

The Magazine for Electronic \& Computer Projects

[^0]
TELEPHONE BITS

and takes B.T. plug
Extension socket
Dual adaptors (2 from one socket
Cord terminating with B.T. plug 3 metre
Kit for converting old entry terminal box to new B. T...............
socket, complete with 4 . extension sockets.
100 mtrs 4 core telephone cable
$\begin{array}{r}\mathrm{f} \\ \mathbf{f 8} .50 \\ \hline\end{array}$

COMPACT FLOPPY DISC DRIVE EME-101

 The EME-101 drives a $3^{\prime \prime}$ disc of the new standard which despite its small size provides a capacity of 500 k per disc, which is equivalent to the $31 / 2^{\prime \prime}$ and $51 / 4^{\text {" discs. We supply th }}$ Operators Manual and other infor mation showing how to use this with popular computers: BBC, Spectrum, Amstrad tc. All at a special sonp

MULLARD UNILEX AMPLIFIERS
We are probably the oniy firm in the country with these now in stock. Although only four watts per channel. these give superb power unit (EP9002) Pre amp module (EP9001) and two amplifie modules (EP9000) all for $\mathrm{f6} .00$ plus $£ 2$ postage. For prices of
modules bought separately see TWO POUNDERS

CAR STARTER/CHARGER KIT

lat Batteryt Don t worry you will star yout car in a few minutes wish his unit -250 watt transio
data case f 17.50 post f .

THIS MONTH'S SNIP

is a $21 / 2 \mathrm{~kW}$ tangential heater, metal box to contain it and
level switch to control it. Special price $\mathbf{£ 7 . 5 0}$ post pald.

VENNER TIME SWITCH

 Mains operated with 20 amp switch, one on and one off per 24 hrs. repeats daily automatically correcting for the lengthening or shortening day. An expensive for only 59 withour case meral have for - 095 adeptor kir to conver into a normal 24 hr time switch but with the added advantage of up to 12 on/off's per 24 hrs . This makes an ideal controller for the immersion heat er. Price of adaptor kit
En Electricity Board.

 is $£ 2.30$
12 volt MOTORS BY SMITHS

Made for use in cars, etc. these ar
vize $31 /{ }^{*}$ " long by $3^{\prime \prime}$ dia.

They have a good length
spindle $-1 / 10 \mathrm{hp}$ e3.45
$1 / 8 \mathrm{hp} \mathrm{f5} .75 .1 / 6 \mathrm{hp} \mathrm{F7} .50$ SOUNDD TO LIGHT UNIT

Complete kit of parts for a three channel sound to light unit controlling over 2000 watts of lighting. Use this at home if you housed in an attractive two tone metal case and has controls for each channel, and a master on/off. The audio input and output are by $1 / 4$ " sockets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socket facilitate ease of connecting lamps. Special price is $\mathbf{\Sigma 1 4 , 9 5}$ in kit form.

9" MONITOR

Ideal to work with computer or video camera uses Philip black and white tube ref $\mathrm{M} 24 / 306 \mathrm{~W}$. Which tube is implosion and X-Ray radiation protected. VOU is brand new and has time base and EH' circuiry. but has open sides so should be cased. The VDU comes complete with circuit diagram and has been line tested and has our six months quarantee. Offered at a lot less than some firms are asking for the tube alone, only $\mathbf{f 1 6}$ plus $\mathbf{f 5}$ post.

LIGHT. BOX

This when completed measures approximately $15^{\prime \prime} \times 14^{\prime \prime}$. The light source is the Philips fluorescent ' W ' tube. Above the light a sheet of fibreglass and through this should be sufficient light to enable you to follow the circuit on fibreglass PCBs. Price for the complete kit, that is the box, choke, starter, tube and switch, and

TANGENTIAL HEATERS

We again have very good stocks of these quiet runnng instan heat units. They require only a simple case, or could easily be fitted into the bottom of a kitchen unit or book case etc. A ${ }^{5} 5$ each for the first 3 , and 55.95 for the 3 k . Add post $£ 1.50$ per heater if not collecting. CONTROL SWITCH enabling full heat, half heat or

FANS \& BLOWERS

$5^{\prime \prime} £ 5+£ 1.25$ post. $6^{n} £ 6+£ 1.50$ post
$4^{*} \times 4^{\prime \prime}$ Muffin equipment cooling fan $115 \mathrm{~V} £ 2.00$
$4^{\prime \prime} \times 4^{\prime \prime}$ Muftin equipment cooling fan $230 / 240 \mathrm{~V} £ 5.00$ 9^{*} Extractor or blower 115 V supplied with 230 to 115 V adaptor $\mathrm{f} 9.50+£ 2$ post.
All above are ex computers but guaranteed 12 months $10^{\prime \prime} \times 3^{\prime \prime}$ Tangential Blower. New. Very quiet - supplied with 230 to 115 V adaptor on use two in series to give long blow $£ 2.00+\mathrm{f} 1.50$ post or $£ 4.00+\mathbb{E} 2.00$ post for two

TELEPHONE LEAD

3 mtrs long terminating one end with new BT , flat plug and the other end with 4 correctly coloured coded wires to fit to phone or

POWERFUL IONISER

Generates approx. 10 times more IONS than the ETI and similar circuits. Will refresh your home, office, shop, work room etc. Makes you feel better and work harder - a
complete mains operated kit, case included. $511.50+53$ PGP.

J \& N BULL ELECTRICAL

Dept. E.E., 250 PORTLAND ROAD, HOVE,

 BRIGHTON, SUSSEX BN350TMAIL ORDER TERMS: Cash, P. O. or cheque with order. Order s under $£ 20$ add $\mathrm{E1}$ service charge, Monthly account orders accepted

NEW ITEMS

Some of the many described in our current lis which you will receive with your parcel.

[2 POUNDERS*

2 P 122	130a rotary switch. surface mounting with poi
2 P 123	125 a rotary switch, surface mounting cover engraved, high medium low and ott
2P124	128 kv 001 mfd block condensor
2 P 129	110 rpm motor 115 V so supplied with adaptor for 230 V
${ }^{2 P 131}$	1 Crouzet motor 230 V fits the Crouzet gearbox
2P132	1 ceiling heat-stat for fire warning of protection
2P133	1 Cir cuit breaker 20a, Crabtree ref C50
2P134	19 V 500 mA psu. plugs into 13 a socket
${ }^{2 P} 135$	10 m 10 conductor intercom cable
${ }^{29} 136$	$121 / 2 \mathrm{kw}$ element made for tangential blowers
2 P 137	1 Thermo couple. stainless steel tipped for measuring heat
${ }^{2 P 138}$	1 Mams transformer 20 V 020 V la upright mou
[P141	1 rechargeable battery D slze is AH1 solder tag ended
2P142	10 m a pair intercom cable White PVC outer
2P144	1 malns operated relay with 4 - Ba cto contacts
${ }^{2 P} 146$	17,800 uf $150 \mathrm{C} \mathrm{d} \mathrm{c}$.
${ }^{2 P} 148$	1 Technical information on $3^{\prime \prime}$ FDD refundable if you buy 1
2 P 149	5 diff battery operated model motors
${ }^{2} \mathrm{P} 150$	1 PSU chassis with all components for 24 V 2 AdC unwite
2P151	1 Metal box $14 / 2.14 \times 4$ with lid add f 2.00 post
2 P 152	1 Motor start capacito 80uf 250 V
${ }^{2 P} 153$	1 Two station intercom unused but line reject
2P154d	9 Nicad charger plug into 13a socket 5.2V. 7 CA output
2 P 154 b	1 Nicad charger plug into 13a socket 6 V . 9 VA outpul
${ }^{2} 155$	1 Mains transtormer giving 16, 17.18\& 20 V 60 W
${ }^{29} 158$	1 Oven thermostat with temp calibrated knob
${ }^{2 P 159}$	19 V 500 ma cased with mains lead and output lead
${ }^{2 P 160}$	113 a plug adaptor fused takes 3 - 3a plugs
${ }^{2 P 161}$	16. diagonal side cutters
${ }^{2 P 162}$	1 Stereo Matrix PC8 mounting deempha
2P163	1 AC Working capacitor 12 uf 660 V AC or 1500 V de

 3 Ph Working capacitor 12uf 660 V AC or 1500 V de
 3 POUNDERS*

1 Mains toanstormer 50 V 2 A with 6.3 pilot light

I waterproot case will take 150 watf transformer
1 signal box. 3 lamps on face plate of metal box $51 \mathrm{ze} 5 / \mathrm{m}$
1 choke and starter to work fluorescent tube at 125 W
122 V 3a mains transformer with bridge fect fitted on top pane
10.5 a ammeter $3 / \mathrm{ac} \mathrm{dc}$ ex equipment
1 power factor counection condenser 35uf 350ac
P24 ${ }^{13}$ Heppr disc for Amstrad etc

4 POUNDERS

P12 50 m low loss $\mathrm{co} \cdot \mathrm{ax} 75 \mathrm{chm}$ - f 1 pos

3Horstmann time and set switches 15 amp
1150 w mains transtormer " c " core 43 V 3.5 A 1 powerful motor 2^{2} stack fitted with gearbox tinal speed 60 pm mains oper ated. could operate door opener
1 Uniselectorn 3 pooed $25 W .50 \mathrm{~V}$ coil slandart size

COMPUTERS

he Acorn Electiran' as used in many sclinots tor games and serious lobs Worik Itto colour or Blach and Whit TV Proper price was $f 199$. our Price. tester an
 wage handbood CV

£5 POUNDERS

£8 POUNDERS*

```
8P2 16v 10a secondary 
alarm mains operated,
alarm mains operate
l
    l
```


£10 POUNDERS*

10P18 1 mains operated klaxon s with motor in milddle
10P18 1 mains operated klax on
$10 P 19$
112 V alarm bell really loud
10P22
$10 P 23 \quad 1$ fruit machine meter relay
1 itruit

$10 \mathrm{P}_{24} \quad 1$ big

£15 POUNDERS*

$\begin{array}{ll}15 P 2 & 1 \mathrm{kit} \text { fot psu to supply one or two } 15 \mathrm{PP} 1 \text { amps } \\ 15 \mathrm{P} 3 \\ 1 \text { time switch battery or mains operated } 16 \mathrm{ac} \text { a contacts }\end{array}$

LIGHT CHASER KIT motor driven switch bank with connection diagram, used in connection with 4 sets of xmas lights makes a very eve catching display for home, shop or disco, only $£ 5$ ref 5P56

ISSN 0262-3617

PROJECTS . . . THEORY . . NEWS . COMMENT . . . POPULAR FEATURES .
 are expressly forbidden.

EVERYDAY
 ELECTRONICS
 INCORPORATING ELECTRONICS MONTHEY

The Magazine for Electronic \& Computer Projects

proportional electronic temperature
control inside the handle. Adjustable 280° to $400^{\circ} \mathrm{C}$. Burn-proof 3 -wirs mains lead. Fitted 3.2 mm Lnng-Life bit. $1.6,2.4$ and 4.7 mm available. 240 v a.c.
SK18 Soldering Kit. $\mathbf{£ 1 6 . 7 0}$ Build or repair any electronic project. LC1B 240v 18w iron with 3.2, 2.4, and 1.6 mm bits. Pack of 18 swg flux-cored $60 / 40$ solder. Tweezers. 3 soldering aids. Reel of De-Solder braid. In PVC presentation wallet.

Possibly smallest mains iron in the world. Ideal for fine work. Slim
'L' Series Lightweight Irons. High efficiency irons for all electronic hobby work. Non-roll handles with finger guards.
Stainless steel element shafts. Screwconnected elements. Slip-on bits available from 1.6 to 4.7 mm . LA12
\qquad
model $12 \mathrm{w}, 24 \mathrm{~mm}$ bit LC 18 Modal, $18 \mathrm{w}, 3.2 \mathrm{~mm}$ bit. 240 v Sid - 12 v available. Presentation wallet.

Replacement Bits
For all above irons. Non-stick designs, machined from special copper alloy, with Inconel retaining rings. Two types - Chromium plated with copper face fior economy and aase of usel and Iron plated with
Yellow E1.33 Green $£ 1.39$

Blue 1.44
per Reel

Designed specially for LITESOLD irons. Heavy, solid-plastic base with non-slip pads. Won't tip over, holds iron safely. With wiping sponge and location for spare (hot) bits. No 5 stand for EC50 iron No 4 stand for ADAMIN miniature Iron No 3 stand for LAI2 and LC18 Irons.

Pre-tinned face (Long Life). State tip size, iron and type.

Copper UL
EC50

- $\mathbf{1 1 . 7 4}$

Adamin 12 and
LA12 $=\mathrm{E} 1.00 \quad \mathrm{E} .71$

De.Solder Pumps 17.28 High Quality version of increasingly popular type of tool. Precision mado anodised aluminium body, plunger for simple, safe and effective de-soldering of all types of joint, using a standard soldering iron. Mandy colour-coded packs of 1.5 metres in 3 widths: Yellow -1.5 mm , Green - 2 mm , Blue - 3 mm . guard and high-seal piston. Easy
thumb operation. Automatic solder ejection. Conductive PTFE nozzle -

Top quality Japanese metric hardenad and tempered tools. Swivel-top chrome plated brass handles. Fitted plastic cases. 113 set -6 miniature screwdrivers 0.9 to $3.5 \mathrm{~mm} £ 3.92$

227 sat 5 socket spanners 3 to 5 mm £2.98
305 set 2 crosspoint and 3 hex wrenches 1.5 to $2.5 \mathrm{~mm} £ 2.86$

228 sot 20 piece combination:
5 open, 5 skt spanners, 2 crosspoint, 3 hex and 3 plain drivers, scriber, handle/holder $£ 6.42$
Microcutters. โ5.39 Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Full Kits inc. PCBs, or veroboard, hardware,
electronics, cases (unless stated). Less
latteries batteries.
If y dot have the issue of E.E. Which
includes the project -you will need too order the

THIS MONTH'S KITS
SAE or 'phone for prices

 VIDEO CONTROUER Oct 87 TRANSTEST Oct 8 8 AUTOMATIC PORCH LIGHT OCIB7 CARAVAN FRIDGE ALERT
STATC MONITOR OCI87 ELECTRONIC MULTI NOISE OATE Sept 87 PEASONAL STEREO AMP Sept 87
CAR OVE CAR OVERHEATNG ALARM Sepp 87
BURST-FIRE MANS CONTROLER BURST-FIRE MAINS CONTROLEER Sept87

 BUACCANEER I.B. METAL OETECTOR inc. cails casse, lass handle and hardware July 87 \$25.19
 case July 87
MONOMIX Jut
MONOMIX July 87
FERMOSTAT July 87 FERMOSTAT July 87
visual guitar Tuner VISUAL GUITAR TUNER JUI B7 WINOSCREEN WASHER WARMING M FRIOGE ALARMM May 87 \qquad
567.07
52000 21.99
811.99 AIARM THEBMOMETER Apri 8 114.88 $\begin{array}{r}\quad \\ \mathbf{~} 14.79 \\ \quad \\ \hline 25.98\end{array}$ buLb life ExTENOER April 87 (less casa) $£ 4.99$ EXP. SPEECH RECOGMITION Apri: 87 COMPUTER BUFFER INTERFACE Man 87 ACTIVE I/R BURGLAA ALARM Mar 87 vioeo guaro feb 87

${ }_{87}$ SPECTRUM SPEECH SYNTH.
SPECTAUM $1 / 0$ PORT less case. Fee 87 STEPPING MOTOR BOOSTER
STEPPING MOTOR MO200 Feb 87 STEPPING MOTOR MO200 Feb 87
HANOS-OFF INTERCOM (per station) in ${ }^{87}$ CAR ALARM Dec 86 $\begin{array}{r}19.99 \\ \hline\end{array}$ OUAL READING THERMOMETER (less case) Dec ${ }^{86}$ RAnoom mumber generator dec 86 - CHANNEL A-O (SPECTRUM) CONVERTEA Deg
${ }^{86}$ BBC 16 K SIOEWAYS RAM Dec 86 MOOEM TONE OECOOER NNV 86 OPTICALLY ISOLATEO SWITCH Nov CAR FLASHER WARMING Nov 86 20OMHZ OIG. FREOUENCY METER NoV LIGHT RIDER LAPEL BAOGE OHt 86 LIGHT RIOER OISCO YERSLION LIGHT RIOER 16 LEO VERSIO SCRATCH Blanker Sedi 86 INFRRA-REO BEA A ALARM Sept 86
EREEZER FAILURE ALARM Sepl 86 freezer failure alarm Sepi 8 CAR TIMER SEpt 86 batte ry tester aug TIIT ALARM July 88 \qquad HEADPHONE MIXER HIIY 86 SOUEEKEE CONTINUTY TESTE JIY 86 EIECTRONIC SCARECROW July 86 vox 80x AMP July 86
PERCUSSION SYNTH June 86 LIGHT PEN (less case) June 86 PERSDNAL RADIO June 86 Watchoig June 86 MINI STRDBE May 86 LOGIC SWITCH May 80 AUTO FIRING JOYSTICK May 86 STERE REVERB Apr 86 VERSATLE PSU ADI 86 CIRCLE CHASER ADr 86 FREELDAOER APr 86 STEPPER MOTOR ORIVER Ap 86 BEC MIO TNTERF ACE Mar 86 STEREO HI-FI PRE-AMP MAINS TESTER \& FUSE FINOER Mar 86 FUNCTION GENERATOR Feb 88 POWER SUPPIY FOR ABOVE TOUCH CONTROLLER Feb 86 DH TTANSOUCER (less P Potel Feb 86 SPECTRUM OUTPUT PORT Feh 86 ${ }^{\text {OPORT Jan }} 86$
maim Oelay switc
ONE CHIP AIABM Lit less case Jan 86 musical 000p bell Jan TIL LOGiC Probe Dec 85 oigit al capacitance meter dec 85 FLUX OENSITY TRANSOUCER NOV 85 FLASHING PUMPKIN less case Nov 85 SOUEAKING BAT less case Nov 85 SCREA MING MASK less case Nov 85
STRAN GAUGE AMPIIER DCt 85 SOLOERING IRON CONTROLLER O Ct VOLTAGE REGULATOR Sept 85 PERSONAL STEREO P.S.U. Sept 85 R.I.A.A.A. PRE-AMP Sept 85 CARAVAN ALARM Sept 85 frioge alarm sept 95 SEMI-CONOUCTO TEMP. SENSOR Sept 85

EE PROJECT KITS

 MAGENTARESISTANCE Thenmometen Sept 85 Less PLITRINUM PROBE Extra
124.20

TRI-STATE THER MOMETE UNIT Aug 85 £18.39 TREMOLO YIBAMOWEER (Bati) Aus 85 E6.66 STEPPER MBRATO Aug 85 FTE 137.92 STEPPER MOTOR INTEAFACE FOR THE BBC
COMPUTER Less case Aug 85
$\mathbf{f 1 3 . 9 9}$ 1035 STEPPER MOTOR EXTRA
OPTIONAL POWER SUPPIY PAR CONTINUITY TESTER JUly 85 train signal controller juy 85 AMSTRAO USER PORT July 85 ACROSS THE RIVER June 85 ELECTHONIC OOOREELL JUne 85 GRAPHIC EOUALISER
GUTO PHASE May 85
INSULATION TESTER ADE
$10 A O$ SIMPLIFIER FEB 85
games timer Jan 25
SPECTRUM AMPLIFIER Jan 85
TV AERIAL PRE-AMP Oe
Optional PSU $12 \mathrm{~V}\{2.44$

Oplional PSU $12 \mathrm{~V}\left\{2.44\right.$ ¢ $\mathrm{fl}_{14.8}^{86}$ MINI WORKSHOP POWER SUPPLY OEC 84 \{41.98 OOOR CHIME Oec 84 8 \& 17.89 Nov 84 A \quad T34.52
PROXImity ALARM Nov 84
MAINS CABLE DETECTOR OEt 84
MICRO MEMORY SYNTHESISER Oct $84 \quad \begin{array}{r}55.27 \\ \text { E57.57 }\end{array}$
ORML SPEEO CONTROLLER OCt 84
GUITAR HEAO PHONE AMPLIFIER Sept 88
SOUNO OPERATEO FLASH less lead Sept 8
SOUNO OPERATEO FLLASH less lead Sept 88 f6. 98
TEMPERATURE IWTERFACE FOR
${ }_{84}$ SEMPRATUKE INTERFACE FOR B8C AUg
CAA RADIO $800 S T E R$ AUB 84
CAR LIGHTS WARNING JIIY 8 a
VARICAP AM RADIO May 84
EXPERIMENTAL POWER SUPPIY M \quad £12.52

SIMPIE LOOP BUAGLAR ALARM May $84 \quad 1$		166.34

FUSE/DOOOE CHECKER Aor 84
OIGITAL MULTIMETER adt on for BBC Nicr 13.08
84 Cal mutteby Chareer mar $84 \quad £ 29.98$

PIPE FINDER Mar 84
10NISER Feb 84
SIGNAL TRACER Fet B4
SIGNAL TRACER Feb 84
CAR IIGAT WARNING Feb 84
GUITAR TUMER Jan 84
BIOLOGICAL AMPIIIER
BIOLOGICAL AMPIFIER Jan 84
CONTINUITY TESTER Dec 83
CHILOREN'S OISCO LIGHTS Oec B3
NOVEL EGG TIMER Dec 83 inct Case
SPEECH SYMTHESIZER FOR THE BBC MI SPEECH SYMTHESIZER FOR THE BBC MICRO Nov 83 less cable + sockets $£ 22.38$
MuLTIMOO Nov 83
HOME INTERCOM less link wire Oct 83 Aug 83 less sot wair
AIGH POWEA INTEAFACE BOARD M1CRO
$£ 18.42$
воай Aug 83 no
f 12.45
case
USER PORT $/ / 0$ BOARO less cable + plug
$\mathbf{f 1 2 . 2 5}$
$\mathbf{f} 12.59$

plug + case
MW PERSONAL RADIO less cass, May 83 MW PERSONAL AADI less case,
MOISTURE DEFECTOR May 83 MOVEITY EGG TIMER April 83 le NOVELTY EGG YIMER Appir
OUAL POWER SUPPLY March 83 buzz OFF March 83
PUSH BIKE ALAAM Fee 83
2 ZXAPE CONTROL Nov 82
2-WAY INTERCOM July 82 no case
REFLEX TESTEA JUYY 82
REFLEX TESTEA JUYY 82
SEAT GELT REMINER
SEAT BETT REMINDER JUN B2
EGG TIMER JUne 82
CAR LED YOLTMETER less case. May 82
V.C.O SOUNO EFFECTS UNIT Apr 82 CAMERA OR FLASH GUN TRIGG 82 less tripod bushes
POCKET TMMER Mar
POCKET TIMER Mar 82
SIMPIE STABIUSEO
SIMPLE STABILISEO POWER SUPPLY.

 MIMPLE INFRA REO REMOTE CONTROL ${ }^{\text {E5.28 }}$ | f22.44 |
| :---: | SUSTAIM UNIT Det 81

TAPE NOISE LMMITER OCt 81 HEADS AND TAILS GAME OCH 81 PHOTO FLASH SLANE OCt 81
FIUZ BOX FUZZ Box Oet 81
SOIL MOISTURE UNIT OC1 81
-12 PINATER LOCPY YEQ 81
 PHONE BELI REPEATER/8ABY ALARM May ${ }^{81}$ mooulateo tome doorbell mar 81 2 NOTE OOOR CHIME Dec 80
 GUITAR PRACTICE AMPLIFIER Nov BO $£ 14.10$ less

 AUDIO EFFECTS UNIT FOR WERO SOUNOS Ot \begin{tabular}{lll}
80

SPRIMG LIME REVERB UNIT Jan 80 \& | $[17.28$ |
| :--- |
| |
| |
| 32.64 |

\hline
\end{tabular} uniboaro burglab alabm Dec 79 OARKROOM TIMEA JULY 78 MiChOCHIME OODRBEL

SOUNO TO LIGHT Sept 78

Cot 79

SOUNO TO LIGHT Sept 78 R.F. SIGMAL GENERATOA Sepi $78 \quad \begin{aligned} & \text { [20.98 } \\ & \text { [10.98 }\end{aligned}$ IN SITU TRANSISTOR TESTER JUn $78 \quad \begin{array}{r}\text { E37.44 } \\ \\ 59.00 \\ \hline\end{array}$ WEIRO
ELECT
Electhonic oice mar 77
Uutimetea
 SIGNALINECTOR
CIACUITTESTEB

DIGITAL TROUBLESHOOTING

Top quality kits \& parts for this new series. Our excellent technical back-up service helps to ensure that your pro jects succeed every time. kit $£ 24.98$.
LOGIC PROBE- $\mathbf{~} 7.58$ including case. LOGIC PULSER- 97.48 including case VERSATILE PULSE GENERA-TOR- $£ 29.98$ including case. (case DIGITAL I different).
CURRENT TRACER-£20.56.
AUDIO LOGIC TRACER-E8.99.
EXPLORING
ELECTRONICS
ureadboard to follow the series right up to Aug. Follow this excellent beginners series. Full set of reprints 55.03 or 80 p per issue.
SEPT PARTS 72 p OCT PARTS $\mathbf{C R} .56$ NOV PARTS f 3.32

INTRODUCTION
 TO ELECTRONICS

An Introduction to the basic principles of electronics. With lots of simple experiillustrations and simple explanations. A lovely book. Ideal for all ages. INTROOUCTION TO ELECTRONICS COMPDNENT PACK 800K EXTAA
$£ 10.99$
Book also svailable separataly.

NEW BOOKS
$\begin{array}{ll}\text { Modern Opto } 0 \text { evice } \\ \text { Popects } \\ & £ 2.95\end{array}$ $\frac{88}{\circ}$ trol of Model Railways $£ 2.95$ A T.V.-OXers Handhool ${ }^{\text {BPI }} 176$ Midid Projects. Peritołd
Getting The Masit
I Getting The Most From
Your Printer. Penfold $\$ 2.95$
More Advanced f. 2.95
\qquad

BOOKS

How to Get Yout Electronic Proiets

Working. Penfold
A2.15
Penfold $\quad £ 2.10$
Basic Electronics. Hodder \& Stoughton $£ 8.98$ 8eganners Gurde to Buiding Electronic Profects 225 OIY Robotics \& Sensors Bultingsley. BBC Commodore 64
Elementary Electronics. Sladdin $\mathbf{6} 7.95$
$\mathbf{8} .99$ $\mathbf{5 2 . 4 3}$ How to Design \& Maka Your Own PC8s. BP121f2.15 How to Make Compirter Controlled Robots. Potter $\{3.20$ Wion Make Computer Madel Controlliers. Porterf 3.19 Interfacing to Microprocessors \& Microcomputers $\mathbf{6 . 5 0}$ Machine Code for Beginners. Usborne icro Interfacing Circuits Book
Mracroprocessors for Hobbyists. Coles Practical Computer Experiments. Part Usportical $\mathbf{8} 2.45$
$\mathbf{f 4 . 9 8}$
$\mathbf{f 1 . 9 5}$ Usborne
Questions \& Answers - Electronics. Hickman f Understanding the Micto. Usborne f1.95
JUST A SMALL SELECTION. LOTS MORE IN
OUR PRICE LIST.

TEACH IN 86

MULTIMETEA TPE MIazs2 as speciried. Guaranteec. Top quairy. Zar. , wi baray Compiete with leadsts, batterery and manual CLIP CONNECTNGLEADS , MOUNTING PANEL AND TO CROCODILE case. Specially redesigneo by Magenta. No external transtomen or accaptor requred PCB design for complete sstety and ease of assembly.
COMPONENTS FOR PRACTICAL ASIGNMENTS. Full set.
f15.84

TEACH IN 86 PROJECTS
LEGO'Technic Sets DIODE/TRANSISTOR TESTER Dec $85 \mathbf{1} 18.89$ USEFUL AUDID SIGNAL TRACER Jan 86 AUOIO SIGNAL GENERATOR Feb $86 \begin{array}{r}\mathbf{1 1 6 . 7 5} \\ \mathbf{£ 2 6 . 2 1}\end{array}$ R.F. SIGNAL GENERATOR March 86 £24.48 FET VOLTMETER Apr 86 $\mathbf{f} 24.48$
$\mathbf{f} 21.48$ DIGITAL PULSE GENERATOR May $86 \mathbf{\$ 1 6 . 6 8}$

MINI MODEL MOTORS - NEV

MINI MODEL MOTORS
$1 \frac{1}{2}-3 V, 2$ TYPES. MM1 -59_{p} MM $2-61 \mathrm{p}$

TEACHERS WE ARE STOCKISTS OF THE WHOLE RANGE. CONTACT US FOR BROCHURES. VERY COMPETITIVE PRICES AND QUICK DELIVERIES.

STEPPING MOTORS 12 VOLT

-(3.) 48 STEPS 200 STEPS

$\begin{array}{rl}1035 & \text { MD200 } \\ \mathbf{f} 4.50 & \mathbf{f 1 6 . 8 0}\end{array}$

MOTOR - GEARBOX ASSEMBLIES

Miniature precision made. Complete with quality electric motor. Variable reduction ratios
achieved by fitting from $1-6$ gearwheels (supplied) as required. Operates from 1.5 V to 4.5 V Small unit type MGS speed range $3 \mathrm{mmp}-2200$ rpm depending on voltage \& gear ratio. Large unit type MGL (higher torque motor) $2 \mathrm{rpm}-1150 \mathrm{rpm}$. Long 3 mm dia output shafts. Ideal for robots and buggies
53.49. Large Unit (MGL) £3.98.

PULLEY WHEELS. New Range-PLASTIC
WITH BRASS BUSH WITH BRASS BUSH $3^{2 n}$ dia. hole easily drilled to 3 or 4 mm . "" dla. 35 p
36 p . gn $^{\prime \prime}$ dla. 44 p . 1° dia. 44 p .
Metal collar with fixing screw, 3 mm bore 24 p . Flexible spring coupling 5 mm . Length 31 mm 68 p .
Flexible metal coupling (universal) 3 mm

CATALOGUE

Brief details of each kit, our books. 8

illustrations of our range of tools \& corn-
ponents. Also stepper motor, interface kit \& simple robotics. Plus circuit ideas for you to build. If you read Everyday Electronics then you need a copy of the MAGENTA catalogue.
CATALOGUE \& PRICE LIST - Sond $f 1$ in stamps itc. or edd f 1 to your order. Price ilsi - 9×4 sse. Catalogue FREE TO SCHOOLS/COLLEGES RE-
 auesteo on official letterhead.

TOP KITS

A SELECTION OF OUR BEST PROJECT KITS
As usual these kits come complete with printed circuit boards, cases, all components, nuts, screws, wire etc. All have been tested by our engineers (many of them are our own designs) to ensure that you get excellent results.

INSULATION TESTER

An electronic High Voltage tester for mains appliances and wiring. An inverter circuit produces 500 volts from a PP3 battery and applies it to the circuit under test. Reads insulation up to 100 Megohms. Completely safe in use.
OUR KIT' REF E444 £18.65

DIGITAL CAPACITANCE METER

Simple and accurate (1%) measurements of capacitors from a few pF up to 10,000 uF. Clear 5 digit LED display indicates exact value. Three ranges $-\mathrm{pF}, \mathrm{nF}$, and uF. Just connect the capacitor, press the button and read the value.

£39.57
 OUR KIT
 REF E493

3 BAND SHORTWAVE RADIO

Covers $1.6-30 \mathrm{MHz}$ in 3 bands using modern miniature coils. Audio output is via a built-in loudspeaker. Advanced design gives excellent stability, sensitivity and selectivity. Simple to build
OUR KIT REF E718 £25.27

DIGITAL FREQUENCY METER

200 MHz

An 8 digit meter reading from A.F. up to 200 MHz in two ranges. Large $0.5^{\prime \prime}$ Red LED display. Ideal for AF and RF measurements, Amateur and C.B. frequencies.
KIT REF E $563 £ 59.98$

'EQUALISER' IONISER

A mains powered loniser that produces a breeze of negative ions in the air. A compact, safe, simple unit that uses a negligible amount of electricity.
KIT REF E707 £14.79

A crystal controlled tuner with a New type of 'rotating' LED display. Clockwise or Anticlockwise rotation indicates high or low frequency. Perfect tuning is obtained when the pattern is stationary. Suitable for electric guitar pick-ups or may be used with a microphone for acoustic instruments. Also has an audio 'pitch pipe output. KIT REF E711 $£ 21.99$

> FROM MAGENTA

EVERYDAY

 INCORPORATING ELECTRONICS MONTHLY

NEWSAGENT ORDER FORM

Please reserve/deliver a copy of Everyday Electronics for me each month.
\qquad

Name \& Address
(Block capitals please)

Everyday Electronics is published on the third Friday of each month and distributed by Seymour.

Make sure of your copy of EE each month cut out this form, fill it in and hand it to your newsagent.

SUBSCRIPTIONS

Sell-out disappointment can upset any reader So why not take out a year's subscription and make sure of every issue, by post, straight from the Publisher? Complete the order form below and post to:
EVERYDAY ELECTRONICS, Subscription Dept., 6 Church Street, Wimborne, Dorset BH21 1 JH .
Tel. 0202881749.
Annual subscription rates:
UK $£ 14$. Overseas $£ 17$ ($£$ sterling only)
Overseas air mail £33 ($£$ sterling only)

[^1]6500046 in mi $240 \times 205 \mathrm{~mm}$ booklet supplied.
Working yottage
input impedance adaptor.

whi our loct
Thenism (701 150) this lfe wil
rwing a a st to 15 s supply 50,4 There ce cre 5000 cose .in we sad ance ian be assily chengor To make throys ewen more difiticalt for on unauthorised user an
 meanstes during which time ine keytoard is disseleo preventing furthei ontrias A latched or momenteny artout is walishih mation the unit weed for door locks, burgla alerms, cat mumobalisers, et A neenbrume kerboars ar pushburton switches mey be used and
 PCB, all componmis. conmetors, high power giero buzw and hil

XK121 C0CX KIT

XK121 LOCX KIT
350118 Sin of Kerboosd Swithes $\quad £ 15.95$ 701150 Blactric Lack Mectionism

PROPORTIONAL TEMPERATURE CONTROLLER KIT
 dque to maintein tern perature to within $0.5^{\circ} \mathrm{C}$. Ideal for photog. raphy. Incubators wine-making, etc. Max
. load $3 \mathrm{kw}(240 \mathrm{Vac})$ Tomp. ronge up to $90 \mathrm{C}, 5 \mathrm{Size}$
$7 \times 4 \times 2.5 \mathrm{cms}$.
MK4

SOLDERING EQUIPMENT
 ows and return spring 500056 in lap lointed side cutters. Insulated handies and return spring. $£ 2.10$ 050006 Light duty cutters. Curting capacity
$\mathbf{~} \quad \mathrm{E} .80$
TOOL KIT - Contains: side curters, snipe nose phiers, wire strippers, flat blade screwdriver, phalpadded case which when opened our measures

650007 Self-adjustable automatic wire stripper with buith-in cable cutter
K3.95 $1.0 / 1.4 / 2.0 / 2.4 / 3.0 / 3.8 \mathrm{~mm}$
650019 Set of 4 Staint E50 1.75 Straight not straight noosed-reverse action, € 3.65 650500 Titan 12 V dc Drill. 650570 Saturn Mains Oril TOCK ANTEX
ACCESSORIES

LOGIC PROBE

- 5 左

A MUST for working with TiL \& CMOS devices. Displays logic levels and pulses down to 25 ns with LEDs and sound. Comprehensive instruction

RECHARGEABLE SOLDERING IRON

Powerful cordless iron complete with table top/ wall-mounting charging bracket. Reaches solderwhich lights when soldering. Comes with mains charging unit and 12 V car battery ع17.95

HELPING HANDS

SCOOP PURCHASE ONLY $\{1.95 \mathrm{~m}\}$

 Comprises ready-built AM Tuner module (supe het). separate audio amp with volurne control and miniature speaker. All you have to do is connec these inree inems to a 9 V battery. Full instruction HANDY MUIITMETER

Takes up to $4 \times A A$ size. Charges 2 battenes in 4-6 hrs., 4 in 10-14 hrs. depending on strength of sunlight. Ideal for boating, caravannting, modelv

VELLEMAN KITS

We stock the full
K1771 Miniature FM TRANSMITTER $(50 \mathrm{~mW})$. 9-12V DC. Frequency: 100-108MHz Ideal bsbyphone aic.
K 2572 STEREO P3E-AMPLIFIER
K2583 HEATING CONTROLER $£ 7.9$ temperatures to be set and maintained for set periods in a day. Display shows tume or
$\$ 75.76$ K2638 CAR ALARM. Easy to mount. No talse alarms. Adjustable entry/exit times. Automatic reset prevents discharging of battery $\begin{array}{r}\text { £16.80 } \\ \hline\end{array}$ K 2603 YEAR TIMER. Standard mem steps expandable to 240 steps. Non-volatile source. Auto-start after powar falure. Two programmable "sieep". times. 4 relay outputs grammable "sieep" times. 4 relay outputs - on
relay ($3 \mathrm{~A} / 240 \mathrm{~V}$) supplied with kit. Extra relay (K2632\}. Membrane keyboard and housing cluded. (Transformer not Included.) Size:
$K 2632$ Hardware extension kt £132.30 TR2603 Transformer for K2603
Send sse 12" $\times \mathbf{S V}^{\prime \prime}$ for full cetalogue

SEND 9"×6" S.A.E.\& $50 p$ FOR CATALOGUE OR CALL AT SHOP
MON-FRI 9-5pm SATURDAY 10-4pm £6.50. Send cheque/PO/Barclaycard/Access No. with order. Giro No. 529314002.
LOCAL AUTHORITY AND EXPORT ORDERS WELCOME GOODS BY RETURN SUBJECT TO AVAILABILITY
$241 \times 116 \times 59 \mathrm{~mm}$.
cs 13 BOSTON RD
LONDON W7 3S, Te:01-567 8910 ORDERING INFORMATION: ALL PRICES EXCLUDE VAT
FREE P\&P on orders over $£ 20$ (UK only). otherwise add $75 \mathrm{p}+\mathrm{VAT}$. Overseas P\&P: Europe $£ 2.75$. Elsewhere
Magnifier and croco dile clips on ball and socket joints mounted on a heavy base. Ideal for holding and inspecting PCBs during soldering, fault (650 035)

Th
ELECTRONICS
N.

R-1

5.95

EVERYDAY
 ELECTRONICS

INCORPORATING ELECTRONICS MONTHLY

The Magazine for Electronic \& Computer Projects

 VOL 16 No. 12December ' 87

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL 6 CHURCH STREET, WIMBORNE,
DORSET 8H2 1 1JH
Phone: Wimborne (0202) 881749
See notes on Readers' Enquiries below-we regret that lengthy technical enquiries cannot be answered over the telephone

Advertisement Offices
EVERYDAY ELECTRONICS ADVERTISEMENTS 4 NEASDEN AVE., CLACTON-ON-SEA, ESSEX CO16 7HG. Clacton (0255) 436471

DATA

Another free catalogue this month, plus two free data cards - the first of a series of cards - you will get one data card free with each issue for the next few months. We have also added an extra eight pages to our normal issue size and expect to continue at this new size for some time.
The cards each give information on a microprocessor plus general data, they are designed so that two or more cards can be shown one way up to cover microprocessors or the other way to provide more general data, conversion tables, etc. We hope you find them of value.

TEACH-IN

This issue also carries an advertisement (page 657) for our new Electronics Teach-In book. This book is a direct result of demand for our Teach-in series (published in $85 / 86$). The series has been updated where necessary and put together to form a comprehensive introduction to electronics. Since it also carries eight constructional test gear projects it will be invaluable to just about everyone involved in electronics as a hobby, student, apprentice, teacher, technician or those in various industries that now require knowledge of electronic principles.

This book represents excellent value for money at just $£ 1.95$ for a complete, highly acclaimed, course in electronics plus the projects.

SPIN-OFFS

It is the first time that $E E$ has produced such a spin off. This will be closely followed by a book based on our Digital Troubleshooting series soon available through the EE Book Service. These two totally different publications will test the market for others we expect to sell over the next few years, forming a wide range of information on electronics in general.

SUBSCRIPTIONS

Annual subscriptions for delivery direct to any address in the UK: $£ 14.00$. Overseas: $£ 17.00$ ($£ 33$ airmail). Cheques or bank drafts (in

f sterling only) payable to Everyday Electronics and sent to EE Subscriptions Dept. 6 Church Street, Wimborne, Dorset BH21 1JH. Subscriptions can only. start with the next available issue. For back numbers see below.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS are available price $£ 1.50$ ($£ 2.00$ overseas surface mail) inclusive of postage and packing per copy. Enquiries with remittance, made payable to Everyday Electronics, should be sent to Post Sales Department, Everyday Electronics, 6 Church Street, Wimborne, Dorset BH21 1JH. In the event of nonavailability remittance will be returned. Please allow 28 days for delivery. (We have sold out of Sept. Oct. \& Nov. 85, April, May \& Dec 86, \& Jan 87.1

Binders to hold one volume (12 issues) are available from the above address for $£ 4.95$ ($£ 9.00$ overseas surface mail) inclusive of p\&p. Please allow 28 days for delivery.

Payment in $£$ sterling only please.

Editor MIKE KENWARD
 Assistant Editor
 DAVID BARRINGTON

Editorial Assistant
COLETTE McKENZIE
Editorial: WIMBORNE (0202) 881749

Advertisement Manager

PETER J. MEW Clacton (0255) 436471
Classified Advertisements
Wimborne (0202) 881749

READERS' ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a selfaddressed envelope and international reply coupons.

All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

We regret that we cannot provide data or answer queries on projects that are more than five years old.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or are in the form of inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture. Legal remedies are available in respect of some of these circumstances, and readers who have complaints should address them to the advertiser or should consult a local trading standards office, or a Citizen's Advice Bureau, or a solicitor.

TRANSMITTERS

We would like to advise readers that certain items of radio transmitting equipment which may be advertised in our pages cannot be legally used in the U.K. Readers should check the law before using any transmitting equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use.

The law relating to this subject varies from country to country; overseas readers should check local laws.

dual mains LICHTS FLASHER

> A festive light show for Christmas. Can safely drive up to 100W per channel

\triangle ttractive as they are, many people consider the fairy lights on the Christmas tree are more effective if they flash on and off. This is usually done with a special "flasher" bulb containing a bi-metallic switch assembly that is heated, during the "on" cycle, by the lamp filament.
Although simple, these bulbs have some disadvantages. The switch mechanism is delicate, and may be erratic in operation and short-lived.

Simple on-off flashing is not very attractive to look at; after all, the lights are off half the time, and the constant switching of a mainsvoltage circuit often produces annoying mainsborne r.f. interference. This simple project, whilst costing more than a bulb, effectively overcomes all these problems.

DUAL OPERATION

One of the advantages of this circuit is that it will drive two sets of lights. This greatly increases the odds of at least one set being "on" at any given moment, for a far more attractive display. The flash rates are independently adjustable and by judicious choice of speeds produces an amazingly "random" effect, whilst the controls also give the kids something novel to play with!
As the unit is entirely sold-state there is nothing to wear out, so reliability is almost guaranteed. All switching takes place at zerocrossing points of the mains waveform, virtually eliminating r.f. interference.

Finally, if the flashing becomes tiresome, the lights can be simply switched to "continuous" - you can't do that with a flasher bulb!

HOW IT WORKS

At the heart of the circuit are two D-type flip-flops, connected as slow-running oscillators with their switching points synchronised to mains zero-crossings. A simplified diagram of one oscillator, Fig. 1, shows how this is done.

Each flip-flop has a "clock" terminal, an input " D " and two complementary outputs " Q " and " \bar{Q} ". The input to D decides the state of the outputs, but they only change at the instant when the "clock" input goes positive.

To understand the oscillator action, assume that the D input is positive and a positve clock transition has just taken place. This will have
caused the \mathbf{Q} output to go positive, pulling D further towards positive through capacitor C.

At the same time $\overline{\mathrm{Q}}$ has gone negative and is discharging the D side of the capacitor through resistor R1. When it falls below half the supply, the next clock pulse will reverse the outputs and C will start charging in the opposite direction. Until this happens though, the clock pulses will not have any effect.

So long as the clock is fast relative to the main oscillation, the output frequency will be determined by C and RI. If the clock is synchronised with the mains, all output switching will take place only at zero-crossing points.

The purpose of resistor $\mathbf{R} 2$ may puzzle some readers; in some circumstances the input to " D " will exceed the supply rails in each direction after switching. If this happens, internal protection diodes conduct, taking the charge from capacitor C and upsetting the timing. Resistor R2 prevents this by restricting current flow to D. In the full circuit, the frequency is made adjustable by attenuating the voltage from Q before supplying it to C, as will be seen.

Fig. 1. Simplified oscillator circuit diagram.

TRIAC DRIVING

At this point, a few comments on triac driving may be worth while. At first sight this would appear to be simple; just apply a suitable gate current, of either polarity, and the triac turns on, right? Well, not always!

On closer inspection, firing triacs appears to be something of a black art. Load current, mains polarity at firing time and device temperature all play a part.

After a couple of problems with positive gate firing of C206Ds, experiments were conducted with half a dozen of them, firing with adjustable gate pulses which could be all positive, all negative, in phase with the mains or antiphase (reversed). Results showed that the C206D is more sensitive to negative gate drive, regardless of main circuit polarity.

Resistors

R1	3901 W
R2	1 M 1 W
R3	$270 \mathrm{k} \mathrm{1W}$
R4, R13-R20	$10 \mathrm{k}(9$ off)
R5, R7	4 M 7 (2 off)
R6,R8	10 M (2 off)
R9-R12	22 k (4 off)
R21,R22	1 k 5 (2 off)

All 0.6 W metal film.
1% except where stated otherwise.

Potentiometers

See page 679
VR1,VR2
100k lin carbon (2 off)

Capacitors

$0 \mu 47250 \vee$ mains suppression type C2,C3 $\quad 470 \mu$ axial elec. 25 V (2 off)
C4,C5 $\quad 1 \mu$ polyester layer (2 off)

Semiconductors

D1,D4, D5	1 N 4007 silicon (3 off)
D2, D3	BZY88C8V2 Zener diode, 8.2 V 500 mW (2 off)
D6, D7	1N4148 silicon (2 off)
CSR1,CSR2	$\begin{aligned} & \text { C206D Triac } 400 \mathrm{~V} 3 \mathrm{~A} \\ & \text { (2 off) } \end{aligned}$
TR1, TR3, TR5	BC184L npn silicon (3 off)
TR2, TR4	BC214L pnp silicon (2 off)
IC1	4013B CMOS dual D-type flip-flop

Miscellaneous

Printed circuit board, available from the EE PCB Service, code EE587; VDR1 mains transient suppressor; case, ABS box, $150 \times 80 \times 50 \mathrm{~mm}$; 14 -pin d.i.I. socket; switch, s.p.s.t. slide switch; miniature mains chassis sockets (2 off), plugs (2 off) to suit; mains lead, plug and strain relief device; knobs (2 off); connecting wire; nylon screws for S1. etc.
Approx. cost
Guidance only
£18

This probably doesn't apply to all triacs as a single C226D tested showed equal sensitivity to either polarity. However, for this design negative gate drive has been incorporated.

Incidentally, if you have a problem with an earlier design using positive gate drive to a C206D triac, it will usually manifest as firing on positive half cycles only. A lamp connected to the circuit will be slightly dimmer with a noticeable flicker. The cure is to replace the triac, since most do in fact operate quite satisfactorily from positive gating.

CIRCUIT DESCRIPTION

Having covered some of the problems of triac firing, the full circuit diagram of the Dual Mains Light Flasher, Fig. 2, can be described. Starting with the low-voltage power supply, this is derived from capacitous mains dropper Cl .

On positive half cycles capacitor C 2 is charged, with maximum voltage set by Zener diode D2. On negative half cycles capacitor C3 is charged in the same way, to produce the auxiliary negative supply.

Resistor R2 discharges Cl when the unit is unplugged, to prevent shocks being delivered from the pins of the plug! Capacitive mains droppers are cheaper, lighter and simpler than transformers, also they neither hum nor get hot. Unused current (that not used to actually charge capacitors $\mathbf{C} 2$ or $\mathbf{C} 3$) is purely reactive and will not cause your electricity meter to rotate

The clock input is generated by transistor TR1. Current from resistor R3, during positive half-cycles, flows through the base-emitter junction of TR1, turning it on. During negative half cycles it flows through diode D5, and TR1 is turned off.

The voltage at the collector is thus a squarewave, in opposite phase to the mains but accurately in time with it, and this is used to drive the two clock inputs of ICl . Two of the D-type flip-flops described earlier are contained in the integrated circuit ICl.

The feedback networks which control the two oscillators are connected as follows: pins 1 and 13 are the Q outputs; pins 2 and 12 are the $\overline{\mathrm{Q}}$, and pins 5 and 9 the Ds. The only difference between these networks and that shown in Fig. 1 are that the capacitors, C4 and C5, are not connected directly to the Qs, they are fed from attenuating potentiometers VR1 and VR2, which have their other ends effectively connected to half-supply through impedances of about one tenth of their value.

This gives an adjustment range of around ten to one, or a cycle length of about one to ten seconds with the values shown. This can easily be changed by altering the values of resistors R5 and R7 if desired.

Output taken from the Q outputs is applied to transistors TR2 and TR4. These in turn drive TR3 and TR5, which supply negative gate current to triacs CSR1 and CSR2.

Closing S1 applies drive to the last two transistors for continuous output, useful when the flashing effect becomes tiresome, or when checking that all the bulbs are still working. Constant drive is applied when the triacs are supposed to be on, ensuring they remain operated even if the load current drops below the "holding" value, as may happen with light loads.

Since all switching takes place at zerocrossings and the load is resistive, the circuit is inherently interference-free and no r.f. suppression components are needed. Triacs can easily be destroyed by sudden high voltage transients though, which sometimes occur on the mains supply.

The use of a mains transient suppressor VDR1 is a precaution against this; normally

Fig. 2. Full circuit diagram for the Dual Mains Light Flasher.

[510020

Fig. 3. Full size printed circuit board master foil pattern and component layout. It is recommended that IC1 be mounted in a 14-pin d.i.l. socket on the board.
open circuit, it will conduct and "soak up" spikes of excessive voltage. A blown triac, incidentally, usually goes short-circuit, delivering continuous power to the load.

Although few Christmas light sets are equipped with earth connections, the earth lead has been wired through to the output sockets in this design as it may be desirable in some other applications.

CONSTRUCTION

The component layout and full size printed circuit board foil master pattern is shown in Fig. 3. The small printed circuit board is available from the $E E P C B$ Service, Code EE587.

Construction of this project has been kept as simple as possible. It should, in fact, be suitable for relatively inexperienced enthusiasts, providing extreme care is taken to avoid shock whilst testing.

Resistors R1, R2 and R3 are I watt types, all the rest are 0.6 watt one per cent types, but none of the values are critical and five per cent will do just as well. Capacitor C1 MUST be rated for continuous 240 V use, the type specified is listed by the suppliers as an "IS" (interference suppression) component. Capacitors C4 and C5 are the small, silvercoloured polyester layer type, which are not polarity conscious.

A di.l. socket is recommended for IC1. Lastly, the potentiometers MUST have plastic shafts, and plastic knobs that cover their bushes should also be used to ensure safety for the finished project.

Check the p.c.b. for fit in the case before starting to fit the components. The positioning of these can be seen in the component layout diagram, Fig. 3.
The components are probably best fitted in "height order", that is, resistors and diodes
first, then the i.c. socket, then the smaller capacitors and transistors, etc. The only point to note is that capacitors C2 and C3 may be a slightly tight fit between diodes DI and D4 to their left and D5 to the right,' so when fitting these diodes tweak the leads sideways a little, away from the capacitors.

BOARD TESTING

The testing that can be carried out is somewhat limited as most of the circuit will not operate without the mains connected to operate the clock inputs. AS THE CIRCUIT WILL THEN BE CONNECTED DIRECTLY TO

THE MAINS IT MUST ALL BE TREA TED AS "LIVE" and it is obviously unwise to touch unless you know EXACTLY what you are doing! In view of this, check the completed board very carefully.

It is probably worth testing the positive and negative supplies before plugging in ICl ; this can be done by hooking a voltmeter across capacitors C 2 and C 3 in turn, THEN connecting to the mains supply. It would also be possible to check operation of transistor TRI by looking at the average collector voltage, which should be somewhere close to half the positive supply, about 4.1 V .

The completed unit showing the board slotted into the case side grooves.

The completed unit. The two potentiometers must have plastic spindles for added safety.

Fig. 4. Interwiring from the circuit board to the case mounted components. The mains lead should be held in position by a suitable plastic clamp.

Fig. 5. Suggested drilling details for the case. Because of the presence of mains it is important to use a "plastic" case.

This is about all the testing that can be done without the potentiometers and loads (lights) connected, so the project can be assembled and wired into the case for final checking. Fig. 4 shows all the interconnections needed; a few lengths of ribbon cable make for a neat job. Check the wiring carefully when complete.
To ensure adequate clearance between all components details of drilling for the case are given in Fig. 5, this being a standard grey ABS box with p.c.b. mounting slots, available almost everywhere. Switch S1 was actually a two-pole two-way switch, the two poles were wired in parallel for additional reliability.
Christmas lights, as many readers will know, are designed to fail "short circuit". This prevents the whole set going out if a bulb blows, and enables easy identification of the fault. The drawback with this arrangement is that each failed bulb increases the load on the rest, with a corresponding risk of destruction of the entire set should enough blown bulbs remain unnoticed for a time.

To overcome this failing a special "fuse bulb", more delicate than the others, is generally fitted, offen with a white-painted top for identification. At switch-on, the extra surge in this bulb can be clearly seen and it might be expected that it would not last very long if driven by a flasher unit.
As a test, the author's lights, which have survived at least two Christmases on the tree and are slightly blackened as a result, were driven continuously for twenty-four hours, and all bulbs including the fuse survived. The problem would not, then, appear to be that serious.

However, it would be possible to remove the fuse bulb and fit two 20 mm cartridge fuseholders to the unit so that suitable fuses, say 250 mA for 36 W lamp sets, can be used. The choice is left to the individual constructor. In any case, the use of a fused mains plug with a 2 A or 3A fuse is strongly recommended.

FURTHER USES

This project may well find other uses apart from driving the tree lights. Although designed for low loads it can safely drive up to 100 W per channel, the limit being set mainly by the lack of heatsinks on the triacs.

It could obviously be used to generate eyecatching displays for shops, exhibitions and the like, and could provide attractive "disco light" shows at parties. The uses are limited only by the user's own imagination, and the simple, inexpensive construction allows more than one unit to be built if required.

GUDIO SIGMAL GEMERATOR

 MARK STUART

A low cost, versatile audio signal generator providing up to 6 V output.

THIS simple low cost audio generator is extremely useful to have around. The output is a sine wave of up to six volts peak to peak and the frequency can be varied from 33 Hz up to 33 kHz . Two output sockets give variable outputs of $0-60 \mathrm{mV}$, and $0-6$ volts. A third socket gives a constant six volts output which can drive loads as low as eight ohms directly at up to 0.5 watts. This high power output level is ideal for checking loudspeakers and associated wiring. The compact construction makes the unit perfect for the tool box or pocket.

CIRCUIT

The circuit diagram of the oscillator is shown
in Fig. 1. A single audio amplifier i.c. the LM386N-1 does everything. The frequency of oscillation is set by the dual variable control VR2a and VR2b, in conjunction with whichever pair of capacitors is selected by SIb and SIc. Capacitors Cl and C 4 give the low frequency range of 33 Hz to $330 \mathrm{~Hz}, \mathrm{C} 2$ and C5 give 330 Hz to 3.3 kHz , and C3 and C6 give 3.3 kHz to 33 kHz .

The components together form a frequency selective net work known as a Wein Bridge. At the frequency of oscillation the circuit has its maximum voltage "gain" of one third. Above or below this frequency the "gain" falls away. Unlike the sort of tuned circuits used in radio receivers which can have very sharp peaks, this circuit has only a gentle "hump" in its frequency response. Its big advantage is that it does not use inductors (which would be very large for low frequencies) and that the frequency can be varied by changing just the two resistor values. Feedback via this network is passed from the output of IC1 (pin five) to its non-inverting input (pin three) via R2 and R3. If the amplifier gain is exactly three the losses of the feedback network are made up

Fig. 1. Complete circuit diagram of the Audio Signal Generator.

and the whole circuit will oscillate as required. The problem in a practical circuit is that a gain of exactly three is impossible to achieve. If the gain is only slightly less than three the circuit will never oscillate and if the gain is slightly more than three the oscillations will go on increasing in level until the amplifier is driven into clipping and the output is no longer a sine wave.
What is needed is a means of measuring the output level and increasing or decreasing the gain as the output voltage falls or rises. Many elaborate circuits have been designed to do this, some of which are very sophisticated and are used in top class audio measuring instruments. One of the most common methods is to use a pair of diodes or Zener diodes in the feedback network to introduce a controlled form of clipping and to set the gain to slightly over three. This method introduces a small amount of distortion but is quite adequate for some applications

THERMISTOR

An alternative is to use a thermistor which is driven by some of the output signal and as a result increases in temperature and changes resistance. This change in resistance is arranged to affect the feedback signal so that if the output rises and the thermistor gets hotter the gain is automatically reduced and vice-versa. In this way the gain is constantly controlled and sets itself to exactly three. Low distortion and

simple circuitry are the merits of this method, the only drawback being the cost of the thermistor. As this has to be heated by a very small signal it has to be physically small and contained inside an evacuated glass envelope. The RA53 type usually used costs around $£ 6.00$ which is rather expensive when a simple, cheap circuit is required. In this circuit the thermistor method has been used but instead of a standard thermistor a small cheap filament lamp is employed.

LAMP CHARACTERISTICS

It is generally known that the resistance of a filament lamp changes as it heats and cools. What is probably less well known is exactly how much. To get some idea of the figures involved a small bulb of 12 volts 60 mA rating was tested. The voltage across it was varied and the current measured at different voltages from 25 millivolts upwards. The resulting curve is plotted in Fig. 2. A normal resistor would produce a straight line as shown by the dotted line for a 200 ohm resistor. The shape of the curve shows that initially the current increases rapidly for only a small increase in voltage but gradually increases less and less as the voltage gets higher.

At very low current and voltage $(1 \mathrm{~mA}, 25 \mathrm{mV})$ the slope of the curve shows the resistance to be around 25 ohms. At higher currents the effective resistance rises becoming 355 ohms at 12 volts. This has very interesting implications from the point of view of switchon surges. In this case a 60 mA bulb will actually look like a 25 ohm resistor at switch-on and will draw a current of 500 mA . If the power

COMPONENTS

Resistors

R1,R5,R6	$1 \mathrm{k}(3$ off)
R2	47 k
R3	$22 k$
R4	$68 k$
R7	150
R8	882
R9	$10 k$
R10	100

Potentiometers
VR1
VR2 10k dual reverse log.
VR3 1k log.
Capacitors C1,C4

470 n 100 V min. polyester 10\%
C2,C5 47n polyester 10\% C3,C6 $\quad 4 n 7$ polystrene 5\% C7, C8 C9 100μ radial elect. 16 V 220μ radial elect. 16 V

Semiconductors

 IC1LM386N-1 amplifier

Miscellaneous

LP1, 12 V 60 mA min. wire ended lamp.

S1, 3pole 4way rotary switch.
SK1 to SK4, 4mm panel sockets.
Knobs, 2 miniature, 1 with metal skirt; i.c. socket, 8 pin; PP3 battery clip; p.c.b., available from the EE PCB Service, order code EE589; metal case - size $75 \times 100 \times 40 \mathrm{~mm}$; wire; case feet.

Fig. 2. Lamp resistance variation.
supply can only provide 250 mA then a voltage dip will occur which could result in numerous undesirable circuit effects. If it is assumed that all bulbs behave similarly it indicates that a car headlight bulb rated at 48 watts or four amps will draw an initial surge current at switch-on of around 35 amps ! The headlamp switch must therefore berable to handle regular 70 amp current surges.
Getting back to the original purpose of all this, it is clear that the bulb filament can be used in the same way as a thermistor to control
the gain of the oscillator circuit. The bulb resistance increases as the power in it increases and this must be arranged so that it causes a decrease of circuit gain.

SECOND FEEDBACK LOOP

The arrangement shown in Fig. I achieves the necessary control by introducing a second feedback loop around ICl . This loop is from the output to the inverting input so is negative feedback. The output signal is coupled via C8 and R7 to the lamp LPI. The voltage across the

lamp is tapped off via R1 and VR1 and fed to pin two of IC1. Operation is as follows: Initially when the circuit is switched on LP1 is cold and so has a very low resistance. Any feedback via R7 is therefore shunted away and has little effect. Without negative feedback the circuit has high gain and so oscillation commences and builds up.
As LP1 is heated by the increasing output signal, its resistance increases and so the voltage across it also increases. This causes more negative feedback to be applied to the circuit which reduces its gain. This stabilises the oscillations at a level which then can be pre-set by means of VR1. The result is a good stable sine wave output of 6 V peak to peak.
Although the final circuit is very simple the actual design of the negative feedback stabilisation loop is quite difficult. The thermal inertia of the lamp puts a delay into the circuit which can cause the stabilisation to overshoot. This means that the output level can have a tendency to bounce up and down as the frequency is varied. Careful design is necessary to reduce this effect to a minimum.

OUTPUTS

Three outputs are available from the circuit. One is straight from the i.c. output via C9, and is capable of driving a speaker at up to 0.5 watts. The second output is variable by means of VR3 from zero to six volts. R8 protects this output from short circuits. The third output is divided by 100 by R9 and R10 and so is suitable for use with sensitive input circuits.

POWER

The circuit can be powered either by 9 or 12 volts. A PP3 battery will give adequate power for intermittent use. A mains adaptor should be used if the unit is in use for longer periods for example during bench testing. A section of S1 (Sla) is used as the on-off switch.

CONSTRUCTION

The whole circuit is built on a small printed circuit board which is shown in Fig. 3, the copper track pattern is also shown. Assemble the board as shown taking care to get C7, C8 and C9 the right way round. A socket should be used for ICl . The board should be fitted with flexible wire leads for the connections to VR3 and S1. These leads are best fitted directly to the board by stripping approximately 6 mm of insulation and passing the bare ends through from the component side and soldering on the track side.

Refer to the wiring diagram of Fig. 5 for all of the necessary off-board connections. Switch Si has all of its tags numbered or lettered for ease of identification. If different switches are used it may be necessary to make changes to this. The lamp LP1 should be secured to the board with a small blob of adhesive. It is important that the correct lamp is used for the stabilisation circuit.

SETTING UP

The circuit only requires adjustment of VRI to be up and ready to use. Fortunately this adjustment is quite simple. Ensure that a fresh battery is fitted, select the lowest frequency range and set the dial to give approximately 50 Hz . Connect a multimeter set to a.c. volts between OV and "Output 1". Adjust VR1 to give a reading of 2.1 volts, and that's it. The calibration of VR2 can be done by borrowing a frequency meter or oscilloscope, or in a slightly more primitive way by comparison with musical instruments.

The scale and panel label shown in the photographs can be copied, stuck on and protected by self adhesive transparent film. \square

Fig. 4. Interwiring details.

MICRONTA

 NEW PRECISION MULTITESTERS

 NEW PRECISION MULTITESTERS}

(A 28-Range FET VOM. Perfect for electronics testing! 10 megohms per volt DC sensitivity. Measures: 1000 volts $D C$ in seven ranges and 1000 volts $A C$ in five ranges. DC current to 10 amps , resistance to 100 megohms. Decibles: -20 to +62 dB . Fuse protected. Requires one 9 v and one "C" battery. Measures: $71 / 16 \times 51 / 2 \times 23 / 4$ ".
22-220
£34.95
[B] 43-Range Multitester. 50,000 ohms per volt DC sensitivity. Fuse and overload protected. Measures to 1000 volts DC in 12 ranges and 1000 volts $A C$ in 8 ranges. DC current to 10 amps , resistance to 20 megohms. Decibles: -20 to +62 dB . Requires one 9 v and one " $A A^{\prime}$ battery. Measures: $6^{11 / 16 \times 47 / 8 \times 23 / 8 " .}$
22-214
§29.95
\square

For The Best In High Quality Electronics

\qquad
 CH
 \title{

City and Guilds

 \title{
City and Guilds

 MIKE TOOLEY B.A.

 MIKE TOOLEY B.A.

 MICROPROCESSORS}

 MICROPROCESSORS
}

\title{

INTRODUCING

INTRODUCING
 MICROPROCESSORS

Abstract

In Part 1 we set the scene for our nine part series and introduced readers to the architecture and terminology of microcomputer systems. In this part we shall be revealing some of the innermost secrets of the prime mover within a microcomputer system, the microprocessor.

LEARNING OBJECTIVES

The general learning objectives for part two of Introducing Microprocessors is that readers should be able to:
(a) draw a block diagram showing the internal architecture of a representative 8 -bit microprocessor and state the function of each of the principal internal elements (2.1)
(b) state and explain the function of each of the principal external connections of a representative 8 -bit microprocessor (2.1) (c) explain the need for a clock and state typical frequencies and periodic times for microprocessor clocks (2.1)
(d) make appropriate. use of manufacturers' data sheets (2.1)
(Note: City and Guilds module document reference numbers are shown in brackets.)

The specific objectives for this part are as follows:

2.1 INTERNAL
 ARCHITECTURE OF A MICROPROCESSOR

2.1.1 Draw and interpret a block diagram showing the internal architecture of a representative 8 -bit microprocessor.
2.1.2 State and explain the function of each of the principal internal registers of a representative 8 -bit microprocessor.
2.1.3 State and explain the function of each of the principal external connections of a representative 8 -bit microprocessor. 2.1.4 Explain the need for a clock and distinguish between external and internal microprocessor clocks.
2.1.5 State the range of typical clock
frequencies and periodic times for common 8-bit microprocessors.
2.1.6 Use manufacturers' literature to determine the supply voltage, pin-out, and internal features of any common 8-bit microprocessor.

MICROPROCESSORS

In Part 1 we briefly mentioned that a microprocessor performs the functions of a central processing unit (CPU) within a microcomputer. We also stated that the microprocessor provides control and synchronisation signals for the rest of the system. From this, it should be obvious that the microprocessor is the single most important component within any microcomputer system.

The basic internal elements of a microprocessor are as follows:
(a) registers for temporary storage of instructions, data, and addresses
(b) an arithmetic logic unit (ALU) able to perform a variety of arithmetic and logic functions
(c) control logic which accepts and generates external control and supervisory signals (such as RESET and READ/WRITE) and synchronizes data transfers within the system.

Registers

Internal registers can be thought of as arrangements of pigeon holes into which data (in binary form) can be placed during processing. Some registers are directly accessible to the programmer (i.e. he can set or read their contents at will) whilst others are reserved for the machine's own
use. Registers may also be classified as "dedicated" (i.e. they have a specific purpose such as pointing to a memory location or holding the results of an ALU operation) whilst others are described as "general purpose".

In the case of an 8-bit microprocessor, most of the general purpose registers will be capable of storing eight bits. Furthermore, since each of the bits may be either 0 or 1 , there will be a total of 256 possibilities for the contents of such a register, ranging from 00000000 to 11111111. Registers used for "pointing" to memory locations, on the other hand, will generally be capable of holding sixteen bits and consequently their contents may range from 0000000000000000 to 1111111111111111 (i.e. 0 to 65535 decimal).

The data bus lines in an 8-bit microcomputer are labelled D0 to D7. The most significant data bit (i.e. that with the greatest binary weight) appears on D7 whilst the least significant bit (i.e. that with the least binary weight) appears on DO. In the case of a 16 -bit address bus, the lines are labelled A0 to A15 and the most and least significant address bits are respectively those which appear on address lines A15 and A0. The most and least significant bits are often referred to as the MSB and LSB respectively. Note that it is conventional to write binary numbers with the MSB first and the LSB last (see Part 1).

Unfortunately, there is some considerable variation in both the internal architecture and terminology used by

EET0060

Fig. 2.1 IMP's external connections. N.B. A bar (${ }^{-}$) over a particular signal indicates that it is active-low (i.e. logic 0 when asserted).
different microprocessor manufacturers. Despite this, there are a number of common themes. The major microprocessors families, for example, tend to retain a high degree of upward compatibility both in terms of internal architecture and the software "instruction set" and this is clearly an important consideration in making a new product attractive to the equipment manufacturer.

INTRODUCING IMP

IMP stands for introductory microprocessor, a hypothetical device which we shall be using to explain some of the fundamental concepts of microprocessors. We have chosen to follow
this route, rather than tailor our description to a real microprocessor, in order to keep the explanation as simple as possible. IMP contains many of the features found in a real 8-bit microprocessor without favouring the architecture of any particular processor family. By this means, we hope to provide readers with a gentle introduction to microprocessors avoiding superfluous or processor specific information which may otherwise serve only to confuse the newcomer.
Important differences between IMP and real microprocessors will be discussed as we progress but readers who require detailed information on
particular microprocessors need not worry as we shall be presenting this information in the current series of Data Cards. These cards will feature all of the most popular 8 -bit microprocessors ($6502,6800,8085$ and Z 80) and will build to provide a useful library of microprocessor related data.

IMP has an 8 -bit data bus, 16 -bit address bus and five control and supervisory signal lines. Like most 8-bit microprocessors, IMP has a 40 -pin d.i.I. package and operates from a +5 V supply. IMP's connections with the outside world are shown in simplified form in Fig. 2.1.

Internal architecture

The internal arrangement (architecture) of the IMP is shown in Fig. 2.2. At first sight this diagram may look rather complex so we will spend some time explaining each individual feature and how it relates to the working of the unit as a whole.
The majority of IMP's internal registers are linked together by means of an internal data bus. This bus can be thought of as a highway along which bytes are transferred from one register to another. Since we are dealing with an 8 -bit microprocessor, the internal data bus is naturally eight bits wide. Fig. 2.3 shows how two 8 -bit registers (A and B) are coupled to the internal bus. Separate lines from the control unit (not shown on
N.B. A bar () over a particular signal indicates

Fig. 2.2 IMP's internal architecture

Fig. 2.3 Connections to the internal data bus
either Fig. 2.2. or Fig. 2.3) are used to determine whether:
(a) the contents of the register are to be made available on the bus (so that it may be copied elsewhere),
or (b) the data currently present on the bus is to be latched into the register (replacing whatever was there before), or (c) the register is to be isolated from the bus (preserving its contents for future use).
Now, consider the process of copying data from register A to register B. We would need to make the data in register A available on the bus (case (a) above), latch the data into register B (case (b) above), and ensure that every other register connected to the bus was currently isolated (case (c) above). If this is beginning to sound rather complex, there is no need to worry as the generation of the necessary internal control signals is both implicit in a particular instruction and entirely automatic.

Data Bus Buffer

The data bus buffer separates the internal data bus from the external data bus and it incorporates eight individual bidirectional current amplifiers. The buffers may be made to receive data from the external bus or transmit data to the external bus in response to control signals (not shown in Fig. 2.2). The buffer helps regularise the logic levels received by the microprocessor and provides a reasonable amount of current gain for "driving" the external bus. The data bus buffer thus provides a means of isolating the microprocessor from the harsh world outsidel
[Some microprocessors allow the microprocessor to isolate itself from the data bus by placing the data bus buffer in an open-circuit (i.e. disconnected) or "tristate" condition. This allows other "intelligent" devices to place information on the data bus.]

Address bus buffer

The address bus buffer behaves in a similar fashion to that of the data bus buffer. It is, however, important to note
that the individual address bus buffers are unidirectional since address information is only generated by the microprocessor and not received by it.
ISome microprocessors allow the microprocessor to isolate itself from the address bus by placing the address bus buffer in an open-circuit (i.e. disconnected) or "tri-state" condition. This allows other "intelligent" devices to place information on the address bus.]

Instruction Pointer (IP)

The instruction pointer is a 16-bit register which contains the address of the next instruction byte to be executed. The contents of the register is thus said to "point" to the next instruction byte. The contents of the instruction pointer is automatically incremented each time an instruction byte is fetched.
[Note: Many microprocessors refer to this register as a Program Counter (PC)]

Accumulator (A)

The accumulator is an 8-bit register which functions both as a source and destination register; not only is it the source of one of the data bytes required for an ALU operation but it is also the location in which the result of an ALU operation is placed.

Flag Register (F)

The flag register contains information on the internal status of the microprocessor and, in particular, signals the result of the last ALU operation. It is important to note that the flag register is not a register in the conventional sense; it is simply a collection of bistable latches which can be "set" or "reset" depending upon the result of an ALU operation. The output of each bistable can be considered to act as a "flag". IMP has the following flags:

CARRY (C) - set to 1 when the last ALU operation has produced a carry OVERFLOW (V) - set to 1 if the last ALU operation resulted in an overflow ZERO (Z) - set to 1 if the result of the last ALU operation was a zero
NEGATE (N) - set to 1 when
subtraction has taken place, otherwise reset to 0
INTERRUPT (I) - set to 1 when interrupts are disabled (in this state the microprocessor is unable to accept an
"interrupt request" generated by an external device).
The composition of IMP's flag register is shown in Fig. 2.4. It is important to note that, once changed, the various flag bits remain either set or reset until a further change occurs. The programmer is only able to directly affect the state of the CARRY and INTERRUPT flags. The others change state indirectly as a result of program execution.

EE10096
Fig. 2.4 IMP's flag register

Stack Pointer (SP)

IMP needs to have access to an external area of read/write memory (RAM) which permits temporary storage of data. This area of memory is known as a "stack" and it may typically occupy between 16 and 256 bytes of memory. (Note, however, that the stack is a dynamic structure and its size varies continuously during processing.)

The stack operates on a "last-in firstout" (LIFO) basis; data is "pushed" onto the stack and later "pulled" off it. The "stack pointer" keeps track of the extent of the stack by holding the address of the last used stack location.
[Note: Some popular microprocessors (e.g. 6809) have two independent stack pointers; a "system stack pointer" (SSP) and a "user stack pointer", (USP).]

Instruction register

The instruction register is a temporary storage location which is used to contain the current instruction byte whilst it is decoded. The instruction register is not directly accessible to the programmer (i.e. it cannot be loaded directly nor can its contents be copied to other locations).

Instruction decoder

The instruction decoder, a complex arrangement of logic gates with outputs which are fed to the control unit, operates on the instruction currently held in the instruction register. The instruction decoder informing the control unit of the actions demanded by the current instruction le.g. the need to take the R/W line low and latch the contents of the HL register pair into the address bus buffer).

Control Unit

The control unit generates internal control signals (not shown in Fig. 2.2) which determine the direction, source and destination of internal data transfers, activates external control lines when required, and responds to external signals which arrive on the control bus. The control unit is also responsible for internal synchronisation.

General purpose registers

Apart from the accumulator (A), IMP has three 8 -bit registers which may be classed as "general purpose". These are B, H and L . Register B is often used as an "alternative accumulator", results which appear in the accumulator being regularly transferred to and from register B . The H and L registers can be used as individual 8 -bit registers and may also be used "endon" to provide a 16 -bit general purpose register (referred to as the "HL register pair"). In this mode, HL can be used as a pointer to data stored in memory (i.e. the 16 -bits in HL form an address at which data is to be stored or from which data is to be fetched). The HL register pair can thus be used as an "address pointer" and, in this context, the H register contains the "high" (most significant) byte of the address whilst the L register contains the "low" (least significant) byte of the address.

Register model

Whilst Fig.2.2 provides us with some idea of IMP's internal arrangement, it is unnecessarily complex from the point of view of the programmer. The programmer is neither concerned with the links between registers nor need he/she be aware of internal features over which he/she has no direct control. In this context, the "register model" depicted in Fig. 2.5 provides a more useful representation of IMP and this merely shows the registers which are directly accessible to the programmer and over which the programmer has control.

Problem 2.1

Fig. 2.6 shows the state of IMP's

Fig. 2.5 IMP's register model

Fig. 2.6 State of registers for problem 2.1
internal registers at a particular point in the execution of a program. The MSB of each register (with the exception of the flag register) appears on the left and the layout follows that shown in the register model of Fig. 2.5.
(a) What is decimal value of the data in the accumulator?
(b) What is the hexadecimal value of the data in the accumulator?
(c) Which one of the three 8 -bit general purpose registers has the GREATEST value?
(d) What hexadecimal address is pointed to by the Instruction Pointer?
(e) What decimal address is pointed to by the Stack Pointer?
(f) In which of the 8 -bit registers is the MSB set?
(g) In which of the 8 -bit registers is the LSB set?
(h) Which of the flags is set?
(i) Which of the flags is reset?
(j) If the HL register pair is currently being used as an address pointer, what hexadecimal address is it pointing to?
(k) Are interrupts currently enabled or disabled?

CONTROL SIGNALS

IMP has five control bus signals. Four of these are inputs and one is an output. We shall briefly discuss the function of each:

Read/Write (R/W)

(output)

This line is taken low (i.e. to logic 0) when IMP is performing a "write" operation le.g. when data is to be transferred from one of IMP's internal registers to an address in RAM). IMP takes the line high (i.e. to logic 1) when a "read" operation is being carried out.
[NB: Some microprocessors (e.g. Z80) have separate READ and WRITE lines.]

Interrupt request (IRQ)

(input)

This line serves as an input to the microprocessor and is taken low by an external device wishing to signal the fact
that it requires attention. Provided the "interrupt flag" is reset (i.e. logic 0) this request will be honoured and the microprocessor will cease normal processing and execute the required "interrupt service routine". The interrupt line is said to be "active-low" (i.e. it is taken to logic 0 when asserted).

Non-maskable interrupt (NMI) (input)

As we have seen, the response to an ordinary interrupt ((IRQ) is determined by the interrupt status flag and thus the interrupt may be "masked". Instructions may be placed within the program which "set" or "reset" the interrupt flag hence disabling or enabling interrupts. This technique provides us with a flexible method of responding to interrupts; we can accept them or reject them at will There are, however, some situations in which it is desirable that an interrupt should be serviced regardless of what else is going on: Hence a separate "nonmaskable interrupt" line is provided. When this line is taken low, normal program execution is interrupted regardless of the state of the interrupt flag (i.e. regardless of whether interrupts are currently enabled or disabled).

Reset (RESET)

(input)
This active low. input to the microprocessor is used to initialise the system into a known state prior to normal execution of the program. When the RESET line is taken low, the program counter (PC) is placed in a defined state (by loading it with zero) and interrupts are disabled.

Clock (\varnothing)

(input)
IMP requires an accurate and stable square wave clock having a frequency of typically 2 MHz . The clock is used to provide an accurate time reference for the control unit (see below).
[Many microprocessors have internal clock oscillators and merely require that a quartz crystal of appropriate resonant

Fig. 2.7 Architecture of a simple IMP-based system
frequency be connected to two of the microprocessor's pins. The vast majority of 8 -bit microprocessors operate with clock frequencies between 1 MHz and 8 MHz .]

A COMPLETE IMP MICROCOMPUTER SYSTEM

Fig. 2.7 shows the internal architecture of a complete microcomputer based on the IMP, Since this diagram is somewhat more complicated than that in Fig. 1 of Part 1, we shall attempt to justify the additional features which have appeared.
The reset circuitry is designed to take IMP's RESET input low for a shor time (typically 20 ms) when the power is first applied to the system or when the manual reset button is pressed. This ensures that the system initialises itself in an orderly fashion as IMP always commences program execution from address 0000 H when its RESET input is taken low.
In order that data flow within the system is orderly and that there is no uncertainty as to whether the data present is valid or not, it is necessary to synchronise all data transfers using a reference clock signal. This signal, a symmetrical square wave, is generated by an external oscillator. For accuracy and stability, the clock is crystal controlled and functions at a fixed frequency of 2 MHz .

The relationship between the frequency and periodic time (period) of a microprocessor clock is given by:

$$
f=\frac{1}{t} \quad \text { or } \quad t=\frac{1}{f}
$$

Where f is the frequency (in Hz) and t is the periodic time (in seconds). In practice, it is often more convenient to work in
terms of MHz and $\mu \mathrm{s}$, and the same formula will apply. As an example, suppose the clock in Fig. 2 operates at 2 MHz . Its periodic time (period) will be $1 / 2 \mu$ s (i.e. 0.5μ s or 500 ns) and its idealised waveform is shown in Fig. 2.8.

Fig. 2.8 Idealised 2 MHz clock signal

The clock cycle (often known as a T state) is the fundamental timing interval used by the microprocessor. A "machine cycle" (M-cycle) is the smallest indivisible unit of microprocessor activity and usually comprises between three and five T -states. An instruction cycle (i.e. that associated with fetching an instruction, decoding and executing it) normally requires between one and five M -cycles.
To put this into context, suppose that IMP is operating at its maximum clock frequency of 4 MHz . The periodic time of the clock (T-state) will be 250 ns . A machine cycle (M -cycle) will then occupy from $0.75 \mu \mathrm{~s}$ to $1.25 \mu \mathrm{~s}$ whereas an instruction cycle will require some $1.25 \mu \mathrm{~s}$ to 6.25μ s depending upon its complexity. To put this another way, IMP is capable of executing between 160,000 and 800,000 instructions every second!
The two most significant address lines are fed to an address decoder which generates active low signals to enable the ROM, RAM and I/O devices (more of this in Part 5). At this stage it is merely
necessary for readers to understand that ONLY one of these devices is enabled (i.e. linked to the data bus) at any particular time.

The all-important "break" key is connected to IMP's non-maskable interrupt ($\overline{\mathrm{NMI} \text {) input. This allows the }}$ user to regain control WITHOUT having to reset the system land erase the data and/or program currently present in RAM). The general topic of interrupts is outside the scope of Introductory Microprocessors and therefore readers need not at this stage concern themselves with the action which takes place when an interrupt is received.

Problem 2.2

What is the frequency of each of the microprocessor clock signals depicted in Fig. 2.9?

Fig. 2.9 Clock waveforms for problem 2.2

Problem 2.3
The data sheet in Fig. 2.10 relates to the Intel 8080A microprocessor. Read the data sheet carefully (don't worry if you don't understand all of it!) and answer the following questions:
(a) How many address lines are provided?
(b) How many addresses are available for input/ output?
(c) What pin number is used for the RESET input? (d) What pin number is used for the INTERRUPT input?
(e) How many clock inputs are required?
(f) Are the clock inputs TTL compatible?
(g) What supply voltages are required?
(h) Is the WRITE line "active-high" or "activelow"?
(i) What is the logical state of the WRITE line when a write operation is being carried out?
(j) From what address does execution commence when the RESET input is activated?

Fig. 2.10 Data sheet for problem 2.3

NEXT MONTH: we shall be considering the means by which a microprocessor fetches and executes instructions and shall introduce readers to the facilities offered by a system monitor.

BACKGROUND READING

The following background reading is suggested for this month:
(a) Chapter 3 (Software and Programming) of
Beginner's Guide to Microprocessors by E.A. Parr la Newnes Technical Book published by Heinemann-Newnes) ISBN 040800579 3. Available from the EE Book Service - see page 656.
(b) Chapter 2 (The Central Processing Unit) of
Microelectronic Systems 2 Checkbook by R. Vears (published by William Heinemann Ltd) ISBN 0434 92194 7. Available from the EE Book Service - see page 656.

CORRESPONDENCE

Comments and queries from readers should be sent directly to the author at the following address: Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey, KT13 8TT.

Please include a stamped addressed envelope (and be prepared to wait a littlel) if you require an individual reply. General queries will be dealt with in Readers Forum which will appear in Parts 4 and 9 of the series.

GLOSSARY FOR PART TWO

Accumulator

One or more registers associated with the ALU which temporarily store the results of ALU operations.
Arithmetic Logic Unit (ALU)
One of the essential elements of a CPU. The ALU performs various forms of addition. subtraction and logical operations.

Buffer

A hardware device which provides isolation between two parts of a circuit and which usually increases the drive capability of a signal. In the context of software, the word refers to a contiguous area of memory used for temporary storage of data when performing $1 / 0$.

Clock

The clock provides a reference timing source within a microcomputer system. The output of a clock comprises regular pulses of accurately defined frequency and period.

Flag

A bit contained within a flag (or status) register which indicates the internal status of the microprocessor or which signals the outcome of an ALU operation.

Instruction

A single command within a program. A complete sequence of instructions constitutes a program.

Interrupt

A signal generated by an external device which requires the services of the microprocessor or which needs to alert the microprocessor to a particular condition (such as imminent power failure).

Stack

The stack is a contiguous area of read/write memory that is accessed on a last-in first-out (LIFO) basis by the microprocessor and used for temporary storage of data and addresses.

Please Note: Cricklade College, Andover, Tel: (0264) 63311 have notified us that they are an approved centre for 726 courses.

The telephone number given for Charles Keene College, Leicester should have been (0533) 516037.

ANSWERS TO PROBLEMS

2.1 (a) 137
(b) 89
(c) L
(d) 879 D
(e) 57346
(f) A, H and L
(g) A and L
(h) N
(i) C, Z, V and I
(j) 8AF1
(k) enabled
2.2 (a) 1 MHz
(b) 1.5 MHz
(c) 1.2 MHz
2.3 (a) 16
(b) 256 for input and 256 for output
(c) 12
(d) 14
(e) 2
(f) no
(g) $+5 \mathrm{~V},+12 \mathrm{~V}$ and -5 V
(h) active-low
(i) 0
(j) $0(0000 \mathrm{H})$

The Archer 780 8BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users.

* Top quality board with 4 parallel and 2 serial ports. counter-timers. power-fail interrupt. watchdog timer. EPROM \& battery backed RAM
\star OPTIONS: on board power supply. smart case. ROMable BASIC. Debug Monitor. wide range of I/O \& memory extension cards.

The Bowman 68000 SBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.

* Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM. EPROM. 2 countertimers, watchdog timer, powerfail interrupt. \& an optional zero wait state half megabyte D-RAM.
* Extended width versions with on board power supply and case.

Sherwood Data Systems Ltd
Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

The books listed below have been selected as being of special interest to our readers, they are supplied from our editorial address direct to your door.

DATA AND REFER'ENCE

PRACTICAL ELECTRONICS

CALCULATIONS AND FORMULAE

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

Bridges the gap between complicated technical theory and "cut-and-tried" methods which may bring success in design but leave the experimenter unfulfilled. A strong practical bias-tedious and higher mathematics have included.

The book is divided into six basic sections: Units and Constants, Direct-current Circuits, Passive Compo nents. Alternating-current Circuits, Networks and Theo rems, Measurements.
256 pages Order Code BP53 £2.95

ESSENTIAL THEORY FOR THE

ELECTRONICS HOBBYIST

G. T. Rubaroe, T.Eng (C.E.I.), Assoc.IIE.R.E.

The object of this book is to supply the hobbyist with a background knowledge tailored to meet his or her specific requirements and the author has brought together the relevant material and presented it in a readable manner with minimum recourse to mathematics 128 pages

Order Code 228
£2.50

MICROPROCESSING SYSTEMS AND CIRCUITS F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F. A. Wil

F.B.IM.

A truly comprehensive guide to the elements of microprocessing systems which really starts at the beginning Teaches the reader the essential fundamentals that are so important for a sound understanding of the subject.
$\mathbf{2 5 6}$ pages
Order Code BP77

COMMUNICATION

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E. F.B.I.M.

A look at the electronic fundamentals over the whole of the communication scene. This book aims to teach the important elements of each branch of the subject in a style as interesting and practical as possible. While no getting involved in the more complicated theory and mathematics, most of the modern transmission system techniques are examined including line, microwave, submarine, satellite and digital multiplex systems, radio and telegraphy. To assist in understanding these more thoroughly, chapters on signal processing, the electro magnetic wave, neiworks and transmissions assess transmission. transmission

Order Code BP89
£2.95

AUDIO
F. A. Wilson!'C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., F.B.i.M.

Analysis of the sound wave and an explanation of acoustical quantities prepare the way. These are fol owed by a study of the mechanism of hearing and oxamination of the various sounds we hear. A look a phones and loudspeakers then sots the scene for the main chapter on audio systems-amplifiers, oscillators $\begin{array}{ll}\text { disc and magnetic recording and electronic music. } \\ 320 \text { pages } & \text { Order Code BP111 }\end{array}$

HOW TO IDENTIFY UNMARKED ICs

K. H. Recorr

Shows the reader how, with just a test-meter, to go bout recording the particular signature of an unmarked c. which should enable the i.c. to then be identified with eference to manufacturers of other data. An i.c signature is a specially plotted chart produced by mea Chart Order code BP101

RADIO AND ELECTRONIC COLOUR CODES AND

 DATA CHARAlthough this chant was first published in 1971 it provides basic information on many colour codes in us throughout the world, for most radio and electronic components. Includes resistors, capacitors, transfor mers, field coils, fuses, battery leads, speakers, etc. It is
particularly useful for finding the values of old particularly useful for finding the values of old
components. Chart

Order code BP7
$\mathbf{8} 0.95$

CHART OF RADIO, ELECTRONIC,

SEMICONDUCTOR AND LOGIC SUMBOLS
M. H. Banani, B.Sc.(Eng.)

Illustrates the common, and many of the not-so-common, radio, electronic, semiconductor and logic symbols that are used in books, magazines and instruction | manuals, etc., in most countries throughout the world |
| :--- |
| Chart |
| $\mathbf{~ O r d e r ~ C o d e ~ B P 2 7 ~}$ |
| 0.95 |

NTERNATIONAL TRANSISTOR
 EQUIVALENTS GUIDE

A. Michaels

Helps the reader to find possible substitutes for a popular selection of European, American and Japanese transis ors. Also shows material type, polarity, manufacture and use.

Order code BP85

TRANSISTOR SELECTOR GUIDE
This unique guide offers a range of selection tables compiled so as to be of maximum use to all electronics engineers, designers and hobbyists.
Section 1: Covers component markings, codings and standards, as well as explaining the symbols used.
Section 2: Tabulates in alpha-numeric sequence the comprehensive specifications of over 1400 devices.
Section 3: Tabulates the devices by case type
Section 4: Considers particular limits to the electrical parameters when compiling the tables.
Section 5: Illustrates package outlines and leadouts.
Section 6: Consists of a surface mounting device markings conversion list.
192 pages
Order code BP234
$E 4.95$

TRANSISTOR RADIO FAULT-FINDING CHART C. E. Miller

Used properly, should enable the reader to trace most common faults reasonably quickly. Across the top of the chart will be found four rectangles contaning brief description of these faults, vis-sound weak but undistorted, set dead, sound low or distorted and back ground noises. One then selects the most appropriate of these and following the arrows, carries out the suggested checks in sequence until the fault is cleared.
Chart Order code BP70 £0.95

DIGITAL IC EQUIVALENTS

AND PIN CONNECTIONS
A. Michaels

Shows equivalents and pin connections of a popular selection of European. American and Japanese digital i.c.s. Also includes details of packaging, families, func$\begin{array}{ll}\text { tions, manufacturer and couniry of origin. } \\ 256 \text { pages } & \text { Order code BP140 }\end{array}$
$£ 4.95$

LINEARIC EQUIVALENTS

AND PIN CONNECTIONS
A. Michaels

Shows equivalents and pin connections of a popular selection of European, American and Japanese linear i.c.s. Also includes details of functions, manufacturer 320 pages 3 cound origin.
320 pages Order code BP141 £4.95

INTERNATIONAL DIODE EQUIVALENTS GUIDE

EQUIVALEN
Designed to help the user in finding possible substitutes for a large selection of the many different types of diodes that are available. Besides simple rectifier diodes, also included are Zener diodes, I.e.d.s, diacs, triacs, thyrisiors, OCls, photo and display diodes.
144 pages Order code BP108 £2.25

NEWNES ELECTRONICS

POCKET BOOK
E. A. Parr
over twenty yonics Pocket Book has been in print for electronics from and has covered the development of from transistors to LSI integrated circuits and microprocessors. To keep up to date with the rapidly changing world of electronics, continuous revision has been necessary. This new Fifth Edition takes account of recent changes'and includes material suggested by readers of previous editions. New descriptions of op.amp. applications and the design of digital circuits have been added, long with a totally new chapter on computing, plus 315 pages (hard cover) Order Code NE02 £8.95

CIRCUITS AND DESIGN

ELECTRONICS SIMPLIFIED

-CRYSTAL SET CONSTRUCTION

F. A. Wilson, C.G.I.A., C.Eng., F.I.E.E., F.I.E.R.E., Especially
Especially written for those who wish to participate in the intricacies of electronics more through practical con struction than by theoretical study. It is designed for al ages upwards from the day one can read inteligently and
80 pages
Order Code BP92
£1.75

50 CIRCUITS USING GERMANIUN
 SILICON AND ZENER DIODES

R. N. Soar

Contains 50 interesting and useful circuits and applicausing, covering many different branches of electronics components-the diode. Includes the use of germanium and silicon signal diodes, silicon rectifier diodes and Zener diodes, etc.
64 pages \quad E1.50

50 SIMPLE LED CIRCUITS

R. N. Soar

Contains 50 interesting and useful circuits and applica tions, covering many different branches of electronics,
using one of the most inexpensive and freely available components-ine (LED). Also in cludes circuits for light-emitting diode (LED) 64 pages Order Code BP42 1.95

COIL DESIGN AND CONSTRUCTION MANUAL
A complete book for the home constructor on "how to make'" RF, IF, audio and power coils, chokes and transformers. Practically every possible type is discussed and calculations necessary are given and ex plained in detail. Although this book is now rather old with the exception of torroids and pulse transformers $\begin{array}{ll}\text { little has changed in coil design since it was written. } \\ 96 \text { pages } & \mathbf{~ O r d e r ~ C o d e ~} \mathbf{1 6 0}\end{array}$

MICRO INTERFACING CIRCUITS-BOOK 1 MICRO INTERFACING CIRCUITS-BOOK 2
 MICRO INTER

R. A. Penfold

Both books include practical circuits together with details of the Any special constructional points are covered but ton. Any special constructional points are covered but tion are not included.
Book 1 is mainly concerned with getting signals in and out of the computer;. Book 2 deals primarily with circuits for practical applications.
$\begin{array}{lll}\text { Book } 1112 \text { pages } & \text { Order code BP130 } & \mathbf{2 . 2 5} \\ \text { Book } 21 / 2 \text { pages } & \text { Order code BP131 } & \mathbf{£ 2 . 2 5}\end{array}$

A MICROPROCESSOR PRIMER
E. A. Parr, B.SC., C.Eng., M.I.E.E.

Starts by designing a small computer which, because of its simplicity and logical structure, enables the language to be easily learnt and understood. The shortcomings are then discussed and the reader is shown how these can be overcome by changes and additions to the instruction set. In this way, such ideas as relative addressing, index registers, etc., are developed.

A PRACTICAL INTRODUCTION TO

MICROPROCESSORS
R. A. Penfold

Provides an introduction which includes a very simple nicroprocessor circuit which can be constructed so that the reader can experiment and gain practical experience.
96 pages \quad Order code BP123 1.95

HOW TO USE OP-AMPS
 E. A. Parr

This book has been written as a designer's guide covering many operational amplifiers, serving both as a source book of circuits and a reference book for design calculations. The approach has been made as nonmathematical as possible.
160 pages Order code BP88
£2.95

PRACTICAL ELECTRONIC
BUILDING BLOCKS-BOOK 1

PRACTICAL ELECTRONIC BUILDING BLOCKS-BOOK 2

R. A. Penfold

These books are designed to aid electronic enthusiasts These books are designed to aid electronic enthusiasts
who like to experiment with circuits and produce their who like to experiment with circuits and produce their project designs.
BOOK 1 contains: Oscillators-sinewave, triangular, squarewave, sawtooth, and pulse waveform generators operating at audio frequencies. Timers-simple monostable circuits using i.c.s, the 555 and 7555 devices, etc. Miscellaneous-noise generators, rectifiers, comparators and triggers, etc.
BOOK 2 contains:
BOOK 2 contains: Amplifiers-low level discrete and op-amp circuits, voltage and buffer amplifiers including d.c. types. Also low-noise audio and voltage controlled mpiners. Filters-high-pass, low-pass, 6,12 , and 24 dB per octave types. Miscellaneous-i.c. power amplifiers. $\begin{array}{llll}\text { BOOK } 1 & 128 \text { pages } & \text { Ordercode BP117 } & \text { £1.95 } \\ \text { BOOK } 2 & 112 \text { pages } & \text { Ordercode BP118 } & \text { £1.95 }\end{array}$

HOW TO DESIGN ELECTRONIC

PROJECTS
The aim of this book is to heip the reader to put together projects from standard circuit blocks with a minimum of trial and error, but without resorting to any advanced mathematics. Hints on designing circuit blocks to meet your special requirements are also provided.
128 pages Order code BP127
£2.25

POPULAR ELECTRONIC CIRCUITS
 -BOOK 1 ELECTRONIC CIRCUITS -BOOK 2

 R. A. Penfold

 R. A. Penfold}Each book provides a wide range of designs for elecronic enthusiasts who are capable of producing projects from just a circuit diagram without the aid of detailed construction information. Any special setting-up procedures are described.
BOOK 1 Temporarily out of print
BOOK $2 \quad 160$ pages Order code BP98 £2.25

GETTING THE MOST FROM YOUR PRINTER
J. W. Penfold

Details how to use all the features provided on most dot matrix printers from programs and popular word proces sor packages like Wordwise, Visawrite and Quill, etc Shows exactly what must be typed in to achieve a given effect.
96 pages
Order Code BP 181
£2.95

A ZBO WORKSHOP MANUAL
E. A. Parr, B.Sc., C.Eng., M.I.E.E

This book is intended for people who wish to progress beyond the stage of BASIC programming to topics such as machine code and assembly language programming 192 pages Order Code BP 112 £3.50

AN INTRODUCTION TO 68000 ASSEMBLY

ANINTRAGE
R. A. \& J. W. Penfold

Obtain a vast increase in running speed by writing programs for 68000 based micros such as the Commo dore Amiga, Atari ST range or Apple Macintosh range etc., in assembly language. It is not as difficult as one might think and this book covers the fundamentals.
112 pages
Order Code BP184
I2.95

THE ART OF PROGRAMMING THE ZX

SPECTRUM

M. James, B.Sc., M.B.C.S

It is one thing to have learnt how to use all the Spectrum's commands and functions, but a very different one to be able to combine them into programs that do exacily what you want them to. This is just what this pook is all about-leaching you
$\begin{array}{ll}144 \text { pages } & \text { £2.50 }\end{array}$

AN INTRODUCTION TO PROGRAMMING THE COMMODORE 16 \& PLUS 4
R. A. Penfold

Helps you to learn 10 use and program these two Commodore machines with the minimum of difficulty by expanding and complementing the information supplied in the manufacturer's own manuals.
128 pages
Order code BP158
£2.50

AN INTRODUCTION TO PROGRAMMING THE BBC MODEL 8 MICRO
Written for readers wanting to learn more about pro gramming and how to make best use of the incredibly powerful model B's versatile features. Most aspects o the BBC micro are covered. the omissions being where little could usefully be added to the information provided by the manufacturer's own manual.
$\begin{array}{lll}144 \text { pages } & \text { Order code BP139 } \\ & & \end{array}$

AN INTROOUCTION TO PROGRAMMING THE ACORN ELECTRON
R. A. \& J. W. Penfold

Designed to help the reader learn more about programming and to make best use of the Electron's many features. Adds considerably to the information already supplied in the manufacturer's own instruction manual.
144 pages
Order code BP142

AN INTRODUCTION TO PROGRAMMING THE ATARI 600/800 XL
R. A. \& J. W. Penfold Especiall written to supplement the manufacturer sown to master BASIC programming and to make best use of the Atari's many powerful features.

AN INTRODUCTION TO PROGRAMMING THE AMSTRAD CPC 464 AND 664
A. A. \& J. W. Panfold

The Amstrad CPC 464 or 664 running with Locomotive BASIC makes an extremely potent and versatile machine and this book is designed to help the reader get the most from this powerful combination. Written to complement rather than duplicate the information already given in the manufacturer's own manual. Also applicable to the CPC 144

Order Code BP 153
£2.50
AN INTROOUCTION TO PROGRAMMING THE SINCLAIR OL
R.A. J. W. Penfold Ol's almost unlimited range of features. Designed to complement the manufacturer's handbook.
Order code BP150

AN INTRODUCTION TO 280 MACHINE CODE

R. A. \& J. W. Penfold

Takes the reader through the basics of microprocessors and machine code programming with no previous knowledge of these being assumed. The $\mathbf{Z 8 0}$ is used in many popular home computers and simple programming examples are given for 780 -based machines including the Sinclair $\mathrm{ZX}-81$ and Spectrum. Memotech and the Amstrad CPC 464. Also applicable to the Amstrad CPC 664 144 anges

Order code BP152
£2.75
AN INTRODUCTION TO 6502 MACHINE CODE R. A. \& J. W. Penfold

No previous knowledge of microprocessors or machine code is assumed. Topics covered are: assembly language and assemblers, the register set and memory modes and hexadecimal numbering systems, addressing code with BASIC Some simple and also mixing machine are given for 6502 -based home computers like the VIC 20, ORIC-1/Atmos. Electron, BCC and also the Commo dore 64
112 pages
Order code BP147
£2.50

PROJECT CONSTRUCTION

HOW TO GET YOUR

ELECTRONIC PROJECTS WORKING
R. A. Penfold

We have all built projects only to find that they did no work correctly, or at all, when first switched on. The aim of this book is to help the reader overcome just thes problems by indicating how and where to start lookin or many of the common faults that can occur when building up projects 96 pages
$£ 1.95$
HOW TO DESIGN AND MAKE
YOUR OWN
Deals with the simple methods of copying printed circuit
board designs from magazines and books and covers all aspects of simple p.c.b. construction including photographic methods and designing your own p.c.b.s 80 pages Order code BP121 p.c.b.s. \quad \&1.95

BEGINNER'S GUIDE TO BUILDING
ELECTRONIC PROJECTS
R. A. Penfold

Shows the comptere beginner how to tackle the practlcal side of electronics, so that he or she can confidently build the electronic projects that are regularly featured in
magazines and books. Also includes examples in the form of simple projectis.
112 pages Order code No. 227

RADIO

AN INTRODUCTION TO RADIO DXING

A. A. Penfold

Anyone can switch on a short wave receiver and play with the controls until they pick up something, but to find a particular station, country or type of broadcast and io receive it as clearly as possible requires a little more skil and knowledge. The object' of this book is to help the eader to do just that, which in essence is the fascinating hobby of radio DXing.
112 pages $\mathbf{1 . 9 5}$

NTERNATIONAL RADIO STATIONS

GUIDE

binplety revised and updated, this book is an invaluable aid in helping all those who have a radio receiver to obtain the maximum entertainment value and enjoyment from their sets.
Clearly shown are the station site, country, frequency and/or wavelength, as well as the effective radiation
128 pages Order code BP155

THE PRE-BASIC BOO

F. A. Wilson, C.G.I.A., C.ENG., F.I.E.E. F.I.E.R.E. F.B.I.M.

Another book on BASIC but with a difference. This one does not skip through the whole of the subject and thereby leave many would-be programmers floundering but instead concentrates on introducing the technique b looking in depth at the most frequently used and mor easily understood computer instructions. For all new and 192 pages Order code BP146 $\mathbf{E 2 . 9 5}$

HOW TO GET YOUR COMPUTER PROGRAMS RUNNING

J. W. Penfold

Have you ever written your own programs only to find that they did not work! Help is now at hand with this book which shows you how to go about looking for you errors, and helps you to avoid the common bugs and pirfalls of program writing. Applicable to all dialects of the BASIC language
144 pages Order code BP169
£2.50

AN INTRODUCTION TO COMPUTER

MUNICATIONS

. A. Penfold
Provides details of the various types of modem and their suitability for specific applications, plus details of conhe telephone system.ers to modems, and moderns to he telephone system. Also information on common 96 pages \quad Order code BP177 2.95

AN INTRODUCTION TO

COMPUTER PERIPHERALS

J. W. Penfold

Covers such items as monitors, printers, disc drlves assette recorders, modems, etc., explaining what the re, how to use them and the various types and sandards. Helps you to make sure that the peripheral you buy will work with your computer.
80 pages Order code BP170
£2.50

\section*{COMPUTER TERMINOLOGY EXPLAINED

D. Poole

D. Poole

Explains a wide range of terms that form the computer jargon used by enthusiasts. Includes a reference guide to he more commonly used BASIC commands.

THE PRE-COMPUTER BOOK

F. A. Wilson

Aimed at the absolute beginner with no knowledge of computing. An entirely non-technical discussion of computer bits and pieces and programming
96 pages \quad Order code BP115
£1.95

NEWNES COMPUTER ENGINEER'S

POCKETBOOK
Michael Tooley
An invaluable compendium of facts, figures, circuits and data, indispensable to the designer, student, service engineer and all those interested in computer and microcomputer systems. It will appeal equally to the hardware or software specialist and to the new band of songe of subjects at a practical level, with the necessary explanatory text The data is presented in a succinct and pidly accessible form so that the book can become par of an everyday toolkit. Order code NE01 £8.95
205 pages (hard cover) Order code NE01 £8.95

EE BOOK SERVICE TO ORDER

Please check the latest issue of Everyday Electronics for price and availability.

Add 50p per order postage loverseas readers add $£ 1$, surface mail postage) and send a PO, cheque or international money order (E sterling only) made payable to Everyday Electronics (quoting the order code and quantities required) to EE BOOK SERVICE, 6 Church street, wimBORNE, DORSET BH21 1JH.

Although books are normally sent within seven days of receipt of your order please allow a maximum of 28 days for delivery. Overseas readers allow extra time for surface mail post.

ELECTRONICS TEACH-IN

By Michael Tooley BA and David Whitfield MA MSc CEng MIEE

ACOMPREHENSIVE background to modern electronics including test gear projects. This book forms a complete course in basic electronics; designed for the complete newcomer it will however also be of value to those with some previous experience of electronics. Wherever possible the course is related to "real life" working circuits and each part includes a set of detailed practical assignments.

To complement the course computer programs have been produced for the BBC Micro and Spectrum or Spectrum Plus. The software is designed to reinforce and consolidate important concepts and principles introduced in the course, it also allows readers to monitor their progress by means of a series of multi-choice tests.

The book includes details of eight items of related test gear giving full constructional information and diagrams for each one. The items of test gear described are: Safe Power Supply; Universal LCR Bridge; Diode/Transistor Tester; Audio Signal Tracer; Audio Signal Generator; RF Signal Generator; FET Voltmeter; Pulse Generator.

This book is an excellent companion for anyone interested in electronics and will be invaluable for those taking G.C.S.E. electronics courses.

Electronics Teach-In from the publishers of Everyday Electronics price $£ 1.95$.

A comprehansive back ground ro electronics,
including practical experiments. plus full
construction details of eight test gearprojects.

From the Publishers of

AT YOUR NEWSAGENT NOW -

or send a cheque, PO or bank draft for $£ 1.95$ (overseas readers please add 80 p postage.
Payment in $£$ sterling only) to Wimborne Publishing Ltd., 6 Church Street, Wimborne,
Dorset BH21 1JH. Tel: 0202881749.

OWEN BISHOP

Part 18 Binary Counting

This series is designed to explain the workings of electronic components and circuits by involving the reader in experimenting with them. There will not be masses of theory or formulae but straightforward explanations and circuits to build and experiment with.

THis month we continue to investigate counting circuits and take a closer look at "binary" counting. Also, in keeping with the festive time of year, we offer a simple Christmas project which uses binary counting to give a seasonal effect.

INVESTIGATION ONE LIGHT-OPERATED COUNTER

Last month we saw how we can use the J-K flip-flop to build a counting chain. An application of this is shown in the circuit diagram for a Light-Operated Counter, Fig. 18.1. It uses two flip-flops, both contained in a single i.c., the 7473 (dual J-K Flip-Flop).

The phototransistor TR1 receives light from a lamp or a nearby window. When the light beam is broken the voltage at the collector of TR2 rises; it falls when the beam is restored. This "low-going" pulse triggers the first flip-flop, and the event is registered as a count of " 01 ".

The next time the beam is broken, the output of Flip-Flop 1 becomes low again,

Completed "test-bed" for the Light-Operated
Counter. Counter.

Fig. 18.2. Demonstration breadboard component layout for the Light-Operated Counter.

Fig. 18.3. The sequence of l.e.d. operation for the counter

COMPONENTS
 (1) ${ }^{\circ}+\sqrt{3}$

LIGHT OPERATED COUNTER

Miscellaneous
S1 Push-button push-to-make switch Breadboard (e.g. Verobloc); 6V battery and battery case; connecting wire, etc.

CHRISTMAS LIGHTS

Resistors

R1	$27 k$
R2	$33 k$
R3-R7	180 (5 off)

All 0.25W 5\% carbon

Capacitor

C1 $4 \mu 7$ elec.

Semiconductors

D1-D5	TIL209 I.e.d. or similar
	(5 off)
IC1	555 timer
IC2	74934 -bit binary
	counter

Miscellaneous
Breadboard (e.g. Verobloc) or stripboard, size 0.1 in matrlx 11 strips $\times 30$ hole; 6 V battery and battery case; connecting wire, etc.

Approx. cost
Guidance only
f5 each
and you are back to zero again. To count to larger numbers, add another 7473 i.c. which provides two more flip-flops.

The output of each flip-flop is connected to the clock input of the next, i.e. pin 9 of the first 7473 -is connected to pin 1 of the next. You can now count up to 15 (1111 in binary).

Instead of using an extra 7473, you can use an i.c. that has four flip-flops in it. In the 7493 (4-bit binary counter), three of these are flip-flops already connected to make a counting chain. You can connect the fourth flip-flop to this chain, as shown in the demonstration breadboard component layout Fig. 18.4.

Now you can count up to 15 using a single i.c. or, if you add your 7473 to the chain, up to 63 (111111:), in binary.

NEXT! A SIMPLE CHRISTMAS PROJECT

PROJECT ONE CHRISTMAS LIGHTS

By using a little ingenuity you will be able to make a fascinating and decorative item for the Christmas tree.

HOW IT WORKS

The circuit diagram Fig. 18.5 is simply a 555 timer oscillator followed by a 4 -stage counting chain. The five l.e.d.s run through the binary numbers from 0 to 11111 (31, in decimal) over and over again.
If the I.e.d.s are arranged decoratively, a continually changing pattern of twinkling lights creates a very seasonal effect.

Fig. 18.6. One suggested arrangement is to mount lights in a star formation. Other shapes will no doubt be tried. One possibility would be to glue a Christmas card scene on a piece of hardboard and place the lights at strategic points to enhance the picture.

Fig. 18.7. Rear view of the Christmas Star. The battery holder can be wrapped in decorative paper and form part of the tree decoration.

Fig. 18.5. Using a 555 timer and a 4 -stage counting i.c. to produce a Christmas Lights "sequencer"

CONSTRUCTION

It is best to try the circuit on a breadboard layout first and it can even be put on the tree in this form. Just cover everything except the l.e.d.s with coloured paper or Christmas wrapping paper. But it looks better if the l.e.d.s are mounted on a suitably shaped piece of hardboard, such as a star shape (see Fig. 18.6).
Once the breadboard circuit layout has been finalised it can be built on stripboard and mounted behind a hardboard cutout, see Figs. 18.7 and 18.8. To add to the effect you can decorate it with strips of tinsel to reflect the light from the l.e.d.s.
You can also use "aluminium" kitchen foil to reflect the lights, but beware of causing short-circuits! The battery can also be mounted on the tree - put it in
the fork of one of the larger branches and run a pair of wires to the circuit board.

You can vary the rate at which the display changes by altering the value of capacitor C1. With four HB2 cells there should be enough current to last the whole Christmas season.

VARIATIONS

Light emitting diodes, l.e.d.s, are available in several different colours red, green, yellow and orange, so there is plenty of scope for the imaginative use of colours. You could also extend the circuit to flash more I.e.d.s by adding a 7473 (flip-flop i.c.) or another 7493.

Next Month: Introducing high speed logic plus a Simple Reaction Timer project.

Fig. 18.8. Stripboard component layout for the Christmas Lights project. It would be a good idea to use i.c. holders for mounting IC1 and IC2 on the board.

Write or phone for free Data Pack

Jaytee Electronic Services

143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL Telephone: (0227) 375254

Produce realistic echo effects at a realistic price.

THIS DEVICE is really a form of tremolo unit, but when used with an instrument (such as a guitar) which has a fast attack and slow decay, it provides an effect which is much more like an echo effect than a conventional tremolo type. The unit differs from a standard tremolo unit in that the modulation signal is a pulse type rather than the more usual sinewave or triangular signal.

The effect of a normal tremolo unit is much the same as manually varying the volume up and down at a rate of (typically) a couple of times per second, and this effect can be generated manually via a swell pedal. The effect of this unit is to switch the signal on and off with no in-between state: This can be used as a rather harsh and extreme form of tremolo, but it is probably most effective when used on a suitable signal to give a pseudo echo effect.

There are limitations to this way of doing things, and the main one is that it only works properly with a signal that has a suitable envelope shape, and which remains essentially the same throughout its duration. With most instruments there is no problem in either case, but the obvious exception is a voice signal which is unsuitable in both cases.

Another problem, and one which is most troublesome when using a low modulation frequency, is that of the start of a note occurring during an "off' period. This can seriously effect the timing of the music, and by eliminating the important attack period of the signal it can drastically alter its sound.

The Pseudo Echo Unit described here has a simple synchronisation facility which can be switched in when using low modulation frequencies, so that the unit is forced to commence an "on" phase at the start of each new note. This seems to totally eliminate the "off" period problem.

ZERO SWITCHING

A third problem with this very harsh form of amplitude modulation is that it tends to produce "click" sounds as the signal is gated on and off. This happens because the unit will usually switch the signal on or off when it is not
synchronising the modulation signal with the input signal in such a way that the signal gate only switches state as the input signal passes through 0 V . This gives an output signal of the type shown in Fig. 2b, with only sets of complete half cycles present.

SYSTEM OPERATION

The block diagram of Fig. 3 shows the general arrangement used in Pseudo Echo Unit. A buffer stage is used at the input of the unit, and the main signal path is through the sample and hold circuit to the output socket.

The sample and hold circuit is a form of signal gate, and it allows the input signal to pass straight through to the output when it is supplied with a "high" control signal. Switching the control input "low" blocks the signal path, and the output is maintained at whatever level it happened to have at the instant when the signal was cut off. It is important that the output is not simply allowed to drift as this could result in unwanted "clicks" and other noises on the output signal.

The modulation signal is generated by a triangular waveform generator which feeds into a voltage comparator. The other input of the comparator is fed from a variable reference

The waveform of Fig. 1 shows how this effect is obtained. The input signal must be a type having a fast attack with a much slower decay time if the right effect is to be produced. The output from an electric guitar is in this category, and synthesisers and most other electronic instruments can provide a suitable signal.

The effect of the unit is to chop up the signal into short bursts, and the output from the unit is therefore a series of signal bursts that start at a high level and gradually decay. The sound this gives is very much the same as if a short burst of signal was to be fed into an echo effects unit.
at zero volts. This gives a sudden change from whatever level the signals happen to have at the instant of switching, to the zero volts level. Under worse case conditions a waveform of the type shown in Fig. 2a is obtained, where the signal switches from its peak level to zero volts on each transition of the signal gate.

There are ways of reducing or eliminating the problem, and in this circuit zero point switching is used. This is very effective indeed, and it permits quite high switching frequencies to be used without any significant switching glitches being generated at all.

The method used is very simple in essence, and it avoids the switching glitches by
voltage, and this combination constitutes a conventional variable pulse generator.

The output signal can be continuously varied from narrow positive "needle" pulses through a 1 to 1 squarewave and on to the point where narrow negative pulses are produced. In terms of the modulation effect, this can be varied from the point where the signal is switched off for the vast majority of the time and is only gated on for short bursts, through to a setting where the signal is almost continuously switched on and is only blanked'out for very short periods.

The pulsed modulation signal is fed to the sample and hold circuit via some control
circuitry which must prevent changes in the signal from taking effect until the input signal passes through zero volts. Two voltage comparators monitor the output from the buffer amplifier, and they are arranged in such a way that they both provide a high output level only when the signal is very close to the 0 V level. The voltage comparator outputs, together with the modulation signal, are fed to the inputs of two logic gate circuits.

A simple S/R (set/reset) flip/flop provides the control signal for the sample and hold circuit. The flip/flop must be supplied with a high input signal to its "set"' input in order to switch on the sample and hold circuit, and a high input level is then needed at the "reset" input in order to take the sample and hold circuit back to the "hold" mode.

Once switched on the sample and hold circuit remains in this state until the flip/flop is reset, and the second gate is designed to provide the reset pulse when the outputs of the comparators are both high, but the modulation signal is low. Thus, when the output of the pulse generator goes low the signal path is broken, but not until the voltage comparators detect that the signal is close to the 0 V level.
Some of the output signal from the buffer stage is fed to an amplifier, and the amplified signal is rectified and smoothed. This gives a d.c. signal that is roughly proportional to the amplitude of the input signal.

For the synchronisation to work properly the input signal must be a type which has a fast attack time with a reasonably rapid initial decay characteristic. Guitars and signals with

Fig. 3. The block diagram for the Pseudo Echo Unit.

The gates provide these input signals, and the one feeding the set input is configured in such a way that it provides the set pulse when all three inputs go high. In other words, the signal is switched through to the output when the modulation signal goes high, and the voltage comparators detect that the signal is close to the 0 V level.
the classic ADSR envelope shape fall into this category, as do all but the most exotic of envelope shapes.

With a suitable input signal the output from the smoothing circuit is something like a ramp signal, and this is used to drive an electronic switch. The circuit is set up so that the switch is only activated on the peak of the ramp wave-

form, and the electronic switch is turned on briefly each time a note is played. The switch is connected to the biasing circuit of the triangular waveform generator, and it has the effect of forcing the start of a new cycle each time the switch is closed, thus giving the required synchronisation effect.

Resistors	
R1,R2,R15	100 k (3 off)
$R 3, R 10, R 16 \text {, }$	
R23	10k (7 off)
R4,R5,R11,	
R12	4k7 (4 off)
R6,R9	1M (2 off)
R7,R8,R21	2k2 (3 off)
R13	220k
R14	47k
R19, R20	15k (2 off)

All $1 / 4 \mathrm{~W} 5 \%$ carbon

See page 679

Potentiometers

VR1	47 k lin
VR2	1 M lin
VR3	100 k sub-min hor.
	preset

Capacitors
C1,C5
100μ radial elec.

	10 V (2 off) C2, C6
	470 n polyester layer (2 off)
C3	10 n polyester layer
C4	10μ radial elec. 25 V
C7,C9	$2 \mu 2$ radial elec. 12 off)
C8	1μ radial elec. 63 V

Semiconductors

D1 to D8	IN4148 silicon signal diode (8 off)
TR1	BC547 npn silicon
IC1	LF351 bifet op. amp.
IC2	4016BE CMOS analogue switch
IC3	CA3140E MOS op. amp.
IC4	4001BE CMOS quad
	2 -input NOR gate
IC5,7	1458 dual op. amp. (2 off)
IC6,8	741 Cop . amp.

Miscellaneous

SK1	Standard jack, with DPDT switch contacts
SK2	Standard jack socket
S1	Heavy duty locking push button switch
S2	Part of SK1 S3
Miniature SPST toggle switch	

Case, sloping front type about $165 \times 70 \times 125 \mathrm{~mm}$; printed circuit board, available from $E E P C B$ Service, code EE586; two control knobs; B1, six HP7 size cells in plastic holder; battery connector (PP3 type); 8-pin DIL i.c. socket (6 off); 14-pin DIL i.c. socket (2 off); pins, wire, solder, etc.

Fig. 4. The main circuit diagram for the Pseudo Echo Unit.

Fig. 5. Circuit diagram for the synchronisation stage.

CIRCUIT OPERATION

The main circuit diagram for the Pseudo Echo Unit appears in Fig. 4, but the synchronisation circuit is shown separately in Fig. 5.

The buffer amplifier IC1 provides an input impedance of about 50 k . IC2 is a CMOS analogue switch, and in conjunction with charge storage capacitor C3 it forms a basic sample and hold circuit.

A buffer amplifier (IC3) at the output ensures that there is no significant discharging of capacitor C3 during the "hold" periods. The CA3140E specified for the IC3 position is a MOS input type which gives an input impedance of over one million megohms. Note that there are actually four switches in IC2, but in this circuit only one is used and there are no connections to the other three.

The triangular waveform generator is based on IC7, and the two operational amplifiers in this device are connected as a conventional oscillator of the Schmitt trigger/Miller integrator type. Potentiometer VR2 provides a frequency range of about 0.5 Hz to 10 Hz . IC6 is the voltage comparator, with VR1 providing the variable reference voltage and acting as the pulse width control.

IC5 provides the two operational amplifiers which act as the voltage comparators in the zero crossing detector circuit. Resistors R6 to R10 and capacitor C5 provide two reference voltages just marginally either side of the " 0 volt" level. Of course, it is not strictly accurate to call this circuit a zero crossing detector, as it is actually detecting the signal crossing through the quiescent bias voltage, which is about half the supply voltage and not 0 V .

The flip/flop is a conventional CMOS R/S type which is formed from two cross coupled 2 -input NOR gates (IC4a and IC4b). The two gates are simple 3 -input AND types, each formed from a pull-up resistor and three diodes.

However, the one which drives the reset input of the flip/flop is driven from the pulse generator by way of IC4c which is connected to operate as an inverter. This gives the desired action with the reset pulse being produced when the output of the pulse generator is "low" (and the output of the inverter is "high"). Closing switch SI holds the flip/flop in the "set" state, and therefore switches out the effect. Note that one gate of IC4 is left unused.

SYNC CIRCUIT

Turning our attention to the synchronisation circuit Fig. 5, the amplifier stage is based on IC8, and this is a standard inverting mode amplifier circuit. The preset Gain control VR3 must be adjusted so that the electronic switch is only just activated on the initial peak of each note. Diodes D7 and D8 rectify the output from IC8, and C9 is the smoothing capacitor.
This circuit has a suitably fast attack time, and it also has a fairly rapid decay so that the electronic switch is not held in the "on" state for an excessive time. Transistor TR1 is used as the electronic switch, and is a simple common emitter type which pulls the bias voltage in the oscillator circuit lower when activated.

Switch S3 enables transistor TR1 to be switched out of circuit so that the synchronisation can be disabled (which can be beneficial when using high modulation frequencies).

CONSTRUCTION

The component layout and full size printed circuit board foil master pattern for the Pseudo Echo Unit is shown in Fig. 6 and Fig. 7. The circuit board for this project is available from the EE PCB Service, code EE586.

Construction of the board is not difficult provided miniature printed circuit mounting capacitors are used (larger types could be very awk ward to fit into place). Make sure that all the electrolytic capacitors and semiconductors are fitted the right way round and do not overlook any of the six link wires.

IC2, IC3, and IC4 are all MOS types, and consequently require the standard antistatic handling precautions to be taken. In particular, use integrated circuit holders for these devices, and do not fit them into the holders until construction of the unit is otherwise complete. At this stage only pins are fitted to the board at the points where connections to off-board components will eventually be made.
One of the smaller types of sloping-front case are ideal for this project, and the front panel should be arranged with switch SI at one end of the panel, and the sockets and other controls towards the opposite end. Switch S1 should be a heavy duty push button switch of the push-to-make - push-to-break type, so that it can be operated by foot. It is for this reason that it should be mounted well clear of the other front panel mounted components (so

that they do not impede operation of this "foot switch")
The completed printed circuit board is mounted on the base panel of the case using the normal mounting pillars or screws plus spacers. It is then wired up to the front panel mounted components, see Fig. 6, and there is no need for any of this wiring to be screened, but it should be kept reasonably short and direct. In Fig. 6 it has been assumed that on/off switch S 2 will be a set of make contacts on the input socket, SK1. A socket with a single set of make contacts is unlikely to be obtainable, and it is

Fig. 6. Printed circuit board component layout and interwiring details for the case mounted components.

Fig. 7. Full size printed circuit board master foil pattern. This board is available from the EE PCB Service, code EE586.
therefore necessary to use two contacts of a socket having DPDT types.

With this method of switching the unit is automatically switched on when a plug is inserted into SKI, and switched off again when the plug is removed. This is common practice with musical effects units, but obviously an ordinary socket and a separate on/off switch can be fitted if preferred.

IN USE

If the synchronisation feature is ignored initially, the unit can be tested without setting up VR3. The output from socket SK2 is coupled to the amplifier, mixer, or whatever via a standard screened jack lead. As explained previously, the unit is automatically switched
on when a signal source is connected to Inputsocket SK1, and switched off again when the plug is removed.
The effect is not one of the most subtle ones and it should be very apparent on any input signal. A little experimentation with the Frequency and Pulse Width controls will soon reveal the range of sounds that can be produced.
The unit will work satisfactorily with a wide range of input levels, but it is not suitable for use with very low level sources such as microphones and some guitar pick-ups unless a suitable preamplifier is added ahead of the unit. Inputs of up to about 6 volts peak to peak can be accommodated before clipping and serious distortion occurs.

It is really only worthwhile using the synchronisation facility when the Frequency control is set for quite low modulation frequencies. At high modulation frequencies is it likely to have no noticeable effect, and could be counterproductive by elongating the initial modulation cycle (although you may prefer things this way).
In order to give the preset gain control VR3 the correct setting, start with this component fully backed off (set fully anticlockwise) and then advance it very gradually while playing notes into the unit. Adjust it just far enough to produce the synchronisation effect. Remember, the synchronisation will only work on signals that have an envelope with an initial transient to switch on transistor TRI.

G.T.i, CAR
has been designed to fit any type of diesel or petrol engined car including fuel injected vehicles. This ability is not normally found in add-on car computers especially those that are within the pocket of the average motorist.

BENCH AMPLIFIER

A custom workbench amplifier designed specifically for listening to circuits under test. This amplifier provides a high input impedance with immunity from overload damage and noise limiting.

TilioliTR11 GRTELLITE

Since 1960 most satellite communications traffic has been carried by frequency modulation; little has changed in twenty years, but now digital techniques are resulting in a revolution. A change which is affecting the entire global telecommunications network. We investigate 'The Digital Revolution'.

The West German Radio Show, or Funkausstellung, has been staged in Berlin for 63 years.
This year nearly half a million Berliners paid $£ 4$ each, and as much again for a catalogue, to ogle at the giant stands erected by 365 exhibitors from 26 countries, spread out through 25 enormous exhibition halls, a giant garden area and congress centre with 80 halls and rooms.

ELECTRONIC FOLK FESTIVAL

Because the event is heavily sponsored by the German radio and TV stations, there are continual live broadcasts from the stages erected in the gardens and halis. Berliners think of the Funkausstellung as a folk festival, not an electronics exhibition. They come with the family, sit in the sun, drink beer and watch big name artists perform live.

In an effort to attract attention, the electronics exhibitors must put on comparable shows, with performing bands, comedians, quiz shows and yes, most popular of all, Bingo. One visiting artist, ex-Who singer Roger Daltrey, summed up the situation succinctly, "There's nothing like this in Britain - and it makes me bloody angry."

The electronics industry is however angry for other reasons. The West German Government insists that the Berlin Funkausstellung be held in Berlin because it brings both prestige and currency into the city. But hotel space is so short that most are booked two years in advance.

"There's nothing like this in Britain and it makes me bloody angry."

"The trade thinks two weeks or two days in advance, not two years," said a disgruntled exhibitor. "Those who book late have to stay in East Berlin, or in Hamburg flying in every day. We would do far more business if we could hold the show somewhere other than Berlin."

The exhibitors also resent the obvious fact that many visitors haven't the slightest interest in the electronics on show - they are just there for the fun of the fair. Because West Berlin is an isolated city in Eastern Germany, very few public visitors make the journey from other cities.

The press, too, seems increasingly disenchanted with the Berlin Show too. Although the Funkausstellung is proudly announced as "International" most of the press conferences are in German, without translation - and often staggeringly boring even with translation. There is very seldom any press information in English and it is often very hard work to find someone who knows the answers to technical questions.

This year, as every two years for the past decade or so, I made the reluctant pilgrimage and - as in previous years - found plenty of interest. But believe me it's hard going, and not something | would recommend to my worst enemy.

For most people in the electronics industry, the best thing about Berlin is staying at home and reading what others write about it. It is pointless even trying to give a run-down on what was on show. It is far more revealing to home in on the hot topics.
This year there were two big items of news on the agenda - the launch of CD Video and the launch of digital audio tape or DAT. Both
were launched, but only "sort of". There was also an unveiling of Europe's high definition video system, intended to rival the Japanese proposals for a new standard.

As the demonstrations were for only 50 people at a time behind closed doors, only the pushiest with strings to pull, got in. But it was worth it.

CD VIDEO

CD Video is Philips' thinly disguised relaunch of the commercially unsuccessful, but technically superb, video disc. LaserVision failed in Europe because it came too late - after video tape which can record as well as play back.

Philips, and its software subsidiary Polygram, hopes that the time is now.right to try again. This could prove a successful ploy because CD Video builds on the highly successful compact disc audio system. But there are dangerous signs that the launch is going wrong.

The name CD Video is intended to cover three sizes of disc, 12 in . (as original LaserVision) with an hour on each side, 8 in . for shorter programmes, and 5 in . for 5 minute video clips plus an extra 20 minutes of sound only. A Combi player will handle all three sizes of disc, along with conventional sound only CD audio discs.

There are two good reasons for using the name CD Video instead of LaserVision. The old name has a smell of failure; also the new system has an improved method of recording the sound which creates compatibility problems with old equipment.

Whereas original LaserVision discs had an analogue stereo soundtrack, comparable to broadcast television or f.m. radio, the new CDV system has digital stereo sound, of exactly the same 16 -bit quality as a sound-only, compact disc. In America and Japan, where the NTSC TV system is used, Philips and Pioneer (the Japanese company which has pushed LaserVision very successfully in those countries) have been able to maintain complete compatibility with the old system by recording two soundtracks on each disc, one analogue and one digital.

But in Europe, where the PAL TV system is used, there is no room in the signal for two soundtracks so the obvious choice was digital. The new CDV discs have only digital soundtracks and old LaserVision discs have only analogue soundtracks.

The new PAL Combi CDV players will be able to play old PAL LaserVision discs but old PAL LaserVision players will not be able to play new PAL CD Videodiscs. This will inevitably cause consternation and confusion amongst the $10-15,000$ people who have previously bought LaserVision players and will now want to buy discs from the new CDV catalogue. Philips and Pioneer have promised some kind of compensation when CDV hits the market, but plans are still in the air.

CDV was officially unveiled in America, in June at the Chicago Consumer Electronics Show, but plans for a full scale launch of an NTSC standard system has now been delayed until 1988. The reason given is that there is an inadequate supply of 5 in . discs. The grand launch in Europe was scheduled for Berlin but it soon became clear that in Europe there is not only a shortage of 5 in . discs, but there are obviously technical bugs in the PAL system left to be sorted out.

SMOKESCREEN

Although the main entrance hall to the Berlin exhibition was decked out as a CD Video launch room, with 24,000 discs hanging from the roof,
a large screen audio-visual show and racks of 5 in . discs round the walls, it was soon seen to be a smokescreen. Most of the discs on display were 5 in . Audio Discs, not CDV discs. Out of a bank of six players, five were American/Japanese NTSC models made by Pioneer and the sixth - a PAL player made by Philips - was not working.
Several other firms at the show, for instance Grundig and Sony, were demonstrating NTSC players. Philips and Pioneer both demonstrated PAL players on their own stands but the performance of the Philips players was very poor indeed. Philips engineers at Berlin admitted that they were still identifying and evaluating the problems.

Although Philips and Polygram say they have been encouraged by the support for CDV won from the other software companies, there were signs in Berlin that this support has been slow coming. Undoubtedly there is a major commitment in the classical field from Unitel, and the promise of 5 in . CD Video pop clips from literally dozens of famous artists - but the number of 5 in . discs actually available for demonstration was pitifully small.

Almost all the 5in. discs so far demonstrated (NTSC and PAL) have been pressed by the Philips Du Pont optical joint venture factory in Blackburn. PAL discs were only trickling through to Berlin in small batches as the show opened.

Picture quality was usually very poor. Although there were a few carefully selected discs which gave acceptable pictures, most discs suffered from dropout, interference, shimmering colour noise and breakup. When the same discs were tried on Pioneer PAL players, the picture quality was much better, suggesting that Pioneer is further ahead in hardware development than Philips.

Dave Wilson, Customer Services Manager at Blackburn, says of current 5 in. CDV product, "We have measured the quality parameters and are now very happy with signal-to-noise ratio. Drop-out levels are excellent - as good as for professional LaserVision. But some source material is still poor."

The clear inference from Blackburn's guarded statements is that Philips' prototype players cannot yet do justice to discs to meet the CDV spec.

PROBLEM

One problem is that the mechanism in the Philips PAL CDV player has been designed to sell at low cost and the servo control system is not yet sufficiently accurate. This means that the focused laser spot may not follow the track of information pits accurately

This does not matter too much with sound-only digital code because the detection circuits have only to distinguish between one and zero pulses. For CD Video, however, the detector circuit is reading an analogue TV waveform and mistracking means loss of signal and distortion of the pictures on screen. Any blemish on the disc surface quite literally creates a hole in the picture and may upset the tracking control.

The picture line memory circuits designed to repair dropouts are clearly inadequate. Probably due to PAL delay line problems, the colours smudge so that the picture looks like a child's painting book.

The player must spin faster for CD Video than for ordinary CD audio and this draws more power from the d.c. supply. In turn this can create interference bars on the picture. By Berlin showtime Philips had made only around 20 PAL players, each carrying a large label on the rear warning that, "This apparatus has been assembled from piece parts from the trial run and is thus not intended for measurements as it does not meet the requirements of the specification."

Quite how Philips, with twenty years' experience of optical disc technology, can still be struggling to make a system work in time for a promised launch is unclear. What is clear, however, is that if Philips launches the system in its present form, with poor quality discs or players, there will be widespread criticism and CDV will be killed stone dead. However, if Philips waits too long after publicity created by a series of announcements throughout 1987, then the public will have lost interest in CDV by the time it is ready for sale.

This is what happened with the Philips V2000 video tape system and LaserVision. Both were announced before they were ready and the public lost interest. It is not an exaggeration to say that many of the pictures demonstrated at Berlin from CDV were more like the pictures offered by early VHS tape, or the awful RCA CED videodisc system, than optical disc LaserVision.
It is perhaps ironical that the audio-visual launch show used for the CD Video launch features a Humphrey Bogart look-alike - which is exactly what RCA and Hitachi did for the launch of the CED system a few years ago. This failed even more quickly than LaserVision. Either Philips has a short memory, or they assume that the trade and press have even shorter memories.

Although a subsidiary of Philips, Grundig's attitude typifies that of most electronics companies - other than system supporter Pioneer. "We have made no decision yet on coming to the market with CDV," says Grundig. "We will do so when it is clearly a success.'

DAT HYPE

All the Japanese electronics companies, along with Grundig (which is buying DAT machines from JVC), had planned to launch at Berlin. But pressure from the record companies on the American Government and the Common Market in Brussels, made them think again. Grundig back pedalled, giving the same statement as parent company Philips - 'No launch without support from the software industry."

Because DAT is such a political hot potato, each Japanese company at Berlin hoped another would make the first move. On opening day morning it was Sony who moved, with an October launch announcement.

Domestic DAT decks will cost $£ 1300$ and two hour tapes around $£ 10$. Sony also demonstrated two pre-production DAT decks, one a semi-pro portable and the other for upmarket in-car use

Additionally, Sony announced two systems for mass producing prerecorded software. One hooks up to 50 slave recorders to a master playback unit for video-style copying in real time. The other uses a magnetic transfer technique; the master DAT recording is spooled in a sandwich with blank tape and blitzed with a powerful magnetic field. The recording prints through from one tape to the other, and the copy tape is spooled off on the cassettes for sale

Sony's DAT deck, the DTC-1000ES, does not have Copycode, the CBS encoding system which the record industry wants as a way of stopping home copying of discs. Sony vigorously opposes the system and says it would take between 12 and 18 months to modify the DAT electronics.
> '". . . Virtually all the big names in audio and video showed marketready DAT, but with cop-out labels like Prototype Only . . ."

But the Sony deck does make two concessions to the record industry. It records only at 48 kHz , making direct digital dubbing from a compact disc (recorded at 44.1 kHz) impossible. Also the machine will refuse to make a digital recording from any other digital source if it is electronically marked with a copy-prohibit bit. Any company selling digital discs or tapes, or broadcasting digital radio sound, can add these bits to their software.

During the Berlin show the German tape group IM (Informationskreis Magnetband) reaffirmed opposition to Copycode, but pledged support for the Philips "no-clone" proposal. DAT recorders would incorporate circuitry which automatically puts a copy-prohibit flag on all recordings made on the recorder, thereby preventing people from digitally cloning digital dubs.

It was expected that once one Japanese company had announced the launch of DAT, the others would follow. But this did not happen

When the show opened virtually all the big names in audio and video (including Grundig) showed market-ready DAT, but with cop-out labels like "Prototype Only" instead of the price and date for availability.

French company Thomson, which now owns Ferguson, also showed a "prototype" DAT deck, claiming that it was the only genuinely European deck on display. This was true, because although Philips has already developed DAT decks, none were shown even as prototypes.

So Sony has been left out front to take whatever flak is flying. But once Sony decks are in the shops, it is likely that the other Japanese
companies will feel obliged to follow suit - because otherwise they stand to lose potentially valuable sales.

VIDEO NEWS

Grundig of West Germany unveiled a video recorder, due to go on sale in Britain shortly after Christmas, for between $£ 600$ and $\mathbf{£ 7 0 0}$. It performs the apparently impossible trick of setting its own timer. This is done by using the digital codes for the BBC, ITV and Channel 4 teletext TV programme timetables.

The Grundig VS540 looks like an ordinary video recorder and connects with a TV set in the usual way. But it incorporates a teletext decoder. The VCR remote control lets the user decide which pages of Ceefax or Oracle teletext are fed from the recorder to the TV set for display on the screen. The displayed pages can be news, weather, information - or TV programme schedules.

To set the video recorder timer the user selects whichever teletext page shows the times of the day's TV programmes. An extra button on the remote control is then pressed, and a spat of light appears on screen. It looks like the cursor on a computer screen.

This "cursor" is moved up and down the screen by the remote control until it sits on the starting time displayed for whatever programme is to be recorded. When an "OK" button on the remote control is pressed, the video recorder automatically sets itself to start recording at the time chosen by the cursor.

The recorder is set to switch itself off again by positioning the cursor on the next time shown on the teletext page. If there is a risk of programmes running late, the user just plays safe by positioning the stop cursor on a later time. The system, called "Text Programming", works by recognising the digital codes used for teletext to display times on screen, and converting them into the digital signals needed to set the recorder timer.

There is a hidden bonus and a hidden snag. Anyone who owns a TV set without teletext, gets the service free when they buy the Grundig recorder, without the need to change their TV set.

The snag is that the recorder warks on a twenty-four hour clock. Both the ITV and Channel 4 teletext services display their TV timetables in twenty-four hour time. But BBC1 and BBC2 work with a tweive hour clock, and AM and PM times. So until the BBC starts using a twentyfour hour clock, the Grundig recorder can only be set automatically to tape BBC TV programmes transmitted before noon.

New owner of Ferguson. Thomson of France, has a similar system which combines a modified video recorder with an existing teletext set. The TV set also has to be modified, by the incorporation of an infra-red transmitter as used by a remote control. When displaying timetable pages, the teletext set beams out infra-red signals which are picked up by the video recorder and used to set the timer in the same way as the Grundig system.

Thomson argues that it is clumsy to build a teletext decoder in a video recorder. But it will be even more clumsy for owners of teletext TV sets to have them modified to incorporate an infra-red transmitter, as well as buying a new video recorder with intelligent timer.

Although the Thomson system would work neatly where customers bought a new TV set and a new video recorder, both factory-designed for automatic timer setting, the Grundig system looks a far better bet for the high street market.

BBC LEADS THE WAY

It is always nice to see a British invention making good round Europe. Until recently it looked as if the BBC's Nicam digital system for broadcasting stereo sound with TV would clean up on the Continent,

ITT digital video recorder.
ousting the primitive and non-too-satisfactory German analogue system. But now the BBC has welshed on a previous commitment to the electronics industry that it would start broadcasting stereo sound with TV early in 1988. This has frozen the development of TV sets and video recorders with built-in digital stereo decoders and left the electronics companies wondering what on earth the BBC is playing at.

But another BBC development, RDS or radio data system, is going ahead. A 57 kHz sub-carrier is added to the f.m. stereo multiplex system at the transmitter and the sub-carrier is modulated by data signals which convey information to any receiver equipped to receive it.
This can be programme identification codes, programme service names, alternative frequency lists, information about what other stations are transmitting and time codes. The European Broadcasting Union adopted the system as a standard and Germany starts using it next May.
RDS works with either home or car radio receivers. If the name of a programme is keyed in, the radio searches for the best reception frequency. RDS signals can turn off a national radio station or a cassette recorder, so that a driver can hear local traffic news when it is broadcast. The radio automatically switches to the nearest local radio station.
For years now, Germany has been running a traffic information system called ARI. This also uses a sub-carrier of 57 kHz , with low frequency modulation ($25 \mathrm{~Hz}-53 \mathrm{~Hz}, 60$ per cent modulation) to identify the area of the transmitter and 30 per cent modulation at 125 Hz to signal that a traffic announcement is coming up.

With ARI a car receiver can be set to switch on, or switch over, from another station when there is a traffic announcement from a local transmitter. But ARI cannot change channels to keep track of a programme, the user must pre-program an ARI receiver to hop frequencies and there is no time code facility.

The RDS system has been cleverly designed to be compatible with ARI so that the two can co-exist until RDS takes over and ARI is dropped. The RDS electronics will be integrated into a chip, which puts less than $£ 10$ on the price of a receiver. All the major European countries are now adopting RDS. Car owners will soon be able to drive round Europe setting their radios by station name and getting traffic information in each country - provided of course that they understand the language.

DIGITAL TV AND VIDEO

When ITT announced that it had developed chip sets for use in a TV set which would convert the incoming aerial signal into digital code and convert it back again into analogue form only for display on the picture tube, the system was heralded as the start of a new generation of TV set design. Dlgital TV has been slow to take off, because the general public is not the slightest bit interested in whether the signals inside a television set are in pulses or waves. All the public worries about is the cost of the set, the quality of the picture and the number of facilities on offer.

Digital circuitry is now being used in both TV sets and video recorders to provide extra facilities. Some, like "picture-
in-picture", have limited appeal. Not many people want to watch a TV programme with a small picture of another programme inset at the corner of the screen.
The ITT chip set does howevpr offer multistandard operation and at Berlin more and more companies were offering TV sets which will work in virtually any country in the world. Loewe of Germany has now made multistandard operation a standard feature for all top range TV sets.

Realistically this is of most benefit to the set-makers and retailers. They like single inventory manufacture and stocks, whereas few domestic users carry their TV sets round Europe with them. The big breakthrough will come - probably at the next Berlin show in two years time - when digital circuits are built into portables for multistandard operation.

The development of flicker-free TV sets is an interesting side benefit of digital design. The European TV systems are all based on a 50 Hz standard, with 25 frames per second built up from 50 interlaced half frames or fields. Unfortunately, especially on large screen sets with bright pictures, this creates a nasty flicker. The human eye cannot discern 60 images a second, as used in America and Japan, but 50 per second is just on the border of perception.

The new flicker free sets use a digital CCD memory, of 4 megabit capacity, to store each incoming field, and display it twice instead of once. The result is a 100 Hz field rate on screen, which is entirely free from flicker: The same memory can also be used to freeze a picture on screen, like a still frame. This is of little use when watching television live, but most major manufacturers are now offering at least one video recorder with a digital memory built in. This gives clear crisp still frame without the use of the extra playback heads normally necessary.

Digital memory in a VCR can also give a slow motion effect with sound. The tape runs at normal speed, with the soundtrack playing normally, but the digital memory grabs only a few frames each second from the tape and plays them on screen as a "strobe" succession of freeze frames which simulates slow motion.

PROJECT EUREKA

The MAC TV system, adopted as a future standard for European direct broadcasts by satellite, still uses the same 625 -line picture format as PAL. Quality is improved by the different way of separating the colour and black and white signals.

In a rare example of cooperation between competitors, 30 electronics companies in Europe have been cooperating on the development of a high definition MAC system to rival technology which Sony of Japan is trying to sell into Europe with the backing of CBS of the US. The first working prototype was shown at Berlin.

Eureka project EU95 is led by Robert Bosch of West Germany, Philips of the Netherlands, Thomson of France and Thorn EMI of Britain, and backed by specialist electronics companies and broadcasters including the BBC and IBA, with aid from European governments. The Eureka members began work in June 1986. The aim is on a system which will give homes of the future much clearer and bigger TV pictures, while leaving owners of existing sets able to watch the same programmes, albeit with lower definition pictures

The Japanese high definition system uses 1125 lines for each picture, and displays 30 pictures a second (60 fields) on a widened TV screen. Europe does not like the Japanese system, because there is no easy compatibility between the different numbers of lines and pictures per second.

The Eureka project makes three radical changes. The number of picture lines is doubled to 1250 (from 625 for existing PAL' or MAC); the aspect ratio is widened form the current 4:3 to 16:9; and, although only 25 pictures a second are transmitted, the receiver shows each picture twice to give the illusion of 50 pictures or 100 fields a second. The result is a wide screen picture, which is flickerless, and as clear as film.

The system is compatible with existing 625 -line, $4: 3$ picture size receivers. They simply ignore half the picture lines and the outer edges of the wide screen shape.

On a high definition (HD) TV receiver each picture is made up from 480,000 individual picture points or "pixels", compared with 120,000 pixels for todays's TV sets and 180,000 pixels for the MAC system to be used with satellites.

The Eureka partners believe the system will be ready for the early 1990s, and that the next generation of satellites will be used to transmit HD TV signals into European homes.

NEW THIS MONTH

30 WATT AMPLIFIER
2806 Sturdy steel case $305 \times 300 \times 120 \mathrm{~mm}$ contains ILP HY60 amp module, control/pre-amp PCB, PSU, small monitor amp + speaker. $\mathbf{£} 12.50+£ 3$ carr

2807 As above but incorporates cassette deck built into top of case, also batt back-up ($3 \times 6 \mathrm{~V}$ 1.2AH sealed lead acid batts). Push-button bank on front pane controls cassette, power etc. $\quad[22+£ 3$ Full details of these on B/L 33 carr SOLAR CELLS
Giant size, 90 mm dia giving 0.45 V 1.1 A output. £4 each; $10+\mathbb{2} .50$
Mega size - $300 \times 300 \mathrm{~mm}$. These incorporate a glass screen and backing panel, with wires attached. 12 V 200 mA output. Ideal for charging nicads. $£ 24.00$

2494 Motherboard microprocesso panel $265 \times 155 \mathrm{~mm}$. Complete PCB fo computer. Z80, char EPROM, etc. 68 chips altogether + other associated components, plugs, skts, etc. $\mathbf{5 5 . 5 0}$ 2495 RAM panel. PCB $230 \times 78 \mathrm{~mm}$ with $14 \times$ MM5290-2 (4116) (2 missing) giving 28 k of memory. Also 8 LS chips. These panels have not been soldered, so chips can easily be removed if required. $\quad 55.00$

NEWBRAIN' PSU

BRAND NEW Stabilized Supply in heavy duty ABS case with rubber feet. Input $220 / 240 \mathrm{~V}$ ac to heavy duty transformer via suppressor filter. Regulated DC outputs: 6.5 V @ 1.2 A ; 13.5 V @ 0.3A:-12V @ 0.05A. All components readily accessible for mods etc. Chunky heatsink has $2 \times$ TIP31A Mains lead (fitted with 2 pin continental plugl is 2 m long. 4 core output lead 1.5 m long fitted with 6 pole skt on $0.1^{\prime \prime}$ pitch. Overall size with 6 pole skt on 0.1 pitch. Overall size Z679 KEYBOARD 62 keys on ally chassis
 Z670 HANDBOOK 204pp. Useful appendix (about $1 / 2$ the book) gives some tech info.
some
2674 DATA PACK. Interfaces and connector pin-out, i/p,o/p, port map, cc diagram + data on COP420C E2.00 2672 MOTHER8OARDS Complete but probably faulty.

E3.50

VIDEO FANSII

Here's your chance to never be without power againll We're offering a set of 10 6 V 3 A sealed lead acid rechargeable batteries, together with a mains powered charger that takes all 10 batts at an unbeatable pricel They can be wired up in parallel/series combination to provide 6 V 30 A or 12 V 15 A , thus giving over 20 hrs recording time on most camcorders Limited stocks, so order now!
Price includes 10 charging leads and mains lead. $\mathbf{Z 8 0 2}$
$£ 99+£ 5 \mathrm{c}$ a

2652 COIN ACCEPTOR MECHANISM Made by Coin Controls, this will accep various size coins by simple adjustment of 4 screws. Incorporates various security features - magnet, bent coin rejecto etc. Microswitch rated 5 A 240 V . Fron panel 115×64 depth 130 mm Cost f10.85. Our Price

1988 CATALOGUE

OUT NOW - 88 pages of bargains from resistors to disco mixers. Price includes latest bargain list, discount vouchers order form. Don't be without your copy - send $£ 1.00$ now!

CREAM DISPENSER

2801 Coin operated machine for dispensing hand cream. Cabinet $620 \times 365 \times$ 200 mm , wt 10 kg , contains coin mech PCB, counter, pump mech consisting of high torque geared 6 V motor driving cam hat pumps cream and sensing components, all powered by internal 6 V 2.6 A rechargeable battery $£ 15+\mathbf{~} 5$

Parts available separately. See list 30 SPEECH CHIP
2733 SPO256A + index chip + ULA chip as used in Currah microspeech. Cct and info for using SPQ256 with Spectrum X81, BBC VIC \& C64. No info on other 2 chips. All 3 for
AUTO DIALLER
Sloping front case $240 \times 145 \times 90 / 50$ contains 2 PCBs: one has 4 keypads (total 54 switches) + 14 digit LED display, $2 \times$ ULN2004, ULN 2033 and 4067; the other has 12 chips +4 power devices etc. Case contains speaker. 8 core cable 2 m long with plug. For use with PABX $£ 9.00$ SWITCHED MODE PSU
Astec type AA7271. PCB $50 \times 50 \mathrm{~mm}$ has 6 transistor cct providing current overload protection, thermal cut-out and excellent fitering. Input 8-24V DC. Output 5 V 2 A . Regulation 0.2%
£5.00

PANELS

262068000 Panel. PCB 190×45 believed to be from ICL's 'One per Desk' computer containing MC68008P8 $(8 \mathrm{MHz} 16 / 8$ bit microprocessor, +4 ROMs, all in skis: TMP5220CNL, 74 HCT245, 138, LS08, 38 etc.
2625 32k Memory Board. PCB 170×170 with $162 k \times 86116$ static RAMs. Also 3.6 V 100 mA memopack nicad, 13 other HC/LS devices, 96 w edge plug, 8 way DIL switch, Rs, Cs etc.
$\begin{array}{r}\text { £4.80 } \\ \hline\end{array}$
SOLDER SPECIAL!!

* 15W 240 V ac soldering iron
* High power desolder pump * Large tube solder

ALL FOR
 £7.95

DIODE BARGAINS
Minimum 10 of any one type: 20 for $£ 1 ; 50$ or $£ 2 ; 250$ for $£ 8 ; 1000$ for $£ 25.00$. Types available: BAX12, BAX12A, BAX16, B75. BYX55-300, BY207, CV8308, R775C, MR817, MV1404, VSK140, 1N659, iN4933.

二irmmelif
 MICROVISION

CASES!!

We now have a supply of cases complete with price of $\mathbf{£ 5} .00$. We have a quantity of these units in varying states. From labels attached to some of the PCBs it seems after assembly on the production line they did not function correctly. No attemp has been made to repair them, though instead

l RF T

a) RF Tuner
c) ZN401E chio

Z666 $2 \times$ PCB in good condition with $2 \times$ CRT that have been removed, but may be repairable. Conductive paint $(15 \mathrm{ml}$ bottle E 3.45$)$ will probably be needed to remake contacts. With diagram and notes. $\mathbf{E} 6.95$ RF Tuner $£ 6.95$; ZN401 chip £9.95; Vol control + switch with knob

All prices include VAT; just add $£ 1.00 \mathrm{PGP}$ Min Access order £5. Official
orders from schools etc.
welcome - min invoice charge $£ 10$.
Our shop has enormous stock of components and is open 9-5.30 Mon-Sat. Come and see us!!!
443D Millbrook Road. Southampton SO1 OHX. Tel. (0703) 772501/783740

Continuing from last month's article, we will now look at etching and drilling your own printed circuit boards. In the previous articles we considered methods of photographically reproducing the etch resist pattern onto the copper laminate board. It is worth pointing out here that the design can be traced onto the board, and then an etch resist pen or etch resist transfers can be used to produce the track pattern. The required materials are readily available from electronic component retailers.
With modern boards, which are often quite intricate, the transfers are probably worth the extra time and expense involved! Very professional boards can be produced using these. I will not go into detail here about methods of copying the design onto the board, but this is not too difficult. There is no single correct method, and most people seem to devise their own way of tackling the problem. The important things are to ensure that the track pattern is as accurate as possible, and that there are no breaks in any of the tracks. Be especially careful to ensure that the tracks all meet up with the pads correctly

ETCHANT

There are various chemicals that can be used to etch away the exposed areas of copper to leave the copper track pattern, but ferric chloride is the only one used by home constructors. This is less dangerous than most of the alternatives, but it is still a substance that needs to be treated with respect. It attacks a number of metals apart from copper, it is poisonous, and it is an irritant. It also tends to put yellow stains on anything it comes into contact with, and these are often very difficult to wash out.
Avoid getting into contact with the etchant, and immediately wash off any that does get onto your skin using plenty of water. Always thoroughly wash anything that comes into contact with the etchant, including any utensils used when producing the board.
l expect that ferric chloride is the main "offputter" for would-be printed circuit constructors. Although not the most pleasant of substances, provided it is used carefully and you are meticulous about cleaning up after each etching session, there is no reason for it to be troublesome. Many constructors find that this aspect of construction is not one that appeals to them and only use ready-made boards, but many others find that this is an interesting and worthwhile part of electronic project building.
You may well find that you wish to build circuits for which no ready made board is available, and the ability to build your own is then more than a little useful. I would certainly urge would-be board builders to take the plunge, and at least try making two or three boards to see how things go.

SOLUTION

If you do decide to give it a try, there is no difficulty in obtaining the ferric chloride these days. It is sold by several of the larger component retailers, and a few sell it in the form of a solution that is already made up and
ready to use. It is more usually sold in the form of pellets, or sometimes it is available as crystals. The latter look more like chunks of yellow-brown rock than neatly shaped crystals. It no longer seems to be sold in powder form, which is probably just as well as it is very difficult to turn into a solution in this form.
The pellets and crystals dissolve in cold water reasonably easily. A plastic bottle is needed for mixing and storage purposes, and the type sold for storing photographic chemicals are probably the most suitable for this application. Metal containers are obviously unsuitable, and glass bottles (which could easily smash and make an unthinkable mess) are far less than ideal.
Gentle agitation or stirring will help to make the ferric chloride dissolve more rapidly. It can still take 20 minutes or more to fully dissolve though. The solution will probably become warm as the ferric chloride dissolves, and for this reason you should not start with hot water. It might get even hotter and melt the bottle! The exact strength of the solution is not too important, and anything (in weight) from one part ferric chloride to two parts water to about half this strength will do. If you buy a pack of about 250 g or 280 g of the chemical, mixing this with just under a litre of water will give a solution of good strength.

ETCHING

Etching the board is basically just a matter of immersing it in the etchant and waiting. However, a board etched under good conditions could take as little as five to ten minutes, while one processed under bad conditions could take days and give a markedly inferior result. For fast and efficient etching a reasonably fresh solution is required.
With use the copper from the board replaces the iron in the solution, and the etchant gradually turns to copper chloride (the iron is deposited as a sludge at the bottom of the storage bottie). This change in composition shows up as a change from a yellow brown colour to green, and eventually to a dark bluegreen colour. When the solution reaches this dark colour it is certainly time to replace it.

Even with a fresh solution it can sometimes take an hour or more for a board to fully etch. If the board is simply placed copper side up in a dish of etchant, a thin layer of iron sludge tends to build up on the surface of the board. This hinders the etching, and drastically slows down the process. The board tends to etch much faster at the edges than towards the middle,
which could lead to undercutting of the tracks and pads near the edges of the board.

One way of speeding things up and producing more even etching is to gently agitate the dish at fairly frequent intervals. Alternatively, lift the board out of the etchant (using plastic photographic tongs) from time to time, draining off the solution together with the sludge.

SUSPENDED

My preferred way of doing things is to have round bottomed dishes of various sizes, and to put the board copper side downwards in one of these. The dish needs to be one of a size that results in the board being held between about 10 and 100 millimetres above the very bottom of the dish, as in Fig.1. This enables the etchant to get at the copper properly, but there is a minimal build up of the iron sludge. The iron is heavier than the solution, so it falls away from the board and down to the bottom of the dish. This gives fast etching and requires a minimum of attention from the constructor. It is certainly the best method I have yet found.

An obvious drawback of this system is that you may not always be able to find a dish to match the size of board you wish to etch. Larger boards are especially awkward, since even the largest dish you can obtain may well prove to be too small. You may be able to devise other methods of obtaining a similar result, and I have found it possible to suspend boards on loops of single strand insulated wire as in Fig.2. This has the advantage of not requiring a round bottom dish of just the right size, but it can only be easily implemented using a fairly deep dish

One point that has to be watched with this system of having the board copper side down is that air bubbles are not trapped under the board. This leaves areas of copper that are unetched, and it may be found that in immersing the board again to etch these away, the rest of the board becomes a little "overdone". Place the board in the etchant copper side uppermost initially, and make sure that the etchant flows over its entire surface. You should then find that air bubbles are easily avoided.

It is not a good idea to leave the board in the etchant any longer than is really necessary as this can lead to thinning of tracks and pads, or in an extreme case parts of the copper pattern might disappear altogether! Inspect the board every few minutes at least, and as soon as all the unwanted copper has been etched away, remove the board from the etchant and rinse it thoroughly under a tap

DRILLING

To be honest, drilling printed circuit boards is not one of my favourite jobs. Modern projects are generally somewhat more complex than those in the past, and most boards require upwards of a hundred holes to be drilled. This can become a bit tedious, but it is a task that requires your full attention from beginning to end. Having spent a fair amount of effort producing a good quality product to this stage, it would be a mistake to then rush things and

Fig. 1. A beautifully simple but effective method of etching boards.

Fig. 2. An alternative etching method suitable for awkward boards.
ruin it. If necessary, drill the holes over several sessions rather than rushing in and doing the job in a single spell.

A one millimetre drill is suitable for most holes, but for semiconductors a slightly smaller drill of 0.8 millimetres in diameter is preferable. Preset resistors land components such as relays which have similar pins rather than leadout wires) require mounting holes of about 1.5 millimetres in diameter. A few components (such as larger relays) require mounting holes of about two millimetres in diameter.
Four drill sizes are therefore ample to satisfy most requirements, but a larger size of about three to four millimetres will be needed to drill the mounting holes for the board itself. The size of these mounting holes will depend on the method of fixing you use, but about 3.3 millimetres is satisfactory for 6BA or M3 mounting holes.

DRILL

If you use a full size power drill it must be mounted in a stand. Otherwise it will be difficult to position the holes accurately, and
the drills are likely to keep snapping. Really a full size power drill is not very good for this type of work, and a miniature type is the ideal tool for the job. The smalier types can be used quite effectively when hand-held, but there is less danger of snapping the drill bits if a drill-stand is used. Some of these do not permit holes to be drilled more than 40 millimetres or so from the edge of the board, which renders them unusable for the holes towards the middle of larger boards. One with a "reach" of about 100 millimetres or more is preferable. Small handdrills are usable for drilling component mounting holes, but use drill bits of the "reduced shank" variety. Even with these great care needs to be taken in order to avoid snapping them, especially the very small diameter types.
There is not usually any great difficulty in getting the holes quite accurately placed, as the holes at the centres of the copper pads tend to guide the drill bit into position. Even with fibreglass boards power drills will drill through the board in only a couple of seconds, and the holes can be drilled at a fair rate.

Expect things to take quite a long time if you are using a hand drill - the use of s.r.b.p. board rather than fibreglass might help to speed things up. Various types of "long-life" drill are available, and their extra hardness is useful when dealing with fibreglass boards. Ordinary HSS drills tend to become blunted very quickly when working this material (due to the hardness of the glass filaments). Note that these extra hard drills are usually extra brittle as well! They need to be treated with even more care than normal, and are generally unsuitable for hand drills.

FINISH

The final stage is to remove the remaining etch resist and polish the copper to a good clean finish. Some photo-etch resists can be left on and will not hinder soldering. I still prefer to remove them as they seem to produce a marked increase in the fumes generated when soldering the components in place. The resist is easily removed using a scouring pad or one of the special printed circuit polishing blocks that are readily available from most component retailers. One final tip; if you are not going to solder the components in place within a few hours of completing the board, leave the resist in place until just before you are going to start work on the board. Otherwise the copper might start to oxidize, making it necessary to repolish the board.

Electronics is not exactly short of confusing jargon and abbreviations, and these will be the subject of next month's article.
\mathscr{R} bert $\mathscr{P}_{\text {enfold }}$

tWINKLIIG G. CALLAND
 Add a bit of sparkle to your Christmas festivities

Decorations for the top of the Christmas tree can sometimes be dull and unexciting, either being a fairy or a tinsel star. This inexpensive and easy to build project will add a bit of sparkle to your tree.
The device screws into a lamp socket of any series wired fairy light set, and twinkles a single bulb. The effect is enhanced if the bulb is placed in the centre of a tinsel star.

HOW IT WORKS

The final circuit diagram for the Christmas Tree Twinkling Star is shown in Fig. I. The a.c. from the fairy light set is rectified by the bridge rectifier REC1 (diodes D1 to D4) and smoothed by capacitor $\mathbf{C 1}$ to produce a steady d.c. voltage (6 V for a 40 bulb set, 12 V for a 20 bulb set). This then powers the 555 timer i.c. wired in the astable mode.

The frequency of oscillations is variable, by adjusting preset potentiometer VR1, from about 5 Hz to 20 Hz . The pulses from ICl switch transistor TRI on and off via resistor R3 and hence the bulb LPI flashes.

CIRCUIT BOARD
 CONSTRUCTION

The full size printed circuit foil master pattern and component layout is shown in Fig. 2. The printed circuit board is small and ideal for the first time p.c.b. builder. However, for those who do not wish to build their own p.c.b., this board is available from the $E E P C B$ Service, code 588.

Start construction by inserting the resistors, then the capacitors, taking care with the polarity. Then insert the transistor followed by the d.i.I. bridge rectifier, then the integrated circuit ICl. Pay particular attention to the orientation of the semiconductors, these should be inserted according to the component layout shown in Fig. 2.

CASE

The case is the smallest plastic case Vero make measuring $72 \mathrm{~mm} \times 47 \mathrm{~mm} \times 25 \mathrm{~mm}$, and is easily hidden by the tinsel star. Two holes should be marked and drilled in the case. One in the top for the bulb holder, and, one in one of the small sides for the supply leads, see Fig. 3.

A bulb will have to bite the dust so that the screw part of it can be used. The glass envelope should be carefully smashed, by wrapping in a cloth to prevent flying glass, and all pieces of glass removed. The filament should then be removed, and the filament leads carefully scraped to remove the enamel.

Fig. 1. Complete circuit diagram for the Twinkling Star.

Fig. 2. Component layout and full size printed circuit foil master pattern.

Fig. 4. The supply leads are soldered to the bulb filament leads and glued to the pen case.
COMPONENTS

Resistors	
R1	10k
R2	10k
R3	680
All $0.25 \mathrm{~W} 5 \%$ carbon	
Potentiometer	
VR1	47 k lin. skeleton preset, horizontal
Capacitors	
C1	1000μ radial elec. 16 V
C2	$2 \mu 2$ radial elec. 16 V
C3	10n polyester

Semiconductors

TR1	BFY50 npn transistor
REC1	A0540 250V 0.7 A d.i.I. bridge rectifier
IC1	NE555 Timer

Miscellaneous

Plastic case, Vero $72 \mathrm{~mm} \times 47 \mathrm{~mm} \times$ 25 mm ; single-sided printed circuit board $60 \mathrm{~mm} \times 42 \mathrm{~mm}$, available from EE PCB Service, code EE588; bulb holder; old bulb; epoxy resin; pen case; wire, etc.

Approx.cost

Guidance only
$£ 8.45$
b...Beeb....Beeb...Beeb....Bet
. . . Logic Tester . . . Transistor Tester . . .

Testing digital integrated circuits can be a difficult and time consuming job, but it is something that can often be accomplished quite quickly and easily with the aid of the BBC computer. One way of tackling the problem is to build up some hardware to connect the BBC ports to the device under test and to have a large program that will automatically test a wide range of logic devices. This is not something that we will pursue further here as this subject was covered in John Becker's excellent "Digital Chip Tester" article in the August 1987 issue of Everyday Electronics.

However, it is worth mentioning a more ad lib approach which has its attractions, if only one or two chips will need to be tested every now and then, and the chips to be tested could be any in the vast CMOS and TTL'ranges. Working out test set-ups and software to automatically test dozens of chips would take a massive amount of time, and ultimately most of the routines would probably never be used in earnest. Improvising test routines as and when necessary is perhaps a more pract ical approach, possibly backed up with prepared software and hardware set-ups for common logic chips.

Improvised Testing

A method of chip testing I have used successfully for some time is to have a solderless breadboard, and a lead to connect this to the user port of the BBC computer. The lead has a 20 way IDC connector to fit the user port, and a number of one millimetre plugs at the other end. It is not necessary to have all twenty leads terminated in plugs, as there are three +5 volt leads and seven earth leads. Only one of each needs to be fitted with a plug, and the other eight can simply be trimmed back so that they do not get in the way.

Connections

The general idea is to plug the chip to be tested into the breadboard, and to then wire it up to the user port in the appropriate manner This means connecting the chip to the power supply rails of the computer, and then wiring its inputs and outputs to lines of the user port. It is then a matter of setting up the user port so that lines connected to inputs of the chip operate as outputs, and lines connected to outputs operate as inputs.
With software designed specifically to test the chip under investigation it is possible to

Fig. 1. A simple set-up for testing a three input NOR gate.
have everything done automatically; with the program running tests and then reporting the nat ure of any errors that are discovered. With an improvised set-up it might be possible to devise a quick test routine that will provide largely or even totally automatic testing, but it is more likely that a largely manual approach will need to be adopted.

Gates are about the easiest devices to check, but with multi-gate types it is probably best to check them one at a time. It is just a matter of taking the inputs through every possible combination and noting the output states produced. As an example, assume that one of the three input NOR gates of a CMOS 4025BE is to be checked. This could be accomplished using the arrangement shown in Fig.I, which has PB0 to PB2 acting as outputs, and PB3 operating as an input to monitor the output level of the gate.

Results

A NOR gate provides a logic 1 output level if all its inputs are low, but a logic 0 output level if one or more of the inputs are taken high. This makes testing quite simple as the output of the gate should go high if a value of 0 is sent to the user port, but should go low if any other value is used
One way of testing the gate would be to set up PB0 to PB2 as outputs, and then manually send values to user port and read the state of PB3. In this case it is probably quicker to type in a short test program though, especially if all three gates in the device are to be checked in turn. The simple program of Listing I is suitable. Note that it is just a matter of sending values from 0 to 7 to the user port in order to take PB0 to PB2 through their eight possible output combinations. The way in which the program functions should be fairly obvious to any experienced BBC user, and the detailed functioning of the program will not be described.

When run, the program simply prints a list of values sent to the user port, with the returned values printed beside these. When used with a three input nor gate this result should be obtained:

0	1	4	0
1	0	5	0
2	0	5	0
3	0	7	0

Something that should not fail to impress you is the speed at which this type of testing is completed. Even using BASIC rather than assembly language, a multi-input gate can be checked in just a fraction of a second!

Listing 1
10 CLS
20?\&FE62 = 7
30 FOR OUTPUT $=0$ TO 7
40 ?\&FE60 = OUTPUT
50 PRINT OUTPUT,(?\&FE60 AND 8)/8 60 NEXT

Complex Devices

Some other logic devices, such as inverters and buffers, are just as straightforward to test, or are even more simple. Obviously not all logic integrated circuits are quite as easy to test though, but it should be possible to devise
simple test set-ups for all but the most awkward types. With something like a D type flip/flop, the easiest way of checking it would probably be to wire it to act as a divide by two circuit.CB1 could then be used as an output to provide pulses to the clock input, with PBO being used to monitor the output state. This should, of course, change each time an output pulse is sent.

Although this type of testing is not 100 per cent reliable, in the vast majority of cases it will. accurately indicate whether or not the test device is serviceable.

With something like a 3 to 8 line decoder or 4 to 16 line type there is a problem in that the user port has insufficient input/output lines to accommodate all the input and output terminals of the integrated circuit. It might be possible to overcome this by using the printer port and (or) the two digital inputs on the analogue port, or a VIA interfaced to the IMHz bus could provide another twenty input/output lines. I would not recommend these methods for improvised testing though, as the likely result would be a "birds nest" and totally unreliable results. It is probably much better to keep the test set-ups as simple as possible.

Applying this philosophy to a 3 to 8 line or 4 to I6 line decoder, the inputs would be driven from output lines of the user port, and they would be cycled through the eight or sixteen possible combinations. One user port line would be set as an input and used as a logic state checker to quickly check the level at each output for each set of input levels. This may sound a rather cumbersome way of tackling the problem, but the chip could soon be tested, and thoroughly tested using this method.

Many Iogic devices have "inhibit" or "enable" inputs which can be used to deactivate the chip. Where necessary, these can be driven from output lines of the user port and tried at both states in order to ensure that they activate and deactivate the device properly.

With a little ingenuity it should be possible to test virtually any logic chip, with the "bit at a time'' approach being adopted.

Linear Devices

Although computer testing lends itself more readily to operation with digital devices than other types, it is something that can easily be applied to linear semiconductors, passive components, or virtually any component in fact. The analogue port of the BBC micro is well suited to this application, but for much testing of this type an analogue output is needed in addition to an analogue input or inputs. There is no real difficulty here, since it is a very easy matter to add a digital to analogue converter to the user port
Using the BBC computer for certain types of component testing is something that has been covered previously in this series of articles, and we will not go over the same ground again here. We will instead concentrate on types of testing that have not so far been considered, and this mostly means various types of semiconductor. This is an application where the graphics capability of the BBC micro can often be put to good use.

Something like transistor curve tracing is perfectly possible, and with the aid of a screen dump routine and a suitable printer hard copy of results can be obtained. A BBC computer plus some simple hardware and supporting software can provide test gear functions that would once have cost a minimum of several thousand pounds!

Transistor Checker

As a simple starting point, the circuit of Fig. 2 shows a basic means of using the BBC computer as a transistor checker. R1 provides a nominal base current of 10 microamps to the test device, and Sla connects R1 to the appropriate supply rail for the type of transistor (npn or pnp) that is being checked. SIb provides similar switching for the emitter terminal of the test device.

In order to determine the current gain of the test transistor we must measure the collector current. The current gain is equal to the collector current divided by the base current, and having measured the collector current, there is obviously no difficulty in getting the computer to do the simple mathematics and print the current gain figure on the screen.

Although the analogue port responds to voltage rather than current flow, it is an easy matter to make the conversion from one to the other. It is actually just a matter of placing a resistor across one of the inputs, as the voltage developed across a resistor is proportional to the current flowing through it. For instance, with a 1 k resistor a voltage of 1 volt per milliamp is produced.
The load resistor must be chosen to give convenient scaling, but there is no real problem here. Dividing readings from the analogue port by 64 gives a range of 0 to 1023 , which in this

Fig. 2. The transistor tester interface.
case can conveniently be 0 to 10.23 milliamps. With a 10 microamp base current this represents a gain range of 0 to 1023 , which covers all normal transistors. Apart from the division by 64, no further manipulation of the returned values is needed in order to give readings in current gain. Using Ohms Law to calculate the value of R2 gives an answer of just under 176 ohms, but the nearest preferred value of 180 ohms will give sufficient accuracy.
There is a slight complication in the circuit when testing npn devices. This is due to the fact that the collector of an npn transistor connects to the positive supply rail, but the analogue inputs measure voltage relative to the negative supply rail. This requires some additional hardware to provide a suitable signal for the analogue port, and there are two possible approaches. One is to use a unity voltage gain inverting amplifier, or the alternative that is used here is to use a current mirror.

In this design the current mirror is formed by TR1 and TR2, and the action of this type of circuit is simply to provide a source current that
is approximately equal to the current fed into its current sink circuit. There is no need to switch TR1 and TR2 out of circuit in the pnp mode, as they will not have any effect on readings.

Listing 2 is a simple program for use with the transistor tester circuit. This is another program which is very simple and straightforward, and which does not really merit a detailed description.

Listing 2
10 CLS
20 PRINTTAB(10,10)" CURRENT GAIN
30 GAIN = ADVAL(1) DIV 64
40 PRINTTAB(10,11)GAIN
50 FOR DELAY $=1$ to $500:$ NEXT
60 PRINTTAB $(10,11)^{n}$
70 GOTO 30
Next month we will continue on the same theme, but some more sophisticated circuits and software which make use of the BBC machine's graphics will be described.

CONOUERING NEW HEIGHTS

ANTENNAS

An antenna is the most important part of a radio station. The best equipment in the world hooked up to a poor antenna will perform badly, while modest rigs used with a good antenna can perform well and give great satisfaction:

The elementary form of antenna, from which more elaborate systems are developed, is the half-wave dipole, while two other basic types are also much used by amateurs - grounded antennas, which use the earth to represent one half of the required antenna length; and loops, which are helpful when there is insufficient space to erect a full-size dipole.

In choosing which antenna to use there are a number of considerations to take into account. This can often mean that the best antenna for the job is not the one chosen - and why amateurs experiment endlessly hoping to find the optimum radiator in the face of various restraints!

REQUIREMENTS

Firstly a decision has to be made as to which band or bands the antenna is to cover. They can be single or multi-band, but in the latter case obtaining equal performance on all bands can be a problem.

Having decided on the bands, what are the target areas! If medium/short distance working is required, e.g. UK and Europe, an antenna with a high angle of radiation is needed. If $D X$ (long distance) working is hoped for then low angle radiation is needed.

An assessment can then be made of the different types of antenna which might meet one's particular needs, comparing the size of one's garden (if there is one!) against the physical dimensions of the proposed antenna, its cost if bought commercially, the need to keep on good terms with the neighbours, and the possibility of having to obtain planning permission to erect it.

A commercially made 60 ft high tower/mast and antenna, with facilities for raising, lowering and rotating the antenna - the whole sitting in several tons of concrete in the ground - can well go into four figures. Faced with this possibility, it is not surprising that many amateurs opt for home-made systems, some comprising just a length of wire strung between two trees!

WIDE CHOICE

If they decide to make their own, there are many designs to choose from, mostly variations of the basic types already mentioned. There are books full of theory and practical designs, and frequent articles in the amateur radio magazines, such as Practical Wireless.
Some go straightaway for a wire dipole, accurately dimensioned for a particular band. This will present a matched load to a transmitter without the need for an antenna tuning unit (see last month's column) or other matching device. If it can be mounted at least half a wavelength above ground it is capable of DX communication, and can give a good performance.

The necessary dimensions may, however, cause a problem if space is not available. A dipole for the 80 metre band, for instance needs to be approximately 40 metres long and for DX working to be at least 40 metres above the ground. Such an antenna at about $8-10$ metres above ground has a higher angle of radiation and can provide reasonable medium/short distance coverage.

Another popular type is known simply as a "long wire" antenna. There are preferred measurements to cover particular bands, but many amateurs with restricted sites simply work to the maxim, "as long as possible and as high as possible". These antennas need a good earth connection and, with the help of an ATU, provide variable and sometimes surprising results over several, if not all, bands.

RADIATION PATTERNS

Such antennas have random radiation patterns, often resulting in only a small portion of the radiated energy going in the direction of the station being worked. Dipoles have a broad two-way directional pattern which is better, but for most of the energy to go in one direction only a specially designed antenna is required.

Probably the best known design is the YAGI beam which uses parasitic elements. These obtain their power by electro-magnetic coupling from a normally connected dipole and concentrate the radiation in one direction.

Variations in the dimensions and spacings of the parasitic elements result in different characteristics in the antenna.

Adjustments can be made to obtain maximum forward gain, but this reduces the attenuation to the rear (the front-to-back ratio). In the interest of good selective reception it is normal practice to sacrifice some gain to obtain the best front-to-back ratio. Spacing also affects the band of frequencies (bandwidth) over which an antenna will give a satisfactory performance.
The more elements added to a beam the greater the gain achieved, but the signal beam becomes progressively narrower (beam width), so that accurate aiming of the beam becomes important to ensure that signals to and from the chosen area reach their destination.

REDUCING THE SIZE

Because of space limitations some amateurs concentrate on reducing the size of antennas to fit into small gardens or even to use indoors. There is a limit to this because of falling efficiency below a certain size, but even so the results obtained can be very rewarding

One antenna I made for the 10 metre band measured just 1.5×1.5 metres, comprising two driven elements, virtually dipoles folded round into rectangular shapes. I set this up one evening in my bedroom and pointed it towards America. I transmitted a power of just 2 watts and my first contact was with a station in Pennsylvania.

Shortly after I worked Wisconsin, followed by Minnesota, nearly halfway across the States. I was virtually striding across the country in giant steps thanks to my experimental miniature antenna. It was a wonderful feeling!

Another indoor antenna had helically wound elements in the shape of a broad letter V. It was essentially a dipole 2.5 metres wide against the normal 7 metres for the 15 m band. I was using 5 watts, and the first station I contacted was in

LOOP ANTENNA, EACH SIDE A QUARTERWAVELENGTH

Brazil, a country I had never managed to work before.

GREATEST SUCCESS

In terms of size reduction my greatest success has been a 4.5 metres long antenna used for the 80 m band, compared with the conventional length of about 40 metres. I even got a 2.25 metres version to work in a contact with Germany. The losses are so great on these however that my usual low-power operation is at a disadvantage and I have not continued with these particular trials.
It is easy to see why no single antenna is suitable for all purposes, and why antenna experiments are so interesting. They also happen to be great fun!

Good Connections

Two new products have come to our notice this month and would make welcome gifts at this time of year.
A new portable rechargeable soldering iron, which is claimed to be ideal for soldering CMOS and other static devices is being marketed by Cirkit. Featuring an illuminated tip, for which spares are readily available, the soldering iron has a safety hood for protection during operation.

Rated at 12 W , with fast warm-up time, the iron comes with a 2 mm diameter tip, a mains charger, wall or bench mounted charging stand and a 12 V car charging lead which is connected via the vehicle's cigarette lighter.

The Turbo Solderor costs $£ 15$ and it is claimed that over 200 standard joints can be made from a full charge of 12 hours. The iron is available from: Cirkit, Dept EE, Park Lane, Broxbourne, Herts EN10 7NQ. © 0992 444111.

If you know someone who is 'forgetful' and suffers from problems of keeping important appointments and would like to give them a gift that may help, Solex International are offering two 'timekeepers' for the price of one.

For a limited period (until the end of '87), all mail order customers ordering their versatile Solex S540 timer will receive a Free fivefunction stopwatch.

The S 540 is fully programmable with a liquid crystal display and an adjustable pocket grip. It also boasts a count-up, count-down function with electronic alarm and roll over facility.

The Solex S540 costs $£ 14.95$ each, including postage and packing, and is available from: Solex International, Dept EE, 44 Main Street, Broughton Astley, Leics LE9 6RD

Greenweld Catalogue (EE Nov '87)

The volume of mail received by Greenweld in the first two weeks following publication of our November issue 'greatly exceeded expectations', said Peter Green of Greenweld. They have asked us to apologise to readers who sent in early orders for the delay in processing some of them

Orders are now being despatched within a couple of days. (Tel: $0703772501 / 783740$.)

CONSTRUCTIONAL PROJECTS

Audio Signal Generator

There should be no difficulty in obtaining the low voltage audio amplifier i.c., type LM386N-1, used in the Audio Signal Generator. This is currently listed by Magenta, Omega, TK Electronics and Greenweld.
For those readers who may experience difficulties in obtaining parts, a complete kit (£12.99) may be purchased from Magenta Electronics, Dept EE, 135 Hunter Street, Burton on Trent, Staffs, DE14 2ST. Add £1
for p\&p per order
The printed circuit board is available from the EE PCB Service, code EE589.

Dual Mains Lights Flasher

The mains suppression type capacitor and the mains transient suppressor listed for the Dual Mains Lights Flasher should be available from most of our component advertisers. If readers do have difficulty, they may be purchased from Maplin, stock codes FF58N (IS Cap O 447) and HW13P (Mains Trans Supp).
When buying the BC184L transistor it is important to purchase one with the suffix L as pin connections for this device vary. The printed circuit board is available from the $E E$ PCB Service, code EE587

Pseudo Echo Unit

We cannot foresee any component buying problems for the Pseudo Echo Unit project. When ordering the In /Out switch S 1 be sure to specify a robust 'foot-operated' type pushbutton switch. Also the jack socket SK1 should incorporate an on/off switch.
The printed circuit board is available separately through the EE PCB Service, code EE586 (see page 690)

Twinkling Star

We have only been able to find one source for the di.l. bridge rectifier called for in the Twinkling Star project. This is a Siemens A0540 device and is currently stocked by Electrovalue, 28 St Judes Road, Englefield Green, Egham. Surrey.
They inform us that they have very limited stocks and suggest that the A0553 device may be a suitable alternative. We have not had the opportunity to try this device and cannot vouch that it will work in this circuit.

One possible answer would be to use one of the more common TO case type rectifiers and bend the leads to suit the p.c.b. Provided the device is mains rated at 0.7A or more we can see no reason why other types cannot be used in this circuit.

The printed circuit board is available from the EE PCB Service, code EE588.

Windscreen Wiper Control

The only item that is likely to cause sourcing problems in the Windscreen Wiper Control is the 16A relay. This is stocked by Maplin Supplies, stock code YX99H (12V 16A relay).

Light-Operated Counter

Some readers may experience difficulty in obtaining the phototransistor TIL78 used in the Light-Operated Counter - this month's Exploring Electronics project.
This device is stocked by Magenta, Omni, TK Electronics, Omega and Xen Electronics.

UIIISCREEEM UIPER CONTROL

p.J. Deferpose

Make a clean sweep with this low cost intermittent and dual car windscreen wiper controller

This project was designed to provide an intermittent wipe facility for those of us with "older" cars or cars lower down the range. While investigating possible designs the author saw an up-market car which sported a rather nice dual wipe facility. This circuit emulates this, and provides both an intermittent wipe and a dual wipe.
This latter feature is useful in the situation where a single wipe only results in a smeared windscreen. The delay between sweeps is variable, using a dash mounted control.

CIRCUIT DESCRIPTION

The NE555 timer, IC1, is set up as a pulse generator. Timing is determined by potentiometer VR2, capacitor C1, and VRI or resistor R1.
The capacitor, C1, is charged via R1 (or VR1) and diode DI. This sets the pulse width, the duration of which is $C \times R$. For the intermittent wipe position this is $100 \mu \mathrm{~F} \times 5 \mathrm{k} 6$ $=0.56$ seconds. The capacitor is discharged
through VR2, the position of which determines the time between pulses, and hence the time between sweeps.
The output of 1 Cl drives a transistor TR1, via resistor R2; TR1 is being used as a switch. Relay, RLA, provides the control for the wipers.

Control of the wipers is achieved by the contacts of relay RLA in the following way. With the relay de-energised the car's wiper circuit is unaffected since the contacts are replacing the portion of wire that has been cut.
When the relay is energised there is 12 V fed to the motor by the relay contacts RLA1. This causes the motor to run.

When the relay contacts are de-energised, if the wipers have not reached the parked position, current will flow via the park switch as normal. As the park switch takes care of the sweep once its contacts are in the run position, only a small pulse from the relay is needed for a complete sweep of the wipers to occur.

From the above description, all that is required for dual-wipe is a longer pulse; this is provided when VR1 is in circuit.

WIPER CIRCUIT OPERATION

The car wiper circuit in the off position, with the wipers in the parked position, is shown in Fig. 2. When the wipers are switched on current flows through the wiper switch to the motor, as the other side of the motor is earthed the motor will run.

When the wiper switch is turned off, if the

Fig. 1. Complete circuit diagram of the wiper controller.

Fig. 2. Normal wiring of a car wiper circuit in the off position.
wipers are not in the park position, the parking switch will be in the position shown in Fig. 3. Current will flow through the parking switch and wiper switch to the motor. This happens

COMPONENTS

ResistorsR1	
R2	470
All 0.25W 5\% carbon	
Potentiometers	
VR1	100 klin . skeleto
VR2	470 k lin. rotary
Capacitors	
C1	100μ elec. 25 V
C2	100 n ceramic
C3	47μ tantalum

Semiconductors

D1,D2	1N4148 signal diode
(2 off)	
TR1	2N697 npn switching
IC1	NE555 timer

Miscellaneous

RLA 106 ohm coil, 12 V relay, with 16A changeover contacts

S1 4-pole 3-way rotary switch Suitable plastic case; stripboard, 0.1 in matrix size 20 strips $\times 27$ holes; in-line fuse holder and 10A fuse (FS1); interconnecting wire, $32 / 0.2 \mathrm{~mm}$ wire for connecting relay contacts and circuit board to. supply; plastic knobs (2 off); terminal pins; bullet/spade connectors, etc.

Fig. 3. Car wiper circuit switched off but with the wipers not yet parked.
until the wipers are in the correct position, and hence the parking switch is in the park position. The back e.m.f. generated by the motor results in dynamic braking of the motor since both sides are connected together.

CONSTRUCTION

The circuit panel is constructed on a piece of 0.1 in matrix stripboard, size 20 strips $\times 27$ holes. The component layout and underside view showing breaks in the copper strips is shown in Fig. 4.
There should be no problems in the construction of this project, providing normal care is exercised. Particular attention should be made when breaking the tracks on the stripboard, and soldering in the components and link w.es. Also, check that the components have been inserted with the correct polarity. Finally check all components and joints before testing.

Before mounting the circuit in the car a bench test should be carried out to ensure the circuit is working correctly. To test the circuit, first rotate the potentiometer VR2 to a position about midway between maximum and minimum.
Set the preset VR1 to about mid-range position. Connect a 12 V supply to the positive and earth pins on the circuit board, with off/on switch in the of position. When the switch is turned to the ON position, check that the current does not exceed about 75 mA . If the current is greater than 75 mA turn off and check wiring.

Assuming all is well at this stage, connect a light bulb to the supply via the normally open contacts of the relay as shown in Fig. 5. Switch on the circuit again, the lamp should flash on and off, the frequency of which will be dependent on the position of the potentiometer VR2. Check that rotating the potentiometer alters the time between flashes from almost zero to about 50 seconds. Check that with the mode switch SI in the INT. position the lamp is on for about half a second. With the mode switch in the DUAL position check that varying the position of the preset VR1 alters the length of time that the lamp is on.

INSTALLATION AND SETTING UP

Commence the installation of the unit by first disconnecting the car battery, this should be done whenever this type of work is to be carried out. A break should be made in the wire between motor and wiper switch on the car steering column, see workshop manual wiring diagram.
The contacts of the relay should be inserted as shown in Fig. 6, paying particular attention to the fact that the switching of wiper contact is connected to the motor side, and the normally closed (n.c.) contact is connected to the switch side. When making these connections use either the bullet type or spade type connectors available from motor factors.

Fig. 4. Veroboard layout and wiring for the car wiper controller.

The normally open (n.o.) contact is connected, via a fuse FS1, to the supply using the $32 / 0.2 \mathrm{~mm}$ wire. A suitable connection may be made at the fuse box, but see workshop manual.

The original wiper controller circuit was mounted, in its case, in the centre console of the car. However, the circuit can be mounted in any dry place, connect the wiper control circuit to a fused supply at the fuse box and the earth connection to a suitable earth point. Mount the potentiometer VR2 and mode switch S1 on the dashboard in a convenient position, bearing in mind that they should be easy to reach while driving.

Switch the circuit on with the switch in the INT. position and a single, delayed action, wipe should occur. Check that the time between sweeps can be altered by varying the
position of VR2. With the switch in the DUAL position, alter the preset VR1 for two sweeps of the wipers.

Fig. 5. Connecting the car wiper controller for test purposes, using a small 12 V bulb.

Fig. 6. Wiring of RLA1 contacts to the car wiper circuit.

KIM HENSON

IT is fair to say that I, as a car enthusiast, am more at home with a set of spanners than I am with a soldering iron was therefore with some trepidation that I surveyed the many and various components comprising the Electronize Design "Total Energy Discharge" electronic ignition kit, which I was about to assemble! To see how I would fare just me (with my father for moral support) versus the kit - I ventured into my workshop, armed with an Antex soldering kit in one hand, and the Electronize ignition kit in the other

THE SYSTEM

The "Total Energy Discharge" electronic ignition system is designed to give your car "easier starting, peak performance and improved economy". Based on proved capacitive discharge systems, the unit from Electronize is claimed to give $31 / 2$ times the energy of ordinary capacitive systems, and $31 / 2$ times the power of inductive systems. These benefits are combined with a spark three times the duration of ordinary capacitive systems, said to be essential for modern cars with weak fuel mixtures.

The resulting benefits are claimed to include higher output voltage under all conditions (and full ignition power even with a flat battery), improved economy through "no loss" of ignition performance between services, accurate timing and reduced contact wear/arcing, plus smoother performance, immune to contact bounce and similar effects.
The system has a built-in ignition timing light, and is suitable for all six and 12 volt negative earth vehicles, with engines of up to eight cylinders. Another useful feature is that, should the need arise, the system can be switched back to "conventional" ignition operation.

THE KIT

So much for the benefits, but first the kit must be assembled and fitted! Prior to assembling anything it pays to spend some time studying the instructions, and
in the case of the Electronize kit, it has to be said that these are, in most respects, excellent. They include brief but useful hints on soldering and component identification, before describing in detail how the kit should be assembled. Clear diagrams are included at each stage, and a detailed and unmistakable "overall view" diagram shows the relative positions of each component on the printed circuit board.

Having studied the instructions, I found it helpful to identify each of the resistors, diodes, transistors and other components by reference to the parts list provided, laying out all the parts, in order, on the bench. To make quite sure that I didn't confuse any of the components, I simply stuck lengths of masking tape to the bench, adjacent to the parts, and labelled them in sequence, on the tape - for example, resistors R1,

R2, and so on. Of course it is a good idea to keep children and pets away from the working area, if possible, until the job is completed.

The kit contains all the necessary materials, including the electronic components, p.c.b., solder, heat sink compound, connecting leads, connectors and all the fixing screws required. This is most welcome, and a pleasant change from many car accessories I have fitted in the past, where items such as connectors and wiring are often omitted, or supplied in insufficient quantity.

ASSEMBLY

With all the parts checked and "labelled", assembly work could commence, using the solder supplied in the kit, and a soldering iron with a small 2 mm bit. Electronize advise dealing with all the resistors first, and they describe in

The first step was to identify all the components, by reference to the detailed parts list supplied. I then laid out all the parts in order, on the bench, adjacent to lengths of masking tape, suitably labelled.

detail how the leads should be bent through 90 degrees and threaded through the p.c.b. in turn, prior to soldering.

Carefully heating the component lead and "floating" in the solder to each joint seemed strange at first (I am more used to welding motor car bodywork), but after a few joints, the job became easier. I took a great deal of care to get the soldering just right, and within a surprisingly short space of time, my stock of resistors had been reduced to zero, while my p.c.b. was beginning to look a little less bare. As each resistor was attached to the board, I snipped off the protruding wires, as described in the instructions, while double-checking that the soldered joints were smooth, and shiny in appearance.

During construction work, I found that it was often useful to rest the p.c.b. on two small wooden blocks, while soldering was being effected.

Having successfully attached all the resistors, I turned my attention to the diodes, once again following the Electronize instructions to the letter. The diodes too were far easier to deal with than I had imagined, and I was really beginning to enjoy the project!

Needless to say, pride comes before a fall and it was just when I was congratulating myself on my efforts thus far when I made a pretty fair attempt at setting fire to my thumb with the soldering iron. Duly warned, I redoubled my concentration, and turned my attention to the next stage - fixing the transistors and transformer in position, followed by the main switch (it can be soldered in place either way round, incidentally), the chokes and the capacitors.

These duly fitted, I then attached the thyristor and the light emitting diode (which forms the timing light). It is of course important that the l.e.d. is fitted the correct way round, with its cutout facing the switch side of the board.

The output leads were theh soldered to the unit, after stripping a short length of the insulation from each of the coloured leads in turn.

One of the trickiest parts of the whole operation is in attaching the power transistor to the board, due to the fact that its three connector leads have to be threaded very delicately through the p.c.b., while ensuring that it can be attached to the board with the screw, bush and spacer provided. The screw, once in position, must be tightened before the leads are soldered in place. Once again, though, this sounded more complicated than it actually was, and the job was soon accomplished.

CHECKS

At this stage, Electronize advise you to inspect the board to ensure that all the components are correctly positioned, that all the leads have been correctly soldered, and that no fragments of solder are bridging adjacent tracks on the p.c.b. They also advise you to check that each of the leads have been trimmed so that they

Each of the components can then be carefully "fed" into position through the p.c.b., prior to soldering. I found it helpful to rest the p.c.b. on two small wooden blocks.

Before too long, the circuitry was almost complete; fitting the l.e.d. for the timing light required great care.

Probably the trickiest part of the whole operation was fitting the power transistor, since its three leads had to be bent very precisely before passing them through the p.c.b. The attachment screw and nut are tightened "finger-tight" prior to soldering the leads in position.
protrude by less than 3 mm above the face of the p.c.b.

To check that the components had been soldered in their correct positions, I found it helpful for my father to call out the numbers of each component in turn, in "rows", from the main component diagram. Thankfully all seemed well, so the p.c.b. was wiped with a cloth dampened with methylated spirits (to remove solder flux) and I then painted the p.c.b. with polyurethane varnish, as advised by Electronize, to protect it from moisture when fitted to the car.

The next day, I applied heat sink compound (supplied with the kit) to the power transistor and its mica washer, and attached the p.c.b. to the baseplate (heatsink plate) of the unit. The case of the ignition unit can then be fitted and screwed home, making sure that the main switch and the l.e.d. (timing light) protrude through the case in the right places.

INSTALLATION

It remains to fit the assembled ignition system to the car. Once again, the installation instructions provided by Electronize are excellent. They are clear, unambiguous and well illustrated with diagrams. Installation is straightforward, since all the necessary connectors are provided.

The first step is to find a convenient site within the engine bay, in which to house the ignition unit. As far as possible, this should be away from exhaust pipe/manifold heat, and also away from areas which are prone to vibration, or in the line of fire from road spray thrown up by the front wheels, for example.

Having chosen the site, three 3 mm holes need to be drilled, for the unit to be attached with the self-tapping screws provided. I first marked the position of each hole in the unit's baseplate, against

With the kit assembled, fitting is very straightforward, using the three self-tapping screws supplied. The unit is easily wired into the ignition circuit.
the engine bay "wall", using a long scriber, before centre-punching and drilling each hole. It is a good idea to grease the fixing screws; it helps when attaching the screws, and makes for easier removal, if ever required.

The four leads from the unit can then be shortened (if desired) before attaching the relevant crimp/solder type connectors (all supplied) and connecting them into the car's ignition circuits. I varied the Electronize instructions slightly at this point . . . Rather than attaching the red lead to the ignition coil's existing "positive" lead, using a "tap-in" ("Scotchlok" type) connector provided, I chose to use a "piggy back" crimp-on connector, so that the ignition unit can simply be "unplugged" when necessary - for future transfer to another vehicle, for example.

With the unit connected, the ignition
was switched on and, hey presto, it worked perfectly!

CONCLUSIONS

Building the Electronze ignition system was the first such project I had ever undertaken, and I found it to be a straightforward and fascinating operation, courtesy of the delightfully clear instructions provided. I certainly intend to tackle similar projects in the future, now my appetite has been whetted.
The Electronize Total Energy Discharge ignition system costs $£ 17.95$ in kit form, or $£ 23.90$, ready to fit. p. and p. adds $£ 1$ to these prices, which include VAT. Electronize Design are at Dept. EE, 2 Hillside Road, Four Oaks, Sutton Coldfield, West Midlands B74 4DQ, (021) 3085877

MARREET PLAGE
FOR SALE: Texas 99/4A computer speech synthesizer $\mathbf{£ 2 0}$. Tel 0744883531.
P.E. Feb '85. Modular audio power system 50 W each channel working $£ 30$ p\&p $£ 10$ speakers cabinets $£ 10$ each $p \& p \mathrm{E} 5$. L.T. Hill, 29 Stead Lane, Bedlington, Northumberland. CLEF Bandbox backing trio for sale, 350K EPROM memory selectable plus 35 K volatile memory. 076740220.

HITACHI and Amd 2732 EPROMS last six for only $£ 5$. Phone Woking (04862) 62795 evenings only.
FOR SALE: Open University course on Z80 manuals $£ 50$. Tel. 0486822699.
FOR SALE: Oscilloscope with flat l.e.d. screen (unmade kit) £29.99 also casekit $£ 9.99$ and scope lead £3.95. J.E. Ellis, The Flat, 18 Butter Hill, Wallington SM6 2JD.

> FREE READERS ADS.
> RULES Maximum of 16 words plus address and/or phone no. Private advertisers only (trade or business ads. can be placed in our classified columns). Items related to electronics only. No computer software. EE cannot accept responsibility for the accuracy of ads. or for any transaction arising between readers as a result of a free ad. We reserve the right to refuse advertisements. Each ad. must be accompanied by a cut-out valid "date corner". Ads. will not appear (or be returned) if these rules are broken.

TEKTRONIC Oscilloscope, dual trace, 10 MHz good condition. Needs 125 V fuse. E 80 o.n.o. Tel. (0708) 855763.

Name \& Addrose:			

Please read the RULES then write your advertisement hereone word to each box. Add your name, address and/or phone no. Please publish the following small ad. FREE in the next available issue. I am not a dealer in electronics or associated equipment. I have read the rules. I enclose a cut-out valid date corner.

ERobor

ROBOT CAVE

With Christmas fast approaching robot toys are again attracting a lot of interest as good presents. Toy robots in one form or another have always been popular ever since the idea of a mechanical servant was first conceived.

They used to be limited to metal models with clockwork providing the only form of mobility. These days with the use of the microchip their range of abilities has been greatly expanded to include a rudimentary form of programming, with a toy being able to remember complex routines of movements, and the enhancement of sensors and speech.

Some manufacturers and importers found the market a little disappointing last year but it has not stopped retailers from preparing to sell large numbers for Christmas stockings in 1987. Anyone who visits London for some crowded shopping will be able to drop into Harrods where the toy department has created a special robot cave with a large radio-controlled robot directing people towards it.

That robot, usually used for advertising and promotional work, is being sold at $£ 12,000$ but less expensive items can be bought in the cave with the maximum price about $£ 180$.

Many of the toys on offer are little more than dolls, most following the traditional mechanical-human image of the robot, with or without some form of simple movement and flashing eyes. They are relatively cheap but have little in common with what this column usually considers to be a robotic device.

However, there are still a number of items which while not satisfying everyone's idea of what a robot should be nevertheless can perform quite complex tasks and manoeuvres. A number of last year's favourites are still around, including Omnibot 200, Omni Junior, Armstrong and the Petster range. All come from the States and most are made by Tomy, which entered the toy end of the robot market earlier than most.

Top of the Tomy range is the Omnibot selling for about $£ 180$. It is radio-controlled and can be programmed to remember a routine which can also be stored on cassette. It has a small simple, spring-loaded gripper and can play all kinds of cassettes as well as speak.

As might be guessed, Omni Junior is a simpler version but can still appear complex with a given set of responses to a variety of situations. For example, when its right arm is pushed down to give the idea of a handshake it says, "I'm Omni Junior". It also has a bump sensor and when it hits something it will reverse and turn left, giving the impression that it can find its way around.

Armstrong is a mobile articulated arm which can be programmed through an infrared link.

Petsters are the latest brainchild of Nola Bushnell, who tried to persuade the world that though robots did not have to do anything useful it would be a good idea to buy one even though they cost almost $£ 1,000$. Having failed with that he has had more success with the furry mechanical cats, hamsters and bears that make up the Petsters. On the same lines as the Omni Junior, they speak with a limited number of responses and have bump and object sensors.

Tomy Toys has increased its range this year with a variety of cheaper, less sophisticated devices on the lines of the earlier Dingbor, which responded to handclaps, rushing around in no particular direction.

WEIRD AND WONDERFUL

Another company which has been in the market for some time is Milton Bradley. It originally supplied the Big Trak but that was withdrawn some time ago and now the company concentrates on its series of Robotix kits. They are more toys than robots but I have mentioned these as, although they do not allow routines to be remembered, they do involve concepts of motorised movement and gearing.

They began in 1985 with a series of three kits which made various "hi-tech" figures with names like Commander X and Dr Steel. They were powered by simple motors and controlled by a battery-powered console of five switches. There were also extra pieces which allowed a limited amount of variation.

Last year, following the same formula, they added a set of weird and wonderful
vehicles and a stronger motor. And this year there has been further expansion.

The range includes a simple winch called Tork, a bulldozer called Trax and other complicated mobiles. The prices are in the range up to about $£ 80$. There are other kits which, though intended for more serious use, with sophisticated models being possible, they are still not very expensive and could make a good present.

One of the first manufacturers on the scene with its robotics or computing sets was Fischertechnik. The original kit allowed ten different models to be built including a two axis arm with feedback provided by potentiometers and a simpler arm which played the Towers of Hanoi game.

A number of interfaces were developed for the sets to allow them to be controlled by the BBC B. This range was increased earlier this year with the introduction of a kit to make a more complex arm and an X - Y plotter, using more powerful motors

Lego entered the market later, having researched the subject in detail before deciding to follow Fischer. Its first device was a simple buggy followed later by an arm and X - Y plotter. These can be controlled by battery-powered, hand-held controllers or by a computer with the help of an interface.

More recently Meccano launched its own sets for making robotic devices. However, unlike the others it only supplied the necessary parts leaving the design to individual tastes.

So you can see, it is possible to gain an insight into the world of robotics without having to spend a lot of money.

AST month we showed how the Z880-CTC Counter/Timer Interface described in October's EE can be used as a programmable timer. This month, as promised, we shall be looking at another application for the Z80-CTC in the form of a programmable event counter.
We shall also be dealing with a number of queries recently raised by readers. We begin, however, with a useful programming tool supplied by John Wall of Newcastle upon Tyne.

Keeping track of your Variables

John Wall's program (appropriately called VARS) is a routine for identifying and listing BASIC variables in RAM. The routine requires about 800 bytes of storage and is designed to be MERGEd with programs and used as a tool during software development.

The program lines have been numbered from 9900 to 9929 but readers can change these to conform with any valid line numbering convention. John has supplied lines 10 to 80 for demonstration purposes; they should NOT be included when the routine is MERGEd!

The main routine starts at line 9900 . This effectively jumps from one variable to the next in the reserved area of RAM between VARS and E_LLINE. The remaining lines are primarily concerned with PRINTing the variables on the screen.

10 LET sparrow $=25$

20 DIM a $\$(10,20,2)$
30 LET A $=42$
40 DIM g(32)
50 LET x\$ = "hello"
60 FOR $i=1$ TO 20 NEXT i
70 GO SUB 9900

80 STOP

9900 CLS: LET ad = PEEK VAL- " 23627 " + VAL " $256^{\prime *}$ "PEEK VAL " $23628^{\prime \prime}$
9901 LET type $=$ INT(PEEK ad/VAL "32"): IF PEEK ad=VAL "161" AND PEEK $(\mathrm{ad}+1)=$ VAL "228" THEN PRINT. "_ variables used by routine_": PRINT
9902 LET y\$=CHR\$(PEEK ad-VAL " 32 "*(type-VAL " 3 ") I: PRINT ad; " ":: GO SUB VAL "9898" + type "VAL "4" 9903 IF ad + VAL"1" = PEEK " 23641 " + VAL " $256^{\prime *}$ "PEEK VAL " 23642 " THEN PRINT" "list complete": RETURN

9904 GO TO VAL "9901"
9906 GO SUB VAL"9929"
9907 PRINT "string", y \$;" \$": RETURN
9910 LET ad = ad + VAL " 6 "
9911 PRINT "1 letter", y\$: RETURN
9914 PRINT "num array", y\$:" (";: GO SUB
VAL"9928": RETURN
9918 LET ad=ad+VAL "1": IF PEEK ad $>=V A L$ "128" THEN LET $y \$=y \$+$ CHR $\$($ PEEK ad-VAL "128"): GO TO VAL "9921"
9919 LET $y \$=y \$+$ CHR $\$$ PEEK ad: GO TO VAL"9918"
9921 PRINT "number",y\$: LET $a d=a d+V A L " 6 ":$ RETURN
9922 PRINT "str array",y\$;"\$(":: GO SUB VAL "9928": RETURN
9926 LET ad = ad + VAL "19"
9927 PRINT "control", y\$: RETURN
9928 LET $y \$=" ":$ FOR $n=V A L " 1 "$ TO PEEK
(ad+VAL "3"): LET y\$=y\$+STR\$ PEEK(ad+VAL "2" + n"VAL "2") + ",": NEXT n : LET y $\mathrm{y}(\mathrm{LEN} \mathrm{y} \$$) $=$ ")": PRINT $y \$$ 9929 LET ad=ad+PEEK (ad + VAL "1") + PEEK (ad+VAL "2")"VAL " 256 " + VAL " 3 ": RETURN

Using the VARS routine

Having entered John's program it is worth experimenting with the variables used in lines 10 to 60 and, at each stage, running the program and noting the effects produced. The display will distinguish between the variables used in the main progtam and those contained within the VARS sub-routine.

Readers should find that the numeric variables (single letter, multi-letter and control) always remain in the same relative places and simple strings invariably go to the bottom of the list when they are redefined. Arrays should remain where they are when one or more elements are changed but move to the bottom of the list when redimensioned!

The nature of a variable may be changed by POKEing the appropriate information into the variable list. For example, $x \$$ can be changed to w\$ by:

POKE address, 87

where 'address' is the address at which $\mathrm{X} \$$ is stored and 87 is the decimal ASCII code for the letter ' w '.
This technique can be used to change several string variables to $\mathrm{w} \$$ and John suggests that you might like to do this and afterwards astound your friends by typing in a line of the form:

LET $w \$=$ "abc": PRINT $w \$$
The Spectrum will oblige by printing the wrong answer!
String arrays can be changed to a simple string by typing:

POKE address, PEEK address - 128
The information in the string will be nonsense but can be corrected by statements of the form:

LET $w \$=" "$

Changing fixed length variables to strings is a little more difficult as the string information has to be reconstructed. As an example, to change 'sparrow' it will be necessary to use a line of the form:
POKE address, 87 : POKE address $+1,9$: POKE address $+2,0$

Again, the value 87 makes the variable into w\$. The values 9 and 0 construct the two bytes which determine the length of the variable area.

In this case it is 7 for 'sparrow' plus 5 for the exponent and mantissa, minus 3 for the first three bytes of a simple string. This gives; $7+5-3=9$. For a different variable the 9 would have to be replaced by (length of variable name) plus 2 .

Deleting a Variable

It is also possible to get rid of a variable
(though not one used by the VARS routine itself!). The method involves first changing the variable to w\$ (as described earlier) then moving it to the bottom of the variable list (just above $\mathrm{y} \$$). This can be achieved by assigning a null string to $\mathrm{w} \$$ using a statement of the form: LET w\$ = ""
The null string $w \$$ may now be combined with $y \$$. This can be done by making w\$ into y\$ and adjusting its length to absorb the final y\$ using a line of the form:
POKE address, $89:$ POKE address $+1,4$: POKE address $+2,0$
The value 89 represents ' y ' and the 4 denotes the four bytes of the final $y \$$. If the subroutine is executed (using GO SUB 9900), the reference to w\$ will have disappeared!

How it Works

John has provided the following information for those who would like to know how the VARS routine works. To quote from his letter:
"The different types of variable are distinguished by the three most significant bits of the first byte. For instance, a number array has 100 binary (128 decimal) in these positions.

It is these bits which denote how far to jump to the next variable (line 9901). I have given a type number (below) to each variable based on these three bits. The first byte can be calculated by adding 1 to 26 (representing the letter) to the type number multiplied by 32 .
(a) Simple string - type number 2.

The first byte will be between 65 and 90 . The next two bytes give the number of characters in the string. This is the information given by LEN $\times \$$. The total length of the area is this number plus three.
(b) Single letter numeric variable - type number 3.
The first byte will be between 97 and 122 . No information on the length of this area is needed as it is always six bytes long; one for the letter, one for the exponent and four for the mantissa of the number.
(c) Numeric array - type number 4.

These are the longest and most complicated of the variable areas. The second and third bytes give the total length of the variable area less three. The next few bytes give information about the number of dimensions and the value of each.

This information is used at line 9928 to print out details of the array variable. Notice that five bytes are needed for each element of the array. If memory is a problem (as it is with my program) and your needs are only for numbers up to 255 , then it is better to use strings.
(d) Numerlc variable with name
comprising more than one letter - type number 5 .
The area needed for these is the length of the name plus five bytes. The last byte of the name has 128 added to it so we know when the exponent and mantissa information is about to begin.
(e) Character array - type number 6.

These are very similar to numeric arrays except that only one byte is needed for each element of the array.
(f) Control variable - type number 7.

Control variables are used in FOR ... NEXT loops and the variable area contains corresponding information. Nineteen bytes are used for each control variable."

John concludes his letter with an interesting point:
"Two types numbers are not used; 0 and 1 . Why didn't Uncle Clive use them to allow Spectrum users to have string names of more than one letter?"

Programmable Event Counter

In order to operate one of the Z80-CTC
channels as a counter, bit 6 in the appropriate channel control register must be set and a Time Constant Data Word must be loaded into the Time Constant Register. Thereafter, the CTC counts edges of the CLK/TRG input and, after each edge (and synchronous with the rising edge of the clock) the CTC's down counter is decremented. Bit 4 of the channel control register allows selection of either a rising or falling edge trigger.

In CTC Channels 0,1 , and 2, the zero count (ZC/TO) output is pulsed high when the downcounter reaches zero. Unfortunately Channel 3 does not have this facility and is thus not suitable for use in applications which require the generation of a zero count pulse.

If bit 7 of the Channel Control Register has been set, the zero count condition will also drive the interrupt (INT) pin low. The Z80-CTC is thus able to generate an interrupt request and gain the attention of the CPU at the end of a down counting sequence.

The down counter is automatically reloaded with the Time Constant Data Word when the zero count condition is reached. This time constant is held in the Time Constant Register.

It is important to note that there is no interruption in the sequence of down counting. If a new Time Constant Data Word is written to the Time Constant Register while the down counter is decrementing, the present count is completed before the new time constant is loaded into the down counter.

The basic arrangement used for event counting on Channel 0 is shown in Fig. I. The input signal must have TTL compatible levels and, where conventional switches are employed they should be debounced to prevent counting spurious pulses. The output signal is a narrow positive-going pulse generated when the preset number of events has been reached.

In many applications (i.e. simple event counting) we may only require that the number of events detected be assigned to a variable and/or displayed on the screen. In other applications, we may wish to put the zero count pulse to some use.

If the pulse is too narrow for certain applications (e.g. driving an l.e.d. via a buffer) it will be necessary to incorporate a monostable pulse stretching circuit. Alternatively, the pulse may be used to trigger a 555 timer (operating from a +5 V supply rail).

The following BASIC program can be used to test the arrangement shown in Fig. I:
10 OUT 31, BIN 01011101

20 OUT 31. 99

30 PRINT AT 0.0; IN 31:"

40 GO TO 30

In line 10, the Channel 0 Control Register is loaded with the Channel Control Word,

Fig. 1. Basic arrangement for event counting Resistor R should be fitted when an opencollector source is used.
01011101. It is briefly worth examining the function of each bit in this word:

Bit 7 - set to 0 in order to disable generation of interrupts (more on this topic next month)
Bit 6 - set to 1 to select Counter Mode Bit 5 - set to 0 (but only valid for Timer Mode)
Bit 4 - set to 1 to select decrementing of the down counter on positive edges (a 0 in this bit position selects negative edge decrementation)
Bit 3 - set to 1 (but only valid for Timer Mode)
Bit 2 - set to 1 to indicate that the next word written to the channel will be a Time Constant Data Word
Bit 1 - set to 1 to reset the channel. Operation will resume when the Time Constant Data Word is loaded
Bit 0 - set to 1 to indicate a Control
Word (a 0 in this bit position indicates
an Interrupt Vector Word)
Line 20 sets the time constant data word to 99 (note that we have used decimal here rather than binary!). Hence we shall be counting a total of 100 events before the zero count pulse appears. Line 30 prints the current value held within the down counter at the top left-hand corner of the screen, whilst line 40 redirects control to line 30 in an infinite loop (press BREAK to escape).

In operation, the display on the screen counts down from 99 to 0 as each rising edge pulse is detected. In practice, we might wish to count up (rather than down) and allow the program to prompt us for the number of events to count before starting another cycle.
The following program shows how this can be achieved:
10 REM Prompt user for the number of events to count
20 INPUT "Number of events to count ";events
30 IF events <2 OR events >255 THEN BEEP 0.1, 0.1: GO TO 20

40 REM Initialise Channel 0 as an event counter
50 OUT 31, BIN 01011101
60 OUT 31, events
70 REM Loop forever getting and displaying events
80 PRINT AT 0.0;"Events ";events - IN 31 +1 ;" " $^{\prime \prime}$

90 GO TO 80

Purists will probably be somewhat dismayed by the lack of structure in the foregoing program. It does, however, serve to illustrate the ease with which programs can be produced to make use of the Z80-CTC as an event counter!

Points from the Post

Over the past few months my " $/ n$-Tray" has been overloaded with readers' queries. Most can be dealt with fairly easily but some readers raise specific problems (such as compatibility of add-on hardware) on which 1 find it impossible to supply any meaningful advice.

In the hope that someone out there can offer some suggestions, here is a selection of outstanding queries:

Greg Ziegler writes from New South Wales and mentions a problem getting Ocean's Laser Genius to provide hard copy in conjunction with an Interface One printer. Greg has also tried to make use of a Disciple Centronics port without success. Can anyone suggest a patch to cope with this!
R. Wilkes of Blackpool has found a source of inexpensive 3 in. drives advertised by J. and N . Bull Electrical and wonders whether anyone
has produced a "no frills" controller for such a device.

Since this would make a future On Spec project, 1 would be pleased to hear from anyone who can supply information along these lines.
D. O'Brien writes from Oldham to ask if anyone can supply information concerning use of the Amstrad DMP2000 in conjunction with the Opus Discovery drive. This topic will undoubtedly be of interest to a number of readers as the Amstrad series of printers is becoming increasingly popular.
F. Buddle from Sheerness, Kent, requires a means of producing User Defined Graphics for printed circuit board layouts. Since p.c.b. design usually requires a large number of predefined shapes, I suspect that the main problem here is the limited number of UDGs available.
If anyone can throw any light on this problem (or has developed a set of UDGs for p.c.b. design) I would be pleased to hear from them - this could be another useful topic for a future On Spec.

Last, but by no means least, Leslie Hume is searching for information relating to Spectrum Networking. If you can suggest books or articles on this esoteric subject please let me know!

Post Mortem?

Finally, 1 regularly receive requests from readers wishing to receive copies of our Update. Unfortunately, some of these requests fail to produce the desired result for a variety of reasons.

Most readers require the entire set of Update sheets (now totalling over 20) but include minimal postage and/or inadequate envelopes for their return. At first and second class UK postage rates respectively, the complete Update requires 40 p and $34 p$ stamps.

The cost within Europe is generally about $80 p$ whilst to South Africa, New Zealand and Australia the Air Mail postage rises to a staggering $£ 2.50$. A single page sent to the same countries costs as little as $\mathbf{3 4}$ p hence overseas readers may wish to be a little more selective over what they wish to receive. In the absence of any specific instructions, I usually try to cram in whatever I can (up to the limit of the postage supplied or the size of the envelope!).

If you would like a copy of our On Spec Update, please drop me a line enclosing a large (at least $250 \mathrm{~mm} \times 300 \mathrm{~mm}$!) stamped addressed envelope.

Mike Tooley, Department of Technology, Brooklands Technical College, Heath Road, Weybridge, Surrey, KT13 8TT.

Next month: We shall be reviewing Picturesque's Code Machine and attempting to dispell some of the mystery concerning interrupts.

. . . from the world of electronics

SKYPHONE SET FOR TAKE OFF

The final countdown has started for British Telecom's Skyphone with the award of a $£ 2.6 \mathrm{M}$ contract for the equipment which will automatically connect airline passengers' telephone calls to friends, relations and business customers on the ground. The contract, with EB Communications, means that BT International has now completed the purchasing of all the major equipment and software required for the in-flight Skyphone system.

The contract represents a first for BTI, because the equipment will be the first designed to meet the full INMARSAT aeronautical standards for ground earth stations. It will be installed at BTI's satellite earth station at Goonhilly Downs in Cornwall.
Together with telecommunications authorities in Norway and Singapore, BTI are working towards providing global coverage for the "phones on planes" service. Apart from a dedicated earth station at Goonhilly Down, similar earth station facilities will be provided in Norway and Singapore.

The system is currently being developed and tested under a collaborative agreement between BTI, Racal and British Airways. It is hoped that trials of the new service, with calls connected by the operator, will begin next April on three British Airways 747 airliners,

allowing passengers to make international telephone calls during flight.

The aircraft avionics equipment for Skyphone is already at an advanced stage of development by manufacturers under INMARSAT funding. A special antenna mounted on the aircraft transmits the signals to the INMARSAT satellite, where they are downlinked to the earth station, then automatically switched to the public telephone network.

The specially designed access control and signalling equipment
will include 9.6 K bit/s voice coding devices and call control and itemisation software.

When fully operational, the service will allow passengers to make their own telephone calls from aircraft, paying by credit card only. It will also offer telephone and data message facilities for airline operations. The cost of calls is not yet finalised
Passengers will be able to use push-button telephones mounted on the aircraft walls or on seatbacks. Initially, the system will not be able to handle incoming calls.

East-West Summit

An historic meeting of leading figures from the record industries of Eastern and Western Europe took place recently.

Executives from 20 member countries of the EEC, EFTA and Comecon meet to discuss key topics of mutual concern. These included the problems of widespread private copying or home taping of recorded music and the possibility of its escalation through the use of Digital Audio Tape (DAT) machines.
At the meeting it was announced that recording companies from the USSR, Bulgaria and Poland would be applying for membership of the International Federation of Phonogram and Videogram Producers.

252A HIGH STREET, HARLESDEN, LONDON NW10 4TD. TEL: $01-9655748$ VEA TELEX: 265871 MONREF G Quoting 72: MAG31197							
						\%	
		\%					

OMNI ELECTRONICS

for a comprehensive range of components aimed at the enthusiast:

10×1 N4148	@0.35	$10 \times 5 \mathrm{~mm}$ leds in black bezel	
$10 \times 1 \mathrm{~N} 4001$	@0.45	red 3.50	90
$10 \times$ LM741	@2.00	5×7 segment display - red	
5×7805	@2.35	0.3 " common cathode	2.50
$10 \times 5 \mathrm{~mm}$ red leds	@1.00	Data entry keypad	3.30
$10 \times 5 \mathrm{~mm}$ green	@1.20	Panel meters, 38 mm cutout	
UM1286 modulator	@7.95	$50 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 30 \mathrm{~V}$	5.98
Veileman kits/Babani books		10 bar dil led array	2.50
The above is a sample of our catalogue: $20 p+18 p$ or $13 p$ 9a.m.-6p.m. Saturday 9a.m.	nge mp.	includes VAT. P\&P 60p. Se popen: Monday-Friday	

9a.m.-6p.m. Saturday 9a.m.-5p.m.

174 Dalkeith Road EDINBURGH EH165DX 031-667 2611

BUMPER BARGAIN BAGS
LIQUIDATION STOCK
bag. Buy two bags - GET ONE FREEI
EOUPMENT COOLNG FANS
EOUIPMENT COOLIG FANS B
protective grill $\mathbf{7 7 . 5 0}$
All prices INCLUDE VAT and postage.

TELEPHONE ACCESSORIES			
MAIN SOCKET KIT Allows conversion of tel. Inne to new socket	c8. 90	refurbished B.T. Statesman phones Ideal for extension	$\text { es. } โ 16.50$
EXTENSION SOCKET KIT D.I.Y. extension kit incls. sochet. cable, clips \& instructions	87.50	Telephone cable 3 pair 16 core)	15p per m
MAIN SOCKE	C2.95	JUNCTION BOX	c0. 86
EXTENSION SOCKET	C2.40	INTERNALEXTENSION BELL	¢12.50
DUAL OUTLET Allows 2 plugs to fit into 1 socket	¢5.95	EXTERNAL EXTENSION BELL	¢17.00
5 m EXTENSION LEAD	¢5.95	tone ringer adaptor piugs into extension sockel	c8.95
10 m EXTENSION LEAD	¢7.95	MAINS ADAPTORS 3. 4.5, 6.0. 7.5, 9, $12 \mathrm{~V}, 300 \mathrm{~m}$.a. 2	$\begin{array}{r} f 2.50 \mathrm{or} \\ 2 \text { for } £ 4.00 \end{array}$

SEND S A.E. FOR FULL LISTS
PRICES INCLUDE VAT. PLEASE ADD [1 POSTAGE PER ORDER
AZTEC. 19 LON CAE PORTH, RHIWBINA, CARDIFF Tel: 0222692913

Zenith Electronics.

Kits - Modules - Hardware

CHRISTMAS SPECIAL:

10-Charnel variable speed running light Kit, drives LEDs or Mains lamps - plus 2 FREE LED display boards and LED lamps. An ideal festive project.

The following are examples of our proven product designs:

- High quality touch dimmer 500 W R/Built.

Welectable Tone Generator, 9V-12V operation.

* 3 Note Electronic Door Chime unit; 9 volt operation.

3 melodious tones; variable frequency. Kit

* Miniature FM Transmitter; $60-145 \mathrm{MHz}$. Kit.
 R/Built
* 300 Watt Light Dimmer unit for 240 volt mains lights. Kit . 18.99
* 4 Code Digital Code unit plus Key Pad - select own
code; 9 volt. Kit $£ 6.95$
*5-100 Watt Electronic Loudspeaker Overload
Protector, adjustable. Kit
\star VU Meter 10 LED indicator; -5 to +12 dB range. Kit
Automatic light controller; automatically turns on and off lights at pre-set times and triggered by darkness. Kit
- Mains Wiring and Metal Detector. R/Built

Zenith Speech Processor P-202 R/Built....

- 18 -Watt Car/Home Power Amp. 12-V. Kit.
* Amplifier Power Meter; 10 LED indicator from

0-25-100 Watt Input - 9 volt operation. Kit .
*Light sensitive relay unit; variable sensitivity trigger
control; senses light or dark - selectable. Kit.
ALL KITS CONTAIN FULL INSTRUCTIONS: P.C.B.S AND COMPONENTS
ALL PRICES INCLUDE VAT AND POSTAGE \& PACKING.
OVERSEAS ORDERS - add 10% TO ABOVE PRICES
PLEASE SEND CHEQUE OR POSTAL ORDERS WITH ORDER

Zenith Electronics,
14 Cortlandt Business Centre.
Hailsham, E. Sussex, U.K. BN27 1AE.
Tel: 0323847973 Telex: 878334

8MM

LEDs NOW IN STOCK
5 EELLE VUE TERRACE. GILESGATE MOOR.DURMM TRADE LIST NOW AVAILABLE [DH 1-2 HA TEL 109113864500.
Please enclose SAE, at least $9 \times 4^{\prime \prime}$ for a copy of our free current catalogue containing
DUBLIER ELECTROLYTICS/MULLARD CERAMIC-POLYESTER CAPS/BABANI BOOKS/ACCESSORIES/CABLES/ CONNECTORS/DIODES/CMOS/LSTTL/TEST EQUIPMENT/ TRANSISTORS/AUDIO-MAINS LEADS test equipment etc. ALL PRICES GUARANTEED FOR A FIXED PERIOD SPECIAL OFFERS LISTS AVAILABLE a SELECTION OF STOCKED COMPONENTS

PRICES INCLUDE VAT AT 15\%

New catalogue now available containing thousands of components

Printed circuit boards for certain constructional projects (up to two years old) are available from the PCB Service, see list. These are fabricated in glassfibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: The PCB Service, Everyday Electronics Editorial Offices, 6 Church Street, Wimborne, Dorset BH21 1JH. Cheques should be crossed and made payable to Everyday Electronics. (Payment in $£$ sterling only.)

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed in the latest issue. Boards can only be supplied by mail order and on a payment with order basis.

PROJECT TITLE	Order Code	Cost
Digital Capacitance Meter	512	£6.52
```- JAN '86 - Mains Delay Musical Doorbell Tachometer - Transducers Series```	$\begin{aligned} & 503 \\ & 507 \\ & 513 \end{aligned}$	$\begin{array}{r} £ 2.65 \\ £ 3.63 \\ £ 3.15 \end{array}$
```- FEB '86 - Touch Controller Function Generator Function Generator PSU Board pH Transducer - Transducers Series```	$\begin{aligned} & 510 \\ & 514 \\ & 515 \\ & 516 \end{aligned}$	$\begin{aligned} & £ 3.32 \\ & £ 3.54 \\ & £ 2.56 \\ & £ 3.30 \end{aligned}$
- MAR '86 - Mains Tester \& Fuse Finder BBC Midi Interface Stereo Hi Fi Preamp Interval Timer	$\begin{aligned} & 517 \\ & 518 \\ & 519 \\ & 520 \end{aligned}$	$\begin{aligned} & £ 2.84 \\ & £ 4.08 \\ & £ 7.13 \\ & £ 2.95 \end{aligned}$
$\text { Stereo Reverb } \quad \text { APRIL '86 - }$	521	£3.73
PA Amplifier - MAY'86 - Mini Strobe Auto Firing Joystick Adaptor	$\begin{aligned} & 511 \\ & 522 \\ & 523 \end{aligned}$	$\begin{array}{r} £ 3.34 \\ £ 2.79 \\ £ 3.42 \end{array}$
Watchdog - JUNE '86 - Percussion Synthesiser Personal Radio	$\begin{array}{r} 524 \\ 525 \\ 526 \end{array}$	$\begin{aligned} & £ 3.51 \\ & £ 7.06 \\ & £ 2.58 \end{aligned}$
- JULY '86 - Tilt Alarm Electronic Scarecrow VOX Box Amplifier Headphone Mixer	$\begin{aligned} & 527 \\ & 528 \\ & 529 \\ & 530 \end{aligned}$	$\begin{array}{r} £ 2.65 \\ £ 2.86 \\ £ 2.93 \\ £ 5.71 \end{array}$
\square - AUG '86 - Solar Heating Controller	533	£4.16
- SEPT '86 - Car Timer Freezer Failure Alarm Infra Red Beam Alarm (Trans) Infra Red Beam Alarm (Rec) Scratch Blanker	$\begin{aligned} & 538 \\ & 534 \\ & 536 \\ & 537 \\ & 539 \end{aligned}$	$\begin{aligned} & £ 2.53 \\ & £ 2.38 \\ & £ 4.16 \\ & £ 4.16 \\ & £ 6.80 \end{aligned}$
$\begin{aligned} & \text { 10W Audio Amp (Pow' } 86- \\ & \text { (Pre-Amp) Amp) } \\ & \left.\begin{array}{rl} \text { Light Rider - Lapel Badge } \end{array}\right\} £ 4.78 \text { Pair } \\ & \text { - Disco Lights } \\ & \text { - Chaser Light } \end{aligned}$	$\begin{aligned} & 543 \\ & 544 \\ & 540 \text { \& } 541 \\ & 542 \\ & 546 \end{aligned}$	$\begin{aligned} & £ 3.23 \\ & £ 3.97 \\ & £ 2.97 \\ & £ 5.12 \\ & £ 4.04 \end{aligned}$
- NOV ‘86 - Modem Tone Decoder 200 MHz Digital Frequency Meter	$\begin{aligned} & 547 \\ & 548 \end{aligned}$	$\begin{aligned} & £ 3.46 \\ & £ 5.14 \end{aligned}$
- DEC '86 - Dual Reading Thermometer Automatic Car Alarm BBC 16K Sideways RAM (Software Cassette)	$\begin{aligned} & 549 \\ & 550 \\ & 551 \\ & 551 S \end{aligned}$	$\begin{aligned} & \mathrm{f} 7.34 \\ & \mathrm{f} .93 \\ & \mathrm{f} 2.97 \\ & \mathrm{f} 3.88 \end{aligned}$

EVERYDAY

INCORPORATING ELECTRONICS MONTHLY

JANUARY 1987 TO DECEMBER 1987

Pages	Issue	Pages	Issue
$1-64$	January	$345-408$	July
$65-120$	February	$409-464$	August
$121-176$	March	$465-520$	September
$177-232$	April	$521-576$	October
$233-288$	May	$577-632$	November
$289-344$	June	$633-696$	December

The Magazine for Electronic \& Computer Projects VOLUME 16 INDEX

CONSTRUCTIONAL PROJECTS

ACCENTED BEAT METRONOME by Robert Penfold 58
ACOUSTIC PROBE by Andy Flind 588
AIR IONISER
ALARM, CARAVAN FRIDGE
ALARM, CAR OVERHEATING
ALARM, FRIDGE
ALARM, FROST
ALARM, INFRA RED
ALARM, TELEPHONE
ALARM, THERMOMETER by P.W. Bond
AMPLIFIER, EE APEX
AMPLIFIER, MINI
AMPLIFIER, PERSONAL STEREO
AMPLIFIER, SIMPLE AUDIO
ANALOGUÉ/DIGITAL MULTIMETER
ANALOGUE TO DIGITAL CONVERTER
AUDIO LOGIC TRACER by Mike Tooley
AUDIO SIGNAL GENERATOR by Mark Stuart
AUDIO/VIDEO CONTROLLER
AUTOMATIC/MANUAL PORCH LIGHT by M.P. Horsey
BBC ANALOGUE TO DIGITAL CONVERTER
BBC BUFFER/INTERFACE
BBC DIGITAL CHIP TESTER
BBC LIGHT PEN
BBC SIDEWAYS RAM/ROM by A.P. Guest
BBC SPEECH RECOGNITION UNIT
BREAKOUT BOX, RS232C
BULB LIFE EXTENDER by R.A. Penfold
BURST FIRE MAINS CONTROLLER by Andy Flind
146, 216,272
146, 216, 272, 230

CARAVAN FRIDGE ALERT by T.R. de Vaux-BalbirnieCAR ACOUSTIC PROBE
CAR OVERHEATING ALARM by T.R. de Vaux-Balbirnie
CAR VOLTAGE MONITOR bY D.E. COX
CAR WINDSCREEN WASHER WARNING
by T.R. de Vaux-Balbirnie
CAR WINDSCREEN WIPER CONTROLLER
CHRISTMAS TREE LIGHTS CONTROLLER
CHRISTMAS TWINKLING STAR
COMMODORE 64 DIGITAL CHIP TESTER
COMPUTER BUFFER/INTERFACE by R.J. Evans
CONTROLLER, MAINS
CONTROLLER, VIDEO
CONVERTER, ANALOGUE TO DIGITAL
COUNTER, OBJECT
COUNTER/TIMER, VERSATILE
CURRENT TRACER by Mike Tooley
DECODER, MORSE
DETECTOR, EE BUCCANEER METAL
DIGITAL CHIP TESTER by John H. Becker
DIGITAL COUNTER/FREQUENCY METER by Mike Tooley DIGITAL I.C. TESTER by Mike Tooley
DISCO LIGHTS, MINI
DOOR CHIME by A.R. Winstantey
DUAL MAINS LIGHTS FLASHER by Andy Flind
ECHO UNIT, PSEUDO
EE APEX AMPLIFIER by Graham Nalty

- 66

146, 216, 272, 33
(OR by Andy Flind
ELECTRONIC ANALOGUE/DIGITAL MULTIMETER
by Mark Stuart
EXPANDING THE SIMPLE PRINTER BUFFER by W. Hunter
EXPERIMENTAL SPEECH RECOGNITION UNIT by R.A. Penfold

FERMOSTAT by Andy Flind
396
FIVE-BIT INPUT INTERFACE
454
FLASH UNIT SLAVE
FLIP-FLOP
FREQUENCY METER, DIGITAL COUNTER
FRIDGE ALARM by T.R. de Vaux-Balbirnie

FRIDGE ALERT, CARAVAN FROST ALARM

GAUGE, OIL TANK
GUITAR/INSTRUMENT TUNER, VISUAL
HAND LAMP CHARGER by T.R. de Vaux-Balbirnie HANDS OFF INTERCOM by T. Smith
IMMERSION HEATER TIMER by T.R. de Vaux-Balbirnie 422

IN-CIRCUIT TRANSISTOR/DIODE TESTER

INF RA RED ALARM by Mark Stuart
IONISER, EE EQUALISER
128

AMP CHARGER, HAND
LIGHT ACTIVATED SWITCH
LIGHT, AUTOMATIC/MANUAL PORCH
LIGHT-OPERATED COUNTER 658
LIGHT PEN
LIGHT UNIT, RANDOM
LIGHTS FLASHER, DUAL MAINS
LIGHTS, MINI DISCO
LOGIC PULSER by Mike Toolev
LOGIC TRACER, AUDIO
MAINS CONTROLLER, BURST
METAL DETECTOR, EE BUCCANEER 352
METRONOME, ACCENTED BEAT 584
METRONOME SIMPLE
MIDI THRU-BOX by Sam Withey 386
MINI-AMP by lan Coughlan 72
MINI DISCO LIGHTS by T.R. de Vaux-Balbirnie 319 MIXER, FOUR CHANNEL MONO 376
MODEL SPEED CONTROL 380
MODEL RAILWAY CONTROLLER 141
MONITOR, STATIC
MONOMIX by R.A. Penfold
MORSE DECODER by John M.H. Becker
566

MULTIMETER, ELECTRONIC ANALOGUE/DIGITAL 490
NAND GATE AND FLIP-FLOP 504
NOISE GATE by lan Coughlan 472
OBJECT COUNTER 600
OIL TANK GAUGE by T.R. de Vaux-Ḃalbirnie 520
OSCILLATORS
552
PERSONAL STEREO AMPLIFIER by O.N. Bishop 476
PET DIGITAL CHIP TESTER
PORCH LIGHT, AUTOMATIC/MANUAL
PRINTER BUFFER, EXPANDING THE SIMPLE 114, 145
PROBE, ACOUSTIC
PSEUDO ECHO UNIT by Robert Penfold 682
PULSE GENERATOR, VERSATILE 101
PULSER, LOGIC
RADIO, SIMPLE SHORTWAVE
RAILWAY CONTROLLER, MODEL
RAM/ROM, BBC SIDEWAYS
RANDOM LIGHT UNIT by C.J. Bowes
RS232C BREAKOUT BOX by Mike Tooley
SHORTWAVE RADIO, SIMPLE
SIGNAL GENERATOR, AUDIO
SIMPLE AUDIO AMPLIFIER
SIMPLE BUZZER
SIMPLE METRONOME
SIMPLE NAND GATE AND FLIP-FLOP
SIMPLE SHORTWAVE RADIO by Mark Stuart SIMPLE TIMER
SLAVE FLASH UNIT
SOUND SYNTHESISER, SPECTRUM
SPECTRUM COUNTER/TIMER
SPECTRUM FIVE-BIT INPUTINTERFACE
SPECTRUM I/O by Mark Stuart
SPECTRUM SOUND SYNTHESISER by Mike Tooley 246

Choose from our standard range below, or if you are looking for a specific size, then we can produce YOUR OWN CUSTOM BOX WITHOUT ANY TOOLING COSTS, with all holes, slots, PCB grooves, etc, already machined in, ready to assemble.

H		010: $50 \times 100 \times 110^{\circ}$
	W 0	020: $35 \times 145 \times 170^{\circ}$
C1: $30 \times 50 \times 80^{\circ}$		030: $40 \times 120 \times 170^{\circ}$
C2: $40 \times 60 \times 90^{\circ}$		D40: $70 \times 110 \times 145^{\circ}$
C3: $50 \times 70 \times 110^{*}$		050: $60 \times 160 \times 170$
		D60: $100 \times 180 \times 210$
BA4: $20 \times 85 \times 120$		070: $70 \times 200 \times 215$
		6A1: $93 \times 280 \times 160$
		GA2: $140 \times 400 \times$

CONSOLE BOXES
PRG1: $20 / 60 \times 130 \times 160^{\circ}$ PRG2: $35 / 70 \times 230 \times 160^{\circ}$ PRG3: $35 / 77 \times 290 \times 190$

All sizes are in millimetres. and are internal.

All made from high impact resistant plastic which is easily drilled or cut.

For other sizes and details of Custom Service contact us at the address below. Distributor enquiries welcome.

BAFBOX LTD.
Unit A, Park End Works, Croughton, BRACKLEY NN13 5LX Telephone: 0869810830

The K5000 Metal Detector Kit combines the challenge of DIY Electronics assembly with the reward and excitement of discovering Britain's buried past.
THE KIT - simplified assembly techniques require little technical knowledge and no complex electronic test equipment. All stages of assembly covered in a detailed 36 page manual.

THE DETECTOR - features Analytical Discrimination \& Ground Exclusion, backed by the proven pedigree of C-Scope, Europe's leading detector manufacturer.
A comprehensive instruction book is available @ $£ 5$ (deductable from order). Ask at your local Hobby/Electronics shop or contact C-Scope for a copy of a published Field Test Report.

WHO SAYS WE NEVER GIVE ANYTHING AWAY? AN OFFER WHICH CAN ONLY LAST UNTIL STOCKS ARE EXHAUSTED. THE ELECTRONIC INDUSTRY TELEPHONE CODE BOOK AND DIARY 1988
Yours absolutely FREE when you next place an order worth $£ 25$ or more. Alternatively, you can order the diary on its own at a price of $\mathbf{E 7 . 2 5}$ zero rated.

ORDER NOW AND DON'T BE CAUGHT WITHOUTIT!

Mail or Telephone Orders Only Please To: DEPT 14, SAMUEL WHITES ESTATE, BRIDGE ROAD, COWES, ISLE OF WIGHT, P031 ILP

Please add £l for lst class post and packing, and 15% V AT to total. Stock listing available soon, please send SAE to be put on the mail list

Reach effectively and economically today's enthusiasts anxious to know of your products and services through our semi-display and classified pages. The prepaid rate for semi-display spaces is $£ 8.00$ per single column centimetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 30 pence per word (minimum 12 words), box number 60 pextra. All cheques, postal orders, etc., to be made payable to Everyday Electronics VAT must be added. Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Dept., Everyday Electronics, 6 Church 'Street, Wimborne, Dorset BH21 1JH. Tel: 0202881749.

Electronic Components

TOP GRADE USA-made inductors (chokes). 21 values between UH1 to MH68. $£ 1.00$ per 10, $£ 7.50$ per 100 . ORP 12 - LDRs 75 p. TH3 thermistors 75p. Postage 60 p , VAT inclusive. Lists. SAE. N.R. Bardwell Lid., 212 Stubley Lane, DrgnfieldWoodhouse, Sheffield S18 5YP. Established 40 years.

LUCKY SOUTH COAST DWELLERS

can see the biggest display of
ELECTRONIC COMPONENTS in the South

FRASER ELECTRONICS
42 ELM GROVE, SOUTHSEA, HANTS.
COME AND BROWSE -. BEFORE YOU BUY
vin

ECLIPSE ELECTRONIC COMPONENTS

A shop holding a wide range of top quality components for the enthusiast and large user.
3,500 items available from stock, and you don't need to go into Manchester.
166 Cross Street, SALE, Cheshire. Tel: 061 1-968 0619 6 MILES SOUTH OF MANCHESTER ON A56

Circuit Boards

PRINTED CIRCUIT BOARDS produced to own personal requirements. Please send SAE for further details to Mr. B.M. Ansbro, 38 Poynings Drive, Hove, Sussex BN3 86R.

Service Manuals

CIRCUIT DIAGRAM MANUALS

Any make/model/type of equipment available. Audio, Televison, Video, Test, Vintage, etc. Thousands stocked - LSAE enquiries MAURITRON ELECTRONICS (EE), 8 CHERRY TREE ROAD, CHINNOR, OXFORDSHIRE OX9 4QY

Special Offers

WE DESIGN and/or build any Electronic Equipment to your specifications. Please send specifications and an SAE to: T. Rockelt, Lismore Park, Waterford, Ireland.

FOR SALE Reliant Drill Kit, drill stand, electronic horn, component storage cabinets, components books and mags. Tel: 090485261 ask for David.

100 WATT AMPLIFIER MODULES $£ 9.95$ Tested, instructions included. 60 Wall $£ 7$ - K.I.A. 8 Cunliffe Road, Ilkley LS29.

ANTEX 15 WATT

SOLDERING IRON KIT
Everything you need in one quality kit with "How to Solder" $£ 11.50$ post free. BAGS OF ASSORTED COMPONENTS $£ 2.10$ each. It's POT LUCK what you get but you can be sure
you will get a BARGAIN. SEND FOR FREE ISTS, STRACHAN ELECTRONICS (EE) 9 CROALL PLACE EDINBURGH EH7 4LT

Transmitters

MICRO TRANSMITTER KIT. Tunable between $80-140 \mathrm{MHz}$, Range 1000 m , complete kit only $£ 3.95$. We also have a full range of surveillance equipment (SAE list). Cheque/PO 10: TX ELECTRONICS, UNIT 16, 54 COLLEGE ROAD, PERRY BARR, BIR MINGHAM B44 8BS. Tei: 021-356 4360 .

> Please mention
> EVER YDA Y ELECTRONICS
> when replying to advertisements in this issue

ELECTRONICS TECHNICIAN FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCILI

2 YEAR

BTEC National Diploma (OND) ELECTRONIC \& COMMUNICATIONS ENGINEERING
(Electronics, Computing, Television, Video, Testing \& Fault Diagnosis) 1 YEAR
BTEC National Certificate (ONC) ELECTRONIC ENGINEERING 1- INFORMATION TECHNOLOGY
(Electronics, Satellite TV, CD, Networks. Telecomms)
2- ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, CCTV. Testing \forall Faut Diagnosis) 3-SOFTWARE ENGINEERING (Electronics, Assember, BASIC, PASCAL, CADCAM) 4 - COMPUTING TECHNOLOGY

10 MONTHS
BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS
(Microprocessor Based Systems, fault Diagnosis, ATE, Robotics)
THESE COURSES INCLUDE A HIGH PERCENTAGE OF COLLEGE BASED PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS NO ADDITIONAL FEES FOR OVERSEAS STUDENTS
SHORTENED COURSES OFFROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEDGE
O.N.C. 11th January 1988 FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01-373 8721.

TOTAL ENERGY DISCHARGE ELECTRONIC IGNITION

IS YOUR CAR AS GOOD AS IT COULD BE ?

- Is it EASY TO START in the cold and damp? Total Energy Discharge will give the most powertul spark and maintain full output even with a near llat battery.
* Is it ECONOMICAL or does it "go off" between services as the ignition performance deteriates? Tolal Energy Discharge gives much more output to lire lean fuel mixtures.
A Has it PEAK PERFORMANCE or is it flat at high and low revs. where ignition output is marginal?Total Energy Discharge gives a more poweritl spark from idle to the engines maximum (even with a cylinders).
\star Is the PERFORMANCE SMOOTH? The more powerful spark of Total Energy Discharge eliminates the near misfires whilst an electronic filter smoothes' out the effects of contact bounce etc.
* Do the PLUGS AND POINTS always need changing to bring the engine back to its best? Total Energy Discharge eliminates contact arcing and erosion by removing the heavy electrical load. The timing stays "spot on" and the contact condition does not affect the performance either. Larger plug gaps can be used, even wet or badly fouled plugs can be fired with this system.
* TOTAL ENERGY DISCHARGE is a unique system and the most powerful on he market - 3.5 times the power of inductive systems -3 times the energy and 3 times the duration ol ordinary capacitive systems. Send for full technical details
\dagger ALSO FEATURES
EASY FITING, STANOARDIELECTRONIC CHANGEOVER SWICH, STATIC TMING LIGHTand DESIGNEO IN REUABILITY (14 years experlence and a 3 year guarantee).
* In KT FORM it provides a top periormance system at less than hall the price of a comparable ready buill unit. The kit incluces: pre-drilled fibreglass PCB pre-wound and vamished terite transformer, high quality $2 \mu \mathrm{f}$ discharge capacitor, case, easy to lollow instructions, solder and everything you need to build and fit to your car. All you need is a soldering iron and a lew basic lools.

TOTAL ENERGY DISCHARGE KIT $£ 17.95$ \{ Prices include VAT
ASSEMBLED READY TO FIT
£23.90 Add $£ 1.00 \mathrm{P} \mathrm{\&} \mathrm{P}$
ALSO AVAILABLE: Other Ignition systems and electronic car alarms
Order now or send for furher detais:
ELECTRONIEE DESIGN
tel 0213085877
2 Hillside Road, Four Oaks, Sutton Coldfield B744DQ

£1 BARGAIN PACKS

 Buy 10 packs ... get one free (your choice)PK 1. 350 Assoned resistors Full lengh veads Pk2. 400 Assoned res isiors Pie-tormet teads PK 3. 4.200 Assonter res islors Wirfe when
PKapactors PK 5. 200 Assortec ceramic capaciors. PK 5.60 Elecirolytic capacitors PK 1. 2 2200, 100 voll capaciors. K8. 24700,130 voll capaciors PK 9.12 Assoriea rotary poientiometers Single gang PK 10.6 Assored rotiary polentiometers Dual gang PK 12.40 Assonied pre-sel potentionmers
PK 13. 5 took lin mullifurn notentiometers.
PK 14.51 meg lin multiturn potentiomelers
PK is 12 Assoned switches.
PK 16.1 bankik 4 -way aush button swiches Cw knots PK $17.1 \quad 4$ oole 5 -way water swich PK 18.15 Assorted control knobs
PK 20.2 Pairs O.C plugs \& sockets Ciw leads \& PP3 clip PK 21.25 Assorted ransistors. All new \& coded

PK 22. 15 Assorted I.C's. All new \& coded PK 23.50 Assonted unmarteo \& uniested $1 . C^{\prime \prime}$ s PK 24. 100 Assorted diodes
PK 263 Large power-fin heastints. T03
PK 27.14 section 7 segmentlled diock disptay.
PK 28. 20 Assorted neons. Panel mounting 8 wire ensed PK 29.1 Microphone c w lead, swilch, plugs \& slano. PK 31.3 Dynamic earpieces $\mathrm{c} w$ leac $\& 3.5 \mathrm{~mm}$ plug. PK 32.2 Telescopicaritias
PK 36.1 Wire pack Mains cable
PK 38. 1 Wire pack Connecting wire Assonted colours. PK 39.300 Assorted resistors $1 / 2 \mathrm{~W}$ or less Fil leads PK 40. 200 Assorted Poy yester capactious PK 41.12 Push Io make swilches. pcb mounting PK 43.1 Assorted toaster eiemenls PK 44. 3 Assorted record olayer sybl. PK 45. 50 Assorted I.F. and tuning coils. PK 47.1 Bag ol surprises. PK 48.25 Assorted Zener diodes

Postal order or cheque with order. Please add \&1 postage \& packing per order. Access and Barclaycard orders welcome, minimum $£ 10$.
Electronics magazines, we have an extensive range of back issues. 50 p for current lists.

MJR WHOLESALE, Mount Farm, Harford,

 Lampeter, Dyfed, Wales SA 19 8DP.
MAKE YOUR INTERESTS PAY!

More than 8 million students throughout the world have found it worth their whllel An ICS home-study course can help you get a better job, make more money and have more fun out of life! ICS has over 90 years experience in home-study courses and Is the largest correspondence school in the world. You learn at your own pace, when and where you Post or phone today for your FREE 'personal' tutors. Find out how we can help You. (Tick one box onlyl) 1

1

| Basic Electronic |
| :--- | :--- | :--- |
| Engineering (City \& Guilds) |\(\square \begin{aligned} \& Radio Amateur Licence

\& Exam (City \& Guilds)\end{aligned} \quad \square\)
Electrical Contracting
Installation
Computer
\square Car Mechanics

CCE over 40 ' 0 ' and ' A ' level subjects
 Name Adaress
Internationa $C O M$

CAMERA CARE LTD

PROFESSIONAL CAMERA REPAIRS, HIRE ANO SALES

TRAINEE CAMERA MECHANIC

A vacancy exists for a young person to learn this exceptionally rewarding trade - an experienced person can earn £25,000 p.a.
You must be competent in basic mechanical and/or electronic engineering and be able to demonstrate your skill by producing work you have executed.
Neat handwriting and numeracy and an ability to present yourself well are essential.
We work a 5-day week, Monday to Friday, and deal with professional equipment. We have a modern well equipped workshop in the West End of London.
You will be expected to have your own hand tools and instruments - mainline equipment is provided.
A written request for an application form could start you on the road to a fabulous career.

CAMERA CARE LTD. 32 TOTTENHAM STREET LONDON W1P 9RB

INDEX TO ADVERTISERS

ALCON INS 634AUDIOKIT693
BAFBOX LTD 693BI-PAK ELCTRONICSCover III
BRYANT ACOUSTIX 689BULL, J. \& N
CAMERA CARE 695
CIRKIT DISTRIBUTION 635
CROTEC 693
ELECTRONIZE DESIGN. 695
GREENWELD ELECTRONICS 671
I.C.S. 695
JAYTEE ELECTRONIC SERVICES 661
IGHT SOLDERING DEVELOPMENTS 635
LONDON ELECTRONIC COLLEGE 695
MAGENTA ELECTRONICS 636
MAPLIN ELECTRONICS
MAPLIN ELECTRONICS Cover IV Cover IV
M.J.R. WHOLESALE 695
NATIONAL COMPONENTS CLUB 696
OMEGA ELECTRONICS 689
OMNI ELECTRONICS 68
PHONOSONICS 661
RADIO COMPONENT SPECIALISTS 696
RISCOMP LTD 634 634
SHERWOOD DATA SYSTEMS 654
TANDY 647
T.K. ELECTRONICS 638
XEN-ELECTRONICS 693
ZENITH ELECTRONICS 689

| NATIONAL COMPONENT |
| :--- | :--- |
| CLUB |

PRICES INCLUDE V.A.T. * PROMPT DELIVERIES * FRIEND
SERVICE $\begin{aligned} & \text { LARGE S.A.E. 28p STAMP FOR CURRENT }\end{aligned}$ IIST
OVP POWER AMPLIFIER MODULES OMP POWER AMPLIFIER MODULES Now enjoy a world-wide reputation for cuality, reliablity and performance at a realistic price. Four models
available to suit the needs of the professional and hobby market i.e. Industry. Leisure, available 10 suit the needs of the prolessional and hobby market ie, Incustry, Lersure,
Instrumental and Hi-Fi. etc. When comparing prices, NOTE all models include Toroldal power supply, Integral heat sink, Glass fibre P.CB , and Drive circuits to power compati
Vumeter. Open and short circuit proot. Supplied ready built and tested. OMP100 Mk II Bi-Polar Output power 110 watts R.M.S. into 4 ohms. Frequency Res ponse $15 \mathrm{~Hz}=30 \mathrm{KHz}-3 \mathrm{~dB}$, T.H.D. 0.01% S.N.R. -118 dB . Sens. for Max. output 500 mV at 10 K , Size $355 \times 115 \times 65 \mathrm{~mm}$. PRICE $£ 33.99+£ 3.00$ P\& P

OMP/MF1D0 Mos-Fet Output power 110 watts RM.S. into 4 ohms. Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor 80 , Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical -125 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE PRICE $\mathbf{f 3 9 . 9 9 + £ 3 . 0 0 ~ P \& P \text { . }}$ OMP/MF200 Mos-Fet Ouiput power 200 watts R.M.S into 4 ohms, Frequency Res250. Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Typical 0.001%, Input Sensitivity 500 mV , S.N.R. 130 dB Size $300 \times 150 \times 100 \mathrm{~mm}$. PRICE
PRICE $£ 62.99+£ 3.50$ P\& P. PRICE $£ 62.99+\boldsymbol{} 3.50$ P\& P
OMP/MF300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms. Frequency Res ponse $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$. Damping Factor 350 , Slew Rate 60V/uS, T.H.D. Typica 0.0008%, Input Sensitivity 500 mV . S.N.R
-130 dB , Size $330 \times 147 \times 102 \mathrm{~mm}$. PRICE PRICE $\mathbf{f} 79.99+\mathbf{E 4 . 5 0}$ P\& P

BURGLAR ALARM
Better to be 'Alarmed' then teprified
Thandar's famous 'Minder' Burglar Alarm System.
Sun Superior microwave principle. Supplied as three units.
complete with interconnection cable. FULIY GUARANTEED.
Control Unit - Houses microwave radar unit, rang up to 15 metres adjustable by sensitivity control.
Three position, key operated facta switch-off-test Indoor alarm - Electro entry delay 104dB output.
Outdoor Alarm - Electronic swept freat int output. Housed in a tamper-proot heavy duty metal Bath the control unit and outdoor alarm contain re.
chargeable batteries which provide full protection during mains lalure. Power requirement $200 / 260$ Volt
AC $50 / 60 \mathrm{~Hz}$. Expandable with door sensors. panic SAVE $\mathbf{\Psi 1} 3 \mathbf{8} . \overline{0} 0 \overline{0}$ Usual Price $£ 228.85$
BKE's PRICE $£ 89.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS

 The very best in quality and value. Made specially to suit todays hard wearing black vynide with protective corners, grille and carryhandle. All models 8 ohms. Full range $45 \mathrm{~Hz}-20 \mathrm{Kzz}$ Size $20^{\prime \prime} \times$

OMP 12-100 Watts 100 dB . Price $£ 149.99$ per pair.
OMP 12-200 Watts 102 dB . Price $£ 199.99$
per pair.

Professional 19" cased Mos-Fet stereo amps. Used the World over in clubs, pubs, discos etc. With iwin Vu meters, iwin toroidal power supplies, XLR connections. MF600 Fan cool ed. Three models (Ratings R.M.S. into 4 ohms). Input Sensitivily 775 mV
MF200 $(100+100)$ W. $£ 171.35$ Securico MF400 $(200+200) \mathrm{W} . £ 228.85$ Delivery MF600 $(300+300) \mathrm{W} . £ 322.00 \quad £ 10.00$

BS800

 Sultable for both resisance and inductive loads. numerable applications industry the home. an disco's, theatres PRICE $£ 13.99$

LOUDSPEAKERS 5" to $15^{\prime \prime}$ up to 400 WATTS R.M.S Cabinet Fixing in stock. Huge selection of McKenzie
Loudspeakers available including Cabinet Plans. Large S.A.E. (28p) for free details

POWER RANGE

8^{8} " 50 WATT R.M.S. Hi-Fi/Disco
20 oz magnel
 ${ }^{12} 2^{\prime \prime} 100$ WATT R.M.S. Hi-Fi/Disc \qquad
Freq
25 Hz

Freq Reso 104 KHz . Sens. 95 dB . PRICE $£ 28.60 \cdot £ 3.00 \mathrm{P} \& \mathrm{P}$ ea

McKENZIE 12 " B5 WA

12" B5 WATT R.M.S. C1285GP Lead Guitar/Keyboard/Disco.
$2^{\prime \prime}$ ally voice coil. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp, 106.5 kHz . Sens. 98 dB . PRICE $£ 29.99+£ 3.00$ P\&P ea
$12^{\prime \prime} 85$ WATT R.M.S. C1 285TC P. A./Disco $2^{\prime \prime}$ ally voice coil. Twin cone
$15^{\prime \prime} 150$ WATT R.M.S. C15 Bass Guitar/Disco
 $10 " 60$ WATT R.M.S. 1060 GP Gen. Purpose/Lead Guitar/Keyboard/Mid. P.A.
$2^{\prime \prime}$ voice coil. Res. Freq. 75 Hz . Freq. Resp. 107.5 KHz . Sens. 99 dB . PRICE $£ 19.99+\mathbb{C} 2.00 \mathrm{P} \& \mathrm{P}$.

 Res. Freq. 4 OHz . Freq. Resp. 105 KHz . Sens. 101 IBB .
15
100 WATT R. S . C15400 High Power Bass.
Res. Freq. 40 Hz . Freq. Resp. to 4 KHz . Sens. 102 dB . PRICE $£ 89.52+£ 4.00 \mathrm{P} \& \mathrm{P}$.

WEM

WATT R.M.S. Multiple Array Disco etc.
8" voice coil. Res. Freq. 52 Hz . Freq. Resp to 5 KHz . Sens. 89 dB . PRICE $£ 22.00+£ 1.50$ P\&P. ea $1 "$ voice coil. Res. Freq. 48 Hz . Freq. Resp to 5 KHz . Sens. 92 dB . PRICE $£ 32.00+£ 1.50$ P\&P ea.
$10^{\prime \prime} 300$ WATT R. M.
 $1 \frac{1}{2}{ }^{\prime \prime}$ voice coil. Res. Freq. 35 Hz . Freq. Resp. to 4 KHz . Sens. 94 dB . PRICE $£ 47.00+£ 3.00 \mathrm{P} \mathrm{\& P}$ ea SOUNDLAB (Full Range Twin Cone)
5" 60 WATT R.M.S.Hi-Fi/Multiple A

60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc.
voice coil Res. Frea 63 Hz Freq Resp to 20 KHz Sens. 86 dB . PRICE $19.99 \cdot £ 1.00 \mathrm{P} \mathrm{\& P}$ ea. 60 Warl. Res. Freq. 56 Hz Freq Miple Array Disco etc. volce coll. Res. Freq. 56 Hz . Freq Resp. to 20 KHz Sens. 89 dB . PRICE 510.99 . £1.50 P\&iP ea
60 WATT R.M.S. Hi-Fi/Multiple Array Disco etc voice coil Res. Freq 38 Hz Freq Resp to 20 KHz Sens. 89dB PRICE $\{12.99$ - $11.50 \mathrm{P} \& \mathrm{P}$ ea voice coil. Res. Freq. 35 Hz . Freq. Resp. to 15 KHz . Sens. 89 dB . PRICE $£ 16.49+£ 2.00 \mathrm{P} \& \mathrm{P}$

NinHOBBY KITS. Proven designs including glass ibre printed circuit board and high qualit FM MICROTRANSMMTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive
microphone. Range $100 / 300$ metres. $57 \times 46 \times 14 \mathrm{~mm}(9$ volt) microphone. Range 10
Price: $: 8.62+75 \mathrm{p}$ P\&
3 WATT FM TRANSMITTER 3 WATT $85 / 115 M H z$ varicap controhed professional performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ (12 voit) Price: $£ 14.49+750$ P\&P
SINGLE CHANNEL RADNO CONTROLLED TRANSMITTER/ RECEIVER 27 MHz . Range up to 500 metres. Double coded modulation. many applications. Receiver $90 \times 70 \times 22 \mathrm{~mm}(9 / 12$ volt). Price: f 17.82 Transmitter $80 \times 50 \times 15 \mathrm{~mm}$ (9/12 volt). Price: $£ 11.29$ P\&P $+75 p$ each. S.A.E. for complete list
 BODIES, ETC. PRICES INCLUSIVE OF V.A.T. SALES COUNTER VISA/ACCESS/C.O.O. ACCEPTED.

STEREO DISCO MIXER

STEREO DISCO MIXER with 2×5 bandl. \& R. graphic equalisers and twin 10 segment
L.E.D. Vu Meters. Many outstanding features 5 Inputs with individual faders providing a useful combination of the following: 3 Turntables (Mag), 3 Mics, 4 Line plus Mic with taik over swith. Headphone Monito
Pan Pol L \& R. Master Outoul controls. Oul Pan Poi L. \& R. Master Output control
put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$.

B. K. ELEGTROTIOS
 UNIT 5, COMET WAY, SOUTHEND-ON-SEA ESSEX. SS2 6TR TEL: 0702-527572

EVERYDAM ELECTRONICS DECEMSER 1987

AUDAX

Chassis dimensions	Fixing centres
A $64 \times 90 \mathrm{~mm}$	$74 \times 48 \mathrm{~mm}$
B $80 \times 80 \mathrm{~mm}$	$4-76 \mathrm{~mm}$ PCD
C 74 mm diameter	$3-60 \mathrm{~mm}$ PCD
D $50 \times 50 \mathrm{~mm}$	$42 \times 42 \mathrm{~mm}$

FERROFLUID DOME TWEETERS
State of the ant advanced technology miniature hi－fi horn loaded tweeter has excellent dispersion and response． Supplied with a first order crossover 2．2uF－4．7uF non－polarised capacitor．

$31 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}-30 \mathrm{~W}$	EAGLE
	Power maximum．．．．．．．．．30W＠5kHz
－＊	Frequency response．．．．． $\mathbf{2 . 5 5 \mathrm { kHz } - 1 8 \mathrm { kHz }}$
	Fixing centres．．．．．．．．．．．．． $75 \times 50 \mathrm{~mm}$
	Overall weight．．．．．．．．．．．．．．．．．350g
	DOME TWEETER All plastic black front plate，with silver hard dome centre．
Order Code 003	£3．19＋50p p\＆p

$4^{3} 4^{\prime \prime} \times 31 / 2^{\prime \prime}$ and $4^{\prime \prime}-60 W \quad$ AUOAX HD 100 D25
 cy and high dispersion for hi－fi use．

SQ £9．90，R £7．90＋£1．00．p\＆p

MOTOROLA	KSN1038A
Impedance	，00 ohms＠
Power nominal	16 V （with res．）
Power maximum．	35 V （50W）
Frequency response．	$2 \mathrm{2kHz}-30 \mathrm{kHz}$
Output SPL	100db
Chassis dimens	$\times 60 \mathrm{~mm}$
Flxing centres．	moles on 85mm PCD

PIEZO SUPER HORN TWEETER
No power or matching problems．Connect multiples in series for your power re－ quirements．

SOUNDLAB	957100M
Impedance.	8 ohms
Power nominal.	50W
Power maximum.	100W
Frequency response.	$800-10,000 \mathrm{~Hz}$
Resonant frequency.	650 Hz
Output SPL.	98db
Chassis dimensions	$236 \times 102 \times 174 \mathrm{~mm}$
Fixing centres.	$212 \times 60 \mathrm{~mm}$
Overall weight.	

MID-RANGE HORN
All moulded plastic mid-range horn. All black finish. Supplied complete with R/C type crossover.

Order Code 011
$£ 10.95+£ 1.50 \mathrm{p} \& \mathrm{p}$

51／4＂-60 W	SOUNDLAB 525LUX
	Impedance．．．．．．．．．．．．．．．．．．．． 8 ohms
	Power nominal．．．．．．．．．．．．．．．45 W
	Power maximum．．．．．．．．．．．．6．6．6．6． $63-20,000 \mathrm{~Hz}$ Frequency response．．．．．．．
	Resonant frequency ．．．．．．．．．．．．．63Hz
	Output SPL．．．．．．．．．．．．．．．．．． 9 92db
	Coil diameter．．．．．．．．．．．．．．． 25 mm
	Chassis dimensions．．．．． 131 dia $\times 73 \mathrm{~mm}$
	$\begin{aligned} & \text { Fixing centres. } 4 \text { holes on } 110 \mathrm{~mm} \text { PCD } \\ & \text { Overall weight. } 1172 \mathrm{~g} \end{aligned}$
	FULL RANGE
	Small high powered dual paper cone speaker with rubber surround．
Order Code 020	£8．90

Compact full range driver．Foam rubber edged paper cone．

AUDAX	HDP15F
Impedance.	8 ohms
Power maximum.	60w
Frequency response	$65-5,000 \mathrm{~Hz}$
Resonant frequency.	52 Hz
Output SPL.	87db
Coll diameter	25 mm
Chassis dimensions.	$170 \times 170 \times 65 \mathrm{~mm}$
Fixing centres...	$134 \times 134 \mathrm{~mm}$
Overall weight.	800 g
ASS/MID-RA	

A composit material, flat diaphragm speaker, with microcomb damped polymer foam between aluminium sheets.

Order Code 023
$£ 12.95+£ 1.50 \mathrm{p}$ p p

8'-50W	AUDAX HIF20FSP
	Impedance.................... . 8 ohms
	Power maximum. 50 W
	Frequency response. $45-6,000 \mathrm{~Hz}$
	Resonant frequency. 45 Hz 90db Output SPL.
	Coil diameter. 25.9 mm
	Chassis dimenslons. $210 \times 210 \times 85 \mathrm{~mm}$
	Fixing centres. 4 holes on 219 mm PCD
	Overall weight. 800 g
	BASS/MID-RANGE
	Hi-fi speaker with black plastic coated cone, rolled vinyl surround.
Order Code 025	$£ 10.90+£ 1.50 \mathrm{p} \& \mathrm{p}$

$8^{\prime \prime}-40 \mathrm{~W}$	AUDAX HIF21F
	Impedance................... 8 \% ohms
	Power maximum. 40 W
	Frequency response. $55-9,900 \mathrm{~Hz}$
	Resonant frequency. 43 Hz Output SPL
	Coil diameter. 25 mm
	Chassis dimensions...... 212 dia $\times 75 \mathrm{~mm}$
	Flxing centres. 4 holes on 201 mm PCD
	Overall weight. 720 g
	BASS/MID-RANGE Quality all purpose speaker with paper cone and pleated doped surround.
Order Code 027	£9.50+£1.50 p \& p

10＂－200W	SOUNDLAB 10200M
	Impedance．．．．．．．．．．．．．．．．． 8 ohms
	Power nominal．．．．．．．．．．．．．．．．．100W
	Power maximum．．．．．．．．．．．．．．．． 200 W
	Frequency response．．．．．．． $30-3,000 \mathrm{~Hz}$
	Resonant frequency ．．．．．．．．．．．．．．．．．．． 95 g ． db
	Chassis dimensions．．．． 254 （dia）$\times 108 \mathrm{~mm}$
	Fixing centres．．．．． 4 holes on 244 mm PCD
	Overall weight．．．．．．．．．．．．．．．．．． 3.4 kg
	WOOFER
	High power woofer．Foam edged paper cone． Black steel basket．
Order Code 031	£29．90 $+£ 3.75 \mathrm{p}$ ¢ p

12＂－100W	CELESTION G12H－100 PE
	Impedance．．．．．．．．．．．．．．．．．．．． 8 ohms
	Power maximum．．．．．．．．．．．．．．． 100 W
	Frequency response．．．．．．．．．80－6，000 Hz Resonant frequency．
	Output SPL．．．．．．．．．．．．．．．．．．120db
	Coil diameter，．．．．．．．．．．．．．．．． 44 mm
	Chassis dimensions．．．．．．． 310 dia $\times 135 \mathrm{~mm}$
	Fixing centres．．．．．． 4 holes on 297 mm PCD Overall weight．．．．．．．．．．．．．．．．． 4.5 kg
	BASS／MID－RANGE
	The ultimate in presence and projection for guitarists in all styles of music．Paper cone with pleated edge．
Order Code 033	$£ 39.95+£ 3.95$ p\＆p

12＂－150W	AUDAX HD33S 66
	Impedance．．．．．．．．．．．．．．．．．．．． 8 ohms
	Power nominal．．．．．．．．．．．．．．．150W
	Frequency response．．．．．．． $39-2,000 \mathrm{~Hz}$
	Resonant frequency．．．．．．．．．．．． 24 Hz
	Chassis dimensions．．．．． 334 dia $\times 125 \mathrm{~mm}$
	Fixing centres．．．．．． 6 holes on 311 mm PCD
	Overall weight．．．．．．．．．．．．．．．．．． 7.5 kg
	WOOFER
	Bass speaker with paper cone and foam edge surround for extended bass response．
Professional	
Order Code 035	£79．95＋£7．00 p\＆p

brilliant tonal characteristics．Paper cone with pleated edge．
$£ 32.25+£ 3.75 \mathrm{p} \& \mathrm{p}$

Sidewinder

Order Code 034
$£ 59.95+£ 3.95 \mathrm{p} \& \mathrm{p}$

Order Code 040
$£ 128.95+£ 7.00 \mathrm{p} \& \mathrm{p}$

Order Code 042
CELESTION
Impedance. .
G180-400CE

Power maximum
ohms
Frequency response...........35-4,000 Hz
Resonant frequency. 20 Hz
Output SPL. 122db
Coil diameter.
76 mm
Chassis dimensions. $460 \times 210 \mathrm{~mm}$
Fixing centres. 8 holes on 438 mm PCD
Overall weight.
13.8 kg

WOOFER

Ultra reliable high power bass guitar/PA speaker. Paper cone with cambric edge.

Aemember: A crossover must be used with all tweeters and mid-range units (except Piezos)

'LOUDSPEAKER ENCLOSURE DESIGN AND CONSTRUCTION'$£ 3.95+50 \mathrm{p} \& \mathrm{p}$		
CROSSOVERS		
	2-WAY 100W	HYN2
	2 -way high power crossover with 3 selectable crossover frequencies. Type Impedance 2-way Input power 100w . 100 W Crossover. $2 k, 2.5 k$ or 4 kHz	

Order Code 043
Order Code 044 2W225K
£4.95+65p $p \& p$ 3-WAY 100W SN7000

3-way crossover network. 700 Hz and 5 kHz crossover frequencies.
Type.
.3-way
Impedance. 8 ohms
Input power.
Attenuation.
. 100W
$12 \mathrm{db} / \mathrm{ct}$
$700 \mathrm{~Hz}, 5 \mathrm{kHz}$
:Order Code 045
$£ 9.95+95 p$ p\&p

LOW PASS FILTER
LP38
$800 \mathrm{~Hz}, 300 \mathrm{~W}$ low pass filter network.

Impedance.	8 ohms
input power	300 W
Attenuation	$16 \mathrm{db} / 0 \mathrm{ct}$
Cut-off	800 H

Order Code 046
Cut-off.
£8.95 + 95p p\&p
HIGH PASS FILTER
HP35K

$5 \mathrm{kHz}, 300 \mathrm{~W}$ high pass filter network.
Impedance. 8 ohms
Input power. $16 \mathrm{db} / \mathrm{ct}$
Attenuation 5 kHz
Order Code 047
$\mathbf{£ 6 . 2 5 + 9 5 p p \& p}$

[^2]£1.50+20p p\&p

2k OHMS $/ \mathrm{V}$
－Miniature multitester
－ 15 ranges
－Dlode protection
－Ohms zero
－Mirrored scale
－Leads with 2 mm plugs
Battery and instruction manual included．

AC volts．．．．．．．．．．．．．0－10－50－250－1000V $\pm 4 \%$	
DC volis．．．．．．．．． $0-2.5-10-50-250-1000 \mathrm{~V} \pm 3 \%$	
DC current．．．．．．．．．．．．． $0-500 \mathrm{u}-5 \mathrm{~m}-250 \mathrm{~mA} \pm 3 \%$	
Resistance．．．．．．．．．．．．．．． $0-5 \mathrm{k}-5000 \mathrm{k}$ ohms $\pm 3 \%$	
Decibels ．．．．．．．．．．．．．．．．．．．．．．．．．－ 10 to＋22dB	
Protection ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．diodes	
Dims．	$100 \times 65 \times 30 \mathrm{~mm}$
Order Code 050	£6．90＋£95p p\＆p

	20M OHMS － 41 ranges including 12 A ac／dc and 1200 V ac／dc －AC peak－peak measurement －Polarity reverse switch －Power indicator －$\pm D C$ voltage and current measurement（centre zero） －Mirrored scale －Fuse and FET protection －Leads with 4 mm shrouded plugs DC volts．．．．．．．．．．．．．．0－0．3－1．2－12－30－120－300－1200 centre zero 0－士1．5－0．6－6－15－60－150－600士2．5\％ AC volts．．．．．．．．．．．．．．RMS 0－3－12－30－120－300－1200 DC current．．．．．．P－P $\frac{0-8.4-33-84-330-840-3300 \pm 3 \%}{0-1 u-0.3}$ centre zero $0 \pm 0.5 u-0.15 \mathrm{~m}-1.5 \mathrm{~m}-15 \mathrm{~m}-150 \mathrm{~m}-6 A \pm 2.5 \%$ AC current． $0-12 A \pm 3.5 \%$ Resistance． $0-1 \mathrm{k}-10 \mathrm{k}-100 \mathrm{k}-1 \mathrm{M}-10 \mathrm{M}-1000 \mathrm{M}$ ohms $\pm 2.5 \%$ Decibels．

1．0M DHMS

KD508

－ 15 ranges
－ $0.5^{\prime \prime} 31 / 2$ digit LCD display
－Compact size
－Automatic zero and polarity
－Full overioad protection
－Over－range and low battery indication
－Leads with 4 mm shrouded plugs
Battery and instruction manual included．

AC volts．	0－2－20－200－500V $\pm 4 \%$
DC voits．	－2－20－200－1000V $\pm 1 \%$
DC current	－2m－20m－200mA士 2\％
Resistance．	k－200k－2M ohms $\pm 2 \%$
Protection	Fuse
Dims	$113 \times 67 \times 22 \mathrm{~mm}$
Order Code 054	$£ 21.90+£ 1.50 \mathrm{p} \& \mathrm{p}$

Order Code $059 \quad £ 52.95+£ 3.75$ p\&p

ALTAI	AL12
Regulated power supply with voltage selector switch designed for use in fixed installations or fitted on flying leads. Input and output via screw terminals. Internal thermal fuse for overload protection.	
Input voltage. 240 Vac 50 Hz
Output voltage. . .	$6 / 9 / 12 \mathrm{Vdc}$ (selectable)
Output current. 1A continuous
Stability 2\%
Ripple. 25 mV
Dims. $142 \times 65 \times 60 \mathrm{~mm}$
Order Code 060	£9.95+95p p\&p

Regulated power supply for use with CB rlgs, auto equipment. High stability circuitry with high surge curfent capability. Overload protection. Manufactured according to the requirements of the Electrical Satety Regulations for domestic use.

ut voltage.	240 Vac 50 Hz
Output voltage	13.8 Vdc
Output current	3A conlinuous, 5A max.
Stability	1\%
Ripple	25 mV
Connections.	socket/screw terminals

£13.95+£3.75 p\&p

PHONIC

STEREO MIXER

MX7700
4-channel stereo disco mixer with built-in -5 -band graphic equalizer. LED display, monitored output, fader mix, cue control and equalizer defeat button. 4 inputs.

PHONIC	STERED MIX
ereo disco mixer in rack-mounting case capable of mixing a total of 10	
phono, line and mic inputs, switchable on the front panel. Twin 5 -band graphic equalizer with insert/bypass switch. DJ mic channel with low cut filter, pan pot and auto fade.	
Cross fader between channels 1 and 2 . Separate L and R output levels and stereo/monoswitch. Outputs to amp, tape and headphone.	
Inputs: Mic.	0.3 mV 600 ohms
Phono.	2.5 mV 47 k ohms
Line/CD	150 mV 47 K ohms
Outputs: Amp \& tape.	2 V nom
Headphone.	150 mV @ 8 ohms
Frequency response.	$20-20000 \mathrm{~Hz}$
Hum and noise.	6 mV
Equalizer control frequencies	60, 250, 1k, 3.5k, 16kHz
Equalizer control range	$\pm 12 \mathrm{db}$ boost or cut
Talkover.	Decrease 14db program level
wer.	240 Vac 50 Hz
Dims	$360 \times 265 \times 88 \mathrm{~mm}$
Order Code 062	£134.95 + ¢3.00 p ¢ p

PHONIC

STEREO MIXER
MR50A
5-channel stereo sound mixer in 19" rack mounting case which can handle a total of 8 inputs, selectable on the front panel. Speciai facility between channels A and B allows recording on channel A from channel B. Stereo mic inputs have level, bass and treble controls and talkover facility. Output section has stereo/mono switch and separate level, bass and treble controls for L and R. Twin switchable VU meters. Outputs to amp, tapes, headphones and slave.

```
Inputs: Mic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3mV 600 ohms
    Phono. .............................................................. . . . . 47K ohms
    Tape/video/CD.................................. 140mV 22k ohms
    Aux 
    Amp and tape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5V nom 5V max
    Headphones and slave.
Frequency response.
S/N ratio.
Hum and noise
Crosstalk
Talkover.
Power.
Dims .
Order Code 064
14.95 +
```

$£ 114.95+£ 3.00 \mathrm{p} \& \mathrm{p}$

```

\section*{}


The most economical of the Shure Unidyne microphones, the 515SD features the uniform, symmetrical cardioid pickup pattern, feedback suppression, and high-quality performance characteristics that have made the Unidyne models world famous. The 515SD has a wide frequency response, shaped with a lowfrequency rolloff and high-frequency presence boost. Dual impedance, selectable at on-off switch.

80 to \(13,000 \mathrm{~Hz}\)
Cardioid (Unidirectional)
Dual: 150 ohms/High
\(0.074 \mathrm{mV}(-82.5 \mathrm{db}) 150\) ohms
1.1 mV ( -59.0 db ) High
\begin{tabular}{lr} 
Order & \(£ 40.90\) \\
Code \(069^{\circ}\) & \(+£ 1.50 \mathrm{p} \mathrm{\& p}\) \\
\hline
\end{tabular}


The popular ball shape of the Prologue Series 12 increases ruggedness while providing added protection against wind noise and vocal 'popping' sounds. Better sulted for hand-held use than probe-shaped microphones. Cardioid pickup pattern helps control feedback and background noise. For voices or instruments. On/Off switch. Professional 3-pin connector. Surprisingly low in cost, surprisingly high in performance, ruggedness and versatility.

80 to \(10,000 \mathrm{~Hz}\)
Cardioid (Unidirectional)
0.15 mV ( -76.5 db )
\begin{tabular}{lr} 
Order & \begin{tabular}{l} 
£31.90 \\
Code 066
\end{tabular} \\
\(+£ 1.50\) p\& \(p\)
\end{tabular}

ALTAI DM5000


A heavy metal mic, dark grey colour with silver trim. On/Off switch. 6 m noiseless iead with XLR connector. In carrying case. Built-in windshield. Holder Included. With case.

Type . . . . . . Uni-directional. Dynamic Impedance. . . . . . . . . . . . . 500 ohms Response . . . . . . . . . . . 30-18000Hz Sensitivity.........-76db@1kHz Head dia. . . . . . . . . . . . . . . . 54mm Length. 178 mm (excluding connector)
\begin{tabular}{lr} 
Order & £19.90 \\
Code 070 & \(+£ 1.50\) p p
\end{tabular}


THE world-standard professional vocal microphone, with the distinctive Shure upper mid-range presence peak for an intelligible, lively sound. It is without question the unsurpassed first choice among rock, pop, R\&B and country music vocalists. A tough, handsome microphone that weighs less than \(110 z\).. . the SM58 is often imitated in appearance but never duplicated in performance, ruggedness and reliability.

50 to \(15,000 \mathrm{~Hz}\)
Cardioid (Unidirectional)
150 ohms
\(0.18 \mathrm{mV}(-75.0 \mathrm{db})\)
\begin{tabular}{lr} 
Order & \begin{tabular}{l} 
£149.90 \\
Code 067 \\
\(+£ 1.50 \mathrm{p} \& \mathrm{p}\)
\end{tabular} \\
\hline
\end{tabular}

ALTAI 500 ohms \& 50k ohms
DM450


Quality microphone made from heavy zinc diecast metal, silver finish. On/off switch. 5 m nolseless lead fitted with 4 -pin dual impedance plug. Holder included.

Type. . ..... Unidirectional. Dynamic Impedance. . 500 ohms and 50 k ohms
(dual)
Response . . . . . . . . . 60-12000 Hz
Sensitivity...... -75db ( 500 ohms)
(a) 1 kHz
-60 db (50k ohms)
Head dia @ 1kHz
Length. 175 mm (excluding connector)
\begin{tabular}{lr} 
Order & \begin{tabular}{r} 
£13.90 \\
Code 071 \\
\(+£ 1.50 ~ p \& p\)
\end{tabular} \\
\hline
\end{tabular}


The Unisphere B 588SD features all the most desirable features in a unldirectional dynamic microphone at an attractive price. A built-in windscreen minimizes breath popping when used close-up and subdues wind noise when used outdoors. A locking on/off switch permits controlling the microphone at the performer's position. The 588SD microphone has a uniform cardioid polar pattern that reduces feedback. Dual impedance design.

80 to \(13,000 \mathrm{~Hz}\)
Cardioid (Unidirectional)
Dual: 150 ohms/High
\(0.08 \mathrm{mV}(-82.0 \mathrm{db}) 150 \mathrm{ohms}\)
1.16 mV ( -59.5 db ) high

\section*{Order \\ Code 068}
\(£ 55.90\)
\(+£ 1.50\) p\&p

EM250
Stereo Eletret Condemn


All silver plastic body with black metal mesh head. Built-in windshield. Integral 3 m lead to \(2 \times 6.35 \mathrm{~mm}\) jack plugs. Takes 1.5 V 'AA' type battery (supplied). Holder included
\begin{tabular}{|c|c|}
\hline Type & Bi-directional \\
\hline Impedance. & 1000 ohms \\
\hline Response & \(50-18000 \mathrm{~Hz}\) \\
\hline Sensitivity. & 70db @ 1kHz \\
\hline Dia: Head. & 37 mm \\
\hline Body. & 22 mm \\
\hline Length & 170 mm \\
\hline Order & £11.90 \\
\hline ICode 072 & + 11.50 p\&p \\
\hline
\end{tabular}

\section*{MICROPHONE CABLE}

6.35 mm mono metal jack plug to XLR female plug. Black straight noiseless cable. Length.

\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Output power．． Output impedance} & ma \\
\hline & 4 to 16 ohms \\
\hline & \\
\hline nsitivit & 450 mV （3）22K ohm \\
\hline Protection． & ic short－circuit and fuses \\
\hline wer & 220 \\
\hline Chassis dim & \(435 \times 125 \times\) \\
\hline & \\
\hline
\end{tabular}

125 watt per channel stereo power amplifier with independent volume controls，＇professional 19＂rack mount and silent running cooling fan for extra reliability．

Order Code 074
\(£ 124.99+£ 7.00 \mathrm{p} \& \mathrm{p}\)



Hand held or shoulder hanging model with detachable noise cancelling microphone（on curly lead）．Anti－howl amplification．Mic has press－to－talk switch and volume control．Horn has rubber bumper rim and pistol grip．Made of ABS plastic and metal（blue and grey）．
Order Code 076
\(£ 56.90+£ 4.70\) p\＆p


Completely weatherproof horn．White ABS plastic．Adjustable fixing bracket．
Order Code 077
\(£ 13.90+£ 3.00 \mathrm{p} 8 \mathrm{p}\)

\section*{125W HIGH POWER MODULES}

High quality power amplifier module for PA and domestic systems．Its ingenious design and clever use of generously rated components，with short－ circult protection simplifites installation．

Output power．
15W to 125W（RMS）
Output impedance．．．．．．．．．．．．．．．．．．． 4 to 16 ohms （max power into 4 ohms）
Operating voltage．．．．．．．．．．．．．．．．．． \(50-80 \mathrm{~V}\) max
Sensitivity．．．．．．．．．．．．．．．．．．．．．．．．． 400 mV
Frequency response．．．．．．．．．．．．．． \(25 \mathrm{~Hz}-25 \mathrm{kHz}\)
Dimensions ．．．．．．．．．．．．．．．．．．． \(90 \times 165 \mathrm{~cm}\)
＇Power supply parts comprising mains transformer，rectifier and capacitor are availabie．


Order Codes and Prices：Module \(078 £ 19.90+£ 1.10\) p \(\&\) p PSU mono \(079 £ 9.70+£ 2.50\) p \(£\) p PSU stereo \(080 £ 15.50+£ 2.50\) p \(£\)

\section*{回田回}



\footnotetext{
ALTAI
FM INTERCOM 2 to 6-WAY
ETL8083A

FM frequencies. . \(230,260 \& .290 \mathrm{kHz}\)
Power. .............. 240Vac 50 Hz
Dims . . . . . . . . . . \(182 \times 122 \times 45 \mathrm{~mm}\)


FM 3-channel wireless intercom. Automatic voice activation facility for hands free conversation. Keyboard controls. Volume control. Mains powered and connected. Matt black plastic case. Automatic squelch control for noise free operation. 2 to 6 stations may be used.

Order Code 086
\(£ 36.90+£ 2.50 \mathrm{p}\) \& p
}


The MS705 or MS715 are two very efficient vehicle securlty systems．Their unique＇current＇and＇adjustable shock＇sensing circuitry offers round the clock protection for your vehicle．With the addition of an ultrasonic interior sensor （MS702 or MS703）they will detect any movements inside the vehicle．MS716 or MS718 are central door locking interface modules（for the MS715 only）．The MS718 is designed for vacuum operated central door locking systems eg Mercedes and Audi．
－Individual coded remote controls
－Remote instant arm／disarm（and Immobilisation on MS715）
－Ulitra high power reflex horn siren（MS715＝120db，MS705＝110db）
－Easy to fit－hard to beat
－Extendable system
－Security circuit
－Current／shock sensing，etc
\begin{tabular}{|c|c|c|c|c|}
\hline MODEL & ORDER CODE & PRICE \(\mathrm{E}^{\text {e }}\) & P\＆P ¢ & PACKAGE DEALS \\
\hline MS705 & 087 & 43.90 & 2.50 & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { MS705 \& MS703 } \\
\text { TOTAL } £ 62.90+£ 2.50 \text { p\&p }
\end{gathered}
\]} \\
\hline MS715 & 088 & 68.90 & 2.75 & \\
\hline MS702 & 089 & 27.50 & 0.95 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MS715 \& MS703 } \\
& \text { TOTAL £84.90 }+£ 2.75 \text { p\&p }
\end{aligned}
\]} \\
\hline MS703 & 090 & 21.90 & 0.95 & \\
\hline MS716 or MS718 & 091 & 12.90 & 0.75 & MS702 instead of MS703：extra \(£ 5.00\) \\
\hline
\end{tabular}

\section*{PHILIPS}

HOME SECURITY

IDEAL FOR FLATS，MAISONETTES AND SMALLER OFFICES OR HOUSES．
With pressure mat，magnetic reed switches，cable，internal alarm unit and control unit．Built－in timed entrance and exit delay．Liquidated stock．Fully guaranteed．

Order Code 092
\(£ 29.99+£ 2.75 \mathrm{p} \& \mathrm{p}\)


\section*{回四回}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
UNIVERSAL NI-CAD BATTERY CHARGER \\
Universal NI-Cad battery charger. All plastic case with hinged lid. Charge/test switch with filament lamp showing degree of charge. Separate LED indicators at each of the five charging points.
\end{tabular}} & & & & \\
\hline & \multicolumn{4}{|c|}{RECHARGEABLE BATTERIES} \\
\hline & Sizo & AA & C & 0 \\
\hline & Rate & 1.25 V 500 mAh & \multicolumn{2}{|c|}{1.25 V 1200 mAh} \\
\hline & Charge rate & 50 mA & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{250 mA}} \\
\hline & & & & \\
\hline & Order Code & 096 & 097 & 098 \\
\hline Charges. \(\qquad\) PP3 (9V), AA (1.5V penlite), \(C\) (1.5V HP11), D(1.5V HP2) Power 240 Vac 50 Hz & Cost £ & 3.90/4 & 1.90 each & 2.10 each \\
\hline Dims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(210 \times 100 \times 50 \mathrm{~mm}\) & P\&P £ & 0.50/4 & 0.50/2 & 1.50/2 \\
\hline Order Cods 095 ( £5.95+£1.40 p\&p & & & & \\
\hline
\end{tabular} \(£ 5.95+£ 1.40\) p\&p
Order Code 095

HI-TECH RECHARGEABLE BATTERY PACK


A complete rechargeable battery pack. Simply plug charger into standard 13 amp socket. Each charge costs less than 1p. Ideal for: stereo radio/cassette, toys, camera, photo flash, shavers, torches, calculators etc, etc. Pack contains: charger, \(4 x^{\prime} A A^{\prime}\) size Ni -Cad batteries, \(4 x^{\prime} \mathrm{C}\) ' and \(4 x^{\prime} \mathrm{D}^{\prime}\) size sleeve adaptors.

Order Code 099
\(\mathbf{£ 1 1 . 5 0 + £ 1 . 4 0 p \& p}\)

12 PIEC

- 1 screened lead-5-pin DIN plug to 5 -pin DIN plug. Mirror image. 1.5 m
- 1 twin, screened lead -2 phono plugs to 2 phono plugs. 1.5 m
- 1 twin, screened lead-2 phono sockets to 5 -pin DIN. 180 mm
- 2 twin, screened leads -4 phono sockets to 5 -pin DIN. 180 mm
- 2 adaptors - phono socket to PL259 (UHF plug)
- 2 adaptors - phono socket to BNC plug

4 adaptors - phono socket to 3.5 mm jack plug
Order Code 100
\(£ 5.95+75 \mathrm{p}\) р\&

\section*{ALTAI}

CABINET GRILL
Black finish metal mesh speaker grill with black rubber surround. Robust construction made from 1.1 mm thick steel. Grill pitch \(11 \mathrm{~mm} \times 11 \mathrm{~mm}\).


Order Code 101
Please state size

\section*{CONDITIONS}

\section*{HOW TO ORDER}

Personal shoppers may visit either of our branches (map overleaf). All mail/phone orders to our Acton address please.

\section*{METHOD OF PAYMENT}

Cash, cheque, Giro, postal order, Access or Visa card. Cheques and postal orders should be crossed and made payable to RTVC Ltd. If you intend to pay by Access or Visa card, you may telephone your order to us.

Specifications in this catalogue are given in good faith, but they should be regarded as for guidance only, and are subject to change without prior notice. Goods are sold subject to availabili- . ty. Prices are correct at 1st November 1987.

\section*{RETURNS}

Except for faulty goods or goods sent in error, no goods may be returned without our prior consent.

Allow 28 days for delivery.

ALL PRICES INCLUDE VAT AT 15\% RATE.
POST \& PACKING/CARRIAGE CHARGES ARE FOR UK ONLY
Overseas customers kindly arrange transportation.

\section*{TV SOUND TUNER}

In the cut－throat world of consumer electronics，one of the questions designers apparently ponder over is＂Will anyone notice if we save money by chopping this out？＇＇In the domestic TV set，one of the first casualties seems to be the sound quality．Small speakers and no tone controls are quite common and that really is quite sad，as the TV companies do their best to transmit the highest quality sound．Given this background a compact independent TV tuner that connects direct to your \(\mathrm{Hi}-\mathrm{Fi}\) is a must for quality reproduction．The unit is mains operated．This TV SOUND TUNER offers full UHF coverage


Qrder Code： \(102 £ 29.50+£ 2.50 \mathrm{p} \& p\) with 5 pre－selected tuning controls．It．can also be used in conjunction with your video recorder．

\section*{As above but with built－in stereo headphone amplifier for the hard of hearing}

You can tune into theTV channel you want while still receiving the plcture on your TV set．In fact it is rather like a second television，but without the screen．So that the ordinary TV can be placed for everyone to see，and the volume on it can be comfortable for others，while the sound tuner can be placed where you can control it． You will need to plug in one of your own
listening aids such as headphones or an induction loop to hear the sound．The tuner is mains operated，has 5 pre－ selected tuning controls and can be used in conjunction with a video recorder．

Order Code： 103
Size： \(10^{3 / 4 " \times 71 / 2 " \times 21 / 2^{\prime \prime}}\)
\((270 \mathrm{~mm} \times 192 \mathrm{~mm} \times 65 \mathrm{~mm}\) ）

\section*{MAIL ORDER \＆ALL TRADE ENQUIRIES TO ACTON BRANCH．}

Callers Welcome at either branch．

\section*{ACTON HIGH STREET}

21 High Street，Acton，London W3 6NG．
Monday to Saturday \(9.30-5.30\) ．


\section*{EDGWARE ROAD}

323 Edgware Road，London W2
Monday to Saturday \(9.00-5.30\) ．
（ 5 minutes walk from Edgware Rd Tube Station）．

N．B．At both shops you will also find a wide range of Hi －fi，in－car entertainment，telephones \＆answering machines，electronics accessories，etc．．```


[^0]:    

    ## £1 BAKERS DOZEN PACKS Price per pack is $£ 1.00$.* Order 12 you

    may choose another free. Items mak(sh) are not new but guaranteed ok

    1-513 amp ring main junction boxes
    2-513 amp ring main spur boxe
    5-3 flush electrical switches
    7-4in flex line switches with neons
    8-2 20 watt brass cased elements
    9-2 mains transtormers with 6 V
    10-2 mains transformers with 12 V 路 C con daries
    $10-2$ mains transformers with $12 \mathrm{~V} / / \mathrm{A}$ secondarie
    $11-1$ extension speaker cabinet for $6 / z^{\prime \prime}$ speaker
    $12-5$ octal bases for relays or valves
    13-12 glass reed switches
    $14-40 \mathrm{CP} 70$ photo transistors
    $16-4$ tape heads, 2 recard 2 era
    16-4 tape heads, 2 record, 2 erase
    17-1 ultrasonic transmitter and 1 ditto receiver
    18-2 15000 mfd computer grade electics
    18-2 15000 mfd computer grade electrolytics
    19-2 light dependent resistors
    $20-5$ diferent micro switches
    $21-2$ mains interference suppressor
    23-1 40 watt crossover units 2 way
    28-16 digit counter mains voltage
    280-2 Nicad battery chargers
    31-1 key switch with key
    32-2 humidity switches
    34-96 $\times 1$ metre lengths colour-coded connecting wires
    $36-2$ air spaced 2 gang tuning condensors
    $37-2$ solid diaelectric 2 gang tuning condensors
    38- 10 co mpression trimmers
    41 - 6 Rocker Switches 10 amp mains SPST
    43-5 Rocker Switches 10 amp SPDT Cente Of
    44-4 Rocker Switches 10 amp DPDT
    45-1 124 hour time switch mains operated (s.h.)
    46-1 6 hour clock timeswitch
    $48-26 \mathrm{~V}$ operated reed switch rel
    49-10 neon valves - make good night lights
    $50-2 \times 12 \mathrm{VDC}$ or $24 \mathrm{~V} \mathrm{AC}, 4 \mathrm{CO}$ relays
    $51-1 \times 12 \mathrm{~V} 2 \mathrm{C} 0$ very sensitive relay
    52-112V 4C relay
    $55-1$ locking mechanism with 2 keys
    56 - Miniature Uniselector whth circuit for electric jigsaw
    5 Dolls' House switches
    $0-5$ ferrite rods $4^{\prime \prime} \times 5 / 16^{*}$ diameter aerials
    -4 territe slab aerials with $L \& M$ wave coils

    - 4200 ohm earpieces

    1 Mullard thyristor trigger module
    10 assorted knobs $1 / 4$ spindles
    10 assorted knobs $1 / 1$ spindles
    5 different themostats, mainly bi metal

    - Low pressure 3 level switch
    -225 watt pots 80 hm
    225 watt pots 1000 ohm
    4 wire wound pots - 18, 33, 50 and 100 ohm
    -43 watt wire wound pots 50 hm
    -1 time reminder adjustable 1.60 mins
    -5.5 amp stud rectifiers 400 V
    1 mains shaded pole motor $1 / 4$ " stack - $1 / 4$ shaft
    ${ }^{25}$ ali fan blades fit $1 /$ " shatt
    Mains motor suitable for above
    - Mains motor suitable for above blades
    -1 mains motor with gearbox 1 rev per 24 hours
    $1-2$ mains motors with gearbox 16 ppm
    -411 pin moulded bases for relays
    -5 B7G valve bases
    -4 sklrted B9A valve bases
    1 thermostat for fridge
    1 motorised stud switch (s.h.)
    162 hours delay switch
    -16 v mains power supply unit
    -15 pin flex plug and panel sock
    $15^{\prime \prime}$ speaker slze radio cabinet with handle
    $10 \%$ " spindle type volume control
    10 slider type volume controls
    1 1W a mplifier Mullard 1172
    -1 Wall mounting thermostat 24 V
    1 Teak effect extension 5 " speaker cabine
    2 p.c.b. with 2 amp full wave and 17 other fec
    -10 mtrst twin screened flex white p.v.c. outer
    beam switch etc
    155-3 varicap push button tuners with knobs
    1 plastic box, sloping metal front. $16 \times 95 \mathrm{~mm}$, average
    depth 45 mm
    1 car door speaker (very flat $61 / 2 " 15 \mathrm{ohm}$ made for
    -2 speakers' $6^{\prime \prime} \times 4^{\prime \prime} 15$ ohm 5 watt made for Radiomabile
    -2 mains transformer $9 \mathrm{~V} 1 / 2$ A secondary split primary so OK also for 115 V
    267-1 mains transformers 15V 1A secondary p.c.b. mounting
    $330-26 \mathrm{~V} 0.6 \mathrm{~V}$ mains transformer 3 a p.c.b. mounting
    $350-40$ double pole leat switches
    $365-17 \mathrm{uf} 660 \mathrm{~V} 50 \mathrm{~h} 2$ metal cased condenser
    $453-221 / 1 \mathrm{in} 60$ ohm loudspeakers
    $454-221 / \mathrm{in} 8 \mathrm{ohm}$ loudspeake fs
    463-1 mains operated relay with 2 sets c/a confacts
    $465-2$ packets resin filler/sealer with cure
    $468-47$ segment l.e.d. displays
    $470-4$ pc boards for stripping, lots of valuable pants
    480-1 3A double pole magnetic trip, saves repaiting fuses
    $498-41000$ uf 25 V ax ial electrolytic capacitors
    $515-10048 \mathrm{~A} 11 / /^{\prime \prime}$ cheesehead plated screws and 100 4BA nut 541 - 1 pair stereo tape head as in cassette recorder/players $546-1$ bridge rectifier 600 V international rectifier ref 3 SB 100 $548-2$ battery operated relays $(3-6 \mathrm{v})$ each with 5 A c/o contact 2 pairs


    ## 553-2lithium 3 V batteries leverlasting shelf life

[^1]:    1
    Annual subscription rates:
    UK $£ 14$. Overseas $£ 17$ (surface mail) $£ 33$ (air mail)
    | To: Everyday Electronics,
    Subscription Dept., 6 Church Street, Wimborne, Dorset
    BH21 1JH
    Name
    | Address
    1
    1
    | I enclose payment of $£ \ldots . . . . .$. (cheque/PO in $£$ sterling | only payable to Everyday Electronics)
    | Subscriptions can only start with the next available issue. For back numbers see the Editorial page

[^2]:    Order Code 049

