DIGILOGUE CAR TACHOMETER DICITAL AND ANALOCUE DISPLAY OFR.P.M.

SW. M.W. L.W. RADIO

FISH BITE INFRALARM

AUTOMATIC LIGHT SWITCH

DESIGN YOUR OWN CIRCUITS - 7

HIGH POWER AMPLIFER For your car, it has 150 watts output Frequency response 20 HZ to 20 KHZ and a signal to noise ratio
better than 60db. Has buitin short circuit protection and adjustable input level to suit youe existing car stereo, so needs no pre-amp. Works into speakers ref 30P7 described below. A real bargain atonty E57.00 Order ref 57P1.
HIGH POWER CAR SPEAKERS. Stereo pair output 100 w each. 40 hm impedance and consisting of $61 / 2^{\prime \prime}$ woofer 2^{2} mid range and 4" tweeter. Ideal to work with the amplifer described above. Price per pair $£ 30.00$ Order ref 30 P 7.
PERSONAL STEPEOS Cuctornei returns but complete with a pair of stereo headphones very good value at $£ 3.00$ ret 3 P83. 2KV 500 WATT TRANSFORMERS Suitable for high voltage experiments or as a spare for a microwave oven etc. 250v AC input. £10.00 ref 10 P93
MICROWAVE CONTROL PANEL Mains operated, with touch switches. Complete with 4 digit display, digital clock, and 2 relay outputs one tor power and one for pulsec power (programmabie). FIBRE OPTIC CABLE. Stranded optical fibres sheathed in black PVC. Five melre length $£ 7.00$ ref 7 P29 12VSOLAR CELL.200mA output ideal fortickle charging etc. 300 mm square. Our price $£ 15.00$ ref 15 S 42

PASSIVE INFRA-RED MOTION SENSOR.

Complete with daylight sensor., adjustable lights
on timer (8 secs -15 mins), 50° range with a 90 on tmer (8 secs -15 mins), 50 range with a 90 deg coverage. Manual ovenide facility. Com-
 Pack of two PAR38 bulbs for above unit $£ 12.00$ ref $12 P 43$
VIDEO SENDER UNIT Transmit both audio

and video signals from either a video camera, video recorder or computer to any standard TV set within a 100° range! (tune TV to a spare channel). $12 \cup$ DC op. $£ 15.00$ ref $15 P 39$ SM TRANSMITTER housed in a stan (bug is mains driven). E26.00 ref 26P2 MINATURE RADIO TRANSCEIVERS A pair of walkie takies with a range of up to 2 kilometres. Units measure $22 \times 52 \times 155 \mathrm{~mm}$. Complete with cases. £30.00 ref 30P12 FM CORDLESS MICROPHONE. Small hand held
unit with a 500 rangel 2 transmit power levels reqs PP3 battiry.
15 P 42 A

10 BAND COMMUNICATIONS RECEIVER. 7 short bands, FM, AM and LW DXHocal switch, tuning 'eye' mains uis NOW ONLY £19.0011 REF 19P14.
WHISPER 2000 LISTENING AID.Enables you to hear sounds that would otherwise be inaudible! Complete with headphones Cased. 55.00 rar 5P179
CAR STEREO AND FM RADIOLow cost stereo system giving 5 watts per channel. Signal to ncise ratio better than 45db, wow and flutter less than. 35% Neg earth. E25.00 ref 25P21.
LOW COST WALIKIE TALKIES. Pair of bation
LOW COST WALIKIE TALKIES. Pair of battery
operated unlts with
88.00 a pair refi $8 P 50$
7 CHANNEL GRAPHIC EOUALIZER power amp! 20-21KHZ 4-8R 12-14v DC negative earth. Cased. £25 rot 25P14.
NICAD BATTERIES. Brand new top quality. $4 \times$ AA's $£ 4.00$ ref 4P44. $2 \times$ C's $£ 4.00$ ref 4 P73, $4 \times$ D's $£ 9.00$ ref 9 P12, $1 \times$ PP3 $£ 6.00$ ref 6P35
TOWERS INTERNATIONAL TRANSISTOR SELECTOR GUIDE. The ulimate equivalents book. Latest edition $£ 2000$ rei 20P32.
CABLE TIES. $142 \mathrm{~mm} \times 3.2 \mathrm{~mm}$ white nyion pack of $100 £ 3.00$ ret
3P104. Bumper pack of 1,000 ties $\$ 14.00$
VIDEO AND AUDIO MONITORING SYSTEM

Brand new units consisting of a camera, 14 cm monitor, 70 metros of cable, AC adapter, mounting bracket and owners manual. 240 V AC or 12vDC operation complete with built in 2 way intercom. $£ 99.00$ ref
99.92

1991 CATALOGUE AVAILABLE NOW IF YOU DO NOT HAVE A COPY PLEASE REQUEST ONE WHEN ORDERING OR SEND US A 6 " $X 9$ " SAE FOR A FREE COPY.
GEIGER COUNTER KIT.Complete with tube, PCB and all components to build a battery operated geiger counter. £39.00 ref 39P9 FM BUG KIT.New design with PCB embedded coil. Transmits to any FM racio. $9 v$ battery req'd. E 5.00 ref 5 P 158
FM BUG Buitt and tested superior $9 v$ operation $£ 14.00$ ref 14 P3 COMPOSITE VIDEO KITS.These convert composite video into separate H sync, V sync and video 12 V DC . 88.00 rel $8 P 39$.
 O/P shaft. Now $£ 20.00$ ret $20 P 22$.
As above but with fitted 4 to 1 inline reduction box (800 pm) and toothed nylon belt dive cog $£ 40.00$ ref 40P8.
SINCLAIR C5 WHEELS 13° or $16^{\prime \prime}$ dia including treaded tyre and innertube. Wheels are black, spoked one piece poly carbonate, 13 EL ECTRONIC SPEED CONTPOL KIT 5 ELECTRONIC SPEED CONTROL K TTor C 5 motor. PCB and all components to build a speed controller (o-
95% of speed). Uses pulse with modulation. $£ 17.00$ ref

17 P 3.
SOLAR POWERED NICAD CHARGERCharges 4 AA nicads in
8 hours. Brand new and cased $£ 6.00$ ref 6 P3
MOSFETS FOR POWER AMPLIFIERS ETC. 00 watt mosfet pair 2SJl99 and 2SK343 $£ 4.00$ a pair with pin out info ref 4P51. Also avaliable is a $2 S K 413$ and a $2 S .118$ at $£ 4.00$ re 4 P42.
10 MEMORY PUSH BUTTON TELEPHONES.These are 'cus-
tomer retums' so they may need slight attention. BT approved. $£ 6.00$ each ret 6 P16 or 2 for $£ 10.00$ ref 1 OP77.
12 VOLT BRUSHLESS FANA $1 / 2^{2 \prime}$ square brand new ideal for
boat, car, caravan etc. E5.C0 ref 5P206.
ACORN DATA RECORDER ALF503 Made for BBC computer, but suilable for or
$£ 15.00$ ref 15 F 43
VIDEO TAPES
tapes made under licence trom superior quality tapes made
company. Pack of 10 tapes $£ 20.00$ rel 20 P20. ELECTRONIC SPACESHIP. Sound and in pact controlled, responds to claps and shouts and

reverses when it hits anything. Kit with complete assembly instruc tions $£ 10.00$ ref 10P81.

PHILIPS LASER. 2MW HELIUM NEON LASER TUBE, BRAND NEW FULL SPEC $£ 40.00$ REF 4OP10. MAINS POWER SUPPLY KIT £20.00 REF 20P33 READY BUIL AND TESTED LASER IN ONE CASE E75.00 REF 75P4.
SOLDER 22SWG resin cored solder on a $1 / 2 \mathrm{~kg}$ reel. Top quality. £4.00 a reel rei 4P70
600 WATT HEATERS Ideal for air or liquid, will not corrode, lasts for years. coil type construction 3 "x2" mounted on a 4 " dia metal plate for easy fixing, $£ 3.00$ ea ref 3 P78 or 4 for $£ 10.00$ ref $10 P 76$.
TIME AND TEMPERATURE MODULE A ciock, digital
TIME AND TEMPERATURE MODULE A clock, digital thermometer (Celcius and Farenheit ($0-160$ deg F) programmable too
hot and too cold alarms. Runs for at least a year on one AA battery. hot and too cold
£9.00 ref 9P5.
Remote temperature probe for above unit $£ 3.00$ ref 3 P60.
GEARBOX KITS. Ideal for models etc. Contains 18 gears (2 of each size) $4 \times 50 \mathrm{~mm}$ axies and a powerful $9-12 \mathrm{v}$ motor. All the gears etc are push fit. $£ 3.00$ for complete kit ref 3 P93.
ELECTRONIC TICKET MACHINES Thes
ELECTRONIC TICKET MACHINES These units contain a magnetic card reader, two matnix printers, motors, sensors and loads of electronic components etc. ($12^{\prime \prime} \times 12^{\prime \prime} \times 7^{\prime \prime}$) Good value at E 12.00 ref 12 P 28.
JOYSTICKS. Brand now with 2 fire buntons and suction feet these
units can be modified for most computers by changing the connector etc. Price is 2 for $£ 5.00$ ref 5 P174.
GAS POWERED SOLDERING IRON AND BLOW TORCH Top quality tool with interch angeable heads and metal body. Fully achustablo, rune en, intiter gas. 10.00 ret 10 P:30
SMOKE ALARMS lonization type 5 year warranty complete with battery only $£ 5.00$ ref 5P 206
ANSWER MACHINES BTapproved remote message playback, intergral push button phone, power supply and tape. Exceptional value at $£ 45.00$ ref 45 P 2
CAR IONIZER KIT Improve the air in your carl clears smoke and helps to reduce fatigue. Case required. $£ 12.00$ ref 12 P 8 .
6 V 10AH LEAD ACIDsealed battery by yuasha ex equipment but in excellent condition now only 2 for $£ 10.00$ ref 10P95.
12 TO 220V INVERTER KITAs supplied it will handle up to about $15 w$ at 220 v but with a largertransformerit will handie 80 watts . Basic kit £12.00 ref 12P17. Larger transformer £12.00 ref 12P41
VERO EASI WIRE PROTOTYPING SYSTEMIdeal for designing projects on etc. Complete with tools, wire and reusable board. Our price $\mathbf{E 6 . 0 0}$ ref 6P33
MICROWAVE TURNTABLE MOTORS. Ideal for window displays etc. $\mathbf{£ 5} .00$ ref 5P165.
plays elc. 5 STCHED MODE POWER SUPPLY 220 v or 110 v input giving $5 v$ at $2 A_{1}+24 v$ at $0.25 A,+12 v$ at 0.15 A and $+90 v$ at $0.4 \mathrm{~A} £ 6.00$ ref 6P59
TELEPHONE AUTODIALLERS. These units, when triggered will automatically dial any telephone number. Originally made for alarm panels. BT approved. $\$ 12.00$ ref $12 P 23$ (please state telephone no 25 WA
25 WATT STEREO AMPLIFERc. STKO43. With the addition of a handful of components you can build a 25 watt amplifier. $£ 4.00$ ref UNEAR POWER SUPPL
LINEAR POWER SUPPLY Brand new 220v input +5 at $3 \mathrm{~A},+12$ at 1A, $\mathbf{- 1 2}$ at 1A. Short circuit protected. $£ 12.00$ ref 12 P 21
MAINS FANS. Snail type construction. Approx 4 " $\times 5$ " mounted on a netal plate for easy hing. New $£ 5.00$ SP166
POWERFUL IONIZER KIT. Generates 10 times more ions than commercial units! Complete kit including case $£ 18.00$ ref 18P2. MIN RADIO MODULE Only 2 " square with ferrite aerial and tuner. Superhet. Req's PP3 battery. $£ 1.00$ ref BD716.
HIGH RESOL UTION MONITOR $9^{\prime \prime}$ black and
HIGH RESOLUTION MONITOR 9° black and white Phillips tube in chassis made for OPD computer but may be suitable for others,
$£ 20.00$ ref 20P26.

BARGAIN NICADS AAA SIZE 200MAH 1.2V PACK OF 10 £4.00 REF 4P92, PACK OF 100 £30.00 REF 30 P16

CB CONVERTORS.Converts a car radio Into an AM CB receiver Cased with circuit diagram. $£ 4.00$ ref 4 P48.
FLOPPY DISCS. Pack of 15 31/2" DSDD $£ 10.00$ ref 10 P88. Pack of $1051 / 4^{\prime \prime}$ DSDD $£ 5.00$ ref $5 P 168$.
SONIC CONTROLLED MOTOR One click to start, two click to reverse direction, 3 click to stopl $£ 3.00$ each ref 3P137.
FRESNEL MAGNJFYING LENS $83 \times 52 \mathrm{~mm} £ 1.00$ ret BD 827 .
BULL ELECTRICAL
250 PORTLAND ROAD HOVESUSSEX BNK SOT TELEPHONE 0273203500 MAIL ORDER EERMS. CASHPO OR CIHEUE WHF ORDERPLUS \& 2 SOPOSTPLUSVAT. FUEASE ALLDW 10,4 DAYS COA DELLVERY

FAX027324077

LCD DISP LAY. $41 / 2$ digits supplied with connection data $£ 3.00$ ret 3P77 or 5 for $£ 10.00$ ref $10 P 78$.
ALARM TRANSMTTERS
ALARM TRANSMITTRRS. No data avaliable but nicely madeD
complex transmitters 9v operation. $£ 4.00$ each ret 4 P81. complex transmiters gv operation. E4,00 each ref
100 M REEL OF WHITE BELL WREfigure 8 pattern ideal for intercoms, door bells etc E3.00 a reel ref 3P107.
TRANSMTTER RECEVER SYSTEMoriginaly made for nurse call systems they consist of a pendant style transmitter and a

12 P 26

CLAF LGHT. This device turns on a tamp at afinger 'snap' eve nicely cased with builh in battery operated light. Ideal bodside light etc E4.00 each ref 4 P82
ELECTRONIC DIPS TICK KIT.Contains all you need to build an electronic device to give a 10 loval liquid indicator. $£ 5.00$ (ex case) ${ }^{\text {eff }} 5$ SP194.
UNIVERSAL BATTERY CHARGER.Takes AA's, C's, D's and
PP3 nicads. Holds up to 5 batteries at once. New and cased, mains operated. $\mathrm{Eb}_{6} 00$ ref 6P36.
ONE THOUSAND CABLE $\mathrm{TIES}: 75 \mathrm{~mm} \times 2.4 \mathrm{~mm}$ white nylon cable ties only $£ 5.00$ ref SP181
PC MODEMS 1200 r75 baud modems designed to plug into a PC complete with manual but no software $£ 18.00$ sef 18 P 12 ASTEC SWITCHED MODE POWER SUPPLYBO $\mathrm{mm} \times 165 \mathrm{~mm}$ (PCB size) gives +5 at $3.75 \mathrm{~A},+12$ at $1 / 5 \mathrm{~A},-12$ at 0.4 A . Brand new (PCB size) gives
E12.00 ref 12 P 39 .
VENTILATED CASE FOR ABOVE PSUwith IEC filhered sockel and power switch. $\mathbf{E 5} .00$ ref 5 P190
IN CAR POWER SUPPLY. Plugs into cigar socket and gives $3,4,5,6,7,5,9$, and $12 v$ outputs at 800 mA . Complete with universal spider plug. $£ 5.00$ ref 5 P167.
CUSTOMER RETURNED switched mode power supplies. Mixed type, good tor spares or repair. £2. 00 each ref 2 P292.
DRiLL OPERATED PUMP. Fits any drill and is self pri
DRILL OPERATED PUMP. Fits any drill and is self priming. $£ 3.00$ ref 3 P1 140 .
PERSON
PERSONAL ATTACK ALARM. Complete with built in torch and vanity mirror. Pocket sized, res's 3 AA batteries. $£ 3.00$ ref $3 P 135$
POWERFUL SOLAR CELL 1 AMP . 45 VOLTbnly $£ 5.00$ ret ${ }^{5} \mathrm{P} 192$ (other sizes avaliable in cataiogue).
SOLAR PROJECT KIT.Consists of a solar cell, special DC motor plastic tan and turntables etc plius a 20 page book on solar energy Price is $£ 8.00$ ref $8 P 51$.
RESISTOR PACK. 10×50 values (500 resistors) all $1 / 4$ watt 2% metal film. E5.00 rof 5P170.
CAPACITOR PACK 1.100 assoted non electrolytic capacitors $£ 2.00$ ref 2P286.
CAPACITOR PACK 2.40 assorted electrolytc capacitors $£ 2.00$
ref 2P287. ${ }^{\text {OUCK }}$ CUPPA? 12 vimmersion heater with lead and cigar lighter plug E3.00 rof $3 P 92$.
LED PACK . 50 red leds, 50 green leds and 50 yellow leds all 5 mm £8.00 ref 8P52
FERRARI TESTAROSSA. A true 2 channel radio controlied car with torward, reverse, 2 gears plus turbo. Working headlights £22.00 ref 22P6
ULTRASONIC WIRELESS ALARM SYSTEMT wo units, one
a sensor which plugs into a 13 A socket in the area you wish to
profect. The other, a central alarm unit plugs into any other socke protect. The other, a central alarm unit pugs in ino any other socke
elsewere in the building. When the sensor is tingered (by body elsewere in the building. When the senser is inggerive (by body
movement etc) the alarm sounds. Adjustable sensitivity. Price per movement etc) the alarm sounds. Adjustable sensitivity. Pnice per
pair £20.00 rei 20P34. Additional sensors (max 5 per alam unit) pair $£ 20.00$ ref
$£ 11.00$ ref 11 P6.
TOP QUALTTY MICROPHONE. Undirectional electret condenser mic 600 ohm sensitivity $16-18 \mathrm{khz}$ built in chime complete with magnetic miccopine PUMP.Mains operated new pump. Not sell
WASHING MACHI priming £5.00 ref 5P18.
IBM PRINTER LEAD. (D25 to centronics plug) 2 metre parallel. $£ 5.00$ ref 5P186
COPPER CLAD STRIP BOARD 17 " $\times 4$ " of 1 " pitch "vero" board $£ 4.00$ a sheet ref 4 P62 or 2 sheets for $£ 7.00$ ref $7 P 22$
STRIP BOARD CUTTING TOOL. 52.00 ref 2 P352
STRIP BOARD CUTTING TOOL_S2.00 ref 2 P352.
$31 / 2$ disc dive 2 d20K capacity made by NEC $£ 60.00$ ref 60P2
TV LOUDSPEAKERS. 5 watt magneticelly screened 40 hm 55
125mm. E3.00 a pair rof 3P109.
TV LOUDSPEAKERS. 3 watt
TV LOUDSPEAKERS. 3 watt 8 ohm magneticaly screened 70
50 mm . £3.00 a pair ref $3 P 108$.
BBC TRACKBALLS Onoe again in stock only £4. 00 ret 4P86 CROSS OVER NETWORKS 8 ohm 3 way Japanese made unit Excellent units avaliable at only $£ 2.00$ for a pair! ref $2 P 363$
SPEAKER GRILLS set of 3 matching grils of different diameters
2 packs for $£ 2.00$ (6 gnils) ref $2 P 364$
50 METRES OF MAINS CABLE $£ 3.002$ core black precut in
convenient 2 m lengths. Ideal for repairs and projects. ref 3 P9 1
4 CORE SCREENED AUDIO CABLE 24 METRES $£ 2.00$ Precut into convenient 1.2 m lengths. Rel 2P365
TWEETERS 2 1/4" DIA B ohm mounted on a smart metal plate to easy fixing $£ 2.00$ ref 2P366
COMPUTER MICE Originally made for Future PC's but can be adapled for other machines. Swiss made $£ 8.00$ ref 8P57. Atan ST conversion kit $£ 2.00$ ref 2 P362.
$61 / 2^{\prime \prime} 20$ WATT SPEAKER Built in tweeter 4 ohm $£ 5.00$ ref 5 P205 $5^{\prime \prime} \times 3$ " 16 OHM SPEAKER 3 for $£ 1.00!!$ ref CD213
ADJUSTABLE SPEAKER BRACKETS Ideal for mounting
speakers on internal or extemal corners, uneven surfaces etc. 2 for £5.00 fet 5 P207
PIR LIGHT SWITCH Replaces a standard light switch in seconds light operates when anybody comes within detection range (4m) and stays on for an adjustable time (15 secs to 15 mins). Complete with
dayhght sensor. Unit also functions as a dimmer switch! 200 watt daykght sensio. Nit also functions as a dmmer swi
max. Not suitable for flourescents. $£ 14.00$ ref 14 P10 2 MEG DISC DRIVES $31 / 2^{\prime \prime}$ disc drives made by S
a $51 / 4^{"}$ frame 1.2 meg formathed. $\mathbf{E 6 6 . 0 0}$ ref 66P
$360 \mathrm{~K} 31 / 2^{\prime \prime}$ DISC DRIVES $1 / 2$ height E25.00 re,
40 CHANNEL TRANSCEIVER 4 WATT OUTPUT, 40 CHANNEL TRANSCEIVER 4 WATT OUTPUT,
HANDHELD SQUELCH CONTROL ETC $£ 70.00$ HANDHELD SOUELCH CONTROL ETC $£ 70.00$ EACH REF 7OP1
OR AVALIABLE AS A PAIR WITH NICAD BATTERY PACKS FOR $£ 150.00$ REF 150P thuminated channel display, 10 section aerial Hi-Low power switch, external aerial socket, DC charger socket, 12v DC power socket, carying strap and owners manual.

EVERYDAY
ELECTRONICS
INCORPORATING ELECTRONICS MONTHLY
ABC

The No 1 Magazine for Electronic \& Computer Projects

ISSN 02623617
PROJECTS . . THEORY . . NEWS . . .
COMMENT . . . POPULAR FEATURES . . .

© Wimborne Publishing Ltd 1991. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

DIGILOGUE CAR TACHOMETER by Chris Walker
Combines the advantages of both digital and analogue readouts
AUTOMATIC LIGHT CONTROL by Mungo Henning
Pressure and light activated mains switch for the children's, elderly or disabled persons room

FISH BITE INFRALARM by Jonathan Living
Prevent those "big fish" from getting away undetected
RADIO RECEIVER by Mike Tooley
Tune into the world with this latest Teach-In '91 project
MODULAR DISCO LIGHTING SYSTEM by Chris Bowes 390
Customise your own light show.
Part Two: Simple Chaser and Sweeper Modules
PROJECT DEVELOPMENT FOR GCSE - 6 362
A GCSE assessor offers some practical advice - concluding articleINTERFACE by Robert Penfold368
The spot for all computer enthusiasts -.Amstrad CPC
TEACH-IN'91 -376
DESIGN YOUR OWN CIRCUITS by Mike Tooley
Part Seven: Radio circuits
Spatw1025
EDITORIAL 355
SHOPTALK with David Barrington 394
Component buying for projects
A.C. CAPACITORS by B. Cordingley 396
Using capacitors for mains power, Nicad charging, lamp dimming
ROBOT ROUNDUP by Nigel Clark 400
News from the world of robotics
DIRECT BOOK SERVICE 401
Selected technical books and all the EE books by mail order
PRINTED CIRCUIT BOARD SERVICE 404
P.C.B.s for EE projects, past and present
ADVERTISER'S INDEX 408

RTVC HAVE DONE IT AGAIN!
We have secured all stocks of nearly new factory refurbished units with manufacturer approval, at unrepeatable prices. We also offer a 6 month guarantee with all units (this only applies to products marked $\#$ on this page.)

Alba digitat auto reverse push button AM/FM LW car stereo with separate bass/treble control APPSS on tape. 25 watts per channel output. with line output for car components use.
$\star £ 79.40+£ 2.30 \mathrm{pp}$

Sparkomatic Phoenix Digital auto reverse AM/FM/LW car stereo, with tape volume and balance control. 9 watts output per channe $\star £ 52.40+£ 2.80 \mathrm{pp}$

AUSTIN ROVER SHELF SPEAKERS 15 watt speaker. Moulded in black plastic housing for vertical or horizontal use, contains $41 / 2^{*}$ Goodmans drive unit

SPECIAL OFFER £4.95 pair + £2 pp

Calculator
Elght Digit
Display
Imperial,
Metric
Conver
Tables
filofax.
PERSONAL ORGANISER
AADIO/CALCULATOR

Lermen Volume Control
Punched with 6 horphone provided Listed price $£ 19.95$ OUR PRICE $\mathbf{£ 8 . 9 5}$ plus 75 p pap

Genuine IILOFAI. complete
with 91 calender, A to Z index and address section.
$£ 5.95$ plus 75 p p\&p
MULTIBAND RADIO HF 54-176MHz + AM CB BANDS 1-80 Listen to: AIR TRAFFIC CONTROL. f 17.95 AIRCRAFT, RADAR. POSTAGE RADIO AMATEURS AND

E2.85 MANY MANY MORE SQUELCH CONTROL RUBBER DUCK AERIAL"

ROSS PUSH BUTTON RADIO

Mains and battery operated.
High quality VHF/FM.
Medium and Long Wave reception
6 push button selected
preset stations.
Fully retractable telescopic
aerial
Headphone/
lack socket
Size 230 H
Ref. RE-5500
Brand new.
Listed price over $\mathbf{E} 30.00$
OFFER E13.50
$+\mathrm{E} 2.80 \mathrm{pp}$

$30+30$ WATT AMPLIFIER KIT

An easy to build amplifier with a good specification. All the components are mounted on the single PCB which is already punched and backprinted.

- 30W $\times 2$ (DIN 4 ohm)
- CD/Aux. tape I. tape II. tuner and phono in puts.
- Separate treble and bass
- Headphone jack

Size (H.W.D.) $74 \times 400 \times 195 \mathrm{~mm}$.
Kit enclosed: case. PCB, all components, scale and knobs
$\mathrm{£} 36.80+£ 3.50 \mathrm{pp}$.
Featured project in Everyday Electronics, April (Featured project in Everyday E/
1989 issue). Reprint Free with kit.

MAIL ORDER
£1 BARGAIN PACKS BUY 20 GET 1 FREE
Please state pack(s) required
No. Qty. per pack
BPO15B I 30W dome tweeter. Size 90×66 mil JAPAN made $33000 \mu \mathrm{~F} 16 \mathrm{~V}$ d.c. electrolytic high quality com puter grade UK made
BP019 $\quad 30$
BPO19
BP0 20
$\begin{array}{lll}\text { BP1)20 } & 4 & \text { Tuning capacitors, } 2 \text { gang dielectric a.m. 1ype } \\ \text { BP(1)21 } & 10 & 3 \text { position, } 8 \text { tag slide switch } 3 \text { amp rated } 125 v\end{array}$ 3 position. 8 tag slide switch 3 amp rated 125 V a.c. made in USA

BPO2? 5 Push button switches, push on push off. 2 pole changeover. PC mount JAPAN made
2 pole 2 way rotary switch
BPO24 22 Right angle, PCB mounting rotary switch. 4 pole. 3 way rotary switch UK made by LOR. LIN
3 pole, 3

BP025 $4 \quad 3$ pole, 3 way miniature rotary swith with one extra position off (open frame YAXLEY Iype) | BP026 44 extra position off (open frame YaXLEY type) |
| :--- |
| pole, 2 way rotary switch UK made by LORLIN | $\begin{array}{lll}\text { BP027 } & 30 & \text { Mixed control knobs }\end{array}$

BP029 $6 \quad$ Siereo rotary potentiometers
BPO30 ? 10k wire wound double precision poten tiometers UK made

F varicap tuner heads, unboxed and untested UK made by PHILIPS
FM stereo decoder modules with diagram UK made by PHILIPS
 BP034 $-A M$ iF
BP034A I AM-FM tuner head modules. UK made by Mul lard
Hi-Fi stereo pre-amp module inputs for $C D$ tuner, tape mannetic carridge with diagram UK made by MULLARD
$\begin{array}{lll}\text { BP035 } & 6 & \text { All metal co-axial aerial plugs } \\ \text { BP0.36 } & 20 & \text { Fuse holders, panel mounting } 20 \mathrm{~mm} \text { type }\end{array}$
$\begin{array}{lll}\mathrm{BP} 038 & 6 & 5 \text { pin din, } 180^{\circ} \text { chassis socket } \\ \text { BP0 } 39 & 3 & \text { Double phono sockets, Paxolin mounted }\end{array}$ $\begin{array}{lll}\text { BP039 } & 3 & \text { Double phono sockets, Paxolin mounted } \\ \text { BP041 } & 2 & 2.8 \mathrm{~m} \text { lenghts of } 3 \text { core } 5 \text { amp mains flex }\end{array}$ $\begin{array}{lll}\mathrm{BP} 041 & 2 & 2.8 \mathrm{~m} \text { lenghts of } 3 \text { core } 5 \text { amp ma } \\ \mathrm{BP}(1422 & 30 & \text { Large VU meters JAPAN made }\end{array}$ $\begin{array}{ll}\mathrm{BP} 043 & 2 \\ 2 & 4 \mathrm{~V} \text { miniature bulbs, wire ended, new untested }\end{array}$ Sonotone stereo crystal carridge with 78 and LP styli JAPAN made
BP045A 2 Mono Cassette Record and play heads
BP046A 2606 Mains transformers, PCB mounting. Size $42 \times 33 \times 35$
25 V DC 150 mA mains adaptor in black plastic case with flying input and output leads new units made for famous sound mixer manufacfurer. Size $80 \times 55 \times 47$
BP049 10 OC44 transistors. Remove paint from top and it becomes a photo-electric cell (ORP 12). UK made by MULLARD
BP05
Low signal transistors n.p.n., p.n.p. types
4 watt output transistors. 3 complimentary pairs
in TO66 case. (Ideal replacement for AD161 and 162s)
BPOS2A \& Tape deck pre-amp ic with record/replay switching No LM1 818 with diagram
BP0S4 105 watt audio ICs. No TBA800 (ATEZ)
Motor speed control ICs, as used with most cassette and record player motors
Digital DVM meter I.C. made by PLESSEY as used by THANDAR with diagram
7 segment 0.3 LED display (red)
Bridge rectifiers, $1 \mathrm{amp}, 24 \mathrm{~V}$
Assorted carbon resistors
wer supply PCB with $30 \mathrm{~V} 4 \mathrm{~V} / \mathrm{A}$ transformer. MC7818CT IC \& bridge rectifier: Size $4^{\prime \prime} \times$

6.35 mm Mono jack plugs

BP06
BP06
BP063
BP064
BP06S
6.36 mm stereo switched jack sockets Coax chassis mount sockets

Postage $£ 3$ per order

28.0.28V 4 AMP MAINS

 TRANSFORMERWith a 5.5 V at 0.5 A mains input $110-240$. Size $90 \times 105 \times$ 75 fitted with copper screening band; made for famous HiFi Co. £6.50 each. Postage $£ 2.80$. It's weight is 2.7 Kg ! Brand new and unused condition

2 for f14 POST PAID
KOSS STEREO HEADPHONES High quality lightweight stereo headphones fitted 3.5 mm jack with adaptor to 6.4 mm jack ideal use Hifi or persona £4.25 postage 60 p.

Hi-Fi stereo cassette deck transport mechanism, complete with 3 digit rev counter and tape heads. 12 V d.c. Operation Unused manufacturers surplus JAPAN made $£ 6.20+2.50$ P\&P 2 for $£ 10.00+3.50$ P \& P

BSR STEREO RECORD PLAYER DECK

Manual auto operation, 3 speed ($78,45,33^{13}$), 240V opera £10.50
RADIO AND TV COMPONENTS ACTON LTD 21 HIGH STREET, ACTON, LONDON W3 6NG
MAIL ORDER TERMS POSTAL ORDERS and or CHECUES with orders Netr monthly accounts to Schools. Colleges and PLC only
ACCESS VISA Phone orders between $90-12$ pmi please Overserts readers

Phone 0717238432 or 0819928430

125 watt per channel stereo power amplifier with independent volume controls, professional $19^{\prime \prime}$ rack mount and silent running cooling fan for extra reliability Output powe Output impedance

Sensitivity.

Protectio
Chassis dim..
(max power to 16 ohms
(max power into 4 ohms) short-circuit and fuses
$.220-240 \mathrm{~V}$ a.c. 50 Hz $. .435 \times 125 \times 280 \mathrm{~mm}$ $\mathrm{f} 142+£ 7.00 \mathrm{pp}$

VIDEO SENDER

With this handy unit you can transmit the output of your home video, video camera or satellite equipment over-the-air to a receiving television within a range of 100 ft . Simply connect the video and audio output of your equipment into this unit and a $10-13.8 \mathrm{~V}$ dc power supply extra £3.75 size $122 \times 70 \times 21 \mathrm{~mm}$

SALE OFFER £11.50 + £2 pp

VHF RADIO TRANSMITTERS

100 mW mini bug. Built on a neat little fibre glass pcb with condenser mic. Fully tunable over the FM band 9V DC
$\mathbf{5} 5.75+\mathrm{f} 0.90 \mathrm{pp}$ 2 Watt transmitter kit, supplied with fibre glass pcb, all components, diagrams, ready for you to build. 12-24V DC.
$\mathbf{E} 7.50+£ 0.70 \mathrm{pp}$ 25 Watt Transmitter kit. Fully tuneable over the FM band. Kit comprises double sided pcb diagrams and all components, including heat sink. Supply voltage 12-18V DC.
£67 + £1 pp Transmitters listed on this page are not licensable in the UK.

HIFI WOOFERS

$10^{\prime \prime}$ round 100 watt Goodmans. Hifi woofer 2° coil, paper cone, foam rubber surround $4 / 2$ magnet, frame size $10^{7}{ }^{\prime \prime}$ $\operatorname{lmp} 8 \Omega \quad \mathbf{£ 1 7 . 5 0 + £ 2 . 8 0 p p}$ $8^{\prime \prime}$ round 100 watt Audax Hifi woofer, ${ }^{\prime \prime}$ coil with fitted phaseplug. Hiteck TPX polimar core with rubber surround $4^{3} \mathrm{e}^{\prime \prime}$ magnet, die cast chassis, size $9 / 4^{\prime \prime} 8 \Omega$ imp $^{.0}$ $8^{\circ \prime}$ square 80 watt Audax Hifi woofer, $114^{\prime \prime \prime}$ coil, polypropylene cone, rubber surround, $31 /{ }^{\prime \prime}$ magnet. chassis size $8^{3}{ }^{3}$ " square $8 \Omega \mathrm{imp} \quad \mathrm{f} 19.70+£ 2.50 \mathrm{pp}$ $8^{\prime \prime}$ round 70 watt Peerless Hifi woofer $1^{\prime \prime}$ coil, treated paper cone, foam rubber surround. $314^{\prime \prime}$ magnet. $8 \Omega \mathrm{imp}$ $5 y^{\prime \prime} 35$ watt Goodmans Hifi woofer, $1^{\prime \prime}$ coil, treated paper cone, rubber surround, $31 /{ }^{\prime \prime \prime}$, $\mathrm{imp}_{41 h^{\prime \prime}}$ square 35 watt Audax Hifi woofer $\mathbf{£ 7} \mathbf{2 0} \mathbf{£ 2 . 5 0} \mathbf{p p}$ Re squared cone
pp

HIFI TWEETER AND MID RANGE

 4^{3} ". square 100 watt Goodmans sealed back mid ange. ${ }^{\prime \prime}$ coil. treated paper cone. $2^{3} 9^{\prime \prime}$ magnet. 8Ω $4^{\prime \prime}$ square 75 watt Audax sealed back mid range treated paper cone. Ferrofluid cooled coil chassis size $3^{7,}$ treated8Ω imp
$\mathbf{£} 7.95+\mathbf{£ 1} \mathbf{p p}$
$4^{\prime \prime}$ round 130 watt Peerless $1^{\prime \prime}$ metal dome Hifi tweeter. 1" coil, 2^{3} " magnet, rec. crossover freq $3 \mathrm{KHz} \quad \mathrm{E} 15.90+\mathbf{£ 1 . 6 0} \mathrm{pp}$ $41 /{ }^{\prime} \times 21_{4}, 75$ watt 3 " direct drive dome tweeter, Ferrofluid but with 35s." face plate
$101 / 2 \times 41 / 120 \mathrm{~W}$ Jamo horn weeter $8 \Omega \mathbf{£ 6 . 9 0 + \mathbf { £ } 4 . 3 0} \mathrm{pp}$ 7 KHz
crossover freq
$59.95+\varepsilon 2 p p$
MOTOROLA PIZO CERAMIC TWEETERS Convert electrical energy into sound without the use of voice coils and magnet assemblies. No moving mass hence excellent transient response and low distortion with igh efficiency levels as they canc
sounds. No crossovers are required
PA super horn tweeter
$3^{33}{ }^{4}$ round, 50 watt Pizo horn tweeter
$\mathbf{5} 5.75+75 \mathrm{pp}$
$2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion 400 watt Pizo
$\mathbf{f 1 1 . 9 5 +} \mathbf{E 1}$ pp

SIMPLE MODEL

 SERIES WHIRIT!!
NEW THIS MONTH

Multiturn Trimpots from 14p - detal's in 8 / 68 .

Grey ribbon cable 100 ft reels.
23017614 way
Sult LED's from 20 E8.00 B/L 68 .

Stepper Motors

Superb little 12 V motor by Airpax 35 mm dla $\times 21 \mathrm{~mm}$ deep with a 16 tooth 9.5 mm dia gear wheel mounted on the 2 mm dia spinale. Fixing centres 42 mm .
$7 / r^{\circ}, 48$ step. $100+$ price is $£ 9.04$. $7 \% ; 48$ step.
Order code
Prices........................00 $100+2.50$
Mercury Swltches
metal enclosed, in case 7.5 mm order Code
Prices.
22118

4 Dlgit Dlsplays

LCD 4 digit 12.5 mm high with low batt and clock symbol. Complete with edge connector. Can you belleve the price?! Order code
$25+0.60 ; 100$
Drlver Chlps
For above display. Type ICM 7211 AMIPL this is a 4 digit LCD decoder driver (μP interface). Llst £3.69
order code
$100+1.50 ; 1 k+1.20$

Sealed Lead Acld Batteries

YUASA NP6-12. 12V 6An sealed lead acld battery. These have been. regularly $150 \times 95 \times 65 \mathrm{~mm}$. List price $£ 28.00$ order Code Prlces.
Motor Panels
PCB $92 \times 31 \mathrm{~mm}$ with mercury tilt switch, 2 VTL 1002 opto slotted switches, length of 11 core cable with socket and stepper motor as described above.
25046
Prices
Controller Boards
РСВ $175 \times 122 \mathrm{~mm}$ containing a wealth of components - 80 C39 CPU, $4 \times$ TLO6 TLO94, CMOS and 74 serles chips, $8 \times$ ro126 transistors, 13 TO92 transistors
and lots of R's and C's etc. also a 3 V and lots of R's and Cos etc. also a 3 V
lithlum battery. 3 connectors on it go lithlum battery. 3 connectors on it go
to (a) card reader (b) motor panel \& (c) to (a) card reader (b) motor panel \& (c) 2027 (P111 of Catalogue). 2027 (P1110

25047
Prices.
$83.50100+1.7$
Opto Slotted Swltch
Vactel Type VTL 10DI. IR emitter and detector can be removed from the plastic housing if required. TH100/
extremely cheap version of TlL38!
Order Code
AAA NIcads by Sanyo
SUPERDEAL PRICE!! These superb quallt batterles are rated 1.2 V 200 mAh , and may be charged at 20 mA or quick-charged at 60 mA . Normally costing around $£ 1.50$ each, we can offe these at the SUPERDEAL prices below:
22117 AAA NICAD.
$25+0.75100+0.60$

GLUE GUNS

87-0400 Hot melt glue gun. Electronically controlled heating element which meits the long stick of glue when inserted. Trigger feed.
operated. Normally selis for $£ 8.60$. operated.
Our price
Glue sticks
NI-CAD BATTERIES
Regutar stocks: AAA £1.20; AA 99p: C E2.20; D E2.30; PP3 E3.95 24150 Ex moblle radio battery $58 \times 63 \times 33 \mathrm{~mm}$ case isometimes damaged) contains $8 \times \mathrm{AA}$ siz rechargeable Nicads. These can be removed by breaking the case open. Each cell rated 1.2 V 600 mA .
Price.
24149 As above but $84 \times 66 \times 33 \mathrm{~mm}$. There are agaln 8 cells but they are longer than AA size, being 73 mm long. Each cell rated 1.2 V 900 mA .
price.

1991 CATALOCUE + SPRING SUPPLEMENT YOU GET A GREAT DEAL MORE WHEN YOU DEAL WITH GREENWELD!!
The 1991 Greenweld Catalogue Is out NOW!

* Many substantial reductions
* Quantity pricing for bulk buyers

132 pages of value-packed goods + a further 48 pages in 2 supplements

* Next 6 updates plus lists included in price
* Easy to use order form
* 1st class reply paid envelope
* Our famous Bargain List
price to include Catalogue, current bargaln llst and next 6 Ilsts. All supplled with reply paid envelope $£ 2.50$ (UK \& BFPO) $£ 5.00$ Overseas.

SWITCH MODE POWER SUPPLIES

Over the years, we ve had many
different switch mode power supplles but this latest unit is without doubt one of the finest we've ever seen! Made by Astec, it is a totally enclosed steel cased
unit measuring $175 \times 136 \times 65 \mathrm{~mm}$ has incorporated in it a switched and fused IEC mains iniet. Inside, the PCB is $160 \times 80 \mathrm{~mm}$ with output pins fltted on one end. A connector to these pins to extend the outputs to the exterlor the case is provided. specification:
Model Number: BM41012 outputs:

Total wattage

$115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ | $12 V .75 \mathrm{~A}$ |
| :--- |
| 12 V |

Prices.
28887 Made Dy STC, this $160 \times 100 \mathrm{~mm}$ PCB is attached to an aluminlum chassis $\times 65 \mathrm{~mm}$ and has a single 5 V detaintput. Supplied with connection detalls, we can offer these at fractlon of their normal cost!
z8888Á..2.95; $10+4.95 ; 100+3.95$ z8888As above but 5 V 10 A output.
Prices £8.95; $10+6.50 ; 100+$
VISTEL II VISUAL TELEPHONE
Total communication for deaf people - this brilliant plece of equipment has a full Auto answer interface. Modem support v21/23/25. These are new and boxed but because the makers are bankrupt, there's no guarantee. Origlnally sold for over $£ 500$. A comprehensive 143 page
$£ 10$ refunded on return)
our speclal price

LOTS MORE

CATALOGUE

K539 LED Pack many shaped LEDs in this pack in but yellow, green orange and clear in Vellow, green, orange and clear. Fantas-
tic mix of new full spec devices. tic mix of new full spec devices.
Price 100/£5.95; 250/£11.75 K575 Plastle Power Pack. Malnly TO 126 all new full spec marked devices offer. Ing fantastic value. Lots of TIP and BD types. PINDICATOR PACK
K700 Big varlety of neons in this pack! Round, square and oblong, cllp and screw fix. Red, Green, Amber and Clear. Tag \& wire-ended. All are 110 V , but sultable resistors for use on mains are Included. Really great value for money!
Price .d. Really great value for money!

nother have good supplies of yet

 partlally cased, the overall size being $160 \times 104 \times 45 \mathrm{~mm}$. The PCB measures $160 \times 100 \mathrm{~mm}$. Input and Outputs are on also an additional IEC socket to extend mains to another unit.specification:
Model Number AA12531
input
Outputs $\quad 115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
$\begin{array}{ll}\text { Total Wattage } & +12 \mathrm{~V} 0.15 \mathrm{~A} \\ \text { Price }\end{array}$
 Have you purchased the above AA12531
PSU? We now supply a conversion kit to change the outputs to +5 V 2
$2 \mathrm{~A} ;-12 \mathrm{~V} 0.1 \mathrm{~A}$ and .5 V 0.55 A . $2 \mathrm{~A} ;-12 \mathrm{~V} 0.1 \mathrm{~A}$ and -5 V 0.55 A .
K 625 Complete kit and instructions. P626 instructions only.
Price .. $£ 1$
28890 DC-DC Converter board Panel 220×195 requre 50 V I/P for 5 V 19.5 A P/P.
$\ldots £ 7.95 ; 25+5.20 ; 100+3.89$

Job lot of returns- famous manufacturer. All are complete and look OK, only minor faults
25028110 mm Manual models Include 110 LF and 110 TF , many have bullt In flash
Prices $\mathbf{z 5 0 2 9} 110 \mathrm{~mm}$ Motor driven.. $\mathbf{E 3} .50$ ea 5 for £ 14.00 $\mathbf{2 5 0 2 9} 110 \mathrm{~mm}$ Motor driven. Models include 110 IF. Prices... E4.00 ea 5 for $\mathbf{2} 16.00$ 2503035 mm Manual. Models include 35HL, 806, 35CT, DL10, DL7. Most have built in
flash. Prices....... flash. Prices .. E4.50 ea 5 for E18.00
2503135 mm Motor driven. Models include DL15, 35 EM, 35 EFM, 35 ESM, most with 2503135 mm Motor driven. Models inciude DL15, 35EM, 35 EFM, 35ESM, most with
built In flash. Prlces... £5.50 ea 5 for $£ 22.00$ built In flash. Prices 25032 Broken cameras. These have parts missing. A parcel of 6 assorted, all 35 mm including manual, motor driven, autofocus, twin lens types.

ELECTRONIC COMPONENTS

Tel: (0703) 236363 a 2 :
Fax (0703) 236307 SO1 3TB

NEW THIS MONTH 1/2Meg Memory Board
28900 Masslve panel $460 \times 400 \mathrm{~mm}$ smothered in chips. Could be a smothered in chips complete computer Juaging by the IC's on the board. Made by Whitechapel Computer works. Contalns at least the following (some panels have extra chips): $64 \times 4164-15$ RAM's; over $20074 \mathrm{LS}, \mathrm{F}$ and other loglc chlps; 3×4016-3, $2 \times 8253-5$, $8251,2 \times 5516,6 \times t a l s, 3 \times{ }^{\prime}$ plugs and sockets. $3 \times$ DIN 64 way socket, + R's, C's each and rest of chips un $3 p$ each Price. .. $£ 25.00$ 24397 RS232 data cable - 25 'D' plug to 25 'D' socket 6 feet long. All pins connected. These are Identical to our Cat. No. P2875 w £4.95 except for some very minor corrosion on socket casing. Half price .amonnana................. Just £2.50 K708 Voltage Regulators. This is an excellent pack, made up from a huge varlety of the + ve, ve, fixed and varlable regulators from 1.2 V to 37 V . 100 mA to 5A, plastlc and metal. Price.
K709 Brldge Rectifiers. Another superb value pack - could Include anything from $1 / 2$ amp to $35 \mathrm{~A}, 25 \mathrm{~V}$ to 1000 V , plastic and metal.
Price
K710 SCR's \& TRIACS. Blg mixture could include all types from T092 plastic up to D05 stud mounting with a chance of evervthing in between! 25 V to 1000 V , 100 mA to tens of amps. Marvelious value.
... 25 for $£ 4.95$
K711 74 Loglc Pack. All brand new full spec devices from basic gates to complex logic. May include 54 \& 64 types as well as $74 \mathrm{In} \mathrm{L}, \mathrm{LS}, \mathrm{S}, \mathrm{ALS}, \mathrm{H}, \mathrm{HC}, \mathrm{HCT}$, etc. Price per pack of 100 $\mathbf{8 6 . 0 0}$ K712 Crystals. Mostly HC60 and HC18U in a wide varlety of frequencles from a few hundred kltohertz to many megahertz and the odd crystal oscillator module or two.
Price.
20 for $£ 4.95$
K713 Fuseholders. Panel and Chassis mounting from a basic cllp to high current enclosed types for 15, 20 and 32 mm fuses.
Price for pack of 50 \qquad . 84.00
K714 Power Supply Capacttors cans, mostly computer grade including popular values llke $10,000 \mu 40 \mathrm{~V}$ etc. Big mix of values and voltages up to 100 V or more and $50,000 \mu \mathrm{~F}$

Price for box of 25

K536 Bonanza Pack of 74 serles chlps on panels. $200+$ chips, may inlude L, LS, HC, HCT etc. irnese are actually the 28900 computer panels with all the memory missing.)

pric

4.01 MSDOS Packs

A year or so ago we had some Epson erston has turned up. These are for the Epson PCe personal computer and the pack consists of the following:
(a) $4 \times A 5$ splral bound books:

Setting Up and Getting Started 195 pages)
Dlagnostic users guide (61 pages)
Everyday with MSDOS (109 pages)
MSDOS Reference Manual $3.3 \quad 1381$ pages)
(b) $3 \times 31 / 2$ " 200 dlsks:

MSDOS 4.01 install dlsk
MSDOS 4.01 operating disk
MSDOS 4.01 shell disk.
28919 All brand new in sealed carton.
.E15.00
25048 Panel $275 \times 178 \mathrm{~mm}$ containing some excellent components: $2 \times$ D8243 I/O expander, $8035 \mathrm{CPU}, 8253$ timer, 2651 USART all in sockets, 2×2111 A- 4 RAM, 25 mostiy CMOS Chips, $8 \times$ TO126 transistors, $5 \times$ TO9 2 transIstors, R's, C's etc
plug, 2×34 WIDC plugs, 2 xtals. plug. 2
only ...
The UK Distributor for Standard Toroidal Transformers
-106 types available from stock

- Sizes from 15VA to 625VA
-Dual 120 v primaries allowing 110/120v or $220 / 240 v$ operation

TYPE 15VA £10.68		SEC vours volis $9+9$ $12+12$ $15+15$ $18+18$ $22+22$ $30+30$	RMS CURENT 1.25 0.83 0.63 0.50 0.42 0.04 0.30 0.35 0.25	$\begin{aligned} & \text { 160VA } \\ & £ 19.21 \end{aligned}$	SERIRS No N3011 53012 53012 50314 53015 53016 53017 53018 5038		RMS CURRENT 6.66 5.33 4.44 4.43 3.30 3.43 3.320 2.56 2.28
30VA	13010 13011	$\stackrel{+}{6+6}$	2.50 1.66		年53026	${ }_{\substack{40+40 \\ 10}}$	2.00 1.45
£12.21	13017 13012 13013	cite	1.125 120 100		53029 503030	220 220	0.72 0.66
	13013	${ }_{\substack{15+15 \\ 1+8 \\ 1+18}}$	1.00 0.83	225 VA			
	13015	${ }^{2+22}$	0.68	$£ 21.04$	${ }^{63013}$	15415	7.75 65
	13016 13017	$\underset{\substack{25+25 \\ 30+30}}{ }$	0.50	E21.04	${ }_{6}^{63014}$	$\xrightarrow[\substack{18+18 \\ 22+22}]{ }$	6.25 5.11
Sova	${ }_{23010}^{230}$	${ }^{6+6}$	4.16		$\underset{\substack{63016 \\ 63017}}{\text { cider }}$	$\underset{\substack{25+25 \\ 30+30}}{ }$	+ $\begin{aligned} & 4.50 \\ & 3.75\end{aligned}$
£13.84	${ }_{23011}^{23011}$	${ }_{12+12}^{9+9}$	2.7 2.08		${ }_{63018}^{63018}$	${ }^{\text {a }}$	3.21
	23013	${ }_{15+15}$	${ }_{1} 1.66$		63026	40.40	2.81
	$\underset{\substack{23014 \\ 23015}}{2}$	-	1.388		${ }_{633025}^{633}$	454,45 $50+50$	250 25
	${ }_{23016}^{23015}$	${ }_{25+25}^{22+22}$	1.133			(10)	2.2.
	23017	${ }^{30} 30$	0.838		-63029	${ }_{240}^{220}$	1.02 0.93
	${ }_{23292}^{2302}$	${ }_{220}$	0.22	300VA	73013	$15+15$	10.00
	23030	240	0.20	$¢ 22.94$	${ }_{73014}^{73015}$		8.33 882
	${ }_{33011}^{3300}$	$\stackrel{\text { cre }}{\substack{6+6}}$	6.66 4.4	$\underline{22.94}$	73015 7006 7037	${ }_{\text {c }}^{22+22}$	6.82 6.00
£15.43	33012	${ }_{12+12}$			73017		5.00
	${ }_{3}^{33013}$	${ }^{15+15}$	${ }_{2} 2.26$		${ }_{73018}^{73026}$	$35+35$ $40+40$	4.88 3.75
	33014 33015 3030		2.22 1.81		${ }_{7}^{7025}$	45+45	${ }^{3.33}$
	$\underset{\substack{33016 \\ 33017}}{ }$	${ }_{30+30}^{2525}$	1.60 1.33		$\xrightarrow{73033}$	${ }^{50+50}$	(${ }^{3.00}$
	33028	${ }^{110}$	0.72		${ }_{7}^{73029}$	220 240	1.36 1.25 1
	${ }_{33030} 330$	${ }_{20}^{20}$	0.33	500VA			
120VA	43010	${ }^{6+6}$	10.30				
£16.45	43011	${ }_{1}^{9+9}$	-6.66	£29.57	${ }^{83018}$	${ }^{35+35}$	7.14
	43013	${ }^{12+12}$	4.00		83025	$45+45$	5.55
	43014	${ }_{\text {cole }}^{18+18}$	- 3.38		042		5.00
	43016	${ }_{25+25}^{22+22}$	240		83028	110	${ }^{454}$
	43017 40018	$30+30$ $35+35$	2.00 1.71		83029 8030	${ }_{240}^{220}$	${ }_{2}^{2.28}$
	${ }_{4}^{4} 4028$	${ }_{\text {cher }}$	1.09		93017		10.41
	43029 4030		+ $\begin{array}{r}0.54 \\ 0.50\end{array}$	£32.64	93318	${ }^{35+35}$	${ }_{8}^{8.92}$
					93025	45	c. 6.98 625
					${ }_{9}^{93043}$	55555	6.65 5.68 5.58 8.
Prices include VAT at new rate of 17.5% and carriage					${ }_{9}^{93028}$	${ }_{120}^{110}$	
					93030	240	2.60

Quantity prices available on request
Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

TM SERIES MULTIMETERS

 D-MM Good Value!The TM series of low cost meters, with $31 / 2$ digit LCDs, full overload protection, strong ABS case and packed with features. Supplied with test leads, battery and manual.
TM 5315 DC current (10A) continuity and diode test $\mathbf{5 6 - 0 5 3 1 5}$
€ 20.42 TM 5365 Capacitance and frequency (200 kHz) ranges

56-05365
£38.73
TM 5375 Frequency range (20 MHz) and HFE test S6-05375
€ 37.55
TM 115 AC \& DC current (10A). HFE and continuity test

S6-00115 £34.40
TM 135 Capacitance and temp. ranges (inc. $\quad \mathbf{5 6 - 0 0 1 3 5}$ £46.95 probe)
TM 175 Frequency (15 MHz) and capacitance ranges and HFE. diode. continuity and 56-001'TS £58.74 LED test.
7705 Capacitance meter, 1pF to 20.000uF 56 -07705 $£ 39.82$

BLACK STAR

Top quality, UK made, frequency counters and generators.

Meteor 100	100 MHz counter
Meteor 600	600 MHz counter
Meteor 1000	1000 MHz counter
Apollo 100	100 MHz counter/timer
Nova 2400	2.4 GHz counter
Jupiter 500	500 kHz function generator
Jupiter 2000	2 MHz function generator

HM203-7 HM205-3 HM604 HM1005

Dual channel. 20 MHz Digital storage. 20 MHz sampling Dual channel. 60 MHz Triple channel. 100 MHz

56-00100 56-00600 56-01000 £209.15 56-10100 €346.63 56-02000 £351.33 56-00500 £129.20 56-02001 £175.08

HAMEG 'SCOPES

All Hameg scopes are supplied with two $\times 10$ probes. mains lead, manual and 2 year warranty.

Full detalls of all the above are Included In our comprehenslve catalogue, $£ 1.70$ (Inc. P\&P).
All the above are currently in stock and available for immediate delivery. Standard P\&P £1.20, next day delivery £4.60.

ETRI FAN $-240 \mathrm{~V} .14 \mathrm{~W} .-120 \mathrm{~mm}^{2} 38 \mathrm{~mm}$ deep
PRICE
£8.50
£1.00 high quality
MAINS FILTER - Bulgin or similar 'quality' make/I.E.C./3A 250 V
£1.80
TORROID TRANSFORMER + complete wiring diag. -240 V in Outputs $12 \mathrm{~V} . .4 \mathrm{~A}, 12 \mathrm{~V}, 0.4 \mathrm{~A}, 12-0-12=1 \mathrm{~A}+2 \mathrm{~A}, 9-0-92 \mathrm{~A}$ THERMAL PRINTER PAPER-Rolls 80 mm wide 25 m long Box of 40 rolis
BARGAIN PACKS - Approx 3 lbs. of quality NEW mixed components. No rubbish! We deal mainly in bulk to the trade. All smaller qiy. parts go in the packs regardless of value $£ 4.00$
HEAT SHRINK TUBING - Pack approx 15×16 inch lengths. Different diameters \& colours
HARDWARE PACKS - Same quality \& quantity as the packs we do at all the major radio rallies - small nuts \& bolts small self tapping screws
ring \& spade crimp terminals - insulated
3M STICKY PROTECTIVE FEET - grey rubber - sheet of 56 B.T. PHONE LEADS - Modern jack to jack/grey/3 mtrs COPPER CLAD P.C. BOARD - double sided $18^{\prime \prime} \times 10.5^{\prime \prime}$ sheet. easy to cut - on thin and flexible fibre glass
DISC DRIVE LEADS - ribbon cable; signal lead 34W card edge to 34 W DIL, suit $B B C$ etc.
Dual signal lead $2 \times 34 \mathrm{~W}$ card edge to 34 W DIL
$£ 3.00$
$£ 3.00$
3.00
3.00
$\S 3.00$
£2.00
£2.00
£3.50
Power lead, 4 way plug to 4 W sckt (large type) £5.00 12 VDC . £6.00 240 V AC £6.00
TA-XI CMOS SAFE CONTINUITY PROBE - detects \& locates short circuits with variable audio tone, easy to use. S.T.C. price $£ 22,00$

Our Price $£ 9.00$ Needs PP3 battery (state if required
0.80

BRIEF-CASE TYPE CARRYING CASE - used but in good condition, approx. $131 / 2^{\prime \prime}$ wide $\times 81 / 2^{\prime \prime}$ deep $\times 8^{\prime \prime}$ high
$£ 7.00$
POSTAL CHARGES - £1 up to $£ 10$ order - $\mathbf{£ 2}$ up to $£ 20$ order etc. PLEASE ADD $171 / 2 \%$ VAT TO TOTAL COST
SEND TODAY - YOU'LL BE BACK FOR MORE!

RICH ELECTRONICS

The Warehouse
0222831547
Windsor Place.
Senghenydd,
Mid-Glam.
S. Wales CF8 2GD

What's so Special

 about

It's one of many showing how wide and varied are the ranges of COMPONENTS, PRODUCTS and MATERIALS to be found in our 1991 Catalogue.
It is well presented, illustrated and easy to look up.
88 pages and cover, A4 size
Please send $£ 1.50$ (Cash/PO/Cheque/stamps) for your 1991 EV Catalogue (Postage paid). We give you refund vouchers for $£ 1.50$ usable towards your next order value $£ 5.00$ or more.
WE ARE SPECIALIST SUPPLIERS FOR SIEMENS FINE QUALITY COMPONENTS

Catalogue orders to: continuous experience and as up to date as tomorrow's world.

ALUE LTD

28b St. Jude's Rd, Englefield Green, Egham, Surrey TW20 OHB Phone Egham (0784) 433603 ::: Fax: 0784435216
 is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic be sure that all of our kits are very well tried, tested be sure that all of our kits are very well tried, tested circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be recelved on an ordinary VHF FM radio.

UTX Ultra-miniature room transmitter. Smallest room transmitter kit in theworld! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 500 m range.
MTX Micro-miniatur room transmitter. Best selling micro-minia room transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range.
STX High-performance room transmitter. High performance transmitter with a buffered output stage for greater stability and range. Measures $22 \mathrm{~mm} x$ 22 mm including mic. $6-12 \mathrm{~V}$ operation. 1500 m range.
VT500 High-power room transmitter. Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times 40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. Range 3000 m .
16.45

3000 ds are
VXT Voice activated room transmitter. Triggers only when sounds are detected. Very low standby current, variable sensitivity and delay with l.e.d.
indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}, 9 \mathrm{~V}$ operation, 1000 m range..................... $\mathbf{~} 19.45$
QTX180 Crystal controlled room transmitter. Narrow band FM transmit ter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}, 9 \mathrm{~V}$ operation, 1000 m range.
40.95

SCRX Subcarrier scrambled room transmitter. Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}, 9 \mathrm{~V}$ operation, 1000 m range.
22.95

SCDM Subcarrier decoder unit for SCRX. Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm}$. $9-12 \mathrm{~V}$ operation
22.95

HVX400 Mains powered room transmitter. Connects directly to 240 V a.c supply for long term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}, 500 \mathrm{~m}$ range..........£19.45 ATR2 Micro size telephone recording interface. Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line..... £13.45
UTLX Ultra-miniature telephone transmitter. Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted Powered from tine, 500 m range.
$£ 15.95$
TLX700 Micro-miniature telephone transmitter. Besi selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line, 1000 m range..
STLX High-performance telephone transmitter. High power telephone transmitter whth buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches automatically with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~m}$. 1500 m range.
218.45

TKX900 Signalling/tracking transmitter. Transmits a continuous stream of audio pulses with variable tone and rate. ldeal for signaling or tracking purposes. High power output gives range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}, 9 \mathrm{~V}$ operation
. $£ 22.95$
CD600 Professional bug detector/locator. Multicolour bargraph readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFIRM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$, 9 V operation......£50.95

$\star+$ t SPECIAL $\leqslant * *$

DLTX/LRX Radio control switch.Remote control anything around your home or garden, outside lights, alarms, paging systems etc. System consists of a small VHF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate. 8way d.i.l. switches on both boards set your unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$, RX size $35 \mathrm{~mm} \times 90 \mathrm{~mm}$. Both 9 V operation. Range up to 200 mComplete system (2 kits) $£ 50.95$ Individual transmitter DLTX
omplete system (2 kits) $£ 50.95$ Individual receiver DLRX..
$\mathbf{8} 19.95$
$\mathbf{~} 37.95$
A build-up service is available on all of our kits if required
UK customers please send cheques. PO's or registered cash. Please add $£ 1.50$ per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $\mathbf{5} .00$ per order for ship ment. Credit card orders welcome on 0827714476

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS

STAMPS OR OVERSEAS SEND TWOIRC's.

SUMA DESIGNS
JHE WORKSHOPS
95 MAIN ROAD
0827
BAXTERLEY, Nr ATHERSTONE
714476

8 CHANNEL PROGRAMMABLE SEOUENCER

A Superb 8 Channel Microprocessor controlled light sequencer kit complete with a punched, painted and screen printed steel case. Absolutely ALL components and hardware supplied in this Magenta Top Kit, including 2 PCBs, heatsink, and 2 P552 output sockets.

- 8 Isolated tab 104600 V triacs. Individually fused.
- Inductive load capability and Zero Volt switching
- Fully opto-isolated control board
- Custom micro. has 80 preprogrammed sequences
- RAM area for user sequences from 2 to 160 steps long. Battery backed.
- LED function and mimic indicators.
- Keypad selection of all functions, including manual operation, sequence selection and speed control

"An exceptional project with many novel features and a high standard of finish which matches professional Disco equipment costing much more"
- Use with existing 3 and 4 channel lights or make new 8 channel specials

KIT REF. 838....f57.17
Outputs via 2 P551plugs price................. £3.95 each

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, childrens' play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- Kit includes all components, PCB, and case
- Efficient 100 V transducer output
- Low current consumption
- Completely inaudible to human's
- Weatherproof construction
- Easy to build - suitable for beginners

All prices include VAT
Add $\& 2$ p $\&$ p to all orders

KIT REF. $812 . \mathbf{f 1 4 . 8 1}$
Mains Adaptor.......£2.02

MAGENAP

All prices include VAT at $17 \frac{1}{2} \%$ Shop open 9－5 Mon－Fri；

9－2 Saturday
Official orders welcome

DIGITAL LCD THERMOSTAT

EE MAY＇91

A versatile thermostat with LCD read out，
MAX／MIN temperature reccording，clock and individually settable upper and lower switching points．Covers -10 to 110 degres Celsius， accurate to within 0.1 degrees．Submersible probe on 3 metre lead．Kit includes punched and printed case．Save on energy bills by improved control of your hot water system．Also ideal for greenhouse． soil temperature and aquarium control．Complete kit includes thermostat and probe，mains power supply and relay output，PCB＇s and punched and printed case．
KIT REF 841
KIT PRICE $£ 29.95$

D．C．MOTOR GEARBOXES

Ideal for Robots and Buggies．A miniature plastic reduction gearbox coupled with a $1 \cdot 5-4.5$ Volt mini motor．Variable gearbox reduction ratios are obtained by fitting from 1 to 6 gearwheels （supplied）．Two types available：
SMALL UNIT TYPE MGS
£4．08
Speed range $3-2200 \mathrm{rpm}$ ．Size $37 \times 43 \times 25 \mathrm{~mm}$
LARGE UNIT TYPE MGL
$£ 4.65$
Speed range 2.1150 rpm ．Size $57 \times 43 \times 29 \mathrm{~mm}$

Supplying Electronics for Education， Robotics，Music， Computing and much， much more！

 1991 CATALOGUE AVAILABLE PRICE £1．00 INC．P\＆P
STEPPING MOTORS

A range of top quality stepping motors suitable for driving a wide range of mechanisms under computer control using simple interfacing techniques．
ID36 PERMANENT MAGNET MOTOR－ 48 steps per rev
£16．86
MD200 HYBRID MOTOR－
200 steps pee rev
$£ 17.10$
MD35 $1 / 1 /$ PERMANENT MAGNET MOTOR－
48 steps perrev．
MD38 PERMANENT MAGNET MOTOR
48 steps per rev．
\＆9．15

EVERYDAY ELECTRONICS KIT PROJECTS

ALL KITS HERE HAVE BEEN FEATURED IN EE ANO ARE SUPPLIEO WITH MAGAZINE ARTICLE REPRINTS SEPARATE REPRINTS ALSO AVAILABLE PRICE 80D EACH INCLUSIVE P\＆P．KITS INCLUDE CASES，PCB＇S HAROWARE AND ALL COMPONENTS（UNLESS STATED OTHERWISE）CASES ARE NOT DRILLED OR LABELS SUPPLIED UNLESS STATED．

Ref
341 DIGITAL LCD THERMOSTAT May 91 with punched and printed case
840 DIGITAL COMBINATION LOCK Mar 91 with drilled case
839
838 MICROCONTROLLER LIGHT SEQUENCER Dec 90．With drilled and labelled case
835 SUPERHET BROADCAST RECEIVER Mar 90 With drilled panels and dial
834 QUICK CAP TESTER Feb 90
833 EE 4 CHANNEL LIGHT CHASER Jan 90
815 EE TREASURE HUNTER Aug 89 Full K 814 BAT DETECTOR June 89
812 ULTRASONIC PET SCARER May 89
800 SPECTRUM EPROM PROGRAMMER Dec 88
796 SEASHELL SYNTHESISER Nov 88
790 EPROM ERASER OcI 88
769 VARIABLE 25 V －2A BENCH POWER SUPPLY Feb 88
763 AUDIO SIGNAL GENERATOR Dec 87
744 VIDEO CONTROLLER Oct 87
740 ACOUSTIC PROBE Nov 87
739 ACCENTED BEAT METRONOME Nov 87
734 AUTOMATIC PORCH LIGHT OCt 87
730 BURST－FIRE MAINS CONTROLLER Sep 87 728 PERSONALSTEREO AMP Sep 87
724 SUPER SOUND ADAPTOR Aug 87
722 FERMOSTAT July 87
719 BUCCANEER I．B．METAL DETECTOR July 87
718 3－BAND 1．6－30MH2 RADIO Aug 87
715 MINI DISCO LIGHTS June 87
707 EQUALIZER（IONISER）May 87
700 ACTIVEI／R BURGLAR ALARM Mar 87
584 SPECTRUM SPEECH SYNTH（no case） Feb 87
581 VIDEO GUARD Feb 87

Price Ref
578

569 SPECTRUM I／O PORT less case Feb 87
563200 MHz DIG．FREQUENCY METER NOV 86
561 LIGHT RIDER LAPEL BADGE Oct 86 560 LIGHT RIDER DISCO VERSION Oct 86 559 LIGHT RIDER 16 LED VERSION Oct 86 556 INFRA－RED BEAM ALARM Sep 86 544 TILT ALARM July 86
542 PERSONAL RADIO June 86
528 PA AMPLIFIER May 86
523 STEREO REVERB Apr 86
513 BBC MIDI INTERFACE Mar 86
512 MAINS TESTER \＆FUSE FINDER Mar 86
497 MUSICAL DOOR BELL Jan 86
493 DIGITAL CAPACITANCE METER Dec 85 481 SOLDERING IRON CONTROLLER Oct 85
464 STEPPER MOTOR INTERFACE FOR THE BBC COMPUTER less case Aug 85 OPTIO SAL PO MER SUPPLY
461 CONTINUITY TESTER July 85
455 ELECTRONIC DOORBELL June 85
453 GRAPHIC EQUALISER June 85
444 INSULATION TESTER ApI 85
392 BBCMICRO AUDIO STORAGE SCOPE INTERFACE Nov 8
387 MAINS CABLE DETECTOR Oct 84 386 DRILL SPEED CONTROLLER Oct 84 362 VARICAP AM RADIO May 84 337 BIOLOGICAL AMPLIFIER Jan 84 263 BUZZ OFF Mar 83
242 INTERCOM no case July B2
240 EGG TIMER June 82
108 IN SITU TRANSISTOR TESTER June 78
106 WIERD SOUND EFFECTS GEN MaI 78
101 ELECTRONIC DICE Mar 77

Price
f10．78
C 14.24
f71．47
f11． 65
f22．41 £15．58 f15．58 £32．39 £8．94
f13．17 £ 30.60 £30．21 $£ 30.21$
$£ 31.93$ f 10.07 £21．41 £47．47 f 6.25

C9．60 ع9．15 C5．86 £7．08 C8．63 £ 30.63 £22．37

f40．82

f6． 31
£9．91 f15．02 f15．02 f27．59 f6．49 f6．50 f 7.85 £10．76 f8．94

HAMEG HM 203．7 OSCILLOSCOPE

Naw model just arrived．High quality reliable instrument made in W．Germany．Outsianding performance． Full two year parts and labour warranty．
£338
$20 \mathrm{MHz}-2$ channels 1 mV sensitivity
nance
＋ E 59. Next Day
e cleared）

EDUCATIONAL BOOKS \＆ BOOK PROJECTS

ADVENTURES WITH ELECTRONICS

The classic Easy to Follow book suitable for all ages．Ideal for beginners．No soldering，uses an S－DEC breadboard． Gives clear instructions with lots of pictures． 16 projects－ including three radios，siren，metronome，organ，intercom， timer，etc．Helps you learn about electronic components and how circuits work．Component pack includes an S－DEC breadboard and all the components for the series．
ADVENTURES WITH ELECTRONICS
$£ 5.25$
f 22.83
COMPONENT PACK（less book）

FUN WITH ELECTRONICS

From the USBORNE Pocket Scientist series－An enjoy able introduction to electronics．Full of very clear full colour pictures accompanied by easy to follow text．Ideal for all beginners－children and adults．Only basic tools are needed． 64 full colour pages cover all aspects－soldering －fault finding－components（identification \＆how they work）．Also full details of how to build 6 projects－burgla alarm，radio，game，etc．Requires soldering -4 pages clearly show you how．
The components supplied in our pack allows all the projects to be built and kept．The book is available separately．
FUN WITH ELECTRONICS Book
COMPONENT PACK（less book）

30 SOLDERLESS BREADBOARD PROJECTS

A book of projects by R．A．Penfold covering a wide range of interests．All projects are built on a Verobloc breadboard． Full layout drawings and component identification
diagrams enable the projects to be built by beginners．Each circuit can be dismantled and rebuili severaltimes using the same components．The component pack allows all projects in the book to be built one at a time．
Projects covered include amplifiers，light actuated switches， timers，metronome，touch switch，sound activated switch moisture detector，M．W．Radio，Fuzz unit，etc．

30 SOLDERLESS BREADBOARD
PROJECTS Book 1
COMPONENT PACK

ENJOYING ELECTRONICS

A more advanced book which introduces some arithmetic and calculations to electronic circuits． 48 chapters covering elements of electronics such as current，transistor switches flip－flops，oscillators，charge，pulses，etc．An excellent follow－up to Teach－in or any other of our series．Extremely well explained by Owen Bishop who has written many excellent beginners＇articles in numerous electronics magazines．
ENJOYING ELECTRONICS Book
COMPONENT PACK
$£ 3.60$

Note－A simple multimeter is needed to fully follow this book．The M102 BZ is ideal．

A FIRST ELECTRONICS COURSE

A copiously illustrated book that explains the principles of electronics by relating them to everyday objects．At the end of each chapter a set of questions and word puzzles allow progress to be checked in an entertaining way．An S－DEC breadboard is used for this series－soldering is not required．
A FIRST ELECTRONIC COURSE BOOK
$〔 4.50$
$\mathbf{f} 2.83$
PACK
f 22.83

DIGITAL CAPACITANCE

DIGITAL COMBINATION LOCK

EE MAR '91
Digital combination lock with a 12 key keypad. 4 digit code operates 250 V - 16 A SPCO relay. A special anti-tamper circuit allows the relay to be mounted remotely from the keypad without any loss of security. Can be operated in many modes (latching/unlatching, manual/automatic setting, continuous/momentary output, etc.). Article describes operation as Vehicle Immobilising security system. Low current drain. kit includes drilled case.

KIT REF 840

ACOUSTIC PROBE

EE NOV '87

DIGITAL FREQUENCY 200 MHz METER

EENOV 86

An 8 digit meter reading from AF up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements. Amateur and C.B. frequencies.
KIT REF 563

A very popular project which picks up vibrations b means of a contact probe and passes them on to a pair of headphones or an

amplifier. Sounds from engines, watches and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers and nosey parkers! KIT REF 740
£20.01

MICROCONTROLLER LIGHT SEQUENCER

EE DEC'90

A superb kit with pre-drilled painted and silk screen printed case for a really professional finish. This kit uses a microcontroller I.C. to generate 8 -channel light sequences.. Sequences are selected by keypad from over 100 stored in memory. Space for 10 user programmed sequences up to 16 steps long also programmed sequences up to 16 steps long al
available. 1000 watts per channel, zero volt
available. 1000 watts per channel, zero volt
switching, inductive load capability. Opto-isolated switching, inductive load capability.
for total safety. Many other features. Complete kit includes case, PCBs, all components and hardware.
£57.17
KIT REF 838

EE TREASURE HUNTER

LIGHT RIDERS

EE OCT ' 86
Three projects under one title-all simulations of the Knight Rider lights from the TV series. The three are a lapel badge using six LEDs, a larger LED unit with 16 LEDs and a mains version capable of driving six main lamps totalling over 500 watts.
KIT REF 559 CHASER LIGHT
f15.58
KIT REF 560 DISCO LIGHTS
$£ 22.41$
KIT REF 561 LAPEL BADGE
$£ 11.65$

DISCO LIGHTING KITS

DL8000K 8-way sequencer kit with built-in opto-isolated sound to. light input. Only requires a box and control knob to complete £46.95

DL3000K 3-channel sound to light kit, zero voltage switching, automatic level control and built-in mic. 1 kW per channel£21.95

XK139 Uni-directional chase Zero switching and built-in audio input.

POWER STROBE KIT

Produces an intense light pulse at a variable frequency of 1 to 15 Hz . Includes high quality PCB, components, connectors, 5 Ws strobe tube and assembly instructions. Supply 240 V ac. Size: $80 \times 50 \times 45$ XK124 STROBOSCOPE KIT. £17.25

PROGRAMMABLE ELECTRONIC LOCK KIT

Keys could be a thing of the past with this new high security lock. Secure doors to sheds, garages, even your home or prevent the unauthorised use of computers, burglar alarms or cars. One 4-digit sequence will operate the lock while incorrect entries will sound an alarm. The number of in-
 correct entries allowed before the alarm is triggered is selected by you. Further entries will be ignored for a time also set by you. Only the correct sequence will open the lock and switch off the alarm. The sequence may easily be changed by entering a special number and code on the supplied keyboard. Kit includes; keyboard, alarm buzzer, high quality PCB and all electronic components. Supply 5-15V DC. Will drive our Latch Mechanism (701 150 @ $£ 12.95$) or relay directly
XK131
£22.50

SIMPLE KITS FOR BEGINNERS

Especially aimed at the beginner. Have fun with your project even after you have built it and also learn a little from building it. These kits include high quality solder resist printed circuit boards, all electronic components (including speaker where used) and full construction instructions with circuit description.

SK1D00RCHIME plays atune when XK118 TEN EXCITING PROJECTS FOR activated by a pushbutton $\mathbf{E 4 . 9 5}$ BEGINNERS this kit contalns a solder

SK2 WHISTLE SWITCH switches relay on and off in response to whistle command
$\mathbf{£ 4 . 9 5}$
SK3 SOUND GENERATOR produces FOUR different sounds, including police/ambulance/fire-engine siren and machine gun $\mathbf{8 4 . 9 5}$ less breadboard, components and a booklet with instructions to enable the absolute novice to build ten fascinating projects including a light operated switch, intercom, burglar alarm and electronic lock. Each project includes a circuit diagram, description of operation and an easy to follow layout diagram. A section component identification and function is

Only $45 \times 25 \times 15 \mathrm{~mm}$, including built--in mic. $88-100 \mathrm{MHz}$ (standard FM radio). Range approx. 300 m depending on terrain. Powered by 9V PP3 (7 mA). Ideal for surveillance, baby alarm etc. XK128
¢7.25

NEW
 REMOTE CONTROL DIMMER KIT

Imagine controlling the brightesss of your lights or switching them on or off from the comfor of your armehaill This kit contains all the components from front panel to the last screw to enable you to do just that and fit the shallowest wall boxes. Max power 300 W (not flluorescenis).
$\mathbf{x K 1 3 2}$

IR TRANSMITTER KIT

 Designed for use with the XK132 and comes complete with a pre. dried box Avolt battery is XK135 $\mathbf{5} 95$

XK136 TOUCH DIMMER KIT........ $\mathbf{£ 1 3 . 2 5}$

VERSATILE REMOTE

CONTROL SYSTEM

These kits can switch up to 16 pieces of equipment on and off or control 16 tunctions depending on the keyboard selected for the Mutputs and operates from 12 to hav 246 logic ouputs and operates trom 12 to 24 V o.c. or
240 V a.c. via the renstomer supplied. The MK18 requires a 9 V battery and keyboard. Great for controiling lights. TVs, garage doors etc.

MK12 IR Receiver..
 \qquad MK18 Transmitter..........
 MK10 16 -way Keyboard MK10 16 -way Keyboard................. $£ 9.75$ S01 133 Box for transmitter

 included, enabling the beginner to build the circuits with confldencef19.95ELECTRONIC WEIGHING
SCALE

Kit contains a single chip microprocessor. PCB, displays and all electronics to produce a digfital LED readout of weight in Kgs or Sts/Lbs. A PCB link selects the scale-bathroom/two types of kitchen scales. A low cost types of kitchen scales. A low cost digit
ES1

VOICE RECORD/ PLAYBACK KIT

 This simple to construct and even simpler to operate ktt will record and play back short messages or tunes. It has many uses - seatbelt or fight reminde in the car, welcome messages to vistors at home or at work, warning mes sages in factories and public places. In s announced and which needs to be is announced and which needs to be changed from time to time. Also suitable for toys - why convert your daugher's $£ 8$ doll to an $£ 80$ taking dollt! Size

TK ELECTRONICS
13 Boston Road
London W7 3SJ
Tel: 081-5678910
Fax: 081-566 1916

ORDERING INFORMATION. All prices INCLUDE VAT. Please add £1.20 P\&P for UK orders. Overseas Customers divide total order by 1.175 then add P\&P: Europe $£ 3.50$, elsewhere $£ 10.00$. Send cheque/PO/Visa/Access No. with order. Giro No. 529314002. Local Authority and educational institutions orders welcome. Shop open: TuesdayThursday $10 \mathrm{am}-5 \mathrm{pm}$. Saturday $10 \mathrm{am}-1 \mathrm{pm}$. Mail

everyday
 EIECTRONICS

INCORPORATING ELECTRONICS MONTHLY

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL
6 CHURCH STREET, WIMBORNE,
DORSET BH21 1 JH
Phone: Wimborne (0202) 881749
Fax: (0202) 841692 . DX: Wimborne 45314
See notes on Readers' Enquiries below - we regret that lengthy technical enquiries cannot be answered over the telephone.

Advertisement Offices:
EVERYDAY ELECTRONICS ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS.
Phone (0255) 850596

IN CAR ELECTRONICS

Modern technology has found its way into virtually every area of life - not the least being the motor car. At one time cars were produced without any form of electronics. The charging system consisted of a dynamo with d.c. output and an electromechanical regulator, a system which achieved very high reliability and which is still employed on many "classic" cars without problems. Ignition was simply a mechanical "points" system switching the voltage across a coil and this type of ignition has only comparatively recently been superseded in many cars.
In fact the first sign of electronics in vehicles was "in car entertainment" or more simply the early car radios, which originally used valves. Of course, electronic systems in vehicles have brought their own problems (not the least with servicing, or more correctly service replacement costs) but they have also added vastly to the efficiency and facilities available in modern vehicles. However, electronics for the sake of it can sometimes be a retrograde step.

NOT FOR ME

I, for one, have never been in favour of digital readout for some car instruments. Not because I have anything against digital displays, but simply because it is difficult to read rapidly changing digits and because a digital display is not good at indicating "rate of change" or, put another way, speed of approach to certain limits.
A good example of just what I mean is the digital rev. counter, used with a modern high power, high revving engine - the digital display is changing so rapidly that it is difficult to read quickly and does not give an "instant" appreciation of the approach of over-revving, etc
An analogue display, with a moving pointer or light can quickly show rate of change and make instrument reading easier on the brain! Of course the analogue display is likely to lack the accuracy of a digital readout and this can cause its own difficulties, particularly when setting up the engine, etc.

OUR ANSWER

The answer to these problems is of course our Digilogue (digital and analogue) rev. counter. An l.e.d. bargraph provides the analogue readout - easy to interpret at a glance, particularly with various colour l.e.ds, and providing that essential rate of change information - and a digital display giving the "modern" accurate information using two digits to indicate 1,000 's and 100 's of revs per minute e.g. a display of 54 represents 5,400 r.p.m.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 17.00$. Overseas: $£ 21.00$ (£39 airmail). Cheques or bank drafts (in \mathbf{f} sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1 JH. Tel: 0202 881749. Subscriptions start with the next

available issue. We accept Access (MasterCard) or Visa payments, minimum order E 5.
BACK ISSUES
Certain back issues of EVERYDAY ELECTRONICS are available price £1.70 (£2.20 overseas surface mail) inclusive of postage and packing per copy - fsterling only please, Visa and Access (MasterCard) accepted, minimum order $£ 5$. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH Tel: 0202881749 . In the event of non-availability one article can be photostatted for the same price. Normally sent within seven days but please allow 28 days for delivery. We have sold out of Feb, Mar, Apr, Aug, Sept, Oct, Nov. \& Dec. 87 Jan, Mar, Apr, June, Oct, \& Dec. 88, Mar 89 \& Mar 90.

BINDERS

Binders to hold one volume (12 issues) are available from the above address for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of post and packing. Normally sent within seven days but please allow 28 days for delivery.
Payment in \mathbf{f} sterling only please. Visa and Access (MasterCard) accepted, minimum order £5. Tel: 0202881749

Editor: MIKE KENWARD

Secretary: PAMELA BROWN
Deputy Editor: DAVID BARRINGTON
Business Manager: DAVID J. LEAVER
Editorial: WIMBORNE (0202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (0255) 850596
Classified Advertisements:
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self addressed envelope and international reply coupons.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five vears old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

EQUIPMENT

We would like to advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use. The laws vary from country to country; overseas readers should check local laws.

CHRIS WALKER

Improve your driving performance without "throttling" your engine. Combines the advantages of both digital and analogue readouts. riving enthusiasts appreciate the
 DISPLAY
 Constructional articles for tachometers

Dneed for comprehensive dashboard instrumentation to keep them informed about conditions under the bonnet of their vehicle. The trend that modern car manufacturers seem to be following. howe ver, is to equip the "average" small or family car with the bare minimum of gauges, most having been replaced with simple warning lights.

The argument for this simplification is that many drivers who merely use their car as a convenient means of transportation do not want to be confused by a bank of complicated looking dials and readouts. Whilst this is a valid point. many carsympathetic drivers do like some form of running commentary about the state of the vehicle they are driving.

PERFORMANCE

The tachometer (not to be confused with the tachograph) is usually omitted from the "basic" or "mid-range" models of car. It is surprisingly useful ; one of those instruments which, once you have mastered how to use it constructively, you wonder how you ever managed without.
A tachometer displays engine speed. usually in "revolutions per minute" (r.p.m.). All engines have a characteristic performance which is a function of their r.p.m. For example, most engines will happily "chug" along at $1500-2000$ r.p.m. and keep the car rolling at 30 mph in fourth gear.
But, if a burst of power is required, say to complete an overtaking manoeuvre swiftly and safely, then it is necessary to change down a gear and get the revs up to say $2500-3500$ r.p.m. It is in this higher range where the engine can accelerate the car rapidly. A quick glance at the tachometer will show the driver whether or not the engine is prepared for the overtake.

At the top end of the range, the average road car engine will "saturate" at about 5500 r.p.m. and running the unit above this speed will result in no further increase in performance. All the above figures are examples only, actually based on the author's car, and will vary between vehicles. The actual set of characteristics for your own vehicle are best found by experimentation on a quiet road.
have appeared in the electronics press for some time now, but the Digilogue Car Tachometer is different. It displays the engine speed both as a two-digit number and, simultaneously, on a multi-coloured bargraph display.
The digital readout displays the engine speed in "thousands" and "hundreds", for example " 23 " means 2300 r.p.m. The advantage of a digital display is that it is accurate, has good resolution (that is, it displays to the nearest $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. which is more than adequate) and it is easy 10 interpret the reading because there are no scales to fathom out.
The major disadvantage of digital displays comes when the reading is changing. It is difficult to read a rapidly updated digital display, as constructors will appreciate if they have ever tried to use a digital voltmeter to measure a varying voltage.

In these circumstances the driver glances at the bargraph display which consists of a row of ten rectangular l.e.d.'s. The number of illuminated I.e.d's is proportional to the engine speed and it is easy to see roughly what the current speed is.
In addition. the bargraph l.e.d.'s are grouped into three colours. Below 2500 r.p.m. yellow lights illuminate. Between 2500 and 4500 r.p.m. the l.e.d.'s are green to indicate that the engine is in its highest performance range. Above $4500 \mathrm{r} . \mathrm{p} . \mathrm{m}$. are two red l.e.d.s. These colours make it very easy for the driver to instantly determine what kind of performance he or she can expect from their engine under any condition
The maximum speed registered on the bargraph is 5000 r.p.m. although this is adjustable as described later. The digital readout will display up to 9900 r.p.m.

IGNITION CIRCUIT

The basic ignition circuit of a petrolengined vehicle is shown in Fig.1. Fundamentally, this circuit has not changed much over the years. The most notable update in recent times is to replace the contact breaker points (a switch, mechanically operated by the rotating distributor shaft) with some sort of electronic switch.

The electronic switch is triggered either by a magnetic sensor attached to the distributor shaft or controlled by the "engine management unit" (EMU). The EMU is a dedicated microcomputer which, amongst other tasks. calculates the ideal instant to operate the "points"
Mechanical points are notorious for wearing and pitting over a period of time with a resultant degradation in engine performance. The electronic substitutes do not suffer this problem.

Fig. 1. Basic ignition circuit of a petrolengined vehicle.

Every time the points open, current in the primary winding of the ignition coil is abruptly interrupted. This induces a very high voltage into the secondary winding which is then distributed to one of the spark plugs to ignite the petrol/air mixture in the appropriate cylinder.
In a four-cylinder engine, two sparks are generated for each revolution of the crankshaft. Therefore, the points will open and close twice per revolution. By counting the rate at which ignition pulses are generated by the points, the tachometer can determine the speed of the engine.
This design has been tested and works with mechanical contact breaker point systems and the semi-electronic magnetic/reluctor systems. It should work with other electronic ignition systems provided the connections to the coil are accessible and not sealed inside the EMU. It has not heen rested with capacilive discharge systems.

SYSTEMS OPERATION

The block diagram for the Digilogue Car Tachometer is shown in Fig. 2. The ignition pulses are initially filtered by a simple low-pass filter to remove the high frequency "ringing" which occurs every time the points open. This ringing could confuse the tacho if it were not removed. The pulses are also clipped to a maximum amplitude of 5 V to prevent damage to the circuit.
A frequency-to-voltage ($f-v$) converter generates an analogue voltage which is proportional to the pulse frequency and this voltage is fed into a bargraph driver which illuminates a row of l.e.d.s in proportion to the pulse frequency.
The ignition pulses are also "squared up" by a Schmitt trigger monostable and used to clock a two-stage decimal counter. The counter is controlled so that it counts pulses for 0.3 seconds, after which the output is loaded in the latch and displayed on two 7 -segment l.e.d. displays.
The latch holds the output whilst the counter is reset and then allowed to collect another 0.3 s worth of ignition pulses, after

COMPONFVIT

Resistors

R1, R2, R4	10k (3 off)
R3	150k
R5	270
R6	680
R7	47
R8, R11	$47 k$ (2 off)
R9	$56 k$
R10	$100 k$
R12	$27 k$
R13	$2 k 2$
R14	$4 k 7$
R15 to R28	100 (14 off)

All 0.6W metal film

Fig. 2. Block diagram of the Digilogue Car Tachometer system.
which the display latch is updated with the latest count. The digital display is updated about 2.5 times per second.
In the 0.3 s count period the counter accumulates one two-hundredth of the number of pulses it would receive in one minute. For example, if the engine was rotating at 2700 r.p.m. it would make 45 revolutions per second. This corresponds to 90 ignition pulses per second for a 4 -cylinder engine. Therefore, in 0.3 s the counter would accumulate 27 pulses and " 27^{*} would be illuminated on the display, representing 2700 r.p.m.

CIRCUIT DESCRIPTION

Many sections in the block diagram are replaced by integrated circuits in the circuit diagram for the Digilogue Car Tachometer, shown in Fig. 3.

Resistors R1 and R2 and capacitor Cl form a simple low-pass filter to clean-up the ignition pulses as described earlier. Zener diode DI clips the input signal to 4.7V maximum amplitude

The frequency-to-voltage converter, $\mathrm{ICl}_{\mathrm{C}}$, produces a voltage at its output, pin 5 , which is given by the formula:

$$
V=5 \times R 3 \times \mathbf{C} 2 \times f
$$

where " f ' is the pulse frequency on pin 1 .
The Zener diode D2 and resistor RS provide a 2.4 V reference for 1 Cl ; one cycle

Potentiometer

VR1 $47 k$ (or 50k) min. horizontal cermet preset
Capacitors

C1, C5, C6, C7	100 n polyester layer (4 off)	
C2	10 n polyester layer	See
C3, C4	$2 \mu 2$ tantalum bead, 35 V (2 off)	
C8	22μ radial elect. 25 V	
C9	$4 \mu 7$ tantalum bead, 16 V	
C10	100μ radial elect. 25 V	Page
C11	1000μ axial elect. 16 V	

Semiconductors

D1	BZY88C4V7 4.7V Zener diode
D2	BZY88C2V4 2.4V Zener diode
D3 to D6	$5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ rectangular l.e.d. yellow (4 off)
D7 to D10	$5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ rectangular I.e.d. green (4 off)
D11, D12	$5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$ rectangular I.e.d. red (2 off)
D13	1N4001 A 50 V rect. diode
TR1	BC548 NPN silicon transistor
IC1	LM2917 frequency-to-voltage converter
IC2	LM3914 bargraph driver
IC3	40938E quad 2-input NAND Schmitt trigger
IC4, IC5	401108E decade counter (2 off)
IC6	NE555 timer
IC7	7805 +5V 1A voltage regulator
X1	Dual-digit common cathode 7-segment display

Miscellaneous

FS1
1 A 20 mm fuse and p.c.b. mounting holder
(with aluminium panels), size $153 \mathrm{~mm} \times 84 \mathrm{~mm} \times 40 \mathrm{~mm}$; d.i.I. sockets: 8 -pin (1 off), 14-pin (2 off), 16 -pin (2 off), $18-\mathrm{pin}$ (1 off); neutral density display filter $115 \mathrm{~mm} \times 33 \mathrm{~mm}$; terminal pins (21 off); fixings for IC7; grommet; 3-core cable; 5 mm spacers; small piece of stripboard for X 1 ; connecting wire; solder, etc.
'For 6 -cylinder engines: $\mathrm{R} 3=100 \mathrm{k} ; \mathrm{C} 9=3 \mu 3$.

Fig. 3. Complete circuit diagram for the Digilogue Car Tachometer.
is completed every time the voltage on pin I rises above 2.4 V and then drops back below this level again.

Capacitor C3 acts to reduce the ripple on the output voltage. Increasing C3 reduces the ripple but slows the response time of the converter. therefore, a trade-off has to be made in this respect.

The $\mathrm{f}-\mathrm{v}$ converter output is fed into pin 5 of the bargraph decoder IC2. An internal reference of 1.25 V is generated by this i.c. and all ten bargraph l.e.d.'s (D3 to D12) will light when the pin 5 voltage reaches 1.25 V .

By substituting component values into the formula, it will be seen that fullscale occurs at a pulse frequency of about 167 Hz , i.e. $5000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. If you wish to change the range of the bargraph display, experiment with slightly different values for resistor R3.

The bargraph decoder IC2 automatically controls the current through the l.e.d.'s (D3-D|2) so that series resistors are not required on each output. The l.e.d. current (controlled by resistor R6) is set at 20 mA which gives good daytime illumination without needing dimming at night.

Resistor R7 is present to dissipate some excess power which would otherwise overheat IC2 when severall.e.d.'s were switched on. Capacitor C4 decouples and stabilises the anode rail.

MONOSTABLE

The falling edge of each ignition pulse, generated at the instant the "points" close, triggers the monostable formed from NAND gates IC3b and IC3a to produce a 3 ms low (0 V) pulse at its output (pin 3 IC3a). Each pulse increments the low-digit counter, IC4, which is a CMOS 40110 decade up/down counter with 7 -segment decoded outputs, output latch and output current drivers all in one wonderful package! The down-count facility is not used in this design.

After ten counts, the CARRY output from IC4 (pin 10) pulses low and increments the high-digit counter IC5. Resistors R15 to R28 are current limiters for each segment of the dual 7 -segment common cathode display, XI

A 555 timer. IC6, and associated components form an oscillator whose frequency is adjustable over a small range by preset potentiometer VR1 to allow for component tolerances. It is quite important to use high stability components in the oscillator circuit otherwise factors such as temperature change will affect the accuracy of the digital display.

Preset VR1 is, therefore, a cermet potentiometer, RII and R12 should be metal film resistors (in fact, all resistors can be metal film types, they are just as cheap as
carbon types these days) and capacitor C9 is tantalum bead

The oscillator output, pin 3 of IC6, is inverted by transistor TRI and presented to the INHIBIT input of the counters (pins 4 of IC4 and IC5). The counters are only active when this input is low.

On every falling edge of the INHIBIT signal, a short $(6 \mathrm{~ms})$ positive pulse is created at the output of NAND gate IC3d. This pulse RESETs the counters, after which they begin to accumulate ignition pulses during the period while INHIBIT remains low. See the timing diagram in Fig. 4.

Preset VR1 is used to adjust the oscillator frequency so that the count time after the RESET pulse is exactly 0.3 s . You do not, however, need elaborate timing equipment for this adjustment, there is an easy method available - see later

At the end of the count period, when INHIBIT goes high, NAND gate IC3c generates a short negative-going pulse which is presented to the LATCH input of counters IC4 and IC5. Whilst LATCH is low, the counter outputs are loaded into the display latch within the counters. When this input goes high, the display remains fixed irrespective of the state of the counters.

In order to use the unit with 6 -cylinder engines (which generate three ignition

Fig. 5. Printed circuit board component layout and full size copper foil master pattern.
pulses per revolution), just two component values should be changed. Resistor R3 is modified to 100 k and capacitor C 9 should be $3 \mu 3$.

POWEA SUPPLY

The first prototype Digilogue Tacho was designed to run off 12 V throughout the cir-
cuit. It worked fine on the bench, but when installed in the car the noise generated by the ignition circuit, fan blower etc., caused the digital counters to behave very unpredictably.
Smoothing capacitors were not the solution because the circuit requires a relatively large current (about 500 mA when fully lit

Fig. 4. Digilogue timing diagram for the counter IC4

up) and, so, huge capacitors would be required. The easiest answer was to use the 12 V to supply a 5 V voltage regulator, IC7.
Capacitor Cll goes some way towards eliminating supply noise. Diode D13 prevents accidental reverse-polarity connection and fuse FSI provides a quick current shut-off in the event of a catastrophic circuit failure.

CONSTRUCTION

All components, with the exception of the voltage regulator 1C7 and the 7 -segment display XI , are mounted on a single-sided printed circuit board. This board is available from the EE PCB Services, code EE744.
Component layout and full size copper track pattern for the printed circuit board is shown in Fig.5. It is suggested that the circuit is constructed in the following stages, as this allows you to test your work after each stage and easily trace faults.
Begin by soldering in the power supply components: the fuse holder for FSI, capacitors C10 and C11 and diode D13. The diode should be mounted slightly

above the board to allow air circulation as it becomes warm in use. During construction, pay careful attention to the polarity of all electrolytic or tantalum capacitors and all semiconductors (diodes, transistor and i.c's): they must all be inserted the correct way around.
Solder in the four wire links and then insert five terminal pins (p.c.b. pins). three for connection to IC7. one for +12 V and one for 0 V . It is easier to solder the flying leads to terminal pins rather than directly to the p.c.b.
The regulator IC7 needs to be attached to a heatsink to prevent it overheating; if the recommended case is used (see later) it can be fastened to the rear aluminium panel without requiring an insulating washer. Do this now, and then connect it to the p.c.b. with three 15 cm lengths of wire.

Attach the 0 V and +12 V points to a 12 V d.c. power supply and connect a voltmeter to the circuit board between the "com" and "out" connections to IC7. The meter should read about 5V. Do not proceed further until this lest is passed. Disconnect power before continuing with assembly.

F-VCONVERTER

Insert a 14 -pin d.i.l. socket for IC1, then solder in resistors R1 to RS, capacitors C1
to C3 and diodes D1 and D2. Insert a terminal pin for connection to the ignition coil and then place 1 Cl into its socket.
Connect the negative lead of your voltmeter to 0 V on the circuit board. apply power to the circuit and use the positive meter probe to check the voltage at pin 11 ICl ; it should read about 2.4 V . The output voltage at pin 5 should, for the moment, be 0 V .

You now need a 100 Hz signal source. A signal generator can be used with the amplitude set to about 12 V . Alterna-
tively. Fig. 6 shows how a mains transformer and bridge rectifier can be used.

The 50 Hz mains frequency ends up as 100 Hz pulsating d.c. at the rectifier output. The transformer output voltage should be 6 V or higher.

Be extremely careful with the mains connections if you use this method. You can use an existing transformer/rectifier from another circuit if you like, but the following stages of this circuit must be disconnected.
Apply power to the tacho circuit and connect the 100 Hz signal between 0 V and the pulse input. The output voltage from pin 5 IC1 should now be approximately 0.75 V , although allow for some variation due to component tolerances. Be careful and patient during the testing phases, it is easy to cause accidental short circuits between all the off-board connections.

BARGRAPH

Remove ICl from its socket and then solder in an 18 -pin d.i.l. socket for IC2. Insert resistors R6 and R7 and tantalum capacitor C4. Identify which lead on the rectangular l.e.d's is the cathode (marked " k " on Fig.5) - if you hold the device up to the light and view the internal structure of the diode, the cathode is connected to the larger electrode.

Fig. 6. Circuit diagram for a suitable 100 Hz test signal source.
(Below) The completed tacho showing layout of components and the dual-digit display mounted on stripboard and set in a cutout in the main p.c.b.

Fig. 7. Layout of components inside the case.

The leads on each 1.e.d. should be bent through a right-angle about 5 mm from the package so that the le.d's lie flat on the board when soldered into place. You may find it beneficial to insert the leads of all ten l.e.d's and glue the body of each one to the board before soldering so you can be sure they are in a neat. level row. It is worth spending some time on this to achieve a professional finish.
Light seepage from one l.e.d. to its un-illuminated neighbour spoilt the bargraph effect in the prototype. This can be eliminated by inserting small slivers of paper or tape between each segment. Painting the top and bottom surfaces of each 1.e.d. with "liquid paper" forms an opaque coating which also helps to ensure that the front is the only light-emitting surface.
Place IC1 and IC2 in their sockets and test the bargraph display with the 100 Hz signal source. Half of the bargraph (D3 to D7) should illuminate. After playing with your creation so far, switch off and then remove both i.c's before continuing with the digital section.

OSCILLATOR

Add a socket for IC6, insert resistors RII to R14, preset potentiometer VRI, capacitors C8 and C9 and transistor TR1. After this work, place IC6 in its 8 -pin socket and apply 12 V to the board.

The easiest way to test the oscillator is as follows: Connect a spare l.e.d. in series with a resistor of about 330 ohms. Now connect this combination across (in parallel with) resistor R14 with the cathode (k) of the
l.e.d. adjacent to transistor TR1. The I.e.d. should flash about 2.5 times per second. adjusting VRI will change this rate slightly.
Providing the circuit has performed satisfactorily so far, the final stage is to solder in all the remaining components. Take care to avoid solder bridges when working around IC4 and IC5 as some thin tracks pass between the i.c. pads. Insert 14 p.c.b. pins for the connections to display XI and one pin for the 0 V common cathode connection.

DISPLAY

In the prototype, the dual-digit 7 -segment display is mounted on a small piece of stripboard which is positioned vertically in the space cut out of the p.c.b. No connection details are given for the display as these vary between different manufacturers; refer to your component supplier for details.
If you cannot obtain a dual digit display, you may use two single-digit versions mounted side-by-side. The display is linked to the p.c.b. with 15 short lengths of flexible, insulated wire.
The final adjustment is to apply the 100 Hz test signal source and adjust VRI until " 30 " is lit up on the display. No further calibration is required. A length of 3 -core mains cable can be soldered to the $+12 \mathrm{~V}, 0 \mathrm{~V}$ and ignition pulse terminal pins for later connection to the vehicle.

VIEWING WINDOW

The prototype Digilogue Tacho is housed in a plastic two-section cliptogether case, measuring $153 \mathrm{~mm} \times 84 \mathrm{~mm} \times$ 40 mm externally, and has removable
aluminium front and rear panels. Two holes need drilling in the rear panel, one for mounting voltage regulator IC7 and another to take a grommet through which the 3 -core cable passes to the engine.
The front panel is removed and replaced with a piece of "neutral density" display filter. This vastly improves contrast and readability to the multi-coloured display and avoids the need to cut awkwardshaped holes in the front aluminium panel.
A piece of filter $147 \mathrm{~mm} \times 33 \mathrm{~mm}$ is required to replace the panel, but the author was unable to obtain a sheet this large so a smaller piece $115 \mathrm{~mm} x$ 33 mm was employed with scrap pieces of aluminium panel used to fill in the end gaps. As the photographs show, this produces an elegant finish - none of the display elements can be seen until they light up.
It is important that the l.e.d's are placed in contact with the back of the display filter, otherwise they will appear blurred when viewed from the front. See Fig. 7.
The circuit board is mounted upsidedown in the lid of the case, three selftapping screws are used in conjunction with the mounting pillars inside the lid. It will be necessary to use spacers about 5 mm long in order to position the board so that the bargraph l.e.d's sit in the middle of the viewing window.

FITTING IN THE VEHICLE

Find a convenient place to locate the unit, within easy view of the driver but not obscuring the road view in any way. Double-sided sticky pads are probably the easiest way to mount the box, they are somewhat less permanent than screws!

DISCONNECT THE BATTERY BEFORE MAKING ANY MODIFICATIONS TO THE ELECTRICAL SYSTEM OF THE CAR. A car battery can deliver a frighteningly large current and will happily start fires if accidental shorts occur during wiring.

Route the 3 -core cable from the tachometer into the engine compartment. Keep the cable well away from moving parts or hot areas of the engine and anchor it in place with tape or nylon cable ties.

The three electrical connections to the unit can probably all be made on the ignition coil. Refer to the maintenance manual for a circuit diagram of your car. One low voltage connector on the coil will be held at +12 V when the ignition is switched on, and this can be used as a power source for the tachometer.

The other coil connector goes to the "points" and provides a convenient connection for the pulse input. Do NOT make any connection to the thick, high tension lead from the coil. The 0 V (car chassis) connection can be made to a solder tag which is then trapped under one of the coil mounting bolts, making a good connection to the bodywork. Make use of "piggyback" connectors or "Skotch-bloks" to splice into existing wiring. Twisted and taped connections are dangerous and should be avoided.

IF YOUR project has been operating well but in final trials it failed to work, this is nothing much to worry about and is fairly common. Spend a little time looking for obvious things such as poorlysoldered joints, loose wires, broken component leads and cracks in copper tracks.
Providing it is a battery-powered circuit, try gently flexing the circuit panel, poking and wiggling components and wires. Intermittent operation usually signals one of the above faults. Check the supply - it is surprising how many reported problems are simply due to a "flat" battery or one which has been connected the wrong way round! Unfortunately, such reverse polarity could have damaged some semiconductor components.
It may be worth changing i.c's if spares are available but do not start desoldering and replacing individual transistors at this stage.
It sometimes happens that the stripboard circuit panel has been placed on the bench and scraps of metal which were there from previous work have lodged between the copper strips causing a short-circuit. If you are lucky, removing the debris will restore proper operation. If you are unlucky, this could also have ruined semiconductor components.
If, after half an hour of checking you cannot find the fault, forget it! Panic usually sets in but stay calm! Your teacher had seen the circuit working and the complete account is in your diary. Things like this happen and it is unlikely to reduce your credit.

I remember one student who stayed up all night trying to find a fault because his circuit, which had been working well, failed to work the day before it was due to be handed in. Denying himself sleep in this way was totally unnecessary he didn't find the fault anyway!

Diary

If your diary is not complete for whatever reason, this is probably worth spending some time on. However, do check the exam regulations to find out exactly what the requirement is. Remember, if you are entering with the Midlands Examining Group, you need an additional account - an extended piece of prose - but your diary should be supplied also. The diary alone would suffice as the account but your mark would be less.

Make sure you have a good title page this is your "shop window" and should be of a high standard to impress the reader. It should have the name of the project, your name and candidate number also the name of the school and centre number. Use dryprint lettering for highest quality. Some tasteful decoration would also be in order. Spelling mistakes in the written report should be avoided and good English used throughout.

Photographs

If you have forgotten the photographs needed by some boards, get a friend with a Polaroid camera to take one for you. The actual size of the picture is relatively unimportant but the subject matter should be in
close-up and fill most of the frame. A view of the circuit panel and its connections to peripheral components such as switches and potentiometers is particularly useful. A photograph not showing detail will gain little credit.

Any photograph or photographs supplied should be mounted on a piece of , thin cardboard, A4 in size. This should be punched with holes and included at the appropriate place in the report. Do not forget to provide captions to state clearly what the photographs show even if this seems obvious. Photographs may, of course, be supplied with written reports which do not actually require them but it is likely to improve your credit only marginally.

A Good Reason

If you have had a long period of illness, or for some other serious reason, not of your own making, been unable to complete your project or your written report, ask your teacher to submit a plea for special consideration. Death or serious illness of a close relative (not the cat - Ed) would also count as a valid reason for applying.

Your application should be substantiated with a doctor's report and any other evidence you can give. Examining boards treat these cases seriously but will only give special consideration if they are satisfied that the reasons are genuine and not merely laziness on the part of the student!

No Box

Your box hasn't arrived? London East Anglian Group need your circuit panel to be build in a box and marks are awarded specifically for this part of the project. With other boards you could get by without one. However, for maximum credit they sometimes insist that if no box is supplied, all controls should be mounted on the circuit panel. Presumably you have not done this because your intended method of construction was based on a box.
In an emergency where a box is needed, you can do several things. Firstly, check with the board's regulations to see what you really must supply - you may find that you need not do anything. If you stand to lose credit because you have not supplied a cased project, you can write in your report a statement of what has happened and draw diagrams with dimensions of the box which would have been used. Make it clear where any holes could be drilled for controls such as switches and potentiometers and show exactly where you would mount them.

Get your teacher to make a written statement to the effect that the box had been ordered in good time but that it failed to arrive because it was out of stock or for whatever reason. Include this in your diary. Another way out is to make and use a cardboard box of the same size. Make it clear in your report that this is for illustration purposes only.
It may be that you can find an alternative case such as a small plastic lunch box. This should be rigid enough for the purpose. You may be able to use a "recycled" box
which once contained another project. If this has additional holes drilled in it, make a statement explaining why they are there, cover them over or use them in some way. This should not reduce your credit.

I remember a student who built a project in a margarine container. This was resourceful but the box was not thought to be rigid enough to withstand the rigours of everyday use. I also remember a student who made a beautiful box using hardwood, nicely varnished and complete with dovetail joints and brass hinges on the lidl Good credit was given but no more than would have been awarded for a mass-produced plastic box.

If the circuit is mains-operated, it always needs a box and if this has not arrived, the unit must not be plugged in. The box would need to be made of metal, earthed, and used in accordance with all current regulations. Further details regarding this were given last month. On no account may a mains-operated circuit be used without a suitable housing or on a nonearthed supply.
Shake the box. If it rattles, find out why and secure whatever is causing it! I always shake the box first - it is surprising what this tells me about the student! It is common for the battery to be left unsecured. At this late stage, it could be held in position using an adhesive fixing pad rather than a proper bracket.

Worst Case

Suppose you have no project at all or just some odd components on a breadboard - due to your own fault. This is probably the worst situation to be in. You will just have to salvage what you can.

Advice can be drawn from NEA who need, as a minimum, one active component capable of being switched to a supply. The written report could consist simply of a title, the purpose of the project, an outline specification and a rough circuit diagram.
MEG state that their minimum requirement is a project specification form duly

Editorial Note

If you are involved in teaching or assisting students in electronics or technology we would like your views on this series - has it covered everything it was designed for? Can we provide any other information? etc. We are considering reprinting the series in booklet form and making this available (hopefully at a modest price) to students and teachers; would you be interested in such a reprint? Please let us know your thoughts.
completed and submitted to the teacher. This will gain hardly any credit but at least a mark - possibly zero - has been obtained. Without this, your examination certificate is likely to be endorsed " A " (Ab sent) whether you take the written paper(s) or not. It may also mean that you have to pay for your exam entry if this would normally be paid by the centre.

A mark of zero is not the same as obtaining no mark at all. No mark is a result of failing to do the minimum amount of work towards the project. This is recorded by your supervisor as " A " (absent) and your certificate will probably be marked " A " also. A mark of zero at least allows you to proceed with the written papers. Since you are denied a large proportion of the marks, your grade cannot be expected to be very good but at least you will get something

Costs

Some boards encourage a costing of the project to be carried out - rather like the exercise which would be done in industry. If you have any time left it would not do any harm to do this even if it is not specifically asked for. The best way is to provide a components list with the cost of each item alongside and the total cost at the end.
That completes the series. I hope that my advice helps you to achieve a mark as high as you deserve for the practical project and a good grade in the examination as a whole. Good luck!

OMNI ELECTRONICS
174 Dalkeith Road, Edinburgh EH16 5DX 0316672611 A COMPREHENSIVE RANGE WITH SERVICE SECOND TO NONE OUR MUCH EXPANDED, BETTER ILLUSTRATED CATALOGUE COSTS £1.50 - INCLUDES VOUCHERS TO USE AGAINST FUTURE PURCHASES. TO RECEIVE A COPY PLEASE SEND YOUR REMITTANCE WITH THE VOUCHER BELOW.

WANT TO LEARN ABOUT COMPUTING?
 WANT TO TRY INTERFACING?

This is the computer for you:

- Enhanced Microsoft BASIC
- 80 character 8 line LCD display ($480^{*} 64$ dots)
- Two RS232 ports
- Microcassette data/programme storage
- Two analogue to digital ports included
- Battery backed
- 15 K available for BASIC or machine code programmes
- Full bus interfacing possible, input/output board available to connect your computer to the outside world
- In-house programming advice included for first 3 months
- Full technical manuals and specifications available
- 30 day money-back guarantee

At $£ 275$ + VAT (the screen and keyboard alone are worth more than that) this could be the cheapest interfacing computer you're ever likely to find.
$\star £ 100$ off if you order before 14th June \star

E. D. Electronics

35 Mall Road, London W6 9DG
Tel: 0817480052 Fax: 0817411135

аито LIGHT CONTBOL

MUNGO HENNING

> No need for youngsters to be afraid of the dark! No more switching on the light with your nose! For the disabled or elderly person, this pressure and light activated mains switch will be invaluable.

EVER WALKED into a dark room carrying something heavy and had to put the article down so that you could turn on the lightswitch? This project will control a mains lamp via a pressure mat, obviating the need to use a separate switch.

Some years ago I built such a device and installed it in my bedroom. My two year old nephew (Jun Maillund) had great fun running in and out of the room watching the "magic" lamp! Though not primarily aimed at such a "novelty" use, the device could be of benefit for young children (where they cannot, or should not. reach a light switch) or for the elderly or infirm person.

THECIRCUIT

Mains voltage is present within this project so the usual precautions must be taken.

The circuit diagram of the Auto Light Control logic stage is shown in Fig. I The circuit has two inputs and a single output. The two inputs are the pressure mat (normally open) switch (connected to a 2.5 mm jack socket SK I) and a lightdependent resistor (LDR) R2. A relay with mains rated contacts is the single output.

The pressure mat is used to detect people entering or leaving the room. The LDR detects the ambient light level within the room and will prevent the relay from switching when the light level is above a preset value.
Three different coloured light emitting diodes (D4-D6) are used to show the internal state of the circuit. These were added mainly for effect (i.e. further enhanced appeasement!) but prove useful when setting up the device.
The main part of the circuit is the JK flip-flop ICI. There are two independent flip-flops in this package of which only one is used.

If both the J and K inputs of such a flipflop are taken high (connected to the positive supply rail), then on each pulse applied to the CLOCK input the outputs (Q and Q-bar) change to the opposite state.

The pressure mat input is debounced by resistors R3, R4 and capacitor C2 and inverted and sharpened by IC2a to give a clean clock pulse to the JK flip-flop.

Instead of tying the J and K inputs to the positive rail, the values on both these flipflop inputs are determined by the current state of the flip-flop and the light level on R2 (LDR). The logic here sets both J and K inputs high if the Q output is high (i.e. the relay is on) or if the Q output is low AND the room is dark enough (IC2c).
This is necessary to prevent the relay from switching on when the room is already bright enough (during daylight), but should the room light fall on the LDR then the circuit will still accept a clock pulse from the pressure mat irrespective of the light level in the room.
The switching point of the LDR is sharpened by the action of the Schmitt NAND gate (connected as an inverter) IC2b. The extra logic removes the requirement to keep the LDR away from the light which is being switched by the relay

The JK flip flop also has explicit SET and RESET inputs. The SET input is permanently disabled (tied to the 0 V ground line) and the RESET pin is connected to an $R C$ delay network ($\mathrm{R} 7, \mathrm{C} 3$) to ensure that upon power-up the relay is off.
The l.e.d.s are provided to show the state of the pressure mat input (D5 via IC2d). the LDR switching point (D4) and the
relay output (D6). Though having used normal l.e.d.s with CMOS logic outputs satisfactorily for many years, low power l.e.d.s were used in the prototype so as not to overload the CMOS outputs of 1 C 2 b and IC2d too much.
A push button switch SI connected in parallel with the pressure mat allows a separate method of toggling the output. Consider using the device in a bedroom with it situated adjacent to a bedside lamp as you walk in the room the lamp illuminates and when in bed you simply press the push button to extinguish the lamp.

A presèt potentiometer (VR1) allows alteration of the LDR switching threshold. This is an internal adjustment on the prototype ànd with mains voltages present should be carried out extremely carefully. Concerned readers may like to use a panelmounting rotary potentiometer. A resistor R 1 is connected in series with the preset to limit the overill current flow through the LDR.
The Q output from the flip-flop controls the relay switching transistor TR1 via limiting resistor R8. Signal diode D3 protects TRI from the back e.m.f of the relay coil.

POWERSUPPLY

The circuit diagram for the power supply to drive the Auto Light Control logic circuit is shown in Fig. 2. The mains is conventionally transformed by T 1 , rectified by diodes D1 and D2 and smoothed by capacitor Cl , giving a supply voltage of 13 V to power the circuit.

Fig. 1. Circuit diagram for the sensor and control logic section of the Auto Light Control.

Fig. 3. Printed circuit board component layout and full size copper foil master pattern for the logic board. Only one half of the dual J-K flip-flop IC1 is operational in this circuit.

CONSTRUCTION

The unit was constructed on two printed circuit boards - one for the power supply and output relay, and one for the logic electronics. This proved to be a useful division since the logic electronics can be constructed and tested using a suitable battery without requiring mains electricity.
The printed circuit board component layouts and full size copper foil master patterns are shown in Fig. 3 and Fig. 4. These boards are available from the $E E$ PCB Service, codes EE747 and EE748.
Commence construction with the logic board. Fit the wire links, the resistors, diodes, capacitors, transistors and the i.c.
sockets - watch the polarity on everything except the resistors (and wire links!). The pressure mat was connected via a 2.5 mm jack plug and chassis socket.

Six appropriate holes should be drilled in the case lid for the three l.e.d.s, the jack socket, the LDR and the pushbutton switch.
Once assembled. the logic p.c.b. was attached to the case lid by the jack socket and switch S1.

Temporarily use Blu-tack on the inside of the

Fig. 2. Circuit diagram for the power supply and relay switching stage. The mains output socket SK2 is a "wander" type and is shown in the photo opposite.

Fig．4．Printed circuit board component layout and full size copper foil master pattern for the power supply／relay drive board．The mains input lead is connected to one tag of the panel mounting fuseholder and a lead（sleeved）is taken from the other fuseholder tag to the input terminal TB1．
gingerly apply power from a 12 V bat－ tery－the prototype model drew 0.7 mA ． Switch off and insert the two i．c．s，taking the usual precautions for CMOS devices and noting the polarity of the i．c．s．
Re－apply power and test the action of the LDR（watching the green l．e．d．D4，it will illuminate when there is sufficient light）．Next press the push switch and look for its yellow I．e．d．D5 illuminating when the button is pressed．
With sufficient light on the LDR（the green I．e．d．D4 should be on），repeatedly press the push switch S1；the red l．e．d．

D6 should be off．Reduce the light level on the LDR（until the green I．e．d．D4 switches off then press S 1 －on succes－ sive depressions the red I．e．d．D6 should change state．

Having proved that the basic logic cir－ cuit works，test the special feedback con－ dition as follows：

Get both the red and green l．e．d．s to be lit，then press the pushbutton switch once－the red l．e．d．should extinguish and whilst the green l．e．d．remains on further depressions should cause the red l．e．d．to remain off

The completed logic board is attached to the case lid by the mounting bush and nuts of the jack socket and pushbutton switch．

POWEASUPRLY BOAFD

Though much simpler than the logic p．c．b．，the mains pic．b．requires extra vigilance since it will carry lethal voltages－ hear in mind the safery of the final users of this device．The component layout and full size copper foil master pattern for the Power Supply Board is shown in Fig． 4.
Three－way p．c．b．mounting screw ter－ minals are used to connect the mains input and trailing socket output cables．The transformer Tl is bolted to the p．c．b． Strain－relief grommets MUST be used to secure the mains cable to the case－the three－way screw terminals will not endure a sharp tug on the cables（such as when someone trips over a cable）．
The mains Live conductor entering the case is connected to the panel－mounting fuseholder and must be sleeved．The output from the fuse is connected（and sleeved）to the input mains terminal TBI．
When construction of the Power Supply board is complete，assemble the mains board into the case ommitting for the moment the four flying leads which will connect the mains and logic board to－ gether．Being a mains－coward（and proudly having never touched the mains in my life）． please re－check all the connections before switching on．If possible，use a＂residual current circuit breaker＂device（commonly used with garden power tools）in the circuit whilst testing．

If the circuit is okay, remove power (pull out the plug - never trust a switch more than you have to) then connect a 4 -wire loom to the mains p.c.b. for the low voltage power (black and red wires if convenient) and the relay input. If you have a multimeter, start with a 400 V range and connect it to the red (positive) and black (ground) wires of the 4 -wire loom. (The reason for starting on a 400 V range is to protect the meter should there be a serious fault in the mains p.c.b. such that mains voltages are finding a path to the low voltage output. - Do NOT cmmnect bour meter to the mains.)

Apply mains power again and without touching any metal parts reduce the scale on the multimeter so that you can easily read the output voltage. On the prototype it was 14 V (no-load) but remember that the logic circuit can toierate some variance in the supply voltage as long as the output relay will still work and is not being overrated.
Everything being well, disconnect the main supply (again remove the plug) and temporarily connect one of the relay input wires (of the 4 -wire loom) to the ground wire of the same loom. Bare the end of the other relay wire.
Re-apply mains power and without touch-- ing any metal parts touch the uninsulated relay input to the positive wire of the 4 -wire loom (thereby applying the low-voltage supply to the relay). You should hear a click as the relay switches.
Once again remove mains power, then plug in a working mains table lamp to the trailing socket output of the device (make sure that any local switches on the table lamp are in the ON position, and that the lamp will actually work when mains power is applied). Re-apply power and repeat the relay-testing operation: the table lamp should illuminate when the relay is switched on.
Having succesfully got this far, remove mains power (pull out the plug) and solder the two boards together via the 4 -wire loom. Assemble the completed boards in the case and attach a "Mains Warning" notice on the case outside of the finished model. Connect an appropriate length of two-core cable to the pressure mat and connect the other end to a 2.5 mm jack plug.
Typical pressure mats have four "identical" wire connections: two are permanently

COMPONEVTS

Resistors R1, R5		
R6, R9	1k (4 off)	
R2	ORP12 light dependent resisto	
R3	10k	
R4. R7	100 k 15 k	
Potentiometer		
VR1	47k enclosed	Page

R1, R5
R6, R9 1k (4 off)
R2 ORP12 light dependent resistor
$\begin{array}{ll}\text { R3 } & 10 \mathrm{k} \\ \text { R4. R7 } & 100 \mathrm{k}(2 \text { off) } \\ \text { R8 } & 15 \mathrm{k}\end{array}$
Potentiometer
VR1 47 k enclosed p.c.b. mounting preset, horiz.

Capacitors
C1 $\quad 470 \mu$ radial elect. 16 V
C2, C3 1μ radial elect. 16 V

Semiconductors

D1, D2 1 N4001 1A 50 V rec. diode (2 off)
D3 1 N4148 signal diode
D4 5 mm low current l.e.d., green
D5 5 mm low current l.e.d., yellow
D6 5 mm low current l.e.d., red
IC1 4027BE CMOS dual J-K flip-flop
IC2 4093BE CMOS Schmitt quad 2 -input NAND gate

Miscellaneous
T1
Mains transformer, 9V-0V-9V 250 mA secondary.
SK1 $\quad 2.5 \mathrm{~mm}$ p.c.b. mounting jack socket
Miniature push-to-make pushbutton switch
PL1 $\quad 2.5 \mathrm{~mm}$ jack plug
RLA 12 V 320 ohm coil/relay. with 10 A 240 V a.c. contacts
FS1
1 A 20 mm fuse and panel mounting fuseholder

Pressure mat; ABS plastic case (MB5), size $150 \mathrm{~mm} \times 100 \mathrm{~mm} \times 60 \mathrm{~mm}$; 3-way p.c.b. screw terminal block (2 off); 14 -pin di.i.l socket; 16 -pin di.i.l. socket; 3 -core mains cable with trailing socket; strain-relief grommets (2 off); 2 -core connecting wire for pressure mat; I.e.d. clips; multi-strand connecting wire; mains warning label; transformer mounting nuts and bolts; solder pins; solder etc.
Printed circuit board available from EE PCB Service, code EE747 and EE748.
connected within the pressure mat for an alarm system's 24 hour loop (a 24 hour alarm loop protects detection switches from tamper when the main alarm is not armed: even if "Burglar Bill" gets near the pressure mat connections it is not obvious which of the four wires require tampering with), the other two are normally open-circuit and become closed-circuit when sufficient pressure is put on the mat. Use a multimeter on resitance range to determine which two from the four you need.
Re-test the final device then install it in the required location. Irrespective of the age of all the device's users, warn them not to interfere with the device or open its case under any circumstances.

INUSE

Though the device should perform satisfactorily there are a few points to note:
Large house pets may be heavy enough to operate the pressure mat. On some occasions a pet can walk on to the pressure mat
which causes the light to illuminate and this then startles the pet to hastily retreat which lea ves the light on!
A single pressure mat cannot detect in which direction a person is moving, they may miss the mat when entering a room but step on it on the way out, leaving a vacated and illuminated room! Also should an even number of people enter the room in orderly fashion the net result is that the light will be off.
The siting of the pressure mat may also need some experimentation. Usually the mat will be placed just inside the room's entrance. On the prototype the room was at the end of a dark corridor and the author proceeded to walk down the corridor and into the room only to find out that the normally open door had been closed-ouch!

Nevertheless, the unit should give hours of entertainment and use. It should also prove to be invaluable to elderly and disabled people.

Robert Penfold

THIS MONTH we turn our attentions to the Amstrad CPC range of computers. Although these have sold quite well for a number of years, relatively little information on interfacing to these computers, or add-on projects for them, have been published. The CPC computers have not been totally overlooked by Everyday Electronics though, and you will find two or three projects for them if you search through some back issues.

Expansion Port

The CPC computers are equipped with a fairly typical range of interfaces, such as disk drive, monitor, parallel printer, and joystick ports. There is no equivalent to the user port of the BBC computers, but there is a general purpose expansion bus.
On the CPC464, which has no built-in disk drive, this port is the one labelled "Floppy Disk", but it is exactly the same as the "Expansion" port of the other CPC computers. This port provides the potential for almost limitless user add-ons, and interfacing to it is reasonably straightforward.
As the CPC range of computers are based on a 280 A microprocessor, they have the usual Z 80 style data, address and control buses. Physically the port is a two by 25 way 0.1 in . pitch male edge connector with provision for a polarising key so that the female connector cannot be fitted the wrong way up, Fig. 1. Details of the pin numbering. and function is shown in Table 1.
Some of the functions shown in Table 1 are the standard $Z 80$ types, including the address bus (A0 to A15) and the data bus (D0 to D7). The usual control bus lines are there as well, including the ones that will be needed when connecting user add-ons to this port. In particular, there are the separate read and write lines (/RD and /WR), and the input/output request line (/IORQ).
The $Z 80$ has separate memory and input output maps. The /IORQ line goes low when an input/output device is being accessed - /MREQ goes low when a memory circuit is being accessed. The 4 MHz system clock is available at pin 50 .

Most of the other lines available on the expansion port are ones that will probably not be needed for add-on projects. There are a few potentially useful ones though.
There is a +5 V supply line, but this is the only supply line available. It is probably best not to draw very much current from this terminal, and about 100 milliamps or so is a sensible maximum.
The "SOUND" terminal is an audio input, which enables an add-on device to make use of the computer's built-in amplifier and loudspeaker. The audio quality is not particularly good, and there is a high background noise level, but audio performance is adequate for most of the likely applications.
Last, and possibly least, there is a lightpen input at pin 47. Light-pens are good fun, but in my experience they give results which are not stable enough for many practical purposes.

Table 1: CPC Expansion Port Pin Functions

Pin	Function	Pin	Function
1	Sound	26	DO
2	GND	27	+5V
3	A15	28	/MREQ
4	A14	29	/MI
5	A13	30	/RFSH
6	A12	31	/IORQ
7	A11	32	/RD
8	A10	33	/WR
9	A9	34	/HALT
10	A8	35	/INT
11	A7	36	/NMI
12	A6	37	/BUSR2
13	A5	38	/BUSAK
14	A4	39	READY
15	A3	40	/BUS RESET
16	A2	41	/RESET
17	A1	42	/ROMEN
18	A0	43	ROMDIS
19	D7	44	/RAMRD
20	D6	45	RAMDIS
21	D5	46	CURSOR
22	D4	47	LPEN
23	D3	48	/EXP
24	D2	49	GND
25	D1	50	CLOCK

Fig. 2. Minimal address decoding for a CPC computer that is not equipped with a disk drive

Address Decoding

Address decoding for a CPC computer which does not have a disk drive (internal or external) is very simple indeed. It is basically just a matter of activating the add-on device when A10 and /IORQ are low, together with the read or write line (as appropriate). Of course, in practice the add-on circuit may well occupy more than one address, and it will then be necessary to additionally decode some of the lower address lines.
If the add-on circuit is based on a computer chip such as a PIO, then it will probably have register select inputs that will provide the decoding of the lower address lines, avoiding the need for any extra external decoding. Add-ons are effectively at addresses from \&F800 to \&FBFF with this general scheme of things.
Obviously this very simple method of interfacing enables a minimum of address decoding to be used. In most cases a single 74LS138 3-to-8 line decoder can handle the decoding. Fig. 2 shows one way in which the 74LS138 can be used as a CPC address decoder.
For a CPC computer that is fitted with a disk drive, whether it is an integral or external type, address decoding is slightly less straightforward. The simple method described above is likely to cause problems with the add-on and disk drive tending to interfere with each other.

In order to avoid possible conflicts with other hardware, user add-ons must

Fig. 1. The pin numbering for the Amstrad CPC Expansion Port, with polarising key.
be mapped into the smaller input/output area specifically reserved for expansion port add-ons. The relevant area of the input/output map is \&F8EO to \&F8FF. This means that as a minimum requirement, all the address lines from A5 to A15 must be correctly decoded in order to guarantee that no hardware conflicts occur. Table 2 shows the states of A4 to A15 when an address in the relevant range is accessed.

\left.| Table 2: Accessing Address | | | |
| :--- | :--- | :--- | :--- |
| Lines A4-A15 | | | |$\right]$ (State | Address | | |
| :--- | :--- | :--- |
| Address
 Line | | Sine |

The most simple method of CPC full address/control bus decoding I have been able to devise is the one shown in Fig.3. This is actually "borrowed" from my Amstrad CPC Speech Synthesiser project, which can be found in the May 1990 issue of Everyday Electronics.
The decoder responds to input/output accesses in the range \&F8FO to \&F8FF. The circuit basically consists of a 74LS30 8 -input NAND gate to decode eight of the "high" address lines, with a 74LS138 3-to-8 line decoder being used to decode /IORQ and the other four address lines.
Two OR gates from a 74LS32 then provide decoding with the /RD and /WR lines so that separate decoded read and write lines are available. In some cases the peripheral chip in use will have inputs for the /RD and /WR lines, rendering this extra decoding unnecessary.
Remember that the four least significant address lines are available if the add-on has more than one register, or if more precise address decoding is needed for any other reason. With four address lines to decode, this means that there are addresses available for up to sixteen read/write registers, which should be adequate for any one add-on unit.

Also keep in mind that adding an in-

Fig. 3. A circuit to provide address decoding for a CPC computer fitted with a disk drive
verter in the A4 address line will result in it being decoded to "low" rather than to "high", giving a different block of sixteen input/output addresses ($\& F 8 E 0$ to $\& F 8 E F$). This permits two add-ons of sixteen registers each (or equivalent) to be used with a CPC computer, and this should be adequate for most users.

Making Contact

From BASIC the input and output ports are contacted using the INP and OUT commands, respectively. The input and output circuits are not memory mapped, and cannot be accessed using PEEK and POKE.
All TTL logic devices should interface with the CPC buses without any difficulty, as will $82^{* *}$ series and $Z 80$ peripheral chips. The $65^{* *}$ and $68^{* *}$ peripherals are not bus compatible with the Z80A microprocessor of the CPCs, although these chips can sometimes be interfaced to the CPCs successfully. Indeed, the CPC computers incorporate a 6845 video controller chip.
One difficulty with the $65^{\circ *}$ and $68^{n * *}$ series devices is that they usually require the
system clock signal, but the Z80A clock signal is rather different to that of the 6502 etc. Despite this, the Z80A clock seems to give perfectly good results in most cases.
There is another difficulty in that the Z80A has separate read and write lines, whereas the 6502 etc . have a single read/write line. The write line or an inverted version of the read line will usually provide a suitable substitute for the R/W line. Of course, where a suitable $82^{* *}$ or Z 80 peripheral exists, it is better to use this than to risk problems with a $65^{* * *}$ or $68^{* *}$ series chip.
It should be pointed out that the CPC computers, particularly the ones which have builtin disk drives, do not seem to like having long cables hanging on the expansion port. It is probably best to keep the cable length down to about 300 millimetres. Longer lengths can cause erratic operation, and can even prevent the computer from completing its initial setting up sequence properly.

There seems to be a lot of interest in PC interfacing at present, and so next month we will return to this subject with some ideas for PC prototyping cards.
\square

A DOT MATRIX PRINTER FOR ONLY f19.95?

Yes! I have obtained the remaining production line parts for the amazing AMBER 4000 PRINTER and can supply them to you as a kit complete with assembly instructions. A few small parts will have to be supplied from your own spares box, but all the major items including the case are included. Send me a SAE for full details

This superb 40 column printer boasts many features and can be driven from both parallel and serial signals. The SAE will tell all, or send a cheque for $£ 22.95$ (inc. $£ 3$ P\&P) for immediate dispatch.

I only have 150 kits so to avoid disappointment contact me now at:
CHIPLINK,
10 Hardys Field, Kingsclere, Newbury, Berks. RG15 8EU.

LOW COST UHF RADIO SWITCHING

AS USED BY THE PROFESSIONAL SECURITY MARKET

Incorporating the latest Surface Acoustlc Wave technology, the system consists of a small "zero-power", UHF transmitter with digital encoder and a UHF receiver unit with digital decoder and 3 relay outputs, 2 alternate and 1 momentary.
8 -way DIL switches on both boards set the unique security code. Many applications includlng lighting, alarms, the "automatic home", etc.

Slze:	$T \times 45 \times 30 \mathrm{~mm}$	$R \times 55 \times 65 \mathrm{~mm}$
Supply:	$T \times 3-12 \mathrm{~V}$	$R \times 5-12 \mathrm{~V}$
Range	Up 10200 m	

Complete System (2 kits) $£ 29.99$
Individual Transmitter...99.9
Individual Receiver.
. 19.99
Please allow 28 days for delivery Cheques/POs to:
BLB Electronics
341 Darwen Road, Bromley Cross, Bolton BL7 9BY

Constructional Project

FISH BITE INFRALARM

JOHNATHAN LIVING

Don't be caught napping! Reel in the "big one" with the aid of this bite alarm. Detects the movement of the line.

MOST amateur fishermen will agree that for at least some of the time, their favourite sport is intended to be relaxing. But when your stories of "the one that got away" are founded on you falling asleep at the rod, drastic action is needed to save your bacon, or rather your perch
A device designed to do just that is the Fish Bite Infralarm. It is used to replace the traditional rod rests since it too can be attached to a bank stick and will support a fishing rod in much the same way.
The only difference between the two is Infralarm's rather vocal or visual treatment of a moving line. The unit works by emitting a short, high-pitched tone (or briefly lighting a l.e.d.) for approximately every 35 mm that the line runs out or in.

HOWIT WORKS

The full circuit diagram for the Fish Bite Infralarm is shown in Fig. 1. Diode D1 is a low-current red l.e.d. which emits radiation around the 650 nm part of the spectrum. This proves well matched to infra-red phototransistors (such as TRI being used in this project) which are predominately sensitive to radiation around the $850-900 \mathrm{~nm}$ wavelength range.

The fishing line runs on a wheel which has both opaque and transparent sections. When the line moves, the wheel rotates and the optical path between I.e.d. DI and phototransistor TRI is successively broken and restored. When the light incident on TR! decreases, the voltage drop across this device increases correspondingly.
Thus the voltage at the non-inverting input (pin 3) to ICla depends upon the position of the sensor wheel. It is this change in voltage that the circuit detects and uses to alert the fisherman (or woman!) of line movement.

CIRCUIT DESCRIPTION

Both op-amps contained within ICI are configured as voltage comparators in the circuit. When the potential of the noninverting (pin 3) input to ICla differs to the potential of the inverting (pin 2) input, then this difference is amplified by the open loop gain of the op-amp (approximately $1,000,000$ times, or 120 dB).
The practical implications of this and the use of a single rail power supply are for all intents and purposes, that when the noninverting input is at any lower potential than the inverting input, the output is at 0 V
(low). When the reverse is true, the output is at the supply voltage (9 V in this case).
When the wheel rotates to break the optical path from l.e.d. DI to phototransistor TR1, the voltage at the non-inverting input changes from a value lower than that set by VRI at the inverting input, to a value higher. The output of ICla (pin 1) therefore swings from 0 V to 9 V (high).
The non-inverting input of ICIb (pin 5) immediately attains a potential of 4.5 V via the potential divider formed by resistors R5 and R6. Meanwhile, the inverting input of IClb is held low by the charging action of capacitor C 2 via resistor R4. For the time that the voltage across C2 is less than the 4.5 V potential at the non-inverting input (calculated by using $t=-\mathrm{RC} \times\left(1-\mathrm{V}_{\text {cap }} / V_{\text {supply }}\right)$ to be around five hundredths of a second) then the output of $I \mathrm{Clb}$ is at 9 V . Thereafter, the output of IClb falls to 0 V , completing a 9 V pulse.
When the wheel rotates to restore the optical path between TRI and DI, the output of ICla swings to 0 V which causes diode D2 to be forward biased and C2 discharges rapidly through current limiting resistor R 3 , ready for the next pulse
The high $(9 \mathrm{~V})$ pulse from the output (pin 7) of ICIb, is used to drive, via resistor R8 and switch S2, the warning I.e.d. D3. When switch $\mathbf{S} 2$ is moved to its alternate position, the high pulse is used to generate a large base current for (and to saturate) transistor TR2 via resistor R9.

Fig. 1. Complete circuit diagram for the Fish Bite Infralarm.

Transistor TR2 functions to enable a large collector current to flow and operate the oscillator circuit formed around IC2.

The oscillator utilises the ubiquitous 555 timer in astable mode, with the frequency determined by resistors R7. R10 and capacitor C4. A decoupling capacitor C3 is used to remove the d.c. component from the near squarewave output of IC2 in order that a loudspeaker may be driven.
A three-position volume switch is included, which uses a series/parallel technique to reduce the power dissipated in loudspeaker LSI while maintaining an 8 ohm impedance. This was found to be necessary since varying low resistances on the output of IC2 actually have an effect on the tone produced

CONSTRUCTION

First sighting of the constructional diagrams for the Fish Bite Infralarm may give

Fig. 2: Main circuit board component layout and details of breaks required in the underside copper tracks.
the impression that this project is relatively difficult to build. However, provided the following details are followed even the average "fish-person" should soon be hooked on electronics and have no trouble in successfully "landing" this project.
A good starting point to commence construction is the main circuit board, which is built on a piece of stripboard measuring 10 strips by 30 holes. The stripboard component layout and details of the breaks required in the underside copper tracks is shown in Fig. 2.
The board requires all of 20 track breaks on the underside although these are grouped together into four columns, each containing five breaks. The 12 wire links and seven solder pins can then be pushed into position and soldered.

The i.c. sockets, VRI and the nine resistors can be added next. Capacitors Cl to C4, transistor TR2 and diode D2 should then be soldered into place.
Diode D2 is a germanium type and should be treated carefully. Bend its leads slowly over with light finger pressure. Note its correct orientation (with the cathode (k) band at the top of the board) and solder with the minimum of heating time. The board can now be tested as it stands. See "Preliminary Testing" below.

SENSOR

The next logical step is to construct the sensor. The prototype wheel was made by "Aralditing" two Perspex dises and a discarded cassette tape wheel into a sandwich type construction. The disc material used

is the 2 mm thick variety obtainable from most large DIY stores and is usually sold for the purpose of cheap greenhouse cladding.
Mark out two 30 mm diameter circles on the protective paper covering the Perspex. Rough hack-saw around the marked out line.

The discs are best reduced to a truly circular shape by filing a number of flats as tangents to the marked out circumference. The corners of the polygon produced can then be removed by further filing to produced a round disc.

Both discs need $t 0$ be centre drilled through with a 1.6 mm or similar size

Fig. 5. (below). Component layout for the sensor boards and details of baseboard.

The base plate requires two, 3 mm holes to be drilled for mounting the assembly. Four pieces of copper wire, each around 10 mm in length, should be soldered vertically into each of the two end columns in the base board. When the wire pieces are bent over and outwards, the LH and RH boards can be pushed onto the wire and then soldered on the reverse to hold the chassis together. The sensor assembly process is shown in Fig. 4.
Heat shrinkable tubing can be used as a spacer on the axle to keep the wheel spinning centrally between DI and TRI. Note that the axle itself forms the 0 V link between the LH and RH boards and must therefore be soldered correctly into the topcorner positions of each board.

PRELIMINARY TESTING

The main circuit board should be tested independently first of all. Set VR1 to approximately half-way. Connect a 9 V supply between the solder pins at $A l(+V)$ and $J I(-\mathrm{V})$. Temporarily link the solder pins in positions D19 and F19 on the board and connect loudspeaker LS1 between the solder pins in positions $I 30$ and $J 30$.
Solder a flying lead to EI. Touch the opposite end of the flying lead to the negative supply connection (solder pin position JI). On removing the lead, a short "beep" should be heard. If this is not the case, then some basic diagnostic tests can be performed:
Remove ICI from its socket and power up the circuit again. Use a piece of wire to take pin 1 of IC2 to the negative supply connection on the board (JI). A sound should be heard. If this is not the case, check components associated with (and including) IC2 (i.e. C4, C3, R7 and R10). Also check the loudspeaker LSI by VERY BRIEFLY connecting it across the terminals of the 9 V supply (a crackle should be heard).
If a sound is heard, connect a wire from the positive supply connection on the board (AI) to pin 7 position on the now empty ICl socket. If a continuous tone is NOT heard, TR2 and perhaps R8 or R9 are at fault.
If a sound is still produced when the link to pin 7 test above is tried, then it is 1 Cl and all the remaining components which must be suspected as being faulty. ICI can be tested as follows.

With ICI replaced in its socket, repeat the initial test of continually touching and removing the end of the flying lead to the negative connection on the board ($J /$). Monitor the voltage between pin 1 on ICl and the negative board connection ($J I$) using the 10 V d.c. range on a multimeter. With the flying lead touching $J /$, the meter should read 0 V . When the flying lead is unconnected, the meter should read 9 V .
A further test will involve monitoring the voltage between pin 7 on ICI and the $J I$ negative supply connection on the board. As the flying lead is REMOVED from J, the meter reading should very briefly rise from 0 V to 9 V . The reaction time of your meter will prevent a reading of 9 V being obtained, but a pulse should definitely be detected.

SENSDR

The sensor can also be tested independently, in a similar manner. Connect the positive side of a 9 V supply to the solder pin in position E I on the LH board. The negative connection should also be made to Al on the same board.

Fig. 6. Case modifications and drilling details.

Connect an 820 kilohm resistor between the solder pin in position B8 on the RH board and the positive supply connection of the LH board (EI). Now measure the voltage between the negative supply connection ($A 1$ on the LH board) and pin B8 on the RH board.
With an opaque section breaking the optical path between TRI and DI, the voltage measured should be over 6 V . With the optical path clear, a reading of below 5 V should be obtained.
Testing of the sensor should be carried out in a dimly lit room so as to simulate the conditions inside the case. If both the sensor and the main circuit work correctly, you should now proceed with the case work and final interwiring.

CASE

The prototype case was based around a standard gloss-black finish ABS case of approximate dimensions $120 \mathrm{~W} \times 100 \mathrm{D} \times 45 \mathrm{H}$ (millimetres). Modification to the case design are shown in Fig. 6.
The lid of the box should only be roughly cut to shape, leaving at leass I mm of waste material around the " V " for finishing. Mark out the 60 mm wide by 40 mm deep "V" on the under and top sides of the case.
Roughly hacksaw the waste material and finish by filing. Do not attempt to file right into the point of the " V " since a slot, $1 \mathrm{~mm}-2 \mathrm{~mm}$ wide by 10 mm deep is to be filed at that position. The slot is best produced by using a warding or flat file of $1 \mathrm{~mm}-2 \mathrm{~mm}$ thickness, on its side.

Fig. 7. Sensor mounting and positioning of components inside case.

The completed infralarm showing layout of components inside and on the case lid.

To "fill in" the sides of the " V ". the same 2 mm clear Perspex as used for the sensor wheel was utilised. Two pieces, each approximately 41 mm by 47 mm were used. Araldite the two pieces flush to the edges of the "V"
Once the glue is dry, the lid can be fitted and filed to blend in with the Perspex faces.

The " V " can then be masked off and sprayed with a gloss black car spray paint to give a professional finish.
The mounting details for the various controls and panel hardware are also given in Fig. 6. This design is best adhered to since the case can become more than a little cramped when fully "furnished."

Fig. 8. Interwiring between all off-board components.

The mounting of the sensor inside the case is shown in Fig. 7. Notice also the method by which the unit can be attached to a "bank stick" - the coupling from a cheap plastic rod rest is used in conjunction with a bracket bolted to the base of the case. This system enables the unit to be tilted forward such that the rod lies correctly along the faces of the " V ".

INTERWIRING

All the point-to-point interwiring necessary for the Infralarm is shown in Fig. 8. Note the orientation of diode D3 relative to its connections.

The wiring of SKI is particularly difficult if the insertion of a jack plug is to successfully cut out the internal speaker. For testing purposes, it is probably far wiser to omit SK 1 by connecting wire end " X " to wire end " Y " and removing the SKI ground wire, as labelled in the diagram.

FINAL TESTING

With the project complete, it is an easy task to test its performance. Monitor the voltage between the $0 V$ connection on the main board (J I) and pin 2 of ICI. Using VR1, adjust this to something between five and six volts.

Check that the voltage between 0 V and pin 3 on ICl oscillates between a value higher and a value lower than the five or six volts set on pin 2, as the sensor wheel rotates. If this is not the case, choose an intermediate voltage between the extremes on pin 3 of ICl and use VR1 to set pin 2 on ICI to this potential.
With the unit switched on, pull some taught string through the slot in the base of the " V ". Depending on the position of switch S2, I.e.d. D3 should flash rapidly, or a series of beeps should be heard from the loudspeaker. Adjusting preset VRI, as long as the voltage at pin 2 of ICI remains within the oscillating limits of pin 3, has subtle effects on the units' operation:
With pin 2 voltage quite low, the circuit functions well at high sensor wheel speeds. but becomes very sensitive to opaque sections on the sensor wheel to the point that

Mounting the sensor chassis so the wheel aligns with the "rod line" V-slot.
the circuit may respond to fingerprints on the clear sections!
With pin 2 voltage quite high. the circuit will produce a series of "clicks" rather than "beeps" when the wheel rotates at high speed. However, the circuit becomes less sensitive to fingerprints and the like!

IN USE

The Fish Bite Infralarm is very simple to use. Screw a bank stick to the coupling and angle the unit forward so that the front face of the box is perpendicular to the rod. The reel should provide sufficient tension in the line so that when it runs out. the sensor wheel will rotate and the alarm will sound.

The circuit has a total quiescent current consumption of less than 3 mA . making extended running on a PP3 type battery a viable proposition. When active, currents of over 20 mA (for the l.e.d. setting on S2) and 50 mA (for the alarm) are drawn. This is obviously only an intermittent load and should not drain the battery unduly.
The low-current I.e.d. DI may prove difficult to obtain and can be substituted for a standard 5 mm 20 mA type. In this case. resistor RI should be reduced by a factor of 10 to 390 ohms.
Since the current through DI constitutes 2 mA of the 3 mA quiescent supply cur-
rent, substituting for a standard 20 mA type l.e.d.will require the use of a larger battery (something like six "AA" or "HP7" type batteries in series) in order to enable long operating periods as before. A larger case will also be needed in order to make room for the battery pack.

FINALLY

EE hope to combine with this, a project code named "Coax-a-Fish". This is basically an underwater unit with integral I 50W PA amplifier and speaker which uses a pre-programmed EPROM to replay constantly the message "Here, fishy, fishy, fishy "!!!

C.A.D. SOFTWARE MADE EASY

ISIS SUPERSKETCH

ISIS SUPERSKETCH is a purpose designed program for drawing circuit diagrams. Our Graphical User Interface and Intelligent Diagram Editor combine to leave all other budget packages far behind in this application. For example, you can draw a wire from pin to pin in just 4 mouse operations: point at first pin, click, point at second pin, click. The wire autorouter does the rest.

PCB II

PCB II is a new state of the art manual PCB layout package sharing the same Graphical User Interface as ISIS SUPERSKETCH. It also features Topological Route Editing which is easy to learn and yet stunningly powerful... our demo disk will reveal all!
For a limited period only, we are offering ISIS SUPERSKETCH (Extended library) and PCB II for just £149- can you afford not to join the CAD revolution?

- Topological Route Editor
- Unlimited user configurable pad, track and via styles.
- Full surface mount support.
- 2 copper +2 silk layers.
- 1 thou resolution.
- 30×30 inch max board size. - Object oriented 2D drawing for silk screen graphics.
- Drivers lor dot matrix, pen plotters, lasers, POSTSCRIPT. gerber, etc. etc..

PRICES

SUPERSKETCH (Basic Library) £69
SUPERSKETCH (Exlended Library). £99
PCBII.
SUPERSKETCH (Ext Lib) + PCB II149
OTHER S/W \& HW

Call for demo disks today - 0274542868.

14 Marriner's Drive, Bradford. BD9 4JT

Teach-In '91

dESIGN YOUR own CIRCUITS

Radio

MIKE TOOLEY BA

This seventh part deals with radio, one of the most absorbing facets of electronics. Dur design problem is based on a medium wave radio tuner for use with the Bench Amplifier/Signal Tracer [described in Part 3) whilst our companion project deals with the construction of a simple portable Radio Receiver.

The space around us is filled with electromagnetic waves ceaselessly carrying information in every tongue known to mankind, Thus, even though we tend to take modern developments like carphones and satellite TV receivers for granted, "communication without wires" must still be considered something of a marvel. For this reason, radio has a fascination which is not found in any other area of electronics: anyone who has built and operated a radio receiver or transmitter will readily testify to this fact!

THE RADIO
 FREGUENCY SPECTRUM

Radio signals occupy a very wide frequency range which itself is just part of a much wider electromagnetic spectrum. The lowest radio frequency range which is of practical use (below 30 kHz) is only suitable for narrow-band communication. At this frequency, signals propagate as ground waves (following the curvature of the earth) over very long distances.

The highest frequency range which is of practical importance extends beyond 30 GHz . At these "microwave" frequencies, considerable bandwidths are available (sufficient to transmit many television channels form point-to-point or to permit very high definition radar systems). Such signals tend to propagate strictly along "line-of-sight" paths. Between these two extremes (and strictly for our own convenience), the radio

(b) Modulating Signal.

(c)Amplitude Modulated(AM) Carrier.

Fig. 7.2. Amplitude and frequency modulation.
carefully safeguard their own areas of the spectrum.

FRECUENCY AND WAVELENGTH

Radio waves propagate in air (or space) at the speed of light (300 million metres per second). The velocity of propagation, v, wavelength, λ, and frequency, f, of a radio wave are related by the equation:

$$
\mathrm{v}=\mathrm{f} \lambda=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

This equation can be arranged to make f and the subject, as follows:
$\mathrm{f}=3 \times 10^{8} / \lambda \mathrm{Hz}$ and $\lambda=3 \times 10^{8} / \mathrm{fm}$
As an example, a signal at a frequency of 1 MHz will have a wavelength given by:

$$
\lambda=3 \times 10^{8} / 1 \times 10^{6}=300 \mathrm{~m} .
$$

Question 1: Determine the frequency of an I.f. radio signal having a wavelength of 1500 m .
Question 2: Determine the wavelength of a v.h.f. radio signal having a frequency of 150 MHz .

MODULATION

In order to convey information from one place to another by means of a radio wave, the signal information must be "modulated" onto a radio frequency carrier. Modulation is simply the name given to the process of changing a particular property of the carrier wave in sympathy with the instantaneous voltage (or current) of the signal to be conveyed.

Methods of modulation with which most readers will be familiar include amplitude modulation (a.m.) and frequency modulation (f.m.). In the former case, the carrier amplitude (its peak voltage) varies according to the voltage, at any instant, of the modulating signal.

Fig. 7.3. Simplified block schematic of a complete radio communication system.

In the latter case, the carrier frequency is varied in accordance with the instantaneous modulating signal voltage.

The effect of amplitude and frequency modulating a sinusoidal carrier is shown in Fig. 7.2 (note that the modulating signal is, in this case, also sinusoidal). In practice, many more cycles of the r.f. carrier would occur in the timespan of one cycle of the modulating signal.
Question 3: A 1 MHz carrier is modulated by a 1 kHz signal. How many cycles of the carrier occur within the timespan of one cycle of the modulating signal?

DEMODULATION

Demodulation is the reverse process to modulation and is the means by which the signal information is recovered from the modulated carrier. Demodulation is achieved by means of a demodulator (sometimes called a "detector"). The output of a demodulator consists of a reconstructed version of the original signal information present at the input of the modulator stage within the transmitter.

The simplified block schematic of a complete a.m. radio communication system is shown in Fig. 7.3. The carrier wave (of constant frequency) is generated by means of an r.f. oscillator stage. In order to guarantee the stability of this stage, the frequency of its output is usually governed by means of a quartz crystal.

The output of the modulator (a modulated carrier) is amplified before outputting to the aerial system. The output is usually carefully filtered to remove any spurious signals (harmonics) which may be present and which may
otherwise cause interference to other services.

At the receiver, the signal produced by the receiving aerial is a weak copy of the transmitted signal (its level is usually measured in $\mu \mathrm{V}$!). Also present will be countless other signals at different frequencies (and some with appreciably larger amplitudes than the desired signal). These unwanted signals must be rejected by the receiver's r.f. tuned circuits if they are not to cause problems in later stages.

Besides selectivity, the r.f. amplifier stage also provides voltage and power gain so that a much larger signal is available at the input to the demodulator stage. The signal recovered from the demodulator (usually 100 mV , or more) is then applied to an a.f. amplifier in order to bring the signal to a voltage and power level suitable for connection to headphones or a loudspeaker.

SIMPLE RADIO RECEIVER

A simple tuned radio frequency (TRF) radio receiver is shown in Fig. 7.4. This circuit employs a parallel tuned circuit (L2, VC1) input stage which exhibits the impedance/frequency characteristic shown in Fig. 7.5. Maximum gain occurs at the frequency of resonance of the circuit which is approximately given by:

$$
\mathrm{f}=\frac{159}{\sqrt{ } \mathrm{LC}} \mathrm{MHz}
$$

where L is the value of $L 2($ in $\mu \mathrm{H})$ and C is the value of VCl. (in pF).

In the circuit of Fig. 7.4. TRI acts as

Fig. 7.4. A simple tuned radio frequency (TRF) receiver.

Fig. 7.9 (above). Single-stage r.f. amplifier using an SL1612.

Fig. 7.8 (left). Common base r.f. amplifier stage

Fig. 7.10. High gain multi-stage i.f. amplifier based on SL1612 devices.
receivers and 10.7 MHz for communications and f.m. receivers. Fig. 7.6 shows the simplified block schematic of an a.m. superhet receiver (note that the intermediate frequency is the difference between the signal frequency and the local oscillator frequency).

R.F. AMPLIFIERS

Alternative tuned r.f. amplifier stages are shown in Figs. 7.7 and 7.8. The circuit of Fig. 7.7 is based on a transistor operating in common emitter mode whilst that in Fig. 7.8 uses common base mode.

The circuit of Fig. 7.7 is often used in multi-stage r.f. amplifiers and in the intermediate frequency (i.f.) amplifier
stages of superhet receivers. The medium input impedance of the transistor (typically 1.5 k) is matched to the input tuned circuit by means of a secondary winding This step-down impedance matching arrangement helps to avoid over-damping the tuned circuit and ensures that the stage maintains a reasonable degree of selectivity. The medium/high output impedance of the transistor (typically 50 k) is tapped into the collector tuned circuit for similar reasons. Provided that appropriate components are used, the circuit is effective at frequencies up to 50 MHz , or so.

The circuit of Fig. 7.8 makes an excellent high-gain input matching stage which can be used to match a low-

Fig. 7.11. Alternative methods of coupling into and out of an SL1612 amplifier stage. (a) Tapped input coil. (b) Transistor output stage.
impedance aerial system to the very high impedance of an r.f. tuned circuit (without the need for a collector tapping). Provided that appropriate components and constructional techniques are employed, this circuit is effective at frequencies up to 500 MHz , or so.

As an alternative to the use of discrete transistors, several integrated circuits are available which can be employed in general purpose r.f. amplifier stages. The Plessey SL1612 is an excellent example of such devices and, whilst the i.c. was developed primarily for use in "professional" r.f. communications equipment, it is ideally suited to "general purpose" and experimental applications. The SL1612 operates from a single +6 V (nominal) supply rail and produces voltage gains of up to 34 dB with a bandwidth which typically extends from 100 kHz to over 15 MHz .

The SL1612C can be employed in typical single and high-gain multiple stage r.f. and i.f. amplifiers as shown in Figs. 7.9 and 7.10. In the latter case, automatic gain control (AGC) is incorporated in order to maintain a reasonably constant signal leve! at the subsequent detector stage. The AGC arrangement makes use of the gain control

Fig. 7.14. Typical 455 kHz ceramic filter response characteristic.

Fig. 7.12. Coupled tuned circuits. (a) Inductive coupling. (b) Capacitive coupling.
input (pin-7) of the SL1612. The d.c. potential applied to this pin determines the value of stage gain. It should be note that maximum gain is realised when the voltage applied to pin-7 is approximately 2 V and that the stage gain fails progressively as the voltage is increased to a maximum of about 4.5 V . Fig. 7.11 shows alternative methods of coupling into, and out of an r.f. amplifier stage based on an SL1612.

COUPLED TUNED CIRCUITS

Where a high degree of selectivity is required, several tuned circuits may be coupled together, either by means of mutual inductance or by means of mutual capacitance (see Fig. 7.12). With such an arrangement, the degree of coupling between the two tuned circuits is critical in

Fig. 7.15. R.F. oscillator circuits. (a) Bipolar transistor oscillator. (b) F.E.T. oscillator stage.

Fig. 7.13. Effect of different degrees of coupling. (a) Under coupling. (b) Optimum coupling. (c) Over coupling.
order to maintain an optimum frequency response characteristic (see Fig. 7.13).

Where a very sharp response characteristic is required, tuned coupling circuits should be abandoned in favour of mechanical or piezoelectric resonators or filters based on quartz crystals. In either event, it may be necessary to couple into and out of such a filter by means of tuned transformers. Compound arrangements of this type permit easy matching to conventional transistor and i.c. amplifier stages and help to minimise unwanted out-of-band responses. Fig. 7.14 shows the typical frequency response characteristic of a 455 kHz ceramic filter suitable for the i.f. stages of a superhet receiver.

R.F. OSCILLATORS

R.F. oscillators are used both in

 the local oscillator stages of superhet receivers and as a signal source in transmitters and signal generators. Fig. 7.15 shows simple transistor oscillator circuits based on bipolar and field-effect transistors. In each case, the stability of the stage (in terms of frequency) will be governed both by the quality of the tuned circuit components and the degree of regulation of the supply voltage.In order to accurately define the frequency of operation of an r.f. oscillator, a quartz crystal may be used as the frequency determining element. Figs. 7.16 and 7.17 show quartz crystal controlled oscillator circuits suitable for low-frequency (100 kHz to 1 MHz approx.) and medium/high-frequency (1 MHz to 20 MHz) crystals.

Fig. 7.16. Crystal oscillator for lowfrequency crystals.

Fig. 7.17. Crystal oscillator for medium/high-frequency crystals.

Fig. 7.19. P.C.B. track and component layout for the R.F. Amplifier module.

Photograph of the complete R.F. Amplifier module.

Fig. 7.18. Complete circuit diagram for the R.F. Amplifier module.

R.F. AMPLIFIER MODULE

Our R.F. Amplifier module has been designed to satisfy a variety of requirements and is based on a Plessey SLI612 R.F. Amplifier integrated circuit. Fig. 7.18 shows the complete circuit of the R.F. Amplifier module. The supply and (optional) AGC input are connected by means of a 5 -way p.c.b. header (PLI).

Since the input and output signals will usually be connected by means of short length of miniature r.f. coaxial cable, the input and output connections are made by soldering directly to pairs of p.c.b. terminal pins. This arrangement minimises stray coupling between the output and input and helps maintain gain and stability (particularly important at high frequencies). Note that R1, R2 and VR1 are not required in applications in which the AGC input is used.

The connections to PLI are as follows:

PLI

Pin No.	Function
1	+9 V
2	Ground $/ 0 \mathrm{~V}$
3	Ground $/ 0 \mathrm{~V}$
4	Ground $/ 0 \mathrm{~V}$
5	AGC

COMPONENTS
Resistors

R1	1 k
R2	1 k
R3	100
R4	47 (see text)
R5	100

See

Sil
TAMK
Page

All $0.25 \mathrm{~W}, 5 \%$ carbon

Potentiometer

VR1 1 kmin . horiz. preset

Capacitors

C1 to C3 10 nmin . ceramic (3 off) C4 $\quad 10 \mu$ radial elect. 16 V C5 $\quad 100 \mathrm{nmin}$. ceramic

Semiconductors

$\begin{array}{ll}\text { D1 BZY88C5V6 } \\ \text { IC1 } & \text { SL1612C }\end{array}$
Miscellaneous
PL1 5-way straight p.c.b. header (0.1 inch pitch)
LK1 2-way straight p.c.b. header (0.1 inch pitch) with shorting link
Printed circuit board available from the EE PCB Service order code EE750; 0.04 inch terminal pins (4 off).

Approx cost guidance only

R.F. Amplifier module specifications:

Frequency range
Input impedance:
Output impedance:
Voltage gain:
AGC range:
AGC current:
Noise figure:
Maximum output signal:
Maximum input signal
Supply voltage:
Suply current:

100 kHz to 15 MHz
2.5 kilohms (at IMHz)
less than 50 ohm (at 1 MHz)
$34 \mathrm{~dB}\left(\mathrm{R}_{\mathrm{s}}=50\right.$ ohm, $\mathrm{R}_{\mathrm{L}}=500$ ohm $)$
70 dB
$150 \mu \mathrm{~A}$ (typ. at $\mathrm{V}_{\mathrm{AGC}}=+5 \mathrm{~V}$)
3 dB
IV r.m.s. $\left(R_{L}=1.2 \mathrm{k}\right)$
250 mV r.m.s.
9 V
40 mA (typical)

Fig. 7.20. Untuned aerial preamplifier.

GAIN CONTROL

The gain of the R.F. Amplifier module is determined by the value of d.c. bias applied to pin-7 of ICI. The d.c. bias voltage ($V_{A G C}$) may be developed internally (from the potential divider chrain comprising R1, VR1 and R2) or may, be derived externally (in applications where AGC is required).

It is important to note that the stage gain falls as the d.c. bias voltage ($\mathrm{V}_{\mathrm{AGC}}$) increases. Maximum gain occurs for values of $\mathrm{V}_{\mathrm{AGC}}$ of 2 V , or less. Attenuation (rather than gain) occurs as $\mathrm{V}_{\mathrm{AGC}}$ increases above 3.5 V . Maximum attenuation occurs at $\mathrm{V}_{\mathrm{AGC}}=5 \mathrm{~V}$. The relationship between stage gain and $\mathrm{V}_{\mathrm{AGC}}$ is given in the following table:

$\mathbf{V}_{\mathbf{A G C}}$	Stage gain
2.0	34 dB
2.5	29 dB
3.0	16 dB
3.5	3 dB
4.0	-26 dB
4.5	-36 dB
5.0	-40 dB

The p.c.b. link (LKI) should be connected in applications in which the AGC facility is not used. In this case, a variable d.c. bias voltage is fed from VRI to the AGC input to ICI. The voltage is adjustable over the range 2 V to 4 V approx.

The p.c.b. track and component layout for the R.F. Amplifier module is shown in Fig. 7.19.

APPLICATIONS

The circuit of Fig. 7.20 shows how the R.F. Amplifier can be used as a simple untuned aerial preamplifier stage. It is important to note that, by virtue of the high gain and broadband nature of the unit, this arrangement it not recommended for use with longwire aerials which are likely to produce signals of appreciable amplitude.

A tuned "preselector" arrangement is shown in Fig. 7.21. Long and short aerials (of low and high impedance, respectively) can be connected to this unit. The r.f. tuned circuit should be adjusted (by means of VCl) to maximise the amplitude of the wanted signal and reduce the levels of unwanted signals on other bands (which may otherwise cause blocking and cross-modulation within the R.F. Amplifier or subsequent stages).

A complete TRF receiver arrangement is shown in Fig. 7.22. This circuit is suitable for the reception of strong local signals in the medium and long wave bands. Fig. 7.23 shows how a signal strength meter (S-meter) can be added to

Fig. 7.21. Tuned preselector.
the circuit of Fig. 7.22. In conjunction with suitable coils and a calibrated dial, this arrangement makes an excellent field strength meter or wavemeter for use in conjunction with amateur transmitters operating on the I.f. and h.f. amateur bands $(160 \mathrm{~m}, 80 \mathrm{~m}, 40 \mathrm{~m}$ and 20 m).

The sensitivity and selectivity of the simple TRF receiver in Fig. 7.22 is somewhat limited but can be greatly improved by means of "reaction". The circuit of Fig. 7.24 shows how this form of feedback can be applied from output to input. In use, VC2 is adjusted to the point at which the circuit just starts to become unstable. The capacitor setting is then reduced a little (to ensure that the receiver remains stable across its desired tuning range).

The coil winding details are for a receiver which covers the medium waveband (from 500 kHz to 1.5 MHz) where the coils are wound on a ferrite rod. By appropriate changes to the coil, a similar arrangement can be used for frequencies of up to about 15 MHz (but using a conventional coil former and external aerial above 2 MHz). If you intend to experiment with this arrangement, it is important to note that the number of turns on each of the three windings should be reduced in the same proportion as the frequency is increased.

The R.F. Amplifier can also be used as an intermediate frequency (i.f.) amplifier within a superhet receiver arrangement. Figs. 7.25 (a) and (b), respectively show i.f. amplifiers for use at 455 kHz and 10.7 MHz . These circuits are ideal for high-performance a.m. receivers and are based on mechanical resonators and quartz crystal filters, respectively. In both cases, an AGC voltage (derived from the detector stage) is applied in order to maintain a reasonably constant output voltage over a wide range of input signal levels.

Finally Figs. 7.26(a) and (b) show how the R.F. Amplifier module can be used to form the basis of an r.f. oscillator. In Fig. 7.26(a), the frequency of operation is determined by a tuned circuit whilst in Fig. 7.26(b) the frequency is controlled by means of a quartz crystal (this latter circuit is suitable for fundamental mode from 100 kHz to over 10 MHz , according to the characteristics of the quartz crystal employed). With a suitable crystal (e.g. 100 kHz or 1 MHz) the circuit of Fig. 7.26 (b) makes a simple but very effective receiver calibrator circuit (the harmonics of the fundamental frequency being detectable up to several MHz in the case of a 100 kHz crystal and beyond 10 MHz for a 1 MHz component).

Fig. 7.22. Complete TRF receiver.

Fig. 7.23. Adding a signal strength meter.

Fig. 7.24. TRF receiver incorporating 'reaction"

Fig. 7.25(a). I.F. amplifier stage for 455 kHz .

Fig. $7.25(b)$. I. F. amplifier stage for 10.7 MHz .

Fig. 7.26. R.F. oscillators. (a) Variable frequency. (b) Crystal controlled.

[EE31206]

Fig. 7.27. Nomograph for coil winding (based on a 7 mm diameter coil former). The example shows how a tuned circuit for operation at 4 MHz is realised by a capacitance of 50 pF and inductance of $30 \mu \mathrm{H}$ composing a 13 mm length winding of 24 s.w.g. enamelled copper wire close wound on a 7 mm diameter former.

COIL WINDINE

One of the major problems which confronts would-be radio experimenters is that of having to wind inductors for use in r.f. tuned circuits and filters. This task is, however, not quite so daunting as it may at first appear. The diagram shown in Fig. 7.27 (which relates to a commonly available type of coil former having a diameter of approx. 7 mm) should assist readers in selecting the appropriate components (inductance and capacitance) to obtain a specified resonant frequency as well as indicating the approximate number of turns required.

In order to permit precise adjustment of inductance, the coil former should be fitted with an adjustable ferrite core. In such an event, the maximum inductance will increase by a factor of about two.

DESIGN PROELEM

This month's design problem (as with all of the design problems presented in this series) is designed for readers who would welcome the opportunity of tackling a little "homework". The exercise may be tackled purely "on paper" or may be used as the basis of a complete constructional project.

This month's problem involves designing a simple medium-wave a.m. tuner for use with the Bench Amplifier/Signal Tracer which we described in Part 3. The tuner is to have the following specification:
Tuning range: 700 kHz to 2 MHz (specify the coil and capacitance required to cover this range)
Aerial input: Separate inputs for high and low-impedance aerials
Audio output: 100 mV (typical) into 5kilohm (the unit should incorporate an audio amplifier stage)
Supply: single 9 V battery (PP3)

ANSWERS TO GUESTIONS IN PART SEVEN

Question 1: 200 kHz
Question 2: 2 m
Question 3: 1000
Question 4: Minimum frequency $=$ 479 kHz
Maximum frequency $=$ 1.516 MHz

[Eडगण

Fig. 7.28. Answer to last month's Design Problem.

Answer to lest month's design problem:

A darkroom timer is to be designed according to the following target specification:

Time intervals:	switch selected from 30 seconds to 7.5 minutes in 30 second increments.
Visual output:	standard l.e.d.
Audible output:	
piezoelectric transducer (requiring a supply of between	
3 V and 16V of nominally 5 mA).	

One solution to last month's design problem is shown in Fig. 7.28.

Cumulative index to modules

Title	Part	Function/specification
Dual output power supply module	1	Dual $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}$ or $\pm 15 \mathrm{~V}$ regulated power supply rated at IA max. output
723 variable power max. supply module	1	Single variable output of +2 V to +37 V at up to 5 A Output voltage and current limit are set by means of preset controls.
L200 variable power supply module	1	Single variable output of +2.7 V to +35 V at up to 2 A max. Output voltage and current limit are set by means of variable controls.
General purpose transistors amplifier module	2	Pre-defined voltage gain and frequency response. Low/ medium input impedance, low output impedance. Requires a single 9 V d.c. supply at 2 mA nominal.
General purpose operational amplifier module	2	Pre-defined voltage gain and frequency response. Two stages may be used independently (e.g. for stereo operation) or connected in tandem. Requires a dual supply of between $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ at 10 mA nominal.
High-quality power amplifier module	3	Fixed gain medium/high power class $A B$ audio amplifier capable of operating with very low distortion. Recommended load impedance 8 ohm . Requires a dual supply of between $\pm 12 \mathrm{~V}$ and $\pm 20 \mathrm{~V}$ at up to 2 A .
TBA820 i.c. amplifier	3	Versatile i.c. low/medium power for general purpose applications. Requires a single supply rail of between +5 V and +15 V .
Sine wave oscillator	4	Low distortion sine wave oscillator capable of providing outputs over the range 50 Hz to 50 kHz . Frequency and amplitude adjustable. Requires +12 V to +15 V supply at 10 mA (nominal).
8038 waveform generator	4	Provides sine, square and triangle outputs adjustable the range 0.01 Hz to 20 kHz . Requires $\pm 9 \mathrm{~V}$ supply at 10 mA .
Digital counter module	5	Single stage decade counter with seven-segment I.e.d. display. Standard TTL input levels. Requires +5 V supply at 90 mA .
Genèral purpose timer module	6	Astable or monostable mode timer circuit configured by wire links. Extenal trigger (both a.c. and d.c.) and reset inputs. Output up to 12 V at 200 mA . Requires a single supply rail of between +5 V and +15 V .
RF amplifier module	7	High gain r.f. amplifier module which can be used in a variety of applications, including receivers (both TRF and superhet) and test equipment. Requires a single supply rail of +9 V .

DATA BOOK

The Everyday Electronics Data Book by Mike Tooley covers a large range of information on fundamentals; passive components; networks, attenuators and filters; diodes; transistors; integrated circuits and various basic circuits. For further details see the Direct Book Service pages.

RADIO RECEIVER

 MIKE TOOLEY BA

> This companion project to our Design Your Own Circuits series features a simple radio which can beused to receive broadcast signals on the long, medium and short-wave bands. As withall of our practical projects, a number of modifications are suggested so that the more intrepid constructor can customise the unit to his or her own particular requirements.

RADIO receivers can make fascinating constructional projects and, whilst such items are nowadays commonplace and extremely cheap, the pleasure and satisfaction which can be achieved from building your own radio is hard to describe. Projects of this sort can be very satisfying and will never fail to impress friends and family!
Superheterodyne receivers are generally not suitable for the beginner to electronic project construction as they are generally somewhat difficult to adjust and align. Tuned radio frequency (TRF) receivers, on the other hand, often prove to be somewhat disappointing in that they are

usually lacking in both sensitivity and selectivity.
Our Radio Receiver adopts the TRF approach and, whilst the design is extremely simple, it is capable of a performance which is comparable with many of the cheaper superhet broadcast receivers which originate from the Far East. Indeed, by incorporating a relatively large ferrite rod and a good quality loudspeaker, the receiver actually out-performs many of the cheaper portable "transistor radios" in terms of sound quality and sensitivity.

CIRCUIT DESCRIPTION

The complete circuit of the Radio Receiver is shown in Fig. 1. ICl, a

ZN4I6E, is an integrated circuit TRF receiver which incorporates the equivalent of 10 transistors in the r.f., detector and a.g.c. stages together with an 18 dB low-power audio amplifier/buffer stage.
Coil LI and VCl constitute the single r.f. tuned circuit used within the Radio Receiver. In order to obviate the need for an external aerial, LI is wound on a ferrite rod. The Q-factor of the tuned circuit is crucial in providing an acceptable value of selectivity (usually a problem with TRF receivers). The loading on the tuned circuit is minimised by the exceptionally high value of input impedance at the input (pin-1) of ICI.
The supply to ICl is adjustable by means of the pre-set resistor, VR1, and series-pass transistor, TR1. This arrangement controls the supply voltage to ICl which, in turn, determines the r.f. sensitivity of the receiver.
The amplified audio output of ICI (available at pin-5) is coupled via the volume control (VR2) to a fixed gain audio amplifier stage, IC2. This stage provides a gain of approximately 200 and an output power of up to 300 mW (adequate for most portable domestic applications).
The Radio Receiver operates from a nominal 6 V d.c. supply rail derived from four AA dry batteries. The receiver will, however, also operate readily from a 9 V supply (PP6, PP7 or PP9).

CONSTRUCTION

Construction of the Radio Receiver is very straightforward. With the exception of the two front panel mounted controls, loudspeaker and ferrite rod assembly, all of the components are assembled on a singlesided printed circuit board (available from the EE PCB Service) measuring approximately $85 \times 47 \mathrm{~mm}$. The copper foil and component layout of the printed circuit board is shown in Fig. 2.
Components should be assembled on the printed circuit board in the following sequence; p.c.b. headers, d.i.I. sockets, preset potentiometer, resistors, capacitors, and transistor. As with all of our projects, it is vitally important to ensure that all of the components are correctly located. Furthermore, in the case of the polarised components (such as the electrolytic capacitors, integrated circuits and the transistor) it is absolutely essential to ensure that each component is correctly orientated.

CHECKING

When construction of the printed circuit board has been completed (and before in-

Fig. 1. Complete circuit of the Radio Receiver.

Fig. 2. P. C. B. copper foil and component layout.
serting the two integrated circuits into their respective sockets) it is well worth carrying out a careful visual check of both the uppet and lower sides of the board.
The upper (component) side of the printed circuit board should be examined to ensure that the components have been correctly located whilst the lower (copper track) side of the board should be checked to ensure that there are no dry joints or solder bridges between adjacent tracks. This simple precaution will only take a few minutes to carry out but can be instrumental in preventing much heartache at a later stage!
When assembly and checking of the printed circuit board has been completed, the two integrated circuits, ICl and IC2, should be inserted into their holders (taking care to observe the correct orientation in each case).

CASE

The Radio Receiver should be housed in an ABS enclosure with an aluminium front panel. The enclosure used for the prototype receiver measured approximately 190×138 $x 68 \mathrm{~mm}$ and was fitted with an integral bat-

COMPONEVITS

Resistors	
$R 1$	4 k 7
$R 2$	1 k
$R 3$	10
$R 3$	4 k 7

See

 SH(O) TALKAll fixed resistors are 0.25W 5\%
Potentiometers
VR1 1 k miniature horizontal pre-set
VR2 $10 \mathrm{k} \log$. (with d.p.s.t. switch)

Capacitors

Capacitors	
C1	10 n ceramic
C2	100 n ceramic
C3	470 n miniature layer
C4	polyester
C5	10 n ceramic
C6	$2 \mu 2$ radial elect. 63 V
C7	100 n ceramic
C8	100μ radial elect. 16 V
C9	100 n ceramic
C10	470μ radial elect. 35 V
C11	10μ radial elect. 16 V
C12	10μ radial elect. 16 V
C13	220μ radial elect. 35 V
C14	10 n ceramic
C1	10 n ceramic

Variable Capacitor

VC1 $\quad 500 \mathrm{p}$ solid dielectric variable capacitor

Inductor

L1 (see text and Fig. 4)

Semiconductors

IC1	ZN416E TRF receiver
IC2	LM386 audio amplifier
TR1	BC108 npn transistor

Miscellaneous

LS1 Speaker 3.5 inch diameter, 35 ohm (or similar)
S2 D.P.S.T. switch (mounted on VR2)
PL1,PL3 3-way straight p.c.b. headers (0.1 inch pitch) and matching "free' connectors, (2 off)
PL2 5-way straight p.c.b. header (0.1 inch pitch) and matching "free" connector
Enclosure ABS enclosure (to suit individual constructor's preference - see text); printed circuit board available from the EE PCB Service order code EE749; plastic p.c.b. fixing pillars with self-tapping No. 6 fixing screws, (4 off $10 \mathrm{~mm}, 2$ off 20 mm); snap-fit battery connector (to suit PP6, PP7 or PP9 battery - as appropriate); P-clips (to suit ferrite rod - see text and Fig. 4); 8-pin low-profile d.i.l. sockets (2 off) knobs (2 off); connecting wire etc.

Approx cost

guidance only

plus case

Specifications

Frequency coverage:	150 kHz to 4.5 MHz depending on coil (see text)
Sensitivity:	$10 \mu \mathrm{~V}$ for 100 mW output at 900 kHz
Selectivity:	$\pm 50 \mathrm{kHz}$ at $-6 \mathrm{~dB}, \pm 100 \mathrm{kHz}$ at -30 dB (measured at 900 kHz)
A.G.C. range:	+10 dB change in audio output over the range $10 \mu \mathrm{~V}$ to 1 mV
Audio output:	275 mW r.m.s.max. (9 V supply)
	$125 \mathrm{~mW} . \mathrm{m} . \mathrm{s.max} .(6 \mathrm{~V}$ supply)
Frequency response:	100 Hz to 5 kHz (at -3 dB)
Supply voltage:	6 V to $9 \mathrm{~V}(4 \times \mathrm{AA}$ cells for 6 V operation, PP 6 or PP 7 for 9 V
	operation)
Supply current:	65 mA (typical)

50 kHz to 4.5 MHz depending on coil (see text)
$10 \mu \mathrm{~V}$ for 100 mW output at 900 kHz
$\pm 50 \mathrm{kHz}$ at $-6 \mathrm{~dB}, \pm 100 \mathrm{kHz}$ at -30 dB (measured at 900 kHz)
275 mW rms max (9 V supply)
125 mW r.m.s. max. (6 V supply)
6 V to $9 \mathrm{~V}(4 \times \mathrm{AA}$ cells for 6 V operation, PP6 or PP7 for 9 V 65 mA (typical)

Fig. 3. Recommended front panel layout.
tery compartment which was used to accommodate the four AA batteries.

In practice, the precise dimensions of the enclosure are unimportant provided adequate room is made available on the front panel for the tuning and volume controls. and the enclosure is large enough to accommodate the loudspeaker, ferrite rod assembly, and battery. Where the Radio Receiver is to be fitted with an a.c. mains power supply unit (see Modifications) additional space will be required internally to accommodate the mains transformer and power supply module.

As with the previous projects in this series which have employed loudspeakers, constructors are strongly advised to use a loudspeaker of relatively large size. In the author's experience, the sound quality and efficiency of "miniature" loudspeaker units (of 44 mm diameter, or less) leave a great deal to be desired.

The front panel should be carefully marked out before drilling and cutting takes place. As usual, there is nothing particularly critical about the layout of the unit and constructors may wish to experiment with the location of the front panel controls and loudspeaker. Fig. 3 shows the front panel layout and markings used in the prototype.

Once the front panel has been drilled to accommodate the tuning and volume controls, the p.c.b. can be mounted by means of four snap-fit p.c.b. mounting pillars secured to the base of the enclosure.
If the enclosure is not fitted with an integral battery compartment. a battery holder (for a PP6. PP7 or PP9 9V battery) can be manufactured from a simple Lshaped aluminium bracket which can then be secured to the base and/or rear of the case.

COIL

The coil (for recommended medium wave coverage) comprises 65 turns of 30 s.w.g. enamelled copper wire, closewound
to occupy a winding length of approximately 23 mm . The coil should be wound on-an insulated former which can be stid over the ferrite rod so that it can later be adjusted and sealed at the position for which optimum coverage and sensitivity is obtained. In the prototype receiver, the ferrite rod measured $138 \times 10 \mathrm{~mm}$ diameter, and the coil had an inner diameter of approximately 11 mm (see Fig. 4).
The ferrite rod assembly should be supported and retained by means of two P-shaped cable clips (of appropriate diameter) and snap-fit p.c.b. mounting pillars (see Fig. 4).

INTERCONNECTION

Connections to the printed circuit board are made using two three-way 0.1 inch pitch printed circuit board headers (PLI and PL3) and one five-way 0.1 inch printed circuit board header (PL2). PLI is used to connect the ferrite rod and tuning capacitor whilst' PL2 provides the d.c. power input and loudspeaker output connection. PL3 is used to link the printed circuit board to the volume control.
The recommended method of terminating the female connectors which mate with the headers was described in the first of our constructional projects which appeared in the December 1990 issue of Everyday Electronics.
Coloured stranded 0.1 inch pitch ribbon cable is used to make connections to the

Coil Details

front panel. The following colour coding is recommended:

PLI

The internal wiring of the Radio Receiver is shown in Fig. 5.

TESTING

Before testing the Radio Receiver, it is important to carefully check the wiring of the p.c.b., ferrite rod and front panel mounted components. A 6 V (or 9 V , as appropriate) battery should be connected to the unit and a milliammeter inserted to measure the supply current in the positive supply rail.

If the unit is to be operated from a 9 V battery, VRI should be adjusted for midposition whereas, if a 6 V supply is used VR1 should be set to within 10 per cent of its fully anti-clockwise setting. The tuning control should be adjusted for maximum capacitance (plates fully meshed).

Switch the unit "on" but leave the volume control at minimum setting. The supply current should now be measured and should be in the range 6 mA to 20 mA . If this is not the case, disconnect the supply and carefully check the wiring and p.c.b.

Fig. 4. Ferrite rod coil winding and mounting arrangements.

Wire	Turns	Winding length	Approximate coverage (500pF variable capacitor)
26s.w.g.	20	20 mm (spaced one wire diameter between adjacent turns)	
		(ch to to 4.5 MHz	

Fig. 5. Internal wiring of the Radio Receiver.

If the supply current is within the correct range, the milliammeter should be disconnected and the volume control advanced to about mid-position. Now adjust the tuning control until a strong signal is heard (this will probably occur at a setting of about 30 per cent from the minimum capacitance position). The position of the coil should now be adjusted in order to optimise the tuning range (frequency coverage) and sensitivity of the receiver.
The coil should simply be moved up and down the ferrite rod until the best setting is obtained. During this process, constructors should note that the ferrite rod is directional and that it may be necessary to rotate the receiver to produce the strongest signal.
Preset VR1 may then be adjusted to set the overall sensitivity of the Radio Receiver. The setting of this control may represent something of a compromise between sensitivity and stability. The sensitivity will be increased as the control is adjusted in an anti-clockwise direction. During this process, it is important to ensure that the receiver is unconditionally stable at all settings of the tuning control (sensitivity will generally be greater at, or near, the minimum setting of VCl).

INUSE

When the foregoing adjustments have been completed, the Radio Receiver should be capable of receiving a dozen, or more, strong signals across the medium wave band. Reception of distant European signals will improve considerably at night.
Readers should note that the location of the receiver may, in some cases, be critical
(particularly when receiving anything other than stronger local stations). For optimum performance, the receiver should be placed in the open and well away from large earthed structures and television receivers (which generate an appreciable amount of radio frequency noise).
When using the receiver, it is well worth experimenting with the optimum position and orientation. Note also that, where several signals are difficult to separate, the receiver should simply be rotated until the unwanted signal is "nulled out".

MODIFICATIONS

A great deal of fun can be had by experimenting with the receiver and several further modifications can be made to enhance the performance of the basic Radio Receiver circuit. As always, the suggestions made here are provided as "food for thought" and should make a starting point for further development. Constructors are invited to report their own modifications to be incorporated in the Readers' Feedback which will appear in the final part of our Design series.

Mains operation

The Radio Receiver can be very easily adapted for mains operation. A suitable mains supply is the Dual Output Power Supply module which appeared in Part One of the series. The module should be fitted with a single 7809 regulator (IC1) and used in conjunction with a transformer having two secondaries rated at $9 \mathrm{~V}, 0.25 \mathrm{~A}$ (or greater). Fig. 6 shows the necessary circuit modifications.

Mains/battery

The Radio Receiver can also be readily adapted for dual mains/battery operation with automatic changeover to battery operation in the event of supply failure or disconnection of the mains. Fig. 7 shows the necessary changes to the circuit.

L.E:D. indicator

An l.e.d. indicator can be added to the receiver as shown in Fig. 8. The series resistor, RI, should be 390 ohm for a 6 V d.c. supply and 680 ohm for a 9 V battery.

Alternative coverage

The Radio Receiver can be very easily modified for alternative frequency ranges by simply modifying the coil. Apart from adjustments to VRI, no further changes are necessary in order to ensure operation over the range 150 kHz to 4 MHz , or so.

The coil winding details opposite (assum-

Fig. 6. Modification of the Radio Receiver for mains operation.

Fig. 7. Modification of the Radio Receiver for mains/battery operation.

Fig. 8. Fitting an l.e.d. supply indicator.
ing a $10 \mathrm{~mm}-12 \mathrm{~mm}$ diameter former on an adjustable ferrite rod) are provided as a starting point for further experimentation:

External aerial andlor earth

The performance of the receiver can be considerably improved by connecting an external wire aerial and/or earth. This modification will help to overcome some of the limitations of the ferrite rod but it is important to couple the aerial correctly to the circuit in order to preserve a high Q-factor within the tuned circuit and thus maintain adequate selectivity.
A "long-wire" aerial (typically more than 10 metres of wire) should be coupled inductively to the ferrite rod. A suitable coupling coil should consist of no more

Fig. 9. External aerial and earth connections (a) using inductive coupling ("long-wire" aerials) (b) using capacitive coupling (short aerials).
than about 5 turns of 26 to 30 s.w.g. wire wound on the centre of the ferrite rod. One end of this winding should be taken to the aerial connector (e.g. 2 mm socket) whilst the other should be taken to the earth connector (see Fig. 9(a)).
Short aerials (comprising no more than a few metres of insulated wire) do not require a separate coupling inductor and can simply be coupled to the "top end" of the tuned circuit by means of a small value polystyrene capacitor (see Fig. 9(b)).

Pre-set tuning

As an alternative to continuous tuning. constructors may wish to experiment with switch selection of several pre-set stations. Such an arrangement is ideal for an elderly or blind person who may find the continuous tuning control somewhat difficult. Fig. 10 shows an arrangement which provides rotary switch selection of four stations.

Fig. 10. Pre-set tuning arrangements.

Fig. 11. Modifications for dual-band (e.g. LW and MW) operation.

Dual-band operation

The receiver may be easily modified for dual-band (long wave and medium wave. or medium wave and short wave) operation by simply fitting two coils to the ferrite rod (one at each end) and switching between them. Fig. II shows the necessary modifications to the circuit.

EVERYDAY ELECTRONICS BINDERS

Don't let your valuable issues of EE get binned, burned or bitten (by the dog). Get one of our exquisite orange hard-back binders, slip each issue into it as you get them and you will always know where they are we hope.

Binders to hold one volume (12 issues) are available from Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: 0202 881749 for $£ 5.95$ ($£ 6.95$ to European countries and $£ 9.00$ to other countries, surface mail) inclusive of postage and packing. Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum order value $£ 5$.

Binders are normally sent within seven days of receipt of your orders but please allow up to 28 days for UK delivery - more overseas.

MARCO TRADING

 ELECTRONIC COMPONENTS VISA \& EQUIPMENTMAIL ORDERS © WHOLESALE RETAIL
SEND ORDERS TO - DEPT 6 MARCO TRADING
the maltings, high street, wem SHROPSHIRE SY45EN
Tel: (0939) 32763 Telex: 35565 Fax: (0939) 33800 ELECTRICAL \& ELECTRONIC COMPONENT SUPPLIERS

24HR ANSAPHONE

-visit OUR OTHER BRANCHES SUPERTRONICS Tel: 0216666504

BIRMINGHAM B5
 WALTONS S5A WORCESTER ST LVERHAMPTON WV2 \&L!

 aby inable - we have obtained over $1 / 2$obila, but it does depend on condilions.
m. Simply remove cover - insert battery-
and you'r ready to go. Feception can and you'ready to go. Feception can
be obtained on any FM radio.
Frequency
105-109MHz FM OROEA COOE SEC/FMB1
PRICE: $£ 9.99$

LATEST 1991 CATALOGUE

- Velleman Kit Catalogue * Free pre-paid envelope - Many new lines * Pages of special offers
$\varepsilon 1.50$
CLOSED CIRCUIT TELEVISION SYSTEM
 MERA
useo
£175
Plus \&10 car

PLEASE ADD 2 $1 / 2 \%$ VAT TO ALL ORDERS POST \& PACKING NOW \&2.00
 JUNE SPECIAL OFFER
The EU670 is a large mesh dish antenna designed for dual purpose use; in the caravanning picnicing boating etc, using $12 \mathrm{Vd.c}$. The antenna dish can be rotated left or right to pick up the best signal. which can then be boosted using the built-in amplifier. The amolifier may also be used to boost signals from an external (roof top) aerial, with integral LED's indicating which aerial is in use Gain20dB VHF, 32d8 UHF Gain Control30dB Power......................... $12 \mathrm{Vd.c}$. of 240 V a.c Dims........... $280 \times 120 \times 340 \mathrm{~mm}$ (approx)

UHF/VHF ANTENNA WITH BUILT-IN AMPLIFIER ONLY
£22.55
(NORMALLY) £29.99

ALL BITS FOR IRONS - $E 1.75$ ELEMENTS E4. 10 STANOS 3.24
NI-CAD RECHARGEABLE BATTERIES

$\begin{aligned} & \text { PRICE: } \mathbb{\text { E9. }} 99 \\ & \text { HOME ALARN } \end{aligned}$	$\text { pricen } 27.5$ ACKAGE
Inctudes.	back-up lead
* Optima Alarm Conrol Panel	acid battery
* 2×1 Imernal Passive $.1 . \mathrm{R}$	12 V 1.9 A
2x Door Contacts	£14.00
Omiss cable and clips	Lead acio
* Fuill friting instructions	CHARGER
ONLY £127.50	ع19.99

SPARE HALOGEN BULBS		
	andard lengt	
${ }_{3}^{200 w}$	SEC/200w	
${ }^{300 \%}$	SEC/300W SECLIS00W	${ }_{\text {E4.00 }}^{\text {E3.75 }}$
	-	

RESISTORS

0.25 W Popular (1000) 0.25 W 5 of (305) $0.25 \mathrm{~W} 10 \mathrm{oH}(610)$ 0.5W Popular (1000) $0.5 W 5$ off (365) $0.5 W 10$ off (730). IW 5 off (365) 2W 5 oft (365) Zener Diodes 5 of (55)

12V WWIFLUORESCEN
LAMP 12" DOUBLE TUBES

CAR AMPLIFIERS
 CAR AMPLIFIERS $2 \times 60 W$ CLASS *A B005LA (CPA 100) B00sLA(CPA 100) $\mathcal{C} 39.99$
 CAR AMPLIFIERS
 $£ 99.00$ $2 \times 200 \mathrm{~W}$ CLASS " B005M (CPA 200)

 Class "A" stereo in-car amplifier capable ofdelivering $2 \times 60 \mathrm{~W}$ stereo or 120 W mono in bridge delivering $2 \times 60 \mathrm{~W}$ sterec or 120 W mono in bridge
mode. Inputs are low level phono, with lett and right level controls. Full thermal and overload protection.

Output power

Sig ow $2 \times 60 \mathrm{~W}$ stereo 0.1% THD
Signal to noise ratio.. 120 W mono 0.1% THD Frequency response $>80 \mathrm{~dB}$ Input sensitivity..............100 $\quad . \quad . \quad . \quad 20-20000 \mathrm{~Hz}$ Input Impedance............... Low level input $20 \mathrm{k} \Omega$ Output impedance..................................... 4Ω Power
Dims $240 \times 120 \times 50 \mathrm{~mm}$
of 400 W mono in bridge mode inputs are direct from the speake outputs of the car radio/cassette, or low level phono inputs with lett and right level controls. Full thermal and overload protection. Output power .. stereo 0.8% THD Signal to noise ratio. Frequency response. input sensitivity...
input impedance Input impedance. Output impedance. Damping lactor
Power

400W mono 0.2\% THD
 $\ldots \quad 10-50000 \mathrm{~Hz}$ $100 \mathrm{mV}-3 \mathrm{~V}$ adjustable High level input 1008 w level input $20 \mathrm{k} \Omega$
14. >180 into 4Ω 14.4 V dc 43 A nom
$240 \times 180 \times 50 \mathrm{~mm}$

$368 \times 67 \times 43 M M$

£15.99
AMPLIFIED SPEAKER SYSTEM A179N (SB668P)
High quality. stylish iwo-part amplified
speaker system designed to pive personal radio. cassettes and CD players top quality sound. Each speaker contains an amplifier which can be switched in or out al will. treble
and bass boost circuiry and il volume and bass boost circuitry and a volume unil (not supplied) or by exter nal 6 Vdc supply. Speaker type. Output power.
Frequency respon
 Power
Dims

$£ 8.99$
AMPLIFIED SPEAKER SYSTEM A1790 (SPK4)
Slack style 2 -part amplifted speaker system
destgned to give personal radios cassetles and CD players a high qualily boosted sound oulpuy. The ampliffer in one cabinet boosis the power to twin speakers in each cabinet. Powered by 4 C batteries (not Speaker type
Outout power Output power........ Power.

4

$£ 9.50$
AMPLIFIED SPEAKER SYSTEM A179R (SB30)
Siylish two-part ampllied speaker sysiem CD players a high quallty boosted sound output. Each speaker contains an amplifler which can be switched in or out at will
Volume is controlled by the player unit Volume is controlled by the player unit
Powered by 4 AA batteres in each unit (not Speaker type................ 2×3 fill range
Oulput power. Oulput powe $2 \times 2.5 \mathrm{~W}$
$.50-15000 \mathrm{~Hz}$ $\begin{array}{r}50-15000 \mathrm{~Hz} \\ \hline\end{array}$
supplied) or by external 6 V de supply.
Speall
Sper

COMPONENT SPEAKER SYSTEM B020 (TC6500)
£19.99
speaker system comprising: two 65 woters two mid-range, two 2.25 tweeters and all teads. filters and fixing screws. Finished baximum power mesh grilles. Maximum power. Frequency les
Speaker sizes. 3.way bass reflex shell mountino speaker system. Dual ported wedge shaped black plastic case with metal grilles. 40 W max. power handling per speaker. Maximum power. Speaker size. Impedance.

Charges AA, AAA, C, D \& PP Ni-Cads
240 VAC $\quad \mathbb{4 . 9 9}$

Hand-held or hanging, 12 ft headlamp intensity. On/off switch. Simply plugs into cigar
socket
$£ 5.99$ ORDER CODE: SO/431

MODULAR DISCO L/GHTING SYSTEM

Part Two: SIMPLE CHASER AND SWEEPER MODULES

CHRIS BOWES

Light up your party or disco road show with these two easy-build light chaser effects modules.

LAST month's article dealt with the Switched Power Output Module which provides the power supply to run the Modular Disco Lighting System and also will !urn on, and off, four output circuits under the control of an effects module. This includes mains driven coloured light boxes.
This months article deals with two simple chasers which provide either a simple (1, 2, 3, 4, 1, $2 \ldots$) chase or a sweeping (1, 2, 3, 4, 3, 2, 1 ...) chase, both with variable speed controls. These are the first two of a number of effects modules which are used to drive the output module (and other outputs) to produce the patterns required.
Although the effects described are relatively simple they do, however, serve two functions in that they both provide an introduction to how the system for generating effects works. Also, because of their relatively low cost, they will enable you to get your system working fairly painlessly.

EFFECTS FEATURES

There are two slightly unusual features present in all of the effects modules in this system and these need to be understood when following through the circuit descriptions for this series. Firstly, all of the effects modules are designed with wo outputs, and can thus be connected directly to up to two separate output modules.
Each of these output modules contains it's own power supply, the current from which is a vailable to power the effects module. The common zero volt (0 V) line is connected to pin 8 and the positive supply from each connected input is made to pin 7. In order to combine the two power supplies, without problems, all 0 V connections are commoned and all positive input supplies are routed through a 1 N 4001 diode before being used to operate any part of the circuit.

The other unusual feature is that the circuitry for the effects modules has been designed so that all modules may directly drive any commercial dimmer pack, which is controlled by a positive going voltage. Some of these dimmer packs are intolerant of voltages in excess of 10 volts and, for this reason, the circuits, and their associated printed circuit boards, have been designed to accommodate voltage dropping networks containing a Zener diode and appropriate series resistor in each signal output circuit. For applications where the output of the effects modules is routed solely into other modules covered by this series they can be omitted.

CHASER CIFCUIT

The complete circuit diagram for the Simple Chaser Module is shown in Fig.I. The common 0 V connections from pin 8 of each of the chassis mounted output "plugs" PL1/PL2 is commoned on the (p.c.b.) whilst the incoming positive volts from pins PL1/7 and PL2/7 of the two output plugs is first passed through either of the 1 N4001 diodes D1 or D2 before these supplies are combined on the p.c.b.

These diodes have been included to avoid problems which might occur should any of the power supply connections be inadvertently reversed. Fuse FSI is a 100 mA antisurge type which is mounted on the printed circuit board in order to protect the circuit in the event of fault conditions arising.
Capacitor C 1 is a standard $2 \mu 2$ tantalum which is used to decouple the integrated circuits in the unit. The presence of power to the module is indicated by l.e.d. D3 which has resistor R1 in series with it to reduce the current flowing through the l.e.d. to a safe level.

A clock pulse, which steps the Chaser through its sequence, is generated by ICl and its associated components. This is a standard 555 timer connected in the astable mode and in this configuration an output clock pulse, the frequency of which is dependent upon R2, VRI, R3 and C2, is produced at pin 3. The component values given have been chosen to give a wide range of clock pulse frequencies depending upon the setting of the Speed potentiometer VRI.
The output pulse from pin 3 of IC is fed to the clock $\left(\mathrm{CP}_{1}\right)$ input (pin 14) of 1 C 2, which is a 4017 Johnson counter. The clock inhibit $\left(C P_{0}\right)$ input of this i.c. (pin 13) is held at 0 V and in this configuration the outputs $\mathrm{O}_{0}-\mathrm{O}_{4}$ are made to go to the Logic 1 (high) state in sequence.

Output O_{4} (pin 10) is connected to the Master Reset input (pin 15) of IC2. When output O_{4} goes to the "high" state the counter is reset taking output O_{0} once more to the Logic 1 state.

This arrangement causes each of the four outputs connected to pins PL1/1-4 and PL $2 / 1-4$ of the module's chassis mounted output plugs to be energised in turn. The state of each of these outputs are indicated by the l.e.d.s D4 to D7, each of which is connected in series with their respective series resistors (R4-R7).

Resistors R8-R11 and Zener diodes D8 to D11 are included to prevent the output voltage rising above 10 volts and causing problems if the outputs are connected to theatrical dimmer racks, which shut down if the input voltage exceeds 10 volts. If the module is only going to be connected to

other modules within the Modular Disco Lighting System they may be omitted and the connections to the output chassis plugs taken from the connection where the resistors R8 to R11 would be made to the outputs of IC2.

SWEEPER MロロULE

The circuit of the Sweeper Module is very similar to the Chaser Module but this module has the added dimension that the output sequence is $1,2,3,4,3,2,1,2 \ldots$ etc. Although this effect is relatively simple it has proved to be very effective particularly if it is used to provide an overall background cover or to control a number of small lamps round a feature such as the disco deck etc.
The full circuit diagram for this module is given in Fig.2. The early part of the circuit is identical to that of the Chaser Module and so does not require repetition.
In this configuration the outputs O_{0} to O_{6} of the 4017 (IC2) are made to go to the Logic 1 state in sequence by connecting the reset (MR) input (pin 15) to the O_{6} output (pin 5) instead of the O_{4} output as happens in the Chaser Module.
1C3a and IC3b, which are each one quarter of a 4072 quad two input OR gate, have been added to the basic sweeper circuit so as to provide a summing function
to make output 2 of the module go to the Logic I state when the i.c. outputs O_{1} and O_{5} are at Logic 1, and output 3 of the module go to the Logic 1 state when the outputs O_{2} and O_{4} of IC2 are at Logic I. This arrangement energises each of the four outputs connected to the output plug pins PLI/I-4 and PL2/I-4 in the required sequence.

CONSTAUCTION

Construction of these modules is relatively simple with the greater majority of the components being mounted on the printed circuit boards. The component layout and full size copper foil master pattern for the Simple Chaser Module is shown in Fig.3, and for the Sweeper Module in Fig. 4.

The foil pattern should be transferred to a suitable piece of board which is then etched and drilled in the usual way. Alternatively, the boards are available from the EE PCB Service, codes EE745 and EE746.
The connection of the printed circuit board to the case mounted components is eased if all of the terminations on the printed circuit board are fitted with terminal pins. These are simply driven through the appropriate holes and soldered into position as the first stage of the construction.
After locating the solder pins in position, the components can be inserted into the board and soldered in place. Although this process can be carried out in any con-

COMPONENIS

Resistors
R1 $\quad 1 \mathrm{k}$
R2 $\quad 5 \mathrm{k} 6$
R3 $\quad 3 \mathrm{k}$
R4-R7 1 k (4 off) See
R8 to R11 (4 off) see text Page
All $0.25 \mathrm{~W} 5 \%$ carbon
Potentiometer
VR1 250k rotary, lin.
Capacitors
C1, C2 $2 \mu 2$ Tantalum, 25 V (2 off)

Semiconductors

D1 to D2 1 N4001 1A50V rec diode (2 off)
D3 Red standard I.e.d.
D4 to D7 Yellow standard I.e.d. (4 off)
-D8 to D11 9V Zener diode (4 off)
IC1 TLC 555 CMOS timer
IC2 4017 Johnson decade counter
tIC3 4072 dual four-input OR gate (Sweeper only)
tThe components lists for BOTH modules are identical with the exception that the 4072 (IC3) is only required for the Sweeper Module. ${ }^{\text {• Optional components. }}$

Miscellaneous

PL1, PL2 10-pin circular video chassis mounting plug, with matching cable socket (2 off)
FS1 $\quad 100 \mathrm{~mA} 20 \mathrm{~mm}$ fuse and p.c.b. fuse clips

Aluminium instrument case (Maplin "Blue case 233"), size $250 \mathrm{~mm} \times 150 \mathrm{~mm} \times$ 75 mm ; 8 -pin di.i.l. socket; 114 -pin di.i.l. socket; 16 -pin di.i. socket; connecting wire; stand-off pillars (4 off); plastic control knob, solder etc.
Printed circuit boards available from the EE PCB Service, codes EE745 (Chaser) and EE746 (Sweeper).

CEzace

Fig. 3. Printed circuit board component layout and full size copper foil master pattern for the Simple Chaser. The Zener diodes (D8-D11) and limit resistors (R8-R11) are optional components only required if the unit is to be used with theatrical dimmers, see text.

Wiring to the front panel l.e.d.s and Speed control potentiometer. The two 10-pin circuit chassis mounting plugs are located on the rear panel. They should be wired in parallel and then connected to the board as shown above.

The completed Simple Chaser board, without the Zener diodes and limiting resistors.
venient order. You will find that it is easier to perform this task if the components are inserted in ascending order of size.

All the components of a particular size should be soldered into position before going onto a larger size of components. Care should be taken to ensure that all of the polarity sensitive components (such as diodes, i.c.s, and capacitors) are connected to the circuit board with the correct polarity.
The i.c.s are best accommodated in sockets which are soldered in place along with the other components. The i.c.s should be
inserted as the last task before testing out the unit. Care should also be taken with these components to ensure correct polarity.

CASE

Great care has been taken in the design of this modular system with the positioning of case mounted components. It is therefore important that the front and rear panel layouts, shown in the photographs should be adhered to when making up the modules.
The case should first be drilled to ac-

Fig. 4. Printed circuit board component layout and full size copper foil master pattern for the Sweeper module.
commodate the stand-offs for the printed circuit board and the case mounted components. The panel markings should also be applied and secured at this stage before any components are installed.
The case mounted components should now be installed and connections made from them to the appropriate points of the printed circuit board. Construction of these two modules is not difficult but will be eased if the cathodes (k) of l.e.d.s D3-D7 are connected to a common negative (0 V) buzz bar which is taken to the common "earthing" point on the p.c.b.

All of the modules in this series have been designed to fit into the case detailed in the components list and you are strongly advised to ensure that the case specified, or one with at least the minimum of internal space, is used since some of the other modules are very tightly packed into the specified case. Although these modules are not tightly packed the use of the same style of case for all of the modules will give a pleasing sense of wholeness of design to the μ nits.

WIRING UP

The connections between the printed circuit board and the case mounted components are best made with flexible wires, cut to a size which allows the board to remain connected to the control panel when removed for fault finding etc. There are a number of connections to be made and the use of as many colours of wire as are available will reduce the risk of confusion at this stage. The ends must be prepared by tinning before the cable is inserted into the appropriate holes on the board and then soldered into place.
All of the effects modules are designed to be connected to the output modules which they control or to any other effects. The routing of controllers is by means of a simple eight-way cable which is terminated at one end in a cable mounting 10 -pin socket and at the other end in a matching 10 -pin cable mounting socket.
These connectors are connected pin-to-pin for pins 1 to 8 . In order to operate the automatic input and output sensing circuits in certain other modules it is necessary to also connect pins 9 and 10 together with wire links in both the cable mounting plug and the cable mounting socket of all of the interlinking cables.

TEST/NG

Once all the connections have been made the boards should be carefully checked for broken tracks, solder blobs and incorrectly placed components. The i.c.s should then be carefully inserted into the correct sockets, taking care to ensure that they are the correct way round.

Testing the unit is very simple. All that is required is to connect one of the two output sockets to an input socket on a Switched Power Output Module (last month) or other output module.

Once connected the module should operate with D4 to D7 lighting in the appropriate sequence. Operation of VRI should change the frequency of the clock pulse, and hence the speed at which the "chase" occurs; from a very fast sequence (which is almost indistinguishable from all the modules l.e.d.s being on) to a very slow pulse.

Next month: The Masterlink module. with David Barrington

Digilogue Car Tachometer
The dual or double-digit 7 -segment display called for in the Digilogue Car Tachometer should be available from most components advertisers. When ordering be sure to ask for the "common cathode" type.
The pinout connections for dual-digit devices seem to vary quite considerably with different manufacturers so the display stripboard will have to be "tailored" to suit the display purchased. If you cannot obtain a double-digit display, you may use two single-digit version mounted side-by-side.

The coloured rectangular l.e.d.s, which make up the bargraph or "analogue" display are readily available and should not cause any sourcing problems. However, the "neutral density" display filter material may prove difficult to locate locally. A suitable piece is listed by Maplin, code JE16S, but is slightly smaller than specified so the aluminium side-cheeks will have to be larger to take up any resulting gap.

The case used in the prototype model is a Verobox, part no. 202-21040F. The printed circuit board for the Digilogue Tacho is available from the EE PCB Service, code EE744 (see page 404)

Automatic Light Control

Looking at the circuit for the Auromatic Light Control the only component likely to cause concern when shopping for parts is the mains relay.

The 10A p.c.b. mounting mains relay used in the model was purchased from Maplin, code YX97F (10A Mains Relay). Other relays can, of course, be used
provided they have similar ratings. Substitute relays may not fit the board or more importantly their connecting tags may be different and the p.c.b. may need to be altered accordingly
If readers should experience any problems locating the pressure mat they can contact security or alarm specialists such as Suma Design (* 0827714476) or TK Electronics (081567 8910) who may be able to help.
The two printed circuit boards for this project are available from the EE PCB Service, codes EE747 (PSU) and EE748 (Logic board).

Fish Bite Infralarm

The infra red phototransistor used in the prototype model of the Fish Bite Infralarm was purchased from Maplin (YY66W). This device is claimed to be similar to the TIL32 which many of our advertisers stock.

The rest of the components for this project are standard lines and should be fairly easy to obtain. When ordering parts make sure you specify the low current $(2 m A)$ l.e.d

The standard coupling used on the base of the case, for attachment to a bank stick, was "acquired" from a cheap Foster type rod rest which usually retails for around f 1 in most fishing tackle shops.

Teach-In '91

This month, a couple of items look as, though they will cause followers of the Teach-In '91 series, Design Your Own Cir a cuits, certain supply difficulties.

The ZN416E t.r.f. receiver chip for the Radio Receiver back-up project appears to be only available from Cirkit (\& 0992 444111), stock no. 61-00416.

Suitable miniature loudspeakers should be generally available, but the designer has been impressed with the performance of the one used in the prototype model and recommends its use. This was purchased from Electromail, code 248-274 (35 ohm).

The ferrite rod for the aerial should be easily obtainable and is currently listed by Cirkit, Omni, Greenweld and Maplin. The rod is listed from about 8 mm to 10 mm diameter of varying lengths and any of these should be OK; the only criterion seems to be, will it fit inside the casel

Tuning to the R.F. Amplifier Module, the SL1612 r.f. amplifier only appears to be listed by Cirkit, code 61-016112, and Electromail (4505620455), code 303-208.
The printed circuit boards for both projects can be obtained from the EE PCB Service, codes EE749 (Radio) and EE750 (R.F. Amp).

Modular Disco Lighting System

We do not expect any component buying problems to be encountered when ordering parts for the Simple Chaser and Sweeper Modules, this month's Modular Disco Lighting System projects.
The metal instrument case for both models is the Maplin Blue case 233, code XY48C. Other cases can be used but they must be METAL and be earthed.
The two printed circuit boards are available from the EE PCB Service, codes EE745 (Chaser) and EE746 (Sweeper).

Just to illustrate how it pays to check advertisers special "bargain offers". Last month the Switched Power Output Module called for several solid-state relays and quite a considerable saving could (and still can) have been made if news of the ones on offer from Greenweld at $£ 3$ (Z1718) had arrived in the office a week earlier.

NOTHING STOPS FOR CRICKLEWOOD

- one of the largest ranges of components in the uk

 fast and efficient same day personal service- VERY COMPETITIVE PRICES, quantity discounts available NO MINIMUM ORDER
Over 13,000 different components from all over the world
19" RACK CASES
* Suitable for instruments, high quality
amplifiers and many other applications that demand strength and professional finish \star New improved construction and finish * Black anodised alumlnium front panels * Separate front mounting plate, no fixing screws visible of the front and the side of the enclosure \star Heavy gauge front panel is of brushed aluminium finish enhanced with two professional handles * With ventilation slits and plastic feet Rear box manufactured
from 1.1 mm steel finished in black. Rack mounting or free standing
Comes in quick assembly flat package.

Order Code	Panel Size	Rear Box	Weight	Price	
	WH (inch)	W H	D		$£$
U112	19×1.75	$17 \times 1.5 \times 12$	2.5 kg	24.95	
U212	19×3.5	$17 \times 3.0 \times 12$	3.3 kg	2.75	
U312	19×5.25	$17 \times 5.0 \times 12$	4.0 kg	31.95	
U412	19×7.0	$17 \times 6.5 \times 12$	4.6 kg	34.95	

Please add $£ 3.00 \mathrm{P} \& \mathrm{P}$ for the first item and $£ 1.50$ for each additional item Please add VAT to above prices Overseas orders welcome

CRICKLEWOOD ELECTRONICS LTD

40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET TEL: 081-450 0995/4520161
FAX: 081-208 1441
TELEX 914977 VSA

electronize
 CAR ALARM KITS

MICRO-PRESSURE CAR ALARM
This new type of alarm is triggered by a unique pressure sensing system. As any vehicle door is opened alr is drawn out, causing a minute drop in air pressure. A sensor detects this sudden pressure change and sets off the alarm. A sophisticated arrangement of electronic filters and timers provide features to match more expensive ultra-sonic systems.

- 1 Micro-pressure Intruder detection.
* 2 Operates on all doors and tallgate - no swlithes needed.
* 3 Automatically armed 1 minute after leaving vehlcle.
* 410 second entry delay with audible warning.
* 5 Sounds horn intermittently for 1 minute - then re-arms.
* 6 Easy fitting - only 3 wres to connect - no holes to drill.
* 7 Compact design can be hidden below dashboard.
* 8 All solld state Power MOSFET output - no relays.
* 9 Adjustable sensitivity.

MICRO-PRESSURE ALARM DIY parts kit $£ 15.95$ Assembled $£ 22.35$
MICFO-PRESSURE TRIGGER
This module adds MICRO-PRESSURE sensing to any voll drop operated alarm simply by connecting two wires across the vehicle's $12 v$ supply. Use it to upgrade an existing alarm or combine the benefits of both systems.
MICRO-PRESSURE TRIGGER DIY parts ktt £ 10.95 Assembled $£ 14.95$

VOLT DPOP CAR ALARM

This alternative alarm uses the popular voltage drop method of triggering. Based on the timers of the micro-pressure alarm it offers features 3 to 9 above but relles on the existing door switch operation for triggering.
VOLT DROP ALARM
DIY parts klt $£ 14.90$ Assembled $£ 20.95$
120dB SIFEN
An ear piercing alternative to using the car horn. This high intensity piezo siren can easily be added to attract even more attention.
120dB PIEZO SIREN
£13.35
All the above include cable, connectors and clear, easy to follow instructions. All kits Include case, PCB, everything down to the last washer, even solder. All prlces now include post, packing and VAT on U.K. orders. Same prices apply to all European countries. For delivery outside Europe please add £3.
Telephone orders accepted with VISA or ACCESS payment.
Order direct (please quote ref. E16) or send for more details from :-
ELECTRONZE DES/GN Tel. 0213085877
2 Hillside Road, Four Oaks, Sution Coldfield, B74 4DQ

JUST A SMALL SELECTION FROM OUR RANGE OF OVER 120 KITS

KIT PRICE No: DESCRIPTION: £(EA)
1001 0.2 WATT FM TRANSMITTER........................ 4.25
1006800 WATT MUSIC TO LIGHT.......................... 5.10
1009 I WATT FM TRANSMITTER....................................... 53
1013 AM-FM-VHF RECEIVER........................... 13.62
1014 3X700 WATT WIRELESS MUSIC-TO-LIGHT... 11.06
1018 GUITAR TREMELO....................................... 7.24
1022 METAL DETECTOR................................... 4.25
1026 RUNNING LIGHTS
10284 WATT FM TRANSMITTER.......................... 14.46
1034 CAR BATTERY CHECKER.. 2.98

1036 TRANSISTOR TESTER 3.83

1037 DISCO STROBO LIGHT............................... 11.49
1038. AM-FM AERIAL AMPLIFIER........................... 2.98

1049 ULTRASONIC RADAR.......................................15.31
1055 FM RECEIVER USING TDA7000.................... 12.76
1059 TELEPHONE AMPLIFIER..................................... $8 .{ }^{2}$
1065 INVERTOR 12V D.C. TO 12 V A.C.................... 21.27
1069 I2V D.C. FLOURESCENT TUBE UNIT............. 5.53
1073 VOX.. 6.38
1075 ELECTRONIC DICE WITH L.E.D.S................. 6.80
1111 LOGIC PROBE
3.83

1114 ELECTRONIC LOCK................................... 7.66
1119 TELEPHONELINE RECORDING.......................................
1125 TELEPHONELOCK.. 6.80
1129 NEGATIVE ION GENERATOR........................ 14.46
1130 TELEPHONE "BUG" DETECTOR.................. 3.41
1203 MINI FM TRANSMITTER WITH MIC
(SUPPLIED READY ASSEMBLED).
4.25

All kits contain a Silk Screened high quality P.C.B. components, solder, wire and FULL instruction sheet.

OPTIK - CABINET 80

OPTICAL KIT ENABLING YOU TO BUILD MANY OPTICAL ITEMS INCLUDING MICROSCOPE, SLIDE VIEWER, STEREO VIEWER \& OPERA GLASSES. CONSTRUCT AN OPTICAL BENCH. ALL COM PONENTS SUPPLIED PLUS INSTRUCTION BOOKLET WITH ASSEMBLY NOTES AND EXPERIMENT DETAILS OPTIK - CABINET 80
£24.50

ASTRO - CABINET 90

ASTROLOGICAL KIT ENABLING YOU TO BUILD MANY TYPES OF TELESCOPES. EACH TELESCOPE WILL OFFER YOU NEW POSSIBILITIES OF OBSERVATION AND SHOW MANY OPTICAL LAWS. ALL COMPONENTS SUPPLIED PLUS INSTRUCTION BOOKLET WITH EXPERIMENTS ASTRO - CABINET 90
$£ 24.50$

BATTERY TESTER

POCKET BATTERY TESTER

FOR 9V. 1.5 V AND BUTTON CELLS. METER INDICATES REPLACE/RECHARGE, LOW OR GOOD
SIZE: $48 \times 55 \times 22 \mathrm{~mm}$
WEIGHT: 31 GRAMS
BATTERY TESTER
£3.30

SPECTAL OFFER
 QIC BACK 60 MEG TAPE STREAMER QIC 60 FORMAT - QIC 36 INTERFACE INTERNAL FITTING - 5.25° TRAY CAN BE USED ON XT, AT \& PS2 PRICE: £188.00
 3.5° EXTERNAL FLOPPY DISC DRIVE BY WELL KNOWN MANUFACTURER 1 MEG (720K FORMATTED) GREY - COMPLETE WITH CASE
 PRICE: $£ 37.00$

FLOPPY DISC DRIVES

ALL DRIVES BY WELL KNOWN MANUFACTURERS
NEW AND BOXED - INTERNAL DRIVES:
3.5"
1.44 M
$£ 48.00$
5.25"
1.2 M
£46.00

NEW AND UNBOXED DRIVES:
ALL DRIVES ARE FULLY TESTED BUT UNBOXED

INTERNAL		$£$	EXTERNAL		$£$
		360 K	38.00	$5.25^{\prime \prime}$	360 K
$5.25^{\prime \prime}$	1.2 M	41.00	$5.25^{\prime \prime}$	1.2 M	49.00
$3.5^{\prime \prime}$	720 K	40.00			
$3.5^{\prime \prime}$	1.44 M	43.00			

TWIN $360 \mathrm{~K} 5.25^{\prime \prime}$ FLOPPY DISC DRIVECOMPLETE WITH POWER SUPPLY IN A PROFESSIONAL WHITE CASE. MAINS LEADSUPPLIED PLUS FULLCONNECTION DETAILS
TWIN FDD + PSU
$£ 68.95$

RS232/SERIAL/PARALLEL MICRO'T'SWITCH
THREE 25 PIN D SOCKETS COMPLETE WITH DOUBLE
SIDED FIXING PAD - MANUALLY SWITCHABLE
SIZE: $132 \times 85 \times 32 \mathrm{~mm}$ WEIGHT: 165 grams
MICRO "T" SWITCH £7.45

COMPUTER ACCESSORIES
FLOPPY DISC CONTROLLER CABLE $£ 0$
5.25" ADAPTOR KIT FOR 3.5" DRIVES ...
5.25" TRAY FOR 3.5" DRIVES .. $\mathrm{E}^{5} 50$

POWER LEAD FOR $3.5^{\prime \prime}$ FLOPPY.
F D D POWER SPLITTER £3.50
FD DIDC PIN TO EDGE CONNECTOR PCB £4.50
MOTHERBOARD POWER EXTENSION CABLES $£ 6.50$

THESE ARE JUST EXAMPLES FROM OUR
COMPUTER PRODUCTS. HOBBYKIT STOCKS
MOTHERBOARDS, PERIPHERAL BOARDS, LEADS, GENDER CHANGERS AND OTHER
MISCELLANEOUS ITEMS, CONTACT SALES WITH YOUR REQUIREMENTS.

ALL PRICES
INCLUDE VAT
UK Orders:
ADD $£ 2.00$ carriage
Europe \& Eire:
Deduct 17.5\% VAT (divide price by 1.175)
ADD $£ 5.00$ carriage
Outside Europe:
Deduct 17.5% VAT (divide price by 1.175) ADD $£ 10.00$ carriage

HOBBYKIT LTD CREDIT CARD HOTLINE 즐 081-2057485

UNIT 19 CAPITOL INDUSTRIAL PARK CAPITOL WAY LONDON NW9 0EQ FAX No: 081-205 0603

For a comprehensive guide covering our Computer products, Kite Test Equipment, Tools and other miscellancous items please send a stamped A4 envelope or loose stamps to the value of:

UK £0.45
Europe \& Eire 1.00

Outside Europe $£ 2.75$

A.C. CAPACITOR POWER REGULATORS

BRIAN CORDINGLEY

Transformers and solid-state lamp dimmers can be replaced by a.c. rated capacitors with advantage in many mains powered circuits.

Most readers will be familiar with the use of resistors to limit current or reduce voltage in circuits. They will also be aware that their use is restricted by the power dissipation which accompanies their operation. In contrast, in a.c. circuits capacitors may be used to regulate current and voltage with virtually no loss of power. Some circuits which exploit this property are described in this article.

MAINS RATED

Capacitors connected to the mains require an a.c. voltage rating of 250 V or greater and should be designated for class X or class Y at $\mathbf{2 5 0}$ V a.c. mains.
For cost and reliability the author has found that capacitors employing a metallised polypropylene film are most suitable. Some commercial applications of mains rated capacitors include interference suppressors, motor start and run circuits and fluorescent light ballast equipment.
The plates of metallised film capacitors consist of a very thin layer of aluminium or zinc evaporated onto a synthetic or paper dielectric under vacuum. A transient over-voltage or a defect in the dielectric may cause an arc to be established between plates of opposite polarity. The arc evaporates the plating at the site of the defect and forms an insulating oxide of the metal and the capacitor is effectively repaired. This property is known as "self healing" and is a characteristic of many capacitors intended for use across the mains.

SAFETY

Mains circuits of this type must be housed in fully insulated cases or in earthed metal cases. Do not build these circuits if you are not sure about the safety aspects.

If projects based on this article are to be housed in metal cases then no part of the case should be in electrical contact with the circuit and all accessible metal parts must be earthed. Clearly this also applies to any equipment to which these projects are connected.
The neutral wire from the mains is at near-earth potential and it is good practice

Fig. 1. Equivalent circuit for the analysis of a.c. capacitor regulator circuits.
to have the major part of the circuit at or near this potential. It is for this reason that the regulating capacitor is connected as near as possible to the mains line. This laudable aim is easily defeated by incorrect wiring of the mains plug!
These projects on a.c. capacitors invite design work and experimentation. The author, after some less than pleasant experiences, wears rubber gloves when substituting components and making voltage and current measurements. It is all too easy to forget that mains circuits have some nasty potential differences when absorbed in a series of trials. Beware we cannot afford to loose any readers.

PROTECTION OF CIPCUITS

The power circuits for the projects described below can be reduced to the equivalent circuit shown in Fig. 1 for the purpose of analysis.
At switch on, a high surge current can flow. The magnitude of the surge depends at what point of the mains cycle contact is made and the state of charge of the capacitor at that instant. This high current has the capacity to destroy any semiconductors in its path. If the load does not have sufficient resistance to limit the surge current to a safe value an additional series resistor is included in the circuit. The power rating and value of this resistor will depend on the application but it should be rated at 250 V .

Experience teaches that capacitors rated for mains usage are very reliable though the consequences of capacitor failure to
short circuit should be considered. If a surge limiting resistor is employed in the power supply it will almost invariably fail to open circuit after a capacitor short and thus interrupt the fault current. (It's a good idea not to use a resistor of too high a wattage in this position!)

Nevertheless, there is a likelihood that any resistors or semiconductors (diodes and l.e.d's) in the path of the fault current will be destroyed on capacitor failure. The mains plug should be fitted with a 2 A fuse or a fuse added to the line input on the circuit board.

Capacitor failure in lamp dimmer or heater circuits will result in full power being applied to the load. The consequences depend on the application but they should be borne in mind.

A.C. CAPACITORS IN RC MAINS CIRCUITS

It is anticipated that the reader will wish to build regulator circuits for specific applications but based broadly on the designs described. To facilitate the selection of components it is desirable to introduce a few formulae.

The reactance, X, of a capacitor, C, at frequency, f, is given by:

$$
\begin{equation*}
X=\frac{1}{2 \pi f C} \tag{1}
\end{equation*}
$$

The impedance, Z, of a series circuit containing a capacitor and a resistive load R_{L}, may be determined from,

$$
\begin{equation*}
Z=\sqrt{ }\left(R_{L^{2}}+X^{2}\right) \tag{2}
\end{equation*}
$$

Where R_{L} is the sum of all the series resistance in the circuit.
In many circuits $\mathbf{R}_{\mathbf{L}}$ is much smaller than X, or the voltage across the load is significantly less than mains voltage. (say below 50 V). Under these circumstances the approximation:

$$
\begin{equation*}
Z \approx X \tag{3}
\end{equation*}
$$

may be applied.
The current flowing in the circuit with mains voltage, V, is

$$
\begin{equation*}
I=\frac{V}{Z} \tag{4}
\end{equation*}
$$

The voltage across a resistive load is given by

$$
\begin{equation*}
V=I R_{L} \tag{5}
\end{equation*}
$$

In 4 and 5 if \mathbf{V} is the r.m.s. voltage then I is the r.m.s. current. Similarly, if V is the mean voltage then I is the mean current.
The value of mean current is useful in battery charging circuits. In heating circuits. it is the r.m.s. current and voltage that are of principal interest. When the mains is rectified

$$
I_{\text {mean }}=\frac{I_{\text {r.ms }}}{1.11}
$$

Throughout this article mains voltage is taken to be 240 V r.m.s. and mains frequency to be 50 Hz . The effect of a bridge rectifier on the calculation of current can be ignored for the purposes of the projects.
The following sample calculation may be of assistance. If in Fig. I, C is $2 \mu 2$ and R_{L} is 150 ohms, then
$X=\frac{1}{\left(2 \times \pi \times 50 \times 2.2 \times 10^{6}\right)}=1447 \mathrm{ohm}$
$Z=\sqrt{ }\left(150^{2}+1447 ?\right)=1455$ ohms
(alternatively, the approximation in 3 may be used).
$I_{\mathrm{rms}}=\frac{240}{1455}=0.1649 \mathrm{~A}$
$I_{\text {meiun }}=\frac{0.165}{1.11}=0.1486 \mathrm{~A}$
R.M.S. load voltage $=0.1649 \times 150=24.7 \mathrm{~V}$

CHARGE RETENTION

Plastic film capacitors can retain a charge for several weeks and any residual voltage will appear across the mains plug. A resistor is therefore placed across a.c. capacitors to discharge them within a reasonable period of time. Some manufacturers actually include this resistor within the capacitor case. A value between 470 k and 2 M 2 should prove satisfactory and the resistor should he designed to withstund 250 V .

POWER SUPPLY CIRCUITS

Capacitors can be used in power supplies if either space, cost or energy savings can be exploited. A.C. capacitors dissipate very little power (often much less than 100 mW) and run cool. Small transformers often run warm and if equipment is left on permanently then for every watt of dissipation about 50p each year is going to be added to the electricity bill.

Capacitors are silent when connected across the mains whereas almost in variably transformers emit an audible hum which can be a disadvantage in some circumstances. The principal disadvantage of capacitors is that they do not
isolate the circuit electrically from the mains supply.
Transformers should be used if the circuit demands either isolation from the mains, the provision of continuous current greater than about IA at low voltage or the stepping up of a voltage. Consider using capacitors elsewhere.

A CONSTANT CURRENT CHARGER

The circuit displayed in Fig. 2 will charge from 1 to 20 NiCads at a current of around 100 mA mean, the current reducing only slowly as the number of cells on charge is increased. The circuit is particularly useful as an on-board charger for rechargeable equipment and will charge at a constant rate almost irrespective of the state of charge of the cells. If the load current demand is somewhat less than 100 mA then the circuit can be used with its rechargeable cells as an uninterruptable power supply
When C 1 is $1 \mu 5$, the impedance of the circuit is 2122 ohms from equation 3. and Cl will carry an r.m.s. current of 0.113 A $(113 \mathrm{~mA})$ or 0.102 A mean with a short circuit at the output
Resistor R1 limits the surge current at switch on and R2 discharges C1. 1000 V diodes are used for the bridge. It is useful to have an indication that charge current is flowing and R3 and R4 are selected to provide about 7 mA for the l.e.d. to serve this purpose. These values will need attention if Cl is changed to provide a different current output.
If you have a meter, check the charging current by placing the meter across the output sockets with the batteries removed - this circuit is inherently short circuit protected The reading should be about 100 mA .
The output voltage is governed by the number of cells on charge and. on open circuit, the output will be approaching mains voltage. If this is likely to be a problem (for example when the circuit is used as an uninterruptable power supply) then any circuit supplied should be provided with over-voltage protection

A COMPACT TRICKLE CHARGER

The simplicity and low energy consumption of capacitor regulated power supplies can prove advantageous where trickle charging is required for stand-by circuits. Mass plate NiCads and certain lead acid cells have a very low rate of self discharge and can be maintained at full charge by a current of less than $1 / 100$ of their amp-hour capacity. Precise trickle charge instructions may be obtained from the manufacturers of cells.

Fig. 2. Circuit for the 100 mA constant current charger for from 1-20 NiCads. This circuit may also form the basis of an uninterruptable power supply.

COMPONEVIS

CONSTANT-CURRENT CHARGER

Resistors

R1	331 W
R2	1 M 0.5 W
R3	2700.5 W
R4	391 W
All 250 V	

All 250 V

Capacitors

C1 $1 \mu 5,250 \mathrm{~V}$ a.c. rated (class X or Y)

Semiconductors
D1 to D4 1 N4007 or other 1000 V
diodes (4 off)

> D5 l.e.d.

Miscellaneous

Group board; battery connector; mains wire and plug with 2A fuse; insulated or earthed case.

COMPACT TRICKLE CHAGER
 \section*{Resistors}

R1	33
R2	1 M
All	0.5 W,

Capacitors

$$
\mathrm{C} 1100 \mathrm{n}, 250 \mathrm{~V} \text { a.c. rated }
$$ (class X or Y)

Semiconductors

D1 to D4 1 N 4007 or other 1000 V diode (4 off)
D5 l.e.d

Miscellaneous

S1 SPST switch
Group board; battery connector; mains wire and plug with 2A fuse; insulated or earthed case.

$5 \mathrm{~V}, 70 \mathrm{~mA}$ POWER SUPPLY

Resistors

R1 33
R2 $\quad 1 \mathrm{M}$
All $1 \mathrm{~W}, 500 \mathrm{~V}$

Capacitors

C1	$1 \mu 2,250 \mathrm{~V}$ a.c. rated
C (class X or Y)	
C 2	470μ, elect. 10 V

Semiconductors

D1 to D4.
D6 1 N4007 or other 1000 V
5 5V61W Zener diode

Miscellaneous

Group board; mains wire and plug with 2A fuse; insulated or earthed case.

LAMP DIMMER

Resistors
 R1 $1 \mathrm{M}, 0.5 \mathrm{~W} 250 \mathrm{~V}$

Capacitors
$\mathrm{C} 1 \quad 2 \mu, 250 \mathrm{~V}$ a.c. rated
(class X or Y)

Miscellaneous

S1 see text
S2 SPDT 2A, 250 V a.c. switch
Mains terminal block; 40 W bulb; table lamp; 2A mains fuse; insulated or earthed housing.

Cost: Components for each project should cost less than £5. (Excluding table lamp and rechargeable batteries.)

Fig. 3. Trickle charger for lead-acid or mass-plate nickel-cadmium rechargeable cells. The circuit consumes very little space and can be used to power stand-by equipment.

Fig. 4. 5 V 70 mA d.c. power supply. This circuit may be adapted to provide a wide range of output currents and voltages and may be connected to a voltage regulator for increased voltage stability.

The circuit depicted in Fig. 3 displays a basic trickle charge circuit to provide a charging current of about 6.8 mA mean (or 7.5 mA r.m.s.) this current will not be a strong function of the number of cells charged. The general notes for the circuit in Fig. 2 apply to this circuit also. The low value of mean current enables the l.e.d. to be supplied directly.
Note: If NiCads become totally discharged it may be necessary to place them in a circuit capable of supplying a high current for a short period to get them to accept charge again.

A 5V, 70 mA
 POWER SUPPLY

A circuit design for a $5 \mathrm{~V}, 70 \mathrm{~mA}$ supply is shown in Fig. 4. This is also intended to be treated as an example of a general technique. It is relatively easy to adapt this circuit to provide a wide range of output voltages and currents by appropriate selection of D5 and C1 respectively.

Capacitor Cl at $1 \mu 2$ provides an r.m.s current of 90 mA . Current that does not go through the load heats the Zener diode and consequently it is desirable to choose $\mathbf{C l}$ such that it provides not much more current than the maximum required by the circuit.
The output voltage of the supply is equal to the Zener voltage less the voltage dropped across D6 (say 0.7V). Maximum power is dissipated in the Zener when the load is open circuit. This is approximately equal to the product of the mean current and the Zener voltage:

$$
\frac{5.6 \times 0.09}{1.11}=0.45 \mathrm{~W}
$$

Diode D6 reduces hum by preventing charge stored on capacitor $\mathbf{C} 2$ from partially discharging through the Zener diode during the interval of near-zero voltage in the supply cycle. A value for $\mathbf{C} 2$ of about 470μ should provide adequate smoothing.

The circuit of Fig. 4. built on tagboard. The unit must be enclosed in an earthed metal case or a fully insulated case - see text.

If a high degree of stability is required then it is a relatively simple matter to connect an i.c. voltage regulator to the output, but remember all the circuitry must be isolated for safety.

LAMPDIMMING CIACUITS

Electronic lamp dimmers based on triac controllers are fairly common. They do however suffer from a number of disadvantages: they produce electrical noise (switch a radio to long wave near a dimmer and turn the tuning dial) and often audible noise; most solid-state dimmers are incapable of giving control over a full range of output and they can cause perceptible flickering at some settings.
The circuit shown in Fig. 5 shows how a capacitor may be employed to control the brightness of a lamp. The circuit provides two brightness levels - full and dimmed. Noiseless and flicker free operation will be obtained and output can be controlled to any level of brightness by appropriate selection of capacitor value.
In most potential applications it will not be economically attractive to fit a rotary switch to provide multiple settings. This is because a relatively high-current switch would be required to accommodate the surge currents occurring on the charge and discharge of the capacitors.

Fig. 5. Lamp dimmer circuit offering flicker-free operation at two levels of brightness.

It is fortunate that in many applications a simple choice between bright and dimmed or even a single level of light output will prove adequate. Applications such as night lights or bedside reading lights come into this category.
The circuit shown in Fig. 5 illustrates how a dimmer circuit may be wired into an existing table lamp or light fitting. The capacitor and its discharge resistor should be connected at a point between the line and the live of the lamp socket. The exist-

Concerted "dimming"lamp.
ing switch can be used for on-off control and a S.P.D.T. switch used to provide two levels of output.
There are no semiconductors to protect and the resistance of the bulb restricts surge current adequately. The capacitance value of 2μ provides a comfortable light for bedside reading when used in conjunction with a 40 W bulb. A value of $1 \mu 5$ provides an illumination level acceptable as a night light.

CAPACITOR SELECTION

The resistance of incandescent lamps and perceived light output vary in a complex manner with filament temperature. It is for this reason that a subjective approach to the selection of the value of the a.c. capacitor is adopted and the table below indicates the range of values of Cl from which to choose.

The characteristics of filament lamps and the selection of C in lamp dimmer circuits.

Bulb Rating	Approx. Bulb Resistance		Capacitor Values of Interest Cold Hot	
W	Min...	Max.		
Ohm	Ohm	$\mu \mathrm{F}$	$\mu \mathrm{F}$	
15	303	3840	0.22	0.82
25	170	2300	0.47	1.2
40	110	1440	1.0	2.2
60	68	960	1.5	3.0
100	40	576	2.0	5.0

The smallest value of capacitance for a specific bulb rating provides a level of filament flow that is just perceptible; the larger value provides a soft light for bed-

The switch, capacitors and resistor "dimming" components housed in the lamp base. Note the earth connection to the metal case.
time reading. The actual value selected is to be determinded by experiment.

The characteristics of flourescent lamps and their inductive ballasts makes them unsuitable for control bir hoth simple riac controllers and series capacitors.

OTHER APPLICATIONS

It is possible to reduce the power output of heating elements which do not contain thermostats by applying the same technique as that used for lamp dimming. This will be useful for the control of loads of up to about 200 W and values of Cl may be found by trial
and error using the filament-lamp table as a guide.
The projects discussed in this article have been concerned solely with resistive loads. Capacitors may also be used to control the power delivered to inductive loads. for example, the speed of some motors may be controlled and output voltages of transformers may be altered. However when capacitors are used with inductive loads it is possible to arrive at circuit conditions which cause voltages significantly in excess of mains voltage to appear across the series capacitor or the load. The use of capacitors with inductive loads is a topic in its own right and is outside the scope of the present article.

HART KITS give you the opportunity to build the very best engineered hifi equip. ment there is, designed by the leaders in their field, using the best components that are available. With a HART KIT you not only get more performance for your money but also added free bonus of your own hands:
on experience of modern electronic assembly. The HART on experience of modern elecironic assembly. The HART gineering design and professional grade components is your recipe for success in the quest for affordable ultimate audio fidelity.
Telephone or write for your FREE LISTS giving full details of all our Kits, components and special offers. Featured this month is the:
AUDIO DESIGN 80 WATT POWER AMPLIFIER

This fantastic John Linsley Hood designed amplifier is the flagship of our range, and the ideal powerhouse for your ultimate hifi system. This kit is your way to get fK performance at bargain FET stabilised power supplies give this amplifier World Class performance with starting clarity and transparency of sound, allied to the famous HART quality of components and souse of construction.
Useful options are a stereo LED power meter and a versatile passive front end giving switched inputs, with ALPS precision, low-noise volume and balance controls.
Construction is very simple and enjoyable with all the difficult work done for you, even the wiring is pre-terminated. ready for instant usel Complete details of the different versions are in our free lists.
RLH10 Reprints of latest 'Audio Design Amplifier
articles 100 CM HART Construction Manual with full parts
¢2.70
K1100CM HART Construction Manual with full parts
Why not buy the reprints and construction manual to see Why not buy the reprints and construction manual how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

LINSLEY HOOD 'SHUNT FEEDBACK' R.I.A.A. MOVING
COIL \& MOVING MAGNET PICKUP PREAMPLIFIER

This new circuit by John Linsley Hood uses latest generation integrated circuits in the sonically preferred shunt feedback configuration to give an accurate and musical sound, with the ability o use moving magnet and moving coil cartridges. The HART kit for this unit is exceptionally easy to build with roller tinned fibreglass printed circuit board. Even the gold plated phono sockets mount directly on the board. Kit complete with fully machined case and a 1 metre length of miniature power supply cable is HART ref K1500. £69.23.

ALPS PRECISION LOW-NOISE STEREO POTS.

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours.
Fitting one of our high quality replacement heads could re store performance to better than new/ Standard inductances and mountings make fitting easy on nearly all machines (Sony are special, see below) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actual importers you get prime see! All our heads are suitabie for use with any Dolby system and see normally available ex stock We also stock a wide range of special heads for home construction and industrial users. special heads for home HC66 High Quality Stereo R/P Head. Hard Permalloy
construction with Hyperbolic Face for improved
with ust Alloy Stereo Head. High quality head
with good frequency response and hyperbolic face
tor good tape to head contact $£ 16.85$ C6OS SONY Special Stereo R/P head. This head has the unusual Sony mounting bracket and is HO551 4. Track RECORD \& Play Permalloy Head for ... $£ 21.38$ auto-reverse car players or quadraphonis repending ..f14.90 Many other SPECIAL cassette Heads in sice et in LIST.

 HA角T E E eas Sels ippe uxh uth, VU level and tape sueed
 will get your order on its way to you THAT DAY. Please add part cost of carriage and insurance as foliows
INLANO: Orders up to $\mathbf{£ 2 0} \mathbf{- £ 1 \text { ; Oiders over } £ 2 0 - £ 2 . 5 0 \text { . }}$ INLANO: Orders up lo $\mathbf{f 2 0}$ - $£ 1$; Oiders over $£ 20-£ 2$
Expless Courier, next working day - $£ 9$. Express Courier, next working day - $£ 9$.
OVERSEAS: Please see the ordering information

ROBOTROUNDUP
 Nigel Clark

MONEY

No specific money has been set aside by the Government to help with the further funding of design and technology subjects in the next school year, 1991-2. This is despite the fact that the first testing in the subjects will be taking place in 1992.

In the present year $£ 17 \mathrm{~m}$ was provided for meeting the costs following a grant of f 10 m the year before. The money was intended for new equipment and the cost of assessing pupils performance.

Some money will be available under the Department of Education and Science's GEST scheme, Grants for Education Support and Training. However, it is not a straightforward grant which is given to local education authorities (LEA) to be split among the schools in their area. It has to be applied for by the school's first putting forward a proposal to the LEA which then passes them on to the DES. If the proposal is approved 60 per cent of the cost will be met, the balance to be found by the school or LEA, but increasingly by the school.

There is a total of $£ 170 \mathrm{~m}$ for next year, up from the present $£ 120 \mathrm{~m}$. In addition $£ 30.4 \mathrm{~m}$ is being made available for information technology (IT). However this is being targeted at increasing the number of micros for the younger age range, primary and middle schools, as well as special schools.

This will be of some help in the teaching of design and technology subjects, however the DES also wants to encourage the use of computers in more areas, to reflect the growing use of computers in industry and commerce, thus increasing the demand for time on the computers in schools.

FALLING NEED?

It could be argued that the need for extra money is falling. As has often been pointed out the design and technology subjects are not totally new subjects but more a reorganisation of existing ones.

In addition a survey by the DES has shown that the average number of micros per primary school has risen from 2.5 in 1988 to 4.3 and from 23 to 41 in secondary schools. Almost all primary schoolchildren and 90 per cent of secondary children up to 16 have worked on micros.

Spending on information technology has also increased from an'average $£ 500$ in primary schools in 1988 to E 950 in 1990 and from $£ 4,900$ to $£ 15,100$ in secondary schools.

COMPLAINTS

However, many teachers still seem to complain about the lack of resources to enable them to do a proper job. Their complaints can be dismissed with the comment that teachers always complain of shortages. And if design and technology is about problem solving then finding a solution within the extra resource constraint should make the project more challenging and realistic.

It is possible to agree with that view, but only up to a point. An average of 41
computers per secondary school can hide a wide variation, and even a school on the average does not have a great number considering that many secondary schools have more than 1,000 pupils.

Another interesting fact revealed by the DES survey was that the total spent last year on hardware and software was $£ 78 \mathrm{~m}$ of which only $£ 13.5 \mathrm{~m}$ was grant supported spending from the government. Of that spending 40 per cent came from parent teacher associations and other private sources.

That may have been acceptable some years ago when such equipment was considered to be extra to the normal requirements of a school. But now that it has been brought more and more into the mainstream of a school's activities it should be met from mainstream finances not extra fund raising. Relying on fund raising for essential equipment will mean a growing divide between schools serving rich neighbourhoods and those serving poor.

LOCAL MANAGEMENT

Another concern about the resources for design and technology relates to the local management of schools. Under the government's plans by 1 April 1993, 85 per cent of a schools potential budget must be decided by the school's governors and headteacher, with 80 per cent of the budget directly linked to pupil numbers.

With all their other increased responsibilities there is a concern that governors and headteachers will not be able to judge what equipment is best for their school from the increasing amount which is becoming available, and whether they will be able to get the best price by buying individually rather than in bulk if the decision was taken, as in the past, by the LEA.

RESOURCE

Remaining on the National Curriculum theme the amount of equipment and resources continues to grow. Resource,
the LEA-funded supplier based in Doncaster, is working on a package to help explain control technology. In common with other similar products Resource says it is aiming to explain the subject by putting it into real everyday situations. The package is based around a small book and costs about $£ 4$.

It follows the recent release of Resource's Honeypot creation. Intended for primary schools it features an imaginary village in which a variety of problems arise for the pupils to solve. The pack contains a drawing of the village, books and a teacher's pack for about £45.

DEVELOPMENTS

Swallow Systems is boosting the userfriendliness of its PIP Mobile by supplying a range of soft covers. The idea is that although for most purposes PIP can be customised by using junk materials teachers might want to make the machine more appealing to younger children. At £16 each, dog and rabbit covers are available in three colours as well as a panda in black and white.

The number of computer links for PIP have been extended. They are now available for BBC's B and Master PC compatibles. The older prototype Nimbus software has been withdrawn and replaced by PIPNIM from Pink Elephant Software. The prices of the leads and software range from $£ 30$ for the PC compatibles to $£ 15$ for the BBCs.

Economatics has been extending its electronics teaching range by introducing System Omega, which is said to be a self-contained kit for introducing pupils to electronics systems and giving them an understanding of input-process-output.

Developed by Omega Electronics it is aimed at children in key stages 2 and 3 of the Curriculum, that is for ages 7 to 14. The kit contains a power supply, three boards, plug leads for making connections and teacher's materials for a total of about $£ 130$, or $£ 115$ without the power supply.

System Omega is intended to be simple and easy to use. The boards have eight inputs including a pulser and an external sensor socket. Outputs for a variety of sounds, a counter and a relay are available.

For further information contact: Economatics (Education) Ltd, Epic House. Orgreave Road, Handsworth, Sheffield S13 9LQ. for 0742690801

The books listed have been selected as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full details are given on the last book page.
For another selection of books see next month's issue.

MORE BOOKS NEXT MONTH — MORE BOOKS NEXT MONTH

PROJECT CONSTRUCTION

HOW TO GET YOUR
ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did not work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the com
56 pages Order code BP110
$\varepsilon 2.50$

HOW TO DESIGN AND MAKE

YOUR OWN P.C.B.E
R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages Order code BP121

BEGINNER'S GUIDE TO BUILDING

ELECTRONIC PROJECTS

R. A. Penfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build magazines and books. Also includes examples in the form of simple projects.
112 pages Order code No. 227
£1.95

ELECTRONIC SCIENCE PROJECTS

O. Bishop

These projects range in complexity from a simple colour temperature meter to an infra-red laser. There are novelties such as an electronic clock regulated by a resonating spring, and an oscilloscope with solid-state display. There are scientific measuring instruments such as a pH meter and an electro-cardiometer. All projects have a strong scientific flavour. The way they work, and how to build and use them are fully explained
144 pages Order code BP104
£2.95

CIRCUITS \& DESIGN

MODERN OPTO DEVICE PROJECTS

R:A. Penfold
In recent years, the range of opto devices available to the home constructor has expanded and changed radically. These devices now represent one of the more interesting areas of modern electronics for the hobbyist to experiment in, and many of these devices have useful practical applications as well. This book provides a number on practical designs which utilize a range of modern opto-elecich devices, including such things as
l.e.d.s and passive IR detectors etc.
While many of these designs are not in the "dead simple" ciategory, they should be within the capabilities of anyone with a reasonable amount of experience in electronics construction and some of the more simple designs are suitable for begini:ars.
104 pages Order code BP194
$£ 2.95$

DIGITAL LOGIC GATES AND FLIP-FLOPS

 lan R. SinclairThis book, Intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning. This is not a constructor's book in the sense of presenting circuits to build and use, it is for the user who wants to design and understanding of principles.
Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively. and more attention is paid to the subject of synchronous counters than to the simple but less important ripple ounters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book concludes with an explanation of $\begin{array}{ll}\text { microprocessor techniques as applied to digital logic. } \\ 200 \text { pages } & \text { Order code PC106 }\end{array}$

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non-
160 pages Order code BPB8
£2.95

ELECTRONIC PROJECTS - BOOK 1
Published by Everyday Electronics in association with Magente Electronics.
Contains wenty of the best projects from previous issues are: Seashell Sea Synthesiser, EE Treasure. The projects Strobe, Digital Capacitance Meter, Three Channel Sound to Light, BBC 16 K Sideways Ram, Simple Short Wave Radio, Insulation Tester, Stepper Motor interface, Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm EE Equaliser loniser, Bat Detector, Acoustic Probe Mainstester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Induction Balance Metal Dutector BBC Melifier, EE Buccanee nduction Bala A Mer Supply Pet Scarer. Audio Sige Variable Ben
128 pages (A4 size) Order code EP1

A BEGINNERS GUIOE TO MOOERN
 ELECTRONIC COMPONENTS

R. A. Penfold

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the heory of electronics is not needed, and this book is no is to explain the differences between different components of the same basic type (e.g. carbon, carbon film, metal film and wire-wound resistors) so that the right component fo a given application can be selected. A wide range of com ponents are included, with the emphasis firmly on those components that are used a great deal in projects for the 166 pages
166 pages Order code BP285

PRACTICAL ELECTRONIC
PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 2

R. A. Penfold

hese books are designed to aid electronic enthusiasts who like to experiment with circuits and produce their roject designs

BOOK 1 contains: Oscillators-sinewave, trianguia squarewave, sawtooth, and pulse waveform generator operating at audio frequencies. Himers-simple mono Miscellaneous-noise generators, rectifiers, compara tors and triggers, etc.

BOOK 2 contalns: Amplifiers-low level discrete and p-amp circuits, voltage and buffer amplifiers including amplifiers. Filters-high-pass, low-pass, 6, 12, and 24 dB per octave types. Miscellaneous-i.c. power amplifiers, mixers, voltage and current regulators, oic

BOOK $1 \quad 128$ pages Ordercode BP117 $£ 1.95$

ELECTRONIC ALARM CIRCUITS MANUAL
One hundred and forty useful alarm circuits, of a variety of types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms, and brief construction notes are given where
necessary.
Aimed at the practical design engineer, techniclan and experimenter, as well as the electronics student and 124 pages \quad Order code NE11 $£ 12.95$

DESIGNING DC POWER SUPPLIES

G. C. Loveday C.Eng MIERE

Covers alt aspects of the design of regulated power units, covers protection circuits and reference supplies. Many design examples and exercises all with fully worked solutions are given.
131 pages
Order code BM2
E6.95

ELECTRONIC POWER SUPPLY HANDBOOK

lan R. Sinclair
This book covers the often neglected topic of electronic power supplies. All types of supplies that are used for electronics purposes are covered in detail, starting with cells and batteries and extending by way of rectified supplies and linear stabilisers to modern switch-mode systems, IC switch-mode regulators, DC-DC converters and inverters.
The devices, their operating principles and typical circults are all dealt with in detail. The action of rectifiers and the reservoir capacitor is emphasised, and the subject of formulae for assessing the likely hum level of a conventional rectifier reservoir supply. 136 pages Order code PC108
$£ 7.95$

MICRO INTERFACING CIRCUITS-BOOK
MICRO INTERFACING CIRCUITS-BOOK 2
R. A. Penfold

Both books include practical circuits together with details of the circuit operation and useful background information. Any special constructional points are covered but p.c.b. layouts and other detailed constructional informa tion are not included
Book 1 is mainly concerned with getting signals in and out of the computer;. Book 2 deals primarily with circuits or practical applications.
$\begin{array}{ll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } \\ \text { Book } 2112 \text { pages } & \text { Order code }\end{array}$
$\mathbf{6 2 . 2 5}$
62.75

SENSORS AND TRANSDUCERS
Keith Brindley
There are a considerable number of transducers. Look through any electronic components catalogue and you'll find a wide variety of types, and each type has many versions. It's not easy to choose a transducer correctly for a particular function. In many specifications, terms and procedures are referred to which might deter you from using one that is, in fact, the best for the job. Yet, opting to use a transducer merely because it is easier to intergreater knowledge of all types of transducers capable of greater knowledge of alltypes of transducers capable of doing the task is the ideal, and only then can a totally 179 pages Order code NE17 14.95

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS

Robots and robotics offer one of the most interesting areas for the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there are robotics kits and a wide range of mechanical components available. The micro controller is not too much of a problem either, since the software need not be terribly complex and many i The
The main stumbling block for most would-be robot builders is the electronics to interface the computer to the motors, the computer. Thich provide feedback from the robot to provide some relatively simple electronic circuits which bridge this gap.
92 pages Order code BPI79
62.95

50 SIMPLE LED CIRCUITS

A. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics. using one of the most inexpensive and freely available components-the light-emitting diode (LED). Also includes circuits for the 707 common anode display
64 pages Temporarily out of print
BOOK 250 more l.e.d. circuits Order code BPa7
£1.95
ELECTRONICS SIMPLIFIEO
-CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Especially writen for those who wish to participate in the Intricacies of electronics more through practical construction than by theoretical study. It is designed for all handle simple tools.
80 pages Order Code BP92
£1.75

EVERYDAY ELECTRONICS DATA BOOK

Mike Tooley BA

(published by EE In association with PC Publishing)
This book is an invaluable source of information of everyday relevance in the world of electronics. It contains not only sections which deal with the essential
theory of electronic circuits, but it also deals with a wide range of practical electronic applications.
It is ideal for the hobbyist, student, technician and engineer. The information is, presented in the form of a basic electronic recipe book with numerous examples skowing how theory can be put into practice using a showing how theory can be put into practice using a range of commonly aval
A must for everyone involved in electronics
256 pages Order code DATA

ELECTRONIC HOBBYISTS HANDBOOK
 R.A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthusiast is likely to need for the day-to-day pursuance of this fascinating hobby. Covers common component colour codes. Details the characteristics and pinouts of many popular semiconductor devices, including various types of logic
ICs, operational amplifiers, transistors. FETs, unijunctions diodes, rectifiers, SCRs, diacs, triacs, regulators and SMDs, etc. Illustrates many useful types of circuits, such as timers and oscillators, audio amplifiers and fitters, as well as including a separate section on power supplies. Also contains a multitude of other useful data 88 pages

Order code BP233
$\$ 4.96$

ESSENTIAL THEORY FORTHE
ELECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E.

The object of this book is to supply the hobbyist with a background knowiedge tailored to meet his or her specific requirements and the author has brought together the relevant material and presented it in a readable manner with minimum recourse to mathematics.
128 pages Order Code 228
£2.50

PRACTICAL DIGITAL ELECTRONICS HANDBOOK
Mike Tooley (Published in association with Everyday Eloctronics)
The vast majority of modem electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone involved with the design, nicnufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digital devices and techniques. Contents: Introduction to integrated circults; basic logic gates; monostable and integrated circuts; basic logic gates; monostable and
bistable devices; timers; microprocessors; memories; input and output devices; interfaces; microprocessor buses Appendix 1: Data. Appendix 2: Digital test gear projec ts; Appendix 1: Data. Appendix 2: Digital test gear projec ts:
tools and test equipment; regulated bench power supply: logic probe; logic pulser; versatile pulse generator; digital logic probe; logic pulser; versatile pulse generator; digital
IC tester; current tracer; audio logic tracer; RS-232C IC tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digital counter/frequency meter,
Appendix 3: The oscilloscope. Appendix 4: Suggested Appendix 3: The oscilloscope. Appendix 4: Suggested 208 pages \quad Order code PC100
£8.86
ELECTRONICS TEACH-IN No. 3-EXPLORING Owen Bishop
Another EE value for money publication aimed at students of electronics. The course is designed to explain the workings of electronic components and circuits by nvolving the reader in experimenting with them. Th straightforward explanations and circults to build and experiment with.
Exploring Electronics contains more than 25 useful projects, assumes no previous knowledge of electronics and is split into 28 easily digestible sections.
$£ 2.45$

ELECTRONICS TEACH-IN $88 / 89$ -

Mike Tooley BA (published by Everyday Electronics) A complete course that can lead successful readers to A award of a City and Guilds Certificate in introductory thing you need (726/303). The book contains every ing for assessment, etc. Starting with basic terminology integrated circuits, logic famities and numbering systems he text builds in stages, with revision and assessments built in, up to programming, languages, flow charts, etc 80 pages (A4 size) Order code TI-88/89

NEWNES ELECTRONICS

POCKET BOOK
E. A. Parr

Newnes Electronics Pocket Book has been in print for over twenty years and has covered the development of
electronics from valve to semiconductor technology and electronics from valve to semiconductor technology and
from transistors to LSI integrated circuits and microprocessors. To keep up to date with the rapidly changing world of electronics, cominuous revision has been necessary. This now Fith Edition takes account of recen changes and includes material suggested by readers of previous editions. New descriptions of op.amp. applica-
tions and the design of digital circuits have been added. along with a totally new chapter on computing, plus other revisions throughout.
315 pages (hard cover) Order Code NE02
£10.95

ELECTHONICS-A "MADE SIMPLE" BOOK

G. H. Olsen

This book provides excellent background reading for our Introducing Digital Electronics series and will be of interest to everyone studying electronics. The subject is simply explained and well illustrated and the book assumes only a very basic knowledge of electricity
330 pages

COMPUTING

NEWNES COMPUTER ENGINEER'S

POCKETBOOK (Second Edition)

Michael Tooley
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, service engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of software enginears". This first edition covers a vast range of subjects at a practical level, with the necessary rapidly accessible form so that the book can become part of an everyday toolkit. 205 pages (hard cover) Order code NE01 £10.95

UNDERSTANDING PC SPECIFICATIONS NEW

 R. A. PenfoldIf you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, programs. hardware add-ons, etc. The main difficulty for programs. hardware add-ons, etc. The main difficulty for the uninitiated is deciding on the specification that will of limited capabilities up to complex systems that can happily run applications that would have been considered beyond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is inadequate 10 run your applications efficiently, or one which goes beyond your needs and consequently represents poor alue for money.
This book explains PC specifications in detail, and the subjects covered include the following: Difference between types of PC (XT. AT, 80386, etc); Maths co-processors: Input devices (keyboards, mice, and igitisers); Memory. including both expanded (EMS) and drive formats and compatibility: Hard disk drives (includ drive formats and compatibility; Hard disk drives (includincluding all standard PC types (CGA Hercules, Super VGA, etc); Contains everything you need to know if you cant tell your EMS from your EGA!
104 pages Order code BP282
$£ 3.95$

COMPUTERS AND MUSIC - AN INTRODUCTION

R.A. Penfold

Computers are playing an increasingly important part in he world of music, and the days when computerlsed music was strictly for the fanatical few are long gone. to be either horrendously expensive, verycrude, or both! These days, prices are much more modest and the potential of the equipment is much greater. Consequently a lot of musicians are being tempted into the unfamiliar territory of computer music systems.
If you are more used to the black and white keys of a synth keyboard than the QWERTY keyboard of a computer, you may be understandably confused by the jargon and terminology bandied about by computer buffs. But fear not, setting up and using a computer-based music making system is not as difficult as you might think.
This book will help you learn the basics of computing. running applications programs, wiring up a MIDI system and using the system to good effect, in fact just about everything you need to know about hardware and the programs, with no previous knowledge of computing needed or assumed. This book will help you to choose the right components for a system to suit your personal needs, and equip you to exploit that system fully.
£7.95

A CONCISE INTRODUCTION TO MS-DOS

This quide is writen with the non-expert, busy person in mind and, as such, it has an underlying structure based on "what you need to know first, appears first" Nonetheless, the guide is also designed to be circular which means that you don't have to start at the beginning and go to the end. The more experienced user can tart from any section.
The guide covers versions 3.0, 3.t and 3.2 of both PC DOS and MS-DOS as implemented by IBM and other manufacturers of compatible microcomputers based systems and hard disc-based systems. 64 pages Order code BP232

AN INTRODUCTION TO 280 MACHINE CODE

R. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous know popular home computers and simple programming ex amples are given for $\mathbf{2 8 0}$-based machines tincluding ex Sinclair $\mathrm{ZX}-81$ and Spectrum, Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 and 6128.
144 pages
Order code BP 152
f2.75

AN INTRODUCTION TO 68000 ASSEMBLY
LANGUAGE
A. A. \& J. W. Penfold

Obtain a vast Increase in running speed by writing
programs for 68000 based micros such as the Commo programs for 68000 based micros such as the Commo dore Amiga, Atari ST range or Apple Macintosh range might think and this book covers the fundamentals. 112 pages

Order code BP184
22.95

THE ART OF PROGRAMMING THE $\mathbf{2 X}$
 SPECTRUM

M. James, B.Sc., M.B.C.S.

It is one thing to have learnt how to use all the Spectrum s conmands and functions, but a very differ-
ent one to be able to combine them into programs that do exactly what you want them to. This is just what this book is all about-teaching you the ant of effective programming with your Spectrum. 144 pages Order code BP 119
$\mathbf{£ 2 . 5 0}$

A 280 WORKSHOP MANUAL
 E. A. Parr, B.Sc., C. Eng., M.I.E.E.

This book is intended for people who wish to progress
beyond the stage of BASIC programming to beyond the stage of BASIC programming to lopics such as machine code and assembly language programming. 192 pages Ofder Code BP112 $\mathbf{5 3 . 5 0}$

AN INTRODUCTION TO LOUDSPEAKERS AND

ENCLOSURE DESIGN

V. Capel

This book explores the various features, good points and snags of speaker designs. It examines the whys and wherefores so that the reader can understand the principles involved and so make an informed choice of design or even design loudspeaker enclosures for him or herself. Crossover units are also explained, the various types, how they work, the distortions they produce and how to avoid them. Finally there is a step-by-step description of the construction of the Kapellmeister loudspeaker enclosure.
148 pages

DATA \& COMPONENT IDENTIFICATION

HOW TO IDENTIFY UNMARKED ICs
K. H. Recorr

Shows the reader how, with just a test-meter, to go about recording the particular signature of an unmarked i.c. which should enable the i.c. to then be identified with reference to manufacturers or other data. An ic.
signature is a specially plotted chart produced by measignature is a specially plotted chart produced by mea-
suring the resistances between all terminal pairs of an i.c. Chart Order code BP101 £0.95

RADIO AND ELECTRONIC COLOUR CODES AND DATA CHART
B. B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use throughout the world, for most radio and electronic components. Includes resistors, capacitors, transformers, field coils, fuses, battery leads, speakers, etc. It is particularly useful for finding the values of oid
components. components. Order code BP7 0.95

MUSICAL APPLICATIONS OF THE ATARI ST's R. A. Penfold

The Atari ST's are now firmly established as the computers to use for electronic music applications. The range and sophistication of these applications are much greater than most people may reafise, but there are still a lot
of misconceptions about just what can and cannot be of misconceptions about just what can and cannot be achieved. This book will help you sort out the fact from the fallacy and to get the most musically from the ST's. A wide selection of topics are covered, including the as sequencing and score writing, etc; simple but useful $\begin{array}{llr}\text { add-on projects and MIDI programming. } \\ 90 \text { pages } & \text { Order code BP246 }\end{array}$
$£ 5.95$

TESTING \& TEST GEAR

TRANSISTOR RADIO FAULT-FINDING CHART C. E. Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the top of the description of these faults, vis-sound weak but undistorted, set dead, sound low or distorted and background hoises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared. Chart

Order code BP70
$£ 0.95$
HOW TO USE OSCILLOSCOPES AND OTHER TEST EQUIPMENT

R. A. Penfold

This book explains the basic function of an oscilloscope gives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals with using an oscilloscope for fault finding on linear and logic circuits. Plenty of example waveforms help to illustrate the control functions and the effects of various fault conditions. The function and use of various other pieces of test equipment are also covered, including signal generators, logic probes, logic pulsers, and crystal
calibrators. calibrators.

Order code BP267
£3.50

PRACTICAL MIDI HANDBOOK
R.A. Penfold

The Musical Instrument Digital Interface (MIDI) is sur rounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are quit ncomprehensible to the reader.
The Practical MIDI Handbook is aimed primarily at musicians, enthusiasts and technicians who want to exploi the vast capabilities of MIOI, but who have no previous knowledge of electronics or computing. The majority of the book is devoted to an explanation of what MIOI can do and how to exploit it to the full, with practical advice on connec ling up a MIDI system and getting it to work, as well a eciphering the technical manuals.

COMPUTERS AND MUSIC

- see computer section

(A Division of Wimborne Publishing Lid.) TO ORDER
Please state the title and order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage and packing (overseas readers add $£ 1.50$ for countries in Europe, or add $£ 2.00$ for all countries outside Europe, surface mail postage) and send a PO, cheque or international money order ($£$ sterling only) made payable to Direct Book Service quoting your name and address, the order code and quantities required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET, BH21 1RW (mail order only). We accept Access (MasterCard) and Visa payments, minimum order $£ 5$.

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.
Please check price and availability
(see latest issue of Everyday Electronics) before ordering from old lists.
Note-our postage charge is the same for one book or one hundred books!

MORE BOOKS NEXT MONTH

PCB SERVICE
Printed circuit boards for certain constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to The PCB Service, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics (Payment in f sterling only).
We do have some older boards in stock - please enquire. NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail. Plaase check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
BBC Sideways RAM/ROM NOV 87	585	¢4.10
Video Wiper JUL 88	612	£6.75
Tea Tune-Alarm Thermostat AUG 88	609	£3.00
Time Switch	614	¢4.84
Suntan Timer	610	£3.07
Car Alarm	615	£3.12
EPROM Eraser OCT'88	620	¢4.07
Doorbell Delay NOV'88	616	£3.56
Infra-Red Object Counter Trans ${ }^{\text {E9.28 }}$	622	£4.61
Receiver as a	623	£3.23
Display set	624	£3.05
	629	¢4.84
Phasor	631	¢5.64
Continuity Tester \quad FEB'89	619	¢2.67
Sound-to-Light Interface MAR 89	637	£6.24
Midi Pedal	639	¢7.00
Midi Merge	640	¢3.00
Audio Lead Tester	641	¢5.77
Light Sentinel APR'89		
Main Control Board	632	¢9.20
Remote Interface (4 boards)	633	£4.59
4-Channel Auto-Fade Interface	642	£6.80
Pet Scarer MAY'89	644	¢300
Electron A/D Interface	645	¢4.84
Spectrum EPROM Programmer JUN'89	628	¢7.87
Bat Detector	647	[4.95
Programmable Pocket Timer JUL'89	648	¢3.82
Electronic Spirit Level AUG'89	649	¢3.85
Distance Recorder	651	¢5.23
Xenon Beacon SEP 89	650	[4.13
Probe Pocket Treasure Finder	653	¢4.12
Power Supplies - Fixed Voltage	654	[4.08
Variable Voltage	655	¢4.48
Music on Hold ${ }^{\text {OCT'89 }}$	646	£3.85
Power Supplies - 25 V 700 mA	656	¢4.35
30 V 1 A	657	¢4.55
EE Seismograph - Control	658	¢4.08
Detector	659	¢4.22
Lego/Logo \& Spectrum	660	¢6.49
Wash Pro NOV'89	643	¢3.83
Biofeedback Monitor - Front End	661	¢4.52
Processor	662	¢4.56
Power Supplies -1.5V-25V 2A	663	¢4.78
Logo/Lego \& Spectrum Interface	664	¢5.60
EEG Electrode Impedance Meter DEC'89	665	¢3.98
Biofeedback Signal Generator JAN'90	666	¢4.08
Four-Channel Light Chaser	667	¢6.70
Quick Cap Tester FEB'g0	668	¢3.92
Weather Station		
Anemometer - Freq./Volt Board	670	¢3.94
Optional Display	669	¢3.73
Wind Direction	673/674	¢4.22
System Power Supply	675	¢3.59
Prophet In-Car Ioniser	676	¢3.18
EE Weather Station MAR'90		
Display Driver	672 \& 678	¢4.22
Display and Sensor	671	¢4.47
Fermostat Mk2	677	¢4.28
Superhet Broadcast ReceiverTuner/Amp	679/680	¢4.22
Stereo Noise Generator APR'90	681	¢4.24
Digital Experimenter's Unit - Pulse Generator	682	¢4.46
Power Supply	683	¢3.66
Enlarger Timer	684	¢4.28
EE Weather Station		
Rainfall/Sunlight Display	685	¢4.27
Rainfall Sen and Sunlight Sen	686/687	¢4.16
Amstrad Speech Synthesiser MAY'g0	689	£4.68
Quizmaster	690	£4.74

ESSENTIAL READING FOR PC HARDWARE ENTHUSIASTS

- Building your own PC XT or AT?
- Upgrading an existing PC?
- Want to know what makes them tick?
- you need "PC-DIY"

Summary of contents:
The book contains a wealth of information about PC hardware and gives practical advice for PC builders and upgraders. Written in a lighthearted style. It is suitable reading for beginners but includes information for the more experienced too

There are eight chapters; the first is a brief introduction. The second chapter gives a potted history of the PC range, and details some of the characteristics of each model. Chapter three will be of particular interest to those who are undecided about which type of PC to build. It gives the pros and cons of all the usual combinations of cases, boards and display types.

The fourth chapter is where the real work of assembling the parts is described. It includes many practical tips not published elsewhere. If the beast won't go when you have built it you need to read chapter 5 !

If you already have a PC. but it has failed in some way, chapter six may help, whereas chapter seven deals with upgrades, to existing machines. Software is briefly discussed in chapter eight and there are Appendices with useful data. The book has 112 pages and is in paperback format

UPGRADE OR BUILD YOUR OWN IBM COMPATIBLE

MANY OTHER PERIPHERALS AVAILABLE

PANRIX

ELECTRONICS

EASY-PC, SCHEMATIC and PCB CAD			
Over 7500 Installations in 50 Countries Worldwide! - Runs on:- PC/XT/AT/ 286/ 386/486 Herc, CGA, EGA, VGA. - Design:-Single sided, Double sided and Multilayer boards. - Provides Surface Mount support. - Standard output includes Dot Matrix / Laser / Inkjet Printer, Pen Plotter, Photo-plotter and N.C. Drill. - Superbly easy to use. - Not copy protected.			BRITIS
		AWARD	

Options: Additional, 1000 piece Symbol library $£ 38.00$ (Standard Library includes over 400 Symbols.) EASY-LINK Gerber files Import facility $£ 98.00$

For full info' Phone, Fax or Write to:
Number One Systems Ltal.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8.00$ (plus VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 30 pence (plus VAT) per word (minimum 12 words).

FM Transmitter Kits also a Telephone Bug Detector Kit Ready built FM transmitter $£ 6.50$ including P\&\& These are commercial kits.
We atso stock a selection of Scanning receivers so HOTLINE ELECTRONICS 97 LEIGH RD. ATHERTON, GT MANCHESTER Tel: (0942) 891140 Mail Order Only

ser SERVICE MANUALS \triangle

Available for most Video Recorders, Colour \& Mono Televisions, Cameras, Test Equipment, Amateur Radio, Vintage Valve Wireless, Any Audio, Music Systems, Computers, Kitchen Appllances, etc. Equipment from the 1930's to the present and beyond
Over 100,000 models slocked, originals \& photostats.
FREE Catalogue Repair \& Data Guides with all orders

MAURITRON TECHNICAL SERVICES (EE) 8 Cherry Tree Road, Chinnor, Oxfordshire OX9 4QY
Tel: (0844) 51694. Fax: (0844) 52554

Rechargable BatteriesAA (HPT) $500 \mathrm{mAH} \quad \begin{array}{r}1.99 \\ \hline 0.99\end{array}$ $\begin{array}{llll}\text { AA } 500 \mathrm{mAH} \text { solder tags } & £ 0.99 & £ 0.77+\text { VAT } \\ & £ 1.55 & £ 0.95+\text { VAT }\end{array}$ AA 700 m A H high capacity $\mathrm{E} 1.95 \quad \$ 1.20+\mathrm{VAT}$ C (MP11), 1.2AM C 2 AH with solder tags D (MP2) 1.2 AH PP3 8.4 V 110 mAH E. E .95 E3.59+VAT Sub C with solder tags 1 12AH 92.90 $\begin{array}{llll}1 / 2 \text { AA with solder tags } & £ 1.55 & £ 1.17+\text { VAT }\end{array}$ AAA (HP16) $180 \mathrm{mAH} \quad £ 1.75$ £1.15+VAT

Special offers for unusual sizes only while stocks last. Please check availabillty before ordering.

$$
\begin{array}{lr}
\text { Quantity } & \begin{array}{r}
1.99 \\
\text { wlth flat top } \\
\\
£ 3.95
\end{array}
\end{array}
$$

F cell 7 AH $32 \times 87 \mathrm{~mm}$ whth flat top
$\Upsilon 2.80+$ VAT
F cell 7 AH $32 \times 87 \mathrm{~mm}$ whth fiat top
Cellular telephone battery
42mm long $\times 16 \mathrm{~mm}$ dia
£1.45 $£ 0.95+$ VAT
Stick of 4171×16 dia with 150 mm red \& black leads
$\begin{array}{lll}\text { red \& black leads } & £ 5.95 & £ 4.00+\text { VAT } \\ 4 \text { cell battery } 94 \times 25 \mathrm{~mm} 4.8 \mathrm{~V} & £ 3.50 & £ 2.30+\text { VAT }\end{array}$
3 cell PCB mounting 3.6 V 81.95

$17 \mathrm{~mm} \times 16 \mathrm{~mm}$ dia
All 1 to 99 prices include VAT
1.95

Please add 95 p postage \& packing per order

JPG Electronics

276-278 Chatsworth Road, Chesterfield S40 2BH Access \& Visa orders iel: (0246) 211202

DO YOU USE TELEPHONE LINES?

CONNECT YOUR EQUIPMENT TO THE TELEPHONE SYSTEM
without the cost and delay of type approval.
ACHIEVE THIS BY USING OUR Approved transmit, receive and hybrid systems for use on P.S.N. (normal dial system). Private circuits, or Music Programme circuits
THE LEGAL ECONOMICAL SOLUTION for broadcast signals -Security alarm signalling - Linking of remote factory sites for P.A. - Intercom etc.
Call 0266793381 or Fax 0268565759 FOR FULL DETAILS
PARTRIDGE
UNIT D
318 HIGH ROAD
BENFLEET
ESSEX SS7 5HB

N. R. BARDWELL LTD (EE)

 200 Signal dlodes $1 \mathrm{NAT48} .$.80
4 u 716 V Fadial electro
$4 \mathrm{U7} 16 \mathrm{~V}$ Radial electrolytics smaliz size.
4 U 763 V Radial electrolytics small 10UF SOV Radial electrolytics small size
22UF 25 V Radial electrolytics small size 33 UF 16 V Radial electrolytics small size
47 HF 50 V Radial electrolytics small size 47 UF 50 V Radial electrolytics small size...
470 OF 10 V Radial electrolytics small size. 100K sub-min horizontal presets. in glass reed switches..
Ass orted high brightness leds...
Assorted seven seoment
4P 3W MBE min. rotary switches.
Assorted dils sockets up to 40 pin.
N. R. BARDWELL LTD (EE) Over one million capacitors for sale in smal quantities at prices which are much less than manufacturers 10,000 off prices. Also many, many other types of components at silly prices. Stamp for large lists.
288 Abbeydale Road, Sheffield S7 1FL Phone (0742) 552886. Fax (0742) 500689

ELECTRONIC COMPONENTS EVERYTHING FOR YOUR NEXT PROJECT

THE BIGGEST DISPLAYIN THE SOUTH IS AT

FRASER ELECTRONICS

42 ELM GROVE \star SOUTHSEA \star HANTS
Telephone 0705-815584

Cooke International

DO YOU WANT USED SCOPES, SIGNAL GENERATORS, POWER SUPPLIES POWER METERS, DVM's, OSCILLATORS, ATTENUATORS, TEST EQUIPMENT
Contact: Cooke International, Unit 4, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 0EB Tel: 0243545111 - Fax: 0243542457
Wide range of items available. Send S.A.E. for lists

KITS, PLANS, ETC for surveillance, protection (sonic, HV), "007" gear. Send $2 \times 22 \mathrm{p}$ stamps for list ACE(EE), 53 Woodland Way, Burntwood, Staffs. G.C.S.E. ELECTRONICS KITS at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT ELECTRONICS, 70 Oxford Road, Clacton COI5 3TE.
HUNDREDS of unusual items cheap! Send $90 p$ (coins/stamps) for interesting samples and list. Grimsby Electronics, Lambert Road, Grimsby.
FREE MEMRERSHIP and introductory pack of components worth over $£ 10$. Send $£ 1.50$ P\&P to. National Component Club, Higher Ansford, Castle Cary, Somerset BA77]G.
PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B.M.A. offs and quantities, for details send s.a.e. to B.M.A.
Circuits, 38 Poynings Drive, Sussex BN3 8 GR, or phone Brighton 720203.
£2.99,5-30 Watt amplifier panel plus T\&B controls plus LED. 12 V KIA, 8 Cunliff Road, IIkley (P\&P £I.50).
"FREE!"' 100 assorted components plus sale catalogue. £1.50. P\&P. KIA.
PRINTED CIRCUIT ARTWORK provided on film at one-to-one complete with drilling details. If required a prototype PCB can be provided. For details please send s.a.e. to Collin Hawker, Industrial Electronics Engineer, 12A Knighton Lane. Broadmayne, Nr. Dorchester. Dorset DT28EZ or phone (0305) 852156.
WORKSHOP CLEARANCE. Components, equipment, software, books. S.A.E. for lists. Meakin, West End Gardens, Fairford, Glos GL7 4JB

NEW VHF MICROTRANSMITTER KIT Tuneable $80-135 \mathrm{MHz}, 500$ metre range, sensitive
electret microphone, high quality PCB. electret microphone, high quality PCB. Assembled and ready to use $£ 9.95$ post fre Assembied and ready to use 49.95 post 1 S.A.E. Ior details of this and other kirs Chequessp.o. spayato to

UANTEK ELECTRONICS LTD
Kits Dept. (EE), 45a Station Road

Assorted socket/conns/ado p-di-si-etc.
Min SP/CO slide switches.
Min SP/CO slide switches.
Peltier elfect heat pump.
10 watt Stereo a mpllfier, 4 controls plus data
Prices include VAT, postage $£ 1.00$.
Many more lines in stock. Lists-stamp
288 Abbeydale Road, Sheffield S7 1FL
Phone (0742) 552886. Fax (0742) 500689

ELECTRONICS FOR THE HOBBYIST is a 90 minute video-cassette using computer-graphic simulations to enable the hobbyist or student to understand the way in which common electronic components work and is available directly from us at only £19.95 inc. P\&P
Other titles available. S.A.E. for list. Allow 14 days
for delivery. Send Cheques/P.O. payable to:
On-Line Video MarketIng (Dept EV-2)
The Cottage, Tredown Farm, Bradstone,
Milton Abbot, Tavistock, Devon PL 19 0QT

250V AC CAPACITORS

250 V ac class X mains rated capacitors for power regulation and lamp dimming. 0.1uF $£ 0.30 ; 0.22 \mathrm{uF}$ £1.70; 2. 2uF £1 80; 3uF £2.95:3 3uF £3.20.
£1.70; 2.2uF £1.80, ЗuF 22.95, 3.3uF £3.20
Chemiluminescent 4" light stlcks - fascinating chemical light source: red, blue or green $£ 1.10$ each Advanced BASIC Scientific Subroutines - Macmit lan Book of maths, static routines writt
disk - $£ 25.00$.

All prices include VAT, P\&P \&1 per order

Lilco Ltd

23 Middlewood Park, Livingston EH54 8AZ
SUPER FM MICROTRANSMITTERS Hear on any FM Radio.

High Sensitivity Full instructions

Fully Tuneable
Ready to Use
 Bullt-in microphone On/Off Switch Encased On/Off Switch
East to Use
E8.50 POST FREE. CHEQUES, PO'S. TEL 0205362003
Mr B. Hicks, 24 Brewster Rd, Boslon, Lincs PE21 0DY

VELLEMAN KITS

Over 100 Project Kits in stock
Send 50p for NEW 1991 Catalogue + Price List
RETAILERS WANTED
Why not be one of our many retailers who carry our top range of high quality kits (Discounts to be arranged) Send Details and Letterhead to:

HIGH-Q-ELECTRONICS PO BOX 1481 LONDON NW7 4RF тец: 0707263562

\triangle
FAX: 081-209 1231
schools and colleges welcome

SHERWOOD ELECTRONIC COMPONENTS 45 Rutland Street, Mansfield, Notts NG18 4AP				
$\left\lvert\, \begin{aligned} & 500 \\ & s i n g ~ \end{aligned}\right.$				
		SPECIAL		
Ispoin				
	为	pur		
	Sumeret, ooos.aut			

COMPONENTS For TV * Video Audio * Computer	
	MARAPET (EEF) 1 HORNBEAM MEWS GLOUCESTER GL2 OUE

Abstract

Carbon Film resistors \%WW 5\% E24 series 0.51 R to 10MO 100 off per value - 75p. even hundreds per value totalling 1000 ... Metal Film resistors $1 / 6 \mathrm{~W}$ 10R to 1 MO 5% E12 series -2 p. 1% E24 series Metal Film resistors $1 / \mathrm{WW}$ 1OR to 1 MO 5\% E12 series - 2 p. 1\% E24 Mixed meral/carbon film resistors $1 / 2 \mathrm{~L}$ E24 series 1 RO to 10 MO Mixed meta/carbon film resistors $1 / 2$ E 24 series 1 RO to 10MO....... 1 watt mixed metal/Carbon Film 5% E12 series 4 R7 to 10 Megohms 1 watt mixed metal/Carbon Film 5\% E12 series $4 R 7$ to 10 Mego Lineal Carbon ple-sets 100 mW and $1 / \mathrm{WW} 100 \mathrm{R}$ to 4 M 7 E6 series Miniature polyster capacitors 250 V working for vertical mounting $.015, .022, .033, .047, .068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47-8 \mathrm{p} .0 .68-8 p .1 .0-12 p$ Mylar (polyester) capacitors 100 V working E12 series vertical mounting 1000 p to $8200 \mathrm{p}-3 \mathrm{p} .01$ to $.068-4 \mathrm{p} .0 .1-5 \mathrm{p} .0 .12,0.15,0.22-6 \mathrm{p} .0 .47 / 50 \mathrm{~V}-8 \mathrm{p}$ Submin ceramic plate capacitors 100 V whg vertical mountings. E12 series $2 \% 1.8 \mathrm{pf}$ to 47 pf - 3 p. $2 \% 56 \mathrm{pf}$ to 330 pf - 4p. 10\% 390p-4700p Disc/plate ceramics 50 V E1 2 series 1 PO to 1000P, E6 Series 1500 P to 47000 P Polystyrene capacitors 63 V working E12 series long axial wires 10 pf to $820 \mathrm{pf}-4 \mathrm{p} .1000 \mathrm{pf}$ to $10.000 \mathrm{pf}-5 \mathrm{p} .12,000 \mathrm{p}$ cmos 4001 - 20 p .4011 - 22 p 4017 ALUMINIUM ELECTROLYTICS (Mfds/Volts) $1 / 50,2.2 / 50,4.7 / 50,10 / 25,10 / 50 \ldots \ldots \ldots \ldots \ldots . . .$. $22 / 16,22 / 25,22 / 50,47 / 16,47 / 25,47 / 50$ 100/16, 100/25 7p; $100 / 5012 p ; 100 / 100$. 220/16 8p, 220/25, 220/50 10p; $470 / 16.470 / 25$ 000/25 25p; 1000/35. 2200/25 35p; 4700/25 Submin, tantalum bead electrolyics (Mfds/Volts) $0.1 / 35,0.22 / 35,0.47 / 35,1.0 / 35,3.3 / 16.4 .7 / 16$ $22 / 35,4.7 / 25,4 / 35,6.8 / 1615 \mathrm{p}: 10 / 16.22 / 6$ $2.2 / 35,4.7 / 25,4.7 / 35,6.8 / 1615 p ; 10 / 16,22 / 6$ $33 / 10,47 / 6,22 / 16$ 30p; $47 / 1035 p ; 47 / 1660 p ; 47 / 35$ VOLTAGE REGULATORS $1 \mathrm{~A}+$ or $-5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 18 \mathrm{~V} \& 24 \mathrm{~V}-55 \mathrm{p}, 100 \mathrm{~mA}, 5.8,12.15 \mathrm{~V}+$ $75 / 25 \mathrm{~mA} 1 \mathrm{~N} 4148$ 2p. 800/1A 1 N 4006 41/p. 400/3A 1 N5 50414 p. 115/15mA OA9 100/1A 1 N4002 31/2p. 1000/1A 1 N4007 5p. 60/1.5A S1M1 5p. 100/1A bridge Zener diodes E24 series $3 V 3$ to $33 V 400 \mathrm{~mW}$. 8 p . 124 Battery snaps for PP3 - 6 p for PP9 L.E.D.'s $3 \mathrm{~mm} \& 5 \mathrm{~mm}$. Red, Green, Yellow - 10 p. Grommets 3 mm 2 p 5 mm Red flashing L.E.D.'s require 9-12V supply only Mains indicator neons with 220 k resistor 20 mm fuses 100 mA to 5 A . O . blow 5 p .A/surge 8 p . Holders, chassis, mounting High speed pc drill $0.8,1.0,13,1.5,2.0 \mathrm{~mm}-30 \mathrm{p}$. Machines 12 V dc HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unis AA/HP7 Nicad rechargeable cells 90p each. Universal charger unis $0.1^{\text {" }}$ Stripboard $21 / 2^{\prime \prime} \times 1^{\prime \prime} 9$ rows 25 holes - 25 p. $3^{3} 4 \times 21 / 2^{\prime \prime} 24$ rows 37 holes Jack plugs 2.5 \& 3.5 m Sockets Panel Mig. 2.581 .5 m TRANSISTORS BC107/8/9 - 12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L, BC183, 183L BC184, 184L, BC212, 212L-10p. BC327, 337, 337L-12p. BC727, 737-12p. 8D135/6/7/8/9-25p. 8CY70-15p. BFY50/51/52-20p. 50 , TIP31, 32 - 30p, TIP41, 42-40p. BU208A - £1.20, BF195, 197 $8 f \times 88-15 p, 2 \mathrm{~N} 3055-50 \mathrm{p}$, TIP31. $32-30 \mathrm{p}, 7 \mathrm{P} 41,42-40 \mathrm{p}$. 12 p All prices are inclusive of VAT. Postage 30 p (free over C 5). Lists Free

THE CR SUPPLY CO

127 Chesterfield Rd., Sheffield S8 ORN
Tel: $0742557771 \quad$ Return posting
VARIABLE VOLTAGE
TRANSFORMERS
INPUT 220/240V AC 50/60 OUTPUT 0-260V 0.5 KVA 2.5 amp max 1 KVA 5 amp max 2KVA 10 amp max (£38.48 inc VAT)
£37.40
(£48.9
(45.25
 (E69.89 inc VAT)
© 71.50 E126.50 (Carriage on request)
\qquad IVE RANGE OF COMPREHENSIVE RANGE OF
TRANSFORMERS LT ISOLATION \& AUTO maing tead or open framer vipe. Availble for inmernare selver.
ULTRA VIOIET BLACK LIGHT FLOURESCENTTUBES
 13 in 10 wan $\mathrm{C} 5.80+75 \mathrm{p}$ p $\& \mathrm{p}$
12 in 8 wat $\mathrm{C} 4.80+75$ p
. Sin 6 want $£ 3.96+50$ p p\&p
 230 V AC BALLAST KIT For either 6 in, 9 in or 12 in tubes $£ 5.50+55 \mathrm{p}$
p\&
(87.11 inc VAT)
For 13 in tubes $£ 6.00+75 \mathrm{p}$ p\&o

($£ 7.93$ inc VAT) 400 WATT UV LA Only ₹ $3400+£ 2.50$ p\& \quad [42.89 inc VAT)
175 WATT SELFBAI Available with MERCURY BULBS Available with BC
A p\&p E 20.27
12 VOLT BILGE
 PRICESINCLUDEP\&P \& VAT
RE KIT Build you own EPROM ERASURE for a fraction of the price of a made-up unit kir of parts less case includes
12 in 8 watt 2537 Angsl Tube Ballast unit, pair of bi-pin leads, neon indicator, on/off switch, satety microswitch and $\frac{\text { Circult E14.00 }+ \text { E2.00 pg p }}{\text { SUPER HY- } 1 \text { GHT STRO STROBE KIT }}$ Case and reilector $\mathbf{£ 2 2 . 0 0 +} \mathbf{~} 2.00 \mathrm{p}$ (E 58.75 inc VAT) SAE for furher details including
dustrial Surobe Kits.
"BOFFINS UNIQUE OFFER Surplus Precision Madica! Unit, internally in excel.
lent condtion. Designed primarily to eject a piecise ent condtion. Designed primarily to eject a piecise
controliable amount of fluid from a medical syringe (latter not supplied). Contains the following removable Components Dual Micro Processor Boards and
EPROMS. Escap Precision 12 V DC Motor with EPROMS. Escap Precision 12 V DC Motor with
300:1 Gear Box and optical encoder Coupled to precision theaded drive mechanism. Mains supply
with $12 \times 1.5 \mathrm{~V}$ Ni-Cad A.A. cells back-up. LC.D Digntal read-out 17 mm high with legends. Audible warning.
These are sold quality components. Regret no Circuits available. Ridiculously low price: $£ 16.00 \pm$ E4.00 p

WIDE RANGE OF XENDN FLASHTUBES

 GIANT BLOWOn vour enquiries GIANT B LOWER EXTRACTOR UNIT 100 cm ; height $27 \mathrm{~cm} ;$ Depth 26 cm , Fixing plate 106 TOPIN CENTRIFUGAL . $330 \mathrm{~V} \mathrm{AC}, 2,800 \mathrm{RPM}, 0.9 \mathrm{amp}, 130 \mathrm{~mm}$ diamete
 inc. VAT) In the following sizes: 9RPM. 12 AMP. 80 RPM. 160
RPM. 110 V AC or 240 V AC with capacitors (sup. plied). Price inc VAT \& P\&P 514.86
71 GPM 201b inch torque reversable put including capacitor and transtorme for 115 V AC in put including capacitor a and transiormer
operation. Price inc VAT \& P\& $£ 23.50$.

SOLID STATE EHT UNIT
Input $230 / 240 \mathrm{~V}$ AC, Output approx 15 KV .
Praducing 10 mm spark. Bult -in 10 sec timer Producing 10 mm spark, Bult in
Easily modified for 20 sec .30 sec to continuous. Designed for boiler agnition. Dozens of uses in
the field of physics and the inetd of physics andelectronics, eg supplying
neon or argon tubes etc. Price tess case
CB.50 +51.00 p\& (f 11.16 inc VAT) NMS

HEAVY DUTY MOTOR
Crouzet $115 \mathrm{~V} / 230 \mathrm{~V}$ AC heavy duty ; RPM motor Anticlockwise type $82 / 015$. Size 68 mm , diameter x 55 mm long. Shat 6 mm diameter $\times 20 \mathrm{~mm}$ long. Price
inc VAT \& p\& E 18.86 . OW 2 R 5

RHEOSTAT
VAT \& P\&P E10.61
MICROSWITCH
Pye 15 amp changeover lever microswitch. type
S171. Brand new. price 5 for $\mathbf{E 7 . 0 5}$ inc VAT \& p \&p
NMS = NEW MANUF SURPLUS
R\&T = RECONDITIONED AND TESTED

ADVERTISERS INDEX

BK ELECTRONICS BLB ELECTRONICS. Cover (iii) BLB ELECTRONICS Cover (ii) 369 CAMBRIDGE COMP. SCIENCE \quad Cover (ii) CHIPLINK.
CIRKIT DISTRIBUTION. CRICKLEWOOD ELECTRONICS. CR SUPPLY COMPANY ELECTRONIZE DESIGN. electrovalue E.P. ELECTRONICS. GREENWELD ELECTRONICS. HART ELECTRONIC KITS... HIGH-Q-ELECTRONICS HOBBYKIT ICS.... JAYTEE ELECTRONIC SERV S JPG ELECTRONICS. LABCENTER ELECTRONICS. LONDON ELECTRONICS COLLEGE... LYS ELECTRONIC COMP MAGENTA ELECTRONICS. MAPLIN ELECTRONICS .. MARAPET.

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \&
COMMUNICATIONS ENGINEERING
EElectronics, Computing, Television, Video, Testing \& Fault Diagnosis)

BTEC National Certificate (ONC) ELECTRONIC ENGINEERING 1-INFORMATION TECHNOLOGY
(Electronics, Satellite TV, Networks, Telecomms)
2-ELECTRONIC EQUIPMENT SERVICING IElectronics, Television, Video Cassette Recorders, CCTV, Testing and fault Diagnosis)

3-SOFTWARE ENGINEERING
(Electronics. Assembler, BASIC, Pascal, CADCAM)
4-COMPUTING TECHNOLOGY
(Electronics, Computing Sottware/Hardware, Microelectronics)

10 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, Control, Robotics)
Thase courses include a high percentage of college based practical work to enhance future employment prospects
MARCO TRADING... NUMBER ONE SYSTEMS. OMNI ELECTRONICS.. PANRIX ELECTRONICS. PARK GATE PUBLISHING. PARTRIDGE ELECTRONICS. RADIO \& TV COMPONENTS. RICH ELECTRONICS SERVICE TRADING CO. SHERWOOD ELEC. COMP. \qquad SUMA DESIGNS TK ELECTRONICS. TYPESETTING BUREAU.

No additional fees for overseas students
Shortened courses of from 3 to 6 months can be arranged for
applicants with previous electronics knowledge
THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT AN EQUAL OPPORTUNITIES PROGRAMME
O.N.C. and O.N.D.

Next Course Commences
Monday 16 th September, 1991 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept. EE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL 071-3738721

Typefit
 The Typesetting Bureau Ltd

6 Church Street, Wimborne Dorset BH211JH
Tel: (0202) 882299
Fax: (0202) 841692
Modem: (0202) 882270
DX: 45314 Wimborne
PC page make-up software and typesetter output bureau
Datalinx: TYPBUR

££££ SAVING TOP QUALITY DTP PROGRAM

Now anyone can use their PC to produce professional quality typesetting for just £185 (plus VAT). The Typesetting Bureau's "Typefit" WYSIWYG on screen page make-up software gives access to over 200 fonts (all from 1 pt to $1,000 \mathrm{pt}$) plus output at $2,000 \mathrm{~d} . \mathrm{p} . \mathrm{i}$., for just $£ 3.30$ (or less) per foot of 12 inch wide bromide.

At these prices anyone can afford professional quality for every job. The Bureau operates on a 24 hour turnaround and is now fully on stream with modem, Datalinx and $3^{\frac{1}{2}}$ or $5^{1 / 4}$ disks. Typefit has already proved popular with many small companies and four national magazines (including Everyday Electronics) are presently using it to produce every issue.

The system is based on software that normally retails at $£ 1,200$ (without fonts), it has been modified for bureau use and is thus available to everyone at this low price. Typefit is designed to run on IBM PCs and compatibles having at least 640 K of RAM and 20 M of hard disc

Proofing of output can be achieved on any dot matrix printer or, with a laser driver ($£ 30$ extra), on

HPII or HPIII compatible laser printers (this output is not suitable for use as artwork). Even for small users who only produce the odd leaflet or price list Typefit can make sure the presentation is totally professional.

For our information pack and font chart give us a ring or send in the coupon.

We provide the expensive output equipment

 and typefaces, you SAVE on typesetting costs
Please send me more information on Typefit

Name
Address

Post Code

Tel:

OMP POWER AMPLIFIER MODULES Now enioy a world-wde reputation for quairy, reliabitry and performance at a realistic price. Four models avalabie to suit the needs of the professional and nooby market. i.e., Industry, Leisure, Instrumental and Hi-Fi etc. When comparing prices, NOTE all mocels include Toroidal powe
Glass libre P.C.B., and Drive circuits to power compatible Vu meter. Open and short circuit proot.
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP100 Mk 11 Bi-Polar Output power 110 watts R.M.S. into 4 ohms, Frequency Response 15 Hz $30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01%, S.N.R. -118 dB , Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\&'P

NEW SERIES II MOS-FET MODULES

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor, >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.002%, Input Sensitivity 500 mV , S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE £39.99 + £3.00 P\&P.

OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R. T.H.D. Typical 0.001%, Input Sensitivity
-130 dB Size $300 \times 155 \times 100 \mathrm{~mm}$. - 130 dB . Size $300 \times 155 \times 10$
PRICE $£ 62.99+£ 3.50$ P\&P.

OMP/MF300 Mos-Fet Output power 300 watts R.M.S OMP/MF300 Mos-Fet Output power 300 watts R.M.S.
into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ into 4 ohms, Frequency Response $1 \mathrm{~Hz}-100 \mathrm{KHz}$
-3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T. H.D. Typical 0.0008%, Input Sensitivity 500 mV , S.N.R. -130 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$. PRICE $£ 79.99+£ 4.50$ P\&P.

 Vu METER Compatible with our four amplifiers detailed above. A very accurate visual
display emploving 11 LED diodes 7 green 4 real plus an adddional on oft indicator display employing $11 \mathrm{LE.ED}$ diodes $(7$ green, 4 red) plus an add.tional on/oft indicator.
Sophisticate Sophisticated logic control circuits for very fast rise ano
case, with tinted acryic front Size $84 \times 27 \times 45 \mathrm{~mm}$ case, with itintec acrylic form
PRICE $£ 8.50+50 \mathrm{p}$ PQP.

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE S.A.E. (30p STAMPED) FOR COMPLETE LIST.

McKENZIE:- INSTRUMENTS, P.A., DISCO, ETC.

ALL McKENZIE UNITS 8 OhMS IMPEDENCE

 RES. FREO, 70 Hz . FREQ, RESP TO 6 KHZ . SENS, 1000 B
 12 ion WAT C12100GP HIGH POWER GEN, PURPOSE RES, FREQ 45Hz FREQ. RESP, TO 7 KHHz SENS, 98 CB .
12^{\prime} ' 00 WATT C12100TC TWIN CONE) HIGH POWER $1 z^{\prime} 100$ WATT C12100TC TWIN CONE) HIGH POWER W
RES. FREQ, 45 Hz . FREQ, RESP TO 14 KHz SENS RES. FREO, 45H2. FREC, RESP. TO 14KHz. SENS. 100 dB .
$12^{\prime} 200$ WATT C12200日 HIGH POWER BASS KEYBOAR $12^{2} 200$ WATT C122008 HIGH POWER BASS, KE YBOARDS, DISCO, PA
RES, FREQ, 40 Hz . FREO, RESP, TO 7 KHz . SENS. 100 CBB . RES, FREQ, 40 Hz, RBEQ, RESP, TO 7KHZ. SENS, 1OADB.
$12{ }^{3} 00$ WATI C1300GP HGH POWER BASS LEAD GUITAR, KEYBOA
 RES, FREO, 40 Hz , FREQ RESP, TO 5 KHz . SENS, 988 B . RES FREO 40 Hz . FREQ RESP, TO 4 KHZ . SENS 99 dB RES, FREQ, 40Hz. FREQ, RESP, HIGKHZ SENS, $15^{2} 250$ WATH C $15250 B S$ VERY HIGH POWER BASS. RES FREO, 40 Hz , FREQ. RESP, TO 4 KHz . SENS, 990 CB .

 $18^{\prime \prime} 400$ WATT C18404BS EXTREMELY HIGH POWER,
RES, FREQ, 27HZ FREQ, RESP. TO 3 KHz. SENS, 99 dB .

ETC PRICE $537.59+E 3.50$ P\&P PRICE VOICE, DISCO. PRICE $665.79+£ 3.50$ P\&P PDS, DISCO, ETC.
PRICE $887.51+£ 3.50$ P\&P PRICE $£ 55.05+£ 4.00 \mathrm{P} \& \mathrm{P}$ PRICE $£ 75.10+£ 4.00$ P $\&$ P PRICE $£ 82.54+\mathbb{+ 4 . 5 0} \mathbf{~ P \& P}$ PRICE $£ 96.47+£ 4.50$ P\&P CY BASS.

EARBENDERS:- HIFI, STUDIO, IN-CAR, ETC.

ALL EARBENDER UNITS 8 OHMS (Excepl E88-50 \& EB10-50 which are dual mpedence lapped (fu 488 ohm BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED FOAM SURROUND
$8^{\prime \prime} 50$ WATT EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR 10 ' 50 WATT EB10-50 DUAL IMPEDENCE TAPP 1 IO $4 / 8$ 1050 WATT EB10-50 DUAL IMPEDENCE, TAPPED 48
RES, FREQ, 40 HZ . FREQ, RESP, TO 5 KHz . SENS, 99 dB $1 \mathbb{W}^{\prime}$ ' 100 WATT EB10-100, EASS, HI-FI, STUDIO
RES, FREQ, 35 Hz . FREQ, RESP, TO 3 KHz . SENS, 96 dB. 12 60 WAT EB12-60 BASS, Hi-FI, STUDIO. RES, FREQ, 28 Hz . FREQ, RESP, TO 3 KHz . SENS, 92 dB ,
12
RE
000 RES, FREQ, 26 Hz . FREQ, RESP. TO 3 KHz . SENS 93 dB PRICE $8.90+\mathbf{~} 2.00$ P\&P PRICE $£ 12.00+£ 2.50$ P\&P PRICE $\mathbf{\varepsilon 2 7 . 7 6 + \boldsymbol { E } 3 . 5 0}$ P\&P PAICE E21.00 $+£ 3.00$ P\&P FULL RANGE TWIN CONE, H!GH COMPLIANCE, ROLLED SURROUND $51 /{ }^{1 / 2} 60$ WATT EB5-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC
RES, FREQ 63 Hz FREQ, AESP TO 20 KHz . SENS 920 B RES, FREQ, $63 H z$. FREQ, RESP , TO
$61 / 2^{\prime}$ ' 60 WAIT EB6-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC RES, FREQ, 38 Hz . FREQ, RESP, TO 20 KHz . SENS, 94 dB . $8^{\prime \prime} 60$ WATT EB8-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC
RES, FREO 40 Hz . FREQ, RESP TO 18 KHz SENS, 89 dB RES, FREQ, 40 Hz . FREQ, RESP, TO 18KHz. SENS, 89 dB .
10 ' 60 WATT EB
O-GOTC (TWIN CONE) HI-FI, MULTI-ARAY DI RES, FREQ, 35 Hz . FREQ. RESP, TO 12 KHz . SENS, 860 dB .

PRICE $¢ 9.99+£ 1.50$ P\&P PRICE $\mathbb{E} 10.99+£ 1.50$ P $\&$ P PRICE $£ 12.99+£ 1.50$ P\&P

TRANSMITTER HOBBY KITS

PROVEN TRANSMITEER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND H/GH QUALITY COMPO
COMPLETE WITH CIRCUIT AND INSTRUCTIONS

3W FM TRANSMITER $80 \cdot 108 M H Z$, VARICAP CONTROLLED PROFESSIONAL PER FORMANCE, RANGE UP TO 3 MLES, SIZE $38 \times 123 \mathrm{~mm}$. SUPPLY 12 V ($(0.5 A M P$ PRICE $£ 14.49+\{1.00$ Ps P

3 watt FM FW MICRO TRANSMITER (BUG) 100-108MHz VARICAP TUNED COMPLETE WITH Transmitter VERY SENSFET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY YV BATT, PRICE ع8. 62 + 51.00 Pap

OMP VARISPEED TURNTABLE CHASSIS!

 TROL $33 \& 45 \star$ VARI PITCH CONTROL \star HGG TOROUE SERVO ORIVENDC MOTOR \star TRANSIT SCREWS 12 'DIECAST PLATER * NEON STROBE \& CALIBRATED BAL WEIGHT \& REMOVAELE HEAD HEEL \star 1/"CARTRIDGE FIXINGS \star CUELEVER \star POWER 220200 V $50.60 \mathrm{HZ} \star 390 \times 305 \mathrm{~mm} \star$ SUPPLIED WTH MOUNTNG CUT-OUT TEMPLATE. PRICE $559.99+£ 3.50$ P\&P.

OPTIONAL MAGNETICICARTITIDGES

STANTON AL500	GOLDRING GB50
PRICE $£ 16.99+50 \mathrm{D}$ P\&P	PRICE $£ 6.99+50 \mathrm{D}$ P\&P

OMP MOS-FET POWER AMPLIFIERS, THOUSANDS PURCHASED HIGH POWER, TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

NEW MXF SERIES OF POWER AMPLIFIERS THREE MODELS:- MXF200 (100w + 100w) MXF400 (200w + 200w) MXF600 (300w + 300w) All power ratings R.M.S. into 4 ohms
FEATURES: \# Independent power supplies with wo Toroidal Transiormers * Twin L.E.D. Vu meters * Rotany indended levei controls * Illuminated oniot swich \# XLR connectors * Stancard 775 mV inputs * Open and short crevit proct t distorion \# Aluminium cases * MXF500 Fan Cooled with D.C. Loudspeaker and Thermal Protection USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.
 MXF $600 \mathrm{~W} 19^{\prime \times H} \times 1 / \mathrm{a}^{\prime \prime}(3 \mathrm{U}) \times \mathrm{D} 13^{\prime}$
PRICES: MXF200 $£ 171.35$ MXF400 $£ 228.85$ SECURICOR DELIVERY MXF600 £322.00
OMP LINNET LOUDSPEAKERS

MADE ESPECLALLY TO SUIT MADE ESPECIAL
TODAYESPNEED
PACTNESS WIH Y TO SU
FOR COM
HIGH OUTPU PACNESS WITH HIGH OUTPUT
SOUND LEVELS, FINISED IN
HAROWEARING BLACK VYNIDE
 GRILLE AND CARAYING HANDLE
INCORORATES 12 DRIVER PLUS
HIGH RROE HORN FOR FUUL
FREO RENG H U5N FREO RANGE: 4SHIZ-20KHZ BOTH
MODELS 8 OHM, SIZE H18" $\times W+5^{\prime \prime}$
$\times D 12$
choice of two models
POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET
OMP 12-100 (100W 100dB) PRICE E159.99 PER PAIR OMP 12-200 (200W 102dB) PRICE £209.99 PER PAIR SECURICOR DEL.: £ 12.00 PER PAIR

IN CAR STEREO BOOSTER AMPLIFIER

TWO SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 30 WATSS $(15+75)$ INTO 4 OHMS
FEATURES $(150+150)$ INTO 4 OHMS * HIGH\& LOW INPUT IMPEDANCES * HIGH \& LOWINPUT MPEDANCES

* HIGHI LOINT SENSITVITES
* VARIABLEINPUT GAIN CONTR * VARIABLEINPUT GAIN CONTROL * POWER REQUIREMENT 12V.D.C. PRICES: 150 WATT $£ 43.00$
300 WATT $£ 95.00+£ 3.00$ P\&PEACH

PIEZO ELECTRIC TWEETERS-MOTOROLA

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transien esponse with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems on
SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN2036A) 3' round with protective wire mesh, ideal for bookshelf and medium sized Hi-1 TYPE ' 8 ' (KSN1005A) each +50 P P\&P. purpose speakers, disco and P.A. systems etc. Price purpose speakers, disco
£5.99 each + 50p P\&P.
TYPE 'C' (KSN6016A) 2 ' $\times 5$ ' wide disperslon horn. For quality Hi-fi systems and quality discos etc. Price $£ 6.99$
TYPE 'D' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide disperslon horn. Upper frequency response retained extending down to mid range (2 KHz). Suitable for high quality Hl - fi system and quality discos. Price $£ 9.99$ each +50 p P\&P. silver finish trim, Suttable tor Hi-fi monitor systems etc. Price £5.99 each + 500 P\&P.
LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket $85 \times 85 \mathrm{~mm}$. Price $£ 3.99+50 \mathrm{p}$ P\&P.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 band L \& R graphic equalisers and twin 10 segment L.E.D. Vu Meters. Many outstanding features 5 Inputs
with individual faders providing a useful combination of the following:bination of the following:-
plus Mic with (Mag). 3 Mics. 4 Line including CD plus Mic with talk over switch Headphone Moni-
tor. Pan Pot L. \& R. Master Output controis Output 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$. Supply $220-240 \mathrm{v}$.

\square

...set your sights on a better sound!

=xperience a new sensation. An experience that Eopens up a whole new spectrum of sound.

Put yourself on stage at the Albert Hall, surfounded by a great orchestra. Imagine the sound you will hear, every nuance, every note; or travel up the Nile with an intrepid explorer, a journey not only full of breathtaking beauty and colour, but rich in the sounds of another continent; or capture the hidden gasps of 100,000 hardened fans at Wermbly for the F.A. Cup Final, when the ball skims the crossbar with the last kick of the malch; follow with your ears as well as your eyes, dodging the bullets, as your favourite hero battles out of yet another tight corner, it's just like being in a cinema!

Nicam hi-fi stereo will turn your living-room into a living room of
sound! You don't settle for second best with television picture quality, why settle for second best in television sound quality? Nicam sound is the new high quality digital stereo sound system, pioneered by BBC, ITV and TV/video manufacturers. In fact so good is Nicam it is comparable to the superb sound reproduction of the compact disc, when played through your existing hi-fi arrangement. If your television hasn't got a buill-in Nicam decoder, you will need the Maplin Nicam Tuner System. Ultimately almost all of your favourite programmes will be broadcast in superb hi-fi qual ity stereo-sound. Without a Maplin Nicam Tuner you won't be able to capture every sound to its full.

Nicam hi-fistereo. Catch your breath, open your eyes; and pin back your ears! It's what your hi-fi system was made for . . It's what your ears are made for!

DIGITAL STEREO TV

 SOUND FROM YOUR HI-FI The complete kit contains all the components required to build the unit. However you will also need: a power supply, 12 V at 600 mA regulated e g. YZ21X at $£ 9.95$; a co-ax Y adaptor e.g. FS23A at £1.20; a co-ax lead to connect to your TV or video; RW36P 2 mlong at $£ 1.36$, JW39N 5 long at $£ 1.98$, or JW40T tom long at $£ 2.95$; a phono lead to connect to your hi-fie.g. RW50E a $£ 1.06$ or a SCART. Peritellead JW36P at $£ 5.95$. An infifa-red remote control kit is also available LP2oW at $£ 29.95$Complete kit LP19V only £149.95 incl. VAT + mall-order handling charge.

Masederolto electroncs CREDIT CARD HOTLINE 0702554161

For a triendly welcome and the very best of service why not visit our For a triendly weicome and the very best of service why not visit our
shops in Birmingham, Brighton, Bristol, Leeds, London (Edgware and Hammersmith), Manchester, Newcastle-upon-Tyne, Nottingham, Reading, Southampton and Southend-on-Sea. Subject to availability. Prices subject to change.

