1235)
Price £9.45NV

Servtcing Radio, Hi-Fi and TV Equipment by Gordon J. King

The book deals with servicing domestic electronic equipment with the emphasis on speedy fault diagnosis. Semiconductor principles and ciscuitry are described and fault diagnosis in various types of circuits is covered. The book contains much practical advice and is invaluable to the service engineer, students and the hobbyist presented with faulty equipment.
1982. 216 pages. $216 \times 138 \mathrm{~mm}$. lilustrated.
Order As WG89W (Book NE132)
Price $\mathbf{1 7 . 9 5 N V}$
The Big Dummies Guide To British CB Radio

Contains the latest information about FM, AM, SSB, skip and DX ing. The book covers buying and installing a rig and antenna, troubleshooting. Home Office regulations, do-it-yourself anternae and emergency procedures. included are new charts. codes, graphs and reference guides designed to help you get out.
1981. 160 pages. $216 \times 134 \mathrm{~mm}$ Illustrated.
Order As WG97F (Book KN035)
Price $£ 3.85 \mathrm{NV}$

How To Build A Lie Detector, Grain-Wave Monitor \& Other Sacret Parapsychological
Eiectronic Projects by Mike and Ruth Wolverton

All of the projects in this unique and unusual book were taken from reient scientific research in the ted of parapsychology. Full instruc:tons are given, showing how to buld a simple telepathic message receiver and an inexpensive brain-wave monitor. You can build biofeedback projects, control psychokinetic energy, pefform electronic dowsing. In addition Kirlean photography is explained and details are given for building a UFO detector and communicator. Amercan book.
1981. 308 pages. $208 \times 130 \mathrm{~mm}$ lllustrated.
Order As WG94C (Book FT1349)
Price £9.45NV
Secrets of 123 Old-Time Science
Tricks \& Experiments
by Edi Lanners
A unique and fascinating book that explains and shows you how to perform amazing feats. You won't need any fancy equipment; the book shows you how to set up the experiments and illusions using ordinary household objects. American book. 1981. 192 pages. $208 \times 130 \mathrm{~mm}$. illustrated.
Onder As WGg1Y (Book FT1261)
Price $£ 5.45 \mathrm{NV}$

NEW ITEMS PRICE LIST (continued from page 37)

YK08. Torodal 30 VA 06.0 .64 Price $£ 6.80$ YK09K Toracial 30 VA 0-9.0.9V Price $\mathbf{8 6 . 8 0}$ YK101 To ondal 30va 0.12, 0.12VPricaE6.80 YRE1M Tor Oudan 30VA 0.15, 0-15V
YKI2N Toro dal 30VA 0-18.0 18 V Prea e6. 80
YK13P Tcrodal 50Va 0-6 0.6Y Price $\mathbf{£ 6 , 8 0}$ YK13P Terodal 50VA $0-6$ 0.6Y Price $£ 7.46$

YK140 Torodal 50VA 0.909 Y Price $£ 7.46$ YK15R Toroldal 50VAO $12,0.12 \mathrm{~V}$ YK16s Teroidal 50YA 0-15, 015V Price $£ 7.45$ YK17T Toroidal 80VA 0-18, 0-18V Price $£ 7.46$ YK18U Torortal 80VA 0.22, 0.22v Pries $£ 8.35$ YKI9y Toroctal $80 \% \mathrm{Ya} 0.30$ 0-30y YK20w Yoradal 120 VA 0.30 Price £B. 35 H218 Torodal 160 HA 0.35 Price $£ 9.57$ KK22Y Price f 12.28 YK22Y Torodal 300va 0.35, 0.35v $\begin{gathered}\text { Price E16.41 }\end{gathered}$ YK23A Torordal 50eva $0.35,0-35 \mathrm{y}$ Price E16.41 YK25C : 2VA 15 V Transformer PCE mount | Ing) | |
| :--- | :--- |
| YK28F Transformer 12 V | kA |

[^1]
MAPLIN NEWS

MATINEE ORGAN UPDATE

Following the 2 -page section in our last issue we have now found three more possible problems. The page numbers refer to the construction book XH55K.
Page 27/28
24. If you wish the piano to re-trigger when an additional note is played, connect a luF 35 V tantalum capacitor with its negative lead to the negative end of C179 and its positive lead via a length of wire to the unused pin 13 of IC44. See Figure $13 \& 14$. Page 38
25. If your Matinée does not seem loud enough at full volume, change R582 to Min Res 220 k . It is advisable only to make this change after all the modifications relating to noise previously described have been made. 26. Some constructors have noticed an audible click or thump when Wah is turned on for the first time. To eliminate this, add two resistors. One, a Min Res 470 k should be connected under the pcb between the collector and emitter of TR51. See Figure 15. The second, a MinRes 100 k , is connected on the top side of the pcb at S34, between the centre and back pins of the left side of section ' a '. See Figure 16.

Figure 13. Piano re-trigger modification (tantalum end).

Figure 14. Piano re-trigger modification (M108 end).

QUICK-FIT METERS

Some of the technical details relating to these meters in our last issue were incorrect. The internal resistance of the following meters is as shown below:
$10 \mathrm{~mA} \mathrm{DC} 5 \Omega$
50 mA DC 1.8Ω
100 mA DC 0.8Ω
500 mA DC 0.5Ω
IA DC 0.3Ω
$5 \mathrm{ADC} 0.2 \Omega$
Our apologies for this error.

Figure 15. Elimination of click on Wah switch (underside).

Figure 16. Etiminatron of click on Wah switch (topside).

TELEPHONE/BURGLAR ALARM CABLE

A high quality cable complying with British Telecom specification CW1293 for use in wiring telephones in customers' premises. It is also ideal for wiring contacts in burglar alarm systems. The cable contains four solid tinned annealed copper conductors each 0.5 mm diameter insulated with PVC. Insulation colours are:

$$
\begin{aligned}
& \text { a-wire: blue } \\
& \text { b-wire : orange } \\
& \text { c-wire : green } \\
& \text { d-wire : brown }
\end{aligned}
$$

Overall insulation is in cream PVC.
Nominal conductor area : $0.2 \mathrm{~mm}^{2}$
Max working voltage
: 80 V
Max current per core
$: 0.25 \mathrm{~A}$
Overall diameter
: 4 mm

Sold per metre (max length in one piece: 250 m).

MAPLIN CATALOGUE PRICES OVERSEAS

Our current 1981/82 catalogue is available overseas by post at the following prices:

Europe surface mail
£1.68
Europe air mail
$£ 2.75$
Outside Europe surface mail $£ 1.68$
Outside Europe air mail
(depending on distance)

$$
£ 3.26 / £ 4.23 / £ 4.88
$$

For surface mail anywhere in the world you may send 12 International Reply Coupons.

SPECIAL OFFERS

PACK OF 10 C90 CASSETTE TAPES
A good quality, low noise, high energy cassette tape in a library box. The C90 cassette gives 45 minutes recording time on each side. Incredible value. A pack of ten cassettes for only $£ 4.95$ including VAT.
Order As SP9oX (Pack of 10 C90 Tapes)
Price $£ 4.95$

- OFFER CLOSES AUGUST 3IST, 1982 -

PROFESSIONAL PLUGBLOCK

Our professional plugblock described on page 144 of our current catalogue is offered until August at this big saving. Usual price £6.95. Save £2!
Order As SP91Y (Prof Plugblock) Price £4.95 - OfFER CLOSES AUGUST 31ST 1982 -

MAKE YOUR OWN PCB's KIT CM100

This superb kit contains everything you need to make your own pcb's starting from the artwork printed in the magazine or your own drawing.

Contents List

Special autopositive film
Photoflood bulb
Developer part A
Developer part B
Film fixer
Film clearing solution
3 photographic dishes
Lint-free cloth
2 pairs plastic gloves
Liquid measure
Liquid crystal thermometer
Cotton wool balls
Retouching pen
Film clips
Universal exposure and assembly frame Photoresist
Applicator holder and foam strip
Photoresist developer concentrate crystals
6 double-sided circuit boards

- Bag of copper etchant

Scouring pad
Solder flux/protective lacquer
21 mm HSS drills
Etchant neutraliser
All the above items will be available separately later so that you can top up your kit.
As an introductory offer you can purchase the kit for $£ 10$ off our usual price.

Order As SP92A (CM100 PCB Kit) Price $£ 59.95$

INTEREST FREE CREDIT FROM MAPLIN
(APR $=0 \%$)
Now you can get 9 months interest free credit on any order containing over $£ 120$ worth of computer hardware. Here's how it works.
In our shops:

1. Phone the branch of your choice and give them your order (must include at least £120 worth of computer hardware): We will also have to ask you some personal financial questions in order to fill up our credit application form.
2. We will phone you back within 48 hours to let you know whether your application has been approved.
3. Any time after this, you may visit the shop to collect the goods. You must bring with you some form of identification (e.g. driving licence, credit card) and sign the form that we filled in on your behalf. A deposit of 10% will be required.
4. A further 10% will be payable every month for a further 9 months equalling the total cash price for the goods.

By mail-order

1. Send your order to us (which must include at least $£ 120$ worth of computer hardware) and mark clearly on it "Interest Free Credit Terms". Enclose 10\% of the value of the goods with your order.
2. We will send you by return of post, a credit application form.
3. Complete the form and post it in the stamped addressed envelope supplied.
4. When approved we immediately despatch your goods to you.
5. One month after goods despatched the first 10% payment becomes due, and thereafter a further 10% is due monthly for a further 8 months, equalling the total cash price for the goods.

Example

A vic20 computer could be yours for just £19.99 down and £20 per month for nine months.

Don't delay

This incredible offer is only available until 31st August 1982.

MAPLIN RTX DOPPLER UNIT

(continued from page 8)

DOPPLER MODULE PARTS LIST

Reprstors 81	W 5% carhori unlest speci $3 n 2$
R2	Jk(3W)
寿3	S2k (is)
R4	51k \{i/6\}
H5	150 k
net	4M?
R7,17	47CR
Re.11.19	10k
R9	212
¢10	470
P12.13	250k
R14	100k
R15,16	It
-118	220 R
820	47 K
RVI	470k horiz sub-min preset
Capactors	
C1,10	100n- misidsf
c2, 12	100uF 10 F De electuolytic
23,5.8	10 c 35y tantatum
C4,7,8	10 omif polycarbonate

Serniconductors $\mathrm{D} 1,2$	174148	2 Ot
03	indous	
LED 1	MiniLED Fed	
	Meri LEO din	
TR1. 2	PC548	2 2)
TR3	60139	
\%R4	Beloge	
TR5	80131	
101	TL430C	
162	uA 7410 (8 pros)	
103	L2353	
$\times 1$	Radar modute	
Misoellaneous.		
	Boppler FCG	
	Veropin 2141	8 ott
	Bor AB7	
	Grominet sriall	
	Labe Mapin $\times 1 \times \mathrm{l}$	
	Countersuni bet bea zoin	4 \%tt
	Washer SBA	
	Nut 6 BA	10 off
	Hook-up wire	tim

See page 61 sor detaiks ef interconnecting wire suitable tor bunglar alamis
A complete kit is available of all the above iterns plus an application form for the required licence.
Order As LW73Q (RTX3 Dopplar Kit) Price £39.95

CLASSIFIED

MUSICAL FOR SALE

MAPLIN 5600 stereo synthesiser, professionally built in teak case with stand, foot switch and pedal fully assembled and tested. Excellent condition, £600. Paul Hughes, 32 Brookleigh Road, Street, Samerset.
COSMOS CUSTOM organ with all extras including large cabinet, sound computer, Wersi harp. pianos, double transposer, lights, bench etc. Total cost of kits $£ 2,200$. Professionally built and as new, £2,500. Organ, piano, car considered in part exchange. Smith, Paignton 553324.
HES53 FULL scale orgen not wired up. All parts to make a wroring instrument Worth over $£ 600$. Will sell for f 300 . Phone Orpington (Kent) 30921 after 7 p.m.
$3800 / 56005$ EOARDS for sale. PSU (working), binary encoder (48 notes working), half completed keyboard controller, untested oscillator, 48 key . board contacts, bus-bais etc. Newman, 3 Hanvest Bank, Hyde Heath, Amersham, Bucks.
VOFTEX KEYNOTE 600 rotary tone cabinet (Lesie type) 60 watt 2 -speed. 870 o.n.o. Tel: $01-5886107$ evenings.
MATINEE ORGAN for sale. Fully built and working, £A50 o.n.o. M. Nash, 33 Devon Road, Stowupland, Stowmarket. Phone Stowmarket 5487.
INTERMATIONAL 4600 synthesiser complete, luned, all IC's in sockets. Offers to South Ockendon 853136 after 5 p.m.
ELECTRONIC PIANO - Jen J600 with sustain pedal, stand and carrying case $£ 200$ o.n.o. Tel: Derby 552776.
3800 SYNTH built and working. digital keyboard with 128 -note sequercer in locking cabinet. $£ 350$ o.n.o. 22×22 patchboard (4600) with 60 pins $£ 40$. Ready-built modules: 2 VCO's, 2 VCA's, 2 VCF's, 1 Trans Gen, 1 Ext $/ / \mathrm{P}, 1$ mixer (4600), 1 joystick, all for $£ 60$ or $£ 420$ the lot. Tel: $01-6797563$.
PONERHOUSE RHYTHA unit complete with eight rhythrn tapes and foot control pedat, music stand and carrying case. As new. Offers to Box No 2 , Maplin Mag, P.O. Box 3, Raydeigh, Essex SSS 8LR. DRAWBARS White. Seven 'old-type' white drawbars unused and in mint condition. £12. Phone 031-332 8377 after 6 p.m.
OFFER TO READERS constructing organs MES51 and 53 also MES55 auto organ. Complete MES53 in wooden shelves with 49 -note sloped front key. boards with contacts and wired. swell and 13 -note pedals, approx. 40 marbled effect keytabs, slider controls, reverb, drawbars. Constructed MES55 auto organ on shelf wilh switch baniks, slider controls. Complete MES5I on shelf with Drumsette rhythm unit, reverb. To be sold complete or separate. MES53 \& 55- around E400. MES51 with Drumsette - around $£ 75$. Also quantity of Dressed Brazilian Mahogany to build 2 consoles. Can send. Enquiries Tel: 041-7782555.

GUITAR ADAPTOR as in E.E. Dec. 81. £3.50 ready built \& complete, See mag for detals or send $25 p$ extra for article. Reply to Dominic Loughlin, 87 Preston Raad, Whittle-le-Woods, Cinortey, Lancs PR6 7PG.

COMPUTERS FOR SALE

ZX81 USER-DEFIWABLE graphics, create 128 extra characters (e.g. reat 'Space Invaders'). Build it for under $£ 10$. Full construction and software details only E2. A. Pennell, 14 Sweyn Road, Clitonville. Kent.
2X81 + 16K AAMSinclair built +2 tapes, 3 books as new f10. Video Genie EG3003 (16K RAM) + 3 books as new $£ 120$. Phone (0702) 43911
CESIL INTERPRETOR for 8 K or 16 K PETS (state which) - saves programs! Cassette - £2.50. Listings - $£ 1$. s.a.e. 12×9 or 30 p postage. N. Stokell, 4 Beachville Street, Sunderland. Tyne \& Wear SR4 7NA.
ACORN ATOM. 12 K RAM, 12 K ROM, PSU, leads. manual etc. had full service for sale. Excellent working condition. £240. Tel: Ashford, Kent (0233) 23077.

NEED CHEAP hard copy for your micro? How about a teletype 32ASR 75 baud printer (10 characters/ sec). Ekcellent condition - as new, $£ 55$. Basildon 22254, around 6 p.m. best.
TELETYPE PRINTER mechanism 20 mA 110 baud - noisy but working. £20. 041-942 2482.

2x81 + 16K RAM. Sinclair tapes I and 4, ICL tape 5 , book 30 progs, all leads and PSU. £120 o n.o. Tel: Chelmsford (0245) 321606.
2X81 QUALITY software - tape A: 101 K games on cassette $£ 2.50$ or listings $£ 3.00$ includes: machine

If you would like to place an advertisement in this section then here's your chance to tell Maplin's 120,000 customers what you want to buy or sell, absolutely free of charge. We will pubiish as many advertisements as we have space for. To give everyone a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is $10 p$ per word.
Please note that only private individuals will be permitted to advertise. Commercial or trade advertising is strictly prohibited in the Maplin Magazine.
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag, P.O. Box 3, Rayieigh, Essex SS6 8LR.
For the next issue your advertisement must be in our hands by 7th July 1982.
code, canyon, asteroids. shuttle, galaxians, basic, invasion, simon, connection, hangman, defender. destroyer. S.a.e. for details of tapes B\&C. C.W.O. 10 A. Laind, 9 Frankift Road, Saltcoats, Ayrshire KA21 5AT.
EPSON MX80F/T printer. Working order asnew. No defects. Looking for offers in excess of $£ 350$. L. Kirby. Woolhampton Court, Woolhampton, Read ing, Berks. Tel: Woolhampton 3399 on Sundays. OX81 SINCLAIR-built, as new, mains adaptor, leads, manual, original packaging, under guarantee, + games tape (Super Breakout). $£ 50$ o.n.o. Tel: $01-4854326$ evenings.
ZX8I + 16 K RAM with PSU and all leads and assorted 1 K and 16 K RAM games tapes. $£ 100$. Tel: Milton Keynes (0908) 613919.

VARIOUS FOR SALE

SONY STEREO microphone, one point electret condenser type in brushed aluminium case, £25. Telefunken portable radio four-waveband teak, £28. Cullman camera tripod, £35. Marshfield (022124) 574 after 6 p.m.

MAPLIN OISCO uncompleted project, assembled pcb's, power supoly, power amps and other parts. Offers around $£ 50$. Chris Gilles $041-3344154$ after $5 \mathrm{p} . \mathrm{m}$.
HI-FI TURNTABLE unit: Thorens TD150/II AB plus MC150E cartridge and spare new stylus, £38. "Ryecroft", Richards Castle, Ludlow, Shropshire SY8 $4 E U$.
POCKET SCANNER 10 channel. Frequency coverage 150180 MHz with ten 2 m crystals, rechargeable batteries and charger, as new, f40. Tel: Staffordshire 632600.
MAPLIN DIGITAL thermometer module with LCD display, three 1kW sound to light module, 87.50 each. RTVC/ETI TV sound tuner kit, buill but no case, $£ 12.50$ o.n.o. Eastbourne 31200.
COMPLETE SET of 'Practical Electronics', May 1980 to February 1982 inclusive. Excellent condition. Phone (08802) 238.
CLEARING WORKSHOP. Magazines, tools, tots of new full spec components. Send s.a.e. for list to R. Hutchinson, 12 Arthur Street. West Kilbride. Ayrshire KAZ3 9EN.
ROYAL ENAFIELD turbo twin $250 \mathrm{cc}+$ "On Two Wheels" motorcycling encyclopaedia. Ring Bristol 792650 after 6 p.m. - Kim.

WANTED

JVC RS. 7 RECEIVER. Must bein v.g.c. Cash waiting. Medway (0634) 70214.
BEGINNER WISHES to break into radio control. Any offers of cheap secondhand equipment to J. S. Drane, 75 Abingdon Road, Bramhall, Stockport SK7 3EZ.

MAPLIN'S TOP TWENTY BOOKS

1. (1) Atari Basic Learning By Using by T. E. Rowley (WG55K) (See note).
2. (2) 280 IC's Data Sheets (RQ54J) (Cat. P35).
3. (10) Towers' International Transistor Selector Update 2 by T. D. Tower's (RR39N) (Cat. P25).
4. (9) How To Build Your Own Solid-State Oscilloscope by F. G. Rayer (XW07H) (Cat. P29).
5. (8) Power Supply Projects by R. A. Penfold (XW52G) (Cat. P29).
6. (16) Electronic Synthesiser Projects by M. K. Berry (XW68Y) (Cat. P33)
7. (15) Remote Control Projects by Owen Bishop (XW39N) (Cat. P29).
8. (14) Programming The 6502 by Rodnay Zaks (XW80B) (Cat. P35).
9. (5) Model Railway Projects by R. A. Penfold (WG60Q) (See note).
10. (3) How To Nake Waikie-Talkies by F. G. Rayer (RF18U) (Cat. P30).
11. (-) Guide To Solar Electricity by Solarex Corp. (WG85G) (See note).
12. (6) IC555 Projects by E. A. Parr (LY04E) (Cat. P27).
13. (73) The Antenna Construction Handbook for Ham, CB and SWL by Rufus P. Turner (XW99H) (Cat. P30).
14. (7) CB Projects by R. A. Pentold (WG73Q) (See note).
15. (-) Byteing Deeper Into Your 2×81 by Mank Harrison (WG83E) (See note).
16. (-) Understanding Your ZX81 ROM by Dr lan Logan (WG75S) (See note).
17. (-) ZX81 Basic Book by Robin Norman (WG74R) (See note).
18. (4) Adventures With Microelectronics by Tom Duncan (XW63T) (Cat. P24).
19. (11) Newnes Radio And Electronics Engineers' Pocket Book (RLO6G) (Cat P24).
20. (13) Programming The 280 by Rodnay Zaks (XW72P) (Cat. P36).

Note. For prices see page 37 of this magazine. Full details of books WG55K, WG60Q and WG73Q were published in issue 1 of this magazine while details of WG85G, WG83E, WG75S and WG74R were published in issue 2.

These are our top twenty best-selling books based on mail-order and shop sales during February, March and April 1982. Our own publications and magazines are not included. We stock over 375 different books relating to electronics and the full range is shown in this magazine and on pages 23 to 37 of our 1981/2 catalogue.

AMENDMENTS TO CATALOGUE

Plase amend your 1981 catalogue as collews
Page 17/18
BV46A 778 and 48 C are replaced by the UP1300/iV wh ch is a wideband amp cover ing the whale UHF band The new amp iflues a typical gain of $13 \mathrm{c} 日$ and a much impraved norse ligure of typically 25 aB
BW49D is realaced oy the UP1300/V which has a lypical gain ni 19 dB and a 25 dB norse ligure
BW50E s replaced by the PU1240 whish is eectricaly the same as the PUi 02 out is in a box like YQ22Y and tras co ax sockets for both sides of the zerial lead instead of screw terminals maining conmect on simpler
Page 20
Telescopic Aerial ($L B 10 L$) now anly Ah lonz and slogntly thicher a! base
Page 22
Wains adaptor (YB22Y) and (XXOGN) are now the same tem and should be oratere as ($x \times 09 \mathrm{~K}$) This new adaptor whi del ver 300 mA max anc may be suicred to any of the fallowne .altages 3 V 45 V 5 V 75 V 9 V and 12 V 0 OC
Page 47
XYI7T and $X Y 18 U$ are now teine suppi ed in a simaller size New size is 33 x 12 m 1835 x $305 \mathrm{~mm})$
Page 70
Enectrc pump $X Y 74 R$ is now suppled complete with a pressure gauge
Suppressor capactor HWO2C is 1 uf

Page 93
Stereo Readphone $\operatorname{iLH85G}$) is now styled
slighliy diflerently tram the one shown in the talalogue
Page 104
5A Fiug (HL57M) is bakelite and not nylan Page 107
Page 107
Touch Dimmer (FQ14Q) is $250 W$ (nor 630W)
Pace 115
Page 115
Order codes tor Slolled Nuts are WL43W (Collet Rd Nut lien) and Wi44X (Collet Rd Nut 10 mm)
RX38R Ebonite Rod is now being supplied in nyton

Page 120

The DM 1500 D microphone is now supplied
o thout a jack plug connected to the 5 m lead
Page 133
imm ight guide (XR56L) now being sup alsed fith black prolecile sheath Overall Qli. 22 mm
Page 137
Page 137 plied in sightiy diflerent sizes
page 154
Page 154
B867X
BB67X (3600 vCF lhe But) snould de incluated in the list under the head ing Aounting Erackets

Page 177

The be t-dr velurntab'e XB25C is now berng supplied witnout an on/off switch making t sumable only 'or use in disco's etc

CORRIGENDA

The following errors in previous issues have come to our attention since the last issue was published. We offer our sincere apologies for any inconvenience caused.
issue 1
Page 3

Issue 2
Page 7
In Figure 1, R70, a Min Res 100 k should be shown between the wiper of RV13 and IC12 pin 3/C38.
Page $4 / 5$

Pa The pcb legend and Figure 7 are incorrect The resistor marked R33 that is next to R32 should be R31. And the resistor marked R25 that is next to R27 should be R26.

On the Common pcb legend. the link next to R15 has been omitted.

Page 182
Please note p cture of stylus 29 is incorrect The sriaft is cound not scuare The picture of styius 31 is aiso incorrect

Page 184

Stusicentre kit C113 (LX03D) is supplied with one bothe of Iluid only.

Page 186

Cassette Solicer (rwiox) is now being supplied with one reel of splicing tape

Page 201

Page 201
QH55K (M
QH55K (MJE2955) is now being supplied as T1P2955 and QH56. (MJJE3055) as TP 3055 Piease note trao 5 now ¿OOV Virnis now 7 V (max) is novi 154 , and the pin out is nox style P3:
Page 229
In surgesteo PSU for LM383, the top end af tre Std hes 100 st oud be connected th the Calector of Q: NOT the emiter

Page 232

The sin piuts for the NE571 and TOA34:0 are swapped jver

Page 235

 512 us and 512 ms and flat as staled in line 2
Page 243
in Panc Lis! C11 is Bxil M arice 9p.
Page 245
The IC pin numbers in the right hand drawing under the heading LM3911 are incorrect Tre left hant drawint is correct

Page 255
Ine p on rumbers on the IC pachage oramine linder the heading L200 are in reverse orep They should be in sequence with 5 at the 1.p and 1 at the bottom

Page 258

Page 258 QOOAE 6402 UART 15 now being swpplied
QQOAE $6 \triangle 02$ UART 15 now being supplied
coden COP $1854 A C E$ These iwo parts are coden COP1854ACE These iwo parts are identical

Page 266

Small Thermpath (HQDOA) is now supplied I 10g tibs

Page 270

Crossover 2-Way (WFO2C) is now physically; slightiy different, but it is electrically identical.
Page 276
Olial rocker neor (YR70N.) requres a pant cuitout 29 \& 22 mm

Page 282

Foctswiter (B64U) is saghelied with a 25 mm o mg fitted to the leas

Page 299

Page 299
Crimp tod [FY3ij) is umproved with an additianal 1 men stripper and er miper m tor 15254 and 6 mm piess terminals
Page 301
Need'e ble set \{Ywo3) now contans only 10 lies there is one fiat hardinf and une hand tile nol two of each
Page 319
The alphabet cai or der unaer $\$$ is morrect

- Eemiconouctor F nder should come atter Self Tappers and Stune offs atter Skre

Page 9

Page 12

Page 18
Pages 41/44/47

Page 47

SUBSCRIBE NOW!

For just $£ 2.40$ a year we'll deliver every issue of the Maplin Magazine to your door.
We've got dozens of exciting projects and features coming in the next four issues. And more amazing special offers like the ones in this issue. Plus, of course, all our new products and our complete price list.

> All this for just $£ 2.40$ a year! (Overseas surface mail $£ 2.76$, airmail $£ 5.88$) Don't detay - send your cheque or postal order now!!

Send this coupon with your cheque $\bar{P} 0$ to:
Maplin Magazine Subscriptions Dept., Maplin Electronic Supplies Ltd.,
P.0. Box 3, Rayleigh, Essex SS6 8LR

I enclose $£ 2.40$ (plus post overseas) for 1 year's subscrip. tion to the Maplin Magazine.
Customer No. (if known)
Name
Address

MPG METER: FURTHER NOTES

One or two constructors have written to us to ask for further explanation of the setting-up procedures for this project. Here, Mike Wharton explains in more detail.

Introduction

The basis of the MPG meter is to take two signals, one for fuel flow and one for speed or distance, and produce from them a digital display of 'miles per gallon'. In order to accommodate a wide variety of vehicles, the design includes a variable scaling factor. This is calculated for a particular vehicle and then set using links B1 to 88 .

Calibration

To ensure that the dispiay gives a true reading of mpg, it is obviously important that the scaling factor is correctiy set and the article may not have made it entirely clear how this is achieved. The equation for calculating the factor ' n ' is:-

$$
\frac{8.5 \times 3000}{X \times Y}=n
$$

The values which need to be known first are thus X and Y. The value of X is the division ratio of IC6, and is set by making only one of the links Al to A7. each having the value shown in the table.
The vaiue of ' 8 ' referred to in the article (p55) would thus be obtained by connecting Link A4.

The value of ' Y ' can be obtained in one of two ways, either from the
vehicle manufacturers as the number of turns of the speedo cable per mile travelled, or by using the method explained in connection with Figure 5 of the article. If the "turns per mile"
figure is known then an appropriate value of Y for the formula is:-
$Y=\frac{\text { (Turns per mile) }}{12}$
If the value of ' γ ' is io be found using the meter itself, then Link A or iC6 is first omitted and Link B 1 made temporarily. This will enable the required value of ' Y ' to be found according to the method described in the article.

To complete the calibration, the value of ' X ' may be chosen and then ' n ' calculated. This is then set, as expizined in the article, using Links 81-88 (remembering to remove B1 if it is not needed).

Naturally, changing the chosen value of ' X ' will not affect the value of ' Y ' (only changing the gearbox or back-axle will do that!) but will involve a re-calculation of ' n ' and hence a resetting of Links B 1 to B 8).

Maplin Magazine June 1982

A LOW COST HIGH-RELIABILITY TELEPHONE EXCHANGE

 for your home, office or factory.Expandable from 4 extensions up to 32 extensions, the exchange features electronic switching, very small size and silent operation. May be used with standard British Telecomm phones or with our very low-cost push-button telephones. Standard 2 -wire connection to telephones. All phones are powered from the 2 -wire line; a mains connection is only required at the exchange. All the usual tones are generated: ringing, ring tone, dial tone, busy tone, unused number tone. Ringing is different from standard B.T. ring for ease of identification. No call can be interrupted or overheard by another caller. Up to 8 separate calls can be in progress at any one time (in full 32 -extension system).

MORE ATTACHMENTS FOR OUR HOME SECURITY SYSTEM

ZX81 PROJECTS

More exciting projects for your $\mathrm{ZX81}$
Two novel projects in our next issue that allow your $\mathrm{XX81}$ to do even more for you. easy to build unit will cover most domestic rooms with just the one unit. Simple 2 or 4 -wire connection to main alarm box with monitoring of the cable. Also in our next issue an infra-red beam break detector.

FREQUENCY COUNTER

Range 10 Hz to 650 MHz with electronically switched ranges and high sensitivity input (approximately 10 mV). Mains operation or 12V DC input. Complete kit available including front panel. (Held-over through lack of space.)

AMPLIFIER REMOTE CONTROL UNIT

Build this remote control unit for use with the amplifier described in this issue. Infra-red control of volume, bass, treble and balance. Just sit back and adjust the sound!

MORE MODEL

 TRAIN PROJECTSPart 3 of our model train controller shows how to effect point control and automatic loop switching. In addition we describe how to detect when a train is in a particular section.

PLUS all our regular features and articles.

mappunthepeopleforAtari

3 Consoles available：

Atari 400 with 16K RAM（AF36P）$£ 299$ Atari 400 with 32K RAM（AF37S） 2395 Atari 800 with 16K RAM（AF02C）£599

Lots of other hardware：

Cassette Recorde

 Dish Dive hermal Printer Printer inter face tor 400 Printer nte－face for 800 intertace viodule versawriter（AF28FI $£ 5500$ （AF06G）$£ 345.00$ AF04E）\｛26500 （AF41U）£4995 AF42V）§4995 （AF29G）ミ13500 （AF43W）£16900

16K RAM Module 32K RAM Module 32 K Upgrade lor 400 Hoppy lisk
e Stich
Joystick Controllers For full cetails ask to
（AF08．） 56400 （AF44X）£12535 （AF45Y）$\quad £ 75.00$ （YX87U）£2．75 （AC45Y） 824.95 （4C37S）£13．95 （XH54J）SAE apprecated

NOW YOU CAN JOIN THE U．K．ATARI COMPUTER OWNER＇s CLUB．An independent user＇s group
Four issues of the club magazine for only $£ 1.60$ ！Address your subscription to Graham．

THE CHOICEST GEMS OF ATARI SOFTWARE FROM MAPLIN

Advanture Bames

Slis Warnar
Rescue At Rigel Invasionorivi Dalestones alryn Hi Res Advenuse Analog Rdyenture Actuentureland Pirales Advenure Missionimpossiole Toodoo Castle The Cosnt
Sirange odyssey Mystery FunHouse yramuel Doom Ghost Town Savage Is ond Savage istand Goiden Voyage nergyCzar
Kingdom

E－32K－（BQ2248） 22895 C－ $32 \pi-18021 \times 1$ 「22．45 C－32k－1E023A 11895 C－ $32 \mathrm{~K}-180224 \mathrm{~F}$［14，95 － 24 K － $1801401 \mathrm{C14} 95$

 C． 24 K （ $(8001 \mathrm{~B}) \uparrow 1495$ C． $24 \mathrm{~K}-(80018) \mathrm{C} 1495$ C－24K－ 80030$)$
C． 1495 C． 24 K － BQOA E ） I 14.95 C－24K（BOO5F। I 14.95 C． $24 \mathrm{~K}-18006 \mathrm{~B}$ ） 51495 C．24k－（B007Mi โ14．95 C．24K（B008J）£14．95 C－24K－18009Ki 11495 C． $24 \mathrm{~K} \cdot(\mathrm{BO} 10 \mathrm{~L}) \mathrm{I} 14.95$ C－24K－（B011M）$£ 14.95$ － $16 \mathrm{~K} \cdot(\mathrm{YG} 53 \mathrm{H}, 5895$

Teach－Yourself Programs
Conversatonal French Conversational Soanish Conversalional ilaliorn Touch Typung
Eurngean Counlries of Capits
 C 16 K （Y Y 45 y Y） 53250 C． $16 \times$ YGばロらi） 53250 5 C － 16 K －$\{\mathrm{Y}(\mathrm{j} 47 \mathrm{~B}) \quad \mathrm{E} 3250$ 2 C － 16 k －（YG490） 514.95 －C． 24 K （YG56L）$£ 895$
C． $\mathrm{i} 6 \mathrm{~K}-(\mathrm{Y}[57 \mathrm{M})$ 天 95

Learn Programmin avilationto Programming as csol Animation Payer MissileGraphics Flayer Misste Grabolics Displaj Lists
Display List Honiz／vertiralscro Honz／nertucal Scrot

C－ $8 \mathrm{~K} \cdot(\mathrm{YG} \cdot \mathrm{BWW})[1195$ C－32K（B057M） 1095 D． $32 \mathrm{~K}-28058 \mathrm{M})$［1095 C．16K（B079P）E78 95 D－24K－（B0600）$\subseteq 1995$ C 16K（BO51F）$\quad 59.95$ D－24K（80526）$£ 1095$ C 96K（8053H） 59.95

Page Fioping
Page Flipping

Buting

visical
WhardProcessa Caltculator Grapli－1
Sratistics

Arcade Games

Slar Paders

Asteroids

Spacemvaders
Missile Cominana
Super Breakou
TaiTrek
Tari Trek
Star Trek 35
Star Trek 35
Shaoting Gallery Shaoling Gallery Moumbreaker Jawbreaker
Birgkelazal
Tank Trago
Tank Tiap
－16K．（BC55K） 59.93 Wallcharl－（ XH 4 FM ）£． 00

Home Game Programa
Tiunder Island Potating Till
Jumbo Jetlander Submannecommande Sunday goll

Tounnament fool Snaoker | Billiards |
| :---: | Chess Micrachess Checker King Crobage \＆Dominoes

－ $\mathbf{- 3 2 K}$ ．ML39NY 11995
 D． 24 K －（YG50EE E16 95 C． 16 K ． 4 YG52（G） 51195
－ak－（yG66w）$\{2995$
－E－BK－YG600） 2995 E－8K－（YG7OM）\｛24 50 （－8K－（YG64u）£2995 $-E-B k-1 Y 667 X) E 2995$ － 24 K －（YL36P）$£ 895$

 C． 16 K － BO 0350$) \mathrm{C14} 95$ C． $16 \mathrm{~K} \cdot(\mathrm{BO} 12 \mathrm{~N})$ £ 1095 C 16K－（BO12N）\｛1095 F－8－YG61R 16 K －（YL 34 M ） $\mathrm{\Sigma} 895$ D－32K－ $\mathfrak{Y} 1350$ ） 1196

Black｜ack C．AK－YGG2SI E8 95 Heverstothalown－C．8K－iYL33L）$\{13.95$ Gomoky \quad C 16 K （BO19V）§ 14.95 Hangman - C． $16 \mathrm{~K}-18018 \mathrm{U}$ £14 95

 Brilish Hel lage Furopean Scone Europeani scone
 alansalan（2）rograms）－C－16K－804901 91895
 （Y） Mu＊le Programs
Movic Themes（use with
Music Composer）
Computer Languages OperaliroSystemA $+\quad-\Gamma \cdot 48 \mathrm{~K}-\mathrm{BO} 0 \mathrm{OH})=5250$ ach＋
（0perating Svstem $4-\quad$ 0－48K－（B032K） 59950 Pilot Utifities
3D Super Graphics
30 Super Graphics Missembirestitor Assembertal 6502 Disassemaler 6502 Disassembler Character Generator Characler cererealar lelelank
key C－Casselte，$D-715 \mathrm{k}, \mathrm{E}=\mathrm{Cat}$ OD $2 C=2$ Cassettes eic $8 k$ igk eft 5hows minamum memory requirement

NEW TITLES THIS MONTH－Arcade Games：K－RAZY SHOOT OUT－E－16K－（BO53T）£29．95．
GHOST HUNTER－C－16K－（BQ64U）£24．50

Lots of exciting new software litles available soon．Keep in touch with Maplin
Subscribe now to America＇s leading Atari－only magazine－Anaiog－ 6 issues per year for just $£ 9.00$ ．Order as GG24B．

[^0]: Copyright: All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden, All reasonable care is taken to ensure accuracy in preparation of the magazine but Maplin Publications cannot be held legally responsible for its contents. Where errors occur corrections will be published as soon as possible afterwards. Permission to reproduce printed circuit board layouts commercially ou marketing of kits must be sought from the Publisher. Copyright 1982 Maplin Publications.
 June 1982 Maplin Magazine

[^1]: -These items are too large to be seal through the ordinary inlond mail and they will therefore be despasched by carrios. Please add E 6.00 towards the cost of carriage to any order containing one or more of these items.

