
WIRELESS 
ENGINEER 

Vol. 32 DECEMBER 1955 No. 12 

Television Sync -Pulse Spectrum 
JT is often easier to perform calculations on 

non -sinusoidal waveforms with the aid of 
operational calculus than to use the Fourier - 

series method with steady-state a.c. theory. It is 
not surprising, therefore, that the Fourier method 
should be falling out of favour. However, it can 
still be very helpful. It is often desirable to know 
the frequency spectrum of a wave even if one does 
not employ it for actual calculation and even if one 
does not know the actual amplitudes of the 
various frequencies. 

A simple qualitative approach, or several such 
íLpproaches made in different ways, \vill often 

0 

o 

o 

o 

o 

o 

A 

1 
EVEN FRAMES 

A 

\VII2ELb;sS ENGINEER, 111iCEmBER 1955 

reveal useful information very quickly and easil\ . 

Many people are deterred f-om attempting to find 
the Fourier series for complicated waveforms by 
the laboriousness of the ordinary methods. We 
want to point out that it is often possible to 
avoid these methods by using a few well-known 
series and adding or multiplying them. 

We shall illustrate the procedure by finding the 
series for the British television sync -pulse wave- 
form, illustrated at Fig. 1(a). Space does not 
permit us to draw the complete waveform for 
one complete cycle at picture frequency . We have 
shown 15 lines only and there are 390 others in 
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Fig. 1. 

(a) 

(b) 

(c ) 
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the central gap; they are, however, identical 
with the initial lines on the left. 

The first step is to consider how one could 
generate such a waveform. One would obviously 
start by generating a simple line -frequency pulse 
waveform like (b). This agrees with (a) every- 
where except during the frame pulses. The 
obvious next step is to suppress the line pulses 
during the frame -pulse periods and one could 
do this in a gating stage. One could, for instance, 
use a multi -electrode valve with the line pulses 
applied to one grid and frame -frequency pulses 
applied to another to cut it off during these pulses. 
Practically, there would be difficulties with such 
a simple gating circuit, but that sloes not affect 
our general argument. The required trame - 
frequency waveform would be like (c) and the 
resulting output would be like (f), a line -frequency 
pulse waveform with certain pulses. suppressed. 

In Fig. 1 we have shown the pulses as being of 
unit amplitude; the signal is either zero or unity. 
\Vaveform (f) can thus be produced by multiplying 
together waveforms (b) and (c). The Fourier 
series for (f) can thus be obtained by multiplying 
together the individual Fourier series for (b) and (c) . 

Now one cycle of wati eforn) (b) is a simple 
rectangular wave like Fig. 2.and it is well known 
that its Fourier series is 

S = ao a sin nu)/ b,z eos . .Had 
(1) 

where w = 27rf = 27r/7' and a is integral; the 
values of the coefficients ao, a and b depend 
upon the value of T/T, the fractional pulse width 
and the order a of the harmonic (Fig. 2). 

rT-1 

' 1-1_ o. la-T Fig. 2. 

It should be noted that all the waves in Fig. 1 

have a transition at AA. A single cycle of any 
wave is therefore like Fig. 2 or its inverse and this 
must be taken into account in evaluating the 
coefficients ao, an and b11. \Ve shall not attempt 
this evaluation here. 

\Ve shall designate the various series by the 
letter S with a subscript letter according to the 
fundamental recurrence frequency. The series 
for (b) is thus S, and is equation (1) with 

= wl = 27r times the line frequency and the 
appropriate coefficients. 

\Vaveform (c) is the inverse of waveform (e). 

Now the series for (e) is Sf and is clearly identical 
with (1) with w = w f = 27r times the frame 
frequency and the appropriate coefficients. It is 

clear, too, that (c) is 1 - SI and so the series for 

waveform (f) is 

Sc(1 - 51) 
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\Ve have now to produce a waveform to fill the 
gaps in (f). By arguing on the same lines as 
before, we can clearly do this by generating (d) 

of twice the line frequency and gating it with 
(e) to produce (g). \Ve then get (a) by adding 
(f) and (g). 

The basic series for (d) is (1) with w = 2wj 

= 27r times twice the line frequency. However, 
(d) is inverted compared with the wave which (1) 

represents so the series is 

1 - S2/ 
The gating waveform is Sf and so the series 
corresponding to (g) is 

S1(1 - 521) 

The complete series representing (a) is thus 

St(1 - Sf) -r Sf(1 - S21) 

= S1 + St -S f(S1 + S21) 

\Ve can at once see the form of the spectrum 
of (a). First of all, there is the frame frequency 
of 50 c/s and all its harmonics. Then there is 

the line frequency of 10.125 kc/s and all its 
harmonics. 

The term S1 + S21 represents line frequency 
and all harmonics plus twice line frequency and 
all harmonics. However, S21 and its harmonics 
coincide with the even harmonics of line frequency, 
so that S¡ -{ 521 represents Sr with modified 
amplitudes of even harmonics. The spectrum of 

Si -F- S21 is thus the same as that of S/. 
Now Sf(.S1 + 521) is the product of a series 

in Ulf with a series in (Di and produces terms like 

sin w11 sin wit. These terms can be split into 
sum and difference form and so the full spectrum of 
Sf(S, + S2i) is of the form ufi ± rf. f. In other 
words, the line frequency and its harmonics are 
all modulated by the frame frequency and its 
harmonics. 

The complete frequency spectrum thus com- 
prises the frame frequency and all its harmonics, 
plus the line frequency and all its harmonics, 
plus sidebands (of frame frequency and all 
its harmonics) to the line frequency and all its 
harmonics. Thus, 

50, 
10,125 ± 50, 
20,250 f 50, 
30,375 ± 50, 
etc. 

Since 10,125 is a multiple of 50/2, all the side - 
bands associated with the even harmonics of 

line frequency and the even harmonics themselves 
coincide with harmonics of frame frequency. 
All the sidebands associated with odd harmonics, 
the odd harmonics themselves and the fundamental 
of line frequency fall mid -way between the 
harmonics of frame frequency and thus 25 c/s 
from them. 

100, 150, 200, 250, etc. c/s 
100, 150, 200, 250, etc. c/s 
100, 150, 200, 250, etc. c/s 
100, 150, 200, 250, etc. c/s 
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It is thus possible for a component frequency 
of 25 cis to appear, although the lowest funda- 
mental frequency is 50 c/s ! It appears as a 
sideband of the line frequency. Harmonic 
number 202 of 50 c s is 10,100 c/s and produces 
sidebands of 10,125 + 10,100 c/s to the line 
frequency fundamental. The lower sideband is 
25 c/s. 

We can say, therefore, that the complete 
frequency spectrum may comprise all integral 
multiples of 25 c/s. 

Since we have not investigated the amplitudes 
of the terms, we cannot say anything about their 
relative importance. Since some frequencies are 
produced in several different ways, there is a 
possibility of one method of production cancelling 
another and so some frequencies of the spectrum 
may be missing. 

The amplitudes of the terms in the basic 
series (1) fall off fairly rapidly with order of 
harmonic. The predominating terms in the 
complete series are thus likely to be those 
involving fundamentals of low -order harmonics 
in simple combination. The main terms are 
thus likely to be the frame frequency and its 
first few harmonics, the line frequency and its 
first few harmonics, and the low -order sidebands 
attached to these. 

The presence of the 25-c/s component in the 
spectrum may seem a little odd and, because its 
production involves the 202nd harmonic of frame 
frequency, one is tempted to consider it as 
negligibly small. However, one could have 
predicted its presence by inspection of Fig. 1, 
for the waveform repeats itself precisely only 
every two frames. At the beginning and end of 
the frame pulses there are differences between 
odd and even frames brought about by the non - 
integral relation of line and frame frequencies. 

When the frame pulses are separated from the 
line pulses before they are applied to synchronize 
the frame time -base, some methods result in there 
being a difference of waveform between odd and 
even frames at the end of the pulses. Patchett! 
has shown that it is this which accounts for many, 
if not most, difficulties in obtaining good inter- 

lacing. These differences necessarily imply the 
presence of a 25-c/s component. 

It is easy to show that two successive frame 
scans must be alike within 1 part in 4,000 if 
interlacing is not to be appreciably affected. 
An error of 50 µsec in the timing will destroy the 
interlace and, as the frame period is 20 msec, this 
is an error of 1 part in 400. The 25-c/s component 
of the sync -pulse waveform thus does not need 
to be very large to affect matters. 

The waveform of Fig. 1(a) is not, of course, 
applied in this form to the time -base for syn- 
chronizing. It is always operated on in some way 
first. If an integrator is used its effect will be to 
emphasize the relative amplitude of the 25-c/s 
component. 

There is also a form of flywheel synchronizing 
for a line time -base in which the complete sync - 
pulse waveform is applied to a resonant circuit 
which is supposed to select only the line -frequency 
component and provide a sine -wave output. 
By the selectivity of the circuit, noise and 
interference are substantially removed and the 
sine wave is used, after suitable treatment, to 
control the time -base. 

This circuit has been analysed on a pulse - 
response basis2 and it has been shown that, 
unless the resonant circuit is extremely selective, 
the output wave is seriously affected by the 
frame pulses. This seems rather surprising at 
first, because one tends to think loosely of the 
line pulses only, and that the selectivity problem 
is only to separate the fundamental from the 
second and higher harmonics, which is a fairly 
easy matter. 

When we think of the true spectrum, however, 
we can see right away that the sidebands of 
frame frequency and its harmonics will have a 
profound influence. To extract a pure sine wave, 
the circuit must be selective enough to pass - 
10,125 c/s while excluding frequencies 50 c/s 
higher and lower! W.T.C. 
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RADIATION CHARACTERISTICS OF 
AXIAL SLOTS ON A CONDUCTING 

CYLINDER 
By J. R. Wait, M.A.Sc., Ph.D. 

(Radio Physics Laboratory, Defence Research Board, Ottawa, Ontario, Canada) 

SUMMARY.-An extensive set of radiation patterns is presented for a narrow axial slot on a 
circular conducting cylinder of infinite length with a circumference up to 21 wavelengths. The results 
are also applicable to arrays of axial slots with an arbitrary distribution of transverse voltage. The 
effect of finite slot width is discussed and the external conductance of the slot is also considered. 

Introduction 
THE slotted cylinder aerial has been discussed 

in the literature quite extensively in the 
last decadel-7. In its simplest form it 

consists of a narrow axial slot of rectangular 
shape cut in the wall of a hollow metal cylin ler. 
The slot is fed either by a transmission line inside 
the cylinder or by a waveguide. For most of the 
early applications the diameter of the cylinder 
was small compared to a wavelength and the 
radiation pattern is essentially omnidirectional 
in the equatorial plane. Sinclair3 has shown that 
for an axial s_ot the pattern becomes more direc- 
tive as the diameter of the cylinder is increased. 
Further computed curves of radiation patterns 
have been published by Silver and Saunders7 for 
slotted -cylinders whose circumferences are 0.8 
and 2.5 wavelengths and by Bailing for circum- 
ferences of 8 and 12 wavelengths. 

It is the purpose of this paper to present 
rather extensive calculations of radiation patterns 
of an axial slot on a circular cylinder with a 
circumference ranging from 0.1 to 21 wavelengths. 
It is shown that the results are also applicable to 
arrays of axial slots on the surface of the cylinder. 

Cylinder Space Factor 
The cylinder of radius a is shown in Fig. 1 and 

is taken to be coaxial with a cylindrical co- 
ordinate system (p, , z). A slot extends from 
z1 to z2 and from 01 to 02 on the surface of the 
cylinder (p = a). It will be assumed that the 
slot is excited by a transverse voltage V(z) which 
is to be specified. It then follows (see appendix) 
that the radiated field at large distances from the 
cylinder can be written, with reference to spherical 
co-ordinates (r, 0,56), as follows:- 

e5 _ - --S(0) 117(ka sin B, - (4) . . 

r' 
(1) 

and 
Ho = - E6/1 207r . . . . . . (2) 
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where 

= k sin B I'Z- 
COS '90 dz 

z, 
CO 

(3) 

L1(x, (I)) = E,tt ei"1n12 cos rn0 
(4) 1. 

m= 
77-,x2x Hni(2), (T) 

k = 27r/free-space wavelength, 
EU = 1, E = 2(rn0), 

= 
s(in2 

+ ¢1)/2, 
m(42 - 01)/23 Gm = rn(02 - 01)/2 

and H,12)' (x) is the derivative of the Hankel 
function. 

(r,(9,p) 

Fig. 1. The axial slot 
on the circular con- 

ducting cylinder. 

(Po 

The function S(0) is the space factor of the slot 
or an array of collinear slots if they were cut in 
an infinite plane conducting sheet. For example, 
for a thin half -wave resonant slot (i.e., kz2 = - kz1 = 7r/2) centre fed by a voltage Vo, the 
voltage V(z) is known to vary nearly sinusoidally 
along its length such that9 
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V(z) Vo sin (7r/2-itIz¡) 
and therefore, as is well known, 

7r 
cos cos B 

S(0) = I 0 '- sin O 

For slots of arbitrary length the functional 
form of V(z) is not usually sinusoidal and depends 
on the method of excitation. For present 
purposes it is not necessary to specify V(z). 

0'28 

0'26 

024 

0.22 
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Fig. 2. A inplitude of cylinder space facto 
values of x = ha sill 8. 

i 
140' 160° 180° 

for various 

The function M(x, 0) can be called the 'cylinder 
space -factor' as it fully describes the effect of the 
finite diameter of the cylinder on the radiation 
pattern in both the O and 0 directions. When the 
slots are thin, so that ¢2 - 

1 
is small, the factor 

G m can be replaced by unity. The nature of this 
approximation can be best examined by a 
numerical test. For the moment, however, it will 
be assumed that it is valid. For purposes of 
computation the 'cylinder space -factor' is written 

M(x, = I 
M(x, (k) 

I e'=tx,m) 

1 e,neJlm+])n12 [ Om' xi cos nt0 
x7r2 L Cm' (x) 

0 

.. (6) 

where C,' and 8,18' are extensively tabulated]° 
and defined by 

1j7l21' (x) = - jCm' (x) exp. - [ j8t'x] . 

Curves of the function I M I and a are illustrated in 
Figs. 2 and 3 for x varying from 0.10 to 0.80. 
The abscissa needs to be shown only from 0° to 
180° as M is an even function about 0 = 0. It 
can he seen from these curves that for very small 
values of x the pattern is omnidirectional. In 
fact, it is easy to show from equation (6) that 

M (x, 0) ] = (1 /27) eJ l2 
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For larger values of x the convergence of the 
series formula for M becomes poor and something 
of the order of 2x terms are required to acquire 
three -figure accuracy. Another difficulty is that 
the I3essel functions are not adequately tabulated 
for large arguments and order. In this case it is 
necessary to employ recursion formulae to extend 
the tables slightly. Values of I M(x, 0): are shown 
plotted in Fig. 4 for x ranging from 1.0 to 21. 
The curves are displaced in the vertical direction 
to avoid any troublesome overlapping and to 
facilitate interpolation. To assist in reading the 
vertical scale, values of the ordinate IVI I are 
shown at appropriate places on the individual 
curves. 

The nature of the curves is very interesting. 
As would be expected, the field in the geometrical 
shadow (0 > 90°) becomes successively smaller 
for increasing values of x. Furthermore, it can 
be seen that the ripples for the larger x values 
have a period of approximately 180/x degrees 
and the amplitude of the ripples is at a maximum 
at the back of the cylinder. 

160 

140 

120 

100 

80 

oc 

60 

40 

20 

e--- -L 
s.. 

\\ 

0 20° 40° 60° 80° 100° 

AZIMUTH O 
Fig. 3. Phase of cylinder space factor for various values 

of .r = ha sin O. 

120° 140° 160° 180° 

The phase function r.(x, ), as would be ex- 
pected, is a rapidly \ arving function of 0 for the 
larger x values. For this reason, it is desirable to 
express the phase as the sum of a simple, rapidly 
varying, function and a slowly varying part 
d (x, ¢) which is defined by 
a(x, 0) = a(x, 0) - 57.3 x(1 - cos 0) + d(x, 0) 

degrees for 0 < 90° and 
a(x, 0) = a(x, 0) - x(57.3 + ' - 90°) 4- d(x, ) 

for 90° < < 180°. .. .. .. (7) 

The function d(x, 0) is plotted in Fig. 5 for x 
ranging from 1.0 to 21. Again for convenience of 
presentation and for ease of interpolation, the 
curves are displaced vertically. The reference 
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phase a(x, 0) which is usually not of any con- 
sequence is given in the following short table for 
sake of completeness. 

.. 1.0 1 5 2.0 3.0 4.0 6 0 

a(x, 0) .. 159.2° 188.9° 213.3° 268.8° 324.8° 78.1° 

x . . 8 0 10.0 12.0 15.0 18.0 21.0 
(x, 0) .. 191.7° 305.0° 59.9° 232-1° 42.5° 214.5° 

It can be noted that the phase correction is 
small on the front face of the cylinder. On the 
back face it is somewhat larger. In any case,, by 
employing the appropriate value of d(x, 0) the 
actual phase function a(x, 0) can be computed 
simply from equation (7). 

From the standpoint of geometrical optics it 
would be expected that 114(x, 0) would be 
constant on the front face and that d(x, 0) would 

0'28 
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0'30 
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0s 
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318 

L. 1Mt=0'z6 

- 
X..,. 

026 =Z 

/M/=a2 
a3 

ozá 

03 

0 28 

- 6 

0-3 ._ -8 

-1 
al2 02 
=15 

.3 0z 01 

= 

03 0l 

= 1 2 
02 

01 

02 

0' 1 

/M/- 0 2 

01 

DI 

0 } 

VERTICAL SCALE /M/ 
IS SHIFTED FOR EACH CURVE 

20 40" 60 80 100 120° 140° 160 180" 

AZIMUTH 0 

Fig. 4. Amplitude of cylinder space factor for narrow 
axial slot. 

he zero. It is seen from the curves that for larger 
values of x these conditions are being at least 
reasonably satisfied. Furthermore, geometrical 
optics would predict that M(x, 0) I would be 
vanishingly small for directions toward the back 
face. The phase from the geometrical optics 
concept would seem to be indeterminant. From 
a physical optics standpoint, however, it would be 
expected that the phase would be somewhat 
characteristic of a wave travelling from the slot 
around the periphery of the cylinder with a 
velocity near that of free space. The departure 
from such a simple behaviour is eu ident from 
examining the function d(x, ck) for 0 > 90°. 

The physical interpretation of the ripples in 
both the amplitude and phase curves is that the 
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Fig. 7 (below). Cylin- 
der space factor for 

x=ka sin O=8. 

0'32 

0 28 

NARROW SLOT 

024 -Oi=0 
A 

WIDE SLOT 
020 - 0, -0i -0I . 

0.16 

/M/ 
0 12 

0 08 

004 

where the amount of computation in evaluating 
the series formula would be prohibitive. Further- 
more, it is clear that the terms in the numerator 
of equation (8b) ha\e the nature of peripheral 
surface waves travelling in opposite directions 
around the cylinder. The denominator, according 
to Franz and Depperman, is a factor to account 
for multiple excursions of these surface waves 
completely around the cylinder. 

Effect of Slot Width 
In the previous calculations the slot has been 

assumed to be of infinitesimal width. To 
fflustrate the effect of the finite width of slot, 
computations of M(x, 96) were carried out 
for a slot whose angular width is 0.1 

45' 90' 135 180 

AZIMUTH 0 

This physical description actually has a 
theoretical basis as has been pointed out by Franz 
and I)eppermani1. They have shown, by an 
integral equation formulation for the reciprocal 
problem of a plane wave incident on a c} Linder, 
that the infinite series solution in equation (4) can 
he approximated as follows:- 

(2/J7rx) M(x, (b) 

a 2eix cos for < 

radiation from the slot travels around the 
periphery of the cylinder in both directions. At 
the back face of the cylinder the two waves 
interfere to form a standing -wave pattern. The 
larger the cylinder is in terms of wavelength, the 
greater the attenuation of these peripheral 
surface waves and hence the smaller the amplitude 
of the ripples in the radiation pattern. 
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0'16 

/M/ 
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APPROX.' 

CO' 45 90 135' 180` 
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Fig. 6. Cylinder space factor 
for x = ka sin 8 = 21. 

.. (8a) 

- 

1-39 A(4, - 7r/2)e-ix(n - "l2) + A (37r/2 - 0)e -J 
x(3'12-A) 

.. (8b) radian with x = 8. Since 
(b1 = 0.1 the coefficient 

G I in equation (4) is given by 

G 
sin (nt/20) 

(na/20) 

The results of this calculation are shown in Fig. 7 

along with the corresponding curve for the 
infinitely -narrow slot. It 'can be seen that the 
effect of slot width is indeed very small. In this 
case the actual width of the slot is 0.13 wavelength. 
It is, therefore, probably safe to assume that if 
the width of the slot is less than about one -tenth 
of a wavelength, the radiation pattern is charac- 
teristic of a very narrow slot with the same 
voltage distribution throughout its length. 

27r 1 -A (27r)e-12'x 

for 90° < G 180°. 
The function A (0) is given by 

A(ck) = exp [ - 7.e -J"6 0"/24)l 
7 

with 

o0- 

-n 

RECTANGULAR 
WAVEGUIDES 

(9) 

= 2.332 e"13 + 04196x-3 . 

This expression is claimed to be valid for x 1. 
As an interesting comparison M(x, 95), computed 
from this formula is calculated for x = 21 and 
compared with the curve computed from the 
exact series formula. The results plotted in Fig. 6 
show that the agreement is only fair even for 
values of x as large as 21. Nevertheless, the 
formula of Franz and Depperman is useful to 
compute M(x, 0) for values of x larger than 21 
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Fig. 8. Two arrays of waveguide- 
fed slots on cylinder. 
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Arrays of Slots 
The numerical results shown graphically in 

Figs. 2 to 6 can be readily applied to arrays of 
axial slots on the cylinder. An example is tso 
identical arrays of waveguide-fed slots located on 
opposite faces of the cylinder as shown in Fig. 8. 
The centre lines of these arrays are located at 
(A.o = 0 and 00 = 7r. In each case the slots are 
alternately displaced on either side of the centre 
lines. The amount of offset is dictated by the 
nature of the desired form of the radiation pattern 
in the O direction9. In most cases it can be 
assumed that each array of displaced slots is 
equivalent to a parallel line of narrow collinear 
slots. The two arrays are then represented by 
four lines of axial slots located in azimuth at 
to = +S and ¢o = 7r ± 8 where S is the mean 
offset of the slots from the centre line of the arrays. 

The azimuthal pattern Ma(x, 0) of this double 
array of slots on the cylinder is determined 
entirely by the function M(x, 0) and is, therefore, 
not dependent on S(B) the space factor of the 
arrays. In fact, it follows that 
Ma(x, 0) = [M(x, + 8) + M(x, - 8)] f [M(x, + 77 + 8) + M(x, + 7r - 8)] 

.. .. .. (10) 
where the + sign is to be used when the arrays are 
fed in phase and the - sign when they are fed 
out of phase. The function i Ma(21, 0) I for 
S = 2.0° is plotted on a relative decibel scale in 
Figs. 9 and 10 for both the in -phase and the 
out -of -phase connection. Only one quadrant 
need be shown since Ma(x, 0) is an even function 
about the 90° points. 

W. Searle and R. G. Sinclair have supplied us 
with some azimuthal patterns measured at 
X -Band for an 8 -in. diameter metal cylinder with 
a double array of axial slots with a mean offset 
corresponding to S ti 2.0°. The angle B was kept 
constant at 805° so x = ka sin 0 = 20.96 N 21*. 

O. 
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- 

Fig. 9. Pattern for two slot arrays on cylinder fed in phase 
(ha sin 9 = 21). 

'The arrays were designed to produce a main lobe at the angle 
o - 80.5° neglecting diffraction :wound the cylinder. 
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Che experimental data for the four quadrants 
was averaged and is shown plotted in Figs. 9 and 
10 along with the theoretical curves. The agree- 
ment is very good and so it can be considered 
a good check on the data for I M(x, 56) I and 
oE(x, 0) in Figs. 4 and 5. As a matter of interest, 
it might be mentioned that the computations for 
Ma(x, 0) 1 were first carried out under the 

assumption that the slot offsets need not be con- 
sidered so far as the azimuthal pattern was 
concerned. This is equivalent to setting 8 = 0 
in equation (10). The calculations showed that 
this approximation led to errors of several decibels 
in the azimuth pattern although the nulls are 
located in the same place. 
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EXPERIMENTAL (AVERAGE OF 4 QUADRANTS) 

Fig. 10. Patters for two slot arrays on cylinder fed out of 
phase (ka sin B = 21). 

Conductance of a Slot on a Cylinder 
To conclude this discussion some mention 

should be made of the input conductance of slots 
on circular cylinders. To treat this problem fully 
and rigorously would require a very exhaustive 
analysis. Only the exterior problem is considered 
here; that is, if the voltage across the slot is 
specified, how much power is radiated into the 
space exterior to the cylinder? Furthermore, 
the slot is taken to be a narrow half -wave 
resonant axial slot with a sinusoidal voltage 
distribution. The radiation field is then given by 

e -i kr Vo COS ( 

Z 
cos o) 

E 
7r2 rk sin2 B a 

m= 

e na, in cos nub 
Hna(2>'(ka sin 0) 

.. (11) 

The time -averaged Poynting vector S is then 
1 

S = Real Part of E x H* . . . (12) 

where the asterisk denotes the complex conjugate. 
In the radiation field, the Poynting vector has 
only a radial component Sr so that 

-V - 
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Sr = 
1 E* .. .. (13) 

770 

for r tending to infinity. The radiated power P is 
then obtained, in the usual way, by integrating 
over a spherical surface. This leads to 

Vol cost (cos 0 

J'0 f2 0 ' Y27r4k2 s1I14 942 

/ 

The curves of the `cy:inder space factor' are 
presented in a form in which they should have 
wide applicability. 
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which, following an integration with respect to 0, takes the form 

P= V02 cose 
C 2 

cos 0) 

27j07r3 k2a2 0 sin3 0 n=011-1 n2/(ka sin 0) ; 2 

The external radiation conductance G is then 
defined by 

G = 2P/V02. 
Lmploying numerical integrations of equation 
(15), values of G were computed for various ka 
values between 0.1 and 21. The limiting value 
for very small linders is seen from equation (15) 
to be given by 

60 COS 1 2 cos 0) 
G= \ d0, (16) 

'io- J o sin O 

which is the same integral that arises in a thin 
half -wave wire aeria112. The radiation conduct- 
ance for infinitesimally small cylinders is then 
given by 

G]xa o = 73.13/77o2 = 0.514 milli -mho, 
where it will be immediately recognized that the 
73.13 can be identified with the radiation resistance 
in ohms of the complementary wire aerial. This 
simple equation is a statement of Babinet's 
principle. At very large values of ha the cylinder, 
so far as the slot is concerned, is equivalent to an 
infinite plane conducting surface. Following the 
reasoning of Bookerl3 it would be expected that 

G]ka , co = 2 X 73.13/7j02 = 1.028 milli -mho. 
Employing these limiting values of G and the 
intermediate computed values, a curve G is 
drawn as a function of ka from 0 to 0o as shown in 
Fig. 11. 

This curve would indicate that the external 
conductance of the slot is a varying function of 
the diameter of the cylinder. Furthermore, if the 
circumference of the cylinder is greater than 
about 10 wavelengths the conductance is within 
10% of the conductance of the same slot on an 
infinite flat ground plane. 

Conclusion 
It is believed that the results given will be 

useful in the design of slotted -cylinder aerials. 
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ADDENDUM * 

The external conductance values presented in 
the paper have been checked experimentally by 
D. G. Frood and R. \V. Armstrong of the Radio 
Physics Laboratory. Briefly the measuring 
technique consisted of feeding a single resonant 
axial slot on the cylinder by an X -band rectangular 
waveguide in a manner similar to that illustrated 
in Fig. 8. In the present case it was convenient 
to mount the waveguide so that the narrow face 
of the guide was essentially flush with the inner 
surface of the cylinder. The quantity measured 
was the equivalent shunt conductance g of the 
slot in the narrow face of t he waveguide normalized 
to the characteristic admittance of the guide. 
This is related to the external or aperture con- 
ductance G in milli -mhos by 

180biay 2(Ira) 1.03 
g 737r b2 

cos 2A G 

where h1 and b2 are the inner dimensions of the 
broad and narrow faces of the guide, respectively, 
and 7A and Ag are the free -space and guide wave- 
lengths, respectively. The above formula is 
obtained by a direct extension of Stevenson's 
analysis15 for the case where the longitudinal 
slot is in the narrow face of the guide which is 
flush with an infinite flat metal plate. This is 

*Received by the Editor, October 1955 
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equivalent to an infinitely large cylinder (ka -> co) 
where 1.03/G in the above formula would tend to 
unity. 

In the experiment, A = 3.2 cm, A,, = -1'68 cm, 
bl = 0.9 inches, b2 = 0.4 inches, and therefore 
g = 1.28/G. 
The dimensions of the slot were 2/3 in. x 1/16 in. 
Denoting dg as the difference between g for 
arbitrary ka and g for ka = oo, the comparison 
between theory and experiment is shown in the 
following table: 

ha 

dg Values 

2.5 3 5 7 9 14 

Experiment 0.13 0.09 0.06 0.05 0.05 0.02 

Theory 0.15 0.12 0.08 0.05 0.04 0.02 

The agreement here is quite reasonable. The 
departure at the smaller ka values can probably 
be accounted for by the non -resonant condition 
of the slot in which case g and G 'would not be 
inversely proportional. 

The effect of the finite length of the cylinder 

was also investigated experimentally. It was 
found that the measured conductance was 
essentially independent of length L if L > 3a. 
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APPEN 
Although the derivation of the expression for the 

radiation field of an axial slot is implicit in the previously - 
mentioned papers, it seems worth while for the sake of 
completeness to outline a proof. Furthermore, the 
method used here does not rely on the use of the reci- 
procity theorem and therefore' is of general interest. 

The starting point is to consider a magnetic dipole of 
moment Kdzn where dzu is the equivalent length of the 
element of magnetic current Li as defined by Schelkunofftt. 
With respect to the (p, ¢, z) co-ordinate system, the 
dipole is located at (flu, ¢o, z0) and is oriented in the z 
direction. The surface of the conducting cylinder of 
infinite length is defined by p = a where a 

The primary magnetic vector potential of the dipole 
has only a z component F and is given by 

1'r, = Kdzue-it-, 
4nrt 

where 

rt=1Pt'+(Z--)211 
and 

(IA) 

Pi= 1P2 + Po' - 2PPo cos (41. - 960)11 . 

The resultant potential has only a z component F and is 
a solution of the inhomogeneous Helmholtz wave 
equation 

Kdzo 8(r-ro) 
(72 + kz) 1' = - - 4n 

(2A) 

where r and ru are vectors extending front the origin 
to the point of observation and the source points 
respectively. 8(r - ro) is the three-dimensional impulse 
function. The resultant fields arc gi\ en by 

1 OF OF lip = - 
P 

. - Fm , = 
óp-- 

, 1=: = 0, 
60, 

a2F a2F h2 
JµwHp = ópbz- 

, JµwHm = pb5bbz' JP°wH:= (k2 + az2) F. 

.. (3\ ) 
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DIX 
The function F must now he constructed so as to be a 

solution of the inhomogeneous wave equation and to 
satisfy the boundary condition that the tangential 
electric field (i.e., lam) vanishes on the conducting 
surface, that is 

bp - =oat p = a. 
P 

The function F is now expressed as a combined Fourier 
integral and series as follows 

I' (P, 56, z) =,tl 
'+ roe 

_n - 1h(z- i,) e,,,I',,,(P) 
27, 

cos In (4, -0n) 

.. (4A) 
where F,,, is a Fourier coefficient which is a solution of 
the equation 

l 

op P ap+ (k2 h')P -' ']1:,,.(P) = - a(P - Pu) 

.. . (5A) 
Solutions of equation (5.\) which possess a vanishing 
normal derivative p = a are 

11 

F,,,(P) =C,,,H,,,t2t(up) 
L.I 

s,(trpo) -H,nl1(uPo) f,,,'(lra)J for p>Pu 
H,,,t2 '(ua) 

z (up) 
= C,nH,,,t21(tsPo) f,,,(trP) - H,,,tz1' (isa).,,,'(ua) 

for P < Po 

.. (6A) 
where = (k2 - 1t2)1t2, J,,, is the Bessel 1' unction of the 
first type of order in and H,"Izl is the Hankel function 
of the second kind of order ni. The factor C,,, can be 
found by integrating, with respect to p, both sides of 
equation (5A) over a small interval which includes pu. 
This process yields 

C,,, _ -742. 
The resultant magnetic vector potential is then 

completely given by 

,,,=o 
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_ F-- ,,, cos ,(d,- 4,o)< 
I 

iI,'-'(arP)[.l,(¡rpo) - 11,,,(2i(upo) 
H ,' -r 
,/,' (Ha) 

2 
" 

- zrn)J 

for p > Po. 'Ile solution for the case p < po is obtained 
by interchanging p and po where they occur in equation 
(7A). This constitutes the exact solution for the problem 
of a magnetic dipole parallel to a circular conducting 
cylinder. Since this result has not apparently been given 
elsewhere, it is of some interest in its own right. 

The above formal solution is simplified somewhat if 
the fields are observed at a large distance from the 
cylinder. The square bracket term in the integral is then 
a slowly varying function of b compared to the other 
factors. The saddle point of the integrand is then at 
h = k cos O where O = tan-' p/(z - z ). The integration 
can then he Carried out to yield 

Kdzo e -jkR - L> 
47r 1? 

U 

;Mt (7A) 

Kdzelk cos Oz. e ikI' `, e,,, cos u,(4, - Mein'nl2 
t^t, - an' H L, ,,, (ha. sin ) 

ut _11 

.. (9A) 
where use has been made of the \Gronksian relation 

H,'92) .1,,, (x) - H,'=t' (a) ./, (x) = 21/7,2. 
By employing Schelkunoff's equivalence theorem it can 
be seen that the axial magnetic current K at z is 
equivalent to a thin axial slot on the cylinder of length 
dzo excited by a transverse voltage I'(zo). The extension 
to an axial slot of finite length from z, to z, is effected 
by integrating over z. Furthermore, if the slot is of 

e,"P1m7,12 Cos nr(ck - )eikz 105 e j,(kPo sin 8) - 
H,'-' 

(k p sin O).1,,,'(ha sin B) .. (5A) 
[ H,i2(basin B)] 

where I? = (p' -I z9'1- and which is valid for Pp sin O 

I. To the same order of approximation, the fields are 

given by E -jk sin B F and iIo - k 
F. ,. 1'le 

other field components are of order I /N- so they can be 
neglected in the far field. 

\\ hen the magnetic current element is located on the 
surface of the cylinder (p = a), the radiation field can 
be written 

finite width the integration must st also he carried out over ¢ from 0, to ¢-. It is assumed here, for convenience, 
that the transverse field in the slot is uniform. It then 
follows that 

R 
= l'(z)elk cos 0. dz 

277.2a /? Z, 

sin [u,(02 - ¢,1/2: e.ei'° Iº cos ur(,b - 0) 
X 

fni(0- - ,);2] H,'-"(ka sin 8) 
- (lo.\) 

where ¢o = (02 + 012 

EQUIVALENT EQUALIZER NETWORKS 
By R. O. Rowlands, M.Sc., A.M.I.E.E. 

(N.B.C. Enginrrring Training Dept.) 

1. Introduction 
WHERE a signal suffers attenuation and 

phase distortion, equalizers are inserted 
in the circuit to correct for either or 

both forms of distortion. Instead of obtaining 
the full amount of correction with one complex 
network it is often more convenient to synthesize 
the required characteristic from those of simpler 
networks. This may be clone in two distinct ways. 

(a) The normal procedure is to use constant - 
resistance networks connected in tandem. This 
method has the advantage that if the attenuation- 
frequency response of the simple networks have 
been calculated in dB and graphs drawn, the 
end -to -end response is the sum of the individual 
curves. 

(h) An alternative method is to connect a 
number of very simple circuits (such as dif- 
ferentiating circuits) in tandem, pass the signal 
through such an arrangement and combine the 
signals which appear at the various junctions- 
including the input-in varying proportions as 

MS accepted by the Editor, February 1955 
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shown in the block schematic diagram of Fig. 1. 
The overall response will then be the algebraic 
stun of the individual responses calculated 
on a linear basis. This method was suggested by 
Gouriet' and for certain applications it has special 
advantages, in particular, extreme flexibility. 
The various types of frequency -response curves 
obtainable with practical networks of this kind 
will now be analysed and the equivalent constant - 
resistance networks derived for comparison since 
the performance of these latter networks is well 
known. In the analysis which follows, the 
symbol p will be used throughout for jw. 

2. Equalizer of the 1st Order 
Either of the two differentiating circuits of 

Fig. 2 may be used. Both give the same result, 
viz.: 

z 
- 

PI -2 
where I /1' _ /t f 

1' 1 7] + pL'-' p + l/l L2 

and 1 

R2 

p+117. 
where 7'=I:2C1 

Equalization is achieved by combining the 
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differentiated voltage with the input voltage in 
the correct proportion. Using the notation of 
Fig. 1. 

bo=K1 1á'1+A2>'2 
for a first -order equalizer. Since we are not 
concerned with changes in absolute level but only 
with changes in frequency response, the two 
constants K1 and K2 may be replaced by one 
without loss of generalit\ so long as the one 
constant is suitably chosen. If we let 

Vo = aVi + (1 - a)V2 
where 0 < a <1 

we see that this equation satisfies our requirement 
because the ratio of a to (1 - a) can vary between 
0 and co. Again, writing the equation in this form 
ensures that the output cannot exceed the input. 
It is therefore equivalent to a passive network. 

V, 

Fig. 1. Derivative equalizer. 

The various types of responses possible 
equalizer will now be calculated. 

The response is gi\ en by the ratio of output 
voltage to input voltage. Taking the positive 
sign first we have 

Vo_aVi+(1-a)1.2 
1'1 Vi 

= a + (1 - a)V2/ICI 
-a+(1 -a)p 

p + 1/7. 

ap+elT +p- _--- 
p 

p+al7' 
1/7 

In a constant -resistance equalizer, such as the 
bridged -T circuit of Fig. 3, the voltage ratio is 
given by the well-known formula 

Vo Z2 

Vi R + Z2 

and if the shunt arm Z2 consists of a resistance r 
in series with an inductance L then 

Vo r+pL p+r/L 
1/1=R+r+pL p+(R+r)/L 

Equations (1) and (3) will he identical when 
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with this 

(I) 

(2) 

(3) 

rIL = a/T, and (R rt r)II- = 1/T 

from which 
ri(R + r) = a 

alternatively, r = Re ± re 
Re 

giving r =- 
1 - a 
(1 -(/)L 

and T = 

I f next we take the negative sign, we get that, 
Ifo a 1 - (1 - (1)1'2 
y;i = l_i-- 

For this 

ap+a/T-p+ap - 
p -+-1 /T 

(2a - 1)p + a/T 
p 

(4) 

negative sign there are two possibilities. 
\Vhen < a, or 1 < 

2a, then 0 < 2a - 1. 

Alternatively when a 
< 1, or 2a < 1 + a, then 

V0 =K1 V,±KzVZ 

2a - 1 < a. 
Therefore in the range 
< a < 1 it follows that 

0 < 2a - 1 < a, and so 
that the expression may 
be rewritten as follows 

C, 

Fig. 2. Differentiating circuits. 

Vo (2a - 1)Tp/a + 1 V1=a.. .. 

'I he multiplier a represents constant attenuation 
and as it does not affect the frequency response it 
may be neglected. The remainder of the expres- 
sion will then be identical with equation (3) 
provided pL is replaced by 1 pC; i.e., with the 
equation 

Vo_ rCp+l 
V1 (R + r)Cp + 1 

Equating coefficients in (5) and (6) we have 
(2a - 1)T la = rC 

and T = (1? + r)C 
2a - 1 rC r 

!I r)C 
or2(R+r)a-(R+r)=ra 

(2R+r)a=R+r 
R+r 

giving =.l, 

.. (6) 
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In this case the attenuation-frequency curve 
slopes in the opposite direction to that obtained 
by adding the voltages. 

However, when 0 < a < 1, then 2a - 1 is 
negative and equation (3) may be rewritten, 

Vo a/7'- (1 - 2a)p a - (1 -2a)pT 
V1 1/T+p 1+pT 

multiplying numerator and denominator by 
a + (1 - 2a)pT, we get 

Voa+(1-2a)pT a-(I-2a)p'1' 
V1 1 + pT a + (1 - 2a)pT 

The first expression corresponds to the charac- 
teristics of one of the two constant -resistance 
equalizers already discussed depending upon 
the relative values of a and (1 - 2a). 

If a > 1 - 2a (i.e., a > 1/3) the attenuation 
increases with frequency. 

If a < 1/3, the attenuation decreases with 
frequency, while if a = 1/3, the attenuation is 
constant. In the second expression the modulus 
of the numerator is equal to that of the denomin- 
ator and so it represents a network which gives a 
phase change with no attenuation. This can be 
produced by a constant -resistance lattice section 
having series and lattice arms consisting of an 
inductor and a capacitor respectively, where 
L = R7', and C = T/R, R being the image 
impedance of the lattice. 

3. Equalizer of the 2nd Order 
If the differentiated voltage V2 is passed through 

a second differentiating circuit, the output 
voltage V3 will be given by, 

V3 p p where S= 1 T 
V2 p + 117'2 p +S2 (/ ) 
V3_ V2 V3_ p p 
V1 - V1 V2 - p + Si p + S2 

p2 

(p + Si) (p + S2) 
And if Vo = K2V2 f K3V3 

(the K terms being positive fractions) 

Then V0=Ii1 + K2 + K3 
V2 V3 

V1 V1 Vl 

= 11 f I'2p + K3 p2 

p + S1 (p + Si) (p + S2) 

Ki(p + Si) (p + S2) f K2p(p - S2) f K3p2 

(p + s1) (p + S2) 
which may be written 

Vo a(p2+1'p+c) 
V 1 (p + Si) (p + S2) 

Where a=K1+li2+li3 
h = (K1S1+K1S2fK2s2)/(K1fK2iK3) 

and c = K1S1S2/(K1 +1K2 ±[K3) 
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It will be seen that all values are possible for 1, and 
c and so the quadratic in the numerator of 
equation ;7) is perfectly general. If it is capable of 
being factorized it may be rewritten as follows, 
the factor a being ignored. 

Vo (P + 71) (P + x2) 

V1 (p + Si) (p + S2) 

p+x1 . p+a2 
p+S1 p+S2 

The equivalence of each part of this expression 
to the response of a constant -resistance equalizer 
network with or without a phase -shift network 
has already been established. The response 
corresponding to the whole expression will 
therefore be produced by these networks connected 
in tandem. It does not matter which value of a 
is associated with which S, the overall response 
will he the same although the individual networks 
used will vary with the combination chosen. 

Fig. 3. Bridged -T equalizer. Fig. 4. Shunt arm Z2. 

A constant -resistance equalizer of the second 
order which is ver\ commonly used is the 
resonant equalizer; that is, one in which the shunt 
arm, /.2 of Fig. 3, consists of the circuit shown in 
Fig. 4. 

Here we have, 

I2-I 
+(1-p2/po2) 

where 
Po' = - woe = - 1/LC 

So that from (2), we find that, 
Vo I" + pL/(1 - p2/15o2) 

I'1 - r + R + pL/(l - p2/po2) 
Multiplying numerator and denominator by 

(1 + p2/po2) this becomes, 
Vo r -1p2/ o2+pL 
V 1 (R + r) - (R + r)p2/pot + pL 

. . 

_/j2 - (po2L/r)p - po2 

(R + r) p2 - (p02L 'i? + r))p - po2 
.. (Sb) 

pL 

(8a) 
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Comparing this with equation (7) we find that 
for the equations to be identical, the constant 
terms in the numerator and denominator of (7) 
must be equal, 

K1S1S2 
i.e. lí1+ K2 +K3 

or Iii=Kl+K2+K3 
giving K2 = - K3 

Again, the coefficient of p in the numerator 
of equation (8b) is greater than that in the 
denominator. 

Applying this condition to equation (7) we 
get that, 

Ii 1S1 + K1S2 + K2S2 > S1 + Sz K1+K2+K3 
and making use of equation (9), 

KS1 + K1S2 + K2S2 > KIST + K1S2 
Therefore the positive sign must be attached to 

K2. 

Again, the coefficient of p in the numerator of 
equation (8a), is equal to that in the denominator. 

Applying this condition to equation (7), we get 
that 
a.h=Si+S2 
i.e., K1S1 + K152 ± K2S2 = Sl + S2 
i.e., ± K2S2 = (S1 + S2) (1 - K1) 

and since K1 < 1, the negative sign on the left- 
hand side may he omitted. 

K2=(s1s x2)(1-KI) .. (10) 

The equivalent of the resonant equalizer is thus 
given by, 

= SIS (9) 

S1 + Sz 
Vo=h1V1+ 

S2 
(1-Ií1)(V2-1'3) 

It remains to consider the case of the numerator 
of equation (7) having complex roots. There are 
two possibilities, firstly when h is positive and 
secondly when h is negative. Consider the 
constant-resistance equalizer circuit of Fig. 3, 
in which Z2 consists of the configuration shown in 
Fig. 5. 

The impedance of Z2 is given by 
R4/Cp 

Z2 = Lp + R3 + W7)-± - 

R4 
=Lp+I¿3+1+CI14P- 

LCR4p2 + (L + CR3R4)p + (R3 + R4) = 
CR4p 

- - 
Substituting for Z2 in (2) we get 

The values of the components L, C, R3 and R4 
may always be chosen so that the roots of the 
numerator are complex; e.g., one way of doing 
this would be to make L = CR3R4. 
Then (L + CR3R4)2 - 4LCR4(R3 + R4) 
= 4C2R32R42 - 4C2R32R42 - 4C2R3R43 
= -4C2R3R43 
This is the condition for complex roots. 
The condition for real roots in the denominator 

is that 
(L + CR3R4 + CRR4)2 > 4LCR4(R3 + R4 rt R) 

Since the expression on the left-hand side 
contains a term in R2 whereas the highest power 
of I? on the right-hand side is the first, the left- 
hand side increases with I? more rapidly than the 
right. It is therefore mathematically possible 
to select values of I? to satisfy the above condition. 
Practically of course, the circuit impedance R is 
fixed but the same result may be produced by 
decreasing L, C, R3 and R4 relative to R. This 
circuit is therefore the practical realization of 
equation (7) when the coefficient h is a positive 
number and the roots are complex. 

If the equation turns out to be of the form, 

a(p2 - hp + c) 
VI (p +si) (p + s2) 

it may be written, 

Vo a(p2 + hp + c) . p2 - by + c 
VI (p+sI)(p+s2) p2+tip+c 
The network corresponding to the first term 

has already been obtained. The magnitude of 
the second term is unity since the modulus of the 
numerator is equal to that of the denominator. 
This term therefore represents a phase -shift 
network of the second order. 

4. Equalizers of Higher Order 
\\'e have seen that the output to input voltage 

ratio of a first -order equalizer is the ratio of two 
polynomials of the first degree in p while for a 
second -order equalizer the polynomials are of the 
second degree. It can easily be verified that for 
an equalizer of order n, the polynomials will each 
be of degree u. T11e denominator may be 
factorized into terms corresponding to the 
differentiating circuits used, whereas the numer- 
ator will be perfectly general. Each of the real 
factors of the numerator may be associated with a 
factor in the denominator to represent the voltage 
ratio of a first -order equalizer. The complex 
roots of the numerator occur in complementary 
pairs and so these may be extracted as a quadratic 

factor associated with two from 
Vo L CR4 p2 + (L + CR3R4)p + (R3+ R4) 
v, LCR4 p2 + (L + CR3R4 + CRR4) p + (R3 + R4 + R) 
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the denominator to represent the 
voltage ratio of a second -order 
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equalizer. Equalizers of a higher order than the 
second do not therefore contribute a new type 
of characteristic but are equivalent to a ]cumber 
of first- and second -order equalizers connected in 
tandem. 

Ri 

V Cz ` Vz T 
Fig. 5. Pig. 6. 

Shunt arm 7z. Integrating circuit. 

5. Integrating Circuits 
All the characteristics obtained with differenti- 

ating circuits may also be obtained with integrating 
circuits, for example, the integrating circuit of 
Fig. 6 gives the equation, 

V2 1/pC2 1 

V1 RI + 1/pC2 - R1C2p +1 

1 where T = R1C2 
p + 1/T 

and n such circuits will give 

Vn+1 1 

V1 (p + 1/T)n 

Combining this with the input we get, 

K1V1 ± Kn+1Vn+1 Ki(p+ 1/T)n i Ian +1 = 
(p + 1IT)" 

This is the ratio of two polynomials of degree n 
and the inclusion of the intermediate terms in the 
numerator can make this perfectly general. 

6. Summary 
The equivalence of the two methods of equaliza- 

tion has been demonstrated and the most im- 
portant of the equivalent circuits are listed in 
tabular form. 
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1st Order 
Constant Resistance 

C 

Ra 
r = 

L = CR' 
RT 

- I - a 

r =(2a- IR 
1 - a 

I_=CRz 
(1 -a)TR 

a 

2nd Order 
Constant Resistance 

R2 LIP' 

K1 r= R 

=S1 -f Sz R 
S1Sz 1 -K, 

wtl- VJ IS 
I -K1 l 

.r, --1S, , -L S, R 

TABLE 

Derivative 

Vo = a VI (I - a) V, 

where 0<a< 1 

and V_, = -p V1 
1 

IVo = aV, - (1 - a) Vz 

where < a < 1 

and Vz - pT V, 

R -}- r 
a = ?tt-+r 
T=(R-Fr)C 

Derivative 

V, = I ,1't 4- 

S + SZ 
(1 - K,) (1'z - 1'2) SZ 

where 0 < K, < 1 

p Vz = 
S, 

V, 

and Vz = p_71) 
S, 

VI 

=iz+r 
S1 and S2 

- wul. -awo R+r ± 

J\R+T/9-4f 
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SATURABLE -REACTOR FREQUENCY 
DIVIDER 

By G. W. G. Court*, B.Sc., A.M.I.E.E.,A.Inst.P. and C. I. C. Scollay j-, B.E.,B.Sc., A.M.I.E.E. 
(Department of Scientific and Industrial Research, New Zealand) 

SUMMARY.-A saturable reactor in conjunction with a simple resistance -capacitance network 
will provide a frequency -dividing circuit capable of producing a pulse output at the frequency, or 
submultiple of the frequency, of an input sinusoidal voltage waveform. 

The circuit \vas initially devised as a means of synchronizing the pulse repetition frequency of a 
radar modulator at half the power supply frequency but has other applications where frequency division of 
this kind is required. 

General 
THE saturable reactor is well known as a 

result of the original paper by Melville' ; 

its essential characteristics may be briefly 
summarized by reference to Fig. 1 which shows 
the idealized form of the B-H characteristic of a 

magnetic material 
B 5 T. such as H.C.R. 

metal. 
The initial part of 

the curve OS is 
H linear and, following 

the sharp 'knee' at 
S, the characteristic 

T' 

Fig. 1. Idealized B -H 
curve of H.C.R. material. 

SI remains parallel to the H axis. An inductor 
having a magnetic circuit of material of this type 
will have the following features. 

The incremental inductance when the core 
material is operated in the regions OS and OS' 
will be constant and can be referred to as L,,. 
In the region ST and S'T' the core material is 
saturated and the incremental inductance becomes 
Ls which approaches zero. 

L,1 Ls 
Now consider a network, Fig. 2, in which a 

saturable inductorL is associated with a resistance - 
capacitance combination R, C, and r which is a 
small resistance. The network is supplied by a 

voltage source E sin 
wt and we can con- 
sider the circuit CLr 
to be a resonant 
circuit at the supply 
voltage frequency; 
L = Ln. In this case 

Fig. 2. Frequency - 
dividing network. 

*Now ;,t Civil Aviation Administration, Wellington. 
1 -Now at Wellington Technical College. 
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the oscillatory current in it will build up if the 
supply voltage is suddenly applied. 

If is and iL are the currents in the circuit 
branches as shown, we can derive a differential 
equation 

r 1 R+r1 _E sin cot [D2 
+ LI,+CR)D+LnCRJ1L LCR 

the solution of which contains a transient and a 
steady-state term. 

By a suitable choice of constants the frequencies 
of the transient and steady-state terms can be 
made the same (i.e., the supply frequency) and 
by satisfying the conditions when t = 0, iL = 0 
and diLicit= 0 the complete solution is of the form 

iL = I cos wt (1 - e- At) 

where A is a constant depending on the para- 

o 

/ \\ TRANSIENT / t 

\ CURRENT / t SUPPLY 

I t\ % VOLTAGE 

tt 

/ 
/ STEADY-STATE RESULTANT _)I 

CURRENT CURRENT 
a' 

st 
P 

Fig. 3. Theoretical waveforms in circuit of Fig. 2. 

meters of the circuit and I is the maximum value 
of the steady-state current. The solution is 
shown in graphical form in Fig. 3. It will be seen 
that the current through the inductor, which is 
the resultant of the steady-state current and the 
transient current, has peaks which increase in 
amplitude, during the first few cycles. Consider 
the point P, which is at a time precisely two com- 
plete cycles of the supply waveform after t = O. 

As the current peaks are increasing in amplitude 
during this period it can be arranged that the 
value of current at point P is sufficient to increase 
the value of H in the inductor beyond the 
'knee' of the B-H curve (Fig. 1), whereas earlier 
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current peaks are such that H remains below the 
'knee'. Thus at point P the circuit conditions 
change in that the value of inductance falls from 
Lt, to Ls. 

At resonance, the circuit CLr is a resistive 
impedance and the current through R is in phase 
with the supply voltage. Also the currents in the 
arms of the circuit if, and is are in quadrature 
with the supply voltage. Thus when the current iL 
reaches a maximum at P, thesupply voltage is zero. 

At P, the inductance L being part of the oscil- 
latory circuit CLr, has a store of energy, and 
when L is replaced b\ Ls, this energy will be 
dissipated as a large current pulse through Ls and 
r. If the circuit losses were sufficiently small the 
circuit LsCr would commence to oscillate at the 
appropriate frequency but, in fact, the losses are 
sufficient to prevent this and the energy is 
dissil ated as a single pulse. 

Now if the duration of this pulse is short 
compared with the period of the applied voltage 
waveform then immediately following it the 
conditions external to the circuit can be considered 
unchanged and we have the condition 1L = 0 

and, since E sin wt = 0, then di L/dt = O. 

These are the conditions required at t = 0 for 
the solution of the differential equation discussed 
above. 

So the process will he repetitive and a current 
pulse through r will occur at every second cycle 
of the supply voltage and will occur when this 
waveform passes through zero. Thus a voltage 
pulse output will he obtained across r at a repeti- 
tion rate of half the frequency of the supply - 
voltage waveform. It will be superimposed on a 
small alternating voltage at the supply frequency. 

\Vith the set of constants considered, a fre- 
quency division by two has been achieved but, by 
suitable adjustment of values and Q of the 
circuit elements, it is apparent that division by 
other multiples is possible. 

Practical Results 
In practice, the circuit behaved generally 

according to the theoretical predictions although 
the core material used in the inductor did not have 
the ideal characteristics shown in Fig. 1. Particu- 
larly, the 'knee' of the curve was less well defined, 
and it was found that, due to this and the low Q 
of the circuit, the difference in amplitude of the 
third and fourth peaks of the current waveform 
was insufficient to ensure that the third was 
below the 'knee' and the fourth above it. 

To overcome this difficulty, a d.c. bias winding 
was added to the inductor to shift the operating 
zone to one side of the H axis. It was so arranged 
that the third current peak was in opposition to 
the d.c. bias. Thus this peak was kept below 
the 'knee' of the characteristic but the fourth 
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peak was well above it. There was sufficient 
difference between the second and fourth peaks 
to allow non -critical adjustment of the bias current 
to prevent saturation at the second peak of 
current. 

Fig. 4. Input and output wauf orms with 400-c/s supply. 

It was considered that an improvement in the 
performance of the saturable reactor, which could 
be obtained by the use of a toroidal core rather 
than the 'E' laminations used, would have 
obviated the need for a d.c. bias winding. How- 
ever, it is possible that the variation in the division 
factor to be obtained by adjustment of current 
in a bias winding may be of some advantage in 
similar applications. 

As might be expected from the theoretical 
treatment, and as can be visualized from tlié 
current \vaveforms, it is not essential for the 
transient waveform and the steady-state term to 
have precisely the same period. Adjustment of 
the value of C showed that the satisfactor\ 
operation could be obtained over a range of 
capacitance values. 

A typical waveform obtained with a 400-c/s 
supply frequent\ is shown in Fig. 4. At a nominal 
supply voltage of 115 volts a variation of ± 5% 
had no adverse effect on the operation of the 
circuit. 

Conclusion 
The circuit described is a simple method of 

providing synchronizing pulses for a radar 
modulator at half the frequency of the power 
supply. Division by factors other than two is 
possible if required in other applications. 
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lit+Ldr_v+(T+RC)cv LC`-2 (1) 
dt dt dt 

where R is the differential resistance of the tube 
C is the total capacitance of the tube 
L is a constant having the dimensions of 

inductance 
T is a constant having the dimensions of 

time. 

Fig. 5. Impedance (a) 
and phase -angle (b) as fnnc- 
tio as of frequency and 
direct current. Group A I, 
nickel cathode; gas: 40 min 

neon 'argon 99'5/0'5%. 

(a) 

30 

5'0 le 7'S` ./ 
ocAAcl 

I 0' 0 ̀  / 
CoA 12'5 ` . 0'1 

AFAT I50`I/ 
6, 17'5 002 

10 

3'0 

I Lyd,c.\zl 

0 3 vVEy 
EP` 

5.0 

It should be noted here that according 
to this theory L is not associated with 
inertia effects. From equation (1) the 
admittance of a tube for small sinusoidal 
alternating currents of frequency 
f = to/27r superimposed on the steady current 
obtained as: - 

1 + jwT 
R+jWL 

The equivalent circuit of a glow -discharge tube is, 
therefore, not simply a resistor in series with an 
inductor, as is often assumed, but has a more 
complicated form as shown in Fig. 1. . The two 
circuit elements r = LIT and C' = T/R are 
introduced instead of simply the time constant T. 

It should be borne in mind that C' is an imaginary 
capacitance only and may be infinite or even 
negative. C, which is associated with the actual 
capacitance of the tube, is always positive. 

y- +jwC . 
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75 
074>fCr 10'0 

CUAAFNl2 

5 

150 

(,gJ 17'5 

Neglecting the capacitance oh the tube the 
impedance :- 

R+jwL 
1 + jwr 

From this expression, as pointed out by van Geel, 
it is seen that :- 

(1) The dynamic characteristic for very low 
frequencies is a straight line which coincides with 

the static running-voltage/current curve 
of the tube (7 = R). 

(2) For the intermediate -frequency 
range the dynamic characteristic is a 
small ellipse (7 is inductive) and 

3,600 (3) For high frequencies the dynamic 
characteristic is again a straight line but 
with a different slope from the low - 
frequency characteristic (7 = L/T). 

If the tube capacitance is taken into 

3,000 

2,400 account then it is found, from similar 
considerations, that the dynamic charac- 
teristic passes through all three stages 
mentioned above but becomes an ellipse 
again for very high frequencies and 
7 is capacitive. 

1,800 

1,200 

600 

f 

loó 
>_ (b) 

is 

.. (2) 

4,200 

0'02 

lo 

3'0 

`µcsi 

ii 0 3 OVa`y 
01 EP` 

(3) 

60° 

0° 

-20° 

It follows that some information about the 
differential impedance at low frequencies may be 
obtained from the form of the static running- 
voltage-current characteristic of the tube. For 
example, Fig. 2 shows that the static curves vary 
widely for tubes with different gas fillings, from 
which it is evident that at low frequencies the 
internal impedance of a helium -filled tube is much 
smaller than that of a neon tube. '1t high 
frequencies, however, the impedance depends 
mainly on the constants L and T and it may 
differ very much from the impedance observed 
at low frequencies. 

The above theory has been verified by 'the 
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present measurements. A large number of 
different tubes have been tested and the im- 
pedance -frequency curves obtained are in com- 
plete agreement with the theory. This can be 
seen from the typical result of Fig. 3 showing the 
variations of resistance 
and reactance of a tube 
with frequency. 

rig. 6. Impedance (a) 
and phase angle (b) as 
functions of frequency and 
direct current. Group .42, 
nickel cathode; gas: 40 mm 
helium/argon 99.5/0'5%. 

5'0 
75 

a7qfcl 
10'0 

CUg 2 5 

/ 
1 a49 17.5 0102 

(a) 

0.1 

10 

3-0 
I.0 lµclsl 

0'3 
aVEaC QE 

Measurements 
To measure the impedance of each 

tube the circuit shown in Fig. 4 
was used. This is similar to that 
employed by Benson and Mayo2,3 for 
their investigations. The glow -discharge 
tube under test (T) was fed through a 
suitable resistor 1? from a stabilized d.c. 
supply. A meter in the anode lead was 
used to set and maintain the tube 
current at the desired value. In 
addition, the tube was fed from an 
audio -frequency oscillator through a 
very large blocking capacitor C. A 
valve voltmeter across the non -inductive 
resistor r was used to keep the superimposed 
alternating current at 1 mA. The alternating 
voltage drop across the tube was measured with 
the valve milli -voltmeter mV. The dropping 
resistor 1? was of large value so that its shunting 
effect across the tube could be neglected. 

The alternating voltage and current were fed 
to the Y and X plates respectively of an oscillo- 
scope. The phase -angle difference between the 
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5.0 

7'5 

'Elk" 10'0 

2 5 

6,4)17'5 0'02 

voltage and current was measured from the 
dynamic characteristic traced on the screen 
and the tube impedance was, in this way, split 
up into real and imaginary parts. It is understood 
that this method of determining the phase angle 

is not of high accuracy14 but it 
enables measurements to be made 
with both lagging and leading current 

4,200 vectors. Furthermore, the dynamic 
characteristic is displayed and any 
distortions or peculiarities inside the 
tube are shown. 

The impedance of each tube was 
3,000 measured over the frequency range 

20 c/s to 100 kc/s for various values 
2,400 of direct tube current. In addition 

= the direct tube current was varied 
while the frequency of the super- 
imposed alternating current was kept 

1,200 
constant and the impedance was 
measured as a function of direct 
current. 

The object of the first series of tests 
was to determine the differences in 

loó the internal -impedance characteristics 
of neon and helium -filled tubes. A 
large number of tubes with each gas 
filling was examined, one hatch of 

vp.#14(b) 

3,600 

ó 
1,800 f 

600 

«n) 
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log.2 

0'I 
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0'3 
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20°U Z 

N 
o 
00 
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N\EKEL 
1 
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0,INEON 
0.25 03 035 04 

J7, 
Fig. 7. Impedance Zas function of d.c. al 1 kc/s; 

Zccl/VI7k (I,k measured in mA). 

0'45 
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tubes having nickel cathodes, another cerium - 
alloy cathodes. 

The second series of tests was concerned with 
the influence of gas pressure on the impedance. 
For this purpose a number of tubes containing 
a 99.33;0.67% neon/argon mixture was examined. 
Tubes were made having gas pressures of 30, 
35, 40, 45 and 50 mm of mercury. 

Experimental Results 
(a) Tubes with Different Gas Fillings 

The mean results of the measurements on tubes 

Fig. S. Impedance (a) 
and phase angle (b) as 
functions of frequency and 
direct current. Group Ill, 
cerium -alloy cathode; gas: 
50 nun neon 'argon 99.7/ 

0'3%. 

( a) 

with nickel cathodes and 99.5/0.5% 
neon/argon fillings are given in Fig. 5(a) 
and (b). 

Fig. 5(a) shows that the differential 
impedance remains fairly constant over 
the lower -frequency range, beginning to 
increase only at about 3,000 c/s. Above 
this frequency the increase of impedance is rapid 
and maximum impedance occurs at the resonant 
frequency of about 50,000 c/s. At this point the 
phase -angle difference, which had been constantly 
increasing, drops back to zero as can be seen from 
Fig. 5(b). At frequencies above the resonant one 
the impedance falls off again and the phase -angle 
difference changes sign. Fig. 5(a) shows also that 
the impedance increases with decrease of steady 
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tube current. This effect is only small for low fre- 
quencies but it increases when approaching the 
resonant frequency. 

Figs. 6(a) and 6(h) give similar results for tubes 
with nickel cathodes and 99.5/0.5% helium/argon 
fillings. At low frequencies the impedance is 
much smaller for this type of tube than for those 
filled with neon. It increases rapidly, however, 
and at a frequency of 3,000 c/s the impedance is 
actually greater for a helium -filled tube than for 
a neon one. More obvious still is the difference 
in the phase -angle curves. While for a neon tube 

the curve increases smoothly from zero 
to a maximum with increasing fre- 
quency, there is a very rapid increase in 

4,200 the low -frequency range in the case of 
helium. Phase -angle differences of over 

3,600 45° at frequencies of only a few hundred 
c/s-have been observed. 

It will be seen that for the higher 
3,000 direct currents the curves for helium 

tubes become similar to those for neon 
2 400 ones. It should be remembered that in 

this region the static running -voltage/ 
1,e00 á current characteristics are similar too. 

It is important to note that a con - 
I,200 siderable spread of results for individual 

tubes of the same type has been 

600 obtained. This spread is specially 
marked at the low -frequency range of 

phase -angle readings for helium -filled tubes. 
Therefore Figs. 6(b) and 9(b) (which is discussed 
later) merely show the general shape of the 
characteristic but do not give an absolute 
measurement of the phase -angle difference. 

It is evident from the various figures that the 
a.c. impedance/direct-current characteristic of a 
tube depends to a large extent on the frequency 
of the superimposed a.c. at which the measure- 
ments are made. Only in a limited number of 
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cases can a simple relation he found between 
impedance and direct current. Tests made at a 
constant frequency of 1,000 c/s on 99.33,0.67% 
neon/argon- filled tubes having a cerium -alloy 
cathode and on 99.5/0.5% neon/argon tubes 
having a nickel cathode have shown that the 
impedance changes approximately inversely as 

Fig. 9. Impedance ja) 
and phase angle (b) as 
functions of frequency and 
direct current. Group B2, 
cerium -alloy cathode; gas: 
50 nun helium 'argon 97.8/ 

2.2 

(a) 

#41111 ` 
4 5-0 

5 1.0 

/ G`S 

10'0 0 } pJaGi 

C04'12'5 0'1 FPE 

*1-4,7, 150/ 
6,)I7-5 

0'02 

the square root of the direct current 
through the tube as illustrated in Fig. 7. 
It is of interest to note that Townsend 
and Deppl have found that, at a fixed 
frequency, for a tube containing a 99/1 % 
neon /argon mixture and having a 
cathode of barium and strontium oxides, 
the resistiv e component of impedance 
changes approximately inversely as the 
square root of the direct current. 

The results obtained on tubes with 
cerium -alloy cathodes are shown in Fig. 
8 for 99.7 0.3% neon/argon fillings and 
in Fig. 9 for 97.8/2.2% helium; argon 
fillings. In general, these diagrams are 
similar to the respective curves obtained 
with nickel cathodes. There is, how- 
ever, one striking difference. For tubes with 
nickel cathodes, very similar resonant frequencies 
and identical impedance values at the resonant 
frequency have been observed for neon and 
helium gas fillings. For the batch of tubes with 
cerium -alloy cathodes, however, the resonant 
frequency is higher and the corresponding 
impedance is much lower in the case of the 
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5.0 

7'5 
O/qfCr 10.0 

helium/argon mixture than in the case of the 
neon/argon mixture. Two batches of tubes, 
having slightly different constructions, have been 
tested and this effect was observed in each case. 

(b) Tubes with Different Gas Pressures 
The results of impedance-frequency measure - 
4,200 

ments for the neon/argon tubes with 
different gas pressures, when operated 
at a constant direct tube current of 

3,600 10 mA, are summarized in Fig. 10. 
It is found that as the gas pressure 

3,000 increases, the impedance drops and the 
resonant frequency increases. It is 

2,400 difficult to obtain a general expression 
connecting the impedance Z with gas 

1,800 W pressure p. At the lower frequency end 
of the range, however, Zoe 1 

p3 approxi- 
mately as illustrated by Fig. 11. For 
frequencies over 1,000 c/s this relation 
is not true; then Zccl/m where n is 
greater than 3. 

1,200 

600 

o Discussion of Results 
100 It is evident from the above results 

that a helium -filled glow -discharge 
stabilizer should be employed if possible 
when it is necessary to eliminate a low - 
frequency ripple on the output voltage 
of a rectifier unit. This would be the 

rq) 
15'0 

17'5 0'02 

0.1 

(b) 

1'0 
K 

0 '3 exc.; 
EP<pV 

10 

30 

60° 

40° 

20° 
a 

o 
loo 

case for the 100-c/s ripple voltage present in the 
output of many rectifier units: \\hen a high -fre- 
quency ripple component is present, however, it is 
better to use a neon -filled stabilizer. The internal 
impedance of a neon tube in this region is not 
greater than that of a corresponding helium one 
and helium tubes have the disadvantage that 
their internal impedance contains a large 
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inductive component. This often results in 
distortion of the superimposed alternating voltage 
waveform. Sudden changes in the glow have 
been observed and the impedance increases to 
many times the value measured under ordinary 
conditions. This distortion in the waveform may 
be due to superimposed parasitic oscillations. 

3.500 

2,500 

2000 

0 
1500 

1.000 

500 

02 4 680'1 2 4 6 8 2 4 6810 2 4 68100 

FR QUENCY (kc/s) 

Fig. 10. Impedance as f tnction of frequency for different 
gas pressures (d.c. = 10 rnA); gas: neon/argon 99.33/ 

0.67%. 

The resistance of the tube being very low, 
resonance may occur between the large effective 
inductance L and the effective capacitance C'. 
Changes in the glow are particularly frequent 
when the superimposed alternating current is 
large. Thus a neon -filled stabilizer should also be 
used when the ripple voltage is so large that 
changes in the glow occur. The impedance of the 
neon tube in the low -frequency range may be 
reduced by increasing the gas pressure. 

The authors have not so far been able to give a 
definite explanation of the differences observed 
between the impedance characteristics of tubes 
with nickel and cerium -alloy cathodes and having 
a helium/argon gas filling. The shift of the 
resonant frequency in the case of tubes with 
cerium -alloy cathodes seems to be due to the 
increase of the argon content in the gas filling to 
2.2%. It seems unlikely that the cathode material 
will affect the impedance markedly. 

It might be thought from an inspection of 
Fig. 7 that to get low impedance the direct 
current through the tube should be increased as 
far as possible. It should be remembered, how- 
ever, that the life of a tube depends very much on 
the current at which it is operated. Similar 
considerations apply to the increase of gas 
pressure. The current density increases approxi- 
mately in proportion to p2, therefore large 
currents are needed to maintain a uniform 
cathode glow at high pressures. 

The authors wish to stress that during the 
present investigations they have not been trying 
to produce tubes with very low impedance. 
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They have been concerned only with the 
differences which are to be expected between tubes 
containing neon or helium and the influence of gas 
pressure and steady tube current changes. It 
is necessary to point this out because it is known 
that differences in tube construction have a very 
large effect on the resulting impedance charac- 
teristic. For example, Townsend and Deppl 
have stressed the importance in this respect of 
anode-cathode spacing and cathode area. The 
special tubes constructed for the work described 
here closely resemble many modern commercial 
miniature types. 
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CORRESPONDENCE 
Letters to the Editor on technical subjects are always welcome. In publishing such communications 
the Editors do not necessarily endorse any technical or general statements which they may contain. 

A.M.-F.M. Demodulator 
SIR,-A new method of demodulation has been 

developed by utilizing the rise -time characteristic of a 
pulse of constant amplitude obtained by properly 
limiting an amplitude- or a frequency -modulated wave. 

Trapezoidal pulses of equal amplitude are produced 
when a sinusoidal wave is limited near the zero axis. 
The slope of the leading and the trailing edges of these 
pulses is essentially constant and is a linear function of 
the amplitude and the frequency of the sinusoidal wave. 
If a carrier is modulated either in amplitude or in 
frequency with a modulating signal (the time period of 
the latter being very long compared to that of the 
carrier) and is limited so as to select a small slicing level 
near the zero axis, trapezoidal pulses are produced. 
Here the slope of both edges of a particular pulse is 
constant, while for the succeeding pulses the slope varies 
proportionately according to the variation of amplitude 
of the modulating signal. It may he stated more clearly 
that the slope varies according to the instantaneous 
amplitude of the amplitude -modulated wave, or accord- 
ing to the instantaneous frequency of the frequency - 
modulated wave as shown in Fig. I (a) and (h) respectively. 

A modulated wave (either a.nl. or Lin.) is thus trans- 
lated into slope -modulated trapezoidal pulses. On 
differentiating these pulses by means of a low time - 
constant CH circuit they arc converted into variable 
amplitude pulses on both sides of the axis, the amplitude 
of the differentiated pulses being proportional to the 
slope of the trapezoidal pulses. These a.m. pulses are 
then detected and passed through a pulse -lengthener 
circuit followed by an 1.f. filter to recover the modulating 
signal. 

MODULATING VOLTAGE 
TIME 

MODULATION ENVELOPE" 

;, ^ 
Ii 

LIMITING LEVEL 

MODULATING VOLTAGE-, TIME 
FREQUENCY 

MODULATED WAVE` 

(a) 

(b) 

LIMITING LEVEL i ¡;;y; ¿ \," \i , y' 

Fig. 1. 

The block schematic diagram shown in Fig. 2 illustrates 
the circuit arrangement used to demodulate a carrier of 
100 l:c¡s modulated by a 400 -cis tone. The modulated 
wave is first passed through a double -diode clipper 
followed by a cathode -follower differentiator. The 
differentiated output is then passed through a detector 
having an RC load with proper time constant, across 
which the modulating voltage is obtained and is observed 
on a c.r. oscilloscope. The system in itself, though less 
sensitive, is not more complicated than that of a con- 
ventional f.m. system. Although the number of 
operations to he performed on the waveform seem 
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numerous they may he carried out quite simply. 1\lore- 
over, it eliminates the difficulty of aligning and provides 
a common system for the reception of both a.m. and 
f.m. waves. 

MODULATED 
INPUT 

CLIPPER DIFFERENTIATOR - DETECTOR 
8 FILTER 

Fig. 2. 

The possibility of this system for noise reduction is 
under invest'gation. It may, however, be mentioned 
that the spurious noise in between the translated a.m. 
pulses may be eliminated by using a properly -biased 
gating circuit. 

P. IíuNnc Indian Institute of "Technology, 
Iihargpur, India. 

17th October 1955. 

Rectifier -Filter Characteristics 
SIR, -I have only recently discovered a paper by 

Professor E. B. \Ioullin (/. Instn elect. Engrs, 1937, 
Vol. 80, p. 553) in which lie uses an approach to rectifiers 
which is substantially the same as that presented in my 
paper on " Rectifier -Filter Characteristics", Wireless 
Engineer, June 1955, p.147. \Vhen I presented my paper 
for publication I was not aware of Professor Dloullin's 
paper and I am surprised that his approach to the problem 
has never received much attention. 

The letter by Di. V. Joyce which you published 
in the September issue of Wireless Engineer is very 
interesting and I think that the criterion advocated 
by Mr. Joyce is a better one than the one I proposed in 
my paper. I should, however, prefer to be somewhat more 
conservative and set the following limits for reasonable 
prediction of capacitor input filter characteristics:- 

27rfCr > 4 for half -wave rectification, 
24-Cr > 2 for full -wave rectification. 

F. C. FIEYNIANN 
University of the Witwatersrand, 

Johannesburg, South Africa. 
21st October 1955. 

PREMIUMS FOR TECHNICAL WRITING 
The Radio Industry Council is prepared to award up 

to six premiums of 25 guineas to the writers of articles 
published during the year which "are likely to enhance 
the reputation of the Industry and focus attention of 
peoples throughout the world on Britain's leadership in 
the fields of radio, television and electronics". 

A leaflet describing the scheme and defining the 
eligibility of writers is obtainable from the Radio Industry 
Council, 59 Russell Square, London, W.C.I. This year's 
entries should be made prior to 31st December to the 
Secretary at the same address. 

BRITISH STANDARDS INSTITUTION 
The British Standards institution has opened a 

Sales Office in Birmingham at which a stock of British 
Standards and associated publications will be maintained. 
It is at the headquarters of the Chamber of Commerce, 
95 New Street, Birmingham 2. 
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NEW BOOKS 
Transistors and Other Crystal Valves 

By T. R. SCOTT, D.F.C., B.Sc., M.I.E.E., A.M.Inst.Pet. 
Pp. 258 + xvi. Macdonald & Evans Ltd., 8 John 
Street, Bedford Row, London, W.C.1. Price 45s. 

The main concern of this book is with the 'internals' of 
the transistor and the crystal diode. Applications and 
circuits arc not treated at all fully. The book is not 
intended for the transistor designer, however, but for the 
user and its purpose is to tell him something of how they 
work. 

Following the introduction, there is a chapter on 
crystal imperfections, in which it is shown that the 
imperfections are necessary for conduction in semi- 
conductor materials. Chapter 3 deals with the theory 
of p -n junctions and the design of junction diodes and 
transistors. Chapter 4 covers point -contact devices and 
Chapter 5 deals with operating temperature and its 
'effect upon output and life. 

There is a chapter covering applications, circuitry and 
testing and one dealing with special h.f. transistors. 
Appendixes treat the band structure of semiconductors 
and testing techniques. There is an extensive biblio- 
graphy. 

The book is, to a large extent, non -mathematical. In 
spite of this, it is by no means easy reading, but that is 
to be expected from the nature of the subject. It should 
form a useful introduction to the subject for the reader 
having a good general background of physics. 

W. T. C. 
Repairing Record Changers 

By E. EUGENE ECKLUND. Pp. 278 + ix. McGraw- 
Hill Publishing Co., Ltd., 95 Farringdon Street, London, 
E.C.4. Price 44s. 6d. 

British Standards Institution Annual Report 
1954-55 

Pp. 243. British Standards Institution, 2 Park 
Street, London, \V.1. Price 5s. 

Wireless World Diary 1956 
Consequent upon recent changes in purchase tax, the 

price of the Wireless World Diary has been increased to 
4s. 21d. in rexine and 6s. in leather (postage 2d. extra). 
Including pp. 79 of reference material and pp. 2 per 
week diary, it is available from Iliffe & Sons Ltd., Dorset 
House, Stamford Street, London, S.E.1. 

Investigation of Deterioration of Moulded Carbon 
Resistors 

By H. F. CHURCH and J. J. WALSH. First Report: 
Z/T92, pp. 28. Price 7s. 6d. Second Report: Z/T 96, 
pp. 23. Price 12s. 6d. 

The Performance of Insulated Carbon -Resin Film 
Resistors 

By F. G. RIVERS. Z/T 95, pp. 13. Price 15s. 
The above three reports can be obtained from the 

Electrical Research Association, Thorncroft Manor, 
Dorking Road, Leatherhead, Surrey. 

TECHNICAL LITERATURE 
Mullard Ferroxcube 

Pp. 130. \Iullard Ltd., Components Division, Century 
House, Shaftesbury Avenue, London, W.C.2. Price 
7s. 6d. 

This book contains technical information on the 
properties and application of Ferroxcube. The main 
sections cover magnetic ferrites, types and grades of 
Ferroxcube, mechanical properties, electrical and 
magnetic properties, applications, rectangular B -H loop 
material and standard core shapes and dimensions. 
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MEE'T'INGS 
I.E.E. 

7th December. "Some Half -Tone Storage Tubes", by 
R. S. Webley, B.Sc., H. G. Lubczynski, Dr. Ing. and 
J. A. Lodge, B.Sc. 

12th December. "The Television Studio as seen by 
the Producer", by Alvin Rakoff. 

These meetings will he held at the Institution of 
Electrical Engineers, Savoy Place, Victoria Embank- 
ment, Loncfon, W.C.2 and will commence at 5.30. 

Brit.I.R.E. 
14th December. "The Remote Presentation of Radar 

Information", by G. J. Dixon and H. H. Thomas, to be 
held at the London School of Hygiene and Tropical 
Medicine, Keppel Street, Gower Street, London, W.C.1, 
at 6.30. 

The Television Society 
9th December. "The Secondary Emission Valve and 

its Applications", by A. H. Atherton, to be held at 
7 o'clock at the Cinematograph Exhibitors' Association, 
164 Shaftesbury Avenue, London, \\'.C.2. 

STANDARD -FREQUENCY TRANSMISSIONS 
(Communication from the National Physical Laboratory) 

Values for October 1955 

Date 
1955 

October 

Frequency deviation from nominal: 
parts in 108 

MSF 60 kc/s 
1429-1530 
G.M.T. 

Droitwich 
200 kc/s 

1030 G.M.T. 

I +04 +2 
2 +0.4 +3 
3 +0.4 +2 
4 N.M. +2 
5 +0.4 +2 
6 +0.5 +3 
7 +0.5 +2 
8 +0.5 +2 
9 +0.5 +3 
0 +0.5 +2 

+0.4 , +3 
2 I-0.5 +3 
3 +0.4 +3 
4 +0.3 +3 
5 +0.4 +3 
6 +0.5 +4 
7 +0.5 +4 
8 +0'S +4 
9 +0.5 +4 

20 +0.5 +4 
21 +0.4 +4 
22 +0.4 +4 
23 +0.4 +4 
24 +05 +4 
25 +0.5 +3 
26 +05 +3 
27 -F-O'6 +5 
28 +0.6 +5 
29 I +0.6 +6 
30 +0.6 +6 
31 N.T. +6 

The values are based on astronomical data available on 1st November 
1955. 

N.M. = Not Measured. N.T. = No Transmission. 
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