WIRELESS ENGINEER

HEE JOURSAL OF BADIO RESFARCE NPROBRESS

DECEMBER 1953

The PERFECT TEST TEAM

The illustration depicts a set of modern "AVG" testgear being used to measure the " Q " of the secondary winding of the second I.F. transformer on a chassis of unknown characteristics-just one of manytests which can be performed by this combination of instruments.
A signal of predetermined frequency from the "AVO" Wide Range Signeal Generator is being fed into the Electronic Test Lieit, where it is amplified and fed to the secondary winding of the transformer. The Electronic Testmeter is connected across the tuned circuit under test and from the readings obtained and the contrals of the Electronic Test Unit, the " Q " of the circuit can be determined.
The three instruments, shown as a team, cover a very wide field in measarement and form ber ween them a complete set of laboratory testgear, ruggedly constructed to withstand hard usage.

ELECTRONIC TESTMETER A 56 -range instrument combanometer

ELECTRONIC TEST UNIT
WIDE RANGE
GENERATOR
 A 5 sitivity of a delics and ease of meter. sensth the robustness multi-range stable with the an ordinaly of a high free from ling ists basicallivolmeter presen and Consists Valve Millions and under
mains varialod on circ:- 1000 V . negligibled to measure: $10,000 \mathrm{~N}$.
Switche

 An instrume use with moder for sides six
accuracy indion circuipg provides accurelevisil swichimg provides $50 \mathrm{kc} / \mathrm{s}$ to
and tel coing
rures coves -A Ait any sultable combinatifin, it is
walve volume kange. Amplion factor or
 Valve volud pange Ampion factot 20
As a wide an ampication and $30 c$ s 80 Mc Range 1. $150 \mathrm{Kc} s-500 \mathrm{Kc} / \mathrm{Mc}$ As a ble of an between $30 c$ s
capablers
$2-30$ covers " 3. $1.5 \mathrm{Mc} / \mathrm{s}-50 \mathrm{Mcls}$ $40.2-20$ Meter, it irequency
Mcis. Capialy al radio distincly
 ". 6 . witrin ${ }^{\prime}$ onstani signal unecuracy gensibly modulated or Miniup 10200 Mc s. 10
un

$$
\begin{aligned}
& \text { Mcis. Capacity Me radio ino distincrly } \\
& \text { As a mements } \\
& \text { measuref in to } 900 \text { gives } \\
& \text { from } 5 \mathrm{~F} \text { ranges. Meter, it ght te }
\end{aligned}
$$ A.C. $10 d b 10+200 \mathrm{~b}$. W .

$$
\begin{aligned}
& \text { As asurements gowpf in gives } \\
& \text { meam } 5 \text { fF ranges. Meter, it to } \\
& \text { fromibratcd ractance Muts from }
\end{aligned}
$$ Decibels: Zero level to $50 \mu \mathrm{~F}$. Menms yood waved, ver han $l \mu v$ at 20 and 80

modulates signal less $3 \mu v$ betwe output irom
mum less inan gives salibrated Capacitance: 20 lim to $10 \mathrm{M}-800.260 \mathrm{v}$.
Resistance: $200-430 \mathrm{v}$ and

$$
\begin{aligned}
& \text { Resistance: } 100-430 \mathrm{~V} \text {. } \\
& \text { Operazes on Mains. } \\
& 50-60 \mathrm{cls} \text {. M. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asil and condenser } 20 \mathrm{Mc} / \mathrm{s} \text {. } \\
& \text { coil and } 200-260 \mathrm{v} \text {. } \\
& \text { cies up } 20 \mathrm{M} \text {. and } 100-130 \mathrm{~s} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cies up } \\
& \text { Operates on } 100-130 \mathrm{v} \\
& 50 \text {. } \mathrm{e} 0
\end{aligned}
$$

'variac' oras. regulating transformers

With a 'VARIAC' voltages are instantly and minutely adjustable from 0 -Line Voltage, or in some cases up to 17% above line voltage. Type 50-B 'VARIAC,' as illustrated left, is often operated in a 3-gang assembly on 3-phase work to control 21 kVA .

SERIES 50 'VARIAC' TRANSFORMERS.

SPECIFICATIONS							
Type	$\begin{aligned} & \text { Load } \\ & \text { Rating } \end{aligned}$	InPut Voltage	Current		Output Voltage	No-Load Loss	$\begin{aligned} & \text { Net Price } \\ & £ \text { s. d. } \end{aligned}$
			Rated	Maximum			
$30-\mathrm{A}$	5 kva .	115 \%	- 40 a.	45 a	0-135 v.	65 watts	44186
30-B	7 kva .	$230 / 115 \mathrm{v}$.	20 a.	31 a .	$0-270$ v.	90 watts	$4418 \quad 6$

*All 'VARIAC' prices plus 20\% as from 23rd Feb, 1952
REQUEST ALSO OUR 20-PAGE SUPPLEMENTARY CATALOGUE GIVING COMPLETE INFORMATION ON OUR NEW AND COMPLETERANGE OF AC AUTOMATIC VOLTAGE STABILISERS: THESE RANGE FROM 200 VA TO 25 kVA. PERFORMANCE IS EXCELLENT, FROM NO-LOAD TO FULL LOAD, AND STABILITY IS QUITE UNAFFECTED BY FREQUENCY VARIATIONS.

PRICES ARE EXCEPTIONALLY LOW.
Write for catalogue V549 which gives full details of 'VARIAC' transformers and suggestions for use.

CLAUDE LYONS LIMITED

ELECTRICAL AND RADIO LABORATORY APPARATUS, Etc.
180 Tottenham Court Road, London, W.I : and 76 Oldhall Street, Liverpool 3, Lancs.

Soles Office: 15 Lyon Road. Phone: Harrow 9282
Service \& Technical Dept., 328 The Broadway, Harrow Road. Phone: Harrow 4455

The "Belling-Lee" page for Engineers

LIST NO.	PINS
L.653/P \& S	4
L.654/P \& S	8
L.655/P \& S	12
L.656/P \& S	18
L.657/P \& S	25

UNITORS

These unitors (pronounced " unite-ors ") are the result of a Government development contract carried out with the closest collaboration on all sides, and the range is now very popular.

Like any other inter-unit connector, their main purpose is to facilitate the uncoupling of a sub-assembly for servicing or replacement in event of failure. The body is moulded from a moisture and tracking-resistant nylon-filled phenolic material. There is no metal surround, a four-hole fixing flange being incorporated in the moulding, together with two locating dowels. In the case of the four-in-line model two-hole fixing is provided with no dowels.

Joint Service Approval has been

 granted on all types.Air Registration Board approval has been granted on all, except the 4 -pin model on which approval is expected in the very near future.
U.K. Pat. 649739

SWISS Pat. 277799

A coupling comprises a block of plugs and a second block of sockets, arranged so as to be non-reversible. Round pins are employed, turned from high-grade brass, silver plated. The normal pins carry 3 amps , but each block has two large pins or sockets to carry 10 amps . All pins are fully floating, and the method of assembly is the subject of a patent.

Resilient sockets are of differentially hardened beryllium copper. All contacts, plugs and sockets are numbered on the face and reverse sides of the body.

The distance between flanges when plugged together is 0.28 I in.

A cable cover for line connection with retainer for chassis mounting is available.

from $10 \mathrm{to} 310 \mathrm{~m} / \mathrm{s}$

Within the small compass of $144^{\frac{1}{\prime \prime}} \mathrm{X}$ $12^{3 \prime \prime} \times 8^{\prime \prime}$, this generator provides facilities as are normally arailable only in instruments of muche greater size and weight of much an accuracy weight-and with thing far more which sugests someing features costly. Outstandcalibration $+1{ }^{0}$ olude: Frequency attenuation ± 10 - Max. $\pm 4 \mathrm{db}$. sine wave at 1,000 Modulation 30% Negligible stray field. Weight $34 \mathrm{Il}_{4}$. Fullest details contained ins leaftet I' 6 sent on request.

(1)

ADVANCE COMPONENTS LMMTED

BACK RD, SHERNHALL ST, WALTHAMSTOW. E.I7. Phone: Larkswood 4366

A compact, convenient pulse source for general laboratory use, giving positive or negative pulses, variable between $0.15 \mu \mathrm{sec}$ and $40 \mu \mathrm{sec}$ duration, accompanied or preceded by synchronising pulse of either polarity, at recurrence frequencies between $50 \mathrm{c} / \mathrm{s}$ and $50 \mathrm{kc} / \mathrm{s}$, free running or triggered. For r.f. work it incorporates a series modulator providing for the pulse modulation of any r.f. signal source.

MARCONI INSTRUMENTS

SIGNAL GENERATORS • VALVE VOLJMETERS • FREQUENCY STANDARDS
BRIDGES . WAVE METERS - WAVE ANALYSERS • BEAT FREQUENCY OSCHLATORS

Compare these outstanding features with those of the rectifiers which at present you are using :-

- Less wiring
- Unlimited instantaneous overload such as the charging current of de-formed electrolytic capacitors.
- Far lower heat dissipation.
- No " warming-up" period.
- No valve-holder.
- Practically indestructible in normal service.
- No limit tosize of electrolytic capacitor.
- Saves weight.
- Saves space.
- Low in cost.

Study these RATINGS

TYPE	RM0	RM1	RM2	RM3	RM4
Maximum ambient temperature	$35^{\circ} \mathrm{C} 55^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C} 40^{\circ} \mathrm{C} 55^{\circ} \mathrm{C}$			
Maximum output current (mean)	30 mA 15 mA	60 mA 30 mA	100 mA 60 mA	120 mA 90 mA	275 mA 250 mA 125 mA
Maximum input voltage (r.m.s.)	125 V	125 V	125 V	125 V	250 V
Maximum peak inverse voltage	350 V	350 V	350 V	350 V	700 V
Max. instantaneous peak current	Unlimited	Unlimited	Unlimited	Unlimited	Unlimited
Weight	0.82 oz.	1 oz.	1.4 oz.	2 oz.	4.5 oz.

Standard Telephones and Cables Limited

(Registered Office: Connaught House, Aldwych. W.C.2)
RECTIFIER DIVISION: Warwick Road, Boreham Wood, Hertfordshire.
Telephone : Elstree 2401 Telegrams: Sentercel, Borehamwood

MUIRHEAD MAGSLIP RESOLVER No. 2

BECKENHAM • KENT • ENGLAND
Precision Electrical Instrument Maker:

THE RESOLVER No. 2 is a special type of Magslip used for the solution of trigonometrical problems.
Each stator phase is energized in accordance with an applied computing voltage; the rotor voltages are proportional to the exciting voltages and to the sine and cosine of the angle between the stator and rotor electrical axes. The error does not exceed 0.1%.

Post this coupon

MUIRHEAD \& CO. LTD. BECKENHAM-KENT ENGLANDI Please send me Bulletin B-690 fully describing MUIRHEAD MAGSLIP RESOLVERS

NAME
MAILING ADDRESS

Company \qquad Position

PRESSINGS \& FABRICATIONS

ADAMS BROS. \& BURNLEY LTD.

Elmgrove Road • Harrow • Middlesex Telephone: Harrow 6411 (5 lines)
LAMINATIONS - MOTOR HOUSINGS • MICROPHONE COMPONENTS

The items illustrated show only a few of the electrical components manufactured by us for the electrical trade in our self-contained factory. We manufacture our own Press Tools; Fabrications, Spinnings, Assemblies, and are able to undertake all kinds of Mctal Finishes.

> Economically produced with Multi-tool set up

will

. . . fix it better, more quickly and neally.
Unbrako Socket Screws have extra strength and toughness.
They are made of high-tensile nickel-chrome steel alloy.
They stay put
until you want to remove them.
Then-out they come,

smoothly, easily, without damage.
No wonder so many designers and engincers specify Unbrako!

UNBRAKO SOCKET SCREW COMPANY LTD.

Manufacturers of L'nbrako standard socket screws and special screws to A.I.D. requirements.
COVENTRY
ENGLAND
Available for immediate delisery. Send for free samples.

DEVIATION TEST BRIDGE

Extremely fast, direct reading, impedance measuring instrument.

FEATURING:
Production tests at a rate of 4000 an hour.
Accuracy exceeding 0.1% at zero point center scale and 5% of full scale.
A large six inch illuminated meter scale, very easily read.
A very high stability, making it unnecessary to recalibrate more than once a day.
Insensitive to hum voltages, due to a demodulator in the circuit.
Perfect safeguard against overload.
This bridge is designed to present accurately a comparison with an arbitrary external standard impedance. indieating on a large scale the percentage deviation.
Each instrument contains two arms of a Wheatstone bridge internally. the two other bridge arms having external terminals for the standard and the sample to be tested. The bridge is fed from a built-in oscillator with $1000 \mathrm{c} / \mathrm{s}$ for type 1502 and $50.000 \mathrm{c} / \mathrm{s}$ for type 1507 as test frequencies. The diagonal voltage is amplified and led to a demodulator circuit. together with the generator voltage. and a d.c. meter in this circuit indicates the deviation.

Brüel
 K jær

Meeting the peculiar problems involved in the manufacture of valves and lamps calls for the most stringent

Nickel Alloys

 standards in the production of cathode nickels, gridnic wires, support wires and plates. We have long experience of those problenıs and our advice is always available.
of extreme purity

Have you, by the way, had details of our alloys for glass/metal seals?

BRITISII DRIVER-HIARRIS COMPANY LTID. manchester is

"THE ELECTRICAL ALLOY DATABOOK" Copies free on request

for all Good Instruments

A range of rectifiers designed to suit all types of instrument movements.

The performance data and details of the types available are given in our publication No. C.O.R. 5305/2.

Please apply to the following address:-

SALFORD ELECTRIMTED EOD 3. Ancashina PEEL WORKS - SILK STBEET. SALIC LTD. OF ENGLAND. A Subsidiary of THE

whenever there is a need in industry for mouldings in rubber, natural or synthetic consult P. B. Cow and Company Ltd.

For over 100 years we have given service and advice to industry.

Our team of experts, fully conversant in the latest production methods - our laboratory, always one step ahead with the latest developments in rubber technology, are for your service. Make use of them.

Write or 'phone for one of our Technical Representatives to call.

Rubber at its best

P. B. COW \& COMPANY LTD. INDUSTRIAL SALES STREATHAM COMMON S.W. 16

TELEPHONE POLLARDS 4481 TELEGRAMS: LILOPROD STREATH LONDON

Excellence in design.

developments co. ltd.

ULVERSTON, NORTH LANCS. Tel. ULVERSTON 3306.

Quartz Crystals of any shape and size cut and ground precisely to specification and coated, if required, with Gold, Silver, Aluminium or Rhodium, etc.

Brookes Crystals Ltd.

Suppliers to Ministry of Supply, Home Office, B.B.C., etc. EARLSWOOD STREET, LONDON, S.E. 10 Telephone: GREenwich 1828
Grams: Xtals, Green, London. Cables: Xtals, London

WIDE RANGE

 CAPACITANCE BRIDGE

For the accurate measurement of in situ capacitance or resistance, all measurements being made in the form of a three terminal network.

Capacitance range -0.002 pF to $100 \mu \mathrm{~F}$ in 18 ranges.
Resistance range - 1Ω to $10,000 \mathrm{M} \Omega$ in 18 ranges.
Ranges increase in alternate decimal multiples of 3 and 10 .
Frequency 1592c/s ($\omega=10,000$).
Accuracy $=1.0 \%$ of full scale on all ranges.

Full technical details are available on request.

A Company within the J. Arthur Rank Organisation

WORSLEY BRIDGE ROAD • LONDON • SE26

Telephone HITher Green 4600 281 Deansgate, Manchester, 3

59 Moor St. Birmingham, 4

THIS UNIQUE

STELLATE CORE IS THE

SECRET OF FAULTLESS FLUXING

. . . because it gives six points of rapid solder collapse and the flux is liberated immediately heat is applied. The correct amount of activated flux is always present in Superspeed, thus eliminating dry or H.R. joints.

The stellate core is featured only in the Enthoven range of cored solders which ensures perfect soldering.

AGTIVATED ROSIN GORED SOLDER

for all Radio, T.V. electronic and telecommunication soldering. Complies with M.O.S. Specification DTD. 599 and is approved by the A.I.D., G.P.O. and R.C.S.C. Superspeed is available in a wide range of alloys and gauges. Samples together with comprehensive literature gladly sent on request. Technical advisers are available for consultation.

MANUFACTURED BY THE
 ENTH0VEN ${ }_{\text {croorp }}$

[^0]
WIRELIESS ENGINEDR

The Journal of Radio Research and Progress

Managing Editor: HUGH S. POCOCK, M.I.E.E.
Editor: W. T. COCKING, M.I.E.E. Technical Editor: Professor G. W. O. HOWE, D.Sc., LL.D., M.I.E.E.

Editorial Advisory Board:

P. A. T. BEVAN, B.Sc., M.I.E.E. (British Broadcasting Corporation); F. M. COLEBROOK, B.Sc., A.C.G.I. (National Physical Laboratory); Professor E. B. MOULLIN, Sc.D., M.I.E.E.; A. H. MUMFORD, O.B.E., B.Sc.(Eng.), M.I.E.E. (G.P.O. Engineering Department); R. L. SMITH-ROSE, D.Sc., Ph.D., M.I.E.E. (Department of Scientific and Industrial Research)

Volume 30 . Number 12
C O N T E N T S
DECEMBER 1953

Editorial: What is the Meaning of Total Rationalization? 293
Electronic A.C. Potentiometer
by L. Tasny-Tschiassny, Dr.Tech. 295
Noise Factor of Conventional V.H.F. Amplifiers
by N. Houlding, B.Sc.Tech. (Concluded from page 290,
$\begin{array}{llllll}\text { November issue) } & \text {. } & \text {. } & \text {.. } & \text {. } & \text {.. } \\ \text { No } & \end{array}$
Band-pass Filters
by Fuad Surial Atiya, B.Sc.(Hons.), D.Sc.(Tech.) . . 307
Electron Multiplier Valve
by A. Lempicki, M.Sc. 312

New Books 317
Standard-Frequency Transmissions 320
Abstracts and References. Nos. 3641-3765 A.257-A. 278

Published on the sixth of each month
Annual Subscription: Home and overseas £2 7s. 0d; Canada and U.S.A. $\$ 7.50$ (Including Annual Index to Abstracts and References)

Editorial, Advertising and Publishing Offices: Dorset House, Stamford Street, London, S.E. 1
Telephone: Waterloo 3333 (60 lines)
Telegrams: Wirenger, Sedist, London

BRANCHOFFICESATBIRMINGHAM•MANCHESTERANDGLASGOW

TECHNICAL DATA

ECC8I

$V_{a} \max$.	\ldots	\ldots	\ldots	300 V
$P_{a} \max$.	\ldots	\ldots	\ldots	2.5 W
$I_{k} \max$.	\ldots	\ldots	\ldots	15 mA

g_{m} (at $V_{a}=200, \mathrm{l}_{\mathrm{a}}=11.5 \mathrm{~mA}$) $6.4 \mathrm{~mA} / \mathrm{V}$
The extremely high slope of this valve recommends it for use in grounded grid and cathode R.F. input stages working up to $300 \mathrm{Mc} / \mathrm{s}$. The ECC8I is directly interchangeable with American type $12 \mathrm{AT}_{7}$.

ECC82

$\mathrm{V}_{\mathrm{a}} \max$.	\ldots	\ldots	\ldots	300 V
$\mathrm{~Pa}_{\mathrm{a}} \max$.	\ldots	\ldots	\ldots	2.75 W
$\mathrm{I}_{\mathrm{k}} \max$.	\ldots	\ldots	\ldots	20 mA
$\mu\left(\mathrm{at} \mathrm{V}_{\mathrm{a}}=250 \mathrm{~V}, \mathrm{I}_{\mathrm{a}}=10.5 \mathrm{~mA}\right)$	17			

The ECC8 2 is a low- μ valve with an anode dissipation of 2.75 watts. These features make it particularly suitable for use as an R.F. oscillator or frequency multiplier. The ECC82 is directly interchangeable with American type $12 \mathrm{AU}_{7}$. ECC83

$\mathrm{V}_{\mathrm{a}} \max$.	\ldots	\ldots	\ldots	300 V
$\mathrm{pa}_{\mathrm{a}} \max$.	\ldots	\ldots	\ldots	1 W
$\mathrm{I}_{\mathrm{k}} \max$.	\cdots	\cdots	\cdots	8 mA
$\mu\left(\right.$ at $\mathrm{V}_{\mathrm{a}}=$	$\left.\mathbf{2 5 0 V}, \mathrm{I}_{\mathrm{a}}=1.2 \mathrm{~mA}\right)$	100		

An important feature of the ECC 83 is its exceptionally high μ. It is an ideal valve for use as a resistance-coupled audioamplifier, as a phase splitter, or as an inverter. The ECC83 is directly interchangeable with American type $1_{2} \mathrm{AX}_{7}$.

These three double triodes, the latest additions to the Mullard range of noval-based communications valves, provide equipment designers with types suitable for almost every triode application. Features common to all three valves include independent triode sections with separate cathode connections, and centre-tapped heaters that allow either series or parallel wiring ($12.6 \mathrm{~V}, 0.15 \mathrm{~A}$ or $6.3 \mathrm{~V}, 0.3 \mathrm{~A}$). Brief descriptions of these triodes are given here. More comprehensive information on these and other valves in the Mullard range of noval-based types will be gladly supplied on request.

MULLARD LTD.
COMMUNICATIONS \& INDUSTRIAL VALVE DEPT., CENTURY HOUSE, Shaftesbury Avenue, LONDON, W.C.

WIRELESS ENGINEER

Vol. 30
DECEMBER 1953
No. 12

What is the Meaning of Total Rationalization?

IN the September Editorial we referred to an article entitled "Dimensional Analysis, Units and Rationalization" by R. Vermeulen, which had appeared in Philips Research Reports. In an appreciative letter the author has called our attention to an article by Max Landolt and Jan de Boer in the Revue Générale de l'Electricité of December 1951 entitled "Quelle est la signification de la rationalisation totale?" which we have found to be a translation from a report which they submitted in January 1952 to the Committee on "Electric and magnetic magnitudes and units" of the International Electrotechnical Commission." After studying this in both languages we feel inclined to repeat the sentence with which we concluded the September Editorial, viz. "It shows that in some quarters there is still much uncertainty and confusion."

Beginning with the fundamental statement that a physical quantity or magnitude $=\mathrm{a}$ measure number \times a unit, the authors discuss the question whether, in the total rationalization of a system of units, the changes should be made in the units themselves or in the physical quantities; they say that they favour the latter procedure. In symbols

$$
G=\{G\}_{a}[G] a \text { and } G=\{G\}_{b}[G]_{b}
$$

in which G is the quantity (grandeur), $[G] a$ the unit of the quantity and $\{G\}_{a}$ a pure number. If the unit is changed from $[G]_{a}$ to $[G]_{b}$ then the number will be changed from $\{G\}_{a}$ to $\{G\}_{b}$, where

$$
\frac{\{G\}_{b}}{\{G\}_{a}}=\frac{[G]_{a}}{[G]_{b}} .
$$

Now the question, to which the authors devote fifteen pages of discussion, is whether the process of rationalization should involve a change in $[G]$
or in G. We disagree entirely with the following statement: "Often the defining equation of a quantity contains a numerical factor as for instance the quantity-equation defining the kinetic energy. Kinetic energy is defined as $\frac{1}{2} m v^{2}$, the introduction of the factor $\frac{1}{2}$ in this defining equation is a matter of pure convention. If one omits this factor, one defines another quantity, and the conservation law would read in that case; the sum of potential energy and half the kinetic energy is constant. So in fact one may often define more physical quantities corresponding to the same physical phenomenon." This is surely fundamentally wrong; starting with the body of mass m at rest, the work done by a force in accelerating it to a velocity v, and therefore stored in the body as kinetic energy can be proved by any engineering student to be equal to $\frac{1}{2} m v^{2}$, and this is the energy dissipated as heat if the body, in the form of a bullet, strikes a target and is thus brought to rest. If the authors wish to introduce the energy quantity $m v^{2}$ they should not call it the kinetic energy, as this can only lead to confusion. It is as if one defined the height of a man as the length of his shadow on a wall, cast by a source of light as far from him on one side as the wall is on the other. This might be a useful quantity, but calling it the height of the man could only lead to confusion. When new quantities are introduced, new names should be given to them; similarly with units. We admit that the general conception of many of the electromagnetic quantities is by no means so definite as that of kinetic energy or height, but we feel sure that any attempt to change what is now well established as the meaning of the strength of the magnetic field would lead to
great confusion, especially as we have already four systems of units in which it can be expressed.

The authors cause much confusion by applying the name "oersted" both to the unrationalized and to the rationalized unit of magnetic-field strength. They state that the field intensity at the centre of a ring 1 m diameter carrying a current of 1 A is
$1 \mathrm{~A} / \mathrm{m}$ in the rationalized Giorgi system, or 0.001 Oe in the rationalized c.g.s.e.m. system, or $4 \pi / 1000$ Oe in the non-rationalized c.g.s.e.m. system.
They are thus applying the name Oersted to two units differing by a ratio of 4π to 1 . The name was originally given to the unrationalized unit and, perhaps unfortunately, is almost universally so applied; to apply it also to the rationalized unit is a dangerous procedure. Fortunately the unit in the rationalized Giorgi system is $1 \mathrm{~A} / \mathrm{m}$. They might have distinguished between the two oersteds by referring to the rationalized one as a "ratoe."

The relation between the units of H in the different systems is as follows:-
unrat. c.g.s.e.m..... 1 oersted $=1000 / 4 \pi \mathrm{~A} / \mathrm{m}$
rat. c.g.s.e.m.... 4π oersteds $=1000 \mathrm{~A} / \mathrm{m}$ unrat. m.k.s..... 10^{-3} oersted $=1 / 4 \pi \mathrm{~A} / \mathrm{m}$ rat. m.k.s. . $4 \pi \times 10^{-3}$ oersted $=1 \mathrm{~A} / \mathrm{m}$.

To calculate the value of H at the centre of the ring 1 m diameter our elder readers would write $H=2 \pi I / 10 r=2 \pi /(10 \times 50)=4 \pi / 1000$ oersted, which we see is exactly equal to $1 \mathrm{~A} / \mathrm{m}$. Since the rat. c.g.s. unit is equal to 4π oersteds, the number of units will be reduced in this ratio (i.e., to 0.001 unit) but not to 0.001 oersted.

On page ten of the Report the authors state with respect to this example that "Direct calculation using the definition of the ampere and the oersted gives $1 \mathrm{~A} / \mathrm{m}=1 / 1000 \mathrm{Oe}$." This as we have seen is incorrect but would be correct if
written $1 \mathrm{~A} / \mathrm{m}=1 / 1000$ ratoe, where 1 ratoe $=$ 4π Oe. The authors are aware of this and say that it would be better to have two different names and two different symbols as proposed by Giorgi and Blondel "but as it can be expected that the rational magnetic-field intensity will be used more and more, the irrational field intensity will gradually disappear and no special name is needed."

The most satisfactory thing about this report is that, although the authors expressed their preference for the rationalization of the quantities and not the units, they finally give a Table of units agreeing, so far as we can see, in every detail with the generally recognized rationalized units, both Giorgi and c.g.s.e.m., except that their oersted is a rationalized oersted. In both the English and French versions they give $1 \mathrm{C} / \mathrm{Nm}^{2}$ as the Giorgi unit of the dielectric constant ϵ. This is presumably a mistake for $1 \mathrm{C}^{2} / \mathrm{Nm}^{2}$ in which $\mathrm{C}=$ coulomb, $\mathrm{N}=$ newton and $\mathrm{m}=$ metre.

Since writing the above we have received a copy of an article by Professor H. König of Berne entitled "Über die Mehrdeutigkeit des Grössenbegriffs" which appeared in the Bulletin of the Swiss Elektrotechnische Verein for 1950. The author discusses the different meanings that can be attached to the concept of magnitude or quantity. He distinguishes between the point of view of the Synthetiker-the systematic, theoretical thinker who says that electric-field strength electrostatically defined is not equal to the same field strength electromagnetically defined-and the Realist or practical man who says that field strength is field strength, and the number of units is inversely proportional to the size of the unit. We hope that this will act as a deterrent to any reader thinking of becoming a synthetiker.
G. W. O. H.

INDEXES

The Index for 1953 to the editorial pages of Wireless Engineer will be included in the March 1954 issue, in which there will also be the Index to Abstracts and References published during 1953, and a list of journals scanned for abstracting, with their publishers' addresses.

The March 1954 issue, which will include the normal editorial pages, as well as the Indexes, will be priced at $6 s$. The Index pages will be detachable for binding with the 1953 volume.

ELECTRONIC A.C. POTENTIOMETER

By L. Tasny-Tschiassny, Dr. Tech., M.I.E.Aust.
(Electrical Engineering Department, University of Sydney, Sydney, A ustralia.)

1. Introduction

THE increasing importance of the accurate determination of the phase angle between two alternating voltages is evident from the large number of relevant papers published recently. ${ }^{1-12}$ A simple, quickly-working, and accurate electronic potentiometer serving this purpose can be built from standard radio components. A phase-angle range of 360° is covered unequivocally. A voltage range between a few millivolts and several hundred volts and an accuracy of a fraction of 1% can be easily obtained with the ordinary precautions as to screening, leakages, etc.

The potentiometer compares the magnitudes of an unknown voltage and an adjustable and known fraction of a reference voltage. The quick determination of phase angles by this procedure is explained in Section 3. The comparison is carried out with the aid of an electronic square-law
signal current, the ratio of the percentage change of the alternating voltage to the percentage change of the needle deflection becomes less than 0.5 , the figure holding true for a zero-signal zerodeflection square-law detector.

The operation of the potentiometer is independent of the frequency, the value of the frequency need not even be known.

2. Voltage-Divider Circuit

Fig. l shows the principle of the voltagedivider circuit. The component values correspond to two models successfully operated in the audiofrequency range. If the balancing switch is in the 'Work' position, the three leads to the 2 -pole 6 -position 'Selector Switch' and marked ' $k_{1} k_{2} V x^{\prime}$ ', ' $c_{1} c_{2} V_{r}$ ', and ' $u V_{r}$ ' respectively are on potentials to E corresponding to their markings. The operation of the 'Quadrant Switch' changes the phase of the reference voltage by 180°. The $5-\mathrm{k} \Omega$ uncalibrated

detector working near the full range of its d.c. indicating meter. If the latter is properly damped, for instance, by the parallel connection of a capacitor of high capacitance,* and the changeover switch is of quick action and operated several times, minute differences in the deflections, such as 0.2%, can be comfortably detected. If the d.c. meter is backed off to a negative zero-

[^1]MS accepted by the Editor, March 1953
voltage divider is a carbon potentiometer, to one side of which a $50-\mathrm{k} \Omega$ carbon variable resistor is connected in parallel to obtain a finer control. The phase shift introduced by it is negligible. The calibrated voltage divider is a three-stage Kelvin-Varley slide ${ }^{13}$ of $5 \mathrm{k} \Omega$ total resistance, consisting of 11 resistors of $500 \Omega, 11$ resistors of 100Ω, and a linear potentiometer of 200Ω, all wire-wound. Small, and even different, phase angles of the individual resistances are irrelevant, as long as the scalar accuracy of the voltage division is not affected. The calibrated voltage
divider can be made accurate to $0 \cdot 1 \%$ of the full voltage without any particular difficulty. For small unknown voltages the 'Multiplier' $c_{1}=0 \cdot 1$ increases by one the number of digits read-off on the calibrated voltage divider. The Multiplier $c_{1}=1.5$ may be necessary when the phase-angle between the unknown and reference voltages is between 60° and 120° or between 240° and 300°. The pole connections of the Selector Switch are shown in Table 1.

TABLE 1
Pole Connections of the Selector Switch.

Position	1	2	3	4	5	6
Pole 1 \ldots	$u V_{r}$	$k_{1} k_{2} V_{\pi}$	E	$u V_{r}$	$c_{1} c_{2} V_{r}$	E
Pole 2..	E	E	$c_{1} c_{2} V_{r}$	$k_{1} k_{2} V_{z}$	$k_{1} k_{2} V_{2}$	E

Fig. 2. Vector diagram of voltages.
If the drain caused by the reference voltage input transformer and/or the $250-\mathrm{k} \Omega$ voltage divider for V_{x} is inadmissibly high, one or two impedance converters, such as cathode followers or other 100% feedback amplifiers, can be inserted before the relevant input terminals. If the frequency is so high that the voltage ratio at the tappings of an iron-core transformer can no longer be relied upon, an electronic phase inverter in conjunction with resistive voltage dividers can be used instead of the transformer.

3. Principle of Magnitude and Phase Measurements

By suitable selection of the values c_{1}, k_{1} and k_{2} and proper adjustment of the values c_{2} and u the magnitudes of the potentials to E of the leads ' $k_{1} k_{2} V_{x}$ ', ' ' $c_{1} c_{2} V_{r}$ ', and ' $u V_{r}$ ' are made equal. The accessories with the aid of which this is done are described in Section 4. Then

$$
\begin{equation*}
\frac{\left|V_{x}\right|}{\left|V_{\boldsymbol{\eta}}\right|}=\frac{c_{1} c_{2}}{k_{1} k_{2}} \tag{1}
\end{equation*}
$$

With the aid of an adding network (see Section 4) and with the aid of the Quadrant Switch, Fig. 1, voltages ($k_{1} k_{2} V_{x} \pm u V_{r}$) to E are produced. The
magnitude of the smaller of these voltages (Fig. 2) is, with the aid of the adjustments c_{1} and c_{2}, made equal to a known part ($c_{1}{ }^{\prime} c_{2}{ }^{\prime} V_{r}$) of the reference voltage. Then

$$
\phi=2 \sin ^{-1}\left(\frac{c_{1} c_{2} c_{2}^{\prime}}{2 c_{1} c_{2}}\right)
$$

Tables correlating once and for all $2 \sin ^{-1}$ ($c_{1}{ }^{\prime} c^{\prime}{ }_{2} / 2 c_{1} c_{2}$) and ($c_{1}{ }^{\prime} c_{2}{ }^{\prime} / c_{1} c_{2}$) can be compiled. The position of the Quadrant Switch for the smaller of the two voltages ($k_{1} k_{2} V_{x} \pm u V_{\gamma}$) determines whether the voltage V_{x} is, with reference to the voltage V_{r}, either in quadrants 1 or 4 or in quadrants 2 or 3 . The decision regarding the actual quadrant can be made by a modification of the adding network in a way that voltages ($k_{1} k_{2} V_{x} \pm$ $u V_{r} \epsilon^{j \omega x}$) and ($k_{1} k_{2} V_{x} \pm u V_{r} \epsilon^{-j \omega x}$) are formed where α is a small angle not necessarily known. If the Quadrant Switch is always left in the position in which the angle between $k_{1} k_{2} V_{x}$ and $\pm u V_{r}$ is between 0° and 90° or 270° and 360°, the switch producing the phase shifts α and ($-\alpha$) can be marked once and for all 'Quadrants 1-3' and 'Quadrants 2-4', because the relative magnitudes of the voltages ($k_{1} k_{2} V_{x} \pm u V_{\tau} \epsilon{ }^{j \omega x}$) and ($k_{1} k_{2} V_{x} \pm$ $\left.u V_{r} \epsilon^{-j \omega \alpha}\right)$ make this distinction. Preferably the positions are marked in such a way that the markings refer to the smaller voltage.

Fig. 3. Adding and phase-shifting network.

4. Adding and Phase-Shifting Network

Fig. 3 shows the principle of the adding and phase-shifting network with component values suiting those of Fig. 1. Its performance will be analyzed mathematically in Section 6. Two cathode followers operated from a regulated power supply and with d.c.-heater supplies form the link between the output of the Selector Switch and the network proper. Their input impedance is high enough not to affect the correctness of the voltage
division by the voltage-divider network of Fig. 1. C, with alternative values of $10,000 \mathrm{pF}, 2,000 \mathrm{pF}$, 500 pF and 100 pF , according to the frequency, is the phase-shifting capacitor producing an apparent phase shift of the reference voltage by an angle x or $(-x)$, according to whether the key K is turned to the right or to the left-hand side. C_{1} and C_{2} are small trimmer capacitors. The output of the $0 \cdot 5$-MS gain-control potentiometer leads through a suitable low-hum amplifier (with a good short time stability of gain) into the square-law detector.

5. Notes Regarding Harmonies

If the plase angle between two voltages is defined as the phase angle between their fundamentals, a square-law detector considerably reduces the influence of a moderate percentage of

Fig. 4. Equivalent circuit of a
$R_{g^{\prime}}=\frac{\mu}{\mu+1} \cdot\left(R_{g}^{\prime} \cdot \frac{R_{k}}{R_{k}-R_{c}}+R_{c}\right)$
$R=\frac{R_{k}\left(1+R_{c} / R_{g}\right)-R_{c}{ }^{2} / R_{g}}{1-(1 / \mu) \cdot\left[\left(R_{k}-R_{c}\right) / R_{g}\right]}$
It is well known that for cathode followers there is little change of $\mu /(\mu+1)$ even for a considerable change of μ, if μ is high, because $d(\mu \sqrt{\mu+1})$ $=d \mu / \mu^{2}$. If, for instance, $\mu=100$, a 10% change of μ (i.e., a change exceeding the values met with in practice) will produce only 0.1% change of $\mu /(\mu+1)$. Hence, since $R_{g} \geqslant R_{k}-R_{c}$, $R_{g^{\prime}}$ and R can be considered as being constants

cathode follower.

(a)

(b)
harmonics. For instance, the influence of 5% harmonics on the detector deflection is only $0 \cdot 25 \%$. * If the phase angle between the unknown and reference voltages is small, the percentage of harmonics in the difference voltage may become considerable. One method to avoid errors is the insertion of a low-pass filter between the amplifier and detector. Another way is to determine, for a certain frequency once and for all, the phase angle preferably a few degreesintrocluced by a certain phase-shifting capacitor C (Fig. 3). By its insertion the phase angle
for all practical purposes. Consecpuently, the only quantities in Fig. 4 (b) that may vary appreciably during the life of a valve, are g_{m} and r, i.e., the resistance of the parallel combination of $\mu /\left\{(\mu+1) g_{m}\right\}$ and R_{g}.

Fig. 5 is the equivalent circuit of the adding network, if the two cathode followers are replaced by their equivalent circuits (the subscripts] and 2 are added to the symbols) and if the trimmer capacitors C_{1} and C_{2} and the phaseshifting capacitor C are left out. The analysis of Fig. 5 for the output voltage E_{0} leads to

$$
\begin{equation*}
E_{0}=\frac{I_{1}-\frac{\mu_{1}}{\mu_{1}+1} \cdot \frac{1}{r_{1}-Z_{1}\left(1+r_{1} / R_{1}\right)}+E_{2} \frac{\mu_{2}}{\mu_{2}+1} \cdot \frac{1}{r_{3}+Z_{2}\left(1+r_{2} / R_{2}\right)}}{\frac{1}{Z_{0}}+\frac{1+r_{1} / R_{1}}{r_{1}+Z_{1}\left(1+r_{1} / R_{1}\right)}+\frac{1}{r_{2}+Z_{2}\left(1+r_{2} / R_{2}\right)}} \tag{5}
\end{equation*}
$$

between two voltages is increased by a known amount and the percentage content of harmonics in the difference-voltage reduced.

6. Analysis of the Cathode-Follower and Adding Network. Balancing

The author is unaware of any published analysis of the cathode-follower circuit Fig. 4(a) in which the value of the grid leak R_{g} is finite. It can be shown that the a.c. behaviour of the circuit can be represented by the equivalent circuit of Fig. 4(b) in which

[^2]If, in this equation, all impedances are assumed to be purely resistive, the multipliers of E_{1} and E_{2}, can be made equal by proper adjustment of Z_{1} and Z_{2}; i.e., of the 5 -kss potentiometer P (Fig. 3). Then E_{0} is proportional to $\left(E_{1}+E_{2}\right)$. If one of the voltages E_{1} or E_{2} is zero, E_{0} is proportional to E_{2} or E_{1} respectively. In the positions 1, 2, and 3 of the Selector Switch individual voltages, and in the positions 4 and 5 sums or clifferences of individual voltages, are measured. In position 6 no voltage is applied.

If Z_{1} and Z_{2} are great compared with r_{1} and r_{2}, the influence of changes of $g_{m_{1}}$ and $g_{m_{2}}$ from
initial values, reflected by changes of r_{1} and r_{2} is small. For the component values given in the figures, a maximum error of less than 0.1% can be expected.

The presence of the capacitors C_{1}, C_{2} and C can be accounted for by a star-delta transformation. Its result is the insertion of series inductances in the branches Z_{1} and Z_{2} and of high, almost purely capacitive, reactances in parallel with the branches R_{1}, R_{2}, and Z_{0}. For small phase-shifts the influence of the changes of Z_{1} and Z_{2} on equation (5) is equivalent to phase shifts of the voltages E_{1} and E_{2}, whereas the influences of the changes of R_{1}, R_{2}, and Z_{0} are negligible. Hence the capacitor C can be used as a phase-shifting component and the capacitors C_{1} and C_{2} as trimmers to compensate for unwanted small inductances and capacitances.

Fig. 3. Equivalent circuit of the adding network.

The balancing of the two numerator terms of equation (5) is carried out by applying two voltages $E_{1}=-E_{2}$ to the cathode-follower inputs and adjusting the $5-\mathrm{k} \Omega$ potentiometer P and the trimmer capacitor c_{1} to a minimum of the voltage E_{0} as detected by the detector at full gain. The 'Bal.' position of the Balancing Switch and position 5 of the Selector Switch serve this purpose. Then the gain is reduced and, as a check, equal deflections of the detector must result for the positions 2 and 3 of the Selector Switch.

The input impedance Z_{i} of the cathode-follower circuit of Fig. 4(a) can be approximately computed by

$$
\begin{equation*}
Z_{i} \approx \frac{R_{g}}{1-\left(1-R_{c} / R_{k}\right)\left(E_{0}{ }^{\prime} \mid E_{i}\right)} \tag{6}
\end{equation*}
$$

where $E_{0}{ }^{\prime}$ is the output voltage under load. For the component values given, Z_{i} is negligible as a shunt to the voltage-divider circuits. The direct grid current of a valve 12AX7 under the operating conditions in question is between $0 \cdot 2$ and $1 \mu \mathrm{~A}$, usually not exceeding $0.6 \mu \mathrm{~A}$. For the weak a.c. signals applied, the reduction of the effective a.c. input impedance resulting from
variations of the direct grid current during one a.c. cycle can be neglected.

7. Summary of the \mathbf{O} peration of the Potentiometer

After some experience the work with the potentiometer is very rapid. Before a long series of measurements the potentiometer is balanced, as explained in Section 6; even after several hours work re-balancing proves to be unnecessary.
The measurements proper in the 'Work' position of the Balancing Switch comprise the following steps, in which the gain control is always adjusted to approximately the same deflection of the d.c. meter of the square-law detector near its full scale deflection.
(a) Select values k_{1} and k_{2} such that $k_{1} k_{2} V_{x}$ (position 2 of the Selector Switch) is just less than $V r$ (position 3 of the Selector Switch for $c_{1}=1$ and $c_{2}=1 \cdot(000)$.
(b) Adjust u and c_{2} to equal deflections in the positions 1, 2, and 3 of the Selector Switch. Record the values k_{1}, k_{2}, c_{1}, and c_{2} and apply equation (1).
(c) With the Selector Switch in position 4 bring the Quadrant Switch into its position producing the smaller deflection.
(d) Adjust c_{1} and c_{2} to values $c_{1}{ }^{\prime}$ and $c_{2}{ }^{\prime}$, so that equal deflections result in the positions 3 and 4 of the Selector Switch. Apply equation (2) and the tables.
(e) In position 4 of the Selector Switch operate the key K. (Fig. 3). The quadrant is given by the figure appearing in both the lettering of the position of the key K which produces the smaller deflection, and the lettering of the Quadrant Switch.

REFERENCES

${ }^{1}$ F. A. Benson and A. O. Carter, "A New Method of Measuring l'hase Angle," J. sci. Insirum, August 1949, Vol. 26, p. 285.
${ }^{2}$ E. I. Flomman and Andrew Tait, "An Electronic Phasemeter," Proc. Inst. Kadio Engrs, February 1949, Vol. 37, p. 207.
"J. Kritz, "Precision Phasemeter for Audio Frequencies," Electronics, October 1950, Vol. 23, p. 102.
"J. A. Vanous, "Single-Tube Audio Phase Meter," Electronics, October 1950, Vol. 23, p. 226.
${ }^{\text {s Y Y }}$. P. Yu, "Measuring Vector Relationships," Electronics, July 1951, Vol. 24, p. 124.
"J. K. Ragazzini and L. A. Zadeh, "A Wide-Band Audio Phasemeter," Rev. sci. Instrum., February 1950, Vol. 21, No. 2, p. 145.
${ }^{\text {T L. H. O'Neill and J. L. West, "Direct Keading Phasemeter," Rev. sci. }}$ Instrum., April 1950, Vol. 21, No. 4, p. 271.
"R., A. Seymour, "A Simple Phase Measuring Circuit," P.O. elect. Engrs' J., January I951, Vol. 43, I't. 4, p. 198.
*J. C. West and J. Potts, "A Simple V ariable Frequency Phase Measuring Device," Electronic Engng, September 1952, Vol. 24, No. 295, p. 402. ing Device, Electronic Engng, September 1952, Vol. 24, No. 295, p. 402 .
10 Difference Method," Arch. tech. Messen, April 1952, Issue 195, Ref. Vif631-6, pp. 85-86 (in German).
${ }^{11}$ G. N. Patchett, "A Versatile Phase-Angle Meter," Electronic Engng, May 1952, Vol. 24, pp. 224-229.
${ }^{12}$ B. G. Pressey, C. S. Fowler and R. W. Mason, "A Precision Phase Comparator for Use at Low Radio Frequencies." Monograph 44, Insin Elect. Engrs (London). Also Proc. Insin elect. Engrs, Pt. IV.
${ }^{18}$ See for instance, E. W. Golding, "Electrical Measurements and Measuring Instruments," Pitman, London, 3rd Ed. (1944), p. 298, Fig. 167.

NOISE FACTOR OF CONVENTIONAL V.H.F. AMPLIFIERS

By N. Houlding, B.Sc. Tech.

(Concluded from p. 290, November issue)

4. Experimental Results

As far as is possible, the figures quoted are representative of average valves, except that particular curves may not be strictly typical of the average. For a narrow-band amplifier particularly, the optimum value of source conductance is dependent on the input coil losses and this should be remembered in making comparisons. Except where mentioned, the results are with the input circuit tuned to resonance at midband, including the space charge capacitance, and the wideband results were obtained with no additional capacitance in the grid circuit. All quoted results are for amplifiers of mid-band frequency $45 \mathrm{Mc} / \mathrm{s}$.

4.1. Accuracy of Equivalent Circuit.

Fig. 12 shows curves of n against source resistance for four triodes. Experimental results are not in exact agreement with the theoretical expressions given in 2.6 and it has been concluded that there is a significant dicrepancy in the value of source resistance due to lead effects which accounts for much of the apparent error. It has been found that the theoretical formulae are very useful for calculating the effect of changes in any single parameter, and the simple formulae given in 2.4 have been found to be very accurate.

As might be expected, the results for wideband amplifiers in which the effect of induced grid noise is less due to the lower impedance of the input circuit are in better agreement with theory, and Table 2 shows the agreement between calculated figure of merit and noise factor in amplifiers $12 \mathrm{Mc} / \mathrm{s}$ wide at -3 db overall. In the table $C_{\text {strays }}$ was taken as 2 pF .

TABLE 2

Valve type	Figure of merit $\left(C_{00}+9 C_{a_{g}}+\right.$ $C_{\text {atravs }}$) $R_{\text {squ }}$	Source resistance (ohms)	Noise factor (ratio) $B=12 \mathrm{Mc} / \mathrm{s}$
Experimental	7,200	675	$3 \cdot 6$
Experimental	6,550	675	$3 \cdot 2$
CV139	5,050	360.	$2 \cdot 5$
6AK5 (triode)	4,500	650	$2 \cdot 4$
Experimental	2,800	675	2-1
Experimental	2,100	675	$2 \cdot 0$

4.2. Variation over the Band and Feedback Effects

Results for a common-grid circuit are shown in Fig. 13. The circuit used an unequal-Q coupling between the first two stages to minimize the deficiencies of the common-grid circuit. The input circuit was tuned to minimum noise output which should coincide with input resonance (excluding susceptance due to feedback) if the phase angle of the mutual conductance is 180°. The overall variation of u is appreciably increased by the second stage noise. The full-band noise factor calculated from the curves is 0.5 db greater than the mid-band value, and direct measurement confirmed this.
This particular circuit serves to illustrate the fallacy of using feedback to obtain the frequency response. With a capacitance of 5 pF added between grid and cathode, the input circuit frequency response was still very wide, but the full-band noise factor was increased by 0.15 db , showing the dependence of noise factor on the source impedance excluding feedback. Furthermore, a CV139 common-grid circuit for a $15-\mathrm{Mc} / \mathrm{s}$ bandwidth will give a satisfactory frequency response with a source resistance of 1,000 ohms (minimum n), yet the optimum full-band noise factor is obtained with 350 ohms and the noise factor is about 3 db worse with a 1,000 -ohm source, due to the large effect of the increase in noise at the edges of the frequency band.

For one particular amplifier it was found that feedback damping was not altogether a disadvantage. The unit had a bandwidth for the first CV139 stage (input and anode circuits) of $4 \mathrm{Mc} / \mathrm{s}$ at 1 db . The $C R$ value of the source was such that a maximum value of only 400 ohms at the grid could be used with a neutralized circuit. It was found that the same noise factor could be obtained with a common-grid circuit and an 800 -ohm source at the cathode as with a commoncathode circuit using 470 -ohm anode damping. However, the common-grid circuit used an unequal- Q anode circuit which was extremely critical both in alignment and need for low-loss primary coil, and use of a similar circuit in the input of the common-cathode stage would have shown the advantages of the common-cathode.

With a CV139 common-grid circuit, it was observed that a damping resistance in the anode, of the order of 20,000 ohms, caused a slightly
greater increase in noise factor than with the same resistance in the grid circuit. It is greater because the effect of the second stage noise (considering the resistance as part of the first stage) is probably slightly worse with the anode damping, for the power gain is reduced and the term $\left(N_{2}-1\right)$ is not reduced as much. It was also found that damping in the anode circuit of the second stage of two CV139 common-grid circuits in cascade was at least as serious as the same damping in the input circuit. The effect of this damping in the anode of the second common-grid stage could be minimized by making the coupling between first and second stages a step-down transformer.

An example of utilizing feedback to give input damping is a circuit used for measurement of the noisiness of crystal mixers. It is desirable to use a circuit with low noise factor so that the experimental discrimination is good, and at the same time make the circuit such that both the power gain and noise factor are not critically dependent on source resistance. By using a common-cathode circuit with cathode lead inductance feedback,

source resistance (ohms)

source resistance (ohms)

Fig. 13. Variation of single-frequency noise factor over the response for CV139 common-grid circuit. CV139 singlestage feeding CV1091 pentode with unequal- Q coupling ($3 \cdot 9 \mathrm{k} \Omega$ secondary damping).
the input conductance was made equal to that value required for optimum noise factor. The noise factor was degraded slightly and the optimum source conductance was increased. The cathode-lead inductance required also produced a significant input susceptance, but this was just sufficient to balance the detuning susceptance required for optimum noise factor. (See 4.3.)

4.3. Asymmetry

The improvement obtained by capacitance detuning is shown in Fig. 12. With a common-grid circuit the effect is small, due no doubt to the fact that normal tuning to minimum noise output is slightly capacitive.*

[^3]Table 3 gives results for a CV139 and also emphasizes the feedback effect of anode-cathode capacitance with the commongrid circuit.

With the common-cathode circuit the effect is more marked. Particular care was taken to check that faulty neutralization was not masking any true asymmetry by adjusting this with anode current flowing and feeding signal from anode to grid circuits. This gave almost exactly the same neutralization setting as the normal procedure. It was found that detuning the neutralizing circuit by the appropriate amount gave minimum detuned noise factor when the input circuit was tuned for a maximum signal in the normal way. For this, it is important to ensure that the anode circuit is resistive at mid-band, otherwise the feedback effect is more complex, and this should be remembered when designing a unit with stagger-tuned circuits.

Table 4 gives the magnitude of the effect with the same four triodes of Fig. 12 in a commoncathode circuit. The capacitance change required has been measured for a range of source resistance values and is constant at a given frequency. For most valves the change in capacitance due to space charge is about $1 \frac{1}{2}$ times the detuning required, so that tuning the input circuit with the valve biased

Fig. 14. Performance of CV139 biased for grid current. to cut off gives approximately the
correct 'detuned' condition (at $45 \mathrm{Mc} / \mathrm{s}$). A more accurate detuning procedure can easily be established for any finished design.

The improvement in full-band noise factor is less. With a CV139 the improvement is about

TABLE 3
Asymmetry of Noise Factor with CV139 Common-Grid at $45 \mathrm{Mc} / \mathrm{s}$. (Source resistance at cathode 1,000 ohms)

. Tuning point -	Capacitance increase at cathode (pl)	Change in midband noise factor (db)
Minimum noise Minimum noise factor Maximum signal	$\begin{array}{r} 0 \\ +0.8 \\ +4.3 \end{array}$	$\begin{gathered} 0 \\ - \\ +0.1 \\ +0.65 \end{gathered}$

0.3 db for $4-\mathrm{Mc} / \mathrm{s}$ bandwidth and 0.1 db for $15-\mathrm{Mc} / \mathrm{s}$ bandwidth.

The effect has also been observed with pentodes. With suitable cathode-lead inductance feed-

TABLE 4
Asymmetry of Noise Factor with Common-Cathode Circuits at $45 \mathrm{Mc} / \mathrm{s}$

Valve	Change in single- frequency noise factor by detuning (db)	Change in capacitance (pF)	Source resistance $($ ohms $)$
CV139	0.4	$2 \cdot 3$	1,000
6AK5	$\ngtr 0.2$	0.5	3,000
6J4	0.2	$1 \cdot 1$	1,300
CV408	$\ngtr 0.2$	$1 \cdot 0$	2,500

back on a CV139 the asymmetry is small. It is coincidental that the inductance required to give an input conductance of 1,250 micro-mhos gives about $-2-\mathrm{pF}$ capacitance due to feedback.

4.4. Abnormal Valve Operation

Apart from input-circuit detuning, it has been found possible to obtain improvement in noise factor by operating the valve very close to grid current. With a valve such as the 6AK5 with very consistent characteristics, it is possible to take advantage of this and use a cathode-bias resistor as low as 56 ohms with 100 V anode supply (particularly if there is also a voltagedropping resistor in the anode supply). With other valves there may be the danger that a high proportion of the samples will run into grid current and give a poor noise factor when operating with high source resistance. The improved performance is due to the reduction in shot noise and increase in mutual conductance (hence reduction in second stage noise). The optimum source resistance is lowered.

The effect is most marked in a wideband amplifier in which reduction in shot noise is very beneficial, and with a CV139 in a wideband amplifier it is even advantageous to bias so that grid current is taken, but with reduced anode voltage so as not to exceed the anode dissipation rating. With a source resistance at the grid of 370 ohms and overall bandwidth of $12 \mathrm{Mc} / \mathrm{s}$ at -3 db , the optimum grid current was $25 \mu \mathrm{~A}$ for a wide range of anode voltage and currentsee Fig. 14. The best performance, obtained by operating at 2.5 W anode dissipation in a commoncathode circuit, gave 0.7 db improvement in fullband noise factor on that obtained with normal operation $(250 \mathrm{~V}, 10 \mathrm{~mA})$. The result is particularly significant in view of the additional noise due to grid current which would account for a term of $0.2(0.4 \mathrm{db})$ in noise factor. No information on valve life under these conditions has been obtained.

4.5. Summarized Results

In Table 5, the total input circuit coil loss for the CV139 and 6 J 4 triodes was equivalent to a grid-cathode conductance of about 60 micromhos and about 35 micro-mhos with the low capacitance 6AK5 and CV408. A tapped autotransformer was used and this gives less input circuit attenuation than a double-wound coil.

The results obtained with a CV138 pentode using a special input circuit are included to show the benefit obtained with such a circuit, although it is not recommended, and in a wideband amplifier it is preferred to operate the valve in grid-current with a simple input circuit.

The results quoted in the table for the
neutralized triode were obtained with the inductance-neutralized circuit [Fig. 8(b)]. Measurements on a wideband amplifier using the capacitance-neutralized circuit feeding a CV138 pentode gave an improvement of $0 \cdot 1 \mathrm{db}$ over the inductance-neutralized circuit and it is estimated that a further 0.1 to 0.2 db would be obtained with a triode second stage.

In comparing these results with those obtained by Wallmann, Macnee and Gadsden ${ }^{5}$ at $30 \mathrm{Mc} / \mathrm{s}$, the following points should be borne in mind:-

They used an unequal- Q input circuit and, moreover, probably tuned for minimum noise factor.

The 6AK5 was operated by them at optimum conditions found experimentally to be 105 V and 70 ohms bias resistance.
The operating conditions for the triode results given in Table 5 were:-

CV139	250 V 10 mA
6 J 4	110 V 10 mA
$6 \mathrm{AK} 5(\mathrm{CV} 580)$	110 V 8 mA
CV408	150 V 10 mA

For all results, no capacitance was added in the grid circuit which would have simulated conditions with a crystal mixer. This is the only fair comparison of valve performance, but as improvements in valve design lead to lower capacitances, it will become more essential to minimize the capacitance of the mixer or other input circuit feed.

With the capacitance-neutralized circuit, it has been found that the best detuned noise factor is obtained if the neutralizing capacitance is detuned to compensate for the input circuit detuning. The practical procedure is then:-
(a) Neutralize with zero anode current using c.w. signal.
(b) With anode current flowing, peak the input circuit at mid-band, then detune capacitively so that signal is reduced by an amount dependent on the grid impedance. This has to be established by experiment, but with optimum source impedance is in the region of 15% (in volts) for most valves.
(c) Detune the neutralizing capacitance (increase) to give maximum signal with anode current flowing. The input circuit will now be peaked at the same setting as left in (b).
With most valves, the anode-grid capacitance is sufficiently consistent for the neutralizing capacitor to be fixed, and the only tuning required with change of valve is to peak up the input circuit.

Numerous experiments have been made with the 6AK5 (CV850) to establish the best compromise for operating conditions, and conflicting results have been obtained. In some tests, operation with 100 V and 56 ohms cathode-bias
resistor gave excellent performance, but later work has indicated that there are probably ageing effects which result in valves running into gricl current under these conditions. It is safer to operate with 120 -ohms bias resistor, and at about 140 V 15 mA most valves give slightly better performance than at 100 V 10 mA . The source impedance giving minimum mid-band noise factor is lowered with operation at ligh current and low bias. For an overall bandwidth of $2 \mathrm{Mc} / \mathrm{s}$ at -3 db , most samples of this valve type give a noise factor of $\boldsymbol{2} \cdot 0 \mathrm{db}$ or better, using an input coil having a resonant resistance of 35,000 ohms and anode circuit load resistance of 1,000 ohms.

With the CV408 (Osram A1714), the optimum source resistance is about 2,500 ohms. The spread in performance is rather greater than with the 6 AK 5 , although the average performance is
certainly better. It is not possible to quote results for a truly average valve, and operation at high anode current gives a degradation with the majority of samples, although a few do give excellent performance with low bias and high anode current. A fixed capacitance-neutralized circuit is practical on the basis of tests with about 100 samples, and a cathode bias resistance of 180 ohms seems the best compromise. Some circuit clifficulties have been encountered with both inductance and capacitance neutralization, and it has been found necessary to take particular care to avoid common eartl paths and to return the 'getter' terminal to the output earth and the spare pin to the input earth. Unless such precalitions are taken, some form of parasitic oscillation may occur, or there may be reduction of the bandwidth of the first stage.

TABLE 5. Results for Different Valves and Circuits

Valve and circuit	Equivalent shot noise resistance (ohims)	Dinimum midband noise factor first stage (only)		Overall receiver bandwidth $4 \mathrm{Mc} / \mathrm{s}$		Overall receiver bandwidth $12 \mathrm{Mc} / \mathrm{s}$		
		db	Source resistance at grid (ohms)	Firststage noise factor (db)	Overall noise factor (clb)	Firststage noise factor (db)	Overall noise factor (db)	Source resistance at grid (olims)
Common-cathorle Cl 139 6 J 4 $6 . \backslash$ Kis triole connected CVI38 triode connected CV408	370 Not measured 580 Not measured 450	$\begin{aligned} & 2 \cdot 8 \\ & 2 \cdot 2 \\ & 1 \cdot 9 \\ & 2 \cdot 9 \\ & 1 \cdot 7 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 1,300 \\ & 2,500 \\ & 1,000 \\ & 2,500 \end{aligned}$	$\begin{aligned} & 3 \cdot 0 \\ & 2 \cdot 4 \\ & 2 \cdot 1 \\ & -1 \cdot 9 \end{aligned}$	$\begin{aligned} & 3 \cdot 1 \\ & 2 \cdot 5 \\ & 2 \cdot 3 \\ & 2 \cdot 1 \end{aligned}$	$3 \cdot 6$	$\begin{aligned} & 4 \cdot 0 \\ & 3 \cdot 4 \\ & 4 \cdot 0 \\ & 4 \cdot 0 \\ & 3 \cdot 2 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 800 \\ & 400 \\ & 650 \end{aligned}$
$\begin{array}{ccr} \text { Common-grid } & \text { CV139 with } \\ \text { unequal- } & \text { to } & C V 13 \times \\ \text { pentode } & \ldots & \ldots \end{array}$		$2 \cdot 8$	1,000	$3 \cdot 0$	$3 \cdot 5$	$4 \cdot 0$	$7 \cdot 5$	Not measured
2 stages of common-grid CV139 with unequal-Q coupling to CVI3s pentode		$\underline{-3}$	1,000	$3 \cdot 0$	3•3			
2 stages of common-grid CV139 with single-circuit coupling to negative feedback pentode pair. 1,200ohin damping on circuit teeding third stage		$2 \cdot 8$	1,000			*	$6 \cdot 0$	350
CV138 pentode single-circuit inplut	$\begin{gathered} 5.50 \text { (shot) } \\ 430 \\ \text { (partition sic.) } \end{gathered}$	$4 \cdot 3$	2,000					
C\138 pentode unequal-Q input						$4 \cdot 8$	$5 \cdot 0$	Not measured
6: 125 pentode single-circuit input	$\begin{gathered} 770 \text { (shot) } \\ 850 \\ \text { (partition) } \end{gathered}$	$3 \cdot 8$	2,500					
EF50 pentode single-circuit input		$5 \cdot 0$	1,200	$5 \cdot 2$	$5 \cdot 3$		About 9	

Fig. 15 shows the full-band noise factor for the CV139* $\dagger, 6 \mathrm{AK} 5$ and $6 \mathrm{~J} 4 \dagger$. The simple type of input circuit included no additional capacitance and the source conductance for wider band circuits was adjusted to the condition mentioned in 3.3. Valve operating conditions are the same as listed above for the results in Table 5 . The 6 J 6 gives almost as good a performance as the 6 J 4 , but few valves have been tested. The sub-miniature CV465 is worse than the 6AK5 but the design is not yet sufficiently established for average results to be quoted.

5. Conclusion

The best noise factor which can be obtained with a given valve can only be found by experiment, but the general principles of circuit design are well established.

The available power concept is extremely useful in obtaining an understanding of circuit behaviour, but there is still something lacking in our detailed knowledge of valve noise.

Fig. 15. Noise factor for different bandwidths with commoncathode triode circuits (frequency $45 \mathrm{Mc} / \mathrm{s}$).

[^4]Circuit development (and possibly further valve development) is required to establish tolerances which will enable neutralized circuits to be used without readjustment on valve replacement, and to give minimum noise factor with symmetrical frequency response.
In practical systems, the performance obtained will be disappointing as compared with the published results for the valve, unless particular care is taken to keep the capacitances small in the input circuit, to use a high Q coil in the input, and to ensure that the noise of the first stage is really swamping that from the rest of the amplifier. With the best valves, the input circuit loss is extremely significant in narrow-band amplifiers.
There is still scope for further improvement in the noise performance of valves, and it is believed that the economic limit of this has not yet been reached, for such improvement, however small, is more easily made available to a large number of equipments than is the equivalent improvement in transmitters.

Acknowledgments

This paper is published by permission of the Chief Scientist, Ministry of Supply. Crown copyright reserved. Reproduced by permission of the Controller, H.M. Stationery Office.
The author wishes to thank those of his colleagues, past and present, who have contributed to the experimental work, and particularly to thank Mr. C. P. Fogg for encouragement.

APPENDIX 1

The earliest definition of noise factor in 1941 was in terms of available powers (E. G. James and J. B. Clegg*). Since, in practice, the receiver detector is a voltageoperated device, the available power definition is not in strict agreement with actual measurement and an R.E.M.C. Panel has defined \dagger noise factor in terms of mean-square noise output voltage relative to that part of the output noise voltage which is derived from the source. For a multistage receiver this leads to cumbersome expressions in terms of voltage amplification ratio and input and output impedances, etc.

At the detector, the impedance $(R+j X)$ includes the output impedance of the last stage and the input impedance of the detector. If the noise in series with this, due to receiver noise, is $V_{r}{ }^{2} \Sigma$ per c / s, and due to amplified noise from the source is $V_{a}{ }^{22}$ per c / s, we get

For available powers . $\mathbf{V}^{\prime \prime}=$

$$
\int \frac{V_{r}^{2} \Sigma^{2} d f}{4 R}+\int \frac{V_{a}^{2} \Sigma_{d f}}{4 R}
$$

$$
\int \frac{V_{a}^{2}{ }^{2} d f}{4 R}
$$

If R is constant over the frequency response, or if $V_{r}{ }^{22}$ and $\mathrm{V}_{a}{ }^{2 \Sigma}$ are similar functions of frequency, then

[^5]$$
\mathrm{N}^{\prime}=\frac{\int V_{r}^{2} \Sigma_{d f}+\int 1_{n}{ }^{2} \Sigma_{d f}}{\int V_{a}{ }^{2} \Sigma_{d f}}=\mathrm{N}
$$

Hence, if the output circuit is of much greater or much smaller bandwidth than overall, the two definitions are identical. In normal practice the difference is small and does not justify the use of correct formulae in place of equations (1) to (5).
the change in the noise spectrum caused by the signal, it is difficult to forecast the sense of any difference in sensitivity.

APPENDIX 4

The more detailed expressions for the three triode circuits, with resistive input and output circuits and no reactive feedhack due to inter-electrode capacitances or lead indluctances, are shown in Table 6.

TABLE 6

Circuit	Power gain excluding output loss	Output impedance exclucling output circuit loss	Power gain inclucling output loss	Noise factor including output loss
(a) Commoncathode	$\frac{\mu^{2} R_{A}}{r_{a}}$	r_{a}	$\frac{\mu^{2} R_{A} R_{L}}{r_{a}\left(\gamma_{a}+R_{L}\right)}$	$\mathbf{N}+\frac{r_{a}{ }^{2}}{\mu^{2} R_{L} R_{A}}$
(b) Commongricl	$\frac{(\mu+1) R_{A}}{r_{a}+(\mu+1) R_{A}}$	$\gamma_{a}+(\mu+1) R_{A}$	$\begin{gathered} \frac{(\mu+1)^{2} R_{A} R_{L}}{\left\{r_{a}+(\mu+1) R_{A}\right\} \times} \\ \left\{R_{L}+r_{a}+(\mu+1) R_{A}\right\} \end{gathered}$	$N+\frac{\left\{\gamma_{a}+(\mu+1) R_{A}\right\}^{2}}{(\mu+1)^{2} R_{A} R_{L}}$
(c) Commonanode	$\frac{\mu^{2} R_{A}}{(\mu+1) r_{a}}$	$\frac{\gamma_{a}}{\mu+1}$	$\frac{\mu^{2} R_{A} R_{L}}{v_{a}\left\{\gamma_{a}+(\mu+1) R_{L}\right\}}$	$\therefore+\frac{r_{\Delta}{ }^{2}}{\mu^{2} R_{L} R_{A}}$

APPENDIX 2

The effect of variation over the land was illustrated for a receiver with constant gain over the response, for which

$$
V=\frac{\int u m d f}{m B}=\frac{\int u d f}{B}
$$

Normally m is not constant over the pass-band and cannot be eliminated from the expression.

Then if:-
(a) either or both m and u are symmetrical about mid-band, and
(b) $"$ is monotonic and increasing on both sides of mid-hand frequency.
it can be shown that:*

$$
\int_{-\infty}^{+\infty} u m n d f>M \int_{-B / 2}^{+B \prime 2} u d f
$$

In other words, the full-hand noise factor is greater than it would be if the response were constant over a frequency range equal to the noise bandwidth

APPENDIX 3

The effect of the increase in single-frequency noise factor at the edges of the hand may modify the limiting sensitivity of the receiver. That is to say, with the same values of full-band noise factor for two recenvers which are identical in all respects except that u is constant over the pass-band in one and not in the other, the masking effect of noise after demodulation may be different. It is unlikely that the effect will be at all significant, however, since the noise spectrum after rectification (without signal) will be of similar type for hoth receivers (i.e., with increase at low frequencies). Since the detection of weak signals on a cathode-ray tube is probally dependent on

[^6]Other expressions for the triode circuits are:
Input resistance of common-grid

$$
=\frac{R_{L}+r_{a}}{\mu+1}
$$

(The effect of $C_{a k}$ may be obtained by replacing v_{a} and μ by the appropriate complex expressions.)
Input resistance of common-cathode with resistance R_{N} between grid and anode

$$
=\frac{R_{v} R_{L}+R_{y} r_{a}+R_{L} r_{a}}{r_{a}+(\mu+1) R_{L}}
$$

Output resistance of common-cathode

$$
=\frac{r_{a}\left(R_{N}+R_{A}\right)}{R_{N}+r_{a}+(\mu+1) R_{A}}
$$

Power gain of common-cathote

$$
=\frac{\left(\mu R_{N}-r_{a}\right)^{2} R_{A}}{\left\{r_{a}+R_{x}+(\mu+1) R_{\Delta}\right\}\left(R_{y}+R_{\Delta}\right) r_{a}}
$$

APPENDIX 5

The effect of input circuit damping is to increase the noise factor ($1+G_{D} / G_{A}$) times its value with a source of ($G_{D}+G_{A}$), as shown very simply in 2.4 .

This agrees with (9a), for we have

$$
\begin{aligned}
n & =\left(1+\frac{G_{D}}{G_{A}}\right)\left\{1+\frac{t G_{T}}{G_{D}+G_{A}}+\frac{R_{e o u}\left(G^{2}+S^{2}\right)}{G_{A}+G_{D}}\right\} \\
& =1+\frac{G_{D}}{G_{A}}+\frac{t G_{F}}{G_{A}}+\frac{R_{e q u}\left(G^{2}+s^{2}\right)}{G_{A}}
\end{aligned}
$$

If G_{A} gives optimum noise factor, then to a close approximation the total change is in the ratio $\left(1+G_{D} / G_{A}\right)$.

For anode grid resistance with a common-cathode triode, the equivalent circuit is shown in Fig. 16(a) (for $R_{s}>\gamma_{\mu}$).
It is easier to calculate the effect of R_{N} on noise factor by using the fact that it is approximately the same as with
the same value of anode-grid resistance for a commongrid circuit. The increase in noise factor for the commoncathode triode can therefore very easily be calculated using the expression in the table in Appendix 4 for the common-grid triode.

$$
\text { This gives } \begin{aligned}
\Delta n & =\frac{\left\{r_{a}+(\mu+1) R_{A}\right\}^{2}}{(\mu+1)^{2} R_{N} R_{\Delta}} \\
& \approx \frac{G_{N}}{G_{A}}+\frac{2 G_{N}}{g_{m}}+\frac{G_{N} G_{A}}{g_{m}^{2}} \\
\text { Therefore } \quad \Delta n & =\frac{G_{N}}{G_{A}}+\frac{2 G_{N}}{g_{m}}
\end{aligned}
$$

This is not so great an increase as for the same damping between grid and cathode, but as an approximate rule it can be considered so with practical values of G_{N} and G_{A}.
\therefore Effective shot noise resistance for the common-grid is given by

$$
R_{\text {equ }}^{\prime}=R_{e q u} \frac{\mu^{2}}{(\mu+1)^{2}}
$$

For induced grid noise, it is obvious that the contribution due to this is unchanged relative to noise from the source impedance with the common-grid connection.

For the common-anode connection, the modification to the induced grid noise contribution can be calculated in the same way as for shot noise, that is by comparison with the ratio of available power gains of the commonanode and common-cathode circuits.

Assuming neutralization of the grid-cathode capacitance (as would be essential in practice), calculation of the available power output due to induced grid noise gives:-

Common-anode induced grid noise power

$$
\approx \frac{\left(g_{m} R_{\Delta}-1\right)^{2} i^{2 \Sigma_{\gamma_{a}}}}{4(\mu+1)^{2}}
$$

Common-cathode induced grid noise power

$$
\approx \frac{i^{i \Sigma} R_{A}^{2} \mu^{2}}{4 r_{a}(\mu+1)}
$$

where $i^{2} \Sigma=$ induced grid noise current, grid to cathode.

Fig. 16. Equivalent noise circuit of neutralized triode. (a) Equivalent of Fig. 8 (b) $\left(G_{N}=\right.$ Shunt conductance of neutralizing coil; $G_{i}+j S_{i}=$ input admittance due to feedback. $4 k T_{o} \frac{G_{X}}{g_{m}^{2}}$ is phaserelated to current generator $4 k T_{0} G_{N}$ so that addition is in anti-phase when input circuit is resistive).
(b) Equivalent of Fig. $8(d)$.

APPENDIX 6

The true equivalent shot noise resistance for the three triocle circuits may be obtained from the expressions for output impedance, gain, etc. For common-cathode:

$$
\frac{\text { Available Shot Noise l'ower }}{\text { Available Power Gain }}=\frac{i_{n}^{2} \Sigma_{r_{a}}{ }^{2}}{4 \mu^{2} R_{A}}
$$

The same expression is obtained for the commonanode.

For the common-grid, the shot noise generator $i_{n}{ }^{2 \Sigma}$ between anode and cathode develops voltages in the grid-cathode circuit which are amplified in phase opposition to those developed directly in the anodegrid circuit.

Since $(a-b)^{2}=a^{2}+b^{2}-2\left(a^{2} b^{2}\right)^{\frac{1}{2}}$, the available noise power at the output is given by:-
$\frac{i_{n}{ }^{2} \Sigma}{4}\left[r_{a}+(\mu+1) R_{A}+\frac{(\mu+1)^{2} R_{\Delta}{ }^{2}}{r_{a}+(\mu+1) R_{\Delta}}-2(\mu+1) R_{\Delta}\right]$
$=\frac{i_{n}{ }^{2 \Sigma}}{4}\left[\frac{r_{a}{ }^{2}}{r_{a}+(\mu+1) R_{\Delta}}\right]$
Hence $\frac{\text { Available Noise Power }}{\text { Available Power Gain }}=\frac{i_{n}{ }^{2} \Sigma_{\gamma_{a}}{ }^{2}}{4(\mu+1)^{2} R_{A}}$

Hence Ratio Common Anode $\frac{\left(g_{m} R_{\Delta}-1\right)^{2}}{\text { Common Cathode }}$
But ratio of power gains is $\frac{1}{\mu+1}$,

- Induced Grid Noise Contribution, Common Anode
$\cdots \overline{\text { Induced Grid Noise Contribution, Common Cathode }}$

$$
\approx\left(1-\frac{1}{g_{m} R_{A}}\right)^{2}
$$

REFERENGES

' J. R. Pierce. "Noise in Resistances and Electron Streams", Bell Syst. Tech. J., 1948, Vol. 27, p. 158 .
B. J. Thompson, D. O. North and W. A. Harris. "Fluctuations in Space-Charge Limited Currents at Moderately High Frequencies--Part V', R.C.A. Rev., 1941, Vol. 5,•p. 505.
${ }^{3}$ H. Goldberg. "Some Notes on Noise Figures", Proc. Inst. Radio Engrs, 1948, Vol. 36, p. 1205
\&. J. O. Strutt and A. Van der Ziel, Physica, January 1941, Vol. 8, p. 1, Section 8.
H. Wallnann, A. B. Macnee and C. P. Gadsden. "A Low-Noise Amplifier", Proc. Inst. Radio Engrs, 1948, Vol, 36, p. 700.

BAND-PASS FILTERS

Synthesis of Constant-Resistance Types for a Prescribed Response

By Fuad Surial Atiya, b.Sc.(Hons.), D.Sc. (Tech.)
(Lecturer in the Faculty of Engineering, University of Cairo)

Abstract

SUMMARY.-The response of the multistage constant-resistance network is the product of the responses of its individual stages, similar to the multistage amplifier. Thus band-pass filters can be designed to have a maximally-flat or quasi-Tchebyshev response exactly like the corresponding band-pass amplifier. This type is suited for wide band filters as well as for multiplexers.

1. Multistage Filters

THE staggered multistage band-pass amplifier has been calculated to give a maximally-flat response,*1 and later by Linnebach ${ }^{2}$ to give a quasi-Tchebyshev response. \dagger The calculation of the band-pass amplifier is much easier than that of the usual reactive filter because of the multiplicative property of the response due to the isolattion of the stages by amplifier valves. In the case of the amplifier each stage represents one factor of the factorized overall response. On the other hand, the reactive filter has to be treated as a whole. The maximally-flat filter has been generally solved. ${ }^{3}$ The quasi-Tchebyshev, however, has been only lately generally solved by the author, ${ }^{4,5}$ The calculation of the latter type, as well as its adjustment, is not an easy matter in the case of a filter having a large number of circuit-elements.

The constant-resistance network makes possible cascaded stages as in the case of the multistage amplifier. The resulting network, however, suffers from the following disadvantages: (1)Two resonant circuits are needed for each zero or pole of the insertion loss, as compared with one circtit in case of amplifier or reactive filters; (2) There is a constant insertion loss to be added to the selective loss of the corresponding reactive filter. However, in special cases the constant-resistance filter may be advantageously used; e.g., as a wide-band filter with a large number of circuit-elements and quasiTchebyshev response. The corresponding reactive filter is in this case more complicated to calculate and to adjust. But the main advantage of the con-stant-resistance band-pass filter is the simplicity with which several such filters can be connected,

$$
\begin{aligned}
& \text { The maximally-fiat response is defined as: } \\
& \qquad\left|\frac{V_{i n}}{V_{\text {ou }}}\right|^{2}=K^{2}\left\{1+\left(k \frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right)^{2 n}\right\} \\
& \text { + The quasi-Tchebyshev band-pass response is defined as: } \\
& \qquad\left|\frac{V_{i n}}{V_{\text {ous }}}\right|^{2}=K^{2}\left\{1+h T n^{2}\left(\frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right)\right\},
\end{aligned}
$$

where T_{n} is the Tchebyshev polynomial of the first kind and nth degree. It possesses a Tchebyshev response only in the pass-band.

MS accepted by the Editor, February 1953
on the input side, in series or in parallel (Fig. 1), for the input impedance of each is independent of frequency and equal to R. A multiplexer consists thus simply of several such filters, having different pass-bands, and connected in series or in parallel as shown in Fig. 1.

Fig. 1. Multiplexer composed of five constant-resistance band-pass filters: (a) Series connection, (b) Parallel connection, (c) Response curves of individual filters.
The two main properties of the constantresistance network (Fig. 2) are:
(1) Input impedance $=R$.
(2) Voltage ratio $\left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)=1+\frac{Z}{R}$

$$
\begin{equation*}
=1+\frac{R^{\prime}}{Z^{\prime}} \tag{1}
\end{equation*}
$$

Let Z be a series resonant circuit and Z^{\prime} be a parallel one (Fig. 3).
Then:

$$
\begin{align*}
Z=j \omega L & +\frac{1}{j \omega C}=j R Q\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \\
& \approx j \frac{2 R Q}{\omega_{0}}\left(\omega-\omega_{0}\right) \tag{2}
\end{align*}
$$

$$
\left(\frac{V_{i n}}{V_{\text {out }}^{\prime}}\right)=\left[1+j \frac{2 Q}{\omega_{0}}\left(\omega-\omega_{0}\right)\right]
$$

Loss $L=20 \log \left|\frac{V_{\text {in }}}{V_{\text {out }}}\right|$
$=10 \log \left[1+\left\{\frac{2 Q}{\omega_{0}}\left(\omega-\omega_{0}\right)\right\}^{2}\right] \mathrm{db}$

of Q as small as 3 . If ω^{\prime} and $\omega^{\prime \prime}$ are the halfpower points then:

$$
\begin{align*}
& \omega^{\prime}=\omega_{0} \sqrt{1+\frac{1}{4 Q^{2}}}+\frac{\omega_{0}}{2 Q}, \tag{3}\\
& \omega^{\prime \prime}=\omega_{0} \sqrt{1+\frac{1}{4 Q^{2}}}-\frac{\omega_{Q}}{2 Q} \tag{4}
\end{align*}
$$

the approximate values being correspondingly $\omega_{0}+\frac{\omega_{0}}{2 Q}$ and $\omega_{0}-\frac{\omega_{0}}{2 Q}$. The error is approximately $\frac{\omega_{0}}{8 Q^{2}}$; its value for $Q=5$ is $\frac{\omega_{0}}{200}$ and for $Q=3$ is $\frac{\omega_{0}}{72}$.

Fig. 2 (abo -). Constantresistance network.

Fig. 3 (below). Constantresistance band-pass filler.

Fig. 4 (right). Wultistage constont-resistance band-pass filler.

L has a zero at ω_{0}. Now a similar network can be substituted for R, and this can be continued for, say, n stages (Fig. 4). The final voltage ratio is the product of the corresponding n factors.

Even poles of the loss L can be realized by making Z a parallel resonant circuit and Z^{\prime} a series one (Fig. 5). We have then:

$$
\begin{equation*}
\left(\frac{V_{i n}}{V_{\text {out }}}\right)=1+\frac{1}{j \frac{2 Q}{\omega_{0}}\left(\omega-\omega_{0}\right)} \tag{5}
\end{equation*}
$$

In Fig. 3 we note that $L / L^{\prime}=C^{\prime} / C=Q^{2}$. Thus for large values of Q the circuit-elements have either extremely high or extremely low values. Hence this type of network is only suitable for wideband filtering.

We note further that the error in the approximate relations (2) and (3) is small even for values

The voltage-ratio of the network of Fig. 4 is given by:

$$
\begin{align*}
& {\left[\frac{V_{i n}}{V_{o u t}}\right]=\prod_{v=1}^{n}\left[1+j \frac{2 Q_{v}}{\omega_{0 v}}\left(\omega-\omega_{0 v}\right)\right]=} \\
&]_{v=1}^{n}\left[1+j \frac{2 Q v}{\omega_{0 v}}\left(\omega_{0}-\omega_{0 v}\right)+j \frac{2 Q_{v}}{\omega_{0 v}}\left(\omega-\omega_{0}\right)\right] \tag{6}
\end{align*}
$$

where $\omega_{0 v}$ and Q_{v} correspond to the v th stage and ω_{0} to the mid-band frequency (Figs. 6 and 7).

Fig. 5. Circuit to provide an attenuation pole.

2. Maximally-Flat Response

Let $S=\left|\frac{V_{i n}}{V_{o u t}}\right|^{2}=K^{2}\left\{1+\left(k \frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right)^{2 n}\right\}$

Comparing with Fig. 6 we have:

$$
\begin{equation*}
k=\sqrt[2 n]{\left|\frac{V_{\text {out } \max }}{V_{\text {out } \min }}\right|^{2}-1} \tag{8}
\end{equation*}
$$

Fig. 6. Maximally-flat band-pass response.
We shall now find $R=\left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)$ from $S=$ $\left|\frac{V_{\text {in }}}{V_{\text {out }}}\right|^{2}$. Let ω_{v} be a zero of S.
Then: $\begin{array}{r}k \frac{\omega_{v}-\omega_{0}}{\omega^{\prime}-\omega_{0}}=\sqrt[2 n]{-1}=\sqrt[2 n]{e^{j(\pm 2 v-1) \pi}} \\ =e^{j(\pm 2 v-1) \pi / 2 n}=e^{j(\pm 2 v-1) \psi}\end{array}$
where $v=1,2,3, \ldots, n$, and $\psi=\frac{\pi}{2 n}$. The zeros of $R=\left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)$ may therefore be taken as ω_{v}, where $k \frac{\omega_{v}-\omega_{0}}{\omega^{\prime}-\omega_{0}}=e^{j(2 v-1) \psi}=e^{j \theta_{v}}$
where $\theta_{v}=(2 v-1) \psi$
Therefore $\left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)$ may be expressed as the product:

$$
\begin{align*}
\left(\frac{V_{\text {in }}}{\bar{V}_{\text {out }}}\right)= & K j^{n} \prod_{v=1}^{n}\left[k \frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}-e^{j \theta_{v}}\right] \\
= & {\left[K \prod_{v=1}^{n} \sin \theta_{v}\right] \prod_{v=1}^{n}\left\{1-j \cot \theta_{v}\right.} \\
\cdot & \left.+j \frac{k}{\sin \theta_{v}} \frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right\} \\
= & \frac{K}{2 n-1} \prod_{v=1}^{n}\left\{1-j \cot \theta_{v}\right. \\
& \left.+j \frac{k}{\sin \theta_{v}} \frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right\} \ldots \tag{11}
\end{align*}
$$

Expressions (6) and (11) are identical when $K=2^{n-1}, \cot \theta_{v}=-\frac{2 Q_{v}}{\omega_{0} v}\left(\omega_{0}-\omega_{0} v\right)$ and $\frac{k}{\sin \theta_{v}}$ $\frac{1}{\left(\omega^{\prime}-\omega_{0}\right)}=\frac{2 Q_{v}}{\omega_{0} v}$. We deduce therefore the following:
(1) The mid-band loss $L_{0}=6(n-1) \mathrm{db}$.
(2) The Q of the v th stage is given by:

$$
\begin{align*}
Q_{v} \approx & \sqrt[2 n]{\left\lvert\, \frac{\left.\left.V_{\text {out max }}\right|_{\text {out min }}\right|^{2}-1}{} \times\right.} \begin{aligned}
& \sin (2 v-1) \frac{\pi}{2 n} \omega_{0} \\
&\left(\omega^{\prime}-\omega^{\prime \prime}\right)
\end{aligned}
\end{align*}
$$

(3) The detuning of the v th stage is given by:

$$
\begin{gather*}
\left(\omega_{0} v-\omega_{0}\right)=\frac{1}{\sqrt[2 n]{\left|\frac{V_{\text {out max }}}{V_{\text {out min }}}\right|^{2}-1}} \times \\
\frac{\left(\omega^{\prime}-\omega^{\prime \prime}\right)}{2} \cos (2 v-1) \frac{\pi}{2 n} \quad \cdots \tag{14}
\end{gather*}
$$

Fig. 7. Five-stage quasi-Tchebyshev band-pass response.

3. Quasi-Tchebyshev Response

Let: $S=\left|\frac{V_{\text {in }}}{V_{\text {out }}}\right|^{2}=K^{2}\left[1+h^{2} T_{n}^{2}(\Omega)\right]$
where $\Omega=\frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}$
and $T_{n}(\Omega)=\cos n \cdot \cos ^{-1} \Omega=\cosh ^{\prime} n \cdot \cosh ^{-1} \Omega=$ Tchebyshev polynomial of the first kind and nth degree.
From Fig. 7 we have:

$$
\begin{equation*}
h=\sqrt{\left|\frac{V_{\text {out } \max }}{V_{\text {out } \min }}\right|^{2}-1} \tag{16}
\end{equation*}
$$

We modify expression (15) into

$$
\begin{align*}
S=\left|\frac{V_{\text {in }}}{V_{\text {out }}}\right|^{2} & =K^{2} K^{\prime 2}\left[\left(1-d^{2 n}\right)^{2}+4 d^{2 n} T_{n}^{2}(\Omega)\right] \\
& =K^{2} K^{\prime 2}\left[\left(1+d^{4 n}\right)+2 d^{2 n} T_{2 n}(\Omega)\right] \tag{17}
\end{align*}
$$

「herefore $K^{\prime}\left(1-d^{2 n}\right)=1$ and $2 K^{\prime} d^{n}=h$.
Hence $K^{\prime}=\frac{1}{2}\left(\sqrt{1+h^{2}}+1\right)=\frac{1}{\left(1-d^{2 n}\right)}$ and

$$
\begin{equation*}
d^{2 n}=\frac{\sqrt{1+h^{2}}-1}{\sqrt{1+h^{2}}+1} \ldots \tag{18}
\end{equation*}
$$

We shall now determine the zeros of S. Let $\Omega_{v}=\cos \phi_{v}$ be a zero. Hence

$$
\left(1+d^{4 n}\right)+2 d^{2 n} \cos 2 n \phi_{v}=0
$$

Therefore $e^{i 4 n \phi_{v}}+2 D e^{j 2 n \phi v}+1=0$
where $D=\frac{1}{3}\left(d^{2 n}+d^{-2 n}\right)$

$$
\begin{aligned}
j^{2 n \phi_{v}} & =\log _{e}\left(-D \pm \sqrt{ } \overline{D^{2}-1}\right) \\
& =\log _{e}|-d \pm 2 n|+j \pi(2 v-1)
\end{aligned}
$$

$$
\therefore \phi_{v}=(\underline{2} v-\mathbf{1}) \psi \pm j \log _{c} d ;
$$

$$
\text { where } z^{\prime}=1,2,3, \ldots n ; \psi=\frac{\pi}{2 n} .
$$

The zeros of $S=\left|\frac{V^{\prime} \text { in }}{V_{\text {out }}}\right|^{2}$ are therefore:

$$
\begin{aligned}
\Omega_{v} & =\cos \phi_{v}=\cos \left[(2 v-1) \psi \pm j \log _{e} d\right] \\
& =\frac{1}{2 d}\left[\left(1+d^{2}\right) \cos \theta_{v} \pm j\left(1-d^{2}\right) \sin \theta_{v}\right]
\end{aligned}
$$

where $\theta_{v}=(2 v-1) \frac{\pi}{2 n} ; v=1,2,3, \ldots n$.

Fig. 8. Maximally-flat constant-resistance band-pass filter of Example 1.

The zeros of $K=\left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)$ are therefore:
$\Omega_{v}=\frac{1}{2 d}\left[\left(1+d^{2}\right) \cos \theta_{v}+j\left(1-d^{2}\right) \sin \theta_{v}\right]$
R may therefore be expressed as the following product:

$$
\begin{equation*}
R=\left(\frac{V_{i n}}{V_{\text {out }}}\right)=K K^{\prime \prime}(2 d)^{n j j^{n}} \times \tag{20}
\end{equation*}
$$

$\prod_{v=1}^{n}\left\{\Omega-\frac{1+d^{2}}{2 d} \cos \theta_{v}-j \frac{1-d^{2}}{2 d} \sin \theta_{v}\right\}$
The factor $(2 d)^{n}$ is due to the equality of the coefficients of $\Omega^{2 n}$ in the equation $S=|R|^{2}$.

$$
\begin{align*}
& \left(\frac{V_{\text {in }}}{V_{\text {out }}}\right)=\left\{K K^{\prime}\left(1-d^{2}\right)^{n} \prod_{v=1}^{n} \sin \theta_{v}\right\} \times \\
& \prod_{v=1}^{n}\left\{1-j\left(\frac{1+d^{2}}{1-d^{2}}\right) \cot \theta_{v}+\right. \\
& \left.j\left(\frac{2 d}{1-d^{2}}\right) \frac{1}{\sin \theta_{v}}\left(\frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right)\right\} \\
& =\left\{\frac{K K^{\prime}\left(1-d^{2}\right)^{n}}{2^{n-1}}\right\} \prod_{v=1}^{n}\left\{1-j\left(\frac{1+d^{2}}{1-d^{2}}\right) \cot \theta_{v}\right. \\
& \left.\quad+j\left(\frac{2 d}{1-d^{2}}\right) \frac{1}{\sin \theta_{v}}\left(\frac{\omega-\omega_{0}}{\omega^{\prime}-\omega_{0}}\right)\right\} \quad \cdots \quad(21) \tag{21}
\end{align*}
$$

By comparing (6) and (21) we deduce:
(1) Mid-band loss $=20 \log K$

$$
\begin{equation*}
=20 \log \frac{2^{n-1}\left(1-d^{2 n}\right)}{\left(1-d^{2}\right)^{n}} \mathrm{db} . \tag{22}
\end{equation*}
$$

(2) The Q of the v th stage is given by:
$Q_{v} \approx\left(\frac{2 d}{1-d^{2}}\right)\left(\frac{\omega_{0}}{\omega^{\prime}-\omega^{\prime \prime}}\right) \frac{1}{\sin (2 v-1) \frac{\pi}{2 n}}$
(3) The detuning of the v th stage is given by:
$\left(\omega_{0} v-\omega_{0}\right)=\left(\frac{1+d^{2}}{4 d}\right)\left(\omega^{\prime}-\omega^{\prime \prime}\right) \cos (2 v-1) \frac{\pi}{2 n}$

4. Typical Examples

Example (1) A maximally-flat constant-resistance filter is to be calculated having: $n=3, \quad \omega_{0}=10^{6}, \quad\left(\omega^{\prime}-\omega^{\prime \prime}\right)=10^{5}$,

$$
\left|\frac{V_{\text {out } \max }}{V_{\text {out } \min }}\right|=2 \text { and } R=1000 \Omega .
$$

We have $k=\sqrt[2 n]{\left.\left|V_{V_{\text {out }} \text { max }}\right|_{\text {oun }}\right|^{2}-1}=1 \cdot 2$,

$$
\psi=\frac{\pi}{2 n}=30^{\circ}, \theta_{1}=30^{\circ}, \theta_{2}=90^{\circ}, \theta_{3}=150^{\circ} .
$$

Fig. 9. Response of maximally-flat banl-pass filter of Example 1 and Fig. 7.

$$
\begin{aligned}
Q_{v} & =k \frac{\omega_{0}}{\omega^{\prime}+\omega^{\prime \prime}} \frac{1}{\sin \theta_{v}}=\frac{12}{\sin \theta_{v}} \\
Q_{1} & =24, Q_{2}=12, Q_{3}=\mathbf{2} \\
\left(\omega_{0} v-\omega_{0}\right) & =\frac{\cos \theta_{v}}{2 k}\left(\omega^{\prime}-\omega^{\prime \prime}\right) \\
& =4 \cdot 17 \times 10^{4} \cos \theta_{v} \\
\omega_{01}=1 \cdot 0361 & \times 10^{6}, \omega_{02}=10^{6}, \omega_{03}=9 \cdot 638 \times 10^{5} \\
L_{v} & =\frac{R Q_{v}}{\omega_{0 v}}, \quad C_{v}=\frac{1}{\omega_{0 v} R Q_{v}} \\
L_{v}^{\prime} & =\frac{R}{\omega_{0 v} Q_{v}}, \quad C_{v}^{\prime}=\frac{Q_{v}}{\omega_{0 v} R}
\end{aligned}
$$

The values of the circuit-elements are given in Fig. 8. The mid-band loss is $6(n-1)=12 \mathrm{db}$. (voltage ratio $4: 1$). The responses of the individual stages, as well as the overall response (which is equal to their product) are shown in Fig. 9.

Fig. 10. Quasi-Tchebyshev constant-resistance band-pass filter of Example 2 .

Example (2) A quasi-Tchebyshev constantresistance filter is to be calculated with: $n=3$,
$\omega_{0}=10^{6},\left(\omega^{\prime}-\omega^{\prime \prime}\right)=2 \times 10^{5},\left|\frac{V_{\text {out } \max }}{V_{\text {out } \min }}\right|=\sqrt{\mathbf{2}}$, and $R=1000 \Omega$.
We have: $h=\sqrt{\left|\frac{V_{\text {out } \max }}{V_{\text {out } \min }}\right|^{2}-1}=1$

$$
d^{2 n}=\frac{\sqrt{1+h^{2}}-1}{\sqrt{1+h^{2}}+1}, d^{6}=0 \cdot 1715, d=0 \cdot 7454
$$

Mid-band loss $=20 \log \frac{2^{2 n-1}\left(1-d^{2 n}\right)}{\left(1-d^{2}\right)^{n}}$

$$
=20 \log 37 \cdot 7=31.5 \mathrm{db}
$$

$$
Q_{v}=\left(\frac{2 d}{1-d^{2}}\right) \frac{\omega_{0}}{\omega^{\prime}-\omega^{\prime \prime}} \frac{1}{\sin \theta_{v}}=\frac{16 \cdot 8}{\sin \theta_{v}}
$$

$$
\begin{aligned}
Q_{1} & =33.6, Q_{2}=16 \cdot 8, Q_{3}=33 \cdot 6 \\
\left(\omega_{0 v}-\omega_{0}\right) & =\frac{1+\mathrm{d}^{2}}{4 d}\left(\omega^{\prime}-\omega^{\prime \prime}\right) \cos \theta_{v} \\
& =10 \cdot 4 \times 10^{4} \cos \theta_{v}
\end{aligned}
$$

$\omega_{01}=1.09 \times 10^{6}, \quad \omega_{02}=10^{6}, \omega_{03}=9 \cdot 1 \times 10^{5}$. The filter is shown in Fig. 10. The responses of the individual stages, as well as the overall response (which is equal to their product), are shown in Fig. 11.

Fig. 11. Response of quasi-Tchebyshev band-pass filter of Example 2 and Fig. 9.

REFERENCES

${ }^{1}$ G. E. Vallev and H. Wallman, "Vacuum Tube Amplifiers," M.I.T. Radiation Laboratory Series, Vol. $1 \$$, McGraw-Hill, 1948 (Chap. 4). ${ }^{2}$ A. Linnebach, "Mehrkreisige Siebschaltungen mit ausgeglicherer Resonanzkurve," E.V.T., 1043, Vol. 20, No. 10, pp. 238-250.
${ }^{3}$ W. W. Munford, "Maximally-Flat Filters in Waveguide," Bell Syst. Tech. J., Vol. 27 (1948), No. 4, pp. 684-713.
*F.S. Atiya, "Theorie der Maximal-Geebneten und Quasi-Tschebischeff. schen Filter," Arch, elekt. Ubertragung, (1953), Vol. 3 No. 9. pp. 441-450. \& F. S. Atiya, "Mikrowellenbandfiter im Hohlleiter," 1952 , Leemann, Zurich.

ELECTRON MULTIPLIER VALVE

Comparison with the Conventional R.F. Amplifier

By A. Lempicki, m.Sc., A.R.c.S., A.Inst.P.
(Elecironic Tubes, Lid., High Wycombe, Bucks.)

Abstract

SUMMARY.-A detailed comparison of the performance of an electron multiplier with that of a conventional valve is given. The conclusion is that whenever bandwidth requirements are high the use of multipliers may be beneficial. Arguments against making the overall multiplication ratio larger than approximately 10 are presented. H.F. limitations due to times of flight and signal-to-noise ratio are discussed.

1. Introduction

IT has been known for a long time that the use of secondary-electron multiplication can considerably increase the performance of receiving valves. ${ }^{1}$ It will be shown below that the electron multıplier has a field of utility in a considerable range of irequencies and bandwidth just outside those available for an ordinary valve. It is proposed to estimate the extent of this useful range by considering the limitations imposed by irreducible capacitances, electron time of flight and signal-to-noise ratio.

The multiplier which we shall compare with a valve is schematically represented in Fig. 1. The input structure (i.e., cathode, control grid, and screen grid) is essentially identical with the corresponding part of an r.f. pentode. The primary electron beam is directed on to the secondary emitting surface and the secondaries are collected by a grid which plays the part of an anode. It should be pointed out that electrode capacitances in a valve and a multiplier of this type can be made very nearly equal, so that the increase in mutual conductance due to multiplication need not be offset by any increase in capacitance.

2. Transit-Time Limitations

The quantity which is of importance for the design of wideband amplifiers is the product of the gain, G, and bandwidth, B. This product was shown by Hansen ${ }^{2}$ to be:* -

$$
\begin{equation*}
G . B=\frac{g}{2 \pi C} \tag{l}
\end{equation*}
$$

where C is the total capacitance determining the frequency of the tuned anode circuit and g the mutual conductance. If g can be increased by secondary-emission multiplication the value of the product $G . B$ can be increased in the same proportion. This would seem to open nearly unlimited possibilities since, with a multi-stage multiplier, multiplication ratios of the order of 10^{3} or more could be contemplated. This, how-

[^7]ever, is not the case. We shall show that an overall multiplication ratio greater than about 10 is not practical. The limitation arises because the value $G . B$ for the multiplier, although proportional to the secondary multiplication ratio, δ, cannot be increased beyond a limit imposed by the electron time of flight τ between cathode and control grid. On account of this finite time of flight the valve cannot be operated at frequencies larger than $1 / \tau$.

Fig. 1. Schematic representation of electron multiplier.
Replacing the valve by its equivalent diode, we can express the value of $G . B$ in terms of the equivalent anode voltage V and distance d. The maximum value of $G . B$ will be obtained if we use the minimum irreducible capacitance C_{m} of the diode considered as a plane parallel capacitor. By using Child's Law ${ }^{3}$ we obtain

$$
\begin{equation*}
(G . B)_{\max }=\frac{g}{2 \pi C_{m}}=0.7 \times 10^{7} \frac{V^{\frac{1}{2}}}{d} \cdots \tag{2}
\end{equation*}
$$

We now compare this result with an expression ${ }^{4}$ for the time of flight τ :-

$$
\begin{equation*}
\tau=\int_{0}^{d} \frac{d x}{v(x)} \tag{3}
\end{equation*}
$$

which again by Child's Law may be shown to be:-

$$
\begin{equation*}
\tau=0.5 \times 10^{-7} \frac{d}{V^{\frac{1}{2}}} \tag{4}
\end{equation*}
$$

From (2) and (4) we see that
$(G . B)_{\text {max }} \approx \frac{\mathbf{l}}{\tau}$
Thus the maximum value of ($G . B$) is of the order of the reciprocal of the electron time of flight between cathode and grid.

In general we shall have an expression:-

$$
\begin{equation*}
G=m \frac{\mathbf{l}}{B} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
0<m<m_{0}=\frac{g}{2 \pi C_{m}} \tag{7}
\end{equation*}
$$

Equation (6) corresponds to a family of hyperbolae of which two are shown on Fig. 2. The curve passing through B and C corresponds to the limiting case (5) and the valve cannot operate at the gain and bandwidth corresponding to any point lying above this curve. Suppose, however, that the actual capacitance C which we should have taken into account is $\alpha>1$ times larger than the limiting capacitance \vec{C}_{m}. The hyperbola passing through A and D corresponds to this case. If we choose now any point between this curve and the co-ordinate axes, the valve should be able to supply the corresponding bandwidth and gain. For practical reasons it is not worth while, and is even disadvantageous under certain conditions, to use smaller gains than 2 to 3. This lower limit corresponds to G_{0} in Fig. 2. Let us also introduce a certain maximum gain G_{m} and thus define the 'working area' of the valve as given by $G_{0} \mathrm{AD}$ G_{m}. The maximum bandwidth available is that given by the point A:-

$$
\begin{equation*}
B_{A}=\frac{m_{\mathbf{0}}}{\alpha} \frac{1}{G_{0}} \tag{8}
\end{equation*}
$$

Since we cannot increase the bandwidth any more by reducing the capacitance, the only other alternative is to increase m_{0} by increasing the slope of the valve by electron multiplication. Allowing the current to increase δ times we can increase the slope in the same ratio. ${ }^{1}$ Hence the maximum bandwidth attainable will be:-

$$
\begin{equation*}
B_{\max }=\frac{m_{0} \delta}{\alpha} \frac{1}{G_{0}} \tag{9}
\end{equation*}
$$

There is no point, however, in making δ larger than a since the maximum value of m cannot exceed m_{0} on account of the time of flight of the electron in the cathode to grid space.

We arrive thus at the following conclusion: if we want to increase the performance of a valve we should include between its control grid and anode an electron multiplier stage with a multiplication ratio

$$
\begin{equation*}
\delta_{u s e f u l}=\alpha=\frac{C}{C_{m}} \tag{10}
\end{equation*}
$$

This will increase the gain obtainable for a particular bandwidth to a maximum value which is determined by the electronic time of flight and expressed by (5).

We want now to obtain an estimate of the magnitude of $\delta_{\text {useful }}$ for a practical case. Suppose we add a multiplier stage to the r.f. pentode 6AM6. C_{m} is a quantity which is difficult either to measure or to calculate since it comprises only the capacitance of the cathode to control grid under the assumption that the equivalent anode is in the plane of the grid. We can, however, use the limiting condition

$$
\begin{equation*}
\frac{g}{2 \pi C_{m}} \approx \frac{1}{\tau} \tag{11}
\end{equation*}
$$

provided we can calculate τ. If we use formula (4) for this purpose, uncertainty arises as to the value of the equivalent anode voltage since the valve is normally run with the grid negative. The capacitance C is equal to the capacitance of the grid to all electrodes of the valve (input capacitance) plus the stray capacitances of the circuit and the capacitance of the preceding valve.

From (4), (10) and (11) we obtain:-

$$
\begin{equation*}
\delta_{u s e f u l}=\frac{4 \pi C V}{g d} \times 10^{7} \tag{12}
\end{equation*}
$$

Using the following values for the 6AM6:-

$$
\begin{aligned}
& C=2 C_{\text {input }}=14 \times 10^{-12} \mathrm{~F} \\
& V=0.2 \mathrm{~V} \\
& g=6 \times 10^{-3} \mathrm{~A} / \mathrm{V} \\
& d=1 \cdot 5 \times 10^{-2} \mathrm{~cm}
\end{aligned}
$$

we obtain:- $\delta_{\text {useful }} \approx 9$
Hence, by the use of electron multiplication, we can increase the value of $G . B$ by a factor of the order of 10 . 'This proves the assertion made above that a multistage multiplier with a very large overall multiplication ratio would, from the point of view of the G. B product, be no better than a single-stage valve with $\delta=10$.

Fig. 3. Diagram for compuling the relative performance of an ordinary valve and a multiplier type.

3. Performance at High Frequencies

(a) Limitations due to Input Impedance.

It is well known that as the frequency increases the gain obtainable from a valve gradually decreases. We have seen in Section 2 that there is a maximum gain for any particular value of bandwidth. We must remember, however, that for a given bandwidth we can have different values of the carrier frequency which can also affect the performance of the valve. In other words a valve may lose performance even if it is operated well within the limits of the G.B product if the frequency is too high. The quantity m, sometimes called the figure of merit, is therefore not a unique basis for classification of valves.

There are thus two questions to be answered: (a) given a certain bandwidth B and frequency f can a particular valve provide any useful gain under these conditions, and (b) in what respect is a
multiplier better than a conventional valve?
The maximum gain for a given banclwidth is given by (6). To obtain this gain we have to use a damping resistance given by:-

$$
\begin{equation*}
R_{d}=\frac{G}{g} \tag{13}
\end{equation*}
$$

The damping resistance R_{d} is composed of the anode load K_{L} and the input impedance of the next valve $R_{i n}$ taken in parallel:-

$$
R_{d}=\frac{R_{L} R_{i n}}{R_{L}+R_{i n}}
$$

Hence:-

$$
R_{L}=\frac{R_{d} R_{i n}}{R_{L}-R_{i n}}
$$

Since R_{L} must be positive, the condition necessary to obtain the gain G is

$$
\begin{equation*}
R_{d d}<R_{i n} \tag{14}
\end{equation*}
$$

The input impedance is inversely proportional to the square of the frequency:-

$$
\begin{equation*}
K_{i n}=\frac{k}{f^{2}} \tag{15}
\end{equation*}
$$

where k is a constant determined by the geometry of the valve. Using (6), (13), (14) and (15) the condition for operation is

$$
\begin{equation*}
\frac{k}{m} g>\frac{f^{2}}{B} \tag{16}
\end{equation*}
$$

To compare the performance of a valve with that of a multiplier made by addition of a single multiplication stage ($\delta=10$ say) we shall consider the case of the pentode $61 M 6$ and the Birmingham television transmitter ($f_{0}=70 \mathrm{Mc} / \mathrm{s}$; $\left.B_{0}=3 \mathrm{Mc} / \mathrm{s}\right)$.

In Fig. 3 the three co-ordinate axes have their origin at 0 . We can look upon the system of coordinates as rectangular and viewed in perspective or as a plane system of oblique axes. Consider first the axes G and B. The two straight lines correspond to the two hyperbolae of liig. ${ }^{3}$ plotted on a logarithmic scale and determine the maximum gains G_{v} and G_{m} that could be obtained by using respectively a valve and a multiplier at a bandwidth B_{0}. "These gains can be obtained by using a suitable damping resistance R_{d} defined by equation (13). Denoting by g_{v} and g_{n} the slopes of the valve and multiplier respectively and plotting (13) on a logarithmic scale, we obtain the two straight lines in the system of axes $R_{t t}-G$. It is obvious that the damping resistance in both cases must be the same (although the gain oi the multiplier will be 10 times larger, its slope is also increased in the same ratio). We thus find a resistance $R_{d} d^{\prime}$ which must be used in order to obtain maximum gain both for the valve and the multiplier, compatible with the $G . B$ limitation.

Consider now the axis $R_{\text {inpu }}-f$. The line plotted in this system corresponds to (15). The
constant k was determined from a single measurement of input impedance ($R_{\text {input }}=10^{4} \Omega$ at $f=45 \mathrm{Mc} / \mathrm{s})$. To a frequency f_{0} corresponds an input impedance R_{m}. From condition (14) it follows that unless the point $R_{d}{ }^{\prime}$ falls below R^{\prime} in on the $R_{i n p u t} R_{d}$ axis we cannot obtain the prescribed gain at the particular frequency and bandwidth.

It follows from these considerations that if a multiplier has the same value of the constant k as a valve (same input impedance-frequency characteristic) there exists for both the same limiting frequency (for a fixed bandwidth) at which both will cease operation. It should be stressed, however, that under possible operating conditions the multiplier will always have a larger gain by a factor δ. This is a very important advantage, especially when the bandwidth required is high.
We have assumed above that the input impedance of a multiplier is the same as that of a valve possessing the same input structure. This is a reasonable assumption if we look upon input impedance as being due to the finite time of flight from cathode to grid and to the inductance of cathode leads.
(b) Frequency Limitations due to the Multiplier Section.
We have hitherto discussed the limitations imposed upon high-frequency performance due to the input structure and therefore common to the conventional valve and a multiplier. We concluded that the existence of a finite time of flight τ in the cathode to grid space and certain irreducible capacitances of the valve will limit the useful multiplication ratio δ and the maximum frequency at which the tube can operate.

We now want to know whether this frequency limit will be further reduced by the events in the multiplier section. The problem of frequency response is exceedingly complicated and it does not seem rewarding to do more than discuss it in a qualitative way.

Consider an electron starting from the input (say the plane of the screen grid) and flying through the anode to the secondary emitter and causing the emission of δ secondaries. This series of events will produce a pulse of current in the anode circuit, the duration of which is equal to:-

$$
\tau_{0}=\tau_{1}+\tau_{2}+\tau_{3}+\tau_{4}
$$

where:-
$\tau_{1}-$ transit time from screen grid to anode.
τ_{2} - transit time from anode to secondary emitter.
τ_{3} - time delay in secondary emission.
τ_{4} - transit time from secondary emission to anode.

Let us first assume that these transit times are constant and equal for all electrons. If the multiplication ratio δ is also equal for all electrons, the pulses due to them will be identical, differing only in phase. The total anode current may be obtained by summing all these pulses.

Suppose now that the signal frequency is small compared with $1 / \tau_{0}$. The shape of the pulse will not greatly influence the low-frequency components and the gain of the valve will be determined by δ.

In some types of multipliers (like the orbital type described by Bull and Atherton ${ }^{5}$), τ_{1} may be very much larger than $\dot{\tau}_{2}+\tau_{3}+\tau_{4}$ on account of large screen grid to anode distance. During τ_{1} we shall thus have a slow rise of current in the anode circuit. If the frequency is considerably larger than $1 / \tau_{1}$ this induced current will be very nearly averaged to zero and the effect of τ_{1} will be to delay the signal. As an electron passes the anode towards the secondary emitter, it produces a current in the opposite direction to that which was flowing while the electron was approaching the anode. The anode thus appears to lose a charge just before it starts acquiring δ of them in virtue of multiplication. It follows that at certain frequencies, comparable with $1 /\left(\tau_{2}+\tau_{3}+\tau_{4}\right)$, the gain will be determined by $\delta-\mathbf{1}$. For still higher frequencies, when the number of oscillations during the time $\tau_{2}+\tau_{3}+\tau_{4}$ becomes large, the gain will fall to zero.

An exact solution of the problem would require a knowledge of the shapes of the induced pulses and their Fourier analysis. Moreover, the assumption which we made at the beginning about the constancy of the various times of flight is at best only an approximation. τ_{1} and τ_{2} will vary on account of clifferent thermal emission velocities and path lengths. τ_{3} and τ_{4} will also be statistically distributed on account of the fluctuation in secondary-emission delay times and initial velocities.

As mentioned above, the experimental approach to the problem of the frequency response of multipliers is the only one possible. Experiments, however, cannot separate effects due to input structure from those described in this section. Which part of the valve is responsible for the initial fall of gain will depend upon the value of the ratio:-

$$
\frac{\tau}{\tau_{2}+\tau_{3}+\tau_{4}}
$$

where τ is the cathode to grid time of flight. Assuming that τ is given by (4) with the values of V and d corresponding to the 6AM6, we have $\tau \approx 2 \times 10^{-9}$ seconds. In absence of space charge between secondary emitter and anode the time of flight is given by :-

$$
\tau_{4}=\frac{10^{-7} d^{\prime}}{5 \cdot 9 V^{t}}
$$

where d^{\prime} is the secondary emitter to anode clearance, and V^{\prime} the voltage difference. Putting $d^{\prime}=0.05 \mathrm{~cm}$ and $V^{\prime}=100 \mathrm{~V}$, we obtain $\tau_{4} \approx$ 10^{-10}. Since $\tau_{2}<4$, the fall of gain could be due to the multiplier section only if τ_{3} (secondaryemission delay time) were much longer than 10^{-9} seconds. This appears to be unlikely.* We should expect, therefore, that with the above approximate clearances there would be no serious limitations on high-frequency performance due to the multiplier section.

Fig. 4. Three-stage high-frequency amplifier.

4. Noise Considerations

We must now complete the comparison between a valve and a multiplier by considering the noise aspect.

It is well-known that secondary-emission multiplication increases the shot noise of the primary current by a certain factor. For the sake of the present discussion it will be sufficient to assume that the equivalent noise resistance $R_{n}{ }^{\prime}$ for a multiplier is given by:-

$$
\begin{equation*}
R_{n}{ }^{\prime}=\gamma R_{n} \ldots \tag{17}
\end{equation*}
$$

where γ is a constant larger than unity and R_{n} is the equivalent noise resistance of a pentode of similar input structure to the multiplier.
Fig. 4 represents a three-stage amplifier for high frequencies. In this schematic representation Z is the load impedance which is nearly equal to the input impedance of the valves. If we let G be the gain per stage, v_{s} the r.m.s. value of the signal voltage and g the mutual conductance of the valves, then:-

$$
G=g|Z|
$$

The output voltage after n stages of amplification is:-

$$
\begin{equation*}
V_{s}=G^{n} v_{s} \ldots \tag{18}
\end{equation*}
$$

To obtain the signal-to-noise ratio we have to compute the output noise voltage. At-the input the noise mean-square voltage due to circuit resistances is:-

[^8]
$4 k T R_{z} B$

where R_{z} is the resistive component of Z. After one stage of amplification this voltage becomes:$4 k T B\left(R_{z}+R_{n}\right) G^{2}+4 k T B R_{z}$
After two stages:-
$\left\{4 k T B\left(R_{z}+R_{n}\right) G^{2}+4 k T B R_{z}\right\} G^{2}+4 k T B R_{z}$ and so on. Summing the geometrical series for n stages, we obtain the output mean-square noise voltage:-

$$
\begin{equation*}
V_{n}^{2}=4 k T B\left\{R_{n} G^{2 n}+\frac{1-G^{2 n+2}}{1-G^{2}} R_{z}\right\} \ldots \tag{19}
\end{equation*}
$$

Hence the signal-to-noise ratio is:-

We are now interested in the comparison of signal-to-noise ratios for amplifiers using alternatively valves and multipliers.

Let us consider two specific examples. Suppose first that we want to make an amplifier with an overall gain of 120 db and a bandwidth of approximately $3 \mathrm{Mc} / \mathrm{s}$. From Section 3 it follows that we can use the 6AM6 pentodes with a gain per stage of approximately 10 . The amplifier, therefore, must have six stages. From (20) the signal-tonoise ratio is:-

$$
\frac{V_{s}{ }^{2}}{V_{n}{ }^{2}}=\frac{v_{s}{ }^{2}}{4 k T B\left(R_{z}+R_{n}\right)}
$$

if we neglect 1 against G^{2}. We can obtain the same overall gain of 120 db by using four stages of multipliers with a gain per stage of 32 . Since $3 \cdot 2$ is a reasonable value of δ such an amplifier seems to be a practical proposition. The signal-to-noise ratio will be in this case:-

$$
\frac{V_{s}{ }^{2}}{V_{n}^{2}}=\frac{v_{s}{ }^{2}}{4 k T B\left(R_{z}+\gamma R_{n}\right)}
$$

As we see, the use of multipliers will cut down the number of stages but will, at the same time, decrease the signal-to-noise ratio. The question whether it is permissible to use multipliers cannot be answered in general without the knowledge of the values of γ, v_{s} and the required signal-to-noise ratio. It seems that if the signal-to-noise ratio is the only limitation (the valves being otherwise operated well within the limits of their performance set up in Section 3) the use of multipliers may not be advantageous.

Let us consider now the second example. Suppose that the operating conditions of the valves are such that the maximum gain per stage is too small to be of any use. In this 'case we obtain the signal-to-noise ratio from (20) by taking the limit as G tends to unity:-

$$
\operatorname{Lt}_{G \rightarrow 1} \frac{V_{s}^{2}}{V_{n}^{2}}=\frac{v_{s}^{2}}{4 k T B\left\{R_{z}(1+n)+R_{n}\right\}}
$$

In this case we clearly do not get any benefit from the amplifier and the signal-to-noise ratio decreases as the number of stages is increased. A better performance may be obtained by the use of multipliers which can still supply a gain δ times larger. Substituting δ for G in (20) and γR_{n} for R_{n} we obtain:-

$$
\frac{V_{s}^{2}}{V_{n}^{2}}=\frac{\delta^{2 n} v_{s}{ }^{2}}{4 k T B\left\{\gamma R_{n} \delta^{2 n}+\frac{1-\delta^{2 n+2}}{1-\delta^{2}} R_{z}\right\}}
$$

In this case as we increase the number of stages the signal-to-noise ratio will not tend to zero as before but to a fixed value given by:-

$$
\operatorname{Lt}_{n \rightarrow \infty} \frac{V_{s}^{2}}{V_{n}^{2}}=\frac{v_{s}}{4 k T B\left\{\gamma R_{n}+R_{z} \frac{\delta^{2}}{\delta^{2}-1}\right\}}
$$

If the value of signal-to-noise ratio given by (21) is not smaller than the required one, we can thus, at least in principle, amplify the signal by using a sufficiently large number of stages.

We can summarize these results as follows:-
(a) If the valves are operated well within the limits of their performance and the signal-tonoise ratio cannot exceed a certain specified value then the reduction of the number of stages by
using multipliers may not be permissible on account of the increased noise.
(b) If the operating conditions are such that the valves cannot supply any useful gain, we have to use multipliers. The signal-to-noise ratio will tend to the value given by (21) as we increase the number of stages.
(c) It does not appear possible to give a general ruling in favour of the multipliers. The decision to use them must be based on the following considerations:-
(i) Determination of the maximum possible gain per stage for a set of operating conditions (frequency and bandwidth).
(ii) Possibility of obtaining the required overall gain and signal-to-noise ratio in a practical number of stages.

Acknowledgment

The author is indebted to Mr. B. Wilkinson, Managing Director of Electronic Tubes, Ltd., for permission to publish this paper. The arguments presented in Section 2 are essentially due to Dr. C. S. Bull. To him and to Mr. E. Grodszinsky the author is indebted for many discussions.

REFERENCES

${ }^{1}$ Jonker and Overbeck, Wireless Eingineer, 1938, Vol. 15, 150.
${ }^{2}$ Hansen, J. Appl. Phys., 1945, Vol. 16, p. 528.
${ }^{3}$ K. R. Spangenberg: "Vacuum Tubes," N. Y., 1948, p. 171.
${ }^{4}$ ibid, p. 512.
${ }^{5}$ Bull and Atherton, Proc. Instn clect. Engrs, 1950, Vol. 97, Part II1, p. 65.

NEW BOOKS

The M.K.S. System of Units: A Guide for Electrical

 EngineersBy T. McGreevy, M.Sc.Tech., M.1.E.E. Pp. 283 + xii. Sir Isaac Pitman \& Sons, Ltd., Parker Street, Kingsway, London, W.C.2. Price 21 s .

The first thing expected of a guide is that he shall know where he is going himself; the next is that he shall choose a route within the capacity of his charges; and finally he must inspire sufficient confidence for them to follow him. The author fulfils his undertakings in all these respects, and this book is a most useful contribution to the growing literature on the teaching of electricity in terms of rationalized m.k.s. units. Two classes of reader have been considered, the practising electrical engineer, and the teacher of whole-time and part-time classes in the electrical-engineering departments of technical colleges. The radio engineer has not been specifically catered for, and the reason is clear; the advantages of the m.k.s. system in field theory have been realized for so long that he has, so to speak, been sitting on the summit for years and needs neither encouragement to make the climb nor the assistance of a guide en route. Nevertheless, as physical data still emerge originally in c.g.s. units, the careful discussion of the relation between these and the m.k.s. units, and the conversion tables in the appendix, make this a generally useful reference book; however well you know your bearings, you are always better off with a good map.

In the first five chapters, mainly for the engineer whose
chief concern is in applying standard formulae, the numerical changes in going from one system to another are explained, prefaced by an account of the relationships involved. The remainder of the book is largely for teachers. It would be hard to persuade anyone who has not wrestled with elementary students that merely changing the system of units can lead to clearer teaching; yet this is indeed the case. In the c.g.s. system most of the sums come right even if you confuse B and H-so a proper treatment seems needlessly pedantic to the beginner. In the m.k.s. system things have to be worked out properly from the start. While agreeing with the author that the point magnetic pole is a bad startingpoint for a system of measurement, the reviewer feels a little kinder towards it as a concept; it is just as respectable as a magnetic quantum number, and just about as tangible. The m.k.s. system could readily be used with the old teaching sequence; but once it becomes urgent to distinguish B and H a much better sequence is possible, using the basic electrical unit, the ampere, as the logical starting-point. The real beauty of the system is that it casts no impediment in the way of a course with a sound practical foundation which both satisfies the teacher's conscience and is also manifestly practical to the student.

There are several ways of doing this. One is to base the treatment on the mechanical force between circuitelements, which has the disadvantage, for the engineer who is concerned with the magnetic properties of materials, that H hardly comes into the scheme at all.

Another is what may be called the 'uniform-field' approach, which probably commends itself most to the teacher of pure physics or the radio student whose main interest later on is in field theory. Mr. Mefreever introduces $/ /$ as the concept which is described vectorially in advanced work as the gradient of a scalar function of position. Associated with a current I in N^{\prime} parallel concluctors is the magnetomotive force $N I I$; this is the lineintegral of H. A very sonnd first step, though the term 'm.m.f.-gradient' for H is perhaps unhappy. The experimental starting point is the measurement of B using the fluxmeter, and an ingenious method is suggested for measuring $/ /$ within an iron anchor-ring with an airsap.

In the later chapters the more important formulae for instruments, machines, and power calculations are derived from first principles. In the chapter on telecommunications, the only cases directly considered are conversions of purely acoustic quantities into m.k.s. units. The starting-point in electrostatics is the mechanical force between the plates of a capacitor, again a direct relationship to simple experiment.

Some earlier writers gave undue prominence to recondite dimensional arguments, side-tracking the main issues and laying themselves open to retorts in kind. The author cloes not do this, of course, and in the chapter on dimensions (which in a work as comprehensive as this was probably included for completeness only) poinis out that checking by units is often much more profitable than trying to check a formula by dimensions. "his is, indeed, felt by many people to be a valuable feature of the m.k.s. unit system in which it can so easily be done

Teachers will welcone the careful attention to practical teaching problems in particular, the different approaches suggested for part-time and whole-time students and also the references in the text which embrace all the really inportant English publications on m.k.s. units. The book can be thoroughly recommended as an introduction and guide to the system
G. R. N.

Electron Optics

13y O. Klemperer. Pp. $471+$ xii with 168 illustrations. Cambridge University Press, 200 Euston Road, Jondon, N゙. WV.1. Price Jols.

This is one of the Cambridge Monographs on Physics; it is a second edition but the first edition, published in 1939, when the subject of electron optics was at an early stage of development, was a small tract, a fraction of the size of the present volume. The author, who is Assistant Professor at the Imperial College, is a well-known authority on the subject, having not only published many papers but also taken out a number of patents. The object of the book is not only to introduce the student to a specialized subject, but also to present the research worker or designer of electron-optical gear, with the basic principles and the most essential quantitative information.

The first five of the twelve chapters give an outline of the principles of electron lenses, hoth electrostatic and magnetic, fiek plotting and ray tracing; two chapters are then devoted to lens errors, which are discussed from an essentially experimental point of view, and a chapter to the effects of space charge. Chapters $I X$ and X deal with various emission systems and line focusing. Chapter XI deals very fully with deflecting fields, both electric and magnetic, and in the final chapter the author discusses the application of eleciron optics in industry and research.

The book concludes with a very extensive bibliography of abont 500 references. It is a pity that more care was not taken with the Tables of units in the appendix, in which Joules and Maxwells are always printed with
capital letters and amperes, coulombs, ganss, newtons and henrys with small letters; also Ω is not the symbol for resistance; this should be R, and Ω should be in the next colnmn as an abbreviation or symbol for the ohm The statement that a pressure of a newton per square metre is equal to 10 (lvines/cn) (or 10^{5} bar or 7.5) 10^{3} 1 mm Hg) is wrong; a har $=10^{6}$ dvnes/cm ${ }^{2}$ and therefore 10 dymes $/ \mathrm{cm}^{2}=10^{-5}$ bar. These are minor details which detract little from the value of the book, which can be thoroughly recommended to anyone interested in electron optics.
G. W. O. H.

Faster than Thought

Edited by 13. V. Bowden. Pp. 416 - xix. Sir Isaac Pitman \& Sons, L.tcl., l'arker Street, Kingsway, London, WV.C.2. Price 3is.
A foreword is contributed by the Earl of Halsbury, and 23 authors have assisted the editor, the majority of them being concerned with only one chapter. They are listed, together with the chapters to which they contributed, on page x. Their collective achievement is remarliable The fundamental information about basic principles and circuits, the way in which a typical modern digital computing machine is built of these basic circuits, performance, maintenance and 'programming' are all there, and yet the reader not concerned with the detailed operation is given a clear and often humorous account of the historical development of such machines, a description of important British machines, a discussion of actual and potential applications of these machines to logical problems, technology, Government calculations, commerce, and even to chess, draughts and "Nim."

The first chapter is historical; the life and work of Charles IBabbage are prominent. This is fitting because Babbage visualized most of the ideas needed for modern large-scale digital computers, but valves and 'electronics' make it very much easier now than in Babbage's lifetime to carry out these ideas practically. The frontispiece is a portratit of Acla Augusta, Countess of Lovelace and danghter of Lord Byron, one of the few contemporaries who really understood what labbage was trying to do.

Circuit components and the organization of a typical machine are discussed in the second and third chapters; only here are the basic units required for the construction of a cligital computer considered in detail. Elsewhere the machine can be regarded as capable of performing ardition, subtraction, multiplication, division, and some logical operations on data supplied to it in the right form. The machine must also be able to store such data and to set out the results of its operations suitably. Failures apparently occur remarkably seldom; performance and inaintenance are considered in Chapter 4. The most conplicated mathematical operation can be 'broken down' into a number of funclamental operations; a 'convenient working-list' of such funclamental operations is given in Chapter 5. Iranslating the problem into 'machine language' is called 'programming.' and this often requires a large proportion of the total effort

The principal British digital calculating machines are discussed in Chapters 6 to 13 , namely the University of Manchester compating machine (M.A.D.M.), the Cambridge 'Electronic Delay Storage Automatic Calculator' (E.I.S....C.), the National Physical 1.aboratory (Ted(lington) 'Automatic Computing Engine' (A.C.E.), the Harwell electronic digital computer, the Telecommunications Research Establishment (Malvern) parallel electronic digital computer, the Imperial College (Lonclon) conputing engine (a small relay machine of parallel type), the Roya! Aircraft Establishment (Farnborough) se(puence-controlled calculator, and various machines at the Birkbeck College (London) computation laboratory. American machines are only brielly reviewed in Chapter 14 because they are adequately discussed elsewhere.

Applications in various fields are considered in Chapters $15-24$. In some cases, such as accountancy, there are processes which are simple and many times repeated; these could be taken over by a machine entirely. The way in which the Manchester machine could be used to determine the wages, P.A.Y.E. deductions, etc., for a factory employing about 4,000 people making light electrical equipment of all kinds has been worked out. In meteorology, however, the art of forecasting could never be reduced to a mechanical process, but the machine can be used to simplify our description of the weather. Complicated equations are available, for example, to tell us how much water is condensed out as cloud droplets when air is lifted. Solutions for several cases can he obtained mechanically and represented on a diagram which can tell the forecaster all he wishes to know about likely condensation in a few minutes.

In Chapter 25 the performance of a machine at chess. draughts and "Nim" are considered; the scores of actual games of chess and draughts played by machines against men are included. Finally, in Chapter 26, the performance of a machine is compared with that of men with outstanding computational ability like Professor Aitken, and the limitations of a machine's powers of 'thought' are cliscussed.

The advantage of these machines is their ability to perform suitable operations in a few microseconds; their limitation is that they can only 'talk their own language,' and do what has been built into them. They camot, at chess for example, take an overall view of the situation.

Considerable re-organization of modern life is required if we are to make adequate and efficient use of the potentialities of these machines. This book can be thoroughly recommended because it gives us a clear overall picture of how these machines work, when we should use them, and when we shall be wiser to call in the human expert. Sulficient further detail concerning basic circuits, indiviclual machines, etc., is also available for the minority who recuire it.
J. W. H.

Die Laplace-Transformation und ihre Anwendung

By Paul Flink, Hans Sagan and Franz Selig. ${ }^{2}{ }^{1}$ p. $106+$ vii. Franz Deuticke, \& Helferstorferstrasse, Wien 1, Austria. Price 16 ss . Sd.

Théorie des Circuits Impulsionnels

By H. Borg. Pp. 193 + viii. Editions de la Revue d'Optique, 1 tī̃ rue de Sevres; 3 and 5 Boulevard Pasteur, Paris lije, France.

Les Redresseurs en Simple Alternance

By J. Lecorgitllier. Pp. 158. Editions Eyrolles, 61 boulevard Saint-Germain, Paris 5e, France. l'rice 1,850 francs.

Les Régimes Transitoires dans les Réseaux Electriques

By 1'atle Poncelot. Pp. 13:. Gauthier-Villars, 55 Quai des Grands-Augustins, Paris, France.

Les Lignes a Retard et leur Utilisation

By Gastox Potrer. l'p. $102+$ viii. Gauthier-Villars, 5.5 Quai des Grands-Augustins, Paris, France.

These two books belong to the series of monographs "Les Filtres Electriques," editell ty Pierre David.

Osram Valve Manual

Part 2.-Transmitting and Industrial Valves Engineering Data. Pp. 217. The General Electric Co. Ltd., Magnet House, Kingsway, London, W.C.2. Price 10s.

TECHNICAL PUBLICATIONS

Ferroxcube

Pp. 46. Mullard, L.td., Century House, Shaftesl)ury Avenue, London, W.C.2.
After an opening chapter on magnetic ferrites, this booklet gives details of the electrical, magnetic and mechanical properties of Ferroxcube, together with design clata for high- Q coils and a list of standard sizes of cores.

The Permanent Effect of Water on Varnished Coils

By H. R. Heap, B.Sc. E.R.A. Technical Report A/T 13s. Pp. \& with 7 illustrations. The British Electrical and Allied Inclustries Research Association, Thorncroft Manor, Dorking Road, Leatherhead, Surrey. Price 7s, 6d.

Measurement of Radio Interference in the Frequency Range 0.15 to $30 \mathrm{Mc} / \mathrm{s}$. A Portable Measuring Set.

By S. F. Pearce and D. C. G. Smith. E.R.A. Publication M T 116. Pp. $9+5$ figures. The Electrical Research Association, Thorncroft Manor, Dorking Road, Leatherhead, Surrey. Price 10s. 6d.

Measurement of Radio Interference in the Frequency

 Range 0.15 to $30 \mathrm{Mc} / \mathrm{s}$. A Mains Isolating Unit.By J. Miedzinski and S. F. Pearce. E.R.A. Publication $M T 117$. 1'p. 7 and 11 figures. The Electrical Research Λ ssociation, Thorncroft Manor, Dorking Road, Leatherhead, Surrey. Price I?s. 6d.

Measurements of Atmospheric Noise at High Frequencies 1945-1951

By F. llorner, M.Sc., A.M.I.E.E. Radio Research Special Report No. 26. 1'p. $40+\mathrm{iv}$. Published for the Department of Scientific \& Industrial Research by H.M. Stationery Office, York House, Kingsway, London, W.C.2. Price 1 s . 9 d

Copper in Instrumentation

Pp. 152. Copper Development Association, Kendlals Hall, Radlett, Herts.

Proceedings of the Western Computer Conference

Pp. 231. Published by the Institute of Raclio Engineers, Inc., 1 East 79 Street, New York 21, N.Y., U.S.A. Price $\$ 3.50$.
The conference was held by the Joint I.R.E.-A.I.E.E. A.C.M. Computer Conference Committee at Los Angeles, California, on th -6th February 1953. The proceedings contain the following papers:-
lieynote and Luucheon Iddresses.
"An Evaluation of Analog and Digital Computers," Panel Discussion.
"Commercial Applications-The Implication of Census Experience," J. L. Mcl'herson
"Payroll Accounting with Elecom 120 Computer," R. F. Shaw.
"Automatic Data Processing in Larger Manufacturing Plants,' M. E. Salveson and R. G. Canning.
"Kequirements of the Bureau of Old-Age and Survivors Insurance for Electronic Data Processing Equipment," E. E. Stickell.
"The Processing of Information-Containing Documents," G. IV. Brown and I. N. Ridenour.
"Airplane Landing Gear Performance Solutions with an Electronic Analog Computer," D. W. Drake and H. IV. Foster.
"The Equivalent Circuits of Shells used in Airframe Construction," R. H. MacNeal.
"Analog-Digital Techniques in Autopilot Design," W. T. Hunter and R. L. Johnson.
"Applications of Computers to Aircraft Dynamic Problems," B. Hall, R. Ruthrauff and D. Dill.
"The Snapping Dipoles of Ferroelectrics as a Memory Element for Digital Computers," C. F. Pulvari.
"Magnetic Reproducer and Printer," J. C. Sims, Jr,
"An Improved Cathode Ray Tule Storage System," R. Thorensen.
"Nonlinear Resistors in Logical Switching Circuits," F. A. Schwertz and R. T. Steinback.
"New Laboratory for Three-Dimensional Guided Missile Simulation," Louis Bauer.
"A New Concept in Analog Computers," Lee Cahn.
"A Magnetically Coupled Low-Cost High-Speed ShaftPosition Digitizer," A. J. Winter.
"The Solution of Partial Differential Equations by Difference Methods using the Electronic Differential Analyzer," R. M. Howe and V. S. Haneman.
"The Nordsieck Computer," Arnold Nordsieck.

BUREAU OF STANDARDS' PUBLICATIONS

Tables of Normal Probability Functions
Applied Mathematics Series 23 . P'p. 344. Price $\$ 2.75$.

Electrodeposition Research

Proceedings of the N.B.S. Semicentennial Symposium on Electrodeposition Kesearch, held at the N.B.S., on 4th -6th December, 1951. Circular 529. Pp. 129. Price $\$ 1.50$

Reference Data for Orienting Quartz Plates by X-Ray Diffraction

By Catherine Barclay and leland T. SoguCircular 543. Pp. 7. Price 15 cents.
Table of Dielectric Constants and Electric Dipole Moments of Substances in the Gaseous State.
By Arthur A. Maryott and Floyd Buckley. Circular 537. Pp. 29. Price 20 cents

The four above publications can be obtained from the Government Printing Office, Washington 2.5, D.C., U.S.A.

TELEVISION SOCIETY'S EXHIBITION

The annual exhibition of the Television Society will be on 7th (6-9 p.m., members only), 8th ($12-9$ p.m.) and 9 th ($10 \mathrm{a} . \mathrm{m} .-9 \mathrm{p} . \mathrm{m}$.) January 1954 . It will be held in the Electrical Department of Ring's College, Strand, London, W.C. 2 , and free admission tickets are obtainable from the Television Society, 1 (i4 Shaftesbury Avenue, Lonclon, W.C.2.

MEETINGS

I.E.E.

14th December. "Will Transistors Oust Receiving Valves?" Discussion to be opened by E. H. CookeYarborougl.
5th January. "A Scaling Unit Employing MultiElectrode Cold-Cathode Tules" and "A Sensitive Pulse Trigger Circuit with a Stalle Threshold"', by K. Kandiah, M.A. "The Development of a Neutron Spectrometer for the Intermediate Energies", by F. S. Goulding, B.Sc., J. C. Hammerton, M. A., M. G. Keliiher, B.A., M.Sc., A. W. Merrison, B.Sc., and E. R. Wiblin, M.A.

These meetings will be held at the Institution of Electrical Engineers, Savoy Place, Victoria Embankment, London, W.C.2, and will commence at 5. 30 .

BRIT.I.R.E.

9 th December. A Symposium of Vibration Methods of Testing: "Vibration Generators", by H. Moore; "Stroboscopes", by F. M. Savage; "Strain Gauges", by P. Jackson, and "Electronic Aids to Vibration Measurement", by R. K. Vinycomb, B.Sc.

6th January. "Some Factors in the Engineering Design of the V.H.F. Multi-channel Telephone Equipment", by W. T. Brown.

To be held at the London School of Hygiene and Tropical Medicine, Keppel Street, Gower Street, London, W.C.I, at 6.30 p.m

THE INSTITUTE OF NAVIGATION

18th December. "The Reduction of Sea and Rain Clutter in Marine Radars", by J. Croney; "A Racon Beacon for Reception by Civil Marine Radars", by C. Randall-Cook; "A Portable Beacon for Identifying Ships on Harbour Radars", by A. L. P. Milwright. To be held at the Royal Geographical Society, I Kensington Gore, London, S.W.7, commencing at .5 p.m.

STANDARD-FREQUENCY TRANSMISSIONS

(Communication from the National Physical Laboratory) Values for October 1953

$\begin{gathered} \text { Date } \\ 1953 \\ \text { October } \end{gathered}$	Frequency deviation from nominal : parts in 10^{8}		Lead of MSF impulses on GBR 1000 G.M.T. time signal in milliseconds
	$\begin{aligned} & \text { MSF } 60 \mathrm{kc} / \mathrm{s} \\ & 1429-1530 \\ & \text { G.M.T. } \end{aligned}$	$\begin{aligned} & \text { Droitwich } \\ & 200 \mathrm{kc} / \mathrm{s} \\ & 1030 \mathrm{G} . \mathrm{M} . \mathrm{T} . \end{aligned}$	
1	N.M.	-5	+ 7.3
2	-1.1	-5	+ 6.0
3	-1.1	-4	N.M.
4	-1.0	-4	N.M.
5	- 1.0	-4	- 11
6	-1.0	-4	- 3.6
7	-1.0	-4	- 5.8
8	-1.0	-3	- 8.1
9	-1.0	-3	- 9.6
10	-1.0	-4	N.M.
11	N.M.	-4	N.M.
12	-0.9	-3	- 14.6
13	- 1.0	-1	-16.8
14	-0.9	-2	- 17.6
15	N.M.	-2	N.M.
17	- 1.2 -1.3	-3 -2	N.M. N.
18	- 1.2	-2	N,M.
19	-1.0	-2	- 24.0
20	-0.9	-2	- 25.5
21	-0.9	-1	- 25.6
22	-0.9	-2	- 28.0
23	-1.0	0	- 29.1
24	-0.9	-2	N.M.
25	-0.9	0	N.M.
26	-0.8	-1	- 32.6
27	-0.8	0	- 34.5
28	-0.8	0	- 37.3
29	-0.8	-1	-38.3
30	-0.8	0	- 39.2
31	-0.8	0	N.M.

The values are based on astronomical data available on 1st November 1953.
N.M. $=$ Not Measured.

ABSTRACTS

Compiled by the Radio Research Organization of the Department of Scientific and Industrial Research and published by arrangement with that Department.

Abstract

The abstracts are classified in accordance with the Universal Decimal Classification. They are arranged within broad subject sections in the order of the U.D.C. numbers, except that notices of book reviews are placed at the ends of the sections. U.D.C. numbers marked with a dagger (\dagger) must be regarded as provisional. The abbreviations of journal titles conform generally with the style of the World List of Scientific Periodicals. An Author and Subject Index to the abstracts is published annually; it includes a list of journals abstracted, the abbreviations of their titles and their publishers' addresses.

ACOUSTICS AND AUDIO FREQUENCIES

$534.141+534.143]: 534.322 .1$
3461
The Relations between Electrical and Mechanical Production of Musical Sounds. The Question of ToneColour/Interval Circles.-R. Bierl. (Z. angew. Phys., June 1953, Vol. 5, No. 6, pp. 231-237.)

3462
Study and Representation of a Complex Musical Tone.-A. Moles. (Funk u. Ton, June 1953, Vol. 7, No. 6, pp. 277-287.) German version of 1219 of May.
$534.24: 5 \approx 6.956 .5$
3463
Reflection of Sound in the Ocean from Temperature Changes.-R. IR. Carhart. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 929-934.) Coefficients r and r^{\prime} for 'sharp' and 'smooth' reflection are distinguished, according as the thickness of the layer in which a velocity change occurs is or is not negligible. Theory for the two cases is developed and values of r and r^{\prime} as functions of angle of incidence corresponding to practical conditions are calculated.
534.6 : 621.395.625.3

3464
Storage Methods of Sound Measurement.-H. Etzold. (Funk u. Ton, June 1953, Vol. 7, No. 6, pp. 307-315.) Equipment is described which uses an A.E.G. Type-KL15 magnetophone as the storage unit. Details are given of the means adopted for providing a linear decibel scale for the intensity of the recorded sounds.

Absorption Coefficient of Acoustic Materiais. 3465 Lamoral. (Onde élect., July 1953, Vol. 33, No. 316, pp. 461-467.) Values of the absorption coefficient α of two materials were determined from reverberation-time measurements, using Sabine's formula. The frequencies used ranged from $125 \mathrm{c} / \mathrm{s}$ to $4 \mathrm{kc} / \mathrm{s}$. The results obtained for samples of different surface area, or for samples of the same total area consisting of various numbers of separate pieces, differ so much that comparison between the values of α for different materials can only be reliable if the necessary measurements are carried out under specified conditions.

534.833.4

3466
Testing Sound-Absorbing Materials in a Reverberating Room.-B. D. Tartakovski \& M. M. Efrussi. (C. R. Acad. Sci. U.R.S.S., 21st Jan. 1952, Vol. 82, No. 3, pp. 373 376. In Russian.)
534.84

3467
Collation of the Reverberation Times of Berlin SoundRecording Studios and Auditoria.-H. Dippner \& H. J. Zemke. (Frequenz, March 1953, Vol. 7, No. 3, pp. 71-81.) Measurements have been made in churches, concert halls, film theatres and studios. Reverberation-time/frequency curves are shown with details of the size and seating capacity for each of the 52 cases dealt with. and many photographs of interiors.
$534.84: 534.861 .1: 621.396 .712 .3$
3468
Architectural Acoustics of the Cologne Broadcasting Centre.-L. Müller. (Tech. Hausmitt. NordwDtsch. Rdfunks, 1953, Vol. 5, Nos. 5/6, pp. 87-97.) A detailed account, with numerous illustrations, is given of the treatment of the floors, walls and ceilings of the various studios to obtain acoustical characteristics suitable for the differing requirements for chamber music, full orchestra or organ, speech, dance music, etc. Methods of acoustic damping in the foyer and corridors, by means of absorbing materials, resonators and diffusers of various types, are also described.
621.395.623.7:534.843

3469
The Loudspeaker in the Home.-P. J. Walker. (J. Brit. Instn Radio Engrs, July 1953, Vol. 13, No. 7, pp. 377-380.) A nonmathematical discussion of the problems of sound reproduction in relation to the acoustics of ordinary rooms. The concept of the ideal headphone is introduced and its limitations are indicated.
621.395.623.8

3470
Public-Address Systems in Generating Plants.-S. C. Bartlett. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1804-1810.) For another account see 615 of March.
621.395 .625 .3

3471
Studies on Magnetic Recording: Part 1-Introduc-tion.-W. K. Westmijze. (Philips Res. Rep., April 1953,

Vol. 8, No. 2, pp. 148-157.) A survey of the principles and historical development of methods of magnetic recording.

AERIALS AND TRANSMISSION LINES

621.315.212: 621.315.615

3472
Liquid-Dielectric Radiofrequency Coaxial Cables.R. M. Soria, C. C. Camillo \& J. G. Krisilas. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 469-480.) An account is given of research in connection with the development of flexible coaxial cables using a liquid dielectric, driven through the cable under pressure, to obtain increased heat dissipation. Mineral oil and a silicone oil were found suitable. The results obtained show that a cable of the liquid-dielectric type can be constructed to operate with an input power 8 times that for the equivalent standard RG cable, and with satisfactory operation at high ambient temperatures and high altitudes.
621.39 .09

3473
Surface-Wave Propagation over a Coated Conductor with Small Cylindrical Curvature in Direction of Travel. K. Horiuchi. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 961-962.) Analysis indicates departures to be expected from the results obtained for a plane conductor [2097 of 1951 (Attwood)]. The effect of a bend in a surface-wave transmission line is to produce attenuation and to increase the field intensity on the outside of the bend.
621.392 .21 : 621.317.343

3474
Characteristic Impedance of Rectangular Coaxial Transmission Lines.-Y. A. Omar \& C. F. Miller. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 81-89.) The characteristic impedance of several coaxial rectangular transmission lines was measured by a standing-wave method at about $430 \mathrm{Mc} / \mathrm{s}$. The results obtained enabled a relation between line dimensions and characteristic impedance to be developed from that for confocal elliptical lines.

621.342 .21 .017

3475
Effect of Losses in H.F. Transmission Lines.-S. Albagli. (Onde élect., June 1953, Vol. 33, No. 315, pp. 270-273.) In transmission-line calculations where it is necessary to take account of losses, it is often assumed that the characteristic impedance is real. This is admissible as a first approximation, but it can lead to considerable errors in certain cases. To the second approximation the characteristic impedance is real only if the metal and dielectric loss coefficients are equal. Comparison is made between results obtained on this supposition and those obtained on the assumption that dielectric losses are negligible. In some cases the results differ by 100%.

621.392.211

3476
Propagation of Electromagnetic Waves along an Infinite Helical Slit.-S. A. Vakin. (C. R. Acad. Sci. U.R.S.S., 1st May 1952, Vol. 84, No. 1, pp. 37-40. In Russian.) The field, inside and outside the cylindrical surface containing the slit, is determined by assuming a particular distribution of potential along the slit. A transcendental equation for the propagation constant is derived and solved for four particular values of δ, the helix pitch angle. The retardation of the wave, τ, which is a function of the propagation constant, is ~ 1 over a range of values of γ_{0}, the radius of the cylinder. This theoretical result was confirmed experimentally.

621.392.26

3477
Matching Discontinuities in Waveguides.-J. C. Parr. (Wireless Engr, Oct. 1953, Vol. 30, No. 10, pp. 243-249.)

Simple systematic procedure is described for matching both waveguide measuring equipment and other waveguide sections. The technique of four-screw tuning is used, and theory is outlined to show how it is possible to obtain any desired value of reflection factor. The different requirements for matching terminating sections, insertion devices or generators are discussed. Modifications appropriate for cases of large mismatch are indicated. The distance between tuning screws should be the smallest convenient multiple of $\lambda / 8$.

621.392.43:621.396.67
 3478

A Solution for a Practically Frequency-Independent Transition between a H.F. Coaxial Cable and a Balanced H.F. Transmission Line.-H. Graziadeï. (Fernmeldetech. Z., July 1953, Vol. 6, No. 7, pp. 311-319.) Feeder arrangements for rhombic transmitter aerials are considered. The theory of a wide-band unbalance/ balance impedance-matching transformer is given; design and applications are considered. A transformer consisting of a reactive loop and an exponential line in parallel with the output of a coaxial line has been designed to give a nearly level response over the $10-60-\mathrm{m}$ band for a $60 \Omega / 500 \Omega$ line impedance ratio.

621.396.67

3479
Polystyrene and Lucite Rod Antennas.-G. von Trentini. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 960-961.) Measurements were made with tapered rods thinner than those used by Horton \& McKinney (1204 of 1952); values of gain obtained were somewhat higher and effects due to dielectric losses less accentuated.
621.396.67.012.71
V.H.F. Aerial Radiation Pattern Measurements.-E. G. Hamer. (Electronic Engng, Oct. 1953, Vol. 25, No. 308, pp. 427-431.) Various measurement techniques are discussed and an indication is given of conditions to be satisfied to obtain polar diagrams free from errors due to induction fields, surface wave and variation of Brewster angle. Automatic machines for plotting radiation patterns are described.

621.396 .674

3481
Loop Aerials for Portable Broadcast Receivers.-E. G. Beard. (Philips tech. Commun., Aust., 1953, No. -, pp. 16-18.) Theoretical considerations lead to a suggested design in which a small loop aerial is surrounded by a number of coplanar closed metallic loops, the induced e.m.f's in which are all transferred to the central aerial, thus giving high efficiency.

Abstract

621.396.677

3482 Radiation Conductance of Axial and Transverse Slots in Cylinders of Elliptical Cross Section.-J. Y. Wong. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1172-1177.) Formulae and graphs are presented for the radiation field and the radiation conductance. The degree of curvature of the cylinder surface has a considerable influence on the radiation conductance for

 the transverse slot.621.396 .677 。

3483
Grids as Circuit Elements for Electromagnetic Waves in Space.-G. von Trentini. (Z. angew. Phys., June 1953, Vol. 5, No. 6, pp. 221-231.) An account of experimental investigations of the characteristics of grid lenses similar to that previously described (937 of April), but using different types of grid-wire loading.
621.396.677

3484
Microwave Wide-Angle Scanner.-J. Brown. (Wireless Engr, Oct. 1953, Vol. 30, No. 10, pp. 250-255.) A study is made of microwave lenses of the type comprising a
sphere whose refractive index varies with distance trom the centre. In previously described lenses of this type [e.g. 2723 of 1950 (Jones)] scanning is performed by moving the feed over the lens surface. Mechanical problems can be simplified by arranging for the feed to move on a smaller sphere concentric with the lens. A suitable law is derived for the variation of refractive index in this case.

621.396.677

3485
Experimental Verification of the Metal-Strip DelayLens Theory.-S. B. Cohn. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 839-841.) Measurements made on five metal-strip delay structures, three in the form of waveguide elements and two free-space arrays, are described. Only one of four suggested formulae for refractive index is in good agreement with experiment over the full practical range. This is based on a transmission-line equivalent circuit taking proximity effects into account.

621.396.677

3486
Excitation and Radiation Properties of Microwave Lenses.-K. Hurrle. (Fernmeldetech. Z., July 1953, Vol. 6, No. 7, pp. 332-337.) The conditions for the optimum excitation of a lens and the resulting radiation pattern are derived. Experimental results are given for a dielectric lens and a path-length lens [3058 of 1949 (Kock)] operating at a wavelength of 6.1 cm .

621.396.677: 535.326: 621.317.3

3487
Microwave Measurements on Metallic Delay Media.Cohn. (See 3652.)

621.396.677.011.21

3488
Input Impedance of Folded-Dipole Antennas.-R.E. Beam \& P. Andris. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 678-691.) A general expression for the input impedance is derived in terms of the self- and mutual-radiation impedances and transmission-line impedances of the two conductors forming the folded dipole. Integral-equation methods are used to determine approximate values of the radiation impedances for sinusoidal current distribution. Experimental and theoretical curves representing the resistive and reactive components of the input impedance as functions of frequency are given for two folded dipoles, one with both conductors of $\frac{7}{8}-\mathrm{in} . \mathrm{Cu}$ tube and the other with fed elements of $\frac{8}{8}-\mathrm{in}$. tube, the rest being $\frac{7}{8}-\mathrm{in}$. In some cases the gap capacitance at the feed point was taken into account in the calculations.

621.396.677.029.63

3489
Helical-Beam Antenna Performance.-E. IF. Harris. (Commun. Engng, July/Aug. 1953, Vol. 13, No. 4, pp. 19-20 . 45.) Helical aerials for wide-band point-topoint radio communication in the $450-470-\mathrm{Mc} / \mathrm{s}, 890-960-$ Mc / s and $1 \cdot 75-2 \cdot 11-\mathrm{kMc} / \mathrm{s}$ bands are described and design details given. The aerial gains are $13,16 \cdot 5$ and 20 db respectively, using a single helix, two helices or four helices. If helices of opposite sense are used for transmission and reception, a discrimination of about 20 db is obtained between the direct beam and the ground-reflected beam.

621.396.677.1: 523.72: 621.396.822

3490
New Techniques in Radio Astronomy.-J. D. Kraus \& E. Ksiazek. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 148-152.) A broadside array of 24 pairs of helical aerials with axes parallel, mounted on a pivoted ground screen, has been installed at the Ohio State University. Each helix is 10 ft long, 15 in . in diameter, and has 10 turns. A beam width of 1.2° is obtained at $250 \mathrm{Mc} / \mathrm{s}$. The receiving equipment is described and typical records are shown.
621.396.677.5 : 621.3.042.12

3491
The Receiving Loop with a Hollow Prolate Spheroidal Core.-J. R. Wait. (Canad. J. Technol., June 1953, Vol. 31, No. 6, pp. 132-137.) The case of a loop with a solid spheroidal core has previously been considered (1917 of July). The relative gain is calculated for a loop wound symmetrically round the centre of a hollow shell of ferromagnetic material with permeability μ of 20,50 , 200 and 500. Neglecting core losses, a hollow core of moderate length is more efficient than a solid core of the same mass, particularly for high values of μ.

CIRCUITS AND CIRCUIT ELEMENTS

$621.3(083.74)$

3492
The Standardization of Symbols and the Arrangement of Electronic Circuit Diagrams.-L. H. Bainbridge-Bell. (J. Brit. Instn Radio Engrs, July 1953, Vol. 13, No. 7, pp. 339-347. Discussion, pp. 347-353.) Arrangement of circuit diagrams to give a clear indication of the operation is advocated.

621.3.011.22.025

3493
Realization of Alternating-Current Resistance.-U. Kirschner. (Funk u. Ton, June 1953, Vol. 7, No. 6, pp. 298-306.) Methods of realizing resistance functions by arrangements of the partial-fractions or the continuedfractions type are described. Possible arrangements are shown in two tables.
621.3.012.11

3494
Geometrical Transformation of Impedance Diagrams.H . Briner \& W. Graffunder. In 2576 of September please change the last word in the abstract to 'described'.

621.3.066.6

3495
The Effect of Inductance on Fine Transfer between Platinum Contacts.-J. Warham. (Proc. Instn elect. Engrs, Part I, July 1953, Vol. 100, No. 124, pp. 163-168.) An investigation was made with Pt contacts in a $6-\mathrm{V}$ circuit breaking currents of the order of 1 A ; the circuit inductance was varied from 0.5 to $10 \mu \mathrm{H}$. Measurements of the volume transferred and examination of the surface structure indicate that there are two types of transfer: (a) true bridge transfer, independent of inductance, and (b) short-arc transfer, dependent on the inductance.

621.3.066.6

3496
The Behaviour of Metallic Contacts at Low Voltages in Adverse Environments.-A. Fairweather. (Proc. Instn elect. Engrs, Part I, July 1953, Vol. 100, No. 124, pp. 174-182.) The problem discussed is that of obtaining a metal-to-metal contact mechanically when the contacts are contaminated by dust or grease or are coated with films produced by adsorption, tarnishing or corrosion. Various types of contact are considered. Principles are outlined which provide a basis for design and testing; a new technique is described for the continuous dry lubrication of sliding contacts in mechanical and electrical systems.

621.3.066.6: 621.314.58

3497
Long-Life Contacts for Unidirectional Currents of 1 -20 Amperes.-A. L. Allen. (Proc. Insin elect. Engrs, Part I, July 1953, Vol. 100, No. 124, pp. 158-162.) An experimental investigation was made of fundamental physical phenomena concerned in the operation of contacts in vibratory converters; the influence of voltage and current on the direction of migration of material was studied. Long life was obtainable with Pt contacts or with contacts of dissimilar metals, but on heavy duty an adequate life was obtained only with W contacts in a low-oxygen atmosphere.
621.3.066.6: 621.396.822

3498
Noise of Metal Contacts.-F. A. P. M. Theunissen. (Appl. sci. Res., 1953, Vol. B3, No. 3, pp. 201-208.) Measurements were made of the small voltage fluctuation produced by the passage of direct current through ball contacts. Current values from 1 to about 50 mA were used, and the influence of contact resistance, pressure and temperature was investigated, for steel, copper and gold contacts. A possible mechanism accounting for the results is suggested.
621.314 .2

3499
Design of Unequal- Q Double-Tuned Transformers. S. Deutsch. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 314-320.) Equations and design curves are given which should simplify calculations of certain of the transformer characteristics.
621.314.22.015.7

3500
A Turns Index for Pulse Transformer Design.-H. W. Lord. (Tvans. Amer. Inst. elect. Engrs, 195̈2, Vol. 71, Part I, pp. 165-168.) Full paper. See 1250 of May.

621.314.222: 621.314.6

3501
Transient Conditions in a Transformer Supplying Energy to a Half-Wave Rectifier Circuit.-P. N. Martin. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1468-1479.) Analysis is given for a simplified equivalent circuit, leakage reactance and core loss being neglected. Experimental results confirm the theory.
621.314 .263

3502
The Magnetic-Cross Valve.-H. J. McCreary. (Trans. Amer. Inst. elect. Engrs, 1951. Vol. 70, Part II, pp. 1868-1874. Discussion, pp. 1874-1875.) Further details are given of the device previously described (2727 of 1950) and of its practical applications, with circuit diagrams and illustrations of the 'power ringers' converting $60-\mathrm{c} / \mathrm{s}$ power to $30 \mathrm{c} / \mathrm{s}$ and $20 \mathrm{c} / \mathrm{s}$ respectively.

$621.314 .3 \dagger$

3503
On the Mechanics of Magnetic-Amplifier Operation.R. A. Ramey. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1214-1222. Discussion, pp. 12221223.)

$621.314 .3 \dagger$

3504
Magnetic Amplifiers of the Balance Detector Type their Basic Princidles, Characteristics, and Apolications.W. A. Geyger. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1707-1718. Discussion, pp. 17181720.)
$621.314 .3 \dagger$
3505
Predetermination of Control Characteristics of HalfWave Self-Saturated Magnetic Amplifiers.-H. Lehmann. (Trans. Amer. Inst. elect. Engys, 1951, Vol. 70, Part II, pp. 2097-2103. Discussion, p. 2103.)
$621.314 .3 \dagger$
3506
Bibliography of Magnetic Amplifier Devices and the Saturable-Reactor Art.-J. G. Miles. (Trans. Amer. Inst. elect. Engrs, 1951 , Vol. 70, Part II, pp. 2104-2123.) A very comprehensive bibliography of 901 published books, articles, and patents, for the period 1887 to mid-1951.

$621.314 .3 \dagger$

3507
On the Control of Magnetic Amplifiers.-R. A. Ramey. (Trans. A mer. Inst. elect. Engrs, 1951, Vol. 70, Part 1I, pp. 2124-2128.)
$621.31+.3 \dagger \quad 3508$
Steady-State and Transient Analvsis of an Idealized Series-Connected Magnetic Amplifier.-I.. A. Pipes.
(Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 2129-2133. Discussion, pp. 2133-2135.)
$621.314 .3 \dagger$
3509
Series-Connected Magnetic Amplifier with Inductive Loading.-T. G. Wilson. (Trans. Amer. Inst, elect. Engrs, 1952, Vol. 71, Part I, pp. 101-110.) Full paper. See 338 of February.
$621.314 .3 \dagger$
3510
The Effective Feedback Ratio of Magnetic Amplifiers. L. A. Finzi, G. F. Pittman, Jr, \& H. L. Durand. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 157164.)

$621.314 .3+$

3511
Magnetic Amplifiers of the Self-Balancing Potentiometer Type.-W. A. Geyger. (Trans. Amer. Inst, elect. Engrs, 1952, Vol. 71, Part I, pp. 383-395.) For a digest see Elect. Engng, N.Y., April 1953, Vol. 72, No. 4, p. 294.

3512
High-Speed Magnetic Amplifier.-L. J. Johnson. (Elect. Mfg, Nov. 1952, Vol. 50, No. 5, pp. 98-101 . . 324.)
621.314.7: 621.3.015.3

3513
Transient Analysis of Junction Transistor Amplifiers.W. F. Chow \& J. J. Suran. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1125-1129.) In analysing transistor operation, transit-time effects must be taken into account; this can be done to a sufficiently close degree of approximation by including in the equivalent circuit an $R C$ network in series with an idealized delay line. Only simple Laplace transforms are then involved in the response calculations. The theory is supported by experimental results.
621.314.7: 621.3.015.7

Pulse Response of Junction Transistors.-N. H. Enenstein \& M. F.. McMahon. (Trans. Inst. Radio Engrs, June 1953, No. PGED-3, pp. 5-8.) The case of low load resistance is considered theoretically and experimental results are shown graphically. The response characteristics are discussed. Good qualitative and fair quantitative agreement was found between predicted characteristics and those determined from pulse and a.c. measurements.

621.314.7:621.318.57

3515
The Phase-Bistable Transistor Circuit.-R. H. Baker, I. L. Lebow, R. H. Rediker \& I. S. Reed. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1119-1124.) Properties of transistor switching circuits are discussed. A unit is described which comprises a commutating ring of two transistors each connected as a one-shot multivibrator, the two being alternately triggered by a series of clock pulses. The arrangement is used in a binary counter, with a clock-pulse frequency of $500 \mathrm{kc} / \mathrm{s}$.

$601.314 .7: 621.318 .57$

3516
A Transistors in Trigger Circuits.-S. Walter. (Proc. Inst. Radio Engrs, Sept. 1953. Vol. 41, No. 9, p. 1190.) A simple circuit using a single transistor is described.

621.314.7:621.396.615.029.3

3517
Low-Distortion Transistor Audio Oscillator.-P. G. Sulzer. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 171173.) Design details of an oscillator operating at any one of the four frequencies $20,200,2000$ and $20000 \mathrm{c} / \mathrm{s}$, and including $3 p-n-p$ junction transistors. Series resistors are used to stabilize emitter currents, and a tungstenfilament lamp to control amplitude. Maximum available output is 1 V . The low-noise characteristics are ascribed to the very narrow operating bandwidth.

3518
The Common-Collector Transistor Amplifier at Carrier Frequencies.- F. R. Stansel. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1096-1102.) Formulae are derived for the a.f. operating parameters of the groundedcollector ('common-collector') circuit. The variation of the transistor current-amplification factor α with frequency is investigated. The effect of operating conditions on the cut-off frequency f_{c} (i.e., the frequency at which α drops to $1 / \sqrt{2}$ of its a.f. yalue) is discussed. Modified formulae are hence derived which are valid up to about $\because f_{c}$. Experimental results support the theory presented. point-contact, n - p - n-junction and early $p-n$ - p-alloy transistors were studied.
621.314.7: 621.396.645

3519
Complementary-Symmetry Transistor Circuits.-R. D. Lohman. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 140-143.) Under normal bias conditions, the current which flows in each lead to an electrode of a $p-n-p$ transistor is the negative of the corresponding current in an $n-p-n$ transistor; this is termed static symmetry. The polarity of an input signal that will increase conduction in a $p-n-p$ transistor is the opposite of that for an $n-p-n$ transistor; this is termed dynamic symmetry. Circuits are described that use (a) static symmetry, (b) dynamic symmetry, (c) both types of symmetry. These include a stabilized direct-coupled class-A amplifier with a voltage gain of 660 , a pulse circuit which converts a $0 \cdot 25-\mathrm{V}$ half sine-wave to $20-\mathrm{V}$ pulses, a class- 13 power output circuit using four transistors with overall feedback and giving a gain of about 30 db when working into a $16-\Omega$ load, and a television vertical-deflection system with a class-B output stage connected directly to the deflection yoke. See also 2583 of September (Sziklai).
621.314.7: 621.396.645

3520
Transistor Theory and Transistor Circuits.-H. E. Hollmann. (Arch. elekt. Úbertragung, July 1953, Vol. 7, No. 7, pp. 315-327.) Simple theory for transistors is developed from that for thermionic valves on the basis of the duality principle and by comparison with the aperiodic retarding-field valve. Semidynamic rather than static characteristics are obtained, by liasing the collector by means of a resistor. These characteristics can be converted to the usual static ones by a coordinate transformation. Parameters are measured by means of a transistor bridge equivalent to that used for obtaining the dynamic characteristics of a thermionic valve. The parameters found are related to the constant-current values of the parameters hitherto used. Simple formulae are derived for the voltage and power amplification of grounded-base and grounded-emitter circuits. Ise of the negative static resistance of a grounded-emitter transistor for measuring the resonance resistance of oscillatory circuits is discussed.

$621.314 .7: 621.396 .645 .36 .029 .4$

3521
Push-Pull Transistor Amplifiers.-J. I. Missen. (Wireless World, Oct. 1953, Vol. 59, No. 10, pp. 467-470.) A description is given of a practical a.f. power amplifier using point-contact transistors and developed from the class-B thermionic-valve amplifier by application of the duality principle. This amplifier can deliver $>400 \mathrm{~mW}$ at $<10 \%$ harmonic distortion.

$621.31+.7 .012 .8$
 3522
 Equivalent-Circuit Diagrams of the Transistor.

 W. Klein. (Frequenz, March 1953, Vol. 7. No. 3, pp. 5960.) Different representations for transistors are derived from the equivalent circuit of the nonreversible quadripole (3031 of 1952):-(a) a two-valve circuit; (b) a onevalve circuit with a lossless transformer.621.314 .7 .012 .8

3523
Transistors: Theory and Application: Part 7Equivalent Transistor Circuits and Equations.-A. Coblenz \& H. L. Owens. (Elecironics, Sept. 1953, Vol. 』6, No. 9, pp. 156-161.) Relations between transistor parameters, circuit elements and performance are derived by application of Kirchhoff's mesli equations for the transistor equivalent circuit. I'art 6: 3444 of November.

621.316 .726 .078 .3

3524
Theory of A.F.C. Synchronization.-W. J. Gruen. (Proc. Inst. Radio Engrs, Sept. 195)3, Vol. 41, No. 9, p. 11.71.) Correction to paper noted in 3214 of November.
621.316.84: 539.23]: 621.317.727.029.63

3525
Fabrication of Radio-Frequency Micropotentiometer Resistance Elements.-L. F. Behrent. (J. Res, nat. Bur. Stand., July 1953, Vol. 51, No. 1, pp. 1-9.) Stable lowresistance disk-type resistors are required for the Bureau of Standards r.f. micropotentiometer previously described (1712 of 1951). Various processes for forming thinfilm resistors are considered. Three methods are described by which it is possible to produce resistors stable to within $\pm 1 \%$, viz., (a) high-temperature firing, (b) evaporating and plating, (c) use of disks cut from sheets of carbon film deposited on bakelite. A chemicalreduction process is under investigation.

621.318 .4

3526
Copper Eddy-Current Losses in Coils with CarbonylIron and Ferrite Cores.-J. Brackmann \& J. Frey (Frequenz, July 1953, Vol. 7, No. 7, pp. 185-191.) The design of low-loss short multilayer coils and long singlelayer coils is considered. Because core losses are much reduced with modern ferrite cores, the relative importance of the copper eddy-current losses is greater. These losses and their dependence on the coil and core parameters are discussed in detail.
621.318 .435

352\%
Saturable Reactors with Inductive D.C. Load: Part 1-Steady-State Operation.-H. F. Storm. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 335-343.)
621.319 .45 : $539 . \geq 3$: 537.311 .33 3528
Distribution of Conductivity within Dielectric Films on Aluminium.-J. E. Lilienfeld \& C. Miller. (J. electrochem. Soc., May 1953, Vol. 100, No. 5, pp. 222-226.) Frequency and formation-voltage characteristics were determined for a capacitor with an anodized A1 anode, Al cathodes and electrolyte consisting of boric acid and borates, in the range $20 \mathrm{c} / \mathrm{s}-10 \mathrm{kc} / \mathrm{s}$. An equivalent circuit is given and a model is suggested consisting of a -layer dielectric film, one layer, adjacent to the metal surface, having low conductivity, low power loss, independent of frequency, but dependent on the peak formation voltage, the other film with opposite properties.
621.385.3: 621.392. 5

3529
Triode Transformation Groups.-A. W. Keen. (Wireless Engr. Oct. 1953, Vol. 30, No. 10, pp. 238-243.) The properties of the six networks including respectively the six possible transmission paths through a triode valve (1321 of 1951) are shown to be interrelated in such a way that, given the characteristics of any one of the circuits, those of the remainder are obtainable by a routine transformation process.
621.392

3530
Potential Analog Network Synthesis for Arbitrary Loss Functions.-E. S. Kuh. (J. appl. Phys., July 1953, Vol. 24 , No. 7, pp. 897-902.) A method of network design is described in which the appropriate potential problem is formulated on the basis of a given loss function by
introducing continuous charge distribution on the com-plex-frequency plane. The technique of charge quantization is used to find the natural modes of the network function.

b21.392.012

3531
Feedback Theory - Some Properties of Signal Flow Graphs.-S. J. Mason. (Proc. Inst. Radio Engrs, Sept 19ã:3, Vol. 41, No. 9, pp. 1144-1156.) The equations characterizing transmission systems may be represented by networks of directed branches, termed 'signal-How graphs'; the branches terminate at nodes, which represent repeater stations. The topology of these diagrams is studied with particular reference to feedback circuits. The technique is illustrated loy application to specific circuit design problems.
$6 \div 1.3!12.4$
3532
Two Theorems on Two-Terminal Electrical Networks.F. Reza. (C. R. Acad. Sci., P'aris, louh Jug. l!ä:3, Vol. 237 , No. $6, \mathrm{pp} .429-430$.) Given that the imperlance of the network is a rational function $Z(S)$ of the complex frequency S, and putting $Z(S)=P(S), Q(S)$, it is shown that

$$
Z_{n}(S)=\frac{d^{n} P(S) d S^{n}}{d^{n} Q(S) d S^{n}}
$$

for networks consisting of (a) reactances only, and (b) resistances together with reactances of one kind.
621.392 .43 3533
Modified Exponential Line as Improved Transforming Element with High-Pass Characteristic.-H. H. Meinke. (Arch. elekt. Úberiragung, July 1953, Vol. 7, No. T, pp 347-3.54.) For a given length of exponential line there is a critical frequency above which the transformation property becomes effective; at frequencies only a little above critical the transformation is only approximate. This drawback can be avoided by designing the line so that the characteristic impedance does not vary exactly exponentially. Ipproximate line equations are derived for this case and practical forms of such lines are cliscussed; the influence of constructional defects is examined.
621.392 .5

3534
A General Definition of Pass Band. S. Colombo. (C. R. Ical. Sci., Paris, l0th Ang. 19.i3, Vol. 237, Ňo. 6, pp. $497-429$.)

621.392 .5

3535
RIC Lattice Networks.-L. Weinberg. (Iroc. Inst Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1139-1144.) A methorl for synthesizing open-circuited lattice net works to have a required transfer impedance is based on the partial-fraction expansion of the given function. No mutual inductances are used, and series resistance is associated with all the self-inductances, so that low- Q coils may be used. A numerical example is worked out.
621.392 .5

3536
Synthesis of Paralleled 3-Terminal $1 R C$ Networks to provide Complex Zeros in the Transfer Function.-P. F Ordung, G. S. Axelby, H. L. Kranss \& W. ․ Yetter. (Trans. Amer. Inst. clect. Engrs, 1951, Vol. 70, Part II, pp. 1861-1867.) An improvement on the method given by Guillemin (2462 of 1949) is described which requires fewer paralleled networks. The clesired transfer ratio is converted into the sum of several transfer ratios, each of which can be realized with a single ladker network. A method of synthesis for these networks in terms of a common triving-point-admittance function is described and theorv cleveloped for their connection in parallel. See also 656 of March (Ordung et al.).
621.392 .5

The Dual-Input Parallel-T Network.-C. F. White \& K. A. Norgan. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. s, pp. 588 597.) The frequency of maximum attenuation in this type of circuit is a function of the ratio of the two input voltages. Various potentiometer-drive arrangements can be used for external tuning over a wide frequency range. Experimental results for a circuit with dual-potentioneter input are in good agreement with theory.
621.392 .6

3538
Synthesis of the Transfer Function of 2-Terminal-Pair Networks.-1R. Kahal. (Trans. Amer. Inst. elect. Engrs, 1952 , Vol. 71, l'art I, pp. 129-134.) Fıll paper. See 1263 of May
621.392 .5 : 621.3 .015 .3

3539
The Possibility of defining the Width of the Pass Band in terms of the Distortion of a Transient.-S. Colombo. (C. R. Acad. Sci., Paris, 17 th Iug. 1973 , Vol. 237 , No. 7 , pp. 4.5-457.) Analysis using the definition previously given (3.534 above) indicates that it is impossible to clefine the distortion of a transient by a single build-up time
(621.392.5) : 621.318.435

3540
An Approximate Graphical Analysis of the Steady-State Response of Nonlinear Networks.-S. Duinker. (l'hilips Res. Rep., April 1953, Vol. s, No. 2, pp. 133-147.) An approximate graphical analysis is given for the case when one of the circuit parameters is varied gradually. Transients and the generation of sublarmonics are not dealt with. The networks investigated consist of a nonlinear iron-cored inductor with a.c. and d.c. magnetization, in series with a linear resistor and linear capacitor. The results of the analysis can be applied to the investigation of the effects of resistive or reactive loads of magnetic amplifiers, and the utilization of jump phenomena (ferroresonance effects) in switching devices.
$621.392 .5 .012 .11: 6 \geqslant 1.392 .43$
3541
A Theorem on the Impedance-Transforming Properties of Reactive Networks.-L. Storch. (J. appl. Phys., July $19 \% 3$, Vol. 24 , No. 7, pp. $833-838$.) Two circle transformations, derived from the impedance-transformation properties of a t-terminal network, are used to develop a 'circle-locus' theorem which considerably simplifies analysis of impedance-matching networlis. It is applicable to any linear reactive network with any arbitrary reference imperiance not lying on the reactance axis.
$621.3!2.5 .015 .3$
3542
An Approximate Method of Obtaining the Transient Response from the Frequency Response.-J. 1R. Wait. (Canad. J. Technol., Jıne 1053, Vol. 31, No. 6, pp. 127 131.) The methorl is based on expressing the transient response $A(t)$ in terms of the real part of the frequencyresponse function, which is plotted on a logarithmic frequency scale and approximated by a series of straightline segments. $A(t)$ is calculatell from the slopes of these seginents.
1621.392.52

3543
Concerning the Minimum Number of Resonators and the Minimum Unloaded Q needed in a Filter.-M. Dishal. (Trans. Inst. Radio Engrs, June 1953, No. PGVC-3, pp. 85117.) The number of resonator elements required to meet given specifications of filter characteristics, and the lowest no-load values of Q which the resonators may have, can be deduced from the formulae and graphs given. The specifications include the 'accept' and 'reject' bandwidths, the peak'valley ripple ratio and response in the 'reject' hand of the selective circuit. Both constant k and m derived types of filter are considered, and numerical examples are worked out.
621.392 .52 .012 .3

3544
Wave-Filter Characteristics by a Direct Method. R. C. Taylor \& C. U. Watts. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 96-100.) Full paper. See 961 of April.

621.392.52.029.3: 621.396.645.371

3545
Audio-Frequency Filters using Negative Feedback. T. Janisz. (Electronics, Sept. 1953, Vol. 26, No. 9. pp. 222.228 .) The operation is described of a two-valve amplifier with a series-resonance circuit across the cathode impedance of each of the two valves, and a parallelresonance circuit in the anode circuit of the first valve. A band-pass filter with a flat-topped response curve is obtained by adjusting the resonance frequency of the cathode circuit of the second valve to be intermediate to the cathode-circuit and anode-circuit resonance frequencies of the first valve.

621.392 .6

3546
Nonlinear Multipoles.-L. A. Zadeh. (Proc. nat. Acad. Sci., Wash., April 1953, Vol. 39, No. 4, pp. 274-280.) A conceptual scheme is outlined which is intended to be used in conjunction with theories of oriented graphs and with machine computers for the analysis and design of nonlinear networks. A system of classes of nonlinear multipoles is defined, the classes being characterized by their responses to a particular set of pulses. See also $\mathbf{2 5 9 8}$ of September

$621.396 .6: 061.4(443.611)$

3547
The 17th National Radio-Components Exhibition.(Onde élect., June 1953, Vol. 33, No. 315, pp. 287-293.) Review of a selection of exhibits in the sections allotted to valves, miscellaneous components and accessories, and measurement instruments at the exhibition held in Paris, 27th February-3rd March 19.33.

621.396 .6 .002 .2

3548
Printed Circuits and the Automatic Factory.-R. A. Gerhold. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 481-488.) Discussion of the application of the auto-sembly technique [355 of February (Danko)] to quantity production of a wide variety of electronic equipment, with substantial reduction of costs and economy in skilled personnel.

621.396 .611 .1

Frequency Feedback.-H. E. Hollmann. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 577-587.) Discussion of a phenomenon which occurs in all resonant systems possessing a relation between resonance frequency and amplitude. In such systems there may be an external feedback channel, or internal feedback due to nonlinear reactors or to nonlinear resistors combined with fixed reactors, as in the so-called $R X$ modulators. The phenomenon shows itself in asymmetrical deformation of the resonance curve. Applications of the effect in a.m.f.m. conversion, and in f.m.-a.m. conversion for frequencyshift reception, are noted.

621.396.611.1: 621.396.619.13

3550
A Method of Evaluation of the Quasi-Stationary Distortion of F.M. Signals in Tuned Interstages. -J. J. Hupert. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 445-461.) A graphical approach to the problem of designing low-distortion f.m. circuits, making use of the normalized derivative of the phase/frequency function, is shown to be preferable to that using the phase/frequency curve itself. The principles are applied to the determination of the distortion factor of a single tuned-circuit interstage and of a cascade arrangement of three stagger-tuned resonant circuits.
621.396 .611 .1 .015 .3

3551
Transient Phenomena in an Oscillatory Circuit with Variable Inductance.-P. G. Gorodetski. (Zh. tekh. Fiz., Oct. 1952, Vol. 22, No. 10, pp. 1687-1692.) The operation of the circuit is discussed and a formula (2a) is derived for determining the variation of the current in the circuit. A numerical example is given.

621.396.611.21

3552
High-Frequency Crystal Units for use in Selective Networks, and their Proposed Application in Filters suitable for Mobile-Radio Channel Selection.-D. F. Ciccolella \& L. J. Labrie. (Trans. Inst. Radio Engrs, June 1953, No. PGVC-3, pp. 118-128.) The design of bevelled AT-type quartz plates for use in band-pass crystal units is described. The reduction of unwanted modes of vibration, including thickness-shear overtone modes, is considered. Approximate electrical data for plated circular AT-type quartz plates with all unwanted modes reduced to a level 30 db below the response of the main thickness-shear mode are tabulated. The design is considered of a crystal filter with a mid-band frequency of $1.552 \mathrm{Mc} / \mathrm{s}$ and bandwidths of $30 \mathrm{kc} / \mathrm{s}$ and $40 \mathrm{kc} / \mathrm{s}$ respectively at the $6-\mathrm{db}$ and $100-\mathrm{db}$ points.

621.396.611.21

3553
Thickness Vibrations of Piezoelectric Crystal Plates.R. Bechmann. (Arch. elekt. Ubertragung, July 195̄3, Vol. 7, No. 7, pp. 354-357.) Addendum to work noted in 357 of February.

621.396.611.31: $621.318 .4{ }^{2}$

3554
A Simple Method of Coupling Toroidal Coils.-R. R. Darden, Jr. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 618-620.) Theory is given of a method of coupling suitable for the low values of coupling coefficient usually required for i.f. transformers, f.m. discriminators and in some types of filter. The coupling coils, with very few turns, are wound on a separate toroidal core, each being connected in series with one of the toroidal coils to be coupled. In a simplified version a coupling coil of one or two turns, connected in series with one toroidal coil, is wound on top of the other toroidal coil. Such a transformer may be accommodated in a $\frac{3}{3}-\mathrm{in}$. cube with the two toroids close together with no shield between them

621.396.611.4: 621.315.こ12

3555
Electromagnetic Waves in Hollow Metal Cylinders with Circular Cross-Section.-R. Müller. (Arch. elekt. Úbevtragung, July 1953, Vol. 7, No. 7, pp. 341-346.) The object of the paper is to coordinate the treatment of the subject and to clarify some points. The electric and magnetic lines of force are mapped in perspective. Other diagrams show the distribution of Poynting vector over the crosssection and the currents in the walls. Wave propagation in concentric lines is investigated.
621.396.615: 517.93

3556
Nonlinear Electromechanical Systems.-G. Cahen. (Rev. gén. Elect., June 1953, Vol. 62, No. 6, pp. $277-$ 293.) By an extension of Liénard's graphical method (1928 Abstracts, p. 469) only two or three coplanar curves need be traced for a complete topological study of the stability conditions for systems represented by equations of the types

$$
\begin{aligned}
& \ddot{x}+\dot{x}^{2} a(x)+\dot{x} b(x)+c(x)=0 \\
& \dddot{x}+f(\dot{x})+\dot{x} b(x)+r(x)=0 .
\end{aligned}
$$

Results of a detailed analysis are applied to the case of a filtered oscillator (1279 of May and 1624 of June). A much shorter version of the first part of this paper was given in C. R. Acad. Sci., Paris, 3rd Nov. 1952, Vol. 235, No. 18, pp. 1003-1005.

621.396 .615 .17

3557
A Study on the Triggering of a Plate-Coupled Multivibrator by Negative Pulses.-S. K. Sen \& B. K. Mhattacharyya. (Indian J. Phys., Dec. 1952, Vol. 26, No. 12, pp. $597-616$.) lixperimental observations showed (a) that voltage waveforms at different electrodes were markedly influenced by the form of the input pulses, (b) that triggering action depended largely on the input-pulse amplitude, (c) that triggering might not take place for either very small or very large pulse amplitudes, depending on circuit arrangement, but larger amplitudes caused greater difficulties. Analysis of the circuit response to pulses of various clurations and amplitudes gave results supporting the observations.

621.396 .615 .17
 3558
 Design of Triode Flip-Flops for Long-Term Stability.-

 J. O. P'aivinen \& I. L. Auerl)ach, (Trans. Inst. Radio Engrs, June 1953, Vol. EC-2, No. -2, pp. 14-2(i.) Description of an analytical method of design based on considerations of d.c. stability, limiting tolerances in respect of voltage and component values being taken in to account initially. An Eccles-Jordan circuit with injection diodes is considered as a general case and equations are derived expressing the operating conditions in the grid and the anode circuits. Solution of these equations gives appropriate key values. The method is applied to three special cases and a numerical example is given.
$621.396 .61 \overline{5} .17: 621.396 .619 .13: 621.317 .083 .7$

3559 Wide-Band Data Transmitter.-1). J. Gray, V. P. Gurske \& W. E. Norrow. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 168-170.) A f.m. oscillator uses a doublephantastron circuit [2478 of 1948 (Close $\&$ Lehenbaum)] for a linear data-recording system. Signals in the range $0-5 \mathrm{kc} / \mathrm{s}$ can be handled with an accuracy to within 1%. Full circuit cletails are given.
621.306 .615 .18

3560
Stable Frequency Dividers using Thyrite Elements.W. L. Hughes. (l'roc. nat. Electronics Conf., Chicago, 195.2, Vol. 8, pp. $730-733$.) Locked-oscillator frequency dividers using nonlinear thyrite elements as load impedors are described. With slight circuit modifications, a stable locking action is olstainable for division by any number between 1 and 10 . No circuit adjustments are required as the valves age. Dividers have been constructed for frequencies up to $1 \mathrm{Mc} / \mathrm{s}$.

$621.396 .616: 534.112 .001 .8$

3561
Vibrating-Wire High-Q Resonator.-1. W. Dickson \& W. P'. Murden. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 164-167.) Resonator units are described in which a wire of high tensile strength is stretched between long pole-pieces maintaining a strong transverse magnetic field. Resonance occurs when the frequency of current sent through the wire coincides with the natural frequency of the system. Theory is given and the equivalent electrical circuit analysed. With a tungsten wire mounted in vacuo, a Q value of 1840 has been obtained at $\underline{2} \cdot \underline{1} 1$ kc / s. Applications of such devices in filters and for frequency control are noted.

$621.396 .619 .11 / .13$

3562
Spurious Frequency Modulation in Signal Generators.
T. 1’. Flanagan. (Marconi Instrumentation, June 1953, Vol. 4, No. 2, pp. 24-28.) The chief cause of f.m. in an a.m. circuit is the variation of valve input capacitance with modulation. Methods of reducing this effect are examined, 'Iwo circuits effective in reducing f.m. at v.h.f. are described: (a) an untuned class-A amplifier with grid modulation; (b) a voltage-dividing network containing a crystal diode suitably biased to act as resistance.
621.396 .645

3563
Valve Matching using Resistors.-H. V. Harley. (Wireless World, Oct. 1953, Vol. 5!, No. 10, pp, 488493.) Desired characteristics can be obtained by including resistors in series and/or parallel with a valve; formulae for the effective parameters are tabulated for several simple combinations. Matching of a.c. characteristics may in practice be accompanied by reasonable matching of the overall d.c. characteristics; a circuit is shown using the latter effect for determining resistances required for matching two valves.
621.396 .645 : 621.385 .3 .029 .6

3564
A General Circle Diagram for the Input Admittance of a Grounded-Grid Disk-Seal Triode.-l:. Willwacher. (Fernmeldetech. Z., July l953, Vol. 6, No. 7, pp. 328331.) The method given takes account of the transconductance and anode-cathode capacitance of the triode. The effect of the transconductance phase, which depends on the electron transit time, is shown in the diagram. A numerical example is given. See also $3 \geqslant 45$ of November.
621.396.645.012

3565
Cathode-Follower Design Charts.- \mathbf{N}. O. Sokal. (Electronics, Sept. 1953, Vol, 26 , No. 9, pp. 192-194, 196.) Output-imperlance/input-voltage charts are shown for 9 commonly used valve types. Design procedure is outlined.

621.396 .64 .5 .015 .75

3566
On the Faithful Reproduction of the Flat Top of a Pulse in a High-Fidelity Pulse Amplifier.-B. K. Bhattacharyya, (Indian J. Phys., Jan. 19\%3, Vol. $\mathbf{2 7}^{7}$, No. 1, pp. 39-54.) The pulse amplifier analysed comprises a pentode with $R C$ coupling circuits. Two methods of determining anode current, and hence amplifier response, are applied, the one based on the overall-amplification reduction due to voltages across the parallel $R C$ screen circuit and the $R C$ cathode circuit, the other based on the superposition principle. Correction of pulse-top distortion is achieved by the anode-supply $R C$ decoupling circuit; the conditions for satisfactory correction are derived.
(521.396.645.029.3
$356{ }^{7}$
A Modern Broadcasting Pre-amplifier.- Dbadie \& I Blondé. (Onde élect, July 1953, Vol. 33, No. 316, pp. 468-47\%.) Description of a simple - -stage feedback amplifier using Type-liF40 low-noise pentodes and suitable for use with sound-reproduction equipment. Distortion is low, gain (40 db) practically uniform from $30 \mathrm{c} / \mathrm{s}$ to $15 \mathrm{kc} / \mathrm{s}$, and pickup of stray fields effectively negligible.
621.396.645.371.081.75

3568
Harmonic Distortion and Negative Feedback.-R. O. Rowlands. (Wireless Engr, Oct. 1953, Vol. 30, No. 10, pp. 261-262.) Author's reply to comment by Kerr (3253 of November).

$621.396 .662 .2: 538.921$

Use of Ferromagnetic Materials in Electronic Tuning of Radiofrequency Components.-S. Stiber. (Proc. nat. Electronics Conf., Chicago, 195ㄹ, Vol. 8, pp. 462-468.) The change of the incremental permeability of a core of ferrite material due to a secondary superimposed magnetic field is discussed. The effect is utilized in the design of toroidal inductors whose inductance can be varied by altering the current in an auxiliary winding. Inductors of this type are incorporated in a receiver tunable from $500 \mathrm{kc} / \mathrm{s}$ to $3 \mathrm{Mc} / \mathrm{s}$, with a bandwidth of $11 \mathrm{kc} / \mathrm{s}$ at 500 kc / s and of $2.2 \mathrm{kc} / \mathrm{s}$ at $3 \mathrm{Mc} / \mathrm{s}$. The power required in the auxiliary tuning coil is $<2 \mathrm{~W}$. A variable inductor has been developed whose volume is <1 in. ${ }^{3}$, weight slightly $>1 \mathrm{oz}$, and tuning range, for 2 W applied power, of

7: 1 in the frequency band $500 \mathrm{kc} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s}$, falling to $2: 1$ in the band $25-50 \mathrm{Mc} / \mathrm{s}$. See also Electronics, July 1953, Vol. 96 , No. 7, pp. 186-188.

GENERAL PHYSICS

$530.145: 531.51: 538.1$
3570
The Relation of the Quantum Theory to the Theories of Gravitation and Electromagnetism, and an Application to the Theory of the Electron.-H. 「. Flint \& E. M. Williamson. (Z. Phys., 25 th June 1953 , Vol. 135 , No. 3, pp. 260269.)
534.01

3571
On an Iterative Method for Nonlinear Vibrations. IR. E. Roberson. (J. appl. Mech., June 1953, Vol. 20, No. 2, pp. 237-240.) Analysis of a method giving results analogous to those obtained by Duffing's method.
$535.22+621.317 .029 .6]: 061.3$
3572
High-Frequency Electrical Measurements. Conference in Washington. D.C.-Essen. (See 3 tjol.)
537.212

3573
A New Property of 2-Dimensional Fields.-A. D. Moore. (Trans. Amer. Inst. elect. Engrs, 1902, Vol. 71, Part I, pp. 343-346. Discussion, pp. 346-347.) Mapping of the field inside a nearly enclosed area is facilitated by working on the correlative field, whose derivation is explained. An analytical proof of the correlative property, based on the Schwartz-Christoffel transformation, is given in an appendix. The proof is due to IV. R. Smythe. For a digest see I:lect. Engng, N.Y., April 1953, Vol. 7ㄹ, No. 4, p. .900.
$537.213+538.123]: 517.947 .42$
3574
The Derivation of Vector Potential from Tables for Scalar Potential.- J. J. Smith. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, 1'art I, pp. 164-174.) F'ull paper. See 2285^{5} of August.

. 37.228 : 535.37

3575
Field Strength and Temperature Studies of Electroluminescent Powders in Dielectric Media.-S. Roberts. (J.opt. Soc. Amer., Nov. 1952, Vol. 42, No. 11, pp. 850854.) Measurements were made on electroluminescent cells using ZnSSe : Cu phosphor dispersed in a thermoplastic matrix. The intensity of luminescence depends critically on the field in the phosphor, and hence on its dielectric constant, but does not depend on the dielectric properties of the matrix except in so far as the latter provides a means of supporting a strong field in the phosphor. Little change of luminescent intensity was observed when the temperature was varied from -100° to $+50^{\circ} \mathrm{C}$, polystyrene being used as matrix.
537.228 : 535. 37

3576
Dielectric Changes of Electroluminescent Phosphor during Illumination.-S. Roberts. (J. opt. Soc. Amer., July 19.33 , Vol. 43, No. $7, \mathrm{pp}$. $590-\mathrm{m} 9$. .) Measurements were made of the dielectric properties of electroluminescent films composed as described previously (3575 above), for different values of applied voltage at $1000 \mathrm{c} / \mathrm{s}$ and for various wavelengths and intensities of illumination. The dielectric constant depends markedly on the illumination, the magnitude of the variations depending critically on the applied voltage. The effect exlibits a maximum at about $4046 \AA$.

[^9]films of different thicknesses, before and after the application of voltages of 300,400 or 500 V , indicate that the resistance is increased, decreased or unchanged depending on the amount of heat developed, which in turn depends on the initial resistance and hence on the thickness.
537.311 .32

3578
On Pre-exponential Factors in Formulae for Ionic Conductivity in Solids.- I. Haven \& J. H. van Santen. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 474-477.) If, in formulae for equilibrium constants and rate constants, energy is assumed to be proportional to temperature, the factor preceding the exponential term is not increased by a factor $\exp (\alpha / k), \alpha$ being a constant and k Boltzmann's constant, hut by a factor involving entropy.
$57.52: 621.3 .066 .6$
3579
Initiation of Discharges at Electrical Contacts.-F. L. Jones. (Proc. Instn elect. Engrs, Part I, July 105̄3, Vol. 100 , No. 124, pp. 169-173.) The experimental investigation described deals with discharges between low-power contacts, with special attention to the cases of make and break at medium voltage. The discharges were found to le initiated by a cold-field emission of electrons governed by the nature of the surface tarnish layers. The influence of the gas atmosphere was examined. A theory of the mechanism is outlined.
537.533 : 538.691

On the Nonoptical Theory of Focusing in Rotating Magnetic Fields.-1' I. Tsukkerman. (Zh. tekh. Fiz., Nov. 19\%", Vol. 22, No. 11, pp. 1843-1847.) The difficulties arising in the application of optical methods to electron optics are pointed out. The general theory of the focusing action of static magnetic fields developed by Grinlerg, which is based on nonoptical methods, is applied to the case of paraxial electron beams in rotating magnetic fields.
537.533 .8

3581
Measurement of Secondary Electron Emission.1H. Gobrecht \& F. Speer. (Z. Phys., \&5̄th June 1953, Vol. 135, No. 3, pp. 331-348.) The sources of error in secondaryelectron emission determinations are discussed in detail. Retarding-voltage curves, obtained experimentally, are analysed and a method of calculating the proportion of reflected primary electrons in the secondary electron current is given for the case when the target and spherical collector are made of the same material. For a $\mathrm{Cr}-\mathrm{Ni}$ alloy and a primary potential of 1 kV , this proportion is 22%.
$537.533 .9:[538.56 .029 .65+535.212$
3582
Experiments on Radiation by Fast Electron Beams. H. Motz, IV. Thon \& R. N. Whitehurst. (J. appl. Pliys., July 1953 , Vol. 24 , No. $7, \mathrm{pp} .8: 6-833$.) The design of a magnet system for an undulator, in which the field direction alternates periodically along the electron path [2411 of 1951 (Motz)], is described. A $100-\mathrm{MeV}$ electron beam from a linear accelerator was passed through the system; light radiated by the beam was observed and its plane of polarization was determined. Using a small linear accelerator with good bunching action and beam energy 3 MeV , radiation at wavelengths below 1.9 mm was observed; peak power output was >1 W. Millimetre waves were also generated in the accelerator tube-

537.582: 518.4
 3583

Graphs for a Rapid Calculation of the Work Function of Thermionic Emission.-C. G. J. Jansen \& R. Loosjes. (Philips Res. Rep., April 1953, Vol. 8, No. 2, pp. 81-90.) A set of graphs is given for the saturation current density $\left(10^{-10}-10^{2} \mathrm{~A} / \mathrm{cm}^{2}\right)$ as a function of absolute temperature ($300-2400^{\circ} \mathrm{K}$), with the work function $(0 \cdot 6-8 \mathrm{~V})$ as parameter. The use of the graphs is explained.

537.71 .081 .5

3584
Dimensional Analysis, Units and Rationalization.R. Vermeulen. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 432-441.) Careless manipulation of dimensional formulae can lead to fallacious results. The trouble is due to the use of the multiplication sign for two different kinds of products having very different physical meanings. Once these are clearly distinguished, and the physical meaning considered at every stage in the proceedings, the difficulties encountered, even with rationalized units, are overcome.

538.11

3585
Antiferromagnetism.-H. Labhart. (Z. angew. Math. Phys., 15 th Jan. 1953, Vol. 4, No. 1, pp. 1-24.) A survey paper. The distinction between antiferromagnetism and ferrimagnetism is indicated; the former is found mainly in simple inorganic compounds, the latter in complex compounds. Problems discussed concern the interaction between adjacent dipoles, the different possible arrangements within the various lattices, the magnetic properties, and the phenomena of the transition from order to disorder. 88 references.
538.114

3586
A Theory of Ferromagnetism.-L. Pauling. (Proc. nat. Acad. Sci., Wash., June 1953, Vol. 39, No. 6, pp. 55l560.) A theory is formulated that, when applied to iron, making use only of spectroscopic data for the Fe atom, gives a value of 2.20 Bohr magnetons for the saturation magnetic moment per iron atom and a value of $1350^{\circ} \mathrm{K}$ for the Curie temperature. These values are in reasonable agreement with the experimental values of $2 \cdot 22$ magnetons and $1043^{\circ} \mathrm{K}$.

538.24

3587
The Calculation of the Magnetizing Force.-A. A. Halacsy. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, Part I, pp. 90-95.) Full details of the method described in 1662 of 1950 .

538.56 : 535.421

3588
The Electromagnetic Properties of a Plane Grating. V. M. Lopukhin \& V. S. Nikol'ski. (Zh. tekh. Fiz., Oct. 1952, Vol. 22, No. 10, pp. 1599-1605.) A plane grating is considered which consists of a number of parallel conducting planes between which electron streams pass, and its waveguide properties are discussed, taking into account the velocity scatter of the electrons. A general solution of the problem is given for an arbitrary type of scatter function. The velocity scatter narrows the range of average velocities of the streams for which amplification is possible and displaces it towards the higher velocity values; the maximum amplification is also reduced.
538.566 : 535.135

3589
Propagation of Electromagnetic Waves in a Transparent Periodically Stratified Space.-C. Dufour \& A. Herpin. (Rev. d'Optique, June 1953, Vol. 32, No. 6, pp. 321-348.) Equations derived for the general case are applied to the special case of a pile of double layers of equal optical thickness.

538.566 : :535.42

3590
Transmission of Electromagnetic Waves through Pairs of Parallel-Wire Grids.-W. E. Groves. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 845-854.) An analytical solution is obtained for the power transmission coefficient of a double-grid system. Transmission coefficients are plotted as functions of the intergrid spacing for different wire spacing and angles of tilt. The curves are compared with those obtained by measurement at $\lambda 3.2 \mathrm{~cm}$ using wire of radius 0.0875 cm . Agreement is good until the wire spacing approaches λ. Reasons for this divergence are noted.
538.566 : 537.562

3591
Plasma Oscillations in Crossed Electric and Magnetic Fields.-A. I. Akhiezer \& R. V. Polovin. (Zh. tekh. Fiz., Nov. 1952, Vol. 22, No. 11, pp. 1794-1802.) An idealized case is considered and the specific structure which retards the e.m. waves is replaced by a medium with an effective dielectric constant greater than unity. It is also assumed that the constant charge and current of the electron beam are compensated by the charge and current of ions which do not participate in the h.f. oscillations. With these assumptions, conditions are determined under which the electron beam becomes unstable, the fluctuations of the velocity and density of the beam increasing indefinitely.

538.566.2

3592
Extension of Fermat's Principle to Group Propagation Time.-P'. Poincelot. (C. R. Acad. Sci., Paris, 3rd Aug. 1953, Vol. 237, No. 5, pp. 382-384.) Continuation of work noted in 3420 of 1952 . It is shown by analysis that the difference between the group propagation times for two real paths joining the same two points is zero.

538.569.4

3593
Amplification of Microwave Radiation by Substances not in Thermal Equilibrium.-J. Weber. (Trans. Inst. Radio Engrs, June 1953, No. PGED-3, pp. 1-4.) Methods are discussed for the production of a nonequilibrium energy distribution, and the amount of amplification which may possibly be obtained by this method is calculated.

GEOPHYSICAL AND EXTRATERRESTRIAL PHENOMENA

$523.72: 621.396 .822: 621.396 .677 .1$
3594
New Techniques in Radio Astronomy.-Kraus \& Ksiazek. (See 3490.)

523.746

3595
Extrapolation of Sunspot/Climate Relationships.S. W. Visser. (J. Met., June 1953, Vol. 10, No. 3, pp. 232-233.) Consideration of the periodicity of sunspotnumber variations is based on taking the maximum year as the middle one of three successive maximal years. The next maximum should occur in 1959 and should be a strong one.
538.56 : 550.37

3596
Nonradiative Natural Oscillations of a Conducting Sphere surrounded by a Layer of Air and an Ionospheric Sheath.-IV. O. Schumann. (Z. Naturf., Feb. 1952, Vol. 7a, No. 2, pp. 149-154.) A theoretical investigation having special reference to e.m. oscillations of the earth, and relevant to the study of atmospherics. The dependence of the oscillation frequencies on the air-layer thickness and on the plasma properties is analysed. The lowest natural frequency to be expected for earth oscillations is about $11 \mathrm{c} / \mathrm{s}$. Oscillations of low frequencies are reflected at the inner surface of the plasma, while higherorder oscillations may penetrate right through the plasma and radiate into space.

538.56 : 550 0.37

3597
Damping of the Natural Electromagnetic Oscillations of the System Earth-Air-Ionosphere.-W. O. Schumann. (Z. Naturf., March/April 1952, Vol. 7a, Nos. 3/4, pp. 250252.) Continuation of work noted in 3596 above. An approximate formula is derived for the damping of the lowest-frequency oscillations, from which the effective height of the air layer and the effective conductivity of the ionosphere can be determined.

551.510 .535

3598
Electron Density in the Upper Atmosphere and Interpretation of the $\boldsymbol{h}^{\boldsymbol{\prime}} \boldsymbol{f}$ Curves of Ionosphere Virtual Height.
-F. Mariani. (Ann. Geofis., Jan. 1953, Vol. 6, No. 1, pp. 21-45.) For the case of vertical incidence and the geomagnetic latitude of Rome, an expression is developed for the group refractive index using Appleton's formula. Absorption is neglected. The optical path of e.m. waves totally or partially reflected or transmitted through an ionosphere layer is determined as a function of frequency for various cases. The results are applied in conjunction with experimental $h^{\prime} f$ curves to derive linear relations giving directly the thickness of the layer and its height above the ground. Cases of single and superposed layers are treated.

551.510.535 : 621.3.087.4

3599
Instrumentation for Measuring Changes in Phase of Ionospheric Echoes.-R. E. Jones. (Rev. sci. Instrum., June 1953, Vol. 24, No. 6, pp. 433-436.) Changes in carrier phase of ionosphere pulse echoes are determined from a comparison of the transmitted signal, stored by a 'memory' circuit, with the echo signal received. The phase variation is presented, in the instrument described, on a c.r.o. and a continuous photographic record is obtained. The equipment used is similar in principle to that of Findlay (397 of 1952). Results of E-region observations at $150 \mathrm{kc} / \mathrm{s}$ have been published by Davids (516 of February).

551.510.535: 621.3.087.5: 621.396.11

3600
COZI Communication-Zone Indicator.-L. C. Edwards. (Electronics, Aug. 1953, Vol. 26, No. 8, pp. 152-155.) A general description, with block diagram of timing and indicating circuits, is given of a low-power obliqueincidence ionosphere sounder designed to indicate skip distances and communication zones from 500 to 2000 miles. Operation is on any one of six pre-set frequencies in the range $5-32 \mathrm{Mc} / \mathrm{s}$, peak pulse power $600-900 \mathrm{~W}$, pulse duration $0.5-2.5 \mathrm{~ms}$ and repetition frequency $20 /$ sec . The one-hop skip distance is obtained directly from the time lag of the backscatter from the ground after single reflection from the ionosphere. Typical oscillograms show the increase of skip distance as the carrier frequency is increased in steps from 7 to $30 \mathrm{Mc} / \mathrm{s}$, the complete series of 12 records, two at each frequency, being obtained in 8 min .

LOCATION AND AIDS TO NAVIGATION

$621.39 .001 .11:[621.396 .9+621.397 .5$
The London Conference, September 1952: Part 2Radar and Television.-J. Loeb. (Onde élect., July 1953, Vol. 33, No. 316, pp. 478-481.) A review of some of the papers presented at the conference on 'Applications of the theory of information', dealing with the detection of signals in the presence of noise, the use of autocorrelation (theory and practice), the compression of television signals, and facsimile. Part I : 3702 below.
621.396 .9 : 519.21

3602
On the Statistical Theory of Detection of a Randomly Modulated Carrier.-W. M. Stone. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 935-939.) "A method is outlined for estimating the probability of detection for a pulsed radar, assuming a randomly modulated carrier. For a square-law detector, closed forms for the moments of the distribution of the envelope are presented in terms of three different choices of the distribution of carrier amplitude, thus leading to an Edgeworth series representation of the desired probability. At least one choice of distribution of the carrier amplitude leads to closed forms for the moments for the case of a linear detector. Curves of probability of detection vs signal-to-noise power ratio are constructed and cross checked by a method of numerical integration."

MATERIALS AND SUBSIDIARY TECHNIQUES

531.788 .73603

New Developments in the Production and Measurement of Ultra-high Vacuum.-D. Alpert. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 860-876.) Limitations of conventional ionization gauges are discussed, in particular X-ray effects, differences of sensitivity for different gases, and the pumping action of the gauge itself. Techniques and apparatus are described by which pressures down to $10^{-10} \mathrm{~mm} \mathrm{Hg}$ are achieved without chemical getters, special traps or refrigerants; these include a Bayard-Alpert gauge (2785 of 1950) with special electrode arrangement for minimizing X -ray effects, two designs of a manipulative vacuum valve for very low pressures, an absolute manometer, methods of leak detection, and a power supply system for intermittent operation of the gange.

533.5 : 537.525 .5

3604
Clean-Up of Helium Gas in an Arc Discharge.-M. J. Reddan \& G. F. Rouse. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part 1I, pp. 1924-1929.)

535.215 .1

3605
On the General Criterion [for a choice] between the 'Barrier Layer' and 'Concentration' Theories of Photo-conductivity.-S. M. Ryvkin. (Zh. tekh. Fiz., Oct. 1952, Vol. 22, No. 10, pp. 1693-1695.) The criterion proposed by Gibson (3157 of 1951) is stated to be insufficient; the choice between the 'barrier layer' and 'concentration' mechanisms should be decided by special experiments for each particular material.
$535.215 .1: 537.533 .7 \quad 3606$
An Electron-optical Method of investigating Electromagnetic Fields and its Application to Investigation of the Internal Photoelectric Effect.-V. S. Vavilov. (Zh. tekh. Fiz., Oct. 1952, Vol. 22, No. 10, pp. 1644-1657.) A method similar to that used in optics by Foucault and Toepler is proposed. With the aid of the apparatus described a quantitative investigation of the drift of photocurrent carriers in an electric field in a semiconductor is possible. Observations are made of the redistribution of the potential along the samples when photoconduction is produced in them.

.335 .37

3607
Intrinsic Efficiencies of Phosphors under Cathode-Ray Excitation.-A. Bril \& H. A. Klasens. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 401-420.) Measurements were made of the efficiencies of some 30 phosphors and of the light outputs for thin phosphor layers on aluminized or plain screens. For sulphide mixtures the maximum light output on the glass side was only 25% of the total light emitted. Maximum gain when aluminized screens are used is less than that predicted by theory, because of absorption in the Al layer.

535.37

3608
New Phosphors for Flying-Spot Cathode-Ray Tubes.A. Bril \& H. A. Klasens. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 421-431.) The following phosphors are recommended: (a) for monochrome television, $\mathrm{Ce}-$ activated phosphors, particularly $2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}-\mathrm{Ce}$, when the glass used does not blacken under c.r. or soft X -ray bombardment, (b) for the red component in colourtelevision tubes, Bi-activated phosphors, and (c) for ultraviolet flying-spot microscropy, $\mathrm{ZrP}_{2} \mathrm{O}_{7}$ phosphor.
535.37: 546.472.21

3609
Copper-Activated Zinc-Sulfide Phosphors with Yellow and Red Emission.-H. C. Froelich. (J. electrochem. Soc., June 1953, Vol. 100, No. 6, pp. 280-288.) Long-wave
emission was obtained by firing in an atmosphere of $\mathrm{H}_{2} \mathrm{~S}$ and using high activator concentration. The $6700-\AA$ and $-800-\AA$ bands are discussed.

535.372

3610
Alkaline-Earth Orthophosphate Phosphors.-K. H. Butler. ($/$ electrochem. Soc., May 1953, Vol. 100, No. 5 , pp . $250-255$.$) The method of preparation and the$ emission spectra of orthophosphates of $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$ and their mixtures are described. The primary activator used was Sm . Variation of the Mn secondary-activator content in certain of the phosphors results in a variation of the deep red colour emitted.

537.311 .33

3611
The Transport of Added Current Carriers in a Homogeneous Semiconductor.-W. van Roosbroeck. (Phys. Rev., 15th July 1953, Vol. 91, No. 2, pp. $282-289$.) Transport equations are derived which show the dependence of (a) diffusivity and local drift velocity on concentration, and (b) the decay-time function on recombination. Carrier depletion with electrical neutrality may occur. For known total current density, the transport problem is determined by the continuity equation alone. In the case of small added-carrier concentration, the continuity equation assumes a mathematically simpler form, and relations are derived for Ge , which give the drift-velocity ratio, diffusivity and group mobility in terms of resistivity and temperature.
537.311 .33

3612
Preliminary Data on the Relations between Lattice Defects and Debye R.F. Absorption in Iron Oxides.-For 'R. Freymann' please read 'R. Freymann, K. Rohmer \& B. Hagene' in 2328 of August.
537.311 .33

3613
Thermoelectric Measurements on Copper Oxide at High Temperatures.-H. Müser \& H. Schilling. (Z. Naturf., Feb. 1952, Vol. Ta, No. 2, pp. 211-212.) A note on experiments made to determine what types of semiconductor mechanism are possible in copper oxide at high temperatures.

537.311.33: 537.312.6

3614
Determination of the Resistance/Temperature Characteristics of Bulk Semiconductors.-1R. 13. McQuistan. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 525-534.) Description, with detailed circuit diagrams, of equipment using pulses of rectified current for heating the test sample and, in the intervals between pulses, displaying on a c.r.o. the resistivity and temperature of the sample. Graphs thus obtained for Ge, Si and Te agree with those obtained by conventional methods. See also Flectronics, June 19.53, Vol. 26(, No. 6, pp. 150155.

$$
537.311 .33: 539.23: 546.289
$$

3615
Semiconducting Films.-W. M. Becker \& K. LarkHorovitz. (Proc. nat. Electronics Conf., Chicago, 195.), Vol. 8, pp. 506-509.) Thin films of Ge deposited on quartz plates by thermal dissociation of GeH_{4} were of p-type at room temperature. Hall-constant and resistivity curves for the temperature range $77 \cdot 5-900^{\circ} \mathrm{K}$ have quite a different shape from those for bulk Ge and the carrier mobilities are lower than usually found for bulk Ge.
$537.311 .33:[546.28+546.289$
3616
Diffusion of Lithium into Germanium and Silicon.C. S. Fuller \& J. A. Ditzenberger. (P hivs. Rev., lst July 1953, Vol. 91, No. 1, p. 193.) Results are given of measurements at temperatures between 450° and $1000^{\circ} \mathrm{C}$, using the method previously described [2822 of 1952 (Fuller)].
537.311 .33 : 546.284

361'7
Experimental Confirmation of Relation between Pulse Drift Mobility and Charge-Carrier Drift Mobility in Germanium.-M. B. Prince. (Phys. Rev., 15th July 1953, Vol. 91, No. 2, pp. 271-272.) Experimental data on drift mobilities of minority carriers in Ge are brought into agreement with theoretical predictions by distinguishing between group velocity and particle velocity of a pulse of minority carriers. Corrected high-temperature measurements of electron drift mobility are consistent with the theoretical prediction $\mu=A T^{-3 / 2}$. The experimentally determined value of A is 2.0×10^{7}.
537.311.33: 546.289: 621.317.335.3.029.64

3618
Microwave Measurements on Germanium Semi-conductors.-l'. A. D'Altroy \& H. Y. l'an. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 522-524.) Measurements at $3-\mathrm{cm}$ wavelength for a pure Ge sample and for one doped with Sb gave conductivities of $0.0266 \Omega^{-1} \mathrm{~cm}^{-1}$ and $0.063 \Omega^{-1} \mathrm{~cm}^{-1}$ respectively, the corresponding d.c. values being 0.025 and 0.055 . The dielectric constants were respectively $15 \cdot 4$ and 15%.
537.311.33: 546.86.48

3619
Impurity and Intrinsic Semiconduction of Intermetallic Compounds: Part 1.-E. Justi \& G. Lautz. (Z. Naturf., Feb. 195\%, Vol. Ta, No. 2, pp. 191-200.) Compounds of Cd and Sb are considered. Experimental and theoretical investigations show that in CdSb the Brillouin zones are filled, hence this material is an intrinsic semiconductor. By adding small amounts of other metals impurity semiconductors are produced; these are examined in respect of variation of resistance with composition at room temperature. Properties distinguishing the intermetallic-compound semiconductors from other types are indicated.
$537.311 .33: 6 \div 1.31+.63$
3620
Relaxation Processes in Rectifying Pairs of Semi-conductors.-A. V. Joffe \& A. F. Joffe. (Zh. tekh. Fiz., Feb. 1953, Vol. 23, No. 2, pp. 209-224.) In order to investigate the slow processes which occur in a rectifying pair of semiconductors as a result of a contact or applied potential difference, and which gradually alter the resistance of the layers, experiments were conducted with $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{TiO}_{2}$ pairs. These experiments are described in detail, with numerous graphs and tables. A theoretical interpretation of the results is given; the primary cause of the observed phenomena is concluded to be the movement of ions in the semiconductors. Calculations of the resistance, based on this assumption, show good agreement witl the experimental results.
538.221

3621
Magnetic Viscosity of Ni-Zn Ferrites.-E. F. Kuritsyna. (C. R. Acad. Sci. I.R.S.S., 1st May 195̃2, Vol. 84, No. 1, pp. 45-46. In Russian.) Three samples, of permeability $\mu_{0} 600,650$ and 1600 , respectively, were investigated at 80 and $293^{\circ} \mathrm{K}$ and the last sample also at $195^{\circ} \mathrm{K}$. Two maxima of relaxation time were observed, at field strengths corresponding to the points of inflexion of the hysteresis curve.
538.221 : 534.372

3622
The Origin of Damping in High-Strength Ferromagnetic Alloys.-A. W. Cochardt. (J. appl. Mech., June 1953, Vol. 20, No. 2, pp. 196-200.) The damping of vibrations is shown to be related mainly to the effect of magnetostriction.
538.221 : 536.631

3623
The Specific-Heat Discontinuity in Antiferromagnets and Ferrites.-L. N. Howard \& J. S. Smart. (Phys. Rev., lst July 1953, Vol. 91, No. 1, pp. 17-19.)

Dynamical Physical Parameters of the Magnetostrictive Excitation of Extensional and Torsional Vibrations in Ferrites.- C. M. van der I urgt. (/hilips Kes. Rep., April 19:3, Vol. 8, No. 2, pp. (1-132.) Following a survey of the four sets of magnetostriction equations for given adiabatic conditions and arbitrary depolarization, the complex nature of the dynamic and magnetoelastic constants is discussed. The stresssensitivity constant and the magneto-mechanical coupling coefficient of several NiZn (ferroxcube IV) materials, determined experimentally, are of the same order as for metallic magnetostrictive materials, but mechanical $Q^{(}$ factors up to 15000 at $50 \mathrm{kc} / \mathrm{s}$ have been obtained. The variation of elastic and magnetic lag with frequency and biasing polarization is discussed and the experimental correlation between conductivity and clastic and magnetic losses is explained
$538.632:[669.94 .5 \cdot 25+669.127 .5$
3625
Hall Effects of the Cobalt Nickel Alloys and of Armeo Iron.-S. Foner \& E. M. l'ugh. (Ph's. Rev., lst July 1953, Vol. 91, No. 1, pp. 20-27.)
$539.24: 537.311 .3$
3626
Conductivity of Thin Films in a Longitudinal Magnetic Field.-E. Kioenigsherg. (Phys. Rev., lst July l9ī3, Vol. 91, No. 1, pp. 8-9.) Chambers' expression for the conductivity of a thin metal sample in a longitudinal field (2762 of 1950) is evaluated for thin films for two sets of boundary conditions.
546.226.161-1: 621.317.333.6

3627
The Electric Strength of Sulfur Hexafluoride at Radio Frequencies.- J. WV. Gibson \& C. I: Miller. (J. electrochem. Soc., June 195%, Vol. 100 , No. 6, pp. 265-271.) Measurements were made at $60 \mathrm{c} / \mathrm{s}$ and in the range $2-16 \mathrm{Mc} / \mathrm{s}$ at pressures of $5-20 \mathrm{lb} / \mathrm{in} .^{2}$. At $20 \mathrm{lb} \mathrm{in}^{2}$ the electric strength is $390 \mathrm{~V} / \mathrm{mil}$ and is constant in a uniform field at frequencies up to $16 \mathrm{Mc} / \mathrm{s}$. The effect of electrode material and of irradiation from a Hg -arc lamp were also investigated.
546.47-31: (535. 343.2 +537.311 .3

3628
Optical and Electrical Properties of ZnO Single Crystals with Excess of Zn.-E. Scharowsky. (Z. Phys., 2ith June 1953, Vol. 135, No. 3, pp. 318-330.) The dependence of electrical conductivity and light absorption on the excess of 7 n was investigated.

5) $46.74: 6 \geq 1.38$

3629
Nickel in Electronics.-K. Jackson \& R. O. Jenkins. (Metallurgia, Manchr, June 1953, Vol. 47, No. 284, pp. $277-282$.) A survey is given of the properties of Ni and its alloys and of their applications in electronic valve manufacture. Gas liberation from Ni and the effects of impurities are cliscussed and the choice of material for varions valve components is considered in detail.

621.314 .63

3630
The Dynamical Theory of Solid Rectifiers: Part 1 Limits of Applicability of the Static Theory.-A. 1 Gubanov. (Zh. lekh. Fiz., Nov. 145), Vol. 2., No. 11, pp. 1803-1813.) From an analysis of nonstationary diffusion equations, limits are determined for the applicability of the static theory of solid rectifiers previously proposed (2745 of 19.51 and 424 of 1952) for the case of a rectifier operating with an alternating voltage of the order of a few volts. Increase of the frequency affects first of all the establishment of an equilibrium between the numbers of mobile and fixed charges, and this effect becomes noticeable at the mains
frequency of $\mathbf{3 0} \mathrm{c}$'s and above. The redistribution of mobile charges in the barrier layer of the rectifier is, however, independent of frequency up to about $1 \mathrm{Mc} / \mathrm{s}$.

6 (3) 1.314 .63
The Dynamical Theory of Solid Rectifiers: Part 2Frequency Characteristic.-A. 1. Gubanov. (Zh. lekh. Fiz., Nov. 195シ, Vol. 2.2 , No. 11, pp. 1814 -1826.) The effect is considered of the frequency of an alternating voltage, of the order of a few volts, applied to a solid rectifier, on the distribution of fixed charges in the barrier layer. The distribution of potential is calculated as well as conduction and displacement currents as determined by the frequency. The lowering of the rectification factor in the case of an alternating current is due to the resulting displacement current, which increases with frequency. A numerical example is given for the case of a $\mathrm{Cu}_{2} \mathrm{O}$ rectifier, and curves are plotted showing the frequency dependence of the backward and displacement currents of the rectifier, and the variation of these currents with time during the negative half cycle.

621.315 .5 .015 .5

3632
Recent Information on Electric Breakdown. Konstantinowsky. (Elekivolech. u. Maschinenb., 15th May 1953 , Vol. 70, No. 10, pp. $-\mathbf{2} 4-230$.) Results recently published on various aspects of breakdown of insulating materials, cable insulation in particular, are reviewed
$6 \div 1.315 .61$
3633
Electrical and Physical Properties of IN-420: a New Chlorinated Liquid Dielectric.-A. J. Warner. (Trans. Amer. Inst. elect. Engrs, 195-9, Vol. 71, l'art I, pp. 330 335 Elect. Commun., June 1953, Vol. 30, No. -3, pp. 118-123.) Particularly suitable as an impregnant for capacitors to be used at temperatures up to $195^{\circ} \mathrm{C}$

621.315 .616 .96

3634
New Electrical Insulating Materials.-P. Jolivet. (Rev. gén. Elect., June 1953, Vol. 6\%, No. 6, pp. $\left.{ }^{2} 67-275.\right)$ The chemical structure, preparation, properties and applications of nine organic solids are detailed: five vinyl resins, aniline formaldehyde, and ethoxylene, alkyd and silicone resins
$6 \underline{2} 1.318+6 \underline{2} 1.315 .612+548.55$
3635
Modern Trends in Communication Materials.-1. A Thomas. (J. Brit. Instn Radio Engrs, July 1953, Vol. 13, No. 7, pp. 356-360.) Ferroelectric dielectrics, magnetic core materials and synthetic crystals are discussed; crystal valves are not rlealt with.

621.318 .134

3636
Losses in Ferroxcube Rods and Tubes. -H. van Suchtelen. (Electronic Applic. Bull., July 1952, Vol. 13, No. 7, pp.109-114.) Approximate formulae are derived for the loss angle for rods and tubes with windings over the whole or a short part of their length. The results indicate that, for high quality, tube cores and short coils on long rods should not be used. Measurements on ferroxcube IV B rods and tubes confirm the calculations.
666.19: 621.392.5
363%
Vitreous Silica for Ultrasonic Delay-Line Applications. E. S. I'ennell. (Proc. nat. Electronics Conf., Chicago, 195\%, Vol. 8, pp. 799-810.) The vitreons silica for ultrasonic delay lines must be free from strain or other source of birefringence and must be clear and homogeneous. Tests with polarized light of material from various sources are described. The material Ultrasil obtained from the Heraeus works, Hanau, Germany, was found to be of particularly good quality
$666.29: 621.387 .424 .03 \% .79$
3638
Enamel Seal for Thin Mica Windows in Glass Tubes. R. Meunier \& M. Bonpas. (Le Vide, May 1953, Vol. 8, No. 45, pp. 1342-1343.) Description of a process developed for Geiger-Müller tubes.

MATHEMATICS

512.831: 621.3

3639
On Matrix Algebra and the Application of 'Normalized Magnitudes' in Electrical Engineering.-H. Frühauf. (Nachr Tech., June 1953, Vol. 3, No. 6, pp. 263-268.) The methods are illustrated by calculations of the band-pass characteristics of coupled tuned circuits.
517.9

3640
Matrix Solution of Equations of the Mathieu-Hill Type.-L. A. Pipes. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp, 902-910.) The equations discussed are encountered in radio circuit and propagation theory.

518.5: 621.3.018.75

3641
A Graphical Spectrum Analyzer for Pulse Series. H. I'. Raabe. (Proc, Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1129-1138.) Description of theory and operation of a mechanical device similar to a slide rule, for presenting graphically the frequency spectrum of an infinite series of pulses having amplitude modulation but no frequency modulation.
681.14:

3642
The Approximation of Arc-Tangent ω with a Linear Electrical Network.-D. L. Finn. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 435-444.)
681.142

3643
A Stabilized Electronic Multiplier.-C. D. Morrill \& R. V. Baum. (Proc, nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 710-715.) Description of a timedivision multiplier for obtaining the product of two or more variable voltages to within 0.1%

681.142

3644
Computing Machines.-R. Bird. (Electronic Engng, Oct. 1953, Vol. 25, No. 308, pp. 407-410.) Computers for business calculations are considered and methods are described for converting information on punched cards into the binary system, and vice versa.
681.142

3645
Serial Digital Adders for a Variable Radix of Notation. R. Townsend. (Electronic Engng, Oct. 1953, Vol. 25, No. 308, pp. 410-416.) Methods are described by means of which business data, such as $\mathrm{f} . \mathrm{s}$. cl. figures, can be handled in a binary-system computer.

681.142

3646
A Magnetic-Drum Digital-Storage System.-B. F. C. Cooper. (Proc. Instn Radio Engrs, Aust., July 1953, Vol. 14, No. 7, pp. 169-177.) This magnetic-drum system was designed as auxiliary store for the C.S.I.R.O. Mark I computer previously described [1050 of April (Beard \& Pearcey)]. It has a capacity of 1024 'words' of 20 binary digits and its rotation rate of $6000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. gives an average access time of 5 ms for random references. Associated basic circuits are described.

[^10]681.142: 016

3648
Storage Systems in Arithmetical Computers.-R. Dussine. (Onde élect., July 1953, Vol. 33, No. 316, pp. 453-455.) Annotated references are given to 21 papers dealing with systems based on pulse counting, or on the use of (a) ultrasonic or electrical delay lines, (b) c.r. tubes, (c) magnetic materials.
681.142: 621.385.832.082.72

3649
The Scotch-Plaid Raster.-J. Kates \& V. G. Smith. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1480-1484.) Substantial advantages for digit storage on a c.r. tube screen are derived from use of a raster with nonuniform spacing, the raster resembling the stripes of a Scotch plaid. Theory is given for two types, the 'minimum tolerance' and the 'uniform probability' raster.
681.142: 621.392.5

3650
Electrical Delay Lines for Digital Computer Applica-tions.-J. R. Anderson. (Trans. Inst. Radio Engrs, June 1953, Vol. EC-2, No. 2, pp. 5-13.) The maximum storage capacity of commercially available lumpedparameter and distributed-parameter delay lines is about 23 and 15 pulses respectively, regardless of total delay time. An analysis indicates that dissipation in inductive elements is the chief limiting factor. Insertion loss can be reduced and storage capacity increased to about 32 pulses by using as inductive elements lowpermeability, high-Q, Ni-Zn ferrites around straight single conductors. The design of such units is described.

MEASUREMENTS AND TEST GEAR

$621.317 .029 .6+535.22]: 061.3$
3651
High-Frequency Electrical Measurements. Conference in Washington, D.C.-L. Essen. (Nature, Lond., 11th July 1953, Vol. 172, No. 4367, pp. 52-54.) A brief account of some of the papers read at the third biennial conference organized by the A.I.E.E., I.R.E. and N.B.S. and held during l4th-16th January 1953.
$621.317 .3: 535.326: 621.396 .677$
3652
Microwave Measurements on Metallic Delay Media. S. B. Cohn. (Proc. Inst. Radio Engrs, Sept. 1953 , Vol. 41 , No. 9, pp. 1177-1183.) Determinations have been made of the refractive index of microwave-lens delay media comprising alternate polyfoam spacers and thin polystyrene sheets printed with patterns of conducting areas The measurement equipment and method are described and necessary correction formulae are given. Results are presented in the form of graphs useful for design purposes.
$621.317 .3 \% 1$
3653
Voltmeter Loading Again.-R. A. Wiersma. (Wireless World, Oct. 1953, Vol. 59, No. 10, pp. 499-500.) A simple method is given for determining the true voltage in a high-resistance circuit when using a single universal meter.

621.317.333.6:546.226.161-1

3654
The Electric Strength of Sulfur Hexafluoride at Radio Frequencies.-Gibson \& Miller. (See 3627.)
621.317.335.029.65

3655
Dielectric Constant Measurements at $8 \cdot 6$-mm Wave-length.-P. Hertel, Jr, A. W. Straiton \& C. W. Tolbert. (J. appl. Phys., July 1953 , Vol. 24, No. 7, pp. 956-957.) Values of permittivity and conductivity were determined from measurements of the attenuation and phase shift of $8.6-\mathrm{mm}$ waves passed through the dielectric. Values obtained for water, ethyl alcohol and soil are compared with the results of other workers.
$621.317 .335 .3+621.317 .374] .029 .6$
3656
Measurements of the Loss Angle and Permittivity of Solid Dielectrics in the Region of Ultra-Short and Decimetric Waves.-K. A. Vodop'yanov \& B. 1 . Vorozhtsov. (Zh. tekh. Fiz., Nov. 1952, Vol. 22, No. 11, pp. 1877-1880.) Various methods developed by Soviet physicists are reviewed and optimum conditions for their application are indicated.
$621.317 .336: 621.385 .029 .64 / .65: 513.647 .1$
3657
Helix Impedance Measurements using an Electron Beam.-Watkins \& Siegman. (See 3753.)
621.317.336.1: 621.314.222

3658
A Meter for Measuring the Coefficient of Coupling of I.F. Transformers.-E. A. Saunders \& G. R. Cooper. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 609-617.) A method is described for measuring the coupling coefficient k in terms of the change in the antiresonance frequency of the primary coil and tuning capacitor with the secondary short-circuited and then on open circuit. A variable-frequency oscillator of the type described by Crosby (2156 of 1946), including the primary circuit, is set to zero beat with a fixed-frequency oscillator, the transformer secondary being shortcircuited. Measurements of the beat frequency obtained when the transformer secondary is on open circuit are made by means of a single-shot multivibrator giving a series of pulses, of constant amplitude and duration, which are fed to a d.c. microammeter calibrated to read k directly from 0.01 to $0 \cdot 4$, the accuracy being to within 3%. The frequency range covered is from about $300 \mathrm{kc} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$ secondary resonance frequency.

621.317 .342 : 621.392.5

3659
Measurement of Group-Delay Time in Networks. A. van Weel. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 467-473.) Measurement of the phase variation impressed on a l.f. modulation of a li.f. carrier during passage through an unknown network is made by introducing the phase variation into a l.f. oscillatory circuit and measuring the resultant frequency variation. Under stated conditions there is a linear relation between the group-delay variation and the frequency variation. The choice of amplifier delay time (l) and frequency (f) depends on the sensitivity required and the maximum group-delay variation to be measured. For the instrument described $t=\sim 70 \mu s, f=30 \mathrm{kc} / \mathrm{s}$, and the sensitivity ~ 0.01 degree; group-delay variations between 10^{-9} and $10^{-6} \mathrm{sec}$ can be measured.

$621.317 .361: 621.396 .619 .13$

3680
Direct Measurement of Frequency of Modulated F.M. Transmitters by Pulse Counting.-H. M. Schmidt. (Frequenz, July 1953, Vol. 7, No. 7, pp. 203-209.) Two instruments are described capable of indicating the mean frequency of a f.m. signal (with a frequency deviation of $\pm 75 \mathrm{kc} / \mathrm{s}$) with an absolute accuracy within $\pm 50 \mathrm{c} / \mathrm{s}$. The received signal is heterodyned to a lower frequency, and the count is made in the one case by means of a continuously integrating device, and in the other by means of a circuit which averages the count over an adjustable period.

f21.317.382.029.6

3661
Mismatch Errors in Microwave Power Measurements. 12. W. Beatty \& A. C. Macpherson. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1112-1119.) Expressions are derived for error due to mismatch when an u.h.f. or microwave power meter is calibrated by comparison with a standard power meter, e.g. a bolometer device. The comparison may be made by (a) alternate connection to a stable power source, (b) simultaneous connection to a T or magic- T junction, or
(c) alternate connection to a T or magic- T junction. Expressions are also derived for the mismatch error when using a calibrated power meter in the cases where (a) the power meter is directly connected to the source, (b) an attenuator is interposed, and (c) a directional coupler is interposed.

621.317 .7 : 621.314 .63

3662

Harmonic-Insensitive Rectifiers for A.C. Measure-

 ments.-R. L. Frank. (Proc. nat. Electronics Conf., Chicago, 1952 , Vol. 8, pp. $495-505$.) Measurements with a rectifier-type instrument of the amplitude of the fundamental of an alternating current may be in error if harmonics are present. The average type of rectifier circuit, with conduction over 180°, is insensitive to even harmonics and the error due to odd harmonics decreases as the order of the harmonic increases. By using a rectifier circuit giving conduction over 120° of phase angle, insensitivity to third harmonics is achieved. The performance of 120°-conduction and 180°-conduction circuits for various harmonic levels is analysed. For nonsinusoidal waveforms the 120°-conduction circuit gives a close approximation to the true r.m.s. value. Applications in a general-purpose a.c. voltmeter and precision triple-balanced phase comparator are described.621.317 .7 : 621.392.43

3663
Balance Measurements on Balun Transformers.O. M. Woodward, Jr. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 188-191.) Balun transformers can be rated in terms of the percentage ratio of the balanced-mode components of load current to total load current. The balance comparator is designed to provide the measurement equipment required. It comprises a generator, the balun under test and a variable load. The load consists of two short slotted coaxial lines, with carbonresistor inner conductors, arranged at right angles to each other. The indicator has a single-turn loop which is rotated to the positions at which its indication is proportional only to either the unbalanced or the balanced load-current components. Short symmetrical connection between the balun under test and the comparator terminals is essential. Results of measurements on baluns for about 60 and $700 \mathrm{Mc} / \mathrm{s}$ are discussed.
621.317.7: 621.396.619.13

3664
The Design of Measuring Equipment for the Determination of Circuit Performance of F.M. Systems.-A. G. Wray. (J. Brit. Instn Radio Engrs, July 1953, Vol. 13, No. 7, pp. 363-375.) The measuring equipment is considered under the following headings: (a) generators, which may be either of the beat-frequency or the harmonic type; (b) detection equipment, in particular deviation meters including low-distortion high-stability discriminators, the pulse-counter type being recommended; (c) f.m. station monitor; (d) spectrum analysers with c.r.o. display and sweep-frequency oscillator, the sweep produced either electronically or mechanically.
621.317.7.083.4

3665
The Requirements and Design for a D.C. Null Detector.F. L. Maltby. (Trans. Amer. Inst. elect. Engrs, 195l, Vol. 70, Part II, pp. 1876-1881. Discussion, pp. 18811883.) Equipment is described in which a synchronous reversing switch is used to convert the error direct voltage into an alternating voltage at the mains frequency. This alternating voltage is amplified and applied to the control winding of a 2 -phase balancing motor whose reference winding is energized continuously at the mains frequency. Design requirements are discussed and circuit details given.
621.317.715: 621.314.58

3666
The Induction Galvanometer, a Sensitive Instrument Cohverter.-R. W. Gilbert. (Trans. Amer. Inst. elect.

Engrs, 1951, Vol. 70, 1’art 11, pp. 1121-1126. Discussion, p. 1126.) Detailed description of the construction and operation of an instrument consisting essentially of a conventional permanent-magnet moving-coil galvanometer with the addition of means for injecting an a.c. component of magnetic flux into the permanent-magnet field. Deflection of the coil due to d.c. produces a proportionate alternating voltage in the coil, which is amplified by a special frequency-shift amplifier. A commercial design for $200-\mathrm{kc} / \mathrm{s}$ conversion is illustrated, for which the conversion gain, defined as the ratio of energy developed in the moving-coil impedance $(\sim 300 \Omega)$ to the d.c. energy producing it, may be as high as $+\times 10^{10}$. When properly adjusted, the galvanometer deflection for full output is estimated as about 5 seconds of angle.

621.317 .755 .015 .7

3667
Pulse Oscillograph.-W. Eckardt. (Nachr Tech., June 1953, Vol. 3, No. 6, pp. 250-257.) Description of equipment for pulse widths of $1-300 \mu$ s and pulse repetition frequencies up to $10^{5} / \mathrm{sec}$.

$621.317 .761 .0 \div 9.64 / .65$

3668
Accurate Frequency Meters for the Range 22-37 $\mathrm{kMc} / \mathrm{s}$.-Bonnet. (Onde élect., June 1953, Vol. 33, No. 315, pp. 259-269.) A description is given of the construction and method of use of two meters of the cavity-resonator type, differing only in the diameters of the cavities and the spacing of the holes for coupling to a waveguide. Preliminary calibration was effected by means of the NH_{3} absorption lines. Accurate measurements make use of harmonics of a $15 \cdot 27 \mathrm{o}-\mathrm{Mc} / \mathrm{s}$ quartz crystal, a c.r.o. method being adopted for identification of the harmonics and of the oscillation modes used, which are mainly $\mathrm{H}_{011}, \mathrm{H}_{012}$ and H_{013}. Measurement accuracy is of the same order as that to which the quartz-crystal frequency is known.

$621.317 .783 / .784: 621.316 .313$

3669
An Electronic Wattmeter.-W. B. Boast. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 716-724.) Description of the method of operating conventional electrodynamometers at $10 \mathrm{kc} / \mathrm{s}$ from specially designed amplifiers, for making accurate measurements of power and reactive power on the a.c.-network analyser at Iowa State College.

$621.317 .79: 621.396 .611 .21$

3670
A Review of Methods for Measuring the Constants of Piezoelectric Vibrators.-E. A. Gerber. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1103-1112.) The equivalent-circuit representation of piezoelectric vibrators is shown, and the fundamental parameters indicated. Measurement methods are considered under two headings, viz., routine and laboratory. For routine measurements, methods are preferred in which the crystal under test constitutes the frequency-controlling element in the circuit of the test oscillator. To obtain the greater precision required with laboratory measurements, bridge circuits are preferred.

$621.396 .615 .029 .63 / 64$

3671
An S-Band Sweep Generator and Test Set.-J. H. Kluck \& R. E. Larson. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 823-830.) The generator provides a single sweep from $2 \cdot 6$ to $3.6 \mathrm{kMc} / \mathrm{s}$ or a 100 Mc / s sweep whose centre frequency can be anywhere within the range $2 \cdot 6-3 \cdot 8 \mathrm{kMc} / \mathrm{s}$. The frequency sweep is obtained by mixing the outputs of two k-band klystrons. Square-wave modulation equipment, and a detector system consisting of a wide-band bolometer, tuned amplifier and c.r.o., are provided to give a visual
indication of the frequency response of S-band components. Typical oscillograms obtained with the ecquipment are reproduced.

621.396 .615 .17 .015 .7

3672
A Wide-Range Pulse Generator for Laboratory Applications.-R. W. Frank. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 811 -82.2.) Description, with schematic circuit diagrams, of a pulse generator, developed by the General Radio Co., providing pulses of duration from 0.05μ s to 0.1 sec , with rise and fall times of $0.025 \mu \mathrm{~s}$. The pulses are derived from a linear sawtooth wave which is also available. A delay system for phasing applications can be calibrated over the range $1 \mu \mathrm{~s}-0.15 \mathrm{sec}$. The sweep circuit gives an amplitude sufficient for full deflection of the beam of a standard 5 -in. c.r. tube. Any output impedance up to 600Ω can be chosen.

OTHER APPLICATIONS OF RADIO AND ELECTRONICS

$532.137: 6 \div 1-526 \quad 3673$
Design and Construction of a Viscometer with Electronic Servomechanism.-1). Jung. (HF, Brussels, 1953, Vol. 2, No. 7, pp. 189-196.) Operation of the Couette viscometer is improved by incorporating a servomechanism.

621.317.083.7

3674
A High-Speed Telemetering System with Automatic Calibration.-W. E. Plillips. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1256-1260. Discussion, pp, 1260-1261.) Description of equipment using frequency bands of $20-25 \mathrm{c} / \mathrm{s}$ and $80-100 \mathrm{c} / \mathrm{s}$ for signal transmission. At the receiving end a converter produces a direct voltage proportional to the frequency of the incoming signal, which operates a recorder.

621.317.083.7:551.508.11

3675
A Radar Sonde Installation.-(Electronic Eingng, Oct. 1953, Vol. 2.5, No. 308, p. 416.) Brief description of fully automatic equipment for the British Meteorological Office, consisting of ground interrogator and computing station working in conjunction with airborne transponders. For a somewhat fuller account see Elect. J., 28 th Aug. 1953, Vol. 151, No. 9, pp. 651-652.

$621.365 .54 \dagger: 016$

3676
Bibliography on the Present-Day Technology of H.F. Generators for Induction Heating.-J. Reboux. (Onde élect., July 1953, Vol. 33 No. $316, \mathrm{pp} .456-460$.) A list, with notes, of 3 . publications dealing with (a) the basic theory and practice of h.f. induction heating, (b) design of suitable generators, (c) practical applications.
$621.38+.612 / .613$
Automatic Ejection in Betatrons and Synchrotrons.L. W. von Tersch \& R. L. Doty. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 703-709.)
621.384 .612

3678
Origin of the 'Strong-Focusing' Principle.-E. D. Courant, M. S. Livingston, H. S. Snyder \& J. I'. Blewett. (Phys. Rev., Ist July 1953, Vol. 91, No. 1, pp. 202-203.) Note pointing out that N. Christophilos, in an unpublished manuscript prepared in 1950, proposed an accelerator on the same lines as that described in 1454 of May.
621.384.62.2.1

3679
A Portable 250-Kilovolt Accelerator.-T. A. Bergstralh, K. L. Dunning, E. Durand, C. H. Ellison, H. K.

Howerton \& W. Slavin. (Kev. sci. Instrum., June 1953, Vol. 24, No. 6, pp. 417-419.)
621.385 .833

3680
Angular Aberrations in Sector-Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles.-E. G. Johnson \& A. O. Nier. (Phys. Rev., lst July 1953, Vol. 91, No. 1, pp. 10-17.)
621.385.833: 061.3

3681
Electron Optics. Symposium in London. - 0 . Klemperer. (Nature, Lond., 11 th July 1953, Vol. 172, No. 4357, pp. 61-62.) A brief report on the Physical Society symposium on 'Recent Research in Electron Optics' held during 15th-16th May 1953.
621.387.424

3682
A Battery-Operated Geiger-Miuller Counter.-G. Hepp. (Philips tech. Rev., June 1953, Vol. 14, No. 12, pp. 369376.)
$621.389: 621.396 .645 .35: 541.132 .3 \quad 3683$
Electronic Instrumentation applied to the Chemical Industry, with special reference to pH Measurement.G. Hitchcox. (J. Brit. Instn Radio Engrs, Aug. 1953, Vol. 13, No. 8, pp. 401-411.) The design of the directreading continuous-service pH meter is discussed; this is essentially a stable d.c. amplifier, either direct-coupled or with conversion to a.c.; two typical commercial instruments are described.

Abstract

621.397 .9

3684 Measurement of the Size-Distribution of Spray Particles.-L. K. Wheeler \& E. S. Trickett. (Electronic Engng, Oct. 1953, Vol. 95 , No. 308, pp. 402-406.) A phototelegraph transmitter is used to scan spot patterns produced by a spray, and the resulting pulses are passed to a discriminating device. 681.26 : 621.38 : 681.178

3685 Ultrarapid Electronic Balance.-A. Jeudon. ($A n n$. Télécoттии., June 1953, Vol. 8, No. 6, pp. 190-196.) Description of feedback equipment producing a current proportional to the applied force up to a maximum weight of 30 g , with application to detection of overweight letters.

PROPAGATION OF WAVES

538.566

3686
The Nonexistence of Sommerfeld's Surface Wave.1'. Poincelot. (Ann. Té́écommun., June 1953, Vol. 8, No. 6, pp. 206-211.) See 195 of January.

Abstract

538.566 : 537.311 .3

3687 General Method of Determining the Conductivity of Heterogeneous Ground. - M. Argirovic. (Ann. Télécomтии., June 1953, Vol. 8, No. 6, pp. 212-2!4.) A critical propagation zone is reached when the value of Sommerfeld's 'numerical distance' is $>e$, , the base of Napierian logarithms. Study of the critical point leads to two very simple expressions for the attenuation factor and to a curve differing slightly from that of Sommerfeld near the critical point. From the rule for the sum of numerical distances (distances $<e$), a method is developed for the direct determination of ground conductivities, and zones of equal conductivity, from measured values of field strength and range. A graphical method of evaluating the required quantities is described. The method has been applied to calculations of nightattenuation curves. Comparison of the calculated values of ground conductivity with measured values for particular transmission paths shows satisfactory agreement.

621.396 .11

3688
Radio Propagation over a Flat Earth across a Boundary Separating Two Different Media.-P. C. Clemmow, (Phil. Trans. A, 15 th June 1953, Vol. 246, No. 905 , pp. 1-55.) A theoretical investigation is made of the propagation of vertically polarized waves, assuming in the first place an earth model consisting of an infinitely thin perfectly conducting half-plane lying in the surface of an otherwise homogeneous earth. The resulting boundary-value problem is solved for a plane wave inclined at an arbitrary angle, and the solution for a line source is obtained in the form of an integral equation. The case when transmitter and receiver are both at ground level is considered in detail; when the distance between them is large the solution becomes simplified, giving results in agreement with those of Feinberg (1902 of 1947). The possibility of an increase of field strength just beyond the boundary is confirmed. A different approximation is obtained when the transmitter and receiver are elevated; this is used to indicate the validity of height-gain factors. For the usual practical case of two regions with arbitrary complex permittivity, approximate boundary conditions are introduced into the analysis. Attenuation and phase curves are given for a numerical example, the attenuation results being in good agreement with those reported by Millington (2307 of 1949).
621.396 .11

3689
Predictions of Optimum Working Frequency in Washington and in Madrid.-R. Gea Sacasa. (Rev. Telecomunicación, Madrid, June 19n̄3, Vol. 9, No. 32, pp. 2-20.) Predictions made by the 'Spanish Method' (3536 of 1952) and based on data for Madrid are compared with predictions made by the C.R.P.L. for a number of circuits in the region of latitude $40^{\circ} \mathrm{N}$ in North America and for two circuits limking the U.S.A. and Europe. The main points of agreement and disagreement are discussed. It is suggested that when correction is made for seasonal variation of critical frequencies, the sunspot cycle may be found to have no effect on ionospheric propagation.

621.396.11:551.510.535

3690
Studies on Ionospheric Absorption.-13. Chatterjee (Indian J. Phys., Dec. 1952, Vol. 26, No. 1थ, pp. $585{ }_{5}-$ 596.) The factors causing ionospheric absorption are briefly reviewed and the method applied in the systematic observations instituted at Calcutta is described in some detail. Typical graphs showing the variation of absorption with frequency are discussed. There is a marked increase in absorption near the critical frequencies of the layers. When magneto-ionic splitting occurs, the extraordinary component usually suffers greater absorption. When an E s layer is present, certain F echoes are more highly attenuated. Very high absorption on all s.w. frequencies on particular nights is explained as a result of the formation of a sporadic-D layer.
621.396.1I: 55 1.510 .535

3691
The Calculation of the Path of a Radio-Ray in a Given Ionosphere.-A. H. de Voogt. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1183-1186.) A general formula is derived giving the electron density in the ionosphere as a third-degree function of height. The form of the distribution curve can be brought into coincidence with previously proposed distribution curves by inserting appropriate values for the formula constants, in accordance with ionospheric soundings. Exact calculations can be made of transmission time, greatest lieight reached, and distance travelled on the earth's surface, for a given angle of departure of a ray. Details of the calculations are available on request from the PTT-Radio-Service. Scheveningseweg 6, The Hague.

$621.396 .11: 5 \overline{5} 1.510 .535: 621.3 .087 .5$ 3692

 COZI Communication-Zone Indicator.-Edwards. (See 3600.)
$621.396 .11: 621.317 .353 .3 \dagger$

3693
Solar Influence in Gyro-interaction Experiments. G. Righini \& G. Godoli. (Ann. Geofis., Jan. 1953, Vol. 6, No. 1, pp. 11-19.) Statistical analysis of data collected during the period 1948-1950 shows that it is exceedingly improbable that there is any solar influence on gyrointeraction.

$621.396 .11 .029 .63: 551.5$

3694
Ultra-short Waves and Meteorology.-J. Dufour. (Bull. tech. Suisse rom., 16 th May 1953, Vol. 79, Nos $9 / 10$, pp. 121-126.) Discussion of tropospheric propagation at wavelengths below 10 m , with particular reference to atmospheric refraction and general meteorological conditions. Observations on Swiss radio links are described.

621.396.812.3.029.62

Fading and Loss of Contact on Ultrashort Waves due to the Presence of Inversion Layers.-]. Voge. (C. R. Acad. Sci., Paris, 31st Aug. 1053, Vol. 237, No. 9, pp. 491-493.) On the basis of calculations it is concluded that either the direct or the ground-reflected ray may be suppressed over a direct-visibility path, depending on the heights of the path-terminal points relative to the inversion layer. The types of fading or interference resulting in the different cases are indicated.

RECEPTION

621.3.087.4:621.396.8:551.594.6 3696
Intelligibility Recorder for Radiotelegraph Signals.S. Silleni. (Ann. Geofis., Jan. 1953, Vol. 6, No. 1, pp. 137-153.) A recorder has been developed for atmosphericnoise measurements on single-channel Al or Fl type transmissions at $10-\overline{5} 0$ bauds; it can be adapted for other noise measurements. Three voltages are derived. The first (q_{s}) is proportional to the mean received energy. The second $\left(q_{T}\right)$ represents the energy that would be received in the absence of atmospheric noise. The third $\left(q_{\mathrm{B}}\right)$ represents the energy-error level above which an error will be counted, this level being determined from statistical considerations. These three voltages are applied to a circuit which determines the differences $\pm\left(q_{\mathrm{T}}-q_{A}\right)-q_{\mathrm{B}}$. If either difference is positive, a pulse signal is passed to the error-counting circuit actuating the pen recorder. A second counter circnit resets both counters to zero when 1000 signals have been received. Block and circuit diagrams are shown and explained.

621.396 .621 .54

3697
Design for a Communications Receiver. -W. H. Segrott. (Short Wave Mag., April \& May 1953, Vol. 11, Nos. 2 \& 3, pp. 85-96 \& 154-160.) A description is given, with complete circuit details, of a receiver for the 7 -, 14 -, and $21-\mathrm{Mc} / \mathrm{s}$ bands, designed so that a minimum of test equipment is needed in the construction and alignment. Ganged tuning units are not used. Intermediate frequencies of $5 \mathrm{Mc} / \mathrm{s}, 465 \mathrm{kc} / \mathrm{s}$ and $50 \mathrm{kc} / \mathrm{s}$ are used, selectivity and signal/noise ratio being comparable with those of a high-grade commercial receiver. With two converters for the $28-\mathrm{Mc} / \mathrm{s}$ and v.h.f. bands, the receiver comprises 9 units, one of which includes a c.r. tube monitor and signal-strength meter.

621.396.621.54.029.51

3698
Converter for $200 \mathrm{kc} / \mathrm{s}$.-C. B. Raithbv. (Wireless World, Oct. 1953, Vol. 59, No. 10, p. 487.) The converter circuit described comprises a triode-hexode mixer with a
crystal-controlled oscillator; crystal frequencies ranging from 3 to $10 \mathrm{Mc} / \mathrm{s}$ have been found satisfactory. Reception on $200 \mathrm{kc} / \mathrm{s}$ can be obtained with any reasonably well screened s.w. receiver.
621.396.622:519.272

3699
Measurements of Detector Output Spectra by Correlation Methods.-L. Weinberg \& L. G. Kraft. (Proc. Inst. Radio Engrs, Sept. 1953, Vol. 41, No. 9, pp. 1157-1166.) Correlation technique is applied experimentally to determine the power-density spectra of the outputs of linear and square-law detectors. A digital correlator [1237 of 1951 (Singleton)] is used to obtain values of the input and output autocorrelation functions for inputs of filtered noise either alone or combined with a sine wave; these values are compared with the curves calculated from theory.

STATIONS AND COMMUNICATION SYSTEMS

621.39.001.11

3700
The Equivalence of Optimum Transducers and Sufficient and Most Efficient Statistics.-G. W. Preston. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 841-844.) A statistical treatment of the problem of recovering the original form of a signal which has become mixed with noise, while preserving information in the Shannon sense. A transducer is discussed which is the physical analogue of a statistic, in the Fisher sense; the properties of the optimum transducer are equivalent to the statistical properties of 'sufficiency' (preservation af information) and 'efficiency' (maximization of fidelity). The case of a Gaussian signal mixed with Gaussian noise is considered in detail; the maximum-likelihood estimate of the signal is derived and its physical analogue is identified as the Wiener smoothing filter with infinite lag.

621.39.001.11

3701
Correlation versus Linear Transforms.-D. A. Bell: M. J. E. Golay. (Proc. Inst Radio Engrs, Sept. 1953, Vol. 41, No. 9, p. 1187.) Discussion on 1477 of May
621.39.001.11: 061.3

3702
The London Conference, September 1952: Part 1 Applications of the Theory of Information.-A. liromageot. (Onde élect., July 1953 , Vol. 33, No. 316, pp. 473-478.) A review of the subjects discussed which concern telephony and telegraphy. Part 2: 3601 above.

621.39.001.11: 5̃17.43

3703
Analysis of Signals and of Linear Transmission Operators. -H. Angles d'Auriac. ($H F$, Brussels, 1953 , Vol. 2, Nos. 5, $6 \& 7$, pp. 119-138, 162-172 \& 179-187.) Analytical methods of Fourier and Dirac and their application to the determination of the propagation constants of a linear transmission system are explained. An alternative method is to represent the operation of the system by a 'linear transmission operator' which may be reduced to elementary operators of 'filtering' and 'echo' types. The practical significance and application of the method in the case of signals with limited spectrum or finite duration are discussed; an examination of the requirements of a test signal for checking transmission systems indicates the suitability of the 'raised-cosine' signal for this purpose.
621.395.44: 621.315.052.63

3704
Transmission Considerations.-G. E. Burridge \& A. S. G. Jong. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1335-1340. Discussion, p. 1340.) Full paper. Summary noted in 1102 of 1952 .
621.395 .44 : $621.315 .052 .63: 621.395 .82$.

3705
A Study of Carrier-Frequency Noise on Power Lines: Parts 1 \& 2.-R. C. Cheek \& J. D. Moynihan. (Trans. Amer. Insl. elect. Eingrs, 1951, Vol. 70, l'art 11, pp. 1127 1133 \& 1325-1334. Discussion, pp. 1133-1134.) Theoretical aspects of the noise problem are discussed and measurement techniques are described. The results of measurements of noise levels on representative powertransmission lines with operating voltages from 23 to 230 kV are presented and cliscussed. Impulsive noise with repetition rates from 60 to $180 / \mathrm{sec}$ was found predominant.

621.396 .4

3706
Channel-Spacing Considerations in the $154-174$-Mc/s Band.-H. E. Strauss. (Trans. Inst. Radio Engrs, June 1953, No. l'GVC-3, pp. 44-57.)
621.396 .41

3707
A Report on Channel-Splitting Demonstrations conducted in Syracuse.-N. H. Shephard. (Trans. Inst. Radio Engrs, June 1953, No. PGVC-3, pp. 58-66.)

621.396 .41
 3708

Commercial Experience with $160-\mathrm{Mc} / \mathrm{s}-20-\mathrm{kc} / \mathrm{s}$ Equip-ment.-D. E. Noble. (Trans. Inst. Radio Engrs, June 1953, No. I'GVC-3, pp. 67-70.) Report of tests carried out on a $20-\mathrm{kc} / \mathrm{s}$ split-channel system.
621.396.41.001.42

3709
Field Test of Split-Channel $50-\mathrm{Mc} / \mathrm{s}$ Systems.- W. M. lRust, Jr. (Trans. Inst. IRadio Engrs, June 1953, No. 1'GVC-3, pp. 32-35.)
621.396.41.001.42

3710
Operational Experience with a Split-Channel $50-\mathrm{Mc} / \mathrm{s}$ System.-J. S. Stover. (Trans. Inst. Radio Engrs, June 1953, No. PGVC-3, pp. 36-37.)
$621.396 .5: 621.396 .8$
3711
Comparison of Mobile-Radio Transmission at 150, 450, 900 and $3700 \mathrm{Mc} / \mathrm{s} .-\mathrm{W} . \mathrm{K}$. Young, Jr. (Trans. Insi. Radio Engrs, June 1953, No. l'GVC-3, pp. 71-84.) Reprint. See 823 of March.

621.396 .619 .16

3712
Deltamodulation, a Method of P.C.M. Transmission using the 1-Unit Code.-F. de Jager. (Philips Res. Rep., Dec. 1952, Vol. 7, No. 6, pp. 442-466.) Theory of the method is developed, particularly in its relation to information theory. See also 2603 of 1952 (Schouten et al.).
621.396.65: 621.396.93

3713
Frequency Economy in Mobile-Radio Bands.-K. Bullington. (Trans. Insi. Radio Engrs, June 1953, No. PGVC-3, pp. 4-27.) Reprint. See 1797 of June,
$621.396 .65: 621.396 .931$
3714
Technical Considerations governing the Choice of Channel Spacing in Mobile Communication Bands.D. M. Heller. (Trans. Insi. Radio Engrs, June 1953, No. PGVC-3, pp. 28-31.)
621.396.65: 621.396.933

3715

Multi-Station Air-to-Ground Communications.-

 (Wireless World, Oct. 1953, Vol. 59, No. 10, p. 500.) A v.h.f, area coverage scheme for New Zealand is described, with control centre at Wellington, alternative control centre at Paraparaumn, transmitting and receiving stations at Mount Egmont and Colonial Knob, and twoway radio links between the last-mentioned station and the others. Each link carries six speech channels for modulating ground-to-air transmitters, an engineers' speech channel, and audio tones for switching and remotecontrol. The link transmissions are frequency modulated, with subcarriers for the ground-to-air traffic amplitude modulated on the s.s.b. system. The ground-to-air transmissions are amplitude modulated.
621.396 .712 .3

3716
Technical Arrangements in the Cologne Broadcasting Centre.-O. Bero. (Tech. Hausmitt. NordwDtsch. Rdfunks, 1953, Vol. $\overline{5}$, Nos. 5/6, pp. 98-108.) Hllustrated description, with block circuit diagrams, of the distribution system linking the various studios and control rooms, and of the control and operating equipment.
$621.396 .712 .3: 621.395 .625 .2 / 3] .004 .5$
3717
Supervision of Electroacoustic Equipment in the Cologne Broadcasting Centre.-F. Enkel. (Tech. Hausmitt. NordwDtsch. Rdfunks, 195̃3, Vol. 5, Nos. 5/6, pp. 109-114.) General description of the arrangements for testing and maintenance of microphones, magnetophones and amplifiers.

621.396.931

3718
The [Belgian] Post-Office Public Ground Mobile Radiotelephone Service.-1'. Bouchier. (HF, Brussels, 1953, Vol. 2, No. 7, pp. 173-178.) A general description of the organization and equipment, witl discussion of the frequencies used and the selective calling and secrecy arrangements. Tests made in the Brussels area are reported; the influence of the nature of the terrain is indicated
621.396.619.001.11

3719
Harmonics, Sidebands and Transients in Communication Engineering, as studied by the Fourier and Laplace Analyses. [Book Review]-C. L. Cuccia. 1'ublishers: McGraw-Hill, London, $1952,465 \mathrm{pp} ., 76 \mathrm{~s}$. 6d. (Nature, Lond., 4th July 1953, Vol. 172, No. 4366, pp. 5-6.)

SUBSIDIARY APPARATUS

3720
Synthesis of Feedback Control Systems by means of Pole and Zero Location of the Closed Loop Function.M. R. Aaron. (Trans. Amer, Inst. elect. Engrs, 1951, Vol. 70, Part 11, pp. 1439-1445. Discussion, pp. 14451446.) A mathematical description of the desired frequency response, based on the location of the poles and zeros of the closed loop function, is given which ensures that the specifications of velocity or acceleration error constant, bandwidth, and relative stability will be met and which provides for acceptable ${ }^{6}$ system transient response. Algebraic manipulation yields the transfer function of the main-loop and subsidiary feedback-loop corrective networks required to meet the specifications.

621-526
3721
Servomechanism Transient Performance from Decibel/ \log-Frequency Plots. - H. Harris, Jr, M. J. Kirby \& E. F. von Arx. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part 1I, pp. 1452-1459. Discussion, p. 1459.)

Sampled-Data Control Systems Studied through Comparison of Sampling with Amplitude Modulation.-W. K. Linvill. (Trans. Amer..Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1770-1786. Discussion, pp. 1787-1788.)

[^11](Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part 1I, pp. 1447-1450. Discussion, p. 1451.)

621-526: 621.314.3 \dagger

3724
An Improved Magnetic Servo Amplifier.-C. W. Lufcy, A. E. Schmid \& P. W. Barnhart. (Elect. Engng, N.Y., April 1953, Vol. 72, No. 4, p. 308.) Digest only.
621.316.072.1/.2

3725
Current and Voltage Regulators.-J. Pottier \& A. Lavaitte. (Onde élect., July 1953, Vol. 33, No. 316, pp. 442-452.) A review of the principles of various types of regulator utilizing a reference standard. Systems for low and high power, and for direct and alternating current or voltage, are considered.

621.316.722.1

3726
An Electromechanical A.C. Line-Voltage Stabilizer.D. M. Murray \& N. L. Kusters. (Trans. Amer. Inst. elect. Engrs, 1951, Vol. 70, Part II, pp. 1741-1748.) Description of a stabilizing unit having a short recovery time comparing favourably with that of commercial elestronic devices. A temperature-limited diode in a bridge circuit is used to detect the line-voltage variations, and is followed by a phase inverter and a thyratron driving circuit.

621.352 .12

3727
Recent Developments in the Field of Electric Cells.J. Pernik. (Rev. gén. Elect., June 1953, Vol. 62, No. 6, pp. 294-303.) Improvements in Leclanché-type cells are reviewed and the construction and properties of (a) $\mathrm{Ag}-\mathrm{Mg}$ cells with AgCl depolarizer, (b) $\mathrm{C}-\mathrm{Zn}$ cells with HgO depolarizer, are described.

621.355 .9

3728
The Silver-Zinc Accumulator.-C. L. Chapman. (Electronic Engng, Oct. 1953, Vol. 25̄, No. 308, pp. 422423.) Construction details are described and performance figures given. Types are available with capacities from 0.75 to 60 AH , the corresponding weights ranging from $\frac{3}{3} \mathrm{oz}$ to 1 lb .12 oz . The temperature limits of operation are discussed.

TELEVISION AND PHOTOTELEGRAPHY

621.39.001.11: [621.396.9 + 621.397.5

3729
The London Conference, September 1952: Part 2Radar and Television.-Loeb. (See 3601.)
621.397

3730
A High-Speed Direct-Scanning Facsimile System.${ }^{\circ}$ C. R. Deibert, F. T. Turner \& R. H. Snider. (Trans. Amer. Inst. elect. Engrs, 195̄2, Vol. 71, Part I, pp. 115 121.) Full paper. See 841 of March.

621.397.5: 621.39.001.11

3731
Economy of Bandwidth in Television.-D. A. Bell. (J. Brit. Instn Radio Engrs, Sept. 1953, Vol. 13, No. 9, pp. 447-470.) The nature of television signals and proposed methods of improving the picture-quality/bandwidth ratio are examined in the light of communication theory; some of the less obvious features of the spectrum generated by conventional scanning methods are discussed. The offset-carrier and 'tête-béche' systems for reducing shared-channel interference are described. Devices for reducing the bandwidth required to accommodate the signal or for increasing the amount of information transmitted with the existing bandwidth are reviewed. 41 references.
621.397.61(410)

3732
Television in Great Britain.-K. H. Deutsch. (Funk u. Ton. June 1953, Vol. 7. No. 6, pp. 288-297.) A general
account, dealing with technical transmission data, programme production, studio arrangements, transmitters, and cable and radio links connecting different points of the system.

621.397.611.2

3733
New Developments in the Image Iconoscope.- J. C. Francken $\hat{\alpha}$ H. Bruining. (Philips tech. Rev., May 1953, Vol. 14, No. 11, pp. 327-335.) See 2167 of July (13ruining).

621.397.62

3734
Intercarrier-Sound Television Receivers.-A. Boekhorst. (Philips tech. Commun., Aust., 1953, No. 2, pp. 3-15.) Reprint. See 857 of March.
621.397.62: 621.314.2

3735
I.F. Amplifiers with Bifilar-Wound Coils for Television Receivers.-W. Taeger. (Frequenz, March 1953, Vol. 7, No. 3, pp. 57-59.) Equivalent-circuit analysis of bifilar i.f. transformers (2138 of 1950), showing how the coupling coefficient can be calculated.

621.397.62: 621.316.729

3736
The Operation of Slow-Acting Deflection-Synchronization Circuits in Television Receivers.-G. W. Kijakowski. (NachrTech, June 1953, Vol. 3, No. 6, pp. 269-274. German translation of paper in Radiotekhnika, 1952, No. 6.) Analysis is given of the process of frequency and phase control of a sine-wave generator by synchronization pulses. The optimum circuit parameter values can be determined from expressions given for the sensitivity of the system to interference by single pulses and the conditions for rapid aperiodic restoring of synchronism. Experiments confirmed the theory.

621.397.62: 621.385.832

3737
A Short-Length Direct-View Picture-Tube.-J. L. H. Jonker. (Philips tech. Rev., June 1953, Vol. 14, No. 12, pp. 361-367.) Various known methods are discussed for reducing the length of c.r. tubes for television receivers without decreasing the size of the picture. A description is given of an experimental tube with its neck bent through an angle $>90^{\circ}$. A permanent magnet is used to bend the beam correspondingly. The usual scanning-deflection angle of 65° is used.

621.397.62: 621.397.335

3738
Flywheel Synchronization.-B. T. Gilling. (Wiveless World, Oct. 1953, Vol. 59, No. 10, p. 495.) A note of modifications made to the circuit previously described (1499 of May) consequent on the incorporation of a multivibrator sawtooth generator.

621.397.62.002

3739
The Production of Television Receivers.-F. Allen. (J. Brit. Instn Radio Engrs, Aug. 1953, Vol. 13, No. 8, pp. 383-398.) An account is given of labour-saving methods in use in a particular factory for the quantity production of television components; testing, assembly and packing processes are described.
621.397.621.2: 535.623

3740
Rotating-Screen Color TV Tube.-I.Rehman, E. Singer \& C. S. Szegho. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 214..222.) To overcome the appreciable light absorption of colour-filter wheels used in front of the c.r. tube in sequential systems, a continuously pumped projection tube has been developed within which is mounted a tricolour segmented fluorescent disk revolving at 1800 r.p.m. The disk has a diameter of $7 \frac{1}{2} \mathrm{in}$. Phosphors with decay-time constants of the order of $2.7 \times$ $10^{-6} \mathrm{sec}$ are required if high resolution is to be maintained; those used for flying-spot c.r. tubes are suitable. Measures to increase available light output are considered.

621.397.621.2: 621.316.86

3741
Frame-Deflection Circuit with VDR [voltage-dependent] Resistor.-H. H. van Abbe \& A. Boekhorst. (Electronic Applic. Bull., July 1952, Vol. 13, No. 7, pp. 101-108.) The V / I relation for the particular type of resistor used is given by $V=c l^{\beta}$, where β ranges from 0.16 to 0.30 . Such a resistor is included in the network coupling the frame oscillator to the output stage, to linearize the sawtooth current supplied to the deflection coils; its operation is frequency-independent. A complete frame-deflection circuit diagram is shown.

621.397.645.026.445

3742
An Experimental 100-kW Television Output Stage.D. Zaayer. (Philips tech. Rev., June 1953, Vol. 14, No. 12, pp. $345-357$.) A detailed account is given of experimental work on an output stage required to have a response level to within 1 db over a frequency band of width $6 \mathrm{Mc} / \mathrm{s}$, for 625 -line transmissions. High-level modulation is used in a push-pull grounded-grid circuit tunable from 48 to $68 \mathrm{Mc} / \mathrm{s}$ and preceded by a $20-\mathrm{kW}$ driver stage, two sub-driver stages and a low-power variable-frequency oscillator.

621.397.645.36

3743
Push-Pull Amplifiers for Increased Video Output.A. Newton. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 228..236.) Improved linearity and higher output are among the advantages of push-pull amplifiers used as video output stages. Design problems involved are discussed, particularly d.c. restoration. Three alternative circuits are shown.

621.397.645.371.029.4/.5

3744
Special Amplifiers for Television.-J. SánchezCordovés. (Rev. Telecomunicación, Madrid, June 1953, Vol. 9, No. 32, pp. 30-36.) Wide-band amplifiers for television transmitters are considered. The particular types discussed are variants of the cathode repeater and the shunt-regulated cathode-follower for high-level modulators.

621.397 .8

3745
The Relation between Transient Response and Picture Quality in Television Transmission Systems.-J. Müller. (Fernmeldetech. Z., July 1953, Vol. 6, No. 7, pp. 320324.) The subjective limits of the perception and the tolerance of various forms of distortion were related to the measured transient response of the system. The tolerable limits of the transient response characteristics, measured as the distortion of a rectangular wave, are tabulated. See also 2063 of 1949 (Kell \& Fredendall).

TRANSMISSION

621.396 .61 : 621.396.712

3746
Modern Transmitter for A.M. Broadcasting.-A. A. McKenzie. (Electronics, Sept. 1953, Vol. 26, No. 9, pp. 130-136.) Illustrated description of the $50-\mathrm{kW}$ transmitter at WNEW, New York, a new station which operates 24 hours a day on $1.13 \mathrm{Mc} / \mathrm{s}$. Various techniques are used to ensure uninterrupted operation.

VALVES AND THERMIONICS

621.314.7:546.289

3747
Bandwidth Limitation of Junction Transistors.A. J. W. M. van Overbeek \& F. H. Stieltjes. (Wireless Engr, Oct. 1953, Vol. 30, No. 10, p. 261.) Theory given by Steele (881 of March) makes it possible to calculate a fundamental limit to the wide-band figure-of-merit of junction transistors, if the output capacitance is not
taken into account. It is calculated that the separation between emitter and collector corresponding to a figure-of-merit of $1 \mathrm{~mA} / \mathrm{V}$ per $p \mathrm{l}^{\mathrm{F}}$ is 3μ for a $p-n-p$ transistor and $4 \cdot 4 \mu$ for an $n-p-n$ transistor.

621.383 .27

3748
Photomultipliers and the Detection of Nuclear Particles. -H. Dormont \& E. Morilleau. (Le Vide, May 1953, Vol. 8, No. 45, pp. 1344-1352.) Properties required in photomultipliers for scintillation counting are stated. Measuring procedure is indicated for verifying that conditions in respect of gain, matching of photocathode to crystal, and stability are satisfactory. The construction and characteristics are described of a photomultiplier designed by the Laboratoires d'Electronique et de I'hysique appliqués; its performance is close to that of the R.C.A. Type-5819.

621.385 .004 .15

3749
Reliability of Filamentary Subminiature Tubes. 1. Wood. (Proc. nat. Electronics Conf., Chicago, 1952, Vol. 8, pp. 562-567.). Discussion of design factors resulting in improved reliability as regards maintenance of characteristics during life and under conditions of shock or vibration.
$621.385 .029 .6: 621.396 .615 .14$
3750
Traveling-Wave-Tube Oscillators.-H. R. Johnson \& J. I. Whinnery. (Trans. Inst. Radio Engrs, June 1953, No. PGED-3, p. 24.) Correction to paper abstracted in $187: 2$ of June.
621.385 .029 .6 .016 .22
$3 \% 51$
Factors affecting Traveling-Wave-Tube Power Capacity. C. C. Cutler \& D. J. Brangaccio. (Trans. Inst. Radio Engrs, June 1953, No. PGED-3, pp. 9-23.) The amount and distribution of attenuation in the circuit limit the power output capability of a travelling-wave valve. Empirical design criteria, based on experimental results, are given. These specify the attenuation distributions resulting in a minimum length of active circuit and a minimum gain consistent with maximum efficiency. A beam efficiency of 11% and overall anode efficiency of $\sim 20 \%$ were obtained in a valve operating at $4 \mathrm{kMc} / \mathrm{s}$ and giving 8 W output power. Efficiency as a function of the gain, space charge and attenuation is considered.

$621.385 .029 .64 / .65$

3752
Starting Currents in the Backward-Wave Oscillator.L. R. Walker. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 854-859.) In this type of oscillator an electron stream interacts with a particular spatial harmonic of one of the transmission modes of a periodic structure such as that used in a travelling-wave amplifier [547 of 1952 (Millman)]. A formula is derived for the starting current, taking account of space-charge effects. The analysis shows clearly that backward-wave oscillation is an interference phenomenon.
621.385.029.64/.65: 513.647.1:621.317.336

3753
Helix Impedance Measurements using an Electron Beam.-D. A. Watkins \& A. E. Siegman. (J. appl. Phys., July 1953, Vol. 24, No. 7, pp. 917-922.) Measurements were made on a helix in a specially constructed travellingwave valve. The impedance for the fundamental mode was less by a factor of $0.8-0.3$ than that calculated on the basis of l'ierce's sheath model. Observations of other modes verify Sensiper's analysis which predicts that certain values of phase constant cannot apply in the case of a single-wire helix. A relation between the impedance for one space-harmonic component and that for its fundamental is derived. The operation of the system as a backward-wave oscillator, continuously tunable over the range $1 \cdot 5-4 \cdot 3 \mathrm{kMc} / \mathrm{s}$, is described.

A Method for the Reduction of the Noise-Factor of Travelling-Wave Valves.-H. Schnitger \& D. Weber. (Fernmeldetech. Z., July 1953, Vol. 6, No. 7, pp. 302310.) The electron beam passes through an auxiliary delay line before entering the main delay line. Due to the interaction between the beam and the wave in the auxiliary delay line, a velocity-modulation noise component is added to the density-modulation noise component; these components cancel one another partially or completely, if the auxiliary delay line is designed correctly. A numerical example is given to illustrate the application of the formulae derived; at $\lambda 7.2 \mathrm{~cm}$ the noise factor is 8.5 . It is theoretically possible to reduce the noise factor to about $1 \cdot 2$ by this method.

621.385.032.216

3755
Characteristic Shifts in Oxide-Cathode Tubes.-W. P. Bartley \& J. E. White. (Trans. Amer. Inst. elect. Engrs, 1952, Vol. 71, l'art I, pp. 43-49.) Full paper. See 3599 of 1952 .

621.385 .1

3756
A Rubber-Membrane Model for Tracing Electron Paths in Space-Charge Fields.-G. A. Alma, G. Diemer \& H. Groendijk. (Philips tech. Rev., May 1953, Vol. 14, No. 11, pp. 336-344.) A rubber-membrane method is described in which the effect of space charge on the field is simulated by applying pressure from underneath the membrane Experiments illustrating various electron-optical phenomena are discussed and the application of the method in the design of a microwave triode is indicated.

621.385 .13

3757
An Approximation to the Three-Halves Power Law for a Finite Cathode in a Uniform Field.-I. I. Levintov. (C. R. Acad. Sci. U.R.S.S., 2 lst Aug. 1952, Vol. 85, No. 6, pp. 1247-1250. In Russian.)
$621.385 .2 / 3: 621.396 .822 .029 .6$
3758
The Noise of Electronic Valves at Very High Frequencies: Part 1 - The Diode. Part 2-The Triode.G. Diemer \& K. S. Knol. (Philips tech. Rev., Dec. 19:2, Vol. 14, No. 6, pp. 153-164 \& Feb. 1953, Vol. 14, No. 8, pp. 236-244.) A more detailed discussion than that noted in 907 of March (Diemer).

$621.385 .3: 621.365 .54 / .55 \dagger$
 3759
 The Design of High-Power Vacuum Tubes for Industrial

 Heating Applications.-H. D. Doolittle. (Trans. Amer. Insi. elect. Engrs, 1951, Vol. 70, Part II, pp. 1934-1937.)
621.385.832

3760
Direct-Viewing Memory Tube.-S. T. Smith \& H. E. Brown. (Proc. Inst. Radio Engrs, Sept. 19.53, Vol. 41, No. $9, \mathrm{pp}$. $1167-1171$.) The storage tube described by Haeff (319 of 1948) is modified by using a mesh-type storage screen in combination with a fluorescent screen at relatively high potential. Electrons passing through positively charged areas of the mesh are accelerated to
produce an intensified bright image of the charge pattern. Contrast, writing speed, resolution, persistence, and the provision of an electrical output are discussed.
621.385 .832 : $535.371 .07 \dagger$

3761
Monolayer Fluorescent Screens.-L. R. Koller. (J. opt. Soc. Amer., July 1953, Vol. 43, No. 7, p. 620.) Details are given of a method of preparing c.r.-tube screens of monomolecular thickness; the phosphor grains are first coated with a water repellent, e.g., a silicone.
621.385 .832 : 621.318.572

3762
A Decade Counter Tube for High Counting Rates.A. J. W. M. van Overbeek, J. L. H. Jonker \& K. Rodenhuis. (Philips tech. Rev., May 1953, Vol. 14, No. 11, pp. 313-326.) A description of the tube [3614 of 1952 (Jonker et al.)] is given, and a new circuit is discussed by means of which 30000 pulses per sec can be counted.
621.387: 621.318.572

3763
The Principles and Method of Operation of some Modern Gas-filled Counter Tubes.-A. B. Thomas. (J. Brit. Instn Radio Engrs, Aug. 1953, Vol. 13, No. 8, pp. 414-419; Proc. Instn Radio Engrs, Aust., Aug. 1952, Vol. 13, No. 8, pp. 311-315.) Four types of discharge possible in gas-filled tubes are discussed; the conditions under which each occurs are indicated. The methods of operation of the remtron, dekatron and nomotron are described.
621.396 .615 .141 .2

3764
Currents and Space Charges in the Magnetron.K. Fritz. (Arch. elekt. Úberiragung, July 1953, Vol. 7, No. 7, pp. 338-340.) Analysis is developed starting from the equation of motion of the optimum-path electron previously derived ($295 \div$ of 1952). From consideration of the radial component of electron motion a theoretical upper limit for the anode current is found; this value is nearly attained in operation. Experimental investigation of the tangential component is more difficult. The theoretical results obtained do not depend on electron bunching processes, i.e., only the direction and velocity of the electrons are involved. The theory is applicable both to ordinary and to inverted magnetrons.

MISCELLANEOUS

621.39: 061.4

3765
Radio Show Review.-(Wireless World, Oct. 1953, Vol. 59, No. 10, pp. 446-461.) Report on design tendencies revealed at the 20th National Radio Exhibition (3163 of October). Main attention is devoted to television receivers, but sound receivers, sound reproducers, valves and industrial electronic applications are also discussed. See also Wireless Engineer, Oct. 1953, Vol. 30, No. 10, pp. 255-260.

ABSTRACTS AND REFERENCES INDEX

The Index to the Abstracts and References published throughout 1953 is in course of preparation and will be included with the March 1954 issue of Wireless Engineer, which will be priced at $\mathbf{6 s}$. for this issue only. Subscribers will obtain the Index automatically since it is now a part of the journal and there is no need for them to make separate application for it. A selected list of journals scanned for abstracting, with publishers' addresses, will be included.

EDISWAN MAZIDA VALVES to A.N.IR. SPECIFICATIONS

It is of the utmost importance that valves employed in certain types of airborne electronic and radio equipment, particularly those responsible for the operation of equipment providing vital information, will withstand the rigorous conditions imposed on them and have a lower rate of failure than is normally expected of a commercial type of valve. The Air Registration Board therefore prescribes certain standards with which these valves must comply.

The Edison Swan Electric Co., Ltd., can produce valves to meet these requirements and enquiries are invited from manufacturers of airborne electronic equipment.

Ediswan engineers will be pleased to recommend types which can be produced to Air Navigation Regulation specifications.

EDISWAN

$\begin{array}{lllll}M & A & Z & D & A\end{array}$

Valves and Cathode Ray Tubes

THE EDISON SWAN ELECTRIC CO., LTD., 155 CHARING CROSS ROAD, LONDON, W.C.2.
Member of the A.E.I. Group of Companies
Telephone: Gerrard 8660

Technical Control

Close technical control of production is an allimportant factor in the manufacture of Telcon Metals. Accurate tests and measurements are made at various stages in the course of production and the illustrations show two of the many routine examinations conducted in our well-equipped laboratories.

MAGNETIC ALLOYS - Mumetal, Radiometal, H.C.R.,
Rhometal, Permendur, R2799, 36/64, Dust.
RESISTANCE ALLOYS - Pyromic, Calomic, Telcuman, Telconstan, Telconal.
SPECIAL ALLOYS - Thermostatic Bimetals $140,400,15$,
Telcoseal, Invar, Beryllium-Copper.
The Telegraph Construction \& Maintenance Co. Ltd
Head Office: 22. Old Broad Street, London, E.C. 2 Telephone: LONdon Wall 7104
Enquiries to: Telcon Works, Greenwich, London, S.E. 10 Telephone: GREenwich 3291

With ald PHOTOMETRIC DEVICES and also for
 INSTRUMENT CALIBRATION

 Constant Voltage
 TRANSFORMERS

 ELECTRONIC TIMING EQUIPMENT REPEATER EQUIPMENT REMOTE CONTROL GEARMATERIAL ANALYSIS
CHEMICAL PROCESS CONTROL, ETC.

Can now be supplied with multiple secondary windings to provide stabilisation on a number of outputs. A specification of your requirements may of yoble us to provide you with CONSTANT VOLTAGE throughout your equipment.

With any photometric device a variable light source means variable and inaccurate operation, which in process control and other industrial applications may mean lost efficiency and increased costs. Advance Constant Voltage Transformers ensure that the mains supply voltage is stabilised to within $\pm 1 \%$ with input voltage variations as high as $\pm \mathbf{1 5 \%}$.

Full technical details showing how you can keep voltage under control are given in Folder V/15.
Advance
ADVANCE COMPONENTS, LTD., BACK ROAD, SHERNHALL STREET, WALTHAMSTOW, LONDON, E.17. Telephone: LARkswood 4366/7/8

* moulded knob has integral screwdriver slot.
* 2-hole fixing by 6 B.A. tapped holes on $\frac{3}{4}$ centres.
\star completely enclosed; windings and all moving parts protected from dust and accildental damage.
* rated at 3 watts
\star available in all ohmic values up to and including 100,000 ohms linear.

Wholesalers

Packed in 2-colour cartons, Clarostat semi-preset controls Type 23c are supplied on very attractive trade terms. And delivery is prompt. Write for full details.

[^12]

Full information will be supplied on request.

HIGH SPEEI

Modern machinery and mass production methods give you top quality capstan and automatic work and sheet pressings at a price you are sure to like-and on time.

GRIFFITHS, GILBART, LLOYD AND COMPANY LIMITED
EMPIRE WORKS, PARK ROAD, BIRMINGHAM 18

[^13]NORthern 6221

Three-Range
 PROBE MILLIVOLTMETER

Model VM6451

SELF-CONTAINED
STABILISED POWER PACK

ACCURACY TO $\pm \mathbf{5 \%}$ OF FULL SCALE DEFLECTION aUTOMATIC OVERLOAD PROTECTION

Designed to provide direct readings for A.C. voltages from 10 millivolts to 2 volts. Three ranges are provided and readings are accurate within 1 db from 50 cycles to 150 megacycles. The double triode measuring valve is detachable from the cabinet. This instrument can also be used for modulation carrier detection with the use of headphones. Write for full specification.

'Frequentite' is the most suitable insulating material for all high frequency applications. Seventeen years ago we introduced the first British-made low-loss ceramic, and consultation with us before finalising the design of new components is a wise precaution.

STEATITE \& PORCELAIN PRODUCTS LTD. (B)
 Head Office: Stourport-on-Severn, Worcestershire. Telephone: Stourport III. Telegrams: Steatain, Stourport

Monufocturers' Enquiries: THE MeMURDO INSTRUMENT CO. LTD., VICTORIA WORKS, ASHTEAD, SURREY. AShtead 340I
APPOINTMENTS-The engagement of persons answering these advertisements must be made through the local office of the Ministry of Labour and National Service, etc., if the applicant is a man aged a8-64 or a women $18-59$ inclusive, unless he or she or the employer is excepted from the provisions of The, Notification of Vacancies Order, 1952.

THE ENGLISH ELECTRIC CO.. LTD., LUTON, have vacancies for the following technical staff on an interesting high-priority defence project.

(1) Senior Radar Engineers

Applicants should have a sound theoretical background and have had considerable experience in the operation maintenance and modification of experimental radar systems in the field. Ref. 1190A.
(2) Radar Assistants

Applicants w 11 be required to assist senior radar engineers in the operation, maintenance and modification of experimental radar systems in the field. Ref. 1190B.
Salaries are appropriate to the qualifications and experience necessary for the positions which are permanent and progressive. A staff pension scheme operates and housing assistance will be provided for suitable applicants for post (1). Applications to Dept. C.P.S., $336 / 7$ Strand, W.C.2, and quoting appropriate reference number.

Ferranti, Ltd., have immediate vacancies for:-
(a) Men with electrical engineering qualifications for the advanced testing of naval anti-aircraft Fire Control Equipment involving electronics and servo mechanisms either in factories or on board H.M. ships in home ports. Normal expenses plus a generous allowance when working out.
(b) Men with electrical engineering qualifications for production testing of Aircraft Gyroscopic Flight Instruments.
Salary in accordance with age and experience, between $£ 356$ and f650 per annum. Previous experience, though desirable, is not essential.

Permanent staff appointments with pension benefits. Forms of application from Mr. R. J. Hebbert, Staff Manager, Ferranti, Ltd., Hollinwood, Lancs. Please quote reference HGN (a) or (b).

A vacancy exists in the Production Department of a large Radio Manufacturing Company for a young man, aged about 25 years, with B.Sc. degree or equivalent qualification. Position offers good prospects of advancement to one who can prove his abilities. Applicants should write, stating age and details of education and experience to Box F.119. Willing's, 362 Grays Inn Road. London, W.C.1.

Research Assistant required, to work on Speech Studies and Psycho-Acoustics. Applicant, who should have some experience in research and have knowledge of electric circuits, will be able to work for his Ph.D. degree. Salary $£ 400$ p.a. Applications should be addressed to Dr. E. C. Cherry, Imperial College, South Kensington, S.W.7.

War Office require Assistant Mechanical Engineering Officer (Recruitment Grade Professlonal) at Donnington, Salop, to organise, control and supervise a workshop sector employing 30 to 40 civilians engaged on repair and calibration of electrical and electronic test equipment. Inclusive salary range $£ 645$ to $£ 960$ (Provincial). Applicants must be British of British parentage and be Corporate members of the Institution of Electrical Engineers or have passed or be exempt from Sections A and B of their membership examination, or possess a University Engineering degree. Starting salary fixed according to age, qualifications and experience. Annual increments subject to satisfactory service. Posts temporary but long-term possibilities. Applications forms quoting reference D423/53A from M.L.N.S., Technical and Scientific Register (K), Almack House, 26 King Street, London, S.W.I.

Crystal Palace

Transmitters

Britain to have most powerful transmissions with Marconi-equipped station

By 1956 BBC television transmissions will be the most powerful in the world.
For the new Crystal Palace station which will replace Alexandra Palace, the Corporation has ordered Marconi sound and vision transmitters. They will be used with a high gain aerial system which will radiate $200 / 250 \mathrm{~kW}$-twice the power of existing Regional transmitters.

Two 15 kW vision transmitters, the first two in the world to work in parallel, will ensure the highest reliability of service. They will use a new type of tetrode valve of small size, a Marconi development permitting valuable space savings in transmitter design. Two $4 \frac{1}{2} \mathrm{~kW}$ sound transmitters will also operate in parallel.

Marconi high or medium power transmitters and high power aerials are installed in every one of the BBC's television transmitter stations, while Marconi television equipment has been ordered by countries in North and South America, Europe and Asia.

> MARCONI complete television transmitting equipment

The G.E.C. Stanmore Laboratories invite applications for the following vacancies for work on guided missile research. Excellent working conditions in modern well-equipped laboratories.
i a. Electrical Engineer or Physicist with good theoretical knowledge and practical experience of electronics, required for responsible position in connection with the developmeht of transistor circuitry. Applicants should possess a good degree or equivalent qualifications and not be over the age of 30. (Ref. WE/TWS.1.)
b. A further vacancy exists in this field for which practical experience is not necessary but for which a good Honours Degree, with electronics, is essential. (Ref. WE/TWS.2.)
ii Experienced Graduates wtih good Honours Degree for work in:-
(a) microwave components and circuits (Ref. WE/AGH.1) (b) microwave receivers (Ref. WE/AGH.2).
iii Graduate with good Honours Degree in Physics or Engineering with a knowledge, and preferably experience, of microwave and clicuit principles of electro-magnetic theory for work concerning their application to a novel and interesting field of research. (Ref. WE/DEC.1.)
iv Senior Physicist or Engineer with good Honours Degree in Maths., Physics or Electrical Engineering required to fill a vacancy demanding experience of telecommunications with electronic bias. The successful candidate will be required to lead a small section of highly qualified men. (Ref. WE/SM.I.) Applications should be made in writing to the Staff Manager,
G.E.C. Stanmore Laboratories, The Grove, Stanmore Common, G.E.C. Stanmore Laboratories, The Grove, Stanmore Common,
Stanmore. Middlesex, stating age, qualifications and experience Stanmore, Middesex, stating age, quating the appropriate reference.
and quotin

THE ENGLISH ELECTRIC CO., LTD.,

have vacancies

for the following staff in the Electronic Department at Luton:-
(a) Senior Microwave Engineers at a salary up to $£ 1,000$ p.a. Applicants should have had considerable design and/or engineering experience of microwave systems and associated equipment. Ref. 1160A.
(b) Electronic Engineers at a salary up to $£ 750$ p.a. Duties include the engineering of circuitry already developed and involve close liaison with and progressing of work through the drawing office and production department. Applicants with experience of engineering of radar and/or aircraft electronics for production will be especially welcome. Ref. 1071B.
(c) Electronic Trials Engineers at a salary of up to $£ 750$ p.a. Applicants should have experience of high frequency communication equipment and be prepared to accept responsibility for its installation and subsequent trial at locations in U.K. other than Luton. Ref. 456P.
(d) Trials Radar Engineers at a salary up to $£ 750$ p.a. Applicants should have had experience of operating development radar equipment in the field and have a sound basic knowledge of radar principles and circuits.
Vacancies also exist for Engineers in Australia. Ref. 1190
(e) Electronic Trials Assistants at a salary up to $£ 12$ per week. These assistants will be formed into teams under the leadership of electronic trials engineers (see above) and will be required to assist in the installation and subsequent trial of H.F. communication or radar equipment. Ref. 456Q.
(f) Electronic Laboratory Assistants at a salary up to $£ 10$ per week.

Applicants should have either experience of:-
(i) The preparation of radar equipment for field trials for which a sound basic knowledge of radar circuitry is essential and special knowledge of radar equipment, AA No. 3, Mk. 7, would be advantageous.
or
(ii) The preparation of information for drawing office and production department from circuit diagrams. Ref. 1066D.

Housing accommodation is available to suitable applicants for posts (c) and (e) above.

Applications should be sent to Dept. C.P.S., 336/7 Strand, W.C.2, quoting appropriate reference.

The Mullard Radio Valve Co., Ltd., have staff vacancies in their Application Laboratories at Mitcham as follows:-

1. Senior Engineer or Physicist with university degree or equivalent qualifications, to be in charge of the Receiving Valve Section of the Application Laboratories. This Section gives assistance to Development Departments and deals with the preparation of published data and with applications of receiving valves, cathode ray tubes, cold cathode tubes and transistors in industrial, communication and entertainment equipment. Some years of experience in one or more of these fields or an intimate knowledge of television receiver design are desirable.
2. Engineers for application work on valves used in television receivers.
3. Engineers for application work on.cold cathode tubes and transistors in industrial and computing apparatus.

Rates of pay are based on qualifications, experience and age.
All applications will be treated in the strictest confidence and should be addressed to the Plant Personnel Officer, The Mullard Radio Valve Co., Ltd., New Road, Mitcham Junction, Surrey, quoting ref. "Applications Laboratory".

Electronic Engineers for senior positions in nucleonic instrument design; also Physicist with nuclear physics experience, required for posts in Electronics Division, E. K. Cole, Ltd., Southend-on-Sea, Essex. Apply In writing to Personnel Manager.

Applications are invited for a number of senior positions in the Guided Weapon field. Posts are permanent and will be offered to suitable applicants who have either at least five years experience in industry or are Graduates with two or more years experience.

Salaries will be commensurate with experience and advancement will depend upon original contribution and enthusiasm for the work.

The following positions are available:-
(a) Physicist with experience in electronics.
(b) Circuit Engineer capable of original circuit development and familiar with low frequency circuit design and miniaturisation, and
(c) Servo Engineer experienced in design and development of light electrically controlled servomechanism.

Apply B~AC85671, Samson Clarks, 57/61 Mortimer Street, London, W.I.

... with this new Tektronix Oscilloscope

No need to switch oscilloscopes when your requirements change. An extremely wide range of work is now handled by one oscil-loscope-the Tektronix Type 535-with its moderately-priced plug-in units.

WIDE-BAND PLUG-IN PREAMPLIFIER. Bandpass dc to 10 mc , risetime $0.035 \mu \mathrm{sec}$, calibrated sensitivity to $0.05 \mathrm{v} / \mathrm{cm}$, two signal inputs with more than 60 db isolation.
Type 53A Wide-band Plug-in Unit- $\$ 85$
HIGH-GAIN PLUG-IN PREAMPLIFIER. 1 millivolt/cm sensitivity de to 250 kc with bandpass increasing to dc to 750 kc at $50 \mathrm{mv} / \mathrm{cm}$ sensitivity and lower, differential input.
Type 53D High-gain Plug-in Unit-\$145

DUAL-TRACE PLUG-IN PREAMPLIFIER. Two identical amplifier channels, de to $8.5 \mathrm{mc}, 0.04$ $\mu \mathrm{sec}$ risetime, calibrated sensitivity to $0.05 \mathrm{v} / \mathrm{cm}$, triggered or 100 kc switching, polarity reversal switches. Type 53C Dual-trace Plug-in Unit—\$275

The use of plug-in preamplifiers providing this wide range of facilities is made possible by the broad basic specifications of the Type 535.
600,000,000 TO 1 TIME-BASE RANGE $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$.

10 KV ACCELERATING POTENTIAL

 Brighter display at low repetition rates.
NEW FLEXIBLE SWEEP DELAY

Accurate, iitter-free, $5 \mu \mathrm{sec}$ to $20,000 \mu \mathrm{sec}$.

Type 535 Oscilloscope - $\$ 1300$ plus price of desired plug-in unit. Prices f.o.b. Portland, Oregon
Please write for complete specifications

Physicists and Development Engineers required for Research and Development work on Cold Cathode Tubes.
Applicants should preferably hold a degree in physics or engineering, or the equivalent, and have had at least two years' experience on Gas Discharge Tubes. Salary range $£ 600$ to $£ 1,000$ depending on qualifications and experience. Write giving full details to the Personnel Officer, Ericsson Telephones, Lid., Beeston, Nottingham, (Reference LK/3.)

Belling \& Lee, Ltd., Cambridge Arterial Road, Enfield, Middlesex, require research assistants in connection with work on electronic components, fuses, interference suppressors and television aerials. Applicants must be graduates of the I.E.E. or possess equivalent qualifications together with similar laboratory experience. Salary will be commensurate with previous experience: five-day week, contributory pension scheme. Applications must be detailed and concise, and will be treated as confidential.

EXPERIENCED RADIO TESTERS AND INSPECTORS

Required for production of communication and radio apparatus. Also instrument makers, wirers and assemblers for factory test apparatus. Apply Personnel Manager, E. K. Cole, Lid., Ekco Works, Malmesbury, Wilts.

Ericsson Telephones, Ltd., have a number of vacancies in their Research Laboratories in connection with Electronic Switching and Computing. The posts will carry starting salaries between $£ 600$ and $£ 1,000$ according to age and experience.
(a) Electronic circuit designers of all grades. Applicants should have a degree, or equivalent, and several years' experience in the design of electronic circuits. (Reference LE/1.)
(b) Electronic equipment engineers with experience in the layout and mechanical design of electronic instruments and equipment in the radio, radar or communication fields. They will be required to co-operate with the circuit designers in the early stages and may utimately be responsible for development to the production stage. (Reference LE/2.)

Applicants, who should be British born and between 25 and 35 years of age, should write, quoting the reference above and giving details of age, experience, academic or other training, and required starting salary, to the Personnel Officer, Ericsson Telephones, Lut., Beeston, Nottingham.

Senior Microwave Engineers are required by The English Electric Co., Ltd., at Luton, for work on a high priority defence project. Applicants should have a good theoretical background to degree standard and experience of design or engineering of microwave equipment for development work on aerial and receiving systems. This work includes investigations of new methods of construction with a view to miniaturization and weight reduction, the design of new components and engineering to the production stage. Successful applicants will be required to take charge of a group and to te responsible for one or more aspects of the system. The posts are permanent and progressive and a staff pension scheme is in operation. Applications to Dept. C.P.S., 336/7 Strand, W.C.2, quoting ref. 1160B.

Electronic Engineers are required by The English Electric Co., Lid., Luton, for work on a high priority defence project. Applicants will be required to undertake the engineering of circuitry already developed, which involves close liaison with, and the progressing of work through, the drawing office and production department. Applicants with experience of the engineering of radar and/or aircraft electronics for production will be especially welcome The posts are permanent and progressive and a staff pension scheme is in operation. Applications to Dept. C.P.S., $336 / 7$ Strand W.C. quoting ref. 1211 .

Development Engineer required to work on Television Aerialscapable of conducting tests and supplying graphical interpretations —without supervision. Write giving fullest details Box 1942, c/o Wireless Engineer.

Progressive London Company requires an Electronic Engineer to be responsible for development and research work on patented machines now in* production. University degree or equivalent qualification essential. Remunerative opportunity for a man with drive and ideas. Apply in writing giving details of experience and salary required to Box 1943, c/o Wireless Engineer.

A QUALIFIED ENGINEER

familiar with the practice and theory of servo-mechanisms required for a project of a novel nature and unusual interest. Permanent, progressive post. (Salary up to $£ 1,000$ p.a. according to experience.) Applications to The English Electric Co., Ltd., Dept. C.P.S., 336/7 Strand, W.C.2, quoting ref. 844J.
B.B.C. requirea two Engineera for Designs Department based in London, chie, 5 for deaign and development of equipment and methods of gound recording and reproducing; to work uitimately on own initiative, and be responsible for production of original deeigns. Degree in engineering/physics, or equivalent, type of work esenential. Some experience in sound recordlng keen interest this manufacture of light mechanisma desirable but not essential, Salary range and to $+1,065$. Preference will be given to those with academfe background anxions to learn. Apply to: E.E.O., B.B.C., London, W.1, within 7 daye, quoting ref. E.843.

By J. W. Godfrey and S. W. Amos, b.sc., A.M.I.E.E. Covers in detail the theory and practice of disc, magnetic and film recording, special reference being made to equipment used by the B.B.C.

30s. net. By post 30s. $8 d$.

ADVANCED THEORY OF WAVEGUIDES

By L. Lewin. Sets out various methods of treating waveguide problems-the author selecting for discussion a number of topics as representative of the field in which the centimetre-wave engineer is now engaged.

30s. net. By post 30s. 7 d .
Obtainable from all booksellers or by post from:DORSET HOUSE,[STAMFORD ST., LONDON, S.E.I
Where small size and stability of characteristic, unaffected by repeated cycles of humidity, are of first importance choose STC diodes, which will give you complete reliability. The five types described below are available from stock, and others are in course of development.

$\begin{aligned} & \text { Abridged Data } \\ & \text { at } 20^{\circ} \mathrm{C} \end{aligned}$	TYPE NUMBERS				
	2X/102G	2X/103G	2X/104G	$\begin{gathered} \hline 2 \times / 105 G \\ (C V 448) \end{gathered}$	$\begin{aligned} & \hline 2 \times / 106 \mathrm{G} \\ & \text { (CV425) } \\ & \hline \end{aligned}$
Peak Inverse Voltage (V)	85	30	30	100	70
Minimum Reverse Resistance (kilo-ohms)	$\begin{gathered} 500 \\ \text { (at } 70 \mathrm{~V} \text {) } \end{gathered}$	$\begin{gathered} 100 \\ \text { (at } 20 \mathrm{~V} \text {) } \end{gathered}$	$\begin{gathered} 100 \\ \text { (at } 20 \mathrm{~V} \text {) } \end{gathered}$	$\begin{gathered} 500 \\ \text { (at } 50 \mathrm{~V} \text {) } \end{gathered}$	$\begin{gathered} 50 \\ \text { (at } 50 \mathrm{~V} \text {) } \end{gathered}$
Maximum Forward Resistance (ohms)	$\begin{gathered} 500 \\ \text { (at IV) } \end{gathered}$	$\stackrel{250}{(\text { at IV) }}$	$\begin{gathered} 1000 \\ (\mathrm{at} \text { IV) } \end{gathered}$	$\begin{gathered} 333 \\ \text { (at IV) } \end{gathered}$	$\begin{gathered} 250 \\ (\mathrm{at} \text { IV) } \end{gathered}$

Comprehensive data sheets may be obtained from:
Standard Telephones and Cables Limited
(Registered Office: Connaught House, Aldwych, London, W.C.2.)

Radio Division

OAKLEIGH ROAD, NEW SOUTHGATE, LONDON, N.II

TTHE AIRMEC FREQUENCY STANDARD TYPE 761 has been designed to fill the need for a self-contained frequency standard of moderate costand high accuracy. It incorporates an oscilloscope for visual frequency comparison, and a beating circuit and loudspeaker for aural checking. A synchronous clock, driven from a voltage of standard frequency provides a time standard and enables long time stability checks to be made.

- Master Crystal-controlled at a frequency of $100 \mathrm{kc} / \mathrm{s}$.

Oscillator: The crystal is maintained at a constant temperature by an oven.

- Outputs: Outputs are provided at $100 \mathrm{c} / \mathrm{s}, 1 \mathrm{kc} / \mathrm{s}, 10 \mathrm{kc} / \mathrm{s}$, $100 \mathrm{kc} / \mathrm{s}$ and $1 \mathrm{Mc} / \mathrm{s}$.
- Waveform: The above outputs are available simultaneously with sinusoidal or pulse waveforms from separate plugs.
- Stability: Four hours after switching on a short-term stability of better than 1 part in 10^{6} is obtained.

Full details of this or any other Airmec instrument will be forwarded gladly upon request.

HIGH WYCOMBE

PARTRIDGE precision TRANSFORMERS

... have the backing of an organisation which is used by Government Experimental Stations, the Royal Aircraft Establishment, the B.E.A. and leading industrial concerns. Not only do Partridge supply a multiplicity of 'standard' and 'to specification' transformers and chokes, but they also co-operate in research work in this sphere. This unique service is at your disposal. Consult Partridge-transformer specialists for over twenty years.

PARTRIDGETRANSFORMERS LIMITED PARTRIDGETRANSFORMERS LIMITED
Roebuck Road, Tolworth, Surrey. Telephone: Elmbridge $6737 / 8$.

TECHNICAL BOOKS

A large selection of books on Radio and Electronics and all branches of Electrical Engineering always in stock. Catalogues available. Please state interests.

SCIENTIFIC AND TECHNICAL LENDING LIBRARY
 Annual Subscription from TWENTY-FIVE SHILLINGS.

H. K. LEWIS \& Co. Ltd.

I36 Gower Street, London, W.C.I.
Telephone: EUStion 4282 (7 lines).
Business hours :-9 a.m. zo 5,30 p.m.
Saturdays to 1 p.m.

Index to Advertisers		
Page	page	page
A.B. Metal Products, Ltd.... 19	Foyle, W. \& G., Ltd. 26	Partridge Transformers, Ltd. 28
Adams Bros. \& Burnley, Ltd.................... ${ }^{8}$		
Advance Components, Ltd.. 18	Griffiths, Gilbart, Lloyd \& Co., Ltd.. 20	Salford Electrical Instruments, Ltc. 11
Appointments...........................22, 24.20		Standard Telephones \& Cables, Ltd. 7,27
Automatic Coil Winder \& Electrical Equipment Co., Ltd., The. \qquad	Iliffe books. 26	Steatite \& Porcelain Products, Ltd............... . 21
Belling \& Lee, Ltd. 4	Lewis, H. K., \& Co., Ltd.. 2 d	Tektronix, Inc.. 25
British Driver-Harris Co., Ltd.. 10	Lyons, Claude, Ltd.. 1	Telegraph Condenser Co., Ltd., Tıe. Cover iii
British Physical Laboratories. 20		Telegraph Construction \& Naintenance Co.,
Brookes Crystals, Ltd., . 12		Ltd., The. 18
Brüel \& Kjæær... 10	Marconi's Wireless Telegraph Co., Ltd.............. 6	Telephone Mfg. Co., L.td. Cover iv
	McMurdo Instrument Co., Ltd.... 222	Truvox, Ltd.. 3
Cow, P. B., \& Co., Ltd.	Muirhead \& Co., Ltd.. \&	
	Mullard, Ltd.. .2, 16.	Unbrako Socket Screw Co., Ltd.. 9
Edison Swan Electrical Co., Ltd. 17		
Enthoven Solders, Ltd.. 14	Oxley Developments Co., Ltd. 12	Wego Condenser Ca., Ltd. 20

The T.C.C. 'Metalpack' range has been developed for operation in high tumidities and high temperatures. Their ability to withstand variations from $-40^{\circ} \mathrm{C}$. to +100 C . makes them the obvious choice of the design engineers for such applications as receivers and transmitters required to work under the most stringent conditions.

The internal construction follows the wellproved T.C.C. technique of winding non-inductively two or more layers of paper dielectric to each layer of solid aluminium foil, all impregnated under vacuum, and finally hermetically sealed in aluminium tubes. These condensers can be supplied with insulating sleeves if required.

$\underset{\mu \mathrm{F}}{\mathrm{CAPACITY}}$	WORKING VOLTS D.C.		DIMNS. INCHES		$\begin{aligned} & \text { TYPE } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \\ & \text { Each } \end{aligned}$
	$\begin{gathered} \mathrm{At}^{\mathrm{ta}} \text { 70 } . \end{gathered}$	$\begin{gathered} \mathrm{At}_{\mathrm{t}} \\ 100^{\circ} \mathrm{C} . \end{gathered}$	L	D		
. 005	1,000	750	112	$\frac{1}{2}$	CP45W	1/10
. 01	1,000	750	112	$\frac{1}{2}$	CP45W	1/10
. 02	750	600	$1 \frac{1}{2}$	$\frac{1}{2}$	CP 15 ${ }^{\circ}$	1/10
. 05	500	350	$1 \frac{1}{2}$	$\frac{1}{2}$	CP455	$2 / 1$
. 1	350	200	$1 \frac{1}{2}$	$\frac{1}{2}$	CP45N	$2 / 1$
. 1	500	350	2	2	CP465	2/2
. 1	1,000	600	214	,	CP47W	2/5
. 25	350	200		$\frac{3}{4}$	CP48N	2/8
. 25	500	350	$2 \frac{1}{4}$	$\frac{3}{4}$	CP475	2/10
. 5	350	200	$2 \frac{1}{4}$	$\frac{3}{4}$	CP47N	3/.
. 5	500	350	$2 \frac{1}{4}$	1	CP915	3/10
1.0	350	200	21	1	CP91N	4/-

DETAILS OF COMPLETE RANGES AVAILABLE ON REQUEST

THE TELEGRAPH CONDENSER CO. LTD

RADIO DIVISION

NORTH ACTON • LONDON • W. 3 - Telephone: ACORN 0061
Wireless Engineer, December 1953

CARPENTER POLARIZED RELAYS

CHIEF CHARACTERISTICS

High operational speeds. Freedom from contact rebound and positional error . Good contact pressure . Accuracy of signal repetition. High sensitivity. Ease of contact adjustment . Contact gap a function of input power.
Due to the unique combination of characteristics inherent in the design of Carpenter Polarized Relays, they are providing practical solutions to many problems in scientific research and electrical engineering.
Their high standard of performance makes them suitable for use where signal impulses of varying time duration must be repeated with the utmost accuracy, for instance in telegraphy, measurement, protection and tele-control schemes.
The relay operates successfully direct from valves, the barrier layer type of photo cell, and also from thermo-couples. In the amplification of very weak D.C. signals, the relay's almost perfect contact performance makes it suitable for the inversion of the D.C. into A.C. to permit electronic amplification. Three Main Types are available.

TYPE 3
las maximum speed : maximum contact presSure and sensitivity minimunt transit time. Dimensions : 120 mm . $61 \mathrm{~mm} . \times 33 \mathrm{~mm}$. Weight 625 gm .

TYPE 4
has longer contact travel than the Type 3, with medium speed and sensitivity. Dimensions: 89 mm . 56 mm . 25 mm . Weight 368 gm .

Relays can be supplied with either solder tag or plug base.

TYPE 5
miniature relay with outstanding performance for size. Rugged design of exceptional thermal stability. Dimensions: 56 mm . 37 mm . > 19 mm . Weight 140 gm .

Nore.-All dimensions quored exclude connection terminats
Complete details and performance data will be willingly supplied on request by the Manufacturers :

TELEPHONE MANUFACTURING CO. LTD

 HOLLINGSWORTH WORKS • DULWICH • LONDON • S.E. 21Telephone: GIPiy Hill $22 I I(10$ lines) Cables: BUBASTIS LONDON

[^0]: Marketed by Enthoven Solders Litd., Enthoven House, 89, Upper Thames Street, London, E.C.4. Telephone: Mansion House 4533

[^1]: * The author used an electrolytic capacitor of $500 \mu \mathrm{~F}$ capacitance and 12 V d.c. peak voltage. The small inverse voltage that may occur during the operation does not affect the capacitor.

[^2]: * Caution is necessary if the voltages may contain even hannonics and the detector responds to the r.m.s. value of one half-wave. The author employed a fullwave square-law detector.

[^3]: * Because of transit tine the phase angle of the mutual conductance is less than 180°.

[^4]: * The CV139 is now superseded by CV417, because of effects due to secondary emission from the glass bulb caused by electrons which escape from the electrode structure.
 + The CV139) and 6 J 4 were designed for common-grid operation and therefore have excessive input capacitances in common-cathode circuits. The same structures without the grid shields, etc., would give considerable improvensent in wideband amplitiers.

[^5]: * For a war-time committee.
 †The detinitions of receiver characteristics prepared by this InterService Committee form the basis of new British Standards to be issued soon.

[^6]: * P. M. Woodward, R.R.E.

[^7]: * The units employed in this paper are:- $A, V, F, \Omega, \mathrm{sec}, \mathrm{c} / \mathrm{s}, \mathrm{cm}$.

 MS accepted by the Editor, March 1953

[^8]: *See McKay: Advances in Electronics, I (N.Y.1948), p. 66.

[^9]: $537.311 .31: 539.23$
 3577
 Development of the Electrical Resistance of Thin Films of Platinum subjected to a Relatively High Direct Voltage. M. Erny. (C. R. Acad. Sci., Paris, 3rd Aug. 195̃3, Vol. 237 , No. 5, pp. 387-389.) Measurements made on

[^10]: 681.142 Regenerative Loops in 3647

 Hidden Regenerative Loops in Electronic Analog Computers.-L. G. Walters. (Trans. Inst. Radio Engrs, June 1953, Vol. EC-2, No. 2, pp. 1-4.) Detailed analysis showing how coupling due to energy-storing elements gives rise to regenerative loops, the gain of which determines the system stability.

[^11]: 621-526: 621.3.016.352
 3723
 Stability of Varying-Element Servomechanisms with Polynomial Coefficients.-M. J. Kirby \& R. M. Giulianelli.

[^12]: * Regd. Trade mark

[^13]: Telephone

