EVERYOAY JuvY و988 $==-12016$
 UNUURESAI CHARBRRP.S.S.U.

ISAlIII

The Magazine for Electronic \& Computer Projects

	POPULAR BAKERS DOZEN PACKS (still available) All packs are $£ 1$ each, it you order 12 then you are entitled to another free. Please state which one you want. Note the figure on the extreme left of the pack ref number and the next figure is the quantiry of items in the pack, finally a short description.
801	513 A junction boxes for adding extra points to your ring main circuit.
BD2	$513 A$ spurs provide a fused outlet to a ring main where devices such as a clock must not be switched off.
$8 \mathrm{B7}$	4 In flex switches with neon on/off lights, saves leaving things switched on.
	26 V IA mains transtormers upright mounting with fixed clamps.
8011	$161 / 2 \mathrm{in}$ speaker cabinet ideal for extensions, takes our speaker. Ref BD137.
BD13	1230 watt reed switches, it's surprising what you can make with these-burglar alarms, secret switches, relay, etc., etc.
8022	225 watt loudspeaker two unit crossovers.
	1 B.0.A.C. ste
BD30	2 Nicad constant current chargers adapt to charge almost any nicad battery.
8032	2 Humidity switches, as the air becomes damper the membrane stretches and operates a microswitch.
BD34	482 meter length of connecting wire all colour coded.
BD42	513 A rocker switch three tags so on/off, or change over with centre off.
BD45	124 hr time switch, ex-Electricity Board, automatically adjust for lengthening and shortening day. oniginal cost $£ 40$ each.
49	10 Neon valves, with series resistor, these make good night lights.
BD56	1 Mini uniselector, one use is for an electric jigsaw puzzle, we give circuit diagram for this. One pulse into motor, moves switch through one pole.
BD59	2 Flat solenoids-you could make your multi-tester read AC amps with this.
BD67	1 Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks
BD91	2 Mains operated motors with gearbox. Final speed 16 rom, 2 watt rated.
103	16 V 750 mA power supply, nicely cased with mains input and 6 V output leads.
BD120	2 Stripper boards, each contains a 400 V 2 A bridge rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc.
	Thin screned hex win wile pva
BD 128	10 Very fine drills for pcb boards etc. Normal cost about 80p each.
BD 132	2 Plastic boxes approx 3 in cube with square hole through top so ideal for interrupted beam switch.
BD134	10 Motors for model aeroplanes, spin to start so needs no switch.
BD139	6 Microphone inserts-magnetic 400 ohm also act as speakers.
BD148	4 Reed relay kits, you get 16 reed switches and 4 coil sets with notes on making c/o relays and other gadgets.
BD149	6 Safety cover for 13A sockets - prevent those inquisitive little fingers getting nasty shocks.
BD180	6 Neon indicators in panel mounting holders with lens.
BD193	65 amp 3 pin flush mounting sockets make a low cost disco panel.
BD196	1 in flex simmerstat-keeps your soldering iron etc. always at the ready.
BD199	I Mains solenoid, very powerful, has lin pull or could push if modified.
BD200	8 Keyboard switches-made for computers but have many other applic ations.
BD210	4 Transistors type 2N3055, probably the most useful power transistor.
BD211	1 Electric clock, mains operated, put this in a box and you need never be late.
BD221	512 V alarms, make a noise about as loud as a car horn. Slightly soiled but OK.
BD242	2 6in $\times 4$ in speakers, 4 ohm made from Radiomobile so very good quality.
80246	2 Tacho generators, generate one volt per 100 revs.
BD	1 Panostat, controls output of boiling ring from simmer up boil.
BD259	50 Leads with push-on $1 / 4 \mathrm{in}$ tags-a must for hookups - mains connections etc.
8026	2 Oblong push switches for bell or chimes, these can mains up 105 amps so could be foot switch if fitted into pattress.
	1 Mini 1 watt amp for record player. Will also change speed of record player motor.
BD275	1 Guitar mic-clip-on type suits most amps.
B0283	3 Mild steel boxes approx $\operatorname{3in} \times \operatorname{3in} \times \operatorname{lin}$ deepstandard electrical.
8D293	50 Mixed silicon diodes.
BD296	3 Car plugs with lead. fititint lighter sock
BD305	1 Tubular dynamic mic with optional table restase
Most 0 free one	er packs still available and you can choose any as your
	5A BATTERY CHARGER KIT parts, including case, Only $\mathbf{£ 5}$ plus $£ 1$ postage
$\begin{aligned} & \text { Anmeas } \\ & \text { Lether" } \\ & \text { will aur } \end{aligned}$	OVER 400 GIFTS YOU CAN CHOOSE FROM a total of over 400 packs in our Baker's ange and you become entitled to a free gift ch dozen packs. itied list of these packs and our latest "News will be enclosed with your goods, and you omatically receive our next news letter.

31/iin Fioppy Disc Orive. made by the Chinon Company of Jopan Beamituly mode and probebby the moss compact device of it kind as huss a theight ol only 32 mm Other teatures are 00 track, high preceision | copy |
| :---: |
| inclived |

CASE-adaptable for $3 / z^{\prime \prime}$ FDD, has room for power supply compo nents. Price only $£ 4$ includes circuit of PSU. Our Ret 4P7.
POWER SUPPLY FOR FDD-5V and 12 V voltage regulated outputs, complete kit
ci1. Our ref. 11 P2

9" MONITOR

Ideal to work with coniputer or video camera uses Philips black and white tube ref M24 2306 W . Which tube is Implosion and X -ray
 Tadiation protected. VoU in
$E H T$
circutry. Requires only a
I
 should be cased. Offered a a lot less than some firms are asking for the tube alone, onty 16 plus 55 post.

CASE FOR $9^{\prime \prime}$ MONITOR

We have arranged with a metal worker to make cases for the q^{-} Monitor. Oelivery promised for the end ol May and the price $£ 12$ plus 2. post. The case will be made from coated sheet steel, overall size Supply and external controls is you fit them.

PROBLEM SOLVED!

We have obtained from the manulacturers of the g" Monitor, the fTt converter which makes it composite input suitable to work with any tomputer, We have had he printed circuir beark made and have al the comp

an alladin's cave

We have opened another shop in Hove, the address is number 12 oundary Road which is between Hove and Ponslade fairly close to The seafront. When you want to see before you buy and when you want to browse around the special bargains available, this is where you shoutd make for as the Portiand Road shop in future will be jusi should bring in an order complete with reference numbers so that the stores can antend to it easily.
MINI MONO AMP on p.c.b. size $4^{-1} \times 2^{\prime \prime}$ (app.)
Fitted volume control and a hole for a
should you requirs it The amplifier has should you require it. The amplifier
hnree transistors and we estimate the output to be 3 W rms. More technical data will be included with the amp. Brand new, pertect condition, oftered at the very
low price of $\mathrm{fl}, 15$ each, or $£ 13$ for 12 .

VENNER TIME SWITCH

Mains operated with 20 amp switch, one on and one off per 24 hrs, repeats daily automatically cor
recting for the lengthening or shorening day recting for the lengthening or shonening day. An
expensive time switch but you can have it for only

 with the added advantage of up to 12 orivotis per 24 hrs . This makes an ideal controller tor the immersion heater. Price of the adaptor kit is $£ 2.30$.

AKAI RV-UM 300 MIDI-RACK

Is a really excellent piece of furniture, ideal to hold your computer or audio equipment. Has three shelves in the upper section and a hinged glass fronted lower section. Height approximately 3 3t, width $131 / 2 \mathrm{in}$, depth $14 i$ in, on castors, dark wainut veneer finish. E 15 plus Eg tor

MULLARD UNILEX AMPLIFIERS

We are probably the only firm in the country with these now in stock. Although onty lour watts per channel, these give superb reproduction. We now offer the 4 Mullard modules-i.e. Mains power unit (EP9ooz) Pre-amp module (EP9001) and two amplifier modules (EP9000) all for E6.00 plus $£ 2$ postage. For prices of modules bought separately see TWO POUNOERS.

25A ELECTRICAL PROGRAMMER

Learn in your sleep. Have radio playing and kettle boiling as you wake - swith on lights to warn off You can do all these and more. By a lamous maker with 25 amp on/oft swith. A beautifulu unit at ą.50.

POWERFUL IONISER

circuite wipprox. 10 times more IONS than the EII and slmilar tircuits. Will reffesh your home, office, workroom elc. Makes you
feel beter and work harder-a complete mains operated case inchuded. $\mathbf{6 1 1 . 5 0 + £ 3 \text { P\&P }}$

J \& N BULL ELECTRICAL Depl. E.E. 2 SO PORTLANO ROAD. HOVE, bRIGHTON, sussex bn3 5at

MAIL ORDER TERMS: Cash, PO or cheque with order. Orders under

 520 add 1.50 sevice charge. Monthly account orders accepted from schools and public companies. Access and B/card orders accepted. Brightron (10273) 7364ay or 202500
NEW ITEMS

Some of the many items described in our current list which you will receive with your parcel

SOLAR POWERED NI-CAD CHARGER 4 Ni-Cad batteries AA (HP? charged in eight hours or two in only 4 hours. (It is a complete, boxed ready to use unit. Price E6. Our ref. 6P3.
$50 V$ 20A TRANSFORMER 'C' Core construction so quite easy to adap lor other outputs-1apped mains input. Only
please add ES if not collecting. Order Ref. 25P4.
FREE POWER! Can be yours if you use our solar cells-sturdily mad modules with new system bubble magnifiers to concentrate the ligh and so eliminate the need for actual sunshine-they work just as
in bright light. Voltage input is 45 -you inin in series in bright light. Voltage input is 45 - you jo in in series to get desire
voltage - and in parallel for more amps. Module A gives 100 mA , Pric f1, Our ref. B0631. Module C gives 400 mA , Price $\mathbf{5} 2$, Our ref. 2P199 fl , Our ref. B0631. Module C gives $400 \mathrm{~mA}, ~ P$.
Module D gives 700 mA , Price C 3 , Our ref. 3 P 42 .
15A PANEL METER These have been stripped from Government surplus battery charger units made originally for army use. Unused, tested but of course rather old, diameter 2in can be surface or flush mounted. £3 each. Our Ret. 3P40
SWITCH AC LOADS WITH YOUR COMPUTER This is easy and reliable if you use our solid state relay. This has no moving parts, has high between logic terminals. The tum-an voltage is not critical, anything between 3 and 30 V , internal resistance is about K ohm. AC loads up 10A can be switched. Price is f 2 each. Ref. 2P183.
MEIAL PROJECT BOX Ideal size for battery charger, power supply etc.; sprayed grey, size 8 in $\times 41 / 3 i n \times 4$ in high. ends, are louvred to
ventilation other sides are flat and undrilled, Order Ret $2 P 191$. ventiation other sides are flat and undrilled. Order Ret. 2P191. Price f ?
BIG SMOOTHING CAPACITOR BIG SMOOTHING CAPACITOR. Sprague powerlytic $39,000 \mathrm{uF}$ at 50 V . E3 OUr ref.
HEAVA
CUTY
HEAVY DUTY CURLY MAINS LEAD. Can be loaded up to 13
to almost 3 metres fitted with I3A plug. E3. Order ref. $3 P 42$.
4-CORE FLEX CABLE. Cores separately insulated and grey PVC cove overall. Each coppet core size 70.2 mm . Ideal for long telephone or similar applications even at mains voltage.
ret. 2 P 196 or 100 metres coil $\mathrm{f8}$. Order rel. 8 P 19 .
BULK-HEAD MOUNTING LOUDSPEAKER. Metal case with chrome gri front and with mounting lugs for screwing to ceiling, 8in. speaker. f1 each, Order rel. 10P43 add E2 past.
TWIN GANG TUNING CAPACITOR. Each section is 0005uf with trim mers and good length 1/ain spindle.
condition. $\mathbf{f 1}$ each. Our ref. B0630.
13A PLUGS Good British make complete Order ref. 2P185
13A ADAPTERS Takes 2 13A plugs, packet of 3 for $\mathrm{C2}$. Order ret. 2P187. 20V-6-20V Mains transformers $21 / 2$ amp (100 watt) loading, tappe primary. 200245 upright mountings E4. Order ref. 4P2
BENCH ISOLATON TRANSFORMERS 250 . BENCH ISOLATION TRANSFORMERS 250 watt 230 V in and out with plenty of tappings to give exact volts. f 5 plus $£ 2$. Order ref. 5 P5
BURGIAR ALARM BELL $-6^{\prime \prime}$ gong OK for outside use if protec rain. 12 V ALtery operated price 58 Ref BP2 rain. 12 V battery operaled.
day. Nicely cased, intebnded for wall mounting. Price C8. Ref BP6 day. Nicely cased, intebnded for wall mounting. Price E8. Ref. 8P6
CAPACITOR BARGAIN-axial ended 4700 FF ai mally 50 p each, you get 4 for fI. Our ref. 613 .
CLEANING FLU1O-Extra good quality-intended for video and tape heads.
B0604.
PIEZO ELECTRIC FAN-An unusual lan, more like the one used Madame Butterly than the conventional type, it does not rotate. air movement is caused by two vibrating amms. It is Amerlcan ma
mains operated, very economical and causes no interference, so mains operated, very economical and causes no interference. so
ideal for computer and instrument cooling. Price is only EI each. R ideal fo
$B 0605$.
SPRING LOADEO TEST PROOS-Heavy duty, made by the fater Bulgin company. very good quality. Price 4 for f 1 . Ret. BO599. CURLY LEAD-Four core, standard replacement for tele set, extends to nearly 2 metres. Price f1 each. Ret. BO599.
TELEPHONE BELLS - These will work off our standard mains through transtormer, but to sound exactly like a telephone, they then must be fed with 25 Hz 50 V . So with these bells we give a circuit for a suifable power supply. Price 2 bells for fl . Ref. $\mathrm{BD600}$.
ASTEC P.S.U.- - Switch mode type. Input set for +230 V . Output 3.5 amps at $+5 \mathrm{~V}, 1.5 \mathrm{amps}$ at +12 V , and 3 amps at +5 V . Should be 0 K for tloppy disc drives, Regular price $£ 30$. Our price only $\mathbf{£ 1 0}$. Ref. 10734 Brand new and unused
APPLIANCE THERMOSTATS - Spindle adjust type suitable for conve tor heaters or similar. Price 2 for $\mathrm{C1}$. Ref. B0582.
3-CORE FIEX BARGAIN No. 1 - Core size 5 mm so ideal for tong extension leads carty
for $£ 2$ ref. 2P189.
3-CORE FLEX BARGAIN No. 2-Core size 1.25 mm so suitable for long extension leads carrying up to 13 amps . or short leads ud to 25 A . 10 m for $£ 2$. Ret. 2P190.
CASE WITH 13A PRONGS - To go into I3A socket, nice size and suitable for plenty of projects such as battery trickle charger, speed controller, time switch, night light, noise suppressor, dimmers etc. Price - 2 for $\mathrm{f1}$. Ref. BD565.
ALPMA-NUMERIC KEYBOAA
ALPMA-NUMERIC KEYBOARD.- This keyboard has 73 keys giving trou-
bie free lite and no contact bounce. The keys are arranged ble free life and no contact bounce. The keys are arranged in two
groups, the man area is a OWERTY array and on the right is a 15 key number pad. huard size is approx. $13^{\prime} \times 4^{-}$-brand new but otlered only a fraction uf ins cost, namely E , plus £ 1 post Ref. 3 P27.
TELEPHONE EXTENSIONS - It is now legal for you to undertake the wining of telephone extensions. For this we can supply 4 -core tele-
phone cable, 100 m coil 88.50 . Extension BT sockets $\mathbf{C 2 . 9 5}$. Packet of 50 phone cable, 100 m coil $£ 8.50$. Extension BT sockets $£ 2.95$. Packet of 50
plastic headed staples $£ 2$. Dual adaptor for taking two apoliances from plastic headed staples $£ 2$. Dual adaptor for taking two appliances trotm
one socket $£ 3.95$. Leads with BT plug for changing old phones, 3 for $£ 2$. one socket $£ 3.95$. Leads with BT plug for changing old phones, 3 tor $£ 2$.
WIRE BARGAIN- 500 metres 0.7 mm solid copper tinned and p.v.c. WIRE BARGAN covered Only 3 , covered. Only ${ }^{2}$ plus metre, and this wire is ideal for push an connections.
INTERRUPTED BEAM KIT-This kit enables you to make a swith that will trigger when a steady beam of infra-red or ordinary light is broken Main components-relay, photo transistor, resistors and caps, etc. Main components-relay, photo transistor, re
Circuit diagram but no case. Price $\{2$. Ref. 2 P15.
3-30V VARIABLE VOLTAGE POWER SUPPIY UNIT-with 1 amp DC output. Intended for use on the bench for experimenters, sludents. inventors, service engineers etc. This is probably the most important
piece of equipment you can own (after a multi range test meter). It
gives a variable output from $3-30$ volts and has an automatic short gives a variable output from $3-30$ volts and has an automatic short
circuit and overload protection, which operates at 1.1 amp approximately.) Other features are very low ripple output, a typical ripple is 3 mV pl-pk, 1 mV rms. Mounted in a metal fronted plastic case, this has a voltmeter on the front panet in addition to the output control knob a the outputt
Ref. 15P7.
TRANSMIER SURVEELANCE (BUG)--Tiny easily hidden,
TRANSMITER SURVEILLANCE (BUG)-Tiny, easily hidden, but which in a matchbox, at electronic parts and circuit. Price $£ 2$. Ref. $2 P 52$.

ISSN 0262-3617

PROJECTS . . . THEORY . . . NEWS
COMMENT . . . POPULAR FEATURES . . .

(c) Wimborne Publishing Ltd 1988. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Projects

VIDEO WIPER by Robert Penfold
Produce professional results from top to bottom, incorporates an audio fader control
HOME SECURITY-2 by Owen N. Bishop 390
An adaptable system that will enable you to secure your home against intruders and fire
SPIKE EATER by P. E. Roberts
Take the "snap, crackle and pop" out of the mains supply
SPECTRUM DUAL DAC 394

AUDIO MINI-BRICKS by John Becker 404

Part Two: Voltage Controlled Filter; Mock Stereo; Phasing and Ring Modulator
ISOLINK by Andy Flind 416
Connections without contact
UNIVERSAL CHARGER/POWER SUPPLY
by Costas Calamvokis
Keep the power in your NiCads, don't let them drain away.
This versatile unit also doubles as a mains adapter
DIODE PUMP
An Exploring Electronics project

Series

INTRODUCING MICROPROCCESSORS
by Mike Tooley BA
Part Nine: Written assessment, fourth practical
assignment and readers'forum
ON SPEC by Mike Tooley BA
Readers' Sinclair Spectrum page
BBC MICRO by R.A. \& J.W. Penfold 412
Regular spot for Beeb fanatics
ROBOT ROUNDUP by Nigel Clark
Investigating the world of robotics
ACTUALLY DOING IT by Robert Penfold
Value of components
EXPLORING ELECTRONICS by Owen N. Bishop Part Twenty-Five: Using diodes

Features

CROSSWORD No. 6 381
Some light-hearted brain teasers
EDITORIAL
FOR YOUR ENTERTAINMENT by Barry Fox 397
Smart Money; Death Ray: Home Video News
SHOPTALK by David Barrington
Product news and component buying
AMATEUR RADIO by Tony Smith G4FA1 425
Student Licence; Polar Radio; Armada 400
DOWN TO EARTH by George Hylton
Power Supply Labelling; Split Supplies; Multiple Supplies
DIRECTBOOK SERVICE
DiRecial service to EE readers
PRINTED CIRCUIT BOARD SERVICE 437
ADVERTISER'S INDEX 440

The UK Distributor for the complete ILP Audio Range

BIPOLAR AND MOSFET MODULES

The unique range of encapsulated amplifier modules with integral heatsink

HY30 15W Bipolar amp.
£11.30 HY248 120 W Bipolar amp (80 ohm) $£ 24.15$ HY60 30W 8ipolar amp $£ 11.30$ HY 364180 W 8ipolar amp (40 hm) $£ 36.00$ HY6060 30W Stereo Bipolar amp £23.65 HY368 180 W Bipolar amp (80 hm) $£ 37.55$ HY 12460 W Bipolar amp (4 ohm) $£ 18.50$ MOS128 60 W Mosfet amp $£ 40.70$

POWER SUPPLIES
Comprising toroidal transformer and DC board to power the ILP amplifier modules.

Application
PSU30
PSU212
Pre amplifier
or 2 HY 30
$\begin{array}{ll}\text { PSU212 } \\ \text { PSU4 } 12 & \text { or } 2 \text { HY } 2 \text { HYO } \\ \text { HYO60, HY124, } 1 \text { or } 2 \text { HY60 }\end{array}$ PSU4 22 HY 128 PSU432 MOS128 PSU512 HY244, HY128 ${ }^{(2)}$ PSU522 HY124 (2)
$\begin{array}{llll} & \text { P.75 } & \text { PSU532 MOS128 (2) } \\ \text { PSU542 HY248 }\end{array}$
$\begin{array}{ll}\text { 9.75 } & \text { PSU542 HY248 } \\ \text { C17.70 } \\ \text { PSU552 MOS }\end{array}$
$\begin{array}{lll}17.70 & \text { PSU552 MOS248 } \\ \text { PSU712 }\end{array}$
C22.00 PSU722 HY248 (2)
E23.00 PSU732 HY364
$\begin{array}{ll}\text { £24.40 } & \text { PSU742 } \\ \text { E24.40 } \\ \text { PSU752 } \\ \text { MOS }\end{array}$
PRE-AMP and MIXER MODULES
These encapsulated modules are supplied with in-line connectors but require potentiometers,
switches etc. Individual data sheets on request
HY6 Mono pre-amp with bass \&itreble
HY7
HY8 Stereo moxer 5 channel
HY9 Stereo pre-3mp
HY11 Mono mixer 5 channel with bass \& treble
HY 12 Mono pre:amp 4 channel with bass, mid \& treble
HY13 Mono VU meter driver
HY66 Sereo pre amp with bass \& treble
HY67
$\begin{array}{ll}\text { HY67 } & \text { Stereo headphone driver } \\ \text { HY68 } & \text { Stereo mixer } 10 \text { channel }\end{array}$
HY69 Mono pre-amp 2 channel with bass \& treble
HY71 Dual preamp
HY73 Guitar pre-amp with bass \& treble
HY74 Stereo mixer 5 channel with bass \& treble
HY75 Stereo preamp with bass, mid \& treble
HY76 Stereo switch matrix
$\begin{array}{ll}\text { HY77 } & \text { Stereo VU meter } \\ \text { HY78 } \\ \text { Stereo pre-amp }\end{array}$
HY83 Gtereo pre-amp
HY83 Guitar pre amp with special effects
${ }_{866} 86$ Mounting board
LOUDSPEAKERS
312B 350w 12" Bass loudspeaker
312WB 200w 12" Wideband bass loudspeaker
$£ 25.40$
$£ 25,40$
£25.40
£27.45
$£ 27.45$
$£ 29.20$
29.20
$£ 30.20$
£30.20
£30.20
$\begin{array}{r}\text { £32. } \\ \mathbf{f} 20 \\ \hline\end{array}$
£32.20

£ 9.25 ع 8.75
 ¢ 8.75 £ 8.75
 | ¢ 9.30 |
| :--- |
| ¢ |
 £ 9.75 $£ 9.30$
 £ 9.30 $£ 8.75$
 88.75 £15.00
 E15.00 ع16.60
 ع16.60 £11.30
 £11.30 $£ 15.40$
 £14.95
 £15.00
 £15.95
 515.40
 £19.50
 $\varepsilon 14.35$
 ع14.70 $\mathbf{8 1 8 . 9 5}$
 $\begin{array}{r}18.95 \\ £ \\ \hline\end{array}$
 1.75
 ع78.65
 ع78.65

POWER SLAVES

These cased amplifiers are supplied assembled and tested in 60 and 120 watt Bipolar or Mosfet versions.
US12 60 watt 8ipolar (40hm) \quad E75.00 US32 $\quad 60$ watt Moster
599.95

US22 120 watt 8 ipolar (4ohm) $£ 83.75$ US42 120 watt Mosfet

Prices include VAT and carriage

Quantity prices available on request
Write or phone for free Data Pack
Jaytee Electronic Services
143 Reculver Road, Beltinge, Herne Bay، Kent CT6 6PL Telephone: (0227) 375254 Fax: 0227365104

NEW THIS MONTH

24069 STEREO HEADPHONES-Hi-FI, compact, fold-up. Amazing value. $£ 1.95$

24071 MAP LIGHT - in car use with magnet and magnifier, curly lead and plug

2345 OPTICAL SHAFT ENCODER. Simila o RS631-632, but 80\% cheaper! $\mathbf{8 8 . 5}$

LM 358° s for 5pl

$23474 \times$ LM358 op amps surface mounted on ceramic substrate, easily removed.

COMMODORE INTERFACE

2030 Plugs into user port on C64 and gives serial output to 5 pin plug. Uses 27256 6502 plus LS \& CMOS
55.95

SET TOP CONVERTER

28028 Made by Thorn EMI, this was used to receive cable television. 2 part aluminium case $211 \times 158 \times 92 \mathrm{~mm}$ (no front panel) contains 2 pcb's: (a) control board with multiway switch, dual 7 seg plug-in display and a couple of chips; (b) main board with mains transformer, tuner, RF section etc. Rear panel has input and output sockets, 2 m mains lead with mouldedon 13A plug.

2810 KEYBOARD. Really smart alpha numeric standard qwerty keyboard with separate numeric keypad, from ICL's 'One Per Desk'. Nicely laid out keys with good tactile feel. Not encoded-matrix output from PCB taken to 20 -way ribbon cable. Made by Alps. Size $333 \times 106 \mathrm{~mm}$. 73 keys.
'Jімму' 28.95

Exciting electronic football game originally sold for $£ 19.95$, but this price included plastic grandstand, stickers, etc. We can supply the $420 \times 93 \mathrm{~mm}$ neatly cased electronics comprising keypad either end, $14 \times 5 \mathrm{~mm}$ red LED's('plavers'). TMS 1000 chip programmed to make odd noises whilst playing and a tune when a goal is scored, also $2 \times 7 \mathrm{seg}$ LED's to keep score. Cardboard 'pitch' plus instructions supplied.
TOOLS
Scoop purchase of high quality surgical instruments ideal for electronics use
2308 5in lightweight long nose pliers 99p $230951 / 2 \mathrm{in}$ as above but with ratchet. This enables pliers to be locked together-for holding small components, or as heat shunts, etc
£1.20
Jovstick
2004 Skeleton Joystick, switch type. Good quality, made by AB. Brass spindle has 44 mm long black plastic handle attached Body has 4 mounting holes. These really are a fantastic bargainfl
SPEECH SYNTH KIT
2315 All parts inc PCB to make a speech synth for the BBC micro
£4.99 2316 De-luxe version-also includes V216 case, 1 m 20 W cable plus connector $\mathbf{£ 7 . 9 9}$ VIEWDATALTU
2697 Interface Panel 166×150 with $3 \times$ LM 324, LM339, LM393, 4066, 11 transistors, 3 reed relays, etc. 3 m lead with BT plug attached. Supplied with comprehensive data and ccts.
ENTERPRISE PANELS
2658 PCB 325×158 with 64 K of RAM (8×4864). Z80A microprocessor, 21 other chips, UHF modulator, speaker, etc. ROM and Nick and/or Dave chips missing, supplied with cet and data
INTERFACE
28027 Diecast box $150 \times 80 \times 50 \mathrm{~mm}$. Mounted centrally on top is a 25 - way D type socket. This is wired to a pcb within which has $12 \times 20 \mathrm{~mm}$ wire ended fuses and 2412 V 1W zener diodes. A 13 core lead 2 m long from this board terminates in a 25 W D plug. There is also a separate earth lead. \qquad
All prices include VAT; just add $£ 1.00 \mathrm{P} \& \mathrm{P}$. Min. Access $£ 5$. No CWO min. Official orders from schools welcome - min invoice charge f10. Our shop has enormous stocks components and is ope
HOW TO CONTACT US
By post using the address below; by phone (0703) 772501 or 783740 lansaphone out of business hours); by FAX (0703) 787555, by EMail Telecom Gold 72:MAG36026; by Telex 265871 MONREF G quoting 72:MAG36026

MERLIN WAY, BOWERHILL MELKSHAM, WILTSHIRE SN12 6TJ

SySTEMS

Tel: 0225706886

miscellaneous

$1 \times$ I.E.C. 1 amp mains fiter socket xI.E.C. 3 amp mains filter socket xI.E.C. 6 amp mains fiter socke $5 \times$ push latching pcb switches
$5 \times$ slide pcb switches
$10 \times$ phono plugs $5 \times 240 \mathrm{~V}$ panel neons $5 \times 24 \mathrm{~V}$ panel lamps $5 \times$ MES Lamp holders
52 -way 3-pole switches with knobs 4×4-way dill switches 5×1.7 amp 200 V bridge rectifiers 51 amp 50 V bridge rectifiers $10 \times 5 \mathrm{~mm} \times 2 \mathrm{~mm}$ red leds $10 \times 5 \mathrm{~mm} \times 2 \mathrm{~mm}$ green leds

NEW!

Made by well-known Japanese manufac turer. Twin cassette mechanism, complete with stereo heads, counter, doors and leads, only $£ 6.00, \mathrm{P} \& \mathrm{P} £ 1.00$
Complete working pcb from LW, MW, FM, stereo music centre. Only 55.00 , P\&P $£ 1.00$

HEW SYSTEM

Merlin Systems PC Turbo 256K RAM, 8088 CPU, 1 DIsk Drive, Hires Mono Monitor, 84 Keyboard, Par printer port, Radio and MSDos oftware and Merlin .Systems backup. 450.00 plus $£ 15.00 \mathrm{P} \& \mathrm{P}$

2nd USER SYSTEMS

Apple II + with diskm drive and software
ranklin with disk drive and software $\quad 150.00$ Apple parts, S 100 cards, IBM Cards, dist drives, CPN systems, MSDos systems, IBM PC, and mono/colour monitors.

PAYMENT: Gredit card. cheque, PO, cash Post and packaging, $\mathbf{£ 0 . 0 0}$ to $\mathbf{£ 1 0 . 0 0 ~ a d d ~}$ 11.50; $£ 10.00$ to 20.00 add $£ 1.00$. Please add VAT to total.

Look out for Merlin Systems at the following Rallies and Exhibitions: 10th JulyBrighton Rally, Brighton Racecourse. 15/16/17th July-RSGB Convention, NEC, Birmingham. 31st JulyScarborough Rally.

RADIAL

 RADIALELECTROLYTICS
10x POWER
ELECTROIVITCS 5x50utx50uf 200V 10m2zut 10 V $10 \times 22 \mathrm{ut} 25 \mathrm{~V}$ 1022 ut 2 V
$10 \times 47 \mathrm{uf} 25 \mathrm{~V}$ $10 \times 47 \mathrm{uf} 35 \mathrm{~V}$ $5 \times 47 \mathrm{f} 250 \mathrm{~V}$
$10 \times 100 \mathrm{ut} 10 \mathrm{~V}$ 10x100ut 10V $10 \times 220 \mathrm{u} 1 \mathrm{DVV}$
$10 \times 220 \mathrm{u} 16 \mathrm{~V}$ $10 \times 220 \mathrm{u} 2 \mathrm{VV}$
$10 \times 220 \mathrm{u}$
10 V $10 \times 220 u \mathrm{u} 50 \mathrm{~V}$ 10x470ut 25v $10 \times 470 u 150 \mathrm{~V}$ -Up-Market Desk, L $102 \mathrm{~cm} \times$ W $74 \mathrm{~cm} \times H$ 74 cm with keyboard recess and cableing trunking. New only $£ 5000$ plus $£ 16.00$ P\&P

POWER SUPPUES

and TRANSFORMERS
Bench power supply in blue case, with switched 240V mains input and HT output. Outputs, 6.3 V ac at lamp and 250 V dc stabilsed at 50 mA . H 115 mm , W 185 mm , D 125 mm . Just the job for valves! AS NEW ONLY $£ 9.50$.

2nd USER TEST EQUIPMENT

SE Labs SN111 18 MHz bandwidth, twin bearn, mains or battery input. Only $£ 160.00$ plus $£ 15.00$ p\&ip. Ring for list.

CONQUERING NEW HEIGHTS

 \star Variable Hold Off * Triple DC Source \star DC - 25 MHz $\star 40 \mathrm{~ns} / \mathrm{div}$

Full 2 Year Warranty £319*

To scale the heights, just call us for your FREE copy of our catalogue

*(Ex VAT \& Delivery) Cratech instruments Limited
2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ Telephone: (0480) 301818 \qquad
\qquad

EE PROJECT KITS

Full Kits inc. PCBs, or veroboard, hardware, electronics, cases (unless stated). Less batteries
If you do not have the issue of EE which includes the project-you will need to order the instruction reprint as an extra-80p each. Reprints available separately 80p each plus p \&ip E 1 .

THIS MONTH'S KITS
(sae or 'phone for prices) SUPEA SOUMDEEFETS
DOOH SLNTMEL Mar 88
STEMEO MOLSE GATE Aprt B8 CABLE \& PIPE LOCATOR Apris 88 WDUCTVE PROXIMITY DET. April 88 COW PUEL ALERT APril LE DETECTOR Mar 8 EmVELOFE SHAPFR Ma SOS Ment Mar 88
auro wagele jorsncl AOAPTOR Mar 88

CAR LMMP CHECKIWG SYST. Feb 88 GOMF MMER Feb 88
OUZZMASTER Jan 88 CAPACTIANCE METER Jan 88 COMTINUTTT TESTER Jan 88 AUDHO SIGNAL GEMERATOR DUAL MAINS LGETS PLSHER DEC ACCENTED BEAT METRONOWE Nor 87 ACOUSTIC PROBE Nov 87 lless bolt
BBC SIDFWAYS RAMROM Noy 87 BBC SIDFWAYS RAWHOM HOEO CONTROLER
AUTOMATC P PORCH UGRT Oct 87 carayan frabge allert Oct STATC MONITOR OC: B7 ELECRRONIC MUITMMETER Sepl 87 WOISE GATE Sedt 87 Car OVI RHEAMNG ALARM Sept BURST FIRE MAIWS CONTROLLER Sedt 87 SUPER SOUND AOAPTOR Aug 87 MWERSNON MEATER TMMER Aug B) 3 BAND 15. $3 \mathrm{MMHz}_{2}$ RADIO Aug 87 CIGTAL COUNTERFREO WFEER (1OMHZ) IBC. case July 87
monomix July MOWOMIX July 87
nsual guttar tumer Jun 87
MIMI DISCO LIGHT JUn 87

SCREEN WASHER W
Wuae Alahm May 87
CONIZER (مNISE則 May 87
EXP. SPEECH RECOGMTTION April
COMPUTER GUFFER INTEAFACE M?
CTME UR BURGLAR ALARM Mar B7
DDE 0 GUARD Feb 87
CAR VOLTAGE MONITOR FEb 87
SPECTRUM SPEECH SYNTM. INO C
Feb 87
STEPPWG MOTOR BOOSTER (lior ahove)
Feb 87
STEPPWG MOTOR MD200 Feb 87 HANOS OF WTERCOM (per station) inc. cas Jan 87
DUA READING THERMOMETER (le as Case)
 CHAMMEL A-D ISPECTRUM) CONVERTE Oec 86
BODE TM SOEWAYS RAM Dec 8 B OPTICALYY ISOLATED SWITCH N CAR RASHER WARNIMG Nov 86 WMr DG, FRENENCY wiren 10 WATT AUO10 AMPLIFER OCI 86 IGFIT RIDER DISCO VERSIOM Light hiofr is led version sCRATCN BLANMER Sedt Bo FAFEE-RED BEAM ALARM Sopt 86
 CAR TMER Sept B6
HIT ALARM July 86 HEAOPHONE MIXER July Caravan battery monitor July 86 SQueEkIE COMTMuITY TESTER July 0X b0x A Mp OX $80 \times$ AMP July ${ }^{\text {B }}$ LIGMT PEM (less casel June 86 persomal ranio June 86 Watchoog June 86 MINI STROBE May 86 LOGic SwITCH May 8 STEREO REVERB Apr yERSADIE PSU Apr os FREELOAOER Apr B
stepper motor daner apl 8 BBC MIDI MTERFACE Ma
IWTEAVAL THMER Mar STERE D MI FIPRE-AMP MAINS TESTER \& FUSE RMDER
FUNCTION GENERATOR F FB 66 FUNCTIONGEMERATOR FOL
POWER SUPCTY FOR ABOVT TOUCH COMTROLIER FEB BG SPECTRUM OUTPUT PORT Feb B6 Tachometer Jan 86
ONE CHIP ALARM Jan MUSICAL DOOR BEL Jan 86 Digital capactiance meter dec 85 SOLOERMGG IRON COWTROLLER Oct BS VOLTAGE MEGULATOR Sept 85 PERSONAL STEREO PS.U. SEPL 85 RIAA. PRE-AMP Sept 85 f12.59
 TREMOLONIGRATO Aug B5 (Batt) Aug 85 STEPPER MOTOR INIERFACE FOR TME BBC COMPUIER Less case Aug 85
1035 STEPPER MOTOREXTRA 1035 STEPPER MOTOR EXTRA
OPTONAL POWER SUPPLY PART OPHOWAL POWER SUPPLIY PA
COWTNUTY TESER JULY 85 TRAN SIGMAL CONTWOLER J AMSTRAD USER PORT JUIY 85 across the river June 85
ELECTBOWIC DOORBEL June ELFCTRONIC ODORBEL JUNe BS GRAPHIC ERUALLSE
AUTO PHASE May 85 IWSULATON TESTER A LOAO SIMPLFER FED 85 SPECTRUM AMPLIFIER Jan TV AERIAL PRE-AMP Dec B4
Optional PSU 12 V EE.4 Optional PSU 12 V
DOOR CHIME Dec B4 BEC MICRO AUOIO STORAGE SCOPE INTERF Nov ${ }^{8} 4$
PROXIMTY ALARM Nov 84 MAINS CABLE DETECTOR OCI BA MICRO MPEEO COMTROULER DET BA
gutar head phone amplyier sede
$\begin{array}{lll}\text { SOUMO OPERATED FLASH less lead Sept } 84 & \mathrm{f} & 58\end{array}$
TEMPERATURE ITTERFACE FOR EBC
CAU RADIO
CAR Radio boosten Aug ba
CAR LIGETTS WARMING July 84
VARICAP AM RADIO May 84
EXPCAIMENTAL POWEA SUPPYY May B4
SIMPLE LOOP BURGLAR ALARM May B4
MAS TERMNMO TIMER May 8 G
FUSEDIOOE CHECKER APr \&
OUASI STEREO ADAPTOR Apr 84
M-CAO BATTERY CMARGER May
RIPE FINOER MAY B
SIGMAL TRACER Feb 84
CAR LIGRT WARNING Feb sA
BIOL OGICAL AMPIFIER Jan 84
BIOL OGICAL AMPPIFIER JIA B4
CONTNUITY TESTER Dec B3
CHMOREN'S DISCO UGKTS Dac
CHOVEL EGG TMER Oec BS inc. cas
SPEECH SYMTHESIZER FOR THE BBC MICRO
Nov 83 less cable + sockets
MOME INTEACOM less link wire Oct 83
STORAGE SCOPE INTEAFACE FOR BBC MICRO
Aug 83 less software
HIGH POWER MTEWFACE
USER PORT VO BOARD less cable + plug
USER PORT CONTROL BOARD July 83 less
cable + plug + case
MW PERSONAL RADIO less case, May 83
MOISTURE OETECTOR May 83
buzz off March 83
PUSN BIKE ALARM Feb 83
Z TAPE CONTROL Nov 82
ZX TAPE CONTROL Nov 82
2. WaY MTEACOM July 82 no case
REFLEX TESTEA Juhy 82
SEAT BELT REMINDER Jun 82
EGG TMMER June 82
CAR LED VOLTMETER Iess case. May 82
V.C.O. SOUND EFFECTS UWIT AprI 12
CAMERA OR FLASH GUN TRIGG
Mar 82 less tripod Dushes
Mar 82 less tripod bus
SIMPLE IWFRA REO REMOTE CONTROL
SUSTAMM UNIT Oct 81
SUSTAM UNTT Oct 81
TAPE MDISE UMITER Oct 81
TAPE MDISE UMITER Oct 81
MEAOS AND TALS GAME Oc
PHOTO FASH SLAVE Oct 81
Huzz B0x oct 81
SOIT MOISTURE UNIT OCI 81
0-12V POWER SUPPLY Sepl
SOHL MOISTURE INDICATOR E.E. May 8 ?
May Br
MOOULATED TONE DOORBELL Mar a
2 NOTE OOO CMIME Oec 80
UVE WRE GAME Dec 80
GUITAR PRACTICE AMPUFIER Nov 8014.10
less case. Standard case extra
SPRING LME REVERB UNIT Jan bo
uniboaro eurglar alarm dec 79
OARKROOM TMMER July 79
microchime doorberu feb
SOUNO TO LIGHT Sept 78
WEIRD SOUND EPFECTS GEN Mar $7 B$
WEIRD SOUND EIFECTS
ELECRONIC DICE Mar 7%
antex model cirion ANTEX XS SOLDERING ANTEX X5 SOLDER
IRON ZWW STISTAND FOR IRONS HEAT SINK TWEEZERS SOLOER HANOY SIzE 5 SOLOER CAATON
SOLDER REEL SIZE 10

Low rost roos

| |
| :--- | :--- |

TOP KITS

A SELECTION OF OUR BEST PROJECT KITS

As usual these kits come complete with printed circuit boards, cases all components, nuts, screws, wire etc. All have been tested by our engineers (many of them are our own designs) to ensure that you get excellent results

INSULATION TESTER

An electronic High Voltage tester for mains appliances and wiring. An inverter circuit produces 500 volts from a PP3 battery and applies it to the circuit under test. Reads insulation up to 100 Megohms. Completely safe in use.
OUR KIT REF E444 £18.65

DIGITAL CAPACITANCE METER

Simple and accurate (1%) measurements of capacitors from a few pF up to 1 , UF. Clear 5 digit LED display indicates exact value. Three ranges - pF, nF, and uF. Just connect the capacitor, press the button and read the value.

$£ 39.57$
 OUR KIT

REF E493

3 BAND SHORTWAVE RADIO

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker Advanced design gives excellent stability, sensitivity and selectivity Simple to build.
OUR KIT REF E718 £25.27

DIGITAL FREQUENCY METER

200 MHz

An 8 digit meter reading from A.F up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements, Amateur and C. B. frequencies.
KIT REF E 563 £59.98

'EQUALISER'IONISER

A mains powered loniser that produces a breeze of negative ions in the air. A compact, safe, simple unit that uses a negligible amount of electricity.
KIT REF E707 £14.79

VISUAL GUITAR TUNER

A crystal controlled tuner with a New type of 'rotating' LED display. Clockwise or Anticlockwise rotation indicates high or low frequency. Perfect tuning is obtained when the pattern is stationary. Suitable for electric guitar pick-ups or may be used with a microphone for acoustic instruments. Also has an audio 'pitch pipe output
KIT REF E711 £21.99

NEW 1988/9 CATALOGUE
 FROM MAGENTA

EECROSSWORD 6

CLUES ACROSS

5 You are left with this after removing the harmonics. (11)

6 Form of gain control used in t.v. $(5,1,1,1)$
9 Bulk transfer of data. (4)
11 To be honest, a table. (5)
12 Power when the current and voltage are in quadrature. (8)
13 Only a small charge is made. (7)
16 When a signal undergoes any change. (7)
19 Circuit that takes the uncertainty out of a switch. (8)
21 See 26.
23 Vertical line of data. (6)
24 One volt through one ohm produces this unit of measurement. (6)
25 Unwanted addition to a signal. (5)
26 and 21 This determines the secondary voltage. $(5,5)$

DOWN
1 State that solder goes through. (8)
2 The perfect transformer. (5)
3 A reactance coil. (8)
4 Logically, don't be up the creek without this. (6)
7 Can be used as a dielectric. (3)
8 Add blue and green. (4)
10 These cause a shadow in c.r.t's. (5)
14 Formerly the wireless. (5)
15 Compensated volume control. (8)
17 A circuit that maintains a signal at a fixed reference. (8)

16 A million times the basic unit of resistance. (6)
18 Plenty of room for this instrument. (5)
20 Step backwards to daub this code. (6)
22 A balancing transformer. (5)

For fun only-answers on page 420.

The Magazine for Electronic \& Computer Projects VOL. 17 No. 7

See notes on Readers' Enquiries below-'Ne regret that lengthy technical enquiries cannot be answered over the telephone

Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS
4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX
CO 16 7 HG. Clayton (0255) 436471

VIDEO IMPROVEMENTS

WITH the ever increasing use of video cameras to make home video recordings we find many readers are now keen to improve the quality of the finished video with better methods of editing. In this issue we describe a unit that is relatively simple to build but which will provide a professional style "top to bottom" wipe effect between scenes.

Camcorders become more sophisticated almost every month and prices seem set to fall with the introduction of an Amstrad camera at less then $£ 500$ in the near future. Little wonder that almost every amateur sporting event is now avidly videoed either for later dissection to aid training or simply for future enjoyment. We hope the projects we have published will add to the enjoyment of making your own videos.

KEEPING YOUR PROPERTY

One problem with owning a large range of consumer equipmentmost households now have a colour TV (or two) a video and hi-fi system -is that such items attract the attention of a seemingly growing band of burglars.

There cannot now be many home owners who have not had the experience of being burgled or of knowing of neighbours, friends or relatives who have been. While it seems that little can be done to apprehend the casual thief, it is quite easy to protect our homes from his unwanted attentions.

With this in mind the Home Security Systems series shows some simple but efficient circuits for the protection of house and contents. The series also describes a fire alarm add-on so the protection afforded is quite wide. Why not build and install an alarm system instead of waiting until "after the horse has bolted" as I did?

SUBSCRIPTIONS
Annual subscriptions for delivery direct to any address in the UK: $£ 14.50$. Overseas: £17.50 (£34 airmail). Cheques or bank drafts (in

E sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept., 6 Church Street, Wimborne, Dorset BH21 1 JH . Subscriptions can only start with the next available issue. For back numbers see below.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.50$ ($\mathbf{E} 2.00$ overseas surface mail) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electroniss, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. In the event of non-availability remittance will be returned. Please allow 28 days for delivery. (We have sold out of Sept. Oct. \& Nov. 85, April, May \& Dec. 86, Jan, Feb, April \& May 87 \& April 88.1

Binders to hold one volume (12 issues) are available from the above address for $£ 4.95$ ($£ 9.00$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.

Payment in \mathbf{f} sterling only please.

Editor MIKE KENWARD
Secretary PAMELA BROWN
Deputy Editor
DAVID BARRINGTON
Editorial Assistant
COLETTE MCKENZIE
Editorial: WIMBORNE (0202) 881749
Advertisement Manager
PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (0202) 881749
READERS' ENQUIRIES
We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporaion or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.
OLD PROJECTS
We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fides, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufactore. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor.

TRANSMITTERS

We would like to advise readers that certain items of radio transmitting equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use.

The law relating to this subject varies from country to country; overseas readers should check local laws.

> Add the professional touch to your videos. This wiper will blank the screen from top to bottom then restore the new scene from bottom to top or vice-versa.

THE most basic method of editing a home video is simply to cut straight from one scene to the next, but much more professional results can be obtained using some form of fader or wiper. With a video fader the picture is faded down at the end of one scene, and faded back up again at the beginning of the next one. This gives a much smoother transition from one scene to the next, and is generally much better from the viewer's point of view.
Wipers take various forms, and some units can provide a whole range of wipe effects. What is probably the best general purpose wipe effect, and the one provided by this unit, is the top to bottom type. In other words, at the end of a scene the screen is progressively blanked from the top downwards until it is fully blanked. At the beginning of the next scene the screen is progressively restored from the bottom upwards.
An added feature of this wiper is that it will do an inverse of the standard wipe effect. where the screen is blanked from the bottom upwards, and restored from the top downwards. It also incorporates an audio fader control so that, if required, the audio and video signals can be faded up and down in unison.

The audio fader is purely passive incidentally, and is just a volume control style variable attenuator. Although only a mono type on the prototype, there should be no difficulty in using a twin gang control to accommodate a stereo audio signal. The unit operates with a standard PAL composite video signal at 75 ohms impedance (not a u.h.f. television signal).

VIDEO BASICS

A video signal, if viewed in slightly oversimplified fashion, consists of two basic parts. There is a positive going picture modulation signal, and negative going synchronisation pulses. A television picture is, of course, produced by scanning an electron beam in a series of lines across the screen, starting at the top and working downwards. The modulation signal varies the strength of the electron beam, which has the effect of varying the intensity of light produced at the point where it hits the screen (we will ignore the complications of a colour system).
There are two types of synchronisation signal; the line synchronisation pulses and the longer frame synchronisation variety. A frame pulse is produced prior to each complete scan of the screen, and the line pulses

Fig. 1. Simplified representation of a composite video signal.
are produced prior to each line being scanned. This permits very accurate synchronisation of the transmitting and receiving equipment, with minimal picture distortion. There is a slight complication in that a system of interlacing is used. All this means is that on the first frame scan only every other line is produced, with the missing lines (and only these lines) being scanned on the next frame.
The British PAL system has fifty frames per second, but only twenty-five complete pictures each second. The purpose of the interlacing is to reduce picture flicker. The scanning process is certainly too fast for the dot of light being scanned over the screen to be seen as such, but close scrutiny of a television screen will clearly show the individual lines of the picture. Also, some screen flicker may be apparent on parts of the screen where there is high contrast.
The general nature of a television signal, albeit in greatly simplified form, is shown in Fig. 1. In reality the modulation signal is very complex, and has a bandwidth of a few megahertz. Also, there are over three hundred lines per frame.

SYSTEM OPERATION

A video wiper must blank out the modulation signal at the beginning of each frame, progressively increasing the blanking period until each frame is entirely removed. However, the synchronisation signal must be left fully intact, and it is not just a matter of switching out the entire signal during the blanking periods.

The block diagram of Fig. 2 shows the arrangement used in this video wiper unit. The video input signal is split three ways. One route is via a diode clipper circuit which clips off the modulation signal but leaves the synchronisation signal intact. The output of the clipper circuit is fed to one input of an electronic changeover switch. The other input of the switch is fed with the video input signal. The output of the switch is fed through to the output by way of a video amplifier, which really just acts as a buffer stage and provides the unit with the right output characteristics.
The wipe effect can be obtained by applying a suitable signal to the control input of the electronic switch. The direct video signal must be switched through to the output during the periods when the picture is required, and the clipped signal must be fed through to the output during the periods when a blanked screen is required.

A large part of the unit is devoted to producing the control signal, and this is the function of the top row of blocks. The basic

Fig. 2. The video wiper block diagram.
function of these is to filter out the frame synchronisation pulses and to use these to trigger a pulse generator which provides the control signal.

First the input signal is taken to a buffer amplifier, and from here it is fed to a lowpass filter. The frame synchronisation signals are relatively long, and contain a large low frequency component. The line synchronisation pulses, being much shorter and at a substantially higher frequency, have comparatively little content at low frequencies. The effect of the filtering is therefore to leave the frame synchronisation pulses largely unaltered, but to severely attenuate the line pulses.

The next stage of the unit is an amplifier, but this has its bias level set much higher than the normal mid-supply level. As a result of this it tends to clip off the modulation signal, and provides an output that is virtually just the negative going frame synchronisation pulses.

TRIGGER CIRCUIT

The next stage is a trigger circuit, and this provides trigger pulses to the monostable multivibrator when the input signal goes below a certain threshold voltage. In practice the trigger level is adjusted so that the frame pulses reliably operate the unit, but there are no problems with spurious triggering by other signals.

A monostable multivibrator provides an output pulse of a duration that is controlled by a $\mathrm{C}-\mathrm{R}$ timing circuit, and which is independent of the input pulse duration. Normally this circuit provides a very brief output pulse, and it blanks only a small section at the top of each frame. This does not actually remove any of the picture at all, as there are
so-called "spare" lines at the beginning of each frame, and it is only some of these that are removed.
There is a variable resistor in the monostable's C-R timing circuit, and by adjusting this for increased resistance the length of the output pulses can be increased. This results in more and more of the top section of the screen being blanked off. If the variable resistance is set at maximum value, the length of each output pulse becomes equal to the duration of one complete frame, and the screen is fully blanked. Adjusting the variable resistance back to its original (minimum) setting gradually reduces the output
pulse length. and "wipes" the picture back on to the screen.
The opposite wipe effect is obtained simply by using the complementary output of the monostable. Whereas the main ("Q") output is normally low and provides positive output pulses, this second output (the "not $\mathrm{Q}^{\prime *}$ output) is normally high and provides negative output pulses. With the wipe control at minimum resistance, the screen is blanked. As the wipe control is set for higher resistance, the negative output pulses become longer, and the screen is gradually "unwiped" from top to bottom. A switch is used to select the appropriate output for the required wipe effect.

CIRCUIT OPERATION

The main circuit diagram for the Video Wiper is shown in Fig. 3. The circuit diagram for the mains power supply is shown separately in Fig. 4.

Taking Fig. 3 first, the input signal is applied to two simple video fader circuits. One of these is based on D1 and D2 while the other is based on D3 and D4. Both the faders have preset controls (VR4 and VR6). and one of these is set to fade the signal right down so that only the synchronisation signal is allowed to pass. The other one is set at maximum output, but it can be backed off slightly if the non-blanked output of the unit proves to be slightly excessive.
Potentiometer VR5 is adjusted so that the d.c. output levels of the two fader circuits are

The semi-wiped screen.
The semi-wiped output waveform.

Fig. 3. Circuit diagram of the Video Wiper.

COMPONENTS

Resistors	
R1, R2, R4,	
R15, R18	10 k (5 off)
R3, R17,	
R20, R24	1k (4 off)
R5, R10, R14	100k (3 off)
R6, R7, R8	1 k 8 (3 off)
R9, R16, R25	4 k 7 (3 off)
R11	3 k 3
R12	3k9
R13	560k
R19	18k
R21	2k2
R22, R23,	
R26, R27	22k (4 off)
R28	6 k 8
R29	470
R30	68

All $1 / 4$ watt 5% carbon

Potentiometers

VR1	$4 k 7$ sub-min hor.
	preset
VR2	470 klin . slider
VR3	1 M sub-min hor.
	preset

VR4, VR5, VR6 47 k sub-min hor. preset
VR7 10k log. slider

Capacitors

C1, C12 100μ radial elect.
16 V (2 off)
C2, C3 47μ radial elect. 25 V (2 off)
C4 $33 n$ polyester
C5 47 n polyester
C6 3 n 3 polyester
C7 22μ radial elect. 25 V
C8 In ceramic or mylar

Fig. 4. Power supply circuit.

C9 $22 n$ polyester
C10, C11 220μ radial elect. 16 V (2 off)
C13 470μ radial elect. 16 V
C14 1000μ radial elect. 25 V
C15, C16 100n ceramic (2 off)
Semiconductors
IC1 μ A741C op. amp.
IC2 TL081CP bifet op. amp.
IC3 CA3140EPMOS
op. amp.
4047BE CMOS astable monostable
IC5 4016BE or 4066BE
CMOS quad switch
7812 12V 1 A regulator
TR1 to BC549 npn silicon
TR4 (4 off)
D1 to 1 N4148 silicon signal
D4 diode (4 off)
D5, D6 1N4002 100V 1A rectifier

Miscellaneous

SK1 to

SK4 phono socket (4 off) s.p.d.t. miniature toggle switch rotary mains switch 12-0-12V 250 mA mains transformer 250 mA anti-surge fuse, 20 mm .
Case $230 \times 133 \times 63 \mathrm{~mm}$; printed circuit board, available from the EE PCB Service, order code EE612; 20 mm fuse-clips; slider potentiometer bezel (2 off); slider control knob (2 off); rotary control knob; 8 pin d.i.l. i.c. holder (3 off); 14 pin d.i.l. i.c. holder (2 off); mains lead and plug; screened lead; wire; fixings; etc.
identical. This is essential, as the output signal will otherwise jump from one d.c. bias level to another as it is switched backwards and forwards between the two signal sources. This would effectively modulate the output signal with a 50 Hz pulse signal that could upset both the synchronisation and picture processing circuits of the unit fed with the output signal.
The 4016 BE (IC5) is a CMOS quad s.p.s.t. analogue switch. The pin compatible 4066 BE also seems to function properly in the IC5 position incidentally. In order to obtain the required s.p.d.t action from s.p.s.t. switches, two switches must have their outputs wired together, and their control inputs must be driven with anti-phase signals. In this case the two switches are IC5a and IC5b. IC5c is merely used as an inverter ahead of the control input of 1 C 5 b . Thus, when the control input is high, IC5a is switched on and IC5b is switched off. Taking the control inputs low reverses the states of the switches.
Note that the fourth switch in IC5 is left unused, but its control input is connected to the positive supply rail to prevent spurious operation and to avoid the risk of damage due to static charges.

The output of the switching circuit is fed to a standard three transistor video amplifier This has TR2 as an emitter follower input stage, TR3 as a common base amplifier, and TR4 as an emitter follower output stage. R30 attenuates the output signal to the correct level, and provides the unit with the correct output impedance.

Transistor TR1 is the buffer stage at the input of the frame pulse stripper circuit, and this is an emitter follower stage. The lowpass filter is a standard three stage (18 dB per octave) type based on IC1. The filter's cut off frequency is at about 5 to 6 kHz . Although it might seem that a much lower frequency could be used as the frame synchronisation pulses are at a frequency of just 50 Hz , it has
to be borne in mind that the mark-space ratio is far from one-to-one. As a result of this, the pulses consist mainly of harmonics at frequencies many times higher than the 50 Hz fundamental frequency. A cutoff frequency of 5 to 6 kHz is quite adequate to discriminate well between the frame and line synchronisation pulses.

AMPLIFIER

IC2 operates as the amplifier, and this is an operational amplifier non-inverting type which is direct coupled to ICl . Its voltage gain is set at about 26 dB (20 times) by the negative feedback resistors (R9 and R10). C8 introduces some further lowpass filtering.

As explained previously, the bias level of the amplifier is purposely set very high so that the positive going content of the signal is severely clipped. Accordingly, R4 has been made much lower in value than R5. This network also controls the biasing of the lowpass filter stage, but this factor is not of any real practical significance.

The trigger circuit has operational amplifier IC3 connected as a straightforward voltage comparator. VR1 is used to set the optimum trigger threshold level. Under most signal conditions the setting of VR1 is far from critical, and the unit will trigger reliably regardless of its setting. Unusually bright or dark pictures effectively produce shifts in the circuit's bias levels, although the clipping action counteracts these to some degree. For reliable operation with a wide variety of picture brightnesses it is still necessary to set up VR1 quite carefully.

Integrated circuit IC4 is a CMOS 4047 BE monostable/astable which is used here in the negative edge triggered monostable mode. C9 is the timing capacitor and VR2 is the wipe control. It is important that the pulse length from IC4 should never exceed the time taken per frame. If this should occur, IC4 will fail to trigger on alternate trigger
pulses as it will not respond to trigger pulses while an output pulse is still in progress. VR3 is adjusted so that, with VR2 set at maximum value, the output pulse duration is just below the critical point. It is then impossible to se VR2 for an excessive output pulse duration.
Potentiometer VR7 is the audio fader, and this is a passive circuit that is really totally separate from the video wiper circuit. For stereo operation a twin gang potentiometer is required, plus an extra set of input and output sockets. The second gang and pair of sockets are wired in exactly the same way as VR7, SK3, and SK4

POWER SUPPLY

Turning to the circuit diagram of the power supply (Fig. 4.), this is a simple design having full-wave push-pull rectification and a monolithic regulator to provide a well smoothed and stabilised output. On the prototype TI is a $12-(0)-12$ volt type with a secondary rating of 250 milliamps. A type having twin secondaries wired to give 12-()-12 volt operation should be equally suitable. A 15-0-15 volt transformer (or twin secondary type) with a secondary rating of 150 milliamps or more should also be suitable

The current consumption of the video wiper circuit is around 80) milliamps, al though it could be somewhat higher than this under worse case conditions. A low power (100 milliamp) regulator could be used for IC6, but there would be a slight risk that it would not be able to supply enough current. There would be a greater risk of it having excessive heat dissipation, and a standard (I amp) 12 volt regulator is a better choice. It should not require a heatsink.
Fuse FSI should be an anti-surge type. Using an ordinary quick-blow fuse there would be a strong likelihood of this blowing at switch-on due to the initial surge of current as smoothing capacitor C14 charges up.

[514376

Fig. 5. P.c.b. layout for the Video Wiper.

CONSTRUCTION

The main and power supply circuits are accommodated by a single printed circuit board (Fig. 5). IC3, IC4 and IC5 are MOS types, and require the standard anti-static handling precautions to be observed. Fit them in holders, but do not plug them in place until the unit is in other respects complete. Handle these devices as little as possible.
Component IC6 is mounted horizontally, and its leadouts should be preformed prior to fitting it on the board and soldering it in place. Do not connect it and then bend the leadouts to shape as this is quite likely to damage the board. The fuse is mounted in a pair of fuse- clips soldered to the board
Five link-wires are required, and they can be made from 22 s.w.g. tinned copper wire, or pieces of wire trimmed from the resistors will do just as well.
The preset potentiometers must be subminiature horizontal types if they are to fit
on to the board properly. Similarly, the electrolytic capacitors must be miniature radial (single-ended) types, and the polyester capacitors must have a pitch of 7.5 millimetres. At this stage only pins are fitted to the board at the points where connections to off-board components will be made.

CONTROLS

The prototype was constructed in a metal instrument case, with slider controls for the wipe and audio fader controls. Slider controls operate in-phase, but with S1 in the to operate the two controls in unison. Note that with S1 in one position these two controls operate in- phase, but with S1 in the other position they must be moved in opposite directions.

Provided both hands are available this anti-phase operation is not too difficult with slider controls. Alternatively, using a d.p.d.t. component for S 1 , the extra section could be used to switch the track connec-
tiuons of VR2 so that it always operates with the same sense as VR7. In any event, I would not recommend the use of rotary potentiometers in this particular application.

Two slits are required in the left hand section of the front panel for the slider controls, and for most slider potentiometers these will need to be 65 millimetres long and only about 3 or 4 millimetres wide. In the absence of special tools for this kind of job, probably the easiest way of making these slits is to first drill a series of closely spaced 3 millimetre diameter holes along the length of each slit. A miniature round file is then used to join up the holes and produce the finished slits.

Self-adhesive slide control bezels are now readily available, and these can give a really neat finish, even if the slits in the panel are slightly less than expertly made. The bezels will probably be a little too wide to fit into the available space, but they can easily be trimmed down to a suitable size. The slider

potentiometers each require two short M3 panhead mounting screws. Note that these are not normally supplied with the potentiometers.

Switch S1 is mounted to the right of the slider potentiometers, with $\mathbf{S} 2$ to the right of this. The sockets are mounted on the rear panel. I used phono sockets for both the audio and video signals, but these can be changed for any other types which are more suitable for your particular setup.
The printed circuit board is mounted on
good idea to insulate the tags of S2 and the connections to them.

ADJUSTMENT AND USE

Start with VR1, VR3, and VR5 at a mid setting, VR4 set well in a clockwise direction, and VR6 set fully anticlockwise. For initial testing the best setup is to have the video input of the wiper fed from the output of a video recorder, and the output of the wiper feeding a monitor (or a television set via a second video recorder).

The unit might work reasonably well with these settings, but some trimming of VR5 will probably be needed before a stable picture is obtained. If a stable picture cannot be obtained try backing off VR4 slightly, or reverse the settings of VR4 and VR6, and then try readjusting VRS.

For optimum results the fader used to provide the blanked part of the screen should be backed off no further than is really necessary. The fader used to provide the direct video signal will normally need to be set at maximum, but it can be backed-off slightly if the output of the unit seems to be excessive. It should only be backed-off slightly though, as there is otherwise a risk of upsetting the colour balance of the signal

Adjustments to VR4 and VR6 will necessitate slight readjustment of VR5 incidentally.

If you have access to an oscilloscope that can display video signals, using this to monitor the output can make precise adjustment of these presets much easier. This is especially the case with VR5 where any mismatching of the d.c. signal levels will be immediately evident, and easily trimmed out. Without the aid of an oscilloscope a certain amount of patience may be needed in order to optimise results.

When the unit is adjusted correctly and the screen semi-blanked, changing the setting of S1 should swop the blanked and normal parts of the screen without any "jumping" of the picture. Operating the wipe control should not produce any picture scroll or roll.

In order to give VR3 the correct setting first set VR2 at maximum resistance. VR3 is then set for very nearly the highest resistance (most clockwise setting) that does not cause the picture to flicker. It is possible that this flicker will not occur even with VR3 at maximum resistance, and R13 must then be raised in value (1 M 2 should suffice). If the flicker occurs when VR3 is at minimum resistance (which is unlikely), then simply replace R13 with a link-wire.

A certain amount of trial and error is needed in order to give VR1 the optimum setting. Try feeding the unit with unusually light and dark material, and find a setting for VRI that gives reliable triggering with both types of scene. A setting that just about provides reliable triggering on very dark scenes will probably be the optimum one.
the base panel of the case as far to the left as possible. The fixings should include spacers about 12 millimetres long so that the board is held well clear of the base panel. It must also be held clear of the fixing screws for the outer casing (one of these will damage the board if 6 millimetre spacers are used, as I learnt the hard way).
Transformer Tl is mounted on the base panel in the vacant area to the right of the printed circuit board. A soldertag fitted on one of its mounting bolts acts as a chassis connection point for the mains earth lead. An entrance hole for the mains cable is made in the rear panel, close to T , and this should be fitted with a grommet and cable clamp to protect the cable.

Details of the point-to-point style wiring are shown in Fig. 6 (in conjunction with Fig. 5). This wiring is mostly quite easy, but it is advisable to use screened leads for the connections between VR7 and the audio input/output sockets. Take due care with the mains wiring where a mistake could be very dangerous.

The case must be a metal type with a screwon lid (not a clip-on type) and the case must be connected to the mains earth lead. It is a

Constructional Project

HOME

 SECURTTY SYSTEMS

OWEN BISHOP

Part 2 Construction-Extending the system

In this series our main concern will be securing the home against intruders, but we shall also describe devices for securing it against fire. The system is modular, so that you can adapt it to your needs.
corresponding colours on the external wiring. Opportunities abound for confusing the intruder who manages to discover the control unit. For instance you could mount a distinctive toggle switch on the front of the case and label it "Power". The switch could actually be part of the peripheral loop. Turning it off immediately sounds the alarm!

Fig. 2.1. Construction of the Control Unit.

Construction details of the control system are given below, followed by two circuits which are "optional extras" to Part 1. (which outlined the Home Security System).

CONSTRUCTION

If you are building the p.s.u., the case should be large enough to hold this, the control circuit board and possibly the back-up battery as well. If the system uses a mains adapter or is battery-powered a much smaller case will suffice.

The stripboard diagram (Fig. 2.1) shows components for stabilizing an unstabilized supply, battery back-up circuit and the control circuit (sections may be omitted if not required). Construction presents no problems apart from taking the usual precautions in handling the CMOS 4011 i.c. Sockets are recommended for i.c.s to make replacement easier in case of failure. If your system has ISDs, the power transistor(s) may need small heat sinks.

The remainder of the wiring depends on the exact facilities provided. Mount the toggle switches in a row on the side of the case. These switches, which include the main power switch. should nor be labelled (just to make things difficult for any intruder who finds the unit). You may prefer to have a key-operated switch as the main power switch.

There should be a row of sockets at the back of the case for connecting to the external wiring. Again, these sockets should not be labelled, but it is convenient to have them of different colours. 10 match with plugs of

Fig. 2.2. Time-Limited alarm circuit.

TIME-LIMITED ALARM

The purpose of the time-limited alarm circuit is to limit the sounding of the siren or sirens to a period of fixed length. In most situations there is little point in allowing the alarm to sound indefinitely. Action needs to be taken within a few minutes of the alarm being triggered. If not, the thieves will have escaped, or the building been burnt down, depending on what caused the alarm to sound
If it was a false alarm, perhaps the result of a faulty or over-sensitive sensor, then allowing the alarm to continue is an unwarranted public nuisance. Moreover, neighbours tend to ignore a system that is forever "crying wolf' for hours on end. An alarm that sounds frequently for no good reason loses most of its effectiveness. Although we have claimed that our basic system never gives false alarms, there still remains the possibility of something triggering it off!
If you live in a quiet neighbourhood, you probably do not relish the idea of shattering the calm. should your system be set off accidentally while you are away on a fortnight's holiday. Moreover, there are moves afoot to make it illegal for an external alarm to sound for more than 20 minutes, so this extension to the system will help you comply with the law.

TIME CIRCUIT

The circuit in Fig 2.2 is an addition to the control unit (see Fig. 1.9 last month). It takes its power supply from the unit. Its input comes from the collector terminals of TR1 and TR2 of the unit.
Instead of wiring the siren (or sirens) as the collector load of these transistors, we replace them by a resistor (R1). When the alarm is triggered, the potential at the collectors falls sharply. This causes a negativegoing pulse to pass across capacitor Cl . The trigger input of the 555 timer i.c. (IC1) is normally held high by R2, but the low pulse triggers it. Its output at pin 3 rises from low to high. This turns on TRI, which has the siren or sirens in its collector circuit. When TR1 is turned on, the siren(s) sounds.
The values of R 4 and C 2 are chosen so that the output of IC1 remains high for about 20 minutes. If you wish to calculate values for periods of other lengths, the time in seconds is given by:

$$
t=1.1 R C
$$

where R is the resistance of $R 4$, in ohms, and C is the capacitance of $\mathbf{C} 2$, in farads. Note that the period obtained depends upon the actual value of C 2 , which may be 20 per cent greater or less than its nominal value.

At the end of the period the output goes low again and the siren is silenced. Note that ICl is triggered by the pulse that is generated when the input potential falls. The fact that the main system may still be activated at the end of the 20 minutes (i.e. the peripheral loop is still broken, or a pressure pad is still under pressure) does not cause the alarm to be re-triggered.

RESET

The reset button is provided to allow the siren to be silenced should it inadvertently be turned on when the system is being set.

The timer circuit is assembled on a small piece of striphoard (Fig. 2.3) which is housed in the same enclosure as the control unit board. The only additional off-board component is S 1 , which is mounted alongside the other switches. It makes testing quicker if a capacitor of lower value (say, 22μ) is used for $\mathbf{C} 2$ to begin with. The period for which the output of ICI is high is then only about II seconds.

Do not connect the siren(s) at this stage. A voltmeter connected as the load to TRI will read 0 V normally, and about 12 V when the circuit is triggered. When all has been assembled and tested, wire the 2200μ capacitor in place. Now the voltmeter should

COMPONENTS

TIME-LIMITED ALARM

Resistors	
R1	1 k
R2	1 M
R3	10 k

All $1 / 4$ W carbon
Capacitors

C1	100n polyes
C2	2200μ elec.
	16 or 25 V

Semiconductors

TR1 ZTX300 npn transistor

Integrated circuits

IC1 555 timer

Miscellaneous

S1 SPST switch

2.5 mm matrix stripboard $(10$ strips $\times 24$ holes); 1 mm terminal pins (7 off), 8 -pin d.i.l. i.c. socket; connecting wire; fixings; etc.

EXIT DOOR PROTECTION

S3 3-pole 4-way rotary switch
Knob for S3; mains-switch case (or similar); Formica for panel (see text); connecting wire.

Approx. cost

Guidance only
E5
register 12 V for about 20 minutes after the circuit is triggered. If the period is too long. try another capacitor of the same or smaller nominal value, or decrease the value of R4. Finally, disconnect the voltmeter and connect the siren(s) and the external siren switch, if installed previously in the controt unit.

Fig. 2.4. Positioning of the exit door switch.

EXIT DOOR PROTECTION

The exit door is always a problem in any security system. This is the door that you leave by when you go out. Other doors can be heavily bolted and barred from the inside, but the exit door depends only on its lock which is accessible from the outside. Inherently, the exit door is the least secure outside door of the house. It is obvious that a strongly constructed exit door with a lock conforming to BS standards will minimise the risks of a break-in. Indeed, having installed such a door, you may decide that it is so secure physically that it need not be further protected. However, with the aid of drills, sledge-hammers and the like, the determined intruder can usually breach the stoutest of doors. Electronic security is an important additional protection.

A simple and reliable system for the exit door was described last month, but this had some disadvantages. The rather more elaborate circuit given here overcomes most of these. The circuit is based on a rotary switch placed just inside the exlt door (Fig. 2.4). This has three positions:
(1) Inactive-used while you are at home.
(2) Leaving - while you are leaving or returning to the house.
(3) Unoccupied-when you have left the house.
You need to have an electric door-bell installed, with a bell-push just outside the door. This can be any ordinary low-voltage electric bell system and may be powered by battery or mains transformer. Use Fig. 2.5 in conjunction with Fig. 1.9 (from part 1) to follow the explanation below.
In position 1, the bell-push is connected to its bell circuit by way of S3a and S3b. There is no electrical connection between the bell circuit and the security system. When the bell-push is pressed the door-bell rings. S3c is open, so the exit door switch (S2, usually a magnetic one, in the peripheral security loop or the special exit-door loop) operates normally when the system is activated (for example, at night when the house is occupied).

EXIT PROCEDURE

When you are about to leave the house unoccupied, turn the switch to position 2. In this position, the bell-push is disconnected from the bell circuit. Switch S3c closes, bypassing S2. The exit door may now be opened or closed without affecting the security system. Set the security system, prepara-

Fig. 2.5. Circuit for Exit Door Protection.
tory to leaving the house. Leave the house when the system is set. In contrast to the original system there is no need to vacate it within 20 seconds.

After leaving the house, but before closing the door, press and hold the bell-push. Reach in through the door and turn the switch to position 3. In this position, $\mathbf{S} 2$ is no longer by-passed by S3c. Instead it is bypassed by the bell-push, through switches S3a and S3b. Keeping your finger on the bellpush, close the door. Release the bell-push button. Since the exit door is now closed, S 2 is closed. The alarm does not sound. Lock the door before leaving.

While you are away the bell-push button is not connected to the door-bell. If a potential intruder tries ringing the bell to test if anyone is at home, it will seem that the bell is out of order.

When you return home, the operations are repeated in the reverse order. Unlock the door, press the bell-push, open the door, reach inside and turn the switch to position 2. Release the bell-push, enter the house (no need to hurry!) and turn off the security system. Remember to turn the switch back

Fig. 2.6. Wiring of the exit door switch.
to position I soon afterward, to reinstate the door-bell.

The wiring of the switch is shown in Fig. 2.6. The rotary switch is a 3 -pole 4 -way switch, with the "stop" set so that it cannot rotate to position 4. Any small plastic case can be used to house it. For the prototype, a neat housing was made from a white wallmounting mains-switch case. The switch was mounted on a square panel of white Formica, bolted into the case where the mains switch unit would normally go. The existing wiring of the door-bell was easily intercepted and run into the housing.

The sequence for operating the switch is simple to learn yet must be carried out exactly. Any incorrect step triggers the alarm. It is unlikely that an intruder would know precisely what to do. However, in a busy area it would be as well if the exit door was not readily visible from the street, so that the sequence cannot be observed by unauthorised persons.

Next month: Smoke Alarm and Temperature Monitor.

SOLDERLESS WIRING EASIWIRE

Construct your electronic circuits the new, quick and easy-to-learn way, WITHOUT solder: with Circuigraph Easiwire from BICC-VERO
With Easiwire all you do is wind the circuit wire tightly around the component pins. No soldering, no chemicals, no extras, simplicity itself. Circuits can be changed easily, and components re-used.

Easiwire comes in kit form. It contains all you need to construct circuits: a high-quality wiring pen with integral wire cutter, 2 reels of wire, a tool for component positioning and removal, a flexible injection moulded wiring board, double-sided adhesive sheets, spring-loaded terminals and jacks for power connections and an instruction book. Of course, all these components are available separately too

To take advantage of the special introductory offer, complete the coupon on the right and send it to:

BICC-VERO ELECTRONICS LIMITED,

Flanders Road,
Hedge End
Southampton, SO3 3LG

Please rush me..............Easiwire kits, retail price $£ 18$. special introductory offer £15.-. (includes p \& p and VAT)

I enclose cheque/postal order for
made payable to BICC-VERO Electronics Limited

Please debit my credit card as follows:

Card Number
Expiry Date
Name
Address

Signature

or phone 0489288774 now with your credit card number (24-hour answering service).

Constructional Project

SPIKE EATER

P. E. ROBERTS

Build this low-cost suppressor and banish mains spikes and noise to the land of the Trolls. - It will devour them for breakfast and dinner!

EvER had the experience of hearing a loud CRAAAK! from your stereo system when the 'fridge switches on? Or spent all afternoon entering a long listing into your computer only to have the whole lot corrupt?
Perhaps you've come home looking forward to watching EastEnders which you set the video to record while you were out, only to find a blank tape as the machine somehow "forgot" its settings. These are all actual mishaps the author has come across which have been caused by spikes and noise on the mains, see Fig. 1.
These come from both natural and manmade sources, with r.f. noise generally due to switch arcing, discharge lamps (neon signs and fluorescent lamps) and r.f. pickup by overhead lines. Spikes arc high voltage transients caused by nearby lightning strikes and switching large inductive loads such as motors and transformers. Spikes of nearly $2 \mathrm{k} \backslash$ on the mains near an installation using large d.c. motors controlled by thyristor drives have been seen on an oscilloscope display.

Fig. 2. Circuit diagram for the Spikeater.

Whilst suppressing your own appliances may help, there's not much you can do about your neighbours', particularly should you live in a block of flats. Any nearby industrial estates will add their sixpen'orth, and those who live in the back of beyond needn't gloat either as farm equipment can be just as noisy. Overhead power cables and pole
transformers are particularly vulnerable to nearby lightning strikes.
Commercial computer systems use sophisticated filter systems in the mains supplies to. remove noise. These devices use $L C$ filters and transient suppressors and in really critical applications constant voltage transformers are often employed. Unfortunately, these devices (especially CVT's) also have sophisticated price tags.
The device to be described is very simple, using only two components, and should cost less than three quid to make. It can be used anywhere and needs no modification to the equipment to be protected and like a certain bleach, should kill 99 percent of household noise! The components used could also be incorporated in any mains powered project which may be sensitive to mains noise.

CIRCUIT

The circuit diagram, which uses a varistor and a capacitor network, for the Spikeater is shown in Fig. 2. The varistor clips incoming transients and is wired across live (L) and neutral (N). It is a semiconductor device of a similar physical construction to a ceramic capacitor, with a cocktail of metal oxides taking the place of the ceramic dielectric.

The varistor presents a very high resistance as long as the applied voltage does not exceed the rated working voltage. As

soon as a transient happens along, the device switches to a low resistance state, dissipates the transient's energy as heat, and then reverts to its virtually non-conductive state.

Incidentally, metal oxide varistors switch far more rapidly than the voltage dependant resistors previously used in this application. Varistors are available in a wide range of operating voltages, and the one used in this project is rated at 275 V a.c.

Whilst the varistor takes care of transients much over 275 V we've still got smaller spikes and noise to deal with. This is the job of the three capacitors $\mathrm{Cla}, \mathrm{Clb}$ and Clc . These all take the form of a multiple capacitor in a single package, known as a "Delta" capacitor because of its appearance in the circuit diagram.

Delta capacitors are usually fitted to appliances to suppress interference at source, but they will help to remove incoming noise. For example, when i.c. power amplifiers first came out in the early 70's (remember the Sinclair IC10 and Plessey SL103D?), a stereo amplifier was built for a friend using two of these devices. The first time his elderly 'fridge switched on one of these expensive new devices went to that big p.c.b. in the sky! After fitting a new device, a delta capacitor was wired across the incoming mains supply which prevented any further occurrence.

SAFETY

Before leaving the subject of the capacitor, a word or two of warning. The mains supply carries the risks of both high voltage and high fault currents. This means that components connected to the mains supply must be suitable.

NEVER connect any old capacitor, whatever the working voltage, across the mains supply. Mains capacitors are specially made and conform to one or both of two standards.

The lower standard is class "X" which defines a capacitor intended to be connected across the mains supply, between live and neutral. Such a capacitor must be designed for continuous operation at 250 V r.m.s., be self-healing, and under catastrophic failure must not explode and have limited flammability.

Class "X" capacitors must not be used where failure could expose someone to a shock hazard. Where such a hazard would exist a class " Y " capacitor must be used. These capacitors conform to all class "X"

requirements but, putting it simply, are made to an even higher standard. They are intended for connection between live or neutral and earth.
Whilst separate capacitors could be used in this project, they would be considerably more expensive than the delta unit. Also, the nest of capacitors would be bulky and need enclosing to cover the interconnections, defeating the simplicity of this project. The delta capacitor has approval to both class " X " and " Y " standards.
The final item for consideration is the plug itself. I used a rubber industrial type which had sufficient room inside to mount the varistor. Some of the all plastic domestic types will not have sufficient room.

CONSTRUCTION

Assembling the device is very simple Firstly bend the varistor leads as shown in Fig. 3, push short pieces of rubber or plastic insulating sleeving over the varistor's leads and connect the device between live and neutral. The varistor is not polarity conscious and may be connected either way round.

Next the delta capacitor has to be connected. This has three leads; usually two are the same colour but one is always different. Where different colours are used these are brown, blue and green/yellow and are connected exactly as a mains lead

Where there is only one different coloured lead, which may be green/yellow or just plain, this is the "earth" lead. The other two leads connect to live and neutral, either way round. When wiring the delta capacitor take particular care when routing the leads in particular the earth lead where it has to find its way past the varistor.

Don't forget to thread the capacitor's leads through the cable entry in the plug top before wiring up. It would probably be a good idea to change the plug fuse to a 5 A or even a 3A

After checking tightness of all connections, and that the delta capacitor's leads are secured by the cable clamp, fit the plug top. If the top won't fit check your lead routing. Finally, Superglue the delta capacitor in place on the plug top as shown in the photograph, and the unit is ready for use.

COMPONFNITS

Capacitors

C1	$0.1 \mu+5 n+5 n$ delta
or	
suppression 250 V a.c.	
C 1	$0.1 \mu 250 \mathrm{~V}$ a.c. Class " X "
(Non-earthed	
suppression)	

Miscellaneous

See page 415
Varistor, 275 V a.c.; standard industrial rubber 13A fused plug; insulating sleeving and Superglue.

Approx. cost Guidance only

The completed Spikeater with the delta capacitor glued to plug top.

Fig. 4. Mains input suppression of earthed equipment.

IN USE

Actually using the device couldn't be easier. Many houses have double mains sockets in which case the equipment to be protected is plugged into one socket and the device into the other. Don't forget that both switches, where fitted, must be turned on.

Where single sockets are fitted a two-way adapter may be used. Best of all is where equipment is fed via a multi-way socket set which is the usual method of powering hi-fi systems or computers. Here the device is plugged into the socket nearest the cable entry.
Next, a word or two about safety. Little fingers would no doubt find trying to dislodge the capacitor irresistable, so it's best to keep the device out of harm's way. It must
only be used where a proper earth connection exists.

Incidentally, the small amount of earth leakage current passed by the capacitor is insufficient to trip a domestic earth leakage trip. The prototype is in daily use in my own home where an ELCB is fitted.

Finally, there's no reason why the ideas set out in this article cannot be incorporated into potentially sensitive mains powered projects. Where the equipment is earthed, the delta capacitor and varistor are wired as shown in Fig. 4.

Where the equipment is double-insulated and an earth connection not used the delta capacitor cannot be used. Instead connect the varistor as before but a single class " X " capacitor wired across live and neutral is used instead as in Fig. 5.

Fig. 5. Mains input suppression of NON-earthed equipment.

ELECTRONICS TECHNICIAN FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCILI

2 YEAR

BTEC National Diploma (OND)

 ELECTRONIC \&COMMUNICATIONS ENGINEERING
[Electronics, Computing, Television, Video, Testing 8 Fautr Diagnosis)

1 YEAR

BTEC National Certificate (ONC) ELECTRONIC ENGINEERING
1 - INFORMATION TECHNOLOGY
IElectronics, Satellite TV. CD, Networks, Telecomms)
2 - ELECTRONIC EQUIPMENT SERVICING
(Electronics, Television, Video Cassette Hecorders, CCTV. Testing \& Fault Diagnosis)
3-SOFTWARE ENGINEERING
(Electronics, Assembler, BASIC, PASCAL, CAOCAM)
4- COMPUTING TECHNOLOGY
(Electronics, Computing Software/Hardware, Microelectronic Testing Methods)

10 MONTHS

BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS

THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE

O.N.C. 19th September 1988
FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 gSU. Tel: 01-3738721.

H4H501 PENSOL GAS SOLDERING IRON An amazingly versatile

 and compact 'go-anywhere' iron, which operates from ordinary cigarette lighter. butane gas. Ideal for use away from power supplies, or where a trailing lead is awkward. Perfect for electronics, servicing, model and domestic use. The Pensol runs for up to 60 minutes per filling, and heats up in 20 seconds. The gas regulator provides temperature adjustment equivalent to 10 w to 60 w irons. Fitted with standard 2.4 mm tip. Spare screw-in tips available $1.0 \mathrm{~mm}, 2.4 \mathrm{~mm}, 3.2 \mathrm{~mm}$ and 4.8 mm , each with built-in catalyst, giving safe, flameless combustion. Protective cap incorporates pocket-clip and spark-igniter.Pensol Iron $£ 15.89$ (empty of gas) Spare tips $£ 4.26$ Each lordered with iron) or \quad e4.81 Each (ordered separately). Prices include Postage and VAT.
Send a cheque payable to LITESOLD, or phone for Access/Barclaycard orders.
LIGHT SOLDERING DEVELOPMENTS ITD. 97-99 Gloucester Road, Croydon, CRO 2DN Tel: 01-689 0574

Death Ray

Radar was born in 1935 out of an idea for a death ray. The government asked Robert Watson-Watt of the Radio Research Stations at Slough to see whether it would be possible to generate an electromagnetic beam strong enough to cook human flesh or heat an aircraft in flight and explode its bombs. Watson-Watt calculated that there was no way of generating the power needed, but went on to prove that it was possible to detect aircraft by beaming radio waves at them and receiving the reflections.
It is only now, with nuclear power sources and lasers, that there is a chance of making a working death ray. President Reagan's Strategic Defence Initiative or "Star Wars" project will rely on high power lasers to destroy missiles in flight.
The German government was still trying to make death rays work in World War II. The army built a high frequency radio transmitter near Frankfurt. The plan was to beam signals at aircraft and their electronic ignition. The system did not work, because the signals were of insufficient power.
After the war, the US army Signals Corp sent specialists to examine the failed equipment. Their journey was not wasted; they found and confiscated, Telefunken tape recorders which had been used to broadcast Hitler's speeches from one city while he was safely in another.
During the Falklands War, TV news teams found that their video cameras and recorders would not work on the task force ships. The pictures and sound were blemished with cyclic blips and bleeps as the radar aerials turned. The Marantz sound recorders routinely used by many radio news reporters quite literally burned out, as currents induced in the circuit wiring by the ship's radar signals fried transistors.
The recorders have plastic cases, which are fine for domestic use and most re-
porting. But only a metal chassis can screen against the field from a megawatt radar. It exceeds 100 volts/metre. The military used to test equipment immunity only to fields of five volts/metre; some modern equipment is now tested at 200 volts/metre.
One news crew in the Falklands even asked the ship's captain to switch off his radar for a while.

News on Home Video

First, some interesting "how it works" from Mitsubishi in Japan. "Digital Tracking" is found on new Mitsubishi VHS machines.

VHS relies on a linear control track along the edge of the tape which carries pulses at the picture frame rate $(25 \mathrm{~Hz}$ for Europe). These control the tape transport and keep the rotating video heads in line with the magnetic tracks which are recorded obliquely across the tape width. For accurate tracking the stationary head reading the pulse track must remain 79 mm apart from the video head which is reading the helical track. Any error will cause misalignment of the heads over the tracks and poor pictures on screen.

Difficulties arise for hi-fi recordings, where the f.m. audio and video signals are superimposed on the tape by two separate heads on the rotating drum. Adjusting tracking for a perfect picture may upset tracking for sound and viceversa.

Mitsubishi's digital tracking system detects the audio and video waveform envelopes, converts them into digital code and sums the two codes. A microprocessor then varies the tracking control backwards and forwards until it finds the tracking point at which the summed envelope is at its largest. This is the optimum tracking setting for sound and vision. The whole process takes only three seconds.

Smart Money

Shortly before the last Budget the DTI, Britain's Department for Enterprise, put out a statement by Francis Maude, Minister for Corporate Affairs. Maude was warning people to think twice before buying on credit. In a speech to the National Consumer Council, Maude came across as a smart man with money.

As an example he took a three piece suite, costing $£ 1,000$ and paid for it on credit over two years.
"With a bank loan at 19.7\% Annual Percentage Rate the total cost would be £1,200-and £1233 using a credit card" he explained.

By coincidence I had just been asked by a magazine to review the Formulator software pack recently released for the Organiser. This is a ROM pack containing just about every scientific, mathematical,
electronic and engineering formula you will ever need. As a convenient practical test I tried to enter Maude's figures and found I needed extra information, e.g. on how often the repayments were made.
"The figures came from one of our specialists", said Maude's spokesperson. So I spoke to the Specialists' department. They couldn't help either.

So I spoke to the Office of Fair Trading, who said they had got them from some tables and weren't too sure how the tables were concocted.

Eventually I got an answer that tallied with the Formulator software.
'It's a difficult concept to explain", confided the OFT. "We had to give the DTI the figures because no-one there could work it out".

It is nice to know that the country is in safe hands.
"Theoretically we can do away with all manual tracking controls", says inventor Yasuo Mitsuhashi, "But so far the public is not ready for that, so we leave manual control for people to use if they want toand for shop demonstrations".

The next step is to give the video heads small freedom for movement, under servo control so that they physically follow the line of the tracks on tape even in fast search replay. This is Dynamic Track Following. Sounds familiar? Yes, DTF was used by Philips, in the ill-fated V2000 system, by Panasonic in a one-off prototype VHS deck and by Sony and Ampex in professional 1 inch C format machines. But whereas previous DTF machines have used heads mounted on piezo crystals, Mitsubishi is mounting the heads on a moving coil, like a gramophone cartridge.

A piezo crystal needs several hundred volts to move it, but a magnetic coil requires only about 10 volts. Also a head mounted on a piezo crystal twists from side to side, thus touching only part of the tape surface as it tilts; but a magnetically mounted head can move parallel to the tape surface, maintaining full contact. This improves signal pick-up and thus signal-to-noise ratio.
So far the magnetic heads move only at a fixed rate, for tracking at a fixed speed in fast search mode, known as "noise erase search". For automatic tracking in normal play, the head will need to adjust continually under control of the servo system. This is much more difficult.

Mitsuhashi makes an interesting point. Sony's Video 8 system llike Philips V2000) has no linear control pulse track and relies for tracking on pilot tones buried in the video signal. With digital tracking circuitry it would in theory be possible to do away with both the pulse track and pilot tones.
"If this system had been developed two years ago", says Mitsuhashi, "the 8 mm format would probably have been quite different".

VIS and VAS

An increasing number of new VHS recorders, from all makers, now use the Video Index and Video Access Search facilities recently standardized for the VHS format. Here's how VIS and VAS work.
The linear control track contains 25 square wave pulses per second. Normally these are symmetrically shaped. But because the servo control system is governed by the leading edge of each pulse, it is possible to modify the trailing edge without upsetting the servo control. For VIS and VAS the pulse is shortened, to represent a digital one, and left at its normal length to represent a digital zero.
The pulse track can thus carry 25 bits of data per second. This is arranged in 64 bit words to label the start and end index points of selected sections of the tape. To add extra information on sections of a recording, for instance a numbered address point on the tape, an extra 92 bits are added to the standard 64 bit word.

With the 25 bps data rate, it takes the machine around 2.5 seconds to read an index start or stop point code and around 6.25 seconds to read a numbered address point. Inevitably the recorder overshoots, but it then automatically back tracks to the exact index or acess point.

INTRODUCING MICROPROCESSORS

 MIKE TOOLEY B.A.
REVISION

Abstract

In the last part we dealt with programming of microprocessor systems, introduced flow charts and languages, and also gave details of the third Introductory Microprocessors Practical Assignment. In this part we shall bring our series to a conclusion by preparing readers for the second Written Assessment and fourth Practical Assignment. Our final Readers' Forum provides answers to just a few of the many questions raised by readers.

LEARNING OBJECTIVES

The general learning objectives for Part Nine of Introducing Microprocessors are encompassed in those already stated for Parts Five to Eight of the series.

FOURTH PRACTICAL ASSIGNMENT

Readers who have successfully carried out the third Practical Assignment and who have also followed the text in part eight will now be ready to undertake the fourth (and final) Practical Assignment. This assignment is entitled "Assembly Language Programming" and the
objective reference is 6.2.6 (see part eight).
As usual, the practical assignment must be undertaken at an approved local centre where candidates will be provided with supervision and appropriate working conditions. Candidates should, however, provide their own A4 note paper, pens and pencils. For its part, the Centre will provide candidates with any hardware, data sheets, books or handbooks required (including full documentation for the microproces-sor-based system, a full instruction set for the microprocessor and details of port connections and addresses).

Candidates will be supplied with an 8-bit microprocessor-based system with (at least) four l.e.d.s fitted to an input port and (at least) four switches fitted to an output port. These switches and I.e.d.s are invariably fitted to $1 / 0$ modules and applications boards designed for use with educational microprocessorbased systems. The circuits shown in Figs. 9.1 and 9.2 respectively show typical arrangements employed for switch input and l.e.d. output and centres may wish to construct boards specifically for use in this assignment.

Note that the four least-significant lines of Port A (which must be con-

Fig. 9.1. Representative switch input arrangement.

Fig. 9.2. Representative l.e.d. driver arrangement.
figured for input) are connected to the switches whilst the four leastsignificant lines of Port B (which must be configured for output) are connected to the l.e.d.s. The remaining four lines on each port may be treated in a similar manner or simply left floating (i.e. unused).
Candidates are required to write an assembly language program which will continually read the state of the four switches and write the result to the l.e.d. bank.
The following sub-tasks are involved:
(a) Producing an algorithm for solving the problem.
(b) Draw a flowchart to illustrate the sequence of processes.
(c) Provide details of the necessary software routine for configuring the port (your tutor will help with this). The routine should appear as a process within the flowchart and should be included in your assembly language program (together with appropriate comments).
(d) Write (using the instruction set provided), hand-assemble, enter, test, and debug the program.
(e) Demonstrate the program to your tutor (who will check that each switch correctly controls its respective l.e.d.).
(f) Hand-in the complete documentation package to your tutor for marking. Note that this assignment should be completed in 2 hours 30 minutes and a requirement for additional time may prejudice your chances of success.

Marking

Candidates will have satisfactorily completed the Practical Assignment if they can demonstrate success in all items marked with a square and at least ONE of the TWO items marked with a circle in the list below:

Completed within 2 hours 30 min utes
Appropriate algorithm or flowchart developed
Assembler mnemonics produced using instruction subset
Program correctly hand as. sembled from assembler codes \square
Program reads all switches on input port
Program correctly illuminates all corresponding l.e.d.s on output port

Program repeats function continually

As usual, a period of at least seven days should elapse before candidates are permitted to retake the assignment. Candidates should also note that centres may require that a
retake is carried out using a different microprocessor-based system (and instruction set!).

SECOND WRITTEN ASSESSMENT

By now, readers should be adequately prepared for the second written assessment which again takes the form of a straightforward multiple choice test. The test contains 34 questions and the candidate is again asked to select the answer which they think is correct from the four answers provided. Answers should be transferred to the standard City and Guilds Answer Sheet. Candidates are reminded that there is only ONE correct answer to each question.
The following Pre-Test has been provided in order to assist readers with preparation for the assessment: the questions are similar (though not identical!) to those with which candidates will be confronted.

SECOND WRITTEN ASSESSMENT PRE-TEST

The following questions are provided in order to prepare readers for the style and format of the second written assessment. Prospective candidates should carefully read through and then answer each question in turn. When completed, answers should be compared with those given on page 403.
The time allowed for the test is extremely generous and has been set so that candidates should not be constrained by having to answer questions in a hurry. Adequately prepared candidates should be capable of answering the questions within approximately 45 minutes.

Candidates Instructions

This test contains 34 multiplechoice questions. In order to pass you must answer a minimum of 24 of them correctly. The first number for each question is the question number whilst the number in brackets relates to the module reference.

1. (3.1.2) Which one of the following is an application for read-only memory (ROM) within a micro-processor-based system?
(a) Storage of transient data
(b) Storage of binary screen images
(c) Storage of control/monitor programs
(d) Storage of user-programs and program variables.
2. (3.1.2) Which one of the following types of memory provides rapid access non-volatile storage for control programs?
(a) Semiconductor dynamic RAM
(b) Semiconductor static RAM
(c) Semiconductor ROM
(d) Magnetic tape.

Fig. 9.3. See question 3.
3. (3.1.3) Fig. 9.3 shows the simplified arrangement of a memory cell matrix. The feature marked " X " is a
(a) shift-register
(b) decoder/latch
(c) a parallel to serial converter
(d) a serial to parallel converter.
4. (3.1.4) A ROM is to be fitted into a mass-produced TV games console. What type of ROM is most suited to this application?
(a) Mask-programmed ROM
(b) Fusible-link PROM
(c) UV-erasable PROM (EPROM)
(d) Electrically programmable ROM (PROM).
5. (3.1.5) A mask-programmed ROM is programmed
(a) during production of the semiconductor wafer
(b) by exposing the device to UV light after manufacture
(c) using a special programming device which delivers pulses of current
(d) by a bank of dual-in-line switches fitted to the ROM's data bus input.
6. (3.2.1) Transient data present in a microprocessor system is stored in
(a) one, or more, I/O devices
(b) a read-only memory (ROM)
(c) a read/write memory
(d) a write-only memory.
7. (3.2.2) In a microprocessor-based system, read/write memory is usually provided by
(a) semiconductor ROM
(b) semiconductor RAM
(c) an EPROM
(d) a PROM.
8. (3.2.3) In a microprocessor-based system, user-programs and variables are generally stored in
(a) fusible-link ROM
(b) mask-programmed ROM
(c) either dynamic or static RAM
(d) dynamic RAM only.

Fig. 9.4. See questions 10 and 15.
9. (3.2.4) Which one of the following types of memory needs constant refreshing?
(a) Static RAM
(b) Dynamic RAM
(c) Magnetic tape
(d) Magnetic disk.
10. (3.2.5) The block marked " X " in Fig. 9.4 represents
(a) a dynamic RAM
(b) a static RAM
(c) an I/O device
(d) an address decoder.
11. (3.3.1) Fig. 9.5 represents a
(a) Truth Table
(b) Flowchart
(c) Memory Map
(d) Trace Table.
12. (2.1.3) In the diagram shown in Fig. 9.5, the highest address (expressed in decimal) within the

Fig. 9.5. See questions 11, 12 and 13.

System ROM is
(a) 49151
(b) 49152
(c) 65535
(d) 65536 .
13. (3.3.2) In the diagram shown in Fig. 9.5, the memory space occupied by the BASIC ROM (expressed in bytes) is
(a) 3.5 K
(b) 16 K
(c) 28.5 K
(d) 32 K .
14. (4.1.2) One feature which distinguishes a system which uses port I/O from one which employs memory-mapped I/O is the need for
(a) IN and OUT instructions
(b) fast dynamic RAM
(c) external disk storage
(d) specialised I/O devices
15. (4.1.2) In the memory-mapped system shown in Fig. 9.4, the output signals from the block marked " X " are
(a) chip-select signals
(b) memory read/write signals
(c) memory request signals
(d) I/O request signals.
16. (4.1.3) In the system shown in Fig. 9.6,
(a) block X is ROM and block Y is 1/0
(b) block X is RAM and block Y is 1/O
(c) block X is $1 / O$ and block Y is ROM
(d) block X is I/O and block Y is RAM.
17. (4.2.1) A two-wire connection is employed for the transfer of data between a microcomputer and a distant peripheral device. This system employs
(a) a serial data transfer method and is likely to operate at a relatively slow speed
(b) a serial data transfer method and is likely to operate at a relatively high speed

(c) a parallel data transfer method and is likely to operate at a relatively slow speed
(d) a parallel data transfer method and is likely to operate at a relatively high speed.
18. (4.2.2) In order to program a PIO device a
(a) sequence of software commands must be issued by the CPU
(b) special external programming device is required
(c) hexadecimal keyboard is required
(d) serial $1 / O$ port must be provided.
19. (4.2.3) Which one of the following gives the function of the lines marked CA1 and CA2 in Fig. 9.7?
(a) Read/Write control lines
(b) Peripheral control lines
(c) Register select lines
(d) Serial data I/O lines.
20. (4.2.4) Which one of the following describes the function of the control register in Fig. 9.7?
(a) To determine the mode of operation for the port in question
(b) To determine whether individual I/O lines within a port are configured as inputs or outputs
(c) To provide a means of continuing I/O operation in the event of a CPU failure
(d) To decode commands received from peripheral devices and pass these on to the CPU for subsequent execution.
21. (5.1.1) Which one of the following gives the typical maximum source current for a PIO output line?
(a) 1 mA
(b) 10 mA
(c) 100 mA
(d) 1 A

Fig. 9.8. See question 23.
22. (5.1.2) Which one of the following output loads will NOT normally require the services of an output driver when connected to a PIO?
(a) A CMOS logic gate
(b) A conventional relay
(c) An l.e.d.
(d) A filament lamp.
23. (5.1.3) Fig. 9.8 shows the blocks required to interface a relay to a microprocessor-based system. Which one of the following gives the connections required?
(a) A to C and B to D
(b) A to B and C to D
(c) A to D and B to C
(d) A to D and B to D.
24. (5.1.2) Which one of the following is a characteristic of programs written in a low-level language when compared with their equivalent written in a high-level language?
(a) Easy to read and understand
(b) Written in plain English
(c) Operate at a relatively slow speed
(d) Generally require less memory for storage.

Fig. 9.7. See questions 19 and 20.
25. (6.1.2) In which of the following applications is the speed at which a program executes usually considered to be of paramount importance?
(a) Data processing software
(b) Word processing software
(c) Spreadsheet programs
(d) Real-time control systems.
26. (6.2.1) The operations involved in developing a program may be stated as:

Fig. 9.9. See question 27.
A Write and enter code
B Formulate an algorithm
C Test and debug
D Construct a flowchart.
Which one of the following gives the correct sequence of events?
(a) $A B C D$
(b) $A B D C$
(c) BDAC
(d) $B D C A$
27. (6.2.3) Which one of the following gives the final value of "total" produced by the flow. chart shown in Fig. 9.9?
(a) 0
(c) 3
(b) 1
(d) 7
28. (6.2.3) Which one of the flowchart symbols shown in Fig. 9.10 represents a subroutine?
(a) A
(c) C
(b) B
(d) D .

Fig. 9.10. See question 28.
29. (6.2.4) Mnemonics are used in assembly language programs to.
(a) make programs difficult to read
(b) make hexadecimal arithmetic easier
(c) represent operations in a form of shorthand
(d) represent addresses with easy to remember symbols.
30. (6.2.5) Which one of the following assembly language instructions transfers data from the CPU to a port?
(a) INC A
(b) DEC A
(c) INA. (FEH)
(d) OUT (FEH) , A
31. (7.1.1) Which one of the following gives the name of the numbering system which uses base $16 ?$
(a) binary
(b) decimal
(c) hexadecimal
(d) octal.
32. (7.1.2) Which one of the following gives the hexadecimal representation of the decimal number 114?
(a) 68
(b) 6 E
(c) 72
(d) 7 E .
33. (7.1.3) Which of the following describes a method of representing negative numbers in a microprocessor-based system?
(a) Placing a negative sign in front of the number
(b) Placing a negative sign behind the number
(c) Using the most significant bit as a sign bit
(d) Using the least significant bit as a sign bit.
34. (7.1.4) Which one of the following gives the result of adding together the hexadecimal numbers 47 and $3 C$?
(a) 77
(b) 7 C
(c) 83
(d) 8 E

Now CHECK YOUR ANSWERS before looking to see how you scored!

READERS' FORUM

Several readers have taken me to task over not giving a sufficiently rigorous explanation of the internal workings of a microprocessor. In particular, it would appear that several of you would have liked further details of how internal control is applied. This is, unfortunately, a rather "meaty" topic and one which could require quite a lengthy explanation.

Furthermore, there are quite a number of differences between popular 8-bit CPUs and any text on this topic would have to explore the detailed architecture of several types in order to be reasonably comprehensive. However, for the benefit of those who would like further information on this (and other) topics I have suggested some further reading at the end of this instalment.
R. W. Davis writes from Dorchester to point out that the gate circuits shown in Fig. 3 of Part One should have been referred to as NAND and not AND. Roger Seymour-Lee has. written from Oyster Bay, New York, to mention several errors which cropped up in Part Four. In particular, the answers to questions 1 and 7 of the First Pre-Test should have been shown as (c) and (a) and not (d) in both cases.

Roger also says that he found Figs. 4.1, 4.2 and 4.3 totally incomprehensible. In fairness, these were included simply as typical examples of the displays produced by a monitor program to which I added a few hand-written notes. readers are not meant to extract any particular information from them and they were provided simply to indicate the typical format employed.

When using a monitor it is, of course, essential to follow the instructions provided for the program concerned. Indeed, it will usually take some time to become familiar with the displays produced.

Lastly, Roger has expressed some concern over the fact that some of the incorrect answers (known rather aptly as distractors by those responsible for writing City and Guilds multi-choice questions) were terms that he was not familiar with. In general, incorrect answers are chosen so as to be plausible but it is not always possible to produce three (incorrect) answers based on correct terminology. Sometimes the examiner has to use phrases and expressions which may sound plausible to a weak candidate but which can quickly be discounted by those having a little more knowledge!

A number of centres have written to offer support for Introductory Microprocessors. These include ITECs (Information Technology Centres) as well as several Colleges having Open-Learning Units. In particular Gloucestershire, Rochdale and Basildon ITEC are hoping to offer assessment and tutorial/workshop groups as are colleges at Brighton, Hall Green and Darlington.

Unfortunately, despite this increasing interest from educational and training providers, it still appears that some readers are having difficulties with finding an assessment centre. Introductory

Microprocessors is a brand new City and Guilds scheme and, despite a joint letter from EE and C \& G sent last October, many colleges are only just finding out about it. So, if this has been your problem, please don't give up; an enquiry later this year may bring success where it has previously failed to produce any reaction.

Finally, I would like to offer sincere thanks to all those who have written with comments, suggestions, and queries. Indeed, my "in-tray" has been kept full to overflowing during the last nine months and this has made it impossible for me to answer each and every letter.

WHAT NEXT?

By the time that you read this, a follow-up module (Elementary Microprocessors) should be available from City and Guilds. This module should be available from most colleges and centres currently offering Introductory Microprocessors and is designed to provide further study in the field of microprocessors and microprocessor-based systems.

Readers may also like to know that a further E.E. series linked to a City and Guilds scheme is planned for the autumn. This series will be devoted to the rather more general field of Digital Electronics (another module in the City and Guilds 726 Information technology series). So, as the saying goes, watch this space. . .

FURTHER READING

The following reading is recommended for those who wish to progress beyond Introductory Microprocessors:

Microprocessors and Digital Systems by Douglas Hall (published by McGraw Hill, ISBN 0-07-025552-0).

This book provides an excellent and very comprehensive introduction to microprocessor-based systems and includes chapters on the use of test equipment, digital logic, interfacing, microprocessor architecture, programming, as well as prototyping and troubleshooting. Several popular 8 -bit microprocessors are described in some detail. This book can be very highly recommended.

Microelectronics and Microproces-sor-based Systems by Noel Morris (published by Macmillan, ISBN 0 -333-36190).

This book covers both hardware and software and includes chapters devoted to memory systems, interfacing, timing, and program creation. The book makes extensive reference to the Intel 8085 and thus should suit readers who wish to gain further experience of this particular microprocessor.

Microprocessor Engineering by B. Holdsworth (published by Butterworths, ISBN 0-408-013261-3).
This book provides a useful introduction to microprocessor systems and, like the previous title, makes extensive reference to the Intel 8085 though some other popular 8 -bit microprocessors also get a mention. The book contains chapters which deal with logic, memory, small computer architecture, instruction sets, assembly language, and data conversion.

16-Bit Microprocessors by lan R. Whitworth (published by Collins, ISBN 0-00-383113-2).
This book will be useful for those who wish to get to grips with 16 -bit microprocessors and it provides a comprehensive introduction to a variety of popular 16 -bit processor families. Chapters are also devoted to interfacing, instruction sets, assembly code software and development, system software and operating systems.

Digital and Microprocessor Electronics by Byron Putman (published by Prentice-Hall, ISBN 0-13-214354-2).
This book provides a comprehensive guide to the design and troubleshooting of modern digital and microprocessor based systems. This book also uses the 8085 as a rep-
resentative microprocessor and several chapters deal with this device (the Z80 and 6800 are covered only rather briefly). The last two chapters deal with an analysis of a microcomputer system (the IBM-PC) and troubleshooting methods are discussed.

Microprocessor Systems Engineer-

 ing by J. Ferguson (published by Ad-dison-Wesley, ISBN 0-201-14657-6).This book describes the basic skills, tools and techniques required to devise, develop and implement a microprocessor-based project. The $6502, \mathrm{Z80}, 8086$ and 68000 microprocessors are considered and useful chapters are included on software production, testing and debugging, system development, and interfaces and peripherals.

PRE-TEST ANSWERS		
1. c	12. c	23. c
2. c	13. b	24. d
3. b	14. a	25. d
4. a	15. a	26. c
5. a	16. b	27. a
6. c	17. a	28. d
7. b	18. a	29. c
8. c	19. b	30. d
9. b	20. a	31. c
10. d	21. a	32. c
11. c	22. a	33. c
		34. c

How well did you do?

Score less than 17: Don't underestimate the amount of work that you still need to do! We suggest that you carefully work through Parts Five to Eight before making a second attempt at the Pre-Test.

Score 18 to 27: You have still got plenty of work to do before you are ready to sit the Written Test! Check the answers to those which you answered incorrectly, referring to the relevant part of Introducing Microprocessors in order to see where you went wrong.

Score 28 to 34: Well donel You should be well able to cope with the Written Test. It is, however, still worth checking the answers to any questions which you answered incorrectly.

PLEASE NOTE

The Introducing Microprocessors series has proved to be very popular with both readers and lecturers/teaching establishments etc.
To meet this on-going demand for the series we will be republishing it in book form. The book will be available from Newsagents and from the Direct Book Service during October - watch out for full details.

The Archer Z80 8BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users.
\star Top quality board with 4 parallel and 2 serial ports. counter-timers, power-fail interrupt. watchdog timer. EPROM \& battery backed RAM.

* OPTIONS: on board power supply. smart case. ROMable BASIC. Debug Monitor. wide range of IO \& memory extension cards.

The Bowman 68000 sBC
The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM. EPROM. 2 countertimers, watchdog timer. powerfail interrupt. \& an optional zero wait state half megabyte D-RAM.

- Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

by Mike Tooley ва

THIS month, as promised, we embark on another constructional project in the form of a Dual Digital-to-Analogue Converter (DAC). This device can be used to generate analogue voltages on two independent output channels yet only requires minimal additional circuitry in order to interface with the Spectrum.

Before we begin, however, there's just time to deal with a query raised by two readers who, it seems, may be considering taking their Spectrums "out and about" this summer!

Portable Spectrum?

A. Holland and J. Thorpe both wish to operate a Spectrum directly from a 12 V car battery. Happily, this does not present any real problem since the Spectrum power supply delivers a nominal +12 V (actually nearer 10 V !); the mains unit can be dispensed with and d.c. fed directly from the car battery to the Spectrum's d.c. power connector.

There are, however, two pitfalls to avoid. firstly, since the Spectrum's mains unit delivers nearer 10 V than the nominal 12 V , dissipation within the Spectrum's +5 V regulator may increase somewhat.

Overheating was a perennial problem with older versions of the Spectrum (Issue 3, and earlier) and thus it would be useful to incorporate some circuitry to reduce the d.c. supply by a volt, or so. Secondly, since inadvertent reversal of the Spectrum's d.c. supply will undoubtedly result in permanent damage, some form of reverse polarity protection is highly desirable.

Fig. 1. Suggested 12 V d.c. power adaptor.

Fig. 2. Connections for the SKB2/02L5A bridge rectifier.

Both of these minor problems can be solved using nothing more than an encapsulated bridge rectifier, as shown in Fig. 1. The rectifier ensures that the Spectrum receives the correct supply polarity regardless of the actual connection of the battery (the 2A fuse is added merely to provide over-current protection in the event of misconnection of, or failure within the bridge rectifier itself). Furthermore, the total forward voltage drop within the rectifier is approximately 1.4 V and it is thus instrumental in reducing the supply voltage to the d.c. power connector of the Spectrum to a more manageable 10.6 V .

Provided it is rated at 1.5 A , or more, almost any encapsulated bridge rectifier will operate satisfactorily in Fig. 1. The pin connections for the suggested rectifier (an SKB2/02L5A) are shown in Fig. 2.

DUAL DAC

Almost three years ago (in September 1985) we described a Simple Digital-toAnalogue Converter based on the ZN428E. Since then, a number of other DAC chips have become available including the 7528 which offers two identical converters housed in a compact 20 -pin DIL package.

Separate internal data latches are provided for each DAC which greatly simplifies the task of interfacing the device to a microcomputer bus. The 7528 operates from a single supply rail (of between +5 V and +15 V) with extremely low power consumption. The individual converters employed within the 7528 operate using the technique of four quadrant multiplication and separate reference voltage inputs are provided for each.

The internal arrangement of the 7528 is shown in Fig. 3. Data from the system data bus is fed, via an input buffer and internal 8 -
bit data bus, to the two internal 8 -bit data latches. Data is clocked into a latch when selected by internal control logic (note that only one latch can be enabled at any given time and that data is held within the latch and the analogue output voltage maintained at the corresponding level, until new data is written to the latch).
The summed output of each converter's " $\mathrm{R}-2 \mathrm{R}$ " ladder network appears at the output (pin-2 for Channel A and pin-20 for Channel B). Outputs must be taken to the inverting input of an external operational amplifier for which an internal feedback resistor is provided. This component is fitted between pins 2 and 3 in the case of Channel A and between pins 20 and 19 in the case of Channel B and it is accurately matched to those within the " $\mathrm{R}-2 \mathrm{R}$ " ladder network.

Circuit Description

The complete circuit of the Spectrum Dual DAC is shown in Fig. 4. IC2d and IC2a constitute summing amplifiers for the internal " $R-2 R$ " resistor networks whilst IC2b and IC2c act simply as unity gain inverting amplifiers. The outputs of Channels A and B are respectively available at SK1 and SK2.

IC 3 provides address decoding such that the 7528 is selected whenever an I/O write operation is performed with A7 low. Address line A6 is used to determine which Channel data latch is selected and this results in the address decoding shown in Table 1.

Table 1:
Address decoding for the Dual DAC

Address Lines*			DAC Selected		Address	
				HEX.	DEC.	
0	A6		A		$3 F$	
0	1	B		7 F	127	

*N.B.: Address lines AO-A5 MUST all be at logic 1.

Construction

The Dual DAC may be assembled on a piece of stripboard measuring approximately $80 \mathrm{~mm} \times 100 \mathrm{~mm}$. The precise dimensions of

Fig. 4. Complete circuit of the Spectrum Dual DAC.
the board are unimportant provided that it has a minimum of 28 tracks aligned in the vertical plane sufficient to allow the mounting of a 28 -way double sided edge connector. This connector should be fitted to the lower edge of the board and will require five holes across the full width of the stripboard so that the board stands vertically when the connector is mated with the Spectrum.
Before soldering any of the components (including the three i.c. sockets) it is important to allow some clearance for the rear overhang of the case. For the Spectrum this gap should correspond to 8 rows of holes (20 mm approx.) whilst for the Spectrum Plus and 128, the gap should be increased to 12 rows of holes (30 mm approx.).
Component layout is generally uncritical though, as with most of our On Spec projects, considerable economies can be made by carefully planning the layout in advance of mounting the components and i.c. sockets. Readers are advised to carry out this exercise on paper first (using, if desired, the layout sheet provided with our On Spec Update).
After mounting the i.c. sockets, great care must be taken to ensure that all unwanted tracks are cut (including, in particular, those which link the upper and lower sides of the 28 -way connector). A purpose designed spot- face cutter is ideal for this purpose or, if such a tool is not obtainable, a small sharp drill bit may be used.
The remaining components (diodes, fixed resistors, capacitors, connectors and pre-set resistor) should then be fitted to the board. As usual, the decoupling capacitors (C1 and C2) should be distributed around the board with C2 being placed in close proximity to the supply input of IC1.
Links on the underside of the board should make use of appropriate lengths of miniature insulated wire (of the wirewrapping type).

When the stripboard wiring has been completed, the three integrated circuits should be inserted into their sockets (taking care to ensure correct orientation of each device). Finally, the entire board and wiring should be very carefully checked before attempting to connect it to the Spectrum. (Note that the Spectrum should ALWAYS be disconnected from its supply before either connecting or disconnecting any interface module). If all is well, when power is re-applied, the normal copyright message should appear. If not, disconnect the power, remove the interface and carefully check again!

Initial Adjustment

The procedure for adjusting and testing the Dual DAC is extremely straightforward and simply requires the services of an accurate (preferably digital) voltmeter or digital multimeter switched to the d.c. voltage ranges. The interface should be connected to the Spectrum (as before) and power applied. The voltmeter should be connected with its positive lead to the test point (marked "TP" in Fig. 4) and its negative lead to 0V. VR1 should then be adjusted for a reading of exactly 2.56 V .

Now transfer the voltmeter leads to SK1 (the output of Channel A) and enter the following BASIC commands and, at each stage, note down the voltage produced:

OUT 63,0

OUT 63,255

The voltmeter should read 0.00 V and 2.55 V , respectively.

Finally, transfer the voltmeter leads to SK2 (the output of Channel B), enter the following BASIC commands and again note down the voltages produced:

OUT 127,0

OUT 127,255
The voltmeter should again read 0.00 V and 2.55 V , respectively.

Resistors	
R1	
R2	270
R3	390
R4	10 k
R5	10 k
R6	4 k 7
R7	10 k
R8	10 k

All $0.25 \mathrm{~W} 5 \%$ carbon
Potentiometer

VR1 | 10k min. pre-set |
| :--- |
| (preferably multi- |
| turn) | turn)

Capacitors

C1	10μ p.c. elec. 16 V
C2	100 n polyester
C3	10μ p.c. elec. 16 V

Semiconductors		
D1	Red I.e.d.	
D2	BZY88C3VO	
IC1	AD7528	
IC2	LM324	
IC3	741532	

Miscellaneous

14-pin low-profile d.i.l. socket (2 required); 20 -way low-profile d.i.I. socket; 2 -way 0.1 in pitch p.c.b. mounting connectors (2 required); stripboard, 0.1 in pitch, measuring approx. $80 \mathrm{~mm} \times 100 \mathrm{~mm} ; 28$-way open end double-sided 2.54 mm (0.1 in) pitch edge connector (e.g. Vero part number 838-24826A); connecting wire; solder etc.

```
Approx. cost
Guidance only
```


£18

This completes the adjustment and testing of the Dual DAC and the interface is now ready for use!

Next month: We shall provide some demonstration software for the Dual DAC and we shall also be describing an I/O Address Selector.

Fig. 5. Pin connections for the 7528 Dual DAC.

Constructional Project Oוסט minibsicks

A planned series of audio building "bricks" that can be connected together in numerous different ways to produce all kinds of sound effects. These basic building modules are examined in detail and, with one exception, all the circuits use identical i.c.s and a master printed circuit board.

The circuits are all self-contained and you can select whichever circuits you want to build. All projects are suited to assembly by novice and experienced constructor alike.

TIIIS month we turn our attention to creating sound effects using the Voltage Controlled Filter and also investigate the Ring Modulator.

VOLTAGE CONTROLLED FILTER

The principle of operation of the Voltage Controlled Filter (VCF) is shown in the circuit diagram Fig. 2.1, and is similar to that for the Low Pass Filter. Frequencies are extracted from an a.c. signal by varying capacitor charge rates. In this case there are two capacitors and three stages.

The signal comes into op. amp IC2a which acts as a mixer stage. Its output is taken in by the first filter stage around ICla and IClb . Capacitor Cl absorbs some of the upper frequencies. Part of the output is fed back to IC2a, another part is fed forward to the second filter stage at IC1c and ICld. More of the upper frequencies are taken out by capacitor C15, and further feedback is made to ICZa.

Due to the nature of the current transfer three frequency pass parameters are developed. Upper frequencies appear at 1 C 2 a , and this is the High Pass (HP) output.

Fig. 2.1. Circuit diagram for the Voltage Controlled Filter (VCF) giving high pass (HP), low pass (LP) and band pass (BP) outputs.

At first sight this may seem odd as it might be expected that the signal here should contain low frequencies as well. The fact that it does not is due to the current transfer characteristics of the entire network.
The far end of the circuit at ICld is the Low Pass (LP) output. In the middle at IClb, frequencies between high and low pass appear. This is the Band Pass (BP) output.

The spectral range of the three sections is governed by the amount of current going into the control nodes at pins $\mathbf{1}$ and 16 . Since these are coupled, they both see the same current as delivered from the chosen sources previously discussed.

Filter response in respect of varying values of node current and capacitance value is shown in Graph 3. The maximum and half level regions shown relate to the signal strength seen at the outputs compared to the original level.

EE13536
Fig. 2.3. Block diagram showing the arrangement for a tone controll equaliser.

Fig. 2.2. Printed circuit board component layout for the VCF and Mixer. A full size copper foil master pattern was given in Part One, last month.

CONSTRUCTION -PLAN B

The positioning of the VCF components on the printed circuit board is shown in Fig. 2.2 (Plan B). It is optional whether the outputs are taken via the potentiometers. They could equally well be switched to further circuits or equipment.

TONE EOUALISING

With the wiring shown the outputs are taken to a mixer stage. This is identical to that used for the Hex VCO and the configuration becomes the Tone Control/Equaliser shown in Fig. 2.3.

By varying the signal level passed to the mixer inputs, so the output will consist only of those frequency bands selected in conjunction with VR6. Between them the four controls allow the VCF to be used as a powerful frequency correction tool.
One useful side effect of this set-up is that notch filtering can be introduced. This results in the ability to extract frequencies in a narrow middle range by only using the low pass and high pass regions. The positioning of the notch is variable by adjusting VR6. Several VCFs may be coupled for increased filtering.

Another use of a VCF comes from its ability to change the characteristics of a signal by emphasising its upper harmonics. As

40M19	
VCF and	
MIXER	
	See page 415
Resistors	
R1, R39, R40	10 k (3 off)
R3, R4, R34,	
R35	1k (4 off)
R8	20k
R11, R14, R16	
R20-R22, R41	100k (12 off)
R45-R49	
R28,R29	4k7 (2 off)
All 0.25 W 5\% carbon	
Potentiometers	
VR1	100k skeleton
VR6	100k mono rotary
VR8-VR10	100k log mono rotary (3 off)
Capacitors	
C1. C15	180p polysty. (2 off)
C2, C3, C7, C10, C16.	$1 \mu 63$ elec. (9 off)
C19-C22	
C11	$22 \mu 16 \mathrm{~V}$ elec.
C23	100 n polyester

Semiconductors

IC1	LM13600 Trans- ductance op.
IC2	amp TL082 Dual BIFET op. amp.

Miscellaneous

Printed circuit board, 255A, p.c.b. clips (4 off); 8-pin i.c. socket; 16-pin i.c. socket; knobs (4 off); connecting wire; solder etc.

Approx. cost
Guidance only
£16
previously mentioned, waveforms other than sine waves contain upper harmonics. Using a VCF, the basic or fundamental frequency can be tuned out leaving only a selected harmonic.

As any synthesiser owner will know, this can dramatically change the nature of the sound. This can also be shown by feeding the non-sinusoidal outputs of the VCO into the VCF and experimenting with different settings of the controls.
The effect can be further enhanced by coupling the control nodes of both a VCO and VCF so that they track in unison. An obvious control source is to use the voltage output of a synthesiser to produce total and harmonic manipulation.

MOCK STEREO

An interesting effect can be produced by feeding the VCF to two mixers, as in Fig. 2.4. This results in a mono signal heing split into a simple stereo simulation.

Only two of the inputs on each of the mixers are used. The low pass output goes to one input of Mixer 1 and the high pass to one input of Mixer 2. The band pass though is fed to the second inputs of each mixer. The outputs can be fed to separate channels of a stereo amplifier.

Thus bass frequencies will be heard on one side and high frequencies on the other. Middle frequencies form the central image, and their two level controls can be used for panning or balance. A dual-ganged pot could be used instead of two separate controls. The stereo image can also be shifted by using the band pass control VR6.

SIMPLE PHASER

The VCF can be coupled to the VCO in another way, so producing a phasing effect, as in Fig. 2.5. The familiar phasing or "skying" sound as it is sometimes called, comes about when two signals of identical basic content, hut varying in relative phase, are mixed across each other.
The change of phase can be achieved by using a delay module, as will be seen later. It is also readily ohtained by changing the characteristics of a filter. It is inherent in a simple filter design that a signal phase shift occurs during filtering.

Since the VCF can be controlled by a changing voltage source the phase shift can he varied in response to the control level. A VCO produces a changing voltage at its output and this can be used to automatically vary the phase change.

On its own a phase changed signal will not sound any different. But as soon as it is mixed in similar proportions with the original the phasing effect will oceur.

PHASING

The triangle wave output of the VCO in Fig. 1.4 is coupled to the control node of the VCF. Music is fed simultaneously to hoth the VCF and one channel of the mixer from Fig. 1.6. The VCF output goes to the second mixer channel.

Phase shift rate is-controlled by VR6, and is hest when at a cycle period of several seconds. Basic phase shift regions are variable by VR7.
Mixer input controls should be set so that the twolevels are identical. This will result in almost complete cancellation of the relevent frequencies as the phases become directly opposed.
When they shift into total phase agreement, a doubing of the output level will

Fig. 2.4. Arrangement for producing mock stereo. The bass frequencies will be heard one side and high frequencies the other.

Fig. 2.6. Circuit diagram for a simple voltage controlled oscillator (VCO). The output waveform is shown in photograph 6.

Fig. 2.5. Block diagram showing how the VCF can be coupled to the VCO to produce phasing.

Graph 4. Control resistance/capacitor against frequency for the simple VCO

result. The mixer controls must therefore be set down a bit to avoid overload distortion

The phasing effect will be most apparent with complex waveforms, particularly in the upper frequency ranges. With smoother waveforms of a more sinusoidal nature the effect will be less noticeable to the ear, though it will be seen on a scope, and perhaps on the VU meter of an amplifier system.

SIMPLE VCO

Earlier, details of a multiwạveform VCO were given. There are though, many instances when waveform shape is not too critical and a simpler VCO can equally well do the job. Fig. 2.6 shows how a single stage of a TCA can be connected to produce a somewhat mis-shaped triangle wave. The output waveform for the simple VCO is shown in photograph 6. This is perfectly suitable as a frequency source in all sorts of applications ranging from signal tracing, to sound effects production. It is also usable as a modulation control source.

As before, the frequency is determined by the rate at which a capacitor varies its charge in response to a control current. Here capacitor C24 is connected for positive feedback to ICle with the threshold trip point set by the back-to-back diodes D13 and D14.

ICId buffers the capacitor charge, and the resulting waveform is available at C16. Graph 4 shows the plots of frequencies produced by different values of C24 and control resistance.

RING MODULATOR

Ring modulation effects are second only to delay effects in popularity. Much has been written on the subject, including a lengthy article by the author some months ago. Even in its simplest form a ring mod can impose most profound changes on a music or voice signal.

6-Simple VCO output waveform.
7-Ring Modulator: Upper trace, I.f. modulation. Lower trace, combined h.f. and I.f. modulation.

COMPONFVITS

RING MOD AND SINIPLE VCO

Resistors

R1, R8, R10	
R32, R39,	10k (6 off)
R40	
R7	20k
R12, R28, R29	4k7 (3 off)
R13-R15	
R37,R45-	100k (7 off)
R47	
R35	33k

All 0.25W 5\% carbon
Potentiometers

VR1	50k skeleton
VR2	1 k skeleton
VR3	100 k skeleton
VR6	100 k mono rotary
VR8	100k log. mono
	rotary

Capacitors
C2, C8, C10 C16, C21

C11	22μ elec. 16 V
C14	$15 n$ polyester
C23	100 n polyester

Semiconductors

D13, D14	1N4148 (2 off)
IC1	LM13600 transcon-
IC2	ductance op. amp TL082 dual BIFET op. amp

Miscellaneous
Printed circuit baord, 2551; p.c.b. clips (4 off); 8 -pin i.c. socket; 16-pin i.c. socket; knobs (2 off); connecting wire and solder, etc.
£ 15
1μ elec. 63 V (5 off)
22μ elec. 16 V
$15 n$ polyeste
100 n polyester

Fig. 2.8. Printed circuit board component layout for the Ring Modulator and the Simple VCO.

In essence two signals are brought together. They are not combined as happens in a mixer, but instead they intermodulate. Normally the speech or music signal goes to one input and an oscillator signal to the other.

The method of combination results in extra harmonics being produced. A typical Ring Modulator waveform is shown in photograph 7. These are related to the sum and the difference of the two. In this way it is possible to build up rich chord structures from otherwise unremarkable sounds. Simpler effects can also be easily produced, such as rohot or Dalek type voices.
The circuit diagram for a Ring Modulator is shown in Fig. 2.7. This circuit shows a basic way of producing ring modulation by using the transconductance amplifier (TCA) i.c. as a four quadrant multiplier.

Fig. 2.9. Showing how the Ring Mod and Simple VCO can be connected to produce robot voices and music modulation.

that the modulator signal does not pass through in the absence of the primary. The balance precision is not as accurate as will be found in more complex ring modulators, but the unit is a worthwhile addition to a sound effects armoury.

CONSTRUCTION -PLANC

The printed circuit board component layout for the Ring Modulator and the Simple VCO is shown in Fig. 2.8.

Some of the ways in which the module can be connected to various speech, music and VCO sources is shown in Fig. 2.9 and the p.c.b. layout combines this arrangement to form one unit (Plan-C). Robot voices and music modulation effects can be directly produced from the unit connections shown. More complex results can be created by feeding synthesiser VCOs into the two inputs.

Next Month: Frequency Doubler, Fuzz, Tremolo, Wobble Wah and an Envelope Shaper.

SUN-TAN TIMER

Sunburn, sunstroke and peeling could all be avoided if there was a device to let you know when you have just the right amount of sunlight to develop a tan but not enough to cause damage. Such a device now exists in the form of the Sun-tan Timer. This compact lightweight pocket-sized project sounds a penetrating alarm, piercing enough to wake anyone from the deepest slumber when it has received a set amount of sunlight. This set amount is
fully adjustable to allow for any sort of skin type and so that built up tolerances to sunlight acquired after several days in the sun can be compensated for.

STREET-WISE CARS

Motorists should find it more difficult to get lost in the 1990s thanks to electronic navigation systems. Several car manufacturers and electronics companies have already demonstrated prototypes. Systems employing satellite receivers and CD data storage plus Radio Data System traffic and road reports will soon be possible.

TEA-TUNE

The Tea-Tune is designed to hang on the side of a cup where it monitors the drink until the temperature falls below a preset level, upon which it loudly plays a medley of popular tunes. Of course, the device has other applications; being pocket-sized it can be used to monitor and signal a fall in temperature in almost any liquid ffish tanks, photographic processing etc.) or even ambient air temperature, e.g. it could be used as a personal temperature monitor for the elderly - warning of a fall in room temperature below a "safe" level, or as an ice warning etc.

All this plus our regular features and parts 3 of Home Security Systems and Audio Mini-Bricks. Make sure of your copy-place an order with your newsagent or take out a subscription now!

b...Beeb...Beeb...Beeb...Be

EPROM Programming . . . EPROM Programming .. .

THE accompanying listing is the programme for the EPROM programmer described in the previous two BEEB Micro articles. It is menu driven and is largely self explanatory when run, but a few notes to clarify things are in order. Option I allows you to enter data into the buffer used to store the programme.
The actual BBC memory addresses and the relative addresses (i.e. the offsets from the base address, which are effectively the EPROM addresses) are both displayed, together with the value in each location. The latter are given in both hexadecimal and decimal, but can only be entered in hexadecimal. You can scroll up and down to get to any desired address, or the jump facility can be used to move straight to any (relative) address.

Option 2 is essentially the same, but it allows data to be entered in decimal form. With option 3 you have access to operating system commands. This is primarily so that the contents of a disc can be displayed, and the buffer can be saved to disc and reloaded.
Option 4 is used to blow an EPROM, having first selected 8 or 16 K operation using option 5 (and having remembered to set the right programming voltage on the programmer). The programme gives a scrolling display which shows how far it has progressed, and it will indicate a programming error if one should occur.
Option 6 simply stops the programme and takes the computer back to the BASIC CLI.

Improvements

The programmer does not use a fast programming algorithm, and it will take a few minutes to programme even an 8 K EPROM. Line 2130 controls the time for which the programme waits while each byte is programmed. You can try values lower than 8 in an attempt to speed things up slightly.
There are two obvious additions to make to the programme, or to have as separate programmes. The first is to have an erasure checking facility. This only requires a very simple programme. It is basically just a matter of setting the user port lines as inputs. enabling the output enable terminal of the EPROM, and then reading in the value from each address of the EPROM. Each byte should the \&FF (255 decimal), and the programme must indicate that erasure is imperfect if any other value is detected at any address. The setup procedure followed by a reading procedure based on a FOR NEXT lowp should suffice.
Reading in the contents of an EPROM for copying purposes is inuch the same, but the values obtained must be written into a block of free RAM. This is again just a matter of using the setup procedure plus a routine based on a FOR ... NEXT loop (with the upper and lower RAM addresses being used as the maximum and minimum values in the
loop). It is then a matter of using another FOR . . NEXT loop to output the contents of the RAM block to the new EPROM, using a blowing/checking routine of the type used in the listing shown here.

Morley EPROM Programmer

The BBC Micro has one of the largest range of readily available commercial add-ons-possibly the biggest range of all. It seems especially rich in the number and variety of add-on EPROM programmers. It seems as though every manufacturer of BBC add-ons produces at least one of these devices. It is probably a popular add-on for the BBC micro due to its sideways ROM facility, rather than because a lot of BBC micro owners are into developing their own micro based systems.
Prices and facilities vary enormously from one unit to another. Some seem able to programme any EPROM under the sun (including some that I have never heard of before), while others are strictly for the $27^{* * *}$ series, as used for the sideways ROMs. The unit I have been using for the last few months is the Morley EPROM programmer V2, which is in the low cost category. It can programme 2764. 27128, and 27256 EPROMs, with both 12.5 and 21 volt programming potentials available. In this respect it is similar to the EPROM programmer described in the previous two articles in this series, but my design cannot handle the 27256 (32 k) devices.
This unit seems to have been designed with simplicity of operation very much in mind. The nearest thing it has to a control is the lever on the 28 way ZIF socket! It is fully
software controlled. In common with most commercial EPROM programmers for the BBC micro, it connects to the user port, and this is the only port that is used. Clearly a fair amount of multiplexing and demultiplexing is required in order to control everything from the nine output lines of the user port, but it seems to work flawlessly.

Software

The manual for this device does not exist as such. There is a photocopied A4 sheet giving some basic details, including how to obtain help screens when running the software supplied with the unit. This software can be on disc or EPROM. I obtained the disc software and tried out the unit by transferring this onto a 27128 EPROM (the ROM image is included on the disc). The help screens are brief but concise

While documentation is not a strong point of this product, the unit and software are very easy to use, and I had no real difficulties in using the unit. It is not one of the programmes where you tend to keep getting stuck, and have to reset the computer to get back in control! It should also be borne in mind that an EPROM programmer is not really a beginner's add-on, and most EPROM programmer documentation seems to (quite reasonably) assume a fair amount of technical knowledge on the part of the user.
The programme is menu driven, and you are presented with the main menu as soon as it is up and running. You can select the desired EPROM type, and alter the programming voltage if the default voltage is

The main menu screen.

The EPROM edit screen. You must scroll to the desired address.
wrong for the device you wish to programme. You can also load or save data to disc, verify erasure, load data from an EPROM into memory, examine the block of memory used for data storage (and edit its contents), verify correct programming, or go into the help pages.

Editing

Editing the buffer is very straightforward. You are presented with a display that shows lines of eight bytes of data in hexadecimal. Addresses are shown to the left of these,
with ASCII characters for the bytes displayed on the right hand portion of the screen. This ASCII display is useful for checking purposes when entering data that is text for a screen display, or something of this nature. Maybe I am misinterpreting the display, but the ASCII data seems to be headed "HEX" \mid Changing byte values is very easy. It is just a matter of moving the cursor using the cursor keys, and typing in new values. The screen scrolls vertically and seems to be able to display any part of memory if you scroll it far enough. It seems to be contin-
ually reading values from memory, and will show changing values if you display (say) the input/output area of the memory map!

I had no difficulties in using the Morley programmer and software to copy EPROMs, or to load EPROMs with my own programmes entered into the buffer. The unit uses a fast programming algorithm, and claims to programme a 16 K EPROM in an average time of under 30 seconds. I did not take any programming times to check this, but programming was being completed in a matter of seconds rather than minutes.

Conclusion

The Morley EPROM programmer is a very neat and efficient product, as is the software supplied with it. Building your own EPROM programmer can certainly be cheaper, but the Morley unit represents very good value for money. The do-it-yourself approach is likely to provide worthwhile but not really massive savings when compared to this unit. It you only wish to programme 2764,27128 , and 27256 EPROMs this package is certainly worthwhile considering, and I have no hesitation in recommending it

If you require a unit that can handle a wider range of devices you will need to look elsewhere, but you will probably have to pay about twice as much (or more) to satisfy your requirements. When comparing EPROM programmer prices bear in mind that the software is sold separately in some cases, and sometimes at quite a high price. Make sure you know exactly what you are buying before parting with hard earned cash.

Further details from: Morley Electronics, Unit 3, Maurice Road Industrial Estate, Tyne and Wear, NE28 6BY (Tel. 091 2627507).

VS								L1		Onics (0983) 292847
Iust a sample of stock. Ask for items not listed.										Super Project Kit Bargains
Ics		LE.O's		MTPBNI	1.44	${ }^{15} \mathrm{~W}$ Cover	1.07	Metalised		
4001UB	12	5 mm dia		TIP 121	34	25W Skt	. 60	Polye		
${ }^{401110}$	12	Red Gree	113	${ }_{\text {TIP126 }}^{\text {TIP31 }}$	${ }_{30}^{34}$	${ }^{\text {25 W Plug }}$. 16	${ }^{5} 57.5 \mathrm{smm}$ Pitch		Z80 BASED CONTROLLER BOARD
4011	12 31	Orange	21	T1P32C	30	PCB Moun		$0.010 \mu \mathrm{~F} 100 \mathrm{~V}$. 08	This super little micro board using the very powerful Z80A CPU running
der	29	Yellow	. 15	${ }^{2 N 2646}$	1.18	${ }^{15 W}$ Ski	1.02	$0.022 \mu \mathrm{~F} 63 \mathrm{~V}$. 88	at 4 Mhz has all the necessary hardware to control menial to the most
4040	38	3 mm dia		2N3055	4	15W Plug	39	0.047 0 F 100 V		complex tasks. The PTH PCB measuring only 107×118 comprises 2 K
403	37	Red	13	Triacs		25W Plug	2.15	${ }^{0.14 \mu F 63 V}$		EPROM (empty), 2K static RAM, 16 input lines using two 74LS244 and 16
400	19	Green Orange	21	2N6070A 100	A 1.29	Capacitors		$\begin{aligned} & 0.15 \mu F 63 V \\ & 0.33 \mu F 63 V . \end{aligned}$	$\begin{aligned} & .17 \\ & 30 \end{aligned}$	output lines using two 74LS373. The port connections are via four 10W
4514 B	.95	Yellow	. 13	BT137 600V	1.62	Radial		0.47 $\mathrm{F}_{6} 63 \mathrm{~V}$	17	pin strips, each having eight data lines, one ground and either NMI, INT,
Z80ACP	185	Fixed Voltage		Infra-Red Emitter TIN105A .69		2.24F50V		Disc Ceramic		WAIT or RESET. A must for the small application.
${ }^{2880} 171710$	1.68 4.00	Regulators					.	100F 63V		s: $\mathbf{Z 8 0 A}$-CTRL/K Kit Form
64021P1	7.30	${ }^{1805}$	36	Intra Reod Sensor		$33 \mu \mathrm{~F} 16 \mathrm{~V}$	04	100pf 50V 150 p 50 V		Z80A-CTRL/B Built and Tested...24.45
555	4	7808	68	TPS703A	1.89	47		220 p 50 V		280A-CTRL/B Built and Tes
1 m 380 N	$\begin{array}{r}1.87 \\ \hline\end{array}$	7824	. 68	${ }_{6}$ Low C	05	47-F 63 V	$.08$	$0.01 \mu F i k V$		284C-CTRL/B Cmos Built and Tested................................. $£ 31.45$
TDA3810	5.56	7905	38	8 W	. 07	47, 100 V	15	$0.047 \mu \mathrm{~F} 50 \mathrm{~V}$		
TL074CP	.51 3.69	${ }_{7915}^{7912}$	2.10 .39	14 Way	. 11	$10 \mu \mathrm{~F} 35 \mathrm{~V}$ $10 \mu \mathrm{~F}$ 1 V		0.1. 1 F25V		RS232 TO CENTRONICS CONVERTER
SG3526,	4.92	7924	39	16Way	. 13	22	21	0.1 1 F 50 V	. 07	This handy little interface is ideal for running parallel printers from a
SL4860	2.20	${ }^{78105}$	28 28	20	. 16	${ }^{1000} \mathrm{~F}$ F 10 V	06	Resistors		serial port, the low cost way out of buying expensive parallel ports for
${ }_{\text {SLI }}^{\text {ML9260 }}$	2.13	7812	.28	22 Way	. 18			Carbon film		your computer. Originally designed for the Sinclair OL and Northstar
S5768	2.66	78	36	${ }^{24}$ Way	2	${ }_{100} 10 \mu 3135$	$.08$	0.25 Watt		Dimension in mind. The PCB measuring 60×62 comprises of the 6402
		7905	30		${ }_{3}^{23}$. 19			ART, Baud rate generator and all necessary logic, comes complete with
		7912	30	40	. 33	$100 \mu \mathrm{~F} 63 \mathrm{~V}$	21	0.5 Watt 5\%		re and ribbon cable and 36W Centronics plug. (For 'D' Type connector
S		${ }_{\text {Transistors }} 7$		${ }^{\text {Turned Pin }}$	12	$220 \mu \mathrm{~F} 10 \mathrm{~V}$. 06	1051 10 10Mst		d hoods see selection on left. Sinclair OL SER1 Plug available extra at
in 4001 in4002	05			8 Way	. 16	330 FF 16 V	19			68, order as 900-71052
in4003	. 05	BC107 BC108	${ }_{21}^{16}$	14 Way 28		${ }_{4} 470 \mu \mathrm{~F} 50 \mathrm{~V}$	40			Order as: RS232-8/K Kit Form ..43.90RS232-8/B Built and Tested.........
in4004	05	${ }^{\text {BC1 }}$ (199	. 19	16 Way18 way		${ }^{470} \mathbf{4} 63 \mathrm{~V}$ V . 63		$\begin{array}{cc} G . \mathrm{M}_{1421}^{4} 7 & 72 \underset{1.99}{\mathrm{~W}} \end{array}$		
incour	${ }^{0} 05$	${ }^{\text {BC182 }}$	05	${ }^{2} 2 \mathrm{Way}$. 40	${ }_{\text {col }}^{10000} \mathrm{~F}$ F 10 V	$\begin{array}{r} 23 \\ 27 \end{array}$			
instiol	12	BC546B		22 Way	44	2200		Poten		DISTANCE MEASURING INSTRUMENT
		Bc556A	. 04		$\begin{aligned} & .48 \\ & 56 \end{aligned}$					
		BD23	42	40 Way	B0	Axiol Le		Carmel Top Adi		An invaluable has in the ultrasonic processing PTH PCB measuring pnly 77×85 has all the necessary components to putput the distance in
Zener Diodes		80675A	32	Connectors		4.7., 15	06	10085	30	
$\begin{aligned} & 2 V 74 W \\ & 5 V 14 W \end{aligned}$	${ }^{0} 5$	${ }_{\text {BFY5 }}{ }^{\text {B0676A }}$	32 54			10 H	11	${ }_{\text {K K }}$	30	only 77×85 has all the necessary components to output the distance in
TV54W	06	BF259	. 58	9w Skt	. 43		$\begin{aligned} & 10 \\ & .18 \end{aligned}$	5 KII	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	selectable by a three position switch. The kit comes complete with Para-
9vidw	0	BSRS	49	9WPrug	98	$100 \mu \mathrm{~F} 100 \mathrm{~V}$. 18	20ks	. 50	bolic reflector and transducer. Available extra is a liquid crystal display
10VaW 11V4W	${ }_{0} 06$	\|RF520	1.61	${ }^{\text {atw Cover }}$.98 .60	$470 \mu \mathrm{~F}$ 10V	22	100kı	. 50	board measuring 51×101 which can be wired to the BCD output to the
livaw	05	$\begin{aligned} & \text { IRFRA4 } \\ & \mathrm{J} 112 \end{aligned}$	$\begin{array}{r} 4.10 \\ .57 \end{array}$	15W Plug	. 53	$1000 \mu \mathrm{~F}$ 10V	31	200ks	. 50	above board directly to display the distance in 0.5 inch high digits.
Mail or Telephone Orders only please to:										as: UDM126/K Kit fif
Dept 14, Samuel Whites Estate, Bridge Road, Cowes, Isle of										UDMI26/B Built and Tested.. ${ }^{\text {a }}$
										DM4/K LCD Kit for
packaging, and 15\% VAT to total. Stock listing availabl										LCDM4/B LCD Built and Tested...
packaging, and 15\% VAT to total. Stock listing available										

SHOP Win BY DAVID BARRINGTON

Optical Encoder

A product that should appeal to the experimenter, and being offered at a special price, is announced by Greenweld.

The Optical Shaft Encoder, made by Sharp, produces two phase-shifted outputs plus a sync pulse once every revolution. It is claimed that the optical encoder is ideal for use in robotics applications or anywhere the position and speed of a rotating shaft needs to be known.

The complete unit, with comprehensive data, costs just $\mathbf{f 8 . 5 0}$ inclusive and is available from: Greenweld Electronics Ltd., Dept EE, 443D Millbrook Road, Southampton, S01 OHX. శ઼0703 772501.

Extension Lead

Why is it that whenever there's an electrical breakdown around the home, or in the car, it nearly always happens well away from the nearest electric power point and you end up cursing that the soldering iron lead or electric drill lead falls short by inches! This is certainly a case where the purchase of an extension cable reel more than makes up for the initial outlay.

The latest cable reel range of products from Briticent include models which incorporate a safety cutout to protect against overloads and a neon light to indicate mains on. The cable reels are supplied with cable and fused plug.
The 1500 W version comes with 10 m of cable and the 3250 W version with 8 m of cable. Both versions are fitted with twiri socket outlets.
For further information and addresses of nearest stockists write to: Briticent International Ltd., Dept EE, Crow Arch Lane, Ringwood, Hants, BH24 1NZ (

CONSTRUCTIONAL PROJECTS

Video Wiper

The slider potentiometers required for the Video Wiper project are about twice the price of rotary types but do add that "professional" touch to the finished unit and are certainly worth the extra outlay. You can, of course, use rotary types if you wish.

Looking at the author's prototype model, we see that a 4066BE quad bilateral switch has been used for IC5 instead of the 4 -pole 1 -way analogue switch type $4016 B E$ specified. The 4066 is pin-for-pin compatible with the 4016, but has a lower "on" resistance. The 4016 is recommended for sample and hold circuits. Both devices should work in this circuit.

The rest of the components seem to be standard items and should not cause any purchasing difficulties. The printed circuit board for the Video Wiper is available from the EE PCB Service, code EE612

Audio Mini-Bricks

The master printed circuit board ($£ 7.90$) for the Audio Mini-Bricks series of projects is available from Phonosonics, 8 Fi nucane Drive, Orpington, Kent, BR5 4ED.

Universal Charger/Power Supply

Most component suppliers should carry stocks of the 3 -pin DIN "In-Line" socket called up in the comp list for the Universal Charger/Power Supply. Provided a larger case is used, you can, of course, use a chassis mounting DIN socket.

The type and physical size of mains transformer purchased will also govern the size of case used. The one used in the prototype model was a miniature p.c.b. mounting type and just about fitted into the "PSU box", fitted with an integral 3pin 13A plug. These type of cases are now quite common and stocked by most component advertisers.

It should be noted that the "tab" of the voltage regulator i.c., type LM 317 M , is also connected to the $V_{\text {out }}$ pin and care should be taken to avoid shorting it to other components. Because of the pres-
ence of mains voltages it is important to take extreme care when carrying out any work on the unit.

Spikeater

The three-in-one 250 V a.c. suppression capacitor used in the Spikeater was purchased from Maplin. This three lead delta capacitor is listed as a "Motor Suppressor", code HW07H (Delta Cap).
If readers experience any difficulties in locating a local source for the Varistor, it is currently listed by Maplin as a "mains transient suppressor", type HW13P (Mains Trans Supp). They are also stockists of the Class X capacitor (order code FF56L) required for "non-earthed" suppression.

Although it is suggested that the capacitor can be "Superglued" to the outside cover of the rubber mains plug, it might, for safety reasons, be a better idea to build the unit inside a PSU box, fitted with an integral plug. A typical example of this type of case is shown in the photographs of the Universal Charger/Power Supply in this issue.

Isolink

The high voltage, high sensitivity opto transistor isolator, RA57M, called for in the Isolink is a Maplin type number. It is quite possible that other advertisers, such as Xen, Greenweld and Marco, might be able to offer an equivalent. However, they have not been tried in-circuit and it is important that they have identical specifications. This means a minimum 100 per cent transfer ratio and be capable of isolation voltages of 5300 V r.m.s. 17500 V peak).

The p.c.b. foil pattern for this project shows an 8-pin configuration for the opto isolators, even though they are 6-pin devices. The reason for this is that 6-pin i.c. holders seem to be non-existent and the 8 -pin holder is universally stocked. The i.c.s should be plugged into the top section, i.e. at pin one, usually designated by a notch or cutout in the holder. Another alternative would be to employ soldercon pins and make up a 6-pin "station"
The printed circuit board for this project is available from the EE PCB Service, code EE613 (see page 000).

Spectrum Dual DAC

Readers may experience difficulties in locating a source for the dual 8-bit digital-to-analogue converter i.c. specified in this month's On Spec feature.
The only listing for the AD7528 dual 8bit DAC chip we have been able to locate is from Electromail (20536 204555), order code 633-600 or 301921.

Home Security

Most of the components required for this month's circuits in our new series on Home Security are standard products and should be stock items. However, the battery back-up i.c. is only listed by Maplin, code UH36P (ICL7673).

A large range of specialist intruder sensors are stocked by Riscomp and they should be able to supply all of the various "detectors" called for in this series of articles. Riscomp Lid., Dept. EE, 51 Poppy Road, Princes Risborough, Bucks, HP17 9DB (8084 44 6326).

We cannot foresee any component buying problems for the Diode Pump, this month's Exploring Electronics project.

ANDY FLIND

Connections without contact!

THE "Isolink" conducts voltage signals from d.c. 10 around 30 kHz between its input and output terminals. "Amazing". you might say. "hut surely two hits of wire can do that?"
Well yes, but the Isolink does offer some significant advantages over wire. For a start. it will withstand high voltages between the input and output connections without passing current, allowing measurements to be made on normally inaccessible circuits such as those connected directly to live a.c. mains.
The capacitance between input and output, due mainly to stray coupling, is less than 10pF. As this presents an impedance greater than $3(1)$ megohms at 50 Hz it enables investigation of sensitive battery-powered circuitry by mains powered test gear with virtually no coupling of mains "hum"
This has obvious applications in many areas of electronics, but should be of especial interest to bio-feedback enthusiasts. The prototype was in fact designed to assist with the development of a brain-wave monitor circuit.

OPTO-ISOLATOR

An "opto-isolator" device was chosen as the basis for this project as it offers efficient signal transfer with low supply current. Most other methods require tens of milliamps (at least) of transmitter drive current, and it was intended from the outset that this circuit would be battery powered.

Fig. 1. Simplified representation of the opto-link circuit stage.

Another factor in this choice was avoidance of the need to "encode" signals for transmission. Fibre-optic and infra-red systems usually employ frequency or pulse width modulation, but these involve an extra

oscillator which might interfere with sensitive bio-feedback circuitry. Although optoisolators are not totally linear, the problem is quite easily overcome, as will be seen.

A simplified version of the circuit appears in Fig. 1. The input is applied to one side of amplifier A1. The output from this amplifier is routed through the input l.e.d.s of two similar opto-isolators in series, so that both receive exactly the same current, and feedback taken from the output of one of them is fed back to A1. This enables the amplifier to compensate for most errors in the isolator response, so both of the isolator outputs should be accurate copies of the input. The signal from the second isolator is buffered by A2.

CIRCUIT DESCRIPTION

Of course, it's not quite that simple, as a glance at the full circuit diagram (Fig. 2) of the Isolink will show. To begin with, the input may be an alternating voltage. There must therefore be a quiescent current in the isolators which can both rise and fall, and the input and output "grounds" must be placed somewhere between the supply rails. IC1b with resistors R3 and R4 set the input ground to about 1V.

Stability caused a few design headaches. There seems to be a brief delay between the application of a signal to an isolator input and its appearance at the output, possibly due to charge storage in the transistor. At any rate, if the transistor is the sole source of feedback the circuit bursts into uncontrollable oscillation, so some h.f. feedback is provided from the input side through capacitor C1.

As it is taken after the I.e.d.s, at least their errors will be compensated for. Low frequency and d.c. feedback is derived entirely from an isolator output, so the performance here is excellent and even temperature-induced drift is mostly cancelled out.

The isolator type specified for this project has a stated "transfer ratio" of 100 per cent, meaning that for each milliamp of input a milliamp should be conducted by the output transistor. In practice there is a fair degree of variation between individual devices, so preset adjustment is necessary to compensate for this.

Starting with the high frequency compensation, if the ratio between the two feedback paths is adjustable, it is possible to trim the circuit for optimum high frequency response. This is carried out by preset VR1 which varies the ratio between the return resistances
from the isolator inputs and the transistor in IC2.
Next, the transfer ratios of the two isolators probably won't be exactly the same, so gain adjustment with preset VR3 sets the correct output level. The "ground" connection on the output side is also offset to permit negative signal swings and, as the d.c. outputs of the two isolators are unlikely to be exactly the same, preset VR2 gives a small range of compensatory adjustment.

COMPONENTS

Resistors

R1, R3, R5	10 k (3 off)
R2	1 M
R4	2 k 7
R6, R7, R14	220 (3 off)
R8, R15	33 k (2 off)
R9, R11,	
R16, R18	22 k (4 off)
R10, R17	68 k (2 off)
R12	$3 \mathrm{k3}$
R13	470

All $0.6 \mathrm{~W} 1 \%$ metal film
Potentiometers
VR1,
VR3 470 sub-min horiz. preset (2 off)
VR2 1k sub-min. horiz. preset

Capacitors
C1 1 n polyestyrene
C2, C3,
C6, C7 100n polyester layer (4 off)
C4, C8 100μ axial elec. 10 V (2 off)
C5, C9 470μ axial elec. 25 V (2 off)

Semiconductors

D1, D2 3 mm Hi -bright l.e.d. red (2 off)
IC1, IC5 CA3240E Dual op-amp. (2 off)
IC2, IC6 High-sensitivity, high voltage Opto Isolator. (Maplin RA57M) (2 off)
IC3, IC7 CA3130 Op-amp. (2 off)
IC4, IC8 78L055V 100mA positive voltage regulator (2 off)

Miscellaneous

S1 Miniature d.p.s.t. toggle switch
SK1,
SK2
Chassis phono sockets (2 off)

Case, ABS box, $150 \times 80 \times 50 \mathrm{~mm}$; printed circuit board, available from EE PCB Service, code EE613; 8 -pin DIL socket (6 off); 12 V battery holder (2 off) (for $8 x^{\prime \prime} A A^{\prime \prime}$ cells each): interconnecting wire; solder; etc.

POWER SUPPLY

Regulated supplies are essential for both sections of the circuit, these being provided by two 5 V 100 mA " 78 " series regulators. As the circuit is battery operated, a warning of impending supply failure on either side is a worthwhile addition.

Two 3130 op-amps, IC3 and IC7, compare voltages derived from the battery and the
stablised 5 V rails. With the resistor values given, the I.e.d.s will light when the supply voltage has dropped to about 8 V

Note that the 3130's have no compensation capacitors, this being unnecessary in a switching comparator application. Also there are no series limiting resistors in their outputs, as these effectively limit the current to about 8 mA anyway.

Fig. 2. Complete circuit diagram for the Isolink.

Fig. 3. Component layout and full size printed circuit board copper foil master pattern. Note that 8 -pin i.c. holders have been used for the isolator chips IC2 and IC6. The i.c.s should be plugged into the top section of the holders as indicated.

CONSTRUCTION

Despite the apparent complexity this circuit is quite simple to construct on a small printed circuit board. The component layout and full size copper foil master pattern is shown in Fig. 3. This hoard is available from the EE P'C'B Service. code EE613

Sockets are recommended for all i.c.s except regulators IC4 and IC8, as this assists the test procedure. The p.c.b. has been designed to aceept X-pin sockets for the isolators although these are 6-pin devices, the reason being that 6 -pin sockets are fairly hard to find. The isolators are fitted at the tops of these, leaving the bottom two holes unused. Do not fit any i.c.s at this stage as they will be added later whilst setting up.

The l.e.d.s can be connected to leads just long enough for the final installation in the case. Lengths of screened lead can he connected to the input and output points at this stage. long enough to allow easy access for testing. They can be cut short for termination to the sockets when the project is completed.

The "low supply voltage" indication is optional. hy the way. if it is not required then the Iwo 31.319s (IC3/1C7) and their eight associated resistors may he omitted.

Resistor R2 provides a d.c. path to "ground" for the input so that when this is open circuit the output is zero. About one megohm is a reasonable choice of input resistance hut it can be higher, lower or even omitted altogether if required.

SETTING UP

Setting up requires the use of an oscilloscope as this is the only viable way to set up the h.f. trimmer preset VR1. As this is essentially a project intended for use with a scope this should not puse problems to most constructors.
Before starting, set att three preset trimmers to mid-position. Power the "in" side of the circuit with a voltage between 9 V and 12 V and check that the 5 V regulated supply appears across the capacitor C 4 .

The current drain at this stage should be about 4 mA . If this is correct, fit IC3, a 3130 . If the supply voltage is now gradually reduced, the l.e.d. (Di) should light at around 8 V . This process should be repeated for the "out" side of the circuit.
When the power supplies have been checked for both sections, testing of the signal processing areas can proceed. Fit 1 Cl , the "input" 3240. and both opto-isolators, IC2 and IC6 (at the tops of the sockets, as described above).

Power the "in" side and check the current taken, which should now be about 16 mA . The input "ground" should be about IV positive of the negative supply rail, and pin 4 of IC2 should also be at about IV.

If this seems correct, fit the other 3240 , IC5, to the "out" side, power up and check current drain, again about 16 mA , and measure the output "ground", which should be adjustable from about 0.5 V to 1.75 V (with respect to negative supply) with preset VR2.

If all seems well at this stage, it's probably a good idea to test the complete board and try setting it up before installation. The procedure is to power both sides, apply a 1 V peak-to-peak squarewave to the input, and observe the output on a 'scope. To avoid problems it is best to have both sections of the circuit operating from independent battery supplies at this stage to avoid problems if the "grounds" hecome connected through the scope and signal generator.

Preset VR1 is adjusted for best squarewave output; on one side there will be marked overshoot on the leading edges, on the other excessive rounding in both directions. This can be done at 1 kHz , though the effect is easier to see at 10 kHz .
Next, with frequency set to 1 kHz , preset VR3 is adjusted for an output amplitude exactly equal to the input. Finally, with the signal removed, preset VR2 should be adjusted to remove any d.c. potential across the output.
As there is a fair degree of tolerance spread hetween individual opto-isolators it may be worth swapping them over and setting up again to see which arrangement gives the best performance. This applies especially if VRI or VR3 is near the end of its range when the settings appear correct. Experiments with four different isolators in the prototype produced overall frequency responses ranging from 10 kHz to nearly 30 kHz , so the benefit of some patient experiment is obviously worthwhile.

INTERWIRING

The general layout of the project in the case can be seen from the photographs, with connections as shown in Fig. 4. Most of the space is taken up by the battery packs. Batteries are a matter for the individual constructor; the circuit will operate from 9 V , indeed two PP3's could be used. However, as it is intended as a design tool it may be used for fairly long periods so the additional life given by packs of "AA" cells seems advisable.

The maximum signal amplitude that can be handled depends on the supply voltage and the characteristics of the opto-couplers, and in the worst case a 1 V r.m.s. signal will start clipping when the supply falls to 8 V . In view of this 12 V supplies were fitted to the prototype with indication of impending failure at 8 V .

Packing this lot into the specified case is something of a shoehorn job. The p.c.b. is attached inside the top with doubled-sided sticky foam, and the sockets, l.e.d.'s and switch S1 fit alongside it.

This leaves just sufficient space for the two battery packs. A piece of foam plastic topped with stiff cardboard is placed between the board and batteries.

A larger case could be used, the only rule being that it MUST be a plastic type, both for SAFETY and to minimise stray capacitance between the two sections of the circuit. A larger case would allow the inclusion of extras such as switched input attenuation, which might be preferred by some users.

A final check of the adjustments should be carried out after completion. If the unit is to be used for safety isolation, a check with a "Megger" between input and output "grounds" is advisable to ensure the insulation is sound.

The Isolink is designed to handle signals up to about $1 V$ peak-to-peak. The lower limit is governed by the inherent circuit noise, which is less than 5 mV . The input impedance is about one Megohm, whilst the output impedance is low, a couple of hundred ohms.

The frequency range extends from d.c. to at least 10 kHz , on the prototype it is around 30 kHz . This means that most audio frequency signals will pass through it virtually undistorted, and squarewaves will still look reasonably square at 1 kHz .

Fig. 4. Interwiring from the circuit board to the switch, l.e.d.s and sockets mounted on one side of the plastic case.

If it is required to handle larger signals a simple resistive attenuator can be used. The input is protected to some extent by the 10 k resistor R1 and the internal protection diodes of IC1, but external diode protection is not provided as it was found that this caused some signal degradation. Suitable precautions should be taken to avoid possible overload where this might occur.

IN USE

The way in which Isolink should be used depends upon the actual application. The most obvious use is investigating signals in circuitry at potentials other than earth.
The opto-isolators specified are quoted as "High Voltage", this being specified as 7500 V peak, 5300 V r.m.s. Whilst it might be inadvisable to operate at this sort of voltage it is quite in order to, for example, insert a low value resistor in the live lead of a mains appliance and, through Isolink, inspect the voltage developed across it with an earthed oscilloscope.

This will give an indication of the current flow. Similarly, low voltage signals in sections of h.t. circuitry could be measured Always be very sure you know what you are doing and check connections carefully before switching on with this kind of work, though.
At a lower level, it can be used to take measurements across points that would otherwise be hard to access as neither end is grounded, and connecting them to ground through. say, the earthy side of a iscope would cause faulty operation or damage.
In the case of sensitive battery operated equipment, earthing of any point of the cireuit will often introduce a high level of mains "hum". making test measurements with mains-powered equipment difficult or even impossible. Bio-feedback circuits are : classic example of this.
The stray capacitance between the two sections of the prototype was measured with a bridge and found 10 be in the region of 10 pF , which will offer an impedance of more than 300 M to 50 Hz signals. This should greatly attenuate the "hum" problem, but the actual manner in which the Isolink is used should be considered carefully in such an application. If you are measuring a signa from your own body, for example, it would be better to place the isolator on your lap than on the workhench close to mains powered equipment, where it might pick up a lot of hum in the input circuit through capacitive coupling.

-TRobot

THE high profile enjoyed by robotics can be a doubled-edged sword. On the one hand it has a visible end product which can encourage the learning of a variety of skills, as mentioned in this column many times before. On the other hand it creates expectations which, with the present level of technology, cannot be fulfilled and results in people losing their interest as quickly as it was aroused.
Now there is a new benefit from the subject's ability to attract interest. A school in St Albans, Hertfordshire has discovered it is a good way in which to build-up close links with industry. The headmaster of Beaumont School, Mr Colin Isted said that in their dealings with schools, companies seemed to look for projects which would have an impact on the general public and robotics was a subject which satisfied this, having educational as well as presentational value.
Although appreciating the benefits of robotics his main concern is with building links with industry at all age levels within the school. He believes that seeing what happens in the outside world helps children put their formal education into perspective.
So when Hertfordshire schools were asked to take part in competitions supported by industry, Beaumont was only too willing to join in. The projects involved making a special gripper for Rolls-Royce aero-engine manufacturer, working with children from France and Germany to set up a production line for making a remote-controlled buggy kit and designing a robotic device for British Aerospace at Hatfield which would draw the school's coat of arms.

GRIPPER

The gripper was part of Hertordshire County Council's Engineering Education Scheme, which is sponsored by Sainsbury Trusts. Rolls-Royce required a mechanism which would transfer a wide range of ring-type components from a conveyor belt into a lathe for machining and off again.
The children, all studying maths and physics in the lower sixth, had five days training in teamwork and problem solving and three months in which to complete the project.
Out of 17 schools in the county Beaumont came first with an ingenious design employing three discs revolving around the same axis and three pegs for gripping which move in and out across the plane of the discs by the relative movement of the discs. Pressure sensors on the pegs indicate when the component is firmly held.

Two grippers, each operated by a single d.c. motor at the axis, are mounted at right angles to each other and can be rotated together by another d.c. motor so that the one facing the chuck can take off the finished component before changing
places with the other gripper to allow the next component to be placed in the lathe.
The gripper, which RR is considering for industrial use, will now go forward to the national finals in October.

PRODUCTION LINE

The production line was part of the county council's Tripartite Technology Project with schools in the Burgundy region of France and Rheinland-Pfalz in Germany. Technology weeks have been held in the last three years and this year it was the turn of Hertfordshire to prepare the project.
In the early days it was decided that each year's work should contain elements of computer applications, electronics and pneumatic control. A robotics project was an obvious area.
The end result was to be a boxed kit for making a simple buggy with a number of separate but linked stages. These included moulding and punching a basic chassis and putting the components into a box, onto which a lid was then put.
In addition the students had to prepare an instruction manual in three languages and make an interface, with the necessary software for the main computers in each country. The British one was for the RML Nimbus.
The two-wheeled buggy, driven by d.c. motors with optosensor feedback, was made in sufficient quantities for everyone involved to have one. It is planned to make it available to primary schools in Hertfordshire, at a price sufficient to cover costs, but it is not intended that it will go on general sale.

BAe PROJECT

The BAe project was the result of the school's long association with the company at nearby Hatfield. When the company set up Schooltech '88, Beaumont
was asked to take part. The school hopes that it will become an annual event.
Most of the benefits to the students were seen in the context of improving their view of the outside world. Jane Measures, head of Physics and the school's industrial liaison co-ordinator, said that it gives them a chance to work with industrialists and see what was required in industry. They were able to put the theoretical and practical knowledge they gained in school to good use.

BENEFITS

In addition there were the usual benefits of robotics; artificial barriers between subjects were broken down. This is particularly noticeable in the use of communication skills (to explain what had been done in technological subjects) in the writing of the reports and working together as a team.

For the school there were the benefits of teachers also getting to know the requirement of industry so that courses could be given added interest by putting theoretical work into a practical context.

The involvement also gave the students an enthusiasm for learning by themselves. An example is the BAe project in which the students were given the details before their summer holidays. They organised meetings during the holidays to set the groundwork before tackling the work in earnest during the next school term.

At the moment the number of pupils able to take part in the projects is limited by the present resources of the school. Funds were insufficient to do all the work required on the projects described and outside help had to be sought.

Whether greater numbers of students will be able to take part in robotics courses in the future as part of the general curriculum, rather than outside normal school hours depends on more resources being made available.

EE CROSSWORD 6 ANSWERS
ACROSS
5 FUNDAMENTAL
6 GATED AGC
9 DUMP
11 TRUTH
12 WATTLESS
13 TRICKLE
16 PROCESS
19 DEBLUNCE
23 COLUMN
24 AMPERE
25 NOISE
26 TURNS RATIO

```
DOWN
    1 EUTECTIC
    2 IDEAL
    3 INDUCTOR
    4 \text { PADDLE}
    7AIR
    8 CYAN
    10 MASKS
    14 RADIO
    15 LOUDNESS
    1 7 \text { CLAMPING}
    1 8 \text { SCOPE}
    20 BAUDOT
    2 2 ~ B A L U N
```


POWER CONDITIONER

FEATURED INET JANUARY 1988

The ultimate mans

 puriter iniended manly floor and Improving the analytical quaitives of

KNIGHT RAIDER
FEATURED IN ETI JULY 1987
The uthmate in highting ellects for rour Lamborghin!. Maserat, BMW Tor any other car. Ior that matier). Picture lisis eight powertul lighis in dashboard contro: box and a point ol ol light moves lazly trom left io rught leavng a comet s tail behind ti, Flip the switch agan and the poin of that becomes a bar, bouncang backwards and torward
alono the fow. Press agan and try one of the other six patterns an LED disow Pay ont the contero box tet 5 you see what the main light are doing
The Knight Rader can be ittred to any car (II makes an excellent log bicycle into a spectacular TV.age tor" The parts sel conssists of Dox. PCB and components tor convol. PCB and combonents for sequence board, and tull instructions
Lamos not included.
PARTS SET $£ 19.90$ + VAT

CREDIT CARD CASINO
FEATURED INETI
MARCH 1987

Ths micked intre pocket
gamoling machine measure
ony $3^{3} 3^{2} x^{1} / 2^{2}, 11$ wit
dlay at thnds of ca
ames. inctuciong

- Roulette
- Craps

Our approver parts set comes complete with case, sell -adhesive fascia; timed and driled printed circuit board: all components. hadiware, fill instructions and iniee different games to play!
PARTS SET ONLY $£ 5.90!$ \& VAT
Five extra games FREE with every order!

MAINS CONTROLLER

FEATURED IN ETI JANUARY 1987

Have you ever mondered what peopite do mith all those
computer intartaces?
Put computer intertaces? Put your
computer in control'; ssy the ads The Sperctarabeeb has evgh, ThL outp
aou control mith TTL output? A lorch The EII Win theuput? A torch oult? The ETM Mams Controlier is a logic to mans inter ace which allows
 crcult. An oolo-coupler gives 15 ataion of al eass 2.500 V . so the controller can be connecled to expertmental arcuis. computers intertaces with a mans conifoler and you re rally in bus niness with automatc contro! The mans controter connects orrectly to most TTL tamdies with exiernal compoonenis. and can be divven by CMOS
addition of transistor and two resisisors (suppliec). Your mains contronter paris set conlans nign quality rollertin PCB; MOC 3021 oplo-coupret, powet thac with heatsink mounting harcoware and heatsink compound: all componentss. including snubber componenis to switching inductive loads: Iransisicr and
resisiors tor CMOS interface: tull instructions. PARTS SET $£ 6.20$ + VAT!

80 beats per minute. For an athlerage adult resting heart rate is around 50 or less. rraining strengthening your how quickly is your jogging or sports you recover from oxygen debt after exercise? For yow quickly do sake, you need to know debt atter exercise? For your own
circuit boards, all comonoved parts set consists of: case, 3 printed 75 transistors, resislors, diodes and cading 17 ICs, quartz crystal, over display, switches, plugs, sockets, LEDs, teacitors), liquid crystal and full instructions.

RUGGED PLASTIC CASE $£ 1.65$ + VAT
FEATURED INETI SEPTEMBER 1986 Cleans up mains poilution ea sily and effectively.

ditterence in your HIFF, TV, video, and all other sensitive әquipment.

Adjust the controls to sult your mood and ier the gentie. relaxing sound dntt over you. At first you might hear soft ran
sea surt. or the wind through distant trees Amost hyprotic the sound draws you wresistably into a peacelul, retresting

For many, the thought of waking retieshed and aien trom perhaps the first truly restful steep in years is exciting enough in itsell. For more adventurous souls there are strange and mysterious dream experiences wating. Take lucid dreams. or she magne beng in coniro or your drearms and able With the Oream Machine it's easy
The approved parts set consists of PCB, all components. contiols, loudspe aker, knobs, lamp, fuseholders. tuse, mains PARTS SET $£ 16.50$ + VAT
AVALLABLE WITHOUT CASE FOR ONLY $£ 11.90$ + VAT

MAINS
 CONDITIONER

POWERFUL AIR IONISER FEATURED IN ETI JULY 1986

Ons have been deschbed as vitaming of the air by the

heath magazines, and have

seen crecited with everything
putting an end to insomnia. Although some ot the caznat 10 and eraggerated, thete is no doud that ion sed an is much cleaner: and purer. and seems much more imngorathg than 'jead air.
The DIRECT ION ioniser caused a great deal 0 e exatement then ${ }^{14}$ appeared as a constructionat project in ETI. Al last an ooniser that was comparable with thetter than?) commercial products.
was fel able, good lo buld and fum Apart thom ine serious was telable. good to build and fum Apart tom me se nious We can supply a matched sel of parts, futly aogrovec by the designer, to build ins unique project. The sel includes a rolle: inneo printec curcur poardo 66 componems. case. mans tean and even ithe parts for the tesier. According to one customer, the sel- cosis aboun a thred ot the price of the indivetual comoonents

PARTS SET WITH BLACK CASE $£ 11.50+$ VAT included PARTS SET WITH WHITE CASE $£ 11.80$ + VAT

LM2917
 EXPERIMENTERSET

Consisis of LLM2977 IC. special pinted circuin board and detailed instructions with data and ctircuits tor erght atiterent
proiectis 10 buito. Can pe used to experment with in arceits propects 10 buic. Can be used to expermen with the crecuits LM2917 EXPERIMENTER SET $£ 5.80$ + VAT

LEDS Green rectangular LEDS
tor bor craph d displays $\begin{array}{ll}\text { for bar-graph displays. } \\ 50 \text { for } £ 3.50 & 500 \text { tor } £ 25\end{array}$ $\begin{array}{ll}50 \text { for } £ 3.50 & 500 \text { or } £ 25 \\ 100 \text { for } £ 6 & 1000 \text { for } £ 45\end{array}$ OIGITAL AND AUDIO EOUIPMENT LEES Assorted 3mm LEDs: red, green, yellow and orange 25 of each (100 LEDs) for $\mathbf{E 6 . 8 0}$

Spocialist $=$ NDD (G4TO DNS LIMITED
SALES DEPT., ROOM 111 , FOUNDERS HOUSE, REOBROOK, MONMOUTH, GWENT.

ARMSTRONG 75W AMPLIFIER

 FEATURED INPE JULY 1988
A. J. Armstrong's exc

 new audio amplifier module is here at last! Delivering a cool 75W (conservatively rated - youll gel nearer 100W), this MOSFET design embodies the line minimalist design techniques, resulting in a clean, uncluttered circuit in which every component makes precisely delined cominbunon the overali sound. ou can read at about hin the July issue of $P E$, but why bother with words when your ears will tell you so much mote? SPECIAL INTRODUCTORY PRICE FOR FULLY PGGADED MODULES

SINGLE PARTS SET $£ 14.90+$ VA STEREO PAIR E25.90 + VAT
 ougyams lo malchry pre amo and powen spopy Thus amother wit nol

$B 10$.

FEEDBACK

FEATURED IN ETI DECEMBER 1986 Bio feedback comes of age with this highly responsive. sell-balancing skin

powerful circuit has tound application in climical situation as well as on the biodeedback scene Il will open your eyes to what GSR techniques are really al about. The compiote part sel includes case PCB atl The compiete parts sel includes case. PCB. all and full componenis,
instructions.

PARTS SET £13.95 + VAT
B1O.FEEDBACK BOOK $£ 3.95$ (no VA)

Piease note: tne Dook oy Stern and Ray. is an authonsed guce to the potennal of bo-teadtack tectrinuues it is noi a hobby book.

BRANWHVE MONTOR

The most antonishing project ever to have appeares in an
electronics magazine Simiar in principie to a medical EEG electronics magazine Simiar in principte to a medical EEG machine, this proyect allows you to hear the characlentistic thythms of your own mind The aloha. beta and theia forms ca be selected tor slucty and the three articles give masses of intormation on the interpretation and powers In conyunclion with Dr. Lewiss Alpha Plan, the montior can be used to owercome shyness to heto you lee contident
stresstuw situations. and to tram yoursefto excel al thin no good al
Our approved pans set contams case. wo PCBs. screening can for bro amoliter. all cor wonents including three PMI precision amplitiers), leads, brass olectrodes and full instructrons PARTS SET $£ 36.90$ + VAT
ALPHA PLAN BOOK £2.50 + VAT
Parts sel avalable separately We aiso have a ange ol accessonies

Constructional Project UNIVERSAL CHARGER/ POWER SUPPLY

COSTAS CALAMVOKIS

Able to charge almost any size NiCad cell, it will also double as a low-cost mains adapter so you will not have to drain batteries whilst using equipment at home.

The current is actively regulated so it does not change during use. The constant voltage is also regulated when used (unlike many cheap mains adapters whose voltage depends on the loading and which show marked voltage rises at low current).

Nickel. Cadmium batteries (NiCads) are so cheap in the long run. that it is a wonder that ordinary non-rechargable batteries are still used. The Universal Charger/Power Supply described here will give you the opportunity to discover these savings. It is able to charge almost any size of cell, it will also double as a mains adapter so you will not have to drain your batteries whilst using the equipment at home.
The problem with NiCads is that a constant current source is needed to charge them and although there are many cheap chargers on the market this unit offers certain advantages over similarly priced commercial ones. The first is, of course, its ability to act ass a mains adapter, but there are more subtle advantages.
Most cheap commercial chargers do not actively regulate the current delivered to the batteries. so this current depends to some extent on the resistance of the cell or cells under charge

Fig. 1. Full circuit diagram for the Universal Charger/Power Supply. The two small diagrams are for (a) power supply mode and (b) charger mode.

Table 1

	Current	Time
AAA/HP16	20 mA	$14-16$ Hours
AA/HP7	50 mA	$12-14$ Hours
C/HP11	120 mA	$14-16$ Hours
D/HP2	120 mA	$14-16$ Hours
PP3	11 mA	$12-15$ Hours

Notes: These values are fairly typical, if your batteries have a different recommended charging current and time printed on them by all means use it. Calculate the value of R_{1} from the formula given in the text. If the charging current is higher than 200 mA use a $1 / 2 \mathrm{~W}$ resistor. $R_{\text {I }}$ should NOT be decreased below three ohms.

The resistor which controls the constant voltage is also mounted in the plug so if a different lead is made for each item to be powered the correct voltage will always be delivered.
The unit will charge one PP3 battery or up to six AAA, AA, C or D cells at once (depending on the size of the battery holder used). But only one type of battery can be charged at one time (see Table 1 for typical charging rates and times). Alternatively the unit could act as a mains adapter delivering from 1.5 V to 12 V at up to 400 mA .

CIRCUIT OPERATION

The full circuit diagram for the Universal Charger/Power Supply is shown in Fig. I The mains is brought down to about 12 V a.c. by the transformer T1. This is then rectified by the bridge arrangement of diodes D1-D4 and smoothed by capacitor Cl . Capacitors C2 and C3 remove spikes.

The only active component is an adjustable voltage regulator, IC , which works by adjusting the voltage at the $V_{\text {out }}$ pin so that it is 1.25 V higher than the voltage on the adjust pin (ADJ)

In the Power Supply mode of operation the circuit is as shown in Fig. 2 (simplified). Between the $V_{\text {out }}$ and ADJ pins is a 470 ohm resistor (R1). As the voltage across it is always 1.25 V the current is always:
$\mathrm{I}=\mathrm{V} / \mathrm{R}=1.25 / 470=0.0027 \mathrm{~A}=2.7 \mathrm{~mA}$
As the current flowing out of the ADJ pin is only $50 \mu \mathrm{~A}$ it can be ignored so the current through resistor R_{v} is always 2.7 mA . The output voltage is the sum of the voltages across resistors R1 and R_{v}, and can be calculated from

$$
\begin{gathered}
V_{\text {out }}=1.25+\left(\mathrm{I} \times R_{\mathrm{v}}\right) \\
=1.25+\left(0.0027 \times R_{\mathrm{v}}\right) \\
\text { so } R_{\mathrm{V}}=\left(V_{\text {out }}-1.25\right) / 0.0027
\end{gathered}
$$

From this formula values for R_{v} can be calculated for whatever supply voltage is required, from 1.5 V to 12 V . See Table 2.

CONSTANT CURRENT

When the unit is acting as a Charger the circuit is as shown in Fig. 3. Resistor R_{1} is placed in parallel with resistor R1 and the current which flows through them also flows through the batteries being charged. As the voltage across resistors $R 1$ and R_{1} is kept constant by regulator ICl , so is the current that flows through them. In this way a con-

Fig. 2. Simplified regulated power supply arrangement. The value of R_{V} can be found by referring to Table 2.

Table 2

Voltage	$\boldsymbol{R}_{\mathrm{V}}{ }^{1 / 8 \mathrm{~W}, 5 \%}$
1.5 V	100 ohms
3 V	680 ohms
4.5 V	1200 ohms (1k2)
6 V	1800 ohms (1k8)
9 V	2700 ohms (2k7)
12 V	3900 ohms (3k9)

stant current is maintained through the batteries.
This is calculated from:

$$
\begin{gathered}
\begin{array}{c}
I_{\text {out }}= \\
=R 1 \text { 's current }+R_{1} \text { 's current } \\
=(1.25 / 470)+\left(1.25 / R_{1}\right) \\
=
\end{array} \\
\text { So } R_{1}=1.25 /\left(I_{\text {out }}-0.0027+1.25 / R_{1}\right.
\end{gathered}
$$

Values for resistor R_{t} are shown in Table 3 for typical NiCads.

COMPONENTS

Resistors

R1 470
$R_{1} \quad$ See Table 3
R_{v} See Table. 2
All 5\% carbon

Capacitors

See page 415
C1 $\quad 1000 \mu$ radial elec.
35 V
C2 $\quad 0.1 \mu$ feramic disc
C3 $1 \mu \mathrm{f}$ tantalum bead 35 V

Semiconductors

D1-D4 1N4001 1A 50V diode (4 off)
IC1 LM317M +1.2 V to 37 V
500 mA Adj. Voltage Reg

Miscellaneous

T1 Mains transformer 240 V a.c. prim, $0-12 \mathrm{~V} 500 \mathrm{~mA}$ sec . or $0-6 \mathrm{~V}, 0-6 \mathrm{~V} 500 \mathrm{~mA}$ sec.
SK1 3-pin In-line DIN socket
Stripboard, 0.1in matrix size 10 strips $\times 10$ holes; 3 -pin DIN plugs (plastic covered); battery holders; PSU box with integral 13A plug: small heatsink; connecting wire; solder pins and solder etc.

Approx. cost Guidance only

Fig. 3. Simplified arrangement for charger operation. The value of the charging resistor \boldsymbol{R}_{1} can be found by referring to Table 3.

Table 3

Battery type	
AAA	$\boldsymbol{R}_{\mathbf{I}}$
AA ohms $1 / 8 \mathrm{WW} 5 \%$	
C	27 ohms $1 / 8 \mathrm{~W} 5 \%$
D	12 ohms $1 / 4 \mathrm{WW} 5 \%$
PP3	12 ohms $1 / 4 \mathrm{WW} 5 \%$

Notes: These values are based on the currents given in Table 1. They are independent of the number of batteries to be charged.

Fig. 4. Component layout and details of wiring to the mains transformer secondary winding and to the DIN socket.

CONSTRUCTION

The circuit is built up on a small piece of 0. lin. matrix stripboard, size 10 strips by 10 holes. There are no track breaks on the board and the component layout is shown in Fig. 4.
Commence construction by mounting the diodes and link wire on the board followed by the capacitors. The regulator IC1 should be soldered on last and a small heatsink bolted on to it. When mounting the diodes and electrolytic capacitor Cl be sure to observe the correct polarity of these devices.
The completed circuit board is housed in a power supply unit box with an integral 3 -pin, mains type, plug. The miniature mains transformer was fitted first by bending its mounting tags round the box's internal moulding and the circuit board was connected to it using stiff wires. If a $0-6 \mathrm{~V}, 0-6 \mathrm{~V}$ secondary winding is used, the wires to the circuit should be connected to the 0 V of one winding and the 6 V of the other, with the remaining two tags connected together.
In the prototype unit the DIN connecting socket was a non-chassis type and a short lead was attached to the "wander" socket. fed through a small hole in the case side and

Fig. 5. Wiring to the DIN plugs for power supply and charger mode. It is suggested that the resistor leads are covered with insulating sleeving to avoid shorting to the other pins.

soldered to pins on the circuit board. If a chassis type socket is used a suitable hole should be drilled in the case and short wires soldered from the circuit board pins to the socket tags. As the components are such a tight fit inside the case it might be best if constructors kept to the "wander" type DIN socket method.

CONNECTING LEADS

The construction of the battery charging and power supply leads are shown in Fig. 5. Some care is needed when mounting the resistors in the plugs to ensure that the leads do not touch any terminals. For this reason plastic barrelled plugs should be used, wrapping the resistors in insulating tape is not a bad idea either.
For charging large batteries higher power resistors are used (half or quarter watt
types-see Table 3) and these may not fit in the plug barrel. If this happens the resistor should be mounted on the battery holder, a three-wire plug lead will then be needed.

NiCADS

The life of your nicads can be drastically shortened if they are mistreated so some care is needed. They should not be used in very low current applications such as clocks and LCD calculators where a dry cell would only be replaced once a year.
NiCads should never be short circuited as they have very low internal resistance and can, if shorted, deliver very high currents which may destroy the cell itself. The recommended charging times should be kept to but no real harm results in charging for too long. You should never try to recharge dry cells.

ELECTRONICS TEACH-IN ontr sios

By Michael Tooley BA and David Whitfield MA MSc CEng MIEE

ACOMPREHENSIVE background to modern electronics including test gear projects. This 104 page, A4 size book forms a complete course in basic electronics; designed for the complete newcomer it will however also be of value to those with some previous experience of electronics. Wherever possible the course is related to "real life" working circuits and each part includes a set of detailed practical assignments.

To complement the course computer programs have been produced for the BBC Micro and Spectrum or Spectrum Plus. The software is designed to reinforce and consolidate important concepts and principles introduced in the course, it also allows readers to monitor their progress by means of a series of multi-choice tests.

The book includes details of eight items of related test gear giving full constructional information and diagrams for each one. The items of test gear described are: Safe Power Supply; Universal LCR Bridge; Diode/Transistor Tester; Audio Signal Tracer; Audio Signal Generator; RF Signal Generator; FET Voltmeter; Pulse Generator.

This book is an excellent companion for anyone interested in electronics and will be invaluable for those taking G.C.S.E. or B.T.E.C. electronics courses.

TONY SMITH G4FAI

STUDENT LICENCE

To attract younger newcomers to amateur radio, the Radio Society of Great Britain has decided to work for the creation of a new kind of transmitting licence for beginners. Provisionally titled a "Student Licence", the idea is that students should be allowed access to limited sections of a few amateur bands (with low power and modest antennas) thus providing practical experience in a learning situation.
The Society says it has identified two main reasons why young people today rarely become interested in amateur radio. It says that 11 to 16 year olds see the usual one-year study period for the Radio Amateurs' Examination (RAE) as too long, and that the price of most equipment required to get on the air is too high.

While the typical RAE course involves some 150 class-hours, the Student Licence would only require about 30 hours of study, plus whatever was necessary to learn Morse code at six words per minute. The emphasis throughout would be on practical requirements-how to operate an amateur station properly, including correct procedures and band discipline-but naturally the student licensees would still have to go on to obtain their full licence in due course.

The RSGB is currently developing a syllabus and formulating proposals for the Licence to put to the Department of Trade and Industry (DTI). It plans to create a student section within the society and to produce special publications and kits for beginners.

MIXED FEELINGS

These proposals have been received with mixed feelings by the amateur radio fraternity. While most recognise the need to ensure a continuing input of newcomers to the hobby, some feel that a relaxation of the present rules and regulations to allow relatively untrained operators on the already overcrowded amateur bands will be a retrograde step.
The RSGB says that students would be limited to operating on the less-popular bands with restrictions placed on them to ensure the least possible interference with existing licensees. The concept of student-entry sounds fine but one can't help wondering how successful it will be if the "target" population already dislikes the idea of having to pass an examination to take up a hobby.
Although the RSGB doesn't seem to want to admit it, CB radio has created an enormous boost for amateur radio in recent years. Large numbers of people who discovered a liking and an aptitude for radio communication became frustrated by the various limitations of CB and were motivated to go on to take up amateur radio with its greater scope.

The CB boom created a mini-amateur radio boom, yet CB is still apparently ig-
nored by the RSGB. The boom has long gone but CB still provides a steady source of new entrants to amateur radio which the RSGB could well cultivate.

There is, however, no mention of it ever appearing in the columns of Radio Communication. It's a great pity, and an opportunity lost. . . . However, I will report further on the Student Licence idea as matters progress.

POLAR RADIO

The first attempt at radio communication from polar regions was made by the Australasian Antarctic Expedition of 1912. Groups of explorers spent months trying to get massive 90ft high aerial systems to stay up in the face of howling gales, while they obtained only limited success with their 1.5 kW spark transmitters. Further experiments were carried out in the 1920's and 1930's by the Americans in the South and the Russians in the North and gradually radio became an essential, life-saving, aspect of polar exploration.
Compare those 1912 experiences with what has been planned for the USSR/Canada Skitrex Expedition this year. A group of Soviet and Canadian scientists set out in March from Severnaya Zemlya for a 1750 km journey via the North Pole to Cape Columbia on Ellesmere Island.
A member of the expedition is Soviet radio amateur Leonid Labutin, UA3CR, who is maintaining daily radio contact between the expedition and teams of Soviet and Canadian amateur radio operators at base stations in Severnaya Zemlya, Resolute Bay on Cornwallis Island as well as in Moscow, Dikson, Ottawa and Toronto.
The amateur radio equipment being used is provided by Icom, and includes h.f. and v.h.f. base stations as well as "handie-talkies" for two metres including communication with supply-drop aircraft. Using the facilities of SARSAT/COSPAS, the search and rescue satellites, as well as amateur radio satellite UOSAT 11, with a "talking computer" on board, the expedition can hear their location read to them via a 2-metre hand-held radio as UOSAT passes over about every 100 minutes.

Both licensed amateurs and short-wave listeners can obtain a fine bilingual certificate to commemorate this expedition. The Canadian Radio Relay League is awarding the "1988 Polar Bridge Diploma" for contacts (or SWL loggings) during the period of the expedition with a number of northerly Canadian and Russian stations, one of the base camps, and with stations in the national capitals.
A great deal of planning and effort has gone into the arrangements for the expedition. The amateur radio involvement has resulted in an unusual reciprocal and third party traffic licensing agreement between Canada and the Soviet Union, which is a recognition of the competence,
ability and flexibility of which amateur radio is capable when required.

WORKED ALL BRITAIN

With amateur radio's potential for world-wide communication it may come as a surprise to non-amateurs to learn about the "Worked All Britain" (WAB) award scheme which is related to contacts made within the British Isles.

It is, in fact, a series of awards based on the number of contacts made with stations located in the large 100 km National Grid Squares, the small 10 km squares, counties, and rateable districts. There is great enthusiasm among participants in this scheme which stimulates on-the-air activity by British amateurs.

They gain a very good knowledge of the geography of the UK and some travel to the more remote parts of the mainland, or to islands, to "activate" rare squares where there is normally no amateur radio transmitting. There is a growing interest from overseas amateurs which in turn makes UK stations more popular with dx (long distance) stations who want to "work the squares".
Every participant has a special record book which lists each WAB area, county by county, together with a list of the towns and villages lying in the area. There are over 4,000 WAB areas in all so there's plenty to do in trying to make contact with each area. Awards are given for each level of achievement, eg, for working 300 areas, 500,750 , and so on.

Getting a "rare" square can be as exciting as getting a rare country and WAB mounts a number of contests and special activity weekends to keep the pot boiling. Listeners can enjoy the fun just as much as licensed amateurs and full details can be obtained by sending a large stamped addressed envelope to Brian Morris G4KSQ, 22 Burdell Avenue, Sandhills Estate, Headington, Oxford OX3 8ED.

ARMADA 400

July sees the 400th anniversary of the routing of the Spanish Armada by Sir Francis Drake. The event is being celebrated not only in Plymouth, Devon, but in many other Plymouths around the world.

During July, Plymouth Radio Club will be on the air from Plymouth Hoe with a special call-sign, GB400A, to enable radio amateurs in other countries to make contact with Plymouth during the celebrations. A special commemorative QSL card will be used during the period 21 to 28 July, and on the 28 July the club hopes to put the Lord Meyor in contact with some of the 38 other Plymouths identified, so far, worldwide.

Further information can be obtained from Philip J. Daymond G1WVH, P.R.O. Plymouth Radio Club, Radford House, Plymstock, Plymouth, PL5 3AH.

POWER SUPPLY LABELLING

0NE OF OUR readers says he is sometimes puzzled about the way d.c. power supply leads are labelled on circuit diagrams. In particular, the "common" side of a supply is sometimes marked " 0 ", sometimes " - ", and sometimes with a voltage, such as " -9 V ". Which is right?

CLARITY

Since the purpose of a diagram is to give information, the method which does so as clearly as possible must be the best. In this magazine you'll generally find that where a circuit is driven by a d.c. supply such as the 9 V battery of Fig. 1a and the negative side is common or earthed then the common side is marked " 0 " or " 0 V " and the other side with the battery voltage and polarity $(+9 \mathrm{~V})$.

If, in the accompanying text, a portion of the circuit such as Fig. 1b is discussed in isolation, the power-line markings are as shown. Sometimes, to make it clear that " 0 " is connected to battery negative, the diagram draught person puts "0 (- " or something similar.

In diagrams found somewhere else, and especially in old texts, the common line for Fig. 1 may be labelled " $-9 V^{\prime}$ ". This can be misleading, and the reason is that nowadays there are often "split" supplies with positive, negative and common. A modern reader, seeing " +9 V " and " -9 V ", will think there's also a " 0 V " line.

SPLIT SUPPLIES

The operational amplifier circuit of Fig. 2 illustrates the point. In order to make possible the direct interconnection of circuits, without the need for d.c. blocking capacitors, op. amps are designed so that they can be used with a split, dual, or centre-tapped supply whose mid-point is the common or "earth" line.
In the absence of an input signal, output terminal B is at "earth" potential (0 V) and can if necessary be connected straight to the input of a following amplifier, or back to the input of its own amplifier (A) without upsetting the circuit.

In describing an op. amp, the power supply requirements may be specified as " $\pm 15 \mathrm{~V}$ ", or " $15 \mathrm{~V}-0-15 \mathrm{~V}$ " or " $30 \mathrm{~V} \mathrm{ct}^{\prime}$ (centre-tapped). Of these, the ' $\pm 15 \mathrm{~V}$ "
style is commonest. It is strictly incorrect, since the symbol " \pm " means, in its normal mathematical context "plus or minus", whilst the meaning in op. amp specifications is "plus AND minus". However, l've not heard of any catastrophes as a result of this ambiguity.

WITHIN LIMITS

Some recent kinds of op. amp are able to work (within limits) from a single, untapped supply voltage as well as the more usual dual voltage. I have a data sheet for the OP-90 quad op. amp. This can work from a wide range of supply voltages, single or centre-tapped. The data sheet indicates the following:

Single Supply Operations

> Dual Supply Operations $$
\ldots \ldots \ldots \ldots0 .8 \mathrm{~V} \text { to } \pm 18 \mathrm{~V}
$$

I also notice that on an accompanying diagram the positive and negative rails are labelled " $V+$ " and " V-", meaning that, whatever voltage is actually used, this is the appropriate polarity.

MULTIPLE SUPPLIES

It's quite common for a piece of equipment to require a number of supply rails all of different voltages. A colour TV, for instance, may need a 12 V line for its lowlevel stages, a 50 V one for its frame output stage, 100 V for line output, 250 V for video output and 25 kV for the picture tube.
Even a relatively straightforward piece of equipment like an audio amplifier may have several supplies. In Fig. 3, the power amplifier (P.A.) section works from a split supply of $30 \mathrm{~V}-0-30 \mathrm{~V}$. The upper $(+30 \mathrm{~V})$ part of this is used also to power the preamp., via a stabilizer which reduces the voltage to +20 V .
In such an amplifier it is quite usual to run separate connections to the common (OV) supply from the high-level and lowlevel sections. This reduces the risk of instability caused by accidental feedback of small voltages dropped across the connections themselves by the high currents in the output stage. When the low-level part is drawn separately its common line may be labelled to indicate this separation.

Fig. 1 (a.) Circuit with single 9V supply; (b) detail of the circuit showing one way of labelling the supply lines or rails.

Fig. 2. Operational amplifiers usually have dual supply lines. This circuit has a +15 V rail, a -15 V rail and a common rail which is the junction between the two (labelled 0 V).

Fig. 3. Audio amplifier with split (dual, centre-tapped) supply for the power amplifier (P.A.) part and a reduced-voltage single ended supply for the low-level stages. Note the common ("earth") connections, where separate lines are provided for PA and preamp, joined only at the tags of the reservoir capacitors in the power supply.

OMNI ELECTRONICS

174 Dalkeith Road, Edinburgh EH16 5DX•031 6672611
The supplier to use if you're looking for * A WIDE RANGE of components aimed at the hobbyist * \star competitive VAT inclusive prices \# mail order - generally by return of post * \star fast, friendly service *

- by mail order, telephone order or personal call NEW CATALOGUE AVAILABLE IN JUNE Send $2 \times 18 \mathrm{p}$ stamps for a copy
we do try to keep the goods we list in stock Whether you phone, write or call in we'll do our best to help you.

READ ALL ABOUT IT!

 IN THE SUMMER ' 88 Cirkif catalogue

Discount vouchers, competition, free gift and, of course, the latest new products. Available at your newsagent or direct from Cirkit at the address below.

Abstract

The books listed have been selected as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

PROJECT CONSTRUCTION

HOW TO GET YOUR
ELECTRONIC PROJECTS WORKING
ELECTRONIC
We have all built projects only to find that they did no work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just these problems by indicating how and where to start looking for many of the common faults that can occur when building up projects.
96 pages Order code BP110
HOW TO DESIGN AND MAKE
YOUR OWN P.C.B.s
R. A. Penfold

Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers al aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s.
80 pages 1.95
Order code BP121

BEGINNER'S GUIDE TO BUILDING ELECTRONIC PROJECTS

A. A. Penfold

Shows the complete beginner how to tackle the practical side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in magazines and books. Also includes examples in the
112 pages Order code No. 227
£1.95

CIRCUITS AND DESIGN

MICRO INTERFACING CIRCUITS-BOOK 1 MICRO INTERFACING CIRCUITS-BOOK 2
A. A. Pentold

Both books include practical circuits together with details of the circuin operation and useful background information. Any special constructional points are covered bui p.c.b. layouts and other detailed constructional informaion are not included.
Book 1 is mainly concerned with getting signals in and out of the computer;. Book 2 deals primarily with circuits or practical applications.
Oook 1112 pages Order code BP130
$£ 2.25$
$£ 2.75$
ELECTRONICS SIMPLIFIED
CRYSTAL SET CONSTRUCTION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. B.I.M.

Especially written for those who wish to participate in the iruction than by theorestical study. It is designed for all struction than by theoretical study. It is designed for all
80 pages Order Code BP92 £1.75

Electronics Simplified construction

50 CIRCUITS USING GERMANIUM SILICON AND ZENER DIODES
R. N. Soar

Contains 50 interesting and useful circuits and applications, covering many different branches of electronics using one of the most simple and inexpensive o components-the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc
64 pages
Order Code BP36
$£ 1.50$

O SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applica using, covering many different branches of electronics components-the lightemiting de available components-the light-emitting diode (LED). Also in $\begin{array}{ll}\text { cludes circuits for the } 707 \text { common anode display } \\ 64 \text { pages } & \text { Order Code } 8 \mathrm{P} 42\end{array}$

Practical Introduction to Microprocessors

A MICROPROCESSOR PRIMER
E. A. Parr, B.SC., C.Eng., M.I.E.E.

Starts by designing a small computer which, because of its simplicity and logical structure, enables the language o be easily learnt and understood. The shortcomings are then discussed and the reader is shown how these can ser. In this way, such ideas as relative addressing, inder gisters, etc., are developed 96 pages Order code BP72
£1.75

A PRACTICAL INTRODUCTION TO
MICROPROCESSORS
R. A. Penfold

Provides an introduction which includes a very simple microprocessor circuit which can be constructed so that the reader can experiment and gain practical experience.
96 pages
Order code BP123
$£ 1.95$

How To Use Op Amps

HOW TO USE OP-AMPS
E. A. Parr

This book has been written as a designer's guide overing many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as non nathematical as possible
160 pages \quad Order code BP88 $\mathbf{~} 1.95$

PRACTICAL ELECTRONIC
BUILDING BLOCKS-8OOK 1
PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 2

R. A. Pentold

These books are designed to aid electronic enthusiasts who like to experiment with circuits and produce their own projects, rather than simply following published project designs.

BOOK 1 contains: Oscillators-sinewave, triangular squarewave, sawtooth, and pulse waveform generators operating at audio frequencies. Timers-simple monostable circuits usingi.c.s, the 555 and 7555 devices, etc. Miscellaneous-noise generators, rectifiers, comparators and triggers, etc.
BOOK 2 contains: Amplifiers-low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. Ypes. Also low-noise audio and voltage controlled per octave iypes. Miscellaneous-i.c. power amplifiers. mixers, voltage and current regulators, etc.
BOOK $1 \quad 128$ pages Order code BP117 £1.95 BOOK 2 112 pages Order code BP118 £1.95

ELECTRONIC CIRCUITS HANDBOOK

Michael Tooley BA
This book aims to explode two popular misconceptions concerning the design of electronic circuits: that only those with many years of experience should undertake circuit design and that the process relies on an understanding of advanced mathematics. Provided one is not too ambitious, neither of these popularly held beliefs is true.
Specifically, this book aims to provide the reader with a unique collection of practical working circuits together with supporting information so that circuits can be produced in the shortest possible time and without recourse to theoretical texts.
Furthermore, information has been included so that the circuits can readily be modified and extended by readers to meet their own individual needs. Related circuits have been also in the index) so that readers are eware of which circuits can be readily connected together to form more complex systems. As far as possible, a common range of supply voltages, slonal levels and impedances has been adopted As a bonus, ten test gear projects have been included These not only serve to illustrate the techniques described but also provide a range of test equipment which is useful in its own right.
277 pages

Order code NE05 $£ 14.95$

How to Design
Electronic
Projects

HOW TO DESIGN ELECTRONIC

PROJECTS
R. A. Penfold

The aim of this book is to helo the reader to put together projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet $\begin{array}{ll}\text { your special requirements are also provided. } \\ 128 \text { pages } & \text { Order code BP127 }\end{array}$

POPULAR ELECTRONIC CIRCUITS -BOOK 1
POPULAR ELECTRONIC CIRCUITS
-BOOK 2
Each book provides a wide range of designs for electronic enthusiasis who are capable of producing working projects from just a circuit diagram without the aid of detailed construction information. Any special selting-up procedures are described.
BOOK 1160 pages
Order code BP80 $\mathbf{£ 1 . 9 5}$
BOOK 2160 pages
Order code BP98 $£ 1.95$
$£ 2.25$

R.A. Penfold

Home computers may easily be applied to the control of model railways and really quite sophisticated control, which needs only simple programming, is not too difficult to to the layout, but fortunately it is not too difficult er expens ive to build suitable intelaces, and this book shows vou how.
The projects consist of various types of controller, including a high quality pulse type, as well as circuits for train position sensing, signal and electric points control etc. The use of computers does not have to be restricted to massive layouts. Something as simple as an oval of track with a single siding can be given a new dimension by adding computer control and much fun can be had from these relatively simple se ups. 88 pages Order code BP 180

MODERN OPTO DEVICE PROJECTS

R.A. Penfold
in recent years, the range of opto devices available to the home constructor has expanded and changed radicaliy These devices now represent one of the more interesting areas of modern electronics for the hobbyist to experimen in, and many of these devices have useful practical appllca tions as well. This book provides a number of practica
designs which utilize a range of modern opto-electric devices, including such things as fibre optics, ultra brigh e.d.s and passive \mathbb{R} detectors etc.

While many of these designs are not in the "dead simple" category, they should be within the capabilities of anyone with a reasonable amount of experience in electronics con struction and some of the more simple deslgns are suitable or beginner
t04 pages Order code BP194

ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS
Pobert Penfold
Robols and robotics offer one of the most interesting areas for the electronics hobbyist to experiment in. Today the mechanical side of robots is not too difficult, as there are robotics kits and a wide range of mechanical component available. The micro controller is not too much of a problem many inexpensive home computers are well suited to the many inexpensive home computers are well suited to the The
The main stumbling block for most would-be rotot builders is the electronics to interface the computer to the motors the computer. The purpose of this book is to explain and provide some relatively simple electronic circuits which bridge this gap.
92 pages Order code BP179 $\quad \mathbf{E 2 . 9 5}$
DATA AND REFERENCE

ELECTRONICS TEACH-IN
Michael Tooley BA and David Whitfield MA MSc CEng MIEE (published by Everyday Electronics)
This value for money EE book provides a comprehensive background to modern electronics including test gear projects. A complete course in basic electronics; designed for the complete newcomer it will however also be of value to those with some previous experience of electronics. Wherever possible the course is related to "real life". working circuits and each part includes a set of detailed practical assignments. Includes details of eight items of practical assignments. Includes detaits of eight items of
related test gear giving full constructional information and diagrams for each one. They are: Safe Power Supply; diagrams for each one. They are: Safe Power Supply; Signal Tracer: Audio Signal Generator; RF Signal Signal Tracer; Audio Signal Generator; RF Signal Generator; FET Voltmeter; Pulse Generator. An excellent invaluable for those taking G.C.S.E. and BTEC electronics courses. courses

PRACTICAL ELECTRONICS
CALCULATIONS AND FORMULAE
CALCULATIONS AND FORMULAE F. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E.,
F. A. Wi

Bridges the gap between complicated technical theory and "cur-and-tried" methods which may bring success in design but teave the experimenter unfulfilled. A strong practical bias-tedious and higher mathematics have been avoided where possible and many tables have been included.
The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Compo nents, Alfernating-current Circuits, Networks and Theo 256 pages Order Code BP53 £2.95

ESSENTIAL THEORY FOR THE

ELECTRONICS HOBBYIST
G. T. Rubaroe, T.Eng (C.E.I.), Assoc.I.E.R.E. The object of this book is 10 supply the hobbyist with a background knowledge tailored to meet his or her speciric requirements and the author has brought tomanner with minimum recourse to mathematics. 128 pages

Order Code 228

MICROPROCESSING SYSTEMS AND CIRCUITS

 F. A. Wils on, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.A truly comprehensive guide to the elements of micro processing systems which really starts at the beginning. Teaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
256 pages
Order Code 8P77

ELECTRONIC HOBBYISTS HANDBOOK

R.A. Penfold

Provides an inexpensive single source of easily located information that the amateur electronics enthusiast is likely to need for the day-to-day pursuance of this fascinating hobby. Covers common component colour codes. Details the characteristics and pinouts of many popular semiconductor devices, including various types of logic ICs, operational amplifiers, transistors, FETs, unijunctions, diodes, rectifiers, SCRs, diacs, triacs, regulators and SMDs, etc. Illustrates many useful types of circuits, such as timers and oscillators, audio amplifiers and filters, as well as including a separate section on power supplies. Also contains a multitude of other useful data
88 pages Order code BP233
£4.95

AUDIO

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.I.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are fol lowed by a sludy of the mechanism of hearing and examination of the various sounds we hear. A look a room acoustics with a subsequent chapter on micro phones and loudspeakers then sets the scene for the main chapter on audio systems-amplifiers, oscillators disc and magnetic recording and electronic music.
320 pages
Order Code BP 111

HOW TO IDENTIFY UNMARKED IC

K. H. Recorr

Shows the reader how, with just a test-meter, 10 go about recording the particular signature of an unmarked i.c. Which should enable the i.c. to then be identified with eference to manufacturers or other data. An i.c signature is a specially plotted chan produced by mea Chart Order code BP101 10.95

RADIO AND ELECTRONIC COLOUR CODES AND

 DATA CHARTB. B. Babani

Although this chart was first published in 1971 it provides basic information on many colour codes in use throughout the wortd, for most radio and electronic mers, field coils, fuses, battery leads, speakers, etc. It is particularly useful for finding the values of old Chart \quad Components. 95

CHART OF RADIO, ELECTRONIC

SEMICONDUCTOR AND LOGIC SYMBOLS M. H. Banani, 8.Sc.(Eng.)

Illustrates the common, and many of the not-so-com mon. radio, electronic, semiconductor and logic symbols manuals, etc., in most countries throughout the world. Chart Order Code BP27

Electronic
Circuits for the Computer Comprol of Robots

RECOMMIENDED READING

FOR INTRODUCING MICROPROCESSORS
 (THE EVERYDAY ELECTRONICS CITY AND GUILDS SERIES)

PRACTICAL DIGITAL ELECTRONICS HANDBOOK Mike Tooley (Published in association with Everyday Elec tronics)
The vast majority of modern electronic systems rely heavily on the application of digital electronics, and the Practical Digital Electronics Handbook aims to provide readers with a practically based introduction to this subject. The book will prove invaluable to anyone involved with the design manufacture or servicing of digital circuitry, as well as to those wishing to update their knowledge of modern digita devices and techniques. Contents: Introduction to integrated circuits; basic logic gates; monostable and istable devices; timers; microprocessors; memories; inpu and output devices; interfaces; microprocessor buses Appendix 1: Data. Appendix 2: Digital test gear projects tools and test equipment; regulated bench power supply; ogic probe; logic pulser; versatile pulse generator; digita C tester; current tracer; audio logic tracer; RS-232C breakout box; versatile digital counter/frequency meter Appendix 3: The oscilloscope. Appendix 4: Suggested reading. Appendix 5: Further study.
208 pages Order code PC100
£6.95

BEGINNERS GUIDE TO MICROPROCESSORS

E.A. Part

An excellent grounding in microprocessors, this book is broadly relevent to the whole of our Introducing Microprocessors course. It is easy to read and wel illustrated.
24 pages Order code Ne03
84.95

MICROELECTRONIC SYSTEMS 2 CHECKBOOK

R. Vears

The aim of this book is to provide a foundation in microcomputer hardware, software and interfacing echniques. Each topic is presented in a way that assumes only an elementary knowledge of microelectronic system and logic functions. The book concentrates on 6502, 280 and 6800 microprocessors and contains 60 tested programs, 160 worked problems and 250 further problems. 194 pages Order code NEO4
£4.95
RECOMMENDED READING

OSCILLOSCOPES: HOW TO USE THEM - HOW THEY WORK an Hickman
Oscilloscopes are essential tools for checking circuin oper ation and diagnosing faults, and an enormous range of mod els is available. But which is the right 'scope for a particular application? Which features are essential, which not so instrument?
lan Hickman, experienced in both professional and hobbyis electronics, has revised this well-established book to help al scilloscope users-and potential users
133 pages Order code NEO9
65.95

PAC TCAL ELECTRONICS HANDBOOK
lan Sinctair
lan Sinclair has now revised this useful and carefully selec led collection of standard circuits, rules-ot-thumb, and enthusiasts involved in radio and electronics. Covering pass ive and active components, discrete component circuits (such as amplifiers, filters and oscillators) and linear and digital i.c.s, the book includes many items whlch are no elsewhere available in a single handy volume. The operation and functions of ypical circuils are described, while math values for any application.
This revised edition contains more details on computers and microprocessors and has been brought up to date through

199 pages Order Code NE06
E7.95

BEGINNER'S GUIDE TO HI-FI

lan Sinclair
The Beginner's Guide to Hi-Fi will appeal to the audio enthusiast, whether newly won over by advances in tect nology or well established and wondering whether to up sources in the studio to its ultimate end in your ears, and sources in the sound is, how it is recorded and how in is repro duced.
Every aspect of Hi-Fi, from pickup cartridges to loudspeak ers, has been covered, and the emphasis has been on ex plaining design aims. Cassette systems have been given considerable prominence, including the more modern Dolby C and dbx noise reduction systems. The CD recond has been covered in detail so that you can find out just why this system of sound reproduction is so superior 194-pages Order Code NE07
c4.95

COMMUNICATION
F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the important eiements of each branch of the subject in a siyle as interesting and practical as possible. While no getting involved in the more complicated theory and mathematics, miost of the modern transmission system techniques are examined including line. microwave. submarine, sate and ist inderstanding these more thoroughly chapters on signal processing, the electre magnetic wave networks and transmissions assess ment are included, finally a short chapter on optical transmission. Order Code BP89 £2.95 256 pages Order Code BP89 E2.95

GETING: TH
This book is orimarily aimed at beginners and those of IImited experience of electronics. Chapter 1 covers the bas les of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including lests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.
ne main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing achmiques the reactronic projects. 96 pages Order code BP239
96 pages

PRACTICAL MIDI HANDBOOK

R.A. Penfold

The Musical Instrument Digital Interface (MIDI) is surrounded by a great deal of misunderstanding, and many o the user manuals that accompany MIDI equipment are quit incompral MIDI Handbook
musicians, enthusiasts and he vast capabilities of MIDI, but who have no previous knowledge of electronics or computing. The majority of the book is devoted to an explanation of what MIDI can do and how to exploit it to the full, with practical advice on connec fing up a MIDI system and gelling it to work, as well as deciphering the technical information in those equipmen manuals.
128 pages Order code PC101

NTRODUCTION TO DIGITAL AUDIO

an Sinclair
Digital recording methods have existed for many years and eer, but the compact disc (CD) was the first device to bring digital audio methods into the home. The next step is the appearance of digital aud io tape (DAT) equipment.
All this development has involved methods and circuits tha are totally alien to the technician or keen amateur who has previously worked with audio clrcuirs. The principles and practices of digital audio owe litte or nothing to the trad tional linear circuits of the past, and are much more compre hensible to today's computer engineer than the olde generation of audio engineers.
This book is intended to bridge the gap of understanding for the technician and enthusiast. The principles and methods is avoided, other than to state the end product
128 pages Order code PC102
E5.95

INTERNATIONAL TRANSISTOR
EQUIVALENTS GUIDE
A. Michaels

Helps the reader to find possible substitutes for a popula selection of European. American and Japanese transis tors. Also shows material type, polarity, manufacture 320 pages

Order code BP85
£2.95

Abstract

TRANSISTOR RADIO FAULT-FINDING CHART C. E. Miller

Ised properly should enable the reader to trace most common faults reasonably quickly. Across the top of the chart will be found four rectangles containing brief escription of these faults, vis-sound weak but undisorted. set dead, sound low or distorted and background noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared. Chart

Order code BP70 $£ 0.95$

IGITAL IC EQUIVALENTS

AND PIN CONNECTIONS
A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese digita c.s. Also includes details of packaging, families, func256 pages Order code BP140

LINEAR IC EQUIVALENTS
 AND PIN CO A. Michaels

Shows equivalents and pin connections of a popular selection of European. American and Japanese linear i.c.s. Also includes details of functions, manufacturer and country of origin.
320 pages
£4.95

INTERNATIONAL DIODE EQUIVALENTS GUIDE

A. Michaels

Designed to help the user in finding possible substitutes that are available Besides simple rectifier diodes also hat are available. Besides simple rectifier diodes, also ors. OCls, photo and display diodes.
Order code BP108
O2.25

NEWNES ELECTRONICS

POCKETBOOK
E. A. Parr ever twenty vears and has covered the development of electronics from valve to semiconductor technology and from transistors to LSI integrated circuits and microprocessors. To keep up to date with the rapidly changing world of electronics, continuous revision has been necessary. This new Fifth Edition takes account of recent changes and includes material suggested by readers of previous editions. New descriptions of op amp. applica
 other revisions throughout.
315 pages (hard cover) Order Code NE02 88.95

TRANSISTOR SELECTOR GUIDE

This unique guide offers a range of selection tables compiled so as to be of maximum use to all electronics engineers, designers and hobbyists
Section 1: Covers component markings, codings and standards, as well as explaining the symbols used.
Section 2: Tabulates in alpha-numeric sequence the comprehensive specifications of over 1400 devices.
Section 3: Tabulates the devices by case type.
Section 4: Considers particular limits to the electrical parameters when compiling the tables.
Section 5: Illustrates package outlines and leadouts.
Section 6: Consists of a surface mounting device markings conversion list
192 pages
Order code BP236
£4.95

RADIOTTELEVISION

ANINTRODUCTION TO RADIO DXING

R. A. Penfold

withone can switch on a short wave receiver and play with the controls until they pick up something, but to find a particular station, country or type of broadcast and to eceive it as clearly as possible requires a little more skill and knowledge. The object' of this book is to help the reader to do just that, which in essence is the fascinating hobby of radio DXing

Order code BP91
£1.95
INTERNATIONAL RADIO STATIONS GUIDE
Provides the casual listener, amateur radio OXer and the professional radio monitor with an essential relerence work designed to guide him or her around the ever more complex adio bands. This new edition has been completely revised and rewritten and incorporates much more informatio which is divided into the following sections:
istening to Short Wave Radio; ITU Country Codes; World vide Short Wave Radio Stations; European, Middle East and East and North African Medium Wave Radio Stations: Canadian Medium Wave Radio Stations: USA Medium; Cana Radio Stations; Broadcasts in English; Programmes for XXers and Short Wave Listeners; UK FM Radio Stations: Time differences from GMT; Abbreviations; Wavelength/F requency Conversion.
320 pages
4.55

GEGINNER'S GUIDE TO AMATEUR RADIO
F. Rayer Second edition revised by Gordon King GAVFV Whether you are new to radio, or have become interested by way of it is hoped that this book, will further whet you apperie and put you in good stead for passing the Radio eur.
188 pages Temporarily out of print

AN INTRODUCTION TOSATELLITE TELEVISION
F.A. Wilson

As a definitive introduction to the subject thls book is presented on two levels. For the absolute beginner or anyone thinking about purchasing or hiring a satellite TV system, the tory is to
For the professional engineer, electronics enthusiast, student or others with technical backgrounds, there are numer us appendices backing up the main text with additional echnical and scientific detail formulae, calculations, tables etc.
There
here is also plenty for the DIV enthusiast with practical dvice on choosing and installing the most problematic part las pages Order code 日P is

COMPUTING

GETTING THE MOST FROM YOUR PRINTER
J. W. Penfold Details how to use all the features provided on most do sor packages like Wordwise, Visawrite and Quill, etc Shows exactly what must be typed in to achieve a given effect.
96 pages
Order Code BP181
$£ 2.95$

A 280 WORKSHOP MANUAL

E. A. Parr, B.Sc., C.Eng., M.I.E.E

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming $\begin{array}{ll}\text { or need hardware details of a } 280 \text { based computer. } \\ 192 \text { pages } & \text { Order Code BP } 112\end{array}$

AN INTRODUCTION TO 68000 ASSEMBLY

LANGUAGE

R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Commodore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one might think and this book covers the fundamentals. 112 pages Order Code BP184 £2.95

THE ART OF PROGRAMMING THE ZX

SPECTRUM

M. James, B.Sc., M.B.C.S

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very differ ent one to be able to combine them into programs tha do exactly what you want them to. This is just what this book is all about-reaching you the ant of effectiv 144 pages \quad Order code BP119

AN INTRODUCTION TO PROGRAMMING THE COMMODORE 16 \& PLUS 4
R. A. Penfold

Helps you to learn to use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied in the manufacturer's own manuals.
128 pages
Order code BP158
£2.50

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL B MICRO
R. A. B J. W. Penfold

Written for readers wanting to learn more about pro gramming and how to make best use of the incredibly the BBC micro are s versatile features. Most aspects o little could usefully be adeded the omissions being where by the manufacturer's awn to the f44 pages Ordercode BP139 £1.95

THE PRE-BASIC BOOK
F. A. Wilson; C.G.I.A., C.ENG., F.I.E.E., F.I.E.R.E, F.B.i.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates on introducing the technique by looking in depth at the most frequently used and more easily understood computer instructions. For all new and
potential micro users.

AN INTRODUCTION TO

COMPUTER PERIPHERALS
J. W. Penfold

Covers such items as monitors. printers, disc drives cassette recorders. modems, etc., explaining what they are, how to use them and the various types and standards. Helps you to make sure that the peripherals 80 pages work with your computer.

COMPUTER TERMINOLOGY EXPLAINED

I. D. Poole

Explains a wide range of terms that form the computer jargon used by enthusiasts. Includes a reference guide to the more commonly used BASIC commands
96 pages
Order code BP148

AN INTRODUCTION TO PROGRAMMING THE ACORN ELECTRON
Designed to help the reader learn more about programming and to make best use of the Electron's many features. Adds considerably to the information already supplied in the manufacturer's own instruction manual.
144 pages
Order code 8 P142

AN INTRODUCTION TO PROGRAMMING THE ATARI 600/800 XL

R. A. \& J. W. Penfold

Especially writen to supplement the manufacturer's own handbook. The information supplied will help the reade to master BASIC programming and to make best use of the Alari's many powerful features.

AN INTRODUCTION TO PROGRAMMING THE AMSTRAD CPC 464 AND 664
AMSTRAD CPC 464 A.
The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatile machin and this book is designed to help the reader get the most from this powerful combination. Written to complemen rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC 6128.

144 pages Order Code BP153 £2.50
AN INTRODUCTION TO PROGRAMMING THE SINCLAIR OL

R. A. \& J. W. Penfold

Helps the reader 10 make best use of the fantastic Sinclai QL's almost unlimited range of features. Designed to 112 pages Order code BP150 £1.95

AN INTRODUCTION TO 280 MACHINE CODE
R. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous know ledge of these being assumed. The Z 80 is used in many popular home computers and simple programming examples are given for 280 -based machines including the Sinclair $2 \mathrm{X}-81$ and Spectrum, Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 144 pages.

Order code BP152 £2.75
AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J. W. Penfold
R. A. \& J. W. Penfold No previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly lan binary and hexadecimal numbering systems, addressing modes and the instruction set, and atso mixing machine code with BÁSIC. Some simple programming examples are given for 6502 -based home computers like the VIC 20. ORIC-1/Atmos, Electron, BCC and also the Commo dore 64.

Order code BP147
£2.50

HOW TO GET YOUR COMPUTER PROGRAMS RUNNING
J. W. Penfote

Have you ever writen your own programs only to find that they did not work! Help is now at hand with this book which shows you how to go about looking for you prrors, and helps you to avoid the common bugs and pitfalls of program wring. Applicable dialects of the BASIC language
$\mathbf{£ 2 . 5 0}$

AN INTRODUCTION TO COMPUTER

 COMMUNICATIONS

 COMMUNICATIONS}R. A. Penfold

Provides details of the various types of modem and their suitability for specific applications, plus detanls of connecting various computers to modems, and modems to the relephone system. Aiso information on common networking systems and RTTY
96 pages Order code BP 17
$£ 2.95$

THE PRE-COMPUTER BOOK

F. A. Wilson

Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of com $\begin{array}{lll}\text { puter bits and pieces and programming. } \\ 96 \text { pages } & \text { Order code BP115 } & \text { £ } 1.95\end{array}$

NEWNES COMPUTER ENGINEER'S

POCKETBOOK
An invaluable compendium of facts, figures, circuits and data, ridispensable to the designer, student, service engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of software engineers" This first edition covers a vast range of subjects at a practical level, with the necessary explanatory text. The data is presented in a succinct and rapidly accessible form so that the book can become part of an everyday roolki
205 pages (hard cover) Order code NE01 £8.95

DIRECT BOOK SERVICE

(A Division of Wimborne Publishing Ltd.)

TO ORDER

Please state the order code clearly, print your name and address and add the required postage to the total order.

Add 75p to your total order for postage loverseas readers add $£ 1.50$, surface mail postage) and send a PO, cheque or international money order ($£$ sterling only) made payable to Direct Book Service (quoting the order code and quantities required) to DIRECT BOOK SERVICE, 33 GRAVEL HILL. MERLEY, WIMBORNE, DOR-
SET, BH21 1RW (mail order only).

Although books are normally sent within seven days of receipt of your order, please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

Please check price and availability
 before ordering from old lists.

Note-our postage charge
 is the same for one book or one hundred books!

LIKE MOST hobbies, electronics is littered with difficulties for the beginner that are actually quite easy once you know how. A lot of things seem very complex at first, but are really pretty straightforward once they have been rationalised and explained properly.
A good example of this is component values. They are expressed in various units, and a given value can usually be expressed in more than one way. This second point can make it difficult to select the right components from components catalogues, and is responsible for a small but steady flow of enquiries from readers.

PICO TO TERRA

Understanding component values is very much easier once you are familiar with the prefixes used ahead of the letter that indicates the type of units. For insfance, in the inductance value 33 mH the " m " stands for "milli", or one thousandth in other words, and the H indicates that the units in use are Henries. The value is therefore 33 millihenries, which is thirtythree thousandths of a Henry, or 0.033 Henries.

These prefixes are used, where necessary, with any units of metric measurement, and are not restricted to use in electronics. Our "milli" example is to be found in millimetres, milligrams, and probably many other non-electronic forms of measurement.

Electronics involves very small quantities, very large quantities, and the full range of intermediate amounts. Consequently you may encounter prefixes in electronics that you will not have cause to use elsewhere.

Note that these prefix letters are not only used to indicate fractional units, but are also much used to indicate multiple units. The letter " k " (which stands for "kilo") is probably the most used of
these, and it means so many thousands of the basic units. Thus 10 kilohms is 10000 ohms, and 22 kilometres is 22000 metres.

Table 1 below gives a list of prefixes and their "values".

These prefixes enable an enormous range of values to be covered without having to resort to very large numbers, or numbers having a decimal point followed by a large number of zeros. The range covered is so wide that the full range of pico to terra would not normally be utilized with one type of units. In fact only two or three prefixes are used with most types of units. With resistors for example, only kilo (k) and mega (M) are normally required. Table 2 shows the units used for various types of components, together with the normal range of, values. Details of basic electrical units of measurement are also provided, including the range of values you are likely to encounter.
Note that the " R " for ohms is often replaced by the greek letter omega (Ω). The value ranges can only be a general guide, and there may be the odd component, voltage, or whatever, that has what could only be regarded as an exceptionally high or low value.

As one example of this, a few catalogues now list capacitors with a value of 1 farad $(1000000 \mu \mathrm{~F})$! This is a special ultrahigh value type intended for what would normally be considered battery back-up applications. This is exceptional though, and few catalogues list capacitors above $4700 \mu \mathrm{~F}$.
If you see something like an electrolytic capacitor value given as 100 pF , it is reasonable to assume that it is a misprint and that it should be 100μ. However, if in doubt you can always check with the publisher concerned, and a routine enquiry of this type will normally receive a fairly swift reply.

VALUE JUDGEMENT

A lot of confusion seems to result from the ways values are marked on components, and on the ways they are marked on capacitors in particular. It is standard practice these days for values to be expressed without the type of units (farads, ohms, etc.) being included.

Also, the prefix which indicates the multiplier/divisor is often used to indicate the position of the decimal point as well. This is a general means of expressing values, and it is not one that is confined to component value markings.

The idea is to express the value using as few digits as possible, mainly with the aim of making it easier to find space for the labels on ever more complex circuit diagrams. It is obviously more compact to specify a value as 2 n 2 than as 2.2 nF or 2200pF.

The current "standard" for marking values on ceramic plate capacitors having values from 100 p to 820 p seems to be essentially as described above, but with the value given in nanofarads with what I suppose could be termed "leading zero suppression". In other words, a value of 470 pF would be marked on a ceramic plate capacitor as " $n 47$ ".

For some reason trailing zeros are not suppressed, and 100 pF is marked as " n 10 ". This system reduces the number of digits required from four to three, but getting used to this method of value marking can take a while if you are used to the old style markings in picofarads.

Disc ceramic capacitors seem to cause even more confusion. These use another form of three digit value marking, and the first two digits are simply the first two digits of the value. The third is a multiplier, rather like the ones used in resistor colour codes.

In this case the number simply indicates the number of zeros to be added to the first two digits in order to give the full value. For example, with a third digit of " 2 " it is just a matter of adding two zeros, or multiplying by one hundred if you prefer to look at it that way.

A capacitor market " 473 " would therefore have a value of 47 plus three zeros, or 47000 in other words. This value is in picofarads though, and not nanofarads. It must be divided by one thousand to convert from the former to the latter. The value is therefore 47000 pF , or 47 nF .

Table 3 provides a few examples that might help to clarify the system for you.

This method of value marking now seems to be turning up on one or two other types of capacitor, such as Mylar and some Polvester types. It is probably well worthwhile familiarising yourself

Table 1
Prefix Letter'Value"

Pico	p	0.000000000001
Nano	n	0.000000001
Micro	μ	0.000001
Milli	m	0.001
Kilo	k	1000
Mega	M	1000000
Giga	G	1000000000
Terra	T	1000000000000

Table 2
Component/Measurement Type Units Letter Value Range

Capacitor (non-electrolytic)	Farads	F	1 pF to $2 \mu 2$
Capacitor (electrolytic)	Farads	F	$470 \mathrm{nF}-47000 \mu \mathrm{~F}$
Capacitor (variable)	Farads	F	$5 \mathrm{pF}-500 \mathrm{pF}$
Resistor	Ohms	R	$0.1 \mathrm{R}-10 \mathrm{M}$
Inductor	Henries	H	$0.1 \mu \mathrm{H}-4 \mathrm{H}$
Resistance (general)	Ohms	R	$1 \mathrm{mR}-1 \mathrm{TR}$
Impedance	Ohms	R	$1 \mathrm{mR}-1 \mathrm{TR}$
Voltage	Volts	V	$1 \mu \mathrm{~V}-20 \mathrm{kV}$
Current	Amperes	A	$1 \mathrm{nA}-10 \mathrm{~A}$
Power	Watts	W	$1 \mu \mathrm{~W}-1 \mathrm{~kW}$

with this system, as it seems likely to become a standard for medium value capacitors.

Table 3
Value Value Value
Marking in pF in nF in $\mu \mathrm{F}$

102	1000	1	0.001
332	3300	3.3	0.0033
472	4700	4.7	0.0047
103	10000	10	0.01
223	22000	22	0.022
473	47000	47	0.047
104	100000	100	0.1
334	330000	330	0.33

WORKING VOLTAGE AND TOLERANCE
You may find other markings on capacitors. These are not necessarily anything of interest, and could simply be something like a manufacturer's batch number.

However, in some cases these give further information about the component. The most simple example is where something like " 50 V " is marked on a component, and this is merely the maximum d.c. "working" voltage to which it should be subjected.

This type of marking is quite common on electrolytic and tantalum capacitors (which often have quite low maximum voltage ratings), but are not always found on other types of capacitor. Where they are to be found, the marking is often a bit ambiguous as the " V " for volts is often omitted.

Capacitors sometimes have their tolerance rating simply written on as " 5% " or whatever, but these days it seems to be more common for the tolerance simply to be omitted, or in some cases a single code letter is used to indicate the tolerance. Details of this system of coding are provided below.

Code Letter	Tolerance
F	1%
G	2%

H	2.5%
J	5%
K	10%
M	20%

While on the subject of tolerance codes, some years ago there were a lot of resistors in circulation which had the values marked using four letter codes. The first three letters gave the value in conventional form (e.g. 4R7, $2 \mathrm{k} 2,10 \mathrm{M}$, etc,) and the fourth letter gave the tolerance using the coding system detailed above.

This method did not seem to catch on, but I have recently encountered a few components that have this system of marking, and there are still some resistors of this type around. In particular, you may well be supplied with components having this method of coding if you order some close tolerance resistors.

Capacitors sometimes have other markings to indicate their temperature coefficient and (or) power factor. These are not normally of any great interest or significance to the home constructor, but they can tend to shroud the main value markings.

What is the value of a capacitor marked 104 K 1 D or 05 BX 472 M ? Reasonable guesses of 100 n 10 per cent and $4 n 720$ per cent respectively could be made by extracting the figures that look like value codes and ignoring the rest. In this case this would give the right values.

CAPACITOR TESTING

A capacitance meter or bridge is a very useful piece of test gear for anyone involved in a lot of project construction as it can settle any doubts about the value of an ambiguously marked component. With many types of capacitor the markings are far from indelible, and again, some form of capacitance measuring device can reliably sort out any doubts.

Unfortunately, apart from a few multipurpose digital instruments there are few multimeters that have any capacitance measuring ranges. However, one useful dodge that can sometimes be of use with an analogue multimeter is to switch the instrument to the highest resistance range and then connect it across a test capacitor. This should result in a small
"kick" of the pointer with most components, due to the capacitor charging up.

With very low values of a few nanofarads or less, the initial charge may be too small to produce any significant deflection of the meter. With high value capacitors it might take a significant time for the pointer to fall back to zero.

The point here is that the "kick" from the meter is proportional to the value of the test component, and can be used to permit the value of most capacitors to be roughly gauged. It does not permit accurate measurement, but comparisons with capacitors of known value can give greater precision than you might expect.

Doubts about the values of capacitors often involve uncertainty about the position of the decimal point. This method should certainly permit you to determine whether a capacitor has a value of (say) 33 nF or 330 nF .
Note that with polarised capacitors the test leads are connected with what is apparently the wrong polarity (i.e. the positive probe connects to the negative terminal of the capacitor). This does in fact give a voltage of the correct polarity across the test component.

INDUCTORS

Most small inductors, or r.f. chokes as they are sometimes called, have the value marked in the standard fashion (e.g. $4 \mu \mathrm{H} 7$), often with a letter to indicate the tolerance. I have encountered a few that use different methods though.

The use of colour codes seems to be increasingly common. The system used is a four band type that is actually no different to the standard resistor colour coding. However, the value is in nanohenries, and for larger values it must be divided by one thousand to obtain a value in microhenries.

The other method is essentially the same as the three digit capacitor type. The first two digits are the first two digits of the value, and the third one indicates the number of zeros that must be added to give the full value.

The value is again in nanohenries. This value marking is usually accompanied by a letter to indicate the tolerance. Thus a component marked "103J" has a value of 10000 nanohenries (10 millihenries), and a tolerance of 5%.

This new range of $19{ }^{\prime \prime}$ rack equipment cases have been designed with economy and versatility as their objective. These cases are supplied as a flat pack kit with assembly
instructions.
The equipment cases feature a black coated fin/sh $/ \mathbf{/ 2}$ ' (3 mm) aluminium frontpanel wh
the rest of the case constructed from 7 mm or 9 mm 'Stelvetite' PVG coated sfeel. All kit include front panel handles and rubber feet.
They are avallable in the following popular sizes with all the units having a standard fron panel width of 19^{\prime}, and an enclosure width of $171 / 4^{\prime \prime}(438 \mathrm{~mm})$ by a depth of $10^{\prime \prime}(254 \mathrm{~mm})$.

RACKZ PRODUCTS, PO BOX No. 1402, MANGOTSFIELD, BRISTOL,

THE BENCHMARK BOOK COMPANY

KEY TECHINIQUES FOR CIRCUIT DESIGN

 G C LOVEDAYA new book on the design of electronic hardware. The first in a unique series. Provides a sound introduction to this vital subject, dealing with the various stages of the design cycle from the initial target specification through to the final prototype. Covers concepts such as derating, testability. device selection (discretes and ICs) and the use of 'rules-of-thumb' etc.
Essentially non-mathematical with numerous worked design examples and reader exercises-all with model solutions.
A must for anyone wishing to do their own electronic design
ISBN 1871047005 Pbk 128 pp price $66.95+60 \mathrm{p}$ p\&p. Order a copy from your local bookseller or direct from us:
THE BENCHMARK BOOK COMPANY 59 Waylands, Swanley, Kent BR8 8 TN

Part 25 Using diodes

THE "semiconductor diode". Fig. 25.1a and Fig. 25.1b, was the first electronic component device that we studied in this series. We showed that its characteristic property is that it conducts current in one direction only.

If it is connected as in Fig. 25.1c. current flows freely through it. provided that the voltage exceeds 0.7 V for a silicon diode. But, if it is reverse-biassed as in Fig. 25.1d, then only a minute leakage current flows, even though the voltage across the diode may be several hundred volts. A high reverse voltage may cause the diode to break down. Current then flows readily but it is no longer a diode!

ASTABLE CIRCUIT

This month's circuit requires an alternating waveform. For this purpose we use the 555 timer i.c. connected as an astable multivibrator (April 1987). With the values of resistors R3, R4 and capacitor C 1 shown in Fig 25.2, the frequency is about 10 kHz .

When the timer is driven by a 6 V battery we normally consider the output

Fig. 25.2. Pulse generator and potential divider circuit diagram.

Fig. 25.1. The semiconductor diode.
of the astable to be a square wave alternating between +6 V and 0 V . For the purpose of describing the action of the circuit we are going to change the reference level from which we measure voltages. Instead of thinking of the battery terminals as 0 V and +6 V , we will think of them as -3 V and +3 V

Obviously, we need a reference line at the 0 V level. This is obtained by using two equal resistors ($\mathrm{R} 1, \mathrm{R} 2$) as a potential divider (Fig. 25.2). Measured from this level, the output of the astable alternates between +3 V and -3 V .

CONSTRUCTION

Assemble the pulse generator and potential divider as in Fig. 25.3. Do not assemble the diode pump section yet.

Commence construction by inserting the 8 -pin i.c. holder and link wires followed by the resistors. This should include resistors R1 and R2 and the $0 \mathrm{~V}^{\text {POTENTIAL }}$ and -3 V link wires in the bottom half of the breadboard. At this stage, capacitor C2 can also be inserted on the board.

Finally, IC1 should be plugged into its holder and the supply leads inserted

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

likely to happen in practice as the inertia of the needle prevents it from vibrating 10000 times a second.

If an ordinary voltmeter is connected at these points, its needle is apparently stationary, close to zero. It may read a little bit higher than this because the "low" period of the output is shorter than the "high" period.

DIODE PUMP

Now add the Diode Pump (Fig. 25.4) to the demonstration breadboard, see Fig. 25.3. Make sure that the diodes are the right way round-current leaves the diode by the cathode (k) terminal, which is the end marked with the band.

To see the "pump" in operation, the voltmeter is connected across capacitor C3, as in Fig. 25.3, and measures the output from the circuit. Switch on and measure the output voltage, $V_{\text {out }}$. Check the voltage reading at socket B19-it is still very close to zero. Where does this extra voltage come from?

Fig. 25.4. Circuit diagram for the Diode Pump.

Imagine that in Fig 25.4, $V_{\text {IN }}$ is -3 V . Thus plate A of capacitor C 2 is at -3 V . Plate B is also at -3 V to begin with, but current flows through diode D1 until plate B is at $0 V$. Then the input starts to rise. When the potential of a plate of a capacitor is suddenly changed, the potential of the other plate changes by an equal amount. As the potential at A rises from -3 V to +3 V (a rise of 6 V),
the potential of B rises by an equal amount. Since it is at 0V to start with, it rises from 0 V to +6 V .

Current cannot flow back through diode D1 since D1 is now reversebiassed. Instead, the current flows through diode D2, charging plate C of capacitor C3. Next the input falls again from +3 V to -3 V , but the charge that has passed to plate C cannot return through diode D2, for this is now re-verse-biassed. Capacitor C3 holds its charge. Charge may pass from C3 to any circuit that may be connected to the output terminal. C3 receives more charge every time $V_{\text {IN }}$ rises from -3 V to +3 V . In summary, electric charge passes from the 0 V line through D1 to plate B as $V_{\text {IN }}$ falls, and it is pumped from plate B through D2 to plate C as $V_{\text {IN }}$ rises.

The action is very similar to that of a pump with two valves-an inlet valve and an outlet valve. The old-fashioned village pump and the modern bicycle pump are both examples of this. In the bicycle pump the rim of the piston is one valve and the valve on the inner tube is the other. Air is sucked in past the rim of the piston as we pull the pump-handle out, and is pushed out through the inner tube valve as we push the handle in.

LEAKAGE

A voltmeter such as we are using, or any other external circuit connected to capacitor C3 allows charge to leak away from C3. In the bicycle analogy we can think of this as air leaking away through a small puncture in the tube. If the puncture is large, air leaks away as fast as or faster than it is being pumped. The same applies to the diode pump, and explains why it is able to supply only a limited amount of current.

Experience tells us that the faster we pump, the greater the pressure in the tyre. Conversely, if we reduce the rate of pumping, the pressure gradually falls

Resistors

R1, R2	68	0.5 W (2 off)
R3	330	0.25 W
R4	560	0.25 W
All		
5%	carbon	

apacitors
C1, C2 100n polyester (2 off)
C3 1000μ elec. 10 V

Semiconductors

D1, D2 1 N4148 silicon diode (2 off)
IC1 555 timer i.c.

Miscellaneous

Breadboard (Verobloc); 8-pin i.c. holder; B1 6 V battery and connectors; connecting wire and Voltmeter, set to 10 V d.c. scale.

Approx. cost
Guidance only
(excluding meter)
to a lower level. Does this happen with the diode pump? Try this out by substituting 3 k 3 and 5 k 6 resistors for R3 and R4. The "pumping" frequency is now only 1 kHz . What effect does this have on the voltage across capacitor C3?
You will notice the effect best with a cheap voltmeter that takes a relatively large current. If you are using an expensive moving coil voltmeter or a digital voltmeter, it may take such a small current that changing the frequency makes no appreciable difference. In this case connect a 22 k resistor across C3 to increase the rate at which C3 loses charge. Insert the resistor in sockets J19 and J25.

The explanation above is an oversimplified one (for example, it does not

Fig. 25.5. One suggested application for the diode pump is as a Baby Alarm. With small background noise, amplifier output is low (alarm silent). When baby cries, output levels shoot up, switching transistor on and triggering alarm circuit.
take intn account the voltage drop across the diodes), but it is sufficiently accurate to explain the general principle of the diode pump. If you scan though
the circuit diagrams in this magazine each month, you will sometimes come across one that has two diodes connected to make a pump.

BABY ALARM

An example of a circuit in which a pump might be used is a Baby Alarm (Fig. 25.5). A microphone beside the baby's cot is connected to an amplifier, the output of the amplifier is connected to a diode pump.
With small background noises, the output of the amplifier rises and falls by small amounts, charging the capacitor of the pump slightly. The voltage changes are small and any charge pumped to the capacitor leaks away as fast as it is pumped.
But when baby cries, the output from the amplifier rises and falls rapidly and by large amounts. The increased rate and amplitude of pumping causes a steady increase in potential across the capacitor. After a few moments the potential has risen to a level at which a transistor connected to the capacitor is switched on, triggering the baby alarm to sound.
This is just one of many examples of the usefulness of this simple diode pump circuit.

Next Month: We look at the Diode /Capacitor Ladder.
\square

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.

THE DETECTOR - features Analvtical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer.
A comprehensive instruction book is available @ $\mathbf{E 5}$ (deductable from order). Ask at your local Hobby/Electronics shop or contact C-Scope for a copy of a published Field Test Report.

C-Scope International Ltd., Dept. EE86 Wotton Road, Ashford, Kent TN23 2LN. Telephone: 023329181

Printed circuit boards for certain constructional projects (up to two years old) are available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Evervday Electronics. (Payment in f sterling only.)

Readers are advised to check with prices appearing in the current issue before ordering.
NOTE: Boards for older projects - not listed here - can often be obtained from Magenta Electronics, 135 Hunter St., Burton-on-Trent, Staff' DE14 2ST. Tel: 028365435 or Lake Electronics, 7 Middleton Close, Nuthall, Nottingham NG16 1BX. Tel: 0602382509.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order and on a payment with order basis.

PROJECT TITLE	Order Code	Cost
$\text { Stereo Reverb }{ }^{- \text {APRIL'86 - }}$	521	£3.73
$\begin{aligned} & \text { PA Amplifier - MAY'86- } \\ & \text { Mini Strobe } \\ & \text { Auto Firing Joystick Adaptor } \end{aligned}$	$\begin{aligned} & 511 \\ & 522 \\ & 523 \end{aligned}$	$\begin{array}{r} £ 3.34 \\ £ 2.79 \\ £ 3.42 \end{array}$
```- JUNE '86 - Watchdog Percussion Synthesiser Personal Radio```	$\begin{aligned} & 524 \\ & 525 \\ & 526 \end{aligned}$	$\begin{aligned} & £ 3.51 \\ & £ 7.06 \\ & £ 2.58 \end{aligned}$
Tilt Alarm - JULY '86 - Electronic Scarecrow VOX Box Amplifier Headphone Mixer	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \end{aligned}$	$\begin{array}{r} £ 2.65 \\ £ 2.86 \\ £ 2.93 \\ £ 5.71 \end{array}$
- AUG '86 -   Solar Heating Controller	533	¢4.16
Car Timer - SEPT ' 86 - Freezer Failure Alarm Infra Red Beam Alarm (Trans) Infra Red Beam Alarm (Rec) Scratch Blanker	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \end{aligned}$	$\begin{aligned} & £ 2.53 \\ & £ 2.38 \\ & £ 4.16 \\ & £ 4.16 \\ & £ 6.80 \end{aligned}$
- OCT '86--10W Audio Amp (Power Amp)(Pre-Amp)   Light Rider - Lapel Badge   - Disco Lights   - Chaser Light	$\begin{aligned} & 543 \\ & 544 \\ & 540 \& 541 \\ & 542 \\ & 546 \end{aligned}$	$\begin{aligned} & £ 3.23 \\ & £ 3.97 \\ & £ 2.97 \\ & £ 5.12 \\ & £ 4.04 \end{aligned}$
- NOV ‘86 -   Modem Tone Decoder 200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \end{aligned}$	$\begin{array}{r} £ 3.46 \\ £ 5.14 \end{array}$
- DEC '86 -   Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM (Software Cassette)	$\begin{aligned} & 549 \\ & 550 \\ & 551 \\ & 551 \mathrm{~S} \end{aligned}$	$\begin{array}{r} £ 7.34 \\ £ 2.93 \\ £ 2.97 \\ £ 3.88 \end{array}$
Random Light Unit - JAN '87-	552	£5.88
Car Voltage Monitor - FEB '87 -   Mini Amp.   Video Guard   Spectrum I/O   Spectrum Speech Synthesiser	$\begin{aligned} & 553 \\ & 554 \text { \& } 555 \\ & 556 \\ & 557 \\ & 558 \end{aligned}$	$\begin{array}{r} £ 2.48 \\ £ 5.68 \\ £ 3.80 \\ £ 4.35 \\ £ 4.86 \end{array}$
- MAR '87 - Computer Buffer/Interface Infra Red Alarm: Sensor head PSU/Relay Driver	$\begin{aligned} & 560 \\ & 561 \\ & 562 \end{aligned}$	$\begin{array}{r} £ 3.32 \\ £ 4.19 \\ £ 4.50 \end{array}$
Alarm Thermometer APRIL '87 Experimental Speech Recognition Bulb Life Extender	$\begin{aligned} & 559 \\ & 563 \\ & 564 \end{aligned}$	$\begin{array}{r} £ 2.60 \\ £ 4.75 \\ £ 2.48 \end{array}$



CLASSIFIED

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ (plus VAT) per single column centimetre (minimum 2.5 cm ). The prepaid rate for classified advertisements is 30 pence (plus VAT) per word (minimum 12 words), box number $£ 1$ extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics. VAT must be added. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. Tel: (0202) 881749.

## Electronic Components

## WALTONS OF WOLVERHAMPTON

Established since 1947 - offering a complete range - I.C.s, transformers, switches, pots, capacitors, resistors, kits, speakers, test equipment, books and lots, lots more!
COME AND SEE USAT: MON-SAT 9.6 .00 pm
55A WORCESTER STREET,
WOLVERHAMPTON
TEL: 090222039

## Special Offers

PRINTED CIRCUIT BOARDS made to own requirements. For details send sac to Mr. B. M. Ansbro, 38 Poynings Drive. Hove, Sussex BN3 KGR.

HALF PRICE soldering iron (used. hut as new) and solder. Tel 14433 681886.

```
MICROTRANSMITTER - Matchbox size, 500 metre
range, tuneable 80.120MHZ, receive on any VHFIFM
receiver.ONLY &4.50
TELEPHONE MONITOR - With the addition of a tape
recorder will automatically record both sides of
telephone conversations. ONLY £14.95.
Please add \(50 p\) p\&p per order. SAE for details Cheques/P.O.s payable to:
QUANTEK ELECTRONCS LTD
(Dept EE), 45a Station Road, Northfield, Birmingham B31 3TE
```


## Special Offers

S.H. COMPONENTS presents 18 pages of very competitively priced semiconductors, switches, optoelectrics. etc., plus sample. Send 85p to 17 Beeley Ruad. Grimshy. S. Humberside.

## Miscellaneous

## TURN YOUR SURPLUS

ICS transistors etc., into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance.
Contact COLES-HARDING \& CO, 103 South Brink, Wisbech, Cambs.
"ESTABLISHED OVER 10 YEARS" Tel: 0945584188 Fax: 0945588844


## Service Manuals



## CIRCUIT DIAGRAMS

Most Makes, Models. Types. Audio. Music Systems, Colour Mono Televisions, Amateur Radio Test Equipment, Vintage etc. $£ 3.50$ plus L.SAE. State Make/Model/Type with order
Full Workshop Manual prices on request with LSAE
MAURITRON (EE), 8 Cherry Tree Road,
Chinnor, Oxfordshire OX9 4QY

## Kits

GTI CAR COMPUTER (EE Jan. 88) gives MPG av. speed, trip, fuel etc. Kit $£ 64.50$, half kit $£ 37.50$. SAE to MSE, 11 Church Green Road. Bletchley, Milton Keynes. Tel ( 24 hrs ) 0918641548.

## ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Everyday Electronics for ............ insertions. I enclose Cheque/P.0.for f. The advertisement must include an address, box number, or phone number as part of the paid wordage. Please remember to add VAT.


HEADING REQUIRED:

NAME
ADDRESS

## EVERYDAY ELECTRONICS

Classified Advertisement Dept.,
6 Church Street, Wimborne, Dorset BH21 1JH.
Telephone (0202) 881749
RATE: 30p per word, minimum 12 words. Box No. E1 extra. VAT MUST BE ADDED

## MAKE YOUR INTERESTS PAY!

More than 8 million students throughout the world have found it worth their while! An ICS home-study course can help you get a better job, make more money and have more
fun out of ilfel ics has over 90 years experience in home-study courses and is the largest fun out of life! Ics nas over 90 years experience in home-study courses and is the largest correspondence school in the wortd. You leam at your own pace, when and where you want under the guldance of expert 'personal' tutors. Find out how we can help you. (Tick one box only!)

Electronics
Basic Electronic Engineering (city \& Cuilds) Electrical Engineering Electrical Contracting/ Instaliation
GCE ove
IET Adaress
International Correspondence Schoois, Dept. ECS $78,312 / 314$ High St., Sutton, Surrey SM1 1PR. Tel: $01-6439568$ or 041-221 2926 (24 hrs)

## NATIONAL COMPONENT CLUB

* SPECIAL OFFERS * SPECIAL OFFERS *

ASSORTED SEMI - $[ \}$
CONDUCTORS (ICS • TRANSISTORS • DIODES
(7) ASSORTED CAPACITORS 5$\}$ CAPACITORS (PICOFARADS - 2200 U
20


ALL SIX PAGKS FOR A FIVER ! *
P.O. or Chequs to: NATIONAL COMPONENT CLUB, DEPT EE, HIGHER ANSFORD, CASTLE CARY, SOMERSET BAT 7JG. Please add 75p P \& $P$ but do not add VAT
※FREE CLUB MEMBERSHIP \{

AUDIOKITS PRECISION COMPONENTS


THE $30+30$ INTEGRATED AMPLIFIER * DESIGNED FOR OUTSTANDING SOUND QUALIT

- VERY HIGH OUALITY COMPONENTS SUPPLIED
* VERY HIGH QUALITY COMPONENTS SUPPLIED
* LOW TEMPERATURE GENERATED DISTORTION
- ULTRA LOW NOISE MC STAGE
*STAR EARTHING - MAPPED ON PCB TRACKS
* 7 SEPARATELY RECTIFIED POWER SUPPLIES GIVE
- OUTSTANDING STEREO MOWEA SUPLIES GIVE

ATEST KITS HAVE MPROVED HEA
RESIDUAL NOISE IMPROVEO HEAT SINKS AND LOWER

## IMPROVED VERSION ALSO FEATURES

 - HOLCO RESISTORS FOR OUTPUT TR ANSISTOR EMITTER RESISTORS * Polpropylene ano polystrrene capacitors

- LONG LIFEELECTROLYTIC CAPACITORS
- Kimber cable for interval wiring
- GOLD PLATED PHONE SOCKETS
* EXTRA OUTPUT TRANSISTORS FOR 40 WATT OUTPUT

PRICES Standard $30+30$ kit $\mathbf{£ 1 7 2}+\mathbf{£ 6} \mathbf{p} £ \mathbf{p}=\mathbf{£ 1 7 8}$
Standard with extra o/p transistors $£ 185+\mathbf{~} 6 \mathbf{p} \& \mathrm{p}=\mathbf{£ 1 9 1}$ Improved kit $\mathbf{f} 380+£ 6 \mathrm{p} \& \mathrm{p}=\boldsymbol{£} 386$
Export version to order with 110 V or 220 V primary transformers. PGP charges by quotation. Delivery 14 to 21 days, but can be longer as lead times for manufacture of case or supply or some top quality parts used in improved version is much greater.
For full parts price list of the EE Apex preamp and details of AUDIOKITS audiophile components and klts, please send 9" $\times 4^{\prime \prime}$ SAE to:
 6 MILL CLOSE, BORROWASH, DERBY DE7 3GU. Tel: 0332674929

THE UNDISPUTED PACK KING FOR OVER 20 YEARS, we offer you the very best in Electronic Components and Semiconductors that your money can buy. Look at our lists and prices, they are unbeatable in value and quantity and you always have our "Satisfaction or money back guarantee". For 1988 we offer more and more Super Value Packs. All goods adventised in stock af time of going to press. This is just a small pant of our stocks. Send a stamped SAE for our full lists FREE. please note our new mail Packs. Adr goods advertised in stock at time of going to press. This is just a small par
order address: BI-PAK. PO BOX 33, ROYSTON, HERTS SG8 5DF. Telephone 076348851.


OSCILLOSCOPES   TELEOUIPMENT DRS Duat trace SOMHz Detay Swoop taige Tube with manual.   SE. LaBS SMIII Dual Trace 18 MHz Sold Stare Porable AC or Enernal OC operaion 8 . 10 Cm display win Mamual   SCOPEX 4010A Dual trace 10MHz mith manual .........EIse TELEOUIPMENT SSAA. Single Trace YOMHz Sold State, With Manuat GOULD ADVANCE OS255 Oual Trace 15milz. Wirt GOULO   HAMEG 207 Single Trace 8 MHz . With Manual ....... 550	SPECIAL
	Sud State. Po
	,
	AVO VAlVE TESTEA CTI60. Suitcase slye. 22 Beses.
	)
MULTIMETERS   A VO 8 Commlete wht Batseries 6 Leads ....... From $f 45$	
AVOB MEV Complete wnt batteries \& Leads	Milctio (R\&p E3).
	ch (\%\&p
	ODE PS
	MARCONI RF POWER METER TFI152a,
ANALOGUE POCKET MULTIMETERS Phrips \& Taytor erc.	2. 0.5 to 25 Wath 50.0 nm . W
LABGEAR CROSSHATCH GENERAVOR CM6O3B OB . Crosshatch/Grey scale/blant raster, mains or Battery ( Pa : P f).   Unused f18 Used 112	AM/FM Sig Gen TFl066B 10.470MHz
	MARCONN AM/FM Sig Gen TFges range tom.... 1150
  [4..	
	QUIP
AVO TRANSISTOR TESTER $T 169$  	hameg oschlosc
	SWeep Com
	Component Testier 62 Probes.
ISOLATING TRANSFORMERS 240 V INPUT  	
	BLACK STA A FREOUENCY COUNTEAS PEAP E4 Meteot 100 - 100 MHz
	$600-600 \mathrm{MHz}$
$250 z$ inch. Wit run on $5 V$ with reduced 101 que .... 15 ea .Type 2. 612 Steps pei rev. 3 phase, 12.24 V I will work on 5V1 2.612 steps pel rev. 3 phase	
(e)	battereses $¢$ leass. PGP
	OVE. DMM 6010.0 .25
Holding Torque $450 z$ inch..................................... IS ea	
Used equipment - with 30 days guarantee Manuals supolied if possibie.   This is a VERY SMALL SAMPLE OF STOCK. SAE or Teieonone or Lsis Please creck avaidabithy before ordering. CARRIAGE all unis $f 16$. VAT to be added 10 Tolal of Goods \& Carrlage.	
STEWART OF READING   Telephone: 0734 68041 Callers welcome 9am-5.30 pm Mon. Fri. (until 8 pm Thurs.)	

## INDEX TO ADVERTISERS

A \& G ELECTRONICS ..... 427
AUDIOKITS ..... 439
BARRIE ELECTRONICS ..... 427
BENCHMARK BOOK CO ..... 433
BICC-VERO ELECTRONICS ..... 393
BI-PAK ..... 439
B.K. ELECTRONICS ..... Coveriii
BULL, J. \& N. ..... Coverii
CIRKIT DISTRIBUTION ..... 427
CROTECHINSTRUMENTS ..... 379
C-SCOPE INTERNATIONAL ..... 436
ELTRAK ELECTRONICS ..... 379
GREENWELDELECTRONICS ..... 378
ICS ..... 439
JAYTEE ELEC. SERVICES ..... 378
LIGHT SOLDERING DEVELOPMENTS ..... 396
LONDON ELECTRONICS COLLEGE ..... 396
MAGENTAELECTRONICS. ..... 380
MAPLIN ELECTRONICS ..... Coveriv
MARCO TRADING ..... 436
MERLIN SYSTEMS ..... 379
NATIONAL COMPONENT CLUB ..... 439
OMNIELECTRONICS ..... 427
PHONOSONICS ..... 440
RACKZ PRODUCTS ..... 433
RADIO COMPONENT SPECIALISTS ..... 438
SHERWOOD DATASYSTEMS ..... 403
SPECIALIST SEMICONDUCTORS ..... 421
STEWARTS OF READING ..... 440
TKELECTRONICS ..... 382
WALTONS OF WOLVERHAMPTON ..... 438
XENELECTRONICS. ..... 414


## MUSIC, EFFECTS COMPUTER AND SECURITY KITS

$\star$ POPULAR PROJECTS FROM A LEADING AUTHOR-



## BURGLAR ALARM CONTROLLERS

DETECTORS DETER DELINOUENTS MULTIZONE CONTROL

## (PE) SET280

$£ 22.77$
Two entry-zones, anti-tamper loop, personal attack, entry-exit timing, timed duration, automatic resetting, latching LED monltors
SINGLE ZONE CONTROL
(PE) SET279 £9.32
With timed duration control and latching LED monitor.
Both units can be used with any standard detection devices, such as contact or magnetic switches, pressure pads, tremblers, ultrasonics, infrared etc, and will activate standard bells, strobes or sirens.

CHIP TESTER (PE) SET258F
Computer controlled logic and chio analyser
CHORUS-FLANGER (PE) SET $235 \$ 59.99$ Mono-stereo. Suparb dual-mode elfiects. CYBERVOX (EE) SET228 $£ 44.76$ Amazing robot type voice unit, with ring-modulator and reverb.
DISCO-LIGHTS (PE) SET245F 3 chan sound to light, chasers, auto level.
ECHO-REVERB (PE) SET218
£62.50
£57.66 Mono-stereo. 200 ms echo, lengthy reverb, switchable multitracking.

EPROM PROGRAMMER

## (PE) SET277

Computer controlled unit for 4 K Eproms
EVENT COUNTER (PE) SET278
$£ 25.25$ 4-digit display counting tor any logic source.
MICRO-CHAT (PE) SET276 Computer controlled speech synthesiser MICRO-SCOPE (PE) SET247 Turns a computer into an oscilioscope. MICRO-TUNER (PE) SET257 $£ 31.50$ $£ 64.50$
$£ 44.50$ $£ 55.32$ MORSE DECODER (EE) SET269 £22.16 Computer controlled morse code-decoder
POLYWHATSIT! (PE) SET252 £122.69 Amazing effects unit, echo, reverb, double tracking, phasing. flanging, looping, pitch change, REVERSE tracking! BK memory.

## REVERB (EE) SET232

£27.35
Mono, with revert to 4 secs, echo to 60 ms . RING MODULATOR (PE) SET $231 £ 45.58$ Fabulous effects generation, with ALC and VCO STORMS! (PE)
£29.50 each unit Raw nature under panel control! Wind \& Rain SET250W. Thunder \& Lightning SET250T.

## t COMPUTER KITS

The software listing published with the computer kit projects are for use with C64, PET and BBC computers.
MANY MORE KITS IN CATALOGUE
KITS include PCBs and instructions. Funter detalls in catalogue. PCBs also available separately.

LOW COST GEIGER COUNTERS

NUCLEAR FREE ZONES? CHECK THEM OUT GET A GEIGER

Detectors for environmental and geological monitoring
THE PE GEIGER was shown on BBC TV "Take Nobody's Word For li" program

## METERED GEIGER (PE MK2)

Builtin probe, speaker, meter, digital output. Detector tube options - 2P1310 for normal sensitivity. 2P1320 for extrasensitivity.
Kit-form - SET 264 - (ZP1310) 559.50 , (ZP1320) $£ 79.50$
GEIGER-MITE SET271 £39.50
Miniature geiger with ZP1310 tube, LED displays radiation impacts. Socket for headphones or digital monitoning. Kit-form only.

## WEATHER CENTRE AND 32 CHANNEL VOICE SCRAMBLER DETAILS IN CATALOGUE

Send SAE for detailed catalogue, and with all enquiries (overseas send $£ 1.00$ or 5 I.R.C.'s). Add 15\% VAT. Add P\&P - Sets over E50 add £2.50. Others add E 1.50. Overseas PaP in cataiogue. Text photocopies - Geigers $264 \$ 272$ £1.50 each, others 50 p , plus 50 p post or large SAE. Insurance 50 p per $\mathbf{£ 5 0}$. MAIL OROER, CWO, CHO, PO, ACCESS VISA. Telephone orders: Mon-Fri, 9am - 6pm. 0689 37821. (Usually answering machine).

## PHONOSONICS, DEPT EE87, 8 FINUCANE DRIVE, ORPINGTON, KENT BR5 4ED. MAIL ORDER

[^0] $40^{\text {Trad }}$

## OVP POWER AMPLIFIER

MODULES PRICES INCLUDE V.A.T. * PRO
28p STAMP FOR CURENT LIST

OMP POWER AMPLIFIER MODULES Now enioy a wordd.wide repur lation for quality, reliability and performance at a realistic price. Four models available to suit the needs of
 prices, NOTE all models include Toroidal power supply, Integral
circuits to power compatible Vu meter. Open and short circuit proof. Supplied ready built and tested


OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms. Frequency response 15 Hz $30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. $0.01 \%$, S.N.R. - 118 dB , Sens for Max. output 500 mV at lok. Size $355 \times 115 \times 65 \mathrm{~mm}$ PRICE $£ 33.99+£ 3.00$ P\&P.

OMP/MF100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, Frequency Response 1 Hz $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80. Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical $0.002 \%$, Input Sensitit
500 mV S.N.R. -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. 500mV, S.N.R. -125 dB . S
PRICE $£ 39.99+£ 3.00$ P8.P.

OMP/MF200 Mos-Fet Output power 200 watts R.M.S. into 4 ohms, Frequency Response 1 Hz $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 250 . Slew Rate 50 V/uS, T.H.D. Typical $0.001 \%$, Input Sensitivity 500 mV , S.N.R. -130 dB . Size $300 \times 150 \times 100 \mathrm{~mm}$ PRICE $£ 62.99+£ 3.50$ P\&P

OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency Response 1 Hz $100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 350 . Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical $0.0008 \%$, Input Sensitivity 500 mV . S.N.R. -130 dB . Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE $£ 79.99+£ 4.50$ P\&IP.

NOTE: Mos-Fets are supplied as standard $(100 \mathrm{KHz}$ bandwidth \& Input Sensitivity 500 mV required. PA version ( 50 KHz bandwidth \& Input Sensitivity 775 mV ) Order - Standard or P.A.


Vu METER Compatible witj our four amplifiers detailed above. A very accurate visual display employing 11 L.F.D. diodes ( 7 green, 4 red) plus very fast rise and decay times. Tough moulded plastic case, with tinted acrylic front. Size $84 \times 27 \times 45 \mathrm{~mm}$. PRICE $£ 8.50+50 \mathrm{p}$ P\&P.

LOUDSPEAKERS $5^{\prime \prime}$ to $15^{\prime \prime}$ up to 400 WATTS R.M.S. Cabinet Fixing in stock. Huge selection of McKenzie Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details.
powerrange
502 WATT R.M.S. Hi-Fi/Disco
202 magnet, $1 / 2^{2}$ ally voice coill, Ground ally fixing escutcheon. Res. Freq. 40 Hz Freq. Resp. to 6 KHz . Sens
92 dB PRiCE 10.99 Available with black grille $£ 11.99$. P\&P $£ 1.50$ ea. 12100 WATT R.M.S. Hi-Fi/Disco
50 oz magnet, 2 ally voice coil. Ground ally fixing escutcheon.
25 Hz Freq. resp. to 4 KHz . Sens 95 dB . PRICE $£ 28.60+£ 3.00$ P\&iP ea.

MCKENZIE
$12^{\prime \prime} 85$ WA
12" 85 WATT R.M.S. C1285GP Lead Guitar/Keyboard/Disco
2" ally voice coil. Ally centre dome. Fes. Freq. $\mathbf{4 5 H z}$. Freq. Resp. to 6.5 KHz . Sens. $98 d \mathrm{~B}$. PRICE $\mathrm{£} 34.57+£ 3.00$

Res. Freq. 45 Hz Freq. Resp. to 14 KHz . PRICE $\mathbb{3} 35.35+$ E 3.00 P\&,P ea.
 $2^{\prime \prime}$ voice coil. Res. Freq. 75 Hz Freq. Resp. 1o 7.5K Hz Sens 99 dB . PRICE $£ 23.72+\mathrm{E} 2.00$ P\& P.
$10^{\circ} 200$ WATTR.M.S. $\mathbf{C 1 0 2 0} \mathrm{GP}$ Guitar/Keybard $10^{\prime} 200$ WATT R.M.S. C10200GP Guitar/Kevboard/Disco.
15" 200 WATI R.M.S. C15200 High Power Bass.

Res. Freq. 40 Hz . Sens. 102 dB . PRICE $994.12+£ 4.00$ P\&P.

## W" 70 W

1" voice coil. A.s. F. Multiple Array Disco etc. 52 Hz . Freq. resp. to 5 KHz . Sens. 89 dB . PRICE $£ 22.00+£ 1.50 \mathrm{P}$ \&.P ea
${ }^{1 \prime}$ voice coil. Res. Freq. 48 Hz . Freq. resp. to 5 K Hz . Sens. 92 dB . PRICE $£ 32.00+£ 1.50 \mathrm{P} \mathrm{\&}$. P ea,
$10-300$ WATT R.M.S. Disco/Sound re enforcement eic.
$11^{\prime} / 2^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . S.
$12^{\prime \prime} 300$ WATT R.M.S. Disco/Sound re-enforcement

SOUNDLAB (Full Range Twin Cone)
$5^{*} 60$ WATT R.M.S. Hi-Fi/Mult iple Array Disco etc.
$1 "$ volce coil. res. Freq. 63 Hz Freq. resp. to 20 KHz . sens. 86 dB . PRICE $\mathbf{~} 9.99+£ 1.00$ P\&P ea.
$6^{1 / 2} 60$ WATTR.M.S. Hi-Fi/Multiple Array Disco etc.
$1^{\prime \prime}$ voice coil. Res. Freq. 56 Hz . Freq. Resp. To 20 KHz . Sens. 89 dB . PRICE $£ 10.99+£ 1.50$ P8,P ea
11/4" voice coil. Res. Freq. 38 Hz . Freq. resp. 1020 KH
10" 60 WATT R.M. S. Hi-Fi/ Disco etc.

exineHOBBY KITS. Proven designs including glass fibre printed circuit board and high quality components
complete with instructions. complete with instructions.
FM MICROTRANSMITTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}$ ( 9 volt). Price $\mathrm{fB} .62+75 \mathrm{p}$ P\&P.
3 WATT FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controlled professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ ( 12 volt). Price $£ 14.49+75 p$ P\& P
SIMGLE CHANNEL RADIO CONTROLLED TRANSMITTER/RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. Receiver output operates relay with $2 \mathrm{amp} / 240$ volt contacts. Ideal for many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price $£ 17.82$. Transmitter
$80 \times 50+15 \mathrm{~mm}(9 / 12$ volt). Price $£ 11.29+75$ p P\&P each. SAE for complete

## VISA

 POSTAL CHARGES PER ORDER E1.00 minimum. OFFICIAL ORDERS WELCOME, SCHOOLS, COLLEGES, GONERNMENT BODIISS, ETCPRICES INCLUSIVE OF VAT. SALES COUNTER VISAIACCESS/C.O.D. ACCEPTED.

## BURGLAR ALARM

Betterto be Alarmed Manler
Superior microwave principle. Supplied alarm System Superior microwave principle. Supplied as three units TEED.
Control Unit-Houses microwave radar unit, range up to 15 metres adjustable by sensitivity control. Three position, key operated facia switch-of-test-armed 30 second exit and entry delay.
Indoor alarm-Electronic swept freq. siren. 104dB output.
Outdoor alarm-Electronic swept freq. siren, 98 dB out put. Housed in a tamper-proof heavy duty metal case. Both the control unit and outdoor alarm contain rechar geable batteries which provide full protection during mains failure. Power requirement $200 / 260$ Voit AC
$50 / 60 \mathrm{~Hz}$. Expandable with door sensors, panic buttons etc. Complete with instructions.
SAVE £138.00 Usual Price $\mathbf{f} 228.85$
BKE's PRICE £ $89.99+£ 4.00$ P\&P


## OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially to suit today's need
for compactness with high sound output levels. Finished in hard wearing black vynide with protective corners, grille and carry handle. A.M.S. per cabinet. Sensitivity 1 W .1 mtr . dB. OMP 12-100 Watts 100 dB . Price $£ 149.99$ per pair. OMP 12-200 Watts 102dB. Price £199.99 per Bair.


OMP $19^{\prime \prime}$ STEREO RACK AMPS


Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With twin Vu meters, twin toroidal power supplies, XLR connections. MF600 Fan coo0led. Three models (Ratings R.M.S. into 4 ohms). Input sensitivity 775 mV . MF200 $(100+100) \mathrm{W} . £ 171.35$ Securicor MF400 ( $200+200$ )W. £228.85 Delivery MF600 $(300+300)$ W. $£ 322.00$ £10.00

1 K-WATT SLIDE DIMMER


Control loads up

- Compact si
 * Easy snap in fixing
through panel/cabithrough pan
net cut out net cut out
case
callated plastic * Full wave control using 8 amp triac
tonforms BS800 * Suitable for both resistance and inductive loads. Innumerable applications in industry,
the home, discos, theatres, etc.
PRICE
13.99
13 75 P\&P


## BSR P295 ELECTRONIC TURNTABLE

\# Electronic speed controls 45 \& $331 / 3 \mathrm{rpm}$ \# Plus niun platiente pitch control * Belt driven *Alumi(blas device) * Adiused rim * Cue tever * Antiskate arm *Standard $1 / 2$ cantridge fixings *Supplied complete with
D.C. 65 mA

ADC O4 ma
ea. $+50 \mathrm{p} P \mathrm{P}, \mathrm{P}$

## PIEZO ELECTRIC TWEETERS - MOTOROLA

Join the piezo revolution. the fow dynamic mass (no voice coill of a Piezo tweeter produces an improved required these units $c$ an be added to existing speaker systems of up to 100 watts (more if 2 put in series) FREE EXPLANATORY LEAFLETS SUPPLIED WTH EACH TWEETER.

TYPE 'A' (KSN2036A) 3 ' round with protective wire mesh ideal for bookshelf and medium sized Hi-Fi speakers. Price f4.90 each +40 p P\&
TYPE 'B' (KSN1005A) 31/2" super horn. For general pur each +40 p P\&P
TVPE 'C' (KSN6016A) $2^{\prime \prime} \times 5^{\prime \prime}$ wide dispersion horn. For quality $\mathbf{H i}$-Fi systems and quality discos etc. Price $\mathbf{E 6 . 9 9}$ each +40 p P\&P
TYPE 'D' (KSN1025A) $2^{\prime \prime} \times 6^{\prime \prime}$ wide dispersion horn. Upper frequency response retained extending down to mid range ( 2 KHz ). Suitable for high quality Hi . Fi systems and quality discos. Price $£ 9.99$ each $+40 p$ P\&P
TYPE 'E' (KSN1038A) 3 $3 / 4$ " horn tweeter with attractive silver finish trim. Suitable
Price $£ 5.99$ each +40 p P\&P
LEVEL CONTROL. Combines on a recessed mounting plate, level control and cabinet input jack socket $85 \times 85 \mathrm{~mm}$. Price $£ 3.99+40 \mathrm{p}$ P\&

STEREO DISCO MIXER
SIEREO DISCO MIXER with $2 \times 5$ band L \& R graphic
equalisers and twin 10 segment LED Vu meters. Many equalisers and twin 10 segment LED Vu meters. Many
outstanding features. 5 inputs with individual faders providing a useful combination of the following: 3 over switch. Headphone monitor, Pan Pot L \& R Master Output c

B. K. ELEGTROITOS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572



[^0]:    Published on approvimately the first Friday of each month by Wimborne Publishing Lid., 6 Church Sireet, Wimborne, Dorset BH21 13H. Printed in England by Benham \& Co. Limited, Colchester Essex. Distributed by Symour, 334 Brixton Road, London SW9 7AG. Sole Agents for Australia and New Zealand - Gordon \& Gotch (Asia) Lid., South Africa - Central News Agency Lid Subwriptions INLAND 14.50 and OVERSEAS $£ 17.50$ payable to "Everyday Electronics Subscription Department, 6 Church Stree., Wimborne, Dorset 8H2I IJH. EVERYDAY ELECTRONIC is wold subject to the following conditions, namely that it shall not, withous the written consent of the Publishers first having been given, be lent. resold, hired out or otherwise disposed of by way of Trade Trade or a lixed to or as part of any publication or adverising and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of

