

http://www.epemag.wimborne.co.uk

EPE MOOD CHANGER **Experimental Brainwave** Generator for Alpha, Beta Delta & Theta frequencies

BASEI 8051 ogramming and experimental board **REACTION TIMER** Test your reaction time MPLE SHORTWA ECE Covers the 5MHz to 15MHz range

THE No.1 MAGAZINE FOR ELECTRONICS TECHNOLOGY & COMPUTER PROJECTS

Ingenuity Unlimited - Circuit Surgery Innovations - New Technology Update

WIND GENERATORS 380 WATT 1.14 metre dia blades, carbon metrix blades, 3 year warranty, 12vdc output, 24v version available, control electronics included, brushless neodymum cubic curve afternator, only two moving parts, maintenance free, simple roof top installation, start up speed 7mph, max output (30mph) 300w £499 ref AR1

HYDROPONICS

DO YOU GROW YOUR OWN? We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test equipment etc

Ring for your free copy.

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel Effective device, X-ray sealed assemblies. can be used for experimental purposes. Not a toy or for minors! £6/set. Ref F/KP1.

TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yet produces positive motion and effect. Excellent for science projects, magic shows, party demonstrations or serious research & development of this strange and amazing phychic phenomenon 24/set Ref F/TKE1.

ELECTRONIC HYPNOSIS PLANS & DATA This data shows several ways to put subjects under your control included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those expensed in its use £15/set Ref F/EH2

GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate. £10/set Ref F/GRA1 WORLDS SMALLEST TESLA COL/LIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, "Flasma in a jar", St Elmo's fire, Corona, excellent science project or conversation piece ES/set Ref F/BTC1/LG5

COPPER VAPOUR LASER PLANS Produces 100mw of visible green light High coherency and spectral quality similar to Argon laser but easier and less costly to build yet far more efficient. This perticular design was developed at the Atomic Energy Commission of NEGEV in Israel. £10/set Ref F/CVL1.

VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. 65/set Ref F/VS9.

PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and sound! works on FM too! DISCRETION ADVISED, £8/set Ref F/TJ5.

BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heet leaks etc. Intended for security, law enforcement, research and development, etc. Excellent security device or very interesting science project £8rset Ref F/BHT1

BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and melting materials over a considerable distance. This isser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workforce in welding, cutting and heat processing materials but its also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very well witize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutting, plastics, textiles etc 21/2vsrt Ref FLC7.

DYNAMO FLASHLIGHT Interesting concept, no batteries needed just squeaze the trigger for instant light apparently even works under water in an emergency although we haven't tried it yet! £6.99 ref SC152

ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewliery, coins, small parts etc. £6/set RF /AUE1

ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate £6/set Ref F/DOG2

LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access £12/set Ref F/

PHASOR BLAST WAVE PISTOL SERIES PLANS Handheid, has large transducer and battery capacity with external controls £6/set Ref F/PSP4

INFINITY TRANSMITTER PLANS telephone line grabber/ room monitor. The ultimate in home/office security and safety! simple to usel Call your home or office phone, push a secret tone on your telephone to access either. A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. E7 Ref F/TELEGRAB.

BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of redio energy! Snffs out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencies. £5/set Ref F/ BD1.

ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision E5 ref F/EML2. ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI £5/set Ref F/EMA1.

SOLAR POWERED WIND UP RADIOS BACK IN! These FWAM radio's have a solar panel and a hand operated charger! £17.95 ref SOLRAD

PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get' or hostle premises. Uses satellite technology to gether distant sounds and focus them to our uitra sensitive electronics. Plans also show an optional wireless link system. Ed/set ref F/PM5 2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments. £10 Ref FAVWA7 CCL4.

BRAND NEW AND, CASED, FROM £99. Works with most modern video's, TV's, Composite monitors, video grabber cards. Pal, 1v P-P, composite, 75ohm, 1/3" CCD, 4mm F2.8, 500x562, 12vdc, mounting bracket, auto shutter, 100x50x180mm, 3 months warranty,1 off price £119 ref XEF150, 10 or more £99 ea 100+ £89 CIRCUIT PACKS Packs of 35 circuit diagrams covering lasers.

CINCUTI FACINS Packs of 35 circuit diagrams covering lissers, SW redios, geners, bugs, charafter back/, Pack2, Pack3 (24 99 each SMOKE ALARMS Mains powered, made by the famous Gent company, easy fit next to light fittings, power point £4 99 ref SMKX CONVERT YOUR TV INTO A VGA MONITOR FOR £251 Converts a colour TV into a basic VGA screen. Complete with built in pau, lead and s/ware. Ideal for laptops or a cheap upgrade Supplied in tot form for home assembly. SALE PRICE £25 REFS A34

*15 WATT FM TRANSMITTER Aready assembled but some RF knowledge will be useful for setting up. Preamp reg1, 4 stage 80-106mbz, 12-16vdc, can use ground plane, yagi or dipole £69 ref 1021 *4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter lot 3 RF stages, mic & audio preamp included £24 ref 1028

YUASHA SEALED LEAD ACID BATTERIES 12v 15AH at £18 ref LOT8 and below spec 8v 10AH at £5 a pair ELECTRIC CAR WINDOW DE-ICERS Complete with cable,

plug etc SALE PRICE JUST £4.99 REF SA28

AUTO SUNCHARGER 155x300mm solar panel with diode and 3 metre lead fitted with a cigar plug 12v 2watt £12.99 REFAUG10P3 SOLAR POWER LAB SPECIAL You get 2 65x6° 6v 130mA cells, 4 LED's, wire, buzzer, switch + 1 relay or motor £7.99 REF SA27

SOLAR NICAD CHARGERS 4 x AA size £9 99 ref 6P476, 2 x C size £9 99 ref 6P477

GIANT HOT AIR BALLOON KIT Build a 45m circumfrence, fully functioning balloon, can be launched with home made burner etc. Reusable (until you loose it!) £12.50 ref HA1

AIR RIFLES .22 As used by the Chinese army for training puposes, so there is a lot about! £39 95 Ref EF78 500 pellets £4.50 ref EF80

INFRA RED FILM 6° square piece of flexible infra red film that will only allow IR light through. Perfect for converting ordinary torches, lights, headlights etc to infra red output only using standard light bulbs Easily cut to shape 6° square £15 ref IRF2

HYDROGEN FUEL CELL PLANS Loads of information on hydrogen storage and production. Practical plans to build a Hydrogen fuel cell (good workshop facilities required) £8 set ref FCP1

STIRLING ENGINE PLANS interesting information pack covering all espects of Stirling engines, pictures of home made engines made from an aerosol can running on a candlel £12 ref STIR2 12V OPERATED SMOKE BOMBS Type 3 is a 12v trogger and

3 smoke cannisters, each cannister will fill a room in a very short space of time! £14.99 ref SB3. Type 2 is 20 smaller cannisters (suitable for simulated equipment fires etc) and 1 trigger module for £29 ref SB2. Type 1 is a 12v trigger and 20 large cannisters £49 ref SB1 H POWER ZENON VARIABLE STROBES Useful 12v PCB

The CONTER ZENON VARIABLE STRUCES Userui 12/PCB fitted with his power strobe tube and control electronics and speed control potentionmeter. Perfect for interesting projects etc. 70x55mm 12vdc operation. £6 ea ref FLS1, pack of 10 £49 ref FLS2

RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the world! ring for colour brochure NEW LASER POINTERS 4.5mw, 75 metre range, hand held unit runs on two AA baittenies (supplied) 870mm. £29 rd DEC49

HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers all aspects of spint production from everyday materials includes construction details of simple stills are £12 ref MS3

NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! less

than 1" square and a 10m voice pickup range. £28 Ref LOT102 BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators and propellors. Armed with this publication and a good local scrap yard

could make you self sufficient in electricity! £12 ref LOT81 NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT £29 range 1 5-5 miles, 5,000 hours on AA battenes, transmits

KIT £29 range 1.5-5 miles, 5,000 hours on AA bettenes, transmitti info on car direction, left and right turns, start and stop information Works with any good FM radio £29 ref LOT101a

CCTV CAMERA MODULES 46X70X29mm, 30 grams, 12v 100mA auto electronic shutter, 3 6mm F2 lens, CCIR, 512x492 potels, video output is 1v p-p (75 ohm) Works directly into a scart or video input on a tv or video. IR sensitive £79 95 ref EF137

IR LAMP KIT Suitable for the above camera, enables the camera to be used in total darkness! £6 ref EF138 UK SCANNING DIRECTORY As supplied to Police, MOD.M15

UN SCANNING LINEL FOR A supplied to holde, MOU, MID and GCHQI coverers everything from secret government frequencies, eye in the sky, prisons, miritary aviation etc £18.50 ref SCANB

INFRA RED POWERBEAM Handheid battery powered lamp, 4 inch reflector; gives out powerful pure infrared light! perfect for CCTV use, nightsights etc. £29 ref PB1.

SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser , X K and KA bands, speed cameras, and all known speed detection systems 360 degree coverage, front

Beerweyveguides, 1 1%2 7%4 6° fits on sun visor or desh £149 ref CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER

OPTICS Could be adapted for laser listener, long range communications etc.

Double beam units designed to fit in the gun barrel of a tank, each unt has two semi conductor lasers and motor drive units for alignement 7 mile range, no circuit diagrams due to MOD, new price £50,0000 us? £196. Each unit has two galilum Arsenide injection lasers, 1 x 9 witt, 1 x 3 wett, 900nm wavelength, 28vdc, 600hz pulse frequency. The units aliso contain an electronic receiver to detect reflected signals from targets £199 for one. Ref LOT4

NEW LOW PRICED COMPUTER/WORKSHOP/HI-FI RCB UNITS Complete protection from faulty equipment for everybody inline unit fits in standard IEC lead (extends if by 750mm), fitted in less than 10 seconds, reservest button, 10A rating £6.99 each ref LOT5 Or a pack of 10 at £49.90 ref LOT6 If you want a box of 100 you can have one for £2501

DIGITAL PROPORTIONAL B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are returns so they will need attention (usually physical damage) cheap way of buying TX and RX plus servos atc for new projects atc 20 each sold as seen ref LOT2DP

MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL £9.95 Cased with flyleeds, designed to read standard

credit cards¹ complete with control elctronios PCB and manual covering everything you could want to know about whats hidden in that magnebic strip on your card1 just £9 95 ref BAR31 WANT TO MAKE SOME MONEY? STUCK FOR AN

IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your lessure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sell) the manuals as much as you like! £14 ref EP74.

HIGH POWER DC MOTORS, PERMANENT MAGNET

12 - 24ν operation, probably about 1/4 horse power, body measures $100m\,x\,75mm$ with a 60mm $x\,5mm$ output shaft with a machined flat on it. Found is simple using the two threaded bolts protrucing from the front

£22ea REF mot4

© Wimborne Publishing Ltd 1998. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our July '98 Issue will be published on Friday, 5 June 1998. See page 395 for details.

The No. 1 Magazine for Electronics Technology and Computer Projects

Projects and Circuits

EPE MOOD CHANGER by Andy Flind Our experimental "pocket-psychiatrist" could help relieve your daily stress	404
SIMPLE SW RECEIVER by Robert Penfold A low cost introduction to the satisfaction of building your own radio	414
ATMEL AT89C2051/1051 PROGRAMMER by Colin Meikle An ideal workshop tool for those delving into Atmel's versatile EEPROM microcontrollers	432
INGENUITY UNLIMITED hosted by Alan Winstanley Digital Sinewave Generation; A.C. Ripple Active Rectifier; Typewriter Word Counter	442
REACTION TIMER by Paul Hackett So you think you're one of the fast crowd? Prove it!	456

Series and Features

NEW TECHNOLOGY UPDATE by Ian Poole Many developments in chip technology are prompted by the needs of cellphones	413
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold Power semiconductors and heatsinks	419
8051-BASED EEPROM MICROCONTROLLERS by Colin Meikle Industrial-favourite microcontrollers become available to hobbyist users	426
CIRCUIT SURGERY by Alan Winstanley and Ian Bell Scanning Switch Matrices; Antex – True Brit; High Voltage Components; Desolder Fumes, HASAW and COSHH; Microlab	439
TEACH-IN '98 – An Introduction to Digital Electronics – 8 by Ian Bell, Rob Miles, Dr Tony Wilkinson, Alan Winstanley This month: Buses and Counters	446
NET WORK – THE INTERNET PAGE surfed by Alan Winstanley FTP at the DOS Prompt: Phantom of the Opera	469

Regulars and Services

EDITORIAL	403
INNOVATIONS Barry Fox highlights technology's leading edge Plus everyday news from the world of electronics	411
READOUT John Becker addresses general points arising	423
BACK ISSUES Did you miss these?	425
SHOPTALK with David Barrington The essential guide to component buying for EPE projects	430
PARTS GALLERY + ELECTRONIC CIRCUITS AND COMPONENTS CD-ROM	444
SPECIAL EPE READER OFFER An exceptionally generous offer of superb Minicraft drill tools from EPE and ESR Electronic Components!	445
DIRECT BOOK SERVICE A wide range of technical books available by mail order	464
ELECTRONICS VIDEOS Our range of educational videos	467
PRINTED CIRCUIT BOARD SERVICE PCBs for EPE projects. Plus EPE software	468
ADVERTISERS INDEX	472

Industrial grade 12Mhz HI GRADE 286 systems Made in the USA to an industrial specification, the system was designed for *total relia-bility*. The compart case houses the motherboard, PSU and EGA video card with single 5% 1.2 Mb foopy disk drive & Integral 40Mb hard disk drive to the front. Real time clock with battery backup is provided as standard. Supplied in good used condition complete with enhanced keyboard, 640k + 2Mb RAM, DOS 4.01 and 90 DAY enhanced keyboard, 5405 + 2005 + 2005 Full Guarantee. Ready to Run | Order as HIGRADE 286 ONLY £99.00 (E)

Optional Fitted extras: VGA graphics card 1.4Mb 3%* floopy disk drive (instead of 1.2 Mb) Wordperfect 6.0 for Dos - when 3%* FDD option ordered NE2000 Ethernet (thick, thin or twisted) network card £29.00 £19.95 £12.50 £29.00

INTEL 486DX-33 SYSTEMS

Limited quantity of this 2nd user, superb small size desktop unit. Fully leatured with standard simm connectors 30 & 72 pin. Supplied with keyboard, 4 Mb of RAM, SVGA monitor output, 258k cache and integraf 120 Mb IDE drive with single 1.44 Mb 3.5° floppy disk drive. Fully tested and guaranteed. Fully expandable Onty Many other options available - call for details. £199.00 (E)

FLOPPY DISK DRIVES 31/2" - 8

Massive purchases of standard 5¼° and 3½° drives enables us to present prime product at industry beating low prices! All units (unless stated) are *BRAND NEW* or removed from often brand new equip-ment and are fully tested, aligned and shipped to you writh a full 90 day guarantee. *Call* for over 2000 unlisted drives for spares or repair.

3½" Penasonic JU363/4 720K or equivalent RFE	£24.95(B)
3½" Mitsubishi MF355C-L. 1.4 Meg. Laptops only	£25.95(B)
3½" Mitsubishi MF355C-D. 1.4 Meg. Non laptop	£18.95(B)
5%" Teec FD-55GFR 1.2 Meg (for IBM pc's) RFE	£18.95(B)
5%" Teec FD-55F-03-U 720K 40/80 (for BBC's etc) RFE	£29.95(B)
5%" BRAND NEW Mitsubishi MF501B 360K	£22.95(B)
Table top case with integral PSU for HH 5%* Flopp or HD	£29.95(E)
8" Shugert 800/801 8" SS refurbished & tested	£210.00(E)
8" Shugert 810 8" SS HH Brand New	£195.00(E)
8" Shugart 851 8' double sided refurbished & tested	£260.00(E)
8" Mitsubishi M2894-63 double sided NEW	£295.00(E)
8" Mitsubishi M2896-63-02U DS slimline NEW	£295.00(E)
Dual 8" cased drives with integral power supply 2 Mb	£499.00(E)

HARD DISK DRIVES

2%" TOSHIBA.(19 mm H) MK2101MAN 2.16 Gb. New	£199.00
2½° TOSH.(12.5 mm H) MK1002MAV 1.1 Gb laptop. New	£115.00
2½" to 3½" conversion kit for Pc's, complete with connectors	\$ £15.95
3½° FUJI FK-309-26 20mb MFM I/F RFE	£59.95
3½° CONNER CP3024 20 mb IDE I/F (or equiv.) RFE	£59.95
3½° CONNER CP3044 40mb IDE I/F (or equiv.) RFE	269.00
3½" RODIME RO3057S 45mb SCSI I/F (Mac & Acom)	269.00
3½* QUANTUM 40S Prodrive 42mb SCSI I/F, New RFE	£49.00
3%" WESTERN DIGITAL 850mb IDE VF New	£185.00
5%* MINISCRIBE 3425 20mb MFM I/F (or equiv.) RFE	£49.95
5%" SEAGATE ST-238R 30 mb RLL I/F Refurb	289.95
5%" CDC 94205-51 40mb HH MFM I/F RFE tested	269.95
5%* HP 97548 850 Mb SCSI RFE tested	00.663
5%* HP C3010 2 Gbyte SCSI differential RFE tested	£195.00
8" NEC D2246 85 Mb SMD interface. New	£199.00
8 FUJITSU M2322K 160Mb SMD I/F RFE tested	£195.00
8" FUJITSU M2392K 2 Gb SMD I/F RFE tested	£345.00
Many other drives in stock - Shilpping on all drives is	code (D)

THE AMAZING TELEBOX

Converts your colour monitor into a QUALITY COLOUR TVI!

The TELEBOX is an attractive fully cased mains powered unit, con-taining all electronics ready to plug into a host of video monitors made by makers such as MICROVITEC, ATARI, SANYO, SONY, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite made by makers such as MichOVITEC, ATAHI, SANTO, SUNT, COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video cutput will also plug directly into most video recorders, allowing reception of TV channels not normally receivable on most televi-sion receivers' (TELEBOX MB). Push button controls on the front panel allow reception of 8 fully tuneable off air UHF colour television channels. TELEBOX MB covers virtually all television frequencies VHF and UHF including the HYPERBAND as used by most cable TV operators. A composite video output is located on the rear panel for direct connection to most makes of monitor of dealtop computer video systems. For complete compatibility - even for monitors with-out sound - an integral 4 watt audio amplifier and low level Hi Fi audio output are provided as standard. TELEBOX ST for composite video input type monitors TELEBOX ST for composite video input type monitors FELEBOX ST for composite video input type monitors FELEBOX ST for composite video input type monitors For overseas PAL versions state 5.5 or 6 mHz sound specification. "For cable / hyperband signal reception Telebox MB should be con-nected to a cable type service. Shipping on all Telebox's, code (B)

DC POWER SUPPLIES

ectronic

VISA

25

VGA cable for IBM PC included. External cables for other types of computers CALL

As New - Ex Demo

17" 0.28 SVGA Mitsubishi Diamond Pro monitors Full multisync etc. Full 90 day guarantee. £325.00 (E)

Just In - Microvitec 20" VGA (800 x 600 res.) colour monitors Good SH condition - from £299 - CALL for Info

Good SH condition - Irom 5299 - CALL for Into PHILIPS HCS35 (same style as CM8833) attractively styled 14" colour monitor with both RGB and standard composite 15.625 Khz video inputs via SCART socket and separate phono jacks. Integral audio power amp and speaker for all audio visual uses. Will connect direct to Amiga and Atarl BBC computers. Ideal for all video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as front concealed flap controls. VCR corraction button etc. Good used condition - fully tested • guaranteed Dimensions: W14* x H1234* x 151/2* D. Only £99 (E)

PHILIPS HCS31 Ultra compact 9" colour video monitor with stan-dard composite 15.625 Khz video input via SCART socket. Ideal for all monitoring / security applications. High quality, ex-equipment fully tested & guaranteed (possible minor screen burns). In attrac-tive square black plastic case measuring W10" x H10" x 13%" D. 240 V AC mains powered. Only £79.00 (D) Only £79.00 (D)

KME 10" 15M10009 high definition colour monitors with 0.28" dot KME 10° 15M 10009 high definition colour monitor pitch. Superb clarity and modern styling. Operates from any 15.625 khz sync RGB video source, with RGB analog and composita sync such as Atari, Commodora Amiga, Acorn Archimedes & BBC. Measures only 13% x 12° x 15° Conducted condition 11*. Good used condition.

Only £125 (E) 20" 22" and 26" AV SPECIALS

Superbly made UK manufacture. PIL all solid state colour monitors, complete with composite video & optional sound input. Attractive teak style case. Perfect for Schools, Shops, Disco, Clubs, atc.In EXCELLENT little used condition with full 90 day guarantee.

SPECIAL INTEREST ITEMS MITS. A FA3445ETKL 14" Industrial spec SVGA monitors £245 MITS, & FA3445ETKL 14" Industrial spec SVGA monitors 1kW to 400 kW - 400 Hz 3 phase power sources - ex stock IBM 8230 Type 1, Token ring base unit driver Wayne Kerr FA200 Audio frequency response analyser IBM 53F5501 Token Ring ICS 20 port bobe modules IBM MAU Token ring distribution panel 8228-23-5050N AIM 501 Low distortion Oscillator 9Hz to 330Khz, IEEE Trend DSA 274 Data Analyser with G703(2W) 64 vo Marconi 6310 Programmable 2 to 22 GHz sweep generator HP1550B Logic Analyser HP3781A Pattern generator & HP3782A Error Detector HP6621A Dual Programmable GPIB PSU 0-7 V 160 watts HP6244 Rack mount variable 0-20V @ 20A metered PSU HP54121A DC to 22 GHz four channel test set HP7580A A1 8 pen HPGL high speed drum plotter F&B Wardrobe siza, insurance spec 1 hour rated fire safa EG+G Brookdeal 95035C Precision lock in amp View Eng. Mod 1200 computerised inspection system £245 £POA £760 £2500 £750 £95 £550 εροα £6500

£3750 5POA £1800 £675 £POA £1850

 F&B Wardrobe siza, insurance spec 1 hour rated fire safa
 £650

 EG+G Brookdeal 95035C Precision lock in amp
 £650

 View Eng, Mod 1200 computerised inspection system
 £POA

 Sony DXC-3000A High quality CCD colour TV camera
 £1100

 CSZ VERY Large 3 cavity thermal shock chamber
 £POA

 Philips PW1730/10 XRAY generator with accessories
 £POA

 Recal ICR40 dual 40 channel voice recorder system
 £3750

 Fiskers 45KVA 3 ph On Line UPS - New batteries
 £90A

 Intel SBC 486/1325C Multitous 466 system. 8Mb Ram
 £945

 Intel SBC 486/1325C B Enhanced Multitous (MSA) NEW
 £1450

 Vata Sate Corols a Components List. SAE / CALL 200A
 £1450

 Nikon HFX-11 (Ephiphot) exposure control unit
 £1450

 Motorola VME Bus Baards & Components List. SAE / CALL 200A
 Fultau M30417 600 LPM printer
 £1950

 Fultau M30417 600 LPM printer with network interface
 £12500
 £1950

 Fultau M30417 600 LPM printer with network interface
 £12500
 £1350

 VG Electronics 1035 TILETEXT Decoding Margin Meter
 £3750

 VG Electronics 1035 TILETEXT Decoding Margin Meter
 £3750

 VG Electronics 1035 TILETEXT Decoding Margin Meter
 £3750

 VG Electronics 1035 TILETEXT Deco

Taylor Hobson Tallysurf amplifier / recorder System Video 1152 PAL waveform monitor Siemans K4400 64Kb to 140Mb demux analyser £750 £485

Superb quality 6 foot 40U Virtually New, Ultra Smart

Top quality 19" rack cabinets made in UK by Optima Enclosures Ltd. Units feature designer, smoked acrylic lockable front door, full height lockable half louvered back door and louvered removable side panels. Fully and louvered removable side panels. Fully adjustable internal fixing struts, ready punched for any configuration of equipment mounting plus ready mounted integral 12 way 13 amp socket switched mains distribution strip make these racks some of the *most versatile* we have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays. Overall dimensions are: 77% H x 32% D x 22° W. Order as:

OPT Rack 1 Complete with removable side panels. £345.00 (G)

£245.00 (G) OPT Rack 2 Rack, Less side panels Over 1000 racks, shelves, accessories 19" 22" & 24" wide 3 to 46 U high. Available from stock !!.

32U - High Quality - All steel RakCab

Made by Eurocraft Enclosures Ltd to the highest possible spec, rack features all steel construction with removable side, front and back doors. Front and back doors are hinged for easy access and all ara lockable with five secure 5 lever barrel locks. The front door is constructed of doubla walled steel with a 'designer style' smoked acrylic front panel to enable status indicators to be seen through the panel, yet remain unobtrusive. Internally the rack features fully slotted reinforced vertical fixing mambars to take the heaviest of 19" rack equipment. Tha two movable vertical fixing struts (extras available) are pra punched for standard 'cage nuts'. A mains distribution penel internal-ty mounted to the bottom rear, provides 8 x IEC 3

cage nuts'. A mains distribution panel internal-ly mounted to the bottom rear, provides 8 x IEC 3 pin Euro sockets and 1 x 13 amp 3 pin switched utility socket. Overall ventilation is provided by fully louvered back door and double skinned top section with top and side louvres. The top panel may be removed for fitting of integral fams to the sub plate etc. Other features include: fitted castors and floor levelers, prepunched utility panel at lower rear for cable / connector access etc. Supplied in excellent, slightly used condition with keys. Colour Royal blue. External dimensions mm=1825H x 635D x 603 W. (64' H x 25' D x 234' W.) Sold at LESS then a third of makers price II

A superb buy at only £245.00 (G) 42U version of the above only £345 - CALL

BATTERY SCOOP - 50% off !!

A special bulk purchase from a cancelled export order brings you the most amazing savings on these ultra high spec 12v DC 14 Ah rechargeable batteries. Made by Hawker Energy Ltd, type SB315 featuring pure lead plates which offar a far superior sheft & guaran-teed 15 year service life. Fully BT & BS220 approved. Supplied BRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 deep. M6 bolt terminals. Fully guaranteed. Current makers price over 570 each I Our Drize S25 opport. each Our Price £35 each (c) or 4 for £99 (o)

RELAYS - 200,000 FROM STOCK

Save EEEE's by choosing your next relay from our Massive stocks covering types such as - Military, Octal, Cradie, Hermetically Sealed, Contactors, Time Delay, Reed, Mercury Wetted, Solid State, Printed Circuit Mounting, CALL US WITH YOUR NEEDS. Many obsolete types from stock. Save ££££'s

LOW COST RAM & CPU'S

INTEL 'ABOVE' Memory Expansion Board. Full length PC-XT and PC-AT compatible card with 2 Mbytes of memory on board. Card is fully selectable for Expanded or Extended (286 processor and above) memory. Full data and driver disks supplied. RFE. Fully tested and guaranteed. Windows compatible. E59.95 Half length 8 bit memory upgrade cards for PC AT XT expands memory either 256k or 512k in 64k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. Order se: XT RAM UG. 256k. E34.95 or 512k E39.95 <u>SIMM SPECIALS</u> 1 MB x 9 SIMM 9 chip 120ns. Only E8.50

۱. I	1 440	- 0	C18484	O obio	12000			Only	£8.50	
	I MD :	X 8	21101101	a cuib	12013					
	1 MB :	x 9	SIMM	3 chip	80 ns	£10.50		70ns	£11.95	
	1 MB :	x 9	SIMM	9 chip	80 ns	£10.50			£11.75	
	4 MB 1	70 n	s 72 p	xin SIM	M ·w	ith parity	-	Only	£35.00	
	INTEL	486	-DX33	CPU £	19.95	INTEL 4	186-D	X86 CPÚ	£59.00	
	FULL	.RA	NGE C	F CO-F	ROCE	SSOR'S	EX SI	rock - C	ALL FOR	222
	1400	TOD		S Mbs		A /VCRM	100	COEM C	DIRE CE	0.04

PU'S £59.00 shipping charges for RAM / CPU upgrades is code B

SOFTWARE SPECIALS

NT4 WorkStation, complete with service pack 3 and licence - OEM packaged. Special Price ONLY £99.00 Microsoft - Windows for Workgroups 3.11 & DOS 6.22. Supplied on 3½ disks with locnise books c/w QBasic. £14.95 Wordperfect 8 for DOS supplied on 3½ disks with manual bioprise observed for software is order application. shipping charges for software is code B

FAX 0181 679 1927

Open Mon - Sat 9:00 - 5:30 215 Whitehorse Lane South Norwood On 66A Bus Routs N: Thornton Heath & Selhurst Park SR Rall Stations

All prices for UK Mainland, UK customers add 17.5% VAT to TOTAL order amount. Minimum order £10. Bona Fide account orders accepted from Government, Schools, Universities and Local Authonties - minimum account order £50. Cheques over £100 are subject to 10 working days dearance. Carriage charges (A)=£3.00, (A)=£4.00, (B)=£5.50, (C)=£3.50, (D)=£12.00, (E)=£15.00, (G)=£18.00, (G)=CALL Allow approx 6 days for shipping - taster CALL. All goods supplied to our Standard Conditions of Selet and unless stated guaranteed for 90 days. All guarantees on a return to base basis. All rights reserved to charge prices / specifications without prior notice. Orders subject to stock. Discounts for volume. Top CASH prices paid for surplus goods. All trademarks etc admowledged. © Display Electronics 1997, E & O E. 01/8 out prior notice. Orders subject to

Visit our web site

www.distei.co.uk

email admin @distel.co.uk

£650

2650

NEXT MONTH

PIC16x84 TOOLKIT

At last, TASM and MPASM compatibility for PIC16x84 users! Versatility and high speed were the two chief design objectives for this PIC16x84 Toolkit. It can be used in conjunction with both TASM and MPASM source codes and is three tools in one: a programmer, a program disassembler, and a bi-lingual translator between the two assembly languages.

The Tookit is for use with PIC16C84 and PIC16F84 microcontrollers. All modes and external switching operations are controlled directly by a PC-compatible computer ('386 and above, with or without Windows). No manual intervention via hardware switches is needed. The computer must have either QBasic or QuickBASIC already installed.

The design may be used as a stand-alone unit, or interfaced with the EPE PIC Tutorial demonstration board. The software can also be used on its own purely as a "language translator" without the Toolkit or Tutorial boards.

NOISE CANCELLING UNIT

A fully tried and tested Noise Cancelling Unit which employs two microphones and a set of headphones fed with "anti-sound" to reduce noise by a factor of between 10 and 30, or more on the high efficiency narrow frequency band which can reduce specific "single frequency" sounds by a factor of up to 100. The unit has audio inputs so that you can listen to your favourite audio source

while background noise is cancelled. Enjoy your hi-fi without hearing the neighbours music, lawnmower or the building site concrete mixer, etc.

GREENHOUSE COMPUTER

This microcontrolled design is for use with a small greenhouse or conservatory. Its main function is to monitor and control the heating and watering requirements of the plants. An additional feature is that it has the option of a wireless link (the subject of a future issue) to a remote display unit, so you can view and log the status of your greenhouse from the comfort of your house.

The main facilities of the controller are:

- Two separate channels for monitoring temperature
- Immediate, minimum and maximum temperature display
- 2-level thermostatic heater control
- Soil moisture monitoring
- Automatic plant watering
- Monitoring of water reservoir level
 Optional Radio Link to remote display unit
- 2-line 20-character liquid crystal display

The circuit is based around an Atmel AT89C2051 microcontroller, whose facilities are discussed elsewhere in the current issue, together with a programmer.

LOW BATTERY INDICATOR

An in-circuit, micropower battery condition indicator for your projects. This unit began life as a battery condition monitor for the EPE Mood-Changer design described in the current issue. As it is not immediately apparent to the user whether the EPE Mood-Changer is operating or not, a low-battery warning of some kind is useful. However, the usual method, using an I.e.d. that remains lit above a pre-set supply voltage appeared unsatisfactory as it would inevitably draw more current than the main circuit!

Thoughts on the problem led to the design of this circuit and it was then realised that, with micropower operation and a wide supply voltage range, it could be used in many other designs. The use of a compact layout allows it to be constructed cheaply and fitted into an odd corner of space that will exist in almost any project, and it can be adjusted to work with most common battery voltages.

NO ONE DOES IT BETTER

PLUS ALL THE REGULAR FEATURES

EVERYDAY PRACTICAL ECTRONICS

DON'T MISS AN ISSUE -PLACE YOUR ORDER NOW!

for Windows 95"

Demo Software - available from our Web Address

Advanced Systems & Technology for PCB Manufacture

VARIABLE VOLTAGE TRANSFORMERS INPUT 220V/240V AC 50/60 OUTPUT 0V-260V Price PåP 0-5KVA 2-5 amp max Price PåD 0-5KVA 2-5 amp max C45.25 (C45 83 mc VAT) 1KVA 5 amp max C45.25 C50.00 mc VAT) 0-5KVA 2-5 amp max C45.25 C50.00 1KVA 5 amp max C46.25 C7.00 0-5KVA 2-5 amp max C46.25 C7.00 1KVA 5 amp max C46.25 C7.00 2KVA 10 amp max C65.00 (C48 ang mc VAT) 3KVA 15 amp max C85.00 (C48 ang wc VAT) 5KVA 25 amp max C150.00 (C4 amage & VAT)	5 KVA ISOLATION TRANSFORMER As New Ex-Equipment, fully shrouded, Line Noise Suppression. Ultra Isolation Transformer with terminal covers and knock-out cable entries. Primary 120/V240V. Secondary 120/V240V. 50/60Hz, 0-005pF Capacitance. Size, L 37cm x W 19cm x H 16cm. Weight 42 kilos. Proc E120 + VAT Ex-warehouse Carriage on request. 24V DC SIEMERS CONTACTOR Type 31H9022-08 2 k NO and 2 k NC 280V AC 10A Contacts Screw or Din Rait hung Size H 120 x W 45 x D 75mm Brand New Price 17:43 ind P&P and VAT 240V AC WESTOOL SOLENDOS TZ Mod 1 Rat 1 Max stroke 7ain. Base mounting Yan stroke 51bs pull approx. TT6 Mod. 1 Rat. 1 Max stroke 1 m Base mounting Yan. stroke 151bs pull approx. SERIES 400 Mod. 1 Rat. 2 Max stroke Yen Front mounting Yan stroke 151bs pull approx. Price incl p&p & VAT TTS 25:88, TT6 28.81, SERIES 400 f.7.64.
10KVA 45 amp max £300.00 (+ Carnage & VAT) 6KVA 3 PHASE Star 2005.00 (+ Carnage & VAT) Buy direct from the Importers. Keenest proces in the country. 500VA 1500LATION TRANSFORMER New manuf surplus. C Core tropcalesed with top plate and solder connectores 0.240V AC 5-0-100-110-120V & Screen Wi 10 5K Screen Wi 10 5K Screen Wi 10 5K	AXIAL COOLING FAN 230V AC 120mm square x 38mm 3 blade 10 watt Low Noise tan. Proc 57.28 incl. P&P and VAT. Other voltages and sizes available from stock. Please telephone your enquires INSTRUMENT CASE Brand new Manufactured by Imhol L 31 x H 18 x
Proce 535 00 Carr 57 50 (£49 94 mc)) COMPREHENSIVE RANGE OF TRANSFORMERS-LT-ISOLATION & AUTO 110/240V Auto transfer ether cased with Amercan socket and mans ead or open frame type Avaidable for mmeddate delivery ULTRA VIOLET BLACK LIGHT BLUE	19cm Deep. Removable front and rear panel for easy assembly of your components. Grey textured finish, complete with case text. Proc £16.45 incl. P&P and VAT 2 of tE320 incl.swe DE CAST ALUMINIUM BOX with internal PCB guides internal sace 265 x 165 x 50mm deep. Proc £9.93 incl p&p & VAT 2 off £17.80 incl
FLUORESCENT TUBES 4ft 40 watt £14.00 (callers only) (£16 45 mc VAT) 2ft 20 watt £9.00 (callers only) (£16 58 mc VAT) 12m 8 watt £3.00 + 50 påp (£5 24 mc VAT) 9m 6 watt £3.96 + 50 påp (£5 24 mc VAT) 9m 6 watt £3.96 + 50 påp (£5 24 mc VAT)	230V AC SYNCHRONOUS GEARED MOTORS Brand new Ovoid Gearbox Crouzel type motors. H 65mm : W 55m z 0 35mm, 4rm dia stati x 10mm long 6 RPM anti cw 599 incl p&p & VAT 20 RPM anti cw 50 ppt Adoms 111 6 nd p&p & VAT
230V AC BALLAST KIT For either 6in, 9in or 12m lubes 156,05 + 21 40 p.Bp. (28 75 inc VAT) The above Tubes are 3500-4000 argst. (350-400,m) ideal for detecting socurity metricing: effects lighting & Chemical achications. Other Wavelengths of UV TUBE available for Germicodal & Photo Sensitive applications: Please telephone grout enguines 400 WATT BLACK LIGHT BLUE UV LAMP GES Mercury Vapour light bit of	Producing roman spark, bolician to sec
Class with a 400W PF Ballast Chry C30.85 nct. psp. 6 VAT RANGE OF XENON FLASHTUBES Write/Phone your enguines SUPER HY-LIGHT STROBE KIT Designed for Disco, Theatrical use etc. Aprox 16 poles Adjustable spect 550.00 + C3 00 pAp (E22 ain cVAT) SAE for further details including Hy-Light and Industrial Strobe Kits.	Brand new 240V AC fan cooled. Can be used for a variety of purposes. Inlet 1%in., outlet 1in. dia. Price
Open TEL: 0181-995 1560	

The Complete, Integrated

- Windows Ranger 2
- For Windows 95 & NT
- New Hierarchical Circuit
- Split Devices Gate & Pin Swap
- New Edit Devices in Circuit
- Copper Fill Power Planes
- Autorouter
 Back Annotation

Windows Ranger 2 with Specctra SP2

Ranger & Specctra Autorouter provide the most cost effective PCB Design system available. A powerful, intuitive system at an outstanding price!

1251

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.

http://biz.ukonline.co.uk/seetrax

19

Ronger 2 Outputs:

Full Windows Outputs

Plus - HP-GL

AutoCod DXF

Gerber

NC Drill

SPECIAL OFFER Ranger 2 Lite £35 (Prices exc VAT/P&P)

Demo Software -download from

Fax 01730 267273

N	EW S	PEC	IAL OFFERS
Mini waterproof TV ca 13 volts at 120mA with	mera 40x40x15m composite video	m requires 9 to output (to feed	memory. If charged at 100ma and discharge less 1100mAH capacity (lower capacity for
into a video or a TV w resolution of 450 TV horizontal, electronic au	lines Vertical and	380 TV imes	rates) Special offers please check for availability stick of 4.42 x 16mm nicad batteries 171
bright sunlight operation field of view, it focuses of	and a small lens	with a 92 degree	with red & black leads 4.8v 5 button cell 6V 280mAh battery with
3 wire lead (12v in gnd a with well mount tilt and	swivel case (at t	he same price)	5x250DK) Orbitel 866 bettery pack 12v 1.6AH cont
293.57 + vat= 109.95 or Board cameras all with sor 9-13 volts power su	h 512x582 pixels - ipply and composi-	4 4x3 3mm sen te video out All	cells with solder tags (the size most com cordless screwdrivers and drills 22 dia x 4 easy to crack open and was manufactured
need to be housed in yo exposed surface mount with 6 infra red leds (i	t parts 47MIR su	e 60x36x27mm	each or £110.50 per box of 14 BCI box 190x106x50mm with slots to ho lid contains an edge connector (12 way 8
small torch would) 40MP size 39x38x23m	£50.0	0 + vat = £58 75	screw terminals to connect to wires and 5 blanks
pin hole lens for hid £57+ vat= £66 98 40M0 mount lens this gives a	C size 39x38x28m much clearer pictu	m camera for 'C'	7 segment common anode led display 12 GaAs FET low leakage current S8873 £12 10+ 7.95
small lenses £68.79+v lens F1.6 16mm for 40M	AC £26.43	3+ val = £31.06	BC547A transistor SL952 UHF Limiting amplifier L C 16 su
High quality stepping i motors) Comstep ind motors by PC (Through	lependent control	of 2 stepping	package with data sheet. DC-DC converter Reliability model V12 200ma out 300v input to output Isolation with
and software software support and 4	Kit £67.00 re digital inputs kit	ady built £99.00 £27.00	£4.95 each or pec Airpax A82903-C large stepping motor
power interface 4A kit £ Stepper kit 4 (manual c motor and control circuit	control) includes 21		27ohm 68mm dia body 6 3mm shaft 28.95 or £200.00 Solid carbon resistors very low inductance
DTA30 Hand held tran lead is the base, the co	blector and emitter	and if it is NPN	circuits 27onm 2W.68ohm 2W 25p each 15 We have a range of 0.25w 0.5w 1w and 2
or PNP or faulty (NEW SCRs are transistors) D HMA20 hand held M	TA30	£38.34	resistors please send SAE for list P.C. 400W PSU (Intel part 201035-001) motherboard and 5 disk drive connectors.
drain and source and if Speeker cabinets 2 wa	P or N channel HM	AA20 £38.34	inletioutlet connectors on back and switc (top for tower case) dims212x149x149
tweeters	15" 12"	8	switch £26.00 each £138.00 for 6 MX180 Digital multimeter 17 ranges 1
power rating 2	250WRMS 175WRM Bohm Bohm	S 100WRMS	ac 2Mohm 200mA transistor He 9v ani test
thequency range	10hz-20khz 45mz-20k	hz 60hz 20khz	Hand held ultrasonic remote control
size in mm in esite	97dB 94d9 500x720x340 450x640x 21 1kg 16 8kg	92dB 1345 315x460x230 7 4kg	CV2486 gas relay 30 x 10mm dia with 3 will also work as a neon light 20p each or £ Verbetim R300NH Streamer tape commo
price each for black vynal costing	E130.05 E90.90	£54.94	machines and printing presses etc. it look cassette with a slot cut out of the top £4.5
grey full coating for a store that the store of the store	E159.97** E119.97* ck allow 1 week fo		100+) Heatsink compound tube
Power amplifiers 19" ra meters			MV3-2405-E5 5-24v 50mA regulator- ic 18- pin Dil, package
STA300 2x190Wms (4 STA900 2x490Wms (4		£339.00 £585.00	

 STASD0 24/18/04/mit (skuth induc) 11/02
 E382.00

 STASD0 24/80/mits (skuth induc) 15/02
 E385.00

 STASD0 24/80/mits (skuth induc) 15/02
 E385.00

 LED's 3mm or 5mm red or green 7p each, yellow 11p
 E385.00

 ach, cable lives 1p each 15.95 per 1000 £49.50 per 10,000
 Ferror 1000 £49.50 per 1000 £49.50 per 10,000

 Rechargesble Betteries
 Rechargesble Betteries
 72.40 mit solder tags

 A SOmAH
 E1.75
 C 2.41 with solder tags
 £1.55

 T/2AA with solder tags
 £1.55
 C 1.55

 AA (HP15) ISOmAH
 £1.75
 C 1.55

 C 2AH with solder tags
 £1.55
 C 1.55

 C 1.72A with solder tags
 £1.55
 C 1.55

 C 1.72A H
 E2.25
 C 1.55

 reccure gescies Extension

 AA 950mAH
 00.99

 AA 950mAH
 01.75

 C 2AH with solder tags
 02.80

 D 4AH with solder tags
 01.99

 T/2AA with solder tags
 11.95

 T/2AA with solder tags
 11.95

 AA 950mAH
 01.75

 AA 4911
 12.75

 AA 500mAH
 11.75

 AA 500mAH
 11.75

 AA 500mAH with solder tags
 11.95

 C(HP1) 12AH
 22.20

 DYP3 AV 110mAH
 12.49

 Sub C with solder tags
 12.50

 T/3 AA with tags (phlos CTV)
 11.95

 Nickel Metal Hydrole AA cefs high capacity with no
 11.95

emory if charged at 100ma and discharged at 250ma or ss 1100mAH capacity (lower capacity for high discharge tites) £3.75 memory II charged at 100ma and discharged at 250ma or liess 1100mHz capacity (lower capacity for high discharge rates) C3.75 Special offres please check for availability Stok of 4.42 x 16mm incad batteres 171mm t6mm dia with red & black leads 4.8 ^{or} 55.95 ^{or} 50 vitron cell 6V 280mAh battery with wres (Vara 5x2500K) 20.44 ^{or} 20.45 ^{or}

est 1995 Eand held ultrasonic remote control 12.95 XY2486 gas relay 30 x 10mm dai with 3 were terminate all also work as a neon light 20p each or 10.85 (ppr 100 forbattin R300NH Streemer tape commonly used on nc nachines and printing pesses stic it locits Me a norotic Me assette with a slot cut out of the top 12.45 each (12.17

(00+) is compound tube feature (00+) is compound tube feature (00+) is compound tube from Dit package or Dit package M 355 times (160, 6 pin Dit socket 6 p.

I) products advertised are new and unused unless therwas stated wide range of CMOS TTL 74HC 74F inear Transitors kits rechargeable batteries capacitors iols etc. always in stock.

uois etc. aways in slock Prease add £195 lowards P&P (orders from the Scottish Highlands, Northem Iretand, Isle of Man, Isle of Wight and overseas may be subject to higher P&P for heavy items) VAT included in all proces

Everyday	Practical	Electronics, Ju	ne 1998
LICIYUUY	<i>i</i> ruciicui	LICCH UNICS, JA	10 1 2 2 0

PINHOLE CAMERA MODULE WITH AUDIO! Superb board camera with on board soundl extra small just 28mm square (including microphone) idealfor covert surveillance. Can be hidden inside anything , even a matchboxt Complete with 15 metre cable, psu and tw/vcr connectors £73.95 ref CC6

BBC SELECTORS WITH SMART CARD SLOT AND VIDEO CRYPT Interesting new item in this week is this Selector. Onginally made for the BBC to send encrypted wideo films to your VCR at night time. The project seems to have failed. Very complex units consisting of a smart card slot in the front plus several switches and an IR receiver. Fully cased and measuring 230 x 430 x 90mm, new and boxed. On the back of the unit is a scart socket plus a UHF input and output A channel turing control numbered 28 to 40 and an IR socket inside is a comprehensive turies seebon, smart card reader mechanism and control electronics plus a power supply section. These units are sold as strippers but we imagine you could use one to convert a monitor into a TV or maybe use the wdecorypt side of things for something else. Supplied complete with manual and mains lead. Clearance price just £95 ref BBC1X.

INLINE RCB UNITSThis in line minature earth leakage unit instantly shut off the mains supply in the event of any current flowing between live and earth thus preventing a potentially leithal shock IEC plug one end, socket the other, fitted in seconds, reset button. The ultimate safety and when working on electronic equipment, computer, etc. As these units are fitted with an in-line IEC plug on one end and socket on the other than could even be used to extend standard IEC computer leits **Perk of 3**, **1638** erd LOTSA.

THE ULTIMATE ENCLOSURE for your projects must be one of theselWell made ABS screw together berge case measuing 120 x 150 x 50mm Aready fitted with rubber feet and front mounted LED linside is a poch fitted with other bits and pieces you may find useful. Sold either as a pack of five for £10 ref MD1 pack of 20 for £19 95 ref MD2 17 WATT 12V SOLAR PANEL A solar panel designed to give a nominal 12v. The solar cells are laminated within a high quality resin materiall which offers excellent protection against. UV and moisture. Mounted on tempered glass in an alauminium frame. The panel is ideal for charging sealed lead acid battenes and a protection didde in the circuit prevents reversed current flow. Mounting is by four adjustable hooks and connection is by screw terminals. Max power 17 wettts, 35 cells, 17-vice peak, 433x402x15mm, 100mA max. 1 Skg. Solar panel

MAGIC EAR Unlike previous 'sound-magnifiers' we have offered, Magic Ear fits unobtrus/vely behind the ear itself. Magic Ear's micro technology is very advanced, its built-in microphone is extremely sensitive and there's also a volume control to help you adjust to all conditions in use, Magic Ear is startingly effective. If il help you to follow every word of conversation even at a distance, and enjoy theatre, cinema or live music with stunning new sound. Comes fitted with 3 long life batteries, a free travel pouch, plus a choce of 3 different ear pieces designed to frail shapes of ear Magic ear £16.90 ref MAGE3

RADIO METER Perhaps the best of the scientific knick-knacks of the pest and well overdue for revival! Fascinating, soothing and educational. In the vacuum inside the inverted builb like container the vanes revolve, driven round by light particles alone! (each vane is black on one scie white on the other). Badiometer (£.98 ref. SC 1208

SATELLITE NAVIGATION £119 The GARMIN- GPS 38- is the one navigational tool for the great outdoors that offers big features in a small, lightweight package - all at a thruly affordable price. Mark your favorite fishing spot, tree stand or camp site. Or retrace your steps back to the safety of your starting pour using our all new TracBack feature. The GPS 38 shows you exactly where you are, where you're been and where you're going The GPS 38 features easy, one-thiumb operation and weighs only 255g. There's a resettable trip odometer, graphic compass' and highway steering guidance. And it provides up to 20 hours of use on a set of 4 Ab batteries. The GARMIN GPS 38. The affordable way to bring wou, back, £119 ref GPS 11.

allocable way to only the ERMOSTAT KIT An electronic self assembly kit designed for use in solar heating systems, heat recovery systems etc. The principle of the kit is that it has two thermistors that are placed on the items to be measured (typically a solar panel and a water storage tank) the controller then operates a relay all the time ne temperature is higher than the other. The temperature difference is adjustable. A typical use would be to operate a pump all the time a solar panel was at a higher temperature than the water storage tank. Differential thermostat like £29 ref LOTB3.

10 WATT SOLAR PANEL Amorphous silicon panel fitted in a anodzed aluminium frame Panei measures 3' by 1' with screw terminais for easy connection. One of these panels will run our solar water pump in full sunlight although we would recommend that for optimum performance two panels would be prefereable 3' x 1' solar panel £56 ref MAG45.

12V SOLAR POWERED WATER PUMP Perfect for many 12v DC uses, ranging from solar fountains to hydroponics! Small and compact yet powerful. Will work direct from our 10 watt solar panel in bright sunlight. Max head I7 ft Max flow rate. 8 1pm Current. 1. 5A (Ref AC8) £18.99.

BOOST CELL PHONE RECEPTION ON THE MOVE: Compared to high-powered carphones, hand-portable mobile phones don't always work too well in moving vehicles. Sometimes the signal 'drops out during a call, other times there's too much interference to get through at all. However, the affordable Cell Patch provides a major improvement, dramatically boosting signal reception without wires or batteries. The $9.5 \pm 9.5 cm$ ($3.3^{\circ} \times 3.3^{\circ}$) microthin antenna adheres to your car window survisor, ideally within 61-122cm (2-4)" of the handset, or can be carried in a pocket. Works with all types of portable cellular phone. Cell Patch £11.99 ref CEL1

CAT SCARER produces a blanket of high sonic and low ultrasonic sound, which is inaudible to humans, birds and fish - so it is ideal where you want to protect your bird table of rish pond against felme predators. It will deter cats from your garden and other protected areas it will also deter foxes mains operated, 10 m of cable. Running cost will be approximately 1 p per day. Garden watcher £42.45 ref GW2

VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V 8A

TX Not too sure what the function of these units is but they certainly make good strippers! Measures 390X320X120mm, on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear Inside 2x 6V 10AH seated lead acid batts, pcb's and 8A^A 24v torroidial transformer (mains in) sold as seen, may have one or two broken knobs etc due to poor storage £9.95 ref VP2X SQL AD BUTCHDE are to poor storage £9.95 ref VP2X

SOLAR MOTORS Another new line for us are these biny motors which run quide happily on voltages from 3-12vdc. We have tried one on our 6v amorphous 6° panels and you can run them from the sun! 32mm dia 20mm thick £150 each

TELEPHONES Just in this week is a huge delivery of telephones, all brand new and boxed. Two prece construction with the following features-illuminatical keypad, theor clear easy to use keypad, theor or pulse (switchable), reacall, redial and pause, high/low and off ringer switch and qualify construction. Each telephone is finished in a smart off white codurt and is supplied with a standard international lead (same as US or modern card sockets) if you wish to have a BT lead supplied to convert the phones these are also available at £1.55 each ref BTLX. Phones £4.99 each ref PH2

INFRARED CAR PHONE KIT £7.99 Interesting box of goodies! this list was designed to convert car phones to enable hands free dialling, the kit continents the following items: 1) A keypad designed to mount in the centre of the steering wheel, it requires a 9v PP3 battery and transmits the numbers using three on board high power infra red. LEDs: 140 x 120mm; 2) An infra red receiver module containing a IR photo diode, IR filter and control electronics 60 x 30 x 15mm (cased) 3). Control box (nice case) 100 x 170 x 35mm which we understand is the interface between the infra red and the car phone, it is also supposed to adjust the volume of your car stereo at the same time! made for Phillips car phones (but we don't know the model)(Complete kit is £7.99 ref. CP1

Hi power 12v xenon strobe vanable rate flasher modules and tubes £6Useful 12v PCB fitted with control electronics and a powerful Xenon tubel just apply 12v DC to the input and the tube will flash. On the board is a small potentiometer which can be used to vary the flash rati PCB measures just 70x 55mm and could be incorporated into many interesting projects! £6 ref FLS1 Pack of 10 is £49 ref FLS2 WANT TO MAKE SOME MONEY? Stuck for an ixea? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC Also included is a certificate enabling you to reproduce the manuals as much as you likel£14 ref EP74.

TALKING WATCH Yes, it actually tells you the time at the push of a button. Also features a voice alarm that wakes you up and tells you what the time is! Lithium cell included £8.99 ref EP26A

POWERBEAM INFRA RED Lamp, Althis lamp gives out is infra red light, and loads off perfectfor supplimenting rights what and surveillance equipment. Most mono CCTV video cameras are infra red sensitive so used in conjunction with this lamp would greatly enhance their operating performance. Water resistant case and rubber covered switch make this unit perfect for all weathers. Krypton bulb 4 D cells required Powerbeam lamp £29 ref PB1

GIANT SCREEN VIEWERTum your TV picture into a supersize screen! This high precision Freshel lens converts even the smallest screen up to a massive 26, giving a crystal clear picture at a traction of the cost of a big TV Easily fitted in minutes Also ideal for PC monitors et: £26 95 ref SVGA2

NOGALIGHT NIGHT VISION £129 Open up a new world of adventures and experiences Wildlife enthusiasts and adventurers in the wilderness, amateur astronomers, hunters, wargamers, private eyes on surveillance, all find Nightspy indispensable for their use. Nightspy's unque features include a special tube protection device, to eliminate over exposure, and infrared illuminator used in total darkness, such as in cave exploration and operations in dark rooms. The Nightspy is light and hand heid; or can be mounted on a standard tripod it uses two standard AA batternes and can be operated by left or right hand users, with or without optical glasses Optical Magnification X 17 Field of View 10Degrees Focusing Renge 25cm to infintly objective Focal Length 182 mm Woth 65mm Height 100 mm Weight700 gr Electical Power Source 3 VDC 2AA batternes Battery Life 40 hours Infra-red Illuminator built-in imaging Device Night Vision image Intensifier Tube £121 ref NOGA

Register with us at www.bull-electrical.com for your free e-mail NEWSLETTERS!

DRILL OPERATED PUMP Fits to any drill in seconds, uses standard garden hose, will pump up to 40 gallons per hour! £8.99 ref DRL3

BULL ELECTRICAL 250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £3.50 P&P PLUS VAT. 24 HOUR SERVICE £5.00 PLUS VAT. OVERSEAS ORDERS AT COST PLUS £3.50 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) 'phone orders : 01273 203500 FAX 01273 323077 Sales@bull-electrical.com

STEREO MICROSOPES BACK IN STOCK Russian, 200x complete with lenses, lights, fifters etc etc very comprehensive microscope that would normally be around the £700 mark, our price is just £299 (full money back guarantee) full details in catalogue SECOND GENERATION NIGHT SIGHTS FROM £748 RETRON Russian night sight, 18x, infra red lamp, 10m-inf, standard M42 lens, 11kg, £349 ref. RET1

M42 lens, 1 1kg £349 ref RE11 MAINS MOTORS 180 RPM 90X70mm 50X5mm 50x5mm output shaft, start cap included £22 ref MGM1

PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OUR CHOICE, BARGAIN AT 8 PSU'S FOR £9.99 REF XX17

LOW COST CORDLESS MIC 500' range, 90 - 105mhz, 115g, 193 x 26 x 39mm, 9v PP3 battery required £17 ref MAG15P1

JUMBO LED PACK 15 10mm bicolour leds, plus 5 giant (55mm) seven segment displays all on a pcb £8 ref JUM1 Pack of 30 55mm seven seg displays on pcbs is £19 ref LED4, pack of 50 £31 ref LED50 12VDC 40MM FANS MADE BY PANAFLO, NEW £4 REF FAN12

ELECTRONIC SPEED CONTROLLER KIT For the above motor is £19 ref MAG17 Save £5 rf you buy them both together, 1 motor plus speed controller mp is £41, offer price £36 ref MOTSA RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction, built in light, immor etc. Russian shrimp farmi, group viewing screen, lots of accessiones £29 ref ANAYLT

group viewing screen, lots of accessiones. £29 ref ANAYLT AA NICAD PACK. Pack of 4 tagreed AA nicads £2.99 ref BAR34.

RUSSIAN NIGHTSIGHTS Model TZS4 with infra red illuminator, views up to 75 metres in full darkness in infrared mode, 150m range, 45mm lens, 13deg angle of vew, focussing range 1 5m to infinity 2AA batteries required 950g weight £199 ref BAR61 1 vers warranty LIQUID CRYSTAL DISPLAYS Bargain prices,

20 character 2 line, 83x19mm £3.99 ref SMC2024A

16 character 4 line, 62x25mm £5.99 ref SMC1640A TAL-1, 110MM NEWTONIAN REFLECTOR TELESCOPE Russian Superb astronomical 'scope, everything you need for some senous star gazing) up to 169x magnification. Send or fax for further information 20kg, 865x800x1650mm ref TAL-1, £249 YOUR HOME COULD BE SELF SUFFICENT IN

YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensive plans with loads of info on designing systems, panels, control electronics etc £7 ref PV1

PHOTOMULTIPLIER TUBES Boxed and unused straight from

the ministry of defence. Made by EMI with a MOD part no of 10/CV/ 5114 and packed almost 30 years ago. I Do you have a use? do you want to count light particles? They would look nice on the mantle piece/Offered to you at £15 each (we think the MOD paid more than this is 1558/ £15 each ref. PM3.

CLOCK CAMERA WITH AUDIO Discretely monitor living rooms, reception, office, bils or any other area Fully working clock houses an invisible spy camera complete with audio. Complete setup includes clock, camera microphone, clock battery. 15 metres of cable, power supply, adapter for either scart or phono. Everything you need, no soldering required. Full instructions included. Easily installed in just a few minutes. Plugs straight into VCR or TV (scart or phono)Clock camera with audio £89.57 eff.CC3

AUTO RECORD KIT This automatic system will instruct your VCR to start recording when movement is detected via the PIR Recording will stop 30 seconds after your visitor has left which saves hours of tapes as the video only records what you want to see Complete system with PIR, will work with all remote control video recorders. E89 ref CVC2

TELEPHONE VOICE CHANGER Changes your voice to a new or unfamiliar one. Simply place over the telephone mouth place and speak into the changer Fully adjustable for different voices. Supplied complete with batteries, ready to go. Unit measures 90 x 60 x20mm Telephone voice changer £14.36 ref CC3.

EXTERNAL CAMERA Introducing the Bulldog model 4 vandal resistant camera in heavy steel case for intenor or extenor use. Top quality case housing a 420 line camera module. Each camera is suplied with a 15m cable terminating in Scart and phono plugs. Multi angle bracket for easy installation in any situation. A 12vdc psu is also included. Easily installed in a few minutes, plugs straight into VCR or TV (phono or scart) Bargain price 183-95 ref CC1

GIANT INSULATORS Just in this week are some grant ceramic insulators, each one measures 130mm high and about 170mm diameter Finished in a high globs brown and black glaze in the base of each insulator is a threaded hole approx 1° diameter, rather like a morphoroom head thread if you are into shortwave radio, crystal sets or high voltage experiments then these are for you. (We've got one as a door stop) Not too sure what their original purpose was, all we know is they were made for export about 25 years ago, never exported and been in store since then **Price is £8 each ref INSX**.

NATO RADIATION MONITORS Interesting new line! These are smail modules that strap on your wrist (strap supplied) and monitor radiation. We have stripped one apart and they contain a small piece of "crystal" this could be something like Naphthalene or any other rare radiation sensitive crystal, it is produced in the crystal, it scritilities and a small amount of light is produced in the crystal, in reaction to the radiation exposure. That light is then picked up by a micro pricell measuring about 2mm square! Also in the unit is a sheet of foil, a circular metal plate. (insulation between the two) and a small pair of additional parallel metal plates. NATO part no is 6665-99-225-2314 any information gratefully received!! Alternatively if you wish to buy one they are just £23 each ref NATOX.

WE HAD 38,000 'HITS' ON OUR WEB SITE IN FEBUARY '98..... BULL-ELECTRICAL.COM See our live camera!

Everyday Practical Electronics, June 1998

Open Door

Humidity

Liaht

The Enura Man system. from Temperature Pico Technology is one of the most versatile and cost effective monitoring systems on the market today. It can measure temperatures from -55 to 300°C. check light and humidity levels or record the position of a switched system. Its applications are endless; from food storage & preparation to energy management.

At the core of the system is the logger, which stores up to 15,000 readings and displays them from each sensor in turn. Reports can be printed on a standalone printer or data sent to a PC for long term storage and graphical

analysis using the powerful supplied software. EnviroMon for Windows.

The EnviroMon system records data 24 hours a day. 365 days a year, even if the mains power fails. Should a parameter goes out of range, it alerts you with various alarms or a telephone message.

Enviro Mon Starter kit £395 + VAT

Call for full product range and FREE demo disk or visit our web site.

Pico Technology Limited, Broadway House, 149-151 St. Neots Rd, Hardwick, Cambridge, CB3 7QJ UK Tel: 01954 -211716 Fax: 01954 -211880 E-mail: post@picotech.co.uk http://www.picotech.com

The best things come in small packages

Oscilloscopes are becoming smaller and lighter: Now Pico Technology brings you the latest development, the osziFOX hand held scope.

Despite its small size, its performance can match that of a service oscilloscope. With sampling rates of up to 20 MSs. even signals in microprocessor circuits can be measured.

The osziFOX is ideal for taking measurements in digital circuits, telephone installations, hobby electronics, production line tests and on-the-spot measuring. It provides the ultimate in portability and flexibility.

As with the rest of the Pico Technology range, the PC link gives the osziFOX the edge: the ability to print and save waveforms is just one example.

Complete price £98.11 including VAT + P&P (UK), cables and software included.

Tel: 01954 -211716 Fax: 01954 -211880 E-mail: post@picotech.co.uk Visit our web site: www.picotech.com Pico Technology Limited, Broadway House, 149-151 St.

Neots Rd. Hardwick, Cambridge, CB3 7Q1

Tel 01283 565435 Fax 546932

E-mail: Magenta_Electronics@compuserve.com Homepage: http://ourworld.compuserve.com/homepages/Magenta_Electronics

All Prices include V.A.T. Add £3.00 per order p&p. £6.99 next day SW TON

Т D

L

LECTRONICS

MD38...Mini 48 step...£8.65 MD35...Std 48 step...£9.99 MD200...200 step...£12.99 MD24...Large 200 step...£22.95

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845.....£64.95 | KIT 869......£5.99 | KIT 812.....£14.81

Magenta have prepared a FULL KIT for this £6.50 excellent new project. All components, PCB, hardware and electrodes are included.

Designed for simple assembly and testing and providing high level dual output drive.

KIT 866.... Full kit including four electrodes £32.90

Superb new design, Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

newly

etc.

sown

This

children's play areas, patios

intense pulses of ultrasound

COMPONENTS, PCB & CASE

which deter visiting animals

KIT INCLUDES ALL

project produces

KIT 848.....£32.95

BEGINNERS PROJECT Uses SAB0600 chip to produce natural sounding 3-note chime. Adjustable pitch - so that two can be used for front and back doors Kit includes P.C.B., all

parts and instructions. No case or battery

VISA

ALSO AVAILABLE Built & Tested£39.99

 EFFICIENT 100V TRANSDUCER OUTPUT . UP TO 4 METRES RANGE COMPLETELY INAUDIBLE TO HUMANS LOW CURRENT DRAIN

400

Image: Construction of the second s	ADM/35/Arr.325 LUD/14/2004 LUD 3/200 ADM/35/Arr.325 LUD/14/200 LUD 3/200 LUD 3/200 ADM/86/Arr.325 LUD/32/200 LUD 3/200 LUD 3/200 ADM/86/Arr.325 LUD/32/200 LUD 3/200 LUD 3/200 ADM/86/Arr.325 LUD/32/200 LUD 3/200 LUD 3/200 ADM/86/Arr.325 LUD 3/200 LUD 3/200 LUD 3/200 ADM/86/Arr.226 LUD 3/200 LUD 3/200 LUD 3/200 CA3130E LUD 2/200 LUD 3/200 LUD 3/200 CA3130E LUD 2/200 LUD 3/200 LUD 3/200 CCA3130E LUD 3/200 Z/270 LUD 3/200 CCA3130E LUD 3/200 Z/270 LUD 3/200 CCL/26110C-700 Z/270 LUD 3/200 Z/270 LUD 3/200 CL/26036C LIAB Z/27728-70 LIAB LUD 3/200 CL/2707 LIAB Z/270 LIAB LIAB CL/2708 LIAB Z/270 LIAB LIAB CL/2708 LIAB <thl 2700<="" th=""></thl>	BA1142 C0 10 2NS245 BA1149 C0 36 2NS322 BA1149 C0 36 2NS322 BA1155 C0 72 2NS401 BAV021 C0 07 2NS460 BAV021 C0 07 2NS460 BAV058 C0 26 2NS4017 BAV161 C0 05 2N6401 BB4058 C0 26 2SB5-8 B909A C0 36 2SD1730 BB909B C0 36 AC126 BY127 C0 18 AC128 BY127 C0 18 AC128 BY127 C0 18 AC128 BY133 C0 10 AC187 OA47 C0 24 AC188 OA47 C0 24 AC188 DV33 C0 10 AC187 OA47 C0 24 AC188 C0 A90 C0 77 AC177 OA91 C0 26 AD141 OA200 C0 76 AC177 S00mW C0 08 BC107B 1 3W C0 14 BC108 Bridge Bectifiers BC10ge Becti	5
---	--	--	---

EVERYDAY PRACTICAL ELECTRONICS

JUNE '98

BY LEAPS ...

VOL. 27 No. 6

Perhaps not quite science fiction but, PICs aside, some of the most popular projects we have published in recent years have been the unusual "medical"/brainwave type gizmos. The *Mind Machine* originally published back in 1991 has been updated three times with the last publication being in the March, April and May 1996 issues. Now we have the *EPE Mood Changer*, an experimental device that produces Alpha, Beta, Delta and Theta frequencies and should help you to sleep, relax or get your brain in gear.

Our initial tests with the prototype have produced some interesting results and we would like feedback from readers on your experiences with this unusual unit. As always, with these types of devices, it should not be used by anyone who suffers from epilepsy.

We have some other ideas for unusual "medical" type projects which we are sure will fascinate you; so, keep reading, we are working on these.

RETRO

It is fascinating to push the technological frontiers with microcontrollers and the like but, as I have said before, it is also interesting to have some fun with simple circuits and one of the most rewarding areas to do this is in amateur radio. Our *Simple Short Wave Receiver* will allow you to receive amateur transmissions from around the world using just a few components in a relatively inexpensive project.

Many people use commercial equipment costing hundreds of pounds to communicate with each other across the Globe but the fascination and gratification of receiving these far off transmissions on a home-made simple receiver makes it worthwhile. There is still, in this 300MHz digital age, much to be said for building your own "radio set" – give it a try – we are sure you will enjoy the results, and you may just get hooked and finish up "working the ether" yourself.

Vile Ko

AVAILABILITY

Copies of *EPE* are available on subscription anywhere in the world (see below), from all UK newsagents (distributed by Seymour) and from the following UK electronic component retailers: Maplin – all stores throughout the UK (and in S. Africa); Greenweld Electronics; Omni Electronics. *EPE* can also be purchased from retail magazine outlets around the world.

Everyday Practical Electronics, June 1998

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: £26. Overseas: £32 standard air service, £49.50 express airmail. Cheques or bank drafts (in £ sterling only) payable to *Everyday Practical Electronics* and sent to EPE Subscriptions Dept., Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the *Back Issues* page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price £5.95 plus £3.50 post and packing (for overseas readers the postage is £6.00 to everywhere except Australia and Papua New Guinea which cost £10.50). Normally sent within seven days but please allow 28 days for delivery – more for overseas orders.

Payment in £ sterling only please. Visa and Master-Card accepted, minimum credit card order £5. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our web site.

Editorial Offices: EVERYDAY PRACTICAL ELECTRONICS EDITORIAL ALLEN HOUSE, EAST BOROUGH, WIMBORNE DORSET BH21 1PF Phone: Wimborne (01202) 881749 Fax: (01202) 841692. Due to the cost we cannot reply to overseas orders or queries by Fax. E-mail: editorial(a epemag.wimborne.co.uk Web Site: http://www.epemag.wimborne.co.uk See notes on Readers' Enquiries below – we regret lengthy technical enquiries cannot be answered over the telephone. Advertisement Offices: EVERYDAY PRACTICAL ELECTRONICS ADVERTISEMENTS MILL LODGE, MILL LANE THORPE-LE-SOKEN, ESSEX CO16 0ED Phone/Fax: (01255) 861161

> Editor: MIKE KENWARD Secretary: PAM BROWN Deputy Editor: DAVID BARRINGTON Technical Editor: JOHN BECKER Business Manager: DAVID J. LEAVER Subscriptions: MARILYN GOLDBERG Editorial: Wimborne (01202) 881749

Advertisement Manager: PETER J. MEW, Frinton (01255) 861161

Advertisement Copy Controller: PETER SHERIDAN, Wimborne (01202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply *must* be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to overseas queries by Fax.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see *Shoptalk*). We advise readers to check that all parts are still available before commencing any project

in a back-dated issue. We regret that we cannot provide data, or answer queries, on projects that are more

than five years old.

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE EQUIPMENT

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

Don't become stressed-out, let this experimental pocket-size ''psychiatrist'' take the heat out of everyday living.

a PIC in order to do so. There are many ways to generate a sinewave of the required frequency. Digital synthesis was chosen for this project as it is easy to adjust the frequency without associated amplitude variations.

A simplified version of the method is shown in Fig.1. Five D-type flip-flops

Some time ago the author was given an expensive little electronic gizmo that was claimed to reduce "stress". It aimed to achieve this by surrounding the body with an alternating electromagnetic field of the same frequency as electrical signals found in the brain during various stages of relaxation.

Needless to say, this gadget was soon prised open to see what, if anything, was inside. The answer was quite surprising.

It contained a PIC microcontroller, which generated and applied a rather jagged synthesised sinewave to an aircored "bobbin" coil. A total of five frequencies were available, selectable with a d.i.l. switch projecting through the front of the unit bearing legends trom "sleep" through to "optimism".

The output of the device was about 300mV peak-to-peak and the coil had a measured resistance of about 550 ohms, so the radiated output was obviously very small indeed. It wasn't long before thoughts arose as to what might be achieved through the use of increased power!

BRAINWAVE

Brainwaves of various kinds are nowadays fairly well understood. In brief, the brain generates electrical activity with a frequency related to the current mental state, and encouraging production of one of these frequencies is often claimed to induce the associated state.

Fig.1. Simplified digital sinewave generator using D-type flip-flops.

Various methods of stimulation can be used, by far the most effective being photic stimulation using glasses or goggles fitted with l.e.d.s. Sound is sometimes employed, generally as a "binaural" signal where two slightly different frequencies are played separately through headphones. (See the Mind Machine in the March to May '96 issues of EPE.)

Some of the original brainwave-inducing gadgets sold in the USA offered magnetic field stimulation, so it may well have a useful effect. The frequencies sought fall into four broad bands whose names, frequency ranges and effects are shown in Table 1.

It is obviously possible to construct a suitable magnetic field generator quite cheaply, and it is not necessary to program are shown connected in series, with the final \overline{Q} connected back to the D input of the first to complete the loop.

Assuming all outputs are zero at the outset, clocking the flip-flops will generate a repeating sequence of the output states as shown in Table 2. If four of these outputs are now parallel connected through resistors with suitable value ratios as marked, the output will be the "stepped" approximation of a sinewave as shown in Fig.1. The fifth output voltages remain the same for two clock cycles to simulate the flatter "tops" and "bottoms".

The frequency of this 'sinewave' is one tenth of that from the input clock and the amplitude reaches rail-to-rail peak voltages when not loaded. Resistive loading

Table	1	Brainwave	Frequencies	and Effects
Iavic		DIGINIWAVE	rieuuencies	and Energy

		•
Name	Frequency .	Conditions
Delta	0.5Hz to 4Hz	Sleep
Theta	4Hz to 8Hz	Creativity, Dreaming
Alpha	8Hz to 13Hz	Deep Relaxation, Meditation, Stress Relief
Beta	14Hz to 25Hz	Normal alert mental state

WARNING NOTICE

It is known that photic stimulation at Alpha frequencies can cause seizures in persons suffering from Epilepsy. We would therefore also suggest that it is not wise for such people to try this project.

A user who is not a known epileptic, but when using the *EPE Mood Changer* begins to experience an odd smell, sound or other unexplained effects, should TURN IT OFF IMMEDIATELY and seek professional medical advice.

will attenuate it and may cause a d.c. shift towards one of the supply rails, but will not increase distortion. The combination of Dtype flip-flops in this way is known as a "walking ring" counter, and a ready made five-stage version is available as the CMOS 4018B i.c.

IN THE MOOD

The full circuit diagram of the *EPE* Mood Changer is shown in Fig.2. It uses two 4018B counters, IC2 and IC3, which are connected in series to produce a "sinewave" having twenty clocked steps per cycle.

Clocking is provided by one half of IC1, a 7556 dual timer, connected as an oscillator. The frequency is set by capacitor C2, resistor R1 and the "Frequency" control VR1 which give a variable clock speed between about 20Hz and 440Hz.

The two counters divide this by 20 for an output frequency of 1Hz to 22Hz. Use of a log component for VR1 provides reasonably easy adjustment, although it

Table 2. Output States for the D-Type Flip-Flops

		• •	•	
A	B	С	D	Ε
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	0	0
1	1	1	1	0
1	1	1	1	1
0	1	1	1	1
0	0	1	1	1
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

has to be used "back-to-front" with the highest frequency at the anti-clockwise end of the scale.

A couple of additions are necessary for IC2 and IC3 to operate correctly in series. To begin with, they are intended to be used as programmable counters. To simplify this their outputs are all Q so that applying any one to the "input", equivalent to the first Data (D) input of Fig.1, will complete the loop for the appropriate number of clock cycles.

To construct a longer loop with two 4018Bs it is necessary to invert the last output of the first (IC2) before applying it to the input of the second. This inversion is obtained from the second timer in IC1, where a signal applied to the threshold and trigger inputs, pins 8 and 12, appears in inverted form at output pin 9.

A state can arise where an "illegal" sequence of 0s and 1s is circulating. A single 4018B has internal circuitry to prevent this but it doesn't always work for two connected in series, so an extra circuit must be included to ensure correct operation.

From Table 2, it will be seen that when both the first and last outputs are high, all the intermediate outputs should also be high. The "micky mouse" logic of resistor R2 and diode D1 provides a "high" output only for this state. This is differentiated by capacitor C3 and resistor R3 and used to pulse the "reset" inputs of IC2 and IC3, which causes all the outputs to go high, thereby ensuring that the circuit operates as intended.

The resistor values used for sinewave simulation were chosen for the closest possible approximation using single values from the E12 series resistors. The result isn't perfect, but when viewed on an oscilloscope the output looks surprisingly good, especially if a suitable filter capacitor is used to smooth out the "steps".

Smoothing is not used in this circuit by the way, as it wasn't in the commercial one. It may be that the harmonic content of the "steps" helps to produce the desired effect.

WASHED-OUT

The source of a suitable air-cored coil for the output was initially a problem, until casually mentioned to a washing machine service engineer of the author's acquaintance. To him it was obvious, 230V solenoid coils!

A scrapped three-way valve was duly provided with three of these coils attached to it. They were simply pressed into place and could be prised free instantly with a screwdriver. Each had a pressed steel hollow core which could be dismantled simply by twisting the joints

Fig.2. Complete circuit diagram for the EPE Mood Changer.

apart with sidecutters. The photograph shows this.

Subsequent enquiries have revealed that these valves are available almost everywhere as service spares with a single solenoid coil on a valve costing less than £9. It is worth checking scrapyards first though, as these are even cheaper.

The coil used had a d.c. resistance of about four kilohms. To obtain the maximum output from this from the available supply voltage a "bridge" output stage is used.

This is built with IC4, an OP296G op.amp which has rail-to-rail inputs and outputs. This is a low-power device so when loaded its output will not actually reach the supply rails, so a small amount of input attenuation is needed, preferably through a resistor returned to half the supply voltage.

Loading the generator output with the input of the inverting stage IC4b achieves this. It avoids any shift in the d.c. level of the output, and the resulting attenuation also applies to the non-inverting stage IC4a to give a symmetrical output. For acceptable distortion, loads driven by this stage should be higher than 3.5 kilohms.

Fig.3. Modifying the output stage for higher power.

If higher power is required, the output can be altered as shown in Fig.3. An OP279G is used here as a direct replacement for the OP296G. It can drive rail-torail loads down to about 200 ohms, which may consist of a lower resistance coil or several coils in parallel. A simple alteration to the circuit, provided for on the p.c.b., removes the attenuation of the input signal.

The drawback to this modification is an extra 4mA in quiescent current, which may be acceptable where a higher output current is required and a suitable supply is available. It also becomes unstable with supplies below 4V whereas the unmodified circuit operates down to 2V.

CONSTRUCTION

Construction of the printed circuit board (p.c.b.) for this project is straightforward with the layout of all components, together with full size copper foil master, shown in Fig.4. This board is available from the *EPE PCB Service*, code 193.

The usual procedure of assembling components in order of physical height, lowest first, is recommended with d.i.l. sockets for the i.c.s. Note that there are

Producing an air-cored coil from a 230V solenoid coil salvaged from a washing machine three-way valve.

two possible positions for the lower end of resistor R13. For the standard circuit using the OP296G the lower hole should be used as shown. The upper one is for use with the OP279G higher power version as described above.

For a low profile, capacitor C5 is placed horizontally on the board. A dab of glue will help to secure it firmly.

The coil L1 is not required to test the output as this is a voltage that should be

present anyway. With potentiometer VR1 temporarily connected it can be checked with an oscilloscope using the highest frequency, or with an analogue meter at the lowest speed.

ASSEMBLY

The unit can be housed in any suitable case of the constructor's choice. The author chose a small black plastic box with an integral compartment for a PP3

Fig.4. Printed circuit board component layout, off-board wiring and full size copper master pattern for the EPE Mood Changer.

battery. The general layout can be seen from the photographs.

Since the device will probably be carried in a pocket whilst operating, some thought was given to making the frequency control easy to operate but difficult to accidentally displace. An edgewise control would work, but these are difficult for home constructors to obtain and fit.

The method finally adopted is shown in Fig.5, where the top of the control knob is level with the surface of the case. It can easily be rotated by a finger pressed against the top but the flush mounting makes it comfortable to carry in a pocket and difficult to alter accidentally.

The coil is secured with a single *brass* (not steel) screw as shown in Fig.6. A piece of rubber tube is placed over this with a washer at each end. As the top nut is tightened it compresses the tube, causing it to expand outwards and grip the coil.

Fig.5. Suggested method of securing the Frequency control in the case.

Fig.6. Coil mounting details.

CALIBRATION

Calibration of the control can be carried out in either of two ways. If a frequency meter is available it can be connected to the clock signal from IC1, which is present on both the wire links on the p.c.b. This is a clean square wave at twenty times the output frequency so it is easy to measure it and apply the appropriate calibration markings to the control.

Alternatively, the frequency is related to the value of resistance of VR1, so this can be measured with a DVM and used for marking the calibration points. Table 3 shows the values of VR1 resistance against frequency.

Note that frequency also depends on the exact value of capacitor C2 so this method of calibration depends on this being fairly accurate. The component specified has a 10 per cent tolerance.

Since there is no indication if this unit stops working (!) a means of monitoring the battery voltage is essential. The

The two halves of the project case showing the component positioning. The small board in the case lid is the Low-Power L.E.D. Battery Monitor. to be described next month.

simplest way is to fit a small moving-coil indicator but these tend to be expensive nowadays.

An alternative solution is to construct the Low-Power L.E.D. Battery Monitor, to be described in next month's issue, and fit this. It was in fact developed for this project, though its versatility and potential usefulness led to its presentation as a separate design.

The basic *EPE* Mood Changer circuit can operate from supplies between 2V and 10V. The upper limit is set by the voltage rating of capacitor C5 so if this is replaced by a higher voltage type the circuit can be operated up to 15V, the limit for the CMOS components.

With a 9V supply it draws about 3.5mA. It can work from a 3V supply with a drain of about 1mA, and operation down to 2V means that the use of two AAA cells or even a single lithium cell is practicable. At these voltages it still packs greater magnetic "punch" than its commercial counterpart, since it provides several times the output voltage to push more current through many more coil turns.

Table	3.	Resistance/Frequency
		Calibration

Output Freq. (Hz)	Clock Freq. (Hz)	VR1 Resistance (Ohms)		
1	20	157.143		
2	40	75.171		
4	80	34.186		
6	120	20.524		
8	160	13.693		
11	220	8.104		
15	300	4.130		
20	400	1.397		
22	440	0.652		

CO	MPON	ENTS
Resistors R1 R2 R3, R13, R16 R4 R5, R12 R6, R11 R7, R10 R8, R9 R14, R15 All 0 ⁵ 6W 1%	6k8 22k 220k (3 off) 150k 180k (2 off) 270k (2 off) 330k (2 off) 390k (2 off) 100k (2 off) metal film	See TALK Page
Potentiom VR1	eter 100k sub-mi carbon, lo	
Capacitors C1, C4 C2 C3 C5		ped ceramic
Semicond D1 IC1 IC2, IC3 IC4	1N4148 sigr 7556 CMOS 4018B CMO (2 off) OP296G dua (see text)	dual timer S counter
from EPE 193; plass 145mm × 80 socket; 14- socket (2 of (see text);	solenoid coil kilohm – s s.p.d.t. sub-r switch circuit boa <i>PCB Se</i> tic case mm × 34mm; pin socket; (); battery ho plastic knol	see text)
Approx C Guidance	ost Only	£25

Everyday Practical Electronics, June 1998

excluding

A BETA WAY OF LIVING!

Of course, the ultimate question is "Does it work?"! Two experiences of the author may be of interest.

On one occasion the commercial version was set to ''sleep'' and placed under the pillow, putting it also within range of the author's wife. The next day she awoke and immediately commented on a wonderful night's sleep, without ever knowing the device was there!

At a meeting one evening the author felt exceptionally "laid-back", and suddenly realised that most of the day had been spent working on this project with the coil well within range on the workbench although most of the time it had been operating at "beta" frequencies because these are the easiest to view on an oscilloscope.

Much of the effect of such of a device may, of course, stem from the wellknown auto-suggestion effect. If you think it will do you good it probably will, especially if it cost you a lot of money!

Practically speaking, there's no doubt that the brain does generate electrical signals at these frequencies, and it is electrically conductive. Exposing it to an alternating magnetic field must therefore have some induced effect, however minute.

Completed unit showing components installed in the base of the case. Suggested methods for mounting the Frequency control and output coil are given in Fig.5. and Fig.6.

How susceptible the brain is to such a tiny effect, especially over long periods of time, is probably totally open to conjecture. It may be that practical experiment is the best way to find out. Any feedback from readers will be very welcome. If it works, and especially if it can be improved, it may become a vital tool for coping with life in this age of stress, disaster and road-rage.

Quickroute Makes it Easy

SPECIFICATION

- Modern user interface with dockable tool bars & active buttons
- Multi-sheet schematic capture at the press of a button.
- Power rail & data bus support
- 32 Bit mixed mode analogue & digital simulation
- Support for a range of SPICE .MODEL statements.
- Copper flood fill
- Netlist import & export
- CAD/CAM file import/export. Gerber Viewer.
- PCB Design with 1-8 layer autorouter
- WMF, DXF, & SPICE file export
- 1000+ Library Symbols
- Engineering Change & Design Checking

Download a free demonstration version from our web site at http://www.quickroute.co.uk

30 DAY MONEY BACK GUARANTEE It's not hard to see why Quickroute is so easy to use! We've integrated mixed mode simulation, schematic capture, PCB design with autorouting and CAD-CAM support into one integrated environment. Best of all, prices start at just \$99.88 inclusive* for the complete system with support for 300 pins - less than the price of some simulators alone!

Quickroute 4.0 features a modern user interface with active buttons and dockable tool bars. Frequently used tools can appear on floating tool pallettes for quick access, and with tool-tips and on-line help you can be sure of getting information on Quickroute's features fast.

To create a schematic in Quickroute 4.0, simply click on the symbol browser and select and place symbols onto the design area. Use the 'intelligent' wires, power rails and data

bus elements to quickly wire up your schematic and simulate the design as required. When completed, simply press a button to capture the schematic, a PCB rats nest will then appear (no messy netlists required!).

Use the multi layer autorouter, and/or

manual routing to complete your PCB together with copper fill, etc as required. Finally print your design, or create CADCAM files suitable for manufacture (we even include a Gerber viewer for checking).

But it doesn't end there! Quickroute 4.0 includes engineering change for automatic updating of your PCB from the schematic, netlist import & export so that you can link to other EDA packages (including many simulators), DXF, SPICE, and WMF file export together with over 1000 library symbols.

Call us now and find out why Quickroute 4.0 Makes it Easy!

	Price	UK Inclusive Price*
QR4 300 Pin	£79.00	£99.88
QR4 800 Pin	£149.00	£182.13
QR4 Full	£249.00	£299.63

*Includes UK P&P and VAT. Phone for EC/World prices. **Design cycle figure shows screen shots from different projects. Prices & specification subject to change without notice.

FREEphone Ref 411 0800 731 28 24 FAX 0161 476 0505 TEL 0161 476 0202

Quickroute Systems Ltd Regent House Heaton Lane Stockport SK4 1BS UK

Copyright (C) 1998 Quickroute Systems Ltd. All rights reserved. All trademarks are the property of their respective owners.

Electronics Principles 5.0 'A COMPLETE PC BASED ELECTRONICS COURSE'

If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you. Now includes the PIC16C84 & PIC16C71 hardware and instruction set.

Electronics Principles 5(1) is a significant upgrade of our popular electronics educational software. Now containing even more analogue, digital and microcomputer theory. PLUS over a hundred new mathematics topics to further your understanding of formulae and coloculations. Telephone for a comprehensive ist or upgrade details.

This software has been developed to teach electronics and is suffer to bartilithe advanced student or hobbits wonting di advanced student or hobbits advanced student or hobbits wonting di advanced student or hobbits sciences formulae. If is extremely easy to use just select a topic, which is always presented as a default diagram (no biank sciennes) and input your own values Alternatively, use those from any standard electronics text book to see the results as frequency response curves, calculations, logic states, voltages and currents etc.

Graphics presentation has been enhanced and speeded-up with new menus and indexing which enables a quicker access and more informative description of the extended range of five hundred and sixty electronics and mathematics topics.

The PIC16C84 microcontroller hardware and instruction set has been introduced and brought to life through colourful interactive graphics where you can study the architecture of this device by changing the data values to simulate all of the registers, direct/indirect addressing, program/data memory and input/output port configuration. Along with those analogue to digital functions of the PIC16C71. If you would like to learn more about the principles of these popular microcontrollers then it could not be made easier.

Electronics Principles software is currently used in hundreds of UK and overseas schools and colleges to support City & Guilds, GCSE, A-Level, BTEC and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.

Still only £99.95*

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376 514008. sales@eptsoft.demon.co.uk http://www.eptsoft.demon.co.uk *UK and EC countries add £2 per order for post & packing. VAT should be added to the total. Outside Europe £3.50 for air mail postage by return.

Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques & Postal Orders should be made payable to EPT Educational software.

Innovations

A roundup of the latest Everyday News from the world of electronics

NET ON THE GRID

Could electric power lines carry Internet data? A new consortium believes so, reports Barry Fox.

AST October, Nortel and Norweb announced their work on a system which uses mains electricity power lines to carry Internet data. In late March the two companies announced a joint venture Nor.Web, to market the Digital Power Line system around the world.

Nor.Web claims to have received more than a thousand enquiries, which whittled down to forty serious approaches. Now ten companies, including Norweb in the UK, Singapore Power and Edon of the Netherlands have signed agreements to use the technology.

The company certainly thinks it is on a roll. "The technology is available today – and will revolutionize the mass communications on the Internet", said Chairman John Beckitt. "It's the most elegant solution. The most significant communication tool since the mobile phone".

Intelligent Junction Boxes

But Nor.Web could still only show a video of the system. It is being used by children at a school in Manchester, where parent company United Utilities is the local electricity supplier.

Although Nor.Web cannot hook its system into the London mains, there seemed no reason why they could not demonstrate a working prototype on the ring mains in the London building where Beckitt was speaking. Nor.Web's answer on this was revealing. The system relies on intelligent junction boxes which sit alongside the electricity meter and there were still only two working samples, both of which were in Germany.

Nor.Web is long on catch phrases and hyperbole, but short on hard technical fact. Steve Pusey, CEO of Nor.Web, speaks in the kind of sound bites that radio, TV and newsprint editors love. "We have a mission to lead the world. There is a light bulb everywhere. We see a massive opportunity in speeding access to the World Wide Wait". He describes the unit as an "information socket" which decouples the electricity supply from the data.

"The days are not far off", says Steve Pusey, "when every white goods product will have its own Internet address". Digital Power Line provides a 1-Megabit/second signal both ways into and out of the home. But when quizzed on this, Pusey admits that the 1Mbit signal must be shared by the two hundred or so homes which are connected to the local sub-station.

"But if there is demand, we just put in multiple bearers", says Pusey.

Nothing, however, can be done to speed Internet access if the bottleneck is at the server, which may be anywhere in the world and connected through overloaded lines.

When quizzed, Nor.Web admits that all the two hundred or so homes served by the same sub-station will have access to the same digital bits and bytes. So the data will have to be encrypted for its two-way journey between each home and the sub-station. There are no details yet of how this will be achieved.

"We are working on the principle that if you build a motorway, people will come", says Pusey, dismissing the rival technologies of ADSL, ISDN, cable modem and broadband wireless as "all 20 per cent more expensive". Nor.Web says it will have 2,000 homes on trial in the UK by the end of this year, and Pusey promises "mass connection at low cost". But he can offer no information on the likely price on the intelligent socket, and not even a ballpark figure for monthly tariffs or the cost of transferring data files.

Last October Nor.Web admitted that it had little chance of selling the system into the USA, because the sub-stations in North America are often pole-mounted, and serve only around fifteen homes. But the recent London briefing was paralleled by a similar event in Atlanta, Georgia.

"Although we are focussing on Europe and Asia", says Pusey, "we have two possible solutions to make digital power lines cost effective in America. We may move the sub-station further up the network and if all fifteen homes connect to a single sub-station, giving 100 per cent penetration, it may be cost-effective anyway".

Service Manuals on CD-ROM

who say they are the UK's major supplier of service manuals, now supply their technical manuals as compilations on CD-ROM.

Each CD-ROM contains 25 service manuals for a comprehensive selection of equipment. The current range covers TVs, video recorders, computer monitors and vintage valve wireless sets. Future editions will include manuals for a vast range of test equipment, amateur radio equipment, office equipment etc. Each CD costs £24.95 plus VAT which, say Mauritron, makes this by far the cheapest method to purchase service information (although printed copies are still available).

Tolume 2 Mainritron Lechnical Services TV-2

Colour Television

Service Manuals

Mauritron have a catalogue of the manuals on a 3.5-inch floppy disk, detailing all the makes and models covered by the CD-ROMs, as well as their range of technical publications. Just send two first-class stamps with your request.

The latest editions and current special offers can also be found on Mauritron's web site.

More information contact Mauritron Technical Services, Dept EPE, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY. Tel: 01844 351694. Fax: 01844 352554.

E-mail: enquiries@mauritron.co.uk. Web: http://www.mauritron.co.uk/mauritron/.

SOLDERING specialists JBC describe their new soldering equipment as being *cool*! Well, cool at the right moments but stably hot when it needs to be. Their Advanced Series range is said to slash temperature fluctuations from 70°C in conventional irons to 30°C.

Says Robin Smith, JBC's National Sales Manager, "We can operate the Advanced Series at lower temperatures and tests prove it to be 80% more efficient than its nearest rivals".

The maximum working temperature of the series is 350°C instead of 450°C, thus lowering the risk of damage to circuits or components. The irons register when they are in use and in the rest-state temperatures drop dramatically, avoiding tip oxidization. Tips are thus expected to remain in the best possible condition and last up to five times longer than those of conventional irons.

For more information contact JBC Soldering Solutions Ltd., Dept EPE, Marshall House, 255 Wellington Road South, Stockport, Cheshire SK2 6NG. Tel: 0161 474 0299. Fax: 0161 474 0288.

WEBBED PC SOLUTION

THE PC Solution, the UK company that handles the renowned Ivex CAD software, tell us that Ivex has launched its World-Wide Web Knowledge Base. This data base contains information about the use of Ivex programs suitable for beginners and experienced users. Also included are answers to the most frequently asked questions, and you can use their search engine to seek answers to any other questions you may have.

The Ivex site at http://www.ivex.com also allows you to download free demo versions of WinBoard PCB, WinDraft Schematic Capture, Spectra Autorouter and other CAD software. The information and service are free.

For those who do not have Internet access, a free demo version of either WinDraft or WinBoard can be obtained by calling The PC Solution.

Make all enquiries to The PC Solution, Dept EPE, 2a High Road, Leyton, London E15 2BP. Tel: 0181 926 1161. Fax: 0181 926 1160.

E-mail: info@ thepcsol.Demon.co.uk. Web: http://www.thepcsol.Demon.co.uk.

Wilmslow has Hart!

WILMSLOW Audio, the UK's largest distributor of loudspeaker kits, components and replacement drive units have announced their acquisition of Hart Electronic Kits. Hart are renowned for the design and supply of kit amplifiers based upon original designs by John Linsley Hood.

The Hart operation, based at Oswestry in Shropshire will be relocated to Wilmslow's premises in Leicestershire. The addition of amplifier kits to the already established loudspeaker kits will enable Wilmslow Audio to expand into new markets and offer a greater product range.

For more information contact Wilmslow Audio Ltd., Dept EPE, 50 Main Street, Broughton Astley, Leics LE9 6RD. Tel: 01455 286603. Fax: 01455 286605. E-mail: wilmslow.audio@dial.pipex.com.

Telecoms via Canal

Canal towpaths seem prime territory for routing fibre-optics. By Barry Fox.

Wo hundred year old technology is kick-starting the digital revolution. British Waterways has sold GPT's Fibreway the right to lay 1000km of optic fibre cable under the towpaths once used by horses to pull barges. The fibres make a figure of eight loop round the UK, connecting London, Bristol, Birmingham, Nottingham, Leeds and Manchester.

Fibreway provides "dark" or "unlit" fibre which cable TV and telephone operators can use to carry digital data as light pulses. The loop was finished at Christmas and six companies have signed up. Cable company Telewest is the first to switch on. Says Peter Borer, Telewest's National Network Director, "Over a million people use our cable TV service for phone calls. So far we have had to route their calls over BT or Mercury lines. Now we can use our own network. We can also deliver digital TV programmes from a single play-out centre anywhere in the loop, and offer high speed Internet access with cable modems"

TV and telephone cables are currently buried under the streets, laid alongside railway lines or slung from electricity pylons. Capacity is running out. Britain's canals were built in the late 18th and early 19th century to carry freight between cities. Now 60 per cent of the population lives within 8km of a canal.

The fibres run 600mm under the path in reinforced plastics ducts. Amplifiers boost the signal every 100km. The ducts carry two cables, each with 48 fibres, capable of simultaneously carrying 32,000 phone calls and 400 digital TV programmes. The ducts are wide enough to pull through eight cables each containing 200 fibres.

Says Jane Reynolds, Fibreway Director, "The system is secure because no-one else, like the gas or electricity services, needs to dig up the towpaths".

British Waterways earns a wayleave fee of $\pounds 0.25$ m a year plus around half Fibreway's profits after spending $\pounds 50$ m on digging and laying.

Following complaints from some of the 10m people who walk or cycle the paths each year, Fibreway has held back $\pounds 0.25m$ of the contractors' fees to ensure that everything is restored to its previous condition. The obligation runs for two years after completion.

SMALLEST OP.AMP

National Semiconductor has introduced the World's smallest integrated circuit, an op.amp so small that the packaged device is about the size of a flake of coarse-ground pepper.

The LMV321 device is encapsulated in the miniature (surface-mount) SC70-5 package, which measures only $2.0 \text{nm} \times 2.1 \text{nm}$ (about 3/32-inch square). This package has previously only been used to house "discrete" devices such as single transistors. For more information, browse National's web site at http://www.national.com.

New Technology Update Cellphones in particular are the driving force and beneficiaries of the latest developments in chip technology - Ian Poole reports.

T used to be military hardware that was one of the major driving forces behind technological development. This has changed, and much military equipment is now bought off the shelf, and to high commercial standards. This is one indication of the reduction of military budgets.

Other areas of life have become the driving force behind improvements in technology. One is the computer industry, and the other is the telecommunications industry, in particular the cellular telephone sector. Here vast sums of money are being invested to ensure that each manufacturer stays up with the others or ahead of them. This results in a very rapid rate of progress.

Cellphone Origins

In the early 1980s the first analogue cellphone systems were launched. These grew rapidly, but soon the first digital systems arrived. In the UK and in many other countries the GSM (Global System for Mobile communications) was established. It arose from the vast number of analogue systems which were used around the world. It aimed to provide a single system which would enable users to move from one country to the next and still retain the facility to make mobile calls.

Nevertheless, other systems are used in some countries. The USA has based its systems on CDMA (Code Division Multiple Access) technology and many other countries have followed suit.

On the horizon is the third generation system called UMTS (Universal Mobile Telecommunications System). All of these developments have required considerable improvements in technology. In addition to this, the handsets or phones themselves have improved. The first cellular phones either had to be installed in a car, or they were large portable items which could not even fit in the largest pockets. Now most handsets easily fit into a top pocket and are minute by comparison.

To achieve this, circuits have had to be shrunk still further. Current consumption has also been slashed, enabling battery size to be reduced whilst still maintaining the time between charges.

This has resulted in a considerable improvement in the performance of i.c.s in a number of areas, but particularly in those associated with radio frequency circuits. Some years back the levels of integration were comparatively small and the circuits consumed large amounts of current to achieve their performance. Now this has changed. The levels of integration have increased very significantly with a resultant improvement in performance.

I.C. Performance

To illustrate the level of performance that is now being achieved, Siemens have produced an i.e. used for up-converting the signal in a cellular telephone handset. This technique is used to ensure that the noise spreading out either side of the main transmitted signal is kept to a minimum so that the transmitted signal does not interfere with the received signal.

Normally, high performance filters have to be used at the antenna to isolate the transmit and receive paths. This filter or duplexer is expensive as it requires a very high level of performance. Not only this, but like all other filters, it introduces loss and requires the output amplifier to give a higher output, which makes the amplifier more expensive.

Similarly, the receiver input has to be made more sensitive. Again this adds cost to the unit. In a market where enormous quantities are made, costs are all important. Not only is the market fiercely competitive, but even the saving of a few pence can add up over the life of the product and represent a very large sum.

The i.c. which has been developed by Siemens contains the elements of a phase locked loop synthesizer. It contains the down conversion mixer, I/Q modulator for the type of modulation used in GSM phones, two programmable counters, and a phase detector with charge pump. The circuit draws only 45mA from a supply which can be between 2-7V and 4-5V. The i.c. uses bipolar technology and has a transition frequency of 27GHz, making it ideal for all the cellular phone bands of 900MHz, 1800MHz and 1900MHz.

The performance of this chip has been optimised for cellphone applications. It uses a phase locked loop principle to overcome one of the main cost items in the cellphone and it shows the advances which have been made in technology over the past ten years or so.

On-Chip Inductors

Another area that has been the focus of a lot of attention is in the creation of on-chip inductors. For many years it has been possible to make very small values of capacitance simply by placing two conducting layers on one another and separating them by a thin layer of oxide. but the successful manufacture of inductors has been rather more difficult.

A number of methods are now available, each with its own advantages and limitations. However, a new method has been developed by Philips in a bipolar process named "silicon on anything" (s.o.a.). A major component or building block in any cellular phone is the voltage controlled oscillator used to generate the local oscillator signals used in the r.f. path. These have to operate at the same order of frequencies as the phone itself. As cost is of prime importance, along with performance and low current consumption, full integration of the oscillator, including the inductor, is the obvious solution. This ensures the performance is sufficient, and reduces the cost as it reduces the need for external components, particularly the inductor which is inconvenient to construct.

In the manufacturing process, the passive components are fabricated on one side of the chip. This includes the inductor which is manufactured from a two layer aluminium stack with a thickness of 3.5μ m. Once complete, this side is bonded onto a substrate, which is usually glass because it acts as a good insulator with low levels of loss.

Next the exposed side of the silicon is etched back so that bond pads can be connected to the buried oxide layer. Finally, the active device, an *npn* transistor is fabricated in the epitaxial layer of the silicon. This is sandwiched between the oxide layer and the glass.

To reduce current consumption the transistors operate at less than 25μ A. This means that the output requires buffering. Even so, the overall chip consisting of the oscillator and the programmable divider chain is capable of operating at up to 1800MHz and consuming only about 800 μ A. Its top frequency means that the process can be used for the PCS1800 and DCS1900 cellular phone systems as well as the 900MHz GSM band.

Triple Band

Around the world there are now three main cellular phone bands, 900MHz, 1800MHz and 1900MHz. Many phone manufacturers seek to supply phones to markets all around the world. To make manufacturing more cost effective, it is useful to be able to adopt the same basic design, and tailor it to the individual region.

To address this problem Rockwell Semiconductor Systems have launched a chip set to do just this. They now claim that they are one of the few manufacturers able to supply the gallium arsenide r.f. chips along with the bipolar mixed signal sections, plus the complex digital areas.

The idea is that some alteration of the external sections is needed to accommodate the different bands, and there is a software change to accommodate the different signalling protocols used by the various systems.

ROBERT PENFOLD

\star 1.6MHz to 5MHz \star 5MHz to 15MHz \star 15MHz to 30MHz \star

Plug-in to the world of short wave listening with this easy-build regen-receiver.

F YOU take a look through some of the current short wave receiver and equipment catalogues, you can hardly fail to notice that all the short wave sets on offer are pretty complex. Virtually all the receivers now have a built-in microprocessor to control everything, together with digital displays, synthesised tuning, multitimers, etc. This is just the relatively inexpensive portable sets, and the "proper" communications receivers are even more complex with features such as external computer control, digital signal processing, and just about every other feature imaginable!

We have probably reached the stage where it is not possible for the home constructor to genuinely compete with sophisticated ready made receivers, but this is not to say that it is not possible for the enthusiast to enjoy building and using short wave receivers.

The more traditional forms of receiver will not give the same level of performance as a ready made set costing hundreds or thousands of pounds, but sets such as these are still capable of receiving numerous transmissions from all over the world. Whether you are looking for a low cost introduction to short wave listening, or have used expensive equipment and would like to try something more challenging, a basic do-it-yourself receiver has a lot to offer.

IN RANGE

The simple short wave receiver featured here covers a frequency range of about 5MHz to 15MHz, which includes the most popular short wave broadcast bands. It is possible to plug in alternative coil units which bring in coverage of the low frequency bands around 1-6MHz to 5MHz, and the high frequency bands from 15MHz to 30MHz,

Results on the high and low frequency bands might not be very good with a simple short wave receiver of this type, and results on the high frequency bands are very much dependent on good propagation conditions whatever receiver you use. However, it costs little extra to try these bands, and some interesting transmissions may well be picked up.

Power is obtained from a nine volt battery, and the receiver can be used with either a long outdoor aerial or a short indoor type. It will actually work quite well using a short aerial, making the receiver suitable for portable operation. either side of the station you are trying to receive. A short wave receiver needs good selectivity so that it only receives the transmission you want to listen to, and not the two signals on the adjacent channels as well.

STRAIGHT RECEIVER

Although a superhet design has definite advantages, it is relatively complex and expensive. Also, without the right test equipment it can be difficult to get the finished receiver set up and operating efficiently.

Consequently, the design featured here is a t.r.f. (tuned radio frequency) set, or "straight" receiver as they are also known. A receiver of this type operates by providing all the gain and selectivity at the

Fig.1. Block schematic diagram for the Simple SW Receiver.

BACK TO BASICS

Most radio receivers are of the superheterodyne (superhet) variety, and this means that the incoming transmission is first converted to a fixed frequency. This is known as the intermediate frequency (i.f.), and for many receivers it is at a relatively low frequency of about 455kHz.

After amplification and filtering, the signal is demodulated to recover the audio signal, and after further amplification it is used to drive a loudspeaker or headphones. The point of this round-about method is that it is easy to obtain high gain and a narrow bandwidth at the fixed intermediate frequency.

For a short wave receiver the narrow bandwidth provided by the filtering is every bit as important as the gain provided by the amplifiers. The short wave bands tend to be very crowded, and there are often quite strong signals in the channels reception frequency, with no frequency conversion and intermediate frequency stages being used. Fig.1 shows the block diagram for the Simple SW Receiver.

The aerial picks up the radio waves from the transmitter and converts them into minute electrical signals. An earth connection can boost signal levels, but this is optional and does not help much at higher frequencies.

The input signal from the aerial is fed to a tuned circuit, and it is this that provides most of the receiver's selectivity. The tuned circuit is a parallel resonant type which just consists an inductor connected in parallel with a capacitor. The capacitor is a variable type, and this is the Tuning control.

At most frequencies this arrangement has a low impedance and it effectively short-circuits the input signals to earth. At and close to its resonance frequency the impedance is much higher, and signals at these frequencies are able to pass through to the subsequent stage.

This stage is a buffer amplifier which ensures that the tuned circuit feeds into a high impedance. A low load impedance would tend to broaden the response of the tuned circuit, giving poor selectivity.

The next stage is an amplifier, and it is this stage which provides much of the receiver's gain. The selectivity provided by a single tuned circuit operating at a high frequency is not very great, and without assistance it will not give usable results.

Fortunately, there is a simple ploy which can be used to both boost the gain of the circuit and greatly improve its selectivity. This is to apply positive feedback from the output of the amplifier to the input of the tuned circuit. In this context the positive feedback is generally known as "regeneration."

Fig.2. Full circuit diagram for the Simple SW Receiver. The numbers inside the unshaded area are for the plug-in r.f. transformer coils and those outside are for the 5-pin DIN socket.

REGENERATION

Feeding some of the output signal back to the input results in an effective boost in the input signal, and a much stronger output signal. However, the boost is greatest at the centre of the receiver's passband where the gain is highest, and there is the most feedback.

Slightly off-tune there is relatively little feedback, and only a small boost in gain. It is this factor that improves the selectivity of the receiver as the amount of regeneration is increased. The improvement is much greater than one would probably expect.

Unfortunately, advancing the Regeneration control slightly too far results in the set breaking into oscillation, making proper reception impossible. In order to obtain good results from a t.r.f. receiver it is essential that the regeneration level is kept just *below* the point at which the circuit breaks into oscillation.

AUDIO RECOVERY

The output from the amplifier is fed to a conventional a.m. (amplitude modulation) demodulator circuit. With amplitude modulation the strength of the radio signal varies in sympathy with the audio input voltage. The average voltage in the radio signal is always zero, because the positive half cycles are cancelled out by negative half cycles of equal value. Half wave rectifying the signal removes one set of half cycles, and the average voltage then varies in sympathy with the audio modulation voltage.

Some lowpass filtering smoothes the signal and leaves a replica of the original audio signal. After some further amplification by a single stage audio amplifier the signal is fed to a pair of headphones.

CIRCUIT OPERATION

The full circuit diagram for the Simple SW Receiver is given in Fig.2. The tuned circuit is formed by the main winding of r.f. transformer T1 and variable capacitor VC1. The latter is the Tuning control.

The aerial signal is coupled into a tapping on T1's main winding, but a much more loose coupling is needed when using a long aerial. This is achieved by connecting the long aerial to SK2 rather than SK1, so that the aerial is coupled to T1 via low value capacitor C3.

A j.f.e.t. transistor TR1 acts as the buffer stage for the tuned circuit, and it is used in a conventional source follower circuit (the f.e.t. equivalent of a bipolar emitter follower stage). Capacitor C4 couples the output of TR1 to a simple common emitter amplifier based on transistor TR2. Capacitor C5 couples some of TR2's output signal to variable attenuator VR1, and from here it is coupled back to the input of the circuit by way of a small coupling winding on T1.

There is an inversion of the signal through TR2, but the phasing of T1 is such that it provides a further inversion so that the required positive feedback is obtained. VR1 controls the amount of feedback applied over the circuit, and it is, of course, the Regeneration control.

AUDIO DETECTOR

Diodes D1 and D2 are fed with the main output signal from TR2, and these form a conventional a.m. demodulator circuit. Germanium diodes are preferable to the more common silicon types in this application, due to the lower forward voltage drop of germanium diodes. Capacitor C7 provides smoothing at the output of the demodulator, and Volume control VR2 provides the load resistance.

Capacitor C10 couples the audio signal from VR2 to the input of a second common emitter amplifier (TR3). This provides sufficient drive for a pair of medium impedance headphones or a crystal earphone.

The current consumption of the circuit is typically about 10 milliamps, and a PP3 battery is just about adequate. If the set will receive a lot of use it would be more economic to use a higher capacity battery, such as six HP7/AA size cells in a holder.

CONSTRUCTION

Stripboard is not really ideal for a project of this type, but acceptable results can be obtained provided a sensible component layout is used. The component layout shown in Fig.3 gives good results, and unless you know what you are doing it is advisable to use this design rather than trying your own custom printed circuit board or other method of construction. Details of the breaks in the underside copper strips are also shown in this diagram.

Some of the breaks may seem to serve no useful purpose, but without them there is a risk of problems with stray coupling via the capacitance between the strips. Some of the breaks effectively remove unused lengths of copper strip, and the stray coupling that they might otherwise introduce. Construction of the circuit board follows normal lines, with a board of the correct size being cut out using a hacksaw, and the breaks being made in the copper strips. Drill the two holes for the board's mounting bolts next. A diameter of 3mm is suitable for 6BA or metric M2-5 bolts. Plastic stand-offs do not generally work well with stripboard, and it is better to use bolts plus spacers about 6mm long.

Next the components are fitted to the board, being careful to fit the electrolytic capacitors and semiconductors the right way round. The germanium diodes used for D1 and D2 are more vulnerable to overheating than ordinary silicon diodes, and extra care should therefore be exercised when soldering them in place. It is not essential to use a heatshunt, but complete each soldered joint reasonably quickly.

Mylar capacitors are the best choice for C4, C6, C7, and C11 as these have relatively long leadout wires, and can readily accommodate various lead spacings. Fit single-sided solder pins at the points where connections to the controls and sockets will be made, and generously "tin" the tops of the pins with solder. Do not overlook the single link-wire just to the right of R1.

PLUG-IN COILS

A Toko r.f. transformer is used for T1 and has 0.15 inch pin spacing which makes it difficult to use with 0.1 inch matrix stripboard. The transformer is therefore wired onto a 5-way (180 degree) DIN plug (PL1) and connected to the component board by way of a printed circuit mounting DIN socket SK4. This socket has its pins on a 0.1 inch grid, and it therefore fits onto the stripboard without difficulty.

Fig.4. Pin connections from transformer T1 to the 5-way (180 degree) DIN plug.

Fig.3. Stripboard component layout, interwiring and details of breaks required in the underside copper tracks. Note ALL copper breaks shown must be made.

An advantage of this method is that it enables coils for other ranges to be used by simply unplugging the existing coil and plugging in a different one. For the *low* frequency bands a Toko KANK3333R coil is required, and for the *high* frequency bands a Toko KANK3335R should be used.

Wiring the coils to the DIN plug is a little fiddly, but is not very difficult. Only the piece of the plug which carries the pins is required in this case, and the entire shell assembly can be discarded.

Start by "tinning" the tags of the DIN plug and the pins of the coil with plenty of fresh solder. Fix the plug to the worktop using Bostik Blu-Tack or Plasticine, and then solder pieces of 0.56mm dia. (24 s.w.g.) tinned copper wire to the five tags.

Use pieces about 50mm long and then trim them to a length of about 10mm or so. It might seem easier to simply solder 10mm pieces of wire to the plug in the first place, but it is difficult to fit such short pieces of wire as they heat up very rapidly with the heat from the soldering iron.

"Tin" the ends of the wires with solder, and then form them so that they match up nicely with the pin arrangement of the r.f. transformer coils. It should then be quite easy to connect the wires to the pins of the coils. The interconnection details are shown in Fig.4.

To complete the plug-in coil unit, add the short link-wire which connects one of the pins to one of the tags on the metal screening can of the coil. If desired, some insulation tape can be used to cover the connecting wires to give a neater appearance to the finished coil unit.

Finished coil unit plugged into the right-angle p.c.b. mounting DIN socket.

ASSEMBLY

An all-metal case is preferable for a project of this type, and an instrument case about 200mm wide will comfortably accommodate everything. It is important that the wiring to variable capacitor VC1 and potentiometer VR1 is kept as short as possible, and this largely dictates the front panel layout of the receiver.

Controls VC1 and VR1 must be mounted on the left hand section of the front panel, and the circuit board is mounted on the base panel of the case with the coil holder socket SK4 close to tuning capacitor VC1. Headphone socket SK5 and the other controls are mounted on the central and right hand section of

Layout of components on the completed stripboard. The lower section area is used for the moutning bolts and 6mm spacers.

the front panel. The Aerial and Earth sockets SK1 to SK3 are fitted to the rear panel.

The component specified for VC1 has an unusual method of mounting, which requires a central 10mm diameter hole for its control shaft, and three holes of 4mm in diameter for the short 4BA mounting bolts. It can be difficult to accurately position the small mounting holes, but adequate precision can be achieved with the aid of some careful measurement. Alternatively, many find that using a paper template made with the aid of the capacitor itself gives accurate results.

The mounting bolts must be short countersunk types. Bolts more than a few millimetres long will penetrate too far into the component, possible damaging the metal plates (vanes).

It is not essential to use the specified component for tuning capacitor VC1. Any "air-spaced" variable capacitor having a maximum value of around 300p to 400p should work well. If you can obtain a surplus variable capacitor having suitable characteristics it should be very much cheaper than the specified component.

A large control knob must be fitted to the control spindle of VC1. This covers over the mounting bolts and makes accurate tuning slightly easier.

INTERWIRING

To complete the unit the point-to-point wiring should now be undertaken, and this is also shown in Fig.3. Capacitor C3 is connected directly across the tags of the aerial sockets SK1 and SK2. There should be no difficulty in soldering it in place provided the ends of the leadout wires and the tags of the sockets are "tinned" with solder first.

A 3-5mm stereo jack socket is used for SK5, but as the phones are wired in series and connected monophonically, no connection is made to the "earth" tag on the socket. SK5 must be an insulated type or one of the phones with be short circuited. Suitable sockets can be difficult to obtain, and the alternative used on the prototype is to use a standard (¼inch) jack socket plus an adapter to connect this socket to the headphones.

CON	IPONENTS
R2 R3	82011 330k 1k 10011 33011 470k 1k5 carbon film
Potentiome VR1 VR2	e ters 1k rotary carbon, lin, 4k7 rotary carbon, log,
Capacitors C1. C9. C12 C2.C8 C3 C4. C7. C11 C5 C6 C10 VC1	100µ radial elect. 10V (3 off) 100n ceramic (2 off) 12p polystyrene 10n Mylar (3 off) 100p ceramic plate 4n7 Mylar 1µ radial elect. 50V 365p air spaced variable (Jackson Type 0)
Semicondu D1, D2 TR1 TR2 TR3	Ictors OA91 germanium signal diode (2 off) BF244 <i>n</i> -channel j.f.e.t. BC550 <i>npn</i> silicon transistor BC549 <i>npn</i> silicon transistor
SK1, SK2, SK3 SK4/PL1 SK5 B1 S1 Metal in 200mm × 122 matrix stripb strips; batter	r.f. transformer, Toko KANK3334R (see text) 4mm socket (3 off) 5-way 180 degree DIN plug and p.c.b. socket 3-5mm stereo jack socket (see text) 9V battery (PP3 size) s.p.s.t. min toggle switch istrument case, about 5mm × 75mm; 0-1 inch oard, 53 holes × 18 copper y connector; control knob (3 ind connecting wire; solder

The headphones must be a medium impedance type, such as those sold for use with personal stereo units. The circuit will also work with a crystal earphone, and SK5 would then have to be a mono 3.5mm jack socket. The rest of the wiring is very straightforward, but remember to keep the wiring to VC1 and VR1 as short as possible.

It can be a bit tedious to keep removing and replacing the screw-on top section of the case if you want to change bands (and therefore coils) quite often. The traditional solution is to cut out a section of the case and then hinge it, so that easy access to the coil holder is provided. An alternative is to modify the case by adding some pieces of springy metal to make the top section of the case a clip-on type.

IN USE

You may like to try using more elaborate aerials later on, but initially a short aerial will suffice. Either use a few feet of multi-strand connecting wire attached to socket SK1, or a somewhat longer aerial connected to SK2 (e.g. about 10 to 15 metres of connecting wire strung around the loft). An earth connection will provide a worthwhile improvement in results on the low frequency bands, but is not likely to have any affect on the higher frequency bands.

If you would like to try using an earth connection, a bare metal plate or pipe pushed into the ground is all that is needed. In theory, the bigger the plate or pipe the better, but an area of around 0.25 square metres will provide good results. The plate or pipe is connected to SK3 via a lead that should be no longer than absolutely necessary.

Start with the Volume control VR2 well advanced and Regeneration control VR1 well backed off. It will probably be possible to receive a few stations, but the sensitivity and selectivity will both be quite low. Advancing VR1 should provide

Completed Simple SW Receiver showing positioning of the circuit board and offboard components. Note the aerial and earth sockets are mounted on the rear panel.

much better results, but advancing it too far will result in whistling sounds of varying pitch (heterodynes) as the receiver is tuned across stations.

The optimum setting is the most clockwise adjustment that does not cause oscillation and produce these heterodynes. It is not necessary to readjust VR1 each time the tuning is altered, but a large change in the tuning will require slight readjustment of VR1.

There should be no difficulty in locating the broadcast bands because they contain what are likely to be the strongest stations. In between the broadcast bands there will be various strange noises, which are mostly data transmissions, navigation beacons, etc.

It should be possible to receive some broadcast stations at any time of the day or night, but reception conditions vary according to the time of day, the time of the year, and other factors. Results will therefore be somewhat variable, and will not necessarily vary in a predictable fashion. Over a period of time a number of European stations should be received, together with a lesser number of stations from further afield:

NEXT MONTH -	
DON'T MISS OUT – ORI	DER YOUR COPY NOW!
EVERYDAY	Name
PRACTICAL	Address
ELECTRONICS	
SUBSCRIPTION ORDER FORM	Post code
Annual subscription rates: UK £26.00. Overseas £32 standard air service, £49.50 express airmail	t enclose payment of £ (cheque/PO in £ sterling only, payable to Everyday Practical Electronics). Alternatively send Mastercard or Visa number and card expiry date.
To:	Please charge my Visa/Mastercard
Everyday Practical Electronics, Allen House, East Borough Wimborne Dorset BH21 1PF	Card Number
Tel: 01202 881749 Fax: 01202 841692	Signature
(We cannot reply to overseas orders or queries by Fax)	Card Ex. Date
E-mail: editorial@epemag.wimborne.co.uk Web site: http://www.epemag.wimborne.co.uk	Please supply name and address of cardholder if different from the subscription address shown above. Subscriptions can only start with the next available issue. For back numbers see the Back Issues page.
ee40	6/98

ROM the theoretical point of view, there is no fundamental difference between power semiconductors and ordinary low power devices. Power transistors and other high power semiconductors are able to handle higher voltages and current but are otherwise the same as their low power equivalents.

When actually using high power semiconductors, the situation is very different, as it is usually necessary to help them get rid of the substantial amounts of heat that they generate. There are some exceptions to this, and some circuits use power devices that dissipate average power levels that are not high enough to generate much heat. This is usually where a circuit operates intermittently at high currents. A low-power component could handle the average power levels, but would be "zapped" by the high current pulses. In such cases power semiconductors are used in very much the same way as low power types, but the situation is very different when there is some excess heat to deal with.

Clip-Ons

Although a power device may be able to handle powers of 100 watts or more, it can only do so with the aid of a suitable heatsink. A heatsink is basically just a piece of metal that acts as a heat-fin and helps to conduct heat from the component and radiate it into the surrounding air. The power ratings guoted in data sheets tends to be rather optimistic and often assume that the device is mounted on an idealised "infinite" heatsink. These power levels are not quite attainable in practice no matter how large the heatsink used. If operated at high powers with no heatsink the average power device has a life expectancy of less than a minute, and possibly just a few seconds.

By no means all circuits use power devices close to their maximum ratings. In many cases the power dissipation is no more than a watt or two, and quite a small. heatsink will then suffice. The larger component catalogues list a number of small heatsinks that either clip onto the heat-tab or are secured by a single bolt. When using a heatsink of this type there are two things you have to be careful to get right.

Power semiconductors take a number of different physical forms, and you have to be careful to obtain a heatsink that is physically compatible with the device you are using. Probably the most common form of encapsulation for power semiconductors these days is the TO220 type, and most of the smaller heatsinks are designed for devices that have this style of case. There are other encapsulations in common used though, including the smaller TO126 variety. The component list of the project you are building should make it clear if a heatsink for something other than a TO220 case is required.

Size is Important

The other point to watch is the power rating of the heatsink you use. If you look in a component catalogue you will notice that each heatsink has a rating of so many degrees per watt. This is a measure of the temperature rise that will be produced per watt of power that is applied to the heatsink. The important point to realise here is that the larger the heatsink the lower its rating.

A heatsink having a rating of five degrees per watt is therefore twice as efficient as one that has a rating of 10 degrees per watt. The salient point here is that it is all right to use a heatsink having a lower rating than the one specified in the component list, but not one having a higher rating. For example, a heatsink rated at 7.5 degrees per watt is an acceptable substitute for one rated at 10 degrees per watt. On the other hand, a heatsink having a rating of 10 degrees per watt

could not safely be used in place of one having a rating of 7.5 degrees per watt.

Of course, there may be physical considerations to take into account, and in general the lower the rating in degrees per watt the greater the physical size of the heatsink. Using one having a slightly better rating is unlikely to produce any problems, but where space is strictly limited it is advisable to measure up carefully to ensure that there is sufficient space for the heatsink. Using a heatsink having a grossly excessive rating is not usually a practical proposition.

When a power device is used at very high power levels it requires a large heatsink, which is usually quite elaborate with numerous fins. Heatsinks of this type can be quite expensive, and sometimes cost more than the semiconductors they are used to cool. Do not be tempted to use a heatsink having an inferior rating to save money. To do so would almost certainly result in the destruction of expensive semiconductors, and it could even be dangerous. Components that overheat clearly represent a fire hazard. and it is not uncommon for seriously overheated semiconductors having plastic cases to explode.

The Go-between

The metal heat-tabs or cases of some modern power devices are electrically isolated from their terminals. This makes life very much easier for the constructor as it avoids problems with unwanted connections from the power device to earth via the device's metal case or heat-tab. This is unlikely to be a problem where a small clip-on or bolt-on heatsink is used, but it is often problematic when a large heatsink is utilised. The heatsink is then mounted on what will usually be a metal case, and the case is normally connected to the zero volt supply rail.

Sometimes the case or heat-tab of the power device is connected internally to a terminal that connects to the earth rail anyway. This does not seem to happen very often though, and in most cases the case or heattab connects to the worst possible

Various power transistors. From left to right the case styles are TO3, TO126 and TO220.

part of the circuit. you usually find that mounting a power device direct on the heatsink produces something like a short circuit on the output of a power amplifier or a short circuit across the power rails of the equipment.

In order to avoid disaster in such cases the power device must be reliably insulated from the heatsink. Insulating kits for all the popular types of power semiconductor are readily available. These kits differ slightly in points of detail, but they all insulate the component from the heatsink in the same basic manner. Fig.1 shows the basic scheme of things, and Fig.2 shows an exploded view of the assembly. These diagrams show the arrangement used for a plastic power device such as one having a TO220 encapsulation. Things are much the same for components that have a metal TO3 style case, but two mounting bolts are then used.

On the face of it, an insulating washer between the power device and the heatsink is all that is needed to insulate one from the other. Matters are not quite as simple as that because the metal mounting bolt or bolts provide an electrical connection between the two. Consequential, plastic bushes must be used to insulate the mounting bolt or bolts from either the heatsink or the power device. In Fig.1 the plastic bush is insulating the bolt from the heat-tab. Using the bush on the underside of the heatsink to insulate the bolt from the heatsink would be equally effective, but is not the method generally used.

The insulating washer must be very thin so that it enables heat to easily pass-through to the heatsink. Originally these washers were always made from mica, which is a very hard and brittle material. Mica washers work well enough, but they must be handled very carefully as their thin and brittle nature makes them very vulnerable to physical damage.

Mica washers are often used in conjunction with heatsink compound. This is a white greasy substance that is normally sold in large syringes, and its purpose is to ensure a good thermal contact between the power device and the heatsink. A small amount of the compound is smeared onto the underside of the power device, and it is important to use nothing more than the thinnest of smears. Plastering the underside of the component with anything more than this is likely to be counterproductive. It is also likely to be extremely messy.

Flexible Friend

The modern alternative to a mica washer is one made from plastic. These are in many ways the opposite of mica washers as they are generally made from a soft and flexible rubberlike plastic. This brings two big advantages, one of which is that these washers are very tough and do not need to be handled with "kid gloves". The other is that they obviate the need for any heatsink compound. The point of using a heatsink compound is that it fills in any gaps if the underside of the power device is something less than perfectly flat.

As it is made from a soft material, a plastic washer tends to fill in any slight contours in the underside of the power device, making any heatsink compound superfluous. Some of these plastic washers have a built-in insulating bush, which is supposed to render a separate insulating bush unnecessary. In practice I have not usually found these to be every effective, and using a separate bush is the safer option.

As pointed out previously, there will often be dire consequences if the insulation is not fully effective. After fitting any power device that has been insulated from the heatsink it is essential to use a continuity tester to check that it is genuinely insulated from the heatsink. This is particularly important when using mica washers, as they can be difficult to get accurately in place and working properly. Do not simply switch on and wait to see if smoke starts to rise, because it probably will!

A TO220 transistor together with both mica (left) and plastic washers and a plastic bush.

Electronic

know how to get their

from their **usual manufacturer** for a

DO YOU ?

STOP WASTING YOUR MONEY! CALL NOW: 00353 61 701170

PCR-POOL

0

701168

Don't just test it,

Bipolars

Diodes

LEON

OSFET

DCA50

RGB≑GD

RGB = A

FULLY INCLUSIVE

Diode Junction

NPN Transistor

RGB\$BCE HFE=235

component Analyser

An incredibly versatile unit that will identify almost any transistor, MOSFET, diode or LED as well as identify pinouts! It will even measure transistor gain. Just apply the colour-coded

gold plated test clips in any order and press the button. Fits in the palm of your hand. Supplied with battery and P-Channel MOSFET manual.

DTA30 Transistor Analyser

"Truly amazing!"

omponent Analyser

DCA50

The user can connect any bipolar transistor to the three test clips in any configuration and the DTA30 will verify device operation and identify all three leads as well as the transistor type (NPN/PNP).

HMA20 MOSFET Analyser

A truly unique instrument that will verify the operation of MOSFETs. Of course, it will identify the three leads and the MOSFET type too.

DCH10 Diode Tester

A simple device that will test and identify the leads of diodes, zeners, LEDs and other semiconductor junctions. It will even illuminate an LED under test regardless of the connected orientation. The DCH10 can identify open, short and normal semiconductor junctions.

All units feature auto power-on and auto power-off and are supplied with an operation guide and long life battery. Replacement batteries available.

You can now order by credit card, cheque or postal order, remember there's no VAT or P+P to add, what you see is what you pay! Goods are normally despatched within 24 hours and are guaranteed for 12 months following receipt of order. Government and educational establishments qualify for 30 days payment terms. For delivery DCH10 outside the UK please add £5.

Data sheets are available free of charge, just telephone, fax or email for your free data pack. Alternatively, view extensive product data on our Web Site.

Peak Electronic Design Limited 70 Nunsfield Road, Buxton. Tel. (01298) 700 12 Web: www.peakelec.co.uk Derbyshire, SK17 7BW Fax. (01298) 700 46 Email: sales a peakelee co.uk

HMA20

DTA₃₀

INC

John Becker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line! Win a Peak DTA30 Transistor Analyser

The DTA30 will test and identify the type (*npn/pnp*) and the leads of any bipolar transistor connected to it.

Every month Peak Electronic Design Ltd will be giving a DTA30 to the author of the best *Readout* letter published.

★ LETTER OF THE MONTH ★

WHAT COMPUTER?

Dear EPE,

I have a problem I am almost at my wit's end with and would appreciate any help or advice you could give me.

About 15 years ago, as a hobby. I did machine code programming on Z80a and similar chips, concentrating mainly on strategic games such as chess, draughts etc. In the intervening years, fate and real life put other priorities in my path and 1 neglected this hobby.

The problem is that I now find myself with space, time and inclination to pursue this subject once more, but am bewildered by the medium. There is no Spectrum QL or BBC. When I ask "experts" about programming I am told about Turbo, Pascal and C. If I mention assembly language, people think that I'm building my own computer.

Having become unemployed for the first time in 10 years, and asking about courses on computing, I find the same attitudes and blankness. Surely bespoke code programming is always capable of being more efficient than artificial higher level languages, no matter what the field of implementation.

So I am left with the questions: What PC should I buy? What chip? Which books? Which magazines? Are there any courses leading to recognised qualifications. Are there any set-piece exercises I can do to prove my ability? Is that ability still valid?

Hugh Smith, Corby, Northants

You are not the first reader to express similar puzzlement. First, let me comment that I am not qualified to answer your questions as posed! They are best addressed to a magazine which specialises in computers and computing. As to which magazine to approach is a subject for which a plethora of answers exists – you are advised to browse the bookshelves of a major newsagents and purchase several that take your eye and approach the one which appeals to you most.

I can, though, offer information on the migratory route which I took from early beginnings in the mid-to-late '70s to the PCs I use now. In fact, the choice now is, in essence, much easier to make than it was in the early days since today's machines are all 'compatible', unlike those at my beginnings.

Twenty years or so ago, the computers available were, as you describe, such

machines as the Spectrums, BBCs, PETs, VICs, Z80s, Apples and so on. By and large, none of these machines could be run with software from the others; even the disk formats were different and were not interchangeable. The choice of machine was, for many people, a matter of pot-luck.

In those days, one had to choose between utterly different operating systems, now the choice is as easy as choosing a car or TV or washing machine! You choose on price, reputation, quality and extra facilities offered – in all other respects they operate on the same principles.

I learned computing on a Commodore PET, a 32K machine for which I first used two cassette recorders for data storage. before acquiring a twin-floppy disk drive. Including a 9-pin dot matrix printer the whole lot eventually cost around £3000. Through this system I discovered how to use Commodore Basic and eventually how to program in 6502 machine language. I learned the hard way - trial and error. In doing so, I also learned economy of coding and the efficiency in running time that could be achieved with 32K running at 1MHz. Coding economically remains a benefit even today when programming PIC microcontrollers, for example (1K of programming space!).

By the mid/late 80s I had been exposed to PC computers in the form of the Amstrad 1640. This ran at 4MHz, had 640K of memory and a 20Mbyte hard disk. It was absolutely no problem whatsoever to change from one Basic dialect to several others (GW-Basic, QuickBASIC and QBasic), nor from 6502 to 8086 machine code language (8086 is still recognised by Pentium processors). The logical thinking required remained the same, and there were more commands to use. Minor grammatical differences were insignificant. The improved speeds and capacity, though, were highly significant and beneficial. So too was the ability to purchase software that was compatible with all PCs.

The same remains true today. I now have a two-year old Pentium Dell with 1-2Gbyte hard disk. CD-ROM drive. 120MHz running speed and 16Mb memory. Everything learned from the previous machines is still valid, and my capabilities are enriched by the various enhancements. However, for all the options offered by the Windows 95 operating system software, for situations when I wish to create my own software, I do not use Windows at all, but operate from within the DOS (disk operating system) function – whose use is much like

that which you experienced with your early machines.

Whilst the choice of PC manufacturer and model open to you now is not something I shall presume to advise you on, you should be able to buy an excellent new machine for well under £1000, perhaps even below £600. You might also consider buying second-hand, and at a fraction of the original cost price (a colleague has recently bought an excellent machine for £50), but do buy from a reputable source so that you have some sort of safeguard if the machine proves to be defective.

If you are intent on buying new, ensure that the computer is described as PCcompatible, has a type 80486 or Pentium processor (the latter being better and more recent - avoid the earlier 80386 processor. it's too ancient now), a hard disk having at least 1.2 gigabytes of space (14Gb are just arriving on the scene), at least 16 megabytes of RAM (64Mb are commonplace), a 3.5-inch floppy drive (5.25inch are obsolete), a CD-ROM drive having multiple speeds, and that the operating system has Windows 95 installed (avoid Windows 3.1, it is well superseded indeed, even '95 is about to be replaced by Windows 98 in the next few months). Note, though, that each update always retains compatibility with earlier versions, and you will be able to upgrade from 3.1 or '95 to 98). You might also find an audio facility useful since a lot of software makes use of sound in various ways, from voice-over commentaries to games noises!

Go for the fastest speed plus the greatest memory and disk capacity that you can afford. Believe you me, such attributes available now compared with those you became familiar with may seem incredible, but you will rapidly reap their benefits.

With any modern PC you will be able to write software for any microprocessor or microcontroller far more easily than you became accustomed to. Moreover, you have a wide choice of off-the-shelf software packages to use to not only write your code but also test and debug it on-screen and then download to the processor. And, yes, it is still heavily worthwhile being able to program in machine code – look at the number of EPE projects that use it, and not just PICs.

But, most of all, any PC you choose is going to open up a world of opportunities of which you may as yet be totally unaware. Writing your own software is only a small part of what you will be able to do – don't delay, start looking now!

CRAZY CONVENTIONS Dear EPE.

I read with great sympathy the problems encountered by Jose Antonio (*Circuit Surgery*, March '98) who ends by writing ''I think it (*Teach-In*) should be more easy to understand.'' Writers seem to insist on describing the movement of electricity as current which moves from positive to negative. BUT we know that this was a mistake made many years ago by people who did not fully understand the nature of electricity.

Where I teach, we are teaching students (from infants onwards) that electricity is the movement of electrons, and alerting them to the fact that historically current was thought to flow from positive to negative but this is outdated. Indeed, 38 years ago, to quote *The Children's Britannic* of 1960 p.232b.:

"... and some knowledge of them (atoms and electrons) is needed to understand the theory, or idea, of electricity, although a useful working knowledge of everyday electricity can be gained without it. To get useful work out of electricity we need something that will give a continuous stream of it, or an electric current."

The subject you are dealing with in *Teach-In* '98 is digital electronics. Electronics deals with electrons. Electrons move from positive to negative. I have not seen in recent times, apart from your Teach-In '98, electronics taught or explained in any other way.

I actually believe it is the purpose of an educator to enable the student not only to conceptualise the subject matter in hand, but also to give a foundation for the extension of studies. One of the attributes of a good educator is the ability to infect the student with the educator's own enthusiasm so that the student will go on to higher things. In issues of safety (DC circuits) does not the flow of electrons become important?

Doesn't the fact that there are so many students confused, point to a re-think as to how the subject is taught? Because it has *always* been, it is not necessary that it *has* to be: there is progress. It is people such as your good selves who can influence the future. It seems all too easy for authors to give confused explanations of a subject and get it published. I believe that too often experts are not good enough communicators, and with the introduction of students having to pay for their courses, that the situation will change and University students will be far less tolerant.

Martin Baxter, via the Net

Since this E-mail letter was actually addressed to the authors of Teach-In, it is only right that they should reply:

As far as we are concerned, physics is a branch of electronics, and not the reverse. It is possible to discuss and demonstrate the action of electronic components without exploring the minutia of atomic physics. We could easily go into as much depth on the background "physics" as you like, and a whole lot more besides, if we thought it was appropriate, but we happen to think it isn't, as far as the *Teach-In* syllabus is concerned. Concerning the description of which direction current flow actually takes, a covering paragraph was included in Part 1 about real-time "electron flow" purely to help engineers and technicians from other branches of science who will have been taught a "classical" model different from the conventions used in electronics theory.

In fact, there is never an exact truth in physics, chemistry or engineering. There is simply a model or representation of sufficient detail to describe and analyse the current experiment or application being considered.

Firstly, the unit of charge, its polarity and the relationships defining electric and magnetic fields, and their units of measurement, are defined as a part of the *SI Common Units of Measurement*. Electrical current is also included in the SI definitions with positive current flow from a positive potential to a negative potential. These SI units provide a common language of definitions enabling concepts to be easily communicated between all technologists.

The nature of carriers of charge in solids and in vacuum are separate but related issues. There are several models for the representation of charge carriers in vacuum. For example, the common low mass one, normally negatively charged (but some have been observed with positive charge). We have two different ways of describing the electron's properties – the "particle" model and the "wave" model and they are both valid: each model being more or less applicable depending upon the application or experiment being studied.

We like to believe the behaviour of charge carriers in solids is simple. For example, in metals, negatively charged electrons flow through a packed lattice of positively charged ions. We might seem to confirm this using, say, the Hall effect. This is where the application of a constant magnetic field orthogonal to the direction of charge carrier flow in a solid, produces a potential orthogonal to both the magnetic field and electron flow. This is used as a sensing method for magnetic fields.

For most metals, the results of such an experiment produce potentials consistent with the flow of negative charge carriers, but NOT ALL! In particular, zinc and cadmium produce potentials consistent with the flow of positive charge carriers. Are these still electrons or positrons?

As far as we are concerned, current is defined as the flow of positive charge from the positive potential to the negative potential. It is an international standard which everyone understands in electronics and accepts when describing electrical properties. The detailed particle descriptions of solids are described by other commonly accepted conventions. You will find this convention is used universally by academic engineers and it is the method adopted globally in all forms of technical data and circuit operation theory.

The Teach-In Authors

As Compere of this Column, I feel obliged to make a further observation. It is not up to those who teach a subject such as electronics (ourselves included in this description) to independently change the conventions which have been established by International agreement (SI). That way lies anarchy and confusion.

Where disagreement in interpretation exists, then certainly the alternative view point should be highlighted, but not to the exclusion of the accepted argument. Irrespective of the validity of the nonorthodox argument, the orthodox view is the one which, in this case, industry expects engineers to conform to. Those who enter industry equipped with non-orthodox views are likely to be faced with having to relearn their subject in order to express themselves in terms of the concepts as understood by their colleagues.

Until such time as International bodies decree that a definition should be changed, the accepted view should be taught as standard. Irrespective of the enthusiasm generated (and we applaud and encourage enthusiasm), it would be irresponsible of any educator to teach otherwise.

PIPES, VIBES AND HISTORY Dear EPE,

I found the letter from K.C. Toh of Malaysia (*Readout* April '98) rather intriguing. I remember that, way back in my student days, I used a Kundt's Tube (is the spelling right?) sprinkled with Lycopodium powder to measure the nodes and anti-nodes of a sound wave travelling down the tube.

Perhaps K.C. Toh might consider amplifying the sound from his transistor radio so that it sets the piping to vibrate, thus loosening the adherent properties. It might, though, loosen any joints as well and the mending of these could keep him occupied for some considerable time!

S. Fox, Epping, Essex

Probably!

Your queried spelling is correct – my Timetables of Science says that August Adolph Eduard Eberhard Kundt devised in 1866 a method for measuring the speed of sound in different gases by analysing the patterns that sound waves cause in a fine dust scattered inside a tube filled with the gas being investigated. Herr Kundt was born in Schwerin, Germany, 18 Nov 1839 and died in Israeldorf 21 May 1894.

From the same source, I notice that in 1894 two other notable physicists died, Heinrich Hertz and Hermann von Helmholtz. In the same year, J.J. Thomson announced he had found the velocity of cathode rays to be much lower than that of light (you may recall it was he who discovered the electron, in 1897).

MORE ON BYTES

Alan Winstanley, our Circuit Surgeon, has E-mailed in the following:

To add further weight to your definition of a byte, the *Microsoft Press Computer Dictionary* says "Abbreviation of BinarY TErm. A unit of data, almost always consisting of 8 bits ...". Microsoft know a thing or two about computers!

This dictionary is particularly good because it mixes in Internet, computers and electronics very well.

Thanks Alan. I'm still waiting for readers to enter the fray on this subject, raised in Readout May '98.

EVERYDAY **BACK ISSU** PRACTICAL

We can supply back issues of EPE by post, most issues from the past five years are available. An index for the last five years is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

YOU MISS

JAN '97

PROJECTS

Earth Resistivity Meter, Part 1

Psycho Rat

Theremin MIDI/CV Interface, Part

Mains-Failure Warning.

FEATURES Ingenuity Unlimited Build Your Own Projects, Part 3 Circuit Surgery Interface Net Work – Internet News PCS32 Storage 'Scope Interface Review.

FEB '97

PROJECTS Pacific Waves How To Use Intelligent L.C.D.s, Part 1 PsiCom Experi-mental Controller Earth Resistivity Meter, Part 2 Theremin MIDI/CV Interface, Part 2. FEATURES Ingenuity Unlimited Build Your Own Projects, Part 4 Circuit Surgery Interface Net Work – Internet News.

MARCH '97

PROJECTS
Simple Dual-Output TENS Unit
Video Negative Viewer
Tri-Colour NiCad Checker ● How To Use Intelligent L.C.D.s - 2 ● Oil Check Reminder.

FEATURES ● Interface ● Ingenuity Unlimited ● Build Your Own Projects, Part 5 ● Digital TV – The Reality ● Circuit Surgery ● Net Work.

APRIL '97

PROJECTS ● 418MHz Remote Control Sys-tem ● Midi Matrix ● Puppy Puddle Probe ● PIC-Agoras Wheelie Meter – 1.

FEATURES ● Interface ● Ingenuity Unlimited ● Digital TV and MPEG2 ● EDWin NC Software Review
Circuit Surgery
Net Work.

MAY '97

PROJECTS • 2 Metre F.M. Receiver • EPE PIC-A-Tuner ● Alarm Operated Car Window Winder ● Quasi-Bell Door Alert ● PIC-Agoras – 2. FEATURES
Ingenuity Unlimited Circuit Converters
Net Work.

JUNE '97

PROJECTS
PIC Digilogue Clock
Minder Protection Zone
Pyro Child Pyrotechnic Controller
 Narrow Range Thermometer. FEATURES
Great Experimenters - 2
Circuit Surgery
Interface
Reactobot
and
Virtual
Reality
Ingenuity
Unlimited
Net
Work.

JULY '97

PROJECTS
Micro PEsT Scarer
Karaoke
Echo Unit
Infra-Red Remote Repeater Computer Dual User Interface
Micropower PIR Detector - 1.

FEATURES

Ingenuity Unlimited

Techniques Actually Doing It Circuit Surgery Great Experimenters – 3 Electronics Workbench V5.0 Review Net Work.

AUG. '97

PROJECTS • Variable Bench Power Supply PIC-olo Music Maker
Universal Input Amplifier
Micropower PIR Detector – 2. FEATURES ● Interface ● Ingenuity Unlimited ● Colossus Recreated ● Circuit Surgery ● Great Experimenters - 4
Net Work.

SEPT '97

PROJECTS ● PIC-Noughts & Crosses Game ● Ironing Safety Device ● Active Receiving An-tenna ● Soldering Iron Controller ● Micropower PIR Detector - 3.

FEATURES
Ingenuity Unlimited
Raising the Pressure – RC4190 Switch-Mode I.C.

Circuit Surgery

Techniques – Actually Doing It

Great Experimenters – 5

Net Work.

OCT '97

PROJECTS ●PIC Water Descaler ● Remote Control Finder ● Multi-Station Quiz Monitor ● Rechargeable Handlamp.

FEATURES
Ingenuity Unlimited
It's Prob-ably Murphy's Law
Interface
Circuit Surgery
 Kanda PIC Explorer Review
 Network NOV '97

PROJECTS ● Portable 12V PSU/Charger ● Case Alarm ● Auto-Dim Bedlight ● EPE Time Machine

FEATURES • Satellite Celebration • Ingenuity Unlimited • TEACH-IN '98 - An Introduction to Digital Electronics-1 • Techniques - Actually Doing It
Circuit Surgery
Net Work
Free Greenweld Catalogue.

DEC '97

PROJECTS
Safe and Sound Security

PHOJECIS Safe and Sound – Security Bleeper Active Microphone Car Immobi-liser Mini Organ. FEATURES TEACH-IN '98 – An Introduc-tion to Digital Electronics-2 Circuit Surgery Interface B² Spice Review Ingenuity Unlimited Alternative and Future Tech-nologies-1 Net Work – The Internet Free Giant Data Chart – Formulae Giant Data Chart – Formulae.

JAN '98

PROJECTS

Disco Lights Flasher

Simple
M.W. Radio

EPE Virtual Scope-1

Surface Thermometer.

FEATURES
TEACH-IN '98 – An Introduction to Digital Electronics-3 • Circuit Surgery • Ingenuity Unlimited • Alternative and Future Technologies-2
Net Work – The Internet
Free – Giant PIC Data Chart.

FEB '98

THES

PROJECTS
Water Wizard
Kissometer
Waa-Waa Effects Pedal
EPE Virtual Scope – 2.
FEATURES
TEACH-IN '98 – An Introduction to Digital Electronics – 4 ● Ingenuity Unlimited Techniques-Actually Doing It ● Circuit Sur-gery ● Net Work – The Internet ● Chip Special HT7630 PIR Controller

MAR '98

PROJECTS
Lighting-Up Reminder
The Handy Thing
Switch-Activated Burglar Alarm

● Audio System Remote Controller. FEATURES ● Teach-In '98 - An Introduction To Digital Electronics-5 ● Ingenuity Unlimited ● Supplement 1

APRIL '98

PROJECTS • Simple Metal Detector • Single or Dual Tracking Power Supply
© Experimental Piezo-Cable Projects – Distributed Microphone – Vibration Alarm
© RC-Meter

Vibration Alarm
 Re-Meter
 FEATURES
 Ingenuity Unlimited
 Patent
 Your Invention
 Teach-In '98 – An Introduction To Digital Electronics – 6
 Circuit Surgery
 Net Work
 Techniques – Actually Doing It
 EPE PIC Tutorial Supplement 2

MAY '98

PROJECTS
Dice Lott
Security Auto-Light

Stereo Tone Control plus 20W Stereo Amplifier

Improved Infra-Red Remote Repeater FEATURES ● Teach-In '98 – An Introduction To Digital Electronics – 7 ● Net Work ● EPE PIC Tutorial Supplement 3

BACK ISSUES ONLY £2.75 each inc. UK p&p.

Description of the two magazines in November 1992. Where we do not have an issue a photostat of any one article or one part of a series can be provided at the same price

ORDER FORM - BACK ISSUES - PHOTOSTATS - INDEXES
Send back issues dated
Send photostats of (article title and issue date)
Send copies of last five years indexes (£2.75 for five inc. p&p - Overseas £3.35 surface, £4.35 airmail)
Name
Address
I enclose cheque/P.O./bank draft to the value of £
Please charge my Visa/Mastercard £
Card No
rayments must be in E steining - cheque of bonk on an order by latter if you do not with to cut your issue

Special Feature

8051-BASED EEPROM MICROCONTROLLERS

COLIN MEIKLE

Much used in industry, 8051-type microcontrollers are now available in EEPROM variants suited to the hobbyist user.

SING a single chip microcontroller can greatly simplify your design. while adding flexibility and additional functionality. This can easily be seen from the widespread use of PIC microcontrollers.

The 8051 family of processors, though, is amongst the most widely used microprocessor in industry, although its use in hobby electronics has so far been somewhat limited. This article gives an introduction to the family, with particular emphasis on the 2051 and 1051 EEPROM (Electrically Erasable Programmable Read Only Memory) variants. An accompanying article explains how a low-cost programming and development system for these two devices can be constructed.

INTRODUCTION

Developing code for an 8051 microcontroller without an In-Circuit Emulator (ICE) can be difficult and slow. Consequently, to develop code without an ICE, some form of re-programmability is required. This normally means using windowed EPROM (Erasable Programmable Read Only Memory) devices, which are expensive and require time to erase with ultra-violet (UV) light before they can be reused.

There are various ways to get round

this when using an 8051. For example, an EPROM can be programmed with a monitor program which, via the serial port, loads external NVRAM (Non-Volatile Random Access Memory) with the program mapped into code space. However, most methods add complexity to the hardware and/or put restrictions on the code.

Recently, however, Atmel have introduced variants of the 8051 which have made microcontroller development very simple. These overcome the reprogrammability problem by implementing Flash ROM on the processor. This eliminates the need for an external EPROM, and gives "instant" reprogrammability to the developer. Atmel use the term PEROM (Programmable and Erasable Read Only Memory) to describe the devices, although the term EEPROM is equally valid.

These microcontrollers are therefore ideal for low cost development of microcontroller projects. Development systems can be put together very cheaply, giving you access to a very flexible and powerful family of processors.

8051 FAMILY VARIANTS

The 8051 family covers an enormous number of variants, well outside the scope

of this article. Although only a small subset is discussed here, there is a great deal of commonality between devices. Code written for one particular device is portable between different manufacturers and different variants.

Intel introduced the 8051 back in the early '80s, following on from their MCS-48 family of processors. Although the family has grown greatly, the basic 8051 is still very popular. A summary of the most popular devices is shown in Table 1.

The table shows only a very small selection of the devices available. Note that the 80x and 87x devices have multiple manufacturers, whilst the 89x devices are manufactured by Atmel. This article concentrates on the latter devices.

The 80C51/2 are of little use to the experimental hobbyist as they are One Time Programmable (OTP) devices. You can, though, get ROM-less versions, 80C31/2 and add your own EPROM. This is cheap but unless you need large amounts of memory, defeats the purpose of a single chip microcontroller.

The 87C51/2 get round this problem as they have on-board EPROM. However, you still need to erase them with UV every time you wish to reprogram them. They are also expensive, so keeping a supply of blank ones is not cheap!

Table 1. Popular 8051-variants

				•	•			
Device	ROM	RAM	Timers	Interrupt	UART	I/O	Pins	Other
80C51	4K OTP	128 bytes	2	5	yes	32	40	
80C52	8K OTP	256 bytes	3	6	ves	32	40	
87C51	4K EPROM	128 bytes	2	5	yes	32	40	
87C52	8K EPROM	256 bytes	3	6	yes	32	40	
89C51	4K EEPROM		2	5	ves	32	40	
89C52	8K EEPROM	256 bytes	3	6	yes	32	40	
89C1051	1K EEPROM		1	3	no	15	20	Analogue comparator
89C2051	2K EEPROM	128 bytes	2	5	yes	15	20	Analogue comparator

This leaves the Atmel 89x processors. These devices have on-chip EEPROM, allowing instant reprogramming, which is ideal for a development environment (they are also relatively inexpensive). The latest devices released will actually allow you to reprogram them while they are still on the printed circuit board (p.c.b.).

Atmel's 89x variants of the 8051 are the AT89C51, AT89C52, AT89C1051 and AT89C2051. Their pinouts are shown in Fig.1.

All four devices retain most of the 8051 features, such as the UART (Universal Asynchronous Receiver/ Transmitter), although the number of I/O (input/output) pins on the 1051 and 2051 devices is reduced.

The latter devices also have a 2-input analogue comparator, which is not found on the standard 8051. Because of their size, functionality and low cost, these two microcontrollers are an ideal starting point for small projects.

8051 ARCHITECTURE

The architecture of the basic Atmel 8051 core upon which all the variants are based, is illustrated in Fig.2.

Some ports also function as the address and data buses when the processor uses external memory and others have alternative functions, e.g. external read/write strobes. The details are covered in Atmel's data sheets.

If you have never used an 8051, the memory structure may appear slightly confusing. First, the program memory and data memory have separate address space (as have PIC microcontrollers, Ed), In addition to the two separate address areas, memory can either be internal or external. Memory organization is shown in Fig.3.

In total, 64K bytes of program and data memory can be addressed. However, to use 64K of program memory, external memory will have to be added (internal memory sizes vary, the maximum available is 32K, although 8K or 16K are normal).

For external memory accesses, the processor uses different strobe signals to access program and data memory (see Fig.2). Signal line PSEN is used to access program memory, and lines \overline{RD} and \overline{WR} are used to access data memory.

The EA pin on the processor determines if external or internal program memory will be used. Note that when the internal program memory range is exceeded the processor will automatically look for external memory, regardless of the EA pin.

Program memory is fairly simple, you can either use internal or external, but you cannot use both at the same address. Data memory is different, for one particular address, up to three separate locations can exist.

Again referring to Fig.3, in the range 00H to FFH both internal and external memory can exist and can be used. From 80H to FFH an additional area of memory exists in some devices, the 89C52 for example. This is referred to as the indirect memory area. Therefore, in this range there are three separate data areas.

Only part of the internal RAM is available for general-purpose use, as

registers and ports are also mapped into this region.

To differentiate between the memory areas, the processor uses different instructions and addressing modes. Some examples are shown in Listing 1.

This may seem confusing, but if you do not use external memory then things are simpler. Also, if you store your data in the lower 128 bytes of RAM (00H to 7FH), both direct and indirect addressing can be used to access it.

PORTS

The 8051 has four 8-bit ports, each of which is bi-directional and bit addres-

sable, i.e. each individual port bit can be changed without affecting the other bits. The ability to change individual bits or the whole port in one instruction is a very useful feature.

Each port has slightly different characteristics, as described in more detail later. The ports are accessed in the same way as the internal RAM, although they can only be accessed by direct addressing. They appear in the upper 128 bytes of the internal RAM (80H to FFH), called the Special Function Register (SFR) area. An example of accessing them is given in Listing 2.

The final command in Listing 2 also

Fig.2. Basic core of the 8051 family.

Evervday Practical Electronics, June 1998

Fig.3. Memory organisation within the basic 8051.

sets the port as an input. The port pins are pulled high by internal pull-ups (see later under Port Structure).

INSTRUCTION SET AND REGISTERS

The instruction set has all the usual commands you would expect, it also has a range of bit operations, so that individual bits can be manipulated. Only 16 bytes of the general purpose RAM are bit addressable, 20H to 2FH. Most of the special function registers, e.g. I/O Port, are bit addressable.

Instructions are one, two or three bytes long and most take one or two cycles to complete. A cycle is 12 oscillator periods, therefore, with a 12MHz clock, most instructions take 1µs or 2µs.

There are four banks of eight general purpose registers (each eight bits wide). These registers are mapped to the bottom 32 bytes of internal RAM. The eight registers are numbered R0 to R7. All four banks of registers are available. However, only one bank of registers is normally used (Bank 0).

The other banks are normally used for interrupt service routines. Two of the registers (R0 and R1) are used for indirect addressing. These are the only two registers that can be used for indirect addressing.

The Accumulator (A or ACC) is a multi-purpose register which is used by a large number of instructions. Usually, the result of an instruction will be placed here. The B register is only used by the divide and multiply instructions. It can also be used as a general purpose register.

The data pointer (DPTR) is the only usable 16-bit register. It is commonly used to hold or point to the address of a data location. Since it is the only 16-bit register, it also finds many other uses.

The stack pointer is used by the PUSH/POP and CALL instructions. The default location for the stack pointer is 07H, which is the same location as register Bank 1. So, to use the other three banks, the stack pointer must be moved to an address above the register banks, e.g. 20H.

The stack pointer is incremented each

time a PUSH or CALL instruction is executed and, therefore, can use a large amount of memory. Care must be taken to ensure the stack does not overwrite the data storage. A common practice is to set the stack pointer as the last (highest) data storage address.

DESIGNING CONSIDERATIONS

There are a few features of the hardware you must understand before you start designing.

If you have not written your code yet, you will not know how much program or data memory you will require. This is a problem if you want to start designing your hardware before the code is written.

There is some flexibility, though. If you target a device with 4K ROM you can move up to a device with 8K if your program does not fit. For data memory you can upgrade from 128 bytes to 256 bytes, although you should remember that you do not have access to all of this memory.

You must allow space for registers and the stack – this does not leave a huge amount! Therefore you must think carefully if you plan to only use internal memory. Adding external memory later will add extra components to your design and, more importantly, will normally use up Port 0 and Port 2 for the address and

Fig.4. Typical port structure.

LISTING 1. Example codes

1. MOVC is used to get values from program memory (often used for look-up tables):

MOV	DPTR,#1000H	; load DPTR ; (data
		: pointer : register is
CLR	Α	: 16-bit) : set the
		: accumu- : lator to : zero
MOVC	A,@A + DPTR	; get byte ; from
		: program : memory at
		; location ; 0 + 1000H

2. Write 05H to Port 1 (address 90H) -Direct Addressing:

MOV 90H,#05H

3. Write 05H to address 90H in indirect RAM – Indirect Addressing:

MOV	R0,#90H	; move 90H
		; into register
		; R0
MOV	@R0,05H	; move 05H
		; to address
		; pointed to
		; by R()
		; (90H)
4. Writ	te 05H to add	ress 90H in external
RAM:		

MOV MOV	R0,#90H A,#05H	I
MOVX	@R0,A	; move A (05H) to
		: external location
		; pointed to by R0
		; (90H)

LISTING 2. Examples of port access

data buses. The available I/O pins will, therefore, be greatly reduced, which may result in a re-design of your p.c.b. and probably a rewrite of your code.

PORT STRUCTURE

All ports are bi-directional and each consists of a latch, input buffer and output buffer. see Fig.4. The output stages of Ports 1, 2 and 3 are simply open-drains with weak internal pull-ups; Port 0 does not have the pull-ups (Atmel 1051/2051 variants have pull-ups on Port 1 bits 2 to 7; bits 0 and 1 do not).

As a result, Ports 1 to 3 can sink 1.6mA but only source 25μ A, without external pull-ups. Port 0 is open collector so you must remember to add external pull-ups. Because of the low drive capabilities, the ports can only drive

CMOS inputs (fewer than four inputs, without external pull-ups).

To configure a port as an input, simply write a 1 to the port, this will turn the output transistor off (see Fig.4). However, the internal pull-ups on Ports 1 to 3 are still active, hence these ports will still source current as inputs.

Note that when configured for external memory access, Port 0 and Port 2 are configured differently so that they have a higher drive capability.

PERIPHERALS

The different variants of the 8051 have different internal peripherals. There is a huge range of devices offering many different internal peripherals such as analogue to digital converters (ADC), pulse width modulation (PWM) outputs, real-time clock (RTC) etc. The basic 8051 core offers one UART, two timer/counters and 32 I/O lines.

For your microprocessor circuit to be of any use, you will require to interface to external components. The simplest way to do this is to use the I/O pins to directly control the device. Alternatively, you can memory map devices so they appear as external memory. You would normally only do this, though, if you are using the processor in external mode (as there are fewer I/O pins available).

Common examples of circuits for driving devices from the I/O pins are shown in Fig.5.

GETTING STARTED

The only way to really learn about these devices is to use them. Before you start, though, you will need a few things: an assembler for assembling your code, a programmer to program your devices and then you require some hardware to start playing with.

To buy a professional development system would cost several thousand pounds. However, using the Atmel devices and the circuits in the accompanying constructional article, you could collect together a DIY system for under $\pounds100$.

Note, though, that you need access to a PC-compatible computer. Then you need the Atmel data book, or data sheets for the chosen processor. The data can also be downloaded from the Web or obtained on CD-ROM.

There are three languages you can use to program the 8051:

1. Assembler

It may seem to some that it might be easier to start with a high level language, such as C. However, writing code in assembler will give you a good understanding of the 8051 architecture, which is essential to be able to get the most efficient code.

The best *free* one the author has found is the Meta Link ML51, available on the Philips web site and on the Atmel CD-ROM. There are numerous others available, but this one is probably the best you'll get without paying money.

2. PLM

The PASCAL-like language PLM is a possibility, and is easier to program in than assembler. However, you may be better with a high level language like C.

Fig.5. Examples of I/O drive circuits: (a) low current I.e.d., (b) buffered I.e.d., (c) relay drive, (d) simple reed relay, (e) improved reed relay.

3. C

You may already have some knowledge of C, which will make writing code simpler and quicker. It also has the advantage of being more readable and portable than assembler and PLM, but you must remember the limitations of the processor you are using, e.g. very limited data memory and possibly code space. Therefore, you must be careful when writing your code.

Well written C can be just as efficient as hand written assembler (particularly for RAM usage). Badly written code can very quickly use up your ROM/RAM.

If you only want to use the 2051/1051 devices, you can get a code-restricted version of the excellent Keil Tools, although you can only compile 2K of code with it. This is not a problem, though, as you only have 2K of ROM on a 2051. The tools are otherwise unrestricted.

If you want to know more about C for the 8051 get the "C Primer" free from the Equinox web site. A freeware C compiler, written by Sandeep Dutta, is available from the Web.

As mentioned, you should start writing code in assembler (at least until you understand the architecture). Another good reason for this is that there are several freeware assemblers available. Some of these are very good and will quite likely satisfy all your needs.

The re-programmability of the Atmel processors makes the need for an In-Circuit Emulator (ICE) less of a necessity. However, you will still need some sort of debugging environment. Commercial ICEs are expensive, but an alternative is to use a CPU simulator (a software program that emulates the functionality of the CPU and memory) and again you can find freeware versions.

An excellent shareware one can be

found on the Philips Web site (SIM51). It is in German but this is not really a problem as you can easily work out the controls.

You can also buy cheap in-circuit reprogramming modules, which allow you to reprogram your processor without removing it from the circuit (about £100 to £125 from Equinox).

Finally, you will need to program your processor. A programmer suited to the 2051 and 1051 devices is described in the accompanying constructional article.

DATA AND SOFTWARE SOURCES

The Web is the best place to get information. You can get source code data sheets and, most usefully, free tools. Getting access to the Web need not be a problem: if you do not have personal access, places such as libraries etc. now offer access.

Another good source is the Atmel Microcontroller CD-ROM. It contains a good assembler, all of the data sheets you'll need and some interesting application notes. It is worth getting; if you have trouble getting one you can buy one from Farnell.

Here are some useful web addresses:

Online Tutorial

A very good introduction to the 8051 family of processors can be found at:

www.8052.com.

Datasheets

You can get data sheets in various electronic formats from the Web or get a printed copy from a distributor. For electronic copies try:

http://www.atmel.com/ and ftp://ftp.intel.com/ - /pub/mcs51

Assembler

There are numerous assemblers available but the Metal-Link assembler is very good. You can get it from:

ftp://ftp.philipsmcu.com/ - /pub, or http://www.philipsmcu.com/assemblers-.html (other goodies here, too),

or from the Atmel CD-ROM.

Simulator

A simulator is essential if you are learning. The first one below is in German (DOS-based), the second one is a nice looking Windows simulator: SIM51: from the above Philips site or

Atmel CD-ROM, or

SIM8052D, from:

http://www.vaultbbs.com/sim8052/ or http://www.8052.com

C Compiler

At the time of writing, the following C compiler was in a Beta phase of testing. It is free with no restrictions:

SDC by Sandeep Dutta, from: http://www2.netcom.com/~sandeepd

There is an evaluation version of the KEIL compiler at:

www.keil.com/demo/ek51

This an excellent compiler and debugger. The "Lite" version is sold with many Atmel development systems, from Equinox and Farnell, for example.

Real Time Operating system

For a more advanced real time operating system, try:

www.iotasys.com/8051/software.htm

Devices and Programmers

Equinox - devices, programmers, development systems, and more:

Equinox (Dept EPE), 229 Greenmount Lane, Heaton, Bolton, Lancashire BL1 5JB.

Tel: 01204 492010

Web: http://www.equinox-tech.com/

Farnell Components - devices, programmers, data books, data CD-ROM:

Farnell Components, Canal Road, Leeds, LS12 2TU, Tel: 0113 263 6311

Atmel UK Ltd can be contacted directly at: The Colliseum Business Centre, Riverside Way, Camberley, Surrey GU15 2AQ Tel: 01276 686677: Fax: 01276 686697

Now read the AT89C2051/1051 programming article on page 432.

Simple SW Receiver

A single-gang Jackson type 0), air-spaced, 365pF tuning capacitor for the *Simple SW Receiver* project will set you back about £15 (Maplin, code FF39N). However, it is not essential to use the specified tuning capacitor as any "air-spaced" type having a maximum value of around 300pF to 400pF will suffice here: provided, of course, it will fit into the case. You could try contacting Bull Electrical (201273 203500), ESR Elec. Components (201273 203500), ES 0191 251 4363) or Greenweld Elec. Components (密 01703 236363) who sometimes offer, surplus to requirements, tuning capacitors at a much reduced price.

We came up with two sources when searching for the specified Toko r.f. transformers. From Maplin, codes FD03D (KANK3334R -5MHz to 15MHz), FD02C (3333R) and FD04E (3335R). Toko's main distributor in the UK, Cirkit (201992 448899), stock codes 5MHz to 15MHz, 35-33340 (KANK 3334R); 1.6M to 5MHz, 35-33330 (KANK 3333R) and 15MHz to 30MHz, 35-33350 (KANK 3335R)

Although the article specifies a 3.5mm stereo jack socket for the Headphones output, and not being able to find an easy source for a stereo *insulated* type, we suggest readers opt for a "moulded body (with plastic bezel)" 6.35mm jack socket and if necessary use a 3.5mm adaptor plug between the socket and the headphones. Most of our component advertisers should have such an adaptor.

The case chosen for the prototype model is one from a range of blue/grey, hammer finish, two-piece metal instrument cases stocked by Maplin, code XY45Y.

EPE Mood Changer

Just a couple of items could cause local shopping problems when gathering together the parts for the EPE Mood Changer. The OP296G and OP279G dual op amps are fairly new additions. designed for rail-to-rail operation, and do not appear in many component advertisers lists. The ones in our model came from Maplin, code NP22Y (OP296G) and NP18U (OP279G)

As stated in the article, a source for the air-cored output coil was initially a problem until the friendly washing machine en-gineer suggested a 230V a.c. solenoid valve coil. Further enquiries revealed that these valves are readily available as service spares (Hoover), with a single solenoid coil on a valve costing less, it is claimed, than £9. The coil used had a d.c. resistance of about 4 kilohms. You could, it is suggested, also try your local scrapyard, where they might be even cheaper.

Do not forget to specify a "log" type when ordering the sub-miniature potentiometer. The small printed circuit board is avail-able from the *EPE PCB Service*, code 193.

Finally, please heed the warning panel about the use of the EPE Mood Changer. Although this project does not "flash lights" into the eyes, it is generating brainwave frequencies which could possibly trigger a reaction. If any of the symptoms described are experienced, you are advised to consult your doctor immediately.

Reaction Timer

Most of the components needed to build up the Reaction Timer are RS components and any local bona-fide RS stockists should be able to order them for you. Alternatively, they can be

purchased through Electromail (28 01536 204555), their mail order outlet.

The red/green tri-colour l.e.d., used for "triggering" the response time, is a Siemens common cathode type LU5351-JM and is available from the above source, quote code 578-294. On this device the shortest lead is the red anode and the centre lead common cathode. Other 60mA to 20mA tri-colour l.e.d.s, such as the one offered by Maplin (YH75S), may have differing leadouts, typically green anode shortest lead, cathode centre (long) and red anode medium length.

For the extra outlay, it is probably worth purchasing the specified handheld box incorporating a display window. The one in the prototype is a Vero box (75-227911D) and carries the RS code 584-595. A battery box for the case can be ordered as 584-918 (deep).

When selecting the 7-segment dual display, it is important to choose one that has its pin line-up across the top and bottom of the device, when looking at the display underside. We understand the author purchased his from Electromail, code 247-2788

So far, we have not been successful in finding an 18-pin d.i.l. socket with a 0-6in. pitch. We suggest readers use individual socket strips or, better still, cut a 0.3in. 18-pin i.c. socket lengthwise and solder the two halves on the stripboard.

The pushbutton switch (320-988), transistors (296-116) and battery holder (594-628) came from the above mentioned company. Most of our component advertisers should also be able to offer suitable alternatives.

A ready-programmed PIC16C55 is available (Mail Order Only) from PH Research, 32-34 School Lane, Swavesey, Cambridge, CB4 5RL for the sum of £11 (add £1 for overseas orders). Tel/Fax: 01954 200411. E-mail: paul@ph-research.prestel.co.uk

For those who wish to do their own programming, the software is available on a 3-5in. disk from the Editorial Offices - see PCB Service page. If you are an Internet user, it is available Free from our FTP site:

ftp//ftp.epemag.wimborne/co.uk/pub/PICS/Reaction.Timer.

AT89C2051/1051 Programmer

A ready-programmed ISP2032 controller chip for the AT89C2051/1051 Programmer is available direct from the designer (Mail Order Only): Colin Meikle, 9 Coldstream Drive, Strathaven, Lanarkshire, ML10 6UD. Make cheques payable to him. The price, inclusive of UK postage, is £12. (For overseas orders add £1).

You can also contact the author via E-mail at:

colin.meikle@virgin.net.

Software for the programmer and test board, including that for the ISP2032 controller, is available from the EPE Editorial Office on a 3.5 inch disk, order as PIC-Disk 1. See EPE PCB Service page for postage charges.

The software is also available Free from the EPE Web site: ftp://ftp.epemag.wimborne.co.uk/pub/8051/programmer.

The only component that could cause sourcing problems is likely to be the through-hole 44-pin PLCC socket. This is currently listed by Maplin, code JH40T, or Farnell (2 0113 263 6311), quote 484-386. All the connectors, other sockets, MAX232 RS232 driver chip and microcontrollers should be generally available.

The two printed circuit boards are available from the EPE PCB Service, codes 194 (Main) and 195 (Test), see page 468.

Schematic Capture

Produces attractive schematics like you see in the magazines.
 Netilist, Parts List & ERC reports. OHierarchical Design. OFull support for buses including bus pins. OExtensive component/model libraries. OAdvanced Property Management.
 Seamluss integration with simulation and PCB design.

t

ro

C

Ø

1

C S

n

The Mah Generation

New Features

Component Anto-Placer Pluswap/Gateswap Optimizer Background Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Control of Schematic Appearance Extensive New Component Libraries

Available in 5 levels - prices from £295 to £1625 + VAT. Call now for further information & upgrade prices.

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

Add 8051-family facilities to your presently. These modes are selected by designing armory.

TMEL AT89C2051/1051 processors are members of the 8051 family and are extremely useful and versatile microcontrollers. These processors contain flash Programmable and Erasable Read Only Memory (PEROM), and can be reprogrammed over 1000 times. Reprogramming takes seconds without the time consuming UV-erasure step associated with EPROM based microcontrollers. They are 20-pin devices.

In the accompanying article 8051-Based EEPROM Microcontrollers, general aspects of the 8051 family were discussed, including the 2051/1051.

We now describe a simple programmer for programming the latter devices, and follow on with the description of an experimental board with which to use them.

The programmer is designed to operate from the parallel port of a PC-compatible computer. The associated software is DOS-based, allowing the programmer to be used with almost any fairly modern PC.

However, for the programmer to work

in all modes, the computer's parallel port requires to be set up for 8-bit bi-directional mode (sometimes called PS/2 mode). You can normally change the setting via the PC's BIOS settings (i.e. the set-up procedure during the PC power-up or reset). You should check your computer manual on this point. Also see later.

The hardware and software for this design is loosely based around that described in the Atmel Application Note (see the Atmel data book, data CD or web site).

Although the implementation is different (particularly that of the hardware), the hardware and software should be interchangeable with that described in the Application Note. Note that the 40-pin devices (AT89C51/52) are not supported by this programmer.

PROGRAMMING MODES

The 2051/1051 devices can be programmed in various modes, as described

applying control signals to pins P3.3 to P3.7, as shown in Fig.1 and Fig.2.

Read Signature Bytes

The devices each have three pre-programmed bytes which identify them:

Byte 1: Identifies the manufacturer, 1EH signifies ATMEL

Byte 2: Device type. 21H for 2051 and 11H for 1051

Byte 3: Programming voltage. FFH for 12V devices

Write Code Data

The Write Code Data process fills the internal PEROM with the code. Before this process can begin, the contents of the PEROM must be erased (in the erased state all the internal locations will read back as FFH). The erasing is done electrically on the programming board. UVerasure is not needed.

During programming, an internal counter keeps track of the current address. When the sequence is started the counter is reset to 0000H. After a location has been programmed the internal counter is advanced by one, until the complete array is filled.

Chip Erase

In the Chip Erase mode the entire PEROM array and its two lock bits are erased. Previously programmed locations require to be erased before they can be reprogrammed. The entire array should read back with FFH if the device is blank.

Read Code

The contents of the PEROM can be read back from the device, providing

Fig.1. Signal routing for programming and reading the AT89C2051/1051 devices.

MODE	P3.2/PROG	P3.3	P3.3	P3.4	P3.5	P3.
WRITE CODE	12V	+ +	L	н	н	н
READ CODE	н	н	L	L	н	н
WRITE LOCK 1	12V	+ +	н	н	н	H
WRITE LOCK 2	12V	+ +	н	н	L	L
ERASE	12V	+ +	н	L	L	L
SIGNATURE	н	н	L	L	L	L

Lock Bit 2 is not set. Reading back the contents of the device is useful for programming verification, and for copying devices when you do not have the programming file.

Write Lock Bits

The contents of the PEROM array can be protected by programming the lock bits. Lock Bit 1 prevents further programming of the device. Lock Bit 2 prevents the contents of the array being read from the device, thereby preventing copying of devices or disassembly of the code.

CIRCUIT DESCRIPTION

The hardware for the programmer provides the interface between the PC's parallel port and the device being programmed, as well as the correct programming voltage for the device. The timing for each of the programming cycles is controlled by the software running on the PC.

The circuit diagram for the programmer is shown in Fig.3. All of the decoding and control is done inside IC3, which is a pre-programmed Programmable Logic Device (PLD).

An LS245 transceiver (IC1) buffers the data signals as some PC I/O (input/output) cards have strong pull-ups on the parallel port, therefore the programmer needs to be able to source a reasonable amount of current.

The HC240 buffer (IC5) isolates the control signals to the device being programmed (this is required during the power-up sequence).

The programming voltage requires to be switched between 0V, 5V and 12V. These voltages are provided by an LM317T adjustable regulator (IC4). Transistors TR1 and TR2 are used to switch between the voltages.

SOFTWARE DESCRIPTION

Timing for all of the programming cycles is done in software. In order for the software to be system-independent, the PC's timer is used to generate all the delays.

Fig.2 (left). Mode selection logic for the AT89C2051/1051

> TALK Page

devices.

The software is based on that described in the Atmel Application Note. However, a number of changes and improvements have been made. Most notably the software can read both binary and Intel hex file formats. (Note that the software can support Intel hex files which have out-of-sequence addresses, unlike some hex to binary conversion utilities.)

The software gives the following facilities:

• ERASE DEVICE: Erase the entire device, including lock bytes

• READ SIGNATURE: Display device identity bytes

• PROGRAM: Program device with specified file data

• PROGRAM LOCK: Disable device programming and reading

• VERIFY: Read device and verify against specified file

• SAVE: Read device and save as a binary file.

CONSTRUCTION

Component and track layout details for the printed circuit board (p.c.b.) are shown in Fig.4. This board is available from the *EPE PCB Service*, code 194.

The p.c.b. contains some small tracks and pads, therefore, if you are making your own board, take care when drilling the holes for the components. Use the correct drill size for each component (0.8mm for IC1, IC3, IC5, transistors, resistors and capacitors; 1.2mm for IC2 and IC4; Imm for the connectors). If you have to desolder any components, use the minimum amount of heat as tracks could lift easily.

AT89C2051 Features

- Compatible with MCS-51[™] Products
- 2Kbytes of Reprogrammable Flash Memory. Endurance: 1,000 Write/Erase Cycles
- 2.7V to 6V Operating Range
- Fully Static Operation: 0Hz to 24MHz
- Two-level Program Memory Lock
- 128 × 8-Bit Internal RAM
- 15 Programmable I/O Lines
- Two 16-Bit Timer/Counters
- Six Interrupt Sources
- Programmable Serial UART Channel
- Direct L.E.D. Drive Outputs
- On-Chip Analogue Comparator
- Low Power Idle and Power Down Modes

CO	MPONENTS
Resistors R1 to R4 R5, R11 R6, R9 R7 R8 R10 R12 R13 RM1	10k min. 0·125W (4 off) 2k2 (2 off) 1k (2 off) 270Ω 100k min. 0·125W 4k7 1k min. 0·125W 100Ω 10k 9-way s.i.l. resistor module
All resistors (0.25W unless stated.
Capacitors	
C1 C2, C3,	82p ceramic plate, 0·1in pitch 100n ceramic plate, 0·2in
C6 to C8 C4 C5	pitch (5 off) 47μ axial elect. 10V 47μ axial elect. 25V
Semicondu	uctors
TR1 TR2 IC1 IC2	BC549 <i>npn</i> transistor BC557 <i>pnp</i> transistor 74LS245 octal transceiver 7805 +5V 100mA
IC3	regulator ISP2032 pre-programmed controller (see text and Shop Talk)
IC4	Shop Talk) LM317T adjustable
IC5	regulator 74HC240 octal
IC6	buffer/transceiver 89C2051 microcontroller (see text)
Miscellane	ous
SK1	25-way D-type connector, female, p.c.b. mounting
EPE PCB Se socket (2 off wide (see to 14.5V to 18V parallel cable	cuit board, available from the rvice, code 194; 20-pin d.i.l.); 20-pin ZIF socket, 0.3in ext); 44-pin PLCC socket; power supply, 200mA d.c.; e, 25-way male to 25-way eatsink clip for IC2.
Approx Co Guidance	only £35

Make sure you insert the links before any other components, noting that one link goes under IC3.

excl. power supply and cables

The layout contains two sizes of resistors, the standard size and the miniature 0.125W type. If you have trouble finding miniature resistors, you could mount a standard resistor vertically. Make sure the orientation of the resistor module (R14 to

R21) is correct, denoted by a dot on the package alongside pin 1.

Position IČ6 is for a ZIF (zero insertion force) socket into which the device to be programmed is inserted. Note that ZIF sockets are larger than a normal 20pin socket and you may have to mount it in an ordinary i.c. socket to ensure that it is clear of the other components.

Standard i.e. sockets must be used for IC1, IC3 and IC5.

Take care when soldering the socket for IC3 as the pads and tracks are very close together. Also note the orientation of the socket, indicated by its slanting corner.

The two regulators, IC2 and IC4, should be mounted vertically and the metal tabs should face in towards the board. A small heatsink may be required on the 5Vregulator IC2, although this was not required on the prototype.

Make sure that the housing for the 25way D-type connector (SK1) is grounded at one of the mounting points. Connection to the PC is made via a standard 25-way printer cable with male D-type plugs at both ends.

The programmer requires a supply of between 14.5V and 18V d.c. at 200mA. It is recommended that a small commercially manufactured plug top power supply is used.

Housing the programmer in a suitable enclosure has been left up to the reader – it is not necessary to do so. Note that if you wish to house the board, ZIF sockets with long leads are available, allowing the socket to protrude through the top of a box.

TESTING

Before attempting to program any devices, check that:

• all links are in place

• there are no solder shorts on the board

• all polarised components are orientated correctly (pin 1 of IC3 is indicated by a dot)

If everything looks fine, apply power to the board, without a device in the IC6 socket and without the cable to the PC attached. Measure the current, it should be approximately 100mA. If not, switch off the power and recheck everything.

USING THE PROGRAMMER

Referring to your computer manual, ensure that the computer's parallel port is setup for 8-bit bi-directional mode.

If the parallel port is a plug-in I/O card, you may have to change the jumper or switch setting on the card. If your card cannot be set for bi-directional mode, you can still program devices, but the read back (verify and read signature) functions will not work. However, I/O cards are cheap, so you could buy a new card.

Once you have set up the port, you are ready to program a device.

Plug the cable into a free parallel port on your PC (LPT1 and LPT2 are supported by the software). From a DOS prompt, run the PROG51 program. You will have to tell the program which port to use, either LPT1 or LPT2, e.g. type <prog51 1> for LPT1.

The program should be run before plugging in the programmer, so that the parallel port is reset into an inactive state.

Fig.4. P.C.B. component layout and full size copper foil track master for the 2051/1051 programmer.

Fig.5 (below right). Main menu for the programming software.

Now plug the cable into the programmer, put the device to be programmed into the ZIF socket and apply power.

The programmer's power must always be switched off before inserting or removing a device.

When you run PROG51, you should be presented with the screen example shown in Fig.5.

By default, a 2051 device is selected. You can change manually by selecting "1" for 1051 or "2" for 2051: the first line of the menu will change accordingly.

If you have a device in the socket then the type can be automatically selected by pressing "R" in order to perform a "Read signature" command. This will display the signature bytes, device type and automatically set the correct device type.

To program a device, select "P". You will now be prompted for a filename and file type. The type can be either binary or Intel hex. The latter are ASCII files and normally have the extension .HEX. If possible, you should use Intel hex files as the software will do more checking on them.

The device will be erased before

n the programming boking	
5 atprog	
Auto 🕤 🔲 🔂	
RESET PARALLEL PORT · READ	Y TO PROGRAM
	- 12 - s
Change Device to 1051	
Chip Erase	Е
Program Device	Р
Verify against File	v
Save to File	S
Blank Check Read Signature	R
Write Lock Bit 1	L.
Write Lock Bit 2	М
Exit	X
	all a las
Enter selections:	
	11.00

programming - you cannot program over just part of it.

To verify a device, select "V". Again you will be prompted for a filename and type. If there are any discrepancies between the device and the file, they will be shown.

ERROR MESSAGES

When you first test the programmer, you should try reading the signature bytes. If you get back FFH, FFH, FFH for the signature there are a number of possible causes. The recommended actions are to:

- check cables and power to the board
- check you are using the correct port
- check your board for errors
- check your BIOS setting (the port needs to be bi-directional)

If you are convinced that everything is OK, try programming a device and testing it in your application. If it works but an FFH signature has not been received, your parallel port is not bi-directional (it may not support bi-directional mode or may be incorrectly set up).

When using Intel hex files you may receive one of the following messages:

• Address out of range: your programming file contains addresses outside the 1K or 2K limit, e.g. your program is too

big. (Note: most assemblers/compilers will not warn when you exceed the limits)

• Check Sum Error: your file is corrupt

You have the option of ignoring these errors but your device probably will not work as expected.

For binary files there is no checking. If you receive any errors during a verify option, you should check the supply voltage to the programmer.

Note that if you do experience noise problems, e.g. with long cables (more than two metres), corruption is more probable when reading data back and the device will probably be programmed satisfactorily.

COMPONENTS

EXPERIMENTAL TEST BOARD

A simple test bed for 2051/1051 program development

THE circuit diagram for a simple test board on which to experiment with your programmed 2051/1051 devices is shown in Fig.6. All the port pins are free for you to play with.

In Fig.6, the microcontroller is shown as IC1. Crystal X1 is nominally a 12MHz device, although other frequencies could be used.

Access to IC1's I/O pins P1-0 to P1-3 and Reset is via socket SK3. Pins P1-0 and P1-1 can be used as analogue inputs, with resistors R8 and R9 providing a 2-5V reference level for IC1's internal comparator. The Atmel databook gives one way of creating a simple analogue to digital converter (ADC) by using the comparator.

IC1's pins P1-4 to P1-7, P3-4, P3-5 and P3-7 are routed to connector PL1 which is intended to allow a standard intelligent liquid crystal display (1.c.d.) to be connected. The l.c.d.'s contrast may be adjusted using preset potentiometer VR1.

Four light emitting diodes (l.e.d.s), D1 to D4, can be controlled by pins P1.4 to P1.7. The pins need to be taken low (0V) to turn on the l.e.d.s. Resistors R2 to R5 limit the current flow.

A 4-way on/off slide switch module (S1) is included, allowing control logic levels to be user-set on pins P3-0 to P3-3. The switches set the pins low when closed.

An RS232 I/O control is included in the shape of IC2 and SK1. The RX and TX lines are via IC1 pins P3-0 and P3-1. An RS232 port allows communications to a PC via a terminal emulation program. It is suggested that you obtain a data sheet for the MAX232 RS232 driver when you purchase the device.

Power to the circuit should be supplied at 5V, via connector TB2. Capacitors

	PUNENTS			
Resistors R1 to R6 R7 R8, R9 R10	See 1k (6 off) 270Ω 10k (2 off) 100k			
Potentiome VR1	eter 1k 15-turn preset, vertical mounting			
Capacitors C1 C2 C3, C4, C9 C5, C6 C7, C8 C10, C11	10μ elect. radial. 10V 47μ elect. radial, 10V 100n ceramic plate, 0·2in pitch (3 off) 1μ5 elect. radial, 15V (2 off) 22p ceramic plate, 0·1in pitch (2 off) 10μ elect. radial, 25V (2 off)			
Semicondu D1 to D4 IC1 IC2	Jctors red I.e.d. (4 off) Atmel 1051 or 2051 microcontroller for programming (see text) MAX232 RS232 driver			
Miscellane SK1 PL1 TB1 TB2 S1 X1	ous 9-pin RS232 socket, p.c.b. mounting 14-way pin header 10-way terminal block, p.c.b. mounting 2-way terminal block, p.c.b. mounting 4-pole make-break slide switch. p.c.b. mounting 12MHz crystal (see text)			
A1 12MHz crystal (see text) Printed circuit board. available from the EPE PCB Service, code 195; 2-line 16-character I.c.d. (optional); 14-pin d.i.l. socket; 20-pin d.i.l. socket; connecting wire; solder, etc. Approx Cost Guidance Only				
	excl. l.c.d.			

Everyday Practical Electronics, June 1998

Fig.6. Circuit diagram for the Experimental Test Board.

C2 to C4 plus C9 provide power line decoupling.

CONSTRUCTION

A printed circuit board for the experimental circuit is available from the *EPE PCB Service*, code 195, and its layout details are shown in Fig.7.

Assemble the board in any order you wish, but make sure that all components are positioned correctly. Use d.i.l. sockets for the i.c.s and, perhaps, for switch S1, although this may be mounted directly on the board if preferred.

The p.c.b. has space for a 16-way header for the l.c.d. Positions 15 and 16 are not normally used, therefore populate a 14-pin header in positions 1-14.

Note that the p.c.b. has an area containing a group of unused holes – these allow you to temporarily mount other components on the board when you are testing your own applications. They can otherwise be ignored

RESOURCES

Software for the programmer and test board, including that for the ISP2032 controller, is available from the *EPE* editorial office on a 3.5 inch disk, order as PIC-Disk 1. See *EPE PCB Service* page for postage charges.

The software is also available free from the EPE Web site: ftp://ftp.epemag.wimborne.co.uk/pub/ prog2051

Additionally, see the accompanying introductory article for information on other resources you need for designing and programming with 8051-based microcontrollers.

The ISP2032 controller is available as a pre-programmed device direct from the author: Colin Meikle, 9 Coldstream Drive, Strathaven, Lanarkshire, ML10 6UD. Make cheques payable to him. The price, inclusive of UK postage is £12.

You can also contact the author via E-mail at colin.meikle@virgin.net.

GREENHOUSE CONTROLLER

Next month, in a separate article, we describe a Greenhouse Controller which shows a practical example of an AT89C2051 microcontroller being used in a specific application. You can use your programmer to program it!

Fig.7. P.C.B. component layout and full size copper foil track master for the Experimental Test Board.

Co-surgeon Ian Bell rounds off his discussion of switch input multiplexing techniques, and we help America to find some Antex spares. Not to be out-done, a reader in Spain needs some scary-sounding semiconductors, too! More news on the Teach-In Micro Lab printer routine and we comment on the hazards of potentially-irritating solder fumes.

Scanning switch matrices

In last month's *Circuit Surgery*, fellow surgeon Ian Bell of the University of Hull investigated a sequential solution to a problem posed by Mr. P. Tanablan of Malaysia (see April '98 issue), namely, how to count the number of switches operated by a class of pupils when they each enter the classroom. We saw previously how a parallel-in serial-out (PISO) shift register formed another solution although it still needs a large number of chips to form a 100-input shift register.

A more practical way, continues Ian, is to connect the switches in a matrix. This has a set of row "wires" and a set of column "wires". The switches are placed at the intersections and each switch shorts a particular row to a particular column when "on". Fig. 1 shows a 3 by 3 switch matrix, it should be easy to see how this would extend to 10 by 10 to cover 100 switches. To "scan" the matrix we could put a logic 1 on each column in turn and look for 1s appearing on the rows. For a keyboard, we need to decode the row and column signals to work out exactly which

Fig. 1. 3 by 3 switch matrix.

key was pressed but for our application we only need to know if each switch has been pressed or not.

There is a slight complexity with the scanning in that we cannot drive the other columns to 0 when they do not have the 1 on them. If we did this, then pressing two keys at once would short out the driver's outputs. There are a couple of solutions to this: we can either use diodes to isolate the columns, or use a "scanner" which puts a 1 on one column and a high impedance on the others. In both cases we need pull-down resistors on the rows.

An outline schematic for a matrix-scan based solution to the 100 switch counting problem is shown in Fig.2 (see next page). The column scan is controlled by a BCD counter connected to a CMOS analogue multiplexer/demultiplexer with its single input tied high. The BCD number selects each column wire in turn to be connected to 1, while the others remain isolated. At the end of each column scan (column 9) the counters' terminal count (TC) output is active and enables the row counter to increment by one. The row counter also drives an analogue multiplexer whose output is the key sequence, as in Fig. 4 of May '98 *Circuit Surgery*, which we require. Specifically, if a key is pressed the output of the row multiplexer will be high for the clock cycle during which the corresponding column and row are selected.

The key sequence is used to enable a counter in a similar manner to Fig.5 of last month, again using the opposite clock edge to the scanning. As this circuit scans continuously, rather than once under manual control, we need to automatically reset the counter each complete scan cycle. This could potentially increase the complexity

Fig.3. Timing diagram for circuit of Fig.2 (above right).

Everyday Practical Electronics, June 1998

Fig.2. Matrix-scan based system to drive a display.

if we had to stop scanning for one clock cycle, but we use a trick to get round this.

The counter is preset to either 0 or 1 depending on the state of switch 0, which is the first to be scanned. Afterwards the counter is enabled by the key sequence as before. The preset/count (P/C) control of the counter is used to achieve this. Fig.3 is a timing diagram in which S97n, for example, is the value of switch S97 on scan cycle n, whilst C97n represents the value of the counter after switch S97 has been processed in scan cycle n.

The continuous counting also means that the counter only holds the result for one clock cycle (after key 99 has been scanned), so we must latch the data into a register connected to the display. As the counter is clocked on the negative of the clock we can clock the latch on the positive edge. This signal can be derived from the TC outputs of both counters, as in Fig. 2, assuming that they are glitchfree.

For the benefit of anyone wishing to develop a practical circuit, the multiplexers could be 4067s, and the counters type 40160, and for the latch and display decoder/driver the 4511 could be suitable. In fact, if binary counters were used to drive the scanner multiplexers the system could be expanded to count 256 keys.

Finally, thanks for an interesting question and I hope that this and the previous articles helped explain the practicalities and problems of providing combinational and sequential solutions. *Ian Bell.*

Antex: True Brit

From the USA, *Mike Porter* asks by Email for help refurbishing his faithful Antex soldering iron:

Alan, I have had an Antex soldering iron for about 15 years which has been a workhorse and very dependable. I am trying to locate a source for tips and a replacement power cord. I did an Internet search on "Antex" and "solder" and came up with your web site. If you have any information, I would greatly appreciate it.

Antex is a famous British-made brand of soldering equipment: I own several. If you want to import from the UK, then several suppliers sell Antex spares but you could try Farnell Components who have an outlet in the United States (try **enquiries@farnellcomponents.com** first) and they may be able to help. Alternatively Antex invite you to contact them directly and they'll be happy to help you:

Antex (Electronics) Ltd., 2, Westbridge Industrial Estate, Tavistock, Devon, PL19 8DE, UK. Tel. + 44 1822 613565. Fax +44 1822 617598.

Internet users, don't forget to check our Basic Soldering Guide which is fast becoming the standard on-line reference, with everyone from schools and colleges to American air conditioning plants bookmarking it! See http://www.epemag.wimborne.co.uk/solderfaq.htm.

High Voltage Components

Another sourcing problem, this time from *Colin Rodker* who hails from Spain and asks for help tracking down some rather scary-sounding parts:

Alan, can you help me to locate the following components:

ECG 247: 100V 12A power Darlington transistor ECG 527A: 15kV diode

JAQ-15KMY0103: 0.01F 15kV capacitor

RFC 250H 50kilohin potentiometer.

Unfortunately I can't usually handle component sourcing queries unless they relate to *EPE* projects which are less than five years old. However, suitably intrigued, I set to work. I had never heard of any of those semiconductors but courtesy of the Internet, several sources pointed me to **www.ecgproducts.com**. "ECG" parts are a universal replacement line, ECG being part of Philips Semiconductors. They claim that their master replacement semiconductor guide cross references over 4,000 devices to over 294,000 industry part numbers.

As far as I could see, no ECG-prefixed parts were listed in any of the mainstream catalogues which exist in our own market. The semiconductors sound like TV replacement lines (the 527A is, I'm told, a solid state rectifier for the TV second anode). I couldn't find that capacitor, but the RFC and potentiometer are standard types.

In cases like this, access to an Internet browser and a search engine (e.g. Alta Vista) is invaluable so that you can locate distributors (if you don't have access yourself, maybe a friend can help). There are thousands of manufacturers with comprehensive data all available by the web.

My Net Work A-Z Index also on the EPE web site, contains scores of electronics-related URLs and is a good starting point for a component search. (My thanks to those readers in the USA and UK who helped locate ECG Products. We guessed Colin is in the scary world of fixing TVs, or building a plasma sphere!)

Desoldering Fumes, HASAW and COSHH!

My thanks to correspondent Ant. Astley who comments on the requirement for desoldering fume extraction: Ant. writes by E-mail:

Apropos the Teach-in '98 series and the section on soldering and safety; for most of my life I've had a very bad throat and cough problem which is greatly aggravated by solder fumes and may well be caused by a lifetime of soldering. I now use a Weller fume-extraction iron, powered by an old vacuum cleaner, it obviously works well because the condensate in the pipe gets bad enough to block it completely. It's no great encumbrance to work with, and it helps me enormously.

There are also various fans and filters available but I felt that this was probably the best option. I hope you can find room for this information, a mention by you may help someone avoid a great affliction Regards, Ant. (GW0AJA).

On anything but the quickest jobs I personally clear the air using a bench-top fume displacer, of the fan-box type containing a charcoal-impregnated filter fronting an extractor fan. I realise these are a luxury item for many hobbyists, but in my view they are essential for anything other than occasional soldering. They are remarkably effective albeit a bit bulky and noisy at close quarters (drowning out the Surgery radio at the same time). A soldering iron tends to smoke for many seconds after being replaced on the stand (while the flux burns off), but my fume extractor fan draws it all in, no problem. More serious or advanced hobbyists should seriously consider purchasing one.

For pin-point effectiveness you probably can't beat an iron-mounted fume extractor tube which Ant. uses. These extract the fumes at the point of emission, but the extractor pumps are costly because they are designed for continuous industrial use. You can easily spend £400+ (US\$660) on the relevant kit, which is completely beyond the reach of home users. Improvising with a vacuum cleaner sounds novel, but I think the noise would drive me nuts! (It conjures up quite an image though, Ant!) If anyone could manufacture a small extractor pump station to adapt to a soldering iron tube, costing say £40-50, they would probably be on to a winner.

As a home-brew idea, you could try improvising using, say, a surplus d.c. fan salvaged from a computer power supply, and maybe some aluminium corrugated hose (sold by car spares shops, as it's used on air inlet ducting) can be bent to shape to form a mini duct, positioned near to the area of soldering. You could try to obtain some optional carbon-black impregnated foam to filter the inlet, and just exhaust the fan to atmosphere. At least it will divert the fumes away and help prevent irritation.

Co-incidentally, flicking through a Greenweld Electronics leaflet, I spotted a plastic ABS box with large circular cutouts to accept a 115mm fan. This rang a bell, as it appears to be similar to the housing used to contain my bench-top fume displacer, so you could buy a box and attempt to fit it out with a suitable mains fan, outlet grill and inlet filter, hopefully at a reasonable saving. The box measures 220mm×150mm×63mm. Contact Ian at Greenweld Electronics on 01703 236363. (Their ref. X6834; Ian tells me that they have quite a few in stock.)

Danger Warnings

Industrial users have well-defined statutory requirements to safeguard the health of all employees and sub-contractors, as defined in the Health & Safety At Work Act (HASAW), and my experience tells me that HSE Inspectors usually stare daggers at anything which moves, smokes or smells. The chances are that occasional users wouldn't need any form of fume extraction to be fitted, but it would almost certainly be the case for continuous production use.

The Health & Safety Executive produce many free booklets, and your local office will be listed in the phone book. Also check the major catalogues (e.g. the Farnell Industrial Catalogue) for HSE books and information as a starting point

before embarking on statutory Risk Assessments, which themselves are mostly common- sense.

Still on the subject of safety at work and all things chemical, if you are managing any form of professional chemical applications in the UK (e.g. applying adhesives or lube, or using aerosols, etchants or fluxes), you will probably also know about the COSHH Regulations - the Control of Substances Hazardous to Health, in respect of which you must, amongst other things, obtain an appropriate Material Safety Data Sheet (MSDS) from all suppliers of classified products. Obtaining one does not constitute a Risk Assessment under HASAW legislation, though.

MicroLab

Finally this month, in case you missed my pointer in my Net Work Internet column (January 1998), users of the Teach-In MicroLab should check the MicroLab web page, where its designer Geoff MacDonald has uploaded the details needed to add a printer. See www.pan1c.demon.co.uk/Microlab (that's pan-one-c) for details. All the demonstration routines are there too, together with an updated EPROM listing.

If you're looking for a practical introduction to microprocessors, then our 6502-based training system could be for you. Check the advertisement of Magenta Electronics for kit details, and our book Teach-In No. 7 is also available from the Direct Book Service. This book describes the construction and use of our Mini Lab and Micro Lab and offers a good practical foundation in electronics and microprocessors.

 More readers' queries, circuits and comments next month.

EPE BINDERS KEEP YOUR MAGAZINES SAFE - RING US NOW!

This ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place.

The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.

The price is £5.95 plus £3.50 post and packing. If you order more than one binder add £1 postage for each binder after the initial £3.50 postage charge (overseas readers the postage is £6.00 each to everywhere except Australia and Papua New Guinea which costs £10.50 each).

Send your payment in £'s sterling cheque or PO (Overseas readers send £ sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Fax: 01202 841692. E-mail: editorial@epemag.wimborne.co.uk. Web site:http://www.epernag.wimborne.co.uk (We cannot reply to queries or confirm orders by Fax.)

We also accept credit card payments. Mastercard or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholder's address (if different to the delivery address).

VISA

INGENUITY UNLIMITED

Our regular round-up of readers' own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas *must be the reader's own work* and **not have been submitted for publication elsewhere.** The circuits shown have NOT been proven by us. *Ingenuity Unlimited* is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. **Please draw all circuit schematics as clearly as possible.**

Send your circuit ideas to: Alan Winstanley, *Ingenuity Unlimited*, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. They could earn you some real cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE

50MSPS Dual Channel Storage
 Oscilloscope • 25MHz Spectrum Analyser

- Multimeter
 Frequency Meter
- Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours.

Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners up.

Digital Sinewave Generation - sines of the times

THE outline circuit suggested in Fig. Ia represents an auto-reversing 4 bit counter centred around a 4029 Up-Down counter chip. The carryout signal is used to trigger count reversal via the inverter and D-type flip-flop (a type 4013, for example). The circuit uses an R-2R network which acts as a D/A converter. When clocked, it produces a linear bi-directional "staircase" which can be considered as a triangular waveform. Such waveforms can be rounded off to give a good approximation of a sinewave but there is another approach: the "slope" of the triangular waveform is determined by the clock frequency, so what happens if we alter this in synchronism?

Using a single 4 bit counter, 16 voltage levels are produced, with 15 "steps" or increments. If we increase the clock frequency from count 0 to 8 and then decrease it from count 8 to 15, the waveform produced will be much nearer to a sinewave.

The circuit shown in Fig. 1b uses another 4029, this time configured as a 3 bit autoreversing up/down counter. Here up/down clocking is controlled in conjunction with AND gate IC3 and an RS flip-flop, such as a type 4043. It is clocked by a CMOS 7555 oscillator via *npn* transistor TR1, which may be any small signal type.

The three outputs of the counter bleed extra current into the timing circuit via the resistors R2 to R4. As a result of this, the clock period shortens in a non-linear fashion until the period after count 7. From count 8 to 15, the period again lengthens. The generator then changes its direction of count to give a mirror image of the waveform and the cycle then repeats.

Some suggested resistor values are as follows: R1 – 330k, R2 – 200k, R3 – 75k and R4 – 33k. If we make RB equal to 1k, the periods are not too difficult to calculate and if C1 is 10nF we get the following periods: 0 - 2.07ms, 1 - 0.866ms, 2 - 0.432ms, 3 - 0.334ms, 4 - 0.205ms, 5 - 0.179ms, 6 - 0.147 and 7 - 0.132ms.

This gives us a total of 4.365ms for 90°, and thus a total sine wave period of 17.46ms, and a frequency of 57.27 Hz.

Everything is of course proportional to capacitance so changing the capacitor to 1n2 would produce a period of 2.095ms and a frequency of 477.3Hz. Note the voltage drops across the diodes have been ignored.

A. E. Whittaker, Walton, Stone, Staffs.

Everyday Practical Electronics, June 1998

A.C. Ripple Active Rectifier - climb those peaks

THE circuit shown in Fig. 2 arose from a need to track down 50Hz hum on an old record deck using just a multimeter. It will take an input signal of any amplitude and measure the peak a.c. on the signal. It is also easy to build.

It has a 270k minimum a.c. input impedance with a near infinite impedance at d.c. This arises from the decoupling circuit at the input, the a.c. current which is passed being developed across the input resistor. The input section can be considered as a simple potential divider arrangement – the capacitor has an impedance (capacitive reactance, Xc) of $1 / (2\pi f C)$, in this case about 16kohm / frequency – thus presenting an almost infinite impedance to 4.c., and about 320 ohms to 50Hz, and less to higher frequencies.

This is then precision half-wave rectified (positive-going) by incorporating a diode D1 in the feedback loop; the op.amp IC1a automatically compensates for its built-in voltage drop. The storage capacitor C2 is then charged up to this voltage at a rate determined by the maximum output current of the op.amp.

The capacitor must also be able to discharge down to any new lower a.c. signals. The main route will be through whatever is being used to measure the voltage at the output – in my own case, a d.c. multimeter. The capacitor will discharge almost completely in about 5CR seconds, C being C2 (10μ F) and R being the impedance of the multimeter. In the case of an analogue meter this will be quite quick (100kilohms per volt) but around fifty seconds for a 1Mohm digital multimeter. Other routes include leakage through the capacitor itself and through the op.amp.

The final result is a circuit of suitably high input impedance, which is quick to detect the peaks but slow to discharge. It can be tailored to have a slower rise-time by adding a resistor just before C2 capacitor, and quicker to decay by adding a resistor in parallel with it.

The choice of an LF353 dual op.amp for IC1 is not particularly critical as the second op.amp only maintains a virtual ground (quite accurately) for the signals. In this way a split-rail is easily achieved from a single battery. The supply range is that allowed by the op.amp

Fig.2. A.C. ripple active rectifier.

(e.g. 9V to 30V) and the a.c. signal can go typically to within 1V of the supply rails. The circuit can be tested by monitoring some audio from a personal stereo.

Richard Hunt, Diss, Norfolk.

Typewriter Word Counter - no would processor needed

FOR anyone who needs the convenience of a word counter but cannot justify the cost of a word processor or PC, the simple circuit of Fig. 3 will enable an inexpensive l.c.d. counter module (e.g. Maplin FS13P, or similar) to be connected to a traditional manual typewriter. TR1 and TR2 form a bistable latch. Pressing the typewriter's space bar closes S2, turning TR2 and TR3 off. The signal to the counter goes low. Then pressing any letter key closes S1 and turns TR1 off. This holds TR2 and TR3 on, and sends a positive edge to increment the counter reading.

This signal remains high until the word is complete, when the latch is reset by another operation of the space bar. Switch S3 is closed to disable the counter when desired. Note that the space bar needs to be pressed before making a carriage return, so as to separate the last word on the line from the first word on the next.

Since the latch is unaffected by switch bounce or imperfect contact, S1 and S2 can be quite crude in construction. In the original prototype, the circuit board was bolted to the typewriter frame under the carriage and earthed to it. Two lengths of 22 s.w.g. tinned copper wire were soldered to the board and bent to make contact with the space bar and carriage movement levers. The circuit can be powered from the 1.5V battery in the counter module – the current drain is so low that no on/off switch is needed, and this arrangement has proved entirely satisfactory over several years.

N. Jewell, Ilfracombe, Devon.

Fig.3. Typewriter word counter circuit.

INGENUITY UNLIMITED BE INTERACTIVE IU is *your* forum where you can offer her readers the benefit of your Ingenuity.

other readers the benefit of your Ingenuity. Share those ideas and earn some cash and a prize!

Everyday Practical Electronics, June 1998

SPECIAL EPE **READER OFFER**

EPE in association with ESR Electronic Components are pleased to bring you this exceptional offer on Minicraft tools - don't miss out, offer ends 30 June '98

MB150 Drill Normally £26.99 Offer Price £21.99

including VAT and p&p

A high-speed precision 12V drill for increased versatility • Lightweight keyless chuck for easy accessory changeover . Now with more powerful 30W motor • Very high speed for a variety of applications • Fan cooled motor for longer usage • Pencil grip for ease of use • Can be fitted with a collet set for extra flexibility

A stable precision drill stand. Suitable for all Minicraft drills • Twin pillar guide and specially designed pressure mechanism for maximum precision • Heavy metal construction with bench fixing holes for extra stability Large baseplate (155mm x 188mm) • Slots and threaded holes in base for fixing machine vice Drill cable grip

MB540 Precision Drill Stand Normally £44.99

Offer Price £35.99 including VAT and p&p

MB714 Single Speed Transformer Normally £27.99 Offer Price £22.99

including VAT and p&p

An excellent single speed transformer Sufficient power for all 25, 30 and 45 watt Minicraft tools • Built-in resettable overload cut-off facility for extra safety and longer life Robust housing for extra durability
 Plug-in facility for extra convenience • 12V d.c. output

ESR Special Bundle Normally £99.97 Offer Price £66.99

including VAT and p&p

The ESR Special Bundle consists of the three items shown (Drill, Stand and Transformer) plus a FREE 20-PIECE ACCESSORY SET for drilling, grinding, routing and shaping

i I I	ESR – EPE SPECIAL OFFER ORDER FORM Fill in and send with your payment, or phone or fax us with your order and credit card details
1	Full name:
1	Address:
i	Tel. No
1	Signature:
i	I enclose cheque/PO in £ sterling payable to WIMBORNE PUBLISHING LTD for £
1	Please charge my Visa/Mastercard: £ Card expiry date
Ì	Card No: I
	Please send: MB150 30W Drill MB714 Transformer MB540 Drill Stand ESR Bundle (Drill, Transformer, Stand and FREE Accessories) (Please tick relevant box) Offer ends 30 June 1998. Orders normally sent within 7 days

ESR Special Bundle OVER 30% OFF

normal retail price

Offer ends 30 June 1998

व्यसम्म र २२२४४५२२ २

Send your order to: EPE OFFERS, Allen House, East Borough, Wimborne, Dorset BH21 1PF Tel: 01202 881749 Fax: 01202 841692

OVERSEAS ORDERS: Price includes delivery to anywhere in the UK Overseas orders add £5.50 for delivery We cannot reply to overseas orders or queries by fax

TEACH-IN '98

An Introduction to **DIGITAL ELECTRONICS**

TEACH-IN is a series designed to support candidates following City and Guilds (C&G) 726 Information Technology, with reference to the following specific syllabuses: *7261/301 Introductory Digital Electronics, *726/321 Elementary Digital Electronics, *726/341 Intermediate Digital Electronics.

Even if you are not undertaking the City and Guilds syllabus, there is much to be learned from *Teach-In*.

lan Bell, Rob Miles, Dr. Tony Wilkinson, Alan Winstanley

Lab Work

Throughout *Teach-In*, attempts are made to involve the student with practical "Lab Work" experiments and demonstrations, and complex mathematics will be avoided unless really necessary – and even then, plenty of help is to hand! We make a point of identifying practical components in special sections of *Teach-In*, so that you will learn to recognise parts.

Part Eight: BUSES AND COUNTERS

We now embark on an in-depth look at the design of counters, but first we investigate a real-world application of bus based data transfer.

Back on the Buses

The word *bus* is often used to refer to the connection between the devices in a digital system, providing connection to the various memory and processor components.

Faversham Wills Household Command System

Lord Faversham Wills has been extremely pleased with his "butler priority system" which was installed in his mansion. (See Part 5 – "Priority Encoders and Majority Gates".)

However, he now wishes to extend the system so that anyone wishing to use the services of the various staff can inform them of the required services in advance. He (or any of the members of his family) can request an ironed copy of *The Times* from the butler, or a soufflé from the cook, by simply pressing the appropriate buttons on the command console in the hall. This is linked to a number of display consoles in the staff quarters around his mansion.

The first thing which had to be decided was the command codes for the system. After a protracted staff meeting to introduce the "Faversham Wills Household Command System" the following standards were established:

The Butler can perform the following functions (function numbers are expressed in binary):

- 00 Fetch the newspaper (The Times)
- 01 Fetch a cup of tea (Earl Grey with a slice of lemon)
- 10 Fetch a double whisky (single malt of course)
- 11 Have the rest of the day off

Fig.8.1. Command display circuit diagram.

The Cook can perform the following functions:

00 Make Breakfast

- 01 Make Lunch
- 10 Make dinner
- 11 Have the rest of the day off
- The Chauffeur can perform the following functions:
- 00 Bring the car to the front of the house 01 Wash the car
- 10 Put the car away for the day
- 11 Have the rest of the day off (perhaps with Cook)

The staff agreed that these were just the first of many different tasks that they may be asked to perform, but they insisted on no more than 256 different task codes (and a hefty raise each)!

Chain of Command

Having decided on the code for the tasks to be performed Lord Faversham must now consider how the signals are to be sent to each person. He has in mind sending the commands around his entire residence, and has sensibly purchased a large drum of 20-core wire.

İnitially the wire will link the butler's pantry, the kitchen and the garage, but the long term plan is to connect every room (all 60 of them!). What he must now do is decide what signals to send down each core to perform the signalling.

From his knowledge of binary he realises that eight signals must be used to send the code value and so eight wires must be used for this. He also needs signal wires to indicate the recipient of his request and a clock signal to latch the data into the display.

He is starting with three members of staff, so he assigns the signals thus: 8 wires for the data

3 wires to indicate where the message is to go (one each for Butler's Pantry, Kitchen and Garage)

1 clock signal which is used to latch the data into the display

1 ground wire.

To send a command to a particular destination the signal for that room must be asserted. The clock wire is then driven to latch the command into the display device. Fig.8.1 shows the design for a command display station, with Fig.8.2 giving the timing of the signals to display a command.

At this point Lord Faversham Wills realises that he has two problems. First, if he wants to network the entire mansion he doesn't have enough cores in his wire (he would need a wire for each of the 60 rooms)! Second, he has no way of knowing if a particular request has been received and is being acted on.

However, being an inventive chap he reasons thus: "I will never need to send a message simultaneously to more than one member of staff at a time, and so I can use my signal wires to hold a binary bit pattern to indicate where the message is to go".

This means that he can get away with far fewer wires to indicate the message destination (for 64 rooms he would need just six wires). The convention that is to be used in the household is as follows: 01 Butler's Pantry; 10 Kitchen; 11

Garage.

These signals form the "address bus" of our household command system. Each station must respond to a unique address pattern on this bus.

Fig.8.2. Command timing diagram.

To find out the progress of each task Lord Faversham Wills must negotiate the use of extra equipment in each room. The staff must return some sort of progress code, for example:

00 Waiting for a message; 01 Started working on the task; 10 Finished the task; 11 Unable to start the task.

This means that the data bus is being used to send information in two directions, from the command console to the display ("I would like a cup of tea") and from the display to the console ("The kettle is on the hob"). There is no problem with using the data bus in this way, provided that the systems at each end are aware of their role during a data transfer.

To make this *bi-directional* use of the data bus possible we use two synchronised clocks. One of these is used

to send the data (Write \overline{WR} clock) and the other allows Lord "F" to receive a reply (Read \overline{RD} clock). Note that the connections to the data bus must also be made using *tri-state* buffers. (See Part 7 for details of tri-state).

House Commands

The cable connections and circuit diagram for the entire Household Command System are given in Fig.8.3 and the timing diagrams for the read and write operations are given in Fig.8.4. The cable connections are as follows:

C1 to C8 bi-directional data bus

C9 to C16 address bus

C17 \overline{WR} – clocked low by Lord F to send a command out

C18 \overline{RD} – clocked low by the recipient to send a reply back

C19 5V power supply

C19 5V power supp C20 Ground wire

The bottom portion of Fig.8.3 shows the control console with latches to display the Progress code, set the Task code and set the Room address code respectively. The large NAND gate in the centre of the diagram performs the address decoding in a particular station (in this case the Butler's).

Note that we are showing the decoding for station number 1, which means that all the address bits other than the lowest one (C9) must be inverted before being

Fig.8.3. Circuit diagram for the Faversham Wills Household Command System.

Fig.8.4 Read and Write timing diagrams for the Household Command System.

fed into the NAND. The address selection signal is then passed through OR gates with the READ signal to select a latch with the reply information on it and is also ORed with the WRITE signal to select the latch which drives the command display

The diagram does not show the circuit for the de-bounced clock signals (these

Fig.8.5. Pinout details for the chips used in the Household Command System circuit.

were described in Part 7), they are used to ensure that the clock signals have nice clean edges.

The pinouts for the chips used in the "Household Command System" are shown in Fig.8.5. We are not actually proposing that you build one (or that anyone in your household would feel disposed to respond to it if you did) but we think that you will find it useful to study the system and convince yourself that it would work!

As a further exercise, you may find it interesting to consider how we could change the system so that room address 0 (not presently allocated) could be used as a "broadcast" address to summon all the staff to a meeting. This would require changes to the address decoding logic in each station.

Real Life Buses

The Faversham Wills Household Command System looks very like the collection of signals which is used inside a computer to transfer data between the various components. The computer itself will store and retrieve data held at particular addresses. To do this it must use a set of data signals (the *data bus*) and a set of address signals (the *address bus*).

The number of signals in the data bus determines the size of the packet of *data* which is transferred around the system. The number of signals in the *address* bus determines the number of addressable locations available.

Early microprocessors had 8-bit data buses and 16-bit address buses. The wider your data bus the more data you can process at a time. The wider your address bus, the more memory locations your computer can contain. Computers based upon the Pentium processor have a 64-bit data bus and 32-bit address bus.

One other trick which is played to reduce the number of pins on a microprocessor is to send the data and the address signals down the same signal wires. This is called an *address/data bus*. All that is needed is an extra signal, often called *ALE* or *Address Latch Enable*, which is raised when the processor is generating an address value.

Check Out: Logic Probes

A simple but very useful item of test equipment is the handheld *Logic Probe*. These are specially designed to work with logic signal voltages, and they enable the user to determine whether a high or low logic signal is being detected. It should be remembered that there are certain voltage limits which define what a "high" and a "low" signal may be, and a logic probe is usually designed to work within these limits and interpret them correctly.

They may be powered from the circuit under test, so a pair of crocodile clips will be provided for the probe to be hooked to a 5V supply on the board. Logic indications can be provided by both an l.e.d. and an audible tone generator within the probe. The simple type in the photographs uses a low-frequency tone for "logic low" and a higher tone for logic high. This is a great way of monitoring logic levels without needing to read and decipher a visual display, although it also indicates high or low via coloured l.e.d.s. More advanced types may interconnect optionally with an oscilloscope display.

Usefully, some logic probes also have a "pulse" mode for detecting "edges", i.e. when a logic signal changes state. This can be indicated by a brief audible beep which is triggered for a

A useful piece of test equipment is the Logic Probe. The lead is terminated with a pair of crocodile clips.

Using a logic probe to checkout our Lab Work exercise. The croc. clips are across the supply lines.

preset time. Thus, very brief pulses or glitches can sometimes be detected (see Lab Work 8 for an example) as the logic probe will act as a "pulse stretcher" and generate an audible tone accordingly.

A Logic Analyser is a much more expensive item of test equipment which is used for detecting, storing and displaying logic signals. Multi-channel types can monitor several signal streams at once.

Accountable Circuits

In the Lab Work at the end of the previous part we asked you to build a pair of 2-bit Binary Counters, one *asynchronous* and the other *synchronous*. We will now consider counting circuits in more detail and highlight the differences between the two circuits you built. However, we will first explore how we can arrive at the designs for these circuits.

A counter circuit is limited in terms of the maximum number it can count to. For straightforward binary counters if we have *n* bits we can count to $2^n - 1$. For example, if n = 3 the maximum number is 7. There are a total of 2^n possible values the counter can hold, including 0.

Most digital counters go to 0 after the maximum count, something we are in fact familiar with in everyday life. For example, the odometer in a car returns to zero if you go far enough ("driven round the clock"). Our measurement of time works in a similar way. If it is 22:00 (24 hour clock) and we add 6 hours we get 04:00 not 28:00. In mathematics calculation using numbers which "loop around" like this is called *modulo arithmetic*.

We can explicitly define the output from a 3-bit binary up counter by writing out all the numbers in sequence as shown in Fig.8.6a.

We can show the modulo counting more clearly by using a diagram as in Fig.8.6b. Such diagrams are called *state diagrams*. Each circle is a state and represents a certain combination of 1s and 0s in the circuit's memory (i.e. in the flip-flops). The circuit stays in a state until something causes it to change (typically a clock edge) at which time it jumps to the next state as indicated by arrows on the diagram.

Now look at the 3-bit binary count in Fig.8.6a. You should be able to spot some patterns in the bits. For example, whenever a bit changes from 0 to 1 (i.e. a negative edge occurs on that output from the counter) the *next* most significant bit changes state as shown in Fig.8.7

Fig.8.7. A $1 \rightarrow 0$ transition on one bit causes the next significant bit to toggle.

Everyday Practical Electronics, June 1998

Fig.8.8. Asynchronous 3-bit binary counter using toggle flip-flops.

The least significant bit (LSB) toggles with every clock input (i.e. each time the counter counts up by 1).

This observation can lead us to the idea of connecting the output of one toggle flip-flop to the negative edge clock of the next toggle flip-flop in the counter as in Fig.8.8. We can implement the toggle flip-flop either with a D-type with D

flip-flop either with a D-type, with D connected to \overline{Q} , or with a JK flip-flop, with J = K = 1 (see Fig.8.9).

Note that both these circuits give us an *asynchronous* counter in that the counter bits do not all change at the same instant. For the higher bits to change the signals from the lower bits must travel across the circuit.

This is in contrast

to a *synchronous* design, in which all the bits would change to the next value at exactly the same time. We will look at synchronous counter designs in a moment, but first here are some asynchronous counter chips.

Asynchronous Counter Chips and Dividers

The 4020 i.c. is a 14-bit asynchronous counter chip, however the second and third bits are not connected to the chip pins. The 4024 i.c. is a 7-bit asynchronous counter. The 4040 is a 12-bit asynchronous counter.

The 4521 is a 24-stage frequency divider in which the 18th to 24th bits are available at the output pins. The maximum division is by 16777216. The 4521 i.c. also features circuitry which enables an RC (resistor/capacitor) or crystal oscillator to be built as an input to the counter. These circuits are shown as Fig.8.10 and Fig.8.11.

Fig.8.9. Asynchronous 3-bit binary up counters (a) using D-types, (b) using JKs.

Note that the formula for the *RC* oscillator (given on Fig.8.11) is approximate and the frequency will vary with temperature and supply voltage. Graphs which give this variation are available in manufacturer's data sheets.

The 74292 i.c. is a 30-stage programmable frequency divider based on Fig.8.8 but with additional logic to control where the clock input is fed into the counter chain. This allows digital selection of a number of different frequency divisions, i.e. we could connect a latch to the division selection pins and electronically set the speed of the output.

Synchronous Counters

If you look again at Fig.8.6a you should be able to see another pattern in the

toggle at the next clock input.

CLOCK 00 Q1

Yet another

Fig.8.12. When all lesser significant Fig.8.14. A 3-bit binary synchronous up bits are 1 the next significant bit will counter using D-type flip-flops.

Fig.8.13. A 3-bit synchronous up counter using JK flip-flops.

binary sequence. Notice that bit toggles whenever all lesser significant bits are 1 (see Fig.8.12). The least significant bit always toggles.

From this observation we can derive the logic for a synchronous binary up counter. We can use JK flip-flops with J and K connected together to obtain a toggle/hold function.

The first stage always toggles so the J and K of the first flip-flop are connected to logic 1. The second bit (Q1) toggles if the first bit (Q0) is 1 so we connect Q0 to J and K of the second flip-flop.

The third bit (Q2) toggles when both Q0 AND Q1 are 1 so we use an AND gate to obtain this function, connecting its output to the J and K of the third flip-flop. We arrive at the circuit shown in Fig.8.13.

We are not restricted to using JK flip-flops to build our counter, although they conveniently contain the logic to implement the toggle/hold action we need. To use D-types we need to add the toggle/hold logic (see the previous part for further discussion on this topic).

We can use the circuit in Fig.7.14 from Part 7 in place of the JKs to give the counter in Fig.8.14. Note that the first flip-flop simply needs D connecting to \overline{Q} as it always toggles and that we have dropped the inverter connected to flipflop two as we can use the first flip-flop's Q output instead.

In Part 5 (Fig.5.7d) we saw that an XOR gate acted as a controlled inverter (i.e. invert/don't invert the data). We can use this to obtain yet another toggle/hold circuit as shown in Fig.8.15.

Using Fig.8.12 leads to another version of our counter, shown in Fig.8.16.

Many Ways of Counting

You may be wondering why we have bothered showing you so many versions of the same circuit. There are a couple of important points to be made here:

First. the asynchronous and synchronous version are fundamentally different and we will be going into this in more detail in a moment.

Second, the synchronous counters in Fig.8.13, Fig.8.14 and Fig.8.15 are fundamentally the same. ln fact.

if you work out the Boolean functions for the values loaded onto each O output after a clock edge you would get the same equation.

If you feel confident, try this out by writing the equations for the D in-

puts of each flip-flop in Fig.8.14 and Fig.8.16 in terms of the Q outputs of the counter. You will have to manipulate the equations using the rules given in Part 5 to prove that they are the same.

An important point to learn here is that the logic function of a circuit should be seen as a separate issue from the particular way in which it is implemented. The implementation may be important or even very important as it may influence such factors as cost, size, speed and power consumption. However, it may simply be a matter of using what happens to be available (a constraint often imposed on the hobbyist).

While considering our collection of counters it is worth noting that in practice they would probably have Reset inputs to

Fig.8.16. Another 3-bit binary synchronous up counter. This one uses the toggle/hold circuit of Fig.8.15

set them to zero. We have not shown these to simplify the diagrams while discussing the count logic. To wire the Reset (for all versions) simply connect all the flip flop's reset inputs together and connect them to the POR (Power On Reset), reset switch or other control signal as required.

Synchronous and Asynchronous

Having seen that the asynchronous counter can be built using flip-flops alone whereas the synchronous one requires additional gates you may be wondering why we have expended so much effort on the synchronous circuit. The difference is a matter of timing. The timing diagram in Fig.8.18 shows the outputs from a 2-bit

Callout – Flip-Flop Timing

Like the gates we described in Part 6, flip-flops have a propagation delay - the time it takes for data to appear on the outputs after the flip-flop is clocked. The delays may be different for the Q and \overline{Q} outputs. For asynchronous inputs, such as resets, separate propagation delays must be specified. As with gates all these delays may be different for high to low and low to high transitions at the output.

In addition to propagation delays and rise and fall times clocked flip flops have two important timing parameters which are not applicable to gates. These are the setup and hold times and are illustrated in Fig.8.17. The data (D, JK, T/H or other synchronous inputs) must be stable

Fig.8.17. Flip-flop setup, hold times and propagation delay.

(unchanging) for the setup time before the clock changes and must remain stable for the hold time after the clock changes.

Check Out: Dip and Rotary Switches

Part One of *Teach-In* introduced a variety of familiar switches which are used on control panels or similar, to enable users to adjust the operation or settings of an apparatus.

One more complex variety of switch is the thumbwheel, in which a thumb-operated rotary dial can be operated to provide a dial-in selection. This could be used to select, say, a frequency setting or other numerical control. They may have a range of features including end-stops (to prevent numbers higher than a particular numeral from being dialled), and decimal, hexadecimal (base 16) or BCD outputs. Some even have 7-segment l.e.d. displays. Thumbwheel switches are snap-in panel-mounted using end cheeks on each side, and several can be banked together.

Sometimes it may be necessary to preset some circuit settings on a once-only basis (e.g. during testing or setting-up). This may not necessitate big, panel-mounted switches and something at circuit-board level may be more appropriate, especially if lowlevel signals are involved.

Dual-in-line package ("d.i.p." or "d.i.l." switches) are used on printed circuit boards as a way of providing tiny switching systems which may only need to be used occasionally or even only once. Examples are seen on computer boards, where the manufacturer presets certain features, and the end-user can alter the settings by operating the relevant combinations of d.i.p. switch.

D.I.L. switches are also useful as a neat way of incorporating switching systems into a breadboard circuit. The switches are usually made with the same "pitch" (matrix dimensions) as an ordinary dual-in-line integrated circuit so they will insert directly into a breadboard or p.c.b. with no external wiring being needed.

Choose from several styles: slider, lever, piano key and rotary types are common, with slide-over contacts being the standard. Some d.i.l. switch ranges include BCD or hexadecimal (base 16) output patterns, which can be useful in logic circuits. Sliding types are colour coded to help identify the switch levers. "Programmable d.i.l. headers" are used where you want to hard

"Programmable d.i.l. headers" are used where you want to hard wire a contact setting on a once-only basis. These are dual-in-line packages featuring internal wires that can be snipped with wire cutters. These could be used for entering codes or circuit settings customised for a particular application and the header is then plugged into a board as a small programmable module.

Fig.8.18. Timing diagram for asynchronous synchronous counters.

asynchronous and a synchronous binary up counter.

Both circuits are negative edge clocked. Note that the circuit in Fig.8.8, the asynchronous counter must use negative edge triggered flip-flops but the circuit in Fig.8.13, Fig.8.14 and Fig.8.16 could use either edge triggers, as long as all their flip-flops were the same type.

The nature of the asynchronous counter is such that changes "ripple" through from the clock input, stage by stage towards the most significant bit. Each change is delayed by the *propagation delay* of the flip-flop with respect to the previous bit.

The unfortunate consequence of this, apart from the slow reaction time of large asynchronous counters, is that the outputs go through a series of indeterminate values before settling down to the correct state. This is shown in Fig.8.18 where it can be seen that an extra "00" is output as the counter changes from 01 to 10 (1 to 2) and an extra "10" as it changes from 11 to 00 (3 to 0).

than the propagation delay itself. If all the flip-flops are of the same design, on the same chip, at the same temperature and have the same load the variation should be very small.

The problem with the relatively long duration of the unwanted outputs from the asynchronous counter is that they may cause false triggering of other circuits, particularly if these circuits are clocked from gates connected to the counter's outputs. This is illustrated in *Lab Work*.

Full synchronous circuits may require more gates than simple asynchronous versions but do not suffer from problems due to intermediate outputs from circuits as they change state. The clock speed is chosen so that the whole circuit has time to settle down before the next active clock edge arrives.

The ripple effect in large asynchronous counters makes them relatively slow, however asynchronous logic is not always slower than synchronous logic. It is possible to design large asynchronous

A typical "thumbwheel" switch. Using end cheeks on each side, they can be banked together.

A selection of d.i.l. and rotary p.c.b. mounting switches.

This timing diagram shows the outputs of the synchronous counter changing at exactly the same time. In practice there would be some difference due to the variation in propagation delay between the flipflops - but this would normally be considerably smaller circuits which always start the next activity as soon as the current one is finished. Unlike sequential circuits they do not have to wait for the clock. This provides high speed operation as there is no "idle time".

Another advantage of asynchronous circuits is that their flip-flops only get clocked when absolutely necessary (i.e. when they have to change state) whereas in synchronous circuits they will get clocked much more frequently. This means that asynchronous circuits can be designed which consume less power than their synchronous equivalents.

Advanced asynchronous design like this is a specialist subject well beyond the scope of this series. Such circuits are designed to not only produce the correct functional outputs but also to indicate when they have finished processing and have the output ready. This approach overcomes the intermediate value problem we discussed for the simple asynchronous counter.

Despite its faults the asynchronous counter is a useful circuit, particularly for dividing high frequencies, as we described earlier.

In the next *Teach-In* we continue our look at the ups and downs of counters. Now have a look at the Lab Work section and build up the Counter/Monitor demonstration circuit.

The *Teach-In* writers are delighted to receive your comments, feedback and queries. You can write to us at *Teach-In* c/o the Editorial address, or E-mail **Teach_In98epemag.demon.co.uk.**

Easy-PC for Windows 95 and NT!

- 4th Generation Schematic Design and Printed Circuit Layout.
- By Engineers, for Engineers.
- Full links to our Analogue, Digital and Electromagnetic simulators.
- NO pin, net or layer limits!
- Fast, Intuitive Operation!
- Track and Component editing
 a dream!
- Superb User Interface!
- Competitive pricing!

Number One Systems

Write, fax, phone or e-mail for full information.

 UK/EEC:
 Ref: EVD, Harding Way, St.lves, Cambridgeshire, ENGLAND, PE17 4WR.
 e-mail: sales@numberone.com

 Telephone UK: 01480 461778 (7 lines)
 Fax: 01480 494042
 International +44 1480 461778/494042

 USA:
 Ref: EVD, 126 Smith Creek Drive, Los Gatos, CA 95030
 http://www.numberone.com

ADHFEPCW

TEACH-IN '98 LAB WORK

8

Objectives: To demonstrate the difference between a synchronous and asynchronous counter. Construct a simple counter/monitor circuit to detect glitches in the count sequence of an asynchronous counter.

N THE previous Lab Work, we constructed a simple 2-bit counter, introducing both asynchronous and synchronous types. The asynchronous counter of Lab Work 7.4 has the clock input of a flip-flop driven by the output of a preceding latch. However the synchronous counter (Lab 7.5), has both clocks driven simultaneously by the same clock signal.

When observing the bit pattern on the counter's display l.e.d.s (see Lab Work 7, Figs. 7.27 and 7.28), there seems to be nothing to distinguish between the two. In Lab Work 8, it is necessary to construct both types of counter once again, with the addition of a counter/monitor to highlight the difference between synchronous and asynchronous counters. We think you will be quite surprised when you see glitches in action!

Lab 8.1. A Clock-Cycle Monitor

A familiar-looking 2-bit Synchronous Counter centred around a 74HCT73 is shown in Fig.8.19. The count is displayed by two l.e.d.s, D1 and D2 (most significant and least significant bits), driven by inverter/buffers as usual. The counter's clock input (COUNT CLK) is "active low" so every negative-going clock edge advances the counter by one, and the two l.e.d.s will display the count. In theory, this should happen every time the COUNT CLK l.e.d. D3 extinguishes, to indicate a negative clock edge.

Breadboard

Assemble this Counter/Monitor using a 74HCT73 and 74HCT04 (hex inverter) on your solderless breadboard: for pinouts see

Fig.8.19. Construct this 2-bit Synchronous Counter to count clock pulses. Use RESET first, before commencing counting, and link COUNT CLK to the next two demonstrations.

next page. Position the chips at one end of the breadboard to leave plenty of space for the following Labs. Observe anti-static precautions as usual and pay close attention to the power supply connections for both chips.

Before powering up this circuit it is a good idea to temporarily pull-up any unused hex inverter inputs (pins 9, 11, 13 of IC2) with a 100k resistor, although all the inverters will be used in the next Labs. Temporarily pull-up the $\overline{\text{COUNT CLK}}$ junction with a separate resistor too.

Quick Check

You can briefly check the operation by powering the circuit. The l.e.d.s will illuminate, and the display will change when negative clock signals are applied, although because the clock isn't debounced, the counter display will be erratic. Now power down and remove any temporary pull-up resistors. The terminal labelled COUNT CLK will next be used as a "probe input" for the following experiments. Remember that when the display on D1 and D2 advances, this signifies that a negative clock signal has been received by this counter.

Assemble the Counter/Monitor on the breadboard first.

— You Will Need

Resistors

330 ohm (4 off) 100k (5 off) All 0·25W 5% carbon film

Semiconductors

74HCT73 dual JK flip-flop (2 off) 74HCT04 hex inverter 74HCT00 quad dual-input NAND

Miscellaneous

red l.e.d. (4 off); solderless breadboard; interconnecting wire; 5V d.c. regulated supply; optional logic probe • It's a good idea to label two flying leads as $\overline{\text{RST}}$ and $\overline{\text{C.CLK}}$ to help identify them later. Perhaps place a suitable small label next to the l.e.d.s too.

Lab 8.2 Asynchronous Counter Glitch

A second dual flip-flop (IC4) wired as an Asynchronous 2-bit Counter (see Lab Work 7.4) is shown in Fig.8.20. A debounced clock signal is generated by two NAND gates, IC3a and IC3b which form a bistable latch. The clock output also drives a fourth l.e.d. D4, labelled CLOCK. This indicates when IC4 has been clocked. (We found it handy to mark relevant wires and indicators with small adhesive labels.)

Instead of monitoring this counter's output sequence with two l.e.d.s as in Lab 8.19, both the IQ and 2Q outputs have been ANDed together, using two spare inverters (IC2d and IC2e) and IC3c, a spare NAND gate. Now, whenever the 2-bit output from the counter is "00", this will generate a logic 0 clock signal at IC3c output, and it is *this* detected signal that will be counted by the monitor circuit of Lab 8.19.

Construct this 2-bit asynchronous counter and clock circuit on your breadboard. As before, a flying lead is used as the clock, and this toggles between R8 and R9 to advance the counter formed by IC4. (Note R6 is a pull-up for the unused NAND gate in IC3). The l.e.d. D4 simply signifies the transmission of a clock signal to IC4 counter.

An ideal 2-bit counter will count 00, 01, 10, and 11 before starting over again (see Lab Work 7.4). We are detecting and using its ANDed output (IC3c) to generate a logic 0 signal whenever the counter 1Q and 2Q outputs generates 00. It obviously takes four clock cycles to count this sequence, so you would expect to see "00" being generated once every four clock counts. It is

Fig.8.20. Assemble this Asynchronous 2-bit Counter, and link the $\overline{Count CLK}$ output to the clock counter of Fig.8.19.

l.e.d. D3 which denotes a logic "00" being generated.

After assembling and checking, power up the circuit and apply a reset signal to IC1 using the RST flying lead. By toggling the clock wire between R8 and R9, the CLOCK l.e.d. D4 should alternate. The display of the counter/monitor of IC1 should advance every time D3 extinguishes (negative clock edge). Try to observe the operation of the counter display every time you clock it.

The drawback with this circuit is subtle. In fact there are two COUNT CLK pulses observed for every four clock cycles, so an extra "00" is being generated by the

asynchronous counter. The only way you will observe this is to watch the counter display of D1/D2, whilst applying clock signals. Hopefully, you should see that the l.e.d. display will suddenly advance one count, even though the COUNT CLK l.e.d. remains unchanged: remember the counter/ monitor will only advance when a "00" is detected.

• The asynchronous counter generates a glitch (an extra "00") during its counting sequence which can be so fast that the eye won't spot this on the COUNT CLK l.e.d. It may seem to be continuously illuminated but the counter will suddenly advance by one for no apparent reason. Even an oscillo-scope may not detect it. But a logic circuit is fast enough to react to it!

• A simple *Logic Probe* (see main tutorial check out panels) can be used to detect pulses, which may help to reveal the

Building the synchronous/asynchronous counters, labelling the l.e.d.s and "toggling" the clock.

Pinout details for the MOS logic i.c.s used in the counter circuits.

presence of glitches in simple circuits. Depending on the type of probe, placing one on the COUNT CLK signal (pin 8, IC3c) will generate an audible signal on the probe whenever an "edge" (change of logic level) is detected – even if the signal is so fast that the COUNT CLK Le.d. does not seem to change.

This could help you to determine why the l.e.d. display advances. The answer is that a brief glitch is being generated, which is too fast to be noticed on the l.e.d. D3 by the human eye.

Lab 8.3 Synchronous Counter

The minor modifications needed to the previous Lab to produce a Synchronous Counter are shown in Fig.8.21. Alter the interwiring of IC4, so that both clocks are

Completed Counter demo module.

Fig.8.21. Modify the connections between IC4a and IC4b to form a Synchronous 2-bit Counter. wired together, and IC4b J and K inputs are connected to 1Q, the

output of the first latch. It should now be seen that for every clock signal applied, there

will be only one COUNT CLK pulse for every four CLK pulses. Every time the COUNT CLK l.e.d. extinguishes, the binary count advances by one and no glitch is generated in the counting pattern.

In Lab Work 9: We return to investigate digital counters and their applications.

Advertisement

20% discount for EPE readers

Temperature controlled soldering stations

Use this coupon for your order

Please supply me :

...... SL20 soldering station(s) at £55 inc vat & del

- SL30 soldering station(s) at £65 inc vat & del
- Extra 0.8mm bit(s) at £1.65 inc vat & del
- 1.6mm bit(s) at £1.65 inc vat & del
- 3.2mm bit(s) at £1,65 inc vat & del

Name:

Address :

Tel no :

Total £

Cheques payable to Vann Draper Electronics Ltd Or debit my visa, master, access or switch card :

Card type :

Card No :

Expiry date :

Signature :

Overseas readers can still obtain this discount but

details vary according to country. Please contact.

Switch iss no :

Vann Draper is offering over 20% discount to Everyday Practical Electronics readers on two of their temperature controlled soldering stations.

The SL20 bar graph display soldering station normally sells at £69.33 and is available to readers at only £55 inc vat & delivery.

The SL30 digital display version is normally priced at £81.08 but for readers of Everyday Practical Elecronics the price is just £65.00 fully inclusive.

Both soldering stations feature 24V 48W elements for rapid heating and have full electronic temperature control between 150°C and 450°C.

The SL20 and SL30 are supplied ready to use complete with a 48W iron, 0.8mm long life bit, mains lead, operating instructions and a 12 month guarantee.

To order simply post the coupon to Vann Draper Electronics Ltd at Unit 5, Premier Works, Canai St, Sth Wigston, Leicester LE18 2PL. Alternatively telephone 0116 2771400, or fax 0116 2773945.

PIC your time to test your reactions. Will provide hours of fun!

VERYONE likes to believe they have quick reactions; some would even argue their reactions are still quick even after a drink or two. With this reaction timer all will be revealed, but be warned! Trying to improve your reaction time can be very addictive, especially when with a group of people competing against each other.

COLOURFUL REACTION

The Reaction Timer has a single pushswitch for both initiating the test and measuring the reaction time. The first press of the switch initiates the test, and this is indicated by a tri-colour light emitting diode (l.e.d.) changing from red to green.

After a random delay period the l.e.d. changes back from green to red. For a quick reaction time to be recorded, the switch should be pressed again as soon as possible after the l.e.d. returns to red.

After the switch has been pressed a second time, the reaction time is displayed on a four-digit, 7-segment, I.e.d. display. The measurement is shown in milliseconds (ms) with a resolution of 0-1ms. If the switch is not pressed within 999-9ms (almost one second), the message "HELP" is displayed.

REACTION TIME

Reaction time is the time it takes to react to something, whether it be a sound, pain, or in this case, an l.e.d. changing from green to red. In more precise terms, it is the *elapsed* time from an event to the point at which a decision is made to act. It should not be confused with response time, which is what the Reaction Timer described in this article actually measures. Since most people talk about their reactions, and not their responses, it seemed more appropriate to use the name Reaction Timer rather than Response Timer.

The Reaction Timer has been used by numerous people for fun, but not for any serious research. However, the general findings are that response times do vary between individuals and improve with practice. The average response time is around 200ms and the fastest around 150ms.

From those intending to do serious investigations using the Reaction Timer, the author would be interested to learn of the results. See the *Shoptalk* page for address details of where to send them – E-mail preferable.

To understand response time and the factors that may affect it, it is best to consider the process of what actually happens. The process can be broken down into a sequence of events, all of which take time to complete.

The first is when the l.e.d. changes colour from green to red, and the eye has to detect it. The signal from the eye is then transmitted to the brain. Only when it reaches the brain can the thinking process begin.

Finally, a decision to act is made – the reaction – and a signal is sent from the brain to the muscles in the hand. The muscles then respond to the signal and the button is at last pressed. The microcontroller then does its bit and displays the response time on the display.

Reaction Timer

HELP

Some of the known factors that influence response time are; age, fatigue, alcohol, and drugs. It should also be pointed out that the response time for each of our senses is different. There is no reason why the Reaction Timer could not be modified to produce sound to investigate this.

CIRCUIT DETAILS

The full circuit diagram for the Reaction Timer is shown in Fig.1. The main components are the PIC microcontroller IC1 and the 7-segment displays, X2 and X3.

The design is based on the PIC16C55-XT from Microchip. This device was one of the first of a family of low cost microcontrollers that offered designers the ability to put intelligence into products where cost had once dictated otherwise. Whilst the PIC16C55 has its limitations being a low-end microcontroller, the things that can be achieved with it are often outstanding.

Over the years Microchip has added extensively to its microcontroller product range, many devices offering increased features at costs not much more than the PIC16C55. One device that is very popular with the home enthusiast is the PIC16C84, not necessarily because of its features, but the fact that its program memory is EEPROM. This allows it to be reprogrammed many times.

The PIC16C55 on the other hand is basically a One Time Programmable (OTP) part that means it can only be programmed once. However, what the PIC16C55 does have over the PIC16C84 is an extra port of I/O (input/output) lines, and this is what is required for the Reaction Timer project.

For most designs the RC oscillator configuration is quite often satisfactory, and also the cheapest solution. However, the Reaction Timer is intended to measure time, relying totally on the frequency accuracy of the oscillator to do this. This therefore rules out the low cost RC option.

If the displayed times are to mean anything, then the use of a crystal or ceramic resonator is necessary. A 4MHz crystal X1 has been used in the model. Whichever is used, the parallel resonant frequency of the chosen device should be 4.00MHz, unless, of course, the software is modified to suit an alternative frequency.

Whilst a crystal will provide the best absolute accuracy, the use of a ceramic resonator is just as satisfactory and also slightly cheaper. Most ceramic resonators have an

initial frequency accuracy of $\pm 0.5\%$ at 25°C. This equates to an absolute accuracy of ± 1.0 ms for a typical reaction time of 200ms. It should be pointed out that the repeatable accuracy, at a given temperature, will be significantly better; the limiting factor being the resolution of the display, ± 0.1 ms.

ON DISPLAY

The measured reaction time is displayed using a four-digit, 7-segment, l.e.d.

display. The display is made up by using two, dual-digit, modules X2 and X3. Whilst a four-digit version is available, the cost is more than that of the two dual modules.

Each digit of the display comprises of eight enunciators, seven for the segments, and one for the decimal point. The anodes (a) of the enunciators are connected together within the display, and the term *common anode* is therefore used to describe it. A common anode type display was chosen so that the micro IC1 could drive the cathodes (k) directly. This is because the micro's I/O lines can sink more current than they can source. The dual digit module only has 18 pins presented to the outside world since the anodes are connected internally within the display; one anode and eight cathodes per digit.

Due to the limited number of I/O lines available from IC1, the display has to be multiplexed. By multiplexing, we only require 12 I/O lines, compared to 32 if the display was to be driven statically.

The common anodes, one per digit, are driven by transistors TR1 to TR4. Each transistor acts as a switch and is able to source the high current necessary to illuminate all eight enunciators at once.

Transistors TR1 to TR4 are controlled by IC1 via resistors R2 to R5, which define the base currents. The chosen value of 1.5

kilohms (1k5) for the resistors ensures that sufficient base current (approx. 2.5mA) flows to keep the transistors fully saturated when supplying maximum current.

The controlling I/O lines RA0 to RA3 of IC1 (pins 6 to 9) are configured as outputs by the software. A logic 0 on one of the lines will switch the corresponding transistor on, whereas a logic 1 will switch it off. When multiplexing the display, only one of these lines will be low (logic 0) at any one time: the other lines all being high (logic 1) – see Fig.2.

Fig.1. Complete circuit diagram for the Reaction Timer.

The segments and decimal point of each digit are connected together and are driven, via resistors R6 to R13, from IC1's I/O lines RB0 to RB7 (pins 10 to 17); these being configured as outputs by the software. Resistors R6 to R13 set the current through each segment to approximately 20mA. Since the display is 1:4 multiplexed, the average current through a segment will be around 5mA. To illuminate a segment, the corresponding RB pin of IC1 should be driven low.

TRI-COLOUR STIMULUS

The red/green tri-colour l.e.d., used as the stimulus for measuring the reaction time, is driven from IC1's port C at pin 19 and pin 20. I/O line RC1 drives the green anode via resistor R14 and RC2 drives the red anode via R15. These pins are configured as outputs by the software and are driven high to illuminate the l.e.d.s. The common cathode of the l.e.d. is connected to the 0V line.

Resistors R14 and R15 limit the current through the l.e.d.s to approximately 4mA. Whilst not used for this project, yellow can be achieved by driving RC1 and RC2 high at the same time.

Response time is recorded by means of S2; a momentary action, press-to-make, switch. The switch is connected between 0V and IC1's I/O line RC0 at pin 18. The line is configured by the software as an input and is therefore high impedance.

Resistor R16, connected between the positive supply and RCO, acts as a pullup to define the non-pressed state of the switch as being high. The micro therefore looks for a high to low transition on RC0 as the indication that the switch has been pressed.

POWER SUPPLY

The project is powered from a 6V supply; provided by four AA 1.5V battery cells connected in series. Also in series with the supply is diode D1. This acts as a polarity protection device by ensuring no current flows should the battery pack be connected the wrong way.

Taking into account the voltage drop across D1, the circuit typically runs from 5.3V. Finally, a single pole double-throw switch S1 is used to turn the Reaction Timer on and off.

MOVLW

The supply current, in the main, is governed by the displays X2 and X3. With all digits illuminated - a display reading of 888.8 - the supply current is around 100mA. In order to en-

sure a long battery life, the Reaction Timer shuts down if switch S2 is not pressed for 25 seconds.

In shut down mode the display is blanked, the red/green l.e.d. extinguished, and the micro (IC1) put into sleep mode. In this state, the supply current is tens of micro-amps.

To restart the Reaction Timer, it must first be switched off and then back on using switch S1. The wiring of S1 is such that when it is switched to the Off position, the voltage on capacitor C1 is quickly discharged through resistor R1. This ensures that when it is switched back to the On position, the internal power on reset function of the micro operates correctly.

SOFTWARE

One of the advantages of using a micro like the PIC16C55 is that the software is fairly simple to understand. This is because the instruction set is small, only 33 instructions, and not much configuration is required to get it up and running. For those with little or no knowledge of software and assembly language, this project is possibly a good place to start learning.

The software is explained using both flow charts and snippets of the assembly code. This is more than adequate to get a good understanding of how it works. For those who wish to delve further, then there is no better place to look than the commented source code.

Fig.3. Initialisation flow chart.

INITIALISATION

As with most programs, there is an initialisation routine and a main program loop. As can be seen from the flow chart in Fig.3, the initialisation is fairly simple.

Apart from the variables used in the program and the configuration of the I/O ports, there is only one register that really needs to be configured; the OPTION register. The value written to this register sets the prescaler to 32 and assigns it to the RTCC. The resulting internal configuration is shown in Fig.7.

The initialisation also sets the value in RTCC to zero, but this is not essential and is only done to be thorough. It is always good practice to initialise variables, even if there is no need for it.

The remainder of the initialisation is fairly self explanatory. The two instructions shown below are those used to initialise the OPTION register.

MOVLW OPTION	000100B	; Configure option register
	-	Prescaler for rtcc = 1/32
		Prescaler assigned to rtcc
,		rtcc signal edge = + ve
		rtcc signal source = Internal

MAIN LOOP

The main program performs two basic functions; driving the display and measuring reaction time. These functions are totally separate and are described in full below.

The software to drive the display is written as a state machine that is synchronised to bit 5 of the RTCC register see Fig.4. The state machine has four states corresponding to the four digits of the display.

Each time a negative transition of RTCC bit 5 occurs, the next digit of the display is driven and the state of the state machine changed. The result is that each digit of the display is illuminated for approximately 2ms every 8ms see Fig.2.

This equates to a 1:4 multiplex ratio and a refresh rate of approximately 120Hz. If the Reaction Timer is moved quickly, the display will appear to flicker and is a clear indication that it is multiplexed.

The display continues to be multiplexed until switch S2 is pressed. At this point, the software exits the state machine and enters the program that measures the reaction time (see Fig.5), during which the display is totally extinguished.

UNPREDICTABLE TIME

An important aspect of the Reaction Timer'is that the event of the l.e.d. changing from green to red is unpredictable.

Fig.5. Software flow chart for reaction time.

Fig.6 (above). Calculating a pseudo random number. Fig.4 (left). Main program state machine display flow chart.

This is achieved by producing a random delay based on a pseudo random number. The pseudo random number is generated in a similar way to how it would be using discrete logic elements; a shift register and an exclusive-OR gate – see Fig.6.

Due to the feedback via the exclusive-OR gate, each left shift of the shift register results in a new number being produced. In this example, only 15 integer random numbers are generated before the sequence repeats.

To remove correlation between the numbers, the shift register is shifted four times to ensure that all the bits in the register are new. We are effectively taking every 4th number as shown in the example, Fig.6.

The fact that the sequence repeats implies that the generated numbers are not truly random, and therefore not unpredictable. However, if there are many numbers before the sequence repeats, then for a project like this, the numbers can be considered sufficiently random and unpredictable.

The tap positions in the software implementation are X3 and X6. These tap positions provide a sequence of random numbers between 1 and 127 before the sequence eventually repeats. In both the software and hardware implementations, the number 0 is not produced. If zero was introduced as a seed, then the random number generator would only produce zeros.

It should also be pointed out that the position of the taps is important too, and

that they have not been chosen at random! There is a method of choosing tap positions using irreducible polynomials, but that will not be covered here.

Once the random number has been generated, an offset of 15 is added to it in order to set a minimum delay time. The resulting number is then used, in conjunction with the RTCC, to produce a delay ranging from 1.05 to 9.31 seconds. During the delay, switch S2 is continually monitored to see if it is pressed. If it is, then the delay is restarted.

In an earlier version of the software this was not the case and, if S2 was pressed repeatedly, sub 100ms reaction times would sometimes be recorded. This trap has therefore been included to stop cheats who try to record fast reaction times when backs are turned.

After the delay has elapsed the colour of the l.e.d. is changed from green to red and the stopwatch is started. The stopwatch is in fact the RTCC and variable RTCC1, and to start it both are loaded with zero. The variable RTCC1 is incremented, in software, on each negative transition of RTCC bit 7 – see Fig.7.

This process continues until either switch S2 is pressed, or RTCC1 bit 7 goes high indicating an elapsed time of greater than 999.9ms. At this point, the stopwatch is stopped and the resulting time resides in the variables RTCC1 and RTCC0. Precautions are taken to ensure that if the value of RTCC changes from 255 to zero before it is copied to RTCC0, then RTCC1 is incremented to take account of it.

HELP LINE

Before conversion of the binary time into a Binary Coded Decimal (BCD) format, a test is performed to see if the stopwatch was stopped due to bit 7 of RTCC1 being high. If it was, then no conversion takes place. Instead, the display variables are loaded

with the appropriate seven-segment data to display the word "HELP",

The process of converting the time from binary to BCD is one of division, and is achieved using subtraction. Binary data representing 100ms is subtracted from the time in the RTCC variables, and is repeated until the remaining time is less than 100ms.

The number of times this subtraction occurs is recorded since it represents the value to be displayed in the hundred's digit of the display. If the number is greater than nine, then the reaction time is greater than 999-9ms and the word "HELP" is displayed instead. A similar process is repeated to determine the values for the other digits.

Since the data required for 10ms includes a bit beyond the resolution of the RTCC variables, a multiply by two (by shifting the data left by one place) is carried out before performing the subtractions - see Fig.7. This ensures no rounding errors occur. The same process is also used to determine the values of the other digits. Once the binary to BCD conversion is complete, the BCD data is converted to 7-segment format and written to the display variables.

Conversion of BCD to 7-segment format is performed by means of a look-up table; the BCD data providing the offset into the table, as shown below:

BCD_7Seg	ANDLW ADDWF	0x0F pc,f	; BCD to 7 Segment cor ; BCD < 16 ; Add BCD to program c
	RETLW	cn_0	; character '0' (1100000
	RETLW	ch_1	; character '1' (1111100
	RETLW	ch_2	; character '2' (1010010
	RETLW	ch_3	; character '3' (1011000

Fig.7. Calculating the reaction time.

The BCD value is first placed into the W register and the BCD conversion routine is then called. The value returned by the routine is the corresponding 7-segment data.

Care is taken to ensure that the addition does not cause a jump beyond the end of the table; hence the reason for the ANDLW instruction at the start (Note: sixteen RETLW instructions in table). Also, since the code does not test for overflow after the addition, the location of the subroutine is such that it does not cross a 256 page boundary.

SLEEP

Although there is a power on/off switch for the Reaction Timer, an automatic power down is performed in software if switch S2 is not pressed for 25 seconds. This feature has been included to save the batteries from unnecessary discharge should the Reaction Timer be accidentally left switched on.

The software for this is just after the RTCC bit 5 test in the main loop but, for simplicity, is not shown in the flow chart. However, the code that performs the shutdown is shown below just to indicate how easy the process actually is.

•	Shut_Down	MOVLW	0xFF porta
		MOVWF	portb
		SLEEP	

CD to 7 : CD < 16	Segment conversion
	to program counter

00) 01) 00 00)

SOFTWARE SOURCING

A pre-programmed PIC16C55-XT is available from the author for those readers who do not have facilities to program these parts - see Shoptalk page. Readers who wish to program their own PICs can obtain the software either on disk, from the EPE editorial office, or from our web site (there is a nominal charge for the former, but the latter is free) - see Shoptalk page. The web site files are in the sub-directory PIC-REACTION.

Extinguish display Extinguish red/green I.e.d. Goto sleep (stop oscillator)

CONSTRUCTION

The Reaction Timer illustrated here has been constructed on stripboard. Although it could be converted to a printed circuit board (p.c.b.) layout, it would need to be a

Component layout on the circuit board. Note the side cutouts to allow the board to slot into the case.

Underside of the stripboard showing interwiring. The wire used is Kynar covered type used for wirewrapping.

double-sided type. It is not the intention to cover the later option here.

Whatever method of construction is used, the use of sockets for the displays and PIC microcontroller is a must. Also, the PIC should be fitted last when the completed circuit board has been thoroughly checked, taking appropriate antistatic precautions.

The stripboard component layout and details of breaks required in the underside copper tracks are given in Fig.8. Start construction by trimming the board to the required size of 29 holes by 29 copper strips using a small hacksaw.

Before mounting any components on the board, carefully make all breaks in the copper tracks using a special "spot-face" cutter or a hand-held twist drill bit of about 5mm diameter. Next you should cut out the board mounting side guide slots if the specified case is used.

As 0.6in, pitch 18-pin sockets do not appear to be sold, a standard d.i.l. socket can be cut *lengthwise*, trimmed clean, and the resulting two strips soldered in position for the dual 7-segment displays. Remember to allow enough of the pins to protrude to take the underside wiring.

Now commence mounting components

on the circuit board. Begin with the wire links and d.i.l. sockets, these will help as a guide for the other compoents. Do NOT fit the displays or the PIC microcontroller in their holders until the circuit board and all interwiring has been completed and double-checked. Try to touch the pins of the PIC as little as possible when eventually fitting it into its holder.

Assembly of the rest of the components on the board should follow the normal procedure of starting with the lowest profile components working up to the largest. Pay particular attention to the diodes and transistors, checking to ensure they are inserted on

Fig.8. Stripboard component layout and wiring. Some of the interwiring on the underside is soldered **directly** onto i.c. socket pins and some component leads.

COMPONENTS

Resistors R1 R2 to R5 R6 to R13 R14, R15 R16 All 0.25W 19	10k	See TALK Page
Capacitors C1 C2, C3	s 100n disc cera 22p disc cera	
Semicond D1	1N4001 50V diode	
D2 TR1 to TR4 IC1	tri-colour I.e.d BC556B pnp ((4 off) PIC16C55-XT	ransistor
X1 X2, X3	microcontro preprogram (see text) 4-0MHz crysta dual 7-segmen display (2 o	iller med Il nt I.e.d.
Miscellane	ous single-pole on	/off min
S2	toggle switc min. pushbutto push-to-ma	h on switch,
B1	6V battery pac	:k
holes × 29 s 150mm × 80r socket, 0·6in socket, 0·6i 4 × AA (shor	(4 × AA cell: 1, 0-1in. matr strips; plastic mm × 45mm; 1, pitch (2 off); in pitch; bat t): battery cor Kynar covered etc.	ix, size 29 case, size 10-pin d.1 28-pin d.1 tery holder inector, with
Approx C Guidance	Only 1	£30

the board the correct way round, see Fig.8. Solder them in position as quickly as possible to avoid excessive heat.

Also at this stage, lengths of interconnecting leads should be soldered to the underside edges of the board ready for connecting to the off-board components.

CASE DETAILS

Before plugging the displays and microcontroller into their sockets it is necessary to finish off the case. If you are

The completed Reaction Timer. The circuit board "sits" on the rubber strips glued to the sides of the case, at a height to allow the l.e.d. to protrude through the case lid.

not using the specified case, the first task is to make the rectangular cutout for the displays. This can be accomplished by offering up the board to the case, using any board mounting holes as a guide, marking the display position on the surface of the case lid.

Next a series of small holes should be drilled just inside the markings for the cutout. The holes can then be "joined" up to leave a rough cutout. The rough edges can be filed flat to leave a neat cutout for the display window.

Rubber sponge strips should be glued to the inner sides of the lower half of the case to support the circuit board. These should be at a height to allow the "reaction" l.e.d. to just protrude through the case lid.

Finally, the holes for the two switches and the tri-colour l.e.d. should be made. As the l.e.d. is mounted directly on the circuit board, its position needs to be marked at the same time as the display window. Complete the wiring to off-board components and insert the PIC into its d.i.l. socket. But, first double-check the board and wiring.

Pay particular attention to the track breaks to ensure no "slivers" of copper swarf have bridged across any adjacent tracks. This can be verified with a small magnifying glass. Also check for any "dry" solder joints, usually spotted by a discolouring of the joint.

Warning: The Reaction Timer has been designed to run from four 1.5V AA cells, wired in series to give a 6V supply. The supply to the PIC microcontroller must not exceed its maximum rating of 7.5V, otherwise you can cause serious damage. So, no 9V PP3 battery please!

If all is okay the battery pack can be connected up and power switch S1 thrown. If all is well, the display should show 0.0 and the tri-colour l.e.d. should be red.

Now the fun begins!

SURVER A PANOR **PROFESSIONAL QUALITY KI**

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

£19.45

UTX Ultra-miniature Room Transmitter

MTX Micro-miniature Room Transmitter

STX High-performance Room Transmitter

High performance transmitter with a buffered output stage for greater stability and range. Measures 22mm x 22m, including mic. 6V-12V operation, 1500m range. £15.45

VT500 High-power Room Transmitter

Powerful 250mW output providing excellent range and performance. Size 20mm x 40mm. 9V-12V operation. 3000m range£16.45

VXT Voice-Activated Transmitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size 20mm x 67mm. 9V operation. 1000m range. £19.45

HVX400 Mains Powered Room Transmitter

Connects directly to 240V A.C. supply for long-term monitoring. Size 30mm x 35mm. 500m range.....

SCRX Subcarrier Scrambled Room Transmitter

Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size 20mm x 67mm. 9V operation. 1000m range..... £22.95

SCLX Subcarrier Telephone Transmitter

Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size 32mm x 37mm. 1000m range...... £23.95 SCDM Subcarrier Decoder Unit for SCRX

Connects to receiver earphone socket and provides decoded audio output to headphones. Size 32mm x 70mm. 9V-12V operation ... £22.95

ATR2 Micro-Size Telephone Recording Interface

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size 16mm x 32mm. Powered from line. £13.45

DLTX/DLRX Radio Control Switch

\$50.95

Complete System (2 Kits)	
Individual Transmitter DLTX	010 05
Individual Receiver DLRX.	C27 05

MBX-1 Hi-Fi Micro Broadcaster

Not technically a surveillance device but a great idea! Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your farvourite music anywhere around the house, garden, In the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle.

UTLX Ultra-miniature Telephone Transmitter

Smallest telephone transmitter kit available. Incredible size of 10mm x 20mm1 Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500m range..... £15.95

TLX 700 Micro-miniature Telephone Transmitter

STLX High-performance Telephone Transmitter

High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size 22mm x 22mm. 1500m range. £16.45

TKX900 Signalling/Tracking Transmitter

Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for Size 25mm x 63mm. 9V operation. £22.95

CD400 Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tone increase as you approach signal. Gain control allows pinpointing of source. Size 45mm x 54mm. 9V operation. £30.95

CD600 Professional Bug Detector/Locator

Multicolour readout of signal strength with variable rate bleeper and variable sensitivity

QTX180 Crystal Controlled Room Transmitter

QLX180 Crystal Controlled Telephone Transmitter

As per QTX180 but connects to telephone line to monitor both sides of conversations 20mm x 67mm. 9V operation. 1000m range. £40.95

QSX180 Line Powered Crystal Controlled Phone Transmitter As per QLX180 but draws power requirements from line. No batteries required Size 32mm x 37mm. Range 500m. £35.95

QRX 180 Crystal Controlled FM Receiver

For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section £60.95

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £2.00 per order for P&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add £5.00 per order for shipment. Credit card orders welcomed on 01827 714476

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE, SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

DEPT. EE THE WORKSHOPS, 95 MAIN ROAD, BAXTERLEY, NEAR ATHERSTONE, WARWICKSHIRE CV9 2LE VISITORS STRICTLY BY APPOINTMENT ONLY

Book servic

_lectronic PROJECTS 20 ighting letal Pecting A.G.

AGENTA

ELECTRONICS TEACH-IN 88/89 INTRODUCING MICROPROCESSORS Mike Tooley B.A. (published by Everyday Practical Electronics)

A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors (726/303). The book contains everything you need to know including full details on registering for

you need to know including full defails on registering for assessment, etc. Sections cover Microcomputer Systems, Microprocessors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data Pages covering popular

 assignments
 and
 assignments
 and
 assignments
 and
 assignments
 and
 assignments
 and
 assignments
 ass

ELECTRONICS TEACH-IN No. 7. Plus FREE SOFTWARE ANALOGUE AND DIGITAL ELECTRONICS COURSE (published by Everyday Practical Electronics) Ana Winstanley and Keith Dye BL:ng(Tech)AMIEE This highly acclaimed EPE Teach-In series, which included the construction and use of the Mini Lab and Micro Lab test and development units, has been put together in book form. Additionally, EPT Education Software have developed a GCSE Electronics of tware program to com-pirment the course is included with the book. An interesting and thorough tutorial series aimed speci-fically at the novice or complete beginner in electronics. The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles. If you are taking electronics or technology at school for an te basics of electronics or technology at school for an teresting a career in electronics. These series if you are already training in one. The Mini Lab and software enable the construction and testing of both demonstration and development circuits. These learn interesting way: you will both see and hear the electron is action The Micro Lab microprocessor add-on system will appeal to higher level students and those develop-ing microprocessor projects.

WINDOWS 95 EXPLAINED P. R. M. Oliver and N. Kantaris If you would like to get up and running, as soon as pos-sible, with the new Windows 95 operating system, then this is the book for you. The book was written with the non-expert, busy person a relied to explain the body was they up need to order to

The book was written with the non-expert, busy person in mind. It explains the hardware that you need in order to run Windows 95 successfully, and how to install and op-timize your system's resources. It presents an overview of the Windows 95 environment. Later chapters cover how to work with programs, folders and documents; how to control Windows 95 and use the many accessories that come with it; how to use DOS programs and, if necessary. DOS commands and how to communicate with the rest of the electronic world. 170 pages Order code BP400 £5.95

INTERFACING PCs AND COMPATIBLES

INTERFACING PCs AND COMPATIBLES R. A. Penfold Once you know how, PC interfacing is less involved than interfacing many eight-bit machines, which have tended to use some unusual interfacing methods. This book gives you: A detailed description of the lines present on the PC expansion bus. A detailed discussion of the physical characteristics of PC expansion cards. The I/O map and details of the areas where your add-on can be fitted. A discussion of address decoding techniques. Practical address decoder circuits. Simple TL 8-bit input and output ports. Details of using the 8255 parallel inter-face adaptor. Digital to analogue converter circuits. In fact everything you need to know in order to produce success-ful PC add-ons. 80 pages Order code BP272 £3.95 F3 05

av pages	Order code BP272	£3.9

EASY PC INTERFACING R. A. Penfold

H. A. Pentoid Although the internal expansion slots of a PC provide full access to the computer's buses, and are suitable for user add-ons, making your own expansion cards re-quires a fair amount of expertise and equipment. The

built-in ports provide what is often a much easier and

built-in ports provide what is often a much easier and hassle-free way of interfacing your own circuits to a PC. In particlar, a PC printer port plus a small amount of external hardware provides a surprisingly versatile input/output port. The PC 'games' port is less useful for general interfacing purposes, but it can be useful in some applications. This book provides a number of useful PC add-on circuits including the following: Digital input/output ports; Analogue to digital converter; Digital-to-Analogue Con-verter; Voltage and current measurement circuits; Resis-tance meter; Capacitance meter; Temperature measure-ment interface; Biofeedback monitor; Constant voltage model train controller; Pulsed model train controllers; Position sensor (optical, Hall effect, etc.); Stepper motor interface; Relay and LED drivers; Trac mains switching interface. interface.

179 pages Temporarily out of print

HOW TO EXPAND, MODERNISE AND REPAIR PCs AND COMPATIBLES (Revised Edition) R. A. Penfold Weight and the second state of the sec

156 pages

Order code BP271

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book page.

FOR ANOTHER SELECTION OF BOOKS SEE THE NEXT TWO MONTH'S ISSUES.

Note our UK postage costs just £1.50 no matter how many books you order!

ELECTRONIC PROJECTS BOOK 1

ELECTRONIC PROJECTS BOOK 1 (published by *Everyday Practical Electronics* in association with Magenta Electronics) Contains twenty projects from previous issues of *EE* each backed with a kit of components. The projects are: Seashell Sea Synthesizer, EE Treasure Hunter, Mini Strobe. Digital Capacitance Meter, Three-Channel Sound to Light, BBC 16K sideways RAM, Simple Short Wave Radio, Insulation Tester, Stepper Motor Interface,

Eprom Eraser, 200MHz Digital Frequency Meter, Infra Red Alarm, EE Equaliser, Ioniser, Bat Detector, Acoustic Probe, Mainstester and Fuse Finder, Light Rider – (Lapel Badge, Disco Lights, Chaser Light, Musical Doorbell, Function Generator, Tilt Alarm, 10W Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Midi Interface, Variable Bench Power Supply, Pet Scarer, Audio Signal Generator. 128 pages 128 pages £2.45

Order code EP1

Circuits and Design

NEW

NEW

DOMESTIC SECURITY SYSTEMS

A. L. Brown This book shows you how, with common sense and basic This book shows you how, with common sense and basic do-it-yourself skills, you can protect your home. It also gives tips and ideas which will help you to maintain and improve your home security, even if you already have and illustrated, and contains components that are easy to source. Advice and guidance are based on the real ex-perience of the author who is an alarm installer, and the designs themselves have been rigorously put to use on some of the most crime-ridden streets in the world. The designs include all elements, including sensors, detectors, alarms, controls, lights, video and door entry systems. Chapters cover installation, testing, maintenance and upgrading.

and upgrading. 192 pages £12.99

Order code NE25

MICROCONTROLLER COOKBOOK

MICROCONTROLLER COORBOOK TEAMS Mike James The practical solutions to real problems shown in this cookbook provide the basis to make PIC and 8051 devices really work. Capabilities of the variants are examined, and ways to enhance these are shown. A survey of com-mon interface devices, and a description of programming models, lead on to a section on development tech-niques. The cookbook offers an introduction that will allow any user, novice or experienced, to make the most of microcontrollers. £19.99 Order code NE26

A BEGINNER'S GUIDE TO TTL DIGITAL ICs R. A. Penfold This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, oscillators, timers, flip/flops, dividers, and decoder cir-cuits. Some practical circuits are used to illustrate the use of TTL devices in the 'real world'' 142 pages [4.95] 142 pages

Order code BP332 £4.95

A BEGINNER'S GUIDE TO MODERN ELECTRONIC COMPONENTS R. A. Penfold

R. A. Penfold The purpose of this book is to provide practical informa-tion to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main aim is to explain the differences between components of the some hears they for a carbon carbon. The main aim is to explain the differences between components of the same basic type (e.g. carbon, carbon film, metal film, and wire-wound resistors) so that the right component for a given application can be selected. A wide range of components are included, with the emphasis firmly on those components that are used a great deal in projects for the home constructor. 170 pages Order code BP285 £4.99

FLECTRONIC MODULES AND SYSTEMS FOR

ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS Owen Bishop This book describes over 60 modular electronic circuits, how they work, how to build them, and how to use them. The modules may be wired together to make hundreds of different electronic systems, both analogue and digital. To show the reader how to begin build-ing systems from modules, a selection of over 25 electronic systems are described in detail, covering such widely differing applications as timing, home security, measurement, audio (including a simple radio receiver), games and remote control. 200 pages Order Code BP255

PRACTICAL ELECTRONIC DESIGN DATA

PRACTICAL ELECTRONIC DESIGN DATA Own Bishop This book is a comprehensive ready-reference manual for electronics enthusiasts of all levels, be they hob-byists, students or professionals. A helpful major sec-tion covers the main kinds of component, including sur-tace-mounted devices. For each sort, it lists the most useful and readily available types, complete with details of their electronic characteristics, pin-outs and other essential information. Basic electronic units are defined, backed up by fully explained. There are five more extensive sec-tions devoted to circuit design, covering analogue, digital, radio, display, and power supply circuits. Over to practical circuit diagrams cover a broad range of lunctions. 328 pages

PRACTICAL ELECTRONICS CALCULATIONS AND

FORMULAE F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias – tedious and higher mathematics have been avoided where possible and many tables have been included. The book is divided into six basis reactions: Units and FORMULAE

The been included. The book is divided into six basic sections: Units and Constants, Direct-Current Circuits, Passive Components, Alternating-Current Circuits, Networks and Theorems, Mageurements Measurements. 256 pages Order code BP53 £3.95

£5.99

TWO EXCITING BOOKS

Specially imported by EPE

Bebop To The Boolean Boogie

By Clive (call me Max) Maxfield ORDER CODE BEB1 £24.95

An Unconventional Guide to Electronics Fundamentals, Components and Processes The Foreword by Pete Waddell, Editor, Printed Circuit Design, reads:

"Personally, I think that the title of this tome alone (hmmm, a movie?) should provide some input as to what you can expect. But, for those who require a bit more: be forewarned, dear reader, you will probably learn far more than you could hope to expect from *Bebop to the Boolean Boogie*, just because of the unique approach Max has to technical material. The author will guide you from the basics through a minefield of potentially boring theoretical mish-mash, to a Nirvana of under-standing. You will not suffer that

fate familiar to every reader: re-reading paragraphs over and over wondering what in the world the author was trying to say. For a limey, Max shoots amazingly well and from the hip, but in a way that will keep you interested and amused. If you are not vigilant, you may not only learn some-thing, but you may even enjoy the process. The only further advice I can give is to 'expect the unexpected'

This book gives the "big pic-ture" of digital electronics. This indepth, highly readable, up-tothe-minute guide shows you how electronic devices work and how they're made. You'll discover how

transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean algebra and Karnaugh maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbo!). Hundreds of carefully drawn illustrations clearly show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. A great reference for your own shelf, and also an ideal gift for a friend or family member who wants to understand what it is you do all day.

By importing these books ourselves we have managed to make them available in the UK at an exceptional price.

Bebop Bytes Back

By Clive "Max" Maxfield and Alvin Brown ORDER CODE BEB2 £29.95

An Unconventional Guide To Computers

Plus FREE CD-ROM which includes: Fully Functional Internet-Ready Virtual Computer with Interactive Labs The Foreword by Lee Felsenstein reads:

. The more time you spend with this book and its accompanying CD-ROM, the more you'll get out of it. Skimming through it won't take you where you want to go. Paying serious attention, on the other hand, will teach you more about computers than you can imagine. (You might also see a few beautiful sunrises.)

Bebop BYTES Back

An Unconventional Guide to

Computers

The labs work on two 2 levels on and under the sur-face. When you're perform-ing the labs you'll need to look for patterns that build up from individual events.

3. When you're done, you won't look any different. You won't get a trophy a certificate to hang or on your wall. You'll have some knowledge, and some skill, and you'll be ready to find more knowledge and develop more skill. Much of this will be recognisable only to someone who has the same knowledge and skill.

This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of in-

formation about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design and you'll have a few chuckles, if not belly laughs, along the way In addition to over 200 megabytes of mega-cool multimedia, the accompanying CD-ROM (for Windows 95 machines only) contains a virtual microcomputer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit

interested in the inner workings of computers, then don't dare to miss

VALVE & TRANSISTOR AUDIO AMPLIFIERS John Linsley Hood This is John Linsley Hood

John Linsley Hood This is John Linsley Hood's greatest work yet, describing the milestones that have marked the development of audio amplifiers since the earliest days to the latest systems. Including classic amps with valves at their heart and exciting new designs using the latest components, this book is the complete world guide to audio amp design.

components, this book is the complete world guide to audio amp design. Contents: Active components; Valves or vacuum tubes; Solid-state devices; Passive components; Induc-tors and transformers; Capacitors, Resistors, Switches and electrical contacts; Voltage amplifier stages using valves; Valve audio amplifier layouts; Negative feed-back; Valve operated power amplifiers; Solid state voltage amplifiers; Early solid-state audio amplifiers; Contemporary power amplifier designs; Preamplifiers; Power supplies (PSUs); Index.

250 pages	Order code	NE24	£19.99
AUDIO AMPLIFIER PR	ROJECTS	4	NEW

R. A. Penfold

R. A. Penfold A wide range of useful audio amplifier projects, each project features a circuit diagram, an explanation of the circuit operation and a stripboard layout diagram. All constructional details are provided along with a shopping list of components, and none of the designs requires the use of any test equipment in order to set up properly. All the projects are designed for straightforward assembly on simple circuit boards. mple circuit boards. Circuits include: High impedance mic preamp, Low im-

pedance mic preamp, Crystal mic preamp, Guitar and GP preamplifier, Scratch and rumble filter, RIAA preamplifier, Tape preamplifier, Audio limiter, Bass and treble tone conrols, Loudness filter, Loudness control, Simple graphic equaliser, Basic audio mixer, Small (300mW) audio power amp, 6 watt audio power amp, 20/32 watt power amp and power supply, Dynamic noise limiter. A must for audio enthusiasts with more sense than monovit

£9.95 116 pages

Order code PC113

NEW

this one!

MAKING MUSIC WITH DIGITAL AUDIO Ian Waugh

In Waugh In this practical and clearly-written book, Ian Waugh explains all-aspects of the subject from digital audio basics to putting together a system to suit your own music requirements. Using the minimum of technical language, the book explains exactly what you need to know about: Sound and digital audio, Basic digital recording principles, Sample rates and resolutions, Con-sumer sound cards and dedicated digital audio cards. On a practical level you will learn about: sample editing, digital multi-tracking, digital FX processing, in-tegrating MIDI and direct to CD, digital audio and Multimedia. This book is for every musician who wants to be a

This book is for every musician who wants to be a part of the most important development in music since the invention of the gramophone. It's affordable, it's flexible, it's powerful and it's here now! It's digital and it's the future of music making. 256 pages Order code PC114 £14.95

POSTAGE You only pay £1.50 per order (UK postage) NO MATTER HOW MANY BOOKS **YOU ORDER Overseas Readers see**

ORDERING DETAILS on the next page for overseas postage prices

465

SCROGGIE'S FOUNDATIONS OF WIRELESS AND ELECTRONICS – ELEVENTH EDITION NEW

AND ELECTHONICS - ELEVENTH EDITION S.W. Amos and Roger Amos Scroggie's Foundations is a classic text for anyone work-ing with electronics, who needs to know the art and craft of the subject. It covers both the theory and practical aspects of a huge range of topics from valve and tube technology, and the application of cathode ray tubes to radar, to digital tape systems and optical recording techninues. techniques

Since Foundations of Wireless was first published over Since Foundations of Wireless was first published over 60 years ago, it has helped many thousands of readers to become familiar with the principles of radio and elec-tronics. The original author Sowerby was succeeded by Scroggie in the 1940s, whose name became synonymous with this classic primer for practitioners and students alike. Stan Amos, one of the fathers of modern electronics and the author of many well-known books in the area, took over the revision of this book in the 1980s and it is he, with his son, who have produced this latest version. 400 pages Order code NE27 £19.99

ELECTRONICS MADE SIMPLE

tan Sinclair Assuming no prior knowledge, Electronics Made Simple Assuming no prior knowledge, *clectronics made simple* presents an outline of modern electronics with an em-phasis on understanding how systems work rather than on details of circuit diagrams and calculations. It is ideal for students on a range of courses in electronics, includ-ing GCSE, C&G and GNVQ, and for students of other subjects who will be using electronic instruments and methods

methods. The second secon

TRANSISTOR DATA TABLES

HANSISTON DATA TABLES Hans-Günther Steidle The tables in this book contain information about the package shape, pin connections and basic electrical data for each of the many thousands of transistors listed. The data includes maximum reverse voltage, forward current and power dissipation, current gain and forward transad-mittance and resistance, cut-off frequency and details of anplications.

applications. A book of this size is of necessity restricted in its scope, A book of this size is of necessity restricted in its scope, and the individual transistor types cannot therefore be described in the sort of detail that maybe found in some larger and considerably more expensive data books. How-ever, the list of manufacturers' addresses will make it essign for the prospective user to obtain further informa-tion if accurates

tion, if necessary. Lists over 8,000 different transistors, including f.e.t.s. £5.95 200 pages Order code BP401

MORE ADVANCED USES

R. A. Penfold R. A. Penfold This book is primarily intended as a follow-up to BP239, (see below), and should also be of value to anyone who already understands the basics of voltage testing and simple component testing. By using the techniques described in Chapter 1 you can test and analyse the performance of a range of components with just a multimeter (plus a very few inexpensive com

very rew inexpensive com-ponents in some cases). Some useful quick check methods are also covered. While a multimeter is supremely versatile, it does have its limitations. The simple add-ons described in Chapter 2 extended the capabilities of a multimeter to make it even more useful more useful. *84 pages* £2.95 Order code BP265

ELECTRONIC TEST EQUIPMENT HANDBOOK

ELECTRONIC (ES) Equirment manuaction Steve Money The principles of operation of the various types of test instrument are explained in simple terms with a minimum of mathematical analysis. The book covers analogue and digital meters, bridges, oscilloscopes, signal generators, counters, timers and frequency measurement. The practical uses of the instruments are also examined

Everything from Oscillators, through R, C & L measure-tents (and much more) to Waveform Generators and ments (and m testing Zeners. 206 pages £8.95

Order code PC109 GETTING THE MOST FROM YOUR MULTIMETER

R. A. Penfold This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resis-tors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and con-tinuity checks hain discussed.

Chapter 5, with subjects such as voltage, current and con-tinuity checks being discussed. In the main little or no previous knowledge or ex-perience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects. 96 pages Order code BP239 £2.95

NEWNES ELECTRONILS TOOLKIT- SECOND EDITION **Geoff Phillips**

Geon Philips The author has used his 30 years experience in industry to draw together the basic information that is constantly demanded. Facts, formulae, data and charts are presented

to help the engineer when designing, developing, evaluat-ing, fault finding and repairing electronic circuits. The result is this handy workmate volume: a memory aid, lutor and reference source which is recommended to all electronics engineers, students and technicians. Have you ever wished for a concise and comprehen-sive guide to electronics concepts and rules of thumb? Have you were been unable to source a component, or

Have you ever been unable to source a component, or Have you ever been unable to source a component, or choose between two alternatives for a particular applica-tion? How much time do you spend searching for basic facts or manufacturer's specifications? This book is the answer, it covers resistors, capacitors, inductors, semicon-ductors, logic circuits, EMC, audio, electronics and music, telephones, electronics in lighting, thermal considerations, connections reference date. connections, reference data 158 pages Order code NE20 £12.99

PRACTICAL ELECTRONIC FAULT FINDING AND TROUBLESHOOTING

TROUBLESHOOTING Robin Pain This is not a book of theory. It is a book of practical tips, hints, and rules of thumb, all of which will equip the reader to tackle any job. You may be an engineer or tech-nician in search of information and guidance, a college student, a hobbyist building a project from a magazine, or simply a keen self-taught amateur who is interested in electronic fault finding but finds books on the subject too mathematical or specialized.

mathematical or specialized. The book covers: Basics - Voltage, current and resis-tance; Capacitance, inductance and impedance; Diodes and transistors; Op-amps and negative feedback; Fault finding - Analogue fault finding, Digital fault finding;

Memory; Binary and hexadecimal; Addressing; Discrete logic; Microprocessor action; I/O control; CRT control; Dynamic RAM: Fault finding digital systems; Dual trace oscilloscope; IC replacement. 274 pages £18.99

Order code NE22 AN INTRODUCTION TO LIGHT IN ELECTRONICS

F. A. Witson This book is not for the expert but neither is it for the completely uninitiated. It is assumed the reader has some basic knowledge of electronics. After dealing with sub-jects like Fundamamentals, Waves and Particles and The Nature of Light such things as Emitters, Detectors and Displays are discussed. Chapter 7 details four different types of Lasers before concluding with a chapter on Fibre Optics. Order code BP359 FA 95

161 pages

UNDERSTANDING DIGITAL TECHNOLOGY F.A. Wilson C.G.I.A., C.Eng., F.I.E.E., FI. Mgt. This book examines what digital technology has to offer and then considers its arithmetic and how it can be arand then considers its antimetic and now it can be ar-ranged for making decisions in so many processes. It then looks at the part digital has to play in the ever expanding Information Technology, especially in modern transmis-sion systems and television. It avoids getting deeply in-volved in mathematics.

Various chapters cover: Digital Arithmetic, Electronic Logic, Conversions between Analogue and Digital Struc-tures, Transmission Systems. Several Appendices explain some of the concepts more fully and a glossary of terms is included 183 pages

Order code BP376 £4.95

Project Building

ELECTRONIC PROJECT BUILDING FOR BEGINNERS R. A. Penfold

This book is for complete beginners to electronic project

This book is for complete beginners to electronic project building, it provides a complete introduction to the practi-cal side of this fascinating hobby, including: Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc; advice on buying the right tools for the job; soldering; making easy work of the hard wiring; construction methods, including stripboard, custom printed circuit boards, plain matrix boards, surface mount boards and wire-wrapping; finishing off, and adding panel labels; getting "problem" projects to work, including simple methods of fault-finding. In fact everything you need to know in order to get started in this absorbing and creative hobby. 135 pages Order code BP332 £4.95

135 pages Order code BP392 45 SIMPLE ELECTRONIC TERMINAL BLOCK PROJECTS.

RUBUECTS R. Bebbington Contains 45 easy-to-build electronic projects that can be constructed, by an absolute beginner, on terminal blocks using only a screwdriver and other simple hand tools. No soldering is needed.

Most of the projects can be simply screwed together, by following the layout diagrams, in a matter of minutes and readily unscrewed if desired to make new circuits. A theoretical circuit diagram is also included with each project to help broaden the constructor's knowledge. The projects included in this book cover a wide range of interests under the chapter headings: Connections and Components, Sound and Music, Entertainment, Security Devices, Communication, Test and Measuring. 163 caree 163 pages Order code BP378 £4.95

30 SIMPLE IC TERMINAL BLOCK PROJECTS

R. Bebbington Follow on from BP378 using ICs. 117 pages Order of Order code BP379 £4.99

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S

R A Penfold R. A. Penfold Deals with the simple methods of copying printed cir-cuit board designs from magazines and books and covers all aspects of simple p.c.b. construction including photo-graphic methods and designing your own p.c.b.s. 80 pages Temporarily out of print

BOOK ORDERING DETAILS Our postage price is the same no matter how many books you order, just add £1.50 to

£4.95

your total order for postage and packing (overseas readers add £3 for countries in the EEC, or add £6 for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or credit card details, Visa or Mastercard - minimum credit card order is £5 - to: DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET BH21 1RW (mail order only).

Books are normally sent within seven days of receipt of order but please allow a maximum of 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see the next two issues of EPE. DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD. Tel 01202 881749 Fax 01202 841692. Due to the cost we cannot reply to overseas orders or queries by Fax.

E-mail:editorial@epemag.wimborne.co.uk

BOOK ORDER FORM Full name: Address: Post code: Telephone No: Signature: I enclose cheque/PO payable to WIMBORNE PUBLISHING LTD for £ Please charge my Visa/Mastercard £ Card expiry date Card Number Please send book order codes:.....

Everyday Practical Electronics, June 1998

VIDEOS ON ELECTRONIC

A range of videos (selected by EPE editorial staff) designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes originate from VCR Educational Products Co, an American supplier. (All videos are to the UK PAL standard on VHS tapes,)

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.

VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much **Order Code VT201** more. VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits. Order Code VT202 VT203 57 minutes. Part Three; Semiconductors Gives you an exciting look into the world of semiconductors. With basic semiconduc-tor theory. Plus 15 different semiconductor devices explained. Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different tions of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, Order Code VT205 op.amps. etc. VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscil-Order Code VT206 lator circuits.

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the to the audio/video inclusion heads back to the output. Order Code VT102

VT103 35 minutes: A step-by-step easy to follow procedure for professionally clean-ing the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path. Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.

VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation. Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digi-tal basics. You will learn about Octal and Hexadecimal notation groups, flip-flops counters, etc. Order Code VT302 VT303 54 minutes, Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303 VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to com-municate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices. Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order	Code	VT306

VIDEO ORD	ER FORM
Full name:	
Address:	
2 1 	1
 Post code:	
 Signature:	
🔲 I enclose cheque/PO payable to WIMBORN	
Please charge my Visa/Mastercard:	Card expiry date
Card No:	
 Please send video order codes:	
Please continue on a separate s	

RADIO

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system. Order Code VT401 VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver. Order Code VT402 VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding. Order Code VT403 decoding.

MISCELLANEOUS

VT501 58 minutes. Fibre Optics. From the fun-damentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers. **Order Code VT501** VT502 57 minutes. Laser Technology A basic introduction covering some of the common uses of laser devices, plus the operation of the Ruby Rod laser, HeNe laser, CO₂ gas laser and semi-conductor laser devices. Also covers the basics conductor laser devices ... of CD and bar code scanning. Order Code VT502

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments in £ sterling only (send cheque or money order drawn on a UK bank).

Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only) Direct Book Service is a division of Wimborne

Publishing Ltd. Tel: 01202 881749 Fax: 01202 841692

Videos are normally sent within seven days of receipt of order.

E22

PCB SERVICE

Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add £ board for airmail outside of Europe. Remittances should be sent to The PCB Add £1 per ice, *Everyday Practical Electronics*, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749; Fax 01202 841692 (NOTE, we cannot reply to orders or queries by Fax); E-mail: editortal@epemag.wimborne.co.uk. Cheques should be crossed and made payable to *Everyday Practical Electronics*. (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery – overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required - see the Back Issues page for details.

Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

PROJECT TITLE Order Code Cost B.F.O. and Bat Band Converter Versatile PIR Detector Alarm Mind machine Mk III – Tape Controller MAY'96 984a/b 25.80 988 £6.76 989 £6.70 Midi Analyser 992 £6.74 Countdown Timer (Teach-In '96) 993 £9.44 Sarah's Light Home Telephone Link * PulStar JUNE'96 996 £7.17 997 (pr) £10.72 998 £6.60 VU Display and Alarm 999 £7.02 Ultra-Fast Frequency Generator and Counter – Oscillator/L,C,D, Driver JULY'96 994/995 (pr) £12.72 Timed NiCad Charger Single-Station Radio 4 Tuner £6.99 £7.02 100 101 in-Beam Infra-Red Alarm -Transmitter/Receiver £10.50 102/103 (pr) Games Compendium 104 £6.09 Mono "Cordless" Headphones AUG'96 Transmitter/Receiver 990/991 (pr) £10.16 105 106 107 Component Analyser (double-sided p.t.h.) Garden Mole-Ester £12 18 £6 07 Mobile Miser £6.36 108 £6.61 **Bike Speedo** * PIC-Tock Pendulum Clock SEPT'96 109 £6.31 Power Check 110 £6.42 Analogue Delay/Flanger 111 £7.95 Draught Detector 112 £6.22 Simple Exposure Timer 113 £6.63 Video Fade-to-White OCT'96 114 £6.98 Direct Conversion 80m Receiver 116 £7.52 Vehicle Alert £6.55 10MHz Function Generator- Main Board 118 £7.33 - PSU 119 £5.39 Tuneable Scratch Filter NOV'96 115 67 83 £7.85 Central Heating Controller 120 D.C. to D.C. Converters – Negative Supply Generator – Step-Down Regulator 122 123 £5.96 £6.01 124 £6.12 - Step-Up Regulator EPE Elysian Theremin DEC'96 £22.00 (double-sided p.t.h.) 121 * PIC Digital/Analogue Tachometer Stereo Cassette Recorder 127 £7.23 Playback/PSU £7.94 128 £9.04 Record/Erase 129 * Earth Resistivity Meter JAN'97 31/132 (pr) Current Gen. – Amp/Rect. Theremin MIDI/CV Interface (double-sided p.t.h.) £12.70 £40.00 130 (set) Mains Failure Warning 126 £6.77 Pacific Waves FEB'97 136 69.00 £6.78 PsiCom Experimental Controller 137 Check Reminder MAR'97 125 27.16 Video Negative Viewer Tri-Colour NiCad Checker 135 £6 75 £6.45 138 Dual-Output TENS Unit (plus Free TENS info.) PIC-Agoras - Wheele Meter APR 139 \$7.20 APRIL'97 26 90 141 418MHz Remote Control - Transmitter 142 £5.36 Receiver 143 £6.04 Puppy Puddle Probe MIDI Matrix – PSU 145 147 £6.10 £5.42 - Interface 148 25.91 Quasi-Bell Door Alert MAY'97 133 £6.59 2M F.M. Receiver *PIC-A-Tuner £7.69 £7.83 144 149 Window Closer – Trigger – Closer 150 £4.91 ÷ £4.47 151 Child Minder Protection Zone JUN'97 Transmitter 153 £6.58 - Receiver 154 £6.42 - Receiver
Pyrotechnic Controller
 * PIC Digilogue Clock
Narrow Range Thermometer
Micropower PIR Detector - 1 £6.93 £7.39 155 156 158 £6.37 JULY'97 152 £6.69 Infra-Red Remote Control Repeater (Multi-project P.C.B.) 932 £3.00 Karaoke Echo Unit – Echo Board – Mixer Board 159 £6.40 £6.75 £6.70 160 Computer Dual User Interface 161 PEsT Scarer 182 £6 60

PROJECT TITLE	Order Code	Cost
Variable Bench Power Supply AUG'97 Universal Input Amplifier Micropower PIR Detector – 2 Controller • PIC-OLO	932 146 163 164	£3.00 £6.55 £6.72 £7.02
Active Receiving Antenna Soldering Iron Controller * PIC Noughts & Crosses Game Micropower PIR Detector – 3	140 157 165	£6.59 £6.63 £7.82
Alarm Disarm/Reset Switch Ironing Safety Device	166 167	£5.72 £5.12
Remote Control Finder OCT'97 Rechargeable Handlamp * PIC Water Descaler	168 169 170	£6.32 £6.23 £6.90
EPE Time Machine NOV'97 Auto-Dim Bedlight Portable 12V PSU/Charger	171 172 173	£8.34 £6.63 £6.61
Car Immobiliser DEC'97 Safe and Sound (Security Bleeper)	175 179	£7.00 £7.32
Surface Thermometer JAN'98 Disco Lights Flasher	174 178	£7.64 £8.30
Waa-Waa Pedal (Multi-project PCB) FEB'98 * Virtual Scope – Digital Board Analogue Board (per board) * Water Wizard Kissometer	932 176 177 180 181	£3.00 £14.49 £7.34 £7.69 £7.67
* EPE PIC Tutorial MAR'98 The Handy Thing (Double-Sided) Lighting-Up Reminder *Audio System Remote Controller – PSU Main Board	182 183 184 185 186	£7.99 £6.58 £5.90 £7.05 £8.29
Simple Metal Detector APR'98 (Multi-project PCB) Single or Dual-Tracking Power Supply * RC-Meter	932 187 188	£3.00 £7.90 £7.66
Security Auto-Light May 98 Stereo Tone Control plus 20W Stereo Amplifier	189	£8.10
Tone Control 20W Amplifier * Dice Lott	190 191 192	£7.78 £8.58 £8.05
EPE Mood Changer JUNE 98 AT89C2051/1051 Programmer	193	£7.75
Main Board Test Board * Reaction Timer Software only	194 195	£8.50 £8.69

0 1 0 1

R

I.

1

EPE SOFTWARE

Software programs for EPE projects are available on 3.5 inch PCcompatible disks or via our Internet site. Those marked with a single asterisk * are all on one disk, order code PIC-DISK1, this disk also contains the Simple PIC16C84 Programmer (Feb '96). The EPE PIC *Tutorial* (**) files are on their own disk, order code PIC-TUTOR. The disks are obtainable from the *EPE PCB Service* at £2.75 each (UK) to cover our admin costs (the software itself is free). Overseas (each): £3.35 surface mail, £4.35 airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

	TOJECT	Guantity	1 1100
Address			
		(cheque/PO in t	
VISA Everyday Practical Electronics Access (MasterCard) or Visa No. Minimum order for credit cards £5			
Signature		,	te
Please supply nam	e and address of c	ardholder if different from	the address shown

http://www.epemag.wimborne.co.uk

Everyday Practical Electronics, June 1998

N ET WORK is our monthly column written specially for electronics enthusiasts having access to the Internet. Our web site URL (http://www.epemag.wimborne.co.uk) contains details of the latest issue and a brief reminder about earlier editions too. You can also subscribe or renew your *EPE* subscription for up to four years (at a guaranteed fixed price), via our secure server. This month's project files are on the FTP site at pub/PICS/Reaction.Timer and pub/8051/Programmer.

Several readers appear to have problems using File Transfer Protocol (FTP) in order to access our FTP site. As promised in the May issue, starting this month we take time out to help you navigate around our file area. I'll be describing those relevant to Windows 95 users, but Macintosh owners may also find the following pointers useful as some of the principles apply to them, too.

FTP at the DOS Prompt

I will bet that a sizeable number of Windows 95 users are unaware they can run a "command-line" FTP session via the Internet, from their DOS prompt. Simply make a connection to the Internet (e.g. using Dial-Up Networking) then open a DOS box by clicking the MS-DOS icon. At the DOS prompt type FTP <return>. The C prompt will change to FTP> and you are ready. You will now witness a coming-together of two operating systems, because every FTP server I have ever known uses Unix. It pays to become acquainted with a few basic Unix commands, and although some are broadly similar to DOS, there are some fundamental differences not least of which is that Unix uses a forward slash "/" instead of a DOS back-slash "\". This can be a pain to begin with! Furthermore, Unix command file names and directories are case-sensitive.

The first command to enter is the URL of the FTP server. To connect to the *EPE* FTP site, you would type **open ftp.epemag.wimborne.co.uk** <return>, after which you will be asked to log in by providing a user name and password.

asked to log in by providing a user name and password. The vast majority of FTP sessions are performed by "anonymous FTP" so the files are freely available to everybody. Type the word "anonymous" as a log-in, and your full (valid) E-mail address as a password:

ftp> open ftp.epemag.wimborne.co.uk

Connected to ftp.epemag.wimborne.co.uk.

220-ftp.epemag.wimborne.co.uk FTP server (NcFTPd 2.2.0) ready.

220- Welcome to the FTP archive at

ftp.epemag.wimborne.co.uk

220- Login as 'anonymous' and give your email address as the password

220- to access our FTP archive.

User (ftp.epemag.wimborne.co.uk:(none)): anonymous

331 Guest login ok, send your complete e-mail address as password.

Password:

230-You are user #2 of 30 simultaneous users allowed.

230-

230 Logged in anonymously.

ftp>

At this point, you have gained access to the log-in "root" of the FTP site, from where all the sub-directories branch out. It is now necessary to navigate to the relevant folders using some arcane DOS-like commands, hitting <return> after each one: dir lists the contents and file data of the current directory:

ftp> dir

200 PORT command successful. 150 Opening ASCII mode data connection for /bin/ls. dr-xr-xr-x 2 ftpuser ftpusers 512 Jul 11 1995 bin dr-xr-xr-x 2 ftpuser ftpusers 512 Jul 11 1995 dev dr-xr-xr-x 3 ftpuser ftpusers 512 Jul 11 1995 etc drwxr-xr-x 10 ftpuser ftpusers 512 Feb 5 14:44 pub dr-xr-xr-x 3 ftpuser ftpusers 512 Jul 11 1995 usr 226 Listing completed.

305 bytes received in 0.05 seconds (6.10 Kbytes/sec) ftp>

The "pub" (public) directory is the only one of interest. To go there, type cd/pub then Is. You will see the following Unix file structure displayed:

ftp> ls 200 PORT command successful.

150 Opening ASCII mode data connection for /hin/ls. Heating

Met.office PICS SOUNDAC VScope docs incoming readme.txt software

whatsnew.txt

226 Listing completed.

96 bytes received in 0.05 seconds (1.92 Kbytes/sec) ftp>

To download a file onto your PC, use get. But first you must differentiate between ASCII (pure text) files and binary (.zip, .gif. .doc etc.) files before commencing the transfer. Type ascii or binary accordingly: *the file will be corrupted if you transfer binary files as ASCII*. For example, back in the root of the FTP server, to fetch the file readme.txt:

ftp> ascii

200 Type okay.

ftp> get readme.txt

200 PORT command successful.

150 Opening ASCII mode data connection for readme.txt (1163 bytes).

226 Transfer completed.

1197 bytes received in 0.28 seconds (4.28 Kbytes/sec)

ftp> quit

221 C-ya!

C:\WINDOWS>

Lastly, type **quit** to exit the FTP session (and don't forget to disconnect the modem) and **exit** to leave DOS. By default, the file now resides in the Windows directory. I'll be continuing this FTP primer next month.

Phantom of the Opera

If you are fed up of the bloat of your browser and want something less proprietary and more fun, then get Opera. a slim (1MB) but feature-rich Windows browser from Norway. Opera Software says their goal is to provide us with the best browser on the Net, regardless of market share, browser war or competitive domination strategies.

Opera has useful zoom facilities (up to 1,000%) on both text and graphics, which will be of enormous help to those who are partially sighted; it can also be navigated by keyboard only, if desired. A mail and news client is incorporated and on test, Opera 3.1 found all my Navigator and MSIE bookmarks straight away using an impressive Hotlist feature. **Http://www.operasoftware.com** is the place to go. It is priced at US\$35, with a 50% discount for educational users, and you can buy on-line via SSL.

Defeated by my word count, I am placing this month's interesting links directly on the web site! Be sure to check *Net Work* on the *EPE* web site, and let me know your favourite places. You can E-mail me at alan@epemag.demon.co.uk.

CLASSIFIED EVERYDAY PRACTICAL

Everyday Practical Electronics reaches nearly twice as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last thirteen years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £8 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 30p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161.

For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

RCS VARIABLE VOLTAGE D.C. BENCH POWER SUPPLY Up to 20 volts d.c. at 1 amp continous, 1:5 amps peak, fully variable from 1 to 20 volts. Twin Voltage and Current meters for easy read- out 240 volt a c input 240 volt a c inpu
BTEC ELECTRONICS TECHNICIAN TRAINING GNVQ ADVANCED ENGINEERING (ELECTRONIC) – PART-TIME HND ELECTRONICS – FULL-TIME B.Eng FOUNDATION – FULL-TIME <i>Next course commences</i> Monday 14th September 1998 <i>FULL PROSPECTUS FROM</i> LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-373 8721
ELECTRONIC KITS • 88-108MHz FM transmitters from under £5 • Many educational and hobby electronic kits covering all technical abilities, from beginners' circuits to MCU/MPU designs • Low cost PCB services and equipment • Send 4x1st class stamps for catalogue DTE MICROSYSTEMS, 112 SHOBNALL ROAD, BURTON -ON-TRENT, STAFFS DE14 2BB PHONE or FAX: 01283 542229 http://www.btinternet.com/~dtemicrosystems
SWITCH MODE POWER SUPPLIES 240V input dual output 5V 5A & 9V 11A (140W) £42 + £6 p&p Sizes in mm 250 × 127 × 60 Make Cheques & Postal Orders payable to: AIM Services Address: 8 St Peters Grove, Southsea, Hants PO5 1LS Tct: (01705) 814214
THE BRITISH AMATEUR ELECTRONICS CLUB exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter. For membership details, write to the Secretary: Mr. J. F. Davies, 70 Ash Road, Cuddington, Northwich, Cheshire CW8 2PB. Space donated by Everyday Practical Electronics

BRAND NEW SINCLAIR SPECTRUM & QL PARTS ZX MICRODRIVES £15, INTERFACE ONE £20, CARTRIDGES 10 FOR £15, 50 FOR £50. QL BOARDS 5, 6 &7, POPULATED WITH OMS, £30; UNPOPULATED, £12; MICRODRIVES £10 EACH. TOP & BOTTOM CASES £15, MEMBRANES £15. IS ROM ... THE P.C., MAC and QL's "Little Friend" MAC LINK £10 - P.C. LINK £25 - QL LINK £12 CAMBRIDGE 288 A4 NOTEBOOK COMPUTER AVAILABLE AGAIN 299, RECONDITIONED 260 ONLV 1' THICK, 4xAA BATTS, 20 HOURS WORK. LCD SCREEN, 72 Crs, 6 LINES, 32X RAM, EXTRA RAMS & EPROMS, 9 pin D SERIAL PORT, ROM HAS BC BASIC, W/PROCESSOR, SPREADSHEET, DATA BASE, IMP/EXPORT TO PC etc, V52 TERMINAL. .. BBC 8 W.N. RICHARDSON & CO, PHONE/FAX 01494 871319 6 RAVENSMEAD, CHALFONT ST PETER, BUCKS, SL9 ONB. Voltmetters special offer DiGITAL MULTIMETERS, BULK BUY - Buy while stocks last Ranges 200m to 600V dc. 500V ac. volts; 200mA to 10A dc. amps, 2001t to 2M2 ohms REAL VALUE C14.73 Transition and diode test - TmA, temperature probe option OMY 12:34 extra Other items always available: Plug P S.U.s. use these for your projects, multi-voltage, 3V, 45V, 6V, 75V, 9V, 12V dc. 300mA ONLY C3.71, 750mA ONLY C5.85 Smoke generators, alt types: we make these, please phone us. 3-5 AH rechargeable cells with solder tags, 15mm x 57mm, same weight as bub C Nicad of only 1-2 AH capacity. ONLY D6.71 Ideal electric bcycle, models, the most incredible cells we have ever sourced, or use in your own portable products. Trade encuries welcome. We supply at trade prices. Welcome to AC.E. me new company on the block, specialising in finding the very best quality/value terms and distributing these at genues tabe prices, value to low and cad evertising. Charge price advertising. Waitch out for more advertising which out for the Jost, specialising in finding the stores, value to low and contable products. Charge price prices well the lowest cost advertising. Succe. B. Surgh Station Yand Ind. Est. Streiton Road, Burgh-te-Marreh, Stiegness, PE32 SEZ + C1.35 pap Phone 01754 890567. Fax 07070 710613 **VOLTMETERS** Special Offer **PRINTED CIRCUIT BOARDS - QUICK** SERVICE. Prototype and Production. Artwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX, or phone/fax 01232 738897. ANYONE REPAIRING TOYOTA/other engine management control units, car spares marketing/distribution company seeks supplier.

Malcolm Jackson, Phone/Fax 0181 467 6671. VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice/lists please ring, Geoff Davies (Radio), Tel. 01788 574774.

Miscellaneous

PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details Send s.a.e. to B. M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8GR, or phone Brighton 883871, fax 01273 706670.

G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics. 52 Severn Road, Clacton, CO15 3RB.

PIC16C/F84, £2.60; PIC12C508, £1.35; 24LC16 EPROMS. 58p; Simple PIC/EEPROM Programmers for PC, £10, inc. software and instructions prog. http://www.k009.demon.co.uk. Tel. 07020 921274 or 0966 421694.

CD-ROM massive servicing and troubleshooting "Technical Encyclopaedia 1997", learn to repair everything electronic and electrical, computers, monitors, printers to TV, VCR, Hi-Fi, domestic appliances and copiers, over 200 volumes on one CD. RRP £99, bargain £20.016133 283371.

HIGH POWER AUDIO AMPLIFIER, 500W-plus into 8 ohms, ideal professional disco, PA, installation etc. High quality p.c.b. and plans £15.00 or s.a.e. for more info. Bruce Omond Audio, 34A Craiglockhart Avenue, Edinburgh EH14 1LX.

FOR SALE, suit collector/enthusiast: EPE/Everyday Electronics magazines, July 1989-April 1998 complete, others back to 1977. Also many issues Practical Electronics, Practical Wireless, Elektor, Maplin Magazine, Wireless World, offers? Plus books on electronics, physics, maths, offers? East Midlands area. Telephone 01858 462490.

FOR SALE - clearing workshop: Avometer, signal generator, function generator, frequency counters, power units, Heathkit leak detector, offers. Reels copper transformer wire, reels coloured wire, many switches, components, Letraset, Mullard D7/190GH oscilloscope tube, also oscilloscope 75% built with tube but no plans, bender and guillotine for aluminium. Offers. East Midlands area. Telephone 01858 462490.

EXPLORE THE (4th) DIMENSION, hear eerie sounds generated on Earth/in space/from UFOs. Special scientific receiver converts carrier emissions, 10Hz to 14kHz into audio. A.E. for info: P.O. Box 694, Saint Helier, JE4 9PZ, Jersey, Channel Islands (UK).

EPE NET ADDRESSES

- EPE FTP site: ftp://ftp.epemag.wimborne.co.uk
 Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:
- PIC-project source code files: /pub/PICS

PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!

EPE text files: /pub/docs

Basic Soldering Guide: solder.txt EPE TENS Unit user advice: tens.doc and tens.txt Ingenuity Unlimited submission guidance: Ing_unlt.txt New readers and subscribers info: epe_Info.txt Newsgroups or Usenet users advice: usenet.txt Ni-Cad discussion: nicadfaq.zlp and nicad2.zlp UK Sources FAQ: uksource.zip Writing for EPE advice: write4us.txt

Ensure you set your FTP software to ASCII transfer when fetching text files, or they may be unreadable.

N. R. BARDWELL LTD (EPE)

		_			
100 75 50 10	Signal diodes 1N4148 Rectifier Diodes 1N4001 Rectifier Diodes 1N4007 W01 Bridge Rectifiers 555 Timer LC s	£1.00 £1.00 £1.00 £1.00	200 50 50 50	Asstd. disc ceramic capacitors Asstd. Skel Presets (sm, stand, cermet) Asstd. RF chokes (inductors) Asstd. grommets	£1 00 £1 00
10 4 50 12	741 Op Amps Assorted Zener Diodes 400mW		80 10 24 8	Asstd solder tags p/conns. terminals Asstd. crystals – plug in Asstd. coil formers Asstd. dil switches	£1.00 £1.00 £1.00 £1.00
25 25 50	Assorted 7 segment Displays 5mm I e d s. red. green or yellow 3mm I e d s. red. green or yellow AxiaI e d s. 2mcd red Diode Package	0012	8 20 10 30	Asstd. or switches Miniature slide switches sp/co Standard slide switches dp/dt Asstd. if transformers	£1.00
25 20 25	Assid High Brightness I e d s var cols BC182L Transistors BC212L Transistors		100 80 30	Asstd baads (ceramic, teflon, fish spine) Asstd small stand offs, l/throughs etc Asstd, dil sockets up to 40 way	£1 00 £1 00
30 20 30	BC237 Transistors BC327 Transistors BC328 Transistors	00 12 00 72 00 12	20 40	TV coax plugs, plastic Small spring loaded terminals metres very thin connecting wire, red	£1.00 £1.00 £1.00
30 30 25	BC547 Transistors BC548 Transistors BC549 Transistors BC557 Transistors	£1.00 £1.00 £1.00 £1.00	20 20 100	Tin: glass reed switches Magnetic ear pips with lead and plug Any one value 14W 5% cf resistors range 1R to 10M	£1.00 £1.00 £0.45
30 30 20	BC558 Transistors BC559 Transistors 2N3904 Transistors	£1.00 £1.00 £1.00	-		
100 100	Sov wkg Axial Capacitors 1nf 50v wkg Axial Capacitors 4N7 50v wkg sub-miniature Capacitors 33ml	00 13 £1 00	288	nclude VAT, postage E1 25, 31p stamp Abbeydale Road, Sheffield S7	1FL
12 80	Iuf 250v encapsulated radial plastic case capacitors Asstd capacitors electrolytic	00 12 00 12		e (0114) 2552886 Fax (0114) 25 E-mail Bardweisigcompuserve.com	
80	Asstd capacitors InF to 1µF	00.12	Web site	E http://ourworld.Compuserve.com/homepages/BA	ROWELL

COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receivers (Wireless). Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS

Please phone 0181 203 0161 for free catalogue. Fax 0181 201 5359

New DTI approved Video Transmitters and Receivers (Wireless)

SHERWOOD ELECTRONICS **FREE COMPONENTS** Buy 10 x £1 Special Packs and choose another one FREE 15 x 5mm Red Leds SP130 100 x Mixed 0.5W C.F. resistors SPI 12 x 5mm Green Leds 12 x 5mm Yellow Leds SP131 SP132 2 x TL071 Op.amps 2 x TL082 Op.amps SPO SP3 100 x 1N418 diodes 30 x 1N4001 diodes SP133 SP134 SP136 20 x 1N4004 diodes 15 x 1N4007 diodes SP10 SP11 SP12 3 x BFY50 transistors 30 x 1N4002 diodes SP137 SP138 SP140 SP18 20 x BC182 transistors 20 x BC184 transistors 4 x W005 1-5A bridge rectifiers 20 x 2-2/63V radial elect, caps SP20 SP21 20 x BC212 transistors 3 x W04 1-5A bridge rectifiers SP142 SP144 SP145 SP22 SP23 20 x BC214 transistors 20 x BC549 transistors 2 x Cmos 4017 3 x TIP31A transistors 6 x ZTX300 transistors 10 x 2N3704 transistors 5 x Stripboard 9 strips x 25 holes SP24 4 x Cmos 4001 SP24 4 x 555 timers 4 x 741 Op.amps SP146 SP26 SP28 SP147 SP151 4 x 8mm Red Leds 4 x Cmos 4011 SP29 SP33 4 x Cmos 4013 4 x Cmos 4081 4 x 8mm Green Leds 4 x Yellow Leds SP152 SP153 25 x 10/25V radial elect. caps. 15 x 100/35V radial elect. caps. 10 x 470/16V radial elect. caps. SP36 SP154 15 x BC548 transistors 3 x Stripboard, 14 strips x 27 holes SP156 SP3 SP39 SP160 15 x BC237 transistors 10 x 2N3904 transistors SP40 A BC23/Transistors A Mixed transistors A 400mW zener diodes SP161 SP165 SP167 10 x 2N3906 transistors 2 x LF351 Op.amps 6 x BC107 transistors SPAT SP42 SP46 SP168 SP175 SP177 6 x BC108 transistors 20 x 1/63V radial elect. caps 10 x 1A 20mm quick blow SP41 SP102 SP103 SP104 SP105 SP109 15 x 16-pin DIL sockets 5 x 74LS00 fuses 20 x 4-7/50V radial elect. caps SP182 5 x 74LS00 15 x BC557 transistors SP183 SP112 SP115 SP116 SP118

20 x BC547 transistors 15 x BC239 transistors 4 x Cmos 4093 3 x 10mm Red Leds SP187 SP191 3 x Cmos 4023 3 x 10mm Green Leds 2 x Cmos 4047 3 x Cmos 4066 20 x BC213 transistors SP192 SP193 SP194 10 x OA90 diodes 3 x 10mm Yellow Leds 6 x 20 pin DIL sockets 74LS93 6 x Rectangular Red Leds 5x2mm SP195 SP197 SP198 6 x Rectangular Green Leds 5 x 24 pin DIL sockets 5x2mm 1998 Catalogue £1 inc. P&P or FREE with first order. P&P £1.25 per order. NO VAT. **RESISTOR PACKS - C.Film** 5 each value - total 365 0-25W £2.80

SP120

SP121

SP122

RP7

RP11

RP4 5 each value-total 365 0.5W RP8 10 each value-total 730 0.5W

1000 popular values 0.5W

 RP7
 10 each value – total 730 0:25W
 £4.00

 RP10
 1000 popular values 0:25W
 £5.80
 Orders to: Sherwood Electronics, 7 Williamson St., Mansfield, Notts. NG19 6TD. £3.75 £6.35 £8.10

Millions of quality components at lowest ever prices!

Plus anything from bankruptcy – theft recovery - frustrated orders - over production etc.

NO VAT to add on. Send 45p stamped self addressed label or envelope for clearance lists.

Brian J Reed 6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ Tel: 0181-393 9055 Mail order UK only.

Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few housand of an item is available. (Payment is returned if sold out. I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wait!

ADVERTISERS INDEX

A.L. ELECTRONICS472
N. R. BARDWELL472
BETA LAYOUT421
B.K. ELECTRONICSCover (iii)
BRIAN J. REED
BULL ELECTRICALCover (ii)/397
CHEVET SUPPLIES
COMPELEC
DISPLAY ELECTRONICS
EPT EDUCATIONAL SOFTWARE
ESR ELECTRONIC COMPONENTS
FML ELECTRONICS
GREENWELD
ICS471 JPG ELECTRONICS
LABCENTER ELECTRONICS
MAGENTA ELECTRONICS
MAPLIN ELECTRONICS
MAURITRON
NATIONAL COLLEGE OF TECH452
NUMBER ONE SYSTEMS 452
PEAK ELECTRONIC DESIGN
PICO TECHNOLOGY
PINEAPPLE PRESENTATIONS471
QUICKROUTE SYSTEMS409
RADIO-TECH
SEETRAX CAE
SERVICE TRADING CO
SHERWOOD ELECTRONICS
SQUIRES
SUMA DESIGNS
TECHNICAL INFORMATION SERVICES471
VANN DRAPER ELECTRONICS
VERONICA KITS
ADVERTISEMENT MANAGER: PETER J. MEW

ADVERTISEMENT MANAGER: PETER J. MEW ADVERTISEMENT OFFICES EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS, MILL LODGE, MILL LANE, THORPE-LE-SOKEN, ESSEX CO16 0ED. Phone/Fax: (01255) 861161

For Editorial address and phone numbers see page 403.

Published on approximately the first Friday of each month by Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 TPF, Printed in England by Wiltshire (Bristol) Printers 11d., Bristol, B520 9XP. Distributed by Seymour, Windsor House, 1270 London Road, Norbury, London SW16 4DH, Subscriptions INLAND £26 and OVERSEAS £32 standard air service (£49,50 express armail) payable to "Everyday Practical Electronics". Subs Dept, Allen House, East Borough, Wimborne, Dorset BH21 TPF, EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

NEW FROM ELECTRONI NEW PROJECTS

TIME/DATE STAMP

FEATURES

- * Adds time and date information to video signals
- YEAR 2000 COMPLIANT
- Easy construction using supplied Module
- ★ PAL, NTSC and SECAM compatible
- In-built, battery backed **Real Time Clock**
- Automatic date and leap-year correction
- Semi-closed graphics for increased clarity

LU72P Time/Date Stamp Kit

- \star 75 Ω or Hi-impedance operation
- Case in kit is pre-punched, silk-screened, attractive and hard-wearing

APPLICATIONS

- ★ Security surveillance systems
- Add time and date to home movies
- * Suitable for home and professional use

£99.99

NATIONAL LOTTERY EDICTOR

FEATURES

- ★ Ideal beginners project
- **Generates random** numbers
- Simple to use one switch operation
- Automatic switch off saves batteries
- Full source code available

LUG1R Lottery Predictor Kit

APPLICATIONS

- ★ Use to choose your lottery numbers!
- **Excellent introduction** to microcontrollers
- **Produce random** numbers for games

£9.99

NEW MODULES

418MHZ AM TRANSMITTER AND RECEIVER MODULES

APPLICATIONS

★ Pagers

* Car alarms

FEATURES

TRANSMITTER (GT39N)

- \star Transmitting range up to 100 metres
- SAW controlled frequency + stability
- No adjustable components Only two connections \star

NW43W 418MHz AM TxRx pair

- ★ Domestic alarms
- * Garage door openers
- * Nurse-call systems

RECEIVER (CR755)

- RF sensitivity typically -105 dBm
- Extremely high accuracy laser trimmed inductor ★ Receiving range 30

metres typically

BASIC STAMP MODULES

FEATURES

- ★ Uses easy to learn version of BASIC
- ★ Simple, intuitively named, I/O instructions
- No special programmer required
- ★ Modular stamps in standard SIL or DIL package
- * Extensive manual with each development kit
- Up to 500 BASIC lines in Basic Stamp2
- * Thousands of applications already exist

NW23A	Dev Kit 1	£98.70
NW25C	Dev Kit 2	£122.20
NW32K	Basic Stamp 1	£32.90
NW33L	Basic Stamp 2	£51.70
NW34M	Stamp Bug	£86.95
	-	

1.3GHZ SUPAVISION VIDEO LINK

APPLICATIONS

- ★ Remote security surveillance
- * Covert surveillance
- Building security

NW24B	Videolink	£199.99
NW20W	Case	£25.99
NW39N	Antenna	£6.99

Licence exempt

Tel: 01702 554000, Fax: 01702 554001, E-mail: Sales@maplin.co.uk. Or write to Maplin Electronics, P.O. Box 777, Rayleigh, Essex, SS6 8LU. Or Tel: 01702 554002 for details of your nearest Maplin store. Please quote **Priority Reference Code MA064** When ordering.

For orders over £30.00 inc VAT goods are dispatched free of handling charges. A small order charge of £3.95 inc VAT is applied to orders less than £30.00 inc VAT. All items subject to availability. All prices are inclusive of VAT and are subject to change. E&OE.

£14.99

FEATURES

*

÷

★ Easy connection

Low power consumption

★ Automatic control of video

Learns video commands

Optional PIR activation