

EPE MOOD CHANGER

 Experimental Brainwave Generatior for Alpha, Beta Delta \& Theta frequencies
8051 BASED E=PROM MICROCONTROLLERS Programming and experimental board REACIION TIMER Test your reaction time

 SIMPLE SHORTWAVE RECEIVER Covers the 5 MHz to 15 MHz range

THE No. 1 MAGAZINE FOR ELECTRONICS TECHNOLOGY \& COMPUTER PROJECTS

pLUSIngenuity Unimited - Circuit Surgery Inmovations - New Technology Update

WIND GENERATORS 380 WATT 1.14 metre dia blecess, carbon matrox bledes, 3 year warranty, 12 vod output, 2av version availabie, control flectronics included, brushivess neocymum cubcr curve amernator, only wo monng parts, manntennence Iraen simpta rood top installation, stant up speed 7 mph , max outpur

HYDROPONICS

DO YOU GROW YOUR OWN?

We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test equipment etc
Ring for your free copy
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a smple and cheap way to build a home X-ray machinel Eflective device, X-riy sealed assemblies. canbe usedfor expenmental purposes Not a toy or for minorsl $£ 6 / \mathrm{set}$ Ref F IXP
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apperent meens or cause Uses no electrical or mechanical connectoons, no special gimmicies ye produces positive motion and elfect Excellent for science projects. ragic shows, party demonstratons or serious resee
£4/set Ref F/TKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control included is a full volume reference text and seversl construction plans that when assembled can produce highly enfective stimuli This material must be those expenenced in to use $£ 15 / s e l$ Ref FIEM2
GRAVITY GENERATOR PLANS This unique plan demonstrates smple electrical phenomena that produces an ant-gravity eltect You can actually build a small mock speceship out of smpte matenats and whthout any usible means- cause it to levtrate. £10set Ref F/GRA1 WORLDS SMALLEST TESLA COILILIGHTENING OISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with excraordinary HV eflects, 'Plasma in a jar' Stimo's fire, Corona, excellent science project or corversation prece 5/set Ref F/BTCing
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light High coherency and spectral quality similer to Argon laser but easier and less costly to buld yet far more eflicient This
 NEGEV in israel. $£ 10$ sot Rel FICV1
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood whout a second matiching unt Use on telephone to prevent thred party listoning and bugging. £6/sot Ref FNSS
PULSED TV JOKER PLANS Litile hand hold device utilises pulse techniques that will completely disrupt iN picture and sound works on FM tool DSCRETION ADMSED ¢8/set Ref FrTJ5
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of $1 \mathbf{w i n g}$ bodies, warm and hok spots, head healss etc. Intended for security, law or very interesting science project £8\%of R F/ F/BHT1 UURMIN CUTTMG CO2 LASER PLANS
BURNING, CUTTING CO2 LASER PLANS Projects an unvisib beam of hest capable of buming and meting mamenats over a 10\% input power into useful output Not only is this device a workhorse an wolding, cuting and heet processing materats but it is also \& lloely candidate as an effective directed energy beem weapon against missiles, aurcrat, ground-to-ground, etc. Particie beems may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of noutrons or other particles The device is assily applicable to burning and etching wood, cufting. plastics, testiles anc E12/set Ref FLC7
OYMAMO FLLASHLIGHT Imteresting concept, no batteries needed just squeaze the trigger for instant light apparently even works under water in an emergency although we hevent tried it vet! $£ 6.99$ ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonnc hock waves. Blow holes in metal, produce "colv" stasm, atomize quidet. Many cleaning uses for PC boards, jewilery. conss, small parts tc. $£ 6$ fet Ref FNLB
ANTI DOG FORCE FIELD PLANS Highly ollective circur produces time varibile pulses of accoustical energy that dogs canno tolerate E 6 /sel Ref FIOOG2
LASER BOUNCE LISTENER SYSTEM PLANS Alows you to hear sounds from a premises without gaining access $£ 12$ set R of F LIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, hes large transducer and bettery capacity with external controts E6/sel Ref FRPSP4
INFINITY TRANSMITTER PLANS Teleptone line grabber com montor. The utimate in homatofice security and saffotyl simple ousel Call your home or ofice phone, push a secret tone on you talephone to access erther. A) On premises sound and voices or B Exasting conversationw
BUO DETECTOR PLANS is that someone getuing the goods on you? Easy to construct dovice locates any hidden source of redip onergy' Snitis out and finds bugs and cther sources of bothersome BD1.
ELECTROMAGNETIC GUN PLANS Propects a metal objec considerable distanco-requires adult supension $£ 5$ ref FIEML2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! £5/set Ref FIEMA1
SOLAR POWERED WND UP RADIOS BACK WI These FMUAM radio's heve a solar panel and a hand operated chargerl $£ 17.96$ ref SOLRAO
PARABOLIC DISH MICROPHONE PLANS Listen to distan sounds and voices, open wndows, sound sources in 'hard to get' or
hate promises Uses satilut iechnology io gather distam sound and focus them to cur utira sensitve electronics Plans also show on apbonai mreless link system $£ 81$ sel rel F/PM
FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{Vdc}$, many possible expenments f 10 Ref FMVM7/ TCL4

BRAND NEW AND, CASED, FROM $£ 99$ Works with most modern video's, TV's, Composite monitors, video grabber cards. Pal, 1v P-P, composite, $760 \mathrm{hm}, 1 / 3^{\prime \prime}$ CCD, 4 mm F2.8, $300 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter; $100 \times 60 \times 180 \mathrm{~mm}, 3$ momhs warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$
CIRCUIT PACKS Packes of 35 crrcuit diagrams coverng lasers, SW redice gergers buge char etc Peck Pach Pack3 5499 eech GMOKE ALARMS Mans poured, Rece by He 24 sous
 INTO A VGA MONITOR CONVERT YOUR TV NTO N VGA MONIOR FOR E2S Corvers a colcur Mo basc vor oreen Complera wun buin ikif form for home ascembly sal P PRICE ETS REF SA34 15 WATT FM TRANSMITTER AREE
15 WATF H TRANS 1 IT ER Arready assembled but some F knowiedge mill be usenifor seling up. Preamp req' 4 stage 80 WATT FA 4 WATT FM TRANSMITTER KIT Small but powerful FI ransmitter kt 3 RF stages, mic 8 audio preamp included $₹ 24$ rel 028
YUASHA SEALED LEAD ACID BATTERIES 12V 15AH £18 rof LOT8 and below spec ev $10 A H$ at $£ 5$ a pair
ELECTRIC CAR WINDOW DE-HERS Complete with cable plug ect sale price just eass REF SAz8
CUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel whth diode and 3 metre loed fited with a cigar plug 12v2watt $£ 12.23$ REF AUG 10 P3 SOLAR POWER LAB SPECIAL You get $26 \times 6^{\circ} \mathrm{OV} 130 \mathrm{~mA}$ colls, 4 LED's, wire, buzzer, swich + 1 rolay or motor E7.EP REF SA27
SOLAR NICAD CHARGERS $4 \times$ AA size 9999 ref 6P476, $2 \times$ SLze 59 S9 ref 6P477
GIANT HOT AIR BALLOON KIT Build a 45 m carcumfrence. flly Huctionng betion can be launched winhome mede burner el Rouseble (until you loose nil) $£ 12.50$ ref HA1
AR RIFLES . 22 As used by the Chinese army for tranne puposes, so there is a lot aboutl $£ 3995$ Rel EF78 500 pellets $£ 4.50$ Hef EFO

REGISTER FOR OUR
ELECTRONIC NEWSLETTERS BULL-ELECTRICAL.COM

BULL ELECTRICAL

250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). AL ORDER TERMS: CASH, PO OR CHEQU WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT 24 HOUR SERVICE 55.00 PLUS VAT overseas orntrs at cost purs 83.50 (ACCESS VISA, SWTTCH, AMERICAN EXPRESS
phone orders:01273203500 FAX 01273323077 Sales@bull-electrical.com

INFRA RED FILM ${ }^{6 "}$ square prece of flexable infrea red film that wil only allow IR light through Perfect for corverting ordinary torches, lights, heoringhts etc to minu red outout onlly using standiard light bulb Easly cut to shape σ square $£ 15$ ref IRF2
HYDROGEN FUEL CELL PLANS Lands of information on nydrogen storage and production Prectical plams to butld a Hydrogen fuel cell (9000 workshop facitites required) c 8 set fel FCP1 STIRLING ENOINE PLANS Interesting information pack covering all aspects of String engines, pictures of home made 12V OPERATED SHOKE BOMBS TIPe 3 is a 12 Liger and $12 V$ OPERATED SMOK BOMBS Irpe 3 is 12 V tigger and of time 14499 ref SB3 Type 2 is 20 smaller cannusters (sutabto for rmultited equipment fires erc) and 1 troger module for E 29 rel S82 Type 1 is a 12 trigeer and 20 large cannisters E 49 ref SB1 HIPOWER Hi FOWER ZENON VARIABLE STROEES Useful 12 V PCB control potentiometer Peftect for interestog proects 12 voc operation £6 ea ref FLSI, pack of 10 £ 49 ref FLS?
RUSSIAN BORDER GUARD BINOCULARS £1798 RUSSIAN BORDER GUARD BINOCULARS £1798 Probably the best binoculars in the worldl ing for colour brochure
NEW LASER POINTERS 4.5 mw 75 metre range, hand held unit runs on two AA battenes (supplied) $670 \mathrm{~mm} £ 29$ ref DEC. 49 HOW TO PRODUCE 36 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprohensive 270 pege book covers ail aspects of spint production from everycay matenals Includes construction details of simple stits etc £ 12 ref MS3 NEW HIGH POWER MINI BUG With range of up to 800 metres and a 3 days use from a PP3 this is our top seiling bug' leas than I" square and a 10 m voce pickup range. $£ 28$ Rel LOT102 BUILD YOU OWN WINDFARM FROM SCRAP Now publication gives step by step guide to building wand generators and propeliors Armed with this pubication and a good local scrap yard could make you self sulticient in electratyl £12 rel LOT81 NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT £29 range 1 5-5 miles, 5,000 hours on AA bettenes, transmits info on car direction, lefl and nomt turns, start and stop informaton Works with any good FM radio £29 ref LOT101a
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 100 mA auto electronic shuter, 36 mm F2 lens, CCIR, 512×492 prosts, video output is iv p-p (75 chm) Works directiy into is scart or video input on a iv or video IR sensitve $£ 7995$ ref EF 137
IR LAMP KIT Surtable for the above carnera, enables the camera to be used in total darknessl $£ 6$ ref EF138
UK SCANNING DIRECTORY As suppled to Police, MOD,M15 and GCHOl coverers everything from secret government frequencies, ope in the shy, prisons, mintary mantion atc $£ 18.50$ ref SCANB INFRA RED POWERBEAM Handhetd battery powered lamp, mich remiector, gives out powerful pure infrared ingin' perfect for CCTV use, nightrights tece f 29 ref PB
SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser, XK and KA bands, speed cameras, and all known speed detection systems 360 degree coverage, front

CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER OPTICS

Could be Doubte beam unts designed to fit in the gun barrel of a tank, each unt has two semt conductor lasers and motor arme units for alignemem 7 mile range, no circurt dugrams due to MOO, new price $£ 50,000$ us? £199. Each unt hes two galluum Arsenide injection lesers, 1×9 watt 1×3 wath 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The units also contain an electronic recemer to detect reflected signals from targets $£ 199$ for one Ref LOT4
NEW LOW PRICED COMPUTERWORKSHOP/HIF RCB UNITS Complete protection from fallity equipmem for everybody' Inine unt fits in standard IEC lasd (extends it by 750 mm) fitted in less then 10 seconds, resectiest button, 10A rating $\mathbf{£ 6 9}$ each ref LOTS Or a pack of 10 at $£ 4990$ ref LOT6 1 I you want a box of 100 you can have one for E 2501
DIGITAL PROPORTIONAL B GRADE RADIO CONTROLLED CARS From Worid famous manufacturer these are returns so they will need atbention (usually physecal damage) cheap way of buyng TX and RX plus servos etc for new projects etc £20 each sold as seen ref LOT2DP
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL fess Cased with fileeds, designed to read standard credit cards! complete with control elctronios PCB and manua covering everthing you could want to know about whats hidden in that magnetic strip on your cardl just 5995 ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setung up difierent businesses, you peruse these a your lensure using the text edtror on your PC Also included is the contricite enabling you to reproduce (and sein the manuals as much as you likel £14 rof EP74

HIGH POWER DC MOTORS, PERMANENT MAGNET
12 -24v operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ whth a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaft with a machned fat on it Fixang is simple using the two treaded bolts protuding from the from

£22ea REF mot4

ISSN 02623617
PROJECTS . . THEORY . . . NEWS . . . COMMENT . . . POPULAR FEATURES ...

Cover Photo: Joseph Drivas - Image Bank

VOL. 27 No. 6
JUNE 1998

EVERYDAY

PRACTICAL
ELEETRONICS
The No. 1 Magazine for Electronics Technology and Computer Projects

(c) Wimborne Publishing Lid 1998. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fuliy protected, and reproduction or imitations in whole or in part are expressiy forbidden.

Projects and Circuits

EPE MOOD CHANGER by Andy Flind 404
Our experimental "pocket-psychiatrist" could help relieve your daily stress
SIMPLE SW RECEIVER by Robert Penfold
414
A low cost introduction to the satisfaction of building your own radio
ATMEL AT89C2051/1051 PROGRAMMER by Colin Meikle
An ideal workshop tool for those delving into Atmel's versatile EEPROM microcontrollers

INGENUITY UNLIMITED hosted by Alan Winstanley
Digital Sinewave Generation; A.C. Ripple Active Rectifier; Typewriter Word Counter

REACTION TIMER by Paul Hackett 456
So you think you're one of the fast crowd? Prove it!

Series and Features

NEW TECHNOLOGY UPDATE by Ian Poole

Many developments in chip technology are prompted by the needs of cellphones
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold 419
Power semiconductors and heatsinks
8051-BASED EEPROM MICROCONTROLLERS by Colin Meikle 426
Industrial-favourite microcontrollers become available to hobbyist users
CIRCUIT SURGERY by Alan Winstanley and Ian Bell 439
Scanning Switch Matrices; Antex - True Brit; High
TEACH-IN'98 - An Introduction to Digital Electronics - 8 446
by Ian Bell, Rob Miles, Dr Tony Wilkinson, Alan Winstanley
This month: Buses and CountersNET WORK - THE INTERNET PAGE surfed by Alan Winstanley469FTP at the DOS Prompt; Phantom of the Opera
Regulars and Seroices
EDITORIAL 403
INNOVATIONS Barry Fox highlights technology's leading edge 411
Plus everyday news from the world of electronics
READOUT John Becker addresses general points arising 423
BACK ISSUES Did you miss these? 425
SHOPTALK with David Barrington 430
The essential guide to component buying for EPE projects
COMPONENTS CD-ROM 444
SPECIAL EPE READER OFFER 445
An exceptionally generous offer of superb Minicraft drill tools from EPE and ESR Electronic Components!
DIRECT BOOK SERVICE 464
A wide range of technical books available by mail order
ELECTRONICS VIDEOS Our range of educational videos 467
PRINTED CIRCUIT BOARD SERVICE 468
PCBs for EPE projects. Plus EPE softwareADVERTISERS INDEX472
Our July 'ge lssue will be published on Friday, 5 Readers Services Editorial and Advertisement Departments 403

Surplus always

 LOW COST PC's

 LOW COST PC's

 SPECIAL BUY

 SPECIAL BUY

 AT 286

 AT 286
 40 Mb HD + 3 Mb Ram

Industribl grade 129 hrz H GRADE 206 systems Made in the USA 10 an industrial specification, the system was designed lor fotal relievideo card with singte $5 \mathrm{~K}^{-1} 1.2 \mathrm{Mb}$ floppy disk drive í integrad 40 MB herd dilsk ditive to the front. Real time clock with battery backup is provided as standard. Supplied in pood used condition complete with
Ordor mainichide 26° ONLY E 9.00

 \begin{tabular}{lll}
$1.4 \mathrm{Mb} \mathrm{3K}$

\hline

wordpertect 6.0 or (his - when 314' FDD option ordered \& $£ 12.50$

NE2000 Ethernel (thick, thin or twisted) network card \& $\Sigma 29.00$

\hline
\end{tabular}

INTEL 486DX-33 SYSTEMS

 Funthed quantity of this 2 nd user, supert small size destitop uni with keyoord, 4 Mb of RAM, SVGA monito outpui, 256k cache and Fully lested and guaranteed. Fully expandabte Meny other optons avellable - cell for detelts. $£ 199.00$ (E)
FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

Massive purchases of standard $5 \%^{*}$ and $3 k^{\circ}$ drives enables us to present prime product at industry beating low prices! All units (unless
stated) are BRAND NEW or removed from ofen brand new equip ment and are fully losted, aligned and shipped to you with a full 90 day guaraniee. Cell for over 2000 unlisted drives for spares
$3 k^{\prime}$ " Parsesonic JU363/4 720K or equivalent RFE
$3 \mathrm{k}=$ Miteublshl MF355C-L. 1.4 Meg. Laptops only
$3 \mathrm{k}=$ Miteublshl MF355C-D. 1.4 Meg . Non laptop 3k" Miteublshl MF355C-D. 1.4 Meg. Non laptop
5M" Teec FD-55GFR 1.2 Meg (for IBM pc's) RFE 5\%- BRAND NEW Mitsublshl MF501B 360K
Table top case with integral PSU for HH $5 \mathrm{~K}^{\circ}$ Flopp
8^{m} Shugart $800 / 8018^{\circ}$ SS refurbished 8 tested
8^{m} Shugart 8108° SS HH Erend New
$8^{\prime \prime}$ Shugart 8108° SS HH Brand New
$8^{\prime \prime}$ Shugart 8518° double sided refurtished 8 tested
8° (Mteubishl M2894-63 double sided NEW
Dual $8^{\prime \prime}$ cased drives with integral power supply 2 M

HARD DISK DRIVES

$2 h^{\circ}$ $2 h^{\circ}$ $2 k^{\circ}$ $3 k^{\circ}$ $3 h^{\circ}$ $3 k^{\circ}$ $3 h^{\circ}$ $3 h^{\circ}$ $3 k^{2}$ 5 5 5 5 5 8 8

$2 \mathrm{~K}^{\circ} \cdot$ TOSH. (12.5 mm H) MK 1002 MAV 1.1 GO lapiop. Now

$3 k^{\circ}$. FUN FK-309 2620 mb MFM UF RFE

CONNER CP 304440 mb IDE I/F (or equiv.) RFE $3 k^{\circ}$ OUANTUM 40 S Proditve 42 mb SCSI UF. New RFE
3k" WESTERN DIGITAL 850 mb IDE VF Now
SEAGCRIEE 342520 mb MFM UF (or equiv.) RFE
CDC 94205.5140 mb HH MFM UF RFE tested

- HP C30102 Gbyte SCSI differential
3° NEC D2246 55 (1) SMD intericita FUNTSU M2322K 160 Mb SMD UF RFE tested FUJTSU M2392K 2 Gb SMD VF RFE lested

THE AMAZING TELEBOX

TV SOUND \& VIDEO TUNER CABLE COMPATIGLE:

The TELEBOX is an attractive fully cased mains powered unit. con taining all electionics ready to plug into a host of video monitors made by makers such as COMMROONTEC, ATARI, SANYO, SONY, COMMODORE, PHILP, TATUHG, AMSTRAD EIC. The composite video outpur will also plug directly into most video recorders, allowing eton recetvers" (TELEBOX MB). Push button controls on the front channels. TELEBOX MB Covers VHF and UHF including the HYPERBAND ms used by most cable TV operrions. A composite video output is located on the rear panel vidieo systame Fit 10 most makes of monitor or dosktop computer out sound - an integral 4 watt audio amplitier and low lovel Hi i audio output are provided as standarc
TELEBOX ST ior composite video input type monitors E38.05 TELEBOX MB Multiband VHF/UHF/Cabla/Hyperband iuner 838.50 Fo overseas PAL versions state 5.5 or 6 mHz sound specitication. For cabte hyperband signal reception Telebox MB should be con-

DC POWER SUPPLIES

Viriually verery ype of power

10,000 Pow Supplos ex stock
 Visit our London shop for a full range of Test Equipment and other bargains

ELECTRONYILS:
DISTELC
isth our wob site
www.distel.co.uk

ALL \mathbf{O}^{P} ENQUIRIES
01816794414
FAX 01816791927
Al pricas for UK Maintand UK customers add 17.5\% VAT 10 TOTAL order amount Minimum order $£ 10$. Bona Fide acoourt orders accepted from Government Schodts

NEXT MONTH

PIC16x84 TOOLKIT

At last, TASM and MPASM compatibility for PIC16x84 users! Versatility and high speed were the two chief design objectives for this PIC16x84 Toolkit. It can be used in conjunction with both TASM and MPASM source codes and is three tools in one: a programmer, a program disassembler, and a bi-lingual translator between the two assembly languages.

The Tookit is for use with PIC16C84 and PIC16F84
microcontrollers. All modes and external switching operations are controlled directly by a PC-compatible computer ('386 and above, with or without Windows). No manual intervention via hardware switches is needed. The computer must have either QBasic or QuickBASIC already installed.

The design may be used as a stand-alone unit, or interfaced with the EPE PIC Tutorial demonstration board. The software can also be used on its own purely as a "language translator" without the Toolkit or Tutorial boards.

NOISE CANCELLING UNIT

A fully tried and tested Noise Cancelling Unit which employs two microphones and a set of headphones fed with "anti-sound" to reduce noise by a factor of between 10 and 30, or more on the high efficiency narrow frequency band which can reduce specific "single frequency" sounds by a factor of up to 100.

The unit has audio inputs so that you can listen to your favourite audio source while background noise is cancelled. Enjoy your hi-fi without hearing the neighbours music, lawnmower or the building site concrete mixer, etc.

GREENHOUSE COMPUTER

This microcontrolled design is for use with a small greenhouse or conservatory. Its main function is to monitor and control the heating and watering requirements of the plants. An additional feature is that it has the option of a wireless link (the subject of a future issue) to a remote display unit, so you can view and log the status of your greenhouse from the comfort of your house.

The main facilities of the controller are:

- Two separate channels for monitoring temperature
- Immediate, minimum and maximum temperature display
- 2-level thermostatic heater control
- Soil moisture monitoring
- Automatic plant watering
- Monitoring of water reservoir level
- Optional Radio Link to remote display unit
- 2-line 20-character liquid crystal display

The circuit is based around an Atmel AT89C2051 microcontroller, whose facilities are discussed elsewhere in the current issue, together with a programmer.

LOW BATTERY INDICATOR

An in-circuit, micropower battery condition indicator for your projects. This unit began life as a battery condition monitor for the EPE Mood-Changer design described in the current issue. As it is not immediately apparent to the user whether the EPE Mood-Changer is operating or not, a low-battery warning of some kind is useful. However, the usual method, using an l.e.d. that remains lit above a pre-set supply voltage appeared unsatisfactory as it would inevitably draw more current than the main circuit!

Thoughts on the problem led to the design of this circuit and it was then realised that, with micropower operation and a wide supply voltage range, it could be used in many other designs. The use of a compact layout allows it to be constructed cheaply and fitted into an odd corner of space that will exist in almost any project. and it can be adjusted to work with most common battery voltages.

NO ONE DOES IT BETTER

EVERYDAY

PRAGTICAL

DON'T MISS AN ISSUE -
PLACE YOUR ORDER NOW!
NOW AVAILABLE

The Complete, Integrated

Schematic \& PCB Layout Package

Windows Ranger 2
for Windows 95 \& NT

- New Hierarchical Circuit
- Split Pevices • Gate \& Pin Swap
- New Edir Devices in Circuir
- Copper Fill - Power Planes - Autorouter - Back Annotation

Ronger 2 Outputs: Full Windows Outputs Plus - HP-GL Gerber
NC Drill AutoCod DXF

Ranger \& Specctra Autorouter provide the most cos
Ranger a Specctra Autorouter provide the most cost effective PCB Design system available. A powerful, intuitive system at an outstanding price!

Windows Ranger 2 Upgrade

Upgrade your existing PCB Package to Windows Ranger 2.

SPECIAL OFFER Ranger 2 Lite $\mathbf{6 3 5}$ (Prices exc VAT/P\&P)

Demo Software -download from
http://biz.ukonline.co.uk/seetrax

for Windows 95

Demo Software - available from our Web Address

SFETRAX

Advanced Systems \& Technology for PCB Manufacture

NEW SPECIAL OFFERS

Mini witmproot TV camere $40 \times 40 \times 15 \mathrm{~mm}$ requires 9 to moo a video or a TV with a SCART plug) It has a trigh
rosoktion of 450 TV mines Vertical and 380 TV mines rosonzontal, elecironic auto ins for nearty dark (1 UUX) to

 Board cantrats all wh 512×582 poxto $44 \times 3.3 \mathrm{~mm}$ sen
sor 913 volts power supply and composite video out All need to be housed in your omn enclosure and have tragie exposed surface mount parts 47 MM size $60 \times 36 \times 27 \mathrm{~mm}$
with 6 mira red liods lowes the same
 pin hove vers for hidng seohmera very small hole.

 lens F16 16 mm for 40 MC motcras) Constigp mdependent control of 2 stepoing
motors by PC (Through ine peratiol pont) weth 2 motors and sotway
 motor and connuol cricur DTA30 Hend hald trameletor anolyeer it tolls you which laed is the base, the collector and eminter and in is is NPN
or PNP or lauty (NEW VEASION 1003 nol say FETs \& SCAs are ransistors) DTA30 Hmuzo hend hold mosfET mandyoer demities gate
 theoters

Elosincer

5 men m
prote asct tor back
mes coing
 F not nomally in stock atlow, $9119.97^{\circ} \mathrm{mbi.9}$ power amphifers 19° rack mount with gan conirots \& VU
 memory
lestes)
rates ates) spicicled oflere ploase check for avalabolity stick of $442 \times 16 \mathrm{~mm}$ nicad batienes 17 inth reed bleck havds 88 V
 Orbitul 856 bettery pack 12v 16 AH contans 10 sub C celts with solver tags ithe size mosi commonty used in cordess screwarvers and ontis 22 da 442 mm talli) $1 t$ is each or t111.050 per rox of 14 aci box $190 \times 106 \times 50 \mathrm{~mm}$ meth slots to house a pct the screw lermmals 10 connect to wres and 5 side in cand sclenks
7 tramant conmon anody ted dibplay $12 \mathrm{~mm} \quad 80.45$
GaA FET low leakage currem S8973 £12.95 each 59.95
BCS47A Irmelatio
SLS52 UHF Limitho amplitier LC 16 surface mounting Package with dala sheel OC-DC Converter Rekabity model V12P5 12 v im 5 y
200 ma out 300 v input to outpur Isolation with data Alpex A89003-C CA .95 wach or peck of 10 c 39.50 27 hm 68mm cha booty 63 mm sheil Solld cerbon ressiors very low moveiance ideal to R. We have a range of 0.35 w 05 w tw and 2 w solid carton resistors ploase send SAE for list
P.C. 400 W PSU (iniel part $201035-001$) with slandard motherboard and 5 disk orve comeciors lan and mans
inlet outter comectors on back and swich on the sion intot outter comnectors on back and switch on the siove Swlch Ezt.00 each $\$ 138.00$ for 6
Mx 180 Digital mutimetiof 17 ranges 1000 v oc 750 V ac 2 Mohm 200 mA transistor the os and 15y batren
Hend held uttrasonic remole control CV2405 pom reley $30 \times 10 \mathrm{Frm}$ du with 3 wre terminat will also work as a neon ugra 20p oach or EB 50 per 100 macrunes and proting presses erc it locks bee a norma cassette with a slot cut out of the 100 C 4.95 each ($\mathbf{5 3} .75$
 10.000

Machrgosbl Bloth

M(MP) 950 mAH
C 2AH with soider tags
D AAH with solder toos
1/2M whth soldor tags
AM (HP 16) 180 mAH
MA soomaH with sotder lags
COP11) 12 OHP2) 12 AH
PP3 8.4V 110 mAH
SUL C with solder tacs

Hentinint compound tube Pn DiL 5 -24v 50 mA regulatotaic 18.264 vac nopur 8

All products advertsed are new and unused untess
otherwise slated mode rance of CMOS Π TL 74 HC 74 F

Ploase a00 E1 95 10w Plazse add I1 95 towards Ps I Iorders trom the Scontish VATseas may be subyect to higher P\&P lor heavy flems)
JPG PLECTRONICS 276-278 Chatsworth Road
Chesterfield S 402 BH Access Visn Orders
Tel: (01246) 211202 Fax:(01246)550959
Callers welcome $9.30 a m$ to 5.30 pm
Monday to Saturday

VARIABLE VOLTAGE TRANSFORMERS INPUT 220V/240V AC 50/60 OUTPUT OV-260V 0.5 KVA 2.5 amp max $\quad 533.00$ KVA 2.5 amp max \quad E34.00 2KVA 10 amp max $\quad \$ 46.25$ 3KVA 15 amp max $\quad 586.50$ SKVA 25 amp max $\quad \$ 150.00$
 Buy drecil from the importers Keenest proces in the country. SOOVA ISOLATION TRANSFORMER
New manuf Surplus C COR
 Screen WH 105 K
$H 195 \mathrm{~K} 155$
Price $£ 3500$ Carr $£ 750$ ($£ 4994$ mal) $)$
COUPHEHENSIVE PAMOE OF
TRANSFORMERS-LT-ISOLATION AU

ULTRA VIOLET BLACK LIGHT BLUE FLUORESCENT TUBES

330V AC BALLAST KIT

 $\frac{\text { Senstive aconcalions Please techone fove on }}{400 \text { WATT BLACK LIGHT }}$ GES Mercury Vapour lamp sufabie for

RANGE OF XENON FLASHTUBES

$$
\begin{aligned}
& \text { WrfaPhone your anquitios } \\
& \text { SUPER HY-LIGHT STROBE KIT }
\end{aligned}
$$

5 KVA ISOLATION TRANSFORMER AsNow Ex-Equipment, fully shrouded, Lime Norse sompunal covers and knock-out cablo entries | Permary $120 \mathrm{~V} / 240 \mathrm{~V}$. Snock-out cable entries |
| :--- |
| $50 / 60 \mathrm{H}$. | $19 \mathrm{~cm} \times 1.005 \mathrm{Fm}$ Capacitance. Size. $L 37 \mathrm{~cm} \times W$ VAT Ex-warehouse Cht 42 kilos. Price $24 V$ DC SIEMENS CONTACTOR Type 3 HAOO22-08 $2 \times$ NO and $2 \times N C 230 \mathrm{VAC} 10 \mathrm{~A}$

Contacts Screw or Din Ran fuing Size H $120 \times \mathrm{W} 45$ $\times 075$ mum Brand New Price 87.63 nd PAP and V 240 V AC WESTOOL SOLENIODS T2 Mod 1 Rat 1 May stroke s/an. Bass mount

 Rice incl P8
SERIES 400 © 7.64.

AXIAL COOLING FAN 30 VAC 120 mm square $\times 38 \mathrm{~mm} 3$ blade' 10 walt Other voltages and suzes avallable from slock
INSTRUMENT CASE Grand new Manulactured by imhor L 31 IH $18 \times$ ascembly of your componemts. Grey pentured finsh, complete with case lest. Price E16.4s ind. PSP and
VAT 2 of 28.20 ncvene

DIE CAST ALUMNMUM BOX
 InCl 230 V AC SYNCHRONOUS GEARED MOTORS

 20 RPM anti Cw Degin 40 min E11 16 nd pep \& VAT SOLID STATE EHT UNIT | Input $230 \mathrm{~V} / 240 \mathrm{~V}$ AC. Output approx 15 KV . |
| :--- |
| Producing 10 mm spark. Builith 10 sec | timer. Eassiy modified lor 20 sec .30 sec 10 continuous. Designed fior boiler igntion.

Dozens of uses in the field of physics and electronics. e.g. supplying neon or argon rubes elc. Price less case $88.50+\Sigma 2.40$ p 8 p ($£ 1281$ inc VAT) NMS

EPROM ERASURE KIT Build your own EPAOM ERASUAE for a fraction o
the price of a made-up und. KR of perts leess case the price of a made-up und. Kt of perts wese caso of br-pm heads, neon molicaior. Oniolm wanch. Salety

WASHING MACHNE WATER PUMAP

PINHOLE CAMERA MODULE WITH AUDIOI Superb board camera with on board soundl extra small just 28 mm square (including microphone) rideaifor covert survillance Can be hidden inside anything oven a matchbox comples
BEC SELECTORS WITH SMART CARD SLOT AMD VIDEO CRYPT Interesting new ferm in this woek is tis Selector Originally made for the BeC to send encrypted wiseo films to your VCR at night ture. The profect seems to have falled Very complex units consisting of a smar card shot in the front plus several switches and an IR recever Fulh of the unit is a scart socket plus a UHF input and output A channeituning controt numbered 28 to 40 and an IR socket inside is a compretensive tuner section, smatt card reader mechanism and control electronics plus a power supply section These units are sold ass stripoers but we imagine you could use one to comver a montor into a TV or mavbe use the ndeocrypt side of things ior sornething eise Supplied complatio with manual and mains lead Clearance price just $£ 995$ ref BeCix INLINE RCB UNITSThis in line minature earth leakage unit instantly shut of the mauns supply in the event of any current fownng between tive and earth thus preventing a potentally lethal shock IEC plug one end, socket the other, fitied in seconds, reset button the ultumate safety and when working on electronic equipment, computer etc As these units are fitted with an in-line IEC plug on ane end and
socket on the other than could even be used to extend standard IEC socket on the other than could even be used to
computer leads Pack of 3 te.ne rel LOT5A
THE ULTIMATE ENCLOSURE for your profects must be one a these Well mace ABS screw logether beige case measunng $120 \times$ $150 \times 50 \mathrm{~mm}$ Aready fithod with rubber feet and fromt mounted LED inside is a pab fited with other bis and preces you may find useful Sold other as a peck of five for $£ 10$ rel MO1, peck of 20 for $£ 1985$ cel MO2 17 WATT 12V SOLAR PANEL A solar panel designed to gre a nominal 12v The solar certs are laminated within a high quality resin materiall which offers excellent protection against UV and mosture. Mounted on tempered giass in an alauminum frame The panet is ideal for charging seated lead acrd battenes and a protection diocte in the arcuit prevents reversed current flow Mounting is by four adjustable nooks and connection is by screw terminats Max power 17 wauts. 35 cells, 17 vod peak, $433 \times 402 \times 15 \mathrm{~mm}, 1000 \mathrm{~mA}$ max. 19 kg Solar panol E115 ref SOLA
SOLAR POWERED AM/FM RADIO A Compact. AWFM mono radio complete with earphone and a solar panel that recharges the bullfin battery when placed in direct suninght or under a strong lamp in features a rotary Voiumeroniof control (which must be ser to "Off for recharging). AMFM selector switch, rotary tuning contod, metal belt chp and socket for external $3 V$ DC supply Solar Redio \&7.s5 rel SR2s MOTOR CYCLISTS RADAR DETECTOA NeW in is the Whistier 1560 Laser/Redar detector complete with a speaker for motorcycle heimex Super und band covenng X, K and $K a$ plus tesers at s5Onm+1 -10 nm 360 deg total perimeter protection, detecis
2 wherever they come from E 15 se .55 rof RDA
MAGIC EAR Unlike previous 'sound-megnfiers' we have offerec Magic Ear fits unobtruscrely bethind the ear itself Magic Ear's micro technowgy is wery advanced, its bulte-n microphone is extremely sensitive and there saiso volume comtro to help you sajusi to ail conditions in use. Magic Ear is startingly eflective. itil help you to follow every word of conversation even of a distance, and enjoy theatre, Ife batuenes, a free travel pouct, plus a ctroxce of 3 diferent ear preces designed to fit all shapes of ear Magic sar $£ 16.94$ rel MAGEJ RADHO METER Perhaps the best of the scientific knick-knacks the past and well overdue for revivall Fascinating, soothing and educabonal in the vacuum inside the inverted bulb like container the vanes one side white on the other) Radiometer Re.es ref SC120B SATELLITE NAVIGATION £119 The GARMIN~ GPS 38- is one nampational tool tor the great outdoors that offers bug features in a small, ingiwerght packege - all at a truly affordable price Mark your
favonte fishing spot tree stand or camp sne Or refrace your steps beck to the safety of your starting point using our ail - new TracBack feature The GPS 38 shows you exactly where you are, where you ve been and where you're gong The GPS 38 features easy, one-thumb operation and weighs only 2559 There's a resettable trip odometer, graphic compass' and nigiway steenng gurdance And 1 prondes up to 20 affordable way to bring you back $£ 119$ rol GPS 1
DIFFERENTIAL THERMOSTAT KIT An electronic sell assembly kot designed for use in solar heating systems, heat recovery systems etc The principte of the kat is that it has wo thermistors that water storage tank) the controlier then operatos a rolay all the time one temperature is higher than the other. The temperature difference is adjustabse A typical use would be to operate a pump all the tume a solar panel was at a higher tomperature than the water storage tank
Diferential thermostat heze ref LOT33 Differential thermostat he ces rof LOTS3
10 WATT SOLAR PANEL Amorphous silicon panel fitted in a anodured alumunum frame Penel measures 3° by 1^{1} whth screw termi-
nats for easy connection One of these panels will run our solar water nats for easy connection One of these panels will run our solar water
pump in full sunight aithough wo would recommend that for optomum performance two panels would be prefereable 3 ' i I' solar panel E56 of MAGA5
I2V SOLAR POWERED WATER PUMP Perfect for many 12V DC uses. ranging from solar fountans to hydroponicsi Small and compact vet powerful Wh work direct from our 10 watt soiar panel in brgmt
sunlight Max heac 17 II Max fow rate 81 pm Current 15 (Ref AC8) Sunlight
E1899
BOOST CELL PHONE RECEPTION ON THE MOVEI Compared to high-powered carphones, hand-cortable mobile phones don 1 amays work too well in moving vericies Sometrmes the signal drocs out dufing a call, other times there's too much interierencie to get through at all however, the affordable Cell Patch prondes a major improvement, dramaticaly boosting signair reception wivout wres of
battenes The $95 \times 95 \mathrm{~cm}\left(33^{\prime \prime} \times 33^{\prime}\right)$ microth antenna adheres to battenes The $95 \times 95 \mathrm{~cm}(33 \times 33)$ microtun antennd adhers. or can be carned in e pocker Works with all types of portable celluiar thone Cell Parch $£ 1199$ ref CEL
CAT SCARER produces a blanket of migh sonic and low ultrasonic sound, which is inaudibie to humans, birds and fish - wo it is weal where you want to protaci your bird table or fish pond against feline prodatcors
 approxmantly 1 p per cay Garden watcher $£ 4245$ rel GW2

VIDEO PROCESSOR UNITS?/6V 10AH BATTS/24V 8A TX Not too sure what the function of these units is but they certaniy TX Not too sure what the function of these unts is but they certaniy
make good stripeersi Moesures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are make good strippers! Mossures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are
controts for scan speed, scan detay, scan mode, loads of connections
 24 v torrodial transformer (mains in) sold as seen, may have one or 24v torrowial transtormer (mains in) sotd as seen, may have
SOLAR MOTORS Another new ine for us are these tiny motors which run quite happly on vortages from3-12vac we have thed one on our 0 amorphous $6^{\prime \prime}$ panels and you can run them trom the sunt 32 mm due 20 mm thick $\mathrm{£1} 50$ each
TELEPHONES Jusi in this week is a huge delvery of telephones, all brand new and boxed Two prece construction with the follownig putse (swithabte), reacall, redial and pause, highthow and of nnger putse (swithable), reacall, rodial and pause, highthow and of nnger
swtich and quality construction Each tetephone is finished in a smar swich and quality construction Each letephone is finished of a sman of white cotout and is supplied with a standard international head
(same as US or modem card sockets) if you wish to have a BT lead
 ref BTLX Phones 4.99 each rel PH2
INFRARED CAR PHONE KIT E 7.99 interesting box of goodiesl this kit was designed to convert car phones to enable hands free dialling, the kn contarins the followng nems 1) A keypad designed tree dialing, the kn contsins the foitowng iems 1) Akeypad designed battery and transmits the numbers using three on bowrd high power infre red LEDs $140 \times 120 \mathrm{~mm}$ 2) An infra red recerver module comtaining a IR photo diode, IR fiter and control electronics 60×30 $\times 15 \mathrm{~mm}$ (cased) 3) Control box (nice case) $100 \times 170 \times 35 \mathrm{~mm}$ which whonderstend is the interface between the infra red and the car phone, it is also supposed to adjust the volume of your car sterec an model) Complete lot is 5799 ref CP1
Hi power 12v xenon strobe vanabe rate flasher modules and tubes $£ 64$ sefui $12 v$ PCB fitued with control eiectronics and a powerful Xenon tubel just apply 12 V DC to the input and the tube will hash On the board is a small potentometer which can be used to vary the flash rat PC8 measures just $70 \times 55 \mathrm{~mm}$ and could be incorporated into many interesting proeects1 $£ 6$ ref FLS1 Pack of 10 is $£ 49$ ref FLS2 WANT TO MAKE SOME MONEY? Stuck for an dea? Wo have collated 140 business manuals that give you information on sethng up different busunesses, you peruse these at your lensure using the text edtor on your PC Also included is a certificate enabling
you to reproduce the manuals as much as you likelfi4 ret EP74 you to reproduce the manuals as much as you likelfi4 rel EP74
TALKING WATCH Yes, it actualy tells you the tme at the push of a buttion Also features a vole actuarmy thell wounes you up and tells pou what the time is Lithium cell included $\mathbb{8} 99$ ref EP26A
POWERBEAM INFRA RED Lamp. Al this lamp gives out is infra red higre, and loads of te peffector suppimentingnigte sight and survellance equipment Most mono CCTV ndeo cameras afe infra red sensitve so used in conjunction with this lamp would greaty enhance then aperating pertormance Water resistant case and rubber covered switch make this unin perfect for all weathen
required Powerbean lamp eze rof P8
required Powerbean lamp 22 rof PB
GIANT SCREEN VIEWERTum your TV picture into a supersize screenl This high precision Fresnel hens converts even the smalies screen up to a massive 26 . gming a crystal clear pucture at a tractoon
of the cost of a big TV Easily fited in minutes Also ideal for PC at the cost of a big TV Easily fitted in minutes Also ideal for PC
monitors etc $\varepsilon 2695$ rel SVGA2 NOGALIGHT NIGHT YISK
NOGALIGHT NIGHT VISION £129 Open up a new wond of adventures and expenences Widlife enthustasts and adventurers in eyes on survelliance, all find Nigntspy indispensable for ther use Nightspy's unique features include a special tube protection device to eliminate over exposure, and infrared illuminator used in total dikness, sucn as in cave exploreton ano operations in dark rooms The Nightspy is ight and hanc held, or can be mounted on a standard tmpod it uses wo standard AA batteries and can be operated by lef of right hand users, With of Without optical glasses
Optical Magnification X 17 Field of Viow 10Degrees Focusing Range 25 cm to infinty obective Focal Length 50 mm FN 16 Range 25 cm to +1.3 Mechanical Length 182 mm Wroth 65 mm Herght 100 mm Weight 700 gr Electrical Power Source 3 VDC $2 A A$
battienes Batiery Lfe 40 hours Infra-red lliuminator bulthin Imaging Device Night Vision Image Intensifier Tube E12t rif NOOA

Register with us at

> www.bull-electrical.com for your free e-mail NEWSLETTERS!

DRILL OPERATED PUMP Fits to any drill in seconds, uses standard garden hose, will pump up to $\mathbf{4 0}$ gallons per hour! $£ 8.99$ ref DRL3
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). Mal order trems: cash po or cheque WTTH ORDER PLUS 5.3 .50 PEP PLUS VAT.

24 HOUR SERVICE 55.00 PLUS VAT.
OYERSEAS ORDIRS AT COST PUUS 83.50
(ACCESS, VISA, SWTTCH, AMERICA EXPRESS
phone orders : 01273203500
FAX 01273323077
Sales@bull-electrical.com

STEREO MICROSOPES BACK IN STOCK RUSSIan, 2000
 usi $£ 299$ (full money back guarantee) full delaits in catalogue
SECOND GENERATION NIGHT SIGHTS FROM 1748 RETRON Russian nigm sigmt, $18 x$, infra red lamp, $10 \mathrm{~m}-\mathrm{Hft}$, standarc M42 lens, 11 kg £ 349 ref RET 1
MAINS MOTORS 180 RPM $90 \times 70 \mathrm{~mm} 50 \times 5 \mathrm{~mm} 50 \times 5 \mathrm{~mm}$ whtout shat. start cap included ECZ ref MGM1

PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OUR CHOICE BARGAIN AT 8 PSU'S FOR $£ 9.99$ REF XX17

LOW COST CORDLESS MIC 500 range, $90-105 \mathrm{mhz}$, 115s $193 \times 28 \times 39 \mathrm{~mm}$, GV PP3 battery required $£ 17$ ref MAG15P1 JUMBO LED PACK 1510 mm brotour leds, plus 5 giant (55 mm) seven segment displays atl on a pCD $£ 8$ ref JUMI Pack of 3055 mm
seven seg displays on pcbs is $£ 19$ ref LEDA, pack of $50 £ 31$ ref LED 50 2VDC $40 M M$ FANS MADE BY PANAFLO. NEW $£ 4$ REF fAN 12
ELECTRONIC SPEED CONTROLLER KIT For the above motor is $£ 19$ rel MAG17 Save $£ 5$ if you buy them both together, motor plus speed controlier mp is $£ 41$, ofler price $£ 36$ ret MOT5A RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE netal construction, buil in light. mitor enc Russtan shnmp farm group nowng screen, its of accessones $£ 29$ rel ANAVT
AA NICAD PACK Pack of 4 tagged AA nicads E.2 99 ret BAR34 RUSSIAN NIGHTSIGHTS Model TZSA with infra red illuminator news up to 75 metres in full darkness in infrared mode. 150 m range batteries required 950 g weigm $£ 199$ rel BAR61 1 years warranty LIQUID CRYSTAL DISPLAYS Bargain prices,
20 character 2 line, $83 \times 19 \mathrm{~mm} \mathbf{5 3 . 9 9 \text { ref SMC2024A }}$ 16 character 4 line, $62025 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1, 110MM NEWTONIANREFLECTOR TELESCOPE Russian Superb astronomical 'scope, everything you need for some senous star gazing! up to $159 x$ magnification Send or fax for further
YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprethenswe plans with loads of info

PHOTOMULTIPLIER TUBES Boxed and unused strangt from the minesty of defence Made by EMI with a MOD part no of 10MCVI 114 and packed aimost 30 years ago I Do you have a use? do you want to count inght pertcles? They would bok nice on the mantle preceloflered to you at $£ 15$ each
this is 19581 £ 15 each rof PM3
CLOCK CAMERA WITH AUDIO Discretely monitor twing coms. reception, office, tuls or any other area Fully workong clock acluces clock camera microphone clock battery 15 metres of cable. power supply, adapter for ether scatt or phono Everything you need. no solderng required Full instructions included Easily installed in just a few minutes Plugs strarght into VCR or TV (scart or phono) Clock camera with audio $\mathrm{EB9} 95 \mathrm{~s}$ ref CCS
AUTO RECORD KIT This automatic system will instruct your VCR to start recording when movernent is detected via the PIR $R e-$ cording will stop 30 seconds atter rour vistor has lef which saves hours of tapes as the wieo onty records what you want to see Comtete systeth with PIR, will work with all remote control nodeo reccraers $E 89$ ref CVC2
TELEPHONE VOICE CHANGER Changes your vace to a now or unfamiliar one Simply place over the tetephone mouth prece and speak into the changer Fully adjustable for onterent vaces 5 曾$x 20 \mathrm{~mm}$ Telephone vorce changer $\mathbf{~ 1 4}, \mathrm{S}$ ref CC3
EXTERNAL CAMERA introducing the Bulldog model 4 vandal resistant camera in heavy steel case for intenor or externor use Top quality case housing a 420 ine camera module Each camera is supplied with a 15 m cable terminating in Scart and phono piugs Mult angle bracket for easy instailation in any situation A 12 Vdc $p s U$ is also inctuded Easity installed in a fow minutes, plugs strangt into VCR or TV (phono or scart) Eargain price cas $\$$ rof CC1 GIANT INSULATORS Just in this week are some giant ceramic insulators, each one measures 130 mm high and abour 170 mm diamevar Finshed in a high gloss brown and black glaze in the base of each insulator is a threaded hole approx $1^{\text {" }}$ diameter, rather hike a moproroom head thread if you are into shortwave radio. crysta sets as a door stop) Not too sure what thent onginal purpose was, all we know is they were made for export about 25 years ago, never exported and been in store since then Price is $\mathrm{E8}$ each rel INSX
NATO RADIATION MONITORS Interesting nel These are smail modues that strap on rour mide (strap supolied) and mont for radiation We have stripped one apart and they contan a smal prece of "crysta" thus could be something like Naphthaiene or any other rare radiaton sensitive crystal When radiation strikes the crystal. it scrintiates and a small amount of inght is produced in the crystal in eactoon to the rediation exposure That inght is then pucked up by a micro pV celi measuring abou 2 mm squaretwiso the two) and a small parr of additional paral let metal plates NATO part no is $6665-99-225$ 2314 any information gratefully recevedil Ahernatuely if you man io buy one they are just £J each ref NATOX

WE HAD 38,000 'HITS' ON OUR WEB SITE
 IN FEBUARY '98.
 BULL-ELECTRICAL.COM
 See our live camera!

PINHOLE SPY CAMERAS WITH FREE AUDIO - SEE AND HEAR! ONLY £49.95 AS USED BY POLICE FORCES, DETECTIVES, SHOPS, PUBS AND PARENTS CLOCKS, PICTURES, SMOKE DETECTORS, EVEN A MATCHBOX COMPLETE WITH SOFT. FLEX, POWER SUPPLY, SCART/PHONO CONNECTIONS PLUGS INTO ANY TVINIDEO AND CAN BE WORKING WITHIN MINUTES	
COMPLETE RANGE OF CCTV, COVERT SYSTEMS AUTO-RECORD SYSTEMS, HOUSINGS, DUMMY CAMERAS AND SURVEILLANCE KITS AVAILABLE	
	ORDER TODAY - DELIVERED TOMORROW STORM CPS 30 STANHOPE GROVE MIDDLESBROUGH, CLEVELAND TS5 7SG 01642281158

	1.2ME 5V/ Hoppy drive 2V.
(ex	$1{ }^{19} 9$
ppobine bust catio - \quad each	
	${ }^{4699}$
$\underbrace{\text { anden }}$	quantty discounts avallable
${ }^{\text {DOE mads }}$ - 22	PLEASERING.
	We als buy all forms of electronic
	Lisis 10 below adotress.
${ }^{1495}$	Preme
	AEFOR EUK EUYMC
	EE, COMP
	4 Constable Road,
mopay ame \quad ctiso	
converter leads $£ 1.50^{*}$	Telifax: 01480300819

Radio Modules at Lower Prices than any catalogue, Guaranteed!

The Alternative Oscilloscope

Pico Technology provides an alternative to costly, bulky and complicated oscilloscopes. The ADC range of virtual instrumentation enables your PC to perform as an oscilloscope. spectrum analyser and digital multimeter.
∇ Upto $100 \mathrm{MS} / \mathrm{s}$ sampling and 50 MHz spectrum analysis
∇ A fraction of the price of comparable benchtop DSOs

- Simple Windows based user interface

The practical alternative Connection to a PC gives virtual instruments the edge over traditional

* the most powerful, flexible test equipment in my lab
oscilloscopes: the ability to print and save waveforms is just one example. Advanced trigger modes, such as save to disk on trigger, make tracking
 down elusive intermittent faults easy. Combining several instruments into one small unit means it is lighter and m or e portable. When used with a notebook computer, field engineers can carry a complete electronics lab in their $P \mathrm{P}$.

The simple alternative Virtual instruments eradicate the need for bewildering arrays
switches and dials associated
with traditional 'benchtop'
scopes. The units are supplied with PicoScope for Windows sottware. Controlled using the standard Windows interface, the software is easy to use with full on line help. Installation is easy and no configuration is required; simply plug into the parallel port and it ready to go. We provide a two year guarantee and free technical support via phone, fax or E-mail.
 859

The low cost alternative The Pico range of PC based oscilloscopes work with your PC - anything from a dustbin-ready 8086 to the latest pentium. The PicoScope software utilises your monitor to display data. This gives you a larger, clearer display than any scope, at a fraction of the price.
The savings don't stop there: All those expensive upgrades needed for traditional oscilloscopes: such as FFT maths, disk drives and printers are already built into your computer. The PC has made computing affordable, now Pico has made test equipment affordable too. Seeing is understanding

(gall Ior a FMI.

 Fax 1011954211880 1el 1011951311716Email post © picalech co wh hitp www picolech com Broadway House 149-151 St Neots Road Hardwick Cambridge CB3 7QJ UK

The complete monitoring system

Temperature !The Emannilhae system. from Pico Technology is one of the

Humidity

Light

At the core of the system is the logger. which stores up to 15.000 readings and displays them from each sensor in turn. Reports can be printed on a standalone printer or data sent to a PC for long term storage and graphical analysis using the powerful supplied softuare. EnviroMon for Window's.

The EnviroMon system records data 24 hours a day. 365 days a year, even if the mains power fails. Should a parameter goes out of range, it alerts you with various alarms or a telephone message.

EmuiraMon Starter kit $£ 395$ + vat

Call for full product range and FREE demo disk or visit our web site.

Pico Technology Limited, Broadway House,
149-151 St. Neots Rd, Hardwick, Cambridge, CB3 7QJ UK Tel: 01954-211716 Fax: 01954-211880
E-mail: post@picotech.co.uk http:www.picotech.com

The best things come in small packages

Oscilloscopes are becoming smaller and lighter:
Now Pico Technology brings you the latest development, the osziFOX hand held scope.
Despite its small size, its performance can match that of a service oscilloscope. With sampling rates of up to 20 MSs . even signals in microprocessor circuits can be measured. The osziFOX is ideal for taking measurements in digital circuits. telephone installations. hobby electronics. production line tests and on-the-spot measuring.lt provides the ultimate in portability and flexibility.
As with the rest of the Pico Technology range. the PC link gives the osziFOX the edge: the ability to print and save waveforms is just one example.
Complete price $£ 98.1$! including VAT + P\&P (UK), cables and software included.

Tel: 01954-211716 Fax: 01954-211880

 E-mail: post@picotech.co.ukVisit our web site: www.picotech.com
Pico Technology Limited. BroadWay House, 149-151 St Neots Bol, Hardwick Cambriclen. CB3 701

MAIL ORDER ONLY O CALLERS BY APPOINTMENT

- Efficient quartz controlled microcontroller pulse generation - Full kit with headphones \& all hardware
KIT 847

PORTABLE ULTRASONIC

PEsT SCARER

A powerful 23 kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with in tense pulses via a special tuned transiormer Sweeping frequency output is designed to give maximum output without any specia setting up
KIT 842. \qquad $£ 22.56$
SUPER ACOUSTIC PROBE
Our very popular projec: - now with ready built probe assembly and diecast box. Picks up vibrations amplifies, and drives head phones. Sounds from engines, watches, and speech through walls can be heard clearly Useful for mechanics, instrument engineers and nosey parkers! A very useful piece of kıt. KIT 865. \qquad £29.95

DC Motor/Gearboxes
Our Popular and Versatile DC
motor/Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4.5 V Multi ratio gearbox
 gives wide range of speeds.
LARGE TYPE - MGL £6.95
SMALL - MGS - £4.77

PIC PIPE DESCALER

- simple to build

HIGH POWER OUTPUT

- SWEPT high Power output frequency AUDIO \& VISUAL MONITORING
An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation dissolve existing scale and improve lathering ability by altering the way salts in the water behave Kit includes case. P.C.B, couplıng coil and all components. High coil current ensures maximum effect. L.E.D. monito
KIT 868 \qquad £22.95 POWER UNIT.

SES

- HIGH POWER

DUAL OPTION
KIT 867
LaV...........
Plug-in power supply $£ 4.99$
KIT + SLAVE UNIT.
£19.99

WINDICATOR
A novel wind speed indicator with LED readout. Kit comes complete with sensor cups, and weatherproof sensing head. Mains power unit $£ 5.99$ extra.
KIT 856.
£28.00

\& 4 ENS UNT is

DUAL OUTPUT TENS UNIT

As featured in March '97 issue. Magenta have prepared FULL KIT for thi electrodes excellent new project. All components, PCB 66.50 hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.
KIT 866.... Full kit including four electrodes $£ 32.90$

1000V \& 500V INSULATION

Superb new design. Regulated output, efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848.

MICRO PEsT

 SCARERour latest design - The ultimate scarer for the garden. Uses special microchip to give random delay and pulse tume. Easy to buld reliable circuit. Keeps pets pests away from newly sown areas play areas. etc. Uses power source from 9 to 24 volts

3-NOTE DOORCHIME

 IDEAL BEGINNER な PROJECT Uses SAB0600 chip to produce natural sounding 3-note chime. Adjustable pitch - so that two can be used for front and back doors.Kit includes P.C.B., all parts and instructions. No case or battery
KIT 869.

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

TESTER
Set of 4 spare ev50 6.50 . .
 amplification Full kit include PCB handle Case $\begin{aligned} & \text { search coil }\end{aligned}$.

- KIT INC HEADPHONES
- EFFICIENT CMOS DESIGN
- POWERFUL COIL DRIVE
- DETECTS FERROUS AND NON-FERROUS METAL - GOLD, SILVER, COPPER ETC.
- 190 mm SEARCH COIL
- NO 'GROUND EFFECT'

KIT 815.

SIMPLE PIC PROGRAMMER
 INCREDIBLE LOW
 PRICE!
 INCLUDES 1-PIC16C84 CHIP SOFTWARE DISK, LEAD CONNECTOR, PROFESSIONAL PC BOARD \& INSTRUCTIONS
 Kit $857 \mathbf{£ 1 2 . 9 9}$
 Power Supply $£ 3.99$
 EXTRA CHIPS
 PIC 16C84 £4.84

Based on the design in February '96 EPE article, Magenta have made a proper PCB and kit for this project. PCB has 'reset' switch, Program switch, 5V regulator and test L.E.D.s. There are also extra connection points for access to all A and B port pins

PIC16C84 LCD DISPLAY DRIVER

INCLUDES 1-PIC16C84 WITH DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND 24-CHARACTER 2-LINE LCD DISPLAY

Kit $860 £ 19.99$

Power Supply $£ 3.99$
FULL PROGRAM SOURCE CODE SUPPLIED - DEVELOP YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-LINE $\times 24$-character display, data, all components, and software to include in your own programs. Ideal develpment base for meters, terminals, calculators, counters, timers - Just waiting for your application!
\star Chip is pre-programmed with demo display \star

PIC16C84 MAINS POWER 4-CHANNEL CONTROLLER \& LIGHT CHASER

- WITH PROGRAMMED 16C84 AND DISK WITH SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING -

Now features full 10 CHASE PATTERNS 4-channel chaser software on DISK and

- OPTO ISOLATED
- 4×3 KEYPAD CONTROL
- SPEED CONTROL POT.
- HARD FIRED TRIACS
-4 CHANNELS @5 AMPS
Kit $855 £ 39.95$
LOTS OF OTHER APPLICATIONS

68000 DEvELOPMENT AND DEVELOPMEN TRAINING KIT

- USED WORLDWIDE IN SCHOOLS $\&$ COLLEGES
- FULL FEATURED MONITOR. LINE ASSEMBLER \& CROSS ASSEMBLER DISK
- NOW WITH EXPANDED RAM \& ROM
- FULL 8 MHz 68000 16-BIT DATA B
- FULL MANUAL, DATA COMMS 8

SOFTWARE DISK

- 2 SERIAL PORTS \& EXPANDABLE I/O

KIT 601
$£ 69.95$
\qquad
S
pre-programmed PIC16C84 chip. Easily re-programmed for your own applications. Software source code is fully 'commented' so that it can be followed easily.

EPE PIC Tutorial

At Last! A Real, Practical, Hands-On Series 3-Part Series - Starting March '98

- Learn Programming from scratch
- Uses Re-Programmable PIC16C84 Chip
- Start by lighting an I.e.d. and work up through over 30 tutorials to Sound Generation, Data Display, and a Security System
- PIC TUTOR Board has Input Switches, Output l.e.d.s, and on board programmer

PIC TUTOR BOARD KIT

Includes: PIC16C84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.
KIT 870 $£ 27.95$, Built \& Tested £42.95 Optional: Power Supply - £3.99, ZIF Socket - $£ 9.99$ LCD Display - With Software and Connection details $\mathbf{£ 7 . 9 9}$ LED Display - Including Software ...

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS SOFTWARE
- PIC16C6X, 7X, AND 8 X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP - HEX FILES
- optional disassembler software (EXTRA)
- PCB, lEAD, AlL COMPONENTS, TURNED PIN SOCKETS FOR 18, 28, AND 40 PIN ICs.
> - SEND FOR DETAILED INFORMATION - A
> SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

Kit $862 \mathbf{£ 2 9 . 9 9}$
Power Supply $£ 3.99$
DISASSEMBLER SOFTWARE
£11.75

PIC STEPPING MOTOR DRIVER

INCLUDES: PCB.
PIC16C84 WITH
DEMO PROGRAM,
SOFTWARE DISK,
INSTRUCTIONS
Kit 863 £18.99
FULL SOURCE CODE SUPPLIED. ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS.

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta. Teach-In 7 is $£ 3.95$ from us or EPE Full Mini Lab Kit - $£ 119.95$ - Power supply extra - $£ 22.55$ Full Micro Lab Kit - £155.95 Built Micro Lab - £189.95

MAGENTAAll pricesinclude VAT. Add $£ 3.00$ pEp. Next Day $£ 6.99$

Tel: 01283565435 Fax: 01283546932 E-mail: Magenta_Electronics@compuserve.com

Tel: 01912514363 Fax: 01912522296 Email: sales@esr.co.uk htip: //www.esr.co.uk

EVERYDAY

PRACTICAL
ELECTRONICS

Editorial Offices

EVERYDAY PRACTICAL ELECTRONICS EDITORIAL
ALLEN HOUSE, EAST BOROUGH, WIMBORNE
DORSET BH21 1PF
Phone: Wimborne (01202) 881749
Fax: (01202) 841692. Due to the cost we cannot reply to overseas orders or queries by Fax.
Email: editorial (a epemag.wimborne.co.uk
Web Site: http://www.epemag.wimborne.co.uk
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone. Advertisement Offices:
EVERYDAY PRACTICAL ELECTRONICS
ADVERTISEMENTS
MILL LODGE, MILL LANE
THORPE-LE-SOKEN, ESSEX CO 16 0ED
Phone/Fax: (01255) 861161

BY LEAPS . . .

Perhaps not quite science fiction but. PICs aside, some of the most popular projects we have published in recent years have been the unusual "medical"/brainwave type gizmos. The Mind Machine originally published back in 1991 has been updated three times with the last publication being in the March. April and May 1996 issues. Now we have the EPE Mood Changer, an experimental device that produces Alpha. Beta. Delta and Theta frequencies and should help you to sleep, relax or get your brain in gear.
Our initial tests with the prototype have produced some interesting results and we would like feedback from readers on your experiences with this unusual unit. As always, with these types of devices, it should not be used by anyone who suffers from epilepsy.
We have some other ideas for unusual "medical" type projects which we are sure will fascinate you; so. keep reading, we are working on these.

RETRO

It is fascinating to push the technological frontiers with microcontrollers and the like but, as I have said before, it is also interesting to have some fun with simple circuits and one of the most rewarding areas to do this is in amateur radio. Our Simple Short Wave Receiver will allow you to receive amateur transmissions from around the world using just a few components in a relatively inexpensive project.
Many people use commercial equipment costing hundreds of pounds to communicate with each other across the Globe but the fascination and gratification of receiving these far off transmissions on a home-made simple receiver makes it worthwhile. There is still, in this 300 MHz digital age, much to be said for building your own "radio set" - give it a try - we are sure you will enjoy the results, and you may just get hooked and finish up "working the ether" yourself.

AVAILABILITY
Copies of EPE are available on subscription anywhere in the world (see below), from ail UK newsagents (distributed by Seymour) and from the following UK electronic component retailers: Maplin - all stores throughout the UK (and in S. Africa); Greenweld Electronics; Omni Electronics. EPE can also be purchased from retail magazine outlets around the world.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 26$. Overseas: $£ 32$ standard air service, $£ 49.50$ express airmail. Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East Borough, Wimborne, Dorset BH21 IPF. Tel: 01202 881749. Subscriptons start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus $£ 3.50$ post and packing (for overseas readers the postage is £6.00 to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.
Payment in £ sterling only please. Visa and MasterCard accepted, minimum credit card order £5. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our web site.

Editor: MIKE KENWARD
Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749
Advertisement Manager:
PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller:
PETER SHERIDAN, Wimborne (01202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of com mercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to overseas queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see Shoptalk).
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data, or answer queries, on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interest of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

Constructional Project

> Don't become stressed-out, let this experimental pocket-size "psychiatrist" take the heat out of everyday living.
a PIC in order to do so. There are many ways to generate a sinewave of the required frequency. Digital synthesis was chosen for this project as it is easy to adjust the frequency without associated amplitude variations.
A simplified version of the method is shown in Fig.l. Five D-type flip-flops

Some time ago the author was given an expensive little electronic gizmo that was claimed to reduce "stress". It aimed to achieve this by surrounding the body with an alternating electromagnetic field of the same frequency as electrical signals found in the brain during various stages of relaxation.

Needless to say, this gadget was soon prised open to see what, if anything, was inside. The answer was quite surprising

It contained a PIC microcontroller. which generated and applied a rather jagged synthesised sinewave to an aircored "bobbin" coil. A total of five frequencies were available, selectable with a d.i.l. switch projecting through the front of the unit bearing legends trom "sleep" through to "optimism"

The output of the device was about 300 mV peak-to-peak and the coil had a measured resistance of about 5.50 ohms . so the radiated output was obviousty very small indeed. It wasn't long before thoughts arose as to what might be achieved through the use of increased power!

BRAINWAVE

Brainwaves of various kinds are nowadays fairly well understood. In brief, the brain generates electrical activity with a frequency related to the current mental state, and encouraging production of one of these frequencies is often claimed to induce the associated state.

Fig. 1. Simplified digital sinewave generator using D-type flip-flops.

Various methods of stimulation can be used, by far the most effective being photic stimulation using glasses or goggles fitted with l.e.d.s. Sound is sometimes employed, generally as a "binaural" signal where two slightly different frequencies are played separately through headphones. (See the Mind Machine in the March 10 May " 96 issues of EPE.)
Some of the original brainwave-inducing gadgets sold in the USA offered magnetic field stimulation, so it may well have a useful effect. The frequencies sought fall into four broad bands whose names, frequency ranges and effects are shown in Table 1.
It is obviously possible to construct a suitable magnetic field generator quite cheaply, and it is not necessary to program
are shown connected in series, with the final \bar{Q} connected back to the D input of the first to complete the loop.

Assuming all outputs are zero at the outset, clocking the Mlip-flops will generate a repeating sequence of the output states as shown in Table 2. If four of these outputs are now parallel connected through resistors with suitable value ratios as marked. the output will be the "stepped" approximation of a sinewave as shown in Fig. 1. The fifth output is not used so the highest and lowest output voltages remain the same for two clock cycles to simulate the flatter "tops" and "bottoms".
The frequency of this "sinewave" is one tenth of that from the input clock and the amplitude reaches rail-to-rail peak voltages when not loaded. Resistive loading

Table 1. Brainwave Frequencies and Effects

Name	Frequency	Conditions
Delta	0.5 Hz to 4 Hz	Sleep
Theta	4 Hz to 8 Hz	Creativity, Dreaming
Alpha	8 Hz to 13 Hz	Deep Relaxation, Meditation, Stress Relief
Beta	14 Hz to 25 Hz	Normal alert mental state

WARNING NOTICE

It is known that photic stimulation at Alpha frequencies can cause seizures in persons suffering from Epilepsy. We would therefore also suggest that it is not wise for such people to try this project.

A user who is not a known epileptic, but when using the EPE Mood Changer begins to experience an odd smell, sound or other unexplained effects, shoutd TURN IT OFF IMMEDIATELY and seek professional medical advice.
will attenuate it and may cause a d.c. shift towards one of the supply rails, but will not increase distortion. The combination of Dtype flip-flops in this way is known as a "walking ring" counter, and a ready made five-stage version is available as the CMOS 4018 B i.c.

IN THE MOOD

The full circuit diagram of the EPE Mood Changer is shown in Fig.2. It uses two 4018 B counters. IC2 and IC3. which are connected in series to produce a "sinewave" having twenty clocked steps per cycle.

Clocking is provided by one half of IC1, a 7556 dual timer. connected as an oscillator. The frequency is set by capacitor C2. resistor RI and the "Frequency" control VRI which give a variable clock speed between about 20 Hz and 440 Hz .

The two counters divide this by 20 for an output frequency of $1 H z$ to 22 Hz . Use of a log component for VRI provides reasonably easy adjustment. although it

Table 2. Output States for the D-Type Flip-Flops

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}	\boldsymbol{E}
0	0	0	0	0
1	0	0	0	0
1	1	0	0	0
1	1	1	0	0
1	1	1	1	0
1	1	1	1	1
0	1	1	1	1
0	0	1	1	1
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

has to be used "back-to-front" with the highest frequency at the anti-clockwise end of the scale.

A couple of additions are necessary for IC2 and IC3 to operate correctly in series. To begin with. they are intended to be used as programmable counters. To simplify this their outputs are all Q so that applying any one to the "input". equivalent to the first Data (D) input of Fig. I. will complete the loop for the appropriate number of clock cycles.

To construct a longer loop with two 4018 Bs it is necessary to invert the last output of the first (IC2) before applying it to the input of the second. This inversion is obtained from the second timer in ICI. where a signal applied to the threshold and trigger inputs, pins 8 and 12. appears in inverted form at output pin 9 .

A state can arise where an "illegal" sequence of ()s and is is circulating. A single 4018B has internal circuitry to prevent this but it doesn't always work for two connected in series, so an extra circuit must be included to ensure correct operation.

From Table 2, it will be seen that when both the first and last outputs are high. all the intermediate outputs should also be high. The "micky mouse" logic of resistor R2 and diode DI provides a "high" output only for this state. This is differentiated by capacitor C3 and resistor R3 and used to pulse the "reset" inputs of IC2 and IC3. which causes all the outputs to go high, thereby ensuring that the circuit operates as intended.

The resistor values used for sinewave simulation were chosen for the closest possible approximation using single values from the E12 series resistors. The result isn't perfect, but when viewed on an oscilloscope the outpul looks surprisingly good. especially if a suitahle filter capacitor is used to smooth out the "steps"

Smoothing is not used in this circuit by the way. as it wasn't in the commercial one. It may be that the harmonic content of the "steps" helps to produce the desired effect.

WASHED-OUT

The source of a suitable air-cored coil for the output was initially a problem, until casually mentioned to a washing machine service engineer of the author's acquaintance. To him it was obvious. 230 V solenoid coils!

A scrapped three-way valve was duly provided with three of these coils attached to it. They were simply pressed into place and could be prised free instantly with a screwdriver. Fach had a pressed steel hollow core which could be dismantled simply by twisting the joints

Fig.2. Complete circuit diagram for the EPE Mood Changer.
apart with sidecutters. The photograph shows this.

Subsequent enquiries have revealed that these valves are available almost everywhere as service spares with a single solenoid coil on a valve costing less than $£ 9$. It is worth checking scrapyards first though, as these are even cheaper.

The coil used had a d.c. resistance of about four kilohms. To obtain the maximum output from this from the available supply voltage a "bridge" output stage is used.
This is built with IC4, an OP296G op.amp which has rail-to-rail inputs and outputs. This is a low-power device so when loaded its output will not actually reach the supply rails, so a small amount of input attenuation is needed, preferably through a resistor returned to half the supply voltage.
Loading the generator output with the input of the inverting stage IC4b achieves this. It avoids any shift in the d.c. level of the output, and the resulting attenuation also applies to the non-inverting stage IC4a to give a symmetrical output. For acceptable distortion, loads driven by this stage should be higher than 3.5 kilohms.

Fig.3. Modifying the output stage for higher power.

If higher power is required, the output can be altered as shown in Fig.3. An OP279G is used here as a direct replacement for the OP296G. It can drive rail-torail loads down to about 200 ohms, which may consist of a lower resistance coil or several coils in parallel. A simple alteration to the circuit, provided for on the p.c.b., removes the attenuation of the input signal.

The drawback to this modification is an extra 4 mA in quiescent current, which may be acceptable where a higher output current is required and a suitable supply is available. It also becomes unstable with supplies below 4 V whereas the unmodified circuit operates down to 2 V .

CONSTRUCTION

Construction of the printed circuit board (p.c.b.) for this project is straightforward with the layout of all components, together with full size copper foil master, shown in Fig.4. This board is available from the EPE PCB Service, code 193.

The usual procedure of assembling components in order of physical height. lowest first, is recommended with di.i.l. sockets for the i.c.s. Note that there are

Producing an air-cored coil from a 230 V solenoid coil salvaged from a washing machine three-way valve.
two possible positions for the lower end of resistor R13. For the standard circuit using the OP296G the lower hole should be used as shown. The upper one is for use with the OP279G higher power version as described above.

For a low profile, capacitor C5 is placed horizontally on the board. A dab of glue will help to secure it firmly.

The coil L1 is not required to test the output as this is a voltage that should be
present anyway. With potentiometer VRI temporarily connected it can be checked with an oscilloscope using the highest frequency, or with an analogue meter at the lowest speed.

ASSEMBLY

The unit can be housed in any suitable case of the constructor's choice. The author chose a small black plastic box with an integral compartment for a PP3

Fig.4. Printed circuit board component layout, off-board wiring and full size copper master pattern for the EPE Mood Changer.
battery. The general layout can be seen from the photographs.

Since the device will probably be carried in a pocket whilst operating. some thought was given to making the frequency control easy to operate but difficult to accidentally displace. An edgewise control would work, but these are difficult for home constructors to obtain and fit.
The method finally adopted is shown in Fig.5, where the top of the control knob is level with the surface of the case. It can easily be rotated by a finger pressed against the top but the flush mounting makes it comfortable to carry in a pocket and difficult to alter accidentally.

The coil is secured with a single brass (not steel) screw as shown in Fig.6. A piece of rubber tube is placed over this with a washer at each end. As the top nut is tightened it compresses the tube, causing it to expand outwards and grip the coil.

Fig.5. Suggested method of securing the Frequency control in the case.

Fig.6. Coil mounting details.

CALIBRATION

Calibration of the control can be carried out in either of two ways. If a frequency meter is available it can be connected to the clock signal from ICI. which is present on both the wire links on the p.c.b. This is a clean square wave at twenty times the output frequency so it is easy to measure it and apply the appropriate calibration markings to the control.

Alternatively, the frequency is related to the value of resistance of VR1, so this can be measured with a DVM and used for marking the calibration points. Table 3 shows the values of VR1 resistance against frequency.

Note that frequency also depends on the exact value of capacitor C 2 so this method of calibration depends on this being fairly accurate. The component specified has a 10 per cent tolerance.

Since there is no indication if this unit stops working (!) a means of monitoring the battery voltage is essential. The

The two halves of the project case showing the component positioning. The small board in the case lid is the Low-Power L.E.D. Battery Monitor, to be described next month.
simplest way is to fitt a small moving-coil indicator but these tend to be expensive nowadays.

An alternative solution is to construct the Lom-Power L.E.D. Battery Monitor. to be described in next month's issue, and fit this. It was in fact developed for this project. though its versatility and potential usefulness led to its presentation as a separate design.

The basic EPE Mood Changer circuit can operate from supplies between 2V and 10 V . The upper limit is set by the voltage rating of capacitor C 5 so if this is replaced by a higher voltage type the circuit can be operated up to 15 V . the limit for the CMOS components.

With a 9 V supply it draws about 3.5 mA . It can work from a 3 V supply with a drain of about 1 mA . and operation down to 2 V means that the use of two AAA cells or even a single lithium cell is practicable. At these voltages it still packs greater magnetic "punch" than its commercial counterpart. since it provides several times the output voltage to push more current through many more coil turns.

Table 3. Resistance/Frequency Calibration

Output Freq. (Hz)	Clock Freq. (Hz)	VR1 Resistance (Ohms)
1	20	157.143
2	40	75.171
4	80	34.186
6	120	20.524
8	160	13.693
11	220	8.104
15	300	4.130
20	400	1.397
22	440	0.652

A BETA WAY DF LIVING!

Of course, the ultimate question is "Does it work?"'! Two experiences of the author may be of interest.

On one occasion the commercial version was set to "sleep" and placed under the pillow, putting it also within range of the author's wife. The next day she awoke and immediately commented on a wonderful night's sleep, without ever knowing the device was there!

At a meeting one evening the author felt exceptionally "laid-back", and suddenly realised that most of the day had been spent working on this project with the coil well within range on the workbench although most of the time it had been operating at "beta" frequencies because these are the easiest to view on an oscilloscope.
Much of the effect of such of a device may, of course, stem from the wellknown auto-suggestion effect. If you think it will do you good it probably will, especially if it cost you a lot of money!

Practically speaking, there's no doubt that the brain does generate electrical signals at these frequencies, and it is electrically conductive. Exposing it to an alternating magnetic field must therefore have some induced effect, however minute.

Completed unit showing components installed in the base of the case. Suggested methods for mounting the Frequency control and output coil are given in Fig.5. and Fig. 6.

How susceptible the brain is to such a tiny effect, especially over long periods of time. is probably totally open to conjecture. It may be that practical experiment is the best way to find out.

Any feedback from readers will be very welcome. If it works, and especially if it can be improved. it may become a vital tool for coping with life in this age of stress, disaster and road-rage.

Crownhill Associates Limited

 The Old Bakery, New Barns Road, Ely, Cambs Tel: 01353666709 Fax: 01353666710 email: sales@crownhill.co.uk http://www.crownhill.co.uk

PIC12C508/509

 DEVELOPMENT SYSTEM This integrated development environment offers a unique software development tool for the PIC 12C508 / 509. The package consists of 508/509 in-Circuit Emulator, Consists of 508 dIC in-Cully integrated Programmer, EdICE a fully integratodAssembler with trace functions \& ICE500 Assembler with trace
Tracer/disassembler.
The development system is supplied with MPASM assembler/disassembler The development system is supplied with MPASM assembler/disassemb
and 10 projects, including circuit dıagrams and unprotected source code and 10 projects, including circuit diagrams and unprotected source code
Projects cover subjects from simple sound effect generator through to an Projects cover subjects from simple sound effect generator through to an
accurate Digital Volt Meter, Smoke Alarm. Stop Watch. LCD display driver. Keypad encoder and more

\qquad

Look out for more kits soon!

NEW! PIC PROGRAMMER KIT

 Programs the Popular PIC 16C84, 16F84, 12C50819 and $24 \times x$ serles serial memory devices. Connects to power supply. The kit includes instructions for assembly, circuil diagram and component layout.This handy little programmer is easy to build, taking no
 more than 30 mins to assemble and test. The
Professional quality PCB is double-sided, through-plated with solder resist and screen printing to add etficient assembly. It is supplied with driver software to run in DOS on a 286 PC upwards and under Windows 95 on 486 or Pentium and a
of interesting projects. tips and data sheets for PIC devices, including FREE Assembler and Simulator (requires 9 -pin D-type to 9 -pin D-type cable to connect to serial port of PC). CABLE $\$ 5$ INC. VAT AND DELIVERY
COMPLETE KIT just $£ 15.00$ including VAT and Delivery (UK Only) Or READY BUILT £20.00 INCLUDING VAT AND DELIVERY (UK ONLY)

AMAZING LOW PRICES PIC 84 \& MEMORY

PIC16C84 /04p	
$1 \cdot 10$	£200
11.100	£1.90
101.500	£180
PIC16C620	£1.95
PIC16C621	£2.25
PIC16C622	£2.50
PIC 12C508/509 DIL	
1.10	£1.20
11.50	£1.10
51-100	£1.05
24LC65	
1.50	£1.50
24LC16	
$1-50$	£1.00
PIC Prices exclud	VAT + P\&P

1998 Microchip CD ROM - Packed with information

- All current data sheets
- Programs and Diagrams
- Application notes
- PDF Viewer
£10 inc. VAT P\&P (in UK)

PIC BASIC COMPILER

- Expanded BASIC Stamp I compatible instruction sel - True compier provides faster program execution and longer programs than 8ASIC interpreters
- 12CIN and I2COUT instructions to access external - serial EEPROMs and other I2C devices
- More user variabies
- Peek and Poke instructions to access any PIC - register from BASIC
- Senal speeds to 9600 baud
- In-line assembler and Call suppon
- Supports all most popular PICs

PIC16C55x.6x.7x 8x.92x and PIC14000 micros

- Use with any PIC programmer

Write your PIC programs in BASIC! The PicBasic Compler converts BASIC programs into hex or bi nary files that can be programmed directly into a PIC microcontroller The easy-to-use BASIC language makes PIC programming avallable to everyone with its English-like instruction set
Supplied with Universal PIC CHIP Programmer, con nects to Parallel port of PC and programs all popular PIC micros Complete with programming tooikn Editor Assembler \& Programming software Supplied with sample programs inchading cfrcuft diagrams

PACKAGE with programmer \& PIC 16x84
$\mathbf{C 9 9 . 9 5}+$ P\&P VAT
PIC BASIC withoul programmer or PICA4
$\mathbf{8 4 9 . 9 5}+$ P\&P VAT
http://www.crownhill.co.uk/picbasic

Quickroute Makes it Easy

SPECIFICATION

- Modern user interface with dockable tool bars \& active buttons
- Multi-sheet schemalic capture at the press of a button.
- Power rail \& dara bus support
- 32 Bit mixed mode analogue \& digital simulation
- Support for a range of SPICE MODEL statements.
- Copper flood fill
- Nellist import \& export
- CAD/CAM file import/export. Gerber Viewer.
- PCB Design with 1-8 layer autorouter
- WMF, DXF, \& SPICE file export
- 1000+ Library Symbols
- Engineering Change \& Design Checking

FREE DEMO

Downtoad a free demonstration version from our web site at hitp://www.quickroute.co.uk

30 DAY MONEY BACK GUARANTEE

It's not hard to see why Quickroute is so easy to use! We ve integrated mixed mode simulation, schematic capture, PCB design with autorouting and CAD-CAM support into one integrated environment. Best of all, prices start at just $£ 99.88$ inclusive* for the complete system with support for 300 pins - less than the price of some simulators alone!

Quickroute 4.0 features a modern user interface with active buttons and dockable tool bars. Frequently used tools can appear on floating tool pallettes for quick access, and with tool-tips and on-line help you can be sure of getting information on Quickroute's features fast.

To create a schematic in Quickroute 4.0, simply click on the symbol browser and select and place symbols onto the design area. Use the 'intelligent' wires, power rails and data bus elements to quickly wire up your schematic and simulate the design as required. When completed, simply press a button to capture the schematic, a PCB rats nest will then appear (no messy netlists required!).

Use the multi layer autorouter, and/or
 manual routing to complete your PCB together with copper fill, etc as required. Finally print your design, or create CADCAM files suitable for manufacture (we even include a Gerber viewer for checking).

But it doesn't end there! Quickroute 4.0 includes engineering change for automatic updating of your PCB from the schematic, netlist import \& export so that you can link to other EDA packages (including many simulators), DXF, SPICE, and WMF file export together with over 1000 library symbols.

Call us now and find out why Quickroute 4.0 Makes it Easy!

	Pice	UK inclusve Pice ${ }^{\text {a }}$
QR4 300 Pin	¢79.00	$¢ 99.88$
QR4 800 Pin	\$149.00	£182.13
QR4 Full	§249.00	£299.63

[^0]
FREEphone refal 08007312824

FAX 01614760505 TEL 01614760202 Quickroute Systems Ltd Regent House Heaton Lane Stockport SK4 1BS UK Copyright (C) 1998 Quickroute Systems Lid. All rights reserved. All tradernarks are the property of their respective owners.

Electronics Principles 5.0 'A COMPLETE PC BASED ELECTRONICS COURSE'

If you are looking for an easy and enjoyable way of studying or

 improving your knowledge of electronics then this is the soffware for you.

 uparoce of ou popula alectionss
 कven गore orologe collal and
 huncita naw irghinnotios tsecis fo trine yoy the forming of tomise and eciexfaimens ielfigheres ior a comprahanive hat or upgrose chatos

This solmwars has bean deviloprd to ferch electumics one is wutec to boith the cormolete royles ard the more ocvolasd Ftustent or fraboybs wontiveg dulck revtion and ascess to hiratede of eschonics formuae If is extremey fany to use. Just salect a fopl, which 15 alwhys piesented as a defauit diagram ina biank sceens') and input your own valies Alternatively, use those from any stendard electronics text book to see the results as frequency response curves, calculations, logic staies, voitages and currents eic.

Graphics presentation has been enhanced and speeded-up with new menus and indexing which enables a quicker access and more intormative description of the extended range of five hundred and sixty electronics and mathematics topics.

The PIC16C84 microcontroller hardware and instruction set has been introduced and brought to life through colourful interactive graphics where you can study the architecture of this device by changing the data values to simulate all of the registers, direct/indirect addressing, program/data memory and input/output port configuration. Along with those analogue to digital functions of the PIC16C71. If you would like to leain more about the principles of these popular microcontrollers then it could not be made easier.

Electronics Principles software is currentiy used in hundreds of UK and overseas schools and colleges to support City \& Guilds, GCSE, ALevel. BTEC and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.

Still only £99.95*

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008. sales@eptsoft.demon.co.uk http://www.eptsoft.demon.co.uk *UK and EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return.
Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders shouid be made payable to EPT Educational software.

NET ON THE GRID

Could electric power lines carry Internet data? A new consortium believes so, reports Barry Fox.

Last Ocrober, Nortel and Norweb announced their work on a system which uses mains electricity power lines to carry Internet data. In late March the two companies announced a joint venture Nor. Web, to market the Digital Power Line system around the world.

Nor.Web claims to have received more than a thousand enquiries, which whittled down to forty serious approaches. Now ten companies, including Norweb in the UK, Singapore Power and Edon of the Netherlands have signed agreements to use the technology.

The company certainly thinks it is on a roll. "The rechnology is available today - and will revolutionize the mass communications on the finternet", said Chairman John Beckitt. "It's the most elegant solution. The most significant communication tool since the mobile phone"

Intelligent Junction Boxes

But Nor. Web could still only show a video of the system. It is heing used by children at a school in Manchester, where parent company United Utilities is the local electricity supplier.

Although Nor. Web cannot hook its system into the London mains, there seemed no reason why they could not demonstrate a working prototype on the ring mains in the London building where Beckitt was speaking. Nor.Web's answer on this was revealing. The system relies on intelligent junction boxes which sit alongside the electricity meter and there were still only two working samples, both of which were in Germany.

Nor.Web is long on carch phrases and hyperbole, but short on hard technical fact. Steve Pusey, CEO of Nor.Web, speaks in the kind of sound bites that radio, TV and newsprint editors love. "We have a mission to lead the world. There is a light bulh everywhere. We see a massive opportunity in speeding access to the World Wide Wait". He describes the unit as an "information socket" which decouples the electricity supply from the data.
"The days are not far off", says Steve Pusey, "when every white goods product will have its own Internet address".

Digital Power Line provides a 1-Megabit/second signal both ways into and out of the home. But when quizzed on this, Pusey admits that the IMbit signal must be shared by the two hundred or so homes which are connected to the local sub-station.
"But if there is demand, we just put in multiple bearers", says Pusey.

Nothing, however, can be done to speed Internet access if the bottleneck is at the server, which may be anywhere in the world and connected through overloaded lines.

When yuizzed, Nor.Weh admits that all the two hundred or so homes served by the same sub-station will have access to the same digital bits and bytes. So the data will have to be encrypted for its two-way journey berween each home and the sub-station. There are no details yet of how this will be achieved.
"We are working on the principle that if you build a motorway, people will come", says Pusey, dismissing the rival technologies of ADSL, ISDN, cable
modem and broadband wireless as "all 20 per cent more expensive". Nor. Web says it will have 2,000 homes on trial in the UK by the end of this year, and Pusey promises "mass connection ar low cost". But he can offer no information on the likely price on the intelligent socket, and not even a ballpark figure for monthly tariffs or the cost of transferring dara files.

Last October Nor.Web admitted that it had little chance of selling the system into the USA, because the sub-stations in North America are often pole-mounted, and serve only around fifteen homes. Bur the recent London briefing was paralleled by a similar event in Atlanta, Georgia.
"Although we are focussing on Europe and Asia", says Pusey, "we have two possible solutions to make digital power lines cost effective in America. We may move the sub-station further up the network and if all fifteen homes connect to a single sub-station, giving 100 per cent penetration, it may be cost-effective anyway".

Service Manuals on CD-ROM

MAURITRON Technical Services, who say they are the UK's major supplier of service manuals, now supply their technical manuals as compilations on CD-ROM.

Each CD-ROM contains 25 service manuals for a comprehensive selection of equipment. The current range covers TVs, video recorders, computer monitors and vintage valve wireless sets. Future editions will include manuals for a vast range of test equipment, amateur radio equipment, office equipment etc. Each CD costs $£ 24.95$ plus VAT which, say Mauritron, makes this by far the cheapest method to purchase service information (although printed copies are still available).

Mauritron have a catalogue of the manuals on a 3.5 -inch floppy disk, detailing all the makes and models covered by the CD-ROMs, as well as their range of technical publications. Just send two first-class stamps with your request.

The latest editions and current special offers can also be found on Mauritron's web site.

More information contact Mauritron Technical Services, Dept EPE, 8 Cherry Tree Road, Chinnor, Oxon OX9 4QY. Tel: 01844 351694. Fax: 01844352554.

E-mail: enquiries@mauritron.co.uk
Web: http://www.mauritron.co.uk/mauritron/.

SOLDERING specialists JBC describe their new soldering equipment as being cool! Well, cool at the right moments but stably hot when it needs to be. Their Advanced Series range is said to slash temperature fluctuations from $70^{\circ} \mathrm{C}$ in conventional irons to $30^{\circ} \mathrm{C}$.

Says Robin Smith, JBC's National Sales Manager. "We can operate the Advanced Series at lower temperatures and tests prove it to be 80% more efficient than its nearest rivals".

The maximum working temperature of the series is $350^{\circ} \mathrm{C}$ instead of $450^{\circ} \mathrm{C}$, thus lowering the risk of damage to circuits or components. The irons register when they are in use and in the rest-state temperatures drop dramatically, avoiding tip oxidization. Tips are thus expected to remain in the best possible condition and last up to five times longer than those of conventional irons.

For more information contact JBC Soldering Solutions L.td., Dept EPE, Marshall House, 255 Wellington Road South, Stockport, Cheshire SK2 6 NG . Tel: 01614740299 . Fax: 01614740288.

WEBBED PC SOLUTION

THF PC Solution, the UK company that handles the renowned Ivex CAD software, teil us that Ivex has launched its World-Wide Web Knowledge Base. This data base contains information about the use of Ivex programs suitable for beginners and experienced users. Also included are answers to the most frequently asked questions, and you can use their search engine to seek answers to any other questions you may have.

The Ivex site at http://www.ivex.com also allows you to download free demo versions of WinBoard P'CB, WinDraft Schematic Capture, Spectra Autorouter and other CAD software. The information and service are free.

For those who do not have Internet access, a free demo version of either WinDraft or WinBoard can be obtained by calling The PC' Solution.

Make all enquiries to The PC Solution, Dept EPE, 2a High Road, Leyton, London E15 2BP. Tel: 0181 926 1161. Fax: 01819261160.

E-mail: info(a thepesol.Demon.co.uk. Web: http://www.thepcsol.Demon.co.uk.

Wilmslow has Hart!

WILMSLOW Audio, the UK's largest distributor of loudspeaker kits, components and replacement drive units have announced their acquisition of Hart Electronic Kits. Hart are renowned for the design and supply of kit amplifiers based upon original designs by John Linsley Hood.
The Hart operation, based at Oswestry in Shropshire will be relocated to Wilmslow's premises in Leicestershire. The addition of amplifier kits to the already established loudspeaker kits will enable Wilmslow Audio to expand into new markets and offer a greater product range.

For more information contact Wilmstow Audio Ltd., Dept EPE, 50 Main Street, Broughton Astley, Leics LE9 6RD. Tel: 01455286603 . Fax: 01455286605. E-mail: wilmslow.audio@dial.pipex.com.

Telecoms via Canal

Canal towpaths seem prime territory for routing fibre-optics. By Barry Fox.

Two hundred year old technology is kick-starting the digital revolution. British Waterways has sold GPT's Fibreway the right to lay 1000 km of optic fibre cable under the towpaths once used by horses to pull barges. The fibres make a figure of eight loop round the UK, connecting London, Bristol, Birmingham, Nottingham, Leeds and Manchester.
Fibreway provides "dark" or "unlit" fibre which cable TV and telephone operators can use to carry digital data as light pulses. The loop was finished at Christmas and six companies have signed up. Cable company Telewest is the first to switch on. Says Peter Borer, Telewest's National Network Director, "Over a million people use our cable TV service for phone calls. So far we have had to route their calls over BT or Mercury lines. Now we can use our own network. We can also deliver digital TV programmes from a single play-out centre anywhere in the loop, and offer high speed Internet access with cable modems".

TV and telephone cables are currently buried under the streets. laid alongside railway lines or slung from electricity pylons. Capacity is running out. Britain's canals were built in the late 18th and early 19th century to carry freight between cities. Now 60 per cent of the population lives within 8 km of a canal.

The fibres run 600 mm under the path in reinforced plastics ducts. Amplifiers boost the signal every 100 km . The ducts carry two cables, each with 48 fibres, capable of simultaneously carrying 32,000 phone calls and 400 digital TV programmes. The ducts are wide enough to pull through eight cables each containing 200 fibres.

Says Jane Reynolds, Fibreway Director, "The system is secure because no-one else, like the gas or electricity services, needs to dig up the towpaths".

British Waterways earns a wayleave fee of $£ 0.25 \mathrm{~m}$ a year plus around half Fibreway's profits after spending $£ 50 \mathrm{~m}$ on digging and laying.

Following complaints from some of the 10 m people who walk or cycle the paths each year, Fibreway has held back $£ 0.25 \mathrm{~m}$ of the contractors' fees to ensure that everything is restored to its previous condition. The obligation runs for two years after completion.

SMALLEST OP.AMP

National Semiconductor has introduced the World, smallest integrated circuit, an op.amp so small that the packaged device is about the size of a flake of coarse-ground pepper.

The LMV 321 device is encapsulated in the miniature (surface-mount) SC70-5 package, which measures only $2.0 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ (about $3 / 32$-inch square). This package has previously only been used to house "discrete" devices such as single transistors. For more information, browse National's web site at http://www.national.com.

Cellphones in particular are the driving force and beneficiaries of the latest developments in chip technology - Ian Poole reports.

IT used to be military hardware that was one of the major driving forces behind technological development. This has changed. and much military equipment is now bought off the shelf, and to high commercial standards. This is one indication of the reduction of military budgets.

Other areas of life have become the driving force behind improvements in technology. One is the computer industry. and the other is the telecommunications industry, in particular the cellular telephone sector. Here vast sums of money are being invested to ensure that each manufacturer stays up with the others or ahead of them. This results in a very rapid rate of progress.

Gellphone Origins

In the early 1980s the first analogue cellphone systems were launched. These grew rapidly. but soon the first digital systems arrived. In the UK and in many other countries the GSM (Global System for Mobile communications) was established. It arose from the vast number of analogue systems which were used around the world. It aimed to provide a single system which would enable users to move from one country to the next and still retain the facility to make mobile calls.

Nevertheless. other systems are used in some countries. The USA has based its systems on CDMA (Code Division Multiple Access) technology and many other countries have followed suit.

On the horizon is the third generation system called UMTS (Universal Mobile Telecommunications System). All of these developments have required considerable improvements in technology. In addition to this, the handsets or phones themselves have improved. The first cellular phones either had to be installed in a car, or they were large portable items which could not even fit in the largest pockets. Now most handsets easily fit into a top pocket and are minute by comparison.

To achieve this, circuits have had to be shrunk still further. Current consumption has also been slashed. enabling battery size to be reduced whilst still maintaining the time between charges.

This has resulted in a considerable improvement in the performance of i.c.s in a number of areas, but particularly in those associated with radio frequency circuits. Some years back the levels of integration were comparatively small and the circuits consumed large amounts of current to achieve their performance. Now this has changed. The levels of integration have increased very significantly with a resultant improvement in performance.

I.C. Performance

To illustrate the level of performance that is now being achieved. Siemens have produced an i.c. used for up-converting the signal in a cellular telephone handset. This technique is used to ensure that the noise spreading out either side of the main transmitted signal is kept to a minimum so that the transmitted signal does not interfere with the received signal.

Normally, high performance filters have to be used at the antenna to isolate the transmit and receive paths. This filter or duplexer is expensive as it requires a very high level of performance. Not only this. but like all other filters. it introduces loss and requires the output amplifier to give a higher output. which makes the amplifier more expensive.

Similarly, the receiver input has to the made more sensitive. Again this adds cost to the unit. In a market where enomous quantities are made, costs are all important. Not only is the market fiercely competitive, but even the saving of a few pence can add up over the life of the product and represent a very large sum.

The i.c. which has been developed by Siemens contains the elements of a phase locked loop synthesizer. It contains the down conversion mixer, I/Q modulator for the type of modulation used in GSM phones, two programmable counters, and a phase detector with charge pump. The circuit draws only 45 mA from a supply which can be between 2.7 V and 4.5 V . The i.c. uses bipolar technology and has a transition frequency of 27 GHz , making it ideal for all the cellular phone bands of $900 \mathrm{MHz}, 1800 \mathrm{MHz}$ and 1900 MHz .

The performance of this chip has been optimised for cellphone applications. It uses a phase locked loop principle to overcome one of the main cost items in the cellphone and it shows the advances which have been made in technology over the past ten years or so.

On-Chip Inductors

Another area that has been the focus of a lot of attention is in the creation of on-chip inductors. For many years it has been possible to make very small values of capacitance simply by placing two conducting layers on one another and separating them by a thin layer of oxide. but the successful manufacture of inductors has been rather more difficult.

A number of methods are now available. each with its own advantages and limitations. However, a new method has been developed by Philips in a bipolar process named " silicon on anything" (s.o.a.).

A major component or building block in any cellular phone is the voltage controlled oscillator used to generate the local oscillator signals used in the r.f. path. These have to operate at the same order of frequencies as the phone itself. As cost is of prime importance. along with performance and low current consumption, full integration of the oscillator. including the inductor, is the obvious solution. This ensures the performance is sufficient, and reduces the cost as it reduces the need for external components, particularly the inductor which is inconvenient to construct.

In the manufacturing process, the passive components are fabricated on one side of the chip. This includes the inductor which is manufactured from a two layer aluminium stack with a thickness of $3.5 \mu \mathrm{~m}$. Once complete, this side is bonded onto a substrate, which is usually glass because it acts as a good insulator with low levels of loss.

Next the exposed side of the silicon is etched back so that bond pads can be connected to the buried oxide layer. Finally, the active device, an $n p n$ transistor is fabricated in the epitaxial layer of the silicon. This is sandwiched between the oxide layer and the glass.

To reduce current consumption the transistors operate at less than $25 \mu \mathrm{~A}$. This means that the output requires buffering. Even so. the overall chip consisting of the oscillator and the programmable divider chain is capable of operating at up to 180 OMMHz and consuming only about $8(0) \mu \mathrm{A}$. Its top frequency means that the process can be used for the PCS180) and DCSIO(X) cellular phone systems as well as the $9(0) M H z$ GSM band.

Triple Band

Around the world there are now three main cellular phone bands, $9 \times(\mathrm{MHHz}$. 180 MMHz and 1900 MHz . Many phone manufacturers seek to supply phones to markets all around the world. To make manufacturing more cost effective, it is useful to be able to adopt the same basic design, and tailor it to the individual region.

To address this problem Rockwell Semiconductor Systems have launched a chip set to do just this. They now claim that they are one of the few manufacturers able to supply the gallium arsenide r.f. chips along with the bipolar mixed signal sections, plus the complex digital areas.

The idea is that some alteration of the external sections is needed to accommodate the different bands, and there is a software change to accommodate the different signalling protocols used by the various systems.

SIMPLE SW RECEIVER

ROBERT PENFOLD

$\star 1 \cdot 6 \mathrm{MHz}$ to $5 \mathrm{MHz} \star 5 \mathrm{MHz}$ to $15 \mathrm{MHz} \star 15 \mathrm{MHz}$ to $30 \mathrm{MHz} \star$

Plug-in to the world of short wave listening with this easy-build regen-receiver.

|
F YOU take a look through some of the current short wave receiver and equipment catalogues, you can hardly fail to notice that all the short wave sets on offer are pretty complex. Virtually all the receivers now have a built-in microprocessor to control everything. together with digital displays. synthesised tuning. multitimers. etc. This is just the relatively inexpensive portable sets. and the "proper" communications receivers are even more complex with features such as external computer control. digital signal processing, and just about every other feature imaginable!

We have probably reached the stage where it is not possible for the home constructor to genuinely compete with sophisticated ready made receivers, but this is not to say that it is not possible for the enthusiast to enjoy building and using short wave receivers.

The more traditional forms of receiver will not give the same level of performance as a ready made set costing hundreds or thousands of pounds. but sets such as these are still capable of receiving numerous transmissions from all over the world. Whether you are looking for a low cost introduction to short wave listening. or have used expensive equipment and would like to try something more challenging. a basic do-it-yourself receiver has a lot to offer.

IN RANGE

The simple short wave receiver featured here covers a frequency range of about 5 MHz to 15 MHz , which includes the most popular short wave broadcast bands. It is possible to plug in alternative coil units which bring in coverage of the low frequency bands around 1.6 MHz to 5 MHz . and the high frequency bands from 15 MHz to 30 MHz .

Results on the high and low frequency bands might not be very good with a simple short wave receiver of this
type, and results on the high frequency bands are very much dependent on good propagation conditions whatever receiver you use. However. it costs little extra to try these bands, and some interesting transmissions may well be picked up.

Power is obtained from a nine volt battery, and the receiver can be used with either a long outdoor aerial or a short indoor type. It will actually work quite well using a short aerial, making the receiver suitable for portable operation.
either side of the station you are trying to receive. A short wave receiver needs good selectivity so that it only receives the transmission you want to listen to. and not the two signals on the adjacent channels as well.

STRA/GHT RECEIVEA

Although a superhet design has definite advantages. it is relatively complex and expensive. Also, without the right test equipment it can be difficult to get the finished receiver set up and operating efficiently

Consequently, the design featured here is a t.r.f. (tuned radio frequency) set. or "straight" receiver as they are also known. A receiver of this type operates by providing all the gain and selectivity at the

Fig. 1. Block schematic diagram for the Simple SW Receiver.

BACK TO BASICS

Most radio receivers are of the superheterodyne (superhet) variety. and this means that the incoming transmission is first converted to a fixed frequency. This is known as the intermediate frequency (i.f.). and for many receivers it is at a relatively low frequency of about 455 kHz .

After amplification and filtering, the signal is demodulated to recover the audio signal, and after further amplification it is used to drive a loudspeaker or headphones. The point of this round-about method is that it is easy to obtain high gain and a narrow bandwidth at the fixed intermediate frequency.

For a shor wave receiver the narrow bandwidth provided by the filtering is every bit as important as the gain provided by the amplifiers. The short wave bands tend to be very crowded. and there are often quite strong signals in the channels
reception frequency. with no frequency conversion and intermediate frequency stages being used. Fig. 1 shows the block diagram for the Simple SW Receiver.

The aerial picks up the radio waves from the transmitter and converts them into minute clectrical signals. An earth connection can boost signal levels. but this is optional and does not help much at higher frequencies.

The input signal from the aerial is fed to a tuned circuit, and it is this that provides most of the receiver's selectivity. The tuned circuit is a parallel resonant type which just consists an inductor connected in parallel with a capacitor. The capacitor is a variable type. and this is the Tuning control.

At most frequencies this arrangement has a low impedance and it effectively short-circuits the input signals to earth. At and close to its resonance frequency the
impedance is much higher, and signals at these frequencies are able to pass through to the subsequent stage.

This stage is a buffer amplifier which ensures that the tuned circuit feeds into a high impedance. A low load impedance would tend to broaden the response of the tuned circuit, giving poor selectivity.

The next stage is an amplifier, and it is this stage which provides much of the receiver's gain. The selectivity provided by a single tuned circuit operating at a high frequency is not very great, and without assistance it will not give usable results.

Fortunately. there is a simple ploy which can be used to both boost the gain of the circuit and greatly improve its selectivity. This is to apply positive feedback from the output of the amplifier to the input of the tuned circuit. In this context the positive feedback is generally known as "regeneration."

Fig.2. Full circuit diagram for the Simple SW Receiver. The numbers inside the unshaded area are for the plug-in r.f. transformer coils and those outside are for the 5-pin DIN socket.

REGENERATION

Feeding some of the output signal back to the input results in an effective boost in the input signal, and a much stronger output signal. However, the boost is greatest at the centre of the receiver's passband where the gain is highest, and there is the most feedback.

Slightly off-tune there is relatively little feedback, and only a small boost in gain. It is this factor that improves the selectivity of the receiver as the amount of regeneration is increased. The improvement is much greater than one would probably expect.

Unfortunately, advancing the Regeneration control slightly too far results in the set breaking into oscillation, making proper reception impossible. In order to obtain good results from a I.r.f. receiver it is essential that the regeneration level is kept just below the point at which the circuit breaks into oscillation.

AUDIO RECOVERY

The output from the amplitier is fed to a conventional a.m. (amplitude modulation) demodulator circuit. With amplitude modulation the strength of the radio signal varies in sympathy with the audio input voltage.

The average voltage in the radio signal is always zero, because the positive half cycles are cancelled out by negative half cycles of equal value. Half wave rectifying the signal removes one set of half cycles, and the average voltage then varies in sympathy with the audio modulation voltage.

Some lowpass filtering smoothes the signal and leaves a replica of the original audio signal. After some further amplification by a single stage audio amplifier the signal is fed to a pair of headphones.

CIRCUIT OPERATION

The full circuit diagram for the Simple SW Receiver is given in Fig.2. The tuned circuit is formed by the main winding of r.f. Iransformer Tl and variable capacitor VCI. The latter is the Tuning control.
The acrial signal is coupled into a tapping on TI 's main winding, but a much more loose coupling is needed when using a long aerial. This is achieved by connecting the long aerial to SK2 rather than SKI, so that the aerial is coupled to Tl via low value capacitor C3.

A j.f.e.t. transistor TRI acts as the buffer stage for the tuned circuit, and it is used in a conventional source follower circuit (the f.e.t. equivalent of a
bipolar emitter follower stage). Capacitor C4 couples the output of TR1 to a simple common emitter amplifier based on transistor TR2. Capacitor C5 couples some of TR2's output signal to variable attenuator VRI, and from here it is coupled back to the input of the circuit by way of a small coupling winding on TI.

There is an inversion of the signal through TR2, but the phasing of T1 is such that it provides a further inversion so that the required positive feedback is obtained. VRI controls the amount of feedback applied over the circuit, and it is, of course, the Regeneration control.

AUDIO DETECTOR

Diodes D1 and D2 are fed with the main output signal from TR2, and these form a conventional a.m. demodulator circuit. Germanium diodes are preferable to the more common silicon types in this application, due to the lower forward voltage drop of germanium diodes. Capacitor C7 provides smoothing at the output of the demodulator, and Volume control VR2 provides the load resistance.

Capacitor C10 couples the audio signal from VR2 to the input of a second common emitter amplifier (TR3). This provides sufficient drive for a pair of
medium impedance headphones or a crystal carphone.

The current consumption of the circuit is typically about 10 milliamps, and a PP3 battery is just about adequate. If the set will receive a lot of use it would be more economic to use a higher capacity battery. such as six HP7/AA size cells in a holder.

CONSTRUCTION

Stripboard is not really ideal for a project of this type, but acceptable results can be obtained provided a sensible component layout is used. The component layout shown in Fig. 3 gives good results, and unless you know what you are doing it is advisable to use this design rather than trying your own custom printed circuit board or other method of construction. Details of the breaks in the underside copper strips are also shown in this diagram.

Some of the breaks may seem to serve no useful purpose, but without them there is a risk of problems with stray coupling via the capacitance between the strips. Some of the breaks effectively remove unused lengths of copper strip, and the stray coupling that they might otherwise introduce.

Construction of the circuit hoard follow: normal lines. with a board of the correct size being cut out using a hacksaw, and the breaks being made in the copper strips. Drill the two holes for the board": mounting bolts next. A diameter of 3 mm is suitable for 6BA or metric M2.5 boits. Plastic stand-offis do not generally work well with stripboard, and it is better to use bolts plus spacers about 0 mm long.

Next the components are fitted to the board, being careful to fit the electrolytic capacitors and semiconductors the right way round. The germanium diodes used for D1 and D2 are more vulnerable to overheating than ordinary silicon diodes, and extra care should therefore be exercised when soldering them in place. It is not essential to use a heatshunt. but complete eath soldered joint reasonably quichly.

Mylar capacitors are the best choice for C4. C6. C7. and CII as these have relatively long leadout wires. and can readily accommodate various lead spacings. Fit single-sided solder pins at the points where connections to the controls and sockets will be made, and generously "tin" the tops of the pins with solder. Do not overlook the single link-wire just to the right of RI.

pLUG-IN COILS

A Toko r.l. transformer is used for TI and has 0.15 inch pin spacing which makes it difficult to use with ().1 inch matrix stripboard. The transformer is therefore wired onto a 5 -way (180 degree) DIN plug (PLI) and connected to the component board by way of a printed circuit mounting DIN socket SK4. This socket has its pins on a ().I inch grid. and it therefore fits onto the stripboard without difficulty.

Fig.4. Pin connections from transformer T1 to the 5-way (180 degree) DIN plug.

Fig.3. Stripboard component layout, interwiring and details of breaks required in the underside copper tracks. Note ALL copper breaks shown must be made.

An advantage of this method is that it enables coils for other ranges to the used by simply unplugging the existing coil and plugging in a different one. For the low frequency bands a Toko KANK3333R coil is required. and for the high frequency bands a Toko KANK3335R should be used.

Wiring the coils to the DIN plug is a little fiddly, but is not very difficult. Only the piece of the plug which carries the pins is required in this case, and the entire shell assembly can be discarded.

Start by "tinning" the tags of the DIN plug and the pins of the coil with plenty of fresh solder. Fix the plug to the worktop using Bostik Blu-Tack or Plasticine, and then solder pieces of 0.56 mm dia. (24 s.w.g.) tinned copper wire to the five tags.

Use pieces about 50 mm long and then trim them to a length of about 10 mm or so. It might seem easier to simply solder 10 mm pieces of wire to the plug in the first place, but it is difficult to fit such short pieces of wire as they heat up very rapidly with the heat from the soldering iron.
"Tin" the ends of the wires with solder. and then form them so that they match up nicely with the pin arrangement of the r.f. transformer coils. It should then be quite easy to connect the wires to the pins of the coils. The interconnection details are shown in l:ig.4.

To complete the plug-in coil unit. add the short link-wire which connects one of the pins to one of the tags on the metal screening can of the coil. If desired, some insulation tape can be used to cover the connecting wires to give a neater appearance to the finished coil unit.

Finished coil unit plugged into the right-angle p.c.b. mounting DIN socket.

ASSEMBLY

An all-metal case is preterable for a project of this type, and an instrument case about 200 mm wide will comfortably accommodate everything. It is important that the wiring to variable capacitor VCl and potentiometer VRI is kept as short as possible, and this largely dictates the front panel layout of the receiver.

Controls VCl and VRI must be mounted on the left hand section of the front panel. and the circuit board is mounted on the base panel of the case with the coil holder socket SK4 close to tuning capacitor VCl. Headphone socket SK5 and the other controls are mounted on the central and right hand section of

Layout of components on the completed stripboard. The lower section area is used for the moutning bolts and 6 mm spacers.
the front panel. The Acrial and Earth sockets SK1 to SK3 are fitted to the rear panel.

The component specified for VC1 has an unusual method of mounting, which requires a central 10 mm diameter hole for its control shaft, and three holes of 4 mm in diameter for the short 4 BA mounting bolts. It can be difficult to accurately position the small mounting holes, but adequate precision can be achieved with the aid of some careful measurement. Alternatively, many find that using a paper template made with the aid of the capacitor itself gives accurate results.

The mounting bolts must be short countersunk types. Bolts more than a few millimetres long will penetrate too far into the component, possible damaging the metal plates (vanes).

It is not essential to use the specified component for tuning capacitor VC1. Any "air-spaced" variable capacitor having a maximum value of around 30 op to $f(K) \mathrm{p}$ should work well. If you can obtain a surplus variable capacitor having suitable characteristics it should be very much cheaper than the specified component.

A large control knob must be fitted to the control spindle of VCI. This covers over the mounting bolts and makes accurate tuning slightly easier.

INTERWIRING

To complete the unit the point-to-point wiring should now be undertaken. and this is also shown in Fig.3. Capacitor C3 is connected directly across the tags of the aerial sockets SK1 and SK2. There should be no difticulty in soldering it in place provided the ends of the leadout wires and the tags of the sockets are "tinned" with solder first.

A 3.5 mm stereo jack socket is used tor SK5, but as the phones are wired in series and connected monophonically. no connection is made to the "earth" tay on the socket. SK. 5 must be an insulated type or one of the phones with be short circuited. Suitable sockets can be difficult to obtain. and the alternative used on the prototype is to use a standard (1/4inch) jack socket plus an adapter to conneet this socket to the headphones.

The headphones must be a medium impedance type, such as those sold for use with personal stereo units. The circuit will also work with a crystal earphone, and SK5 would then have to be a mono 3.5 mm jack socket. The rest of the wiring is very straightforward, but remember to keep the wiring to VCl and VRI as short as possible.

It can be a bit tedious to keep removing and replacing the screw-on top section of the case if you want to change bands (and therefore coils) quite often. The traditional solution is to cut out a section of the case and then hinge it, so that easy access to the coil holder is provided. An alternative is to modify the case by adding some pieces of springy metal to make the top section of the case a clip-on type.

IN USE

You may like to try using more elaborate aerials later on, but initially a short aerial will suffice. Either use a few feet of multi-strand connecting wire attached to socket SK1, or a somewhat longer aerial connected to SK2 (e.g. about 10 to 15 metres of connecting wire strung around the loft). An earth connection will provide a worthwhile improvement in results on the low frequency bands. but is not likely to have any affect on the higher frequency bands.

If you would like to try using an carth connection, a bare metal plate or pipe pushed into the ground is all that is needed. In theory, the bigger the plate or pipe the better, but an area of around 0.25 square metres will provide good results. The plate or pipe is connected to SK3 via a lead that should be no longer than absolutely necessary.

Start with the Volume control VR2 well advanced and Regeneration control VRI well backed off. It will probably be possible to receive a few stations, but the sensitivity and selectivity will both be quite low. Advancing VRI should provide

Completed Simple SW Receiver showing positioning of the circuit board and offboard components. Note the aerial and earth sockets are mounted on the rear panel.
much better results, but advancing it 100 far will result in whistling sounds of varying pitch (heterodynes) as the receiver is tuned across stations.
The optimum setting is the most clockwise adjustment that does not cause oscillation and produce these heterodynes. It is not necessary to readjust VRI each time the tuning is altered, but a large change in the tuning will require slight readjustment of VRI.
There should be no difficulty in locating the broadcast bands because they contain what are likely to be the strongest stations. In between the broadcast bands there will be various strange noises. which are mostly data transmissions, navigation beacons, etc.
It should be possible to receive some broadcast stations at any time of the day
or night, but reception conditions vary according to the time of day, the time of the year. and other factors. Results will therefore be somewhat variable, and will not necessarily vary in a predictable fashion. Over a period of time a number of European stations should be received, together with a lesser number of stations from further afield:

Techniques ACTUALLY DONG ITY by Robert Penfold

From the theoretical point of view, there is no fundamental difference between power semiconductors and ordinary low power devices. Power transistors and other high power semiconductors are able to handle higher voltages and current but are otherwise the same as their low power equivalents.
When actually using high power semiconductors, the situation is very different, as it is usually necessary to help them get rid of the substantial amounts of heat that they generate. There are some exceptions to this, and some circuits use power devices that dissipate average power levels that are not high enough to generate much heat. This is usually where a circuit operates intermittently at high currents. A low-power component could handle the average power levels, but would be "zapped" by the high current pulses. In such cases power semiconductors are used in very much the same way as low power types, but the situation is very different when there is some excess heat to deal with.

Clip-Ons

Although a power device may be able to handle powers of 100 watts or more, it can only do so with the aid of a suitable heatsink. A heatsink is basically just a piece of metal that acts as a heat-fin and helps to conduct heat from the component and radiate it into the surrounding air. The power ratings quoted in data sheets tends to be rather optimistic and often assume that the device is mounted on an idealised "infinite" heatsink. These power levels are not quite attainable in practice no matter how large the heatsink used. If operated at high powers with no heatsink the average power device has a life expectancy of less than a minute, and possibly just a few seconds.

By no means all circuits use power devices close to their maximum ratings. In many cases the power dissipation is no more than a watt or two, and quite a small. heatsink will then suffice. The larger component catalogues list a number of small heatsinks that either clip onto the heat-tab or are secured by a single bolt. When using a heatsink of this type there are two things you have to be careful to get right.

Power semiconductors take a number of different physical forms, and you have to be careful to obtain a heatsink that is physically compatible with the device you are using. Probably the most common form of encapsulation for power semiconductors these days is the TO220 type, and most of the smaller heatsinks are designed for devices that have this style of case. There are other encapsulations in common used though, including the smaller TO126 variety. The component list of the project you are building should make it clear if a heatsink for something other than a TO220 case is required.

Size is Important

The other point to watch is the power rating of the heatsink you use. If you look in a component catalogue you will notice that each heatsink has a rating of so many degrees per watt. This is a measure of the temperature rise that will be produced per watt of power that is applied to the heatsink. The important point to realise here is that the larger the heatsink the lower its rating.

A heatsink having a rating of five degrees per watt is therefore twice as efficient as one that has a rating of 10 degrees per watt. The salient point here is that it is all right to use a heatsink having a lower rating than the one specified in the component list, but not one having a higher rating. For example, a heatsink rated at 7.5 degrees per watt is an acceptable substitute for one rated at 10 degrees per watt. On the other hand, a heatsink having a rating of 10 degrees per watt
could not safely be used in place of one having a rating of 7.5 degrees per watt.

Of course, there may be physical considerations to take into account, and in general the lower the rating in degrees per watt the greater the physical size of the heatsink. Using one having a slightly better rating is unlikely to produce any problems, but where space is strictly limited it is advisable to measure up carefully to ensure that there is sufficient space for the heatsink. Using a heatsink having a grossly excessive rating is not usually a practical proposition.

When a power device is used at very high power levels it requires a large heatsink, which is usually quite elaborate with numerous fins. Heatsinks of this type can be quite expensive, and sometimes cost more than the semiconductors they are used to cool. Do not be tempted to use a heatsink having an inferior rating to save money. To do so would almost certainly result in the destruction of expensive semiconductors, and it could even be dangerous. Components that overheat clearly represent a fire hazard, and it is not uncommon for seriously overheated semiconductors having plastic cases to explode.

The Go-between

The metal heat-tabs or cases of some modern power devices are electrically isolated from their terminals. This makes life very much easier for the constructor as it avoids problems with unwanted connections from the power device to earth via the device's metal case or heat-tab. This is unlikely to be a problem where a small clip-on or bolt-on heatsink is used, but it is often problematic when a large heatsink is utilised. The heatsink is then mounted on what will usually be a metal case, and the case is normally connected to the zero volt supply rail.

Sometimes the case or heat-tab of the power device is connected internally to a terminal that connects to the earth rail anyway. This does not seem to happen very often though, and in most cases the case or heattab connects to the worst possible

Various power transistors. From left to right the case styles are TO3, TO126 and TO220.

Fig. 1. Method of mounting a power transistor.
Fig. 2 (right). Exploded view of Fig. 1.
part of the circuit. you usually find that mounting a power device direct on the heatsink produces something like a short circuit on the output of a power amplifier or a short circuit across the power rails of the equipment.
In order to avoid disaster in such cases the power device must be reliably insulated from the heatsink. Insulating kits for all the popular types of power semiconductor are readily available. These kits differ slightly in points of detail, but they all insulate the component from the heatsink in the same basic manner. Fig. 1 shows the basic scheme of things, and Fig. 2 shows an exploded view of the assembly. These diagrams show the arrangement used for a plastic power device such as one having a TO220 encapsulation. Things are much the same for components that have a metal TO3 style case, but two mounting bolts are then used.
On the face of it, an insulating washer between the power device and the heatsink is all that is needed to insulate one from the other. Matters are not quite as simple as that because the metal mounting bolt or bolts provide an electrical connection between the two. Consequential, plastic bushes must be used to insulate the mounting bolt or bolts from either the heatsink or the power device. In Fig. 1 the plastic bush is insulating the bolt from the heat-tab. Using the bush on the underside of the heatsink to insulate the bolt from the heatsink would be equally effective, but is not the method generally used.

The insulating washer must be very thin so that it enables heat to easily pass-through to the heatsink. Originally these washers were always made from mica, which is a very hard and brittle material. Mica washers work well enough, but they must be handled very carefully as their thin and brittle nature makes them very vulnerable to physical damage.

Mica washers are often used in conjunction with heatsink compound. This is a white greasy substance that is normally sold in large syringes, and its purpose is to ensure a good thermal contact between the power device and the heatsink. A small amount of the compound is smeared onto the underside of the power device, and it is important to use nothing more than the thinnest of smears. Plastering the underside of the component with anything more than this is likely to be counterproductive. It is also likely to be extremely messy.

Flexible Friend

The modern alternative to a mica washer is one made from plastic. These are in many ways the opposite of mica washers as they are generally made from a soft and flexible rubberlike plastic. This brings two big advantages, one of which is that these washers are very tough and do not need to be handled with "kid gloves". The other is that they obviate the need for any heatsink compound. The
point of using a heatsink compound is that it fills in any gaps if the underside of the power device is something less than perfectly flat.

As it is made from a soft material, a plastic washer tends to fill in any slight contours in the underside of the power device, making any heatsink compound superfluous. Some of these plastic washers have a built-in insulating bush, which is supposed to render a separate insulating bush unnecessary. in practice I have not usually found these to be every effective, and using a separate bush is the safer option.

As pointed out previously, there will often be dire consequences if the insulation is not fully effective. After fitting any power device that has been insulated from the heatsink it is essential to use a continuity tester to check that it is genuinely insulated from the heatsink. This is particularly important when using mica washers, as they can be difficult to get accurately in place and working properly. Do not simply switch on and wait to see if smoke starts to rise, because it probably will!

A TO220 transistor together with both mica (left) and plastic washers and a plastic bush.

Readers: Please mention

EVERYDAY PRACTICAL
 ELECTRONIES

when replying to advertisements.
Companies: For all your advertisement requirements please contact Peter Mew on 01255861161

More than

0025 5;

Electronic

know how to get their

from their usual manufacturer for a

DO YOU?

STOP WASTING YOUR MONEY! CALL NOW: 003536170170

© 0035361701170 FAX 701164

Don' ${ }^{\prime}$ just testidte

 Componinen Analyser
 An incredibly versatile unit that will

 identify almost any transistor, MOSFET, diode or LED as well as identify pinouts! It will even measure transistor gain. Just

DCASO

Bipolara MosFET Diodes LEOB

DCA50 apply the colour-coded gold plated test clips in any order and press the button. Fits in the palm of your hand. Supplied with battery and manual.

DTA30 Transistor Analyser

The user can connect any bipolar transistor to the three test clips in any configuration and the DTA30 will verify device operation and identify all three leads as well as the transistor type (NPN/PNP).

P-ChanneI MOSFET RGB

Diode Junction RGB룰 $\mathrm{F}-\mathrm{K}$

NPN Transistor RGB $=\mathrm{BCE} \quad \mathrm{HFE}_{\mathrm{FE}}=235$

HMA20 MOSFET Analyser

A truly unique instrument that will verify the operation of MOSFETs. Of course, it will identify the three leads and the MOSFET type too.

DCH10 Diode Tester

A simple device that will test and identify the leads of diodes, zeners, LEDs and other semiconductor junctions. It will even illuminate an LED under test regardless of the connected orientation. The DCH10 can identify open, short and normal semiconductor junctions.

All units feature auto power-on and auto power-off and are supplied with an operation guide and long life battery. Replacement batteries available.

You can now order by credit card, cheque or postal order, remember there's no VAT or $\mathrm{P}+\mathrm{P}$ to add, what you see is what you pay! Goods are normally despatched within 24 hours and are guaranteed for $\mathbf{1 2}$ months following receipt of order. Government and educational establishments qualify for 30 days payment terms. For delivery outside the UK please add $£ 5$.

Win a Peak DTA30 Transistor Analyser

The DTA30 will test and identify the type ($n p n / p n p$) and the leads of any bipolar transistor connected to it.

Every month Peak Electronic
Design Ltd will be giving a
DTA30 to the author of the best
Readout letter published.

* LETTER OF THE MONTH *

WHAT COMPUTER?

Dear EPE.

I have a problem I am almost at my wit's end with and would appreciate any help or advice you could give me.

About 15 years ago, as a hobby, I did machine code programming on Z80a and similar chips, concentrating mainly on strategic games such as chess, draughts etc. In the intervening years, fate and real life put other priorities in my path and 1 neglected this hobby.

The problem is that I now find myself with space, time and inclination to pursue this subject once more, but am bewildered by the medium. There is no Spectrum QL or BBC. When I ask "experts" about programming I am told about Turbo, Pascal and C. If I mention assembly language. people think that I'm building my own computer.
Having become unemployed for the first time in 10 years, and asking about courses on computing, I find the same attitudes and blankness. Surely bespoke code programming is always capable of being more efficient than artificial higher level languages, no matter what the field of implementation.
So I am left with the questions: What PC should I buy? What chip? Which books? Which magazines? Are there any courses leading to recognised qualifications. Are there any set-piece exercises I can do to prove my ability? Is that ability still valid?

Hugh Smith,
Corby, Northants
You are not the first reader to express similar puzzlement. First. let me comment that I am not qualified to answer your questions as posed! They are best addressed to a magazine which specialises in computers and computing. As to which magazine to approach is a subject for which a plethora of answers exists - you are advised to browse the bookshelves of a major newsagents and purchase several that take your eye and approach the one which appeals to you most.
I can. though. offer information on the migratory route which I took from early beginnings in the mid-to-late '70s to the PCS I use now. In fact, the choice now is. in essence, much easier to make than it was in the early days since today's machines are all "compatible", unlike those at my beginnings.

Twenty years or so ago, the computers available were, as you describe, such
machines as the Spectrums, BBCs. PETs. VICs, Z80s, Apples and so on. By and large, none of these machines could be run with software from the others; cuen the disk formats were different and were not interchangeable. The choice of machine was, for many people, a matter of pot-luck.

In those davs, one had to choose between utterly different operating systems, now the choice is as easy as choosing a car or TV or washing machine! You choose on price, reputation. quality and extra facilities offered - in all other respects they operate on the same principles.
I learned compuling on a Commodore PET. a 32 K machine for which I first used two casselte recorders for data slorage. before acquiring a iwin-floppy disk drive. Including a 9-pin dot matrix printer the whole lot eventually cost around $£ 3(100)$. Through this system I discovered how to use Commodore Basic and eventually how 10 program in 6502 machine language. I learned the hard way - trial and error. In doing so, I also learned economy of coding and the efficiency in running lime that could be achieved with 32 K running at 1 MHz . Coding economically remains a benefit even today when programming PIC microcontrollers. for example (IK of programming space!).

By the midllate 80s I had been exposed to PC computers in the form of the Amsirad 1640. This ran at 4 MHz . had 640 K of memory and a 20Mbyte hard disk. It wias absolutely no problem whatsoever to change from one Basic dialect to several others (GW-Basic. QuickBASIC and QBasic), nor from 6502 to 8086 machine code language (8086 is still recognised by Pentium processors). The logical thinking required remained the same, and there were more commands to use. Minor grammatical differences were insignificam. The improved speeds and capacity, though, were highly significant and beneficial. So too was the ability to purchase software that was compatible with all PCs

The same remains true lodav. I now have a two-year old Pentium Dell with 1.2Gbye hard disk. CD.ROM drive. 120 MHz running speed and I6Mb memory. Everything learned from the previous machines is still valid. and my capabilities are enriched by the various enhancements. However. for all the options offered by the Windows 95 operating system soffware, for situations when I wish to create my own software. I do not use Window's at all, but operate from within the DOS (disk operating system) function - whose use is much like
that which vou experienced with your early machines.

Whilst the choice of PC manufacturer and model open to you now is not something I shall presume 10 advise you on, you should be able to buy an excellent new machine for well under f 1000 , perhaps even below $£ 600$. You might also consider buying second-hand, and at a fraction of the original cost price (a colleague has recently bought an excellent machine for £50). but do buy from a repulable source so that you have some sort of safeguard if the machine proves to be defective.
If you are intent on buying new. ensure that the computer is described as PC. compatible, has a type 80486 or Pentium processor the latter being better and more recent - awoid the earlier 80386 processor. it's too ancient now), a hard disk having at least 1.2 gigabytes of space $(14 G b$ are just arriving on the scene). at least 16 megabytes of RAM 164 Mb are commonplace), a 3.5 -inch floppy drive 15.25 inch are obsolete), a CD-ROM drive having mulliple speeds, and that the operating sustem has Windows 95 installed (avoid Windows 3.1. it is well superseded indeed. even' 95 is aboul to be replaced by Window's 98 in the next few months). Note. though, that each update always retains compatibility with earlier versions. and you will be able to upgrade from 3.1 or 95 to '98). You might also find an audio facility useful since a lot of soffware makes use.of sound in various wavs, from boice-over commentaries to games noises!

Go for the fastest speed plus the greatest memory and disk capacity that you can afford. Believe you me. such altributes available now compared with those you became familiar with may seem incredible. but you will rapidly reap their benefits.

With any modern PC you will be able to write software for any microprocessor or microcontroller far more easily than you became accustomed 1o. Moreover, you have a wide choice of off-the-shelf software packages to use to not only write your code but also test and debug it on-screen and then download to the processor. And, yes, it is still heavily worthwhile being able to prograin in machine code - look al the number of EPE projects that use it, and not just PICs.

But, inosi of all. any PC you choose is going to open up a world of opportunities of which you may as vet be totally unaware. Writing your oun softuare is only a small part of what you will be able to do - don't delay, starl looking now!

CRAZY CONVENTIONS

Dear EPE.

I read with great sympathy the problems encountered by Jose Antonio (Circuit Surgery, March '98) who ends by writing "I think it (Teach-In) should be more easy to understand." Writers seem to insist on describing the movement of electricity as current which moves from positive to negative. BUT we know that this was a mistake made many years ago by people who did not fully understand the nature of electricity.

Where I teach, we are teaching students (from infants onwards) that electricity is the movement of electrons, and alerting them to the fact that historically current was thought to flow from positive to negative but this is outdated. Indeed, 38 years ago, to quote The Children's Britannic of 1960 p.232b.:
"... and some knowledge of them (atoms and electrons) is needed to understand the theory, or idea, of electricity, although a useful working knowledge of everyday electricity can be gained without it. To get useful work out of electricity we need something that will give a continuous stream of it , or an electric current."

The subject you are dealing with in Teach-In ' 98 is digital electronics. Electronics deals with electrons. Electrons move from positive to negative. I have not seen in recent times, apart from your Teach-In 98 , electronics taught or explained in any other way.

I actually believe it is the purpose of an educator to enable the student not only to conceptualise the subject matter in hand. but also to give a foundation for the extension of studies. One of the attributes of a good educator is the ability to infect the student with the educator's own enthusiasm so that the student will go on to higher things. In issues of safety (DC circuits) does not the flow of electrons become important?

Doesn't the fact that there are so many students confused, point to a re-think as to how the subject is taught? Because it has always been, it is not necessary that it has to be: there is progress. It is people such as your good selves who can influence the future. It seems all too easy for authors to give confused explanations of a subject and get it published. I believe that too often experts are not good enough communicators, and with the introduction of students having to pay for their courses, that the situation will change and University students will be far less tolerant.

Martin Baxter, via the Net
Since this E-mail letter was actually addressed to the authors of Teach-In, it is only right that they should reply:

As far as we are concerned, physics is a branch of electronics, and not the reverse. It is possible to discuss and demonstrate the action of electronic components without exploring the minutia of atomic physics. We could easily go into as much depth on the background "physics" as you like, and a whole lot more besides, if we thought it was appropriate, but we happen to think it isn't, as far as the Teach-In syllabus is concerned.

Concerning the description of which direction current flow actually takes, a covering paragraph was included in Part 1 about real-time "electron flow" purely to help engineers and technicians from other branches of science who will have been taught a "classical" model different from the conventions used in electronics theory.

In fact, there is never an exact truth in physics, chemistry or engineering. There is simply a model or representation of sufficient detail to describe and analyse the current experiment or application being considered.

Firstly, the unit of charge, its polarity and the relationships defining electric and magnetic fields, and their units of measurement, are defined as a part of the $S /$ Common Units of Measurement. Electrical current is also included in the SI definitions with positive current flow from a positive potential to a negative potential. These SI units provide a common language of definitions enabling concepts to be easily communicated between all technologists.

The nature of carriers of charge in solids and in vacuum are separate but related issues. There are several models for the representation of charge carriers in vacuum. For example, the common low mass one, normally negatively charged (but some have been observed with positive charge). We have two different ways of describing the electron's properties the "particle" model and the "wave" model and they are both valid: each model being more or less applicable depending upon the application or experiment being studied.

We like to believe the behaviour of charge carriers in solids is simple. For example, in metals, negatively charged electrons flow through a packed lattice of positively charged ions. We might seem to confirm this using, say, the Hall effect. This is where the application of a constant magnetic field orthogonal to the direction of charge carrier flow in a solid, produces a potential orthogonal to both the magnetic field and electron flow. This is used as a sensing method for magnetic fields.

For most metals, the results of such an experiment produce potentials consistent with the flow of negative charge carriers, but NOT ALL! In particular, zinc and cadmium produce potentials consistent with the flow of positive charge carriers. Are these still electrons or positrons?

As far as we are concerned. current is defined as the flow of positive charge from the positive potential to the negative potential. It is an international standard which everyone understands in electronics and accepts when describing electrical properties. The detailed particle descriptions of solids are described by other commonly accepted conventions. You will find this convention is used universally by academic engineers and it is the method adopted globally in all forms of technical data and circuit operation theory.

The Teach-In Authors

As Compere of this Column. I feel obliged to make a further observation. It is not up to those who teach a subject such as electronics (ourselves included in this description) to independently change the comentions which have been established
by International agreement (SI). That way lies anarchy and confusion.

Where disagreement in interpretation exists, then certainly the alternative view point should be highlighted, but not to the exclusion of the accepted argument. Irrespective of the validity of the nonorthodor argument, the orthodor view is the one which, in this case. industry expects engineers to conform to. Those who enter industry equipped with non-orthodox views are likely to be faced with having to relearn their subject in order to express themselves in terms of the concepts as understood by their colleagues.

Until such time as International bodies decree that a definition should be changed. the accepted view should be taught as standard. Irrespective of the enthusiasm generated (and we applaud and encourage enthusiasm), it would be irresponsible of any educator to teach otherwise.

PIPES, VIBES AND HISTORY

Dear EPE.

I found the letter from K.C. Toh of Malaysia (Readout April ${ }^{`} 98$) rather intriguing. I remember that, way back in my student days, I used a Kundt's Tube (is the spelling right?) sprinkled with Lycopodium powder to measure the nodes and anti-nodes of a sound wave travelling down the tube.

Perhaps K.C. Toh might consider amplifying the sound from his transistor radio so that it sets the piping to vibrate, thus loosening the adherent properties. It might, though, loosen any joints as well and the mending of these could keep him occupied for some considerable time!
S. Fox,

Epping, Essex

Probably!

Your queried spelling is correct - my Timetables of Science savs that August Adolph Eduard Eberhard Kundt devised in 1866 a method for measuring the speed of sound in different gases by analysing the patterns that sound waves cause in a fine dust scattered inside a tube filled with the gas being investigated. Herr Kundt was born in Schwerin, Germany, 18 Nov 1839 and died in /sracldorf 21 May /894.

From the same source, I notice that in 1894 wo other notable physicists died. Heinrich Hertz and Hermann von Helmholtz. In the same vear, J.J. Thomson announced he had found the velocity of cathode ravs to be much lower than that of light (you may recall it was he who discovered the electron, in 1897).

MORE ON BYTES

Alan Winstanley, our C'ircuil Surgeon, has E-mailed in the following:

To add further weight to your definition of a byte, the Microsoft Press Computer Dictionary says "Abbreviation of Binary TErm. A unit of data, almost always consisting of 8 bits ...". Microsoft know a thing or two about computers!

This dictionary is particularly good because it mixes in Internet, computers and electronics very well.

Thanks Alan. I'm still waiting for readers to enter the fray on this subject, raised in Readout May 98.

EVERYDAY PRACTICAL ELECTRONICS

We can supply back issues of EPE by post，most issues from the past five years are available．An index for the last five years is also available－see order form．Alternatively，indexes are published in the December issue for that year．Where we are unable to provide a back issue a photostat of any one article（or one part of a series）can be purchased for the same price．

DID

JAN 97

PROJECTS－Earth Resistivity Meter，Part 1 － Psycho Rat－Theremin MIDI／CV Interface，Part 1 Mains－Failure Warning．
FEATURES－Ingenuity Unlimited－Build Your Own Projects，Part 3 Circuit Surgery Interface Net Work－Internet News PCS32 Storage＇Scope interface Review．

FEB ${ }^{3} 97$

PROJECTS－Pacific Waves How To Use Intelligent L．C．D．s，Part 1 PsiCom Experi－ mental Controller Earth Resistivity Meter， Part 2 Theremin MIDI／CV Interface，Part 2. FEATURES－Ingenuity Unlimited © Build Your Own Projects，Part 4 Circuit Surgery－ Interface Net Work－Internet News．

MARCH＇97

PROJECTS－Simple Dual－Output TENS Unit －Video Negative Viewer Tri－Colour NiCad Checker How To Use Intelligent L．C．D．s－ 2 － Oil Check Reminder．
FEATURES Interface Ingenuity Unlimited Build Your Own Projects，Part 5 －Digital TV－ The Reality Circuit Surgery Net Work．

APFIL＇ 97

PROJECTS－ 418 MHz Remote Control Sys． tem－Midi Matrix－Puppy Puddle Probe－ PIC－Agoras Wheelie Meter－1．
FEATURES © Interface－Ingenuity Unlimited Digital TV and MPEG2 EDWin NC Soltware Review－Circuit Surgery－Net Work

MAY＇97

PROJECTS 2 Metre F．M．Receiver EPE PIC－ A－Tuner Alarm Operated Car Window Winder －Quasi－Bell Door Alert－PIC－Agoras－ 2 ．
FEATURES Ingenuity Unlimited Circuit Surgery Techniques－Actually Doing It－ Great Experimenters－ 1 Type 7660 Voltage Converters © Net Work．

解尘茥tronics

JUNE 97

PROJECTS－PIC Digilogue Clock Child Minder Protection Zone－Pyrotechnic Controller Narrow Range Thermometer．
FEATURES © Great Experimenters－ 2 Circuit Surgery－Interface Reactobot and Virtual Reality Ingenuity Unlimited Net Work．

JULY 97

PROJECTS－Micro PEsT Scarer Karaoke Echo Unit Infra－Red Remote Repeater－ Computer Dual User Interface Micropower PIR Detector－ 1 ．
FEATURES Ingenuity Unlimited Techniques －Actually Doing It Circuit Surgery Great Experimenters－ 3 －Electronics Workbench V5．0 Review－Net Work

AUG． 97

PROJECTS Variable Bench Power Supply －PIC－olo Music Maker－Universal Input Amplifier Micropower PIR Detector－ 2. FEATURES Interface Ingenuity Unlimited Colossus Recreated Circuit Surgery－Great Experimenters－ 4 －Net Work．

YOU MISS THESE？

SEPT＇97

PROJECTS－PIC－Noughts \＆Crosses Game Ironing Safety Device Active Receiving An－ tenna Soldering Iron Controller Micropower PIR Detector－ 3.
FEATURES－Ingenuity Unlimited Raising the Pressure－RC4190 Switch－Mode I．C．－Circuit Surgery－Techniques－Actually Doing it Great Experimenters－ 5 －Net Work

OCT＇97

PROJECTS OPIC Water Descaler Remote Control Finder－Multi－Station Quiz Monitor Rechargeable Handlamp．
FEATURES－Ingenuity Unlimited It＇s Prob－ ably Murphy＇s Law Interface Circuit Sur－ gery－Kanda PIC Explorer Review Network

NOV 97

PROJECTS－Portable 12V PSU／Charger－ Case Alarm Auto－Dim Bedlight－EPE Time Machine．
FEATURES－Satellite Celebration Ingenuity Unlimited TEACH－IN＇98－An Introduction to Digital Electronics－1 Techniques－Actually Doing it－Circuit Surgery－Net Work－Free Greenweld Catalogue．

DEC＇97

PROJECTS－Safe and Sound－Security Bleeper－Active Microphone－Car Immobi－ liser Mini Organ．
FEATURES TEACH－IN＇98－An Introduc－ tion to Digital Electronics－2－Circuit Surgery －Interface－ B^{2} Spice Review－Ingenuity Unlimited Alternative and Future Tech－ nologies－1 Net Work－The Internet Free Giant Data Chart－Formulae．

JAN 98

PROJECTS Disco Lights Flasher Simple M．W．Radio EPE Virtual Scope－1 Surface Thermometer．

FEATURES TEACH．IN＇98－An Introduction to Digital Electronics－3－Circuit Surgery Ingenuity Unlimited Alternative and Future Technologies－2 Net Work－The Internet Free－Giant PIC Data Chart

FEB 98

PROJECTS－Water Wizard－Kissometer Waa－Waa Eflects Pedal EPE Virtual Scope－ 2. FEATURES－TEACH－IN＇98－An introduction to Digital Electronics－ 4 Ingenuity Unlimited －Techniques－Actually Doing It－Circuit Sur－ gery－Net Work－The Internet Chip Special －HT7630 PIR Controller．

MAR 98

PROJECTS Lighting－Up Reminder The Handy Thing Switch－Activated Burglar Alarm －Audio System Remote Controller．
FEATURES－Teach－In＇98－An Introduction To Digital Electronics－5 Ongenuity Unlimited Interface－Stripboard Magic Review－Circuit Surgery Net Work EPE PIC Tutorial Supplement 1

APRIL＇g8

PROJECTS－Simple Metal Detector Single or Dual Tracking Power Supply Experimental Piezo－Cable Projects－Distributed Microphone －Vibration Alarm RC－Meter
FEATURES－Ingenuity Unlimited－Patent Your Invention－Teach－In＇98－An Introduc－ tion To Digital Electronics－ 6 －Circuit Surgery －Net Work－Techniques－Actually Doing It －EPE PIC Tutorial Supplement 2

TMAY 98

PROJECTS－Dice Lott © Security Auto－Light Stereo Tone Control plus 20W Stereo Amplifier －Improved Infra－Red Remote Repeater
FEATURES Teach－In＇98－An Introduction To Digital Electronics－ 7 －Net Work EPE PIC Tutorial Supplement 3

BACK ISSUES ONLY £2．75 each inc．UK pqp．
Overseas prices $£ 3.35$ each surface mail，$£ 4.35$ each airmail
We can also supply issues from earlier years： 1990 （except Jan．．March，April，Oct．and Dec．）， 1991 （oxcept May，June，Aug．， Sept．and Nov．）， 1992 （except April and Dec．）， 1993 （except Jan．，Feb．，March，April．May and Dec．）， 1994 （except Apriil，May， June and Nov．）， 1995 （except Jan．，March，May，June，July，Aug．，Sept．，Nov，and Dec．）， 1996 （except Feb．，April，July，Aug．）． Please note we are not able to supply copies（or＇stats of anticles）of Practical Electronics prior to the merger of the two magazines in November 1992
Where we do not have an issue a photostat of any one aricle or one part of a series can be provided at the same price．

8051-BASED EEPROM MICROCONTROLLERS

COL/N MEIKLE

Much used in industry, 8051-type microcontrollers are now available in EEPRDM variants suited to the hobbyist user.

USING a single chip microcontroller can greatly simplify your design. while adding fiexibility and additional functionality. This can easily be seen from the widespread use of PIC microcontrollers.

The 8051 family of processors, though. is amongst the most widely used microprocessor in industry, although its use in hobby electronics has so far been somewhat limited. This article gives an introduction to the family, with particular emphasis on the 2051 and 1051 EEPROM (Electrically Erasable Programmable Read Only Memory) variants. An accompanying article explains how a low-cost programming and development system for these two devices can be constructed.

INTRODUCTION

Developing code for an 8051 microcontroller without an In-Circuit Emulator (ICE) can be difficult and slow. Consequently, to develop code without an ICE, some form of re-programmability is required. This normally means using windowed EPROM (Erasable Programmable Read Only Memory) devices, which are expensive and require time to erase with ultra-violet (UV) light before they can be reused.

There are various ways to get round
this when using an 8051. For example. an EPROM can be programmed with a monitor program which, via the serial port. loads external NVRAM (Non-Volatile Random Access Memory') with the program mapped into code space. However, most methods add complexity to the hardware and/or put restrictions on the code.

Recently, however. Atmel have introduced variants of the 8051 which have made microcontroller development very simple. These overcome the reprogranimability problem by implementing Flash ROM on the processor. This eliminates the need for an external EPROM, and gives "instant" reprogrammability to the developer. Atmel use the term PEROM (Programmable and Erasable Read Only Memory) to describe the devices. although the term EEPROM is equally valid.

These microcontrollers are therefore ideal for low cost development of microcontroller projects. Development systems can be put together very cheaply. giving you access to a very flexible and powerful family of processors.

8051 FAMILY VARIANTS

The 8051 family covers an enormous number of variants, well outside the scope
of this article. Although only a small subset is discussed here, there is a great deal of commonality between devices. Code written for one particular device is portable between different manufacturers and different variants.

Intel introduced the 8051 back in the early " 80 s , following on from their MCS48 family of processors. Although the family has grown greatly, the basic 8051 is still very popular. A summary of the most popular devices is shown in Table 1.
The table shows only a very small selection of the devices available. Note that the $80 x$ and $87 x$ devices have multiple manufacturers, whilst the $89 x$ devices are manufactured by Atmel. This article concentrates on the latter devices.

The $80 C 51 / 2$ are of little use to the experimental hobbyist as they are One Time Programmable (OTP) devices. You can, though, get ROM-less versions, 80 C31/2 and add your own EPROM. This is cheap but unless you need large amounts of memory, defeats the purpose of a single chip microcontroller.

The 87C51/2 get round this problem as they have on-board EPROM. However. you still need to erase them with UV every time you wish to reprogram them. They are also expensive, so keeping a supply of blank ones is not cheap!

Table 1. Popular 8051-variants

Device	ROM	RAM	Timers	Interrupt	UART	1/0	Pins	Other
80C51	4K OTP	128 bytes	2	5	yes	32	40	
80C52	8K OTP	256 bytes	3	6	yes	32	40	
87 C 51	4K EPROM	128 bytes	2	5	yes	32	40	
87 C 52	8K EPROM	256 bytes	3	6	yes	32	40	
89C51	4K EEPROM	128 bytes	2	5	yes	32	40	
89 C 52	8K EEPROM	256 bytes	3	6	yes	32	40	
89C1051	1K EEPROM	64 bytes	1	3	no	15	20	Analogue comparator
89 C 2051	2K EEPROM	128 bytes	2	5	yes	15	20	Analogue comparator

This leaves the Atmel 89x processors. These devices have on-chip EEPROM, allowing instant reprogramming. which is ideal for a development environment (they are also relatively inexpensive). The latest devices released will actually allow you to reprogram them while they are still on the printed circuit board (p.c.b.).

Atmel's 89 x variants of the 8051 are the AT89C51, AT89C52. AT89C1051 and AT89C2051. Their pinouts are shown in Fig. 1

All four devices retain most of the 8051 features, such as the UART (Universal Asynchronous Receiver/ Transmitter), although the number of I/O (input/output) pins on the 1051 and 2051 devices is reduced.

The latter devices also have a 2 -input analogue comparator, which is not found on the standard 8051 . Because of their size, functionality and low cost. these two microcontrollers are an ideal starting point for small projects.

8051 ARCHITECTURE

The architecture of the basic Atmel 8051 core upon which all the variants are based, is illustrated in Fig.2.

Some ports also function as the address and data buses when the processor uses external memory and others have alternative functions, e.g. external read/write strobes. The details are covered in Atmel's data sheets.
If you have never used an 8051. the memory structure may appear slightly confusing. First, the program memory and data memory have separate address space (as have PIC microcontrollers. $E d$). In addition to the two separate address areas, memory can either be internal or external. Memory organization is shown in Fig. 3.

In total, 64 K bytes of program and data memory can be addressed. However, to use 64 K of program memory, external memory will have to be added (internal memory sizes vary, the maximum available is 32 K , although 8 K or 16 K are normal).

For external memory accesses, the processor uses different strobe signals to access program and data memory (see Fig.2). Signal line PSEN is used to access program memory, and lines $\overline{R D}$ and $\overline{W R}$ are used to access data memory

The EA pin on the processor determines if external or internal program memory will be used. Note that when the internal program memory range is exceeded the processor will automatically look for external memory, regardless of the EA pin.
Program memory is fairly simple, you can either use internal or external, but you cannot use both at the same address. Data memory is different, for one particular address, up to three separate locations can exist.

Again referring to Fig.3, in the range 00 H to FFH both internal and external memory can exist and can be used. From 80 H to FFH an additional area of memory exists in some devices, the 89C52 for example. This is referred to as the indirect memory area. Therefore, in this range there are three separate data areas.

Only part of the internal RAM is available for general-purpose use, as

registers and ports are also mapped into this region.

To differentiate between the memory areas. the processor uses different instructions and addressing modes. Some examples are shown in Listing 1.

This may seem confusing, but if you do not use external memory then things are simpler. Also, if you store your data in the lower 128 bytes of RAM $(00 \mathrm{H}$ to 7 FH), both direct and indirect addressing can be used to access it.

PORTS

The 8051 has four 8-bit ports, each of which is bi-directional and bit addres-
sable, i.e. each individual port bit can be changed without affecting the other bits. The ability to change individual bits or the whole port in one instruction is a very useful feature.
Each port has slightly different characteristics, as described in more detail later. The ports are accessed in the same way as the internal RAM. although they can only be accessed by direct addressing. They appear in the upper 128 bytes of the internal RAM (80 H to FFH), called the Special Function Register (SFR) area. An example of accessing them is given in Listing 2.

The final command in Listing 2 also

Fig.2. Basic core of the 8051 family.

Fig.3. Memory organisation within the basic 8051.
sets the port as an input. The port pins are pulled high by internal pull-ups (see later under Port Structure).

INSTRUCTION SET AND REGISTERS

The instruction set has all the usual commands you would expect, it also has a range of bit operations, so that individual bits can be manipulated. Only 16 bytes of the general purpose RAM are bit addressable. 20 H to 2 FH . Most of the special function registers, e.g. I/O Port. are bit addressable.

Instructions are one, two or three bytes long and most take one or two cycles to complete. A cycle is 12 oscillator periods, therefore, with a 12 MHz . clock. most instructions take 1μ s or $2 \mu \mathrm{~s}$

There are four banks of eight general purpose registers (each eight bits wide). These registers are mapped to the bottom 32 bytes of internal RAM. The eight registers are numbered R0 to R7. All four banks of registers are available. However, only one bank of registers is normally used (Bank 0).

The other banks are normally used for interrupt service routines. Two of the registers ($R 0$ and $R 1$) are used for indirect addressing. These are the only two registers that can be used for indirect addressing.

The Accumulator (A or ACC) is a multi-purpose register which is used by a large number of instructions. Usually, the result of an instruction will be placed here. The B register is only used by the divide and multiply instructions. It can also be used as a general purpose register.

The data pointer (DPTR) is the only usable 16 -bit register. It is commonly used to hold or point to the address of a data location. Since it is the only 16 -bit register, it also finds many other uses.

The stack pointer is used by the PUSH/POP and CALL instructions. The default location for the stack pointer is 07 H , which is the same location as register Bank I. So, to use the other three banks, the stack pointer nust be moved 10 an address above the register banks, e.g. 20 H .

The stack pointer is incremented each
time a PUSH or CALL instruction is executed and, therefore, can use a large amount of memory. Care must be taken to ensure the stack does not overwrite the data storage. A common practice is to set the stack pointer as the last (highest) data storage address.

DESIGNING CONSIDERATIONS

There are a few features of the hardware you must understand before you start designing.
If you have not written your code yet. you will not know how much program or data memory you will require. This is a problem if you want to start designing your hardware before the code is written.

There is some flexibility. though. If you target a device with 4 K ROM you can move up to a device with 8 K if your program does not fit. For data memory you can upgrade from 128 bytes to 250 bytes, although you should remember that you do not have access to all of this memory.

You must allow space for registers and the stack - this does not leave a huge amount! Therefore you must think carefully if you plan to only use internal memory. Adding external memory later will add extra components to your design and, more importantly, will normally use up Port 0 and Port 2 for the address and

Fig.4. Typical port structure.

LISTING 1. Example codes

1. MOVC is used to get values from program menory (often used for look-up tables):

MOV	IPPTR.\#100\%	: load DPTR
		; data
		: pointer
		: register is : \|6-bit)
CL.R	A	$:$ set the
		: accumu-
		: lator to
		: zero
MOVC	A.@A + DP'TR	: get byte
		: from
		: program
		: memory at
		- location
		$: 0+1000 \mathrm{H}$

2. Write 05 H to Port 1 (address 90 H) Direct Addressing:

MOV $90 \mathrm{H}, \# 05 \mathrm{H}$

3. Write 05 H to address 90 H in indirect RAM - Indirect Addressing:

MOV	R0, $\% 90 \mathrm{H}$: move 90H ; into register : R0
MOV	@R0.05H	: move 05H
		: 10 address
		: pointed to
		; by R0
		: (9)H)

4. Write 05 H to address $9(H$ in external RAM:
MOV R0,\#YOH
MOV A,\#05H
MOVX @R0.A : move A (05H) to : external location : pointed to by R0 : (M) H)

LISTING 2. Examples of port access

SETB P3.0
CLLR
P3.0
MOV
data buses. The available $1 / O$ pins will. therefore. be greatly reduced, which may result in a re-design of your p.c.b. and probably a rewrite of your code.

PORT STRUCTURE

All ports are bi-directional and each consists of a latch. input buffer and output buffer. see Fig.4. The output stages of Ports 1, 2 and 3 are simply open-drains with weak internal pull-ups; Port 0 does not have the pull-ups (Atmel 1051/2051 variants have pull-ups on Port 1 bits 2 to 7: bits 0 and 1 do not).

As a result. Ports 1 to 3 can sink 1.6 mA but only source $25 \mu \mathrm{~A}$. without external pull-ups. Port ($)$ is open collector so you must remember to add external pull-ups. Because of the low drive capabilities, the ports can only drive

CMOS inputs (fewer than four inputs. without external pull-ups).

To configure a port as an input, simply write a 1 to the port, this will turn the output transistor off (see Fig.4). However, the internal pull-ups on Ports 1 to 3 are still active, hence these ports will still source current as inputs.

Note that when configured for external memory access, Port 0 and Port 2 are configured differently so that they have a higher drive capability.

PERIPHERALS

The different variants of the 8051 have different internal peripherals. There is a huge range of devices offering many different internal peripherals such as analogue to digital converters (ADC). pulse width modulation (PWM) outputs, real-time clock (RTC) etc. The basic 8051 core offers one UART, two timer/counters and 32 I/O lines.

For your microprocessor circuit to be of any use, you will require to interface to external components. The simplest way to do this is to use the I/O pins to directly control the device. Alternatively. you can memory map devices so they appear as external memory. You would normally only do this, though, if you are using the processor in external mode (as there are fewer I/O pins available).

Common examples of circuits for driving devices from the I/O pins are shown in Fig. 5.

GETTING STARTED

The only way to really learn about these devices is to use them. Before you start, though, you will need a few things: an assembler for assembling your code, a programmer to program your devices and then you require some hardware to start playing with.

To buy a professional development system would cost several thousand pounds. However, using the Atmel devices and the circuits in the accompanying constructional article, you could collect together a DIY system for under £ 100 .

Note, though, that you need access to a PC-compatible computer. Then you need the Atmel data book, or data sheets for the chosen processor. The data can also be downloaded from the Web or obtained on CD-ROM.

There are three languages you can use to program the 8051:

1. Assembler

It may seem to some that it might be easier to start with a high level language, such as C. However, writing code in assembler will give you a good understanding of the 8051 architecture, which is essential to be able to get the most efficient code.

The best free one the author has found is the Meta Link MLSI, available on the Philips web site and on the Atmel CDROM. There are numerous others available, but this one is probably the best you'll get without paying money.

2. PLM

The PASCAL-like language PLM is a possibility, and is easier to program in than assembler. However, you may be better with a high level language like C.

Fig.5. Examples of I/O drive circuits: (a) low current l.e.d., (b) buffered I.e.d., (c) relay drive, (d) simple reed relay, (e) improved reed relay.
3. C

You may already have some knowledge of C . which will make writing code simpler and quicker. It also has the advantage of being more readable and portable than assembler and PLM. but you must remember the limitations of the processor you are using, e.g. very limited data memory and possibly code space. Therefore, you must be careful when writing your code.

Well written C can be just as efficient as hand written assembler (particularly for RAM usage). Badly written code can very quickly use up your ROM/RAM.
If you only want to use the $20.51 / 105$ I devices, you can get a code-restricted version of the excellent Keil Tools, although you can only compile 2 K of code with it. This is not a probien, though, as you only have 2K of ROM on a 2051. The tools are otherwise unrestricted.
If you want to know more about C for the 8051 get the "C Primer" free from the Equinox web site. A freeware C compiler, written by Sandeep Dutta, is available from the Web.

As mentioned, you should start writing code in assembler (at least until you understand the architecture). Another good reason for this is that there are several freeware assemblers available. Some of these are very good and will quite likely satisfy all your needs.

The re-programmability of the Atmel processors makes the need for an In-Circuit Emulator (ICE) less of a necessity. However, you will still need some sort of debugging environment. Commercial ICEs are expensive, but an alternative is to use a CPU simulator (a software program that emulates the functionality of the CPU and memory) and again you can find freeware versions.

An excellent shareware one can be
found on the Philips Web site (SIM51). It is in German but this is not really a problem as you can easily work out the controls.
You can also buy cheap in-circuit reprogramming modules, which allow you to reprogram your processor without removing it from the circuit (about £l0) to $£ 125$ from Equinox).

Finally, you will need to program your processor. A programmer suited to the 2051 and 1051 devices is described in the accompanying constructional article.

DATA AND SOFTWARE SOURCES

The Web is the best place to get information. You can get source code data sheets and, most usefully, free tools. Getting access to the Web need not be a problem: if you do not have personal access, places such as libraries etc. now offer access.

Another good source is the Atmel Microcontroller CD-ROM. It contains a good assembler, all of the data sheets you'll need and some interesting application notes. It is worth getting; if you have trouble getting one you can buy one from Farnell.

Here are some useful web addresses:

Online Tutorial

A very good introduction to the 8051 family of processors can be found at:
www.8052.com.

Datasheets

You can get data sheets in various electronic formats from the Web or get a printed copy from a distributor. For electronic copies try:
http://www.atmel.com/ and fip://ftp.intel.com/ - /pub/mes5 1

Assembler

There are numerous assemblers available but the Metal-Link assembler is very good. You can get it from:
ftp://ftp.philipsmcu.com/ - /pub, or
http://www.philipsmcu.com/assemblers.html (other goodies here, too).
or from the Atmel CD-ROM.

Simulator

A simulator is essential if you are learning. The first one below is in German (DOS-based). the second one is a nice looking Windows simulator:
SIM51: from the above Philips site or Atmel CD-ROM, or

SIM8052D, from:
http://www.vaultbbs.com/sim8052/
http://www.8052.com

C Compiler

At the time of writing, the following C compiler was in a Beta phase of testing. It is free with no restrictions:

SDC by Sandeep Dutta, from: http://www2.netconı.com/~sandeepd

There is an evaluation version of the KEIL compiler at:
www.keil.com/demo/ek51
This an excellent compiler and debugger. The "Lite" version is sold with many Atmel development systems. from Equinox and Farnell, for example.

Real Time Operating system

For a more advanced real time operating system. try:
www.iotasys.com/805I/software.htm

Devices and Programmers

Equinox - devices, programmers, development systems, and more:
Equinox (Dept EPE), 229 Greenmount Lane, Heaton, Bolton. Lancashire BLI 5 JB .
Tel: $012(04492010$
Web: http://www.equinox-tech.com/
Farnell Components - devices, programmers, data books, data CD-ROM:
Farnell Components, Canal Road. Leeds, LSI 2 2TU. Tel: 01132636311

Atmel UK Lid can be contacted directly at: The Colliseum Business Centre, Riverside Way, Camberley, Surrey GU15 2AQ. Tel: 01276 686677: Fax: (01276686697

Now read the AT89C2051/1051 programming article on page 432 .
\square

Simple SW Receiver

A single-gang Jackson type 0), air-spaced, 365pF tuning capacitor for the Simple SW Receiver project will set you back about $£ 15$ (Maplin, code FF39N). However, it is not essential to use the specified tuning capacitor as any "air-spaced" type having a maximum value of around 300 pF to 400 pF will suffice here: provided, of course, it will fit into the case. You could try contacting Bull Electrical ($\mathbf{8} 01273$ 203500), ESR Elec. Components (\% 0191251 4363) or Greenweld Elec. Components (ङ 01703 236363) who sometimes offer, surplus to requirements, tuning capacitors at a much reduced price.

We came up with two sources when searching for the specified Toko r.f. transformers. From Maplin, codes FD03D (KANK3334R 5 MHz to 15 MHz), FD02C (3333R) and FD04E (3335R). Toko's main distributor in the UK, Cirkit ($\mathbf{\sigma} 01992$ 448899), stock codes 5 MHz to $15 \mathrm{MHz}, 35-33340$ (KANK 3334R); 1.6 M to $5 \mathrm{MHz}, 35-$ 33330 (KANK 3333R) and 15 MHz to $30 \mathrm{MHz}, 35-33350$ (KANK 3335R).

Although the article specifies a 3.5 mm stereo jack socket for the Headphones output, and not being able to find an easy source for a stereo insulated type, we suggest readers opt for a "moulded body (with plastic bezel)" 6.35 mm jack socket and if necessary use a 3.5 mm adaptor plug between the socket and the headphones. Most of our component advertisers should have such an adaptor.

The case chosen for the prototype model is one from a range of blue/grey, hammer finish, two-piece metal instrument cases stocked by Maplin, code XY45Y.

EPE Mood Changer

Just a couple of items could cause local shopping problems when gathering together the parts for the EPE Mood Changer. The OP296G and OP279G dual op.amps are fairly new additions. designed for rail-to-rail operation, and do not appear in many component advertisers lists. The ones in our model came from Maplin, code NP22Y (OP296G) and NP18U (OP279G).

As stated in the article, a source for the air-cored output coil was initially a problem until the friendly washing machine engineer suggested a 230 V a.c. solenoid valve coil. Further enquiries revealed that these valves are readily available as service spares (Hoover), with a single solenoid coil on a valve costing less, it is claimed, than £9. The coil used had a d.c. resistance of about 4 kilohms. You could, it is suggested, also try your local scrapyard, where they might be even cheaper.
Do not forget to specify a "log" type when ordering the subminiature potentiometer. The small printed circuit board is available from the EPE PCB Service, code 193.
Finally, please heed the warning panel about the use of the EPE Mood Changer. Although this project does not "flash lights" into the eyes, it is generating brainwave frequencies which could possibly trigger a reaction. If any of the symptoms described are experienced, you are advised to consult your doctor immediately.

Reaction Timer

Most of the components needed to build up the Reaction Timer are RS components and any local bona-fide RS stockists should be able to order them for you. Alternatively, they can be
purchased through Electromail (01536 204555), their mail order outlet.

The red/green tri-colour l.e.d.. used for "triggering" the response time, is a Siemens common cathode type LU5351-JM and is available from the above source, quote code 578-294. On this device the shortest lead is the red anode and the centre lead common cathode. Other 60 mA to 20 mA tri-colour l.e.d.s, such as the one offered by Maplin (YH75S), may have differing leadouts, typically green anode shortest lead, cathode centre (long) and red anode medium length.

For the extra outlay, it is probably worth purchasing the specified handheld box incorporating a display window. The one in the prototype is a Vero box (75-227911D) and carries the RS code 584595. A battery box for the case can be ordered as 584-918 (deep).

When selecting the 7 -segment dual display, it is important to choose one that has its pin line-up across the top and bottom of the device, when looking at the display underside. We understand the author purchased his from Electromail, code 247-2788.

So far, we have not been successful in finding an 18-pin d.i.l. socket with a 0.6 in . pitch. We suggest readers use individual socket strips or, better still, cut a 0.3 in . 18 -pin i.c. socket lengthwise and solder the two halves on the stripboard.
The pushbutton switch (320-988), transistors (296-116) and battery holder (594-628) came from the above mentioned company. Most of our component advertisers should also be able to offer suitable alternatives.
A ready-programmed PIC16C55 is available (Mail Order Only) from PH Research, 32-34 School Lane, Swavesey, Cambridge, CB4 5RL for the sum of $£ 11$ (add $£ 1$ for overseas orders). Tel/Fax: 01954 200411. E-mail: paul@ph-research.prestel.co.uk

For those who wish to do their own programming, the software is available on a 3.5 in . disk from the Editorial Offices - see PCB Service page. If you are an Internet user, it is available Free from our FTP site:
ttp//ftp.epemag.wimborne/co.uk/pub/PICS/Reaction.Timer.

AT89C2051/1051 Programmer

A ready-programmed ISP2032 controller chip for the AT89C2051/1051 Programmer is available direct from the designer (Mail Order Only): Colin Meikle, 9 Coldstream Drive, Strathaven, Lanarkshire, ML10 6UD. Make cheques payable to him. The price, inclusive of UK postage, is $£ 12$. (For overseas orders add £1).

You can also contact the author via E-mail at:

colin.meikle@virgin.net.

Software for the programmer and test board, including that for the ISP2032 controller, is available from the EPE Editorial Office on a 3.5 inch disk, order as PIC-Disk 1. See EPE PCB Service page for postage charges.
The software is also available Free from the EPE Web site: ftp://ftp.epemag.wimborne.co.uk/pub/8051/programmer.
The only component that could cause sourcing problems is likely to be the through-hole 44 -pin PLCC socket. This is currently listed by Maplin, code JH40T, or Farnell (0113263 6311), quote 484-386. All the connectors, other sockets, MAX232 RS232 driver chip and microcontrollers should be generally available.
The two printed circuit boards are available from the EPE PCB Service, codes 194 (Main) and 195 (Test), see page 468.

Schematic Capture

-Produces attractive schematics like you 880 in the meigazines. - Netist, Parts List \& ERC reports. OHierarchical Design. ©Full support for buses Inctuding bus pins. Extensive component/model libraries. Advanced Property Menagement. -Seamless integrafion with simulation and PCB design.

- Non-Linear $\&$ Linear Anslogue Simulation. Event driven Digital Simulation with medeliing language. - Partitioned simulation of large designs with multiple analogue \& digita spvinn. Graphs displayed directly on the schematic.

wis 」】 ${ }^{\text {m }}$

 censirimbon
Now Foaturas Compenout Mith-Fiacer Phiswan/Eatesuan Piptimizer Dackround Itemomeration of Power Plames Fintl Control of Schematic hupearance Enensivo Illew Companant Lthrates

Avallable in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further Information \& upgrade prices.

AJSOMSUS
ts garasuminy yood

Write, phene or fix for your free demo dilek, or ask abput our full evaluation kht.
 53-55 Main St, Graseington. BD23 5AA. WWW: htpi/hwwibbocitercain

Fully interactive demo versions available for downioad from our WWW site Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturers trademarks acknowledged.

Constructional Project

ATMEL ATB9C2051/ PROGRAMMER

COLIN MEIKLE

Add 8051-family facilities to your designing armory.

ATMEL AT89C2051/1051 processors are members of the 8051 family and are extremely useful and versatile microcontrollers. These processors contain flash Programmable and Erasable Read Only Memory (PEROM). and can be reprogrammed over 1000 times. Reprogramming takes seconds without the time consuming UV-erasure step associated with EPROM based microcontrollers. They are 20 -pin devices.

In the accompanying article 8051 Based EEPROM Microcontrollers, general aspects of the 8051 family were discussed. including the 2051/1051.

We now describe a simple programmer for programming the latter devices, and follow on with the description of an experimental board with which to use them.

The programmer is designed to operate from the parallel port of a PC-compatible computer. The associated software is DOS-based, allowing the programmer to be used with almost any fairly modern PC.

However, for the programmer to work
in all modes, the computer's parallel port requires to be set up for 8 -bit bi-directional mode (sometimes called PS/2 mode). You can normally change the setting via the PC's BIOS settings (i.e. the set-up procedure during the PC power-up or reset). You should check your computer manual on this point. Also see later.
The hardware and software for this design is loosely based around that described in the Atmel Application Note (see the Atme! data book. data CD or web site).
Although the implementation is different (particularly that of the hardware), the hardware and software should be interchangeable with that described in the Application Note. Note that the $40-\mathrm{pin}$ devices (AT89C51/52) are not supported by this programmer.

PROGRAMMING MODES

The 2051/1051 devices can be programmed in various modes, as described

Fig.1. Signal routing for programming and reading the AT89C2051/1051 devices.

MODE	P3.2PPROG	P3. 3	P3. 3	P3.4	P3 5	P37
WRITE CODE	12V	$\downarrow 1$	L	H	H	H
READ CODE	H	H	L	L	H	H
WRITE LOCK 1	12 V	$\downarrow 1$	H	H	H	H
WFITE LOCK 2	12 V	$\downarrow 1$	H	H	L	L
ERASE	12 V	- 1	H	L	L	L
SICNATURE	H	H	\llcorner	L	L	L

Fig. 2 (left). Mode
selection logic for the
AT89C2051/1051
devices.

Lock Bit 2 is not set. Reading back the contents of the device is useful for programming verification, and for copying devices when you do not have the programming file.

Write Lock Bits

The contents of the PEROM array can be protected by programming the lock bits. Lock Bit I prevents further programming of the device. Lock Bit 2 prevents the contents of the array being read from the device, thereby preventing copying of devices or disassembly of the code.

CIRCUIT
 DEECRIPTION

The hardware for the programmer provides the interface between the PC's parallel port and the device being programmed, as well as the correct programming voltage for the device. The timing for each of the programming cycles is controlled by the software running on the PC.

The circuit diagram for the programmer is shown in Fig.3. All of the decoding and control is done inside IC3, which is a pre-programmed Programmable Logic Device (PLD).
An LS245 transceiver (ICI) buffers the data signals as some PC I/O (input/output) cards have strong pull-ups on the parallel port, therefore the programmer needs to be able to source a reasonable amount of current.
The HC240 buffer (IC5) isolates the control signals to the device being programmed (this is required during the power-up sequence).

The programming voltage requires to be switched between $0 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V . These voltages are provided by an LM3I7T adjustable regulator (IC4). Transistors TR1 and TR2 are used to switch between the voltages.

SOFTWARE DESCRIPTION

Timing for all of the programming cycles is done in software. In order for the software to be system-independent, the PC's timer is used to generate all the delays.

The software is based on that described in the Atmel Application Note. However, a number of changes and improvements have been made. Most notably the software can read both binary and Intel hex file formats. (Note that the software can support Intel hex files which have out-of-sequence addresses, unlike some hex to binary conversion utilities.)

The software gives the following facilities:

- ERASE DEVICE: Erase the entire device, including lock bytes
- READ SIGNATURE: Display device identity bytes
- PROGRAM: Program device with specified file data
- PROGRAM LOCK: Disable device programming and reading
- VERIFY: Read device and verify against specified file
- SAVE: Read device and save as a binary file.

CONSTRUCTION

Component and track layout details for the printed circuit board (p.c.b.) are shown in Fig.4. This board is available from the EPE PCB Service, code 194.

The p.c.b. contains some small tracks and pads, therefore, if you are making your own board, take care when drilling the holes for the components. Use the correct drill size for each component $(0.8 \mathrm{~mm}$ for IC1, IC3, IC5, transistors, resistors and capacitors; 1.2 mm for IC2 and IC4; Imm for the connectors). If you have to desolder any components, use the minimum amount of heat as tracks could lift easily.

AT89C2051 Features
- Compatible with MCS-51 ${ }^{\text {T }}$ Products
- 2Kbytes of Reprogrammable Flash Memory. Endurance: 1,000 Write/Erase Cycles
-2.7V to 6 V Operating Range
- Fully Static Operation: 0 Hz to 24 MHz
- Two-level Program Memory Lock
- 128×8-Bit Internal RAM
- 15 Programmable I/O Lines
- Two 16-Bit Timer/Counters
- Six Interrupt Sources
- Programmable Serial UART Channel
- Direct L.E.D. Drive Outputs
- On-Chip Analogue Comparator
- Low Power Idle and Power Down Modes

COMPONENTS

Resistors

R1 to R4	10k min. $0 \cdot 125 \mathrm{~W}$ (4 off)	
R5, R11	2 k 2 (2 off)	
R6, R9	$1 \mathrm{k}(2$ off)	
R7	270Ω	
R8	100 k min. $0 \cdot 125 \mathrm{~W}$	
R10	4 k 7	
R12	1 k min. 0.125 W	
R13	100Ω	
RM1	10 k 9 -way s.i.l. resistor	
module		

All resistors 0.25 W unless stated.

Capacitors

C1 82p ceramic plate, 0.1 in pitch
C2, C3, $\quad 100 \mathrm{n}$ ceramic plate, 0.2 in C6 to C8 c4 to pitch (5 0ff)
C5 $\quad 47 \mu$ axial elect. 25 V

Semiconductors

TR1 BC549 npn transistor
TR2 BC557 pnp transistor
IC1 74LS245 octal transceiver
IC2 $\quad 7805+5 \mathrm{~V} 100 \mathrm{~mA}$ regulator
IC3 ISP2032 pre-programmed controller (see text and Shop Talk)
IC4 LM317T adjustable regulator
74HC240 octa buffer/transceiver
ICS
IC6 89C2051 microcontrolle (see text)

Miscellaneous

SK1 25-way D-type connector, female, p.c.b. mounting Printed circuit board, available from the EPE PCB Service, code 194; 20-pin d.i.l. socket (2 off); 20-pin ZIF socket, 0.3 in wide (see text); 44-pin PLCC socket; 14.5 V to 18 V power supply, 200 mA d.c.; parallel cable, 25 -way male to 25 -way male; small heatsink clip for IC2.

Approx Cost Guidance Only
 835
 excl. power supply and cables

Make sure you insert the links before any other components, noting that one link goes under IC3.

The layout contains two sizes of resistors, the standard size and the miniature 0.125 W type. If you have trouble finding miniature resistors, you could mount a standard resistor vertically. Make sure the orientation of the resistor module (R14 to

R 21) is correct, denoted by a dot on the package alongside pin I.

Position IC6 is for a ZIF (zero insertion force) socket into which the device to be programmed is inserted. Note that ZIF sockets are larger than a normal 20 pin socket and you may have to mount it in an ordinary i.c. socket to ensure that it is clear of the other components.

Standard i.c. sockets must be used for ICI, IC3 and IC5.

Take care when soldering the socket for IC3 as the pads and tracks are very close together. Also note the orientation of the socket, indicated by its slanting corner.

The two regulators, IC2 and IC4, should be mounted vertically and the metal tabs should face in towards the board. A small heatsink may be required on the 5 V regulator IC2, although this was not required on the prototype.

Make sure that the housing for the 25way D-type connector (SK1) is grounded at one of the mounting points. Connection to the PC is made via a standard 25 -way printer cable with male D-type plugs at both ends

The programmer requires a supply of between 14.5 V and 18 V d.c. at 200 mA . It is recommended that a small commercially manufactured plug top power supply is used.

Housing the programmer in a suitable enclosure has been left up to the readerit is not necessary to do so. Note that if you wish to house the board, ZIF sockets with long leads are available, allowing the socket to protrude through the top of a box.

TESTING

Before attempting to program any devices. check that:

- all links are in place
- there are no solder shorts on the board
- all polarised components are orientated correctly (pin I of IC3 is indicated by a dot)

If everything looks fine, apply power to the board. without a device in the IC6 socket and without the cable to the PC attached. Measure the current, it should be approximately 100 mA . If not, switch off the power and recheck everything.

USING THE PROGRAMMER

Referring to your computer manual, ensure that the computer's parallel port is setup for 8-bit bi-directional mode.
If the parallel port is a plug-in I/O card. you may have to change the jumper or switch setting on the card. If your card cannot be set for bi-directional mode. you can still program devices, but the read back (verify and read signature) functions will not work. However. I/O cards are cheap, so you could buy a new card.

Once you have set up the port, you are ready to program a device.

Plug the cable into a free parallel port on your PC (LPT1 and LPT2 are supported by the software). From a DOS prompt, run the PROGSI program. You will have to tell the program which port to use, either LPTI or LPT2, e.g. type <prog51 $1>$ for LPT1

The program should be run before plugging in the programmer, so that the parallel port is reset into an inactive state.

Fig.4. P.C.B. component layout and full size copper foil track master for the 2051/1051 programmer.

Fig. 5 (below right). Main menu for the programming software

Now plug the cable into the programmer, put the device to be programmed into the ZIF socket and apply power.

The programmer's power must alwass be switched off before inserting or removing a device.

When you run PROG51. you should be presented with the screen example shown in Fig. 5

By default, a 2051 device is selected. You can change manually by selecting "1" for 1051 or " 2 " for 2051: the first line of the menu will change accordingly.

If you have a device in the socket then the type can be automatically selected by pressing " R " in order to perform a "Read signature" command. This will display the signature bytes, device type and automatically set the correct device type.

To program a device. select ' ${ }^{\prime}$ "'. You will now be prompted for a filename and file type. The type can be either binary or Intel hex. The latter are ASCII files and normally have the extension .HEX. If possible. you should use Intel hex files as the software will do more checking on them.

The device will be erased before

programming - you cannot program over just part of it.
To verify a device. select " V ". Again you will be prompted for a filename and type. If there are any discrepancies between the device and the file. they will be shown.

ERROR MESSAGES

When you first test the programmer. you should try reading the signature bytes. If you get back FFH. FFH. FFH for the signature there are a number of possible causes. The recommended actions are to:

- check cables and power to the board
- check you are using the correct port
- check your board for errors
- check your BIOS setting (the port needs to be bi-directional)

If you are convinced that everything is OK. Iry programming a device and testing it in your application. If it works but an FFH signature has not been received, your parallel port is not bi-directional (it may not support bi-directional mode or may be incorrectly set up).

When using Intel hex files you may receive one of the following messages:

- Address out of range: your programming file contains addresses outside the 1 K or 2 K limit. e.g. your program is 100

big. (Note: most assemblers/compilers will not warn when you exceed the limits)
- Check Sum Error: your file is corrupt

You have the option of ignoring these errors but your device probably will not work as expected.

For binary files there is no checking.
If you receive any errors during a verify
option. you should check the supply voltage to the programmer

Note that if you do experience noise problems. e.g. with long cables (more than two metres), corruption is more probable when reading data back and the device will probably be programmed satisfactorily.

EXPERMMENTAL TEST BOARD

A simple test bed for 2051/1051 program development

THE circuit diagram for a simple test board on which to experiment with your programmed 2051/1051 devices is shown in Fig.6. All the port pins are free for you to play with.

In Fig.6, the microcontroller is shown as ICl . Crystal XI is nominally a 12 MHz device, although other frequencies could be used.

Access to ICl 's I / O pins Pl .0 to P 1.3 and Reset is via socket SK3. Pins Pl.0) and Pl-I can be used as analogue inputs, with resistors R 8 and R 9 providing a 2.5 V reference level for ICI's internal comparator. The Atmel databook gives one way of creating a simple analogue to digital converter (ADC) by using the comparator.

ICl's pins P1.4 to P1.7, P3.4, P3.5 and P3.7 are routed to connector PLI which is intended to allow a standard intelligent liquid crystal display (l.c.d.) to be connected.

The l.c.d.'s contrast may be adjusted using preset potentiometer VRI.

Four light emitting diodes (I.e.d.s). DI to D4. can be controlled by pins PI. 4 to P1-7. The pins need to be taken low (0 V) to turn on the l.e.d.s. Resistors R2 to R5 limit the current flow.

A 4-way on/off slide switch module (SI) is included. allowing control logic levels to be user-set on pins P3.0 to P3.3. The switches set the pins low when closed.
An RS232 1/O control is included in the shape of IC2 and SKI. The RX and TX lines are via 1 Cl pins P3.() and P3.1. An RS232 port allows communications to a PC via a terminal emulation program. It is suggested that you obtain a data sheet for the MAX232 RS232 driver when you purchase the device.
Power to the circuit should be supplied at 5V. via connector TB2. Capacitors

Fig.6. Circuit diagram for the Experimental Test Board.

C2 to C4 plus C9 provide power line decoupling.

CONSTRUCTION

A printed circuit board for the experimental circuit is available from the EPE PCB Service, code 195, and its layout details are shown in Fig. 7.

Assemble the board in any order you wish, but make sure that all components are positioned correctly. Use d.i.I. sockets for the i.c.s and, perhaps, for switch SI. although this may be mounted directly on the board it preferred.

The p.c.b. has space for a 16-way header for the l.c.d. Positions 15 and 16 are not normatly used, therefore populate a 14-pin header in positions I-14.

Note that the p.c.b. has an area containing a group of unused holes - these allow you to temporarily mount other components on the board when you are testing your own ap olications. They can otherwise be ignored

RESOURCES

Software for the programmer and test board, including that for the ISP2032 controller, is available from the EPE editorial office on a 3.5 inch disk, order as PICDisk 1. See EPE PCB Service page for postage charges

The software is also available free from the $E P E$ Web site ftp://ftp.epemag.wimborne.co.uk/pub/ prog2051

Additionally, see the accompanying introductory article for information on other resources you need for designing and programming with 805l-based microcontrollers.

The ISP2032 controller is available as a pre-programmed device direct from the author: Colin Meikle, 9 Coldstream Drive, Strathaven. Lanarkshire, ML10 6UD. Make cheques payable to him. The price, inclusive of UK postage is $£ 12$.

You can also contact the author via E-mail at colin.meikle@virgin.net

GREENHOUSE CONTROLLER

Next month. in a separate article. we describe a Greenhouse Controller which shows a practical example of an AT89C2051 microcontroller being used in a specific application. You can use your programmer to program it!

Fig.7. P.C.B. component layout and full size copper foil track master for the Experimental Test Board.

NEXT MONTH - PRCTCx84 TOOLKIT

Computer controlled Programmer, Disassembler and Language Translator - TASM and MPASM inter-conversion. Nine modes make it all possible for the PIC16C84 and PIC16F84. Can also be used with the PIC Tutorial board.

ENSURE YOU READ IT!
PLACE YOUR ORDER NOW!

CIRCUIT SURGERY

 ALAN WINGTANLEY> Co-surgeon Ian Bell rounds off his discussion of switch input multiplexing techniques, and we help America to find some Antex spares. Not to be out-done, a reader in Spain needs some scary-sounding semiconductors, too! More news on the Teach-In Micro Lab printer routine and we comment on the hazards of potentially-irritating solder fumes.

Scanning switch matrices

In last month's Circuit Surgery, fellow surgeon Ian Bell of the University of Hull investigated a sequential solution to a problem posed by Mr. P. Tanablan of Malaysia (see April '98 issue), namely. how to count the number of switches operated by a class of pupils when they each enter the classroom. We saw previously how a parallel-in serial-out (PISO) shift register formed another solution although it still needs a large number of chips to form a 100 -input shift register.
A more practical way. continues lan, is to connect the switches in a matrix. This has a set of row "wires" and a set of column "wires". The switches are placed at the intersections and each switch shorts a particular row to a particular column when "on". Fig. I shows a 3 by 3 switch matrix, it should be easy to see how this would extend to 10 by 10 to cover 100 switches. To "scan" the matrix we could put a logic 1 on each column in turn and look for is appearing on the rows. For a keyboard. we need to decode the row and column signals to work out exacily which

Fig. 1. 3 by 3 switch matrix.
key was pressed but for our application we only need to know if each switch has been pressed or not.
There is a slight complexity with the scanning in that we cannot drive the other columns to 0 when they do not have the I on them. If we did this, then pressing two keys at once would short ont the driver's outputs. There are a couple of solutions to this: we can either use diodes to isolate the columns, or use a "scanner" which puts a 1 on one column and a high impedance on the others. In both cases we need pulldown resistors on the rows.

An outline schematic for a matrix-scan based solution to the 100 switch counting problem is shown in Fig. 2 (see next page). The column scan is controlled by a BCD counter connected to a CMOS analogue multiplexer/demultiplexer with its single input tied high. The BCD number selects
each column wire in turn to be connected to 1 , while the others remain isolated. At the end of each column scan (column 9) the counters" terminal count (TC) output is active and enables the row counter to increment by one. The row counter also drives an analogue multiplexer whose output is the hey sequence, as in Fig. 4 of May '98 Circuit Surgery, which we require. Specitically, if a key is pressed the output of the row multiptexer will be high for the clock cycle during which the corresponding column and row are selected.

The key sequence is used to enable a counter in a similar manner to ligg. 5 of last month, again using the opposite clock edge to the scanning. As this circuit scans continuously, rather than once under manual control. we need to automatically reset the counter each complete scan cycle. This could potentially increase the complexity

Fig.3. Timing diagram for circuit of Fig. 2 (above right).

Fig.2. Matrix-scan based system to drive a display.
if we had to stop scanning for one clock cycle, but we use a trick to get round this.

The counter is preset to either () or 1 depending on the state of switch 0 , which is the first to be scanned. Afterwards the counter is enabled by the key sequence as before. The preset/count (P/C) control of the counter is used to achieve this. Fig. 3 is a timing diagram in which S 97 n , for example, is the value of switch S 97 on scan cycle n, whilst C 97 n represents the value of the counter after switch S 97 has been processed in scan cycle n.

The continuous counting also means that the counter only holds the result for one clock cycle (after key 99 has been scanned), so we must latch the data into a register connected to the display. As the counter is clocked on the negative of the clock we can clock the latch on the positive edge. This signal can be derived from the TC outputs of both counters, as in Fig. 2, assuming that they are glitchfree.

For the benefit of anyone wishing to develop a practical circuit, the multiplexers could be 4067 s , and the counters type 40160 , and for the latch and display decoder/driver the 4511 could be suitable. In fact, if binary counters were used to drive the scanner multiplexers the system could be expanded to count 256 keys.
Finally, thanks for an interesting question and I hope that this and the previous articles helped explain the practicalities and problems of providing combinational and sequential solutions. Ian Bell.

Antex: True Brit

From the USA, Mike Porter asks by Email for help refurbishing his faithful Antex soldering iron:

Alan. I have had an Antex soldering iron for about 15 years which has been a workhorse and very dependable. I an trying to locate a source for tips and a replacement power cord. I did an Internet search on "Anter" and "solder" and came up with your web sile. If you have any information, I would greally (appreciate it.

Antex is a famous British-made brand of soldering equipment: I own several. If you want to import from the UK, then several suppliers sell Antex spares but you could try Farnell Components who have an outlet in the United States (try enquiries@farnellcomponents.com first) and they may be able to help. Alternatively Antex invite you to contact them directly and they'll be happy to help you:

Antex (Electronics) Ltd., 2, Westbridge Industrial Estate, Tavistock, Devon, PL19 8DE, UK. Tel. + 441822613565 . Fax +44 1822617598.

Internet users, don't forget to check our Basic Soldering Guide which is fast becoming the standard on-line reference, with everyone from schools and colleges to American air conditioning plants bookmarking it! Sec http://www.epemag.wimborne.co.uk/solderfaq.htm.

High Voltage Components

Another sourcing problem, this time from Colin Rodker who hails from Spain and asks for help tracking down some rather scary-sounding parts:

Alan, can you help me to locate the following components:
ECG 247: 100V 12A pouer Darlington rransistor
EC'G 527A: 15AV diode
JAQ-15KMY0103: 0.01F 15 kV capacitor RFC 250 H
50kilohin potentiometer.
Unfortunately I can't usually handle component sourcing queries unless they relate to EPE projects which are less than five years old. However, suitably intrigued, I set to work. I had never heard of any of those semiconductors but courtesy of the Internet, several sources pointed me to www.ecgproducts.com. "ECG"` parts are a universal replacement line, ECG being part of Philips Semiconductors. They claim that their master replacement semiconductor guide cross references over 4,(0)0 devices to over 294,(0)0 industry part numbers.

As far as I could see, no ECG-prefixed parts were listed in any of the mainstream catalogues which exist in our own market. The semiconductors sound like TV replacement lines (the 527 A is. I'm told, a solid state rectifier for the TV second anode). I couldn't find that capacitor, but
the RFC and potentiometer are standard types.

In cases like this, access to an Internet browser and a search engine (e.g. Alta Vista) is invaluable so that you can locate distributors (if you don't have access yourself, maybe a friend can help). There are thousands of manufacturers with comprehensive data all available by the web.

My Net Work A-Z Index also on the EPE web site, contains scores of elec-tronics-related URLs and is a good starting point for a component search. (My thanks to those readers in the USA and UK who helped locate ECG Products. We guessed Colin is in the scary world of fixing TVs. or building a plasma sphere!)

Desoldering Fumes, HASAW and COSHH:

My thanks to correspondent Ant. Astley who comments on the requirement for desoldering fume extraction: Ant. writes by E-mail:

Apropos the Teach-in ' 98 series and the section on soldering and safety: for inost of iny life rive had a very bad throat and cough problem which is greally aggravated by solder fiumes and may well be coused by a lifetime of soldering. I now use a Weller fume-extraction iron. powered by an old vacuun cleaner, it obviously works well because the condensate in the pipe gets bad enough to block it completels. It's no great encumbrance to work with. and it helps me enormousls:

There are also various fans and filters available but I felt that this was probably the best option. I hope you can find room for this information, a mention by you may help someone avoid a great affliction

Regards. Ant. (GWOAJA).
On anything but the quickest jobs I personally clear the air using a bench-top fume displacer, of the fan-box type containing a charcoal-impregnated tilter fronting an extractor fan. I realise these are a luxury item for many hobbyists, but in my view they are essential for anything other than occasional soldering. They are remarkably effective albeit a bit bulky and noisy at close quanters (drowning out the Surgery radio at the same time). A soldering iron tends to smoke for many seconds after being replaced on the stand (while the flux burns off), but my fume extractor fan draws it all in. no problem. More serious or advanced hobbyists should seriously consider purchasing one.

For pin-point effectiveness you probably can't beat an iron-mounted fume extractor lube which Ant. uses. These extract the fumes at the point of emission, but the extractor pumps are costly because they are designed for continuous industrial use. You can easily spend $\mathfrak{£ 4 0}(0)$ (US $\$ 660$) on the relevant kit. which is completely beyond the reach of home users. Improvising with a vacuum cleaner sounds novel, but I think the noise would drive me nuts! (It conjures up quite an image though. Ant!) If anyone could manufacture a small extractor pump station to adapt to a soldering iron tube. costing say $440-50$, they would probably be on to a winner.

As a home-brew idea, you could iry improvising using. say, a surplus d.c. fan salvaged from a computer power supply. and maybe some aluminium corrugated hose (sold by car spares shops, as it's used on air inlet ducting) can be bent to shape to form a mini duct, positioned near to the area of soldering. You could try to obtain some optional carbon-black impregnated foam to filter the inlet, and just exhaust the fan to atmosphere. At least it will diven the fumes away and help prevent irritation.

Co-incidentally, flicking through a Greenweld Electronics leatlet. I spotted a plastic ABS box with large circular cutouts to accept a 115 mm fan. This rang a bell, as it appears to be similar to the housing used to contain my bench-top fume displacer. so you could buy a box and attempt to tit it out with a suitable mains fan, outlet grill and inlet filter. hopefully at a reasonable saving. The box measures $22(\mathrm{~mm} \times 1.50 \mathrm{~mm} \times 6.3 \mathrm{~mm}$. Contact lan at Greenweld Electronics on 017032.36363. (Their ref. X6834: Ian tells me that they have quite a few in stock.)

Danger Warnings

Industrial users have well-detined statutory requirements to sateguard the health of all employees and sub-contractors as defined in the Health \& Safety At Work Act (HASAW), and my experience tells me that HSE Inspectors usially stare daggers at anything which moves, snokes or smells. The chances are that occasional users wouldn't need any form of funce extraction to be litted. but it would almost certainly be the case for continuous production use.

The Health \& Safery Executive produce many free booklets, and your local oftice will be listed in the phone book. Also check the major catalogues (e.g. the Farnell Industrial Catalogue) for HSE books and information as a starting point
before embarking on statutory Risk Assessments, which themselves are mostly common- sense.

Still on the subject of safety at work and all things chemical, if you are managing any form of professional chemical applications in the UK (e.g. applying adhesives or lube, or using aerosols, etchants or fluxes), you will probably also know about the COSHH Regulations - the Control of Substances Hazardous to Health. in respect of which you must, amongst other things. obtain an appropriate Material Safety Data Sheet (MSDS) from all suppliers of classified products. Obtaining one does not constitute a Risk Assessment under HASAW legislation, though.

MicroLab

Finally this month, in case you missed my pointer in my Net Work Internet column (January 1998), users of the Teach-In Microlah should check the MicroLab weh page, where its designer Geoff MacDonald has uploaded the details needed to add a printer. See www.panlc.demon.co.uk/Microlab (that's pan-one-c) for details. All the demonstration routines are there too. together with an updated EPROM listing.

If you're looking for a practical introduction to microprocessors, then our 6502-based training system could be for you. Check the advertisement of Magenta Electronics for kit details, and our book Teach-In No. 7 is also available from the Direct Book Service. This book describes the construction and use of our Mini Lab and Micro Lab and offers a good practical foundation in electronics and microprocessors

- More readers" queries, circuits and comments next month.

CIRCUIT THERAPY

Circuit Surgery is your column. If you have any queries or comments. please write to: Alan Winstanley. Circuit Surgery, Wimborne Publishing Lid., Allen House, East Borough, Wimborne, Dorset, BH21 1PF, United Kingdom. E-mail alan@epemag.demon.co.uk. Please indicate if your query is not for publication. A personal reply cannot always be guaranteed but we will try to publish representative answers in this column.

EPE BINDERS
 KEEP YOUR MAGAZINES SAFE - RING US NOW!

This ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place.

The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.

The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add $£ 1$ postage for each binder atter the initial $£ 3.50$ postage charge loverseas readers the postage is $£ 6.00$ each to everywhere except Australia and Papua New Guinea which cosis $£ 10.50$ each).

Send your payment in $£ ' s$ sterling cheque or PO (Overseas readers send $£$ sterling bank draft. or cheque drawn on a UK bank or pay by credit card), to Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Fax: 01202 841692. E-mail: editorial@epemag.wimborne.co.uk. Web site:http://www.epenag.wimborne.co.uk (We cannot reply to queries or conlirm orders by Fax.)

We also accept credit card payments. Mastercard or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholder's address (if different to the delivery address).

Our regular round-up of readers' own circuits. We pay between $£ 10$ and $£ 50$ for all material published, depending on length and technical merit. We're looking for novel applications and circuit tips, not simply mechanical or electrical ideas. Ideas must be the reader's own work and not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should preferably be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible.
Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. They could earn you some real cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE

- 50MSPS Dual Channel Storage Oscilloscope - 25 MHz Spectrum Analyser - Multimeter - Frequency Meter - Signal Generator

If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours. Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners up.

Digital Sinewave Generation - sines off the times

THE outline circuit suggested in Fig. Ia represents an auto-reversing 4 bit counter centred around a 4029 Up-Down counter chip. The carryout signal is used to trigger count reversal via the inverter and D-type flip-flop (a type 4013, for example). The circuit uses an R-2R network w'lich acts as a D/A converter. When clocked, it produces a linear bi-directional "staircase" which can be considered as a triangular waveform. Such waveforms can be rounded off to give a good approximation of a sinewave but there is another approach: the "slope" of the triangular waveform is determined by the clock frequency, so what happens if we alter this in synchronism"?
Using a single 4 bit counter, 16 voltage levels are produced, with 15 "steps" or increments. If we increase the clock frequency from count 0 to 8 and then decrease it from count 8 to 15 , the waveform produced will be much nearer to a sinewave.

The circuit shown in Fig. Ib uses another 4029. this time configured as a 3 bit autoreversing up/down counter. Here up/down clocking is controlled in conjunction with AND gate IC3 and an RS flip-flop, such as a type 4043. It is clocked by a CMOS 7555 oscillator via npn transistor TR1, which may be any small signal type.

The three outputs of the counter bleed extra current into the timing circuit via the resistors R2 to R4. As a result of this, the clock period shortens in a non-linear fashion until the period after count 7 . From count 8 to 15 , the period again lengthens. The generator then changes its direction of count to give a mirror image of the waveform and the cycle then repeats.

Some suggested resistor values are as follows: R1 - 330k, R2 - 200k. R3-75k and R4 - 33 k . If we make $R B$ equal to 1 k , the periods are not too difficult to calculate and if Cl is 10 nF we get the following periods: $0-2.07 \mathrm{~ms}, 1-0.866 \mathrm{~ms}, 2-0.432 \mathrm{~ms}, 3$ $-0.334 \mathrm{~ms}, 4-0.205 \mathrm{~ms}, 5-0.179 \mathrm{~ms}, 6-$ 0.147 and $7-0.132 \mathrm{~ms}$.

This gives us a total of 4.365 ms for 90°, and thus a total sine wave period of 17.46 ms . and a frequency of 57.27 Hz .

Everything is of course proportional to capacitance so changing the capacitor to $\ln 2$ would produce a period of 2.095 ms and a frequency of $477 \cdot 3 \mathrm{~Hz}$. Note the voltage drops across the diodes have been ignored.
A. E. Whittaker, Walton, Stone, Staffs.

A.C. Ripple Active Rectifier -

THE circuit shown in Fig. 2 arose from a need to track down 50 Hz hum on an old record deck using just a multimeter. It will take an input signal of any amplitude and measure the peak a.c. on the signal. It is also easy to build.
It has a 270 k minimum a.c. input impedance with a near infinite impedance at d.c. This arises from the decoupling circuit at the input, the a.c. current which is passed being developed across the input resistor. The input section can be considered as a simple potential divider arrangement - the capacitor has an impedance (capacitive reactance. Xc) of $1 /(2 \pi \mathrm{fC})$, in this case about $16 \mathrm{kohm} /$ frequency thus presenting an almost infinite impedance to d.c., and about 320 ohms to 50 Hz , and less to higher frequencies.

This is then precision half-wave rectified (positive-going) by incorporating a diode DI in the feedback loop; the op.amp IC la automatically compensates for its built-in voltage drop. The storage capacitor C2 is then charged up to this voltage at a rate determined by the maximum output current of the op.amp.
The capacitor must also be able to discharge down to any new lower a.c. signals. The main route will be through whatever is being used to measure the voltage at the output - in my own case. a d.c. multimeter. The capacitor will discharge almost completely in about $5 C R$ seconds, C being $C 2(10 \mu \mathrm{~F})$ and R being the impedance of the multimeter. In the case of an analogue meter this will be quite quick (10)kilohms per volt) but around fifty seconds for a 1 Mohm digital multimeter. Other routes include leakage through the capacitor itself and through the op.amp.

The final result is a circuit of suitably high input impedance, which is quick to detect the peaks but slow to discharge. It can be tailored to have a slower rise-lime by adding a resistor just before C2 capacitor, and quicker to decay by adding a resistor in parallel with it.

The choice of an LI:353 dual op.amp for ICl is not particularly critical as the second op.amp only maintains a virual ground (quite accurately) for the signals. In this way a split-rail is easily achieved from a single battery. The supply range is that allowed by the op.amp

Fig.2. A.C. ripple active rectifier.
(c.g. 9 V to 30 V) and the a.c. signal can go typically to within IV of the supply rails. The circuit can be tested by monitoring some audio from a personal stereo.

Richard Hunt, Diss, Norfolk.

Typewriter Word Counter - no work processor meeded

FOR anyone who needs the convenience of a word counter but cannot justify the cost of a word processor or PC, the simple circuit of Fig. 3 will enable an inexpensive I.c.d. counter module (e.g. Maplin FSI3P. or similar) to be connected to a traditional manual typewriter. TR1 and TR2 form a bistable latch. Pressing the typewriter's space bar closes S2, turning TR2 and TR3 off. The signal to the counter goes low. Then pressing any letter key closes SI and turns TRI off. This holds TR2 and TR3 on, and sends a positive edge to increment the counter reading.

This signal remains high until the word is complete, when the latch is reset by another operation of the space bar. Switch S3 is closed to disable the counter when desired. Note that the space bar needs to be pressed before making a carriage retum, so as to separate the last word on the line from the first word on the next.
Since the latch is unaffected by switch bounce or imperfect contact. S1 and S2 can be quite crude in construction. In the original prototype, the circuit board was bolted to the typewriter frame under the carriage and earthed to it. Two lengths of $22 \mathrm{~s} . \mathrm{w}, \mathrm{g}$. tinned copper wire were soldered to the board and bent to make contact with the space bar and carriage movement levers. The circuit can be powered from the 1.5 V battery in the counter module - the current drain is so low that no on/off switch is needed, and this arrangement has proved entirely satisfactory over several years.
N. Jewell,

Ilfracombe, Devon.

Fig.3. Typewriter word counter circuit.

INGENUITY UNLIMITED

BE INTERACTIVE

IU is your forum where you can offer other readers the benefit of your Ingenuity, Share those ideas and earn some cash and a prize!

THE PARTS GALLERY

$+$ ELECTRONIC CIRCUITS AND COMPONENTS

 by MIKE TOOLEY Brooklands College of Further and Higher Education

DEMO

from Web site - http://www.MatrixMultimedia.co.uk

Many students have a good understanding of electronic theory, but still have difficulty in recognising the vast number of different types and makes of electronic components. The Parts Gallery has been designed to help overcome this problem; it will enable students to recognise common electronic components and their corresponding symbols in circuit diagrams.
This CD-ROM also incorporates component and symbol quizzes so that students can test their knowledge
\star Over 150 component and circuit photographs
$\star 100$'s of electronic symbols

* Self-test component and symbol quizzes

Electronic Circuits and Components provides a sound introduction to the principles and application of the most common types of electronic components and how they are used to form complete circuits. Sections on the disc include: fundamental electronic theory, active components, passive components, analogue circuits and digital circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding of each section on the CD-ROM.

* Virtual laboratories * Full audio commentary
* Over 20 links to pre-designed Electronics

Workbench circuits

Ali text shown on each page is also spoke.. Suitable for hobbyists, trainees and students. Covers Design and Technology: Key Stage 4 Electronics GCSE, Key Stage 3 Science. GNVO Electronics Key Stage 4. Intermediate BTEC Electronics.
Minimum system requirements: PC with $486 / 25 \mathrm{MHz}$, VGA +256 colours, CD-ROM drive, 8 MB RAM, 8 MB hard disk space. Windows 3.1, DOS 3.1, mouse, sound card.

CD-ROM ORDER FORM

Please send me The Parts Gallery + Electronic Circuits and Components on CD-ROM
Full name:
| Address

Post code
Tel. No:
| Signature:
I \square I enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$.
\square Please charge my Visa/Mastercard: $£$
Card expiry date:
I Card No

ORDERING: Student Version - price includes postage to most countries in the world
EU residents outside the UK add E5 for airmail postage per order

OVERSEAS ORDERS: Institutional Licence Versions OVERSEAS readers add $£ 5$ to the basic price of each - overseas readers add $£ 5$ to the basic price of each
CD-ROM for airmail postage (do not add VAT unless you live in an EU country, then add $17 \% / \%$ VAT or provide your official VAT registration number).

Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Lid. To order by phone ring 01202 881749. Fax: 01202841692
We cannot reply to overseas orders by Fax. CD-ROMs are normally sent within seven days

SPECIAL EPE RBADER OFFEB

EPE in association with ESR Electronic Components are pleased to bring you this exceptional offer on Minicraft tools - don't miss out, offer ends 30 June '98

including VAT and p\&p

A high-speed precision 12 V drill for increased versatility - Lightweight keyless chuck for easy accessory changeover - Now with more powerful 30 W motor • Very high speed for a variety of applications - Fan cooled motor for longer usage - Pencil grip for ease of use - Can be fitted with a collet set for extra flexibility

MB540 Precision Drill Stand Normally $£ 44.99$ Offer Price $£ 35.99$ including VAT and p\&p

 A stable precision drill stand - Suitable for all Minicraft drills - Twin pillar guide and specially designed pressure mechanism for maximum precision - Heavy metal construction with bench fixing holes for extra stability - Large baseplate $1155 \mathrm{~mm} \times$ 188 mm) Slots and threaded holes in base for fixing machine vice - Drill cable grip
MB714 Single Speed Transformer Normally £27.99
 Offer Price £22.99

including VAT and p\&p

An excellent single speed transformer - Sufficient power for all 25,30 and 45 watt Minicraft tools - Built-in resettable overload cut-off facility for extra safety and longer life - Robust housing for extra durability - Plug-in facility for extra convenience - 12 V d.c. output

ESR Special Bundle Normally $£ 99.97$ Offer Price £66.99

including VAT and p\&p

The ESR Special Bundle consists of the three items shown (Drill, Stand and Transformer) plus a FREE 20-PIECE
 ACCESSORY SET for drilling, grinding, routing and shaping

ESR - EPE SPECIAL OFFER ORDER FORM

Fill in and send with your payment, or phone or fax us with your order and credit card details
Full name:
Address: \qquad
\qquad
Post code:
Tel. No.
Signature:
\square l enclose cheque/PO in $£$ sterling payable to WIMBORNE PUBLISHING LTD for $£$
\square Please charge my Visa/Mastercard: £......................... Card expiry date
Card No:
Please send: MB150 30W Drill $\square \quad$ MB714 Transformer $\square \quad$ MB540 Drill Stand \square ESR Bundle (Drill, Transformer, Stand and FREE Accessories) \square
(Please tick relevant box) Offer ends 30 June 1998. Orders normally sent within 7 days

DONT MISS THIS
 EXCEPTIONAL READER
 OFFER
 Offer ends 30 June 1998

Send your order to: EPE OFFERS, Allen House, East Borough, Wimborne, Dorset BH21 1PF
Tel: 01202881749
Fax: 01202841692
OVERSEAS ORDERS:
Price includes delivery to anywhere in the UK Overseas orders add $£ 5.50$ for delivery We cannot reply to overseas orders or queries by fax

An Introduction to DIGITAL ELECTRONICS

Ian Bell, Rob Miles, Dr. Tony Wilkinson, Alan Winstanley

TEACH-IN is a series designed to support candidates following City and Guilds (C\&G) 726 Information Technology, with reference to the following specific syllabuses: *7261/301 Introductory Digital Electronics, *726/321 Elementary Digital Electronics, ${ }^{*} 726 / 341$ Intermediate Digital Electronics.
Even if you are not undertaking the City and Guilds syllabus, there is much to be learned from Teach-In.

Lab Work

Throughout Trach-in, attempts are made to involve the student with practical "Lab Work" experiments and demonstrations, and complex mathematics will be avoided unless really necessary - and even then, plenty of help is to hand! We make a point of identifying practical components in special sections of Terch-m, so that you will learn to recognise parts.

Part Eight: BUSES AND COUNTERS

WF NOW embark on an in-depth look at the design of counters, but first we investigate a real-world application of bus based data transfer.

Back on the Buses

The word bus is often used to refer to the connection between the devices in a digital system, providing connection to the various memory and processor components.

Faversham Wills Household Command System

Lord Faversham Wills has been extremely pleased with his "butler priority svsten" which was installed in his mansion. (See Part 5 - "Priority Encoders and Majority Gates".)

However, he now wishes to extend the system so that anyone wishing to use the services of the various staff can inform
them of the required services in advance. He (or any of the members of his familv) can request an ironed copy of The Time's from the butler, or a souffee from the cook, by simply pressing the appropriate buttons on the command console in the hall. This is linked to a number of display consoles in the staff quarters around his mansion.
The first thing which had to be decided was the command codes for the svstem. After a protracted staff meeting to introduce the "Faversham Wills Household Command System" the following standards were established:
The Butler can perform the following functions (function numbers are expressed in binary):
00 Fetch the newspaper (The Time's)
01 Fetch a cup of tea (Earl Grey with a slice of lemon)
10 Fetch a double whisky (single malt of course)
11 Have the rest of the day off

Fig.8.1. Command display circuit diagram.

The Cook can perform the following functions:
00 Make Breakfast
(0) Make Lunch

10 Make dinner
11 Have the rest of the day off
The Chauffeur can perform the follow ing functions:
(0) Bring the car to the front of the house 01 Wash the car
10 Put the car away for the day
11 Have the rest of the day off (perhaps with Cook)
The staff agreed that these were just the first of many different tasks that they may be asked to perform, but they insisted on no more than 256 different task codes (and a hefty raise each)!

Chain of Command

Hasing decided on the code for the tasks to be performed Lord Faversham must now consider how the signals are to be sent to each person. He has in mind sending the commands around his entire residence, and has sensibly purchased a large drum of 20 -core wire.
Initially the wire will link the butler's pantry, the kitchen and the garage, but the long term plan is to connect every room (all bol of them!!). What he must now do is decide what signals to send down each core to perform the signalling.
From his knowledge of binary he realises that eight signals must be used to send the code value and so eight wires must be used for this. He also needs signal wires to indicate the recipient of his request and a clock signal to latch the data into the display.
He is starting with three members of staff, so he assigns the signals thus: 8 wires for the data
3 wires to indicate where the message is to go (one each for Butler's Pantry, Kitchen and Garage)
1 clock signal which is used to latch the data into the display
1 ground wire.

To send a command to a particular destination the signal for that room must be asserted. The clock wire is then driven to latch the command into the display device. Fig. 8.1 shows the design for a command display station, with Fig.8.2 giving the timing of the signals to display a command.

At this point Lord Faversham Wills realises that he has two problems. First, if he wants to network the entire mansion he doesn't have enough cores in his wire (he would need a wire for each of the 60 rooms)! Second, he has no way of knowing if a particular request has been received and is being acted on.
However, being an inventive chap he reasons thus: "I will never need to send a message simultaneously to more than one member of staff at a time, and so I can use my signal wires to hold a binary bit pattern to indicate where the message is to $\mathrm{go}^{\prime \prime}$.

This means that he can get away with far fewer wires to indicate the message destination (for 64 rooms he would need just six wires). The convention that is to be used in the household is as follows: 01 Butler's Pantry; 10 Kitchen; 11 Garage.

These signals form the "address bus" of our household command system. Each station must respond to a unique address pattern on this bus.

Fig.8.2. Command timing diagram.
To find out the progress of each task Lord Faversham Wills must negotiate the use of extra equipment in each room. The staff must return some sort of progress code, for example:
00 Waiting for a message; 01 Started working on the task; 10 Finished the task; 11 Unable to start the task.
This means that the data bus is being used to send information in two directions, from the command console to the display ("I would like a cup of tea") and from the display to the console ("The kettle is on the hob"). There is no problem with using the data bus in this way, provided that the systems at each end are aware of their role during a data transfer.
To make this bi-directional use of the data bus possible we use two synchronised clocks. One of these is used
to send the data (Write $\bar{W} \bar{R}$ clock) and the other allows Lord " F " to receive a reply (Read $\overline{\mathrm{RD}}$ clock). Note that the connections to the data bus must also be made using tri-state buffers. (See Part 7 for details of tri-state).

House Commands

The cable connections and circuit diagram for the entire Household Command System are given in Fig.8.3 and the timing diagrams for the read and write operations are given in Fig.8.4. The cable connections are as follows:
C 1 to C 8 bi-directional data bus
C 9 to C 16 address bus
$\mathrm{C} 17 \overline{\mathrm{WR}}$ - clocked low by Lord F to send a command out
C18 $\overline{\mathrm{RD}}$ - clocked low by the recipient to send a reply back
C195V power supply
C20 Ground wire
The bottom portion of Fig. 8.3 shows the control console with latches to display the Progress code, set the Task code and set the Room address code respectively. The large NAND gate in the centre of the diagram performs the address decoding in a particular station (in this case the Butler's).
Note that we are showing the decoding for station number 1 , which means that all the address bits other than the lowest one (C9) must be inverted before being

Fig.8.3. Circuit diagram for the Faversham Wills Household Command System.

Fig.8.4 Read and Write timing diagrams for the Household Command System.
fed into the NAND. The address selection signal is then passed through OR gates with the READ signal to select a latch with the reply information on it and is also ORed with the WRITE signal to select the latch which drives the command display
The diagram does not show the circuit for the de-bounced clock signals (these

Fig.8.5. Pinout details for the chips used in the Household Command System circuit.
were described in Part 7), they are used to ensure that the clock signals have nice clean edges.

The pinouts for the chips used in the "Household Command System" are shown in Fig.8.5. We are not actually proposing that you build one (or that anyone in your household would feel disposed to respond to it if you did) but we think that you will find it useful to study the system and convince yourself that it would work!

As a further exercise, you may find it interesting to consider how we could change the system so that room address 0 (not presently allocated) could be used as a "broadcast" address to summon all the staff to a meeting. This would require changes to the address decoding logic in each station.

Real Life Buses

The Faversham Wills Household Command System looks very like the collection of signals which is used inside a computer to transfer data between the various components. The computer itself
will store and retrieve data held at particular addresses. To do this it must use a set of data signals (the data bus) and a set of address signals (the address bus).
The number of signals in the data bus determines the size of the packet of data which is transferred around the system. The number of signals in the address bus determines the number of addressable locations available.
Early microprocessors had 8-bit data buses and 16 -bit address buses. The wider your data bus the more data you can process at a time. The wider your address bus, the more memory locations your computer can contain. Computers based upon the Pentium processor have a 64 -bit data bus and 32 -bit address bus

One other trick which is played to reduce the number of pins on a microprocessor is to send the data and the address signals down the same signal wires. This is called an address/data bus. All that is needed is an extra signal, often called ALE or Address Latch Enable, which is raised when the processor is generating an address value.

Check Out: Logic Probes

A simple but very useful item of lest equipment is the handheld Logic Probe. These are specially designed to work with logic signal voltages, and they enable the user to determine whether a high or low logic signal is being detected. It should be remembered that there are certain voltage limits which define what a "high" and a "low" signal may be, and a logic probe is usually designed to work within these limits and interpret them correctly.

They may be powered from the circuit under test, so a pair of crocodile clips will be provided for the probe to be hooked to a 5 V supply on the board. Logic indications can be provided by both an l.e.d. and an audible tone generator within the probe. The simple type in the photographs uses a low-frequency tone for "logic low" and a higher tone for logic high. This is a great way of monitoring logic levels without needing to read and decipher a visual display. although it also indicates high or low via coloured I.e.d.s. More advanced types may interconnect optionally with an oscilloscope display.

Usefully, some logic probes also have a "pulse" mode for detecting "edges", i.e. when a logic signal changes state. This can be indicated by a brief audible beep which is triggered for a

A useful piece of test equipment is the Logic Probe. The lead is terminated with a pair of crocodile clips.

Using a logic probe to checkout our Lab Work exercise. The croc. clips are across the supply lines.
preset time. Thus, very brief pulses or glitches can sometimes be detected (see Lab Work 8 for an example) as the logic probe will act as a "pulse stretcher" and generate an audible tone accordingly.

A Logic Analyser is a much more expensive item of test equipment which is used for detecting, storing and displaying logic signals. Multi-channel lypes can monitor several signal streams at once.

Accountable Circuits

In the Lab Work at the end of the previous part we asked you to build a pair of 2-bit Binary Counters, one asynchronous and the other synchronous. We will now consider counting circuits in more detail and highlight the differences between the two circuits you built. However, we will first explore how we can arrive at the designs for these circuits.

A counter circuit is limited in terms of the maximum number it can count to. For straightforward binary counters if we have n bits we can count to $2^{n}-1$. For example, if $n=3$ the maximum number is 7. There are a total of 2^{n} possible values the counter can hold, including 0 .

Most digital counters go to 0 after the maximum count, something we are in fact familiar with in everyday life. For example, the odometer in a car returns to zero if you go far enough (''driven round the clock'). Our measurement of time works in a similar way. If it is 22:00 (24 hour clock) and we add 6 hours we get 04:00 not 28:00. In mathematics calcula tion using numbers which "loop around" like this is called modulo arithmetic.

We can explicitly define the output from a 3-bit binary up counter by writing out all the numbers in sequence as shown in Fig.8.6a.

Fig.8.6. A 3-bit binary up counter (a) outputs, (b) state diagram.

We can show the modulo counting more clearly by using a diagram as in Fig.8.6b. Such diagrams are called state diagrams. Each circle is a state and represents a certain combination of 1 s and 0 s in the circuit's memory (i.e. in the flip-flops). The circuit stays in a state until something causes it to change (typically a clock edge) at which time it jumps to the next state as indicated by arrows on the diagram.
Now look at the 3-bit binary count in Fig.8.6a. You should be able to spot some patterns in the bits. For example, whenever a bit changes from 0 to 1 (i.e. a negative edge occurs on that output from the counter) the next most significant bit changes state as shown in Fig.8.7

Fig.8.7. A $1 \rightarrow 0$ transition on one bit causes the next significant bit to toggle.

Fig.8.8. Asynchronous 3-bit binary counter using toggle flip-flops.

The least significant bit (LSB) toggles with every clock input (i.e. each time the counter counts up by 1).

This observation can lead us to the idea of connecting the output of one toggle flip-flop to the negative edge clock of the next toggle flip-flop in the counter as in Fig.8.8. We can implement the toggle flip-flop either with a D-type, with D connected to \bar{Q}, or with a JK flip-flop, with $J=K=1$ (see Fig.8.9).
Note that both these circuits give us an asynchronous counter in that the counter bits do not all change at the same instant. For the higher bits to change the signals from the lower bits must travel across the circuit.

Fig.8.9. Asynchronous 3-bit binary up counters (a) using D-types, (b) using JKs.
This is in contrast

Asynchranous Counter Chips and Dividers

The 4020 i.c. is a 14 -bit asynchronous counter chip, however the second and third bits are not connected to the chip pins. The 4024 i.c. is a 7 -bit asynchronous counter. The 4040 is a 12-bit asynchronous counter.
The 4521 is a 24 -stage frequency divider in which the 18th to 24th bits are available at the output pins. The maximum division is by 16777216 . The 4521 i.c. also features circuitry which enables an $R C$ (resistor/capacitor) or crystal oscillator to be built as an input to the counter. These circuits are shown as Fig.8.10 and Fig.8.11.
to a synchronous design, in which all the bits would change to the next value at exactly the same time. We will look at synchronous counter designs in a moment, but first here are some asynchronous counter chips.

Flg.8.11 (above). Circuit for an RC oscillator circuit using a 4521 frequency divider i.c.

Fig.8.10 (right). Using the 4521 24-stage frequency divider i.c. to produce a crysial oscillator circuit.

Note that the formula for the $R C$ oscillator (given on Fig.8.11) is approximate and the frequency will vary with temperature and supply voltage. Graphs which give this variation are available in manufacturer's data sheets.
The 74292 i.c. is a 30 -stage programmable frequency divider based on Fig. 8.8 but with additional logic to control where the clock input is fed into the counter chain. This allows digital selection of a number of different frequency divisions, i.e. we could connect a latch to the division selection pins and electronically set the speed of the output.

Synchronous Counters

If you look again at Fig.8.6a you should be able to see another pattern in the

Fig.8.12. When all lesser significant bits are 1 the next significant bit will toggle at the next clock input.

Fig.8.13. A 3-bit synchronous up counter using JK flip-flops.
binary sequence. Notice that bit toggles whenever all lesser significant bits are 1 (see Fig.8.12). The least significant bit always toggles.

From this observation we can derive the logic for a synchronous binary up counter. We can use JK flip-flops with J and K connected together to obtain a toggle/hold function.

The first stage always toggles so the J and K of the first flip-flop are connected to logic 1. The second bit (Q1) toggles if the first bit (Q0) is 1 so we connect Q 0 to J and K of the second flip-flop.

The third bit (Q2) toggles when both Q0 AND Q1 are 1 so we use an AND gate to obtain this function, connecting its output to the J and K of the third flip-flop. We arrive at the circuit shown in Fig.8.13.
We are not restricted to using JK flip-flops to build our counter, although they conveniently contain the logic to implement the toggle/hold action we need. To use D-types we need to add the toggle/hold logic (see the previous part for further discussion on this topic).
We can use the circuit in Fig.7.14 from Part 7 in place of the JKs to give the counter in Fig.8.14. Note that the first flip-flop simply needs D connecting to $\overline{\mathrm{Q}}$ as it always toggles and that we have dropped the inverter connected to flipflop two as we can use the first flip-flop's $\overline{\mathrm{Q}}$ output instead.
In Part 5 (Fig.5.7d) we saw that an XOR gate acted as a controlled inverter (i.e. invert/don't invert the data). We can use this to obtain yet another toggle/hold circuit as shown in Fig.8.15.
Using Fig.8.12 leads to another version of our counter, shown in Fig.8.16.

Many Ways of Counting

You may be wondering why we have bothered showing you so many versions of the same circuit. There are a couple of important points to be made here:
First, the asynchronous and synchronous version are fundamentally different and we will be going into this in more detail in a noment.
Second, the synchronous counters in Fig.8.13, Fig.8.14 and Fig.8.15 are fundamentally the same. In fact,
if you work out the Boolean functions for the values loaded onto each Q output after a clock edge you would get the same equation.

If you feel confident, try this out by writing the equations for the D inputs of each flip-flop in Fig.8.14 and Fig.8.16 in terms of the Q outputs of the counter. You will have to manipulate the equations using the rules given in Part 5 to prove that they are the same.

An important point to learn here is that the logic function of a circuit should be seen as a separate issue from the particular way in which it is implemented. The implementation may be important or even very important as it may influence such factors as cost, size, speed and power consumption. However, it may simply be a matter of using what happens to be available (a constraint often imposed on the hobbyist).

While considering our collection of counters it is worth noting that in practice they would probably have Reset inputs to

Fig. 8.15 (right).
Yet another
toggle/hold circuit.

Fig.8.16. Another 3-bit binary synchronous up counter. This one uses the toggle/hold circuit of Fig.8.15

Callout - Flip-Flop Timing

Like the gates we described in Part 6 , flip-flops have a propagation delay - the time it takes for data to appear on the outputs after the flip-flop is clocked. The delays may be different for the Q and $\overline{\mathrm{Q}}$ outputs. For asynchronous inputs, such as resets. separate propagation delays must be specified. As with gates all these delays may be different for high to low and low to high transitions at the output.

In addition to propagation delays and rise and fall times clocked flip flops have two important timing parameters which are not applicable to gates. These are the setup and hold times and are illustrated in Fig.8.17. The data (D, JK, T/H or other synchronous inputs) must be stable

Fig.8.17. Fhip-flop setup, hold times and propagation delay.
(unchanging) for the setup time before the clock changes and must remain stable for the hold time after the clock changes.
set them to zero. We have not shown these to simplify the diagrams while discussing the count logic. To wire the Reset (for all versions) simply connect all the flip flop's reset inputs together and connect them to the POR (Power On Reset), reset switch or other control signal as required.

Synchronous and
 Asynchronous

Having seen that the asynchronous counter can be built using flip-flops alone whereas the synchronous one requires additional gates you may be wondering why we have expended so much effort on the synchronous circuit. The difference is a matter of timing. The timing diagram in Fig.8.18 shows the outputs from a 2 -bit

Check Out: Dip and Rotary Switches

Part One of Teach-In introduced a variety of familiar switches which are used on control panels or similar, to enable users to adjust the operation or settings of an apparatus.

One more complex variety of switch is the thumbwheel, in which a thumb-operated rotary dial can be operated to provide a dial-in selection. This could be used to select, say, a frequency setting or other numerical control. They may have a range of features including end-stops (to prevent numbers higher than a particular numeral from being dialled), and decimal, hexadecimal (base 16) or BCD outputs. Some even have 7 -segment l.e.d. displays. Thumbwheel switches are snap-in panel-mounted using end cheeks on each side, and several can be banked together.

Sometimes it may be necessary to preset some circuit settings on a once-only basis (e.g. during testing or setting-up). This may not necessitate big, panel-mounted switches and something at circuit-board level may be more appropriate, especially if lowlevel signals are involved.

Dual-in-line package ("d.i.p." or "d.i.l." switches) are used on printed circuit boards as a way of providing tiny switching systems which may only need to be used occasionally or even only once. Examples are seen on computer boards, where the manufacturer presets certain features, and the end-user can alter the settings by operating the relevant combinations of d.i.p. switch.
D.I.L. switches are also useful as a neat way of incorporating switching systems into a breadboard circuit. The switches are usually made with the same "pitch" (matrix dimensions) as an ordinary dual-in-line integrated circuit so they will insert directly into a breadboard or p.c.b. with no external wiring being needed.

Choose from several styles: slider, lever, piano key and rotary types are common, with slide-over contacts being the standard. Some di.l. switch ranges include BCD or hexadecimal (base 16) output patterns, which can be useful in logic circuits. Sliding types are colour coded to help identify the switch levers.
"Programmable d.i.l. headers" are used where you want to hard wire a contact setting on a once-only basis. These are dual-in-line packages featuring internal wires that can be snipped with wire cutters. These could be used for entering codes or circuit settings customised for a particular application and the header is then plugged into a board as a small programmable module.

A typical "thumbwheel" switch. Using end cheeks on each side, they can be banked together.

A selection of d.i.l. and rotary p.c.b. mounting switches.

Fig.8.18. Timing diagram for asynchronous and synchronous counters.
asynchronous and a synchronous binary up counter.

Both circuits are negative edge clocked. Note that the circuit in Fig.8.8, the asynchronous counter must use negative edge triggered flip-flops but the circuit in Fig.8.13, Fig.8.14 and Fig.8.16 could use either edge triggers, as long as all their flip-flops were the same type.

The nature of the asynchronous counter is such that changes "ripple" through from the clock input, stage by stage towards the most significant bit. Each change is delayed by the propagation delay of the flip-flop with respect to the previous bit.

The unfortunate consequence of this, apart from the slow reaction time of large asynchronous counters, is that the outputs go through a series of indeterminate values before settling down to the correct state. This is shown in Fig.8.18 where it can be seen that an extra " 00 " is output as the counter changes from 01 to 10 (1 to 2) and an extra " 10 " as it changes from 11 to 00 (3 to 0).

This timing diagram shows the outputs of the synchronous counter changing at exactly the same time. In practice there would be some difference due to the variation in propagation delay between the flipflops - but this would normally be considerably smaller than the propagation delay itself. If all the flip-llops are of the same design, on the same chip, at the same temperature and have the same load the variation should be very small.
The problem with the relatively long duration of the unwanted outputs from the asynchronous counter is that they may cause false triggering of other circuits, particularly if these circuits are clocked from gates connected to the counter's outputs. This is illustrated in Lab Work.

Full synchronous circuits may require more gates than simple asynchronous versions but do not suffer from problems due to intermediate outputs from circuits as they change state. The clock speed is chosen so that the whole circuit has time to settle down before the next active clock edge arrives.

The ripple effect in large asynchronous counters makes them relatively slow, however asynchronous logic is not always slower than synchronous logic. It is possible to design large asynchronous
circuits which always start the next activity as soon as the current one is finished. Unlike sequential circuits they do not have to wait for the clock. This provides high speed operation as there is no "idle time"

Another advantage of asynchronous circuits is that their flip-flops only get clocked when absolutely necessary (i.e. when they have to change state) whereas in synchronous circuits they will get clocked much more frequently. This means that asynchronous circuits can be designed which consume less power than their synchronous equivalents.
Advanced asynchronous design like this is a specialist subject well beyond the scope of this series. Such circuits are designed to not only produce the correct functional outputs but also to indicate when they have finished processing and have the output ready. This approach overcomes the intermediate value problem we discussed for the simple asynchronous counter.
Despite its faults the asynchronous counter is a useful circuit, particularly for dividing high frequencies, as we described earlier.
In the next Teach-In we continue our look at the ups and downs of counters. Now have a look at the Lab Work section and build up the Counter/Monitor demonstration circuit.
The Teach-In writers are delighted to receive your comments, feedback and queries. You can write to us at TeachIn c/o the Editorial address, or E-mail Teach_In98epemag.demon.co.uk.

SQUIRES
 MODEL AND CRAFT TOOLS

A comprehensive range of miniature hand and power tools featured in a fully illustrated

144 page Mail Order Catalogue

1998 Issue

SAME DAY DESPATCH FREE POST \& PACKING

For your free copy of our catalogue write, telephone or fax to:

Squires, The Old Corn Store, Chessels Farm, Hoe Lane, Bognor Regis, West Sussex PO22 8NW
Tel/Fax: 01243587009

DISTANCE

LEARNING COURSES in:
Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

Courses to suit beginners and those wishing to update their knowledge and practical skills Courses are delivered as self-contained kits No travelling or college attendance Learning is at your own pace
Courses may have
BTEC Certification and Tutoring

For information contact
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

ESV for Windows 95 and NT!

- 4th Generation Schematic Design and Printed Circuit Layout.
- By Engineers, for Engineers.
- Full links to our Analogue, Digital and Electromagnetic simulators.
- NO pin, net or layer limits!
- Fast, Intuitive Operation!
- Track and Component editing - a dream!
- Superb User Interface!
- Competitive pricing!

Number One Systems

Write, fax, phone or e-mail for full information.
UKIEEC: Ref: EVD, HardIng Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. e-mall: sales@numberone.com Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: EVD, 126 Smith Creek Drive, Los Gatos, CA 95030
Telephone/Fax: (408) 395-0249
International +44 1480 461778/494042

TEACH-IN ' 98
 LAB WORK

Objectives: To demonstrate the difference between a synchronous and asynchronous counter. Construct a simple counter/monitor circuit to detect glitches in the count sequence of an asynchronous counter.

Iv the previous Lab Work. we constructed a simple 2 -bit counter. introducing both asynchronous and synchronous types. The asynchronous counter of Lab Work 7.4 has the clock input of a llip-flop driven by the output of a preceding latch. However the synchronous counter (Lab 7.5), has both clocks driven simultaneously by the same clock signal.

When observing the bit pattern on the counter's display l.e.d.s (see Lab Work 7. Figs. 7.27 and 7.28), there seems to be nothing to distinguish between the two. In Lab Work 8, it is necessary to construct both types of counter once again, with the addition of a counter/monitor to highlight the difference between synchronous and asynchronous counters. We think you will be quite surprised when you see glitches in action!

Lab 8. 1. A Clock-Cycle Monitor

A familiar-looking 2-bit Synchronous Counter centred around a 74 HCT 73 is shown in Fig.8.19. The count is displayed by two l.e.d.s, D1 and D2 (most significant and least significant bits), driven by inverter/buffers as usual. The counter's clock input (COUNT CLK) is "active low" so every negative-going clock edge advances the counter by one, and the two l.e.d.s will display the count. In theory, this should happen every time the COUNT CLK l.e.d. D3 extinguishes, to indicate a negative clock edge.

Breadboard

Assemble this Counter/Monitor using a 74 HCT73 and 74 HCT 04 (hex inverter) on your solderless breadboard: for pinouts see

Fig.8.19. Construct this 2-bit Synchronous Counter to count clock pulses. Use RESET first, before commencing counting, and link COUNT CLK to the next two demonstrations.
next page. Position the chips at one end of the breadboard to leave plenty of space for the following Labs. Observe anti-static precautions as usual and pay close attention to the power supply connections for both chips.

Before powering up this circuit it is a good idea to temporarily pull-up any unused hex inverter inputs (pins 9. 11.13 of IC2) with a 100 k resistor, although all the inventers will be used in the next Labs. Temporarily pull-up the COUNT CLK junction with a separate resistor tow.

Owick Check

You can briefly check the operation by powering the circuit. The l.e.d.s will illuminate, and the display will change when negative clock signals are applied. although because the clock isn"t debounced. the counter display will be erratic. Now power down and remove any temporary pull-up resistors. The terminal labelled COUNT CLK will next be used as a "probe input" for the following experiments. Remember that when the display on DI and DI adiances. this signifies that a negative clock signal has been received by this comter

Assemble the Counter/Monitor on the breadboard first.

- You Will Need

Resistors

330 ohm (4 off)
100 k (5 off)
All $0.25 \mathrm{~W} 5 \%$ carbon film

Semiconductors

74 HCT73 dual JK flip-flop (2 off)
74HCT04 hex inverter
74 HCT 00 quad dual-input NAND

Miscellaneous

red I.e.d. (4 off); solderless breadboard; interconnecting wire; 5 V d.c. regulated supply; optional logic probe

- It's a good idea to label two tlying leads as $\overline{\text { RST }}$ and C.CLK to help identify them later. Perhaps place a suitable small label next to the l.e.d.s too.

Lab 8. 2 Asynchronous Counter Glith

A second dual flip-flop (IC4) wired as an Asynchronous 2-bit Counter (see Lab Work 7.4) is shown in Fig.8.20. A debounced clock signal is generated by two NAND gates, IC.3a and IC3b which form a bistable latch. The clock output also drives a fourth l.e.d. D4, labelled CLOCK. This indicates when IC4 has been clocked. (We found it handy to mark relevant wires and indicators with small adhesive labels.)

Instead of monitoring this counter's output sequence with two l.e.d.s as in Lab 8.19, both the $1 Q$ and 2Q outputs have been ANDed together, using two spare inverters (IC2d and IC2e) and IC3c, a spare NAND gate. Now, whenever the 2 -bit output from the counter is " 00 ", this will generate a logic 0 clock signal at IC3c output, and it is this detected signal that will be counted by the monitor circuit of Lab 8.19.

Construct this 2-bit asynchronous counter and clock circuit on your breadboard. As before, a flying lead is used as the clock.
and this toggles between R8 and R9 to advance the counter formed by IC4. (Note R6 is a pull-up for the unused NAND gate in IC3). The l.e.d. D4 simply signifies the transmission of a clock signal to IC4 counter.

An ideal 2 -bit counter will count 00,01 , 10, and 11 before starting over again (see Lab Work 7.4). We are detecting and using its ANDed output (IC3c) to generate a logic 0 signal whenever the counter $1 Q$ and $2 Q$ outputs generates 00. It obviously takes four clock cycles to count this sequence, so you would expect to see " 00 "' being generated once every four clock counts. It is

$$
\longrightarrow-2
$$

Building the synchronous/asynchronous counters, labelling the l.e.d.s and "toggling" the clock.
l.e.d. D3 which denotes a logic " 00 " being generated.

After assembling and checking, power up the circuit and apply a reset signal to ICl using the RST flying lead. By toggling the clock wire between R8 and R9, the CLOCK l.e.d. D4 should alternate. The display of the counter/monitor of ICI should advance every time D3 extinguishes (negative clock edge). Try to observe the operation of the counter display every time you clock it.

The drawback with this circuit is subtle. In fact there are two COUNT CLK pulses observed for every four clock eycles. so an extra " 00 " is being generated by the The only way you will observe this is to watch the counter display of circuits.

Fig.8.20. Assemble this Asynchronous 2-bit Counter, and link the Count CLK output to the clock counter of Fig.8.19.

D1/D2, whilst applying clock signals. Hopefully, you should see that the l.e.d. display will suddenly advance one count. even though the COUNT CLK l.e.d. remains unchanged: remember the counter/ monitor will only advance when a " 00 " is detected.

- The asynchronous counter generates a glitch (an extra " 00 ") during its counting sequence which can be so fast that the eye won't spot this on the COUNT CLK l.e.d. It may seem to be continuously illuminated but the counter will suddenly advance by one for no apparent reason. Even an oscilloscope may not detect it. But a logic circuit is fast enough to react to it!
- A simple Logic Probe (see main tutorial check out panels) can be used to detect pulses, which may help to reveal the

Pinout details for the MOS logic i.c.s used in the counter
presence of glitches in simple circuits. bepending on the type of probe. placing one on the COUNT CI.K signal (p in X . IC.3c) will generate an audible signal on the probe whenever an "edge" (change of logic level) is detecled - even if the signal is so fast that the COUNT CLK 1.e.d. does not seem to change.

This could help you to determine why the lec.d. display advances. The answer is that a brief glitch is being generated. which is too fast to be noticed on the l.e.d. l) 3 by the human eye.

Lab 8.3 Synchronous Counter

The minor modifications needed to the previous Lab to produce a Synchronous Counter are shown in Fig.X.21. Alter the interwiring of $1(4$. so that both clocks are

Completed Counter demo module.

Fig.8.21. Modify the connections between IC4a and IC4b to form a Synchronous 2-bit Counter.
wired logether. and $1 C$ th J and K inputs are connected to 1 Q . the output of the tirst latch.
It should now te seen that for every block signal applied. there will be only one COUNT CL.K pulse lor every four CLK pulses. Every time the COUNT CL.K leed. extinguishes, the binary coumt advances by one and no glitch is generated in the counting pattern.

In Lab Work 9: We relurn to investigate digital counters and their applications.

Advertisement

20\% discount for EPE readers

Temperature controlled soldering stations

Use this coupon for your order
 Please supply me

. SL20 soldering station(s) at $£ 55$ inc vat $\&$ del
SL30 soldering station(s) at $£ 65$ inc vat $\&$ del
...... Extra 0.8 mm bit(s) at $\mathbf{~} 1.65$ inc vat 8 del
1.6 mm bit(s) at $£ 1.65 \mathrm{inc}$ vat $\&$ del
3.2 mm bit(s) at $£ 1.65$ inc vat 8 del

Name:

Address:

Tel no
Total \mathcal{E}..
Cheques payable to Vann Draper Electronics Ltd Or debit my visa. master, access or switch card
Card type
Card No
Expiry date : \quad Switch iss no

Signature :

Overseas readers can still obtain this discount but details vary according to country. Please contact.

PIC your time to test your reactions. Will provide hours of fun!

Everyone likes to believe they have quick reactions; some would even argue their reactions are still quick even after a drink or two. With this reaction timer all will be revealed, but be warned! Trying to improve your reaction time can be very addictive, especially when with a group of people competing against each other.

COLOURFUL REACTION

The Reaction Timer has a single pushswitch for both initiating the test and measuring the reaction time. The first press of the switch initiates the test, and this is indicated by a tri-colour light emitting diode (l.e.d.) changing from red to green.

After a random delay period the l.e.d. changes back from green to red. For a quick reaction time to be recorded. the switch should be pressed again as soon as possible after the l.e.d. returns to red.
After the switch has been pressed a second time, the reaction time is displayed on a four-digit. 7 -segment. I.e.d. display. The measurement is shown in milliseconds (ms) with a resolution of 0.1 ms . If the switch is not pressed within 999.9 ms (almost one second), the message "HELP" is displayed

REACTION TIME

Reaction time is the time it takes to react to something, whether it be a sound. pain. or in this case, an l.e.d. changing from green to red. In more precise terms. it is the elapsed time from an event to the point at which a decision is made to act. It should not be confused with response time. which is what the Reaction Timer described in this article actually measures. Since most people talk about their reactions, and not their responses. it seemed more appropriate to use the name Reaction Timer rather than Response Timer.

The Reaction Timer has been used by numerous people for fun, but not for any serious research. However, the general findings are that response times do vary between individuals and
improve with practice. The average response time is around 200 ms and the fastest around 150 ms .
From those intending to do serious investigations using the Reaction Timer, the author would be interested to learn of the results. See the Shoptalk page for address details of where to send them - E-mail preferable.
To understand response time and the factors that may affect it. it is best to consider the process of what actuality happens. The process can be broken down into a sequence of events, all of which take time to complete.

The first is when the l.e.d. changes colour from green to red. and the eye has to detect it. The signal from the eye is then transmitted to the brain. Only when it reaches the brain can the thinking process begin.
Finally. a decision to act is made the reaction - and a signal is sent from the brain to the muscles in the hand. The muscles then respond to the signal and the button is at last pressed. The microcontroller then does its bit and displays the response time on the display.

Some of the known factors that influence response time are: age, fatigue. alcohol. and drugs. It should also be pointed out that the response time for each of our senses is different. There is no reason why the Reaction Timer could not be modified to produce sound to investigate this.

CIRCUIT DETAILS

The full circuit diagram for the Reaction Timer is shown in Fig.1. The main components are the PIC microcontroller ICI and the 7 -segment displays. X2 and X3.

The design is based on the PIC16C55XT from Microchip. This device was one of the first of a family of low cost microcontrollers that offered designers the ability to put intelligence into products where cost had once dictated otherwise. Whilst the PIC16C55 has its limitations being a low-end microcontroller, the things that can be achieved with it are often outstanding.

Over the years Microchip has added extensively to its microcontroller product range. many devices offering increased features at costs not much more than the PICl 6 C 55 . One device that is very popular with the home enthusiast is the PIC 16C84, not necessarily because of its features. but the fact that its program memory is EEPROM. This allows it to be reprogrammed many times.

The PICI6C55 on the other hand is basically a One Time Programmable (OTP) part that means it can only be programmed once. However, what the PIC16C55 does have over the $\mathrm{PICl} 6 \mathrm{C84}$ is an extra port of $1 / \mathrm{O}$ (input/output) lines, and this is what
is required for the Reaction Timer project.

OSCILLATOR CONFIGURATION

For most designs the $R C$ oscillator configuration is quite often satisfactory, and also the cheapest solution. However, the Reaction Timer is intended to measure time, relying totally on the frequency accuracy of the oscillator to do this. This therefore rules out the low cost $R C$ option.

If the displayed times are to mean anything, then the use of a crystal or ceramic resonator is necessary. A 4 MHz crystal XI has been used in the model. Whichever is used, the parallel resonant frequency of the chosen device should be 4.00 MHz , unless, of course, the software is modified to suit an alternative frequency.

Whilst a crystal will provide the best absolute accuracy, the use of a ceramic resonator is just as satisfactory and also slightly cheaper. Most ceramic resonators have an initial frequency accuracy of $\pm 0.5 \%$ at $25^{\circ} \mathrm{C}$. This equates to an absolute accuracy of $\pm 1.0 \mathrm{~ms}$ for a typical reaction time of 200 ms . It should be pointed out that the repeatable accuracy, at a given temperature, will be significantly better; the limiting factor being the resolution of the display, $\pm 0.1 \mathrm{~ms}$.

ON DISPLAY

The measured reaction time is displayed using a four-digit, 7 -segment, l.e.d.

Fig.2. Display multiplexing.

A common anode type display was chosen so that the micro IC' could drive the cathodes (h) directly. This is because the micro : I/O lines can sink more current than they can source. The dual digit module only has 18 pins presented to the outside world since the anodes are connected internally within the display: one anode and eight cathodes per digit

Due to the limited number of I/O lines available from ICl. the display has to be multiplexed. By multiplexing, we only require 12 I/O lines, compared to 32 if the display was to be drivell statically

The common anodes. one per digit, are driven by transistors TR1 to TR4. Each transistor acts as a switch and is able to source the high current necessary to illuminate all eight enunciators at once.

Transistors TRI to TR4 are controlled by ICI via resistors R 2 to R5, which define the base currents. The chosen value of 1.5 kilohms (1 k .5) for the resistors ensures that sufficient base current (approx. 2.5mA) flows to keep the transistors fully saturated when supplying maximun current

The controlling $1 / O$ lines RA0 to RA3 of ICI (pins 6 to 9) are configured as outputs by the software. A logic 0 on one of the lines will switch the corresponding transistor on, whereas a logic I will switch it off. When multiplexing the display, only one of these lines will be low (logic () at any one time: the other lines all being high (logic 1) - see Fig.2.
display. The display is made up by using two, dual-digit, modules X2 and X3. Whilst a four-digit version is available, the cost is more than that of the two dual modules.

Each digit of the display comprises of eight enunciators, seven for the segments, and one for the decimal point. The anodes (a) of the enunciators are connected together within the display, and the term common anode is therefore used to describe it.

Fig.1. Complete circuit diagram for the Reaction Timer.

The segments and decimal point of each digit are connected together and are driven, via resistors R6 to R13, from IC1's I/O lines RB0 to RB7 (pins 10 to 17); these being configured as outputs by the software. Resistors R6 to R13 set the current through each segment to approximately 20 mA . Since the display is $1: 4$ multiplexed, the average current through a segment will be around 5 mA . To illuminate a segment, the corresponding RB pin of ICI should be driven low.

TRI-COLOUR STIMULUS

The red/green tri-colour l.e.d., used as the stimulus for measuring the reaction time. is driven from ICl's port C at pin 19 and pin 20. I/O line RCl drives the green anode via resistor R14 and RC2 drives the red anode via R15. These pins are configured as outputs by the software and are driven high to illuminate the l.e.d.s. The common cathode of the l.e.d. is connected to the 0 V line.

Resistors R14 and RI5 limit the current through the l.e.d.s to approximately 4 mA . Whilst not used for this project, yellow can be achieved by driving RCI and RC2 high at the same time.

Response time is recorded by means of S2; a momentary action. press-to-make. switch. The switch is connected between 0 V and ICi 's I / O line RC0 at pin 18. The line is configured by the software as an input and is therefore high impedance.

Resistor R16, connected between the positive supply and RC0, acts as a pullup to define the non-pressed state of the switch as being high. The micro therefore looks for a high to low transition on RCO as the indication that the switch has been pressed.

POWER SUPPLY

The project is powered from a 6 V supply; provided by four AA 1.5 V battery cells connected in series. Also in series with the supply is diode DI. This acts as a polarity protection device by ensuring no current flows should the battery pack be connected the wrong way.

Taking into account the voltage drop across D1, the circuit typically runs from $5 \cdot 3 \mathrm{~V}$. Finally, a single pole double-throw switch SI is used to turn the Reaction Timer on and off.

The supply current. in the main. is governed by the displays X2 and X3. With all digits illuminated - a display reading of 888.8 - the supply current is around 100$) \mathrm{mA}$. In order to ensure a long battery life, the Reaction Timer shuts down if switch $\mathbf{S} 2$ is not pressed for 25 seconds.

In shut down mode the display is blanked, the red/green l.e.d. extinguished. and the micro (ICl) put into sleep mode. In this state, the supply current is tens of micro-amps.

To restart the Reaction Timer. it must first be switched off and then back on using switch SI. The wiring of SI is such that when it is switched to the Off position. the voltage on capacitor Cl is quickly discharged through resistor R1. This ensures that when it is switched back to the On position, the internal power on reset function of the micro operates correctly.

SOFTWARE

One of the advantages of using a micro like the PIC 16C55 is that the software is fairly simple to understand. This is because the instruction set is small. only 33 instructions. and not much configuration is required to get it up and running. For those with little or no knowledge of software and assembly language, this project is possibly a good place to start learning.

The software is explained using both flow charts and snippets of the assembly code. This is more than adequate to get a good understanding of how it works. For those who wish to delve further, then there is no better place to look than the commented source code.

Fig.3. Initialisation flow chart.

INITIALISATION

As with most programs, there is an initialisation routine and a main program loop. As can be seen from the flow chart in Fig.3, the initialisation is fairly simple.

Apart from the variables used in the program and the configuration of the I / O ports, there is only one register that really needs to be configured; the OPTION register. The value written to this register sets the prescaler to 32 and assigns it to the RTCC. The resulting internal configuration is shown in Fig. 7.
The initialisation also sets the value in RTCC to zero, but this is not essential and is only done to be thorough. It is always good practice to initialise variables, even if there is no need for it.

The remainder of the initialisation is fairly self explanatory. The two instructions shown below are those used to initialise the OPTION register.

000100B

> Configure option register Prescaler for rtcc $=1 / 32$ Prescaler assigned to rtcc rtcc signal edge $=+$ ve rtcc signal source $=$ Internal

MAIN LOOP

The main program performs two basic functions: driving the display and measuring reaction time. These functions are totally separate and are described in full below.

The software to drive the display is written as a state machine that is synchronised to bit 5 of the RTCC register
see Fig.4. The state machine has four states corresponding to the four digits of the display.

Each time a negative transition of RTCC bit 5 occurs, the next digit of the display is driven and the state of the state machine changed. The result is that each digit of the display is illuminated for approximately 2 ms every 8 ms - see Fig. 2.

This equates to a $1: 4$ multiplex ratio and a refresh rate of approximately 120 Hz . If the Reaction Timer is moved quickly, the display will appear to flicker and is a clear indication that it is multiplexed.

The display continues to be multiplexed until switch S 2 is pressed. At this point, the software exits the state machine and enters the program that measures the reaction time (see Fig.5), during which the display is totally extinguished.

UNPREOICTABLE TIME

An important aspect of the Reaction Timer' is that the event of the l.e.d. changing from green to red is unpredictable.

Fig.5. Software flow chart for reaction time.

Fig. 6 (above). Calculating a pseudo random number.
Fig. 4 (left). Main program state machine display flow chart.

This is achieved by producing a random delay based on a pseudo random number. The pseudo random number is generated in a similar way to how it would be using discrete logic elements; a shift register and an exclusive-OR gate - see Fig.6.

Due to the feedback via the exclusiveOR gate, each left shift of the shift register results in a new number being produced. In this example, only 15 integer random numbers are generated before the sequence repeats.

To remove correlation between the numbers, the shift register is shifted four times to ensure that all the bits in the register are new. We are effectively taking every 4th number as shown in the example, Fig. 6.

The fact that the sequence repeats implies that the generated numbers are not truly random, and therefore not unpredictable. However, if there are many numbers before the sequence repeats, then for a project like this, the numbers can be considered sufficiently random and unpredictable.

The tap positions in the software implementation are X3 and X6. These tap positions provide a sequence of random numbers between I and 127 before the sequence eventually repeats. In both the software and hardware implementations, the number 0 is not produced. If zero was introduced as a seed, then the random number generator would only produce zeros.

It should also be pointed out that the position of the taps is important too, and
that they have not been chosen at random! There is a method of choosing tap positions using irreducible polynomials, but that will not be covered here.

Once the random number has been generated, an offset of 15 is added to it in order to set a minimum delay time. The resulting number is then used, in conjunction with the RTCC, to produce a delay ranging from 1.05 to 9.31 seconds.

During the delay, switch S2 is continually monitored to see if it is pressed. If it is. then the delay is restarted.

In an earlier version of the soltware this was not the case and. if S2 was pressed repeatedly, sub 100 m s reaction times would sometimes be recorded. This trap has therefore been included to stop cheats who try to record fast reaction times when backs are turned.

After the delay has elapsed the colour of the l.e.d. is changed from green to red and the stopwatch is started. The stopwatch is in fact the RTCC and variable RTCCI, and to start it both are loaded with zero. The variable RTCCl is incremented, in software, on each negative transition of RTCC bit 7 - see Fig. 7.

This process continues until either switch S 2 is pressed, or RTCCI bit 7 goes high indicating an elapsed time of greater than 999.9 ms . At this point, the stopwatch is stopped and the resulting time resides in the variables RTCCl and RTCCO. Precautions are taken to ensure that if the value of RTCC changes from 255 to zero before it is copied to RTCCO, then RTCCI is incremented to take account of it.

HELP LINE

Before conversion of the binary time into a Binary Coded Decimal (BCD) format, a test is performed to see if the stopwatch was stopped due to bit 7 of RTCCI being high. If it was, then no conversion takes place. Instead, the display variables are loaded with the appropriate seven-segment data to display the word "HELP".

The process of converting the time from binary to BCD is one of division, and is achieved using subtraction. Binary data representing 100 ms is subtracted from the time in the RTCC variables, and is repeated until the remaining time is less than 100 ms .
The number of times this subtraction occurs is recorded since it represents the value to be displayed in the hundred's digit of the display. If the number is greater than nine, then the reaction time is greater than 999.9 ms and the word "HELP" is displayed instead. A similar process is repeated to determine the values for the other digits.

Since the data required for 10 ms includes a bit beyond the resolution of the RTCC variables, a multiply by two (by shifting the data left by one place) is carried out before performing the subtractions - see Fig.7. This ensures no rounding errors occur. The same process is also used to determine the values of the other digits. Once the binary to $B C D$ conversion is complete, the $B C D$ data is converted to 7 -segment format and written to the display variables.

Conversion of BCD to 7-segment format is performed by means of a look-up table; the BCD data providing the offset into the table, as shown below:

Fig.7. Calculating the reaction time.

The BCD value is first placed into the W register and the BCD conversion routine is then called. The value returned by the routine is the corresponding 7 -segment data.
Care is taken to ensure that the addition does not cause a jump beyond the end of the table; hence the reason for the ANDLW instruction at the start (Note: sixteen RETLW instructions in table). Also, since the code does not test for overflow after the addition, the location of the subroutine is such that it does not cross a 256 page boundary.

SLEEP

Although there is a power on/off switch for the Reaction Timer, an automatic power down is performed in software if switch S2 is not pressed for 25 seconds. This feature has been included to save the batteries from unnecessary discharge should the Reaction Timer be accidentally left switched on.
The software for this is just after the RTCC bit 5 test in the main loop but, for simplicity, is not shown in the flow chart. However, the code that performs the shutdown is shown below just to indicate how easy the process actually is.

SShut_Down	MOVLW	$0 \times F F$
MOVWF	porta	
MOVWF	portb	
CLRF	portc	
	SLEEP	

SOFTWARE SOURCING

A pre-programmed PIC16C55-XT is available from the author for those readers who do not have facilities to program these parts - see Shoptalk page. Readers who wish to program their own PICs can obtain the software either on disk, from the EPE editorial office, or from our web site (there is a nominal charge for the former, but the latter is free) - see Shoplalk page. The web site files are in the sub-directory PICREACTION.

Extinguish display
Extinguish red/green l.e.d.
; Goto sleep (stop oscillator)

BCD_7Seg

ANDLW	$0 \times 0 F$
ADDWF	pc, f

RETLW cn 0
RETLW
RETLW
RETLW
character 0 ' (11000000)
; character '1' (11111001)
; character '2' (10100100)
character ' 3 ' (10110000)
BCD to 7 Segment conversion
BCD < 16
Add BCD to program counter

CONSTRUCTION

The Reaction Timer illustrated here has been constructed on stripboard. Although it could be converted to a printed circuit board (p.c.b.) layout, it would need to be a

Component layout on the circuit board. Note the side cutouts to allow the board to slot into the case.

Underside of the stripboard showing interwiring. The wire used is Kynar covered type used for wirewrapping.
double-sided type. It is not the intention to cover the later option here.

Whatever method of construction is used, the use of sochets for the displays and PIC microcontroller is a must. Also, the PIC should be fitted last when the completed circuit board has been thoroughly checked, taking appropriate antistatic precautions.

The stripboard component layout and details of breaks required in the underside copper tracks are given in Fig.8. Start construction by trimming the board to the required size of 29 holes by 29 copper strips using a small hacksaw.

Before mounting any components on the board. carefully make all breaks in the copper tracks using a special "spot-face" cutter or a hand-held twist drill bit of about 5 mm diameter. Next you should cut out the board mounting side guide slots if the specified case is used.
As 0.6 in. pitch 18 -pin sockets do not appear to be sold. a standard di.i.l. socket can be cut lengthwise, trimmed clean, and the resulting two strips soldered in position for the dual 7 -segment displays. Remember to allow enough of the pins to protrude to take the underside wiring.

Now commence mounting components
on the circuit board. Begin with the wire links and d.i.l. sockets, these will help as a guide for the other compoents. Do NOT tit the displays or the PIC microcontroller in their holders until the circuit board and all interwiring has been completed and double-checked. Try to touch the pins of the PIC as litile as possible when eventually fitting it into its holder.

Assembly of the rest of the components on the board should follow the normal procedure of starting with the lowest profile components working up to the largest. Pay particular attention to the diodes and transistors, checking to ensure they are inserted on

Fig.8. Stripboard component layout and wiring. Some of the interwiring on the underside is soldered directly onto i.c. socket pins and some component leads.

COMPONENTS

Resistors

Resistors		
R1 to R5	$2 \Omega 2$	$1 \mathrm{k5}(4 \mathrm{off})$
R2	See	
R6 to R13	$360 \Omega(8 \mathrm{fff})$	
R14, R15	$680 \Omega!(2 \mathrm{ff})$	TALK
R16 $\quad 10 \mathrm{k}$		
All $0.25 \mathrm{~W} 1 \%$ metal film	Page	

Capacitors

C1 $\quad 100 \mathrm{n}$ disc ceramic
C2, C3 22p disc ceramic
Semiconductors
D1 1N400150V 1A rect. diode
D2 tri-colour l.e.d
TR1 to TR4 BC556B pnp transistor (4 off)
IC1 PIC16C55-XT/P microcontroller preprogrammed (see text)

| X1 | 4.0 MHz crystal
 X2, X3\quad dual 7 -segment I.e.d. |
| :--- | :--- | display (2 off)

Miscellaneous

S1 single-pole on/off min.

 toggle switchS2 min. pushbutton switch
B1 push-to-make
($4 \times$ AA cells)
Stripboard, 0.1 in. matrix, size 29 holes $\times 29$ strips; plastic case, size $150 \mathrm{~mm} \times 80 \mathrm{~mm} \times 45 \mathrm{~mm}$; 1δ-pin di.i. socket, 0.6 in . pitch (2 off): 28 -pin d.i. socket. 0.6 in pitch; battery holder, $4 \times$ AA (short): battery connector, with leads (PP3): Kynar covered wire: solder pins; solder etc.

Approx Cost Guidance Only

the board the correct way round. see Fig. 8 . Solder them in position as quickly as possible to avoid excessive heat.
Also at this stage. lengths of interconnecting leads should be soldered to the underside edges of the board ready for connecting to the off-broard components.

CASE DETAILS

Before plugging the displays and microcontroller into their sockets it is necessary to finish off the case. If you are

The completed Reaction Timer. The circuit board "sits" on the rubber strips glued to the sides of the case, at a height to allow the l.e.d. to protrude through the case lid.
not using the specified case, the first task is to make the rectangular cutout for the displays. This can be accomplished by offering up the board to the case, using any board mounting holes as a guide, marking the display position on the surface of the case lid.

Next a series of small holes should be dritled just inside the markings for the cutout. The holes can then be "joined" up to leave a rough cutout. The rough edges can be filed flat to leave a neat cutout for the display window.

Rubber sponge strips should be glued to the inner sides of the lower half of the case to support the circuit board. These should be at a height to allow the "reaction" l.e.d. to just protrude through the case lid.

Finally, the holes for the two switches and the tri-colour l.e.d. should be made. As the l.e.d. is mounted directly on the circuit board, its position needs to be marked at the same time as the display window.

Complete the wiring to off-board components and insert the PIC into its d.i.l. socket. But, first double-check the board and wiring.
Pay particular attention to the track breaks to ensure no "slivers" of copper swarf have bridged across any adjacent tracks. This can be verified with a small magnifying glass. Also check for any "dry" solder joints, usually spotted by a discolouring of the joint.

Warning: The Reaction Timer has been designed to run from four 1.5 V AA cells. wired in series to give a 6 V supply. The supply to the PIC microcontroller must not exceed its maximum rating of 7.5 V , otherwise you can cause serious damage. So, no 9V PP3 battery please!

If all is okay the battery pack can be connected up and power switch S1 thrown. If all is well, the display should show 0.0 and the tri-colour l.e.d. should be red.

Now the fun begins!

DON'T MISS OUT - ORDER YOUR COPY NOW!

EVERYDAY

 PRACTICALELECTRONICS

NEWSAGENTS ORDER FORM

Please reserve/deliver a copy of Everyday
Practical Electronics for me each month

Signed

Name and Address (BLOCK CAPITALS PLEASE)

Everyday Practical Electronics is published on the first Friday of each month and distributed S.O.R. by Seymour Make sure of your copy of EPE each month - cut out or photostat this form, fill it in and hand it to your newsagent.

SURVBIILANCE PROPBESSIONAL QUAMTTY KITS

Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter

Smallest room transmitter kit in the world Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 500 m range..
§16.45
MTX Micro-miniature Room Transmitter
Best-selling micro-minature Room Transmitter. Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3 \mathrm{~V}-12 \mathrm{~V}$ operation. 1000 m range.
STX High-performance Room Transmitter
High periormance transmitter with a buffered output stage for greater stabilty and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~m}$, including mic. $6 \mathrm{~V}-12 \mathrm{~V}$ operation, 1500 m range. $£ 15.45$ VT500 High-power Room Transmitter
Powerful 250 mW outpul providing excellent range and periormance.
Size $20 \mathrm{~mm} \times 40 \mathrm{~mm}$. 9 V -12V operation. 3000 m range.
〔16.45
VXT Voice-Activated Transmitter
Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range. $£ 19.45$ HVX400 Mains Powered Room Transmitter
Connects directly to 240 V A.C. supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm} .500 \mathrm{~m}$ range.
£19.45
SCRX Subcarrier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range...... $£ 22.95$
SCLX Subcarrier Telephone Transmitter
Connects to telephone line anywhere. requires no batteries. Output scrambled so requires SCDM connected to receiver. Sze $32 \mathrm{~mm} \times 37 \mathrm{~mm} .1000 \mathrm{~m}$ range....... $£ 23.95$
SCDM Subcarrier Decoder Unit for SCRX
Connects to recelver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9 \mathrm{~V}-12 \mathrm{~V}$ operation.
£22.95
ATR2 Micro-Size Telephone Recording Interface
Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line.

$\star \star \star$ Specials $\star \star \star$

DLTX/DLRX Radio Controi Switch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VHF transmitter with digital encoder and recelver unit with decoder and relay output, momentary or alternate, 8 -way d.i.l. switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size 35 mmx 90 mm . Both 9 V operation. Range up to 200 m
Complete System (2 kits)

ndividual Transmitter DLTX \qquad 251.95

Individual Recelver DLRX
$\begin{array}{r}\text {. } £ 197.95 \\ \hline\end{array}$

MBX-1 Hi-Fi Micro Broadcaster

Not technically a surveillance device but a great ideal Connects to the headphone output of your Hi-Fi, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your farvourte music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waftle.
Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range
$£ 20.95$

UTLX UItra-miniature Telephone Transmitter

Smallest telephone transmitter kit avalable. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$
Connects to line (anywhere) and switches on and off with phone use
All conversation transmitted. Powered from line. 500 m range.
£15.95

TLX 700 Micro-miniature Telephone Transmitter

Best-selling telephone fransmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use All conversations transmitted. Powered from line. 1000 m range.
$〔 13.45$
STLX High-performance Telephone Transmitter
High performance transmitter with butfered output stage providing excellent stability and performance Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range
§16.45
TKX900 Signalling/Tracking Transmitter
Transmits a continuous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up 103000 m Size $25 \mathrm{~mm} \times 63 \mathrm{~mm} .9 \mathrm{~V}$ operation.
£22.95

CD400 Pocket Bug Detector/Locator

LED and piezo bleeper pulse slowly. rate of pulse and pitch of tone increase as you approach signal. Gain controt allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation
$\mathfrak{£} 30.95$
CD600 Professional Bug Detector/Locator
Muiticolour readout of signal strength with variable rate bleeper and variable sensituvity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legttimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation
£50.95
QTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our ORX180 kt (see catalogue) Size $20 \mathrm{~mm} \times 67 \mathrm{~mm} .9 \mathrm{~V}$ operation. 1000 m range.
$£ 40.95$
QLX180 Crystal Controlled Telephone Transmitter
As per OTX180 but connects to telephone line to monitor both sides of conversations. $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
$£ 40.95$
QSX180 Line Powered Crystal Controlled Phone Transmitter
As per QLXi80 but draws power requirements from line. No batteries required Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m
QRX 180 Crystal Controlled FM Receiver
For monitoring any of the ' Q ' range transmitters. High sensitivity unit. All RF section supplied as pre-built and aligned module ready to connect on board so no difficully setting up. Output to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation........................ $£ 60.95$

A build-up service is available on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £2.00 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send Sterling Bank Draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 01827714476.
OUR LaTEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEND TWO IRCS.

SUMA DESIGNS

Dept. aE
The Workshops, 95 Main Road. Baxterley, Near Atherstone, Warwickshire CV9 2LE VISITORS STRICTLY BY APROINTMENT ONLY

ELECTRONICS TEACH-IN 83/89
NTRODUCING MICROPROCESSORS
Mike Tooloy B.A. (published by Everyday Prectical

Elactronics)

A complete course that can lead successful readers to the award of a City and Guilds Cerificate in Introductory you need to know including full details on registering for assessment, etc.
Sections cover Microcomputer Systems, Microprocessors, Memories, Input/Output, Interfacing and Programming. There are various practical assignments and eight Data Pages covering popular microprocessors.
who do not wish to tak 80 pages \quad Order code Tlig8I89.

ELECTRONICS TEACH-IN No. 7. plus FREE SOFTWARE ANALOGUE AND DIGITAL ELECTRONICS COURSE (pubtished by Everyday Practical Electronic:
Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE
This highly acclaimed EPE Teach-In series, which included the construction and use of the Mini lab and Micro lab book form. Additionally, EPT' Educationil Software have developed a GCSE Electronics software program to compliment the course and a FREE DISK covering the first two parts of the course is included with the book.
An interesting and thorough tutorial series aimed specifically at the novice or complete beginner in electronics. The series is designed to support those undertaking either with fundamental principles.
with fundamental principles.
or college, this book is for you. If you just want to or college, this book is for you. If you just want to make sure you see it. Teach-In No. 7 will be invaluable if you are considering a career in electronics or even if you are already training in one. The Mini Lab and software enable the construction and testing of both demonstration and development circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron will appeal to higher leval students and those develop will appear ro 160 pages \quad E3.95

ELECTRONIC PROJECTS BOOK (published by Everyday Practical Contains twenty projects from previous each backed with a kit of components. The projects are: Seashell Sea Synthesizer, EE Treasure Hunter, Mini Strobe. Digital Capacitance Meter, Three-Channe Sound to Light, BBC 16K sideways RAM, Simple Short Wave Radio, Insulation Tester, Stepper Motor Interface.

The books listed have been selected by Everyday
Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the
last book page.
FOR ANOTHER SELECTION OF BOOKS SEE THE NEXT TWO MONTH'S ISSUES.
Note our UK postage costs just $£ 1.50$ no matter how many books you order!

Circuits amd Design

DOMESTIC SECURITY SYSTEMS

A. L. Brown

This book shows you how, with common sense and basic do-it-yourself skills, you can protect your home. It also gives tips and ideas which will help you to maintain and improve your home security, even if you already have an alarm. Every circuit in this book is clearly described and illustrated, and contains components that are easy to source. Advice and guidance are based on the real experience of the author who is an alarm installer. and the designs themselves have been rigorously put to
some of the most crime-ridden streets in the world.
some of the most crime-ridden streets in including sensors detectors, alarms, controls, lights, video and door entry systems. Chapters cover installation, testing, maintenance and upgrading.
192 pages \quad Order codenezs 12.99

MICROCONTROLLER COOKBOOK

NEW

Mike James

The practical solutions to real problems shown in this cookbook provide the basis to make PIC and 8051 devices really work. Capabilities of the variants are examined, and ways to enhance these are shown. A survey of com mon interface devices, and a description of programming models. The cookbook offers an introduction that witl allow any user, novice or experienced, to make the mos of microcontrollers. 240 pages
[Order codenez6] E19.99

Compuiting

WINOOWS 95 EXPLAINED
 \section*{P. R. M. Oliver and N. Kanteris}

If you would like to get up and running, as soon as possible, with the new Windows 95 operating system, then this is the book for you.

The book was written with the non-expert, busy person in mind. It explains the hardware that you need in order to run Windows 95 successtully, and how to install and opthe Windows 95 environment.
Later chapters cover how to work with programs folders and documents; how to control Windows 95 and use the many accessories that come with it; how to use DOS programs and, if necessary, DOS commands and how to communicate with the rest of the electronic world.
170 pages
E5.95der code BP400

INTERFACING PCs AND COMPATIBLES

R. A. Penfold

Once you know how, PC interfacing is less involved than interfacing many eight-bit machines, which have tended to use some unusual interiacing mathods.
This book gives you: A detailed description of the lines present on the PC expansion bus. A detailed discussion of the physical characteristics of PC expansion cards. The be map and details of the areas where your add-on can be fitted. A discussion of address decoding techniques and output ports. Details of using the 8255 parallel inter face adaptor. Digital to analogue converter circuits. In fact everything you need to know in order to produce success ful PC add-ons.
80 pages
Order code BP272
£3.95

EASY PC INTERFACING

R. A. Penfold

Although the internal expansion slots of a PC provide full access to the computer's buses, and are suitable for user add-ons, making your own expansion cards re-
built-in ports provide what is often a much easier and hassle-free way of interfacing your own circuits to PC. In particlar, a PC printer port plus a small amount of external hardware provides a surprisingly versatile input/output port. The PC games port is less usefultor some applications.
This book provides a number of useful PC add-on circuits including the following: Digital input/output ports: Analogue to digital converter; Digital-to-Analogue Con verter; Voltage and current measurement circuits; Resis ance meter; Capacitance meter; Temperature measure ment interiace; Biofeedback monitor, Constant voltage Position sensor (optical Hall effect etc). Stepper motor orefface: Relay and LED drivers: Triac mains switching interface; R 179 pages

Temporarily out of print

HOW TO EXPAND, MODERNISE AND REPAIR PCs

 AND COMPATIBLÉS (Revised Edition)R. A. Penfold

Not only are PC and compatible computers very expandable, but before long most users actually wish to ing their PC system. Some aspects of PC upgrading can be a bit confusing, but this book provides advice and guidance on the popular forms of internal PC ex pansion, and should help to make things reasonably straightforward and painless. Little knowledge of com puting is assumed. The only assumption is that you can operate a standard PC of some kind (PC, PC XT, PC AT, or an 80386 based PC).
The subjects covered include: PC overview: Memory upgrades; Adding a hard disk drive; Adding a floppy
disk drive; Display adaptors and monitors: Fitting disk drive; Display adaptors and monitors; Fitting a maths co-processor; Keyboards; Ports; Mice and tenance) and Repairs, and the increasingly popular subject of di.y. PCs.
156 pages

A BEGINNER'S GUIDE TO TTL DIGITALICS R. A. Penfold

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates oscillators, timers, flip/flops, dividers, and decoder ciruse of TTL devices in the "real world"

A BEGINNER'S GUIDE TO MODERN ELECTRONIC

 COMPONENTS
R. A. Penfold

The purpose of this book is to provide practical informafion to help the reader sort out the bewildering array o of the theory of electronics is not needed, and this of the ineory of electronics is not needed, and this The main aim is to explain the differences between components of the same basic type (e.g. carbon, carbon film, metal film, and wire wound resistors) so that the right component for a given application can be selected A wide range of components are included, with the emphasis firmly on those components that are used a great deal in projects for the home constructor.
170 pages
LOrder code Bri285.

ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS
This book describes over 60 modular electronic circuits how they work, how to build them, and how to use them. The modules may be wired together to make hundreds of different electronic systems, both analogue and digital. To show the reader how to begin build ing systems from modules, a selection of over 25 electronic systems are described in detan, covering security, measurement, audio (including a simple radio ecurity, measurement, audio (including a simple radio

PRACTICAL ELECTRONIC DESIGN DATA
Owen Bishop
This book is a comprehensive ready-reference manual or electronics enthusiasts of all levels, be they hob byists, students or professionals. A helpful major secion covers the main kinds of component, including suf: useful and readily available types, complete with details of their electronic characteristics, pin-outs and other essential information
Basic electronic units are defined, backed up by a compendium of the most often required formulae, fully explained. There are five more extensive sections devoted to circuit design, covering analogue, digital, radio, display, and power supply circuits. Over unctions. 328 pages
[Order code Bipsid
$£ 5.99$

PRACTICAL ELECTRONICS CALCULATIONS AND

 FORMULAEF. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., FIIE.R.E., F.B.I.M Bridges the gap between complicated technical theory, and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A shave been avoided where possible and many tables have been included.
The book is divided into six basic sections: Units and Constants, Direct-Current Circuits, Passive Components, Alternating-Current Circuits, Networks and Theorems. Measurements.
256 pages
Order codersp53
£3.95

TWO EXCITING BOOKS

Specially imported by EPE

Bebop To The Boolean Boogie

By Clive (call me Max) Maxfield ORDER CODE BEB1 £24.95

An Unconventional Guide to Electronics

 Fundamentals, Components and Processes The Foreword by Pete Waddell, Editor, Printed Circuil Design, reads: "Personally, I think that the title of this tome alone (hmmm, a movie?) should provide some input as to what you can expect. But, for those who require a bit more: be forewarned, dear reader, you will probably learn far more than you could hope to expect from Bebop to the Boolean Boogie, just because of the unique approach Max has to technical material. The author will guide you from the basics through a minefield of potentially boring theoretical mish-mash, to a Nirvana of understanding. You will not suffer that fate familiar to every reader: rereading paragraphs over and over wondering what in the world the author was trying to say. For a limey, Max shoots amazingly well and from the hip, but in a way that will keep you interested and amused. If you are not vigilant, you may not only learn some thing, but you may even enjoy the process. The only further advice I can give is to expect the unex pected

This book gives the "big picture" of digital electronics. This indepth, highly readable, up-to-the-minute guide shows you how electronic devices work and how they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean algebra and Karnaugh maps, and understand what ReedMuller logic is and how it's used. And there's much, MUCH more (including a recipe for a truly great seafood gumbo!). Hundreds of carefully drawn illustrations clearly show the important points of each topic. The author's tongue-in-cheek British humor makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate. A great reference for your own shelf. and also an ideal gift for a friend or family member who wants to understand what it is you do all day
By importing theee books ourselves wo have managed to make
them avalinble in the UK at an exceptionel price.

Bebop Bytes Back

By Clive "Max" Maxfield and Alvin Brown
 ORDER CODE BEB2 £29.95

An Unconventional Guide To Computers
Plus FREE CD-ROM which includes: Fully Functional Internet-Ready Virtual Computer with Interactive Labs The Foreword by Lee Felsenstein reads:

1. The more time you spend with this book and its accompanying CD-ROM, the more you'll get out of it. Skimming through it won't take you where you want to go. Paying serious attention, on the other hand, will teach you more about computers than you can imagine. (You might also see a few beautiful sunrises.)
2. The labs work on two levels: on and under the surface. When you're performing the labs you'll need to look for patterns that build up from individual events
3. When you're done, you won't look any different. You won't get a trophy or a certificate to hang on your wall. You'll have some knowledge, and some skill, and you'll be ready to find more knowledge and develop more skill. Much of this will be recognisable only to someone who has the same knowledge and skill.

This follow-on to Bebop to the Boolean Boogie is a mul-
 timedia extravaganza of information about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design and you'll have a few chuckles, if not belly laughs, along the way In addition to over 200 megabytes of mega-cool multimedia, the accompanying CD-ROM (for Windows 95 machines only) contains a virtual microcomputer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this one!

Audio and Music

pedance mic preamp. Crystal mic preamp. Guitar and GP preamplifier, Scratch and rumble filter, RIAA preamplifier, Tape preamplifier, Audio limiter, Bass and treble tone controls, Loudness filter, Loudness control. Simple graphic equaliser, Basic audio mıxer, Small (300 mW) audio power amp, 6 watt audio power amp, 20/32 watt power amp and power supply, Dynamic noise limiter.

保 116 pages
[order codePCII3] $£ 9.95$

MAKING MUSIC WITH DIGITAL AUDIO
 NEW

 Ian WaughIn this practical and clearly-written book, lan Waugh explains all-aspects of the subject from digital audio basics to putting together a system to suit your own music requirements. Using the minimum of technical language, the book explains exactly what you need to know about: Sound and digital audio, Basic digital recording principles. Sample rates and resolutions, Con sumer sound cards and dedicated digital audio cards. editing, digital multi-tracking, digital FX processing, in editing, digital mult-tracking, digital $\begin{aligned} & \text { tegrating MIDI and digital audio, using sample CDs }\end{aligned}$ mastering to DAT and direct to CD, digital audio and Multumedia.
This book is for every musician who wants to be a part of the most important development in music since the invention of the gramophone. It's affordable, it's flexible, It's powerful and it's here now! It's digital and it s the future of
256 pages.

POSTAGE
You only pay £1.50 per order (UK postage) NO MATTER HOW MANY BOOKS YOU ORDER

Overseas Readers see ORDERING DETAILS on the next page for overseas postage prices

SCROGGIE'S FOUNDATIONS OF WIRELESS
NEW AND ELECTRONICS - ELEVENTH EDITION
S. W. Amos and Roger Amos

Scroggie's Foundations is a classic text for anyone working with electronics, who needs to know the ant and cratt of the subject. It covers both the theory and practical aspects of a huge range of topics from valve and tube to radar, to digital tape systems and optical recording techniques.
Since Foundations of Wireless was first published over 60 years ago, it has helped many thousands of readers to become familiar with the principles of radio and electronics. The original author Sowerby was succeeded by Scroggie in the 1940s, whose name became synonymous with this classic primer for practitioners and students
alike. Stan Amos, one of the fathers of modern electronics and the author of many well-known books in the area, took over the revision of this book in the 1980s and it is he, with his son, who have produced this latest version.

ELECTRONICS MADE SIMPLE

Ian Sinclair
Assuming no prior knowledge, Electronics Made Simple presents an outline of modern electronics with an em phasis on understanding how systems work rather than on details of circuit diagrams and calculations. It is ideal ing GCSE, CGG and GNVO, and for students of other subjects who will be using electronic instruments and methods
Contents: waves and pulses, passive components active components and ICs, linear circuits, block and circuit diagrams, how radio works, disc and tape record ing, elements of TV and radar, digital signals, gating and logic circuits, counting and correcting, microprocessors,

TRANSISTOR DATA TABLES

Hans-Günther Steidie
The tables in this book contain information about the package shape, pin connections and basic electrical data for each of the many thousands of transistors listed. The data includes maximum reverse voltage, forward current and power dissipation, current gain and forward transadmittance and resistance, cut-off frequency and details of applications.

A book of this size is of necessity restricted in its scope and the individual transistor types cannot therefore be larger and considerably detail that maybe found in some ever, the list of manufacturers addresses will make i easier for the prospective user to obtain further information, if neceasary.
Lists over 8,000 different transistors, including f.e.t.s.
200 pages
OFrder code BP401
MORE ADVANCED USES
OF THE MULTIMETER
R. A. Penfold
intended as a follow-up to BP239. (see below), and should also be of value to anyone who already understands the basics of volrage testing and Simple component testing By using the technique you can test and analys you can test and analys range of components with just a multimeter (plus very few inexpensive com ponents in some cases Some useful quick check methods are also coverec

While a multimeter is supremely versatile, it does have its limitations. The simple add-ons described in Chapter extended the capabilities of a multimeter to make it even
more useful. 84 pages [Order code BP285 $£ 2.95$ ELECTRONIC TEST EOUIPMENT HANDBOOK
Steve Money
The principles of operation of the various types of test instrument are explained in simple terms with a minimum of mathematical analysis. The book covers analogue and digital meters, bridges, oscilloscopes, signal generators counters, timers and frequency measurement. The practical uses of the instruments are also examined.
ments (and much more) to Waveform Generators and testing Zeners. 206 pages [Order codefPCIO9 E8.95

GETTING THE MOST FROM YOUR MULTIMETER

 R. A. PenfoldThis book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In described, including tests for transistors, thyristors, resis tors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discusted.
In the main little or no previous knowledge or ex perience is assumed. Using these simple component and circuit testing fechniques the reader should be able to confidently tackle servicing of most electronic projects.
96 pages
OOrder code BP239]

NEWNES ELECTRONILS TOOLKIT- SECOND EDITION Geoff Phillips
The author has used his 30 years experience in industry to draw together the basic information that is constantly demanded. Facts, formulae, data and charts are presented
to help the engineer when designing, developing, evaluat ing, fault finding and repairing electronic circuits. The tutor and reference source which is recommended to all electronics engineers, students and technicians.
Have you ever wished for a concise and comprehen sive guide to electronics concepts and rules of thumb? Have you ever been unable to source a component, or choose between two alternatives for a particular applica tion? How much time do you spend searching for basic facts or manufacturer's specifications? This book is the answer, it covers resistors, capacitors, inductors, semicon telephones electronice in lighting thermal considerations, telephones, refarace dato 158 pages \quad Order code Nezo 12.99

PRACTICAL ELECTRONIC FAULT FINDING AND

TROUBLESHOOTING

This is not a book of theory. It is a book of practical tips, hints, and rules of thumb, all of which will equip the reader to tackle any job. You may ba an engineer or tech nician in search of information and guidance, a college student, a hobbyist building a project from a magazine, of simply a keen self-taught amateur who is interested in electronic fault finding but finds books on the subject too mathematical or specialized

The book covers: Basics - Voltage, curpent and resis and transistors: Op-amps and negative feedback: Faut finding - Analogue fault finding, Digital fault finding

Memory; Binary and hexadecimal; Addressing; Discret logic; Microprocessor action; 1/O control; CRT contro oscilloscope: IC replacement.

AN INTRODUCTION TO LIGHT IN ELECTRONICS

F. A. Wilson

This book is not for the expert but neither is it for the completely uninitiated. It is assumed the reader has som basic knowledge of electronics. After dealing with sub jects like Fundamamentals, Waves and Particles and The Displays are discussed. Chapter 7 details four different ypes of Lasers before concluding with a chapter on Fibre 161 pages Order code BP359 £4.9

UNDERSTANDING DIGITAL TECHNOLOGY
F. A. Witson C.G.I.A., C.Eng., FI.E.E., F.I. Mgt. and then considers its arithmetic and how it can be ar ranged for making decisions in so many processes. It then ooks at the part digital has to play in the ever expanding nformation Technology, especially in modern transmis ion systems and television. It avoids getting deeply in olved in mathematics
Various chapters cover: Digital Arithmetic, Electronic Logic, Conversions between Analogue and Digital Struc ome of the concepts more fully and a glossary of term included. 183 pages \quad Order code EP376 $\quad E 4.95$
IProject Buililing

ELECTRONIC PROJECT BUILDING FOR BEGINNERS
R. A. Penfold

This book is for complete beginners to electronic projec building. It provides a complete introduction to the pract cal side of this fascinating hobby, including
Component identification, and buying the right parts resistor colour codes, capacitor value markings, etc advice on buying the right tools for the job; soldering making easy work of the hard wiring; construction methods, including stripboard, custom printed circui boards, plain matrix boards, surface mount boards and wire-wrapping; finishing off, and adding panel labels getting probiem propects to work, including simple In fact everything you
larted in this absorbing need to know in order to get 135 pages \quad O4.95

45 SIMPLE ELECTRONIC TERMINAL BLOCK

PROJECTS

R. Bebbington

Contains 45 easy-to-build electronic projects that can be constructed, by an absolute beginner, on terminal block soldering is needed soldering is needed.

Most of the projects can be simply screwed together by following the layout diagrams, in a matter of minutes and resdily unscrewed if desired to make new circuits. theoretical circuit diagram is also included with each project to help broaden the constructor's knowledge. The projects included in this book cover a wide range finterests under the chapter hesdings: Connections and Devices, Communication, Test and Measuring. 163 pages [Order code BPay] $£ 4.95$

30 SIMPLE IC TERMINAL BLOCK PROJECTS

follow on from BP378 using ICs.
117 pages \quad Order code BP379

HOW TO DESIGN AND MAKE YOUR OWN P.C.B.S

R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers ait aspects of simple p.c.b. construction including photo graphic methods and designing your own p.c.b.s.

Temporarily out of print

BOOK ORDERING DETAILS

Our postage price is the same no matter how mariy books you order, just add $\mathbf{£ 1 . 5 0}$ to your total order for postage and packing (overseas readers add $£ 3$ for countries in the EEC, or add $£ 6$ for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order ($£$ sterling only) made payable to Direct Book Service or credit card details, Visa or Mastercard - minimum credit card order is $£ 5$ - to:
DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET BH21 1RW (mail order only).
Books are normally sent within seven days of receipt of order but please allow a maximum of 28 days for delivery - more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books see the next two issues of EPE.
DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD. Tel 01202881749
Fax 01202 841692. Due to the cost we cannot reply to oversess orders or queries by Fax.
E-mail:editorial@epemag.wimborne.co.uk
BOOK ORDER FORM
Full name:
Address
(
Post code:
Telephone No
Signature

Please charge my Visa/Mastercard £ Card expiry date
I Card Number
Please send book order codes:...

VIDEOS ON ELECTRONICS

A range of uideos (selected by EPE editorial staff) designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjovable than pure textbook or magazine study Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes originate from VCR Educational Products Co, an American supplier. (All videos are to the UK PAL standard on VHS tapes,)

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.
VT201 54 minutes. Part One; D.C. Circults. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201 VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in com. mon circuits.

Order Code VT202 VT203 57 minutes. Part Three: Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconduc. tor theory. Plus 15 different semiconductor devices explained.

Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sec. tions of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206

$2^{2} 4005$ each

 inc. VAT $\&$ postageOrder 8 or more get one extra FREE Order 16 get two extra FREE

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner Through the use of block diagrams this Through the use of block diagrams this
video will take you through the various video will take you through the various
circuits found in the NTSC VHS system. circuits found in the NTSC UHS system.
You will follow the signal from the input You will follow the signal from the input
to the audio/video heads then from the heads back to the output.

Order Code VT102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer the belts in most whilso become familiar with the various will also become familiar wi
parts found in the tape path.

Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation. Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops. counters, etc Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303 VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices. Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input'output circuits used to make the system work.

Order Code VT306

VIDEO ORDER FORM

Full name

Address:

Post code:
Telephone No.

Signature:

\square I enclose cheque/PO payable to WIMBORNE PUBLISHING LTD Please charge my Visa/Mastercard: Card expiry date

Card No:
Please send video order codes:

Please conthue on a separate sheet of paper if necessary

RADIO

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C. QUAM a.m. stereo system. Order Code VT401 VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver Plus r.f. amplifier. nixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m receiver.

Order Code VT402 VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1 Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler. stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

Order Code VT403

MISCELLANEOUS

VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers. Order Code VT501 VT502 57 minutes. Laser Technology A basic introduction covering some of the common uses of laser devices. plus the operation of the Ruby Rod laser, HeNe laser, CO_{2} gas laser and semiconductor laser devices. Also covers the basics of CD and bar code scanning.

Order Code VT502

ORDERNG: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send $£ 34.95$ per tape. All payments in $£$ sterling only (send cheque or money order drawn on a UK bank).

Send your order to:
Direct Book Service, 33 Gravel Hill,
Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)
Direct Book Service is a division of Wimborne Publishing Ltd.
Tel: 01202881749 Fax: 01202841692
Videos are normally sent within seven days of receipt of order.

E22

PCß SERVICE

Printed circult boards for certan EPE constructional projects are available from the PCB Service. see list. These are fabricated in glass fibre. and are fully drilled and roller tiinned. All prices include VAT and postage and packing. Add $£ 1$ per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749; Fax 01202841692 (NOTE, we cannot reply to orders or queries by Fax); E-mail: editorlal@epemag.wimborne.co.uk. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in $£$ sterling only).
NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back issues page for details.
Please check price and availability in the latest issue,
Boards can only be supplied on a payment with order basis.

PROJECT TITLE	Order Code	Cost
B.F.O. and Bat Band Converter MAY ${ }^{\text {a }}$	984 a b	$£ 580$
Versatile PIR Detector Alarm	988	$£ 6.76$
Mind machine Mk III - Tape Controller	989	£6.70
Midi Analyser	992	$£ 6.74$
Countdown Timer (Teach-In '96)	993	£9.44
Sarah's Light JUNE196	996	£7.17
Home Telephone Link	997 (pr)	£10.72
* PulStar	998	$\underline{1} 6.60$
VU Display and Alarm	999	$£ 7.02$
Ultra-Fast Frequency Generator and Counter - Oscillator/L.C.D. Driver	994/995 (pr)	£12.72
Timed NiCad Charger	100	£6.99
Single-Station Radio 4 Tuner	101	£7.02
Twin-Beam Infra-Red Alarm -Transmitter/Receiver	102/103 (pr)	$£ 10.50$
- Games Compendium	104	$£ 6.09$
Mono "Cordless" Headphones		
- Transmitter/Receiver	990/991 (pr)	£10.16
Component Analyser (double-sided p.t.h.)	105	£12 18
Garden Mole-Ester	106	$£ 607$
Mobile Miser	107	£6.36
Bike Speedo	108	£6.61
*PIC-Tock Pendulum Clock SEPTI96	109	£6.31
Power Check	110	£6.42
Analogue Delay/Flanger	111	£7.95
Draught Detector	112	£6.22
Simple Exposure Timer	113	$£ 6.63$
Video Fade-to-White OCTI96	114	$£ 6.98$
Direct Conversion 80m Receiver	116	£7.52
Vehicle Alert	117	£6.55
10 MHz Function Generator- Main Board	118	£733
- PSU	119	£539
Tuneable Scratch Filer NOV 96	115	$£ 7.83$
* Central Heating Controller	120	£7.85
D.C to D.C. Converters - Negative Supply Generator	122	$£ 5.96$
- Step-Down Regulator	123	£6.01
- Step-Up Regulator	124	£6.12
EPE Elysian Theremin EEC96		
(double-sided p.t.h.)	121	$£ 22.00$
* PIC Digital/Analogue Tachometer	127	£7. 23
Stereo Cassette Recorder		
Playback/PSU	128	£7 94
Record/Erase	129	£9.04
- Earth Resistivity Meter JAN97		
Current Gen. - Amp/Rect	131/132 (pr)	£12.70
Theremın MIDI/CV Interface (double-sided p.t.h.)	130 (set)	£40.00
Mains Failure Warning	126	$\underline{5677}$
Paciic Waves FEB'97	136	¢9.00
PsiCom Experimental Controller	137	£6.78
Oil Check Reminder MAR'97	125	£7.16
Video Negative Viewer	135	£6.75
Tri-Colour NiCad Checker	138	£645
Dual-Output TENS Unit (plus Free TENS Info.)	139	£7.20
- PIC-Agoras - Wheelie Meter APRIL. 97	141	¢6.90
418 MHz Remote Control - Transmitter	142	£5.36
- Receiver	143	£6.04
Puppy Puddle Probe	145	£6.10
MIDI Matrix - PSU	147	£5.42
- Interface	148	£5.91
Quasi-Bell Door Alert MAY 97	133	$£ 6.59$
2M F.M. Receiver	144	$£ 7.69$
* PIC-A-Tuner	149	£783
Window Closer - Trigger	150	£491
- Closer	151	£447
Child Minder Protection Zone JUN97		
- Transmitter	153	£6.58
- Receiver	154	$£ 6.42$
Pyrotechnic Controller	155	£6.93
- PIC Digilogue Clock	156	£7.39
Narrow Range Thermometer	158	£6.37
Micropower PIR Detector - 1 JULY97	152	£6.69
Infra-Red Remote Control Repeater (Multi-project P.C.B.)	932	$£ 3.00$
Karaoke Echo Unit - Echo Board	159	£6.40
- Mixer Board	160	£6.75
Computer Dual User Interface	161	$£ 6.70$
* PEsT Scarer	162	$£ 6.60$

PROJECT TITLE	Order Code	Cost
Variable Bench Power Supply EUG97	932	£300
Universal Input Amplifier	146	£6.55
Micropower PIR Detector - 2 Controller	163	£6.72
- PIC.OLO	164	£7.02
Active Receiving Antenna ${ }^{\text {a }}$ SEPT 97	140	£6.59
Soldering Iron Controller	157	£6.63
- PIC Noughts \& Crosses Game	165	£7.82
Micropower PIR Detector - 3		
Alarm Disarm/Reset Swith	166	$£ 5.72$
Ironing Satety Device	167	£5.12
Remote Control Finder OCT'97	168	¢6.32
Rechargeable Handlamp	169	£6.23
* PIC Water Descaler	170	$£ 6.90$
*EPE Time Machine NOV'97	171	£.8.34
Auto-Dim Bedlight	172	£6.63
Portable 12V PSU/Charger	173	£6.61
Car Immobiliser DEC'97	175	$£ 7.00$
Safe and Sound (Security Bleeper)	179	$£ 7.32$
Surface Thermometer JaN'98	174	¢7.64
Disco Lights Flasher	178	£8.30
Waa-Waa Pedal (Mult-project PCB) FEB'gs	932	£3.00
- Virtual Scope - Digital Board	176	£14.49
Analogue Board (per board)	177	£7.34
* Water Wizard	180	£7.69
Kissometer	181	¢7.67
**EPE PIC Tutorial ${ }^{\text {a }}$ MAR'98	182	$£ 7.99$
The Handy Thing (Double-Sided)	183	$£ 6.58$
Lighting-Up Reminder	184	£5.90
* Audio System Remote Controller - PSU	185	$£ 7.05$
Main Board	186	£8.29
Simple Metal Detector APR'98		
Single or Dual-Tracking Power Supply	187	£7.90
* RC-Meter	188	£7.66
Security Auto-Light May 98	189	£8. 10
Stereo Tone Control plus 20 W Stereo Ampilier		
Tone Control	190	£7.78
20W Amplifier	191	£8.58
- Dice Lott	192	£8.05
EPE Mood Changer JuNE 98	193	$¢ 7.75$
AT89C2051/1051 Programm	194	
Test Board	195	£8.69
* Reaction Timer Sottware only	-	-

EPE SOFTWARE

Software programs for EPE projects are available on 3.5 inch PC. compatible disks or via our Internet site. Those marked with a single asterisk * are all on one disk. order code PIC-DISK1. this disk also contains the Simple PIC16C84 Programmer (Feb '96). The EPE PIC Tutorial (**) files are on their own disk. order code PIC-TUTOR. The disks are obtainable from the EPE PCB Service at $£ 2.75$ each (UK) to cover our admin costs (the software itself is free). Overseas (each) £3.35 surface mall, £4.35 airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag. wimborne.co.uk.

SURFING THE INTERNET NET WORK

ALAN WINSTANLEY

NET WORK is our monthly column written specially for electronics enthusiasts having access to the Internet. Our web (RL (http://www.epemag.wimborne.co.uk) contains details of the latest issue and a brief reminder about earlier editions too. You can also subscribe or renew your EPE subscription for up to four years (at a guaranteed fixed price), via our secure server. This month's project files are on the FTP site at pub/PICS/Reaction.Timer and pub/8051/Programmer.

Several readers appear to have problems using File Transfer Protocol (FTP) in order to access our FTP site. As promised in the May issue, starting this month we take time out to help you navigate around our file area. I'll be describing those relevant to Windows 95 users, but Macintosh owners may also find the following pointers useful as some of the principles apply to them, too.

FTP at the DOS Prompt

I will bet that a sizeable number of Windows 95 users are unaware they can run a "command-line" FTP session via the Internet, from their DOS prompt. Simply make a connection to the Internet (e.g. using Dial-Up Networking) then open a DOS box by clicking the MS-DOS icon. At the DOS prompt type FTP <return>. The C prompt will change to FTP> and you are ready. You will now witness a coming-together of two operating systems, because every FTP server I have ever known uses Unix. It pays to become acquainted with a few basic Unix commands, and although some are broadly similar to DOS, there are some fundamental differences not least of which is that Unix uses a forward slash " $/$ " instead of a DOS back-slash " \backslash ". This can be a pain to begin with! Furthermore, Unix command file names and directories are case-sensitive.

The first command to enter is the URL of the FTP server. To connect to the EPE FTP site, you would type open ftp.epemag.wimborne.co.uk <retum>, after which you will be asked to \log in by providing a user name and password.

The vast majority of FTP sessions are performed by "anonymous FTP" so the files are freely available to everybody. Type the word "anonymous'" as a log-in, and your full (valid) E-mail address as a password:
flp> open flp.epemag.wimborne.co.uk
Connected to ftp.epemag.wimborne.co.uk.
220-ftp.epemag.wimborne.co.uk FTP server (NcFTPd 2.2.0) ready.
220- Welcome to the FTP archive at
ftp.epemag.wimborne.co.uk
220- Login as 'anonymous' and give your email address as the password
220- to access our FTP archive.
User (ftp.epemag.wimborne.co.uk:(none)): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password:
230-You are user \#2 of $\mathbf{3 0}$ simultaneous users allowed.

230-

230 Logged in anonymously.
ftp>
At this point, you have gained access to the log-in "root" of the FTP site, from where all the sub-directories branch out. It is now necessary to navigate to the relevant folders using some arcane DOS-like commands, hitting <retum> after each one: dir lists the contents and file data of the current directory:
ftp> dir
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
dr-xr-xr-x 2 ftpuser ftpusers 512 Jul 111995 bin
dr-xr-xr-x 2 ftpuser ftpusers 512 Jul 111995 dev
dr-xr-xr-x 3 ftpuser ftpusers 512 Jul 111995 etc
drwxr-xr-x 10 ftpuser ftpusers 512 Feb 5 14:44 pub dr-xr-xr-x 3 ftpuser fipusers 512 Jul 111995 usr 226 Listing completed.
305 bytes received in 0.05 seconds (6.10 Kbytes/sec)
ftp>
The "pub" (public) directory is the only one of interest. To go there, type cd/pub then Is. You will see the following Unix file structure displayed:
ftp> Is
200 PORT command successful.
150 Opening ASCII mode data connection for /hin/ls.
Heating
Met.office
PICS
SOUNDAC
VScope
docs
incoming
readme.txt
software
whatsnew.txt
226 Listing completed.
96 bytes received in 0.05 seconds (1.92 Kbytes/sec)
ftp>
To download a file onto your PC, use get. But first you must differentiate between ASCII (pure text) files and binary (.zip, .gif. .doc etc.) files before commencing the transfer. Type ascii or binary accordingly: the file will be corrupted if you transfer binary files as ASCII. For example, back in the root of the FTP server, to fetch the file readme.txt:
ftp> ascii
200 Type okay.
ftp> get readme.txt
200 PORT command successful.
150 Opening ASCII mode data connection for readme.txt (1163 bytes).
226 Transfer completed.
1197 bytes received in 0.28 seconds (4.28 Kbytes/sec)
ftp> quit
221 C-ya!
C:IWINDOWS>
Lastly, type quit to exit the FTP session (and don't forget to disconnect the modem) and exit to leave DOS. By default, the file now resides in the Windows directory. I'll be continuing this FTP primer next month.

Phantom of the Opera

If you are fed up of the bloat of your browser and want something less proprietary and more fun, then get Opera. a slim (IMB) but feature-rich Windows browser from Norway. Opera Software says their goal is to provide us with the best browser on the Net, regardless of market share, browser war or competitive domination strategies.

Opera has useful zoom facilities (up to $1,000 \%$) on both text and graphics, which will be of enormous help to those who are partially sighted; it can also be navigated by keyboard only, if desired. A mail and news client "is incorporated and on test, Opera 3.1 found all my Navigator and MSIE bookmarks straight away using an impressive Hotlist feature. Http://www.operasoftware.com is the place to go. It is priced at US\$35, with a 50% discount for educational users, and you can buy on-line via SSL.

Defeated by my word count, I am placing this month's interesting links directly on the web site! Be sure to check Net Work on the EPE web site, and let me know your favourite places. You can E-mail me at alan@epemag.demon.co.uk. as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last thirteen years.

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Mill Lodge, Mill Lane, Thorpe-le-Soken, Essex CO16 0ED. Phone/Fax (01255) 861161.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

BTEC ELECTRONICS TECHNICIAN TRAINING

GNVQ ADVANCED ENGINEERING (ELECTRONIC) - PART-TIME HND ELECTRONICS - FULL-TIME B. Eng FOUNDATION - FULL-TIME Next course commences
Monday 14th September 1998 FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE

 (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 0171-373 8721
ELIEGTRONIC KITS

- $88-108 \mathrm{MHz}$ FM transmitters from under $£ 5$
- Many educational and hobby electronic kits covering all technical abilities, from beginners' circuits to MCU/MPU designs
- Low cost PCB services and equipment
- Send 4×1 st class stamps for catalogue

DTE MICROSYSTEMS, 112 SHOBNALL ROAD,
BURTON -ON-TRENT, STAFFS DE14 2BB PHONE or FAX: 01283542229 http://www.btinternet.com/-dtemicrosystems

SWITCH MODE POWER SUPPLIES 241 V input dual output 5 V 5 A \& 9 V IIA (140W) $\$ 42$

Address: 8 St Peters Grove. Southsea. Hants POS ILS
Tel: (0)1705) 814214
AlM Services

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:

Mr. J. F. Davies, 70 Ash Road, Cuddington,

 Northwich, Cheshire CW8 2PB.Space donetod by Everyday Practica/ Eloctronics

Miscellaneous

BRAND NEW SINCLAIR SPECTRUM

 G OL PARTSZX MICRODRIVES £15, INTERFACE ONE E20, CARTRIDGES 10 FOR E15, 50 FOR E50. QL BOARDS 5, 6 \&7, POPULATED WITH JS ROMS, £30: UNPOPULATED, C12: MMCRODRIVES E10 EACH. TOP \& BOTTOM CASES $£ 15$, MEMBRANES $£ 15$.
THE P.C., MAC and OL's "Little Friend" MAC LINK £10-P.C. LNK £25-01 LNK £12 CAMBRIDGE 288 A 4 NOTEBOOK
COMPUTER AVAILABLE AGAN E99, COMPUTER AVAILABLE AGAN E9S,
ONLV 1° THICK. $4 \times A A$ BATTS. 20 HOURS WORK. LCD SCREEN. 72 Crs, 6 LINES, 32K RAM, EXTRA
RAMS \& EPROMS, 9 OIN D SERIAL PORT, ROM HAS RAMS \& EPROMS, 9 IIN D SERIAL PORT, ROM HAS
BBC BASIC. WIPAOCESSOR, SPREADSHEET, DATA BASE, IMP/EXPORT TO PC ETC, V52 TERMINAL. W.N. RICHARDSON ECO. PHONE/FAX 01494871319
6 RAVENSMEAD, CHALFONT STPETER, BUCKS, SLI ONB.

VoLTMETERS Special Offer
DIGITAL MULTIMETERS. BULK BUY - Buy whie stocks lant Ranges 200 mV to $600 \mathrm{~V} \mathrm{de}, 500 \mathrm{~V}$ a.c volls: 200 mA to 10 Adc amps. 20013 to 2 M 2 ohms REAL VALUE E14.73 Transistor and diode iest-1 mA , temperature probe option OMLY 22.34 extra Other items ahways avalable Phig PS.U s. use these lor your projects. multi-voltage $3 \mathrm{~V}, 45 \mathrm{~V} .6 \mathrm{~V}, 7.5 \mathrm{~V}, 9 \mathrm{~V}, 12 \mathrm{~V}$ d.c 300 mA ONLY C3.71, 750 mA ONLY 55.68 Smoke generators, all types we make these. please phone us 3.5 AH rechargeable cells with solder tags. $15 \mathrm{~mm} \times 57 \mathrm{~mm}$, same weight as sub 'C' Nicad of only 1.2 AH capacity. ONLY \&e. 71 ideal electric brcycle. modets the most ncredble cells we have ever sourced. or use in your own portable products Trace enquires metcome We supply at trade pricess Weicorne to A.C.E the new company on the block, specialising in finding the very best quality $/$ value tiems and distributing these at genuine trade prices. via the lowest cost acvertising Warch out lor more ulfa good value promotions! Choques Postal Orders 10 A.C.E., Burgh Station Yard Ind. Est, Station Rood, Burghto-Marsh, Skegneas, PE23 5 EZ $+81,35$ p\&c Phone 01754850567 . Fax 07070710813

PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Production. Artwork raised from magazines or draft designs at low cost. PCBs also designed from schematics. Production assembly also undertaken. For details send to P. Agar. Unit 5. East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX, or phone/fax 01232 738897.
ANYONE REPAIRING TOYOTA/other engine management control units, car spares marketing/distribution company seeks supplier. Malcolm Jackson, Phone/Fax 01814676671.
VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice/lists please ring, Geoff Davies (Radio), Tel. 01788 574774.

PROTOTYPE PRINTED CIRCUIT BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 8GR, or phone Brighton 883871, fax 01273706670.
G.C.S.E. ELECTRONIC KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics. 52 Severn Road Clacton, COI5 3RB.
PIC16C/F84, £2.60; PICI2C508, £1.35: 24 LC16 EPROMS. 58 p ; Simple PIC/EEPROM Programmers for PC. £10, inc prog. software and instructions. http://www.k009.demon.co.uk. Tel. 07020 921274 or 0966421694.
CD-ROM massive servicing and troubleshooting "'Technical Encyclopaedia 1997", learn to repair everything electronic and electrical, computers, monitors, printers to TV, VCR, $\mathrm{Hi}-\mathrm{Fi}$, domestic appliances and copiers, over 200 volumes on one CD. RRP £99. bargain £20.016133283371.
HIGH POWER AUDIO AMPLIFIER, 500 W -plus into 8 ohms, ideal professional disco, PA, installation etc. High quality p.c.b. and plans $£ 15.00$ or s.a.e. for more info. Bruce Omond Audio, 34A Craiglockhart Avenue, Edinburgh EH14 1LX.
FOR SALF, suit collector/enthusiast: EPE/Everyday Electronics magazines, July 1989-April 1998 complete, others back to 1977: Also many issues Practical Electronics, Practical Wireless, Elektor, Maplin Magazine, Wireless World, offers? Plus books on electronics, physics, maths, offers? East Midlands area. Telephone 01858462490.
FOR SALE - clearing workshop: Avometer. signal generator, function generator, frequency counters. power units, Heathkit leak detector, offers. Reels copper transformer wire, reels coloured wire, many switches, components, Letraset, Mullard D7/190GH oscilloscope tube, also oscilloscope 75% built with tube but no plans, bender and guillotine for aluminium. Offers. East Midlands area. Telephone 01858462490.
EXPLORE THE (4th) DIMENSION, hear eerie sounds generated on Earth/in space/from UFOs. Special scientific receiver converts carrier emissions, 10 Hz to 14 kHz into audio. A.E for info: P.O. Box 694, Saint Helier, JE4 9PZ. Jersey, Channel Islands (UK).

EPE NET ADDRESSES

EPE FTP site: ftp://ftp.epemag. wimborne.co.uk
Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:
PIC-project source code files: /pub/PICS
PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!
EPE text files: /pub/docs
Basic Soldering Guide: solder.txt
EPE TENS Unit user advice: tens.doc and tens. Ixt Ingenuity Unlimited submission guidance: Ing_unlt.tx New readers and subscribers info: epe_info.txt Newsgroups or Usenet users advice: usenet.txt Ni-Cad discussion: nicadiaq.zip and nicad2.zip UK Sources FAO: uksource.zip Writing for EPE advice: write4us.txt

Ensure you set your FTP software to ASCII transfer when fetching text files, or they may be unreadable.

TECHNICAL INFORMATION SERVICES
76 Church St, Larkhall, Lanarks, ML9 1HE Tel: $01698883334 / 884585$ Fax: 01698884825

PHONE NOW FOR YOUR FREE QUOTE
We have the World's Largest Collection of

SER VICE MANUALS

Why not join Europe's fastest growing
"Information Library Service"
Buy ANY Service Manual for $£ 10.00$ and return any manual no longer needed for a $\mathbf{£ 5 . 0 0}$ credit CALLIWRITE NOW FOR FURTHER DETAILS Initial joining fee of $\mathbf{£ 6 5}$: Thereafter £20 Yearly Join Now: Get your first Manual FREE!

Most advertisements are legal, decent, honest and truthful. A few are not, and, like you, we want them stopped

If you would like to know more about how to make complaints, please send for our booklet: 'The Do's and Don'ts of Complaining'. It's free

The Advertising Standards Authority.
 We're here to put it right.

ASA Lid., Dept. Z., Brook House, Torington Place, London WC1E 7HN This space is donated in the interests of high standards of adverising

SERVICE MANUALS

 \& Tectinical BooksAvailsble for most equipment, any make, age or model. CD-ROM PRICE CRASH Technical Book and Manual Compilations now on CD-ROM ON ALL OUR Return the coupon for your FREE catalogue on Floppy Discs. CD-ROM's MAURITRON TECHNICAL SERVICES (EPE) Tisa 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY Tel:- 01844-351694. Fax:- 01844352554 Email:- sales@mauritron.co.uk Web site at:- http://dialspace.dial.pipex.com/mauritron/ Please forward your latest Disc catalogue for which I enclose 4×1 st Class Stamps. or $£ 5.00$ for the complete Service Manuals Index on PC Disc plus catalogue
NAME
ADDRESS \qquad

POSTCODE

シBASIC
 Compiler for
 PICs

Takes the hassle out of working with PICs!
With MEL PicBasic just write your code in Basic, and then instantly compile it to produce the hex or binary files needed to program your standard 18, 28 or 40 pin PIC chip. English-like instructions make programming a joy instead of a struggle - serial comms, if/then, pulse measurement, time delays, etc., etc., each takes just one command!
Comprehensive user manual.
More info on the web at http://www.melabs.com/mel/pbc.htm

FM -3	- N 0
SPECIAL I1 PACKS EACHPACK ONL Y \&1 SPECIAL \&1 PACKS	
3 ICM7555 CMOS Low Power 555 Tmers	100 INa 14875 mA 100 V St Signal Drodes
3 CA3046 Five Transimar Array Ic s	16 16-pand II sockets
3 LM348N Ouad 741 Op amps	10.5 mm Trangular red 1 e.o
1 LM369 0.5W Audio Amplifer	20 4.7MF/40V Hachal Electromtucs
1 SN76023N AW 1 Onm 24V Aucio Ampitier	$2022 \mu F / 25 V$ Radal Electroytucs
240178 CMOS Decade Counter	3 470 5 F/63V Radial Electrolytics
34023 BCMOS Trpte 3 - input NANO Gates	10 1/5F/450V Axtal Electronticas
$5 \quad 4025 \mathrm{BCMOS}$ Trite 3-mput NUR Gatos	$10 \quad 47 \mu$ F/25V Axial Electrolytes
$2 \quad 7474 \mathrm{~N}$ TL Dual D-ype Flip-Flops	10 1004F/25V Aual Elecrolytics
278109 NTLL Dual JK Flie Fiops	25 150HFF16V Axial Electrotyics
$4786.12100 \mathrm{~mA}+12 \mathrm{~V}$ Voltape Regulators	$206880 \mu \mathrm{~F} / 16 \mathrm{~V}$ Axial Electrotytics
$1 \quad 78 \mathrm{~m} 240.50 \mathrm{at}+24 \mathrm{~V}$ Vortage Requiators	1000μ F/10V Axual Elecriolytics
3 Cl 108012.5 A 400 V Thymistors (TO202)	$32200 \mu \mathrm{~F} 10 \mathrm{~V}$ Axal Electroytics
1 A0161 High Power non Ge Transustor	33300μ FFiov Axial Electromics
1 A0162 High Power pno Ge Transtsior	$250.022 \mu \mathrm{~F} 250 \mathrm{~V}$ C280 Radial Polyester
4 BC117 Low Power non Si Transustors	${ }^{6} \quad 2.2 \mu \mathrm{~F} 250 \mathrm{~V} \mathrm{C} 288 \mathrm{R}$ Radal Potysier
25 BC212LB Low Power pon Si Transustors	30 100F 100V 2% Sub-Min. Ceramic Plate
3 8Cil7 Low Power pmp St Transistors	$8 \quad 3.5 \mathrm{~mm}$ Mono Plastic Jack Plugs
${ }^{6}$ BCr71 Low Power pno Sit Tramemtors	4. Tan Mono Plastic Jack Prugs
3 BF 180 High Frequency non Transistors	$5 \quad 2-a \mathrm{~N}$ OIN Plastra L/S Phags
$2 \mathrm{TIP34} \mathrm{Hagh}$ Power pno Si fransistors	Soe LASTNNEXT MONTH for mone fl SPECIAL
2 ZTX301 Low Power non Si Trankmors	UK PaP only 11 der order, No VAT.
$3{ }^{2} \mathrm{ZT} \times 313$ Low Power non Si Transesiors	Ploaso sond legre SAE for FREE Lists
5 STX550 Medium Power pap S. Transistors	Onical Ordors Con, Schoots etc Wetrome
5 2N2905 Medumm Power pap Si Transestors	Cheques or POS with order praase 10
12 2N3704 Low Power npn Si Transistors	FML ELECTROMIC: FREEPOST MEA3627,
12 2N370日 Low Power non Si Transistiors	BEDALE, MOATH YORKJHIRE, DLS 2ER.

N. R. BARDWELL LTD (EPE)

100 75 50 10 10 4 50 12 25 25 50 25 20 25 10 20 30 30 30 30 25 30 30 20 100 100 100 12 80 80 80	Signal diodes 1Na148 Rectiner Drodes 144001 Recifier Drodes 1 N4000 wo1 Broge Recithers 555 Timer 1 C s 741 Cp Amps Assoried Zener Drodes 400 mW Assorted 7 segment Displays 5 mm le ds red green or yellow 3 mmleds ted green or yethow Axalle ds. 2med red Diooe Package Assid High Bnghiness i e ds var cols BC 182L Pransistors BC2'2L Transisiors BC337 Transistors BC328 Transistors BC547 Transistiors BC548 Transsiors BC549 Transistors BC557 Transistors BC558 Transistors ${ }_{2} \mathrm{~N} 3904$ Transisitors 50, wing Axial Capactiors Int $50 . \mathrm{whg}$ Axial Capactiors 4N7 50 vikg sub-miniature Capactors 33 r . Iut 250 v encapsulated radial plastic cased capaciors Assid capachors electrolyic Assto capachors $1 \mathrm{nF} 101 \mathrm{\mu F}$

Millions of quality components

 at lowest ever prices!Plus anything from bankruptcy - thett recovery

- frustrated orders - over production etc.

NO VAT to add on.
Send 45 p stamped self addressed label or envelope for clearance lists.

Brian J Reed
6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ

Tel: 0181-393 9055

Mail order UK only.
Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few thousand of an item is available. (Payment is returned if sold out. I do not deal in credit notes). This will sometimes entail a delay of up to eight weeks - but the prices will be worth the wail!

COVERT VIDEO CAMERAS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.I.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receivers (Wireless). Cameras as above with colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS
 Please phone 01812030161 for free catalogue. Fax 01812015359
 New DTI approved Video Transmitters and Receivers (Wireless)

SHERWOOD ELECTRONICS

FREE COMPONENTS

Buy $10 \times £ 1$ Special Packs and choose another one FREE

SPI	$15 \times 5 \mathrm{~mm}$ Red Leds	SP 130	$100 \times$ Mixed 0.5W C.F. resistors
SP2	$12 \times 5 \mathrm{~mm}$ Green Leds	SP131	$2 \times$ TL071 Op.amps
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds	SP132	$2 \times$ TL082 Op.amps
SP10	$100 \times 1 \mathrm{~N} 418$ diodes	SP133	20×1 N4004 diodes
SP11	30×1 N4001 drodes	SP134	15×1 N4007 diodes
SP12	30×1 44002 diodes	SP136	$3 \times$ BFY50 transistors
SP18	$20 \times$ BC182 transistors	SP137	$4 \times$ W005 1-5A bridge rectifiers
SP20	$20 \times$ BC184 transistors	SP138	$20 \times 2.2 / 63 \mathrm{~V}$ radial elect caps
SP21	$20 \times 8 \mathrm{C} 212$ transistors	SP140	$3 \times$ W04 1-5A brige rectivers
SP22	$20 \times$ BC214 transistors	SP142	$2 \times$ Cmos 4017
SP23	$20 \times$ BC549 transistors	SP144	$3 \times$ TIP3iA transistors
SP24	$4 \times \mathrm{Cmos} 4001$	SP145	$6 \times 27 \times 300$ transistors
SP25	4×555 umers	SP146	10×2 3 3704 transistors
SP26	4×741 Op.amps	SP147	$5 \times$ Striphoard 9 stmps $\times 25$ holes
SP28	$4 \times$ Cmos 4011	SP151	$4 \times 8 \mathrm{~mm}$ Red Leds
SP29	$4 \times$ Cmos 4013	SP152	$4 \times 8 \mathrm{~mm}$ Green Leds
SP33	$4 \times \mathrm{Cmos} 4081$	SP153	$4 \times$ Yellow Leds
SP36	$25 \times 10 / 25 \mathrm{~V}$ radial elect. caps.	SP154	$15 \times$ BC548 transistors
SP37	$15 \times 100 / 35 \mathrm{~V}$ radial elect. caps.	SP156	$3 \times$ Stripboard 14 strips x
SP39	$10 \times 470 / 16 \mathrm{~V}$ radial elect. caps		27 holes
SP40	$15 \times$ BC237 transistors	SP160	$10 \times 2 \mathrm{~N} 3904$ transistors
SP41	$20 \times$ Mixed transisiors	SP161	$10 \times 2 \mathrm{~N} 3906$ transistors
SP42	$200 \times$ Muxed 0.25W C.F. resistors	SP165	$2 \times$ LF351 Op.amps
SP46	$20 \times 400 \mathrm{~mW}$ zener diodes	SP167	$6 \times$ BC107 tansistors
SP47	$5 \times \mathrm{Min}$. PB switches	SP168	$6 \times$ BC108 transistors
SP 102	$20 \times 8 . \mathrm{pin}$ OIL sockets	SP175	$20 \times 1 / 63 \mathrm{~V}$ radial elect. caps
SP103	15×14-pin DiL sockets	SP177	$10 \times 1 \mathrm{~A} 20 \mathrm{~mm}$ quick blow
SP104	15×16-pin OlL sockets		tuses
SP105	$5 \times 74 L S 00$	SP182	$20 \times 4.7 / 50 \mathrm{~V}$ radial elect. caps
SP109	$15 \times$ BC557 transistors	SP183	$20 \times$ BC547 transislors
\$P112	$4 \times$ Cmos 4093	SP187	$15 \times$ BC239 transistors
SP115	$3 \times 10 \mathrm{~mm}$ Red Leds	SP191	$3 \times \mathrm{Cmos} 4023$
SP116	$3 \times 10 \mathrm{~mm}$ Green Leds	SP192	$3 \times \mathrm{Cmos} 4066$
SP118	$2 \times \mathrm{Cmos} 4047$	SP193	$20 \times \mathrm{BC} 213$ transistors
SP120	$3 \times 74 \mathrm{LS} 93$	SP194	$10 \times$ OA90 diodes .
SP121	$6 \times$ Rectangular Red Leds	SP195	$3 \times 10 \mathrm{~mm}$ Yellow Leds
	$5 \times 2 \mathrm{~mm}$	SP197	6×20 pir Dil sockets
SP122	$6 \times$ Rectangular Green Leds	SP198	5×24 pin Dil sockets
	$5 \times 2 \mathrm{~mm}$		
	RESISTOR PACKS - C.Film		REE with first order.
RP3	5 each value - total $3650.25 \mathrm{~W} \quad £ 2.80$		81.25 per order. NO VAT.
RP7	10 each value - total 7300.25 W ¢4.00		Orders to:
AP10	1000 popular values $0.25 \mathrm{~W} \quad £ 5.80$		Orders io:
RP4	5 each value-total $3650.5 \mathrm{~W} \quad £ 375$		erwood Electronics,
AP8	10 each value-tcial $7300.5 \mathrm{~W} \quad £ 6.35$	7 W	amson St., Mansfield,
RP11	1000 popular values $0.5 \mathrm{~W} \quad \$ 8.10$		Notts. NG19 6TD.

ADVERTISERS INDEX
A.L. ELECTRONICS 472
N. R. BARDWELL 472
BETA LAYOUT 421
B.K. ELECTRONICS Cover (iii)
BRIAN J. REED 472
BULL ELECTRICAL Cover (ii)/397
CHEVET SUPPLIES 471
COMPELEC 398
CROWNHILL ASSOCIATES 408
DISPLAY ELECTRONICS 394
EPT EDUCATIONAL SOFTWARE 410
ESR ELECTRONIC COMPONENTS 402
FML ELECTRONICS 471
GREENWELD 398
ICS. 471
JPG ELECTRONICS 396
LABCENTER ELECTRONICS 431
MAGENTA ELECTRONICS 400/401
MAPLIN ELECTRONICS Cover (iv)
MAURITRON 471
NATIONAL COLLEGE OF TECH 452
NUMBER ONE SYSTEMS 452
PEAK ELECTRONIC DESIGN 422
PICO TECHNOLOGY 399
PINEAPPLE PRESENTATIONS 471
QUICKROUTE SYSTEMS 409
RADIO-TECH 398
SEETRAX CAE 396
SERVICE TRADING CO 396
SHERWOOD ELECTRONICS 472
SQUIRES 452
STORM CPS 398
SUMA DESIGNS 463
TECHNICAL INFORMATION SERVICES. 471
VANN DRAPER ELECTRONICS 455
VERONICA KITS 471
ADVERTISEMENT MANAGER: PETER J. MEWADVERTISEMENT OFFICES:EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS,MILL LODGE, MILL LANE, THORPE-LE-SOKEN,ESSEX CO16 OED.
Phone/Fax: (01255) 861161
For Editorial address and phone numbers see page 403.

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)

FEATURES: \#independent power supplies wilt two lororidal fransoromers *Twin L.E.O. Vu melers **

 USED THE WORLD OVERIN CLUBS, PUBS, CINEMAS, OISCOS ETC.

PRICES:-MXF200 $\subset 175.00$ MXF400 2333.85 MXF600 $\mathbf{3 2 9 . 0 0}$ MXF900 £449.15 SPECIALIST CARRIER DEL. [12.50 EACH

OWP XOE STEREO 8-W/Y AGTIVE CROSS-OVEA

Advanced 3-Way Stereo Active Cross.Over, housed in a $19^{\prime \prime} \times 1$ case. Each channel thas three level controls bass, mid \& top. The removable front lascia allows access to the programmable DIL s witches 10 adjust the
cross-over frequency. Bas 5 .Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid. Top $1.8 / 3 / 5 \mathrm{KZ}$. all al 24 dB per octave. Bass invert switches cross-over trequency. Bas5-Mid $250 / 500 / 800 \mathrm{~Hz}$, Mid. Top $1.8 / 3 / 5 \mathrm{KHz}$. all al 24 dB per octave. Bass invert swit
on each bass channel. Nominal 775 mV inpul/output. Fully compatible with OMP rack amplifier and modules. Price £117.44 + £5.00 P\&P
THFI=0 DISCO EIXXERSDJ3400sI * ECHO \& SOUND EFFECTS*

Price $144.99+$ E5.00 P\& P
SIZE: $482 \times 240 \times 120 \mathrm{~mm}$

गुण ETECTRIC WEEIERS - MOTOROLC

Join the Piezo revolutiont The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved translent response with a lower distortion level than ordinary dynamic tweeters. As a crossover ls not required EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.
 TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshell and medium sized Hi .Fi apeakers. Price $\mathbf{~ 4 . 9 0 - 5 0 p ~ P \& ~ P . ~}$ TYPE 'B' (KSN1005A) $3 \frac{1}{2}$ ' super horn for general purpose speakers disco and P.A. systems etc. Price 55.99 - 50p P\& P.
TYPE 'C' (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn for quality Hi-Fi sys tems and quality discos etc. Price C6.99-50p P\&P.
TYPE ' D ' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper Arequenc response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price 99.99 - 50p P\&P. TYPE 'E' (KSN1038A) $3^{34_{4}}$ " horn iweeter with attractive silver finish frim Suitable for Hi-Fi monitor systems etc. Price 15.99 - 50p P\& P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. 85x85mm. Price $\mathbf{\Sigma 4 . 1 0 - 5 0 p}$ P\&P.

A new range of quality loudspeakers designed to take advantage of the latest
speaker technology and enclosure designs Both models utilize studio quallity 12 cast aluminium loudspeakers with lactory fitted grilles wide dispersion constant directivity forns extruded aluminium corner protection and steet ball corners complımented w th heavy duty black covering The en
are hitted as standard with lop hats for optional loudspeaker stands

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$ iblFC 12-100WATTS (100dB) PRICE C1 59.00 PER PAIR bIFC 12-200WATTS (100dB) PRICE C175.00 PER PAIR SPECIALIST CARRIER DEL. $\$ 12.50$ PER PAIR
OPTIONALSTANOS PRICE PER PAIR ¢ 49.00 Dellivery 56.00 per pair

IN-CAR STEREO :OOSTER ACMPE

PRICES: 150 W ¢49.99 250W $\mathbf{C 9 9 . 9 9}$ 400 W 〔109.95 P\&P $£ 2.00$ EACH

THREE SUPERB HIGH POWER CAR STEREO BOOSTER AMPLIFIERS
150 WATTS $(75 \quad 75)$ Stereo. 150 W 150 WATTS 17 Bridged Mono
250 WATTS (125 125) Stereo. 250 W 250 WATTS (12
Briaged Mono Briaged Mono 200 WATS (200) Stereo. 400 W
400 Wrided Bridged Mono
ALL POWERS INTO 4 OHMS
Features: Features:
\star Stereo, bridgable mono * Choice of
high \& low level inputs high \& low level inputs * \& \& R level
controls $\&$ Remote on-oH * Speaker \& conirols * Remote

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts
R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor 300 , Slew Rate $45 \mathrm{~V} / \mathrm{LS}$,
T.H.. typipal 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE E40.85-E3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms. frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3dB, Damping Factor 300, Slew Rate 50V/uS, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE C64.35 C4.00 P\&P
OMP/MF 300 Mos-Fet Output power 300 walts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3dB. Damping Factor 300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE \&B1.75 ©5.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 walts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor 300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE C132.85-E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms,
 R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping
Factor 300 . Slew Rate $75 \mathrm{~V} / \mathrm{US}$. T.H.D. typical 0.002%. Input Sensitivity 500 mV . S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE C259.00- ¢12.00 P\&P
NOTE: MOS-FET MOOULES ARE AVALLABLE IN TWO VERSIONS
STANDARO. INPUT SENS EOOMV, BANO WIDTH TOOKH2.
PEC (PROFESSIONAL EOUIPMENT COMPATIBLE) - INPU
775 mV BANO WIOTH SOKHZ. OROER STANDARD OR PEC.
LOUDSPELKEFE LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 P STAMPED) FOR COMPLETE LIST.

McKenzie and Fane Loudspeakers are also avallable.

EMICIETC Es- ENSTRUMIENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS B OHMS IMPEDANCE
B. 100 WATT R.M.S. MEB-100 GEN. PURPOSE. LEAD GUITAR. EXCELLENT MID. DISCO
 10 100 WATT R.M.S. ME $10-100$ GUITAR, VOCAL. KEYBOARD. DISCO, EXCELLENT MIO. RES. FREQ. 71 Hz . FREQ. RESP. TO 7 KHz , SENS 97 dB. 10" 200 WATT R.M.S. ME $10-200$ GUITAR. KEYB'D, D RES. FREQ. 65 Hz , FREQ. RESP. TO 3.5 KHz . SENS 99dB. RES.FREQ. 49 Hz . FREO. RESP TO $6 K H z$ SENS 100 . 12 . 100 . 49 Hz . FREQ. RESP. TO 12 100 WATT PMEEC35.64. C3.50 P\& P MONITOR. RES. FREQ 42 Hz . FREO. RESP. TO 10 KHz . SENS 98 dB PRICE $\mathbf{C 3 6 . 6 7}$. 3.50 P\& P 12200 WATT R.M.S. ME1 2-200 GEN. PURPOSE, GUITAR, DISCO, VOCAL, EXCELLENT MIO RES. FREO. 58 Hz . FREQ. RESP. TO 6 KHz . SENS 98 dB . PRICE C46.71- 33.50 12300 WATT R.M.S ME12-300GP HIGH POWER BASS, LEAD GUITAR, KEYBOARD. DISCO ETC. RES, FREQ. 47 Hz . FREQ. RESP. TO 5 KHz . SENS 103 dB . 15 ' 200 WATT R.M.S. ME15-200 GEN. PURPOSE BASS. INCLUDING BASS GUITAR. RES. FREQ. 46 Hz . FREQ. RESP. TO 5 KHz . SENS 99 dB . 15 300 WATT R.M.S. ME $15-300$ HIGH POWER BASS, INCLUDING BASS GUITAR

PRICE 73.34 - 4.00 PAP

ALL EARBENDER UNITS 8 OHMS (EICep EB8-50\& EB10-50 which are dual BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND 8" SOwatt EB8-50 OUAL IMPEDENCE. TAPPED 4/8 OHM BASS, HI.FI. IN-CAR TO SOWATT EB10-50 DUAL IMPEDENCE TAPPED $4 / 8$ OHM BASS. HI-FI, PRICE C8.90: C2.00 P\&P RES. FREO 40 Hz FREQ RESP TO 5 KHz SENS, 99 dB . KRZ. SENS. 99dB
IFI.
STUDIO. RES. FREO. 35 Hz , FREQ. RESP. TO 3 KHz . SENS 96 ab 12 100WATT EB1 2-100 BASS. STUDIO, HI-FI, EXCELLENT OISCO. RES. FREO. 26 Hz, FREO. RESP. TO 3 KHz , SENS 93 dB . PRICE ct_{1} PRICE C13.65-C2.50 P\&P PRICE C30.39- ©3.50 P\&P FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND RES, FREQ. 63 Hz, FREQ. RESP. TO 20 KHz . SENS 92 dB . RES, FREQ. 38 Hz . FREO. RESP TO 20KHz SENS 94 dB . 8 GOWATT EB8-60TC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC. RES. FREQ. 40 Hz . FREQ. RESP. TO 18 KKHz . SENS 89 dB . 1O GOWATT EB10-60TC (TWIN CONE) HI.FI. MULTI ARRAY DISCO ETC. RES. FREO. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98 dB .
TH yegmluntakiogsy KIE
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMITER $80-108$ MHZ VARICAP COMTROLLED PROFESSIONAL
PERFORMANCE RANGE UP TO 3 MILES SIZE 38 Br 123 mm SUPPLY 12 V a 05 SAMP PRICE $14.85 \quad \$ 1.00 \mathrm{PAP}$
FM MICRO TRANSMITTER $100 \cdot 108 \mathrm{MHz}$, VARICAP TUNED. COMPLETE WITh VERY SENS FET MIC. RANGE $100-300 \mathrm{~m}$, SIZE 56 A : 46 mm . SUPPLY OV BATTERY

NEW FROM MAPLI

 NEW PROJECTS
TME/DATE STAMP

FEATURES
\star Adds time and date information to video signals

* YEAR 2000 COMPLIANT
\star Easy construction using supplied Module
\star PAL, NTSC and SECAM compatible
$\star \operatorname{In}$-built, battery backed Real Time Clock
\star Automatic date and leap-year correction
\star Semi-closed graphics for increased clarity
LU72P Time/Date Stamp Kit

* 75Ω or Hi-impedance operation
\star Case in kit is pre-punched, silk-screened, attractive and hard-wearing
APPLICATIONS
\star Security surveillance systems
* Add time and date to home movies
\star Suitable for home and professional use

NATIONAL LOTTERY PREDICTOR

FEATURES

* Ideal beginners project
\star Generates random numbers
\star Simple to use - one switch operation
* Automatic switch off saves batteries
* Full source code available

APPLICATIONS

\star Use to choose your lottery numbers!

- Excellent introduction to microcontrollers
* Produce random numbers for games

LU61R Lottery Predictor Kit
$£ 9.99$

NEW MODULES

418MHZ AM TRANSMITTER AND RECEIVER MODULES

APPLICATIONS

* Pagers
* Car alarms

FEATURES

TRANSMITTER (CT39N)

* Transmitting range up to

100 metres

* SAW controlled frequency stability
\star No adjustable components
* Only two connections
\star Domestic alarms
\star Garage door openers
* Nurse-call systems

RECEIVER (CR75s)

- RF sensitivity typically. 105 dBm
\star Extremely high accuracy laser trimmed inductor
\star Receiving range 30 metres typically

Nw43W 418 MHz AM TxRx pair
$£ 14.99$

BASIC STAMP MODULES FEATURES
\star Uses easy to learn version of BASIC

* Simple, intuitively named, I/O instructions
* No special programmer required

* Modular stamps in standard SIL or DIL package
\star Extensive manual with each development kit
* Up to 500 BASIC lines in Basic Stamp2
* Thousands of applications already exist

NW23A	Dev Kit 1	$£ 98.70$
NW25C	Dev Kit 2	$£ 122.20$
NW32K	Basic Stamp 1	$£ 32.90$
NW33L	Basic Stamp 2	$£ 51.70$
NW34M	Stamp Bug	$£ 86.95$

1.3GHZ SUPAVISION VIDEO LNK

FEATURES

- Easy connection
\star Low power consumption
* Automatic control of video
- Learns video commands
\star Optional PIR activation
* Licence exempt

APPLICATIONS

\star Remote security surveillance

* Covert surveillance
\star Building security

NW24B	Videolink	$£ 199.99$
NW20W	Case	$£ 25.99$
NW39N	Antenna	$\mathbf{£ 6 . 9 9}$

Tel: 01702 554000, Fax: 01702 554001, E-mail: Sales@maplin.co.uk. Or write to Maplin Electronics, P.O. Box 777, Rayleigh, Essex, SS6 8LU. Or Tel: 01702554002 for details of your nearest Maplin store. Please quote Priortty Reference Code MA064 When ordering.
For orders over $£ 30.00$ inc VAT goods are dispatched free of handling chiarges. A small order charge of $£ 3.95$ inc VAT is applied to orders less than $£ 30.00$ inc VAT. Al items subject to availabilty. All prices are inclusive of VAT and are subject to change. E8OE.

[^0]: "Includes UK P\&P and VAT. Phone for ECWOrid prices.
 **Design cycle figure shows screen shots from different projects. Prices a specification subject to change without notice.

