Electronics

CASMIELIS BORAN When

raplin's new Computer-Aided SHopping by TzLephone service is launched

PROJECTS: Modem Interfaces for ZX81 and VIC20 * Digital Enlarger Timer/Controller
\star DX'ers Audio Processor \star Sweep Oscillator and others
PLUS New series - 6502 Machine-Code Programming \star Ideas on Programming Your Commodore 64

DID YOU MISS THESE ISSUES?

Copies of issue 1 are now sold out, but a reprint of the projects from issue 1 is available and contains:

Universal Timer. A comprehensive programmable controller for up to 4 mains appliances. There is storage for up to 18 program times, ons or offs and relay outputs. Complete construction details.
Combo Amplifier. Superb 120W MOSFET power amp with low-noise BI-FET pre-amp having built-in flanger, inputs for guitars, keyboards or microphones, and five step equaliser. Complete construction details.
Temperature Gauge. Coloured LED indication of $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Complete construction details.
Pass The Bomb! Low-cost easy to build electronic version of pass-the-parcel keeps the kids amused for hours!
Plus six easy to build projects on Veroboard: Car Battery Monitor - Colour Snap Game - CMOS Logic Probe - Peak Level Indicator - Games Timer -Multi-Colour Pendant.

All this for just 70p. Order As XA01B (Maplin Project Book Volume 1 No 1). Price 70pNV

Copies of issue 2 are now sold out, but a reprint of the projects from issue 2 is available and contains:

Digital Multi-Train Controller. Our superb digital train controller can control up to 14 locomotives individually on the same track. Any four loco's can be controlled simultaneously. The unit has automatic short-circuit protection and because it uses digital control a DC supply is present all the time for carriage lighting etc. The locomotive modules will fit in most modern 00 -scale engines. Complete construction details.
Multi-Mode Digital Stopwatch. Here's an easy-to-build stopwatch with accuracy and display to a 100th of a second. There is a large 8-digit display so that times of up to 24 hours can be shown. The unit can be operated in one of four modes: standard, sequential, split and rally. Complete construction details.
Home Security System. Full construction details of our new home security system offering a high degree of protection for domestic or commercial premises coupled with excellent long-term reliability. The unit's features are: six independent channels, 2 -wire or 4 -wire operation, detects open or short circuit or just resistance change, tamper-proof main cabinet and external cabinet. The external cabinet has its own protection as well. There are presettable entry and exit delay timers. With the extra peripherals being added each issue, this is a really versatile system.
Digital M.P.G. Meter. An easy to build device that will help you to make your motoring more economical. The unit has a large easy to read LED display. Complete construction details.

All, this for just 70p. Order As XA02C (Maplin Project Book Volume 1 No 2). Price 70pNV

Copies of issue 3 are now sold out, but a reprint of the projects

 from issue 3 is available and contains:ZX81 Keyboard. A full size, full travel 43 -key keyboard with the electronics to make graphic symbols, function mode and shift lock, single key selections. The two-colour legend for the keys is the same as the 2×81 keyboard. The keyboard plugs directly into the sockets in the ZX81 and a special adaptor is supplied to run the keyboard from the ZX81 power supply, so there's no soldering in the ZX81 at all. This full-size keyboard gives you fast, reliable entry - use it once and you won't be able to do without it again!
Stereo 25W MOSFET Amp. Supplied as a complete kit including wooden cabinet and printed and punched chassis, this superb 25 W rms per channel amplifier has inputs for magnetic pick-up, tape deck, tuner and auxilliary. The kit is extremely easy to build, all but 5 components mounting directly on the pcb. There are only 7 interconnecting wires in all and when completed, no setting-up is required. With its superb frequency response, low noise, low distortion and the grandeur of MOSFET sound, the amplifier is second-to-none at the price.
Radar Doppler Intruder Detector. Home Office type-approved microwave unit gives coverage adjustable from about 2 m to 20 m . May be used on its own, or with our Home Security System.
Model Train Controller Remote Control Facilities. Full details of infra-red, radio or wired remote control units for our Digital Multi-Train Controller.
All this for just 70p. Order As XA03D (Maplin Project Book Volume 1 No 3). Price 70pNV

SHOPPING BY COMPUTER

We're all very excited about our brand new service that allows you to dial-up and place orders directly on our computer from your micro. Now you can check our. prices and stock availability without having the information passed on to you by someone. You can look directly at the latest position on our computer, then type in your order if you wish.
Since we're one of the first companies in the UK to offer this service we've even had to invent a name for it. We call it Cashtel: Computer-Aided SHopping by TELephone. The Maplin Cashtel service begins on June 1 st and you can reach it by dialling 0702552941 . For further information see page 26.
You will, of course, need a modem like the one we published in issue 5 and if your micro doesn't have an RS232 interface then you'll need an interface as well. In this issue we've got interfaces and communications programs for the. ZX81 and VIC20 and we'll have details of interfaces for most of the popular home micros in later issues
In this issue we are pleased to launch our new range of Heathkit products. These superbly documented kits and educational courses are now available exclusively through Maplin in the UK. Over the next six months we shall be taking on most of the Heathkit range and in future issues of this magazine, we shall be looking at some of the more unique kits in greater depth.
Certainly the most fascinating new kit is the robot Hero 1. This incredible little fellow will, we hope, be with us at forthcoming exhibitions from about July onwards. In between times he'll be in our shops in rotation, but probably not until August. Your local store will know when Hero will be visiting them after August.
Finally, we're pleased to tell you that all the back issues of this magazine from our first year are now available again, reprinted as Projects Books. These are proving incredibly popular and we're actually on our third reprint of issue 2 ! We're also very pleased that the circulation of this magazine continues to increase by leaps and bounds, but more about that in our smashing next issue!

Cover illustration by Tony Worsfold

Addresses

Mail Order.

P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: (0702) 552911

Shops at:

159-161 King Street, Hammersmith, London W6. Telephone: (01) 7480926.
Lynton Square, Perry Barr, Birmingham.
Telephone: (021) 3567292.
284 London Road, Westcliff-on-Sea, Essex.
Telephone: (0702) 554000.
All shops closed Mondays.

2
June to August 1983 Vol. 2 No. 7
CONTENTS
Projects
CMOS CTrystal Calibrator 39
A vital piece of test gear for radio amateurs
DXers Audio Processor 44
Hard-to-copy stations become more intelligible Enlarger Timer/Controller 50
Makes life in the darkroom so much simpler
Sweep Oscillator 8
Construct a useful piece of test equipment VIC 20/RS232 Interface 2
Let your VIC communicate with the world ZX81 Modem Interface 22
Order from Maplin via your ZX81
Features
First Base 48
A beginners guide to digital techniques Heathkit14
Enters a new era with Maplin
Machine Code Programming with the 6502 6
Find out what really goes on inside your micro Say It With Satellites 54
Getting in touch with the universe
Using the Commodore 64 56
Takes a look at this powerful but undocumented machine Working With Op-Amps 42
The final part of this series
News
Amendments to Catalogue 64
Cashtel
26
26
Classified Advertisements 63
Coming Shortly 26
Computer News 57
Corrigenda
26
26
Manchester shop 26
Maplin Catalogue Prices Overseas 64
Maplin News 26,59
Microprofessor
58
58
Microwriter 58
New Books
60
60
Price List of Catalogue Items 28
Price List of Items Since Catalogue
38
38
Price List of Items in this Issue 26
Special Offers
Special Offers 27
Subscriptions 64
Top Twenty Books 26

Editorial \& Production

Editor	Doug Simmons	Published by	Maplin Electronic Supplies Ltd,
Prdduction Manager	Sue Clark		P.O. Box 3, Rayleigh, Essex
Technical Editors	Robert Kirsch	Printed by	Eden Fisher (Southend) Ltd
Dave Goodman	Typeset by	Quillset Typesetting	
Technical Artists	Deter Blackmore	Distributed by	Spotlight Magazine Distribution Ltd,
	Roy Smith John Dudley		$1 \cdot 11$ Benwell Road, London N7

[^0]
Vic20-

RS232 Interface

« Allows the VIC to connect to Modems, Printers, VDUs, or any other RS232 compatible device
 * Converts TTL levels to true RS232
 * Provides full buffering for protection of computer
 * Full ' X line' interface possible as well as simple ' 3 line' interface

by Mark Brighton

RS232 is the name given to an industry standard form of serial data communication which is used on many peripheral devices to interface them with a computer.

A byte of serial data is represented by a series of transitions between +12 V and -12 V on a serial data line. The marks and spaces created by these transitions contain the information for the byte of data as well as some other signals, the purpose of which is to synchronise the receiving device to the serial data stream.

The format of a 'word' of data, including these synchronising signals, is as follows:

1. The start bit. This signal alerts the receiving device that a byte of data follows, and synchronises the receiver circuitry to the incoming data.
2. Data bits. This is the ASCII encoded data, and may consist of seven or eight bits as selected by the user. It is sent least significant bit first.
3. The parity bit. This is an optional error checking bit selected by the user to conform with the requirements of the receiving set. It may be set for odd or even parity, or disabled.
4. Stop bit(s). These are one or two bits of data which are transmitted at the end of a word to separate it from the next word.

The polarity of these signals may be selected by sending normal or inverted data, either of which may be required by different devices. Apart from the serial data lines (Sin and Sout), several other status and handshake signals are provided.

Those available on the VIC 20 are:

1. Data terminal ready (DTR). This signal is sent to indicate that the data

terminal is ready to send or receive data
2. Data set ready (DSR). This indicates that the data set is ready to send or receive data.
3. Request to send (RTS). This signal tells the receiving device (usually called the 'data set') that the VIC (data terminal) wishes to send data.
4. Clear to send (CTS). This allows the data set to signal that it is ready to pass data from the data terminal.
5. Carrier detect (DCD). This lets the data set tell the data terminal that the communication link is established.

In addition to those lines already mentioned, there are two ground lines, protective ground and signal ground. Signal ground must always be connected, since RS232 requires that both devices have equal ground potential.

Any equipment which cannot meet this requirement is not RS232 compatible.

Circuit Description

The circuit consists of two transmit channels and four receive channels, with a power supply which provides approximately +12 and -12 V from the 9 V AC output on pins 10 and 11 on the user port.

Transmit Mode

Sout from the VIC (pin M, user port) is connected to the base of TR9 via a 10ks resistor, R17. As TR9 turns on, bringing its collector down to OV, TR10 turns on, raising its collector voltage to +12 V . The normal, or non-inverting, output is taken via R23, a 330Ω resistor which limits the current that may be drawn from this output to about 30 mA . Maplin Magazine June 1983

Figure 1. Circuit diagram

A second output stage is also driven from the collector of TR10, and this is identical in operation except that the output is inverted with respect to the input. The output that is used depends on the requirements of the data set.

Receive Mode

The incoming signal first has any negative content removed by D1. It then turns TR2 on and off via R4. The inverting output of the receive circuit is taken from the collector of TR2 which also drives TR1 via R2 to obtain a noninverting output at the collector of TR1. The choice of which output to wire to the VIC is determined by the polarity of the incoming data. The VIC requires a signal which sits high between 'words' and drops low for data. Sin is on pins B and C on the port, and these are connected together.

Construction

Referring to the circuit diagram and parts list, first insert all through pins (see figure 1 for signal polarity pins) and Veropins. Solder them in, not forgetting to solder both sides of the through pins. Insert all other components and solder them in. Attach the edge connector to the board, bending its pins flush with the pads on the board, and solder. Clean the board thoroughly and inspect for dry joints, shorts etc.

Testing

Plug the board into the user port, component side upwards, and switch the computer on. If the computer fails to initialise, switch off and re-check carefully for incorrectly placed components, etc. After the computer initia-
lises, measure test points 1 to 4 with a multimeter. These readings should be approximately as follows:

$$
\begin{aligned}
& \text { TP1 }-0 \mathrm{~V} \\
& \text { TP2 }+5 \mathrm{~V} \\
& \text { TP3 }-+12 \mathrm{~V} \\
& \text { TP4 }-12 \mathrm{l}
\end{aligned}
$$

If all is well, switch off the VIC and remove the interface card. Wire the board to the data set. Reconnect to the VIC, switch both the VIC and data set on, and type in program A. Run the program, and the receiving party should receive the message the quick brown fox jumps over the lazy dog' continuously. Also included is a program to make the VIC act like a 'dumb terminal', for use with a modem, to call information and ordering services such as the Maplin on-line computer, Southend (0702) 552941.

Table 1．Function of bits in the VIC RS－232 Control Register
Table 2．Function of bits in the VIC RS－232 Command Register

```
10 FEM***FROGFFM A ****
20 OFEN200,2,0,CHFN(166)+CHF
30 FFINT#2OO,"THE QUICK EFOWN FOX JUMFED OUEF THE LAZY DOG."
40 goT030
0 REM****************** * U.D.U. F'ROGRAM* ******************
1 F"OlF36879,8:FFINTCHF*(5):WAIT 203 ,64
5 FOKF36876,200:FRINTCHR*(147);"UIC 20 U.D.U. FROGRAM"
10 F%$=CHF* (166)+CHF% (0)
20 OFEN200,2,0,F悉
25 IFFEEK(203)< 64THEN500
30 GET*200,A$
35 IFA事=""THENGOT'25
40 IF ASC(A$)%95THENGOTO2S
5 0 ~ I F ~ A \$ = C H R \$ ( 1 3 ) T H E N F F R N T A \$ ; : G O T O 2 5 ~
60 IF ASC(A$)<32THENGOTO25
70 FFFTNTA事:GOTO25
500 FOKE203,64: GETS$
510 TFS$=CHF$(17)THENS = =CHF$ (10)
520 IFS$=CHF*(19)THENS$=CHF$(140)
530 FRINT$200,S$;:FOKE203,64:5$=6":GOTO30
```


PARTS LIST FOR VIC 20 RS232 INTERFACE

Resistors－All $0.4 \mathrm{~W} 1 \%$ Metal Film		
R1，2，3，4，5，6，7， 9 ．		
10，11，13，14，15 4K7	12 ff	（M47K）
R4，8，12，16，17，18．		
19，20，25，26，27．		
28 10k	12 off	（M10K）
R21，22，29，30 2k2	4 off	（M2K2）
R23，24，31，32 330R	4 off	（M330R）
Capacitors		
C1，2 470uF 16V P．C．Electrolytic	2 off	（FF15R）

A complete kit of all parts is available．
Order As LK11M（VIC 20／RS232 Interface kit）．Price $£ 9.45$.
 the VIC the channel must first be opened as a file, specifying Baud rate (speed), number of bits per character, number of stop bits, and odd/even or disabled parity bit. This information is given by two characters after the 'OPEN' command in the form:

OPEN LF, $2, \emptyset, A \$$. Where LF is the logical file number, i.e., any number between 1 and 255 (if LF is greater than 127, then linefeed follows carriage return), and $A \$$ is two characters sent to control register and command register, the functions of which are explained in tables 1 and 2 . So, for example, we can see that to set Baud rate to 300,7 bits per character, 2 stop bits, and no parity, the OPEN command would be:
OPEN 2øØ,2, Ø, CHR\$(166)+CHR\$(0).
Having opened the RS232 channel, data is sent and received using
'PRINT LF,DATA \$' and 'GET LF,DATA \$',

Note: To type 'PRINT' do not use the abbreviation '?'. Instead, use 'P shift R' followed by logical file number etc. It is possible to list through the RS232 port, to send a program to a friend for instance, by typing 'CMD LF : LIST' where $L F=$ logical file number.

Remember when programming that the VIC allocates two 256 byte buffers (for transmit and receive) in the 506 bytes below RAMTOP, so there is less memory available to BASIC. Also 'DIM' statements or variables should be left until after the 'OPEN' command, as the computer per.orms an automatic 'CLR' before allocating the buffers.
Bibliography:
VIC Revealed by Nick Hampshire
VIC Programmers Reference Guide, Commodore

Connecting to the Maplin Modem

With reference to figure 5, page 5 , issue 5 of Electronics, the following connections should be made:

VIC 20 Interface Maplin Modem pin 2 (Sout) to pin 17 (RS232 in) pin 6 (Sin) to pin 10 (RS232 out) pin 7 (Sground) to pin 21 or 22 (Sground)

Ensure that the link on the Modem is in the RS232 position.

R-1/2

Part One

Graham Dixey C.Eng., M.I.E.R.E.

Introduction

Tthe 6502 MPU from MOS Tech is one of the most popular microprocessor chips and is used in a number of well known microcomputers including PET and Apple. However, in machines of this type the MPU is usually wedded to BASIC software and interfaced to an ASCII keyboard and VDU. Apart from the addition of a cassette deck and a printer and, for the more affluent, a 'floppy disc' system most people regard this as the limit of their peripherals. In such 'high level language' operation, memory capacities from 4 K to 64 K are the rule; in fact more exotic games, for example, demand large amounts of memory. Therefore, some may be surprised to learn that MPUs can perform a whole variety of interesting and useful functions with only 1 K to 2 K of RAM.A VDU is quite unnecessary and the man/ machine interface consists solely of a HEX keypad and a seven-segment display. This was the concept of such microcomputers as Science of Cambridge's Mk14, AlM 65 Acorn's System One, KIM, etc, the last three all using the 6502. But the more sophisticated computers such as PET and Apple can also usually be programmed in machine code. One result of this is that, since they also contain an input/output chip, they can be used for control functions as well as the more usual keyboard/VDU usage.

There have been many series and there are many books that teach BASIC programming, since this is a very popular highlevel language. What this series aims to show is that machine-code programming is an entirely logical process which is not too difficult to learn and which can also be great fun and a source of satisfaction. Therefore, if you feel like a change from 'Pacman' or nested FOR/NEXT loops, this series will offer you the chance to write effective programs in 6502 machine code. Using the computer in this way will teach you a lot more about it at 'grass roots' level than you will ever learn in programming in BASIC and will greatly increase your ability to realise your computer's potential more fully.

The Choice of Chip

The 6502 has been chosen for this series for several reasons:
(i) there are many microcomputers using this chip

Figure 1. Simplified Architecture of the 6502.
(ii) the architecture and instruction set are both quite straightforward and easily learnt (iii) the author has, for the past couple of years, been teaching machine-code programming on a 6502-based machine and has demonstrated its capabilities in a practical environment.

Why Machine-Code Programming?

There is no doubt that a program written in machine-code to perform even a fairly simple function takes very much longer to write and encode than its equivalent in BASIC. This is not because there is some magic about BASIC that permits this; it is not super-efficient, far from it in fact. There is one fundamental fact that is so obvious that it is likely to be overlooked - every MPU, no matter what function it is performing, is working in binary and using machine-code. It is the presence of software, in the form of a BASIC interpreter, that allows the user to bypass the low-level operation and enter the commands, etc in English. This need to interpret the high-level input actually slows down the computer when the program is run.

Figure 2. The 6502 Processor Status Register.

When the BASIC interpreter is not used, all commands are entered in machine-code and the programmer has the utmost flexibility in the use of the machine, limited almost entirely by his own imagination and wits. Programs, although taking longer to write, will run very much faster than highlevel programs. The low-level language is directly concerned with data transfers between MPU registers, memory locations and input/output ports. As a result, inputs from various types of transducer, switches, etc are processed and decisions made from the input data that will produce signals on output lines to energise relays, motors, solenoids, lamps, etc or even generate a variety of output waveforms. Because of the sequential nature of the program, control sequences are possible giving rise to completely automatic decision-making systems, hence MPU-controlled washing machines, robotics, process-control systems, safety systems, etc. Machine-code programming, in short, opens up a whole new world of possibilities.

Enter the 6502

A good starting point for learning about the 6502 is its 'architecture'. This is shown, in simplified form, in Figure 1. For programming purposes the essential details are the various registers and the arithmetic/logic unit (ALU), the full functions of which will be made clear as the ideas of programming develop. For the moment, a simple state--ment about each will suffice as an introduction. There is also the system 'clock', which is usually crystal-controlled and can be thought of as the co-ordinator of events in the computer.

The 6502 has only six registers, as follows:-

The Accumulator (A): This, the first in importance, is an 8-bit register which is used in most computer operations. Like any other register or memory location, it is nothing more than a 'string' of flip-flops arranged to store a byte of binary information.

The Index Registers (X \& Y): These two registers, which are more or less identical, are also eight bits wide and are extremely useful in a variety of ways, which will be introduced fully as the series develops.

The Program Counter (PC): This is a 16:

Figure 3. The Arithmetic-Logic Unit: flow of data during an addition.

Figure 4. Example of addition and effect on the 'carry' flag.
bit register, which holds, sequentially, the addresses at which the program is stored during the normal course of running a program. Otherwise it may be thought of as holding the address of the next instruction to be accessed. As it is 'incremented' the computer steps through the program.

The Processor Status Register (P): Another 8 -bit register, each bit of which is an independent 'flag'. Because of its particular importance and usage, this register is shown in more detail in Figure 2. Each flag is nothing more than a flip-flop which is either SET (equal to 1) or CLEAR (equal to 0). Whether a flag is SET or CLEAR depends upon the result of some previous computer operation.

For example, if a number held in the accumulator is negative, the negative flag (N) will be set; otherwise it is clear.

If, however, the number held is zero, then the zero flag (Z) is set.

If, during an addition, a 'carry' is produced, the carry flag (C) will be set.

From these few examples it is possible to see that decisions can be made during the course of a program by testing various flags to see if a particular result has occurred.

The Stack Pointer Register (S): In the 6502 this is a 9 -bit register with its most significant bit set permanently at ' 1 '. Its purpose is to 'point' to an address in an area of the RAM known as the 'stack'. The purpose of the stack will be made clear in due course but, for now, it will be stated that it is a reserved area of RAM used to 'stack' data during certain aspects of computer operation. Because the 9th bit is always set, the 6502 stack occupies the range of addresses from 0100 to 01FF in HEX.

The Arithmetic Logic Unit, or ALU for short, is where the computing is really carried out. It is shown in Figure 3 in association with the Data Bus, Accumulator and Status Register. The ALU has two 'input ports' and an 'output port'. The arrows show the flow of data during the addition of two bytes of data. If the bytes or 'words' to be added are known as ' p ' and ' q ' respectively, then ' p ' may be placed or 'loaded' into the accumulator initially and ' q ' arrives on the data bus from some memory location at a subsequent interval of time later. At the moment that the addition operation is actually carried out, both ' p ' and ' q ' enter the ALU by their respective input ports, and their sum then leaves the ALU by the output port where it is placed in the accumulator, thus replacing the original contents ' p '. If the addition operation yields a 'carry bit', which is effectively the 9th bit of the result, this will set the carry flag C in the Status Register (P). Thus, at least temporarily, the carry is stored for subsequent use. An example of this series of operations with sample binary data is illustrated in Figure 4.

Binary and Hexadecimal Numbers

Since computing, whatever its aim, is essentially concerned with the manipulation of numbers, the user of a computer must be fully conversant with the number systems used. As already stated, the MPU itself does all of its work in binary i.e. using ' 1 s ' and 'Os' only. However, since binary numbers tend to be rather long, addresses and data are specified and entered via the keypad in hexadecimal (HEX for short), this being much more compact and less prone to error. To appreciate how binary and HEX number systems work (or indeed how any number system works) it is necessary to appreciate how a number is made up. Consider the following examples:
The denary number 255
$=\left(2 \times 10^{2}\right)+\left(5 \times 10^{1}\right)+\left(5 \times 10^{0}\right)$,
$=200+50+5\left(\right.$ N.B. $\left.10^{\circ}=1\right)$,
$=255$
The binary number 11111111
$=\left(1 \times 2^{7}\right)+\left(1 \times 2^{6}\right)+\left(1 \times 2^{5}\right)$
$+\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{2}\right)$
$+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)^{\text {. }}$.
$=128+64+32+16+8+4+2+1$,
$=255$ (denary)

Thus, denary 255 means the same thing as binary 11111111.

It should be noted that each column has a 'weighting' or power to which the base of the system is raised. In binary the base is 2 and in denary it is 10 . It will be noticed in diagrams of registers that the bit position in a register is identified by its power of two. For example, in an 8 -bit register the least significant bit position is called bo (power of $2=0$) while the most significant bit position is called $b 7$ (power of $2=7$).

How then does HEX work? The base is sixteen and since there are only ten individual digits available (0-9), it is necessary to provide six more to make up the set and this is done in practice by using the first six letters of the alphabet (A-F). Thus, these letters have to be thought of as representing numbers, such that $A=10, B=11$. . $F=15$. As an example, the HEX number
$F F=\left(F \times 16^{2}\right)+\left(F \times 16^{0}\right)$,
i.e. $\overrightarrow{F F}=\left(15 \times 16^{1}\right)+\left(15 \times 16^{0}\right)$,

$$
=255 \text { (denary). }
$$

Thus, FF is the HEX way of writing 255 (denary) or 11111111 (binary).

The problem with HEX, of course, is its unfamiliarity. It takes some practice to get to grips with it properly but, gradually, one gets the hang of it.
continued on page 13

Binary	HEX	Decimal	HEX	Decimal	HEX	Decimal	HEX	Decimal
0001	0001	1	0010	16	0100	256	1000	4096
0010	0002	2	0020	32	0200	512	2000	8192
0011	0003	3	0030	48	0300	768	3000	12288
0100	0004	4	0040	64	0400	1024	4000	16384
0101	0005	5	0050	80	0500	1280	5000	20480
0110	0006	6	0060	96	0600	1536	6000	24576
0111	0007	7	0070	112	0700	1792	7000	28672
1000	0008	8	0080	128	0800	2048	8000	32768
1001	0009	9	0090	144	0900	2304	9000	36864
1010	000A	10	00AO	160	OAOO	2560	A000	40960
1011	000B	11	00B0	176	OB00	2816	B000	45056
1100	000C	12	00CO	192	OCOO	3072	C000	49152
1101	0000	13	0000	208	ODOO	3328	D000	53248
1110	000E	14	OOEO	224	OEOO	3584	E000	57344
1111	000F	15	00FO	240	OF00	3840	F000	61440

HEX to decimal: Add equivalent decimal values of each HEX digit in turn.
Decimal to HEX: Find largest HEX number less than or equal to decimal number required. Subtrac \dagger decimal value of this number from decimal number required. Repeat successively for remainder until it is zero. Add HEX equivalents.
Binary to HEX and vice-versa: Replace each HEX digit with 4 -bit binary group and vice-versa.
Binary to decimal and vice-versa: Convert to HEX first, as above.

Table 1. Binary - HEX - Decimal Conversion Chart.

by Robert Penfold

For frequency response measurements most electronics enthusiasts use an audio sinewave generator plus an A.C. millivoltmeter or some other piece of equipment capable of measuring audio frequency signals. A quicker way of obtaining audio frequency response graphs is to use a sweep oscillator plus a pen recorder. Here the audio oscillator is automatically swept up through the entire audio frequency band while the pen in the recorder responds to the output signal level from the equipment under test. As the oscillator is swept upwards in frequency the paper is moved past the pen so that the required frequency response graph is drawn out, and units of this type normally have the X and Y axes accurately calibrated in terms of fre-

Figure 1. The simple sweep generator block diagram.
quency and relative gain in decibels so that a meaningful graph is produced.

While this method obviously saves a great deal of time by avoiding the need to write down numerous results and then (if necessary) draw a graph on the basis of these, the cost of such equipment makes it impractical for the
amateur user. However, useful results can be obtained using a simple sweep oscillator in conjunction with an oscilloscope, and a suitable sweep generator can be built at quite a modest cost. With this system the Y input of the oscilloscope is fed with the output of the equipment under test, and the spot is

Figure 2. The ramp generator and log amplifier circuits.
swept across the screen as the oscillator is swept over the audio frequency range. The spot can either be swept across the screen using triggered sweep with the trigger signal being obtained from the sweep oscillator, or the ramp signal from the sweep oscillator can be fed to the X input of the oscilloscope.

This gives what is only a comparatively crude representation of the frequency response of the equipment under investigation, but the results obtained are perfectly adequate for making quick checks on tone controls, equalisation amplifiers, testing for irregularities in filter responses, and so on. If necessary, checks using the sweep oscillator and oscilloscope can be followed up by detailed measurements using an ordinary sinewave generator and a millivoltmeter. The accompanying oscillographs show a few examples of results obtained using the simple sweep oscillator featured in this article.

Block Diagram

A voltage controlled oscillator (V.C.O.) is at the heart of the unit, as can be seen from the block diagram of Figure 1. In this application it is not necessary for the oscillator to have a very pure output, and a distortion level of a round 2% is perfectly adequate. The V.C.O. used in this design has a triangular output waveform and not the required sinewave output, and the distortion on a triangular waveform is too high to give really good results. A triangular waveform can be converted to a reasonable sinewave signal by either using a filter to attenuate the unwanted harmonics, or by using a soft

Figure 3. The basis of a log amplifier.

clipping circuit to round off the waveform to give the desired shape. In this circuit a soft clipping circuit is used, and one of the oscillographs shows the effect of this circuit. A buffer stage is used at the output of the unit to give a low output impedance.

Although it might at first appear that controlling the V.C.O. from a linear rámp (sawtooth) signal would give acceptable results, this is not in fact the case. The V.C.O. has an almost linear relationship between control voltage and output frequency, and the output frequency would therefore increase in a linear fashion using a linear ramp waveform as the control signal. Audio frequency response graphs are normally drawn with a logarithmic frequency scale so that (for example) 50 Hz to 100 Hz occupies the same space as 500 Hz to 1 kHz and 5 kHz to 10 kHz . Using a logarithmic frequency scale rather than a linear one gives results that are much clearer and easier to interpret, and ideally a sweep oscillator should have a logarithmic frequency scale.

A suitable sweep waveform is obtained by first generating a linear sawtooth waveform and then feeding this to a logarithmic amplifier which provides suitable shaping of this signal. One of the accompanying oscillographs shows the processed and unprocessed ramp waveforms.

An amplifier is used to boost the output from the logarithmic amplifier to a suitable level, and this represents a convenient point in the unit to add frequency and sweep width controls.

The Circuit

Figure 2 shows the circuit diagram of the ramp generator, logarithmic amplifier, and amplifier stages of the unit.

The ramp generator uses what is almost the standard triangular and squarewave generator circuit with ICla acting as the integrator and IC1b operating as the trigger circuit. However, the inclusion of Dl in the charge path of Cl results in Cl charging almost instantly, giving a sawtooth waveform ràther than a triangular output at the output of ICla. RV2 controls the discharge time of Cl and acts as the sweep frequency control. This gives a frequency range of approximately 0.2 Hz to 10 Hz . The output waveform IC1b is a brief positive pulse, and this is used as the trigger signal for the sweep generator of the oscilloscope. The output from ICla could be fed to the X input of the oscilloscope, but there could be problems in interfacing this signal to the X input. Using the triggered sweep method of operation should give good results with virtually any oscilloscope and is not difficult to set up.

JC2 is a dual transconductance

The response of a speech processor having high and low pass filters.
June 1983 Maplin Magazine

The response of a 6dB/octave low pass filter.

The response of a narrowband bandpass fitter.
operational amplifier, but in this circuit both amplifiers are fed with fixed bias currents and are used as straightforward operational amplifiers. These are used in the logarithmic amplifier, and Figure 3 shows the basic circuit which is invariably used in amplifiers of this type. This is simply a forward biased silicon diode, and this provides an output voltage of about 0.6 volts or so provided the input voltage is at about this figure or higher. Although this circuit is often used as a simple voltage stabiliser there is some change in output voltage with variations in input potential. In fact, raising the input voltage by a factor of ten gives an increase in the output voltage of about 100 millivolts, and successive increases in the input potential give an almost identical rise in the output voltage.

This gives a good logarithmic response, but the gain of the circuit is reducing with increased input voltage, whereas this application requires a circuit which gives increased gain with rising input potential. The necessary transformation is obtained by using the resistor and diode in the negative feedback circuit of an amplifier. In this
case $R 6$ is the resistor and the diode is actually the emitter - base junction of what would normally be the Darlington Pair output buffer stage of IC2a.

Apart from bias current, the voltage across a forward biased semiconductor junction also varies significantly with changes in temperature, and the Ingarithmic amplifier incorporates a temperature compensation circuit to minimise drift. IC2b and its Darlington Pair are used to provide this temperature compensation, and excellent results are obtained since the amplifier and compensation components are on the same chip and are therefore maintained at the same temperature.

IC3a is used as a simple inverting amplifier which boosts the output from the logarithmic amplifier by a factor of just over three times. IC3b is used as an inverting amplifier which converts the negative ramp output of IC3a back to the required positive ramp signal. The closed loop voltage gain of IC3b can be varied from unity with RV4 at minimum value down to a loss of over 20 dB with RV4 at maximum value, and this enables the sweep range to be adjusted. Sl enables the ramp signal to be disconnected from the V.C.O. so that
the oscillator can be used at a fixed frequency which is set using frequency control RV5.

V.C.O. Circuit

The circuit diagram of the V.C.O. waveform shaper and output stages of the unit are shown in Figure 4. The V.C.O. uses IC4a to charge and discharge C5 at a constant rate, and IC4b is used as a trigger circuit. The charge and discharge current of C5 (and the operating frequency of the V.C.O.) is controlled by the bias current fed to pin 16 of IC4a. A resistor is used in series with this input so that voltage rather than current controlled operation is obtained, and this resistor is fed from the output of IC3b. The V.C.O. provides two output waveforms; a roughly squarewave signal at the output of IC4b, and a good quality triangular waveform at the output of IC4a.

It is the triangular waveform that is used in this application, and it is fed to IC5 which is used as a triangle to sinewave converter. IC5 is another operational transconductance amplifier, and it is used here as a fixed gain amplifier which is overdriven by the triangular input signal. Untike most

Figure 4. The VCO, waveform converter, and buffer amplifier circuits.

The response of a notch filter.
amplifiers, which provide hard clipping, an overdriven transconductance amplifier gives soft clipping, and in this case gives the required rounding of the input signal. RV6 is adjusted to give the best possible output waveform.

As the output impedance of IC5 is fairly high, IC6 is used as a straight forward unity gain buffer stage at the output. RV7 is the output level control, and S1 can be adjusted to reduce the output signal by about 40 dB (by a factor of one hundred times). This makes it easier to adjust RV7 for very low output levels. The maximum output signal level is approximately ten volts peak to peak.

Mains P.S.U.

The unit requires a supply voltage of between about 12 and 18 volts, and a suitable 15 volt stabilised power supply circuit is given in Figure 5.

This is a straight forward circuit using a push-pull rectifier and a three terminal monolithic voltage regulator. A small (100 mA) voltage regulator is more than adequate since the supply current is only about 15 mA . C9 is the smoothing capacitor and C10 plus C11 are needed to aid the stability of voltage regulator IC7.

Construction

A metal instrument case which has approximate outside dimensions of 229 by 133 by 63.5 mm is ideal for this project. The general layout of the front panel can be seen from the photographs, and the final wiring of the unit will be more straight forward if this layout is not radically altered.

Apart from $\mathrm{Tl}, \mathrm{FSl}_{\text {; }}$, and the components fitted on the front panel, the components are all mounted on a printed circuit board, as detailed in Figure 6. Construction of the printed circuit board is mostly straightforward, but be careful not to omit the link wire (next to R28). Also, IC3 has a MOSFET input stage, and this device should therefore be fitted in a socket, and should not be plugged into circuit until the board is in other respects complete. Fit Veropins to the board at points where connections to the controls and other off-board components will eventually be made.

Top: The triangular output of the V.C.O. Bottom: Output of the triangle/sine converter.

Figure 5. Mains power supply circuit.

The completed board is mounted on the base panel of the cabinet, on the right hand side, leaving space for Tl to be mounted on the left side of the unit with the fuseholder for FS1 to the rear of the board. The component panel is mounted using one inch 6BA bolts plus $1 / 2$ inch 6BA spacers. The fuseholder for FS1, and T1 are both mounted using $1 / 4$ inch 6BA bolts. The mountings screws for the top and sides section of the case protrude about $1 / 2$ inch into the case, and Tl must be position where it will not obstruct one of these fixing screws.

An entrance hole for the mains.lead is made in the rear panel of the case near to T1, and this hole is fitted with a small grommet.

Figure 7 shows the point-to-point wiring of the unit. The identification letters in Figure 7 correspond with those in Figure 6, so that point ' A ' in Figure 6 connects to point ' A ' in Figure

7, point ' B ' connects to point ' B ', and so on.

Adjustment

Thoroughly check all the wiring before initially testing the unit, paying particular attention to the wiring around T1, S3 and FS1. Start with all three preset resistors at a roughly mid-point setting.

If an oscilloscope is used to monitor the signal at pin 12 of IC2 a nonlinear ramp waveform should be present. If clipping of the signal is evident RV1 should be backed-off slightly in an anticlockwise direction so as to eliminate the clipping, but it should not be turned back much further than is absolutely necessary. If no clipping is evident, advance RV1 as far as possible in a clockwise direction without clipping being produced.

Top: Processed ramp signal.
Bottom: The linear ramp signal,

Figure 6. Legend and artwork.

Figure 7. Wiring diagram.

RV3 is given a setting that gives an unclipped output signal at pin 7 of IC3, and the setting of this component will probably not be very critical.

With S1 set to cut off the V.C.O. from the ramp generator circuit so that a fixed output frequency is obtained, an oscilloscope is used to monitor the output waveform of the unit and RV6 is adjusted for the optimium output waveform. Alternatively a crystal earphone can be plugged into SK2 so that the output of the unit can be monitored by ear, and with RV5 set for a fairly low operating frequency it should be possible to hear the fundamental frequency plus the harmonics at higher frequencies. RV5 is then adjusted to minimise the harmonics.

Normally the unit will probably be used to cover the whole audio frequency over each sweep, and this requires RV4 to be set for maximum sweep range, or very nearly so (i.e. set in a fully clockwise direction). RV5 must
be set so that the unit is swept over the appropriate range of frequencies, and it is helpful here to use a slow sweep speed and to monitor the output of the unit using an earphone

SK1 is coupled to the trigger input of the oscilloscope, and if the latter has a positive/negative trigger switch this should be set to the "positive" position. SK2 is coupled to the input of the equipment under test, and the output of this equipment is coupled to the Y input of the oscilloscope. S2 and RV7 are adjusted to give a suitable input signal level for the equipment under test, and the Y gain control(s) of the oscilloscope are set for a satisfactory trace height. A sweep speed of about 1 HZ is suitable, and RV2 must be adjusted to match the sweep rate of the oscillator to that of the oscilloscope with reasonable accuracy. There is no real advantage in using a sweep frequency of less than about lHZ . It is not advisable to use a higher sweep frequency since this would re-
sult in the oscillator being swept over the low frequency range before there had been any significant output at these frequencies, and misleading results would consequently be produced A higher sweep frequency can be employed if the unit is only being used at output frequencies of a few hundred Hertz or more.

For detailed investigation over onlya small section of the audio frequency band RV4 is backed off in an anti clockwise direction and RV5 is ad justed to give coverage of the appropriate section of the audio spectrum.

Most oscilloscopes have a green medium persistence cathode ray tube, and with the low sweep speeds used in this application the left hand section of the trace fades out before the right hand portion is completed. Despite this the shape of the trace can be seen quite clearly without having to resort to a storage oscilloscope of some kind or oscillographs.

SIMPLE SWEEP OSCILLATOR

Resistors - All 0.4W 1% metal film

30,31	4 k 7
R3.7.13,14	100k
R4,27	47k
R5, 12	120k
R6,10,11,15.32	12k
R16	1M2
R17	3M9
R18	68k
R19	1 k 5
R20,21,25,34	10k
R24	5 k 6
R26,28	8 k 2
R29	22k
R33	33h
R35	110R
RV1	4 k 7 min horiz preset
RV2	2 M 2 lin pot
RV3	22 kmin horiz preset
RV4	100 k lin pot
RV5	47k lin pot
RV6	2 k 2 min horiz preset
RV7	$4 k 7$ lin pot
Capacitors	
Cl	2 u 2 polyester
C2	10 nf polyester
C3	Inf carbonate
C4,6,7,	100 uF 10 V radial elect
C5	4 n 7 carbonate
C9	470 F 25 V axial elect
C10,11	100 nf polyester

6502 Machine Code Programming from page 7
What, for example, do you make of the number (yes, number!) DEAD?

If you followed what went before, you will realise that this is simply equal to:
$\left(\mathrm{D} \times 16^{3}\right)+\left(E \times 16^{2}\right)+\left(\mathrm{A} \times 16^{1}\right)+\left(\mathrm{D} \times 16^{0}\right)$, $=\left(13 \times 16^{3}\right)+\left(14 \times 16^{2}\right)+\left(10 \times 16^{1}\right)+$ $\left(13 \times 16^{0}\right)$,
$=53248+3584+160+13$
$=57005$ (denary).
HEX numbers can always be converted to denary in this way but, to make life a bit easier, Table 1 is included.

Conversion from binary to HEX is very easy. The golden rule is as follows - 'starting from where the binary point would be, divide the binary number into four-bit groups; convert each four-bit group into a separate HEX digit'. If you find that the 'highest'group doesn't have four bits, include zeros to make it up, if it helps to see the corresponding HEX digit more easily.

For example, consider the binary number
10110111. This 'byte' divides into two 'nibbles' (as half-bytes or four-bit groups are called).

Thus, we have 10110111 . Now all you have to do is consider these as if they were BCD (Binary Coded Decimal) groups, write down the denary equivalent and, from this, the HEX equivalent. Of course you can miss out the denary stage and write HEX straight away if you wish, but you may need practice to do this consistently and without error. The two groups are seen to be equal to. 11 (denary) and 7 (denary) respectively. Since 11 (denary) = B (HEX), the binary number 10110111 is written as B7 in HEX.

To take one further example to emphasise the point, take the case of the Stack Pointer Register mentioned earlier. It was said, in effect, that this could point to any address in the range 0100 to 01 FF . However, the register itself has only nine bits, the 9th bit being permanently SET. Obviously the eight bits bo-b7 can take up any values in the range 00000000 to 11111111 (in binary).
while $b s$ is always ' 1 '. Therefore, the contents of the Stack Pointer Register must lie between the limits:
$000100000000=100$ (HEX)
and $000111111111=1 \mathrm{FF}$ (HEX)
Note that three zeros have been added to the highest bit to complete this nibble and, since addresses are usually written with four HEX digits, another nibble of four zeros should be added to the left to give the address range as 0100 to 01 FF , as previously stated.

If machine-code programming was something entirely new to you, then perhaps this article has given you enough to think about for the time being. For anyone who cannot wait to find out more, I suggest they buy one of the several 6502 programming manuals available; it would be a good idea anyway for the serious programmer. My personal preference is for 'Programming the 6502' by Rodney Zaks from Sybex, but at the time of writing it is about $£ 10.50$.

The Rolls-Royce of Electronic Kits

Now available in the UK exclusively through Maplin

Fifty-seven years ago, Ed Heath, a young aviation enthusiast designed a low-cost, light plane in kit form that you built yourself at home. The company he set up in 1926 to sell the kits was The Heath Airplane Company based in Chicago. Although Ed was killed in a crash just five years later, his name lives on and he became synonymous with a range of superb do-it-yourself electronics kits and training courses renowned for their excellence

Each kit contains a "tell-all" guide for first time builders,
a highly detailed step-by-step assembly manual and all the components and hardware you need. Every component, from the lowliest resistor to the most complex IC is thoroughly tested at the Heath factory in America prior to inclusion in the kit.

Now this superb product range will be available in the UK through Maplin. Over the next year we shall be stocking a large range of Heathkit products and we begin this month with some of the established products.

ULTRASONIC INTRUSION ALARM

An ultrasonic intruder alarm that looks like a book! It will protect any room in your house, detecting an intruder's movements up to 7.5 m (25ft) from the unit. Two alarm outlets are pro vided, one triggers after a short delay, and the other after 30 seconds. The total load permissable on these two outlets is 3A either individually or shared. The short delay gives time for you to leave the room after activation and time to deactivate the alarm when you re-enter the room.

The alarm can be set to turn off automatically after 30 seconds or to remain on until switched off.

Digital Alarm Clock

One of Heathkits' simplest kits and ideal for beginners. This budget-priced digital alarm clock features a pleasant blue-green display that automatically adjusts to ambient light conditions. You can wire the clock for 12 or 24 hour display with AM and PM indication. The clock also shows when the alarm is set and alerts you if there has been a power failure.

The alarm is a pleasant electronic tone to start your day right and there's a snooze control to switch the alarm off for nine minutes. The clock has a builtin speaker and is styled in a handsome simulated wood-grain finish that fits any decor. Size is $168 \times 120 \times 60 \mathrm{~mm}(7 \times 5 \times 21 / 2 \mathrm{in}$.). Order As HK01B (Dig Clock Kit)

Price £34.95

Thus it could be used as an automatic light switch for your garage, basement attic or any place where you want entry into an area to turn on the light. It could be used to sound a buzzer when movement occurs, such as a child leaving its bed.

The intruder alarm is completely enclosed in metal and can be installed anywhere that a power socket is available. A further case is provided that looks like a book cover and helps to disguise the identity of the device. Size in book cover: $257 \times 191 \times$ 60 mm .
Order As HK02C (Informer
Alarm) Price £69.95

ALARM BELL

A 240 V AC alarm bell that can be connected directly to the output of the ultrasonic alarm HK02C. The bell is fully weatherproof for external use
Order As YK58N (Large Dome Bell) Price $£ 24.95$

Infra-Red Intruder Detector

Your home is most vulnerable during the night when intruders can approach unseen and can damage or steal from your garden or outbuildings even before they break into your house itself. Now here's a revolutionary new device that can detect the movement of a person at night in the open air over an 80 square metre (875 square feet) area and keep your dwelling safe from breaking and entry.

When a warm-bodied object moves into the protected area, the alarm relay operates and can be used to operate floodlights or an
alarm/light combination making a burglar or vandal think he has been observed. The alarm relay remains operated for four minutes, then resumes its silent, sleepless protective work.

A built-in phototransistor deactivates the device during the daytime. As darkness falls, the six infra-red sensing elements are reactivated. In cold weather, the infra-red rays from a person's exposed hand or face is enough to trigger it. A manual sensitivity control adjusts the temperature differential so that pets and small animals won't cause accidental

SUPERB HEATHKIT EDUCATIONAL COURSES

Heathkit's programmed self-study courses are ideal for students, hobbyists and for technical staff in companies large and small. The easy-to-follow format saves time and costs far less than comparable adult education or vocational courses.

Heathkit's programmed self-study courses are ideal for students, hobbyists and for technical staff in companies large and small. The easy-to-follow format saves time and costs far less than comparable adult education or vocational courses.

Clearly written, well-illustrated programmed-learning texts speed learning, and experiments provide the hands-on ingredient so important for learning. Courses range from basic electronics to robotics. You can brush up on a specific area of electronics or stay abreast of new technological advances as they unfold: 'Heathkit's new course on Fibre Optics will be available soon.

Concepts of Electronics for Hobbyists

Learn the basic principles of direct current, alternating current, active devices, electronic circuits, digital electronics and digital computers. Experiments assure your understanding of do-it-yourself electronic projects and all components required are included. To do the experiments you will need the ET3100 Trainer
described on page 17 and a multimeter. No prior knowledge of electronics required.

Over a thousand pages of simple to understand text and illustrations in a durable binder are provided.

Order As HK04E (Course

EE3140) Price £64.95

DC ELECTRONICS COURSE FOR BEGINNERS

This course forms an excellent starting point for those just beginning to learn electronics. The course covers current, voltage, resistance, magnetism, Ohm's Law, electrical measurements, inductance and capacitance. It has been completely updated to ensure that you learn the most up-to-date material available.

This professionally-designed course leads you step-by-step to a complete understanding of DC electronics, and allows you to
learn at your own pace. Hands-on experiments increase your knowledge by putting your newlygained information to work immediately on practical exercises.

The course includes the comprehensive text in a durable vinyl binder and all the components needed for the experiments. To complete the experiments you will need the ET3100 Trainer described on page 17 and a multimeter

Order As HK05F (Course

EE3101) Price $£ 49.95$

Semiconductor Devices
Course The Third Step

Put the knowledge you've learned work. The course covers basic amplifiers including biasing, and coupling, then goes on to explain fiers, video amplifiers and RF and IF amplifiers. There are detailed fiers, power supplies, oscillators pulse circuits and modulation.

Carrying on from the AC Electronics course, this completely up-dated course continues to build your understanding of elec-
tronics. This course continues to build your understanding of alec. tronics. This course covers the fundamentals of semiconductors then looks in detail at diodes, actor diodes, PIN diodes and others. You will learn about the operation of bipolar transistors and their characteristics, field
effect transistors, thyristors, effect transistors, thyristors,

Test Equipment Course
'triacs, unijunctions and optoelectronic devices. There is also a brief introduction to integrated circuits.

Hands-on experiments using the components supplied with the course give you first hand ex-
perience with semiconductor devices. To complete the experiTents you will need the ET3100 Trainer described on page 17 and a multimeter.
Order As HK07H (Course
EE3103) Price £54.95
 case text comes complete with an der and over 100 electronic components for use in the experi-
ments outlined in the text complete the experiments you will need the ET3100 Trainer
described on page 17 a multimeter and an oscilloscope. Order As HK08J (Course EE3104) Price $£ 64.95$

Learn to use a wide variety of test equipment. The course gives make measurements with anamake measurements with ana-
logue and digital meters, explains the operation and use of oscilloscopes in electronic testing and servicing, You'll also learn to use frequency generators and countiers. A further section covers bridge circuits, curve tracers,
spectrum analysers and logic probes.

The course is split into four
sections, each with its own vinyl binder. In addition to the texts and you will need the ET3100 Trainer described on page 17. To fully appreciate the various parts of the text, it will also be necessary to
have access to an analogue multimeter, a digital multimeter, oscil otoscope, frequency generator and frequency counter.
Order As HK09K (Course EE3105) Price $£ 64.95$

EXPERIMENTER TRAINER ET3100

You'll get maximum benefit out of the six courses, $D C, A C$, Semiconductor, Electronic Circuits, Test Instruments and Electronics for Hobbyists by doing the hands-on experiments on this Trainer.

The Trainer features solderless breadboard sockets for ease of component substitution, a 2 range variable sine and square wave generator ($200-20,000 \mathrm{~Hz}$), dual variable power supplies for positive and negative voltages from 1.2 V to 16 V up to $120 \mathrm{~mA}, 1 \mathrm{k}$ and 100 k linear potentiometers. A. centre-tapped transformer provides 30 volts rms for AC experiments.

The Trainer measures $308 \times$ $298 \times 89 \mathrm{~mm}$ and is available in kit form or ready-built
Order As HK10L (Trainer
ET3100 Kit) Price £74.95
HK11M (Trainer ETW3100 Built)
Price £159.95

Digital Techniques Course

Learn to design and apply modern digital circuitry. This advanced course is a comprehensive treatment of the subject, beginning with fundamentals and theory and guiding you through digital logic circuits, Boolean algebra, flip-flops and registers, sequential logic circuits, combinational logic circuitry and digital design.

As you complete each step-by-step section, hands-on experi-
ments and tests will further aid your understanding of digital techniques. The course includes the text in two heavy-duty vinyl binders and electronic components for performing the experiments. The ET3200 Trainer des cribed below is required to complete the experiments. A multi meter is also needed and an oscilloscope is recommended. Order As HK12N (Digital Techniques) Price $£ 79.95$

TRAINER FOR DIGITAL TECHNIQUES COURSE ET3200

This versatile trainer lets you put your digital knowledge to work and allows you to build and test prototypes, confirm circuit operation and test digital IC's. Solderless breadboard sockets make experimenting and design easier and faster with a flexible capacity for eight 14 -pin or 16-pin dual-in-line IC's and 24-pin, 28 pin and 40-pin IC's.

The trainer has four binary data switches to pulse logic
circuits, a three-frequency pulse clock generator and four LEDs The bullt-in regulated power supplies furnish +12 V at 500 mA , 12 V at 100 mA and +5 V at 500 mA

The trainer measures 308 x $298 \times 89 \mathrm{~mm}$ and is available in kit form or ready-built.

Order As HK13P (Trainer

ET3200 Kit) Price $£ 89.95$
HK14Q (Trainer ETW3200 Built)
Price $£ 169.95$

Microprocessor Course Teaches Latest Technology

This superb introduction to microprocessors won first prize from the International Award Society for Technical Communication. You will learn about microprocessors, microcomputers and computer programming in a com. plete efficient and well-organised way. You'll understand microprocessor basics, computer arithmetic, programming and interfacing.

The course adopts the finest models of successful self-instruction techniques with concise steady-paced textbooks and hardware experiments that make important microprocessor theory, application and design, easier for you to understand.

The course is organised in ten learning units. Unit 1 covers decimal, binary, octal and hexadecimal numbering systems; conversions, binary codes and positional notation. Unit 2 teaches you terms and conventions, introduces you to several instructions and shows how programs are written and executed. Unit 3 covers binary addition, subtraction, multiplication and division, twos-complement arithmetic and Boolean logical operators like NOT, AND, OR, Exclusive-OR and INVERT

The fourth unit of the course is an introduction to programming including branching, conditional branching, algorithms and programming instructions. The 6800 microprocessor is covered in units 5 and 6 and includes a study of architecture, instruction set, addressing modes, stack operations, subroutines, input/output operations and interrupts. In units 7 and 8 you'll learn the fundamentals of interfacing, interfacing random access memory (RAM), interfacing displays, interfacing with switches, the peripheral interface adàptor (PIA) and using the PIA.

You will write and experiment with a wide variety of increas. ingly complex programs in unit 9.

In experiments you will turn the ET3400 trainer into a teaching machine that will give you drills and practice in computer numbering systems. You will use all instructions and addressing modes and experiment with subroutines, stack operations etc.

In the final unit you will use the electronic components supplied with the course to convert the ET3400 trainer into a digital clock, a musical instrument and a digital voltmeter. You will experiment with address decoding, PIA's, input and output of data, parallel-to-serial conversion techniques, digital-to-analogue and analogue-to-digital conversion techniques, and interrupts.

Units 7, 8 and 10 assume knowledge equivalent to the Digital Techniques Course whilst the remainder of the course requires no prior knowledge.

The course comes complete with text, two binders and 62 electronic components including RAM's, a PIA chip, a digital-toanalogue convertor, op-amps and a variety of other microprocessororiented devices. The ET3400 trainer is required to perform the experiments.

With the computer age upon us, now is the time to begin your education in microcomputers and programming by ordering this tried and proven course today.
Order As HK15R (Microprocessor Course) Price $£ 99.95$

MICROPROCESSOR INTERFACING COURSE

Beginning where the Microprocessor Course ended, these 750 pages of complete and detailed text contain eleven learn ing units and ten hands-on experiments teach you the funda mentals of microprocessor in terfacing. Topics covered in clude Advanced Peripheral Interface Adaptor and analogue conversion, serial data communications, peripheral devices, memory devices, programmable
timers, an in-depth discussion of the 6809 advanced microprocessor and the 16 -bit 68000 microprocessor.

The text is contained in two vinyl binders and the course comes complete with a variety of components required for the experiments. The trainer ET3400 is required to complete the experiments.
Order As HK16S (Interfacing Course) Price £99.95

MICROPROCESSOR TRAINER ET3400

Functioning as a miniature digital computer, this trainer used with the Microprocessor, Advanced Microprocessor and Interfacing courses, features a 1K ROM monitor program and a six-digit hexadecimal 7 -segment display for address and data readouts and monitoring internal logic states.

A 17-key hex keyboard permits you to access a memory location to examine contents, step forward or backward, change the contents of memory, examine and alter any of the MC6808's internal registers, set break points for program debugging, or reset the MPU. The flexible instruction set of the MC6808 permits five addressing modes and uses two accumulators, an index register and stack pointer.

random access memory, 8 buffered LED's for display of bread board logic states, 8 SPST DIL switches for binary input and a breadboard for prototyping memory and interface circuits

All microprocessor address, control and data busses are terminated on the front panel and there is provision for a 40 -pin external connector to expand memory and I/O capacity. The trainer is therefore ideal for any applications that require a microprocessor-based software development system or as a design aid for developing special interfaces.

An accessóry containing a VDU interface, BASIC interpreter, RS232 output and more RAM will be available later this year to extend the trainer.

The trainer measures 310 x $298 \times 89 \mathrm{~mm}$ and is available in kit form or ready-built
Order As HK18U (Trainer ET3400
Kit) Price $£ 189.95$
W3400 Built)
Price $£ 329.95$

Advanced Microprocessor Course Introduces The 6809

This course covers 6809 programming and interfacing completely. The text is split into seven units. Unit 1 teaches fundamental 6809 concepts and chip structure. 6809 addressing modes are discussed in unit 2 and unit 3 covers registers and data movement instructions, while artithmetic, logic and test instructions for 6809 are taught in unit 4.

Unit 5 covers branch and miscellaneous instructions, unit 6 covers 1/0 and interfacing and applications for the 6809 is the subject of unit 7. The 6809 has a flexible instruction set with over 1,400 different commands available.

The course includes a-special
adaptor module that converts the ET3400 trainer into a 6809-based microprocessor trainer. This assembled module includes a handy debugging routine contained in the 2 K ROM monitor program.

Ten optional programming exercises reinforce the concepts presented in the course, and the ET3400 trainer is required for these
Order As HK17T (Advanced Micro Course) Price $£ 99.95$

Robot Technology Course

A 1,200 page self-instruction text with 11 sections covering robotics from fundamentals. Op tional experiments give you hands-on experience with the HERO 1 teaching robot. Subject areas covered are

1 Robot fundamentals
2 AC and fluidic power
3 DC power and positioning
4 Microprocessor
fundamentals
5 Robot programming
6 Heathkit robot microprocessor
7 Data acquisition (sensors)
8 Data handling and conversion
9 Voice synthesis
10 Interfacing
11 Industrial robots at work
The programmed self-study materials guide the student, step-by-step, until important concepts

are mastered. Self-test reviews at the end of each unit make sure you understand what you've studied, before moving on to the next unit.

Using HERO 1 lets you apply what you've just learned and you get the type of reinforcement that makes learning-by-doing one of the most' effective education methods ever devised. The course is also fully functional without the robot.

You should have at least a basic knowledge of DC and AC electronics, digital techniques and basic microprocessors before starting the robotics course. Order As HK21X (Robotics Course) Price £99.95

Introducing HERO 1: The World's First Sophisticated Robot

HERO 1 is one of the most important microprocessor-controlled devices ever conceived. It is the perfect robotics training system for industry and schools.

HERO 1 is a completely selfcontained electromechanical robot capable of interacting with its environment. It can see, hear, speak, detect moving and stationary objects and determine their distance, pick up small objects, move in any direction and can learn from your instructions!

Controlled by a programmable on-board computer, HERO l's 6808 microprocessor can guide the robot through various complex manoeuvires, activate the robot's sensors and modify the robot's behaviour in response to inputs from its onboard sensors and real-time clock. The straightforward programming process allows step-by-step debugging and other cor rections, as needed

HERO 1 can be programmed in three different ways. Through the keyboard mounted on the robot's head, with its hand-held remote-control teaching pendant, or through its serial cassette port using a program previously stored on a conventional audio cassette tape recorder The computer can store programs with over 1,000 individual
steps.
Use HERO 1 to guard your home or office. It could automatically detect intruders in its range and warn them away verbally. And HERO I can remain on guard for extended periods of time, using its power-conserving "sleep" mode.

You can program HERO 1 to pick up small objects with its arm and gripper mechanism capable of seven axes of motion. The arm extends, retracts and turns, performing mechanical tasks with precision. The robot can also be programmed to speak complete sentences with its phoneme based speech synthesiser.

Expand HERO l's capabilities to the limit of your skill and imagination with the on-board experimental breadboard. This board allows you to design circuits for interfacing with the robot's computer.

When HERO 1 tells you that its batteries need charging, simply phig in the external battery charger. HERO 1 can continue to be used while its batteries are charging

Use HERO 1 with the robotics course described on page 18 You'll quickly get a hands-on grasp of industrial electronics, mechanics, computer theory and programming as applied to robots by putting them into action.

Exceptional capabilities!
Convenient Control Panel: Control HERO 1 from the keyboard on his head. You can also use the remote teaching pendant, or a program written on cassette tape

HERO 1's Hand grips small objects: The gripper can hold up to a pound when fully rétracted and horizontal - pivots up to 350 degrees

Arm: Rotates up to 250 degrees, pivots wrist up to 180 degrees, extends or retracts gripper over a five-inch track.
"Learn" mode lets you teach HERO 1: Just switch to "Learn" mode and take the robot through your task. It remembers - and repeats the steps at your command.
can detect ambient light over the entire visible spectrum, with excellent resolution - down to one part in 256.

HERO 1 can hear: The robot's omnidirectional sound sensor can hear ambient sound from 200 to $5,000 \mathrm{~Hz}$, with the same one-part-in 256 resolution.

Detects still and moving objects: HERO I's ultrasonic sensors can "see" movement up to feet away, and can determine the range of an object up to eight feet away.

Highly manoeuvrable: HERO 1's three-wheel drive system, with one wheel both driving and steering, allows the robot to move any where - and to tum in a 12 -inch radius

HERO 1 can talk: With the Phoneme Speech Synthesizer, the robot can simulate human speech - with four levels of inflection
"Sleep" mode conserves power: This makes HERO 1 ideal for home and plant security duty - when it sees intruders, it "wakes up," and warns them away verbally

Self-contained rechargeable batteries: Two
separate power systems - one for the logic circuits and a second for the drive system External recharger included.

World-famous Heathkit manual: Easy-to-follow instructions from the world's largest builder of electronics kits guide you through each kitbuilding step.

GEATHKIT'S SUPERB RADIO ACCESSORY KITS

 SOLID-STATE DIP METEROne of the best solid-state dip meters around, this kit features a MOSFET paraphase amplifier and hot-carrier diodes for more sensitivity and a better dip. The Colpitts oscillator cover 1.6 to 250 MHz in fundamentals and uses a Q multiplier for greater detector sensitivity and a responsive 150uA meter movement for positive resonance indications.

The meter operates from a 9 V battery (not supplied) and is completely portable. A moulded grey carrying case protects the rugged aluminium meter and the seven colour-coded, pre-adjusted, plugin coils. The assembly manual has a detailed section on operation
Order As HK23A (Dip Meter Kit) Price $£ 79.95$

Morse Code Practice Oscillator

Use this practice oscillator to learn morse code and pass the RAE for the HF bands. Most components mount on a single circuit board for easy assembly. The unit operates from a PP3 9V battery (not supplied) and is complete with a telegraph key with adjustable rebound. There is a built-in speaker, volume and tone controls and a headphone jack for private listening.

The manual includes sections on operation, application and learning the code. Once you get your licence, use the kit as a sidetone oscillator for any trans. mitter using negative grid-block keying. The two-tone emerald/ grey cabinet measures 111×105 $\times 67 \mathrm{~mm}$.

Order As HK22Y (Morse Code Kit)
Price £24.95

Cantenna 1kW RF Dummy Load

This improved dummy load now handles 1 kW RF energy (2 kW PEP) with VSWR's less than 1.5:1 up to 450 MHz . Cool, stable ele ment works to eliminate unneces sary QRM during tune-up, main tenance or alignment. Hoids one gallon of transformer oil (not supplied). For the smart operator the finest 50 ohm impedance you can buy. Save your finals! Order As HK24B (Cantenna HN31A) Price $£ 29.95$

Antenna Coax Switch

Designed to switch one RF source to any one of four antennas or RF loads while grounding the unused outputs. .Standing wave ratio to 250 MHz is $1.1: 1$ max. Power capability is 1 kW (2 kW PEP). A bracket is provided for mounting on equipment cabinets, desk or wall
Order As HK25C (Co-ax Switch
Kit) Price £24.95

A SELECTION OF KITS FROM HEATHKITS SUPREME RANGE OF TEST GEAR

RF Oscillator For Radio/TV Alignment

This unit which includes probes is suitable for use in alignment of tuned stages in AM, FM and TV receivers. Output is divided into five bands, from 310 kHz to 110 MHz and features an extra 100 to 220 MHz band of calibrated harmonics. An added feature is the 1 kHz audio output at 2 V rms.

This signal available at a front
panel jack is ideal for tracing and isolation of circuit defects in receiver audio stages and also serves as a source of internal AM modulation. Test leads are included. Requires two PP3 batteries (not supplied). Size: 279 x $197 \times 146 \mathrm{~mm}$

Order As HK26D (RF Osciltator
Kit) Price $£ 54.95$

This superb instrument is ideal for gain and frequency response measurements in audio amplifiers, as a signal source for harmonic distortion measurements or as an external modulator for RF signal generators. A meter calibrated in both volts and dB , monitors the sine wave output.

Specifications:
Sine wave output
Frequency range: 1 Hz to 100 kHz Output voltage: 8 ranges -3 mV to 10 V rms (up to IV there is 600 internal load)
dB ranges: -62 dB to +22 dB 12 dB to +2 dB on meter
50 dB to +20 dB in eight 10 dB switch positions
+2dB max into 600 load
Output variation: $\pm 1 \mathrm{~dB}$ from 10 Hz to 100 kHz
Output indication: Two voltage

Low-Distortion, Sine-Square Wave Audio Generator

scales and one dB scale on front panel meter
Ouput impedance:
10 V range: $0-1000 \Omega$
3 V range: $800-1000 \Omega$
IV range and lower: 600Ω

Meter accuracy: $\pm 10 \%$ full scale Distortion: Less than 0.1\% from 10 Hz to 20 kHz
Square wave output
Frequency range- 5 Hz to 100 kHz Output voltage ranges: $0.1 \mathrm{~V}, 1 \mathrm{~V}$

10 V peak-to-peak into 2000Ω or greater
Output impedance: 52Ω on 0.1 V and IV ranges
Up to 220Ω on 10 V range
Rise time: Less than 50 ns General
Frequency selection: First two sig. nificant figures on 0 to 100 and 0 to 10 switches each in ten steps. Third figure on 0 to 1 control. Multiplier switch xl, $\times 10, \times 100, \times 1000$.
Frequency error: Within $\pm 5 \%$ of first and second digit.
Power requirements: 240 V AC, $50 \mathrm{~Hz}, 6 \mathrm{~W}$
Dimensions: $337 \times 178 \times 130 \mathrm{~mm}$
Order As HK27E (Sin-Square Gen
Kit) Price $£ 145.95$

Hand-Held Digital Capacitance Meter

This compact hand-held meter will measure capacitance on its easy-to-read LCD display from 0.1pF to 199,900uF. The auto-range feature automatically selects the correct range of measurement from a choice of ten ranges. Four separate LED's indicate the correct unit of measure i.e. $\mathrm{PF}, \mathrm{nF}, \mathrm{uF}$ or mF .

The built-in polarised "Kelvin" terminals allow for direct measurement and a remote extension lead allows capacitors to be measured in situ. A zero offset con-

trol equalises the display level to compensate for stray capacitance within the meter.

Protection from excessive current is provided by clamp diodes and a 0.25A fuse when the instrument is turned on and by a 2.2 ohm, 2 W resistor across the input when the instrument is off.

The meter can test capacitors with a low operating voltage; it can detect leaky capacitors and it can measure electrolytic capacitors as a low bias voltage is superimposed on the test voltage.
Specifications
Ranges: 199.9 pF , 1999pF, 19.99nF, 199.9nF, 1.999uF, 19.99uF, 199.9uF, 1999uF, $19.99 \mathrm{mF}, 1999.9 \mathrm{mF}$.
Accuracy: With standards supplied:
Ranges up to $199.9 \mathrm{nF} \pm(0.5 \%$ of reading +1 count +0.5 pF)
Ranges over $199.9 \mathrm{nF} \pm(5 \%$ of
reading +1 count)
With laboratory standard:
Ranges up to $199.9 n F \pm(0.2 \%$ of reading +1 count +0.5 pF)
Ranges over $199.9 \mathrm{nF} \pm(5 \%$ of reading +1 count)
(Over temperature range 19 to $25^{\circ} \mathrm{C}$).
Display rate: Up to 1999uF: less than 1.5 seconds
Over 1999uF: less than 10 seconds
Operating temperature: 0 to $40^{\circ} \mathrm{C}$
Battery: 9V PP3 (not supplied)
Battery indicator: Displays "LO
BAT" when voltage drops to 5 V .
Test voltage: 2V DC max. 0.6 V to 1.4 V DC typical.
Dimensions: $191 \times 8351 \mathrm{~mm}$.
Weight: 450 G including battery
Order As HK28F (Cap Meter Kit)
Price $£ 139.95$

> More Heathkit items will become available from Maplin. Watch this magazine for details.

Lnviluas
 UEDYM IJN
 UENFMES ZX81/MODEM INTERFACE ZX81/MODEM INTERFACE

\star Connects ZX81 to Modem or other computers * TTL/RS232 compatible
 * Plugs into expansion socket via motherboard * 300 Baud standard transmission rate (adjustable)

by Dave Goodman

The immense popularity of our Modem project has prompted us to develop a series of connecting interfaces for most of the popular home microcomputers. This will enable twoway communication; either direct to other computers or via telephone links to systems such as the Maplin on line computer.

The ZX81 / Modem interface utilises an EPROM code translator for converting ASCII coded signals to $Z X$ code and vice versa, as the 2×81 is not ASCII coded.

Included in the article is a machine code program for running our interface with the ZX81. Perhaps the thought of machine code programming is anathema to many Sinclair BASIC users, but don't be put off. All that you need to do is type in the codes given, store the program on tape for future use, and RUN. If you so wish, the program can be used as a basis for further development by the more experienced programmer.

Circuit Description

REG 1 is fitted so that the power supply can be taken from the unregulated side of the computer PSU $(+9 \mathrm{~V})$. This saves undue loading on the internal regulator of the ZX81, and, if link 1 is not used, any external supply of +8 V to +30 V may be connected to P 2 instead.

Serial data transmissions enter the UART (IC6) via level change triggers from pin 3 and 6 (OV). All signals are TTL level, and may be connected direct or inverted by S 7 to suit the system. IC7 is a 4.8 kHz astable multivibrator, and supplies the UART, which needs a clock frequency of sixteen times the required Baud rate. Dividing 4800 Hz by sixteen will give the standard Baud rate of 300 .

Receive Mode

The I/O port IC3 has three ports designated A, B, and C. For the computer to access these ports it is necessary to make room in the memory map, so that IC1 and IC2 decode address lines A3 to A15 for addresses 8312 to 8315, which appear in the 'ghost' ROM area in the ZX81. D1 deselects the internal ROM area for use by the interface. IC3 is an 8255 , which has quite a comprehensive operating instruction set, but for our application all that is necessary is to set Port A to output mode, Port B to input mode, Port C upper (pins 10 and 11) to input mode, and Port C lower (pins 14 to 17) to output mode.

To do this a control code must be placed on the computer D0 to D7 data lines at address 8315, and the control code to set the mode is 138 . Of course,
setting the control code must be done immediately at the beginning of programs used to control the port, and would be something like POKE 8315 , 138.

Port C, address 8314, is set next to disable the EPROM output (OE HIGHIC4), and prevent IC6 from transmitting data DS HIGH and setting RDE low. This allows data from IC6 to be placed into Port B (address 8313). The DAV (data available) output goes high when serial data enters IC6, and this acts as a FLAG to tell the computer that information is ready to be read from Port B.

Unfortunately, the $\mathrm{ZX81}$ code system is not compatible with ASCII, so received CHR\$ will need to be translated. Port B is read and this data is placed into Port A (address 8312) and EPROM IC4, where it is translated and

Figure 1. Circuit diagram.
placed into Port B again. Reading Port B will produce the required character for printing to the screen display. Using an EPROM for code translation makes programming much simpler and reduces memory requirements, although IC4 could be omitted and data read from Port B direct. This arrangement would be used when communicating with another $\mathrm{ZX81}$.

Transmit Mode

Port C is used to reset the DAV output via IC5. Disable the receive data lines P5 to P12 by taking RDE high, hold IC4-A8 high (this address line must be high for Tx codes and low for Rx codes) and enable IC4 output by taking OE Iow. ZX codes for transmitting are then placed into Port A and IC4, and hence to June 1983 Maplin Magazine
the UART. DS (transmit data strobe) is taken low, to latch data from pins 26 to 33 into IC6, then DS is taken high to transmit data in serial form via IC5, S8, to pins 6 and 4 (OV).

Switches S1 to S6 set variouis status bits, character length and parity as shown in Tables la and b. Switches S7 and S8 allow the user to select either normal or inverted signals for receive or transmit, depending on the system connected. R1 and C6 reset both UART and I/O port when first switched on, and D2 and C7 apply a fast negative pulse for resetting DAV output.

Switch	Closed	Open
1	parity	no parity
2	one stop bit two stop bits	
5	odd parity	even parity

Table 1a.

Bits per		
character	Switch 3	Switch 4
5	closed	closed
6	closed	open
7	open	closed
8	open	open

Table lb.
A standard switch setting would be switches 1, 2, 3, and 5 open and switches 4 and 6 closed. This gives 7 bits per character, 2 stop bits and no parity. S6 would normally be left closed, as this places all status bits onto the output lines.

A	Description	Function
8315	Control address	Data 138 set mode
8314	Port C	Lower output Upper inpu
8313	Port B	put only
8312	Port A	Output only

Table 2. All Port addresses and their functions.

Construction

Start construction by fitting all 83 track pins. They are inserted through the holes in the PCB marked with a circle. Press them home and apply solder to both sides of the board. Next fit the five resistors and four dindes. Around one end of the diode body is a black band, and this should be lined up with the white bar on the PCB legend.

Now place all seven IC sockets in position. ICs 3 and 6 use 40 -pin sockets, IC4 uses a 24-pin socket, ICs 1 , 2 , and 5 use 14 -pin sockets, and IC7 uses an 8-pin socket. Solder these into place to prevent them falling out whilst you are completing the assembly.

Insert the DIL switches S1 to S6. They are of dual construction, and have two switches per package. Each switch is operated by moving one of the plastic arrows on the top, the numbers 1 and 2 being the 'on' position. The arrow crossbar is shown on the PCB legend to assist with correct orientation. Switches S7 and 8 are of a different construction, being the changeover type of switch, and these have a large plastic cap on top with three small arrows. Again, the legend will assist you in locating these components.

Insert the disc and plate ceramic capacitors. C9 is a silver mica type, and, being much larger than the others is easily recognised. When fitting Cl and 6 ensure correct polarity. Preset RV1 can now be fitted, as can the six veropins. Finally, insert a $1 / 2$ in 6BA bolt through the PCB, from the track side, and place a vaned heatsink in position over it. Mount REG 1 onto the heatsink, ensuring that the bolt goes through the mounting tab on the regulator body. No mounting kit or silicon compound is necessary here. Use a 6BA washer and nut to clamp REG 1 to the heatsink and PCB. All three leads can now be bent and inserted through the board for soldering. Solder all components carefully in place, cut off the excess leads and inspect for bad joints and short circuits.

Scrubbing excess flux from the track, using thinners and a stiff brush,

Figure 2. PCB legend and artwork.

Figure 3. Pinouts.

```
l PRINT TAB 6; "RECEIVE CODES"
2 LET T = 0
LET H$ = "O123456789ABCDEF"
POKE 8315, 138
5 POKE 8314, }
lO FOR I = O TO 255
15 PRINT AT 9,5; "ADDRESS DEC HEX"
20 POKE 8312, I
25 LET P = PEEK 8313
30 PRINT TAB 7; I+T; TAB 14; P; " "; TAB 19;
35 PRINT H$(1+INT(P/16));H$(1+P-(16*INT(P/16)))
40 NEXT I
45 IF T = 256 THEN STOP
50 CLS
55 PRINT TAB 6; "TRANSMIT CODES"
60 LET T = 256
65 POKE 8314, 13
70 GOTO 10
```

Program 1.
will make inspection easier and often remove solder blobs and whiskers otherwise overlooked.

Testing

Do not insert any ICs at this stage. Solder a connecting wire between pins 1 and 2, set RV1 wiper with its centre pointing to the arrow legend on the PCB. Set S4 to 'on', that is with the brown arrow at 1, and also set S 6 to 'on'. Switches 1, 2, 3, and 5 are set to the 'off'

5 REM TEST PROGRAM 2.
10 LET CW=8315
15 LET C=8314
26 LET B=8313
25 LET $A=8312$
36 POKE CW, 138
35 POKE C, 15
40 IF INKEY $\$\langle>$ "". THEN GOTO 40
45 IF INKEY\$= "" THEN GOTO 45
50 LET W\$=INKEY\$
55 POKE A, (CODE W\$)
60 POKE C, 13.
65 POKE C, 5
70 POKE C, 15
75 IF PEEK C <128 THEN GOTO 75
80 POKE C, 14
85 POKE A, (PEEK B)
$9 \varnothing$ POKE C, 8
95 PRINT CHR\$(PEEK B))
100 GOTO 40

position, and switches 7 and 8 to 'INV' With no power attached, plug the interface PCB into your ZX81 or Extendiboard, and switch on. Use a voltmeter connected to OV (pin 4/5), and check for +5 V on the output pin (right-hand side) of REG 1. Switch off, insert ICs and re-apply power. You should be rewarded with a cursor on the screen, as normal. If a frequency counter or osscilloscope is available, check for a 4.8 kHz signal on pins 17 and 40 of IC6, and adjust RV1 to suit. When testing programs, note that on a 1 K only machine the interface will still function although you will not be able to run the machine code program and have a full screen display.

Now enter and run test program 1 This will test all port locations, along with the EPROM addresses 0 to 511 The display data, printed in decimal and hexadecimal, shows ASCII and ZX81 CHR\$ codes stored in IC4.

After typing the program enter RUN/NEWLINE. The program will stop after printing EPROM address 511 ; with an error 9 at line 45 , which is all right. If, however, your test program fails before this make sure that you have entered all eighteen lines correctly. If you still have
problems the Port may be faulty, in which case you will need to POKE data into Port A and PEEK Port B to get an indication of the failure.

Next, enter and run program 2 Connect pins 3 and 6 together on the module, and press any key. Data will be transmitted and received, then printed on the TV display, proving that the module is functioning correctly. The display is limited to around 400CHR\$ in 1KB.

Using the Interface

As mentioned previously, the program and working system require a minimum of 1050 bytes of memory, which means that to display a full screen of data a RAM extension is required. You could, however, write a simple receive only routine, for testing your interface with modem systems, but BASIC is too slow for this application, so machine code programs become necessary. Program 3, entered into a REM statement, will allow twoway communication with the Maplin on-line computer, and also several other commercial data links. The TV display will be blank until data is received, whereupon the bottom line

```
10 REM "MI"
20 REM (Type in ll0 full stops)
30 FOR I = 16524 TO 16632
40 INPUT A
50 POKE I,A
6 0 ~ N E X T ~ I ~ I
```

Go into FAST mode, press RUN then NEWLINE and enter the following Decimal codes.
(Enter each cođe then NEWLINE.)
Each code is a number between 0 \& 255 inc.
$\begin{array}{lllllllllllll}62 & 138 & 50 & 123 & 32 & 205 & 14 & 12 & 14 & 0 & 33 & 122 & 32\end{array}$
$\begin{array}{llllllllllllll}54 & 11 & 54 & 10 & 126 & 230 & 128 & 40 & 28 & 58 & 121 & 32 & 254\end{array}$
$\begin{array}{llllllllllll}10 & 40 & 237 & 50 & 120 & 32 & 54 & 9 & 58 & 121 & 32 & 254\end{array} 118$
$\begin{array}{llllllllllll}40 & 220 & 215 & 62 & 32 & 12 & 185 & 40 & 213 & 24 & 216 & 229\end{array}$
$\begin{array}{llllllllllll}197 & 237 & 75 & 37 & 64 & 33 & 255 & 255 & 167 & 237 & 66 & 40\end{array}$
$\begin{array}{lllllllllllll}40 & 17 & 0 & 1 & 167 & 237 & 82 & 40 & 32 & 205 & 189 & 7 & 126 \\ 237\end{array}$
$\begin{array}{llllllllllll}75 & 37 & 64 & 33 & 255 & 255 & 191 & 237 & 66 & 32 & 244 & 50 \\ 120\end{array}$
$\begin{array}{lllllllllllll}32 & 33 & 122 & 32 & 203 & 118 & 40 & 252 & 54 & 13 & 54 & 5 & 54\end{array} 10$
$193225191 \quad 24164$
Program 3.
will fill with characters and scroll when full.

Carriage return codes will scroll the display while line feed codes are trapped and not used. Once you have established a data link, transmission can be direct from the keyboard - no transmit or receive mode control codes are required here. Provided that systems connected to the interface have echo facilities, you may print to the screen via the transmission path, not directly from the keyboard. Many shift characters are valid, but some of them will be decoded as question marks, along with all the unused EPROM address codes

Function and Graphics modes are not used, and should generate either shifted or direct key characters. Facilities do not exist for deleting characters or for clearing the screen. The BREAK key returns a space and NEWLINE gives carriage return when typing program 3.

Once the last character has been entered the program will stop running. Return to SLOW mode and press NEWLINE. You will see line 20 full of characters and symbols. Parts of the line will be blank due to code 118 being entered, but this is all right. Now check the data by changing line 40 to PRINTI, and line 50 to PRINT PEEK I. Now RUN 30 and a check list giving each address and the number stored there will fill the screen. To continue press CONTNEWLINE.

When you are happy with your efforts RUBOUT lines 30 to 60 and type in line 30 LETA=USR 16524. The function USR is below key L, and 16524 is the starting address of the machine code program. You would be well advised at this stage to save 'MI' on cassette a few times. 'MI' is short for Modem Interface, although obviously any recognition code could be used. If line 10 REM statement length is increased, the starting address 16524 will also be increased, so you must calculate this when changing the program name, or all will be lost!

To operate the system, hook up the modem, or whatever you are trying to communicate with, to pins 3 (serial input), 4 (0V), and 6 (serial output), and load the program. Type RUN-NEWLINE and make the communicating link. You may now receive or transmit data as required.

MAPCON NEWS

AMPLSNNELUS

CASHTEL - THE NEW WAY OF SHOPPING

Maplin's brand new Computer Aided SHopping by TELephone service (CASHTEL) opens on June lst. After this date, the message currently available on 0702 552941 will be replaced by a real time computer order system.

After accessing the system you will be able to enter stock codes and check the current price and whether we have sufficient stock to meet your requirements. If you wish, you may then place an order. You will only be able to do this if you have already bought from us by mail order and have been allocated a Customer Number. Alternatively, please send or phone your name and address to us and we will allocate a number for you. A credit card is also necessary.

You will then be asked to enter your Customer Number and name and address. You must enter them exactly as they appear on the label on the order form returned to you. If what you enter matches what is on file, you will then be able to enter your order

Type in the stock code and quantity of all the items you want. When this is completed, you will be asked for your credit card number (Access, American Express, Barclaycard or Mapcard). Note that goods will only be sent to the cardholders address as advised by the
credit card company.
You will then be told exactly how much you will be charged and if you accept, when you hang up the order you have placed will be passed to the printer in our warehouse. A few minutes later your order will be collected, packed and despatched.

Any European standard (CCITT) 300 baud modem will be able to communicate with our computer. Our computer is a Digital Equipment (DEC) PDP11/70 with 2Mbytes of MOS memory and 200Mbytes of on-line disk memory. Although you will not notice (our computer's response will appear instantaneously), there will be around 36 other interactive users accessing the system at the same time you are.

If the main computer is not available, you will receive a message showing the times when Cashtel is operating. If you continually receive busy tone or have any operational problems, please telephone 0702 554155 and ask for the DP manager. If he is not available, please leave a message with the switchboard operator. This will help us to monitor the service and provide more lines if necessary.

Try our Cashtel service today - it's tomorrow's way of shopping!

MAPLIN'S TOP TWENTY BOOKS

1. (4) Audio Circuits and Projects by Graham Bishop (XW46A) (cat. P41)
2. (1) Games for the Atari by S. Roberts (WA47B) (cat. P62)
3. (2) De Re Atari (WG56L) (cat. P62)
4. (5) Cost Effective Projects Around the Home by John Watson (XW3OH) (cat. P.41)
5. (3) Master Memory Map (XH57M) (cat. P62)
6. (6) Projects for the Car and Garage by Graham Bishop (XW31J) (cat. P30)
7. (12) VIC Programmers Reference Guide (WA33L) (cat. P63)
8. (-) The 6809 Companion by M. James (WG88V) (cat. P55)
9. (9) The BBC Micro - An Expert Guide by Mike James (WK04E) (cat. P63)
10. (-) Electronic Security Devices by R. A. Penfold (RL43W) (cat. P40)
11. (-) Remote control Projects by Owen Bishop (XW39N) (cat. P43)
12. (13) Power Supply Projects by R. A. Penfold (XW52G) (cat. P38)
13. (8) Atari BASIC Learning by Using by Thomas E. Rowley (WG55K) (cat. P62)
14. (-) International Transistor Equivalents Guide by Adrian Michaels (WG30H) (cat. P32)
15. (14) Electronic Synthesizer Projects by M. K. Berry (XW68Y) (cat. P50)
16. (16) The TTL Data Book (WA14Q) (cat. P33)
17. (11) Programming the 6502 by Rodnay Zaks (XW80B) (cat. P54)
18. (17) Towers' International Transistor Selector Update 2 by T. D. Towers (RR39N) (cat. P32)
19. (-) How to Use Op-Amps by E. A. Parr (WA29G) (cat. P35)
20. (-) Practical Repair and Renovation of Colour TV's by Chas E. Miller (RH27E) (cat. P48)

These are our top twenty best-selling books based on mail-order and shop sales during November and December 1982 and January 1983. Our own publications and magazines are not included. We stock over 450 different books relating to electronics or computing, and the full range is shown on pages 29 to 65 of our 1983 catalogue. For prices see page 29 of this magazine.

NEW ITEMS IN THIS ISSUE

BK74R	P.C. Edgecon 2×12 Way
GB19V	DXers Audio Processor PCB
GB21X	CMOS Crystal Calibrator PCB
GB22Y	Sweep Oscillator PCB
GB23A	ZX81 Modem Interface PCB
GB24B	Enlarger Timer PCB
GB28F	VIC20 RS232 Interface PCB
LK05F	DX'ers Audio Processor Kit

Price 23.86
Price $£ 1.90$
Price 22.72
Price 23.25
Price 84.75
Price $£ 1.40$
Price 82.90
Price $£ 14.95$

LK06G	Sweep Oscillator Kit	Price 118.95
LK07H	Enlarger Timer Kit	Price 227.50
LK08J	2X81 Modem Interface Kit	Price E24.95
LK10L	Crystal Calibrator Kit	Price 1215.95
LK11M	VIC 20/RS232 Interface Kit	Price 29.45
QY52G	2716/M6	Price 28.50
QY53H	BF173	Price E0. 19

MANCHESTER SHOP OPENS SOON

Our new Manchester superstore offering the full range of Maplin's electronic components, computers and software will be opening in mid-August 1983. Part of the new store will be a self-service area where you can browse around and choose the parts you want. Counter service will be available as well. Upstairs you will find our computer demonstration area with displays of hundreds and hundreds of different software packages for Atari, BBC, Commodore 64, Dragon, Microprofessor, Sord M5, Spectrum and VIC20.

You will find us at 8, Oxford Road opposite the BBC, between Piccadilly and UMIST. We're just a few steps from Manchester's Oxford Road station and about five minutes walk from the city centre. There is excellent parking on meters in the adjacent sideroads and we're about five minutes drive straight in from junction 10 on the M63 at the start of the M56. We'll have more details for you in our next issue.

CORRIGENDA

Vol. 1 No. 2 Burglar Alarm

The value of C8 on the Main PCB is now 68nF (WW39N).
Vol. 1 No. 4 Remote Controller for Amplifier In Figure 2, Pin 14 of ICl goes to $\mathrm{S} 2 / 6 / 5$ (Note PCB is correct)
Vol. 2. No. 5 Modem

D9 Function is "LOCK"

D10 Function is "Tx DATA"
D11 Function is "Rx DATA"
D12 Function is "ON LINE"
On cct dia. IC10a \& IC10c should be swapped (IC10a drives TTL O/P).

In Setting Up instructions, the signal at TR2 emitter should be a stepped sinewave of 800 mV (not TR1).

On some PCB's the "+" sign of C33 is shown incorrectly, the positive should go the outside of the board
Vol. 2 No. 6 VIC20 Talkback
in Parts List, C8 should be 10,000 pF not "nF"
2X81 Talkback
In text on page 8, second paragraph in the centre column "with suitable programming IC6 will place D0 to D8 to.......etc" should read "DØ to D7"

First Base

In text on page 21, in last sentence of paragraph before "CONSTRUCTION" heading, "D5" should be "LED 1".

In Figure 10, on page 25, the value of D5 is " 6 V 2 "

In Figure 4, the arrows shown on D10 should be in the opposite direction.

COMING SHORTLY

1/0 Ports for the Dragon 32 and Spectrum TL/RS232 Converter
IK RAM extension for the 2×81, which can be easily expanded up to 7 K Part 2 of the Telephone Exchange
VIC Extendiboard with an optional 3 K RAM An article on How to Interface the BBC Micro Synchime unit to go with Synclock, Synwave and Syntom
Minilab project Doorbell for the Deaf
Electronic Codelock Logic Probe
Dragon/RS232 Interface

SPECIAL OFFERS

CAR AERIAL BOOSTER

A high gain car aerial booster amplifier covering the Long, Medium, Short and VHF wavebands. The unit simply plugs into your radio and the existing aerial lead, plugs into the amplifier. We have measured gains of 20 dB at 90 MHz , which should give largely noise-free reception on previously noisy FM stations and a big increase in signal strength on weak AM stations The unit is only suitable for use with negative earth cars, and the red lead from the amplifier must be connected to +12 V DC.

Specification:

Supply: +12V DC @ 10 mA
Frequency range: 150 kHz to 106 MHz
Body dimensions: 85 mm long $\times 18 \mathrm{~mm}$ dia.
Coax cable: 300 mm long terminated in car aerial plug
Supply wire: 450 mm long
Our usual price $£ 6.95$
Order As SP02C (Car Aerial Booster) Price £3.45
and get one for less than half price!

MULTIMETER 2050

This meter has 14 ranges, and features a 20,000 ohms per volt DC and 10,000 ohms per volt AC movement, making it more accurate on transistorised circuits. Overall size: $120 \times$ $85 \times 30 \mathrm{~mm}$

Ranges:
DC Volts:
AC Volts:
DC Current
Resistance:
$5,25,125,500,1000$ at 20,000 ohms per volt. $10,50,250,1000$ at 10,000 ohms per volt. $50 \mathrm{uA}, 250 \mathrm{~mA}$
$0-6 \mathrm{k}!, 0$ to $6 \mathrm{M}!$ (300 s : and 30k! at centre scale)
Decibels: (switch at 10 VAC)-20 to +22 dB (ref: $0 \mathrm{~dB}=1 \mathrm{~mW}$ in 600Ω)
Supplied complete with detailed operating instructions, one red and one black test lead with probes and one battery replacement type HP7).
Our usual price £11.95
Order As SP03D (Multimeter 2050) Price $£ 9.95$
and save yourself $£ 2$.

LOW-COST DIGITAL MULTIMETER

This digital multimeter offers excellent value for money at our normal price, and with our special offer it is even better. The meter features automatic zero and polarity, full overload protection, $10 \mathrm{M} \Omega$ input impedance, and low battery indication 'BT' on left side of display. It has a basic accuracy of 1%, and 13 ranges. The last three digits are blanked to indicate that the input is over range.
Overall size: $138 \times 86 \times 36 \mathrm{~mm}$
Weight: $\quad 300 \mathrm{gms}$
Input
Impedance: $10 \mathrm{M} \Omega$
Accuracy: DC Volts: $\pm 1 \%+1$ digit AC Volts: $\pm 2 \%+1$ digit DC Current: $\pm 1.5 \%+1$ digit
Resistance: $\pm 1.5 \%+1$ digit
Ranges:
DC Volts: $\quad 2,20,200,1000 \mathrm{~V}$
AC Volts: $\quad 200,500 \mathrm{~V}$
DC Current: 2, 20, 200mA
Resistance: $2 \mathrm{k} \Omega 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega 2 \mathrm{M} \Omega$
Supplied complete with operating instructions, one red and one black test lead with probes, carrying case, wrist strap, and battery (replacement type PP3).
Our usual price £29.95
Order As SP04E (Low-Cost Digital Multimeter) Price £24.95
and save $£ 5$. We believe this may be the lowest price you have ever seen for a digital multimeter.

FOUR TYPE AA NI-CAD BATTERIES

A pack of four type AA NiCads, replacements for HP7 batteries. Used in conjunction with one of our NiCad chargers you can ensure that you never have to buy disposable batteries again. For full details see page 26 of the 1983 Maplin Catalogue.
Our usual price $£ 1.25$ each
Order As SP05F (Pack 4 NiCads AA) Price £3.99
and save yourself over $£ 1$.

PRICE LIST

All prices shown in this price list are valid from 16th May 1983 to 13th August 1983
 Please note new telephone number for Sales Only (0702) 552911

Prices shown in this list include VAT at 15% where applicable. Items marked NV are rated at 0% and the price shown applies both to inland and export orders. Overseas customers should add up the total cost of all items except those marked NV and deduct 13\% to arrive at the total price excluding VAT. Alternatively multiplying the total price (except NV items) by 0.87 will give the total price excluding VAT. Please add extra for carriage on all overseas orders. Carriage will be charged at cost.

Although postage charges to customers living in the Republic of Ireland and in the UK, but not on the UK mainland, are the same as to mainland addresses .we regret that we must levy an additional charge of $£ 5$ on each order containing any items marked "Delivery by Carrier".

Will customers from the Republic of Ireland please add 40p and then 35% to the cost of their order now that the Irish pound is not equivalent to sterling, to cover the rate difference and negotiation fees. We will refund any difference; please state cheque or credit note. Alternatively if you pay by bank draft drawn in pounds sterling on a London bank, then you need add nothing extra. Bank drafts drawn in pounds sterling on a London bank should be readily available from your local bank.

All prices are for the unit quantity shown in the catalogue (unless shown otherwise on this list) i.e. each, per pack, per metre etc. All prices include postage and packing. There is a 50 p handling charge which must be paid on all orders having a total value of under $£ 5.00$.

The price list is intended for use with our 1983 catalogue and applies to all mail orders. Prices in our shop are generally lower on heavy items as mail order prices include postage and packing costs.

Copies of manufacturers' data sheets are available for most IC's price 40 p each.

NYA	Not yet available
NA	Not available
DIS	Discontinued
TEMP	Temporarily out of stock
OOP	Out of print
FEB	Out of stock, new stock expected in month shown
\dagger	While stocks last
NV	Indicates that item is zero rated for VAT purposes
See Amendments to Catalogue	
$\$$	Please add $£ 6$ carriage if your order contains one or more items marked thus

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity. Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.
Most items in the price list have a letter in brackets after the price which indicates the trade quantity as follows:
(A) Trade quantity
(B) Trade quantity

5
$\begin{array}{ll}\text { (D) Trade quantity } & 25 \\ & 50\end{array}$
(E) Trade quantity 100
(F) Trade quantity 250
(G) Trade quantity 500
(H) Trade quantity 1000

Prices charged will be those ruling on the day of despatch

Catalogu Page No	inclusive PRICE	Catalogue Page No.		1983 Catal Page	inclusive PRICE	$\begin{aligned} & 1983 \\ & \text { Catal } \\ & \text { Page } \end{aligned}$	inclusive PRICE	1983 Catalo	inclusive PRICE															
Page 15				Pase 25		B00KS		at																
${ }^{\mathbf{X F 3 O H}} \times$	Prate Atrack Poster00...... ${ }^{\text {M }}$ (D)					Page 29		${ }_{\text {RRPO6G }}$	Book NE209 $\qquad$$\qquad$ c8. 45 NV Book N8041 G3. 48 NV															
AERIAL		Bwasy	Lof Bracket Em4e c2.65 (C)																					
		- \times ¢ 567	Lashung Kit Type $6 \ldots . . .$. 	$n 43 W$$* \times 654]$					Book NB188.........................88. 22 NV															
						WG10	8oot Ne147.................. 58.53 NV (B)																	
	Mustheiler	$\times \mathrm{x} 600$		BATTERIES			Book N787........................... ${ }^{\text {dis }}$		Book EP1 C...........................51.50NV															
	shers	x06	Mast E..........................E7.45 (8)	te			Book NB157...............................2NV (C)	RH1M	800\% 8P14.........................2.15NV															
	Mushliller FM24TT.......... $\mathrm{E}_{1} 17.80$ (A						RR39N Towers Tramustor 8k.-..... .f11.25NV																	
X028F	Mushkilier FM284T OIS		Masthe ed UP1300/w $£ 11.84$		$\mathrm{NH}_{1} \mathrm{Cad}$ AA		RL3am	Book N818987.61																
	Trucolour TC10 Grp A...... 110.50 (A)		Masthead UP1300/V....... ¢11.94 (A)		d				Book 3P108															
$\times \mathrm{x} 31 \mathrm{j}$			Power Unit PU1240 814.65 (A)																					
Xe23a	Trucolour TC10 Grp E......... 69.94 (8)	Page 23				XW3																		
	Trucolour TC13 Grp A......f11.85 (A)		Amp $\times 31 \mathrm{~V}$ \qquad 1515.80 (A)	Wr22Y Nı.Cad Chargere77.95 (B)				Page 33																
	Irucolou			-3e 27		$\begin{aligned} & \text { Wro } \\ & \text { WGOON } \\ & \text { XWOAN } \end{aligned}$																		
	Trucolour TC18 Grp A...... ¢13.95 (A)	,	Diplexer UF20........................ 5.99																					
X $\times 1$	Trucolour TC18 GrdC/D.... 213.25 (A)					Boon ${ }^{\text {T } 103}$																		
			Surface Co-Ax ouniet --.......75p (E)																					
	Extragain XG5 Extragsin XG8 Gr	P絢 24																						
	Extragain X CB_{8} Grou		Sice Dule Co.Ax Ott 52.74 (C) TY/FM Oiter																					
X0910	Extragin XG8 Groch			YR61f4.5V Batt BoxHF29G6u Batt Box		Page 31		Walgy TI Linear IC Guide..............E3.3sWV																
	ExtragainxG14 Group																							
	ExtraganX $14.14 \mathrm{GrPC/O}$... 337.30 (A)	L80978 $8 W 59 P$$8 W 600$		Pase 34																				
$\times 50 \mathrm{E}$	Extragain \times C2I Wdit																							
	terna	LBIIM																						
	Curaterna Ca	$\begin{aligned} & \text { YG2OW } \\ & \text { YG21X } \\ & \text { YG23A } \\ & \text { LBIAN } \end{aligned}$		Page 28																				
Page 22						WW64U		RO54]	200 Data															
$\begin{aligned} & 8 w 42 v \\ & 8 w 43 w \end{aligned}$	Univ. Clamp Type 1. 195 (D)				Large Batt Hiter. Dummy Betcy PP3 Buttery Holder	$\begin{aligned} & \text { WA21X } \\ & \text { WGIIM } \end{aligned}$	Undrstinf Book JW748 \qquad ...E5.18NV	$\begin{aligned} & \text { WG23A } \\ & \text { WAOTH } \end{aligned}$ WAO6G	Book Jw568. II Bpolar Memo Doma............. 45 NV TI mos Mr tory Deta............E5. 2 ENV															
TRADE QUANTITIES																								
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity. Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.																								

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will nepd to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best.price we can offer regardless of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

trade quantities
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

Page 181	
Rx70M	Wre
WP13P	Wire Bulb 12 V
WL／4R	LES Bulb 6.
W75s	LES Bulb 12 V
RX84F	Neen Bulb
WL76H	Bulb MES
WL77，	
WL78K	MES 6 V 0.6
	6.5
	Bulb MES 12V 1．2W $\quad 28$
WL81C	Bulb MES 12 V 2.2 W
WL820	
LO102	portable Lamp
$\times 1 / 21 \mathrm{~N}$	
LQ1IM	$12 \vee$ Tube $\ldots \ldots \ldots \ldots$
	240 V Inspection Lamp \quad ．$\quad 5560$
3 H	Pygmy Bulb Green
	Pygmy Bulb Red
	Pygmy Bulb White．．．．$\quad 700$（E）
H856L	Pygmy Bulb Yellow．
	Spot lamp Am
WF260	Spot Lame Blu
WF27E	Spot Lamp Cle
WF28F	Spot Lamp Green
	Soot Lamp Red．．－．．．．．$\quad 1285$
	Lamp Violet ．．．．．．．．．i2
YP29G	Spot Hoider
32k	BC Clio－On Hdr Twin ．．．．．．．．．EMP

Page 182		Page 193	
WF22Y	Goosenect Lamo Alarn Eeacon	XbOAE	Earn ${ }^{\text {Ba }}$
32 K	Mini LED Red $\quad 10 \mathrm{D}$		Stao Tab Black
334	Mini LeD Graen Me	${ }_{\text {flicr }}$	
	Mini LED Yellow－$\quad 19 \mathrm{l}$（ 6 ）		
	Mini Lee Clip $\quad 130$	FFF_{6}	$\begin{array}{ll}\text { Stoo Tab lvory } & \text { 750 } \\ \text { Stoo } \\ \text { Tab Mareon } & 750\end{array}$
${ }^{86}$	LeD Green 190	${ }_{\text {Fl7 }}$	Stoo
WL296	LED Orange $\quad 33 \mathrm{D}$		Slos Tab Red Stop Tab White
$\underset{\sim}{W} \underset{\sim}{W}$	LED Yellow		Stop Tab Yellow $\quad 750$（E）
			${ }^{\text {a }}$ acc
NH60			${ }_{5}$ Tab Bo
YH22S	Square LED Clid $\quad 179$		
		BRCOJ	Strab Clarom 4\％
$\underset{W 464}{ }$	Shape LERR1 Red	${ }^{\text {Bro }}$	
${ }_{\text {r }}$	Shape LED R1 Orange		S Tab Diy virro Solo－E1．10
	Snape LED S 52 Red		${ }^{\text {S }}$ Srob Diapason 8°
YYS1F	Shape LED L3 Red．． 210 （G）		St
${ }^{\text {r5 } 52 G}$	Shape LED L3Green \quad 260（\％）		
	Shape LE0 T4 Red $\quad 22$	${ }_{8813} 8$	
Sbl		8R149	
W57M	Shape LED A5 Red $\quad 23 \mathrm{c}$（G）		ab fure $4 . . .3$－
	Shape LED A5 Green $\quad 270$（f）		
			STab fute 16 \％till
Page 183		BR21X	
H	Clypite Amber－$\quad 16$	Brosf	
	cinpite Green		Tab Ho
57M	Cliplite Yeilow－ 160 （6）	8R23A	
Y661R		暊2589	
599		Qrog	$\mathrm{S}^{\text {S }}$ Tb Pra
gYeot	Chrome LED Small Gn．．．．ins	－	
9Y48		By1M	S Tab Reed 4^{*}
	Black Beze	兂	Stiab Rotor Eas
G33L		8R27E	
	Ornge Bargraph Ds		STab Salicional
¢	7ilses Red Iype	${ }^{290}$	S Tab Saroonone
FR38R	7. Seg Red Type $4 \times \quad$－ 1.25 （D）		
Page 184			
FR39N ${ }^{\text {FR4NU }}$			STab Sus
		BYI5A $8 R 33 \mathrm{M}$日R35Q	
OXO4E		${ }^{\text {BR36P }}$ $8{ }^{8} 3735$	STab Tuba 16＇\quad－\quad－ 1.10 （0）
$\begin{aligned} & \text { By67x } \\ & \text { Byoby } \\ & \text { Brob } \\ & \text { B770 } \end{aligned}$			St fab viorato
	OD Dispor Tpee Coill	8R388	
			${ }_{960}^{960}(8)$
Page 185			
		BYıV	
	Filler Red		
	Filter Yellom $\quad 650$		
	$\varepsilon 4.8:$		

PANEL METERS

RN74R	Leve
L8808	S18
L879L	Tuni
RW	
	Quick Fi Mtr 50
RK06G	OuI
RK07M	
K08	Qulch F
RKO9K	Quick Fit Meter 1 ma
RK11M	0
RK13P	Quich．Ft Meter 100 mA
	Quich Ft Meter 500 mA
EK15R	
RK16S	eet
－	
RK18U	Quick－Fit Meter 50v
RK19V	er VU．．．
RK20w	

\section*{| | |
| :---: | :---: |
| | |
| | |
 }

Page 204

BW40T	1 C Pads $200 \ldots \mathrm{C} .60$
BW41u	Drating Template $\quad 1 \quad . \quad 94 \mathrm{p}$
HX45Y	Transter Sheet 1
HX46A	Transter Sheet 2．．．．．．．．．．．．．．． 42ρ（F）
HX478	
HX4BC	
Hx490	Transter Sheet 5．．．．．．．．．．．．．．．．．420
Hx63T	Transter Sheet 6．．．．．．．．．．．．．．．．．42D
HX64U	Transter Sheet 7
HXGSV	Tra
MX66W	Transter Sheet 9.
MX67x	Transter Sheet 10．．．．．－．．．． 42
Hx68Y	Transfer Sheet 11．．．．．．．．．．．．．． 42
HX83E	Transfer Sheet 12
HX84F	Transter Sheet 13．．．．．．．．．．．．420（F）
HX44X	Transter Kit．．．．．．．．．．．－－．．．．． $\mathbf{1 3 . 7 5}$（C）
PROJECTS	
Page 208	
	Minicon Pl 17way
BH67X	Rt－Angle Mnen P1 15 W ．．．．．65p（E）
BX98G	Jumper Cable 17．way ．．．．．．n． EB 65 （ C
YKO6G	Pedalboard Cableform－．．．．．$£ 2.98$（C）
H	Steel Washer 48A $\quad . \quad 110$（G）
\＄XY94C	Matinee Front Panel．．．－．．．． 817.95 （A）
\＄xY9	Matinee MtIwk Kt－－．i．．．．．$¢ 9.59$
	End Cheek Set
YKO4E	Matinee PSU But ．．．．．．．．－¢1．60（0）
Yk05F	Pot Mntg Brik …．．．．．．．．790（E）
	Reset Spring－$\quad . \quad 3 \mathrm{~m}$（H）
H8600	Latchork 5 wiy ．－．．．．．．．．．．．．． 270 （6）
	Latch Brkt 16 way $\ldots \ldots . . . \quad . \quad . \quad 720$（E）
	Reset Bar 15way－\quad－$\quad 350$（f）
HY28F	Latchlerkt 9way …
	Reset Bar 6way ．．．．．．．．．．．．．．160（G）
$15 R$	
1865	Matinee Main PCB．．．．．．．．．．．．．50．00（A）
XYB8V	Matinee Contact PCD．．．．．．．．． $\mathbf{1 7 . 3 0}$（B）
XY91Y	
	riage with XY91Y ．．．．．．．．． 11500
xY938	Matinee Cabinet Kit ．．．．．．．．．$£ 99.50$（ ${ }^{\text {a }}$
\times x 605	
	Matince Module Kit．．．．．．．． 8399.95 （A）
x $\chi_{4} 3 \mathrm{~W}$	Matinee Dem Cassette．．．．． 1.1 .99 （D）
xH55k	Matinee Book．．．．．．．．．．．．．．．$¢ 2.50 \mathrm{NV}$（ C

Pase 210	
PR45Y	AS314
${ }_{\text {PR88 }}$	
通	
018	Divider Boa
$\begin{aligned} & 88020 \\ & 88030 \\ & 8807 \\ & 88081 \\ & 88090 \end{aligned}$	Tone Board＇A＇，．．．．．．．．．．．．．．．．．ct． 45
$\begin{aligned} & 881010 \\ & 88775 \\ & 8878 \\ & 88791 \\ & 88808 \end{aligned}$	
	Pedal PCB E＇．．．．．
	Pedal Diode PCB ．．．．．．．．．．．．．．．． \＆
	Auto Ogn Gen／Clk PCB
	Auto Ogn Crd Cdr PCB－．．．3．95 C）
	$\bigcirc \mathrm{O}^{1}$
	tom OMAPSU PCB．．．．． 4.35 （C）
	Organ mixer PCB．．．．．．．．．．．．．－ 5.3 .52 （C）
	$2 \mathrm{CO5PSUPC8}$
	32 Note PdI PSU PCB．

8 B 88 8 8 8 8 8 8

Page 212

Page 214

300	
3800 Interface PCB Synth Otot Stge PCB	
800 Front Panel．．．．．	C11．98（8）
3600 VCF Mtg Bkt．	
3800 Sp．Ext	55p（E）
3800 vCA Bkt	550
3800 Intlace	
dear Pan	5
Cabin	
000 Synth Kut	．$£ 336.75$（A）
rr in Uk with LW	
，	
Synth Guide Book	30
3800 Patch Chart	

XF43W
Page 215

 Page 219

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price．See table at start of price list．If you buy less than the quantity shown then the price is that shown．If you want to buy the quantits she the quantity．
quantity is shown，then the price shown is the Trade quantities shown for wires or cables of any type is in metres，not ree（trade quantity 500），you will need to order 500 packs which is equal to 5000 tags． June 1983 Maplin Magazine

TRADE QUANTITIES
than the quantity shown then the price is that own If you quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less quantity is shown, then the price shown is the best price we can offer regardless of the quantity Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trad
number of packs, i.e. to qualify for a trade price on Tag 28 A for example (trade quantity 500) y

TRADE QUANTITIES
The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardiess of the quantity
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.
June 1983 Maplin Magazine

TRADE QUANTITIES

$\begin{array}{lr}1983 & \text { VAT } \\ \text { Catalogue } & \text { inclusive } \\ \text { Page No. } & \text { PRICE } \\ \text { WQ30H LF351 } & 560 \text { (E) } \\ \text { W031 } & \text { LF353 }\end{array}$

Pase 298

Page 304	
8Y19V LM1035	
O33L	LM1035N
QY34M	LM1038N

준요

$\underset{\text { What }}{\underset{\text { WH2 IX }}{ }}$	M 254 M108
Pase 307	
ryply	M147
H89w	Ar.3.1350
Wheow	TDA1022.
rH33L	76489
Page 308	
W79L	tca350z
n+32k	76477
YQ42V	Sound Ete
Pate 310	
Paxe 311	
wo37s 81350 0 OH 45	LM1820
	TCA 6550
	MC13109
	Deconer PC'

Pase 313		
84878	MC1496.	E)
${ }^{2} \mathrm{LOTH}$	SG3402.	4.35
$8 \mathrm{Hz50}$	CA3046	720 (E)
¢013m	V1000C	¢4.30 (C)
rH66W	SL490	63.35 (C)

Paxe 314

Page 315

Page 316

$\begin{array}{lr}\text { YO65 } & 8038 \mathrm{PCB} \\ 8 W 808 & 4151 \\ 80018 & \text { DACOEOILCN }\end{array}$

Pate 336

Prage 337

Page 338

WYos Standard Fon \ldots El5.50 (A)

Page 339

$\begin{aligned} & \text { HY12N } \\ & \text { OYIS } \\ & \text { K16S } \\ & \text { HL39N } \\ & \text { FL40T } \end{aligned}$	
$\begin{aligned} & \text { FL38R } \\ & \text { FL37S } \\ & \text { FROBJ } \\ & \text { F } 809 \mathrm{~K} \end{aligned}$	
Page 340	
$\begin{aligned} & \text { YB25C } \\ & \text { HY96E } \\ & \text { KG149G } \\ & \text { KQ7i4N } \end{aligned}$	
W52G	2 in Piezo Tweeter
Page 341	
LH81C	
$\frac{\mathrm{CH}_{2} 2 \mathrm{O}}{\mathrm{LH} 83}$	Boom Mic Headphone..... C 13.90 (A$)$ Steregphone OH $150 \mathrm{P} . . . \mathrm{m}$. . 4.25 (C)

Page 342

Page 343

Pase 332

TRADE QUANTITIES

The letter in brackets after the price indicates the minimum quantity of that item you can buy and qualify for a trade price. See table at start of price list. If you buy less than the quantity shown then the price is that shown. If you want to buy the quantity shown or more of that item, then please contact us for a trade price. If no trade quantity is shown, then the price shown is the best price we can offer regardless of the quantity.
Trade quantities shown for wires or cables of any type is in metres, not reels or parts of metres. Trade quantities for nuts, bolts, washers, Hiatts etc. refers to the number of packs, i.e. to qualify for a trade price on Tag 2BA for example (trade quantity 500), you will need to order 500 packs which is equal to 5000 tags.

NEW ITEMS PRICE LIST

The following is a list of all items introduced prior to this price list but since publication of our 1983 catalogue.

8ATTERIES
BK45Y HPH Single Box
BK46A HP 2 Single Box
Price 19p
Price $19 p$
BOOKS \& MAGAZIMES
WK05F Mastering Visicalc by Douglas
Hergert
Price $\$ 12.95 N V$ Hergert
WK06G Hart's Dictionary of BASIC by WR06G Hart's Dictionary of BASIC by
W. A. Hart W. A. Hart
wk07H The Spectrum Pocketbook by
Trevor Toms
Prices 7.65 NV wKO\& The Spectrum Games Companion by Bob Maunder Price $£ 5.95 \mathrm{NV}$
wK09K Mastering CP/M by Alan Miller WK10l Adveres witrice elw. 50 NV WK10L Adventures With Digital Elec.
tronics by Tom Duncan Price fi 25 NV wKilm Assembly Language Program. WK11M Assembly Language Program-

Price Es.65NV Clifford Ramshaw Price E6.95NV WK13P Understanding Your Spectrum by Dr lan Logan
WK140 Practical Design of Digital Circuits by lan Kampel Price LI1.20NV WK15R Programming the BBC Micro by
P. Williams P. Williams
wki6S Programming Languages for
Pr Micros by G. Marshall prices $£ 6.75 \mathrm{NV}$ WK17T Programming Microcomputers
With Pascal by M. Beer Price $£ 7.70 \mathrm{NV}$ WK184 Over the Spectrum
WK29V Introducing Spectrum Code by lan Sinctrum Machine Code by lan Sinclair Price £8.95NV W. Marshall WK21X Machine Intelligent Programs for the 16K ZX81 by Chartton, Harrison \& Jones WK22Y Games $2 \times$ Computers Play by Tim
Hartnell Hartnell

Price 33.25 NV XAO5F Maplin Magazine Vol 2 No 5
XA06G Maplin Magazine Vol 2 No 5 pNV

BOXES

HY25C Display Box
Price 11.25

COMPUTERS

A.E. 10-48K-KF260 Price $£ 27.50$ Adventurerand with Graphics Alien Garden IE-8K-KFoon Andromeda Conquest IC-32 Price $\mathbf{2 2 7 . 4 5}$ Andromeda Conquest 10-40\%-KH20 11.45 Price 21745 Ant Eater IE-16K-KF58N Price 229.95 Anti-Sub Patrol 1C- -krborice $£ 15.95$ Anti-Sub Patrol 1D- KF67X Apple Panic 1C-16K-KB92A Price 224.50 Arcade Machine 10-48K-KF28F $\mathbf{E 2 3 . 5 0}$ Armour Assautt 10-40K-KB9994 Astro Chase 1E-16K-KF65y Price £27.45 Atarwriter 1E-16K-KF18U Attack At Ep-Cyg-4 1E-16K-KFs
Baia Buggies 1C-16K-KB740 $£ 34.9$ Baja Buggies 10-16K-K875s 222.95 BASIC Compiler 10-48K-KF25C 275.00 Basic Routines 1C-15K-KBr4F $£ 17.99$ Basic Routines 10-32K-KB85G 217.99 Battle For Normandy 1C-32K-KB38R. $£ 28.95$ Battle for Normandy 10-40X-KB39N.
Beauty \& Beast $1 E-16 K-$ KFF64U $£ 29.95$ Boulders \& Bombs 1E-16K-KF4

Brainbogglers 1C-16K-KF82D $£ 12.50$ Brainbogglers 10-32K-KF83E $£ 12.50$ Bug OHI 1C-16K-KB61R 3ug Off 10-32K-K8623 Character Graphios 10 -KF53H Character Graphics 10-24K-KF7 Chicken 1E-16K-KB91Y Choplifter 1E-16K-KB87U Claim Jumper 1E-16K-KB67X Clowns \& BaHoons 1C-16K-KB79

Clowns \& Balloons 10-16K-KB80

Controller 1C-16x-mu1 Controller 10-40K-KH Crossfire 1E-16K-KB93 Crypt of The Undead 10 231. Curse of Crowiey Manor 1C-16K $£ 20.75$ Cytron Masters 1C-32K-Me41U 817.95 Cytron Masters 1C-32K-KB41U Danger in Drindisti (Part 2) 1C-32K-KFOAE Danger in Drindis
$1 D-32 K-K F 05 F$ David's Midnight Magic 1C ier David's Midnight Magic 10-48K

Defender 1E-16K-KF10: Deluxe invaders 1E-16x Disk Utilities 10-32X-KF69A Diskey 10-32K-KBest Dragon's Eye 1D-40K-KB32K Drelbs 1E-16K-KF39N
Earthquake - San Francisco 190 liminator 1E-16K-XF61P Embargo $1 E-8 K-K B 43 W$ Escape From Vulcans isle Escape From Traa
Escape From Traam 1C-16K-X
ET Phone Home 1E-16K-KF19V irebird $1 E-8 \times$ Mo7 Firebird 1E-8X-XB70m Dis ort Apocalypse 1E-16K-KF40T 829.95 Fortune Hunter 1E-16K-KF57M Frogger 1C-16K-KB68Y
Frogger $10-32 K-K 869 A$ GFS Sorceress 1C-48K-KB26D GFS Sorceress 10-40K-K827E

GTIA Graphics 9 to 11 1D-24K-
Galactic Gladiators 10-48K-KFO.
Galactic Trader 1C-32K-KB25C Galaxian 1E-16K-KF11M Genetic Drift 1C-16K-KB65V Ghost Town with Graphics 10-48K-KH03D
Golden Voyage with Graphics Golf Challenge $1 \mathrm{C}-16 \mathrm{~K}-\mathrm{KB} 820$ Golf 1E-16KENB44X
Graphic Master 10-40K-KF34M Graphic Master 10-40K-KF34Mi
Graphic Generator $10-32 K-K F 350$ Graphics Machine 10-48K-XF88Y

Guess. What's Coming To Dinner
1C-16K-KF91T
Guess whats Coming 10 Dinner 10-32K-KF92A
to Dinner Guns of Fort Defiance 1D-32K-KB96E Hellfire Warrior (Part 1) 1C-32X-KN.92C Hellfire Warrior (Part 1) 10-32K-KF030 Home Filing Manager 20-16K-KF52G Instedit 1C-16X-KF89 nstedit 1C-32K-KF90X ourney To The Planets $1 \mathrm{C}-32 \mathrm{~K}$ Journey To The Planets 10-32 Juggles House 1C-16K-KF490 Juggles Rainbow 1C-16K-KF47B
Juggles Rainbow 10-16K-KF48C Jump Man 10-32K-KF68Y Kids 3 (4 programs) 1C-16K-KF7 Kids 3 (4 programs) 10-32K-KF79 Kids 4 (4 programs(1C-16K-KF80 Kids 4 (4 programs) 10-32K-KFS1C King Arthur's Heir 1C-16K-KB97F King Arthur's Heir 10-40K-KB3em

Knockout 1C-16K-KB81C
Labyrinth 1C-16K-k871N Labyrinth 10-32K-KB72P Mama Mia 1E-16K-KF63T Memory Map Tutorial 1C-16K-KF7 Memory Map Tutorial 10-24K-KF7 Mission Impossible with Graphic 1D-48x-KF97 Monster Maze 1E-8K-KF01B Moon Patrol 1C-16K-KH23 Moon Shuttle 1C-16K-KF22
es
228.95
$\$ 27.45$
227.45
818.95
f27.50
${ }^{112.95}$
cex

29.95
$176 \mathrm{H}^{2}$
2125

$£ 22.95$
14.50
$\begin{array}{r}1828 F \\ \hline\end{array}$ K20.4
222.95

Moon Shuttle 1D-1EX-KF23 Morloc's Tower 1C-32K-KF140 Morloc's Tower 10-32K-KF15
Music Lessons L Player Piano 1C-16K-KF42 Music Lessons \& Player Piano
10-32K-KF43w Music Major $1 \mathrm{C}-32 \mathrm{~K}-\mathrm{XF} 86 \mathrm{~T}$
Music Major $10-32 \mathrm{~K}-\mathrm{KFB7U}$ Music Major 10-32K-KF87U Mystery Fun House with Graphics 10-48K-KHO1B
Necromancer $1 E-16 K-K F 37 S$ Nitro 1E-16K-K.
Number Stumper 1C-16X-KF93 Number Stumper 1D-16K-KF94C O'Riley's Mine 10-16K-KF32
O'Riley's Mine 1C-16K-KF31 Page 6 1D-24K-KB248 Picnic Paranoia 1E-16K-KF13P Pirate Adventure with Graphics
10-48K-KF96E Plattermania 1
Princess \& Fros-8K-KF12N Protector 1E-16K-KB88V Prototype's Adventures 1C
Prototype's Adventures 1D-32K
Pyramid of Doom with Graphics Oix 1E-16K-KF165
Rear Guard 1C-1EK-KB47B
Rear Guard 10-24K-KB48C Reptilian 1E-16K-KF41U Rosen's Brigade 1C-16K-KF29e Rosen's Brigade 10-16K-KF30H S.A.G.E. Pack also contains 48K
on Disk 1C-32K-KH12N Savage Island I with Graphics 1D-48K-KHO4E
Savage Island II with Graphics Sea Dragon 1C-16K-KB5eN Sea Dragon 10-32K-KB59
Sea Fox $10-48 K-K B 7 M$ Serpentine 1E-BK-KB600 Shadow World 1E-16K-KF36P Slamball 1E-16K-KF38R
Slime 1E-16K-KB98G
Sound Effects 1C-16K-KF74R
Sound Effects 1D-24K-KF75S Space Games 1C-32K-KB5SK Space Games 10-32K-KB56L
Speed Reading 5C-16K-KF51F Speed Reading 5C-16K-KF51 Star Blazer $10-48 \mathrm{~K}$-KF27 Starcross $10-32 \mathrm{~K}-\mathrm{KB37S}$
Stellar Shuttle $1 \mathrm{C}-16 K-K B 45$ Stellar Shuttle 10-32K-KB46A

Strange Odyssey with Graphics Stratos 1C-16K-KB53H Stratos 1C-16K-KB53H
Stratos 1D-32K-KB54
Stratos 10-32K-KB54J
Syn Assembler 10-48K-KB83E Tank Arcade 1C-16K-KH180 Teiengard $1 \mathrm{C}-48 \mathrm{~K}-\mathrm{KH21X}$ Telengard 10-48K-KH22Y The Count with Graphics 10-481
The Cosmic Balance 1D-48K-KF
The Eliminator 1C-16K-KH13P The Keys Of Acheron (Pt 3) The keys OF ACheron (P1 3) The Keys of Acheron (Pt 3)
$10-32 \mathrm{~K}_{-K F 07 H}$ The Nightmare 10-40K-KB350
The Sands Of Egyt 10-16K-KF2 3D Tic-Tac-Toe 1C-16K-KH11M
Treasure Quest 1C-16K-KB36P Treasure Quest 1C-16K-KB3
Tutti Frutti 1C-16K-KB63T Tutti Frutti 1D-32K-KB63TU Typo 1E-16K-KF56L
vC1C-32K-KH24B $V C 1 C-32 K-K H 24 B$
$V C 1 D-40 K-K H 25 C$
Voodoo Castle with Graphics War 10 -32*-KB4OT Whiz Kid 1E-16K-KF62 Wizard Of Wor 1E-16K-KB94C Zaxxon 1C-16K-KF20W
Zaxxon 10-16K-KF21X Zaxxon 10-16K-KF21X Zork III 1D-32K-
Crush, Crumble \& Chomp 10-BC61R

Curse of Ra 1D-BC59P

 Sword of Fargoal 1D-Bc600 Jemple of Apshai 1D-BCSMM DrasoAlcatraz II 1C-Bcs3T
${ }^{827.50}$ 13.80
13.80 13.80
3.95

$\propto 19.95$

819.95

228.95

229.95
528.95
534.95

Enables calibration of receivers.

\star Checks the position of the edges of amateur band allocations.

* Produces markers at switchable intervals of $1 \mathrm{MHz}, 100 \mathrm{kHz}, 12.5 \mathrm{kHz}$, or 10 kHz .

by A. J. Bell, BSc, GW4JJW

Introduction

This article describes a crystal calibrator designed around CMOS logic IC's, which produces markers switchable at intervals of $1 \mathrm{MHz}, 100 \mathrm{kHz}$, 12.5 kHz or 10 kHz . When the calibrator was tested using a spectrum analyser, the markers were found to be complete to 300 MHz - beyond this frequency they approached the spectrum analy ser noise level. The markers can be amplitude modulated with a 1 kHz tone, a facility which produces markers at 1 kHz intervals. The current consump-
tion of the crystal calibrator is less than 3 mA at $9 \mathrm{~V}(27 \mathrm{~mW})$ - less power than would be consumed by a single 74 series TTL integrated circuit.

Operation

The circuit diagram of the crystal calibrator is shown in figure 1 , and the various semiconductor pinouts and logical functions in figure '2. A stabilised voltage supply, comprising TR2 and D2, supplies power to all the CMOS logic. In order to reduce power consumption the zener diode is run at a lower current than normal. Three different zener

Figure 2. Semiconductor pinouts and logic function chart

Figure 1. Circuit diagram.
diodes were tried under these conditions and all functioned satisfactorily. A single CMOS NOR gate(IC1a) is used as a 1 MHz crystal oscillator, whose frequency may be trimmed using VCl. The output from the oscillator is buffered by another section of the NOR gate(ICld) and then fed into a chain of dividers which produce frequencies of $100 \mathrm{kHz}, 12.5 \mathrm{kHz}$ and 10 kHz . These, together with the original 1 MHz , are fed into the data selector(IC6).

A "data selector" is a type of logic IC that selects only one of many inputs. The selection is performed according to the value set on its address line inputs. Figure 2 shows the logical functions of the data selector, type 4512, used in the crystal calibrator. It can be seen that if all address lines are high, data line "X7" will be selected. For the crystal calibrator, inputs X7, X6, X5 and X3 are used for the $1 \mathrm{MHz}, 12.5 \mathrm{KHz}, 100 \mathrm{KHz}$ and 10 kHz signals respectively. These particular input lines were chosen because they can be selected by making none or any one of the address lines logical zero - this is the function of the interval switch SW2.

The use of a data selector allows the marker interval to be chosen by switch. ing DC signal levels, instead of the standard method of switching the RF signals directly. This keeps the lengths of the wire carrying RF to a minimum, thereby reducing radiation or pickup.

When SW1 is closed, IC4 is freed from its reset state and produces a 1 kHz signal which is inverted by IC1c and fed to the inhibit of IC6. This amplitude modulates its output which is fed to the base of TR1 via a 27 k ohm

resistor and a parallel ceramic capacitor. TR1 is a UHF transistor with a very high ft. In its collector is a 1 N914 diode, a non-linear load, which generates harmonics. Finally the RF output is taken via 10 pF ceramic capacitor, C3, to both a BNC connector and a terminal post, thereby offering a choice of connection.

Construction

The calibrator was constructed on

Figure 3. PCB layout and wiring diagram.
double-sided, copper clad glass fibre epoxy board, size $100 \mathrm{~mm} \times 60 \mathrm{~mm}$. The top surtace of the PCB was used as a ground plane and the underside for interconnections. The artwork for the PCB and the component layout are given in figures 3 and 4. If you drill the PCB, copper surrounding the holes on the component side should be removed by countersinking with a 3/16 inch drill. The author used IC sockets throughout, but there is no reason why the IC's could not be soldered directly on to the PCB provided a low leakage soldering iron is used and normal CMOS precautions are observed. The two capacitors, C2 and C3 must be low inductance type, such as disc ceramic, so as to obtain a good high frequency response from the calibrator. Although ICl is specified as a quad NOR gate, it is used throughout as an inverter - one input of each of the three gates used being grounded.

The crystal calibrator described is possibly more comprehensive than will be required in some instances. Various functions can easily be removed from the circuit if required. For example, if IC5 is omitted then the 12.5 KHz option will be unavailable. If IC4 is omitted and pin-12 of its socket is connected to Vdd via 100 K ohm resistor, then the tone facility will be unavailable.

Alignment

The calibrator is best aligned when it has been installed in its working position (box or rig). The station RX is switched to AM and tuned to one of the standard frequency services, such as MSF on 5 MHz . The calibrator is switched on and loosely connected to the $R X$ antenna socket in parallel with the antenna used to receive MSF. If the RX uses "UHF" type connectors, unscrew the outer skirt and pull the plug half way out of the socket. Take a length of wire, strip both ends, connect one end to the terminal post and loop the

Figure 5. Test Graph.
other end over the exposed inner section of the plug. A beat note generated by the mixing of the standard service and the calibrator should be heard from the RX. To align the calibrator, trimmer capacitor VCl should be adjusted to zero beat the two signals. An oscilloscope connected to the AF output from the RX is useful for monitoring the beat note frequency down to a few Hz . Zero beat is the position at which the beat note disappears after the note becomes progressively lower in frequency. Very low frequency beats, less than 1 Hz , manifest themselves as a cyclic slow rise and fall in background noise level. The higher the frequency of the standard service used, the sharper, and hence more precise, will be the zero beat position. Note that an error of 10 Hz at 5 MHz will multiplied to an error of 1 kHz at 500 MHz .

Applications

A crystal calibrator is used to check the calibration of receivers, and in the amateur sphere is particularly useful in checking the position of the edges of the amateur band allocations. To do this, the RX is tuned as close as possible to the required band edge. The calibrator is then loosely connected to the antenna socket of the RX. If the band edge is on a 1 MHz boundary (28.0 MHz) then 1 MHz markers should be selected. Alternative!y if the band edge is on a 100 KHz boundary $(3.5 \mathrm{MHz}-3.8 \mathrm{MHz})$

then select 100 KHz . Failing this, 12.5 KHz and 10 KHz intervals are available for usé. Receivers are usually calibrated according to the type of emission to be received.

For $A M$ tune the RX for a peak S Meter reading from the calibrator signal. If no S-Meter is available switch on the tone facility and tune for loudest tone. Using the tone facility, however, is of limited value as markers at 1 KHz intervals tend to be generated but are lower in amplitude than the 100 KHz and 1 MHz signals. For SSB reception the RX should be set to receive the appropriate side-band and tuned so as to zero beat the calibrator signal. For CW, the situation is a little more difficult, as the RX is usually tuned about 800 Hz lower in frequency than the incoming signal - this produces the
audible tone. Usually, however, receivers are calibrated such that SSB and CW give identical readouts, and therefore the RX should be set to receive $C W$ and then tuned to zero beat the calibrator signal. It may not be possible to hear low frequency beat notes when using narrow CW filters. Note that a station transmitting on the same frequency as the calibrator would be inaudible, being zero beat, and the RX would normally be tuned about 800 Hz away from the zero beat position in order to copy CW transmissions. It is important to remember that if the TX carrier is positioned close to a band edge care must be taken to ensure that no sidebands are radiated outside the authorised frequency band.

Acknowledgements

The author wishes to thank G3GIH, G3VMW, G3XAQ and GW4JJV for their comments and suggestions during the course of this project.

Bibliography

CMOS Data Book. National Semi conductor Corporation, 1981
Evans DS \& Jessop GR.
100 kHZ VHF Crystal Marker. In VHF-
UHF Manual 3rd edition. RSGB, 1976. p10.34.
Hawker P.
Amateur Radio Techniques. 7th edition. RSGB, 1980. pp39-40.
Radio Amateur's Handbook. 58th edition. ARRL, 1981. pp 16.12-16.16.

PARTS LIST FOR CRYSTAL CALIBRATOR

Resistors - All 0.4W 1% metal film unless specified.

R1	1 MO		(M1MO)
R2-5	100k	4 off	(M100K)
R6	27k		(M27K)
R7.8	10k	2 off	(M10K)
Capacitors			
Cl	22pF Mica		(W×05F)
C2,4,5.7-9	10 nF Disc	6 off	(8X00A)
C3	10pF Ceramic		(WX44X)
C6	100 f PC elect.		(FF11M)
VCl	65 pF Trimmer		(WL72P)
Semiconductors			
D1	IN914		(QL71N)
201	BZY88C8V2		(QH12N)
TR1	BF173		(0V53H)
TR2	EC108		(QB32K)
1 Cl	4001 BE		(Qx018)
1 C 2.4	4017BE	3 off	(Qx09K)
$1 \mathrm{C5}$	4022BE		(QW19V)
1 C 6	4512BE		(QW84F)

SPST uftra min. toggle	$20 f f$	(FH97F)
Rotary SW4B		(FF75S)
BNC square skt.		(YWOOA)
Terminal post green		(HF05F)
Terminal past yellow		(HF09K)
DIL socket 14 pin		(BL18U)
DIL socket 16 pin	5 off	(BL19V)
PP3 Clip		(HF28F)
PP3 Battery		
1 MHz FS crystal		(HX62S)
Crystal Socket 6 u		(HX61R)
PC Board		(G821X)
Box DCM5005		(LH73Q)
Collet knob black		(RX16S)
15 mm collet cap black		(WL45Y)
15 mm collet nut cover		(RX18U)
Stick-on feet	1 pht	(FW38R)
Bolt 6BA $1 / 2 \mathrm{in}$.	1 pkt	(8F06G)
Washer 6BA	1 pkt	(BF22Y)
Shake 6BA	1 pkt	(BF26D)
Nut 6BA	1 pht	(BF18U)
Tag 6BA	1 pkt	(BF29G)
Wire black	1 metre	(BLOOA)
Veropins type 2141	1 pkt	(FI21X)
Track pins	1 Dkt	(FL82D)

[^1]
WORKING WITH OP-AMPS
 (Part six) by Graham Dixey C.Eng., M.I.E.R.E.

Figure 1. Basic astable waveform generator.

Figure 2. A 'light-to-sound' converter.

This, the final part in this series, deals with circuits that, in one way or another are concerned with sound - either its generation or control. In previous parts, the role of the op-amp. as a linear amplifier, as a waveform generator and as an active filter have been discussed. Applications of these ideas in practical situations will now be shown. A 'generator of sound' circuit implies ultimate connection to a loudspeaker and, hence, the need for some form of power amplifier. The exact nature of such an output stage depends upon the nature of the application - consequently such details are left t the individual experimenter. The exception to this is the 'frost alarm' which, being intended for automobile use, includes a 12 V output stage suitable for this specific application.

Sound Generators and Alarms

Figure 1 shows the basic square-wave generator, first introduced in Part 2 of this series as the 'astable multivibrator'. The noninverting input is 'tied' to a fixed potential by R1/R2 and the circuit changes state every time that Cl charges to a value just in excess of this value. The rate at which the
charging occurs is determined by the values of Cl and the feedback component. This latter is often a resistor in the basic astable circuit but it may be replaced by an alter. native component to give more interesting results.

In Figure 2 the feedback component is a photocell or L.D.R. (Light Dependent Resistor). This has the property that, 'in the dark', its resistance is extremely high but falls dramatically when illuminated. The actual resistance in the extreme cases depends upon the photocell type. Some idea of values can be gained from the characteristics of Figure 3 for a typical small photocell. If the resistance of the cell is high enough, the frequency will be too low to be audible. For example, if $\mathrm{C}=100 \mathrm{nF}$ and the cell resistance is 1 Mss , then the frequency will be a mere 4.55 Hz , well below audibility. But, when the cell resistance falls to 10 ks , the frequency is 455 Hz .

This leads to the idea of using the circuit as the basis of an 'alarm system', using the word alarm in the broadest sense of the word, to mean an audible indication of some event having occurred. Thus, in general, the presence or absence of light may be indicated; such a circuit may be called a light-to-sound' converter.

Figure 3. Characteristic of typical small photoconductive cell (LDR).
As an alternative to the photocell, a thermistor could be used. In this device a change of temperature causes a change of reistance, either an increase - positive temperature coefficient (p.t.c.) or a decrease negative temperature coefficient (n.t.c.). Figure 4 shows a thermistor used as the feedback component in a circuit that could now be described as a 'heat-to-sound' converter. Normal temperature variations may not produce such dramatic shifts of frequency as the light-to-sound converter, but they are nonetheless significant.

Figure 4. A 'heat-so-sound' converter.
Figure 5. A 'frost alarm' for a car.

Figure 6. Circuit to detect presence of water.

Figure 7. A door calling system.

Still on the subject of sensing temperature changes, Figure 5 shows a variation on the theme put to practical use in a car. The circuit is of a 'frost alarm', intended to warn the driver by an audible signal of the imminence of freezing conditions. The sensor is an n.t.c. thermistor mounted low down at the front of the vehicle. However, this time the thermistor is wired in parallel with the capacitor Cl and the feedback path is a preset potentiometer RV1. The idea behind this arrangement is that if the value of Th's resistance is less than that of RV1 (such as will apply above freezing point), then the charge on C1 leaks away too quickly for the switch-on point to be reached; result - no oscillations, no audible output. But at freezing point the thermistor resistance has increased enough to allow oscillations to take place, giving an audible warning. RV1 is adjusted to set the precise point at which the circuit burst into oscillation. Try the domestic ice-box as a means of testing it! Because it is intended for automobile use, the power supply is organised to use the car's 12 V battery and a simple complementary-symmetry output stage is included. Alternatively, an IC power amplifier could be used.

Figure 6 shows a very simple on/off alarm to detect the presence of water or some other conducting liquid between the 'probes'. These are closely spaced so as to be easily bridged by the moisture droplets; two adjacent tracks on a P.C.B. would serve. The liquid closes the otherwise open feedback path and the circuit oscillates. Possible applications include its use as a rain alarm or as a sensor of liquid level in some container.

Figure 7 likewise is extremely simple. Operation of any of the push-button
switches, S1-S3 (or as many others as you like) causes the circuit to oscillate, each switch having its own unique frequency because of the resistor value that it selects. Thus, in a door-calling system, each door is identified by its own distinctive tone. Details of tone frequencies appear on the figure.

These are just a few of the ways in which the op-amp astable circuit can be put to good use. As a change from this 'switching' mode, consider now two examples of its use as a linear device in the field of audio.

The first of these is shown in Figure 8 and is an automatic level control circuit as used, for example, in a tape recorder. It is used in conjunction with a field effect transistor, the well-known 2 N3819. This FET is employed as a 'voltage variable reistor', making use of the pre-pinch-off region of the drain characteristics. Together with R4, a 330kss resistor, it forms a potential divider across the output of the op-amp. The proportion of output voltage developed across the drain-source path is fed back through R2 to control the gain of the op-amp. Thus, op-amp gain is controlled by the value of the FET's drainsource resistance. This, in turn, is controlled by the bias on the gate of the FET, and this is derived from the output signal itself by a simple rectifier circuit (D1; R5; R6; C1). Thus, the level of the output signal controls the op-amp gain which, in turn, controls the output level - a closed loop of dependence. All being well, the output maintains itself fairly constant over a wide range of input signal amplitude. For a small input signal, the op-amp gain rises in an attempt to hold the output constant. With a large input signal, the op-amp gain is turned down, giving the same result.

Finally, Figure 9 shows an op-amp used to give equalisation to the signals from a magnetic pick-up for disc reproduction. These magnetic pick-ups produce an output voltage which depends upon stylus velocity; since the latter rises with signal frequency, so does the output voltage. What is required, of course, is a level response at all audio frequencies, the only 'tailoring' of the response being carried out by the tone controls.

This level response is achieved by using a pre-amplifier with a falling response that more or less balances the rising response of the pick-up. This is called 'equalisation' and produces the RII.A.A. characteristic, also shown in Figure 10. (R.I.A.A. = Radio Industry Association of America). The feedback components shown as parallel pairs together with the gain of the op-amp produce an active filter with the required characteristic. Resistor R1 presents the required load to the magnetic pick-up.

This series has explored a variety of circuits involving op-amps. Even so, it has only scratched the surface of the possibilities. Nonetheless, it is hoped that it has been both instructive and inspirational to all those who now find themselves 'working with op-amps.'

Figure 10. The RIAA equalised disc playback curve.

Figure 8. Automatic sound level circuit.
June 1983 Maplin Magazine

Figure 9. RIAA equalised pre-amplifier for disc reproduction.

DMEDRS AODPO PROCESSOT

> * Improved performance
> * Needs no modifications to receiver
> \star High filter attenuation rate
> * Easy to build

by Robert Penfold

The performance of many communications receivers is not all that one would desire, and probably the most common failing is a lack of really good I.F. filtering which results in an excessive amount of adjacent channel interference. A simple way of obtaining improved performance is to use an audio filter to process the audio output of the receiver, and although this does not give a level of improvement equal to that produced by adding high quality I.F. filters to the receiver, it nevertheless gives a substantial improvement. An advantage of this system is that it avoids the need for any modifications to the receiver (which, even if successful, could reduce its resale value), and the filter is simply wired between an audio output socket of the receiver and the headphones or a loud'speaker.

This filter has a 36 dB per octave lowpass filter with a cutoff frequency of about 2.5 kHZ , and an 18 dB per octave highpass filter with a cutoff frequency at about 150 HZ . This very restricted audio bandwidth helps to greatly attenuate adjacent channel interference but does not impair the intelligibility of speech signals. The high attenuation rate of the filters, particularly the lowpass type, gives the unit a level of performance which is superior to most audio processors of this type.

An additional and useful feature of this audio processor is an expander. In the presence of a reasonably strong signal this allows the signal to pass through to the output normally, but when the signal level is low (during pauses in a voice signal for example) the signal is severely attenuated. By reducing the noise during gaps in the wanted signal it is often easier to copy
the signal, especially where it is necessary to copy the signal for some time. Under some circumstances the use of the expander can produce an apparent boost in the signal to noise ratio of the processed signal, and it can make a worthwhile reduction in general background noise as well as adjacent channel interference.

Just how well or otherwise the unit performs depends almost entirely on the receiver with which it is used and on reception conditions. There is obviously more scope for the processor to produce an improvement if it is used with a wide bandwidth receiver under poor conditions than if it is used with one that has good I.F. filtering and under good reception conditions. However, the prototype has been tried over a period of a few months with a short wave receiver which has 7 kHZ mechanical I.F. filters, and a comparison of
the processed and unprocessed signals almost invariably revealed a substantial improvement with the processor in use, especially for S.S.B. reception. The unit has also been tried with an F.M. C.B. transceiver with similar results.

Block Diagram

Figure 1 shows the block diagram for the processor, and as will be apparent from this, the filtering is used before the expander stages. This is important as it helps to prevent unwanted signals from operating the expander, and it does so simply because the filtering prevents some of these unwanted signals from reaching the expander. A buffer stage is used at the input to ensure that the lowpass filter is fed from a suitably low source impedance, and the lowpass filter is actually two 18 dB per octave filters in series rather than a single filter block.

Figure 1. Block diagram.

Figure 2. Circuit diagram of the filters.

After passing through the highpass filter the signal is fed through a voltage controlled amplifier (V.C.A.) which has only a small control voltage under quiescent conditions. It consequently attenuates the input signal. Some of the output of the highpass filter is fed to an amplifier, and then the amplified sig. nal is rectified and smoothed to produce a D.C. signal which is roughly proportional to the amplitude of the input signal. This D.C. signal is fed to the control input of the V.C.A. and provides an increase in gain if the input signal is sufficiently strong. Thus the required action is obtained with low level signals being attenuated while high levels signals are through the V.C.A. unattenuated.

The output stage will drive any normal type of headphones, and will also drive an 8 ohm impedance loudspeaker with an output power of up to about 500mW R.M.S.

The Circuit

Figure 2 shows the circuit diagram for the input buffer and filter stages of the unit. ICla is the buffer stage and is a straightforward non-inverting unity voltage gain circuit which is biased by R1 and R2.

IC1b is used as the basis of the first section of the lowpass filter, and this uses a standard configuration. R3, R4, R5, C3 and C4 effectively form a second order active filter, but due to the high value of C3 a pronounced peak in the response is produced just below the cutoff frequency. R3 and C2 form a passive low pass filter which removes this peak and gives an excellent overall response with an abrupt introduction of the full 18 dB per octave attenuation rate. The second lowpass filter stage is based on IC2a and is virtually identical to the first stage. The only difference is that C6 has a slightly higher value than its equivalent in the first filter section (C3), and this gives a slight improvement to the combined responses of the two filters.

The highpass filter uses IC2b, and the configuration used is essentially the same as that employed in each section of the lowpass circuit, but the resistive and capacitive filter elements are transposed to give a highpass and not a lowpass action. The final resistive element of the filter is formed by the parallel resistance of R11 and R12, and as there is no D.C. path through C8 to C10 to bias the non-inverting input of IC2b these are used to provide a suitable bias voltage.

Figure 3 shows the combined frequency response of all three filter sections.

Expander

The circuit diagram of the expander and output stages of the processor are shown in Figure 4. The V.C.A. is built
around IC3 which is an operational transconductance amplifier and IC4 which is merely used as a buffer amplifier. R17 and R19 form a negative feedback network which set the voltage gain of the V.C.A. at unity, but this assumes that the bias current fed to the amplifier bias input of IC3 (pin 5) is sufficient to produce unity voltage gain. With RV1 at minimum resistance this will indeed be the case and the expander action of the circuit is eliminated. However, with RV1 at maximum value the quiescent bias current is greatly reduced and there is a substantial amount of attenuation through the V.C.A. Intermediate settings of RV1 give a corresponding degree of attenuation through the V.C.A.

Some of the output from the final filter stage is taken via sensitivity con-

Figure 3. Frequency response of the unit.

Figure 4. Circuit of the expander and output stages.
trol RV1 to a high gain common emitter amplifier which uses TR1. The output of TR1 is rectified by D1 and D2, and smoothed by C14. The resultant positive voltage is fed to the V.C.A. by way of R21, and in the presence of a strong input signal boosts the gain of the V.C.A. to unity regardless of the setting of RV1. RV2 is adjusted so that the wanted signal operates the expander circuit but the background noise does not. In practice the circuit tends to operate for the majority of the time at full gain or the lower gain level set using RV1, and it therefore operates virtually as a noise gate. However, as the V.C.A. is not switched between two levels of gain and it can have intermediate levels of gain, strictly speaking the circuit is an expander and not a noise gate. The attack and decay times of the circuit are quite short so that the unit responds to changes in input level with adequate rapidity.

A TBA820M integrated circuit is used in the output stage and this device gives an output power which is more than sufficient for this application. R26 is a discrete feedback resistor which sets the closed loop voltage gain of the amplifier at a modest level of just over 20 dB , but this is still excessive for this application. An attenuator consisting of R22 and R25 is therefore used to reduce the gain of the circuit to a satisfactory level.

S1 is a bypass switch which can be used to cut out the processor when it is not required, and one pole of S1 (S1c) is used to provide on/off switching. Power is obtained from a PP6 size 9 volt battery and the quiescent current consumption of the circuit is approximately 8.5 mA . The current drain increases substantially, though, if the unit is used at high volume with an 8 ohm impedance loudspeaker, and if used in this way it would be advisable to $\mu s e$ a larger battery, such as a PP9 size.

A complete kit of all parts, excluding the case and knobs, is available. Order As LK05F (D'Xers Audio Processor kit). Price £14.95.

PARTS LIST FOR DXer's AUDIO PROCESSOR

Resistors - all 0.4W 1\% metal film unless specified.

R1,2,22	33k	3 off	(M33K)
R3.R8	10k	6 off	(M10K)
R9	6 k 8		(M6K8)
R10	3k3		(M3К3)
R11,12	82k	2 off	(M82K)
R13.14,24	4k7	3 off	(M4K7)
R15,16	100R	2 off	(M100R)
R17.19	3k9	2 off	(M3K9)
R18	15k		(M15K)
R20	22k		(M22K)
R21.25	5k6	2 off	(M5K6)
R23	1 M		(M1MO)
R26	560 R		(M560R)
R27	1 R (1/3W 5\% carbon)		(B1RO)
RV1	2M2 lin pot		(FW09K)
RV2	10k lin pot		(FWO2C)
Capacitors			
C1.11.12	220 nF carbonate	3 off	(WW45Y)
C2,5	6 n 8 polycarb.	2 off	(WW27E)
C3	15 nF polyester		(BX71N)
C4. 7	1nF mylar	2 off	(WW15R)
C6	22 nF polyester		(BX72P)
C8,9	150 nF polyester	2 off	(BX77J)
C10	68 nF polyester		(BX75S)
C13	2 U 263 velect		(F815R)
C14.22	1 LF 63 V elect	20 ff	(FB12N)
C15	22 uF 25 V elect		(F830H)
C16	270 pF ceramic plate		(WX61R)
C17,20	100 F 10V elect	2 oft	(FB48C)
C18,19	100 nF polyester	2 off	(BX76H)
C21	47uF 10V elect		(F838R)
IC1,2	1458C	2 off	(QH46A)
IC3	CA3080E		(YH58N)
IC4	741 C 8 pin DIL		(QL22)
IC5	TBA8?0M		(WQ63T)
TRI	BC108		(QB32K)
01,2	1N4148	2 off	(QL80B)
Miscellaneous			
S1	4 way 3 pole rotary		(FF76H)
JK1. 2	Standard 1/in. jack	2 off	(Hf90X)
B1.	9V PP6 size		
	Case		(XY45Y)
	Battery connector		(HF28F)
	Control knobs	3 off	(H8260)
	Printed circuit board		(GB19V)
	6BA thin. bolts	1 pkt	(BF06G)
	68A nuts	1 pkt	(8F18U)
	6BA Min. spacers	1 pkt	(FW34M)
	Veropins type 2145	1 pkt	(FL24B)
	Wire	(as req.)	(BLOOA)

Figure 5. PCB layout and wiring.

Construction

Refer to Figure 5 for details of the printed circuit boar and wiring of the unit. Veropins are used at points on the printed circuit board where connections to off-board components will be made. Be careful to fit the semiconductor devices onto the board with the correct orientation, especially the integrated circuits which would be difficult June 1983 Maplin Magazine
to remove from the board once soldered into place. Note that there is a single link wire on the board (near to R13 and R16).

An instrument case having approximate outside dimensions of 200 by 125 by 75 mm makes a good housing for this project, and a suitable front panel layout can be seen by referring to the photographs. S1 is a 4 way 3 pole rotary type having an adjustable end stop, and the latter is set for 2 way operation. The
recommended case has an aluminium chassis and the completed printed circuit board is mounted on this using $1 / 2$ inch 6BA bolts plus $1 / 4$ inch $6 B A$ spacers to hold the underside of the board well clear of the chassis. Mount the board towards the front of the chassis so that there is sufficient space for the battery to the rear of the board. The unit is then finished by wiring in the controls, battery connector, and sockets.
continued on page 62

by Mike Wharton

A Beginner's Guide to Logic Design Part Two

Introduction

You should by now have built, or have access to, a DC supply providing a regulated 5 volts. This will be used as the power supply for the various experiments which will mainly use TransistorTransistor Logic devices, or TTL for short. If such a supply is not available it is possible to use batteries at a pinch, although the commonly available voltages are either just too high or too low. For example, a 4.5 V battery may be used with no risk of damaging any chips, but as its output voltage falls with use, it may become insufficient to operate some of the devices properly. This can lead to some very misleading problems for the unwary. A 6 V dry battery, on the other hand, is really too high, although with care it can be reduced with a suitable series resistor. Possibly the best source in this line would be four 1.2 V NiCad cells connected in series; this gives 4.8 V which will remain fairly constant during discharge. These cells may, of course, be recharged - which brings us back to a mains power supply again!

Chips with everything

A feature of modern electronic apparatus is that often somewhere lurking inside the most mundane item will be found at least one 'chip'. A glance through any electronics component catalogue will reveal that there must by now be umpteen thousands of different types, shapes and sizes. The electronic 'chip' is distinguished from the potato variety by being packaged in a rectangular black (usually), box from which protrude two rows (usually) of sharp metal pins or legs. Its type will be indicated by a code number printed on the top side, and pin number ' 1 ' identified in one of several ways, as shown in Figure 1.

All the wide variety of chips produced by modern technology may be divided into two categories, Analogue and Digital. We shall only be concerned at this stage with the digital variety; the analogue types (or analog, if you speak American) consist of all manner of specialist devices intended for particular applications.

Before we start any cookery with these chips it is essential that we all know and can identify the devices which are going to be

Figure 1. 14-pin dual-in-line (DIL) package. needed; there are several 'grades' of TTL device, and the one of interest to us is the 7400 series. Each device in this series has a specific part number, starting with the two figures '74'. Thus the first in the series, 7400 , is listed as a quad two-input NAND gate, which at first glance may seem to be a bit of a mouthful. What this means will be clear later, but first there are some more numbers which you will find on the package which need to be explained to avoid confusion Figure 2 shows a typical chip of this type; in this case the part number is pre-fixed by the letters SN, which originally stood for Semiconductor Network, and is still used by some manufacturers. Other manufacturers may use other tetters, such as DM, whilst some use none at all. Finally, the type number may end with a single letter, the commonest being ' N ', which indicates a plastic package.

Very often the chip will have another number stamped close to the type number, and may look similar to the type number This is a date stamp, which indicates the week and year of manufacture. For example, the number 7933 would mean that the chip was made during week 33 of 1979; some confusion may arise if you come across old

Figure 2. Typical markings on TTL packages.
chips made during 1974, so beware if you buysome 'bargain packs' of suspect devices.

Schottky Devices

Before moving off the subject of chip identification, it may be useful to say a few words about some of the more modern TTL devices: One of the few drawbacks to using TTL devices is that they use a relatively large amount of current, and this can be a problem if designing commercial equpment which uses many such devices. An improvement which has led to a reduction in current consumption without seriously affecting some of the other properties of these devices has produced a range of chips commonly called Low power Schottky, or 'LS for short. Generally, these are made as pin for-pin replacements for the standard types and with a few exceptions may be used instead. The method of identifying this type of device is to insert the letters LS after the '74' of the type number; for example, a 74LSOO would be the Low power Schottky version of the standard 7400 device. Indeed, there are other letters which you may have noticed in this sort of type number, indicating yet further variations, but we'll cross that bridge when we come to it.

Logic Levels

Since we are dealing with digital devices, it is important at the start to make certain that what this entails is properly understood. The segregation of chips into analogue and digital varieties was mentioned above, and it is true to say that one deals with analogue quantities and the other with digital quantities. An analogue quantity is one which is continuously variable, and although this may be a voltage it could equally well be the amount of liquid flowing down a pipe, the speed of the wind or the intensity of light from the sun. All of these quantities can be converted into a proportional voltage by suitable means. A digital quantity, on the other hand, is one which changes by fixed amounts, with no fractional parts in between. Thus the number of people in a group is a digital amount, you cannot sensibly have three-and-two-thirds people. Likewise, in digital electronics, we are concerned with voltage signals which have just two levels, and ideally nothing in between. Using TTL
devices these levels are +5 volts and 0 volts, with the +5 volt level being assigned the logic value of ' 1 ' and 0 volts a logic value of ' 0 '. Again, there are other systems, but we shall not concern ourselves with them.

The great advantage of this system is that it actually makes the representation of numbers a lot easier than any analogue system; for instance, suppose you wanted to show a value of ' 5 ' using a range of voltages between OV and 10V. Easy, you say, that would be given by 5 volts, but now imagine you need to showa value of 255 on the same voltage range. One solution would be to make the 10 V equal to a value of 1000 , so that 255 would be given by a voltage of 2.55 volts. This would then mean that only 0.01 volt represents a value of 1 , and this is such a small voltage that any practical system would be hopelessly inaccurate. By adopting

VALUE	
+5Volts	0 Volts
Logic 1	Logic 0
True	False
Valid	Invalid
High	Low

Figure 3. The positive true logic notation system. a digital system any value can be created with perfect accuracy. This is the basis of the modern digital computer, but more of that later, as we are getting ahead of ourselves. At this stage it is sufficient to appreciate that the presence of 5 volts, or a voltage very close to it, represents logic 1 , and 0 volts, or again a value very close to that, is logic 0. These logic values do not necessarily stand for the numerical values of 1 and 0 , but might equally well mean True and False, or Valid and Invalid in terms of logical arguments, and Figure 3 summarises these ideas.

Truth Tables

The introduction of the idea of logic brings us next to the subject of Truth Tables; these have been adapted from the subject of Boolean Algebra as a convenient method of describing the performance of a particular logic chip. Mention of such things as Boolean Algebra may have caused some of you to wonder what you might have let yourselves in for. If so, then rest assured that this series will stick to the practical path, and although it is difficult to ignore it completely, those readers wishing to delve more deeply into this fascinating subject will have to look elsewhere.

If you have studied the subject of electronics previously, then it is quite possible that you have come across the socalled characteristic curves for active devices such as transistors. These are used to describe in a graphical form how such things react when voltages are applied to them, and can be used to make sure that the transistor is operated under the correct conditions. Fortunately, as far as TTL chips are concerned, we can treat them as what they are - little black boxes! Although they may contain several hundred individual transistors, provided some simple rules are adhered to it is possible to ignore this when connecting together a number of different devices. This makes it possible to make up quite complex logic designs with the ability to predict the manner in which the final circuit will behave, something which would beextremely difficult using any other system with separate transistors.
Truth Table

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

Figure 4. Two input AND gate.
Figure 4 shows the Truth Table for a twoinput AND gate alongside the commonly used symbol for this gate in circuit diagrams. It may as well be said at this stage that although this is not a British Standard symbol, it is the one which is most likely to be found in published circuit diagrams, and there seems little point in swimming against the tide!

The explanation of the Truth Table given is quite straightforward; the two inputs to the logic device or 'gate' are labelled A and B, whilst the output is C . The Truth Table simply summarises the various outputs which would be obtained for all possible combinations of input. Thus, if both inputs are connected to logic 0 , or 0 volts, then the output will be 0 volts. Only if both inputs are connected to logic 1 , or +5 volts, will an output of logic 1 be obtained. This shows why the gate is called an AND gate, since both input A AND input B must be 'high' for the output to be 'high', all other combinations

Figure 5. Two input OR gate.

Figure 6. Two input NAND gate.

Figure 7. Two input NOR gate.
giving a 'low' output. Figures 5, 6 and 7 show the corresponding Truth Tables and symbol for three more common logic gates; figure 5 is for a two-input OR gate, figure 6 a twoinput NÅND gate and figure 7 a two-input NOR gate. The last two gates deserve a little more mention, as they are the opposites of the first two. That is, if you look at their Truth Tables, you will see that similar inputs produce opposite outputs, so that logically a NAND gate is a Not AND gate and a NOR gate is a Not OR gate.

Practical Devices

If you have a copy of the Maplin catalogue (if not, why not!) and turn to page 282, you will see the pin-outs of a number of TTL chips. You will also see that only rarely does a package contain a single device. For those without this valuable reference aid, the pinout of a 7400 is given in figure 8. This is where we come back to that mouthful of a name used to describe such packages. Thus a 7400, which contains four identical twoinput NAND gates, is listed as a Quad 2-input NAND gate, whilst the 7420 is a Dual 4 -input NAND gate, ie two NAND gates each having four inputs.

Two other pins identified in figure 8 are labelled Vcc and GND; these are the pins to which the necessary power supply for the whole package is connected, with Vcc being connected to +5 volts and GND, or Ground, to 0 volts. Usually, Vcc is pin 14 and GND pin 7 on a 14 -pin DIL package, but there are

Figure 8. Quad two input NAND gate.
some important exceptions, and it is wise to check the pin-out when making up circuits. If you examine published diagrams these connections are often left out for the sake of clarity, but of course the circuit will not work without them!

Watch Your Combinations

The connecting together of various logic gates, such as NAND gates and NOR gates, to produce designs with predictable output states, is called Combinational Logic. To take a very simple example to start with; suppose that both inputs of a 2 -input NAND gate are connected together, the Truth Table will
Truth Table

\mathbf{A}	\mathbf{B}
0	1
1	0

Figure 9. NAND to NOT conversion.
become as given in figure 9 as there is now effectively only one input. The result is a NOT gate, or inverter, since the output is the inverse of the input. This is also true for the NOR gate, and this is often a convenient way of producing an inverter from spare gates within a package.

It is true to say that the NAND gate is the most versatile of all those available, since the others can be made up by a suitable combination of NAND gates. For example, figure 10 shows how a 2 -input NOR gate may be made up by this method. You can check out the Truth Table for this logic array by first giving the two inputs, A and B, the value 0 . Then by following the Truth Table for the

Reversal colour printing does not permit the use of a safelight, whilst the safelight for negative colour work is so dim as to make exposure timing with a clock almost impossible. The only enlarger timers for sale were of a mechanical type and it was felt that using CMOS logic a suitable timer could be made at a cost below that of the 'off the shelf' item.

Given that the timer must be operated by feel alone the controls were reduced to a thumbwheel 'time set' switch and two control switches. This introduces two possible methods of operation. The timer may either count the elapsed time up or down, and it was felt that the up counting system which allows the time display to show the exposure time before operation would prevent the author from making too many exposure errors. The disadvantage is that when the timer is switched on or the thumb-wheel switches are altered the enlarger lamp will turn on until the display shows the same figures as the thumbwheel switch. Normally, however, more time is taken in preparing the darkroom or setting up the next print, so that in practice no time is actually lost.

Circuit Description

The main timing of the unit is derived from the 50 Hz mains frequency via the transformer T1. Diodes D1, D2, capacitors C1, C2 and voltage regulator REG1 provide the 12 volt power supply, which is applied to all the IC's. The +12 V is attached to the highest numbered pin of the IC's (14 or 16) and the 0 V to the diagonally opposite pin (7 or 8). In all cases unused inputs must be connected to either high or low supply to ensure correct operation or freedom from oscillation.

The timing pulses are derived from the $15 \mathrm{~V} / 50 \mathrm{~Hz}$ output of Tl , ie. approximately 21 V peak to peak. The zener diode D3, fed via R1, clips this voltage to +12 V when the input is positive and to -0.6 V when the input is negative. This clipped sine wave is then applied to a schmitt trigger IC1 a, which provides a square wave at 50 Hz with short rise and fall times on the logic transitions. This 50 Hz square wave is fed to IC2a connected with IC3c and IC3d to act as a divide by 5 counter. IC2 has outputs in BCD (binary coded decimal) which will normally count from 0 to 9 (0000 to 1001) but at a
count of 5 (0101) IC3 resets the counter immediately to 0 . In this way after every 5 input cycles the output of IC3c connected to the reset pin of IC2a, gives a single short pulse every 0.1 seconds.

The connections for the operating switches S1 and S2 pass through IC1b and IC1d to provide the logic levels required for the operation of the counter reset and output logic stages.

The 10 pulses per second from IC3c pass through a count inhibit circuit IC10a and then to IC2b which produces 1 pulse per second when input 1 of ICIOa is high. IC4 acts as a 00 to 99 counter with BCD output lines. This BCD data is used to drive a 7 segment double digit display, via display drivers IC5 and IC6. It should be noted that the ballast resistors used with the display are of unusually high values (R4-17) so that the display will show only a dull glow in the darkroom.

IC's 7, 8 and 9 provide a system which checks whether the BCD data on the output of IC4 and from the BCD thumbwheel switches S3 and S4 are the same. IC7 and IC8 are quad exclusive NOR gates which act as comparators for each of the BCD data line pairs.

Accurate to 0.1 seconds seconds
Timing range of 1 to 99 schanical timers 240 V 50 Hz

* Cost below that of mecharical tim a 6 amps 2 * Switching capability of 6 amps

Figure 1. Circuit diagram.
June 1983 Maplin Magazine

When the values of $B C D$ input are the same the output is high. IC9 is an 8 input NAND gate giving low output on pin 13 only when all of the 8 BCD input pairs are the same. It is this output which controls the counting and also the output circuitry when S1 and S2 are in their off positions. The output of IC9 is over-ridden by the logic levels derived from S1 or S2 when either switch is used.

The output logic circuit consists of ICl1d, IC1la, ICllb, IClb, IClOc, IC10d, ICld, and TRI which cause the opto-couplers diode to turn the output triac CSR1 on under the following conditions:-

1. If the system is counting, i.e. if pin 13 is high
2. If $S 2$ is turned on, i.e. the input to lClb is high.
If $S 1$ is pushed the logic prevents the counter from operating and holds the triac off whilst resetting the counter to zero.

Assembly

Construction of the timer should cause no problems as all the components except for the switches, transformer and output socket are fixed to the PCB. The board is double sided and all components are mounted on side 2 of the board with most soldering carried out on side 1 .

Insert the vertisocket into the board first as this will help with the identification of the other component locations, and solder into position noting that pins $1,3,6$ and 8 going to resistors R8, R10, R11 and R13 must be soldered to both sides of the board. Insert and solder all of the IC sockets checking carefully the position of pin 1 as the IC's point in different directions, but DO NOT INSERT IC's.

Bend, insert and solder all of the resistors into their places noting that R8, R10, R11 and R13 will be soldered to both sides of the board, followed by capacitors Cl and C2. Next insert the opto-coupler, transistor, triac, regulator, and diodes and after checking orientation solder into place.

Attach a 30 cm length of ribbon cable to the output holes for S3 and S4 and the 12 V line on the right hand side of the board. It will be found that there is one spare wire and this may be pulled away from the rest of the ribbon cable. Then add further wires for the transformer, S1 and S2 connections, and short pieces of hook up wire to the mains input and output connections. If the board is now held up to the light there can be seen a large number of holes remaining and the track pins are inserted into these holes and soldered on both sides. If all of the pins are inserted before soldering it is very likely that a pin will be left unsoldered on one side of the board and this will cause problems later on. Personal experience has shown that it is best to insert about 6 pins and then count the solder joints being made on both sides of the PCB.

Assemble the thumbwheel switch from the component parts and identify

Figure 2. PCB layout.

Figure 3. Interwiring diagram.
the $8,4,2$ and 1 switch contacts as well as the common line C.

A suitable case should be chosén and drilled or cut to take the PCB with cut-out for the display, thumbwheel switch, Euro outlet, transformer, mains input grommet, and switches S1 and S2.

After mounting all of the components in the case connect these as shown in the wiring diagram Figure 3. The mains input earth MUST be connected securely to the metal case and to the Euro socket as failure to do this will make the timer dangerous to use in the wet atmosphere of the darkroom.

Circuit Testing

Insert a 3A fuse into the mains input plug. The constructor should remember that the large PCB carries mains voltages so extreme care should be taken whilst testing the circuits. First, and before inserting the IC's check that the 12 V power supply is operating correctly by checking the voltage

Figure 4. Pin configurations.

across pins 7 and 14 of ICl socket
Switch off and remove the mains plug. Insert all of the IC's and turn on again. The LED display should light (note the intensity of the lamps is low), count up to the number set on the thumbwheel switch at one count per second, and then stop. Also check that the thumbwheel switch has been connected correctly by making the counter stop at $0,1,2$ to 9 and 10, 20 to 90 seconds. Finally pull out the mains plug and check that none of the components has become hot. Now connect a $100 \mathrm{~W} /$ 240 V bulb across the output socket and repeat the above. During counting the lamp should light and go off when the count stops. Set S2 to the on position, the lamp should light but the display remain at the same setting. Press S1 and the display should reset to zero but the lamp remain off. Releasing the switch will allow the lamp to light for the required time.

Using the Timer

If all tests have proved satisfactory connect the timer to the enlarger, and set up the darkroom. Set the thumbwheel switch to the desired exposure time and switch S2 on, to prevent the lamp turning off whilst trying to set up the negative and baseboard. When you are ready, switch S2 on, place photographic paper in the baseboard, then press S1 and release to make the exposure.

Modifications Outside Great Britain

In countries with a mains frequency of 50 Hz only T1 will need to be changed to a transformer having an input winding suitable for the local voltage.

In countries with 60 Hz mains frequency the constructor must break the connection between IC2 pin 3 and IC3 pin 13. A new connection must be made between IC2 pin 4 and IC3 pin 13.

ENLARGER TIMER PARTS LIST
Resistors - All $0.4 \mathrm{~W} 1 \%$ metal film.

R1-25 inc R26 R27,28,29	$\begin{aligned} & 10 \mathrm{k} \\ & 680 \mathrm{R} \\ & 1 \mathrm{k} \end{aligned}$	25 off	(M1OK) (M680R) (M1K)
Capacitors			
Cl	470uF 63V PC electrolytic		(FF59P)
C2	470 uF 16V PC electrolytic		(FF15R)
Semiconductors			
D1. 2	1 N4001	2 of	(QL730)
D3	B2Y88C12V		(QH16S)
D4	Opto-triac-isolator		(00101)
CSR1	2N6073		(QR51F)
REG1	UA78L12AWC		(WQ77J)
TR1	BC547		(QQ14Q)
1 Cl	4093BE		(QW53H)
IC2,4	4518BE	2 oft	(QX32K)
1C3,10	40118E	2 off	(QX05F)
IC5,6	4511BE	2 off	(0x31))
1 C 7.8	4077BE	2 off	(0W478)
1 C 9	4068BE		(QX248)
$1 \mathrm{Cl1}$	4001BE		(Q×018)
Miscellaneous			
DISP1	DD Display Type C		(BY68Y)
	Vertisocket Type 2		(BK04E)

14 Pin DIL Sht	7 off	(BL18U)
16 Pin DIL Skt	4 off	(BL19V)
Veropin 2141	1 pkt	(FL.21X)
Trach Pin	2 phts	(FL82D)
Transformer 15V		(W815R)
Sub-Min Toggle A		(FHOOA)
Square Push Red		(FF98G)
Thumbwheel BCD	20 fi	(FF84F)
Thumbwheel End Cheeks		(BK49D)
Grommet		(FW59P)
Euro Facility outlet		(HL42V)
Euro Facility plug		(HL43W)
10-way Ribbon cable	1 metre	(XR06G)
Min Mains Black	2 metres	(XR018)
Hook up wire	1 pkt	(BLOOA)
Case AB15		(X871N)
PCB		(G824B)
Screws 6BA $\times 1$ inch	1 pht	(8F07H)
Nuts 6BA	1 pkt	(BF18U)
Spacer 6BA $\times 1 / 2$ inch	1 pkt	(FW35Q)
Screws 4BA $\times 1 / 4$ inch	1 pkt	(BFO2C)
Nuts 4BA	1 pkt	(BF17T)
Tag 4BA	1 pkt	(8F287)
Stick-on-feet		(FW38R)

Since this is the last in the present series of articles, we will finish off by taking a look at some of the current events on the space scene. The use of satellites is only one aspect of a much wider field, that of the exploration of space. After an initial impetus during the late 1960's, which culminated in the American Moon landings, the exploration of space has become more the exploi tation of space. During the last ten years there have been steady advances in the science and technology involved, and it may well be that manned exploration will eventually follow where the Pioneer and Voyager space-craft have led the way towards this 'final frontier'.

Ups and Downs

Despite the complexity and marvellous technology in this area of humanendeavour, it still manages to prove the truth of that old saying 'what goes up must come down'; well, at least they come down quite often! Perhaps one of the more important 'downs' in the recent past was that of COSMOS 1402 This was a Soviet low-altitude surveillance satellite, and its demise proved to be news worthy because of the descent of the radio active portion of the space-craft.

The radio-activity is produced by special nuclear 'batteries', powered by a radiothermal source in part of the satelite. This is kept as far away from the rest of the instrumentation and other sensitive areas of the satellite since radiation can play havoc with some of the electronic equipment on board. Also, the amount of shielding is kept to a minimum, since it is not expected that anyone will come into contact with the satellite once it is in space, and any effective shielding would only represent a dead weight in the pay-load.

The reason why such sources are used, in addition to the usual solar arrays and conventional batteries, is to provide the large
amounts of power needed to operate the ground searching radars. These are used in this type of 'spying' operation since purely optical methods can be rendered completely ineffective by even the lightest covering of cloud, which, of course, does not affect radar.

Usually, this type of satellite containing a radio-active source would be manoeuvred from its normal orbital path into a much higher parking orbit at the end of its useful life. It would then be left there while the radio-activity decayed to safer levels; then it could be either left there, virtually forever, or brought down to an altitude where atmos pheric drag would take an effect, and it would then burn up during re-entry through the atmosphere.

It seems that in the case of COSMOS 1402 control of the satellite was lost, and
proved impossible to push it out into its parking orbit. This meant that it started to reenter the Earth's atmosphere before the radio-active source had been given a chance to decay. This should not have been a problem, since this was its intended fate anyway, but since control of it had been lost it was impossible to put it into an orbit that would ensure complete vaporisation of the dense radio-active source. In the event, it seems that the villain of the peace fell into the South Atlantic, even if it did remain intact on re-entry. The point is worth making that even if such sources are 'burned up' on reentry, this does not destroy the radio-activity present, for once formed it is not possible to destroy an isotope by such physical methods as burning. However, by vaporising it in the upper atmosphere, the radio-activity is dis persed to such an extent that harmful levels

Giotto reference transfer orbit with a launch on 10 July 1985 and a Halley encounter on 13 March 1986.
of radiation should not be experienced by anyone on the ground.

Many of these surveillance satellites, put into orbit by both the USA and the USSR, contain such radio-active sources and this was not the first to cause concern; it may be remembered that a piece of similar Soviet space debris fell on northern Canada some three years previously. It seems a safe bet that sooner or later the same thing will happen again.

A Satellite for Sport

The satellite's vantage point from its orbit some 900 km . out in space provides the basis for one of its most useful roles, that of satellite navigation. There are several systems which make use of this facility, such as the Marecs satellites operated by Inmarsat. These satellite provide a means by which commercial shipping can obtain a much more accurate fix of their position at sea than ever was possible by dead reckoning. One disadvantage of this type of system to the average yachtsman is its fairly high cost for the receivers and associated computing equipment.

A system presently operated by the US Navy, and soon to be updated, is based on satellite navigation by their so-called Transit satellites, and known by many yachtsmen as SATNAV. The development of modern microprocessor based computing devices has ensured that this method is reasonably cheap to install. Like many other such navigation aids, it uses the Doppler shift between two signals to provide data for the calculation of latitude and longitude at sea. For greater positional accuracy, it may be interfaced with the compass and ship's log, the latter being the device which gives the ship's speed. At the present time there are five satellites, with one more to be launched shortly, so there are still some gaps in the system. The satellites used for this method occupy a polar orbit, with a period of about 100 minutes. Each satellite transmits beacon signals on 150 MHz and 400 MHz which are picked up by the receiver on board the yacht. The transmitted signals are compared with a very stable signal generated by the equipment. Since the satellite is moving very rapidly, its signal will appear to rise and then fall in frequency as it passes by on its orbit, just like the old example of the whistle on a steam train - this is Doppler shift. The satellite always knows where it is above the surface of the Earth, and by making some computations based on the magnitude of the Doppler shift, the position of the yacht may be found relative to the satellite.

If the yacht is moving, then this factor can also be taken into account, and the final result should have an accuracy of about 300 metres, although it is theoretically possible to obtain your position to within 100 metres.

This system is to be superseded shortly by a new Global Positioning System, or GPS, called NAVSTAR, which will give a new meaning to the old nautical phrase, "a star to steer by".

International Rescue Takes Off

The method of using Doppler shift to calculate the position of an object on the surface of the Earth can also be used in the opposite sense, that is, for the satellite to determine the position of a fixed beacon. This is the basis of a project which Britain has recently joined, and which will use satellites to locate crashed aircraft or shipwrecked mariners. The other countries involved are the US, Canada and France, who will join up their SARSAT system with the Soviet COSPAS system. SARSAT, or Search And Rescue Satellite Aided Tjacking is a
method which uses satellites to pick up the transmissions from distress beacons on the ground or in the sea. COSPAS. 1 was launched in the middle of last year, and an American satellite, to be operated by NOAA, should follow it up on March 28th this year. These satellites will pick up transmissions from emergency beacons which are automatically turned on in the event of an accident. Those carried on board an aircraft should operate due to the jolt of the crash, whilst those on a ship operate when immersed in water

These beacons have to be carried by law, but it is by no means an easy task to locate their position from ground based receiving stations or even over-flying aircraft. This is where the satellite's superior vantage point comes into its own. The beacons transmit on the international distress frequencies of 121.5 MHz and 243 MHz for at least two days; aircraft flying over the sea are obliged to monitor these frequencies, but not whilst they are flying over land. A satellite in a polar orbit can monitor the whole surface of the globe, again having a period of around 100 minutes, so that any transmitting beacon will be located in a relatively short time. The signal from a beacon is recorded as the satellite passes close by, and then the Doppler shift compared to a reference signal is used to work out its position relative to the satellite. This information is 'dumped' via
dust and water vapour contained in it can completely obscure some parts of the elec-tro-magnetic spectrum which are of interest

This is especially true of a wide range of infra-red (I-R) wavelengths, which are obsorbed by water vapour in the air. To overcome this problem, a satellite has recently been launched called IRAS, or InfraRed Astronomical Satellite. This carries on board a set of special sensors which will be used to study the emission of infra-red by certain parts of the galaxy. Infra-red, of course, is heat energy, and to make the sensors as sensitive as possible they are cooled down to a very low temperature. On IRAS this has been achieved by the use of liquid helium, contained in a special vacuum flask, and which is able to cool the sensors down to within a few degrees of absolute zero. The telescope will only be able to operate whilst the supply of liquid helium lasts, and the astronomers in charge of the project are pleased because it seems that the helium may last for up to 300 days, rather than the 200 days originally calculated.

Because of the extreme sensitivity of the infra-red sensors, one glance at anything as bright as the Sun would destroy them immediately. For this reason the satellite has been put into a special orbit, called sunsynchronous. This is a polar orbit, but the orbital increment is so arranged that the

telemetry when the satellite comes in range of a ground station, and the position of the distress beacon calculated. This gives a very precise location for the rescue craft to home in on and hence remove much of the uncertainty and guesswork often involved in trying to locate the position of a craft in distress, particularly at sea and in bad weather conditions. A development of the system will use beacons which operate on a higher frequency of 406 MHz , in a less cluttered part of the radio spectrum, and has a potential accuracy of some 2 to 5 km , rather than the 20 to 50 km . with the presently envisaged system.

I-R Astronomers over the Moon

So far, all the various satellite systems considered have had their attention directed towards the surface of the Earth. This need not necessarily always be the case, for there are a number of satellites whose attention is very clearly on outer space. Amongst these are the special telescopes which have been carried aloft within a satellite in order to obtain a better view of the Universe. The reason for doing this is usually to place the telescope above the Earth's atmosphere so that it cannot interfere with the incredibly weak signals which the astronomers are looking for. Indeed, the atmosphere and the
satellite always faces away from the Sun. To protect the sensors during launch, a cover was placed over them; the first signals received from the satellite when it was put into operation was the minute infra-red trace from these covers as they were jettisoned and drifted away into space. At the time of writing the telescope has only just begun its operational life, but it is reported that one minute of observation has revealed more than was previously known about this part of the spectrum from all Earth bound observations.

On Track for Halley's Comet

Many reader will no doubt be aware that Halley's comet is due to reappear during the next few years. This is one of the more spectacular of these heavenly bodies, although it is not expected to be such a sight in the night sky as on its last appearance 75 years ago. There is a great deal of speculation amongst astronomers as to what the composition of a comet actually is. It is generally agreed that the head consists of frozen water or gases, along with some rock and that the tail is a very thin stream of this material evaporated by heat from the Sun and flowing out in the solar wind, so that it always points away from the Sun. One way which could provide a lot more information

With sales of the Commodore 64 steadily rising there must be a vast number of users becoming increasingly frustrated in the knowledge that they are the proud owners of a powerful and yet undocumented machine.

The users manual which accom panies the 64 is extremely basic, and continually makes reference to the Programmers Reference Guide for more information on the concepts of advanced operation. Where is this Oracle? No doubt it will materialise in time, but for all you Commodore 64 owners here are some routines to whet your appetites.

Joysticks

The 64 has two control ports which are controlled by one of two CIA chips. these are 6526's and control the 1/O
and interrupts etc. CIA 1 handles IRQ whilst CIA 2 handles NMI. To read the joystick switches use the following JY = NOT PEEK (56320) AND 15 this will yield 1 for UP, 2 for DOWN, 4 for LEFT, 8 for RIGHT, and the appropriate combinations for the diagonals. To read the fire button use
FB = NOT PEEK(56320) AND 16
(I have used Port B. Replace address with 56321 for Port A.)

High Resolution Graphics

Another feature of the Commodore 64 is its high resolution graphics facility. This is not even hinted at in the manual - so here it is. The screen has its
by Nigel Fawcett

Pixels arranged in a 320 by 200 matrix. In normal operation the screen requires $10 \emptyset \emptyset$ bytes of RAM to hold the code for each of the 1000 possible character positions. In Bit Map Mode every Pixel on the screen needs to be addressable64000 bits are needed and one byte contains 8 bits - so $800 \emptyset$ bytes will be required in RAM to enable high resolution graphics. Program 1 is written in basic to demonstrate this facility.

You will notice that in this mode the screen memory starts at 24 K , and the colour memory starts at 16 K . The screen will be completely blank, but due to the slow nature of BASIC it adequately demonstrates how the screen is mapped. Program 2 executes the same function in machine code (somewhat faster), and then allows the screen to be used as a doodle pad with a joystick in control Port B.

1070 GOTO 1810
2000 GOTO 2080
3000 DATA $162,32,160,0,169,0,141,0,96,238,71,3,136,208,245,238,72,3,202,288$
3010 DRTA $239,162,4,160,0,169,2,141,0,64,238,92,3,136,208,245,238,93,3,202$
3020 DATA 208,239.96
10999 RETURN
11000 B1\%=B1\%-1:IF SGN(B1\%)<>-1 THEN 11100
11010 B1\% $1 \%: C 1 \%=C 1 \%-1$
11020 IF C1\% 10 THEN C1\% $\%=24$
$11100 \mathrm{CH}=\mathrm{C} 1 \% * 320+\mathrm{C} 2 \% * 8+\mathrm{B} 1 \%+24576$
11110 POKE CH, PEEK(CH) OR ($2 \uparrow B 2 \%$)
11999 RETURN
$12000 \mathrm{~B} 1 \%=\mathrm{B} 1 \%+1$ IF B1\%<8 THEN 12100
12010 ह1\% $\%=0: C 1 \%=\mathrm{C} 1 \%+1$
12020 IF C1\%324 THEN C1 $\%=0$

12110 POKE CH, PEEK(CH) OR ($2 \uparrow 82 \%$)
12999 RETLIRN
13000 B2\% $=\mathrm{B} 2 \%+1$: IF $\mathrm{B} 2 \%<8$ THEN 13100
$13010 \quad \mathrm{E} 2 \%=0: \mathrm{C} 2 \%=\mathrm{C} 2 \%-1$
13020 IF C2\% 20 THEN C2\% $=39$
1310 CH=C1\%*320 $\mathrm{C} 2 \% * 8+B 1 \%+24576$
13110 POKE CH,FEEK(CH) OR ($2 \uparrow B 2 \%$)
13999 RETURN
14000 B2\% = B2\%-1:IF SGH(B2\%)(S-1 THEN 14100 14010 B2\% 10 : C $2 \%=$ C $2 \%+1$
14020 IF C 2%) 39 THEN C $2 \%=0$
$14100 \mathrm{CH}=\mathrm{C} 1 \% \% 320+\mathrm{C} 2 \% \% 8+B 1 \%+24576$
14110 POKE CH, PEEK(CH) OR (2 个B2\%)
14999 RETURN
32767 END
Program 2
$100 \quad V_{1}=56576: \psi 2=53248$
140 POKE V1,PEEK(V1) RND 254
150 POKE V $2+24.8$:
160 POKE V2+17, PEEK (V2+17) OR 32 :
170 FOR $X=0$ TO 8191 :
180 POKE $24576+X, 0$:
190 NEXT X
200 FOR $X=0$ TO 1023
210 POKE $16384+\% .1$
215 REM:
220 NEXT X
308 GOTO 300:
32767 END
Program 1

REM POINTERS TO CIA RND VIDEO CHIPS REM SET UP CIA CHIP
REM RECONFIGURE SCREEN MEMORY MRTRIK
REM ENABLE BIT MAP MODE
REM 8K FOR SCREEN MEMORY MAP
REM CLERR MEMORY
REM IK FOR COLOUR MEMORY
REM SET COLOUR TO WHITE - CHANGE THIS
REM FOR ANY COLOUR CODE O-15
REM RUN/STOP \& RESTORE TO BREAK OUT!

COMPUĽZ REWS

Returning by popular demand for a second year, the Computer Fair at Earls Court reflects just how important the micro is becoming. The Fair is being held from the 16th to the 19th of June, and the doors will be open from 1 p.m. to 6 p.m. on the $16 \mathrm{th}, 10$ a.m. to 6 p.m. on the 17th and 18th, and 10 a.m. to 5 p.m. on the 19th. Admission prices will be $£ 3$ for adults, children under sixteen and OAPs £2, and special reduced price vouchers will be printed in the magazines sponsoring the event. There are also reductions for group advance bookings. Further details can be obtained by ringing 01-643 8040 ext. 4859.

British Rail are also offering reduced price inclusive return tickets, e.g. a return rail ticket and admission to the Fair will cost you only $£ 5.80$ if you live in Essex. For more details contact the Travel Centre at Kings Cross Station, or phone 01-278 2477.

Amongst the items on offer from the organisers of the Fair are a Sinclair Village, a Club Avenue, and a Micro Mouse contest. Indeed the Fair will be bigger than last year, held in a larger area, and open for longer.

The Maplin stand will be showing our extensive range of computers and

software, all of which will be available for purchase, PLUS a demonstration of the abilities of the new M5 computer from Sord, providing it is here on time. There will also be a whole host of books and literature for you to choose from, and free leaflets on hardware and software will be placed about the stand.

Our technical staff will be at hand to provide you with help and advice should you require it, and there will be a representative of the U.K. Atari User Group present, to talk to those of you have already bought, or are seriously thinking of investing in one of the Atari range of computers and peripherals.

by Scott Adams
Never let it be said that Scott Adams doesn't provide at least some help for the perplexed Adventurer! His hint book contains additional clues to help you out of some of the sticky spots you have got into, while still letting you solve the Adventure yourself - all without giving away any of the clues until you really want them! So if you really can't seem to get out of the bog or locate the Pharaoh's heart, then this is the right place for help. This expanded edition includes hints for all twelve Adventures, and a special section on the making of Adventure maps. Relief at last! 1982. 14 pages. $190 \times 133 \mathrm{~mm}$.

Order As WK25C (Book of Hints)
Price $£ 4.99$ NV

1000 POKE 56334, PEEK(56334) AND 254:
1010 POKE 1,PEEK (1) RND 251 :
1028 FOR I ≈ 0 TO 294?
1030 POKE $12288+$ I, PEEK ($53248+$ I) :
1035 REM:
1040 NEXT I
1100 POKE 1, PEEK (1) OR 4:
1110 POKE 56334, PEEK(56334) OR 1:
1200 FOR $[=13312$ TO 13327:
1210 READ C:
1220 POKE I,C:
1230 NEXT I
1300 POKE 53272,(PEEK(53272) AND 240)+12
1305 REM: 24
rem tell the video chip where the new
2000 PRINT " 7 ":
REM CHPRACTER SET IS
REM CLEAR SCREEN
2010 PRINT "玉ف@@@@RRRRE !!!!": REM INYERSE © AND INWERSE R !!!!
3000 DATA $0,0,0,0,3,12,48,192,3,12,48,192,0,0,0,0$
Program 3

[^2]
Redefining the character set

The 4 K of memory required to generate the 512 characters available resides in ROM starting at memory location 53248. This may come as a surprise to those who are already aware that the video chip controlling the sprites starts at the same address. Reading the character ROM can only be achieved when the 1/0 chips are correctly configured, as program 3 will show.

For those who were again disappointed by the slowness of BASIC, Program 4 performs the same function using machine code.

These demonstration programs do not by any means explain the full power or capabilities of the Commodore 64. There are many other places in RAM at which the character set can be set up and redefined. This is not the only method of creating a bit mapped screen - multicolour modes have not been shown nor has the ability to fine scroll or mix Hi-res graphics with text this is just meant as an insight into the possibilities that exist when programming on this machine. Full details will be found in the Programmers Reference Guide and more programs and ideas will be given in future editions of Electronics. Good programming.

M WPLSN NELSS A APLSN NELSS

MICROWRITER

You won't believe it till you try it!
Microwriter is a superior replacement for every known method of putting thoughts onto paper. Microwriter is the world's first fully portable word processor and, with its unique five-finger keyboard, completely supersedes handwriting, dictation and the typewriter

"WHAT'S IT FOR?"

Think of the amount of writing you do in a working day - letters, memos, reports, speeches, notes, etc. A Micro-writer will cope with the lot

Normally you'd originate text by hand, or perhaps by dictation. Then you wait for it to be rewritten on a typewriter, possibly sending it back for correction.

By producing that copy on a Microwriter you'll eliminate the duplication of effort and the frustration of redrafting

And because it's portable it's just as invaluable at home or out in the field

"WHAT DOES IT DO?"

Although it's no bigger than an average paperback book, don't be misled. The Microwriter is a remarkably powerful machine.

Quite simply, its six keys have the capa bilities of the entire typewriter keyboard.

It will produce both upper and lower case alphabets, numerals, the full range of punctuation, as well as an additional range of technical symbols.

As you produce your copy it's stored on a 1600 word memory - that's about five pages of A4. Once there it can be recalled on the moving display at any time, allowing you to make corrections or insertions. The entire

memory can be saved to cassette in about 3 minutes and kept for use later

Plug the Microwriter into a printer or electronic typewriter and your copy is imme diately transformed into neatly typed text.

You're not limited in your choice of formats. The Microwriter easily copes with standard and variable formats on any size or type of paper, including automatic carriage returns, indented paragraphs, headings, un derlining and complex tabulations.

All this the Microwriter will do with just the help of a printer_A television monitor can be used to increase the display

"BUT ISN'T IT HARD TO LEARN?"

"No, quite the contrary. Thousands of users have proved that Microwriting can be learned in an hour or less, and that you can be producing work within a day. In a few days of practice you can reach handwriting speed. With regular use you'll be Microwriting more than twice as fast as you can handle a pen.

Compared to the months it takes to traina typist, it's easier than falling off a log.
"HOW FRIENDLY IS THE MICROWRITER TO OTHER EQUIPMENT?"

The Microwriter's compatability with other equipment gives you a powerful means of access to systems in use everywhere

It's compatible with most standard RS232C equipment, capable of both transmitting and receiving data. It can also be used as analternative keyboard on most KSR and RO printers using this standard.

It can be used as an input device to your existing microprocessor

HOW DO I BUY ONE?

Microwriter is available by mail-order or from our Westcliff shop only, and comes complete with mains charger, soft case with carrying handle, cassette lead, User's Guide, Systems Manual and set of crib cards.
Order As AF62S Microwriter $£ 557.75$
AF66W TV/Monitor Interface
£189.75
AF67X RS232C Cable male to male
£28.75
AF68Y RS232C Cable male to
female £28.75

MICROPROFESSOR MPF-II

Runs most existing Apple II Software

Microprofessor II is one of the new breed of home computers containing a full 64 K of RAM when supplied. This extremely power. ful colour home computer also contains an excellent 12 K BASIC which is Applesoft compatible and a 4 K monitor in ROM. However, both these can be switched out and all 64 K of RAM utilised if desired

Microprofessor II is a powerful learning tool that will help any student. Because of its compact size, it slips easily into a briefcase or bag and can even travel comfortably if you're on the road a lot

Peripherals available include a separate full-size keyboard for heavy-duty input,
floppy disk interface and drive, Centronics. type parallel interface for a printer, a match ing 40 -column thermal printer (which plugs in directly) and a joystick.

The computer itself comes complete with power supply, cassette cable, TV interface and four handbooks. These include a comprehensive 250 page Introduction to BASIC Programming for beginners, a 130 page User's Manual, an Installation Manual and a Self-Diagnosis Manual. There are also keyboard overlays for the graphics symbols and another for the single key BASIC commands.

Microprofessor II can be used with most standard cassette recorders and a lead is included for mono recorders. The computer has its own internal speaker and a speech synthesiser module will be available later this year. A 50-pin edge connector for plug.
in cartridges can also be used to gain direct access to the busses and CPU interrupts etc.

Specification

6502 Microprocessor
16 K of ROM including 12 K BASIC 64 K of RAM
Keyboards
Built-in calculator style 49-key keyboard. Detachable full-size 55-key keyboard (optional extra).
Both keyboards include single-key BASIC commands
Peripherals
Sockets for disk drive, ta pe cassette, video monitor, TV printer and joystick.
Floppy disk drive (optional extra).
Centronics type parallel interface (op tional extra).
Thermal printer (does not require the

AMPLNN NELNS IMAPLSN NELUS

interface) (optional extra).
Joystick (optional extra).
Speech synthesiser board (optional extra).
Built-in 8 ohm, 2.25 inch, 0.25 W speaker.

Languages

Applesoft compatible 12K BASIC.
Optional extras: Assembly, Pascal, Forth, Logo, Pilot.

Video Display

Memory mapped into system RAM.
Mixable text, low, and high resolution modes.
960 characters, 40 columns, 24 lines in text mode.
1920 dots in 40×48 array in low-res graphics mode.
53,760 dots in 280×192 array in high-res

graphics mode.

Six colours.
The following items are available now. fuller details in our next issue.

Order As

AF69A Microprofessor II Price $£ 268.95$ AF70M Full-size Keyboard AF71N MPF II Printer AF72P Printer Interface Kit AF73Q Disk Drive AF74R Disk Interface Kit AF75S Joystick AF76H Thermal Paper (pack

Price $£ 36.25$
Price $£ 185.75$ Price $£ 28.25$ Price £296.85 Price £41.49 Price $£ 14.95$ of 3 rolls)
Price $£ 5.24$
Software on Cassette Order As
KTOOA Gobbler KT01B Panic

Price $\mathbf{6 6 . 9 9}$
Price $£ 6.99$

KT02C Blitz
KT03D Rain
KT04E High Driver KT05F Fighter Docking
KT06G Beetle
KTO7H Sabotage
KT08J Boaga 2
KT09K Obstacle
KT10L Alien
KT11M Space
KT12N Snake
KT13P Head-on
KT14Q Auto Barn
KT15R Gomoku
KT16S O-X Games
KT17T Four In A Row KT18U Groan
KT19V Rotate
KT20W Master Bagles
KT21X Graphics

Price $£ 6.99$
Price $£ 6.99$
Price £6.99
Price $£ 6.99$
Price £6.99

The superb new Sord M5 computer which we described in detail in our last issue will be availale in early June. A low priced micro-floppy disk drive will be available in September. There will be a 32K RAM expansion box also to be released in September and a printer will be available in Decembber. In addition at least 70 or 80 pieces of software are due to be released by October with much more to come after that.

The following list of products is scheduled to be released in June (or July if marked \dagger).

AF64U Sord M5 Computer £189.95
AF65V Sord Joypads $£ 24.95$ per pair
KSOOA Falc Cartridge (Visicalc-type
KS01B
BASIC G (An BASIC with extended and very powerful graphics commands) £34.95

KS04E	Step Up	£23.95		
KS05F	Word Maze	£23.95		
KS06G	Super Baseball	£23.95		
\dagger KS07H	Boxing	£23.95		
\dagger KS08J	Skiing	£23.95		
\dagger ¢S09K	Tennis	£23.95		
Games Cassettes				
KS10L	Smokey \& Barrier Attack.Jogging \& Sidewinder	£8.95		
KS11M				
KS12N	Solitaire \& Tower of Hanoi \&8.95			
KS13P	Three Circles \& Number			
	Search Pric	ce $£ 8.95$		
$\begin{aligned} & \text { KS14Q } \\ & \text { KS15R } \end{aligned}$	Black Jack \& Slot Machine £8.95			
	Trek Pri	¢8.9		
KS16S	Congenial Biorhythm \& Music			
	Tone Price	ce $£ 8.95$		
KS17T Cowboy \& Barricade Price £8.95				
We will have more details of this and much more new software for the Sord M5 in our next issue.				

CBBS - North East

CBBS North-East is a computerised bulletin board system, which is available FREE to all, except for the price of a phone call. It has advantages over a normal bulletin board in that the number of notices stored is much larger, any of the information can be transferred at a rate of 30 characters/sec (you can read that fast, but without full retention) to your own system, and if you have a means of storing it, peruse it at your leisure.

Computer programs in any language or format can be sent or collected from the system. The operators will also make available programs, news, and items of interest relevant to micros. Essential equipment is as follows:

1. ANY computer or terminal.
2. A telephone and line adjacent to the computer.
3. If a computer, then a program which makes it act as a dumb terminal, sending and receiving characters in standard ASCII code. CBBS North-East is programmed for the international standard of 8 bits per character, no parity, 1 stop bit.
4. A modem.

The service is available on 020743555 and 020732447 daily from 19.00 to 08.00 and all day Sunday. From 00.00 to 08.00

32447 will only respond to Bell 103 U.S.A. tones. If you want to access them, you should follow these instructions:

1. Load terminal program into computer.
2. Modem switched on, originate/call mode selected (if there is a choice, as some modems are originate only), phone latch switch (who knows what it is called on your modem, it may even be incorporated in the on/off) set to release.
3. Dial number.
4. CBBS NORTH-EAST will answer with a high pitched, 1850 Hz tone.
5. Turn phone latch to hold (or switch on)
6. Replace receiver, or place on modem if it is the audio-coupled type.
7. CBBS NORTH-EAST will then handle everything automatically. If your modem is not sending out the correct tone of 1050 Hz , it will disconnect within 30 seconds of the connection being made. If all is in order, all you have to do is respond to its questions. For reference, a list of its major commands is enclosed. Many more subtle facilities are available which you will discover as you become familiar with the system.
8. When you are finished, and have logged off properly using the "G" (for goodbye) command, put your modem back to release (or switch off) and replace the receiver.
9. If you have "got lost" and you or your
equipment fails to give CBBS NORTHEAST any instructions for 5 minutes, a warning is issued, then after a further 1 minute with no instructions it will disconnect you.

Major Functions

(E)nter message
(G)ood bye
(H)ELP = =
(R)etrieve msg
(Q)uick summary
(S)ummarize msgs

Minor Functions

£ Print caller £ etc
(B)ulletin reprint
(C) ase upper/lower
(D)uplex: echo off
(P)rompt bell off
(K)ill message
(N)ulls: How many?
(O) ne line summary
(T)ime/date/E.T.
(U)ser update (password, etc)
(V)ideo backspace
(W)elcome reprint
$e(X)$ pert user mode
For details, type H, press return, then type the command letter. HELP New user help; (vs H: keyword based help)
CHAT See if operator is available to talk via keyboard

Understanding Telephone Electronics

 by John L. Fike and George E. FriendThis takes the reader step-bystep from the simplest explanation of telephonic principles through to an intermediate level of telecoms learning. It covers the technologies involved in dialling, ringing, transmission, signalling, switching, digital techniques, modems, and cordless telephones. At the end of each chapter is a summary quiz. making the book ideal for selfpaced individual learning. 1983. 288 pages. $209 \times 133 \mathrm{~mm}$. Order As WK45Y (Phone Electronics) Price $£ 5.10 \mathrm{NV}$ The Working Commodore 64 by David Lawrence
This is based on a coflection of solid, sophisticated programs in areas such as data storage, finance, graphics, household management, education and games of skill. The programs have been designed to make the most of the CBM 64's special features. Some of the programs are a word processor and text editor, a music and sound synthesiser, a sprite editor, and one which allows the user to enter hi-res graphics mode. This is not available in the standard BASIC.
1983. 158 pages. $234 \times 156 \mathrm{~mm}$. Order As WK46A (Working CBM 64)

Price $£ 7.20 \mathrm{NV}$

Commodore 64 Computing

by lan Sinclair
This is an introductory guide and reference book for all CBM 64 users, and is essential for getting the best out of this new machine. It covers the setting up and operation of the micro and its many facilities in detail. BASIC syntax is comprehensively summarised with examples, and the book sets out and fully explains the features which make this computer such remarkable value for both business and domestic users - such as graphics, sprites, programmable function keys, colour commands, programming for sound, using the 64 K option, CP / M and running programs written for PET machines. 1983. 134 pages. $232 \times 155 \mathrm{~mm}$. Order As WK47B (CBM 64 Computing) Price $£ 6.60 \mathrm{NV}$
Programming the 6809
by Rodnay Zaks and William Labiak
This book covers the 6809 inside and out. You will learn how signals are handled within the chip itself and how to get them to control all essential I/O functions. Whether you are a first time or experienced programmer, this book will make it possible for you to use the 6809 to its fullest capacity. 1983. 362 pages. $227 \times 151 \mathrm{~mm}$. Order As WK30H (Programming the 6809)

Price £13.75NV

New Books

Mastering the VIC 20
by A. J. Jones, E. A. Coley, D. G. J. Cole

This book offers a
comprehensive study of BASIC and VIC 20 structure, and covers machine code programming using the VICMON assembler. It offers a wealth of interesting programs, including MINISYN (setting up the VIC as a
two-octave keyboard instrument with sustain and colour display), PONTOON, and STARSHIP. Hi-res graphics in BASIC and machine code are explained in detail, and routines for saving a hi-res screen to disk or tape are given.
1983. 178 pages. $253 \times 170 \mathrm{~mm}$.

Order As WK31J (Mastering the VIC 20) Price £7.35NV

The Working Dragon 32
by David Lawrence
This book is based on a collection of solid, sophisticated programs in areas such as data storage, finance, graphics, household management, education and games of skill. Each of the programs is explained in detail, line by line. And each of the programs is built up out of general purpose sub-routines and modules which, once understood, can form the basis of any other programs you need to write 1983. 158 pages. $234 \times 156 \mathrm{~mm}$. Order As WK32K (Working Dragon 32) Price £7.20NV The Captain 80 Book of BASIC Adventures
This is the world's first anthology of BASIC adventures from some of the best-known writers of micro-computer software. All of these programs were originally written for the TRS-80 Model I, Level II, 16K computer, but should be easily converted to other machines and other BASICS. There are eighteen Adventures for you to type in to your computer. American book.
1981. 252 pages. $276 \times 210 \mathrm{~mm}$.

Order As WK23A (BASIC

Adventures) Price £14.50NV How to Program Your ATARI in 6502 Machinelanguage This is an introduction to machine code on the Atari for the programmer at present using BASIC. The book includes comparisons of equivalent BASIC and machine code programs, and describes how to call machine code
subroutines from BASIC
1982. 106 pages. $206 \times 130 \mathrm{~mm}$.

Order As WK33L (Atari 6502 Book)

Price £6.95NV
VIC Graphics
by Nick Hampshire
This book provides the reader with an introduction to
programming techniques used to generate graphic displays on a VIC. Topics include using colour, two dimensional shape plotting, shape plotting, scaling, stretching, movement and rotation, plotting using matrix manipulation, and 3-D shape plotting
1983. 186 pages. $214 \times 132 \mathrm{~mm}$. Order As WA48C (VIC Graphics)

Price £6.95NV
The ORIC-1 - and how to get the most from it
by Ian Sinclair
This book introduces Microsoft BASIC, thoroughly explains the ORIC's graphics, colour and sound systems, and also sets out the data processing capabilities to open up the full range of the ORIC's facilities to the beginner. Many examples of useful programs are included, and the book aims to be a convenient reference source.
1983. 134 pages. $234 \times 155 \mathrm{~mm}$.

Order As WK34M (ORIC-1 Book)
Price £6.65NV

ZAP! POW! BOOM!

35 Programs for the Dragon 32 by Dr Tim Langdell
This is an exciting collection of games and home applications for the Dragon. The programs are simple to use and will make full use of the colour facilities on the Dragon. Programs included are a metric converter, home accounts, and various games and routines.
1983. 62 pages. $208 \times 147 \mathrm{~mm}$.

Order As WK35Q (35 Dragon Programs) Price $£ 5.65 \mathrm{NV}$

The Art of Programming the ZX

Spectrum

by M. James
A book that should enable you to program the $Z X$ Spectrum effectively. Amongst the topics covered are Low and High res graphics, Sound, PEEK and POKE, Strings and Words, and Moving and Advanced Graphics, along with all the details that will make your programs on the Spectrum look and sound more professional.
1983. 138 pages. $179 \times 110 \mathrm{~mm}$ Order As WK27E (Book BP119) Price £2.50NV

The Dragon 32

by lan Sinclair
This book is aimed at the beginner, and starts with setting up the machine, guiding you step-by-step until you become sufficiently expert to write your own programs and create your own special effects. It should set you on a sure course to mastering and enjoying to the full the range of facilities that the Dragon offers.
1983. 158 pages. $234 \times 155 \mathrm{~mm}$

Order As WK26D (Book GP1149) Price £6.95NV
The Power Semiconductor Data Book
Contains information on the recently introduced Advanced Planar Power series of transistors and darlingtons, plus full details of Tl's standard range of transistors, darlingtons, thyristors and triacs and many recently added pro-electron, jedec and limited source types Gives all electrical and mechanical data, and power application notes and information.
1983. 888 pages. $210 \times 147 \mathrm{~mm}$. Order As WK28F (Power Semicon Data Book)

Price £11.35NW
The Working Spectrum, Vol. 1

by David Lawrence

This book is based on a collection of solid sophisticated programs in areas such as data storage, finance, calculation graphics, household management, and education Each of the programs is explained in detail, line by line. And each of the programs is built up out of general purpose sub-routines and modules which, once understood, can form the basis of any other programs you need to write. Order As WK38R (Working Spectrum Vol 1) Price $£ 7.25 \mathrm{NV}$

40 Best Machine Code Routines for the ZX Spectrum by John Hardman and Andrew Hewson
Section A of this book explains what you need to know about $Z 80$ machine code on the Spectrum - how memory is organised, the registers, the stack, the display. Section B conttains 40 routines, including scroll-up, down, side-to-side by pixel or by character, search and replace, token swap, string search. Rotate character, invert character - horizontally and vertically. Line renumber including GOSUBs, GOTOs, RUNs, etc. Plus many more. 1983. 144 pages. $209 \times 147 \mathrm{~mm}$. Order As WK39N (40 M/C Spectrum Routines)

Price $£ 6.35 \mathrm{NV}$
Spectrum Machine Language for the Absolute Beginner Edited by William Tang If you are frustrated by the limitations of BASIC and want to write faster, more powerful, space-saving programs, then this is the book for you. Even with no previous experience of computer languages you will be able to discover the ease and power of the Spectrum's
own language. Each chapter includes specific examples which can be used on your Spectrum, as well as a self•test questionnaire. At the end of the book this is all brought together into an entire machine language program - from design right through to the complete listing of an exciting, original arcade game.
1983. 244 pages. $210 \times 139 \mathrm{~mm}$. Order As WK40T (Spectrum Beginners M/C) Price £6.95NV

ZAP! POW! BOOM!

by Mark Ramshaw
This book contains listings for the following thirty games for the VIC20: Maze Man, Asteroids, Swarm, Gunfight, Astro-Wars, Scramble, Space Invaders, Airplane, Marathon, Star Trek, Wizard, Tail Gunner, 3-D Maze, Brands Hatch, Lightning-Bolt, Space Eggs, Xyloid, Adventure, Gomoku, Lunar Lander, Missile Command, Nightmare Castle, One-Armed-Bandit, Draughts, Dambuster, Breakout, Dogfight, Night Raid, Tank Battle, Death Star.
1983. 52 pages. $295 \times 210 \mathrm{~mm}$ Order As WK36P (Zap Pow Boom) Price £7.95NV

The VIC20 for Children
by Tony Noble
This book is aimed at the younger user, perhaps working with their parents to explore what computing is all about. it covers everything from switch ing on, through simple BASIC programming to exciting games and puzzles. It also provides a new fun way of learning arithmetic and other subjects.
1983. 154 pages. $190 \times 260 \mathrm{~mm}$.

Order As WK37S (VIC20 for
Children)
Price £7.30NV

Games BBC Computers Play

by Tim Hartnell, S. M. Gee, Mike James
This book contains full program listings for 41 games, including Zombie Island, Singing and Interplanetary Miner Blues, Le Mans, Wall Street, Enchanted Forest, and dozens more. 1983. 114 pages. $234 \times 156 \mathrm{~mm}$ Order As WK41U (Games BBC Computers Play) Price £7.75NV Load and Go With Your Dragon by John Phipps and Trevor Toms This book contains listings for 25 programs, and also sections on debugging, hints and tips, and graphics. All the programs have been thoroughly tested, and the authors undertake to help anyone who cannot get them to run
1983. 128 pages. $209 \times 144 \mathrm{~mm}$ Order As WK42V (Load And Go) Price f 6.40 NV

Creative Graphics on the BBC

Micro
by John Cownie
Starting with first principles this book describes how to exploit the excellent graphics facilities provided by the BBC micro. It proceeds to explore more advanced routines explaining in detail the individual procedures that go to make up whole programs. There are 36 listings that will run on either the A or B Model to produce a dazzling range of pictures and patterns in full colour, including animated pictures, recursively.defined curves, and rotating 3-D shapes Colour illustrations
1983. 110 pages. $205 \times 153 \mathrm{~mm}$. Order As WK43W (BBC Creative Graphics) Price £9.80NV
BASIC Exercises for the Atari by J. P. Lamoitier
This is a practical and entertaining way to learn programming with Atari BASIC Through progressive examples you will learn the fine points of the language and learn how to write your own programs. It will enable you to use your Atari to compute taxes, forecast sales, calculate rate of growth, find the average of a sequence of measurements, calculate mean, variance, and standard deviation, and play games. All of the exercises will run on 400, 800 and $1200 \times \mathrm{L}$ models. 1983. 252 pages. $228 \times 177 \mathrm{~mm}$. Order As WK44X (Atari BASIC Exercise) Price $£ 11.80 \mathrm{NV}$

SAY IT WITH SATELLITES

continued from page 55
on the subject is if it were possible to obtain samples from such a comet, and carry out an analysis. Until recently this would have been an astronomers pipe-dream, but with the advent of satellites it has now become a real possibility.

The European Space Agency and British Aerospace have designed a $£ 34$ million contract for the Giotto space craft. This will be Europe's first deep space probe, although as such it may seem to be stretching the label of 'satellite' a long way. It is due to be launched during July 1985, and to intercept the comet about eight months later. Giotto will carry some of the most advanced instrumentation available and pass closer to the comet than either the Russian or Japanese probes which are also to be sent in its direction. It is hoped to carry out a chemical analysis of the comet and take colour photographs of the nucleus and also take measurements of surrounding magnetic fields.

Finally, back to the Box
 The Box referred to is, of course, our old

 friend the TV. Developments in Direct Broadcast by Satellite, DBS, seems to be three steps forward and two steps back, and it is getting difficult to predict just when the average 'consumer' may expect to enjoy the delights of such a scheme. The background technology involved was outlined in a previous article in this series, and the present state of play appears to have the BBC and IBA knocking the ball backwards and forwards between them. With such a wide ranging system it is vital that common standards of transmission are used, and this is where one of the present problems lies.

The IBA have proposed a transmission system called MAC (for multiplexed analogue component), whilst the BBC are pushing an improved version of the commonly used PAL method, known as Enhanced PAL. There is actually a third contender which is a hybrid digital/analogue system, but it seems very likely that it will turn out to be an 'also ran', since it is only just at the early stages of development and there is reckoned to be insufficient time for it to be brought up to the same standard as the two main systems in the race. This is despite the acknowledgement by the Part Committee, the Government body who have the responsibility for deciding these matters, that it is an elegant and ingenious method. It could well be that there is some professional jealousy involved, since it appears highly probably that the IBA's MAC system will be the one recommended by the Committee and eventually put into service.

The reasons for having several systems to choose between is because although DBS has many advantages over terrestrial broadcasting, it is not all plain sailing, and as usual there are some trade-offs to be considered.

E-PAL is attractive because it is com-
patible with existing decoders, all that would be needed to receive pictures from a satellite transmission is an antenna and a downconverter. On the other hand, the MAC system will require the use of a more elaborate decoder which produces separate RGB (red, green, blue), outputs to give a better picture. Thus to receive these TV transmissions, one will need a MAC-to-PAL converter and an r.f. modulator to drive the antenna input of a standard television. Future sets would contain their own decoders, but this would make them more expensive.

The third contender, mentioned above, uses a digital encoding technique, very similar to methods which have already proved themselves in other satellite systems. Only time will tell how this situation will be resolved, but it looks as though it is going to be a few years before it is possible to watch the Muppets in half a dozen different languages!

There are always new developments in the application of electronics to the field of satellites and in future these will be published as an occasional "Space News" feature.

D'XERS AUDIO PROCESSORS
 continued from page 47

In Use

Satisfactory results will probably be obtained if the unit is fed from either a loudspeaker socket or a headphone output of the receiver. If fed from an output intended for low impedance headphones the unit may provide inadequate output for use with a loudspeaker or high impedance headphones. This is not likely to happen in practice, but if necessary R22 could be replaced with a link wire to provide an increase in gain.

The processor will drive any normal type of headphones, but with some low impedance types the output of the unit may be excessive. This can be overcome by adding a resistor of about 100 ohms in value in series with one of the leads to JK2. An 8 ohm impedance loudspeaker can be driven at good volume, and higher impedance loud. speakers are also suitable, but the maximum output power decreases roughly in proportion to any increase in loudspeaker impedance. The use of a speaker impedance of less than 8 ohms is not recommended.

When the expander is not required RV1 is set in a fully anticlockwise direction. It is not advisable to always use the expander section of the pro-
cesor since it will be of little or no benefit if the wanted signal is badly affected by noise or interference, and under these conditions the expander may be unable to function at all. It is not advisable to use the expander when trying to receive a station which is fading badly since the expansion will simply make the fading worse.

If reception conditions are not very poor and the expander is to be used, RV1 is advanced in a clockwise direc-
tion to give the desired degree of expansion (a roughly mid-point setting should be satisfactory). VR2 is then adjusted so that the wanted signal readily operates the expander and is reproduced at full volume, but during pauses in the wanted signal the background noise or interference does not and is consequently attenuated. After a little experimentation there should be no difficulty in setting these controls for optimum results.

CLASSIFIED

HI-FI FOR SALE

TANDON $8^{\prime \prime}$ OSDD dual disk drives, slim line, cased with p.s.u., £250 ono. May deliver (may exchange for good micro, BBC etc.), $12^{\prime \prime}$ ex Juke Box speakers, £2 each. 01-690 3131
STEREO CASSETTE deck, Sharps RT480H, DoLBL NR-CrO2 switched bias, separate record/playback balance controls, twin V0 meters, $h /$ phone \& mic sockets, Ferrite heads, 1 st class condition, bargain at $£ 50$. (098371) 2348
SHURE V15 III boxed cartridge, used one week with guarantee, $£ 25$. Maplin 150 W amp, built, $£ 10$ and psu, £15 as page 228 Maplin catalogue. Tel Dave 051-426 5742

COMPUTERS FOR SALE

VIC20 TALKING backgammon for computers with Maplin Talkback and 8 K expansion cassette $£ 6.50$ + £1 p\&p. Mr. Hoare, 10, Snell Hatch, West Green, Crawley, SSX. Tel. 542823.
ATARI 825 + Atari word p.d., £350 ono. 8254 months warranty left. All in perfect condition. Tel. 948-6654.
ACORN ATOM 12k ROM, 12k RAM, PSU, over $£ 60$ worth of books and cassettes. Absolutely perfect condition. Worth over $£ 300$, great bargain, at $£ 150$. Can answer anywhere. 0616812875.

VARIOUS FOR SALE

APPROXIMATELY $500470 \mathrm{k} 1 / 4 \mathrm{~W}$ resistors, worth about $£ 10$. Will sell for $£ 1.50$. Telephone Chris on Darwen (0254) 771303 (evenings).
FOR SALE, Everyday Electronics Magazines, Vol umes 1 to 8 inclusive, in binders. Offers. 24 Greenhill Rise, Carlton, Nottingham. 0602 611173.

OSCILLOSCOPE for sale, Gould Advance OS245A. Dual trace 10 MHz with probes and accessories, as

If you would like to place an advertisement in this section then here's your chance to tell Maplin's 140,000 customers what you want to buy or sell, absolutely free of charge. We will publish as many advertisements as we have space for. To give everyone a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is 10 p per word
Piease note that only private individuals will be permitted to advertise. Commercial or trade advertising is strictly prohibited in the Maplin Magazine.
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag, P.O. Box 3, Rayleigh, Essex SS6 8LR.
For the next issue your advertisement must be in our hands by 6th July 1983
new, $£ 180$. Reason? I'm getting out of electronics. Phone Sheffield 396995.
DUAL BEAM oscilloscope for sale, working order but needs little attention, old model, size $21 \times 14 \times 8$ inches. Price $£ 25$ ono. Tel. 01-644 3833
TRANSFORMERS, valves, three circuit diagrams, sae. for further particulars H. Heather, 375 Rayleigh Road, Thundesley, Benfleet SS7 35T.

MUSICAL FOR SALE

MATINEE ORGAN, superb instrument, professionally built, updated and fully working, cabinet modified to facilitate servicing, £445. Tel. Biggin Hill 73835 ono
MAPLIN 4600 synthesiser for sale, with chrome stand, built except wiring to joystick. Constructed
to high standard working but requires setting up, no reason' 'la nffer refused. Tel. Smallfield, Surrey 3283.

MAPLIN 5600S for sale, just over half completed, $£ 350$. Five circuit boards with some components not mounted in yet included. Write to D. Blomfield, 57. Silver Street, Norwich NR3 4TT

MAPLIN 5600 S synth complete and working but needs setting up. No time due to career commit ments, so no reasonable offer refused. Phone Mark on Guyhirn (094575) 360.
MAPLIN 5600 s synthesizer, fully built, sizzling sounds, four oscillators, two VCAs, envelope, transients, filters, noise, joystick, external I/PS, footpedal etc. Ideal studio machine, £750. (0732) 863237 (Edenbridge)
MAPLIN "MODEL 55" Auto-Organ Rhythm Genera. tor, built as discrete unit complete with 49 note keyboard, can be heard working, needs finishing, £100 ono. Ring 043861812 (Stevenage)
SPECTRUM Synthesiser in custom case with lid, £275, FAL 100 W power amplifier and speaker cabinet, £75; Maplin Matinee organ in cabinet, £575, all fully working and in new condition. Brian Barnes, Cheltenham 21411, extension 212 (work) 5600 S SYNTHESISER, only requires $£ 50$ of components to complete. All made PCBs working although not set up. Further details, offers to Karl Simpson, 5, Verbena Way, Worle, Weston Super Mare.

WANTED

WANTED CHANNEL "F" Videocart cartridges for use with Fairchild video entertainment system. Tel. Oxford 53483
TRANSCENDENT DPX required, must be in good condition, unfinished kits considered, $£ 100$. Tel. Cliff, Southampton 582215.
MORIZON RADIO control equipment, T. Beckett, The Poplars, Harringworth Road, Seaton, Oakham LE15 9HZ. Morcott 876
WANTING two used five oct. keyboard with contacts, offer best price. A. K. Banerjee, Sebast Kneipp G 4/3/10, Al020 Vienna/Austria/Europe. WANTED: 4600 synthesiser patchboard. Tel. David 01-385 0182
PHILIP TYPE EL3514/15 tape recorder, manual or circuit, required. Box No 4.

FIRST BASE coninused trom nesge a9

Figure 10.
Two input NOR gate using four NAND gates.
NAND gate you can find the value of the inputs to the third gate, C and D . Continuing this process gives the input to the fourth gate, E , and finally the output F. Repeating this procedure for the other combinations of logical inputs will give the rest of the Truth Table.

Figure 11 shows another logic array using NAND gates, but it is left to you to work out the relevant Truth Table. You should obtain

Figure 11. NAND gate array.
that for an important logic gate which has not been mentioned yet, and which can be obtained in a single package, and the solution will be given in the next article.

A Practical Solution

No doubt some of you are thinking that this is a rather theoretical approach to the problem, and would prefer a practical solution which actually involves using chips. This is the next stage in our progression along the way.

Those who are unfamiliar with making up circuits using these types of component may welcome a few guide-lines. First and foremost you will need something on which you can mount the integrated circuit package and make connections to the various pins. It is possible to solder fine wires directly to the pins, but the chips are not going to last very long this way and it is definitely not to be recommended. The most suitable method is to use one of specially made 'breadboards', such as those shown on page 200 and 201 of the Maplin catalogue. These may seem rather expensive just for messing about with a couple of chips, but if you intend studying this aspect of the subject further then they are a very good investment for the future. As a practical exercise try making up the circuit shown in figure 11; first copy out the diagram and add the pin numbers, taken from the illustration of the 7400 in figure 8. Next make the connections between inputs and outputs using fine wire, solid core bell wire of 0.6 mm diameter is ideal for this. Don't forget the connections to +5 V for Vcc and OV for GND. The inputs A and B in the diagram can be connected to +5 V for logic 1 , or OV for logic 0 ; if you leave them 'floating', that is not

Figure 12. LED connection.
connected to either logic 1 or 0 , the inputs of these, devices will tend to float high, ie assume a value of logic 1 . To find out what the logic level of the output F is for the various combinations of input there are several methods which may be used. If you possess a simple voltmeter capable of indicating around five volts or slightly more, then use that, remembering that +5 V represents logic 1. Alternative!y, a small Light Emitting Diode, LED is very useful, and these will be used in some of the later circuits. To indicate a logic 1 when lit, the LED should be connected to the output as shown in figure 12; a value of 1 k is given for the resistor to limit the current taken to a safe level. The LED may seem rather dim, especially if viewed in bright light, but the temptation to reduce the value of the resistor to make the LED brighter should be avoided. For the same reason, low voltage bulbs should not be used as these take more current than the chip can safely supply, and you may find that you have cooked your chips!

Next time we will have a look at further combinational logic circuits and how they are used in practical situations.

AMENDMENTS TO CATALOGUE

Please amend your 1983 catalogue as follows:

Page 25

The Aerial Rotator (XB54J) is not supplied with cable. Use 4 -core mains (XR48C) Make no connections to terminal 2 of the controller. The wire from terminal 3 of the controller must be connected to terminals 2 and 3 at the rotator.

Page 66

The Snap-Together Plastic Boxes (YK48C YK49D, YK50E, YK51F) dimensions stated are all internal.
Page 67
The foot-operated switch box (LH09K) is no longer supplied with any cut-outs, and the aluminium cover does not have a hole punched into it.

Page 74

Laminate Aluminium large ($X Y 20 \mathrm{~W}$) size is now $482 \times 190 \mathrm{~mm}(19 \times 71 / 2 \mathrm{in})$.

Page 89

The sub-miniature single-ended electroly. tic capacitor YY 35 Q is now only 35 V working, not 40 V as stated.

Page 91

The 4700 uF 63 V can-type electrolytic (FF28F) max. ripple current should be 5A. The 4700 uF 100 V can-type electrolytic (FF29G) max. ripple current should be 6.4A. The 6800uF 40 V can-type electrolytic (FF 30 H) max. ripple current should be 6.8A.

The $10,000 \mathrm{uF} 25 \mathrm{~V}$ can-type electrolytic (FF31J) max. ripple current should be 7.2A. The 10,000 uF 63 V can-type electrolytic (FF32K) max. ripple current should be 8.4A.

Page 99

The picture of the 2 m Rubber Duck (YG15R) shows a UHF plug, but the item is supplied with a BNC plug as stated in the text.

Page 104

The Atari 400 (AF36P and AF37S) sound generators can only be 'piped' to a TV speaker. There is no DIN socket available for connection to an amplifier
Page 122
BC44X (Computavoice) is a cassette, and BC36P (Cave Hunter) and BC38R (Starship Chameleon) are both cartridges.

Page 200

The Verowire contained in the kit RK94C and sold separately as HY17T is 30swg, not $38 s w g$ as stated.

Page 251

The door contact reed relay switch (YW46A) is now a slightly smaller size. Flange dimensions are 12 mm dia. $\times 0.75 \mathrm{~mm}$ thick, and main body dimensions are $27.5 \mathrm{~mm} \times$ 8 mm dia. This switch is no longer supplied with fixing pins.
Page 257
The Sharp stylus STY117 is the same as our stylus HR97F (Stylus Sanyo 2611), not BK08J as shown in our stylus guide.

Page 259

The High Quality Cassette Head Cleaner (BK28F) is now being supplied with a tape head cleaning stick and a 30cc bottle of tape head and capstan cleaning fluid.

Page 269
QB65V is now supplied as a BC303/5, not a BC302/5. The matched pair of transistors QB64U are now supplied as one BC301/5 and one BC303/5.

Page 278

The pin-out shown for transistor case type TO72g is incorrect. Drain and source are reversed in the catalogue diagram. Shown below is the correct pin-out. This affects the FET 2N3823 (QR37S).

Page 286
The IC 74LS244 (QQ56L) pinout is shown incorrectly. Pin 19 should be shown as inverted.
Page 331
The 2732 EPROM (QQ08J) programming is achieved by applying +25 V to pin 20 and +5 V to pin 18, not pins 20 and 21 as stated.

Page 341

The mono headset (WF20W) is now terminated in a mono $1 / 4 \mathrm{in}$ jack plug, not a 3.5 mm jack plug as stated

Page 374

The utility knife (FYO2C) is shown incorrectly in the picture. This knife is NOT retractable.

Page 384

The overall size of the sub-miniature mains transformers (WB00A, WB01B and WB02C) is now $30 \times 27 \times 35 \mathrm{~mm}$, and fixing centres are 46 mm .

SUBSCRIBE NOW!

For just $£ 2.80$ a year we'll deliver every issue of the Maplin Magazine to your door.
We've got dozens of exciting projects and features coming in the next four issues. And more amazing special offers like the ones in this issue. Plus, of course, all our new products and our complete price list.

ALL THIS FOR JUST £2.80 A YEAR!

(Overseas: surface mail $£ 3.24$, airmail $£ 6.84$)
Don't delay - send your cheque or postal order now!!
P.S. Don't forget to renew your subscription, either!

ISSUE EIGHT ON SALE 12th AUGUST 1983
Send this coupon with your cheque/PO to:
Maplin Magazine Subscriptions Dept.,
Maplin Electronic Supplies Ltd.,
P.O. Box 3, Rayleigh, Essex SS6 8LR

I enclose $£ 2.80$ (plus post overseas) for 1 year's subscrip tion to the Maplin Magazine.

Please start from Issue No. ...
Customer No. (if known) ..
Name
Address

MAPLIN CATALOGUE

Maplin's superb new 392 page catalogue for 1983 is now available. There are hundreds of new lines and two new sections. Communications section contains details of our CB accessories, intercoms, radios and telephone whilst our big new computer section has details of seven of the best home computers around with descriptions of masses of the best software
 around.
Pick a copy up at W.H. Smith or our shops for $£ 1.25$ or send $£ 1.50$ incl. post to our Rayleigh address.

Overseas Prices

Our current 1983 catalogue is available overseas by post at the following prices:

Europe surface mail	$£ 1.90$
Europe air mail	$£ 3.06$
Outside Europe surface mail	$£ 1.90$
Outside Europe air mail	
(depending on distance)	

For surface mail anywhere in the world you may send 10 International Reply Coupons.
\square

DID YOU MISS THESE ISSUES?

Copies of issue 4 are now sold out, but a reprint of the projects from issue 4 is available and contains:

Telephone Exchange. A complete telephone exchange with up to 32 extensions on 2-wire lines. Ideal for the home, office, or small factory. Save £££'s on rental charges. Full construction details for up to 16 lines in this book.
Remote Control for Amplifier. Adjust volume, balance, and tone whilst you sit back and relax with our infra-red remote control. Designed for use with our 25W MOSFET Amp, but can be fitted to most amplifiers.
Frequency Counter. This superb, easy-to-use, low-cost, 8 -digit frequency counter with superior specification covers the 10 Hz to 600 MHz band. Incorporates full pushbutton control, electronic switching, and one input for the whole range.
Ultrasonic Intruder Detector. This easy-to-build ultrasonic transceiver covers up to 400 square feet; though more than one can be used for larger areas. The unit automatically adjusts itself to transmit at the frequency where the transducers give their maximum output. Up to three of these units may be connected to our home security system.
All this for just 70p. Order As XA04E (Maplin Project Book Volume 1 No4). Price 70pNV

Copies of issue 5 are still available for just 60p, and include

 the following projects:Modem. With this low-cost, high quality modem, transmission speeds of 300 baud are obtainable over ordinary telephone lines. Send data to your friends anywhere in Europe, or talk to our computer
Inverter. Ideal for camping or caravanning, this inverter uses MOSFET transistors for the ultimate in reliability. During emergency power cuts, use the inverter to keep your central heating going.
ZX81 Sound Generator. Here's a really noisy project for micro-computer enthusiasts It plugs straight in to our ZX81 extension board and is really easy to make. Your ZX81 will have full BASIC control over three tone generators, with single address access.
Central Heating Controller. For our more experienced constructors, this project will give your central heating system optimum performance and could save you a lot of money this winter.
Panic Button. A useful add-on for our Home Security System that will give many of our older citizens peace of mind. Issue five also included features on the Compact Digital Disc, Interfacing Microprocessors, and choosing the right wires for projects, and the last part of the Starting Point series, along with Basically Basic, Say it with Satellites, and Working with Op-Amps.
All this for just 60p. Order As XA05F (Maplin Magazine Volume 2 Issue 5). Price 60pNV

Copies of issue 6 are still available for just 70p, and include the following projects:
Bridging Module. This will turn two of our 75 W amps into one 400 W amp, and also gives you loudspeaker protection.
Four Simple Circuits. These easy-to-build circuits are a portable stereo amplifier, a sinewave generator, a headphone enhancer, and a stylus organ.
Moisture Meter. This low cost project allows you to check walls and floors for damp. It could save you thousands in costly house repairs.
Scratch Filter. Something to make all those scratched old records playable again.
VIC 20 and ZX81 Talkbacks. Allow your microcomputer the freedom of speech, and make games much more realistic. This could be just what your micro has always wanted.
ZX81 TV Sound and Normal/Inverse Video. Your ZX81 can now give you sound directly on to your TV set, and gives an optional video reversing switch, too!
Issue six also included features on the Sord M5 computer, Allophone Speech Synthesis, getting the best out of your oscilloscope, and the first part of a new beginners' series, First Base. Working With Op-Amps, Say It With Satellites, and the final part of the Basically Basic series were also in this issue.
All this for just 70p. Order As XA06G (Maplin Magazine Volume 2 No 6). Price 70pNV

your full COLOUR GUIDE TO HOME COMPUTER HARDWARE \& SORTWARE

This superb new edition of the Mapsoft catalogue is now available from all good computer retailers price 85p. Full details are given in the catalogue of all the best and newest software for the Atari, Commodore 64, Dragon 32, Sinclair Spectrum and VIC20 and includes descriptions and colour pictures of lots of hardware as well. Don't delay - get a copy now. It's fun to read and is an invaluable guide to

In case of difficulty send $£ 1$ to the address below and we will include the address of your nearest retailer with your copy of the catalogue. All products shown in the catalogue are available from

[^0]: Copyright: All material is subject to world wide Copyright protection, and reproduction or imitation in whole or part is expressly forbidden. All reasonable care is takento ensure accuracy in preparation of the magazine but Maplin Electronic Supplies Ltd cannot be heid legally responsible for its contents. Where errors occur corrections will be published as soon as possible atterwards. Permission to reproduce printed circuit board layouts commercially or marketing of kits must be sought from the Ubisher. © Copyright 1983 Maplin Electronic Supplies Ltd.

[^1]: A complete kit of all parts, excluding the case, is available Order As LK10L (X'tal Calibrator Kit). Prize $£ 15.95$

[^2]: 1008 POKE 52,48:POKE 56,48:CLR
 1010 FOR I=832 TO 860
 1020 READ A
 1030 POKE I, A
 1040 NEXT I
 1050 PDKE 56334, PEEK(56334) AND 254
 1060 POKE 1, PEEK (1) AND 251
 1070 SYS 832
 1080 POKE 1, PEEK (1) OR 4
 1 1090 POKE 56334, PEEK(56334) OR 1
 1100 FOR I=13312 T0 1332 ?
 1110 RERD C
 1120 POKE I.C
 1130 NEXT I
 1140 POKE $53272,($ PEEK (53272) RND 240) 212
 30000 DATA $162,8,168,0,173,0,208,141,0,48,238,69,3,238,72,3,136,208,241,238$
 30010 DATA $70,3,238,73,3,202,208,232,96$
 31000 DATA $0,0,0,0,3,12,48,192,3,12,48,192,0,0,0,0$
 Program 4

