INCORPorATING ELLECTRONICS MONTHLY

AMSTRAD PORTABLE PC'S FROM $\mathrm{C149}$ (PPC1512SD). £179 (PPC1512DD). £179 (PPC1640SD). £209 (PPC1640DD́). MODEMS $£ 30$ EXTRA.NO MANUALS OR PSU.

HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 4ohm impedance and consisting of $61 / 2^{\prime \prime}$ wooter 2" mid range and 1 " tweeter. Ideal to work with the amplifer described above. Price per pair $£ 30.00$ Order rel 30P7R
2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a epare for
Now only 54.00 ref 4P15?
Now only EA. 1 ME ROP 4P157 switches. Complete with 4 digit display, digital clock, and 2 telay outputs one for power and one for pulsed power (programmable). Ideal for all sorts of precision imer applications etc. Now only $£ 4.00$ ref 4P151.
FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five metre length $£ 7.00$ rel 7P29R
12V SOLAR CELL. 200 mA output ideal for trickie

charging $15 P 42 \mathrm{C}$

PASSIVE INFRA-RED MOTION SENSOR.
Complete with dayight sensor, adjustable lights on timer (8 secs -15 mins). 50^{\prime} range with a 90 on imer (8 secs -15 mins). 50 range with a 90
deg coverage. Manual overide facility. Com-
plete with wellbrackets, bulb holders etc. Brand new and guaranteed. Now only E18.00 ref 19P29
Pack of two PAR 38 bulbs for above urin $£ 12.00$ ref 12 P 43 R
VIDEO SENDER UNIT Transmit both audio and video signals from either a video camera, video recorder or computer to any 12v DC ©p. £15.00 ref 15P39R Suitable mains adaptor $£ 5.00$ ref SP191R
FM TRANSMITTER hou'sed in a standard working 13A adapter (bug is mains driven). E26.00 ref 26P2R MINATURE RADIO TRANSCEIVERS A pair of fir walkie talkes with a range of up to 2 kitomatres. Units
measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. $£ 30.00$ ref 30P12R
FM CORDLESS MICROPHONE.Small hand held unit with a 500° rangel 2 transmit power levels reqs PP3 battery. Tuneable to any FM receiver. Our price $£ 15$ ref 1 5P42AR
12 BAND COMMUNICATIONS RECEIVER. 9 shon 成in oands, FM, AM and LW DXlocal switch, tuning 'eye' mains NOW ONLY E99.001! REF 19P14R.
CAR STEREO AND FM RADIOLow cost stereo system giving
45 db 5 watts per channel. Signal to noise ratio better th
wow and fluter less than 35% Neg earth $£ 19.00$ 45 db . rew 19P30
LOW COS T WALIKIE TALKIES. Pair of battery op. a pair ret 8 P 50 R
7 CHANNEL GRAPHIC EQUALIZERDlus a 60 watt power amp! 20-21 KHZ 4-8R 12-14V DC negative earth. Cased. £25 ref 25P14R NICAD BAT TERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ref 4 P44R. $2 \times \mathrm{C}^{\prime} \mathrm{s} £ 4.00$ ref 4 P73R. $4 \times \mathrm{D}$'s $£ 9.00$ rel $9 \mathrm{P} 12 \mathrm{R}, 1 \times \mathrm{PP} 3$ ع6.00 ref 6P35R
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ultimate equivalents book. Latest edition E20.00 rel GUIDE.
CABLE TESS. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nylon pack of $100 \mathrm{\Sigma} 3.00 \mathrm{ref}$ CABLE IIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ whise nylon pack of 100

GOT A CARAVAN OR BOAT?
NEW 80 PAGE FULL COLOUR LEISURE CATALOGUE
2,500 NEW LINES FREE WITH ORDER ON REQUEST

OR SEND $£ 1.00$

GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. £39.00 ref 39P1R FM BUG KIT. Now design with PCB embodded coll. Transmits to
any FM radio. 9v battery req'd. $£ 5.00$ ref 5P158R any FM radio. $9 v$ battery reqd. $£ 5.00$ ref 5P158R
FM BUG Built and tested superior $9 v$ operation $£ 14$.
FM BUG Built and tested supenior 9 v operation $£ 14.00$ ref $14 \mathrm{P} 3 R$ separate H sy nc, V sync and video. 12v DC. £8.00 rof 8 P 39 P . SINCLAIR C5 MOTORS $12 v 29 A$ (full load) 3300 pm 6 " $\times \mathrm{x}^{4} 1 / 4$ OfP shaf. New. E20.00 ref 20P22R:
As above but with fitted 4 to 1 inline reduction box (800 pm) and toothed nylon belt drive cog $£ 40.00$ ret 40 PBR.
SINCLAIR C5 WHEELS $13^{\prime \prime}$ or 16° dia including treaded tyre and inner tube. Wheels a re black, spoked one piece poly carbonate. $13^{\prime \prime}$ wheel E 6.00 re1 6P20R, $16^{\prime \prime}$ wheel E 6.00 ref 6P21R.
ELECTRONIC SPEED CONTROL KITfor c 5 motor. PCB and all components to build a speed controller ($0-95 \%$ of speed). Uses pulse width modulation. £17.00 ref 17P3R.
SOLAR POWERED NICAD CHARGER.Charges 4
AA nica.
12 VOLT BRUSHLESS FAN4 $1 / 2^{2}$ square brand now ideal for boat, car, caravan etc. £5.00 ref SP206.
ACORN DATA RECORDER ALF503 Made for BBC computer but suitable for others. Includes mains adapter, leads and book. 15.00 ref 15P43R

VIDEO TAPES. Three hour superior quality tapes made under icence from the famous JVC company. Pack of 5 tapes Now low prlce £8.00 re 8P161
PHILIPS LASER
PHILIPS LASER. 2MW HELIUM NEON LASER TUBE. BRAND NEW FULL SPEC £40.00 REF 40P10R. MAINS POWER SUPPLY KIT $£ 20.00$ REF 20P33R READY BUILT AND TESTED LASER IN ONE CASE E75.00 REF 75P4R. 12 TO 220 V INVERTER KITAs supplied it will handle up to about 15 w at 220 v but with a largertransformer it wilt handle 80 watts. Basic kit E12.00 rel 12P17R. Larger transiormer $£ 12.00$ ref 12P41R. VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with toois, wire and reusable board.
New low bargaln prlce only E 2.00 ret $\mathrm{B2P1}$ Now low bargaln price only $£ 2.00$ ret B2P1
HIGH RESOLUTION 12"' AMBER MONIT
HIGH RESOLUTION $12^{\prime \prime}$ AMBER MONITOR12v 1.5A Hercules compatible (TTL input) new and cased £22.00 ret 22P2R

VGA PAPER WHITE MONO monitors new and cased 240 V AC. ©59.00 rel 59P4R
25 WATT STEREO AMPUFIERC. STK043 With the addition of a handful of componente you can build a 25 watt amplifier. $£ 4,00$ re 4P69R (Circuir dia included).
BARGAIN NICADS AAA SIZE 200MAH 1.2 V PACK OF 1 £4.00 REF 4P92R, PACK OF 100 £30.00 REF 30P16R FRESNEL MAGNIFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ref BD827R ALARM TRANSMITTERS. No data avaliable but nicely made complex radio transmitters $9 v$ operation. 54.00 each ref 4P81R. 12V 19A TRANSFORMER. Ex equipment but othermise ok. Ou price £20.00
GX4000 COMPUTERS. Customer returned games machines complete with plug in garne. joysticks and power supply. Retail price is almost $£ 100$. Ours is $£ 12.00$ ref $\mathrm{B12P1}$
ULTRASONIC ALARM SYSTEM. Once again in stock these units consist of a detector that plugs into a 13 A socket in the area to protect. The receiver plugs into a 13A socket anywhere else on the same supply. Ideal for protecting garages, sheds etc. Complet system £25.00 ret B25P1 additional detectors $£ 11.00$ ref B11P1 5P612
IBM AT KEYBOARDSBrand new 86 key keyboards $£ 15,00$ ref 15P612
386 MO THER BOARDS. Customer returned units without a cpu fitted. $£ 22.00$ rel AZZP1

BSB SATELLITE SYSTEMS
 BRAND NEW REMOTE CONTROL

 E49.00 REF F49P1286 MOTHER BOARDS. Brand new but customer returns so may need attention. Complete with technical manual £20.00 rel A20P2 286 MOTHER BOARDS. Brand new and tested complete with technical manual. £49.00 ref A49P1
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and UNIVERSAL BATT ERY CHARGER.Takes AA's. C's, D's and
PP3 nicads. Holds up to 5 batteries at once. Now and cased, mains PP3 nicads. Holds up to 56
IN CAR POWER SUPPLY. Plugs into cigar socket and gives
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3.4,5,6,7.5,9$ and 12 v outputs
spider plug, 55.00 rP167R.
spider plig. E5.00 ri 5P167R.
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watl 2%
metal film. $£ 5.00$ ref SP170R.

MIRACOM WS4000 MODEMS

V21/23

AT COMANDSET

AUTODIAL/AUTOANSWER

 FULLSOFTWARE CONTROL TONE AND PULSE DIALLING
$£ 29$

IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. E5.00 ret 5P186R.
COPPER CLAD STRIP BOARD $17{ }^{\prime \prime} \times 4^{\prime \prime}$ of $.1^{\prime \prime}$ pitch "vero" board 84.00 a sheet ref 4P62R or 2 sheets for $£ 7.00$ ref 7P22A

E4.00 a sheet ref $4 P 62 R$ or 2 shoets for $£ 7.00$ ref 7P22
STRIP BOARD CUTTING TOOLE2.00 ret 2P352R.
STRIP BOARD CUTING TOOLE $£ 2.00$ ret 2P352R.
50 ME TRES OF MAINS CABLE $£ 3.002$ core black preaut in converient 2 m lengths. Ideal for repairs and projects, ref 3P91R CORE SCREENED AUDIO CABLE 24 METRES 22.00 Precut into convenient 1.2 m lengths. Rof 2P365
TWEETERS $21 / 4^{" O}$ DIA 8 chm mounted on a smart metal plate for oasy fixing $£ 200$ ret 2 P 366 R
COMPUTER MUCE Originally made for Future PC's but can be adapted for other machines. Swiss made $£ 8.00$ ret \&P 57 P. Atari ST conversion kit E2.00 ref 2P362R
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Built in weeter 4 ohm $\Sigma 5.00$ ref P205R
WINDUP SOLAR POWERED RADIOI FMAM radio takes rechargeable batteries complete with hand charger and solar pane 4P200R

PC STYLE POWER SUPPLY Made by AZTEC 110 v or 240 v inpur. $+5 @ 15 A,+12 @$ 5A. -12 @ .5A, -5 @ .3A. Fully cased with fan on/off switch, IEC iniet and standard PC flyleads. E15.00 ref F15P4 ALARM PIR SENSORS Standard 12 v alarm type sensor will interface to most alarm panels. $£ 16.00$ ref 16P200
ALARM PANELS 2 zone cased keypad entry, entry exit time delay
BULL ELECTRICAL
日N3 5OT TELEPHONE 0273203500 WAI ORDED TERMS, GASH PO OR CHECU WHO OADER PLUS M3 OO POST PLUSVAT: FHEASH. ALOH, Y LO DAYS FOM DAUVERY

FAX:0273:23077
orc. $£ 18.00$ ref $18 P 200$
MODEMS FOR THREE POUNDSH
Fully cased UK modems dasigned tor dial up system (PSTN) no data
or into but only $£ 3.00$ ref 3 P145R

TELEPHONE HANDSETS
Bargain pack of 10 brand now handsets with mic and speaker only £3.00, ref 3P146P
BARGAN S TRIPPERS
Computer keyboards. Loads of switches and components excellent value at $£ 1.00$ rel CD $40 R$
DATA RECORDERS
DATA RECORDERS
Customer returned mains battery units built in mic ideal for Computer or general purpose audio use. Price is $£ 4.00$ ref 4 P100R
SPECTRUM JOYS TCK INTERFACE
SPECTRUM JOYS TICK INTERFACE
Plugs into 48 K Spectrum to provide a standard Atari type joystick port. Our price $£ 4.00$ ref 4P101R
ATARI JOYSTICKS
Ok for use with the above interface. our price $£ 4,00$ ref 4P102R
BENCH POWER SUPPLES
Superbly made fully cased (metal) giving 12vat 2A pius a 6 V supply Fused and short circuit protected. For sale at less than the cost of the casel Our price is $£ 4.00$ ref 4P103R
SPEAKER WIRE
Brown twin core insulated cable 100 feet for $£ 2.00$ REF 2P79R MAINS FANS
Brand new 5" $\times 3^{\prime \prime}$ completo with mounting plate quite powertull and quite. Our price $£ 1.00$ rel CD41R DISC DRIVES
Customer retumed units mixed capacities (up to 1.44M) We have not sorted these so you just get the next one on the shell. Price is only £7.00 ref 7P1R (worth it even as a stripper)
HEX KEYBOARDS
Brand new units approx $5^{\prime \prime} \times 3^{\prime \prime}$ only $£ 1.00$ each ref CD42R
PROJECT BOX
$51 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1$ " black ABS with screw on id. $£ 1.00$ rei CD43R SCART TO SCART LEADS
Bargain price leads at 2 for $£ 3.00$ ref 3P147R
SCART TO D TYPE LEADS
Standard Scart on one end, Hi density D type on the other. Pack of ten leads only $\mathbf{\Sigma} 7.00$ ref 7P2R
OZONE FRIENDLY LATEX
250 m l bottle of hquid rubber sets in 2 hours, Ideal for mounting PCB's fixing wires etc. $£ 2.00$ each ref 2P379f
OUICK SHOTS
Standard Alari compatible hand controlier (same as joysticks) our price is 2 for $E 2.00$ ref 2P380R
VIEWDATA SYS TEMS
Brand new units made by TANDATA complete with 1200/75 buitt in modem infra red remote controlled qwerty keyboard BT appproved Prestel compatibie. Centronics printer port RGB colour and composto output (works with ordinary television) complete with power supply and fully cased. Our price is only $£ 20.00$ ref 20P1R AC STEPDOWN CONVERTOR
Cased units that convert 240 v to $110 \mathrm{v} 3^{-1} \times 2$ with mains input lead and 2 pin American output socket (suitable for resistive loads only) our price $£ 2.00$ ref 2P381R
SPECTRUM +2 UGHT GUN PACK
complete with sotware and instructions $£ 8.00 \mathrm{ref}$ 8P58R/2
CURLY CABLE
Extends from 8 " to 6 feetiD connector on one end, spade connectors on the other ideal for joysticks etc (6 core) $£ 1.00$ each rel CD44R COMPU TER JOYSTICK BARGAIN
Pack of 2 joysticks only $£ 200$ ref 2P382R
BUGGING TAPE RECORDER
Small hand held cassette recorders that only operate when there is sound then turn off 6 seconds after so you could leave it in a room all day and just record any thing that was said. Priceis $£ 20.00$ ref 20P3R IEC MAINS LEADS
Complete with 13A plug our price is only $£ 3,00$ for TWOI ref 3P148R NEW SOLAR ENERGY KIT
Contains 8 solar cells, motor, tools, fan etc plus educational booklet. Ideal for the budding enthusiast! Price is $£ 12.00$ ret 12P 2R

286 AT PC

286 MOTHER BOARD WITH G4OK RAM FULL SIZE METAL CASE, TECHNICAL MANUAL, KEYBOARD AND POWER SUP. PLY £139 REF 139P1 (no i/o cards or drives included) Some
netal work req'd phone for dotalis.
35MM CAMERAS Customer returned units with builh in flash and 28 mm lens 2 for $\mathrm{E} \theta .00$ ref 8 P 200
STEAM ENGINE Standard Mamod 1332
eng 30 P 200
Tet 30P200 CLOCK
LCD display, alarm, bathery operated.
Clock will announce the the at
push of a button and when the
push of a buttion and when the
alarm is due. The alarm is swich
from voice to a cock crowng! 14
HANDHELD TONE DIALLERS
DIALLERS
Small units that are designed to hoid over the mouth piece of a talephone to send MF dialing tonos Ideal for the remote control of answon
COMMODORE 64 MICRODRIVE SYSTEM
Complete cased brand new drives with cartridge and software 10 times faster than tape machines works with any Commodore 64 setup. The orginal price for these was $£ 49.00$ but we can offer them to you st only $£ 25.001$ Ref 25P1R
ATARI 2600 GAMES COMPUTER Brand now with joystick and 32 game cartridge (plugs into TV) £29.00 ref F29P1 also some with 1 game at £19.00 rel F19P2.
BEER PUMPS Mains operated with fluid detector and electronic timer standard connextions. Ex equipment. £18.00 F18P1 90 WATT MAINS MOTORS Ex equipment but of (as fitted to above pump) Good general pupose unit $\mathrm{C}^{9.00}$ rel F9P1
HI F SPEAKER BARGAIN Originaly made for TV sots they consist of a $4^{\prime \prime} 10$ watt 4 R speaker and a 2"'140R tweeter. If you want two of each plus 2 of our crossovers you can have the lot for $£ 5.00$ rel FSP2
VIDEO TAPES EI80 FIFTY TAPES FOR $£ 70.00$ REF F70P1 360K 5 1/4"Brand new drives white front. 520.00 Ref F20P1
VOL. 21 No. 7 JULY 1992

EVERYDAY
 ELECTRONICS
 INCORPORATING ELECTRONICS MONTHLY ABC COHSUIMER PRESS

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

ISSN 02623617

PROJECTS . . . THEORY . . . NEWS . .
COMMENT . . . POPULAR FEATURES . .

© Wimborne Publishing Ltd 1992. Copyright in all drawings; plotographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or lmitations in whole or in part are expressly forbidden.
Our August '92 Issue will be published on
Friday, 3 July 1992. See page 403 for details.

Projects

CḶASS-A HEADPHONE AMPLIFIER by P. Henderson 412
QUICK PROM by John Becker 418
Speed up the development time of microcontroller systems 437
Get the production of p.c.b.s under control with this unit
CRICKET GAME by Steve Knight443
An electronic simulation of the real thing - without the interferenceof rain
GARDEN HOSEPIPE CONTROLLER 452
by T. R. de Vaux-Balbirnie
Automatic watering for your garden
Series
CIRCUIT SURGERY by Mike Tooley 422
Our clinic for constructors - your problems solved
INFORMATION TECHNOLOGY AND THE NATIONAL CURRICULUM by T. R. de Vaux-Balbirnie 426
Part Nine: Logic Systems
MAKING YOUR OWN PCBs -3 by Alan Winstanley 433
A guide to p.c.b.s and how to make your own
ACTUALLY DOING IT by Robert Penfold 450
Transformer wiring
INTERFACE by Robert Penfold 458
Bar Codes
AMATEUR RADIO by Tony Smith G4FAI 468
RSGB Open House; Services Provided; Youth In Action; Radio Bygones
Features
EDITORIAL 411
FOR YOUR ENTERTAINMENT by Barry Fox 416
Organised; Hang-Onl; In The Picture; Video Phone; Photo CD EVERYDAY NEWS 440
A window on the world of electronics 442
Learn about your favourite subject with these videos 459
Component buying for EE projects
DOWN TO EARTH by George Hylton 461
Distortion measurement
EVERYDAY READOUT 462
The best feature in the mag - its written by you! Our letters page
DIRECT BOOK SERVICE 463
Selected technical books, EE books and all Babani books by mail order PRINTED CIRCUIT BOARD SERVICE 466
A special PCB SALE (while stocks last) - boards for EE projects
472
ADVERTISER'S INDEX

SURUVBITANCDE PIROPBESSIONAL DUAMTTY KITIS

No.

Whether your requirement for surveillance equlpment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all of our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

UTX UItra-minlature Room Transmitter
Smallest room transmitter kit in the word! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. 3-12V operation. 500 m range.
. $£ 16.45$
MTX Mlero-minlature Room Transmilter
Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range...................... 13.45
STX High-porformance Room Trantmitter
Hi performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. $6-12 \mathrm{~V}$ operation, 1500 m range£15.45
VT500 High-powar Room Transmilter
Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$
$40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range.
£16.45
VIT Voice Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.... 19.45
rvx400 Mains Powered Room Transmitter
Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$. 500 m range .
£19.45
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£22.95 scix Subcerrier Telaphane Tramsinitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range.
£23.95

scDu Suhcarrier Decoder Unit for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. 9-12V operation.
£22.95
ATR2 Micro Stze Telephome Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Slze $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line
$\star \star \star$ Specials $\star \star t$

Citxucux metho cemtrol switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or altemate, 8 -way dil switches on both boards set your own unique security code. 7 X size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both 9 V operation. Range up to 200 m .
Complete System (2 kits)
. $£ 50.95$
Individual Transmitter DLTX.
£19.95
Individual Receiver DLRX...
. $£ 37.95$

mux-1 烸FI Milero Bromicester

Not technically a surveillance device but a great idea! Connects to the headphone output of your $\mathrm{Hi}-\mathrm{Fi}$, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.
£20.95

UTLX Ulitra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$! Connects to line (anywhere) and switches on and off with phone.use.
All conversation transmitted. Powered from line. 500 m range...
.. $£ 15.95$
TLX700 Micro-minlature Telephone Tramamitter
Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range.
£13.45
stux High-parformance Telephone Transmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$.
1500 m range.
.$£ 16.45$
TKXSO0 SIgnalling/Tracking Transmitter
Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation..
$£ 22.95$

Com00 Pocket Bug Detactor/Locator

LED and plezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation.

ع 10.95

CDSOO Professional Bug Detector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signats such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation.
.850 .95 arx180 Crystal Controlled Room Iramsultter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX 180 kit (see catlogue). Size $20 \mathrm{~mm} \times$ 67 mm . 9 V operation. 1000 m range.
£40.95

QUX180 Gryatal Cointrolled Telephone Transmitter

As per QTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.. 840.95

asx180 Line Powerwd Crystal Controlled Phone Transwitter

As per OLX180 but draws power requirements from line. No batteries required. Size

ORX180 Crystal Controiled FM Receiver

For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation.
.560 .95

A bulld-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.
OUR LaTEST CATALOGUE COMTAINIMG MANY MORE MEW
SURVEILLANCE KITS MOW AVAILABLE. SEND TWO FIRST
CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

Dept. EE

SUMA DESIGNS

32 PAGE SUMMER SALE
TRADING
CATALOGUE

What is the future for Alternative Energy?
Next month we start a short series about renewable energy. In part one we shall take an overview of the topic and look in some detail at the direct use of solar power. In the following months we shall examine some particular examples of renewable energy which have the potential for large-scale exploitation in the U.K. We will also examine at first hand the technology used in the design, construction and operation of modern wind turbines used to generate electricity.

SOLAR-POWERED LIGHTING UNIT
In line with our Alternative Energy series we show you how to build a unit that will provide "free" lIghting for a shed, boat or caravan. There is also a simple version of the circuit that can act as a trickle-charger for a car-type battery.

GAS ALARM
A mains or 12 V powered unit that will detect the build up of fuel gas plus many other types of inflammable gas and vapour. It will also detect many types of smoke.
SUB WOOFER
Most modern hi ii speaker systems are incapable of delivering good solid bass below about 50 Hz . This single speaker unit is designed to add to an existing hi ii setup to provide a dramatic improvement in bass reproduction.

AUGUST ISSUE ON SALE FRIDAY 3RD JULY 1992

Special Offer! Exclusive to Everyday Electronics

SSI 2120
Dual Trace Oscilloscope
\rightarrow DC -20 MHz
$\rightarrow 1 \mathrm{mV}$ sensitivity
$\rightarrow 0.5 \mu \mathrm{~S}-0.2 \mathrm{~S} / \mathrm{div}$. timebase
\rightarrow Versatile trigger
\rightarrow TV, ALT, DC/LF
\rightarrow X-Y mode

$£ 299$

(Save 861.39)

SSI 2220

Dual Trace Oscilloscope
As SSI 2120 - PLUS
\rightarrow Dual Timebase with Sweep Mode (Ideal for Pulse
Waveforms)
\rightarrow Component Tester

$£ 349$
(Save £70.48)

Also available :

BS110 £13.50
Passive scope probes (x1/x10)
TL900 £5.50 Scope test leads

All Prices are
Inclusive of
Post/Packing
and VAT at 17.5\%

Offer closes September 30th 1992, while stocks last.
Post this Order Form with your remittance to:
ECW Instruments
Unit 1, Cromwell Centre, Stepfield, Witham Essex CM8 3TH
Tel (0376) 517413 Fax (0376) 514003

Quantity	Product	Price each	Total
	SSI2120	$£ 299.00$	
	SSI2220	$£ 349.00$	
	DT3900	$£ 29.00$	
	DT870	$£ 43.00$	
	BS110	$£ 13.50$	
	TL900	$£ 5.50$	
Total price $£$			

MARCO TRADING

INCORPORATING EAST CORNWALL COMPONENTS ELECTRONIC COMPONENTS \& EQUIPMENT
MAIL ORDERS WHOLESALE
RETAIL
DEPT EE7
SEND ORDERS TO - DEPT EET
MARCO TRADING
THE MALTINGS, HIGH STREET, WEM
SHROPSHIRE SY4 5EN
Tel: (0939) 232763 Telex: 35565 Fax: (0939) 233800 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS

24HR ANSAPHONE

LATEST 1992

CATALOGUE

* Velleman Kit Catalogue
* Free pre-paid envelope
* Many new lines
\star Pages of special offers
\star Free gitts
132 PAGES 82.00
FREE with orders over \&10
NI.CAD RECHARGEABLE SCART

	BATTERIES	
	PRICE	Each
AAA	$1+$	E130
${ }_{\text {AA }}$ A	${ }_{95}$	${ }^{18} 8{ }^{\text {p }}$
c	¢1.95	11.80
D	C2.00	¢1.85
PP3	¢3.90	¢3.75

NI-CAD CHARGER

Charges AA, AAA, C. D\& PP3
Ni-Cads 240 VAC $\& 4.99$

Scart plug 10
two scart sockets
tor coupling three lor coupthn three
pieces of audio.
vides oq.
lint pieces oquaudio.
video equen
wilth scart sockels
FULL RANGE
OF BABANI
BOOKS IN OUR

SOLDER 18 \& 22 SWG -500 gm REEL | | $1+$ | |
| :--- | :---: | :---: |
| | 18 swg | $10+$ |
| $\times 22 \mathrm{swg}$ | $£ 4.95$ | $£ 4.70$ | Remember: Our prices INCLUDE VAT! CLOSED CIRCUIT TELEVISION SYSTEM ix CAMERA $£ 120$ -VISITSUPERTRONICS Te: 0216 666 6504

B5 HURST STREET BIAMINGHAM BS 4 TE
waltons Tel: 0902 28039 55A WORCESTER ST
OIVERHAMPTON WV2 4LL WOLVERHAMPTON WV2 4 II
Visit our Shop in

Tel 0939232763

POST \& PACKING

 IS NOW 22.25 ALL PRICES INCLUDE
$171 / 2 \%$ vat

JULY SPECIAL OF阝ER SALE SALE + KITS + KITS + KITS + KITS

After excellent response to our Spring Catalogue we are giving another special price on all kits listed below RESISTOR KITS

SALE PRICE
$1 / 4$ W pack 10 each value $E 12-10$ R to 1 M 610 pleces. . 55.10 84.00 $1 / 4$ W pack 5 each value E12-10R to 1 M 305 pieces. $1 / 4 W$ pack Popular - 10R to 10 M 1000 pieces. $1 / 2$ W pack 10 each value E12-2R2 to 2 M 2730 pieces. $1 / 2$ W pack 5 each value E12-2R2 to 2 M 2365 pieces. $1 / 2$ W pack Popular -2R2 to 10 M 1000 pieces. 1W pack 5 each value E12-2R2 to 1M 365 pieces.. . 83.75 $£ 2.99$ £6.99 $£ 5.00$ £8.75 $£ 7.00$. 5.40 $£ 4.00$. 110.75 $£ 9.00$. 15.25 $£ 13.00$ $2 W$ pack 5 each value E12-10R to 2 M 2317 pieces.
. 25.00 $£ 22.00$

ADDITIONAL KITS

Disc ceramic 50 V	125 pieces	£3.99	00
Zener Diodes 5ea 400 mA	55 pieces	£3.99	£3.00
Electrolytics caps. radial.	. 100 pieces	£8.50	£7.00
Fuses Q blow 20 mm .	. 80 pleces	£4.75	£3.50
Fuses T delay 20 mm	. 80 pieces	£8.50	. $£ 7.00$
Pre-set pots. Hor	. 120 pieces	£7.75	.. 56.50
Pre-set pots. Vert	120 pieces	£7.75	. $£ 6.50$
Polyester 100 V	. 110 pieces	$£ 5.00$	£4.00

PORTABLE FLUORESCENT LAMP ${ }_{6}{ }^{12 \mathrm{~V}}$ Froo-sianding or hanging wilth 15 FII cable terminating the cigar lighier plug, For use in car, boal: van or home emergency. 12 V dc. EVEN FLOATS IN WATEAI Overall cimensions $430 \times 30 \mathrm{~mm}$ $\begin{array}{llll}\text { Price } & £ 6.50 & £ 6.00 & £ 5.25\end{array}$ SPARE TUBES Replacement lube tor above Twin and Single flourescent lamps. Fits most 12 V fluorescent lamps. Philips, etc. Tube length: approx 300 mm (inc. pins) ORDER CODE Opto Tube £1.50 ea, 10 for $£ 12$

VIDEO - WIRELESS MICROPHONE - HAND HELD A 2 part wireless mic. system destgned for use with video camcorders. Microphone has HIGH/LOW power switch to select the transmission range up to 200t. The recelver has a mounting shoe for tixing to the camcorder. Volume control \&
lead with 3.5 mm jack plug. Complete with vinyl carrying case. OROER CODE MIC/G210 PRICE E45.99

VIDEO. WIRELESS MICROPHONE - TIE CLIP A 3 channel 2 part wireless mic. system designed tor use with video camcorders. The tie clip mic. has a remote belt clip ransmitter with on/off switch. The receiver has a hot shoe tor range and adds great mobility to your video films!
OROER COOE MIC/G211
PRICE 849.50

B020 (TC6500)
PRI
2×3 way component speaker system comprising two 6.5 wolers, two 4 -mio-range. two 2.25 tweeters and all leads,
and $\#$ tixing screws Finished in black with black mesh grills. Maxtmumpower sowfside FULL RANGE OF Maxtmum power...... $60 \mathrm{~W} / \mathrm{side}$
Frequency response........ $60-$ Frequency
20000 Hz
aker sizes....... 6.5 wooler,
4 midrange. 25 tweeter SPEAKERS AND LOUD
4 mid-range. 25 wweeter SFEAKERS IN STOCK

$2 \times 60 W$ CLASS A AMPLIFIER 8005LA (CPA 100)
Class A stereo in-car amplitier capable of delliver ing $2 x$ sow stereo of 120 W mono in bridge mode. Inputs are low level phono, with lett and right
level controls. Full thermal and overioad protec-
tion.
Output power $2 \times 50 \mathrm{~W}$ stereo 0.1% THD
120 W mono
0.

Inpuu sensitivity..
$.10 \mathrm{mV}-3 \mathrm{~V}$ adjustable
Low level input $20 \mathrm{k} \Omega$
$+\quad . \quad 240 \times 14.4 \mathrm{~V}$ de 1.48 AA
100 $120 \times 50 \mathrm{~mm}$
$\mathbf{Y 4 1 . 5 0}$
OIms LEAD ACID RECHARGEABLE BATTERIES $\begin{array}{lll}\text { SEC/LA/1 } & 12 \mathrm{~V} & 1.2 \mathrm{Amp} \\ \text { SEC/LA/2 } & 12 \mathrm{~V} & 1.9 \mathrm{Amp}\end{array}$ SECILAR 12V 1.9 Amp c18.00

2×200 W CLASS A AMPLIFIER BO05M (CPA 200) Hign power class A mpllfier capable of delivering 2 In zoow
sterec or 400 W mono in bridge sierec or suow mono in dridge
mode. Inputs arect from the
speaker outputs of the car speaker outputs of the car
radiolcassette or low level phono inputs with left and right level protection.
Output power \qquad
 requency response................ $>50000 \mathrm{~Hz}$
input sensitivity... 100 mV -3V adiusiable
 Output impedance
 CADER CODE
CAROOR
¢109.50

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX 0316672611

A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE

OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE COSTS £1.50 - INCLUDES VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY PLEASE SEND YOUR REMITTANCE WITH THE VOUCHER BELOW.

19" RACK MOUNTING EQUIPMENT CASES
This range of 19° rack cases fearures salin black finished $165 W G$ (1.5 mm) streel front panels (no fixing holes visible), with the rear box assembly constructed trom $20 S W \mathrm{CW}(.9 \mathrm{~mm})$ steel The standard units are 10° " $(254 \mathrm{~mm})$ deee. 19 "proefct cases only $4^{4}(101 \mathrm{~mm})$ deep and are ovailable in the following popular sizes

PROJECTCASES		
Type	Height	Price
PU1	$1^{3}{ }^{*}(44 \mathrm{~mm})$	18.0
PU2	3' $2^{\prime \prime}$ (88mm)	¢20
PU3	$518(133 \mathrm{~mm})$	f22.
PU4	7° (178mm)	¢24.1
Pu6	$10^{\prime} z^{\prime \prime}$ (266 mm)	f28.2
EQUIPMENT CASES		
Type	Height	Price
41	$13^{34} 4^{4}(44 \mathrm{~mm})$	¢22
U2	$3^{1} \mathrm{z}^{\prime \prime}$ (888 mm)	¢25.
43	$5^{\prime} \mathrm{f}^{\circ}(133 \mathrm{~mm})$	f29
U4	$7{ }^{\prime \prime}(178 \mathrm{~mm})$	[31

Delivery included (UK onty).
All prices include VAT.
bLANKING PANELS, RACKING CONSOLES
and RACK CABINETS are also zvalable Please send SAE Tor details. Tel 0272373983 for Access N isa Sales ol cheque

PO Box 1402 Mangotsfield, Bristol, England, BS17 3RY

[^0]
HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART AUDIO KITS give you the opportunlly to build the very best engineered hili equipment there is. designed by
the leaders in their field, using the best components that the leaders in
are available.
are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge. glving you guid
hands-on experience of modern electronic lechniques
in short HART is your 'triend in the trade' giving you, knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual tor any
kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.
Our list will give you tull
Our list will give you fuller detalls of all our Audio Kits.
components and
AUDIO DESIGN SO WATI POWER AMPLIFIER.

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get $\mathbf{\Sigma K}$ performance lor a few tenths of the costt. Featured on the front cover of 'Electronics Today International' this complete
stereo power amplifier offers World Class performance allied to the famous HART quality and ease of construction. John Linsley Hood's comments on seeing a complete unit were enthusiastic:- The external view is that of a thoroughly protessional plece of audio gear. neat elegant and functional. This impression is greatly reinforced by the internal appearance, which is redolent of quality, both in components and in layout. Options include a stereo LED power meter and a versatile passive front end giving switched inputs using ALPS precision, low-noise volume
and balance controls. A new relay switched fromt end opand balance controls. A new relay switched fromt end op-
tion also gives a tape input and output facility so that for use with tuners, tape and CD players, or indeed any other 'flat' inputs the power amplifier may be used on its own, wlthout the need for any external signal handling stages. 'Slave' and 'monobloc' versions without the passive input stage
and power meler are also available. All versions fit within our standard $420 \times 260 \times 75 \mathrm{~mm}$ case to match our 400 Series Tuner range. ALL six power supply rails are fully stabilised, and the com plete power supply, using a toroldal transformer, Is contained within a heavy gauge aluminium chassis/heatsink fitted with IEC mains input and output sockets. All the circuitry is on prolessional grade printed resist on the component ident side, the power ampliflers feature an advanced double sided layout for maximum performance. All wiring in this kit is pre-terminated, ready for instant use!.
RLH11 Reprints of latest articles.
K1100cM HART Consiruction Manua

COMPUTER CORNER

The following are a selection of our now range of VEAY competi-
tively priced, High Quallty, computer systems. Due to our long tively priced, High Quality, computer systems. Due to our long
experlence of lmporting we have the necessary contacts in the Experience of Est to buy at vary advantageous pricee and cen pase the
favings on to you. All hard disc machines ordered with DOS are asvings on to you. All hard disc
tully formatted and ready to use
tully formatted and roady to une.
HART MODEL AT-286/16 WP COMPUTER
Fully fledged AT286 machine, cheap enough to use as the
lastest wordprocessor in the west! Only a tew years ago the AT-286 machine was the lastest standard otlice computer known. Now we can offer the superlast 16 MHz version (earller ones were only 10 or
12 MHz) at such an incredibly 12 MHz) at such an incredibly
low price that it can be used in any oftice or home. Not only that but ours comes with ultrafast memory so that the machine can run in 'zero walt state'. Advanced features are:-
 Full 1MB of memory (Ex pandabie to 4MB). 102
key UK keyboard, compact desktop case, 1.2MB 5\%" High Graphics/Printer Card, built in Hard Disk Interlace HART AT-286/16WP .ONLY £277. 25 $14^{\prime \prime}$ FST Hercules monitor, Amber 14" Pa per White Hercules Monitor. (Both have T/S Base).
er W/P Sottware uses Wordstar commands. $£ 19.50$ 40 MB AT-286/16UG Mard Disk Computer Specification as above but with 45 MB 25 ms hard disk, VGA Colour Graphics Card with 512 K RAM, parallel printer port, 2
serlal ports, 1 game port. serlal ports, 1 game port

Send or phone for your copy of our List (50p) of these and many other Kits \& Components. Enquiries Irom Overseas customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmail. service. Payment by cheque, cash or credit card. A tele phoned or faxed order with your credit card number will get your order on its way to you THAT DAY.
Please add part cost of carriage and insurance as follows:-INLAND Ordere up to §20-£1.50 Ordere over $£ 20-£ 3.50$ Express Courier, next working day. £10 (For salety all computer part

| MANUFACTURERS OF QUALITY | 24 hr . SALES LINE |
| :---: | :---: | AUDIO KITSAND COMPUTERS (0691) 652894

To fulfil the need for higher quality conirols we are now importing an exciting new range of precision audio pots in in 2 -gang cover most quality amplifier applications. Al shatts. Now you can throw out those noisy ill-matched only amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability. Motorised version 2-Gang 100 K Lin.
58.67
.. .59 .40 2-Gang 10K, 50 K \& 100 K Log. 2-Gang 20K Log MOTORISED
2-Gang 10K Special Balance, MOTORISED, zero
crosstalk and $<10 \%$ centre loss with near Log/Antilog Tracks)..
£10.71
$\$ 19.20$
. 19.98

Do you tapes lack treble?. A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours. Fitting one of our high quality replacement heads could restore performance to better than new!. Standard inductances and mountings make fitting easy on nearly all machines (Sony are special, see below) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actual importers you get prime parts at lower prices, compare our prices with other suppliers and seel. All our heads are suitable for use with any Dolby system and are normally available ex stock. We also stock a wide range of spastion and Industrial users. HM120 Standard Mono R/P Head.
HC15 Standard Quality Stereo R/P Head..
HC66 High Quality Stereo R/P Head. Permalloy HS16 Sendust Alloy Stereo Head.
... $£ 3.51$
.. .52 .49 (50) NEW RA Alloy Stereo head............................... $£ 21.49$ HC8O NEW RANGE High Bela Permalloy Stereo head. Modern space saver design for easy litting and lower cost. Suitable for chrome metal and ferric tapes, from hi-fi decks to car players and at an increditle price too!...
HRice too!.. $\uparrow 14.90$ H524 Standard Erase Head....................................... H561 Hi Field Erase Head for METAL Tapes. £3.49 HAP373 Downstream Monitor Stereo Combination Head... $£ 47.90$

Many other SPECIAL cassette Heads in stock, see our LIST.

REEL TO REEL MEADS
99R $2 / 4$ Record/Play 110 mH . Sults Stuart Tape
Circuits..
998E $2 / 4$ Eras
Suits Stuant
. $£ 13.64$

TAPE RECORDER CARE PRODUCTS
HART TC1 TEST CASSETTE Our lamous triple
purpose test cassette. Sets tape azimuth, VU
DEM1 Mains Powered Tape Head Demagnetizer. prevents nolse on playback due to residual
head magnetisation
. 55.36

DEM115 Electronic, Cassette Type, demagnetizer.
〔4.48
. .58 .91

HART 40MB AT-386/165X EL

Entry level 386 machine for demanding applications at moderate cost Spec as our AT286/16WP with 1 MB Dram
memory. Mini Tower case, 45 MB 25 ms hard disk drive, VGA Colour Graphics Card with 256 K RAM 40 MB AT-386/165X EL is. HART 52MB AT-386/20SX UGG

Luxury version of the above with higher processor speed and amazing 9 millisecond access time hard disk. 2MB SIMM RAM, Compact Tower Case, VGA 1024×768 card with 512 K RAM, upgradeable to 1 MB of Video memory. 40 MB AT-386/20SX UG...
HART COmputers OPTIONAL EXTHAS

requirements, at NO extra cost!. Simply select the options you require. It replacing any ltem in the standard specification that model then deduct the cost of the
SOFTWARE
MS-DOS 5 Latest Release. Full version. $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$.......... $£ 59$
 MONITORS SM1421 AM TU Hercules Mono whit FST Tube and Stand
Amber.. 583 SM1416A VGA Mono Monitor c / w tilt and $\mathrm{s} w i v e l$ stand.
Amber.... As Above: Paper white...
SM1416W As Above: Paper whtte...................................... 88 pitch, 50 MHz Bandwidth, up to 1024×768, c/w stand. KEYBOARDS
K261 102 Key Enhanced UK Layout, Tactile Click. AT/XT Switchable with dual slope leel.(Standard Keyboard supplied wlit systems)...
K108 Similar to above, single slope feet, Alps switches....... 536 KB6153A As above but with heavy metal base
. 536
$1 / 0$ and GRAPHIC CARDSS
AT Super $1 / O$ Card $2 \times$ FDD, $1 \times 1 D E, 2$ Serial, 1 ParalleI, 1 Game Ports... 20 He-Bit VGA Card 255k
Trident 8900 VGA Card. 512K $\quad £ 67.30$ Trident 8900 VGA Card with 1Mb 886.90 25" 12 Mb Floppy Disk DRIVES
5.25" 1.2 Mb Floppy Disk Drive.
3.5" 1.44 Mb Floppy Disk Drive

52MB Quantum Hard Disk. Lightning Fast 9ms Access
. E 261
WE 611P Desktop Case, Flip Top, 200w PSU WE727P Mini Tower Case, Zoow PSU..... 555.40

108MP Mini Tower Case, Compact Style ᄃ84.70
CT107 Midi Tower Case.. 108
T-280 16 OK MATHERBOARDS
AT-286/16 OK.RAM.....
... $£ 89$
c195
AT-386-20SX OK RAM
£245
PLEASE NOTE THAT ALL TTEMS IN THIS
SECTION ARE PRICED EX VAT.

MAGENTA 포불

VERSATILE BBC INTERFACE
 A comprehensive interface which allows the BBC Model B computer to be connected safely to a wide range of input and output devices. Two leads connect the interface to the User port and Printer port. Up to 16 outputs (all via single pole change-over relay contacts) and 8 inputs. All inputs are fully protected. LED indication is provided on all lines. Requires an independent 12 V supply
 Full Kit Ref: 844
 $£ 51.95$
 STEPPING MOTOR DRIVER/INTERFACE

EE Jan '92
A single board, stand alone, stepping motor driver with built-in oscillator for variable low speed, high speed, and acceleration control. Suitable for all Magenta's four-phase unipolar motors and most others - up to 35 V and 1.5 A per phase. Half step, Full step and Wave-drive modes switch selectable. LED mimic display and connector for computer port. Kit includes MD35 motor KII Ref: 843
£29.95
Or Built
£44.95

Supplying Electronics for Education, Robotics, Music, Computing and much, much more CATALOGUE AVAILABLE PRICE £1.00 INC. P\&P

All prices include VAT at 17.5\%	
Shop open 9-5 Mon.-Fri.	Add $£ 2$
9-2 Saturday	p\&p to
Official orders welcome	all orders

HAMEG HM 203-7 OSCILLOSCOPE
High quality reliable instrument made in W. Germany. Outstanding performance. Full two year parts and labour warranty. $20 \mathrm{MHz}-2$ channels 1 mV sensitlvity. Easy to operate and high performance
(Cheques must be cleared) $£ \mathbf{£ 3 3 8}+£ 59.15$ vat
Next day Dellivery $£ 10.00$

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE AND ARE SUPPLIED WITH MAGAZINE ARTICLE REPRINTS. SEPARATE REPRINTS ALSO AVAILABLE PRICE 80p EACH INCLUSIVE P\&P. KITS INCLUDE CASES PCB'S HARDWARE AND ALL COMPONENTS (UNLESS STATED OTHERWISE) CASES ARE NOT DRILLED OR LABELS SUPPLIED UNLESS STATED.
Ref
844 VERSATILE B8C INTERFACE MaI 92
843 STEPPING MOTOR DRIVER/INTERFACE Jan 92
PORTABLE ULTRASONIC PEST SCARER. Aug' 91
841 OIGITAL LCD THERMOSTAT May 91 with punched and printed case \qquad DIGITAL COMBINATION LOCK Mar 91
with drilled case with drilled case
839 ANALOGIC TEST PROBE Jan 91 (no case)
838 MICROCONTROLLER LIGHT SEQUENCER Dec 90 . With drilled and labelled case
835 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90
815 EE TREASURE HUNTER Aug 89
814 BAT DETECTOR June 89
Full Kit
312 ULTRASONIC PET SCARER May 89
800 SPECTRUM EPROM PROGRAMMER Dec 88 796 SEASHELL SYNTHESISER Nov 88
790 EPROM ERASER Oct 88
769 VARIABLE $25 \mathrm{~V}-2 A$ BENCH POWER SUPPLY Feb 88
744 VIDEO CONTROLLER Oct 87
740 ACOUSTIC PROBE Nov 87
739 ACCENTED BEAT METRONOME Nov 87
734 AUTOMATIC PORCH LIGHT Oct 87
730 BURST-FIRE MAINS CONTROLLER Sep 87
728 PERSONAL STEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
719 BUCCANEER I.B. METAL DETECTOR July 87
718 3-BAND 1.6-30MHz RADIO Aug 87
715 MINI DISCO LIGHTS June 87
707 EQUALIZER (IONISER) May 87

Price Ref
$551.95 \quad 700$
$\mathbf{5} 29.95$
$\mathbf{f} 44.95$
£44.95
f 22.56
$£ 29.95$
£19.86
f13.23
f 57.17
£17.16
£10.39
700 ACTIVE I/R BURGLAR ALARM Mar 87
584 SPECTRUM SPEECH SYNTH (no case) Feb 87
581 VIDEO GUARD Feb 87
569 CAR ALARM Dec 86
561 LIGHT RIDER LAPEL BADGE Oct 86 560 LIGHT RIDER DISCO VERSION Oct 86 559 LIGHT RIDER 16 LED VERSION OcI 86 556 INFRA-RED BEAM ALARM Sep 86 544 TILT ALARM July 86
542 PERSONAL RADIO June 86
528 PA AMPLIFIER May 86
523 STEREO REVERB Apr 86
513 B8C MIDI INT ERFACE Mar 86
512 MAINS TESTER \& FUSE FINDER Mar 86
497 MUSICAL DOOR BELL Jan 86
493 DIGITAL CAPACITANCE METER Dec 85 487 SOLDERING IRON CONTROLLER Oct 85
$\$ 14.81$
f30.60 £28.55 f28.51
f.56. 82
£ 33.29
f20.01
E 23.94
£19.62
$\mathbf{8 1 5 . 5 0}$
£16.34
£43.86
£13.88
f 30.22
£ 30.30
£14.39
$\$ 17.75$

464 STEPPER MOTOR INTERFACE FOR THE BBC COMPUTER less case Aug 85 OPTIO NAL POWER SUPPLY PAR 461 CON TINUITV TESTER July 85 455 ELECTRONIC DOORBELL June 85 444 INSULATION TESTER ApI 85 392 B8C MICRO AUDIO STORAGE SCOPE INTERFACE Nov 84
387 MAINS CABLE OETECTOR Oct 84 386 DRILL SPEED CONTROLLER Oct 84 362 VARICAP AM RADIO May 84 337 BIOLOGICAL AMPLIFIER Jan 84 263 BUZZ OFF Mar 83
242 INTERCOM no case July 82 240 EGG TIMER June 82 108 IN SITU TRANSISTOR TESTER JUne 78 106 WIERD SOUND EFFECTS GEN Mar 78 101 ELECTRONIC DICE Mar 77

Price
C23.90
c 9.59
£14.24
$\mathrm{Cl1.65}$
£22.41
f15.58
c32.39
c8.94
$£ 13.17$
¢ 30.60
£30. 21
£31.93
810.07
£21.41
¢ 49.95
$\mathbf{6} 6.25$
£9.60
$\mathbf{£ 9 . 6 0}$
$\mathbf{£ 9 . 1 5}$
$\mathbf{£ 9 . 1 5}$
$\mathbf{6} 5.86$
$\begin{array}{r}£ 5.86 \\ \\ \hline 7.08\end{array}$
C 8.63
f 22.37
$£ 40.82$
£6.31
$£ 9.91$
$\$ 15.02$
$£ 27.59$
f6.49
£6.50
£7.85
810.76
¢8.94
$£ 7.15$

D.C. MOTOR GEARBOXES

Ideal for Robots and Buggies. A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4$. 5 Volt mini motor. Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels (supplied). Two types available:
Small Unit Type MGS
Speed range $3-2200 \mathrm{rpm}$. Siz
${ }_{84.65}$
Speed range $2-1150 \mathrm{rpm}$. Slze: $57 \times 43 \times 29 \mathrm{~mm}$

STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques. ID36 Permanent Magnet Motor $£ 16.86$ 48 steps per rev
MD200 Hybrid Motor
$£ 17.10$ 200 steps per rev
MD35 $1 /$ Permament Magnet Motor
48 steps per rev.
£12.98
MD38 Permanent Magnet Motor $£ 9.15$
48 steps per rev.

EDUCATIONAL BOOKS \& BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suituble for all ages. ideal for beginners. No soldering, uses an S-DEC breadboard. Gives clear instructions with lots of pictures. 16 projects - including three radios, siren, metronome, organ, intercom, radios, siren, metronome, organ, intercom, components and how circuits work. Component pack Includes an S-DEC breadboard and all the adventures with Electronic Adventures whit Electronics
Component Pack (less book)
FUN WITH ELECTRONICS
From the USBORNE Pocket Scientist series - an enjoyable introduction to electronics. Full of very clear full colour pictures accompanied by easy to follow text. Ideal for all beginners - children and adults. Only basic tools are needed. 64 full colour pages cover all aspects - soldering - fault finding - components (identlfication and how they work). Also full details of how to build 6 projects - burglar alarm, radio, games, etc. Requires soldering - 4 pages clearly show you how. The components supplied in our pack allows all the projects to be built and kept. The book is available separately. Fun with Electronics Book Component pack (less book)
30 SOLDERLESS BREADBOARD PROJECTS A book of projects by R. A. Penfold covering a wide range of interests. All projects are bullt on a Verobloc breadboard. Full layout drawings and component Identification diagrams enable the projects to be built by beginners. Each circuit can be dismantled and rebuilt several times using the same components. The component pack allows all projects in the book to be built one at a time. Projects covered include amplifiers, light actuated switches, timers, metronome, touch switch, sound activated switch, moisture detector, MW Radio, Fuzz unit, etc.
30 Solderless Breadboard Projects (Book 1)
Component Pack
£2.95

INSULATION TESTER

EE APRH 85

A reliable electronic tester which checks insulation resistance of wiring appliances etc., at 500 volts. The unit is battery powered simple and safe to operate. Leakage resistance of up to 100 Megohms can be read easily. One of our own designs and extremely popular.
£22.37

3 BAND

SHORT WAVE RADIO

EE AUG 87

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build.
KIT REF 718
£30.30

PORTABLE ULTRASONIC PEsT SCARER

EEAUG '91

A powerful 23 kHz Ultrasonic generator in a compact hand-held case. A MOSFET output drives a weatherproof transducer at up to 300 V peak to peak via a special tuned transformer. Sweeping frequency output requires no setting up or alignment. Kit includes all components, PCB, transducer and case. KIT REF 842

EE EQUALISER

EE MAY ' 87

A mains powered loniser with an output of negative ions that give a refreshing feeling to the surrounding atmosphere. Negligible current consumption and all-insulated construction ensure that the unit is safe and economical in use. Easy to build on a simple PCB.
KIT REF 707
£17.75

LIGHT RIDERS

EE OCT ' 86

Three projects under one title - all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling oun 500 watts.

KIT REF 559 CHASER LIGHT
£15.58 KIT REF 560 DISCO LIGHTS $£ 22.41$ KIT REF 561 LAPEL BADGE

PET SCARER
 \section*{EE MAY 89}

Produces high power ultrasound pulses. L.E.D. flashes to indicate power output and level. Battery powered (9V-12V or via Mains Adaptor) KIT REF 812
Mains Adaptor $£ 2.02$

DIGITAL COMBINATION

 LOCKEE MAR '91
Digital combination lock with a 12 key keypad. 4 digit code operates 250 V - 16 A SPCO relay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security Can be operated in many modes (latching/unlatehing. manual/automatic setting, continuous/momentary output, etc.). Anticle describes operation as Vehicle Immobilising security system. Low current drain. Kit includes drilled case.

KIT REF 840
f19.86

ACOUSTIC PROBE

EE NOV '87
A very popular project which picks up vibrations means of a contact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC '90
A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also available. 1000 watts per channel, zero volt
switching, inductive load capability. Opto-isolated for total safety. Many other features. Complete kit includes case, PCBs, all components and hardware.
KIT REF $83 B$

EE TREASURE HUNTER
 \section*{EE AUG '89}

A sensitive pulse induction Metal Detector. Picks up coins and rings etc., up to 20 cms deep. Low "ground" effect". Can be used with search-head underwater

Easy to use and build, kit
includes search-head, handle, case, PCB and all parts as shown
KIT REF 815
Including headphones $\{45.95$

DIGITAL LCD

 THERMOSTATEEMAY '91
A versatile thermostat with LCD read out. MIN/MAX temperature recording. clock and Individually settable upper and lower switching points Covers - 10 to 110 degrees Celsius, accurate to within 0.1 degrees. Submersible probe on 3 meter lead. Kit includes punched and printed case. Save on energy bills by improved control of your hot water system. Also ideal for greenhouse soil temperature and aquarium control. Complete kit includes thermostat and probe, mains power supply and relay output, PCB's and punched and printed case
KIT REF 84

MOSFET

VARIABLE
BENCH 25V 2.5A POWER SUPPLY
 EE FEB 88
A superb design giving 0.25 V and $0-2.5 \mathrm{~A}$. Twin panel meters indicate Voltage and Current. Voltage is variable from zero to 25 V . A Toroidal transformer MOSFET power output device, and Quad op-amp IC design give excellent performance.
KIT REF 769

4 CHANNEL

LIGHT CHASER

EE Jan '90

A 1000 W per channel chaser with zero volt switching, hard drive, inductive load capability, mic sound sensor and sophisticated 'beat' detector. Chase steps to music or auto when quiet. Variable speed and mic. sens. LED mimic on front panel. Switchable for 3 or 4 channets P552 output. Ideal for rope lights, pin spots, disco and display lighting. KIT REF 833
£32.13

EPROM ERASER

EE OCT '88
Safe low-cost unit capable of erasing up to four EPROM's simultaneously in less than twenty minutes. Operates from a 12 V supply. Safety interlock. Convenient and simple to build and use.
KTT REF 790
£28.51

SUPERHET BROADCAST RECEIVER

EE MAR '90

At last, an easy to build SUPERHET A.M. radio kit. Covers Long and medium Wave bands. built in loudspeaker with 1 watt output. Excellent sensitivity and selectivity provided by ceramic I.F fiter. Simple alignment and tuning without special equipment. Kit available less case, or with pre-cut and drilled transparent plastic panels and dial for a striking see-through effect.

KIT REF 835

everyday
 ELEFTRDNIPS

INCORPORATING ELECTRONICS MONTHLY

Editorial Offices:

EVERYDAY ELECTRONICS EDITORIAL,
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692 . DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJ.
Phone/Fax: (0255) 850596

THE MODERN AMATEUR ELECTRONICS MANUAL

I am sure a large number of our readers will have been aware of the advertising and inserts for The Modern Amateur Electronics Manual, proviously available from WEKA Publishing, and advertised extensively in a wide range of hobbyist and technical media. The title has been widely purchased by hobbyists, student, trainees, colleges, training departments and a very wide range of retail and industrial organisations over the past four years.
Earlier this year WEKA decided to close down its UK publishing operaton and a number of titles, appealing to a broad spectrum of business and hobby readers, were put up for sale. I am pleased to tell you that Nimborne Publishing - the publishers of Everyday Electronics - have purchased The Modern Amateur Electronics Manual and will continue to market this product and produce bi-monthly updates for it in the way that WEKA previously did.

PARTNER

We see this new "sister" to EE as an excellent addition to the range of publications we produce for those interested in learning about various aspects of technology. It complements EE in many ways and builds into a living encyclopaedia of electronics which keeps up with the ever advancing world of technology through regular updates/supplements.
The same editorial team will continue to produce the updates/supplements and we will endeavour to keep up the high standard WEKA have achieved and add a few new ideas of our own. One change that we have already started to introduce is to shorten the title of the publication to The Modern Electronics Manual. While the manual is undoubtedly of great benefit to hobbyists it has also established a very firm base in education, training and in the general electronics industry, we therefore feel the word Amateur in the title is inappropriate and will in future drop it.
If you are receiving the manual and updates you will have already heard from us, if not why not investigate this excellent product. You will find an advertisement for the manual on pages 456 and 457 .

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: £18.50. Overseas: $£ 23$ ($£ 40.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church and sent to EE Subscriptions Dept., 6 Church 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum credit card order £5.
BACK ISSUES
Certain back issues of EVERYDAY ELEC. TRONICS are available price $£ 1.80$ ($£ 2.30$ overseas surface mail) inclusive of postage and packing per copy - $\mathbf{£}$ sterling only please, Visa packing per copy - £ sterling only please, Visa credit card order $£ 5$. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department. Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH Tel: 0202 881749. In the event of nonavailability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Jan, Feb, Mar, Apr, June, Oct, \& Dec. 88, Mar \& May 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 8.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order £5. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorportion or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by adverrisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona file, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

EQUIPMENT

We would like to advise readers that cortain items of radio transmitting and tellphone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

CLASS-A HEADPHONE AMPLIFIER

PAUL HENDERSON

Get the very best results from your hi-fi when using headphones with this inexpensive class-A amplifier

ANY AUDIOPHILE knows the frustration of wanting to enjoy his/her favourite music when the rest of the household is intent on watching the "box". Or alternatively someone is asleep and cannot be disturbed.
In these circumstances the project described here comes into it's own. Although simple, the circuit is capable of giving far higher fidelity man mandard power amplifiers on the market and substantially better than would be obtained from the headphone socket of a standard power amp. Used with a CD player and/or tuner and tape deck a very high quality system can be assembled at reasonably low cost.

DESIGNCONCEPT

Before describing the circuit in detail it will be as well to review the basic design concepts and explain just how this level of performance can be obtained. Most standard stereo power amplifiers operate in class-B.
What this means is that the output stage consists of two halves. One half handles negative going output signals whilst the other handles positive. Using this method the idling current can be limited to very low values whilst maintaining the large volt-
age and current swings required to drive a loudspeaker.
Unfortunately, these amps suffer from a form of distortion known as "crossover distortion" which occurs at and near the zero crossings of the output signal. Crossover distortion is actually due to the fact that the two halves of the circuit are not perfectly matched. The distortion generated is worst at the kind of levels needed for headphone listening.
Another problem associated with headphone sockets on main amplifiers is that a series resistance is inserted between the phones and the output stage to reduce signal levels. This is not as innoculous as it first sounds.
Speakers and headphones are designed to work from a zero impedance source. Feeding either through a series resistance results in a loss of control on the moving diaphragm by the amplifier, usually resulting in a peak in the bass response with a rapid "roll-off" below the frequency of the peak.
To produce an amplifier to drive headphones successfully and to obtain the maximum performance which they are capable of requires that both these problems must be addressed.

To design any piece of audio equipment successfully the first stage is to define exactly what it is that you require and determine the circuit from this information. A decade ago most stereo headphones were 8 ohm units, now most quality units employ Mylar film diaphragms and are usually rated 32 ohm impedance.
Visiting several hi-fi shops, most units, including the 8 ohm types have a sensitivity of between 87 db and $96 \mathrm{db} / \mathrm{mW}$. Almost universally the maximum power input is limited to $100 \mathrm{~mW} /$ channel. Of the ten pairs of headphones tested with this amplifier most were delivering truly deafening levels with 10 mW input.

CLASS-A

Along with output power the amplifier also requires the usual low distortion levels, low noise and wide frequency response expected for a piece of hi-fi gear. To avoid crossover distortion the output stage must be operated in class-A.

To understand what this means consider the normal small signal class-A transistor stage. To ensure maximum signal swing the collector will be biased at half the available line voltage. The current consumption of the stage will be fixed by the load resistance to which the collector is connected. In a power amplifier the load would normally be a 8 ohm loudspeaker.
Although the maths is beyond the scope of this article it can be shown that the output stage would need to consume twice as much power as delivered to the load. Hence a 50 W class-A amp would need to dissipate 100 W continuously to operate properly. As you may well imagine this would mean huge heatsinks and power transformers. Such amplifiers are made but you could buy a reasonable family car for the same price

HEADPHONES

Going back to headphones, to provide 10 mW of pure class-A into a pair of 32 ohm phones requires a voltage swing of 560 mV r.m.s. and a current consumption of 25 mA . This can easily be obtained with small signal transistors in the output stage. In fact the maximum output of the amplifier is just over 100 mW and the "cans" (headphones) will begin to distort long before the amplifier does with high level inputs.

The output stage is only half the story however. We need to drive this properly. Several circuits were tried and the final choice was made in favour of an op amp driver with it's output stage biased into class-A. The Class-A Headphone Amplifier

COMPONEVIS

Resistors	
R1, R101	10k (2 off)
R2, R102	100 k (2 off)
R3, R103	180 (2 off)
R4, R104	910 (2 off)
R5, R105, R6, R106	
R6, R106	$10 \text { (4 off) }$
All $0.2 \mathrm{~W} 1 \% \mathrm{c}$	on film
Potentiometers	
VR1, VR100	47 k rotary carbon, log (2 off)
Capacitors	
C1, C101	10μ axial elect., 16 V , (2 off)
C2, C102	100μ radial
C3, C4	$\begin{aligned} & (2 \text { off) } \\ & 4700 \mathrm{radial} \\ & \text { elect.16V } \\ & \text { (2 off) } \end{aligned}$

described here has been measured for THD (total harmonic distortion) and bandwidth etc. The results were as follows:
THD: < 0.005 per cent at 1 kHz
Frequency Response: $2 \cdot 5 \mathrm{~Hz}-100 \mathrm{kHz}$ $-3 \mathrm{db}$
Signal-to-Noise Ratio: -90db
Max. Output: $120 \mathrm{~mW} / 32$ ohm

CIRCUIT DESCRIPTION

One channel (left) of the Class-A Headphone Amplifier and common power supply components is shown in the circuit diagram Fig. I. Components for the right channel have one hundred added to the component numbering, i.e. R101, TR101, C102 and so on.
Essentially the amplifier is a boosted op.amp designed with both the op.amp and output stage biased into class-A. To allow direct coupling a dual rail power supply is used.
Starting from the beginning. Input signals are first coupled to the volume control VRI via the d.c. blocking capacitor Cl . This latter component has a relatively large value and sets the -3 db point in the bass region. The use of the value specified sets this at 2 Hz .
For most sources the capacitor could probably be removed as any reasonable signal will not have any d.c. impressed upon it. However, it's certainly better to be safe than sorry especially as one of the symptoms of a d.c. offset at the input would be a similar offset at the output
At best this will increase current consumption in the output stage producing unwanted hum at the output. At worst the headphones could be damaged.
The volume control VRI also sets the input impedance of the amplifier at 47kilohms (47k). Since ICl is a j.f.e.t. input device with an input impedance of about 10-12 megohms.
There are a large number of op.-amps on the market which purport to be ideal for audio applications. Most of these have been used at one time or another but still the TL072 op.amp seems to combine the best characteristics at a reasonable price. The device is low noise, has a slew rate of $13 \mathrm{~V} / \mu \mathrm{Sec}$ and a high current sink/source capability.
All these features make for an excellent
package. Nevertheless these devices are rarely run under optimum operating conditions.

For example the output stage of the op.amp operates with a current of a couple of milliamps and can only work in classAB into loads of less than 10k or so. This problem can be circumvented by using a dodge from American audiophiles who bias the output stage into class-A by the simple expedient of connecting a resistor, of appropriate value, from the output to the nagative supply rail. This forces the upper transistor to source current and thus biases it into class-A.
We are using the op.amp $|\mathrm{C}|$ here as a non inverting amplifier feeding the input signals from the slider (moving contact) of VRI to the non inverting input $(+)$. Resistors R3 and R4 perform two functions. Firstly, as just described, they force the op.amp into class-A operation and secondly they provide bias for the output stage consisting of transistors TR1 and TR2.
The complementary transistors TR1 and TR2 operate in the emitter follower mode. This provides a relatively high input impedance looking into their bases and a low output impedance at the emitters.

OUTPUT STAGE

Resistors R5 and R6 are vitally important in this design. As they are in series with the emitters of TR1 and TR2 they provide local negative feedback, linearising the operation of the output stage.

Just as importantly the voltage drop across these resistors, in conjunction with the voltage drop across resistor R3 set the output stage into class-A operation. Overall negative feedback is taken from the junction of resistors R5/R6 to ICl's inverting input (pin 2), via resistor $R 2$.
The voltage gain of the amplifier is set by the ratio of resistor R2 to R1 at 11 times. Capacitor $\mathbf{C} 2$ is included to reduce the gain at d.c. to unity whilst appearing as a short circuit to a.c. signals.

The output from the amplifier is fed directly to the headphones which are retumed to the 0 V rail. Power indication is provided by l.e.d. D1 in series with resistor R7 which limits the l.e.d.s current to a suitable value.
Having described the amplifier circuit attention can be turned to the power supply.

Semiconductors

D1	5 mm Red I.e.d.
TR1, TR101	BC142 npn silicon medium power transistor (2 off)
TR2, TR102	BC143 pnp silicon medium power transistor (2 off)
IC1	TLO72 dual low no
REC1	1 A 100 V bridge

Miscellaneous

SK1/SK2 Dual phono socket

 SK3 Stereo jack socket, with matching plug S1 DPST mains on/off switchMains transformer: 240 V a.c. primary: $0 \mathrm{~V}-6 \mathrm{~V}, 0 \mathrm{~V}-6 \mathrm{~V} 1 \mathrm{~A}$ secondaries
Stripboard 0.1 in . matrix, size 19 strips $\times 34$ holes; aluminium case, size $152 \mathrm{~mm} \times 102 \mathrm{~mm} \times 51 \mathrm{~mm} ; 8$-pin d.i.I. socket; audio screened cable, singlecore; mains 3 -core cable; strain relief clamp; plastic knobs (2 off); connecting wire; solder tag; solder etc.
Note: Components with one hundred numbers added are for the right channel.

Approx cost
 guidance only
 218,50

The mains transformer Tl has dual 6 V a.c. secondaries which are connected in series to provide 12 V a.c. to the bridge rectifier REC1. After rectification the raw d.c. is smoothed by the electrolytic capacitors C3 and C4. Transformer T1, of course, steps down the mains voltage which is connected to it's primary winding. Finally SI provides an on/off switching function.

CONSTRUCTION

The prototype model was built in a small aluminium case, dimensions 152 mm by 102 mm by 51 mm . This being sufficiently large to accommodate the circuit board, mains transformer, sockets, switch and volume controls. Initially, an ABS plastic case of similar dimensions was tried. However when using this the circuit was prone to electrostatic hum pickup. The result was a low level annoying buzz in the phones.
The screening provided by the aluminium case eliminates this problem. I

mention this for those who might want to use the circuit in other applications. For optimum results a screened box is required with the case connected to 0 V and earth.
Most of the components are mounted on a piece of $0.1 \mathrm{in}^{-}$matrix stripboard, size 19 strips by 34 holes. The component layout and details of breaks required in the underside copper tracks is shown in Fig. 2.

Commence construction of the circuit board by inserting the i.c. and use this as a reference point for the rest of the components. It is probably best to use an i.c. socket and only insert the i.c. on completion of construction and after a final wiring check.

Some people recommend soldering resistors first then capacitors and finally semiconductors. However, it's easier if you solder the smallest parts first and work upward in size; the smaller parts are much more difficult to keep in the board prior to soldering if the board has to be balanced on larger components.

Whatever method you decide to use to wire the board remember to ensure that all polarity conscious components are correctly orientated. Failure to do so can be expensive.
When you have completed the circuit board check it to ensure that there are no dry joints or unwanted blobs of solder bridging tracks. Also check that the breaks in the tracks are made in the correct places.
Now solder the flying leads to the board in the positions shown leaving these at least 300 mm long to facilitate easy interconnection. Put the board to one side and start the mechanical work

CASE

The drilling detail for the aluminium

case is shown in Fig. 3. As you can see it's quite simple due to the fact that only the controls, input/output sockets, transformer and board mounting holes are required. The main point to note here is that the mains entry hole needs to be fitted with a 10 mm cable clamping grommet.
The case can be finished to taste. The final model was sprayed matt black with car touch up paint. For a neat finish use white rubdown lettering for the legends. These can be profected by a final coat of clear varnish. Small tins of this are available from model shops. Of course, this needs to be undertaken before
the parts are attached to the case. Final construction consists of fitting the various parts to the box and terminating the flying leads to their various destinations. Mount the board on small spacers, say 0.25 in above the case. At a pinch the spacers can be substituted for four appropriately sized nuts.
Having finished the job and checked that your work is satisfactory the unit can be tested. Provided the instructions have been followed the project will now be functional.
No setting up is required. All that remains is to wish you good listening! \square

EVERYDAY

Take out a years subscription to EE and you will be rewarded with the following:

Your issue on your doormat every month before it appears on the newsagents shelves (Post Office willing!)

* A saving against the cover price and no price increase for a year
* Every issue guaranteed - no need to worry if the newsagent has run out of copies
* 13 issues for the price of 12 , if you use the coupon below before July 31, 1992

Subscription Special Offer?

OFFER ENDS JULY 31ST 1992

Offer only applicable to cheque, bank draft or PO with order or Access (Mastercard)/Visa orders - all payments must be in £'s sterling and orders must be on the coupon below, or a copy of it.
PRESENT SUBSCRIBERS lif you already have a subscription to EE and want to get the special offer just extend your present sub for another year and we will give you an extra copy. Just fill in the coupon and mark RENEWAL in the bottom right hand box.
Post the coupon with your payment to:
Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH Telephone 0202881749 Fax: 0202841692

EE SUBSCRIPTION SPECIAL OFFER

$$
\text { Offer ends July 31st, } 1992
$$

Please send me 13 issues of $E E$ for the price of 12.

I enclose payment of $£$
(£18.50 UK; £23
export surface mail; $£ 40.50$ export air mail)
Please charge my Access (Mastercard)/Visa card

Card No
Ex. date
Post Code

Address \qquad

FOR YOUR ENTERTIANNMENT by Barry Fox

Organised

I was recently put into an awkward position.

Several years ago I wrote some pieces about the Psion Orgainiser, telling how I had devoted man months to trying to learn to use the tiny alpha-numeric keyboard. I got a call from the Chairman of a company, asking if I would be willing to spend some more time - on learning to use a completely new keyboard used by the then-new British system called Microwriter.

I wasn't too keen but said I would. There was then silence for a few years. When the product finally went onto the market, as the Agenda, I was sent a sample which was unusable. There was then more silence, and I was later told that the Microwriter company had been improving the Agenda system.

So 1 tried again, talking with Microwriter's press office. I was promised a new version Agenda, which never arrived. When I queried this I learned that Microwriter no longer employed a press officer. The job was being done by the Marketing Manager. I spoke with the MM who had never heard of me, never read anything I had written and never heard anything I've said on radio, e.g. to callers on advice line phone-ins.

I was however sent an Agenda, on loan and with the very clear proviso that if I wanted to keep it I would have to pay for it.

In the meantime several companies, inclusing Psion, have launched similar product with Owerty keyboards so there is less incentive for anyone to learn completely new fingering.

The proviso about having to buy to keep is perfectly reasonable. But it is also a very real disincentive to spending time on learning to microwrite and transferring large quantities of address data from my Psion 128 K packs. If I worked hard and cracked the Agenda system, I would end up either having to spend a lot of money to continue, or seeing the time and work wasted.

The value to a company of an experienced press officer is being able to distinguish between journalists who are looking for free samples and those who are serious about their work. I cannot afford the time to try everything and often refuse review loans, both of hardware and software.

When I ask for something it is because I think it is worth trying but in this case the very clear proviso about needing to buy was a strong pyschological deterrent to investing the time and effort
needed to learn yet another keyboard technique and language.

Microwriter now have their Agenda back. And this is all I can write about it.

Hang-On!

Do treat stories of LCD hang-on-thewall TV screens with a pinch of salt.

Sharp-is world leader in LCD technology. The size and price of Sharp's range of pocket LCD TVs confirm what a nonsense it is to predict large panel screens to hang on the wall are 'just around the corner".

The largest LCD screen currently available in the UK is now Sharp's $5 \cdot 6$ portable TV (shown below). It costs £900. This has 170,000 pixels (each a triad of red, green and blue coloured cells). An 8.6 in . monitor screen (without a TV tuner) costs around $£ 2000$ in Japan. Hitachi charges $£ 1300$ for a combined VHS playback recorder and 5 in. LCD.

Can you imagine how much it would cost to extrapolate from these screen sizes to a wall-sized panel?

In The Picture

Mitsubishi's new video recorders have a feature called "Twin Intelligent Picture". The idea is to tune the record and playback parameters of the machine to the tape being used.

This approach with Intelligent HO has already been pioneered by Akai. When a tape is put in the VCR, it automatically switches to record a test signal for a few seconds, then rewinds, replays and tweaks the recording parameters to optimize picture quality.

Akai has been reducing the test time, but Mitsubishi's TIP system drops it to
just 1.5 seconds by taking advantage of the fact that the video head drum has four heads. While two record the test signal, the other two play it back.

Video Phone

British Telecom has been demonstrating a video phone which BT says will sell for $£ 800$ a pair. These will plug into a normal telephone line socket and show one still colour picture every ten seconds. Quite why anyone should want this feature remains unexplained.

How well it works is anybody's guess, 100, because BT has been showing the trade a non-working prototype, with a hole where the 3in. colour LCD should be. The only two working models were at the "Ideal Home Exhibition", and there they were working only from signals generated by a personal computer.

Photo CD

Kodak has recently demonstrated Photo CD. The quality of thermal prints available from Photo CD are good, but the price is likely to be high.
The printer handles only $11 \times 8.5 \mathrm{in}$. and $11 \times 11 \mathrm{in}$. size prints. The thermal paper materials alone cost $£ 2.75$ to the trade. Kodak's printer will not handle postcard size prints - surely a curious ommission.

Users of PCs and workstations can access images from Kodak Photo CDs using any CD-ROM XA input device, or one of the new Photo CD compatible CD-ROM drives. CD-ROM XA technology was jointly developed by Microsoft, Philips and Sony as an industry standard to integrate audio and images into computing applications. Because of its compatibility with this standard, it is claimed that Photo CD can be used with virtually any type of computer adhering to common industry standards.

Kodak Photo CD system.

ELECTRONIC COMPONENTS

OPTO DEVICES - LEDS DISPLAYS - COUPLERS INDICATORS - ETC

SWITCHES - RELAYS DIL SKTS - BOXES

PROJECT BOXES A range of high quality boxes moulded in black high Impact ABS, easily drilled or punched to produce a professinal looking end product

TYPE	WIDTH	LENGTH	HEIGHT	PRICE
T2	75	56	25	$£ 0.77$
T4	111	57	22	$£ 0.92$
MB1	79	61	40	$£ 1.35$
MB2	100	76	41	$£ 1.47$
MB3	118	98	45	$£ 1.71$
MB4	216	130	85	$£ 5.19$
MB5	150	100	60	$£ 2.35$
MB6	220	150	64	$£ 3.95$
MB 7	177	120	83	$£ 3.42$
MB8	150	80	50	$£ 2.22$

SPECIAL OFFER - PROJECT BOX
As above boxes $50 \times 70 \times 25 \mathrm{~mm}$
60 p each 10 for $£ 5.00$
KEY SWITCH
3 Position keyswitch
£2.35
MICRO SWITCH roller arm operation spdt 40p each

Miniature toggle switches

spdt dpdt	60 p each	spdt 3 position c/off				70p each
	70p each	dpdt 3 position c/off				80p each
3 pdt	90 p each	spdt 3 position c/off biased both ways				70p each
spdt biased 60 peach						
MINIATURE TOGGLE SWITCH pcb mounting 3pdt					50p each 10 for $£ 4.00$	
DIL RELAYS 5 volt dp/change					60 p 10 for $£ 5.00$	
12 volt dp/changeover					80p 10 for $£ 6.00$	
RELAY 10 amp contacts sp/changeover 12 volt coil $£ 1.20$ each						
CAR HORN RELAY in metal can with fixing lug, s/pole on						
10 amp co 20 AMP RELAY dp on 12 voli col REED RELAY 12 volt				£1.00 each 6 for $£ 5.00$		
			£1.50 each 4 for $£ 5.00$			
			50 p each 10 for $£ 4.00$			
	DIL SKTS			'D' CON	NECTORS	
8 pin	10 for	£0.60		plug	socket	cover
14 pin	10 for	£0.90	9 pin	30p	30p	35p
16 pin	10 for	£1.00	15 pin	40p	40p	35p
18 pin	10 for	£1.00	25 pin	50p	50p	40p
20 pin	8 for	£1.00				
24 pin	8 for	£1.00	L	OMPO	NENT	ULL
28 pin	6 for	£1.00	SPEC	IFICAT	ION DE	ICES

SEMICONDUCTORS - TRANSISTORS -
 ICS - DIODES - REGULATORS - ETC

2N3702

BC337
2N3904
TIP31B
TIP 3055
10p ea 12 for 1.00 10p ea 12 for $£ 1.00$ 10p ea 12 for $£ 1.00$

30p ea
90p ea
all prices include vat

BC213L
2N3055H 2N3771 741 op-amp 555 timer ic LM324 quad op-amp 1N4007 diode 1N4001 diode IN4148 diode BZY88C12

10p ea 12 for $£ 1.00$
60p ea
£1.20 ea
25p ea 5 for $£ 1.00$ 30p ea 4 for $£ 1.00$

30 p ea 4 for $£ 1.00$
20 for $£ 1.00$
25 for $£ 1.00$
40 for $£ 1.00$
6 p ea 10 for 50 p

MINIATURE PUSH TO MAKE SWITCH 50P EACH

5 mm rnd red/yellow/green/amber 10p each 12 for $£ 1.00$ any mix 5 mm rnd high brightness red/green 20 p each 6 for $£ 1.00$ any mix 5 mm rnd flashing 5 mm rad bi-colour red 60p each, yellow/green 70p each Rectangular $6 \times 6 \times 2 \mathrm{~mm}$ red stackable 20p each, tri-colour 30p each Mounted in chrome metal bezel red/yellow/green

40 p each, 3 for $£ 1,10$ for $£ 3.00$ any mix
Mounted in a black metal bezel red only
30p each, 4 for $£ 1.00,10$ for $£ 2.00$

ALARM CONTROL UNIT

Single zone alarm control unit built into a domestic light switch box. Ideal for home, caravan, boat, garage, shed etc.
Facilities: - Normally closed loop for pir sensors, door/window contacts etc.
Normally open loop for pressure mats. 12 volt dc for external use 24-hour loop for personal attack button VIsual indication that the system is operational.
Automatic entry/exit delay.
Automatic system reset. Alarm output cmos logic level.

115db

BELL BOX

A plastic bell box cover supplied with backplate. Red/yellow/white or blue £6.95 each

PRICE COMPLETE WITH FULL INSTRUCTIONS

BELL/SIREN INTERFACE PCB ONLY

£1.50

PASSIVE INFRA-RED ALARM SENSORS

Ex installation sensors tested working.
Type 1. Measures $180 \times 112 \times 70 \mathrm{~mm}$ with walk test led, relay output and tamper protection. 12 volt dc supply required
. 8.50 ea
As above but a smaller unit
£11.75 ea

DOOR/WINDOW
CONTACTS
Surface or flush mounting.
§hite
JUNCTION BOX
white 6 way

Please note: There may be variations in the size of the above passive infra red sensors depending on stock at the time of ordering. But the unit will certainly be within the stated sizes.

DUAL TECH SENSOR Microwave and passive infra-red combined. Separate led indication for each function. Measures $120 \times 75 \times$ 50 mm . Relay output 12 volt dc tamper protection
29.95 ea

BREADBOARDS - CAPACITORS -

SOLAR CELLS - HEATSHRINK - ETC
SOLAR CELL 2 volt 150 mA max, size $60 \times 100 \mathrm{~mm} \quad £ 1.35$ ea 5 for $£ 6$ HEATSHRINK SLEEVING 8 mm dia $\times 40 \mathrm{~mm}$ long 5 lengths for $£ 1.00$ BNC TO BNC LEAD $2 m$ long $£ 2.35$ BNC TO PL259 $2 m$ long $£ 2.35$ BNC SOCKETS 50 ohm single hole fixing $\quad 50 \mathrm{p}$ ea 10 for $£ 4.00$ PIEZO TRANSDUCER 5 assorted types $£ 1.00$ MERCURY TILT SWITCH §1.00 each
PIEZO VIBRATION SENSOR with data sheet $£ 1.00$ each BREADBOARD
$173 \times 65 \mathrm{~mm}$ 840TP $\{5.25$ each
28 pin zero insertion socket $£ 5.95$ each
8 pin zero insertion socket £5.
Switch mains up to 7 amp 12 or 5 volt control voltage both types $£ 2.95$ ea

NI-CAD BATTERY PACK 12 volt 4 aH can be split into two 6 volt packs. High temperature fast charge type £27.95 CAPACITOR 10,000 mid 25 volt with fixing clip 60p each CAPACITOR 470 mfd 400 volt $£ 1.50$ each 4 for $£ 5.00$ CAPACITOR Tantalum bead 10 mfd 10 volt CAPACITOR 0.1 mfd 63 volt

10 for 50p
C512-25. 6p each 10 for 50p used eprom. Mounted on a plastic carrier, can easily be removed from the carrier or used with a low insertion force socket. mounted on 1 complete with data and application notes

Constalaman Quick PROM

JOHN BECKER

This speedy interface could save youmany hours of system development time.

ITS MOST satisfying to suddenly recognise an easier way of doing something you've been doing the hard way for ages! Such was the case regarding my addiction to designing microprocessor controlled circuits. The obvious dawned when a method of speeding the development time was spotted.

Those familiar with writing software for microprocessor controlled systems will know that a lot of development goes into the process. Much of the software debugging can initially be done on a computer. Eventually, though, the program has to be tested in-circuit.

This first requires the code to be downloaded from the computer out to a dedicated programming unit and transferred into an EPROM or EEPROM, which is then removed and placed into the module under test. Frequently, further development is required, and many improved software versions have to be repeatedly downloaded.

My own system required the use of two programs which had to be loaded independently. One controlled the code assembling and debugging operation, the other controlled the E(E)PROM programmer. After downloading the umpteenth version of one program, loading and reloading assembling and EEPROMming software, I
chanced to query the need for using the EEPROM programmer.
All it was doing was essentially the same operation as that performed by the computer when it copied data from one location to another. Why not use a bat-tery-backed SRAM (static random access memory) in place of the EEPROM, plugging it directly onto the computer bus and treating it as any other RAM in the system?
Having its own independent power supply built in, this type of SRAM can be removed from circuit without data being lost. It's ideal for prototyping work.

CUICK PROM

The interface circuit described here illustrates the way the technique was put into use. It was designed for use with a computer having a spare ROM (or RAM) location and for which read/write control is performed by a single line producing a $1 \mu \mathrm{~s}$ write pulse. It is not suitable for computers which have separate read and write control lines, such as IBM-compatibles. Fig. 1 and Fig. 2 show the unit's block and circuit diagrams.
The computer bus directly offers the address, data and control lines required to program an SRAM. What is not allowed for, though, is the need to isolate all the chip's pins (except ground) from the computer lines before extracting it. Failure to

Fig. 1. Block diagram for the Quick Prom.

do so is likely to result in erroneous data being written into the chip during removal from its socket. Essentially, then, the circuit here is simply an isolator.

CIFCUIT DESCRIPTION

In the full circuit diagram, Fig. 2 the SRAM is IC4, an MK48Z02 2048×8-bit device with built-in Lithium battery. Its eight data input/output lines are buffered

Fig. 3. Functional logic diagram and truth table for the 74C541.
from the computer's data input/output lines by IC5. This chip is an octal tristate non-inverting bus transceiver type 74HC245. It has three modes of operation controlled by its pins I and 19 .
Pin 1 controls the data direction, a high logic level setting the direction from side A to side B. A low logic level reverses the direction.
Data is only transferred from one side to the other when the output enable control pin 19 is set low. When this pin is held high, the output pins are set into a high impedance state, behaving as though they are, in effect, switched off.
The SRAM IC4 has 11 address lines, the first eight of which, A0-A7, are isolated by IC2. This chip is an octal tri-state noninverting buffer type 74 HC 541 whose outputs are put into a high impedance state when either pin $\overline{O E I}$ or pin $\overline{O E 2}$ is set high. When both pins are low, data on the chip's AI-A8 inputs is transferred to the Y1 to Y8 outputs. Fig. 3 shows the logic diagram and truth table for the 74HC541.
Another 74HC541 (IC3) isolates IC4's A8-A10 address lines, as well its positive power line and the WE. $\overline{O E}$ and $\overline{C E}$ control lines. Each output pin of a 74 HC 541 can sink or source a current of 35 mA , provided that the chip's total power dissipation does not exceed 750 mW . As the SRAM can draw about 70 mA when fully active, power is supplied to it via 110 lines of IC 3 , along paths $\mathrm{A} 7 / \mathrm{Y} 7$ and $\mathrm{A} / \mathrm{Y} 8$.
The output enable pins (1 and 19) of IC2 and IC3 are controlled by switch S1. When the switch is open the pins are held

at +5 V via $\mathrm{R} 1-$ allowing the SRAM to be removed, whereas when it is closed the pins are switched direct to ground - (0 V) switching the SRAM into circuit.
The output enable pin of IC5 is controlled by the chip select line ($\overline{C S}$) of the computer. This line, via IC3 A1/YI, also controls the SRAM's $\overline{C E}$ (chip enable) line at pin 18. In conjunction with the computer's read/write line ($\mathrm{R} \overline{\mathrm{W}}$). $\overline{\mathrm{CS}}$ also controls the SRAM's read/write and output enable lines, $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

The chip select ($\overline{\mathrm{CS}}$) is inverted by ICl a
which sets the logic on one input of the NAND gate ICIc. The other input to IClc is controlled by the RW line generating a negative-going pulse across C3/R2 which is then inverted by IClb. Only when both inputs to IC1c are high simultaneously will its output go low.
The output from IC1c is passed via IC3 A4/Y4 to control line $\overline{W E}$ (read/write) of the SRAM (IC4), it is also inverted by ICld to control line $\overline{\mathrm{OE}}$ (output enable) of the SRAM via IC3 A3/Y3. When writing to the SRAM, the computer's $\overline{C S}$ and $R \bar{W}$

Fig. 2. Complete circuit diagram for the Quick Prom interface.

lines must both be low. When reading from the SRAM, $\overline{\mathrm{S}}$ must again be low, but R \bar{W} must be high.
For some computers it may be possible to omit capacitor C3, resistor R2 and diode DI, taking the RW line direct to ICl . This will depend on the synchronisation of the $R \bar{W}$ toggling relative to the data and address line timings.
The ending of the $R \bar{W}$ pulse must occur before the address and data lines change their states otherwise data intended for one address may erroneously be written into the previous address as well. The values of C3 and R2 were chosen to shorten the $1 \mu \mathrm{RW}$ pulse generated by the computer's 1 MHz system clock to about $0.5 \mu \mathrm{~s}$.
The unit is powered direct from the computer's $5 V$ power line, which must be capable of supplying at least 80 mA .

ASSEMELY

The Quick Prom is built on a singlesided printed circuit board (p.c.b.) and the
component layout and full size copper foil master pattern is shown in Fig. 4. This board is available from the $E E P C B$ Service, code EE799.
Ordinary dual-in-line (d.i.l.) sockets should be used for all i.c.s except for IC4 for which a "Zero Insertion Force" (ZIF) socket should be used. Connections between the p.c.b. and computer may be via ribbon cable or individual wires drawn together into a neat harness secured with cable ties. About one metre of cabling should be sufficient.
As constant access is needed to the board, it is probably better not to put it in a box. The switch SI is mounted directly on the board, consequently the height of the p.c.b. supports must allow clearance for its body.
The computer with which the original unit is used has an unused 24 -pin ROM socket providing all the necessary pinouts except for the RW line. Consequently, all the unit's leads except for RW were sol-
dered to the upper side of a separate 24 -pin socket which was then plugged into the ROM location.
The RW lead was connected to the computer's RWline on its expansion plug. This plug could not readily be used for all the connections since a dedicated $\overline{\mathrm{CS}}$ line is not available on it, whereas $\overline{\mathrm{CS}}$ on the ROM location is dedicated to that specific address block

/NUSE

If your computer does not have a suitable spare socket, consult the computer manual and consider whether it is practical to temporarily remove a RAM or ROM (more likely a RAM) to allow the unit to be plugged in. Check the pinouts before wiring the 24 -pin connector.
Once the unit is plugged in, the computer does not need to be switched off each time the SRAM is inserted or removed since switch \mathbf{S} I controls all the necessary isolation. When copying data into the SRAM,

Semiconductors	
D1	1N4148 signal diode
IC1	4011 quad 2 -input
	NAND gate
IC2. IC3	74HC541 octal buffer
IC4	(2 off)
MK48Z02 Lithium battery-	
IC5	backed SRAM
	74C245 octal bus transceiver

Miscellaneous

S1 s.p.s.t. min. toggle
Printed circuit board available from EE PCB Service, code EE799; 14-pin d.i.I. socket; 20-pin d.i.I. socket (3 off); 24-pin d.i.l. socket; 24-pin ZIF (zero-insertion-force) socket; multi-coloured connecting wire or ribbon cable (23×1 metre); nylon stand-off p.c.b. supports (4 off); cable ties, if individual wires used; solder pins; solder etc.

Fig. 4. Printed circuit board component layout and full size copper foil master pattern. IC4 is mounted in a ZIF socket the rest are inserted in standard d.i.l. sockets. The completed board is shown top left.

switch off SI, insert the SRAM, switch on Sl (taking the $\overline{O E}$ pins to 0 V), run the copy routine, switch off S1 and remove the SRAM, after which it is ready for use in the circuit you are developing.
The copying procedure will depend on what facilities you have on the computer. Some machine-code assemblers or monitors have a facility for high-speed copying of memory data from one location to another. In this case, machine code is written in the normal way and then transferred under the monitor to the unit by copying the code to the chosen ROM or RAM location.
For example, I might assemble code into RAM block $\$ 2000-\$ 27 \mathrm{FF}$ and then
copy it to the unit plugged in at location $\$ 9000$. (Using a Supermon mini-assembler, for example, the copy (transfer) command is simply "T 200027 FF 9000 " and the process takes a mere fraction of a second.) Note that it would be inadvisable to assemble the code directly into the location at which the unit is plugged since data could be lost if a mistake is made when relocating the SRAM. It is better to assemble code at another computer memory location, save to disk, and then copy to the unit.
Copying can be done via a Basic program, albeit at a much slower rate. In the following example, the code and unit locations are the same as those above but expressed in decimal.

100 REM QUICK-PROM COPY $110 \mathrm{M}=8192$: REM $\$ 2000$
$120 \mathrm{~S}=36864$:REM $\$ 9000$
130 FOR A =0 TO 2047:REM SRAM MAX CAPACITY
140 P = PEEK (M+A):REM GET MEMORY DATA
150 POKE S + A,P:REM COPY DATA
$160 \mathrm{C}=\operatorname{PEEK}$ ($\mathrm{S}+\mathrm{A}$): REM READ SRAM
170 IFC < > P THEN PRINT"ERROR AT ${ }^{-} ; S+A ; P ; C$
180 REM LINE 170 VERIFIES DATA COPY
190 NEXT A
200 PRINT "RECHECKING"
210 FOR A=0 TO 2047
$220 \mathrm{C}=\operatorname{PEEK}(\mathrm{S}+\mathrm{A})$
$230 \mathrm{P}=\mathrm{PEEK}(\mathrm{M}+\mathrm{A})$
240 IF C < > P THEN PRINT "ERROR AT ${ }^{\circ} ; S+A ; P ; C$
250 NEXT A
260 PRINT "FINISHED":STOP
If copying errors have occurred (unlikely, but possible), the software can be written to allow for the recopying of just single bytes or short blocks from within the main memory block. It is not necessary to copy all 2048 bytes.

When system development has been completed and you are happy with the machine code, it should then be down-loaded from the computer into an $\mathrm{E}(\mathrm{E}) \mathrm{PROM}$ in the normal way via a suitable programmer. Although it might appear that this unit could be used to copy into EEPROMS, this proved impractical with my own computer because it is not capable of providing the longer write pulses necessary (typically about 10 mS). \square

PCB \& SCHEMATIC CAD	DIGITAL SIMULATION	ANALOGUE SIMULATION	SMITH CHART CAD
EASY-PC £98	PULSAR f195	ANALYSER III 195	Z-MATCH II £195
- Design Single sided, Double sided and Muhtlayer boards. - One software package for Schomatics and PCE's. - Standard output includes Dot Matrix / Lazer / Inkjot printers, Pon Plotiors Photo-plotters and NC Drill. - Award Winning EASY-PC is in use in over 12,000 installations in 70 Countries World-Wide. - Runs on PC/XT/AT/286/386 with Herc, CGA, EGA, VGA. - Optional librarles S.M. Components etc. From $£ 38.00$	- At lasil A full featured Dightal Clicult Simulator for loss than ع1000) - Pulear allowe you to test your logic designswithout the need for expensive test equipment. - Catch glitehos down to a pico-second per week! - includes 4000 Serles cmos and 74LS Libraries. - Runs on PC/XT/AT/286/386/ 486 with EGA or VGA. Hard disk recommended. -74HC / HCT Lbraries optional at $£ 48.00$ each.	- NEW powertul ANALYSER III has full graphical output. - Handlos R's,L's,C's, Bipolar Transistors, FET's, Op-Amp's, Tapped and Untapped Transformers and Microstrip and Co-axial transmission Lines. - Piote Input and Outpur Impedances, Gain, Phase and Group Delay. - Covers 0.001 Hz to $>10 \mathrm{GHz}$ - Runs on PCSXT/AT/286/386/486 with EGA or VGA displays. - Very fast computation.	- Z-MATCH II takes the drudpery out of RF matching problems and includes many more features than the standard Smith Chart. - Provides quick accurate solutlons to many matching problems using transmission line iransformers, stubs, discrete components etc.etc.. - Supplled with comprehensive user instructions Including many worked examples. - Runs on PCIXT/AT/386/486, CGA, EGA,VGA. - Ideal for both education and industry.
For full info' Phone, Fax or Wike to:	Number One Systems Lta. The Electronics CAD Specialists		Technical support free for life! Programs not copy protected. Special prices for Education.

REF: EVD, HARDING WAY, SOMERSHAM ROAD, ST.IVES, HUNTINGDON, CAMBS, PE17 4WR, ENGLAND.
Tolephone: 048061778 (7 lines) Fax: 0480 494042 International: $+44-480-61778$ Fax: $+44-480-494042$
ACCESS, AMEX, MASTERCARD, VISA Welcome.

Regular Clinic

CIRCUIT sURGERY

 MIKE TOOLEY B.A. 誛
Abstract

Welcome once again to Circuit Surgery, our regular clinic for readers' problems. This month has brought in another bumper crop of mail and, in an attempt to deal with as many of your queries as possible, I have tried to include quite a few topics this month. Hopefully, there is something for everyone.

Our July Surgery provides information on how to detect the state of a contact breaker in a magneto, the circuit of an experimental pulse comparator, and a simple a.m. radio tuner. We also revisit Mark Stuart's popular Variable Bench Power Supply and offer a timely warning concerning the purchase of electrolytic capacitors. For good measure we have some advice on the selection of analogue to digital converter (ADC) chips and a listing of popular logic gates by their function.

Synchronising engine speed

W. Roberts writes from Jersey to ask for some help in the design of a circuit which will allow him to adjust the timing of engines fitted to a light aircraft:
"This instrument is a project which I would very much like to build and utilize. All light aircraft maintenance workshops would most certainly have one for synchronizing and timing port and starboard magnetos on piston engines. Classic motor cycle restorers and others used to the time consuming "cigarette paper technique" for determining opening time would undoubtedly benefit from the ease and accuracy of timing magnetos afforded by this method."

For the benefit of readers who may not

Fig. 1 Basic magneto arrangement (note that the transformer windings are wound on the laminated steel core)

Fig. 2 Simple instrument for sensing the state of the contact breakers
know how a magneto operates, Fig. 1 shows the basic principle of this device. The important thing to note is that this form of HT generator does not require the services of a d.c. supply in order to generate the HT voltage required by the engine's igntion system.
The current in the primary winding is induced by the rotating magnet. As this current reaches a peak value, the contact breaker mechanism (which is driven by a rotating cam) opens and interrupts the primary current. This results in a sudden collapse in flux which, in turn, produces a
very high value of induced e.m.f. across the secondary winding.
Mr Roberts quotes typical values of capacitor and primary coil resistance of $2.2 \mu \mathrm{~F}$ and 0.7 ohm respectively. Clearly, detecting the opening and closing of the points under static conditions will be somewhat problematic since most ohmmeters will just not be able to detect such a small change in resistance.
The circuit shown in Fig. 2 (based on a comparator) will, however, detect changes in resistance of less than 0.1 ohm. The circuit requires a 9 V d.c. supply (50 mA maximum) and operates an l.e.d. which will provide a visual indication whenever the contact breakers are open. The threshold sensitivity of the instrument is adjusted by means of VRI. In order to set this for optimum sensitivity, a one ohm resistor should be connected across the probes and the control is adjusted until the l.e.d. just becomes illuminated. The resistor can now be removed and the instrument will be ready for use. If necessary, the circuit of Fig. 2 can be duplicated to permit simultaneous adjustment of both engines on a twin engined aircraft.
Finally, the pulse comparator arrangement shown in Fig. 3 has been provided as "food for thought". This circuit should be capable of adaptation for use in synchronizing the speed of two engines

Fig. 3 Circuit of the experimental pulse comparator

Fig. 4 Circuit of the simple a.m. tuner
when the engines are actually running. It should be noted that the circuit assumes that both contact breakers interrupt the current for an identical proportion of the cycle. The circuit has been "bench tested" and, with the values quoted, it was found quite possible to detect synchronism of two pulse trains to within two per cent.

Simple a.m. tuner

Many of today's audio systems are fitted with tuners which only receive f.m. signals. This can be something of a problem when the user wishes to receive one (or more) a.m. stations on the medium or long-wave band! For such occasions, and provided that only local station reception is required, a simple single-stage a.m. tuner can suffice. Fig. 4 shows the circuit of such an arrangement.

The tuned circuit $\mathrm{LI} / \mathrm{VCl}$ comprises an inductor wound on a conventional ferrite rod and a variable capacitor (having a maximum value of between 200 pF and 500 pF) both of which can be removed from a discarded radio. TRI (a field-effect device) provides a small amount of r.f. gain and its high input impedance is ideal for directly matching the input tuned circuit. The r.f. gain is made variable by means of VRI. This control is adjusted to produce a satisfactory value of gain coupled with a sufficiently "sharp" degree of selectivity in order to eliminate strong a.m. signals which may be present on adjacent frequencies.
A short length of aerial wire (not more than about three metres) may be necessary in order to receive signals at the high frequency end of the medium waveband. In some cases, it may also be necessary to experiment with the inductor (LI) for optimum results.
The output of the a.m. tuner may be taken to the "auxilliary" input of almost any hi-fi audio amplifier. This input will usually exhibit an input impedance of about 50 kilohms. This will usually have sufficient sensitivity to provide ample volume from the 20 to 100 mV output signal obtained from the a.m. tuner.

Versatile Power Supply

Mark Stuart's Variable Bench Power Supply was featured in the February 1988 issue of Everyday Electronics. This circuit provides a d.c. output fully variable over the range 0 V to 24 V at up to $2 \cdot 5 \mathrm{~A}$. The design was somewhat unusual in that it used a power MOSFET rather than the
usual 2N3055 (or similar) series-pass transistor. Mark's circuit also employed a quad operational amplifier (LM324) and offered separate output voltage and current limit controls.
Mr R. Bolton writes from Pendlebury with a a query concerning this popular constructional project:
"All voltages are $O K$ and the voltmeter works however the ammeter and op-amp output all read zero. There is only 2.6 mV across R13 (0』1) which gives 0.104 V at pin- 14 which should be 10 V varying to 0 V as the pot is rotated.

The power supply is a "must" for my benchwork but I am stuck. Perhaps a breakdown of the circuit would be an answer to my problem."

Well, Mr Bolton, I am not really certain that you DO have a problem! One piece of useful information which you have not given me is what happens when you place a load on the power supply. I assume that the readings you have quoted are under "noload" conditions. If this is the case, they are not far from what should be expected!
Try placing the unit under load (a current of a few hundred mA would be useful) and see if the voltage drop across R13 increases. Then adjust the current limit control (VR1) and check that the output voltage falls to zero when the limiting value has been reached.
If the voltage dropped across R13 does not increase and the ammeter (ME1) still
fails to produce an indication, then you DO have a fault! If there IS a voltage drop across R13 (but no indication on the ammeter) it would be worth replacing ICl (the LM324) with another device. Failure of ICIb would certainly give rise to the conditions which you describe.

Finally, it is worth pointing out that the voltage at pin-14 does not behave in quite the way in which you suggest. This voltage is simply an amplified version of that which is dropped across R13. It will not normally be affected by the setting of the current limit control (VRI) unless the circuit has begun to "current limit".

If any other reader has had any problems with Mark Stuart's Variable Bench Power Supply (or can throw any other light on this subject) please drop me a line! Incidentally kits for this design are available from Magenta Electronics Ltd who advertise in EE.

Analogue to digital conversion

Maft Manktelow writes from Co. Antrim, Northern Ireland, to ask if I can suggest a suitable chip for use in an analogue to digital converter. Matt has asked particularly for a device which can be interfaced with a computer so I have searched through my data library in order to find a short-list of suitable devices.

All of the devices listed are "microcompter bus compatible". This means that their outputs can be connected directly to a microprocessor data bus without having to resort to the use of a parallel interface device. In order to avoid an unwanted conflict of data on the bus, the ADC output must only be enabled when it is actually being addressed by the microprocessor. To ensure that this is the case, additional address decoding logic will be required.

The ADC will be allocated an address within the system I/O or memory map (depending upon the microprocessor type involved). Assuming that the system is based on a common 8-bit $\mathbf{Z 8 0}$ microprocessor, the ADC should be allocated a unique 1/O address (chosen so as to avoid conflict with other I/O devices which may be present). Reading the data from the ADC is then a relatively simple matter of executing a port input instruction (this has the form IN A. (port) where port is the address of the 'ADC. In a practical system, the "data available" output of the ADC chip is used to generate an interrupt request (via the active-low IRQ line).

ADC Chips

Number of channels (note 1)	$\begin{aligned} & \text { Resolution } \\ & \text { (bits) } \\ & \text { (note 2) } \end{aligned}$	Device type number	Package	Special features
1	10	AD573	20-pin d.i.l.	
1	8	AD7575	18-pin d.i.l.	High speed
1	12	AD7578	24-pin d.i.l.	
8	8	AD7581	28-pin d.i.l.	
1	12	AD7672	24-pin d.i.l.	High speed
1	8	ADC0804	20-pin d.i.l.	
4	8	ADC0844	20-pin d.i.l.	
1	12	ADC51!	24-pin d.i.l.	Low power
1	8	ZN427E	18-pin d.i.l.	
1	8	ZN439E	22-pin d.i.l.	
1	8	ZN448E	18-pin d.i.l.	
1	8	ZN502E	20-pin d.i.1.	

Note 1: The "number of channels" specifies the number of analogue inputs that may be connected to the ADC chip. Where more than one channel is provided for, the device in question will incorporate some form of analogue multiplexer.

Note 2: The basic resolution of an ADC chip is dependent upon the number of bits used to represent the analogue input. The greater the number of bits, the smaller the change in analogue input level that can be detected by the device.

Basic logic functions

Mant Mantelow has also asked me to list some of the more common logic gates according to their function. So, here goes:

> Logical AND function

Number of gates per package	Number of inputs per gate	Gate type	Other characteristics
4	2	74LS08	
4	2	74LS09	Open collector
3	3	74LS11	
3	3	74LS15	
2	4	74LS21	
Logical OR function			
Number of gates per package	Number of inputs per gate	Gate type	Other characteristics
4	2	74 LS 32	
3	3	4075	
4	2	74LS136	
Logical EXOR (exclusive-OR) function			
Number of gates per package	Number of inputs per gate	Gate type	Other characteristics
4	2	74 LS 86	
4	2	74LS136	
4	2	74LS386	
Logical NAND function			
Number of gates per package	Number of inputs per gate	Gate type	Other characteristics
4	2	74LS00	
4	2	74LS01	Open-collector
4	2	74LS03	Open-collector
3	3	74 LS 10	
3	3	74 LS12	
2	4	74LSI3	Schmitt input
4	4	74LS20	
4	4	74LS22	Open-collector
4	2	74LS26	High-voltage
1	8	74LS30	
4	2	74LS37	Buffer
4	2	74LS38	Open-collector
2	4	74 LS 40	Buffer
4	2	$74 \text { LSI } 32$	Schmitt input
1	13	74LS133	
Logical NOR function			
Number of gates per package	Number of inputs per gate	Gate type	Other characteristics
4	2	74LS02	
2	4	74LS25	Strobe
3	3	74LS27	
4	2	74LS28	Buffer
4	2	74LS33	Buffer
4	2	74 LS266	Exclusive
2	4	4002	
1	8	4078	

The foregoing lists are not exhaustive but should cover the vast majority of eventualities. The 'LS series of TTL devices is available from a great many component suppliers but I have listed a few useful CMOS devices as well.

Caveat emptor

"Ne.v time you purchase electrolyic' capacitors, take a careful look at the markings!". This is the timely advice offered by Colin Pickwick. He recently purchased some capacitors (from a well established supplier) only to find (on close examination) that the marked working voltage was well below the advertised value.

It would appear that either the values had been substituted by the supplier (without warning) or the capacitors had been mistaken for components having an identical capacitance value but with a much reduced voltage rating. In some cases this would not matter too much, however there could very well be serious implications of operating a component at a potential which is appreciably greater than its rated voltage.

Readers will doubtless already be well aware that the voltage ratings quoted for electrolytic capacitors are really quite important. As an example, a capacitor rated at 16 V will invariably not operate safely in a circuit which specifies a component rated at 35 V . The moral to this little story must therefore be that it is always worth checking that the components you receive from a supplier are the ones that you actually ordered!

Next month: In next month's Surgery we shall be describing an improved low-battery warning indicator and have a computer program for designing 555 timer circuits.

DROP ME A LINE

If you have any comments or suggestions for inclusion in Circuit Surgery, please drop me a line at: Faculty of Technology, Brooklands College, Heath Road, Weybridge, Surrey, KTI3 8TT. Please note that I cannot undertake to reply to individual queries from readers however I will do my best to answer questions from readers through the medium of this column.
Note: If you have a specific query on an EE project see the information under Readers Enquiries on the Editorial page and write to the Editorial Offices at the address shown at the top of that page.

Please reserve/deliver a copy of Everyday Electronics for me each month

Signed..

Name and Address.
 (BLOCK CAPITALS PLEASE)

High Powered 5 mW Visible Hene Laser Tubes. £55.00 each. (inc.PSU Plans)
Easy to set up and operate. These are new \& direct from the factory. Not to be confused with the usual lower powered devices on offer.

For Information on Lasers, Optics, Holography kits, Plans, Books etc.
Send S.A.E. To:-Laser Science Ltd.
P.O.Box 79, Prestwich, Manchester M25 5AT

TEL: 061773 0911. FAX: 0617730912

THE NAME IN INNOVATIVE COMMUNICATIONS PRODUCTS
 STOP NUISANCE CALLS
 PROTECT YOURSELF AGAINST UNWANTED TELEPHONE CALLS
 DL20
 TELEPHONE CALL
 FILTER-MONITOR-ANSAPHONE

* Call-Screen: Displays the number of incoming calls before the telephone is answered.
* Call-filter: No more unwanted calls.
* Call-Counter: Check number of calls on return.
* Call-Register: Stores 40 incoming call numbers and the time of the call.
* Call-Monitor: Listen to any noise in your home/office by a secret code when calling.
* Normal time display.
* Memory back-up during power cut.
* Can connect both tone or pulse telephone systems.
* 20 phone number memories can be
 stored and recalled.
- OGM: To record a personalised outgoing message.

NORTHERN MARKETING CONCEPTS

 24 HOUR ORDER HOTLINE Tel: (09442) 8887
SCANNERS - TELEPHONE RECORDERS - COMPUTER AIDED SURVEILLANCE SOFTWARE
Please note that certain equipment may need approval before connection or use

OUT NOWsSummer ' 92 Electronic Constructors Catalogue

Many new

products including:

- Audio Amplifier Modules

Range of 14 high power audio modules, encapsulated to an integral heatsink in Bi-polar, MOSFET and Class A formats with power outputs from 15 to 180 watts.

- Books

18 new titles from the top electronics publishers.

- Burglar Alarm

Volumetric alarm triggered by change in air pressure eg an opening door, easy to install - no wiring required.

- Spectrum Analyser Adaptor

Converts a conventional scope into a low cost, 250 MHz spectrum analyser.

- Low Profile Mains Transformers

Encapsulated, top quality PCB mounting mains transformers.

- Airband Scanning Recelver

100 programmable channels, covering civil and military frequencies.
E Stereo Valve Amplifier
Top quality stereo hi-fi amp from Velleman - at a very competitive price!

- Extended Ranges
of connectors, equipment cases, filters, crystals, fuses, fans, kits, ATUs, semiconductors, loudspeakers, sounders and toroidal transformers.

With 24 product sections, 192 pages, $3000+$ lines and $£ £ £ s$ of discount vouchers, be sure to get your copy now!

Available from most newsagents or directly from Cirkit.

CIRKIT DISTRIBUTION LTD
Park Lane • Broxbourne • Hertfordshire EN10 7NQ Telephone (0992) 444111 • Fax (0992) 464457

INFORMATION TECHNOLOGY

 AND THE NATIONAL CURRICULUM T. R. de VAUX BALBIRNIETHIS is the ninth in a 12 -part series concerning Information Technology, Logic Systems and related matters in and around the Science National Curriculum. We shall devote the whole of this month to bistable-based circuits.

HAPPY FAMILIES

The bistable is a circuit which is stable in either of two states - hence its name. It is a member of the multivibrator family the other two of which are the monostable and the astable. Readers who have been following this series will remember that the latter pair were met in Part 5 (March, 1992 issue). It will now be useful to describe all three using mechanical models since this shows where the bistable fits into the complete picture.
Imagine we have a swinging pendulum (a piece of string with a weight on the end) - see Fig. Ia. We could think of the extremes of its swing to be called states A and B. We can see that the pendulum is not stable in either of these states. No sooner has it reached A than it reverses and goes to B, returns to A and so on. This is a mechanical astable.

Now imagine we lift a marble above the table (Fig. 1b) we can call the raisedup position state A and table level, state B. Here, the object is only stable when it is on the table. If it is raised and released it will fall from state A to state B and remain there. This is a mechanical monostable - it is stable in only one state.

Now think of a two-section piece of egg box and a marble (Fig. 1c). We could place the marble in one hole (state A) and it would remain there indefinitely. We could equally well have placed it in the other hole (state B) and it would similarly remain there. It appears that the marble is stable in either of the two states. This is a mechanical bistable.

Although it helps to illustrate the multivibrator family in this way, here we are really concerned with the electronic version.

FLIP-FLOPS

Today, bistables used in practical circuits almost invariably take the form of integrated circuits. However, bistables based on individual transistors are some-

Fig. 1. Mechanical models of the multivibrator family.
times used and valves were used for the purpose many years ago. The bistable has some important uses in information handling, some of which are to make a circuit latch, to make binary counters and frequency dividers also to store data - that is, to provide computer memory.
Readers who have not been following the series are advised to read Part 6 (April, 1992 issue). This gives certain background information about logic gates which form the basis of bistables.
The bistable is often called a "flip-flop" because you can "flip" it into one state or "flop" it into the other. The simplest electronic flip-flop is a form of Set-Reset (S-R) bistable consisting of the pair of cross-coupled NOT gates shown in Fig. 2. This circuit has two outputs (one to represent each state) called Q and $\overline{\mathrm{Q}}$ (pronounced Q bar).
The significance of these names is that

Q and $\overline{\mathrm{Q}}$ normally have opposite logic states - that is, if one of them is Logic 0 , the other will be Logic 1. In the mechanical analogy, this is like saying that when the marble is in state A (Logic 1) it is not in state B (Logic 0). The bistable has two inputs - one called Set (S) and the other Reset (R). These are used to change the output states as required. Fig. 3 shows the symbol for an S-R bistable.

HOW IT WORKS

In theory, an S-R bistable could be built from the arrangement of NOT gates shown in Fig. 2. However, this is not a practical circuit and, although simple, would be difficult to control. It is best not to built it at all but to imagine how it would work. Consider the instant when the supply (not shown) is connected. The output states of both gates would be 0 (because nothing has happened yet).
Now consider Gate A. Since its output (\bar{Q}) is 0 the input to gate $B(R)$ will also be 0 because they are connected together. A NOT gate inverts the logic state of the input so the output of Gate B (Q) will become 1 and this makes the input of gate A (S), 1 also. The output of Gate A will therefore remain 0 . The existing states of the outputs, $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$, are therefore

FIg. 2. NOT gate bistable.

Fig. 3. Symbol for S-R bistable.

Fig. 4. Practical S-R bistable.
maintained - that is, the bistable is stable. This is called the Set condition.

We must, however, consider what would have happened if the 0 state at Gate B output (Q) had given 'Gate A an output of 1 first. This state would have been fed to Gate B input whose output would therefore be 0 . This condition, $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$, would be equally stable and is called the Reset condition. It appears, therefore, that whether $\mathrm{Q}=1$ and $\overline{\mathrm{Q}}=0$ or $\mathrm{Q}=0$ and $\overline{\mathrm{Q}}=1$, depends on which gate processes the information presented to its input first - there is a race between the two gates.
Since no two gates are identical, one will always do this first. The bistable will therefore power-up in either the Set or Reset condition. Such racing is not good because it introduces an unpredictable element and is avoided in real systems.
Suppose on switching on, the bistable is $\operatorname{Set}(\mathrm{Q}=1, \overline{\mathrm{Q}}=0)$. By making $\mathrm{R}=1, \mathrm{Q}$ will be forced to become 0 and $\overline{\mathrm{Q}}, 1$ - the outputs will change states i.e. it is Reset. If S is now made 1 , the outputs will revert to their Set conditions.

A PRACTICAL S-R BISTABLE

To be useful, a bistable needs to have more sophisticated access to its inputs. With the NOT gate bistable, the inputs are connected direct to outputs. This means that in controlling the inputs, the outputs can be short-circuited.
A practical S-R bistable circuit which does not suffer from the problem mentioned above is shown in Fig. 4. This consists of a pair of cross-coupled NOR gates. Switches, S1 and S2 respectively are used to set and reset the device and l.e.d's, D1 and D2 indicate the logic state of the outputs, Q and $\overline{\mathrm{Q}}$ - when lit the state is 1 , when off, it is 0 .

As a basis for this month's experiments, the simplest approach is to use a modular kit (for example, the Unilab Alpha Kit). Alternatively, circuits may be built using basic components on a Plugblock (prototype board) - layouts are given in all cases.

Note that a description of the Plugblock and its use in circuit-building was given in Part 5 (March, 1992 issue).

Fig. 5. Practical S-R bistable construction.

The component "shopping lists" assume the use of the Plugblock and a few short pieces of single-strand connecting wire to be used as link wires. A PP3 or other 9V battery and a suitable connector are also needed.
Remember, if you have been building circuits from previous parts of the series, check your stock of components before ordering new ones. Special low-current l.e.d's are available from several suppliers and it is worthwhile using them. Ordinary l.e.d's may be used but they will not be as bright.
To build the practical bistable you will need the following:

IC1	4001BE quad. NOR gate
R1, R2	10k resistors (2 off)
R3, R4	1k resistors (2 off)
D1, D2	5 mm low-current red I.e.d.s
(2 off)	

Following the Plugblock layout (Fig. 5). Note that two of the four NOR gates contained within the 4001 chip are used. Resistors, R1 and R2 are "pull-down" resistors which keep the inputs at logic 0 (negative battery voltage) when switches S1 and S2 are released. This prevents possible false operation.
The l.e.d's must be connected the correct way round or they will not work the shorter lead denotes the cathode (k) end. When complete, connect the battery and note that one output assumes a Logic 1 state and the other, a 0 . You should find that you can change the output states by pressing the appropriate set or reset switch.
The S-R bistable operates as follows, When the battery is connected, all inputs and outputs first assume Logic 0 . Since a NOR gate will produce a Logic 1 output when both inputs are at Logic 0 , it follows that the race condition occurs. There will be a competition between the two gates to process this information and one output will take on a Logic 1 state before the other. This will be applied to the input of the other gate making its output 0 . The
bistable will now be in a stable condition.
Suppose it is output Q which assumes the I state and output \bar{Q} is 0 , that is, the bistable is set. A Logic 1 pulse applied to the Reset input now changes the output states to $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$. This is because Logic 1 applied to the Reset input will make Q Logic 0 (a NOR gate produces a Logic 1 output only if both inputs are Logic 0). This then feeds the input of the other gate making this Logic 0 too. The corresponding output, $\overline{\mathrm{Q}}$, will then assume Logic 1 . It will then remain like this until the circuit is Set by making $S=1$ whereupon Q will become 1 and $\mathrm{Q}, 0$.

Unlike the NOT gate bistable, the Set and Reset inputs are not directly coupled to outputs so there is no chance of shortcircuits occurring. The best way to summarise the action of the S-R bistable is by using a truth table:

S	R	Q	\bar{Q}	Notes
0	0	1	0	Initial conditions
	or	0	1	-unpredictable
1	0	1	0	Set pulse applied 0
0	1	0	Set pulse removed - no change state	
0	1	0	1	Reset pulse applied - outputs change state
0	0	0	1	Reset pulse removed - no change to outputs

The table above resembles the truth table for a gate but, although the circuit is made from gates, it is not itself a gate. In a gate, the output is always the same for any given set of input conditions. Here, the outputs depend on the states they had previously that is, $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$ if S was 1 previously and $\mathrm{Q}=0$ and $\overline{\mathrm{Q}}=1$ if R was 1 previously. This being so, we could say that the bistable has remembered what the input states were - it has memory whereas a simple gate has not. This is very important because it is the basis of computer memory.

BURGLAR ALARM

The S-R bistable may be used to illustrate a burglar alarm. When an intruder opens a door or window and operates a switch, a Logic 1 pulse is given to the set input. Output Q then assumes Logic 1 (equivalent to being a battery positive voltage). This operates a transistor or a relay (see Part 6: April, 1992 issue) and switches on a siren or bell. Nothing the burglar can do will silence the alarm since once the bistable has set, it will remain like that until reset. For security, the reset switch is situated in a secret place and may be key-operated.

Build a model of the burglar alarm (Fig. 6 and Plugblock layout Fig. 7). Assume the bistable is set by pressing the TRIGGER switch, S1, Q becomes 1 and current passes to the base of transistor, TR1, via resistor R3 and operates buzzer, WD1. S2 may subsequently reset the bistable and cancel operation. The l.e.d, D1, operates when $\bar{Q}=1$ (i.e. when reset) and indicates the standby (READY) state.

Note that buzzer, WD1, is polaritysensitive and must be connected the cor-

पागुण
Fig. 6. Demonstration burglar alarm.

[E57166

Fig. 8. Clocked S-R bistable.

Fig. 9. Clocked S-R bistable layout.

Fig. 7. Burglar alarm Pluglock layout.
rect way round in the circuit or it will not work - the red wire is the positive one. Note also the orientation of transistor TR1. When the battery is first connected, the buzzer may sound if Q happens to be left high (i.e. set) due to the race condition mentioned earlier.

In addition to the components used previously, you will need the following:

R3	4k7 resistor.
TR1	Transistor ZTX300 npn
	silicon.

Solid-state buzzer -6 V operation.

CLOCKED S-R BISTABLE

It is sometimes useful to allow the Set or Reset condition to take effect only when a pulse is applied to a third input called the Clock (Ck). This allows input conditions to be set up in advance.

The circuit for a clocked S-R bistable is shown in Fig. 8. This consists of an S-R bistable with inputs S^{\prime} and R^{\prime}, controlled by the outputs of a pair of AND gates. Only when a Logic 1 pulse is applied to

Ck (clock input) is it possible for data applied to the S and R inputs to be allowed through to the bistable proper and take effect. This is because an AND gate needs both inputs to be Logic 1 for the output to be Logic 1. The clocked S-R bistable can be build using the Plugblock layout shown in Fig. 9
In addition to the components used previously, you will need the following

$$
\begin{array}{ll}
\text { IC1 } & \text { 4081BE quad. AND gate } \\
\text { S1 } & \text { Light-duty push-to-make } \\
\text { switch } \\
\text { R1 } & \text { 10k resistor }
\end{array}
$$

Push-button switch, S2, applies clock pulses. When the battery is connected, the initial output states are unpredictable due to the race condition. Pressing the Set or Reset button should have no effect. Now, keeping the appropriate Set or Reset switch pressed, apply a clock pulse. The bistable will set or reset - try it a few times.

THE D-TYPE BISTABLE

The D-type is a special variety of
clocked bistable with several uses in electronics. Its symbol, and a practical circuit to illustrate how it works, are shown in Fig. 10. The D-type bistable has two inputs - one called Data (D) and the other, Clock (Ck)

The D-type bistable operates as follows. When data - that is, a 1 or a 0 - is applied to the D input, nothing happens. However, when a clock pulse is applied to Ck , output Q assumes the same state as D and output Q the opposite one. For example, if we put a logic state of 1 on the D input and give a Logic 1 pulse to Ck Q will become 1 and $\bar{Q}, 0$. If we subsequently put a 0 on the D input then apply a clock pulse. Q and $\overline{\mathrm{Q}}$ will change states i.e. $\mathrm{Q}=0$ and $\mathrm{Q}=1$.
The clock pulses have no effect if the data applied to D has not changed. The action of the D-type bistable should be compared with the simple clocked S-R bistable.
Operation of the D-type bistable may be illustrated using the circuit shown in

Fig. 10. D-type bistable symbol and a practical circuit.

Fig. 10. Note that the 4013 chip contains two separate D-type bistables but here we are using only one of them. In addition to previously-used components you will need:

IC1 4013 dual D-type bistable

Switch S1 supplies the data - when pressed, $\mathrm{D}=1$ when released $\mathrm{D}=0$ (due to the effect of pull-down resistor, R1). A clock pulse is given by pressing switch, S2. Light-emitting diodes, X1 and X2 indicate the logic states of \bar{Q} and Q respectively. Note that from now on in this series, I.e.d's are denoted by X1 and X2 instead of D1 and D2 to avoid possible confusion later with the data inputs D1, D2 etc.
Following the plugblock layout shown in Fig. 11. The connections between pins 4 and 6 and the battery negative line keep the unused inputs which exist on the 4013 at Logic 0 and prevent false operation. Connect the battery. The outputs, Q and $\overline{\mathrm{Q}}$, should have opposite states that is one l.e.d. will be on and the other one off. Say $\mathrm{Q}=0$. Make $\mathrm{D}=1$ by pressing S 1 and, keeping it pressed, apply a clock pulse. The data will transfer from D to Q i.e. $Q=1$, $\bar{Q}=0$ (X 2 on, X 1 off). This is how it will

Fig. 11.D-type bistable construction.
remain until fresh data is applied and a further clock pulse given.

If SI is left unpressed then $D=0$ and when a clock pulse is given, this will be transferred to Q (X2 off, X1 on). Check that clock pulses have an effect only when the data applied to the D-input is new. In this way, a single D-type bistable can remember one binary digit - or 0 or a 1. It could therefore be called a 1-bit data latch.

THE 2-BIT DATA LATCH

A data latch remembers binary numbers and this is often useful in IT systems. Some basic information about Binary Arithmetic was given in Part 7 (May, 1992 issue). It is now helpful to consider a 2-bit number since this shows the general principle of operation. Although a 1- or 2-bit latch is not in itself very useful any larger number may be accommodated by having more flip-flops - one for each bit. The 4013 i.c. contains two independent bistables so a 2 -bit latch may be made using only one chip.

The circuit for the 2 -bit data latch is shown in Fig. 12 and the Plugblock layout in Fig. 13. No additional components are needed to build this circuit. If a 2 -bit number is set up on Data inputs D1 and D2 using switches S2 and S3, this number can be "remembered" by giving a momentary clock pulse using S1. Note that the clock input is common to both bistables.

After building the 2 -bit data latch, connect the battery and check operation by
setting up a binary number such as 10 . Remember, for Logic 0 the appropriate switch is left unpressed. Now keeping the data switch or switches pressed, apply a clock pulse. The data transfers to the Q outputs and the flip-flops latch; I.e.d's, X1 (for Q1) and X2 (for Q2) then display the number. Fresh data may be supplied and a further clock pulse given. Try all possible 2 -bit numbers - 00, 01, 10 and 11 .

TOGGLING A BISTABLE

It often happens that we wish to change the statur of the bistable outputs with suiccessive clock pulses. That is, on the first clock pulse $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$ on the second $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$ and so on. This action is called toggling. It is easy to achieve with a D-type bistable by connecting the $\overline{\mathrm{Q}}$ output to the D input (see

Fig. 14. Toggling a bistable.
Fig. 14). Think the operation through before actually building the circuit.
Consider the situation where $\mathrm{D}=1$ and a clock pulse is applied. Q will become logic 1 i.e. $\mathrm{Q}=1$ and $\overline{\mathrm{Q}}=0$. Since $\overline{\mathrm{Q}}$ is connected to D, D now becomes 0 . On the next clock pulse this is transferred to Q i.e. $\mathrm{Q}=0$ and $\overline{\mathrm{Q}}=1$. This state of 1 is again transferred to the D input i.e. $D=1$. On the next clock pulse this 1 will be transferred to Q so $\mathrm{Q}=1$ and $\overline{\mathrm{Q}}=0$. This sequence of events repeats indefinitely.
Note that the number of times Q changes state is one half the number of times the clock is pulsed. We have therefore divided the number of clock pulses by 2 - that is, we have made a frequency

Fig. 15. Construction of the toggling circuit.
divider. This will be examined in more detail presently.

COMING CLEAN

Toggling a bistable may be investigated using the Plugblock layout shown in Fig. 15. No additional components are required.

The main problem with using this circuit is providing the clock pulses. An ordinary push-button switch usually produces several pulses instead of one. This is because the contacts bounce as they touch. In view of the great speed at which the bistable can operate, it would toggle on each bounce and the results would be unpredictable. To overcome this, a debounced switch is needed.
If a modular kit is being used, then a debounced switch will be provided or "built in" so there should be no problem. In practice, for simple experimental work an ordinary switch may give reasonable results. Sharp and deliberate pressing of the switch helps. It is worth remembering that luck often comes to the aid of the experimenter. Sometimes the switch contacts happen to bounce an even number of times, say 2 or 4 , and this achieves the same result as having no bounce at all!

In real systems, a monostable is used to provide the clock pulses. An ordinary push-button switch triggers the monostable whose output goes from Logic 0 to 1. This, in turn, provides the clock pulse for the bistable. While it is in the triggered state further pulses due to switch bounce have no effect.

An unconventional method of producing reasonably bounce-free switching may be carried out using a small amount of water in an egg-cup. The clock pulse input wire leading to battery positive is dipped permanently in the water. The wire leading to pin 3 is then dipped in to give a pulse. With practice, this works well. For some reason, a pulse is given as the wire enters and another as it leaves! If using this method, it is necessary to use a higher value of resistor R1 (100k works well).

THE BINARY COUNTER ?

A binary counter displays the number of pulses fed into it. It consists of a series of interconnected D-type flip-llops each connected in toggle mode (see Fig. 16). Each $\overline{\mathrm{Q}}$ output activates the clock for the next one in line. One bistable is needed for each bit - thus, a 4-bit counter (able to count up to 1111 or 15 in decimal) could be made using 4 flip-flops (or 2 off 4013's).

For ease of construction it is helpful to make a 2 -bit counter - that is, one able to count up to 11 (3 in decimal). Again, not very useful in itself but by adding further stages any number may be counted. Fig. 17 shows the Plugblock layout. No additional components are needed to build this circuit. Note that clean clock pulses are once again needed and the water-dipping method described earlier works fairly well.

Refer to Fig. 16; l.e.d's X1 and X2 count units and two's respectively. Imagine an initial state where D1 and D2 $=1$ with $\mathrm{Q} 1=0$ and $\overline{\mathrm{QI}}=1-\mathrm{XI}_{1}$ is therefore off. Similarly for the second stage, D2 $=1$ with $\mathrm{Q} 2=0$ and $\overline{\mathrm{Q} 2}=1-\mathrm{X} 2$ is also off so the count is 00 . On the first clock pulse, the logic state on D1 (1) is transferred to Q1 (XI lights) and $\overline{\mathrm{Q} 1}=0$. This makes D1 $=0$ also.

In the absence of a clock pulse to CK2, nothing yet happens at the second flipflop and X 2 remains off. Thus the count is 0 1. On the second clock pulse, data is transferred from D1 (0) to Q1 so Q1 $=0$ (X1 goes off) and $\overline{\mathrm{Q} 1}=1$. This makes D1 $=1$ and a clock pulse is also given to CK2. The data is transferred from D2 (1) to $\mathrm{Q} 2-\mathrm{X} 2$ lights and $\overline{\mathrm{Q} 2}=0$. This makes $\mathrm{D} 2=0$ also. The count is therefore 10 .

On the next pulse, data is transferred - from D1 (1) to Q1 so Q1 =1 and X1 lights. The count is therefore 11 . On a further pulse the cycle would begin again and repeat continuously.

If the above sequence is written down we can see that the device is counting in binary:

Clock pulse	Twos Units (X2)		Decimal (X1)
0 (start)	0	$0=$	0
1	0	$1=$	1
2	1	$0=$	2
3	1	$1=$	3

If it is re-written (without the decimal equivalent) but this time extended through a few complete cycles something else emerges:

Clock pulse	$\mathbf{X 2}$	$\mathbf{X 1}$
0 (start)	0	0
1	0	1
2	1	0
3	1	1
4	0	0
5	0	1
6	1	0
7	1	1
8	0	0
9	0	1
10	1	0
11	1	1
12	0	0

- and so on. Inspection shows that whereas the clock has pulsed 12 times, X_{1} has pulsed on 6 times and X2 only 3. Thus, we have extended the idea of frequency division mentioned earlier. Division by two can be carried out any number of times by using more bistables.

This idea is used in an electronic clock or watch to produce the 1 second pulses for the display. It is easy to produce accurate pulses at very high speed yet it is 1 second pulses which are needed. To solve the problem, pulses are produced at a precise rate of 32,768 per second $(32.768 \mathrm{kHz})$ by means of a crystal controlled oscillator. This is divided by a string of 15 flip-flops. The first one divides by two to produce $16,384 \mathrm{~Hz}$. The next div-

The working parts of a digital watch.
ides by two again to give $18,192 \mathrm{~Hz}$ and so on. After successive divisions, the output of the 15th bistable is 1 Hz (check this with a calculator). Of course, if you take the back off a watch you won't find 15 individual flip-flops inside. These are built in a single "dedicated" integrated circuit.

THE SHIFT REGISTER

A shift register is another multi-stage D-type flip-flop circuit with each Q output connected to the following D input. The following explanation is for a 4 -bit serial shift register. Suppose all four Q outputs are initially at logic 0 . When data is fed into input, D1 and a clock pulse given, the data moves along one place.

Q1 Q2 Q3 Q4
Initial state:
If a 1 is fed into DI the display will be: with a 0 fed in: then a 1 :
then another 1 :
and so on.
Suppose we wish to send binary data along a telephone line. This is commonly done where information needs to be transferred from one computer to another as in banking or for the operation of a fax machine. Since only one bit at a time can be sent, we could not send the 8 -bit binary number:

$$
10111010
$$

all at once unless we had eight separate telephone lines and this would be obviously impractical. Instead, we work sequentially. First, the number is set up in a shift register and when the system is ready, it is clocked repeatedly. The digits move along one step at a time and eventually arrive at the end of the chain,

whereupon they are fed along the line. Some computer printers - so called, serial printers - receive their information from the host computer sequentially.

The circuit of a 2 -bit shift register is shown in Fig. 18. Suppose a Logic 1 state is applied to DI by pressing SI (DATA IN). On the arrival of a clock pulse, this will be transferred to Q1 so X_{1} lights. This also supplies the data for D2. However, nothing more will happen, until a further clock pulse is given whereupon this logic 1 state will be transferred to Q2. Meanwhile more data can be input to D1. It can be seen that digits move (shift) I place to the right with each clock pulse. Eventually, data is lost as it "falls off" the end.

The 2 -bit shift register may be constructed using the Plugblock layout shown in Fig. 19. No additional components are needed. It is necessary to apply "clean" pulses to the clock input, CkI, to avoid the effects of contact bounce. It may otherwise be difficult to trace through the action of each pulse. This may be done using the water-dipping method described previously.

Switch S1 sets the input data - pressing it gives Logic 1 and leaving it released, Logic 0 . After building the circuit, connect the battery. Apply clock pulses and check that the data shifts along as it should.

	COLUMN	$\underset{2}{\text { COLUMN }}$	$\underset{3}{\text { COLUMN }}$
ROW	$\begin{gathered} \text { FLIP } \\ \text { FLOP } \\ 1 \end{gathered}$	$\begin{gathered} \text { FLIP } \\ \text { FLOP } \\ 2 \end{gathered}$	FLIP FLOP 3
${ }_{2}$	$\begin{aligned} & \text { FLIP } \\ & \text { FLOP } \end{aligned}$ 4	$\begin{aligned} & \text { FLIP } \\ & \text { FLOP } \end{aligned}$ 5	$\begin{aligned} & \text { FLIP } \\ & \text { FLOP } \\ & 6 \end{aligned}$
ROW_{3}	$\begin{gathered} \text { FLIP } \\ \text { FLOP } \\ 7 \end{gathered}$	FLIP FLOP 8	$\begin{aligned} & \text { FLIP } \\ & \text { FLOP } \\ & 9 \end{aligned}$

Fig. 20. Random access memory i//ustration.

A 2-bit shift register may not be very useful but by adding further identical stages, any size number may be accommodated.

RANDOM ACCESS MEMORY

Bistables form the basis of computer memory. We have seen that a single flip-flop can remember one binary digit. With sufficient flip-flops we can remember as many bits as we choose. With modern technology many thousands of bistables can be formed on one silicon chip. The memory device called Random Access Memory (RAM) enables data to be written (placed) into memory cells and read (retrieved) from them again. The principle of operation is shown in Fig. 20.
For simplicity there are only 9 flip-flops in a 3×3 array. Each flip-flop can be accessed by referring to its row and column. This gives a unique position called its address. For example, we could call the second flip-flop in the top row "Row 1 column 2". By referring to the address, we select any flip-flop we choose.

This is what is meant by the rather confusing term random access. It is like having a large array of small drawers containing electronic components. If someone wanted a diode you could say "go to the third row, fourth column along". This is the unique address of the diode drawer. A modern RAM i.c. can access a given address and retrieve or place data in a matter of 100 nanoseconds (100 thousand millionths -0.0000001 of a second) or less.

That's all for this month. Next time we shall look at the use of IT devices to monitor and control experiments.

Fig. 18. 2-bit shift register.
Fig. 19. (left) 2-bit shift register construction.

BoardMaker 1 is a powerful software tool which provides a convenient and professional method of drawing your schematics and designing your printed clrcuit boards, in one remarkably easy to use package. Engineers worldwide have discovered that it provides an unparalleled price performance advantage over other PC- based systems.

BoardMaker 1 is exceptionally easy to use - its sensible user interface allows you to use the cursor keys, mouse or direct keyboard commands to start designing a PCB or schematlc within about half an hour of opening the box.

All trade marks acknowledged

Produce clear, professional schematics for inclusion in your technical documentation.

PCB layout editor provides full analogue, digital and surface mount support - ground and power planes (hatched or solid)- 45 degree, arced and any angle tracks.

£95

Desplte its quality and performance, BoardMaker 1 only costs £95.00. Combine this with the 100% buy back discount if you upgrade to BoardMaker 2 or BoardRouter and your Investment in Tsien products is assured. Price excludes carriage and VAT.

Don't take our word for it. Call us today for a FREE demonstration disk and judge for yourself.

tsien
Tsien (UK) Limited
Cambridge Research Laboratories
181A Huntingdon Road
Cambridge CB3 ODJ
Tel 0223277777
Fax 0223277747

Special Feature

MAKING your own

 P.C.B.S
-
 ALAN WINSTANLEY

It's easy if you have the right chemistry

Part Three: Originating your own artwork

THIS part suggests some ways of designing your own printed circuit board artwork, which will appeal especially to those who have invested in the necessary equipment to fabricate boards with the ultra-violet method.
As we said earlier, one benefit of using the UV technique is that all artwork can be retained for future use, perhaps being modified if necessary. Identical boards can also be produced this way in small batch quantities using the same artwork.

Rather than lay an etch-resist pattern directly onto the copper foil of a board, it is much more convenient to prepare artwork on a polyester film where the opaque transfers and crepe paper decals can be altered at will. Utilising existing artwork - such as that given in a project - simply involves tracing the copper track layout onto the film, using the methods described last month. But you might want to create your own track pattern from a circuit diagram, or perhaps convert a stripboard layout to a printed circuit board (p.c.b.).

Guidelines

This month's feature suggests ways of designing your own artwork, and will be of interest to those who do not have the benefit of a computer-aided p.c.b. routing system. Before drafting the artwork, it is worth considering the following aspects of the circuit you are assembling:

1. The physical features of the components used in the circuit. Some parts like transformers may be relatively large or heavy, or might have unusual terminals or mounting requirements.
2. The operating characteristics of both the individual components and the circuit itself - voltages, currents and operating frequencies etc. High voltages and currents (either localised or "global," throughout the circuit) need to be taken into account when deciding the copper track widths and distances from neighbouring tracks.
3. The available space in the cabinet or box housing the p.c.b., which determines the overall size of the board.
4. The need to take various flying leads to or from the board (for indicators, switches, sockets etc.).
5. Any components which become hot in normal operation, e.g. power transistors/heatsinks or resistors. This controls the proximity of any adjacent parts which might be affected by excess heat.
6. The method by which the board is going to be mounted into the enclosure.

In the absence of any other guidelines it is best to start the design of the artwork by defining the above factors, perhaps listing them out for reference.

Neat and Tidy

As far as the size of the board is concerned, one of the enjoyable challenges of designing your own board may actually be to make the p.c.b. as compact and neat as possible, and with practice you will soon become skilled in routing the copper track layout accordingly to limit the size of the card.
Where the size of the board is not critical, it is often preferable to draft the p.c.b. artwork allowing yourself plenty of design space if necessary, and then finalise the board size afterwards before selecting a suitably-sized housing for it from supplier's catalogues (if indeed you are using a box at all). Obviously one has to bear in mind the general sizes (and cost!) of boxes that are available, and not make the p.c.b. impractically large!
The designer can thus either simply design the copper track layout first, and then make the board the correct size to accommodate it, or alternatively define the size of the board to start with and then try to make the copper track pattern fit it. The latter option may take some skill (and patience), especially with more complicated circuits.
Your initial design brief might also allow for the fact that many plastic boxes (for example) incorporate mounting bushes in their bases so that the p.c.b. can be retained with either self-tapping or machine set screws. No other mounting hardware is generally required in these instances, and the design of the p.c.b. could include the mounting hardware fixing centres, so these would be designed into the artwork to begin with.

Components

Having defined the size of the board the next stage is to consider the circuit and the components themselves, before getting down to the job of designing the copper track pattern itself.
Let's consider an actual design example which will demonstrate the principles of drafting a p.c.b. master artwork from a circuit diagram. A useful accompanying project, UV Exposure Timer is described elsewhere in this issue, so the circuit description and constructional details are given in that article. Once the circuit has been designed and finalised, we can

The circuit diagram of the UV Exposure Timer which is used here to demonstrate the approach taken in designing your own p.c.b. A photograph of the completed project is also shown.
specify the basic p.c.b. design in accordance with the above criteria.
It is a very good idea to employ p.c.b.-mounted parts wherever feasible. Often it is possible to build the mains side of the circuit directly on the p.c.b. to reduce any mains interwiring - this makes the project assembly quicker, neater and safer. So when planning the board for the UV Exposure Timer we could utilise a p.c.b. transformer (T1) along with the fuseholder FS1 (see article). Both components will fit directly on to the board without any necessary extra hardware being required. The relay too can be a board-mounted type to simplify assembly even more.

Hot Lines

The circuit employs mains and low voltages. In this design the low-voltage side is straightforward though certain circuits (like power amplifiers or heavy duty power supplies) might need extra design considerations to maintain stability and performance. These aspects relate to more advanced designs and will not be discussed further here.
Radio frequency (r.f.) circuits can also have their own quirks, especially when one considers that two adjacent copper tracks can act as an air-spaced capacitor! Alternatively a double-sided board may have an inherent capacitive characteristic when you consider that copper tracks on both sides of the board, separated by the board itself, may give rise to a dielectric effect.
This can unintentionally cause "stray capacitance" around the p.c.b. which could affect the performance of the circuit. Apart from planning the layout carefully, one might also use very thin copper tracks wherever possible to reduce the capacitive effect of the conductors on the circuit. You might see this on an oscilloscope board, for example, where the C.R.O. can operate at very high frequencies (10 MHz or more): steps are taken by designers to ensure that the design of the copper tracks does not affect accuracy or performance.

Mains Voltage

In our UV Exposure Timer example, a major factor to bear in mind is that a.c. mains voltage is present on the board and is also switched through a relay. It is best to try and group all mains-voltage components into one area rather than disperse them around the board. Also, the tracks which carry mains voltage must be of adequate thickness to carry the peak current safely. The rest of the circuit is at a low voltage and the design of the p.c.b. tracks in that area should be straightforward.
Having pondered the operating characteristics of the circuit, the next criterion in our list relates to the space available in the housing used to accommodate the finished board. In fact, the author opted to select the (plastic) box first and design the p.c.b. to fit it and so the dimensions of the board were finalised at $110 \mathrm{~mm} \times 68 \mathrm{~mm}$. The plastic box used (see parts list)' is also high enough to accept the highest component on the p.c.b., namely the mains transformer.
Also we need to consider the flying leads which we wish to take from the board and hook up to external switches, indicators etc. Two sets of mains-voltage flying leads will be utilised - live (L) and neutral (N) mains input, and also live and neutral mains output to the outlet socket. The safest way to connect mains leads to the board is via p.c.b-mounting screw
terminal blocks, so two two-way terminals will be required.
All other flying leads for the switches and indicators are at low voltage and these can be soldered directly to the p.c.b. More elaborate designs might use pin headers and sockets so that flying leads can be plugged into the board, making it easy to disconnect them to remove the board for servicing or repair.
None of the components in this design get unduly hot during operation, so we do not need to worry about leaving ample space for a hearsink.
The final specification for our board relates to the mounting hardware for the board. The plastic box chosen does not have any mounting bushes moulded in the base, so the board will be mounted firmly with nylon screws, nuts and stand-off pillars. We need to remember to incorporate mounting holes in the p.c.b., therefore.

Light Work

Having outlined the main p.c.b. design parameters let's now look at the process of preparing the artwork itself.
This is best drafted onto polyester film, which is translucent and tear-resistant. Other media which could be used included transparent acetate film (such as overhead projector film) but some types are liable to rip very easily, destroying the artwork with it!
The job of drawing up the artwork is made considerably easier by using a light-box, especially when dealing with more complex designs involving integrated circuits. Light-boxes have a translucent surface and are illuminated from inside with fluorescent tubes. Using a light box enables you to superimpose electronic component arrangements onto copper track layout artwork so that you can design the p.c.b. on paper and see the copper tracks underneath through the component layout.

Thus, with a light-box, you can juggle both the component layout and the copper track design around, and see one side of the board in relation to the other. A light-box also obviously illuminates the work while you draft it and makes the artwork easier to see!
It is relatively simple to make a fluorescent light box from readily-available materials (e.g. Conti Board and Perspex) and the author designs all his artwork on the light console which will be described next month. The design utilises a Thorn " 2 D " compact fluorescent tube which fits a standard bayonet (BC) light socket and requires no external starting or control gear. The box also has a sloping front making it easier to use when sat at a desk.

Starting Grid

Many components such as transformers, relays and integrated circuits have their terminals arranged on a regular grid, and generally - but not always - a 0.1 in . matrix "pitch" (distance between the lines on the grid) is employed. It is obviously necessary to make sure that the holes drilled in our p.c.b. have a pitch which matches the terminals of the components if the parts are to fit the board properly.
It is possible to buy an accurate 0.1 in . pitch grid printed like graph paper onto polyester film, which helps to gauge distances between terminals when designing the artwork. (The grid is often included in packs of plain polyester drafting film). It is best to tape this grid using Scotch Magic Tape to the light box
to enable the designer to accurately align components onto a 0.1 in pitch.

The next step is to try and determine the best arrangement of the components on the board, and it often helps if at least the major parts (large transformers, relays etc.) are to hand so that the designer can visualise the arrangement of the components. Using a pencil and paper, draw out an approximate actual size layout of the components to get an idea of how the parts can best fit together.

You will probably need to change the layout around as the artwork evolves. Bear in mind the specification we drew up earlier, so that hot components are not too close to other parts, mains-voltage parts are all grouped rogether where possible, etc.

Board Room

At this stage the author uses the light box to see through the paper, and by turning over the paper it is possible to draw in with pencil on the reverse, a rough copper track layout which will link up the components in accordance with the circuit diagram. If a copper track cannot be routed because it is blocked
by existing copper tracks, use jumper link wires to bridge over the obstruction.
When the paper is viewed on the light box, a see-through view is obtained so that it is possible to see the rough copper track layout, like an X-Ray, in relation to the components.
There are no hard and fast rules 'regarding the best way of drafting out a rough layout, and you may wish to use tracing paper for both the parts arrangement and the copper track layout. View them in alignment with each other to realise the overall artwork design. Whichever method you adopt, the use of a light box will certainly make the job a lot easier.
Eventually, after some trial and error (a lot, on complex boards!) you will have a rough draft of how the parts are to be arranged on the p.c.b. and also how the copper track pattern is to be designed. The next stage is to translate this into actual artwork, ready for exposure using the ultra-violet system.
Place a fresh piece of polyester drafting film, cut to a suitable size and leaving a generous margin, over the 0.1 in . pitch grid on the light box, and tape it down with Scotch Magic Tape. Ensure the film is completely flat against the light box.
Using your rough pencil copy as a guide, commence the

Photo 2. 'Starting to prepare the master artwork using Alfac rubdown transfers. Also on the Light Box is the author's rough draft the proposed copper track layout shows through the paper so that an "X-Ray" view of the rough version is seen.

Photo 1. Designing your own artwork starts by drafting a rough component layout diagram, referring to the circuit diagram and manufacturer's data as required. Here, the EE Light Box (next month) is being used, which proves invaluable in the following stages.

Photo 3. The completed artwork on the light box-the precision 0.1 in . matrix grid is also visible. This view is actually equivalent to seeing the copper track pattern "through" the board from the component side.

Photo 4. The artwork with the finalised component layout superimposed on it. This stage can be used for double-checking your copper track design for errors or omissions.

Photo 5. The artwork is turned over and clearly labelled "Copper Track View Side" - this is your first sight of the actual copper foil pattern which will be etched into your p.c.b.!
preparation of the artwork by placing down the mounting pads of the components, using either crepe tape circles or rub-down dry transfers of appropriate diameter. Use the same technique as described earlier (May '92 issue - Supplement) in the "Direct Etch" method of p.c.b. production.
 are best for mains components and terminals. For general purpose pads 2.4 mm o/d are quite adequate and again special shapes are available for integrated circuit pin-outs which are already conveniently laid out on the correct 0.1 in . pitch. Lay down all pads on the intersections of the 0.1 in . matrix so that they match the pinouts of the various components used.

Trim the pads if necessary with a scalpel to prevent them touching any neighbouring pads or tracks. You will see that several large pads have been trimmed for this reason on our working example layout for the UV Exposure Timer.

Some components are manufactured on a metric grid, often showing up in data as a distance of 5.00 mm between pins. An equivalent part in a true imperial pitch of 0.1 in . would be shown as 5.08 mm distance in catalogues. The two parts are not always interchangeable: the small difference of 0.08 mm can give rise to a cumulative error which could mean that a metric pitch part will not necessarily fit a 0.1 in . pitch p.c.b., and vice versa.
Where a metric pitch part is used (certain mains transformers, for instance), the 0.1 in . grid taped to the light box will have to be ignored if the metric component is to fit the board correctly.

Making Tracks

Next, start to interlink the pads with either crepe tape or dry transfer lines, using the relevant thicknesses as necessary. Looking at the artwork for the UV Exposure Timer, it will be seen that all mains parts are at one end of the board, with 240 V connections via screw terminals for safety.

The mains-voltage tracks need to be of adequate thickness. As a rule of thumb, the author designs these mains-voltage tracks in 2.5 mm wide section (which is good for up to 5 Amps at 250 V in 1 loz . copper foil), and separates them by a distance of 1.5 mm to 2 mm minimum where possible. Extreme care is needed not to space the tracks so closely together that any high voltages flash over between tracks can occur.
The primary and secondary windings of the transformer have been interlinked as shown in the circuit diagram, such that the twin 120 V primary windings are in series, making the transformer suitable for domestic 240 V mains operation. The two secondary windings are in PARALLEL (both 0 V terminals joined together, and both 9 V pins similarly linked.)
It is absolutely vital that the transformer is wired correctly to a void any unpleasant occurrences! Double check with supplier's data and look at the part itself to confirm the pinouts. There appears to be no standard pinouts for p.c.b. mounting transformers and different manufacturers each have their own style.
Likewise double check the bridge rectifier connections and the smoothing capacitor C 1 for polarity, as there is no standard arrangement. Reversed polarities here could prove dangerous. Again, supplier's catalogues will be of help when determining distances and pinouts.
It is often a good idea to make the positive and negative power supply conductors as thick as possible to avoid any noise or ripple being induced on the power supply lines when thin conductors could create an unwanted electrical resistance. One may also need to consider high switch-on surges amongst other factors, the effects of which will be reduced by keeping the power supply tracks as thick as practicable. It is not critical in this design, where supply requirements are not very demanding, but it is not a bad habit to use wide (say 2.5 mm) track for main power conductors, even though they are at low current.
The rest of the copper track layout is really a matter of translating one's rough pencil sketches onto the polyester film using more opaque transfers. The rest of the UV Exposure Timer artwork is quite straightforward and uses 1.00 mm or 0.8 mm wide lines for most of the low-voltage component interconnections. You can be as elaborate as you like and you will doubtless develop your own style.

Retouching

The ultra-violet process method will reproduce any flaws in the artwork, so it is necessary to ensure that there are no breaks
in the conductor lines etc. Any faults can be touched up using more transfers laid on top.
Any pads or tracks which are laid down in error can often be removed by laying some sticky tape over the offending area, and pulling away sharply. The transfers will often come away with the adhesive tape. Alternatively, the transfers can be scraped a way with a scalpel.
It will be seen on the example artwork that there are several relatively large areas of copper. These can be drafted by outlining the area with tape or transfer lines, and then painting in the central area with matt black enamel paint; or, fill in the middle by laying down wide transfer lines, slightly overlapping each other and cut to shape with a scalpel.
It must be borne in mind that more copper equates to more adhesive holding the copper foil onto the glass fibre panel. Extremely thin tracks and very small pads are not able to withstand much heat when soldering and may lift off. (Tips were given in Part Two about repairing the board under these circumstances). By laying down larger areas of copper track, you will not only make the copper foil pattern better able to adhere to the board, but you will speed up the etching time also.

Component View

When eventually the artwork has been drafted, you will finish up with a "see-through" view of the copper track pattern, as seen through the board from the component side. The next thing to do whilst it is still taped to the light box is to draw up a component layout diagram, actual size. Lay a piece of paper over the artwork and draw on the actual positions of the components, showing the locations of all pinouts and terminals clearly.
Also label the components on your drawing às per your circuit diagram and retain for future reference. At this stage, you will have drawn both the copper track layout have separately superimposed the component layout onto it: you can now double check your work thoroughly.
Look especially for incorrect or reversed connections to integrated circuits, transistors etc. A mistake spotted now can be rectified on the polyester film, but once you have committed your design to the board, it could be difficult or impossible to effect any corrections. Check carefully!

On the Right Side

Now remove the artwork from the light box and turn it over. You will now be looking at the actual design which is to be etched into the copper foil.

It is strongly recommended that you put an adhesive label on this side of the artwork in the margins and mark it with the title of the project, date etc. and very clearly mark words to the effect of "this side copper track view th is side to UV light" or similar. You can, incidentally, also add rub-down lettering such as the name of the board in the layout, on this side of the artwork and it will appear (the right way round!) on the copper foil layout of your board.
You are now only interested in the labelled side of the artwork, i.e. the side on which you did NOT apply any layout transfers. This view represents the actual foil pattern layout and is the side which will be placed down against the UV light source. The sensitised board - which is cut to size to fit the artwork - will be placed on top of it. The board can then be exposed and processed as normal using the techniques described in previous months.
When you have finished with the artwork, it can be stored in a stiff envelope or a file, along with the component layout diagram, so that it can be modified or re-used at a later date. Take care when handling the artwork as the rub-down dry transfers of the artwork are liable to be damaged by scratching.
Designing your own printed circuit board from scratch and then fabricating it from just a plain board can be a very rewarding experience: This series has shown the constructor the various techniques for both originating artwork and producing your printed circuit boards at home. The reader will certainly benefit from experimenting to develop his. own preferred methods - have fun!

Next Month: The construction of a simple Artwork Light-Box will round off this short series.

Constructional Project UV EXPOSURE TIMER

ALAN WINSTANLEY

You will only obtain consistent results if your "light sensitive" p.c.b. receives the right exposure.

 Covers a time period of 2 to 24 minutes in two minute steps.WHEN producing printed circuit boards (p.c.b.s) with the more advanced ultra-violet processing system, it is necessary to expose a sensitised board to a UV light source through the artwork positive.
Exposing the board for too long a period will rarely cause any damage, but troublesome problems can be caused by under-exposure, when the UV sensitive coating will not have thoroughly reacted to the UV light. This will only become apparent when you try to develop the board, because it will be impossible to remove all of the unwanted resist coating. The surface of the etch-resist ink might wash off in the developer but a layer of ink can still be left on the board, because the UV light has not had enough time to penetrate all the way through the resist.
Under these circumstances, all you can do is to try to re-align the board on the artwork and expose it for a further period, but you may well have to scrap that attempt and start again with a freshlycoated board. Further information is given in the "Making Your Own Primted Circuit Boards' 'series.

MAKING TIME

In order to obtain consistent results, it is best to expose the board for a timed period, though only the more expensive UV Light Boxes have a built-in timer.
The UV Exposure Timer described here enables the constructor to operate an ordinary UV Light Unit for a predetermined period (from 2 to 24 minutes, in twominute steps) and will then automatically turn off. You can use this time to prepare the developer, etchant etc., or carry out any other tasks.
Using the timer also means that you can experiment to optimise the exposure times with different makes of sensitised boards and not worry about under- or over-exposure. You will certainly need to experiment with exposure periods if you are coating your own boards with a UV sensitive aerosol lacquer.

CIFCUIT

DESCRIPTION

The full circuit diagram for the UV Exposure Timer is given in Fig. I and is seen to be based around a simple 555 timer
chip ICl , wired as a monostable. The time period is determined by the resistor network R5 to RI5 which are switched through S2
Rotating the switch S2 increments the monostable period by almost exactly two minutes, as measured on the prototype. The unit generates delays of between 2 and 24 minutes, which should cover every eventuality.

Since the 555 timer ICI can be both triggered and reset by grounding pins 2 and 4 respectively, these functions have been combined into one control SI, a singlepole biased centre-off toggle. When IC1 is enabled, the output at pin 3 goes high, the l.e.d. D5 glows green and changes back to red when the period is up.

The 555 also drives a mains relay RLA through the transistor buffer TRI. The relay contacts RLAI switch on the UV Exposure Light Unit, which is connected to the Timer via the miniature mains socket SK1. It is possible to manually operate the UV "Light Box" by operating switch S3, which completes the circuit to the relay coil and also illuminates D8.
The whole circuit is driven by a simple mains power supply and associated components. The circuit is fused, along with the mains load connected to SK1, by a 1A quick-blow fuse FSI

Fig. 1. Complete circuit diagram for the UV Exposure Timer. A Light-Box is connected to the timer via the "Mains Out"socket SK1.

CONSTRUCTION

In order to simplify construction, nearly all parts are mounted on a single-sided glassfibre printed circuit board, measuring $110 \mathrm{~mm} \times 68 \mathrm{~mm}$. This board can be purchased from the EE PCB Service code EE792), but you might want to make it yourself! The actual design of the p.c.b. artwork is discussed in Part 3 of "Making Your Ow'n Printed Circuil Boards" and may be of interest to the constructor.
The 1:1 (full size) artwork positive of the underside copper foil master pattern and topside component layout is shown in Fig. 2. It can be seen that all the mains parts, except socket SKI, are mounted on the board which greatly simplifies the interwiring, also making the unit that much more reliable.
Both the mains transformer and the relay MUST possess pinouts which match the p.c.b., and only the specified components (see Shoptalk) should be used in

COMPONENTS

Resistors

R1	560 1/2W	
R2, R3	47k (2 off)	See
R4 to		SHOP
R15	2 M 7 (12 off)	
R16	470	
R17	330	Page
R18	27k	Page
R19	470	

All 0.25W 5\% carbon film except R1

Capacitors

C1	1000μ radial elect. 25 V
C2	100 n polyester
C3	33μ radial elect. 16 V

Semiconductors

D1-D4 VM18100V 0.9A di.i.l. style bridge rectifier
D5 5 mm bi-colour l.e.d
D6, D7 1 N4148 signal diode (2 off)
D8 5 mm red l.e.d.
D9 $\quad 1$ N4148 signal diode
TR1 ZTX300 npn silicon
IC1 NE555V or ICM7555 timer i.c

Miscellaneous
T1 p.c.b. mounting transformer, twin 120 V primaries, $0 \mathrm{~V}-9 \mathrm{~V} .0 \mathrm{~V}-9 \mathrm{~V}$ secondaries 6VA total
RLA min. mains relay s.p.c.o 3 A a.c., 320 ohm 12 V coil
FS1 $\quad 20 \mathrm{~mm}$ p.c.b. mounting fuseholder with 1A quick blow fuse
S1 s.p.c.o. miniature toggle switch biased both ways to centre off
S2 Single-pole 12-way rotary switch
S3 s.p.s.t. min. toggle switch SK1 Euro-style miniature panel mounting mains safety socket
Case, Vero Apollo S3 beige, size $155 \mathrm{~mm} \times 79 \mathrm{~mm} \times 91 \mathrm{~mm}$; mains rated, p.c.b. mounting, 2 -way screw terminal block (2 off); 8-pin d.i.l. socket; t.e.d. lens clip, one each-transparent and red; 6 A 3 -core mains cable; cable retention gland; 6A connecting wire; singlecore connecting wire; p.c.b. mounting hardware; pointer knob; solder etc.

Printed circuit board available from EE PCB Service, code EE792.

this respect. Other parts may not fit the p.c.b. artwork given, though the constructor making his own board can easily adapt the artwork to accept any components which he has available, provided that the electrical characteristics match those specified.

CASEAND INTERWIRING

The p.c.b. was designed to fit an instrument box measuring $155 \mathrm{~mm} \times 79 \mathrm{~mm} \times$ 91 mm which has a clip-together plastic top and bottom with drop-in aluminium front and rear panels. The board is secured to the base section with M3 mounting hardware.
The front panel carries the switches, and the timing resistors are soldered directly to the tags of the rotary switch S 2 as shown in Fig. 3. The two light-

Fig. 2. Printed circuit board component layout and full size copper foil EE36016 master pattern.

TOP EDGE OF FRONT PANEL
[[830826]

Fig. 3. Interwiring from the circuit board to the front and rear panels. The Earth lead from the rear panel solder tag to the front panel can be "earthed" under either switch S1 or S3 mounting washer. The completed unit showing layout of components inside the case is shown below. Where the mains leads are soldered to the output socket SK1 the solder joints and tags should be covered with plastic sleeving.

emitting diodes D5 and D8 require either mounting bushes or lens-clips. The bicolour l.e.d. can utilise a transparent lensclip to good effect. You may wish to embellish the controls with rub-down lettering followed by a coat of spray-on protective lacquer as usual.
The interwiring is generally straightforward and is completed with general purpose hook-up wire. Six amp three-core mains flex is used for the mains input which connects straight to the p.c.b. You can, if you wish, for added safety wire an illuminated, double-pole, mains rocker or rotary switch between terminal block TB2 and the mains lead. The switch can be mounted on the front panel and will show when the unit is powered-up. The front and rear metal panels MUST be soundly Earthed as shown. A series of solder-tags is connected together with a countersunk mounting screw on the rear panel. The screws used for p.c.b. mounting must be nylon as they pass through the plastic case.
The mains output socket SKI is a Euro-style snap-in type which is fitted into a suitable cutout on the rear panel. The mains inlet cable must be secured to prevent it from pulling out, and a cable gland or "P" clip can be used as normal.

TESTING

When all construction has been completed in accordance with the diagrams, check all interwiring etc. carefully, set the rotary switch to " 2 Minutes" and then power up the unit. The bicolour I.e.d. D5 should glow red ("Reset" mode) and operating switch SI to "Start" should change D5 to green and the relay should be heard to click in.
After the selected delay the relay will click out and the bi-colour l.e.d. D5 will revert to red. Finally, check that the "Reset" S1 and "Manual" S3 functions operate and the unit is then ready for use. The UV Light Unit is connected to the Timer with a miniature 3pin plug to match SK I.

MA/NE
 SUPPAESSION

The author's UV Light Unit contains two fluorescent tubes along with the usual control gear. It was occasionally found in practice that the timer would re-trigger when the light tubes were switched off when the timer timed-out, presumably caused by a switchoff "spike" on the supply.
The result is that the relay RLA is heard to click at the end of the timing period, but the timer re-starts as it is caused to re-commence timing for a further period.
This problem was entirely eliminated by adding a suitable R/C suppressor between the Light Unit and the Timer. A standard delta-capacitor type device was used which has a built-in inductor and bleeder resistor (Roxburgh suppressor type SDC051, rated 250 V 5 A).
In fact, since there was no room within the timer box to add the filter, a separate plugin suppressor unit was built, which has the output wired to a miniature plug to mate with SK 1: the unit has a 13A flush mounting socket into which the UV Light Unit is plugged. It is very simple therefore to plug the suppressor in-line.
Readers can determine whether or not any extra suppression is required with some simple usage tests, as it may not be necessary to go to the added expense of incorporating any spike suppressors, depending on the characteristics of the light unit used.

EVERYDAY $\mathbb{N E W S}$

BUGGING THE TRUCK

Satellite communications are getting more versatile. And growing: BT's big ground station at Goonhilly Downs in Cornwall is just one of a number. A terminal in London's Docklands now carries 41 TV channels to Europe.

The early analogue systems are giving way to more powerful digital ones. These can cater for the smaller user. The range of services already includes automatic telephones for commerical passenger aircraft. Under a new development contract BT will extend this Skyphone service to include fax, probably next year. Such developments are aided by the possibility of using small omnidirectional aerials compatible with airframe structures. Another likely development will be a global paging system.

Costs fallen

The concept of the Inmarsat marine communications facility, designed for commercial ship use, has now been extended to embrace smaller vessels such as yachts. The necessary aerials are a fraction of the original size and costs have fallen too. But why stop at aircraft and shipping? Land vehicles could also benefit from satcom links.
A promising type of customer is the trucking fleet operator. Satcoms
based on modern digital satellites like C-Sat could provide affordable data links. Even a one-way (headquarters to driver) link could deliver money-saving changes of schedule to the driver. A
two-way link could be revolutionary. By also fitting the truck with a receiver for the GPS global position-finding system its whereabouts could be monitored automatically at base, with an accuracy of 100 metres. BT is currently carrying out a survey of customers' needs.
In the USA a truck system has alre ady performed a feat comparable with the arrest, in the earlier days of radio, of the murderer Dr. Crippen in an Atlantic liner as the result of a Morse message. A hijacked truck's progress was mapped. When it stopped in a remote area police pounced and arrested the robbers as they off-loaded the cargo.

Future hijackers may be smart enough to disable the satcom link

London Teleport reaching 20 million people in Europe.

Low Profile Transformer

A new range of encapsulated low profile mains transformers are now available from Cirkit. These high quality, p.c.b. mounting transformers are ideal for applications where space is at a premium, the 6 VA size, for example, is only $44 \times 52 \times 22 \mathrm{~mm}$. Independent primary windings allow 120 or $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ operation, together with independent secondaries which may be connected for series, parallel or centre tap operation, giving a wide choice of voltage/current combinations.
 Wound on twin double section bobbins to provide maximum isolation - 4 kV - between windings and near toroidal characteristics.

Cirkit Distribution Ltd., Dept EE, Park Lane, Broxbourne, Hertfordshire EN10 7NQ. Tel. 0992 441306, Fax. 0992 464457.
but simply knowing where and when it happens could be a useful clue. Less exciting but profitable uses could be re-direction of the driver to alternative delivery points and early warnings of temperature rise in refrigerated cargoes.
Efficient use of C-Sat is ensured by a message store-and-forward system. When the satellite is busy messages queue up and are sent out at a steady rate. Delays are unlikely to exceed a few minutes while capacity is maximised. By using low data rates ($600 \mathrm{bits} / \mathrm{sec}$) the mobile aerial can be compact and omnidirectional.
The huge dishes at the BT ground stations don't seem to change much over the years. But the technology behind them does. The front end receiving amplifiers were once elaborate parametric or maser types which were cooled to very low temperatures (to reduce noise) by elaborate cryogenic refrigeration systems. Now they are simple GAs-f.e.t.s, equipped with compact Peltier coolers which reduce temperature to the required $80-100^{\circ} \mathrm{K}$.

SHARP APPLES

Speak Up

Three flight cased loudspeakers made by IBL

One of Japan's leading electronics companies, Sharp Corporation, has announced a long-term agreement with Apple Computer Inc. of America for the development, manufacture and distribution of the next generation personal information equipment.
Apple Computer, Inc. in the States is claimed to be the world leading computer manufacturer and, in January 1992, they advocated a prospect and development for "PDA (Personal Digital Assistant)" information devices of a new category which would bridge a gap between the current personal computers and consumers electronics.
Sharp is claimed to be leading the world in the area of development and production of individual/home information tools and plans development and exploitation of "the next-generation of products based on their 'Personal Information Tool' initiative which advocates considering communication among people and copossession of information going beyond the conventional personal idea and creating a new life culture." - Their words not ours!

FM
 EREAKTHROUGH

A new method of decoding narrow band f.m. signals has recently been announced by Ampsys Ltd., a small spin off company of Paisley College. This patented technique removes the spikes (or spurs) from the radio signal just as the link is breaking down and also provides inaudible squelching. These two effects, it is claimed, greatly reduce listener fatigue especially over sustained periods. Other advantages include a 25 per cent increase in usable range for any f.m. PMR and/or a reduction of fifty per cent transmitted power for the same reception range.
A further improvernent is that co-channel interference is reduced and two f.m. channels on the same centre frequency can now be decoded without mutual destruction. The circuitry is currently under evaluation by a number of multinationals. The new decoder uses an amplitude locked loop in combination with a phase locked loop to achieve this breakthrough.
 are now available in the UK via B.K. Electronics. The full range are; $12^{\prime \prime} 100$ Watts rms; 12" 200 Watts r.m.s. and 15 " 200 Watts r.m.s. All models are fitted with wide dispersion horns and include grilles, factory-fitted 10 the die-cast aluminium loudspeaker chassis. These models are priced respectively at 6159.00, \& 175.00 and $£ 229.00$ per pair, including V.A.T. Delivery, via a specialist carrier, is charged at 112.50 . B.K. Electronics are at Dept Ee, Units 1 and 5 Comet Way, Southend-Onsea, Essex. SS2 6TR. Telephone: 0702527572 Facsimile: 0702420243.

NEW FACE OF C?

City and Guild's Information Technology (7261) scheme, first launched in 1985, now boasts 55 modules in subjects ranging from Coding and Programming in 'C', Program Design Tehniques and Data Processing, through Microcomputer Business Applications, Computeraided Graphics and Desktop Publishing, to Digital Electronics, Analogue Circuits and Fault Diagriosis and Microcomputer Systems Installátion and Maintenance.
Many of the modules have been extensively revised and updated, and further development and revision work on other modules is continuing.

New diplomas and certificates, made up of particular groupings of 7261 modules, are now available as listed below. These groupings have TEED (the Employment Department's Training, Enterprise and Education Directorate) approval as VQs, and are accepted as being equivalent to NVQs at levels 1,2 and 3.

Certificate, Diploma, Advanced Diploma in:

Dry Cell Recharger
 Our Dry' Cell Recharger project back in the September '91 issue stitred up plenty of interest

 amongst readers and the national press. Quite a few readers have asked if such an item is available commercially and we are pleased to report that a unit is being pilot marketed by Coltronics Systems. Their Dry Cell Recharger will charge $\lambda \lambda, C, D$, and PP3 batteries. It will recharge Ni Cad, Zinc-Chloride and Alkaline cells. During one complete charge cycle of 96 hours the charger consumes approximately $11 / 2 \mathrm{p}$ worth of electricity, so it is not expensive to run.The act of charging any battery causes a chemical reaction inside the cell, restoring battery voltage and capacity, with excess energy being dissipated as heat. (Overheating degrades battery electrolyte, and rechargeable types are designed to cope with this to a large extent, but dry cells are not.

Any attempt to charge dry cells with conventional battery chargers causes severe electrolyte degradation, eventually shorting out the cell completely and leading to a very rapid heat build up inside the cell. Consequently, dry cell manufacturers, quite rightly, put warnings on their products as such abuse can lead to the cell rupturing and electrolyte leakage.

The Coltronics charger avoids these problems, employing state-of-the-art electronics to carefully control and profile the charging current to eliminate heat build up and minimise electrolyte degradation.

We should say that this is a more sophisticated design than the simple unit we published and is available by mail order for an inclusive price of 639.95 . This price includes adapters, which incorporate dedicated circuitry, for the four sizes of battery.
Coltronics Systems Ltd., are at Dept EE, 47 Hardwick Industrial Estate, Bury St. Edmunds, Suffolk, IP33 2QH. Tel. 0284755600 , Fax. 0284753299.

- Information Technology
- Wordprocessing
- Programming
- Business and Office Technology
- Data Processing and Information Sys. tems.

CEG tell us that named diplomas and certificates in other subject areas will be considered in due course. Let us hope that the various electronics related subjects will be among them.

WEATHER EYE

A new range of weather monitors that enable everyone to keep an eye on prevailing conditions is now available from Davis Instruments. Shown below is the Weather Wizard II, it can measure inside and outside temperature, high and low temperature, wind direction, wind speed and wind chil and has a recording facility, alarms plus time and date. An optional extra is a rainfall monitor.
The basic unit costs $£ 229.95$ and a computer link is available plus various cables and adaptors for car/boat use etc. For further information contact ICS Electronics Ltd, Dept EE, Unit V, Rudford Industrial Estate, Ford, Arundel, West Sussex BN18 0BD. Tel 0903 731101. Fax 0903731105.

NEW VIDEOS ON ELECTRONICS

Everyday Electronics is pleased to announce the availability of a range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

The first three videos available are:

Electronics And You - Part 1: D.C. Series and parallel circuits and the use of a digital multimeter. Running time approx. 53 mins. Order code VT201
$\mathbf{£ 2 9 . 9 5}$ inc. VAT
Part 2: A.C. Coils, capacitors, transformers and other a.c. devices. Running time approx 71 mins.
Order code VT202
$£ 29.95$ inc. VAT

*

Part 3: Semiconductors. Basic semiconductor theory plus fifteen different semiconductor devices explained. Running time approx. 47 mins.
Order code VT203
$£ 29.95$ inc. VAT
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier.

To order see our Direct Book Service "Ordering Details" - the postage for tapes is the same as for our range of books and you can order tapes and books at the same time and pay only one lot of postage.
(All videos are to the UK PAL standard on VHS tapes)

Constructional Project

ELECTRONIC CRICK ET GAME

Steve Knight

> Come rain or shine, you are sure of aperfect pitch with this enthralling game - No "Rain stopped play"signs here!

0VER the years there have been a great number of electronic games concocted for the hobbyist, including one or two cricket games. The author has felt that these latter efforts have not in some way brought out the real flavour of the game in the sense that the play does not take place on a real pitch, surrounded by players who get in the way of run-making and occasionally do their stuff by bowling the batsman out or sending him back to the pavilion by some other means.
This present offering is a portable game, suitable for two or more players, and is guaranteed to be in action whatever the
weather or the time of year. It is played on a "field" measuring 300 mm by 230 mm (12in. by 9 in .), though this can be enlarged, or reduced, to suit your own particular liking.
The field has a pitch which shows the path from bowler to batsman, and there are, of course, a range of bowling speeds, "slow", "medium" and "fast", to test the batsman's reaction. If he happens to take his eye off the ball, he is very likely to be bowled, and if he hits the ball it may go to any point on the ground where the possibilities of making runs, being caught or surviving an appeal to the umpire are all on
the cards. However, to the system and its construction, with more about playing the game later on

CIRCUIT DESCRIPTION

The complete circuit diagram of the Electronic Cricket Game is given in Fig. I. All the components for this excepting the three control buttons S2, S3 and S4, the bowling rate switch S1 and the twenty-one l.e.d.s, are assembled on a single p.c.b. measuring 133 mm by 100 mm ($51 / 2 \mathrm{in}$. by 4 in .). Current consumption is about 35 mA using a 6 V battery, though a simple power unit may be added so that the mains supply can be used.
Integrated circuit ICI is a 7555 chip. which is a CMOS form of the familiar 555 timer (though a 555 may be used at the cost of an increased current consumption), operating as a clock generator. The pulse repetition frequency is selected by the three position switch SI and this switch provides the three bowling rates (style).

Fig. 1. Complete circuit diagram for the Electronic Cricket Game. All components except D1 to D10 and D18 to D28 inclusive, resistors R6 and R31 and switches S1 to S4 are mounted on the p.c.b. Circled letters refer to outgoing points.

BOWLING

With the component values specified, around switch SI, these rates are approximately 8,12 and 20 pulses per second and these seem about right for the game as the author has played it. Individual constructors can easily adjust the rates to suit their own fancy.
The pulse output from the timer ICl pin 3 is fed to pin 14 of IC2, a 4017B 5-stage decade "twisted-ring" counter, then to the output pins of IC2 which are connected to a sequence of l.e.d.s (DI to D10 inclusive) which we might call the "Wicket Sequence". Only one of these ten l.e.d.s is on at a time, the position changing to the following l.e.d. with each successive input pulse. A running light is therefore obtained from I.e.d.s DI to D10 at a frequency determined by the setting of switch SI.

If this running light is to emulate the movement of a ball along a pitch, from the bowler's end represented by DI to the wicket represented by DIO, the l.e.d.s must light in the correct order and necessarily stop on reaching D10, in spite of the fact that the clock pulses are continually applied. This is accomplished by allowing the run from DI to D10 to occur while pin 13 of IC2, the clock enable pin, is held low by way of resistor R9. This pin is switched high by the Q output of a D-type flip-flop, IC3, when DI0 lights and passes a high input to the reset, pin 6, of IC3.

The ball is reset to the bowler's end when necessary by the action of pushbutton switch S2; this switch is consequently labelled Ball Return. The ball then waits at the bowler's end of the pitch until the reset button switch, S3, on pin 4 of IC3 is operated; taking pin 4 high then resets the flip-flop and pin 13 of IC2 goes low, enabling the clock again to run the wicket sequence from D1 to D10. Push switch S3 is appropriately labelled Bowl.

BATTING

Now l.e.d. D10 is the "wicket" and if the "ball" reaches this, the batsman in action at the time, is deemed to have been bowled. To try to prevent this fate befalling him, "batsman" must halt the light sequence at l.e.d. D9 which is the batting position.

He can do this by pressing push switch S4 (the Batting switch) at the precise moment that the ball reaches the "bat" position (1.e.d. D9). Pressing S4 before or after this moment, or holding it down all the time, will have no effect on allowing the ball to pass the bat and scatter the stumps!
The circuit performs this function by feeding the output at the Bat position (pin 9 on IC2) to one of the inputs, via diode D13, of a discrete coincidence gate made up from transistors TR3 and TR4. The other input to this gate derives from pressing the Bat switch S4 which feeds a high signal via the anti-bounce switch comprising IC4a, IC4b and diode DII.

Only when these two inputs are simultaneously high does an output appear at the collector of TR4. This output is in turn fed to a monostable made up from NAND gates IC4c, IC4d which is turned on for a period of a few milliseconds determined by the values of resistor R17 and capacitor C4. The negative-going edge of this output enables IC 3 by way of pin 3 and the Q output at pin 6 goes low, locking the Bat position in the wicket sequence.
Any failure to press the Bat switch while the Bat diode D9 is momentarily lit results in a low output from transistor TR4 and
the ball moves on to the wicket l.e.d. where it stays to let the batsman know he has been bowled out. This high at pin 11 of IC2 sets IC3 and changes the Q output, so locking l.e.d. D10 firmly on "out".

Reset switch $\mathbf{S} 2$ returns the ball to the bowler's end when required as already explained and D10 is then extinguished. The following ball can then be played by pressing the Bowl switch S3. This completes the description of the upper part of the circuit diagram.

SCOAING SECUENCE

The "scoring" or run making part of the circuit includes ICS, IC6, and IC7 and transistors TR5 and TR6. Its function is to randomly send the ball (provided it has been correctly "hit" by the resident batsman) to some part of the field where it may (or may not) score runs or, unhappily, be caught by a fielder or perhaps a loud "Howzat?" may be asked of the umpire.
When the ball has been successfully played, l.e.d. D9 is lit and this high signal remains on. Let us look first of all at that part of the circuit associated with TR6, IC6 and IC7. In the same way as the wicket sequence of I.e.d.s was operated by IC2, so the scoring sequence of ten l.e.d.s (D19 to D28) is similarly controlled by IC7, another 4017 B decade counter.
The ten l.e.d.s concerned here are placed at various positions in the "field", each representing a number of runs or a noscore, plus a couple which may lead to a catch or an appeal for lbw. Our object is to illuminate one of these l.e.d.s in a random manner directly a correct hit has been made by the batsman at the crease.
What is used is a run-down clock generator of the kind often found in electronic dice games. This clock runs the sequence of l.e.d.s at a very rapid rate for a fraction of a second and then halts the process very quickly to leave just one of the indicators illuminated. This l.e.d. then tells the batsman his score - or his fate!
The control of IC7 is made by IC6, a 4046B phase locked loop i.c. which houses a voltage controlled oscillator (VCO) as part of its circuitry. The frequency at which this oscillator works is controlled by the voltage on pin 9 , the resistance between pin 11 and "ground (0 V)" and the value of
capacitor C 9 wired between pin 6 and pin 7. A square wave output appears at pin 4. With the values used, the frequency is several kilohertz but is in no way critical for this present purpose.
When relay RLA contacts are closed (this is a relay operating as a switch - but more about this later), transistor TR6 is switched on by way of diode D16 and potential divider chain resistors R25, R26, and connects pin 11 of IC6 to ground through resistor R28. This causes the VCO to oscillate at a relatively high frequency so that an unpredictable number of pulses are fed to the input of IC7 all the time the relay contacts remain closed.
When the relay contacts open, transistor TR6 switches off and the oscillation then depends only upon the small charge remaining on capacitor C 8 and the value of resistor R29. The presence of resistor R24 ensures that the osciallation falls very quickly to zero, hence the input to IC7 vanishes and only one of the scoring sequence of l.e.d.s remains on.

GOOD SHOT

Now if the output of pin 9 of IC2 is used directly to trigger the VCO, then the scoring sequence will be set into action even if pin 9 is passed in the normal wicket sequence. This is not wanted so there has to be a circuit arrangement which does not respond to a short pulse from the batting l.e.d. but acts only if this l.e.d. remains on for a longer period, that is, when the batsman has correctly intercepted the ball.
This action takes place by way of a simple op.amp comparator, IC5, and transistor TR5. The inverting input to IC5, pin 2 , is held at half the supply voltage by the divider chain resistor R19, R20. The output from pin 9 of IC2 feeds to IC5 non-inverting input (pin 3) by way of resistor R18 and capacitor C5.
This integrating combination has a long time-constant and for a momentary pulse output from IC2 does not allow the voltage across capacitor C 5 to rise much above ground. The voltage on pin 3 of IC5 stays. therefore, below that on pin 2 and the output at pin 6 remains low.
For a sustained output from IC2 however, capacitor C5 is enabled to charge up to a level exceeding that on pin 2 of the op.amp and the output switches high, so

The "Pitch" slid back to reveal the battery clamped in one corner of the case

Fig. 2. Printed circuit board component layout and full size copper foil master pattern for the Cricket Game.
(Right) Completed prototype printed circuit board. The transistors here have been replaced with BC108 types.
(Bottom right) Pitch layout on the completed board.

G011/20,1/5173	
Resistors	
	2k2
R2, R3, R4,	
R11, R13.	
R16, R21,	
R22, R23, R28	10k (10 off)
R5, R9, R24, R32	100k (4 off)
R6, R31	470 (2 off)
R10, R19, R20,	
R12	$\begin{aligned} & 47 \mathrm{k}(5 \mathrm{off}) \\ & 220 \mathrm{k} \end{aligned}$
R7, R8, R14.	
R15	1k (4 off)
R17. R18, R29	1 M (3 off)
R27	8M2
R30	680

Capacitors

C1 $3 \mu 3$ tantalum bead, 35 V
C2, C4 47 n min . polycarbonate or poly layer (2 off)
C3 $\quad 100 \mathrm{nmin}$. polycarbonate or poly layer
C5, C8 $\quad 1 \mu \mathrm{~min}$. radial elect. (2 off)
C6 100μ radial elect., 35 V
C7. C9 10 n min. polycarbonate (2 off)

Semiconductors
D1-D10,
D18-028 5 mm high efficiency l.e.d.s (8 yellow, 5 red, 8 green)
D11. D12.
D13, D15,
D16, D17 1N4148 signal diode (6 off)
Di4 1N4001 1A 50V rect. diode
TR1-TR4, BC108 npn transistor TR5, TR6 (6 off)
IC1 ICM7555 CMOS timer or NE555 timer
IC2, IC7 4017B decade timer (2 off)
IC3 4013B dual D-type flip-flop
IC4 4001 quad 2-input NOR gate
IC5 CA3140 MOSFET op.amp
IC6 4046B phased locked loop

Switches

S1 4-pole 3-way min. rotary, S2, S3
S4 ${ }^{2}$ Miniature pushbutton, normally open
S5 Miniature s.p. on-off

Miscellaneous

RLA 6 V 240 ohm coil d.i.I. relay, with d.p.c.o. contacts (only one set used).
Printed circuit board available from EE $P C B$ Service, code EE798; 8 -pin di.i. socket (2 off); 14 -pin di.i.l. socket (2 off); 16 -pin di.i.l socket (3 off); 5 mm I.e.d. mounting clips (21 off); 14-way tag strip; two pieces of hardboard or plywood (3 mm) to required size; two 10-way header pin strips and connectors (if used - see text); 13 mm (1/2in.) brass gimp pins (24 off - see text); connecting wire; solder etc.

turning transitor TR5 on and operating the relay which closes RLAI contacts. This closure is only momentary because of the differentiating action of the coupling components capacitor C6 and resistor R21, and the rest of the circuit is then activated in the way already explained.
The use of relay at this point may seem a bit odd as the switching could be electronically activated, but the use of a mechanical relay introduces a small but desirable time variation (as well as possible bounce!) in the duration of the relays closure and so helps in enhancing the random operation of IC6 during the short time that the VCO is producing its high frequency output.
Only the function of diode D18 remains to be mentioned. This l.e.d. is the game's "Umpire" and gives a verdict for or against the batsman.
The output of IC6 may, when the VCO oscillations cease, settle randomly in either the "high" or "low" state. In the former case D18 will be lit and in the latter case it will be extinguished. If the D18 1.e.d. is lit, the appeal is allowed. We will return to this point when the actual method of play is discussed.

CONSTFUCTION

There are essentially three parts in the construction of the game: first, the assembly of the printed circuit board (p.c.b.) which is quite straightforward; secondly, the assembly of the wicket and fielding l.e.d.s on to the board which can be a piece
of thin plywood or hardboard sheet, an assembly which is a bit fiddly but not insurmountable; thirdly, the fabrication of a very simple box which holds the finished job in a nice compact manner.

The component layout and full size copper foil pattern of the printed circuit board is shown in Fig. 2. This board is available from the EE PCB Service, code EE798.
There should be no problems in assembling this board provided all the usual precautions about soldering and the orientation of polarized components are observed. The integrated circuits are best mounted in low-profile holders, otherwise there is little to comment on.
On the prototype the l.e.d. outputs from IC2 and IC7 terminate on 10-way header strips; this is done purely for convenience in the later interconnections stage and you can, if you wish, simply connect ordinary outgoing wires or ribbon cable at these points for later connection to the various l.e.d.s. Different coloured wires are essential to avoid confusion. Solder pins are fitted to the other output points, that is, the various switch connections and the output to the "Umpire" l.e.d. DI8.

PITCH

Turning now to the actual pitch, the layout of the prototype is shown in Fig. 3. This was made on a piece of 3 mm hardboard measuring 300 mm by 230 mm (12 in . by 9 in .) although you can adjust these measurements to suit yourself; nothing else is affected by this.

Fig. 5. How the l.e.d.s are mounted on the subisdiary "wicket" board and fixed to the pitch panel.
Fig. 4. Using a small board to wire the wicket l.e.d.s. This board could be made from stripboard.

The l.e.d. holes are all drilled 6 mm ($1 / \mathrm{in}$.) diameter as are the specified pushbutton switch holes. The bowling rate switch SI needs a $9 \mathrm{~mm}(3 / 8 \mathrm{in}$.) hole and there are six fixing holes along the longer edges to take ordinary wood screws when the "ground" is later attached to a simple case. Two 6BA countersunk clearance holes are also required at each end of the wicket to support a small auxiliary p.c.b. which carries the ten l.e.d.s associated with the wicket sequence.
Additionally, two pins are driven into the hardboard on each side of the "fielders" l.e.d.s, but we return to these points in a short while. In the layout of the fielding positions you can, of course, do your own thing; a piece of 3 mm ply, may be substituted for the hardboard and the various fielding points (and the scores or penalties associated with them) can be moved around to please yourself. The central "pitch" should not, however, be altered in any way.

WICKET SECUENCE

The board which holds the wicket sequence l.e.d.s is shown in Fig. 4. The l.e.d. spacing is 10 mm and the panel drilling must, of course, be identical with this.
The ten I.e.d.s are fitted to the board as Fig. 5 illustrates, making sure that the cathodes (k), usually indicated by a flat on the l.e.d. casing, go to the common wire which connects to one side of resistor R6. The other side of R6 has a wire attached
which should be taken to the common (-V) foil track on the main board.
The use of sleeving on the l.e.d. wires ensures that they are all at the same height above the board: Also make sure that they are in line when viewed along the length of the sequence.

Preferably use yellow I.e.d.s for pitch positions DI to D8, with a green for the batsman's position (D9) and red for the wicket (D10). Fig. 5 also shows how the board is fitted to the panel - but don't do this just yet.

FIELDER'S SECUENCE

Wiring up the fielder's l.e.d.s is a bit fiddly because these have to be hard wired and it is necessary to provide some sort of anchorage at each of the indicator positions. The method used (and you may well think of a better one!) is to drive two brass gimp or panel pins into the panel on each side of each of the I.e.d.s such that the l.e.d. wires can be looped around (no tightness here) and be soldered to the pins rather as Fig. 6 shows. Don't use steel pins as there is then a possible soldering problem without acid fluxes, though brassed or coppered style pins can be employed.
A simple wiring harness can then be made up to bring the eleven anode (a) points (including D18 here) and the common cathode (k) wire to a tag strip, twelve connections in all. Wires from this tag strip then go down to the main p.c.b. The
photograph shows the completed underside of the pitch panel.

COMPLETING THE ASSEMELY

Before mounting and wiring up the panel I.e.d.s, a bit of preparation is needed if the finished job is going to look neat and presentable. The two 6BA screws for the "wicket" l.e.d.s and the gimp pins for the anchorage of the others must be fitted and the surface blemishes left by these levelled off with a filler and smoothed with fine sandpaper, before anything else is done.
A coat to paint is now required to simulate the field. A light green is best and matt emulsion or undercoat, preferably rolled on, is ideal. Alternately, a piece of light green paper might be glued over the hardboard.
Whatever you use, all the legends should next be added using rub-down lettering, after which the l.e.d.s and the switches can be mounted. Use green l.e.d.s for the scoring positions and red for the "out" positions and Howzat?
To tidy up the l.e.d. holes, use panel bushes which fit into the 6 mm ($1 / \mathrm{iin}$.) holes already drilled and the l.e.d.s themselves then snap into these.
To make up a box, get a piece of hardboard the same size as the panel for the box bottom. Screw to this as the sides of the box four pieces of wood of thickness about $9 \mathrm{~mm}(3 / 8 \mathrm{in}$.) to give a depth of about 51 mm (2in.).
The main p.c.b. along with a suitable

Fig. 6. How the "fielders" are mounted and wired on the pitch panel.
battery (or a simple mains unit if you wish) are fixed to the base, and the interconnections between the field panel and the p.c.b. can then be made. Prop the panel against one side of the box to do this; don't make the leads so short that there is a strain on any connection. You want to be able at any time to get into the box, perhaps to change the battery, and you want to be able to flip the lid (the field) back as though it was on a hinge in order to do this.

Apart from the "Howzat/Umpire" I.e.d. (D18) which connects to resistor R30 on the board, the other fielding l.e.d. anodes can go to any of the output pins of IC7, the whole sequence being random anyway, unlike the wicket sequence which must be wired to the outputs of IC2 in the correct order. In this it is essential to note that the diode numbers (apart from D2 and pin 2) do NOT coincide with the pin numbers on IC2.

The correct sequence is shown in Fig. 1 and must be followed, i.e. D1 to pin 3; D2 to pin 2; D3 to pin 4, and so on to D9 to
emitter (e) of TR1; D10 to emitter of TR2. The common lead returns through resistor R6 to the negative line. Unless you get this order right, you are going to bowl some amazing googlies!
PLAYING THE GAME
The bowler's end of the field has three control points: two pusbutton switches marked Bowl and Return Ball respectively, and the Bowling Rate selector switch. At the batsman's end there is one pushbutton switch marked Bat and the Umpire l.e.d.
When the game is initially switched on a number of the field l.e.d.s may light up, but by pressing the Return Ball button the bowler positions the ball at his own end of the pitch. At this point one of the field l.e.d.s will be lit but this is ignored. The game is now ready to play.
The bowler starts things off by pressing the Bowl button; the "ball" will then move down the pitch at a rate selected by the Bowling rate switch. When the ball reaches the batsman's position (l.e.d. D9) the batsman must simultaneously press the Bat button to halt the ball on this l.e.d.; this constitutes a hit and the field display will then indicate his score or his penalty.

If the ball is missed by the batsman, the

Fig. 7. Suggested mains power supply. The transistor should have a clip-on heatsink.

Layout of components on the rear of the pitch panel. The use of the tag strip eases the wiring to the "fielders" and the p.c.b. Note the use of the header connections on the p.c.b.
wicket will be hit and the tenth l.e.d. will light. The batsman is then dismissed. The bowler returns the ball to his own end and prepares for the next delivery.
The fielding scores are self explanatory but if the Howzat l.e.d. lights, reference must be made to the "Umpire" which is the l.e.d. next to the batsman's button. If this l.e.d is lit, the batsman is adjudged out lbw; if the l.e.d. is not lit, the verdict is not out.
It is suggested (though you can make your own rules) that each "side" (even if there are only two players) play through ten wickets each (or to an agreed score), recording each score along with any extras and how out. The bowling rate for each batsman should start off at Slow for the first "over" of six balls, then go to Medium for the next over, and Fast for the third over; this sequence then repeating if the same batsman is still at the crease. For the enthusiast, a second innings might be played to determine the outcome, with a side following on if it fails to come within an agreed number of runs of its opponents score.
Clearly, any reasonable number of players can have a go at this game, taking it in turns to bat and bowl. An individual scorer might be useful where an odd number of people are concerned.
SUPPLIES
A brief note about power supplies might not be out of place here. The unit will run quite satisfactorily on a 6 V battery supply, though this should be made up of four U2 size cells, in preference to the small single 6 V batteries. You may, if you wish, use a 9 V supply, but this does increase the current consumption and is not so economic.
A simple mains unit is the best bet if you are going too play the game a lot, or indoors, and a suitable circuit is shown in Fig. 7. This can be easily assembled on a suitable board or piece of stripboard and will provide an output of about 8 V .
Good batting!

ACTUALLY
DORNG ITVI
by Robert Penfold

SOME time ago the topic of mains power supplies was covered in an Actually Doing It article, but it is worthwhile covering broadly the same ground again here. It is a subject which seems to provide a small but steady flow of readers' letters.

Mains transformers seem to be the main cause of problems, and I suppose that when building power supplies you do sometimes have to connect the transformer in an apparently illogical manner. However, if you look at things in the right way it is all quite logical and straightforward

DANGERS

Before proceeding further the usual warnings about working with the mains supply have to be given. For anyone building their first few projects the best advice is to avoid any mains powered project. Choose battery powered projects as these enable you to make mistakes without any drastic consequences. If you make an error in a project powered from a PP3 size 9 volt battery, about the worst that will happen is that one or two semiconductors will be destroyed. It is quite possible that no damage at all will result, and there is probably no risk at all of any personal injury.

If you make a mistake when building a mains powered project there is almost certain to be some damage, even if it is only something minor such as a blown fuse and a damaged switch. A serious error could easily result in every semiconductor in the project being destroyed, possibly in spectacular fashion. At worst you would get a severe electric shock, which could prove fatal.

When dealing with the mains supply you should proceed with the same care you would exercise if your life depended on it, because it does!

Here are some do's and don'ts:
Never work on any project that is connected to the mains supply. It is not enough to switch off at the mains supply or at the project's on/off switch. The device must be unplugged from the mains socket.

If you are not sure about the right way to connect something in a mains power supply circuit, do not resort to trial and error. This could cause expensive damage and could be extremely dangerous.

Youngsters should not construct mains powered projects unless they are supervised at all times by a suitably experienced adult.

Mains powered projects should always
be housed in cases that have a screw fitting lid. Do not use types having clipon lids, slide-in panels, etc. It should not be possible to get at the dangerous mains wiring without using a screwdriver or other tool.

Any exposed metal must be reliably earthed to the mains Earth lead. The normal way of ensuring this is to use a case of all-metal construction which is connected to the mains earth lead. Any screws etc. fitted on the case will then be earthed via the case.

Even if you normally do not bother too much about checking the wiring before trying out a new project, always at least double-check the mains wiring on any mains powered projects.

TRANSFORMATIONS

A mains power supply should always include a mains transformer. With modern circuits that run on low voltages the mains transformer provides two functions. One of these is simply to reduce the 240 volt mains supply down to the much lower voltage required by the circuit.

The second, and no less important function, is to provide safety isolation. There is no direct connection between the mains input to the primary winding and the low voltage output from the secondary winding of a mains transformer. This ensures that anyone touching any wiring on the output side of the mains transformer will not be in contact with the mains wiring, and that (providing the secondary is a low voltage winding) they cannot receive a severe electric shock. In fact, provided the secondary potential is only around 30 volts or less, you cannot get a noticeable shock from the secondary circuitry.

Of course, the wiring on the primary side of the transformer connects to the
mains supply, and is potentially lethal. Also any transformer with a high voltage secondary winding (of the type used to power most valve circuits) is potentially lethal. Due care must be taken to ensure that mone of the primary wiring comes into electrical contact with the wiring on the setcondary side of the transformer.

SECÓNDARY EDUCATION

Many modern mains transformers are desighed to be versatile, but this versatility can (and does) cause a certain amount of confusion. It is now quite common for mains transformers to have twd secondary windings that are identical. These can be connected in three basic ways.

Suppose that a transformer has two 6 volt 250 milliamp secondary windings. These could actually be used as iwo separate windings driving separate supply circuits, but it would be very unusual for dtransformer to be used in this way.

SERIES

A more likely method of connection is with the two secondary windings connected in series, as shown in Fig. 1 (a). This effectively adds the two 6 volt windings to give a combined output potential of 12 volts. The current rating of the combined secondaries is the same as when they are used separately, 250 milliamps in this example.

Note that this method of series connection will not work properly if you link two 0 volt or two 6 volt terminals. This will wire the windings in series, but their phasing will be such that the output of one winding will cancel out the output from the other. The result is no output whatever.

The second method of connection is much the same as the series one just described, but the interconnection between the two secondaries is utilized, as shown in Fig. 1 (b). This effectively gives a 6-0-6 volt transformer having a current rating of 250 milliamps. A transformer of this type is needed with a power supply that has push-pull full-wave rectification (the type that uses only two rectifiers).

It seems that this is the method of connection that causes the most confusion. and the correct way of connecting the secondary windings is not really the obvious one. The obvious way of handling things is to connect together the two 0 volt terminals in order to give the central 0 volt output. The two 6 volt terminals would then provide the two 6 volt outputs.

Although this may seem to be the

Fig. 1. Methods of connecting twin secondary windings (a) in series (b) pseudocentre tap (c) parallel.

logical method of connection, it will definitely not provide the desired result. The two 6 volt outputs will be in-phase, whereas it is out-of-phase signals that are required.

This would effectively reduce the power supply to a simple half wave rectified type. The practical result would be substantially reduced maximum output current, and a lot of ripple on the d.c. output. This would almost certainly prevent the main circuit from working properly. The connection method shown here gives the correct anti-phase outputs, and a suitable alternative to a true centre tapped secondary winding.

PARALLEL

The third method is to connect the two windings in parallel, as shown in Fig. 1 (c). It has to be stressed that this method of connection is only acceptable if the mains transformer is a type which has accurately matched secondary windings which are intended for use in this way. If the retailers catalogue or other literature does not specifically state that a mains transformer is suitable for this parallel operation, it should be assumed that it is unsuitable for use in this manner.

With parallel operation the output voltage is equal to the voltage rating of one winding, or 6 volts in this case. However, the current rating is the sum of the individual current ratings, or 500 milliamps in this case.
Having twin and matched secondary windings clearly makes a mains transformer very versatile, but it also means that you have to be rather more careful when wiring it up. Make sure that you do not get a link-wire in the wrong place so that it short circuits a secondary winding.

This could easily result in the transformer being ruined. Also be careful not to use series connection where parallel connection is required. This would give double the required output voltage which could easily cause damage to the power supply components and beyond. ather errors are unlikely to cause any damage - the supply will simply not function correctly.

PRIMARY EDUCATION

Provided a mains transformer has a single primary winding there should be no difficulty in wiring up this section of the supply. Unfortunately, a substantial proportion of modern mains transformers have either twin primary windings, or a tapped winding. The latter is the easier to deal with. If the transformer is suitable for operation on the 240 voit UK mains supply it should have terminals marked " $O \mathrm{~V}$ " and " 240 V ", and these are the two terminals to which the mains input should be connected. The other tags are left unconnected.
Some mains transformers seem to have twin 120 volt windings, and this is presumably to permit them to operate on continental 120 volt supplies or the 240 volt UK supply. For operation with the latter the two windings must be wired in series (Fig.2(a)).

From time to time I have encountered mains transformers which have twin 240 volt primary windings. I have never been able to ascertain just why such an arrangement should exist, since there would seem to be no 480 volt mains supplies. Series connection of the windings would therefore seem to be something that would never be used in practice. The only suggestion that I can offer is that this system enables mains
transformers of various ratings to be put together from a limited number of standard sub-assemblies. This would presumably help to keep down production costs.
Anyway, if you should encounter one of these transformers, the primary windings are connected in parallel, as shown in Fig.2(b). Note that the same basic method of connection is used for transformers which have twin 120 volt primary windings when they are used with continental 120 volt mains supplies.

ROTARY SWITCH

It is essential to get the on/off switch of a mains power supply connected correctly. If you should get it wrong, you will probably find that switching on has the effect of short circuiting the mains supply through the on/off switch! The fuse in the mains plug (which should be a 2 or 3 amp type for most projects) should "blow" and prevent any serious problems. The on/off switch might not survive the experience though.

With most switches the correct method of connection is fairly obvious, but if in doubt it is always a good idea to check any switch with a continuity tester before making any connections to it. A few checks will soon show which tags (if any) connect together at each position of the switch.
The switches I find the most awkward to deal with are the mains rotary on/off switches that are supplied by several of the main electronic component retailers: Checks with a continuity tester have invariably revealed that I was about to connect the switch incorrectly. Fig. 3 shows the correct method of connection for this type of switch.

and pin 3. change state - pin 2 going from low to high and pin 3 from high to low. With the values of Cl and RI specified, the time taken to do this is nominally 24 hours. Preset potentiometer VRI, in conjunction with fixed resistor R2 connected between ICI pins 11 and 12, provide an adjustment which will be used to trim the timing period for best accuracy at the end of construction.

When ICI pin 2 goes high at the end of the timing period, current flows into transistor TRI base (b) through current limiting resistor, R5. This turns TR1 on and its collector (c) goes low. This low state is transferred to pin 2 (trigger input) of the 555 timer IC2.

TIMING

The Timer IC2 is connected as a monostable - that is, once triggered in this way the output, pin 3, goes high for a certain time then reverts to low. Between operations, ICl pin 2 is low and transistor TR1 is off. IC2 pin 2 is then held high through resistor R6 and this prevents triggering.
The time period of IC2, during which the solenoid valve will be operating, depends on the adjustment of potentiometer VR2 in conjunction with fixed resistor R8 and capacitor C5. With VR2 providing minimum resistance the time period is less than one second but at maximum resistance, it is four minutes approximately.
Normally IC2 reset input, pin 4, is kept high through resistor R7 and this prevents resetting. However, pushbutton switch S2 (Reset) may be used to make it low and this cancels the operation immediately.
A further push-to-make switch, Sl (Trigger), may be used to initiate IC2 timing and operate the solenoid valve at any time. This it does by making IC2 trigger input, pin 2, low.

Note that the monostable timing capacitor, C5, is of the electrolytic type. This will not provide great accuracy but is thought to be quite satisfactory for the present purpose. For a longer operating time it could be increased in value.

At the end of ICt ("daily") timing cycle, the low state of pin 3 is applied to pin 1 (the trigger input) through resistor R4-this retriggers the i.c. and initiates a further timing cycle. This process will repeat indefinitely until the supply is switched off.

SOLENDID VALVE

The output of IC2, pin 3, is incapable of supplying sufficient current to operate the solenoid valve SOL directly so, for this purpose, transistor TR2 is used as a simple current amplifier. When IC2 output, pin 3, goes high (positive supply voltage) current flows through resistor R9 into TR2 base and turns it on. Collector current now flows through the solenoid coil. This produces a magnetic field which pulls an
iron armature and actuates the water valve.
Diode, DI, connected in parallel with the solenoid coil bypasses the reverse high-voltage pulse which occurs when the current switches off and the magnetic field collapses. Without this, semiconductor components in the circuit could be destroyed.

POMEFSSUPPLY

Power for the circuit is obtained from a conventional arrangement of mains transformer, T1, on-board rectifier diodes, D2 and D3 and smoothing capacitor, C6. The fuse, FSI, in TI secondary circuit, provides protection in case of component failure or short-circuit.
No voltage regulator is required for ICI since this is provided on the chip in con-

junction with resistor R3. Voltage regulation is not required for IC2 either because its timing is largely independent of the supply voltage. In any case, the exact value of the time period - that is, the time during which the hose operates - is not thought to be particularly critical.

Mains transformer TI must have a generous current rating. This ensures cool and stable operation during continuous operation.

It also makes sure that the extra load of the solenoid valve does not cause problems due to sudden voltage drops. Do not use a transformer having an output rated at less than 500 mA .

CONSTFUCTION

Safety Note: In constructing the Garden Hosepipe Controller, mains connections need to be made. Anyone who is not certain of being able to make a safe job must consult a qualified electrician.
In particular, the unit must be built in an

C0M/P0M/515		
Resistors		
$R 1$	4M7	
R2	47 k	
R3 ${ }_{\text {R4, }}$ R7	${ }^{680} 10 \mathrm{k}(2 \mathrm{off})$	
R5, R6	100 k (2 off)	ALK
R8	4 k 7	Page
R9	2k2	
Rx	3 k 3 test resis	tor - see text

All 0.25 W carbon film
Potentiometers
VR1 47 k sub-minature preset horizontal VR2 2M2 rotary carbon, linear

Capacitors

C1 $2 \mu 2$ polyester (2 off) or
single $4 \mu 7$ - see text
C2. C3 100n ceramic (2 off)
C4 $\quad 47 \mu$ radial elect. 16 V
C5 $\quad 100 \mu$ radial elect. 16 V

Semiconductors

D1, D2,
D3 1N4001 50V 1 A rectifier diodes (3 off)
TR1 BC108 npn silicon
TR2 BFY51 npn silicon
IC1 ZN1034E timer
IC2 555 timer
Miscellaneous
T1 Mains transformer with
240 V primary and $9 \mathrm{~V}-0.9 \mathrm{~V}$ secondary (or two 9 V secondaries) rated at 500 mA minimum
S1, S2 Min. press-to-make, release-to-break push switch (2 off)
S3 Mains rocker switch with neon indicator
FS1 $\quad 500 \mathrm{~mA} 20 \mathrm{~mm}$ fuse and chassis fuseholder
SOL Mains-pressure water solenoid valve -12 V d.c. operation
Stripboard 0.1 in. matrix, size 16 strips $\times 50$ holes; aluminium box, size 152 mm $\times 102 \mathrm{~mm} \times 51 \mathrm{~mm}$; two-way terminal block; 8 -pin d.i.l. socket; 14 -pin d.i.l. socket; stand-off insulators (2 off); connecting wire; solder tags; solder etc.

Earthed aluminium box and plugged into an adjacent supply using a plug fitted with a 2A fuse. If a fused plug is not used, a separate IA or $2 A$ mains-type fuse must be fitted in the transformer primary circuit.
Construction is based on a circuit panel made from a piece of $0 . \mathrm{lin}$. matrix stripboard, size 16 strips $\times 50$ holes. This carries most of the components. Topside component layout, details of underside track breaks and inter-strip links needed are shown in Fig. 2.
Drill the two fixing holes and mount all on-board components taking care over the polarity of diodes D2 to D3 and of electrolytic capacitors C4, C5 and C6.
In the case of the polyester capacitor Cl , the specified value $(4 \cdot 4 \mu \mathrm{~F}-4 \cdot 7 \mu \mathrm{~F})$ is higher than many suppliers stock. However, ample space has been left on the circuit panel for two $2 \cdot 2 \mu \mathrm{~F}$ polyester capacitors to be connected in parallel (see photograph) Additional capacitors could also be used to increase the time period.
Note the two short "stalks" or terminal posts to which test resistor $R x$ is connected temporarily - these consist of 10 mm pieces of clipped-off resistor ends. The timing period of ICl is shortened to approximately one minute by $R x$ and simplifies the testing and adjustment procedure.
Solder 10 cm pieces of light-duty stranded connecting wire to copper strips D, E, G, J and P along the right-hand side of the circuit panel and to strips M and N on the left as indicated.

CASEAND /NTERWIRING

In the prototype unit, all internal components were mounted on the base section of the case. This method imposes least strain on the interconnecting wires. It also means that the unit is easily attached to the wall if required.
Prepare the case by drilling holes for transformer T1 mounting, for switches S1,

S2 and S3, potentiometer VR2, fuseholder FSI and terminal block, TBI. Drill holes also to align with the mounting holes already drilled in the circuit board.
Make holes for the solenoid valve output wire and for the mains input wire. Make sure these holes are large enough to accommodate the strain relief bushes to be fitted later.
Solder TI secondary output wires to strips A and C on the board then, referring to Fig. 3, mount all internal components and complete the wiring (see photograph). Note the solder tag at one of the TI fixing lugs. This will be used to Earth the transformer core and is an essential safety requirement - do not use a makeshifi method. Note also that one of switch $\mathbf{S} \mid$ terminals is a meeting point for several "earth" wires - make sure these are secure.
Mount the circuit board on 5 mm long plastic stand-off insulators to keep the copper strips and soldered connections clear of the metalwork. Place a piece of cardboard between the circuit board and the box if necessary.
Insert the fuse into its holder. Fit VR2 control knob and adjust both VR1 and VR2 sliding contacts fully anti-clockwise (to provide minimum timings).
Make and fit the mains lead. This consists of a suitable length of 3 -core mains-type wire of 3 A rating minimum. Fit this through the hole drilled for the purpose using a strain relief bush - this will prevent it dislodging from On/Off switch S3 in service.
Connect the Live and Neutral wires to switch S3 - hook the wires through the holes and solder securely. Use a similar hooked connection to attach the Earth wire and the wire leading from SI to the solder tag. These wires must be secure - especially the mains Earth one.
Prepare the solenoid valve connecting wire. This may consist of any light duty twin type such as bell wire. However, if the unit is to be sited some considerable distance from the water supply, it may need to be

Fig. 3. Interwiring from the circuit board to off-board components.

The complete circuit board mounted inside the metal case. The metal case must be "Earthed" through the mains lead, see Fig. 3.
thicker to prevent excessive voltage drop loudspeaker wire, for example. Tests will reveal if this is necessary since on test the solenoid valve will operate sluggishly or not at all.
Fit one end of the wire with spade receptable connectors to fit those on the solenoid ${ }^{*}$ valve. Secure the other end using a strain relief bush and connect to TB1/1 and TB1/2 (polarity unimportant).

TESTINGAND AロJUSTMENT

There are exposed mains connections at switch $\mathbf{S 3}$ inside the case. For safety reasons therefore, the box must be assembled whenever the unit is plugged in. Adjustments to VR1 are made in small steps with the lid replaced each time.
For testing, it will be found convenient to connect a small 12 V bulb $(2 \cdot 2 \mathrm{~W}$ rating) to the output wires in place of the solenoid valve. Plug the unit into the mains and switch on. It usually self-triggers and the lamp will light for one second or so. After one minute approximately, the lamp should light again and the process repeat indefinitely.
If the lamp remains on for a longer time it is possible that the incorrect outer (track) connection to the rotary potentiometer VR2 has been used. Check by rotating the control knob fully clockwise. If the circuit now behaves correctly, connect the wire leading
from strip E on the circuit panel to the other outer tag of VR2.
You will save time later by adjusting VRI sliding contact clockwise in very small steps so that an operating time of one minute (within one second or two) is obtained. $R x$ may then be removed. ICl time period will now be approximately one day.
Over a trial period, adjust preset VRI slightly to provide a timing of 24 hours or as required. If the correct timing cannot be obtained even with VRI at an extreme of its travel, resistor R2 will need to be increased to increase the timing and vice-versa.
By triggering the unit manually, rotary control VR2 could be calibrated and a scale of operating time in seconds marked out on the front panel. This was not thought worthwhile in the prototype.

EFF=CTOF TEMPERATURE

This circuit is not designed to produce precise daily timings and maximum repeat accuracy will only be obtained if the temperature of the unit is kept reasonably constant. If the unit is situated in a centrally heated room where the temperature is thermostatically controlled, accuracy of a minute or two per day may be expected. ICl itself introduces a daily timing error of up to 800 ppm (parts per million) per degree - the timing falling with a rise in temperature.

Capacitor $\mathbf{C 1}$, also introduces a tempera-
ture effect - using the specified polyester type this is typically 200 ppm per degree. This is a positive coefficient - that is, capacitance rises with a rise in temperature. This is useful since it offsets the effect of ICl itself to some extent.

Resistors R1, R2 and preset VR1 also introduce a small temperature effect. The final effect of temperature on timing error may be expected to be in the region of 1000 ppm per degree maximum which corresponds to approximately $11 / 2$ minutes per degree in the finished circuit.

INUSE

Attach the unit to the wall if required. Remove the test lamp. Fit the solenoid valve to the water tap - note the arrow on the body which indicates the direction of water flow.

Low voltage mains-pressure water solenoid valve.

Connect the hosepipe. Attach the output wires. Turn the tap on and check for leaks.

Switch on the mains and if the unit does not self-trigger, press switch \$1. The solenoid valve should operate and water issue from the hosepipe for a time set by control VR2.
If rain can reach the solenoid valve, remember to provide some protection to the terminals so that corrosion and consequently poor contact cannot occur. The Hosepipe Controller may now be put into service. Note that it is normal for the case to become slightly warm.
Remember to have a neigh bour on call so that the unit may be switched off s ' ould a hosepipe ban be imposed by the local water authority. Remember also, that a licence may be required to use this type of device since it is not handheld - if in doubt, consult your local water company.

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELYHOOD . ., YOU NEEDTHE MODERN ELECTRONICS MANUAL

들RMM MNOM躇

The essential reference Work

- Easy-to-use format
- Clear and simple layout
- Regular updates
- Sturdy ring-binder
- News of latest developments
- Full components checklist
- Extensive data tables
- Detailed supply information
- Ready-to-transfer PCBs
- Comprehensive subject range
- Accurate assembly instructions
- Concise repair procedures

If the fascinating and fast-changing world of electronics is your livelihood, your study subject or simply your passion, the new revised edition of THE MODERN
ELECTRONICS MANUAL is the reference work for you to have at your side.
The base manual contains information on the following subjects:
BASIC PRINCIPLES: symbols, components and their characteristics, passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, operational amplifiers, timers, physics for electronics.
CIRCUITS TO BUILD: construction techniques, radio, telephony, microcomputing, measuring instruments, vehicle electronics, security, audio, power supplies, electronic music (over 25 different projects).
REPAIRS AND MAINTENANCE: radio, television, audio/hi-fi, telephones.
DATA: diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors. The manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. OVER 1,000 pages, A4 format weighing over 3.5 kg .

Now - at last - the most comprehensive reference work ever produced at a price
you can afford, the new revised edition of THE MODERN ELECTRONICS MANUAI provides you with all the essential information you need.

Over 1,000 pages of well-organised and clearly explained information is brought to you by an expert editorial team whose combined experience ensures the widest coverage.
Regular supplements to this unique publication, each around 160 pages, mean that you will always be kept abreast of the latest developments from the UK, USA and Europe as they occur

ALL-IN-ONE AND EASY-TO-USE

A sturdy ring-binder allows you to use the manual on your workbench. The looseleaf format also means you can slot in the regular updates as they arrive -so all your information is there at a glance.

EXTENSIVE CLOSSARY

Should you come across a technical word, phrase or abbreviation you're not familiar with-simply turn to the glossary included in the manual and you'll find a comprehensive definition in plain English.

REGULAR UPDATES

Unlike a book or encyclopedia, the manual is a living work - continuously updated by new material. Recent or upcoming supplements include radio, superconductors, electric motors, basic electronic building blocks for beginners which can be joined together to construct elaborate circuits, filters, IBM PC and compatibles (including use of PC cards). Supplements are sent to you approximately every two months.

Each supplement contains approximately 160 pages - all for only $£ 23.50$ $+£ 2.50 \mathrm{p} \mathrm{\&}$ p. You can of course return any supplement which you feel is superfluous to your needs.

$$
\begin{aligned}
& \text { RESPONDING TO } \\
& \text { YOUR NEEDS }
\end{aligned}
$$

We are able to provide you with the most important and popular articles in our updating supplements. Our unique updating system is based on answers from readers request questionnaires. Through this service you are able to let us know exactly what information you require in your manual. You can also contact the editor directly in writing if you have a specific technical request or query relating to the manual.

ASSEMbling ...

There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the manual describes clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, micro-computers and measuring instruments.

The new revised edition of The Modern Electronics Manual contains practical, easy-to-follow instructions for building and programming your own computer. It shows you how to make fun gadgets such as a remote control door opener and a digital rev. counter for your car. It also tells you how to construct useful devices like test gear, security and baby alarms - plus - many more popular devices.
Wimborne Publishing Ltd., 6 Church St, Wimborne, Dorset BH21 1JH
Tel: 0202881749 Fax: 0202841692

THE MODERN ELECTRONICS MANUAL

New Revised Edition of Basic Work: Now contains over 1,000 pages of information.
Regular Updates: Approximately 160-page supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($197 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Prlce of the Basic Work: $£ 39.95+£ 5.50 \mathrm{p} \& \mathrm{p}$ (to include a recent supplement).

Robert Penfold

THE subject of bar codes is one which seems to crop up in reader's letters from time to time. Judging from letters I have received, and some I have seen published in various magazines, there seems to be a few misconceptions about the precise way in which bar codes operate. Before proceeding further it would perhaps be as well to dispel one or two myths.

Code Cracking

Many people seem to think that bar codes carry a lot of information. For example, if you read the contents of a bar code on a can of baked beans, the common belief is that you would get something along the lines of "Heinz Baked Beans, $\mathbf{2 2 5} \mathrm{g}, \mathbf{3 8 p}$ ". This seems reasonable, because reading the bar code into a supermarket checkout system would result in this sort of information being displayed. and printed on the receipt.

In reality matters are not as simple as this, and a do-it-yourself system that will provide a similar function is not a very practical proposition. The problem is that the bar code only provides detailed information in an indirect fashion, and it is not readable straight from the code. If you look at a bar code it will normally be accompanied by a long number (usually eight or thirteen digits long). There is a bar code plus thirteen digit number on the front of this copy of Everyday Electronics.
When a bar code is read, all that is fed into the computer system is this same number. Thus, if the bar code becomes damaged and cannot be read, the number can be typed into the system by hand. This quite often has to be done at supermarket checkouts, as many readers will no doubt have noticed.

Look-up

So how is the detailed information extracted from the multi-digit code number? It is apparently done in quite a crude fashion, using a look-up table. There are actually large telephone directory style books which contain details of standard bar codes. Using one of these you can look up the code number on a can of beans, magazine, or whatever, and the relevant entry will give the string of text for that particular code.
Using a bar code reader and a suitable computer system greatly speeds things up of course, and the books of codes are presumably only needed for reference and checking purposes. The basic method for extracting the detailed information is much the same though. The code number is read into the computer, and then the text string for that number is read from the computer's data base. Without this
massive data base, all you read in from the bar code is a meaningless number.

This is a good way of doing things in that it enables what is effectively a limitless number of different codes to be used, with as little or as much data as desired being attached to each code. The data associated with each code number can be as small as a price such as " 38 p ", or 100,000 words of text. The upper limit on the amount of data is set by the database that has to handle it all, rather than by the bar code system.
The system is less satisfactory in that you can only extract meaningful information from a bar code if you have a computer equipped with a suitable decoding system and database. This makes it rather impractical to implement a home produced system that can read bar codes from everyday products and provide the appropriate string of text. Reading bar codes into the system is a practical proposition, but the database side of things is not.

Being realistic about it, a bar code system that would directly provide text strings is not a very practical proposition. Even a simple price such as " 38 p " would require three seven bit ASClI codes, or some 24 bits in total. Adding a product description would require hundreds more bits to be included. Bar codes hundreds of bars in length are not usable in most practical situations. The look-up system may be an inconvenient one, but it is perfectly usable.

DIY Bar Codes

While reading commercial bar codes and displaying the relevant information is not a very practical proposition for the home user, this is not to say that do-ityourself bar codes are totally impractical. It is quite possible to use your own system of bar codes if you can come up with a suitable application. Bar codes are not restricted to supermarket stock style applications. One of the more imaginative commercial applications is in certain Canon EOS cameras which have an optional bar code reader and a book of pictures. Each picture is, of course, accompanied by a bar code.
The basic idea is that you look through the book until you find a picture that is of the type you are going to take, and you then read the accompanying bar code into the camera. Its programmed exposure system then sets the most suitable shutter speed and aperture under the prevailing circumstances. If you are taking some sort of action shots for instance, the camera will set fast shutter speeds (to freeze the action) and use wide apertures if the light level is indifferent.

Such a feature is clearly a waste of time if you are a reasonably expert photographer (and there is no bar code reader input on the professional EOS models), but it helps the non-expert to get good results. Another use of bar codes is in security applications, and there must be many other novel uses for them.

Software

There are programs available for some computers that will print out various sizes and types of bar code. There is at least one set of shareware bar code generator programs available for the IBM PCs, and you should find this set listed in any of the larger PC shareware catalogues (but note that the output is only suitable for Epson 9 -pin and true Epson 9 -pin compatible printers). Reading the bar codes is more difficult, since this type of software only seems to be sold as part of a complete bar code reader and software package.

The do-it-yourself bar code user therefore has to write his or her own reader software. Of course, you do not have to do things one of the standard ways if a system is only for your own use, and compatibility with someone else's bar code system is not needed. Indeed, it is probably more practical not to do things the standard way as this avoids what is likely to be severe over-kill for do-ityourself applications.

Implementing a practical bar code system is slightly more difficult than you might think, as anyone who saw one of the early commercial systerms in operation will no doubt have realised. Quite a high percentage of bar codes could only be read in after several attempts, and a not insignificant percentage simply would not read in at all. Modern readers are very much better, but they use some expensive technology which goes beyond the scope of do-it-yourself projects. However, it is possible to obtain quite good results from simple systems.

Practical Matters

It is not too difficult to devise a simple but practical bar code system, but there are a few important factors to bear in mind. One of these is that there will inevitably be widely differing reading speeds. Each user will wave the "pen" over the bar code at a different speed, and there may well be significant variations each time the same person uses the system. The way around this problem is to use a relative rather than an absolute approach to reading the bars.

A binary number can easily be coded into the bars by using narrow bands for 0 s and wide bands for 1 s (or vice versa).

0 IIIIII 102 Decimal

Fig. 1.
Fig. 1 shows how an eight bit binary number can be bar coded using this system. Reading the bars on the basis of narrow bars being below a certain read time, and wide bars being above it, will not work very well. Anyone "waving" the reader slightly too fast or too slow will produce all Os or all 1s.

A better method is to measure the time taken for the full code to be read in. This is then divided by an apposite amount to produce the threshold time that is used to distinguish between the 1s and Os. The threshold time is therefore automatically raised or lowered to compensate for the reader being swept to slowly or too quickly.

Although this may at first seem to be an absolute method of reading the bar widths, it is actually reading the widths of the bars relative to the total width of the bar code. This gives much better reliability than a truly absolute method.

Implementing a system of this type in hardware is far from straightforward, but
it is easily implemented in computer software. It will give good reliability in general, but it will not cope with variations in sweep speed while a code is being read. It should be possible to detect and compensate for this using "intelligent" software routines, but this would seriously complicate the software.
It is better if this problem can be avoided by having the operators work the system properly. It is really not too difficult to wave the reader at a reasonably constant speed while it is over the bar code.

Refinements

It is possible to add a couple of useful refinements to the basic system if desired. One possibility is to have start and finish codes. The idea of this is to enable the system to detect whether or not the bar code has been read the right way round, or in reverse. If a reversed code is detected, the system can automatically invert it to produce the right result.

Another useful refinement is to add error checking. This type of thing is usually implemented using some form of checksum system. The basic idea is to have one or more extra digits in the code. When the main code is mathematically processed in some way, this gives an answer equal to the additional number. If when the main code is read in it becomes scrambled, this will prevent the right checksum value from being obtained, even if only one binary digit has been affected. This can be detected using a software routine which would alert the user to the fact that the code had not been read correctly. A fresh attempt can then be made.

Resolution

Using a relative system of bar code decoding means that, for once, size really is not important. In theory, you can scale the bar code up as large as you like, or make it as small as necessary. Provided the relative widths of the bars are unaltered, the code can be read properly. In practice matters are not as simple as this, and there is the resolution of the reader to be taken into account.
The widths of the lines on commercial bar codes are mostly quite small. There are actually exceptions to this, and bar codes on warehouse containers are usually "Jumbo" sized. This is so that they are easy to find on the large boxes. Obviously it is not practical to have large bar codes on small products such as tins of peas. This results in some bar codes that have very narrow bands.
If you make some measurements on the bár code on the front of this magazine you will find that the wide bars are actually less than one millimetre wide. The narrow bars are only a fraction of a millimetre wide. To read in such a small bar code successfully requires a very high degree of resolution. In fact it requires special sensors that are difficult to obtain, and quite expensive.
For the do-it-yourself bar code user it is best to settle for a narrow bar that is at least one millimetre thick. This still enables reasonably compact bar codes to be used, but keeps the reading process easy enough for inexpensive sensors to be used successfully.

Next month some practical bar code hardware and software will be described.

Garden Hosepipe Controller
All components required to build the Garden Hosepipe Controller are standard iterms except the 12 V d.c. operation mains pressure solenoid valve.

The water valve used in the prototype model was purchased through Electromail 0536 204555), order code 342-023. It is quite possible a local plumbing supplies shop may stock a suitable solenoid valve. They will also be able to supply the coupling connectors.

A couple of points to remember: A metal case must be used and be soundly "earthed" to the mains earth lead. The mains transformer used must have a generous current rating and must not be less than specified. Make sure you site the water solenoid in a position which, should there be a breakdown, any possibility of flooding will not do any damage.

Finally, the unit must not be permanently connected to the mains power supply. Also, please comply with any hosepipe ban imposed by the local water company.

UV Exposure Timer

It is best to use only the specified mains transformer and relay when constructing the UV Exposure Timer. This will ensure that these components fit on the p.c.b.

The ones used in the model were purchased from Farnell Electronic Components (4 0532 636311), code 149-975 (Mains Tran.) and from Maplin, code YX97F (Ult-Min. 10A Mains Rly).

A suitable Euro-style safety plug and socket would be from the Bulgin range. This range is stocked by most of our component advertisers.
The case was obtained from Verospeed (0703 644555) and is from their Apollo 3 range, code 75-39242A. The printed circuit board is available from the EE PCB Service, code EE797 (see page 467).

Cricket Game

The only component that can be classed as special amongst the items required to build the Cricket Game is the relay. The rest of the parts are standard "off-the-shelf" lines.

Once again the use of the specified relay is because it must sit directly on the printed circuit board and connect to the correct copper solder pads on the underside of the board. The relay was obtained from Electromail (0536 204555), order code 350-557.

Other relays can, of course, be used provided they have identical pinout configura-
tions and electrical characteristics. The relay could also be mounted separately inside the case and "hard wired", using insulated leads, to the circuit board.

If contemplating building the suggested mains power supply, a suitable transformer would be a 3 VA type, either single 12 V or two times 6 V secondaries. Any similar p.s.u. can be used as long as it is capable of an output voltage of between 7.5 V and 9 V at 100 mA . The specified transistor should have a clip-on type heatsink.

The Cricket Game printed circuit board is available from the EE PCB Service, code EE798 (see page 467).

Quick Prom

The zero insertion force (ZIF) sockel called for in the Quick Prom should be widely available and prices range from about ¢6 to f 7 .

The MK48Z02B-25 static RAM (SRAM), with integral lithium battery, is not such a common device and may not be available locally. However, a complete kit, ($£ 27$ all inclusive), including the SRAM, is available from Becker Systems, Dept EE, 8 Finucane Drive, Orpington, Kent, BR5 4ED.

The printed circuit board for the Quick Prom is available from the EE PCB Service, code EE799.

Class-A Headphone Amplifier

We cannot foresee any component buying problems ahead for constructors wishing to build the Class-A Headphone Amplifier. When ordering parts remember its important to specify "log" type potentiometers.

BARGAINS GALOBE

SUPER MULTIMETER Ex British Telecom, this is a 19-range 20k o.p.v. top grade instrument, covers AC \& DC voltages, current and resistance, very good condition, fully working and complete with leads $£ 9.50$, leather carrying case $£ 2$ extra (batteries not included but readily available)
MULTI-CORE CABLES all with 8A 230 V cores so suitable for disco and other special lighting effects. With earthable woven screen and thick pVc outer. 3 core, 30 p per metre, 16 core, 50 p per metre, 18 core, 80 p per metre, 25 core, $£ 1$ metre and 36 core, $£ 1.50$ per metre.
VOLTABLOCK an infinitely variable unit gives any voltage from 0-230 a.c. at $1 / 2 A$. Obviously an invaluable piece of equipment which should be in every workshop and probably would be except that the usual price for this is £35 plus VAT. Now is your chance to buy one, brand new, at £15 including VAT, Order Ref. 15P42B.
ULTRA THIN DRILLS Actually 0.3 mm . To buy these regular costs a fortune. However, these are packed in half dozens and the price to you Is $£ 1$ per pack, Order Ref. 797 B .
YOU CAN STAND ON IT! Made to house GPO telephone equipment, this box is extremely tough and would be ideal for keeping your small tools. Internal size approx. $10 \frac{1}{2}{ }^{\prime \prime}$ x $41 /{ }^{\prime \prime} \times 6^{\prime \prime}$ high. These are complete with snap closure lip and shoulder-length carrying strap. Taken from used equipment but in good condition, price £2, Order Rel. 2P283B
BUILD YOUR OWN NIGHT LIGHT, battery charger or any other gadget that you want to enclose in a plastic case and be able to plug into a 13A socket. We have two cases, one $31 / /^{\prime \prime} \times 21 /^{\prime \prime} \times 13_{4} "$ deep, $£ 1$ each, Order Ret. 845 . The other one is $21 / s^{\prime \prime} \times 21_{4}^{\prime \prime} \times 1^{1 q^{\prime \prime}}$ deep, 2 for $£ 1$, Order Ref. 565 SAFETY LEADS curly coil so they contract but don't hang down. Could easily save a child from being scalded. 2 core, 5 A , extends to 3 m , $£ 1$ easily save a child from being scalded. 2 core, 5 A, extends to $3 \mathrm{~m}, ~ £ 1$, Order Ref. 846, 3 core, 13 A , extends to 1 m , $£ 1$ each
POWER SUPPLY WITH EXTRAS mains input is fused and filtered and the 12 V dc output is voltage regulated. Intended for high class equipment this is mounted on a PCB and, also mounted on the board but easily removed, are 212 V relays and a Piezo sounder. £3, Order Rel. 3P80B 5 V 2.5 A POWER SUPPLY UNIT \&5, Order Ref. 5P186.
12V 1.9 AMP-HOUR a sealed lead-acid battery, charged ready for use £5.50, Order Ref. 5.5P/1.
100W MAINS TRANSFORMER normal primary $20-0-20$ at 2.5 A . 40 V at 2.5A, £4, Order Ref. 4P59. 50 V at 2A, £4, Order Ref. 4 P60. Or, instead of 20-0-20, this same transformer will deliver 30 V at 3.5 A .
PHILIPS 9" HIGH RESOLUTION MONITOR black \& white in metal frame for easy mounting, brand new still in maker's packing, offered at less than price of tube alone, only £15, Order Ref. 15P1
16 CHARACTER 2-LINE DISPLAY screen size $85 \mathrm{~mm} x$ 36 mm . Alpha-numerlc LCD dot matrix module with integral micro processor made by Epson, their Ref. 16027AR, \&8, Order Ref. 8P48
INSULATION TESTER WITH MULTIMETER internally gen-

THIS MONTH'S SNIP
 A 60 UNIT FOR LESS THAN

£10 - switch mode power supply with outputs +12 V at $4 \mathrm{~A}_{\mathrm{A}}+5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 \mathrm{~A}$. Enclosed in plated steel case, brand new, offered at a special price of $£ 9.50$ until July 31st,

MINI MONO AMP on PCB. Size $4^{\prime \prime} \times 2^{\prime \prime}$ with front panel holding volume control and with spare hole for switch or tone control. Output is 4 watt into 4 ohm speaker using 12V or 1 watt into 8 ohm using 9 V . Brand new and perfect, only $£ 1$ each, Order Ref. 495.
5RPM MAINS DRIVEN This is a shaded pole motor, £5, Order Rel. 5P54. POWER SUPPLY UNIT mains in, dc out, cased 4.5 V 100 mA , $£ 1$, Order Ref. 104, 6 V 200 mA £1, Order Ref. 103, 6 V 700 mA , £1, Order Ref. 103A, 9 V 500 mA , £2, Order Ref. 2P134, 24 V 200mA, £2, Order Ref. 2P4, 12V 2A, £6, Order Ref. 6P23.
AMSTRAD POWER UNIT 13.5 V at 1.9 A encased and with leads and output plug, normal mains input \&6, Order Ref. 6P23.
AMSTRAD 3.5 FLOPPY DRIVE brand new and cased, $\mathbf{5 3 5}$, Order Ref.

FREE with orders this month one year's subscription to our bi-monthly newsletter. You will be the first to hear of our new Ilnes!

35 P4.

ATARI 64 XE at 65 K this is quite powerful, so suitable for home or business, unused and in perfect order but less PSU, only $£ 19.50$, Order Ref. 19.5P/5B.
80W MAINS TRANSFORMER two available, good quality, both with normal primaries and upright mounting, one is 20V 4A, Order Ref. 3P106 the other 40V 2A, Order Rel. 3P107, only $£ 3$ each.
PROJECT BOX size approx $8^{\prime \prime} \times 4^{\prime \prime} \times 4 \frac{1}{2} 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled. Made for GPO so best quallty, only $\{3$ each, Order Ref. 3P74.
12 V SOLENOID has good $1 / 2^{\prime \prime}$ pull or could push if modified, size approx $1 \frac{1}{2}$ "' long $\times 1^{\prime \prime}$ square, £1, Order Ref. 232.
WATER VALVE 230 V operated with hose connections, ideal for auto plant spray or would control air or gas into tanks etc., $£ 1$ each, Order Ref. 370. HANG-UP 'PHONE won't clutter up your desk or workbench, current model, has push button dialling, last number recall, internal alarm etc. Ex B.T. in good condition and fully working ready to plug in, $£ 5$, Order Ref. 5P123.
ELECTRONIC BUMP \& GO SPACESHIP sound and impact controlled responds to claps and shouts and reverses or diverts should it hit anything! Kit with really detailed instructions, will make ideal present for budding young electriclan. Should be able to assemble but you may have o help with the soldering of the components on the PCB. Complete kit 8.95, Order Ref. 9P9

500 V BRIDGE MEGGER developed for GPO technicians the Ohmeter 18 B is the modern equivalent of the bridge megger. 9 V battery operated, it incorporates a 500 V generator for insulatlon testing and a null balance bridge for very accurate resistance measurement. Ex B.T. in quite good condition with data \& tested. Yours for a fraction of original cost, £45, Order Ref. 45P2
EXPERIMENTING WITH VALVES don't spend a fortune on a mains transformer, we can supply one with standard mains input and secs. of $250-0-250 \mathrm{~V}$ at 75 mA and 6.3 V at 3A. £5, Order Ref. 5P 167.

The multimeter which enable you to read insulation directly in megohms ranges resistance and 5 ranges. $A C / D C$ volts, 3 ranges $D C$ milliamps, Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$ each, yours for only $£ 7.50$, with leads, carrying case $£ 2$ extra, Order Ref. 7.5P/4.
BRUSHLESS DC 12 V FAN tiny, only 60 mm square, good air mover but causes no interference, $\mathbf{8 8}$, Order Ref. 8P26.
MAINS 230 V FAN best make "PAPST" $41 / 2$ " square, metal blades, 88 Order Rel. 8P8
2MW LASER Helium neon by Phillips, full spec. £30, Order Ref. 30P1. Power supply for this in kit form with case is $£ 15$, Order Ref. 15P16, or in larger case to house tube as well $£ 18$, Order Ref. 18P2. The larger unit, made up, tested and ready to use, complete with laser tube $£ 69$, Order Rel. 69P1
1/3 HP 12 V MOTOR - THE FAMOUS SINCLAIR C5 brand new, \&15, Order Rel. 15 P 8.
SOLAR CHARGER holds 4 AA nicads and recharges these in 8 hours, in very neat plastic case, £6, Order Ref. 6P3.
SOLAR CELLS with terminals for joining in series for higher volts or parallel for extra current: $100 \mathrm{~mA}, ~ £ 1$, Order Ref. $361,400 \mathrm{~mA}, ~ £ 2$, Order Ref. 2P 199, $700 \mathrm{~mA}, ~ £ 3.00$, Order Ref. 3P42, 1A, $£ 3.50$, Order Ref. 3.5P/4. AIR SPACED TRIMMER CAPS $2-20$ pf ideal for precision tuning UHF circuits, 4 for $£ 1$, Order Ref. 818 B
FIELD TELEPHONES just right for building sites, ralles, horse shows, etc., just join two by twin wire and you have two way calling and talking and you can join into regular phone Hnes if you want to. Ex British Telecom in very good condition, powered by batteries (not included) complete with shoulder slung carrying case, $£ 9.50$, Order Ref. 9.5P12.

MAINS ISOLATION TRANSFORMER stops you getting 'to earth" shocks. 230 V in and 230 V out. 150 watt upright mounting, $£ 7.50$, Order Ref. $7.5 \mathrm{P} / 5$ and a 250 W verslon is \&10, Order Ref. 10P79

DIGITAL FREQUENCY METER.
This is a hand-held instrument
with an LCD display allowing 8 digits of frequency to be read, has internal nicad batteries, and a power supply which will recharge the batteries. Ideal for field and service work as well as general and industrial applications. Has high and low BNC inputs and a plug-in antenna which enables remote tests. It covers a very wide range of frequencies: switch position ' A ' covers 10 Hz to 20 MHz and switch posttion 'B' covers 20 MHz to 1200 MHz . Price $£ 99$, but it compares very favourably with instruments selling at over $£ 500$ by our competitors. Order Ref. 99P2.

15W 8 OHM $8^{\prime \prime}$ SPEAKER \& $3^{\prime \prime}$ TWEETER made for a discontinued high quality music centre, gives real hi-fi, and only $£ 4$ per pair, Order Ref. 4 4P57.
CLEAR THAT SMOKE according to a 'Which' report, many lonisers available from chemists and similar have such a poor output that they are next to useless. Our ioniser kit, however, uses mains transformers and is so powerful you can feel the ion output on the back of your had and it will clear smoke in seconds. Complete, cased kit, price £16, Order Ref. 16 P5. ULTRASONIC TRANSMITTER RECEIVER with Piezo alarm, built into preformed case, is triggered by movement disturbing reflected signal, intended for burglar alarm, car alarm etc. has many extras, time delay, auto rest, secret 'off' device, etc. A £40 instrument, yours for $£ 10$, Order Ref. 10P76.
STEREO HEADPHONES extra lightwelght with plug, $£ 2$ each, Order Ret. 2P261
BT TELEPHONE LEAD 3 m long and with B.T. flat plug ideal to make extension for phone, fax, etc. 2 for $£ 1$, Order Ref. 552.
WATER PUMP very powerful with twin outlets, an Ideal shower controller mains operated, £10, Order Ref. 10P74.
STUDIO 100 by Amstrad, the ultimate disco control panel, has four separately controlled and metered channels, twin cassettes, AM/FM radio, stereo audio amplifier, phono \& CD inputs, etc., etc., regular price over $£ 400$, we have a lew still in maker's packing, brand new and

JUST ARRIVED

3 core 15A flex. Price is 10 m for $£ 2.50$, Order Ret. 2.5P/3. You can have this in longer lengths, multiples of 10 m up to 100 m . Also avaliable: 3 Core 20A flex, 10 m for $£ 3$, Order Ref. 3P109 and 2 core 20A flex, 15m
for $\mathbf{E 3}$,
er Ref. 3P110
guaranteed, yours for 599 , Order Ref. 99p1 O-1MA FULL VISION PANEL METER $2^{3 y^{3}}$ ", square, scaled $0-100$ but scale easily removed for re-writing, $£ 1$ each, Order Ref. 756.
VU METER Illuminate this from behind becomes on/off indicator as well, $11 /{ }^{\prime \prime}$ " square, 75p each, Order Ref. 366. EDGE-WISE PANEL METER ideal when short of panel space only $40 \times 14 \mathrm{~mm}$, also have built-in led, $500 \mu \mathrm{~A}$. sdd, scaled 0-5, $£ 1$ each, Order Ref. 131.
PCB DRILLS 12 assorted sizes between .75 and 1.5 mm , $£ 1$ the lot, Order Ref. 128.

Prices include V.A.T. Send cheque/postal order or ring and quote credit card number. Add $£ 3$ post and packing Orders over $£ 25$ post free.

DISTORTION happens when output is not strictly proportional to input. In an audio amplifier, the kind of distortion which causes severe problems is harmonic distortion. A "pure" signal in the form of a perfect sine-wave contains only one frequency, the fundamental and no multiples of it (harmonics).

If the sine wave is distorted, harmonics are generated. This leads to a simple way of stating the amount of distortion: as the ratio of harmonics to fundamental.

Harmonic distortion is usually expressed as a percentage. Total harmonic distortion is sometimes expressed as the sum of all the harmonic power expressed as a percentage of the fundamental power.

In very bad cases this leads to the curious result that the distortion is more than 100 per cent. A more reasonable figure is given by comparing distortion with total power; i.e. with fundamental plus distortion.

Distortion Factor

In practice total harmonic distortion is not easy to measure, especially when smail. One thing that blurs the picture is noise. All amplifiers generate noise. If the level of distortion is very low it is difficult to separate distortion from noise.

This has led to an alternative way of stating amplifier performance: compare the distortion plus noise with the total output. This gives a "distortion factor": Distortion Factor
(Distortion plus noise)/(Fundamental + distortion + noise). Again this is usually expressed as a percentage.

For moderate levels of distortion (such as five per cent) the distortion factor is virtually the same as total harmonic distortion. For very low distortion the distortion factor is higher because noise becomes comparable with harmonics

Measurement Systems

There are several ways of measuring distortion. A common scheme is shown in Fig. 1. The amplifier (or the circuit) under test is driven by a sine-wave system of great purity (i.e. virtually no harmonic content). The input is adjusted to set the output to some standard level

Fig. 1. Distortion factor measurement setup.
(such as the rated output power). A sharp filter giving infinite attenuation of the fundamental is connected. This allows harmonics and noise to pass freely. With switch S1 in position 1 the distor tion-plus-noise is measured. In position 2 the total output is measured.

Comparing the measurements gives the distortion. Strictly speaking, the voltmeter should give true r.m.s. measurement. The distortion is really proportional to power rather than voltage. Sometimes the distortion is given as a decibel figure: if the distortion voltage is one thousandth of the fundamental voltage the distortion is -60 dB , i.e. 60 dB down on the fundamental.

Fundamental Filter

Eliminating the fundamental is not easy. A distortion of 0.1 per cent means that the harmonic power is 60 dB down. A filter which attenuates the fundamental by 60 dB still allows as much fundamental to get through as distortion, giving an exaggerated distortion figure. Modern amplifiers may have distortion levels as low as 80 dB below fundamental, or even lower. Filters of exceptionally good performance are needed. However, they need only eliminate one single frequency. This eases the problem, because a number of circuits exist which give a complete null at one frequency.

The Twin-T network of Fig. 2 gives zero output at the frequency where the reactance of C is equal to the resistance R, but attenuates the lower harmonics to some extent. For good results the tolerance of the components must be very tight. More sharply tuned is the Bridged-T trap (Fig. 3), which eliminates signals at the resonant LC frequency when R is correctly adjusted

Spectrum Analysis

An alternative way of examining harmonic distortion is to display the total spectrum of frequencies on an oscilloscope (Fig. 4). Incoming harmonics applied to the modulator give an output pulse when the sweep frequency coincides with the harmonic frequency.

If the oscilloscope timebase is synchronised to the frequency-sweep control waveform the display shows successive harmonics as blips. The height

Fig. 2. Twin-T network.
of a blip shows the intensity of the harmonic.
The system is much used for radio-frequency investigations but in principle is applicable at audio frequencies too. The sweep rate must be very low and an ordinary scope cannot then give a steady display.

Intermodulation

A consequence of some forms of harmonic distortion is that a strong signal modulates a weak one. In spectral terms this means that new frequencies are generated, the main ones being the sum of the strong and weak frequencies and their difference. Thus a strong 400 Hz signal and a weak 1000 Hz one intermodulate to yield 600 Hz and 1400 Hz . Since these frequencies are not present at the input they are distortion products.

It is arguable that intermodulation gives a better indication of audio quality than total harmonic distortion, since its use of simultaneous signals on different

Fig. 3. Bridged-T trap.

Fig. 4. Spectrum analysis.

frequencies mimics speech and music to some extent.
A particularly simple technique for intermodulation measurement has been evolved by telephone engineers. In a wide-band multichannel carrier telephone link the presence of many different speech signals can be simulated quite closely by white noise, which is an equal mixture of all frequencies.
To test such a wide-band network (Fig. 5), the output of a white noise generator is passed through a notch filter which cuts a slot in the spectrum at a narrow band of frequencies around f_{s}. Thus the signal applied to the system contains all possible frequencies except f_{s}. Intermodulation in the system causes spurious signals (distortion) at f_{s} to ap-

Fig. 5. Intermodulation measurement by "noise in slot" method.
pear. These are selected by a sharp filter tuned to f_{s} and their amplitude measured to indicate the severity of the distortion.
White noise is not a good simulator of music, which contains more energy at
low frequencies than at high ones. If white noise is passed through a spectrum-shaping filter which applies the right degree of top cut the resulting "pink noise" is more like real audio signals.

EVERYDAY
 READOUT

CONSIDERABLE RELIEF

Dear Ed.,
When I last wrote to you in January I mentioned that I hoped to be relieved of the secretarial duties of the B.A.E.C. by another member who had volunteered to take these over. At the beginning of this week I visited Jeremy Hind, the member in question, to finalise the arrangement. He already has about three quarters of the membership on his computer database of members' electronic expertise, so the amount of extra work will not be too great, but it will be a considerable relief to me. I shall continue as chairman for the present, and shall continue to edit the newsletter. I should be grateful if you would amend the small advertisement for the B.A.E.C. at the next time of insertion so that the last part reads: "For details, write to the Secretary, Mr. J.S. Hind, 7 Carlyle Road, West Bridgford, Nottingham NG2 7NS."
Some of the other magazines have carried small ads for a club calling itself "Electronics UK", based in Lancing. I wrote as chairman of the B.A.E.C., asking for details, but have had no reply. The National Components Club seems to have folded up - I haven't seen any of their adverts recently.

I am pleased that you have started publishing readers' letters. Your correspondent Mr. Pike wrote to me before writing to you about his diesel tacho. I get a few letters of this sort from people who think the advert for the B.A.E.C. in your classified section, which says it "exists to help electronics enthusiasts", is a general invitation to all and sundry to send their problems to me. I do help if I can, but I also point out to them that the help is to members of the club (and I send them details and a membership application form - but this rarely has any effect; I don't even get an acknowledgment as a rule).

Your editorial pat on the back was well justified. I always find much of interest in each issue as it reaches me and if I do criticise from time to time, this is meant to be constructive and helpful. The number
of enquiries I get from distant countries is ample evidence of EEs wide circulation, and some of them are not a little odd or amusing. I respond to them all, but in many cases that it the last I hear from the senders. Perhaps they expect to get the club services free of charge.
H.F. Howard

Chairman B.A.E.C.
This is part of a lengthy letter from Herbert we hope to publish more of it next month.

PULSED MOTOR PROBLEMS

Dear Ed.,
Robert Penfold's advocacy of pulsed controllers for model railways in the April issue should perhaps have contained a motor health warning! Pulsed controllers arouse considerable controversy in specialised model-railway publications, with sad stories of smoking armatures and demagnetised magnets said to sometimes follow their use, as well as complaints of excessive hum from some motors at the drive frequency. I believe the present main warning is that they should not be used with "can-motors", and the May issue of Continental Modeller reviewing a Germanmade locomotive quotes the accompanying leaflet as saying that it is powered by a "Faulhaber" motor which must not be used with "pulse power units"

My own experience when devising a controller for use with computer control is that if low-enough frequencies are employed the motors respond like "step-per-motors" advancing a small amount for each pulse. Unfortunately, with a mixed fleet of locomotives, the optimum frequencies vary between about 12 and 30 Hz , and I have compromised on 18 Hz . Readers might like to experiment with a shunting locomotive - reliable progress seems possible at scale speeds as low as 2 mph on clean track. Mindful of pulse control warnings I employ increasing pulse width at 16 V up to about 15 per cent mark-space ratio and then further increase speed by raising the "space" voltage so that the
top-speed waveform is 10 V d.c. with the 16 V 16 per cent pulses superimposed.

This works satisfactorily for me, and I find that charging the capacitor carrying the control voltage from a constant-current source over about 15 sec . gives visually acceptable acceleration. For stopping I use a track reed switch to trigger an initial slowing to about 20 mph using a C-R discharge of the capacitor to the lower voltage over about 6 sec ., with a second reed then triggering a discharge to a con-trol-voltage rather below the zero-speed value over about 3 sec . These decelerations look reasonably realistic to me, and consistent stopping positions are obtained to within a few cms.

A gimmick I employ with this pulse system is that train-detector circuits are referenced to 13 V so that I.e.d.s on the track-diagram show an 18 Hz flicker for moving trains and are steady for stationary ones.
T. B. Owen

Aberystwyth

COMPUTER UPSET

Dear Ed.,
Not long after moving house just recently I began to experience intermittent malfunctions with my home computer. These machine errors happened two or three times a day, I put it down to mechanical damage whilst moving.

I myself, not having much knowledge of computer electronics called for the services of a professional Computer Engineer, after explaining the symptoms he gave the PC a thorough check, he then informed me no fault could be found but suggested that as the problem was intermittent and the PC was somewhat old, it could be susceptible to noise not conducted but radiated at some external source, Radio Frequency Interference (R.F.I.). This sometimes occurs in certain environments and when asked how this could be rectified he said it was not viable to work on a computer of that age and to invest in a new one.

Do older machines suffer from R.F.I.? Have you or any other readers experienced problems caused by R.F.I. in computer or microprocessor controlled equipment? What are the potential sources of R.F.I. and how do you overcome them? Are there any good books on the subject, I have searched several good bookshops but to no avail 'Please help'.

J. Conners
 Cambridge

It sounds more like r.fi. or spikes on the mains, often caused by inductive loads switching on an off, rather than a radiated r.f.i. problem. We would suggest you try a mains filter before getting involved with trying 10 eliminate radiated r.f.i. Perhaps other readers will have had similar experiences?

SPECALEVERYDAY ELECTRONICS BOOKS

ELECTRONICS TEACH-IN 88/89-
INTRODUCING MICROPROCESSOAS
Mike Tooley BA (published by Everyday Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors ($726 / 303$). The book contains every ing for assessment, etc.
Sections cover Microcomputer Systems, Micro-proces sors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data Pages covering the most popular microprocesso chips.
An excellent introduction to the subject even for those who do not wish to take the City and Guilds assessment.
80 pages (A4 size) Oider code Tll.88 Pa
E2.45

ELECTRONIC PROJECTS BOOK 1

Published by Evervday Electronics in association with Magenta Electronics.
Magenta Electronics.
Contains twenty of the best projects from previous issues of EE each backed with a kit of components. The projects are Seashell Sea Synthesiser, EE Treasure Hunter, Mini Strobe Digital Capacitance Meter, Three Channel Sound to Light. BBC 16 K sideways Ram, Simple Short Wave Radio, Insula tion Tester, Stepper Motor interface, Eprom Eraser, 200MHz Digital Frequency Meter, Infra Red Alarm EE Equaliser
oniser, Bat Detector, Acoustic Probe, Mainstester and Fuse Finder. Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Generator, Tilt Alarm 10W Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Midinteriace, Variable Bench Powe 28 pages (A4 size) A Signal Generato

ELECTRONICS TEACH-IN No. 3 - EXPLORING ELECTRONICS (published by Everyday Electronics) Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. The book does not contain masses of theory or formulae but straightforward explanaExps and circuits to build and experiment with.
Exploring Electronics contains more than 25 useful split into 28 easily digestible sections 88 pages (A4 size) Uriler cude 13

ELECTRONICS TEACH-IN No. 4
NTRODUCING DIGITAL ELECTRONICS (published by Everyday Electronics)
Michael J. Cockcroft
Although this book is primarily a City \& Guilds Introductory level course ($726 / 301$), approximately 80% of the informa-
tion forms a very basic introduction to ielectronics in general it thergfore provides an excellent introductory text for beginit therefore provides an excelient introductory text for be
Full details on registering for C\&G assessment, detalls of assessment centres, components required and information on the course in general are given.
The City \& Guilds introduction to module 726/301 reads: A candidate who satisfactorily completes this module will have a competence to identify basic components and digital integrated circuits and connect them logether to form simple working circuits and logic units." This provides an excellent ntroduction to the book
112 pages (A4 size) COnlen condeTl4 E2.95

ELECTRONICS TEACH-IN NO. 5 GUIDE

TO BUILDING ELECTRONIC PROJECTS
Published by EVERYDAY ELECTRONICS
Due to the demand from students, teachers and hobbyists we have put together a range of articles from past issues of Everyday Electronics that will assist those involved with the construction of electronic projects.
The book contains the complete Project Development for GCSE series.
Contents: Features - First Steps in Project Building:
Building with Vero; Project Development Building with Vero; Project Development for GCSE; Getting your Projects Working: Guide to Printed Circuit
Boards: Choosing and Using Test Equipment - The Boards; Choosing and Using Test Equipment - The
Multimeter, The Oscilloscope, P.S.U.s, Logic Probes, Digital Frequency Meters, Signal Generators, etc; Data - Circuit Symbols; Component Codes; Resistors; Identifying Components: Capacitors; Actually Doing It Understanding the Circuit Diagram, Component Codes, Mounting circuit boards and controls, Understanding Capacitors; Projects - Lie Detector; 'Personal Stereo Amplifier; Digital Experimentsr's Unit; Quizmaster; Siren Effects Unit; UV Exposure Unit; Low-cost Capacitance Meter; Personal Radio.

88 pages (A4 size) Order cocselis
 ع2.95

EVERDAY ELECTRONICS DATA BOOK

Mike Tooley BA
(published by EE in association with PC
Publishing)
This book is an invaluable source of information of everyday relevance in the world of electronics. It contains not only sections which deal with the essential theory of elecronic clrcults, but il also deals range of practical electronic applications
It is ideal for the hobbyist, student, technician and engineer. The information is presented in the form of a
basic electronic recipe book with numerous examples showing how theory can be put into practice using a range of commonly available "industry standard" components and devices.
A must for everyone involved in electronics
256 pages Orcel colle DATA

DIRECT BOOK SER VICE

The books listed have been selected by Everyday Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page. For another selection of books see next month's issue
 EQUIPMENT BOOK

Steve Money

The principles of operation of the various types of test instrument are explained in simple terms with a minimum
of mathematical analysis. The book covers analogue and of mathematical analysis. The book covers analogue and
digital meters, bridges, oscilloscopes, signal generators digital meters, bridges, oscilloscopes, signal generators
counters, timers and frequency measurement. The practical uses of the instruments are also examined.
Everything from Audio oscillators, through R, C \& L measurements (and a whole lot more) to Waveform Gen erators and testing Zeners. A truly comprehensive book for the hobbyist, student, rechnician and enginee
206 pages 206 pages

Order code pCirg?
c8.95
HOW TO TEST ALMOST EVERYTHING
ELECTRONIC-2nd EDITION
Describes electronic tests and measurements - how to make them with all kinds of test equipment, and how to interpret the results. New sections in this edition include logic probes, frequency counters, capacitance meters, and

GETTING THE MOST FROM YOUR MULTIMETER R.A. Penfold

This book is primarily almed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuir testing is covered in Chapter 3. with subjects such as
continuity checks being discussed.
In the main litle or no previous knowledge or experience is assumed Using these simple component and circuit testing techniques the reader shoutd be able to confidently tackle servicing of most electronic projects.
96 pages
Order code BP239
E2.95

MORE ADVANCED USES OF THE MULTIMETER

R. A. Penfold

This book is primarily intended as a follow-up to BP239, (see above), and should also be of value to anyone who
already understands the oasics of voltage testing and already understands the basics of voltage testing and
simple component testing. By using the techniques described in chapter 9 you can test and analyse the performance of a range of components with just a multimeter
(plus a very fow inexpensive components in some cases) Some useful quick check methods are also covered
While a multimeter is supremely versatile, it does have its limitations. The simple add-ons described in chapter 2 extended the capabilities of a multimeter to make it even probe, a high resistance probe, an a.c. sensitlvity booster, and a current tracer unit.

THE ILLUSTRATED DICTIONARY OF
ELECTRONICS - 4th EDITION
Rufus P. Turner and Stan Gibilisco
With more than 27,000 terms used in electronics today. his collection is THE most comprehensive dictionary available. Including all practical electronics and computer
terms, it is as up-to-date as the latest advances in the field itself! Tables and data on subjects most often consulted for projects and experiments are included. Other conversion ables include English/metric and metric/English conversions for units of energy, power and volume, and Fahrenheit/Celsius temperature conversion charts.
Sotting this edition apart from other electronic dictionaries is its emphasis on illustration. Featuring more han complete definitions, this fourth edition includes over 50 detailed drawings and diagrams.
All entries are listed in alphabetical order. Abbreviations and initials are listed in sequence with whole words. Al erms of more than one word are treated as one word. (An 648 pages

Orier cone 12900

E23.95

ELECTRONICS - A "MADE SIMPLE" BOOK

G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest o everyone studying electronics. The subject is simply explained and well illustrated and the book assumes only a ery basic knowledge of electricity.

PRACTICAL ELECTRONICS CALCULATIONS AND FORMULAE
F.A. Wilson, C.G.I_A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M Bridges the gap between complicated technical theory and "cut-and-trled" methods which may bring success in
design but leave the experimenter unfulfilled. A strong
mathematics have been avoided
where possible and many tables where possible and
have been included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits. Passive Components, Alternating-current Circuits, Networks and Theorems, Measurements. 256 pages

Orcuer cade 3 P53
c3.95

PRACTICAL DIGITAL ELECTRONICS

HANDBOOK

Mike Tooley (Published in association with
Everyday Elactronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers With a practically based introduction to this
subject. The book will prove invaluable to anyone involved with the design, manufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digital devices and techniques. Contents: Introduction to integrated circuits; timers; microprocessors; memorles; input and output devices; inteffaces; microprocessor buses. Appendix 1: devices: interfaces; microprocessor buses. Appendix
Data. Appendix 2: Digital test gear projects; tools and test equipment; regulated bench power supply; logic probe; logic pulser; versatile pulse generator; digital IC tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digital counter/frequency meter. Appendix 3: The oscilloscope. Appendix 4: Suggested reading. Appensix 5: Further study.

208 pages

Oraler code prictou
66.95

ELECTRONICS-BUILD AND LEARN
 R. A. Penfold

The first chapter gives full constructional details of a circuit demonstrator unit that is used in subsequent chapiers to introduce common electronic components - resistors, capacitors, transformers, diodes, transistors, thyristors, fets and op amps. Later chapters go on to describe how these components are built up into useful circuits, oscillators. muttivibrators, bistables and logic circuits.
At every stage in the book there are practical tests and unit to investigate the points described and to help you unit to investigate the points described and to help you to go on to more complex circuits and tackle fault finding logically in other circuits you build.
120 pages
Orcler cude PC103

AUDIO AND MUSIC

LOUDSPEAKERS FOR MUSICIANS
Vivian Capol
this book contains all that a working musician needs to know about loudspeakers the different types, how they work, the most suitable for different instruments, for cabaret work, and for vocals. It gives tips on constructing cabinets, wiring up, when and where to use wadding, and when not to, what fittings are available, finishing, how to nsure they travel well, how to connect mult-speake
rrays and much more
Ten practical enclosure designs with plans and comments are given in the last chapter, but by the time you ve 164 pages Didel cucles BP297 £3.95

MAKE MONEY FROM HOME RECORDING

Clive Brooks
Now that you've spent a fortune on all that recording gear, M1DI and all, wouldn't it be nice to get some of it back? Well here's the book to show you how.
It's packed with money making ideas, any one of which you have a fully fledged recording studio at home, or just you have a fully fledged recording studio at home, or just you'll be able to put the ideas in this book into practice and make money
105 pages
Oralen cone PCTOU
$£ 5.95$

INTRODUCTION TO DIGITAL AUDIO
(Second Edition)
lan Sinclair
Digital recording methods have existed for many years and have become familiar to the protessional recording engineer, but the compact disc (CD) was the first device to bring digital audio methods into the home. The nex step is the appearance of digital audio tape (DAT) equi pment.
All this development has involved methods and circuits that are totally alien to the technician or keen The principles and practices worked with audio circtits nothing to the traditional linear circuits of the past, and are much more comprehensible to today's computer engineer than the older generation of audio engineers
This book is intended to bridge the gap of understand ing for the technician and enthusiast. The principles and methods are explained, but the mathematical background and theory is avoided, other than to state the end 128 pages

Order code pctoz
C 6.95

SYNTHESIZERS FOR MUSICIANS

R. A. Penfold

Modern synthesizers are extremely complex, but they
understand. If you want to go beyond using the factory presets or the random poking of buttons, this is the book It covers the principtes of modern synthesis - linear arithmetic as used by Roland, phase distortion (Casio) Yamaha's frequency modulation, and sampling - and then describes how the instruments are adjusted to produce various types of sound - strings, brass, percuseasy to understand way - the technical information being restricted to what you need to know to use you instrument effectively. 86.95 168 pages Dider core octo5

AUDIO

F.A.Wilson, C. G.I. A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.IM

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are followed by a study of the mechanism of hearing and examination of the subsequent chapter on microphones and loudspeakers then sets the scene for the main chapter on audio systems - amplifiers, oscillators, disc and magnetic recording and electronic music.
320 pages fracredeBrys $£ 3.95$

CIRCUITS ANDDESITN

REMOTE CONTROL HANDBOOK

Owen Bishop
Remote control systems lend themselves to a modular approach. This makes it possible for a wide range of systems, from the simplest to the most complex, to be built up from a number of relatively simple modules. The author has tried to ensure that, as far as possible. the circuit modules in this book are compatible with one another. They can be linked together in many diftailored to switch a table lamp on and off, or to operate an industrial robot, this book should provide the circuir you require. $£ 3.95$

COIL DESIGN AND CONSTRUCTION MANUAL

 B. B. BabaniA complete book for the home constructor on "how to make" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and Although this book is now rather old with the exception of torroids and pulse transformers little has changed in coil design since it was written.
96 pages 10 Orker coder 160 e2.50

30 SOLDERLESS BREADBOARD PROJECTS

BOOK 1
R. A. Penfold

Each project, which is designed to be built on a "Verobloc" breadboard, is presented in a similar fashion with a diagram, components list and notes on construction and use where necessary. Whenever possible, the components used are common to several projects, hence with only a modest number of reasonably inexpensive components, it is possible to bulld in turn, every project shown. Recommended by BICC-Vero. 160 pages
vilier code B phoy
£2.95

BOOK $2-$
All projects use CMOS i.c.s. but the items on component 160 pages

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake standing of advanced mathematics. Provided one is not oo ambitious, neither of these popularly held beliefs is true.
Specifically, this book aims to provide the reader with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without ecourse to theoretical texts.
Furthermore, information has been included so that the circuits can readily be modified and extended by readers to meen grouped together and cross-relerenced within the been grouped logether and cross-relerenced within the which circuits can be readily connected together to form more complex systems. As far as possible, a common range of supply voltages, signal levels and impedances has been adopted.
As a bonus, ten test gear projects have been included. These not only serve to illustrate the techniques described but also provide a range of test equipment which is useful in its own right
277 pages
Temporitily ou of axime

AUDIO IC CIRCUITS MANUAL

R. M. Marston

A vast range of audio and audio-associated i.c.s, are readily available for use by amateur and professional design engineers and technicians. This manual is a guide to the most popular and useful of these devices, with over 240 diagrams. It deals with i.c.s. such as low
frequency linear amplifiers, dual pre-amplifiers, audio power amplifiers, charge coupled device delay lines, bar-graph display drivers, and power supply regulators,

from simple signal conditioners and filters to complex graphic equalizers, stereo amplifier systems, and 968 pages delay
7612.95

HOW TO DESIGN ELECTRONIC PROJECTS

R. A. Penfold

The aim of this book is to help the reader to put together projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced
mathematics. Hints on designing circuit blocks to meet your special requiremenis are also provided 128 pages Felmporariay out o. print

50 CIRCUITS US ZENER DIODES

ZENER DIODES
R. N. Soar

Contains 50 interesting and useful circuits and applica tions, covering many different branches of electronics ponents - the diode most simple and inexpensive of com ponents - The diode. Includes the use of germanium and diodes, etc. 64 pages

Order code 8726
£1.95

DESIGNING WITH LINEAR ICs

G. C. Loveday

A book that deals with the design of the vital area of analog circuitry covering design with modern linear in tegrated circuit devices. The first chapter introduces the reader to important design techniques, test strategies. layout, and protection and also meludes a section on the use of a typical CAD tool. There are separate chapters that cover in depth the use of op-amps, comparators and timers each with detailed design examples and reader exercises. A final chapter brings all the previous work together in a number of complete design problems with fully worked solutions. The text is esse ntially
64 pages Orier cocle E

TIMER/GENERATOR CIRCUITS MANUAL

R. M. Marston

This manual is concerned mainly with waveform generator techniques and circuits. Waveform generators are used somewhere or other in most types of electronic equipment, and thus form one of the most widely used classes of circuit. They may be designed to produce outputs with sine, square, triangle, ramp, pulse, staircase, or a variety of other forms. The generators may outputs may be of single or multiple form.
Waveform generator circuits may be built using transistors, op-amps, standard digital ICs, or dedicated waveform or "function" generator ICs
The manual is divided into eleven chapters, and presents over 300 practical circuits, diagrams and tables. The subjects covered include: Basic principles; Sine wave generators; Square wave generators; Pulse generator crrcuits: "Timer IC" generator circuits; Triangle and sawtooth generators; Multi-waveform generation; Waveform synthesizer ICs; Special waveform generators Phaselocked loop circuits; Miscellaneous "555" cir 267 pages

OPTOELECTRONICS CIRCUITS MANUAL
R. M. Marston

A useful single-volume guide to the optoelectronics device user, specifically aimed at the practical design engineer, technician, and the experimenter, as well as subject in an susy-to-read amateur. It deals with the mathematical vet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the lic.s. and other devices used are inexpensive and readily available types, with universally recognised type numbers. 182 pages \quad Order code Net 4 (12.96

POPULAR ELECTRONIC CIRCUITS - BOOK 1
POPULARELECTRONIC CIRCUITS - BOOK 2
R. A. Penfold

Each book provides a wide range of designs for electronic enthusiasts who are capable of producing aid of detailed consiruction circuit diagram without the selting-up procedures are described $\begin{array}{lll}\text { BOOK } 1160 \text { pages toflder c } & \text { E2.95 } \\ \text { BOOK } 2160 \text { pages Order code BP98 } & £ 2.95\end{array}$

CMOS CIRCUITS MANUAL
R. M. Marston

Written for the professional engineer, student or en thusiast. It describes the basic principles and charac All the circuits have been designed, built and fully evaluated by the author; all use inexpensive and internationally available devices

Order codervish
£12.95
Note - our postage charge is the same for one book or one hundred books!

PROJECTCONSTRUCTION

HOW TO DESIGN AND MAKE YOUR OWN P.C.B .S A. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers all aspects of simple p.c.b. construction including

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicaring how and where to stan looking for many of the c 96 pages

Order codelentio

ELECTRONIC SCIENCE PROJECTS O. Bishop

These projects range in complexity from a simple colou temperature meter to an infra-red laser. There are novelties such as an enctronic cinck rantlated by a mosonsting are scientific measuring instruments such as pH meter and an electro-cardiometer. All projects have a strong scientific flavour. The way they work, and how to build and use them are fully explained. 144 pages emporariy out or prim

BEGINNER'S GUIDE TO BUILDING ELECTRONICS PROJECTS
Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently
magazines and books. Also includes examples in the form

of simple prolects.
 112 pages E1.95
 TEST EQUIPMENT CONSTRÚCTION

A. A. Penfold

This book describes in detail hofv to construct some simple and inexpensive but extremely useful, pieces of test equip. ment. Stripboard layouts are, provided for all designs, to gether with wiring diagrams where appropriate, plus notes n construction and use.
The following designs are included:- AF Generator Capacitance Meter, Test Bench Amplifier, AF Frequency Meter, Audio Millivoltmeter, Analogue Probe, High Resis ance Voltmeter, CMOS Probe, Transistor Tester, $1 T$ L Probe. The designs are suitable for both newcomers and 104 pages Ordercorle8P2̈̈8 $\quad \mathbf{2 . 9 5}$

DATA AND COMPONENTIDENTIFICATION

SEMICONDUCTOR \& LOGIC SYMBOLS

CHART OF RADIO, ELECTRONIC
SEMICONDUCTOR AND LOGIC SYMBOLS
M. H. Banani B.Sc.(Eng.)

Illustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction manuals Chart most countwes thoughourt world

RADIO, TV, SATELLITE

SETTING UP AN AMATEUR RADIO STATION
The aim of this book is to give guidance on the decisions which have to be made when serting up any amateur radio or short wave listening station. Often the experience which is needed is learned by one's mistakes, however. this can
be expensive. To help overcome this, guidance is given on be expensive. To helpo overcome this, guidance is given on tion. It then proceeds to the steps that need to be taken in gaining a fuli transmitring licence.
Topics covered include: The equipment that is needed; Setting up the shack; Which aerials to use; Methods of construction: Preparing for the licence.
An essential addition to the library of all those taking their first steps in amateur radio
86 pages
Order code 8 lonoor
E3.95
BEGINNER'S GUIDE TO RADIO-9th EDITION

Gordon J. King

Radio signals, transmitters, receivers, antennas, components, valves and semiconductors, CB and amateur 266

Order code NE08
£6.95

AN INTRODUCTION TO RADIO DXING

R. A. Penfold

Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to find a paricular station, country or type of broadcast and to
receive it as clearly as possible requires a lirtle more still and knowledge. The object of this book is to help the reader to do just that, which in essence is the fascinating hobby of radio OXing. 112 pages
forder code Emorit
£1.95

EXPERIMENTAL ANTENNA TOPICS

H. C. Wright

Although nearly a century has passed since Marconis first demonstration of radio communication, there is still research and experiment to be carried out in the field of antenna design and behaviour
The aim of the experimenter will be to make a measurement or confirm a principle, and this can be done with relatively fragile, shor-life apparatus. Because of this. devices described in this book make liberal use of These materials are, in general, cheap to obtain and easily

INTERNATIONAL TRANSISTOR EQUIVALENTS

GUIDE

A. Michaels

Helps the reader to find possible substitutes for a popular selection of European. American and Japanese ransistors. Also shows material type, polarity, manufac
320 pages
Order code BP? $\quad £ 3.95$

COMPUTINE

SERVICING PERSONAL COMPUTERS

2nd EDITION
The revised and enlarged second edition contains a new chapter on the IBM PC, AT, TX and compatibles. It is essential for anyone concerned with the maintenance of personal computer equipment or peripherals, whether professional service technician, student or enthusias 240 pages (Hard covertordar cadis vill
£25

HOW TO EXPAND, MODERNISE AND REPAIR PCs AND COMPATIBLES
R.A. Penfold

Not only are PC and compatible computers very expandable, but before long most users actually wish to take advantage of that expandability and start upgrading their PC systems. Some aspects of PC upgrading can be a bit confusing, but this book provides advice and guidance on the popular forms of internal PC expansion, and should help to make things reasonably straightforward and painless. Little knowledge of computing is assumed. The only assumption is that you can operate, a stand PC PC .

The subjects covered include. PC ovarview, Momor upgrades; Adding a hard disk drive; Adding a floppy disk drive: Display adaptors and monitors; Fituing a maths co-processor; Keyboards; Pors; Mice and digitisers; Maintenance (including preventative maintenance) and Repairs, and the increasingly popular sublect of d.i.y. PCs. 156 pages [ricicode BP271 C4.95

AN INTRODUCTION TO PROGRAMMING THE BBC MODELB MICRO
Written for readers wanting to learn more about program ming and how to make best use of the incredibly powerful model B's versatile features. Most aspects of the BBC Micro are covered, the omissions being where little could usefully be added to the information provided by the manufacturer's own manual. 144 pages \quad Order code BP139 1.95

AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J.W. Penfold
worked with simple tools, encouraging the trial-and-erro hilosophy which leads to innovation and discovery. Although primarily a practical book with text closely by straightforward substitution and some simple oraph by straighteen included. 72 pages

Order cocle BP2 18 §
NEWNES SHORTWAVE LISTENING HANDBOOK
Joe Pritchard G1 UQW
Part One covers the "science" side of the subject, going from few simple electrical "first principles", through a brief treatment or radio transmission methods to simple receivers. The emphasis is on practical receiver designs and how to build and modify them, with several circuits in the book.
Part Two covers the use of sets. what can be heard, the various bands, propagation, identification of stations,
sources of information, QSLing of stations and listening sources of information, QSLing of stations and listening puter morse decoding and radio teletype decoding are also 224 pages \quad Ordercodelnelt \quad £14.95

DIREOT 3OOK SERVICE

 orderinc detallsPlease state the title and order code clearly. print your name and address and add the required postage to the total order.
Add 75p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.50$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details (including card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantities required to DI-

RECT BOOK SERVICE, 33 GRAVEL HILL, WIM BORNE, DORSET BH21 1RW (mail order only)
Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability (see latest issue of Everyday Electronics) before ordering from old lists. Note - our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

BABANI BOOKS

We now supply all the books published by Bernard Banani (Publish. ing) Ltd. We have always supplied a selected list of Babani books and you will find many of them described on the previous pages or in next months issue of Everyday Electronics (the books with a BP prefix to the order code are Babani books)

Many readers have asked us to also supply various other Babani books, which have a reputation for value for money. Our customers tell us they appreciate our speedy service and low postage charge and they
would like to be able to purchase all the books from us and thus keep the postage charge to an absolute minimum (75p for UK p\&p no matter how many books you buy). We are pleased to be able to respond; with the aid of Michael Babani (M.D.) we are now able to meet all your requirements for their books. If it's Babani and in print we can supply it. Babani presently list over 180 different technical titles those not described in detail on the previous DIIc: Book Service pages or in next months issue are listed below:

de	Tite ${ }^{\text {Pr }}$	Price
208	Practical Stereo \& Quadrophony Handbook	¢0.75
214	Audio Enthuslast's Handbook	¢0.85
219	Solid State Novelty Projects	c0.85
225	A Practical Introduction to Digital ICs	O.P.
BP28	Resistor Selection Handbook	¢0.60
BP37	50 Projects using Relays. SCRs and TRIACs	¢2.95
BP39	50 (FET) Field Effect Transistor Projects	22.95
44	IC 555 Projects	£2.95
BP45	Projects in Opto-Electronics	O.P.
BP48	Electronic Projects for Beginfers	95
BP49	Popular Electronic Projects	¢2.50
BP56	Elecrronic Security Devices	£2.50
BP58	50 Circuits Using 7400 Series 1C's	¢2.50
BP62	The Simple Electronic Circuits \& Components (Elements of Electronics - Book 1)	¢3.50
BP63	Alternating Current Theory (Elements of Electronics - Book 2)	£3.50
BP64	Semiconductor Technology (Elements of Electronics - Book 3)	0
8	Choosing and Using Your Hi-Fi	E1.65
BP69	Electronic Games	£1.75
BP74	Electronic Music Projects	¢2.50
BP76	Power Supply Projects	¢2.50
BP78	Practical Computer Experiments	£1.75
BP84	Digital IC Projects	¢1.95
BP86	An Introduction to BASIC Programming Techniques	E1.95
B P90	Audio Projects	¢2.50
BP94	Electronic Projects for Cars and Boats	¢1.95
BP95	Mode: Railway Projects	¢2.95
BP97	IC Projects for Beginners	f1.95
BP99	Mini-matrix Board Projects	¢2.50
BP106	Modern Op-amp Projects	£1.95
BP109	The Art of Programming the 1 K ZX81	¢1.95
BP1 14	The Art of Programming the 16 K ZX81	¢2.50
BP120	Audio Amplifier Fauth-finding Chart	¢0.95
BP122	Audio Amplifier Construction	¢2.95
BP125	25 Simple Amateur Band Aerials	¢1.95
BP126	BASIC \& PASCAL in Paraliel	E1.50
BP128	20 Programs for the ZX Spectrum \& 16K ZXB1	£1.95
BP129	An Introduction to Programming the ORIC. 1	£1.95
EP132	25 Simple SW Broadcast Band Aerials	£1.95
BP133	An Introduction to Programming the Dragon 32	£1.95
BP136	25 Simple Indoor and Window Aerials	E1.75
BP137	BASIC \& FORTRAN in Parallel	£1.95

PCB SERVICE

See opposite page for ordering details.

PWOJECT MIE	
Wash Pro	NOV 89
Biofeedback Monitor - Front End Processor	
Logo/Lego \& Spectrum Interface	
EEG Electrode Impedance Meter	DEC'89
Biofeedback Signal Generator	JAN 90
Quick Cap Tester	FEB
Weather Stn: Anemom. - Freq./Volt Board Optional Display Wind Direction	
System Power Supply	
Prophet In-Car loniser	
Weather Stn: Display Driver	MAR 90
Display and Sensor	
Fermostat Mk2	
Superhet Broadcast Receiver/Tuner/Amp	
Stereo Noise Generator	APR'9
Digital Experimenter's Unit - Pulse GeneratorPower Supply	
Enlarger Timer	
Weather Stn: Rainfall/Sunlight Display Rainfall Sen and Sunlight Sen	
Amstrad Speech Synthesiser	MAY 90
80 Metre Direct Conversion Radio	JUN'90
Mains Appliance Remote Control	JUL 90

Mains Appliance Remote C
Mains ON/OFF Decoder
(5 or more 697's ordered together $£ 3.25$ each) Simple Metronome
Hand Tally: Main Bd and Display Bd SEP'90 Alarm Bell Time-Out
Mains Appliance Remote Control

| Temperature Controller (p.c.b. only) |
| :--- | :--- |
| Ghost Waker OCT'90 |

Frequency Meter

Freq. Meter/Tachometer
EE Musketeer (TV/Video/Audio) NOV 90
Colour Changing Christmas Lights DEC 90 Microcontrolier Light Sequencer Versatile Bench Power Supply Unit Teach-In '91, Part 1 -L200 Module

Dual Output Module
LM723 Module
Spatial Power Display JAN 91
Teach-In '91, Part 2 -G.P. Transistor Amp Dual Op.Amp Module
Intercom (Teach-In ‘91 Project 2) JAN'91 Analogic Test Probe
MARC Phone-In
Teach-In'91 Part 3- TBA820M Amplifier
High Quality Power Amp
Bench Amplifier (Teach-In '91 Project 3)
Gingernut 80 m Receiver FEB 91
R.F. section (726). Voltage Regulator (727)

Audio Amplifier (728)

Pocket Tone Dialler	MAR 91
Battery To Mains Inverter	
Simple Basic Alarm	
Car Code Lock (pair)	
Teach-In '91 Part 4-	MAR 91
Sinusoidal Oscillator	
8038 Oscillator	
Waveform Generator (Tea	oject 4)

Model Train Controller (double-sided)
Electronic Die (Teach-In '91 Project 5)
Teach-In ' 91 Part 5 -Digital Counter Module
Modular Disco Lighting System MAY 97
Switched Power Output Module
Digital LCD Thermostat-Control Board $£ 5$ for pair
Pulse Generator (Teach-In ‘91 Project 6)
Teach-In'91 Part 6- Timer Module

PROJECT TITLE	Order Code	Cost
Digilogue Car Tachometer JUN 91	744	£5.63
Modular Disco Lights - Simple Chaser	745	£5.00
Sweeper Module	746	£5.17
Automatic Light Control - PSU Board	747	£4.88
Logic Board	748	£5.17
Radio Receiver (Teach-In '91 Project 7)	749	¢4.57
Teach-In'91 Part 7 -R.F. Amplifier Module	750	£4.23
Modular Disco Lights - Masterlink JULY' 91	752	£6.36
Ultrasonic Proximity Meter		
Display Unit (753) \& Sensor Unit (754)	753/754	¢7.06
Disco Lights (Teach-In '91 Project 8)		
PSU and Pre-amplifier	755	£4.54
Low, Mid, High Filter/Triac (set of 3 boards)	756	f11.00
Teach-In '91 Part 8-Solid State Switch Module	757	£4.24
Mod. Disco Lights - Pattern Gen AUG 91	760	£6.79
Teach-In '91 Part 8-Light Sensitive Switch	761	£4.74
Opto-Link (Teach-In '91 Project 9) - Transmitter	762	£4.85
Receiver	763	£4.88
Portable PEsT Scarer	764	£3.77
Capacitance Meter SEP 91	751	¢5.17
Modular Disco Lights - Dimmer Interface	765	£8.17
Mod. Disco Lights OCT 91		
VU Sound Module (Double-sided)	767	£8.68
UV Exposure Unit	768	¢4.63
PC-Scope Interface - Main Board	769	¢6.95
Expansion Plug (Double-sided)	770	$£ 5.96$
Mod. Disco Lights NOV 91		
Superchaser (Double-sided)	771	¢6.91
Supersweep (Double-sided)	772	¢8.26
Bicycle Alarm	773	¢5.01
Darts Scorer	774	¢7.90
Knockerbox DEC 91	775	£5.35
Signal Generator - Main Board	776	£7.46
PSU	777	¢4.73
Mind Machine - Main Board	778	£7.00
Auto Nightlight	779	$£ 5.03$
Mind Machine - Programmer Board JAN 92	780	£7.39
Transistor Checker	781	¢4.63
Stepping Motor Driver/Interface	782	£10.39
Micro-Sense Alarm	783	£5.42
Telesound FEB 92	784	¢4.66
Programmable Timer	785	£4.63
Auto Garage Light MAR 92	786	£6.10
Versatile BBC Computer Interface	787	¢11.59
Economy Seven Timer	788	¢5.20
Sonic Continuity Tester APR 92	789	£4.79
Telephone Ringer	790	£5.46
Experimental Weighing Scale MAY'92	792	£5.17
12V Drill Charger/PSU (both boards)	793	¢5.31
Digital Servo Interface JUNE"92	791	$£ 4.73$
Tie Pulser	794	£5.19
CCD Reverb Unit	795	¢6.39
Switch-Mode Power Supply	796	£7.01
UV Exposure Timer JULY92	797	£5.33
Cricket Game	798	¢6.77
Quick Prom	799	¢5.61

REPORTING AMMATIEUR RADIO Tony Smith G4FAl

RSGB OPEN HOUSE

The Radio Society of Great Britain threw open its doors on Saturday 11 th April to show-off to members its newly re-vamped headquarters at Potters Bar, Herts. Previously, visitors to HO, including myself, had commented on the rather unwelcoming aspect of the reception/enquiries area and the feeling of being kept at bay from "their" society

Now everything is changed. A light spacious reception and shop area with friendly staff draws visitors right inside the building. Close at hand is a small but interesting museum with radio equipment, home-made and commercial, dating from earlier days of amateur radio. Adjacent to this is a wellequipped radio station, callsign GB3RS, which licensed members can operate by arrangement.

Visitors were taken round the headquarters' accommodation, including the editorial offices of the Society's journal, Radio Communication, which nowadays is produced by the latest "new technology" processes. To put members "in the picture" about just what goes on at Potters Bar the tour extended to the membership department, the various offices and even the accounts department.

Of great interest was the OSL bureau which is the service used most frequently by most members. Here, thousands of OSL cards pour in each week for sorting and onward transmission in bulk to other bureaux at home and abroad, for eventual delivery to individual amateurs in confirmation of radio contacts made. Down in the basement, what is effectively a small warehouse holds and dispatches all RSGB publications and other radio books purchased by mail order, with the income earned providing a useful supplement to the Society's funds.

SERVICES PROVIDED

Like most of the visitors, I was impressed and reassured by what I saw. When one is a member of any society from a distance it is easy to get a wrong impression about what goes on at headquarters. There have been rumblings in recent years about the need for a more open Society but recent changes, typified by this open day, augur well for the future.
Apart from paid staff at headquarters, around 800 volunteers provide specialist services for members such as OSL sub-bureaux, an audio-visual library, organisation of operating awards and contests, technical advice, advice and help on interference problems. propagation predictions, exhibitions and conventions, help in obtaining planning permission for antennas, news bulletins, slow Morse training broadcasts, Morse tests for licences, provision of radio beacons and repeaters, Novice training courses and much more.
The greatest benefit in having a national society, however, arises from
the fact that although amateur radio is a hobby it is governed by national and international regulations which define not only the radio communication modes which can be used, and the nature of the communications allowed, but also the frequencies allocated to amateurs.

DEFENDING FREQUENCIES

These frequencies are under constant threat as commercial and broadcast radio services seek to expand, and an absolutely essential link is maintained by the RSGB with the DTI's Radiocommunications Agency, Britain's radio licensing authority. This ensures that the needs of amateur radio are taken into account whenever frequency allocations or licensing conditions are discussed by the authorities at either national or international level.

Without a national society to maintain such a link it is doubtful if amateur radio could survive in today's cut-throat world of radio communication where a single frequency in commercial terms is estimated to be worth millions of pounds. The strange thing is that not all amateur operators seem to understand this and only about half the country's licensed amateurs are members of the RSGB. The other half, presumably, just haven't thought about the implications or are content to let the others do whatever is necessary on their behalf!

Membership of the Society is open to anyone interested in amateur radio. whether licensed or unlicensed. Further information can be obtained from RSGB, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE.

YOUTH IN ACTION

Denby Dale Amateur Radio Society's annual "Youth in Action" weekend will be held on 14 to 16 th August. This ambitious presentation of amateur radio to young people involves inviting Novice trainees, Scouts, Guides and ATC members to take part in amateur radio related activities arranged over the whole weekend plus some social activities.

These events take place in a field at Crosland Moor, conveniently located for radio purposes at 1000 feet a.s.I., where caravans, tents and marquees are installed for the weekend, including special event amateur radio station, GB2YIA.

Last year's activities included explanatory talks, simple construction projects, radio fox hunting, Morse instruction, radio operating with contacts as far away as Australia, USA and Japan. including opportunities for attendees to chat to the overseas operators, and experiments with a kite antenna. Additionally, there was an evening barbecue entertained by a local pop group.

It appears that "a good time was had by all" and I am told by Tony Galvin, GODDB, that planning for this year's
event is proceeding well. "The idea is to keep everything fairly simple and let the young people actually make a useful piece of equipment, e.g. a crystal set. We also have ideas for a Morse exercise which should be quite fun."

RADIO BYGONES

There seems to be a lot of interest nowadays in the radio of the past. Apart from pure nostalgia, perhaps this is because in the "old days" it was fairly easy to look at a faulty circuit, identify components used for specific functions, replace them and get the set going again whether it was commercially or home-made. This can still be done, old components can still be obtained and it is often possible to restore $50 / 60$ year old, or even older, wireless sets to their former glory.

I was reminded of the techniques of early home-construction by a piece in Radio Bygones, a magazine devoted to the radio art of the past. An article in the February/March 1992 issue des-: cribes the technique of "breadboarding" where all components are assembled and screwed down on a thick board and connected up with stiff wire laid out in straight lines around the board. Large diameter coils, glowing valves, brass fittings, large meters mounted in ebonite front panels, all evoke the atmosphere of the past and the article suggests ways of re-creating your own authentic or individual masterpiece - or maybe just a glorious Spiders' Nest!

Edited by Geoff Arnold, G3GSR, Radio Bygones is a high quality authoritative publication which covers all aspects of early wireless, transmitting and receiving - professional, amateur and domestic, with superb colour photographs helping to bring the whole subject to life.

Examples of recent articles show the range of subjects covered. "Wireless on RMS Queen Mary" provided an in-depth survey of the design and installation of the equipment on this famous liner. A photo-feature illustrated a collection of domestic receivers from the 1950s-60s located at the Bampton Museum of Communication and Domestic and Local History in Devon. Other, self-explanatory, titles included "Birth and Growth of Pye Radio Ltd", "From Cat's Whisker to Integrated Circuit", '"Starting a (vintage radio) Collection", "The Vintage Years of Amateur Wireless" and "Saved by Radio - Evolution in Air-Sea Rescue radio transmitters"

For anyone interested in the history of radio, or collecting those beautiful radios of yesteryear, this wide-ranging magazine is a "must". Obtainable by mail only from Radio Bygones, 9 Wetherby Close, Broadstone, Dorset BH18 8JB, the annual subscription, for 6 issues, is $£ 17$. A sample copy can be obtained at a special price of $£ 2.50$ if you mention EE when writing.

APPROVED 418MHz UHF RADIO SWITCHING

A high quality ready to use radio control system consisting of a small UHF key fob transmitter with digital encoder and a UHF receiver housed in a custom made case with digital decoder and open collector transistor output. The codes of each transmitter and receiver are factory set, (can be changed by user). Available as a single or dual channel system. The transmitters are DTi approved to MPT 1340. Applications include: Vehicle Security. Door Access Systems, Remote Controlled Light ing, Garage Door Opener, Security Devices, etc.

TRANSMITTER			RECEIVER	
	SINGLECH	OUALCH	Size (Case)	$60 \times 65 \times 25 \mathrm{~mm}$
Size - Key fob	$50 \times 35 \times 13 \mathrm{~mm}$	$55 \times 35 \times 11 \mathrm{~mm}$	Size PCB	$47 \times 55 \times 15 \mathrm{~mm}$
Vottage/Batt.	12 V Alkaline	8 Bution Cells	Code Selection	Solder Trace
Circuit	2 Stage Saw	Stabalised	Voltage	9.16 V dc
Enconding	12 Bit Trinary	8 Bit Trinnary	Outpurs	Open Collector
Combinations	531,441	6.561	Outpui Drive	500 mA
Code Selection	Solder	Trace	Sensitivity	-88d8m (typical)
Single Channel	TX \& RX.	£39.99	Individual	TX E24.99,
Oual Channel T	\& \& RX.	E45.99	Individual	TXE27.99, R

All Prices Include VAT - Please add $£ 1.50$ P \& P per order.
VISA

Cheques/PO's to:

QUANTEK ELECTRONICS LTD.,
3 Houldey Road, West Heath, Birmingham, B31 3HL.

TEST EQUIPMENT MAINTENANCE AND TECHNICAL CONSULTANCY

\square Service manuals

\square Spare parts
\square Comprehensive repair service including complete instrument refurbishment at highly competitive rates for radio amateurs
Distributors for:
WAUGH INSTRUMENTS RAMTESTLTD
KRENZ ELECTRONICS
Hesing Technology ${ }^{(14)}$
41 Bushmead Road, Eaton Socon, St. Neots, Cambs PE19 3BT Telephone and Fax: (0480) 214488

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only. All inclusive prices NO post, or VAT etc to add on. Send 34 p stamped self addressed label or envelope for catalogue/clearance list.

At least 2,100 offers to amaze you.
Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 081-393 9055

A. C. ELECTRONICS

SURVEILLANCE?

Easy-Build Kits or Built Units.

Microtransmitter, $15 \mathrm{~mm} \times 25 \mathrm{~mm}$, received on standard VHF radio; kit £5.99, built $£ 9.99$ (picks up whispers and transmits up to $1 / 2$ mile). Telephone transmitter, can be hidden in handset; kit $£ 5.99$, built £9.99. "Stinger" shock circuit, can run off 9 V battery, unpleasant shock, originally for electric fences etc; kit £11.99, built £19.99. Lots of locksmith tools, transmitters in calculators, plug-in adaptors, alternative technology plans, surveillance kits etc.

Send 4×1 st class loose stamps for list - Cheque/POs to:

A.C. ELECTRONICS. Dept. E.E.

53, WOODLAND WAY, BURNTWOOD, STAFFS W57 8UP.
CREDIT CARD ORDERS: 0543676477 (24 hours) MAIL ORDER ONLY.
Devices not licenceable or BT approved.

CONTROL PORT for PCs

This I/O Port follows the general approach of the 'INTERFACING to PCs' series in this mag. BUT allows user's prototype control circuitry to be set up and run OUTSIDE the PC
The double sided pcb fits into an I/O slot, and a ribbon cable terminating in a D. 25 plug allows the control of projects with little risk to the PC. On board facilities include: 8 -bit A-D, 8 -bit D-A, 8 inputs, 8 latched outputs, 3 strobes and 1 IRO.
Available as:
(a) Etched double sided board with full instructions for drilling/ assembly/testing using BASIC
(b) Complete $1 / 0$ card with ribbon cable and BASIC test programs. (Built and tested).. 29.00 Also availabie: Test pod with $\mathrm{D}-25$ socket providing analogue and digital test signals/outputs for the I/O card, with BASIC test programs on disc.

All above prices include P\&P. Mail Order only from:

R. BARTLETT,

17. LIME TREE AVENUE, TILE HILL.

COVENTRY CV4 9EY

O파 CTM N N New for 1992

* New MOSFET Amplifiers
improved range of SMOS modules $30 \mathrm{~W}, 30+30 \mathrm{~W}, 60 \mathrm{~W}, 120 \mathrm{~W}$
$\star 20$ watt Class A Amplifier
* Low profile PCB Transformers
a range of encapsulated transformers $4 \mathrm{VA}, 6 \mathrm{VA}, 10 \mathrm{VA}, 18 \mathrm{VA}, 24 \mathrm{VA}, 30 \mathrm{VA}$
Write or phone for data and prices... which include details of staridard range of toroidal transformers and audio modules.

No price increase for 1992
Jaytee Electronic Services 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254. Fax: (0227) 365104

If you want your adventisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single
(minimum 2.5 cm). The prepaid rate for classified advens is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added, Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.
For rates and information on display advertisements ('inth page and larger spaces) please contact our Advertisement Manager, Peter Mew on 0255850596

MAURITRON TECHNICAL PUBLICATIONS

The following is a selection from our vast range of Technical Manuals for the TV and Video Servicing Trade. Order some today.
Order Code
Title
MTP-5 Video Recorder Faults - Repair Guide MTP-58 VHS Video Recorder Princlples
MTP-7 Transistor Radio Repair Guide
MTP-34 TTL Integrated Circuits Databook
MTP-10 CMOS Integrated Circuits Databook
VHCK Video Head Cleaning Kit
$\begin{array}{ll}\text { MTP-9 } & \text { Power Supplies \& Voltage Regulators } \\ \text { MTP-24 } & \text { Transistor Equivalents and Testing }\end{array}$ Transistor Equivalents and Testing Manual
MTP-8 Record Player Speed Dlsc
Price
£1.95 TP- 19 Telephone SDT Code Location Gulde

NEW VHF MICROTRANSMITTER KIT
Tuneable $80-135 \mathrm{MHz}$, 500 metre range, sensitive electret microphone, high quality PCB.
SPECIAL OFFER complete kit ONLY E5.95 Assembled and ready to use $\mathrm{E9} 9.95$ post free. Access/Visa orders telephone 021411182 QUANTEK ELECTRONICS LTD Kits Dept. (EE), 3 Houldey Road, West Heath irmingham B31 3HL SHOP NOW OPEN - CALLERS WELCOME

VERY INTERESTING DESIGNS

FOR ALL REASONS AND SEASONS
Wide selection of extremely useful kits and ready-made products for home, workshop and outdoors, at reasonable prices.
Ring or Write for FREE Ilterature
BECKER SYSTEMS
Dept EE27, 8 Finucane Drive, Orpington
Kent BR54ED. Tel: 0689837821 (24 hrs)

THE BRITISH AMATEUR ELECTRONICS CLUB

 exists to help electronics enthustasis by personal contact andMr H. F. Howard, 41 Thingwall Park Fishponds, Bristol BS16 2AJ
pace donated by Everyday Electronics

- \quad 里
 Cooke International FOR SALE

Scopes, Signal Generators, Power Supplies, Power Meters, DVM's, Oscillators, Attenuators, etc. Used Test Equipment
We can now offer a copy service for workshop nanuals for many instruments. Please ask for detalls.

Contact: Cooke International, Unit 4,
Fordingbridge Site, Main Road, Barnham
Bognor Regis, West Sussex PO22 0EB Open: Mon-Fri 9am-5pm or phone 0243545111 - Fax: 0243542457
Wide range of tiems available. Send SAE for lists

Electronic Product Consultant

We are a Hong Kong manulacturer looking for an innovative enterprising person to design and develop small electronic products on a project by project basis in his spare time. Preferably someone with relevant production experience. If you want the chance to make your ideas pay don't let thls opportunity of working logether with us pass you by.
Please reply with your full details to:
Mike Hill, Hill Products Lid PO Box 98777
T.S.T. HONG KONG

Minf F.M. transmitter, sensitive built-in microphon Ready built on p.c.b. with battery holder $\mathbf{\Sigma 4 . 5 0}$ Boxed with switch $£ 7.50$
Detalled information sheet on requast
personal stereo tape players. with headphones. Personal stereo tape players. with headiphones.
Complete, bul probabty have minor lauls 52.00 each to ciear LEASE ADD 500 PERS ORDER POSTAGE
Ivewireless, 25 Malsall Road Southport, Lancashire PR8 3DB

Looking for a home study course, in the . fundamentals of electronics? Whether you are a beginner, or an old hand requiring a refresher, the

DIRECT PERSONAL LEARNING

course, could be right for you. Contact K. Sparrow
(Electronlc Training Consultant)
11 Claydon Green, Whitchurch, Bristol, Avon BS 14 0NG. Tel: 0275835669

LOW PRICE ACCESS TO MULTI-SATELLITE TV EQUIPMENT FOR THE ENTHUSIAST S.C.KU Band, LNB's, Receivers, Polarisers Actuators, $60 \mathrm{~cm}-1.8 \mathrm{~m}$ Dishes, Feedhorns All leading brands supplied. Mail Order Only

A.E.S. SYSTEMS

Send SAE stating your requirements
13 Combe Av, Portishead, Bristol BS20 SJR Typical prices are: Echostar SR $50 \varepsilon 153+$ P\&P MTI Full Band LNB $1.3 \mathrm{db} £ 160+$ P\&P
Enquiries from Schools \& Colleges Welcome

Miscellaneous

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send $2 \times 22 \mathrm{p}$ stamps for list. ACE(EE). 53 Woodland Way, Burntwood, Staffs.
G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS. 70 Oxford Road, Clacton COIS 3TE.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive. Sussex BN3 8 GR, or phone Brighton 720203 .
STUDY ELECTRONICS on the BBC Micro. An interactive approach to learning. Three program titles now available 'Introduction to Electronics Principles', 'Electronics Mathematics' and 'Digital Techniques. Programs include theory, examples, self test questions, formulae, charts and circuit diagrams. User inputs and calculated outputs, $£ 29.95$ each plus $£ 2$ pp. Cheque or Postal Order to E.P.T. Educational Software, Pump House, Lockram Lane, Witham, Essex CM8 2BJ. Please state BBC B/Master series and disc size.
SATELLITE CHANNEL REPORT. 32 pages documenting transponder video, audio and data on every satellite within your range worldwide, updated monthly. Available as single issue or by subscription. Call: DTL. 0491 681502. Fax: 0491 681944
OSCILLOSCOPE. Telequipment D56 double beam, double timebase. variable sweep delay with Tektronix adjustable trolley $£ 150$. Also Telequipment DM53A storage scope £100. Both good condition with manuals. Packing and carriage extra. Tel 0322330556 (N. Kent)

OSCILLOSCOPE Hameg HM203-7. Little used. still under warranty, $£ 220$. Precision Gold digital multimeter M810, almost new $£ 27.0822834367$.
FOR SALE Leak 100 amplifier, pre-amp and 110 V transformer - Heathkit short wave receiver G.R.64, collectors items. Sensible offers only to 0597851517.

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING

THOSE ELIGIBLE CAN APPLY FORE.T. GRANT SUPPORT AN EQUAL OPPORTUNTIES PROGRAMME O.N.C., O.N.D. and H.N.C. Next course commences Monday 21st September 1992 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721

SOLAR PANELS

Special offer 12 V nom ($20 \mathrm{~V} \mathrm{o} / \mathrm{c}$) $80 \mathrm{~mA} .12^{\prime \prime}$ $6^{\prime \prime}$ pre wired Amorphous Sllicon panel $£ 4.50$ in cludes P\&P. Many other sizes, wind generators and other products
Orders to (Cat 2×1 st class stamps) Robert Keys, 4 Glanmor Crescent Newport Gwent NP9 8AX

Technical Information Services

76 ChURCH STREET, LARKHALL. LANARKSHIRE. ML9 IHE Tel. (0698) 88.4585 Mon-Fri 8.30am- 5.00 pm Tel. (0698) 883334 Outwith business hours FAX facility avallable all day on both lines Wrire now with an SAE for nour
FREE QUOTE FREE VOUCHERS \& FREE CATALOGUE
Remember, not only do we have EVERY service sheet ever produced. but we also have

THE WORLDS LARGEST COLLECTION OF SERVICE MANUALS \& WE ARE SOLE SUPPL IERS OF VARIOUS FAULT T-FINOING GUIDES
REPAIR MANUALS \& TECHNICAL MANUALS

DATA REFERENCE MANUAL "....essential for the serious electrician"
FREE updating and a 10% discount voucher only $£ 5.95$

MAKE YOUR INTERESTS PAY!

Over the past 100 vears more than 10 milifon students throughout the world nave found It worth their whilie! An ICS home-study course can help you get a better Job, make more money and have more fun out of life! ics has over in vears experience in home-study
courses and is the largest correspondence school in the world. You learn at vour own pace, when and where you want under the guldance of expert 'personal tutors. Find out how we can help You. Post or phone today for FREE INFORMATION on the course of your cholce. mick one box only!

Carbon Film resistors $1 / \mathrm{W}$ 5\% E24 series 0.51 R to 10 MO Metal Film resistors $1 / \mathrm{W}$ 1OR to 1 MO 5% E1 2 series - $2 \mathrm{p} .1 \%$ E24 series Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E24 series 1RO to 10 MO 1 watt mixed metal/Carbon Film 5\% E12 series 4R7 to 10 Megohms Linear Carbon pre-sets 100 mW and $1 / \mathrm{WW}$ 100R to 4 M 7 E 6 series
Miniature polyster capacitors 250 V working for vertical mounting $.015, .022, .033, .047, .068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47-8 \mathrm{p} .0 .68-8 \mathrm{p} .1 .0-12 \mathrm{p}$ Mylar (polvester) capacitors 100 V working E12 series vertical mounting 1000 p to 8200 p $-3 p . .01$ to $068-4$ p. $0.1-5 p$ p. $0.12,0.15,0.22-6$ p. $0.47 / 50 \mathrm{~V}-8 p$ Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series $2 \% 1.8$ pf to 47 pf - 3 p. $2 \% 56$ pf to 330 pf - 4p. 10\% 390p-4700p.
Disc/plate ceramics 50 V E12 series 1 PO to 1000 P. E6 Series 1500 P to 47000 P Polystyrene capacitors 63 V working E12 series long axial wires 10 pf to $820 \mathrm{pf}-5 \mathrm{p} .1000 \mathrm{pf}$ to $10,000 \mathrm{pf}-6$ p. 12.000pf
cmos 4001-20p. 4011-22p. 4017
ALUMINIUM ELECTROLYTICS (Mfds/Volts)
$1 / 50,2.2 / 50,4.7 / 50,10 / 25,10 / 50 \ldots \ldots . .$.
$22 / 16,22 / 25,22 / 50,47 / 16,47 / 25,47 / 50$
100/1 6, 100/25 7p; 100/50 12p; 100/100.
220/16 8p; 220/25. 220/50 10p; 470/16. 470/25
1000/25 25p; 1000/35, 2200/25 35p; 4700/25.
Submin, tantalum bead electrolvics (Mfds/Volts)
$0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$
$33 / 10,47 / 6$. 22/16 30p; $47 / 11035$ p; $47 / 16$ 60p; $47 / 35$.
VOLTAGEREGULATORS
VOLTAGE REGULATORS
$1 A+$ or $-5 V, 8 V, 12 V, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}-55 \mathrm{p} .100 \mathrm{~mA} .5 .8,12.15, \mathrm{~V}+\ldots \ldots$
DIODES (piv/amps).
75/25mA 1N4148 2p. 800/1A 1N4006 41/2p. 400/3A 1N5404 14p. 115/15mA OA91 100/1 A 1 N4002 31/2p. 1000/1A 1N40075p. 60/1.5A S1 M1 5p. 100/1A bridge. 400/1 A 1 N4004 4p. 1250/1 A BY 127 10p. 30/15A DA47
Zener diodes E24 series 3 V 3 to 33 V 400 mW - 8 p . 1 watt
Battery snaps for PP3 - 6 p for PP9
L.E.D.s 3 mm . \& 5 mm . Red, Green, Yellow - 10 p. Grommets $3 \mathrm{~mm}=2 \mathrm{p} .5 \mathrm{~mm}$. Red flashing L.E.D.'s require 9-12V supply only
20 mm fuses 100 mA to 5 A O. blow 5 p .A/surge 10 p . Holders, chassis, mounting High speed pc drill 0.8, $1.0,1.3 .1 .5,2.0 \mathrm{~mm}-30 \mathrm{p}$. Machines 12 V dc
HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs
AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unit ...
Glass reed switches with single pole make contacts - 8p. Magnets
$0.1^{\prime \prime}$ Stripboard $21^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes - 25 p. $37_{4} \times 2 夕^{\prime \prime \prime} 24$ rows 37 holes. Jack plugs 2.583 .5 m
Sockets Panel Mtg. $2.5 \& 3.5 \mathrm{~m}$.
TRANSISTORS
BC184. 184L. BCp. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182. 182L, BC183. 183L, BC 327, 337, 337L-12p. BC727. 737-12p. BD135/6/7/8/9-25p. BCY70-18p.
BFX88-15p, 2N3055 - 50p, TIP31, 32 - 30p, TIP41, 42-40p. BU208A - ©1.20, BF195, 197-12p
Ionisers with seven year guarantee, tist price $\mathbb{£ 1 6 . 9 5}$...

All prices are inclusive of VAT. Postage 30p (free over 5). Lists, Free.

THE CR SUPPLY CO

127 Chesterfield Rd., Sheffield S8 ORN Tel: 0742557771 Return posting

ADVERTISERS INDEX

A.C. ELECTRONICS............... 469	MAGENTA
N.R. BARDWELL................... 470	ELECTRONICS............408/409
R. BARTLETT......................... 469	MAILTECH.......................... 417
BK ELECTRONICSCover (iii)	MAPLIN ELECTRONICS Cover (iv)
BLB ELECTRONICS............... 406	MARAPET............................ 471
BRIAN J. REEO 469	MARCO TRADING................ 405
BULL ELECTRICALCover (ii)	MAURITRON PUBLICATIONS 470
CAMBRIDGE COMP.	M\&B ELECT. SUPPLIES......... 460
SCIENCE........................... 469	MODERN ELECTRONICS
CIRKIT DISTRIBUTION.......... 425	MANUAL456/457
COMPELEC.......................... 472	NATIONAL EXTENSION
CRICKLEWOOO	COLLEGE.
ELECTRONICS 451	NORTHERN MARKETING
CR SUPPLY COMPANY......... 471	CONCEPTS...................... 425
ECW INSTRUMENTS.............. 404	NUMBER ONE SYSTEMS....... 421
ESR ELECTRONIC	OMNI ELECTRONICS............. 406
COMPONENTS.................. 410	PICO TECHNOLOGY............... 406
HART ELECTRONIC KITS........ 407	QUANTEK ELECTRONICS....... 469
HESING TECHNOLOGY.......... 469	RACKZ PRODUCTS 406
ICS....................................... 471	SHERWOOD ELECTRONICS. . 472
Jaytee electronic	SUMA DESIGNS.................... 402
SERVICES..................469, 471	TECHNICAL INFO. SERVICES. 471
JPG ELECTRONICS................ 406	TSIEN.................................... 432
LASER SCIENCE..................... 425	TYPESETTING BUREAU.......... 472

SHERWOOD ELECTRONICS 9 Lower Birchwood, Somercotes, Derbyshire DE55 4NG
 SHERWOOD ELECTRONICS 9 Lower Birchwood, Somercotes, Derbyshire DE55 4NG

$\star \star \star$ SPECIAL OFFER $\star \star \star$

Choose any 2 packs FREE with every 10 £1 packs purchased.

SP1	$15 \times 5 \mathrm{~mm}$ Red Leds
SP2	$15 \times 5 \mathrm{~mm}$ Green Leds
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds
SP6	$15 \times 3 \mathrm{~mm}$ Red Leds
SP7	$12 \times 3 \mathrm{~mm}$ Green Leds
SP8	$10 \times 3 \mathrm{~mm}$ Yellow Leds
SP10	$100 \times 1 \mathrm{~N} 4148$ diodes
SP11	30×1 4001 diodes
SP12	30×1 N4002 diodes
SP18	$20 \times 8 C 182$ Iransistors
SP20	$20 \times$ BC184 transistors
SP23	$20 \times$ BC549 transistors
SP25	5×555 timers
SP26	5×741 Op-amps
SP28	$6 \times$ Cmos 4011
SP36	$25 \times 10 u / 25 \mathrm{~V}$ radial caps.

SP37	$20 \times 100 u t / 35 \mathrm{~V}$ radial caps.
SP38	$25 \times 47 \mathrm{uf} / 25 \mathrm{~V}$ radial caps.
SP42	$200 \times$ Mixed 0.25W C.Film resistors
SP44	$12 \times 5 \mathrm{~mm}$ Leds -4 ea. Hed, Gm., Yel
SP47	$5 \times$ Min . push bution switches
SP102	20×8 pin DIL sockets
SP 103	15 xold pin Oil sockets
SP104	15) 16 pin Dif sockets
SP105	6 A 74 LS00
SP109	$15 \times$ BC557 transistors
SP112	$6 x, \mathrm{Cmos} 4093$
SP119	$6 \times \mathrm{Cmos} 4072$
SP121	$8 \times$ Recti.Red Leds $5 \times 2 \mathrm{~mm}$
SP122	$e 8 \times$ Rect. Green Leds $5 \times 2 \mathrm{~mm}$
SP123	$5 \times$ Rect. Yellow Leds $5 \times 2 \mathrm{~mm}$
SP125	$10 \times 1000 \mathrm{ul} / 16 \mathrm{~V}$ radial caps

ELECTRONICS

 MAILTECH................................. 41 MAPLINEL471 MARCO TRADING 405 460 M\&B ELECT. SUPPLIES.
MANUAL.......................456/457 NATIONAL EXTENSION COLLEGE
NORTHERN MARKETING NUMBER ONE SYSTEMS. OMNI ELECTRONICS QUANTEK ELECTRONICS RACKZ PRODUCTS SHERWOOD ELECTRONICS SUMA DESIGNS.

TSIEN............ 472

Please add C1 PAP to all order

Typefit

The Typesetting Bureau Ltd

6 Church Street, Wimborne Dorset BH21 1JH
Tel: (0202) 882299
Fax: (0202) 841692
Modem: (0202) 882270
DX: 45314 Wimborne
PC page make-up software and typesetter output bureau
"For serious document production it knocks other DTP software into the proverbial cocked hat."

Those are the words of Jim Tyler, an independent journalist after reviewing Typefit for "Micro Computer Mart". His letter to us went on to say:
"I spent two years editing a magazine, I have been involved in running a DTP bureau and I currently make my living writing classic car restoration manuals for a division of Reed Business International. I would choose Typefit for any of these roles."
No we did not pay him anything - he did not even get a free copy of our software (Typefit only costs $£ 225+$ VAT anyway). And just for the sceptics he is not a personal friend, relative or shareholder in the company.
His sentiments are backed up by our customers, some of which have changed from other well-known DTP packages costing much more - they tell us Typefit is more
versatile and provides them with use of a better range of quality typefaces (230 different fonts).
With Typefit you do your own Typesetting, proof and correct your work, we provide the expensive phototypesetter and fonts to give you top quality 2000 dot per inch bromide output.
Before investing in any other DTP package and especially before spending a small fortune on a specialist typesetting computer or other equipment, please investigate Typefit.

M- POWER AMPLIFIER MODULES-TUANTABLES-DIMMERS-

 LOUDSPEAKERS-19 INCH STEREO RACK AMPLIFIERS

HE RENOWNED MXF SERIES OF POWER AMPLIFIERS OUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W)

MXF600 (300W + 300W) MXF900 (450W + 450W)
LL POWER RATINGS R.M.S. INTO 4 OHMS, BOTH CHANNELS DRIVEN
ATURES: \#Independent power supplies with two toroidal translormers $\begin{gathered}\text { TwIn L.E.D. VU meters } \star ~\end{gathered}$
 ortion $\begin{gathered}\text { Aluminium cases } \star \text { MXF600 \& MXF900 tan cooled with D.C. loudspeaker and thermal protection. }\end{gathered}$
ED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

MXF600 W 19 " $\times \mathrm{H}^{1 / 44^{\prime}(3 U) \times D 13 "}$

PRICES:-MXF200 £175.00 MXF400 £233.85
MXF600 £329.00 MXF900 £449.15
SPECIALIST CARAIER DEL. $\$ 12.50$ EACH

HPVAISPEED TURNTABLE CHASSIE

* Manual arm * Steel chassis \star Electronic speed control 33 \& 45 R.P.M. \# Vari pitch control \# High torque servo driven DC motor \star Transit screws \star $12^{\prime \prime}$ die cast platter \star Neon strobe \star Calibrated balance weight \star Removable head shell $\star 1 / 2$ cartridge fixings \star Cue lever $\star 220 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ \# $390 \times 305 \mathrm{~mm}$ * Supplied with mounting cut-out template.

PRICE 661.30 + ¢3.70 P\&P
UONAF MAGNEIC CARTRIDGES STANTON AL500mkII GOLDRING G950 PRICEE16 95 + WPP\&P PRICE 57.15 + 50P P\&P

GREO DISCO MIXER DJ650c

EREO DISCO MIXER with 2×7 band A graphic equalisers with bar graph Vu meters. MANY OUTSTANDING
TURES:-TURES:- - including Echo with repeat a ed control, D.J Mic with tone control talk-over switch, ${ }^{7}$ Channels, with
vidual faders plus cross fade, Cue vidual faders plus cross fade, Cue
dphone Monitor. Useful combination of dphone monitor. Useful combination of
following inputs:- 3 turntables (mag), 3 5,5 Line for CD, Tape, Video etc.
rice $£ 134.99+\mathbf{5} .00$ P\&P

* WITH ECHO *

20 ELECTRIC TWEATERS

sient response with a lower distortion level than (no voice coil) of a Piezo tweeter produces an improved e units can be added to existing speaker systems of up to 100 watts (more it two are put in series. FREE

TYPE ' A ' (KSN1036A) 3^{n} ' round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+\mathbf{5 0}$ P P\&P. TYPE 'B' (KSN1005A) $31 / 2^{\prime \prime}$ super horn for general purpose speakers, disco and P.A. systems etc. Price $£ 5.99+50 \mathrm{P}$ P\&P.
TYPE 'C' (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi-Fi systems and quality discos etc. Price $£ 6.99+50 \mathrm{p}$ P\&P.
TYPE ' D ' (KSN1025A) 2 " $\times 6$ " wide dispersion horn. Upper trequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $£ 9.99+\mathbf{5 0 p}$ P\& P. TYPE 'E' (KSN1038A) $3^{34}{ }^{4}{ }^{\prime \prime}$ horn Iweeter with attractive silver finish trim. Suitable for HI-Fi monitor systems etc. Price $\mathbb{£} .99+50 p$ P\&P. LevEL CON TROL Combines, on a recessed mounting plate, leve

APLNNET LOUDSPEAKARS

the very best in quality and value
ade especially to suit today's need for compactness with high output
und levels. finished in hard wearing black vynide with protective und revels. finished in hard wearing black vynide with protective
rners, grille and carrying handle. Each unit incorporates a $12^{\prime \prime}$ driver us high trequency horm for a full Irequency range of 45Hz-20KHz. th models are 80 mm impedance. Size: $\mathrm{H} 20^{\prime \prime} \times \mathrm{W}_{1} 5^{\prime \prime} \times \mathrm{D} 12^{\prime \prime}$

CHOICE OF TWO MODELS

WER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100WATTS (100dB) PRICE $£ 163.50$ PER PAIR OMP 12-200WATTS (200dB) PRICE $\$ 214.55$ PER PAIR

SPECIALIST CARAIER DEL. $£ 12.50$ PER PAIR

CES: 1 50W ع49.99 250W 899.99
(

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo, 150 W Bridged Mono
250 WATTS 250 WATTS (12
Briaged Mono Bridged Mono
400 WATTS
400 WATTS $(200+200)$ Stereo, 400 w Bridged Mono
ALL POWERS INTO 4 OHMS
Features:
Stereo, bridgable mono $\#$ Choice of
high $\&$ low level inputs $\# \& R$ level high \& low level inputs \star L R level
controls \star Remote on-oth \star Speaker $\&$ ACCESSACCEPTED BY POST PHONEDRFAX

OMPMOS-FETPOWZ AMPIIFIGRMODUES SUPPLED READY BULLT AMD TESTED These modules now enjoy a world-wide repulation lor quatily, rellabillyy and pertormance al a realistic price Four
models are available io suit the neede ol the prote ssional and hobyy markel lie. Industry, Leisure. Insirume ntal and Hl-fi elc. When comparing prices, NOTE Inal all models inctude lioroidal power supply, integral h
drive circults to power a compatible vu meter. All modela are open and shorl circuit proot
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 mos-Fet Output power 110 watts R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{US}$ T.H.D. typical 0.002%, input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.

OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PRICE $84.35+84.00$ P\&P

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, input Sensitivity 500 mV , S.N.R. 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE E81.75 + E5.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE \&132.85 + £5.00 P\&P
NOTE: MOS-FET MODULES ARE AVAILABLE IN TWO VERSIONS STANDARD - INPUT SENS 500 mV , BAND WIDTH 100 KHz . PEC (PROFESSIONAL EQUIPMENT COMPATIELE) - INPU

GODOSTAAKBRE LARGE SELECTION OF SPECIALIST LOUDSPEAKERS
 AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGM POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (50p STAMPED) FOR COMPLETE LIST.

- From McKenzie Protessional Serles

WCKEMzIE- INSTRUMENTS, P.A., DISCO, ETC

ALL MCKENZIE UNITS 8 OHMS IMPEDANCE
8" 100 WATT P CE-100GP GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 80 Hz , FREQ. RESP. TO 7 KHz , SENS 96 dB . PRICE £31. 10" 100WATT G10-100GP GUITAR, VOICE, KEYBOARD, DISCO, EXCELLENT MID. RES. FREQ. 72 Hz , FREQ. RESP. TO 6 KHz , SENS97dB. PRICE 838.89 $10^{\prime \prime}$ 200WATTS C10-200GP GUITAR, KEYB'D, DISCO, EXCELLENT HIGH POWER MID
 12 100WATT F12-100GP HIGM POWER GEN. PU
RES. FREQ. 49 Hz , FREQ. RESP. TO 7 KMz , SENS 98 dB . 12" 100WATT, © C12-100TC (TWIN CONE) HIGH PO RES. FREQ 45Hz, FREO. RESP. TO 12 KHz , SENS 97 dB . ER, WIDE RESPONSE, P.A., VOICE, DISCO. $12^{\prime \prime}$ 200WATT ' C12-200B HIGH POWER BASS, KEYBOARDS, DISCO, P RES. FREO. 45 Hz , FREO. RESP. TO 5 KHz , SENS 99 dB . 12" 300WATTS C12-300GP HIGH POWER BASS, L RES. FREQ. 49 Hz , FREQ. RESP. TO 7 KHz , SENS 100 dB . $15 "$ 100WATT P C15-100BS BASS GUITAR, LOW FRE
RES. FREQ. 40 Hz, FREQ. RESP. TO 5 KHz HENS 98 dB .
$15^{\prime \prime} 200$ SATT 5" 200WATT PC1 5-200BS VERY MIGH POWER BA 15" $250 W$. 15 250WATT SC1 5-250BS VERY HIGH POWER BAS ES. FREO. 39Hz, FREO. RESP. TO 4KHz, SENS 99dB. 15 . 00 WAT 8" 500WATT S C18-500BS EXTREMELY HIGH POWER, LOW FREQUE RES. FREO. 27 Hz , FREO. RESP. TO 2 KHz , SENS. 98 dB .

PRICE 871.91 + E3.50 P\&

$$
\text { PRICE }\{40.35
$$

JAR:ENDERS:- HI-FI, STUDIO, IN-CAR, EfC
ALL EARBENDER UNITS 8 OHMS (Except EBA-50 \& EB10-50 which are dua BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND 8" 50watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR RES. FREQ. 40 Hz , FREO. RESP. TO 7 KHz SENS 97 dB . RES. FREQ. 40 Hz , FREQ. RESP. TO 5 KHz , SENS. 99 dB . 10" 100WATT EB10-100 BASS, HI-FI, STUDIO. RES. FREQ. 35 Mz , FREQ. RESP. TO 3 KHz , SENS 96 dB . $12^{\prime \prime} 100 W A T T$ EB12-100 BASS, STUDIO, MI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB . EULL RANGE TWIN CONE, MIGH COMPLIANCE, ROLLED SUPROUND 51/4 60 WATT EB5-COTC (TWIN CONE) MI-FI, MULTI-ARRAY DISCO ETC RES. FREO. 63 Hz , FREO. RESP. TO 20KHz, SENS 92 dB . gis ${ }^{1 / 2}$ 6OWATT EB6-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES. FREO. 38 Hz, FREO. RESP. TO 20 KHz , SENS 94 dB . " 6 OWATT EB8-GOTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC RES. FREQ. 40 Hz , FREO. RESP. TO 18 KHz , SENS 89dB. $10 "$ GOWATT EB1O-60TC (TWIN CONE) HI-FI, MULTI
RES. FREQ. 35 Hz , FREO. RESP. TO 12 KHz , SENS 98 dB .

TRANSMITVE HOEEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER 30 -108MHz, VARICAP CONTROLLED PROFESSIONAL EERFORMANCE, RANGE UP TII 3 MILES, SZE $38 \times 12 \mathrm{3mm}$
PRICE $£ 14.85+\mathbf{\$ 1 . 0 0}$ PaP
FIM MICRO TRANSMTTEE $100-108 M H z$, VARICAP TUNED, COMPLETE WITH VERY SENS FET MIC, RANGE 100.300 m . SIZE $56 \leq 46 \mathrm{~mm}$. SUPPLY 9 G EATTERY.
E.K. EL=CTRONICS

UNITS 1 \& S COMET WAY, SOUTHEND-ON-SEA,
Tel.: 0702-527572 Fax.070e-4eopas

Let＇s talk waveforms．．．

．．．AND THE BEST IN OSCILLOSCOPES．

Our new range of precision laboratory oscilloscopes offer not only the best features，but also prices．From the sophisticated 20 MHz 7025 to the delayed sweep 40 MHz 7046 ，advanced design and high quality combine to bring you features such as； $1 \mathrm{mV} / \mathrm{div}$ sensitivity，advanced 6 －inch CRT with percentage markers and internal graticule，elim－ inating parallax error and ensuring a highly accurate display．X－Y mode allows Lissajous patterns to be pro－ duced and phase shifts measured．

The 7025 has all the capabilities required of a general purpose oscillo－ scope and will accept signals from DC to at least 20 MHz with a high degree of accuracy． The 20 MHz 7026 incorporates a delayed sweep time base，which can be used to magnify a portion of the waveform，and makes accurate time interval measurements and the study of short duration events

possible．The sophisticated 40 MHz 7045 includes a 40 ns delay line to help show very short duration events in their entirety．A delayed sweep oscillo－ scope of advanced design and high quality is found in the shape of the 40 MHz delayed sweep 7046 ， having an increased magnification along with a 40 MHz bandwidth and capable of displaying complex signals with precision and accuracy．

Full details of our oscilloscopes and all other test equipment can be found in the 1992 Maplin catalogue， available from WHSMITH or Maplin shops nationwide $£ 2.75$ or by post £2．95．Mail Order to：P．O．Box 3，

ELEOTRONICS
GL29C ⿴囗 $\mathbf{H} 20 \mathrm{MHz}$ scope 7025．．．£299．95．GL30H H 20 MHz scope $7026 \ldots £ 349.95$ ．GL 311 团 40 MHz scope $7045 \ldots £ 449.95$ GL33L 固 40 MHz scope 7046．．£499．95（illustrated）．
All items subject to availability．Handling charge $£ 1$ ．H Indicates carriage charge of $£ 5.30$ ．All prices inclusive of VAT．
Visit our stores at：BIRMINGHAM；Sutton New Road，Erdington．BRIGHTON； 65 London Road．BRISTOL； 302 Gloucester Road．CARDIFF； 29 City Road．CHATHAM； 2 Luton Road． GLASGOW；264－266 Great Western Road．LEEDS；Carpet World Building， 3 Regent Street．LELCESTER；Office World Building，Burton Street．LONDON； $146-148$ Burnt Oak Broadway， Edgware．120－122 King Street，Hammersmith．MANCHESTER； 8 Oxford Road．NEWCASTLE－UPON－TYNE；Unit 4，Allison Court，The Metro Centre，Gateshead．NOTTINGHAM； $86-88$ Lower Parliament Street．READING；129－131 Oxford Road．SHEFFIELD； 413 Langsett Road，Hillsborough．SOUTHAMPTON； $46-48$ Bevois Valley Road．SOUTHEND－ON－SEA； $282-284$ London Road，Westcliff．Plus new stores in COVENTRY and SOUTH LONDON Opening soon．Ring 0702552911 for further details．

This is the B/G one - no other electronic mail order component company in the UK has a SALE like this!! BIGGER D/SCOUNTS, BETTER DEALS, MORE STOCK. We have MILLIONS of components to dispose of: MASSES of surplus boards, units and power supplies to sell; MIND-BOGGLING AMOUNTS of top quality gear to almost give away!! If you use electronic components and equipment, tools, hardware etc, there's bound to be something for YOU in these 32 pages! Don't miss out - stocks move fast at these low prices, so place your order TODAY by phone, fax, post or in person!
There are only 3 special conditions if you order from these pages:

1) The MINIMUM GOODS VALUE IS $£ 12.00$ (although this can include goods from any of our lists or catalogues).
2) POST \& PACKING CHARGE IS $£ 3.00$
3) Free gifts and reduced price offers from previous catalogues and supplements are not available with sale goods.
Regrettably, we cannot accept orders for Sale Goods that do not meet these requirements.

BATTERY BONANZAIII

$\mathbf{2 4 1 5 0}$ Ex mobile radio battery. $56 \times 63 \times 33 \mathrm{~mm}$ case (sometimes damaged) contalns $8 \times A A$ size rechargeable Nicads. These can be removed by breaking the case open. Each cell rated 1.25 V 600 mA
Price .. 53.00
24149 As a bove but $84 \times 66 \times 33 \mathrm{~mm}$. There are again 8 cells but they are longer than $A A$ size, being 73 mm long. Each cell rated 1.25 V 900 mA
SALE PRIGE 51.75

24216 Much sought after 4.8 V 150mA batteries with PCB mounting tags on 25 mm pitch. Battery size 25×16 dia. Ideal for paralleling. Some corrosion.

SALE PRICE 5/ £1.00

NICAD BATTERY PACKS

22349 Nicad battery packs. Brand new, intended for use in zonephones comprising $4 \times 1 / 2 A$ size cells each rated 1.2V 0.45 Ah , size 16.1 mm dia $\times 28 \mathrm{~mm}$ in a plastic housing easily removed. Solder tag connections. DP £9.92.
Our price . $£ 2.00100+1.001 k+0.70$
SALE PRICE
$\$ 1.00$

Z2539 PCB mntg 2.4 V 100 mA Ni-cads. These have a distributor price of 1.90 - but you can have one for $£ 1.00 ; 25+0.60 ; 100+$ 0.40

SALE PRICE 2 FOR E1

Sealed Lead Acid Batteries

YUASA NP6-12. 12V 6Ah sealed lead acid battery. These have been regularly trickle charged whilst in store. Size $150 \times 95 \times 65 \mathrm{~mm}$. List price $£ 28.00$ Order Code 28918 SALE PRICE 58.00

28977 12V 12A sealed lead acid battery by Yuasa. These are brand new and have and have a DP of 45.80.
Our Price $£ 20.00$
SALE PRICE $£ 15.00$

$Z 2452$ Lithium battery - inorganic type by Tadiran, type TL5104. AA size, 3.6V PC tabs. Date code 06/88 £1.70

SALE PRICE $\quad \$ 1.00$

Z2453 As above, but type SL360, date code 4/87. £1.50
SALE PRICE SOP
22450 Tadiran AA size battery 3.6 V PC mounting. Date code $6 / 89$. DP on these is 5.17. Our orice $£ 2.0025+1.50 \quad 100+1.20$

SALE PRICE $\$ 1.00$

Z2451 Tadiran 0.5AA size battery, 3.6V PC mntg. Date code $8 / 86$. DP 4.58 Our price $£ 1.75$
SALE PRICE $£ 1.00$

Regular Nicads

SALE
PRICE
10\% off
Regular Dry Cells
A range of batteries from Hi-Tech featuring long life and rellability at a competitue price.

Low cost dry cells
2 popular sizes of battery on a card of 4 at very attractive prices.
X107
Price per pack of 4 $69 p$ p $10+0.46 \quad 100+0.31$
K109
Price per pack of 4 76p $10+0.51100+0.34$

Alkaline Batteries for heavy duty use
Code Type $1+20+100+$
$\begin{array}{lllll}\text { X121 AA/MN1500/LR6 68p } & 0.39 & 0.30\end{array}$ $\begin{array}{llll}\times 122 & \text { AAA/MN2400/LR03 } & \text { 68p } & 0.39 \\ \times 123 & 0.30\end{array}$ $\times 123$ PP3/MN9100/R6 $\begin{array}{lll}\text { 68p } & 0.39 & 0.30 \\ \mathbf{6 2 . 7 4} & 1.69 & 1.30\end{array}$ PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT
MANAMMM ORDIER UALUE EYZ $+E 3$ PEP PGR ORDER

SUMAIED SAIE CATAIOCID B

KRAZY KEYBOARD KLEARANCE!!!

 Z8848 Keyboard by Cherry. Room for 104 keys, all normal keys (65) fitted. Chips on board: LS373×2, LS374,
 SALE PRICE 55.00

 24384 Compulagraph Colorwriter panel $352 \times 67 \times 12 \mathrm{~mm}$. Ally frame supports a membrane keyboard which has 22keys. On the rear of the panel are 6 yellow submin LED's, a 3 mm red LED and $2 \times 19 \mathrm{w}$ edge conns.

Z8852D Keyboard. Superb brand new high quality keyboard with LCD displaying 1 line of 10 characters and a further line with various symbols. 100 keys, inc seperate numeric keypad. Chips on board are $2 \times 74 \mathrm{HCO5}$, 80C48. LCD + driver chip are easily removed. Amazing low price - only $£ 10.00$

28883 Keyboard. High quality unlt made by Micro Switch. 69 pale grey and blue keys. 6 red 5 mm LED's. 15 various LS chips. and socketed 08048 by intel. Output via 7 way plug and there's a 4 way edge connector too. Keyboard frame is

$$
317 \times 128 \mathrm{~mm} . P C B \text { on which it's mounted is } 285 \times 170 \mathrm{~mm}
$$

$$
\text { SALE PRICE } £ 6.00
$$

$\mathbf{z 5 0 2 6}$ Membrane keypad. Essentially a PCB $365 \times 92 \mathrm{~mm}$ Used as a tront panel. 30 keys connected to a 16 pin plug. Cut outs for 2 displays $(80 \times 22 \mathrm{~mm})$ and 10 lamps/LED's ($13 \times 8 \mathrm{~mm}$).
SALE PRICE
$\$ 1.00$

SALE PRICE 30P

PC KEYBOARDS
After the Russian keyboards featured in Bargain List 74, we've now purchased some French (sacre bleu!) and German (Donner und Blitzen!) varieties. Slightly different character set to UK models.

28980 PC/AT Keyboard Standard 84 key, brand new in original packaging offered at a fraction of their original costl Top quality, made by Alps, they have an excellent touch. Nicely contoured case, Caps Lock, Num Lock, and Scroll Lock LED's, and curly lead with 5 pin DIN plug. Our Price $£ 19.95$
SALE PRICE 512.00

28842 Tatung VT4100 keyboard. Cased 85 key units with separate numeric keypad. With circuit. Has 2 or 3 broken key tops. $450 \times 65 \times 125 \mathrm{~mm}$.

Price

SALE PRIGE 55.00

$\mathbf{2 8 8 8 2}$ Keyboard from Liberator Computer. $278 \times 124 \mathrm{~mm}$. 62 keys. Some of these have been used. Output to 20 way connector.
Price.
SALE PRICE
$£ 2.50$

251103×4 (* \#)
c2. 80
ALL $1 / 2$ PRICE

SALE PRICE $\$ 1.00$

```
PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT
MUNLMUNORDER VALVEEI2 + G3 PEP PEER ORDER
```


4. SUMMER SAIE CATAIDOUE

BULK LED's

Now! Standard LED's at prices from less than $2 p$ each! This parcel was supposed to contain a variety of shapes and colours for our LED packs - but there are too many standard red ones to mix in, hence this too good to miss offer!!

TRICOLOUR LED BARGAIN
F166T Chrome holder needs 10 mm hole. LED has 3 leads - common, red and green, when used together produce yellow. These normally sell for around 80 p each - Our special offer price 4 1or £1.00; $100+0.12 ; 1000+0.09$

SALE PRIGE 8 FOR $£ 1.00$

2416 Display. 8 digit LED multiplexed. With data $31 \times 16 \mathrm{~mm}$

${ }^{\text {PICOO }}$ ALE PRIGE 2 FOR E1

2416 Display, 9 digit LED multiplexed. With data

$42 \times 10 \mathrm{~mm}$.
 SALE PRICE 2 FOR EĨ

22434 Dual 7 seg LED, type TDDR5250 by TFK. Red common anode 13 mm digit height. DP 1.14. Our special low price (we have 10000 to clear) 2 for $£ 1.00 ; 100+0.25$; $1 k+0.18$

SALE PRICE 4 FOR EI

Z2435 Singlf 7 seg LED 10 mm high digit. Type LN514RK. Common cathode. 4 for £1.00; $100+0.15 ; 1 \mathrm{k}+0.10$

SALE PRICE 8 FOR 11

Z2362 MS463M 0.6" common cathode 4 digit multiplexed display on PCB 70×30 with 15 way connector. Intended for digital clock use. Supplied with pin out. ONLY $£ 1.50$

LED Displays 0.3 in (7.62 mm) Display Height

H - 19.05
W- 10.16
D-5.4
Pin spacing 2.54
Row spacing 7.62
(a) $0.3^{\prime \prime}(7.62 \mathrm{~mm})$ diaplay height; luminous Intensity 0.6 mCd (1) 10 mA

Code	$\mathbf{7 1 + 1}$	DP	CC/CA	$1+$	$25+$	$100+$
$\mathbf{z 1 9 3 7}$	7 seg	LH	CA	$31 p$	0.20	0.16
$\mathbf{2 1 9 3 8}$	7 seg	RH	CA	$31 p$	0.20	0.16
$\mathbf{2 1 9 3 9}$	7 seg	RH	CC	$31 p$	0.20	0.16
$\mathbf{Z 1 9 4 0}$	+1	LH	CA	$20 p$	0.13	0.10

0.5 in (12.88 mm) Display Height

(b) $0.5^{\prime \prime}(12.88 \mathrm{~mm})$ display height; luminous inten sity .. $8 \mathrm{mca}(10.88 \mathrm{~mm}$
Code $7 /+1$ OP ce/ca $1+\quad 25+100+$ $\begin{array}{llllll}21943+1 & \text { RH CA } & \text { 23p } & 0.15 & 0.12\end{array}$ 0.8 in (20.32mm) Display Height

H-27.7
W- 19.9
D-8.38
PIn spacing 2.54
Row spacing 15.24
(c) $0.8^{\prime \prime}(20.32 \mathrm{~mm})$ display height; luminous intensity 0.8 mCd (4) 10 mA

Code $7 /+1$ DP CC/CA $1+225+100+$ $\begin{array}{lllllll}\mathbf{z} 1948 & 7 \mathrm{seg} & \text { RH CC } & 47 p & 0.30 & 0.24\end{array}$ $\begin{array}{llllll}21949 & 7 \mathrm{seg} & \text { LH CA } & \text { CA } & \text { 47p } & 0.30 \\ 21950 & 7 \mathrm{seg} & \text { LH } & 0.24\end{array}$ All 50% OFF..!!

22122 Vactel Type VTL 10DI - IR emitter and detector can be removed from the plastic housing if required. An extremely cheap version of TIL100/TIL38!

21499 Opto slotted switch on small $(25 \times 26 \mathrm{~mm})$ panel Type P850.. 75p Z1500 Opto reflective switch type OPB6076 with 3pin connector.. 75p PS4005 Opto slotted switch £1.00

21743 TIL143 Opto slotted switch. These have cropped leads and some are ex-equip, but are all working.

ALE PRICE 8 fOR

SALE PRICE 8 FOR E1

218474 Phototransitor SOP8405 with data.
SALLE PRICE 2 PACKS 11

218462 pairs of infra red emitter/ receiver SOP8406/8506

by Honeywell with comprehensive data.
 SALE PRICE 2 PACKS EI OPTO DISPLAYS

21731 NEC Vacuum Fluorescent Dlsplay Fip8BII. 8 digit multiplexed output 10 mm high. Heater voltage 2 V , grld/ anode voltage 24 V . (Use $\mathbf{Z 4 2 4 8}$ transformer to power).

SALE PRICE
 $£ 1.00$

25118 Giant 30 mm fluorescent 2 character green star burst display, $88 \times 49 \times 8 \mathrm{~mm}$. Futaba type $2-\mathrm{JY}$-02Z. Needs 3 V
SALE PRICE $\quad £ 1.00$

SLMMER SAIE CATAI DELE 5

aPTO OPPORTLMITIES

Z5352D Densitron alphanumeric LCD module 40×1 character type H2572HT. Farnell's price 29.28 - Superdeal price $£ 9.95$

SALE PRICE $£ 6.00$

Z5351万 Glant graphic module LCD - Hitachi LM213XB. 256×64 pixels, display area $150 \times 43 \mathrm{~mm}$ with built in controller chip. Farnell's price 69.84 - Our special low price £25.00

SALE PRICE £ 15.00

$Z 2543$ Epson 4 digit LCD with 13 mm high digits. 40 pin package. Only $£ 2.00$ each

SALE PRIGE $£ 1.50$

z5119 Communications LCO. This large ($140 \times 40 \mathrm{~mm}$) display (made tor Marconi) has 110 pins and shows a variety of symbols and power levels used in radio communication, includes a bargraph display. No further info and only limited appeal, hence the very low price. Just ©2.00 SALE PRICE 51.00

LCD MODULE

Z8006 16 character $\times 1$ line. Very similar to our Z1814 but slightly larger character -6.3×3.15 (8×5 dats). Type LCDM 16166 by Reiac. Supplied with data. Uses Hitachi HD44780AOO chip.
Pric.
SALE PRICE $£ 5.00$

241158 digit 12.7 mm high LCD and holder. These are 14 segment devices allowing alphanumeric display. Normally costing over $£ 15.00$ we are oftering these for just §4.50

SALE PRICE $£ 2.00$

Z4148 LCD as Z4115, but 6 digit 7 seg. 50 pins DP 10.86. Our low price $£ 3.00$
SALE PRICE $£ 1.50$

21637 LCD Display - Direct drive $31 / 2$ digit with 'LO-BATT' 12.7 mm high digits. Op voltage 4.12 RMS (a 32 Hz type. Consumes only $25 \mu \mathrm{~A}$ with all segments on. Trade price $£ 7.97$ each. Supplied with data, but no edge connector. Prices.
$1.0025+0.65100+0.50$

SALE PRICE 50P

$\mathbf{2 1 6 3} 4$ Digit multiplexed LCD, $50 \times 30 \mathrm{~mm}$ probably for an electronic balance-symbols include balance pens, 5 stage bar graph, lb's and kg's etc. Digit helght 12 mm . Self adhesive pad on back. 13 pin PCB connector. $£ 2.00$

SALE PRICE £1.50

2217240 character $\times 1$ line LCD by Optrex (Japan). High quality double height display with 192 character ROM; other characters can be displayed by generation in RAM. Other harares include cursor with control blink character scroll esplay, read and write display data single +5 V supply, data display, read and wre display data. single SI SV supply. dal and power inputs by one 16 pin 0.05 Sil socket, pin outs standard and compatible with other Optrex displays, contras control, easily interfaced with either 4 or 8 up's. Supplied complete with data. Dimensions: Characters are 5×12 dot arrays measuring $3.2 \times 10 \mathrm{~mm}$
Display size $170 \times 17.5 \mathrm{~mm}$
Module size $220 \times 40 \mathrm{~mm}$
DP over $£ 50.00$
Our Price © 15.00
SALE PRICE
$\Sigma 7.50$

22498 Toshiba TLC501 LCD. 24×2 line display with standard connexions (supplied). V. similar to our 22171 £9.95

SALE PRIGE $£ 6.50$
$\mathbf{2 4 3 7 2}$ Epson LCD module EA-Y40040AT. 40×4 characte format. Viewing area $156 \times 34 \mathrm{~mm}$. Full alphanumeric 96 character set contained in the module's own memory. 5 V supply. With comprehensive data. List price over $£ 200$.
SALE PRICE
$£ 25.00$

221104 digit LCD 12.5 mm high with low battery and clock symbol. Complete with edge connector. Price..................................... ع1.80 $25+0.95100+0.65$

SALE PRICE
75P

Z2432 LCD 8 digit 10 mm high. Single sided 36 way edge connector. Only $£ 2.00100+$ $1.001 \mathrm{k}+0.80$

SALE PRICE $£ 1.00$

Z5328D Giant graphic dot matrix LCD by Citizen, model G6201. These measure $290 \times 118 \mathrm{~mm}$ and have a display area of $230 \times 76 \mathrm{~mm}$. Resolution 640×200 dots (128k) with backlighting. DP is around $£ 300$. Our special low price, complete with 12 pages of data is $£ 49.95$ (Data only, $£ 1$)
SALE PRIGE $£ 30.00$

Uniqard
 Development Boards

E1S, E2S A E1D series are circultry development boards for memory (both dynamic and static. RAM and ROM) and also for combined CPU-memory function.

EPB serles have backplane and motherboard uses (both 34 and 6U) and the smatier lengths are also used for extender cards. A range of proflies with and without mounting flanges and extra busbars are available. Used as high density memory development boards they only require a small amount of extra wiring.

Order Code.	Type	Six*	Price
129B-PCB-008SF	E1S-00	$3 \cup 0.3{ }^{\prime \prime}$	c12.62
1208-PCB-0075F	E2S-00	$3 \cup 0.6{ }^{\text {* }}$	¢12.62
120B-PCB-011SF	EBP-02	Extender $3 \mathrm{U}-220$	88.46
120B-PCB-0125F	EBP-03	Extender 6U-160	¢18.
120B-PCB-014SF	E8P-05	Horizontal	

SALE
 PRICES
 75\% OFF

Line Termination Unit

Comes in 2 parts
2035 Grey ABS case $197 \times 106 \times 60 \mathrm{~mm}$ with lid contains PCE with 2 relays, transformer etc. A 3 mitead with 4 pole plug (old type) is fitted one end and a 6 way lead im long the other which connects to:
2036 a PCB $265 \times 143 \mathrm{~mm}$. This contains $5 \times$ LM348, 4016 40938 ZNA2H006E chips + transitors, R's, C's, xtal, etc. Both for $\mathrm{E4}$, or individually $\mathbf{2 0 3 5}$ £3.00; $2036 £ 1.00$
SALE Z035 £1.60
PRICES 2036 60p
Both $£ 2.00$

Electronic Organ Kit

EK2 High quality kit by OK. All parts supplied in attractive plastic case which becomes the housing for the finished project. Covers a full octave. $\mathbb{\$ 3 . 3 4}$

24135 'Stethophone' mini stereo headphones, complete with stereo jack piugs: 8R. Hinged he adband.

'Co Forth' by Paul Kall
An introduction to Forth Language. It's as easy to use as BASIC, but is much faster. This book is a complete foundation course in Forth programming, and contains a number of complete programs. Originally published at $£ 8.95$. Our Pric.

SALE PRICE $£ 1.00$

 10A PANEL METER

25335 Very smart panel meter by Hobut, brand new \& boxed $72 \times 72 \mathrm{~mm}$. Scaled 0 10A AC. Moving iron model no D72SD. List 12.51.

Our Price $£ 4.00 \quad 100+2.50$

SALE PRICE
 $£ 2.50$

LANGUAGE CASSETTES

Now our ties with Europe are becoming closer, you'll need to learn a foreign language. Just so happens we've purchased a job lot of language tapes to prepare you for this eventuality and we don't just stop at the EECI Expand your horizons learn Russian too!
These are Normans Language Courses. Each consisis of a C90 EMI cassette tape in library case with a 32 page book covering a wide variety of subjects, supplied in a plastic wallet. OK, so its not your Linguaphone course, but very useful - especially at the price we are askingll
25080 Italian.
52.00

25081 German
25062 Portuguese
28064 Russian.
We also have a number of Erotone books - a 32 page 'Listen,Repeat \& Learn', and a 48 page 'Phrases \& Useful Information for the Traveller'. (No tapes with these.) 25088 French (2 books). z5068 Spanish (2 books)

BBC 'B' SOFTWARE - FINAL CLEARANCE

This has been cluttering up our stores for far too long (SAE for more information, colour leaffets).

Micro Maeatro - Comprises $5 \%^{n}$ disk + computer tape; 16 page handbook; C60 stereo cassette with backing tune of popular tracks like 'Ghostbusters'. 'Chariots of Fire': and 'Superman'. Original Price E17.0s.
24333 Concert Pitch
$243348^{\text {b }}$
Music Master - Comprises microphone to attach to recorder + processing devlce; $5 \frac{1}{4}$ "disk; 12 page handbook. Original Price E82.78.
Z4326 40 track disk.
2432780 track disk
C14.98
Mupados Recorder Tutor - Comprises 5% " disk: 38 page large format spiral bound handbook; C90 stereo cassette with 52 tunes. Original Price £30.94
$\mathbf{2 4 3 2 8} 40$ track disk .. 8.98
 Z4330 Duet Pack ... E2.9s 24230 Recorder tutor Classroom Ensemble Network pack. tor use when several micros are being utilised. fincludes 2 disks, a cassette and book.
Price ... 4.95

All HALF PRICE OR 10 ASSORTED (OUR CHOCEE 2 Cellular Mobile Aerials

A few different types, all new in original packing.

25281 Antiference TAP9036 $1 / 4+1 / 2$ wave 3dB. Frq $890-960 \mathrm{MHz}$ VSWR 1:5:1. Includes $3 / /^{\prime \prime}$ claw mount with 5 m of RG58 cable. Complete with fitting instructions. Only $£ 3.00$
SALE PRICE $£ 2.00$
Z5282 ZS Electroniques ZS914-09 claw mount with 4 m cable and fitting instructions £3.00
SALE PRICE $\quad \$ 1.50$
Z5283 Jaybeam MU904-ZG/h with 4 m of cable attached. $£ 3.00$

MODEM MADNESS

This parcel consists of several hundred brand new BT approved modems - but we are not allowed to say who makes them. They do, however, offer extremely good value for money, as they are being sold for a fraction of their true worth

28973D V21/N23 300 or $1200 / 75$ baud modem. New, boxed and complete with power supply and some data. Plugs into std BT skt and RS232 port on any computer. Tone/auto dlalling + last number re-dial. Size $205 \times 195 \times 30 \mathrm{~mm}$. Front panel has reset button and 5 status LED's. Only $£ 49.95$
SALE PRICE

28953 Complete unit with power supply and comprehensive instructions. Designed to add the lacilities of error correctlon, speed buffering, encryption (optional) and a correctlon, speed buffering, encryption (optional) and a
battery backed data store with a printer port to existing battery backed data store with a printer port to existing
modems capable of speeds up to 2400 baud. Easy to use. modems capable of speeds up 102400 baud. Easy to use.
(Send $\mathbf{5} 5$ returnable deposit for user manual for further information).
SARLEEE10

Z8974D Transam M1 mobile/mains intelligent modem. New and boxed with mains plug in power supply (9.5 V 800 mA). Auto dial and answer, V21/N23, buffered terminal interface from 75-9600 baud, password access. Black steel case $230 \times 150 \times 50 \mathrm{~mm}$. Rear panel has lead with BT plug, 15 way D skt for radio interface (needs S5/8 - RS232 converter) and 12 V input skt. On the front panel there's these switches: extbaty/off; auto/manual answer; originate/answer; 300/1200; normal/intelligent. Comprehensive 36 page user manual (Photocopy for $£ 1.50$). Our Price $£ 50.00$

SEMICONDUCTORS
We've got millions - far too many to list here. Everything from diodes to micro -processors - all available on a seperate list, on request

28937 One to One 21/23 IAD CCITT V21/23 auto answer modem 300, 1200/75, 75/1200 baud full duplex. 1200 baud half đuplex Tx or Rx. Made by Master Systems Lid. Complete, new and boxed modem suitable for use with micro computers with RS232C intertaces. Professional quality modem featuring full auto dial, last number redial, selectable baud rates, speed conversion to allow DTE/DCE communications to proceed at an apparent $1200 / 1200$ baud (all functions operated by control characters sent from DTE). auto answer, internal bell or CCITT standards switch, and many other useful facilities. Comes with comprehensive 76. page manual, external power supply and 25 pin Din standard OCE Connector. $-15=$
$\mathbf{2 5 1 2 3}$ Modem. Fully functional brand new and boxed Standard $160 \times 100 \mathrm{~mm}$ Eurocard with DIN41612 connector. Only 300 baud, but at the price we're asking represents details - needs $\pm 12 \mathrm{~V}$.

Dataspectrum

25138 Modem serial intertace and software package. Plugs directly into spectrum edge connector. Baud rates $1200 / 75$. $75 / 1200,300 / 300$. Allows use of Prestel, Viewtext user-user comms with suitable modem. Includes Prestel telesoftware downloader. Main menu options include: Transmission Format selection, Prestel ID storage, Viewdata mode entry. Teletype mode entry, Frame processor, Mallbox editor, Save. Complete and new with cassette and user guide in plastic

Databeeb

25139 Intelligent comms ROM. Complete comms firmware allowing Prestel. Viewtext, Bulietin Board, Telex, Database, user-user comms with a suitable modem on BBC computer. Allows baud rates of 1200 / $1200,1200 / 75,75 / 1200,300 / 300$, 6001600 . Full fitting instructions and user guide supplied in
Onlastic case. $\begin{aligned} & \text { Only } \mathbf{c 7 . 0 0}\end{aligned}$

$\mathbf{2 4 1 3 2}$ Firing speed adjuster. Neat device for connecting between joystick and Atari/ Commodore etc computers. Switched pol enables firing speed to be changed. 9 pin ' D ' in and out.
SALE PRIGE ${ }_{2}$ FOR EI SALE PRICE 3 FOR EI SALE PRIGE 57.50 PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MANIMUM ORDER VALUE EIT2 + E3 PEP PER ORDER

SUMMER SAIECATALOGUE

GREENWELD 27 PARK ROAD, SOUTHAMPTON, SOI 3TB TEL: (0703) 236363 FAX: 236307

PACRN - PACRS = PACRN = PACRS All our packs contain top quality, brand new full spec components (unless otherwise stated) and represent incredible value for money! How do we do it? By purchasing bankrupt stocks and manufacturers surplus. It's too costly to sort and catalogue all these parts, hence these outstanding packs at extraordinarily low prices - so stock up now!!
Please note most packs are calculated by weight: quantities quoted are approximate, but we do try to ensure contents are at least the number specified.

SEMICONDUCTORS

K547 Zener Diodes. Glass and plastic, 250 mW to 5 W ranging from 3 V to 180 V . All readily identifiable, with list supplied.
Price
100 for $£ 4.95$
SALE
price
$£ 2.75$

K709 Bridge Rectifiers. Another superb value pack - could include anything from $1 / 2$ amp to $35 \mathrm{~A}, 25 \mathrm{~V}$ to 1000 V , plastic and metal.
Price.
20 for $£ 6.95$

SALE
 PRICE

K710 SCR's \& TRIACS. Big mixture could include all types from TO92 plastic up to DO5 stud mounting with a chance of everything in between! 25 V to $1000 \mathrm{~V}, 100 \mathrm{~mA}$ to tens of amps. Marvellous value.
Price 25 for £5.95
SALE
PRICE

K708 Voitage Reguiators. This is an excellent pack, made up from a huge variety of the + ve, -ve, flxed and varlable regulators from 1.2 V to $37 \mathrm{~V}, 100 \mathrm{~mA}$ to 5 A , plastic and metal.

Price
 25 for 86.95
 SALE
 PRICE
 85.00

K517 Transistor pack. 100 assorted full spec. marked plastic devices PNP NPN RF AF. Type numbers include BC114, 117, 172, 182, 183, 198, 239, 251, 214, 255, 320, BF198, 255, 394, 2N3904 etc, etc. Retail cost $£ 16.00+$
Special low price
85.95

SALE
PRICE

K575 Plastic Power pack. Mainly TO126 and TO220 transistors, SCRs, Triacs etc. All new full spec marked devices offering fantastic value. Lots of TIP and BD types.
Price.
$50 / 87.95$

SALE

PRICE
84.50

K576 Mixed pack of TO220 and 4 pin power mosfets with data and pinouts. Types may include: 2N7004/5/6/14, IRF620/710/720/820, IRF9520/9620, VN0300D etc

K528 Electrolytic Pack. Axial and radia some ready cropped for PCB mounting. This pack offers excellent value for money. Good range of values and voltages from $0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$. 6 V to 100 V
Price:
100/84.50
SALE
PRICE
<2.75
$K 518200$ Disc Ceramic Caps. Big variety of values and voltages from a few pF to $2.2 \mu \mathrm{~F}$; 3 V to 3 kV .
Price.
82.00

SALE
PRICE

$\varepsilon 1.30$

K530 100 Assorted Polyester Caps. All new modern components, radial and axial leads. All value from 0.01 to $1 \mu \mathrm{~F}$ at voltages from 63 to 10001 !
Super value at 83.95
SALE
PRICE

K582 Polystyrene Caps. An amazing range of values from a few pF to .01. Tolerances $1-20 \%$. Voltages to 500 V .

Price

Pack of 200/ 84.00
SALE
ع2.00
K560 We've now collected together enough semls to offer this pack again - it was extremely popular a couple of years ago. All types of semiconductor included - diodes, transistors, I.C.'s etc all new full spec and marked. Qty is aproximate depending on the number of power devices included.

Price
.Pack of approx $100 £ 5.95$
$300 £ 12.95$
$1000 ¢ 42.95$

CAPACITORS

K544 Multard Polyester Caps. Cosmetic imperfections, electrically OK. Wide range of values from 0.01 to $0.47 \mu \mathrm{~F}$ in $100,250,400 \mathrm{~V}$ working.
Price.
$200 / \varepsilon 4.75$
SALE
PRICE

K546 Polystyrene/ Mica/ Ceramic Caps. Lots of useful small value caps up to about $0.01 \mu \mathrm{~F}$ in voltages up to 8 kV . Good variety.
Price
100/ 82.75
SALE
PRICE
ع1.75

DACRS = DACKN = DACKS = DACKS

K580 Metal Oxide Resistors,TR4, 0.25 W by Electrosil. Wide range of values, mostly 5%, few closer tolerances. Super value for money
Price.
Pack of $200 /$ <2.00

SALE
 Price

K531 Precision Resistor Pack - High quality, close tolerance R's with an extremely varled selection of values mostly $1 / 4 \mathrm{~W}$ and $1 / 2 \mathrm{~W}$ tolerances from 0.1% to 2% - ideal for meters, test gear etc.
Prices 250/ £3.00
SALE
PRICE
$\varepsilon 1.50$
K572 Resistor Networks. Both SIL and DIL in here, from 6 to 16 pin. Plenty of popular values like $1 \mathrm{k}, 4 \mathrm{k} 7$ and 10 k , and a good sprinkling of many other values.
Pack of 100
C4.50
SALE
PRICE

K503 100 Wirewound Resistors. From 1W to $12 W$, with a good range of values.
Price

OPTO

K701 110V Indicators. This pack of neon indicators comprises round and square panel mounting types in red, green, amber and clear.

Price

Pack of 20 ع2.50

SALE

PRICE
$\varepsilon 1.75$

K539 LED Pack. Not only round but many shaped LED's in this pack in red, yellow, green, orange and clear. Fantastic mix.
Price ..
100/ £6.50

SALE

PRICE
£3.95
K806 LED Pack. Contains only red LED's round, square, rectangular etc, from 3 mm to $7 \times 2.5 \mathrm{~mm}$.
Price...100/ $£ 5.00$
SALE
PRICE
$\varepsilon 3.00$

K524 Opto Pack. A variety of single point and 7 segment LED's (incl. dual types) of various colours and sizes, opto isolators numicators, multi digit gas discharge displays, photo transistors, infra red emitters and reclevers.

Price
 25 asstd. 84.50
 SALE
 PRICE
 $£ 3.00$

K801 Seven seg. LED pack. Big variety of sizes in this pack. May include Red and Green, also overflow/ polarity displays, single/ double digit, also $7 / 8 / 9$ digit. magnified displays. Sizes from $0.11^{\prime \prime}$ to $0.8^{\prime \prime}$. 20 pieces for just

ع3.95

SALE

PRICE

52.50

K804 Lamp Pack. A superb quality pack containing a wide variety of small lamps. Many different types - wire ended, bi-pin, slide, MBC, MES, LES,TI, wedge, miniflange etc in voltages from 2.5 V to 220 V . Most are marked with voltage/ current.
Pack of 50
C4.00

SALE
 PRICE

$\varepsilon 2.50$

SWITCHES AND RELAYS

K532 Relay pack. We've now built up enough surplus relays to offer this popular pack once more. Could contain anything from 2 V to 250 V coils, SP to 6 pole contacts switching up to 10A!
Price 20 for s6.95
SALE
PRICE

W4700 Push Button Banks. An assortment of latching and independent switches on banks from 2 to 7 way. DPCO to 6PCO. A total of at least 100 switches.
Prices.
$100 /$ / 6.50
SALE
PRICE
§3.50

K587 A selection of toggle switches, mainly from page 122 of our 1990 Catalogue. Includes single pole to 4 pole sub min and min . Pack of $50, £ 30$-at cat prices.

K520 Switch Pack. 20 different assorted switches - rocker, slide, push, rotary, loggle, micro etc. Amazing value!
Price .. 2.50
SALE
PRICE

K542 Reed relays. Mostly DIL, single pole \& double pole also some changeover, these are manufacturers rejects, but a good proportion work. $5 \mathrm{~V}-50 \mathrm{~V}$ coils 50 assorted.
Price
c3.30

SALE

PRICE
$£ 1.50$
K569 Reed Switch Pack. A selection of about 15 types of reed switch from submin 12 mm long to 5 A rated 50 mm long, mosly form A (make), few form C (changeover).
Pack of 30
c3.25

SALE

PRICE
ع2.25
K715 DIP Switch Pack Tremendous selection of DIP switches, mostly from Page 121 of 1991 catalogue. Everything from 1-9 way at an astonishingly low pricel Pack of 20 3.25

SALE
 PRICE

$£ 2.00$
K592 Pack of 25 miniature rocker and lever switches from page 125 of the 1991 catalogue. 4.00
$K 593$ Pack of 25 push and slide switches from page 125 of the 1991 catalogue 3.50

K824 Rocker Switches, both miniature and standard, single and double pole illuminated red/green/amber and plain. Fantastic value.
Price.. $\mathbf{\Sigma 4 . 9 5}$
SALE
PRICE
$£ 3.50$

K825 As above but also included some liluminated push switches.
PricePack of 20 е2.95
SALE
PRICE

PACRS = PACRN = PACRN = PACRS

PLASTIC/SLEEVING

K564 PCB Stand-offs. A mixture of 8 different styles and sizes from 4.75 to 12.7 mm high

Price
 SALE
 PRICE
 . $100 / \varepsilon 2.95$

K826 Jumbo pack of plastic stand offs \& a few cable clips \& bits and pieces 1000 parts.
Price..

SALE
 PRICE
 £6.00

K533 Silicon Rubber Sleeves. 15 mm long, 5.5 mm bore, 1 mm wall.
Price .. 100/50p
SALE
PRICE

CONNECTORS

K557 Terminal Blocks. In all shapes and sizes, solder and screw from single way to 12 way in many different current ratings.
Price.
$20 / £ 2.95$

SALE

£2.25
K803 PCB headers pack with/ without ears, straight and right angle from 10-64 way.
Pack of 20
SALE
PRICE
$£ 3.00$

KBO2 Pack of DIN41612 connectors. These popular PCB connectors come as $32 / 64 / 96$ way. Both plugs and sockets, some with pins missing. Normally costing $£ 1-£ 3$ each.
Pack of 25
55.00

K822 'D' Type connector pack. a good assortment of these popular connectors - both plugs and sockets in 9, 15 or 25 way with maybe the odd $39 / 50$ way thrown in for measure.
PricePack of 30 £8.95 SALE PRICE
$\varepsilon 5.95$

K836 DIL Socket pack. A super selection of DIL IC sockets from 8 to 64 way, low profile and standard mntg, turned pin, tinned, gold plated, wirewrap and solder terminals.
Price
100 for $£ 14.95$
SALE
PRICE
$\Sigma 9.95$
K837 Lead pack. assortment of signal and power leads terminated with a variety of plugs and sockets
Price... 25 for £3.95 SALE PRICE

K562 Edge connectors. Mostly 0.1 pitch, some $0.15,0.156$ and 0.2 as well. Single/ double sided, tinned/ gold plated, solder/ wirewrap/ PC connections.
Price....................................Pack of 20 £3.95
K705 PCB Headers. SIL \& DIL PC mounting header plugs straight \& right angle mostly 0.1 "pitch in a variety of ways from 3-30.

Price.
Pack of 100 ع6.00
SALE
$£ 4.00$

MOTOR + GEARPACK

K579 This pack contains 10 assorted battery powered motors (mostly 3 V) +90 gears etc, $16-60 \mathrm{~mm}$ dia + worms and shafts amazing value.
Priec.. 57.95
SALE
PRICE
$\varepsilon 6.95$

HARDWARE

K553 2BA screw mix. Mostly steel, few brass/nylon elc, cheesehead, hex, countersunk, slot \& pozi, mainly in lengths from $7-63 \mathrm{~mm}$. Excellent selection.

Price

100/\&2.60

SALE

PRICE
$\varepsilon 2.00$

K552 4BA Screws. - Super mix of types, mostly steel, with round, pan, cheese, c/s heads in lengths from 5 mm to 50 mm . Great value

K811 6BA screws. Nearly all pan head pozi in plated steel. Lengths to 16 mm :
Pack of 100..................................... ع1.50
SALE
PRICE

K807 M3 screws. Good selection of sizes including a few brass. Most heads. Lengths to 35 mm .
Pack of $100 \ldots$
SALE
PRICE

K808 M4 screws. Huge variety! Pan, c/s, cheese, set, slot, pozi. From $4-50 \mathrm{~mm}$ long. All steel, plated, black/ hi-tensile.
Pack of 100..................................... \&1.60
SALE
PRICE

K800 M5 screws. As above.
Pack of 100 .. ع2.00
SALE PRICE \& 0
$\varepsilon 1.60$

K833 M6 Pack. Excellent value - contains screws in various lengths and head. Mostly steel some hi-tensile

.............Pack of 100 £4.50
 SALE $2=300$

K830 M8 screws and bolts. Good assortment from $16-90 \mathrm{~mm}$ long c / s, hex, pozi some hi-tensile. All steell
Price
Pack of 50 E3.80

$541=$
 PRICE
 $\varepsilon 230$

K831 M10 Bolts. Mostly high-tenslle hex head, lengths from $16-90 \mathrm{~mm}$
Price.
Pack of $20 £ 3.20$

$5 A 1=$
 PRICE
 I2.00

K832 M12 Bolts-mostly high-tensile hex head, lenghths from $40-15 \mathrm{~mm}$.
Price.
Pack of 10 £2.40

SALE
 PRICE
 £1.70

K820 Large bolts and set screws. Could weigh as much as 150 g each (up to 16 mm dia $\times 90 \mathrm{~mm}$ long). Practically all are steel. Many different heads.
Parcel welghing $\mathbf{5 k g} . \& 10.00$

SALE
 PRICE

K595 Big mix of screws - very few BA, mostly metric, BSF, Whitworth, DZU etc. Tremendous varlety of heads - cheese, cs, pan, hex, allan, round etc, etc. As for size, well we've seen some as small as 3 mm and a few as long as 80 mm . There's even some 12.5 mm dia in this pack! You'll probably also find a few odd clips, washers, nuts etc, too. 500 gm pack $£ 2.70$

SALE
 PRICE
 $\Sigma 2.00$

27005 Screw and nut pack 1_{4} " Whit: 25 each of $38 \mathrm{~mm} \mathrm{C} / \mathrm{S}, 25 \mathrm{~mm} \mathrm{C} / \mathrm{S}, 63 \mathrm{~mm}$ (threaded 14 mm) hex bolts and 25 mm (threaded 14 mm) hex bolts +100 steel nuts.
PricePack of 200 parts 85.00
PALE
PRLE
K812 Pack of 100 assorted rivets $\mathbf{\Sigma 1 . 8 0}$

K550 Self tapping screws. both pointed (AB) and blunt (B) in an assortment of sizes from 6 mm to 32 mm long. No4 to No8 hex and Pozi head. Excellent value

Price...

200 for $£ 1.50$
SALE
PRICE
$£ 1.25$

K596 Assorted nuts, believed to be all BA slze from 2BA-8BA. Mostly steel
Price.
Pack of 200 ع2.40
SALE
ع1.90 MINIMUM ORDER VALUE E12 + E3 PER PER ORDER

PACRS - PACRS = PACI

K535 Spring Pack Approx 100 assorted compression, extension and torsion springs up to 22 mm diameter and 30 mm long.
Price..................................... 1.70
SALE
PRICE

K527 Hardware Pack. This has a large variety of PK (caps) and self tapper screws from $2 \times 1 \frac{11 / 2^{\prime \prime}}{}$ up to $8 \times 1 \frac{14}{}{ }^{\prime \prime}$ also washers, some BA, metric and Whit. Screws plus other miscellaneous brackets, captive nuts and bits and pieces. 1 kg (up to 1000 pleces).
Price....
SALE
PRICE
$\varepsilon 2.50$
K599 Captive, shakeproof and locking nuts in sizes from 2BA to 6BA, mostly alloy.
Price per pack of 100 83.20
SALE
PRICE

K821 PC pins - SS \& DS, Insulated and plain for holes $0.8-1.2 \mathrm{~mm}$
Price........................Pack of $200 £ 1.50$
SALE
PRICE

MISCELLANEOUS

K555 Fuset. A marvellous selection of $15,20,25$ and 32 mm fuses both cartridge and wire ended in quickblow and antisurge varieties. May be anything from 32 mA to 50A!!
Price ... 100/ £3.95
SALE
PRICE

K829 Transducers. Piezo, electromagnetic, permanent magnet in assorted sizes from 15 mm dia upwards. Lovely mix.
Pack of 25.
83.50

K823 Pack of 10 piezo and electromagnetic transducers, PC mounting and with leads. Various sizes and shapes from $15-30 \mathrm{~mm}$ dia. Manf'rs include Star and Murata. Supplied with info sheet showing drive circuits etc. 52.50

K834 Thermal Fuses.- 104, 109, 121 \& $152^{\circ} \mathrm{C}$ some with cropped leads.
Pack of 20...22.95
SALE
PRICE
2.00

K581 Copper clad board. A selection of single and double sided, mostly fibreglass in useful sizes:

K835 Transformer Pack. All mains primary, secondary range from $6-24 \mathrm{~V}, 0.5$ to 2 A .
Pack of 25.
C18.00

SALE
 PRICE

$£ 10.00$

$K 574$ Wire link pack. A wide range of sizes from 3 mm to 50 mm for use with Breadboards or PCBs. Some are bare, a few are not preformed.
Price per pack of 250
81.00

SALE
PRICE
K561 Coils and Chokes. Pot cores, IF cans, open wound coils, chokes, etc from 'a few $\mu \mathrm{H}$ upwards in a wide variety of slzes and values.

of assorted TOKO RCL coils, mainly in $10 \times 10 \mathrm{~mm}$ screened cans.
Price

SALE
 PRICE

K541 Printed Circuit Boards. A wide variety of high quality printed circuit boards including audio, RF, digital etc all covered in components - resistors, capacitors, transistors, ICs, LEDs, switches etc, etc. A big pack of 2 kg .
Price Only $£ 7.00$
SALE
PRICE
$K 712$ Crystals Mostly HC60 and HC18U in a wide variety of frequencies from a few hundred kilohertz to many megahertz and the odd crystal osclllator module or two.
Price
20 for $\$ 4.95$

SALE
 PRICE

84.00

K713 Fusehoiders. Panel and chassis mountling from a baslc clip to high current enclosed types for 15,20 and 32 mm fuses.
Price for pack of 50.

SALE

PRICE
£3.00

Power Supply Parcel

K506 This one's an absolute geml Contains a selection of conventional and switch mode power supplies, including AA12531, Z660, (these 2 alone are worth what we're asking for the entire parcel!) Z5307/ 8 Z5226/7 + lots more! Parcel of 10 orlginally selling for $£ 40+$.

SALE

PRICE
£15.00

24357 Clock Radio by Ross. Extremely neat unit measuring $140 \times 80 \times 35 \mathrm{~mm}$. MW/FM bands, telescopic aerial, stand, carrying pouch and strap. Clock has LCD display and can be used in 12 or 24 hr mode. Alarm. Light. Earphone socket. Takes $2 \times$ AA cells.
Great value at
$\varepsilon 13.95$

28891 Superb 4 waveband radio by Ross, model RR5. Covers FM $88-108 \mathrm{MHz}$, MW $518-1610 \mathrm{kHz}$, LW $150-275 \mathrm{kHz}$ SW $5.7-18.1 \mathrm{MHz}(16.5-52.6 \mathrm{~m})$. Nicely styled case measuring $210 \times 145 \times 70 \mathrm{~mm}$ with clear scale markings. Telescopic aerial, headphone socket. Volume, tone and tuning controls. ON/OFF switch/waveband selector switch and AFC switch. Mains/battery. (Takes $4 \times C$ cells). Originally retailed at $£ 19.95$
Our Price.
814.95

 $2808932 \times$ TC5514AP- $31 \mathrm{k} \times 4$ STATIC RAM, plus tew other

 chips etcmo.
SALE PRICE $£ 1.50$
$2809012 \times$ M5M5165P-15L $8 k \times 8$ STATIC RAM, olus tow other chips etc
Prow ...4.00
SALE PRICE $£ 2.0^{\circ} 0^{\circ}$ $280928 \times H M 3-6514-9 \quad(1 \mathrm{k} \times 47)$ RAM plus fow other
chios.

SALE PRICE 50P'

Z 8093 Till display. Plastic housing $200 \times 95 \times 45 \mathrm{~mm}$ contains PCB $195 \times 70 \mathrm{~mm}$ with 87 -seg HP LED'S type 5082-7651, red 0.43 CA ; 165 mm red leds, 8255 programmable interfaca and other chips etc.

Prtce

SALE PRICE $£ 1.50$

2030 This add-on connects to the user port of the C64 and gives a serial output to a 5 way domino plug. Believed to be new and working. Components on the panel are 27256. 6502, $02,174,4049,52,60$. Cased.
Price ... Reduced to $\mathrm{E3} .98$
SALE PRICE $£ 2.00 £ 1.50$

Wotor Panela

PCB $92 \times 31 \mathrm{~mm}$ with mercury titt switch, 2 VTL 10 D 2 opto slotted switches, length of 11 core cable with socket and siepper molor as described above.
ortor Code

1W Amplifier - mono
ze14 Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives 1W output with 9V supply. Switch and vol control. Just connect battery and speaker. Full detalls supplied.
Prieses …..................... Only c1.50 $\quad 25+0.80 \quad 100+0.60$
SALE PRICE 75P

1 W Amplifier - Stereo

2915 Stereo version of above $115 \times 65 \mathrm{~mm}$, featuring
$2 \times$ TBA820M and dual volume control

benc: 2acaceaio

 SALE PRICE $£ 1.50$25075 Interesting panel $155 \times 80 \mathrm{~mm}$ crammed with top quality components: SAB80C535 CMOS microcontroller for external RAM in socket (DP $\{10.95$); 27 CP128 EPROM in socket; $5 \times$ LM339 + other chips, SIL resistors, DIL switch, socket, $5 \times$ LM $5 \times 24 \mathrm{~V}$ relays with DPCO contacts
IDC plugs and 5×24 Price.

24279 Interesting little panel ($75 \mathrm{~mm} \times 40 \mathrm{~mm}$) with 16 position BCD channel switch (24 pins). 2 dual green 7-segment displays: 2 min keyboard switches, and a short A4093. Attached by a short length of rlbbon cable is a second panel (same size) with 4518,4019 and 2×5068 chips. Supplied with circuit.
SALE PRICE 81.25

24238 Supert panel 340×200 packed with high quality parts, giving outstanding value for money! 6809 microprocessor In socket 6840, 6850, 6844 support chips; $6 \times 27128-25$ EPROMS in sockets; 9×8264 A-10 RAMs; over 50 other chips, LS, linear etc.
Price ...ed to $¢ 15.00$ SALE PRICE $£ 7.50$

25044 Neat display panel comprising 2 boards, each $66 \times 63 \mathrm{~mm}$ held together by $4 \mathrm{~W}, 6 \mathrm{~W}$ and 18 W plugs and sockets. Top panel has 3×7 seg $0.3^{\prime \prime}$ amber displays MAN4610A in sockets, $2 \times$ HC374, HC368, $3 \times$ BC184 + R's C's etc. Lower panel has 27 C64 in socket. HD63B03. HC138, HC373. R's, C's etc.
SALE PRIGE £1.25

RANCE!!!

HIGH QUALITY ICL COMPUTER PANELS - 2 types, the first a mother board and the second a panel which plugs into the first.
24209 Panel $360 \times 210 \mathrm{~mm}$ covered in high quality chips: 8085AHC, 8255, 8257, 8251AX2, $8253-5,8275$, 8202A, 2732, 2716, all in sockets; $18 \times 4116-2+$ other mainly LS chips + min switches, LED's, oscillator, large tants, 3×50 way double sided edge connectors. Amaztants, 3×50 way double sided edge connectors. Amaz-
ing value at only..
Nosile PRICE $5500^{\text {co.0s }}$

SALE PRIGE $£ 5.00$

24210 Panel 260×210 which could plug Into the above board. Lots of memory on this one: $36 \times 4116-20$. Also 8085 AC, 8202 and 2716 in sockets +55 other mainly LS chips, DIL switch, large tants etc.

12MEG MEMORY BOARD

28900 Massive panel $460 \times 400 \mathrm{~mm}$ smothered In chips Could be a complete computer judging by the IC's on the board. Made by Whitechapel Computer Works. Contains at least the following (some panels have extra chips):
$54 \times 4164-15$ RAM's; over 20074 LS, F and other logic chips; $3 \times 4016-3,2 \times 8253-5,8251,2 \times 5516,6 \times 1$ als. $3 \times{ }^{\prime} \mathrm{D}^{\prime}$ Plugs and sockets, $3 \times$ DIN 64 way socket, + R's. C's etc. Price equivalent to 4164's (a 30p each and rest of chlps \&u 3p each!
SALE PRICE E15.00

21699 Mini inverter - This handy PCB $31 \times 23 \mathrm{~mm}$ uses a 2 transistor circuit to provide a 60 V peak ac supply (20 V dc @ 1 mA) from a $3-7 \mathrm{~V}$ dc input. Can be used to drive $\mathbf{Z 1 6 3 7}$ LCD or for powering vacuum displays. Originally used in Newbrain computer.
SALE PRICE 6/ 51.00

25231 Memory panel, contains 2084164 64k RAM chips all in sockets. $£ 30.20$

SALE PRIGE $\quad \$ 15.00$

Along with the panels $\mathbf{Z 5 2 3 1 / 2}$ mentioned on page 12 (which are here now) there are a great many packed with hi-tech chips - not just 74LS, but 280 and other processor chips, EPROM's etc. The boards are $430 \times 320 \mathrm{~mm}$ and mostly contain over 250° chips, date coded '84. Order Code 28967 - clearing at £5 per panel - but to get a good mix, you'll need 2 or 3 boards.

SALE PRICE $£ 2.00$

More GEC Cablevision units - these were the rack mounted distribution panels. 2 types avallable as below:

25204 Diecast housing $252 \times 140 \times 25 \mathrm{~mm}$ (subscriber module) contains PCB with lots of nice high frequency bits, much of which is containedwithin 2 diecast boxes bolted on to the board. Most of the transistors (there are 17 of them) are BF980, BFR90A91A BFW92 etc. Single output socket, 2 DIN4 1612 plugs. Great value at $£ 4.50$

SALE PRIGE $£ 2.50$

25272 PCB 71×64 with SPO256 speech chip. 2. support chips and few other bits and 5 pin DIN plug. 22way edge connecter. These are returns and may be faulty - but they are only 50p each!!

SALE PRICE 4 FOR EI

25263 Panel $80 \times 60 \mathrm{~mm}$ with FPT100A phototransistor, LM324 quad op amp, 24v SPCO heaw duty relay. BC546, diodes, R's and C 's, Smashing little board - only $£ 1.00$

SALE PRICE 2 FOR E1

25244 Mosfet panel: $56 \times$ VN0808M (DP 1.01 each!) 80 V N-channel 1W $2 A$ device in TO237 case $+28 \times$ ILCT6 8 pin opto isolators, also $30+$ CMOS, 74 SC etc; 26 SIL networks, 560.1 uF caps and a lew other odd bits. Super value - only $£ 7.50$

SALE PRIGE

$\$ 4.00$

25271 Some more Currah Microspeech returns, for the Spectrum. No tape or handbook, sold for spare parts only. The 67 x $65 \times 18 \mathrm{~mm}$ case has a 28 w edge socket, phono lead, 3.5 mm jack plug lead and phono socket. Inside is 78 MO 5 reg. SPO 256 speech chip and 2 support chips, trimming cap. transistor etc Onty $£ 1.50$ each to clear.

SALE PRICE $£ 1.00$

Controller Boards

PCB $175 \times 122 \mathrm{~mm}$ containing a wealth of components -80 C 39 CPU, $4 \times$ TLO66, TL094, CMOS and 74 series chips. $8 \times$ TO126 transistors, 13 TO92 transistors and lots of R's and C's etc also a 3 V lithium bathery. 3 connectors on it go to (a) card reader (b) motor panel \& (c) display panel which is identical to our 2027 (P111 of Catalogue).
Order Code
Reduced to.
25047

SALE PRICE
 $\$ 1.00$

25203 Relay panel - some panel, this! 50, yes 50 DPCO 24 V DC min relays, Omron type G2V (our type W834) on PCB $230 \times 160 \mathrm{~mm}$ with $2 x$ DIN41612 64 way plugs. At 1 off prices, this would cost around $£ 100$, but you can have a complete panel at just 20 p per relay - that's only $£ 10.00$!

SALE PRICE $£ 5.00$

.25048 Panel $275 \times 178 \mathrm{~mm}$ containing some excellent components: $2 \times 082431 / 0$ expander, $8035 \mathrm{CPU}, 8253$ timer, 2651 USART all in sockets, 2×2111 A-4 RAM, 25 mostly CMOS chips, $8 \times$ TO126 transistors, $5 \times$ TO92 transistors, R 's. C's etc: 26 W IDC plug, 2×34 W IDC plugs, $2 \times$ xtals.

$\overline{2672}$ Newbrain motherboards. Complete but probably faulty..
SALE PRICE $£ 2.06$
2674 Newbrain data. Interfaces and connector pin out i/p, o/p, port map, cct diagram + data on CP420C. (This i/p, o/p, port map, cct diagram + data on CP420C. (This
lot replaces cct diag only for 75 p)........................ $\mathbf{E} .00$

z4320 Kilostream Multiplexer Panel $300 \times 210 \mathrm{~mm}$ with 4×25 way ' D ': sockets, 15 W ' D ' socket Z84C42 $\times 3$, Z84C 30×2, CMOS Z80 CPU, 6264 RAM, 30 assoried CMOS/ TTL/ Linear chips and nice power supply comprising a potted transformer with mains input and 0-9V, 0-9V outputs both at 1A, 7812, 7915 and 7805 regs. Also Xtal. 64 way connector, switches etc. Now even better value.

Price

SALE PRICE
£2.25

24321 Expander Panel tor above. $230 \times 170 \mathrm{~mm}$ with 4×25 way ' D ' sockets, $2 \times$ Z84C42, Z84C30. $8 \times 45406+7.74$ enips. Also short length of 64 way ribbon cable with IDC socket. This panel is complete.
SALE PRICE
Roduced to $\mathbb{5 3 . 0 0}$
$\$ 1.50$

INSTRUMENT CASE

$Z 8969$ Superb heavy duty steel instrument case finished in light grey $426 \times 290 \times 78 \mathrm{~mm}$ with 4 plastic screw on feet. This was an Isolan repeater for use on a data network, and although the contents have been removed (before being used), the front and back panel remain, the former having 4 oblong red LED's and the latter a fused, suppressed IEC mains inlet, on/off DP rocker switch and 2×15 way D sockets joined to 16 way IDC skts with a short length of ribbon cable. Ther's a 60 mm circular cut-out for a speaker on one side and mounting pillars in the base. Just look around and see the price this type of high quality case normally costsl - somewhere around the £30£40 mark - then compare il to our low, low price - Just $£ 9.95$
SALE PRICE $\quad \mathbf{7 . 5 0}$

HITACHI

SCOPES

DC to $50 \mathrm{MHz}, 2-C h a n n e l$, DC Offset function, Alternate Magnifier function
V-525 Include CRT Readout \& Cursor Measurement $£ 875.00$ V-523 Include Single Time Base Deiayed Sweep $£ 852.00$

Prices include VAT and next day delivery UK mainland only (Cash/credit card; allow clearance time for cheques)

ALSO V209 DC-20MHz dual channel battery operated portable model

CUMMID SAII CAIAIDEEIB 15

CAPACITOR CLEAROUT!!!

 We've several million capacitors in stock, covering nearly every possible type - but the ones that take up the most room are large value smoothing caps - just look at these bargains!!!
POWER SUPPLY CAPACITORS

Incredible value - these two jumbo electrolytics are offered at a fraction of their normal price!! Screw top cans made by Siemens, type B41455:
Z5146 10,000 F F 100V $105 \times 64 \mathrm{~mm}$ dia $£ 4$; Box of 20 £60; 100+2.00; $1 \mathrm{k}+1.70$
Z5147 4700 $\mu \mathrm{F}$ 100V 105 51mm dia £3.00; Box of 35 £70; $100+1.50 ; 1 \mathrm{k}+1.20$

SALE PRIGES HLL MTVS: 0101055

POWER SUPPLY CAPACITORS
These high value, high ripple current cans are made by
BHC/LCR and are of excellent quality and value,

CAPACITANCE

Code Value Voltage Ripple Mnfir lxd Mfr's $\mathbf{Z 4 3 4 3} 2200 \mu \mathrm{~F} \quad 40 \mathrm{~V} \quad 2.7 \mathrm{~A} \quad$ LCR $45 \times 26 \quad 2.12$ $\begin{array}{lllllll}24345 & 10,000 \mu \mathrm{~F} & 40 \mathrm{~V} & 4.9 \mathrm{~A} & \text { BHC } & 56 \times 41 & 3.89\end{array}$ $\begin{array}{lllllll}24346 & 15,000 \mu \mathrm{~F} & 25 \mathrm{~V} & 5.5 \mathrm{~A} & \text { BHC } & 56 \times 41 & 3.96\end{array}$ Prices:
Z434360p $25+0.45 \quad 100+0.30$

ALL HALF PRICE

Resistors

Low value wirewound

21877	OR1 9W	6 for $£ 1$
21878	OR27 9W	6 for \&1
Both available in boxes of 250 ¢ ¢15 per box.		
20173	1R2 $21 / 2 \mathrm{~W}$	All at the
21086	1R5 $21 / 2 \mathrm{~W}$	same price
20873	2R221/2W	100/ 83.00
20102	56R 5W	
All available in boxes of 1000 ll C15 per box.		

1 Watt Carbon Film

20872	1R2	All
20703	1 k	2k2
20286	$21 / 100$	
All avallable in boxes of 1000 (u c5 per bos		

(b) Capacitors, electrolytic axial leads

Code Value Volls Mnf'r Size $1+100+$ $\begin{array}{lllllll}24420 & 100 & 100 & \text { LCR } & 26 \times 13 & \text { 70p } & 0.40\end{array}$ $24421 \quad 220 \quad$ Novea $75 \times 26 \quad$ E2.00 1.20 $24422 \quad 1000 \quad 63 \quad$ Novea $40 \times 21 \quad$ \&1.00 0.60 22319 Phillips bandoliered caps, $47 \mu 25 \mathrm{~V}$ Radial. 12×6.5 dla.
Price Pack of $20 £ 1.00100+0.025 \quad 1 k+0.015$
ALL HALF PRICE

(c) Capacitors, non-electolytic axtal leads
(*Radial 10 mm pitch) inc close tolerance
Code Value Volts Mnf'r slze $1+100+$ 244230.1 to $0.13 \times 11 \times 5^{\circ}$ 4p 0.02 $\begin{array}{lllllll}\mathbf{2 4 4 2 5} & 1 & 63 & E F D & 18 \times 7 \times 7 & 24 p & 0.12\end{array}$ 24426 1 E3 EFD $18 \times 7 \times 7$ 10p 0.06 $\begin{array}{lllllll}24427 & 1 & 630 & \text { EFD } & 31 \times 27 \times 19 & 20 ; p & 0.12 \\ 24428 & 22 & 63 & \text { EFD } & 32 \times 18 \times 7 & 40 p & 0.20\end{array}$

ALL HALF PRICE

202284 DIL multilayer ceramle caps - 2 pin, so can be packed closely together on PCB using standard DIL spacing. Only one value -0.22μ. List price on these is $98 p$ each.
\qquad

Priceck of ह ©1.00 $100+0.10$

2 PACKS FOR E1.00 Joystick

2004 Skeleton Joystick, switch type. Good quality, made by AB. Brass spindle has 44 mm long black plastlc handle attached. Body has 4 mounting holes. These really are a tantastic, bargain!!

SALE

PRICE
2 for $£ 1.00$

AUCTION

After our Summer Sale, we'll be holding a postal auction of much of our surplus stock. Lots will vary in size according to the quantity available for disposal. Goods may be viewed at our premises in Southampton by appointment, or you can rely on the description In the catalogue. To register for a catalogue when it becomes avallable in September, please quote Order Code 25555

16 SUMMER SAIE CAIAI DCUE

Г-I 三 SIVITCD
 POIVER SLIPPLIES
 28887 Made by STC, this $160 \times 100 \mathrm{~mm}$

AA12531 Switch mode PSU by Astec partially cased. $160 \times 104 \times 45 \mathrm{~mm}$ overall with $160 \times 100 \mathrm{~mm}$ Eurocard PCB. Inputs and outputs are on colour coded flying leads. Input $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Outputs: +5 V @ 5 A ; $+12 \mathrm{~V} @ 0.15 \mathrm{~A}$. Total wattage 50W.

£6.95; $25+5.43 ; 100+4.53$

SALE PRICE
 $£ 4.95$

Conversion KIt
K725 This kit converts the AA12531 PSU into a much more versatile supply, giving +5 V @ 2.5A; +12V@2A; -12V@ 0.1A and -5V@ $0.55 A$. Complete set of parts and full instructions £3.50 Instructions only (K726) £1.00

BM41012 Superb switch mode PSU made by Astec. Enclosed case $175 \times 136 \times 65 \mathrm{~mm}$ with switched and fused IEC mains inlet. $160 \times 80 \mathrm{~mm}$ PCB with output pins extended to external connector. Input $115 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Outputs: +5V@3.75A; +12V@1.5A; -12V @ 0.4A. Total wattage 65W
\&14.95; $25+11.70 ; 100+9.75$

SALE PRICE
 $£ 9.95$

panel is attached to an aluminium chassis. $165 \times 102 \times 65 \mathrm{~mm}$ and has a single 5 V 6 A output. Supplied with connection details, we can offer these at a fraction of their normal cost!
Price $55.9510+4.30100+3.43$

SALE PRIGE

$E 2.95$
28888 A larger version of the above, PCB $220 \times 100 \mathrm{~mm}$ and chassis $225 \times 102 \times 65 \mathrm{~mm}$ providing a single 5 V 10A output. Supplied with connection details.

Price Only ع8.95 $10+6.50100+5.20$

SALE PRICE $£ 4.50$

25280 Neat switch mode PSU on panel $120 \times 100 \mathrm{~mm}$ and only 32 mm high. Mains input via skt supplied, 3 outputs on socket are +5 V @ $2 A ;+12 V$ @ $0.3 A ;-12 V @ 0.2 A$. These have been removed from equipment, but are clean and in full working order. $\mathbf{E 7 . 5 0}$

SALE PRICE
 $£ 4.95$

25256 Switch mode PSU made by Tamura Corporation. Board $195 \times 100 \mathrm{~mm}$ with outputs on PCB pins. Input 120/240V ac; Outputs: +5 V @ 7.5Ai +12V @ 1.25A (2A peak); -12V @ 0.1 A . All this for just $£ 12.95$
 $190 \times 78 \mathrm{~mm}$. 120/240V ac input. Outputs: +5 V @ 3A; +12V@1.2A;-12V@ 0.1A. Made by Tamradio, Japan. Only $£ 7.95$
SALE PRICE
£ 4.95

28923 Intelligence SM060 80 Watt unit $180 \times 110 \times 57 \mathrm{~mm} .120 / 240 \mathrm{~V}$ input, and unusually 4 outputs: (Max rating per output quoted - total load must not exceed 80W): +5V@6A; +12V@2A; +25V@3A; -12V@500mA.

C22.95

Price

£14.95

Famell NO55P
 Power Supplies

We've taken delivery of these popular supplies from several different sources, and now have the following models available. All are switch mode $115 / 230 \mathrm{~V}$ input rated 55 watts max. Size of cased units $182 \times 112 \times 55 \mathrm{~mm}$, uncased size $160 \times 100 \times 40 \mathrm{~mm}$. Suffix $E=$ ex-equip

25304 Model 326, cased. Outputs: $+5 \mathrm{~V} 3 A$; $+12 \mathrm{~V} 0.1 \mathrm{~A} ;-12 \mathrm{~V} 0.1 \mathrm{~A}$. Price $£ 12.95$

SALE PRICE $£ 7.95$

Z5312E Model 401, cased. Outputs: +5V 6A; $+12 \mathrm{~V} 3 \mathrm{~A} 12 \mathrm{~V} 2 \mathrm{~A} ; 5 \mathrm{~V} 1 \mathrm{~A}$. Price £11.95
SALE PRICE E6.95
Z5313E Model 210. Outputs: $+5 \mathrm{~V} 2.5 \mathrm{~A} ;+12 \mathrm{~V}$ 1A. Price $£ 5.95$

SALE PRICE $£ 3.95$

Z5318E Model 400, cased. Outputs: +5 V 6 A ; $+12 \mathrm{~V} 3 \mathrm{~A} 12 \mathrm{~V} 2 \mathrm{~A} ; 24 \mathrm{~V} 1 \mathrm{~A}$. Price £11.95
SALE PRICE E6.95
Z5319E Model 413, cased. Outputs: +5 V 6A; +12V 3A 12V 1A; 12V 1A. Price £11.95
SALE PRICE E6.55
Z5334 Model 314, Outputs: +5V 3.5A; +12V 3A -12V 1A. Price £14.95

SALE PRIGE E10.95

Z5320E Model 430, cased. Outputs: +5 V 6 A ; +12 V 1 A 10 V 0.75 A ; 8V 0.75A. Price £11.95
SALE PRICE E6.95
Z5321E Model 430M, cased. Outputs: +5 V $4.5 \mathrm{~A} ;+12 \mathrm{~V} 1 \mathrm{~A} 10 \mathrm{~V} 0.75 \mathrm{~A} ; 9 \mathrm{~V} 0.75 \mathrm{~A}$. Price £11.95
SALE PRIGE E6.95

SALE PRICE $£ 1.00$

25223 Psion printer power supply, input $220 / 240 \mathrm{~V}$ ac via lead and 2 pin Euro plug. 10.4 V 600 mA DC output on 2 m lead with 2.5 mm power plug. $£ 3.00$

£2.50
25133 'Touchmaster' PSU. 2 pin plug in wall type with 2.5 mm power socket. Output 6 V 300 mA DC. Price E1.50

25143 Plug in power supply giving 7.5 V 600 mA on the end of ${ }^{\text {SALE }}$ PRICE

25307 Adastra A130 3 way mains adaptor $80 \times 52 \times 51 \mathrm{~mm}$, brand new and boxed plug in type. Switched output 3-4.5-6V @ 100 mA , unregulated DC. White case. Complete with 4 way spider lead and reversing plug and socket. $£ 2.50 ; 25+1.55 ; 100+1.00$

SALE PRICE $£ 1.50$

 25308 Plug in wall power supply $77 \times 50 \times 43 \mathrm{~mm}$ giving 24 V at 100 mA AC at the end of a 2 m lead. $£ 1.50 ; 25+0.85 ; 100+$ 0.60
SALE PRICE $£ 1.00$

25225 Universal mains adaptor, plug in type 240 V ac. Output switchable 3-6-9V @ 300mA on end of short lead with 2 pin socket £2.00

SALE PRICE

$£ 1.25$
25226 Plug in 240 V ac unlabelled power supply with short lead and 5 pin DIN socket. Outputs: 18V@250mA ac and 10V@500mA ac. $£ 3.00$

SALE PRICE

$£ 2.00$
Z5276 Plug-in-wall power supply with 2 m lead fitted with 2.5 mm power socket. Output 12V 0.2A DC. Fitted with thermal fuse. $£ 2.00$

> SALE PRICE E1.50

Z5222 Psion Organiser power supply. Plug in type, $220 / 240 \mathrm{~V} \mathrm{ac}$. Output 10.4 V 175 mA on 2 m lead with 2.5 po wer plug $£ 2.00$
SALE PRICE $£ 2.50$

25227 Plug in 240 V ac Beautronix power supply. Output 9 V 333 mA on 2 m lead with 2.5 power socket. £2.00

SALE PRICE
 $£ 1.50$

25224 Jupiter Ace mains adaptor (there's a bit of history!) plug in type 240 V , output 9 V 800 mA on 2 m lead with 3.5 mm plug. $£ 3.20$ SALE PRICE $£ 2.50$ 25278 Plug in wall type, 24 V ac 1.00 mA ouiput on 2 m lead. $£ 1.75100+1.10$

SALE PRICE
 £1.25

25279 Flug in wall type switchable nonregulated $3-6-9 \mathrm{~V}$ 100mA. Comes complete with multiway reversible spider lead (worth 99p on it's ownl). Special Price $£ 2.00$ 100+ 1.25

SHE PRUE

$\{1.50$

BBC POWER SUPPLIES

Z5300 BBC (early model) computer power supply returns. All complete, but may be faulty. ©2.50

SALE PRICE $£ 1.50$

Z5301 Complete panel including transformer from BBC computer PSU. Believed unused some are very dusty! £3.00
SALE PRICE
$£ 2.00$

2975 PSU - Mains input via 13A bultt in plug. Output 14V 600 mAAC . Case $00 \times 00 \times 00$.
SALE PRICE $\quad 1.75$

28921 - Apricot PSU - beautiful unit $160 \times 110 \times 55 \mathrm{~mm}$ with IEC switched mains inlet. Made by Astec, Model BM43024. $120 / 240 \mathrm{~V}$ input. Outputs: + 5V@2.5A; +12 V (a2A.

Price
 SALE PRICE $£ 9.95$

18 SUMMED SAIE CATAIOEUD

Two 5 watt regulators PCB mounting, DC-DC converters These are encapsulated in a $51 \times 51 \times 10 \mathrm{~mm}$ package with output pins on 0.1 pltch. These are ex-equlp but guaranteed DP 559.75 .
21803 Input $48 \mathrm{~V}(43-52 \mathrm{~V})$, output 5 V 1 A
SALE PRICE $\$ 1.25$
z1804 Input 48 V (43-52V), output 12 V 420 mA .
Price..e2.80 $100+1.00$
SALE PRICE $£ 1.25$

2660 Astec switched mode PSU type AA7271. This small PCB, just $50 \times 50 \mathrm{~mm}$ will accept $8-24 \mathrm{~V}$ input and give a stable 5 V dc at up to 2A output. The 6 transistor circuit provides current overload protection, thermal cut-out and excellent filtering. Offered at a remarkably low price.

Price
 SALE PRICE $\{2.50$

28890 DC-DC CONVERTER BOARD These panels 220×195 require 50 V DC input for 5V 19.5A output. Inputs and outputs on DIN41612 connector. These brand new panels made by STZ are now being offered at just:
Prices …........ $67.95 \quad 25+5.20 \quad 100+3.89$
SALE PRICE
$\{5.95$

STC POWER SUPPLIES

These are extremely well made linear power supplies by STC (series 15) offering exceptional value for money. Chassis size $124 \times 100 \times 41 \mathrm{~mm}$. input voltage can be 100, 120, 220, $230,240 \mathrm{~V}$. There is over-voltage protection on both models. z88e8 Type 15AAA. Output 5Vu3A. STC price in 1987. £43.99.
Our Price
SALE PRICE $£ 4.00$ HIGH QUALITY NICAD CHARGER

25136 Nicad switched mode battery charger for charging $6 \times A A, C$ or D cells. 70 mA 16 hour rate, 700 mA 1.5 hour rate, 25 mA float charge automatically switched in when battery reaches correct charge level. Outputs for fast and slow charging simultaneously if necessary, both on timers to prevent over charging. Fast charge set at 700 mA , but internally adjustable. Slow charge set to 70 mA . Both outputs switch to 25 mA trickle charging after their respective periods of 1.5 hours and 16 hours. Supplied new with instructions and circuit diagram. Was orlginally supplied for charging cellphone batteries.
Price ..12.95
2568 Transformer, large auto rated $8.3 \wedge$ 812.00

SALE PRICE $\quad \mathbf{7 7 . 5 0}$

28971 Transformer rated 100VA - 0-120, $0-120 \mathrm{~V}$ primary and $0-20,0-20 \mathrm{~V}$ secondary (5A total). Size $89 \times 75 \times 68 \mathrm{~mm}$. DP 19.06. Our price $\mathbf{E 9 . 5 0}$

SALE PRICE $£ 6.95$

MODEL RAILWAY CONTROL \& SWITCHING UNIT

This ready built versatile plece of equipment allows:

* Full forward and reverse control of trains using regulated and smoothed supply (1.5A)*
-Requlres 3 components (supplied) to be soldered into panel.
* Relay control of 5 separate circuits. (10A change over contacts; Ideal for points operation).
- Powering of auxiliary equipment - 2 separate 5V 1A outputs.

A malns powered panel $185 \times 105 \mathrm{~mm}$ contains all electronics. All voltages are fully stablized and both input and output are fused.

Connections, both input and output are by screw terminals which are clipped onto the on-board pins.
The live 12 V relays are controlled by transistor circuits which require only 5 V 30 mA , supplied by the on board power supply.
Supplied uncased with circuit and wiring diagram. (SAE for free copy.)
Suitable black ABS plastic case $5,4=35$
Price Aeduced to $\mathbb{C 1 4 . 5 0}$

28135 Nicad charger; plug in the wall type power supply with a 5.3 V 140 mA output, ideal for charging $4 \times A A$ cells. Output is on a 1.8 m long lead terminated In a 3.5 mm plug.
Only Only

Z5206 Super transformer for railway and other? modellers. Mains primary, secondary 16 V 3 A . Size $50 \times 55 \times 60 \mathrm{~mm}$ high. 61 mm FC. Great value for money, only $£ 3.00 \quad 100+2.00$ ${ }^{1 k+1.50}$ SALE PRICE $£ 2.00$
Some new mains transformers, ideally suited for PSU's:

25212 21V 1A Clamp, wires $60 \times 45 \times 50 \mathrm{~mm} \quad \mathrm{E} 1.50$

SALE PRICE 75P
Z5215 15V 0.25A PC mntg $43 \times 33 \times 3$ 6 mm 75p
SALE PRICE
50P

All the following are mains transformers, and have secondaries as shown. Cürent rating is estimated from size of transformer.

Z5233 17V 1A $56 \times 67 \times 53 \mathrm{~mm} \mathbf{~} 1.50$

SALE PRICE $\quad \$ 1.00$
25234 14V $0.5 \mathrm{~A} 45 \times 54 \times 41 \mathrm{~mm}$ £ 1.00

SALE PRICE
 75P

Z5235 $9 \mathrm{~V}+10.5 \mathrm{~V}$ 15VA max. $56 \times 67 \times 50 \mathrm{~mm}$ $£ 2.00$

SALE PRICE $\quad 1.50$

Z5236 21V $500 \mathrm{~mA} 50 \times 60 \times 45 \mathrm{~mm} £ 1.50$
SALE PRICE $\quad \$ 1.00$

$\square \triangle \square \square \square \square \square \square \square$

7-pin DIN plug to 3 -pin DIN plug and 2.5 mm jack plug. Colour grey. Length .

$\underset{\text { SAREE }}{\text { SALE }} 5$ FOR $£ 1.00$

\section*{High Quality Audio/ Video Leads} Packed in poly bags with header cards, these 'Nu-Way' leads are offered at a surprisingly low price. 18 types available. all 2 m long except " which are 1.5 m long. All connectors on all leads are screened - none of your cheapo plastic plugs herell Code Type Description $1+25$ + $\begin{array}{lll}\text { Cose } & \text { Typ } & \text { Diseription } \\ \mathbf{2 5 0 3 3} & 677 & \text { PL259 }+5 \text { pin DIN } 180^{\circ} \text { plug }\end{array}$ to phono plug +5 pin DIN | 180° plug. |
| :--- |
| 180° |

28034686 180° plug.
PL259 + 2 phono plugs to phono plug +5 pin plugs to $\$ 1.640 .82$ Phono plug +5 pin 180° plug both ends. PL259 + phono plug to BNC plug +3.5 mm plug. PL259 + phono plug both ends. PL259 $+2 \times$ phono plug to BNC plug +5 pin DiN 180° plug.
25040 VTV015. BNC plug +3.5 mm plug 106 pin DIN plug.
z5030 682/764 BNC plug +5 pin DiN 180° plug both ends. 25051 VTV025. PL259 + phono plug to 25082 $691 \quad 6$ pin DIN plug. 25053669 PL259 + phono plug to 2 phono plugs. 103 phono plugs - plug $25035675 \quad$ PL259 +5 pin DIN 180° plug z50se $689 \quad 6$ pin DIN plug to 2 BNC plugs 6 pin DiN plug to 2 BNC plugs
+2 phono plugs. +2 pin DiN plug to BNC plug +3.5 mm plug.
28087 VTV065 Quantity prices apply to any mix. (Don it forget to add VAT!)

ALL 50\% OFF

Telephone Leads
25361 Curly lead, new. BT handset plug one end, 4 spade minals the other. Pale groy. DP 4.11 Our Price $\mathbf{2} .00$
SALE PRICE
81.25

253624 cors felecom lead 3 m long win Bi line piug onte and 4 way socket the other. DP 4.40. Our Price 22.00
SALE PRICE E1.50 253634 core felecom lead 3 m long with BT line plugs both onds. OP 4.65 Our Price $£ 2.40$

SALE PRICE
 £1.85

24309 BT 'breakout' lead. One end has moulded housing
with 6 pin BT plug and socket. Other end has 6 pin FCC68 plug (as used on some computers). Overall length 3 m
SALE PRICE $£ 1.50$

PLE16 DC adaptor lead for Walkman. 1.8 m long.
Price . $100+0.15$ PL528 2 pin DiN line socket to phono plug 0.2 m long. Price ...20p $100+0.10$ PL708 Video lead. PL259 plug to F type plug. 3 m low loss coax.
Price ... B6p $100+0.45$
PLsos 5 pin DIN - 3 pIn DIN audio lead 1.2 m long.
 PL541 intercom extension lead 3.5 m line, socket to 3.5 m
plug. 6 m long. $100+0.20$
DIN Leads
24873 pin DIN 103 pin DIN 1.8 m long. $3 / £ 1.00 \quad 100 / 21.75$

50\% OFF

PRICES IN BOLD INGLUDE VAT; PRICES IN LIGHT DO NOT
MINIMUM ORDER VALUE $\because 12+83$ P\&P PER ORDER MINIMUM ORDER VALUE EIT2 + E3 PEP PER ORDER

20 SUMMID SALE CATAIDEUE

Spiffing Suvitches

25174 Timer switch by Diehl of Germany. Superb geared mains motor, (1 rev per 12 hours) operates a cam that switches 2 change over contacts with centre - off positions rated 16 A 250 V . Size $60 \times 54 \times 43 \mathrm{~mm}$. Spindle is $14 \times 6 \mathrm{~mm}$ dia. Only $£ 3.00 \quad 100+£ 1.50$.
SALE PRIGE $£ 1.50$

Great switch bargains for railway modellers these small switches 18 mm wide and 12 mm high (excluding lever) and just 4 mm thick with 14 mm FC come in two versions:

223632 position, 2 pairs make and 2 pairs break. Pack of $5 \mathbf{£ 1 . 0 0 1 0 0 + 0 . 1 0}$
z2364 3 position, 6 pairs contacts (2 pole 3 way). Pack of 5 for $£ 1.00100+0.10$

2 PACKS FOR 51.00

A range of rocker and push swltches, cllp fit by Russenberger. Top quality, complying to all relevant approvals.

MINIATURE ROCKER
Size $14 \times 21 \times 15 \mathrm{~mm}$ require, $19.3 \times 13 \mathrm{~mm}$ contact. All single pole rated $8 A 250 \mathrm{~V}$ DC. Solder tags.

CODE	CONTACTS	BOOY	ROCKEA	OFY	$\S 1$ PACK	1004	10004
21102	ON/OFF	BLACK	WHITE	4583	5	.12	OB
21201	ONOFF	WHTE	BLACK	3000	5	12	08
21202	CHANGE	WHITE	WHITE	6779	5	.14	10

SALE PRICE 50\% OFF

GTANDARD ROCKER

Size $20 \times 14 \times 16 \mathrm{~mm}$ requires $27 \times 12 \mathrm{~mm}$ cutout. *Size $31.5 \times 14 \times 22 \mathrm{~mm}$ requires $30 \times 12 \mathrm{~mm}$ cutout. All single pole, 12 A 250 V ac or $12-28 \mathrm{~V}$ DC 0.25^{n} tabs.

$\begin{aligned} & \text { CODE } \\ & 51101 \end{aligned}$	contacts CHANGE OVER CENTRE OFF	$\begin{aligned} & \text { BODY } \\ & \text { BLACK } \end{aligned}$	яоскер BLACK	$\begin{aligned} & \text { OTY } \\ & 4262 \end{aligned}$	$\underset{5}{51 \text { PACK }}$	$\begin{array}{r} 100 \\ 12 \end{array}$	$\begin{gathered} 1000 \\ .08 \end{gathered}$
51802	CHANGE OVER CENTRE OFF	WHITE	WHITE	3116	6	. 12	. 08
$\begin{gathered} 1600 \text { NBS } \\ .51102 \end{gathered}$	ON/OFF ON/OFF	WHITE BLACK	RED NEON WHITE	2000 1739	5	. 14	. 10
$\cdot 51291$	ONJOFF	WHITE	AMBER	1600	5	14	. 10

SALE PRICE 50\% OFF

Size $31.5 \times 25 \times 34 \mathrm{~mm}$ requires $28 \times 22.5 \mathrm{~mm}$ cutout.

CODE	CONTACTS	BODY	ROCKER	OTY	〔1 PACK	100	$1000+$
51110	SP ON/OFF	BLACK	RED NEON	2755	5	.14	.10
51192	SP ON/OFF	BLACK	GREEN	6907	5	.14	.10
51202	SP ON/OFF	WHITE	NEON	WHITE	3814	6	.12
51390	DP ON/OFF	BROWN	RED NEON	1498	4	.16	.08

SALE PRICE 50\% OFF

ILLUMINATED PUSH SWITCHES
Size $31.5 \times 25 \times 34$ requires $28 \times 22.5 \mathrm{~mm}$ cutout. (Same as large rocker switches). Mains Neon. The difference between the two types listed is that 21200 has solder tags; 51200 has $0.25^{\prime \prime}$ tabs.

CODE	CONTACTS	BODY	INSEAT	OTY	I1 PACK	100.	$1000 *$
21200	SPCO	WHTE	WHITE	4912	6	12	08
51200	SPCO	WHHTE	WHITE	1 NOO	6	12	.08

SALE PRICE 50\% OFF

INDICATORS
Size $31.5 \times 25 \times 34 \mathrm{~mm}$ requires 28×22.5 cutout. These match above push
switches and rockers. Available with a black body and lens colour as listed. Mains Neon.

SALE PRICE 50\% OFF

22188 Superb quality British made (TOK). Gold plated DPCO contacis. Key can be removed in elther position. PC mounting or clip fix - needs $15 \times 15 \mathrm{~mm}$ cut-out. Ideal for alarms etc.

SALE PRICE $£ 1.00$

Mercury Switches

22118 Metal enclosed in case 7.5 mm dia $\times 9 \mathrm{~mm}$ tong. 10 mm llange one end.
2 PACKS FOR $£ 1.00$
 1114 P .SALE PRICE 2 FOR $£ 1.00$

21718 Solid slate relay $43 \times 25 \times 70 \mathrm{~mm}$. Control voltage 324 V DC switches 240 V ac 4 A . DP $£ 7.82$
Price
SALE PRICE
£1.50

12 V relay bargain

22137 Superb quality potted relay $29 \times 20.5 \times 12.5 \mathrm{~mm}$ with pins on 0.1 pitch. Coil 12V DC. Singie contact relay 5A 12V DC or 5 A 230 V AC.

Price ….................50p each $10+.3925+.31100+.25$

SALE PRICE 2 FOR E1
22120 Same size and contact arrangement as w853 in our catalogue at $£ 1.42(15.6 \times 10.6 \times 10.5 \mathrm{~mm}$, SPDT contacts rated $1 \mathrm{~A}(a 28 \mathrm{~V} \mathrm{OC}$) but different pinout. Standard DIL spacing. Only
SALE PRICE 4 FOR E1

STATIONERY SENSATION!!!

(a) Paper \& Labels

80gsm high grade copier paper, sold in reams (500 sheets)

Code Description $1+\quad 10+$
A701 A3 size $420 \times 297 \mathrm{~mm} \quad$ E9.95 5.73
A702 A4 size $297 \times 210 \mathrm{~mm} \quad £ 3.70 \quad 2.31$
Laser Copier Paper
A high quality paper giving excellent results with all laser printers. Price per ream
A703 A4 size $297 \times 210 \mathrm{~mm} \quad £ 4.50 \quad 3.30$

Computer Paper

A458 Computer Listing Paper $11 \times 91 / 2^{\prime \prime}$ plain. 60 gsm wood free, microperf. Sold in cases of 2000 sheets.
$\$ 15.0011 .06$
CL01 Continuous labels $31 / 2 \times 1.7 / 16^{\prime \prime}$. One label across sheet. Vertical spacing 0.2"
Pack of 1000 £6.95; $800032.00+$ VAT
CL02 Continuous labels $4 \times 1.7 / 16^{\prime \prime}$. Three labels across sheet. Vertical spacing 0.2"
Pack of 1000 £6.95; $1200051.00+$ VAT

(b) Envelopes

White OL, size $220 \times 110 \mathrm{~mm}$ (takes A4 folded in 3) Self-seal. Sold in packs of 100

Code	Descrlption	$1+$	$10+$
A711	80 gsm opaqued, plain	$£ 2.00$	1.15
A712	80 gsm opaqued, window $£ 2.20$	1.29	
Brown	C4, size	$325 \times 230 \mathrm{~mm}$	(takes

gsm self sea

(c) Pads and Rolls

A721 Shorthand notepad, spiral bound $8 \times 5^{\prime \prime}$. 80 sheets (160 pages)
$1+40 p ; 12+0.22 ; 144+0.18$
A725 Adding machine rolls. $21 / 4 \times 21 / 4^{\prime \prime}$. Sold in cases of 20 rolls. $1+$ £4.75; 5+ $3.36 \quad 25+2.68$ A721 Fax Roll. Standard for most makes of machine. 210 mm wide $\times 30 \mathrm{~m}$ long (equivalent to 100 A4 sheets) 12.5 mm tube. Reduced Price:
E2.95; $12+1.80 ; 72+1.68$.

Stapler and Staples
R2 Office 26/6 metal stapler in black.
£4.50; $10+3.43$
R3 Office $26 / 6$ staples in boxes of 5000 75p; $10+0.56$

Paper Clips
R4 Large lipped in boxes of 1000 1 box £1.50; $10+0.86$
Tippex
S7 The popular white opaquing fluid in 30 ml bottles.
83p; $10+0.58$
A4 Transparent Pockets
Open at the top and multipunched to fit most files.
Pack of 100 £4.40; 10+2.81

Adhesive Tape

A731 1" wide clar adhesive tape, polypropylene 30 micron $60 p ; 12+0.36 ; 72+0.29$
$\begin{array}{llllllllllll} & \text { A735 } & 2^{\prime \prime} \text { wide buff packaging tape, KMSB30 } 25 \mathrm{gm} 15 \mathrm{~mm} \text { tip } £ 3.37 & 2.03 & 1.63\end{array}$ polypropylene 30 micron. £1.30; $12+0.83 ; 36+0.66$

Ballpoint Pens

Low cost ball pens with ventillated caps, in 3 popular colours:

Code Description

HPE01 Black
Standard

10 1or $£ 1 ; 100+0.06$ 10 for $\varepsilon 1 ; 100+0.06$ $\begin{array}{lcc}\text { HPE03 Red } & 10 \text { for £1; } & 100+0.06 \\ \text { HPE50 Box of 50, any assortment } & £ 3.95\end{array}$

Kuratake

A range of top quality supplies from a company established in 1902. Kuratake has been established in the UK for 5 years, providing graphic markers and equipment to education, industry and commerce.

Ceramic Rollerball Pen
The Zig ball 200 is a low cost high quality 0.3 mm rollerball pen, available in 4 colours. Waterbased ink.

Code	Description	$1+$	$12+$	$96+$
KCB220K	Black	$70 p$	0.43	0.34
KCB220R	Red	$70 p$	0.43	0.34
KCB220G	Green	$70 p$	0.43	0.34
KCB220B	Blue	$70 p$	0.43	0.34

Gold \& Sllver Pen
Double ended pen 210 mm long with valve action and fine tip - Gold one end, Silver the other. Instant drying, high opacity.
$\begin{array}{lllll}\text { Code } & \text { Description } & 1+ & 12+ & 48+ \\ \text { KFMP20 } & \text { Gold \& Silver } & £ 3.80 & 2.28 & 1.83\end{array}$

Changln' Glue
Instant adhesive for paper and card - on application the glue is blue, but dries clear. Non-toxic emulsion based. Can be used as permanent (stick while blue) or temporary (wait till clear - can be repositioned as required). Available in 2 sizes:

Code Description 1+ 12+ 96+
$\begin{array}{lllll}\text { KMSB15 } & 10 \mathrm{gm}, 6 \mathrm{~mm} \text { tip } & \mathbf{8 1 . 6 9} & 1.02 & 0.81\end{array}$

PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MINIMUM ORDER VALUE EIT2 + ES POP PER ORDER

£ 1 PACK CLEARANCE BUY 10 PACKS, GET 3 FREE; BUY 25, GET 10 FREE; BUY 100, GET 50 FREE PLEASE GIVE ALTERNATIVES - STOCKS ARE LOW ON SOME NUMBERS!

		Capacitors (Ceramic)
Code	Value	Description Oty
K124	0.02 $\mu \mathrm{F}$	Disc ceramic. EO
K126	3000pF	63V Polystyrene preformed caps.
K278	$0.1 \mu \mathrm{~F}$	32 V disc ceramic
		14.5 mm dia. 25
K270	2200pF	2 kV ceramic. 10
K356	0.47 $\mu \mathrm{F}$	Dipped multlayer, 50V. 5
<387	$0.022 \mu \mathrm{~F}$	Ceramic plate, 50 V .20
K368	$0.047 \mu \mathrm{~F}$	Ceramic disc, 12V. 25
K818		Disc ceramic mix. 200
21839	4700pF	Disc ceramic 380Va
		15 mm dia . ${ }^{\text {a }}$,
21840	2200pF	Disc ceramic 380 Vac

		Capacitors (Polyester etc)	
Code K140	Value $0.05 \mu F$	Doseription 50 V Mylar caps.	Oty
K361	$0.33 \mu \mathrm{~F}$	63 V mini-polyester 5 mm pltch.	-
K362	$0.47 \mu \mathrm{~F}$	63v mini-polyester 5 mm pitch.	-

14
 Diodes (Bridge)

$K 249$ s00V 4 A in-line bridge rect. K301 Semikron Bridge SKB2/02 (like BY164)
K308 BSK B80 C600 Semikron Bridge. K307 $\mu \mathrm{E}$ B380C800W Bridge.

K480 AA132100V 10mA Ge point contact. K45t AA133130V 10 mA Ge point contact. K4E2 BA12875V 50mA Si diode.
K483 BA13025V 75 mA Si diode
K 454 BA14715V 50mA Si diode.
K485 BA155150V 100 mA Sidiode. K458 BA21850V 10 mA Si switching. K 322 BAX12A Silicon glass 90 V 400 mA $K 323$ BAX16 Silicon glass 150 V 200 mA K323 BAX16 Sillongicit K457 BB104 Dual capacitance SI 34-39 pF. 3 K328 B8121A
K328 BB221 Varlable capacitance diade 1.8-2.2pF 28 V

K327 BB329 Varlable capacitance diode 2.5-3.2pF 28 V

K458 BY196100V 1.2A fast rec
K328 BY197200V 1.2A fast rect.
K489 BY198400V 1.2A
K32 BY199600V 1.2A fast rect.
K460 gY212-750R 800V 1A SI "tophat" BY250 Pinnacle supplied in a nea clear plastic case
K481 BY4011A rect
K330 BY250 Pinnacle supplied in a neat

K482 BY550-100100V 5A Si rect
K483 BY $22-400400 \mathrm{~V} 1.4 \mathrm{~A} \mathrm{Si}^{\prime}$ 'tophat'
K484 BYX36-300 300V 1 A rect
Ka31 BYX55-300 Siltcon rect 330V 1 A
K48s DK14 80V 120 mA Ge diode.
K46e HG5085 Small slgnal diode
K332 IN277 Germanlum diode 125V 100 mA .

K467
K488 IN459 175V 3mA Si
K460 IN627 100V 30mA switching St
K470 IN643 200V 5 mA switching Si
K471 IN916A 75 V 10mA switching Si
diode.
K333 IN2069 Sillcon rect 200 V 0.75 A
K472 IN3890 100V 40A rect.
K473 IN4 14975 V 10mA Si.
K474 IN4154 25V 30mA Si
$\times 475$ IN4446 75V 10 mA Si
K478 IN4447 75V 20mA Si
K477 IN4448 75V 5mA SI.
K478 IN4454 75V 10mA Si
K479 IN4744 15V 1W 10\% zener diode.
K 480 IN4752 33V 1W 10% zener diode.
K334 IN4821 Sllicon rect 500V 1.5 A .
K335 IN4933 Fast (150ns) rect 50 V 1A plastic.
K4E1 IN5062 800V 1A Si rect.
K4e2 IN5257 33V $400 \mathrm{~mW} 20 \%$ zener diode.
Kse3 15021 Top hat
K4E4 15410 Stud mntg 3A 100V.
$K 48515423$ Stud mntg 10A 400 V
K112 3A 50 V wire ended rects.
K113 DA002 150V O.5A rects.

K 148	Transformer formers. Cattype $\times 228$.
K244	Nylon cupboard latch. ${ }^{\text {co }}$
K26s	Terry cłips $8-12 \mathrm{~mm}$.
K434	$0.5^{\prime \prime}$ plllar ID6 OD9.5. 30
K435	M3 $\times 10 \mathrm{~mm}$ BOLT, PAN, POZI. 100
$\times 438$	M3.5 $\times 40 \mathrm{~mm}$ PAN, POZI. EO
K437	$2 \mathrm{BA} \times 1^{\prime \prime} \mathrm{HEX}$ head. 30
K438	4BA $\times 0.75^{\prime \prime} \mathrm{HEX}$ head. 100
K430	2BA shakeproof washer. 300
K444	Magnet 20 mm dia $\times 5 \mathrm{~mm}$.
K445	Magnet $26 \times 11 \times 9 \mathrm{~mm}$.
2611	Enterprise heatsinks.
2718	Black plastic knob. 20
2740	Cllp on TO220 type heatsinks.
24053	Antistatic bags.
24174	Knob, push on grey 28 mm dia with clear skirt marked with red line 47 mm dia. Push fit for $1 / 4$ " spindle.
24204	White rubber feet. 12.5 dia $\times 6.5 \mathrm{~mm}$ screw fix.
24203	Cable gland 21 mm max requires 28 mm dia hole.

(Linear)

K223		RC4131T Op-Amps.
K339	LA1385	TV chip.
K311		UDN6116A driver chip.
2732		XK1444 CMOS buffer
		16 pin chip.

EP804	7413	10
BPaO5	7437	10
BPaO6	7440	10
BP807	7443	10
apaos	7450	10
Bpeos	7460	8
BP810	7470	B
apal1	7472	10
BP812	7480	10
BP813	7481	10
BPP14	7482	10
BP818	7483	10
BPP18	7484	10
BPP17	7491	8
BPP18	7492	B
BP819	7493	8
BP820	7494	8
APP21	7495	8
8p822	7496	8
Bpe23	74104	8
BP824	74105	8
BP926	74110	8
Ep826	74118	8
BP827	74119	8
1p828	74141	5
mper	74151	8
Bpeso	74153	8
Bp831	74155	8
Bpes2	74156	a
Epe33	74157	8
BP934	74160	8
BPB35	74161	8
BPe36	74164	8
BP837	74165	8
[1PP838	74167	8
8pe30	74173	8
8pe40	74174	8
BP841	74175	8
BPE42	74181	5
BP843	74182	8
BPB44	74191	8
BPA48	74193	8
BPast	74195	8
BP947	74196	8
Bpate	74197	8
19840	74199	8
Bpre\%	74LS11	10
BP981	74LS14	8
BP882	74LS20	10
8pas3	74LS26	10
8pes4	74LS33	10
mprss	74LS42	¢
BPBE6	74LS55	8
BP887	74LS73	8
Bprse	74LS74	8
EPBS	74LS76	8
BP860	74LS93	6
BP881	74LS95	8
Bp882	74LS122	©
Bpas3	74 LS148	-
Bpas 4	74LS153	©
Bpers	74LS173	8
EPBe8	74LS221	6
EP867	74LS273	(8)
Epers	74LS275	6
BP889	74LS279	8
BP870	74LS393	${ }^{8}$
BP871	74LS669	3
K383	4040 suriace mount.	4

1c's
 (Micro)

K233 C500 calc chips + data
K303 SL-A-4032 chips by Gl. 14DIL K305 SL-D-2128 chips by G!. 14DIL

88 Indicators

K142	Wire ended neons cover case size 90V.
K277	28 V 0.04 A min flange lamps by GI.
2321	Lamp LeS $6 V 0.06$ A L 15 dia 5 mm .
2323	Lamp MF 6V 0.1A L15 dia 6 mm .
2324	Lamp MF 12V 0.1A L15 dia 6 mm $5 \times 6 s$.
2323	Lamp MF 28 V 0.08 A L15 dia 6 mm $5 \times 6 s$.
2330	Lamp MES 50V 0.05A L28 dia 10 mm .
2335	Lamp MBC 240 V neon L28 dia 10 mm .
2337	Lamp MBC 6.5V 0.3A L24 dia 11 mm .

40
 LED's

K151 3mm Red LEDs.
K152 5 mm Red LEDs.
K284 Large ($7 \times 5.5 \mathrm{~mm}$) rectangular pink 10 LED.
K309 LD261-4LED. Inira red emitter sub min 0.1 pltch.

Miscellaneous

21685 Xenon llash tube
56 mm long $\times 3.5 \mathrm{dia}$
40 mm 10no $\times 3$ dia
24081 CB Aerial eliminator.

48
 Pots and Presets

K130 470RV 0.1W Presets. 28 $\times 159$ 0.3W presets 500kV knurled knob K 182 o.3W presets 2M5V K 162 0 3 W presets 2 M 5 V knurled knob. K176 150R0.1WV presets. K177 470R0.1WH presets K17e 470R0.1WV presets. K170 2k0.1WH presets. K181 2k20.1WHpresets. 2004 Skeleton joystick.

58
 Resistors

K219 OR47 0.7W resistors
$\mathbf{K 2 9 4}$ SiL resistor network, 8×500 R
03890 R47 10\% 1
K 388 OR47 10% \% W resistor
$K 367$ 1R 10\% $1 / \mathrm{W}$ W resistor.
K401 1R221/2WWWW.
K402 1R5 21/ュW W/W.
K403 100R $21 / 2 W$ WIW
K 404 60Vac varistor.
K408 Bourns 3386w trimpot, 1k
$K 408$ Bourns 3296X multiturn pot, 100R
Z1468 H2 10K 0.1% 25ppm precision by
21469 H2 5M0 1\% 25ppm precision by Holsworthy

65
 Switches and Reeds

K160 Switches (cat type W430).
$\times 168$ SPCO centre off white rocker switch 10 K231 4W DIL switch.
K232 8W DIL switch
21522 Switch Alps SPS 40 CB's for channel switchlng. As used in CB's for channel switching. Body $20 \times 20 \mathrm{~mm} 6 \mathrm{~mm}$ dia. Shaft with M9 fixing nut. 7 bits per strip. Data
sheet supplied. sheet supplied.
21604 S103/ 14 thermal switch. Glass encased with B7G base. At 24 V cold start 70 secs to energise, hot start 10 secs. 5A.

- 8 Thermistors

K276 15k Siemens thermistors.
K289 PTC thermistor marked 630H Measures 4R (a) $25^{\circ} \mathrm{C}$ and rises to 30 M (a) $200^{\circ} \mathrm{C}$.
K290 NTC thermistor 8.3 k (a) $25^{\circ} \mathrm{C}$ reducing to 100R@ $100^{\circ} \mathrm{C}$.
K203 Dual thermistor 232266298009 . 3
21472 Thermistor as sused on 日T phones. Bead type with negative temp co-efficient. R@ $25^{\circ} \mathrm{C}=120 \mathrm{~K}$

24 SUMMER SAIE CAIAIDCUE

L120 QUARTZ HALOGEN SPOTLIGHT ML328

Hand heid quartz halogen spotlight. 55 W bulb produces more than 50,000 candle power. Highly polished reflector. Black plastic body. $\mathrm{On} / \mathrm{off}$ slide switch. Retractable hanger. 3.6 m coiled lead fitted with car cigar lighter plug.
Power \qquad Dims . $120 \times 120 \times 80 \mathrm{~mm}$ (less handle)

NORMAL PRICE
$£ 3.30$
SALE
PRIGE
£2.50

L101

DYNAMO TORCH
771
Handy dynamo powered torch which requires no batteries. Well designed body fits neatly into hand and gives an easy hand-pumped action to generate sufficient power to light bulb brightly. Yellow plastic body with robust shock-proof construction. A must for every glove compartment.
Dims . $130 \times 55 \mathrm{~mm}$

inputs to one TV. Blue
body with aluminium faceplate, Co-axial socket inputs, co-axial plug output. Automatic substitution of 75Ω load when channel not in use. Screw fixing.
Dims
$90 \times 47 \times 39 \mathrm{~mm}$

Low impedance microphone in white. All plastic body with black metal mesh head. Fitted with 3 m white lead. On/off switch. Holder included

Type Uni-directional. Dynamic Impedance 500Ω Response $80-12000 \mathrm{~Hz}$ Sensitivity -77dB @ 1 kHz Head dia 53mm Length. 182mm

NORMAL PRICE $£ 7.95$

[^1]
26 DLMMER SAIE CATALDGUR

Some 'BIB' accessories have come our way. These are al new and boxed, offered at a fraction of their original cost.

BCC8 Computer terminal maintenance kit for screen keyboard and printer. Content: Soft brush for keyboard and stiff brush for printer and print cleaning fluid. Aerosol can of air-blast; Kleen-Screen, an antistatic liquid; cleaning cloths. All this is contained in a presentation pack for just ... £2.95
SALE PRICE 1.50

BCC11 Liquid Static Eliminator. A spray can of special formula liquid giving long term neutralisation of all harmful static charges from all glass and plastic surharmful static charges from all glass and piastic sur-
faces. Comes complete with cloth..................... 1.00

VISTEL II

Total Communication for Deaf People
Vistel II is a visual telephone plus 'answerphone' which allows everyone to communicate over the telephone network.

By simply dialling a number and typing in your message you can be in touch with anyone else with similar equipment whether they are across the road or at the other end of the country.

By pressing one clearly marked button you can send or receive typed messages even when you are out. Additionally you can prepare and send a message at a particular presel time (during cheap periods to save you money).

With Vistel II not only can you talk to other Vistel II users but Vistel I (of which there are over 1,000 already in use by deat people throughout the UK). Telecom Gold, Breakthrough trust's BKU Mallbox Network, Mailink, the RNID telephone exchange or any other computer with a modem.
Specification

- Dimensions: $34 \mathrm{~cm} \times 45 \mathrm{~cm} \times 13.7 \mathrm{~cm}$
- Weight: 4.5 kg
- Full 'OWERTY' keyboard plus 'function' keys for ease of
use.
- 40 character screen which displays your mess ages quickly. clearly and quietly.
- Text editor for preparing recording and storing information. - Memory for up to 9,500 characters.
- Auto-answering capabllity for receiving calls even when you are not there.
- Auto-dialling capability for sending messages during cheap rate telephone periods. - Real time clock.

Personal telephone directory for storing your most commonly used numbers.

- Calculator.
- Printer interface for connection to-a printer.
- Telecom Gold, or BKU mall box, function key
- Vistel II runs from mains with battery back-up so memory is retained even when Vistel II is turned off.
- For connection your only requirements are a power point and a British Telecom jack plug socket.
Options:
- Printer

This unit formed a telecommunications link for deaf people. The basic unit is the Vistel II which has an internal modem that handles the following standards V23 auto hunt, V23 originator, V23 answer, V21 originator, V21 answer. Note the suto hunt is a special function that allows the modem to determine the nature of the modem at the other end, either V230 or V23A.
All files from the transmitting terminal can be stored in memory or sent directly to a printer. Messages can be composed and stored in memory before transmission
Other useful features include time, date, calculator, storage of often used numbers, parallel printer port. costing of calls, alarm clock. all PSTN features are fully BT approved.
On a component level useful items include a 105 key keyboard with serlal output. A linear power supply with the following outputs +12 V (u 1A. $2 \times+5 \mathrm{~V}$ (a 2A, -5 V (u) 100 mA . -12 V (a 100 mA , useful components include 2×78 T05 3A regulators with heatsinks, assorted fuses. A main circuit board containing a $\mu \mathrm{PD} 8085$ micro processor, 3 PD 8255 universal peripheral interface 1 C 's, 3×27126 EPROM, $2 \times \mu$ PDA 364 memory IC's, $1 \times \mu$ PDB251A USART programmable communications interface ic, MD146818P RTC (real time clock with $12 / 24$ hour time date and leap year day) IC, and various other micro processor related IC's, other board parts include assorted resistors and capacitors, a 4.8 V memory backup nicad. A 40 character 5×7 dot matrix VFD with cursor. A communications board with assorted approved relays, capacitors and opto-isolators.

Although the unit can only be used as a stand alone unit, it is possible to modity it so that It can talk to other equipment vla a RS232 port.

These units are new and boxed, but because the company who manulactured them has gone bankrupt they are offered whout guarantee. There is a comprehensive 143 page instruction manual provided. These unils originally sold for over $\$ 500$.
Our Bargain Basement Price
675
SALE PRICE
$£ 37.50$

1993 CATALOGUE

It's not too early to start thinking about next years Catalogue - there'll be lots of new products with expansion of many sections. If you're a hobbyist, modeller, computer buff or techno freak the 1993 Greenweld Catalogue is an essential requirement. Naturally, we'll also be producing a new Bargain List containing an amazing variety of new surplus products in an ever-widening range of interests and monthly update lists will be issued throughout the year. There are various options - see the table below and include your requirements on the Order Form. Don't miss the Bargains - become a subscriber!

Z1111 1993 Catalogue and current Bargain List
Z2222 Annual subscription to all brochures, Bargain Lists and the 'Greenweld Guardian' Z3333 Both the above - Save $£ 1.00$

UK/BFPO $£ 2.00$	Overseas (inc Eire) $£ 4.00$
$£ 6.00$	$£ 12.00$
$£ 7.00$	$£ 14.00$

All subscribers receive a personalized first class reply paid Order Form with all mailings PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MLNUMUM ORDER VALUEEE12 + E3 PAP PER ORDER

EVERTTHING ON THIS PAGE HALF PRICE!!

CABLEVISION CALAMITY !!!

Seems like Visionhire became a bit over-

 stocked on their cablevision consoles we've just purchased a quantity of these superb brand new units which contain some great electronics and as ever can offer them at an absolute BargainPrice!!Two tone brown case (dimensions as shown) contains PCB $192 \times 195 \mathrm{~mm}$ with easily removed UHF modulator made by Labgear (Sound and Vision); video preamp; stabilized power supply and all the decoding circuitry (9 transistors and TBA673 chip).
On the front of the case is a cable/off air
 switch and 5 push buttons (4 channels and on/off mains switch). There are 4 cables coming from the rear (these alone are worth what we are asking for the whole thing!) - 2 m mains lead, 1.5 m 8 core screened cable with 9 pin plug, 2 m video in lead with coax plug and 2 m video out lead with coax socket. As you would expect from a company like Visionhire, everything is top quality. The case can easily be utilised for other purposes - the dark brown inserts on the front are both easily removable, if required. Please note the low price we are asking in no way reflects their true worth - they're taking up a lot of space, so we need to shift them quickly!!

Z8939 £6.95 SALE PRICE $\mathbf{\$ 3 . 5 0}$

25216 Tandata "Homedeck". These are later versions of Z8963 and are (a) smaller and (b) remote controlled. The two tone grey case is $270 \times 110 \times 28 \mathrm{~mm}$ and has a full qwerty keyboard and seperate numeric keypad. Inside, on the PCB are a few components to transmit the data via 2 IR LED's to the receiver. The unit is powered by a PP3 battery. Super value at just £3.00

25200 Spirit Burner. Very useful in science labs or for the home experimenter. Chromed steel container 93 mm diax 48 mm high has absorbent material covered in wire mesh. Adjusting lever allows variations in temperature. Complete with 70 mm dia dish for heating substances in. Only £2.50

28970 Remote control cable TV unit made by GEC. Attractive black plastic case $205 \times 120 \times 40 \mathrm{~mm}$ with membrane pushbutton keypad (22 keys). Front panel has $4 \times 5 \mathrm{~mm}$ red LED's to indicate status and a dual 7 seg display to show channel. On the $195 \times 102 \mathrm{~mm}$ PCB is a small regulated power supply $(12 \mathrm{~V}$ \& 5 V) derived from 25226 plug in PSU (not supplied). The main chip is a KS49429 and there are also TBA120T, ULN2003B, $4049+$ 4.000 MHz crystal \& 3 small signal transistors as well as the IR delector diode. 2 screened cases contain (a) a PCB with some filter circuitry utilizing surface mount technology, few small chokes, couple of trimmer caps and input and output sockets; and (b) the infra red decoding circuitry using a TDA3047 chip. Regrettaby, we don't have any remote controllers, but these units offer great value for money - Just $£ 5.95$ each

SALE PRICE $£ 3.00$

Viewdata Terminal/Modem PRICE

Tandata Viewdata/Prestel Adaptor.
These units were used with a home banking system. The console was hooked up to your TV and telephone line, and by using the standard qwerty keyboard with seperate numeric keypad, you could access your account. The well styled black and grey case $300 \times 180 \times 75 / 40$ has a 75 key keyboard connected inside by a DIL plug to the main PCB. This has mounted on it the modem subpanel + 3 relays, UM1286 Astec colour modulator with sound, + SAA5020, 5050, 5070. SY6504, 68B10, MCM51101P45, 2×2114 \& 2732 EPROM all in sockets, as well as over 20 other LS and linear chips, transistors etc. There's a back up nicad battery and a regulated power supply. On the rear panel is an on/off rocker switch, UHF output socket, printer skt(15 way D), and cassette DIN socket for recording data.
There are 3 leads attached; 4 m long mains lead with 13 A plug, 4 m long BT lead with oldstyle plug, and a 3 m long TV co-ax lead. All in all, a versatile, useful compact unit either to use as it is or for the parts within. The component value alone is over $£ 60$, so you can see what a bargain this is - it even comes with a pholocopied handbook!!
Order Code z8963. The whole unit as described for just $£ 12.95$

SALE PRIGE $£ 6.50$

the electronic football game of skill

2817 Exciting electronic football game - Waddingtons' 'JIMMY'. Brand new models in full working order, but without plastic peripherals, stickers etc. Red plastic case 420 mm long $x 93 \mathrm{~mm}$ wide contains keypad and 7 segment LEDs to keep score either end. The centre section "players are represented by red 5 mm LEDs, 14 altogether. The main chip is the TMS 1000 , programmed to make odd noises whilst playing and a tune when a goal is scored. Also inside are 13 plastic transistors, 57 mm 8 R speaker, power supply socket, Rs, Cs etc. Powered by $2 \times$ PP3 batteries. Solo or dual play. Supplied with instruction sheet, playing field dual play. Supplied with instruction sheet, playing ield game with good value for the electronics within. Originally game with good va
retailed
${ }^{\text {Proce }}$ SALE PRICE
£2.50

24347 CB Converter. We had some of these a year or two ago and they went like hot cakes! It's in a neat case $108 \times 68 \times 44 \mathrm{~mm}$ with a drilled mounting bracket for installation. By simply connecting the power leads, plugging your aerial into the converter and feeding output to your AM radio, you have the facility to fune through channels $1-40$. A switch is fitted to the front panel so the unit can be by passed. Comes complete with box with instructions.

A nice parcel of digital thermostats has just been delivered - these are high quality units badged BIRCH and manufactured by Wrynech.

Z5228 Complete unit in panel mounting clipfix case (requires $60 \times 27 \mathrm{~mm}$ cut out). 2 digit display. Range $40-99^{\circ} \mathrm{C}$. Independant on/off set points. Uses LM35CZ sensor, supplied on a 3 m long lead (DP 5.93). Has 5 V relay on board with 240 V 8 A c/o contact. Exceptional value for money $£ 14.95$

28885 TAPE DECK PANEL A type of telephone answering machine believed to have been used as an alarm system - a recorded message was sent down a BT line il system-a a rece
 $245 \times 220 \times 35 \mathrm{~mm}$ contains $P C B$ cassette unit almost Identical to Z4307. This is attached to the panel by 3 screws and is easily removable, being connected to the PCB with a 5 way socket. The output from the tape head is led into an MC3301 quad op - amp. The PCB also has 10 CMOS gates, 3 relays, isolator transformer. several transistors. R's. C's etc. 12 way connector for BT iine, 12 V supply atc, aiso plug and socket arrangement for Auto/ Manual and Bell delay, Made by Munford \& White PLC. Prise .. 57.98

SALE PRICE $£ 2.00$ SALE PRICE £9.95 SALE PRICE

... for all NEWSLINE callers! If you haven't rung our NEWSLINE yet, you won't know what we've just purchased! Or what this weeks FREE GIFT is, exclusively for NEWSLINE callers! Or the special offer! Or be entered into our FREE DRAW. Call now, the lines are open 24 hours a day and join in the fun! Ring
08

Calls charged at $36 \mathrm{p} / \mathrm{min}$ cheap rate, $48 p / \mathrm{min}$ other times

Suitable for displaying the logic state of each gate of TTL, CMOS etc. Logic state displayed in light and sound. Pulse enlargement capability allows pulse detection down to 25 ns . Supplied with comprehensive instruction manual Order Code Y132
SPECIAL PRICE

Working voltage: $4-16 \mathrm{~V}$ Threshholds: Hi 70\% Vcc; Lo 30\% Vcc Input Z: 1 M . Max input freq: 20 MHz

[^2]
Send your order to:

GREENWELD
 ELECTRONIC COMPONENTS

Customer No:
Date:

Name:

Address:

Post code

(A difterent postcode is correctly shown on reply paid envelopes)

OFFICE USE	ORDER CODE	QTY	No of Packs	Description	Price	£	p

IMPORTANT: Please fill in the following information. Thank you

1. Did you receive this Catalogue (Tick all that apply):

\square with your previous order \square Unsolicited \square with Everyday ElectronicsWith ETI
 \square As a Bargain list subscriber
 \square with Elektor \square with Television Other (Please state how) \square With Practical Wireless

 2. Please let us know if you want this order:\square Sent as soon as possible with a credit note for any parts out of stock;
\square Sent as soon as possible with any out of stock items to follow: (only if value over £10);
\square Held for expected deliveries for up to days (state how long);
\square Other (please specify)
3. Have you ordered from us before? YES \square NO \square Are you already a Bargain List Subscriber? YES \square NO \square
4. Please tick method of payment: Cheque \square PO \square Cash \square Credit Card \square Other \square

Credit Card No (Visa/Access/Connect):
(If ordering by credit card. only goods supplied will be charged, on the date of despatch)

CQ/PO:	EX?:	C/N	C/C	CASH	B/T	G/V	ST	
CO:		CH:		P:		D:		

310

GREENWELD 27 PARK ROAD, SOUTHAMPTON, S01 3TB TEL: (0703) 236363 FAX: 236307

SALE PRICES FOR ALL CATALOGUE AND BARGAIN LIST ITEMS:

Listed below by page number are our SALE prices for all goods listed in our 1992 Catalogue, Bargain Lists 75 and 75A, and 1992 Spring /Summer Supplement.

1992 CATALOGUE

 Pages 3-15 10\% off Pages 16-25 10\% off Pages 31-34 10\% off Pages 40-42 10\% off Pages 58-63 5% off Pages 75-84 10\% off Pages 112-115 10\% off Pages 126-128 10\% offBargain List 75A
(Page contents are mostly the same as 75 , except $7,15 \& 48$)
Page 2 All items appear in this catalogue
Page 3 Al books and leads half price; all remaining batteries are listed in this catalogue. (Page 2)
Page 450% off
Page 5 See this cat for most items; everything else half price Page 650% off
Page 7 See Spring Supp Page 8 20\% off Page 950% off
Page 10 50\% off
Page 1150% off except Z1881-9 Page 1250% off except SB15 20\%; Z345 £4.95; Z4284 £5.00 Page $13 \quad 50 \%$ off except Z5099 20%; 12820%; 25122 25\%; 28837 £9.95

Page 14 P161A £24.95; Vistel 50%; Page 44-45 50\% off z6104/6114/6128 £5.00; Z6147/ Page 46 See Spring Supp 6160 £7.50; 1655/6 50\% Page 15 See Spring Supp
Page 1650% off except Z 4160 10\%; MT5 20%
Page 17 50\% off
Page 18 50\% off except Z5099 25\%
Page 19 50\% off
Page 20 25\% off
Page 21 25\% off
Page 22 50\% off
Page 23-24 See Pages 8-11 of this Cat
Page 24-27 See Pages 22-24 of this Cat
Page 28-31 50\% off
Page 32-33 See Pages 16-18 of this Cat
Page 34 See Page 3 of this Cat
Page 35-37 50\% off
Page 38-42 25% off

Speakers

25266 15R 45 mm 5 FOR E -OO 25267 75R 57 mm $5=0 \mathbb{E N O}$ OO Z945 5×3 80R 1 W $2=0 R E 1.00$ L578 $30 \times 30 \times 3$ 16R 0.4 W $3 F O R E 1.00$

HEADPHONES

Adastra H8 Stereo with boom microphone!!

2KB02 Bridge Rectifiers 200V 2 A SALE
7.2347 PRIOE
Pack
of
 72321 Semikon 25A 400V
thyristor/diode module

ZL2323 Controlled bridge
rectifier 600V 25A - 2 SCR's \& 2 Diodes. DP 24.00
smee
prioe

25171 Fan 110 mm dia. mains Ex-equis 51.50 Z5054 12V Stepper motor Claff Price = 51.50 Z5144 Motor Panel Muff Price - \&1.75

z8978 16 way rainbow ribbon cable

100ft REEL

TWEEZERS

 Hall Price Packs 741926 largepair over 130 mm
5.95 Z41193 6 small 9 pairs under 150 mm 200 Z4194 6 Assorted $E 2.75$ 24步放5 130 mm 3B |FDIR IE $1.1 . D O$

[^3]

28948 Micronét 12 text terminals. Top quality kit by Sidereal Corporation of USA consists of $12^{\prime \prime}$ mono white screen monitor in cream case, and 117 key keyboard. Monitor is supplied with $\mathbf{Z 5 1 2 3 \text { modem (needs fitting) and has }}$ brightness and volume controls. On rear panel is mains inlet and power on/ off switch, batt on/ off switch, keyboard socket. parallel printer port and 2 RS232 ports. PCB inside has $68 \mathrm{B09}$ processor and 16k of memory. Brand new units, originally selling for several hundred pounds.

SALE PRIGE
 $£ 25.00$

28009 GNT 3606 Tape/Punch station. Brand new in original packaging. This is a selt contained punch station for data registration on 8 channel paper tape. $19^{\prime \prime}$ rack mounting. Punching speed $75 \mathrm{c} / \mathrm{s}$; TTL parallel input. RS232. Can be programmed from 50-1200 baud. Takes up to 8" roll. List priçe is $£ 1,997.55$.
O" FAlE PRICE 5100
SALE PRIGE
$\varepsilon 100$

COMPUTER TAPES

29012 Memorex MRX IV $1 / 2^{*}$ computer tape. 600 ft on 175 mm dia spool. 62508PI. In case, in sealed poly bag. List ¢7. 49.
Our price

SALE PRICE
$£ 2.00$
222297 Disk pack CDC1204 16MB CMD cartridge Price .. E20.00 SALE PRICE $\quad 10.00$
$\mathbf{2 8 9 4 0} 2400 \mathrm{Ht}$ of superb quality used 0.5° tape on 10° reels. 6250 CPI. Various manufacturers. Supplied in carrier. New they $\operatorname{cost} £ 12.00$. Could probably be used as video tape we're checking this out. Meanwhile, why not buy a few reels useful as cheap 'twine' for tying up garden plants etc!! Price

Only $E 2$ a real
100 for CEO + VAT

SALE PRICE $£ 1.00$

22454 Emulex Intelligent Host Adaptor. MSCP Compatible: Panel with lots of expensive chips, plus a very comprehensive 208 page handbook. Must have cost a fortune originatly
Our price ... C30.00 (Handbook only on approval if required; $£ 10$ refundable deposit + E2 post).
SALE PRIGE E10.00
222455 Similar to above: Emulex MTO3 Controller. For interfacing SC51 hosts and controllers to a model TDC3309 $0.25^{\prime \prime}$ streaming cartridge tape drive. Handbook available as above.
Price
SALE PRICE $£ 10.00$
$\mathbf{2 0 0 1 0}$ Tape streamer. Tandberg TDC3319. Internal fitting. (same size as $5 \% 4^{\prime \prime}$ disk drive). Takes DC600 tapes. Unsure of capacity - possibly 60 Mb . Does anyone know? Price

E250.00

SALE PRICE 1100

Magnetic card reader head - used for

 delecting when credit card or similar is swiped. Made by DRH. Type no 01.635. No other info (out our technical expent is working on it).Order Code 22121
Prices ... ©2.00 $100+£ 1.00$
SALE PRICE
$£ 1.00$
ZONEPHONE ZAPPEDH

You've probably seen in the press the much hailed personal phone has been a dismal flop - with 3 different systems and the restraints imposed on its use meant it had little practical value. Failure seemed inevitable - but there's a silver lining to every cloud and its an ill wind that blows nobody any good, etc, etc ... we've purchased some of the goods with more to follow.

28956 These were the units screwed to various buildings throughout the UK which you stood next to whilst making a phone call with your incredibly useful handset! Too bad if you weren't in range (99.9% of the UK wasn't!) but it was a nice toy while it lasted. There was a lot of clever technology involved, and we're selling these at probably about 1% or
2% of their real cost! So what do you get for your money?
Well, a lot of case for a start - in the outer steel case (a) $480 \times 300 \times 150 \mathrm{~mm}$ with fibreglass aerial case on top (b) $250 \times 160 \times 75 \mathrm{~mm}$ there's another steel case (c) $325 \times 245 \times 130 \mathrm{~mm}$ and inside this there's a plastic box (d) $200 \times 15 \times 75 \mathrm{~mm}$.
(a) contains a metal surface mounting 13A socket and a BT line socket.
(b) has 2 whip aerials 200 mm long terminated in PL259 plugs:
(c) contains 8 V 3.8 Ah sealed lead acid battery, mains transformer (10V 2A Sec), mains filter and a plethora of plugs and sockets mounted on top - 3 BNC and 2×9 pin 'D' type, also 2 fuseholders, a lead with 13Aplug and another lead with BT plug, and a power on/ off loggle. Screwed to the inside of the lid is a PCB 250×160 with lots of nice bits $64180 \mathrm{CPU}, 27 \mathrm{C} 256$ EPROM, 5256-15 256k RAM \times 3, LM2940, LM317T, BD680 $\times 2$, 3.6 V AA size lithium cell in holder, about 30 various linear/ logic chips, 3 xtals etc, etc. (You're getting great value for money here!)
(d) contains the Tx/Rx panel $170 \times 135 \mathrm{~mm}$. Lovely bit of kit, this, all surface mount - about 20 chips. Inputs
and outputs are taken to 2 min PCB sockets.
There's another panel the same size in this box, with lots of hi-tech devices - $2 \times$ TMS77C82 programmable 8 bit microcontroller, 77C01, TMS320MC10FNL 16/32 bit signal processor, LM2984 triple 5 V output regulator and another 10 chips, 4 'D' plugs/ sockets and lots of other bits. And that's about it!
The whole complete unit is yours for Just
829.95

SALE PRICES ${ }_{28956}^{\text {cưplig }}\{17.95$ LESS AERILLS \& FIBREGLSS ${ }_{28985}^{\text {CASE }}\{12.95$

3 INCREDIBLE METER OFFERS

Y123AC (TL3310)

- 3.75 digit 25 mm LCD display (2999 count) with 40 point bargraph
- True RMS measurement
- Auto/manual ranging
- 20 A ac/dc measurement capability

Frequency measurement

- Memory mode for relative measurement
- Data hold
- Diode test
- Full overload protection
$A C$ voltage: Auto. Manual......................... $0-30-300-700 \mathrm{VaC} \pm 1 \%$
. $0-20-200-700 \mathrm{Vac} \pm 1 \%$ DC voltage: Auto ..0-200m-2-20-200-1000Vdc $\pm 0.7 \%$ Manual.......0-300m-3-30-300-1000V dc $\pm 0.7 \%$ AC current.......................... $0-30 \mathrm{~m}-300 \mathrm{~m}-20 \mathrm{AaC} \pm 1.8 \%$ DC current..........................-30m-300m-20Adc $\pm 1 \%$ Reslstance: Auto $\mathrm{O}-200-2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M} \Omega \pm 0.8 \%$ Manual $\ldots .0-300-3 \mathrm{k}-30 \mathrm{k}-300 \mathrm{k}-3 \mathrm{M}-30 \mathrm{M} \Omega \pm 0.8 \%$ Frequency 10 Hz to $20 \mathrm{kHz} \pm 0.5 \%$ Dims
$.190 \times 85 \times 40 \mathrm{~mm}$

NORMAL SELLING

NORMAL PRICE $£ 49.95$ SALE PRICE £24.95
$\star 32$ ranges including 10A ac/dc

* $31 / 2$ digit 12 mm LCD display
\star Diode and transistor test
\star Frequency counter
\star Logic test
\star Continuity buzzer
\star Auto zero and polarity
\star Over range and low battery indication
\star Test leads with part shrouded 4 mm plugs

Battery and instruction manual included

NORMAL SALE PRUGE SELING PRICE £120.00

* Max., min. and
average
function
* Ratio
measurement
Function
* Error
correction
function
* Relative
magnitude
function
 $165 \times 78 \times 35 \mathrm{~mm}$

[^0]: LOW COST 418MHz UHF RADIO SWITCHING
 AS USED BY THE PROFESSIONAL SECURITY MARKET
 Incorporating the latest Surface Acoustic Wave technology, the system consists of a small "zero-power", UHF Iransmitter with digital encoder and a UHF receiver unit with digital decoder and momentary output. Transmitter available either as fully assembied unit in its own key- 10 ob case which is fully MPT approved (codes set by cutting tracks) or in kit form with 8 -way DIL switch. Receiver also available in two kit forms, one which uses cut tracks to set code (over 13,000 codes available), the other uses an 8 -way DIL switch (256 codes)

 Cheques/POs to:

[^1]: PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MUNIMUM ORDER VALUE EI2 + E3 PEP PER ORDER

[^2]: PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MINIMUM ORDEZ VALUE E12 + E3 PEP PER ORDER

[^3]: PRICES IN BOLD INCLUDE VAT; PRICES IN LIGHT DO NOT MANUMUM ORDER VALUEEI2 + E3 PRP PER OROER

