EVERYDAY

With PRACTICAL

INCORPORATING ELECTRONICS MONTHLY

FULLY S.O.R. £2.25

National OTTERY REDICTOR
 Generates numbers for your entry using a PIC Microcontroller

 plus Three more projects for last month's FREE p.c.b. Continuity Tester Light Activated Switch Switch On/Off Timer

The No. 1 Independent Magazine For
Electronics Technology \& Computer Projects

A4 DTP MONTTORS Brand new, 300 DPI. Complete with diagram but no interface details.(so you will have to work it outl) Bargain at just $£ 12.99$ eachll!! OPD MONTTORS 9° mono monitor, fully cased complete with raster board, switchedmode psu etc. CGA/TTL input (15 wayD), IEC mains. $£ 1599$ ref DEC23 Price including kit to convert to composite monitor for CCTV use etc is $£ 2199$ re1 DEC24
LOW COST LASER NIGHT SIGHT just £79!!
Cheaper version of our $£ 245$ Cyclops model, works ok in low light levels or in complete dankness with the builtin Laser. ref95/79 (please allow about 1 month delivery for these due to impor difficulties) PC CONTROLLED 4 CHANNEL TMER Contro (on/oft imes etc) up to 4 items (8A 240v each) with this bi Complete with Soltware, relays, PCB etc. $£ 25.99$ Ref 95/26
LOW COST RADAR DETECTOR Built and tested pocket radar detector, ideal for picking up speed traps etc Why pay $£ 70$ or radar detector, Ioeal for picking up
more? ours is just $£ 24.99$ ref $95 / 25$
COMPLETE PC 300 WATT UPS SYSTEM Top of the range JPS system providing protection for your computer system and instmainspowernucuations and cuts. New and oxed. UK made Provides up to 5 mins running time in the event o SALE PRICE Just E119.00. SALE PRICE Just E119.00
RACAL MODEM BONANZAI 1 Racal MPS 1223 1200/75 modem, telephone lead, mansilead, manual and comms software, the cheapest way onto the net! all this for just $£ 13$ ref DEC13
HOW LOW ARE YOUR FLOPPIES? 3.5° (1.44) unbranded We have sold $100.000+50$ ok! Pack of $50 £ 24.99$ ref DEC16 BRITISH TELECOMM MULT METERS SA9083 These are 'returns' so they may have faults but look ok. Complete with new leads and leather case. Price for two meters \& 1 case is $£ 10$ ref DEC89 6 mw LASER POINTER. Supplied in kit form. complete with power adjuster, $1-5 \mathrm{mw}$, and beam divergence adjuster. Runs on 2 AAA battenes. Produces thin red beam ideal for levels, gun sights, experiments etc. Cheapest in the UKI just $£ 39.95$ ref DEC49
SHOP WOBELERSISmall assemblies designed to take D size batteries and 'wobble' cardboard model signs aboutin shop windows E3.99 Re SEP4P2
RADIO PAGERSBrand new. UK made pockel pagers dearance price is just $£ 4.99$ each $100 \times 40 \times 15 \mathrm{~mm}$ packed with bits! Rel SEP5. BULL TENS UNIT Fullybuitt and iested TENS (Transcutaneous Electrical Nerve Stimulation) unit. complete with electrodes and full instructions TENS is used for the relief of pain etc in up to 70% of sufferers. Drug free pain relief, safe and easy to use, can be used in coniunction with analgesics etc. $£ 49$ Ref TEN/1
STEREO MICROSCOPE $155 \times 195 \mathrm{MM}$. up to 600 mm high, so items up to 10° will fit under lense. Rack and pinion focusing. 6 interchangeable rotating objectienses, interchangeable eye pieces, + scaled eyeplece for accuraie measunng etc. Powenul ow voltage illumination system with green filler and vanable intensity. 100 mm blackwhite + ground glass stage plate, 70 mm swivel mirrop, adjustabe eyepieces (both focus and width). Magnification range 4.6-100.8, field f view $39-2.4 \mathrm{~mm}$). Price is $£ 299$ for complere setup. Ref $95 / 300$. 3D 36MM CAMERA SYSTEM Complete kt to convert a stand ard 35 mm camera into a 3D versiont, enable you to take 3D colour slides with your own camera! Kit contains a prism assembly for the ront of your existing lense, a sample 3D slide, a 3D slide view er and 2 different lense mounts 49 mm and 52 mm . (other sizes available from photo shops at about $£ 3$ ea) all you need is standard slide film. Price for the complete kit is $£ 29.99$ ref $95 / 30$.
COMPUTER RS232 TERMINALS. (LIBERTY)Excellen quality modem units. (like wyse 50 ,s) 2xRS232, 20 function keys. 50 thro to 38,400 baud, menu driven port, screen, cursor, and keyooard setup menus (18 menu's). \&29 REF NOV4
OMRON TEMPERATURE CONTROLLERS (E5C2). Brano new controllers, adjustable from -50 deg C to $+1,200 \mathrm{deg} \mathrm{C}$ using graduated dial. 2% accuracy. thermocouple input, longlife relayoutput $3 A 240 \mathrm{o} / \mathrm{p}$ contacts. Perfect for exacty controlling a temperature Normal trade $£ 50+$, ours $£ 15$. Ref E5C2
ELECTRIC MOTOR BONANZA! $110 \times 60 \mathrm{~mm}$ Brand new preasion. cap stant (or spin to start), virtually silent and features a moving outer case that acts as a fly wheet. Because of therr unusual design we think that 2 of these in a tube with some homemade fan blades coud form the basis for a wind tunnel etc Clearance pnice is just
$£ 4.99$ FORA PAIR! (note-these will have to be wired in series for 240 v operation Ref NOV1.
MOTOR NO 2 BARGAIN $110 \times 90 \mathrm{~mm}$.Similar to the above motorbut more suitable for mounting vertically (ie fumtable etc) Again you will have to wire 2 in series for 240 V use. Bargain price is just $£ 4.99$ FOR A PAIR!! Ref NOV3.

OMRON ELECTRONIC INTERVAL TIMERS

Minature adjustable timers, 4 pole c/o output 3A 240v, HY1230S. 12vDC adjustable from 0-30 secs $£ 9.99$ HY1210M, 12vDC adjustable from 0-10 mins $£ 9.99$ HY1260M, 12vDC adjustable from 0.60 mins. $£ 9.99$ HY2460M, '4VAC adjustable from 0-60 mins $£ 599$ HY241S, 24 VAC adjustable from 0.1 secs $£ 5.99$ HY2460S, 24VAC adjustable from 0-60 secs, $£ 5.99$ HY243H, 24VAC adjustable from $0-3$ hours. $£ 8.99$ HY2401S, 240 V adjustable from 0.1 secs $£ 9.99$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 9.99$ HY24060m, 240 adjustable from 0-60 mins $£ 12.99$ PC PAL VGA TO TV CONVERTER Converts a colour TV into a basic VGA screen. Complete with built in psu, lead and sware £49.95. Ideal forlaptops or a cheap upgrade
EMERGENCY LIGHTING UNIT Complete unit with 2 double bulb floodights, Dull in charger and auto switch. Fully cased. 6v 8AF lead acid req'd. (secondhand) £A ref MACAP 1
GUIDED MISSILE WIRE. 4,200 metre reel of ultra thin 4 core insulated cable. 281bs breaking strain, less than 1 mm thick! Idea 300 M PANEL MET In 300v PANELM ETER $70 \times 60 \times 50 \mathrm{MM}, ~ A C, 90$ degree scale. Goo quality meter. E5.99 ref MAG 6P14 Ideal for monitoring mains etc.
ASTEC SWITCHED MODE PSU BM4 1012 Gives t5 © 3.75 A ASTEC SWITCHED MODE PSU BM41012 Gives +5 @ 3.75A
$+12 @ 1.5 A,-12 @ .4 A .2301110$. cased, BM41012. £5.99 refAUG6P3

TORRODIAL TX 30-0-30 480VA. Perfect for Mosfet amplifiers
etc. 120 mm dia 55 mm thick. $£ 18.99$ ref APR19.
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a agar plug. 12v 2watt. £9.99 ea ref AUG10P3. FLOPPY DISCS DSDD TOP quality 5.25° discs, these have been written to once and are unused. Pack of 20 is $£ 4$ ref AUG4P1 ECLATRON FLASH TUBE As used in police car flashing lights etc, full spec supplied. 60-100 fiashes a min. £9.99 ref APR10P5. 24v AC 96WATT Cased power supply. New. £13.99 ref APR14. MILITARY SPEC GEIGER COUNTERS Unused anstraightifrom Her majesty's forces. E50 ref MAG 50P3.
STETHOSCOPE Fully functioning stethoscope, ideal for listening o hearts, pipes, motors etc. $£ 6$ ref MAR6P6
OUTDOOR SOLAR PATH LIGHT Captures sunlight during the day and automatically switches on a built in lamp at dusk. Complete with sealed lead acid battery etc. $£ 19.99$ ref MAR20P 1
A LA RM VERSION Of above unit comes with built in alarm and pir o deter intruders. Good value at just E24.99 ref MAR25P4
CARETAKER VOLUM ETRIC Alam, will cover the whole of the ground floor against forcred entry Includes mains power supply and
integral battery backup. Powerful internal sounder, will take external bell if req'd Retail $£ 150+$, ours? £49.99 ref MAR50P1
TELEPHONE CABLE White 6 core 100 m reet complete with a pack of 100 dips . Ideal 'phone extns etc. 57.99 ref MAR8P3. MICRODRIVE STRIPPER Small cased tape orives ideel for stripping. lats of useful goodies including a smart case, and lots of信
SOLAR POWER LAB SPECIAL You get TWO $6^{\circ} \times 6^{\circ} 6 \mathrm{v} 130 \mathrm{~mA}$ solar cells, 4 LED's, wire, buzzer, switch plus 1 relay or motor. Supero value kit just $£ 599$ REF: MAG6P8
SOLID STATE RELAYS will switch 25 A mains Input 3.5-26v DC $57 \times 43 \times 21 \mathrm{~mm}$ with terminal screws $£ 3.99$ REF MAG4P 10
300DPI A4 DTP MONTTOR Brand new but shop soiled so hence bargain price! TTLECL inputs, 15° landscape, 1200×1664 pixel complete with circuit diag to help you interface with your progects. JUST 14.99. REF JUN15P2

BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones. $£ 28.99$ ref MAR29P1 ULTRAMINIBUGMIC $6 m m \times 3.5 \mathrm{~mm}$ made by AKG. $5-12 \mathrm{velectret}$ condenser. Cost £12 ea, Ours? fust four for £9 99 REF MAG10P2 RGB/CGAEGATTL COLOUR MONTORS 12° in good condition. Back anodised metal case. $£ 79$ each REF JUN79
ANSWER PHON ES Retums with 2 faults, we give you the bits for 1 fault, you have to find the other yourself. BT Response 200's $£ 18$ ea REF MAG 18P1. PSU E5 ref MAG5P 12.
SWITCHED MODE PSU ex equip, $60 \mathrm{w}+5 \mathrm{v}$ © $5 \mathrm{SA},-5 \mathrm{ve}$. 5 A $+12 v \oplus 2 A$ - 12 v © $5 A 120 / 220 \mathrm{v}$ cased $245 \times 88 \times 55 \mathrm{~mm}$ IECinput socket E6.99 REF MAG7P1
PLUG IN PSU 9V 200 mA DC E2.99 each REF MAG3P9
PLUG IN ACORN PSU $19 y$ AC 14w . $£ 2.99$ REF MAG3P 10
POWER SUPPLY fully cased with mains and o/p leads $17 v$ DO 900 mA output. Bargan price $£ 599$ ref MAG6P9
ACORN ARCHIMEDES PSU +5v © 4.4A on/ofi sw uncased.
selectable mains input, $145 \times 100 \times 45 \mathrm{~mm}$ £ 7 REF MAG7P2
GEIGER COUNTER KIT Low cost professional twin tube complete with PCB and components. Now only £19 REF AUG19
9v DC POWER SUPPLY Standard plug in type 150 ma 9 v DC with ead and DC power plug. prce for two is $£ 2.99$ ref AUG3P4
AA NICAD PACK encapsulated pack of 8 AA nicad battenes
(tagged) ex equip. $55 \times 32 \times 32 \mathrm{~mm}$. E3 a pack. REF MAG3P 11
13.8 V 1.9 A psu cased with leads Just E 999 REF MAG10P3

PPCMODEM CARDS These are high spec plug in cards made for the Amstrad laptop computers 2400 baud dial up unit complete with eads Clearance prce is $£ 5$ REF: MAG5P1
INFRA RED REMOTE CONTROLLERS Originally made for hi spec satellite equipment but perfect for al sorts of remote control projects. Our clearance price is just E 2 REF: MAG2
200 WATT INVERTER Converts $10-15 \mathrm{~V}$ DC into either 110 v or 240v AC Fully cased $115 \times 36 \times 156 \mathrm{~mm}$. complete with heavyduty power lead cigar plug, AC outet socket.Autooverload shutdown, auto shor circuit shut down, auto input over voltage shutdown, auto input under voltage shut down (with audible alarm), auto temp control, unit shuts down if ovemeated and sounds audible alarm. Fused reversed polanty protected outputfrequency within 2%, voltage within 10% A extremely well Duilt unit at an excellent price Just $£ 64.99$ rel AUG65
UNIVERSAL SPEED CONTROLLER KIT Designed by us for he C5 motor butok for any 12 v motor up to 30A. Complete with PCB etc. A heat sink may be required. £17.00 REF: MAG 17
MAINSCABLEPrecutblack 2 core 2 metrelengths ideal for repars. projects etc. 50 metres for $£ 1.99$ ref AUG2P7
COMPUTER COMM UNICATIONS PACK Kit contains 100 m of 6 core cable. 100 cable dips, 2 line dnvers with RS232 interlaces and all connectors etc. Ideal low cost method of communicating be tween PC's over a long distance Complete kit $£ 8.99$
MINICYCLOPS PIR $52 \times 62 \times 40 \mathrm{~mm}$ runs on PP3 battery complete with shrill sounder. Cheap protection at only $£ 5.99$ ref MAR6P4
ELECTRIC MOTOR KIT Comprehensive educational kitincludes all you need to build an electic motor. $£ 9.99$ rel MAR10P4
VIDEO SENDER UNTT. Transmits both audio and video signals from either a video camera, video recorder. TV or Computer etcto any standard TV set in a 100^{\prime} range! (tune TV to a spare channel) 12 V DC
Op. Price is $£ 15$ REF: MAG15 12 v pSu is $£ 5$ extra REF: MAG5P2

BULL ELECTRICAL

250 PORTLAND ROAD HOVE SUSSEX BN3 5QT(ESTABLISHED 50 YEARS) MAIL ORDER TERMS: CASH PO OR CHEQUE WTH ORDER PLUS $£ 3.00$ POST PLUS VAT. PLEASE ALLOW 7-10 DAYS FOR DELIVERY

TELEPHONE ORDERS WELCOME
TEL: 01273203500
FAX: 01273323077
"FM CORDLESS MICROPHONE Small hand held unit with a 500^{\prime} range! 2 transmit pow erlevels. Reas PP3 9v battery. Tuneable to 500^{\prime} rangel 2transmit powerleves. Reqs Pp391
any FM receiver. Price is $£ 15$ REF: MAG15P1
LOW COST WALKIE TALKIES Pair of battery operated units with a range of about 200° Ideal for garden use or as an educational toy Price is £8 a pair REF: MAG 8P1 $2 \times$ PP3 req'd
"MINATURE RA DIO TRA NSCENERS A pair of walkie talkies with a range of up to 2 km in open country. Unitsmeasure $22 \times 52 \times 155 \mathrm{~mm}$. Induding cases and earp'ces. 2xPP3 req'd. £30.00 pr.REF: MAG30 COMPOSITE VIDEO KIT. Converts composite video into separate H sync, V sync, and video. 12v DC. $£ 8.00$ REF: MAG8P2. LQ3500 PRINTER ASSEMBLIES Made by Amstrad they are entire mechanical pniterassemblies including printhead, steppermotors etc etc In fact everything bar the case and electro
LED PACK of 100 standard red 5 m leds $£ 5$ REF MAG5P4
UNNERSAL PC POWER SUPPLY complete with nyleads, switch, lan etc. Two types available 150w at £15 REF MAG15P2 23×23×23

- FM TRANSMITER housed in a standard working 13A adapter!! the bug runs directy off the mains so lasis forever why pay $£ 700$? or price is $£ 26$ REF: MAG26 Transmits to any FM radio
- FM BUG KIT New design with PCB embedded coll for extra stability. Wonks to any FM radio. 9v battery req'd. $£ 5$ REF: MAG5P5
- FM BUG BUILT AND TESTED superior design to kit. Supplied to detective agencies $9 v$ battery req $£ 14$ REF MAG14
TALKING COINBOX STRIPPER orignally made to retail at£79 each, these units are designed to convert an ordinary phone into a payphone. The units have the locks missing and sometmes broken hinges. How ever they can be adapled for the:ronginal use or used for hinges. However they can je adapled is just £3 REF: MAG3P1
Something else?? PCE is just E3 REF: MAG3P1
TOP QUALTTY SPEAKERS Made for HI FI televisions these are 10 watt $4 R$ Jap made 4^{*} round with large shielded magne
quality $£ 2$ each REF: MAG2P4 or 4 for $£ 6$ REF: MAG 6 P2
qually
TWEETERS $2^{\prime \prime}$ diameter good quality tweeter 140R (ok with the above speaken) 2 for $£ 2$ REF: MAG2P 5 or 4 for $£ 3$ REF: MAG3P4 AT KEYBOARDS Made by Apncot these quality keyboards need just a small mod to run on any AT. they work perfecty but you will have to put up with 1 or 2 foreign keycaps 1 Price £6 REF: MAG6P3 HEADPHONES ExVirgin Atlantic 8 pairs for£2 REF: MAG2P8 DOS PACKS Microsoft version 3.3 or higher complete with all manuals or pnce fust $£ 5$ REF: MAG5P8 Worth it just for the very comprehensivemanual! 525^{\prime} only
DOS PACK Microsofi version 5 Original software but no manuals DOS PACK MICr OSOff version
hence only E5.99. 3.5° only
PIR DETECTOR Made by famous UK alarm manufacturer these are in spec. long range internal units. 12 operation. Slightmarks on case and unboxed (althoughbrand new) £8REF: MAGBP5
MOBILECAR PHON EE 5.99 Well almost' complete in carphone exduding the box of electronics normally hidden under seat Can be made to illuminate with 1 iv also has built in light sensor so display only ill uminates when dark Totally convinang! REF: MAG6P6
ALARM BEACONS Zenon strobe made to mount on an extemal bell box but could be used for caravans etc. 12 voperation. Just connect up and it flasnes regulany) £5 REF. MAG5P
6"X12" AMORPHOUS SOLAR PANEL 130mA. Bargain price just $£ 5.99$ ea REF MAG6P12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for £ 499 ref MAG5P 13 ideal for expenmenters 30 m for $£ 12.99$ ref MAG $\uparrow 3 P 1$ HEATSINKS (finned) TO220, designed tomount vertically on a pch $50 \times 40 \times 25 \mathrm{~mm}$ you can have a pack of 4 for $£ 1$ ref JUN1P

INFRARED LASER NIGHT SCOPES

Image intensifier complete with hand gnp attachment with built in adjustable la ser lamp for zero light conditions Supplied with Pemtax anm carmera mountand nal eye piece ing. . 1 ix pas
problems! £245+Vat

NEW HIGH POWER LASERS

15 mW . Helumneon. 3 switchable wavelengths 63 um .1 .15 um .3 .39 um (2 of them are infrared) 500: 1 polanzer buillin so good tor holography Supplied complete with mans power supply $790 \times 65 \mathrm{~mm}$. Use wi EXTREME CAUTION AND QUALIFIED GUIDANCE. £349+Va

WE BUY SURPLUS STOCK FOR CASH 1995100 PAGE CATALOGUE NOW
AVAILABLE, 451' STAMP OR FREE

WITH ORDER.

3FT X 1FT 10WATT SOLAR PANELS
14.5 v 700 mA
£44.95

TOP QUALITY AMORPHOUS SILICON CELLS HAVE ALMOSTA TIMELESS LIFESPAN WITH AN INFINITE NUMBER OF POSSIBLE APPLICATIONS, SOME OF WHICH MAY BE CAR BATIERY WHERE A PORTABLE 12 V SUPPLY IS REQUIRED.

PORTABLE RADIATION DETECTOR

WITH NEW COMPUTER INTERFACE.

$£ 59.00$

A Hand held personal Gamma and X Ray detector. This unit contains two Geiger Tubes, has a 4 digit LCD display with a Piezo speaker, giving an audio visual ndication. The unit detects high energy electromagnetic quanta with an energy from 30 KeV to over 1.2 M eV and a measuring range of 5-9999 UR/h or 10-99990 Vr/h. Supplied complete with handbook.Ref. NOV 18.

VOL. 24 No. 4 APRIL 1995

The No. 1 Independent Magazine for Electronics, Technology and Computer Projects

[^0]
Projects

NATIONAL LOTTERY PREDICTOR by Julyan llett
A simple microcontroller project that could make your fortune
AUTO BATTERY CHARGER by Terry de Vaux-Balbirnie
Monitors the condition of lead-acid batteries
LIGHT-ACTIVATED SWITCH by Robert Penfold
A light-sensitive module that can be wired to switch when the light intensity varies from a pre-set level
SWITCH ON/OFF TIMER by Robert Penfold 302
Switch On or Off your equipment with this one to five minute (extendable) timer CONTINUITY TESTER by Robert Penfold 304
A low-cost tester for your toolboxNAME OF THE GAME - 2 COUNTERSPIN by Roy Bebbington318
An easy-build module to set your party game or quiz spinning
Series
CIRCUIT SURGERY by Alan Winstanley 276
Doorbell Activated Lamp and more on heatsink calculations
ELECTRONICS FROM THE GROUND UP-7 284
by Mike Tooley B.A.
First steps in understanding electronics, with optional computer aided
design software. Introducing Digital LogicINTERFACE by Robert Penfold316
The page for computer enthusiasts - Printer port interfacing
TECHNIQUES - ACTUALLY DOING IT by Robert Penfold 324
Making a connection
AMATEUR RADIO by Tony Smith G4FAI332
Morse Tests; IARU Policy; Celebratory Satellite
Features
EDITORIAL 265
INNOVATIONS 272
Everyday news from the world of electronics
NEW TECHNOLOGY UPDATE by lan Poole 274
Emitter Couple
ty waters
OHM SWEET OHM by Max Fidling 278
Max and his devoted companion Piddles try their hand/paws at apicultureand taste the sweet lifeFOX REPORT by Barry Fox292
Digital TV broadcastingBACK ISSUES Did you miss these?297
ELECTRONICS SOFTWARE 308
Educational software - Electronics Principles II, Electronics PC Toolbox 2.0, GCSE Electronics 2.0, and GCSE Mathematics
ELECTRONICS VIDEOS 309
Our range of educational videos
THE HARD CELL by Terry de Vaux-Balbirnie 310
What you should know about mobile telephones
SHOPTALK with David Barrington 326
Component buying for EPE projects 326
Moving Display Metronome 327
A wide range of technical books available by mail order
PRINTED CIRCUIT BOARD SERVICE 330
PCBs for EPE projects - some at knock-down price!
ADVERTISERS INDEX 336
Readers Service © Editorial and Advertisement Departments 265
Our May '95 Issue will be published on Friday,7 April 1995. See page 255 for details.

SPECIAL BUY

AT 286
$40 \mathrm{Mb} \mathrm{HD}+3 \mathrm{Mb}$ Ram
LIMITED QUANTTTY only of these 12 Mhz HI GRADE 286 systems designed for total reliability. The compact case nouses the motherdrive \& integral 40 Mb hard disk drive to the tront. Real time clock with battery backup is provided as slandard. Supplied in good used
condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM, DOS 4.01 and 90 DAY Full Guarantee. Ready io Run!

OPPY DISK DRIVES 3.5	
5.25" from £22.95-3.5'	
Massive purchases of standard 5.25° and 3.5° drives enables us to oresent prime product at industry beating low prices! All units (unles stated) are BRAND NEW or removed from often brand new equipment and are fully tested, aligned and shipped to you with a 90 day guarantee and operate from standard voltages and are of standard size. All are IBM-PC compatible (if $3.5^{\prime \prime}$ supported on your PC).	
ARD DISK DFIVES	
End of line purchase scoop! Brand new NEC D22468" 85 Mbyte of hard disk storage! Full industry standard SMD interface. Ultfa hi speed data transter and access time. replaces Fujitsu equivalent model. comptete with manual. Only £299.00(E)	

\section*{THE AMAZING TELEBOX

The TELEBOX consists of an aftractive fully cased mains powered lors made by makers such as MICROVITEC, ATARI, SANYO,
SONY, COMMODORE, PHILIPS, TATUNG AMSTRAD will also plug directly on most television receivers" (TELEBOX MB). Push button controls colour television channels. TELEBOX MB covers virtually all televiused by most cable TV operators. A composite video output is located on the rear panel tor direct connection to most makes of low level Hi Fi audio oulput are provided as standard.

TELEBOX STL as ST but with integral speaker $£ 34.95$ For overseas PAL versions state 5.5 or 6 mhz sound specification

FANS \& BLOWERS

MITSUBISHI MMF-O6DITI MMF-09B12DH $92 \times$
 PANCAKE
 EX-EQUIP
 MHO rack mount $1 U \times 19^{\circ}$ fan tray specily 110 of 240 V § $45.95(8)$
 IC'S -TRANSISTORS - DIODES
 5,000,000 items EX STOCK

PC SCOOP

COLOUR SYSTEM

 ONLY $£ 99.00$

A massive bulk purchase enables us to bring you a COMPLETE ready to run colour PC system at an unheard of price The Display Electronics PC99 system comprises of fuly com
patible and expandable XT PC with 256 k of RAM, $51 /{ }^{-1} 360 \mathrm{k}$ flop py disk drive, $12^{\prime \prime}$ CGA colour monitor, standard 84 key key board. MS DOS and aH connecting cables - just plug in and go II Ideal sludents, schoois or anybody wishing to leam the world of

PC's on an ultra low budget. Don't miss this opportunliy. Fully guaranteed for 90 Days. $\begin{gathered}\text { Order as PC99COL } \quad \mathrm{E} 99.00 \text { (E) }\end{gathered}$ | Optional Fitted extras; 640k RAM | |
| :--- | :--- |
| 2nd floppy drive, specity $5 \mathrm{~K}^{\circ} 360 \mathrm{k}$ or $3 \%^{\circ} 720 \mathrm{k}$ | $£ 29.00$ |
| 29.95 | | VIDEO MONITOR SPECIALS Superb quality 14^{*} FOREFRONT MTS-9600 SVGA Multisync.

 1024×768. The multi mode input allows direct connection to a host of computers induding IBM PC's in
CGA. EGA, VGA \& SVGA modes. BBC, COMelc. The H version will also function with the ATARA in all modes inc HI RES monochrome. Complete with lex' switching for WP use.(possibie minor screen bums) Sith dull 90 day Order as MTS-9600/H for ATARI \quad £149.00 (E) All modes as above Order as MTS-9600/S E129.00 (E) ELECTROHOME ECM-1211SBU 12" VGA muttisync monitor with
resolution 640×480. Mutti input selection; 9pin CGA EGA; 15 pin resolution 640×480. Mutti input selection; 9pin CGAN EGA; 15 pin
VGA or 5 BNC connectors. 0.31 pitch. Compatible with PCs, Amiga. Atari and others. In good used condition (possible minor screen burns) 90 day guaranlee
\square Good used condition. 90 day guarantee. KME $10^{\prime \prime}$ as above for PC EGA standard $£ 145.00$ NEC CGA 12" colour IBM-PC compatible. High qua ity ex-equipment fully tested with a 90 day guaran-
tee. In an attractive two tone ribbed grey plastic cas Only $£ 49.00$ (E) $20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

$20^{\prime \prime} . . . £ 135 \quad 22^{\prime \prime} £ 155 \quad 26^{\prime \prime} . . . £ 185$

DC POWER SUPPLIES
 10,000 Power Supplies Ex Stock

(2A) $5 v$ © 20 A 12 V C 15 A . Switch mode New $£ 59.95(\mathrm{~B}$
Lambada LYS-PV-12200 watl switch mode. +12 V DC e^{292}

$+12 v$ © 2.5a - 12v@ $0.5 a,-5 v$ O $0.5 a$.

SPECIAL INTEREST

INTEL SEC 486/133SE Multibus 486 system. 8 Mb R Zeta $3220-05$ A0 4 pen HPGL RS232 fast drum plotte

Trio 0-18 vdc bench PSU. 30 amps . New
Fujitsu M3041 600 LPM band printer
VG Electronics 1035 TELETEXT Decoding Margin Meter Andrews LARGE RED TOP IR Heat seeking missile (not armed
Tektronix 1 L 30 Spectrum analyser phig in Thuriby LA 160 B iogic analyser
Brush 2Kw
e
Newton Derby 70 KW 400 Hz 3 phase freq
Nikon PL-2 Projection lens meter/scope
Sekonic SO 150 H 18 channel digital Hybrid char
HP 7580A A1
Pen HPGL high speed drum pliter

HP 7580A A1 8 pen Kenwood DA- 3501

One of the most amazing surplus
deals that we ever been able to offer
you! The Philips VP410 LaserVision unit features full computer control, Plays standard 12°. condition, disks with starting visual and audio qually in two channel stereo or mono. When controned by a computer, it may also be used as a either LaserVision CAV (active play) medium. It will play back (which covers most types of commercially available video discs) Some of the many features of this incredible machine are:
RSS-232 NTERFACE
ROMPOSTIE VDEO OUTPUT $\begin{array}{ll}\text { ENC+SCART INTERFACE } & \text { PAL/RGB DECOOER } \\ \text { BR+WIRED REMOTE CONTROL } & \text { FAST RANDOM ACCESS }\end{array}$
5PECIRL PURLHRSE Only $£ 399.00_{\text {(F) }}$

19" RACK CABINETS

Superb quality 6 foot 40U Virtually New, Ultra Smart Less than Half Price!

 full height lockable half lockvered back door and removable side panels. Fulty adjustable configuration of equipment mounting plus
ready mounted integral 12 way 13 amp socket ready mounted integral 12 way 13 amp socket
switched mains distribution strip make these racks some of the most versatile we have ever sold. Racks may be slacked side by side and therefore require
 $\begin{array}{ll}\text { Rack } 1 \text { Complete with removable side panels. } \\ \text { Rack } 2 \text { Rack, Less side panels } & \mathbf{E 2 2 5 . 0 0}(\mathrm{G})\end{array}$

Over 1000 racks in all sizes $19^{\prime \prime} 22^{\prime \prime}$ \& 24" 3 to 44 U. Available from stock !! Call with your requirements

TOUCH SCREEN SYSTEM

 The ultimate in 'Touch Screen Technology' made by the expertsMicroTouch - but sold at a price below cost It System consists of a flat translu the board comes a standard serial RS232

\qquad ions for this amazing product are only limited by your ImaginaSupply and Data at an incredible price of only: $£ 145.00_{\text {(8) }}$

Issue 13 of Display 2 Ne
 now available - send large SAE - PACKED with bargains!

PIC-DATS enables in-circuit emulation of the PIC 16C5X family of microcontrollers. For educational purposes the system can be used as a classroom training aid

* Enables real time emulation so the target system can be run and modified
* Cross-assembler, communications program and editor in integrated software package
* Simulator allows programs to be checked before using the hardware emulator
\star Uses a 16 C55 microcontroller running at 4 MHz
* I/O and control lines accessed via 40-pin IDC connector * RS232 port
\star On board voltage regulation

RF Signal Generator

A sophisticated design which can be calibrated to 2\% accuracy and built for about one third of the price of an equivalent commercial generator. Covers $1 \cdot 2 \mathrm{MHz}$ to 30 MHz in three ranges with switched external or internal 30% modulation.

Midi Pedal

Midi Pedal units are often quite expensive and sophisticated, this basic design can be set up as a sustain, portamento or soft pedal and is relatively inexpensive and easy to build.

DON'T MISS THIS IMPORTANT "FIRST" FOR AN ELECTRONICS MAGAZINE!

EVERYDAY

 With PRACTICALELECTRONICS
MAY'95 ISSUE ON SALE FRIDAY, APRIL 7

SEETRAX CAE-RANGER-PCB DESIGN

Ranger1 100

* Schematic capture linked to PCB
* Parts and wiring list entry
* Outline (footprint) library editor
*Manual board layout
* Full design rule checker
* Back annotation (linked to schematic)
- * Power, m ay and signal autorouter - $£ 50$

All systems upward compatible. Trade-in deals available.
Call Seetrax CAE for further information/demo packs.
Tel 0705591037 \& $\because \cdot{ }^{\circ} \mathrm{Fax} 0705599036$
Seetrax CAE, Hinton Daubnay House, Broadway Lane,
Lóvedean, Hampshire, PO8 0SG
All trademarks acknowledged.

Ranger2 $£ 599$

All the features of Ranger1 plus

* Gate \& pin swapping (linked to schematic)
* Track highlighting
* Auto track necking
* Copper flood fill
* Power planes (heat-relief \& anti-pads)
*Rip-up \& retry autorouter

Ranger3 £3500

All the features of Ranger2 plus

* UNIX or DOS versions
* 1 Micron resolution and angles to $1 / 10$ th degree
* Hierarchical or flat schematic
* Unlimited design size
* Any-shaped pad
* Split power planes
* Optional on-line DRC
* 100% rip-up \& retry, push \& shove autorouter

Outputs to:

* $8 / 9$ and 24 pin dot-matrix printers
* HP Desk/Laser Jet, Canon BJet, Postscript (R3 only)
* HP-GL, Houston Instruments plotters
* Gerber photoplotters
* NC Drill Excellon, Sieb \& Meyer
* AutoCAD DXF

SURVBIITANCE PROPFRSSICNAL, ODAMATY KITIS

No. 1 for Kits
Whether your requirement for surveillance equipment is amateur, professional or you are just fascinated by this unique area of electronics SUMA DESIGNS has a kit to fit the bill. We have been designing electronic surveillance equipment for over 12 years and you can be sure that all our kits are very well tried, tested and proven and come complete with full instructions, circuit diagrams, assembly details and all high quality components including fibreglass PCB. Unless otherwise stated all transmitters are tuneable and can be received on an ordinary VHF FM radio.

Genuine SUMA kits available only direct from Suma Designs. Beware inferior imitations!

UTX Ultra-miniature Room Transmitter
Smallest room transmitter kit in the world! Incredible $10 \mathrm{~mm} \times 20 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 500 m range..
£16.45

MTX MIcre-minlature Reom Transmitter

Best-selling micro-miniature Room Transmitter
Just $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ including mic. $3-12 \mathrm{~V}$ operation. 1000 m range.

sTX High-performance Room Transmitter

Hi performance transmitter with a buftered output stage for greater stability and range. Measures $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ including mic. 6 -12V operation, 1500 m range $£ 15.45$

VT500 High-power Room Transmitter

Powerful 250 mW output providing excellent range and performance. Size $20 \mathrm{~mm} \times$
$40 \mathrm{~mm} .9-12 \mathrm{~V}$ operation. 3000 m range.
..£16.45

VXT Volce Activated Transmitter

Triggers only when sounds are detected. Very low standby current. Variable sensitivity and delay with LED indicator. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range... $£ 19.45$

HYX480 Mains Powered Room Transmitter

Connects directly to 240 V AC supply for long-term monitoring. Size $30 \mathrm{~mm} \times 35 \mathrm{~mm}$ 500 m range
.. 19.45
SCRX Subearier Scrambled Room Transmitter
Scrambled output from this transmitter cannot be monitored without the SCDM decoder connected to the receiver. Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9V operation. 1000 m range.
........ £22.95 SCLX Subcerrier Telophone Transmitter
Connects to telephone line anywhere, requires no batteries. Output scrambled so requires SCDM connected to receiver. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. 1000 m range $£ 23.95$
SCOM Subcarrier Decoder Unit for SCRX
Connects to receiver earphone socket and provides decoded audio output to headphones. Size $32 \mathrm{~mm} \times 70 \mathrm{~mm} .9-12 \mathrm{~V}$ operation..
. 222.95

ATR2 Mlere Size Telephona hecording Interiace

Connects between telephone line (anywhere) and cassette recorder. Switches tape automatically as phone is used. All conversations recorded. Size $16 \mathrm{~mm} \times 32 \mathrm{~mm}$. Powered from line ..
. $£ 13.45$

Specials

DLTxumx Ratlo Centrol Suitch

Remote control anything around your home or garden, outside lights, alarms, paging system etc. System consists of a small VMF transmitter with digital encoder and receiver unit with decoder and relay output, momentary or alternate, 8 -way dil switches on both boards set your own unique security code. TX size $45 \mathrm{~mm} \times 45 \mathrm{~mm}$. RX size $35 \mathrm{~mm} \times$ 90 mm . Both $9 V$ operation. Range up to 200 m .
Complete System (2 kits)
. $£ 50.95$
Individual Transmitter DLTX
. 19.95
Individual Recelver DLRX.
37.95

MEX-1 MHFF Miere Sraedester
Not technically a survellance device but a great idea! Connects to the headphone output of your $\mathrm{Hi}-\mathrm{Fi}$, tape or CD and transmits Hi-Fi quality to a nearby radio. Listen to your favourite music anywhere around the house, garden, in the bath or in the garage and you don't have to put up with the DJ's choice and boring waffle. Size $27 \mathrm{~mm} \times 60 \mathrm{~mm}$. 9 V operation. 250 m range.

UTLX Ultra-miniature Telephone Transmitter
Smallest telephone transmitter kit available. Incredible size of $10 \mathrm{~mm} \times 20 \mathrm{~mm}$! Connects to line (anywhere) and switches on and off with phone use. All conversation transmitted. Powered from line. 500 m range.

nx700 Micro-minilaturar Tollophone Trammitter

Best-selling telephone transmitter. Being $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ it is easier to assemble than UTLX. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. 1000 m range . \qquad ... 13.45
stix High-performance Tolophone Tramsmitter
High performance transmitter with buffered output stage providing excellent stability and performance. Connects to line (anywhere) and switches on and off with phone use. All conversations transmitted. Powered from line. Size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$. 1500 m range
..$£ 16.45$

TKX900 SIgnalling/Tracking Tramsmitter

Transmits a continous stream of audio pulses with variable tone and rate. Ideal for signalling or tracking purposes. High power output giving range up to 3000 m . Size $25 \mathrm{~mm} \times 63 \mathrm{~mm}$. 9 V operation
. $£ 22.95$

cot00 Pocket Buy Detector/Locator

LED and piezo bleeper pulse slowly, rate of pulse and pitch of tome increase as you approach signal. Gain control allows pinpointing of source. Size $45 \mathrm{~mm} \times 54 \mathrm{~mm}$. 9 V operation
. $£ 30.95$
C0co0 ProfessIonal But Detector/Locater
Multicolour readout of signal strength with variable rate bleeper and variable sensitivity used to detect and locate hidden transmitters. Switch to AUDIO CONFORM mode to distinguish between localised bug transmission and normal legitimate signals such as pagers, cellular, taxis etc. Size $70 \mathrm{~mm} \times 100 \mathrm{~mm}$. 9 V operation.
...................................50.95 OTX180 Crystal Controlled Room Transmitter
Narrow band FM transmitter for the ultimate in privacy. Operates on 180 MHz and requires the use of a scanner receiver or our QRX180 kit (see catalogue). Size $20 \mathrm{~mm} \times 67 \mathrm{~mm}$. 9 V operation. 1000 m range.
£40.95
QLX180 Crystal Controlled Telephone Transmitter
As per QTX180 but connects to telephone line to monitor both sides of conversattions. $20 \mathrm{~mm} \times 67 \mathrm{~mm} .9 \mathrm{~V}$ operation. 1000 m range.

SA1a0 Line Penered Enstal Coatrolied Phone Trusitter

As per QLX180 but draws power requirements from line. No batteries required. Size $32 \mathrm{~mm} \times 37 \mathrm{~mm}$. Range 500 m .
£35.95

Q $\times 180$ Crystal Controlled FM Recelver

For monitoring any of the 'Q' range transmitters. High sensitivity unit. All RF section supplied as a pre-built and aligned module ready to connect on board so no difficulty setting up. Outpt to headphones. $60 \mathrm{~mm} \times 75 \mathrm{~mm}$. 9 V operation
..£60.95

A build-up service is avallable on all our kits if required.

UK customers please send cheques, POs or registered cash. Please add £1.50 per order for P\&P. Goods despatched ASAP allowing for cheque clearance. Overseas customers send sterling bank draft and add $£ 5.00$ per order for shipment. Credit card orders welcomed on 0827714476.

OUR LATEST CATALOGUE CONTAINING MANY MORE NEW SURVEILLANCE KITS NOW AVAILABLE. SEND TWO FIRST CLASS STAMPS OR OVERSEAS SEMD TWO IRCS.

A SELEETION OF SURPLUS FROM OUR LISTS

- hput Imp. $10 \mathrm{M} \Omega$

34 digin 15 mm LCD
display
dispiay
32 ranges including
20A ac/dc

- Transistor and diode
- Continuity test with buzzer and LED
$A C$ vols.
$D C$ volts
AC current.
CD current.
Resistance Transistor h FE Jransis.
- Rugged yellow case

Usually Test loads with shrouded E36.95 4 mm plugs
Carying caso
Automatic polarity 5
attery and instruction manual included
$0-200 \mathrm{~m}-2-20-200-750 \mathrm{VaC}=0.8 \%$ $0-200 \mathrm{~m}-2-20-200-1000 \mathrm{Vdc}=0.5 \%$ $0-20 \mu-200 \mu-2 m-20 m-200 m-2 A-20 A a c=1.0 \%$ $0-20 u-200 \mathrm{u}-2 \mathrm{~m}-20 \mathrm{~m}-200 \mathrm{~m}-2 \mathrm{~A}-20 \mathrm{Adc}=0.5 \%$ $0-200-2 \mathrm{k}-20 \mathrm{k}-200 \mathrm{k}-2 \mathrm{M}-20 \mathrm{M} \Omega=0.5 \%$ 0-1000 NPN/PNP $176 \times 88 \times 36 \mathrm{~mm}$

UNINTERRUPTIBLE POWER SUPPLIES
These are all in good working order, offered at a fraction of their original cost. Please note carriage is extra on these items only and will vary with distance; ring for details.

29297 Rated 1000VA this UPS is made by Sola and is supplied with a separately cased sealed lead acid battery of 36 £500
VOLTAGE TESTER

YO238A Dual function screwcriver type circuit tester. Used as an inductance tester. It will detect buried live cables, breaks in cables etc. Touching a wa with the tip will indicate the votage lan on the LCD screen AC or DC

\qquad E3 each
Avalable in the following packs
K 9018 drils $, 0.35,0.85,4 \times 0.95,1.10$ an 1. 15 mm for $£ 5.95$
mese sizes only aveilable separately
23234 . 10 mm . $1.00 .25+0.100+0.30$

99P CLOCK

ANOTHER SUPER DISK DEAL!
 $\times 6043$ Star LC24-30/LC24-300 printer driver disk, individually packaged. There's also 15 TrueType Fonts for use with Windows 3.1. but we re just selling this for the media value - the sofware is free!. It's a 3.5" 1.44 M formatted high density disk.
 10 for $£ 3.95$ 100 for $\mathbf{E} 30$

23873 Super Offer! A complete clock in a $40 \times 25 \mathrm{~mm}$ module. 9 V operation with sleep \& snooze, 24 hr alarm, PM, colon and alarm indicators. Simple fast/slow setting controls. 5 display modes, 12/24hr selectable. display brightness control. Full info supplied. All this for 99p!

£3.50
 up to 250 V max

Wireless Doorbell

T071D Two part wireless doorbell. The transmitter is mounted by the front door and the recemer can be mounted or carred up to 16 m 50 foet) away Provided with solf-athesing pad 50 foet) ar mounting (if requinesive pad and screws for mounting (if required). Trans mitter requires a PP3 battery, receiver require
wo AA batteries
Dims:
Transmitter
$112 \times 40 \times 30 \mathrm{~mm}$ $93 \times 70 \times 30 \mathrm{~mm}$

ONLY $£ 8.25$
SEEN ELSEWHERE FOR $£ 14.95$

RELAY PARCEL

MINIATURE SWITCHES

UHF MODULATOR

X6035 Alps UHF modulator. Phono input, co-ax output, also switchable between co-ax

Phone Nos: SALES 01703 236363; Technical 325999; Accounts 231003; Fax (All depts) 236307; FaxOnDemand 236315* -To obtain latest lists, info etc, fust dial 01703236315 from any fax machine and follow instuctions, Prices in this advert Include VAT; Quantity pnces dont. P\&P £3
per order ($£ 9.50$ next day). Min Credit Card $£ 12$; Official Orders per order (£9.50 next day). Min Credit Card $£ 12$; Official Orders
welcome from Education. Min invoice charge $£ 15$. Payment accepted by cheque, PO, cash, book tokens, Access, Visa, Connect. Our stores (over $10,000 \mathrm{sq}$
$\mathrm{ft)}$ open from 8-5.30 Mon-Sat. Come and see us!
27D Park Road Southampton SO15 3UQ

ع1 BARGAIN PACKS

You get another FREE if you order 10 of the same number
$1 \times 12 \mathrm{~V}$ Stepper Motor. 7.5 degree. Order Ref: 910
1×10 pack Screwdrivers. Order Ref: 909
2×5 Amp Pull Cord Ceiling Switches. Brown. Order Ref: 921
$5 \times$ reels Insulation Tape. Order Ref: 911
$2 \times 14 \mathrm{~mm}$ Bull-races. Order Ref: 912
$2 \times$ Cord Grip Switch Lamp Holders. Order Ref: 913 $1 \times$ DC Voltage Reducer. 12V-6V. Order Ref: 916 $1 \times 10 \mathrm{Amp} 40 \mathrm{~V}$ Bridge Rectifier. Order Ref: 889 Lightweight Stereo Headphones. Moving coil so superior sound. Order Ref: 896
$2 \times 25 \mathrm{~W}$ Crossovers. For 40 hm loudspeakers. Order Ref: 22.
$2 \times$ NiCad Constant Current Chargers. Easily adaptable to charge almost any NiCad battery. Order Ref: 30.

18V-0-18V 10VA mains transformer. Order Ref: 813
$2 \times$ White Plastic Boxes. With lids, approx. $3^{\prime \prime}$ cube. Lid has square hole through the centre so these are ideal for light operated switch. Order Ref: 132
$2 \times$ Reed Relay Kits. You get 8 reed switches and 2 coil sets. Order Ref: 148
12V-0-12V 6VA mains transformer, p.c.b. mounting. Order Ref: 938
$1 \times$ Big Pull Solenoid. Mains operated. Has $1 / 2^{n}$ pull. Order Ref: 87
$1 \times$ Big Push Solenold. Mains operated. Has $1 / 2^{\prime \prime}$ push Order Ref: 872
$1 \times$ Minl Mono Amp. 3 W into 4 ohm speaker or 1 W into 8 ohm. Order Ref: 495
1 x Mini Stereo 1 W Amp. Order Ref: 870.
15V DC 150 mA p.s.u., nicely cased. Order Ref: 942
$1 \times \ln$-Flight Stereo Unit is a stereo amp. Has two most useful mini moving coil speakers. Made for BOAC passengers. Order Ref: 29
$1 \times 0-1 \mathrm{~mA}$ Panel Meler. Full vision face 70 mm square. Scaled 0-100. Order Ret: 756
$2 \times$ Lithium Batteries. 2.5 V penlight size. Order Ref 874.
$2 \times 3 \mathrm{~m}$ Telephone Leads. With BT flat plug. Ideal for 'phone extensions, fax, etc. Order Ref: 552
$1 \times 12 \mathrm{~V}$ Solenoid. Has good $1 / 2^{\text {" }}$ pull or could push if modified. Order Ref: 232
$4 \times$ In-Flex Switches. With neon on/off lights, saves leaving things switched on. Order Ref: 7
$2 \times 6 V 1$ A Mains Transformers. Upright mounting with fixing clamps. Order Ref: 9 .
$2 \times$ Humidity Switches. As the air becomes damper, the membrane stretches and operates a microswitch Order Ref: 32.
$5 \times 13 A$ Rocker Switch. Three tags so on/off, or changeover with centre off. Order Ref: 42
Mini Cassette Motor 9V Order Ref: 944
$1 \times$ Suck or Blow-Operated Pressure Swilch. Or it can be operated by any low pressure variation such as water level in tanks. Order Ref: 67
$1 \times 6 \mathrm{~V} 750 \mathrm{~mA}$ Power Supply. Nicely cased with mains input and 6 V output lead. Order Ref: 103A.
$2 \times$ Stripper Boards. Each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of capacitors, etc. Order Ref: 120
12 Very Fine Drills. For PCB boards etc. Normal cos about 80p each. Order Ref. 128
$5 \times$ Motors for Model Aeroplanes. Spin to start so needs no switch. Order Ref: 134.
$6 \times$ Microphone Inserts. Magnetic 400 hm , also act as speakers. Order Ref: 139.
$6 \times$ Neon Indicators. In panel mounting holders with lens. Order Ref: 180.
1 x In-Flex Simmerstat. Keeps your soldering iron elc always at the ready. Order Ref:196.
$1 \times$ Mains Solenoid. Very Powerful as $1 / 2^{\prime \prime}$ pull, or could push if modified. Order Ref: 199
$1 \times$ Electric Clock. Mains operated. Put this in a box and you need never be late. Order Ref: 211.
$4 \times 12 \mathrm{~V}$ Alarms. Makes a noise about as loud as a car horn. All brand new. Order Ref: 221.
$2 \times\left(6^{\prime \prime} \times 4^{\prime \prime}\right)$ Speakers. 16 ohm 5 watts, so can be joined in parallel to make a high wattage column Order Ref: 243
$1 \times$ Panostat. Controls output of boiling ring from simmer up to boil. Order Ref: 252
$2 \times$ Oblong Push Switches. For bell or chimes, these can switch mains up to 5A so could be footswitch if fitted in pattress. Order Ref: 263
$50 \times$ Mixed Silicon Diodes. Order Ref: 293.
1×6 Digit Mains Operated Counter. Standard size but 1×6 Digit Mains Operated Counter. Sta
counts in even numbers. Order Ref: 28.
$2 \times 6 \mathrm{~V}$ Operated Peed Relays. One normally on, other $2 \times 6 \mathrm{~V}$ Operaled Reed Relays.
$1 \times$ Cabinet Lock. With two keys. Order Ref: 55.
$61 / 2^{\prime \prime} 8 \Omega 5$ Watt Speaker. Order Ref: 824
$1 \times$ Shaded-Pole Mains Motor, $3_{4}{ }^{4}$ stack, so quite I X Shaded-Pole Mains

2×5 Aluminium Fan Blad

 above motor. Order Ref: 86\times Case, $31 a^{\prime \prime} \times 21_{4}{ }^{\prime \prime} \times 13^{3 \prime}$ " with 13 socket pins Order Ref: 845
$2 \times$ Cases. $21 / 2^{\prime \prime} \times 2 \frac{1}{4}{ }^{n} \times 134^{\prime \prime}$ with 13A pins. Order Ref: $2 \times$
$4 \times$ Luminous Rocker Switches. 10A mains. Order Ref 793.
x Different Standard V3 Micro Switches. Order Ref:
340.
$4 \times$ Dil

BARGAINS GALORE

British Telecom Multimeter. It is a 20,000 OPV with a full
 $4 \times 21 / 4$ deep. Has $s i x$ D.C. volf ranges up to 250 V , five
A.C. ranges up to 1.000 V , five D.C. current ranges up to 1 A and three resistance ranges. one low resistance. one medium and the other up to one Megohm. All ranges are selected by one central control switch. Price complete with leads E8.50, Order Ref: 8.5P3. Carrying case with handle available and space for small tools, $\mathbb{£ 2}$ extra
Infra Red Controller. Made for Thorn TV sets but suitable for other control purposes. Fully built and ready to operate. real bargain, $\mathbf{1 2}$, Order Ret 2P304.
Hall Effect. Give positive or negative pulses when magnet passes over. Mounted on small PCB,
1032. Digital Multi-Tester. 30 range, model no. 3800, norma| Wuaranteed. Order Ret: 5P240.
Three More Transformers. Order Ref: 4 P 81 is a $12 \mathrm{~V}-0.12 \mathrm{~V}$ 40 W , clamp mounted, price $£ 4$ each less 10% for 10 or
more. Order Ret: 5 P 236 is a 43 V at 2.4 A , trame mounted more. Order Ret: 5 P 236 is a 43 V at 2.4 A , frame mounted, price 55 . Order Ret: 3P 181 is a 12V 3A frame mounting type but without the trames, price £3. We have tested this and but without the frames, price $£ 3$.
find it quite suitable for 50 W lamps

12 V axial fan for only
 12V axial fan for only $£ 1$, ideal for equipment cooling, brand new, made by West German company. Brushless so virtually everlasting. Needs simple transistor drive circuit, we include diagram. Only $\mathbf{5 1}$. Order Ref. 919. When we supply this we will include a list of

Mains Klaxon Type Alarm. Very loud output but adjustable. Completely encased, shelf or wall mounting. $£ 5$, Order Ref: 5P226.
12V 10A Switch Mode Power Supply for only E9.50 and a little bit of work because you have to convert your
135 W PSU. Modifications are relatively simple - we supply 135W PSU. Modifications are relatively simple - we supply instructions. Simply order PSU Ref: 9.5 P 2 and request
modification details.price still $\mathbf{9 . 5 0 . 5 0}$
$\mathbf{1 / 3 H P} \mathbf{1 2 V}$ Motor. The famous Sinclair C5 still available,
price $\mathbf{2 9 . 5 0}$, VAT and carriage paid, Order Ref: 29.5 P 1 price e29.50, VAT and carriage paid, Order Ret: $29.5 P 1$. with horse powers up to one third and drawing currents up to 30A. Gives very good control of speed. Uses MOSFETS and is based on a well tried circuit which appeared in the Model Engineer some time ago. The complete kit with case and on/off switch, price £18. Order Ref: 18P8.
Figure-8 Flex. Figuré-8 flat white pvc, flexible with 4 sq. mm cores. Ideal for speaker extensions and bell
circuits. Also adequately insulated for mains lighting. 50 m circuits. Also adequately insulated for mains lighting. 50 m
coil, £2. Order Ref: 2 P345. 12m coill. £1. Order Ref: 1014 . Friedland Underdome Bell. Their rel: 792, a loud ringer but very neat, $3^{\prime \prime}$ diameter, complete with wall fixing screws, £5. Order Ref: 5P232.

Flashing Beacon. Ideal as a warning light, the fire alarm, etc. Zenon tube produces intense pulse of light. Operates from $12 V$ DC and is supplied complete

12V 10A Switch Mode Power Supply. For only $£ 9.50$ and a little bit of work because you have to convert our 135 W PSU. Modifications are relatively simple - we supply instructions. Simply order PSU Ref: 9.5P2 and request modification details, price still $£ 9.50$
Medicine Cupboard Alarm. Or it could be used to warn when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery. £3. Order Ref: 3P155.
Don't Let it Overlow! Be it bath, sink, cellar. sump or any
other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready 10 work when battery fitted, £3. Order Ref: 3P156.
Very Powertul Mains Motor. With extra long ($21 / 2^{\prime \prime}$) shafts extending out each side. Makes it ideal for a reversing arrangement for, as you know, shaded-pole motors are not reversible, 13 . Order Ref: 3P157.
Solar Panel Bargain. Gives 3 V a
Solar Panel Bargain. Gives 3 V at 200mA. Order Ref: 2P324 45A Double-Pole Mains Switch. Mounted on a $6^{\prime \prime} \times 31 / 2$ I;ght. Top quality, made by MEM, £2. Order Ret: 2P316. Lamp Dimmer. Suitable for up to 250 W , on standard plate so fits directly in place of existing switch. Coloured red, blue, yellow or green but will take emulsion paint. $£ 2$ each. Order Ret:2P380
Touch Dimmers. 40W-250W, no knob to turn, jusi finger on front plate, will give more, or less light, or off. Silver plate on white background
£5. Order Ref: 5P230.

LCD $31 / 2$ Digit Panel Meter

This is a multi-range voltmeter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet.
12124 V DC Solenold. The construction of this is such that 12124 V w Solenold. The construction of this is such that i still quite good at 12V. £1, Order Ref: 877.
Don't Stand Out in The Cold. Our 12 m telephone extension lead has a flat BT socket one end and flat BT plug other end, £2. Order Ref: 2P338.
20W 5" $5^{\circ} \mathrm{Ohm}$ Speaker. Mounted on bafile with front grille, £3, Órder Ref: $3 P 145$. Matching 4 ohm
separate baffle, $£ 1.50$. Order Ref: 1.5 Pg .
separate baffle, $\mathbf{£ 1 . 5 0 \text { . Order Ref: } 1 . 5 \mathrm { Pg } \text { . }}$ Telephone Extension Wire, 4 -core correctly colour coded Telephone Extension Wire, 4 -core correctly colour coded
intended for permanant extensions. 25 m coil, $\mathbf{E 2}$. Order intended for permanent extensions, 25 m coil, $\mathbf{2 2}$, Order
Ref: 2P339. High Power Swlich Mode PSU. Normal mains input, three outputs: +12 V at $4 \mathrm{~A},+5 \mathrm{~V}$ at 16 A and -12 V at $1 / 2 \mathrm{~A}$.
Completely enclosed in plated steel case. Brand new. Our speciat atter price of $\mathbf{\text { c9.50. Order Ref. 9.5P } \dagger}$ Phillps 9" Migh Resolution Monitor. Black and white in metal frame for easy mounting. Brand new, still in maker's packing, offered at less than price of tube alone. only $\$ 15$.
Order Ref: 15P1.

BARGAINS GALORE

a" Rubber Grommets for insulation through panel. Packe

 of 100 , £1, Order Ref: 181.Mains Translormer 6V-0V-6V 6VA, $\mathbf{~ 1}$, Order Ref: 330. Ceramic Wave Change Swltch, 12-pole, 3 -way with spindle, $£ 1$, Order Ref: 303 . Luminous Rocker Switches. Packer $\mathbf{1}$, Oroer Ref: 373 Cased Malns Poweer Supply with High Current A.C. Mains R
High Current A.C. Mains Relay. This has a 230 V coil and clear plastic cover. \&1. Order Ref: 965
Ultra Thin Drills, actually 0.3 mm . To buy these regular costs a fortune. However these are packed in half dozens and the price to you is $£ 1$ per pack. Order Ref: 7978
You Can Stand On II! Made to house GPO telephone equip ment. this box is extremely tough and would be ideal fo keeping your small tools in. Internal size approx. $101 /{ }^{\prime \prime}$ $\times 4^{1 / 2 "^{\prime \prime}} \times 6^{\prime \prime}$ high.
Order Ref: 2 P2838
Ulira Sonic Transducers. Two metal cased units, one transmits, one receives. Built to operate around 40 kHz Price $£ 1.50$ the pair. Order Ref: 1.5P/4.
Power Supply with Extras. Mains input is fused and filtered and the $12 \mathrm{~V} D C$ output is voltage regulated. Intended fo high class equipment, this is mounted on a PCB and, als mounted on the board, but easily rems and Piezo sounder. $\mathbf{\Sigma 3}$. Order Ret: 3 P80B.
Insulation Tester with Multimeter. Internally generates Insulation Tester with Multimeter. Internally generates voltages which enable you to read insulation directly in
megohms. The multimeter has four ranges. AC/DC volts three ranges DC milliamps, three ranges resistance and five ampere ranges. These instruments are ex-British Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra Order Ref: $7.5 \mathrm{P} / 4$.
Mains Isolation Translormer. Stops you getting "to earth' shocks. 230 V in and 230 V out. 150 watt, $\mathbf{8 7 . 5 0}$. Order Ref Mains 230V Fan. Best make "PAPST", $4^{1 / 2} /^{\prime \prime}$ square, meta blades. £8. Order Ref 8P8.
2MW Laser. Helium neon by Philips, full spec. \&30. Order Ref: 30P1. Power supply for this in kit form with case is 15, Order Ret: 15P16, or in larger case to house tube as well $£ 18$, Order Rel: 18P2. The larger unit, made up, teste and ready to use, complete with laser tube $\{69$, Order Rel 69 P 1.
2 V 8ohm speaker, only $£ 1.50$ and waterproof
Solar Charger. Holds $4 A A$ NiCads and recharges these in eight hours, in very neat plastic case $£ 6$. Order Ref: 6P3.
Ferrite Aerial Rod. $8^{\prime \prime}$ long $\times{ }^{3} 8^{\prime \prime}$ diameter, made by Mul lard. Complete with two coils, 2 for $£ 1$, Order Ret: 832 P
Air Spaced Trimmer Caps. 2-20PF, ideal for precision Air Spaced Trimmer Caps. 2-20PF, ideal
Modem Amstrad FM240. As new condition but custome eturn, so you may need to faull find, $\mathbf{6 6}$, Order Ret: 6P34. Amstrad Power Unit. 13.5 V at 1.9 A or 12 V at 2 A encased and with leads and output plug, normal mains input, $\mathbf{£} 6$ Order Ref. 6P23.
80W Mains Transformer. Two available, good quality, both with normal primaries and upright mounting, one is 20 V
4A. Order Ref: 3P106, the other 40V 2A. Order Ref: $3 P 107$ $4 A$, Order Rel: $3 P 106$, the other 40 V 2 A . Order Ref: $3 P 107$
only $£ 3$ each. Prolect Box. Size approx. $8^{\prime \prime} \times 4^{\prime \prime} \times 41 / 2^{\prime \prime}$ metal, sprayed grey, louvred ends for ventilation otherwise undrilled
Made for GPO so best quality only $£ 3$ each. Order Ref hade for GPO so best quality, only £3 each. Order Ret 3P74.
Sintinel Component Board. Amongst hundreds of other parts. this has 15 I.C.s, all plug in so do not need desolde inglalr wy 2.1A Power Supply. Made tor Spectrum plus 2 cased with input and output leads Opectrum Pius 2. cased With input and output leads only $£ 3$. Order Ret 3P151.
15W 8 Ohm 8" Speaker and 3" Tweeter. Made for a disconinued high quality music centre, gives real hi-fi and only £4 per pair. Order Rel: 4P57
Water Pump. Very powerful, mains operated $\mathbf{£ 1 0}$. Order Ref: 10P74.
$0-1 \mathrm{~mA}$ Full Vision Panel Meter. $2^{3_{4}{ }^{n}}$ square, scaled 0-100 but scale easily removed for re-writing. £1 each. Orde Ref: 756.
Amstrad Keyboard Model KB5. This is a most comprehen sive keyboard, having over 100 keys including, of course full numerical and qwerty. Brand new, still in maker's
packing. £5. Order Rei. 5P202. packing. E5. Order Rei. 5P202.
Unusual Solenoid. Solenoids normally have to be ener gised to pull in and hold the core, this is a disadvantag where the appliance is left on for most of the time. We now have magnetic solenoids which hold the core u
age is applied to release it. £2. Order Ref: 2P327.
Mains Filter. Resin impregnated, nicely cased, p.c.b. Mains Filter. Resin impregna
mounting. £2. Order Rel: 2P315.

Prices Include VAT. Send cheque/postal order or ring and quote credit card number. Add £3 post and packing.

M \& B ELEGTRICAL SUPPLIES LTD
 Pilgrim Works (Dept. E.E.) Stairbridge Lane, Bolney, Sussex RH17 5PA
 Telephone: 0444881965 (Also fax but phone first) Callers to 12 Boundary Road, Hove, Sussex.

EASY-PC, Schematic and PCB CAD

Options:-500 piece Surface Mount Symbol Library £48, 1000 piece Symbol Library £38, Gerber Import facility £98.

Electronic Designs Right First Time?

HEWLETT PACKARD HP71B
As easy to use as a calculator
but as powerful as a computer

BARCODE
READER
Smart wand

- Automatically recognises and decodes all major bar-code standards.

A powerful set of basic functions. tatements, and operators - over 230 in all - many larger computers don't have a set of basic instructions this complete - Advanced statistics functions enabling computations on up to 15
independent variables.

- Recursive subprograms and user
defined functions.
- An advanced internal file system for storing programs and data - The HP71 has continuous memory - when you turn the computer off it retains programs and data.
- A keyboard that can be easily
customised for your specific application
- HP-1L Interface pre-installed to create a system that can print. plot. store, retrieve and display information. Control or read instruments or speak to Built in ROM includes 46 separ. commands, Interface to HP:। L. HP.IB RS232C. GP1O or series 80 . Includes connection cables

Please rush me
\square HP71B Powerful Calc/Computer (a $£ 29.95$
\square Bar-code Reader ($a \mathrm{f} 12.95$
\square Power Supply ($a \mathbf{E 4 . 9 5}$
Keyboard overlay (a $\mathbf{£ 1 . 0 0}$
\square Memory module $\{a \mathbf{~} \mathbf{3} .00$
\square Complete kit of HP71B, Bar-code Reader and Power Supply (a $£ 39.50$
Total payment $£+£ 3$ delivery $=£$.
We accept Massercard Visa, Cheques or money orders - plase post the above form to us. or Fax it. or Telephone with a verbal credit card order.

These are second users systems, ex NHS are fully tested and working but have no programming (THAT IS UP TO YOU).

AP71B..9.95

 Bar-code Reader................................. 12.95 C. Power Supply $£ 4.95$(Works from batteries normally)
Keyboard Overlay
(Limited quantities)
Unkown Program - Memory Modules (2 different types)........... $\mathbf{£ 3 . 0 0}$ Limited quantities)
Complete kit of HP7I B. Bar-code Reader and power supply
(Prices include VAT
Delivery Next day $\mathbf{£ 3 . 0 0}$)
(Currently selling in US for over $£ 500$:)
NTERCONNECTIONS LTD
Unit 41, InShops. Wellington Centre
Tel: (01252) 341900 Fax: $(01293) 822786$
Please debit credit card
No. Exp
Name
Addres
............................
... Postcode ...
Tel.

VARIABLE VOLTAGE

 TRANSFORMERSINPUT 220/240V AC 50/60 OUTPUT $0-260 \mathrm{~V}$
0.5KVA 2.5 amp max 1 KVA 5 amp max
2KVA 10 amp max

5KVA 25 amp max
(Plus Carriage)
Buy direct from the Imponers Keenest prices in the cauntry
COMPREMENSIVERANGE OF
TRANSFORMERS-LT-ISOLATION \& AUTO
110.24OV Auto (ranster enther caseo with Amencen sockel and 110.240 V Auto transtem enther cased with Amencan socker and
mains lead or open frome trpe Avaistable for mmedize delivery

WIDE RANGE OF XENON FLASHTUBES
Write/phone your enquiries ULTRA VIOLET BLACK LIGH $4 \pi 40$ want E 14.00 (callers only)
$2 \pi 20$ watt f 9.00 (callers only) $2 \pi 20$ watt 19.00 (callers onty)
9in 6 war $£ 3.96+500$ p\& ${ }^{2} \mathrm{p}$
6 in 4 watr $£ 3.96+50 p$ p\&

$(E 1645 \mathrm{me}$ VAT
($10.58 . \mathrm{inc}$ VAT

$(E 6.52$ inc VAT)
$(E 5.24$ inc VAT)
(

For enther 6
inc VAT)
230V AC BALLAST KIT
For VAT)
inc
The Above
The above Tubes are surable to forged B (LB) Uion, security manking etc.
Oiner Weve Lengths of
phone your enquitries
400 WATT UV LAMP Only $£ 38.00+$ E4.00 plp ($£ 4935$ inc 160 WATT SELF BALLASTED Avaluble with ES litting.
Price ine VAT \& $\mathrm{P} \& \mathrm{p}$ £25.55

12V D.C. BILGE PUMPS
500 GPH 15 f head 3 amo Cl 9.98
1750 GPH 15 th head 9 amp E 34.55 Also now juvitable
$24 \vee$ D.C. 1750 GPH 24 amp C 35.55
5
All dosigned to be used submerged.
PRICES INCLUDE P\& P\& VAT
SUPER HY-LIGHT STROBE KIT
Designed for Disco. Theatrical use ot
Approx 16 joules Adjustable speed $£ 50.00+£ 3.00$ p 80
 SAE for further del

STERVICE TRADING CO
TEL: O81-995 1560 FAO FAX: O81-995 0549
ACCOUNT CUSTOMERS MIN. ORDER E10
VISA

Surplus Precision Medical Unit, internaliy in excel lent condition. Designed primarily to eject a precise
controllable amount of thuid from a medical syring controllable amount of thid trom adical syringe
(latter not supplied). Contains the following removable components. Dual Micro Processor Boards and
EPROMS Escap Precision 12 V DC Mord EPROMS Escap Precision 12 V DC Motor with
3001 Gear Box and optical encoder coupled to a
procish 300.1 Gear Box and optical encoder coupled to a
precision threaded dive mechanism. Mans supply
with $6 \times \$ 5 \mathrm{~V}$ Ni-Cad A.A cells beck-up. LC.D. Digital read-out 17 mm high with legends. Audible warning. quality components. Regret no Circuls avalable.

Ridiculousiy low price: $£ 20.00+£ 4.00$ p\& | Ridiculousiy low price: $\left(\mathbf{E 2 0 . 0 0 + £ 4 . 0 0 \text { p } \& \text { p }}\left(\begin{array}{l}\text { (} 28.20 \text { inc VAT) }\end{array}\right.\right.$ |
| :--- | 3.5 KVA ISOLATION TRANSFORMER New Manufacturess surplus, mounted in a solid met enclosure Wirt a surface mounted MK Residual Curren

Circuit Breaker. Internally fused 240 AC Input an
Output. External SHA Ground Piont Output. External SHA Ground Point. Ideal for work
bench isolation etc. Size: Width 44 cm . Depth 44 cm . Herght incl RCD 47 cm Werght 60 Kilos Price: EX
WHAREHOUSE $£ 120.00$ + VAT)

240 V AC CENTRIFUGAL BLOWER New Manuf Surplus Skeleton Blower suitable
mounting inside an enclosure to coot equipme mounting insside an enclosure to coot equipmen
Overall size $130 \times 110 \times 85 \mathrm{~mm}$ Outlet $80 \times 35 \mathrm{~mm}$. Impellor 60 mm dia $\times 60 \mathrm{~mm}$ long. Price $£ 14.10$ inc

p\& \& \& VAT

SEWING MACHINE MOTOR Brand new $220 / 240 \mathrm{~V}$ AC/DC SEW. TRIC 2 Lead 8 russ
Motor. Size L. $100 \mathrm{~mm} \times H$ T0mm \times W. 55 mm Spindle
 GEARED MOTORS 71 RPM 201t inch torque reversable 995 V AC put including capacinor and wansformer
operation. Price inc VAT $\&_{\text {p }}$ \& $\mathbf{f 2 7 . 7 3}$. SOLID STATE EHTUNIT Input $230 / 240 \mathrm{~V}$ AC. Output approx 15 KV
Producirgg 10 mm spark. Built-in 10 sec tarne Easity modified for $20 \mathrm{sec}, 30 \mathrm{sec}$ to continuous. Designed for boiler ignition. Dozens of uses in ion
hield of physics and electionics. eg suppolving neon or argon tubes etc. Price less case $£ 8.50+£ 240$
p\& $(\mathbb{1} 2.81 \mathrm{inc}$ VAT) NMS 08 p ((12.81 ine VAT) NMS

EPROM ERASUREKIT Build you Own EPROM ERASURE for a fraction of includes 12 in 8 watt 2537 Angst Tube Ballast unit paif of bl-pin leads. neon indicator. on/off swich,
safery microswitch and carcuit $£ 15.00+£ 200$ p\& MICROSWITCH Pye 15 amp changeover lever microswitch, tvpe $\$ 17$ - WASHING MACHINE WATER PUMP Brand new 240 V AC fan cooled Can be used for a variety of purposes Inlet $11 / \mathrm{In}$, outlet lin. dia. Price
includes p\&p. \& VAT $\mathbf{£ 1 1 . 2 0}$ each or 2 for $\mathbf{E 2 0 . 5 0}$ ACCOUNT CUSTOMERS MIN: ORDER E10

Ample Ample
Parking Spac

-KITS \uparrow KITS \downarrow KITS \uparrow KITS \uparrow KITS \uparrow KITS \downarrow

A new range of high qualty project kits from QUASAR ELECTRONFCS that offer Exceptional value for motcy. Supphied complete with all components, screen printed, solder resist timed fibre glase PCB's \&
operation. Eagether with schematic circuit diagrams, really help you to understand how each circuit works.

JRVEILLANCE KITS

KIT P. SV FM TRAN3MITTER The most powerfl 'bug' Guramiesd to trunsmin over 100 motros within buildings

IT 13. SOUND activated tape recorotr WITCH Used to turn on your two rocorder through ha
 operation. Vory samsitive Proven crizuy. Noeds ov phag

KTT 16. FM TELEPHONE TRANSMITTER Miniature ransmituer which ameches in seribes to one of the wo ness dy your phone. fransmiss over 200 metros it an horney line. Tune with coramic trim capp Uses phore line as an serial end power source. Not for illogal une. 84.95 KTT 18. W MIMLATURE FM ROOM TRANSMITTER MOR
 the FM band qV bettery oporation. Over 500 metre range opending of zeribi vied. ES .80
KIT 28. SOUND ACTVVATED TRANSMITTER A sound scivared switch and mi fM Mransmitter foined together io hat it will respond to 2 stape tran mimiter noesas tuning for sest renuth Tuning kit \& instructions enclosed. Transmits
KTT 32. TWO STAGE FM TRANBMITER OU MOSt

Quasar Electronics

Dept.EPE Unit 14 Sunningdale BISHOP'S STORTFORD Hertfordshire CM232PA

SYSTEM 200 DEVICE PROGRAMMER

SYSTEM

Programs 24, 28, 32 pin EPROMS, EE-PROMS, FLASH and Emulators as standard, quickly, reliably and at low cost.
Expandable to cover virtually any programmable part including serial E^{2}, PALS, GALS, EPLD's and microcontrollers from all manufacturers.

DESIGN

Not a plug in card but connects to the PC serial or parallel port; it comes complete with powerful yet easy to control software, cable and manual.

SUPPORT

UK design, manufacture and support. Same day dispatch, 12 month warranty. 10 day money back guarantee.

ASK FOR FREE INFORMATION PACK

VISA

MQP ELECTRONICS Ltd.
Unit 2, Park Road Centre, Malmesbury, Wiltshire, SN16 OBX UK TEL. 0666825146 FAX. 0666825141
GERMANY 089/4602071; NORWAY 0702-17890; ITALY 0292103554 FRANCE (1)69.41.28.01; IRELAND 1-2800395; SWEDEN 08-590-32185; Also from ELECTROSPEED UK

Pico Releases PC

Potential

Pico's Virtual Instrumentation enable you to use your computer as a variety of useful test and measurement instruments or as an advanced data logger.

Hardware and software are supplied together as a package - no more worries about incompatibility or complex set-up procedures. Unlike traditional 'plug in' data acquisition cards, they simply plug into the PC's parallel or serial port, making them ideal for use with portable PC's.
 \section*{Call for your Guide on 'Virtual Instrumentation'.}
 NEW SLA-16 Logic Analyser

Pocket sized 16 channel Logic Analyser

PicoLog Advanced data logging software.

PicoScope

'Virtual instrument' software.

- Connects to PC serial port.
- High Speed -up to 50 MHz sampling.
- Internal and external clock modes.
- 8K Trace Buffer.
S.A-16
with software, power supply and cables $£ 219$ Dual Channel 12 bit resolution

- Digital Storage Scope
- Spectrum Analyser - Frequency Meter - Chart Recorder - Data Logger - Voltmeter

The ADC-100 offers both a high sampling rate $(100 \mathrm{kHz})$ and a high resolution. It is ideal as a general purpose test instrument either in the lab or in the field. Flexible input ranges $(\pm 200 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) allows the unit to connect directly to a wide variety of signals.

AOC-100 with PicoScope $£ 199$ with PicoScope \& PicoLog $£ 209$

ADC-10
1 Channel 8 bit

- Lowest cost
- Up to 22 kHz sampling
- 0-5V input range

The ADC-10 gives your computer a single channel of analog input. Simply plug into the parallel port and your ready to go.

ADC-10 with PicoScope $£ 49$ PicoScope \&
PicoLog $£ 59$

ADC-11

11 Channel 10 bit

- Digital output
- Up to 18 kHz sampling
- 0-2.5V input range

The ADC-11 provides 11 channels of analog input in a case slightly larger than a matchbox. It is ideal for portable data logging using a "notebook" computer. ADC- 11 with PicoScope $£ 85$ PicoScope \& PicoLog $£ 95$

Existing ADC 10/11/12/100 users can add PicoLog for £25

ADC-12
1 Channel 12 bit

- High resolution
- Up to 17 kHz sampling
- $0-5 \mathrm{~V}$ input range

The ADC-12 is similar to the ADC-10 but offers an improved 12 bit (1 part in 4096) resolution compared to the ADC10's 8 bit (1 part in 256).

ADC-12 with
PicoScope $£ 85$
PicoScope \&
PicoLog $£ 95$

ADC-16
8 Channel 16 bit+sign

- Highest resolution - 2 Hz sampling - 16 bit - $\pm 2.5 \mathrm{~V}$ input range

The ADC-16 has the highest resolution of the range, it is capable of detecting signal changes as small as $40 \mu \mathrm{~V}$. Pairs of input channels can be used differentially to reject noise. Connects to serial port.

ADC-16
withPicoLog $£ 115$
ADC-10 Simply plug into
the parallel port and your ready to go.

VISA Pico Technology Ltd. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 70J J J J

> Tel: 01954-211716 Fax: 01954-211880

Phone or FAX for sales, ordering information, data sheets, technical support. All prices exclusive of VAT

SHOP OPEN 9-5 MON-FRI. CLOSED SAT ..- OFFICIAL ORDERS WELCOME

DIGITAL LCD THERMOSTAT A versatile thermostat using a thermistor probe and having an I.c. d. display. MIN/MAX memories, -10 Fahrenhegit switching temperatures allow close control or alter natively allow a wide 'dead band' to be set which can result in substantial energy savings when used with domestic hot water systerns. Ideal for greenbrewing etc. Mains powered, 10A SPCO relay out put. Punched and printed case.
KIT 841 \qquad £29.95
PORTABLE ULTRASONIC

PEsT SCARER

A powerful 23 kHz ultrasound generator in a com pact hand-held case MOSFET output drives special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum output with
KIT 842
£22.56
DIGITAL CAPACITANCE

METER

A really professional looking project. Kit is supplied with a punched and printed front panel, case p.c.b. and all components. Quartz controlled ac curacy of 1\%. Large clear 5 digit display and high speed operation. Ideal for beginners - as the $\mu \mathrm{F}$, hF and pF ranges give clear unambiguous read out of marked and unmarked capacitors from a few pF up to thousands of $\mu \mathrm{F}$.
KIT 493
£39.95
ACOUSTIC PROBE
A very popular project which picks up vibrations by means of a contact probe and passes them on to a pair of headphones or an amplifier. Sounds from engines, watches, and speech travelling through walls can be amplified and heard clearly. Useful for mechanics, instrument engineers, and nosey parkers!
KIT 740
£19.98

1000 V \& 500V INSULATION TESTER

Superb new design. Regulated output. efficient circuit. Dualscale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB \& ALL components.
KIT 848
$£ 32.95$

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A.

Based on our MkI design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.
KIT 845. \qquad

ULTRASONIC PEsT SCARER

Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children's play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.

- KIT INCLUDES ALL COMPONENTS, PCB \& CASE
- EFFICIENT 100 V

TRANSDUCER OUTPUT

- COMPLETELY INAUDIBLE

TO HUMANS
KIT Ref. 812.

'COMSTEP' P.C. COMPUTER STEPPING MOTOR INTERFACE
An exciting project supplied with two 200 step motors, interface board, and easy to use P.C. software
Allows independent control of both motors - speed, direction, number of steps and half/full step mode. Connects to computer parallel port. Requires 12 V 1 A D.C. supply and printer lead.

KIT 846 (with 2 motors
$£ 62.99$ (Printer lead $£ 5.00$)

IONISER

A highly efficient mains powered Negative Ion Generator that clears the air by neutralising excess positive ions. Many claimed health benefits due to the ionise removing dust and pollen from the air and clearing smoke particles. Costs virtually nothing to run and is completely safe in operation. Uses five point emitters. KIT 707
£17.75

BAT DETECTOR

An excellent circuit which reduces ultrasound frequencies between 20 and 100 kHz to the normal (human) audible range. Operating rather like a radio receiver the circuit allows the listner to tune-in to the uitrasonic frequencies of interest. Listening to Bat is fascinating. and is possible to ident. KIT 814
£21.44

SPACEWRITER
An innovative and exciting
I project. Wave the wand through the air and your message appears. Programmable to hold any message up to 16 digits long. Comes pre-loade PCB all components \& it includes instructions for message loading KIT 849.
f16.99

12V EPROM ERASER

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12 V supply (400mA). Used extensively for mobile work - updating equipment in the field etc. Also in educa ional situations where mains supplies are not al

KIT 790
.f28.51

MOSFET 25V 2.5A

POWER SUPPLY
High performance design has made this one of our classic kits. Two panel meters indicate Volts and Amps. Variable from 0-25 Volts and current limit control from 0-2.5A. Rugged power MOSFET out put stage. Toroidal mains transformer

KIT 769

.£56.82

INSULATION TESTER

A reliable and neat electronic tester which checks insulation resistance of wifing and appliances etc., and safe to The unit is battery powered, simple 100 Megohms can be read easily. A very popular college project
KIT 444.
$£ 22.37$
DIGITAL COMBINATION LOCK Digital lock with 12 key keypad. Entering a four digit code operates a 250 V 16 A relay. A special anti-tamper circuit permits the relay 12V. Drilled case, brushed liser, operates from
aluminium keypad.
KIT 840.
.f19.86
E.E. TREASURE HUNTER
P.I. METAL DETECTOR MKI
Magenta's highly developed \& acclaimed design. Quartz crystal controlled circuit MOSFET coil drive. D.C. coupled amplification. Full kit includes PCB, handle
case \&
search coil.

- DETECTS FERROUS AND NON-FERROUS METAL - GOLD. SILVER, COPPER ETC.
- 190 mm SEARCH COIL - NO 'GROUND EFFECT' KIT 815.
£45.95

> HAMEG HM303 30 MHz
> DUALTRACE OSCILLOSCOPE \& COMPONENT CHECKER
> Western Europe's best selling oscilloscope - now improved. It now features 30 MHz bandwidth, triggering to 100 MHz and $2 \mathrm{mV} /$ div sensitivity.
> Sharp bright display on $8 \times 10 \mathrm{~cm}$. screen with internal graticule. Special component tester built in - allows
capacitors, resistors, transistors, diode, and many other components to be checked at a glance.
> As with its predecessor, the QUALITY OF THIS INSTRUMENT IS OUTSTANDING. It is supported with a two year warranty covering parts and labour. If you are buying an oscilloscope, this is the one. It costs a fraction more han probes, mains lead. and manual.
> $£ 392.00+£ 68.60$ VAT
> Includes FREE
> Cheques must be cleared)
> Next-day delivery

EDUCATIONAL BOOKS \& PACKS

ADVENTURES WITH ELECTRONICS
The classic book by Tom Duncan used throughout schools. Very well illustrated, ideal first book for age 10 on. No soldering. Uses an S. DEC breadboard. Book \& Components $£ 28.95$. Book only $\mathfrak{f} .25$
FUN WITH ELECTRONICS
An Usborne book, wonderfully illustrated in colour. Com ponent pack allows 6 projects to be built and kept. Soldering is necessary. Age 12 on, or younger with aduly
help. Book \& Components $£ 20.88$, Book only $£ 2.95$

30 SOLDERLESS BREADBOARD PROJECTS A more advanced book to follow the others. No soldering Circuits cover a wide range of interests. Book \& Components $\mathbf{£} 30.69$, Book only $£ 2.95$

DC MOTOR/GEARBOXES

Ideal for robots, buggies, and many other mechanical projects. Min. plastic gearbox with $1.5-4.5 \mathrm{~V}$ DC motor. 6 ratios can be set up.

Small type MGS....E4.77

STEPPING MOTOR

For computer control via standard a pole unipolar drivers.
MD38 - miniature 48 steps per rev.................f9.15
MD35 $1 / 4$ - standard 48 steps per rev...............12.99

Motors and Controllers

A range of kits and components for motion control and computer interfacing. Ideal for Design \& Technical projects, and a whole range of up to the minute 'Home Automation' applications.

Comstep PC Computer Interface and driver board.
 Drives two motors from PC parallel port. Supplied with comprehensive software. Needs 12 Volt 1 A supply.
 With 2-200 Step Motors

Kit 846

 $£ 67.00$Power Booster for Comstep. Adds to Comstep and allows motors With MD24 up to 4 Amps to be driven. Two boosters drive two motors from a Motors single Comstep. Uses standard Comstep software.

Kit 850

£39.95

PC Communications Protocol for Comstep.

An interface board adding four switched inputs to the Comstep + All the code to develop your applications. Files in C, BASIC, FORTRAN \& ASSEMBLER + demo.

Kit 851
£26.98

PC Joystick Interface for Comstep.

Software for operating Comstep from a standard PC Joystick. Allows two Axis control, with acceleration, speed, and $X-Y$ position control. Stores co-ordinates.

Kit 852.

$£ 28.95$

BBC Computer Interface.

A versatile and easy to use interface giving 16 Power I/O lines from the User and Printer Ports. Use those old Beebs for control and Motor drive applications.

Kit 844...£37.95 or Built...£51.95

Stepping Motors

MD38...Mini 48 step... $£ 8.65$
MD35...Std 48 step... $£ 12.98$
MD200... 200 step... $£ 16.80$
MD24...Large 200 step...£22.95

DC Motor/Gearboxes.

Our Popular and Versatile DC motor/Gearbox sets. Ideal for Models, Robots, Buggies etc. 1.5 to 4.5 V Multi ratio gearbox gives wide range of speeds.
LARGE TYPE - MGL £5.95 SMALL - MGS - £4.77

Versatile Stepping motor Interface.

A Magenta design, gives Half and Full-Wave drive. Up to 1 Amp and 24 Volts . CMOS inputs - Drive from logic or computer port. Needs power supply.

Kit 816.................................£9.82

Stand-Alone Stepping motor

 Driver/Interface.A Stand alone interface giving full control in all modes. Pushbutton operation with adjustable acceleration and speed. Ideal for demo and setting up. Then connect to computer port for full control. Kit 850
£39.95
More Information:
All listed items come with data and instructions. For more information, including reprints of the appropriate magazine articles, send an SAE $+£ 1.00$ per kit - or phone and use Mastercard/Visa etc.

Mini-Lab \& Micro Lab Electronics Teach-In 7

As featured in EPE and now published as Teach $-\ln 7$. All parts are supplied by Magenta. Teach-In 7 is $£ 3.95$ from us or $E P E$ Full Mini Lab Kit - $£ 119.95$ - Power supply extra - $£ 22.55$ Full Micro Lab Kit - $£ 155.95$ Built Micro Lab - $£ 189.95$

Phone: Wimborne (01202) 881749
Fax: (01202) 841692. DX: Wimborne 45314
Due to the cost we cannot reply to orders or queries by Fax.
See notes on Readers' Enquiries below - we regret lengthy technical enquiries cannot be answered over the telephone.
Advertisement Offices:
EVERYDAY with PRACTICAL ELECTRONICS ADVERTISEMENTS
hOLLAND WOOD HOUSE, CHURCH LANE
GREAT HOLLAND, ESSEX C013 OJS
Phone/Fax: (01255) 850596

New SERVICE

I quite often use this space to "plug" some of our forthcoming projects and articles. I am going to do that again this month but I also want to plug a new publication which is "hot off the press" - the new item is our Electronics Service Manual.
We are often asked by a wide variety of readers - everyone from novice hobbyists to university lecturers - if there is a publication which will show them how to go about repairing various items of electronic equipment. There used to be such a book: it was the Electronics Repair Manual published by WEKA Publishing before they closed their UK operation a few years ago.
When we bought the Modern Electronics Manual from them we also had the opportunity to buy the Electronics Repair Manual but we were not impressed with much of the original material in the Repair Manual and decided not to buy the title. However, we knew there was a strong demand for this type of information so. about a year ago, we set about producing our own entirely new Electronics Service Manual.
The new Manual has been written for us by Mike Tooley (who will be well known to EPE readers) so it comes from one of the best authors in the field. and we are proud of the finished product - which should be coming "off the press" as you read this. If you are interested in this fascinating and rewarding field of technology then see the centre pages in this issue for full details of this new Manual.

PROJECTS

Once again I believe we have a very exciting range of articles lined up for the next few months. These include a PIC Development and Training System which will enable students and hobbyists to develop PIC software, allowing the production of your own dedicated PIC Microcontroller projects. The system also forms an excellent classroom training aid and we believe it is another "first" in an electronics magazine.
In addition we will soon bring you an exciting and reasonably priced valve hi-fi amplifier design which is unlike anything ever published before; this will hopefully feature in our June issue. We also have a couple of Barry Fox features lined up for the next two issues, one of which is all about Smart Cards. Don't miss out!

SUBSCRIPTIONS

Annual Subscriptions for delivery direct to any address in the UK: $£ 24$. Overseas: $£ 30$ ($£ 47.50$ airmail). Cheques or bank drafts (in $£$ sterling only) payable to Everyday with Practical Electronics and sent to EPE Subscriptions Dept., Allen House, East

Borough, Wimborne, Dorset BH21 1 PF. Tel: 01202 881749. Subscriptions start with the next available issue. We accept Access (MasterCard) or Visa.

BINDERS

Binders to hold one volume (12 issues) are now available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price $£ 5.95$ plus £3.50 post and packing (for overseas readers the postage is $£ 6.00$ to everywhere except Australia and Papua New Guinea which cost $£ 10.50$). Normally sent within seven days but please allow 28 days for delivery - more for overseas orders.

> Payment in $£$ sterling only please. Visa and Access (MasterCard) accepted, minimum credit card order $£ 5$. Send or phone your card number and card expiry date with your name, address etc.

Editor: MIKE KENWARD

Secretary: PAM BROWN
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Editorial: Wimborne (01202) 881749

Advertisement Manager:

PETER J. MEW, Frinton (01255) 850596
Advertisement Copy Controller:
DEREK NEW, Wimborne (01202) 882299

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modificadion of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. Due to the cost we cannot reply to queries by Fax.
All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY with PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.
The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should first address them to the advertiser.

TRANSMITTERS/BUGS/TELEPHONE

 EQUIPMENTWe advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; overseas readers should check local laws.

nATIONAL LOTTERY

 PREDICTOR
JUL YAN ILETT

A simple PIC Microcontroller project that could make your fortune. This pocket-sized random number cruncher won't guarantee you win the National Lottery, but it is great fun to build - Who knows "it could be you!"'

SINCE the introduction of the National Lottery back in November, a small number of people have become very rich. The rest of us, however, must have realised by now, what odds of " 14 million-to-I against" actually mean. So can anything be done to improve ones chances of winning?
The idea of accurately modelling the machine used by the lottery organisers is simply out of the question. The behaviour of a single ball, bouncing around inside a Perspex sphere, would be practically impossible to predict. The paths of forty nine balls, all colliding with each other, can be considered utterly random.
Would it be possible, then, to predict the next draw from analysis of previous draws? The mathematics of chance say not! The likelihood of any particular combination of numbers being drawn is precisely the same as all other combinations, and is not influenced in any way by any previous event.

PSYCHOLOGICAL FACTORS

So although it isn't possible to increase the chances of winning, it is possible to increase your share of the prize, if your numbers come up. The idea is to avoid combinations that other people are likely to select.
Choosing numbers in any other way than completely at random, will inevitably be affected by various psychological factors. A winning combination, for example, which consisted of four or more numbers greater than 31, would completely eliminate anyone who used birth dates to make their selection!
A random number generator is therefore essential, and if nothing else, it gives the electronics enthusiast a good excuse to get started on an interesting new gadget! The unit presented here, generates numbers between one and 49 in a random sequence, and displays them on a two digit, 7 -segment l.e.d. display. A single pushbutton is used to switch the unit on, display all the

numbers, and reset the device, ready for a new number combination.

PRACTICAL DEVICE

One serious aim of this project is to demonstrate the design of a practical device using a PIC microcontroller. (See last month's feature Understanding PIC Microcontrollers.). Information is given about the software used, including a flowchart, and an example of how this is converted into actual assembly language instructions.

The microcontroller used is the Arizona Microchip PIC16C54, which is the smallest and simplest device in their current range. Even so, it still has a very impressive specification.

This remarkable 18 -pin integrated circuit contains 512 bytes of ROM, 32 bytes of RAM, a real time counter, watchdog timer. code protection and more. It has a RISC architecture and is capable of operating at 20 MHz , although in this design, it runs a good deal slower than that! It also has the ability to enter a very low power "sleep" mode, so this project needs no on/off switch.

Traditionally, the problem with designing microprocessor based projects has been software development. The microprocessor chip may only cost a few pounds, but the cost of all the development hardware and software can be considerable. A text editor, assembler, target development system, EPROM programmer and EPROM eraser are all essential tools, and if you want an in-circuit emulator and logic analyser, you'll need to win the lottery to pay for them! (We expect to publish a PIC Development and Training System as a project in the May issue -Ed.).

The PIC microcontrollers are supported by a realistically priced development system called PICSTART. This comprises assembler and simulator software, a neat little programmer unit and a stack of manuals. The system is readily available and costs under $£ 200$, but you do need to provide a PC compatible computer and an EPROM eraser. The software for the Predictor was developed on this system.
If you're not yet ready to rush out and buy the PICSTART development system, the author is able to supply a pre-programmed PIC16C54RC/P microcontroller for the project for $£ 7$. A floppy disk
containing the complete source code and other related files is also available for $£ 1$. For details, see Shop Talk page.

DESIGN BEGIN/IINGS

Generating a random number and displaying it as two 7 -segment digits could be achieved using a handful of CMOS logic i.c.s. A complication arises, however, with the requirement that the National Lottery Predictor must not display any number more than once. This function can only be achieved by marking off the numbers that have been used, in an array, or grid.

This is where the logic circuit gets rather complicated, requiring an additional memory chip. The microcontroller has a small number of RAM locations or "registers" which can be used to form the array. Each element in the array only needs to indicate whether or not a certain number has been used, and can therefore be represented by a single bit.
Forty nine bits occupy just 7 -bytes of memory (actually 6 -bytes and 1 -bit), which is just as well, as the microcontroller has a very limited number of registers, 32 in total, seven of which are reserved for special purposes. The arrangement of lottery numbers in the 7-byte grid is detailed in Fig. 1. For example, lottery number one is positioned in the first byte (register 10) in bit position zero.
To begin the design process, the operational requirements of the unit must be defined. Pressing the pushbutton for the first time, switches the National Lottery Predictor on. The display initially shows " $=$ =", indicating that it is reset, ready to start the number sequence.
Pressing the button again, displays the first random number, and subsequent presses generate further numbers until all 49 numbers have been displayed. With no more numbers available, the display shows ".•", although normally, only the first six numbers will be required.
At any time, the pushbutton may be held down for a couple of seconds which will reset the grid ready for a new set of numbers. If the unit is left for more than about 2.5 minutes without the pushbutton being touched, the National Lottery Predictor goes into "sleep mode", effectively switching itself off. All these functions are achieved using just one button.

CIRCLIT DESCRIPTION

With the operational details worked out, the circuit design can begin. The complete circuit of the National Lottery Predictor is shown in Fig. 2. The PIC16C54 microcontroller ICl is driven by a very simple clock circuit consisting of just one resistor and one capacitor, R3 and C2. The frequency of oscillation is about 800 kHz using the values shown. The components R1, C1 and R2 generate the reset, and wake-up-from-sleep pulses.
There are two I/O (Input/Output) ports, one 8 -bit and the other 4 -bit. The 8 -bit port, port B , is connected to the eight segments (seven plus decimal point) of both digits of the dual display, via resistors R6 to R13. Port A, the 4-bit port, is divided into one input bit and three output bits.
Outputs A1 and A0, pins 18, 17 are connected to the bases (b) of two pnp transistors. TR1 and TR2, via resistors R4 and R5. The display is a common anode type, which requires that current is sourced
through the common anode connection. and sinked via each individual cathode segment connection

The pushbutton switch S ! is read by the microcontroller by first taking output A2. pin1, low: Then, input A3. pin 2. is read, after which A2 is taken high again. In this way. capacitor C 1 is not discharged when the pushbutton is read, since output A2, does not go low for long enough.
When the microcontroller is in sleep mode, however, output A2 is left permanently low. Now, when the pushbutton is pressed, Cl discharges through resistor RI and the microcontroller is reset, which wakes it up.

Much of the circuit design. in particular the clock, reset and wake-up circuitry, is taken straight from the applications handbook supplied with the PICSTART system. Details are also given on driving multiplexed displays and reading key switches.

SOFTWARE DESIGN

Software design is a very personal thing. Different people achieve the same result in different ways. The software developed for the National Lottery Predictor demonstrates just one method of providing the necessary functions. there are doubtless many others.

Fig. 2. Complete circuit diagram for the National Lottery Predictor.

In order to provide some insight into the design of this project. a flowchart has been provided. see Fig. 3, and a section of the source code has been reproduced, see Fig. 4.

The program performs several distinct functions, each of which is described below:

Display Mu/tiplexing

Every time the software loop is executed, only one digit is displayed, both digits taking it in turns. The digit whose turn it is to be displayed, is identified by testing one bit in a register. The appropriate data is then taken from either of two digit registers, and the appropriate transistor turned on by lowering either bit 0 or bit 1 of port A.
As long as the software loop keeps running at a fast enough rate, both display digits appear to be lit up simultaneously.

Random Number Generation

The "random number" variable is incremented each time the loop is executed, unless it exceeds 49 , whereupon it is set back to one. When the pushbutton is pressed, the current value of this variable is used as the random number.
The random behaviour results from the delay between presses of the pushbution. The person operating the unit cannot see the value of the counter, so the random numbers cannot be influenced directly, although deliberate rythmic button pushing can result in sequences of similar numbers.

Binary-to-Decimal Conversion

When the random number has been generated, it is converted into two decimal digits by repeatedly subtracting 10 from the number until it underflows (goes negative). Each time the subtraction is carried out. another register is incremented, indicating the number of times 10 has been subtracted. This number becomes the "tens" digit.

When the number does underflow, ten is added back restoring the remainder, which becomes the data for the "units" digit.

Digit Character Generation

Character data for the 7 -segment display is taken from a table, indexed by the decimal number to be displayed. The table contains ten items corresponding with the digits 0 to 9 .
The table is read twice, once for the "tens" digit and again for the "units" digit. Leading zero suppression is achieved by replacing the "tens" digit with a blank character whenever it is zero.

Number Grid Maintenence

Forty-nine bits of RAM hold the data indicating whether a number has already been used. When a number is displayed, the corresponding bit is set. If the unit attempts to use that number again, it must move on to the next available unused number. Two variables are used to address the grid.
A pointer is used to index one of the seven bytes in the grid, and a mask selects one bit out of the eight in each byte. Each time the random number is incremented, the mask bit is rotated into the next highest significant bit position. If the bit is rotated
Fig. 3. (left) National Lottery Predictor flowchart.

Fig. 4. Example of PIC Microcontroller assembly language.
out of bit seven, it is put back into bit zero and the pointer is incremented. This pair of variables operate like an octal (base-8) counter.

Pushbutton Reading and De-Baunce

The pushbutton has to be read in a special way so that it can also be used to bring the microcontroller out of sleep mode. One side of the button is connected to an input which is pulled high. The other side is connected to an output, see Fig. 2.
If the output is high, pressing the button has no effect. When the pushbutton is to be read, the output is briefly taken low, but only long enough for the read function and no more. This prevents the microcontroller being reset, even if the pushbutton is held down.
When the microcontroller is in sleep mode, however, the output is left at a low level. Pressing the button then causes the capacitor (C1) to discharge.
De-bounce is achieved by reading the pushbutton input at intervals of no less than about two milliseconds. This allows time for the bounce signals to stabilise between one read and the next.

Auto-Sleep Timing

A 16-bit counter increments con tinuously while the pushbutton remains inactive. When the counter eventually
overflows, after about 2.5 minutes, the I/O pins are all put into a condition which uses least power, after which the controller goes to sleep.
When the PIC microcontroller is woken up, the program is executed from the beginning.

Clearing the Grid

All bits in the number grid must be cleared or set to zero when the pushbutton is held for a couple of seconds. The program instructions used to achieve this function are shown in Fig. 4. providing an example of PIC microcontroller assembly language.
The file select register (fsr) is initially set to register 16 (or hexadecimal 10). This is the first register in the number grid. A general purpose counter (gp counter) is then given the value 7 , as there are seven registers in the grid that need to be cleared. The indexed grid register is then cleared indirectly using the "fsr" as a pointer.
The counter is then decremented and tested for a zero value. If the counter is not yet zero, the "fsr" is incremented ready for the next grid register to be cleared. When all seven registers have been cleared, a "dash" symbol is put onto both digits of the display.

FUN!

Writing short programs in assembly language can be great fun. Piecing together the various different instructions is a bit

```
Resistors
    R1, R3
        to R5 4k7 (4 off)
R2
47k
R6 to
    R13 68 (8 off)
```

All $0.25 \mathrm{~W} 5 \%$ carbon film

Capacitors

C1 $\quad 100 \mathrm{n}$ disc ceramic C2 220p ceramic

Semiconductors

X1	HDSP5321 dual 7 -segment display (red), common anode
TR1,	
TR2	BC559 pno silicon transistor (2 off)
IC1	PIC16C54RC/P ready-programmed microcontroller (see tex

Miscellaneous

S1 Min. round pushbutton switch (5 mm pin spacings)
Printed circuit board available from the EPE PCB Service, code 935; plastic ABS box, size $102 \mathrm{~mm} \times 76 \mathrm{~mm} \times$ 38 mm ; red display filter; battery holder ($2 \times \mathrm{AA}$ type); battery clip; 18 -pin d.i.l. socket; 1 mm p.c.b. pins (2 off); 30 mm M3 countersunk bolts; M3 nuts and washers; stick-on rubber feet; Velcro strip or sticky pads; solder etc.

Approx cost guidance only
like constructing a building out of "Lego" bricks.
There is one important difference, however. While building your multi-storey, luxury apartment block, you always seem to run out of one type of brick while having plenty of the others left over! There may only be 33 different instructions in the PIC assembly language, but you've got an unlimited supply of all of them!

Front panel arrangement of the completed unit.

The completed circuit board mounted inside the small box.

CONSTRUCTION

Because the microcontroller integrates all the essential elements of a computer system into one tiny chip, the design of the printed circuit board (p.c.b.) layout is made very simple. All the components mount directly on the small single-sided p.c.b., including the double-digit display and the pushbutton, and there are no wire links.
The topside p.c.b. component layout and full size underside copper foil master pattern are shown in Fig. 5. This board is avaiable from the EPE PCB Service, code 935. The battery connector is soldered directly onto two solder pins at the side of the board. Remember, there is no on/off switch.
Construction of the p.c.b. is very straightforward. The components can be fitted in any order, although a socket should be used for the microcontroller IC1, preferably a good quality, turned-pin type. The socket must have a low profile though, so that ICl does not sit too high on the p.c.b.

Fig. 6. Guide to test waveforms to be expected at the output pins of the microcontroller IC1.

TESTING T/ME

Testing can be carried out using an oscilloscope if one is available, although a good quality logic probe will be perfectly suitable as an alternative. The waveforms in Fig. 6. should be referred to during the test procedure.

Check the output on pin 15, this should be a square wave of approximately 200 kHz frequency ($5 \mu \mathrm{~s}$ period). On the adjacent pin, pin 16, the frequency should be four times higher and much less square.

The outputs on pins 17 and 18 should both be square waves of approximately 200 Hz (5 ms period), although one goes high when the other goes low. Finally, the output on pin 1 should show a brief, low going pulse (about $10 \mu \mathrm{~s}$ width) at a frequency of approximately 400 Hz (2.5 ms period).
The logic probe, used to test the prototype unit, was capable of showing high and low logic levels as well as pulse waveforms. In addition, an indication was given of whether the pulse frequency was less than or greater than 100 kHz , and whether the waveform was square (50 per cent mark space ratio) or was mainly high or mainly low. As such, it was an ideal tool with which to perform the tests mentioned above.

Fig. 5. Printed circuit board component layout and full size copper foil master pattern for the National Lottery Predictor.

Fig. 7. Case dimensions and drilling details. The p.c.b. is mounted on M3 bolts and locked in position with nuts and washers, once the correct height has been found.

Note that the logic probe may require TTL signals and a supply of around 5 V . In this case, a 4.5 V supply (three AA cells) may be used during testing, but avoid using 6 V , as this might overload the microcontroller's outputs. All that remains is simply to confirm that the unit operates as expected.

ON THE CASE

The case, used to house the National Lottery Predictor, requires two cutouts on the front panel (i.e. the lid), and four holes in the base. The dimensions of the cutouts are detailed in Fig. 7. The cutout for the display is rectangular, but can be finished off with rounded corners to improve the appearance.
The p.c.b. is mounted on four countersunk M3 screws using nuts and washers to set it at the correct height. A piece of red transparent plastic filter material is attached to the inside of the case lid and should just touch the front of the display when the case is closed.
The battery holder can be attached to the inside of the case with self adhesive Velcro strips or double-sided sticky pads, and stick-on rubber feet can be attached to the bottom of the case, to cover the screwheads.

IN SUMMARY

The PIC series microcontrollers are proving to be among the most popular devices of their type, and are widely used commercially. The range of devices includes such features as analogue-to-digital conversion and E2PROM non-volatile memory. More complex devices use a 16 -bit bus and can make use of interrupts. The range is being added to all the time.
From the electronics hobbyists point of view, these devices represent an even more important innovation than microprocessors, when they became available in the late seventies. Microcontrollers are easier to use, have more flexible power requirements, require much less complex p.c.b layouts and they often need no support logic at all.

If this project inspires you to equip yourself to get involved in this facinating area of micro-electronics, you could be designing minaturised microcontroller devices in no time at all!

EARS TO DEFEAT SKIVERS

Intelligent key pads, radio interfaces and a central computer register class attendances to help reduce absenteeism - by Hazel Cavendish

THeY are not going to get away with it any longer! Pupil drop-out days are numbered. "EARS", the $£ 25,000$ Electronic Attendance Registration System, works as an electronic register to reduce the administrative load on teachers and claims to save schools so much time that it can add two teaching periods to the school day.

Designed to provide the most advanced and effective system yet devised, the scheme has won numerous awards including the 1994 Educational Technology Gold Award and is already being used by 5,000 teachers not long after its introduction.
The brainchild of Bromcom Computers of Bromley, Kent, the system links key pads the size of a normal piece of A4 paper to a central computer by a twoway radio, modem links or broadband networks. Designed particularly for recording the presence or absence of pupils or college students, it has also been expanded to perform other valuable uses for schools and educational establishments.

KEY LIST

Teachers using the "Ears" system simply key in their name and the form they are about to teach, and it provides a list of names of those who should be attending that day. They can monitor the attendance of any class on a small screen, to see who is genuinely absent or playing hookey. It also records the reason for absence, where this is known, and records the attendance history of a pupil in his or her class.
The previous system most favoured by schools was based on the issue of cards to pupils which had to be inserted in card readers to record attendance. Alternatively, schools relied on specially prepared forms which were completed in the classroom, and subsequently inserted into an "optical mark reader" at a central point, which in turn transferred the information into the school's own system.
Apart from being labour-intensive, both these systems had specific weaknesses. Pupils were able to give their cards to others to register for them, and the "optical mark reader" increased a school's paper work considerably, and wasted staff time be requiring the transfer of records from classroom to school office.
Each teacher's "mobile data collection means" comprises a network of radio transmitters distributed over the area of the school or college premises and connected to a central computer. Radio links have the big advantage that the apparatus is then
completely portable, although it is conceded that modem links may be preferred in some cases.

RECORD PERFORMANCE

Usefully, the portable computers can be provided with further software for storing pupils' performance records and provides the basis of a network for exchanging information through electronic mail. They can be further upgraded to include paging and panic-call - an additional feature which may well be welcomed by teachers after recent reports of violent pupils causing serious injuries to staff in the classroom.

A staff member at the Portsmouth Sixth Form college remarked that the paging device would be particularly useful to route all the messages received from parents that pupils had forgotten their sandwiches!

For Colleges and Universities the system will be appreciated as affording greater communication between Tutors and College staff via use of Ears' one-way messaging, particularly in the case of "Split-site" Campuses, and interfaces with the administrative software currently used by most colleges such as SIMS, FEMIS, COVTECH and FECAS. It is anticipated that it will be particularly useful in the production of statistical data required by the Further Education Funding Council and is expected to save hours of administrative time.

TECHNICALITIES

The system consists of A4-sized folders with a built-in slim-line miniature computer and radio transmitter-receiver. The folder is battery-operated with no need for cables. Battery life is in excess of 120 hours of operation, lasting up to an academic year.
The microprocessor used for the registration folders is a Zilog Z180 6 MHz device with 64 Kb non-volatile static RAM. The display uses a liquid crystal having a resolution of 256×64 pixels arranged as eight lines by 42 characters. The radio transceiver is a MPT1340 UHF unit (licence exempt).
The central processor is a Mini-Tower Bromcom QC486/DX2 using an Intel 82486 microprocessor operating at 66 MHz and having a 4 Mb cache and an 8 Mb RAM. A 540 Mb capacity hard disk is used, which has a 15 ms access time and 4 Mb cache on its controller. The monitor used has a 14 inch SVGA display, and if a modem is preferred a Miracom Courier or equivalent is advised with a baud rate of up to 14,400 . The radio transceivers are linked to the system via RS485 and RS232 interfaces.
For further information contact Bromcom Computers PLC, 417/421 Bromley Road, Downham, Bromley, Kent. Tel: 0181461 3737. Fax: 01814613993.

One model of EARS, the radio-linked Electronic Attendance Register System.

PC THERMOCOUPLING

Pico Technology has introduced an interface which allows thermocouples to be monitored by PC-compatible computers. The TC-08 is supplied with PicoLog datalogging software and is designed to allow simple yet accurate temperature recordings to be made. The interface accepts up to eight thermocouples (B, E, J, K, R, S and T types) and connects via the serial port. It does not require a power supply.

For type K thermocouples, resolution over the $-270^{\circ} \mathrm{C}$ to $+1300^{\circ} \mathrm{C}$ range is better than $0.1^{\circ} \mathrm{C}$ and accuracy is better than $0.5^{\circ} \mathrm{C}$. Cold junction compensation is carried out within the unit and linearisation is carried out by the software
Samples can be taken as fast as one per second and as slow as one per hour allowing recordings to be made for a few seconds or over several weeks as required. PicoLog offers advanced temperature processing functions including filtering, min/max detection and alarms. Data can be displayed in real time, in either graphical or text format, or printed out after collection.
The TC-08 interface comes complete with the PicoLog software, software drivers and connecting cable, for £199. A range of thermocouples/probes is available.
For further information contact Pico Technology Ltd., Broadway House, 149-151 St Neots Road, Hardwick, Cambridge, CB3 7QJ. Tel: 01954 211716. Fax: 01954211880.

LOW POWER RADIO COMMS

Radio-Tech can help you to tune in to simple and affordable Low Power Radio data communications. The company has been involved in the design and supply of this type of equipment since the allocation of the deregulated radio bands by the DTI back in the mid-1980s.
A choice of over 20 affordable and high performance sadio data modules is available off-the-shelf, including the new BIM high speed radio transceiver. Radio-Tech's aim is to make the use of Low Power Radio a viable alternative to cables for data communication applications, ranging from the traditional social and security alarms, through to wire-free EPOS (Electronic Point of Sale) terminals, remote controls, monitoring systems and radio LANs (Local Area Networks).
Undoubtedly, there are numerous other uses to which the various transceiving modules available can be put. Low Power Radio at affordable prices is a technology waiting to be explored by professional and hobbyist designers alike.

Manufacturers can also benefit from using one of the many DTI type-approved modules that Radio-Tech can offer. The procedure for obtaining type-approval for a product can be reduced to that of a paper exercise with only a nominal DTI registration fee involved. Exporters can also benefit since Radio-Tech can offer advice on which modules comply with European and other overseas specifications.

For further information, see Radio-Tech's full-page advert elsewhere in this issue. which also contains a FREE $£ 15.00$ introductory discount voucher offer. Alternatively, contact Radio-Tech Ltd. at Overbridge House, 41 Weald Hall Lane Thornwood Common, Epping, CM16 6NB. Tel: 01992 561994. Fax: 01992561994.

PLANE SPOTTING

Shortwave listeners to the HF Aeronautical frequencies will be interested to know that they can now automatically identify an aircraft's type and registration details. Seldec has introduced a Selcal decoder which, when linked to a suitable receiver tuned to one of the Oceanic Control Centres, will decipher a
 Selcal as it is transmitted, and present a clear visual display allowing identification of the aircraft by type, nationality, registration and airline.

Housed in a two-tone metal case, the Seldec Decoder displays the decoded Selcal codes on two rows of l.e.d.s correspondingly lettered A to S. Having logged and identified the Selcal, the display remains visible until reset by a pushbutton switch. The unit is then ready to receive and identify the next Selcal tones

The decoder is compatible with all good quality, general coverage receivers and has been designed without the use of microprocessor technology in order to avoid electrical interference when used with sensitive HF receivers. Audio signals from short wave receivers are simply plugged into the decoder's audio input socket.

For further information contact Seldec, P.O. Box 3, Kidderminster, Worcestershire, DY12 1YZ. Tel: 01299861372 . Fax: 01299861530.

LIGHT

 CONVERSIONTexas Instruments has added another member 10 its family of light-to-frequency converters. These devices combine, on a single chip, photodiodes and a high resolution charge-to-frequency converter. The output is a pulse train having a frequency proportional to the incident light intensity: By counting pulses, or measuring the time between them. light intensity can be measured by a microcontroller without the use of analogue-to-digital converters.

The latest Texas device, the TSL235, is a low-cost precision opto-converter which typically delivers from 0.25 Hz in darkness 10 500 kHz when fully saturated by light. The frequency output is highly linear to within 0.02% up to 100 kHz , and the temperature coefficient is typically $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Power consumption is only about 5 mW and the device can be run from vultages between 2.7 V and 6.0 V .

For further information contact Texas Instruments Lid., Manton Lane, Bedford, MK4I 7PA. Tel: 0234270111.

GREEN PIECE

A new Energy Management Controller from Microchip can reduce electricity consumption by up to 30 per cent it is claimed. Their MTE1122 chip is ideal for all residential, commercial and industrial equipment which uses a.c. motors, including refrigerators, freezers, washing machines, dryers, swimming pool pumps, and heating, ventilation and air conditioning equipment.
Integrating Microchip's popular 8-bit RISC-based PIC16/17 microcontroller technology with proprietary power management firmware the new chip allows induction motor applications to be more energy efficient.
The controller operates by digitally monitoring the motor load and controlling power consumption thousands of times per second. Most a.c. induction motors require large currents under light or even no-load situations. The unique algorithm in the controller monitors the a.c. signal and senses when the motor is consuming more power than is required. The device modifies the a.c. signal allowing the motor to continue its rotational speed while consuming less power.
For further information contact Arizona Microchip Technology Ltd. Unit 6, The Courtyard, Furlong Road, Bourne End, Bucks SL85AJ. Tel: 01628851077

Emitter coupled logic has been available for many years and yet it still offers advantages over other types of logic technology. Its chief advantage is that it can offer operating speeds over 1 GHz at affordable prices. This makes it a prime choice for a number of applications including the high speed dividers used in a number of radio frequency circuits like frequency synthesizers.

Power Hungry

However, it is hardly surprising that these chips have some disadvantages. The main one is their current consumption. Emitter coupled logic (ECL) is notoriously power hungry, requiring a pull-down resistor of around 470 ohms to sink current on all the outputs that are in use.
As a result these chips sink large amounts of current and become very hot. For example, one programmable divider dissipates as much as $1 / 2 \mathrm{~W}$. Being packaged in a 16 -pin di.i.l package it is hardly surprising that it becomes very hot after a few minutes operation, and often it is too hot to handle.

Running at temperatures like this there is no chance of it being put into a surface mount package. It also means that the reliability figures obtained for a chip like this are lower than similar devices operating at lower temperatures.
A further problem is that they operate with voltage levels which do not conform to the normal logic standards. The best performance is obtained when they are run from 0 V and -5.2 V lines i.e. the inverse of standard logic families.

Even then the supplies have to be more accurately maintained than those for other logic families. Fortunately, it is possible to run them from a 0 V and +V supply but with a slight reduction in performance.
In addition to this the voltage swing of the output is small (just over 0.6 V) and does not swing between both rails. This means that special translators are required to interface between ECL and conventional series of logic families or vice versa.

Active Service

In view of the high speed performance of ECL a number of developments are under way to improve the shortcomings of the technology. One of these involves the use of an active pull-down circuit. This is used to replace the external resistor which is standard on the existing circuits.

The use of the active pull-down circuit together with a.c. coupling between the devices produces significant improvements. allowing each chip to consume less current whilst being able to operate at higher speeds. When the output changes from low to high. the pull-down current is suppressed as it acts
against the rising voltage. When the output is falling from high to low, the capacitors help enhance the pull-down current.
This new idea is only the first stage in upgrading ECL technology. Further work is still required. The ideas for new devices still leave a number of problems.

The manufacture of the devices themselves incorporates a number of specialised structures. The main one is that high performance bipolar devices are required to give the speed.
In addition to this special capacitors need to be fabricated onto the chip. Also the additional circuitry required for the active pulldown facility places a number of restrictions on the remainder of the design.
However, with ECL still being deemed an important technology, research is being undertaken into resolving these problems. This should mean that ECL will remain a leading technology in use for many years to come.

Scanning Wafer Defects

As the size and complexity of i.c.s increases it is forcing the semiconductor manufacturers to meet increasingly high standards in their manufacturing processes. In large i.c.s even small defects can have disastrous results.
Previously it would have meant that a single chip in a wafer containing a large number of chips would have to be rejected. Now with the number of transistors increased by many orders of magnitude a single defect will make a much larger proportion of the whole wafer defective.
The problem is compounded by the fact that i.c. feature sizes are becoming smaller all the time. This means that even very small defects are very important. However, these small defects are very difficult to locate, putting more pressure on the equipment to locate them.
Current detection systems are based on either optical or scanning electron microscopes. These systems suffer from a number of disadvantages. Firstly they do not offer the types of throughput required by large production lines. In addition to this they are normally only used to scan the areas on the chip that are most likely to give defects. As such they do not fulfil all the requirements which are now being placed upon them.

Confocal Microscopy

As existing methods are becoming hard pressed to meet the ever increasing requirements, a company called Ultrapointe in San Jose. California has developed a new laser scanning system which is capable of locating defects which are as small as $0.1 \mu \mathrm{~m}$ in diameter.

The new system uses a technique called "Confocal Microscopy". This is based on the use of a point source of light from an argon laser. This is sharply focused onto the wafer and then viewed through a spatial filter which exactly coincides with the illuminated area.
This means that the illuminated and viewing areas are exactly the same. The filter also ensures that any stray light entering the system from outside is rejected and does not reduce the clarity of any of the images produced.

The spot of light and the filter are scanned so that a picture can be built up of the whole of the surface of the wafer. In view of the very small depth of focus and the differences in height of various parts of the wafer, not every area will be in focus. As a result several passes are needed.

The information from each pass is stored and then a complete three dimensional picture is made of the whole of the wafer. The complete picture can then be examined for any defects.
The process can reveal a number of problems. It will show if there are any dimensional defects, unwanted particles, masking defects, and various pits and scratches. Also, in view of the three dimensional capability of the process, it is possible to see any problems below the surface when transparent layers are used. With conventional systems this would not always be easy because of the very narrow depth of focus which has to be used, and the time taken to refocus for each transparent site.

It is very important to be able to examine all of these aspects because some of the defects may reveal process or masking problems. These can then be cured to ensure that future batches do not suffer as well.

There are two main sections to the system: the computer unit with operator console and the laser optics unit. It has been designed so that the operator console can be located away from the optics unit. In this way the console can be kept out of the clean environment allowing for more convenient access to the system. It also means that less people have to enter the clean environment.

Another advantage of having two sections to the system is that it is easier to install the unit into an existing factory. With the extremely high costs of running an i.c. fabrication plant it is essential that down time is kept to a minimum.

In view of the requirements for ever higher yields and better reliability, this new system appears to be another valuable tool for the semiconductor industry. In the future. methods like this for locating defects and resolving problems will become increasingly important in ensuring that yields remain high and quality is maintained.

Is your PCB design package not quite as "professional" as you thought? Substantial trade-in discounts still available.

Board Copture

Schematic Capture Design Tool

- Direct netlist link to BoardMaker2
- Forward annotation with part values

- Full undo/redo facility (50 operations)
- Single-sheet, multi-paged and hierarchical designs
- Smooth scrolling
- Intelligent wires (automatic junctions)
- Dynamic connectivity information
- Automatic on-line annotation
- Integrated on-the-fly library editor
- Context sensitive editing
- Extensive component-based power control
- Back annotation from BoardMaker2

BoardMaker
 BoardMaker1 - Entry level

- PCB and schematic drafting
- Easy and intuitive to use
- Surface mount and metric support
- 90, 45 and curved track corners
- Ground plane fill
- Copper highlight and clearance checking

BoardMaker2 - Advanced level

- All the features of BoardMaker1 OrCad, Schema, Tango, CadStar
- Full Design Rule Checking both mechanical and electrical
- Top down modification from the schematic
- Component renumber with back annotation
- Report generator- Database ASCII, BOM
- Thermal power plane support with full DRC

Board Router

Gridless re-entrant autorouter

- Simultaneous multi-layer routing
- SMD and analogue support
£200
- Full interrupt, resume, pan and zoom while routing

Output drivers - Included as standard

- Printers - 9 \& 24 pin Dot matrix, HPLaserjet and PostScript
- Penplotters - HP, Graphtec \& Houston
- Photoplotters - All Gerber 3×00 and 4×00
- Excellon NC Drill and Annotated drill drawings (BM2)

For futher information contact Tsien (UK) Limited Aylesby House Wenny Road, Chatteris Cambridge, PE16 GUT Tel 01354695959 Fax 01354695957
E-mail Sales@tsien.demon.co.uk

tsien

Regular Clinic

CIRCUIT SURGERY

Our monthly round-up of enquiries, hints and tips offers a design for a doorbell which will shed some light on your night-time callers, and also looks at heatsink calculations in more detail.

Doorbell Activated Lamp

sometimes I receive letters from readers asking, what is the point of building things yourself. when you can now buy so many consumer products more cheaply from the shops. It's certainly true that the constructor can no longer compete with mass-produced imported items such as digital clocks, radios or mains adapters, for example OEMs (Original Equipment Manufacturers) have component purchase prices which we constructors can only dream about!
One of the advantages of being an electronics enthusiast, though, is the fact that you can design and assemble your own custom-made projects and gadgets to perform a specific function, especially useful if there isn't a ready-made solution available in the shops. You can either start from scratch or alternatively adapt existing designs to meet your needs. Not to mention, there's the ultimate satisfaction of building the project from scratch using your skills and your own bare hands.

As if to illustrate the point, from one of our overseas subscribers came this enquiry for a "doorbell with a difference". Sumanadasa Namarathna of Veyangoda, Sri Lanka writes:

Could you help me with a solution for a system which will help me to see callers who ring my doorbell at night? The idea is that when the doorbell is pressed during the day, the bell rings as normal but at night-time, a nearby outside lamp will illuminate for a few minutes so I can identify who's there. For this project I cannot buy parts from the UK and therefore please use commonly available components if you can.
My initial feeling was that a PIR (passive infra red detector) would fit the bill, detecting the body heat of callers and lighting the way whenever anyone approached, regardless of
whether they press the bell or not. Such lamps normally have built-in photocells to disable their operation in the day. (Indeed, my neighbour's cat takes advantage of my patio PIR floodlight to tackle my pond fish at night!) A basic and rather flimsy-looking floodlight fitted with a PIR can be purchased for under $£ 15$ here in the UK, but these are functional rather than ornamental, and they also dazzle oncomers.
If you already have an attractive outdoor lamp or a convenient porch light, then Fig. 1 may be of interest to experimenters: it's a circuit which enables your lamp to illuminate with a press of the doorbell pushswitch. It works at night-time only and will power the lamp for a few minutes through a timer circuit. The simple design is readily adaptable for other applications or configurations.

In Fig. 1, S1 is the bell pushswitch which completes the circuit to the solenoid of the existing Doorchime movement. When closed, the switch also triggers the 555 timer monostable built around IC2. This drives a mains relay RLA whose contacts can either be paralleled with an existing light switch, or wired in series with a live mains supply to feed a new lamp. When the switch is closed, the 555 triggers for a period equal to $1 \cdot 1$ VR2.C1 seconds, so the lamp will light for this period.

Let there be light

An electronic audible warning device could be used instead of the bell solenoid, or could be driven in parallel with an existing doorbell to add a second ringer elsewhere in the house. The diode DI snubs the back e.m.f. generated by the solenoid coil.
In order to prevent the lamp from lighting during daylight hours, a cheap 741 op.amp (IC1) is configured as a Schmitt trigger, which is a circuit that converts a slowly-moving signal into a rapid snap-action edge. $\mathrm{PCC1}$ is an ordinary ORP12-type photoconductive cell (light dependent resistor) forming one half of a potential divider with potentiometer VR1. The photocell is positioned where it can monitor ambient light levels but should be placed so that it will not be adversely affected by street-lights, headlights or light from the porch-lamp itself.
The non-inverting input (pin 3) of the op.amp is clamped at roughly half the supply rail by resistors R1 and R2, whilst a combination of VR1 and PCC1 sets the inverting input (pin 2) voltage. During daytime conditions, the resistance of the photocell is low (say a few hundred ohms) and so the inverting input is pulled down near to 0 V .
The output of ICI is high, and this is inverted by transistor TR1 which saturates hard on. Its collector is

Fig. 1. Circuit diagram for a Doorbell-activated Porch Light.
therefore nearly 0 V . which is sufficient to reset the 555 timer at pin 4 and prevent it operating. Adjust VRI to obtain the desired switch-on level.
Thus, under daylight conditions, the timer is inhibited at pin 4 so the lamp can't illuminate - but the doorbell will still function as usual. Come nightfall. PCCl's resistance increases which pushes up the voltage at the inverting input until the op.amp output switches low and TRI turns off. Now the 555 (IC2) will trigger when the doorbell is pressed, and the mains lamp will illuminate for a period determined by the setting of VR2.
Mr. Namarathna indicated in his letter that a power supply was available. Battery operation is not really feasible for this circuit due to the quiescent current requirements of the circuit, and no attempt was made to improve upon this using CMOS components. A simple smoothed power supply (approximately 12 V) could be used, even a cheap 12 V mains adapter might be suitable if it can handle the requirements of the Doorchime or sounder.

Take Note

Some other notes: component values are not at all critical and nearest junk box values will be fine. Similarly the transistor could be almost any $n p n$ small signal type, and you could try any other op.amp to hand just to see if it works.

The relay must be adequate for the mains loads, and it must have a coil resistance in the low hundreds of ohms or more. You could add an l.e.d. with 680 ohm series resistor to pin 6 of the op amp, this will then indicate when IC1 is in its day or night setting - useful when initially testing the circuit.
If you have an existing doorbell, check internally that it can be switched from the negative rail, perhaps re-wiring it internally if necessary. Note that an existing bell mains transformer is likely to have an a.c. voltage output and cannot be used to power this circuit directly.
Finally, if you have any doubts or are inexperienced with mains wiring, please do not take risks but refer to a suitably qualified person for advice if needed.

Heatsink values

Last month we investigated regulator power supplies in some depth, noting that an "indestructible" three-terminal variable voltage device is likely to suffer thermal problems when used at extremes. If you dabble with power supplies or other higher power circuits yourself, eventually you will come across the requirement to use a heatsink to ensure that the heat produced by a device is removed away from the component quickly enough. Adequate heatsinking ensures that the maximum operating temperature of the device is not exceeded.
Where do you start when trying to calculate the requirements of a heatsink? What follows next might look a bit frightening to non-mathematicians (like myself), but it's actually very straightforward indeed.
There's an enormous variety of sizes and prices available, and often heatsinks
are conveniently pre-drilled to accept a particular semiconductor can size, such as TO-3 or TO-220 outlines. Heatsinks are measured in terms of their thermal resistance. This parameter is specified in Degrees Celsius per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$), and is a very simple indication of how much the heatsink's temperature will rise for a given power "throughput".
In other words. an expensive heatsink with a very low thermal resistance (say $1^{\circ} \mathrm{C} / \mathrm{W}$) will hardly rise in temperature per watt of throughput, so it's very efficient at transferring heat to the surrounding fresh air. It's big! By contrast, the temperature rise of a small type (say $20^{\circ} \mathrm{C} / \mathrm{W}$) will be much higher and therefore they are only suited for lower power, less demanding applications.
The idea is that when a device (e.g. a regulator i.c.) becomes hot, we need to remove this heat away from the semiconductor chip or "junction" to ambient surroundings, otherwise the chip is liable to overheat. Think of a heatsink system as a "conveyor belt" shifting the heat away from the junction to the surrounding air. Anything which impedes the flow of heat from the junction (such as certain electrical insulation materials) is in effect contributing to the thermal resistance of the heatsink system - slowing down the conveyor so that heat builds up undesirably!
case, or heat-conducting grease within the steel case of a TO-3 device perhaps. (Never cut open such a device to see, because it may contain toxic materials.)
The thermal resistance from the case to the heatsink is shown as $\theta_{\text {Cs. }}$. This could be an insulating washer or a smear of silicon heat-conductive grease. Finally, $\boldsymbol{\theta}_{\mathrm{SA}}$ is the thermal resistance between the heatsink and ambient temperature - it's the rating of the heatsink itself.

Heat conveyor

We can start by calculating the maximum allowable total thermal resistance in the system, also considering the ambient temperature likely to exist around the device, since this has a bearing on how efficient the system must be. For example, let's suppose the ambient temperature is likely to be $40^{\circ} \mathrm{Celsius}$. (This depends, though, on the general layout of any other components around the heatsink, and how adequate the existing ventilation might be.)
Therefore, the maximum permissible thermal resistance from junction to ambient $\left(\theta_{\mathrm{JA}}\right)$ is $(125-40)^{\circ} \mathrm{C} / 10$ Watts $=$ $8.5^{\circ} \mathrm{C} / \mathrm{W}$, otherwise the chip will overheat.
From Fig. 2, $\boldsymbol{\theta}_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\boldsymbol{\theta}_{\mathrm{CS}}+\theta_{\mathrm{SA}}$.
Buried in the Manufacturers' Data Sheet is the value of θ_{JC} - this depends

Fig. 2. Thermal resistance present in a heatsink system.

By carefully selecting heatsink ratings, we can ensure that the conveyor moves along at a speed to match the rate at which heat is being produced in the chip. Heat will then be conducted away efficiently, and the chip won't overheat.
A typical heatsink system consists of three "thermally resistive" elements, see Fig. 2. A semiconductor junction such as a transistor die or a regulator chip is embedded within a package. Imagine that the device is dissipating 10 watts and that its Absolute Maximum Temperature (as per its Data Sheet) is given as $125^{\circ} \mathrm{C}$ - typically for many semiconductors. How do we calculate the required thermal resistance of a heatsink? Firstly, we need to take into account existing thermal resistances before deciding upon a suitable heatsink value.
The symbol θ is used to denote thermal resistance. $\boldsymbol{\theta}_{\mathrm{JC}}$ is the thermal resistance between the semiconductor junction and the case wall of the package. This might represent the plastic resin of a TO-220
on the type of package. For example, National Semiconductor quote $2 \cdot 3^{\circ} \mathrm{C} / \mathrm{W}$ for a TO-3 LM317K type, and a somewhat worse $4^{\circ} \mathrm{C} / \mathrm{W}$ for the TO-220 LM317T. Let's assume the latter.
Next, if you include an insulating washer with grease, this could introduce an estimated $0.4^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance between the case and the heatsink (θ_{CS}). You might even choose to ignore this element, since the figure for ambient temperature is already an estimate.

From the above formula, we can say that the heatsink rating θ_{SA} is therefore equal to $(8.5-4-0.4)^{\circ} \mathrm{C} / \mathrm{W}=4 \cdot 1^{\circ} \mathrm{C} / \mathrm{W}$. You could use anything lower than this (a larger heatsink) if you want. For hobbyist purposes, it's probably not necessary to go into so much detail but the above guide will at least give you a good idea of the sort of rating to go for when choosing a heatsink for your project. Ideally you would design for worse case conditions, though if you need to keep within a budget then a smaller heatsink might
be used the thermal overload protection circuitry of a typical regulator will simply shut the device down at extreme temperature levels.

A brief computer listing written in Microsoft QBasic is offered this month to those who use a PC with MS-DOS. It's simple and you can elaborate upon it as you wish. It will calculate the maximum heatsink thermal resistance allowed, if you input the required data in response to a series of questions.

Power Supplies (Feb '95)

Unfortunately several gremlins crept into my Table 1 (Adjustable Voltage Regulators) in the February issue. The L 200 CV is good for 2 A of course, and comes in a TO-220 5-pin style. Also, the "T" suffix in the (National Semiconductor) part numbers given, indicates TO-220 outlines, not TO- 3 or TO-202 as printed. Sorry for the confusion.

Next Time: We check out the difference between conventional current and electron flow - a subject where in electronics, we're somewhat "backwards" compared with the rest of science.

Circuit Surgery is our column catering for feedback from readers. If you've

5 CLS

6 PRINT "HEATSINK CALCULATOR"
10 REM HEATSINK CALCULATOR UTILITY - ALAN WINSTANLEY FEB 1995
20 PRINT "MAXIMUM JUNCTION TEMPERATURE $(T j)={ }^{\prime}$ ";
30 INPUT TJ
40 PRINT "AMBIENT TEMPERATURE $(T a)=$ ";
50 INPUT TA
60 TEMPRISE $=T J-T A$
70 PRINT "MAX PERMISSIBLE JUNCTION TEMP RISE OVER AMBIENT $=$ "; TEMPRISE 80 PRINT
90 PRINT "INPUT MAXIMUM POWER DISSIPATED (WATTS)":
100 INPUT PT
110 PRINT "MAXIMUM PERMISSIBLE THERMAL RESISTANCE (Oja) IS ":
115 PRINT TEMPRISE / PT; "deg C per Watt"
120 PRINT
130 PRINT "INPUT THERMAL RESISTANCE Ojc (JUNCTION TO CASE) ";
140 INPUT Tjc
150 PRINT
160 PRINT "INPUT THERMAL RESISTANCE Ocs (CASE TO HEATSINK)";
170 INPUT TCS
180 PRINT
190 PRINT "MAXIMUM HEATSINK THERMAL RESISTANCE IS ":
200 PRINT (TEMPRISE / PT) - Tic - Tcs; "deg C/ Watt"

Computer listing for calculating maximum heatsink thermal resistance.

built an $E P E$ constructional project and have any tips to pass on to your fellow constructors, why not write in to Circuit Surgery and we'll pass them on. Remember, this feature relies heavily on your input so if you have any comments or suggestions for future
topics, or any particularly puzzling problems which you'd like us to investigate, write to me at the usual address: Alan Winstanley, Circuit Surgery, Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset, BH21 IPF., U.K.

Ohm Sweet Ohm Max Fidling

The Honey Monster

RARE is the minute when the soldering iron's not plugged in and ready action, with the smell of flux drifting into the workshop and the atmosphere occasionally punctuated by the odd electronic mishap or two. One particular day I was cleaning up a prototype after a small electrolytic capacitor had gone to mect its maker, accompanied by a disproportionately loud explosion of fluff and fumes. I was looking around for a replacement cap. when into the workshop walked one of my neighbours. Bob happened to be the local beekeeper, and as I started to solder in the new capacitor, he recounted a tale of woe.

Beekceping has many fascinating aspects but the medieval technology associated with apiculture perhaps isn't one of them, not to a boffin like myself, at any rate. It seems that Bob's honey separator had suddenly expired and as he was in the middle of processing a batch of honeycombs, he desperately needed a hand to repair it, given that his electronics expertise was restricted to wiring a three-pin plug. Which seems reasonable since my knowledge of honcy was limited to scoffing it.)

Bob knew I was extremely partial to fresh honey and armed with this psychological weapon he had in the past managed to tempt me into "modernising" his equipment by installing several modest electronic gizmos to help with his honey processing.
Let me explain. When honey is produced within a bec-hive, it's necessary to extract the slurpy syrup from the wax honeycombs. This is effected by the simple technique of spinning the honey frames at
full pelt in something resembling a spin-drier. Bob's honey separator was a round stainless steel tank about the size of a Baby Burco boiler, and it held four frames at a time, flinging the honey out of the honeycombs like a centrifuge which could then be drained from a valve at the bottom of the tank. The yummy honcy thus produced was then heated in a temperature-controlled warming box to remove any impurities or wax; hence the electronic thermostat I'd built for him some time ago . . . all scientific stuff
The centrifuge had formerly been handpowered but you can guess who, in exchange for some jars of fresh honey, had "automated it" by adding an old electric motor and speed controller! Bob explained that the motor had suddenly stopped working and bence he was in dire straits. Armed with my multimeter, Bob, myself and Piddles my feline apprentice walked round to the honey shed - which was in fact an almost derelict garden shack. The honey separator lay inside, silent.

Hurricane Honey

I removed the drive belts and pulleys and eventually tested the electric motor by running it gingerly from the mains. The motor ran perfectly so I guessed the fault lay in the speed controller which I'd constructed for him last season. It was a very simple design, using a very large triac and could probably power a London Underground train judging by the size of it. The theory had been to over-engineer the project a bit by using a 25A triac so I was a bit puzzled why it should fail on a mere quarter-horsepower washing machine motor. Perhaps the fact that the diecast box was full of honey which had leaked into it had some bearing on the matter, I mused.

Back at the workshop, I replaced the triac with another spare from the biscuit tin. Piddles assisted by licking out most of the honey from within the diecast box appreciatively, while I rummaged around for the solder. We soon had the controller bolted back into place on the separator and Bob filled the whirling dervish with more dripping honey frames. Clamping the lid down tightly, I plugged in and switched on the controller while Bob looked on. Meantime Piddles had started helping himself to a jar of freshly made honcy he'd found open on the bench nearby.
The separator hummed into life and gathered speed like a hurricane mustering strength. Accelerating up to full speed, the stecl lid on top started clattering like a milk pan lid about to boil over. The separator whirred at full tilt with me hanging on to it for all I was worth - the vibration rattling the timbers of the ancient shack and almost shaking my fillings out!
Mercifully, delicious liquid honey soon started to trickle out of the valve once more and into a gallon bucket, ready for the warming box. Eventually the separator slowed down to a halt, allowing me to gather my senses and with mission accomplished, a delighted Bob thanked me with more obligatory jars of honcy. This job has its perks after all, I thought! Piddles seemed to agree, licking his lips and purring contentedly.

HART AUDIO KITS - YOUR VALUE FOR MONEY ROUTE TO ULTIMATE HI-FI

HART KITS give you the opportunity to build the very best engineered hifi equipment there is designed by the leaders in their field, using the best components that are available.
Every HART KIT is not just a new equipment acquisition but a valuable investment in knowledge, giving you guided hands-on experience of modern electronic techniques.
In short HART is your 'friend in the trade' giving you, as a knowledgeable constructor, access to better equipment at lower prices than the man in the street.
You can buy the reprints and construction manual for any kit to see how easy it is to build your own equipment the HART way. The FULL cost can be credited against your subsequent kit purchase. Our list will give you full details of all our Audio Kits, components and special offers.

INTRODUCING
 The Hart "Chiara

Single-Ended Class " A " Headphone Amplifier.

Most modern high fidelity amplifiers either do not have a headphone output facility, or this may not be up to the highest standard.
The new Hart "Chiara" has been introduced as an add-on unit to remedy this situation, and will provide two ultra high quality headphone outlets. This is the first unit in our 2000 Range of modules to be introduced through the year. Housed in the neat, black finished, Hart Minibox it features the wide frequency response, low-distortion and "musicality" that one associates with designs from the renowned John Linsley Hood.
Both outputs will drive any standard high quality headphones with an impedance greater than 30 ohms and the unit is ideal for use with the Sennheiser range. A signal link-through makes it easy to incorporate into your system and two extra outputs, one at output level and one adjusted by the Volume control are available on the back panel. The high level output also makes a very useful long-line driver where remote mounted power amplifiers are used. Power requirements are very simple and can be provided by either of our new "Andante" power supplies. Use the K3565 to drive the "Chiara" on its own, K3550 if driving other modules as well.
Volume and Balance controls are provided and as befits any unit with serious aspirations to quality these are the ultra high quality Alps "Blue Velvet" components.
Very easily built, even by beginners, since all components fit directly on the single printed circuit board and there is no conventional wiring whatsoever. The kit has very detailed instructions, and even comes with a roll of Hart audiograde silver solder. It can also be supplied factory assembled and tested.
Selling for less than the total cost of all the components, if they were bought separately, this unit represents incredible value for money and makes an attractive and harmonious addition to any hifi system.
K2100 The total cost of a complete set of all components to build this unit is $£ 126.37$. Our special discount price for all parts bought together as a kit
K2100SA Series Audiophile, with extra selected components

hart TC1D Triple Purpose TEST CASSETTE

Now available again and even better than before Our famous triple purpose test cassette will help you set up your recorder for peak performance after fitting a new record/play head. This quality precision Test Cassette is digitally mastered in real time to give you an accurate standard to set the head azimuth, Dolby/NU level and tape speed, all easily done without test equipment.
TC1D Triple Purpose Test Cassette..
. 19.99

INTRODUCING THE HART

Andante

20VA AUDIOPHILE POWER SUPPLIES

Specially designed for exacting audio use requiring absolute minimum noise, low hum field and otal freedom from mechanical noise this unit is a logical development from our highly successful 1550 series.
Utilising linear technology throughout for smoothness and musicality makes it the perfect partner for any module, such as those in our new "2000" Range, requiring fully stabilised $\pm 15 \mathrm{~V}$ supplies. Two versions are available. K3550 has two $\pm 15 \mathrm{~V}$ supplies and a single 15 V for relays etc. and can be used with our K1400 preamp and our K1450 RIAA pickup preamp, as well as other useful modules soon to be introduced. The K3565 is identical in appearance but only has the $\pm 15 \mathrm{~V}$ light current supply for use with the K1450 RIAA pickup preamplifier on its own.
K3550 Full Supply with all outputs.................889.75
K3565 Power Supply for K1450 RIAA Pickup Preamp
£ 89.42

ALPS "Blue Veluet Precision Audio Controls

To fulfil the need for ultra high quality controls we import a special range of precision audio pots in values to cover most quality amplifier applications. All in 2-gang stereo format, with 20 mm long 6 mm diam. steel shafts, except for the 50K Log which is $25 \mathrm{~mm} \times 6 \mathrm{~mm}$. Overall size of the manual pot is 27 W $\times 24 \mathrm{H} \times 27$ Deep, motorised versions are 72.4 mm Deep from the mounting face. Mounting bush for both types is 8 mm diameter
Now you can throw out those noisy ill-matched carbon pots and replace with the real hi-fi components only used selectively in the very top flight of World class amplifiers. The improvement in track accuracy and matching really is incredible giving better tonal balance between channels and rock solid image stability.
The motorised versions use a 5 V DC motor coupled to the normal control shaft with a friction clutch so that the control can be operated manually or electrically. The idea of having electrically operated pots may seem odd, archaic even, but it is in fact the only way that remote control can be applied to any serious Hi -Fi system without loss of quality. The values chosen are the most suitable available for a low loss passive volume and balance control system, allowing armchair control of these two functions.
Our prices represent such super value for pots of this quality due to large purchases for our own kits. MANUAL POTENTIOMETERS
2-Gang 100K Lin
K or 100K Log.
. 15.67
2-Gang 10K, 50 K or 100 K Log. £16.40
2-Gang 10K Special Balance, zero crosstalk and MOTORISED POTENTIOMETERS
2-Gang 20 K Log Volume Control less than 10% loss in centre position.
£26.20

REEL TO REEL HEADS
. 26.98

999R 2/4 R/P 100 mH .. $£ 16.84$ We have a few erase heads to suit which can only be supplied when 2 R/P heads are purchased $£ 36.80$

TAPE RECORDER CARE PRODUCTS

DEM1 Mains Powered Tape Head
Demagentizer, prevents noise on playback due to residual head magentisation DEM115 Electronic, Cassette Type,
demagnetizer

Send or phone for your cooy of Our FREE List of these and many other Kits a components. Enquiries from Overseas customers are equally welcome, but PLEASE send 2 IRCs if you want a list sent surface post, or 5 for Airmait.

Ordering is easy. Just write or telephone your requirements to sample the friendly and efficient HART
service. Payment by cheque, cash or credit ca. get your order on its way to you THAT DAY.

Please add part cost of carriage and insurance as follows:-INLAND Orders up to £20-£1.50, OVERSEAS - Please the ordering information wing day $£ 10$.

LINSLEY HOOD ‘SHUNT FEEDBACK' RIAA MOVING COIL \& MOVING MAGNET
 features a totally discrete component implementation with a specially designed low input impedance front end and the superior sound of the Shunt Feed back circuitry. High quality components fitting to an advanced double-sided printed circuit board make this a product at the leading edge of technology that you will be proud to own. Nevertheless with our step by step instructions it is very easy and satisfying to assemble. The higher current consumption of this unit means that it is best powered by our new Andante Audio Power Supply itself an advanced piece of technology in a matching case. This sup plies the superbly smoothed and stabilised supply lines needed by any sensitive preamplifer and fee tures a fully poted Hi-grade toroidal transformer tureng with a special limited shit earth system for along with a pecial The K1450 is suitable or hum free operation. The K1aso is suitable lo all moving coil and moving magent transducers this unit is especially recommended for, and will extract the very best from the modern generation of low output high quality moving coil transducers.
K1450 Kit, complete with all parts ready to assemble inside the fully finished $228 \mathrm{~mm} \times 134 \mathrm{~mm} \times$ 63 mm case. Kit includes full, easy to follow, assembly instructions as well as the Hart Guide to PCB Construction, we even throw in enough hart Audiograde Silver Solder to construct your kit!

K1450SA Series Audiophile version with selected components $£ 133.94$

HIGH QUALITY REPLACEMENT
 CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. For top performance cassette recorder heads should be replaced every 1,500 hours. Fitting one of our high quality replacement heads could restore performance to better than new! Standard inductances and mountings make fitting easy on nearly all machines (Sony are special dimensions, we do not stock) and our TC1 Test Cassette helps you set the azimuth spot on. As we are the actual mporters you get prime parts at lower prices, compare our prices with other suppliers and see! All our heads are suitable for use with any Dolby system ead are normally avalable ex-stock. We also stock a wide range of special heads for home construca wide range of special
HC80 NEW RANGE High Beta Permalloy Stereo head. Modern space saver design for easy fitting and lower cost. Suitable for chrome, metal and erric tapes, truly a universal replacement head for everything from hi-fi decks to car players and at an incredible price too!....................................... $£ 11.70$ HRP373 Downstream monitor combi head...... $£ 62.59$ HQ551A 4-Track R/P
HQ551S Sony Mount 4-Tr. R/P
HQR560 Rotary Base 12.5 mm R/P/E HQR570 Rotary Base 15 mm R/P/E..
.. 58.75 . 21.90 HQR580 Rotary Base 12.5 mm R/P..
£14.29

HART Classical CD's.

Top quality, Full Digital (DDD), over 100 titles from only $£ 1.99$! Ring or send for your list!

TECHNICAL BOOKSHELF
We stock a good range of books of interest to the electronics and audio enthusiast, including many eprinted classics from the valve era. Some were in last months advertisement, but see our list for the full range.
New this month is the GEC Valve designs book at \&18.95, and the VTL Book, a modern look at valve designs, £17.95.

Terry de Vaux-Balbirnie

On-demand care for lead-acid batteries.

SMALL 12 V lead-acid batteries are now used extensively as portable power sources and for back-up supplies. Their main advantage is a larger energy content for a given cost compared with nickel cadmium cells. Also, their self-discharge rate is much less.
The chief disadvantage is that they must be maintained more carefully than nickelcadmium cells - particularly, to avoid discharging them below a certain level or leaving them in a discharged state. Such practice may cause irreversible damage.

NO DEMANDS

The Auto Battery Charger may be connected to the battery whatever its state of charge and left on continuously if desired It will switch off automatically when the battery is fully charged.
Whenever the charge becomes less than a preset level (nominally 80 per cent), the unit will switch on again and the process repeat indefinitely - that is, it charges on demand. Since it is the mains supply which is switched on and off, the circuit draws current only during the process of charging.
Construction of the Auto Battery Charger is straightforward but you will need access to a digital multitester for setting-up purposes at the end of construction.

DIRTY PLATES

When a nominal 12 V lead-acid battery is on charge, its terminal voltage rises and eventually exceeds 14 V . When taken off charge, this quickly drops to around 13 V . In the absence of an external load it will then fall extremely slowly during the process of natural self-discharge. With a load applied, it falls at a rate dependent on the current drawn. Given time, the voltage would eventually fall to zero. However, allowing this to happen would prove very destructive and serious sulphation of the plates would occur.

In practice, the battery is said to be discharged when its terminal voltage drops below about 11.5 V and it should never be allowed to fall much more than this. This charger constantly monitors the terminal voltage and switches on at 12.5 V approximately (this corresponds to 80 per cent of maximum charge) and off again at 14.8 V .

The design is innovative in that the circuit is powered by the battery itself. This allows the voltage to be monitored while the mains supply is off. Under these conditions, the current requirement of the prototype unit is only $90 \mu \mathrm{~A}$ approximately so there is practically no drain on the battery - the natural leakage current being much greater.

The charging current is less than 1 A which means that virtually any lead-acid battery can be accommodated without danger of overcharging. The prototype unit has been used successfully with batteries between 1 Ah and 8 Ah capacity.

This charger could be used as a module in any circuit where a 12 V lead-acid battery is used in standby mode - in a burglar alarm system, for example. It may simply be connected up and forgotten. However, it is thought that most readers will wish to use it for cyclic operations where the battery is connected after a period of use and left on until needed again.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Auto Battery Charger is shown in Fig. 1. While switch S1 is on and relay contacts RLA1 "made", the conventional arrangement of transformer T1, bridge rectifier D1-D4 and smoothing capacitor Cl provide a nominal 16 V d.c. supply. Imagine for the moment that the relay contacts are open - that is, there is no power supply

The battery (B1) to be charged is connected to the section of circuit based on the micropower op.amp IC2 and associated components. This op.amp has been specially chosen for its exceptionally low current requirement.

The inverting input, pin 2, of IC2 receives a precise 1.2 V from $\mathrm{ICl}-\mathrm{a}$ precision reference i.c. Fixed resistor R3 allows a small current to flow through ICl which is necessary for its operation. The non-inverting input pin 3 receives a proportion of the battery voltage derived from the potential divider consisting of resistors R1 and R2 in conjunction with preset potentiometer VR1.

Ignore the network comprising resistor R4 and preset potentiometer VR2 for the moment. While the battery voltage remains

Fig. 1. Complete circuit diagram for the Auto Battery Charger.
above 14.5 V , and with VR1 sliding contact at approximately mid-track position, there will be a voltage greater than $1 \cdot 2 \mathrm{~V}$ at the non-inverting input of IC2. Under these conditions, the op.amp will be on with its output pin 6 high.
This high state is applied, via resistor R5, to the base of Darlington transistor TR1. This turns it off (since it is a pnp transistor rather than the more familiar npn type) so no current flows through RLA relay coil. The normally-open contacts, RLA1, are therefore "broken" and the mains supply is off as previously supposed.
When the battery partly discharges, the voltage at the non-inverting input will drop below $1 \cdot 2 \mathrm{~V}$. The conditions are now reversed and the voltage appearing at the non-inverting input will be less than that at the inverting one.
The op.amp output now switches off with the output becoming low. When this state is applied to TR1 base (b), it is switched on
and the relay coil in the collector (c) circuit is energized. The relay contacts RLA1 then "make" and establish a supply to the primary winding of transformer Tl and neon indicator LPI.
With a supply provided, the battery charges through resistor R6 and the terminal voltage rises. In fact R6 will probably not be needed. Its purpose, if present, is to limit the charging current to 1 A . Its effect on threshold voltage monitoring is negligible.

OVER THE THRESHOLD

Without modification, this circuit would provide only one sharp switching voltage and this is not satisfactory. There need to be two well-defined levels - one for "on" and the other for "off".
This is achieved by introducing positive feedback via resistor R4 and preset potentiometer VR2. This provides Schmitt
trigger action so that once off, charging will not re-commence until the voltage has fallen below a certain lower value.
The difference between the "on" and "off" thresholds is set by VR2 adjustment. In the prototype unit, with VR2 sliding contact at mid-track position, the separation between the threshold voltages is approximately 2 V . Thus, if the charger were to switch off as the voltage rose to $14 \cdot 6 \mathrm{~V}$, it would need to fall to $12 \cdot 6 \mathrm{~V}$ for it to switch on again.
At the end of construction, VRI will be adjusted to provide the required "on" voltage and VR2 the correct "off" one. Fuses FS1, FS2 and FS3 provide protection to all parts of the circuit.

CONSTRUCTION

Most of the components for the Auto Battery Charger are mounted on a singlesided printed circuit board (p.c.b.) The topside component layout and full-size copper foil pattern are shown in Fig. 2.

Fig. 2. Printed circuit board component layout and full size copper foil track pattern for the Auto Battery Charger.

This board is available from EPE PCB Service, code 934.
Begin construction by drilling the three mounting holes. Solder a short link wire in resistor R6 position for the moment. Follow with the on-board components in the following order. Firstly the i.c. socket, both fuseholders and relay then all resistors (including the presets).
Next, capacitor Cl , bridge rectifier D1D4, voltage reference IC1, Darlington TR1 (the "flat" faces Cl) and diode D5 can be soldered in place, taking care over the orientation of these components. Note that IC1 has only two of its legs connected and the "flat" faces VR1.
Complete the circuit panel by soldering 15 cm pieces of stranded connecting wire to the points marked "a.c. in" and "-out". Solder a piece of similar wire 25 cm long and red in colour to the point labelled " out".
Finally, solder 15 cm pieces of 3 A mainstype wire direct to the relay normally-open contacts on the underside of the board. Check that these connections are secure this is essential for safety reasons. Adjust preset VR1 sliding contact fully anti-clockwise (as viewed from the relay) and VR2 to approximately mid-track position.
Note that an aluminium or metal case of the size stated in the parts list (or larger) MUST be used - a plastic enclosure is not suitable for this project. Drill holes in the front panel for ON-OFF switch S1, neon indicator LP1 and for the rubber grommet through which the output leads will be passed.
Make holes in the rear panel for fuseholder FS1 and for the strain relief bush to be used on the mains input lead. Note that a strain relief bush is essential here to prevent the wires pulling free which could be dangerous.
The printed circuit board is mounted on an aluminium panel cut and bent to the form shown in Fig. 3. Drill holes to correspond with those in the p.c.b. and one for the wires leading from the relay contacts to pass through - fit this latter one with a rubber grommet. Drill a further two holes to attach the aluminium panel to the base of the box.

Pass the relay wires through the grommeted hole and attach the circuit board to the aluminium panel using plastic stand-off insulators on the bolt shanks. These must maintain a minimum clearance of 5 mm between the soldered joints on the reverse side of the p.c.b. and the metalwork. Place a piece of plastic under the circuit panel in the region of the relay connections as an additional precaution.

COMPONEVIS

Resistors		See
R1	1 M	SUOP
R2	47 k	SHLK
R3	180 k	TALK
R4	2 M 2	Page
R5	220 k	
R6	If required	- see text.

All 0.25W 5\% carbon film except R6 see text.

Potentiometers

VR1 100k sub-min carbon preset, vert.
VR2 4M7 sub-min carbon preset, horiz.

Capacitor
C1 2200μ radial elect. 35 V
Semiconductors
D1-D4 W005 50V 1-5A bridge rectifier
TR1 MPSA65 pnp Daplington transistor.
IC1 ICL8069CCZR 1.2 V voltage reference i.c.
IC2 ICL7611 micropower op.amp.

Miscellaneous

T1 Mains transformer with 12V (or twin 6 V secondaries) rated at 1 A (12VA)
RLA Miniature 12 V 400 ohm coil relay, with "make" contacts rated at 3A
S1 Mains rocker switch - 1A rating minimum
FS1 1A20mm ceramic mains-type fuse and panel fuseholder
FS2 2A 20 mm fuse and chassis fuseholder
FS3 $\quad 1.25 \mathrm{~A} 20 \mathrm{~mm}$ fuse and chassis fuseholder
LP1 Mains neon indicator
Printed circuit board available from the EPE PCB Service, code 934; 8pin d.i.J. socket; aluminum box, size $150 \mathrm{~mm} \times 100 \mathrm{~mm} \times 60 \mathrm{~mm}$ minimum; crocodile clips (or spade-type connec. tors) (2 off); solder tags; 12 V bulb lampholder and crocodile clips for testing - see text; sheet aluminium for p.c.b. mounting; small fixings; strainrelief bush; rubber grommet; stand-off insulators (3 off); multistrand connecting wire; solder etc.

MAKING TIES

Mount the circuit board assembly on the base of the box with a solder tag on the fixing nearest the front panel. Mount the components for which holes have already been made i.e. on-off switch S1, neon indicator LP1 and panel fuseholder FS1

Mount the mains transformer using a solder tag on the fixing nearest the rear of the box. This solder tag is used to Earth the case and transformer and is an essential safety requirement. If the transformer is of the type having twin 6 V secondary windings, connect them in series as shown in Fig. 4.

Fig. 4. Connections for transformer having twin 6 V secondary windings.

Refer to Fig. 5, mount all remaining components and complete the interwiring shortening any wires as necessary. The use of small cable ties will keep the wiring neat.
Make up the input lead using three-core mains-type wire of 3 A rating minimum. Secure the outer sheath using the strain relief bush and solder the wires as shown. Leave a little slack on the inside. Note that the Earth wire is soldered directly to the solder tag at the transformer. If the plug is of the standard UK type, fit a 2A or 3A fuse.
Cut a piece of black stranded wire similar in type to the existing red positive output lead and about 6 cm longer. Solder one end to the solder tag at the aluminium panel together with the existing one. Secure the positive and negative output wires together, using a cable clamp pass them through the grommet checking that a little slack is left when they are pulled. Cut them to the same length and fit the ends with crocodile clips or spade-type connectors.
Insert a 20 mm 1 A mains ceramic fuse in FS1 fuseholder, a 2A fuse in FS2 and a 1.25A one in FS3 - these latter two may be of the glass type. Leave the lid of the case removed for the moment.

/MPORTANT WARNING

Make an insulating shield to cover the box on the transformer side of the circuit panel so that it is absolutely impossible to touch any mains connection when the lid of the case is removed. The photograph was taken with the shield removed to show internal components.

TESTING

You will need a 12 V bulb to help with testing of the Charger - a 5 W car sidelight type for a small battery or the 21W flashing indicator variety for a larger one. This will be used as a load. It should be placed in a lampholder and short wires attached with a crocodile clip on the end of each. Begin testing with the battery substantially discharged - check that the terminal voltage lies between 11.5 V and 12 V .

Fig. 5. Details of interwiring between the p.c.b. and other components.

Set the digital multitester to a suitable current range and include it in the circuit as shown in Fig. 6. Take care to observe the polarity of the battery. Do not be surprised when the relay clicks as it should.
Keep the crocodile clips separated so that they cannot touch and plug the unit into the mains. The neon indicator should light. Check the current flowing into the battery - it is likely to be around 800 mA .

If it is greater than 1A, fuse FS3 may blow and you will need a resistor in R6 position. This should have a power rating of $3 W$ minimum - a suitable value to begin with would be one ohm. To do this, snip through the link wire and solder the resistor to the free ends. Its value should be increased to reduce the current if necessary. With this test complete, switch off.

GIVINE

ATTENTION

You will need a trimming tool or very small screwdriver to enable quick and easy adjustment to preset VRI. Check that this is possible before continuing.

Fig. 6. Checking the current flow into a battery.

Remove the multitester and adjust it to a suitable voltage range. Connect is directly across the battery terminals as shown in Fig. 7. Switch on and observe the reading at intervals. It should be seen that the voltage rises very slowly.
For the 6Ah battery used with the prototype unit this was about 0.3 V per hour. This rate increases towards the end point so be particularly watchful after about 13.8 V has been reached and have the trimming tool ready.

When the reading is about to touch $14 \cdot 8 \mathrm{~V}$, rotate VR1 sliding contact slowly clockwise to the point where the relay clicks and the neon indicator goes off. The reading will now quickly fall to around 13 V . If you miss the setting, partially discharge the battery and start again - put it down to experience!

Leaving the circuit as it is, connect the "test" bulb directly to the battery terminals so that it partially discharges the battery. Note the point at which the relay clicks-in and the neon lights which indicates that the mains supply has switched on again. This should happen somewhere around 12.5 V .
At this point, the bulb should be disconnected and the battery allowed to charge again. It should switch off at the voltage set previously (between 14.6 V and 15 V is satisfactory). If a satisfactory low point was not reached (between 12 V and 12.5 V), preset VR2 may be adjusted slightly (clockwise rotation reduces the voltage and vice-versa) and the procedure repeated.

Unfortunately, as stated earlier, VR1 and VR2 settings are somewhat interdependent

Fig. 7. Checking the actual voltage delivered to a battery.
so that when one is adjusted, the other may need attention too. You may therefore need to work in a series of small steps going from one to the other. Trying to speed matters up by using a higher-powered bulb could result in false voltage levels being set.

ALL CHARGED UP

With adjustments complete, test the charger under working conditions. The crocodile clips should always be connected to the battery before switching on the mains. If this precaution is not observed and they touch, a short-circuit will be caused and fuse FS3 may blow. Note also that if the battery is excessively discharged, either the mains will fail to switch on at all or FS3 may blow.
It is normal for the case to become warm with prolonged use. If there is a short interruption to the supply while charging is taking place, the lower threshold level will have to be reached before charging resumes.
When everything works correctly, the project may be put into permanent service.

Electronics from the Ground Up

Mike Tooley, BA

Part 7

ELECTRONICS from the Ground Up is designed to provide you with a comprehensive and up-to-date introduction to the world of electronics. The series is based on Electronics Workbench, a remarkable software package that lets you use your PC to build and test a wide range of circuits. Back issues of earlier parts of this series are available - see Back Issues page.

In this seventh part we introduce logic circuits. We begin by introducing digital logic and continue by explaining each of the basic building blocks that make up logic circuits. Our practical assignments involve testing logic circuits, building up "combinational logic" arrangements, and driving seven-segment displays.

LOGIC

A basic requirement of many electronic circuits is that they should be able to make simple decisions based on a set of given conditions. Decisions are made on the basis of simple logical statements like:

If dark then put on the light and
If temperature is less then $24^{\circ} \mathrm{C}$ then connect supply to the heater

and

If "hour" is greater than 11 and "24 hour clock" is not selected then display message "pm".
All of these statements are similar in form. The first two are essentially:

If \{condition\} then \{action\}.
whilst the third is a compound statement of the form:

If \{condition 1\} and not \{condition 2 \} then \{ action\}.
All three of these statements can be readily implemented using straightforward electronic circuitry. Because this circuitry is based on discrete states and since the behaviour of the circuits can be described by a set of logical statements, the circuits that perform such tasks are referred to as "digital logic".

SWITCHES AND LAMPS

To put this into context, let's take a very simple example. Consider the circuit shown in Fig. 7.1 in which a battery is connected to a lamp via a switch. There are two possible states for the switch, open and closed. It should be obvious that the lamp will only operate when the switch is closed. We can summarise the operation of the circuit using a simple table as in Table 7.1.

Since the switch can only be in one of the two states (i.e., open or closed) at any given time, the open and closed conditions are mutually exclusive. Furthermore, since the switch cannot exist in any other state than completely open or completely closed (i.e., there is no intermediate or half-way state) the circuit is said to use binary or "twostate" logic. We can represent the logical state of the switch using the binary digits, 0

Fig. 7.1 Switch and lamp circuit, with truth tables.

Fig. 7.2 AND switching logic with truth tables.
and 1. We shall assume that a logical 0 is synonymous with open (or "off") and logical 1 is synonymous with closed (or "on"). Hence:

$$
\begin{aligned}
& \text { Switch open (off) }=0 \\
& \text { Switch closed (on) }=1
\end{aligned}
$$

We can now re-write the truth table in terms of the binary states as shown in Table 7.2.

We can take this process one stage fur ther by re-writing the table in terms of the binary state of the circuit's "input" and "output" (see Table 7.3). We shall describe the binary state of the output by assuming that light corresponds to a logical 1 and no light corresponds to a logical 0 . Hence:

No light (off) $=0$
Light (on) $=1$

AND LOGIC

Now consider the circuit with two switches shown in Fig. 7.2. Here the lamp will only operate when switch A is closed AND switch B is closed. However, let's look at the operation of the circuit in a little more detail. Since there are two switches (A and B) and there are two possible states for each switch (open or closed), there is a total of four possible conditions for the circuit. We can summarise these conditions in another table (see Table 7.4).

Since each switch can only be in one of the two states (i.e., open or closed) at any given time, the open and closed conditions are mutually exclusive. Furthermore, since the switches cannot exist in any other state
than completely open or completely closed (i.e., there are no intermediate states) the circuit uses "binary logic". We can thus represent the logical states of the two switches by the binary digits, 0 and 1 .

Once again, if we adopt the obvious convention that an open switch can be represented by 0 and a closed switch by 1 , we can re-write the truth table in terms of the binary states shown in Table 7.5 or in terms of inputs and outputs, as in Table 7.6.

OR LOGIC

Another circuit with two switches is shown in Fig. 7.3. This circuit differs from that shown in Fig. 7.2 by virtue of the fact that the two switches are connected in

Fig. 7.3 OR switching logic with truth tables.

Table 7.10 Operation of the simple intruder alarm

Door switch	Windowswitch	Relay coil	Alarm
open	open	not energised	sounding
open	closed	not energised	sounding
closed	open	not energised	sounding
closed	closed	energised	not sounding

Fig. 7.4 Intruder alarm based on normally-closed switches and its truth tables.
parallel rather than in series. In this case the lamp will operate when either of the two switches is closed, i.e. if switch A OR switch B is closed. As before, there is a total of four possible conditions for the circuit. We can summarise these conditions in another table, Table 7.7.

Once again, adopting the convention that an open switch can be represented by 0 and a closed switch by 1 , we can re-write the truth table in terms of the binary states
or in terms of input and output states as shown in Table 7.8 and Table 7.9 respectively.

AND INVERSION

Now let's consider another situation. The circuit shown in Fig. 7.4 is a simple intruder alarm in which both door and a window switches are normally closed. The two switches are wired in series with a relay coil and battery. As long as switch A AND switch

B remain closed, the relay will operate and its contacts will remain open. When a door or window is opened, its respective switch will open. This, in turn, causes the circuit to be broken and the relay will cease to be energised. The relay contacts will then close and the alarm will sound (see Table 7.10).

Assuming the same logical convention as before (i.e., switch closed $=1$, alarm sounding $=1$), the truth table for the system is shown in Table 7.11
It is worth comparing Table 7.11 with Table 7.6. The output column of each truth table is the same except for the fact that all the 0 s have been replaced by 1 s and vice versa. The logical function is thus the opposite (or "inverse") of AND. We call this function NAND (standing for NOT-AND).

BASIC LOGIC FUNCTIONS

To simplify the task of designing and building logic circuits, a range of standard devices is available to provide the basic logic functions, AND, OR, NAND,

Fig. 7.5 Symbols and truth table for a buffer.

Fig. 7.6 Symbols and truth table for an inverter.

Fig. 7.7 Symbols and truth table for a two-input AND gate.

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

Fig. 7.8 Symbols and truth table for a two-input NAND gate.

Fig. 7.9 Symbols and truth table for a two-input OR gate.

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Fig. 7.10 Symbols and truth table for a two-input NOR gate.

Fig. 7.11 Symbols and truth table for a two-input exclusiveOR gate.

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	1

Fig. 7.12 Symbols and truth table for a two-input exclusiveNOR gate.

NOR (inverted OR or NOT-OR), etc. These devices are commonly referred to as logic gates and are represented by symbols conforming to either British/European or MIL/ANSI standards. We shall briefly consider the action of each of the basic logic gates in turn (strictly speaking, buffers and inverters are not actually gates, although they are often assigned to this category). In each case, we have shown the BS and MILANSI symbols side-by-side together with the truth table. (Note that Electronics Workbench supports both sets of symbols and you can choose which set you want to work with!). (Note also that EPE conventionally uses the MILANSI symbols. Ed.).

Buffers

Buffers (see Fig. 7.5) don't actually affect the logical state of a digital signal (i.e., a logic 1 input results in a logic 1 output whereas a logic 0 input results in a logic 0 output). Despite this, they still have a useful function since they can be instrumental in regularising the logic levels at an interface or providing extra current drive to a load.

Inverters

Inverters (see Fig. 7.6) are used to complement the logic state (i.e., a logic 1 input results in a logic 0 output and vice versa). Inverters also provide extra current drive and, like buffers, are used in interfacing applications where they provide a means of regularising logic levels present at the input or output of a digital system. The circle shown at the output denotes the inversion function. (You may sometimes come across an inverter referred to as a NOT gate.).

AND gates

AND gates (see Fig. 7.7) will only produce a logic 1 output when all inputs are simultaneously at logic 1 . Any other input combination results in a logic 0 output.

NAND gates

NAND gates (see Fig. 7.8) will onty produce a logic 0 output when all inputs are simultaneously at logic 1 . Any other input combination will produce a logic 1 output. A NAND gate, therefore, is nothing more than an AND gate with its output inverted! The circle shown at the output denotes this inversion.

OR gates

OR gates (see Fig. 7.9) will produce a logic 1 output whenever any one, or more, inputs are at logic 1. Putting this another way, an OR gate will only produce a logic 0 output whenever all of its inputs are simultaneously at logic 0 .

NOR gates

NOR gates (see Fig. 7.10) will only produce a logic 1 output when ail inputs are simultaneously at logic 0 . Any other input combination will produce a logic 0 output. A NOR gate, therefore, is simply an OR gate with its output inverted. A circle is again used to indicate inversion.

Exclusive-OR gates

Exclusive-OR gates (see Fig. 7.11) will produce a logic 1 output whenever either one of the inputs is at logic 1 and the other is at logic 0 . Exclusive-OR gates produce a logic 0 output whenever both inputs have the same logical state (i.e., when both are at logic 0 or both are at logic 1).

Exclusive-NOR gates

Exclusive-NOR gates (see Fig. 7.12) will produce a logic 0 output whenever either one of the inputs is at logic 0 and the other

Fig. 7.13 Circuit for Assignment 7.1. Initial input connections (both A and B at logic 0).

Inverter (NOT)

2-Input OR

2-Input NOR

2-input XOR

Fig. 7.15 Input connections for Assignment 7.1, $A=0$ and $B=1$.

Fig. 7.16 Input connections for Assignment $7.1, A=1$ and $B=0$.

Fig. 7.17 Input connections for Assignment $7.1, A=1$ and $B=1$.

Fig. 7.14 Results for Assignment 7.1.
is at logic 1. Exclusive-NOR gates produce a logic 1 output whenever both inputs have the same logical state (i.e., when both are at logic 0 or both are at logic 1). Once more a circle is used to indicate the inversion function. An exclusive-NOR gate is thus an exclusive-OR gate with its output inverted.

Practical assignment 7.1:

Logic gates

In this practical assignment, and using the Electronics Workbench software, you will investigate the action of a variety of the most common types of logic gate.

Objectives:

7.1.1 To investigate the behaviour of each - of the following types of logic gate:
(a) two-input AND
(b) two-input OR
(c) inverter (NOT gate)
(d) two-input NAND gate
(e) two-input NOR gate
7.1.2 To construct a truth table for each of the gates listed in 7.1.1.
7.1.3 To use a d.c. voltmeter to measure logic levels.

Instructions:

1. Select the two-input AND gate and connect the circuit shown in Fig. 7.13. The voltmeter is to be used to measure and display the voltage produced at the output of the gate. The +5 V sources and two ground connections are used to produce the input voltages for the gate.
2. With both of the inputs connected to ground (logic 0), as shown in Fig. 7.13, switch on the power to the circuit and note the output voltage indicated by the voltmeter. Convert this output to a logic state (either 0 or 1). Note that the voltmeter will read OV for logic 0 and +5 V for logic 1. Record the indication produced in the appropriate truth table in Fig. 7.14.
3. Repeat step 2 using each of the connections shown in Figs. 7.15, 7.16, and 7.17. For each circuit, record the logical state of the gate's output in the corresponding truth table in Fig. 7.14.
4. Repeat steps 1 to 3 for each of the logic gates provided.

Conclusions:

To what extent have the objectives for this assignment been met? Check that each truth table is correct for the particular type of gate under investigation, referring back earlier in the text if you are not entirely sure.

LOGIC FAMILIES

The integrated circuits (i.c.s) that provide the logic gate functions in modern digital circuitry are classified according to the semiconductor technology used in their fabrication. Indeed, the technology used is instrumental in determining the operational characteristics (such as power consumption, speed, and immunity to noise) of a device. The two basic logic families are CMOS (Complementary Metal Oxide Semiconductor) and TTL (Transistor Transistor Logic). Each of these principal families is then further divided into sub-families.

74 -series TTL

The most common family of TTL logic devices is known as the 74 -series. Devices from this family are coded with the prefix number 74 . Variants within the family are identified by letters which follow the initial 74 prefix, as follows:
Infix Meaning
None Standard TTL device
ABT Advanced bus interface logic
AC Advanced CMOS
ACT Advanced CMOS with TTL com. patible inputs
ACTQ Advanced CMOS with TTL compatible inputs
ALS Advanced low-power Schottky
AS Advanced Schotty TTL
BCT Octal buffers/drivers
C. CMOS version of a TTL device

CBT Crossbartechnology
F "Fast" - a high speed version of the device
FCT High speed high output
GTL Gunning transceiver logic
H High speed version
HC High speed CMOS version (CMOS compatible inputs)
HCT High speed CMOS version (TTL compatible inputs)
LS Low-power Schottky
LV Low voltage high speed CMOS
LVC Low voltage CMOS
LVT Low voltage technology
S Schottky input configuration (improved speed and noise immunity).

4000-series CMOS

The most common family of CMOS devices is known as the 4000 -series. Variants within the family are identified by suffix letters as follows:
Suffix Meaning
None Standard CMOS device.
A Standard (unbuffered) CMOS
B, BE Improved (buffered) CMOS device.
UB, UBE Improved (unbuffered) CMOS device.

Examples

Fig. 7.18 shows the outlines of two digital integrated circuits. The device shown first in Fig. 7.18, coded 4001 UBE, is an improved (unbuffered) version of a CMOS 4001 device whilst the chip shown second in Fig. 7.18, coded 74LSOO, is the low-power Schottky version of a TTL 7400 device. Inside both chips there are four separate two-input gates, NOR in the case of the 4001 IBE and NAND in the case of the 74LSOO, as schematically shown in Fig. 7.19.

ELECTRICAL CHARACTERISTICS

In Assignment 7.1 you found that a logic 0 was represented by OV whilst a logic 1 was represented by +5 V . These voltages

Table 7.12 Logic levels for standard CMOS and TTL devices

Logic level	CMOS	TTL
Logic 1	more than $2 / 3 \mathrm{~V}_{D D}$	more than 2 V
Logic 0	less than $1 / 3 \mathrm{~V}_{D D}$	less than 0.8 V
Indeterminate	between $1 / 3 \mathrm{~V}_{D D}$ and $2 / 3 \mathrm{~V}_{D D}$	between 0.8 V and 2 V

(Note: $V_{D D}$ is the positive supply associated with standard CMOS devices, this is often +5 V but may take any value between +3 V and +18 V).

Table 7.13 Comparison of LS TTL and BE-series CMOS devices

Characteristic	Logic family	
	74LS	40BE
Maximum permissible supply voltage	$5 \cdot 25 \mathrm{~V}$	18 V
Minimum permissible supply voltage	4.75 V	3 V
Quiescent power dissipation (per gate)	2 mW	negligible
Dynamic power dissipation (per gate at 100 kHz)	2 mW	$100 \mu W$
Typical delay experienced by a pulse passing through the gate	10 ns	100 ns
Maximum switching frequency	50 MHz	12 MHz
Minimum output current $\left(\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}\right)$	8 mA	1.6 mA
Number of LS-TTL loads that can be driven from a single output	20	4
Maximum input current $\text { (at } V_{1}=0.4 \mathrm{~V} \text {) }$	$-0.4 \mathrm{~mA}$	$-1 \mu \mathrm{~A}$

are idealised and, in practice, a range of voltages is used to represent the logic states 0 and 1. The logic levels for CMOS differ markedly from those associated with TTL. In particular, CMOS logic levels are relative to the supply voltage used whilst the logic levels associated with TTL devices tend to be absolute. Table 7.12 shows the logic levels for standard CMOS and TTL devices.

NOISE MARGIN

The noise margin of a logic device is a measure of its ability to reject noise; the larger the noise margin the better is its ability to perform in an environment in which noise is present. Noise margin is defined as the difference between the
minimum values of high state output and high state input voltage, and the maximum values of low state output and low state input voltage. Hence:

$$
\begin{aligned}
\text { Noise margin } & =V_{\mathrm{OH}(M \mathrm{M})}-\mathrm{V}_{\mathrm{IH}(M I M)} \\
\text { or Noise margin } & =\mathrm{V}_{\mathrm{OL}(\text { MAX })}-\mathrm{V}_{\mathrm{IL}(\mathrm{MAX})}
\end{aligned}
$$

where $\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}$ is the minimum value of high state (logic 1) output voltage, $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ is the minimum value of high state (logic 1) in. put voltage, $\mathrm{V}_{\text {oumax }}$ is the maximum value of low state (logic 0) output voltage, and $\mathrm{V}_{\mathrm{IL}(\mathrm{MIN})}$ is the minimum value of low state (logic 0) input voltage.

The noise margin for standard 7400 series TTL is typically 400 mV whilst that for CMOS is $1 / 3 \mathrm{~V}_{\mathrm{DD}}$, as shown comparatively in Fig. 7.20.

Fig. 7.18 Example of markings on digital integrated circuits.

Fig. 7.20 Logic levels and noise margins for TTL and CMOS devices.

Table 7.13 compares the more impor tant characteristics of the LS.TTL family with modern buffered CMOS logic. It is well worth taking a little time to study this table and decide which type of logic may be best suited to a particular application. For ex ample, CMOS logic is ideal for use in battery operated low-power applications.

Practical assignment 7.2:

Combinational logic

In this practical assignment you will con. struct and test a variety of logic circuits based on standard logic gates.

Objectives:

7.2.1 To show how multiple-input AND and OR gates can be built using a number of two-input AND and OR gates respectively.
7.2.2 To show how inverting the output of NAND and NOR gates produces AND and OR functions, respectively.
7.2.3 To show how inverting both of the inputs of a NAND gate produces an OR function.
7.2.4 To show how inverting both of the inputs of a NOR gate produces an AND function.
7.2.5 To show how an exclusive-OR gate can be built using basic logic gates.

Instructions:

1. Connect the circuit shown in Fig. 7.21. The output of the circuit is connected to a logic level indicator whilst the four inputs are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table. Confirm that the circuit provides a four-input AND function.
2. Connect the circuit shown in Fig. 7.22. The output of the circuit is connected to a logic level indicator whilst the four inputs are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table.
3. Connect the circuit shown in Fig. 7.23. The output of the circuit is connected to a logic level indicator whilst the two inputs are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table.
4. Connect the circuit shown in Fig. 7.24. The output of the circuit is connected to a logic level indicator whilst the two inputs are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table.
5. Connect the circuit shown in Fig. 7.25. The output of the circuit is connected to a logic level indicator whilst the two inputs are derived from +5 V and ground points. Switch on the power and test the

Fig. 7.21 Multiple-input AND gate (Assignment 7.2).

Fig. 7.23 NAND gate with inverted output (Assignment 7.2).

Fig. 7.25 NAND gate with inverted inputs (Assignment 7.2).

Fig. 7.27 Exclusive-OR gate (Assignment 7.2).
circuit by constructing its truth table.
6. Connect the circuit shown in Fig. 7.26. The output of the circuit is connected to a logic level indicator whilst the two in-

Fig. 7.22 Multiple-input OR gate (Assignment 7.2).

Fig. 7.24 NOR gate with inverted output (Assignment 7.2).

Fig. 7.26 NOR gate with inverted inputs (Assignment 7.2).
puts are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table.
7. Connect the circuit shown in Fig. 7.27. The output of the circuit is connected to a logic level indicator whilst the two in. puts are derived from +5 V and ground points. Switch on the power and test the circuit by constructing its truth table.

Conclusions:

To what extent have the objectives for this assignment been met? With reference to the truth tables, state the logical func tion for each logic symbol gate arrangement and identify the single gate symbol that can replace each combination.

Fig. 7.28 Segment numbers for a sevensegment display.

Fig. 7.30 Decoded seven-segment display showing binary-coded decimal ($B C D$) input (labelled A to D).

SEVEN-SEGMENT
 DISPLAYS

Seven-segment displays provide a means of displaying numbers (0 to 9) and some letters (e.g., A, b, C, d, E, F, H, etc.). Several different types of display are in common use but one of the most common is based on light emitting diodes (l.e.d.s). The arrangement of the segments in a typical seven-segment l.e.d. display is shown in Fig. 7.28.

Each of the segments is identified by a letter, a to g . In practice, two configurations are available; common-anode and com-mon-cathode depending upon which of the segment connections is taken to a common point. Fig. 7.29 shows the connections to a common-anode display (note that, in practice the display would probably also be fitted with a decimal point). The seven fixed resistors in series with the segments are included to limit the current (usually in the region 5 mA to 20 mA per segment).

The problem of illuminating the correct segments of an l.e.d. display is greatly

Fig. 7.29 Typical arrangement for a common-anode seven-segment display.

Fig. 7.31 Circuit for Assignment 7.3.

	a	b	c	d	e	f	g
0							
1							
2							
3							
4							
5							
6							
7							
8							
9							
A		-					
B							
C							
D							
E							
F							

Fig. 7.32 Results table for Assignment 7.3.

Fig. 7.33 Circuit for Assignment 7.3 (decoded display).
simplified by adding a decoder circuit, as shown in Fig. 7.30. This arrangement accepts a 4 -bit binary code as its input (lines A to D) and it contains the necessary logic gate arrangements to ensure that the correct segments (a to g) are illuminated for each input code. You will investigate this arrangement in the next practical assignment.

Practical assignment 7.3

Seven-segment displays

In this practical assignment you will investigate the behaviour of seven-segment displays.

Objectives:

7.3.1 To investigate the behaviour of a seven-segment display.
7.3.2 To investigate the behaviour of a decoded seven-segment display.

Instructions:

1. Connect the circuit shown in Fig. 7.31.
2. Using Fig. 7.28, determine the segments that should be illuminated in order to produce the digits 0 to 9 and letters A to F (see Fig. 7.32).
3. Connect each arrangement in turn and check the display produced. Complete the truth table shown in Fig. 7.32.
4. Connect the circuit shown in Fig. 7.33. For each input combination (lines A to D) shade in the illuminated segments in Fig. 7.34. Hence determine the truth table for the decoded seven-segment display. Check that this conforms to standard binary-coded decimal.

Conclusions:

To what extent have the objectives for this assignment been met? How effective is

A B C D	DISPLAY	A 8 CD	DISPLAY
0000		1000	
0001		1001	
0010		1010	
0011		1011	
0100		1100 11001	
$\begin{aligned} & 0101 \\ & 0110 \end{aligned}$		1101 11110	
0111		1111	

Fig. 7.34 Results for Assignment 7.3 (decoded display).
the seven-segment display at displaying alphanumeric characters? What are the advantages and disadvantages of a display which accepts binary-coded decimal? Can you suggest what the logic inside the decoder might look like? (Hint: consider what logic would be required to operate a single segment, e.g., segment a).

Fig. 7.35 Solution to last month's Bram Teaser.

BRAIN TEASER

This month's challenge for those of you who are using the full Electronics Workbench package is to design a logic arrangement with three inputs that will provide a "majority vote" (i.e., a logic 1 will be produced at the output provided that any two, or more, of the inputs are at logic 1. Build and test this circuit using Electronics Workbench.

Answer to last month's Brain Teaser
Last month's Brain Teaser involved the design of a circuit that produces complementary square wave outputs with an amplitude of 1 V and a frequency of 50 Hz . Fig. 7.35 shows one solution arrived at using the full version of Electronics Workbench.

[^1]

MAC Grounded

Once Sky 's budget PAL satellite service had killed off BSB's higher priced MAC service, the writing was on the wall. MAC was doomed, not just in the UK but the rest of Europe as well. There are still a few MAC services in Scandinavia, France and Germany but the transmission technology is used mainly for the encryption and widescreen distribution it offers.
To all intents and purposes, MAC is dead. So HD-MAC, the high definition upgrade which was due for commerical launch this year, is dead too.
This has turned out to be a blessing in disguise. Europe, and especially the UK, is now free to follow an all-digital route to future TV.

Digital TV

You will be hearing a lot about digital TV over the next few months, so it will help to have some hard facts on record. The situation changes almost daily but this was how it stood in early February.
In September 1993 manufacturers and broadcasters from all across Europe formed the voluntary DVB, Digital Video Broadcast group, to set agreed standards for digital satellite, cable or terrestrial TV. There are now over 150 members from all European countries. DVB gets no official funding.
The DVB drafts its standards and then passes them to ETSI, the European Telecommunications Standards Institute for rubber-stamping. But manufacturers feel free to start designing and building equipment once the DVB group has signed the standard off.
There are three main groups of standards, for cable, satellite and terrestrial TV. All are based on MPEG-2 coding. The differences are in the modulation.
The satellite system uses QPSK (Quadrature Phase Shift Keying) with guideline bit rate variable from $18.4 \mathrm{Mbit} / \mathrm{s}$ to $48.4 \mathrm{Mbit} / \mathrm{s}$, and likely also to cover BPSK (Binary or two phase PSK) with guideline bit rate variable from 9.2Mbits to $24 \cdot 3 \mathrm{Mbit} / \mathrm{s}$. The standard for cable distribution is 64 QAM (Quadrature Amplitude Modulation) with guideline bit rate variable from $9.6 \mathrm{Mbit} / \mathrm{s}$ to $38.4 \mathrm{Mbit} / \mathrm{s}$.
Both these standards were agreed by January 1994 and ratified by ETSI exactly a year later.
The standard for terrestrial broadcasting (with COFDM, Coded Orthogonal Frequency Division Multiplex) should be
agreed by the end of 1995, with ratificaton by end of 1996. COFDM has been chosen because it provides resistance to multipath interference, and allows transmitters across the country to share a single frequency for a single network. Also a COFDM signal has a distribution of energy which makes any interference it causes look like analogue snow noise.

Split Decision

There is however an important split on the way COFDM will be implemented, and this split is between the BBC and NTL, National Transcommunications Ltd, the privatised company which provides transmitters for the UK's commercial TV stations.
Both agree that Europe's 8 MHz PAL channels can carry a net data rate of around $20 \mathrm{Mbit} / \mathrm{s}$, which will convey four or five programmes (depending on content and quality requirements). The BBC plans to split the 8 MHz channel into 8000 discrete carriers. NTL argues that this triples the area of silicon, and relies on 0.35 micron technology.

Also if each transmitter is to use the same transmisison frequency, all transmitters must carry exactly the same data stream, tightly synchronised to the others. This is technically difficult and it also blocks regional programme variations e.g. local news on a national network.
NTL's proposal is for uncorrelated transmission, with the data spread over 2000 carriers. Synchronisation is not necessary, so regional programme variations are possible. As long as the viewer's aerial can provide a 16 dB difference between wanted and unwanted signal, decoding is error-free.

Conditional Access

The DVB is also working on encryption and conditional access. During 1994 the Group agreed on a common scrambling system for MPEG-2 video signals. With this, broadcasters can use their own chosen conditional access control system.

One option is for each programme service (e.g. Sky, the BBC, Eutelsat etc) to require viewers to buy a dedicated reciever. The other option is to agree a common interface for conditional access. This would be built into all receivers and have slots for control modules. A single receiver could then have several slots which could be used to decode a wide range of programmes, broadcast with different conditional access requirements.

The hidden benefit is that if any one encryption system is hacked by pirates, the broadcaster can swap it out by giving all subscribers a new plug in module for a new system.
This is an important consideration. After a few years of assurances that Videocrypt was pirate-proof, Sky had to go to court to stop pirates selling counterfeit smart cards that defeated the system

First Broadcasts

So who will be first to the market with digital TV?

A special situation exists in the UK. Two frequencies in the middle of the UHF band (Channel 35 and 37) remain unused for broadcasting
The UK government has now ordered that one of the two unused frequencies (Channel 35) be reserved for digital TV. The BBC hopes to use this frequency, along with some of the taboo channels between analogue broadcasts, for a new all-digital service to start by late 1997.

France has just launched six new analogue services, and only has one frequency that could perhaps be used for a digital service. Scandinavia has spare frequencies and wants to use them for terrestrial TV. Ostensibly, Germany has no spare frequencies. But there is talk of the military relinquishing its claim on UHF channels 61-68, to create some space for digital TV.

Continental subscriber TV stations Canal + (for France) and Kinnevik (Scandinavia) look likely to be the first to use DVB standard systems for working services on air. Astra will soon launch extra satellites which are designed for digital transmission.
The Eutelsat organisation has already demonstrated that it is possible to split its 36 MHz transmission channels into two halves, one 27 MHz wide and carrying analogue pictures of similar quality to Astra, the other 9 MHz wide and carrying a digital TV data stream running at 8 MBit/second.

The half-channels can either carry the same programme, or two quite different programmes. Eutelsat is also in the process of launching higher powered "Hot Birds" which will bring dish size down to match Astra.
Giuliano Berretta, Eutelsat's Commercial Director, predicts that 1997 will be the year when Digital TV becomes accessible and affordable.

Analog Module: Tuning an RF front end.

"Electronics Workbench is the best simulator to design and verify circuits."

Gondon MacDonald
Production Engineer Teclmician

Electronics Workbench is a highly productive bench where you design and verify circuits in a fraction of the time. Connections are alwavs perfect. Wires route themselves. And the simulated components and test instruments work just like the real thing.

Digital Module: Analyzing a logic circuit.
It's faster than building with actual components because you change connections and component values instantly: And since the simulated components are free, you don't need to replace burnt-out parts or keep an extensive inventory: The result: You save precious time and money. Guaranteed!

The standard for simplicity and power for over six years, Electronics Workbench is the most popular tool of its kind. It has gained worktwide acchaim as the ideal complement to any test bench. Fact: Over 90% of our customers recommend it to their friends and colleagues.

Electronics Workbench

The electronics lab in a computerтм

Call: 4401203233216

Robinson Marshall (Europe) PLC
Nadella Building. Progress Close, Leofric Business Park, Coventry. Warwickshire CV3 2TF FAX: (44) 0203233210
*30-day money-back guarantee.
Shipping charges - UK E4.99. All prices are pius V.A.T.
All trademarks are the property of their respective owners.
**With the purchase of Electronics Workbench. Offer valid until October 15, 1994.

WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD . . .
 YOU NEED THE MODERN ELECTRONICS MANUAL and the ELECTRONICS SERVICE MANUAL

THE MODERN ELECTRONICS MANUAL
 The essential reference work

- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- Regular Supplements
- News of developments
- Sturdy ring-binder
- Projects to build
- Detailed assembly instructions
- Ready-to-transfer PCBs
- Full components checklists
- Extensive data tables
- Detailed supply information
- Professionally written

EVERYTHING YOU NEED TO KNOW ABOUT ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

BASIC PRINCIPLES: Symbols, components and their characteristics, active and passive component circuits, power supplies, acoustics and electroacoustics, the workshop, principles of metrology, measuring instruments, digital electronics, analogue electronics, physics for electronics.

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc.

REPAIRS AND MAINTENANCE: Basic circuit operation for radio, television, audio/hi-fi, telephones, computers.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s, microprocessors.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.
The Manual also covers Safety, Specialist Vocabulary with Abbreviations and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Revised Edition of Basic Work: Now contains over 1,000 pages of information.
Regular Supplements: Approximately 160 -page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p (to include a recent Supplement free).

Our 30 day money bàck guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment - no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge).

Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202 881749. Fax: 01202841692

ELECTRONICS SERVICE MANUAL

everything you need to know to get started in REPAIRING AND SERVICING ELECTRONIC EQUIPMENT:

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid. UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Logic Gates, Computers, Microprocessors, Valves and Manufacturers' Data, etc.
PRACTICAL SKILLS: Learn how to Identify Electronic Components, Avoid Static Hazards, Assemble a Toolkit, Set Up a Workshop, Carry Out Soldering and Wiring, Remove and Replace Components.
TEST EQUIPMENT: How to Choose and Use Test Equipment, and Get the Most out of your Multimeter and Oscilloscope, etc.
SERVICING TECHNIQUES: The regular Supplements will include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.
TECHNICAL NOTES: Commencing with the IBM PC, PC-XT, PC-AT, this section and the regular Supplements will deal with a very wide range of specific types of equipment.
REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements will include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc

The essential work for servicing and repairing.

- Easy-to-use format
- Clear and simple layout
- Regular Supplements
- Sturdy ring binder
- Vital safety precautions
- Troubleshooting techniques
- Fundamental principles
- Active and passive components
- Choosing and using test equipment
- Professionally written
- Servicing techniques
- Reference data

ELECTRONICS SERVICE MANUAL

TOTALLY NEW Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA.
Regular Supplements: Approximately 160 -page Supplements of additional information which are forwarded to you immediately on publication. These are billed separately and can be discontinued at any time - the first Supplement is scheduled for publication in April '95. Presentation: Durable looseleaf system in large A4 format ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$).
Price of the Basic Work: $£ 39.95+£ 5.50$ p\&p.

ORDER BOTH MANUALS TOCETHERAND SAVE OVER \&1 5!

A mass of of well-organised and clearly explained information is brought to you by expert editorial teams whose combined experience ensure the widest coverage Regular Supplements to these unique pubfications, each around 160 pagéa, keep you abreast of the latext technology

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these Manuals are living works - continuously extended with new material. Supplements are sent to you approximately every two to three months. Each Supplement contains around 160 pages - all for only £23.50 +
§2.50 p\&p. You can of course return any Supplement (within ten days) which you feel is superfluous to your needs.

RESPONDING TO

 YOUR NEEDSWe are able to provide you with the most important and popular, up to date, features
in our Supplements. Our unique system is based on readers requests for new information. Through this service you are able to let us know exactly what information you require in your Manuals. You can also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals.

PLEASE send me
\square
\square THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT ELECTRONICS SERVICE MANUAL - Available mid January
I enclose payment of $£ 45.45$ (for one manual) or $£ 75.45$ for both manuals (saving over \| $£ 15$ by ordering both together). I shall also recelve the approprlate Supplements - several times a year. These are billed separately and can be discontinued at any time.
-Should I decide not to keep the Manual/s I will return It/them to you within 30 days for a full refund.

FULL NAME
(PLEASE PRINT]
ADDRESS.
-
-
\qquad

SIGNATURE
POSTCODE

[^2]!

ORDER FORM

Simply complete and return the order form with your payment to the following address:
Wimborne Publishing Ltd, Allen House,
East Borough, Wmborne, Dorset BH21 1PF
We offer a 30 day MONEY BACK GUARANTEE - If you are not happy with the Manual simply return It to us In good condition whthin 30 days for a full refund.
Overseas buyers do have to pary the overseas postage - see below.

[^3]
PCCSOOFMMRE FOR WMOOWS

At last, professional schematic and PCB design software for Microsoft Windows is available at prices that won't break the bank. CADPAK for Windows offers entry level schematic and PCB drafting whilst PROPAK for Windows adds netlist integration, multi-sheet schematics, highly effective autorouting, power plane generation and much more.

LOW PRICES!

CADPAK for Windows	$£ 149$
CADPAK for DOS	$£ 79$
PROPAK for Windows	$£ 495$
PROPAK for DOS	$£ 395$

ARES for Windows provides all the functionality you need to create top quality PCB layouts under Microsoft's GUI. Combining the best of our DOS based PCB layout technology with the best of Windows, this package is our most powerful and easy to use PCB design tool to date.

- True 32 bit application under Windows 3.1.
- Advanced route editing allows modification or deletion of any section of a track.
- Unlimited number of named pad/track styles.
- Comprehensive package library for both through hole and SMT parts.
- Full imperial \& metric support including all dialogue forms.
- Gerber, Excellon and DXF outputs as well as output via Windows drivers. Also includes Gender viewer.
- Multi-strategy autorouter gives high completion rates; power plane generator creates ground planes with ease.

Prices exclude postage ($£ 5$ for UK) and VAT. All manufacturers trademarks acknowledged.
Call us today on 01756753440 or else fax 01756752857 for a demo pack - please state DOS or Windows as these products are available for both platforms.

63-55 Maln St, Grassington. N . Yorks, ED23 544

We can supply back issues of EPE by post, most issues from the past five years are available. An index for each year is also available - see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photostat of any one article (or one part of a series) can be purchased for the same price.

DID YOU MISS THESE?

NOV. 98

PROJECTS • Portable Miniguard (PIR alarm) - Tracktronics Projects (Thyristor Latched L.E.D. Display, Night Light, Twin Input Status Indicator) - 20 Metre Direct Conversion Receiver - Inside the Electric Guitar - Multi Purpose Audio System, Part 2.
FEATURES - Velleman View - Electronics Principles, Special Software Supplement.

PROJECTS - Three-Way Christmas Tree Lights Flasher - Auto Alarm - 250W/600W Inverter and Uninterruptable Power Supply, Part 1 - Multi-Purpose Audio System, Part 3 Waterproof Delay Switch.
FEATURES - Safety First, Part 1 - Index for Volume 22.

DAN. 94

PROJECTS • Autolight (automatic nightlight) - Timer and NiCad Capacity Checker - $250 \mathrm{~W} / 600 \mathrm{~W}$ Inverter and Uninterruptable Power Supply, Part 2 -Multi-Purpose Audio System, Part 4 - Pond Heater Thermostat.
FEATURES - Safety First, Part 2 - Calculation Corner, Part 1 - Electronics Testing and Fault Diagnosis, Course Review

HEB. 84

PROJECTS - Whistle Controlled Light Switch - Reviving the Valve Sound (rebuilding the Quad 11 power amp) Introduction to Microcontrollers - Timeout Battery To Mains Inverter and Uninterruptable Power Supply, Part 3 - Multi-Purpose Audio System, Part 5.
FEATURES - Calculation Corner, Part 2 Safety First, Part 3 - European International Audio \& Video Fair.

WAHCHY

PROJECTS • Smart-Key Immobiliser Audio/R.F. Monitor • CCD TV Camera, Part 1 - Visual Doorbell - Three-Phase Generator. FEATURES - Safety First, Part 4 - Calculation Corner, Part 3 - Free Wall Chart - Electronics Formulae 1

APRIL 94

PROJECTS - MOSFET Variable Bench Power Supply EPE Soundac PC sound output board - CCD TV Camera, Part 2/Frame Grab - Impulse Clock Master Unit - Telephone Ring Detector.
FEATURES - Best of British, Part 1 Calculation Corner, Part 4 - Electronics Workbench Review - Free Wall Chart Electronics Formulae 2.

WIAY G\%
 PROJECTS - Simple TENS Unit

 (transcutaneous pain relief) Capacitance/Inductance Meter - L.E.D. Matrix Message Display, Part 1 - Stereo Noise Gate Dual Stepping Motor Driver for PCs. FEATURES - Calculation Corner, Part 5 Best of British, Part 2.

WUIVETM

PROJECTS - Microcontroller P.I. Treasure Hunter - Digital Water Meter - Microprocessor Smart Switch - Advanced TENS Unit (transcutaneous pain relief) - L.E.D. Matrix Message Display, Part 2.
FEATURES - Best of British, Part 3 - Calculation Corner, Part 6.

UULYMg

PROJECTS - Voxbox Voice Recording Board - Simple NiCad Charger - Watering Wizard (automatic garden watering) - Pocket Print Timer - Stereo HiFi Controller, Part 1.
FEATURES - Best of British, Part 4 - Calculation Corner, Part 7.

PROJECTS - Experimental Noise Cancelling Unit - Dancing Fountains, Part 1 - ChargedUp (PC battery tip) - 6802 Development Board - TV Camera Update - Stereo Hifi Controller, Part 2.
FEATURES - Calculation Corner, Part 8 Best of British, Part 5 - I'll Be Seeing You (multimedia communications)

SEPI.

PROJECTS - Protector Plus Car Alarm Greenhouse Watering System - Experimental Seismograph, Part 1 - Three-Channel Lamp Controller • Dancing Fountains, Part 2.
FEATURES - Calculation Corner, Part 9 The Invisible Force (magnetic force)

OCL. 94

PROJECTS Digilogue Clock Visual/Audio Guitar Tuner - Hobby Power Supply - Audio Auxiplexer - Experimental Seismograph, Part 2.
FEATURES - Electronics from the Ground Up, Part 1 with Free PC Software - Calculation Corner, Part 10.

MOV. G4

PROJECTS - $1000 \mathrm{~V} / 500 \mathrm{~V}$ Insulation Tester - Video Modules, Part 1 (Simple Fader, Improved Fader, Video Enhancer) - Active Guitar Tone Control - Power Controller - TV Off-er. FEATURES - Electronics from the Ground Up, Part $2 \bullet$ Consumer Electronics Show.

DEC. 9 g

PROJECTS - Spacewriter Wand - EPE Fruit Machine - Universal Digital Code Lock • Video Modules, Part 2 (Horizontal Wiper, Vertical Wiper, Audio Mixer) - Rodent Repeller.
FEATURES - Electronics from the Ground Up, Part 3 - Embedded Controllers - Index for Volume 23.

ILIN. TE

PROJECTS - Magnetic Field Detector Moving Display Metronome - Model Railway Track Cleaner - Beating the Christmas Lights EPE Fruit Machine, Part $2 \bullet$ Video Modules, Part 3 (Dynamic Noise Limiter, System Mains Power Supply)
FEATURES - Electronics from the Ground Up, Part 4 - Electromagnetic Compatibility Checking Transistors.

- FB . 85

PROJECTS - 12 V 35W PA Amplifier Foot-Operated Drill Controller - The Ultimate Screen Saver - MIDI Pedal Board - Model Railway Signals.
FEATURES - Electronics from the Ground Up, Part 5 - Transformerless Power Supplies Quickroute 3.0 Review.

PROJECTS • Multi-Purpose Thermostat Name of the Game-1 Counterspell - Sound Activated Switch - Audio Amplifier - Light Beam Communicator.
FEATURES - Electronics from the Ground Up, Part 6 Understanding PIC Microcontrollers - Visio Graphics Software Review. FREE Multi-Project PCB with this issue.

BACK ISSUES ONLY £2.50 each inc. UK p\&p.

Overseas prices $£ 3.10$ each surface mail, $£ 4.10$ each airmail.
We can also supply the following issues from earlier years: 1989 (except March, June and Nov), 1990 (except March), 1991 (except Aug. and Sept.), 1992 (except April and Dec.), 1993 (except Jan., Feb. and March) Please note we are not able to supply copies of Practical Electronics prior to the merger of the two magazines in November 1992. Where we do not have an issue a photostat of any one article or one part of a series can be provided at the same price.

LIGHT ACTIVATED SWITCH

ROBERT PENFOLD

A light-sensitive switch that will find many uses in and around the home. An ideal project for the Multi-Project PCB.

THIs "light activated" circuit will automatically switch on a piece of electrical equipment when the detected light intensity falls below a preset threshold level. Alternatively, and by simply using the relay contacts in a different manner, it will switch on the controlled equipment when the detected light intensity goes above the preset threshold level.
Devices of this type are mainly used in automatic lighting applications. In particular, they are often used as a burglar deterrent.
By automatically operating a light the unit will give the appearance that a house, boat, or caravan is occupied, which is sufficient to deter most would-be intruders. No doubt there are other possible uses for an automatic switch of this type.

CIRCUIT DPERATION

The complete circuit diagram for the Light Activated Switch appears in Fig. 1. Operational amplifier ICl is used in a simple trigger circuit.
Resistors R2 and R3 provide a reference potential of half the supply voltage to the non-inverting input (+), pin 3 of ICl. The inverting input (-), pin 2, is fed from a potential divider that has preset VR1 and resistor R1 as the upper arm, and R6, a light dependent resistor (l.d.r.) or photo conductive cell, as the lower arm.
The light sensor, R6, is an ORP12 cadmium sulphide photo-resistor. Its resistance is very high in total darkness, and the minimum dark resistance for the ORP12 is actually one megohm.
Higher light intensity produces reduced resistance, and in very bright conditions the ORP12 can exhibit a resistance of under 100 ohms. In an averagely lit room its resistance is typically a few kilohms.
With the I.d.r. in fairly bright conditions, the voltage fed to ICl 's inverting input is lower than the reference voltage at the non-inverting input. This results in the output of ICI going high, which biases transistor TRI into conduction and switches on the relay.

The voltage fed to ICl 's inverting input is relatively high if R6 is subjected to a very low light level. In fact it will be higher than the reference voltage at the non-inverting input. This results in ICl^{\prime} s output going low, which switches off transistor TRI and the relay RLA.
The relay is therefore switched on if the detected light level is above a certain threshold level. This threshold level is controlled using a preset potentiometer VRI. The higher the resistance of VR1/R1. the lower the threshold level.
With the specified values for VR1 and R1 the unit covers a fairly low range of light levels. The range can be shifted higher by reducing the values of VR1 and R1 to 22 kilohms and 470 ohms respectively.

POSITIVE ACTION

Resistor R4 provides positive feedback over ICI so that it triggers reliably from one state to the other, and does not tend to hover in an intermediate state when the light level is near the threshold level. It also introduces a small amount of hysteresis, which is a slight reluctance to change back again once the output of ICI has switched from one state to the other.

The hysteresis occurs because resistor R4 tends to pull the reference voltage slightly below half the supply voltage when ICl's output is low, because it is effectively shunted across resistor R3. When IC1's output is high the reference voltage is pulled slightly above half the supply voltage, because R4 is then effectively in parallel with R2. The threshold level at which the relay switches on is slightly higher than that at which it switches off.
The purpose of the hysteresis is to prevent erratic operation when the light level nears the changeover point. Without the hysteresis it is virtually certain that the relay would switch on and off at a high rate when the light intensity was anywhere near the threshold level.

Even with the small amount of hysteresis provided by R4 the relay should switch "cleanly", but if necessary the amount of hysteresis can be increased by using a slightly lower value for R4. A protection diode D1 suppresses the high reverse voltage that would otherwise be produced across the relay coil each time it switched off.

PロMEF NEEDS

The current consumption of the circuit is only about 2 mA when the relay is switched off, but it is approximately 30 mA higher than this when the relay is switched on. The unit can be powered from batteries, such as eight HP7 size cells in a holder, but this is likely to prove rather expensive.

Fig. 1. Circuit diagram for the Light Activated Switch.

If the unit is used in a boat or motor vehicle which has a 12 V battery supply, there should be no difficulty in powering it from this supply. The additional current consumption of the Light Activated Switch is likely to be insignificant in comparison to the very high capacity of a boat or vehicle battery. It is advisable to fit a 100 mA fuse in series with the $\mathrm{On} / \mathrm{Off}$ switch (S 1) if the circuit is powered from a very low impedance source such as a car or boat battery.

For use in the home a 12 V battery eliminator having a current rating of 50 mA or more represents an inexpensive means of powering the circuit in the medium and long terms. The eliminator does not need to be a type having a well regulated or low ripple output.

CONSTRUCTION

If you have not already used last month's Free p.c.b., then this simple Light Activated Switch is another useful project for the specially designed Multi-Project PCB. If you require extra p.c.b.s these are available from the $E P E P C B$ Service, code 932

The printed circuit board component layout, together with details of the hard wiring and full size copper foil master is shown in Fig. 2. ICl is a CMOS device, and the standard anti-static handling precautions should therefore be observed when dealing with this component. Fit ICl in a holder, but do not plug it in place until the unit is complete in all other respects.

Do not overlook the link-wire just to the left of diode D1. This can be made from a piece of wire trimmed from a resistor leadout wire. Be careful to fit Dl the right way round, since both transistor TR1 and

The completed circuit board with the l.d.r. (light sensitive resistor) mounted directly on the p.c.b.
diode D1 itself could be destroyed if a mistake is made here.

LIGHT SENSOR

In Fig. 2 and the photographs the light dependent resistor R6 is shown as being mounted on the printed circuit board. In practice it will often be necessary to mount this component off-board.

If the I.d.r. is fitted on the main unit, it must be mounted on the outside of the case, or a "window" for it to "look" through must be made at the appropriate position in the front panel of the case. The "window" can be hole about 12 mm in diameter with a piece of clear plastic material glued in place behind the hole.

EEL5900

Fig. 2. Light Activated Switch component layout, interwiring and full size p.c.b. copper foil master.

Note: None of the projects in the Multi-Project PCB series use ALL the copper pads on the board, in most cases more than 50 per cent of the holes are left vacant. This makes it essential to double-check the positioning of each component, before soldering in place.

It is probably easier and more effective to mount the l.d.r. on the front panel. Drill a couple of small holes (about 2.5 mm in dia.) and spaced 9 mm apart to take the leadout wires, and then glue the photocell in place using any good quality general purpose adhesive. If the chosen case has a metal front panel, be careful not to get either leadout wire in contact with the panel.
In some applications it might be necessary to have the l.d.r. R6 located away from the main unit. Bear in mind that the unit might not function properly if it is used to control a light, and light from that source is allowed to shine directly on the surface of the I.d.r. Depending on the method of control used, the system

G017P0/1515	
Resistors	See SH
R3 ${ }^{\text {a }}$	10 k (3 off)
R4	${ }_{3 k 3}^{470 k}$ Page
R5 $\mathrm{R}^{\text {R }}$	${ }_{\text {ORP12 }}{ }_{\text {3k3 }}$ light dependent
All 0.25 W	resistor 5 carbon film, except R6
Potentiometer	
VR1	470k min. carbon preset, horizontal
Capacitor	
	100μ radial elect. 16 V
Semiconductors	
	1 N4148 signal diode
TR1	BC549 npn silicon
IC1	CA3130E CMOS op.amp
Miscellaneous	
S1	On/Off toggle switch
RLA	12 V 300 ohm coil (or more) relay, contacts as required
B1	12 V battery pack (8)
	HP7 in hoider)
Printed circuit board available from the EPE PCB Service, code 932 (or Free	
with last month's issue); case, size and type to choice; 8 -pin d.i.I. socket; PP3	
type connector; multistrand connecting wire; solder, etc.	
Approx cost guidance only	

could oscillate, with the light being rapidly switched on and off, or the system could simply latch-up with the light switched on.
The l.d.r. can be connected to the unit via a cable several metres long if necessary, but the cable should be a screened type. An inexpensive screened lead for audio use is perfectly adequate. The outer braiding must carry the connection to the 0 V supply rail, with the inner conductor carrying the connection to resistor RI and IC1 pin 2.

RELAY

The circuit should work properly using any relay which has a 12 V coil and a coil resistance of about 300 ohms or more. However, make sure that the relay has adequate contact ratings for your particular application. The connections shown in Fig. 2 are correct for a Maplin "10A mains relay". The retailers" literature should provide connection details for other relays.
The specified relay, in common with virtually all modern relays, is only intended for printed circuit mounting. Unfortunately, there is no room for the relay on the circuit board. Probably the easiest way of mounting the relay is to glue it in

The completed circuit board showing connections to the relay coil. Connection to the relay contacts will depend on application.
place, "up-side-down". on the base panel of the case. Use a good quality adhesive such as an epoxy type.

[EEx5:970]

Fig. 3. Contact connection details when using the specified 10 A relay. (a) to switch the lamp ON when the light threshold level is exceeded, and (b) to switch if OFF when the threshold level is exceeded.

The way in which the relay contacts are wired to the controlled equipment depends on whether this equipment must be switched on or off when the light threshold level is exceeded. Fig. 3 provides connection details for both methods of control when using the specified 10 A relay.

It is assumed here that the relay will be used to control a 12 V d.c. lamp. The relay can control mains powered equipment, but only those who have the requisite experience and expertise should use it in this way. Projects that connect to the dangerous mains supply are definitely NOT suitable for beginners.

IN USE

Preset control VR1 must be adjusted to give a suitable light threshold level. The easiest way of doing this is to first subject the I.d.r. to the light level at which the automatic switch on/off is required. Then adjust VRI to the point where a slight to and fro adjustment results in the relay switching on and off.
If the required threshold brightness can not be reached, even with VR1 at minimum resistance (set fully clockwise), the values of VR1 and R1 must be reduced, as explained previously.

RING BINDERS FOR EPE

This ring binder uses a special system to allow the issues to be easily removed and reinserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place (see photo).
The binders are finished in hard wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.
The price is $£ 5.95$ plus $£ 3.50$ post and packing. If you order more than one binder add $£ 1$ postage for each binder after the initial $£ 3.50$ postage charge, (for overseas readers the postage is $£ 6.00$ each to everywhere except Australia and Papua New Guinea which costs $£ 10.50$ each).
Send your payment in $£$'s sterling cheque or PO (Overseas readers send $£$ sterling bank draft, or cheque drawn on a UK bank or pay by credit card), to Everyday with Practical Electronics, Allen House, East Borough, Wimborne, Dorset BH21 1PF. Tel: 01202881749 . Fax: 01202841692 (We cannot reply to overseas queries or confirm orders by fax due to the high costs).
We also accept credit card payments. Mastercard (Access) or Visa (minimum credit card order £5). Send your card number and card expiry date plus cardholders address (if different to the delivery address).

Protects your valuable issues keeps them together and tidy.

Electronic siren kit with an impresstive 5 watt power output. Ideal for car/blke alarms etc. 6 12 vic , max current 1 A , tone frequency 1.2 khz 87.05 KH De 1003.

130v Power supply, variable stabilized power suppty for labor atory use. Sborteircult protected cutable for profe wional or amineur applicatlons 24v 3A transformer is almo needed to complete the $\mathbf{k h}$. $\mathbf{1 6 . 4 5 \mathrm { Kh } 1 0 0 7 .}$

Powerful 1 wat FM tranmmer supplled complete with plezoelectric microphone. $8-30 \mathrm{vdc}$. At $25-30 \mathrm{v}$ you will ket pearly 2 watts!, $\{14.10 \mathrm{KH}$ no 1009.

FM/AM Scancer well not qulte gou heve to turn M. he knob yourse but you whor thingson thas all (M and FM Bult in 5 wat amplifler. 817.62 KH Do 101 J .

Mosquito repeller, modern way to keep mildget at bay! Runs for about a month on a 1.5 v bistery. c8.22 Klt me 1015.

3 channel wirctess sound to light system, malns operated separ fe senstitity solust ment for each channel, 1,200 watt power handling. Micropbone included. 516.45 KHt no 1014.

Motorbike/cy de trembler alarm, sdjuif able senidthity, prest allarm time nuto reset. Could be connected to bikes horn etc E 14.10 Kr no 1011

a. 5 mimite timer, adjurt able from 0 to 5 ming will awhth ep to 2 A malns Perfect for siarms, photographiclaboratoriesetc. 12 vdc .58 .22 Kt no 1020 .

Watt IM transmitter, mall but powerful frant mitter, 3 RF nages microphone and an audio preamp include in kit. $\mathbf{\varepsilon 2 3 . 5 0 \mathrm { KIt } \text { no } 1 0 2 8 . ~}$

25 watf FM tranamiter 4 RF sages, preamp required (our klt 1068 Is suitable). Due to the complerity of the tranamitter it is supplied in bult up form only, 229.37 KH ne 1031

Strobe llght, adjustable frequency from 1 - to 60 H (a lot faster than coaventional wrobet) malns op erated. 818.80 KHt no 1037.

Ulirasonic radar ideal as a movement detector with arange of about 10 metres mutomate your cat nap! 12v operation soldeal for care, caravmes etc E16.45 KHt 1049 .

Liquid level detector useful for detecting fuld levels in tanks, n̄stponds, bathsor as a raln or leak alarm. Will rwitch 2 A matns $\mathbf{5 5 . 8 7 \mathrm { Kh }} \mathbf{~ m o ~} 1081$.

Comblnation lock 9 key, eaully programmable will switch 2A malns. Complete with keypad. 9v operation. $\mathbf{E 1 1 . 7 5 \mathrm { Kt } 1 1 1 4 .}$

Phone hug detector, this device will warn yoet if sometbody is eavesdroppling on your phone line 67.05 Kt no 1130.

Robot voice, interesting drcutt that dilatorts your volce! adjustable maswer the phone with a different volce! 12 vdc \$10.57 Kth no 1131.

Telephone bug, mall bug powered by the tel ephone line, tirist trasuntiting as soon an the handset is picked up! 59.40 Kh no 1135.

function senerstor, produces inumoldal, ssw tooth and square wives sdjustable from 20 hz - 20 Khs , separate level controls for each shape. WIII produce all 3 together, 2 vvec $\$ 17.62 \mathrm{Kt}$ do 1008.

Channe ught chaser, 800 wilts per channel speed and direction controls suppled with 12 le das and mains triacs, so you can use mains light bulbs ff you want. 9-15vde $£ 19.97 \mathrm{KH}$ mo 1026.

2v fourescent. A useful kdt that will enable youto light 4' flowrescent tubes from your car batterg! Gou will also need a9v 2A tranformer, not supplied) $\mathbf{5 9 . 4 0 \mathrm { Kt }} \mathbf{n 0} 1069$.

VOX wwtich sound activated switch ide al for turnlng tape recorders on and off when mounds are heard. Makes the tape last a lot longer! adjust able senstitvity, built In delay. $\mathbf{5 9 . 4 0 \mathrm { Ktt } 1 0 7 3 .}$

Incar sound to light, Put some atmo aphere in your car wth thls minil 3 channel sound to light. Each channel has 6 ledt. $£ 11.75 \mathrm{KH}$ no 1086.

7 watt HI F1 power amplifier usefus, powerful Idenl for intercomms, audio sy stems, car use etc. $12-18 \mathrm{vdc} \$ 00 \mathrm{~mA} .58 .22 \mathrm{Kh} \mathrm{No} 1025$.

phode call relas, useful device that operates arelay When ever the 'phone ringg could be used to operate more beflis or stgnalling lights etc. Wul swtech malns at 2A. 511.75 KH no 1122 .

Lead add charger, two automalc charging rates, visual Indication of battery state, Ideal for alarm sy zems, emergency lighting etc. 100 mA 12 vdc . 614.10 KH no 1095.

Car alarm system works on voltage drop andor vibration, entry and extt delzy: plus adjustablo arman ention Good for caren caravansetc 514.10 Kitno 1019

Portable alarm sy sem, bseed on a mercury switi. be alarm continues to sound untll the untt is dsabled by the owner. Buzzer inctuded $\mathbf{\$ 1 2 . 9 2}$ KIt $\quad 1150$.

Preamp mixer, 3 inptif mono mirer, eparate bas and treble controls plus independeris level conrole 18vde thput sens $150 \mathrm{mv}, 100 \mathrm{~mA} .817 .62$ KIt mo 1052.

MInl metal detector, sultable for locating plpes in walls etc, range $15-20 \mathrm{~cm}$, complete wth care. 9v operation. $\mathbf{5 9 . 4 0} \mathrm{Kit}$ no 1022.

800 watt engle channel sound to light ktt, malna operated, add rhythm to your party for only $\mathbf{5 9 . 4 0}$ KIt mo 1006.

Sound efiects gener ator, product sounds rangio from bird chlps to sirens complete with epeaker add sound effects to your projects for Just $\$ 10.57$ KH no 1045.

Gullar preamp with tone controls, small enough ift Inside any guttar, based on TL082 IC, 9-12vdc 50 mA .29 .40 Klt no 1091.

15 watt FM transmitter, 4 atage high power preamp requlred $12-18 \mathrm{vdc}$ C C n use ether ground plane, open dipole, or Yagl Supplled in bull form only an 881.07 Kt 1021.

Telephone amplifier, Very senstive amplifier whach uses a 'phone plcloup coll (supplied) will len you foliow conversullion whout holding the phone. 12.92 Kh no 1059.
TOP 10 BEST SELLING KITS CORNER 1. Varlable speed controllif for 12 V DC motors up to 30A! (Jou may meed a be ntink for 30A) E19.97

 peed to bulld a workdng counter $\mathbf{E 2 2 . 3 2}$ 4. Solar emergy kit, contains a solar panel, motor buzzer and cable for expertment: 85.8 . 5. Electronic \%cupuacture kith may belp with migrane, poor etrculation, backache etc. 28.22. 6. Electifying apparacus kil, products a weak ajutable high tenston of $80-300 \mathrm{v}$ from a 9 v ba ery, Ideal for catchlng worms etc! £9.40. 7. Ad apter bug KJ , contialns every thing you need o buld a profersional bug bultit inside a standar 3A mains adapter! the bug is maint powered so It operates all the time the adapter t plugged io Price is 116.45 for the complece kit induding dapter. Hand tools and flue reguired. 8. Nicad charger kit automantic charger for celis from 1.2v to $15 \mathrm{v}, 7$ setiling: 50600 mA , tranaformer required $18-20 \mathrm{v} 600 \mathrm{~mA}$. 19.40.
810. inverterkis, preduce 2tivaciromal2vde upply, two ver zons are avallable a 15 w one at [14.10, and an 80 w ver slon at $£ 23.50$.

EXPRESS

how to order
Remember to add $£ 1.50$ p\&p. By phone with a credit card. By post with either a cheque, postal order or credit card details. By fax with credit cand details. EXPRESS COMPONENTS, PO BOX 517 HOVE SUSSEX BN3
5QZ. DEPT EE
TEL 01273771156
FAX 01273206875
Overseas orders please add $£ 3.50$ post and packing.

SWITCH ONOFF TIMER

ROBERT PENFOLD

A low-cost, one to five minute timer [extendable] that can be wired to switch On or switch Dff equipment. A project for last month's Free Multi-Project PCB.

THIS simple timer circuit can be used to automatically switch ON or switch OFF a piece of electronic equipment after a preset delay. For example, it could be used to provide a transistor radio with a "sleep" facility. In other words, it could be used to automatically switch off the radio after a delay of a few minutes.
Using the specified component values the timer provides a delay that is adjustable from just under one minute to about five minutes. As explained later, it is very easy to modify the circuit to cover different time ranges, but times of much more than about 10 minutes are not really practical with a simple $C R$ timer circuit such as this.

CIFCUIT OPERATION

The full circuit diagram for the Switch On/Off Timer is shown in Fig. 1. ICl is an operational amplifier (op.amp) which is used in a basic trigger circuit. Resistors R3 and R4 provide a reference potential to ICl's non-inverting input that is roughly equal to two-thirds of the supply voltage.

The CR timing circuit (VRI, RI, and C2) connects to the inverting input, pin 2 of IC1. At switch-on capacitor C2 starts to charge via preset VRI and resistor R1, and the voltage fed to the inverting input of ICI steadily increases. The charge on C2 will eventually rise to a potential that is greater than the reference level at the non-inverting input of ICI.
The output of IC1 is high while the inverting input is at a lower voltage than the non-inverting input. Transistor TR1 is a simple common emitter switch that drives the relay coil. With the output of ICI high, TRI is switched on, and the relay is therefore switched on or energised as well.
When the voltage at the inverting input starts to go above the reference potential, the output of ICl swings lower in voltage. A small amount of positive feedback is applied to the circuit by resistor R5. As a result of this, once ICl's output starts to go lower in voltage, it rapidly triggers to the low state. Transistor TRI and the relay are then switched off.

The time taken for the charge on C2 to reach the reference level is dependent on the values of R1, VR1, and C2. The delay time is approximately equal to $1 \cdot 1 C R$ seconds, where C is the value of capacitor C2 in microfarads, and R is the series resistance of RI and VRI in megohms.

This gives a theoretical timing range of 51.7 to 294.69 seconds. In practice the tolerances of the components must be taken into account, and these can shift the timing range upwards or downwards by up to about 10 per cent. Also, leakage currents in the circuit are likely to extend the delay times by at least a few per cent.

CHANGING TIMES

This makes it impossible to accurately set a given delay time simply by using the mathematically correct timing component values. Instead, preset VR1 must be trimmed to give the required delay time using trial and error.
For shorter delay times simply make capacitor C2 lower in value. For example, a 30 second delay can be obtained using a value of $10 \mu \mathrm{~F}$, which gives a theoretical timing range of 11 to 62.7 seconds.
Longer delays can be obtained by using a higher value for C2 and (or) R1. In practice there is only limited scope for producing longer times due to the leakage through capacitor C2.

Fig. 1. Circuit diagram for the Switch On/Off Timer. Capacitor C2 must be a tantalum type.

Layout of components on the printed circuit board.

As the circuit stands, the current flow through VRI and RI is extremely low, and a small amount of leakage in capacitor C2 would be sufficient to prevent the charge on C 2 from reaching the reference voltage. To avoid this it is essential to use a high quality component for C 2 , but its high value precludes the use of a non-polarised type.

A tantalum bead capacitor will provide good performance, and a superior grade electrolytic might also be suitable. With higher values for C 2 it becomes increasingly difficult to obtain satisfactory results. A higher value for resistor R1 reduces the charge current, and also makes it difficult to obtain worthwhile performance. Realistic maximum values for C 2 and Rl are $100 \mu \mathrm{~F}$ and 10 M respectively.
If a variable delay time is needed it is simply necessary to replace preset VRI with an ordinary rotary potentiometer. This can be fitted with a calibrated scale but the only way of finding the calibration points is by trial and error.

Switch Sla discharges capacitor C2 when the timer is switched off, so that it is almost instantly ready to start a new timing run again. Resistor R2 provides current limiting when Sla closes.

Without this current limiting there would be a lot of contact sparking, and Sl would soon fail. DI is a protection diode that suppresses the high reverse voltage spike which would otherwise be generated across the relay coil each time it was switched off.

The low power CMOS op.amp, ICl , has an extremely high input resistance which ensures that the input current drawn from the timing network is far too low to have

GOMPOMJTK	
	See TALK Page
$\begin{aligned} & \text { Potentiometer } \\ & \text { VR1 } \begin{array}{r} 4 \mathrm{M} 7 \mathrm{~m} \\ \text { horiz } \end{array} \end{aligned}$	bon preset,
CapacitorsC1C2C2 radial elect. 16 V47 tantalum bead, 16 V	
SemiconductorsD1 TR1 N4148 signal diode BCr49 TR Hanson siliconIC17611 low power op.amp	
Miscellaneous S1 d. d.d.t. min toggle switch relay, contacis as required (see text) B1 12 volt battery pack ($8 x$ HP7 size cills in holder) Printed circuit board available from with last month's issue); case, size to suit: 8 -pin di.i.t socket; PP3 type bat- tery serder, etc.	
Approx cost gutidance only	
	excl Batts

a significant effect on the charge rate The current consumption of the circuit is around 30 mA to 40 mA initially, but this reduces to less than 50 microamps when the relay switches off.

This low current consumption is important, since in some applications the circuit will be left switched on for many hours after the relay has switched off. The HP7 battery pack will not run down significantly even if a current drain of 50 microamps is maintained for many days.

CONSTRUCTION

Using the Free printed circuit board (p.c.b.) from last month's issue should
make construction of the Switch On/Off Timer reasonably trouble free. If you missed last month's issue you can obtain extra p.c.b.s from the EPE PCB Service, code 932, for the sum of $£ 3$. The component overlay and copper foil master for the printed circuit board plus details of the hard wiring are provided in Fig. 2.
As IC 1 is a CMOS device, the normal anti-static handling precautions should be taken when dealing with this component. Use a holder for this device, and do not fit it into place until all other connections have been completed. Do not handle ICI any more than is really necessary, and try not to touch the pins.

Wiring from the completed p.c.b. to the relay, battery connector and toggle switch.

Be very careful to get diode DI the right way round as there could be dire consequences for both DI and transistor TRI if you get this wrong. Do not overlook the link-wire just to the left of DI.

The polarity of capacitor C 2 should be marked by one or more " + " signs on the body of the component, but the markings are likely to be very small, and you may need the aid of a magnifier. The connections to the battery pack are made via an ordinary PP3 type battery clip.

RELAY

The relay can be any type which has a 12 V coil with a resistance of about 300 ohms or more, plus suitable contacts for your application. Both the Maplin "10A Mains Relay" and the Electrovalue "Miniature SPDT 3A" types were found to work well. The connections shown in Fig. 2 are correct for the "miniature" 3 A type.
There is no room for the relay on the circuit board, and it must therefore be mounted off-board on the case. Most modern relays are only intended for printed circuit mounting, and have no provision for chassis mounting. However, they can be glued in place using a good quality general purpose adhesive such as an epoxy type. Alternatively, it might be possible to fabricate a suitable clamp from a small piece of aluminium.

ON OR DFF

Although the relay switches off at the end of the timing period, the timer can automatically switch the controlled equipment on or off, depending on the way in which the relay's contacts are used. Fig. 3 shows the two methods of connection.

Fig. 3. Two methods of wiring the relay to the existing control equipment on/off switch.

It is assumed here that the relay is the miniature type, and that the unit is to be used with the relay contacts connected in parallel with the existing on/off switch. With the on/off switch set to the "off" position, the timer will then control the main item of equipment.

The exact way in which the unit is used must be varied to suit the prevailing circumstances. It might be necessary to add an s.p.s.t. switch in one lead from the relay to the existing on/off switch, so that the timer does not hold the main equipment switched on at inappropriate times.

This is most likely to be necessary with the switch-on mode, where the main equipment will otherwise be held switched on when the timer is switched off. Alternatively, simply wiring the relay in series with the on/off switch rather than in parallel with it might give the desired result.

The unit can be used to control mains powered equipment, but it should only be used in this way by those who have the necessary expertise and experience.

Beginners should only use the unit to control BATTERY POWERED equipment, and should NOT build any projects that involve connections to the dangerous mains supply.

TESTING

It is advisable to test the unit with preset VRI initially set for minimum resistance (set fully clockwise). This should give a delay time of roughly one minute. Provided all is well, it is then a matter of trying higher values, and using trial and error to obtain the required delay time.

If the times obtained are much higher than expected, or the relay simply fails to switch off at all, it is likely that the problem is due to leakage through capacitor C2. First check to make quite sure that it is connected with the correct polarity. If it is connected properly, try replacing it with another capacitor.

It is worth emphasising again that the Timer can only work reliably if C 2 is a high quality capacitor.

Constructional Project

 CONTINUITY TESTER
An invaluable tester for your workshop. Another simple project for last month's Multi-Project PCB.

ACONTINuITY tester is one of those invaluable items of test equipment that should be present in every electronic project builder's workshop. They are useful for such things as checking fuses, checking for broken leads and printed circuit tracks, and searching for short circuits on printed circuit boards caused by solder "splashes".
In the past quite basic continuity testers were often used, such as a torch bulb in series with a 6 V battery. If there was continuity across the test prods the circuit was completed, and the light bulb lit up. If there was not, the lack of continuity was indicated by the bulb remaining switched off.

This type of tester in not really suitable for use with modern circuits containing delicate semiconductors. The current flow through a typical torch bulb is a few hundred milliamps, which is sufficient to "zap" many integrated circuits, plus some discrete transistors and diodes! For completely safe use with modern circuits the test current should be no more than a few milliamps.

GETTING A BUZZ

A drawback of using a low test current is that it tends to result in continuity being indicated even if there is actually a resistance of a hundred ohms or more across
the test probes. This can result in a lot of misleading results.
Many continuity testers, even some high current types, are also "fooled" by forward biased semiconductor junctions within the test circuit. These can be provided by diodes, or by diode junctions within transistors and integrated circuits.
Most modern circuits are liberally scattered with these hidden diode junctions. They are a frequent source of misleading results, with short circuits being indicated where none exist.
The Continuity Tester featured here provides an audible "buzz" when electrical continuity is present across the test prods. An audible indication is generally preferred to a visual type, as it avoids the need to keep looking away from the test prods (which tend to slip off the test points each time you look away).

The maximum voltage 10 be found across the test probes is about 6 V . and the short circuit current is approximately 0.3 mA . This ensures that the unit can be used safely with circuits that contain delicate semiconductors.

Reliable results are obtained because continuity is only indicated if the resistance across the test prods is no more than a few ohms. Also, the voltage drop across a forward biased silicon junction is sufficient to prevent the unit from being "fooled" into indicating proper continuity.
It will not indicate continuity due to germanium junctions or Schottky diodes either. This gives much greater reliability in use, but it does bring the minor drawback that the unit cannot be used to test any type of diode.

CIRCUIT DESCRIPTION

The complete circuit diagram for the Continuity Tester appears in Fig. 1. Operational amplifier ICl is used here as a voltage comparator.

If the voltage at its inverting input (pin 2) is higher than the potential at its noninverting input (pin 3), the output goes towards zero volts. Taking the inverting input to a lower voltage than that at the non-inverting input results in the output swinging more positive.
An operational amplifier has a very high open loop voltage gain, and the typical figure for the CA3130E is about 250,000 times. Consequently, only a minute voltage difference is needed across the inputs in order to send the output fully positive or negative.
 being cut off, and the buzzer (WDI) is switched off.
If the test prods are shorted together, the voltage at the non-inverting input of ICl goes to half the supply voltage, and it is then at a slightly higher potential than

(above)

Photograph of the completed unit showing the buzzer connected to the board.

Fig. 1. (left). Circuit diagram for the Continuity Tester. The "test" buzzer is a miniature solid-state type and must be connected in-circuit with the correct polarity.

The two inputs of ICl are fed from separate potential dividers. Preset VR1 and resistors R1 and R2 provide a reference potential to the inverting input, pin 2, and this voltage can be adjusted by means of VR1. Resistors R3 and R4 form the potential divider at the non-inverting input, pin 3 , and these provide an output voltage equal to half the supply potential.
However, the test probes are connected in series with R3, and the half supply output voltage is only produced with the prods shorted together. A resistance between the prods, even a relatively low one, will give a slight reduction in the output voltage from R3 and R4.

IN ACTION

In practice preset VR1 is adjusted so that the reference voltage at the inverting input is fractionally lower than half the supply
the inverting input. This takes the output of ICl high, which in turn results in TR1 being biased into conduction and the buzzer being activated.

If there is a small resistance across the test prods the voltage at the non-inverting input will be slightly less than half the supply voltage. This may be sufficient to take the non-inverting input to a higher voltage than the inverting input and activate the buzzer, or it might not.

This depends on the precise setting of VR1, and the resistance across the test probes. With careful adjustment of VRI the circuit can be made to ignore resistances of less than about five to 10 ohms, which is good enough to avoid the vast majority of erroneous results.

The circuit could be made more sensitive by reducing the value of resistors R3 and R4. For example, using a value of one

Potentiometer
VR1 $4 k 7 \mathrm{~min}$. enclosed carbon preset, horizontal

Capacitors

C1 100μ radial elect. 10 V

Semiconductors

TR1 BC549 npn silicon transistor
IC1 CA3130E CMOS op.amp

Miscellaneous
 S1 s.p.s.t. min. toggle switch
 B1 6 V battery pack ($4 \times \mathrm{HP} 7$ size cells in holder)
 WD1 6V buzzer
 Printed circuit board available from the EPE PCB Service, code 932 (or Free with last month's issue); case to choice; test probes and leads; 8-pin i.c. socket; PP3 type battery clip; multistrand connecting wire; solder, etc.
 Approx cost
 guidance only

kilohm would make the circuit ten times more discriminating, so that it would ignore resistances of more than about 0.5 to one ohm. The test current would still be quite low at only about 3 mA .

In use it is not necessarily a good idea to have a very high degree of discrimination. It would probably not significantly reduce the number of "false alarms", and it could result in continuity being overlooked due to poor electrical contacts with the test prods. It is left to individual constructor's to select the degree of discrimination they require, but it would be advisable not to make resistors R3 and R4 less than about 560 ohms in value.
The current consumption of the circuit is less than one milliamp, but the consumption rises to about 20 mA when the buzzer is activated. This still gives an extremely long life from the four HP7 size batteries.

CONSTRUCTION

This Tester can be built on the Multiproject PCB. Extra boards can be obtained from the EPE PCB Service, code 932. The component layout, full size underside copper foil master pattern and interwiring for the Continuity Tester is shown in Fig. 2.
Op.amp ICl is a CMOS device and it therefore requires the standard antistatic handling precautions. In particular, it should be fitted in a holder, and it should not be plugged into place until the other components have been fitted and all the wiring has been completed.
An alternative to the CA3130E operational amplifier should not be used in this circuit. This device operates well on a 6 V supply, is capable of single supply operation, and has good freedom from latch-up. Most other operational amplifiers do not have all these characteristics, and will not work well here
Do not overlook the single link wire just to the right of ICl . This can be made from a leadout wire trimmed from one of the resistors.
The buzzer WD1 must be connected to the board with the correct polarity. The positive (+) and negative (-) leads are respectively identified by their red and black sleeving.
The buzzer requires a rectangular mounting hole in the front panel of the selected case. Probably the easiest way of making this is to first drill a hole of about 12 mm in diameter, and then file it to shape and size using a miniature flat file.
The positions of the two small mounting holes can then be marked using the buzzer itself as a sort of template. The use of 8 BA fixing bolts and nuts are required, and these are not supplied with the buzzer.

PROBES

Test probes are usually supplied complete with leads and plugs. The probes can therefore be connected to the circuit board via a pair of the appropriate sockets mounted on the front panel.

In practice it might be better to remove the plugs from the leads, drill an entrance hole for the leads in the front panel, and then solder the leads direct to the component board. This method ensures that there is always a low resistance connection between each prod and the circuit board. and that reliable results will be obtained.

/N USE

Preset potentiometer VR1 must be carefully adjusted to the correct setting if the Tester is to function well. Start with VR1 set at virtually minimum resistance (set almost fully clockwise). With the two test

CE 65990
Fig. 2. Continuity Tester p.c.b. component layout, full size copper foil master and (below) photograph of finished board.
Note: None of the projects in the Multi-Project PCB series use ALL the copper pads on the board, in most cases more than 50 per cent of the holes are left vacant. This makes it essential to double-check the positioning of each component,

prods connected together the buzzer should not operate.
If VR1 is steadily adjusted in a counterclockwise direction, at a roughly middle setting the buzzer should switch on. The unit should then work well, with the buzzer operating when the test prods are shorted together, but not when there is a resistance of more than a few ohms across the prods.
If the circuit indicates continuity with resistances of about 10 ohms to 30 ohms across the prods, preset VR1, has been taken slightly beyond the optimum setting.

Either back it off very slightly in a clockwise direction, or repeat the setting up procedure more carefully.
The finished unit can be used for most normal continuity checks, but as pointed out previously, it cannot be used to check any type of diode. Also, some low current fuses have surprisingly high resistances, and the Tester may not be able to check these reliably. It might indicate that such a fuse is "blown" when it is perfectly all right (but not that it is all right when it is "blown").

DON'T MISS OUT!
 A FURTHER SELECTION OF PROJECTS "TAILORED" FOR YOUR FREE P.C.B. WILL BE APPEARING IN THE AUTUMN.
 Plus ANOTHER IDENTICAL FREE! P.C.B. GIFT WILL BE ATTACHED TO AN ISSUE. ORDER A REGULAR COPY FROM YOUR NEWSAGENT NOW, OR TAKE OUT A SUBSCRIPTION PRESENTLY GREAT VALUE!!

Take the

from

Quickroute

 $£ 99.00$
to successful PCB \& Schematic Design

Design PCBs and Schematics quickly

After schematic capture, components can be re-arranged prior to manual or automatic routing.

әandes
э!
Gerber \&
NC-Drill
Design Size
K nodes
designer

DESIGNER+
PRO
PRO+

2 Standard	None	None	10
2 Medium	None	Export	20
8 Fast	Standard	Export	30
8 Fast	Advanced	Export Import	40

*PRO+ can import Gerber files

All versions include an auto-router.

Telephone or FAX POWERware on 0614497101

 Quickroute 3.0 for Windows 3.1DESIGNER £99.00 DESIGNER+ $£ 149.00$ PRO $£ 199.00$

PRO+ £299.00
All prices exclude post \& packing, and V.A.T.

DEMO DISK

ELECTRONICS SOFTWARE

from E.P.T. Educational Software
(Tel: 0376 514008)
If you are looking for a means of improving your knowledge of the basics of electronics then this software is for you.

ELECTRONICS PRINCIPLES II

\star Insulators, Conductors, Resistance \star D.C. Circuits \star Capacitance and Inductance \star A.C. Series Circuits \star A.C. Parallel Circuits \star Reactance and Impedance \star A.C. and D.C. Power \star Frequency and Tuned Circuits \star Using Numbers \star Complex Numbers, Phase Angles \star P.N. Junction Diode \star Transistors \star Operational Amplifiers \star Logic Gates \star Digital Number Systems \star Combinational Logic \star Flip Flops \star Counters and Shift Registers \star Memory * Microcomputer operation

Electronics Principles $I I$ is a major revision of the successful original version currently used by electronics hobbyists, schools, colleges, and for training within industry throughout the UK and overseas. Some of the modifications are as a result of feedback from teachers, but mostly the changes are due to making greater use of the available improvements in software development technology.
The individual sub-menus are changed to selection buttons, this makes all those topics available within a module, clearly visible to the user. The layout of the calculations is considerably enhanced, firstly by providing the formulae used and secondly by showing the calculation steps, exactly as in a textbook; the advantage here being that you can input your own values.

Having reviewed a dozen, or more, educational software packages designed to "teach" electronics, I was more than a little sceptical when I first heard about Electronics Principles: there seemed to be little that could be done that has not been done elsewhere. When I started to use the package my views changed. Indeed, I was so impressed with it that I quickly came to the conclusion that readers should have an opportunity to try the package out for themselves! MIKE TOOLEY b.A. Dean of Faculty of Technology, Brooklands Technical College
Over $\mathbf{2 0 0}$ menu driven screens with interactive graphics enabling a learning by doing approach to encourage experimentation.

Complete package Only $£ 49.95$ inc. vat.
 ELECTRONICS PC TOOLBOX VERSION 2.0

An extended and improved version of the popular Toolbox software. Presents commonly used formulae in a way that makes calculations easier thus encouraging experimentation in circuit design.
Covers D.C. Calculations from Ohm's Law to Loading a Potential Divider; Further D.C. Calculations from Power Ratio Decibels to Kirchhoff's Laws; A.C. Calculations from Average Peak Current to Filters and Admittance; Capacitance Calculations from Values to RC Time Constants; Inductance Calculations from Values to Selectivity; Binary Calculations from Addition to 2's Complement; Numbers and Phase Angles from Addition to Polar to Rectangular; Operational Amplifiers from Inverting Op.Amp to Op.Amp Differentiator.

Only $£ 19.95$ inc. VAT

GCSE ELECTRONICS VERSION 2.0
Designed to complement our Teach-In No. 7 publication, which contains a complete electronics course aimed at GCSE and A Level students, this software can also be used as a stand alone learning package for everyone interested in electronics. From simple d.c. current flow and Ohm's Law it covers the whole GCSE syllabus including a.c., semiconductors, op.amps, digital electronics, radio and fibre optic communications, digital numbering systems and goes on to look at microprocessor c.p.u.s, 6502 addressing modes and instruction sets. It even produces a program listing, which can be saved or retrieved from hard disk, when any of the instructions from the listed instruction set are input, thus allowing the user to monitor the registers for each of the addressing modes.

The original version is now widely used in schools and colleges throughout the UK.
An interactive, user friendly medium which assists learning in an enjoyable and interesting way.

Only $£ 34.95$ inc. VAT
Teach-In No 7152 -page A4 book $£ 3.95$ including a Special Limited Version of GCSE Electronics Software which covers the first two of the 12 parts of the course, thus enabling an assessment of the complete package. Both the book and software can be used on their own.

DEMONSTRATION DISK
 Special demonstration disk containing Electronics Principles II, GCSE Maths and Mathematics Principles is available for $£ 2.50$ (Overseas orders send $£ 3.50$)
 -includes post and packing.

GCSE MATHS

A series of programs covering all the major topics required by the school syllabus. Designed to be user friendly enabling you to study or revise in what we believe is an interesting and enjoyable way. There are nearly one hundred and fifty menu driven screens with interactive graphics, enabling a "learning through doing" approach to encourage experimentation. Now being used in many schools throughout the UK.

Overseas customers or those with general interest in maths order Mathematics Principle - covers the same subjects without reference to GCSE.

Only $£ 49.95$ inc. VAT

These programs require a PC (or fully compatible system) running DOS with an 80286 or betrer processor and VGA (ideally colour) graphics. In addition you must have 4 Mb of hard disk space, a high density (1.44 Mb) floppy drive and at least 640 K of RAM. We also recommend the use of a mouse. Site licences are available - please enquire.

Disrribured by Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset, BH21 1RW. (Mail Order Only). Add $£ 150$ per order for UK post and packing. Make cheques payable to Direct Book Service.

Direct Book Service is a division of Wimborne Publishing Ltd.
Tel: 01202881749 . Fax: 01202841692.
Visa and Mastercard orders accepted (minimum credit card order $£ 5$) - please give card number, card expiry date and cardholders address if different
from the delivery address. Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
OVERSEAS ORDERS: Add $£ 2.50$ postage for countries in the E.E.C. Overseas readers, outside the E.E.C. countries add $£ 3.50$ for airmail postage.

VIDEOS ON ELECTRONICS

A range of videos designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They should prove particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.

VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201
VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202
VT203 57 minutes. Part Three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained. Order Code VT203 VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204 VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc. Order Code VT205 VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206
By the time you have completed VT206 you have completed the basic electronics course and should have a good understanding of the operation of basic circuit elements.

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT102
VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103
Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier.
(All videos are to the UK PAL standard on VHS tapes)

Now for the digital series of six videos. This series is designed to provide a good grounding in computer technology.
VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301 VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc.

Order Code VT302 VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in todays digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303
VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will leam about digital-toanalogue and analogue-to-digital converter circuits. Order Code VT304 VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of todays memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305 VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306
By now you should have a good understanding of computer technology and what makes computers work. This series is also invaluable to the computer technician to understand the basics and thus aid troubleshooting.

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Leam how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT40 VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver.

Order Code VT402 VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19 kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

Order Code VT403
VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers.

Order Code VT501

ORDERING: Add $£ 1.50$ p\&p per order for UK orders. OVERSEAS ORDERS: Add $£ 3$ postage for countries in the EEC. Overseas orders outside the EEC countries add $£ 3$ per tape airmail postage (or $£ 6$ per order surface mail postage). All payments in $£$ sterling only (send cheque or money order drawn on a UK bank).
Visa and Mastercard orders accepted - please give card number, card expiry date and cardholder's address if different from the delivery address. Orders are normally sent within seven days but please allow a maximum of 28 days - longer for overseas orders.
Send your order to: Direct Book Service, 33 Gravel Hill, Merley, Wimborne, Dorset BH21 1RW (Mail Order Only)

THE HARD CELL

TERRY de VAUX-BALBIRNIE

Are you itching to buy a mobile phone? We look at the technology behind it.

FOR many years, people were content with fixed telephones in their homes and offices. It was a science fiction dream to be able to communicate from any location - perhaps while out walking or in the car.
Although we are still a little way from the comic-strip notion of a commercially-viable watch-strap telephone, most people are at least aware of the technology on offer even if they are confused by it. High Street hype would entice us into the shop and emerge with our new toy.
However, attracted by the price - highly discounted and offered at a fraction of its true value - let the buyer beware! There is a network connection charge, monthly line rental, cost of calls and details such as insurance to consider.

RAPID GRDWTH

Mobile telephones constitute one of the most rapidly growing markets in the UK. In 1991 there were fewer than 400,000 units on air. By 1992 this had risen to over 500,000 . By 1993 it was almost one million and by the end of 1994 it was expected to have reached 1.5 million - see Fig. 1. Estimates range between seven and 12 million mobile users by the year 2000 .
The only way to provide a practical wire-less telephone is to use a two-way radio link. The basic techniques have been known for a long time - Marconi demonstrated the use of radio waves for communication purposes a hundred years ago. However, modern technology was needed to turn dreams into practical reality.
It also required a relaxation in the regulations regarding the use of radio transmitters. Traditionally, this has been the prerogative of broadcasting companies, emergency services, taxi operators, ships at sea and so on. General access was denied apart from licensed radio amateurs who needed (and still do) to pass a theory examination. There was some loosening of the rigid line when, in February 1981, the Home Secretary announced that he was willing to provide a Citizens Band service in the UK using the 27 MHz band.

BRASS TACS

Early radio telephones were of the "taxi" kind and only able to talk to a base station some relatively short distance away. Messages to the public network had to be relayed by word of mouth. It became clear that, with emerging technology, a radio link could be established not only between mobile users but integrated with the national fixed system.
To this end, in 1982, the Department of Trade and Industry selected two organisations - Racal-Vodafone and Cellnet - to develop analogue networks to the British Standard Total Access Communications System (TACS) using the frequency range 890 to 960 MHz . Operation began in January 1985.
To operate this service, 1000 duplex (two-way) radio channels were allocated (that is, 1000 frequencies for sending and 1000 for receiving). Each of the rival operators were allocated 300 channels with the remaining 400 reserved for the forthcoming digital pan European network called GSM (Group Systems for Mobile Communication) of which more will be said presently.
One method of use would be for mobile operators to employ high-powered transmitters and communicate with a single distant base station. This could then be patched into the public telephone network. To use this system, a caller would need exclusive use of one communication channel all the time he or she was talking.
With such a small number of possible users at any given time, this would be obviously impractical. A further problem with such
an idea is that a fairly low frequency of operation would be needed to provide the necessary long range and such frequencies have long since been allotted to other services.
The problem needed some lateral thinking. Space was available in the u.h.f. (ultra high frequency) region of the radio wave spectrum a little above that used for TV broadcasting (which extends to about 853 MHz). Waves in this region behave rather like light and travel best over line-of-sight distances. For this reason, they would seem to be of little use for long-range communication. However, this very drawback gives a clue to their strength.

REPEAT, REPEAT

By exploiting the limited range, a process of frequency re-use is made possible. This means that the same frequencies may be employed by others a relatively short distance away without causing interference. In fact, over the entire nation, the same channels may be used many times over.
For a blanket system, therefore, all that is required is a network of very low-powered u.h.f. transmitters grouped in an arrangement

Fig. 1. How the increased use of mobile phones since 1985 is expected to rise by the year 2000.
of cells covering the whole country. As far as practicable, any mobile phone would be within the range of at least one cell. At present more than 98 per cent of the UK population is served by the analogue channels in this way.
In theory, signals should not extend beyond the boundary of the cell in which they are generated. However, this is impossible in practice and there is bound to be some overlap. If adjacent cells used the same frequencies, there would therefore be profound interference problems between them. To overcome this a cell repeat pattern is used. Fig. 2 shows one possible arrangement - the seven-cell pattern. Cells are represented by hexagons but this is only for the purpose of illustration.

Each cell in such a pattern will have at its disposal about 40 channels (i.e. the 300 allocated to the particular operator divided by seven). As a further safeguard against possible interference, adjacent cells do not share adjacent channels. In this way, the total channel allocation is recycled many times over throughout the nation by groups of such cell clusters.

Fig. 2. 7-cell repeat pattern.

Cells are not all the same size because the distance over which they can effectively operate depends on the terrain. In the city, with tall buildings around, coverage will be small and there will be a need for many closely-spaced cells. Each will have a very low power output, perhaps 1 W , and serve a 1 km diameter circle. In rural areas, with fewer obstructions, cells will be made larger with a higher-power transmitter, perhaps 15 W , serving a 20 km circle.

There are twenty-one channels used as control channels and each base station will be allocated one of these. Control channels are used to send information to and from the mobile to monitor its status while idle (switched on but not actually in use). These also initiate a call and allocate the voice channel.

Additionally, there are two guard channels. These act as buffers between Vodafone and Cellnet frequencies to prevent possible interference. This provides 277 analogue speech channels for each network operator.

BRASS ETACS

More recently, the DTI has issued further frequencies adjoining the TACS allocation to cope with the ever increasing demand for the analogue service. These are called extended channels (ETACS). ETACS channels range from 872 MHz to TACS at 890 MHz (transmit) and 917 MHz to TACS at 935 MHz (receive). This provides an additional 320 channels for each operator.

ETACS channels are only used in certain urban areas and on major roads where the need for extra capacity is particularly important. Since ETACS is outside the normal TACS range, it can only be accessed by later equipment designed for its use. During the setting-up of a call, ETACS compatible equipment will be allocated an ETACS channel if one is available. If no such channel is free, a TACS one will be given instead. In this way, service is improved for all analogue mobiles.

The spectrum allocation including GSM, TACS and ETACS frequencies is shown in Fig. 3. It will be seen that the lower half of the frequency band is used for mobile to base communication and the top half for base to mobile. There is also a 2 MHz gap $(915 \mathrm{MHz}$ to 917 MHz) between base station and mobile frequencies - a further guard against interference.

Fig. 3. Allocated frequency spectrum for the full mobile phone network.

Typical antenna mast in a rural area.

BASE STATION

Each base station has a set of aerials (antennas) together with transmitting and receiving equipment. In rural areas, a mast is generally used for the aerials (see photograph) but in towns they will be situated on tall buildings. Since communication is most effective over line-of-sight distances, mounting the aerial high will avoid the effects of intervening objects.

Depending on conditions and the need for selective coverage, some aerials will be omni-directional (covering the full 360 degrees) while others are directional covering perhaps 120 degrees. The transmitting and receiving equipment is sited in a small building or room beneath the aerial mast.
The base station is linked to a mobile telephone exchange (MTX) using conventional copper wire or fibre-optic cable. Although the radio section is analogue, this link is a digital one and often there will be two separate lines to each base station to guard against the failure of one. The line is provided by British Telecom or Mercury, being the only two fixed link operators.

The MTX is an electronic telephone exchange of the type used in the fixed network. One MTX has control over a number of base stations and all MTXs are interlinked to form a comprehensive grid covering the entire country. It is normal to operate two MTXs in parallel so that one can carry the total load in the event of the other failing.
The MTX sets up and connects calls. It also stores database information such as mobile identification numbers and any special features which the subscriber has paid for. The MTX also routes calls to operators who provide assistance, directory enquiries, etc. A simplified view of the system is shown in Fig. 4.

Each MTX is connected to the PSTN (Public Switched Telephone Network) operated by BT and Mercury. This means that mobiles can communicate with each other or to fixed telephones and vice-versa. One MTX can service many mobiles - for example, each Vodafone exchange can handle 60,000 units and more are added as the demand increases.

Whenever the mobile is switched on, it tunes to the strongest signal provided on a control channel (usually the one from the nearest base station). Before an outgoing call can be made, the MTX must "know" that the mobile is authorised to use it (that is, it is registered, has paid for the service and has not been disconnected for some reason).

This is carried out by two identification numbers. One is the actual telephone mobile number. The other is the ESN (Electronic Serial Number) which, on the analogue system, is a unique number programmed into the circuit.

When a call is made from the mobile, the telephone number to be called is entered on the keypad. The mobile number and ESN

Flg. 4. How mobile telephone exchanges (MTX) are interlinked to form a comprehensive grid.
are automatically sent via the control channel to the MTX. The two numbers are then checked to ensure that they match, this takes about 350 ms (a little over one-third of a second). A voice channel is then allocated (i.e. a pair of frequencies) and the call routed either to the PSTN or to another MTX and hence to another mobile.
If a Vodafone user wishes to make a call to a Cellnet subscriber or vice-versa, this was previously done by routing it via the PSTN. However, there is now a direct link between these two operators.

The output power of a mobile is controlled by the network. Each mobile unit has eight power settings and the MTX will select the most appropriate one according to distance and conditions.

THAEE CATEGORIES

Whatever the manufacturer, all mobile equipment falls into one of three categories: Mobile, Transportable or Hand Portable. However, the term mobile is often used for any of these. The trend is towards the small hand-held variety and four out of five units now sold are of this type.
These are most versatile and can be carried virtually anywhere (but must not be used on aircraft, in petrol filling stations or in hospitals). Having the phone on the person also reduces the risk of theft. Generally, hand portables may be used hands-free in a car using a special kit.
The power output of a hand portable is generally only about 0.6 W e.r.p. (effective radiated power) and in marginal signal strength areas the user may need to move around to achieve adequate communication. The prevailing signal strength (i.e.. that received on the control channel) is shown on a display and is consulted before a call is made.

LOCAL GOSSIP

In the course of use, it is possible that the mobile will move from the management of one cell to another. The new cell will then take over and allocate a new channel. It important that the system follows these changes at sufficient speed for the user to be unaware of it happening.
While the mobile is in use, adjacent base stations are checked to determine whether they will give a stronger signal. The.moment this is so and, providing there is a free channel available, the instruction is relayed on the voice channel (not a control channel) to use the new one. This is all done in a fraction of a second.
All users should be aware that conversations made on analogue cellular networks are not secure. Scanners can tune in to the band of frequencies used for the service and rapidly check the spectrum pulling out the most powerful signals. Some people make a hobby out of this type of eavesdropping. Some may be mischief-makers politicians and others in high office beware!
One of the disadvantages of owning a cellular phone is its desirability to the petty thief. The handheld variety is easily stolen
and quickly disposed of in a pub. Unfortunately, people tend to leave them in full view on the car parcel shelf, shop counter or similar place. There has even been some incidence of phone snatching in the street while it is being used.
As soon as the theft is discovered, the sensible user will inform the service provider (see consumer advice later) and the phone will be disconnected from the network. However, there may be some delay and the owner may be responsible for the cost of all calls made until then.

HAD THEIR CHIPS

Because the phone is easily disconnected, it may be thought that it is hardly worth stealing for the sake of a few calls. Unfortunately, it is a relatively simple job to change an analogue phone's ESN (and hence its identity) by a process known as "re-chipping". This is possible because the identification number is carried on an i.c. which can be replaced to provide a new number. The phone can then be sold on and re-connected to the network.
One particularly sneaky activity brought about by re-chipping is the fraudulent use of a customer's line without actually stealing the handset. This is done by using a little detective work to find out the genuine ESN. Another phone is then "cloned" by re-chipping with the same number. Phantom calls then turn up on the legitimate account holder's bill.
The network operators are aware of this and the problem is much less prevalent than it used to be. Computer programs oversee the system. If a phone appears to be making calls in two places at once or being used in widely different places with only a few minutes between, there is clearly a cloning problem and an alert is signalled. Digital phones overcome the problem by having the ESN on a smartcard which is removed from the handset when it is not in use. More will be said about this presently.

DIGITAL COMMUNICATIONS

The foregoing has been concerned with analogue cellular networks. These are still the workhorse of mobile communications in the UK and are expected to remain so until at least 1996. However, digital services are catching on fast and are gradually displacing the analogue ones.
Even so, much of what has been said is true for the new digital systems. In fact, there is a great deal of digital technology used in the operation of an analogue network. At the moment, most customers are buying analogue phones and these are perfectly adequate for day-to-day business and social use within the UK. Such users can be assured that the service will be available for many years-at least until 2015.
The defunct Hutchison Telecom Rabbit was an early digital system. This allowed for outgoing calls within a radius of some 100 metres of a base station. A network of such base stations were set up at garages, underground stations, banks and similar key locations where the Rabbit logo is still to be seen. It seemed like a good idea at the time but without blanket coverage, and with only outgoing calls possible, there proved to be insufficient appeal.

Of the present digital services, there are two families of equipment - GSM (mentioned earlier) which operates on frequencies adjoining those used for the analogue networks and PCN (personal communications system) which operates on a higher frequency range, around 1800 MHz . Digital systems provide better sound quality, but this is not in itself very important. Analogue sound quality is as good as it needs to be. GSM was intended to provide uniformity.
The analogue systems being used in various countries operate to different standards and this can be a problem. Travelling businessmen needed to hire handsets and be connected to each national network on passing from one country to another. GSM removes this need and provides a standardised service. With GSM, there can be one phone number and one bill wherever calls are made. It will only be necessary to have the correct service agreement between the participating national networks.

An advantage of a digital system is that encryptation is simple and this can make the conversation totally secure. By using a Subscriber Identity Module (SIM) card, security is greatly im-
proved. This card carries the ESN and other customer details. When the phone is used, the SIM is inserted and without this the phone is useless. By carrying the card on the person, theft of the phone is pointless.
By the end of 1993, all forms of cellular phones were available in GSM format - hand portables, car phones and transportables GSM has a claimed UK coverage of 90 per cent. It will eventually span Europe and, ultimately, the whole world - at least, that is the dream. GSM followed the 1983 Memorandum of Understanding and is based on a European standard agreed between 22 operators in 19 countries.

The first GSM service in the UK was provided - albeit in a restricted service - by Vodafone in December 1991, with Mercury adding its own GSM offering Eurodigital in Autumn 1993. Cellnet's GSM came on stream in July 1994.

Other countries with GSM networks operating are Germany, Italy, Greece. Denmark, Sweden. Switzerland. Austria, Belgium and Norway, Luxembourg, France, lreland, Portugal and Spain also became operational during 1994

However, users report that many of these services are very fragmented. This is because, while analogue systems are wellestablished and have grown to provide excellent coverage, digital ones begin by covering major urban areas and follow with the less popular ones.

JUICY DRANGE

Personal Communication Networks came about from the Government's invitation in 1989 to apply for PCN operators' licences. PCN phones operate in conjunction with a SIM card which stores more personal information than with GSM - details of special services requested, etc.

PCN networks offer many optional services and potential customers will need to look carefully at those available to find the product which suits his or her needs best. They are far too numerous to be discussed in detail here.

Many of the services are free or provided at a reduced price compared with the analogue systems. Choosing a mix of such services can customise the phone to the individual's requirements. Unfortunately, detailed information about PCN services is changing so rapidly that several suppliers will probably need to be asked to be sure of obtaining correct and unbiased information.

The first PCN service to come on stream in the UK was Mercury One-2-One in Autumn 1993. With handsets manufactured by Siemens, Motorola and NEC the network originally extended to the boundaries of the M25 and was targeted at business users in London. Mercury is extending the service - the intention is to cover the South East and eventually become nationwide by the

The Nokia Orange phone which works exclusively with the Orange service from Hutchison Telecom.
late 90 s. One-2-One had approximately 100,000 subscribers in late 1993 and coverage is about 24 per cent of the UK population at the time of writing.
Recently. Hutchison Telecom (UK) - owned by Hong Kong based Hutchison Whampoa (65 per cent). British Aerospace (30 per cent) and Barclays (5 per cent) - have announced their Orange PCN network with phones manufactured by Nokia (Orange Phone) and Motorola (MRI) now available in High Street stores such as Dixons, Currys. Rumbelows and Hutchison outlets. Some readers may have been mystified by the rather cryptic Orange advertising in the media. At the time of writing, the network covers over 65 per cent of the UK population (about 35 million) and was expected to be ahead of its target of 70 per cent (40 million) by the end of 1994 and 90 per cent (50 million) by mid-1995. The Nokia Orange Phone offers a two-line service whereby the same phone can have two numbers and two separate accounts - perhaps to separate private and business use. Orange charging is made by the second rather than the minute or half-minute as is the tradition with the analogue networks.

PCN systems are already well advanced in the UK but less well so in other countries. For reasonable European coverage GSM is therefore the preferred choice. At the time of writing, PCN networks were also operating in Germany and Thailand. Italy and France are scheduled to follow in the near future.

THE CELLULAR ROAD

Britain is fortunate in having had a comprehensive fixed telephone network for many years. Mobile systems are therefore seen as complementing the existing one.
This is not the case in certain other countries. These still use antiquated analogue equipment (sometimes a hand-me-down from a country going digital) and there may be no service at all outside the main urban areas. For such places, the direct jump to cellular can improve the country's infrastructure and provide the main service at minimum cost

CONSUMER ADVICE

The unparalleled growth in mobile communications has come about by making a desirable product affordable to the masses. Even so, the best piece of advice is to ask yourself - do you really need a mobile phone? Is it just to impress your friends? Is it wanted merely as a status symbol?

Women who regularly travel at night will certainly find peace of mind in owning one. If you do decide to buy a cellular phone, look around and compare true costs. Perhaps you can wait for another year or so to allow the digital networks to increase their coverage.

Remember, you are buying a complete package (connection to a particular system, cost of monthly line rental, tariff, etc.) - not simply the purchase of a piece of hardware. There may be incentives such as free connection, free off-peak calls for a certain period, cashback schemes, etc. and these will change from time to time.

For general social and business use within the UK, you are likely to be advised to use the established analogue system offered by Cellnet or Vodafone. Cellnet is the UK's largest analogue network operator with over 1000 cell sites and about 750,000 subscribers making three million calls each day. They also have exclusive coverage of the Isle of Man and Channel Islands which may be important to some users.
There may be local weak spots on one system or the other and advice should be taken on this point. However, intense competition has led to there being little to choose between the two operators

There is a bewildering range of tariffs and the user will need to look carefully for the one which suits his or her needs best. Some offer a lower fixed monthly charge but a higher call charge (low user rate). Others offer a higher charge and a lower rate per call (business rate).

There will be variations in the cost of peak and off-peak calls. Certain services may be requested such as three-way conversations, a facility for recording incoming messages while the user"s phone is switched off, etc. There may be other options such as call diversion and international facilities.

POWER INSURANCE

Hand portables often have various battery options which allow different periods of use before the need for recharging. For some users this may be an important consideration. A typical nickelcadmium battery pack will provide between 10 and 22 hours of standby use. While actually talking, the time is greatly reduced - to about 60 and 120 minutes respectively.

Usually a larger capacity nickel cadmium pack is available and a nickel hydride option, if available, will extend the time still further. A fast mains or car cigar lighter charger can restore the battery in
about 30 minutes．The standard＂desktop＂mains unit supplied with the phone may take around eight to 10 hours to charge the standard battery．
Remember to include insurance in your costs．That＂$£ 49$＂phone may be really worth $£ 350$ ．Profits will be made from the serv－ ices you use and these will soon pay for the discounted hardware． However，the true price will have to be paid to replace the phone if it is lost or stolen．Your household insurance company may not be keen to include a mobile phone on your existing policy but it is worth asking．
It must be remembered that there is no local area service on the popular cellular systems．Calls to the BT or Mercury network are charged at the same rate regardless of distance and only depending on whether the time is peak or off－peak and the tariff selected． Thus，the full STD code must be entered each time even if the called party is just around the corner．Generally，calls are not charged for unless they are answered but，of course，＂answering＂ includes any recorded message．
Users need to keep an eye on their itemised bills，however，since there have been reported errors．These are generally overseas calls made via old－technology fixed telephone exchanges at the distant end．These have been known to signal back a fee when the call was unsuccessful．Note that BT subscribers make calls to the mobile network at the＂M＂rate．

POWEA TO THEPEOPLE

The dealer will use a Licensed Service Provider（or the shop may be a member of a chain owned by a service provider）who will access the network．The service provider will deal with all the day－ to－day customer services such as billing and general enquiries．A contract will be signed to provide service for，say，one year at a certain monthly rate．

The Service Provider will enter the Mobile Number and ESN on to a terminal and data regarding any special services which the subscriber needs such as those mentioned previously．The information will be taken up by the network operator and pro－ grammed into the MTX．Note that not all special services are
available on all tariffs．For example，international calls may be barred．With luck，the mobile will be on－air before leaving the shop．
Peoples Phone is one of the UK＇s most well－known independent service providers supplying 10 per cent of new cellular customers with their airtime．Peoples Phone have more than 110,000 cus－ tomers and a total turnover in excess of 100 million．Over the last six months alone，they have spent more than $£ 5 \mathrm{M}$ on im－ provements and new equipment．With 60 High Street retail outlets throughout the UK，Peoples Phone has the second largest nation－ wide chain after the BT shops．

CRYSTAL BALL

It is fanciful to imagine that every spot on earth could be covered by a cellular network．What about travellers in the remote desert， the arctic，the Australian bush or the middle of the ocean？A satellite service could be the answer．The proposed system（the Iridium project being developed by Motorola in Phoenix，Arizona） involves placing rings of satellites around earth．

The signal from the phone would be passed to the nearest satel－ lite and from there，it would hop from one to another until it lay above its destination．It would then pass to a ground station and be distributed via the national fixed or cellular network．Dual－ use phones could switch automatically between cellular to satellite modes as required．Large sums of money have already been spent and pledged for development work．

Many of us now have several different telephone handsets．One is the familiar one for the fixed network．The second is a cord－ less telephone which is handy when gardening or working in the garage．This operates over a range of 100 metres or so from a base station situated in the house．There may also be a cellular handset in its various analogue and digital forms．

In the future，these may be integrated so that one handset provides all functions．It may also be that mobile costs fall in line with those on the fixed network with a single bill provided for all services．

Do you still want that mobile phone？

OMNI ELECTRONICS

174 Dalkeith Road，Edinburgh EH16 5DX $\star 0316672611$
The supplier to use if you＇re looking for：－

A WIDE RANGE OF
 ＊COMPONENTS AIMED AT THE \star合 \star COMPETITIVE VAT INCLUSIVE \star PRICES
風A HOBBYIST

OPEN：

Monday－Thursday 9．15－6．00
Friday 9．15－5．00
Saturday 9．30－5．00

A SAMPLING OSCILLOSCOPE AND LOGIC ANALYSER in AN AFFORDABLE PORTABLE PACKAGE

－ 10 Mega samples per second The Miniscope
single channel DSO
－ 1 MHz analogue bandwidth
－ $0.2 \mathrm{~V}-50 \mathrm{~V}$ input range
－Various Triggering options
－ 10 Mega samples per second 8－channel logic analyser
－5V TTL／4．5－15V CMOS logic level inputs
－Crisp，clear LCD screen
－Zoom and Scroll facilities （selected range only）
－Battery or mains adapter powered
－ 12 Months Warranty （Built version only）
－＂Get you working＂service （kits only）

MINISCOPE KIT £139
 MINISCOPE BULLT 1179
 MAINSPSUE6 P\＆PE6
 PLEASE ADD VAT AT 17.5%

Write or phone for a FREE Information Pack to：
\triangle ODOTl AUDON ELECTRONICS
36 Attenborough Lane，Chilwell，Nottingham NG9 5JW 훌 01159259737

DISTANCE LEARNING COURSES

The National College of Technology offer a range of packaged learning short courses for study at home or in an industrial training environment which carry modular BTEC awards leading to a higher BTEC certificate. Study can commence at any time and at any level enabling you to create a study routine to fit around existing commitments. Courses on offer include:

Analogue Electronics

Digital Electronics
Fibre/Oploelectronics
Mechanics \& Mechanisms
Programmable Logic Controllers
Electronic Testing \& Fault Diagnosis
Tutor support and BTEC certification are available as options with no travelling or college attendance required. These very popular courses which are ideal for vocational training contain workbooks, audio cassette lecturettes, PCB's, instruments, tools, components and leads as necessary to support the theoretical and practical training. Whether you are a newcomer to electronics or have some experience and simply need an update or certification, there is probably a distance learning course ready for you. Write or telephone for details to:

National College of Technology
NCT Lid., PO Box 11
Wendover, Bucks
Tel: (0296) 624270

LÔôKING FOR... ICs \star TRANSISTORs \star SEMIs? especially those hard to find? Why not give us a buzz?

WE STOCK A MASSIVE RANGE

We specialise in devices with the following prefix (to name but a few):
2N 2SA 2SB 2SC 2SD 2SJ 2SK AN BA BC BD BDT BF BFR BFY BFX BU BUK BUT BUV BUW BUZ CA DTA HA IRF LA LB LC LF LM M MC MJ MJE MM MPS MPSA MPSU NE RC SAA SAB SDA SI SL SN STA STK STR TA TBA TC TDA TIP TEA TL UAA ULN UPC XR ZN ZTX . . . plus daily arrival of new numbers.

ALSO

RESISTORS \star CAPACITORS \star CHOKES \star CABLES LEADS \star CONNECTORS \star VIDEO HEADS \star DRIVE BELTS SWITCHES \star TTL \star CMOS \star OP AMPS \star VOLTAGE REGS SPECIAL FUNCTION \star TRANSFORMERS ETC ETC ETC

WE SPECIALISE IN PHONE \& FAX MAIL ORDERS
BY CREDIT CARD
Callers \& Mail orders welcome VISA

CRICKLEWOOD ELECTRONICS

 40 CRICKLEWOOD BROADWAY, LONDON NW2 3ET TEL: 0814520161 \& 0814500995 FAX: 0812081441 !!! FULLY ILLUSTRATED CATALOGUE AVAILABLE !!!

RX Board

IR Remote Control System

A complete Infra Red remote control system with a wide choice of outputs, both relay and transistor, configured for maximum flexibility for control of external systems

- 5 relay outputs (mains rated)
- 3 transistor outputs (open collector) - RX and TX boards available separately - Ideal for use around the home - 12 independent codes
- Range: 15 m (approx)

IR Remote RX $\quad 41$-05002 $£ 13.20$
IR Remote TX
Remote TX Case Kit
IR Control Board
$41-05000$ £9.10
41-05001 £19.98
$41-05003 £ 15.99$ Control Board Case Kit 41-05004 £8.99

Breath Alcohol Tester

Enjoy and have fun at parties with this interesting project giving indication of the amount of Alcohol on your breath.
N.B. The results from this tester must not be taken as proof of your fitness to drive a vehicle.

- LED indication of OK, caution and danger
- Components, case, tube, fitting and full instructions

41-05008 837.99

Logic Chiptester

- Test those salvaged stocks of IC's (TTL \& CMOS) provided they are less than 24 pins and operate from a 5V supply.
- IBM PC compatible
- Create test parameters
- PCB, components, software and comprehensive instructions

41-05022 $\$ 59.90$

IR Stereo Headphones

- Keep those neighbours friendly and get rid of those unwanted leads with this useful project for all Hi-Fi buffs
- No test equipment needed
- Excellent stereo sound
- TX and RX available separately
R TX 41-05025
£25.75
IR RX $\quad 41$-05024 $£ 32.50$

Full details of all the above are included in our comprehensive catalogue, $£ 1.95$ (plus 30p p $\mathbf{~ p}$)
All the above are currently in stock and available for immediate delivery. Standard p\&p $£ 1.50$, next day delivery $£ 5.29$ (UK Mainland)

INTER FACE Robert Penfold

THE TWO previous Interface articles covered the use of a PC printer port as a general purpose digital input/output port. This month we progress to the use of the printer port as an 8-bit analogue input/output port.

As the printer port has eight output lines as standard, and can provide eight input lines with the addition of the circuit described in the February issue, it is possible to have both analogue-todigital and digital-to-analogue converters working simultaneously on this port. Of course, many applications only require one or other of these converters, but where both are needed the printer port handles the task remarkably well.

Analogue Output

Digital to analogue conversion is a more simple prospect than a conversion in the opposite direction. Interfacing this type of converter to a computer is usually very straightforward as there is little or no "handshaking" to contend with.
In this case the printer port provides eight latching outputs, and no handshaking at all is required. The values for the converter are simply written to the data lines of the printer port at address \& H 278 (LPT2) or \&H378 (LPT1), and the converter produces the appropriate output voltage.
The only point that has to be kept in mind is that the converter will take a short time to adjust to each new value. In most cases the adjustment time is quite short, and is typically only a microsecond or two. Of course, any amplifiers, filters, or other stages that process the output of the converter are likely to extend this "settling" time.

Where eight latching outputs are available the Ferranti ZN426E probably represents the simplest means of providing an analogue output. Fig. 1 shows the circuit diagram for a PC analogue output port based on this chip.

The full scale output voltage is equal to the reference voltage fed to pin 5 . This terminal can be fed from an external reference voltage of up to 3 V , but in most cases the built-in 2.55 V reference is perfectly adequate. In fact, the builtin reference voltage generator is a high quality type that is not easily bettered. R1 is the discrete load resistor for the voltage source, and C1 is its decoupling capacitor.

Output Voltage

The output voltage from IC1 (in volts) is equal to the value written to the printer port multiplied by 0.01 . For example, a value of 147 would provide an output potential of $1.47 \mathrm{~V}(147 \times 0.01=1.47)$.
In most practical applications this output voltage range will have to be modified using an amplifier or an attenuator. In virtually all
cases it will be a small amount of amplification that is required. This is the purpose of IC2, which also provides output buffering.

The non-inverting mode amplifier IC2 can have its closed loop voltage gain varied from unity to about 11 times by means of preset VR2. Maximum voltage gain is obtained with VR2's wiper at the bottom end of the track. Theoretically, maximum output voltages of between 2.55 V and 28 V can be achieved.

However, the maximum output voltage of IC2 is about 2 V less than its supply potential, or about 3 V if it is powered from a 5 V supply. Therefore, maximum output voltages of more than 3 V require IC2 to be powered from a higher supply potential of up to about 30 V . This means using a separate supply for IC 2 , since the converter circuit must be powered from a 5 V supply.
Preset potentiometer VR1 is the offset null control for IC1. This is only really needed if IC2 is used with VR2 set towards maximum gain, and a high degree of precision is required. Otherwise, it can simply be omitted.
If preset VRI is included, the best way to find the correct setting is to first write a low value to the port, and adjust VR1 for the correct output voltage. Then write a high value to the port and adjust VR2 for the appropriate output voltage. Repeat this process a few times until no further adjustment is needed.
If VRI is omitted, write a value of 255 to the port and then adjust VR2 for the required maximum output voltage. Reasonable accuracy should then be obtained over the full range of output voltages. The current consumption of the analogue input circuit is about 8 mA , incidentally.

Writing to the port is very easy, and using GW BASIC it is just a matter of writing the values to the appropriate address using the OUT command. For example, "OUT \&H378,123" would write a value of 123 to a digital-to-analogue converter connected to printer port LPT1.

Analogue Input

The circuit diagram for the analogue-todigital converter is shown in Fig. 2. This is based on the Ferranti ZN448E, or the virtually identical ZN447E and ZN449E. The only difference between these three devices is their guaranteed accuracy.
The ZN448E is the most widely available version, and its accuracy of 0.5 l.s.b. (least significant bit) is good enough for virtually all practical applications. The ZN447E has a higher accuracy figure of 0.25 l.s.b., but tends to be quite expensive and is overspecified for most purposes. Although the least accurate of the three, the budget ZN449E is adequate for many applications, and it is relatively cheap if you can locate a source of supply.
These chips are successive approximation converters having built-in clock oscillators. The only discrete component required for the clock oscillator is a timing capacitor (C2). The specified value sets the clock frequency at a little under the maximum usable clock frequency of IMHz .

In practice these chips invariably seem to perform properly with the clock oscillator operating well in excess of 1 MHz . However, since only nine clock cycles are needed in order to complete a conversion, some 100,000 conversions per second are possible with the clock frequency at about 0.9 MHz . Few real-world applications require a sampling rate as high as this.

Fig. 1. The PC printer port D/A converter circuit diagram.

Voltage Generator

The full scale voltage is set by a reference potential, and like the ZN426E, the ZN448E has an integral 2.55 V reference generator. This has R1 and C1 as its load resistor and decoupling capacitor. R2 is the "tail" resistor in the comparator stage at the input of the converter, and it must be driven from a negative supply rail.
If a suitable supply rail is not available it is possible to generate one using a couple of trigger/inverters in the circuit shown in Fig. 3. The PC input port (Fig. 2 EPE March 1995) uses one inverter from a 74LS14 package, and the negative supply generator can conveniently be based on two of the five unused sections of this device. Note that this circuit produces a negative output potential of just 3 V , which requires the value of resistor R2 in the converter circuit to be reduced to a value of 47 kilohms.

Input Voltage

An input voltage in the range OV to 2.55 V can be applied direct to the analogue input at pin 6 of ICI (Fig. 2), but this is not the recommended way of doing things. There is a small input offset voltage that will slightly reduce accuracy at low input voltages unless it is trimmed out.

Fig. 3 The simple negative supply generator circuit diagram.

The ZN448E has tristate outputs, but this facility is not required here. Pin 2 is connected to the 0 V rail so that the data outputs of ICI are permanently enabled. These lines feed into the eight input lines of the add-on circuit featured in the February 1995 Interface article.

Fig. 2. Circuit diagram for the printer port A / D convertor.

This offset can be nulled by applying a minute positive bias to the input signal. This is achieved by applying the input voltage to IC1 via a potential divider, and then using a resistance from the output of the reference source to the input of IC1 to provide the offset bias.
In this case resistors R4 and R5 act as a potential divider which attenuates the input signal by 50 per cent. This gives a full scale value of $5 \cdot 1 \mathrm{~V}$. Resistor R3 and preset VR1 provide the positive offset bias, and VRI is adjusted for optimum accuracy at low input voltages.

Obviously other full scale voltages can be obtained by using suitable values for R4 and R5, but the parallel resistance of these two resistors must be about 4 kilohm or it may not be possible to obtain a suitable offset voltage using VRI. In many practical applications R4 or R5 will have to be a preset resistor so that the full scale input voltage can be trimmed to precisely the required figure.

In order to start a conversion it is necessary to pulse pin 4 of IC1 low. The conversion starts when this terminal returns to the high state. The printer port's "strobe" line is the obvious choice to drive the "start conversion" input.

Pin 1 of IC4 goes high when the conversion has been completed, and this line can be monitored using the printer port's "busy" input. A software loop is then used to provide a hold-off until the conversion has been completed.
As the length of time taken for each conversion is constant at about 10 microseconds, it is possible to simply use a timing loop to prevent the port from being read prematurely. This is my preferred approach, as it leaves the "busy" handshake line free for other purposes. Of course, with a relatively slow language such as an interpreted BASIC there is no need to worry about a hold-off. Each conversion will be completed long before the program moves on to the routine that reads the port.
The following GW BASIC routine will read the analogue input port and write the returned value on the screen. It is basically just the same routine that is used to read the 8 -bit input port, but line 5 has been added to provide a start conversion pulse on the "strobe" line. Bear in mind that the "strobe" line is inverted, so a value of 1 (not 0) is needed to set it low.
5 OUT \&H37A, 1
10 OUT \&H37A,0
$20 X=\operatorname{INP}(\& H 379)$ AND 120
$30 X=X / 8$
40 OUT \&H37A, 4
$50 \mathrm{Y}=\mathrm{INP}(\& \mathrm{H} 379) \mathrm{AND} 120$
$60 Y=Y * 2$
$70 Z=X+Y$
80 PRINT Z

Constructional Project

THENAME OF THE GAME COUNTERSPIN

ROY BEBBINGTON

PART 2

THE Name of the Game is a series of electronics projects based on party games or TV quiz games. Featuring something old, something new, there are electronic versions of popular, well-established TV games such as Countdown and Catchword with alphanumeric
displays, new games employing electronic word-making, and games of skill.
Accessories, used in various games, such as an interval timer, an electronic dice, a precedence switch, a heads/tails unit, are the subjects of later constructional articles.

Counterspin is an electronic selector for the numbers game of the popular TV quiz Countdown. In addition, it can be used for other games that need random number selection, or as a $0-999$ counter. It features decade counters driving up to three 7 -segment l.e.d. displays. By switch selection the displays are capable of randomly displaying:

- small number up to nine
- selection of four large numbers (25,50, $75,100)$
- target number up to 999
- count number from 0 to 999 for timing purposes.

COUNTロロWN PRINCIPLE

In the TV game of Countdown, apart from the target number, all the numbers are selected by cards. However, Counterspin, as presented here, selects all numbers automatically using electronic counters. For those unfamiliar with the TV game, here are the general rules:
A contestant generally has a random selection of one large number $(25,50,75$, or 100) and five small numbers (one to nine). A target number is then selected by a counter. Any or all of the selected large and small numbers can then be added, subtracted, multiplied or divided in an attempt to obtain the target number, or as close to it as possible.
Contestants write down the large and small numbers as they appear, and then make their calculation. After a given time limit (say 30 secoṇds) a quizmaster ascertains whether they have achieved the target number, and the contestant with the nearest result shows how it was obtained. Scoring could be five points on target. reducing by the difference number for the player nearest to the target, e.g. four away from the target number could earn the winner one point.

FRONT PANEL DISPLAY

The front panel, as shown in the photograph, houses the three 7 -segment l.e.d. displays (X1, X2, X3 in Fig. 1), which serve as dual-purpose indicators for the two decade counters. The rotary Select switch, (S1), performs various functions. It selects the four number modes (Small, Large, Target and Count), and also switches the display constantly on in the Count position.

The right-hand on/off switch (S3) controls the +9 V battery supply. In the on position the supply is connected to the clock generator and, depending on the position of the Select switch (S1), either the large number counter or the random number counter is also powered. To conserve battery power, although the clock pulses are activating the counters, the displays are inhibited (except in the count position) until a number is selected by the Freeze pushbutton switch (S2).

MODE SELECT

Switch Sl provides four switchable modes, as follows:
Small Number (S): counter IC5 in operation giving numbers between zero and nine when switch S2 is pressed. A zero can be ignored and another selection made if agreed
Large Number (L): counter IC2 in operation giving numbers $25,50.75$ or 100 when switch S2 is pressed.
Target Number (T): counters IC3 to IC5 in operation giving numbers from zero to 999 when switch S 2 is pressed.
Count 0-999 (C): counters IC3 to IC5 in operation and a count number of up to 999 is displayed. The count can be started at zero by switching S 3 off and then on again, and it can be stopped momentarily by pressing the Freeze pushbutton switch S 2 . When S 2 is released, the count will continue from where it was interrupted, unless reset by the on/off switch.

Fig. 1. Circuit diagram for the Counterspin games unit.

COUNTERSPIN CIRCUIT

The circuit diagram for the Counterspin unit is shown in Fig.1. Basically, it consists of three stages, namely, a clock generator (IC1) using a 555 timer to supply timing pulses for two counter arrays: a type 4017 counter (IC2) for the four large numbers, and three 4026 type counter-decoders (IC3 to IC5) for the small numbers, the target number and the zero to 999 count facility.
The clock pulses are supplied by the 555 timer. ICI, which is connected as an astable multivibrator. When the supply is switched
on by S3, pulses are present on IC1 output pin 3 at a frequency dependent on the values of resistorṣ R1, R2 and capacitor C 2 .
For the values shown, the rate is about thirty pulses per second $(30 \mathrm{~Hz})$, but this can be varied, if necessary, to suit individual requirements. For instance, for the count zero to 999 facility, resistor RI could be replaced by a 500 kilohm panel mounting potentiometer, and capacitor Cl increased in value to about 2μ. The clock rate potentiometer could then be calibrated to give ten counts per second. The counter would then represent a total count-time of $999 \times 0.1=99$ seconds.

The output pulses available from ICI pin 3 are fed to the break contacts of the Freeze push-button switch S2b, the output side of which is connected to the clock inputs of counters IC2 and IC5.

LARGENUMBER COUNTER

Unlike the outputs of the 4026 counterdecoder chips, the outputs of the 4017 counter chip used to select one of the four large numbers must not sink or source a current exceeding 10 mA and so cannot directly drive the 7 -segment l.e.d. displays;

Fig. 2. Topside component layout and underside stripboard track cuts and solder joints for the Clock Generator and Large Number counter board.

RANDOM NUMEER GENERATOR

The random number generating circuit basically consists of three type 4026 counter-decoder i.c.s serially connected to generate display numbers between zero and 999. However, the Small Numbers mode requirement means that some display switching is necessary.
The clock pulses are fed via Freeze switch S2b to input pin 1 of the "Units" counter IC5. In the Small Numbers (S) mode of switch Sla, the +9 V supply is fed to IC5 pins 3 and 16 , its clock enable and supply pins, respectively. IC5's "carry out" pin 5 is coupled to IC4 input pin 1 (and likewise IC4's "carry out" pin 5 is coupled to IC3 input pin 1). However, in this switch mode, as IC3 and IC4 are not connected to the +9 V supply, only the "Units" display (X3) is active. Pressing Freeze switch $\mathbf{S} 2$ disconnects the clock pulses from IC3 input pin 1 and the active number is displayed
Note that the diodes (D45 to D65) are required in series with all the outputs of the counters to prevent interaction with the Large Number diode paths (D1 to D43). As in the previous mode, the "make" contacts of switch S2a provide "display enable" by connecting the common cathodes of displays X1, X2 and X3 to the 0 V line.
In the Target Number (T) mode of switch Sla, the +9 V supply is connected to all three counters (IC3, IC4, and to IC5 via diode D44). Consequently, all displays are enabled when Freeze switch $\mathbf{S} 2$ is pressed. As the counters' clock inputs are serially
hence the use of driver transistors TRI to TR4. In addition, a host of diodes (DI to D43) are needed to decode the four fixed large numbers so, ironically, providing four numbers out of the 1000 available forms a major part of the circuit.

The clock pulses are routed from switch S2b to input pin 14 of decade counter IC2. When the Large Number mode (L) is selected by switch S1 the +9 V on its Sla wiper provides a positive supply to IC2 to activate this counter and the common collector load resistor R5 for the transistor drivers. Normally, all ten outputs of counter IC2 repeatedly go high in turn. However, the requirement in this circuit is for the generation of only four display numbers. Thus, the fifth output (IC2 pin 10) is connected to the reset, pin 15 , so that the counter is reset on each fifth clock pulse.

The first four counter outputs (pins 2, 3,4 and 7) are connected to the bases of transistors TR1 to TR4 and the four pull-up resistors R6 to R9. Each transistor emitter is coupled to its own diode matrix to drive the appropriate display segments. When the Freeze push-button switch $\mathbf{S} 2$ is operated, its S2b contacts open and pulses are disconnected from the input to counter IC2. Consequently, the particular IC2 output activated at that moment remains high.

Simultaneously, the "make" contacts of switch S2a close and the common cathodes of the displays are now connected to the 0 V line. The relevant transistor is switched on by the counter's active output and current is supplied via the diodes in its emitter circuit to illuminate the designated segments of the displays. For example, if IC2 output pin 2 (designated "75") is frozen, TR2 is turned on and current flows through diodes D15 to D17 causing display X2 to show "7", and through diodes D18 to D22 causing display X3 to show " 5 ".

Fig. 3. Topside component layout and underside stripboard track cuts and solder joints for the Random Number Generator board.
connected, the count runs from zero to 999. Strictly speaking, target numbers in the TV game Countdown are three figure numbers, but there seems no reason why numbers below 100 cannot be accepted. If a number is too low to make a reasonable calculation then the Freeze switch S 2 button can be pressed again.
The count 0-999 (C) mode of switch SI is similar to that of the Target mode in that all three counters (IC3 to IC5) are operative. This mode is not part of the TV Countdown game, but since the count to 999 facility is available, it can be used as a timing facility.
In the Count mode (C), switch Slb connects the common cathodes of displays $\mathrm{X} 1, \mathrm{X} 2$ and X 3 to the 0 V line, overriding the action of switch S 2 a . In this way, the time interval can be displayed and monitored. This facility is useful for

Photograph showing the interconnecting cabling between the three stripboard assemblies and the switches.

Fig. 4. Topside component layout and underside stripboard track cuts and solder joints for the Display/Matrix board. The insert shows an example of how the vertically mounted diodes should be connected.
checking the elapsed time and also allowing the count to be frozen from time to time; e.g. for "stopping the clock" when questions are being asked.

At switch-on, a small value capacitor, C 2 , connected to the +9 V rail, provides a brief positive pulse to 1 C 5 's reset pin 15 , to reset the count to zero. If necessary, Freeze switch S 2 can be pushed in at switch-on by S3 to hold the zero ("000") until players are ready to start the count.

Q0/190, $1 / 5$	
Resistors	s See
R1, R3, R4	2 SUO
R6 to R9, R11	100k (8 off) TAL
R2, R10 47	47k (2 off) Page
R5 33	330
All $0 \cdot 25 \mathrm{~W} 5$	W 5\% carbon film
Capacitors	
C1 22	220 n polyester (see text)
C2 4n7	4 n 7 ceramic
Semiconductors	
D1 to	
D65 1	1N4148 signal diode (65 off)
TR1 to	
TR4 B	BC109 npn transistor (4off)
IC1 5	555 timer
IC2 4	4017 decade counter
IC3 to	
$\begin{array}{ll}\text { IC5 } & \begin{array}{l}4026 \text { counter-decod } \\ (3 \text { off })\end{array}\end{array}$	
X 1 to X3 0	0.56 in 7 -segment l.e.d. display, common cathode (3 off)
Miscellaneous	
S1 3-pole 4-way rotary swi	
S2 2-pole make and break	
S3 single-pole on/off sli switch	
Case, ABS plastic size $146 \mathrm{~mm} \times 76 \mathrm{~mm}$	
$\times 46 \mathrm{~mm}$ (internal measurements); strip-	
board 0.1 in matrix, size 17 strips $\times 29$	
holes (Fig.2); stripboard16 strips $\times 29$ holes (Fig. 3); stripboard	
0.1 in matrix, size 24 strips $\times 26$ holes	
(Fig.4); 8-pin d.i.l. socket, 16 -pin di.i.l.	
socket (4 off); knob; AA-type and holder with clip; 8BA nuts, bolts and	
washers (2 off); stranded connecting	
wire; solder, e	r, etc.

CONSTRUCTION

Component assembly of Counterspin is made on three small pieces of stripboard. All components are mounted on these except for the three front panel switches S1, S2 and S3.
Stripboard assembly details for the Clock Generator and Large Number counter board are shown in Fig.2. The stripboard has a 0.1 inch matrix of 17 strips $\times 29$ holes and the length is cut to slot into the grooves in the walls of the suggested plastic ABS box.
The stripboard copper underside layout shows all the solder points and the cuts to be made in the strips. Look out for any whiskers of copper that may be short-circuiting adjacent strips following track cutting. It is advisable to check for this with an ohmmeter or continuity tester at various stages during construction.
Sockets are recommended for all the i.c.s. Static charges can ruin CMOS chips, so it is a good policy to keep them in their original packing until ready for use, and fit them last.
Assembly details for the Random Number Generator board are shown in Fig. 3. Again, the stripboard length is cut to slot into the grooves of the box and has a matrix of 16 strips $\times 29$ holes. All components and fixed links are shown and the underside drawing indicates the soldered connections and cuts in the copper strips.
Assembly details for the Display/Matrix board are shown in Fig.4. The stripboard size is 24 strips by 26 holes. The most compact layout for the "large number" diodes (D1 to D43) is to mount them vertically as

Fig. 5. Wiring details for the switches, showing stripboard destinations by figure number and matrix numbers.
shown in the inset figure example. If the leads are kept short, the diodes sit comfortably below the level of the displays and the front panel.
The Display/Matrix board is secured behind the front panel by two 8BA nuts, bolts and washers. Suitable viewing cut-outs are,

Close-up details of the prototype stripboard assembly for the Counterspin display module.
of course, needed in the front panel. Holes also need to be drilled in the front panel to mount the three switches, S 1 to S3.
Details of the connections between the switches and the stripboard assemblies are shown in Fig.5. The destinations of wires going to the stripboards are quoted as numeric-alpha codes indicating the matrix hole address. Multi-stranded insulated wire is recommended for all interconnections between the three stripboard assemblies and the switches.

The unit is powered at 9 V by six type AA cells connected in series. Although the quiescent current is only about 5 mA , the current consumption can vary between 60 mA to over 100 mA when the Freeze switch (S 2) is pressed (about 10 mA per display segment).

FURTHER

ENLIGHTENMENT

Variations in the relative brilliances of the displays for different numbers may be noticed. This may compensated for by inserting additional resistors, of about 330 ohms, between the diode matrix outputs and the inputs to the display segments, as described for Counterspell. In this case, resistor R 5 should be replaced by a wire link. As with Counterspell, this technique is likely to result in increased current consumption.
Next Month: We introduce "On Your Marks buttons" to show Quizmaster who answered first.

DON'T MISS OUT = ORDER YOUR COPY NOW! namax With PRAGIICAT
 ELEBTRDNMBS
 INCORPORATING ELECTRONICS MONTHLY
 NEWSAGENTS ORDER FORM
 Please reserve/deliver a copy of Everyday with Practical Electronlcs for me each month.
 Everyday with Practical Electronics is published on the first Friday of each month and distributed by Seymour.
 Make sure of your copy of EPE each month - cut out or photostat this form, fill it in and hand it to your newsagent.

High quality stepping motor kits (all including stepping motors) 'Comstep' independent control of 2 stepping motors by PC (Via the Parallel Port) with 2 motors and software. Kit f67.00: ready built f 99.00 Software support and 4 -drgital inputs kit. $£ 27.00$ Power interface 4A kit £36.00, power interface 8A kit, E46.00 Stepper kit 4 (manual controi) includes 200 step stepping motor and control circuit We are now stocking a pange of stepping motors and kits to drve thern - please ask for the stepping motor data sheer for full information Inverter toroidal transiormers 225VA 10.5-0.10.5V LEOMary 0.260-285V secondary \quad £29.95 LEDs 3 mm or 5 mm red or green 7 p each; yellow $11 p$ each Cable Ties 1p each, $\mathbf{E 5} .95$ per 1000, $\mathbf{E 4 9 . 5 0}$ per 10,000 . High quality photo resist copper clad epoxy glass boards Dimensions single-sided double-sided 3×4 inches 4×8 inches c 1.09 C 2.75 £1. 23 £2.99 $\begin{array}{lr}6 \times 12 \text { inches } & \text { £6.20 } \\ 12 \times 12 \text { inches } & \mathbf{E} 12.25\end{array}$ RECHARGEABLE BATTERIES AA (HP7) 500mAH AA 700 MAH C 2 AH with solder tags D GAH with solder tags AAA (HP16) 180 mAH AA 500 mAH with solder tags C (HP11) 18 AH D(HP2) 1.2AH. Subc with somAH. 1/3 AA with tags (Philips CTV) Standard Charger, charges 4 AA cells in 5 hours of $4 C s$ or $D \sin 12$ to 14 hours plus $1 \times$ PP3 (1.2.3 or 4 cells may be charged at a time)......... $\mathbf{£ 5 . 9 5}$ High power charger, as above but charges the Cs and Ds in 5 hours, AAs, Cs and Ds musibe charged in iwos or fours. C 10.95 Nickel Metal Hydryde AA cells, high capacity with no memory; $1000 \mathrm{mAH} £ 3.50 ; 1200 \mathrm{mAH}$. $£ 3.75$ SPECIAL OFFERS - PLEASE CHECK FOR AVAILABILITY Stick of $4,42 \mathrm{~mm} \times 16 \mathrm{~mm}$ NiCad batteries, $171 \mathrm{~mm} \times$ 16 mm dia., with red and black leads. $48 \mathrm{~V} \quad £ 5.95$ Computer grade capacitors with screw terminals. $58000 \mu \mathrm{~F} 60 \mathrm{~V}$ 115 V AC. 80 V DC Motor $4 \mathrm{~mm} \times 22 \mathrm{~mm}$ shafi. 50 mm dia $\times 60 \mathrm{~mm}$ long body (excluding shaft), it has a replaceable thermal fuse and brushes E4.95 each. E3.95 100 + 7-segment common anode le. display, $12 \mathrm{~mm} .45 p$ LM337K TO3 case variable regulator GaAs F.E.T. low leakage current S8873 $\mathbf{E 1 2 . 9 5}$ each. £9.95 $10+$. $£ 7.95100+$	Sinclair light gun terminated with a jack plug and PP3 clip gives a sıgnal when pointed at 50 Hz flickering light, with output waveform chart $£ 3.95$ DC-DC convener. Reliability model, V12P5, 12 V input 5 V 200 mA out. 300 V input to output isolation, with data £4.95 each or pack of 10 - $\mathbf{\$ 3 9 . 5 0}$ Hour counter used 7-digit 240 V a c. $50 \mathrm{~Hz} \quad \mathbf{£ 1 . 4 5}$ QWERTY keyboard. 58 - key good quality switches, new Airpax A82903 7.5^{*} step. 27 ohm. 68 mm dia. body. 63 mm shatt $\quad \mathbf{C 8} 95$ or $\mathbf{E} 200.00$ for a box of 30 Polyester capacitors, box type, 22.5 mm lead pitch 0.9μ F 250 V d.c. 18 p each $14 \mathrm{p} 100+9 p 1000+$ ${ }_{3} \mu \mathrm{~F} 250 \mathrm{~V}$ d c. 20p each. $15 p 100+10 \mathrm{p} 1000+$ $3 \cdot 3 \mu$ F 100 V d.c 30 peach. $20 \mathrm{p} 100+.15 p 1000+$ $7.5 \mathrm{p} 1000+$ electrolytic axial leads. 15 p each. $0 \cdot 22 \mu \mathrm{~F} 250 \mathrm{~V}$ polyester axial leads. 15 peach, $100+7.5 p$ each Polypropylene 1μ f 400 V d.c. (Wima MKP10) 27.5 mm pich. $32 \times 29 \times 17 \mathrm{~mm}$ case. 75 p each. 60p 100 + Philips 123 series solid aluminum axial leads. $33 \mu \mathrm{~F} 10 \mathrm{~V}$ and $2.2 \mu \mathrm{~F} 40 \mathrm{~V} 40 \mathrm{p}$ each $25 \mathrm{p} 100+$ Philips 108 series long life $22 \mu \mathrm{~F} 63 \mathrm{~V}$ axial 30p each, 15p 1000 + pacitors. all 5 mm Multilayer AVX ceramic capacitors, all 5 mm pitch, 100 V 100 pF .150 pF .220 pF .10 .000 pF (10n) 10p each. 5p 100 +. 3.5p $1000+$ 500 pF compression trimmer. 40 FF 370 V a.c motor start capocitor (diatectrol type Sontaining no pc.b s) $£ 5.95$ or $£ 49.50$ for 10 for rif circuits. 27 ohm 2 W 68 naucrance. ideal 15 p each $100+$ we have a range of $0.25 \mathrm{~W}, 0.5 \mathrm{~W}$, 1 W and 2 W solid carbon resistors - please send SAE for lis? P.C. 400W PSU (Intel part 201035.001) with standard motherboard and 5 disk drive connectors, fan and mains infet/outlet connectors on back and switch on the side (top for tower case) dims $212 \times 149 \times 149 \mathrm{~mm}$ excluding switch. $£ 26.00$ each, $£ 138.00$ for 6 M $\times 180$ Oigital Multimeter 17 ranges 1000 V d.c. $750 \mathrm{Va} . \mathrm{c}$. 2 Mohm 200 mA uansistor Hfe 9 V and 1.5 V battery fest $\mathbf{£ 1 2 . 9 5}$ AMO 27256 -3 EPROMS £2.00 each, $\mathbf{£ 1 . 2 5 1 0 0 +}$ DIP switch. 3PCO 12- Din (ERG SDC- 3-023) 60 p each, 40p $100+$ Disk Drive Boxes for a 525 disk drive, with room for a power supply. light grey plastic 67 mmx Handheld Ulirasonic remote control...........95. CV2486 gas relay $30 \mathrm{~mm} \times 10 \mathrm{~mm}$ dia with 3 wire terminals. will al so work as a neon light20peach, $\mathbf{5 7 . 5 0}$ per 100 All products advertised are new and unused unless otherwise stated Wide range of CMOS TTL 74HC 74F Linear Transistors kits, rechargeable batteries, capactiors. tools etc. always in stock Please add $£ 1,95$ towards P\&P VAT included in atl pnces JPGELECTRONICS 276-278 Chatsworth Road Chesterfield S40 2BH Access/Visa Orders: Tel: (01246) 211202 Fax: (01246) 550959 Callers welcome

Techniques
 ACTUALLY DOING TT: by Robert Penfold

0ver the years I must have received a few thousand readers' letters, and I cannot help noticing a steady trend. The general complexity of electronic projects has certainly increased over the years, and what is now an average sort of project would have been considered a fairly major undertaking twenty or thirty years ago.
You would have expected that the percentage of readers' letters asking for help with non-working projects to have increased, as it seems reasonable to assume that the greater complexity of modern projects gives more opportunity for something to go wrong. Surprisingly, the percentage of letters requesting help with non-working projects has, in fact, steadily reduced over the years. Letters of this type once accounted for the vast majority of the letters I received, but they are now a fairly small minority.
Possibly the general competence of electronics hobbyists has increased over the years, but I think it is more likely that improvements in methods of construction have reduced the chances of making mistakes. In particular, the vast majority of modern projects are based on a custom printed circuit board (p.c.b.). Using this method of construction it is comparatively easy to get everything right, and if a careless error should be made it will usually be spotted quite quickly.

Right Connections

This is not to say that building modern electronic projects is completely foolproof. Although there has been a trend towards having everything on the circuit board (including controls, sockets, etc.), most projects have at least a small amount of hard wiring, point-to-point wiring, or whatever other term you prefer. It is when completing this wiring that you find real opportunities to make mistakes.

Usually you will be working from a wiring diagram that provides good pictorial representations of the actual controls, sockets, transformers, or whatever, and the hard wiring should not, therefore, live up to its name. In practice it seems to be much easier to make the odd mistake when dealing with this wiring than when fitting the components to the printed circuit board.
One possible reason for this is that a printed circuit board normally has one
hole per leadout wire, but it is quite normal for some of the tags on controls and switches to be left unused. For example, if a 5 -way 1 -pole switch is required, there is a slight problem as switches having this contact arrangement are not readily available.
The most practical choice is a 6 -way 2 -pole rotary type having its adjustable end-stop set for 5 -way operation, and one pole ignored. Six tags of the switch would then be used, and the other eight would be left unconnected.

Some constructors seem to get worried if any components in a project have tags or pins that are left unconnected. This is not usually indicative of anything missing from a circuit diagram or wiring diagram. It occurs simply because many controls, sockets, etc. have "extras" that are not needed in a particular design, so they are left connected to "thin air"

It is perhaps worth pointing out that many integrated circuits (i.c.s) also have pins that are not connected internally, or which are not normally utilized (pins 1,5, and 8 of most operational amplifiers for example).

When wiring up a project that has a number of unused tags you need to take extra care. Be especially careful if there are components which have no connections to a large proportion of the tags.

Jack sockets seem to be one of the main causes of confusion, as many of these are fitted with switch contacts that are little used in modern designs. Fig. 1 provides connection details for
normal 3.5 mm and $6.35 \mathrm{~mm} \quad(0.25$ inch) switched jack sockets when the switch contact or contacts are not utilized.

Twinning

There is an increasing problem with components that do not conform to the traditional shapes and sizes. If a components list calls for (say) a 10 k log potentiometer, in one of the larger components catalogues you may well be able to find a choice of half a dozen components that fit this general description (standard, miniature, small slider, large slider, etc.). Many switches and sockets are now also available in a variety of styles.

We would strongly advise beginners to look carefully at any photographs of the prototype unit, and then search some component catalogues for components that physically match up with the components used in the prototype This should save you the trouble of having to work out the correlation between the tags on the component you have obtained and the one illustrated in the article. I have pointed out many times that a selection of component catalogues is an essential part of the hobby, and this remains as true as it ever was.

From time to time you will inevitably end up with a component that is correct in every detail, but which is physically quite different to the one il lustrated in the wiring diagram. In this situation a test meter, even a very basic one, is more than a little useful.
With the meter set to a resistance range (or the continuity tester setting) you can use it to check such things as which tags of a switch are interconnected at each setting, and which tag of a socket connects through to a given tag on the plug. Such is the diversity of modern sockets, switches, etc., I tend to routinely check practically all switches and sockets to make sure I have not jumped to any wrong conclusions.

Wires

Unless large currents are involved, a fairly thin type of multi-strand connecting wire is the best choice. I normally use $7 / 0.2$ p.v.c. insulated connecting

Fig. 1. The connections to switched jack sockets when the switch contacts are not used.
wire (i.e. it has seven strands of 0.2 mm dia. wire).
It is probably best to avoid very thin grades such as $7 / 0 \cdot 1$ connecting wire as these tend to be a bit difficult to deal with. In fact some wire strippers are virtually useless with wire as thin as this. Always use proper wire strippers as knives or scissors would almost certainly damage the wires, which would severely weaken them.
One or two thicker gauges of connecting wire are listed in most component catalogues, but these are only needed for wiring that will carry high currents. If some form of heavy gauge connecting wire is needed the article concerned should make this clear, and suggest a suitable type of wire.
Do not try to use any form of singlestrand wire or non-insulated wire for general project wiring. Non-insulated wires are almost certain to cause a few short circuits.
The stiffness of single-strand wire can make it a bit awkward to use, and even the slightest nick when stripping off the insulation will very seriously weaken it. If one or two wires in a multi-strand cable should be nicked slightly during the stripping process the cable will certainly be weakened, but probably not enough to cause it to fail.

Keep It Neat

A lot of hard wiring consists of groups of wires, such as three wires running from an area of the circuit board to the tags of a potentiometer. You can use individual wires, but I find that ribbon cable provides an easy means of obtaining neat results. This is a multi-way cable that has the wires side-by-side, giving it a flat, ribbon-like appearance. For project wiring it is probably best to use one of the thicker grades of ribbon cable.
The obvious choice is a $7 / 0.2$ ribbon cable, and this is specifically designed as a general purpose multi-way connecting cable. The finer grades are intended for use with IDC connectors. They are usable for project wiring, but are relatively difficult to use.
Ribbon cable is available with a grey p.v.c. insulation, or with each wire in a
different coloured sleeving. For project wiring it is recommended that multicoloured "rainbow" type, even if this costs a little extra, be used. Having each wire a different colour makes it easy to identify each one, and greatly reduces the risk of any crossed-over connections
Ten-way cable is sufficient for project wiring. If you should occasionally need to have more than ten wires running from the board to a large switch, it is easier to use (say) two eight-way cables rather than one 16 -way type.
It is easy to peel off a cable having the required number of wires. It is equally easy to separate the wires at each end of a cable so that they can be stripped and connected to the tags. This cable is designed to pull apart with only a moderate amount of force.

Making Connections

Connecting wires to tags and pins is slightly more difficult than soldering components onto a circuit board, but it is still reasonably straightforward Once a few millimetres of insulation has been stripped from a connecting wire it should be "tinned" with solder at both ends.

In other words, apply the hot bit of the soldering iron to one end of the wire and then feed in a small amount of solder. Then repeat this procedure with the other end of the wire. This makes the wire easier to deal with by bonding together the individual wires, and it also makes it much easier to produce reliable soldered joints.
The tags and pins of the controls, sockets, etc. should also be "tinned" with solder. In most cases there will be no difficulty in getting a nice coating of solder to flow onto the tags and pins.

Occasionally there may be problems due to a small amount of dirt or corrosion. The offending tags or pins must then be scraped with the small blade of a penknife or a small file to remove the contamination.

There should then be no difficulty in getting the solder to flow properly onto the cleaned surfaces. There is little chance of producing strong soldered joints on tags or pins that cannot be "tinned" properly.
Conversely, if the wire and the tag are properly "tinned" with solder, it is very difficult to produce a bad joint. If the component has genuine tags (complete with a hole) the end of the wire should be bent into a " U " shape and hooked through the hole in the tag.
Many potentiometers, switches, etc. now have pins rather than tags, so that they can be mounted on a printed circuit board. Components of this type are perfectly usable in a hard wired project, and it is just a matter of taking the end of the lead through one or two turns around the pin-(see Fig. 2).

Fig. 2. No elaborate knots are needed prior to soldering wires in place.

Either way, with the bit of the iron applied to the joint and a small amount of solder fed in, a strong connection should be made. Provided the "tinning" has been done properly, simply putting some solder onto the bit, and then briefly applying it to the joint will produce a good joint.

Do not try this latter method when fitting components onto a circuit board. It more or less guarantees a fair percentage of "dry" joints and a project that will not work.
 SUBSCRIPTION ORDER FORM

Annual subscription rates (1995): UK $£ 24.00$.
Overseas $£ 30$ (surface mail) $£ 47.50$ (airmail)
To: Everyday with Practical Electronics,
Allen House, East Borough, Wimborne, Dorset BH21 1PF
Tel: 01202881749 Fax: 01202841692

I enclose payment of $£ \ldots$. (cheque/PO in $£$ sterling only). payable to Everyday with Practical Electronics Access or Visa No.

Signature....
Card Ex. Date
Please supply name and address of cardholder if different from the subscription address shown below. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Name.

SHOP RHTALK with David Barrington

National Lottery Predictor
Apart from the ready-programmed PIC microcontroller, almost all the other components required to build the National Lottery Predictor could be classed as standard items. However, the dual 7 -segment display and the pushbutton switch will have to be selected carefully if they are to fit on the small printed circuit board.
The pre-programmed PIC16C54RC/P microcontroller chip is available from the author, price $£ 7$. He also has a consignment of dual displays and pushbutton switches. These are being offered as a pack, one each of display and switch, for the sum of $£ 4$. A floppy disk containing the complete Source Code together with other related files is also available for just $£ 1$.
All orders (Strictly Mail Order On/y) should be sent to: Mr. J. Ilett, 99 Telford Way Yeading, Hayes, Middlesex, UB4 9TH. All monies should be made payable to J. Mett. Al prices inc/ude postage and packing. Overseas customers add $£ 2$ to order.
The specified case used in the prototype model was purchased from Maplin and is their type 3415 box, code FK74R. The red display filter material also came from the same supplier, code FR34M.

Most of our component advertisers carry various versions of 7 -segment displays and no doubt many will work in this circuit but check they have an identical pinout arrangement first. to make sure they will fit on the small p.c.b. The printed circuit board is available from the EPE PCB Service, code 935.

Auto Battery Charger

To date, we have only come across two stockists listing the ICL8069 1.2V voltage
reference called for in the Auto Battery Charger. These are: Maplin, code YH39N and Electromail, code 428-969.

The ICL7611 micropower op.amp, chosen specially for its exceptionally low current requirement, should be available from most component suppliers. However, in case of difficulty it is listed by Electromail (0536 204555) and Cricklewood (\$ 081 4520161).

The specified relay used in the prototype model has contacts rated 5 A at 240 V a.c. and comes from the $5 \mathrm{~A} / 10 \mathrm{~A}$ miniature range sold by Maplin. The one suggested is the 12 V version, coded JM18U 12V/5A Min. Relay. Other relays can, of course, be used but make sure that the contacts are adequately rated.
As the mains "live" connection is made directly to the relay contacts these pins MUST be covered with plastic insulation sleeving for added safety. It is also very important, for personal safety, that a well "Earthed" aluminium or metal case is used.

A further important point to note is that if resistor R6 is needed to complete the setting up. it must have a power rating of 3 W minimum. The Charger printed circuit board is available from the EPE PCB Senvice, code 934.

Light Activated Switch

Most of our component advertisers should carry the ORP12 light dependent resistor or its equivalent called for in the Light Activated Switch.

The circuit should work properly using almost any relay having a 12 V coil with a resistance of about 300 ohms or more, but make sure you select one which has contacts rated for your intended application. The relay used in the prototype is the Maplin "10A Mains" type, code YX97F.

Switch On/Off Timer
Once again, the only item likely to cause concern for builders of the Switch On/Off Timer is the relay. This can be almost any 12 V coil type with a resistance of 300 ohms or more, plus of course suitably rated contacts. Both the Maplin "10A Mains Relay" and the Electrovalue "Min. S.P.D.T. 3A" type worked successfully.

Continuity Tester

The CA3130E op.amp i.c. used in the Continuity Tester should not be replaced with a substitute op.amp. This i.c. operates well from a 6 V supply, is capable of single supply operation and has good freedom from "latch-up." Most other op.amps do not match this specification and may not perform very well in this circuit.
The 6 V buzzer used in this circuit was purchased from Maplin, code FL39N.

PLEASE TAKE NOTE

Moving Display Metronome

Jan. '95
At the time of "going to press" we were unable to pass on a source of supply for the VN0610L f.e.t specified for TR1 and TR2. We have since heard that Farnell (as 0532 636311) carry stocks of this n-channel device.
As this is an enhancement mode MOSFET device, it is suggested that a BS170 (available from Electrovalue - 0784 442253) would make a good substitute. The 2N5459 will not function in this circuit.
Alternatively, a reader has informed us that the circuit functions correctly with a ZTX300 non transistor, with a 220 kilohm resistor in its base connection, replacing the specified device. (i.e. base to gate, collector to drain and emitter to source). It has also been suggested (but not tried) that almost any npn small signal transistor with an h_{fe} of around 300 (BC549C etc) would be OK, with a 10 kilohms resistor feeding the base, since the CMOS i.c.s are capable of sourcing the small amount of current required.

Our thanks to Mr. R. K. Stephenson and Mr. B. J. Taylor

[^4]
DIRECT BOOK SERVICE

The books listed have been selected by Everyday with Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ondering details are given on the last book page. For another selection of books see next month's issue.

ELECTRONIC PROJECTS-BOOK 1
Published by Everyday Electronics in association with Magenta Electronics.
Contains twenty of the best projects from previous issues are: Seashell Sea Synthesiser, EF Treasure. The projects are: Seashell Sea Synthesiser, EE Treasure Hunter, Min to Light, BBC 16 K Sideways Ram, Simple Short Wave Radio, Insulation Tester, Stepper Motor interface, Eprom Eraser, 200 MHz Digital Frequency Meter, Infra Red Alarm, EE Equaliser Ioniser, Bat Detector, Acoustic Probe, Mains Tester and Fuse Finder, Light Rider - (Lapel Badge, Disco Lights, Chaser Light), Musical Doorbell, Function Generator Tilt Alarm, 10W Audio Amplifier, EE Buccaneer Induction Balance Metal Detector, BBC Midi Interface, Variable Bench Power Supply, Pet Scarer, Audio Signal Generator.
128 pages (A4 size)
Order code EP1 $\mathbf{£ 2 . 4 5}$
ELECTRONICS TEACH-IN 88/89-
INTRODUCING MICROPROCESSORS
Electronics)
A complete course that can lead successful readers to the award of a City and Guilds Certificate in Introductory Microprocessors ($726 / 303$). The book contains everything you need to know including full details on register-
ing for assessment, etc. Starting with basic terminology, ing for assessment, etc. Starting with basic terminology,
integrated circuits, logic families and numbering systems integrated circuits, logic families and numbering systems
the text builds in stages, with revision and assessments built in, up to programming, languages, flow charts, etc. The course is ideal for the newcomer to the subject.
80 pages (44 size)

Special Everyday Electronics Books

ELECTRONICS TEACH-IN NO. 5 GUIDE TO BUILDING ELECTRONIC PROJECTS Published by EVERYDAY ELECTRONICS
Duebyists
Due to the demand from students, teachers
we have put together Due to the demand from students, teachers
we have put together a range of articles fry
Everyday Electronics that will assist th
the construction of electronic project
The book contains the comple Building with Vero; Projec ting your Project Workin
Choosing and Using quency Meters. Symbols; Cory ${ }^{2}$ derators, etc; Data - Circuit ponents; C actually Doing It - Understanding the σ controls, Understanding Capacitors: Proj UV Expo e Unit: Low-cost Capacitance Meter; Personal 88 pag.

Corder code 7 II

£2.95

ELECTRONICS TEACH-IN No. 6

(Published by Everyday with Practical Electronics) Mike Tooley B. A.
This book is designed for the beginner and experienced reader alike, and aims to dispell some of the mystique associated with the design of electronic circuits. It shows how even the relative newcomer to electronics can, with the right approach, design and realise quite complex circuits.
Fourteen individual p.c.b. modules are described which, to design and construct a very wide range of different projects. Nine "hands-on" complete DIY projects have also been included so readers can follow the thinking behind design, assembly, construction, testing and evaluation, logether with suggested "mods" to meet individual needs. The practical projects have each been
designed to stand on their own as complete items of
equipment. P.C.B.s for all the modules and projects are available by mail order.
The subjects covered in each chapter of the book are: Introduction and Power Supplies; Small Signal Amplifiers; Power Amplifiers; Oscillators; Logic Circuits; Timers; Radio; Power Control; Optoelectronics.
The nine complete constructional projects are: Versatile Bench Power Supply; Simple Intercom; Bench Amplifier/Signal Tracer: Waveform Generator; Electronic Die: Pulse Generator; Radio Receiver; Disco Lights Con136 pages
f3.45

TEACH-IN No. 7 plus FREE Software

ELECTROUE AND DIGITAL
(Published by EverySE with Practical Electronics) Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE The highly acclaimed Teach-In '92 series, which included the construction and use of the Mini Lab and Micro Lab test and development units, has been put together in book form. Additionally EPT Educational Software have developed a GCSE Electronics software program to compliment the course and a FREE DISC covering the first two
parts of the course is included with the book. parts of the course is included with the book
fically at the novice or complete beginner in electronics The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles.
If you are taking electronics or technology at school or college, this book is for you. If you just want to learn the basics of electronics then this book is for you. If you are teaching electronics or technology you must make sure you see it. Teach-In No. 7 will be invaluable if you are considering a career in electronics or even if you are already tratning in one. The Mint Lab and software enable development circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab microprocessor add-on system will appeal to higher level students and those developing microprocessor projects.

Computers and Computing

HOW TO CHOOSEA SMALL BUSINESS

COMPUTER SYSTEM

D. Weale

This book is for anyone intending to buy an IBM com patible computer system, whether it is their first system o a replacement. There are sections on hardware, application and systems programs and how to actually make you choice as well as sections on the law, ergonomics and glossary of common terms

(which could save much effort and expense).
114 pages

UNDERSTANDING PC SPECIFICATIONS

R. A. Penfold

If you require a microcomputer for business applications or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, programs, hardware add-ons, etc. The main difficulty for the uninitiated is deciding on the specification that will best suit his or her needs. PCs range from simple systems of limited capabilities up to complex systems that can happily run applications that would have been considered beyond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is inadequate to run your applications efficiently, or one which goes beyond your needs and consequently represents poor
value for money. This book exp
Tubjects covered include the following: Differences subjects covered includg the following: Differences
between types of $\mathrm{PC}(X T, A T, 80386$, etc); Maths co-processors; Input devices (keyboards, mice, and digitisers); Memory, including both expanded (EMS) and extended RAM: RAM disks and disk caches; Floppy disk drive formats and compatibility; Hard disk drives (including interleave factors and access times); Display adaptors, including all standard PC types (CGA, Hercules, Super Can't etell your EMS from your EGA! 104 pages

Order code BP282
£4.95

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE

Obtain a vast increase in running speed by writing programs for 6800 based micros such as the Commodore
Amiga. Atari ST range or Apple Macintosh range etc, in Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one might think and this book covers the fundamentals.

112 pages Order code BPT84 £2.95

MULTIMEDIA ON THE PC
 Ian R. Sinclair

In this book, you'll find out what a CD ROM is, how it works, and why it is such a perfect add-on for a PC, allowing you to buy programmes, text, graphics and sound on a and a sound card, pointing out the common problems that and a sound card, pointing out the common problems that arise, and then shows how to use them to create a com-
plete multimedia presentation that contains text, photos, a plete multimedia presentation that contains text, photos, a
soundtrack with your own voice recorded as a commentary, even animation and edited video footage.
184 pages 1 Order code PC112] 11.95
A CONCISE INTRODUCTION TO MS-DOS

N. Kantaris

This guide is written with the non-expert, busy person in mind and, as such, it has an underlying structure based on "what you need to know first, appears first". Nonetheless. the guide is also designed to be circular, which means tha you don't have to start at the beginning and go to the end The more experienced user can start from any section. DOS and MS.DOS as implemented by IBM both PC DOS and MS.OOS as implemented by 18 BM and othe 64 pages Order cade BP23?

MAKING MS-DOS WORK
FOR YOU (covers version 6.2)
N. Kantanis \& P. R. M. Oliver

This book was writen with the busy person in mind and, as such, it has an underlying structure based on what
book has also been designed to be circular, which means that you don't have to start at the beginning and go to the end.
tiles which allow you to display white customised batch screen, and in the you to display what you want on your being forced to use the DOS prompt on a blank screen. How to design and set up a fast interactive and professional looking menu system, so that you or anyone else can run utility applications or commercial software
packages easily. How the ANSI.SYS display and key. poard commands can be used to position the cursor on any part of the screen, change the intensity of the displayed characters or change their colour. How the Edit screen editor or the Edlin line editor can be used to enter ESCape (ANSI.SYS) commands into simple ASCII files to allow control of both your screen display and your printer. How to control the operation of the two main types of printers in use today. Epson compatible dot matrix and HP compatible laser printers. finding files, protecting files from accidental erasure, a simplified backup process, a screen saver, and a disc cataloguing system.
The Debug program and how it can be used to create. see and change the contents of any file, including those of programs written in assembler code. This includes how to find your way around the names and rasks
of the CPU registers and the meaning of some simple of the CPU registers and
assembler mnemonics.
182 pages Order code BP319
¢ 4.95

AN INTRODUCTION TO CP/M
 R. A. Penfold

In order to run and use programs operating under CP/M it is not essential to have an understanding of the system, but a reasonable knowledge of the subject can certainly be of immense help when minor problems occur, and also in fully exploiting the possible potential 84 pages \quad Order code BPilds
£2.95

Audio and Music

ACOUSTIC FEEDBACK - HOW

TO AVOID IT
Feedback is the bane of all public address systems. While done to reduce it to a level at which it is no longer a problem.
Much of the trouble is often the hall itself, not the equipment, but there is a simple and practical way of greatly improving acoustics. Some microphones are prone to leedback while others are not. Certain loudspeaker systems are much better than others, and the way the units are positioned can produce or reduce feedback. All these matters are fully explored as well as electronic aids such as equalizers fre quency-shifters and notch filters.
sidered, and also the related probloup concerts are consometimes encountered with large set-ups. We even take a look at some unsuccessful attempts to cure feedback so as to save readers wasted time and effort duplicating them.
Also included is the circuit and layout of an inexpensive but highly successful twin-notch filter, and how to operate it.
92 pages
Order code BP310
O.

PRACTICAL MIDI HANDBOOK

R. A. Penfold

The Musical Instrument Digital Interface (MIDI) is surrounded by a great deal of misunderstanding, and many of the user manuals that accompany MIDI equipment are quite
incomprehensible to the reader.
The Practical MIDI Handbook is aimed primarily at
The Practical MID Handbook is aimed primarily ar the vast capabilities of MIDI, but who have no previous knowledge of electronics or computing. The majority of the book is devoted to an explanation of what MIDI can do and how to exploit it to the full, with practical advice on connecting up a MIDI system and getting it to work, as well 128 pages \quad Order code PC101
£ 6.95

PREAMPLIFIER AND FILTER CIRCUITS

R. A. Penfold

This book provides circuits and background information for a range of preamplifiers, plus tone controls, filters, mixers, etc. The use of modern low noise operational amplifiers and a specialist high performance audio preamplifier i.c. results in quite simple. All the circuits featured can be built at quite low cost (just a few pounds in most cases)
The preamplifier circuits featured include:- Microphone preamplifiers (low impendance, high impedance, and crystal). Magnetic cartridge pick-up preamplifiers with R.I.A.A equalisation. Crystal/ceramic pick-up preamplifier. Guitar pick-up preamplifier. Tape head preamplifier (for use with compact cassette systems)
Other circuits include:- Audio limiter to prevent overloading of power amplifiers. Passive tone controls. Active tone controls. PA filters (highpass and lowpass). Scratch and rumble filters. Loudness filter. Audio mixers. Volume and 92 pages Order code BP309 £3.95

AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSURE DESIGN
V. Capel

This book explores the various features, good points and snags of speaker designs. It examines the whys and wherefores so that the reader can understand the
principles involved and so make an informed choice of design, or even design so make an informed choice of herseff. Crossover units are also explained, the various types, how they work, the distortions they produce and how to avoid them. Finally there is a step-by-step description of the construction of the Kapellmeister 148 pages

Order code 8P256
£2.95

COMPUTERS AND MUSIC - AN INTRODUCTION
R. A. Penfold

Computers are playing an increasingly important part in the world of music, and the days when computerised music was strictly for the fanatical few are long gone.
If you are more used to the black and white keys of a
synth keyboard than the OWERTY keyboard of a computer synth keyboard than the QWERTY keyboard of a computer you may be understandably confused by the jargon and terminology bandied about by computer buffs. But fea system is not as difficult as you might think.
This book will help you learn the basics of computing running applications programs, wiring up a MIDI sys tem and using the system to good effect, in fact jus about everything you need to know about hardware and the programs, with no previous knowledge of computing needed or assumed. This book will help you to choose the and equip you to exploit that system fully. 174 pages \quad Order code PC10] $\quad £ 8.95$

ELECTRONIC PROJECTS FOR GUITAR

R. A. Penfold

This book contains a collection of guitar effects and some general purpose effects units, many of which are suitable fo beginners to project building. An introductory chapter gives guidance on construction.
Each project has an introduction, an explanation of how It works, a circuit diagram, complete instructions on strip and using the units. Contents include. Gotes on setting up and using the unit. Contents include: Guitar tuner; Guita preamplifier; Guitar head phone amplifier; Soft distortion unit fects unit; Noise gate/expander; Treble booster; Dynamic treble booster; Envelope modifier; Tremelo unit; DI box 110 pages \quad Order code PCito $£ 8.95$

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION R. A. Penfold
R. A. Penfold

Practical constructıonal details of how to build a number of audio power amplifiers ranging from about 50 to $300 / 400$ | watts r.m.s. Includes MOSFET and bipolar transistor designs. |
| :--- |
| 96 pages |
| Order code BP277 |$\quad \mathbf{~} 3.95$

Theory and Reference

ELECTRONIC HOBBYISTS HANDBOOK

R. A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthis iast is likely to need for the day-to-day pursuance of colour codes. Details the characteristics and pinouts of many popular seimiconductor devices, including various types of logic ICs, operational amplifiers, transistors, FETs, unijunctions, diodes, rectifiers, SCRs, diacs, til acs, regulators and SMDs, etc. Ilustrates many usertio types of circuits, such as welt as including a separai section on power supplies. Also contains a multitude of other useful data.

88 pages ©rder code BP233 £4.95

FROM ATOMS TO AMPERES

F. A. Wilson

Explains in crystal clear terms the absolute fundamentals behind electricity and electronics. Really helps you to discover a
time ever.

Have you ever: Wondered about the true link between olectricity and magnetism? Felt you could never under stand the work of Einstein, Newton, Boltzmann, Planck and other early scientists? Just accepted that an electron is like a little black ball? Got mixed up with e.m.f. and p.d.? Thought the idea of holes in semiconductors is a bit much?

Then help is at hand with this inexpensive book, in as simple a way as possible and without too much complex mathematics and formulae
244 pages
Temporarily out of print
ELECTRONICS - A "MADE SIMPLE" BOOK
G. H. Olsen

This book provides excellent background reading for ou Introducing Digital Electronics Teach-In Book and wil be of interest to everyone studying electronics. The sub ject is simply explained and well illustrated and the book assumes only a very basic knowledge of electricity.
330 pages
Order code NE10
330 pages
Order code NE1O
A REFERENCE GUIDE TO PRACTICAL
ELECTRONICS TERMS
F.A. Wilson

Electronic devices surround us on all sides and their numbers are increasing without mercy. Ours is the problem therefore in keeping up with this relentles expansion. unfortunately we cannot know it all and mos
of us do not wish to afford the cost of large reference of us do not wish to afford the cost of large reference
books which explain many concepts in fair detail. Here is an answer, an inexpensive reference guide which ex plains briefly (but we hope, well) many of the underlying electronics features of pratical devices, most of which, to a certain extent, control our lives.
This book is in effect more than just a dictionary of practical electronics terms, it goes a stage further in also getting down to fundamentals. Accordingly the numbe which are included are designed to leave the reader more competent and satisfied - and this is without the use of complicated mathematics which often on first reading
can even be confusing.
For those who also wish to get right down to the root of the matter, there is a second volume entitled Reference Guide to Basic Electronics Terms (BP286) each of the books referring to its companion as neces sary.
A reference guide for practically everybody concerned With electronics.

Order code BP287 £5.95

NEWNES ELECTRONICS POCKET BOOK

E. A. Parr

Newnes Electronics Pocket Book has been in print fo over twenty years and has covered the development o electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and micro processors. To keep up to date with the rapidly changing word This new Fifth Edition takes account of recen hanges and includes material suggested by readers of previous editions. New descriptions of op.amp. applica ions and the design of digital circuits have been added along with a totally new chapter on computing, plus 315 pages (hard cover) Order code NEO2 $£ 12.95$ ELECTRONIC MODULES AND SYSTEMS FOR BEGINNERS
This book describes over 60 modular electronic circuits how they work, how to build them, and how to use them. different electronic systems, both analogue and digital. To show the reader how to begin building systems from modules, a selection of over 25 electronic systems are described in detail, covering such widely differing applications as timing, home security, measurement, audio (including a 200 pages \quad Order code BP266

Project Building

HOW TO GET YOUR ELECTRONIC PROJECTS WORKING
We have all built projects only to find that they did no work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking fo many of the common faults that can occur when building 9 up projects

HOW TO DESIGN AND MAKE YOUR OWN P.C.B s R. A. Penfold

Deals with the simple methods of copying printed circuit board designs from magazines and books and covers all aspects of simple p.c.b. construction including photo graphic methods and designing your own p.c.b.s.
80 pages
Order code BPTZ1

A BEGINNERS GUIDE TO MODERN ELECTRONIC COMPONENTS
R. A. Penfold

The purpose of this book is to provide practical information to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the ineory of electronics is not needed, and this book is not intended to be a course in electronic theory. The main the differences between components of the same basic type (e.g. carbon, carbon film, metal film, and same basic type (e.g. carbon, carbon fim, metal firm, and given application can be selected. A wide range of components are included, with the emphasis firmly on those components that are used a great deal in projects for the home constructor.
166 pages Order code BP285 £3.95
BEGINNER'S GUIDE TO BUILDING ELECTRONIC PROJECTS
Shows the complete beginner how to tackle the practiShows the complete beginner how to tackle the practibuild the electronic projects that are regularly featured in magazines and books. Also include examples in the form of simple projects.
112 pages $\mathbf{£ 1 . 9 5}$
ELECTRONICS SIMPLIFIED - CRYSTAL SET
CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M. Especially written for those who wish to participate in he intricacies of electronics more through practical conages upwards from the day one can read intelligently and handle simple tools.
80 pages
Order code BPg2 $£ 1.75$
GUIDE TO BUILDING ELECTRONIC PROJECTS
Published by Everyday Electronics No. the for full details.

ELECTRONICS PROJECT BOOK
Published by Everyday Electronics in association with Magenta Electronics.
See the first page of books for full details.

Testing and Test Gear

[^5]
Circuits and Design

PRACTICAL ELECTRONIC FILTERS

Owen Bishop

This book deals with the subject in a non-mathematical This book deals with the subject in a non-mathematical
way. It reviews the main types of filter, explaining in simple terms how each type works and how it is used.
The book also presents a dozen filter-based projects with applications in and around the home or in the constructor's workshop. These include a number of audio projects such as a rythm sequencer and a multi-voiced electronic organ. Concluding the book is a practical step-by-step guide to circuit diagrams and worked examples. 88 pages

Order code BP299
£4.95

ELECTRONIC ALARM CIRCUITS MANUAL

R. M. Marston

One hundred and forty useful alarm circuits, of a variety o types, are shown in this volume. The operating principle of each one is explained in concise but comprehensive terms and brief construction notes are given where necessary. experimenter, as well as the electronics student and amateur. 124 pages Order code NEIT £13.95

DIGITAL LOGIC GATES AND FLIP-FLOPS
 lan R. Sinclair

This book, intended for enthusiasts, students and tech nicians, seeks to establish a firm foundation in digita electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.
Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively. and counters than to the simple but less important ripple counters.
No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working
practices. The book concludes with an explanation of practices. The book concludes with an explanation of microprocessor techniques as applied to digital logic.
200 pages
Order code PC106
O8.95
ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS
Robert Penfold
for the electronics hoffer one of the most interesting areas mechanical side of robots is not too difficult, as there are robotics kit and a wide range of mechanical com ponents available. The micro controller is not too much of a problem either, since the soffware need not be terribly complex and many inexpensive home computers are well suited to the task.
The main stumbling block for most would-be robo motors, and the sensors which provide feedback from the
robot to the computer. The purpose of this book is to explain and provide some relatively simple electronic 92 peges Order code BP179 £2.95

ELECTRONIC POWER SUPPLY HANDBOOK

lan R. Sinclair
This book covers the often neglected topic of electronic power supplies. All types of supplies that are used for elec tronics purposes are covered in detail, starting with cells and batteries and extending by way of rectified supplies and linear stabilisers to modern switch-mode systems,
mode regulators, DC-DC converters and inverters.
mode regulators, TC devices, their operating principles and typical cir cuits are all dealt with in detail. The action of rectifiers cuits are all dealt with in detain. The action of rectifiers of stabilisation is covered. The book includes some useful formulae for assessing the likely hum level of a conventional rectufier reservoir supply.
136 pages Order code PC108 $\mathbf{~} 7.95$

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using one of the most inexpensive and freely available
components - the light-emitting diode (LED). Also in components - the light-emitting diode (LED). Also in 64 pages \quad Order code BP42 95 BOOK 250 more l.e.d. circuits Order code BP87 £1.95 CIRCUIT SOURCE BOOK 1
A. Penfold

Written to help you create and experiment with your own electronic designs by combining and using the applicable, advice on how to alter the circuit parameters is given.
The circuits covered in this book are mainly concerned with analogue signal processing and include: Audio amplifiers (op.amp and bipolar transistors); audio powe amplifiers; d.c. amplifiers; highpass, lowpass, bandpass and notch filters; tone controls; voltage controlled amplifiers and filters; triggers and voltage comparators ghifters, current mirrors, hold circuits, etc
Over 150 circuits are provided, which it is hoped will be useful to all those involved in circuit design and applica tion, be they professionals, students or hobbyists.
182 pages
Order code BP321

CIRCUIT SOURCE BOOK 2

R. A. Penfold

This book will help you to create and experiment with your own electronic designs by combining and using the various standard "building blocks" circuits provided parameters is provided.

Radio, TV, Satellite

PROJECTS FOR RADIO AMATEURS

AND S.W.L.S.
This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of most short wave radio systems.
The circuits covered include:- An aerial tuning unit; A simple active aerial; An add-on b.f.o. for portable sets; A wavetrap for combat signals on spurious responses; An audio filters; Simple noise limiters': A speech processor: A volume expander
Other useful circuits include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to paralle converter. A full range of interesting and usefull circuits for
92 pages enthusiasts. \quad Order code BP304 £3.95

AN INTRODUCTION TO AMATEUR RADIO

I. D. Poole

Amateur radio is a unique and fascinating hobby which has attracted thousands of people since it began at the turn of the century.
easy to understand the newcomer a comprehensive and reader can gain the most from the the subject so that the an essential reference volume to be used time and again. Topics covered include the basic aspects of the hobby. such as operating procedures, jargon and setting up a receivers, transmitters and aerials etc. 150 pages

Order code BP257 £3.50

SIMPLE SHORT WAVE RECEIVER CONSTRUCTION

R. A. Penfold

Short wave radio is a fascinating hobby, but one that hese to be regarded by many as an expensive pastime mese days. In fact it is possible to pursue this hobby for a bit of d. i.y., and the receivers described in this book can all be built al low cost. All the sets are easy to construct, full wiring diagrams etc. are provided, and they are suitable or complete beginners. The receivers only require simple aerials, and do not need any complex alignment or other difficult setting up procedures.
The topics covered in this book include: The broadand their characteristics; The propagation of radio signals; Simple aerials; Making an earth connection; Short wave crystal set; Simple t.r.f. receivers; Single sideband reception; Direct conversion receiver.
Contains everything you need to know in order to get 88 pages
88 pages
Order code BP275

AN INTRODUCTION TO AMATEUR

COMMUNICATIONS SATELLITES

A. Pickford

Communications and broadcast satellites are normally inaccessible to individuals unless they are actively involved in their technicalities by working for organisations such as British Telecom, the various space agencies of military bodies. even those who possess a satellite televi sion receiver system do not participate in the technical spects of these highly technological systems.
There are a large number of amateur communications continuously and they can be tracked and their sig nals received with relatively inexpensive equipment. This equipment can be connected to a home computer such as he BBC Micro or IBM compatible PCs, for the decoding of eceived signals.
This book describes several currently available systems, their connection to an appropriate computer and how they ares

AERIAL PROJECTS

R. A. Penfold

The subject of aerials is vast but in this book the author has considered practical aerial designs, including active oop and ferrite aerials which give good performances and are relatively simple and inexpensive to build. The com plex theory and mathematics of aerial design have been Also
Also included are constructional details of a number of erial accessories including a pre-selector, attenuator, fil ers and tuning unit.
96 pages \quad Order code BP105 $\quad \mathbf{E 2 . 5 0}$

INTERNATJONAL RADIO STATIONS GUIDE

P. Shore

Provides the casual listener, amateur radio DXer and the professional radio monitor with an essential referenc work designed to guide him or her around the ever more complex radio bands. This new edition has been cominformation which is divided into the following sections: Listening to Short Wave Radio; Choosing a Shor Wave Radio Receiver; How to Use the IRSG; Abbrevia tions; Country Codes; Worldwide Short Wave Radio Stations; European, Middle Eastern and African Long Wave Radio Stations; European, Near and Middle Eastern and African Medium Wave Radio Stations; Canadian Medium Wave Radio Stations; USA Medium Wave Radio Stations Broadcasts in English; Programmes for DXers and Short
Wave Listeners; UK FM Radio Stations: Time Differences From GMT Wavel Mithadio Stations; Time Difference 226 pages Order code BP255 E5.95

The circuits covered are mainiy concerned with signal generation, power supplies, and digital electronics
The topics covered in this book include: $\mathbf{5 5 5}$ oscillators; inewave oscillators; function generators; CMOS oscil ators; 555 monostables; CMOS monostables: TTL monos ables; precision long timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers, decoders, etc; counters and display drivers; /A and A/D converters; opto-isolators, flip/flops, noise generators, tone decoders, etc.
Over 10 circuits are provided, which it is hoped will be useful to all those involved in circuit design and applica192 pages Order code BP322
£4.95

HOW TO USE OP-AMPS

E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations The approach has been made as non-mathematical as pos 160 pages

A BEGINNERS GUIDE TO TTL DIGITAL ICs
R. A. Penfold

This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, osciliators, timers, flip/flops, dividers, and decoder circuits. devices in "real world" applications
142 pages Order code BP332
£4.95

DIRECT
 BOOK SERVICE

ORDERING DETAILS

Please state the title and order code clearly, print your name and address and add the required postage to the total order.

Add $£ 1.50$ to your total order for postage and packing (overseas readers add $£ 3$ for countries in Europe, or add $£ 6$ for all countries outside Europe, surface mail postage) and send a PO, cheque, international money order, ($£$ sterling only) made payable to Direct Book Service or credit card details (including the card expiry date), Visa or Mastercard (Access) - minimum credit card order is $£ 5$ - quoting your name and address, the order code and quantites required to DIRECT BOOK SERVICE, 33 GRAVEL HILL, MERLEY, WIMBORNE, DORSET BH21 1 RW (mail order only).

Although books, videos and software are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability (see latest issue of Everyday with Practical Electronics) before ordering from old lists.
Note - our postage charge is the same for one book or one hundred books!
MORE BOOKS NEXT MONTH
Direct Book Service is a division of
Wimborne Publishing Ltd
Tel: 01202881749
Fax: 01202841692

PCB SERVICE

Printed circuit boards for certain EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add E1 per board for airmail outside of Europe. Remitances should be sent to The PCB Service, Everyday with Practical Electronics, Allen House, East Borough, Everyday with Practical Electronics (Payment in f sterling only).
NOTE: While 95% of our boards are now held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery - overseas readers allow extra if ordered by surface mail.
Back numbers or photostats of articles are available if required - see the Back Numbers page for details
Please check price and availability in the fatest issue.
Boards can only be supplied on a payment with order basis

Special KNOCK DOWN SALE of PCB's.

We have a few p.c.b.s left from past projects these are being offered at the knock down price of $\mathbf{£ 1 . 0 0}$ each - no matter what size they are (some of these boards are worth over $£ 8.00$ each) while stocks last This price includes VAT and UK post overseas orders please add 50 p postage (or $£ 1$

PROJECT TITLE	Order Code	Cost
Mind Machine - Programmer Board JAN'92	780	£7.39
Transistor Checker	781	£4.63
Stepping Motor Driver/Interface	782	£10.39
Micro-Sense Alarm	783	$£ 5.42$
Telesound FEB'92	784	£4.66
Programmable Timer	785	$£ 4.63$
Auto Garage Light MAR'92	786	f6.10
Versatile BBC Computer Interface	787	£11.59
Economy Seven Timer	788	£5.20
Sonic Continuity Tester APR'92	789	£4.79
Telephone Ringer	790	£5.46
Experimental Weighing Scale MAY'92	792	£5.17
12V Drill Charger/PSU (both boards)	793	£5.31
Digital Servo Interface JUNE'92	791	£473
Tie Pulser	794	£5.19
CCD Reverb Unit	795	£6.39
Switch-Mode Power Supply	796	£7.01
UV Exposure Timer JULY'92	797	$£ 5.33$
Cricket Game	798	£6.77
Quick Prom	799	$£ 5.61$
Gas Alarm AUG92	800	£5.47
Dual Metronome	801	£6.74
Ultrasonic Tape Measure \quad SEP'92	802	£6. 06
Quicktest	803	¢4.82
Extended Range Capacitance Meter OCT'92	804	¢5.63
Traffic Lights System	806	$£ 5.04$
Mini Lab NOV'92	MINI LAB	£14.95
EPE Altimet (Altimeter)	807	¢6.30
Personal Stereo Amplifier	808	£6.47
Universal Infra-Red Remote Control DEC'92	811T/811R	£6.56
Combination Switch	812	£5.68
Christmas Lights Colour Spectrum	813	$£ 5.97$
TV/UHF Aerial Amp (double-sided) JAN'93	814	¢7.23
Continuously Variable Balanced Power Supply	815	$¢ 5.65$
Emergency Lighting Unit	816	£6.77
Biomet Pulse Monitor FEB'93		
Sensor	817	£6.30
Display	818	£6.30

Tea Tune Thermostat 609; Suntan Timer 610; Time Switch 614;
Doorbell Delay 616; Midi' Pedal 639. Midi Merge 640; Audio Lead Tester 641; 4-Channel Auto Fader Interface 642; Music on Hold 646; Power Supply 25V 700mA 656; Stereo Noise Generator 681: Amstrad Speech Synthesiser 689; Hand Tally. main board 699 and display board 700; Ghost Waker 703; EE Musketeer TV/Video/Audio Remote Control 706; Amstrad PCW Sound Generator 715; Simple Basic Alarm 731; Model Train Controller 736; Digital LCD Thermostat, control board 740 and power relay board 741; Automatic Light Control - PSU board 747 and logic board 748; Modular Disco Lights - Simple Chaser 745 Sweeper 746 - Masterlink 752 - Pattern Generator 760 - Dimmer Interface 765 - VU Sound Module 767 - Superchaser 771 Supersweep 772; UV Exposure Unit 768; Bicycle Alarm 773; Knockerbox 775; Auto Nightlight 779.

Any of the above for just $£ 1$ each inc. VAT and $p \& p$.

Back numbers or photostats of articles are available see the
Back Numbers page for details.

NEWMARKET

TRANSFORMERS LTD.
Unit 15, Craven Way Industrial Est., Newmarket, Suffolk. CB8 0AP Telephone: (0638) 662989 Facsimile: (0683) 660799 TOROIDAL TRANSFORMER MANUFACTLRERS 220/240V ANY Two Secondaries

VA	Price ¢	Dimensions 30
50	$£ 12.30$	$70 \times 35 \mathrm{~mm}$
80	$£ 13.90$	$80 \times 45 \mathrm{~mm}$
120	$£ 14.80$	$90 \times 35 \mathrm{~mm}$
160	$£ 17.85$	$90 \times 45 \mathrm{~mm}$
225	$£ 19.20$	$110 \times 45 \mathrm{~mm}$
300	$£ 22.70$	$110 \times 50 \mathrm{~mm}$
500	$£ 29.85$	$110 \times 60 \mathrm{~mm}$
625	$£ 34.70$	$140 \times 60 \mathrm{~mm}$
800	$£ .39 .80$	$140 \times 70 \mathrm{~mm}$
1000	$£ 45.70$	$125 \times 90 \mathrm{~mm}$

Prices include VAT \& Carriage
For further information and quantity discounts. contact Michael Dornan
Phone: 0638662989 Fax: 0638660799

SHERWOOD ELECTRONICS
 7 Williamson Street, Mansfield, Notts. NG196TD

CHOOSE $1 \times £ 1$ packs FREE with every 10 purchased

SP1	$45 \times 5 \mathrm{~mm}$ Red Leds		SP37	$15 \times 100 / 35 \mathrm{~V}$ radial elect caps
SP2	$15 \times 5 \mathrm{~mm}$ Green Leds		SP42	$200 \times$ Mixed 0.25W C.F. resistors
SP3	$12 \times 5 \mathrm{~mm}$ Yellow Leds		SP47	$5 \times \mathrm{Min}$ push button switches
${ }_{\text {SP4 }}$	$10 \times 5 \mathrm{~mm}$ Amber Leds		SP102	20×8 pin DL sockets
SP10	100×1 N4148 diodes		SP103	15×14 pin Dil sockets
SP11	$30 \times 1 \mathrm{~N} 4001$ diodes		SP104	15×16 pin DIL sockets
SP12	30×1 N4002 diodes		SP112	$5 \times$ Cmos 4093
SP18	$20 \times$ BC182 transistors		SP+25	10 $\times 1000 / 16 \mathrm{~V}$ radial elect caps
SP20	$20 \times 8 \mathrm{BC184}$ transistors		SP130	$100 \times$ Mixed $0.5 W$ C.F. resistors
SP22	20×8 BC214 transistors		${ }_{\text {SPP } 133}$	20×1 N4004 diades
SP23	20×86549 transistors		SP137	$4 \times$ W005 1.5A rectifiers
SP25	4×555 timers		SP142	$2 \times$ Cmos 4017
SP28	$5 \times$ Cmos 4011		SP147	$5 \times$ Stripboard 9 strips/ 25 holes
SP29	$4 \times$ Cmos 4013		SP156	$3 \times$ Stripboard 14 strips $/ 27$ holes
${ }_{\text {Sp33 }}$	$5 \times$ Cmos 4081		SP167	$6 \times \mathrm{BC} 107$ transistors
SP36	$25 \times 10 / 25 \mathrm{~V}$ radial elect caps		SP183	$20 \times$ BC547 transistors
RESISTOR PACKS - 0.25 W C. Film				Catalogue available - £1
${ }_{\text {RP3 }}$	5 each value - total 365	¢2 75		or FREE with first order
${ }_{\text {RP9 }}^{\text {RP1 }}$	10 each value - total 730 1000 popular val ues			over $£ 5$ goods value

Cheques or P.O. to SHERWOOD ELECTRONICS no vat

MORSE TEST DISCUSSIONS

In the February issue it was briefly reported that the International Amateur Radio Union's Administrative Council (AC) had decided to "neither propose nor support a change ... at this time" in the current ITU Radio Regulations that require a Morse test for operation in the amateur frequencies below 30 MHz .
The IARU has now issued a a 26 page document which explains the background to this decision, and contains the report of the "CW Ad Hoc Committee", set up to make recommendations on this controversial issue.
The report begins with the definition of the Amateur Service as given by the International Telecommunication Union (ITU) in Article 1 of the International Radio Regulations:
"53. Amateur Service: A radiocommunication service for the purpose of self-training, intercommunication and technical investigations carried out by amateurs, that is, by duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest."

The word intercommunication in this definition (italics added) is given a special significance in the Committee's report, and it considers RR 2735 (in Article 32 of the Radio Regulations) specifically in terms of this definition:
'2735. Any person seeking a licence to operate the apparatus of an amateur station shall prove that he is able to send correctly by hand and to receive correctly by ear texts in Morse code signals. The administrations concerned may, however, waive this requirement in the case of stations making exclusive use of frequencies above 30 MHz .'

FUTURE CHANGE NOT RULED OUT

In essence, the Committee came to the conclusion that the Morse code, with its use of Q -code and unique abbreviations - understood by operators in every country, irrespective of the spoken languages used, provides an effective common language for radio amateurs, and that at the present time this is the only practical way that intercommunication, as defined in RR53, can be practised by the Amateur Service.

It recommended, therefore that no change be made in the present regulations. However, it did not rule out the possibility that future technical developments may provide "an alternative means for ensuring that amateur stations can intercommunicate, and that these new means could become sufficiently universal to obviate the present requirement."

IARU POLICY

At its meeting in Singapore on 10 to 12 September 1994, the IARU Administrative Council received the report of the

CW Ad Hoc Committee and the following Resolution was adopted:
'Noting that the Morse code provides a means of intercommunication between peoples without regard to language barriers.
"Recognizing that the international radio regulations require that ability in the use of Morse code must be demonstrated before an operator's license for the use of amateur frequencies below 30 MHz can be issued.
"Recognizing that support of this requirement has been affirmed at the most recent conference of each of the three IARU regional organizations
"Further recognizing that future advances in communications technology may influence perceptions of the relevance of this requirement . .
"Considering the report of the IARU CW Ad Hoc Committee, submitted to the Administrative Council in timely response to the Administrative Council's instruction at its Brussels meeting, September 1993 ...
"Decides to neither propose nor support any change to the international radio regulations pertaining to Morse code .
"Invites member-societies to consider the matter at future regional conferences and through this medium to communicate their views to the Administrative Council."

UNDERSTANDING NEEDED

Putting the question of licensing requirements aside, the Committee suggests that a wider understanding of the position of Morse code in amateur radio is needed in training courses for all grades of the amateur radio licence.

This includes an appreciation of the purpose of the Morse code and its place in amateur radio as a background during study for the "codeless" licences for operation above 30 MHz . This, it says, may ensure that future discussion about the role of Morse code in amateur radio will be conducted on a factual rather than an emotional level.

The Committee concludes that competency in Morse code is essential real world preparation for operating on the world-wide HF amateur bands. That it is also a mandatory regulatory requirement necessary to sustain the control and the special characteristics of the Amateur Service in international working.
It also says, "Every entrant to Amateur Radio should have an understanding of these matters and an appreciation of the thrills and satisfaction that competency in the Morse code can bring."

ESTABLISHED MORSE POLICIES

The Committee reviewed recent decisions or developments in the IARU Regions and in some member-countries. In 1993, IARU Region 1 decided to maintain its present position regarding the need for a Morse test. Region 2, at its
conference in 1992, saw no need for any change to RR 2735, and Region 3, in 1994, unanimously supported the continuation of the Morse test as required by the ITU Radio Regulations.
The New Zealand Association of Radio Transmitters (NZART) after conducting a survey of its membership, developed a policy in 1994 supporting the continuation of the test under present circumstances. The Radio Society of Great Britain, in 1993, also conducted a survey in which support was two to one in favour of retention of the current Morse requirement.
The American Radio Relay League (ARRL), in January 1993, declared its support for the test, and instructed its representatives to insist before all national and international bodies that there be no modification to the present proficiency requirement.

OTHER BODIES

A seminar on Amateur Radio Communications, organised by the AsiaPacific Telecommunity (APT), held in Tokyo in June 1994, agreed that the international Morse code should remain a basic requirement for amateur radio below 30 MHz .

Finally, the Committee notes that within the ITU itself, the "Voluntary Group of Experts to study Allocation and Improved use of the Radio-frequency Spectrum and Simplification of the Radio Regulations", in its "Final Report to the Council and Administrations", proposes no change to the text content of Article 32 of the current Radio Regulations. indicating that no change is proposed to Regulation 2735 by the Group.

CELEBRATORY SATELLITE

On December 26, Russia launched its RS15 amateur satellite to commemorate the 100th anniversary of the discovery of radio by Aleksandr Stepanovich Popov in 1895. Popov's work is the basis for the controversial Russian belief that he, and not Marconi, was the inventor of wireless communication.
The western world, of course, generally accepts that Marconi made his first transmissions in the same year, and is celebrating the centenary of that event also.

The basic details of the Russian satellite are: Uplink, 145.858 MHz to $145 \cdot 898 \mathrm{MHz}$; Downlink, $29 \cdot 354 \mathrm{MHz}$ to $29.394 \mathrm{MHz}^{2}$ CW Beacon 1, 29.3525 MHz ; CW Beacon 2, $29 \cdot 3987 \mathrm{MHz}$.
Its weight is 70 kg ; and it is orbiting the earth every 127.45 minutes. It is commanded by the RS3A control station at Moscow, headed by Leonid Maksakov, RA3AT. Comments and reception reports are requested, and should be sent to the RS3A Control Station, PO Box 59, Moscow 105122, Russia. (W5Y/ Report).

Radio - Tech Limited

A Leading Name in the Supply of Licence Exempt Radio Data Modules

Transmitters :

Transmitter TXM-418-A

Transceiver BIM-418-F

PART No	MPT	Freq MHz	Data Rate	ERP mW	Power (Vs)	Price $1+$
TXM-418-A	1340	418	9600	0.25	$6-9$	$£ 14.00$
TXM-418-F	1340	418	19200	0.25	3.0	$£ 15.64$
TXM-433-A	N/A	433.92	9600	0.25	$6-9$	$£ 15.64$
TXM-433-F	N/A	433.92	19200	0.25	3.0	$£ 15.64$
TXM-4689- UK-00	1328	173.250	1000	1.0	3.0	$£ 25.48$
TXM-4689- UK-03	1344	173.225	1000	10.0	3.0	$£ 27.50$
TXM-4688	1309	173.225	600	$1 / 10$	$8-16$	$£ 31.27$

Receivers :

PART No	Freq MHz	RSSI	CD	Data Rate	Power (V)	Price $1+$
RXM-418-A	418	Yes	Yes	10000	5.0	29.05
RXM-433-A	433.92	Yes	Yes	10000	5.0	31.27
SILRX-418-A	418	No	Yes	5000	$4.5-9$	22.50
SILRX-433-A	433.92	No	Yes	5000	$4.5-9$	25.58
RXM-4666-60	173.225	Yes	Yes	1000	5.0	31.62

The BIM High Speed Transceiver :

Part No	MPT	Freq MHz	Data Rate	Power (V)	ERP mW	Price $1+$
BIM-418-F	1340	418	34000	5.0	0.25	49.95
BIM-433-F	ETS	433.92	34000	5.0	1.0	49.95

The NEW BIM Engineering Kit.
Only $£ 149.95$
To assist new customers unfamiliar with the BIM, we are offering an engineering kit comprising of two PCB's each containing a BIM-418-F transceiver, control logic, status LED's and a PIC microcontroller packed with test firmware. Using the kit you will be able to simulate data transfer at up to 34000 bps , conduct range test, evaluate various data protocols and finally transmit your own data.

Order Code: BIM-418-DEV

Save $£ 15.00$ off your next order over $£ 50.00$

Return this coupon with your next order: Valid until 6/95. Name \qquad
Company \qquad
Address \qquad
\qquad
PostCode
Tel: \qquad

Orders: Prices exclude carriage and VAT. Radio - Tech Limited, Overbridge House, 41 Weald Hall Lane, Thornwood Common, Epping, CM16 6 NB . Telephone and credit card orders welcome. Tel: London 0181-368-8277 Home Counties 01992-576107 Fax 01992-561994

Everyday with Practical Electronics reaches twice as many UK readers as any other independent monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last ten years

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is $£ 8$ (+ VAT) per single column centimetre (minimum 2.5 cm). The prepaid rate for classified adverts is 30 p (+VAT) per word (minimum 12 words).
All cheques, postal orders, etc., to be made payable to Everyday with Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday with Practical Electronics Advertisements, Holland Wood House, Church Lane, Great Holland, Essex C013 0JS. Phone/Fax (01255) 850596.
For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

Greenwell Micro Systems
Office Management Software CIMS - Manage Customers and Invoices SOMS - Manage Suppliers and Orders
CSMS - Manage Contacts and Sales
Available separately any combination or as a complete package. Ideal for any business. Also for sale floppy disks. G.M.S., Unit 26, Wirral Business Park, Brassey

Street, Birkenhead, Wirral, L41 8BY,
Tel: 01516534515 . Fax: 01516510177.
THE BUG CONSTRUCTOR'S MANUAL All you will ever need to know about Bugs. Over 40 Bug circuits
for every application. Telephone, High Power, Crystal for every application. Telephone, High Power, Crystal
Controlled, and UHF Bugs and many pages of useful Controlied, and
information. Many previously unavailable circuits. This is the very latest book, and the "ONLY" book of its kind in the UK. A valuable asset for the hobbyist and professional. Introductory offer price only $\mathbf{£ 9 . 9 5}$ inc. P\&P.
For immediate despatch, send cheque or P.O.'s payable to: GAINSFORD ELECTRONICS,
71 Gainsford Road, Southampton SO19 7AW.

MINI CCD CAMERA

Latest low-light ($0 \cdot 1$ lux), IR-sensitive mini camera from KOCOM \#CA•H34C. 6 IR LEDs on board. $54 \mathrm{~mm} \times 38 \mathrm{~mm}$. 12 V . Uncased. 33 gm . Plugs direct into VCR or video monitor. $£ 145$ reg. airmail. Bank draft on any HK bank.

DIY ELECTRONICS
PO Bov 88458 , Sham Shui Po, Hong Kong.

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.
For membership details, write to the Secretary:
Mr. J. F. Davies, 70 Ash Road, Cuddington, Northwich, Cheshire CW8 2PB.
Spece donated by Everyday with Practical Electronics

No PLOTTER?

View, print or paste HP plotter files produced via CAD systems, scopes or received via via CAD systems, scopes or received via Windows utility

Contact P. Handscomb at:
Silicon Vale Software
147 Manchester Road, Stockport SK4 1NL Phone/Fax 01614801451

YUGA ENTERPRISE

$B A, L A, L B, L C, U P A$,
UPB, UPC, TA,
TBA, TDA, TEA,
2SA, 2SB, 2SC,
2SJ, 2SK, SAA,
STA, STK, STR,
HA, AC, KA, KIA,
Buy
\&
Soll
Japanese
ICs 8
Transistors
IX, LM, MN, PA

TEL: (65) 7410300
 FAX: (65) 7491048

705 Sims Drive \#03.09
Shun Li Industrial Complex, Singapore 1438 .

BTEC ELECTRONICS TECHNICIAN FULL-TIME TRAINING

THOSE ELIGIBLE CAN APPLY FOR E.T. GRANT SUPPORT AN EQUAL OPPORTUNITIES PROGRAMME
O.N.C., O.N.D. and H.N.C.

Next course commences Monday 24th April 1995
FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EPE) 20 PENYWERN ROAD EARLS COURT, LONDON SW5 9SU TEL: 071-373 8721

PELTIER MODULE

Solid state $9 \mathrm{~cm}^{2}, 8 \mathrm{~V} / 5 \cdot 4 \mathrm{~A}$. One side heats, the other cools. To $59^{\circ} \mathrm{C}$ difference. 112 reg. airmail. Bank draft on any HK bank.

DIY ELEC TRONICS
P() Bov 88158 . Sham Shui IPo, Hong Kong.

Looking for a Job!

Are you too old. way over-qualified, got some capital and a little attitude? Interested in electronics? So was I. In 4 years I have set up my own, profitable electronic Kit business from nothing. Now I need people to work with me to sell into UK/Europe. Good designs, modern Kits. I can also supply electronic components.

Peter ('roweroft, D) I ELFC"IRONICS
PO) Bov 88-158, Sham Shui Po, Hong Kong.
मал: 852-2725 11610.

EYERYDAY
 Reidencica electronics

SUBSCRIPTION ORDER FORM

Annual subscription rates (1995): UK £24.00.
Overseas $£ 30.00$ surface mail, £47.50 airmail.

To:

Everyday with Practical Electronics,
Allen House, East Borough, Wimborne.
Dorset BH21 1PF VISA

Miscellaneous

PROTOTYPE PRINTED CIRCUIT

 BOARDS one offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poynings Drive. Hove, Sussex BN3 8GR, or phone Brighton 883871 .G.C.S.E. ELECTRONICS KITS, at pocket money prices. S.A.E. for FREE catalogue. SIR-KIT Electronics, 70 Oxford Road, Clacton, CO15 3TE.
PLDs AND EPROMS copied or programmed. We supply logic devices/convert discrete logic to PLDs. Also PCBs designed. Send for details to PO Box 1561 Bath $(0225$ 444467).

VALVE ENTHUSIASTS: Capacitors and other parts in stock. For free advice lists please ring, Geoff Davies (Radio). Tel: 0788

$$
574774 .
$$

PRINTED CIRCUIT BOARDS - QUICK SERVICE. Prototype and Small Production. We can raise your artwork from magazines or your draft designs at low cost. PCB's also designed from schematics. For details send to P. Agar, 36 Woodcot Avenue, Belfast, BT5 5JA or phone 01232473533 (7 days).
LASER POINTERS 5 mW 670nM (RED). German quality, $£ 69.50$ post paid. Also complete $\mathrm{He}-\mathrm{Ne}$ Laser systems from $£ 85.00$. Telephone 01925575848 for details. Cheques or PO to, English Scientific, 12 Orford Avenue, Warrington, Cheshire, WA2 7QL.

Typefit

The Typesetting program for all your Typesetting needs.
If you need typesetting for your Adverts, Brochures, etc. Typefit can help you.

Please telephone 01202882299

Name
Address

(cheque/PO in \mathbf{f} sterling only, payable to Everyday with Practical Electronics). Alternatively send Access or Visa number and card expiry date.

Signature
Please supply name and address of cardholder if different from the subscription address shown above Subscrip tions can only start with the next available issue. For back numbers see the Editorial page. M4/95

MAKE YOUR INTERESTS PAY!
Over the past 100 years more than 10 million students throughout the wortd have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 100 years experience in home-study courses, and is the largest correspondence school in the word. You learn at your own pace, when and where you want under the guidance of expert 'personal' rutors. Find out how we can help YOU. Post or phone today for FREE INFORMATION on the course of your chaice. (Tick one box only!)

GCSE/A' LEVEL over 20 examination subjects to choose from. Ask for details. Electronics

TV, Video \& Hi-Fi Servicing $\quad \square$
C \& G Basic Electronic Engineering Refrigeration \& Air Conditioning

Electrical Engineering
Electrical Contracting/Instaliation
PC Repair

Mr/Mrs/Miss/Ms
Address
Th International Correspondence Schools, Dept. ECS 45, 312/314 High Sireet,
17 Sutton, Surrey SM1 1PR. Tel: 041-221 7373 (24 hours). Fax: 041-2218151.

©INFOTECH \& STREE 프

76 Church St, Larkhall, Lanarks, ML9 1HE

 Phone (0698) 883334/888343 or Fax (0698) 884825
The World's Largest Collection of SERVICE MANUALS \& CIRCUITS

We are now successfully running a Library Service which allows you to borrow any manual you want for as long as you want, and when you need another manual, just return the one you have. plus a $£ 4.95$ exchange fee and tell us what you want next.

Borrow any Service Manual for $£ 4.95$ regardless of its size or normal cost

The cost of this service is a yearly subscription fee of only £59.95. Join now \& get a free Data Ref Guide '.

N. R. BARDWELL LTD (EPE)

```
Signal diodes 1N4148.
    l
Rectitier Diodes 1N5401.
NE555 Timer I.C.s.
Asstd. Zener Diodes
BC212L Transistors
BC327 Transistors
BC328 Transistors
BC337 Transistors.
BC478 Transistors.
BC547 Transistors.
8C548 Transistors
BC549 Transistors
BC550 Transistors.
BC557 Transistors.
8C559 Transistors.
BC640 Transistors.
MPSA42 Transistors.
MPSA92 Transistors
2N3702 Transistors
78M08 8V 500mA Pos Regulators
79M08 8V 500mA Neg Regulators
5mm redled.s
```

VISA
SUPPLIER OF QUALITY USED TEST INSTRUMENTS
ANALYSERS, BRIDGES. CALIBRATORS, VOLTMETERS, GENERATORS,
OSCILLOSCOPES, POWER METERS. ETC. ALWAYS AVAILABLE
ORIGINAL SERVICE MANUALS FOR SALE
COPY SERVICE ALSO AVAILABLE
EXPORT, TRADE AND U.K. ENQUIRIES WELCOME
SEND LARGES.A.E. (50p POSTAGE) FOR LISTS OF EQUIPMENT\&MANUALS
ALL PRICES EXCLUDE VAT AND CARRIAGE
SHIPPING ARRANGED
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis,
West Sussex, PO22 0EB
Tel (+ 44) 0243 545111/2 Fax (+ 44) 0243 542457
EQUIPMENT \& ACCESSORIES PURCHASED

SERVICE MANUALS

We have what is probably the largest range of Service Information available anywhere. From the Earliest Valve Wireless to the Latest Video Recorders. Colour Televisions, Test Gear, Audio, Computers, Amateur Radio in fact practically anything.
Write, Fax or Phone for immediate Quote. Originals or Photostats as available.
Also available. Our FREE catalogue detailing Hundreds of Technical Books and Repair Guides available.

STOP PRESS

Now Available. Our Service Manuals Index on P.C. Disc (3.5") for use on your Computer. Just $£ 3.50$ with FREE everlasting Updates. Order MP-285.

MAURITRON TECHNICAL SERVICES (EPE),

8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY. Tel:- 01844-351694. Fax:- 01844352554.
Please forward your latest catalogue for which I enclose 2×1 st Class Stamps. or $£ 3.50$ for the Technical Books Catalogue plus Manuals Index on PC Disc(s). NAME

ADDRESS \qquad

POSTCODE
If you do not wish to cut your magazine photocopy this coupon or use a separate sheet

COMPAC ELECTRONICS
 3L WEYLOND ROAD, DAGENHAM, ESSEX RM8 3AB Tel: 0819840831

L.O.P.T. TRANSFORMERS - WIDE RANGE AVAILABLE.

 PHILIPS, FERGUSON etc from $£ 10$. Video Fig. 8 Mtype $\mathrm{E1} .00$
type, E1.00.
R.F. Video leads, 50 p.
connected, £2.33.

types.

Miniature Tool Kit, $2.4 V, £ 1.20$
£5.99.

Kit, £2. permtr.

20 for f 1 .

Remote Controls: Amstrad, Toshiba,
from £5. Ferguson, Philips, ITT. Sony
Universal Remote Control, operates TV, Video, Satellite, with Teletext buttons, £16.99or non-Text $£ 10.99$. We repair Philips hand sets, $\mathbf{£ 5 . 0 0}$. Pinch Rollers from $£ 2.99$
Video Fig. 8 Mains Lead, Telefunken
SCART to SCART leads, £1.75.
SCART to SCART leads, all pins
Aerial R.F. cable, RG62, 30p per mtr. Aerial R.F. male plugs, 30p each. TV on/off switches, from $£ 1.95$, most
Halogen Lamps, 240V, 500W, for
outdoor floodlamps, $£ 1.75$.
comprises: side cutters knife,
screwdrivers, $£ 7.00$
Ferguson TV TX100 Ni-Cad Battery
Sony Hi-Fi Tweeters, £2 a pair.
Loudspeakers, $8^{\prime \prime} \times 5^{\prime \prime}, 15$ ohms, £1.
Power Supply AC adapters, universal
$300 \mathrm{~mA}, \mathrm{£4.99}, 750 \mathrm{~mA}, \mathrm{f} 7.99$
Philips Krypton Torches, $£ 1.50$
Philips Television G11 line output panel,
complete. $£ 5$ plus $£ 2$, post $\&$ carr.
Philips Soldering Iron, 240V, 25W.
Voltage Regulators, LM340T, 44p.
Philips Audio Cassette Head Cleaning
High quality loudspeaker cable, 50p
Servicing Sprays $£ 3.00$ most types.
Ceramic Type Pulse Capacitors,
SATELLITE
Marconi Blue Cap, ex-rental, $\mathbf{£ 5}$ plus $\mathbf{£ 2}$. post \& carr.
Amstrad Compact black cap. LNB,
voltage switching, 1dB, special price $£ 23.95$ plus $£ 2$, post \& carr.
Satellite dishes, $\mathbf{£} 25.99$ plus $£ 5$. post \& carr.
Special offer, satellite owners upgrade to Astra 1 D with our ADX frequency extender, $\mathbf{\text { 27.99}}$. Can be used with standard or enhanced LMB
Satellite cable, 30 p mtr.
F. Connectors, 40 p each

MASPRO LNB FSS,
1.3dB max. £13.33.

NOKIA LNB FSS 1-3, £13.33.
NOKIA Feed Horns, for offset antenna, f10.67.
NOKIA Electromagnetic. Polarizers,
f8.00 f8.00.
I.C.s: SAA3010P £3.40; TDA3651 SI £1.10; TDA3654 £1.89; TDA3651A £1.10; TDA3654 £1.89; TDA3651A
£2.85; TDA3562A £2.85; TDA2600 £2.85; TDA3562A £2.85; TDA2600
£5.73; TDA2578 £3.43: TDA2579 £5.73; TDA2578 £3.43; TDA2579
£2.86. TDA2030 £2. 28. TDA3653 £2.86: TDA2030 £2.28: TDA3653 £3.43; TDA3651 £2.29; TDA3562
f3.44; TDA 3564 £4.59; TDA4500 £3.44; TDA 3564 £4.59; TDA4500 £3.43: TDA8180 £5.48; TDA8190 £3.43: $\mathbf{~} \mathbf{f} 9.00$.
DIODES: Type RH1, £2.00
TRANSISTORS: BU208A f1.20;
BU508AF £1.75; BU11AF 55p;
BU508AF £1.75; BU11AF 55p;
BC32710p: BC33710p; BC338 10p BC32710p: BC33710p; BC33810
BC54810p: BC54910p.
CAPACITORS ELECTROLYTIC:
$0 \cdot 22 \mu 50 \mathrm{~V} 5 \mathrm{p} ; 1 \mu 50 \mathrm{~V} 5 \mathrm{p} ; 2 \cdot 2 \mu 50 \mathrm{~V}$
$6 \mathrm{p}: 4.7 \mu 25 \mathrm{~V} 10 \mathrm{p} ; 47 \mu 100 \mathrm{~V} 20 \mathrm{p}$; $6 p ; 4 \mu 25 \vee 10 p ; 4 / \mu 100 \vee 20 p ;$
$470 \mu 25 \vee 20 p ; 680 \mu 63 \vee 60 p ; 2,200 \mu$ $40 \mathrm{~V} 60 \mathrm{p}: 3,300 \mu 25 \mathrm{~V} 80 \mathrm{p}$.
This is just a smatl sample of components available.
please phone with your requirements
Please add f 1.00 postage $\&$ packing, all prices include VAT.

20 Amstrad Games 20 Spectrum Games f1 PACK ${ }^{\text {f5.00* }}$ 50 BC184; 50 BC547A; 20 BS107. 20 BSS92: 10 2N2907A; 20 2N5086; 50 2N5551; 5 2N5657: 20 2N5769; 4 2N6394; 5 2N6400; 12 BCY69; 3 BD144; 3 BD145; 10 BD237; 10 BD239A; 5 BDX42; 2 BD X94; 5 BFW43: 10 BFX30; 3 BSU78: 5 BSW68; 3 BSX59; 2 BUF410A; 4 BUV26: 20 MPSA93:
10 VN2010-L; 20 ZTX304; 20 ZTX311; 20 ZTX510; 20 ZTX551; 5 5 V d.i.l. relays; $1021 \cdot 10 \mathrm{MHz}$ crystals: 10811 MHZ filters: 506 -way i.c skts. 5014 -way di.p. hors; 20 TO18 heatsinks; 20 TO5 heatsinks; 200 T05 mounting pads; 200 TO18 mountings pads: 2100Ω LOPT Tx; 512 -way pads: 2 lorminal blocks: 10 silver contral terminal blocks; 0 silver cont counters; 253.5 mm jack plugs; counters; 253.5 mm jack plugs; 10 PCB MT microswitch; 106 -way di.i.l. switch; 10-1 pole 3-way rotary switch; 25 slide switches: 53 A 250 V power toggle switch; $504.7 \mu \mathrm{~F} 25 \mathrm{~V}$ caps; $152200 \mu \mathrm{~F} 25 \mathrm{~V}$ caps; 5010μ 16 V caps; $100.047 \mu \mathrm{~F}$ suppresion caps: 25 neons: $101 \mu \mathrm{~F} 250 \mathrm{~V}$ polyesters.
$51 / 1^{\prime \prime}$ to $31 / 2^{\prime \prime}$ floppy converter leads................................. $\mathbf{£ 1 . 5 0 \text { ea* }}$ STC p.s.u. 240 V Input; 5V 6A Output, (converts to 12 V 3 A , details supplied).
£5.95
Temperature probes, with data... niversal Timer (10 min delay $£ \mathbf{9 5}^{*}$ 20 min . cut-off functions). £ $\mathbf{3 . 9 5 *}$ $12 \vee 400 \mathrm{~mW}$ Zeners, $\ldots . . .100$ off $\mathrm{f} 1^{*}$ UM1 287 sound and video modulator.
$£ 2.50$ ea* 3AMP mains filters............ $\mathbf{E 1 . 0 0}$ ea* 40 Character $\times 1$-line dot matrix display. ... 4.95 ea* Car Dashboard Display (shows lights, indicators, doors, on picture of car). 4-digit clock display 4-digit.c.d. with 72
17 -digit v.f. display
£4.95**
17 - digit v.f. display driver. $£ 3.50^{*}$

Giant 2-digit v.f. display 12 V stepper motors, 48 steps per rev. $7 \cdot 3^{\circ}$ step angle 250 off mixed electrolytic caps
250 off polyester caps 1000 off mixed resistors $1 / \mathrm{WW}$ 100 off phono plugs. 50 off mixed terminal blocks
25 off buzzers \& sounders... 25 off mixed relays. 50 off mixed switches 250 off i.c. sockets. 1000 off Ceramic caps... 5 off 3 V Lithium memory
back - up batteries.
100 off $2200 \mu \mathrm{~F} 25 \mathrm{~V}$ caps. 100 off $4.7 \mu \mathrm{~F} 25 \mathrm{~V}$ caps. 3lb mixed component pack Jumbo component pack Crystal oscillators $10 / 12 \mathrm{MHz}$. £1 ea 5 V DPCO D.I.L. relay. 5 V SPCO S.I.L. reed relay. 12 V Piezoelectric Sounders. DIL Switches 3/4/6 and 12-way
3.5 mm jack plugs. 100 off Zener diodes......... 10 21 -piece mini screwdriver set. $£ 3.95^{* *}$
Universal test lead kit............... 10 crocodile clip leads. 20 off mixed R.F. Filters,
Crystals, etc 100 m P. V.C. sleeving.

QUANTITY DISCOUNTS

We also buy all forms of electronic components, p.s.u's, disk drives etc.

Mixed metal/carbon film resistors 1/sW E12 series 10 ohms 101 Megohm Carbon Film resistors $/ 2 \mathrm{~W}$ S\% E24 series 0.51 R to 10 MO 100 off per value -75 p . even hundreds per value totalling 1000 Metal Film resistors \%W 10 R to 1 MO 5\% E12 series - $1 / 2 \mathrm{po}$. 1% E24 series Mixed metal/carbon film resistors $1 / 2 \mathrm{~W}$ E24 series 1 RO to 10 MO 1 watt mixed metal/Carbon Film 5\% E12 series 4R7 to 10 Megohms Linear Carbon pre-sels 100 mW and $1 / 2 \mathrm{~W} 100 \mathrm{R}$ to 2 M 2 E 6 series Miniature polyster capacitors 250 V working for vertical mounting $015,022, .033, .047,068-4$ p. $0.1-5 p, 0.12,0.15,0.22-6 p .0 .47-8$ p. $0.68-8 \mathrm{p} .1 .0-12 p$ Mylar (polyester) capacitors 100 V working E12 series vertical mounting Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series $2 \% 1.8 \mathrm{pf}$ to $47 \mathrm{pf}-3 \mathrm{p} .2 \% 56 \mathrm{pf}$ to 330 pf - 4 p. $10 \% 390 \mathrm{p}-4700 \mathrm{p}$ Disc/plate ceramics 50 V E12 series 1 PO to 1000 P E6 Series 1500 P to 47000 P Polystyrene capacitors 63 V working E 12 series long axial wires 10 pf to $820 \mathrm{pf}-5 \mathrm{p} .1000 \mathrm{pf}$ to 10.000 pf - 6 p .12 .000 pf 741 Op Amp - 20p. 555 Timer - 20p. LM3900 CMOS 4001 - 20p. 4011 - 22p. 4017-40p. 4069UB unbuffered DIL holders. 8-pin 9p; 14-, 16-18-pin 12p; 24-pin 18p; 28-pin 20p; 40-pin 25 p ALUMINIUM ELECTROLYTICS (Mfds/Volts) 1/50, 2.2/50, 4.7/50, 10/25, 10/50. 22/16, 22/25, 22/50, 33/16, 47/16, 47/25, 47/50 100/16, 100/25 7p: 100/50 220/16 8p; 220/25, 220/50 10p; 470/16. 470/25 Subminiature $1000 / 35,2200 / 2535 p ; 4700 / 25$ Subminiature, tantalum bead electrolytics (Mfds/Volts) $0.1,0.22,0.47,1.0,2.2,3.3 @ 35 \mathrm{~V}-4.7 / 16.6 .8 / 10,10 / 6,10 \mathrm{p}, 6.8 / 35,12 \mathrm{p}$. $4.7 / 25,68 / 16,10 / 6,11 \mathrm{p}, 15 / 16,22 / 6,33 / 10,15 \mathrm{p}: 10 / 25,16 \mathrm{p}: 10 / 35,22 / 16,20 \mathrm{p}$ VOLTAGEREGULATÓOS 1A+or-5V,8V, 12V, 15V, 18V \& 24V-55p. 100mA. 5.8.12, 15, V + 30p 75/25m (piv/amps) 400/1A 1 N4004 4p. 1250/1A BY 127 10p 30/150mA OA47 gold bonded Zener diodes E24 series 3 V 3 to $33 \mathrm{~V} 400 \mathrm{~mW}-6 p .1$ watt Battery snaps for PP3 - 7p for PP9 L.E.D. $\$ 3 \mathrm{~mm}$ \& 5 mm . Red, Green, Yellow - 10 p . Grommets 3 mm - 2 p .5 mm Red flashing L.E.D.'s require $9-12 \mathrm{~V}$ supply only, 5 mm Mains indicator neons with 220 k resistor 20 mm fuses 100 mA to 5 AA . 0 . blow $6 \mathrm{p} . \mathrm{A} /$ surge 10 p . Holders, chassis, mounting High speed pc drill 0.8, 1.0, 1.3. 1.5. 2.0mm-40p. Machines 12 V dc HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells 90p each. Universal charger unit. AA/HP7 zinc/carbon batteries in packs of 4 Glass reed switches with single pole make contacts - 8 p . Magnets $0.1^{\prime \prime}$ Stripboard $2 \frac{1}{2 \prime \prime} \times 1$ " 9 rows 25 holes - 25 p. $3^{3}{ }^{4} \times 2 \frac{1}{2} /^{\prime \prime} 24$ rows 37 holes Jack plugs $2.5 \& 3.5 \mathrm{~m}-14 \mathrm{p}$. Sockets Panel Mtg $2.5 \& 3.5 \mathrm{~m}$. Ear pieces $2.5 \& 3.5 \mathrm{~mm}$, dynamic - 20p; 3.5 mm crystal TRANSISTORS BC107/8/9 - 12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L, BC183, 183L. BC184, 184L, BC212.212L-10p. BC327, 337, 337L-12p. BC727, 737:12p. BD135/6/7/8/9-25p. BCY70-18p. BFY50/51/52-20p. BFX88-15p.2N3055-55p, TIP31, 32-30p. TIP41, 42-40p. BU208A - f1.50, BF195, 197 - 12 p lonisers with seven year guarantee, 240 V AC, list price $£ 16.95$ or more. Do not add VAT Postage 30p (free over ©5) Stamp for list. THE CR SUPPLY CO 127 Chesterfield Rd., Sheffield S8 0RN Tel: 0742557771 Return posting

Mixed metal/carbon film resistors ${ }^{1}$, W E1 2 series 10 ohm

 100 off per value -75 p . even hundreds per value totalling 1000 Metal Film resistors \%W 10R to 1 MO 5\% E12 series - $1 / 2 \mathrm{p}$. 1% E24 series wed metal/carbon film resistors /aW E24 series 1 RO 10 10MO Linear Carbon pre-sets 100 mW and $1 / 4 \mathrm{~W} 100 \mathrm{R}$ to 2 M 2 E 6 series. Miniature polyster capacitors 250 V working for vertical mounting Mylar (polyester) capacitors 100 V working E 12 series vertical mounting - 12 1000 p to 8200 p - 3p. 01 to $068-4$ p. 0.1-5p.0.12, 0.15. $0.22-6$ p. $0.47 / 50 \mathrm{~V}-8$ Submin ceramic plate capacitors 100 V wkg vertical mountings. E12 series Disc/plate ceramics 50 V E12 series 1 PO to 1000 P . E6 Series 1500 P to 47000 P Polystyrene capacitors $63 V$ working E12 series long axial wires 741 Op Amp - 20p. 555 Timer - 20p. LM3900
CMOS 4001 - 20p. 4011 - 22p. 4017-40p. 4069UB unbuffered DIL holders. 8-pin 9p; 14-, 16-, 18-pin 12p; 24-pin 18p; 28-pin 20p; 40-pin 25p.

1/50, 2.2/50, 4.7/50, 10/25, 10/50
100/16, $100 / 257 \mathrm{p}: 100 / 50$
220/16 8p; 220/25, 220/50 10p; 470/16. 470/25
Subminiature, tantalum bead alec; $4700 / 25$
01020 (01 Is) $4.7 / 25,68 / 16,10 / 6,11 p, 11 / 16,22 / 6,33 / 10,15 p ; 10 / 25,16 p ; 10 / 35,22 / 16,20 p$ VOLTAGEREGULATORS DIODES (piv/amps) 75/25mA 1N41482p. 800/1A 1N4006 4\%p. 400/3A 1N5404 14p. 115/15mA OA91 400/1A 1 N4004 4p $1250 / 1$ A BY 12710 5p. 60/1.5A S1M1 5p. 100/1A bridge Zener diodes E 24 series 3 V 3 to 33 V 400 mW - $6 p 1$ watt Battery snaps for PP3-7p for PP9
L.E.D $\$ 3 \mathrm{~mm}$ \& 5 mm . Red, Green, Yellow - 10 p. Grommets 3 mm - 2p. 5 mm Mains indicator neons with 220 k resistor
20 mm fuses 100 mA to $5 \mathrm{~A} . \mathrm{O}$. blow $6 \mathrm{p} . \mathrm{A} /$ surge 10 p . Holders, chassis, mounting HELPING HANDS 6 ball joints and 2 croc clips to hold awkward jobs AA/HP7 Nicad rechargeable cells 90 p each. Universal charger unit
AA/HP7 zinc/carbon batteries in packs of 4 AA/HP7 2inc/carbon batteries in packs of 4
$0.1^{\prime \prime}$ Stripboard $2^{1 / 2 "} \times 1^{\prime \prime} 9$ rows 25 holes. 25 p. $3^{3} 4 \times 2 \frac{1}{2^{*}} 24$ rows 37 holes Jack plugs 2.5 \& $3.5 \mathrm{~m}-14 \mathrm{p}$. Sockets Panel Mtg. 2.5 \& 3.5 m . Multi cored solder, $22 \mathrm{G}-8 \mathrm{p}$ yard, $18 \mathrm{G}-14 \mathrm{p}$ yard
TRANSISTORS
BC107/8/9 - 12p. BC547/8/9 - 8p. BC557/8/9 - 8p. BC182, 182L, BC183, 183L BC1
BC327, 337, 337L - 12p. BC727, $737-12$ p. BD135/6/7/8/9-25p. BCY70-18p. BFY50/51/52-20p.
BFX88-15p 2N3055.
 Do not add VAT Postage 30p (free over £5). Stamp for list

THE CR SUPPLY CO

127 Chesterfield Rd., Sheffield S8 ORN Tel:0742557771 Return posting

Millions of quality components at lowest ever prices!

Plus Tools, Watches, Fancy Goods, Toys. Mail order UK only.
All inclusive prices -
NO VAT to add on.
Send 43p stamped self addressed label or envelope for catalogue/clearance list.

At least 2,100 offers to amaze you.
Brian J Reed

6 Queensmead Avenue, East Ewell Epsom, Surrey KT17 3EQ
 Tel: 0181-393 9055

ADVERTISERSINDEX

AUDON ELECTRONICS.
 .314
 N. R. BARDWELL. .335

B.K. ELECTRONICS

Cover (iii)

BRIAN J. REED.........

BULL ELECTRICAL
Cover (ii)
CHATWIN GUITARS (JCG).. 323
CIRKIT DISTRIBUTION.. 315
COMPAC ELECTRONICS... 335
COMPELEC .. 336
COOKE INTERNATIONAL.. 335
CRICKLEWOOD ELECTRONICS................................... 315
CR SUPPLY COMPANY.. 336
DISPLAY ELECTRONICS.. 254
ESR ELECTRONIC COMPONENTS........................... 264
EXPRESS COMPONENTS.. 301

HART ELECTRONIC KITS.. 335
ICS..
INFOTECH \& STREE...
INTERCONNECTIONS... 323
LABCENTER... 296
MAGENTA ELECTRONICS..262/263
MAPLIN ELECTRONICS..
MAURITRON.. 335
M\&B ELECTRICAL SUPPLIES...................................... 258
MEJDAF EUROPE... 323
MOP ELECTRONICS... 260
NATIONAL COLLEGE OF TECHNOLOGY 315
NEWMARKET TRANSFORMERS............................ 330
NICHE SOFTWARE.. 291
NUMBER ONE SYSTEMS... 259
OMNI ELECTRONICS... 314
PICO TECHNOLOGY... 261
POWERWARE... 307
QUASAR ELECTRONICS... 260
RADIO-TECH.. 333
RADIO \& TV... 326
ROBINSON MARSHALL.. 293
SEETRAX CAE.. 255
SERVICE TRADING CO.. 260
SHERWOOD ELECTRONICS... 330
STEWART OF READING... 330
SUMA DESIGNS... 256
TSIEN... 275

ADVERTISEMENT MANAGER:

PETER J. MEW

ADVERTISEMENT OFFICES:

EVERYDAY with PRACTICAL ELECTRONICS,
ADVERTISEMENTS,
HOLLAND WOOD HOUSE, CHURCH LANE,
GREAT HOLLAND, ESSEX CO13 OJS.
Phone/Fax: (01255) 850596
For Editorial address and phone numbers see page 265.

Published on approximately the first Friday of each month by Wimborne Publishing Lid., Allen House, East Borough, Wimborne, Dorset BH2I 1 PF. Printed in England by Benham, \& Co. Lid.
Colchester, Essex. Distributed by Seymour. Windsor House, 1270 London Road, Norbury, London SW16 4DH. Sole Agents for Australia and New Zealand-Gordon \& Goich (Asial Lid, South Colchester, Essex. Distributed by Seymour, Windsor House, 1270 London Road, Norbury London SW16 4DH. Sole Agents for Australia and New Zealand-Gordon \& Gotch (Asia) Lid., South Africa-Central News Agency Lid. Subscriptions INLAND £24 and OVERSEAS $£ 30$ ($£ 47.50$ airmail) payable to "Everyday with Practical Electronics" Subs Dept. Allen House, East Borough.
Wimborne, Dorset BH21 IPF. EVERYDAY with PRACTICAL ELECTRONICS is sold subject to the following conditions. namely that it shall not, without the written consent of the Publishers first Wimborne. Dorset BH21 IPF. EVERYDAY with PRACTICAL EL.ECTRONICS is sold subject to the following conditions. namely that it shall not. without the written consent of the Publishers first otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever.

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W + 300W) MXF900 (450W + 450W)
FEATURES: 1 WER (
Level controls $\#$ Illuminated on/oth swilch $\#$ XLR proot \# Latest Mos-fels for stress tree power delivery into virually any load \# High slew rate \& Very low distortion \# Aluminium cases \# MXF600 \& MXF900 tan cooled with D.C. Ioudspeaker and thermal protection. USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W $19{ }^{10} \times \mathrm{HH}^{17,{ }^{\prime \prime}}$ (2U)×D11"
$\mathrm{MFF} 600 \mathrm{~W} 19^{\circ} \times \mathrm{H} 55^{1 / 4}{ }^{4}{ }^{(3 U U) \times D 12}$

PRICES:-MXF200 £175.00 MXF400 $£ 233.85$
MXF600 £329.00 MXF900 £449.15
SPECIALISI CARRIER DEL. 112.50 EACH
OEIP XOR STEREO 8=WAY ACTIVE CROSS-OVEF:

Advanced 3.Way Stereo Active Cross-Over, housed in a 19 " $\times 10$ case. Each channel has three level controls: ass. mid \& top. The removable front fascia allows access to the programmable DIL switches to adjust the

Price E117.44 + E5.00 P\&P
STEREO DISCO EIXXBRDJ8400SE * ECHO \& SOUND EFFECTS * STEREO DISCO MIXER with 2×7 band ED Vu melers. MANY OUTSTANDING EATURES:- including Echo with repeat \& apeed control, DJ Mic with talk-over witch, 6 Channels with individual faders Slus cross fade, Cue Headphone Monilor, 8 following inputs:- 3 turntables nics, 5 Line for CD, Tape, Video elc.
Price ع144.99 + £5.00 P\&P

गl三人O ELECTRIC TWEETERS - NOTOROLA
Join the Piezo revolution! The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved ransient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required hese units can be added to exising speaker systems of up 100 wal

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ round with protective wire mesh. Ideal for bookshelf and medium sized HiFi apeakers. Price $£ 4.90-50 \mathrm{p}$ P\&P. TYPE 'B' (KSN1005A) $31 / 2$ " super horn for general purpose speakers. disco and P.A. systems elc. Price $\mathbb{5} .99$ - 50p P\&P.
TYPE 'C' (KSN1016A) 2 " $\times 5$ ' wide dispersion horn for quality Hi-Fi syslems and quality discos etc. Price 16.99 - 50p P\&P.
TYPE 'D' (KSN1025A) 2" $\times 6^{\circ}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quality Hi-Fi systems and quality discos. Price $£ 9.99-50 \mathrm{p}$ P\&P. TYPE 'E' (KSN1038A) $3^{3}{ }^{3}$ " horn tweeter with attractive silver finish trim Suitable for Hi -Fi monitor systems etc. Price $£ 5.99+50 \mathrm{p}$ P\&P.
LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10-50 \mathrm{p}$ P\&P.

TDIFLIGMT CASED LOUDSPEAKERS

new range of quality loudspeakers, designed to take advantage of the lates: 2" cast alumnium and loudspeakers with lactory thoded grls ulilize studio quality till corners. complimented with heavy duty black coverning The enclosures

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCYRESPONSE FULL RANGE $45 \mathrm{~Hz}=20 \mathrm{KHz}$
ibl FC 12-100WATTS (100 dB) PRICE $£ 159.00$ PER PAIR ibl FC 12-200WATTS (100dB) PRICE E175.00 PER PAIR SPECIALIST CARRIER DEL. $\{12.50$ PER PAIR
OPTIONAL STANDS PRICE PER PAIR $\mathbb{C} 49.00$ Delivery $\mathbf{\varepsilon 6 . 0 0}$ per pair

IN-GARSTERIEO EOOSTER AMPS

PRICES: 150W E49.99 250W £99.99
400W ع109.95 P\&P E2.00 EACH

THREE SUPERE MIGH POWEA CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75-75)$ Stereo. 150 W Bridged Mono
250 WATTS 250 WATTS (125 - 125) Stereo, 250W 400 WaTTS (200 Bridged Mono ALL POWERS INTO 4 OHMS Features:

* Stereo, bridgable mono * Choice of high \& low level inputs $t L$ \& R level controls \# Remote on-of \# Speaker \& thermal protection

 These modulas now onjoy a world-wide reputation for quality, reliability and perlormance at a realistic price. Fourmodets are avallable to suit the needs of the protessional and hoby market i.e. Industry. Leisure, Instrumental and Mi-Fi

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$
PRICE $440.85+$ §3.50 P\&P
OMP/MF 200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, frequency response $\mathrm{tHz} \cdot 100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$
PRICE $\mathbf{E 6 4 . 3 5}+\mathbf{E 4 . 0 0}$ P\&P
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$ PRICE £81.75- £5.00 P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB . Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R -110 dB , Fan Cooled D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$ PRICE E132.85 - E5.00 P\&P
OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz} .100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$. T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE E259.00 - \&12.00 P\&P
NOTE: mos-fet modules are available in two versions STANDARD - INPUT SENS SOOmV, BAND WIDTH 100 KHZ .
PPEC (PROFESSIONAL EOUIPMENT COMPATIBLE) - INPU
775 VV, BANO WIDTH SOKHZ. ORDER STANDARD OR PEC.
LOUDSPEAKERE LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREOUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. 60p STAMPED) FOR COMPLETE LIST.

McKenzie and Fane Loudspeakers are also available.

GMITENCE-INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS B OHMS IMPEDANCE
8" 100 WATT R.M.S. MEB-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREQ. 72 Hz, FREQ. RESP. TO 4 KHz , SENS 97 dB . PRICE ©32.71 + 10 " 100 WATT R.M.S. ME $\mathbf{0}-100$ GUITAR, VOCAL, KEYBOARD, DISCO, EXCELLENT MID RES. FREQ. 71 Hz , FREQ. RESP. TO 7 KHz , SENS97dB. PRICE C33.74 - £2.50 P\& P O" 200 WATT R.M.S. ME10-200 GUITAR, KEYB'D. RES. FREQ. 65 Hz . FREQ. RESP. TO 3.5 KHz . SENS 99 dB . 12 " 100 WATT R.M.S. ME12-100LE GEN. PURPOSE, RES.FREO, 49 Hz . FREQ. RESP. TO 6 KHz , SENS 100 dB . 2" 100 WATT RM.S. ME12-100LT (TWIN C. 2" 100 WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPONSE, P.A. VOCAL STAGE MONITOR. RES. FREQ 42 Hz , FREO. RESP. TO 10 KHz , SENS 98 dB , 12 200 WATT R.M.S. ME $12-200$ GEN. PURPOSE. GUITAR, DISCO, VOCAL EXCELIENT MIO P\& , VOCAL, EXCELLENT MID. 12 " 300 WATT R.M.S ME 12 -300GP HIGH POWER BASS, LEAD GUITAR, KEYBOARD, DISCO ETC RES. FREQ. 47 Hz , FREQ. RESP. TO 5 K Hz , SENS 103 dB . RICE 870.19 - §3.50 P\& 15 " 200 WATT R.M.S. ME15-200 GEN. PURPOSE BASS, INCLUDING BASS GUITAR. RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99 dB . 5" 300 WATT R.M.S. ME1 5-300 HIGH POWER BASS, INCLUDING BASS GEE50.72- E4.00 P8 RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB . S GUITAR.

FARBENDEBS: RIFFI, STUDIO, N-CAR, ETC

ALL EARBENDER UNITS 8 OHMS (Except EBB-50 \& EB10-50 which are dua BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND B" 50 watt EB8-50 OUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR

RES. FREO, 40 Hz , FREQ. RESP. TO 7 KHz SENS 97 dB . RES, FREQ, 40 Hz . FREQ. RESP. TO 5 KHz . SENS, 99 dB . 10" 100 WATT EB10-100 BASS. HI-FI, STUDIO RES. FREO. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB 12"'100WATT EB 12-100 BASS, STUDIO, HIFFI. EXCELLENT DISCO. RES. FREO. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB .
FULL RANGE JWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND

OHM BASS, HI 1." 6 OWATT EB5-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC. RES. FREQ. 63 Hz , FREQ. RESP. TO 20KHz, SENS 92 dB . RES FREA 29 Hz FREO RESP TO DOKHZ SENS OddB ARRAY DISCO ET "SOWATT EBE, FOTC (TWIN TO 20KHz, SENS 94dB. ES. FREO 40 Hz , FAEO. RESP TO 18 KHz , SENS 89 dB . $0^{\prime \prime}$ SOWAT EB1 F RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS $98 d 8$.

URANSMTHER HOBBY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE
PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRANSMITTER BO-108MHZ. VARICAP CONTROLLED PROFESSIONAL PERFORMANCE. RANGE UP TO 3 MILES. SIZE $38 \times 123 \mathrm{~mm}$. SUPPLY 12 V O $0.5 A M P$ PRICE E14.85- © 1.00 P1P
FM MICRO TRANSMITTER 100 -108MHz, VARICAP TUNED. COMPLETE WITH VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY 9 V BATTERY. PRICE $\mathrm{C8} 8.80-$ E 1.00 PgP

[^0]: (Wimborne Publishing Ltd 1995. Copyright in all drawings, photographs and articles published in EVERYDAY with PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whote or in part are expressly forbidden.

[^1]: 22 Tavistock Drive, Belmont, Hereford, HR2 7XN
 Flease Note: Since PCB designer is so easy to use, and to keep costs down, PCB Designer has an On-Line manual, in Windows Help format. A FREE tutorial is also supplied.

[^2]: I enclose cheque/PO payable to Wimborne Publishing Ltd. Please charge my Visa/Mastercard (Access)

 Card No. ... Card Exp. Date

[^3]: OVERSEAS ORDERS: All overseas orders must be prepald and are supplied under a money-back guarantee of satisfaction. If you are not entirely happy with the Manual return it within a month for a refund of the purchase price (you do have to pay the overseas postage). SEND $£ 39.95$ for $£ 64.45$ for both manuals) PLUS THE POSTAGE SHOW/N BELOW for EACH Manual:
 $\begin{array}{ll}\text { EIRE } & \text { AIR MALL ONLY E11 } \\ \text { EUROPE (E.E.C. Countries) } & \text { AUR MAL ONLY E20 }\end{array}$ EUROPE (nON E.E.C) SURFACE MALL £20. AIR MALL £26 USA \& CANADA FAR EAST \& AUSTRALLA SURFACE MALL E25, ARRMAL £32 SURFACE MALL E31. ARMAL £33 REST OF WORLD SURFACE MALL E25, AR MALL £44 Note surface mail can take over 10 weeks to some parts of the world. Each manual weighs around 4 kg when packed.
 All payments must be made in £'s Sterling payable to Wimborne Publishing Ltd. We accept Mastercard (Access) and Visa credit cards.

[^4]: THE ONLY COMPANY ON FIRST NAME TERMS WITH THE NOISE POLLUTION AGENCY! Brobe

 PA 700
 BEEFY 700 WATT AMPLIFIER ONLY MOSFET
 T O INPUT 0.75V-1.2V VIA $1 / \mathrm{s}^{\prime \prime}(6.35 \mathrm{~mm})$ fACK SOCKETS
 is CHANNEL SEPARATION 85db

 - SIGNAL TO NOISE RATIO 100db
 is FREQUENCY RESPONSE $20 \mathrm{~Hz}-30 \mathrm{kHz}$
 is OUTPUT MAX $2 \times 350 \mathrm{~W}$ (4 ohm) VIA 3-PIN XLR FM
 is OUTPUT RMS $2 \times 230 \mathrm{~W}$
 ה © SIZE 438mm $(W) \times 87 \mathrm{~mm}(H) \times 268 \mathrm{~mm}$ (D) $2 U$ WEIGHT 7.65 kg (8.25 kg boxed)
 UTILISES 8 TO3 MOSFETS WITH DUAL TOROID TRANSFORMER P.S.U. AUTHORISED DEALERS IN:- EMINENCE \& RCF SPEAKERS, VESTAX, KAM, GEMINI \& HW MIXERS, STANTON, ORTOFON, \& SHURE CARTRIDGES.

 376 EDGWARE ROAD LONDON W2 1EB Tel: 071-723 8432/071-723 3462 Fax 071-723 3467 2 mins. from Edgware Road Tube Station.

[^5]: HOW TO USE OSCILLOSCOPES AND OTHER
 TEST EQUIPMENT
 R. A. Penfold

 This book explains the basic function of an oscilloscope. gives a detailed explanation of all the standard controls. and provides advice on buying. A separate chapter deals with using an oscilloscope for fault finding on linear and logic circuits. plenty of example waveforms help to illustrate the control functions and the effects of various fault conditions. The function and use of various other pieces of test equipment are also covered, including
 signal generators, logic probes, logic pulsers, and crystal calibrators. f3.50

