THE

wireless ENGINEER

Vol. XVII.

The Frequency Compensation of Moving-Iron Voltmeters

SOFT iron voltmeters have a relatively large inductance, which causes an increase of impedance, and consequent decrease of current, with increasing frequency. One method of compensating for this is to shunt the series swamping resistance with a condenser, as shown in Fig. I which is reproduced from Fig. 226 on page 288 of " Electrical Measuring Instruments" by Drysdale and Jolley. It is there

Fig. I. correctly explained that the impedance of the coil is $R_{1}+j \omega L$, that of the shunted resistance $R_{2}\left(\mathrm{I}-j \omega C R_{2}\right) /\left(\mathrm{I}+\omega^{2} C^{2} R_{2}{ }^{2}\right)$, and the total impedance therefore
$R_{1}+\frac{R_{2}}{I+\omega^{2} C^{2} R_{2}{ }^{2}}+j \omega\left(L-\frac{C R_{2}{ }^{2}}{I+\omega^{2} C^{2} R_{2}{ }^{2}}\right)$.
It is then stated that " in practice $\omega C R_{2}$ is small compared with unity, and therefore the total impedance may be written-

$$
R_{1}+R_{2}+j \omega\left(L-C R_{2}^{2}\right)
$$

Hence if $C=L / R_{2}{ }^{2}$ we have compensation for all working frequencies."

Drysdale and Jolley then say: "As an example, let us consider a soft iron voltmeter taking 0.05 ampere at 120 volts, and having an inductance of 0.5 henry. The total resistance of the circuit will be 2,400 ohms, of which one-tenth, or 240 ohms, may be in the copper solenoid, and the remaining 2,160 ohms in the external resistance R_{2}."
" Then $C=\frac{L}{R_{2}{ }^{2}}$ farads $=\frac{10^{6} L}{R_{2}{ }^{2}}$ nicrofarads or $C=\frac{0.5 \times 10^{6}}{2160^{2}}=0.102$ microfarads."
" In practice the capacity would be greater for complete compensation, owing to the demagnetising effects of eddy currents."

Let us now look into the above example a little more closely. The reactance of the coil at a frequency of $50 \mathrm{c} / \mathrm{s}$ is $2 \pi \cdot 50.0 .5$, i.e. 157.I ohms, and, without the condenser, the impedance Z at a frequency of 50 is I. 00215 times the resistance; the error would therefore be 0.215 per cent. With the condenser of the calculated value, viz. $0.107 \mu \mathrm{~F}, \omega C R_{2}=2 \pi \cdot 50 \cdot 0.107 \cdot 2160 / 10^{6}$ $=0.0727$ and $\omega^{2} C^{2} R_{2}{ }^{2}=0.00528$, which is certainly small compared with unity, but, be it noted, more than twice as great as the error that we are trying to correct. For the total impedance we now have

$$
\begin{aligned}
Z & =R_{1}+\frac{R_{2}}{\mathrm{I}+\omega^{2} C^{2} R_{2}{ }^{2}}+j \omega\left(L-\frac{C R_{2}{ }^{2}}{\mathrm{I}+\omega^{2} C^{2} R_{2}{ }^{2}}\right) \\
& =240+\frac{2160}{\mathrm{I} .0053}+j\left(\mathrm{I} 57 . \mathrm{I}-\frac{0.0727 \times 2 \mathrm{I} 60}{\mathrm{I} .0053}\right) \\
& =240+2148.6+j\left(\mathrm{I} 57 . \mathrm{I}-\frac{\mathrm{I} 57 . \mathrm{I}}{\mathrm{I} .0053}\right) \\
& =2388.6+j 0.83 .
\end{aligned}
$$

The instrument is thus practically noninductive but its impedance has been reduced from 2,400 to $2,388.6$ ohms, i.e. iI. 4 ohms. And the error will now be 0.475 per cent.

Hence the alleged compensation has more then doubled the error that it was supposed to compensate.

An accurate determination shows that the correct value of the capacitance is $0.04176 \mu \mathrm{~F}$, which is little more than a third of the value given by the Drysdale and Jolley formula.

To show that this is no exceptional case we shall now consider another example taken
from a Degree Examination paper which first drew our attention to the fallacy. The moving-iron voltmeter for 150 volts had a coil resistance of 400 ohms and an external resistance of 2,600 ohms, making a total of 3,000 ohms; the inductance was 0.75 henry ; the candidates were asked to find the error at a frequency of roo and to calculate the capacitance of the condenser necessary to eliminate this frequency error.

It will have been noticed that the frequency does not appear in the Drysdale and Jolley formula.

Without the condenser, $\omega L=2 \pi$. 100 . $0.75=47 \mathrm{I}, Z=\sqrt{3,000^{2}+47 \mathrm{I}^{2}}=3036.6$, an increase of 1.22 per cent. which would therefore be the error. The capacitance required according to the above formula is

$$
C=\frac{L}{R_{2}{ }^{2}}=\frac{0.75 \times 10^{6}}{2,600^{2}}=0.111 \mu \mathrm{~F}
$$

With a compensating condenser of this capacitance
$\omega C R_{2}=2 \pi$. I00. $0.1 \mathrm{II} \cdot 2,600 /$ O $^{16}=0.18$
and $\quad \omega^{2} C^{2} R_{2}{ }^{2}=0.032$

$$
\begin{aligned}
Z & =400+\frac{2600}{1.032}+j\left(471-\frac{471}{1.032}\right) \\
& =400+2519+j 15
\end{aligned}
$$

The last term is practically negligible, but the impedance has been reduced from 3,000 to $2,919+4$ ohms, i.e. a reduction of 2.7 per cent.

Hence the addition of the compensating condenser has increased the error from 1.2 102.7 per cent.

The above method of calculating the necessary capacitance is evidently quite inadmissible; without the condenser the voltmeter reads low on alternating current, but with the condenser in both examples it reads much too high, showing that a much smaller capacitance is required. The actual value required to give compensation can, however, be determined as follows.

In Fig. 2 the resultant impedance of R_{1} and ωL is the vector $D A$; the joint im-
pedance of R_{2} and $\frac{I}{\omega C}$ in parallel is the vector $A H$ perpendicular to $B K$. If the value of C is varied, the point H moves on the semicircle on $A B$.

It may be noted that $\tan \theta=\frac{B H}{A H}=\frac{A B}{A K}$ $=\omega C R_{2}$ and that if $A H$ be produced to meet the vertical through B at the point M, $B M=R_{2} \tan \theta=\omega C R_{2}{ }^{2}$.

Fig. 3.

The impedance of the coil in series with the swamping resistance and condenser in parallel is simply the resultant of $D A$ and $A H$ as shown in Fig. 3 where the resultant is obviously $D H$. If the instrument is correctly compensated $D H$ is equal to $C B$, hence with centre D and radius $C B$ one draws an arc cutting the semicircle at H; then

$$
C=\frac{B H}{A H} \cdot \frac{1}{\omega R_{2}}
$$

An accurate graphical construction for the second example considered above gives $C=\mathbf{o} .044 \mu \mathrm{~F}$ instead of o.III $\mu \mathrm{F}$. Hence in this case the Drysdale and Jolley formula gives a capacitance 2.5 times the correct value. The reason for this big discrepancy can be clearly seen in Fig. 3, since their formula gives approximately a non-reactive resultant, that is to say, a horizontal resultant, viz. the line $D G$, which obviously corresponds to about 2.5 times the capacitance, and is less than $C B$.

Although, if done carefully and to a large scale, the graphical method is probably the most convenient and accurate, the value of the capacitance can be calculated as follows.

In Fig. $+\tan \alpha=\frac{X}{R_{1}+R_{2} / 2}=z$ say.
$D H^{2}=D P^{2}+R_{2}{ }^{2} / 4-2 D P \frac{R_{2}}{2} \cos \beta$ and this must equal $\left(R_{1}+R_{2}\right)^{2}$ if the compensation is correct. Therefore

$$
\begin{aligned}
& R_{1}{ }^{2}+R_{2}{ }^{2}+2 R_{1} R_{2} \\
& =\left(R_{1}+\frac{R_{2}}{2}\right)^{2}+X^{2}+\frac{R_{2}{ }^{2}}{4} \\
& -R_{2} \sqrt{\left(R_{1}+\frac{R_{2}}{2}\right)^{2}+X^{2}} \cos \beta
\end{aligned}
$$

and
$\cos \beta=-\frac{\left(R_{1}+\frac{R_{2}}{2}\right)-\frac{X^{2}}{R_{2}}}{\sqrt{\left(R_{1}+\frac{R_{2}}{2}\right)^{2}+X^{2}}}=-\frac{\mathrm{I}-z \frac{X}{R_{2}}}{\sqrt{\mathrm{I}+z^{2}}}$.
Since $\alpha+\beta+\gamma=180^{\circ}, \cos \beta=-\cos (\alpha+\gamma)$.
In the two examples the values of z^{2} were 0.0773 and 0.0142 , and one can therefore, as an approximation, put

$$
\begin{aligned}
\mathrm{I} / \sqrt{\mathrm{I}+z^{2}} & =\mathrm{I}-z^{2} / 2 \text { and we thus have } \\
\cos (\boldsymbol{\alpha}+\gamma) & =\left(\mathrm{I}-z \frac{X}{R_{2}}\right)\left(\mathrm{I}-\frac{z^{2}}{2}\right) \\
& =\mathrm{I}-z \frac{X}{R_{2}}-\frac{z^{2}}{2} \text { approximately } \\
& =\mathrm{I}-z^{2}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
\end{aligned}
$$

The angles α and $\alpha+\gamma$ can thus be determined from trigonometrical tables, and

having thus found γ we see from Fig. + that the angle $B A H=\gamma / 2$, so that

$$
\frac{B H}{A H}=\tan \gamma / 2 . \quad \text { Hence } C=\frac{\tan \gamma / 2}{\omega R_{2}} \text {. }
$$

Applying this to the second example, we have

$$
\begin{gathered}
\tan \alpha=z=\frac{47 I}{400+1300}=0.278 \\
\text { and } z^{2}=0.077
\end{gathered}
$$

$$
\begin{gathered}
\therefore \cos (\alpha+\gamma)=\mathrm{I}-0.077 \frac{3000}{2600} \\
=\mathrm{I}-0.089=0.9 \mathrm{II}
\end{gathered}
$$

Hence $\alpha=15^{\circ} 32^{\prime}$ and $\alpha+\gamma=24^{\circ} 22^{\prime}$, so that $\gamma=8^{\circ} 50^{\prime}, \tan \gamma / 2=\tan 4^{\circ} 25^{\prime}=0.077$
and $C=\frac{0.077}{200 . \pi .2600}=0.047 \times 10^{-6}$
or $0.047 \mu \mathrm{~F}$.
This is near enough to the accurate value of $0.04+\mu \mathrm{F}$ for most practical purposes. The same method of calculation applied to the first example gives a capacitance of $0.0437 \mu \mathrm{~F}$, the accurate value being o.0.418 $\mu \mathrm{F}$.

Strictly speaking, the inductance of the voltmeter varies with its reading, but this effect will be very small, so that the compensation at a given frequency can only be absolutely correct at one point of the scale.

Postscript

Since writing the foregoing article we have discovered that the fallacy was pointed out by Mr. R. O. Carter in 1932*. He neglected the resistance R_{1} of the coil, but with this simplification was able to show that the correct value of the capacitance was very nearly $(\sqrt{2}-1) \frac{L}{R_{2}{ }^{2}}$ that is $0 . \mathrm{H}^{4} 4 / R_{2}{ }^{2}$. It is interesting to note that in our two examples the correct value was 0.39 and 0.396 $L / R_{2}{ }^{2}$.

Mr. Carter made the interesting statement that instrument designers frequently employ a capacitance of about half the calculated value as this has been found experimentally to give good compensation.

In a subsequent letter \dagger Mr. D. C. Gall described a graphical method similar in principle to that described above and showed by plotting values measured off the graph that, over a wide range of values of $\omega L / R_{2}$, the correct value of C was 0.44 and not o.4I times $L / R_{2}{ }^{2}$. (Mr. Carter pointed out that this difference was due to graphical inaccuracy on Mr. Gall's part). He also assumed R_{1} to have a negligible effect

Mr. Albert Campbell wrote \ddagger pointing out that the resistance R_{1} of the coil is not always negligible and that a more accurate formula for finding the capacitance is

$$
C=\frac{\sqrt{2} \sqrt{\mathbf{I}+R_{1} R_{2}}-\mathrm{I}}{\mathrm{I}+2 R_{1} R_{2}} \cdot \frac{L}{R_{2}^{2}} \cdot \text { 10 }^{6} \mu \mathrm{~F} .
$$

which reduces to $(\sqrt{2}-1) \frac{L}{R_{2}{ }^{2}} \cdot 10^{6} \mu \mathrm{~F}$ if R_{1} / R_{2} is negligibly small.

Applied to the two examples Mr . Campbell's formula gives $0.403{ }_{R_{2}}{ }^{2}=0.0432 \mu \mathrm{~F}$ and $0.400 \frac{L}{R_{2}{ }^{2}}$ $0.0445 \mu \mathrm{~F}$.

Mr. Campbell subsequently pointed out that if R_{1} / R_{2} is a small fraction so that $\sqrt{1+R_{1} / R_{2}}$ can be put equal to I $+R_{1} / 2 / R_{2}$ and $1 /\left(1+2 R_{1} / R_{2}\right)$ to (1 $-2 R_{1} / R_{2}$), the above formula reduces to

$$
C=0.4 \mathrm{I}\left(\mathrm{I}-0.3 \frac{R_{1}}{R_{2}}\right) \frac{L}{R_{2}^{2}} \mathrm{IO}^{6} \mu \mathrm{~L}
$$

Applied to the two examples this gives $0.400 \frac{L}{R_{2}{ }^{2}}$ and $0.395 \frac{L}{R_{2}{ }^{2}}$ i.e. 0.0428 and $0.0438 \mu \mathrm{~F}$ respectively, the accurate values being 0.0418 and $0.044 \mu \mathrm{~F}$.

Mr. Camplell's formulae are thus very accurate and certainly much simpler to use than the trigonometrical method developed above.

The problem is treated correctly in Dover's, "Theory and Practice of Alternating Currents," p. 357, and an example is worked out using a formuia which may be written thus :-

$$
C=\frac{\sqrt{2} \sqrt{1-X^{2} / 2 R_{2}^{2}-1}}{\mathrm{I}-X^{2} / R_{2}^{2}} \cdot \frac{L}{R_{2}^{2}} \cdot 10^{6} \mu \mathrm{E}
$$

R_{1} does not appear in it ; it is assumed to be small compared with R_{2} and if this is so, the formula gives a very close approximation
G. W. O. H.

[^0]
Noise Suppression by Means of Amplitude Limiters*

\author{

- By Martin Wald, D.Ing.
}

AMPLITUDE limiter circuits are well known and often used in modern communication receivers to reduce the effect of atmospherics and other interference, the peak amplitude of which may be many times greater than the signal amplitude. It is generally considered that amplitude limiter circuits of any kind cannot be effective when the noise oscillations are smaller than the signal amplitude. We will, however, show in this article that, if certain conditions are fulfilled, amplitude limiter circuits may also improve the noise-to-signal ratio for noise oscillations under the signal amplitude. Such a noise suppression circuit, developed by the writer, is based on the following considerations. A noise impulse induced in the aerial of a receiver may be considered as the sum of a number of sine oscillations covering a very large frequency range. Usually when we speak of the noise to signal ratio, only the components falling within the passband of the receiver are included, since the other components cannot pass through the filter circuits to the audiofrequency part. Hence, this is in fact the ratio measurable behind the filter circuits of the receiver. If, however, we measure the noise-to-signal ratio before the filter circuits, we will find it considerably increased, since at this point the noise components of all frequencies are present, producing a higher amplitude of the noise voltage. On the other hand, the amplitude of the signal voltage will be the same across both the input and output terminals of the filter circuits, since all the signal frequencies lie within the passband of the latter. From these considerations it is clear that the ratio of noise peak voltage to signal amplitude obtained by aperiodic measuring instruments will give different figures if measured at different terminals of the receiver, depending on the frequency band-width allowed to pass all the circuits preceding the terminals in question. At

* MS. accepted by the Editor, May, I940.
points of poor selectivity, for instance, across the input circuit connected to the aerial, the measured noise-to-signal ratio will be much greater than at points of high selectivity, for instance across the circuit connected to the second detector. If, however, we use a measuring instrument equipped with filtering circuits of a band-width equal to that of the receiver in question, the same ratio will be obtained at any point of the receiver from the aerial up to the second detector, assuming linear operating conditions. For the sake of distinction, we will introduce the expressions selective noise-to-signal ratio and aperiodic noise-to-signal ratio. They are equal if measured across the last circuit of the receiver, where the full selectivity is available. If measured at points of large band-width, however, the aperiodic noise-to-signal ratio is greater than the selective noise-to-signal ratio. Now, at this point of the receiver we imagine an amplitude limiter interposed. The noise voltage exceeding the response limit will be reduced by the limiter, whereby also the components within the passband of the receiver will be attenuated in some measure in spite of the fact that the latter components alone would give an amplitude smaller than the response limit. We suppose the response limit to be twice the signal amplitude. In this case the limiter action begins as soon as the aperiodic noise-tosignal ratio becomes equal to I . However, at the same time, the selective noise-to-signal ratio will be less than I. The improvement realised in this way becomes evidently greater with increasing discrepancy between aperiodic and selective noise-to-signal ratio available across the limiter. For this purpose we have to make the band-width of all circuits before the limiter as large as possible, whilst behind the limiter we use circuits of high selectivity, the passbands of which are not larger than is necessary for good quality. We obtain thus the schematic circuit arrangement shown in Fig. I. The aerial feeds into
the filter F_{1}, the band-width w_{1} of which is many times greater than w_{2} that of the receiving filter F_{2}. The amplitude limiter L is interposed between the filters F_{1} and F_{2}

Fig. 1.
As will be shown later, the improvement obtained is given approximately by the ratio $\frac{w_{2}}{w_{1}}$. The selective noise-to-signal ratio at which the limiter action begins is $\frac{w_{2}}{w_{1}}$ if the response limit is adjusted to twice the signal amplitude. In ordinary limiter circuits $\frac{w_{2}}{w_{1}}=I$.

To obtain an idea of the noise reduction to be expected, we will investigate the working of such a circuit arrangement under simplified conditions. We assume the simple waveform shown in Fig. 2 to act on the aerial. The impressed voltage E jumps suddenly from the value $E=0$ to $E=A$ at the instant $t=0$, remaining afterwards constant at this level. We will hereinafter call a voltage of this form an ideal shock voltage. Furthermore, we suppose the filters F_{1} and F_{2} to be simple oscillating circuits, as shown in Fig. 3. The aerial is coupled

Fig. 2.
aperiodically by means of the ohmic resistance R_{A} to the grid of the amplifier V_{1} the anode of which is connected to the oscillating circuit F_{1}. The latter is deliberately damped by the variable resistance R_{1} connected in series with the tuning coil L. By adjusting R_{1} any desired band-width of the circuit F_{1} can be established. Between F_{1} and valve
V_{2} we interpose an amplitude limiter in the well-known form of two diodes D_{1} and D_{2} the bias due to the battery B determining the response limit. The amplifier V_{2} feeds into the oscillating circuit F_{2} which may be the input circuit of the receiver R. The band-width of F_{2} is selected as small as possible but wide enough to pass the wanted signal frequencies. The band-width of F_{1} will be adjusted by means of R_{1} to be many times that of F_{2}. We now suppose an ideal shock voltage to occur in the aerial and calculate the time curve of the noise oscillations in the circuits F_{1} and F_{2}. For the oscillation in F_{1} we obtain the relations

$$
\begin{align*}
& i_{a 1}=g_{1} A=i_{c}-i_{L} \tag{I}\\
& L \frac{d i_{L}}{d t}+R_{1} i_{L}+\int \frac{i_{c} d t}{C}=0 \tag{2}
\end{align*}
$$

where $i_{a 1}$ is the anode current of the valve V_{1}, g_{1} the mutual conductance of V_{1}, A the amplitude of the impressed shock voltage,

Fig. 3.
i_{c} the current in the tuning condenser, i_{L} the current in the tuning coil of the circuit F_{1}, R, L, C the resistance, inductance, and capacitance in F_{1} respectively. As can be easily shown, the solution of equations (I) and (2) gives damped sine oscillations represented by :

$$
\begin{equation*}
E_{1}=g_{1} A \sqrt{\frac{\bar{L}}{C}} \cdot e^{-\delta_{1} t} \cdot \sin 2 \pi f_{1} t \tag{3}
\end{equation*}
$$

where E_{1} is the voltage across the circuit F_{1}, $\delta_{1}=\frac{R_{1}}{2 L}$ the damping factor and $f_{1}=\frac{I}{2 \pi} \cdot \frac{I}{\sqrt{\overline{L C}}}$ the tuning frequency of the circuit. At first, we suppose E_{1} to be below the response limit of the limiter $D_{1} D_{2}$ and, therefore, the oscillations expressed in equation (3) to be
acting on the grid of the valve V_{2}. For the oscillations in F_{2} we have the analogous equations:

$$
\begin{array}{r}
i_{a 2}=g_{2} E_{1}=i_{c 2}-i_{L 2} \\
\text { and } L \frac{d i_{L 2}}{d t}+R_{2} i_{L 2}+\int \frac{i_{c 2} d t}{C}=0 \tag{5}
\end{array}
$$

where g_{2} is the mutual conductance of V_{2}, $i_{a 2}$ the anode current, $i_{c 2}$ and $i_{L 2}$ the currents in the tuning condenser and coil respectively, L and C the circuit inductance and capacitance of F_{2}, both supposed to be equal to the corresponding components in F_{1} whilst the series resistance R_{2} is small compared with R_{1}. Eliminating $i_{c 2}$ we get :
$L \frac{d i_{L 2}}{d t}+R_{2} i_{L 2}+\int \frac{i_{L 2} d t}{C}=-\int \frac{g_{2} E_{2} d t}{C}$
which represents the differential equation of an oscillating circuit, in which the expression on the right-hand side represents an external voltage acting on the circuit. Fig. 4 shows the equivalent diagram. The generator G with zero internal resistance supplies the electromotive force $-\int \frac{g_{2} E_{2} d t}{C}$, the time curve of which is given by equation (3) as a damped sine oscillation. As is known, the

Fig. 4 . voltage arising across the circuit in Fig. + can be represented as the sum of two damped sine oscillations, the first one having the damping factor δ_{1} and frequency f_{1} of the impressed voltage, and the second one the natural damping factor and frequency of the circuit. We suppose both circuits F_{1} and F_{2} to have the same frequency f but different damping factors $\delta_{1}=\frac{R_{1}}{2 L}$ and $\delta_{2}=\frac{R_{2}}{2 L}$. Hence, for the voltage arising across the circuit F_{2} we may write:

$$
\begin{align*}
\int \frac{i_{L 2} d t}{C}= & E_{2}=E_{2 i}+E_{2 f} \\
= & \mu_{1} e^{-\delta_{1} t} \cdot \sin \left(2 \pi f t+\phi_{1}\right) \\
& +\mu_{2} e^{-\delta_{2} t} \sin \left(2 \pi f t+\phi_{2}\right) . \tag{7}
\end{align*}
$$

where $E_{2 i}$ is the oscillation with the damping δ_{1} corresponding to the impressed voltage,
and $E_{2 f}$ the free oscillation with the circuit damping factor $\delta_{2}=\frac{R_{2}}{2 L}$. As at the time $t=\mathrm{o}$ no oscillations are present, they must have the same amplitude and opposite phase, thus cancelling each other at the instant $t=0$, so that :

$$
\left.\begin{array}{ll}
& \mu_{1}=\mu_{2}=\mu \tag{8}\\
\text { and } & \phi=\phi_{1}=\phi_{2}+\pi
\end{array}\right\}
$$

From (γ) we obtain :

$$
\begin{align*}
& \int \frac{i_{L_{2}} d t}{C}=E_{2}=E_{2 i}+E_{2 f} \\
& \quad=\mu\left[e^{-\delta_{1} t}-e^{-\delta_{2} t}\right] \sin (2 \pi f t+\phi) \tag{9}
\end{align*}
$$

On substituting the expressions (9) and (3) in the differential equation (6) we obtain two equations from which the amplitude μ and phase angle ϕ can be calculated. The calculation will be considerably simplified if we suppose δ_{2} to be small compared with δ_{1} and the two of them to be small compared with $\omega=2 \pi f=\frac{I}{\sqrt{\overline{L C}}}$. With these assumptions and neglecting small second order terms, we obtain from (6) :

$$
\begin{aligned}
L C \mu[- & \left.\omega^{2} \sin (\omega t+\phi)-2 \delta_{1} \omega \cos (\omega t+\phi)\right] \\
& +\mu \sin (\omega t+\phi)= \\
& \left.=-\frac{g_{2}}{C} g_{1} A \sqrt{\frac{L}{C}}\left(-\frac{\mathrm{I}}{\omega} \cdot \cos \omega t\right)\right)
\end{aligned}
$$

On putting $\omega^{2}=\frac{\mathrm{I}}{L C} ; \quad \delta_{1}=\frac{R_{1}}{2 L}$ and $\delta_{2}=\frac{R_{2}}{2 L}$ the latter equation is reduced to

$$
\begin{equation*}
-\mu \frac{R_{1}}{L} \sqrt{L C} \cdot \cos (\omega t+\phi)=g_{2}{ }_{1} A \frac{L}{C} \cos \omega t \tag{го}
\end{equation*}
$$

On equating amplitudes and phase angles in (io) we have
and $\left.\quad \begin{array}{rl}\phi & =0 \\ \mu & =-g_{1} g_{2} A \sqrt{\frac{L}{C}} \cdot \frac{L}{C R_{1}}\end{array}\right\}$
Finally, from (II) and (9) :
$E_{2}=g_{1} A \sqrt{\frac{L}{C}} \cdot g_{2} \frac{L}{C R_{1}}\left(e^{-\delta_{1} t} e^{-\delta_{2} t}\right) \sin 2 \pi f t$

Fig. 5 shows the time curve of the noise oscillations caused by an ideal shock voltage acting on the arrangement according to Fig. 3 The upper curve a shows an ideal shock voltage of amplitude A acting on the aerial. Curve b shows the oscillations set up in the circuit F_{1} according to equation (3), and curve c the oscillations in F_{2} according to equation (12). The oscillations in F_{1} rapidly decrease on account of the large damping factor $\delta_{1}=\frac{R_{1}}{2 L}$. At the same time, however, the oscillations in F_{2} increase until they reach a maximum, after which they slowly decrease due to the small damping factor $\delta_{2}=\frac{R_{2}}{2 L}$ of the circuit F_{2}. Further, we suppose that a signal of the amplitude B is continuously acting on the aerial. The aperiodic noise-to-signal ratio across the circuits F_{1} and F_{2} can be easily calculated from the above deduced relations. We

Fig. 5.
obtain the following noise-peak-voltages, denoted by N_{A}, N_{1}, and N_{2} respectively :
Across the aerial :

$$
N_{A}=A
$$

Across F_{1} from equation (3)
and Fig. $5 b$:

$$
N_{1}=A g_{1} \sqrt{\frac{L}{C}}
$$

Across F_{2} from equation (12)
and Fig. ${ }_{5} c$

$$
\left.N_{2}=A g_{1} \sqrt{\frac{\bar{L}}{C}} \cdot g_{2} \frac{L}{R_{1} C}\right)
$$

For the signal voltage amplitudes, denoted by S_{A}, S_{1}, S_{2} respectively, we obtain:

Across the aerial :

$$
S_{\Delta}=B
$$

Across the circuit F_{1} :

$$
\begin{equation*}
S_{1}=B g_{1} \frac{L}{R_{1} C} \tag{I4}
\end{equation*}
$$

Across the circuit F_{2} :

$$
S_{2}=B g_{1} \frac{L}{R_{1} C} \cdot g_{2} \frac{L}{R_{2} C}
$$

where $\frac{L}{R_{1} C}$ and $\frac{L}{R_{2} C}$ represent the resonant impedance of the circuits F_{1} and F_{2} respectively.

For the aperiodic noise-to-signal ratio we obtain from equations (13) and (I_{4}):
Across the aerial: $\left(\frac{N}{S}\right)_{A}=\frac{A}{B}$
Across the circuit F_{1} :

$$
\begin{equation*}
\left(\frac{N}{S}\right)_{F_{1}}=\frac{A}{B} \cdot \frac{R_{1}}{\sqrt{\frac{\bar{L}}{\bar{C}}}} \tag{15}
\end{equation*}
$$

Across the circuit F_{2} :

$$
\left(\frac{N}{S}\right)_{F_{2}}=\frac{A}{B} \cdot \frac{R_{2}}{\sqrt{\frac{L}{C}}}
$$

The aperiodic noise-to-signal ratio at F_{2} is therefore considerably smaller than that at F_{1} since R_{2} is supposed to be much smaller than R_{1}. From (15) we get:

$$
\begin{equation*}
\frac{\left(\frac{N}{S}\right)_{F_{2}}}{\left(\frac{N}{S}\right)_{F_{1}}}=\frac{R_{2}}{R_{1}} \tag{16}
\end{equation*}
$$

In equation (16) we will introduce the circuit band-widths w_{1} and w_{2} instead of the loss resistances R_{1} and R_{2}. The band-width of a circuit is defined as the frequency interval, corresponding to a drop of the resonant curve to $\frac{1}{\sqrt{2}}$ of its maximum value. This band-width is inversely proportional to the goodness of the circuit in question and can be written as:

$$
\begin{equation*}
w=\frac{R}{\sqrt{\frac{\bar{L}}{\bar{C}}} f} \tag{17}
\end{equation*}
$$

where w is the band-width in $\mathrm{c} / \mathrm{s}, R$ the series loss resistance of the circuit in ohms, L the circuit inductance in henrys, C the capacitance in farads, and f the tuning frequency of the circuit in c / s. This formula holds so long as w can be considered small compared with f. From (I_{7}) and (I 6) follows:

$$
\begin{equation*}
\frac{\left(\frac{N}{S}\right)_{F_{2}}}{\left(\frac{N}{S}\right)_{F_{1}}}=\frac{w_{2}}{w_{1}} \tag{18}
\end{equation*}
$$

Equation (I8) says that, at any point of a receiver, the aperiodic noise-to-signal ratio is directly proportional to the band-width available at the terminal point in question. However, the selective noise-to-signal ratio, which is all that matters for reception quality, will be the same, irrespective of the circuit across which it is measured. Across the circuit F_{2}, where the full selectivity of the receiver is available the aperiodic and selective noise-to-signal ratio are equal to each other. Hence, we have:

$$
\begin{equation*}
\left(\frac{N}{S}\right)_{\mathrm{sel}}=\left(\frac{N}{S}\right)_{F_{2}}=\frac{w_{2}}{w_{1}}\left(\frac{N}{S}\right)_{F_{1}} \tag{19}
\end{equation*}
$$

where $\left(\frac{N}{S}\right)_{\text {sel }}$ denotes the selective noise-tosignal ratio as defined above. We suppose the response limit of the limiter $D_{1} D_{2}$ in Fig. 3 to be twice the signal amplitude available across it. In this case the limiter action begins as soon as the aperiodic noise-to-signal ratio $\left(\frac{N}{S}\right)_{F_{1}}$ reaches unity. Hence the operation threshold is given by:

$$
\begin{equation*}
\left(\frac{N}{S}\right)_{F_{1}}=I \tag{20}
\end{equation*}
$$

At the same time for the selective noise-tosignal ratio it follows from (19) and (20) that

$$
\begin{equation*}
\left(\frac{N}{S}\right)_{\text {sel }}=\frac{w_{2}}{w_{1}} \tag{2I}
\end{equation*}
$$

which is according to the preceding assumptions, a figure much smaller than unity. Equation (2I) says that, unlike ordinary limiter circuits, the limiter in question becomes effective at a selective noise-tosignal ratio $\frac{w_{2}}{w_{1}}$ much smaller than I . The
ratio $\frac{w_{2}}{w_{1}}$ can be called the improvement factor, since the limiter begins to act as soon as the noise voltage across F_{2} exceeds the fraction $\frac{w_{2}}{w_{1}}$ of the signal voltage, whilst in ordinary limiter circuits, the limiter being arranged behind the filter F_{2}, noise oscillations less than the signal amplitude will not be influenced by the limiter. In order to obtain an efficient noise reduction, we require the selective noise-to-signal ratio at which the limiter action begins, to be smaller than 3 per cent. This gives with regard to (2I) :

$$
\begin{equation*}
\frac{w_{2}}{w_{1}} \leqq 0.03 \tag{22}
\end{equation*}
$$

which means that the band-width w of the circuit F before the limiter must be at least about 30 times that of the circuits following the limiter. On the other hand, it is clear that for good working, the amplitude limiter ought not to be affected by any other stations than the one wanted, otherwise cross modulation will occur ; the response limit must be adjusted to be greater than the amplitude of the strongest of them. However, in this case if receiving a weak signal-the circuit F_{2} behind the limiter being tuned to the weak signal-no noise reducing effect will be noticed since the response limit will be adjusted to a value many times greater than that of the wanted signal. This requirement restricts the field of application of the noise suppression circuit described above to cases in which the frequency separation between neighbouring stations is many times (about 30 times) greater than the band-width of the modulated signal to be received. On the medium, long, and short wave ranges the broadcasting frequencies are close together and therefore the latter requirement cannot be satisfied. In the ultra-short wave range, however, the condition is well fulfilled and therefore ultra-short wave reception is the field in which the noise suppression circuit, described above, can be applied. As an important application the writer suggests the incorporation of such a noise suppression circuit in the sound part of a television receiver in order to reduce efficiently atmospherics and motor car interference. For the band-width w_{2} we choose $15 \mathrm{kc} / \mathrm{s}$ which is a
usual figure for quality receivers. From equation (22) we obtain the band-width of the circuits ahead of the limiter:

$$
\begin{equation*}
w_{1}=\frac{w_{2}}{0.03}=\frac{15}{0.03}=500 \mathrm{kc} / \mathrm{s} \ldots \tag{23}
\end{equation*}
$$

which value can be easily realised in ultrashort reception without interfering troubles due to neighbouring stations.

Fig. 6 shows an example of a circuit diagram for an ultra-short wave sound receiver incorporating the noise suppression circuit described above. The aerial feeds into the R.F. stage V_{1} with circuits C_{1} and C_{2}) tuned to the signal frequency of about $42 \mathrm{Mc} / \mathrm{s}$ (7 ml wavelength) which is followed by the first mixer V_{2}. Further follow two I.F. stages, V_{3} and V_{4}. Here the I.F. is chosen at $5 \mathrm{Mc} / \mathrm{s}$, to which the circuits C_{3}, C_{4} and C_{5} are tuned. The band-width of the latter three circuits is adjusted to $500 \mathrm{kc} / \mathrm{s}$. The amplification per stage depends on the resonant impedance of these circuits. This is given by

$$
\begin{equation*}
Z=\frac{\mathrm{I}}{2 \pi C w} \tag{24}
\end{equation*}
$$

where Z denotes the impedance in ohms, C the circuit capacitance (including valve capacitances) in farads, w the band-width in c / s. For the capacitance C we choose the
ohms and the amplification per stage will be about 20 times, assuming a pentode with a mutual conductance of about $3 \mathrm{~mA} /$ solt. The gain in the R.F. stage V_{1} we put at six times and the same for the mixer stage V_{2}. The total maximum gain from the grid of V_{1} up to the limiter L may be:

$$
6 \times 6 \times 20 \times 20=15,000
$$

The response limit of the limiter L we suppose to be about 2 volts. Hence for input voltages acting on the grid of V_{1} amounting to about $70 \mu \mathrm{~V}$, the limiter will enter in action. The limiter is represented as a combination of two diodes but it may take other forms. Behind the limiter we have a second mixer stage V_{5} in order to reduce the $I . F$. from $5 \mathrm{Mc} / \mathrm{s}$ to $450 \mathrm{kc} / \mathrm{s}$, to which the I.F. filter C_{6} is tuned. The bandwidth w_{2} of the latter should be as small as possible in order to obtain a favourable improvement factor $\frac{w_{2}}{w_{1}}$. We have chosen $w_{2}=15 \mathrm{kc} / \mathrm{s}$, a figure sufficient for tone quality, and obtain :

$$
\begin{equation*}
\frac{w_{2}}{w_{1}}=\frac{\mathrm{I} 5}{500} \doteq 0.03 \tag{25}
\end{equation*}
$$

$\frac{w_{2}}{w_{1}}=0.03$ represents the selective noise-to-

Fig. 6.
somewhat large value of $50 \mu \mu \mathrm{~F}$ in order to prevent serious detuning by variation of the valve capacitances by the A.V.C. voltages incorporated in these stages. An efficient A.V.C. is provided for obtaining an approximately constant signal amplitude across the following limiter stage. With $w=500 \mathrm{kc} / \mathrm{s}$ and $C=50 \mu \mu \mathrm{~F}$ formula (24) gives : $Z=6,500$
signal ratio available across C_{6} and detector diode D_{3} for the case in which the aperiodic noise-to-signal ratio across C_{5}, ahead of the limiter, is unity. With increasing noise voltages the part of the voltage curve exceeding the response limit will be cut off by the limiter as shown in Fig. 7. The curve $7 b$ results from a noise voltage ten
times greater than the response limit. The dotted line shows the part cut off by the limiter. Compared with $7 a$, where the noise voltage does not exceed the response limit, we see that though the peak voltages passing the limiter are the same, the time duration of the noise oscillations are different in the two cases. Obviously we can write :

$$
\begin{gather*}
T_{2}=T_{1}+\frac{1}{\delta_{1}} \ln \frac{\alpha_{2}}{\alpha_{1}} \text { or } \\
\frac{T_{2}}{T_{1}}=\frac{\mathrm{I}}{\delta_{1} T_{1}} \ln \frac{\alpha_{2}}{\alpha_{1}}+\mathrm{I} \tag{26}
\end{gather*}
$$

where T_{1} and T_{2} respectively denote the time necessary for the

Fig. 7. oscillations to fall to the negligible value $\alpha_{1} l^{-\delta_{1} T_{1}}$, for instance, to a seventh of the response limit, α_{2} the amplitude before cut off by the limiter, and α_{1} the response limit. The same effect, that is an extension of the duration of the noise oscillations would be obtained by decreasing the damping factor δ_{1} of the circuit preceding the limiter. Therefore for calculating the noise oscillations arising across C_{6} after the limiter, as an approximation, we replace curve $7 b$ by the curve $7 c$ which is a damped sine oscillation with an amplitude equal to the response limit and a damping factor $\frac{R_{1}^{\prime}}{2 L}$, being $\frac{T_{2}}{T_{1}}$ times smaller than the real damping factor $\delta_{1}=\frac{R_{1}}{2 L}$. We have for the equivalent loss resistance in the case where $\alpha_{2}>\alpha_{1}$ and $\delta_{1} T_{1}=\frac{1}{2}$:

$$
R_{3}^{\prime}=\frac{R_{1}}{\mathrm{I}+\frac{1}{2} \ln \frac{\alpha_{2}}{\alpha_{1}}} \quad \cdots \quad . \quad(27)
$$

The amplitude of the noise oscillations arising across C_{6} is according to equation (12), inversely proportional to the loss resistance R_{1}^{\prime} of the preceding circuits. For the

[^1]selective noise-to-signal ratio we obtain from (27) and (2I), and replacing α_{1} by the doubled signal amplitude $2 S$:
\[

$$
\begin{equation*}
\left(\frac{N}{2 S}\right)_{\text {sel }}=\frac{w_{6}}{W_{1}}\left[\frac{1}{2} \ln \left(\frac{N}{2 S}\right)_{C_{i}}+\mathrm{I}\right] \tag{2S}
\end{equation*}
$$

\]

Fig. 8 shows the curve representing equation (28). It is seen that the selective noise-to-signal ratio across C_{6} is not rigorously limited to the value $\frac{\mathscr{w}_{2}}{w_{1}}$ but increases very slowly with increasing aperiodic noise-to-signal ratio available ahead of the limiter. The filter C_{6} feeds the signal rectifier diode D_{3} and the A.V.C. diode D_{4}. The A.V.C. will be adjusted to give a constant signal amplitude across the limiter of about onehalf the response limit. The signal rectifier D_{3} is followed by the output valve V_{5}.

There is an interesting analogy between the noise suppressing system described in this article and the Armstrong system of frequency modulation, experiments on which have been made in America in the ultra-short wave range. The Armstrong receiver contains (see Wireless World, May 18th, 1939, page 469, "Frequency Modulation in America ') an amplitude limiter stage, the R.F. and I.F. circuits before the limiter having a band-width of more than $200 \mathrm{kc} / \mathrm{s}$ (this is the channel width required for Armstrong modulation) and the audiofrequency part of the receiver having a passband of about $15 \mathrm{kc} / \mathrm{s}$. Hence, it shows

Fig. 8.
all the characteristics of the noise suppression circuit described in this article. The question arises whether the improvement in the noise-to-signal ratio in the Armstrong system may not be explained in this way and have nothing to do with the type of modulation. In a later article we hope to investigate the Armstrong receiver from this point of view.

Phase Adjuster*

Continuously Variable Device with Constant Amplitude

By K. Kreielsheimer, D.Ing., F.Inst.P.

(Research Physicist of the New Zealand Radio Research Committee)

Abstract

SUMMARY.-The device described in the present article is designed to allow the continuous shifting of the phase angle between two A.C. voltages, by known amounts. This is done with two resistance-capacitance combinations.

IN principle there are two methods of producing known phase angles, the one device using a rotating magnetic field which induces E.M.F. in stationary coils inserted in this field at chosen angles (K. Lion, E.N.T., Vol. 15, pp. 276-283, 1928), and the other design using electric circuits with impedances so arranged as to produce phase-altered output voltages. O. O. Pulley (Wireless Engineer, Vol. XIII, pp. 593-594, 1936) describes a device which allows for a continuously variable phase shift ; it has, however, the disadvantage that the output voltage varies from a maximum to a minimum and back to a maximum in a ratio of $\sqrt{2}$ during each phase change of 90°, and that it is difficult to calibrate. Whilst Pulley's arrangement employs resistances, condensers and inductances, the more commonly used type comprises a resistance-capacitance combination only, either in a single circuit connection or in a bridge circuit, the phase change being effected normally by varying the resistance.

Fig. ra shows a general resistancecapacitance device as a bridge circuit with centre tapping of the transformer secondary at a, or with artificial centre point of the transformer output voltage at $a^{\prime}, \quad R$ may be a variable resistance or a potential divider. In either case the vector diagram of Fig. Ib applies; if R is a potential divider, the voltage of point b varies along the vector $c-b$, while if R is a variable resistance, the point b will move along the arc $c-b$, i.e., the voltage $a-b$ remains constant and equal to $\frac{1}{2}(d-c)$. The phase variation obtainable in either case will be considerably less than 180° and if R is used as a variable

[^2]resistance the impedance of this circuit is not constant. By extending the circuit of Fig. Ia, however, and using this device to cover a phase difference of 90° only, whilst the 4 quadrants are covered by a separate switching arrangement the complete phase differences from 0° to 360° can easily be effected without any " blind" spots.

Fig. I
Fig. 2a shows the proposed circuit, which allows for a continuous calibrated phase shift, keeping at the same time the output amplitude constant and equal to the input voltage. As is apparent from the diagram, the whole circuit consists of resistances and condensers only. The condensers C and the resistances R are provided in order to balance the arrangement relative to the earth point. The resistances R_{1} and R_{2} and the condensers C_{1} and C_{2} are equal and so dimensioned as to ensure $R_{1}=R_{2}=\frac{\mathrm{I}}{\omega C_{1}}=\frac{\mathrm{I}}{\omega C_{2}}(\omega=$ angular input frequency). The phase angle between the voltage and the current in the branch $a c b$ and $a d b$ is then the same and amounts to 45°. Fig. 2b shows the conditions in a vector diagram. The voltage $c-d$ is equal to $a-b$ with a phase difference of 90°. The same diagram applies for the circuit which contains $R_{3}, C_{3}, R_{4}, C_{4}$. This internal circuit, however, contains variable components, either variable resistances R_{3} and R_{4} (instead of which potential dividers could be used) or variable condensers C_{3} and C_{4}. Let us assume R_{3} and R_{4} to be variable resistors which change equally in value
simultaneously. Commencing with zero resistance in branches $1-3-2$ and $1-4-2$, the current would be 90° leading in phase in regard to voltage $\mathrm{I}-2$. With increasing resistance R_{3} and R_{4} the phase angle decreases, and for $R_{3}=R_{4}=\frac{I}{\omega C_{3}}=\frac{I}{\omega C_{4}}$ we again obtain a phase angle of 45° or analogous to Fig. 2b, 90° between voltage I-2 and 3-4. The values should be chosen

Fig. 2.
to make the impedance between the points I and 2 large compared with the input impedance between a and b. Similarly, the output impedance between 3 and 4 has to be large compared with impedance between I and 2 , since otherwise the theoretical phase relations between the various voltages and the voltages themselves as represented by the vector diagram in Fig. 2b would be affected. This has to be kept in mind if it is desired to make the output voltage variable by placing a potential divider across the output terminals 3-4. As circumstances permit it will often be more advisable to achieve this output variation by controlling the amplitude of the input voltage.

A special switch which allows point I to be connected alternately to points a, c, b, d and at the same time point 2 to points b, d, a, c completes the arrangement. Whilst the variation of the resistances R_{3} and R_{4} enables us to change the phase 90°, the switch serves to select the quadrant. In practice it will be advisable to overlap the quadrants slightly by providing for a somewhat greater phase variation than 90°. Using variable resistances or variable con-
densers the voltage vector travels along the circumference of the circle of Fig. 2b, i.e., the output voltage is of the same amplitude as the input voltage. The impedance of the whole arrangement, however, changes with the phase adjustment. If it should be desired to keep the impedance of the apparatus constant, potential dividers have to be used in place of the variable resistances. This effects a change in output voltage, the ratio of the maximum to the minimum being $\sqrt{2}$, provided that the value of the potential dividers R_{3} and R_{4} is equal to $\frac{\mathrm{I}}{C \omega_{3}}$ and $\frac{\mathrm{I}}{\omega C_{4}}$, as now the ends of the voltage vector $3-4$ slide along the chord $1-3$ and $2-4$, thus making overlapping of the various quadrants impossible. Care has to be taken in matching the impedances of the various circuits incorporated in the design of this apparatus since a deviation from the theoretical phase is unavoidable if the inner circuit $\mathrm{I}-3-2-4$ represents an appreciable load on the outer one $a-c-b-d$. In this latter case it would be advisable to obtain the calibration experimentally by producing ellipses of known phase difference on the screen of a cathoderay oscillograph and compensating the phase angle to zero by inserting our device in the connection leading to one pair of deflection plates.

Obviously the accuracy and reproducibility of the calibration depend largely on the exactness with which the frequency used can be kept constant. In the present case the circuit has been designed for a tuning fork oscillator of 1024 cycles $/ \mathrm{sec}$. If the circuit is required for various discrete frequencies or bands of frequencies, means have to be provided to change the values of R_{1} and R_{2} or C_{1} and C_{2} respectively so as to make the resistances equal to the condenser impedances for the frequencies in question and separate calibrations will have to be provided for each frequency; depending on the frequency range, the values of R_{3} and R_{4} or C_{3} and C_{4} might be affected as well.

In the present design as shown by Fig. 3 the variable components are condensers, C_{3} and C_{4}, the maximum capacitance of which is $1379 \mu \mu \mathrm{~F}$, the minimum capacitance $43 \mu \mu \mathrm{~F}$ each, as determined by exact bridge measurement. Both condensers are mounted on a common shaft but separated by an insulating coupling and fitted with a pre-
cision dial. The fixed resistances R_{3} and R_{4} are of the carbon type, carefully adjusted to be equal and are each 2.4 megohms. (Variable condensers and resistors of high value had to be selected as no suitable variable resistances of about 100,000 ohms-200,000 ohms were obtainable in the Dominion. This forced us to make the impedance of the inner circuit unnecessarily high.) R_{1} and R_{2} are represented by $13,515 \mathrm{ohm}$ wirewound resistors which were combined with C_{1} and C_{2}, each of $0.0115 \mu \mathrm{~F}$, all parts being carefully adjusted in value. When testing the circuit $a-c-b-d$ with the oscillograph, a perfect circle could be obtained only after balancing the inductivity of the two wirewound resistors. Condensers, $0.0008 \mu \mathrm{~F}$ parallel to R_{1} and o.oor $\mu \mathrm{F}$ parallel to R_{2}, serve this purpose. The apparatus was mounted entirely on bakelite. Because of the high impedances involved, care had to be exercised regarding the distribution of earth capacitances and the distribution of inductance and capacitance between the circuits.

Summarising; the phase adjustment device described above is characterised by the following features: viz.-with the aid of two controls, one for phase and the other for quadrant adjustment, it is possible to obtain a continuously variable calibrated phase shift

Fig. 3.
over 360°, whereby the output voltage remains constant and equal to the input voltage. The four quadrants can be made to overlap thus providing check measurements in this range for two neighbouring quadrants. The design employs conventional types of resistors and condensers which allow an easy and reliable construction. The quadrant
switch is best described as of the double pole four throw type. Without influencing the phase adjustment the impedance of the arrangement can be made approximately constant for the entire working range.*

This work has been carried out at the Department of Physics of the Auckland University College in the course of investigations under the New Zealand Radio Research Committee. The author wishes to tender his acknowledgments to Professor P. W. Burbidge for his continued interest and encouragement and to the N.Z. Department of Scientific and Industrial Research for its kind permission to publish this article.

[^3]
Correspondence

Feedback
 To the Editor, The Wireless Engineer.

Sir,-Mr. Sandeman, in his article entitled "Feedback" (The Wireless Engineer, August, 1940, page 34^{2}) calls attention to the shift in modulation phase produced by a tuned circuit sufficiently sharp to attenuate appreciably the sidebands. This phenomenon is exceedingly troublesome in transmitters using low-power modulation (with, consequently, a number of tuned circuits in cascade) or using filter networks to reduge carrier harmonics, and the permissible amount of feedback is severely limited thereby. In some cases, it is required by specification that the higher harmonics of high modulation frequencies be reduced, and the problem of increasing the π-frequency becomes urgent.

The writer has found the filter section calculated by Zobel (Bell S. Tech. Journ., July 1928, page 470 , Fig. 8, right-hand section) of use in these circumstances. It has the property of negative lag over a range of frequencies, which is not wholly vitiated by its reduced attenuation at high frequencies. In a typical case, such a filter section introduced in the β chain has postponed the π frequency by a factor 1,3 times

London, S.W.iz.
C. E, G. Bailey.

Amplitude, Frequency and Phase Modulation

To the Editor, The Wireless Engineer.
Sir,-Reference your Editorial in the May 1940 issue, in the final paragraph you refer to a claim by Dr. Hughes that it is possible to have an amplitude modulated programme and a frequency modulated programme on the same transmitter simultaneously, but you seem to doubt the possibility of separate
reception of the two programmes without cross talk. It is noted that Dr. Hughes stated that "this does not appear to have been practised." May I say that I have tried this method, using a roo-W. frequency modulated transmitter of the reactance valve type, being frequency modulated with one programme, and have modulated the final amplifier with cathode modulation with a second programme. The carrier frequency was $47 \mathrm{Mc} / \mathrm{s}$. Using a simple super-regenerative receiver either programme can be received at will by tuning, with only a very slight amount of cross talk, and it certainly seems that given properly designed receivers for the reception of the two methods of modulation that undoubtedly the two programmes or channels could be received without interference. It should also be pointed out that when using the reactance type of F.M. transmitter and amplitude modulating the final amplifier, it is only reasonable to suppose that there is a certain amount of F.M. in the amplitude channel arising from the fact that the centre point of the carrier is not firmly anchored, but I suggest that if a transmitter of the type designed by Major Armstrong were used, with the advantage of a crystal controlled centre point, then the cross talk would be considerably reduced.

I may also state that 1 have also tried simultaneous F.M. and A.M. of the same transmitter with one programme only and find that the quality of the transmission appears to be better than with amplitude modulation only, and it is suggested that F.M. stations could employ this double
modulation method during the transition period from one system to the other to enable their listeners who possess only A.M. receivers to enjoy the benefits of the U.H.F. quality, etc., whilst the listeners with F.M. receivers would get the additional benefits of noise reduction, etc. It is of course realised that a reduction of output would have to be made to allow for the peak swings of the amplitude modulation so the gain of employing the two methods of modulation on the one transmitter would not be 100%, but for point to point communication it opens up a second channel possibility with very small increased transmitter expenditure.

I certainly hope that Dr. Hughes will make suggestions for suitable receivers for this type of work.
W. C. GEE.
P. and T. Dept.,

Kuala Lumpur,
Federated Malay States.
P.S.-Since writing the above letter further experiments have been made, to ascertain if stereophonic broadcasting could be carried out by using the two channels thus provided on the one transmitter, and, whilst receiving arrangements were necessarily crude it was quite obvious that this method could be used for this purpose. One of the greatest difficulties would appear to be that of prevention of mutual interaction of the two receivers necessary for reception but this could undoubtedly be overcome by the design of special double receivers for this work.

Wireless Patents

A Summary of Recently Accepted Specifications

The following abstracts are prepared, with the permission of the Controller of H.M. Stationery Office, from Specifications obtainable at the Patent Office, 25, Southampton Buildings, London, W.C.2, price 1/-each

RECEIVING CIRCUITS AND APPARATUS

(See also under Television)
521882 .-Receiver in which means for limiting the amplitude of the incoming signals are combined with means for balancing-out undesired signals.

Marconi's W.T. Co. (assignees of L. E. Thompson), Convention date (U.S.A.) 3oth November, 1937.
52 I 983 .-Visual tuning indicator with means for showing a gradual approach to the correct tuning point, even for strong signals.

MO Valve Co. and C. W. Cosgrove. Application date 30th November, 193^{8}.
522 248.-Spring-controlled arrangement for even-ing-out the pressure used to actuate the pressbuttons of a mechanical tuning system.
E. K. Cole and A. Shackell. Application date IIth October, $193^{8 .}$
52225^{8}.-Controlling the fidelity and selectivity of a wireless receiver by passing the signals through two or more branch cluannels of different bandwidths.

Murphy Radio and L. A. Moxon. Application date $3^{r d}$ December, $193^{8 .}$

522388 . - Amplifier of the super-regenerative type specially adapted to receive radio telegraphic signals produced by keying an unmodulated carrierwave.

The General Electic Co.; L. C. Stenning; and R. W. White. Application date 7th December, 1938.

522 476. -Variable-capacity effect, produced in the Johnson-Rahbeck manner, for applying automatic frequency control to a wireless receiver.

Marconi's W.T. Co. ; N. M. Rust ; J. D. Brailsford; and J. F. Ramsay. Application date 12 th November, 1938.
522 52.-Preselector tuning arrangement of the endless-band type, for a wireless set.

Telefunken Co. Convention date (Germany) IIth December, 1937.
522710 --Valve of the so-called "beam" type and with a split anode, particularly for use as a " mixer" or frequency-changer in a superhet set.

Marconi's W.T. Co. and D. A. Bell. Application date 13th December, 193^{8}.
522 902.-Bridge circuit for eliminating hum or
ripple from the A.C. supply for heating the valve filaments of a wireless set.

Standard Telephones and Cables (communicated by Nippon Electric Co.). Application date 20th December, 1938.
522 939.-Discriminator circuit showing a response curve with three zero points for automatic frequency control.

Marconi's W.T. Co. and N. M. Rust. Application date 20 th September, 1938.

TELEVISION CIRCUITS AND APPARATUS

For Transmission and Reception

522 317.-Arrangement and construction of the electrodes forming the "gun" of a cathode-ray television receiver.
O. Klemperer. Application date 1 oth December, 1938.

522 377.-Focusing arrangement for a tube of the "beam" or cathocle-ray type in which rotation of the beam, due to the applied magnetic field, is prevented.

Ferranti; M.K. Taylor; and H. Wood. Application date $7^{\text {th }}$ December, 1938.
5223^{87}.- Thermionic amplifier circuit designed to give one output of constant and another output of variable gain, particularly for modulating the electron stream of a cathode-ray television receiver.

The General Electric Co.; D. C. Espley; and G. W. Edwards. Application date $7^{\text {th }}$ December, 1938.

522443 .-Saw-toothed osciliation generator for supplying scanning voltages to the magnetic deflecting coils of a cathode-ray television receiver.

The General Electric Co.; E. C. Cherry; and R. J. Clayton. Application date 8th December, 1938. 522458 . -Television transmitter tube in which means are provided for controlling the secondary emission produced when scanning a photo-electric screen of the mosaic type.
H. G. Lubszynski. Application date 1 oth December, 1938.

522 495.-Oscillation-generator circuit, particularly for producing synchronising impulses for a television transmitter worked from the electric supply mains.

Marconi's W.T. Co.; D. L. Plaistowe; and C. E. Parkinson. Application date $13^{\text {th }}$ December, 1938. 522533 - Cathode-ray tube, particularly for television reception, in which the overall length of the tube is reduced by bending-over the "gun" end at right-angles to the main stem.

Kolster-Brandes and C. N. Smyth. Application date $13^{\text {th }}$ December, $193^{8 .}$
522 545.-Rotating-disc device for televising a film by interlaced scanning, provided with adjustable means for ensuring correct inter-lining.

The General Electric Co. and D. C. Espley. Application dates $15^{\text {th }}$ December, 1938, and $7^{\text {th }}$ November. 1939.

522 637.-Saw-tooth oscillation-generator particularly designed to produce a straight-line voltage on the forward or long flank of the wave-form.
E. W. Bull. Application date 16 th December, 1938. 522 709.-Amplitude-limiting circuit for separating
the synchronising impulses from the picture-signals in a television receiver.

Marconi's W.T. Co. and D. J. Fewings. Application date 13 th December, $193^{8 .}$
522 737.-Two-grid gas-filled discharge tube for generating saw-toothed oscillations, suitable for television scanning.

Murphy Radio and K. S. Davies. Application date 14 th December, 1938.
522 860.-Photo-sensitive electrode with a selenide or telluride base, for generating television or other signals, particularly by infra-red radiation.
A. Carpmael (communicated by the Telefunken Co.). Application date 1 ith January, 1939.
522 903.-Means for correcting the kind of " brightness distortion" which arises when televising from a moving film by interlaced scanning.

The General Electric Co. and D. C. Espley. Application date 20th December, 1938.
52295 I .-Cathode-ray tube in which the electrons emitted from a photo-sensitive surface are made to travel in a closed circle back to that surface in order to intensify television signals.
H. G. Lubszynski. Application date 20th December, 1938.
523 050.-Testing circuit for comparing the light intensity and gradation in a television transmitter.

Radio-Akt. D. S. Loewe. Convention date (Germany) $24^{t h}$ November, 1937.
523075.-Remote-control rlevice for regulating the "brightness" or gain of a television receiver.

Kolster-Brandes and P. M. Brand. Application date 23rd December, 1938.

TRANSMITTING CIRCUITS AND APPARATUS

(See also under Television)
5224^{28}. Circuit for producing a controlled lowfrequency wave by "mixing" high and intermediate frequency oscillations, particularly for use in " wired "' wireless systems.

Wired Radio Inc. Convention date (U.S.A.) $14^{\text {th }}$ January, 1938.
522429 .-Detector circuit for receiving wiredwireless signals from which the carrier-wave has been removed at the transmitter.
Wired Radio Inc. Convention date (U.S.A.) 1_{4} th January, 1938.
522 477.-Electron-discharge tube in which a beam of electrons serves as a variable condenser, to compensate say for frequency-drift in a wireless transmitter.

Marconi's W.T. Co.; G. F. Brett; and N. Levin. Application date $12 t h$ November, 1938.
522799 .-Gain-control arrangement for improving the signal-to-noise ratio in a telephony transmission system including a radio-signal link.

Standard Telephones and Cables (assignees of Le Matériel Téléphonique Soc. Anon). Convention date (France) 18th February, 1938.
522 882.-Magnetron oscillator-modulator circuit with negative back-coupling for the modulation frequencies.

The General Electric Co. and N. J.. Willshaw. Application dates 17th March, 1939, and 24th January, $19 \neq 0$.

522 889.-Impedance network for coupling receivers to a line distributing relayed broadcast programmes.
P. P. Eckersley and R. E. H. Carpenter. Application date 18 th October, 1938.
522905 .-Multiple-anode discharge tube, of the magnetron type, for generating waves of the order of 10 centimetres.

Telefunken Co. Convention date (Germany) 20th December, 1937.
522976 .-Ultra-short-wave transmitter in which modulation is effected along the transmission line connecting the oscillator to the aerial.
J. L. Pawsey and E. L. C. White. Application date 22nd December, 1938.
523 oog.-Feed-line of the " dielectric guide" type for transmitting very high-frequency currents as displacement waves.

Siemens and Halske Akt. Convention date (Germany) 21 st December, 1937.
523067 .-Receiving arrangement for the calling signals on a line-wire multi-channel carrier-wave telephony system.

Philips' Lamp Co. Convention date (Germany) $27^{\text {th }}$ December, 1937.
523068 .-Means for preventing the false operation of a calling relay in a carrier-wave telephony system.

Philips' Lamp Co. Convention date (Germany) $27^{t h}$ December, 1937.
523069.-Means for reducing the spacing of the individual carrier-waves, and therefore the cost of the cable, on a multi-channel wired-wireless telephony system.

Philips' Lamp Co. Convention date (Germany) 27th December, 1937.
523263 .-System of distributing television signals, or multiple telegraphy or telephony signals, by periodic impulses.
P. M. G. Toulon. Convention date (France) $5^{\text {th }}$ January, 1938.

CONSTRUCTION OF ELECTRONIC-DISCHARGE DEVICES

521813.--Cantilever method of mounting and spring-tensioning the cathode or filament of a directly or indirectly heated valve.

Standard Telephones and Cables and T. C. Black. Application date $25^{\text {th }}$ November, 1938.
521872 .-Pentode type of valve with a further auxiliary electrode, bevond the suppressor grid, for the purpose of introducing reaction.

Kolster-Brandes and C. E. Brigham. Application date 29th November, 1938.
522238 .-Construction and arrangement of the glass base and lead-in wires of an electric discharge tube.

Philips' Lamp Co. Coniention date (Netherlands) 8th January, 1938.
522360 .-Construction and arrangement of the clectrodes in a magnetron tube for generating ultra-short waves.

Standard Telephones and Cables assignees of Le Matériel Téléphonique Soc. Anon). Convention date (France) 3rd February, 1938.
22357 - Electron-multiplier in which the surface
of the tube near the target electrodes is made conductive, in order to facilitate stabilised control of the electron stream.

Standard Telephones and Cables (assignees of Le Matériel Téléphonique Soc. Anon). Convention date (France) 29th January, 1938.
522 496.-Means for reducing thermal " noise" in a valve by confining the working stream to selected electrons within a predetermined range of velocity.

Marconi's W.T. Co. and D. A. Bell. Application date $13^{\text {th }}$ December, 1938.
522952.-Construction and close-spacing of the electrodes forming the "gun" of a cathode-ray tube.
F. H. Nicoll. Application date 20 th December, 1938.

523 307.-Arrangement and assembly of the leadin wires in a valve for handling ultra-short waves.

The M-O Valve Co. and J. Bell. Application date 3oth December, 1938.
523 329.-Magnetron valve fitted with electrodes of high magnetic permeability for concentrating the flux mainly around the cathode or anode.

Marconi's W. T. Co. (assignees of E. G. Linder). Convention date (U.S.A.) 30 th December, 1937.
523 3.52.-Mount or holder affording a lowimpedance connection to the electrodes of an ultra-short-wave valve.

Marconi's W.T. Co. (assignees of F. C. Blancha). Convention date (U.S.A.) 31st December, 1937.
SUBSIDIARY APPARATUS AND MATERIALS
521 339.-Magnetic coil arrangement, with valve relay, for detecting the passage of traffic, or of articles on a conveyor band.

Automatic Signal Corporation. Convention date (U.S.A.) $14^{\text {th }}$ August, 1937.

521713 .-Electro-magnetic relay with small capacity between the contacts, particularly suitable for ultra-short-wave wireless equipment.

Standard Telephones and Cables; R. St. G. Terry; and J. R. Beard. Application date $22 n d$ November, 1938.

521 862. - High-frequency tuning coil, with the windings arranged in binocular fashion, and with movable iron cores entering opposite ends of the windings.

Johnson Laboratories Inc. (assigmees of W. A. Schaper). Convertion dute (U.S.A.) 26th November, 1937.

52194 I .-Control circuit for a gas-filled relay valve fed from A.C. mains.
A. A. Thornton (communicated by Philco Radio and Television Corporation). Application date 26th August, 1938.
521942 .-. Means for rapidly heating the cathode of a thermionic valve, particular one used for intermittent duty.
A. A. Thornton (communicated by Philco Radio and Television Corporation). Application date 26th August, 1938.
522 574.-Radio " altimeter" for determining the elevation of an aeroplane by comparing the phase of an outgoing wave and its reflected counterpart.

Standard Telephones and Cables (assignees of A. Alford). Convention date (U.S.A.) 1 oth December, 1937.

Abstracts and References

Compiled by the Radio Research Board and reproduced by arrangement with the Department of Scientific and Industrial Research
For the information of new readers it is pointed out that the length of an abstract is generally no indication of the importance of the work concerned. An important paper in English, in a journal likely to be readily accessible, may be dealt with by a squave-bracketed addition to the title, while a paper of similar importance in German or Russian may be given a long abstract. In addition to these factors of difficulty of language and accessibility, the nature of the work has, of course, a great influence on the useful length of its abstract.

page				PAGE
Propagation of Waves		445	Directional Wireless	457
Atmospheries and	Atmospheric	447	Acoustics and Audio-Frequencies	457
Electricity		Phototelegraphy and Television ...	459
Properties of Circuits	448	Measurements and Standards	461
Transmission	449	Subsidiary Apparatus and Materials	463
Reception	4.52	Stations, Design and Operation ...	466
Aerials and Aerial Sys	stems	453	General Physical Articles ...	467
Valves and Thermionic	cs ...	455	Miscellaneous ...	468

PROPAGATION OF WAVES

3718. Propagation of Electromagnetic Waves inside a Cylindrical Metal Tube and along Other Types of Guides [Discussion based on Theory of Complex Functions: Problems arising in Practical Applications: etc.].-Hsü Chang Pen [C. P. Hsu]. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 193: Proc. Inst. Rad. Eng., June 1940, p. 283 : summaries only.)
3719. Research on Wave Guides and Electromagnetic Horns: Report IV.-Sonada. (See 3833.)
3720. Ultra - High - Frequency Propagation through Woons and Underibrush [Tests on $500 \& 250 \mathrm{Mc} / \mathrm{s}$: Considerable Attenuation, Greater in Summer (Green Foliage) : Slight Superiority of Horizontal Polarisation, at Any Rate in Winter: Reflection or Absorption ?],-B. Trevor. (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. 97-99.)
3721. Two-Way Telephonic Communication over go Miles with Ultra-Short Waves [1.3 m].-Mt. Washington Observatory. (Sci. News Letter, 27 th July 1940, Vol. 38, No. 4, p. 59.)
3722. Interference between Television (and Sound) Signals from Philco (Philadelphia) and C.B.S. (New York) Stations, separated by 90 Miles.-(E. E- Television G-Short-Wave World, May 1940, Vol. 13, No. 147, p. 207 : paragraph only.)
3723. Distance Measurements by Wireless [Description of Systems using Cathode-Ray Oscillographs as Indicators].-(Sci. Abstracts, Sec. B, 25 th July 1940, Vol. 43, No. 5II, p. 310.)
3724. Correction to Equation in "A General Radiation Formula."-Schelkunoff. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 277.) See 108 of January.
3725. Wave Reflections at Oblique Incidence Inversion Layers in Troposphere ($1-10 \mathrm{~km}$. Heights) causing Short-Wave Reflections: Application of Maxwell's Equations gives Relation in Fair Agreement with Observa-tions].-C. D. Thomas \& R. C. Colwell. (Phys. Review, r_{5} th July 1940, Ser. 2, Vol. 58, No. 2, pp. 203-204: summary only.) See also 1305 of April.
3726. On the Propagation of the Waves sent out by a Vertical Transmitter in an Atmosphere whose Dielectric Constant and Conductivity depend on the Height. -G. Grünberg. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 6, Vol. 26. 1940, pp. 573-577: in German.)
The Maxwell equations for an isotropic nonmagnetisable medium, whose ϵ and σ vary with position but not with time, are given by (I). Limiting the case to sinusoidal oscillations, and assuming the condition that
$\phi=-\left(i \omega / c a^{2}\right) \operatorname{div} \vec{A}, a^{2}=i \omega(i \omega \epsilon+4 \pi \sigma) / c^{2}$,
it follows that the Maxwell equations are fulfilled if \vec{A} satisfies the equation
$\overrightarrow{\Delta A}-a^{\overrightarrow{2} A}-(\operatorname{div} \vec{A}) \operatorname{grad}\left(\log a^{2}\right)=-(4 \pi / c) \overrightarrow{j(e)} \ldots(4)$, where $\overrightarrow{j^{(e)}}$ represents the density of the currents whose distribution in space is supposed to be given at any moment. If ϵ and σ are independent of position, this equation (4) changes into the usual equation for \vec{A}. For a variable a^{2} the solution of (4) is complicated not only by the fact that its coefficients are no longer constant but also by the appearance of the term containing the divergence of \vec{A}, which in general hinders a direct splitting of (4) into separate equations for the individual components of \vec{A}. In certain special cases, however, this last condition does not arise : as for example when ϵ and σ depend only on one single coordinate (for instance on z), while the currents $\overrightarrow{j^{(e)}}$ are parallel to the z axis.

In this case (which includes the problem set out in the title) eqn. 4 is satisfied by putting $A_{x}=A_{y}=0, A_{z}=A$, where A has to satisfy eqn. 5. Assuming vertical transmission (parallel to z) and a field which has rotational symmetry about the axis of the transmitter, the conversion of eqn. 5 into cylindrical coordinates gives eqn. 6. If the currents $j^{(e)}$ are confined within a limited space of finite thickness, eqn. 6 yields eqn. 8 ; this can be written as in eqn. 9, which is an ordinary inhomogeneous linear differential equation of the second order with variable coefficients, and so belongs to a class whose theory has been well developed.

To illustrate the general method, the writer first considers (on pp. 575-576) the two classic problems of the calculation of the field of a vertical transmitter which is above a perfectly conducting earth and surrounded by a homogeneous atmosphere, and of the same calculation when the earth is taken to have a finite conductivity (Sommerfeld problem). In both these cases a^{2} is a constant: section 4 deals with a medium where a^{2} is dependent on z, and briefly touches on the three special cases where $f\left(=1 / a^{2}\right)$ is equal to $\alpha+\beta z, \quad \alpha(z-h)^{2}$, and $\alpha+\beta e^{-m z}$ respectively. It is proposed to go more deeply into these cases in a later paper.
3727. Collecting Short-Wave Data: Long Period Observations of Propagation Conditions [including the Writer's Observations, 1937/1940].-D. W. Heightman. (Wireless World, Aug. 1940, Vol. 46, No. 10, pp. 355-356.)
3728. Developments in Meteorological Sounding by Radio Waves [Small Pulse Transmitter \& Receiver: Comparison of Preliminary Data with Radiosonde \& Aero-plane-Flight Results].-A. W. Friend. (Journ of Aevonaut. Sciences, June 1940, Vol. 7, No. 8, pp. 347-352.)
3729. The Ionosphere [Survey of Current Facts \& Theories]-K. K. Darrow. (Elec. Engineering, July 1940 , Vol. 59 , No. 7 , pp 272-283.) Lecture to the AIEE New York Section. For a fuller version see Bell S. Tech. Journ., July i940, pp. 455-488.
3730. The Variation in Intensity of Radio Signals [from Near-By Broadcasting Stations, at Mid-Day: Winter Signals Much Stronger than Summer: also Day-to-Day Variation with Changing Weather Cycle]. R. C. Colwell. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2. p. 204 summary only.)
3731. 27-Day Rotation Period found in Weather [Changing Pattern of Air Currents, due to Unequal Distribution of Sunspots].H. H. Clayton. (Sci. News Letter, 6th July 1940, Vol. 38, No. I, p. 8.)
3732. Sunspots and Magnetic Storms during the Last Week of March, ig4o [Kodaikanal Solar Physics Observatory, Data \& Deduc-tions].-M. Salaruddin \& C. K. Anantha Subrahmanyam. (Sci. \& Culture, Calcutta, June 1940, Vol. 5, No. 12, pp. 775-776.)
" From these observations, it is not possible to
conclude that either the spot group or the eruptions that it gave rise to are entirely responsible for the nagnetic storms and the radio disturbances experienced during the period under consideration.
One is forced to the belief that the active agent linking the effects on the sun with the terrestrial disturbances originates in an affected region lying beneath the spot" [cf. earlier paper, 2517 of July].
3733. Solar-Radiation Cycles and the Sunspot Period [Ten Regular Cycles, Six at least Closely Related to the Ir-Y'ear Period].T. E. Sterne \& others. (Science, 19 th July 1940, Vol. 92, Supp. p. 9.)
373. Measurements of the Ultra-Violet Radiation from the Sun in Stockholm [by Photoelectric and Photochemical Methods].-F. Lindholm \& G. Cronheim. (Arkiv för Mat., Astron. och Fysik, Stockholm, No. 2, Yol. 27 B, 1940, pp. 1-5: in German.)
3735. The Study of the Sun [American Observations This Summer to be made with Skellett Coronaviser and by Lyot Method (with Innovation of Non-Reflecting Treatment of Lens Surfaces) : etc.].-J. Stokley. (Science, 5th July 1940 , Vol. 92 , Supp. p. 8.)
3736. Influence of Lunar Periodicity on Climate according to O. Pettersson ffrom 160 Years' Winter-Temperature Data: iI.I-Year Sunspot Period (more regular than Sunspots Themselves) : 9 -Year Lunar Node-Apside Period clearly Evident: Resulting 45 -Year Period: etc.].-C. Benedicks. (Arkiv for Mat., Astron. och Fysik, Stockholm, No. 7, Vol. 27A, 19.40, pp. I-I5 and Plate: in English.)
3737. Temporal Effects in Nitrogen Afterglows, and Afterglows in NitrogenHelium Mixtures-J. Kaplan \& S. M. Rubens. (Phys. Reviere, $15^{\text {th }}$ July 1940 , Ser. 2, Vol. 58 , No. 2, p. $188:$ p. $188:$ summaries only.)
3738. New Studies on Active Nitrogen: I \& II--Rayleigh. (Proc. Roy. Soc., Ser. A, I8th July 1940, Vol. 175, No. 963, pp $\mathrm{S}_{4} \mathrm{O}-\mathrm{S}_{4} \mathrm{I}$: abstracts only.) "The amount of energy collected from the gas was surprisingly large, and is difficult to reconcile with existing theories of the nature of active nitrogen."
3739. Telescopic Meteors [Estimation of Number entering Atmosphere Each Day], and Seasonal Variation in the Height of Meteors-F. Watson: R. A. MeIntosh. (Sci. Abstracts, Sec. A, 25 th July 1940, Vol. 43, No. 511 , p. 526 : p. 527 .) For another summary of McIntosh's paper see Nature, 24 th Aug. 1940, Vol. 146, p. 271.
3740. A Neiv Type of Variation in Cosmic Radiation [Large Fluctuations of Ratio Intensity-from-North/Intensity-from-South : due to Some Atmospheric Asymmetry?].H. Alfvén. (Arkiv för Mat., Astron. och Fysik, Stockholm, No. I, Vol. 27B, 1940, pp. 1-6: in English.)
3741. Further Investigations of Air-Mass Effect on Cosmic-Ray Intensity.-D. H. Loughridge \& P. F. Gast. (Phys. Review, 15 th July 1940, Ser. 2, Vol. $5^{8,}$, No. 2, pp. 194-195: summary only.) See also 2874 of August, and cf. 3314 \& 3315 of September.
3742. Radio-Frequency Measurements of Ground Conductivity in Canada from Field-Strength Surveys for Broadcasting Purposes, using Eckersley's Approximation to Sommerfeld's Formula: Comparison of Conductivity Map and Geological Map: Correlation employed in Estimation of Field-Strength Contours].-K. A. MacKinnon. (Canadian Journ. of Res., July 1940, Vol. 18, No. 7 , Sec. A, pp. 123-13r.) See also 3471 of 1939 and 2906 of August.
3743. The Diffracion of a Plane [Elastic] Wave by a Circle: also On the Distribution of Waves in Space of Three Dimensions: and The Resolution of the Exterior Problem of Cauchy-Dirichlet for a Wave Equation in the Case of a Sphere.-J. A. Mindline. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 6, Vol. 26, 1940, pp. 556-560: pp. 561-565 pp. 566-569: all in French.)
3744. The Derivation of Formulae for determining the Travelling Wave when Telemechanical Signals are transmitted over a Line.-V. I. Kovalenkov: (Automatics E Telemechanics [in Russian], No. 6, 1939, pp. 3-16.)
It is pointed out that the general solutions (2) and (3) of the telegraph equations (1) of a transmission line are of a little value for practical purposes, and that particular solutions have so far been found only for the cases when the distant end of the line is either open or short-circuited. In the present paper a mathematical analysis is given of the propagation of a wave along an infinite line, and equations determining the voltage and current in the line are derived (top of p .10). It is shown that by using this method solutions can be found for any finite line, and in particular for a line loaded with an electro-magnetic receiver. The actual transition from an infinite to a finite line will be discussed in a separate paper.
3745. On the propagation of H.F. Electromagnetic Energy along Symmetrical Multi-Conductor Lines.-V. A. Dyakov. (Automatics E Telemechanics [in Russian], No. 6, 1939, pp. 17-28.)
In connection with the transmission of signals over high-voltage lines, the relationships between the voltage and current at the sending and receiving ends of the lines are established (eqn. xxiif) for the case of a three-phase line with the source of energy connected between one phase and earth (Fig. I).

[^4]
ATMOSPHERICS AND ATMOSPHERIC ELECTRICITY

3747. Atmospherics of Distant Origin [Dacca Measurements on $150-800 \mathrm{~m}$, June 1939].S. R. Khastgir \& A. K. Ray. (Sci. Eo Culture, Calcutta, June 1940, Vol. 5, No. 12 , pp. 772-773.)
For "distant" (i.e. not local and not extràterrestrial) atmospherics received in the daytime, the field strength varied nearly inversely as the square of the frequency: this relation did not hold for night observations, no doubt owing to reflection from the ionosphere. The day results indicate that the attenuation varied only slightly with frequency, over the range of wavelengths employed. The inverse-square relation has already been reported for the rainy season (1329 of April, Chakravarti \& Ghosh). The value of the field strengths of the atmospherics rose in the afternoon, with a maximum about sumset and a sharp decrease to a minimum soon after sunrise, followed by a gradual rise to a maximum an hour or two after sunrise : Potter's similar results and his interpretation of them (1932 Abstracts, p. 31) are considered.
3748. The Sparking Threshold in Air Measurements to test Streamer Theory of Breakdown (Loeb \& Meek): Marked Effect of Previous Sparks on Threshold: etc.]W. R. Haseltine. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 188 : summary only.) See, for example, 3339 of September, and below.
3749. Theoretical Calculations or Breakdown Potential for Sphere Gaps [Streamer Theory], and The Variation of Sparking Potential with Dense Initial Photoeiectric Currents.-J. M. Meek. (Phys. Revier., 15 th July I940, Ser. 2, Vol. 58, No. 2, p. 195 : p. 196 : summaries only.) See also 3339 of September.
3750. The Mechanism of Electrical Discharges in Gases of Low Pressure [Survey, with 339 Literature References].-Druyvesteyn \& Penning. (Revieres of Mod. Physics, April 1940, Vol. 12, No. 2, pp. 87-174.)
3751. The Magnetic Surge Integrator, the Fulchronograph, and the Magnetic Surge-Front Recorder.-C. F. Wagner \& G. D. McCann. (Science, 5th July 1940, Vol. 92, Supp. pp. 8 and 10.)
3752. Radio Direction-Finding for Meteorological Balloons at 1.67 Metres.L. C. Yuan \& S. S. Mackeown. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 286: summary only.) See also 3041 of August.
3753. "Physics of the Earth: Vol. 7-Internal Constitution: Vol. 8-Terrestrial Magnetism and Electricity" [Book Reviews].-Gutenberg (Edited by). (Nature, ioth Aug. 1940, Vol. 146, pp. 181182: 13th Jan. 1940, p. 47.)

PROPERTIES OF CIRCUITS

3754. Lines with Non-Uniformly Distributed Parameters [and Their Advantages as Impedance Transformers, etc.].-Volpert. (See 3835.)
3755. Concentric-Line Resonator Filter Circuits for Ultra-High Frequencies.R.C.A. (E. \& Television \& Short-W/ave World, May 1940, Vol. 13, No. I47, pp. 209 and 21 i.) Abstract of a recent patent.
3756. Multi-Stage Standing-Wave Circuits [and Their Merits, Electrical or Acoustical].K. Okabe. (Electrotech. Journ., Tokyo, June 1940, Vol. 4, No. 6, p. 142.)
In the simple case now considered, the circuit consists of four stages in series, all of a quarterwavelength but of two different surge impedances Z_{2} and Z_{2}. Starting at the left (input) end we have circuit I with Z_{1}, then circuit 2 with Z_{2}, then circuit I^{\prime} with Z_{1} again, followed by circuit 2^{\prime} (at output end) with Z_{2}. This arrangement and its modifications have certain advantages: thus " equations 2 to 4 suggest the possibility of obtaining a powerful frequency stabiliser."
3757. High-Gain Amplifier for ifo Megacycles [Frequency reduced by about $10 \mathrm{Mc} / \mathrm{s}$ at End of Iirst 5 Stages (out of Io)].-Rodwin \& Klenk. (See 380r.)
3758. Voltage Dividers for Extended Frequency Ranges [in Television, etc.].F. A. Everest. (Commmications, May 1940, Vol. 20, No. 5, pp. 8-9 and 22, 23.)
3759. A New Method of Logarithmic Rectification [Rectification Characteristic of Multi-Grid Valve changed from Almost Perfect Linear Shape to Almost Perfect Logarithmic by Slight Change of Grid-Bias Voltage: Uniformity at the Higher Frequencies better than with Copper-Oxide Rectifier: Simpler than Rectifier with Rectified Feedback]:-T. Hayasi \& S. Akasi. (Electrotech. Journ., Tokyo, June r940, Vol. 4, No. 6, p. I4I.)
3760. Further Applications of Space-Charge Coupling [particularly to CondenserMicrophone Amplification (with Very Good Signal/Noise Ratio \& Other Advantages), Ultra-Micrometer Circuits, etc.].-J. A. Sargrove. (E. \& Television \& Short-Wave World, April 1940 Vol. I3, No. 146, pp. 192 \& iii : summary only.)
Continuation of the work dealt with in 97 I of March. A change of io $\mu \mu \mathrm{F}$ in capacity can produce a current change of as much as 5 ma .
376i. Some Notes on Linear and Grid-Modulated'Radio-Frequency Amplifiers [Performance made Almost Perfect by Balanced Feedback].-Terman \& Buss. (See 3794.)
3761. On Choosing the Oitimum Operating Conditions for the Final Stage of an L.F. Amplifier, taking into Account the Non-Linearity of Valve Characteristics. -C. N. Krize. (Elektrosuyaz, No. 2, 1940, pp. 71-75: Russian only.)
It is pointed out that in amplifiers with negative
feedback, where the distortion introduced is not so important, it is desirable to obtain the highest possible power output. Accordingly a method is proposed for determining the load necessary for obtaining $P_{1 \text { max }}$ from a triode or a pentode for a given anode voltage E_{a}. Equation (1) of the anode-current/anode-voltage characteristic corresponding to zero grid voltage is written down, and values of the coefficients a and p of the equation for various types of valve are shown in table 1 on p. 74. Equation (3) is derived determining the power output P_{1} as a function of ξ (ratio of peak anode-voltage swing to steady anode voltage) and the optimum value of ξ is found $(=1 /(p+1)$: eqn. 5). Formula (5) enables the optimum load to be determined for any shape of the valve characteristic, and a graphical method is suggested for the case of a pentode (Fig. 6). Curves are plotted to simplify the necessary calculations, and formula (6) is derived for determining $P_{1 \text { max }}$. For the case when, instead of E_{a}, the maximum anode dissipation $P_{a \max }$ is specified, the corresponding formulae are derived on p .75 .
3762. Feedback [General Survey: Effects of Negative Feedback in reducing Distortions: in modifying Input \& Output Impedances (Parallel Feedback, Current Feedback): Prevention of These Modifications, and of Phase Shifts, by Bridge Circuits: Stability Conditions (with Simple "Pi-Attenuation" Rule) : Practical Circuits (Cathode Follower, etc.) : Phasc-Shift Measurement: etc.].E. K. Sandeman. (Wireless Engineer, Aug. 1940, Vol. 17, No. 203, pp. 342-353.)
3763. Negative-Feedback Amplifiers: Problems of Stabilisation.-(Wireless World, Sept. 1940, Vol. $4^{6, \text { No. II, P. } 389 .) ~}$
3764. Negative Feedback Applications: I [General] \& II [Selective L.F. Amplifiers (using Bridge Circuits) and Oscillators]. C. Lockhart. (E. \& Television \& ShortWave World, April \& May 1940, Vol. 13, Nos. 146 \& 147, pp. 161-163 \& 221-223.)
3765. Negative Feedback applied to OscilLators [for Frequency Stabilisation by " Discriminator" (A.T.C.) Circuit : Application as Source of Frequency-Modulated Signals].-S. Sabaroff. (Electvonics, May 1940, Vol. 13, No. 5, pp. 32-33.) For previous work see $1859 \& 2881$ of 1939.
3766. Versatile Oscillator-the Numans [and Transitron] Circuit.-Cocking. (See 3792.)
3767. Hum-Neutralising Circuit for Use with the Augetron.-Vacuum Science Products. (See 3855.)
3768. On Possible New Properties of Chain Filter Circuits.-V. N. Listov: (Automatics \& Telenechanics [in Russian], No. 6, 1939. pp. 61-66.)
"T" and "pi" filters are derived (Figs. $5 \& 7$) equivalent to the lattice type (Fig. I), i.e the attenuation of these filters is made independent of the characteristic impedance.
3769. "Rundfunksiebschaltungen" [Broadcast Filter Circuits: Book Review].-R. Feldtkeller. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 289.)
3770. The "Transducer " and Its Applications [Combination of Two Single-Phase IronCored Transformers to form a D.C. Operated A.C. Relay, Amplifier, Control Device, etc : Study of Its Behaviour].-U. Lamm. (Rev. Gén. de l'Elec., 25th May/ist June 1940, Vol. 47. No. 21/22, pp. 373-389.) Translated from the paper in English in $A S E A$ Journal, May/June 1939. In a self-exciting connection the arrangenent will give an amplification of the order of 400000 .
3771. Mechanism of Operation of Multivibrator [Experimental Study and Theoretical Conclusions].-M. Hukata \& M. Orihara. (Electrotech. Journ., Tokyo, June 1940, Vol. 4, No. 6, pp. 142-143.)
" The main point of discussion lies in the fact that the principal cause of this mechanism of operation is in the discharging circuit. From this the phenomena in the case of unsymmetrical construction of circuit constants may be readily assumed, which was very difficult to be solved by any analytical methods of solution for the operation of a multivibrator."
3772. Varistors: Their Characteristics and Uses [particularly in Telephone System: Rectifiers, Thyrite Varistors, \& Thermistors]. -J. A. Becker. (Bell Lab. Recovd. July 1940. Vol. 18, No. I 1, pp. 322-327.) Cf. 3359 of September, and below.
3774
A Thermistor Voltage-Regulator.-C. B. Green \& G. L. Pearson. (Phys. Review, ${ }^{15}$ th July 1940, Ser. 2, Vol. 58, No. 2, p. 204 : summary only.) See also 3359 of September, and above.
3773. Voltage Control with a Non-Linear Wheatstone Bridge [with Two Incandescent Lamps].-W. Richter. (Electronics, June 1940, Vol. 13, No. 6, pp. 20-21 and 108.)

TRANSMISSION

3776. On the Theory of Transit-Time Oscillations [Retarding-Field \& Magnetron Oscillations treated on the Retroaction Principle]. -F. Lüdi. (Helvetica Phys. Acta, Fasc. 2, Vol. 13, 1940, pp. 77-121.)
For previous work, on Posthumus oscillations in the magnetron, see 3265 of 1937 . From the author's summary:-" The transit-time oscillations are regarded as a coupled system of oscillating space charge and electrical oscillatory circuit. The differential equations obtained for this system show a formal analogy with those of the two-circuit transmitter. The solution of the equations for free undamped oscillation gives the coupling-wave and intensity curves of Fig. 3, which agree qualitatively well with experiment.
" With the introduction of back-coupling, the differential equations are extended to those for the self-controlled system, taking the damping into account [$\$ 5$ shows how the electric moment $x q$
of the space charge is diminished by the coupling damping: it must therefore be maintained in a stable condition by a process of self-regulation§6]. The formal introduction of back-coupling is based on the 'sorting-out' mechanism and the equations of motion for the individual electron. . . . The steady-state solutions for the self-controlled system give, for low damping, the same couplingwave and intensity characteristics (in particular, the same resonance voltage) as the solutions for the free undamped oscillation. In addition, a typical oscillation-onset condition (formula 79) is obtained for the back-coupled system: this contains also the break-off phenomena. Owing to the limitation [of the whole treatment] to linear systems, this phenomenon is only qualitatively represented; the observed displacement of break-off towards the shorter waves is not shown.
"A more exact investigation of the coupling waves in the case of resonance, taking damping into account, shows that different coupling waves can only appear when the coupling is above a critical value.
"In the stationary régime the phase angle between voltage and oscillating space charge is regulated by the coupling factor, the damping, and the phase of the back coupling relative to the a.c. voltage ('sorting-out': eqns. $36,38, \& 74$) in such a way that phase agreement exists between the existing and the newly arriving space charge.
" The voltage values are, in a first approximation, independent of the damping and agree with those for the free, undamped oscillation. The equations show a relation between the percentage departure of the coupling frequency from the resonance frequency, on the one hand, and the resonance voltage on the other. The voltage value thus calculated agrees with the measured value in order of magnitude (around 20 V). Further, the space-charge density can be determined from the measured coupling factor; an upper limit of 6×10^{7} electrons per cm^{3} is found. Thus the assumption of free electron paths is largely justified.
"For couplings smaller than the critical there appears, in agreement with certain published experimental results [Groos: Lerbs \& Lämmchen : 1820 of 193^{8}, I408 of 1939], only a single frequency and a single voltage (different from the above): it has a phase displacement of -90° with respect to the oscillating space charge.

- The occurrence of the coupling waves is linked to the condition that the coupling frequency is different from the natural frequency of the electrons. In the retarding-field valve and in the magnetron of Type I (un-split anode) this is actually the case, since the solution of the equations of motion gives a superposition of two oscillations (natural frequency plus coupling frequency). In the magnetron oscillations of Type in (split anode) the solution shows a far-reaching synchronisation of the natural frequency with the coupling frequency, and thereby with the frequency of the tuned circuit. With these oscillations, therefore, the coupling effects do not make their appearance, and the tuning is not so sharp as with the above-described oscillations. The synchronisation is also responsible for the relatively high efficiency of the Type in oscillations, since here the electrons always find themselves in the phase for delivering energy, whereas in Type I
oscillations their motional phase is continually changing with respect to the voltage. It must be arranged, by the second 'sorting-out' mechanism, that they are removed before the first phase-reversal : this is possible even for quite large amplitudes.
"The various types of modulation for transmitters], and the possibility of damping reduction [in receivers], are contained implicitly in the damping of the internal system (oscillating space charge), since this can be widely varied by influencing the sorting-out process." The writer's experimental results with various types of magnetron (including Helbig's design with the cathode outside the end of the anode-131 \& 2768 of 1938) are discussed in the final section in relation to various points occurring in the theoretical part.

3777. The Ultra-Short-Waye Generator with
Phase-Focusing (Klystron).-F. F Lüdi.
(Helvetica Phys. Acta, Fasc. 2, Vol. i3, 1940, pp. 122-143.)
" Recently a method of h.f. amplification and generation of electromagnetic waves down to about io cm , based on the principle of the phasefocusing of a velocity-modulated cathode ray, has become important because of the large outputs thus attained. Theoretical treatments of particular points have been given from various sources. In particular, on the one hand the current modulation has been calculated from the velocity modulation [Varian, 2773 of 1939], and on the other, the phase focal point has been determined in its clependence on alternating potential, accelerating potential, and frequency [Bruche \& Recknagel, 2325 of 1938].

The object of the present investigation is to find a general analytical expression for the modulated current which will embrace both these statements. On the basis of this expression the a.c. potential induced at the inductor [i.e. the collector system at the end of the drift tube] by the electron 'bunches' is calculated, and from this the amplification factor. For a back-coupled arrangement an expression is obtained for the condition for the setting-in of oscillations (amplitude and phase conditions). Further, the limiting of the a.c. potential amplitude and the maximum efficiency of the generator are investigated " [for the latter see p. 141: the value of 58% obtained " agrees with those found independently by Geiger (2950 of August) and Webster" (3950 of I939 and 968 of March)].

An additional section deals with the difference between the writer's treatment and that of Webster here referred to ; the results also differ in certain points. The writer's treatment brings out the transit-time character in the inductor, leading to eqn. 25 (ratio of inductor thickness to electron passage-time, for optimum working point: inductor thickness d should be an odd multiple of a half " bunch " length: "This condition is equivalent to the requirement that the passage time T^{\prime} ($=d^{\prime} v_{0}$) should be an odd multiple of half an oscillation period $T / 2 . ")$ Thus there are two characteristic passage times, the drift time between modulator and inductor and the transit time of the resulting space charge through the inductor, with its definite relation to the oscillatory-circuit
period. This second relation is analogous to that in retarding-field valves and magnetrons. Most writers, on the other hand, treat the inductor as very thin (transit time infinitely small) and only attach importance to the drift time.
3778. Causes of Frequency Variations in Klystron Oscillators [Variation with Voltage: Variation with Current, due to Change of Resonator Frequency " arising from Dielectric Constant of Electrons inside " : Theory: Practical Cases7.-Ginzton \& others. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 282: summary only.)
3779. Simple Calculations of Klystron Effi-ciency.-E. U. Condon. (Phys. Review, 15 th July 1940 , Ser. 2, Vol. 58, No. 2, p. 204: short summary only.)
3780. Some Typical Phenomena relating to Ultra-Short-Wave [Transmitting] P'entode Amplifier Circuits [Experimental Results with the New Type PB $3 / 800$, confirming Theoretical Considerations].-K. Posthumus \& C. A. Gehrels. (Philips Transmitting News, Dec. 1939, Vol. 6, No. 3/4, pp. 49-55.)
Continuation of the work on pentodes at u.h.frequencies dealt with in 332 I of 1937 . The point particularly considered is the difficulty, at these frequencies, of obtaining the absence of h.f. voltage on both screen grids, owing to the impossibility of connecting these grids to earth through small impedances: the practice is to include impedances which are adjusted so that no resultant retroaction occurs, but various complications are likely to follow (coupling effects outside the valve, the existence of two degrees of freedom, etc.). It is the behaviour of these impedances in a pushpull circuit, and the obtaining of the necessary stability in a single-valve circuit (where it is no longer possible to connect two points at opposing h.f. potentials via suitable impedances), that are investigated in the present paper. A sufficiently stable single-valve circuit for wavelengths down to 6 m is obtained.
3781. Ultra-High-Frequency Power [Oscillator delivering $\mathrm{I} k W$ at $600 \mathrm{Mc} / \mathrm{s}]$. Sloan \& Marshall. (See 385 I .)
3782. Multi-Stage Standing-Wave Circuits [with Application to Frequency Stablisation and Acoustics].-Okabe. (See 3756.)
3783. C.A.A. Use of Coakial Wires for Ultra-High-Frequency Tuned Circuits-Civil Aeronautics Authority. (E. E Television © Short-Wave World, April 1940, Vol. 13, No. 146, p. 175.)
3784. Reactance-Tube Frequency Modulators. Crosby (R.C.A. Review, July I940, Vol. 5, No. I, pp. 89-96.) Aready dealt with in 2957 of August.
3785. Amplitude, Frequency, and Phase-Angle Modulation.-G.W.O.H. (Wireless Engineer, Aug. 1940, Vol. 17, No. 203, pp. 339-341.)
Frequency modulation and phase-angle modu-
lation (if "angular throw" ϕ is small) can be analysed approximately into same carrier and sidebands (except for phase of latter) as amplitude modulation: graphical treatment of p.a. modulation for larger throws: rough approximation for $\phi=\pi / 2$, giving five components : relative amplitudes of carrier and sidebands, for $\phi=0.4 \ldots 4$ (carrier vanishes at about 2.5): application to frequency modulation : in p.a. modulation, sideband amplitudes depend only on ϕ, in frequency modulation also on modulation frequency: Carson's 1922 condemnation of frequency modulation literature references. See also 3786, below.
3786. Amplitude, Frequency, and Phase Modulation Criticism of Editorial: the Practicability of Duplex Frequency- and Amplitude-Modulation on Same Frequency : Armstrong Wide-Band System is a Combination of Frequency- and Phase-Modulation, requiring a Special Name].D. Pollack: G. W. O. H. (Wireless Engineer, Aug. 1940, Vol. 17, No. 203, p. 353.) See 2551 of July. There appears to be a misprint in G. W.O. H.'s reply.
3787. Frequency Modulation versus Phase Modulation [Advantages of Phase over Frequency Modulation: Optimum Modulation Index is $K / 6$: New Method of Demodulating: etc.].-C. J. Breitwieser. (Proc. Inst. Rad. Eng., June i940, Vol. 28, No. 6, p. 282: summary only) From the de Forest laboratories. Cf. 3788 , below.
3788. Frequency-Modulated-Wave Broadcast Transmitters [and the Relative Merits of Phase Modulation and Direct Frequency Modulation: Problems of Circuit Design : Circuit and Performance of I kW Transmitter : ctc.].-W. R. David. (Proc. Inst. rad. Eng., June 1940, Vol. 28, No. 6, p. 282 : summary only.) From the General Electric Company. Cf. 3787 , above.
3789. Performance Characteristics of FreQuency Modulation in Ulma-HighFrequency Sound Broadcasting.-K. F. Guy. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 282-283: summary only.) The NBC transmitter at W2XWG and the investigations carried out with it.
3790. The Principles of Frequency Modulation and Their Applications to Transmitters and Receivers.-W. A. Roberts. (E. E Television \& Short-Wave World, May 1940, Vol. 13, No. 147, pp. 203-206.)
3791. Beat-Frequency Crystal Oscillator: a Long-Wave Oscillator using ShortWave Oscillating Crystal Plates.I. Koga \& W. Yamamoto. (Electrotech. Journ., Tokyo, June 1940, Vol. 4, No. 6, pp. 134-137.)
Arising out of the work dealt with in 3383 of September. "On account of being unable to get comparatively low frequencies by means of existing crystal oscillators, there have been all kinds of inconveniences. But when a beat-frequency oscillator such as shown in Fig. 1 is used, although
all the defects may not be eliminated, frequencies ranging from the audio frequency below $\mathrm{Ikc} / \mathrm{s}$ up to the high frequency above I Mc/s can be generated quite easily with short-wave crystal plates and a single tube, rendering all sorts of conveniences in practice." The temperature-variation of frequency of the crystals appears, very much magnified, in the beat-frequency output, but " fortunately for the low frequency in general, it is not necessary to limit so strictly the variation of frequency." Cf. Bliss \& Bailey, 3378 of September.
3792. Versatile Oscillator-the Numans Circuir [Negative-Mutual-Conductance Tetrode Circuit, revived, with Pentode, under the Name of "Transitron"'] RF, AF, AND Saw-Tooth Generator.-W. T. Cocking. (Wireless World, Sept. 1940, Vol. 46, No. II, pp. 390-393.) For papers on the "Transitron" see 2296 of 1939 and back reference. The present writer pays particular attention to the use as a saw-tooth generator.
3793. Generation of Square-Wave Voltages at High Frequencies.-W. H. Fenn. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 282: summary only.)

Another summary was dealt with in 563 of February. Still squarer waves are produced by a third system, which is a combination of the two there mentioned
3794. Some Notes on Linear and Grid-Modulated Radio-Frequency Amplifiers Performance made Almost Perfect by Balanced Feedback ("Remodulation" Sristem of Feedback, applicable to Individual Stages) : and an Arrangement allowing Grid-Modulated Amplifier to be operated in Positive-Grid Region].-F. E. Terman \& R. R. Buss. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 285 : summary only.)
3795. A New Coil-Coupling System [in Transmitting Circuits: Direct Mutual Inductance aided or opposed by Movable Low-Inductance "Link" Circuit].-R.C.A. (E. © Television E. Short-Wave World, July 1940, Vol. 13, No. 149, p. 302.)
3796. A 500-Kilowatt High-Efficiency Broadcast Transmitter in Mexico: Doherty Circuit: New 250-Watt Valves].-J. 0 . Weldon. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6. pp. 285-286: summary only.)
3797. The Doherty System for the Amplification of Modulated Oscillations.G. M. Drabkin. (Elektrosvyaz, No. 2, 1940, pp. 22-39: Russian only.) A general discussion of the operation of the system, including design considerations and practical operating conditions.
3798. Long-Wave C.W. Transmitter Type KSVC 20/I I [only 4 Stages, thanks to Modern Pentodes in H.F. Amplifying Stages : for High-Speed Working].-(Philips Transmitting News, Dec. 1939, Vol. 6, No. 3/4, pp. 56-58.)
3799. Radio-Frequency Spark-Over in Air [Measurements at $700 \mathrm{kc} / \mathrm{s}$ and $1.8 \mathrm{Mc} / \mathrm{s}$, using Various Electrodes: Tests on Air Condensers show Optimum Plate Thickness to be from One Half to One Third of Air Gap]. -P. A. Ekstrand. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 262-266.) A summary was dealt with in 556 of February.

RECEPTION

3800 . Panoramic Reception for Navigation, etc.].-Wallace. (See 3888.)
38or. High-Gain Amplifier for ifo Megacycles [Over-All Gain of $\mathrm{II}_{4} \mathrm{db}$ and Transmitted Band of over $2 \mathrm{Mc} / \mathrm{s}$ (for Television, Frequency Modulation, etc.) : Output of 2.5 W with Signal/Distortion Ratio of 60 db : Frequency reduced by about ro Mc/s at End of First 5 Stages (out of 1o) : FilterType Inter-Stage Couplings].-G. Rodwin \& L. M. Klenk. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 257-26I.)
Used (e.g.) by Schafer $\&$ Goodall in their measurements of atmospheric noise (2688 of 1939). The first 5 stages have acorn valves, the last 5 a mediumpowered experimental type (Western Electric 240 HH , a push-pull pentode with an operating plate dissipation of 30 watts).
3802. Ultra-High-Frequency Oscillator Fre-guency-Stability Considerations [Drift in U.H.F. Receivers: Examination of Causes, particularly the Change of Inductance with Change of Temperature: Design of Formers, \& Use of Copper-Plated Invar or Nilvar Wire: Humidity: Compensation for Variations in Operating Parameters: Oscillator Circuit based on These Considerations : etc.].-S. W. Seeley \& E. I. Anderson (R.C.A. Review, July 1940, Vol. 5, No. I, pp. 77-88.)
3803. Narrow-Band versus Wide-Band in Frequency Modulation Reception.-Lery. (See 4078 .)
3804. Frequency-Modulation Receiver Design Principles of Design, illustrated by General Electric Models HM-8o \& HM-I36].R. F. Shea. (Communications, June i940, Vol. 20, No. 6, pp. 17-23.)
3805. Designing a Wide-Range Ultra-HighFrequency Receiver: Circuit Features of a frequency-Modulation/AmplitudeModulation Receiving System.-F. W. Schor. (QST, Aug. 1940, Vol. 24, No. 8, pp. 34-37 and 85, 86.)
3806. The Principles of Frequency Modulation and Their Application to Transmitters and Receivers.-W. A. Roberts. (E. \& Television \& Short-Wave World, May 1940, Vol. 13, No. 147, pp. 203-206.)
3807. "An Introduction to Freguency Modulation" " [for Service Men: Book Review].J. F. Rider. (Communications, July 1940, Vol. 20, No. 7, p. II.)
3808. Artificial-Lightning Plant [producing Visible \& Noisy Corona] USED to test Inter-ference-Proof Performance of Frequency Modulation.-General Electric. (Electronics, May 1940, Vol. 13, No. 5 . pp. $4^{6.50 .)}$
3809. Frequency Modulation and Interference [Editorial Comment]. -(Wireless World, Sept. 1940, Vol. 46, No. 11, p. 38i.)
"We must face the fact that if high-fidelity broadcasting is to be open to the majority of the population after the war, it will only be obtained by the use of frequency modulation. . . . We consider that those who demand high-quality reproduction form the backbone of the listening public." See also p. 4^{10}

38io. Effect of Radio-Interference Suppressors on Englne Performance [Adverse Effect on Some Overhead-Valve Engines at Low Speeds, due to Insufficient Turbulence : etc.]--(Automobile Engineer, June 1940, Vol. 30, No. 398, pp. 167-173.) The suppressors were $10000-15000$ ohm resistances, in each h.t. lead. Cf. 980 of March and 2982 of August
38if. Field-Strength Measuring Equipment at 500 Megacycles [used in Ignition-Interference Investigations].-George. (See 3973.)
3812. Analysis of the Interference Protection of Series Motors by means of Condensers [including Calculation of " Protection Factor" and Comparison with Measured Values: Protection may cause Worse Interference: etc.].-E. T. Glas. (Sci. Abstracts, Sec. B, 25 th July 1940, Vol. 43, No. 511, p. 327.)
3813. Radio Interference [Its Propagation: Suppression at Receiver: at Source (Commutator Motors, Switching Devices, Osira Lamps, Neon Signs-Lovell Foot's Choke): Iron-Cored Chokes (with References to B.E.I.R.A. Reports) : etc.].-N. R. Bligh \& R. F. Proctor. (G.E.C. Journ., Feb. I940, Vol. it, No. I, pp. 55-65.)
38i4. Anti-Interterence Data: E.R.A. Reports [List].-Electrical Research Association. (Wiveless World, Aug. 1940, Vol. 46 , No. 10, p. 359.)
3815. "Keyed" Diathermy - Interference identified at Distances of Thousands of Miles.-(E. E Television of Short-Wave World, April 1940, Vol. 13, No. 146, p. 165 : paragraph only.)
3816. Reducing [Man-Made] Interference Methods applicable to the Receiver [" a Discussion, backed up by the Results of Practical Tests," of the Various Circuits operating by " Punching a Hole of Silence" in the Received Signal].-R. I. Kinross. (Wireless World, Sept. 1940, Vol. 46, No. in, pp. 3^{82-385} : to be contd.) See, for example, Lamb, 2162 of 1936.
3817. Cross Modulation: Its Effects in Different Stages of a Receiver: the Cure.-"Codon." (Wireless World, Aug. 1940, Vol. 46, No. 10, pp. 352-354.)
3818. Neutralising Screened-Grid Valves [to overcome Tendency to Instability in Specially Good Circuits, without Nullifying this Goodness: Difficulties with Ordinary Neutralising Condensers: Variable Condenser formed by Earthed Screen, with Adjustable Aperture between Grid Electrode \& Anode Electrode or Anode Itself].V. O. Stokes. (Wireless Engineer, Aug. 1940, Vol. 17, No. 203, pp. $354^{-355 .)}$
3819. Bass Compensation by Screen-Grid InJection "" Syncrotronic" System, avoiding Boomy Speech Reproduction but giving " Richness " of Bass, using Multi-Grid Valve in First A.F. Stage: 25 db Gain at $75 \mathrm{c} / \mathrm{s}$, dying away to Zero at $150 \mathrm{c} / \mathrm{s}$].-L. M. Barcus. (Electronics, June 1940, Vol. I3, No. 6, pp. 44..48.) Working well even at very low volume levels.
3820. Non-Stationary Processes in Receivers with Automatic Tuning.-V. I. Siforov \& G. V. Gitshov, (Elektrosvyaz, No. 2, 1940, pp. 7-2I: Russian only.)
The operation of a discriminator of the type proposed by Foster \& Seeley (Fig. I : 2543 of 1937) is discussed, and this discussion is followed by a mathematical analysis of transient phenomena in a receiver before stabilised conditions are reached, when (a) no a.v.c. is used and a two or threesection filter is connected between the discriminator and the control valve (Fig. 5) ; (b) a separate diode is used for a.v.c. (Fig. 7) ; and (c) the same diode is used for automatic tuning and a.v.c. (Fig. 8). The conclusions reached are as follows:-(i) Filters connected between the discriminator and the control valve should not have more than two sections; (2) a separate diode should be used for a.v.c.; and (3) in a broadcasting receiver a one-section filter should be used in the a.v.c. circuit, and a two-section filter, with time constants differing by from 5 to 10 times, in the discriminator circuit. A short report on experiments confirming the theoretical conclusions is included
382 I. A Simplified Multiple Scale for Measuring Instruments and Radio Receivers, etc.]: the Rotoroid Rotating Scale.(Electronics, June 1940, Vol. 13, No. 6, p. 99.)
3822. Short-Wave Auto Radio [particularly the Philco Three-Band Car Receiver Model AR9, up to $12.1 \mathrm{Mc} / \mathrm{s}]$. -R . G. Herzog. (Cominunications, July 1940, Vol. 20, No. 7, p. 9.) Karadio offers a choice going up to $44 \mathrm{Mc} / \mathrm{s}$.
3823. Marconiphone Model 895: A New Bat ${ }^{1}$ tery Portable with Push-Button Tuning [and Special Helical Medium-Wave Frame Aerial (Pick-Up Efficiency claimed to be Twice the Normal)].-(Wireless World, Aug. 1940, Vol. 46, No. 10, p. 373.)
3824. Marconiphone Model 9iI: A New AC Receiver of Unconventional Design.(Wiveless World, Sept. 1940, Vol. 46, No. II, p. 4 II.)
3825. The "Navigator Globe Radio" [Broadcast Receiver in Mounted Globe].-Mitchell Mfg. Co. (Communications, July 1940, Vol. 20, No. 7, p. I4.)
3826. Test Reports: Murphy Ag2 "Stationmaster" [with Band Spreading on ShortWave Range], and G.E.C. Portable $\mathrm{BC}_{4} \mathrm{H}^{2}$ [All-Dry," with Rubber-Sprung Chassis].-(Wireless World, Aug. I940, Vol. 46, No. Io, pp. 367-368.) For a correction to the latter report see ibid., September, p. 394
3827. Test Reports: H.M.V. Model 1406 [HighGrade Battery Portable with Push-Button Tuning], and Cossor Model 55 [All-Dry Transportable 4-Valve Superheterodyne]. (Wireless World, Sept. 1940, Vol. 46, No. Ir, pp. $40 \mathrm{I}-402$: pp. $406-407$)
3828. Additions to the Cossor Range: Table Model 34, [Battery-Operated Three-Waveband] and Models $47 \& 77$ [Mains-Driven]. -(IVireless World, Sept. 1940, Vol. 46, No. $1 \mathrm{I}, \mathrm{p} .407$.)
3829. "Mallory'-Yaxley Radio Service Encyclopedia, 3RD Edition" [with Data on 22000 Receivers: Book Review].-(Communications, June 1940, Vol. 20, No. 6, p. 25.)
3830. Checking and Overhauling Communication Receivers.-(E. \& Television \& ShortWave World, May 1940, Vol. 13, No. I47, pp. 197-199.)
3831. Principles of Fault-Tracing: Part ili. -W. H. Cazaly. (Wiveless World, Aug. 1940, Vol. 46 , No. Io, pp. $370-373$.) For previous parts see 3398 of September.
3832. On learning Morse: a Psychological Process in Two Distinct Stages. R. Raven-Hart. (Wireless World, Aug. 1940, Vol. 46, No. Io, pp. 374-375.)

AERIALS AND AERIAL SYSTEMS

3833. Research on Wave Guides and Electromagnetic Horns: Report IV-Electromagnetic Waves radiated from the Open End of Wave Guides of Concentric Circular Section [Directional Characteristics of Radiated Waves due to $H_{0,1}$ and $E_{0.1}$ Waves].-S. Sonada. (Electrotech. Joum. Tokyo, June 1940 , Vol. 4, No. 6, pp. 126-129.) For previous parts see Morimoto, 3400 of September.
3834. Propagation of Electromagnetic Waves inside a Cylindrical Metal Tube and along Other Types of Guides.--H. C. Pen [Hsu]. (See 3718.)
3835. Lines with Non-Uniformly Distributed Parameters.-A. R. Volpert. (Elefitrosvvaz, No. 2, 1940, pp. 40-65: Russian only.)
A mathematical discussion is presented on the properties of transmission lines whose parameters are continuous functions of the clistance x from the sending end of the line, resulting in the characteristic impedance also depending on x. Differential equations (9) for the voltage and current in the line are derived, and also an equation (14) showing in a general form the variation of the characteristic impedance w_{x}. Solutions (26) of equations (9) are then found determining the voltage and current at any section of the line, for any load and any variation of w_{x}. Conditions of resonance $(4 \mathbf{I}-44)$ are established under which the input impedance (40) is o or ∞

Formulae (52) and (54) are derived determining respectively the load necessary for ensuring the absence of reflected waves and the corresponding input imperlance. It is shown that under these conditions the line acts as an impedance transformer having a ratio approximately equal to that of the characteristic impedances at the sending and distant ends of the line. It is pointed out that this property is independent of the resonance phenomena, in which respect the line compares favourably with the usual h.f. matching tansformers (reactive elements, uniform lines). In view of the wide applications of matching transformers in radio technique, the operation of the line on a frequency band as a matching transformer between an aerial and a feeder is discussed in detail, and it is shown that the line is quite suitable for this purpose.

Throughout the discussion a number of particular cases of practical interest are considered separately. In conclusion, various methods of constructing such lines are examined (two divergent conductors; two parallel conductors each consisting of two divergent wires, Fig. I8; two paralle 1 " ribbon" conductors of varying area, Fig. 19; etc.)
3836. An Ultra-High-Frequency Antenna of Simple Construction [Type MI-7823 at WCAU, Philadelphia, and Improved \& Simplified Type MI-7823A: Vertical Quarter-Wave Radiator, above Four Horizontal "Ground Rods " on Outer Conductor of Concentric Feeder: with or without Reflector: Advantages].-G. H. Brown \& J. Epstein. (Communications, July 1940, Vol. 20, No. 7, pp. 3-5.)
3837. Antennas and Transmission Lines at the Empire State Television Station: I [Preliminary Considerations-Choice of Polarisation, Transmission Line Principles, Matching].-N. E. Lindenblad. (Communications, May 1940, Vol. 20, No. 5, pp. 13-14 and 16..22.) First of three instalments for a previous paper see 2759 of 1939.
3838. Combined Television and All-Wave Sound Aerial [Dipole, connected to Balanced Transmission Line for Ultra-High Frequencies, acts as Capacity Aerial for Lower Frequencies]-R.C.A. (E. א Television \& Short-Wave World, July 1940, Vol. 13, No. 149, pp. 328 and 330.)
3839. Horizontally Polarised Wayes and Wide-Band [Ultra-Short-Wave] Loop An-tennas.-R.C.A. Laboratories. (E. \& Television © Short-Wave World, April 1940, Vol. 13, No. 146, pp. 167 and 170.) Operating on the general principles of the Beverage aerial.

384o. Dipoles and Reflectors [for Ultra-Short Waves]: a Short Review:-S. Goldman. (Electronics, May 1940, Vol. 13, No. 5, pp. 20-22.)
3841. A Note on Laguerre PolynomialsW. T. Howell. (Phil. Mag., Sept. 1939, Vol. 28, No. I88, pp. 287-288.) For previous work see 2149 \& 4382 of 1937.
3842. Correction to Equation in "A General Radiation Formula." -Schelkunoff. (Proc. Inst. Rud. Eng., June 1940, \ol. 28, No. 6, p. 277.) See 108 of January.
3843. On the Radiation from Conductors carrying Travelling Current and Voltage Waves.-S. I. Nadenenko. (Elektrosvyaz, No. 2, 1940, pp. 66-70: Russian only.)
An aerial consisting of a single conductor of finite length, carrying a travelling current wave, is considered, and the effect of the attenuation caused by radiation losses is investigated. Formulae are derived determining the attenuation (20), radiation resistance (21), polar diagram (22), and efficiency (13). Curves are plotted showing the effect of the aerial length and characteristic impedance (300, $700, \&$ Iooo ohms) on the radiation resistance (Fig. 2), directivity coefficient (Fig. 3), and efficiency (Fig. 4). A brief discussion of these curves is given and the advantages of low-impedance aerials are emphasised.
3844. Surface of Captation of a Half-Waye Dipole [equals Area of Circle with Radius 0.68λ, for Parallel, Tuned Dipoles at Sender \& Receiver].-Y. Rocard. (Sci. Abstracts, Sec. B, 25 th June 1940, Vol. 43 , No. 510 , p. 292.)
" If a tuned receiving dipole takes from the wave front a quantity W " of energy while the sender emits a total W of energy, W^{\prime} may be considered as the fraction of W^{\prime} which passes through an area S (surface of captation) perpendicular to the direction of propagation and situated at the receiving dipole." For Rudenberg's " absorption surfaces " see Fränz, 2249 of June.
3845. The Forced Oscillations of a Spherical Oscillator in a Circular [Magnetic] Fidu.-A. G. Arenberg. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 2, Vol. 26, 1940, pp. 147-150: in French.)
Further development of the work dealt with in 3405 of September, where "electric" excitation was considered. A comparison of the results then obtained with the present results for " magnetic" excitation shows that the expression now found for the moment of current $I l$ differs from that for "electric" excitation only by the substitution of H_{m} for E_{m} : consequently when these values are equal the values P_{Σ} corresponding to the two
methods of excitation are also equal (it is pointed out that the values of $P_{\text {s }}$ cannot be compared by a comparison of the values of R_{Σ}, because in the "electric" case R_{Σ} was referred to the current intensity on the equator, in the " magnetic" case to the whole current traversing the sphere).

The values of P_{Σ} and R_{Σ} now found (eqn. 9) are maximum for $\lambda_{r}=4.85 \mathrm{a}$. Here again (cf. 1857 of May) "this resonance value of λ_{r} does not coincide with that obtained by J. J. Thomson ["Recent Researches in Electricity and Magnetism"] for the case of free oscillations of the sphere. It is sufficient, in order to obtain this value for λ_{0}, to equate to zero, for $n=1$ and $y=0$, the expression (3) giving H_{0}. The equation $\xi^{\prime}{ }_{n}(k a)$, defining λ_{0}, is thus obtained."
3846. Current Distribution and Radiation Properties of a Shunt-Excited Antenna TTheoretical Examination of Assumption of Radiation Properties nearly the Same as Those of Insulated-Base Aerial].-P. Baudoux. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 271-275.)
" In most cases, the radiation resistance appears to be very different from that of the corresponding insulated-base antenna."
3847. The Insulation of Vertical-Mast Radia-tors.-G. A. Savitski. (Elektrosvvaz, No. 2, 1940, pp. 76-83: Russian only.)
The requirements imposed on base and guy insulators for vertical-mast radiators are enumerated, and the mechanical properties of various insulating materials are shown in a table. Mechanical tests of these materials are discussed and different shapes of individual insulators are considered. This is followed by a survey, with numerous illustrations, of various methods of construction of the base and guy insulators, including some of the types developed in the U.S.S.R.; the relative advantages and disadvantages of these are pointed out. Practical suggestions are made.
3848. The Fixed " Rotary" Beam Antenna: Variable Directivity with Fixed Anten-NAS.-A. H. Lynch. (QST, Aug. 1940, Vol. 24, No. 8, pp. 28-31.)

VALVES AND THERMIONICS

3849. On the Theory of Transit-Time [Retard-ing-Field \& Magnetron] Oscillations, and The Ultra-Short-Wave Generator with Phase-Focusing (Klystron).-Liidi. (See 3776 \& 3777.)
3850 Simple Calculations of Klystron Effi-ciency.-E. U. Condon. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 204 : short summary only.)
3850. Ultra-High-Frequency Power [SclfExcited Oscillator delivering a kW Average Power to Resistance Load at $600 \mathrm{Mc} / \mathrm{s}$, using A.C. Anode Voltage].-D. H. Sioan \& L. C. Marshall. (Phys. Review, $15^{\text {th }}$ July 1940, Ser. 2, Vol. 58, No. 2, p. 193 : summary only.) From the University of California. " A more powerful tube is being constructed to operate at $1000 \mathrm{Mc} / \mathrm{s}$." No further information is given
3851. An Ultra-High-Freguency Push-Pull Pentode vith 30 Watts Operating Anode Dissipation, Type 240 HH . Western Electric. (Used in the $150 \mathrm{Mc} / \mathrm{s}$ amplifier dealt with in 380 , above.)
3852. Some Typical Phenomena relating to Ultra-Short-Wave Pentode [PB 3/80o]. Amplifier Circuits.-Posthumus \& Gehrels. (See 3780.)
3853. Progress in the Design of Augetrons for Use at [Ultra-] High Frequencies.Vacuum Science Products. (E. \& Television © Short-Wave World, Juñe 1940, Vol. 13, No. 148, pp. 273-274.) For earlier work see 2256 of June.
3854. Hum-Neutralising Circuit for Use With the Augetron [used as a Voltage Amplifier Economical Circuit for balancing-out Ripple on H.T. Supply?. -Vacuum Science Products. (E. © Television \& Short-IWave World, July 1940, Vol. 13, No. 149, p. 326.) For this special valve see 3854 , above.
3855. A Secondary-Emission Amplifier Valve with Screen-Grid Characteristics 「obtained by Electron-Optical Compensation, using Anode Current to generate a Magnetic Field].-(E \& Television \& ShortWave World, April 1940, Vol. 13, No. $14{ }^{6}$, p. 148 .)
3856. A Method for Determining the Charging Potential of Dielectrics and the Lower Limit of Secondary Electron Emission from a Monocrystal of NaCl.-Kirvalidze. (See 3963.)
3857. Dependence of Secondary Emission on Primary Current [Influence of Internal Resistance on Secondary Emission: Latter should depend also on Primary Electron Current: Preliminary Experimental Con-firmation].-N. Morgulis. (Sci. Abstracts, Sec. A, 25 th July i940, Vol 43 , No. 51 m , pp. 577-578.) For previous work see 1925 of 1939 and 1504 of April.
3858. Neutrabisation and Ionisation of Cs and K on Thoriated Tungsten Surfaces [Experimental Investigation].-N. Morgulis \& M. Bernadiner. (Sci. Abstracts, Sec. A 25 th July 1940, Vol. 43, No. 5 II, p. 586.) See also 3036 of August : for similar work on sodium atoms see 2802 of 1939.
3859. Surface Structure of Thoriated Tungsten examined by the Ionic Microscopf. - N. Morgulis. (Sci. Abstracts, Sec. A, 25 th July 1940, Vol. 43, No. 511, p. 586.)
386i. Fluctuations in Space-Charge-Limited Currents at Moderately High FreQuencies: Part II (contd.)-Diodes and Negative-Grid Triodes Experiments on about I Mc/s (to avoid Transit-Time Effects and Flicker Effect) : Methods of ShotEffect Measurement: Estimation of Cathode Temperatures (Optical Pyrometer discarded for Sleeve-Type Cathodes: Computation from Heater-Power Formula-Widell) :

Estimation of σ (Transconductance/Conductance of "Equivalent Diode"): Comparison with Theory]-D. O. North. (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. 106-124: to be contd.) Continued from 3420 of September.
3862. The Fourth-Power Law for Determination of Emissivities of Sleeve-Type Cathodes, and a Working Formula.E. G. Widell. (Used for the computation of cathode temperatures in the work dealt with in 3861, above.)
3863. Zone Model of Oxide Cathodes [Wilson's " Impurity Semiconductor" Model, modified by Allowance for Two-Dimensional Metal Layer on Surface, gives Richardson Equation and Coinciding Thermionic \& Photoelectric Work Functions: etc.].Y. Uehara \& M. Takahasi. (Sci. Abstracts, Sec. A, 25 th July 19.40 , Vol. 43 , No. 511 , p. 586.$)$
3864. Optimum Emission from Solid Solution of BaO and SrO at a Particelar Composition, and Its Explanation.-Uehara \& Takahasi. (In paper dealt with in 3863 , above.)
3865. A Recent Improvement in Filamintiary Cathones [Cathodically Electrolysed Thoriated Tungsten or Molybdenum Filaments and Their Advantages for Ultra-High Frequencies and for High Voltages].R.C.A. Laboratories. (E. \mathcal{E} Television \mathcal{E} Short-Wave World, June 1940, Vol. I3, No. $148, \mathrm{pp} .244$ and 249.)
3866. Applications of X-Ray Technique to Industrial Laboratory Problems [ValveCathode Coatings, Fluorescent Screens, etc.] -H. P. Rooksby. (G.E.C. Journ., Aug 1940, Vol. it, No. 2, pp. 83-95.)

386-. Thermionic Measurement of e/m SSimple Method, from Current to Cylindrical Anode]. -F. M. Gager. (Sci. Abstracts, Sec. A, 25 th July 1940 , Vol. 43 , No. 511 , p. 576 .)
3868. Observations on Field Currents from Tantalum [Study of Fluorescent Areas produced on Walls of Flask by Electrons from Tantalum Point at Centre].-G. M. Fleming \& D. M. Holtoner. (Phys. Review, ${ }^{15}$ th July 1940 , Ser. 2, Vol. 58 , No. 2, p. 189: summary only.)
3869. Electron Emission into Dielectric Liguins [Experiments to examine the Baker \& Boltz Theory of Thermionic Production of Conduction Currents: Suggestion of Combined Thermionic \& Field Emission].W. R LePage \& L. A. Dulbridge. (Phys. Review, ist July 1940 , Vol. 58 , No. 1 , pp. 6I-66.) See 1820 of 1937
3870. Neutralising Screened-Grid Valves [to overcome Tendency to Instability in Specially Good Circuits].-Stokes. (See 3818.)
3871. On Choosing the Optimum Operating Conditions for the Final Stage of a L.F. Amplifier, taking into Account the Non-Linfarity of Valve Character-istics.-Krize. (See 3762.)
3872. Harmonic Analysis by the method of Central Differences [with Particular Reference to Distortion in Thermionic Valves, but applicable to Most Non-Linearity Problems].-D. C. Espley. (Phil. Mag., Sept. 1939, Vol. 28, No. 188, pp. 338-352.)
Equation of load line: coefficients of frequency terms: numerical example: special considerations : direct measurement of first-order differences (cathode-ray oscillograph equipment for dynamiccharacteristic measurement).
3873. Measuring Valve Capacities with a Signal Generator.-Hygrade Sylvania. (E. \& Television \& Short-Wave World, April 1940 , Vol. 13, No. 146, p. 176.)
3874. Oscillographic Method of measuring Positive-Grid Characteristics by Con-denser-Discharge Impulses controlled by Thyratrons: with Cathode-Ray Oscillo-graph].-O. W. Livingston. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 267-268.) With ""advantages in accuracy and economy" over previous methods.
3875. Measurement of Transmitting Valve Characteristics above the Dissipation Limit [Simple Miethod using Motor-Driven Switch and D.C. Meters].-G. Stolzer \& J. A. Sargrove (E. E Television Ev ShortWave World, April 1940, Vol. I3, No. 146 , pp. 153-156.) A Tungsram paper.
3876. Air Cooling applied to External-Anode Tubes [Principles of Low-Pressure ForcedAir Cooling: Mechanical Design: Electrical Characteristics: Operation].-E. M. Ostlund. (Electronics, June 1940, Vol. 13, No. 6, pp. $3^{6-39 .)}$
387. The Influence of "Cold Ends" on Performance of Vacuum-Tube Air Coolers Mathematical Investigation and Application to Valve with External Copper Anode: Permissible Anode Dissipation as Function of Air Velocity: etc.]-I. E Mouromtseff. (Phys. Review, Isth July 1940, Ser. 2, Vol. 58, No. 2, p. 204 : summary only.)
3878. Suggestions for Radio Standardisation a War Economy Measure proposed by the british Institution of Radio Engineers. -Sargrove. (E. \& Television \&o ShortW'ave World, July 1940, Vol. 13, No. 149, pp. 314 and 315.) See also 3435 of September
$3^{8} 79$. Tube Registry [Valve Types registered by R.M.A. Data Bureau during March 194o].(Electronics, May 1940 , Vol. 13, No. 5, pp. 56. 65.) A monthly feature.

3880 . Locktal-Tube Design and Manufacture. -R. M. Wise. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 286 : summary only.) See also 3159 of 1939 and 2273 of June.
3881. The Principle [and Construction] of the New Beam Mixfer Valve Type 6K8G [American " Triode Hexode," but in Circuit \& Operation a Beam Pentagrid].-(E. \&o Television © Short-Wave World, April 1940, Vol. 13, No. 146, p. 164 .)
3882. Materials for Vacuum Tube Manufac-ture.-A. J. Monack: R.C.A. (Indust. Eo Eng. Chemistry, Industrial Edition, ist Aug. 1940, Vol. 32, No. 8, pp. Ioz8-1033.)
3883. The Micro-Analysis of Gases by Physical Methods.-C. E. Ransley. (G.E.C. Journ., Aug. 1940, Vol. II, No. 2, pp. 13.5-14I.) Of interest, among other applications, in valve manufacture.

DIRECTIONAL WIRELESS

3884. Kadio Direction-Finding for Meteorological Balloons at 1.67 Metres.L. C. Yuan \& S. S. Mackeown. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 286: summary only.) See also 3041 of August.
3885. Some Theoretical Considerations on the Philips' Ultra-Short Wave RadioBeacon [Development on Principles of Long-Wave Beacon: Direction of Course Line: Width of Course Sector: Field Strength in Direction of Course].-P. Zijlstra. (Philips Transmitting News, Dec. 1939, Vol. 6, No. 3/4, pp. 59-62 : to be contd.) For earlier work see 2363 of 1938.
3886. Distance Measurements by Wirfless [Description of Systems using Cathode-Ray Oscillographs as Indicators].-(Sci. Abstracts, Sec. B, $25^{\text {th }}$ July 1940 , Vol. 43, No. 51 I , p. 310).
3887. Radio Compass giving Intersecting Traces, on Screen of Dual-Ray CathodeRay Tube, from Two Separate Stations [Map projected on to Same Screen: Gyrostatic Control of Indicating Mechanism].J. B. Dearing : R.C.A. (Science, and Aug. 1940, Vol. 92, Supp. p. 8: Sci. News Letter, 3 rḍ Aug. 194°, Vol. 3^{8}, No. 5, p. 73.)
3888. Panoramic Reception [for Navigation, etc Latest Development, with Electronic Sweep Circuit: the Dual-Frequency Ratio Range Beacon demonstrated to C.A.A.]. - M. Wallace. (Electronics, June 1940, Vol. I3, No. 6, pp. 14-15 and 84. 88.) See also $33^{8} 5$ of September.
3889. A Proposal for Reduction of Polarisation Errors in Loop Direction-Finders avoiding Defects of Adcock System: Unwanted Component from Multi-Turn Loop neutralised by Additional Horizontal PickUp from Auxiliary (Dipole) Acrial rotating with Loop].-F. E. Terman \& J. M. Pettit. (Proc. Inst. Rad. Eng., June i94c, Vol. 28, No. 6. p. 285 : summary only.)

ACOUSTICS AND AUDIO-FREQUENCIES

3890. Multi-Stage Standing-Wave Circuits [with Application to Frequency Stabilisation and Acoustics].-Okabe. (See 3756.)
389i. Mutual Acoustic Impedance in MultipleSpeaker Systems fand Its Effect on Efficiency \& Directional Characteristics: "Space Phasing"'.-H. S. Knowles. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 283: summary only.)
3891. Stereophonic Recordings of Enhanced Music [Note on Carnegie Hall Demonstra-tions].-Bell Laboratories. (Nature, 3rd Aug. 1940, Vol. 146, p. 174.) See 3056 of August, and Electronics, May 1940, pp. 30-3i.
3892. Design of a 27 -Inch Loudspeaker [with Voice-Coil Travel up to $\frac{3}{4}$ Inch: PaperThin Former of "Acim" Metal: Polyfibrous Cone Materiall.-R. T. Bozak. (Electronics, June 1940, Vol. 13, No. 6, pp. 22-24.) A group of these handled 2000 watts of a.f. power at the Lagoon of Nations Display.
3893. New Type of "Accordion Edge" Loudspearer Cone increases Lower Reproduction Range by at least One Octave.-R.C.A. (Electronics, June 1940, Vol. 13, No. 6, p. 106 : paragraph \& photograph only.)
3894. The C25 Acoustical Amplifier: A Compact Unit suitable for Mobile [Public Address] Equipment.-Acoustical Mfg. Company. (Hireless World, Aug. 1940, Vol. 46, No. 10, p. 356.) For a.c. mains or 12 -volt car battery.
3895. Bass Comprnsation by Screen-Grid InJection ["Syncrotronic" System].-Barcus. (See 3819.)
3896. Further Applications of Space-Charge Coupling [particularly to Condenser-Microphone Amplification].-Sargrove. (See 3760.)
3897. A Direct-Current and Audio-Erequency Amplifier [Stable in Operation, capable of Linear Amplification of Voltages from a Few Microvolts to 30 Millivolts: for Stress or Illumination Measurements, Nerve-Action Currents, etc: Signal Voltage controls Balance of Bridge Modulator Circuit fed by Carrier Voltage].-I.. J. Black \& H. J. Scott. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 269-271.)
3898. A New Method of Logarithmic Recti-Fication.-Hayasi \& Akasi. (See 3759.)
3899. Volume Range of Sound-on- Film Recording [including Methods of Increasing It (Bell Laboratories' Experiments with Compres-sion-Control Current recorded on Separate Track and used for Expansion Control): etc.].-R. H. Cricks. (E. \& Television © Short-IWave World. June 1940, Vol. 13. No. 148, pp. 245-249.)

390i. Frequency Characteristics of FilmRecorded Sound and the Overcoming of Defects \& Limitations due to Photographic \& Mechanical Difficulties].-R. H. Cricks. (E. \& Television \& Short-W ave World, July 1940, Vol. 13, No. 149, pp. 293-296.) Concluded in the August issue.
3902. Sound on Film : Photographic Methods of Recording [and the Reduction of Background Noise].-R. F. E. Miller. (Wiveless World, Sept. 1940, Vol. 46, No. in pp. 386-388.)
3903. Photoelectric Tape Recording [Mechanical Engraving for Photoelectric Re -production].-(Electronics, May 1940, Vol. I 3, No. 5, pp. 16-18.)
3904. Further Notes on the Construction and Operation of the Steel-Wire Recording Apparatus.-R. L. Mansi. (E. E Television Eo Short-Wave World, May 1940, Vol. 13, No. 147, pp. 227.233.) Conclucled from 2289 of June. For criticisms see pp. 237, 238.
3905. Barrier-Layer Photocells for SubStandard Talkies.-(See 397a.)
3906. Photoelectric Gramophone Pick-Up.Philco. (Communications, July 1940, Vol. 20, No. 7, pp. 13-14.) See also 3449 of September.
3907. Titanium Compounds as Fillers in Resin Moulding Compositions: Reduced Surface Noise and Increased Life of Gramophone Records.-R.C.A. (Wireless World, Aug. 1940, Vol. 46, No. 10, p. 364 paragraph only.)
3908. The Resonoscope for the Accurate Tuning of Musical Instruments].-S. K. Wolf \& L. B. Holmes. (Electronics, June i940, Vol. 13. No. 6, p. 92 : summary only.)
3909. Electronic Music Discussion of Various Types of Pick-Up Devices, for Pianos, Violins, etc.].-N. I. Daniel. (Commumications, July 1940, Vol. 20, No. 7. pp. 26-30.)
3910. On New Results in Research on Violins. -H. Backhaus \& G. Weymann. (Journ. Acous. Soc. Am., April 1940, Vol. 1I, No. 4, pp. 490-492.) Long summary of the German paper dealt with in 65 r of February.
3911. An "Acoustic Tone" from Bells may result from Simultaneous Sounding of Second \& Third Partials: also on Piano, etc.].-J. Arts. (Journ. Acous. Soc. Am., April 194o, Vol. iti, No. 4, p. 485).
3912. A Speaking-Aid for Those who are Dumb by Injury of Vocal Chords: supplying Sound Vibrations in Throat, which can be Modulated into Speech].-G. Wright. (Electronics, June 1940, Vol. 13, No. 6, p. 44 : photograph \& caption.)
3913. Amplifying Power of Ear TrumpetsY. Rocard. (Sci. Abstracts, Sec. A, 25th July 1940, Vol. 43 No. 5 II, p. 563 .)
3914. Receiver [Telephone or Deaf-Aid] Testing with an "Artificial Ear."-S. Ballantine. (Electronics, June 1940, Vol. 13, No. 6, pp. 34-35 and io8.. II2.)
3915. Measurements of the Directional Properties of the Ear carried out with A Dummy.-L. D. Rosenberg \& A. B. Slavinsky. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 6, Vol. 26, 1940, pp. 578-580 : in English.)
Certain unexpected results were obtained : one of these " throws some light upon the mechanism of location of sound sources in the normal plane, which has not been explained successfully as yet."
3916. Effect of Noises of Warfare on the Ear.-T. S. Littler. (Nature, 17 th Aug. 1940, Vol. 146, pp. 217-219.)
3917. Reversed Speech.-E. W. Kellogg. (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. 101-105.) Already dealt with in 3193 of 1939.
3918. The Physiology of the Ear in Relation to Talking Pictures.-A. F. RawdonSmith. (E. \& Television \& Shovt-W'ave World, April 1940, Vol. 13, No. i46, pp. 190 and 191: summary only.)
39i9. On the Theory of Acoustic Feedback in Sound-Reinforcing Systems.-J [G.] M. Subarevsky (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 5, Vol. 26, 1940, pp. 430-435: in English.)
For previous work on sound-reinforcing systems see 3458 of September. The excitation of free oscillations, through acoustic feedback, " is the most undesirable feature of such systems." The problem has been discussed by Bovsheverov (54 of 1937 and back reference), Gorelik (54° of February), and its more detailed analysis was given by Bürck (3997 of 1938 and back reference) "who, however, has not considered some important cases," and some of whose equations " are not quite correct." The present paper considers the case of systems out of doors, including that formed by a microphone with many loudspeakers in concentric rings around it: the changes in the equations, to make them apply to the case of a closed room (when the squares of the pressures, instead of the pressures themselves, have to be summed up: but see footnote on p. 434), are given in eqns. 13-15. Eqn. 18 gives the ratio between the times of regenerative and natural reverberation. "In the papers next to be published [see 3920, below] I shall set forth the results that my experimental investigation of acoustic feedback in a closed room has yielded, and the question of the maximum possible reinforcing of sound (acoustic feedback being the limiting factor) will also be discussed there."
3920. On Experimental Investigation of Acoustic Feedback in a Closed Room.G. M. Suharevsky. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 7, Vol. 26, 1940, pp. 638-643: in English.)
See 3919, above. Among the results obtained, the critical value (for noticeable distortions and
" ringing ") of $T_{\tau} T$ was found, in the reinforcing of speech, to be 4.5 for a male voice and 3.0 for a female, when the frequency of free vibrations (due to acoustic feedback) was $1200 \mathrm{c} / \mathrm{s}$: the corresponding values for a free-vibration frequency of $600 \mathrm{c} / \mathrm{s}$ were 2.1 and 1.7. The use of the formulae and experimental data for the design of systems, and in particular for the determination of the maximum reinforcement possible, will be dealt with in papers already in the press.
3921. The Use of "Acoustivanes" in C.B.S. New Studros.-(E. Eo Television © ShortWave World, April 1940, Vol. 13, No. 146, p. 165 : paragraph only.)
3922. Satellite-Studio Equipment for Intermittent Use for Broadcasts from Adjacent Town]-G. S. Feikert. (Communications, May 1940, Vol. 20, No. 5, pp. 10-1I and 23.)
3923. Froth Glass [containing Closed Pores of Definite Dimensions, separated by Very Thin Walls: Production in Russia in form of Bricks: Low Heat \& Sound Con-ductivity].-I. I. Kitaigorodski (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 7. Vol. 26, 1940, pp. 644-646: in English.)
3924. Calibration Circuit for Audio Oscillators Drift of Beat-Frequency Oscillators accurately checked by Cathode-Ray Indicator, using A.C. Components of Rectified \& Smoothed Mains Voltage].-T. J. Rehfisch \& H. T. Bissmire. (Electronics, June 1940, Vol. I3, No. 6, pp. 48.52.) From the Murphy Radio Laboratories.
3925. A Resistance-Capacitance Audio-Freguency Oscillator One-Valve Circuit: Harmonic Contents less than $\ddagger \%$: Frequency Stability better than I Part of 10000 for 10% Supply-Voltage Variation].-G. A. Brettell. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 282 : summary only.)
3926. A Multi-Frequency Oscillator for Audio Testing [in Investigations on Tonal Memory: 15 Separate Oscillators, beating with a Master Oscillator in Sequence determined by Perforations in Tape]--J. Quinn. (Electronics, May 1940, Vol. I 3, No. 5, pp. 23-25.)
3927. Measurements of Noise and Vibration [including New Developments in Apparatus]. -H . H. Scott. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 284-285: summary only.)
3928. Distortion Measurements by Funda-mental-Suppression Methods.-Hewlett \& Packard. (See 3988.)
3929. The Design and Test of EQuipment by the Intermodulation Method fomparison between Harmonic Method \& Intermodulation Method: etc.].-J. K. Hilliard. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 283 : summary only.)
3930. Sound Tests of Telephone Ringers and Dials [Use of Irregularly Shaped Testing Box (No Parallel Walls) with Set of Rotating Vanes of Irregular Shape between Specimen \& Microphone].-N. R. Stryker. (Bell Lab. Record, July 1940, Vol. 18, No. II, pp. 3+3-344.)
The many reflections thus obtained reduce the effects of variations in the sound radiated from moment to moment, and tend to equalise the effects of the different frequencies obtained with the various ringers.
3931. "Cumulative Index, Volumes 1 to 10 of the Journal of the Acoustical Society of America" [dealing also with Abstracts of Contemporary Literature: Book Review]. -(Comninnications, June 1940, Vol. 20, No. 6, p. 25.)
3932. Velocity and Absorption of UltraAcoustic Waves in Some Binary Liquid Mixtures [Sharp Maximum of Velocity at 30% Concentration (due to Decrease of Adiabatic Contraction) : etc.].-Mikhailov. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS. No. 2, Vol. 26, 1940, pp. 145-146: in English.)
The method used depended on the detection of the onset of stationary waves by the optical diffraction effect-see Wyss, 3029 of 1937
3933. Ultrasonic Absorption in Liquids, and Absorption of Supersonic Waves in Gases.-Gregg : Zartman \& Smith. (Phys. Review, I 5 th July 1940. Ser. 2, Vol. 58 , No. 2, p. 208: pp. 208-209: 'summaries only.)
3934. Supersonic Velocity in Gases and Vapours: Part IX-Specific Heats and Dispersion of Supersonic Velocity in Organic Vapours.-S. K. K. Jatkar. (Indian Journ. of Phys., Dec. 1939, Vol. I3. Part 6, pp. 445-449.)
3935. The Absorption of Sound in Carbon Dioxide [Frequency Range 22-112 kc/s]. R. W. Leonard. (Phys. Reyiew, ist Feb. 1940, Ser. 2, Vol. 57 , No. 3, p. 253 : abstract only.)

PHOTOTELEGRAPHY AND TELEVISION

3936. Demonstrating Broadcast Facsimile [Radio Newspaper] at The New York World's Fair.-A. J. Baracket. (R.C.A Review, July 1940, Vol. .5, No. 1, pp. 3-7.)
3937. Рhoto Transmission by Frequency Modulation [Recent Demonstration: Relaying over Two Paths totalling 87 Miles].(Communications, July 1940, Vol. 20, No. 7 , p. 14.)
3938. A 500-Megacycle [Frequency-Modulated] Radio-Relay Distribution System for Television.--Kroger, Trevor, \& Smith. (See 4080.)
3939. Portable Television Broadcasting from Station WGXAO: Technique of Determination of Propagation Conditions on $3{ }^{2} 4 \mathrm{Mc} / \mathrm{s}: ~ " P i t c h f o r k "$ Aerial: etc.].H. R. Lubcke. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 283-284: summary only.) For more about this station see 1944 of May.
3940. Interferfence between Television (and Sound) Signals from Philco (Philadelphia) and C.B.S. (New York) Stations, separated by 90 Miles.-(E. \& Television E Short-Wave World, May 1940, Vol. I3, No. 147, p. 207: paragraph only.)
3941. Antennas and Transmission Lines at the Empire State Thlevision Station: I.lindenblad. (See 3837.)
3942. A Determination of the Optimum Number of Lines in a Television System Criticism of Previous Hypotheses: Reprorluction of an Abrupt Change in Brightness as a Measure of Resolution: Vertical \& Horizontal Resolution: Choice of Frame Frequency Choice of Number of Lines: etc.].-R. D. Kell, A. V. Bedford, \& G. L. Fredendall (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. 8-30.)
A number of lines between 44^{1} and 507 (at 30 frames per second) is arrived at as providing nearly optimum picture quality for present receivers and future improved types, for the maximum v.f. signal of $4.5 \mathrm{Mc} / \mathrm{s}$ which is available with the vestigial-sideband method of transmission (cf. 3477 of September) within the U.S.A. channel of $6 \mathrm{Mc} / \mathrm{s}$, including sound.
3943. Reduction of the Frequency Band in Television Transmission Discussion of Known Methods: Writer's Tests on Resolving Power of the Eye: Light-Retentive Screens (and a Suggested Quenching Ray preceding the Exciting Ray): etc.].R. W. Urie. (E. \& Television © Short-Wave World, July 1940, Vol. I3, No. 149, pp. 303-306.)
3944. Television in Natural Colour [System involving No Changes in Transmitting or Receiving Station except to Photoelectric Pick-Up at Transmitter and Cathode-Ray Tube at Receiver].- R . Loreozen. (Commumications, June 1940, Vol. 20, No. 6, pp. 8 and 27,28 .) A 1940 patent.
3945. Fundamentals of Television Engineering: Part IX [Foreign Developments (England, Italy, France, Germany)]: Part X [Conclusion: Promising Developments, including Small Projection Tubes, \& German Trials for Medium-Size Images for Home Receivers: Zinc-Blende \& "Suspensoid " (Colloidal Graphite) Light Relays etc.]-F. A. Everest. (Communications, June \& July 1940, Vol. 20, Nos. 6 \& 7, pp. 12-16 and 27 : pp. 7^{-8} and 18, 19.) For previous parts see 2657 of July.
3946. Automatic Background Control of Television Pictures.-General Electric. (E. EO Television \& Short-Wave World, July 1940, Vol. 13, No. 149, pp. 324 and 326.)
3947. Television and the F.C.C. the Question of Standards].-(Electronics, May 1940, Vol. 13, No. 5, pp. $11-13$ and $79 . .83$.)
3948. "Television-the Electronics of Image Transmission " [Book Reviews].-Zworykin \& Morton. (Science, 2nd Aug. I940, Vol. 92 , p. 108: Wiveless Engineer, Sept. 1940, Vol. 17. No. 204, pp. 397-398.)
3949. KCA Portable Television Pick-Up Equipment ["Suitcase" Construction].-G. L. Beers. (Proc. Inst. Rad. Eng., June 1940, Vol 28, No. 6, pp. 281-282: summary only.)
3950. A New and Original Television Pick-Up Tube [based on Properties of Electrostatic Field around Thin Wire].-H. Browde [G. V. Braude]. (E. \& Television \& ShortWave World. May 1940, Vol. I3, No. 147, pp. 196 and 233.) Summary of Braude's paper dealt with in 592 of 1938.
395i. Television Receiver Characteristics.C. F. Wolcott. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 286 : summary only.)
3951. Television Receivers using Electrostatic Deflection [Reasons for DuMont Preference for Electrostatic over Magnetic Scanning: Typical Receiver for 14 or 20 Inch Tubes (with Accelerating Ring near Screen)].-T. T. Goldsmith, Jr. (Electronics, June 1940, Vol. 13, No. 6, pp. 16-19 and 89.)
3952. A Reflex Television Amplifier: A New Amplifier using Balanced Bridge Cir-cuits.-General Electric. (E. \& Television \& Short-Wave World, July 1940, Vol. I3, No. 149, pp. 31 I and 336, ii.)
3953. Voltage Dividers for Extended Frequency Ranges [in Television, etc.]-F.A. Everest. (Comminications, May 1940, Vol. 20, pp. 8-9 and 22, 23.)
3954. Halation on Kinescope Screens iand Methods of Reduction by Films between Phosphor \& Glass Envelope].-K. F. Baker. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 208: summary only.)
3955. Production Colour-Analysis of Kinescope Screens [Apparatus for Analysing the " Degree of Whiteness"], and Optimum Efficiency Conditions for White Luminescent Screens in Kinescores.-T. B. Perkins: H. W. Leverenz. (Journ. Opt. Soc. Am., July 1940, Vol. 30, No. 7, pp. 295-296: pp. 309-315.) Both from the R.C.A. Mfg. Company. The second paper contains spectral distribution curves of relative absorption and emission for varions screens.
3956. Mixing and Limiting Circuits for Picture Signals and Blacking-Out Pulses.R. C. A. Laboratories. (E. E Television \& Short-Wave World, May 1940, Vol. 13, No. 147, pp. 225-226.)
3957. Separating Vision and Sound Signals [when using a Single I.ocal Oscillator: Special Filter Circuits].-General Electric. (E. \& Television \& Short-Wave World, April 1940, Vol. 13, No. 146, pp. 184 and 185.)
3958. SQuare-Wave Harmonics [with Table of Relative Amplitudes of Harmonic Components (computed to $3^{\text {oth }}$ Harmonic) of Interest in Television].-D. L. Herr. (Electronics, May 1940, Vol. 13, No. 5, p. 34.)
3959. Television Pulse Generator for Development \& Testing of Synchronising Filter Circuits, Scanning Circuits, etc: giving B.B.C. Standard Wave Form and Other Outputs].-British Thomson-Houston. (Joum. of Scient. Instr., Aug. 1940, Vol. 17, No. 8, p. 214.)

396i. A Precision Television SynchronisingSignal Generator for R.M.A. Standard Signals: Narrowest Pulse from FrequencyRegulated Master Oscillator and Multivibrator: Other Pulses obtained by "LapJoining " to Trailing End of This: BlankingOut of Undesired Pulses: etc.].-A. V. Bedford \& J. P. Smith. (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. $51-68$.)
3962. A Picture-Signal Generator: 11 [Syn-chronising-Signal Generator, including Timer \& Shaper Units]: III Mixing \& Line Amplifiers and Shading-Signal Generator]. -Wilder \& Brustman. (Electronics, May 1940, Vol. 13, No. 5, pp. 26-29: June, No. $6, \mathrm{pp} .30-33$.) For I see 2667 of July.
3963. A Method for Detrermining the Charging Potential of Dielectrics and the Lower Limit of Secondary Electron Emission from a Monocrystal of NaCl -I. D. Kirvalidze. (Comptes Rendus (Doklady) de $l^{\prime} A c$. des Sci. de l'URSS, No. 7, Vol. 26, 1940, pp. 635-637: in English.)
A determination of the threshold of secondary emission is possible by the "thermal" method (Vudynski, 44^{80} of 1938 : see 211 of January and $2261 \& 2262$ of June for later work) only at temperatures at which the conductivity is such that the surface does not charge up: "no convenient method has been devised for the case of low or room temperatures." The writer's method depends on deternining the sign of the charge on the dielectric, as the velocity of the incident electron beam is varied: the threshold of secondary emission is given by the electron velocity at which the crystal begins to be charged positively. The apparatus is described, and the results on a NaCl single crystal are given: secondary emission begins at electron velocities of about in volts.
3964. Photocell Multiplier Tubes [Cs- $\mathrm{Cs}_{2} \mathrm{O}-\mathrm{Ag}$ Vacuum Cell in Bulb with 6- or it-Stage Electron Multiplier: Structure, Performance, \& Applications (Useful whenever Low Light Level or Large Frequency Range is involved) : Similar (except in Size) to Multiplier used in Farnsworth Image Dissector - C. C. Larson \& H. Salinger. (Review Scient. Instr., July 1940, Vol. II, No. 7, pp. 226-229.) See also below (Farnsworth).
3965. Electron-Multiplier Phototube [6-Stage \& in-Stage Sizes, Two Types in Each Size: Dark Noise equivalent to about 2×10^{-7} Lumen for Frequency Range of $10 \mathrm{kc} / \mathrm{s}$]. Farnsworth. (Electronics, May 1940, Vol. 13, No. 5, pp. 54 and 56.) Cf. 3964, above.
3966. Experiences with Electron-Multiplier Photocells of Different Types, as regards Dark Current and Stability.Harrison \& Bentley. (In paper dealt with in 4 156, below.)
3967. Photoelectric Cells sensitive to LongWave Radiation: the Bismuth-Sulphide Cell [with 80% of Its Activity in the InfraRed: Max. Sensitivity at 70000 A.U.].C. G. Fink \& J. S. Mackey. (Electronics, June 1940, Vol. I3, No. 6, p. 93 : summary only.)
3968. " Photollectric and Selenium Cells: Second Edition " including Industrial Applications: Book Review].-T. J. Fielding. (Wiveless Engineer, Sept. 1940, Vol. 17, No. 204, p. 398.)
3969. Photosensitivity of $\mathrm{Cu}_{2} \mathrm{O}$ Electrones Experiments supporting Barrier-Layer Origin of Becquerel Effect].-E. Miseliuk. (Sci. Abstracts, Sec. A, 25th July 1940, Vol. 43, No. 511, p. 586.)
3970. The Manufacture of [Selenium] BarrierLayer Photocells: a New British Industry.-Electro-Physical Laboratories. (E. \& Television \& Short-Wave World, July 1940, Vol. 13, No. 149, pp. 312-3I3.)
3971. Barrier-Layer Photocells for SubStandard Talkies Specially Small Selenium Cells for Sound Reproduction: Types $\left.\mathrm{S}_{5} \& \mathrm{~S}_{5} \mathrm{X}\right]$.-Tungsram. (E. \& Television \&o Short-Wave World, April 1940, Vol. 13, No. 146, p. 159.$)$
3972. R.C.A. Phototube Reference Chart.R.C.A. (Electronics, June 1940, Vol. 13 , No. 6, p. 73 .)

MEASUREMENTS AND STANDARDS

3973. Field-Strength Measuring Equipment at 500 Megacycles [Signal Generator, $400-$ $580 \mathrm{Mc} / \mathrm{s}$, Output continuously variable from o. I Volt to below i Microvolt (Special Attenuator Design): Half-Wave Dipole : Peak-Signal \& Noise Measurements].-R. W. George. (R.C.A. Review, July 1940, Vol. 5 , No. I, pp. 69-76.) For work on ignitioninterference measurement see 298i of August.
3974. Multi-Range Valve Voltmeter [for Firequencies $20 \mathrm{c} / \mathrm{s}$ to $50 \mathrm{Mc} / \mathrm{s}$: Diode with Small Closely Spaced Electrodes, operated by Single Dry Battery: Probe H.F. Circuit on Flexible Cable].-Cambridge Instrument. (Journ. of Scient. Instr., July 1940, Vol. I7, No. 7, p. 192.)
3975. Transmission-Line Method of Measuring the Dielectric Constant of Gases and Water Vapour at Ultra-High Frequencies [D.C. of Water Vapour practically Independent of Frequency up to at least $150 \mathrm{Mc} / \mathrm{s}]$. - J. P. Hagen, M. Distad, \& F. C. Iseley. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, p. 208: summary only.)
3976. On the Determination of the Dielectric Constants of Liquids at Radio Frequencies: Parts III \& IV [Methyl Alcohol, Water, \& Alcohol-Water Mixtures]. - R. M. Davies \& T. T. Jones. (Phil. Mag., Sept. 1939, Vol. 28, No. 188, pp. 289-306 \& 307-327.) For previous parts see 2747 of 1936.
3977. Ultra-High-Frequency Oscillator Fre-quency-Stability Considerations.-Seeley \& Anderson. (See 3802.)
3978. Negative Feedback afplied to Oscillators [for Frequency Stabilisation]Sabaroff. (See 3766.)
3979. Signal Generator Type TF 5i7A [150$300 \mathrm{Mc} / \mathrm{s}$: "Acorn" Triode in Hartley Circuit: Short-Circuited Transmission Line loaded with Capacity to provide Frequency Variation].-Marconi-Ekco. (E. \& Television \mathcal{E} Short-Wave World, June 1940, Vol. 13, No. 148, p. 254.)
3980. Wavemeter Type TF. 643 [20-300 Mc/s].--Marconi-Ekco. (E. G Television © ShortWave World, June 1940, Vol. 13 , No. 148 , p. 254.)
3981. Beat-Frequency Crystal Oscillator [Frequencies from $1 \mathrm{kc} / \mathrm{s}$ to $\mathrm{I} \mathrm{Mc} / \mathrm{s}$ from Two Short-Wave Crystals].--Koga \& Yamamoto. (See 3791.)
3982. A Precision Crystal Frequency Standard using a iooo-kc/s Crystal for General Amateur Measurement.-G. M. Brown. (QST, Aug. 1940, Vol. 24, No. 8, pp. 13-16 and 76..80.)
3983. Straight-Line Calibration for Wavemeters and Oscillators Improved Calibration by Use of Series Padding Condensers in conjunction with Parallel Trimmers].W. A. Roberts. (Wiveless World, Sept. 1940, Vol. 46, No. II, pp. 408-409.)
3984. Mechanism of Operation of Multivibrator [Experimental Study and Theoretical Conclusions.-Hukata \& Orihara. (See 3772.)
3985. Theory of A Single-Layer, Bifilar, Absolute Standard of Mutual Inductance [Equal-Diameter Wires, Equally Spaced, with Equal Cylindrical Radii, with Allowance for Case where These Equalities are Not Quite Attained].-C. Snow. (Journ. of Res. of Nat. Bur. of Stds., June 1940, Vol. 24, No. 6, pp. 597-638.)
3986. A Circuit for the Rapid Measurement of the Power Factor of Condensers [adaptable also to Determination of Magnitude \& Angle of Any Impedance: Ionisation quickly Detected: Transformer with Tapped Secondary, Variable Low-Power-Factor Condenser, \& Rectifier-Type Microammeter with Shunts].-E. A. Walker. (Review Scient. Instr., July 1940, Vol. II, No. 7. pp. 210-211.)
3987. The Design and Test of Equipment by the Intermodulation Method [Comparison between Harmonic Method \& Intermodulation Method: etc.]- J. K. Hilliard: (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 283 : summary only.)
3988. Distortion Measurements by Funda-mental-Suppression Methods [Method using Filter for Suppression, and CathodeRay Oscilloscope: Method using Local Synchronised Oscillator \& Resistance Bridge, with Meter of Total R.M.S. Type].-W. R. Hewlett \& D. Packard. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 283: summary only.)
3989. Generation of SQuare-Wave Voltages at High Frequencies.--Fenn. (See 3793.)
3990. Measuring Valve Capacities with a Signal Generator.-Hygrade Sylvania. (E. E Television \& Short-Wave World, April 1940, Vol. 13, No. 146 , p. 176 .)

399i. Measurement of Transmitting Valve Characteristics above the Dissipation Limit.-Stolzer \& Sargrove. (See 3875.)
3992. Work's Method for Balancing the Kelvin Double Bridge [for measuring Low Resistances: Balance obtained by passing Adjustable Auxiliary Current through Standard].-G. R. Patterson. (Revieze Scient. Instr., July 1940, Vol. II, No. 7, pp. 217-219.)
3993. Apparatus for Determining the Number of Turns in Coils.-Metropolitan-Vickers. (Journ. of Scient. Instr., July 1940, Vol. I7. No. 7, pp. 191-192.)
3994. The Lagometer Instrument on CondenserCharging Principle for Time Measurements, e.g. on Relays].-Bryan. (Sci. Abstracts, $25^{\text {th }}$ July 1940, Vol. 43, No. 511, p. 310.)
3995. Corrections to " On the Direct and SemiDirect Determination of the Critical Resistance of Moving-Coil Galvano-meters.'"-Gerszsonowicz. (Rev. Gén. de l'Elec., 25th May/ist June 1940, Vol. 47, No. 21/22, p. 372.) See 3139 of August.
3996. On the Geometry of Optical lndicators. -K. J. Dejuhasz. (Journ. Franklin Inst., Jan 1940, Vol. 229, No. I, Pp. 53-80.) For a German version see 1974 of May.
3997. A Simplified Multiple Scale for Measuring Instruments [and Radio Receivers, etc.]: the Rotoroid Rotating Scale. -(Electronics, June 1940, Vol. 13, No. 9, p. 99.)
3998. Precision Four-Dial Vervier Potentiometer [Fourth Dial extends Subdivision to One Part in a Million].-Tinsley. (Journ of Scient. Instr., Aug. 1940, Vol. 17, No. 8, P. 213.)
3999.

The Welding of Thermocouple Junctions. -V. M. Hickson. (Journ. of Scient. Instr., July 1940, Vol. i7, No. 7, pp. 182-186.)
4000. "Electrical Measuremints and Measuring Instruments: Third Edition" Book Review].-E. W. Golding. (Elec. Review, 30th Aug. 1940, Vol. 127, p. 167.)

SUBSIDIARY APPARATUS AND MATERIALS

4ooi. The Relationship betiveen Certain Optical Parameters and Electrical and Geometrical Parameters of an Electrical Immersion Objective.--F. A. Savchenko. (Journ. of Tech. Phys. [in Russian], No. 24, 'ol. 9, 1939. pp. 2211-2219.)
As an extension to the investigation by Johannson (296 of 1935 and back ref.) experiments were conducted to determine the effect of the separation c between the diaphragms (Fig. I), the distance b between the cathode and the diaphragms, and the diameter d of the apertures, on the magnification and focal length of the system and on the size of the high-definition and low-definition areas of the image (Fig. 4). Experiments were also made, similar to those of Johannson, for determining the effect of voltages applied to the diaphragms on the optical properties of the system. The experiments and the apparatus used are described in detail and a number of experimental curves are shown. It is stated that on the basis of this investigation the electrical and geometrical parameters can be chosen to obtain the best possible results for a given set of requirements.
4002. New Eifetron Microscope developed at Camden rincluding Use of Very Thin Nitrocellulose Film to support Specimen]. Marton: R.C.A. (Electronics, May 1940, Vol. 13. No. 5, pp. 38 and 40 ,) See also $3545 / 6$ of September.
4003. An Electron Microscofe for the Reseárch Laboratory.-Zworytin: R.C.A. (Science, 19th July 1940, Vol. 92, pp. 51 -53.)
4004. Electron Microscope using an Electron Mirror [reducing Tube Length and using Some Stages Twice].-E. M. I. Laboratories. (E. Er Television © Short-Wave World, June 1940, Vol. 13, No. 148, P. 250.)
4005. Electron - Microscope Fellowship established [under National Research Council, by R.C.A. : open to Microbiologists]. -(Sci. News Letter, roth Aug. 1940, Vol. 38, No. 6, p. 85.)
4006. Cathode-Ray Tube for High-Voltage Applications [Special Electrode-Supporting System].-(E. \& Television \& Short-Wave World, April 1940, Vol. 13 , No. 146, p. 180.)
4007. A Cathode-Ray Alphabet Machine [tracing Letters by Manipulation of Switches: at present for Demonstration only].-Friend. (Electronics, June 1940, Vol. 13, No. 6, p. 40.)

4oo8. "The Hot-Cathode low-Voltage Cath-ode-Ray Tube" [Book Review].-Mezger. (Communications, June 1940, Vol. 20, No. 6. p. 25.)
4009. An Indirectly-Heated Cathode for Cathode-Ray Tubes.-(E. E Television \&o Short-Wave World, May 1940, Vol. 13, No. 147, p. 223.)
foio. Oscillograph Camera for the Model 3339 Oscillograph]. - Cossor Ltd. (Journ. Scient. Instr, July 1940, Vol. 17, No. 7, p. 192.)

4óft. Mounting of Getter in Cathode-Ray Tubes [particularly in the Modern ShortNeck Type].-(E. E Television EN ShortWave World, May 1940, Vol. 13, No. I47, p. 232.)

4oiz. Papers on White Luminescent Screens for Kinescopes.-Perkins: Leverenz. (See 3956.)
fot3. A Mechanism for the Fluorescence of Aikaline-Earth Oxides.-Uehara \& Takahasi. (In paper dealt with in 3863 , above.) For the theory of ZnS phosphors see 3156 of August.
4oí. Halation on Kinescope Screens [and Methods of Reduction].-Baker. (See 3955.)
4015. Рhosphorescent Phosphors particularly Modern Strontium-Sulphide Phosphors].Levy \& West. (E. \& Television \& Short Wave World, April 1940, Vol i3, No. 146, pp. 173-174 and 179.) Abstract of a recent lecture.
4oif. Mmproved Materials for Fluorescent Screens Advantages of Use of Selenide Component].-(E. \& Television © ShortWare World, May 1940, Vol. 13, No. 147, P. 236.)
4017. Deposition of Fivorescent Material on Thin Layer of Gold increases Image Brightness.-R.C.A. (E. E Television © Short-W'ave World, May 1940, Vol. I3, No. 147, p. 224: paragraph only.)
40i8. Applications of X-Ray Technique to Industrial Laboratory Problems [Fluorescent Screens, etc.].-Rooksby. (G.E.C. Journ., Aug. 1940, Vol. II, No. 2, pp. $83-95$.)
4019. On the Use of Oiled Photographic Emulsions [for Fluorescent Sensitisation to Light or Charged Particles: Solvents for Rapid Removal].-Rogers. (Journ. Opt. Soc. Am., July 1940 , Vol. 30 , No. 7, p. 316 .)
4020. Materials for Vacuum Tube Manu-Facture.-Monack: R.C.A. (Indust. \& Eng. Chemistry, Industrial Edition, ist Aug. 1940, Vol. 32, No. 8, pp. 1028-1033.)
4021. The Construction and Cooling of Large Vapour Traps [" Winding Staircase" Baffle, etc : used in Evacuating a PorcelainSteel Aćcelerating Tube].-Northrup \& others. (Review Scient. Instr., July 1940, Vol. 11, No. 7. Pp. 207-210.)
4022. A Differential Liguid Manometer of High Sensitivity, founded on Pettersson's Theory of Submarine Wayes.Sederholm \& Benedicks. (Arkiv för Mat., Astron. och Fysik, Stockholm, No. 8, Vol. 27A, 1940, pp. 1-5: in English.)
4023. "Modern Physical Laboratory PracTICE " [Book Review].-Strong \& others. (Journ. of Scient. Instr., Aug. 1940, Vol. I7, No. 8, p. 216.) Cf. $12+1$ of March.
4024. A Direct-Current and Audio-Frequency Amplifier [Linear Amplification of Voltages from a Few Microvolts to 30 Millivolts].Black \& Scott. (See 3898.)
4025. The Ionisation Time of Thyratrons [and Grid-Glow Tubes: C-R-O Measurements on Different Types: Time as Function of Grid Over-Voltage],-Harrison. (E. \& Television or Short-Wave World, April 1940, Vol. 13, No. 146 , pp. 160 and 163 .) Summary of A.I.E.E. Technical Paper 39-iig.
4026. The Self-Regulated Inverter in PushPull Connection [Theoretical Investigation of Action of D.C./A.C. Converter: Frequency dependent on Load: Possibilities of keeping Frequency Constant]. -Brückner. (Arch. f. Elektrot., roth Jan. 1940, Vol. 34, No. 1, pp. 1-19.) For work on the externally-driven inverter see Ostendorf, II66 of 1939.
4027. The Theory of Rectifier Cincuits, with Special Reference to Harmonics in the Supply Circuit--Satoh. (Researches of Electrot. Lab., Tokyo, No. 434, 1940, 143 pp : Japanese with English synopsis.)
4028. Initial Reignition Voltage Measurements and the Great Variation with Varying Arc Current].-Garbuny \& Matthias, (Phys. Review, 55 th July 1940, Ser. 2. Vol. 58 , No. $2, \mathrm{pp} .182-183$.)
4029. Polarity Effects in the Reignition of High-Voltage A.C. Arcs.-Fukuda. (Electrotech. Journ. Tokyo, June 1940, Vol. 4, No. 6, pp. 143-144.)
4030. The Mechanism of Electrical Discharges in Gases of Low Pressure [Survey, with 339 Literature References].-Druyvesteyn \& Penning. (Revieres of Mod. Physics, April 1940, Vol. 12, No. 2, pp. 87-174.)
4031. Time-Lag Analysis of the Townend Discharge in Argon with Activated Caesium Electrodes [Source of Lag is the Diffusion of Metastable Argon Atoms etc.].-Engstrom \& Huxford. (Phys. Review, ist July 1940, Vol. 58, No. 1, pp 6-77.)
4032. Spark Gaps with Short Time Lag Use of Small Particles of Carborundum, etc. attached to Cathode].-Slepian \& Berkey (Phys. Revico, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 210: summary only.)
4033. Spectroscopic Study on Ultra-HighFreguency Discharges [Ordinary H.F. Corona and "Torch" Discharge].-Asami \& others. (Electrotech. Journ., Tokyo, June 1940, Vol. 4, No. 6, pp. Ifl-I42.)
4034. Papers on the Sparking Threshold in Air, and the Breakdown Potential for Sphere Gaps.-Haseltine: Meek. (See 3748 \& 3749.)
4035. Breakdown Voltage Variation in HidroGEN [Lowering of Breakdown Voltage by Irradiation of Cathode cannot be completely explained by Metastable Conditions]. Frucks \& Schumacher. (Natureriss., i6th Feb. 1940, Vol. 28, No. 7, p. IIo.)
4036. The Lining of Metal Capillaries with Glass anid the Application to a Capillary Positive Ion Source [Advantages for Electrical Gaseous Discharges].-Getting \& Leighton. (Review Scient. Instr., July 1940, Vol. II, No. 7, pp. 232-234.)
4037. The Construction and Use of Selenium Rectifiers.-(E. \& Television \& ShortWave World, May 1940, Vol. 13, No. 147, pp. 200-202.)
4038. A High-Voltage Stabiliser [for Voltages above ro Kilovolts: Fraction of High Voltage is compensated by Battery and applied to Grid of Pentode whose Plate is connected to Grids of Two Gas-Triodes short-circuiting Resistances in Transformer Primary Circuit]. -Alfvén \& Eklund. (Avkiv for Mat., Astron. och Fysik, Stockholm, No. 6, Vol. 2;B, 1940, pp. 1-3 : in English.) The circuits given by Hunt \& Hickman (169 I of i939) are " not very convenient" for these voltages.
4039. A Voltage Regulator using Thermionic Valves for controlling the Excitation of Synchronous Machines].-Ruberti. (L'Elettrotec., 25 th May 1940, Vol. 27, No. 10 , pp. 239-242.)
4040. Voltage Control with a Non-Linear Wheatstone Bridge [with Two Incandescent Lamps].-Richter. (Electronics, June 1940, Vol. I3, No. 6, pp. 20-21 and 108.)
4041. An Electronic Switch for Fluorescent Lamps [the "Glow-Switch," with Contacts actuated by Bimetal Strip heated by Glow Discharge].-Hays. (Electronics, May 1940 , Vol. 13, No. 5, pp. 14-15.)
4042. A Thermistor Voltage RegulatorGreen \& Pearson. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 204 : summary only.) See also 3359 of September.
4043. Varistors: Their Characteristics and Uses.-Becker. (See 3773.)
4044. The Characteristics of ContactsSotskov. (Automatics \& Telemechanics [in Russian], No. 6, 1939, pp. 29-44.)
Mcthods are indicated for plotting characteristics showing the relationship between the maximum permissible voltage and current values in the contact circuit of a relay. Conditions determining these values, and various factors affecting the life of contacts, are discussed
4045. An Electronic Relay for Heat Control tholding Temperature within $0.02^{\circ} \mathrm{C}$: Simple Circuit using a Type 25 L 6 Valve and Relay].-Hall \& Heidt. (Science, 9th Aug. 1940, Vol. 92, pp. 133-134.) Primarily for biological or chemical processes.
4046. Electrical Stepping Switch [Versatile \& Low-Priced, for Push-Button-Impulse Control of Complicated Switching Operations]. Coto-Coil Company. (Electronics, May 1940, Vol. 13, No. 5, p. 78 .)
4047. The "Transducer" and Its Applications Combination of Iron-Cored Transformers to form a D.C.-Operated A.C. Relay, etc.j.-Lamm. (See 377I.)
4048. High-Frequency Resistance and Permeability of Iron in a [Steady] Magnetic Field [Wavelengths ili- 160 m : Reduction of Both Quantities].-Hoag \& Cox. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 203: summary only.)
4049. Change of Length and Young's Modulus with Magnetisation and Heat Treatment [of Permalloy].-Williams \& others. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, p. 203 : summary only.)
4050. Galvano- and Thermomagnetic Phenomena in Iron and Nickel fand the Sommerfeld/Fermi Relations between Them: Measurements \& Deductions].-Butler \& Pugh. (Phys. Review, 15th May 1940, Ser. 2, Vol. 57 , No. 10, pp. 916-921.)
405i. Electron-Band Treatment of Susceptibilities of Nickel and Nickel Alloys.Keyes. (Phys. Review, I5th July 1940, Ser. 2, Vol. 58, No. 2, pp. 202-203: summary only.)
4052. Magnetic Properties of Iron-Aluminium Alloys [Valuable Combination of Magnetic, Electrical, \& Mechanical Properties].Bozorth \& others. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, p. 203 : summary only.)
4053. Explanation of Anomalous MagneticTorque Curves [given by Iron-Silicon Alloy].-Bozorth \& Williams: Tarasov. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, p. 210.) See 1639 of April.
4054. Theory of the Approach to Magnetic Saturation.-Brown. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58, No. 2, p. 202 : summary only.)
4055. A Simple [Quantum-Mechanical] Generalisation of the Heisenberg-Bloch Theory for the Case of Binary Ferromagnetic Alloys Dependence of Curie Point on Composition: Threc-Halves Power Magnetisation Law at Low Temperatures: etc.].-Vonsovsky. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 6, Vol. 26, 1940, pp. 570-572: in English.)
4056. Permanent Magnets [and the Condition for Maximum Effectiveness or Economy: a Discrepancy]. - Maccall. (Electrician, 2nd Aug. 1940, Vol. 125, p. 62.) See also ibid., 16th August, p. 87.
4057. Vicalloy, A New Permanent-Magnet Material [Cobalt, Vanadium, Iron]. -Nesbitt \& Kelsall. (Phys. Review, 15 th July 1940, Ser. 2, Vol. 58 , No. 2, p. 203 : summary only.)
4058. The Effect of Crystalline Structure on the Properties of Metals [Survey]. Boas. (Journ. Inst. Eng. Australia, May 1940, Vol. 12, No. 5, pp. 147-152.)
4059. Surge-Proof Transformers.-Kimura \& Yokosuka. (Electrotech. Journ., Tokyo, June 1940, Vol. 4, No. 6, pp. 138-140.)
4060. Capacitor Discharge Chart [in connection with Timing of Relays, Welders, Relaxation Oscillators, etc.].-Hanopol. (Electronics, June 1940, Vol. 13 No. 6, pp. $41-42$.)
4061. Variable Air Condenser [Brass and Gunmetal Construction, with Calit Insulation, for Peak Potentials up to 800 V : Capacities between roo \& iooo $\mu \mu \mathrm{F}]$.-Muirhead. (Journ. of Scient. Instr., Aug 1940, Vol. 17, No. 8, p. 213 .)
4062. Radio-Frequency Sparis-Over in Air [Tests on Air Condensers].-Ekstrand. (See 3799.)
4063. Plastics and the Electrical Industry : Part II Thermo-Plastic Materials: Design of Mouldings \& Moulds].-Phipps. (G.E.C. Journ., Aug. 1940, Vol. 11, No. 2, pp. 75-82.) For Part I see 4702 of 1939.
fo64. Plasticizers for Cellulose Acetate and Cellulose Acetate Butyrate.-Fordyce \& Meyer. (Indust. Eo Eng. Chemistry, Industrial Edition, ist Aug. 1940, Vol. 32, No. 8, pp. 1053-1060.)
4065. Dielectric Loss in Simple Alkyd Resins [in connection with Search for New LowLoss Dielectrics and the Possible Use of Long-Chain Compounds containing Even Number of Polar Groups arranged so that Half the Dipole Components transverse to Chain are in Opposite Sense to Other Half]. -Pelmore \& Simons. (Proc. Roy. Soc., Ser. A, 18th July 1940, Vol. 175, No. 963, pp. 468-473.) A summary was referred to in 2434 of June.
4066. The Deposition of Synthetic Resins by Electrophoresis [including Tests on Dielectric Strength \& Loss Angle for Polystyrene, etc., thus Deposited].-Génin. (Rev. Gén. de l'Elec., 25th May/rst June 1940, Vol. 47, No. 21/22, pp. 391-397.)
4067. Polymerisation Processes in Electric Discharges [Experimental Investigation of Mechanism, for Simple Molecules].Schechter \& Syrkina. (Comples Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 5 , Vol. 26, 1940, pp. 446-449: in German.)
4068. D.C. Resistance of Ceramics [Measurements on $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{BeO}$, Spinell, etc: Effects of Impurities and of Previous History].Rögener. (Sci. Abstracts, Sec. A, 25 th July 1940, Vol. 43, No. 5II, p. 57I.) In temperature range $400-1100^{\circ} \mathrm{C}$.
4069. Steatite [Survey of Literature: Experimental Results on Baking Technique \& Addition of BaO and $\mathrm{Ba}_{2} \mathrm{O}_{3}$ to improve Properties].-Oyama \& others. (Sci. Abstracts, Sec. B, 25th June 1940, Vol. 43, No. 510, p. 265.) For previous work see 1613 of 1938.
4070. Physical Constants [Dielectric Constant \& Strength, etc.] of Asphaltic Bitumens: Part II.-Saal \& others. (Sci. Abstracts, Sec. B, 25 th July 1940, Vol. 43, No. 511, p. 308.)
4071. Electron Emission into Dielectric Liquids.-LePage \& DuBridge. (See 3869.)
4072. Design and Preliminary Performance Tests of the Westinghouse Electrostatic Generator Belt Type, with Com-pressed-Air Insulation].-Wells \& others. (Phys. Review, ${ }^{15}$ th July 1940, Ser. 2, Vol. 58, No. 2, pp. 162-173.)
4073. Operating Temperatures of Vapour Lamps [including Effect on Spectral Distri-bution].-Marden \& others. (Journ. Opt. Soc. Am., May 1940, Vol. 30, No. 5, pp. 184-188.)
4074. Aluminium as a Material for Cable Sheathis [Advantages over Lead].Deisinger. (Zeitschr. VD.I., zoth April 1940, Vol. 84, No. 16, pp. 273-274.)

4075 . The Value of the Light Metals in the Construction of Electrical Machines and Apparatus.-Pausert. (Rev. Gén. de l^{\prime} Elec., 27 th April/4th May 1940 , Vol. 47, No. 17/r8, pp. 301-304.)
4076. Electiric Power for Airplanes [Featherweight Apparatus: Electronic Voltage Regulator: etc.].-Clardy. (Elec. Engineering, July 1940, Vol. 59, No. 7 , Transact. pp. $385-388$.)
4077. Dustless Wire Stripper with Vacuum Waste Collector.--(Wireless World, June 1940, Vol. 46, No. 8, p. 295.)

STATIONS, DESIGN AND OPERATION

4078. Narrow-Band versus Wide-Band in Fre-quency-Modulation Reception Strom-berg-Carlson Tests, reported to F.C.C., on Relative Merits of Frequency Swings of 150, $120,60, \& 30 \mathrm{kc} / \mathrm{s}$ as regards Ease of Tuning in Reception, etc: Advantages of the $1.50 \mathrm{kc} / \mathrm{s}$ Swing].-Levy. (Electronics, June 1940, Vol. 13, No. 6, pp. 26-29 and 97, 98.)
4079. Other Papers on Frequency and Phase Modulation.-(See under ' Transmission.')
4080. A 500-Megacycle [Frequency-Modulated] Radio-Relay Distribution System for Television [Development \& Operation of Chain from Empire State Building to Riverhead (7o Miles) via Hauppauge \& Rocky Point (Micro-Wave Frequency-Modulated Links)].-Kroger, Trevor, \& Smith. (R.C.A. Review, July 1940, Vol. 5, No. 1, pp. 31-50.)
4081. Two-Way Telephonic Communication over 90 Miles with Ultra-Short Waves $[\mathbf{1} .3 \mathrm{~m}]$.-Mt. Washington Observatory. (Sci. News Letter, 27th July 1940, Vol. 38, No. 4, p. 59 .)
4082. Radio for Parachute Fire-Fighters [Ultra-Short-Wave "All-Dry" Transceiver weigbing Six Pounds).-(Communications, July 1940, Vol. 20, No. 7, p. 13.)
4083. Telephone Broadcasting: Line Distribution at Radio Frequency [Outline of the Suspended G.P.O. Scheme].-Walmsley, (Wireless World, Sept. 1940, Vol 4^{6}, No. It, pp. 403-405.) See also 1288 of 1939 and $24^{6} 4$ of June.
4084. Short-Wave Broadcasting Stations, arranged in Order of Frequency [with Call Signs \& Powers].-(Wireless World, Sept. 1940, Vol. 46, No. it, pp. 395-396.)
4085. Marine Telephone for Small Boats [for Communication with Coastal Exchange Stations].-Taylor. (Communications, May 1940, Vol. 20, No. 5, pp. 12 and 28..31.)
4o86. Building the World's Farthest-North Broadcast Station [KFAR, Alaska: Consistent Reception at $300-400$ Miles by Day, 1000 Miles by Night, with only ikW on $610 \mathrm{kc} / \mathrm{s}$]. -Wallace. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 285: summary only.)
4086. Weather Robot planned for Inaccessible Spots [Automatic Weather Station readable on Standard Receivers even through Severe Static].-Diamond \& Hinman. (Sci. News Letter, 27 th July 1940, Vol. 38, No. 4 , pp. $5^{1-52 \text {.) }}$
4087. Aircraft Radio Vibration: the Mechanical Instlation of Radio Equipment against Aircraft Vibration.-Hallmann. (Communications', May 1940, Vol. 20, No. 5, pp. $5-7$ and 24.)

GENERAL PHYSICAL ARTICLES

4089. Radiative Processes involving Fast Mesons [including Discussion of Experimental Results on Energy Losses of " Heavy Electrons" in Cosmic Rays].-Booth \& Wilson. (Proc. Roy. Soc., Ser. A, 18 th July 1940, Vol. 175, No. 963, pp. 483-518.)
40go. Scattering of Fast Electrons by Nitrogen Nuclei [Measurements supporting Mott's Theory].-Borisov \& others. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 2, Vol. 26, 1940, pp. 1421 43 : in English.)

409i. On the Polarisation of Electrons by Scattering [Negative Experimental Results are because Scattered Electrons have got Their Deflection by Multiple Scattering, Not by a Single Act?.-Landau. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 5, Vol. 26, 1940, p. 429 : in English.)
4092. Probability of Pair Production in Nitrogen by Gamma Rays, and Angular Distribution and Nuclear. Impulse for Fairs in Nitrogen.-Groshev. (Gomptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 5, Vol. 26, 1940, pp. 419-423: pp. 424-428: in English.)
4093. Pair Production by Electrons Experimental Investigation using Monochromatic Source of Electrons from van de Graaff Generator, with Trochoid Method of Focus-ing].-Feldmeier \& Collins. (Phys. Review, ${ }^{15}$ th July 1940, Ser. 2, Vol. 58, No. 2, p. 200: summary only.)
4094. The Diamagnetism and the Quadrupole Moment of Hydrogen Molecules and the Agreement between the Theoretical \& Experimental Radio-Frequency Spectra].Ramsey. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, p. 1go.) See also 2775 \& 2776 of July, and ibid., ist Aug. 1940, No. 3, pp. 226-236.
4095. Concentration of Cations at Negatively Charged Surfaces.-Webb \& Danielli. (Nature, 1oth Aug 1940, Vol. I46, PP. 197-198.)
4096. Thermal Transpiration of a Dissociating Gas.-Srivastava. (Proc. Roy. Soc., Ser. A, 18th July 1940, Vol. 175, No. 963, pp. 474-483.)
4097. The Thermodynamic Functions for a Fermi-Dirac Gas.-Stoner. (Phil. Mag., Sept. 1939, Vol. 28, No. I88, pp. 257-286.)
4098. Thermionic Measurement of e/m [Simple Method, from Current to Cylindrical Anode]. -Gager. (Sci. Abstracts, Sec. A, 25th July 1940, Vol. 43, No. 5II, p. 576.)
4099. "Ions, Electrons, and Ionising Radiations: Seventh Edition" [Book Review]. -Crowther. (Proc. Inst. Rad. Eng., June 1910, Vol. 28, No. 6, p. 289.)
foo. "Phission" [Photo-Fission, as distinct from Neutron Fission] of Uraniem 235 bỳ Gamma Rays.-Westinghouse Laboratories. (Sci. News Letter, 6th July 1940, Vol. 38, No. 1, pp. 3-4.). A letter from Haxby \& others appears in Phys. Review, ist July 1940, Vol. 58, No. I, p. 92.
4ioi. " Theoretical Physics: Vol. III-Relativity and Quantum Dynamics. Einstein-Planck " [Book Review].-Wilson. (BEAMA Journal, July 1940, Vol. 47, No. 37, p. 13.)

MISCELLANEOUS

4102. Sir Oliver Lodge: a Great Scientific Teacher.-(Elec. Review, 3oth Aug. 1940, Vol. I 27, p. 169.$)$
4103. Harmonic Analysis by the Method of Central Differences [applicable to Most Non-Linearity Problems].-Espley. (See $3^{8} 72$.)
4104. A Note on Laguerre Polynomials.Howell. (Phil. Mag., Sept. 1939, Vol. 28, No. 188 , pp. $287-288$.) For previous work see $2149 \&+382$ of 1937.
4105. Some New Criteria for the Determination of the Class of a Trigonometric Series [e.g. Class C, Class Lu, FourierStieltjes Series: Necessary \& Sufficient Conditions given by Bernstein Summation]. -Kharchiladze. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 2, Vol. 26, 1940. Pp. 137-138: in French.)
fiob. The Errors in the Numerical Solution of Differential Equations, and Two Notes on the Numerical Solution of Differential Equations.-Turton. (Phil. Mag., Sept. 1939, Vol. 28, No. 188, pp. 359-363: pp. $38 \mathrm{I}-384$.)
410-. The Cinfma Integraph: a Machine for Evaluating a Parametric Product In-tegral-Hazen \& Brown. (Jown. Franklin Inst., July \& Aug. 1940, Vol. 230, pp. 19-44 \& 183-205.) Developed from the photoelectric integraph dealt with in 193I Abstracts, p. 572 (Gray).
4108." Aspects of the Calculus of Variations" Book Review].-Green, Lewy. (Nature, 24th Aug. 1940, Vol. 146, p. 250.)
4106. "New First Course in the Theory of Equations" [Book Review].-Dickson. (Nature, 24th Aug. 1940, Vol. 146, p. 250.)
4 ifo. Physical Problems in Industry [Note on the Facilities offered by the Institute of Physics' Panel of Consultants]. - (Nature, 27 th July 1940, Vol. 146, p. 125 : Wireless Engineer, Sept. 1940, p. 399.)
4ili. What the Institute does for Its Members [and in particular the Important Part played by the Proceedings in the Development of the Industry].-Heising. (Proc. Inst. Rad. Eng., June 1940, Vol. 28. No. 6, pp. $27^{8-280 .)}$
4107. A New Post-Graduate Course in Industry in High-Frequency Engineering [adopted by General Electric Company].-Stevenson \& Ramo. (Elec. Engineering, July $19+0$, Vol. 59, No. 7, Transact. pp. 374-378: Discussion pp. $37^{8-3} 8$ o.)
41I3. "Serendipity" [Origin \& Examples, and the Gradual Elimination of Chance Discoveries by Organised Research).-(Engineer, 23 rd Aug. 1940, Vol. 170 , pp. 122-123.)
4il4. Eiectrical Progress and Development during 1939.-Richardson. (G.E.C. Journ., Feb. 1940, Vol. II, No. 1, pp. 3-39.)
4115 . The General Radio Company [Survey of 25 Years].-(Communications, June 1940, Vol. 20, No. 6, pp. 9-1I)
4il6. New Books on Science [Comprehensive List for Jan./June 1940, All in English Language].-(Sci. News Letter, 2oth April 1940, Vol. 37, No. 16, pp. 245-.2.56.)

41i7. The Naming of Scientific Instruments [Correspondence].-Williamson. (Journ. of Scient. Instr., July 1940, Vol. 17, No. 7, p. 193.) See 3258 of August.
4118. Review of American Radio: Frequency Modulation, Television, Amateurs, Defence.-Dinsdale. (Wiveless World, Aug. 1940, Vol. 46, No. 10, pp. 348-351.)
4II9. Aircraft Radio Vibration: the Mechanical Insulation of Radio Equipment against Aircraft Vibration.-Hallmann. (Communications, May 1940, Vol. 20, No. 5 , Pp. 5^{-i} and 24.)
4120. Multi-Circuit Carrier Telephony.Richards \& Taylor. (Printed Paper of Inst. P.O. Elec. Eng., No. 171, 36 pp .)
4121. Terminal Circuits for the J Carrier System [for Open-Wire I_ines, Twelve Channels in Each Direction].-Leconte. (Rell lab. Record, June 1940, Vol. 18 , No. 10 , pp. 292-297.)
4122. Mutual Interference, and Its Elimination, in Two line Circuits Parallel to Each Other.-Hirota. (Nippon Elec. Comm. Eng., Jan. 1940, No. I9, pp. 154-157.)
4123. Advances in Carrier Telegraph Transmission [Survey].-Matte. (Bell S. Tech. Journ., April 1940, Vol. 19, No. 2, pp. 161208.)
4124. New Method of Fault Localisation in Power Cable [by Audio-Frequency Capacitance Bridge].-Numakura \& Tukamoto. (Electrotech. Journ., Tokyo, March 1940, Vol. 4, No. 3, pp. 55-58.)
4125. Electrical Supply Equipment at a Wireless Works [Plessey Company].-(Engineer, 24th May 1940, Vol. 169, p. 482 .)
4126. Applications of X-Ray Technique to Industrial Laboratory Problems.Rooksby. (See 3866.)
4127. X-Ray Pictures taken in Millionth of a Second [by Condenser Discharge: Photographs of Bullet passing through Wood Block: etc.].-Slack. (Sci. News Letter, 29th June 1940 , Vol. 37, No. 26, pp. 404-405.) Cf. $2201 \& 4265$ of 1939.
4128. The X-Raying of Commercial Goods and the Detection of Spots of Different Density [Formulae for Quantitative Interpretation of Results].-Orlov. (Joturn. of Tech. Phys. [in Russian], No. 24, Vol. 9, 1939, pp. 2220-2224.)
4129. I 400 ooo-Volt Constant-Potential XRay Equipment [with Tungsten-Filament Cathode giving 10 mA Electron Beam focused on $\frac{1}{\prime \prime}^{\prime \prime}$ to $1 \frac{1}{2}^{\prime \prime}$ Spot on Anode at 24 ft Distance].-Charlton \& Hubbard. (Gen. Elec. Review, July 1940, Vol. 43, No. 7, pp. 272-279.)
4130. Calculation of Energy adsorbed in Irradiated Tissue ffor Dosage of X-and Gamma-Rays].-Happey. (Nature, 2oth July 1940, Vol. 146, p. 96.)
4131. Total Energy Absorption in Biological Objects [subjected to X - or Gamma-Rays].-Mayneord. (Nature, 22nd June 1940, Vol. I45, pp. 972-973.)
4132. The Killing of Bacteria with UltraViolet Light [Solution for Case of Uniform Flow of Air].-Downie Smith. (Jourm. Franklin Inst., June 1940, Vol. 229, No. 6, pp. 775-778.)
4133. Can Modern Science harmonise Physics and Biological Phenomena? - Swann. (Journ. Franklin Inst., June 1940, Vol. 229, No. 6, pp. 693-708.)
4134 . Experiments With Colpidium Campylum [Microorganisms] in High-Frequency Electiric and Magnetic Fields [Frequencies 15-60 Mc/s: Absence of Non-Thermal Action].-Summers \& Hughes. (Electronics, June 1940, Vol. 13, No. 6, p. 93 : summary only.)
4135." Essat De Meteoropathologie: Physique, Clinique, therapeutigue," [Effect of Atmospheric Conditions on Human Physiology, etc: Book Review].-Kopaczewski. (Nature, ${ }^{2} 4$ th Aug 1940, Vol. I46, p. 250.) Cf. Düll \& Düll, 3277 of August.
4136. A Direct-Current and Audio-Frequency Amplifier [for Illumination Measurements Nerve-Action Currents, etc.].-Black \& Scott. (See 3898.)
4137. Electron-Microscope Fellowship estabLished [under National Research Council, by R.C.A: open to Microbiologists].(Sci. News Letter, Ioth Aug. 1940, Vol. 3^{8}, No. 6, p. 85.)
4138. An Electronic Relay for Heat Control [holding Temperature within $0.02^{\circ} \mathrm{C}$: Simple Circuit using a Type 25 L6 Valve and Relay].-Hall \& Heidt. (Science, $9^{\text {th }}$ Aug. 1940, Vol. 92, pp. 133-134.) Primarily for biological or chemical processes.
4139. Constant Temperature Control Apparatus [for Furnaces, etc.], utilising Special Type of Voltage Regulator.-Blair. (Journ. of Scient. Instr., Aug. 1940, Vol. 17, No. 8, pp. 203-208.)
4ifo. Polymerisation Processes in Electric Discharges [Experimental Investigation of Mechanism, for Simple Molecules].Schechter \& Syrkina. (Comptes Rendus (Dohlady) de l'Ac. des Sci. de l'URSS, No. 5 , Vol. 26, 1940, pp. 446-449 : in German.)
4141. Sir Ambrose Fleming's Method of Electrification and Alfred Coehn's Electrostatic Experiments.-Schnurmann : Fleming. (Proc. Phys. Soc., ist March 1940, Vol. 52, Part 2, pp. 179-183.) See 1680 of April and back reference.
4if2. A Mobile Seismic Recording Unit [for Geophysical Prospecting].-Murphy \& others. (Phil. Mag., Sept. 1939, Vol. 28, No. 188, pp. 37-38o.)
4143. Radio-Frequency Measurements of Ground Conductivity in Canada [Comparison of Conductivity Map and Geological Map]-MacKinnon. (See 3742.)
4if4. Application of Electro-Prospecting by Direct Current on Perpetually Frozen Ground in the Igarka Region.-Enenstein. (Comptes Rendus (Doklady) de l'Ac. des Sci. de l'URSS, No. 4, Vol. 26, 1940, pp. 33 ${ }^{8-341}$: in English.)
4 I45. Locating Buried Cables and Pipes [Detector with Magnetic Pick-Up: Iron Conduits 13 ft Underground easily detected]. Marcroft. (Electronics, June 1940, Vol. 13, No. 6, p. 94 : summary only.)
4if6. The Derivation of Formulaf for determining the Trayelling Wave when Telemechanical Signals are transmittied over a Line, and On the Propagation of H.F. Electromagnetic Energy along Symmetrical Multi-Conductor Lines.Kovalenkov: Dyakov. (See 3744 \& 3745.)
4147: New Radio Control Gear for Model Airplanes Three-Way Control Installation using an RK 62 Valve-"Gas-Triode De-tector-Thyratron "].-Bohnenblust. (QST, Aug. 1940, Vol. 2_{4}, No. 8, pp. $9-12$ and 70.) The receiver itself is, with minor changes, the same as in 829 of 1939.
4148. Radio-Controlled Seadrome Lights [on Rubber "Doughnut" Floats: for the C.A.A.]-(Communications, July 194°, Vol. 20, No. 7, p. 12.)
4i49. An Electronic Switch for Fluorescent Lamps [the "Glow-Switch," with Contacts actuated by Bimetal Strip heated by Glow Discharge].-Hays. (Electronics, May 1940, Vol. 13, No. 5, pp. I4-15.)
4 ifo. Improvements on A.C. Arc Welder [Arc Stabiliser: Electrode Life increased Ten Times].-Hoh. (Electrotech. Jowm., Tokyo, June 1940, Vol. 4, No. 6, p. 144.) For previous work see 2817 of July.

415I. Criticisms of Paper on Electronic Control Gear for Welding.-(E. \& Television E Short-Wave World, May 1940, Vol. 13, No. 147, p. 238.) See 2816 of July
4152. Welding-Period Timing by means of Steel Ignitrons.-Higgins. (E. E Television © Short-Wave World, June 1940, Vol. 13, No. 148, pp. 251-253.)
4153. The Lagometer [Instrument on CondenserCharging Principle for Time Measurements]. -Bryan. (Sci. Abstracts, 25th July 1940, Vol. 43, No. 5II, p. 3io.)
4154. An Electronic Timer [for Bromide Printing, etc: on Condenser Time-Delay Prin-ciple].-Norton. (E. \& Television \& Short-Wave World, April 1940, Vol. I3, No. 146, p. 175 : summary only.)
4155. Рнотоtube [discharging a Condenser] controls Printing Exposures automatically [for Standard Enlargements from Small Films].-Eastman Kodak. (Electronics, June 1940, Vol. 13, No. 6, pp. 54 and 58.)
4156. An Improved High-Speed Recording Spectrophotometer [" Memory Condenser," charged by Output from il-Stage Electron-Multiplier Photocell, carries out Balance against Same Beam later reduced by Rotating Photometric Disc: Spark Recording at Balance Point (eliminating Photographic Recording)].-Harrison \& Bentley. (Joum. Opt. Soc. Am., July 1940, Vol. 30, No. 7, pp. 290-294.)
For a note stressing the value of this instrument in accelerating the inspection of metals \& alloys in a defence programme, see Science, 26th July i940, Supp. p. 6.
4157. A Precision Spectrofhotometer for Use in the Range 450 to $820 \mathrm{~m} \mu$.-Jacobsohn \& others. (Review Scient. Instr., July 1940, Vol. II, No. 7, pp. 220-226.)
4158. Simplified Spectrophotometer uses SelfGenerating Photocell [and a TungstenLamp Spectrum as Source of Light].Sheard. (Electronics, May 1940, Vol. 13, No. 5, Pp. 44 and 46.)
4159 Barrier-Layer Photocells in Differential Cibcuits.-Sargrove. (E. E Television \& Short-W ave World, May 1940, Vol. 13, No. 147, pp. 210-2II.)
4i6o. Colour Matching in Industry: a New Colout Comparator.-Satgrove. (E. \&o Television \& Shovt-Wave World, July 1940, Vol. 13, No. 149, pp. 318-319 and 331, 332.)
4161. An Optical Smoothness-Meter for Evaluating the Surface Finish of Metals [using Small Integrating Sphere and Recti-fier-Type Photocell].-Guild. (Joum. of Scient. Instr., July 1940, Vol. 17, No. 7. pp. 178-182.)
4162. Photoelectric Relay for Control of Smoke from Boiler Flues.-Ray (Sci. © Culture, Calcutta, June 1940, Vol. 5 No. $12, \mathrm{pp} .749-7.50$.)
4163. Phototcbe inspects Steel Strips for Pinholes [with Strip moving at roooft/ min.].-Westinghouse. (Electronics, June 1940, Vol. I3, No. 6, pp. 60 and 62.) $C f$. 2182 of 1939.
4164. R.C.A, Рhototube Reference Chart. R.C.A. (Electronics, June 1940, Vol. 13, No. 6, p. 73.)
4165. "Photoflectric and Selenium Cells: Second Edition" [including Industrial Applications: Book Review].-Fielding. (Wireless Engineer, Sept. 1940, Vol. 17, No. 204, p. 398.)
4166. Electronic Counting Circuits ffor Mass Production Processes, etc: a Survey],(E, \& Television \& Short-Wave World, June 1940, Vol. 13, No. 148, pp, 261-263.)
4167. Photoelectric Cells sensitive to LongWave Radiation: the Bismuth-Sulphide Cell.-Fink \& Mackey. (See 3967.)
4168. Photocell Multiplier Tubes Useful whenever Low Light Level or Large Frequency Range is involved].-Larson \& Salinger. (See 3964.)
fi69, Further Applications of Space-Charge Coupling [to Condenser-Microphone Amplification, Ultra-Micrometer Circuits, etc.].Sargrove. (See 3760.)
4170. A Magnetic Ultra-Micrometer for Measurement of Thin Films of NonMagnetic Material superposed on a Base of Magnetic Material [detecting 10^{-6} Inch of Film: No Amplification].Ellwood. (Phys. Review, 15th July 1940, Ser. 2, Vol. 58, No. 2, pp. 204-205: summary only.)
4171. A Convenient Electrical Micrometer and Its Use in Mechanical Measure-ments.-Gunn. (Journ. of App. Mechanics, June 1940, Vol. 7, No. 2, pp. 49-52.) The full paper mentioned in 3686 of September.
4172. The Micro-Analysis of Gases by Physical Methods.-Ransley. (See 3883.)
4173. Vacuum Tubes in Chemical Research.Penther \& Pompeo. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, p. 284 : summary only.)
4174. The Measurement of the Rheological [Flow \& Deformation] Properties of Some Industrial Materials [Survey].-Scott Blair. (Journ. of Scient. Instr., July I940, Vol. 17, No. 7, pp. 169-177.)
4i75. Stress Measurement by Magnetostric-tion.-Smith \& Luxford. (Sci. Abstracts, Sec. B, 25 th June 1940, Vol. 43. No. 510 , p. 273.)
4176. The Admiralty Cathode-Ray-Oscillograph Engine Indicator [with ElectroMagnetic Pick-Up].-Smith, Lakey, \& Morgan. (Sci, Abstracts, Sec, B, 25 th June 1940, Vol. 43. No. 510, p. 270.) Smith's paper on the basic principles in the design of c-r-o indicators is dealt with on the same page.
4177. Measurements of Noise and Vibration [including New Developments in Apparatus]. - Scott. (Proc. Inst, Rad. Eng., June 1940, Vol. 28, No. 6, pp. 284-285: summary only.)
4178. An Electronic Fire Detector [of High Sensitivity, based on Production of Langevin Ions: Electrostatic Relay controlled by Comparative Conductivity of Ambient Air and Sealed Rare Gas (both Permanently Ionised by Radioactive Layers)]-(E. ́ㅡㅇ Television \& Short-Wave World, July 1940, Vol. 13, No. 149, p. 310.) Developed in Switzerland.

4t79. Radio For Parachute Fire-Fighters [Ultra-Short-Wave " All-Dry" Transceiver weighing Six Pounds].-(Communications, July 1940, Vol. 20, No. 7, p. 13 .)
fi8o. "Lehrbuch der Hochfrequenztechnik" [Second Edition].-Vibig. (Electronics, June 1940, Vol. I3, No. 6, pp. 68 and 70 .) A separate volume, the Bibliography, is also reviewed, and is criticised for the lack of British and American references.

4i81. "Introduction to Chemical Physics" [Book Review].-Slater. (Electronics, June 1940, Vol. 13, No. 6, pp. 64. 68.) An enthusiastic review by D. B. Langmuir.
4182. "Modern Physical Laboratory P'ractice" [Book Review]. -Strong \& others. (Journ. of Scient. Instr., Aug. I940, Vol. I 7 , No. 8, p. 2 I6.) Cf. 1241 of March.
4183. "The 'Rádio' Handbook" 「Book Re-view].-Staff of Radio. (Proc. Inst. Rad. Eng., June 1940, Vol. 28, No. 6, pp. 287-288.)
4184. "Radio's Master Encyclopedia" [Directory, Catalogues, etc: Book Review.(Communications, July 1940, Vol. 20', No. 7, p. 20.)
4185. "Telephony : Supplement to Volume 2" [Selector Circuits and Unit Automatic Exchanges: Book Review], - Herbert \& Proctor. (Wireless Engineer, Sept. I940, Vol. 17, No. 204, p. 397.)
4186. The Case History of a Scientific News Story.-Simpson. (Science, 16th Aug. 1940, Vol. 92, pp. 148-150.) "Fairly typical of what still happens to scientific news."
4187. Lucite Instrument Caises Pioneer Applications of the Methyl Methacrylate Transparent Plastic].-(Journ. Franklin Inst., Aug. 1940, Vol. 230, No. 2, pp. 276-277.)
4188. Carrier Telemetering with the Metameter [Impulse-Duration Telemeter].Lunge. (Gen. Elec. Review, Aug. I940, Vol. 43, No. 8, pp. 336-343.) See also 1716 of April.

[^0]: *Journ. of Scient. Inst., IX, p. 322, Oct. 1932.
 \dagger Loc. cit, IN, p. 361, Nov. 1932
 ${ }_{\ddagger}{ }^{+}$Loc cit. X, p. 24, Jan., and p. 121, April 1933

[^1]: * $\ln x=\log _{e} x$.

[^2]: * MS. accepted by the Editor, July, r940.

[^3]: * During the preparation of this article the Radio Research Board of Australia courteously submitted details of a new design of a phase shifter of somewhat similar properties based on Pulley's principle (loc. cit.) evolved by A. H. Mutton, and it is understood that Mutton's phase adjuster is in course of publication.

[^4]: 37+6. A Possible Explanation of Deep-Focus Earthquakes Parabolic Mirror formed by Mountain Roots].-J. Lynch. (Science, 5 th July 1940, Vol. 92, pp. IO-II.)

