EVERMDAY

MAY 1985

.
£1.00

AUTO PHASE * VOLTAGE PROBE

ISSN 0262-3617
PROJECTS . . THEORY . . . NEWS . . .
COMMENT . . . POPULAR FEATURES

(C) IPC Magazines Limited 1985. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
PROJECTS
AMSTRAD CPC464 AMPLIFIER by P. Dooley 248
Turn a hiss into a roar
VOLTAGE PROBE by R. A. Penfold 252
Hand-held indicator for voltage readings up to 120 V
AUTO PHASE by R. A. Penfold 260
Amplitude controlled phaser for performers
CARAVAN INDICATOR CONTROL
by T. R. de Vaux-Balbirnie288
Operates the caravan lights without overloading the car system
SERIES
ON SPEC by Mike Tooley BA 258
New regular feature devoted to the Spectrum - Sensors and a signalgenerator program
FAULT FINDING by E. A. Rule 276
Part Seven: Service aids and aerosols
DIGITAL ELECTRONICS by D. W. Crabtree 282
Part Eight: Putting computers to practical use
FUNTRONICS by Thakery286
A new outlook to electronics-Radio Control Pt 2
FEATURES
EDITORIAL 247
SHOPTALK by Mike Abbott 256
Product news and component buying EVERYDAY NEWS 274
What's happening in the world of electronics
FOR YOUR ENTERTAINRENT by Barry Fox 278
Lasers Light The Way; Optical Grating; Electron Analysis DOWN TO EARTH by George Hylton 280
Operational amplifier current sourcing and sinking
COUNTER INTELLIGENCE by Paul Young 281
A retailer comments
PLEASE TAKE NOTE 284
Sound Operated Flash; Headlight Activated Switch;Motorcycle Codelock; Digital Electronics Pt 5
NEW PRODUCTS 291
Facts and photos of instruments, equipment and tools
PRINTEDCIRCUIT BOARD SERVICE 292
BUYER'S GUIDEMULTIMETERS BUYER'S GUIDE264An introduction to meter specifications plus a useful buyer's guideOur June 1985 issue will be published on Friday, May 17.See page 279 for details.

NEW THIS MONTH

"SENSING \& CONTROL PROJECTS FOR

 THE BBC MICRO"Have you ever wondered what all those plugs and sockets on the back of the B8C micro are for? Thls book assumes no previous electric knowledge and no soldering is required, but guides the reader Ipupil or teacherl from basic connexions of the user sockers, to quite complex projects. The author, an experi-
ence teacher in this field, has provided lots of practical experiments, with ideas on how to follow up the basic princlples. A complete kit of parts for all the experiments is also available. Book, $245 \times 185 \mathrm{~mm}$ 120pp E5.95. Kit $£ 29.95$.

GREENWELD

 The Pack PK524 OPTO PACK - a variety of single point and seven segment LEDS (incl. dual types) of various colours and sizes, opto isolators, numicators, multi digit gas discharge displays, photo transis. tors, infra red emitters and receivers. 25
assorted $\mathbf{f 3 . 9 5 ; ~ 1 0 0 ~} £ 1495 ; 250 £ 36$

K525 PRESET PACK - Big, Big variety of types and sizes - submin, min and std. MP, slider, multiturn and cermets are all included. Wide range of values from 20 R to 5 M . 100 assorted $\mathbf{£ 6 . 7 5 ;} 250$ £12.95; 1000 \& 48.
K526 HEATSINK PACK - Lots of different sizes and shapes of heatsink for most diode and transistor case styles. A pack of 25 assorted including several large finned types - total weight over $1 \mathrm{~kg} £ 5.50 ; 100 £ 19.50$.
K528 ELECTROLYTIC PACK - All ready cropped for PCB mounting, this pack offers excellent value for money. Good range of values and voltages from range of values and voltages from
$0.47 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$. 6 v to $100 \mathrm{~V} \mathrm{E} 3.95 ; 250$ £8.95; 1000 £32.
K531 PRECISION RESISTOR PACK High quality, close tolerance R's with an extremely varied selection of values mostly $1 / 4$ and $1 / 2 w$ tolerances from 0.1% to 2% - ideal for meters, test gear etc.
250 E3; 1000 £ 10 .
K532 RELAYS - Wide selection of styles, voltages and contacts. $4 \mathrm{v}-240 \mathrm{v}$, ACIDC, SP to $4 P C O$. 20 for $£ 6$; $100 £ 25$. K517 TRANSISTOR PACK - 50 assorted full spec marked plastic devices PNP NPN RF AF. Type numbers include BC114 117172182183198239251214 255320 BF 198255394 2N3904 etc. etc. Retail cost $\mathbf{f 7 + \text { ; Special low price 275p. }}$ K523 RESISTOR PACK - 1000 - yes $10001 / 4$ and $1 / 2$ watt 5% hi-stab carbon film resistors with pre-formed leads for PCB mounting. Enormous range of preferred values from a few ohms to a several megohms. Only 250p; 5000 £10; 20,000 £ 36 .
K520 SWITCH PACK - 20 different as sorted switches - rocker, slide, push rotary, toggle, micro etc. Amazing value at only 200 p
K522 COPPER CLAD BOARD - All pieces too small for our etching kits. (approx 110 sq . ins.). For 100 p.
K530 100 ASSORTED POLYESTER CAPS - All new modern components, 0.01 to 1 uf at voltages from 63 to $10001!$ 0.01 to luf at voltages
Super value at $£ 3.95$.
$K 518200$ DISC CERAMIC CAPS - Big variety of values and voltages from a few pF to $2.2 \mathrm{uF} ; 3 \mathrm{v}$ to $3 \mathrm{kv} £ 1.00$.
K203 100 WIREWOUND RESISTORS From iw to $12 w$, with a good range of
values $£ 200$. values $\mathbf{E} .00$.
K505 20 ASSORTED POTENTIOMETERS - All types including single, ganged, rotary and slider $\mathbf{£ 1 . 7 0}$.
W4700 PUSH BUTTON BANKS - An assortment of latching and independent switches on banks from 2 to 7 way, DPCC to 6PCO. A total of at least 40 switches for £2.95; 100 £6.50; 250
£14.00.

Goods normally despatched by return of post
$1984 / 85$ CATALOGUE 84 page $A 4$ size - Bigger, Brighter, Better more components than ever before! With each copy there's discount vouchers, Bargain List, Wholesale Discount List, Bulk Buyers List, Order form and Reply Paid Envelope. All for just $£ 1.0011$ Winter Supplement now out - Send large SAE for your free copy.
"TORUS"
Computer-controlled Robot built around the gearbox described below. Complete kit of parts inc PCB, program listings for BBC (other micros soon). £44.85. 20W ribbon cable (min 3 m recommended -5 m better) $\mathrm{f} 1.30 / \mathrm{m}$. SAE for illustrated leaflet.

MOTOPIZED GEARBOX
The unit has $2 \times 3 V$ motors, linked by a magnetic clutch, thus enabling turning of the vehicle, and a gearbox contained within the black ABS housing, reducing the final drive speed to approx 50 rpm . Data is supplied with the unit showing various options on driving the motors.
Two new types of wheels can be supplied the aluminium discs and smaller plastic wheels are now sold out). Type A has 7 spokes with a round black tyre and is 100 mm dia. Type B is a solid heavy duty wheel 107 mm dia with a flat rigid tyre 17 mm wide.
PRICES: Gearbox with data sheets: $\mathbf{5 5 . 9 5}$
Wheel type A:
60.70 ea

NI-CAD CHARGER PANEL
$177 \times 114 \mathrm{~mm}$ PCB with one massive Varta Deac $57 \times 50 \mathrm{~mm}$ Q rated 7.2 V 1000 mAH and $3.6 v 600 \mathrm{~mA}$ The price of these Ni-cad 3.6 v 600mA. The price of these Ni-cad stacks new is over $\mathcal{2 0}$. Also on the panel is separate secondaries wired via bridge rectifiers, smoothing capacitors and a relay to fiers, output tags. The panel weighs 1 kgm All this for Just $\mathbf{f 6 . 0 0}$.

PCB MOUNTING NI-CADS

Much sought after 4.8 V 150 mA batts with 25×16 mntg tags on 25 mm pitch. Batt size $85 \mathrm{p} ; 25+70 \mathrm{p} ; 100+60 \mathrm{p}$.
NI-CADS: AA 99p; C 199p; D 220p; PP3 395p.

1W AMPLIFIER

2914 - Audio amp panel $95 \times 65 \mathrm{~mm}$ with TBA820 chip. Gives IW output with 9V supply. Switch and vol. control. Just conOnly £1.50; 10 for £12; 25 for $£ 25 ; 100$ £ 75 .

AM TUNER PANEL
2916 - For use with mono amp above. Neat panel $60 \times 45 \mathrm{~mm}$. Only $£ 1.50 ; 10$ for $£ 12.00$.

FIBRE OPTICS

Scoop purchase of single and twin cable. For use with visible light or infra-red. Core 1 mm dia, overall 2.25 mm dia. Single 50p/m; 20 m

Our shop has enormous stock of components and is open 9-5.30 Mon-Sat min. CWO value. Official orders from schools etc. welcome
\min invoice charge $£ 10$.

443D Millbrook Road Southampton SO1 OHX Tel (0703) 772501/783740

FREE CAREER BOOKLET

Train for success, for a better job, better pay Enjoy all the advantages of an ICS Diploma Course, training you ready for a new, higher paid, more exciting career. Learn in your own home, in your own time, at your own pace, through ICS home study, used by over 8 million already! Look at the wide range of opportunities awaiting you. Whatever your interest or skill, there's an ICS Diploma Course there for you to use.
Send for your FREE CAREER BOOKLET today - at no cost or
obligation at all
GCE
Over 40 ' O ' and ' A ' Level subjects from which to choose. Your vilal passport to career success.

I BOOK-KEEPING \& ACCOUNTANCY

Please send FREE DETAILS tor the course licked above.

QUALITY COMPONENTS...FAST!

SEMICONDUCTORS									
${ }^{\text {AC127 }}$	${ }^{350}$	BU208	2800	W01	34 p	40128 E		40668E	269
${ }^{\text {A }}$ AD128 ${ }^{\text {A } 161}$	350 580		$\begin{gathered} 990 \\ 1350 \end{gathered}$	W022	380 440	40138 E 40148 E	388 680	${ }^{406785}$	2500 280
AD162	600	c 13140	980	woos	300	40158 E	650	4069 U E	280
BC1078	17 p	ca3189	2400	2N414	1200	40168E	350	40708E	300
${ }^{\text {BC1 } 108 C}$	180	C4340	1450	27×500	22	40178E	550	40798	210
${ }^{\text {BCl }} 10 \mathrm{Cl}$	17 D	${ }_{4}^{4} 5478$	1750	7×502	180	40188 E	${ }^{659}$	40728	${ }^{960}$
${ }_{\text {BC14 }}$	370	$\stackrel{\text { LF351 }}{4}$	${ }^{759}$	2Tx501	$3{ }^{1}$	40198E 402008	819	${ }^{40738 E} 40788$	${ }^{280}$
EC168C	120	Lm301A	330	1 N4001	70	4021BE	680	40768 E	$74 p$
Ec169C	120	L 311	990	1 N 1002	50	402288	720	40778E	320
${ }_{8} 818182$	120	LM3300	1650	1 N 4005	${ }_{70} 8$	${ }^{4023 B E}$	28 p	407888	${ }^{320}$
${ }_{8 C 184}$	160	[M382	1800 1500	1N4148	${ }_{40}$	402508	280	40828 E	280
BC212	140	[M384	1700	1 1N14	50	402\% 68 E	1100	$40858 E$	590
BC214	120	LM387	175p	2N2219	37p	4027BE	380	40898E	1400
8C327	14 p	LM339	150p	2 N 2369 A	28p	40288 E	55p	4093EE	480
${ }^{8} \mathbf{C} 328$	140	LM3914	380p	${ }^{2} 2 \times 2646$	90 p	40298E	60^{6}	40948 E	$110 p$
${ }^{\text {BC337 }}$	14p	M2955	1150	${ }^{2} 2 \mathrm{2} 2904$	32 p	40318E	${ }^{1300}$	40988E	${ }^{850}$
$8 \mathrm{Ccs47}$	\$0	ML22	${ }^{505}$	2N2907	260	${ }^{4003285}$	65p	40998 C	960
BC548 $8 \mathrm{CS49}$	120	MPFP102 Ne5s5	${ }_{370}^{85}$	${ }_{2}^{2 N 305553}$	1050	${ }^{403388}$	${ }_{6}^{949}$	40109	${ }_{860} 4$
8C770	230	NF556	650	2×3703	14 D	40388	850	40162	${ }^{68 p}$
8C71	22 p	Ne565	1550	2×3704	120	40408E	600	40174	72 p
60131	490	NE566	1800	233705	12 p	404 98E	699	40194	790
$80+32$	50 p	04200	\$0	2N3706	14 p	4042BE	560	45028E	609
${ }_{80139} 80135$	37 p	OAA?	210	2 N 3708	120	4043BE	609	450388	550
80194 80140	400	OA91	100	2N3772	${ }_{1959}$	404585	${ }_{1150}^{630}$	${ }^{4510}$	${ }^{1550}$
80180	450	SL490	3200	$2 \mathrm{2N3903}$	180	40468E	75p	4511	700
BF258	370	TDA1022	6400	2N3904	180	4047BE	750	452088	650
${ }_{8 F \times 259}$	370	TDA1024	1790	2 233905	14 P	40488E	500	45688 E	3100
${ }_{8 \times \times 84}$	340	T1P127	${ }_{750}$	2NSAS	$59 p$	405038 E	569	7107	810 p
Bfxas	370	IIPRes5	950	400008E	23 p	$4 \mathrm{CL18E}$	600	7.1	${ }^{28 p}$
$8 \mathrm{Br87}$	380	TlP3055	${ }^{870}$	400188	$28 p$	40528E	600	748 C	$59 p$
BrY50	310	TIPTAA	450	${ }_{400688}$	$\frac{280}{750}$	${ }_{405468}$	${ }_{88} 8$		
BrFs	380	T1P42	450	4007UBE	28 P	4056BE	95p	SEE	E 1985
8 Br 52	310	WNK10\%M	920	400888	750	40508E	829	Cala	OGUE
8 Cu 205	200	WW6EAF	1889	401786	280	406388	96	FOR	Huge
PLEA	REME	MBER OL	JR PR	ICES INC	UUDE	15\% VA		COMP	NENTS

CONNECTORS
CAPACITORS
RESISTORS

4 mm PLUGS - Black and red 15p EACH. Green. White, Yellow, Brown and Blue - 16p EACH. 4 mm CHASSIS SOCKETS Above colours - 150 EACH. 4 mm TERMINAL POSTS Above colours - 44 p EACH. PLASTIC PHONO PLUGS Black, Red, White, Blue,
Yellow - All 12p EACH BNC CONNECTORS Line Socket- E1.1 Chassis Socket - 48p D-RANGE PLUGS 9 WAY - $£ 1.32$
15 WAY - 81.42 15 WAY - $\$ 1.42$
25 WAY - $\mathbf{~} 1.46$ D-RANGE SOCKETS 9 WAY - 11.32
15 WAY $\mathbf{~} 1.96$ 15 WAY - $£ 1.96$
25 WAY - 81.30 BT CONNECTORS Line cord \& plug - 81.92
Wall Socket - $£ 294$ DIN PLUGS 2 In DIN PLUGS - 2pin - 12p;
3pin - 15p; 4pin - 33p; 3pin-15p; 4pin-33p;
5 pin $180-17 p ; 6$ pin $-42 p ;$ 5 pin $180-17 p ; 6$ pin $-42 p$
7 pin - 24 p; 8 pin $-62 p$ TEE CATALOGUE FOR FULL SEE CATALOGUE FOA FULL
DETALLS OF CONNECTOHS

63V:1uF 9p; 1.5uF 11p;

 $2.2 \mathrm{uF} 8 \mathrm{p} ; 3.3 \mathrm{uF} 8 \mathrm{p} ;$$4.7 \mathrm{JF} \mathrm{p} ; 6.8 \mathrm{uF} 18 \mathrm{p} ;$ 4.7UF $8 \mathrm{p} ; 6.8 \mathrm{uF} 18 \mathrm{p}$;
10uF 12p; 15uF 16p; 22uF 17p; 47uF 17pi 100uF 21p; 150uF 31p;
$220 \mathrm{uF} 29 \mathrm{p} ; 330 \mathrm{FF} 32 \mathrm{p} ;$ 470uF 46p; 1000 uF 78 p ; 2200 uF E 1.50 TANTALUM BEAO (uFNolss) $0.1 / 35$ 12p; $0.22 / 35$ 17p;
$0.47 / 3518 p ; 1 / 3519 p ;$ $2.2 / 3521 \mathrm{p} ; 4.7116$ 17p; $1037 \mathrm{p} \cdot 10010$ E1 DISC CERAMAC TYPE O.01UF 6p; 0.022 UF $6 p$; 0.047 uF 8p; 0.1uF 8p 1\% POLYSTYAENE TYPE 100 25p; 150 (p) 25 p . 100 25p; 150 25p; 22025 p ;
270 25p; 330 26p; 390 27p; 470 27p; 1000 28p
SEE CATALOGUE FOR A CAPACITORS

These high quality resistors are supplied singly or in bargain packs. All E24 values 1R - 1M are available:
ONLY $2 p$ EACH! . . . OR
PACK 1:10 of each value $=1210$ resistors $\Sigma 21.95$
PACK 2: 5 of each value $=605$ resistors $\Sigma 10.99$

1985 CATALOGUE

PACKED WITH THOUSANDS OF TOP QUALITY COMPONENTS AT COMPETITIVE PRICES AND ALL COVERED BY OUR SUPERB DISPATCH SERVICE! INCLUDES 3 £ 1 VOUCHERS AND DETAILS OF OUR DISCOUNT SCHEME FOR REGULAR CUSTOMERS
SEND 50p CHEQUEIP.O. TODAY FOR YOUR COPY BY RETURN OF POST!

AB MICROSYSTEMS

TELEVISION/COMPUTER FULL-TIME TRAINING

IFULL TIME COURSES APPROVED BY THE BUSINESS \& TECHNICIAN EDUCATION COUNCIL 2 YEAR
BTEC National Diploma (OND) ELECTRONIC \& COMMUNICATIONS ENGINEERING (Electronics, Computing, Television, Video, Testing \& Fault Diagnosis) 15 MONTHS
BTEC National Certificate (ONC) ELECTRONIC EQUIPMENT SERVICING (Electronics, Television, Video Cassette Recorders, ccTV. Testing \& Fault Diagnosis) 15 MONTHS BTEC National Certificate (ONC) COMPUTING TECHNOLOGY
(Electronics, Computing Sottware/Hardware, Microelectronic Testing Methods) 9 MONTHS BTEC Higher National Certificate (HNC) COMPUTING TECHNOLOGY \& ROBOTICS (Microprocessor Based Systems, Fauh Diagnosis, ATE, Robotics) These courses include a high percentage of coulege based PRACTICAL WORK TO ENHANCE FUTURE EMPLOYMENT PROSPECTS SHORTENED COURSES OF FROM 3 TO 6 MONTHS CAN BE ARRANGED FOR APPLICANTS WITH PREVIOUS ELECTRONICS KNOWLEOGE NEXT TWO SESSIONS COMMENCE ON APRIL 22nd \& SEPTEMBER 16th FULL PROSPECTUS FROM
LONDON ELECTRONICS COLLEGE (Dept EE) 20 PENYWERN ROAD, EARLS COURT, LONDON SW5 9SU. Tel: 01.3738721.

Master Blectronics-Microprocessors -Now! The Proctical Way!

- Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.
- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
Build an oscilloscope and master circuit diagram.
Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobby?

			MAIL ORDERS: Unit 3, Hill Farm Industrial Estate, Boxted, Colchester, Essex CO4 5RD. Tel. Orders: Colchester (0206) 36412. Telex: 987756.					
		vero						
	transfommes							
	\%omem							
	\square							
The Rapid Guarantee *Same day despatch * Competitive prices \star Top quality components $\star \ln$-depth stocks								

E.E. PROJECT KITS

Full Kits inc. PCBs, or veroboard, hardware, electronics, cases (unless stat-
ed). Less batteries. If youss batteries.
If you do not have the issue of E.E. which includes the proiect - you will need to order the instruction reprint as
an extra - 70 p each. Reprints avallable an extra - 70p each. Reprints aval
separately 70 peach + p\&p 60 p.

THIS MONTH'S KITS

SAE or 'phone for prices INSULATOR TESTER Apr. 85 E16.96 LOAD SIMPLIFER FEb. 85 £16.98 SOLID STATE REVERB Feb. 85 $\begin{array}{ll}\text { GAMES TIMER Jan. } 85 & £ 7.63 \\ \text { SPECTRUM AMPUFIER Jan. } 85 & £ 5.98\end{array}$ ع39.98 TV AERIAL PRE-AMP Dec. 84 E12.36
240 V £9.86 TV AERIAL PRE-AMP Dec. 8
Optional PSU 12 V £2 03. ${ }_{84}^{\text {MINI WORKSHOP POWER SUPPLY Dee. }}$ DOOR CHMME DeC. 84 E14.91 BEC MICRO AUDIO STORAGE SCOPE FACE Nov. 84

INTER-
E28.77
PROXIMITY ALARM Nov. 84
817.98

MAINS CABLE DETECTOR Oct. 84 £4.39
MICRO MEMORY SYNTHESISER OCI. 8 DRIL SPEED CONTROLLER Oct 84 f6.89 gUITAR HEAD PHONE AMPLIFER Sepl. 84
SOUND OPERATED FLASH tess lead Sept. 84
TEMPERATURE INTERFACE FOR BBC MICRO
CAR RADH BOOSTER Aug. 84 ULTRASONIC BURGLAS ALARM J
CAR UGHTS WARNING July 84 ع13.87

CAR UGHTS WARNING July $84 \quad 87.99$ VARICAP AM RADЮ May 84 EXOM ${ }_{84}$ EXPERIMENTAL POWER SUPPLY May SIMPLE LOOP BURGLAR ALARM May B4E13.62 MASTERMIND TMMER May 84 E5.44 FUSE/DIODE CHECKER APF. B4 E3.44
£3.45 QUASI STEREO ADAPTOR APr. BA E10.90 OUGITAL MULTMMETER add on for BBC Micro
NH-CAD BATTERY CHARGER Mar. 84 REVERSING BLEEPER Mar, B4 PIPE FINDER Mar. 84
IONISER Feb 84
2X81 EPROM PROGRAMMER Feb 84 SIGNAL TRACER Feb 84
CAR UGHT WARNING Feb 84
gUTTAR TUNER Jan 84 \qquad CONTINUTTY TESTER DEC 83
CHILDREN'S DISCO LGHTS Dec $83 \quad$ E9.99 NOVEL EGG ПMER Dec 83 Inc. case E10.24 SPEECH SYNTHESIZER FOR THE B8C MICRO
Nov. 83 less cable + sockets Nov. 83 less cable + sockets
MULTMMOD Nov. MuLTIMOD Nov. 83 \qquad LONG RANGE CAMERA/FLASHGUN TRIGGER
NOV, 83 Nov. 83
£13.50
HOME INTERCOM less link wire Oct. 83£14.38 DIGITAL TO ANAL OGUE BOARD Oct. 83 E19.98 less cable, case \& connector
HIGH POWER DAC DRIVER BOARD Oct. 83 less
casse

Hi2.52 | case |
| :--- |
| A TO D D CONVERTER FOR RM380Z Sept. 83 inc |
| plug |
| E35 98 |

HIGH SPEED A TO D CONVERTER Sept 83 less
cable \& connector
E27.98
 STORAGE SCOPE INTERFACE FOR BBC Mi.
CRO Aug 83 less software
© 15.38
 PEDESTRIANCROSSING SIMLIN
Aug 83 no case HIGH POWER INTERFACE BOARD Aug
case
E 10.38
no

TOOLS ANTEX MODEL CIRON
ANEX XS SOLDEEING IRON ZSW
ST4 STAND FOR IRONS ST4 STAND FOR IRONS
HEAT SINK TWEEZERS HEAT SINK TWEEZERS
SOLDER HANDY SIZE 5
SOLDER CARTON
SOLDER REEL SIZE 10
LOW COST PUERS
LOST COST CUITERS
BENT NOSE PUERS

8

OUR PRICES INCLUDE VAT

MAGENTA ELECTRONICS LTD.

EE28, 135 HUNIER ST. BURTON-ON-TRENT STAFFS, DE14 2ST. MAIL ORDER ONLY.
0283 65435, Mon-Fri 9-5.
Accoss/Barclaycard (Visa) by
phone or post.
24 hr Answerp

ADD GOP P\&P TO ALL ORDERS. PRICES INCLUDE VAT. SAE ALL ENQUIRIES.
OFFCIAL ORDERS WELCOME
OVERSEAS: Payment must be sterling.
IRISH REPUBUC and BFPO: UK PRICES. IRISH REPUBLIC and BFPO: UK PRICES EUROPE; UK PRICES plus 10%. ELSEWHER
orders.

 MULTMETER TYPE 3 30,00000pV MULTMEEER TYPE 410 M DIGTAL DESOLDER PUMP
SIGNAI INIECTOR CIRCUIT TESTER CIRCIMNG HENDS JIG \& MAGNIFIER HELPING HANDS JIG \& MAG
MINIATURE VICE IPLASTIC)
USER PORT IV BOARD less cable + USER PORT CONTROL BOARD Julv 83 less cable + plug + case GUITAR HEADPHONE AMPLIRER May $83 E 7.92$ NW PERSO NAL RADD less Case, May 83 E7. MOISTURE DETECTOR MAY 83 E5.45 CAR RADIO POWER BOOSTER APRII 83 E11.59 FUNCTION GENERATOR April 83 E45.98 ELANGER SOUND EFFECTS April 83 E24.17 NOVELTY EGG TMER April 83 less case E5.48 DUAL POWER SUPPLY March $8^{2}{ }^{259.38}$ BUZZ OFF March 83
259.38
£4.51

PUSH BIKE ALARM Feb. 83 £11.73
2X TAPE CONTROL Nov. 82
G. P. PRE-AMP Oct. 82

CONTINUTTY CHECKER Sept. 82
2-WAY INTERCOM July 82 no case
ELECTRONIC PTTCH PIPE July 82
REFLEX TESTER July 82
SEAT BELT REMNNDER Jun 82
EGG TMAER June 82
CAR Led VOLTMETER less case. May 82 e3.18 V.C.O. SOUND EFFECTS UNTIT Apr. $82 \mathbf{8 1 2 . 7 1}$ CAMERA OR FLASH GUN TRIGGER Mar. 82
POCKET TIMER Mar. 82
GUITAR TUNER Mar. 82
$\mathbf{8 4 . 1 0}$
$\mathbf{E 1 7 . 1 9}$
SIMPLE STABIUSED POWER SUPPLY Jan. 82
TAINI EGG HMER. Jan. B2. 84.40 SIMPLE INFRA RED REMOTE CONTHOL CAPACITANCE METER OCE 81 - 25.3
SUSTAIN UNT OM 81 OCL
SUSTAIN UNIT Oct. 81
TAPE NOISE UMITER Oct 81
HEADS AND TAILS GAME Oct. 81
CONTINUTTY TESTER Oct. 81
PHTO FLASH SLAVE Oct
PHOTO FLASH SLAVE Oct. 81
FUZZ BOX Oct. 81
£ 4.98 SOLL MOISTURE UNTT Oct 81 85 0-12V POWER SUPPLY Sept. 81 E12.48 SOH MOISTURE NDICATOR EE Mase 81.50 GOMA HEADPHONE AMP EE May 81 E4 PHONE BELI PEPFATER/BABY ALARM May PHONE BELL REPFATER/BABY ALARM May
$\mathbf{E 6 . 1 5}$
INTERCOM April 81 E24.43
MODULATED TONE DOORBELL Mar. 81 E7.35 2 NOTE DCOR CHIME Dec. 80 £11.35 GUTTAR PRACTICE AMPUPER NOV. 80 SOUND TO LGGTT Nov. 803 channel E4.99 TRANSISTOR TESTER Nov. 80 £12.80 AUDIO EFFECTS UNIT FOR WEIRD SOUNDS Oct. 80

EUNDS
$\begin{array}{ll}\text { IRON HEAT CONTROL OCT } 80 & \text { E6.30 }\end{array}$
MACRO BMUSIC sOX Feb. $80 \quad \$ 17.86$ Case extra
SPRURG LINE REVERB UNIT JIOn. 80 UNiBOARD BURGLAR ALARMM DEC. 79 E27.20 DAKKROOO THER July 79 DCC. 79 E6.70 $\begin{array}{lr}\text { DARKROOM TIMER JUly } 79 & \text { £3.20 } \\ \text { MICROCHMME DOORBELL Feb. } 79 & £ 17.48\end{array}$ MiCROCHMME DOORBELL Feb
SOUND TO LIGHT Sept. 78 CAR BATTERY STATE INDICATOR less case AF SIGNAI GENERATOR SEP 78 A.F. SIGNAL GENERATOR Sept. 78 E31.20 WEIRD SOUND EFFECTS GENERATOR Mar. ELECTRONIC DICE Mar. 77 £4.96

R

FUN WITH ELECTRONICS

Enjoyable introduction to electronics. Full of very clear full colour pictures and easy to follow text. Ideal for all beginners - chil dren and adults. Only basic tools needed. 64 full colour pages cover all aspects soldering - fault finding - components (identification and how they work). Also full details of how to build 6 projects quires soldering, - 4 pages clearly show you how.
COMPONENTS SUPPLED ALLOW ALL PROJECTS TO BE BUILT AND KEPT. Supplied less batteries \& cases FUNP WITH ELECTRONICS,
COMPONENT PACK $£ 16.98$
BOOK EXTRA E1.75.
Book available separately.

TEACH IN 84

Full kit including 2 EBBO breadboards $\&$ a FREE copy of our catalogue. TEACH IN 84
KIT ez2. 98 inc VAT. Reprints 70 p each (12 part series).

COMPONENTS
We stock a standard range of electronic compo-
nents including resistors, pots, ICs, capactiors, relays, transformers, switches, connectors, wie, cases, speakers a breadboards. Full details are in our catalogue. $\mathbf{£ 1}$

COMPUTER

ACCESSORIES

BBC TRACKBALL CONTROLLER. z^{\prime} ball. 2 fire buttons. Analogue input port connector. includes simple software listing for freehand
drawing. Simply incorporates into your programs. $\mathbf{E 1 7 . 9 8}$
8BC Digitsl Joystleck 2 fire buttons. D plug
connects to analogue input. 89.59 .

ROBOTS and MOTORS

ID35 Stepper Motor. 48 Steps. 12V. $\mathbf{£ 1 4 . 5 0}$ BBC to ID35 Stepper Motor Interface Kit E13.99 Ref. EE
PCB, driver IC, components,
connectors \& leads included.
Demonstration solfware listings, circuli diagram, pcb layout \& construction details given. Requires unregulated 12 Vdc
power supply.
Interface Kit £13.99; Optional Power
Supply Parts $\mathbf{E 4 . 6 7}$
DIY Robotics \& Sensors Books - with the BBC E7.95; for the Commodore $64 \mathbf{7 . 9 9}$ Components used in these books are in our catalogue/price list. Catalogue £1. Price list only sae.
SAA1027 driver E5.99; 8 way darlington
driver (ULN2803) $£ 2.38$; TLO81 49p

MOTOR - GEARBOX ASSEMBLIES

Miniature precision made. Complete with quality electric motor, Variable reduction 1.5 V to 4.5 V . Small unit type MGS speed range $3 \mathrm{rpm-2200} \mathrm{rpm}$ depending on voltage 8 gear ratio. Large unit type MGL (higher torque motor) $2 \mathrm{rpm}-1150 \mathrm{rpm}$. Long 3 mm dia output shats. Ideal for robots and buggies.
Smail Unit (MGS) £3.49. Large Unh (MGL) E3.98.
Pulley wheels 3 mm bore. Metal flange with brass hub. 10 mm dia 85 p. 20 mm dia 98p. 30 mm dia £1.21.
Metal collar with fixing screw, 3 mm bore 24 p. Flexible spring coupling 5 mm . Length 31 mm 68 p
Flexible metal coupling (universal) $3 \mathrm{~mm} £ 2.98$

CATALOGUE

ADVENTURES WITH ELECTRONICS
An easy to follow book suitable for all ages Ideal for beginners. No soldering, uses an S
Dec Breadboard. Gives clear instructions with lots of pictures. 16 projects - including 1 hree adios, siren, metronome, organ, intercom, timer, etc. Helps you learn about electronic compo nents and how circuits work. Component pac includes an S-Dec breadboard and all the com Ponents for the projects. pack 20.98 less battery.

EVERYDAY ELECTRONICS and computer PROJEcTS

READERS'ENQUIRIES

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons.

COMPONENT SUPPLIES

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.

All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

OLD PROJECTS

We advise readers to check that all parts are still available before commencing any project in a back-dated issue, as we cannot guarantee the indefinite availability of components used.

We regret that we cannot provide data or answer queries on projects that are more than five years oid.

SUBSCRIPTIONS

Annual subscription for delivery direct to any address in the UK: $£ 12.00$. Overseas: $£ 15.00$. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

BACK ISSUES \& BINDERS

Certain back issues of EVERYDAY ELECTRONICS are available world-wide price $£ 1.00$ inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned.

Binders to hold one volume (12 issues) are available from the above address for $£ 5.50$ inclusive of postage and packing worldwide.

BUYER'S GUIDES

IN This issue we continue what will become an occasional feature in EE-the buyer's guides. Regular readers will have noted our recent Monitor Buyer's Guide in the March issue. Reader response to this guide was good and it appears that the need for basic information on products is growing as the range of products increases. With so many companies selling a wide range of equipment, just knowing what is available in your price range is becoming difficult.

In this issue we carry a fairly extensive guide to multimeters. Rather than just listing available products with a brief specification, each guide will give an introduction to the equipment and try to assist the understanding of the figures being quoted or the various types, etc. In this way, the guides are educational as well as informative.

Since the range of multimeters is vast we have concentrated on the lower priced models likely to be purchased by the average hobbyist. Multimeters are extremely versatile and represent one of the essential items of equipment required by anyone involved in electronics-so take a good look before you buy.

We should point out that we have made no attempt to review or rate the meters shown, neither have they been selected for quality or value. The guide simply shows what is available and assists in giving the data necessary to make your choice. Products purchased as a direct result of the guide are not covered by the mail order protection service unless the supplier has placed a display advertisement for them in the issue. We therefore do recommend that you look carefully at advertisers' products-many of them carry a good range in this particular area of interestbefore you purchase.

Would you please mention EE when ordering or requesting more information on any item seen in our pages. By doing this you help to make sure the companies keep us informed of all their products and news so, in turn, we can keep you up to date.

VALUE

It appears that we have escaped most of the dreaded VAT. It was feared that all publications would be forced to add VAT to their cover price but for the time being this has not happened. We had no wish to increase the price of EE which we believe represents good value, particularly in comparison with our competitors. The information we publish is educational and it would have been a pity to see it taxed. However, VAT on advertising will affect the small companies and that is not very helpful.

Editorial Offices
EVERYDAY ELECTRONICS EDITORIAL, WESTOVER HOUSE,
WEST QUAY ROAD, POOLE, DORSET BH15 1JG
Phone: Poole (0202) 671191
We regret that lengthy technical enquiries cannot be answered over the telephone
Editor
MIKE KENWARD

Secretary

PAULINE MITCHELL
0202671191 Ext 259

Advertisement Manager
NIGEL BELLWOOD O1-2616882
Advertisment Sales Executive RICHARD WILLETT 01-2616745

Classified Supervisor
BARBARA BLAKE 01-2615897
Advert Make-Up and Copy Department
JULIE FISH $\quad 01-2616615$

Advertisement Offices

EVERYDAY ELECTADNICS
ADVERTISEMENTS
KING'S REACH TOWER
STAMFORD STREET,
LONDONSE1 9LS
Telex 915748 MAGDIV-G

AMISTRAD AMPLIFIER CPC 464

P.DOOLEY

THE new Amstrad computer is equipped with a three channel sound system, all channels being directed to the internal speaker. To appreciate the full sound capabilities of this machine, a stereo amplifier is required. The stereo signals for driving the amplifier are available at the 3.5 jack socket marked (I/O). When amplified through a stereo system the three channels (A, B, and C) appear as Left, Right and Centre.

Any 8 ohm speakers rated at several watts each will be suitable. The prototype uses a pair of car stereo speakers which are supplied in sloping front enclosures, and perform well. A pair of small hi-fi speakers would also be suitable if they are a vailable. Although the output of the amplifier is only 0.25 W , per channel, using speakers of a higher rating will enhance the sound, particularly at lower frequencies, and alleviate distortion at full volume.

CIRCUIT DESCRIPTION

The amplifier (see Fig. 1) is based on the LM386 audio power i.c. In order to keep the external components count to a minimum, the gain is set internally to 20.

Provision is made to increase the gain using additional components connected to pins 1 and 8 , but is not utilised in this application. As the output from the computer is at a fixed level, a volume control, VR1, is required.

Power is derived from a mains transformer which has a secondary winding of 6 V . This is then full wave rectified by D1-D4 and smoothed by C7, giving an input voltage of 7.5 V to the
regulator, IC3. This is the minimum that can be applied to the device to enable it to function as a 5 volt regulator, and has been kept low to minimise the dissipation. D5 is mounted on the front panel, and serves as a power 'on' indicator.

GOIISTRUCTIDII

Fit and solder all components to the p.c.b. Note that although a 16 -pin socket has been used to mount the two LM386 i.c.s, two 8 pin sockets could be used if they are to hand. Veropins are inserted at all positions where flying leads are terminated.

The prototype uses a plastic case measuring $127 \times 133 \times 54 \mathrm{~mm}$, which splits into two halves (top and bottom), and has removable front and rear panels. This greatly simplifies construction, as the p.c.b., mains transformer, and fuse holder can be placed in position and the mounting holes marked. This should be done with the front panel in position with the controls fitted, to ensure clearance from the p.c.b.

The rear panel requires drilling for the speaker sockets and a grommet for the mains cable. See Fig. 2 and Fig. 3 for p.c.b. layout.
panel, rear panel, p.c.b. transformer and fuse holder can now be fitted in position and all interwiring completed, as shown in Fig. 4. A solder tag must be fitted under one of the transformer mounting screws for connection of the earth lead.

An input lead, of a length to be determined by the constructor, is required, and consists of a length of twin screened cable terminated at both ends with a 3.5 stereo jack plug.

After the usual last check for obvious faults, fit a 250 mA fuse and switch on. Check that the l.e.d. is lit and the regulator output is 5 volts. If all is well plug in the speakers and the input lead (with amplifier switched off). Touching the two outer rings of the jack plug should cause a buzzing noise, due to pickup, in the speakers. If there is a fault on one channel of the amplifier, comparisons can be made with the other.

Connect the amplifier to the computer and load a selection of programs. Some programs will only emerge as mono reproductions, as they only contain single channel commands. If any imbalance is detected on multi-channel programs, this could be due to the software, as the volume, as well as other parameters, is software selectable.

FINAL ASSEMBLY

Install $\mathrm{C} 1, \mathrm{C} 2$, and the 0 V link between SK1 and VR1. Position the I.e.d. in the clip and connect the cathode to the OV terminal on SK 1. The completed front

Fig. 2. P.c.b. track layout (actual size).
Miscellaneous

JK1	3.5 mm stereo jack socket
SK1,2	phono socket (2 off)
S1	rotary mains switch
T1	mains transformer-
6	6 volt 500 ma a
secondary	
FS1	250mA fuse and chassis
holder (20mm)	
Case	Tandy 270-218
P.c.b., 2 knobs, 16 pin i.c. socket, p.c.b. pillars, Veropins, connecting wire, twin screened cable, 1 amp mains cable, grommet, 3.5 mm stereo jack plug Phono plug (2 off)	

Printed circuit board: single-sided
$106 \times 48 \mathrm{~mm}$, EE PCB
Service, code 8505-02

Approx. cost
Guidance only
£15.00

COMPUTER POWERED VERSION

For those who intend to use the amplifier solely for the Amstrad, a computer powered version will be described. The unit is basically the same as the mains powered version (see Fig. 5), the differences being as follows:

1) The mains transformer, bridge diodes D1 to D4, regulator IC1, and other

Fig. 3. Component layout.
power supply components, are omitted.
2) Extra de-coupling components are added to prevent interference with the computer circuitry and display.
3) A smaller case can be used.

CIRCUIT DIAGRAM

For C1 and C5, 1μ non-polarised tantalum capacitors have been used because of their smaller physical size (see Fig. 7). Resistors R1 and R2 and capacitors C3 and C7 are to suppress any tendency for the LM386 to break into oscillation, as issometimes the case. Capacitors C2, C6 and C9 de-couple the 5 volt supply.

The p.c.b. shown in Figs. 6 and 7 is $102 \mathrm{~mm} \times 41 \mathrm{~mm}$, and will slot into the specified case without the need of any mounting hardware. The front and rear panels require drilling. To prevent a volt drop occuring in the power leads, cable with a rating of $3 \mathrm{amps}(0.5 \mathrm{~mm})$ should be used. For the same reason, the power lead to the computer should be kept as short as possible.

The assembled p.c.b. with all flying leads attached, is slid in to the case. When the front and rear panels have been assembled, they should be laid in a posi-

Fig. 4. Wiring and layout diagram. Note: C1 and C2 should go to the left-hand tags of VR1 and, instead, the wipers to the p.c.b.
tion to enable the interconnections to be carried out (see Fig. 8).

With all wiring completed, the amplifier can be tested using the procedure previously described. It is recommended that the amplifier be tested using an external supply, e.g. a 6 volt battery or battery eliminator, and not powered by the computer until the unit has been proven to work correctly. The current consumption should be in the region of 100 mA at high volume levels.

COMPONENTS

Resistors

$\begin{array}{ll}\text { R1,R2 } & 10 \frac{1}{4} \mathrm{~W}(2 \text { off }) \\ \text { R3 } & 1 \mathrm{k} \frac{1}{4} \mathrm{~W}\end{array}$

Potentiometers

VR1 10 k dual gang log

Capacitors

C1,C5 1μ tantalum
non-polarised (2 off)
C2,C6 $\quad 10 \mu 10$ volt electrolytic (2 off)
C3.C7 47 n ceramic (2 off)
C4,C8 $\quad 220 \mu 16$ volt elec. (2 off)
C9 220 n polyester

Semiconductors

IC1,IC2	LM386 (2 off)
D1	0.2 in red + clip

Miscellaneous

JK1	3.5 mm stereo jack socket SK $1,2 \times$ single phono skts
	(or 1 double)
SK3	D.c. power skt 2.1 mm
S1	Tandy 274-1565
	D.P.S.T. min toggle Switch
Case	Tandy 270-286

P.c.b., 1 knob, 16 -pin i.c. skt, p.c.b. pins, connecting wire, 0.5 mm wire (power), twin screened cable, grommet, 3.5 mm stereo jack plug (for input lead), Phono plug (for speakers) (2 off), D.C. power jack plug 5 mm . Tandy 274-1567

Printed circuit board: single-sided
$106 \times 48 \mathrm{~mm}, E E$ PCB

EEDTSP

0.25 WATTS PER
 CHANNEL

Fig. 8. Wiring diagram of the Amstrad powered version. Note: VR1a wiper should go to L.IN, not COM, and likewise the OV wire from JK1, VR1a, etc. should go to COM on the p.c.b.

Fig. 5. Circuit diagram of the unit powered from the Amstrad microcomputer itself. The LM386 audio power amplifier i.c. has its gain set internally to 20 , although there is a provision for increasing the gain using additional external components. The facility, which is available through pins 1 and 8, is not taken advantage of here, in order to keep the project simple.

COMPINENTS approximate HISt $£ 12.00$

Fig. 6. P.c.b. track layout of the Micro-Powered version (actual size). This p.c.b. is of dimensions which allow it to slide directly (horizontally) into the Tandy box specified in the components list (part No. 270-286).

Fig. 7. Component layout. The input capacitors are mounted off the board (between JK1 and VR1) and are non-polarised tantalum types for compactness.

VOLTAGE PROBE

R.A.PENFOLD

THE STANDARD ITEM of test equipment for making voltage checks on electronic equipment is, of course, an ordinary multimeter. However, there is an alternative which is becoming increasingly popular, and this is the "voltage probe" type of voltage tester. The facilities offered vary considerably from one unit to another, but all have a bargraph l.e.d. display with the l.e.d.s being used to indicate whether or not the test voltage is above certain threshold levels. This obviously gives only a limited degree of accuracy, but the accuracy is sufficient for much electronic servicing, and a voltage probe is very quick and convenient in use.

DISPLAY

The voltage probe described in this article is a fairly sophisticated type which has a ten l.e.d. bargraph display. Two measuring ranges are available, giving a total of twenty threshold voltage levels. On the most sensitive range the switching levels are at approximately $0.5,0.75,1$, $1 \cdot 5,2,3,4 \cdot 25,6,8 \cdot 5$ and 12 volts. On the high voltage range these threshold potentials are boosted by a factor of ten, giving a maximum switching level at about 120 volts.

A logarithmic scale is used so that the ten l.e.d.s cover a wider range of voltages, and although this initially makes results a little more difficult to interpret, one soon gets used to the scaling. It has to be emphasised that the threshold levels are only approximate, and that the unit is not intended for use in applications where

Fig. 1. Block diagram of the Voltage Probe.
precise measurements are needed. It is intended as a quick checker where limited accuracy is adequate.

The unit will respond to both positive and negative inputs, and a l.e.d. indicates the polarity of the input signal. The unit will also respond to a.c. signals, and a second indicator l.e.d. switches on if the input is an a.c. signal. When the input signal is an a.c. type the unit responds to the peak voltage (which is about 1.4 times the r.m.s. value for sinewave signals). Overload protection against both positive and negative inputs is included in the unit. The sensitivity of the probe is, like a standard multimeter, $20 \mathrm{k} / \mathrm{volt}$.

SYSTEM OPERATION

The block diagram of Fig. I helps to explain the overall operation of the probe.

An attenuation resistor at the input reduces the sensitivity of the unit to a suitable level. In practice there are actually two switched attenuation resistors which give the units its two ranges. The input signal is applied to a precision fullwave rectifier, and the purpose of this circuit is to give a positive output voltage regardless of the polarity of the input signal, so that the probe will respond to inputs of either polarity. This also makes the unit respond to a.c. as well as d.c. input signals. The output of the precision rectifier is coupled direct to the input of the bargraph driver, and as explained earlier, this is a ten l.e.d. logarithmic type.

In addition to the rectifier, the input signal is applied to a voltage comparator. This activates the polarity indicator l.e.d. if the input is negative of the earth rail. The output of the comparator connects to a rectifier circuit which drives another l.e.d., and with a d.c. input no current is fed to this l.e.d. However, with an a.c. input it is pulsed on at the input frequency, and assuming this frequency is a few tens of hertz or more it will appear to light up continuously.

The voltage comparator and precision rectifier stages require a negative supply rail. Rather than use two batteries to power the unit the negative rail is derived from the positive supply using an oscillator fceding into a rectifier and smoothing circuit.

THE CIRCUIT

Refer to Fig. 2 for the full circuit diagram of the Voltage Probe.

The voltage measuring circuit has an input impedance of 10 k and a full scale threshold voltage of 1.2 volts. S1 is the
range switch, and attenuator resistors R1 and R 2 nominally reduce the sensitivity by factors of 10 and 100 respectively. D1 to D6 form a bipolar clipping circuit that limits the input voltage to the precision rectifier to no more than about plus and minus 1.9 volts.

ACTIVE RECTIFIER

A conventional fullwave precision rectifier based on dual operational amplifier IC1 is used, and this is really two halfwave circuits connected in parallel. ICla
taken from the output of the rectifier. The effect of the negative feedback is to balance the two input voltages of the amplifier.

With a normal buffer stage the input signal is applied to the non-inverting input, and the feedback is taken direct from the output to the inverting input. The output therefore takes up the same potential as the input signal, and unity voltage gain buffering is obtained. In this case the feedback is taken via diode D8, but the same basic action occurs with the inverting input (and thus the output of D8)

The other section of the rectifier operates in what is essentially the same way, but the circuit is based on a unity gain inverting amplifier. A negative input signal therefore gives an identical ouput voltage that is positive in polarity, while a positive input gives a negative output that is blocked by D10.

C1 smoothes the output of the rectifier, and when using the unit with d.c. inputs this has no significant effect. It helps to give a clearer indication with a.c. signals though, and C1 then charges to the peak output voltage from the rectifier circuit.

Fig. 2. Complete circuit diagram of the Voltage Probe.

The case lid removed revealing the circuit board, adaptors and guide rails.
handles positive inputs and ICIb handles negative ones. The purpose of using an active rectifier, rather than a simple passive type such as a bridge rectifier, is that the voltage drop through a passive rectifier would give very poor accuracy in this application, especially at the lower indication levels. An active rectifier uses negative feedback to overcome the nonlinearity of semiconductor diodes.

If we consider ICla first, this is virtually an ordinary unity voltage gain, non-inverting buffer stage followed by a diode which provides the rectification. There is an important difference in that the negative feedback is not taken direct from the output of IC1a, but is instead
being maintained at the same voltage as the input signal. There is a typical voltage drop of about 0.6 volts across D8, but the output of IC1 a simply goes 0.6 volts more positive in order to counteract this and maintain the voltage balance at the inputs.

All this only applies if the input signal is positive. If it is negative D8 blocks any output current, and ensures that the required rectification is obtained. D7 then provides a negative feedback path and prevents the output of ICla switching fully negative. This helps to give good high frequency performance, and the circuit will work well at frequencies of up to about 200 kHz .

BARGRAPH

The bargraph driver, IC2, is an LM3915. This is the logarithmic version of the popular LM3914 bargraph driver which will probably be more familiar to most readers. Fig. 3 shows the arrangement used in the LM3914/5 integrated circuits. A series of ten voltage comparators are used to drive the l.e.d. display, with each comparator driving one l.e.d. The inverting input of each comparator is fed with the buffered input signal, while the non-inverting inputs are fed with a series of reference voltages produced by a ten stage resistor network:

In normal use the lower end of the network (pin 4) is connected to earth and
the upper end (pin 6) is connected to the output of the internal 1.2 volt reference source. Each comparator has an output transistor which is switched on if the inverting input is at a higher voltage than the non-inverting input, or switched off if the comparative input levels are reversed. When switched on each output transistor switches on its l.e.d.

With zero input voltage all the output transistors will be switched off. Comparator 10 has the lowest reference voltage, and if the input potential is gradually increased the input voltage will eventually go above this reference level. The l.e.d. driven by comparator 10 is then activated. Comparator 9 has the next highest reference voltage, and when the input voltage exceeds this level the l.e.d. driven by this comparator would be activated. This process would continue until the input voltage exceeded 1.2 volts, at which point the tenth l.e.d would be switched on. This gives a true bargraph display, with the number of l.e.d.s switched on depending on the input voltage.

DOT MODE

The device contains some control logic that enables the "dot" mode to be selected instead, and in this mode no more than one l.e.d. is activated (the highest one that the input potential merits). In fact strictly speaking two l.e.d.s can be activated, since the LM3914/5 devices are designed so that in the dot mode one l.e.d. switches on before the next switches off as the transition is made from one threshold level to the next. This helps to avoid having an unstable display when the input voltage is close to a threshold level.

The 1.2 volt reference source forms part of a current generator circuit which controls the display l.e.d. current. A resistor between pins 7 and 8 is used to control this current, and the on current of each l.e.d. is about ten times the current through this resistor.

Returning to the circuit diagram, D11 to D20 are the display l.e.d.s, and in practice these are a proper bargraph display rather than ten individual l.e.d.s. R 7 sets the l.e.d. current at about 8 milliamps. Pin 9 is coupled with pin 11 to set the device in the dot mode. This probably gives a slightly less clear display, but the bar mode would give an unacceptably high maximum l.e.d. current of some 80 milliamps and is not practical in this application.

IC3 is the comparator in the polarity indicator circuit, and D21 is the polarity l.e.d. C3, D22 and D23 rectify the output of IC3 and drive a.c. indicator l.e.d. D24 if an a.c. input signal is present.

The oscillator uses IC4 in a simple relaxation oscillator circuit, and TR1 plus TR2 are a complementary emitterfollower output stage which boost the output current capability of the oscillator. C5, D25, D26 and C6 rectify and smooth
the output of the oscillator to generate the negative supply rail.

The quiescent current consumption of the unit is approximately 12 milliamps, but this rises significantly when one or more l.e.d.s are activated.

COHSTRUETION

Details of the printed circuit board and wiring are provided in Fig. 4. IC1 and IC3 are MOS devices and should therefore be fitted in (8 pin d.i.l.) integrated circuit holders, as well as observing the other anti-static handling precautions. As IC2 is not one of the cheapest of devices it is advisable to use a socket for this one as well. It is essential to use a socket for the bargraph display as the holder is needed to raise the display to a suitable height above the surface of the

Fig. 3. Block diagram and pinning details of the LM3915N bargraph display integrated circuit.
board. IC2 and the display require 18 and 20-pin sockets respectively.

Although the components are quite densely packed in parts of the board, con-

COMPONENTS

Resistors

R1
R2
R3, 5
R4,6
R7
R8
R9

91 k 0.4 W 1\% $1 \mathrm{M} \mathrm{O.4W} \mathrm{1} \mathrm{\%}$ $10 \mathrm{k} 0.4 \mathrm{~W} 1 \%$ (2 off) 10k (2 off) 1 k 5 1k 470

R10, 11,12,13 100k (4 off) All $\frac{1}{4} \mathrm{~W}$ carbon 5% tolerance unless specified otherwise

Capacitors

C1,2,3
C4
$100 \mu 10 \mathrm{~V}$ radial elect (3 off)
C4 in carbonate
C5.6 $\quad 47 \mu 16 \mathrm{~V}$ radial elect (2 off)

Semiconductors

IC1	CA3240E
IC2	LM3915N
IC3	CA3140E
IC4	741 C
TR1	BC549
TR2	BC559
D1 to 10,	1N4148 (12 off)
22,23	D11 to 20
10I.e.d. bargraph	
D21,24	display Tl209 (2 off)
D25,26	1N4002 (2 off)

Miscellaneous

S1,2	d.p.d.t. miniature slider switches (2 off)
B1	9 volt (PP3 size)

Plastic case about $120 \times 65 \times$ 40 mm with four p.c.b. guide rail adaptors
25 mm M3 screw and M3 fixing nut
20 pin d.i.l. i.c. holder
18 pin d.i.l. i.c. holder
Three 8 pin d.i.l. i.c. holders
Test prod (clip-on type) and lead Battery connector
Printed circuit board: singlesided $100 \times 62 \mathrm{~mm}$, EE PCB Service, code 8505-04

Approx. cost
Guidance only
£14.50

Circuit board slotted in the locating "pillars" prior to inserting in the case guide rails.

Fig. 4. Actual-size master pattern for the Voltage Probe. The component layout on the board topside and wiring to $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~B} 1$ and probe is shown below: This board is available from the EE PCB Service; order code 8505-04.

struction of the board should not be too difficult provided a soldering iron having a miniature bit is used, and the components are physically small types. In particular the capacitors must be printed circuit mounting types having a body length of no more than about 10 millimetres. L.e.d.s D21 and D24 are fitted on the board, and they should be mounted so that they protrude about 5 millimetres above the bargraph display.

CASE DETAILS

A plastic case having approximate outside dimensions of $120 \times 65 \times 40$ millimetres is used as the housing for this project. This is reasonably compact but is not so small that construction of the unit becomes excessively intricate and difficult. The printed circuit board is specifically designed to fit into this case, and it would be difficult to fit the unit into an alternative case without redesigning the printed circuit board. The case has moulded printed circuit guide rails, but the board is fitted to these via adaptors which may be supplied with the case, or might have to be purchased separately (depending on where the case is bought). The board is mounted well towards the top of the case, component side uppermost.

The lid of the case is drilled with two holes about 3.2 mm to take D21 and D24. A rectangular cutout about 25×10 millimetres is also needed, and this acts as a display window. These must obviously be positioned accurately so that they properly match up with the l.e.d.s and display when the lid of the case is fitted in place. Probably the easiest way of making the rectangular cutout is to drill a hole about 8 millimetres in diameter and then file this out to the correct size using a miniature flat tapered file.

S1 and S2 are mounted on the rear panel of the case, and miniature slider switches are probably the neatest type to use in this application. A small exit hole for the lead to the earthing clip is drilled at any convenient point in the case. A probe tip of some kind is needed, and this can just consist of an M3 screw about 25 millimetres or more in length. This is mounted on the front panel of the case, and it is fitted with a soldertag on the inside of the case so that a connection can be easily made to it. A neater finish can be achieved by filing a round tip onto the screw, and by using a piece of PVC sleeving to insulate all but the tip.

When the completed unit is switched on it is likely that none of the l.e.d.s will light, although the polarity l.e.d. might do so since input might drift either side of the earth rail under no-input conditions. Connecting the unit to a few known voltages and trying both polarities in the case of d.c. sources, should confirm that it is functioning properly. When using the unit to gauge fairly high voltages, such as the mains supply, normal precautions to avoid electric shocks must, of course, be taken.

shio 11 ma BY MIKE ABBOTT

Aerosols 1

This month, in our Fault Finding series we look at aerosols (among other things), so we have produced the accompanying chart as a guide to which vendors stock which aerosols.

The table is a generic guide to sprays, taking no account of specific brand names. The fire extinguishers are described as the types for use in kitchens and caravans. The Electrovalue extinguisher contains 'arctons', and both aerosols featured in this guide are suitable for use on electrical fires once the power has been shut off.

Did you know that silicones travel? Thanks to investigations conducted by Electrolube in conjunction with British Telecom, evidence now exists to show that individual silicones, as used in household spray polishes, detatch themselves and travel along surfaces over quite surprising distances. Once mobilised, they can get onto electrical contacts where arcing turns them into silicon carbide crystals. Result? Premature contact failure! The compass of
their mischief is greatly increased when they are airborne, so the moral of the story is: don't be too gung-ho with sprays containing silicones in the vicinity of open electrical contacts, such as relays and switches (sealed reed switches are safe). Even after the spray has settled silicones can travel.

In response to this discovery Electrolube produced a 'non-silicone' heatsink paste, and is also looking at a formula for non-silicone polish. But alas it seems that glass and plastics just do not shine quite the same without those silicones. And as an Electrolube spokeswoman pointed out, even when people are made aware of the danger they prefer to take the risk, and go for a good shine. What do you clean your telephone with?

CONSTRUCTIONAL PROJECTS

Auto-Phaser

The Auto-Phaser comprises components available from general suppliers, such as Magenta and Cricklewood. A mechani-
cally robust switch should be chosen for S1. A suitable case is available in grey ABS plastic from Magenta (code ABS2), or in diecast alloy from Maplin Electronics (type M5005).

Amstrad Amplifier

The Amstrad Amplifiers should present no buying difficulties. Different cases to the ones specified may be used, although in the smaller unit the p.c.b. is designed to slide in laterally. The mains switch on the larger unit need not be rotary, but a suitable rotary type can be purchased from Cricklewood Electronics (type RTYM). The Maplin 6VA transformer WB06G is ideal for T1, and the same supplier stocks dual log. 10 k potentiometers (FX09K).

Voltage Probe

The ten-stage bargraph display used in the Voltage Probe is available from Maplin, order code BY65V (red) or YG33L (green). There should be no problem obtaining components; suitable d.p.d.t. slide switches are found in the Verospeed catalogue.

On Spec

The BPX65 photodiode featured in On Spec is available from Watford Electronics and costs $£ 3.68$. The 590 KH temperature sensor is an RS Components device (No. 308 809), and may be obtained through Ace Mailtronix Ltd., 26 Castle Rd., Wakefield, West Yorkshire WF2 7LZ. The VMOS f.e.t. VN66AF is available from Rapid Electronics and Cirkit for around £ 1.25

Caravan Indicator Control

The Caravan Indicator Control should not cause the constructor any component buying problems as there are no specialised parts involved.

Aerosol	Cirkit	Electrovalue	Greenweld	Maplin	Magenta	Marco Trading	Verospeed
Antistatic (long term protection)		\checkmark				\checkmark	\checkmark
Antistatic Dissipation Spray (water based)				\checkmark			
Antistatic VDU Cleaner				\checkmark			
(harmless to antiglare coatings)							
Contact Cleaner Lubricant	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
(switch cleaner)							
Contact Lubricant			\checkmark	\checkmark	\checkmark		\checkmark
(high quality version)							
Cleaner (p.c.b. flux remover)				\checkmark			\checkmark
Cleaner (video tape head)		$\overline{ }$		\checkmark		\checkmark	\checkmark
Cleaner (tape drive equipment)				,			
Cleaner (Ultraclene is extra powerful, but will damage certain							\checkmark
plastics)							
Contact Grease lextra adhesive for vertical surfaces)							\checkmark
Conformat Coating							
(industry standard p.c.b. coating)							
Dry-Film Lubricant (colourless, non oily, ideal release agent)							\checkmark
Electronic Cleaning/Degreasing Solvent (okay plastics/tape	\checkmark		\checkmark	\checkmark			
heads)							
Freezer	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Foaming Cleaner (antistatic)	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Fire Extinguisher (suitable electrical fires once power off)		\checkmark				\checkmark	
Graphite		\checkmark					
Lacquer (clear)	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Moisture Repellent	\checkmark	\checkmark					\checkmark
Oil (WD40 type)				\checkmark			
Oil (clear, light, non-stain)				\checkmark			\checkmark
Polish						\checkmark	
Silicone Compound (prevents arcing/leakage, and seals)	\checkmark	\checkmark		v		\checkmark	\checkmark
Spray Duster (compressed inert gas)				\checkmark			
Silicone Lubricant (all materials)			\checkmark				

His weekdays are rewarding. Hisweekends even more so.

Working in telecommunications requires a great deal of skill and training and involves a lot of commitment.

Yet at the weekends some communications experts take on another equally demanding role. As Officers in the Territorial Army.

The training and selection processes are tough, but if you make the grade you'll have the satisfaction of applying your skills in a totally different field. As an Officer in the Royal Signals.

It's a serious undertaking.
The TA accounts for a third of the Army's strength, and in the \% event of war you would be comn anding your men under battle
conditions alongside Regular Army units.
There's more than one way to earn a commission. Some people are selected to come in as potential Officers whilst others start as soldiers.

Your commitment will be at least 6 weekends and 2 weeks camp per year, plus some weekday evenings.

You'll be well paid for your time of course. But we think you'll find the real rewards lie in the camaraderie, team-work and sense of achievement that the TA experience gives you.

Officer The Territorials (2)

Find out more: If you are between 18 and 28 years of age Name and think you have the abilities we're looking for, complete Address the coupon and post it to Major Nieel Ley, (Dept. EEG), Addres
Duke of York's H.Q., Centre Block, Chelsea, $\$$ W3 4SG \qquad County Age or contact your nearest TAVR Association. (We're in the |phone book under 'Army').

Educational Qualifications

AST MONTH we showed how a simple in-- put interface for the Spectrum could be built using only three commonly available TTL gates. This month we shall turn our attention to some practical applications of the interface in the field of monitoring light and temperature levels.

Sensors

Light levels can be easily sensed using a simple photodiode/VMOS f.e.t. arrangement similar to that shown in Fig. la. Almost any type of photodiode can be used in this circuit; however, it should be noted that, as with most silicon photodetectors, the spectral response peaks in the infra-red region and thus such circuits may not appear to be particularly sensitive under low levels of room lighting.

In any event, a pre-set resistor, VRI, is provided as a means of adjusting the threshold of the sensor (i.e. the level of light at which the circuit changes the logical state of its output). The circuit can thus only differentiate between "light" and "dark"-its state being detected by simply reading the status of the appropriate input port.

In applications where only a single sensor is required, the output of the sensor may be connected to any one of the input channels of the input interface. In such cases, the remaining channels are simply left unconnected (in which case they will all revert to logic 1). A simple test routine for printing the status of a sensor connected to channel D is shown below:
100 REM Indicates whether a photosensor connected
105 REM to channel D is in light or darkness

110 PAUSE 10
120 LET d=IN 255
130 IF $\mathrm{d}=255$ THEN PRINT AT 0,0 ; "Dark "
140 IF $\mathrm{d}=254$ THEN PRINT AT 0,0 ; "Light"
150 GOTO 100
To provide an audible warning of darkness, line 130 should be modified as follows:
130 IF $\mathrm{d}=255$ THEN PRINT AT 0,0 ; "Dark ": BEEP 1,25

If it is necessary to provide several levels of light discrimination (e.g. "daylight", "twilight" and "darkness") it is, of course, possible to have more than one sensor, each connected to a different interface input channel. The threshold level of each circuit may then be adjusted for an appropriate level of illumination whilst the status of the input lines can be read and interpreted as a particular range of illumination.

A simple temperature sensing arrangement is shown in Fig. 1b. Here, a two terminal semiconductor temperature sensor is used to replace the photodetector of Fig. 1a. Note, however, that the value of the threshold adjusting potentiometer, VR1, should be changed from 1 Mohm to 1 kohm. Furthermore, the gate decoupling capacitor is no longer required.

Like its light sensing counterpart, this circuit can only discriminate between two levels of input (in this case "hot" and "cold"). Later we shall show how an analogue-to-digital converter interface can provide a somewhat more sophisticated means of measuring, displaying and recording both temperature and light levels.

The Spectrum Signal Generator

To round of this month's instalment of On Spec, we are going to show how the Spectrum can, with some very simple software, be used as a programmable signal generator with an accuracy of typically better than 0.15 per cent. This provides a square wave output having a typical rise time of less than 1 microsecond over the range 10 Hz to 10 kHz in steps of 1 Hz .

The frequency and number of output cycles must both be entered from the keyboard and these parameters are displayed together with the duration whilst the output signal is generated. Thereafter, the user is given the option of restarting with new parameters, repeating the same signal again, or exiting from the program.
The output signal is derived from the cassette port (marked "MIC") and

10 REM Signal generator
20 REM Everyday Electronics - April 1985
30:
40 REN Set up machine code
$50:$
60 CLEAR 32499: POKE 23658.8
70 DATA $237,91,244,126,42,246,126,205,181,3,201$
80 FOR $i=32504$ T0 32514
90 READ $\times 1$
100 POKE i, ni
110 NEXT i
120:
130 REM Input prompts and calculations
140:
150 BORDER 1: CLS
160 PRINT AT 6,8 ; BRIGHT 1 ;"Sigral Generator"
170 PRINT AT 17,6; FLASH 1 :"Input desired values"
180 PRINT AT 18,6; FLASH 1;"followed by (ENTER?"
190 INPUT TAB 6; "Frequency? "; frequency
200 If frequency (10 OR frequency 10000 THEN BEEP .5, -20: 60 TO 190
210 INPUT TAB 6 ; "Number of cycles ? ";nocycles
220 If nocycles (1 OR nocycles)65535 THEN BEEP . $5,-20$: 60 TO 210
230 LET tc=(1/frequency)-.000068
240 LET tn $=(3500000 t \mathrm{tc}) / 8$
250 LET th=INT (tn/256)
260 LET t1 $=$ tn $-($ th 1256$)$
270 LET dh=iNT ((nocycles-1)/256)
280 LET dI=(nocycle5-1) -(dh 2256)
290:
300 FEM Display parameters and call wachine code routine
310:
320 PAFER 4: CLS
330 PRINT AT 4,2;"Frequency $=$ "; frequency;" H_{2} "
340 PRINT AT 5,$2 ;{ }^{\text {"Number }}$ of cycles $={ }^{\text {" }}$; nocycles
350 PRINT AT 6,$2 ;$ "Duration $="$; (necycles/frequency);" seconds"
360 POKE 32500 , dl: POKE 32501 , dh
370 POKE 32502, tl: POKE 32503 , th
380 RANDOMIZE USR 32504
390 FRINT AT 18,4 ; FLASH 1 ; "Press-ány key to continue"
400 PAUSE 0
410:
420 REM Exit/again/re-start routine
430:
440 PAPER 5: CL'S
450 FRINT AT 4,$8 ;{ }^{\circ}\langle A\rangle=$ again ${ }^{\circ}$
460 PRINT AT 5,$8 ;{ }^{\text {" }\langle\text { R }\rangle=\text { restait" }}$
470 PRINT AT 6,$8 ;{ }^{\text {" }}\langle E\rangle=$ exit"
480 PRINT AT 18,8 ; FLASH 1; "Key your choice"
490 PAUSE 0
500 LET $\mathrm{C}=$ INKEY
510 IF $\mathrm{r} \delta={ }^{4} \mathrm{~A}^{4}$ THEN GO TO 320
520 IF $\mathrm{r} \xi=$ "R" THE j GO 10130
530 IF r $\$=$ "E' THEN NE
5406010500

All contributions to On Spec should be sent to the following address and not to the Editorial Offices:

Mike Tooley,
Department of Technology. Brooklands Technical College, Heath Road, WEYBRIDGE, Surrey, KT13 8 TT

Signal generator program listing for use with 16 k or 48k Spectrum.

aUTO PHASE

R.A.PENFOLD

MOST phasers have either a foot pedal so that the effect can be controlled manually, or use an oscillator to provide a cyclic phasing effect. This unit does not use either of these methods, but instead uses an envelope following technique, so that the phasing effect varies in sympathy with volume of the processed signal. This gives an interesting variation on the more common phasing effects.
The unit was designed primarily for use with a synthesiser, but it should operate properly with practically any electric or electronic instrument. However, phasing effects are always most effective with a signal that contains a broad spectrum of frequencies, such as pulse and sawtooth waveforms, or a "fuzzed" guitar. It can be adjusted to accommodate a wide range of input signal levels. See block diagram of Fig. 1.

OPERATION

The phasing effect is generated using a notch filter, or multiple notch filter, with the notch frequency or frequencies swept up and down the audio spectrum. There are two basic, and similar, methods commonly used to produce this effect. One is to use a delay line, with the delayed and non-delayed signals being mixed at the output of the circuit. The delay results in signals at some frequencies being inphase, so that they add together to produce a strong output from the mixer, while at other frequencies they are out-ofphase, and have a cancelling effect on one another. If the signals are balanced at the mixer, at some frequencies the two signals will precisely cancel out one another to produce the required deep notches of attenuation. The slight peaks in the

PHASE CONTROLLED BY AMPLITUDE

response caused by the in-phase signals adding together are not of great importance, and do not contribute significantly to the effect. Of course, the notches must be swept up and down in frequency, and this is achieved by varying the delay time (easily done with practical delay lines).

This system provides excellent results, but has the disadvantage of the relatively high cost of the delay line, plus the problems that are inherent in circuits of this type. Most phasers therefore use a slightly simplified arrangement where the delay line is replaced with a series of phase shift circuits. The circuit featured here is in this second category, and Fig. 1 shows the block diagram of the unit.

The buffer stage at the input is needed to ensure that the instrument connected to the input is loaded by a suitably high impedance, and that the subsequent stages of the phaser are fed from an adequately low source impedance. The two phase shifters each provide a phase shift that varies from 180 degrees at low frequencies to zero at high frequencies. The effect of the two in series is to provide a total phase shift that varies from 0 to 360 degrees. Therefore, at a certain frequericy the phase shift will be 180 degrees, and

Fig. 1. Block diagram. Once switched on, phasing is controlled exclusively by signal amplitude.

the circuit will invert the input signal. The mixer at the output combines the phase shifted and unprocessed signals, and at the frequency where the 180 degree phase shift is produced the two signals cancel one another out so that a notch is produced in the frequency response of the circuit.

For this system to operate properly it is essential to be able to vary the frequency at which the 180 degree phase shift occurs, and in practice the phase shifters are voltage controlled circuits so that the notch frequency can be varied by means of a control voltage. Two phase shifters provide just one notch, but more notches can be produced by using more phase shifters (two per notch are required). Phasers normally have two or three notches, but with the envelope following type of phaser featured here there was found to be little advantage in using more than one notch, and the final design is therefore of the single notch variety.

In order to produce the envelope following action some of the input signal is first amplified, and then fed to a rectifier and smoothing circuit. This gives a d.c. control voltage which is roughly proportional to the input signal level, and this is used as the control voltage for the phase shifters. The circuit is arranged so that the frequency of the notch rises and falls in sympathy with the amplitude of the input signal. This gives a better effect than the alternative of having the notch frequency fall as the input level rises.

PHASE SHIFTER

The basic circuit of a phase shifter is shown in Fig. 2. At low frequencies Cl has a very high impedance, and can be ignoted. The circuit then operates as a standard inverting mode operational amplifier stage with R1 and R2 setting the closed loop voltage gain, and R3 biasing the non-inverting input. The voltage gain
is equal to R2 divided by R1, and in this application these two resistors are made equal in value so that the circuit has unity voltage gain.

At high frequencies the impedance of Cl is regligible in comparison to the resistance of R3, and the input signal is coupled straight through to the noninverting input of the operational amplifier, which consequently operates in the non-inverting mode. Normally, the voltage gain in this mode would be equal to R1 plus R2, divided by R2, or two times if R1 and R2 have the same value. However, the left-hand end of R1 would normally be connected to earth rather than the input signal, and this modified arrangement results in the circuit having unity voltage gain.

The circuit thus always has unity voltage gain, but gives a phase shift which varies from 180 degrees at low frequencies through to zero at high frequencies. Somewhere between these two extremes a 90 degree phase shift is obtained, which gives the required 180 degree phase shift from two of these circuits connected in series. The frequency at which the 90 degree shift occurs depends upon the relative values of C1 and R3, and this frequency can be varied by altering the value of either of these. In practice, it is much easier to vary the value of R3, which is replaced by a field effect transistor connected as a voltage controlled resistor.

IC1b and IC2a are used as the basis of the two phase shifters, and these use precisely the same configuration as the one described earlier. The field effect transistors used here as the voltage controlled resistors are n channel m.o.s.f.e.ts from a CMOS 4007UBE device. This contains two complementary pairs plus an inverter, but in this case it is only the n channel m.o.s.f.e.t. of each complementary pair that is utilized, and the other parts of the device are ignored. These transistors are enhancement types, which means that they are normally switched off, and a forward bias is needed to bring them into conduction. This is the opposite of junction gate field effect transistors (such as the popular 2N3819, etc.), which are depletion mode devices. These are normally in the on state, and require a reverse gate bias in order to switch them off. In this application, enhancement mode f.e.ts are slightly easier to use, and of more importance, they give more predictable results. R6 and R9 are needed to maintain a small bias to the noninverting inputs of IC1b and IC2a when the m.o.s.f.e.ts are switched off.

The mixer stage uses IC2b as a standard operational amplifier summing mode mixer. VR1 is adjusted to balance the two input signals to the mixer so that a deep notch and the strongest possible

Fig. 2. Typical phasing circuit.

effect are obtained. S1 can be used to switch out the phase shifted signal. The unit then acts as a simple buffer amplifier, and the phasing effect is switched off. In practice, S1 is a foot-operated switch so that the effect can be switched in and out while playing.

Some of the output from IC1a is coupled to variable attenuator VR3, and then to a high gain common emitter amplifier built around TR1. The output from TR1 is coupled by C9 to the rectifier and smoothing circuit. This has circuit values which give quite fast attack and decay times so that the filter accurately follows rises and falls in the input signal level. The positive d.c. signal produced by the rectifier/smoothing circuit is coupled direct to the gates of the two m.o.s.f.e.ts. VR2 is adjusted so that under quiescent conditions the bias voltage fed to the m.o.s.f.e.ts is just below the turn-on threshold so that the minimum filter frequency is obtained. The output from the smoothing circuit adds to this voltage so that the filter is swept up and down in frequency as the input signal rises and falls in volume, giving the required auto-phase effect. In practice, if desired, VR2 can be adjusted for a somewhat higher voltage so that the filter only operates over higher audio frequencies.

SET A MOBILE NOTCH LOOSE AMONG YOUR HARMONICS

Fig. 3. Circuit diagram. The inputs to IC3 (pins 3 and 6) are connected to each other and to R14.

Fig. 4. P.c.b. layout.

Fig. 5. Component layout of the Auto Phaser.

CIISTRUUCTION

A diecast aluminium box measuring 150 by 80 by 50 mm will comfortably accommodate all the components, and is suitably tough for this application. VR2 and the two sockets are mounted on the front panel, with S 1 fitted on the lid of the case. S1 is a heavy-duty push-button type suitable for foot operation. $\mathbf{S} 2$ is a pair of make contacts on SK 1 (which actually has d.p.d.t. contacts), so that the unit is automatically switched on and off when the jack plug is inserted in and removed from the input socket. This is a common way of providing on/off switching in musical effects units, but a separate on/off switch can, of course, be used if preferred.

Details of the printed circuit board and wiring are shown in Fig. 5. This is fairly easy to construct, but bear in mind that IC3 is a CMOS device. It should, therefore, be mounted in a (14-pin d.i.1.) i.c. socket, and the normal m.o.s. handling precautions should be taken. Do not overlook the four link wires. D1 and D2 are germanium diodes, and as such are more easily damaged by heat than the more familiar silicon devices. When connecting these, complete each soldered
joint as rapidly as possible so that overheating and damage to these components is avoided. Pins are fitted to the board at the places where leads from offboard components will eventually be connected.

The completed printed circuit board fits into the set of guide rails nearest the rear of the case, with the component side facing forward. The point-to-point wiring is then added, using ordinary multistrand, p.v.c. insulated connecting wire.

IN USE

It is essential for the three potentiometers to be set correctly if the unit is to function properly. VR1 should be set at almost minimum value (adjusted almost fully clockwise), and the unit should then give a reasonably deep notch and a strong effect. When the other two potentiometers have been adjusted properly, VR1 can be adjusted to optimise the effect.

With VR3 fully backed off (adjusted fully anti-clockwise) it should be possible to manually control the filter frequency using VR2. Set VR2 to place the notch at a fairly low audio frequency. Playing an instrument connected to the input of the unit, and then slowly advancing VR3 should gradually introduce the autophase effect. It is essential that VR3 is not advanced too far, or the sweeping of the filter will only occur at the very beginning

and end of each note, giving an effect that will probably be barely noticeable. The filter should only just be fully swept by a signal which achieves full volume at its peak level. When using an instrument that
has a high output level, VR3 will need to be almost fully backed-off. The unit will operate with lower level signals, such as the output from a low output guitar pickup, with VR3 well advanced.

$$
\begin{aligned}
& \text { PREPARE FORTOMORROW’S } \\
& \text { WORID,TODAY! }
\end{aligned}
$$

An understanding of electronic and computer technology is fast becoming a vital part of today's living. Take out an annual subscription and have

EVERYDAY ELECTRONICS \& COMPUTER PROJECTS delivered direct to your door every month...

SUBSCRIPTION RATES
U.K.
$£ 12.00$
Overseas £15.00

COMPLETE AND POST THIS ORDER FORM TODAY!

EVERYDAY

=-ECTRONICS SUBSCRIPTION and computer PROJECTS ORDER FORM

POST COPIES TO:
NAME:

ADDRESS

Card valid from: \qquad 10

Signature

The multimeter is without doubt the most versatile and commonly used piece of test equipment available and, for the hobbyist, it usually represents the first major investment in serious electronic testing or construction.
There are hundreds of models available with a massive choice of specifications, prices and formats, so to help you through the 'multimeter jungle', we have compiled this guide. Obviously it is not a comprehensive coverage of all the models available but at least it will put you on the right road.

Before looking at specific models, we will take a look at various aspects, advantages and disadvantages of the different types and try to explain the meaning of manufacturers' specifications.

Fig. 1. The basic moving coil mechanism.
Modern multimeters, whatever their shape or size, all work on much the same principle. Whether electro-mechanical or electronic, digital or analogue, the heart of any meter is a voltage or current sensing device. This device together with a range selection circuit can be used to offer a wide range of measurements.

TYPES OF METER AVAILABLE

Moving coil meters are still very common today despite increasing competition from low cost digital electronic meters. Indeed many engineers and technicians still prefer and 'trust' the traditional instruments which have been around for years.

The heart of the meter is a d'Arsonval movement or galvanometer which is an electromechanical device consisting of a coil of wire wrapped around an iron core, and mounted between the poles of a permanent magnet. A needle or pointer is attached to the coil, which is pivoted and free to rotate. Subsequently, when an electric current is
passed through the coil, the coil will rotate causing the needle to be displaced; the displacement being proportional to the current. (See Fig. 1.)

With a suitable scale placed adjacent to the pointer, the meter becomes an effective current meter and with modifications can be made to read a wide variety of ranges.

The forerunner of the modern electronic multimeter was the vacuum tube voltmeter (VTVM) which was essentially a valve amplifier circuit used to drive a moving coil meter. Of course in modern multimeters valves are replaced by transistors and integrated circuits to perform the sensing and amplifying function. Additionally analogue to digital converters are employed to drive alphanumeric digital displays rather than .traditional moving coils. (See Fig. 2.)

Fig. 2. Basic elements of a digital multimeter.

SHUNTS AND MULTIPLIERS

As we have said, the basic meter can be expanded by the introduction of additional circuitry. Suppose for example a device will give a maximum reading when it detects a current flow of 1 mA . In the case of the moving coil device a maximum reading occurs when the needle is deflected to its furthest position, full scale deflection (f.s.d.); in the case of a digital display (say four digits) then it would read 9999. Now if we want to measure a current of 10 mA f.s.d., then a resistor is connected in parallel with the meter, the value of resistor being one ninth that of the meter. By application of Ohms law it can be seen that only one tenth of the total current would pass through the coil, whilst most of the current would pass through the SHUNT, as shown in Fig. 3.

To take voltage readings (Fig. 4) a series resistor can be connected in the meter circuit. Using the same example as before, we require only ImA to give f.s.d. Thus if we, for example, wish to measure a voltage up to 10 V , then by using Ohms law we can see that the series resistor (multiplier) should be:-

$10 \mathrm{~V} / 10 \mathrm{~mA}=1000 \Omega$

Because the resistance of the meter coil is negligible compared with that of the multiplier it can be ignored for these simple calculations, however in practical designs it must be accounted for.

For resistance measurements an independent power source is required which usually takes the form of one or more batteries. This is connected in series with the meter and the resistance to be measured completes the circuit. Obviously the current flow will be inversely proportional to the resistance and thus the resistance can be measured using a suitable scale. (See Fig. 5.)

Using these principles, a large number of resistance voltage and current measurements can be made with the aid of a switch and resistor

Fig. 3. Simple current measuring circuit.

Fig، 4. Simple voltage measuring circuis.
network. For eiectronic multimeters different ranges are achieved using a combination of this type of network and an electronic circuit to provide amplification or attenuation of the measured signal.

SENSITIVITY

Now that we have established the very basic principles of how multimeters work, we can start to look more deeply at manufacturers' specifications. One of the most important of these being the sensitivity or input impedance.

The sensitivity of a moving coil meter is given in terms of ohms per volt. In simple terms this figure refers to the resistance of the multiplier required to give an f.s.d. of one volt. Suppose the sensitivity is 1000 ohms per volt then to measure on a scale of 100 volts f.s.d., the input impedance would be 100 k . ohms.

It is desirable for the sensitivity of a meter to be very high to prevent a loading effect on the circuit under test. For example if we use a meter with a sensitivity of 10 k ohms per volt to measure a voltage across a resistance of 1 M ohm, then the actual meter reading will be incorrect.

Referring to Fig. 6 it can be seen that when the meter is connected in parallel with the 1 M ohm resistor, then the effective resistance becomes less than 100 k ohms. This will cause more current to be drawn from the circuit which in turn will cause a greater volt drop across Rx. From this it can be seen that the error caused by the loading effect will be decreased by an increase of sensitivity.

Fig. 5. Resistance measuring principles.
With normal moving coil meters the input impedance obviously varies depending on the scale. The higher the f.s.d., the higher the input impedance. However, with the electronic multimeters, the input impedance is often constant throughout the range, due to the nature of the input circuitry, which is usually a high impedance f.e.t. device.

Moving coil multimeters have a sensitivity of between about 1 k ohm per volt to 100 k ohms per volt whereas an electronic multimeter can have an input impedance of 10 M ohm throughout the range.

Current measurements are also affected by sensitivity. It is desirable that the resistance of the meter be as small as possible when measuring current. If the resistance is high then a volt drop will be introduced into the circuit and the current will be limited by the meter resistance, a and once again incorrect readings will be the result. If a meter has a large sensitivity then it also implies that the resistance when measuring current will be low.

METER SCALES AND DISPLAYS

As was mentioned earlier many engineers and technicians still prefer moving coil displays. With these types it is possible to see fluctuations in voltage readings whereas in the case of digital displays a fluctuating
voltage may appear as a number of random voltages. This depends on the type of sampling circuit used in the meter and the frequency of the signal being measured.

The main advantage of digital displays is in the ease of reading and understanding the display. Digital meters usually have auto polarity sensing (it tells you when the test leads are the wrong way round), and a clear numerical reading together with the units indication. Most multirange, moving coil instruments have several scales only one of which is relevant on a particular range. On top of this they have to be read from the correct angle or a parallax error will be caused. Also some of the scales on moving coil meters are not linear such as the resistance or decibel range.

PROTECTION

Protection of the electronics or the moving coil is very important as they can be easily damaged by excess voltages or currents. For this reason many meters have overload protection of some kind, such as fused inputs, 'crowbar' or circuit breaker protection. These protection facilities are usually specified as maximum voltage or current ratings. Some meters have polarity reversal protection which is very useful as it is very easy to connect the leads the wrong way round.

As well as protecting the meter it is important to protect the user. As some meters are capable of testing thousands of volts or many amps, it is essential that good quality test leads are supplied with adequate insulation. The range selection switches and the casing should also be well insulated.

Fig. 6. Loading effects of the meter.

CHOOSING A MULTIMETER

It would be impossible to describe every aspect of multimeters as in is such a vast subject and innovations are being introduced all the time. Many of the new models have features such as auto-ranging, capacitance inductance and decibel ranges, as well as a host of other 'goodies'. This is all well and good but if all you need is a basic multimeter then many of these functions may be surplus to requirements.

Like any other major purchase, you must first decide what your requirements and priorities are. If you need a meter to assist fault finding on car electrics then a resistance and low sensitivity low voltage scale is probably all you need. On the other hand for TV servicing you may need a high voltage and low current scale and sensitivity may be important.

Whilst bearing in mind the above points cost is likely to be an important factor. This is where this buyers' guide can really help. Each meter illustrated is accompanied by a brief description including the types of ranges and the input impedance. When these factors have been compared together with the price then it may help you to come to an acceptable compromise between performance and price. It could also save you a few pounds into the bargain.

PLEASE NOTE

We would like to point out that readers buying from the guide are not protected by the Mail Order Protection Scheme unless the company concerned have advertised the product in a display advertisement in this issue.

This guide is an aid to the purchaser and makes no recommendations.

Model: TD 20. Ranges: $2 \mathrm{~V}-500 \mathrm{~V}$ a.c./d.c., $2 \mathrm{k} \Omega-2 \mathrm{M} \Omega$. 19 ranges). Impedance: $11 \mathrm{M} \Omega$. Special Features: Continuity buzzer. Price: £42. + VAT. Supplert. 027955155). Raynham Rd., Bishop's Stortford, Herts. 1027955155

Model: Fluke 73, 75, 77. Ranges: $320 \mathrm{mV}-100 \mathrm{~V}$ d.c., $3.2 \mathrm{~V}-750 \mathrm{~V}$ a.c., 10 A a.c./d.c., $320 \Omega-320 \mathrm{M} \Omega$. $(10$ ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Diode and continuity tester. Price: $73-£ 65.00,75-£ 75.00$, 77-£95.00. Supplier: Fluke (GB) Ltd., Colonial Way, Watford, Herts. 10923405111.

Model: Hung Chang HM101. Ranges: $10 \mathrm{~V}-1 \mathrm{kV}$ a.c./d.c., 100 mA d.c., $1 \mathrm{M} \Omega$. (12 ranges). Model: Hung Chang HM102. Ranges: $250 \mathrm{mV}-1 \mathrm{kV}$ d.c., $10 \mathrm{~V}-1 \mathrm{kV}$ a.c., $50 \mu \mathrm{~A}-500 \mathrm{~A}, 6 \mathrm{M} \Omega$. (14 ranges). Impedance: Not known. Price: $£ 14 .+$ VAT. Supplier: Cirkit Holdings PLC, Park Lane, Broxbourne, Herts. 10992444111 .

Model: BBC MA5D. $300 \mathrm{mV}-1 \mathrm{kV}$ a.c./d.c., $300 \mu \mathrm{~A}-20 \mathrm{~A}$ a.c./d.c., $3 \Omega-20 \mathrm{M} \Omega$. (26 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Capacitance and decibel ranges. Built-in battery charger. Price: $£ 320$ + VAT. Supplier: House of $/ n$ struments, Raynham Rd, Bishop's Stortford, Herts. 10279 55155).

Model: Keithley 175. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega .127$ ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Autoranging, $\mu \mathrm{P}$ operated with memory (100 readings). IEEE bus. Price: $£ 449$ + VAT. Supplier: Keithley Instruments Ltd., 1 Boulton Rd., Reading, Berkshire, RG2 ONL. 10734 861287).

Model: Hitachi VR3525 Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $2 \mathrm{~V}-750 \mathrm{~V}$ a.c.. $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$. 120 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Autoranging. Diode test. Continulty buzzer. Temp. -20° to $700^{\circ} \mathrm{C}$. Price: £120.75. Supplier: Reltech Instruments, New Rd., St. Ives, Huntingdon, Cambridgeshire. PE1 7 4BG. (0480 63570).

Model: Micronta. Ranges: $2 \mathrm{~V}-1 \mathrm{kV}$ a.c./d.c., $2 \mathrm{~mA}-2 \mathrm{~A}$ a.c./d.c., $20 \mathrm{M} \Omega$. (16 ranges). Impedance: Not known. Special Features: Diode test. Price: £44.95. Supplier: Tandy (stockists).

Model: Keithley 179A. Ranges: $200 \mathrm{mV}-1.2 \mathrm{kV}$ d.c., $200 \mathrm{mV}-1 \mathrm{kV}$ a.c., $200 \mu \mathrm{~A}-20 \mathrm{~A}$ a.c. $/$ d.c. $20 \mathrm{M} \Omega$. 126 ranges). Impedance: $10 M \Omega$. Special Features: Autoranging. Price: $£ 385$ + VAT. Supplier: Keithlev Instruments Ltd, 1 Boulton Rd., Reading. Berks. 10734 861287).

Model: Metex 3500. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-700 \mathrm{~V}$ a.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-$ 20Ms. (28 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Diode test facility and zero check. Price: £37.09 + VAT. Supplier: House of Instruments, Raynham Rd, Bishop's Stortford, Herts. (O27955155).

PLEASE NOTE:

Whilst every effort has been made to ensure that the information given in this guide is correct, we cannot be responsible for any price changes. Also specifications are subject to change without notice.

Where specifications have been listed, the number of ranges have been given together with the smallest and greatest full scale deflection readings available for each range. This information together with some special features mentioned should provide a rough guide to each instrument's capability.

Model: Fluke 8026B. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., $2 \mathrm{~mA}-2 \mathrm{~A}$ a.c./d.c. (19 ranges). Impedance: Not known. Special Features: Diode test. Conductance; $2 \mathrm{mS}-200 \mathrm{nS}$. Price: 1207. Supplier: Electroplan Ltd., PO Box 19. Orchard Rd., Royston. Herts., SG8 5HH. 1076341171).

Model: Microtest 80 . Ranges: $100 \mathrm{mV}-1 \mathrm{kV}$ d.c., $\quad 1.5 \mathrm{~V}-1 \mathrm{kV}$ a.c., $50 \mu \mathrm{~A}-5 \mathrm{~A}$ d.c., $250 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A}$ a.c. $500 \Omega-5 \mathrm{M} \Omega$. (30 ranges). Special Features: Capacitance and Decibel ranges. Price: $£ 27$ + VAT. Supplier: Maplin Electronics.

Model: Maplin Pocket Multimeter. Ranges: $10 \mathrm{~V}-500 \mathrm{~V}$ a.c./d.c. $0.5 \mathrm{~mA}-250 \mathrm{~mA}$ d.c., $1 \mathrm{M} \Omega$. 116 ranges). Impedance: $2 \mathrm{k} \Omega / \mathrm{V}$ a.c./d.c. Price: $£ 6.95$. Supplier: Maplin Electronic Supplies, PO Box 3, Rayleigh, Essex, SS6 8LR. (Ó702554155).

Model: Beckman T90. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-600 \mathrm{~V}$ a.c.,

Model: ALT/AI KD305. Ranges: $2 \mathrm{~V}-1 \mathrm{kV}$ d.c., $2 \mathrm{~V}-750 \mathrm{~V}$ a.c., $2 \mathrm{~mA}-10 \mathrm{~A}$ d.c., 200S-20MS. (14 ranges). Impedance: $10 \mathrm{M} \Omega$. Price: $£ 31.50+$ VAT. Supplier: Semiconductor Supplies International Ltd., Dawson House, 128/130 Carshalton Rd., Sutton, Surrev. SM1 4RS (01-643 1126).

Model: AVO 1000. Ranges: $300 \mathrm{mV}-1000 \mathrm{~V}$ d.c., $10 \mathrm{~V}-1000 \mathrm{~V}$ a.c., $50 \mu \mathrm{~A}-6 \mathrm{~A}$ d.c., $10 \mathrm{~mA}-6 \mathrm{~A}$ a.c., $1 \Omega-10 \mathrm{M} \Omega$. (23 ranges). Impedance: $20 \mathrm{k} \Omega \mathrm{N}$ a.c., $2 \mathrm{k} \Omega \mathrm{N}$ a.c. Special Features: Continuity buzzer. Price: $£ 49.50$ + VAT. Supplier: House of Instruments, Raynham Rd., Bishop's Stortford, Herts. (027955155).

Model: ISI DM3350. Ranges: 1 kV d.c., 600 V a.c., 10 A a.c./d.c., $2 \mathrm{M} \Omega$. (15 ranges). Special Features: Autoranging. Continuity buzzer. Price: $£ 49.35+$ VAT. Supplier: Semiconductor Supplies International Ltd., Dawson House, 128/130 Carshalton Rd., Sutton, Surrey, SM1 4RS. (01-643 1126).

Pantec division of Carlo Gavazzi, 162/164 Upper Richmond Road, Putney, London SW15 2SL Tel: 01-785 9022 Telex: 8952493

INCLUDING VAT \& CASE PLUS £2.75 P \& P
For a special offer price of only $£ 29.95$ we're offering you this super Quaser Cassette Deck Kit. Including tape transport mechanism, n, ready punched and back printed quality circuit board and all electronic parts i.e. semi-conducters, resistors, capacitors, hardware, top cover, printed scale, mains transformer and a self assembly simulated wood cabinet. You only supply solder and hook-up wire. SPECIFICATIONS:
Case size $285 \times 260 \times 90 \mathrm{~mm}$ approx. Mechanism with-automatic stop. and tape counter with reset button. Tape Speed: $4.76 \mathrm{~cm} / \mathrm{sec}(17 / 8$ $\mathrm{in} / \mathrm{sec}$). Wow \& Flutter: Typically 0.1%. Drive Motor: 12 V d.c. with electrical governor. Play Torque: $40.75 \mathrm{~g} / \mathrm{cm}$ (DYNAMIC). Rewind \& Fast Forward Torque: $60-140 \mathrm{~g} / \mathrm{cm}$ (STATIC). Rewind \& Forward Time; Less than 100 sec . for C60 tapes. Bias/Erase Oscillator: Externally variable, írequency $60-100 \mathrm{kHz}$. Output: (Adjustable) Up to 1 volt r.m.s. Mic. Sensitivity: $1 \mathrm{mV} @ 47 \mathrm{k}$. DIN Sensitivity: 30 m V @ 47 k . Frequency Response; $30 \mathrm{~Hz}-12.4 \mathrm{kHz}(-3 \mathrm{~dB})$. Signal to Noise Ratio. Noise reduction OFF-50dB. Noise reduction H.F. -56 dB Noise reduction FLAT-70dB Cross Talk: Typically-50dB. CALLERS WELCOME: 323 EDGWARE RD., LONDON W2. - Open 6 davs a week $9.00-5.30$.

21 HIGH ST., ACTON LONDON W3 6NG
Tel: 01-992 8430 - Open 6 days a week 9.30-5.30 $1 / 2$ day closing Wednesdays

To: RT-VC, 21A High St., Acton, London W3 6NG

Mail order \& shops:
441 PRINCES ROAD, DARTFORD, KENT DA1 1 RB Telephone: (0322) 91454
ORDERING INFORMATION: P/P 50p on orders less than $£ 20$ in value otherwise post free. All components full spec \& guaranteed. Discounts available on orders over $£ 50$ - phone for details. For unlisted components phone for price. Goods normally despatched by return post.

NEW CATALOGUE NOW AVAILABLE CONTAINING THOUSANDS OF LINES MANY ILLUSTRATED

This incredible volume contains everything required by the home constructor, amateur radio and CB user and computer enthusiast.

We think the semiconductor section contains more types than have ever been offered to the hobbyist.

Sections are headed as follows:

Aerials, Amplifiers, Audio Accessories, Batteries, Boxes, Bulbs, Capacitors, Crystals, Car Components, Car Audio, CB \& Ham Equipment, Computer Connectors, Fuseware, Hardware, Headphones, Knobs, Lamps, Leads, Loudspeakers, Microphones, Meters, OPTO, PCB, Resistors,
Semiconductors, Special Effect Equipment, Switches, Power Supplies, Test Equipment, Tools, Transformers, Wound Components.
In addition to listed items we continue to provide a procurement service for obsolete and difficult to obtain types.
How many suppliers do you have at the moment that offer a service like this?
Please fill in coupon below and send with $£ 1.25$. Print clearly as coupon is used as address label.

Catalogue contains $£ 2.50$ discount order form - You make a profit straight away.

NAME
ADDRESS

POSTCODE

Model: Anders AMM301. Ranges: $60 \mathrm{mV}-300 \mathrm{~V}$ d.c.. $6 \mathrm{~V}-600 \mathrm{~V}$ a.c.. $30 \mu A-600 \mathrm{~mA}$ d.c., $2 M \Omega$. 120 ranges). Impedance: $30 \mathrm{k} \Omega \mathrm{N}$ a.c./d.c. Special Features: $d B$ scale. Price: $£ 25.50$ Supplier: Anders Electronics Ltd., London, Bayham Place, Bayham Street, London, NW1 OEV. (01-387 9092).

Model: Avometer DA116. Ranges: $200 \mathrm{mV}-1000 \mathrm{~V}$ a.c./d.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$. (31 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Diode test facility. Price: $£ 152.10$ + VAT. Supplier: House of Instruments, Raynham, Rd., Bishop's Stortford, Herts. $1027955155)$.

Model: $\mathrm{M}-2020 \mathrm{~S}$. Ranges: $100 \mathrm{mV}-1 \mathrm{kV}$ d.c., $10 \mathrm{~V}-1 \mathrm{kV}$ a.c., $10 \mu \mathrm{~A}-10 \mathrm{~A}$ $2 \mathrm{k} \Omega-20 \mathrm{M} \Omega$. 127 ranges). $20 \mathrm{k} \Omega \mathrm{N}$ d.c., $8 \mathrm{k} \Omega \mathrm{Cl}$. Supplier: Maplin Electronic Supplies, PO Box 3, Rayleigh, Essex, SS6 8LR. 10702 554155).

Model: DME 1400. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ a.c./d.c., $200 \mathrm{~mA}-1 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$. Supplier: House of Instruments, Raynham Rd, Bishop's Stortford, Herts. 10279 55155).

Model: ALT/AI KD55C. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-$ $20 \mathrm{M} \Omega$. (22 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Overload protection. Price: $£ 44.10+$ VAT. Supplier: Semiconductor Supplies International, Dawson House, 128/130 Carshalton Rd., Sutton, Surrey. (01-6̣43 1126).
Eight, Mk. 6. Ranges: $100 \mathrm{mV}-1 \mathrm{kV}$ d.c., $3 \mathrm{~V}-1 \mathrm{kV}$ a.c., $50 \mu \mathrm{~A}-10 \mathrm{~A}$ d.c., $10 \mathrm{~mA}-10 \mathrm{~A}$ a.c., $200 \Omega-200 \mathrm{M} \Omega$. (31 ranges). Impedance: $20 k \Omega N$ d.c. Special Features: Decibel and insulation resistance scales. Price: $£ 138.70+$ VAT. Supplier: House of Instruments.

Model: $\mathrm{M}-5050 \mathrm{E}$. Ranges: $0 \cdot 3 \mathrm{~V}-1200 \mathrm{~V}$ d.c., $3 \mathrm{~V}-1200 \mathrm{~V}$ a.c., $0.1 \mu \mathrm{~A}-12 \mathrm{~A}$ d.c., 12 A a.c., $1-1 G \Omega$. (53 ranges). Impedance: 10MS. Special Features: Polarity reversal switch. Price: $£ 34.95$ + VAT. Supplier: Maplin Electronic Supplies, PO Box 3, Rayleigh, Essex, SS6 8LR. 10702554155).

Model: Pantec PAN 2001. Ranges: $100 \mu \mathrm{~V}-1 \mathrm{kV}$ a.c./d.c., $100 \mathrm{~mA}-10 \mathrm{~A}$ a.c./d.c., $0.1 \Omega-20 \mathrm{M} \Omega$. $(17$ ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Capacitance $1 \mathrm{pF}-20 \mu \mathrm{~F}$., Squarewave generator $15 \mathrm{~Hz}-15 \mathrm{kHz}$. Temp. $-50^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Price: $£ 99+$ VAT. Supplier: Electronic \& Computer Workshop Ltd., 171 Bloomfield Rd., Chelmsford, Essex, CM1 1RY. 10245262149).

Model: Miselco Super 50. Ranges: $150 \mathrm{mV}-1 \mathrm{kV}$ a.c./d.c., $20 \mu \mathrm{~A}-3 \mathrm{~A}$ d.c., $3 \mathrm{~mA}-3 \mathrm{~A}$ a.c., $1 \Omega-50 \mathrm{M} \Omega$. (34 ranges). Impedance: $50 \mathrm{k} \Omega \mathrm{N}$ a.c./d.c. Special Features: $\mathrm{dB}-10$ to +61 (5 ranges). Diode test. Price: $£ 54.45+$ VAT. Supplier: Alcon Instruments Lid., 19 Mulberry Walk, London, SW3 6DZ. (01-352 1897).

Model: Hung Chang HC7030. Ranges: $100 \mu \mathrm{~V}-1 \mathrm{kV} \quad$ a.c./d.c., $0.1 \mu \mathrm{~A}-10 \mathrm{~A} \quad$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$. (17 ranges) Impedance: Not known Special Features: Diode test. Overload protection Price: £49.95. Supplier: Cirkit Holdings PLC, Park Lane, Bröxbourne. Herts. 10992444111).

Model: Soar ME-531. Ranges: $200 \mathrm{~mW}-1 \mathrm{kV}$ d.c., $2 \mathrm{~V}-1 \mathrm{kV}$ a.c., $200 \mathrm{~mA}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-2 \mathrm{M} \Omega(18$ ranges): Impedance: Not known. Special Features: Autoranging. Continuity buzzer. Diode test. Price: £63.95. Supplier: Maplin Electronic Supplies, PO Box 3, Rayleigh, Essex, SS6 8LR. (0702 554155).

Model: ALT/AI KD25C. Ranges: 1 kV d.c., 500 V a.c., 200 mA d.c., $2 \mathrm{M} \Omega$. (12 ranges). Price: $£ 27.60$. Supplier: Semiconductor Supplies International Lid., Davison House, 128/130 Carshalton Rd., Sutton, Surrey. SM1 4RS. (01-6431126).

Model: Hitachi
VR3510. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c.. $200 \mathrm{mV}-600 \mathrm{~V}$ a.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$. $\quad 120$ ranges). Impedance: Not known. Special Features: Continuity buzzer. Autoranging. Diode test. Price: £155.25. Supplier: Reltech Instruments, New Rd., St. Ives, Huntingdon, Cambridge, PE17 4BG. 10480 63570).

Model: Pantec Challenger.
Ranges: $0.25 \mathrm{~V}-1 \mathrm{kV}$ d.c., $5 \mathrm{~V}-1 \mathrm{kV}$ a.c., $25 \mu \mathrm{~A}-10 \mathrm{~A}$ d.c., $0.5 \mathrm{~A}-10 \mathrm{~A}$ a.c., $500 \Omega-5 \mathrm{M} \Omega$. (26 ranges). Impedance: $40 \mathrm{k} \Omega / \mathrm{N}$ a.c./d.c. Special Features: Shock proof case. Diode test. Price: $£ 49+$ VAT. Supplier: B.K. Electronics, Unit 5, Comet Way, Southend-on-Sea, Essex. (0702 527572).

Model: HC 5010. Ranges: $200 \mathrm{mV}-100 \mathrm{~V}$ d.c., $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., $20 \mu \mathrm{~A}-10 \mathrm{~A}$ a.c./d.c., $20 \Omega-20 \mathrm{M} \Omega$. (31 ranges). Impedance: $10 \mathrm{M} \Omega$. Special Features: Selectable test voltage. Price: $£ 36.50$ + VAT. Supplier: Armon Electronics, Heron House, 109 Wembley Hill Rd., Middx., HA9 8AG. (01-902 4321).

Model: Beckman HD 100. Ranges: $200 \mathrm{mV}-1.5 \mathrm{kV}$ d.c., $200 \mathrm{mV}-1 \mathrm{kV}$ a.c., $200 \mu \mathrm{~A}-2 \mathrm{~A}$ a.c./d.c., $200 \Omega-20 \mathrm{M} \Omega$, $(21$ ranges). Impedance: $22 \mathrm{M} \Omega$ a.c./d.c. Special Features: Folding stand. Price: f129 + VAT. Supplier: STC Instrument Services, Edinburgh Way, Harlow, Essex, CM2O 2DF.

Model: $M-5010$. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., 20 mA . $10 \mathrm{AV}-1 \mathrm{kV}$ d.c., $20 \Omega-20 \mathrm{M} \Omega$. (3ic., ranges) $20 \mu \mathrm{~A}$ a.c./d.c., $10 \mathrm{M} \Omega$. Special Features: Impedance: Price: $£ 42.50$ + VAT. Supp test facility. Electronic Supplies, PO Box Supplier: Maplin SS6 8LR. 10702554155).

Model: ALT/AI KD615. Ranges: $200 \mathrm{mV}-1 \mathrm{kV}$ d.c., $200 \mathrm{mV}-750 \mathrm{~V}$ a.c., $200 \mu \mathrm{~A}-10 \mathrm{~A}$ d.c., $200 \Omega-20 \mathrm{M} \Omega$. (18 ranges). Impedance: $10 \mathrm{M} \Omega$.

Special
Features: Diode test. Overload protection. Price: $£ 38.85$ + VAT. Supplier: Semiconductor Supplies International, Dawson House, 128/130 Carshalton Rd., Sutton. Surrey. (01-6431126).

Madel: $\mathrm{M}-102 \mathrm{BZ}$. Ranges: $2.5 \mathrm{~V}-1 \mathrm{kV}$ d.c., $10 \mathrm{~V}-1 \mathrm{kV}$ a.c., $5 \mathrm{~mA}-10 \mathrm{~A}$ d.c., $10 \mathrm{k} \Omega-1 \mathrm{M} \Omega$. (23 ranges). Impedance: $20 \mathrm{k} \Omega / \mathrm{V}$ d.c., $8 \mathrm{k} \Omega \mathrm{N}$ a.c. Special Features: Continuity buzzer. Price: $£ 14.95$ + VAT. Supplier: Maplin Electronic Supplies, PO Box 3, Rayleigh, Essex, SS6 BLR. 10702554155).

Model: YN 360TR. Ranges: $250 \mathrm{mV}-1 \mathrm{kV}$ d.c., $10 \mathrm{~V}-1 \mathrm{KV}$ a.c., $50 \mu \mathrm{~A}-250 \mathrm{~mA}$ d.c., $2 \mathrm{k} \Omega-200 \mathrm{k} \Omega$. (19 ranges). Impedance: $20 \mathrm{k} \Omega / \mathrm{N}$. Special Features: Fuse and diode protection, hfe range. Price: $£ 17.98$ inc. VAT. Supplier: Magenta Electronics Lid, 135 Hunter St., Burton-on-Trent, Staffs, DE1 4 2ST. (O2B3 65435).

 from the world of

JAPAMESE OEVEIOPMENT GOES FLAT

THE Japanese have long been threatening to hit us with a revolutionary flat television/video screen that may be hung on the wall or even form part of the wall and be added to the "all mod cons" list circulated by house agents when offering a desirable property for sale!

This concept of the future has moved a step nearer with the announcement from Matsushita Electric Industrial of a new flat colour "panel" for all forms of media presentations and promotions.

The panel has been successfully used to develop a prototype of a truly "flat-screen" colour TV, featuring a diagonal 10 -inch screen and a depth of only 9.9 cm . The new set was put through its paces at Tsukuba Expo ' 85 Show, Japan, during March.

The colour panel features a square, completely flat screen, which, it is claimed, reproduces distortion-free images across the entire display area. Applications envisaged include office automation display and electronic services, such as; teletex, videotex, direct satellite broadcasts, high definition TV and cable/pay TV.

The new colour panel was developed using Matsushita's Matrix Drive and Deflection System. The screen consists of 3000 picture cells arranged in a matrix; 200 units horizontally and 15 vertically. Each picture cell is scanned by one electron beam which excites phosphor stripes. The prototype TV provides a resolution of 270 TV lines, a contrast ratio of more than 50 , and a brightness of over 701 L.

How It Works

The newly-developed Matrix Drive and Deflection System produces 3000 controlled beams by forming a matrix of 15 filament cathodes and 200 electron
beam control electrodes which cross cathodes at right angles. Each beam is horizontally deflected in six steps (two sets of R.G.B.) and vertically deflected in 32 steps (including the interlace) to form images consisting of 192,000 elements on the display panel. A complete picture is formed through the line-at-a-time method.
This deflection method also reduces the number of electrode terminals required to approximately one-seventh of the number used in the conventional matrix driving method.

Focusing

The system's lack of the shadow mask found in conven-

Specifications

	Colour flat Panel	Flat Colour TV
Screen size:	$200 \mathrm{~mm} \times 150 \mathrm{~mm}$	10 inch diagonal
Dimensions:	$\begin{aligned} & 282 \mathrm{~mm}(\mathrm{~W}) \times 222 \mathrm{~mm} \\ & (\mathrm{H}) \times 65 \mathrm{~mm}(\mathrm{D}) \end{aligned}$	$\begin{gathered} 370 \mathrm{~mm}(\mathrm{~W}) \times 355 \mathrm{~mm} \\ (\mathrm{H}) \times 99 \mathrm{~mm}(\mathrm{D}) \end{gathered}$
Weight:	7.5 kg	14 kg
Power		
consumption:	7 watts	70 watts
Brightness:	$70 f 1$	70 fL
Resolution:	picture element pitch of 0.5 mm	270 TV lines
Contrast:	More than 50	Gray scale: 64

Conventional matrix driving method

Matsushita matrix drive and deflection system
tional colour picture tubes necessitates a fine electron beam of the same width as a phosphor stripe. They found the optimum electrode structure using the three-dimensional simulation technology previously developed by the company.

Separation of the horizontal and vertical lens systems to provide individual control of their focusings, has, it is claimed, resulted in improved resolution and colour reproduction. Of special importance to uniform display was the development of a cementing technology which evenly and alternately adheres 0.1 mm grid electrodes with insulating plates.

Digital Technology

Signal processing and driving are performed digitally and picture brightness is controlled by varying the pulse width which drives electron beams, thereby generating 64 steps in the gray scale. Colour reproduction is performed by digitizing the picture signal and alternately driving red, green and blue signals. Resolution is markedly improved by giving time differences in sampling each.

The use of a microcomputer for fine adjustment of the diameter and position of electron beams on the phosphor screen results in uniform brightness and high colour reproduction.

The Amstrad CPC464 home computer has been voted "Computer of the Year" by the Computer Traders Association. The award was made, at the LET Show trade exhibition, based on an independent poll of computer retailers.

Money Matters

Total sales in the 12 months ended 31 December 1984 of £110.8 million ($\$ 144.9 \mathrm{M}$) was achieved by INMOS International plc. This is almost three times the level achieved in 1983. The company enjoyed its first profitable year producing profits of $£ 14.4 \mathrm{M}$ ($\$ 18.8 \mathrm{M}$) against a loss of 513.5 M in 1983.

In his statement accompanying their financial report, Mr. Harold Mourgue, Chairman of INMOS said:
"In 1984 INMOS invested over $f 28$ million ($\$ 32$ million). The company plans substantial further investment in 1985. While much of the money is generated by INMOS operations, the board of Thorn EMI has indicated that it is prepared to commit the finance needed to ensure the company's continuing success . . ."
"We are therefore confident that INMOS will continue to grow and is significantly well placed to take advantage of a market recovery."

BUSINESS LINK

The first small-dish transatlantic business satellite link exclusively for multi-national companies, provided by British Telecom International (BTI), has enabled the giant MasseyFerguson group to establish its world-wide communications centre in the UK.

The key to the operation is BTI's SatStream North America small-dish satellite service using an Intelsat V satellite for highspeed computer traffic between Britain and North America.

The link allows dealers throughout Canada and the United States to place computerised orders via their own terminals for parts and machinery direct to the British factories.

Planning to make it an annual Spring Fair, the West of Scotland Amateur Radio Society is organising The Glasgow Amateur Radio Exhibition for 11 May at the Cardonald College, Glasgow.

More information may be obtained from the organising committee chairman. Tom Hughes GM3EDZ or lan McGarvie GM4JDU.

QUALITY FILM

A new film has been launched by the DTI's National Quality Campaign to promote the benefit of independent certification and thereby improve the quality and international competitiveness of UK industry.

In the film, "Getting Certified", business broadcaster and journalist, Brian Widlake talks to four key men who are concerned with quality systems. They describe the benefits of independent, thirdparty certification, as proof of a company's ability to manufacture to an agreed standard.

The 24 minute film is available on Free loan to industry and training and educational establishments from the Department of Trade and Industry. It can be obtained in 16 mm film and video cassettes (VHS, Beta or Umatic format).

Anyone wishing to borrow the film should write, stating the format required, to: Standards and Quality Policy Unit, Department of Trade and Industry, Room 323, Ashdown House, 123 Victoria Street, London, SWIE 6RB.

The Right Honourable James Prior, M.P., Chairman of GEC and former Secretary of State for Northern Ireland, will officially open the first "British Electronics Week" at Olympia, London, on Tuesday, 30 April 1985.

METER TAKE OFF

A major Ministry of Defence contract for the supply of handheld digital multimeters to the RAF has been won by Beckman Industrial.

The meters being supplied are standard heavy duty HD110 models which conform to NATO standards without modification. They were selected following a thorough evaluation of several
manufacturers' products by the Electrical Engineering Wing of the RAF Test Systems Flight.

Evan Steadman, Chairman of the Evan Steadman Communications Group and organiser of the "All Electronics/ECIF Show", has been named "Best exhibition organiser of 1984" in a worldwide readers' poll organised by the magazine Conference \& Exhibitions International.

Copyright Levy

The problem of unauthorised home taping of copyright material is discussed and possible solutions proposed in a HMSO document entitled "The Recording and Rental of Audio and Video Copyright Material" published by the Department of Trade and Industry. The Green Paper, which supplements one issued in 1981, also discusses the related issues of recording of broadcasts for educational purposes and the rental of pre-recorded copyright material.

We have considered in detail the several hundred responses to that document (1981) and we intend to bring forward as soon as possible a comprehensive set of proposals for the reform of copyright and related laws," said Geoffrev Pattie, MP, Minister of State for Industry and Information Technology.
"On the issues of home and educational recording and on rental, the Government considers that a further opportunity for public comment is needed before a final decision can be taken."

The new Green Paper proposes that a levy be imposed on the sale of blank audio and video tape intended for domestic users who would in return be lree to make, for personal use, video recording in general and audio recording of music. The size of levy to be subject to negotiation between beneficiaries and manufacturers/importers and to be statutorily limited to say 10 per cent of the retail price of audio tape and say 5 per cent of video tape. Audio tapes of less than 35 minutes total playing time to be exempt.

No realistic alternative to a levy scheme is seen, but there will be exemptions for certain categories of non-infringing user, for example the visually handicapped. It concludes that copyright owners are entitled to payment for the home taping of their material and that a levy is the only practicable way to providing such payment.

This latest document invites comments on the acceptability of a levy as a solution to the difficult problems posed by home taping. This is probably the last chance for readers to make their views known as all comments must be in by 30 April 1984. Proposals should be addressed to:

Industrial Property and Copyright Department, Department of Trade and Industry, State House, 66-71 High Holborn, London, WC1R 4TP.

FAULT FINDING E.A.Rule Part 7

DURING this series, a number of servicing aids have been mentioned which can save time when locating a fault, and/or help clear the fault once found. The initial cost of these aids can be quickly recovered making them a good investment.

AEROSOL SPRAYS

Some of the most useful are in aerosol spray form-a few general words about aerosol sprays may be helpful.

First, they should always be used in a vertical position. The expected shelf life is around two years with correct storage conditions, which are normally within the temperature range of $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ with absolute limits of $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Most service workshops or home construction locations will meet these conditions, but extra care is needed if your workshop is a shed outside, for example, as temperatures here could well exceed the limits. Aerosols must not be exposed to direct sunlight and never placed near a naked flame or high temperature object. The contents are highly pressurised and excessive heat can cause an explosion.

When using aerosol sprays be careful not to use the spray near to your eyes and remember that the spray can 'bounce' back from a sjurface or component. Always read the instructions and follow them; like so many things, aerosols are very safe when used correctly but if misused can be dangerous.

FREEZER SPRAY

Another useful aerosol is the freezer spray, which provides a means of cooling components down to as low as minus $56^{\circ} \mathrm{C}$ in a very short time (frost can be seen on components in many cases). This rapid cooling will often show up a faulty component or help locate a cracked printed circuit board track. As the component or printed track is cooled it will contract and intermittent contacts will often be revealed because this contraction will part the connection. It can also be used as a heat shunt to maintain a low temperature near heat sensitive components while soldering their connections. Usage of the aerosol is similar to the switch cleaner with a small spout to localise the spray.

While on the subject of aerosols, although not a service aid as such, a fire extinguisher type is available which is
designed to be used on small electrical fires. These extinguishers contain liquified BCF gas, it is non-corrosive and harmless to electrical/electronic components.

CONTACT CLEANER

One of the most useful aerosol sprays is the switch cleaner and this one is found in almost every service department. It contains a contact cleaner and a lubricant, this combination will clean off tarnish and corrosion from switch contacts and leave a thin film of lubricant to protect against further corrosion. This film of lubricant also helps maintain a low contact resistance which will reduce contact arcing or burning of switch contacts, prolonging their life. The solvent is inert and can be used on most surfaces safely. Some aerosols have a short flexible spout fitted which enables the spray to be directed onto a small area and avoids waste.

DE-SOLDERING

A useful aid to removing components from a printed circuit board without damage is the de-soldering tool. There are a number of different types available, but perhaps the most popular are the ones that use suction to remove the solder. These are very effective and can be used with one hand while holding the soldering iron in the other. Basically, this device works like a bicycle pump in reverse mode. Instead of pushing the plunger (to force air out of the nozzle), the plunger is pulled (by a spring) so as to suck air up the nozzle; see illustrations. In practice, the tool is primed by pressing the plunger down into the main body against the spring. Then, while melting the solder with the soldering iron, the nozzle of the solder sucker is placed over the connection to be unsoldered and when the solder is molten the release button pressed. This releases the suction plunger and sucks the solder from the joint into the body of the solder sucker, leaving the connection completely free of solder after which the component can be removed without damage. After a period of use the nozzle can be unscrewed and the surplus solder cleaned out. These solder suckers can be used over and over again. The author is still using the same one after sixteen years, having periodically replaced the nozzle. With some of the multi-pin i.c.s, a solder sucker is the only way which will enable damagefree removal.

MAG TAPE CLEANER

A video head cleaning fluid was mentioned last month regarding cleaning cassette recorder heads, etc. But the same fluid can also be used to degrease drive belts or idler wheels. Cleaning these with this fluid can give them a new lease of life and often a replacement will not be required. It is important to keep the container top screwed down tightly as these fluids evaporate very, very quickly.

TWO FOR THE ROAD

An epoxy cement is another useful service aid. This adhesive can be used for most repair jobs, such as broken knobs, front panels, etc. It is important that the surfaces to be repaired are clean and free from grease and also with some plastics the surface should be roughened. Not all plastics can be repaired using epoxy cements, but it is effective in most cases. In one situation the use of such an adhesive proved to be the only suitable method to fix a multi-track professional recording head onto its mounting bracket; a method, I hasten to add, which was recommended by the manufacturers.

Last but not least is heat sink compound. Whenever a power semiconductor is changed it is important that a fresh application of a heat sink compound is applied between the semiconductor and heat sink. These compounds are normally a zinc oxide filled silicon and provide a good thermal conductor between semiconductor and heat sink, they also add extra electrical insulation when used with the normal (mica) washers.

There are many more service aids available and a look through a good components catalogue should reveal those most useful in your particular situation.

FROM EXPERIENCE

Recently a cassette recorder was brought into the workshop with the complaint that the tape speed was too fast. Examination showed that the transistor used to stabilise the motor supply had become short circuited. A replacement

For a wide range of aerosol-aid stockists see Shoptalk page 256.
was fitted but the tape speed was now very erratic; a careful check of other components did not reveal any fault, but the output voltage was unstable. The actual cause was traced to an original manufacturing fault. During manufacture, a part of the printed circuit track was omitted-the test department had bridged this gap with solder! When the transistor was removed using the solder sucker tool, the solder bridge also was inadvertently removed, without even realising it was there in the first place. Only careful checking of the circuit against the manual revealed this one.

A common complaint received is that of noisy controls, mainly volume controls, but sometimes other types as well. The cause could be due to a leaky coupling capacitor allowing a small voltage to appear across the control, and this should be checked out, but often it is simply due to wear of the control track causing small particles of carbon dust to get between the wiper blade and track. Sometimes an application of the switch cleaner spray will effect a cure, but in the author's experience this may only effect a cure for a short time. The author has used a cure now for a number of years which is very effective, even with really bad controls. This is to use penetrating oil, such as Three-in-one. It is applied in very small quantities to the defective track and the control then operated a number of times. This application of penetrating oil direct to the track is almost 100 per cent effective, and careful tests over a number of years have not revealed any side effects. However, if used on the slider type of control it can make the mechanical operation feel rough, so it must be used very sparingly. Also keep the oil well away from other components.

This is the final part of this series on fault finding, and although limited to basic procedures the series should prove helpful. The photograph shows the equipment used by the author, and although it may look impressive, in fact most of the time the multimeter is the busiest piece of equipment-see page 264 .

Lasers Light the Way

The STC Laboratories out at Harlow get edgy when people talk about the company as being part of ITT. It was, until 1982, but then STC (Standard Telecommunications) hived off on its own with ITT owning just 24 per cent.

The original work on fibre optics was done at STL in Harlow in the 60s, by Hong Kong scientist Charles Kao. At that time it was all just mathematical prediction. He said that light could be channelled down a fibre of very pure glass.

Now STL has 800 scientists, of which a quarter work on fibre optics. Some of their laboratory experiments point where fibre optics will be leading towards the end of the century.

In a nutshell, the trend is towards longer light wavelengths, in the infra red band. This will open up all kinds of possibilities because in many applications it will no longer be necessary to convert light into electricity before carrying it to a processing system.

Today's optic fibres are made of silica glass. At certain fixed wavelengths there are "windows" in which light travels through it most efficiently. There is a window at the 1.3 micron wavelength and most of today's telecommunications use this. There is another window at 1.6 microns and this is where the next generation of systems will work.

Today's fibres are approaching their theoretical best with a loss of 0.1 dB per kilometre. But if the wavelength is longer, as for infra-red light, the silica glass just absorbs it. So new glasses are needed. The best bet so far is a glass made from zirconium fluoride which has a theoretical absorption of as little as 0.01 dB per kilometre. This opens the door to a submarine cable, a thousand kilometres long, without any booster repeaters along the route.

It looks likely that fluoride glass will be able to carry light of between 2 and 12 microns wavelength. This enables optic communication, for instance from a gas sensor or heat sensing camera, Light signals from the sensor could pass along an oil pipeline or through the wings of a military aircraft. At the moment the light must be converted to electricity.

Doctors use infra-red laser light, usually at 10.6 micron wavelength, for surgery. At the moment they need an articulated arm with mirrors to get it round corners. With fluoride glass it might be possible to pump watts, or even tens of watts, down a flexible fibre.

This wavelength incidentally is generated by the carbon dioxide lasers used for cutting steel. But in this case kilowatts of power are used and it is unlikely that this can ever be channelled down a fibre without frying it.

Of course nothing is for nothing. Fluoride glass transmits long wavelength infra-red because it has heavy atoms which can be thought of as weakly sprung. Unfortunately this makes the glass difficult to draw into
fibre. It melts at around $300^{\circ} \mathrm{C}$ instead of 2,000 degrees for silica, and crystallizes easily which means that it is fragile.

Fluoride glass is also very susceptible to water. If any gets into the glass it absorbs the light. The fundamental peak of water absorption is 2.9 microns. The other water absorption peaks which plague silica glass are weak harmon ic overtones. So the worst risk of water absorption is in the infra-red band.

Fluoride glass has to be made in chambers where the air is so dry that only a few parts per million of water is able to get at the raw chemicals. Other odd mixes, for instance involving arsenic, in the chalcogenide group, may turn out to work well at the much longer wavelengths over 10 microns.

Laser Sandwich

The light launched into a fibre usually comes from a laser. These aren't bulky gas lasers any more, they are solid state chips. A speck of active material, for instance gallium arsenide for wavelengths of around 0.85 microns or gallium indium arsenide phosphide for wavelengths of around 1.3 microns, is sandwiched between tiny reflectors in an integrated circuit.

Early solid state lasers had a short life, largely because they drew a high current and got hot. STL reckons it now has the world's lowest threshold current laser, for the 1.3 micron wavelength. The active light-emitting part measures just 1 micron in length and Is 0.2 microns thick. As a reference, a human hair is 50 microns thick.

The chip starts to lase at a current threshold of 4.6 milliamps. So it runs very cool. Estimated working life is around 25 years which makes it safe to install in submarine cables. Obviously you can't send out a man with a screwdriver to replace lasers under the Atlantic.

Another new trick is to tune the laser output very tightly, because this means that the light pulses sent down a fibre do not spread. Before the chip lases, it emits a broad band of light, around 100 nanometres wide. It is now acting as an l.e.d. When it lases, through oscillation of the light between the reflectors, the bandwidth drops to a few hundred MHz which is under one nanometre. But there are still spikey lines in the spectrum, caused by standing waves in the resonant chamber between the mirrors.

Optical Grating

The aim is to tune out all these lines except one. This is now done by building an optical grating into the laser chip. The grating ridges are one wavelength long and act as extra resonant chambers.

The grating works like a very sharp filter that kills off all but a single frequency in the laser output. So all the light travelling down the fibre is of exactly the same wavelength and frequency. So it travels at one speed and all arrives at the same time. So digital pulses do not spread and introduce errors into the signal.

Think for a moment about the difficulties of making such a grating, with a ridge spacling of 250 nanometres. The only way to do it is with an electron beam masking machine, which draws direct onto the silicon wafer with an accuracy down to 0.1 microns. This compares with an accuracy of one or two microns for the chips made with conventional photo lithographic techniques.

It will take several hours to trace each wafer by direct electron beam writing. But each wafer can produce up to 1,000 chips and even if only half these are usable it's worthwhile because telecommunication lasers of this type sell at thousands of pounds each.

Electron Analysis

Finally, have you ever thought how you can check the electrical performance and continuity of a chip with circuit lines drawn down to a spacing of one or two microns, or even less? Early chips were tested with a mechanical probe. This is now impractical. The probe damages the chip.

One technique used at the STL Labs is to put power through the chip circuit and look at it under an infra-red microscope. Any faults show up as hot spots, because the fault areas generate more heat than the rest of the chip.

Another way is to put the chip inside an electron microscope and look at it while current is running through. Negative voltages show up as light tracks on the microscope picture and positive voltage shows up as dark tracks.

This is fine for d.c. but what about high frequency operations? Simple when you know how. The electron beam is switched on and off at the same frequency as the operating voltage, like a pop group strobe. That way it artificially freezes the dynamic performance of the chip. Magnification can be up to 100,000 times.

Electron beams can also be used to analyse the physical and chemical structure of the chip surface. When the beam hits the chip it produces X -rays and secondary electrons which have an energy pattern which is characteristic of the material which released them.

Computer software can give a direct readout of the material under the beam, down to a one micron spot. So if a chip doesn't work a lab technician with an electron microscope can look for a break in the voltage pattern and then do a spot analysis of that tiny area to identify any chemical blemish.
This group of hair-thin strands of glass fibre cables are capable of carrying thousands of simultaneous telephone calls and digital information down each cable.

This low cost unit is an ideal add-on for electric guitars, providing a wide range of musical effects. The unit incorporates six graphic equaliser channels with centre frequencies between 50 Hz and 15 kHz .

COMPUTERISED SHUTTER TIMER

Use your microcomputer as a piece of photographic test equipment. This is a simple and inexpensive camera tester, yet will do what normally requires costly apparatus.

A doorbell with the ringing sound of a conventional electromechanical device, but taking advantage of the reliability and compactness of electronic techniques.

Plus... Monostables-Bistables-Astables

THE DATA SHEET on an operational amplifier says that it will source 10 mA and sink 15 mA . Please explain.

Another case of jargonl "To source" is shorthand for "to act as the source of current". "To sink" means "to absorb current"

CURRENT

Some simple examples (Fig. 1) illustrate the point. At (a) the boxed-in part is a source of current, which it supplies to a load RL. The current rises when RL is reduced, and its upper limit, when $\mathrm{RL}=0$, is fixed by the internal resistance (100Ω) at 30 mA . So 3 V in series with 100Ω can source 30 mA .

A current sink (b) can be just a resistance. If it's 100Ω as shown, then it can absorb up to 30 mA when driven by 3 V through a load RL which may fall to zero.

(a)

Fig. 1: in drawing (a), the current source is represented by a 3 V battery with a 100 ohm internal resistance in series. In drawing (b), the 100 ohm load resistance is "sinking" up to 30 mA via load resistor RL, which is variable.

Obviously the amount of current which a circuit can source or sink must depend on the voltage available for driving it. In practical cases the voltage is often fixed by some other consideration. In logic circuits, for example, it may be fixed by a design requirement at, say, 5 V .

In any case, the driving voltage can't be increased beyond a certain point, because any increase in current entalls an increase in power dissipation. Every component or device has its safe dissipation limit, beyond which overheating may damage it. For this reason, sourcing and sinking ratings imply safety. A circuit which is forced to source or sink more current that its rating may overheat.

OPERATING AMPLIFIER CURRENTS

"Source" and "sink" are really no more than brief terms for the ability of a circuit to deal with outward and inward current flows. But the terms have a certain handiness which guarantees their survival.

In the case of an operational amplifier with split d.c. supplies (Fig. 2) the circuit either sources current through the load RL, or sinks it. The current really comes from the battery, of course. But if we take the battery for granted, the operational amplifier is seen to source or sink currents via RL and "earth".

Fig. 2. The operational amplifier has a "split" supply, which means that the chip has both a positive and a negative power supply connection. In terms of sourcing and sinking current, the current flow from the battery) can be considered as flowing from, or into, the operational amplifier, respectively.

RL may not be a physical resistor. It could be, for instance, the resistance of the operating coll of a relay. In this case, since a relay will only operate reliably when its coil passes enough current, the source or sink current rating can be very relevant. Quite often the two ratings differ. This can affect the way the operational amplifier is used.

Suppose, for example, that RL is a relay coil whose operating current is 25 mA . If the operational amplifier will source 20 mA but sink 30 mA then in this case the relay must be connected so that is is operated by the "sink" current.

An operational amplifier is arranged in Flg. 3 to switch on one of two l.e.d.s, one green, the other red. If the green l.e.d. needs more current than the red for equal
brilliance) it may be necessary to pay attention to the source and sink ratings, and connect the l.e.d.s accordingly.

Fig. 3. When different l.e.d.s are connected in circuit, their current ratings will determine which l.e.d. is "sourced" current by the op-amp, and through which the op-amp sinks" current.

If the current-sinking rating is the greater, then the arrangement shown may have to be used. (In many cases, of course, both sourcing and sinking capacities will be more than adequate, so either arrangement of l.e.d.s would do).

SINKING ALONE

Many circuits can either source current, or sink it, but not both. Some integrated circuits have "open-collector" outputs; i.e., their last stage is a transistor with no collector load resistance. The user adds his own (see Fig. 4). If it takes the form of a relay or lamp you have to ensure that the current-sinking ability is adequate. Suppose, for example, a $6 \mathrm{~V}, 300 \mathrm{~mW}$ lamp has to be lit by a voltage comparator i.c. with open collector output. If the comparator will sink 100 mA , is this enough?

Fig. 4. The output stage of an integrated circuit which is "open-collector".

Since power (wattage) is the product of voltage across, and current flow through any device, It is easy to work out the current that the lamp will draw. We have 0.3 (watts) $=6$ (volts) $\times 1$ (amps) Hence $1=\frac{0.3}{6}=0.05 A$, or 50 mA . The comparator is capable of sinking 100 mA , so it can be used.

However, the designer must ensure that the supply voltage is correct for the job.

If a 6 V supply is used, then the bulb needs the whole voltage, leaving nothing across the comparator output. If, when sinking 50 mA , the comparator's output voltage is 3 V , then the supply voltage will have to be increased in order to have enough for lamp and comparator output in series.

COUNTERTGENCE

BY PAUL YOUNG

Computer Weather

As much as 1 admire computers, and realise that life today would probably be intolerable without them, I still cannot resist a quiet smirk of satisfaction when one of them finishes up with egg on its monitor. This is most likely an age old instinct going back to the days when we were all savages and worshipped idols. Every now and again we would knock them down and chop them up, just to keep them in their place, so to speak.

This happened recently, I refer of course to the computers, not the idols. During the terrible spell of cold weather the BBC weather man explained they now had a wonderful new computer system, with which they could pinpoint any part of the country and tell us exactly what was going to happen. He then proceeded to tell those of us who lived in the South East, that next day we could expect an easterly blizzard and heavy snow, we were depressed but not surprised. To our relief and delight, the next day was sunny with a south westerly wind.

Perhaps it is a bit hard to blame the computer, because weather is less predictable than the fair sex. Fronts bringing rain occlude before they reach you, and a "Low"
which should have moved South East, shoots off in a North Easterly direction, causing the opposite of what was forecast, tantalizing isn't it?

Common Market Shock

Something I have often wanted but doesn't exist, is a small neat two-way flex connecter. The nearest thing to it was the old Bulgin range of "Domina" plugs and sockets.

Someone will no doubt howl that you must have an earth connection. My contention is, that if you are connecting a plastic clock, or a glass or porcelain table lamp or one of those appliances where the works are completely isolated there is no point. There must be countless occasions when you want to move a lamp around and you don't want a long lead, nor do you want a clumsy thirteen amp plug on the end.

Even if someone produced one, I have no doubt the bureaucrats in Brussels would jump on it. I well remember how they outlawed the Bulgin P70 series, because it was possible to unscrew the back with the mains on. They were all Ignominiously derated to twelve volts d.c. despite the fact they had been in use for probably fifty years without harming anyone

What is so safe about the continental system, with its two pin plugs and no earth? This was understandable when they were using 110 volts, but now it is a standard $220 / 240$ volts a.c.

I put this question to an electrical friend of mine. What happens if the metal part of the appliance becomes "Live" and you touch it? He explained that the current flowed via your body back to the switch box, which tripped a relay and switched off the power. He added, that of course you may be dead by then. It was not very reassuring. Was he having me on?

Pirate Radio

I was sorry to learn that "Radio Jackie" had been closed down. They have been broadcasting for three or four years and were' at one time customers of mine, buying high voltage capacitors for their transmiters. I remember at the time asking one of the partners how they got away with it and he told me that as they were practically non profit making, and carried out a large amount of work for charity, the Law kindly turned a blind eye.

From what I read about these events, I get the impression that the regulations governing these matters needs revising, to bring it into line with current needs. I remember many years ago, that popular witty saga of the Wireless World "Free Grid" bringing up the same point. He said according to the Act, it was illegal for one person to convey Information to another by other means than the written or spoken word or telephonic communication.

In his usual humorous way, he added, that as far as he could see, it was an indictable offence to wink at a pretty girl. I hope he was joking.
 ventional keyboard or a synthesiser keyboard can be added to the CBM 64 using our design. Thus enabling the excellent music facilities of the machine to be fully exploited.

modems

What is a modem? What does it look like? What can I do with it? How much does it cost? How does it work? How was it designed? How does it use the telephone system? What kind of databases can access with it? What about microcomputer compatibility? Enough! Enough!!
The answers to all these questions can be found in a three part series which begins in the June issue. It will offer a wide insight into the expansive world of modems and open up new avenues of exploration into a world of privately and publicly accessible databases.

This new design is intended to form the basis of a mobile robot system that can be developed and expanded in a number of ways. The basic mobile unit carries a rack mounted c.p.u, rechargeable power source, tray and arm mounting facilities.

PRACTICAL

ROEOTICS MICRDS ELECTRONICE•INTERFACINE JUNE ISSUE ON SALE FRIDAY, MAY 3

N the previous article in this series, we discussed microprocessor systems, their design and some of the decoding and memory mapping techniques that they employ.

In this, the final article of the series, we shall discuss the ways of using the information produced by the microprocessor (or by any other device).

USE OF DATA

The data to which we now refer is the 8 -bit (or 4 -bit, 16 -bit or 32 -bit, dependent upon the type of system used) words produced by, say, a microprocessor system on the data lines. We shall not be discussing the application of these words within the system itself, since this is merely repeating what we have discussed earlier. We are, however, concerned with the use of controlling other devices using our data.

Some devices use the words directly from the data lines, whilst other devices require interface circuits connected either, via input/output ports or direct to the data lines. When devices are connected direct to the data lines it is generally necessary to provide decoding circuits in order to ensure that those devices are only "called" when required. Since we have already discussed decoding techniques in the previous article, there is no need for further explanation.

We shall only consider those devices which use a single bit of information, since, if they use more than one bit, the method is more than likely, simply repeated.

Suppose we are using an input/output port, which, although having the ability, as its name suggests, to either input or

OUTPUTS
[ESM
An 8-bit output port.
output information, is set to output data at the port only. This setting would be carried out using software control. We have, therefore, 8 bits of information being output from the system as shown in the diagram.

Now, we will assume that each of the 8 output lines contain information to control seperate devices of some kind, which is quite likely and quite practical. The existence or not of data on the 8 lines is controlled by software commands, with, say, a " 1 " on the line being a request for the device to operate, whilst a " 0 " on the line is an instruction for the device not to operate. If devices are connected separately to the output lines, as we have suggested above, then we can operate none, one, or as many of the devices as we like, each independently of another, using program control. Hence we need only consider one of the lines, say output Do, as shown below.

Now, suppose that only device that we need to operate is an l.e.d., that is we need to indicate whether or not our output line has a bit at logic 1. If it has, then we light the l.e.d., if not, the l.e.d. is not lit. Let us use the circuit shown, which is simply an l.e.d. driving circuit.

The output from the $1 / O$ port is fed into the transistor base. If the output is low, then the transistor will be switched off. If the output goes high, however, the transistor switches on and D1 is allowed to light, with the resistor Rx being the current limiting resistor for the device.

Although the circuit is an analogue type, since a transistor is being used, which can be in any state between on and off, it should be remembered that here

only a high or low signal is available from the I/O port, with in-between states not permitted, therefore the transistor driving circuit will similarly only be working in either a high or a low state of conduction. In-between states will not exist.

Note also that the "Vcc" and "ground" connections shown on the circuit diagram may be the same as those used for the microprocessor system supply. Alternatively, another supply may be used for these functions, as long as the "ground" connection is attached to the microprocessor ground as a common.

Now, suppose we wanted to operate, say, a relay instead of an l.e.d.. Then this is no problem, since we only have to put the relay in place of the l.e.d., with one or two other points considered. Firstly, the Vcc supply used should be a separate supply to that used by the microprocessor, but the ground connections should be made common as previously discussed. (The supply for the relay will probably need to be of a higher voltage anyway.) Secondly, since the relay is an inductive load to the circuit, a diode should be connected across the coil to protect the circuit from back e.m.f's when switching takes place. Thirdly, the value of the resistor, to limit the current, and the type of transistor used, should both be carefully chosen. The circuit becomes that shown above.

If the devices to be operated involved the use of higher voltage supplies, say 50 volts d.c., then it may be necessary to use some other switching device, such as a VMOS device, which has the advantage of literally being able to dissipate many watts from only $1 \mu \mathrm{~A}$ gate input. Shown opposite is a typical use of a VMOS, N -
channel, device, as a drive to a 50 V d.c. circuit.

High voltage driving circuit.
Here, the output from the microprocessor I/O port is fed via a current-limiting resistor, R1, to an optocoupler which provides isolation between the TTL voltage levels and the higher voltage supply. Resistors, R2 and R3 provide a voltage-divider chain for the N channel VMOS component, which drives the load as shown.

Above we have considered circuits which require d.c. supplies for the devices to be operated. If a.c. supplies are required, the triacs or other a.c. components should be considered as the driving device.

We have now adequately provided background information to enable further research into interface circuits to be undertaken. Let us now consider the diagram below.

EE97M
The basic interfacing format.
In our discussions above we have only considered the situation where the link between A and B, shown above, is a small distance. Then there is no problem here and the I/O port and the interface circuitry can be considered to be adjacent.

Now, however, suppose that the device to be operated is at some greater distance from the microprocessor I/O port, which is quite possibly the case when a remote control of the device is required. Suppose also that, instead of just one device being required to be operated, there are several controls to be sent to the remote location.

This gives us a problem, since, if we are working at TTL logic levels of 5 volts and 0 volts, then due to losses derived though cable resistances and/or wire resistances, there is a grave probability that the "high" levels output from the system cannot clearly be detined as "high" at the remote end of the system and malfunctions of the system would probably result.

We must therefore have some system which we can use to accept the outputs from the microprocessor I/O port and transmit to the remote end for control of
the devices there. This system performs the task of data transfer and the type of system utilised is dependent upon several factors:
DATA FORMAT-Is the data available in parallel or serial form? In the example above, the outputs from the I/O port will be in parallel form.
DISTANCE OF THE TRANS-MISSION-Over very great distances, amplification may be required.
REQUIRED SPEED OF THE TRANSMISSION-Called the Data Rate, this need only be considered when overall speed of operation of a system is seen to be critical.
REQUIRED LEVEL OF INTE-GRITY-This is the accuracy required by the system in transmitting data

without any error in level detection at the remote end. Codes can be injected into the system to create a high level of integrity.
SIGNAL TO NOISE PROBLEMSAny system suffers from electrical noise and, really, the greater the distance the data is to be transmitted, the greater the amount of noise picked up. We can, however, consider an ideal noise-free system here.
CHANNEL CAPACITY AVAIL-ABLE-The transmission system used must have a limit to the number of channels available for transmission of data and this limit must be greater than the actual number of data channels required, or at least equal to that number. (In this latter case, there would be no allowance for any further channels to be added at a later date).
TYPE (of transmission channel used).
DATA ENCODING-Data can be encoded for transmission, this being generally essential, in some cases.

To ensure correct operation a coding system is added to the transmitted data which is detected at the receiving end and this is used to ensure that the transmitter and the receiver are in phase so that bit 0 transmitted is detected as bit 0 and not as bit 4 say.

TIME DIVISION MULTIPLEX

The basic type of transmission system is the T.D.M. or Time Division Multiplex system and gives operation similar to that described above. The name is derived from the task of splitting, or sharing, of a certain length of time between bits of information transmitted. In the simplest example, if 10 functions are to be transmitted in a time of 1 second then each function occupies $1 / 10$ th. second timespan. In practice, we are probably considering say, thousands of functions being tranmitted in a $1 / 2$ second timespan. Consider the diagram below, which shows the basic principle of the T.D.M. system.

Here, the 8 bits in our example are connected to a sequence switching system that takes each bit in turn and connects that bit to an encoder which gives a unique code for each bit. The encoded bit is then passed to the transmitter which puts the information out onto the serial link. At the receiver the information is decoded and the bit is output to the device relevant to that bit. Clock information is encoded at the transmitter end and extracted at the receiver end to ensure phases are the same at the two ends.

DATA TRANSMISSION INTEGRITY

As previously mentioned, it is essential to check that the data transmitted is accurately received. Parity checking is one method used to prove integrity.

PARITY CHECKING

Here we have a means of checking whether any one bit of a transmitted word is received in error. To do this, we always make sure that either an even number of bits (even parity) or an odd number of bits (odd parity) is transmitted.

A parity bit is generated at the transmitter and transmitted with the data. Let us consider even parity. Suppose we have the 7 -bit word 1011101 to be transmitted. Then in this word there are 5 high bits. We must add a 1 to this to give an even number of high bits. This I to be added is the parity bit. Hence our word transmitted becomes 10111011. At the transmitter we have a parity generator and at the receiver we have a parity detector. Therefore, at the receiver we detect that the parity bit is 1 and, know-
ing that we are working with an even parity system, we know that, including the parity bit, there must be an even number of bits received that are "high". In this example, six "highs" are received so we know that the received word is correct. If only five "high" bits had been received then we would have detected an error and the word would have been rejected.

Referring to the diagram below, a parity generator simply detects the number of I's input and either gives a " 1 " or a " 0 " at the output, for even parity, to be used as the parity bit.

wrong, but parity check does not discover any errors.

HAMMING CODES

These are codes used for the detection and automatic correction of a single-bit error in a digital word. It is a repeated parity-checking procedure that checks the parity of one group of bits in the word, followed by another group, etc. By allowing overlapping of the groups, the actual position of the error can be detected and a correct bit generated. Instead of transmitting just 1 parity bit with, say, a 7-bit word, several Hamming bits are transmitted. The use of Hamming codes was developed in 1950 and the methods can be found to be aptly described in most books on data transmission.
(PARITY BIT)
DATA WORD $=1000000$
DATA WORD - PARITY BIT $=1000000 \%$

It is seen that the parity generator is a collection of EX-OR gates connected simply as shown. The parity receiver is similarly simply constructed.

The only disadvantage to parity checking is that, if an even number of bit errors occur, or indeed more that one bit error, then the parity check will not detect it, but the chance of two or more bit errors in an 8-bit word is very unlikely. For example:
7-bit word 1000110
7-bit word + parity transmitted 10001101 7-bit word + parity received ... 10010101 receiver thinks 7 -bit word is 1001010

The above article concludes this series entitled Digital Electronics. In the series, I have tried to give an introduction to this subject for those who have little or no understanding of it. It would be impossible to go into very great detail on a widespread subject such as this in a short series of articles, such as this has been, however, we do hope that the series has been constructive and has provided a basis for further research into the subject.

PIEASE TAKE NOTE

Sound Operated Flash

 (September 1984)The stripboard and component layout on page 575 was incorrect and should be constructed as shown in the diagram opposite.

Headlight Activated Switch (March 1985)

The earth lead to the light in Fig. 2 on page 137 should be common to the Mains In Earth, and not to the neutral as shown. Also. D3 cathode resistor ($\mathrm{R} 12,470$) is not shown.

In Fig. 3, there should be a link between rows F and G, column 20.

The wiring diagram. Fig. 5, should show row N connected to earth, and row B connected to JKI input. They are transposed as published.

Motorcycle CodelockCircuit Exchange (February 1985)

Page 121. On the circuit diagram diode DI is not an l.e.d.

In the last paragraph:
Line one; IC 1c should read IC2a.
Line five: IC 1d should read IC2b.
Line seven; IC1d should read IC2a.

Digital Electronics-Part 5 (February 1985)

Pages 114 and 115. The two circuit diagrams of the Binary-Up and BinaryDown counters are transposed. Diagram EE60M should be in the place of EE58M and vice-versa.

BAKERS DOZEN PARCELS

Price pot parcel is £ 1.00 , bun if you order 12 you get one extre tree.

513 amp ring main junction boxes
513 amp ring main spur boxes
$\begin{array}{rl}5 & 13 \mathrm{amp} \text { ring main spur boxes } \\ 25 & 13 \text { amp fuses for ring mains }\end{array}$
5 surface mounting switches suitable insulated for mains
$3 \begin{aligned} & \text { voltage } \\ & 3 \text { flush el }\end{aligned}$
replace 1 Or 2 wav switches
5 in tlex line switches.
4 in tiex l line switches with neon
280 watt brass cased elements
2 mains reanslormers with $6 v 1$ 1a secondaries
1 extension speaker cabinet for 6% s. speaker
5 octal bases for relays or values
12 glass reed switehes

40 OCP 70 photo transistors
25 assorted

25 assorted gemanium ransistors OCA5 etc
4 tpae heads, 2 record. 2 erase
2 ultra sonic trensmitters and
215000 mid computer grade elect trolics
2 light dependent resistors similar ORP I
5 dift micro switches
2 matns interference suporessors
225 watt crossover units
140 watt 3 way crossover
-180 various screws and self tappers
of each wefer switches $-6 p 2$ way; $4 p 3$ way: $2 p 6$ way
1012 way
16 digit counter 12 v
16 digit counter mains volraga
1 BOAC in flight stereo unit (second hand)
${ }^{2}$ Nicad battery charger
2 hum sidity switches
2 aerosol cans of ICI Dry Lubricani
96×1 metre le ngiths colourcooded
2 air spaced 2 gang tuning condensors
2 solid diaelectrici 2 gang tuning condensors
10 compression trimmer
$4 \times 465 \mathrm{KC}$ IF transiormers
8 Rocker Switches 10 amp Mains SPST
6 Rocker Switenes 10 amp Mains SPDT
5 Rocker Switches 10 amp SP 0 C Centre
5 Rocker Switches
4 Rocker Swithes 10 amp
amp
124 hour time swirch mains operared
16 nour clock work time switen
2 lever swithese 4 pole changeover up and ditto down
26 v operated reed swith
2 5v oderated reed switeh relays

2×122
$1 \times 12 \mathrm{VC} 0$
0
$1 \times 12 v 4 C 0$ relav
2 mains operated relavs 3×8 amp changeovers (secondthand
10 rows of 32 gold diated $1 C$ socke ts total 320 sockets 1 locking mechanism wish 2 kevs)
5 Dolls' House switches
2 telephone hand sets incorporating ear priece \& mike (shana)
2 fime solenoids - ideal to make current transtormer etc.
5 territe rods $4^{\prime \prime} \times 5 / 16^{\prime \prime}$ diameter aerials
4 ferrite slab aerials with L \& M wave coils
4200 earpietes
1 Mullard Thyristor trigger module
10 assorted knobs $\%$ spindies
most items quantity buyers ge
SOUND TO LIGHT UNIT

程害
 [2838]

Complete kit of parts for a inree channel sound io light unit
controlling over 2000 watts of lighting. Use this at home if you controlling over 2000 watts of lighting. Use this at home if you
wish but it is plenty rugged enough for disco work. The unit is housed in an attractive two tone metal case and has controls for each channel, and master on/off. The audio input and output are by " 4 "scckets and three panel mounting fuse holders provide thyristor protection. A four pin plug and socket facilitate ease o
connecting lamps. Special price is E 14.95 in kit form or $£ 25.00$ assembled and tested.

MINI MONO AMP Fitted volume control and a hole for a has three transistors and we estim. ate the output to be 3 W rms. ed with the amp. Brand new.
perfect condition, offered at the very
ow price of $£ 1.15$ sach, or 10 for $£ 1$

The AMSTRAD Stereo Tuner.
This ready assembled unit is the ideal tuner for a music personal stereo radio - easy to carry about and which will give you superb reception.
Other uses are as a "get you 10 sleep radio", you could even take it with you to use in the lounge whit the rest of the imerested. You can listen to some musich you are

Some of the features are: lang wave band $115-270 \mathrm{KHz}$ medium wave band $525-1650 \mathrm{KMz}$. FM band 87 108 MHz , mono, stereo \& AFC switchable. fully assembled and fully aligned. Full wiring up data showing you how to FM aerial inote ferrite rod aerial is included for medium and long wave bands. Alt made up on very compact board Offered at a fraction of its coss: only $\mathbf{£ 6 . 0 0}$

25w SPEAKER SYSTEMS By Amstrad
25 watt RMS loading $88^{\prime \prime}$ woofer,
${ }^{4 . " T}$ Wheeter with crossover. $£ 12.00$
Der pair $+£ 4$ posti. New and unused
. per pair 4 Et posti New
but cabinets slightily damaged hence tins low price, carry our normal guarantee.

CAR STARTER/CHARGER KIT Flat BateryIDon't Worry you will staty your car in a few minutes with this unit - 250
watt yans former 20 amp rectifiers, case and all parts with data $€ 16.50$ or without case $£ 15.00$. post paid.
4/5A BATTERY CHARGER Transtormer and rectifier E3.95 \& \& 1 post, 3 kits $£ 12$ post paid
PRESTEL UNITS
These are brand new
and we understand rested. came wis manutac turer's
guarantee now void
asarantee now void no longer trades
These originally
sold for over $£ 150$

We ofter them
7 polug in i.c.s s and price is only $£ 14.95$ liess than the value of the
STABILISED POWER SUPPLY (inerins Input) By LAMDA (USA) - Ideal for compuler add.ons. d.c. ourput. Requitated for line volts and load current. Voltage regulation, 1\%
with input vartations up to 20% - 1 oad regulation 1% from no load to full inad - or full load to no load. Complete in heavy duty

25A ELECTRICAL PROGRAMMER

 home 1o. You can do all these and more. By B tampus maker with 25 amp on/off switch.
independent 60 minute memory jogger. independent 60 minute me

THIS MONTH'S SNIP

TOP OF THE POPS LIGHTING if you use our disco switch
These have $12 \times 10 \mathrm{amp}$ changeover switches each rated at 10 amps so a whole street could easily be to give a running light, random flashes, etc etc. 230 volis main operation. Brand new, made by Honeywell. Offered at approximately one third of cost.
ONL $£ \in 6.90$

FROZEN PIPES. Can be avoided by winding our heatung cable around them - 15 mirs connected to mains costs only about 100 per mek to run. Hundreds of other uses as it is waterproot and very
Hiexible. Resistance 60 ohms/meure. Price $28 \mathrm{p} /$ metre or 15 m for $\mathrm{\varepsilon} 3.95$

FLEXIBLE EXTENSION LEAD iwin rubber 5 mm ideal grass cutter etc. 250 merre coil 525.00 . 50 mevre coil 56.75

50 THINGS YOU CAN MAKE

Things you can make inctude Multi range meter. Low
ohms tester, A.C. amps meter. Al arm clock, soldering ohms tester, A.C. amps meter. Alarm clock, Soldering
iron minder, Two way teiephone, Memory iogger, Live line tester. Continuity checker, etc. etc., and you will still have hundreds of parts for future proiecis. Our 10 Kg
parcel contains not less than 1,000 items. parcel contains not less than 1,000 items. panel meters. timers, thermal wips, relays, switches, motors, drills, taps,
and dies, took, thermostats, coils, condensers, resistors, and dies, tools, thermostats, coils, condensers, resistors,
neons, earphone /microptones, nicad charger, power unit, 90% are unused componants.
YOURS FOR ONLY $£ 11.50$ plus $£ 3.00$ pos:.
REVERSIBLE MOTOR WITH CONTROL GEAR Made by the famous Framco Company this is avery robust motio
size approximately 7% " long, 3% " dis. $3 / 8^{\prime \prime}$ shaft Tremendousiv size approximstelly formg, lis dis, 3/8, hal fremendousiv powerful motor, almost impossibit to stop. Ideal for operating
stage curtains, stiding doors, ventilators etc., even garage doors if adequately counter -oalanced. We offer the moior complete with control gear as follows:
i Framco motor with gear box

1 push to start switch E19.50 plus postage $\mathfrak{E 2} .50$

1 circuit diag. of connections

J. BULL (Electrical) Ltd.
 (Dept EE) 34 - 36 AMERICA LANE.
 Erablicheod 30 YEARS

PRICES: All prices include VAT.

MAIL OROEA TERMS: Cash, P.O. or cheque with order. Orders under E 12 add 60p service chafge. Monthly account orders accepted from night. Haywar of Heath (0444) 454563 . Bulk ordars: phone for quote. Shop open 9.00 - 5.30 , Mon to Fri, not Saturday.

VENNER TIME SWITCH
Mains operaled with 20 amp swiseh, one
automatically correcting for the lengithen ing or shortening day. An expensive tume , it to convert this into a normat 24 h 4 time svitch but with the added advantage of up to 12 on/ofls per 24 hrs. This makes an ideal controller for the immersion heater. Price of adaptor kit is $\mathbf{\varepsilon 2 . 3 0}$. Ex.Electicicity Board.

EXTRACTOR FANS - MAINS OPERATED
$5^{\circ \prime \prime}$ - $\mathbf{6 5} .75$. Post $£ 1.25$
 E6.50. Post E1. 25 €4.50. 230v. E5.75. Post 75p, All the above ex-compute those below art unused.
$4^{\prime \prime} 4^{\prime \prime}$ E8.50. Post 750 Americ an made
E11.50. post $£ 2.00$ Tangential Blawer 100 x 3
 ir outlet. dual speed
E4.60. Post $\mathrm{E1} 50$.

TANGENTIAL BLOW HEATER

oy british Solariron. as $3 \mathrm{~K} w \mathrm{f} 6.95$ complete with "cold' 'half' and heat switch, safery cut
out and connection diagram.

Please add post $£ 1.50$ for 1 or 3 for $£ 20$ post paid
2.5 Kw KIT Still avallable: $£ 4.95+\varepsilon 1.50$ port.
ROCKER SWITCHES Standard size the $11.5 \times 28 \mathrm{~mm} \mathrm{cut}$ out. Single pole onfoft - 150 each 1000 for $£ 75$. Single pole changeover 200 each -1000 for E 100 . Single pole changeover
with centre off $-25 \mathrm{peach}-1000$ for E 125 . Single pole on/o with centre off - $25 p$ each - 1000
with neon - 36 - 1000 for $£ 180$.
ROCKER SWITCH DP/DT 15 amo 250 volts suitable fo (
MICRO SWITCHES V3 type all 25010 amp SpST 20 p $1000-£ 100$ Sodt $3001000-£ 150$, very low tongue Spdt.

EX-G.P.O. TELEPHONES

Black heavy type...
Ex-G.P.O. plug...
Ex-G.P.O. socke
WALL MOUNTING ROOM THERMOSTAT By Danfoss has a really pretty two tone grey case with circular white scale and dial. Setting temperature tr
250 v contacts. Price $£ 4.60$. -10 for $£ 40$.
BLEEPERS 6 or 12v batterv or transformet operated, ideal for using in alarm circuits but particularly suitable for con and motor cycle alarms. These

MINIATURE WAFER SWITCHES

2 pole, 2 way -4 pole, 2 way -3 pole, 3 way
4 pole, 3 way -2 pole, 4 way -3 pole, 4 way
2 pole, 6 way -1 pole, 12 way 2 pole, 6 woy -1 pole. 12 way.
12 volt MOTOR BY SMITHS Made for use in cars, etc. these are very $31 / 2^{\prime \prime}$ long by $3^{\prime \prime}$ dia.
length of $\%{ }^{2}$ spindle. length of
Ditto but double ended $£ 4.25$
MAINS MOTORS
We have very large stocks ol motors from 2 watts to $\% \mathrm{hp}$. Most a

IONISER KIT

Refresh your home, office, shop, work room. orc. with a negative ION generator. Makes you feel better and work $£ 11.95$ plus $£ 2.00$ post.

OTHER POPULAR PROJECTS

3 Channal Sound to Light
Big Ear, listen inrough wal
Silent sentinel Ultra Sonic
Car Light 'left on' alam
Secret switch - fools triends an
$3-30 v$ Variable Power Supply
2 Short \& Medium wave Crystal Radio
2 Short \& Medium wave Crystal Radi
3 v to 16 v Mains Power Supply Kit
Radio stethoscope - fault finding sic
Mug stop - umits piercing squark
Mrill contral kit
interrupred beam ki
ransmitter surveillance kis
Radio Mike
M receiver kit - for surveillance or normal M insulation Tester - electronic megger Sattery shaver or fluorescent from $12 y$ Matchbox Radio - receives Medium Wave
40 watt amp - nifi $20 \mathrm{hz}-20 \mathrm{kHz}$
115 Watt Amplifier 5 Hz 25 kHz
Power supoly for 115 watt amps
ower supply for 115 watt amps

69.50

69.50

CARAVANI INDICATOR CONTROL

T.R.de Vaux Balbirnie

WIRING the 7-pin socket for a caravan electrical system is a straightforward job. As many have found to their cost, however, it is unwise to connect the additional flashing indicator lights direct to the car system. At the very least this will cause a change in operating speed. At worst, the flasher unit will overheat and fail.

ALTERNATIVE

The usual solution is to use a "heavy duty" flasher unit to replace the standard one. Alternatively, a relay may be used to relieve the existing unit of the extra load.

This project is a type of relay but without moving parts-the switching action is performed by transistors. If carefully constructed, it should give indefinite service. The Caravan Indicator Control meets UK Vehicle Lighting Regulations and, as described, is suitable for all trailers towed by negative-earth cars. By using alternative transistors it may be made for use with positive-earth vehicles.

LAMP FAILURE

An important feature of this circuit is that a warning is given if a caravan indicator bulb fails as soon as this happens. Normally, a dashboard indicator light remains off until a turn is signalled-it then flashes in sympathy with the existing warning light. Should a filament fail, however, the new indicator will light immediately and glow continuously. If a spare bulb is carried, then the fault may be corrected before causing danger to other road users. Faulty wiring or poor earth connections will cause the warning light to flash intermittently.

HAZARD OPERATION

If the towing vehicle has a "hazard" system whereby all four flashing indicators can be switched on together, the Caravan Indicator Control will operate both additional lights and all six will flash together. Although the dashboard indicator lamp will not operate under these conditions the existing hazard warning light gives a reminder that the system is switched on.

CIRCUIT DESCRIPTION

The entire circuit for the Caravan Indicator Control is shown in Fig. 1. TR1 and TR3 drive power transistors TR2 and TR4 which have the caravan flashing indicator lamps, LP1 and LP2, connected in their emitter circuits. TR1 and TR2 are used for left turn signals while TR3 and TR4 are used for right ones. The appropriate transistors turn on when a small base current flows from the existing car system through R1 or R2 as appropriate. This current is so low as to have negligible effect on the flasher unit.

The rest of the circuit consisting of TR5, TR6 and associated components form a type of Exclusive-OR gate. There were problems with early circuits using integrated circuit gates and the present design is better suited to the "noisy" conditions of the car charging system. The gate is used to monitor voltage levels at the points A and B . In the following description, a voltage near to +12 V is referred to as High, while near-zero voltage is called Low.

If either two Highs or two Lows are applied to the inputs of the gate (points A and B) then the warning indicator, LP3, will remain off. With one High and one Low input, it will switch on. When driving without the caravan, both inputs will be High (since they are connected to the battery positive through R3 and R4) and LP3 will be off. When a caravan is being
towed, the low-resistance filaments of LP1 and LP2 keep both inputs Low so, again, LP3 will be off. When a left turn is signalled point A will pulse between High and Low states while point B remains Low so LP3 will flash. For right turns a similar situation arises with Point B pulsing between the two states and point \mathbf{A} remaining Low.

If either LP1 or LP2 should fail, then the appropriate point A or B will go High, causing LP3 to glow continuously. In "hazard" operation, both inputs pulse between High and Low states together so LP3 will remain off. Faulty indicator lamp connections will cause intermittent flashing of LP3.

GATE

The gate works in the following way. Consider a left-hand turn signal-point A keeps pulsing High and turning on TR6. Current then flows through R7, LP3 and TR6. If a right turn is signalled current will flow through R8, LP3 and TR5. If TR5 and TR6 are both on or off together, then both terminals of LP3 will be at the same voltage and it will remain off.

Since LP3 derives current through R7 or R8, these components will become warm and must be adequately rated. Moreover, there will be 6 V approximately "dropped" across the working resistor so LP3 must be a 6 V lamp of the correct current rating (see components list). With

the ignition switched on and no caravan in tow, both TR5 and TR6 will be on and current will flow through R7 and R8 continuously. The only consequence of this is that the case becomes slightly warm after a period of time.

CONSTRUCTION

Note: an aluminium case must be used for this project-not a plastic one. Refer to Fig. 2 and construct the circuit panel using a piece of 0.1 in . matrix stripboard size 12 strips by 22 holes. Drill the two fixing holes, make the breaks in the copper strips in the positions shown and follow by soldering the on-board components as indicated.

In the prototype, R7 and R8 each consisted of two off 220 ohm $\frac{1}{2} \mathrm{~W}$ resistors connected in parallel. Alternatively, single 100 ohm IW components could be used. Whichever method is employed, the resistors must be mounted well clear of the circuit panel and spaced away from one another to allow a free flow of air. When complete, the panel should be examined carefully for wiring errors and for accidental "bridging" between adjacent copper tracks. Solder connecting wires to strips A, D, E, F, G, H, I, J, K and L.

Refer to the photograph and prepare the case to accept the panel. Drill a hole next to the terminal block position and fit a rubber grommet. This is to carry the wires passing through from the inside. Drill mounting holes to correspond with those already drilled in the panel. Secure the panel and the offboard components

noting that TR2 and TR4 require mounting kits so that they are electrically isolated from the case. A piece of thick cardboard should be placed between the underside of the panel and the case to provide insulation.

Make certain that there are no sharp protrusions which could penetrate the cardboard and cause short circuits. Check that R3 cannot short circuit to the upper panel fixing. In the prototype, the earth (battery negative) connection was made by means of a "flying lead". Alternatively, an extra terminal on the block connector could be used.

POSITIVE EARTH

Although a positive-earth prototype was not tested, there should be no problems if the alternative pnp transistors are used (see components list).

INSTALLATION

Find a suitable place for the completed project. Behind a trim panel in the rear of the car is a good choice. Refer to Fig, 2 and make the terminal block connections. Begin by wiring the dashboard indicator light connections to terminals 6 and 7

using light-duty twin wire-loudspeaker wire, for instance. Using stranded autotype wire of 5A rating minimum connect terminals 4 and 5 respectively to the left and right-hand caravan flashing indicator circuits (pins I and 4 on the 7 -pin socket). Connect terminals 2 and 3 respectively to the left and right-hand car direction indicator circuits using similar wire. Connectors are available from caravan accessory shops which enable this to be done without breaking the wires.

FUSE

Connect terminal 1 to a fuse which is live only when the ignition is switched on. Use a small 12 -volt bulb with one terminal earthed to a metal part to find a suitable fuse. Make sure that the correct side of the fuse is used-check by removing it that the test lamp goes off. Connect the flying lead to an existing earth point or, if one cannot be found nearby, drill a small hole and use an eyelet secured with a self tapping screw.

TESTING

Connect the caravan plug to the 7-pin socket and switch the ignition on. Check that the direction indicators all work correctly with the dashboard light signalling the turns. Remove each caravan flashing indicator bulb in turn to simulate

Resistors

R1-R6	$1 \mathrm{k} \frac{1}{2} W \pm 5 \%$ (6 off)
R7.R8	$220 \frac{1}{2} W$ (4 off) or
	$1001 W$ (2 off). See
	text.

Semiconductors

TR1,TR3 BFY51 npn silicon (2 off)
TR2,TR4
TIP3055 npn silicon (2 off) TR5.TR6 ZTX 300 npn silicon (2 off)

NOTE: for positive-earth cars the following alternative transistors should be used.
TR1,TR3 BC461 pnp silicon (2 off)
TR2,TR4 TIP2955 pnp
TR5,TR6 $\quad 2 T \times 500$ pnp silicon (2 off)

See
 page 256

Miscellaneous

AB9 aluminium box size 102×70 $\times 38 \mathrm{~mm}$.
0.1 in . matrix stripboard size 12 strips by 22 holes.
5 A terminal block-7sections needed.
Mounting kits for TR2 and TR42 off.
Panel lampholder fitted with 6 V 0.06 A bulb.

Light duty twin wire; 5A minimum stranded auto wire.
Connectors, fixings, rubber
grommet. grommet

Approx. cost
Guidance only
failure of the filaments-the dashboard indicator should now light continuously. Check "hazard" operation-note that the ignition must be switched on for the caravan lights to work. If all is well, the
trim panel may be replaced and the unit forgotten. It should give years of reliable service, and the only time you should be aware of its presence is when the dashboard light signals a failed bulb.

LIGHT PIPE

For use in those inaccessible corners, AEG-Telefunken (UK) have introduced a range of specially constructed l.e.d.s utilising a flexible optical guide to

PRINTER INTERFACE

T he latest addition to the range of Eprom based Copy routines from Euroelectronics is
transmit light for distances up to 2 metres.

The "light pipe", which they claim offers the designer much more flexibility when designing equipment layouts, may be positioned on a printed circuit board and used to provide a visual front panel indication to a remote part of the equipment.

Available in standard $0.5,1.0$, 1.5 and 2.0 metre lengths, the light pipe may be cut and polished at any point in its length to suit the required application. The l.e.d. colours available include red, yellow and green

The flexible transmission guide may also be fitted to a photosensitive detector to form one half of a matched pair for high voltage isolation applications. This would be ideal for many control and automation operations, including optical card/tape readers, counting and lighting control.

Further details may be obtained from:

AEG-Telefunken (UK) Lid.,
Dept EE, 217 Bath Road,
Slough, Berks SLI 4AW.

GOOD RECEPTION

THE release of a new TV aerial for mobile or static use, the subject of a provisional patent application, is announced by Maxview Aerials. Known as the Omnimax, it is claimed to take account of the fact that vehicles on the move will change their position relative to the siting of the transmitter, thus, in some cases, affecting the reception.

As its title implies, the aerial is claimed to overcome the directional problems by providing 360 degrees coverage. This is achieved by the use of a $12 / 24 \mathrm{~V}$ d.c. High Gain Amplifier (22dB) and a novel "array" arrangement.

Another feature is that it is "tuned" to cover the whole of the international u.h.f. television spectrum from 470 to 860 MHz , channels 21 to 69 . This makes it ideal for installing in sea craft, caravanettes and caravans when touring.

the ZXLPrint 111 printer interface for the Spectrum computer.

Full colour screen dumps can be carried out on Epson JX80 and Seikosha GP700 printers while four colour screen dumps for CGP115 and MCP40 are available as an option.

The ZXLPrint interface costs $£ 34.95$ and a cable either Centronics or RS232-is available for the sum of $£ 9.95$. For further details and information on range of computer add-ons contact:

Euroelectronics,
Dept EE, 26 Clarence Square, Chettenham, Glos. GL.50 2JP.

SHURE SOUND

AT a time when there seems no end to the effects of the US dollar, it makes a welcome change to report that the world famous American Shure audio equipment specialists have launched a new product that slots at the lower price end of the market.

An ideal choice for the beginner whose budget cannot stretch to the headier heights of most Shure microphones, the new Shure Prologue line is an excellent
"starter" mic for vocalists, musi cians or audio/video hobbyists.

There are three models, all available in high or low impedance versions and retail prices including VAT start at under £25. Each model is manufactured in diecast metal and features an on/off switch, XLR connector and is furnished with a swivel adaptor.

Further details and prices for the Shure Prologue range may be obtained from:

HW International,
Dept EE. Efen Grove,
London, N78EQ.

Designed for use on land or water vehicles, the Omnimax aerial sells, complete with amplifier, for the sum of $£ 39.50$ including VAT and comes complete with five metres of low-loss coaxial cable fitted with standard TV plugs at both ends. Two versions are available, for horizontal surface fixing or mast top fixing.

Further information may be obtained from:

Maxview Aerials Lid., Dept EE, Maxview Works, Setchley, King's Lynn,
Norfolk, PE33 OAT.

PRINTED CIRCUIT BOARD SERUICE

Printed circuit boards for certain EE constructional projects are now available from the EE PCB Service, see list. These are fabricated in glass-fibre, and are fully drilled and roller tinned. All prices include VAT and postage and packing. Add $£ 1$ per board for overseas airmail. Remittances should be sent to: EE PCB Service, Everyday Electronics Editorial Offices, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques should be crossed and made payable to IPC Magazines Ltd.

Please note that when ordering it is important to give project title as well as order code. Please print name and address in Block Caps. Do not send any other correspondence with your order.

Readers are advised to check with prices appearing in the current issue before ordering.

NOTE: Please allow 28 days for delivery. We can only supply boards listed here.

PROJECT TITLE	Order Code	Cost
- JULY 'B3 - User Port Input/Output M.I.T. Part 1 User Port Control M.I.T. Part 1	$\begin{aligned} & 8307-01 \\ & 8307-02 \end{aligned}$	$\begin{aligned} & £ 4.82 \\ & £ 5.17 \end{aligned}$
\qquad AUGUST ' 83 Storage 'Scope Interface, BBC Micro Car Intruder Alarm High Power Interface M.I.T. Part 2 Pedestrian Crossing Simulation M.I.T. Part 2 Electronic Die	$\begin{aligned} & 8308-01 \\ & 8308802 \\ & 8308-03 \\ & 8308-04 \\ & 8308-05 \end{aligned}$	$\begin{aligned} & £ 3.20 \\ & £ 55.15 \\ & £ 5.08 \\ & £ 3.56 \\ & £ 4.56 \end{aligned}$
- SEPTEMBER '83 - High Speed A-to-D Converter M.I.T. Part 3 Signal Conditioning Amplifier M.I.T. Part 3 Stylus Organ Distress Beacon - Distress Beacon Pocket Version	$\begin{array}{r} 8309-01 \\ 8309-02 \\ 8309-03 \\ =8309-04 \\ 8309-05 \end{array}$	$\begin{aligned} & £ 4.53 \\ & £ 4.48 \\ & £ 6.84 \\ & £ 5.36 \\ & £ 3.98 \end{aligned}$
- OCTOBER '83 D-to-A Converter M.I.T. Part 4 High Power DAC Driver M.I.T. Part 4 Electranic Pendulum	$\begin{aligned} & 8310-01 \\ & 8310-02 \\ & 8310-03 \end{aligned}$	$\begin{aligned} & £ 5.77 \\ & £ 5.13 \\ & £ 5.43 \end{aligned}$
- NOVEMBER'83 - TTLPower Interface for Stepper Motor M.I.T. Part 5 Stepper Motor Manual Controller M.I.T. Part 5 Digital Gauss Meter Speech Synthesiser for BBC Micro Car On/Off Touch Switch	$\begin{aligned} & 8311-01 \\ & 8311-02 \\ & 8311-03 \\ & 8311-04 \\ & 8311-05 \end{aligned}$	$\begin{aligned} & £ 5.46 \\ & £ 5.70 \\ & £ 4.45 \\ & £ 3.93 \\ & £ 3.11 \end{aligned}$
- DECEMBER 83 - 4-Channel High Speed ADC (Analogue) M.I.T. Part 6 4-Channel High Speed ADC (Digital) M.I.T. Part 6 TRS-80 Twin Cassette Interface Touch Operated Die (Dot matrix) Touch Operated Die (7 -segment) Continuity Tester	$\begin{aligned} & 8312-01 \\ & 8312-02 \\ & 8312-03 / 09 \\ & 8312-05 / 06 \\ & 8312-05 / 07 \\ & 8312-08 \end{aligned}$	$\begin{aligned} & £ 5.72 \\ & £ 5.29 \\ & £ 7.43 \\ & £ 4.34 \\ & £ 4.34 \\ & £ 3.41 \end{aligned}$
- JANUARY'84 - Central Heating Pump Delay Biological Amplifier M.I.T. Part 7 Temp. Measure \& Control for $2 \times$ Comprs Analogue Thermometer Unit Analogue-to-Digital Unit Games Scoreboard	$\begin{aligned} & 8401-01 \\ & 8401-02 \\ & 8401-03 \\ & 8401-04 \\ & 8401-06 / 07 \end{aligned}$	$\begin{aligned} & £ 3.33 \\ & £ 6.27 \\ & £ 2.35 \\ & £ 2.56 \\ & £ 9.60 \end{aligned}$

*Complete set of boards. **Calibrated with C1, VR 1 and IC3 fitted. M.I.T.-Microcomputer Interfacing Techniques, 12-Part Series.

\qquad Eprom Programmer/ROM Card for 2×81 Oric Port Board M.I.T. Part 8 Negative Ion Generator Temp. Measure \& Control for ZX Comprs Relay Driver	\bullet-8402-01 $8402-02$ $\bullet 8402-03$ $8402-04$	$\begin{array}{r} £ 7.84 \\ £ 9.56 \\ £ 8.95 \\ £ 3.52 \end{array}$
- MARCH ${ }^{8} 84$ - Latched Output Port M.I.T. Part 9 Buffered Input Port M.I.T. Part 9 VIC-20 Extension Port Con. M.I.T. Part 9 Com. 64 Extension Port Con. M.I.T. Part 9 Digital Multimeter Add-On for BBC Micro	$\begin{aligned} & 8403-01 \\ & 8403-02 \\ & 8403-03 \\ & 8403-04 \\ & 8403-05 \end{aligned}$	$\begin{aligned} & £ 5.30 \\ & £ 4.80 \\ & £ 4.42 \\ & £ 4.71 \\ & £ 4.63 \end{aligned}$
- APRIL'84 - Multipurpose Interface for Computers Data Acquisition "Input" M.I.T. Part 10 Data Acquisition "Output" M.I.T. Part 10 Data Acquisition :"PSU" M.I.T. Part 10 Timer Module A.F. Sweep Generator Queasi Stereo Adaptor	8404-01 8404-02 8404-03 8404-04 8404-06 8404-07	$\begin{aligned} & £ 5.72 \\ & £ 5.20 \\ & £ 5.20 \\ & £ 3.09 \\ & £ 3.58 \\ & £ 3.55 \\ & £ 3.56 \end{aligned}$
\qquad Simple Loop Burglar: Alarm Computer Controlled Buggy M.I.T. Part 11 Interface/Motor Drive Collision Sensing Power Supply	$\begin{aligned} & 8405-01 \\ & 8405-02 \\ & 8405-03 \\ & 8405-04 \end{aligned}$	$\begin{aligned} & £ 3.07 \\ & £ 5.17 \\ & £ 3.20 \\ & £ 4.93 \\ & \hline \end{aligned}$
\qquad Infra-Red Alarm System Spectrum Bench PSU Speech Synthesiser M.I.T: Part 12 Train Wait		$\begin{aligned} & £ 2.55 \\ & £ 3.99 \\ & £ 4.85 \\ & f 3.42 \end{aligned}$
Ultrasonic Alarm System Atom EPROM Simulator Electronic Code Lock Main board Keyboard	$\begin{aligned} & 8407-01 \\ & 8407-02 \\ & 8407-03 \\ & 8407-04 \end{aligned}$	$\begin{aligned} & £ 4.72 \\ & £ 3.08 \\ & £ 2.70 \\ & £ 3.24 \end{aligned}$
- AUGUST '84 - Microwave Alarm System Temperature Interface-BBC Micro	$\begin{aligned} & 8408-01 \\ & 8408-02 \end{aligned}$	$\begin{aligned} & \mathrm{fy} .36 \\ & \mathrm{f} 2.24 \end{aligned}$
SEPTEMBER 84 - Op-Amp Power Supply	8409-01	£3.45
- OCTOBER•84 - Micro Memory Synthesiser Drill Speed Controller	$\begin{array}{r} \text { B4 10-01 } \\ 8410-04 \end{array}$	$\begin{array}{r} £ 8.20 \\ £ 1.60 \end{array}$
NOVEMBER • 84 BBC Audio Storage Scope Interface Proximity Alarm	$\begin{aligned} & 8411-01 \\ & 8411-02 \end{aligned}$	$\begin{array}{r} \mathrm{f} 2.90 \\ \mathrm{f} 2.65 \end{array}$
DECEMBER '84 - TV Aerial Pre-Amp Digital Multimeter Mini Workshop Power Supply	$\begin{aligned} & \text { "8412-01 } \\ & \text { "8412-02/03 } \\ & 8412-04 \end{aligned}$	$\begin{array}{r} £ 1.60 \\ £ 5.20 \\ £ 2.78 \end{array}$
- JANUARY 'B5 - Power Lighting Interface Games Timer Spectrum Amplifier	$\begin{aligned} & 8501-01 \\ & 85011-02 \\ & 8501-03 \\ & \hline \end{aligned}$	$\begin{array}{r} £ 8.23 \\ £ 1.86 \\ £ 1.70 \end{array}$
FEBRUARY '85- Solid State Reverb Computerised Train Controller	$\begin{aligned} & 8502-01 \\ & 8502-02 \end{aligned}$	$\begin{aligned} & \text { £3.68 } \\ & £ 3.38 \end{aligned}$
—MARCH ${ }^{\prime} 85$ - Model Railway Points Controller	8503-01	£2.78
Insulation Tester Fibrelarm	$\begin{aligned} & 8504-02 \\ & 8504-03 \end{aligned}$	$\begin{aligned} & £ 2.53 \\ & £ 3.89 \end{aligned}$
Auto Phase Amstrad CPC464 Amplifier Mains Unit Micro Unit Voltage Probe	$\begin{aligned} & 8505-01 \\ & 8505-02 \\ & 8505-03 \\ & 8505-04 \end{aligned}$	$\begin{aligned} & £ 3.02 \\ & £ 2.56 \\ & £ 2.71 \\ & £ 2.67 \end{aligned}$

EVERYDAY =L =G RONCCS AT YOUR and computer PROJECTS

Reach effectively and economically to-days enthusiasts anxious to know of your through our semi-display and classified pages. Semi-display spaces may be booked at timetre (minimum 2.5 cm). The prepaid rate for classified advertisements is 33 pence per word number 60p extra. All cheques, postal orders, etc., to be made payable to Everyday Electronics crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisetance, should be sent to the Classified Advertisement Department, Everyday Electronics and 2612, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone

Receivers \& Components

RESISTORS 1,000 mixed $1 / 8 w, 1 / 4 w, 1 / 2 w, 2 \%, 5 \%$, 10%, C. film $£ 3.45$ inc. P\&P. D. J. HOOKER, Romney Marsh Electronics, Pennywood, Clark Road, Romney Marsh, Kent TN28 8PB

FREE: PARCEL OF COMPONENTS worth $£ 10$. Send only 80p postage! D. HORSLEY, 113 Clate Road, Braintree, Essex.

VERY LARGE PACK OF MIXED COMPONENTS. Capacitors, transistors, resistors, diodes, boards, thyristors, multi-pin plugs \& sockets and many more items $£ 6.50 \mathrm{p}$ post \& packing inclusive. G. EVANS, 7 Mendip Close, Pendine Park, Summerhill, Wrexham, Clwyd.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact Coles Harding \& Co., 103 South Brink, Wisbech, Cambs. 0945-584188. Immediate settement.

Books \& Publications

OPTOELECTRONICS DATA BOOK from Texas Instruments $£ 5.00$ post free. SAE for full list of Texas and Intel data books at lowest prices. Agents for leading technical publications. Write or phone for quotation. MGBooks, 24a Newgate, Barnard Castle, Co. Durham DL12 8NG. Tel. (0833) 31130.

Service Sheets

BELLL'S TELEVISION SERVICE for service sheets on Radio, TV etc. $£ 1.50$ plus SAE. Service Manuals on Colour TV and Video Recorders, prices on request. SAE with enquiries to: BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 042355885.

FULL SIZE TOP QUALITY Service Sheets $£ 2.50+$ l.s.a.e. CTV/Music centres $£ 3.50+1$. s.a.e. Repair data almost any named TV/video $£ 10.50$ in circuits. L.s.a.e. brings any quite-free magazine/pricelists. T1SEE, 76 Churches, Larkhall, Lanarkshire. Tel. 0698 883334.

Software

ADVANCED COMPUTER TAFES FOR THE ZX SPECTRUNi 48k

1. Dialogue tape uses a very modern artificial intelligence using specially developed codes which tie together over 2000 words.
2. Electronics design tape. Input is a basic specification in parts and output is a complete circuit diagram Ver parts and
adaptable.
cwo to (inc p / p) is $£ 10.00$ each COSTESSEY, Nomwich NR5 0DW

Miscellaneous

SCHOOLS AND COLLEGES. Send now for our 1985 catalogue, top quality components at very competitive prices. Electron Electronics, 62 High Street, Croydon, Surrey

Miscellaneous Cont.

> TO ADVERTISE ON THESE PAGES RING
> MANDI 01-261 5846

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next availble issue of Everyday Electronics for Insertions. I enclose Cheque/P. 0 . for f . (Cheques and Postal Orders should be crossed Uloyds Bank Lid. and made payable to Everyday Electronics)

HEADING REQUIRED:

NAME
 ADDRESS

EVERYOAY ELECTRONICS and COMPPUTER PROJECTS

Classified Advertisement Dept, Room 2612,
King's Reach Tower, Stamford Street, London SE1 9LS
Telephone 01-261 5942
Rate:
$33 p$ per word, minimum 12 words. Box No. $60 p$ extra.

[^0]
SERVICE

products and services £7.80 per single column cen(minimum 12 words), box and Computer Projects and ments, together with remitComputer Projects, Room 01-261 5942).

Security

SECURTY Alarm Systems
 FREE COMPREHENSIVE CATALOGUEI
 - LOWEST DISCOUNT PRICES
 - HIGHEST QUALITY EQUIPMENT
 - FREE DIY DESIGN GUIDE
 - FULLY ILLUSTRATED
 - MICROCHIP CIRCUITRY
 - QUICK DESPATCH SERVICE
 - FULL INSTRUCTIONS
 C-TEC SECURITY. Dept EE.
 Unit 1. Stephensway Ind Estate. Goose Green.
 Enquines
 Wigan WN3 GPH Telephone (0942) 42444
 Wetcome

Tuition

IMPROVE YOUR PROSPECTS

with skills that employers want - learn the easy way with modern home study courses from Ideal Schools.

MODERN ELECTRONICS

Train for success in the fastest ever growing industrial sector. COMPUTER PROGRAMMING The demand for Programmers is increasing constantly - don't miss out! For free booklet write loday to

Services

INVENTORS

Think of something new? Write it down!
American industry offers potential royalties for you innovations and new products. We offer free confidential disclosure registration and initial consultation in London regarding your idea's potential value. Write without delay for your free information package.
American Inventors Corporation 82 Broad Street, Dept. EV.
Westfield, Massachusetts 01086,
United States of America
A fee based marketing company

\star BAKER *
 GROUP PA. OISCO AMPLFIERS pOSt E^{2}

150 wath Ouiput 4 input Mixer pre-amp. Illustrated 150 wath Output. 4 input Mixer pre-amp. Illustrated............. £99
150 wath Output. Slave 500 mv . Input; $4+8+16$ ohm Ourputs. $£ 80$ $150+150$ watt Stereo, 300 watt Mono Slave 500 mv. Inputs $£ 125$ 150 watt P.A. Vocal, 8 inputs. Migh/Low Mixer Echo Socket $\mathbf{£ 1 2 9}$ 100 watt Valve Model, 4 inputs, 5 Outputs. Heavy duty........... 125
60 watt Mobile 240 v AC and 12 v DC. $4.8-16 \mathrm{hm}+100 \mathrm{v}$ line E 89 MIKES Dual Imp f20, Floor Stand $£ 13$, Boom Stand M22, PP REVERB UNIT for Microphone or Musical Instruments E35 PP E1 LECTRONIC ECHO Machine for mic/etc. £85. Deluxe e95 PP £ H+H AMPLIFERS 500 watt stereo "Reconditioned" 975 PP E5 BAKER LOUDSPEAKERS Midrange
$\mathrm{Mi}-\mathrm{Fi}$
$\mathrm{Hi}-\mathrm{Fi}$
P.A./Disco/Group
$\mathrm{Hi}-\mathrm{Fi}$
$\mathrm{Hi}-\mathrm{Fi}$
P.A.Disco/Group P.A.Disco/Group

DISCO CONSOLE Twin Decks, mixer pre amp $£ 145$. Carr $£ 10$. Ditto Powered 120 watt $£ 199$; or Complete Disco 120 watts $£ 300$.

OISCO MIXER. 240 V , 4 stereo channels, 2 magnetic, 2 ceramid tape,
outlet. slider controls, panel or desk mounting, matt black facia. Tape output facility. $£ 59$. Posi $\mathbf{E 1}$. DELUXE STEREO DISCO MIXER/EOUAUSER as above plus LED. V.U. displays 5 band graphic equaliser, lewright fader, swichable inputs for phone/line, mike/line
Headphone Monitor, Mike Talkover Switch E 129 PP E2 headphone monitors $£ 145$.
P.A. CABINETS (empty) Single 12 £32, Double 12 E38. carr © 10. WITH SPEAKERS 45 W £50; 75 W £54; 90W £73; 150
HORNBOXES 200 Watt E32, 300 Watt E38. Pos: 4 .
WATERPROOF HORNS 8 ohms. 25 watt f 20.30 watt $\mathbf{2 3} .40$ watt 29. 20W plus 100 volt line $£ 38$. Post $£ 2$.

MOTOROLA PIEZO ELECTRONIC HORN TWEETER, 33an Square
CROSSOVERS. TWO. WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt CB .60 watt 55.100 watt $\mathrm{f6}$. 3 way 950 cps 3000 cps . 40 watt rating. $\mathrm{f4}, 60$ watl EE .50 .100 wat E 10 .

Make	Model	Suze	Ohms Price
AUDAX	WODFER	$51 / 2 \mathrm{~m} .25$	¢10.50
GDDDMANS	HHFAX	71/2xal/an 100	[31
GDDOMANS	H8 WOOFEA	$8+60$	¢13.50
WHARFEDALE	WOOFER	Bin 30	9350
CELESTIDN	Discolgroup	10 m .50	8/16 21
GDDDMANS	HPG/GRDUP	121n. 120	8175
goodmans	HPD/DISCD	12in 120	V15 530
$\mathrm{H}+\mathrm{H}$	Disco/Bass	15 min 100	481564
GOOOMANS	HP/BASS	15 in .250	8 \%72
gDoomans	HPD/BASS	18 in . 230	684

DISCO LGHTING EQUIPMENT
READY BUILT DELUXE 4 CHANNEL 4,000 WATT sound chaser +
speed + programme controls $£ 59$. Mk2 16 programs, $£ 89$ PP 2 . ARTY LGMT 4 Colored Party LiGHT 4 Coloured flood Lamps Flashing to Music. Self
contained Sound to Light $410 \times 196 \times 115$
$£ 34.95$ PP \mathbf{Z}. MAINS TRANSFORMERS

Price Pos $350-0-350 \mathrm{~V} 250 \mathrm{~mA}$. 6.3 V 6 A CT E12.00 Shrouded $£ 14.00$ €2 220 V 25 mA . $6 \mathrm{~V} 1 \mathrm{Amp} £ 3.00$ 220V $45 \mathrm{~mA} .6 \mathrm{~V} 2 \mathrm{Amp} £ 4,00$ ही Low voltage tapped outputs avaliable
 $\begin{array}{lll}31 \cdot 26-0-26-31 \text { volt } 6 \mathrm{amp} & \mathrm{amp} \mathrm{E12.50} \quad 5 \mathrm{amp} £ 16.00 \\ £ 14.00 \\ £ 2\end{array}$
LOW VOLTAGE MAINS TRANSFORMERS 55.50 each post paid $9 \mathrm{~V}, 3 \mathrm{~A} ; 12 \mathrm{~V}, 3 \mathrm{~A} ; 16 \mathrm{~V}, 2 \mathrm{~A} ; 2 \mathrm{DV}, 1 \mathrm{~A} ; 30 \mathrm{~V}, 11 / 2 \mathrm{~A} ; 30 \mathrm{~V}, 5 \mathrm{~A}+17-0.17 \mathrm{~V}$,
$2 \mathrm{~A} ; 35 \mathrm{~V}, 2 \mathrm{~A} ; 20-40-60 \mathrm{~V}, 1 \mathrm{~A} ; 12-0-12 \mathrm{~V}, 2 \mathrm{~A} ; 20-0-20 \mathrm{~V}, 1 \mathrm{~A} ; 50 \mathrm{~V}, 2 \mathrm{~A}$

¢8. 50 post 50 p MINLMULTI TESTER Pocket size instrument, o.p.v. DC volts $5,25,250,500$, AC volts $10,50,500,1000$. DC $0-250 \mathrm{Ma} ; ~ 0-250 \mathrm{ma}$. Resistance 0 to 600 K . 2 in . Resistance $0 / 20$ meg in 5 ranges. Current 50 MA to 10 A . Volts $0.25 / 1000 \mathrm{v}$ DC, $10 \mathrm{v} / 1000 \mathrm{v}$ AC. $£ 25.00 \mathrm{PP}$ E

PANEL METERS $50 \mathrm{MA}, 100 \mathrm{MA}, 500 \mathrm{MA} 1 \mathrm{~mA} 5 \mathrm{~mA} 100 \mathrm{~mA}, 500 \mathrm{~mA}$ $1 \mathrm{amp}, 2 \mathrm{amp} .5 \mathrm{amp}$. 25 voh . VU $2^{1 / 4 \times 2 \times 1 / 4 i n . ~} \mathbf{E 5 . 5 0}$ post 50 p ald
$6 \times 4 \mathrm{in} .55 \mathrm{p} ; 12 \times 8 \mathrm{in}, ~ £ 1.30 ; 10 \times 7 \mathrm{in} .96 \mathrm{p} ; 8 \times 6 \mathrm{in} .90 \mathrm{p} ; 14 \times 3 \mathrm{in}$, T2p; $12 \times \operatorname{Sin}$. Sop; $18 \times 10 \mathrm{in}$. E2. $10 ; 16 \times 6 \mathrm{in}$. £1.30.
ALUMINIUM BOXES. MANY OTHER SIZES IN STOCK. ALUMINIUM BOXES. MANY OTHER SIZES IN STOCK.
$4 \times 21 / 2 \times 2$ in. $£ 1.20 ; 3 \times 2 \times 1$ in. $£ 1 ; 6 \times 4 \times 2 \mathrm{in}, ~ £ 1,90 ; 8 \times 6 \times 3$ $4 \times 21 / 2 \times 2$ in. $£ 1.20 ; 3 \times 2 \times 1$ in. $£ 1 ; 6 \times 4 \times 2 \mathrm{in}$. $£ 1.90 ; 8 \times 6 \times 3$
in. $£ 3 ; 12 \times 5 \times 3 \mathrm{in}, £ 3.60 ; 6 \times 4 \times 3 \mathrm{in} . £ 2.20 ; 10 \times 7 \times 3 \mathrm{in} . £ 3.60$

	E EI	OLrtics		$20+20 / 350$	
HIGH V $16 / 450 \mathrm{~V}$	50p	2201400 V	$\varepsilon 2$	$32+32500 \mathrm{~V}$	
20/500V	75p	$8+8 / 500 \mathrm{~V}$	61	$32+32 / 350 \mathrm{~V}$	
$32 / 350 \mathrm{~V}$	45p	$8+16 / 450 \mathrm{~V}$	75p	$32+32+32 / 4$	
321500 V	95p	$16+16 / 350 \mathrm{~V}$	75p	$16+32+32 / 50$	

DECCA TEAK VENEERED PUNTH space for small amplifier. Board cut for BSR or Garrard $18^{3 / 4 i n}$. $\times 141 / 4 \mathrm{in}$. $\times 4 \mathrm{in}$. E5. Post £ TINTED PLASTIC COVERS for Decks. E5 each Post \& $17 \times 127 / 8 \times 31 / 2 \mathrm{in} . \quad 141 / 8 \times 13 \times 31 / 8 \quad 14 / 2 \times 131 / 8 \times 23 /$ $\begin{array}{ll}2258 \times 137 / 8 \times 3 \mathrm{in} . & 30^{3 / 4} \times 133 / 8 \times 31 / 4 \mathrm{in} 2 \\ 181 / 4 \times 12^{1 / 2} \times 3 \mathrm{in} . & 21^{1 / 2} \times 14^{1 / 4} \times 2^{1 / 2 i n} .\end{array}$

RADIO COMPONENT SPECIALISTS
Dept 4, 337, WHITEHORSE ROAD, CROYDON
ACCESS SURREY, U.K. TEL: 01-684 1665
USA
Full Lists 34 p Stamps. Same day despatch. Closed Wed.

EPGUMISPECIAI				
	0 NS	83.00 each	2764450 NS	56.00 each
2732	0 NS	E3.75 each	27128450 ns	\$79.00 each
COMPONENT PACKS				
Pach NHO	Oiv		Descripton	Pfice
$N 11$	12	RED 5 mm LED		51.00
N 12	8	Green 5mm LED		5100
N 13	${ }^{6}$	Yellow 5 mm LED		c100
N 51 N	15 8 8	Whine attred on is		¢100
N 15	30	(momi Zeners 5\%		${ }_{1100}$
N 21	100	1 amp Rect Drodes	4000 Serres	0200
N 27	200	4148 Diodes	边	2250
N 31	200	4151 Drodes		1380
N 23	12	-1 amp Bridge Rect		0000
N 24	20	3 amp Rect Dioces		0200
N2	1	ORP 12 Proto Conta		${ }^{51}$
N 2	250	Mixed Resistors		1200
N 16	100	Mixed Trans. Hartw		8100
N 2	10	BR 100 Doodes		[200
N 27	1	${ }^{2} \mathbf{N a O S 5} 5$ Power Trans		${ }^{6}$
N 17	10	BC 108C		1100
N 18	15	8 BC 37		c1.00
N 19 $N \sim 20$	10 10	BC BC 108 108		c100
N 20 $N 121$	10 15	BC BR 108 80		$C 1000$ $C 1.00$
N 123	10	BC 1098		51.00
N 124	100	Transistor Pads		[100
N $\begin{aligned} & \text { N } 23 \\ & \mathrm{~N} 123\end{aligned}$	40 10	Tomm hare pre set	10 values	${ }^{C 100}$
N 125 N 126	10 12	Mased Pots inc stide		${ }^{21000}$
N 12	10	11. pin Dil Sockets		c100
N 128	10	16 pin Oil Sockets		$\mathrm{C1}^{\text {m }}$
N 230	15	18 pin DIL Sockets		80
N 129	15	$1 C^{\prime}$'s all dilterent		200
N 231	10	LM 3s00N		6200
N 23	10	Mirad TLL [7,4 serie		5700
+ ${ }_{\text {N }}$	10	${ }^{709} 304$		${ }_{5750}$
N53	10	LM 324 535 TrieI		cs.00
N 55	z	741		$\cos _{500}$
N 235	50	Elactromucs Axial		1200
N260	50	Electrontics Radial		[200
N 23	100	Ceramic Discs		[20
N 238	100	Ceramic Plates		1780
${ }_{\text {N }} \mathrm{N} 288$	10		210	0700
N $\begin{aligned} & \text { N } 240 \\ & \mathrm{~N} 241\end{aligned}$	10	1000uF G7var Alect		0700
N 2121	50			80
N 243	10	22uF 1600 Rad. Pohy		E20
N^{24}	10	VORS.		0200
$\begin{aligned} & \mathrm{N}_{5} \mathrm{~N} \end{aligned}$	13^{3}	$10.000 \mu \mathrm{~F}$ fov Comp Reei 220 Solder	rade Elact.	${ }_{56} 5000$
$\begin{aligned} & \mathrm{N} 62 \\ & \mathrm{~N} 130 \\ & \hline \end{aligned}$	1/208	Reel 229 Solder 500 mA A/S 20 mm F		60, 60
ALL PRICES INCLUDE VAT - ALL GOODS BRAND NEW \& NORMMALLY DESPATCHED BY RETURN POST. TERMS: Cosh with order. POST \& PACKING: Pionse add $75 p$ to total order.				
AG/DGEEEGBONGO				
COMPONENTS				
DEPT EE, 45 CHURCH STREET, ENFIELD, MIDDLESEX.				

If an advertisement is Wrong we're here to put it right.

If you see an advertisement in the press, in print, on posters or in the cinema which you find unacceptable, write to us at the address below.

The Advertising Standards Authority.

ASA Ltd. Dept 3
Brook House, Torrington Place, London WC1E 7HN

1, PRIGE LCD DMM WITH CARIIY CASE EXCLUSIVE WHILE STOCKS LAST

- $31 / 2$ DIGIT - 26 RANGE
- AUTO ZERO - AUTO POLARITY
- AC/DC 10 AMPS TEST LEADS,

CARRY CASE, BATTERY \& INSTRUCTIONS 5 ranges $A C / D C$ volts 5 ranges AC/DC current 6 ranges Resistance to 20 meg ohms Size: $161 \times 87 \times 25 \mathrm{~mm}$
AUDIO ELECTRONICS
301 Edgware Road, London,
W2 18N 01-724 3564
ORDER BY POST OR PHONE OR CALL IN OPEN 6 OAYS A WEEK

It's no secret!

that there is a real difference at Cricklewood Electronics. That's why you should never be without the FREE PONENTS CATALOGUE, for sheer variety, ompetitive prices and service from the U.K's number one 100% component shop No gimmicks, no gadgets or computers, just components, millions of them all easily avail able by mail order, calling or credit card bepphone orders. Just pick up the phone lor pen) to get your FREE cooy now (no SAE required You have nothing to loso
CRICKLEWOOD ELECTRONICS LTD.
40 Cricklewood Brobawey NWZ 3ET.
$01-4501095 \& 014520161$
All MANOR CAEDT CARDS ACCEPTED
relex $91497 \quad$ Phene or waite tod

* GIVE YOUR PROJECT/PRODUCT A VERY
PROFESSIONAL
APPEARANCE WITH
THIS VERSATILE
TOUGH UNIT
$*$
OT TO BE CONFUSED WITH A.B.S. or OTHER PLASTICS. These Units are strong and finished to a very high standard.

BUY DIRECT FROM THE MANUFACTURER

PLASTEK
HIGH QUALITY CONSOLE UNIT IN RIGID POLYURETHANE

UNTT EC21 NEW

Send SAE or Telephone for Details Send Cheque/PO to:
B. \& P. McBRIDE,

Unit 1, The Midlands Ind. Estate, Holt. Trowbridge, Wilts BA146RU

Telephone: (0225) 782872

Fully Finished in Grey/Black Spatter Textured paint, with brushed aluminium fascia -- Internal PCB mountings

- Ventilation louvres
- Cable entry plate - Rubber feet
£29.90 inc. VAT Add P\&PE1.50p Discounts Available for Quannity Trade Users
Complete low-cost Custom Enclosure Moulding Service Available - Try us for a quotation

Buy MOTORIST magazine and enter the 'Grand Prix' scratch game. Get your copy now! There are 100 BRITOOL toolkits for the runners-up!

SPECIAL FEATURES INCLUDE

 * PORSCHE-the team to beat * AUTO-SCHOOL No. 3-the ignition system * STOP THE RUST PLUS... * ROAD \& TRUCK TESTING THE GT's ASTRA versus GOLF versus COROLLA WOJOPISSSBritain's No. 1 Practical Motoring Magazine

OMP POWER AMPLIFIER MODULES world-wide reputation for quality, relrability and performance at a realistic price. Four enjoy a available to suit the needs of the professional and hobby market i.e., Industry. Leisure, power supply. Integral heat sink, Glass fibre P.C.B.: and Drive circuits to power compatible Vu meter Open and short circuit proot. Supplied ready built and tested

OMP100 Mk II Bi-Polar. Output power 110 watts R.M.S. into 4 ohms, Frequency Res ponse $15 \mathrm{~Hz}-30 \mathrm{KHz}-3 \mathrm{~dB}$, T.M.D. 0.01% $5 . \mathrm{N} . \mathrm{R}$. 118 dB , Sens. for Max. output PRICE $132.99+$ E2.50 P\&P.

Vu METER Compatible with our four amplifers detailed above. A very accurate visual display emploving 11 L.E.D. diodes 77 green, 4 circuits for additional on off indicator. Sophisticated logic controi circuits for very fast rise and decay times. Tough moulded plastic
case, with tinted acrylic Iront. Size $84 \times 27 \times 45 \mathrm{~mm}$ PRICE $£ 8.50+$ 50 p P\& P .
NOTE Mos-Fers are supplied as standard 1100 KHz bandwidith 8 Input Sensitivity 500 mVI . If required

LOUDSPEAKERS

5 to 15 INCH Up to 300 WATTS
R.M.S. All speakers 8 ohm Impedence.
POWER RANGE
$\underset{\text { details. }}{\text { S. }}$

50 oz magnet. $2^{\prime \prime}$ ally voice coll. Ground ally fixing escutcheon. Die-cast chassis. White cone. Res
Fireo.

$155^{2} 100$ WATR R.M.S. Mi-Fi/Disco

MCKENzIE
12" 85 WATT R.M.S. C1285GP Lead guitar/keyboard/Oisco
2" ally voice coll Ally centre dome Res Frea. 45 Hz . Freq Resp. Io 6.5 KHz . Sens. 980 BB . PRICE $\mathbf{8} 24.99$
$12^{\prime \prime} 85$ WATT R.M.S. C1285TC P.A. / Disco $2^{\prime \prime}$ ally voice coil. Twin cone.

${ }_{5}{ }_{5}^{\text {WEM }} 70$

8. 150 WATM R.M.S. Multiple Array Disco otc.

- 300 WATTR. M. M. Dis. Diso/Seound ree enforcement enc.

12. 300 wail. Res. Freq 35 Hz Freq. Resp. 10 dKHz Sens. 92dB. PAICE $[30.00+62.00$ P\&P ea

SOUNDAB (Full Range Twin Conel
5." 60 WATT R.M.S. Hi.FFi/ Multiple Array Disco erc.
$6 V_{2} 60$ WATTR.M.S. Hi-Fi/Mutiole Array Disco Sens. B6dB. PRICE $59.99+£ 1.00$ P8P ea

$8^{\prime \prime} 60$ Watt R.M.S. Hi-F1/Multiple Array Disco etc.
$11 /{ }^{*}{ }^{*}$ voice coul Res Frea 38 Hz Fieg. Reso to 20 KHz

2xine

HOBBY KITS. Proven designs including glass ibre printed circuit board and high quality comporents complete with instructions
FM MICROTAANSMTTER (BUG) $90 / 105 \mathrm{MHz}$ with very sensitive microphone. Range 1
3 WATI FM TRANSMITTER 3 WATT $85 / 115 \mathrm{MHz}$ varicap controhed professlonal performance. Range up to 3 miles $35 \times 84 \times 12 \mathrm{~mm}$ SIMGLE CHANNEL RADHO CONTROLLED TRANLSMTTER/ AECEVVER 27MHz. Range up to 500 metres. Double ooded modulation. Receiver output operates relay with 2 amp $/ 240$ volt contacts. Ideal fo E17.82. Transmitier $80 \times 50 \times 15 \mathrm{~mm}$ ($9 / 12$ volt). Price: $£ 11.27$ P\&P +75 p each. SA.E. for compliete list.
 YOSTAL CHARGES PER ORDER $£ 1.00$ minimum, OFFICIAL ORDERS WELCOME, SCHOOLS, COLLEGES, GOVERNMENT
BODIES, ETC.PRICES INCLUSIVE OFV.A.T.SALES COUNTER VISA/ACCESS/C.O.D. ACCEPTED.

BURGLAR ALARM

Better to be 'Alarmed' then lerrfied
Thandar's tarmaus 'Minder' Burglar Alarm System.
Superior microwave princiole. Suoplied as three units. Superior microwave princiope Suplied as stheeunits.
complete with interconnection cable. FULIY complete with
GUARANTEED.
GUARANTEED
Co 1015 metres houses microwave radar unit, range Thiee position. key operated tacia switch-off - test - armed 30 second exit and entry delay.

Indoor alarm - Electronic swept freq. siren Outdoor Alarm - Electronic swept frea siren. 98dB output. Housed in a tamper-proot heavy duty metal
case.
Both the control unit and outdoor alarm contain reBoth the control unit and outdoor alarm contain re
chargeable batleries which provide lull protection chargeable balleries which provide hull $200 / 260$ voll
during mains AC $50 / 60 \mathrm{~Hz}$ Expandable with door sens
SAVE $£ 148.00$ Usual Price 1228.85
BKE's PRICE $£ 79.99+£ 4.00$ P\&P

OMP LINNET LOUDSPEAKERS

The very best in quality and value. Made specially 10 suit todays
heed for compaciness with high sound outout levels. Finished neer or compacicess with high sound oulput levels. il inished in handle. AH models 8 ohms. Full Range $45 \mathrm{~Hz}-20 \mathrm{kHz}$.
OMP $12 / 100$ watts $20^{\prime \prime} \times 15^{-} \times 12^{\prime \prime}=125.00$ per pair
OMP $10 / 200$ watts $18^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 145.00$ per pair OMP $12 / 300$ watts $20^{\prime \prime} \times 15^{\prime \prime} \times 11^{\prime \prime} £ 169.00$ per pair

Delivery: Securicor $\mathbf{C 8} .00$ per pair

STEREO CASSETTE DECK
SLIDE DIMMER
 Ideal for installing
 Ideal for installing into Disco
and Mi-Fi cabinet/Consoles. Surface mounting (Horizontal). Supplied as one unit with
all elecironics including mains power supply. * Metal top panel Black finish * Piano type keys including pause * Norm
switch * Twin Vu Meters - 3 Digit counter \star Slider Record Level control 110 mm PRICE $£ 35.99+£ 3.00$ P\&P

BS800

* Suitable for both resist.
ance and inductive loads. In-
numerable applications in
numerable applications
industry the home an
disco's. theatres eic
RAICE E12.99
(Any quantily)
BSR P295 ELECTRONIC TURNTABLE
 minium platter with slrobed rim * Cue lever. Anti. skate (olas device) *Adjustable counter balance * Manual arm * Standard $1 /{ }^{\prime \prime}$ caririge lixings * Operation $9-14 v$ D.C. 65 mA P\&P
Price $f 36.99-63.00$ P\&P
ADC 04 mag. cartridge for above. Price 44.99 ea. P\&P 50 D
PIEZO ELECTRIC TWEETERS MOTOROLA
Join ite Piezo revolution The low dynamic mass (no voice coll) of a Plezo iweeter produces an
improved ransient response with a lower distorlion level inan ordinaiy dynamic crossover is not required these unils can be added to existing speaker systems of up to imore if 2 pul in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER TVPE 'A' (KS N2036A) 3 " round with protective wire speakers. Price $£ 5.39$ each +40 p P\&P
TYPE 'B' (KSN1005A) $31 / 2$ "' super horn. For general purpose speakers, disco and P.A. systems etc. Price

$\begin{array}{ll}\text { TYPE 'C' (KSNG616A) } 2 \text { " } x & 5 \prime \prime \\ \text { horn For qualde dispersion }\end{array}$ horn. For quality Hi-fi systems and qualily discos etc. Price E 6.99 each +40 p P\& P.
TYPE 'D' (KSN1025A) 2" $\times 6^{\prime \prime}$ wide dispersion down to mid range (2 KHz) Suitable for high quality Hi-l systems and quality discos. Price $£ 9.99$ each $+40 \mathrm{p} \mathrm{P}_{1} \mathrm{P}$. TVPE ' E ' (KSN1O38A) $33 / 4$." horn iweeter with attractive silver finish trim. Suitable for Hi-fi monitor Systems elc Price 55.99 each +40 p P\&P.
LEVEL CONTROL Combines on a recessed mounting plate, level control and cabinet input jack socket
STEREO DISCO MIXER
STEREO DISCO MIXER with 2×5 band L. \& L.E.D Vu Meters. Many outstanding features 5 Inputs with individual laders providing a 3 useful combination of the following:3 Turntables (Mag), 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$
Price $[134.99-6300$ P\&P

B. K. ELEGTROTIGS

UNIT 5, COMET WAY, SOUTHEND-ON-SEA, ESSEX. SS2 6TR TEL: 0702-527572

From a gentle purr to a mighty roar, the tightly controlled power of the beast is yours to command!

PROFESSTONAL QUALITY HGHPOWER LOUISPEAKERS

A new range of superb quality loudspeakers.

* VIrtually indestructible high temperature voice-coil reinforced with glass-fibre
* 100% heat overload tolerance
* Advanced technology magnet system
*. Rigid cast alloy chassis
* Linen or Plastiflex elastomer surrounds
* 5 -year guarantee (in addition to statutory rights)

Available in $5,8,10,12,15$ and 18 inch models with 8Ω and some 16Ω impedances and with input powers ranging from 50 W to $300 \mathrm{We.g}$.
5in. 50W 95dB 8 : : XG39N/16』: XG40T £17.95§
8in. 100W 98dB 8 Ω : XG43W £29.95§
10in. $100 \mathrm{~W} 100 \mathrm{~dB} 8 \Omega$: XG46A £29.95§
12in. $100 \mathrm{~W} 101 \mathrm{~dB} 8 \Omega:$ XG49D £29.95§
12in. Twin Cone 100W 100dB 8 8 : XG50E / 16ת: XG51F £31.95§
Note - the output power doubles for each 3dB increase (ref 1W@1m)

A new range of very high quality multimeters offering truly amazing quality at the price.
Pocket Multimeter, 16 ranges, $2000 \Omega \mathrm{NDC} / \mathrm{AC} £ 6.95 \S$ (YJ06G)
M-102BZ with Continuity buzzer, battery tester and 10ADC range, 23 ranges, 20,000 2 N DC $£ 14.95 \S$ (YJ07H)
M-2020S with Transistor, Diode \& LED tester and 10A DC range, 27 ranges 20,000 ${ }^{\text {N N DC }}$ £19.95§ (YJ08J)
M-5050E Electronic Multimeter with very high impedance, FET input, 53 ranges including peak-to-peak AC, centre-zero and 12A AC/DC ranges £34.95§ (YJ09K)
M-5010 Digital Multimeter with 31 ranges including 20Ω and $20 \mu \mathrm{~A} D \mathrm{DC} / \mathrm{AC}$ FSD ranges, continuity buzzer, diode test, and gold-plated PCB for long-term reliability and consistent high accuracy ($0.25 \%+1$ digit DCV) $£ 42.50 \S$ (YJ1OL)
N.B. All our prices include VAT and Carriage. A 50p handling charge must be added if your total order is less than $\mathrm{E5}$ on mail order (except catalogue).
MAPLIN EUECTRONIC SUPPLIES LTD.
Mall Order: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 552911 SHOPS

- BIRMINGHAM Lynton Square, Perry Barr, Tel: 021-356 7292.
- LONDON 159-161 King Street, Hammersmith, W6. Tel: 01-748 0926
- MANCHESTER 8 Oxford Road, Tel: 061-2360281
- SOUTHAMPTON 46-48 Bevois Valley Road, Tel: 070325831.
- SOUTHEND 282-284 London Rd, Westclift-On-Sea, Essex. Tel: 0702-554000 Shops closed all day Monday.

Our huge range of top quality electronic components at very competitive prices are all detailed in our catalogue, and with well over 600 new lines in our 1985 edition and many design improvements, it's well worth getting a copy. Here are just a few examples from the catalogue. (The items below are NOT kits).

* Most phono and jack plugs now with integral strain relief sleeve - gold-plated types also available from 14 p (gold from 70 p)
* Stereo Disco Mixer with cross-fade, talk-over, cue monitoring, aux input, slide controls. Only $£ 58.95$ (AF99H)

* 10-Channel Stereo Graphic Equalisers - 3 models - basic; with peak level meter; and with spectrum analyser - from $£ 77.95$

\star Digital Delay Line permits Slap-back, Doubling, Flanging, Chorus and Echo. 11 controls. Only £195.00 (AF98G)
* Video Enhancer improves picture quality when recording from one VTR to another, and with TV's with monitor input. Only 28.95 (XG59P)
* Detailed descriptions of the exciting new 74 HC range of IC's which combine the advantages of CMOS and TTL. From 46p
* Keyboards: sloping keys, two-tone grey, mounted in steel frame, very smart cases (extra) available. 61 keys, only $£ 33.95$ (YJ12N)

79 keys, only £37.95 (YJ13P)

* 1% Resistors now $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, 0.4 \mathrm{~W}$, only 2 p each!
* Auto transformers $120 / 240 \mathrm{~V} 50 \mathrm{VA}, £ 10.75 \S$ (YJ56L). 100VA $£ 14.95 \S$
(YJ57M). 150VA £16.95§ (YJ58N). 250VA £21.95§ (YJ59P).
\star Digital Clinical Thermometer. Only £ 13.95 (FK51F)
 for all our other fascinating new lines.

앙 Phone before 2pm for same day despatch.

Pick up a copy now at any branch of W.H. Smith or in one of our shops. The price is still just $£ 1.35$, or $£ 1.75$ by post from our Rayleigh address (quote CA02C).

Post this coupon now for your copy of the 1985 catalogue. Price $£ 1.35+40$ p post and packing. If you live outside the U.K. send $£ 2.40$ or 11 International Reply Coupons. I enclose $£ 1.75$.

Name
Address

[^0]: Company registered in England. Registered No. 53626. Registered Office: King's Reach Tower, Stamford Street, London SE1 gLS.

