Easy to build projects for everyone

 andioncs

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER.

LOW-COST LCD MULTIMETER COMPONENTS AND PARTS
Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input
impedance.
Reading to $\pm 1999 . \quad \begin{aligned} & \text { Scales: } \\ & \text { DC voits }\end{aligned}$
DC Volts:
1 mV 1000 V ($1 \% \pm 1$ digit accuracte) AC volts: 1 mV to 500 V ($1 \% \pm 2$ digits accurate), DC current: $1 \mu A$ to 200 mA ($1 \% \pm 1$ digit accurate) Resistance: 10hm to 20 MOhms ($1.5 \% \pm 1$ digit accurate). Power source: 9 V battery or AC with optional adaptor. Size:
155×7
$22 x$
 22-198

AC/DC 8 MHz OSCILLOSCOPE

Cat. no.	DESCRIPTION	PRICE
276-032	LED	$\begin{aligned} & 4 \text { for } \\ & 69 p \end{aligned}$
276-033	LED	$\begin{aligned} & 2 \text { for } \\ & 48 p \end{aligned}$
276-034	LED	$\begin{aligned} & 2 \text { for } \\ & 59 p \end{aligned}$
276-142	Infra-Red Emitter Detector Pair	£1.37
277-1003	12VDCAutomotive Digital Clock Module	$£ 17.52$
276-9110	6 Pin edge coinector for $277-1003$	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	T0-220 Heat Sink	60p
276-1364	TO-3 Heat Sink	81p

A new approved 8 MHz version of last years' winner! Theadvance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc.

Horizontal axis: Deflection sensiltivity better than 250 mVIONV Vertical axis: Deflection sensitivity better than 10 mVIDIV (IDIV- 6 mm). Bandwidth: 0.8 MHz . Input impedance: 1 MO hm paralle capacitance 35pF. Time base: Sweep range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 ranges). Synhronization: Internal (-) Size: $200 \times 155 \times 300 \mathrm{~mm}$. Supply $220 / 240 \% / 50 \mathrm{~Hz} .22-9501$.

You save because wé design. manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement. KNOWN AS RADIO SHACK IN THE U.S.A. MAKERS OF THE WORLD'S BIGGEST SELLING MICROCOMPUTER TRSBO. KNOWN AS RADIO SHACK IN THE U.S.A. MAKERS OF THE WORLD'S BIGGEST SELLING MICROCOMPUTER TRSBO.

QUARTZ LCD 5 Function

SOLAR QUARTZ LCD Chronograph

HANIMEX
Electronic
LED Alarm Clock

Fearures and Specification
Houn 'minute dieplay Large LED display with pm, and alarm on indicator. 24 Hours alarm with
on/off control. Display flashing for Dowet loss indication. Aepeatable 9 minute snooze. Display
 Weight: $1.43 \mathrm{lb}(10.65 \mathrm{~kg})$.
$£ 10.20$ Thousands sold!
Mains operated.
Guaranteed same day despatch.

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day. date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

QUARTZ LCD Ladjes Day Watch

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. Hours. minutes. seconds. day, date, backlight and auro calend C .
Elogani meral bracelet in tilver or goid hully adjuetable to suit very slim wrists.
Stete colour preference.
$£ 9.95$
Gueranteod samedard despactich. M15

EXECUTIVE ALARM WATCH

QUARTZ LCD sum 11 Function chrono

6 digit, 11 functions.
Hours, mins., secs., day Hours, mins., secs..
dafe, day of week. 1/100th, $1 / 10$ th, sec 10X secs., mins. Split and lap modes. 8ack-light, auto calendar Only 8 mm thick. Stainless steel bracelet and back.
Adjustable bracelet. Metac Price

$£ 10.65$ Thousands sold
Guaranteed same day despatch.
M3

QUARTZLCD

Ladies Fashion Watch
Elogant brecelotin bronze/gold finish or silver colour.
Hours, mins, sece. dey. dete, becklight end auto calendsr. Adjustable for the silmmest of wrists. State colour preference.
£14.95

Guranteod someday dosoaich M17

HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item fo post and packing or the amount stated in the advert. All products carry 1 vear written guarantee and full money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. All prices include VAT currently at 15%. Metac Wholesale:
Trade enquiries - send for a complete list of prices for all the goods advertised plus many more not shown also minimum order details.
Telephone orders: Credit card customers can telephone orders direct to Daventry (03272) 76545 or Edgware Re. O1-723 475324 hours a day.
Or Edgware Ro. CALLERSWELCOME Shops open 9-30am-6.00

Guaranteed same day dispatch.
Guarantieed same day dispatch. M4
QUARTZ LCD ALARM 7 Function

Hours, mins., secs, month, date, day. 6 digirs, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick.
£12.65

ALARM CHRONO with 9 world time zones

- 6 digits, 5 flags.
- 6 basic functiona.
- 8 further timezones.
- Count-down alarm.
- Stop-watch to 12 hours B9.9 sact.
In $1 / 10$ sec, steps. - Splitend ilming modes. - Alarm.
- 9 mm thlek
- Back-llght.
$£ 29.65$

QUARTZLCD Ladies Cocktail Watch Mighly functional watch which elsquyte thope
opecial occualons. becial occialions. Gesurlfully desioned whit vary thin bracelet which retains atrength as Well as siegance
Hours, mine, sece, day, dete, backlight and autocslender Bracelet fully adjuateble to State gold or slly
£19.95
Guaranteed same day desparich M18
Metac price breakthrough for an Alarm Chronograph with Dual Time only
£18.95

OUTSTANDING FEATURES

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
- On command. stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch io and from timekeeping and stopwatch modes without affecting either's operation
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or a waken youl Guaranteed same day dispatch: M16
North \& Midlands
67 High Street, DAVENTRY Northamptonshire Telephone: 0327276545

South of England 327 Edgware Road LONDON W. 2 Telephone: (01) 7234753

Your leading direct suppliers for

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOUTO WORK AT PROPER
PROFESSIONAL LEVELS

* At newest reduced prices.
\star Widest possible range stocked
\star Information on request
* Enquiries from trade, industrial and educational users invited
Appointed distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM,
VERO AND MANY OTHER
FAMOUS MANUFACTURERS
It's a good deal better from

ELEGTROVALIE LTD

We pay postage
in U.K. on orders list value £5 or over. If under, add 30g handling charge.

- We give

 discountson C.W.O. orders, excent for a few litems marked Net or N in oup eatalogues.
5% on orders. list value £10 or mare
10\% on orders list value 10% £25 or more. Not on Access or Barclay card purchase orders.

- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.
- We guarantee all products brand new. clean and to maker's spec No seconds. no surplus.
- WE WILL SEND YOU OUR 120 -PAGE CATALOGUE NO. 9 FREE ON REQUEST. Comprehenslve, informatlve, very well produced. Write, phone or call for your free copy, logether with latest current price Inst.

Dept.EE11, 2 St St Judes Road, Englefleld Green, Egham, Surrey TW20 OHB Phone: Egham 3603. Telex 264475
Northern Branch (Personal shoppers only), 680 Burnage Lane
Burnage, Manchester M19 1NA. Phone \{O61) 4324945.

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowledge that is so essential to your success: knowledge that will enabje you to take advantage of the many opportunities open to you. Srudy in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching
until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing
Electrical Engineering, Installation
and Contracting

POST OR PHONE TODAY FOR FREE BOOKLET

HT To: International Correspondence Schools

Dept. N268Intertext House, London
SW8 4UJ or ielephone 6229911
Subject of Interest
Name
Address
Tel:
Age:

WATFORD ELECTRONICS
 CARDIFF ROAD, WATFORD, HERTS., ENGLAND ORDER, CALLERS WELCOME, TEl, Watford $40588 / \mathrm{i}$
 MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES BRAND NEW, FULL SPEC, AND FULLY GUARANTEED ORDERS P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL

 WELCOME. P\&PADD 30D TO ALL OVAT Export ofders no V.A.T. Appllcable to U.K. Customers only. Unless stated otherw We stock many more items. It pays to vialt us. We are altuated behind Watford Footbail Saturday $\$.00 \mathrm{am}-5.00 \mathrm{pm}$. Ample Free Car Parking pace avallable.
POLYESTER CAPACITORS: Axlal lead type (Values are in μ F)
 1000V: 10nF, 15n, 20p: 22n 22p; 47n 26p; 100n 34p: 470n 13p; 1 1 FF 475 p
POLYESTER RADIAL LEAD CAPACITORS (230V)
$10 \mathrm{nF}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n}, 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} 150 \mathrm{~m} 10 \mathrm{p} ; 220 \mathrm{n}, 330 \mathrm{n}$ FEED THROUGH
CAPACITORS

MYLAR FILM CAPACITORS
100V: $0.001,0.002,0.005,0.01 \mu \mathrm{~F}$
$0.01 \mathrm{p}, 0.02,0.040 .05,0.058 \mu \mathrm{~F}$
$0.9 \mathrm{~F}, 0.2,0 \mathrm{p}$
OPTO
ELECTRONICs
LEDS plus cllos

MIMIATURE TYPE TRIMMERS $2.8 \cdot 6 \mathrm{pF}, 3-10 \mathrm{pF}, 10-40 \mathrm{pF}$
$8-25 \mathrm{pF}, \mathrm{g}-45 \mathrm{pF}, \mathrm{BOnF}, 88 \mathrm{pF}$
COMPRESSION TRIMMERS 100 500pF 45 p 1250 pF 58p.

POLYSTYRENE CAPACITORS
100F 10 1nF ED:1.8NF to 10 nF 10p

SILVER MICA (Valuai in DF) 3-3, $4-7,6-8,10,12,18,22,33,47,50,88$,
$75,82,85,100,120,150,18090$ each $75,82,85,100,120,150,180$
$220,250,300,330,360,390$
$\begin{array}{ll}600,820 \\ 1000,1200,1800,2000 & \begin{array}{l}16 p \text { each } \\ \text { 20p each }\end{array}\end{array}$

CERAMIC CAPACITORS: 50 V 0.5 pF to 10 nF 4p; 22 n to 100 n \& p .

EURO BREADEOARD EE 30.
S-Dec ${ }^{350 p}$
U-Dec A '

VOLTAGE REGULATORS*

EE TEACH-IN Complete klt of parts now avaliable £20.95.	BLIDE 250 V : 1A DPDT 1A DPeloff. 15p tADPDT 13p Pole clover 24p PUSH BUTTON Pusin BUTTO SPST on/ofl 85p SPDT clover 70p DPDT 6 Tag 50

SWITCHES Minlature Non-Locking ROCKER: SPST on/off 10A 250 V 23p ROCKER: Illuminated (white)
Lighta when on: 3 AA 240 V

$$
\begin{array}{r}
150 \\
\mathbf{1 5 0} \\
50
\end{array}
$$

$$
\begin{array}{r}
130 \\
50 \\
55 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { DIL SOCKETS } t \text { (Low Profle - Texas) } \\
& 8 \text { pin } 10 p \text {; } 14 \text { pin } 12 p \text {; } 16 \text { pin } 13 p \text { : } 18 \text { pin } 18 p \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& 8 \text { pin } 10 p \text { it pin } 12 p ; 16 \text { pin } 13 p ; 18 \text { pin } 14 p \text { p: } \\
& 20 \text { pin } 22 \mathrm{p} ; 24 \text { pin } 25 p ; 28 \text { pln } 30 p ; 40 \text { pin } 50 \mathrm{p} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { JACKSONS VA } \\
& \text { CAPACITORS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dlelectrlc } \\
& 100 / 300 \mathrm{pF}
\end{aligned}
$$

$$
\begin{aligned}
& 100 / 300 \mathrm{p} \\
& 500 \mathrm{pF}
\end{aligned}
$$

$$
40 \mathrm{p}
$$

$$
\begin{aligned}
& 0 \quad 2365 \mathrm{pF} \text { with } \\
& \text { slow molion }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 500pF }{ }^{955 p} \\
& 61 \text { Ball Drive } \\
& \text { i511/DAF }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { slow molion } & 325 \mathrm{p} \\
\text { Drlve } \\
00208 / 178 & 2: 55 \mathrm{p}
\end{array}
$$ $61 / 361$

6103
motion drive 323p
C804

$$
\begin{aligned}
& \text { 4511/DA } \\
& \text { O1a/ D } 1 \\
& \text { 81/381 }
\end{aligned}
$$

\[
$$
\begin{array}{ll}
\text { OAF } & \text { S15p } \\
\text { Sive 4103 } \\
1 & \text { S50p }
\end{array}
$$

\] | Drum 54 mm 40 p | 2550 pF | 175 p |
| :--- | :--- | :--- |
| $0-1.365 \mathrm{pF}$ | 245 p | $100,150 \mathrm{pF}$ |
| 15 p | | | $\begin{array}{lll}0-1 \cdot 365 \mathrm{pF} & 245 \mathrm{p} & \text { 'L' } 3 \times 310 \mathrm{pF} 45 \mathrm{p} \\ 002365 \mathrm{pF} & 275 \mathrm{p} & 00 \cdot 3 \times 25 \mathrm{pF} \\ 0 . & 430 \mathrm{p}\end{array}$ DENCO COILS RDT2

'DP'VALVETYPE RFC5 chokes ofp Range 1 to 5 BI., RFC7 $(19 \mathrm{mH}) 10 \% \mathrm{p}$
Rd. YI, Wht. 11p 1 FT $13 ; 14$ is
 Rd. Whi. Wor TOC1
BOA Valve Holder MWFR
250

VEROBOARD

8%
350
2003
2020

 Nowno

CA3130 CCL7106
HCL7107 ICM17205
1CM7217A
ICM17555
LD LCM1555
LD 130
LM 300 H LD130
LM3300
LM301A LM301A
LM308
LM318 LM332
LM324
LM339 LM348
LM379
LM380
LM381
LM382
LM1458
M3900
LM3009N
LM3911
M253AA
$\mathrm{MC1304}$
$\mathrm{MC1310}$
A

FOR CATALOGUE OF COMPLETE RANGE OF KITS AND METAL CABINETS PLEASE SEND S.A.E. TRADE AND EXPORT ENQUIRIES WELCOMED

FIRST

and STILL BEST!

We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogueand for the service that backs it up. Experience both for yourself. Just send $£ 1-30$ with the coupon and a catalogue will come by return of post.

- About 2,500 items clearly listed and indexed. Profusely illustrated throughout. 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.

Catalogue contains details of simple Credit Scheme. home radio (Compononts) LtD.
Dapt. EE., $234-240$ London Road, Mitcham, Surrey CR4 3 HD
POST THIS COUPON
with cheque or P.O. for $£ 1 \cdot 30$ - - - - - P/ease write your Name and Address in bloch capila/s

MAME ADDRES

角

HOME ADIO (Compontnts) tTO. Dept. EE
234.240 London Foad. Mitcham, Suriey Cht 3WD
London grasel

CRESCENT RADIO LTD.

I, ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHÓNE 01-888 3206

Push button heads or tails. Complete kit and full instructions supplied.
pocket game
Easy to build and great to play
Kit price $-\mathbf{E 5} \cdot \mathbf{2 5 + 1 5 \%}$ VAT. Post free.
4 OHM DOOR MOUNTING CAR LOUDSPEAKERS

High performance, door mounting. 5 t inch units with smart front grill. 10 or magnet, 12 wates, 4 ohms. In attractive, see-through carton. f $12.60+15 \%$ VAT. per pair.

HEAVY DUTY XOVER

2 WAY 8 OHM
A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt.
fitted with serew tirminals for input and a three position 'HF LEVEL' switch which selects either Flat, -3 dB or -6 dB . ONLY $£ 3.00+15 \%$ VAT

A CRESCENT 'SUPERBUY'

 Goodmans $5^{\prime \prime} 8$ ohm long throw H/D loudspeakerMounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 t^{\prime \prime}$ (diagonally).

ONLY $65.00+15 \%$ VAT

LOUDSPEAKERS \quad 90p
$2 t^{\prime \prime}(57 \mathrm{~mm}) 8$ or $75 \mathrm{ohm} \quad+15 \%$ VAT $2 t^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm ${ }^{+}{ }^{+}$
(please state impedance req ${ }^{\prime} d$)

PSI STABILISED
POWER SUPPLY
240v AC input. Outputs: 3, 6, $7 \cdot 5$ and 9 volts DC as maximum 400 ma . Three switches: On-off, Polarity Reversing and Voltage Change. Regulated to supply exact marked voltages from no load up to maximum current. Dimensions: 127 $\times 76 \times 57 \mathrm{~mm} .46 \cdot 50+15 \%$ VAT. PS2 12 VOLT HEAVY DUTY POWER SUPPLY
12 volt 1.5 amp suitable for using auto 2.ssettes from domestic mains Approx cassettes
size: $105 \times 100 \times 60 \mathrm{~mm} . \pm 10$ inc. YAT. CR4110 DESOLDERING PUMP

ONLY $\mathrm{E} 6+15 \%$ VAT High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.
3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
1000 W lighting per channel, max. This 3 chanme! sound to light unit is housed in a robust metal case, with a sensitivity control for each channel .e. Bass, middle and treble. Full sheet. ONLY $20.00+15 \%$ VAT $\frac{\text { sheet. ONLY } 20 \cdot 00+15 \% \text { VAT }}{\text { CRLVI }}$ £ 12.00 15\% VAT BRITISH MADE "Versadrill", 12 volts DC. Compact battery operated power tool, sufficiently powerful to perform all the operations associated with $240 y$ drills. Dimensions: $-150 \times 50 \mathrm{~mm}$ (dia.)

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

and a career.

courses Available
CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.RADIO AMATEUR LICENCE.COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.RADIO AND TELEVISION SERVICE.
AND MANY OTHERS.

WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

A

ALL PRIGES INOLUDE VAT．ADD 35p POST PER ORDER

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR
D. G. BARRINGTON

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR
 P. A. LOATES

TECHNICAL ILLU8TRATOR

D. J. GOODING

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 OLS
Phone: 01-261 8873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6871

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY

DEPARTMENT
Phone 01-261 6615

ADVERTISEMENT OFFICES

Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory...

and Popular Features ...

There are several active pastimes that depend entirely upon electronics though the participants are not necessarily involved in or even concerned with the techniques employed, but only with the resultant effects produced by some action on their part.

Radio control of models is a notable example. Its practice well demonstrates a marriage of technology and art. Anyone who has watched the adroitness with which an experienced and skilled operator manœuvres a model aircraft in the air above and around him causing the model to enact the antics of a real lifesize craft, can be filled only with admiration . . . and envy.

So it is no wonder that radio control has a very large following and is backed by a sizeable industry catering for the special needs of these R/C enthusiasts-from models of all kinds through servo-mechanisms to complete transmitters and receivers.

Of the large numbers who participate in R/C perhaps the majority buy everything ready made and concentrate on the "real business" of operating their favourite kind of model. A fair number do however add further to their enjoyment by building their own model aircraft, boats or wheeled vehicles. And finally some, certainly a smaller proportion of the whole, actually build their own radio transmitting and receiving equipment.

To this latter group, as well as to the general electronics enthusiast, we shall be directing special attention
over the next few months. The $E E$ Radio Control System is an "entire" system and it uses a well proven circuit that is equally amenable to the needs and requirements of novice as well as experienced operator. The overall project is a result of teamwork: three designers have cooperated to produce this system which has been subjected to exhaustive field tests, culminating in the very creditable achievements by one of the trio during the Manx Soaring Championships on the Isle of Man last August.
We hope that through this project many of our readers will discover another fascinating pastime and have the additional pleasure of modestly remarking to admiring onlookers"Oh yes, I built the electronics myself".

And now for something quite different. Circuits simple, useful and all built on a standard size board. That sums up Uniboards, a new series of quick one-off's featuring commonplace discrete semiconductors that starts this month. Just the job for newcomers to cut their teeth on and assuredly worth more than a passing glance from older hands.

Our December issue will be published on Friday, November 16. See page 740 for details.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanied by a stamped self-addressed envelope.
We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requirements can be met by our advertisers.
All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.

VOL. 8 NO. II
NOVEMBER 1979
CONSTRUGTIONAL PROJEGTS
3-FUNCTION GENERATOR Valuable piece of test equipment by F.C. Judd 700
MW LW RADIO TUNER For use with headphone or amplifier; by F. G. Rayer 707
UNIBOARDS: 1-OPTO ALARM Buzzer sounds when light falls on sensor by A. R. Winstanley 712
EE RADIO CONTROL SYSTEM Part 1: Introduction and Transmitter description
by L. Armstrong, H. Dickinson, and W. Wilkinson 724
BABY ALARM For remote babysitting by E. M. Lyndsel/ 735
GENERAL FEATURES
EDITORIAL 698
CROSSWORD NO. 21 by D. P. Newton 706
BRIGHT IDEAS Readers hints and tips 710, 738
THE ADVENTURES OF TANTY BEAD Cartoon by Matthew Reed 710
SQUARE ONE Beginners Page: Diodes 711
TEACH-IN 80 Part 2: Conductors, insulators and resistors by S. R. Lewis B.Sc. 714
SYNTHESISERS EXPLAINED-1 Electronic organ and synthesiser basics compared by B. H. Baily 720
COUNTER INTELLIGENCE A retailer comments by Paul Young 723
READERS' LETTERS Your news and views 730
PLEASE TAKE NOTE Nickel Cadmium Battery Monitor 730
JACK PLUG AND FAMILY Cartoon by Doug Baker 730
EVERYDAY NEWS What's happening in the world of electronics 732
SHOP TALK Retail news, products and component buying by Dave Barrington 742
RUMMAGING AROUND Money saving ideas for the constructor 745
FOR YOUR ENTERTAINMENT The Wireless Telegraphy Act, Take-away Radio and War on CB
RADIO WORLD A commentary by Pat Hawker 749
WORKSHOP MATTERS Marking out, cutting and bending by Harry T. Kitchen 751
SPECIAL OFFER Solar Powered Digital Wristwatch 739

Back lssues

Certaln back lssues" of EVERYDAY ELECTRONICS are available worldwide price 70 p Inclusive of postage and packIng per copy. Enquirles with remittance should be sent to Post Sales Department, IPC MagazInes Ltd., Lavington House, 25 LavIngton Street, London SE1 OPF. In the event of non-avallablity remittances will be returned. - Not available: October 1978 to July 1979.

Binders

Blnders to hold one volume (12 lesues) are avallable from the above address for $\mathbf{E 3}$. 75 (home and overseas) Incluslve of postage and packing. Please state which Volume.
Subscriptions
Annual subscrlptlon for delivery dlrect to any address in the UK: $\mathbf{8 8} 50$, overseas: £9.50. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2813 KIngs Reach Tower, Stamford Street, London SE1 9LS.
(c) IPC Magazines Llmited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations In whole or In part are expressly forbldden.

| T must first be emphasised that this project requires the use of an oscilloscope for the adjustments necessary to obtain the correct mark-to-space ratio for each waveform and also the shape and purity of the sinewave. This cannot be done audibly, or with an audio signal reading meter.

An audio range signal generator of this nature is a valuable piece of test equipment and has dozens of applications in testing and performance measurement of both audio and other electronic equipment. It has a total frequency coverage of 15 Hz to 100 kHz in four ranges, see Table 1.

Table 1. Band coverage of the 3-Function Generator.

Band No.	Coverage
$1(\times 1)$	15 to 250 Hz
$2(\times 10)$	150 to $2,500 \mathrm{~Hz}$
$3(\times 100)$	1,500 to $25,000 \mathrm{~Hz}$
$4(\times \mathrm{kHz})$	10 to 100 kHz

The output is continuously variable with maximum signal levels as shown in Table 2.

Table 2. Maximum output levels for the three functions.

Function	Level (volts)
Sinewave	1 (r.m.s.)
Square-wave	2.5 (pk-pk)
Triangular-wave	1 (r.m.s.)

The "r.m.s." levels are according to a normal r.m.s. type a.c. (audio signal) reading meter. The maximum level square-wave signal will also read out on a similar meter at about 1.5 V (approximate r.m.s. value).

The sinewave signal has a minimum harmonic distortion factor of about 2 per cent when correctly adjusted but lower than this is not possible as the sinewave is obtained by electronic shaping within IC1 and not by pure generation.

Although the sinewave is not suitable for harmonic distortion analysis with a t.h.d. meter it is quite adequate for all audio equipment frequency response measurements, audio amplifier power output and bandwidth measurement, frequency comparison, and so on.

The triangle-wave is quite pure and also has numerous applications in electronics as well as audio, particularly as the "ramp" rise and fall is perfectly linear:

The square-wave has a rise time of only 2 microseconds and so can be used effectively for audio amplifier square-wave tests as well as for a "clock pulse" source with
a 1-to-1 mark-space ratio at any frequency within the range of the generator.

THE CIRCUIT

The circuit diagram of the 3 Function Generator is shown in Fig. 1. Most of the work is carried out internally by the 8038 sine-square-triangle generator i.c. with external CR network-switching to provide the wide frequency coverage specified. The output signals from ICl are coupled to an opamp, IC2, with switched negative feedback to provide (a) a nominal output level of 1 V r.m.s. from the sine and triangle waves with the least possible distortion of the waveforms (b) amplified squarewave, with limited negative feedback, to obtain a fast rise time and uniform flat top characteristic, even down to 15 Hz and (c) a low

Fig. 1. The complete circult diagram of the 3-Function Generator Including the malns derived power supply. Note that R19 needs to be calculated for transformer used-see text.
to obtain a uniform output from the sine and triangle waves and a fast rise time from the squarewaves.

The output feed capacitor is kept large to obtain a flat topped square-wave down to 15 Hz but in order to check this, an oscilloscope with a d.c. input on the Y-amplifier must be used. Scope amplifier input capacitors (a.c. coupling) are usually too small in value to obtain flat top square-wave displays at frequencies as low as 15 Hz (see oscillograms in this article).

POWER SUPPLY

The circuit requires a smooth 30 V d.c. supply. This is derived from the mains in a conventional manner. Mains voltage enters the unit via S3 and appears across the primary of T1; 24 V a.c. (nominal) is produced across Tl secondary which is then full-wave rectified by the diode bridge D2 to D5, producing a d.c. level across Cl 0 equal to the peak value of Tl secondary voltage (i.e. $24 \sqrt{ } 2$) plus an overvoltage due to the regulation factor of the transformer.
The prototype used a transformer with a secondary current rating of 250 mA , resulting in total voltage at $\mathrm{ClO}+\mathrm{ve}$ of 41 V . The current required by the circuit is 25 mA . Therefore to obtain 30 V at $\mathrm{Cll}+\mathrm{ve}, 11$ volts must be dropped across R19 when 25 mA flows.

From Ohm's law, R19 = 11/0.025 $=440$ ohms. The nearest preferred value above is chosen, i.e. 470 ohms.

To determine the value of R19 for other transformers that might be used, carry out the following.

With the power supply section not connected to the rest of the circuit, measure the voltage across ClO , $\left(V_{\mathrm{m}}\right)$ and then calculate the value of a resistor, R_{p}, to place in parallel with C10 to cause 25 mA to flow:

$$
R_{\mathrm{p}}=V_{\mathrm{m}} / 0.025 \mathrm{ohms}
$$

Measure the voltage now at Clo +ve , call this V^{\prime} m. Remove R_{p}. The value of $\mathrm{R} 19=\left(V_{m}^{\prime}-30\right) / 0 \cdot 025$ ohms.

Calculate R19 wattage from $\left(V_{m}^{\prime}-30\right) \times 0.025$ watts.

The complete generator and its power supply will fit comfortably into a Verobox type $75-1412 \mathrm{~K}$ which has aluminium front and rear panels. The generator circuit board and its controls are situated on the front panel with the rear panel holding the power supply board and transformer.

Drilling details for the front panel are shown in Fig. 2. The diameter of some of the holes, e.g. the on/off switch and the panel

Resistors

R1	$1 \mathrm{k} \Omega$	R7	$15 \mathrm{k} \Omega$
R2	$22 \mathrm{k} \Omega$	R8	$150 \mathrm{k} \Omega$
R3	$4 \cdot 7 \mathrm{k} \Omega$	$R 9$	$33 \mathrm{k} \Omega$
R4	$10 \mathrm{M} \Omega$	R10	$3 \cdot 9 \mathrm{k} \Omega$
R5	$4 \cdot 7 \mathrm{k} \Omega$	R11	$1 \mathrm{M} \Omega$
R6	$15 \mathrm{k} \Omega$	R12	$1 \mathrm{M} \Omega$

All $\frac{1}{4}$ watt carbon $\pm 5 \%$ except where
stated otherwise

R13	$10 \mathrm{k} \Omega$
R14	$10 \mathrm{k} \Omega$
R15	$10 \mathrm{k} \Omega$
R16	$15 \mathrm{k} \Omega$
R17	$120 \mathrm{k} \Omega$
R18	680Ω
R19	470Ω
	text)

Potentiometers
VR1 $10 \mathrm{k} \Omega$ carbon log.
VR2 $1 \mathrm{k} \Omega$ miniature horizontal preset
VR3, $4 \quad 100 \mathrm{k} \Omega$ miniature horizontal preset (2 off)
VR5 10k carbon linear.

Capacitors

C1	$0 \cdot 1 \mu \mathrm{~F}$ ceramic or plastic	C7	$500 \mu \mathrm{~F} 25 \mathrm{~V}$ elect.
C2	$0.22 \mu \mathrm{~F}$ ceramic or plastic	C8	$10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C3	$0.022 \mu \mathrm{~F}$ ceramic or plastic	C9	$100 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.
C4	2200pF ceramic or plastic	C10	$500 \mu \mathrm{~F} 50 \mathrm{~V}$ elect.
C5	500 pF silvered mica	C11	2,200 μ F 35V elect.
C6	$10 \mu \mathrm{~F} 15 \mathrm{~V}$ elect.	C12	$0 \cdot 0047 \mu \mathrm{~F}$ ceramic or plastic

Semiconductors

IC1 8038	function generator i.c.	
IC2	741	operational amplifier (8 pin d.i.l.)
D1	1 N 4148	or similar small signal silicon diode
D2 to	D5	50 V
1 A bridge rectifier		

Miscellaneous

S1 1-pole 4-way rotary switch
S2 2-pole 3-way rotary switch
S3 mains single-pole on/off toggle
T1 mains primary/ 24 V 25 mA secondary-see text
LP1 mains panel mounting neon
SK1 panel mounting phono socket
0.1 inch matrix perforated board size 58×26 holes; 3-way terminal block; three-core mains cable; 8 -pin and 14 pin d.i.l. sockets (1 off each); control knobs (4 off); case Verobox type $75-1412 \mathrm{~K}$; plastic spacers and 6BA fixings; rubber grommet to suit mains cable; 6BA solder tag; connecting wire; 1.5 mm thick clear Perspex approx. $100 \times 75 \mathrm{~mm}$.

Fig. 2. Dimensions and drilling details for the front panel of the unit with some suggested panel markings.
mounted neon may need to be changed to suit the components used.

The generator circuit is built on a piece of 0.1 inch matrix perforated board size 58×26 holes. The layout of the components and wiring details on both sides of the board and interwiring between the panel mounted controls is shown in Fig. 3. Although the generator circuit board layout is not critical, the constructor is advised to retain the position of all the components as closely as possible to avoid interaction and waveform crosstalk.

In the prototype the generator circuit board was mounted on the front panel using 30 mm long plastic spacers and self-tapping screws.

Fig. 3. Above. The layout of the components and interwiring on both sides of the circuit board. Note that some wires pass through holes to make connections to components/wiring at other locations. Left. The internal face of the front panel showing component positions, interwiring and connections to be made to the board.

The completed generator circuit board showing positioning of components.

There is no particular order to be followed in the assembly of components on this board except perhaps to begin by inserting the Veropins, used for component anchorage, and the i.c. sockets. Some interconnecting wires use tinned copper wire and others use p.v.c. covered wire. Where there is any danger of a link wire touching another wire or component lead, the p.v.c. type is essential. Alternatively, tinned copper wire and sleeving may be employed.

When assembly is complete, sufficient lengths of flying lead should be attached to the board to reach the panel mounted components, and this wiring carried out. The board can then be screwed in place on its spacers.

POWER SUPPLY SECTION

As previously stated, the power supply board is fitted with the transformer on the back panel. The board is mounted on spacers to keep it clear of the metal back panel. The layout of the components is shown in Fig. 4 together with the interwiring on the underside. Note that this differs slightly from that in the photograph. The author used two $1,000 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors in series to form a $500 \mu \mathrm{~F}$ 50 V capacitor. This has been replaced in the text and diagrams by a single capacitor of this value.

Secure the transformer to the back panel remembering to place a solder tag on one of the fixings for earthing purposes. Make the connection between the board and Tl secondary and secure the board in place; R19 should not yet be connected, its value may need to be determined as explained earlier.

The two wires interconnecting the boards should not be connected until R19 is in place. In the prototype, a convenient method of connecting the mains cable to the transformer primary was to use a short length of plastic screwterminal. The mains cable should of course be passed out through the rear panel via a rubber grommet or strain relief bush. Complete the wiring to S3 and LP1.

CALIBRATED FREQUENCY SCALE

A full-size copy of the calibrated frequency scale as used on the prototype is shown in Fig. 5. This can be cut out or photocopied and pasted on thin card. It is secured under the locknut of the frequency control VRl but if a thin Perspex plate can also be made to cover it, so much the better.

A graticule type pointer, like that on the prototype is also worth while and not difficult to make from thin Perspex to the size
shown in Fig. 6 and which is glued (Araldite) or screwed to the back of a plain control knob

CHECKING OUT AND ADJUSTMENT

As already mentioned, an oscilloscope is necessary for adjustment of the presets VR2, VR3 and VR4. The oscilloscope Y-amplifier input is connected to the generator output socket and the output control set at maximum. A preliminary check with the frequency range switch S 1 on $\times 10$ frequency scale pointer at $100(1,000 \mathrm{~Hz})$ and waveform switch S 2 set to "square", will establish that the generator is operating, in which case first check the supply rail positive to ground voltage at the junction of R19 and C11 (power supply) which should be $30 \mathrm{~V} \pm 1 \mathrm{~V}$. If not, it may be necessary to slightly change the value of R19 to obtain 30 V as close as possible otherwise the output level and calibration of the generator may be affected. With this done, adjust VR1 to obtain a square-wave (still at $1,000 \mathrm{~Hz}$) with a uniform l-to-1 mark-space as in the oscillogram Fig. 7b. Next, switch S2 to sinewave output and adjust VR3 and VR4 together, each a little bit one

Mounting of the generator circuit board on the rear of the front panel.

Fig. 7. Photograph of oscilloscope screen containing the three functions generated by the prototype (a) sinewave (b) squarewave (c) triangle-wave.
way or the other, to obtain the closest possible replica of the sinewave in oscillogram Fig. 7a. Each of the waveforms shown in this photo were taken from the prototype generator.

Now switch to triangle wave for which no other adjustment is necessary as its mark-space has already been established. It will appear as in the oscillogram Fig. 7c.

If an r.m.s. reading a.c. voltmeter is available check that the output level is appropriate from each waveform and over the whole frequency range. A reasonable assessment of this can of course be made with a calibrated oscilloscope.

If a distortion analyser is available, the sinewave purity can be adjusted with VR3 and VR4 until the lowest possible distortion i.e.,

Fig. 8. Shows the rise time obtained from the prototype square-wave output signal.
about 2 per cent at $1,000 \mathrm{~Hz}$ is obtained.

Some further checks on squarewave outputs can be carried out with a calibrated oscilloscope and preferably one with a d.c. input to the Y-amplifier and a time base range in the microseconds region. On a fast time base range the rise time of the square-wave can be verified and this should be in the region of 2 microseconds for 90 per cent of the rise as shown in the oscillogram Fig. 8.

At 15 to 20 Hz the square-wave should have an almost perfectly flat top as in oscillogram Fig. 9 but this will only be apparent with d.c. coupling into the 'scope.

USES

An audio range three waveform generator of this nature is a very desirable item of test equipment

Fig. 9. Even at 15 Hz the top of the squarewave is almost flat.
but its full use requires an a.c. (audio range) voltmeter and an oscilloscope at least to carry out tests and measurements on audio amplifiers, tape recorders and various kinds of purely electronic circuitry as mentioned earlier.

With the extra essential items of test equipment as above, one could measure frequency responses of audio amplifiers and tape recorders, responses of tonecontrols, filters and pre-amplifiers, carry out square-wave tests on amplifiers, check frequencies of other generators and oscillators and measure the power output of audio amplifiers etc.

Incidentally a quite good but secondhand oscilloscope is not difficult to get hold of at a reasonable price and is one of the most valuable of all the numerous items of test equipment to be found in workshops and laboratories. I

EE CROSSWORD No 21 avo, en nwtom

ACROSS

1 Wound-up instrument found in magnetic fields $(6,4)$.
5 Rough and offensive.
7 We would usually not be clapped out of these conductors.
8 Analysis of integrated circuit system goes through the body.
10 Part of the less-heavy e.m spectrum (5, 4).
13 Something fishy about this transistor output.
14 Wires with electromagnetic privacy $(8,5)$.
16 To r.m.s. about will give a rough passage (Anag.)
17 Chronological list for TV and calculator.
19 Single-minded tape (3,5).
21 Carrier on the waves.
22 Horsey problem.
23 Maximum displacement across a wave $(4,2,4)$.

DOWN

1 Defensive device against electrical disturbance.
2 No lag beside (Anag.).
3 It's no sin.
4 It's a sort of output as a matter of debate.
5 Random access memory, sheepishly.
6 To break up an electronic marriage?
9 A test or I'm guessing (Anag.).
$11 C R$ might define one $(4,5)$.
12 Sound intensity measurer (1, 1, 5).
14 End of transmissions for the day $(4,4)$.
15 The table is turned into decorative activity.
17 Lagging behind or leading, we all pass through one from time to time.
18 --|---|.-•|.../.

20 Intellectual head-characteristic.
21 Beat frequency oscillator, to begin with.
 BY F.G.RAYER

ATUNER to provide a.m. reception on medium and long wave bands increases the scope and entertainment value of an audio amplifier. This tuner has sufficient output for even insensitive amplifiers, while avoiding the relative complication of a superhet circuit. Coverage is approximately 1600 to 600 kHz m.w., and 490 to 185 kHz l.w., or 360 to 145 kHz l.w.

CIRCUIT DESCRIPTION

The circuit diagram of the tuner is shown in Fig. 1.

The circuit comprises an r.f. amplifier, TR1, a diode detector, D1 and an audio amplifier TR2 with high output impedance.

Signals generated in the aerial
are fed via SK1 into Ll primary and induced into Ll secondary to reach the gate of the r.f. amplifier, TR1. The potentiometer VR1 is the gain and volume control. As the wiper of VRl is moved towards Ll pin 5, the source bias is increased thereby reducing the gain of TR1. The aerial signal in Ll primary is attenuated at the same time.

The drain terminal of TR1 is coupled to the primary of coil L2, pins 5 and 6 , which is tuned by the second section of the ganged capacitor, Clb. Each section has its own trimmer, C2 and C5 respectively.

Note that a dual 500pF gang can be used but will require a little extra space.

A tapping on the secondary winding of L2 is used as a signal source for the detector/smoothing capacitor D1/C6. A tapping is used to avoid unnecessary loading of L2.

The audio output from D1 is coupled to the base of audio amplifier TR1 by C7; TR2 is wired as a

Fig. 1. The complete circuit diagram for the Medium and Long Wave Radio Tuner.

Fig. 3. Construction of a simple tuning pointer disc. Half of a brass spindle coupler is glued to a 70 mm diameter Perspex disc with an engraved radial line.
common emitter amplifier providing considerable boost. The output is at the collector which is capacitively coupled to the output socket SK3.

TUNING COILS

The tuner uses two identical coils, having six tags, see Fig. 2. Count from the tag ring slot. Bandswitches Sla and Slib are sections of a slide switch, and short out both of the longwave windings (pins 3 and 4) for medium wave reception.

The coils are of fixed inductance, and do not have adjustable cores. The only adjustment necessary will be to the trimmers C2 and C5. To do this, tune in a signal near the high frequency end of the m.w. band (ganged capacitor nearly fully open) and rotate C2 and C5 for best results.

COMPONENT BOARD

Most of the components including the dual-ganged capacitor are assembled on a piece of 0.15 inch matrix perforated board, 30×12 holes, as in Fig. 2. The 2-gang capacitor used has two threaded holes, so that the board can be fitted to it with short 4BA bolts.

First solder a lead to the capacitor rotor or frame tag, and bring it down through a hole in the board. This is the earthing point MC in Fig. 2. Extra washers or similar means of spacing about 3 mm thick will be needed between this capacitor and the board.

Assemble and interconnect the board-mounted components according to Fig. 2. In many places the wire ends of components can reach to the required points. Elsewhere, 22 s.w.g. or similar connecting wire is recommended.

Prepare the front panel to accept the panel-mounted controls and secure these and the board in position.

The ganged capacitor is fitted to the panel by means of three 12 mm long 4BA bolts, with two nuts each,

to lock against the capacitor and panel. This capacitor provides sufficient support for the board.

Should a capacitor without slow motion be fitted, then this can come nearer the panel as the spindle will be shorter. Take care that the bolts are not so long that
they project inside the capacitor.
The aerial and earth sockets, SK1, SK2 are to be mounted on a small piece of Paxolin or similar material to be fitted to the rear of the case.

Complete the interwiring as shown in Fig. 2.

Resistors

R1	$100 \mathrm{k} \Omega$
R2	$100 \mathrm{k} \Omega$
R3	220Ω
R4	$22 \mathrm{k} \Omega$
R5	$1 \cdot 8 \mathrm{M} \Omega$
R6	$4 \cdot 7 \mathrm{k} \Omega$
All	$4 W$ carbon $\pm 5 \%$

Capacitors
C1 2×365 pF dual ganged (Jackson type 0), slow motion (preferred)
C2 60 pF compression trimmer
C3 $0.01 \mu \mathrm{~F}$ ceramic or plastic
C4 $0.01 \mu \mathrm{~F}$ ceramic or plastic
C5 60 pF compression trimmer
C6 220pF ceramic or plastic
C7 0.47μ F ceramic or plastic
C8 $4 \cdot 7 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C9 $100 \mu \mathrm{~F} 12 \mathrm{~V}$ elect.

Semiconductors
TR1 CA40673 or 3N201 dual gate silicon n-channel MOSFET TR2 BC108 silicon npn
D1 OA81 or similar germanium diode
Miscellaneous
L1, L2 Repanco type DRR2 (2 off)
VR1/S2 5 kilohm carbon linear with ganged switch
S1 d.p.d.t. slide switch
SK1, 24 mm in sulated sockets or similar (2 off)
SK3 3.5 mm jack socket
B1 9V PP3 or any other 9 V battery
Circuit board; 0.15 inch matrix perforated board, size 30×12 holes; battery connector to suit B1; knobs (2 off); 4BA and 6BA fixings; Perspex and bush (for dial); Paxolin or similar, $100 \times 40 \mathrm{~mm}$ (to hold SK1, SK2); case $150 \times 100 \times 100 \mathrm{~mm}$.

Trimmers C2 and C5 are soldered directly to Cla and C 2 b , and their second tags supported by a short, stout wire to the gang frame. They are almost vertical, so that they can be adjusted by means of a small screwdriver from behind, with the tuner in its case.

The case employed in the prototype had dimensions $150 \times 100 \times$ 100 mm internally, and was made of metal; plastic or thin wood could also be used.

POWER SUPPLY

Current drain is small (3mA measured) and an internal 9 volt battery is therefore suitable.

The tuner may be operated from a well decoupled and smoothed supply obtained from the main audio amplifier, of about 9 to 12 volts, with negative earth.

TRIMMING

Initially set the trimmers to near maximum capacity. Subsequently adjust both for best reception of
a medium wave transmission near the h.f. band end (say 1600 to 1400 kHz) as mentioned. For optimum results adjust C2 with the actual aerial and earth which will be used, already connected.
For the alternative l.w. band mentioned, cores may be obtained which can be screwed to the l.w. winding ends of the coils. These are not necessary, however, for 200 kHz reception.
The aerial can be a few feet of wire indoors, or a somewhat longer indoor wire carried along one (or possibly two) walls of the room, near the ceiling. Either a short or rather longer out-door aerial may be used if available. It can be worthwhile to try one or two alternatives.
It is recommended that an earth connection be provided if feasible.

IN USE

The usual type of screened lead should be employed to feed the audio signals from the tuner to the main amplifier.

If the tuner is used for personal headphone listening, a high resistance headset approximately 2 kilohms will be most satisfactory.

Note that the values are so arranged that the maximum possible gain setting of VR1 brings the tuner to the point of regeneration, as this allows improved sensitivity. This was found to cause no difficulty with an earth provided, but with no earthing VRl must be adjusted accordingly, or resistor R3 increased in value until it is just impossible to bring TR1 into oscillation. A resistor of about 1.5 kilohms should be suitable.

A tuning pointer can be made from a stout wire soldered to the capacitor spindle, or, as used in the prototype, a disc of thin Perspex about 70 mm in diameter can be fitted to a bush with set screw, obtained from an old control knob with a line scribed along a radius of the disc. A 180 degree scale can be glued to the front panel behind the Perspex disc and later calibrated.

I.C. SOCKET

For sometime I have been using one of those T-Dec breadboards and to use a d.i.i. integrated circuit with this you need a special adaptor. This can cost between $£ 2$ to $£ 2 \cdot 50$.
I first came up with the idea of an i.c. socket fitted with flying leads, but this proved to be a bit clumsy. Then I hit upon an idea of using a wirewrap i.c. socket, bending the pins as shown in the diagram and then snipping the ends level. The socket can then be plugged in and out of the T-Dec with ease.

The cost of the Wirewrap I.C. socket should be between 20 and 30 pence, which is a considerable saving on the original.
L. A. Privett, Barking.

The Adventures of Tanty Bead

Semiconductors is a term that embraces a very important family of electronic devices. The most widely used, and best known, of such devices are the diode and the transistor.

The simplest semiconductor device is the diode. This functions as a oneway device (or "valve") for electronic current. It has two terminals or leadout wires. One connection is distinguished by a mark of some kind on the body of the component, and this is the cathode. For normal conduction this must be connected to the negative side of the circuit in which it is to be used. The other (usually unmarked) is the anode and goes to the positlve side of the circuit. See Fig. 1.

There are a variety of diodes, varying size, shape and form. See Fig. 2.

One kind of device commonly encountered in electronic circults is that generally known as a general purpose signal diode. Many of these resemble a small resistor in outward appearance and have a coloured band at one end of the body which identifles the cathode.

A SPOT OF CONFUSION

Other types of diodes have some other kind of mark adjacent to the cathode lead.

Perhaps somewhat confusing is the use of a + sign or a red band or tip to denote the cathode on certain diodes. This is a throw-back to earlier days when diodes were used chlefly for power rectification. The positive

FOR

Fig. 1. Circult symbol for a diode, with cathode (k) and anode (a) identified.

Fig. 2. Typical digdes and methods of Indentifying the cathode.
side of the direot current (d.c.) output from a power reotifying circuit comes from the cathode of the diode rectifier, and so this method of coding makes sense. But when the diode is employed in other circuit arrangements the basic logic of this method of identification is somewhat obscure and confusion is frequently caused.

CIRCUIT SYMBOL

The symbol normally used for a diode in circuit diagrams is shown in

Fig. 3. (a) Diode forward-blased-conducts. Can be consldered as a switch that is closed. (b) Diode reverse-blased-does not conduct. Can be considered as a switch that is open.

Fig. 1. The "bar" represents the cathode. The arrow head represents the anode and points in the direation of conventional curent flow, that is positive to negative.

It has been general practice to mark the cathode of the diode symbol with an " + ". But because of the possible confusion previously referred to, we have abandoned this and now mark the two ends of the diode symbol " k " and " a ", representing cathode and anode respectively.

DIODE OPERATION

The diode conducts when the anode (a) is connected to the positive point of a circuit, and the cathode (k) to a more negative (less pasitive) point. See Fig. 3 a.

When connected the other way round, (or if the circuit voltages reverse) the diode will not conduct, but becomes a complete barrier to the flow of direct current. See Fig. 3b.

When the diode is used to rectify alternating current (a.c.) it behaves like a switch, "opening" and then "closing" as the a.c. changes direction, that is swinging from positive to negative. See Fig. 4.

The unidirectional output from the diode is a series of positive going pulses. The negative-going half of the a.c. input is suppressed.

Fig. 4. Diode used as a rectifler of a.c. T is a malns transformer. When " x " is positive, the diode will conduct, and d.c. (conventional current) flows from cathode back to other end of transformer winding. When " x " is negative, the diode will not conduct.

The start of a new series of six easy-to-build transistor-based projects. All use a standard size piece of stripboard, 10 strips by 24 holes.

THIS simple single-transistor circuit is designed to sound a miniature audible warning device when light falls on to a photocell. The photocell is normally mounted in a dark room and the alarm is triggered when either the room lights are switched on or possibly when light from an intruder's torch falls directly on to the photocell.
The circuit will operate satisfactorily from a 9 volt battery but as it is probable that the device will come in for regular use the device described here can be wired to operate from the "9 Volt Power Pack" project to be described later in this series.

CIRCUIT DESCRIPTION

The circuit diagram of the Opto Alarm appears in Fig. 1. The photocell, PCC1 is an ORP12 light-dependent resistor which is located in the room to be protected, and is connected by means of PL1 and SK1. Together with R1, PCCl forms a potential divider: the voltage at the junction of R1 and PCC1 varies with the amount of light striking the l.d.r.
In absolute darkness the resistance of an ORP12 is at least 10 megohms, and so the voltage at the junction of $\mathrm{Rl} / \mathrm{PCCl}$ is very nearly that of the supply rail, 9 V . Transistor TR1 is therefore firmly switched off as its base is not biased.

When light falls on PCC1, its resis. tance drops (albeit relatively slowly) and this causes TRI to switch on. A
triggering pulse is therefore delivered to the gate of CSR1 and this component conducts. The audible warning device (WD1) will therefore sound.
The thyristor will now remain in this low impedance state even if the triggering signal is removed. The only way to reset CSR1 and mute the alarm is in this case to switch off the mains power supply, or switch off the battery if dry cells are used instead. Resistor R5 will ensure that a minimum holding current is flowing in the anode-cathode circuit of the triggered thyristor, and so preventing any undesirable resetting.

BUZZER

It is important to note that conventional electromechanical buzzers should not be used in this circuit. They feature a very high current consumption normally, and apart from destroying the specified thyristor such a unit could greatly reduce battery life if the circuit is powered by conventional batteries. The miniature audible warning device used here has a current consumption of only 15. 20 mA .

Whilst the response time of the l.d.r. is relatively slow, experimentation with resistor values enabled a design to be produced which reacts quickly to a change in light: the alarm is triggered, for example, by a torch beam skimming over the photo-resistor in a darkened room.

Finally, C1 and C2 decouple the power supply and prevent triggering of the thyristor during initial switch. on, A 9 volt supply is connected via SK2, the tip of the jack plug being +9 V as utual.

The prototype was built into an ABS "Bimbox" type 4003. This measures approximately $85 \times 55 \times$ 35 mm and has a steel front panel. The circuit can be accommodated neatly on a piece of 0.1 inch matrix stripboard, 10 strips by 24 holes.

There should be no problems with the construction of the circuit ${ }^{\text {Fig. }} 2$ illustrates the recommended arrangement of components. As usual note carefully the connections to the semiconductors and in particular ensure the correct polarity of Cl .

The metal panel of the box is drilled to carry the miniature buzzer and also the two jack sockets. A small hole is also required to enable the leadouts from the bleeper to pass through the metal panel to the circuit board inside.

All interconnections between the component board and front panel can be completed with stranded flexible hook-up wire. Make quite certain that both jack sockets are wired the right way round. Both sockets must be wired exactly as shown: note that the metal panel will in fact be connected to 0 V through the jack sockets.

LIGHT SENSOR

The photocell arrangement in the prototype is shown in Fig. 2. The ORP12 is mounted upon a small piece of tagstrip and connected to its respective jack socket using twin-core flex terminated with a 3.5 mm jack plug. The length of the flex can be in excess of 5 metres.
No setting up is required, simply mount the l.d.r. in the room to be monitored. Obviously it should not be obscured by any object in the room.
One final point is to remember to connect up all jack sockets before switching on the power. If this is not done then there is the possibility that the " 9 Volt Power Supply" (if used) could be shorted out when the jack plug connecting it is being inserted into the jack socket.
If battery operation is required, the power input socket SK2 should be replaced by an on/off switch located so as to allow a PP3 battery to sit in the case.

COMPONENTS

Resistors

Resistors	
R1	$22 \mathrm{k} \Omega$
R2	$4.7 \mathrm{k} \Omega$
R3	680Ω
R4	$2.2 \mathrm{k} \Omega$
R5	$1 \mathrm{k} \Omega$

See

R2 $4 \cdot 7 \mathrm{k} \Omega$
R4 $2 \cdot 2 \mathrm{k} \Omega$
All W
All \ddagger W carbon $\pm 5 \%$
page 742

Capacitors

C1 $150 \mu \mathrm{Fl} 6 \mathrm{~V}$ elect.
C2 $\quad 0 \cdot 1 \mu \mathrm{~F}$ polyester C280 or similar
Semiconductors
TR1 BC178 silicon pnp
CSR1 MCR102 thyristor rated 30 V 0.8 A or similar

PCC1 ORP12 or similar light dependent resistor

Miscellaneous
SK1, 23.5 mm jack socket (2 off)-

see text

PL1 3.5 mm jack plug
WD1 miniature 9 V audible warning device
Stripboard: 0.1 inch matrix, 10 strips $\times 24$ holes* ; case BIM 4003 or similar; tagstrip; twin-core flex; stranded connecting wire; 6BA fixings including 5 mm spacers; Optional components, 9 volt battery and connec tor; on/off switch.

- Avallable in packs of five boards.

Approx. cost Guidance only
E22.00 excluding case

FIg. 1. The clrcult diagram of the Opto Alarm. The dotted components replace SK2 for an integral battery version.

Fig. 2. The layout of the components on the topside of the stripboard and the breaks to be made along the copper strips on the underside and interwiring between board and panel mounted components. Left shows the l.d.r. fixed to a tag strip enabling the l.d.r. to be mounted and connected to a jack plug to sult SK1.

The ratio of the voltage to the current we call the "resistance". The mathematical way of defining resistance is by the equation $R=V / I$
where R is the resistance, V the voltage and I the current. We call this equation Ohm's Law after its discoverer.

The units of resistance are ohms, one ohm being the resistance which allows one ampere to flow when one volt is applied. Conversely we can say that one ohm produces a voltage drop of one volt when one amp flows through it.

CURRENT VERSUS VOLTAGE GRAPH

Another way of visualising resistance is by plotting a graph of current against voltage in a given component. The resistance is then given by the slope of the graph.

A pure resistance gives a straight line current versus voltage graph-we say there is a linear relationship between current and voltage, see Fig. 2.1.

Other components may not give a straight line but we can still find the resistance at any point on the graph by drawing a tangent to the curve and then measuring the slope of this line.

SWITCHES

A switch can be defined as a twostate device-in one state it has extremely high resistance (it is an insulator), and in the other state it has very low resistance (it is a conductor).
The force which causes it to change state may be mechanical, as in an ordinary light switch, or an electric current or voltage, as in the case of a relay or an electromechanical solid-state switch.
Switches vary in their specifications as to how much voltage they can withstand in their insulating or "off" state, and how much current they can carry in their conducting or "on" state.
Switches can have more than just two contacts which are either open or closed. Mechanical switches with eight or more contacts are not uncommon.
A very useful type of switch is the changeover type where a moving contact, or wiper, makes contact with either one terminal or another. This type of switch can be used as a normaliy closed
switch, a normally open switch, or can be used to switch from one voltage to another.
The circuit symbols for various types of switch are shown in Fig. 2.2.

RESISTORS

Perhaps the most common circuit element is the resistor. Resistors come in a variety of shapes and sizes but they all have a common function-to accurately set current levels in a circuit when given voltages are present.
Resistors are somewhat taken for granted in electronic circuits but it is quite remarkable that a component can give such predictable behaviour over a vast range of applied voltages.
Early resistors tended to be large rods of carbon even for quite low power dissipations. This was because internal heating was a problem in the solid type of construction. Modern resistors use sophisticated techniques to give very high performance and stability combined with small physical size.
The circuit symbols for various types of resistors are given in Fig. 2.3.

TYPES OF RESISTOR

The actual resistive part of a resistor can be carbon, a thin film of metal or metal oxide, or a wire made of a suitable alloy. The cheapest and probably the most widely used are carbon type but often, especially in precision instruments, the shortcomings of this type of resistor necessitate the use of more expensive metal film or metal oxide resistors.
The quality of a type of resistor can be judged in two ways: its tolerance and its stability with changes in temperature, humidity, etc. The concept of tolerance is, perhaps, a new one and therefore requires some elaboration.

TOLERANCE

When resistors (or any component for that matter) are actually produced, the manufacturer cannot ever make his components exactly match the nominal specification of that component. He must compromise between accuracy and cost so he does not attempt to make resistors of
exactly the resistance required but, instead, specifies a band of values around the nominal within which the component is acceptable. In general, the closer the limits of acceptance are to the nominal value, the higher the cost.

The band around the nominal value is usually specified in terms of a percentage. A "ten ohm, five per cent" resistor is therefore a resistor whose real value can be anything from $9 \cdot 5$ ohms to $10 \cdot 5$ ohms.

Typical tolerances for resistors are 20 per cent, 10 per cent, 5 per cent, 2 per cent and 1 per cent. Tolerances of one per cent or better make the resistor what is called a "precision" resistor.

In general, the designer likes to produce circuits where low tolerance (high percentage) resistors can be used since this keeps down costs. However, there are many instances where close tolerance (low percentage) resistors are essential.

The concept of tolerance has led to the formulation of a range of values for resistors which all manufacturers now follow. These values are called preferred values and the way the actual values have been arrived at is quite interesting.

Fig. 2.1. Plotting current against voltage shows there to be a straight line (linear) relationshlp between the two. The slope of the graph gives the resistance.

Fig. 2.2. Circuit symbols for switches. (a) shows a simple on/off type; (b) a changeover, and (c) a double-pole changeover.

PREFERRED VALUES

Since manufacturers cannot make a resistor of every value imaginable, they have arrived at a set of values which the designer can choose from. This obviously puts constraints on the circuit which the designer must be aware of.

We said earlier that a "ten ohm, five per cent" resistor could take any value up to $10 \cdot 5$ ohms. There is thus no point in making a resistor whose nominal value is less than this. So, what is the next highest value that he should make?

The lower limit of the tolerance band of the new resistor should not overlap with the upper limit of the "ten ohm" resistor. A little calculation shows that the next value is 11 ohms (to the nearest whole number). Using the same principle we can find the next highest value which turns out to be 12 ohms.

Continuing in the same way, a whole string of values can be found up to 100 ohms. Above this the values are simply ten times the previously calculated values.

It turns out that for five per cent resistors there are 24 values between 10 and 100 ohms. We call any set of values where the upper limit is ten times the lower limit

Fig. 2.3. Circuit symbots for resistors. (a) shows a simple resistor, (b) a light dependent resistor (I.d.r.) and (c) a thermistor.

Practical examples of the components depicted In Fig. 2.3. (a) resistor (b) light dependent resistor and (c) thermistor.
a "decade", so the previous statement can be summarised by saying that there are 24 values per decade. The values are all listed in Table 2.1 along with the other series for 20 and 10 per cent.

Each of these series is called an " E " series and to denote the particular one we mean, we follow the E with the number of values per decade. Hence Table 2.1 lists the E6 (20 per cent), E12 (10 per cent) and E24 (5 per cent) series.

POWER RATING

When we looked at conduction in solids we saw how electrons move-bouncing around in a random manner but with an overall drift against the field. The collisions which occur generate heat and the greater the current the more collisions occur.

Each collision therefore means that the electron loses some of its energy as heat. We say that power is dissipated when current flows in a resistive element.
The amount of power dissipated is proportional to the current flowing through, and the voltage across the resistor. Thus

$$
P(\text { power })=
$$

I (current) $\times V$ (voltage)
Heat will be dissipated in any resistive element in a circuit whether it be an actual resistor or a piece of wire, since this is bound to have some resistance at normal temperatures.

When resistors are designed, the manufacturer tests how much power the type of resistor can dissipate without any damage. If too much current is passed through a resistor it will get hot and eventually burn out. Thus when a resistor is given a power rating it is really a summary of the maximum voltage and current which the resistor can withstand.

To calculate these two quantities from the power rating and the value of the resistor, we must return to Ohm's Law.

If a voltage V is placed across a resistance R then the current I is given by

$$
I=V / R
$$

Now we have seen that

$$
P=V \times I
$$

so, substituting in this equation we get

$$
P=V \times V / R \text { or } P=V^{2} / R
$$

Rearranging we get

$$
V=\sqrt{ }(P \times R)
$$

TABLE 2.1
Range of Preferred Values for Resistors

Tolerance	Series	Values per decade											
20\%	E6	10				15				22			
10\%	E12	10		12		15		18		22		27	
5\%	E24	10	11	12	13	15	16	18	20	22	24	27	30
	E6	33				47				68			
10\%	E12	33		39		47		56		68		82	
5\%	E24	33	36	39	43	47	51	56	62	68	75	82	91

Typical resistors (left) a wire-wound 5 watt fixed resistor, and (below) carbori resistors ranging from 1 watt to $1 / 10$ th watt. (Top right) three variable resistors (potentiometer): standard control type and two miniature presets. (Bottom right) light dependent resistor and thermistor.

Let us look at a real case. What is the maximum voltage which we can safely apply across the 100 ohm, one watt resistor?
$V=\sqrt{ }(P \times R)=\sqrt{ }(1 \times 100)=10 V$
We can find the maximum current by substituting

$$
V=R \times l \text { in } P=V \times I
$$

giving

$$
P=R \times I \times I \text { or } P=R \times I^{2}
$$

Rearranging, $I=\sqrt{ }(P / R)$
Again, let us look at a real example. What is the maximum current that we can pass through a 1_{2} watt, 47 ohm resistor?

$$
\begin{aligned}
& I=\sqrt{ }(P / R)=\sqrt{ }\left(1_{2} / 47\right)= \\
& \text { just under } 0 \cdot 01 \mathrm{~A}(10 \mathrm{~mA})
\end{aligned}
$$

In transistor and other semiconductor circuits, currents are usually very low, rarely rising over a few tens of milliamps. In these cases we will rarely find resistors over $1_{2} \mathrm{~W}$ and usually not more than ${ }_{4}^{1} \mathrm{~W}$. It is only where large currents are flowing (as in power supplies or the output stages of amplifiers) or high voltages are present (as in valve circuits) that we encounter high wattage resistors.

COLOUR CODING

Resistors are usually marked with their values using three coloured stripes on the body of
the resistor. The first two indicate the two digits in the value and the third the multiplier. Thus, for instance, red red orange is 22 followed by three noughts, which implies 22,000 ohms.

A fourth band is used to indicate the tolerance of the resistor.

The colour code is summarised in Table 2.2.

TABLE 2.2

RESISTOR COLOUR CODE

Carbon and metal oxide resistors normally have their ohmic value printed on the body in some form of colour code taking the form of four coloured bands. Values are evaluated with the use of the table below:

Colour	1st/2nd digits (A/B)	Multi- plier (C)	Toler- ance (D) $\pm \%$
Black	0	1	-
Brown	1	10	1
Red	2	10^{2}	2
Orange	3	10^{3}	3
Yellow	4	10^{4}	4
Green	5	10^{5}	-
Blue	6	10^{6}	-
Violet	7	10^{7}	-
Grey	8	10^{8}	-
White	9	10^{9}	-
Gold	-	$10-1$	5
Silver	-	$10-2$	10

EXAMPLE: A resistor colour coded as Orange-white-red-silver, would have a value of $3 \cdot 9 \mathrm{k} \Omega \pm 10 \%$.

Fig. 2.4. The construction of a typical potentiometer.

POTENTIOMETERS

In electronic circuits the requirement often arises to be able to change a certain parameter (volume, brightness, tone, etc.) under manual control. The cheapest and most readily available variable component is the variable resistor or, in its usual form, the potentiometer.

A potentiometer is a threeterminal deyice and has quite a simple internal construction (Fig. 2.4). It consists of a resistive track either of carbon or similar material (though sometimes it is a coil of wire) with electrical contacts at either end brought out to two terminals. Electrical connection is also made to a third terminal but this can make contact anywhere along the track, the actual position being set manually either by a rotating shaft to which the wiper is mechanically but not electrically connected or, in the case of slider potentiometers, by a linear movement.

To use the potentiometer as a variable resistor, the movable contact and one of the other terminals are used. With the wiper at one end of the track there will be virtually zero resistance between the two terminals; with it at the other end, the full resistance of the track will be seen. At intermediate positions a resistance dependent on the position of the wiper will be seen (Fig. 2.5a).

The most commonly used type of potentiometer has a linear relationship between wiper movement and resistance. In other words if wiper movement is plotted against resistance a straight line is seen. However, the need sometimes arises for a potentiometer with a non-linear characteristic. The most

Fig. 2.5 (a) A linear potentiometer has a linear relationship between the wiper position and resistance whilst (b) a logartithmic potentiometer produces a non-linear graph.
common type of this sort is the logarithmic type. The relationship between the wiper position and resistance being shown in Fig. 2.5b.

Such potentiometers are used where the parameter to be varied does not have a linear relationship to any easily varied circuit para. meter. For instance, sound output power is a logarithmic function of electrical power so varying electrical power with a linear potentiometer would give large changes in volume at one end of the potentiometer and small changes at the other. Using a logarithmic potentiometer evens out the adjustment over the range of the potentiometer.

MEASUREMENTS USING POTENTIOMETERS

The name "potentiometer" sometimes gives rise to confusion as it does not appear to be any sort of "meter". However, with suitable calibration and the use of the simplest of meters it can indeed be used for measuring.

If a voltage is placed across the resistive track then the wiper of the potentiometer can be used to tap off a proportion of this voltage (Experiment 2.1). If a simple meter is placed in the wiper of the potentiometer then it will indicate when current flows out of or into that wiper.

An unknown voltage (which must be less than that across the potentiometer track) can now be measured by connecting it across
the wiper and one end of the potentiometer. Providing the knob is calibrated we can simply adjust the wiper until no current flows and this can only occur when the unknown voltage exactly equals that across the potentiometer.

LIGHT DEPENDENT RESISTORS

Ordinary resistors are designed so that external influences such as light, heat and mechanical stress have very .little effect on the nominal resistance. There are, however, special resistors which exhibit marked changes in resistance with these influences.
Light dependent resistors (l.d.r.s) are made of a special material which produces more conduction electrons when exposed to light. They should not be confused with solar cells which are sources of e.m.f. not completely passive as l.d.r.s are.

Experiment 2.2 shows a simple light meter using a readily available l.d.r.

THERMISTORS

Another type of resistor called a thermistor exhibits large changes of resistance with temperature. Any heating tends to increase conductivity since electrons get "knocked off" as the heat agitates the atoms. However, in thermistors, the materials are specially chosen so that the changes are large.

EXPERIMENT 2.1 : A SIMPLE VOLTMETER

Components needed: $100 \mathrm{k} \Omega$ resistor

To use a potentiometer as a voltmeter, the scale of the potentiometer needs to be calibrated. Because the track is linear, we know that equal divisions on the scale will represent equal changes in resistance. Thus it is simply necessary to divide the scale into ten equal increments using for Instance a protractor.

Note that the rotation of the knob is restricted to 270 degrees (three quarters of a full rotation) so only this part needs to be divided up (see FIg. 2.6(c)). Each of the ten divisions can be further subdivided into two or maybe ten if it is intended to try to make more accurate measurements but since the battery voltage is not known to a high degree of accuracy this is not really a practical proposition.
The circuit of the simple voltmeter is shown in Fig. 2.6(a) and the board layout
in Fig. 2.6(b). Note the $100 \mathrm{k} \Omega$ resistor in series with the meter. This is not really part of the voltmeter but serves to protect the meter should the wiper of the potentiometer be at OV and the positive r end of the meter connected to a voltage.
Each division of the scale represents one tenth of the voltage across the potentiometer; In this case 9V. Connect say a
1.5 V torch battery across the "voltmeter" terminals (note the polarity). Adjust the potentiometer until the meter reads zero, that is mid-scale. Read off the scale.

The reading should be about 1.7 corresponding to a voltage of approximately 1.5 V . Note that the "meter" cannot read more than the voltage across the potentio-meter-in our case 9V.

$$
\operatorname{mon} \operatorname{cosin} \theta
$$

Fig. 2.6. A simple voltmeter which can be built on the TutorDeck. (a) shows the circuit diagram and (b) the component layout on the deck. (c) shows the potentiometer scale.
 -

\qquad

Fig. 2.9. Diagram of the Eurobreadboard indicating how Individual sockets are permanently interconnected inside the board.

Fig 2.6c (below).

©

Fig. 2.8. Left and right hand panels of the Tutor Deck.

Since current through any resistive element tends to produce heat, these resistors tend to exhibit a resistance which goes down as current goes up.

In older types of television receivers one could find thermistors in the heater circuits of the valves. These valve heaters tend to have very low resistance when cold so a

PART 2 QUESTIONS

2.1. A resistor of 100 ohms has 5 mA flowing through it. What is the voltage across it:
a) 0.6 volts
b) 5 volts
c) 0.05 voits?
2.2. 250 volts is applied across a $10,000 \mathrm{ohm}$ resistor. How much current will flow:
a) 2.5 amps
b) 25 mA
c) 250 mA ?
2.3. How much power Is disslpated by the resistor in the previous question:
a) 8.25 watts
b) 0.625 watts
c) 25 watts?
2.4. What value is a resistor with the colour code yellow, violet, red:
a) 47 ohms
b) 4700 ohms
c) 270,000 ohms?
2.5. What colour code will a resistor of 150,000 ohms have:
a) brown, green, yellow
b) brown, green, orange
c) yellow, green, black?

PART 1 ANSWERS

1.1. b) 1.2 . d) 1.3 . c) 1,4 . b) 1.5 .b) and c)
thermistor was used to limit the initial current but to allow the right current to flow once the heaters warmed up.

The thermistor just described has a negative temperature coefficient, this is indicated by the sign $-t^{\circ}$ (see Fig. 2.3c). There are also available positive temperature coefficient ($4 \mathrm{t}^{\circ}$) thermistors. In the case of these devices, their resistance increases when the current increases beyond the "normal" working current.

STRAIN GAUGES

If a piece of wire is stretched it tends to reduce its cross section which in turn tends to increase its resistance. This principle is used in strain gauges which are used to measure mechanical stress. Thin conductive layers are formed on a flexible substrate. When the substrate bends the conductive layen is stretched and the resistance changes.

In Part 3 we will look at electric circuits and see how Ohm's Law enables us to calculate currents in each component of a circuit

The birth of electronic sound generation was probably around the time of the early valve-operated radios, which succeeded the old "cat's whisker" crystal sets. The use of electronic vacuum tubes, or valves, brought with it the property of amplification, which is the boosting of the minute signals from the radio aerial.

With amplification came the possibility of feeding back a boosted signal in order to further boost the overall result. An adjustable control was provided so as to allow accurate feedback to be set such that the maximum boost would occur, without overdoing it and causing over-feedback which resulted in oscillation.

Over-use of the "reaction control" as it was known, caused all manner of squeaks and whistles to emerge from the then-popular horn loudspeaker! Enter the new age of elec-tronically-produced "music", as the earlier version of the audio oscillator was born.

ELECTRONIC ORGANS

It was not long before oscillators were used to produce the basic tone generators of the first valve electronic organs. These used a bank of twelve such oscillators, each of which produced one note of the top twelve
notes of the organ keyboard. (Twelve notes comprise one chromatic octave, i.e. including sharps and flats or "black" notes).

The remaining octaves were derived, note for note, by dividing the frequency from each oscillator by a factor of two to produce a note exactly one octave lower. For instance, top C frequency would be divided by two to produce the note C one octave lower.
So the tone generation section was built up to include twelve oscillators and one divider per oscillator for each octave below which the keyboard or keyboards spanned. The oscillators and divider stages were left powered and running at their own particular frequencies continuously, and their various outputs selected as required by the depression of a key or keys on the keyboard. This requires at least one wire per key and often more in some designs.
A basic organ schematic is shown in Fig. 1.1, in which it will be seen that the oscillators feed signals to their respective dividers, from which a large number of individual signals emerge, one for each note of the keyboard (or keyboards). Sometimes these signals are switched direct by the keyboard, but in this example
gating circuits are shown which do the switching electronically, which is more common nowadays.
The signals "chosen" by the depressed keyboard keys are commoned on to a single line in the diagram, but often these are fed out on a separate line per octave for reasons we need not worry ourselves at this point. The selected notes are fed to a Tone Forming circuit. The purpose of this block is to add the desired quality of sound which would be absent were we to listen to the "raw" signals produced by the oscillators and dividers.
In aotual fact, the waveform of the dividers and oscillators is normally a squarewave, which is the shape shown in the diagram. If this shape is amplified and reproduced in a loudspeaker, it is similar to the sound of a clarinet. Obviously, it is not desirable for our organ to sound like a clarinet all the time, or any other single instrument, for that matter. So the squarewave signals are passed to the Tone Forming circuits for modification.

The circuits in this block perform various forms of modification on the signals fed into it. Each circuit is designed to modify a squarewave to produce a more complex waveform which will resemble a different instru-
ment, e.g. trumpet, flute, violin, etc. The circuits are switched in and out by the Stop Tab switches, one stop tab per effect.

The stop tabs may be used singly or collectively to produce a myriad of different effects, and the final composite signal is passed to the output amplifier, via the Swell Pedal for amplification and reproduction as sound by the speaker.

SYNTHESISER PRINCIPLES

So much for the very basic principles of electronic organs. Now for the very different philosophy of synthesiser design. For the purpose of this series we shall restrict our dealings with the monophonic synthesiser, which is the design which is played one key at a time only. The polyphonic types are currently very expensive and use many of the electronic organ principles.

One of the most striking differences between the electronic organ and the monophonic synthesiser is the latter's comparative simplicity of design; at least so far as a comparison of the schematic diagrams of the two instruments is concerned. The actual circuit design of the component blocks of the synthesiser are by no means simple, as very high accuracy of performance over wide ranges of use must be maintained.

OSCILLATORS

In the synthesiser we do not use twelve oscillators, running all the time irrespective of whether they are being used at any one time. Instead, we use one or more (generally two
or three) oscillatoors, which are designed to be very versatile. Each oscillator is made to respond to a certain voltage applied to its "voltage control" input.
The frequency, or pitch of signal created by the voltage controlled oscillator is accurately related to the voltage applied. In order for this to be possible, it is necessary for the oscillator to be widely variable, instead of being fixed at one pltch, as is the case with each oscillator in the organ.

RESISTOR LADDER

In Fig. 1.2, it is shown how the voltage controlled oscillator is controlled by the keyboard. A chain or ladder of resistors is connected in series between the positive and negative terminals of a source of direct current voltage. A current flows through each resistor, and a portion of the total supply voltage appears across the ends of each resistor. If each resistor is the same ohmic value (same resistance value), then the voltage developed across each will be the same.

Suppose the voltage across each resistor were 0.1 volt, then, starting from the bottom resistor, the first junction of resistors would have 0.1 volts on it, the next one up would have 0.2 volts, the next 0.3 volts and so on.

To each junction of resistors is attached one end of a pair of switch contacts operated by one key of the keyboard. The other ends of the contacts are commoned together and taken to the voltage control input line of the voltage controlled oscillator.

Now, if the bottom keyboard switch is operated, the voltage control line of the v.c.o. (voltage controlled oscillator) is connected to the first resistor junction and 0.1 volts is applied. Similarly, the operation of any of the other keyboard switches will result in a different voltage being applied. Hence, for each key, a different voltage, and a different pitch from the v.c.o.

Notice the outputs from the v.c.o. Three different outputs are shown in Fig. 1.2, though in some designs others are possible. The shape of the waveform differs at each output, but its pitch or frequency does not.
The pitch of all three outputs depends, as stated earlier, upon the voltage applied at the v.c.o. input, but the shape, or tonal quality of the three outputs are different.
The smooth-looking shape at the top output gives a mellow tone, and its shape is known as sinewave. The second output shape, known as triangular, gives a less smooth sound, as may well be expected from its appearance, and is similar, but not identical to the effect on organs known as "diapason". The third output shape is a square-wave, and, as we have mentioned before, this sounds rather like a clarinet.
Already, another difference has appeared between organs and synthesisers; we do not derive all our effects from a single wave-shape, but can have three or more at our disposal, at root, i.e. direct from the oscillators. This is not to say that we do not use any form of tone forming circuits in a synthesiser, but simply that we start with a wider base on which to create our various effects.

We will leave the tone-generation section, as the oscillators are known, at this point, and return to it in more detail later, as there are other important sections which should be introduced to give a wider view on basic principals.

ENVELOPE SHAPING

Even if we are not musicians, we are able to distinguish one instrument from another, even if the same note is played on each. Why?

Well, already we have touched upon differences in quality of tone, or waveshape. This is only one way by which sounds are distinguished. Another way is the way in which the note commences, sustains, and dies away or decays. These qualities are collectively known as the envelope of a sound.

Consider first, the sound of a piano note. As the internal hammer strikes the strings (there are more than one per note, each tuned to the same pitch), the sound commences almost explosively, and decays away gradually if the key is held down or the sustain pedal is pressed as depicted in Fig. 1.3a. But throughout the length of the audible note period the same pitch is created. The volume or amplitude of this pitch, however, starts large, and diminishes with time. If, on the other hand, the piano key is struck and immediately released, a damper is applied to the strings and the note starts abruptly as before, but ends almost as suddenly as shown in Fig. 1.3b.

Already, we have met two different shapes of envelope. One has an abrupt beginning or attack, and a slow decay, and the second has abrupt attack again, but also abrupt decay.
A third example, for good measure, would be the bowed note of a violin.

If the player draws the bow slowly and gently over a string, gradually pressing the bow harder over its travel, the note will build up attack slowly, and give a long attack period. When the bow is removed, the string will slowly decrease its vibrations and a long decay will result (Fig. 1.3c), as in the sustained piano note considered. Notice that the envelopes do, in fact, envelope the waveforms of the three examples, and hence the name.

ENVELOPE GENERATION

In synthesisers, we produce envelopes, as with other effects, electronically. This involves the use of special circuits which have variable parameters with respect to time. We will consider this in more detail later.
In order that the envelope shaper circuit can perform its task, it must be informed when it is to do so. The instant that a key is pressed on the keyboard, a signal is sent to the envelope shaper to tell it a note is being played. The envelope shaper will have built into it the controls required to set the attack and decay rates. When a key is pressed, the attack of the envelope will be commenced from this instant. If a long attack is required, the signal from the v.c.o. will be gradually allowed to pass through the envelope shaper with increasing amplitude until full strength or volume is reached. If short attack is set, the full signal will be passed immediately through the envelope shaper.

But what about decay? Attack is easy, as we have just seen, but if we press a key in Fig. 1.2 and release it, we see that immediately the release occurs the contacts of the key separate and the voltage on the v.c.o. input line disappears! So, with the
best envelope shaper in the world, if there is no signal to apply a decay shipe to, we cannot shape it.

What we need is some way of telling the v,c.o. to stay oscillating after any key is released, and to remain sounding that note for some time afterwards, but to change its pitch immediately any other note is pressed. This circuit is not an unduly complicated device, thanks primarily to the facilities offered by the v.c.o. design. The circuit, known by function as pitch memory is called in electronic terms a "sample and hold" circuit. It is placed electronically between the keyboard pitch selection line and the input of the v.c.o., and its basic function is to use a capacitor which charges up to the voltage selected by a keyboard switch. When the switch is released, the capacitor charge remains, and, via a special circuit, holds the v.c.o. input line at the same voltage until it is "told" to change to a new value by the depression of another key.

PORTAMENTO

A useful spin-off from the use of the sample and hold circuit is the simple inclusion of another valuable function, known in musical terms as Portamento. When portamento is applied, instead of the pitch memory changing the voltage at the v.c.o. from one value to another as a new note is pressed, the change is made variable in velocity, i.e. the note will "glide" from the last note played to the next played.

Fig. 1.4 shows a schematic of all the facilities discussed so far. The envelope shaper is triggered simultaneously with the application of a voltage to the pitch memory, by means of a second contact on each key of the keyboard. These contacts
are known as the envelope control contacts. In Fig. 1.4 they are connected to the positive voltage line and are all commoned at each end, so that operation of any one will connect the envelope control line to the positive rail, telling the envelope shaper circuit when to start shaping, and when to start decaying the signal.

Other refinements can be incorporated into the envelope shaper, such that the decay can start before a key is released, but the same basic principle applies.

FURTHER COMPARISONS

Having considered the basic circuits in a synthesiser, a further comparison with electronic organs would not be out of place. Our simple organ circuit did not consider envelope shaping. This is because few organ manufacturers find it economical to provide very much in the way of shaping.

Sustain is often supplied, but in a conventional organ design, this means providing a separate decay circuit for every note of the keyboard! Admittedly, the circuit is not as complex as our envelope shaper in the synthesiser, but it must be provided in bulk!

Again, attack can be provided in organs, but where provided it is generally either present or absent, as set by a switch, and attack is normally restricted to a very short relative time.

Portamento on organs is rare or non-existent. Sometimes a "glide" facility is provided, which gives a smooth flattening of the played music, of at best about a semitone. Portamento in a simple synthesiser can be applied simply by making the pitah memory capacitor charge slowly through a variable resistor!

Another feature offered by most organ manufacturers is vibrato. This
is the continual variation in pitch of all notes, and is achieved in organs by applying a relatively slow sinewave to each oscillator to change its pitch up and down alternately by about half a semitone each way. In the synthesiser this is achieved in much the same way by applying alow-frequency sinewave to the keyboard resistor ladder such that it is varied or "wavered" up and down by a small amount. In fact, it may be made more than a small amount if desired, so as to give special effects.

In short, the use of oscillators which are voltage controlled allows many things to be done. As will be seen later, oscillators are not the only circuits which can be voltage controlled, and the use of this principle in synthesisers has created the tremendous versatility which we associate with them.

To be continued

Helping Hand

There is no hobby that I am aware of, that is in any way comparable to Electronics, in the possibilities it offers, for developing from a pastime into a truly worthwhile career. The model train enthusiast does not want to be an engine driver, the amateur sailor, a ship's Captain, or the stamp collector wish to run a sub-post office, now with your electronics enthusiast, I was about to say, "The Sky is the Limit", but with news of America's Pioneer II after a voyage of six years, sending back to Earth pictures of Saturn, would anybody blame me for saying of the electronics enthusiast "His aspirations are bounded only by the Universe'"? I think not !

It is satisfying to feel you are part of the picture and when you reach my number of years you can remember serving young lads with components, and in due course serving their children with similar things. Mind you, it can have its humiliations.

1 remember a young lad (no names, no pack drill) that I served with electronic bits and pieces and now he owns a company with a two million pound turnover and along he comes and offers to buy me outl To think, twenty years ago, I was patting him on the head and complimenting him on his
intelligence. That's where I went wrong, I should have patted him on the head with a brick!

Seriously though, in reality I get a great kick out of every success story, especially if I have played some minor part in helping these novices along the path to success.

Trouble Shooter

Take for example the case of John Morgan, who used to work for me many years ago. John was undoubtedly a very bright lad and when he emigrated to America his electronic talents were soon spotted. He finished up as chief service engineer (or trouble shooter as they call them over there) to one of the biggest computer companies, at an astronomical salary.

We exchange magazines and occasional letters and he has an Uncle in this country who tells me of his various exploits. Apparently he is so highly thought of that when all else fails they say "Send for John Morgan" and he has a special card enabling him to travel anywhere in the world by whatever mode of travel is the quickest.

Only recently a large engineering firm came to a grinding halt because of a computer failure. The firm was large enough to have four resident engineers but after a three days
struggle they gave up, and the management said "Send for John Morgan". John hops on a Jumbo, a car waiting at the airport whisks him to the factory and twenty minutes later all is humming again. The only people who were upset, were the four disgruntled engineers, who said to John, "Look old man, you might have at least hung it out for half a day or so" !

Well, this country needs all the John Morgans it can produce. A good electronic designer or service engineer will never be without work but this brings me to my final point.

Next Question

I am often asked why we have no technical staff in our shop and part of the answer is in the difficulty in recruitment. I was forcibly reminded of this the other day when a colleague of mine told me he was trying to find a good knowledgeable lad for his establish. ment. A reasonably large number turned up, some had even completed one year of a City and Guilds course.

To sort out the wheat from the chaff he decided on a few simple questions. Some of the answers were to say the least surprising. One applicant was asked, "What is the purpose of a transformer?" After five minutes deep thought he said "Doesn't it transform Electricity into Copper?" The next question was "If you have an amplifler with an 8 ohm output and four 8 ohm speakers, how would you connect them up?" A long time elapsed and then the lad looked up hopefully and said "With wire?"

Finally, one was asked, "If you connect two capacitors in series, each one, 2 microfarad 1000 volts working, what would be the capacity and the working voltage?" Back came the incredible answer, "The total working voltage would be one, and the capacity 47 ohmsII"-What a pity they had not taken Everyday Electronics regularly!

Thehere have in the past been a number of articles published in the model and home electronics press on the subject of radio control, these have always tended to be either parts of the system or ideas on which a constructor can base a system. These systems have then suffered a further disadvantage in that they are not usually suitable for model aircraft.
What is to be described during the next few months is a radio control system of up to seven channels complete with all the necessary trimmings, which will be capable of being used in aircraft, cars and boats to name the three basic sides to R.C. modelling. Technically the system should be comparable with, and in some cases should be superior to, anything available on the market both in kit and ready-built form and therefore if constructed correctly should

WINNER!

A new British record was set by Lawrence Armstrong, one of the co-authors of this new series, in the Isle of Man Soaring Championships last August.
Using the prototype EE Radio Control equipment, he kept a model glider aloft for 7 hours 8 minutes, adding $1 \frac{1}{2}$ hours to the old record.
Our author went on to acquire further distinction by securing second place in the Thermal Soaring Competition.
Congratulations Lawrence. You have demonstrated what can be achieved with the EE Radio Control System. Other R/C enthus. iasts will be spurred to reach similar heights using this proven equipment.

The EE Radio Control System is constructed mechanically around parts which are commercially made for the R.C. industry and are also readily available to the home constructor. Electrically the system is constructed on printed circuit board and makes use where possible of integrated circuits to make construction as "fool-proof" as possible. All these components should be available from sources advertising in this magazine.

The equipment comprises the following units:

Transmitter

Receiver

Servos

Speed Controller

Field Strength Meter

Battery Charger

Total cost for entire system: $£ 170$ approx. A comparable commercial equipment would cost $£ 225$ plus.

LICENCE

Before going on any further the constructor should be made aware of the law concerning the use of radiocontrol equipment. As in the case of
all transmitting apparatus a licence is required before the equipment can be used, this can be obtained from: The Home Office, Radio Regulatory Dept., Waterloo Bridge House, Waterloo Bridge, London S.E.1, and costs $£ 2 \cdot 80$ for five years which at 56 p a year is cheap at twice the price!

SYSTEM CONCEPT

When designing an R.C. system there are many considerations to make, especialy concerning the transmitter, as to the type of circuit to be used. Amplitude or frequency modulation (a.m. or f.m.) for instance. In this case a.m. was chosen because of its longer development and "track" record.

For radio control purposes f.m. is still very young and has not as yet, in the opinion of the authors, lived up to manufacturers' claims in terms

The receiver is a double-tuned-input superhet using plug-in crystals with an i.f. of 455 kHz .

The servos and speed controller use the latest i.c.s.

THE TRANSMITTER

The complete circuit of the trans. mitter appears in Fig. 1.3. It will be seen that this is composed of four sections: Channel Switching, Encoder, R.F. Stage and Power Supply.

CHOICE OF ENCODER

The object of the encoder is to 100 per cent modulate the r.f. circuit with a series of pulse widths varying from

Fig. 1.1. A simple half-shot circuit. This works on a CR charging curve where the charging time is determined by the stick pot position. This circuit would be repeated for each channel, and require the setting up of seven pre-set pots.
1 ms to 2 ms dependent upon the position of the sticks on the transmitter.

In starting to design the encoder many things were taken into consideration and it was decided to make the encoder as versatile as possible. Two functions were considered vital: (i) the ability to easily reverse the effect of stick movement on the pulse width, for example increasing instead of decreasing pulse width when the

stick is moved in one direction; (ii) the ability to easily reduce the pulse width variation with stick movement. Although this second feature was not put on the prototype details are given on how to facilitate the feature.

This second consideration is very useful when learning how to fly because a novice always tends to oversteer at first which always ends up in the initial and usually expensive crash. Another useful use for the reduced throw is in cars and boats where during a race a minimum amount of movement is required to complete a course at speed, yet at slow speed a lot of movement is required to manœuvre around.
Most existing commercial systems use a multivibrator driving a series of half-shots the pulse widths of which are controlled by the stick positions. This type of encoder is very difficult if not impossible to arrange
such that the two main facilities now required can be incorporated. The half-shot method is also vulnerable to temperature and supply voltage changes and is also non-linear due to it relying upon a $C R$ charging curve, the curve being its disadvantage.

With the advent of cheap integrated circuits it now becomes possible to design a very versatile encoder which will now be described in detail.

LINEAR RAMP ENCODER

Fig. 1.2 is a schematic diagram of a linear ramp encoder. This is a simplified version of the final circuit (Fig. 1•3) and uses identical component references. The eight-position switch S however is in reality an electronic device (ICl) as explained later. This switch scans around the potentiometers attached to the control sticks, remaining at each position until the pulse is complete. IC3a forms an

inverting buffer amplifier between these potentiometers and the comparator IC3c.

The capacitor C 6 is allowed to charge up from the constant current source I until the voltage is the same as that at the output of IC3a which in turn, as explained, is dependent upon the stick position. This voltage is detected by IC3c and inverted by IC3d causing TR2 to turn on and discharge C6.

Once the voltage on the capacitor drops below the output of IC3a, TR2 is turned off and C6 allowed to charge up again. The time delay through IC3c and IC3d is long enough to ensure that C6 is fully discharged before TR2 turns off. The capacitor theref $\$$ re is constantly discharged and allowed to charge up to a voltage dependent upon the stick position: thus as this voltage varies so the voltage to which C6 charges varies and as a result the

Fig. 1.2. Linear Ramp Encoder: basic circuit.
time between discharge pulses varies.
Each time $\mathbf{C 6}$ is discharged the switch S is caused to step on to the

next position. It can be seen therefore that the time between successive discharges will depend upon the voltage on each successively selected stick potentiometer, thus producing a series of pulses the widths of which are governed by all the control stick positions in sequence.

SYNCHRONISING PULSE

In order to synchronise the receiver (described later) it is necessary to have a long pulse between each set of control pulses. This is produced by arranging an eighth position to S which switches in a voltage such that the output of IC3a goes very high causing the capacitor C 6 to charge to a much higher voltage, so producing a much longer pulse than the normal control pulses.

IC3b detects when C6 is discharged and produces a narrow pulse at its output. This pulse is used to both sequence S and drive the r.f. modulator to produce a correctly coded radio signal.

CAPACITOR TYPE

In practice the type of capacitor used as C6 was found to have a great deal of effect on the circuit performance. After looking at a variety of types, both electrolytic and non-polarised, the best performance was found to be from polyester capacitors, so for best effect a capacitor of this type should be used.

Fig. 1.4 shows the waveforms to be expected at various points in the encoder.
Refer to Fig. 1.3 for the final practical circuit of the encoder.

ELECTRONIC SWITCH

The switch used to look at each voltage in turn is a cmos analogue switch ICl. This is a device which is dependent upon the digital binary code appearing on pins 9,10 and 11 , will present the signal appearing on one of the inputs on to the output "A" (pin 3) with an effective resistance of 200 ohms .

The code appearing on pins 9,10 and 11 is changed by the counter in IC2 being clocked as alneady mentioned by the output of IC3b so as to present the next channels in sequence on to the output.

VRI-VR6 represent the six stick potentiometers whilst R1, R2 and R3 form the resistive network required for the switch channel (SI). Rll is the resistor used to set the sync pulse width wider than the remaining channel pulses.

CONSTANT CURRENT SOURCE

The capacitor C 6 is charged from the constant current source formed by TR2, TR4, R21, R22, VR7, D2 and C7. The reference Zener diode D2 is an accurate voltage source over wide temperature and current variations and forms the heart of the current source. TR4 is used purely to cancel out any effects caused by the Vbe of TR2. VR7 varies the current to enable the centre pulse width to be set up on all channels.

STICK POTENTIOMETERS

As mentioned previously one requirement of the system is to be able to change round the potentiometers on the sticks without affecting the neutral position. This is achieved by arranging that the pot. wiper is in the centre of the pot. when the stick is in the neutral position, thus causing no change in the voltage on the wiper of the potentiometer when the connections are reversed and therefore maintaining the same neutral pulse width whichever way round the pot. is connected.
The second requirement was to be able to reduce the effect of the stick movement on the pulse width. The change in pulse width with stick position is goverend by the gain of IC3a. The gain is the ratio of R14 to whichever input resistor ($\mathrm{R} 4 \mathrm{R10}$) is selected by IC1. It can be seen therefore that the effective pulse width change with stick movement can be altered by changing the appropriate

input resistor. To ensure no change in the neutral position if the gain is changed a biasing network R12 and R13 ensures that when the pot. is in the neutral position the output of IC3a is at the same potential as the pot. wiper.

REGULATED SUPPLY

To ensure the accuracy of the voltage seen at the wiper of the stick pots the sticks have to be set across an accurate voltage supply. This is achieved by the shunt regulator DI, R17 and C3. Again this uses an accurate Zener reference D1 to maintain a good performance over temperature and supply voltage changes. This regulated supply is also for the reference voltages on IC3a and 1C3b.

Because of the possibilities of r.f, being picked up on the encoder there is a buffer stage made up of TRl, LI and R18 to block any stray r.f. Point " C " then becomes the output to the modulator section.

MODULATOR

TR6 is the modulator transistor which is used to 100 per cent modulate the P.A. stage; it is driven by the signal "C" from the encoder section. C9 slows down the edges of the modulation envelope thus reducing spurious radiation caused by sharp switching of r.f. signals.

R.F. SECTION

The requirement of the r.f. stage is to produce a stable 27 MHz signal capable of operating on 25 kHz spacing between channels with as little as possible (and preferably none at all)
radiating interference on other r.f, bands. This r.f. signal then needs to be modulated with the relevant encoded information from the encoder section.

The stable 27 MHz signal is produced by the crystal oscillator TR5, R24, R25, R26, C8 and L2. The output of the oscillator is then tuned by VCl and L3. This series-tuned circuit serves a second function in tuning the input of the power amplifier TR7 and so making for a more efficient stage.

The power amplifier TR7 is a standard Class C r.f. amplifier with L4 as a collector load. R31 is introduced to reduce the Q or "goodness" of the load L4, thus avoiding any instability in the P.A. stage.

TUNED OUTPUT

The T network of the P.A. stage formed by L5, L6 and VC2 serves two purposes. First it enables the output impedance of the P.A. stage to be matched to the impedance of the aerial in use; second it filters out any harmonics which may be present in the r.f. signal. Clo is introduced to provide a d.c. block to the aerial to avoid excessive d.c. currents flowing should the aerial become accidentally shorted to the transmitter case or even ground, for instance when the transmitter is left switched on on damp grass.

Fig. 1.5 shows the relationship of the modulation envelope to the incoming encoded signal " C ".

POWER SUPPLY

The whole of the transmitter circuits run off a 9.6 V nominal voltage battery supply. To enable the state of

Inductors

$\left.\begin{array}{ll}\text { L1 } & 3 \cdot 3 \mu \mathrm{H} \text { r.f. choke } \\ \text { L2 } & 10 \mu \mathrm{H} \text { r.f. choke } \\ \text { L3 } & 3 \cdot 3 \mu \mathrm{H} \text { r.f. choke } \\ \text { L4 } & 10 \mu \mathrm{H} \text { r.f. choke } \\ \text { L5 } & 6 \cdot 8 \mu \mathrm{H} \text { r.f. choke } \\ \text { L6 } & 10 \mu H \text { r.f. choke }\end{array}\right\}$ Maplin

Battery
B1 9.6 V 500 m AH button cell Nicad battery pack

Meter

ME1 miniature meter $100 \mu \mathrm{~A}$ d.c. f.s.d.
Sockets
SK1 p.c.b. socket block 3-pin 7-way with plugs (SLM)
SK2 DIN socket 3-way
SK3 crystal socket, horizontal mounting (SLM)

Miscellaneous*

Nicad button cell end-caps (2 off)
Dual-axis open gimble sticks including 2 potentiometers (2 off)
Single-axis auxiliary sticks including
1 potentiometer (2 off)
Metal case with plastics side panels.
Aerial, Aerial base.
-All available from SLM Model Engineers, Cheltenham.
these batteries to be monitored a small meter MEI is used to measure the supply voltage. The batteries used are the nickel-cadmium type of rechargeable cells and as such have a very shallow discharge curve during their "useful life" after which the voltage drops off very quickly.

A fully charged eight-cell pack gives around 10 volts out, and fully discharged 8.5 volts-so to enable us to see this discharge process in more detail we can use an offset meter technique by inserting a Zener diode (D3) in series with the meter which then gives the meter a starting voltage of 8.2 V in the low position. R23 is then used to set the full-scale voltage. With a $100 \mu \mathrm{~A}$ f.s.d. meter a 15 kilohm resistor gives full scale of around 10 V .

It will be found that after the batteries have been taken off charge and the set switched on the meter needle will probably hit the end stop; however it will soon settle down away from the stop after a couple of minutes use.

TABLE 1.1.				
CHANNEL CONFIGURATIONS AVAILABLE AND REQUIRED STICKS				
No. of Channels	SIngle Axis Sticks	$\begin{aligned} & \text { Dual } \\ & \text { Axis } \\ & \text { Sticks } \end{aligned}$	Aux Stick	Switch
2	2	-	-	-
3	1	1	-	-
3	2	-	1	-
4	-	2	-	-
4	1	1	1	-
5	-	2	1	-
6	-	2	2	-
6	-	2	1	1
7	-	2	2	1

TABLE 1.1.
CHANNEL CONFIGURATIONS AVAILABLE AND REQUIRED STICKS

HOW IT WORKS

The EE Radio Control System is a pulse proportional system utilising the 27 MHz radio band. Like all forms of remote control the idea is to transmit information from one place to another in order to control some function and in this case control a model, whether it is a car, boat or alrcraft.

The information starts out as a voltalde across a potentiometer connected to the control sticks. This voltage is thefi converted into a digital pulse whose width is proportional to the voltage. Septeral of these pulses are grouped together into a series pulse train, one for eadifunction to be controlled, and the whole train is repeated 50 times each segfond to enable changes in information to be quickly transferred to the model

With the Informatipf now in digital form, it is then transmitted by the radio waves to the receiveftby the swltching on and off of the carrier wave (amplitude Elevator Aeriol modulation). The radio waves are received by the recelver in the same way as a normal domestic receiver and then the pulse train is fed into a decoder where the pulses are split up into their indivldual channels. Each pulse now goes into a servo which converts this variable pulse width into the physical movement of a control arm which can then be used to move a particular control function of the car, boat or aircraft.

Fig. 1.5. Related waveforms of the encoder output and the modulated envelope of the P.A. stage output.

CHARGING

Charging is accomplished by connecting to pins 2 (earth) and 3 (+ve) of the DIN socket, when the set is switched off, and passing a constant current through the cells. More details of this will be given when the charger is described later in the series.
Another facility on the set is to be able to use an external power source by connecting to pins 2 (earth) and 1 (+ve) on the DIN connector. This was used by the authors to enable the transmitter to be used for long days on the flying field where the five hours to be expected from the internal batteries was not sufficient. Switch 52 must be set to "off" when using an external power supply, otherwise the internal battery will be "on-charge".

HOW MANY CHANNELS

The system as already described has seven channels, so the components list shows the components required for all seven channels. However, depending upon your requirements (and pocket) you can in fact build any size of system from two channels up to the full seven channels.

Next month we will be describing how to construct a transmitter covering from two to seven channels. In the intervening period you can make up your mind on your system size and purchase the required parts.

In order to help you Table 1.1 shows some of the many channel configurations available and the required sticks. When deciding upon the system size do not just judge upon your present requirements but try and plan for the future as modifications later on can be very messy and untidy. We ourselves strongly advise the full system as this should see you through a good few years service and give you good value for money.

Next Month: Bullding the transmitter

LETTERS

Great Interest

I am writing this letter to express my thanks to your great magazine (EE). I started to buy EE two years ago; and when I recelved my coples I read them with great interest but deep down I didn't understand a word of the scientific jargon, but within the two years of reading EEI have become famillar with most of the Elactronic Worid including the Microprocessor and I have already built a Labcentre designed to my needs. So I thank you for the knowledge I now possess.

S. Barton,
Spalding,
Lincs.

Sound Division

I have built your Sound-to-Light Unit with 3 Channels.
I thought that you may be interested to see how I divided my frequencies; bass, middle and treble, see Fig. 1.

Thank you for a most interesting magazine.
M. A. Garty,

Bristol.

to transformers

Hot Ferric

I have only just read the excellent articie on making Printed Circuit Boards (January 1979) and while \& cannot fault it, I think a word of warning might not be out of place.

A year or two ago we produced our own Etching Kits and In the process I learnt quite a lot about Ferric Chloride, Judging by the picture in the artcle the Ferric Chloride used by the wrlter is a fairly weak commercial type, rock hard and not too easy to dissolve but it has the advantage of having no heat problems.
There is on the market to-day quite a big quantity of Ex-Government, pure anhydrous Ferric Chloride which is almost a different substance. It is usually double packed in thick plastlc and double sealed. It has the appearance of dark brown ground coffee and it is much stronger. About one and a half desert spoonfuls (plastic of course) would make enough etching solution for several boards. Its one drawback is that it produces intense heat in contact with water. We advise customers aiways to add the crystals to the water a little at a time, and not the other way round.
To give you a rough idea of the heat generated, if you add something less than two desert spoonfuls to a jam jar, one third filled with water, by the time the last of the chemical is added, it is too hot to pick upl Another odd side effect we found, and that is, if you make the solutlon a little too strong, no etching will take placel
Although it is always looked upon as poisonous and corrosive and should always be treated as such, you may be surprised to learn that it was used for water purifica. tion by the American Forces.
A. Sproxton, Director, Home Radio, Mitcham.

Better Reception

I have just completed the construction of your Pocket Radio, shown in the June 1979 issue. I have found the performance was very poor, the volume control having ilttle effect on the volume being produced. I narrowed this problem down to C4, value $10 \mu \mathrm{~F}$, this takes several seconds to charge up and therefore is too large. I replaced it with a smaller $0.1 \mu \mathrm{~F}$ non-electrolytic capacitor. This enables the volume control to be used to the best of its ability.

Ilive in an area of strong signal strength, but the radio still gives a poor performance I declded, therefore, to use an external aerlal-a $30 f t$ piece of gash co-ax cable. This can be plugged in to the radio when it Is used in my bedroom. (A 0.1 to $0.22 \mu \mathrm{~F}$ capacitor was placed between the aerial and the tuning capacitor). The Radio now gives a much better reception than before.
I hope this information may prove useful to other readers.
K. P. Holohan

Preston,
Lancs.

NICKEL CADMIUM BATTERY MONITOR (September 1979)

On page 587, column 3, paragraph 1, line 7 should read ... equipment switched Off all should...

Crossword No. 21-Solution

CNOS		4020	50p	4050	$\begin{aligned} & 25 p \\ & 80 p \\ & 30 p \end{aligned}$
		4022	500	4060	
		4023	13p	4066	
		4024	40 p	406B	13p
4001	13 p	4025	13p	4069	13p
4002	130	4026	900	4070	13p
4007	13p	4027	280	4071	13 p
4009	30p	4028	450	4072	13p
4011	13p	4029	500	4081	13 p
4012	13p	4040	550	4093	36p
4013.	28.	4041	55	4510	600
4015	500	4042	550	4511	600
4016	280	4043	500	4518	650
4017	$47 p$	4046	900	4520	60p
4018	550	4049	250	4528	60p

TTL		$\begin{aligned} & 7473 \\ & 7474 \end{aligned}$	$\begin{aligned} & 200 \\ & 220 \end{aligned}$	$\begin{aligned} & 74141 \\ & 74145 \end{aligned}$	$\begin{aligned} & 55 p \\ & 550 \end{aligned}$
7400	100	7475	250	74148	900
7401	109	7476	200	74150	55
7402	10.	7485	55	74151	400
7404	120	7486	200	74154	$65 p$
7406	220	7489	1350	74157	40 p
7408	120	7490	250	74164	55p
7410	100	7492	30 p	74165	55p
7413	22 p	7493	25p	74170	1000
7414	39p	7494	$45 p$	74174	550
7420	120	7495	350	74177	50p
7427	200	7496	450	74190	500
7430	12.	74121	25p	74191	500
7432	18p	74122	350	74192	50p.
7442	38p	74123	$38 p$	74193	50p
7447	450	74125	35p	74196	50,
7448	50p	74126	35p	74197	50p
7454	120	74132	450	74199	900
OPTO					
LEO's	0.1	Sin. 0	2 in	each	$100+$
Red		209	IL220	90	7.5p
Green		11 TI	IL221	13p	12p
Yellow	TIL	213	IL223	13p	12p
Clips	3 p	3 p			
DISPLAYS					
OL704		icc		1300	1200
OL707		i CA		1300	120p
FND500	0.5	in CC		100p	B0p

SKTS
 Low profile by Texas

8 8pin $\quad 8 \mathrm{p} \quad 18 \mathrm{pln} \quad 14 \mathrm{p} \quad 24 \mathrm{pin} \quad 18 \mathrm{p}$ $\begin{array}{llllll}14 \mathrm{pin} & 100 & 20 \mathrm{oin} & 16 \mathrm{p} & 28 \mathrm{oin} & 22 p \\ 16 \mathrm{uin} & 110 & 22 \mathrm{pin} & 17 p & 40 \text { pin } & 32 \mathrm{p}\end{array}$ 3 lead T018 or TO5 socket. 100 each Soldercon pins: 100:50, 1000:370p

PCBS

VEROBOARD
Size in. $0.1 \mathrm{in}, 0.15 \mathrm{in}$.
$25 \times 1 \quad 14 \mathrm{p} \quad 14 \mathrm{p} \quad$ Cutter 80 p . $\begin{array}{lll}2.5 \times 3.75 & 450 & 460 \\ 25 & 5 \times 5 & 540\end{array}$
$\begin{array}{lll}2.5 \times 5 & 54 p & 540 \\ 3.75 \times 5 & 640 & 64 p\end{array}$ Pin insertion
$3.75 \times 17 \quad 2050 \quad 1850$
Single sided
Dins per 10040 p 40 p
Top qualiny fibre olass copper board. Single sided. Sire $203 \times 95 \mathrm{~mm}$. 60 p each
Dive pens. 75 p each.
RESISTORS Carbon film resist. ors. Migh stobility

E12 series. 4.7 ohms | low noise 10 M . Any mix |
| ---: | $\begin{array}{llll} & \text { egh } & 100 \uparrow & 1000 \\ 0.25 W & 10 & 0.9 p & 0.8 \rho \\ 0.5 W & 1.5 p & 1.2 p & 1 p\end{array}$ Soeciel developmant packa consisting of 10 of each value from 4.7 ohms to $1 . \mathrm{Meg}$ onm (650 res) 0.5 W £ 7.50. 0.25 W E5.70. METAL FILM RESISTORS

Very high thability, low noise rated ot \%W 1\%. Available from 510 hms to 330 k in E24 serres. Any mix.
${ }_{4}$

LNEAR
 $\begin{array}{lll}\text { LF356 } & 80 \rho & \text { NE531 } \\ \text { LM301AN } 260 & \text { NE555 } \\ & 600 & \text { NE556 }\end{array}$ LM308 600 NE556 600 THIS IS ONLY LM318N 750 NE567 1000 A SELECTION! LM318N 450 RC4 1361000 $\begin{array}{llllll}709 & 350 & \text { LM339 } & 450 & \text { SN } 76477 & 2300 \\ 741 & i 60 & \text { LM } 378 & 2300 & \text { TBA800 } & 700\end{array}$ $\begin{array}{lllllll}741 & i 6 p & \text { LM378 } & 2300 & \text { T8A800 } & 700 \\ 747 & 450 & \text { LM379S } & 4100 & \text { TBA810S } & 1000\end{array}$ $748 \quad 30 \rho \quad$ LM $380 \quad 75 \rho$ TDA1022 6200 71068500 LM3900 500 TLOB1 7107 9000 LM3909 65p TLO84 CA3046 55 LM 3911 100 ZN414 80p CA3080 70 D MC1458 32P ZN425E 390D (

TRANSISTORS

 $\begin{array}{llllll}A C 127 & 170 & B C 131 & 350 & 2 N 3054 & 500 \\ A C 128 & 160 & 80132 & 350 & 2 N 3055\end{array}$ $\begin{array}{llllll}\text { AC128 } & 160 & 80132 & 350 & 2 N 3055 & 500 \\ \text { AC176 } & 180 & 80139 & 350 & 2 N 3 & 130\end{array}$ $\begin{array}{llllll}A C 176 & 180 & 80139 & 350 & \text { 2N3442 } & 1350 \\ \text { AD161 } & 380 & 80140 & 350 & 2 N 3702 & \end{array}$ $\begin{array}{llllll}\text { AD161 } & 38 \mathrm{p} & 80140 & 350 & 2 N 3702 & 8 \mathrm{p} \\ \text { AD162 } & 388 & \text { 日FY50 } & 150 & 2 N 3703 & 8 \rho\end{array}$ $\begin{array}{lllllll}\text { AD162 } & 38 \mathrm{p} & \text { BFY50 } & 150 & 2 N 3703 & 80 \\ \text { BC107 } & 80 & \text { BFY } 51 & 150 & 2 N 3704 & 9\end{array}$ $\begin{array}{llllll}\text { BC107 } & 80 & \text { BFY51 } & 150 & 2 N 3704 & 80 \\ \text { BC108 } & 80 & \text { BFY52 } & 150 & 2 N 3705 & 90\end{array}$ $\begin{array}{llllll}\text { BC108 } & 80 & \text { BFY52 } & 150 & \text { 2N3705 } & 90 \\ \text { BC108C } & 100 & \text { MJ2955 } & 980 & 2 N 3706 & 90\end{array}$ $\begin{array}{llllll}\text { BC108C } & \text { BC } & \text { MJ2955 } & 980 & \text { 2N3706 } & 9 p\end{array}$ $\begin{array}{llllllll}\text { BC109 } & 80 & \text { MPSAO6 } & 200 & 2 N 3707 & 90 \\ \text { BC109C } & 100 & \text { MPSA56 } & 200 & 2 N 3708 & 90\end{array}$

 $\begin{array}{llllll}\text { BC148 } & 70 & \text { TIP30C } & 700 & 2 N 3820 & 44 \rho\end{array}$ $\begin{array}{lllll}8 C 177 & 140 & \text { TIP31C } & 650 & 2 N 3904 \\ 8 p\end{array}$ $\begin{array}{llllll}\text { BC178 } & 14 \mathrm{p} & \text { TIP32C } & 800 & 2 N 3905 & 8 p\end{array}$ $\begin{array}{lllllll}\text { BC179 } & 14 \mathrm{p} & \text { TIP2955 } & 650 & 2 N 3906 & 80\end{array}$ | $8 C 182$ | 100 | $T 1 P 3055$ | $55 p$ | $2 N 4058$ | 120 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | | | | | |

 $\begin{array}{llllll}8 \mathrm{Cl} 184 & 10 \mathrm{D} & \text { ZTX } 108 & 14 \mathrm{p} & \text { 2N5459 } & 32 \mathrm{p}\end{array}$ $\begin{array}{llllllll}\text { BC184L } & 10 \mathrm{p} & 2 T \times 300 & 160 & 2 N 5777 & 50 p\end{array}$ $\begin{array}{ll}\text { BC212 } & 10 p \\ \text { BC212L } & 100\end{array}$ BC2124
BC214
100 BC214L

DIODES

$\begin{array}{llllll}8 C 477 & 190 & 1 N 914 & 30 & 1 N 4006 & 6 p\end{array}$ $\begin{array}{llllll}8 C 478 & 190 & \text { 1N4001 } & 4 p & \text { 1N5401 } & 13 p \\ 8 C 548 & 100 & \text { 1N4002 } & 4 p & \text { BZY88ser. } 8 p\end{array}$ BC548 10p 1 N4002 $4 p$ BZY88 ser. $8 p$ 8CY71 IN4148-£1.40/100. £11/1000

CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$,
$182.2 \mathrm{uF} @ 35 \mathrm{~V}$
$4.76810 \mathrm{~F} @ 25 \mathrm{~V}$
22@16V.47@6V, 100@3V
$0.001,0.01,0.022,0.033,0.047$
POLYESTER
Mullara C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1,5 p$
$0.15,0.22$
$0.33,0.47$
70
100
140
1.OUF

170

CERAMIC

Plare type 50 V . Available in E 12 series from
22 pF to 1000 pF and E 6 series from 1500 pF to
0.047 F . RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$ \qquad

			220		$20 p$
25 V	10	22	33	47	$5 p$
	100				.80
	220		470	100	
			450		

CONNECTORS

JACK PLUGS AND SOCKETS

	screene	unscreened socket	
2.5 mm	$9 p$	$13 p$	$7 p$
3.5 mm	$9 p$	$14 p$	$8 p$
Standard	$16 p$	$30 p$	$15 p$
Stereo	$23 p$	$36 p$	$18 p$

OIN PLUGS AND SOCKETS

	plug	chassis socket	line socket
2oin	$7 p$	$7 p$	$7 p$
3pin	$11 p$	$9 p$	$14 p$
50 in 180°	$11 p$	$10 p$	$14 p$
50 in 240°	$13 p$	$10 p$	$16 p$

1 mm PLUGS AND SOCKETS
Surtable for low voltage circuits, Red \& black. Plugs: $6 p$ each Sockets: $7 p$ each.
4 mm PLUGS AND SOCKETS
Avallable in blue, black, green, brown, red, white and vellow. Plugs 110 each Sockets: 120 each PHONO PLUGS AND SOCKETS Insulated plug in red or black Screened plug 13p Screened plug
Sinyle socket

STGVFNSON Electronic Components SOLDERING:IRONS
ANTEX X25 (25W) or ANTEX CX (17W)
$390 p$ each
240p each
Reel of solder (39.6M)

LOUDSPEAKERS

56 mm dia. 8ohms. $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia. 64 ohms. 75 p 64 mm dia. 8 ohms. $75 \mathrm{p}=70 \mathrm{~mm}$ dia. Bohms. 100 p Magnetic earpiece including 2.5 or 3.5 mm plug. 15 p each Crvstal earpiece including 3.5 mm plug.

SWITCHES

Subminiature toggle. SPDT 70p. DPDT 80p Standard toggle. SPST 34p. DPDT 48p.

Slide switches (DPDT) miniature or standard 15p. Push to make switch. 15p. Push to break switch. 20p. Wavechange switches: $1 \mathrm{P} 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W}, 43 \mathrm{p}$

CONTROL KNOBS

Ideal for use on mixers etc. Push on type with black base and marked position line. Cap available in red, blue, green, grey, yellow \& black. 14 p.

MISCELLANEOUS

Connection cable available in single or stranded packs of eight colours. 8 metre pack 40 metre pack Sing
18 p Stranded 40 metre pack 85p

18p
$80 p$
Battery clips for PP3 with lead. $6 p$ each. Battery clips for PP9 with lead. 10 p each.
 Miniature crocodile clips in red or black. $8 p$ each. Red or black probe clips. 20p each. Murata Ultrasonic Transducers. 180p each. 350p pair.

PANEL METERS

| |
| :---: | High quality $2^{\prime \prime}$ wide view meters. Zero adjustment. Back illumination wiring. Available in $50 \mathrm{uA}, 100 \mathrm{uA}, 500 \mathrm{uA}$, $1 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A} . £ 4.75$ éa. VU meter similar style. $£ 1.40$ ea.

SLIDE POTENTIOMETERS

Good quality 60 mm
travel slider with
80 mm fixing centres.
Available from $5 k-500 k$
In \log and linear. 55p each.
Suitable black knobs 6p ea. Coloured knobs $10 p$ ea.
We now offer one of the widest ranges of components at the most competitive prices in the U.K. See catalogue for full details. We welcome callers at our shop in College Rd, Bromley, from Mon-Sat, 9am-6pm (8pm on Weds and Fridays). Special offers always available.
We also provide an express telephone order service. Orders received before 5pm are shipped same day. Contact our sales office now with your requirements. TELEPHONE: 01-464 2951/6770.
Quantity discounts on any mix $\mathrm{THL}, \mathrm{CMOS}$. 74 LS and Linear circurts: $100 \cdot 10 \%, 1000$. 15\%. Prices VAT melusive. Please ard 30 p for carriage. All prices valid to April 1980. Olficial orders welcome.

ORDERS DESPATCHED BY RETURN

BARCLAYCARO \& ACCESS WELCOME

Everyday News

BIG REWARDS FOR MICRO IDEAS

Three announcements this month (September) help to highlight the efforts being made to get to grips with the microelectronics revolution.

BRITISH MICROPROCESSOR COMPETITION

Suddenly everyone can get into the microprocessor scene, yes even amateurs, by entering the British Microprocessor Competition organised by its Joint sponsors-the National Research Development Corporation (NRDC) and the National Computing Centre Limited (NCC). Their aim-to stimulate and encourage British innovation in the use of microprocessors in any type of product, process or service. This is a competition for the best invention incorporating a program. mable microelectronic device.
Prize money totalling $£ 20,000$ will be awarded to entries with working models, and those without a working model. First, second and third prizes in the working model category are $£ 10,000, £ 5,000$ and $£ 2,000$ respectively, whilst first and second prizes in entries without working examples are £2,000 and $£ 1,000$.

The competition is open to all individual residents in the UK, including UK registered companies, and other organisations located in the UK such as universities, polytechnics and other institutions engaged in education or research.

The NRDC and NCC staff will judge the competition with 4 main criteria in mind -the degree of novelty, its potential commercial value, the technical and commercial viability and the standard of documentation.

Although the winners names will be announced next year their ideas will be protected; publication only taking place when patent protection exists. All rights
are protected for the de signer and there is no obligation for further involvement by either party.

The NRDC, which this year celebrates 30 years of idea development, have indicated their willingness to look at non-winner ideas along with the winners inventions with a view to offering financial support to develop them. A sum of half a million pounds has been allocated to provide just this backup!

The closing date of the competition is Friday, 14 December 1979 and official Entry Forms and details are freely available from The National Computing Centre, Oxford Road, Manchester M1 7ED.

International Prestel

The British Post Office is to test-market an inter. national Prestel service for travelling businessmen and government officials.

The trial is planned to last a year and will cover selected users in up to six countries. If there is sufficient interest the international service will be additional to the UX national Prestel service.

YOUNG ENGINEER FINALS

[^0]
NATIONAL MICROELECTRONICS COMPETITION

A rent-free $£ 30,000$ factory for one year is one of the inducements being offered by the Peterborough Develop ment Corporation in the National Microelectronics Competition.
The aim of the NMC is to find ideas which are simple to manufacture and have got a ready market. Top prize is $£ 4,000$ and the only restriction is that no company with a turnover in excess of £2 million may enter. The chal-
lenge is to prove that the application is technically sound and that it can be produced and sold at a profit.
The Corporation, with the sponsorship of Barclays Bank and Finance for Industry, offers apart from the new factory, the prospect of £250,000 venture capital from Finance for Industry.
Closing date for the National Electronics Competition is 31 January 1980.

REGIONAL HELP

Another local authority promoting interest in microelectronics is the Lothian Regional Council of Scotland. They plan to fund a micro aid plan to the tune of $£ 350,000$ over the next five years, which they hope will bring microelectronic tech. nology to companies in the area.
This initiative will bring the Edinburgh University Wolfson Microelectric Institute directly into contact with local firms regardless of their level of technical knowhow. They also hope that local schools and poly. technics will become in. volved.
Part of the $£ 70,000$ per year investment will go towards setting up a new professorship of microelectronics at Edinburgh University and also help to fund three high level engineers, who will seek potential applications of microelectronics. The engineers will approach companies rather than wait for potential micro users to make the first response.

Boss sells Boss

Having built up Boss Industrial Mouldings Ltd., into one of Europe's largest manufacturers of enclosures, indicators, breadboarding systems and other hardware products, Ian Boss has formally sold all his interest in the organisation which now becomes part of the Pistor Elektrotechnik Group of West Germany.

ANALYSIS

THE FILLING IN THE SANDWICH

There are many big producers who are not mass producers, but batch producers of many different products. A batch may be half a dozen units or fifty or so. They may be for specific customers with different delivery dates. Individual finished units may need to be married up into a system and tested as such before shipment. The number of different units being made at any one time may run into hundreds.
This is the sort of manufacturing operation undertaken at Hewlett-Packard's minicomputer facility at Grenoble, France. Cyril Yansouni, the plant's general manager, had quite a problem in keeping tabs on where every product in various stages of assembly was and what was happening to it. He already had those two indispensables, computeraided design and computer-aided automatic test equipment at the outer ends but needed, as it were, the filling in the sandwich.
He calls it CAM (Computer-Aided Manufacturing) and spent 30 months designing the equipment and integrating the system in his own plant.

The cornerstone of his CAM system is shop-floor data capture using specially designed easy-to-use computer terminals at every stage of manufacture to provide realtime product tracking information at every stage of production, assembly and testing.
Over 1,200 products a week pass through the production lines. Each is given a traveller card which stays with it at every stage. The terminals have two slots, one for a badge reader which identifles the person using it, the other for the traveller card which carries data about the product, what it is, who has ordered it etc. Date and time of arrival in a department is automatically transferred with the rest of the data to the central computer.
The result of the exercise is that production is speeded up and bottlenecks eliminated. At the same time the cost of components being worked on along the lines has been cut by about $£ 1$ million despite the factory output having doubled in two years.
Nobody is working any harder than they did before. And nobody is losing his job. In fact they are planning to expand the work-force from 500 to 800 people in the coming year.
Part of this increase is due to the data capture terminals which H-P is now marketing. Over a thousand will have been made and shipped to other manufacturers with similar problems by the end of this year.

Brian G. Peck.

Engineering Famine

Despite relatively high unemployment figures there is a serious shortage of engineering staff. Earlier this year GEC alone had vacancies for $\mathbf{1 , 6 0 0}$ engineers, $\mathbf{1 , 1 0 0}$ techniclans and 800 craftsmen.
Those training now for the electrical and electronics professions and trades need never be out of work.

VIDEO NEWS

Firm evidence of the growth of electronic news gathering and associated technologies in Europe is provided in the latest contracts placed with Sony Broadcast Ltd.
During the past six weeks orders totalling some $£ 858,000$ have been placed for Sony video recording equipment
by the State Broadcasting organisations of Austria, Italy, Poland and Switzerland.

> A specialist Viewdata Exhibition for information providers and others professionally engaged in using and operating viewdata and teletext systems is to be held at the West Centre Hotel, London, on November 7.8.

BREADBOARD '79

This year's Breadboard 79, the kits and bits show for the home electronics enthusiast, has moved to larger premises.

The venue is the Royal Horticultural Halls, Elverton Street, Westminster, London, SW1, from 4 December to 8 December inclusive.

Over 90 exhibition stands will feature microcomputer systems, analysers, logic test accessories, hi f amplifier kits, as well as a varied range of construction kits and TV games.

Everyday Electronics will be there.

MOBILE JAM

Mobile radio channels have become so congested that the Home Office is to conduct trials with single sideband transmission with 5 kHz channel spacing. Present channel spacing with frequency and amplitude modulation is $12 \cdot 5 \mathrm{kHz}$ or 25 kHz .

SSB could double the number of channels usable with no interference, thus allow. ing for considerable expansion of the mobile services used by businessmen and other organisations.

LOOKING B ACK

A 20 page booklet to mark the 50th anniversary of the formation of Pye Radio Ltd., is now available, free of charge, to readers on application to Pye Ltd., Publications Dept, 137 Ditton Walk, Cambridge.

The Story of Pye Wireless traces the history of Pye Receivers from when they were originally produced by W. G. Pye \& Co. Written by Gordon Bussey the publication is illustrated with photographs of receivers from 1922 onwards and scenes in the Pye factory early years.

UK-USA PHONE CABLE GETS GREEN LIGHT

The final seal was placed on an international agreement recently for a new 1100 million telephone cable between Britain and the USA that will boost Britain's transatlantic cable links by more than 50 per cent.

At present more than 20 million phone calls are made each year between the UK and USA, and more than half go by cable. The demand for telephone service between the two countries has been growing by a steady $15-20$ per cent a year throughout the 1970s and shows no sign of slackening.

Called TAT 7, this giant submarine system, with a capacity of 4,200 simultaneous connections, will carry phone calls, computer data and telex messages between Europe and the USA and Canada. A sizeable part of its cost will be spent in Britain on cable manufacture.
The new system is due to come into service in 1983. It will run some 3,400 nautical miles between Porthcurno (Land's End) and Tuckerton, New Jersey. At the British end it will continue for some two miles inland, terminating at the Post Office's Land's End repeater station.

The cost of the project is being divided equally between North America and Europe. On the European side, Britain is partnered by 17 other participants and her share-22 per cent of the total, is the largest of all
those. There are seven participants in the project on the North American side, including the American Telephone and Telegraph Company which has the largest single share in the system, amounting to some 40 per cent of the total.

Manufacture of the new system will be shared between the USA, Britain and France. About 2,700 miles of cable will be made in Britain by Standard Telephone and Cables Ltd, under a contract worth some $£ 30$ million.

SAXON ENIERTAINMENTS
 P.A. \& DISCOTHEQUE
 EQUIPMENT AT
 INCOMPARABLE PRICES

STANDARD CENTAUR IOOW
£309 incl. of carr Deopsit $\mathbf{£ 6 2 . 0 0}$ 12 months (a) $\mathbf{2 4 \cdot 4 7}$ or 24 months @ $\mathbf{£ 1 4 \cdot 1 9}$

SUPER CENTAUR 200W

£366 incl. of carr

Deposit
£74.00
12 months @ $\mathbf{6 2 8 . 9 4}$ or months @ $\mathbf{6 1 6 . 7 8}$

GXL. 200W With Twin 200 Watl Cabinets

 12 months (8) $\mathbf{6 3 7 . 2 7}$ or 24 months © $\mathbf{4 2 1 . 6 0}$

GXL WITH PDF BINS (illus.)

£833 incly Of carr Deposit $£ 167 \cdot 00$ 12 months @ 666.03 or 24 months © 838.28

STEREO DISCOS
C/W LIGHT SHOW \& DISPLAY $100 \mathrm{~W}-600 \mathrm{~W}$

XL + PDF BINS t 2 Year warranty Full Mixing + Crossfade + Mic/Tape Inputs

* Headphone \& Cue Light Monitoring * Full Range Bass/Treble Controls+ Mic Tone CREDIT
TERMS TERMS

MINI DISCO 100 WATT MONO SYSTEM WITH LOUDSPEAKERS $£ 229$ incl. of Carr £46.00 12 months @ $£ 18.13$ or 24 months @ $£ 10.52$
P.A. SYSTEMS

2 YEAR GUARANTEE
$£ 207.00$
12 months (3) 816.35 or
24 months © 69.49
太 Four Mixing Inputs
t Twin Piezo Horn Columns
200 WATT \& VAT $\mathbf{1} \mathbf{1} \mathbf{3 0 9}$.00
12 months © $\mathbf{6 2 4} 47$ or $\mathbf{~} \mathbf{~} 62$
AMPLIFIER UNITS ONLY

APIOO AMPLIFIER
 * 4 mixed Inputs - Bass/Treble Controls * 100 W Watts Output

AP200 AMPLIFIER $£ 102.92$ +Carr $£ 1.50$ * Six Mixed Inputs VA Three Sets Bass/Trebl * 200 Watts OustDut ¿ Slave Socket

JUST PLUG IN AND GO ! !

SEND TODAY FOR YOUR FREE BROCHURE

PLUTO PROJECTORS PI 40 £ 44.27 150 WATT INC WHEEL

P5000 $£ 102.92$ incl. of VAT 250 watt . Q1. inc Cassette/Wheel (Full range of wheeis - ask for list)

SA308 8 ohms $30 \mathrm{~W} 45 \mathrm{~V} £ 12.36$ Supply for 2 modules $\{13.69$
SA 6044 ohms 50 V \& 16.67 Suoply for I or 2 modules \&il. SA608 8 ohms 60 W 65 V \& 17.8219 Supoly for 1 or 2 modules $\mathbf{6 1 7}$. 19 SAI204 4 ohms $120 \mathrm{~W} 75 \mathrm{~V} \pm 20 \cdot 12$ Supply for 1 module $177 \cdot 19$
SA1208 8 ohms 120 W 95 V . 24 SAl208 8 ohms 120W 95 V 624. 15
Suoply for 2 modules $68 \cdot 46$

D.I.Y.

MONO OR STEREO WITH AUTOFADE
Available complete and ready to plug in or as an easy to connect module
with all controls switch already fitted-full instructions supplied.
FEATURES INCLUDE
TWin Deck - Mic \& Tape Induts Wide range bass \& treble controls Frossfade - Professional standa performance. COMPLETE COMPLET (wlth case) (wlth case) 652.61 Stereo mains
$\mathbf{8 7 3 . 3 1}$

modules

Mono module 31.62 Stereo module $443 \cdot 12$ Kanel ©4.54
sockets etc $86 \cdot 32$

ELECTRET MIC DI501 $\quad \mathbf{2 1 \cdot 2 7}$ TOP QUALITY UNIT INEI, of VAT ECMIO5 LOW COST
ELECTRET
CONDESNER MIC incl. of VAT $\mathbf{5 5 . 7 5}$ MELOS CASSETTE ECHOREVERB UNIT-Twin input $\mathbf{1 7 4 . 7 5}$ VARIABLE SPEED \& DEPTH

SOUND-TO-LIGHT

MODULES FOR P.A. SYSTEMS MONO/STE
Inout Modules UNITS

> Mono PCB only $\leqslant 7$-47 Stereo PCB only $\mathbf{1} \mathbf{1 2 . 0 7}$ Mono C/W Front panel $£ 10.92$ Stereo CIW Front panel (15.81 Mixer/Monitor Modules Mono PCB only $\{7.47$ Stereo PCB only $\leqslant 1 \mathbf{2} .07$ Mono C/W
> Front Danel Stereo CIW Front panel $\$ 15$-81 Power supply to suit $410 \cdot 92$
> send for full details.

make
your own
mixer
Monol
Stereo
up to 20
channels
accept all
inputs
available
as PCB
only for
complete
onfront
panels

MOTOROLA PIEZO HORNS

 65.46 YESIIFUZZ LIGHTS Red, Yeflow, Green
026.22

HEAVY DUTY SPOT BANKS
MATCHES LOUDSPEAKERS
3 way 600W $440 \cdot 824$ way 800 W c47.72

IOOW SPOTS

Red - Blue - Amber - Green $\mathrm{K} 1 \cdot 72$

CABINET FITTINGS

1 Cl Vynide 50° wide $\mathbf{4 4 . 0 2 \mathrm { m }}$
Kick-res grille 50° wide $\uparrow \mathbf{4} \cdot \mathbf{0 2 m}$
Netlon kick proof 24° wide $64 \cdot 02 \mathrm{~m}$
Corners/feet/recess plates 17p
Bar handles $\mathbf{E 2} \cdot 87$
Jack oluss/sockets 29p

LOUDSPEAKER CABINETS -
 COMPLETE WITH LEADS

\square Fitted with 100W 17,000 Gauss drlvers
\square Rugged cabinets with aluminium trim-black \square Lifetime $8 u$

Standard $100 \mathrm{~W} 1 \times 12(48 \times 41 \times 24) \quad 150.60$ Large $100 \mathrm{~W} 1 \times 12(65 \times 48 \times 24)$
P.A. $1 \times 12(+2$ Piezos $)(80 \times 38 \times 24)$ P.A. $2 \times 12200 \mathrm{~W}(100 \times 38 \times 24)$

Disco 2×12 200W $(80 \times 63 \times 24)$
PDF reflex bin ($80 \times 40 \times 41$)
PDFI00 Reflex Bin - Twin Horns - Integrated Slave Amplifier - Accepts mono or stereo signals \square Use with all types of mixer
\square Pan and volume controls
[] Send for details
〔155.25 Deposit $\{31 \cdot 25$
All inclusive of carr \& VAT

ALL PRICES ARE INCLUSIVE OF 15% VAT. Shop premises open Tues to sat 9 am -5 pm Mon to Fri $10^{-} \mathrm{am}-4 \mathrm{pm}$ Raing ol- 6846385
by west to order
By Post Send your requiremenes with cheque crossed P.O. or 60p COD charge to address below or just send you
Acgss or Barclycard Number NOT THE CARD
By Phone. You may order COD, Access or Bar: claycard. Post \& Packing 50 p on all orders except where stated.

SAXON ENTERTAINMENTS

327 Whitehouse Road, Croydon, Surrey.
All enquiries Large SAE Please Brochures on request

[^1]THis piece of equipment has been devised to allow sounds generated in one place to be heard in another. In particular, from one room where a baby or child is situated to another, such as the bedroom or lounge occupied by the parents or baby sitter. The unit uses a microphone to pickup the sounds and these signals are amplified to produce the same sound in a loudspeaker mounted in the control box.

The Baby Alarm is completely safe, and the child is in no danger if he/she "acquires" the unit. The alarm is powered by a single PP3 9 V battery and is economical, quiescent current being approximately 2.5 milliamps.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Baby Alarm is shown in Fig. 1.

Signals generated in the crystal microphone insert MICl are
passed to a high impedance buffer amplifier TR1, and f.e.t. wired as a source follower. This stage provides no amplification, but is included to provide low loading on the crystal microphone which is essential for a flat frequency response.
The effect of high loading on such a microphone is to provide a very "tinny" effect. Not entirely essential for specified application, this stage does however allow the circuit to be used in other applications where clear speech is required, e.g. an intercom.

The output from the source follower appears across VR1 used as a volume control, and from here to ICl , connected as a noninverting amplifier. Resistors R6 and R7 provide the necessary biasing for an op-amp operating from a single power supply. Gain is approximately equal to the ratio of R5 to R4 i.e. 1000. The output signal is fed to and heard in LSl.

Fig. 1. The circuit diagram of the Baby Alarm including pluggable remote microphone.

CONSTRUCTION

The prototype unit used a piece of 0.1 inch circuit board size 20 strips x 30 holes. The uppermost five strips are not used electrically but provide space for mounting screws. The prototype used selfadhesive horizontal mounting strips in preference to fixing nuts and bolts.

The layout of the components on the topside of the board and the breaks to be made along the copper strips on the underside are shown in Fig. 2.

Begin by soldering in the wire links followed by the resistors and capacitors. Take care when soldering in the f.e.t.s as these can be easily damaged when being soldered. Use of heatshunts is recommended. F.e.t.s can also suffer damage by "leaky" irons. A couple of turns of tinned wire wrapped around and shorting all leads during soldering will prevent such damage. Remember to remove the wire after: wards. Finally position and solder in ICl.

Sufficient lengths of flying leads should next be connected to the board. A short length of

Fig. 2. The layout of the components on the stripboard and the breaks to be made on the underside of the board; also shown are components mounted to the case and position of battery and circuit board on base panel and full interwiring. Bottom right shows mounting of microphone in case and connection to phono plug via screened cable.

screened lead to connect to the input socket SKl was used in the prototype, but this is not essential.

CASE

The author used a plastic box to house the unit, approximate dimensions $150 \times 75 \times 45 \mathrm{~mm}$. The case was used "inverted" so as not to show any panel fixing screws. The intended front panel is used for the base panel to which the circuit board and battery are fixed. The latter was secured with a self adhesive foam pad.

Prepare the box to accommodate S1, VR1 and SK1 and drill a pattern of holes above where the speaker is to be positioned to allow the sound to escape and reach the user.

In the prototype the speaker was glued in position using a polystyrene glue. Fix the components and wire up to the board as shown in Fig. 3.

The base panel (lid) can now be secured, and rubber feet fitted for good measure.

MICROPHONE

The microphone is mounted in a smaller plastic box (inverted as before). Drill a pattern of holes above MICl position and glue the latter in place. Solder sufficient lengths of screened cable to MICI to join the two boxes in their final positions. The cable should pass out through a gripping (or stain relief) grommet and terminate in a plug to match SKI.

COMPONENTS

Resistors

R1	$4 \cdot 7 \mathrm{M} \Omega$
R2	390Ω
R3	$10 \mathrm{k} \Omega$
R4	100Ω

R5 $100 \mathrm{k} \Omega$
R6 $10 \mathrm{k} \Omega$
R7 $10 \mathrm{k} \Omega$
All 1 W carbon $\pm 5 \%$

Capacitors

C1	$470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C2	$0.1 \mu \mathrm{~F}$ plastic or ceramic
C3	$0 \cdot 1 \mu \mathrm{~F}$ plastic or ceramic
C4	$47 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C5	$33 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C6	$470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
Semiconductors	
TR1	2N3819 n-channel f.e.t.
IC1	741 differential op-amp
	8 -pin d.i.l.

Miscellaneous
$\mathrm{MIC1}$ crystal microphone insert
S1 d.p. on-off rotary switch
VR1 22 kilohm carbon log. law
SK1 phono socket
LS1 miniature loudspeaker $80 \Omega 70 \mathrm{~mm}$ diameter
B1 9V (PP3)
PL1 phono plug
Stripboard: 0.1 inch matrix, 20 strips $\times 30$ holes; PP3 battery connector; knobs (2 off); board mounts; screened cable; grommet; cases (2 off).

TESTING

Plug the two units together and switch on. A click should be heard in the loudspeaker. Turn up the volume control. If the two boxes are less than about a couple of metres apart, a feedback howl will be heard. With the microphone at a distance from the control box, a sound source such as a portable radio placed near the microphone will be heard in LS1. Turning VR1 clockwise should increase the volume.

Remove the sound source. A small amount of hissing may be heard with VR1 fully advanced. Hum was absent on the prototype. Handling the cable will produce noise; for this reason the cable

should be firmly secured when the unit is finally fitted.

If all is well the units may be fitted in their respective rooms and can either stand on any flat surface or be mounted on the wall, the latter suiting the microphone, keeping it out of reach. A single "keyhole" cutout on the backpanel will allow single screw fixing.

By a suitable switching arrangement, two microphones and two speakers, the Baby Alarm can be converted to function as a two-way intercom.

SUPER PHOTODETECTOR

It is clear, on looking at prices of photodetectors (photo emissive types, photo transistors, l.d.r.s, etc.) that these devices are by no means cheap; the least expensive component I have found is the 2N5777 photo Darlington at 60 p . With a little care, it is possible to produce one's own photo transistors, at a fraction of the cost.

Fig. 1.
Fig. 2.
Take a transistor in a TO5 or TO18 can, such as a BCl 107 , and, using a fine razor saw carefully remove the top of the transistor, taking care not to squash the can (see Fig. 1). Carefully shake out any particles of metal which may have fallen inside the transistor. You will find that the innards of the transistor are now exposed to the environment, and if light is
allowed to fall onto the chip, you have a photo transistor. If desired, a few drops of cold setting, clear plastic resin may be poured into the can to afford some protection, but this is not essential.
Leaving the base unconnected, in fairly bright sunlight I found that a BCl 107 would pass $200 \mu \mathrm{~A}$. This sensitivity may easily be increased by using another BC107 transistor, the two being connected as a superalpha pair (see Fig. 2). There should now be enough sensitivity to drive a relay without further amplification.
By this method, either $n p n$ or pnp silicon photo transistors can be made, much cheaper than the cost of a ready made device. Also, the response is very fast, better than some l.d.r.s.

Peter F. Vaughan, Lynton.

BUTTON STOP

When using twin-core (figure of 8) cable, I bind the separated ends of the cable with a small 4holed button. This stops the split in the cable from lengthening, see Fig. 1.
A. A. Moore, Preston, Lancs.

Fig. 1.

Stupendous Offer to Everyday Electromis Readers SOLAR ALARM DUAL - TIME CHRONOGRAPH only

" 19.95

This is a completely "up-to-date" timepiece. Actually "two watches within one". Solar panels energise the clock chip during daylight thus conserving the internal standby battery. Back light for night-time.

The watch has a six digit display and provides 22 functions with 5 flags; it is housed in a slim stainless metal case only 8 mm thick and equipped with adjustable bracelet. The dual time zone facility makes this the ideal watch for the traveller.

FUNCTIONS

TIME ZONE 1
Continuous display of: Hours: Minutes: Seconds or Date
Day.
TIME ZONE 2
Continuous display of: Hours: Minutes: Seconds or Date: Day.
ALARM
Hours and Minutes.
STOP WATCH
Hours: Minutes: Seconds: $1 / 10$ Seconds to 11 Hours 59
Minutes $59 \cdot 9$ Seconds
Split, Lap and Journey Timing Modes.
AM/PM and MONTH INDICATION
This solid state timepiece is guaranteed for one year.

OFFER CLOSES - DECEMBER 14
From: METAC Electronics and Time Centre,
(E.E. Offer), 67 High Street, Daventry, Northants.

Name ...
\qquad
\qquad

为 (\%)

mODULATED TOME GENERATOR

Creates a distinctive sound of rapidly changing pitch at power outputs up to 4.5 watts. Applications range from burglar alarms to timers.

LICHTCRLL
 A visual indicator for the doorbell.

Christmas is Coming -Cherk your Lights

Tracing a faulty buib in a string of series-connected bulbs such as those used for decorating a Christmas tree used to be a long, tedious task. NOT any longer! This article describes a quick method of pinpointing the faulty bulb, with hints on extending bulb life and ideas for "electronic" decorations.

The second project in our Uniboard series will protect your home.

DECEMBER
ISSUE ON SALE
FRIDAY, NOVEMBER 16
Price 45p

Britain's Best Breadboard Buy at Breadboard 79

All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition '79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full.range of breadboards.

Here is your chance to obtain a special ticket for Breadboard '79 worth $£ 1.00$ absolutely FREE.

Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard '79.
Take the coupon to any of these main dealers: LONDON
Rastra Electronics Ltd. . 279-281 King Sireet, Hammersmith, London W6
Cubegate Ltd. Audio Electronics, 301 Edgware Road, London W2 1BN
Technomatic Ltd. 17 Burniey Road, London NW10 1ED Precision Instrument Labs., Instrument House,
727 Old Kent Road, London SE15

MANCHESTER

Shudehill Supply Co.. 53 Shudehill, Manchester M4 4AW BUCKINGHAMSHIRE
Wes: Hyde Development, Unit 9, Park Street Industrial Estate,
Aylesbury, Bucks HP20 IET
Best Electronics (Slough) Lid. Unit 4 Farnburn Ave. Slough, Bucks SLI 4XU

KENT

Lawtronics, 13 a High Street. Edenbridge, Kent TN8 5AX NEWCASTLE
Aitken Bros., 35 High Bridge, Newcastle upon Tyne SCOTLAND
Marshalls. 85 West Regent Street, Glasgow G2
F. Brown \& Co., 45 George IV Bridge, Edinburgh EH1 1E3 LEEDS
Leecs Amateur Radio Club, Cookridge Street, Leeds 1
HERTFORDSHIRE
BI-PAK, 3 Baidock Street, Ware, Herts
CONTINENIAL SPECIALTIES CORPORATION

EUROPE, AFRICA, MIDEAST: CSC UK LTD.
Shire Hill Industrial Estate Units 1 and 2
Saffron Walden, Essex CBl1 3 AO
Saffron Walden, Essex CB113AQ
Telephona: SAFFRON WALDEN 10799) 21682 TLX81747

By Dave Barrington

Test Case

Knowing the pride constructors take in the appearance of their finished projects, we make no excuse for returning to the subject of cases again this month.
Ideally suited to housing test gear accessories such as signal injectors, logic probes, small counters, voltage and resistance probes, and continuity checkers, the CTP- 1 probe case from Continental Specialties Corporation comes complete with associated hard. ware.

CTP-1 case kit from Continental Specialities.

Based on the case used in their LPK. 1 logic probe kit it is supplied complete with a 3 ft length of two-wire connecting lead with a moulded strain reliever and terminated with "croc clips", a nickel-plated screw-in probe tip, a mating tapped hex probe-tip connector, assembly screws, and a cut to size blank printed circuit board.

Also available from CSC is their latest 32 -page product catalogue which features their range of circuit breadboarding equipment, logic testing devices and test instrumentation.
Products featured include a range of solderless breadboards and bread-
board assemblies, test clips, instrument cases, pulse and function generators, frequency counters and accessories, logic probes, logic monitors and a digital pulser.

Copies of the catalogue and further details of the CTP. 1 probe case. can be obtained from Continental Special. ties Corporation, Dept EE, Shire Hill Industrial Estate, Saffron Walden, Essex, CB11 3AQ.

Teach-In '80

For those readers about to order components for the EE Tutor Deck and Teach-In 80 experiments, we have just heard that due to increase costs Home Radio have had to increase the price of the complete kits of parts for this project and experiments up to Part 6, to £22•50. (List A-£19. B-£4).
However, we understand that Greenweld and A. Marshall (London) Ltd have no plans, at the present time, to increase their published prices. Also, the following advertisers are able to supply complete kits of parts: Ace Mailtronix, Electrovalue, Magenta and Watford Electronics.

Tool sets

More renowned for their top grade soldering equipment, Light Soldering Developments Ltd. are now marketing four handy miniature tool sets.

Each set comes in a plastic case with transparent lid and the tools have chromium plated brass handles. The kits are made up of screwdrivers, open and socket spanners and cross. point screwdrivers.

The set of six instrument screw. drivers (Model. 1113), have hardened and tempered steel blades ranging in width from 0.8 to 3.8 mm and retail at $£ 2.93$ including VAT. The 19 piece combination set, type 37228, consists of open and socket spanners, $5 / 64$ in to $5 / 16 \mathrm{in}$ across flats, socket head, cross head and plain screwdrivers, and a scriber and is priced at $£ 5 \cdot 12$.

A set of five metric box spanners, model 37227, with a tommy bar with hardened and tempered steel ends come in a range of sizes from 3 to 5 mm at $£ 2.93$. The fourth tool set, (model 37305) comprises two cross point screwdrivers, three hexagonal key wrenches ($1 \cdot 5,2$ and 2.5 mm A.F.) and tommy bar at $£ 3.93$.

Light Soldering Developments tool sets.

Addresses of nearest 'stockists can be obtained from Light Soldering Developments Ltd., (Dept. EE), 97-99 Gloucester Road, Croydon, Surrey.

CONSTRUCTIONAL PROJECTS

EE Radio Control System

Our star project this month is part one of the EE Radio Control System series and obviously will call for some special components. These will be described fully in the various articles.

Apart from the special electromechanical items, the majority of components should be generally available. The special components are usually stocked by local radio control shops, but any readers experiencing difficulties can order them from S.L.M. (Model) Engineers Ltd., Dept EE, Chiltern Road, Prestbury, Chelten. ham, Glos, GL52 5JQ.

3-Function Generator

The only item likely to cause concern in the 3 -Function Generator is the integrated circuit IC1.

We have found that the 8038 is only available from Maplin Electronic Supplies or through R. S. Components dealers.

MW/LW Radio Tuner

For the MW \& LW Radio Tuner, the slow motion (Jackson ' O' gang type) tuning capacitor is listed in the Maplin, Watford and Home Radio catalogues. However, the specified coils seem to be rare and only stocked by Home Radio Components.

Baby Alarm

The 741 integrated circuit used in the prototype model of the Baby Alarm was a TO-5 can type with preformed leads. The 8 -pin d.i.l. plastic package is more common and readily available and can directly replace the can type.

Quite a number of readers will already possess a high impedance microphone so therefore the mic. insert could be omitted and SK1 chosen to suit your mic. plug.

The use of a rotary switch for S1 is optional and any double-pole toggle switch will suffice.

Opto Alarm

The first in our Uniboards series is a simple Opto Alarm.

There are numerous solid state buzzers on the market at the moment and it is worth shopping around for this item as prices seem to vary quite considerably.

The thyristor type MCR"102 would appear to be only available from Maplin but the 2N5060, 2N5061 and 2N5062 types are suitable replacements.

Freepost

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

YOUF COMPLETE RANEE OF FEEOTRONIO MARDNARE...

BIMENCLOSURES

ALL METAL BIMCASES Red, Grey or Orange 14 swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £15.52

MINI DESK BIMCONSOLES Orange, Blue, 8 lack or Grey ABS body in. corporates 1.8 mm pcb guides, st and-off bosses in base with 4 BIMFEET supplied. 1 mm Grev Aluminium panel sits'recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) ~ £ 2.48$
BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.48$

All
aluminium, 2 piece desk consoles with Colour Code Top Panel
Off White
Sand

Base | 4 self-adheslue non-slip rubber feet. A | B | Sand | Breen |
| :--- | :--- | :--- | :--- | Ventilation slots in base and rear \quad C Satin Black Gold panel for excellent cooling. See latest catalogue for new styles and sizes 15° Sloping Panel 30° Sloping Panel BIM 7151 ($102 \times 140 \times 51[28) \mathrm{mm}$) BIM 7301 ($102 \times 140 \times 76[28] \mathrm{mm}) \quad £ 11.36$ BIM $7152(165 \times 140 \times 51 \mid 28) \mathrm{mm})$ BIM $7302(165 \times 140 \times 76[28) \mathrm{mm}) \quad £ 12.28$ BIM $7153(165 \times 216 \times 51(28) \mathrm{mm})$ ВІМ $7303(165 \times 183 \times 102(28) \mathrm{mm}) . £ 13.43$ BIM $7154(165 \times 211 \times 76 \mid 33) \mathrm{mm})$ BIM $7304(254 \times 140 \times 76(28) \mathrm{mm}) \quad £ 14.83$ BIM7155 ($254 \times 211 \times 76(33) \mathrm{mm})$ SIM $7305(254 \times 183 \times 102(28) \mathrm{mm}) ~ £ 16.36$ BIM $7156(254 \times 287 \times 76(33) \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28] \mathrm{mm}) £ 17.71$ BIM 7157 ($356 \times 211 \times 76[33 \mid \mathrm{mm})$ BIM $7307(356 \times 183 \times J 02 \mid 28) \mathrm{mm}) £ 18.83$ BIM $7158(356 \times 287 \times 76(33) \mathrm{mm})$ BIM $7308(356 \times 259 \times 102[28) \mathrm{mm}) £ 19.92$

ABS \& DIECAST BIMBOXES
6 sizes in $A B S$ or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws into integral brass bushes (ABS) or tapped holes (Diecast)
$(50 \times 50 \times 25 \mathrm{~mm})$
$(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ (190×110×60mm)

N/A BiM2002/12 f1.09 BIM2003/13 £1.27 BIM2004/14 $£ 1.61$ 8IM2005/15 E1.72 BIM2006/16 £2.69

Diecast BIM5001/11 BIM5001/11 8IM5002/12 BIM5003/13 BIM5004/14 BIM5005/15 8IM5006/16

Hammertone
$£ 1.54$
$£ 1.66$
£1.66
£2.24
£2. 81
£3.19
$\mathbf{E 4 . 9 4}$

Natural
Natura
£1.23
£1.32 ع1.32
E1.70
E 2.11
£2.72 £3.96

MULTI PURPOSE BIMBOXES
Orange, Blue, Black or Grey ABS with 1 mm Grey Aluminium recessed front cover held by screws into integrat brass bushes. 1.8 mm pcb guides incorpora led and 4 BIMFEET supolied.

BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm})$
£1.34
BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm})$
£1.84
BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm})$
£2.48

Blue, Black or ventilation sloy has well as 1.8 mm pcb guides and stand off bosses in base. Double angle recessed front panel with 4 fixing screws into integral brass bushes. 4 BIMFEET supplied.

BIM. $6005(143 \times 105 \times 55.5(31.5) \mathrm{mm}) \quad £ 2.76$ BIM $6006(143 \times 170 \times 55.5(31.5) \mathrm{mm}) \quad £ 3.58$ BIM $6007(214 \times 170 \times 82.0(31.5) \mathrm{mm}) £ 4.83$

- EUROCARD BIMCONSOLES

Orange, Blue, Black or Grey ABS
2) body accepts full or $1 / 2$ size Eurocards, with bosses in the base for direct fixing. 1.8 mm wide pcb quides incorporated
and 4 BIMFEET supplied. 1 mm
Grey aluminium lig sits flush with body
top and held by 4 screws into integral brass bushes.

ВІМ $8005(169 \times 127 \times 70(45) \mathrm{mm}) \quad £ 4.71$
ВІМ 8007 ($243 \times 187 \times 103(66) \mathrm{mm}) £ 6.70$

BIMTOOLS + BIMACCESSORIES

MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks Drills brass, steel, aluminium and Dcb's. Under 250 g , off load speed 7500 rom . Orange ABS. high impact, fully insulated body with integral on/off switch £11.21
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, 125^{\prime \prime}$ iwist drills, 5 burrs and 2.4 mm collet £2.64
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and-mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm}$ £23.57

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES, BIMCONSOLES, and all other enclosures having 1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply stid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length. 1.15 per pack of 25 .

BIMFEET

11 mm dia. 3 mm high; grey rubber self-achesive enclosure feet.
£0.81 per pack of 24 .

12 VOLT BIMDRILLS
2 small, powerful drills easily hand held or used with lathe/stand adaptor Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia. £ 8.62 Major BIMDRILL with 4 collets up to 3 mm dla. $£ 14.49$
Áccessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. MIni Kit $1 \mathbf{- £ 1 6 . 1 0 , ~ M a j o r ~ K i t ~} 1 \mathbf{-} \mathbf{2 0} .70$. Accessory Kits $\mathbf{2}$ have appropriate drills, collets plus 40 tools and mains- 12 V dc adaptor. Mini Kit $2-£ 38.22$, Major Kit 2 - £41.97, Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit 3 - £ 48.30, Malor Kit 3 - £54.05.

BIMPUMPS

4
2 all metal desolder. BIMIRONS ing tools provide high suction power and have easily replaceable screw in Teflon.tips. Primed and released by thumb operation with in-built safe. ty guard and anti-recoil system BIMPUMP Major (180 mm long) $£ 8.51$ BIMPUMP Minor (150 mm long) $£ 7.24$

Type 30 General Purpose 27 watt Ir on with long life, rapid change element screw on tid, stainlass steel shaft and clip on hook. Styled handle with neon, £4.37 Type M3 Precision 17 watt iron quick change tip, lona life
element, styled handle with clip on hook. £4.71

EIMBOARDS

DIL COMPATIBLE BIMBOARDS

Accept all sizes (4.50 pin) of DIL IC pack ages as well as resistors, diodes. capacitors and LEDs. Integral Bus Strips up each side for power tines and Component Support 8 -acket for holding lamps, switches and fuses etc. Avallable as single or multiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.
BIMBOARD 1 has 550 sockets, mult lple units utilising 2,3 and 4 BIMBOAROS íncor porate 1100,1650 and 2200 sockets, alf on 2.5 mm (0.1") matrix.

BIMBOARD $1 £ 8.22$ BIMBOARD 2 £ 19.98 BIMBOARD 3 £29.06 BIMBOARD 4 £38.13
DESIGNER PROTOTYPING SYSTEM 1, 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A})$ All $\mathrm{O} / \mathrm{P}^{\prime} \mathrm{s}$ fully isolated. Short circuit and fast fol back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER 1 E58.65
DESIGNER 2 £64.97
DESIGNER 3 E71.30

with Kelth Cadbury

USEFUL SUCKER

ONE of my main sources of high quality components for stock is the "Goody Bag". Whenever I visit my local electronics shop, I rummage in his "junk" bins and usually select a bag or two of assorted "goodies".

Until recently the various p.c.b.'s that I had collected from these bags of components had been gathering dust. Most of the components on the boards had leads too short to cut, and removing them with a soldering iron proved to be one hell of a laborious task, resorted to only in emergency, when a particular component has been needed that was not available from another source.

A recent acquisition has resulted in all the boards being stripped of 75 per cent of their components, and at a very fast rate. I now have a stock of several hundred close-tolerance resistors, items which have previously been bought only as required.

The acquisition that made it all so easy was a device called a "Soldersucker'. A sort of suction device with a Teflon nozzle, it can be primed and discharged with one hand easily, while the other hand is used to apply the soldering iron to the soldered component. The Soldersucker draws away molten solder with fantastic force that has to be seen to be believed, and after repeating the operation at each of the joints, the component can be lifted out, sometimes without the need to heat the "de-soldered" joints again.

So simple and so quick, I just didn't realise how easy its use makes the removal of components. I would not have considered spending over a fiver on the tool, but as I have now had the chance to prove its worth at, relatively speaking, no cost (it was amongst a large "job lot" I was fortunate enough to obtain for a few quid recently) I have no hesitation in recommending its worth.

It would soon cover its cost. I have recovered, in good order, something like eighty pounds' worth of transsistors, 1 per cent resistors, integrated circuits and capacitors, with the aid of the Soldersucker!

DREAM of an electrontc house, where everything is controlled from central position. Heating, lighting, ventlation, entertalnment, security, cooking wathing and so on,

To sit In a Captain Kirk-type of armchalr and to be in complete control of one's immediate environment seems to me to be quite possible given today's state of the Art. And glven the time and the money to make it all!

A robot to take the dog for a walk; three VTR's always recording all TV output, recalled by ultrasonic instruction at a moment's notice for replay on one of the many colour televisions around the house; similar audio recorders for five or six radio programme transmissions; automatic tending of the garden. What bliss, but for how long, before the whole caboodle becomes an absolute bore? You would get no exercise ever, and you would possibly die of a heart
attack brought about by the effort of rising from your control chair to go to bed.

Nevertheless, those readers who dream of more electronlckary will realise the necensity of a patchboard, to alter varlous parameters that may need adjustment-how long grandma is allowed in the bath before tho water automatically drains away; grilling times for the T-bone steaks; securing the fridge and freezer when hungry teenagers go prowling.

Even more modest projects will benefit from a patchboard-it would be an additional item of equip. ment that could prove very useful to the enthusiast's audio set-up, espec.ally where creative tape-recording is undertaken.

The patchboard described here is adequate for all projects the writer has worked on to date, and can be made at a fraction of the cost of a "bought" item.
 lot of money to spendl For example, the Maplin catalogue price quoted for a 30×30 hole patchboard is £ $88 \cdot 38 \mathrm{p}$. It seems to me that my-very-cheap alternative would suffice in nine out of ten applications.

Chassis mounting phono sockets are avallable on Paxolln boards containing numbers of sockets from one to elght, from Maplin, and work out at under 5 p per socket in most cases. For example, to make an alternative to Maplin's 10×10 hole board costs under a fiver, using twenty of the five-socket boards, compared with £19.55p.

I used single strands of copper wire, about $1 \frac{1}{2} \mathrm{~mm}$ thlck, from a length of electricians' heavy-duty cable, which was soldered as shown in the lllustration. Careful drilling and mounting of the boards is needed to make the finlshed job
look neat-but then care is needed with all electronic work anyway!

And that's not all-the plugs are much less expensive also. Ordinary phono plugs cost under 10p, and can either be shorted out, or small reslstors or capacitors can be connected across the terminals, Inslde the cover. Use plastic plugs (which are the cheapest) and devise your own colour code so that you can tell at a glance whether the connectlons are shorted or Jolned through a component. The wireable component plugs listed by Maplin for their 10×10 board cost 59p each, compared with 9p for my alternativel

Yer pays yer money and takes yer cholce-for me, Mr Hobson dictates, prompted by the bank manager, tax collector, starving children and shoeless wife.

Wireless Telegraphy Act

The legality of remote and radio control understandably confuses many people. Here are the facts in a nutshell. The Wireless Telegraphy Act prohibits the use of any unauthorised radio station.
This wording covers both trans. mitters and receivers. So it is not only illegal to transmit any radio frequencies (such as CB radio) without authorisation, it is also illegal to receive them.
It follows that it is also illegal to use a radar speed trap detector in a car. These devices pick up police radar speed check signals and convert them into an audible alarm.

Under the Wireless Telegraphy Act it is also illegal to use a radio controlled model boat, car or aeroplane. But whereas no authorisation and licences are available to transmit pirate radio programmes or receive police radar signals, licences are available for the transmission of non-speech radio remote control signals to models and toys.

The penalty for any illegal trans. mission or reception, whether Citizens Band chat, radar trap avoidance, pirate tradio pop music transmission or radio remote control of a toy, is the same; a fine of up to $£ 400$ and/or 3 months in jail. It is, of course, highly unlikely that anyone using a remote control toy would be fined as much as someone transmitting a pirate radio programme, but the penalty is available to a court.

Direct Link

Fortunately, because the Wireless Telegraphy Act covers only radio frequencies, it does not cover the use of ultrasonic, or infra red, or visible light, or laser light, links for remote control or other communication, even of speech and music. Thus it is perfectly legal to use links of this type without a licence. The snag is
that such links are far more directlonal than radio línks.

In Japan it Is now possible to buy a gramophone turntable that contains a built-in high quallty stereo radio transmitter which operates on a v.h.f. f.m. band. The gramophone signal can thus be picked up by a v.h.f. f.m. receiver anywhere in the house. So the user can install a turntable in one room and an amplifler and $h l f i$ system in the other without any cable IInks. This would be Illegal in the UK.

Ultrasonic or Infra red llnks need something close to Ilne-of-sight relationship, so cannot offer a comparable facility. Also infra red Ilnks can be disturbed or "broken" by direct sunlight, as the sun emits considerable infra red radiation.

I recall eyewltness tales of an Im. pressive demonstration several years ago which was set up to show off the prowess of a remote controlled fire fighting device. The robot-llke gadget was designed to sense the Infra red radiation produced by a flre, turn, drive towards It and then loose off the contents of a fire extingulsher.
The demonstration took place out of doors and a can of petrol was duly ignited. It was Summer, but a dull day. Then, just as the petrol burst Into a ball of flames, the sun broke through the clouds. The robot's sensor plcked up the sun's infra red radiation and latched onto its direction. The gadget stopped dead in its tracks, tilted back and loosed the contents of Its fire extinguisher into the sky.

Take-away Car Radlo

In-car-entertalnment or ICE Is now big business. It's easy to pay around $£ 300$ for a combined radlo and cassette player; and that's excludling loud. speakers, and extras like booster amplifiers, graphic equallsers and exotic aerials.
Understandably many motorists are reluctant to install such expensive
equipment because it's akin to leaving several hundred pounds laying in the dashboard pocket ready for a thief to grab. Even worse, the thief will probably smash the door, break a window or slit your sunshine roof to get access.

- Burglar alarms are one answer, but by no means 100 per cent. Another answer is that offered by car radio firm Voxson.

The Voxson Tanga range of radios, now being fitted as standard to small Fiat cars, is the very opposite of secure. The radio is a plug-in module that the driver removes every time the car is left unattended.

The really clever part of the scheme is that they have made the removable module small enough to fit into a pouch that hangs on a key ring along with the car keys. A socket is secured to the car dashboard and as this socket contaıns only a single chip audio amplifler It Isn't worth stealing. The tiny plug-In module contains all the r.f. and i.f. circuitry, a tuning control and a volume control. There's a separate colour-coded module for longwave, medium wave and v.h.f. reception.

Provided you remember to pult out the module when you park there's nothing left to encourage a thief.

War on CB

I learned recently how CB helped us win the war in Africa. Of course it wasn't called CB then, but the wavelength, 27 MHz was the same.
Before World War II such fre. quencies seemed unmanageably high. But spurred on by the Impetus of war the USA, Japan and Germany all made military equipment to work on this band.
One of the characteristics of " 27 meg', and indeed one of the reasons why no one wants it for CB In the UK, Is that it can skip across Continents. A signal beams up into the sky boun. cing off the upper atmosphere and down to earth again thousands of miles away.
In 1942 an amateur radio enthusiast in the USA heard German conversations on his experimental 27 meg receiver. He brought in a German speaking friend who reckoned the conversation sounded like military chat between tank commanders.
The American army moved in and dlscovered that the signals were skipping across the world from Rommel's tanks in North Africa. They could only be plcked up within a radius of a few miles and night after pight the army in the USA monitored the signals from Africa and sent them back to Field Mar shall Montgomery in Africa. Thus, although Montgomery was out of range of Rommel's low power 27 MHz transmitters, he soon knew everything the "Desert Fox" was saying to his troops.

There's a lot going on at Breadboard!

Seventy exhibitors showing and selling everything that the hobby electronics enthusiast could wantl Demonstrations of electronic organs - computer kits - audio gear.

Radio Station S22 broadcasting throughout the show, See your voiceprint| Get your own weather details direct from Tiros MI Test your reactions .and your strength,
Careers in Electronics - get the advice and information that could start you off on a rewarding and interesting career.
It's worth going to Breadboard!

Royal HorticulturalHalls ElvertonStreet Westminster London SW1

December 4-8th 1979

Admission £1 (students 70p)

Tecknowledgey far sule. DIY Hi.Fi will never seam the same again. Ambit's Mark HII tuner system is electrically \& visually superior to all others Some options available, but the lllustrated version with reference series modules $£ 149.00+£ 18.62$ VAT With Hypertl Serias modulet
 Precision construction a design of all parts Time/frequency display State of the art performance with facilities for updates, using modular plug in systems.
 Deviation level calibrator for recording Digital Durchestef Ail Band Brondcasi Tuner: LW/MW/SW/SW/SW/FM stereo
 ALL TUNER KITS E3 carriage

 A multiband superhat tuner, constructed using a single IC for RF/IF processing - but with three section (alr gang) tuned FET tunerhead, with ceramic IF filters and interstation mute AM employs a double balanced mixer input stage, with mechanical IF filters - plus a BFO Mark III FM only funer, employlng the same degree of care in mechanical design to enable easy constructlon. MW/LW reception vis a ferrite rod antenna.Electronies only (PCB and all components thereon)

Complate with digital frequancy rasacout/clock-timer hardware $\begin{aligned} & £ 39.00+£ 4.95 \text { VAT } \\ & £ 99.00+£ 14.85 \text { VAT }\end{aligned}$

Hardware packages are available separataly If you wish to house your own designs in a
professional case structure. Please deduct the cost of electronics from complete prices.

PW SANDBANKS PI METAL LOCATOR Malntalning our professional approach to home conitructor klts, we offer the pulse
inductlon 'Sandbenks'. Now with Inject. Inductlon 'Sandbenks', Now with Inject-
ion molded casing for greatly improved lon molded casing for greatly improved VHF MONITOR RX WITH PLESSEY IC 4/8 channal veration of the PW dasign but uning itandard (fundx9) eryitals, and TOYO 8 pole erystal fliter with matching transformers. Coll sets from our standard
range to covar bands from 40 to 200 MHz range to covar bands trom 40 to 200 MHz
Complete module kit $£ 31.25+£ 3.90 \mathrm{vat}$.

MICROMARKET			OSTS overflow:		
6800 P	650p	8212	2300	2102	
6820P	$600 p$	8216	195 p	2112	340
6850P	275p	8224	350 p	2513	754
8810	$400 p$	8228	478p	4027	578p
6852	365p	8251	625p	2114	1000
8080	$630 p$	8255	540 p	+15\%	

RADIO and AUDIO MODULES : Consistently the most advanced EF580 6801 Durimat stage varicap tuning. all with osellistor output 5801 Dusi gate MOSFETRF rragus, bipolar mixar $517.45+2.61 \mathrm{VAT}$ 5804 'Hyperfi' series, with intarnal PIN diode agc. 5802 and ultra wide range tuning system
EF5402 4 stage varicap tunar with TDA1062
FOR $30-200 \mathrm{MHz}$
Hz , FET/IC Input. PIN age
E24.95 + 3.74VAT
£10.75 + 1.61VAT
$\frac{\text { FOR FM F Fi at } 10.7 \mathrm{MHz}}{7030}$
7130 single 6 pole linesp phame fiter IF with HA1137e. $0.95+1.64 \mathrm{VAT}$ cwo 6 pole linear phase filter IF with CA3189E £16.25 +2.44 VA
Hyperfi IF, swltehed bandwidth, AGC IF Hyparfi IF, awitched bandwidth, AGC IF preamp, linaar pham
ceramic fliters with diode switched narrow fltter $\dot{E} 4,95+3.74 \mathrm{VA}$ OECODERS for MPX (STEREO)
Various typan, Guaranteded the
$\frac{\text { LARSHOLT FM TUNERSETS }}{7252}$
7252 MOSFET Iront end combined with CA3089 IF E28.50 +3.97VAT 7282 JFET front end, combined with IF and decoder ez8.50 +3.97VAT

COMPONENTS FOR RADIOICOMMUNICATIONS/AUDIO/TV etc. As usual, Ambit bringe you the latest and best, a small selection of which is sh in this edvertisement. The Ambit catalogues contain informetion on most of the
devicem mentionad here. and an order for the now pert three will ensure you tay with latest dovelopments. Data photocopying service described in pricelist info.

RADIO ICs for FM vat

,

R

IF Al
KB4406
MCI350
see comms ics al
COMMUNIC ATIONS
$\begin{array}{lll}\text { K84412 } & 2.55 & 38 \\ \text { K84413 } & 2.75 & 41 \\ \text { SD6000 } & 3.75 & 56\end{array}$

RADIO ICs for FM vat			
CA3089E	1.94	29	
CA3189E	2.45	37	
HA1137W	2.20	33	
HAl1225	2.20	33	
SN76660N	0.75	19	
RADIO ICs for AM/FM			
roalogo	3.35	50	
TDA1083	1.95	29	
TDA1220	1.40	21	
IF AMPLIFIERS			
KB4406	0.50	07	
MC1350	1.20	18	
see comms ics also			
KB4412	2.55	38	
K84413	2.76	41	
SD6000	3.75	56	

LPSN

TL:Standard MND LP 5chatth

RADIO WORLD

 ,

 ,}

By Pat Hawker, gзva

Amateur News Service

For over 24 years, a specialised "broadcast"' news service entirely independent of the BBC and IBA has quietly but efficiently existed in the United Kingdom: the RSGB's weekly "GB2RS' bulletins transmitted every Sunday morning from amateur radio stations in different parts of the country. The bulletins provide news and information of interest to all radio amateurs and short-wave listeners.

An important extension to this service has just been introduced: the bulletin now, for the first time, goes out at 1100 hours local time on $7 \cdot 0475 \mathrm{MHz}$ using conventional amplitude modulation and can thus be heard by listeners with run-of-the-mill "all-band" radio receivers.

Previously all GB2RS transmissions have been on 3.5 or 144 MHz , often using single-sideband or narrow-band frequency modulation, frequencies and modes seldom available to listeners not equipped with communications receivers designed specifically for radio amateurs.

The 7 MHz transmissions will usually come from the station of Gordon Adams, G3LEQ at Knutsford, Cheshire and reception in the UK will depend on the "short skip" conditions to be expected at this stage of the sunspot cycle.

Apart from 7 MHz the new schedules include seven transmissions at different times from different sites on 3650 kHz (3640 or 3660 kHz in Scotland) using ssb or a.m.; eight transmissions on ssb on $144 \cdot 250 \mathrm{MHz}$; and 19 transmissions on 145.525 MHz nbfm , together providing coverage in most parts of the UK.

The service was launched in September 1955 by Frank Hicks-Arnold, G6MB on behalf of the Radio Society of Great Britain. Since then one of the London news-readers, Arthur Milne, G2MI of Bromley, Kent has read the bulletin on more than 1000 Sundays; he can usually be heard making the first transmission on $3 \cdot 65 \mathrm{MHz}$ each Sunday at 0930 local time.

A condition imposed by the Home Office is that the weekly scripts, prepared at RSGB headquarters, have to be vetted by them in advance. Bulletins provide details of national and international happenings and events affecting amateurs, contest results, propagation conditions, news of amateur expeditions ("dxpeditions'), OSCAR satellite orbital predictions and the like.

There is also a weekly bulletin for radioteleprinting (rtty) enthusiasts transmitted under the call-sign GB2ATG in the $3 \cdot 5$ and 144 MHz bands-of course on radio teleprinters

In these days when there is much in. terest in the concepts of local and com. munity radio broadcasting, GB2RS provides an interesting example of an alternative concept: that of reaching nationally a relatively small segment of the population. By using their own communications transmitters the radio amateurs have shown a way of doing this at low cost.

Radiation Non-hazards

Events at the Kensington fire station, where in August radiation meters appeared to detect harmful levels of ionizing radiation but where it was shown by staff of the National Radiological Protection Board apparently to have been caused by harmless non-ionizing radiation from the short-wave transmitters of the nearby Israeli Embassy, have underlined once again how difficult it is for the lay public (and even the experts) to judge iust what levels and types of radiation are potentiaally harmful.

Most scientists and engineers accept that the present officially recommended levels for non-ionizing radiation from microwave and other radio transmissions, even though set empirically many years ago, have proved remarkably satisfactory, though there still remain doubts in some minds as to possible biological effects at levels too low to cause appreciable local heating.

Contrariwise there are some grounds for thinking that low levels of h.f. radiation may even have a beneficial, preventive effect in regard to certain diseases.

Microwave Bombardment

Part of the confusion in the public mind was brought about by the much publicised "'bombardment" by microwaves of the US Embassy in Moscow some years ago. Many people rushed to the conclusion that this was all a deliberate attempt to affect the health of the American diplomats.

Less well known is that it has become clear since then that the real reason was a Russian attempt to prevent interception of their microwave telecommunications links by receivers in the Embassy, a practice they were themselves doing in the USA. There is considerable evidence that their embassies and consulates contain microwave aerials and receivers which can intercept telephone traffic to and from Government buildings, using computers programmed to select automatically conversations likely to be of interest.

Many embassies, of course, have h.f. radio transmitters that enable the diplomats to communicate directly with their own countries. My daily walk to work through Belgravia takes me past several large and very prominent "log-periodic" h.f. beam arrays, while even a casual look at many of the other diplomatic buildings in the area reveal more modest transmitting aerials. And some countries still favour "disguised" aerials, hidden in flag poles, etc either in deference to environmental considerations or as a relic from the days when diplomatic radio links were virtually a form of under-cover "pirate" operation.

Today it is all highly "legal" under Article 27 of the Vienna Convention on Diplomatic Relations which gives to missions the right of free communication
in code or cipher, although still insisting that missions "may install and use a wireless transmitter only with the consent of the receiving state". Occasionally problems arise from the transmitters causing interference to television reception in the area, a matter which has to be handled with diplomacy.

Why So Slow?

Among the reasons why so many hobbyists would welcome a CB system are the difficulties, the delays and the expense of obtaining an amateur radio licence. It takes too long and costs too much for a youngster to acquire a Class A or a Class B amateur licence. It is not just a question of the technical standards but also the administrative delays. Now that the Radio Amateurs Examination is based on "multiple choice" questions, capable of being marked very rapidly, why is it usually September before candidates learn whether they have passed an examination held in May? And why do candidates have to apply to take the examination so long beforehand?

With a sufficiently large pool of multiple choice questions it should surely be possible to arrange that applicants could take the exam at any time, virtually on a walk-in basis, just as those living near a Post Office coast station or Marine Radio Surveyor's Office can take the Morse test at any time of the year. Time seems so very important to a youngster itching to get on the air.

I was fortunate enough, as a schoolboy, to take out my licence before there was such a thing as a technical examination but considerable technical interest in radio communication

In these days of factory "appliances" there is a lot to be said for checking that applicants do know something about the technology-but nothing at all to be said for putting such long delays into the system.

Further evidence of the value and importance of encouraging amateur radio emerged in the aftermath of the floods in west India and in the path of Hurricane David in Dominica where for a period the only link with the outside world was via an amateur station operating from batteries.

"Just a moment while I get my calculator".

SUPPLIERS TO H.M. GOVT. DEPTS. MANUFACTUREDAND ASSEMBLED IN GT. BRITAIN FULLY TESTED AND GUARANTEED SEND NOW FOR OUR FREE 28 PAGE ILLUSTRATED CATALOGUE. SEND STAMP PLEASE

By Harry T. Kitchen

Marking-Out

Last month I advocated the creating of a drawing, however elementary, of the required marking-out; I also explained the reason for doing this in reverse. Let us now look at marking out, cutting, and bending a fictitious front panel. In real life, of course, you will substitute your own requirements.

Let us agree on a front panel measuring 10 in by 6 in , and let us work in imperial since so many of us do so in our private lives, whatever measurements we may use at work. Let us also decide that the panel will be secured to the cabinet by means of flanges $\frac{1}{2}$ in wide, bent inwards, and at right angles to the panel. Immediately this gives us the overall size of 11 in by 7 in . We cut this from a larger sheet of aluminium, or obtain it cut to size.

All four sides will, naturally, be absolutely square. We must mark out our datum lines, commencing with the two centre lines. Set the combination square to $5 \frac{1}{2}$ in and scribe a small line; likewise at $3 \frac{1}{2} \mathrm{in}$. Using the square, now extend these lines until they intersect, bang in the centre of the panel,dividing the sheet into four exactly equal portions.

The position of every hole, top to bottom, side to side, is, in good engineering practice, referred back to these centre lines, so their exact positioning is critical. So too is every bending line. Errors are thus confined to one reference line.
Now if we happily start at one end and carry on, line to line to line, errors can accumulate, possibly disastrously. Say every line is out by 25 thou., in itself a wide or a narrow limit depending on applied criteria, then six holes, or lines, later on you will be ou't of position by $0.025 \mathrm{in} \times 6$ or 0.150 in . That hole or line being out of position could completely ruin the panel.

Fixing Flanges

The fixing flanges require a somewhat different approach. If you mark the panel to precisely 10 in by 6 in it will not fit. Why? Well, you haven't allowed for the thickness of the metal. For a precision panel you must subtract the thickness of the panel from the bending dimensions.

In round figures let us say the panel is 25 thou. thick. So you set your combination square to 5 in and 3 in from the centre lines, and then as well as you are able to, you subtract 25 thou. each time, top and bottom, and both
sides. Then scribe the bending lines. With decent luck you will achieve a panel that is a perfect fit. When bentl
Now we can set about the holes required. Round holes are easy; at the intersection of appropriate horizontal and vertical datum lines use a centre punch and lightly "pop" the precise point. Then use engineers' dividers to draw the circle required. Square or rectangular holes also use the horizontal and vertical datum lines. Locate the centre of the hole then, halving the width and length scribe its limits above and below, and to either side of the datum lines.

Let me reiterate that these lines will have been scribed on the reverse side of the panel so that the outer side is unblemished when the panel is completed. Got it wrong? So have I before, and I dare say, will again.

Cutting Out Holes

Having a panel marked out, we can commence cutting out the holes. There are various tools on the market designed to facilitate this chore. Let us however confine ourselves to easily and cheaply obtained hand tools. Of inestimable value is the Abrafile, available in various diameters. I have had mine for many years, and they range from $\frac{3}{4}$ in diameter to some that will fit a fretsaw; just the job for cutting holes in metal panels.

For round holes, drill a starting hole just inside the circumference of the required hole somewhat larger than the Abrafile, or other round file you propose using. Insert your file and away you go, all around the hole, just inside the scribed cricle. Enlarge the hole to the required size, and remove all rough edges, by use of a smooth half round or round file. Smaller holes are simply enlarged in size by judicious use of a round file.

Square or rectangular holes are tackled in a similar manner. Again a starting hole is drilled, this time in one corner. Again you set off with your trusty round file, filing away just inside the scribed lines. Finally you square off the corners and straighten up the sides by use of a smooth Hand file or Flat file.

Alternatively, you can, particularly with large holes, drill several holes in a straight line, inside and parallel to each side of the hole. Then you use a padsaw with a length of hacksaw blade in it to cut out the hole. The four sets of holes you drill must, of course,
all join up so that the hacksaw blade can be inserted. Finish off as before.

Bending

The scribed bending line must be accurately aligned with the angle iron, and just visible. This degree of visibility is important as it aids repeatability. The angle iron pieces are bolted together and clamped in the vice securely.
Use a piece of hard wood, place it in intimate contact with the aluminium sheet and the angle iron, and bend the sheet in the same direction as the scribed lines until it is flush with the angle iron; hopefully this will be square.

If necessary, tap the hard wood with a mallet, from end to end, and back, slowly and carefully. When the sheet lies on the angle iron, place the hard wood upon it and tap it down firmly to ensure a good tight bend. There should be no signs of damage on the sheet, or ripples; the hard wood used as an inter-face between mallet and sheet is a great aid here as it absorbs local blows.

With care, and practice, you will be able to manufacture your own cabinets; cabinets that will compete favourably with commercial products.

Panels have been dealt with at length since they are the most complex part of a cabinet, but the rest of it can be made in exactly the same way.
 Easibind to file your copies away. Each binder is designed to hold approximately 12 issues and is bound and blocked with the Everyday Electronics logo. Gold letraset supplied for self blocking of volume numbers and years.

Price £.3.75 including postage, packing and V.A.T., Why not place your order now and send the completed coupon below with remittance to:IPC Magazines Ltd, Post Sales Dept, Lavington House, 25 Lavington St, London SE1 OPF

Simply ahead. . ILP'S NEW GENERATION OF HIGH

 quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units, I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I. L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multi function equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connec. ting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions
$\mathbf{£ 4 . 6 4 + 7 4 p \text { VAT }}$

THE POWER AMPLIFIERS

THE POWER SUPPLY UNITS
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled irans. former the other using toroidal transformer to halve weight and height.

Model	Output Power R.M.S	Dis- tortion Typical at 1KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	15 W into 8Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ +950
HY50	30 W into $8 ~$	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$
$+£ 4.15$							

Load impedance - all models 4.16 Ω
Input sensitivity - al! models 500 mV
input impedance - all models 1.00 K
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

PSU 36 for 1 or 2 HY 30 's $£ 8.10+£ 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $£ 13.61+£ 2.04$ VAT PSU 90 with toroidal transformer for

1 HY200 $£ 13.61+£ 2.04$ VAT
PSU180 with toroidal transformer for 1 HY400 or $2 \times$ HY 200
£23.02 + £3.45 VAT
PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to drive up to
five HY5 pre-amps $£ 4.50+68$ p VAT

NO QUIBBLE
5 YEAR GUARANTEE
7. DAY DESPATCH ON ALL ORDERS
BUILT-IN PROTECTIVE CIRCUITRY
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE

ALL UK ORDERS DESPATCH POST PAID HOW TO ORDER, USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

ELECTRONICE LTD.
FREEPOST 3 Graham Bell House, Roper Close. Canterbury, Kent CT2 7EP
Telephone (0227) 54778

TECHNOMATIC LTD

17 BURNLEY ROAD, LONDON NW10
(2 minutes from Dollis Hill Tube)
Tel. 01-452 1500
Tix. 922800

MAGENTA ELECTRONICS LTD.

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER OF KITS and COMPONENTS for E.E. Projects. We supply carefully selected sets of parts to enable you to construct E.E. prolects. Prolect kits include ALL THE ELEC. TRONICS AND HARDWARE NEEDED-we have even Included appropriate screws, nuts and I.C. sockets. Each project kit comes complete with lis own FREE COMPONENT IDENTIFICATION SHEET. We supply-you construct. PRICES INCLUDE CASES UNLESS OTHERWISE STATED. BATTERIES NOTINCLUDED. IF YOU DO NOT HAVE THE ISSUE OF E.E. WHICH CONTAINS THE PROJECT-YOU WILL NEED TO ORDER THE INSTRUCTIONSI REPRINT AS AN EXTRA-39p. each.

CHASER LICHTS. Sept. 70, EIE.05.
VARICAP M.W. RADIO. Sept. 79 ci.45. SIMPLE TRANSISTOR TESTER. Sept. 79, ES-5A. si.21. Sultable mlerophone plug Ei. 79 WARELING TIMER. Aug. 79. E5. M9 IV POWER SUPPLY Aug. 79. $\mathbf{4 8} \cdot 67$ Inc. geb 8 WNEE WHISTLER AUg. 70 E2. 38 TOUCH ON PILOT LICHT AUg. 10 QUIZREFEREEAU日. 79. ©5.te 8OLDERINE IRON BIT SAVER. July 79. E7.25. DOLLS LIGHTS ECONOMIBER. July 79. E. 40 no case
DARKROOM TIM

WATER LEVEL IMDI, July 79. e2.55. INDICATOR. July 79. CONFERENCE TIMER. July 79, £33-21 inc extenalon unit. ELECTRONIC CANARY. June 79.14. LOW COST METAL LOCATOR. June 79. \&5.14.

Handle \& coll former parts extra CA. 75. METER AMPLIFIER. June 79. \&3.64 INTRUDER ALARM. May 1979. E15. Lese Ext. Buzzer \& Lamp and Loop Com: ponente. WAVE CONVERTER. May 79. THERMOSAEAT. 'PHOTO' SOLU. TIONS. May 79. \&14-03. Lene ocket, tub. and OPABE.
SHAVER INVERTER. APHI 79. \&12. 36. TRANBISTOR TESTER AprII 79 TOUCH BLEEPER. ApII 75. 63-25. ONE TRANBISTOR RADIO. Mar. 79. TiME DELAY INDICATOR. Mar. 70. VERSATILE POWER SUPPLY. Mar. 79.
CHOK
CHE

CHOKE WARNING DEVICE, Apr. 79

Tese caso mod platator. Feb. 79. c1.3t lese case and plns.
TMYRISTOR TESTER. 7. E.O. 2 . ADJUETABLE PSU. FOb. 79, E19.7. Caee (horizontal layout) \&3.89 extra. I'MFIRST. Jan. 7u. \&3. 37 less cases. LIOHTE REMINDER. Jan. 79. £4.54.
CONTINUITY TESTER. Jan. 79. \&3. 20 FUzz VEHICLE IMMOBILISER. Inc. PCB. WATER LEVEL ALERT. Nov. 78. ©5. 30
"HOT LINE' GAME, Nov, 78. ©4.63 lese cage árod.
CHASERLIGHT. Sept. 79. E18. 5 . 78. E3.esinc. board.
sUBECRIER TEL METER. Nov. 78. £17-53 case extra $24 \cdot 13$.
FUSE CHECKER. Oct. 78. E1. 4.
C. MOS RADIO. Oct. $78.51 \cdot H$

TREASURE HUNTER. Oct. 78. eit.g
 Es.7 inc. p.e.b. FILTER. 4.38
SLAVE FLASH. Aug, 78. ©2.92 leen SK1 LOEIC PROBE. July 78. E2.52.
IN EITU TRAMSIBTOR TESTER June 78. E5-20.
VIBUAL CONTINUITY CHECKER June 78. \&s.2 2 inc. probes.
FLASHMETER. May 78. $\mathrm{f}\{2 \cdot 42$ les calc FLASHMETER. May 78. $\mathbf{5 1 2} \cdot \mathbf{4 2}$ lesa and dI Fuser, POCKET TIMER. Aprll 78, ©3.10. POCKET TIMER. ADCII 78, EJ•10. TOR. Mar. 78 E4.00.
CHASER LICHT DISPLAY. FEb. 78. E21.7tinc. p.c.b. cabe extra \&j.00. AUDIO VISUAL METRONOME.Jan. 78 RAPID DIODE CHECK. Jan, 78. \&2-17 AUTOMATIC PHAEK BOX. Dec. 77,
 ULTRASONIC REMOTE CONTROL NOV.IDec. 77. E15:13.
 ELECTRONICDICE. March 77 . £4. ©7.
 77. ESP WM. WAVE RECEIVER. Aug. 77. c12.09 casa extra E1.04. CAR BATTERY 8TATE INDICATOR.
 TRAN IEA! case. casextra \&3.90 78, E1. 0 ON CAPACITANCE UNIT. Sept 77. E4. B1,
 pine \& counteraint 78. es lese CAREYBTEM ALARM, Feb, 78. \&5.21. HEADPHONE ENHANCER. Jan. 79. AS'SIVE MIXER. Oct. 78. ©2.90. MIC AMP. Dec, 78, E2 41. $\mathbf{4 2} \cdot \boldsymbol{2 0}$. AUDIELEFLASHER, Dec. 78. \&1. 19.
VARICAP MW RADIO. Sept. 79. \&b.4s. LATEST KITS: S.A.E. OR 'PHONE FOR PRICES

3 BAND SHORT WAVE RADIO

Simpie trf design covering $1 \cdot 2-24 \mathrm{MHz}$. Covers most amsteur bands and short wave broadcast bands. Five controis-bandset, bandspread, reaction, wavechange and attenuator. Uses an internal 9v battery-very low current consumption. The 3 colls are ail mounted on the pcb-selectlon ls by a wavechange switch. Use with headphones or a crystal earplece. Kit contains all the componente required including the peb and case. Instructions are included with this kit. Headphones are not included-we recommend our high impedance mono headphones.
KIT £18.97 HEADPHONES EXTRA E3.28.
NEW ELECTRONICS CATALOGUE 1980 MAGENTA'S CATALOGUE HAS BEEN CAREFULLY OESIGNED FOR E.E.
READERS. PROOUCT DATA ANO ILAUSTRATIONS MCT DATA AND
GENTA CATALOGUE TME MA.
PENSABLE GUIDE FOR THE CONIS.
STRUCTOR CAI SIRCUITID. CATALOGUE INCLUDES

$$
2-0
$$

MAGENTA ELECTRONICS LTD.
EL10, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 OUL. 0283-85435. 9-12, 2-5 MON.-FRI.
OFFICIAL ORDEREFROM SCHOOL B , UNIVEREITIE ETE. WELCOME. MAIL ORDER OMLY.

ALL PRICE INCLUDE 18% YAT

MAGENTA qIVE YOU FAET DELIVERY EY FIRST CLA8s POET OF QUALIT We glve personal sorvice a quallty producte to all our customere-HAVE YOU TRIE

ONE-ARMED BANDIT
 OCT. 79. £18.08
 CASE EXTRA $13 \cdot 98$

METAL LOCATOR

E.E. JUNE 78

WE HAVE MADE UP A COMPLETE HARDWARE KIT FOR THIS PRO JECT. WITH TUBULAR PLASTIC COLLAPSIBLE HANDLE. HAND GRIP. COIL FORMER, AND ALL SCREWS, NUTS. CLIPS, TAPE
FOIL SPACERS tc FOIL SPACERS tt
Everything you need for the prolect including elec. tronics and case \&8-89 Or separately:
Electronics \& Case ©5•14 Hardwai'g Kit ©4.75

DOING IT DIGITALLY

Complete kit IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quality components as specifled by EVERYDAY ELEC TRONICS. Our kit comes complete with FREE TTL \& COMPONENT IDENTIFICATION SHEETS. £25-25 for the TTL TEST EED. ©4. 13 for ADDITIONAL COMPONENTS fo first 6 months.
COMPONENTS FOR PART8 7 8, 9 \& 10.

E10.98 inciudes:- photocelis, I.C.'s, Resistors, Capacitors, thermistors, Microphone, speaker, presets, etc. COMPONENTS FOR PART II COMPONENTS FOR PART 12 $\begin{array}{r}\text { RT } \\ \times 3 \cdot 12 \\ \hline\end{array}$

TEACH IN 80

NEW SERIES-ALL COMPONENTS IN STOCK NOW FOR FAST DELIVERY. All top quality components as specifled by Everyday Electronics: Out kit comes complete with FREE COM PONENT IDENTIFICATION SHEET. Follow this educationa series and learn about electronics-Start today! SEND £22.95 for the TUTOR DECK and ADDITIONAL COMPONENTS parte 1-8. All orders sent by FIRST CLASS POST. Out kit contains all these parts:-
TUTOR DECK: METER, BREADBOARD, TRANSFORMER, LEDS, POTENTIOMETERS, SWITCHES, SPEAKER, PLUGS, SOCKETS, BATTERY CLIPS, WIRE, CABLE, FUSES, FUSEHOLDERS, KNOBS. ADDITIONAL COMPONENTS. PARTS 1-6, RESISTORS, PHOTOCELL, DIODES, CAPACITORS.

IDEAL SOLDERING EQUIPMENT FOR THE TEACH IN AND ELECTRONICS
ANTEX $\times 25$ SOLDERING IRON 25W \&4. 98
SOLDERING IRON STAND
SPARE BITS. Small. Standard, Large. 65p each
SOLDER. Handy size 75p.
DESOLDER BRAID 69p
HOW TO SOLDER BOOKLET 12p
HEAT SINK TWEEZERS $15 p$.
SOLDER BOBBIN 30p
DESOLDER PUMP E6. 98

TEACH IN 80

MULTIMETER TYPE 1. 1,000
probes. $2^{\prime \prime} \times 3 t^{\prime \prime} \times 1^{\prime \prime}$. Ci-78.
 cht $x_{25} 8010$ and Ideal for electronics. \&4. is.
BOLDERINGIRON STAND. Antex ST3. E2.03.
EPARE BITS. $2.3 \mathrm{~mm}, 3 \mathrm{~mm}, 4.7 \mathrm{~mm}$. 45 . DESOLDER BRAID. 61p
HEAT SINK TWEEZERS. 15 p .
DEEOLDER PUMP. Easy to use. Et.nt. P.M. INDOOR AERIAL. s7p.

TELESCOPICAERIAL. $120 \mathrm{c} . \mathrm{m} . \mathrm{ez}$ - $\frac{1}{2}$. TELEPHONE PICK.UP COIL. 72p. GRYETAL MICROPHONE INEERT. CR.
BPEAKERS MINIATURE. 8 ohm 67 O 64 ohm Mp .80 ohm \& 1.28
PILLOW SPEAKER. $8 \mathrm{ohm} 49 \cdot \mathrm{Atp}$
" ROUND SPBAKER. 8 ohm, BW. ©2. 18 . CABINET SPEAKER. B ohm ow s speaker. Cabinot $10^{\circ} \times 7^{\prime \prime} \times 4^{\circ} ., 47.43^{\circ}$ RE-ENTRANT HORN BPIAKER. 8 ohm S.W. Horn dla. 5t". effe27.
EARPIECEE Cryetal tho. Nagnetle 1Ap. ETETHOSCOPI ATTACHMENT. FIt our earpleces isp.
uzzer. $8 V$ tip. 12V 35p
MONO HEADPHONEE. 2K. Padded. STEREO HEADPHONEE Padded. E4.24.
INTERCOM. 2 Statlon. Desk. \&7-16. MICROPHONE DYNAMIC. 500 ohm Cassette type. £1-2t.
DINTISTE MIRROR. Adjustable. 22-44.
JEWILLEREEYEGAS 19 - 8 B
TRIPLE MAGNIFIER. ET.M.
HAND MACNIFIER. $3^{\prime \prime}$ LOnt. $2 \cdot 45$

SPECTACLE MAONIFIER. CIIps on to spectacle fram i. \&4- 55 ILLUMINATED MAGNIFIERE. $1 \downarrow^{\prime \prime}$ Ient GIGNAL INJECTOR
EIONALINJECTOR. ©S-48
POCKET TOOL SET. 20 plece. 54.05. ECREWDRIVER SET. SIX pIOCQ. E2-12
 fe2.45. \&" \&2.50.
DRILL 12V. Hand or atend use. \&10.95 CAPACITA. BOX. NITANCE values, substiTUTION QUICKTEST, MaIne connector ce. Hs PLUG IN POWER SUPPLY, 6, 7.5-gV d.c. 300 mA . $84 \cdot 05$.

SPRINOS-8MALL. 100 Asatd. $61 \cdot 6 \%$. CROC CLIP TiAT LEAD ETT. 10 teads with 20 cllps. 41 - 06.
DIMMER BWITCH. $240 \mathrm{~V}, 800 \mathrm{~W} . \mathrm{E4} \cdot 19$. TRADITIONAL STYLE EIELL. 3-8V 70 mm chrome gong. c1.60.
UNDERDOME BELL. 4-10V. Smart. Dia, TOWERS I
 F.M. TUNER CHABE IS. $88-109 \mathrm{MHz}$, oV MOREE KEY. HIgh speed. ع3. $\mathbf{2 3}$.
PANEL METERS, $60 \times 45 \mathrm{~mm}$. Modern atyle. $50 \mathrm{uA}, 100 \mathrm{uA}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d.c. - 33.

NIGHT LIOHT. Plug type. ©!-0a.
CONMECTIMC WIRE PACK. $5 \times$ Byd.

 E1.44. $0.15^{\prime \prime}$ \& $\cdot .45$
LEsiston

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams. - Handsome purpose built ABS cabinet - Easy to build and Install

- Uses Texas Instruments TMS1000 microcomputer - Absolutely all parts supplied including I.C. socket - Ready drilled and legended PCB included - Comprehensive kit manual with full circuit details - No previous microcomputer experience necessary - All programming permanently retained is on chip ROM - Can be built In about 3 hoursl - Runsoff 2 PP3 type batteries.

- Fully Guaranteed

* Save pounds on normal retail price by building yourself.

TMS 1000N - mP0027A Microcomputer chilp available separately if required. Full 24 tune spec device supplied with data sheet and fully

 guaranteed.New low price only $£ 4.95$ inc. pep
R/C MODELLERS - LISTEN FOR THE C.B. MENACE GET A 27MHZ MONITOR

* Audibly confirm your channel's clear.

* Tunes over whole 27 mhz model band. (CB)
* Recelves normal broadcast AM/FM bands as woll.
* Sensifive with tolescopic aerial.
* Totally portable.
* Runs on standard batteries. This neat three band Superhet receiver not only provides an invaluable service. checking your channal and TX, but glves normal broadcast reception when you heed it as well.
Costing less than a decent Servo, you'll find it cheap and reassuring insurancel
 ind it choap and reassuring insurancel
ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE
Please send me: PLEASE ALLOW 7-21 AASS FOA DELVEAY E.E. 1178
TO: CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX
NAME \qquad
ADDRESS

I enclose cheque/PO value $\boldsymbol{\{}$
or debit my ACCESS/BARCLAYCARD account no.

Signature
GHROMATRONIES

GREENWVLD
49P MILLDROOK ROAD, SOUTHAMPTON FO1 OHX All prices Inolude VAT-Iust add 30p post, Tol (0702) 77 Hen

We aupoly parte for nearly all EE of this month' and provious articles, pleme aend SAE.

TEACH-IN 80

We are again euppling a full hlt of com. ponente for the Tutor beck, and the oxtr VAT and POST.

1000 RESISTORS S2.5011
Now atock Juat arrived-Capbon Fllm 2\% \& 8%, \& iw, all brand new, but
have preformed leads, loteal for PC have preformed leade, ldeal for PC mite. Enormous pange of popular mase
value for lut et $50 / 1000$; $\leqslant 1 / 5000$: value
eso/25, 000 .

Do something PRACTICAL about your future.
Firms all over Britain are crying out for qualified people. With the right training, you could take your pick of these jobs.

Now, the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer.

You risk nothing I We promise to get you through your chosen course-or, refund your fee!

So, join the thousands who have buiit a new future through home study Engineering courses.

Courses in
C \& G Elect. Technicians
C \& Elect. Installations
Tolecomms. Technicians Exams.
Television Servicing
Radio Maint. \& Repairs (BIET)
Pract. Radio \& Electronics
Plus over 60 other
home study courses.

> POST COUPON FOR FREE 44 PAGE EUIDE BRITISE INSTITUTE OF ENGINEERING TECENOLOGY

Aldermaston Court. Dept. TEE49 Reading RG74PF,
\square
NAME (Block capitals please)
ADDRESS
POSTCODE
Other Subjects
Accredited by CACC AGE
Member ol ABCC
Everyday Electronics, November 1979

IT'S FREE

 spociance Advertising Nows to. Whenever you want ecopy lasugs. which is. juat about what it coats ut to address the onvelopa ind poat them eacond class.
SPECIAL NOTES: The "d" slon after the amount showe the amount of V.A.T. The postage lo baceod upon the amount harger parcel. Would your order be less than $E \varepsilon$.00 however, you muat send an additional 50p to offset packlng and other MMPOnges.
heater klt. The heading for we announced a atandby walter not 500 watta, and don't forget you can enve yourselt over 84 by ordering this during September.
2. In eome adverriaements the Oelta dilanfbleeper wat speciffed as sultable for A.C. only. It wlli however work
from $8-12$ volte D.C. or $42-24$ volts A.C. 12Y SUBMERSIBLE OUMP
Juat foin lit to your car battery, drop it into the llauid to be moved and up t comes, no mencing about no priming, ete. Sultable for water, parafn and any non-axploalve, non-
corroolve liauid. Ona uap if you are a camper, make yourself

PRECISION RESISTORS

A fortunate purchase enablee us to offer almoat a complete values atart at $\mathrm{E} f$ and go ploht through to 978 , $\%$ tolerance. are avaliabie in t watt and it watt rating. Prlee 2tp +3 in each in amall quantitles or 200 p +20 each where supplied not lese than 10 of a value, $15 p+2{ }^{2}+0$ each not lese than
100 of a value.
THIS MONTH'S ELECTRICAL SNIP
arcel of M.E.M. White flysh 13 amp oockets, witches, You get 10 doubte 13 amp sockots and 8 singie 13 amp S sockets with neons, 14 power (20 amp dot swlithes and
epurs some with neono), 20 single ganged one-way, twoway and Intermedlate ewltches, and super free glift (worth ${ }_{\beta 3} 3$). M.

We have pleked out the popular lteme tor the onlp parcel

 1400, $1400 \mathrm{WH}, 1401 \mathrm{WH}, 1400,1402 \mathrm{WH}, 1403,1403 \mathrm{WH}$,
$1404,1404 \mathrm{WH}, 1405,1405 \mathrm{WH}, 1407,2025,7092$. Electriclang and Contractors using these accessorles should send for
our M.E.M. Electrical List whers prlces and quantly dis. Count.elli bequoted USH BUTTON TUNER
W. German make but fitted to several popular colour T.V.'s,
makers Ret. No. 23570076 . This has 8 ouah buttona, ench of
 The button, are black with chrome matal tope. Price $£ 1+$ MULTI TURN MOT WITH KNOS
$100 k$ lin. 20 furn used in many T.V. receivers, makers ref.
7802 412-00051. Sultable for fine control of reseletence in Qeneral clrcultry. Price 40p $+8 p$.
T.Y. DIPLIXER
On plastle moulding olze $2 z^{\prime \prime} \times 1 z^{\prime \prime}$. We are able to offer
these at such a low prlce that they can be used as T.V. aerial sockets only. Price 10 for $£ 1+15 \mathrm{p}$.
As uned remote control T:V. recelvars. Prlce $51-50+22 \mathrm{p}$. Malns oporated new clrcult avaliable. thie is atmple to Install
and trouble free. Prles list and dlagram free on request. and trouble free. P
ARMY 48 SETS
As made for and used In the Second World War, we have a
few of these in mint condition, complete with carrying eatchele. headphones, throst mikes and instruction cards In UnOpened boxes. Price $£ 30+64 \cdot 50$. Post $£ 2$.
MUSIC CENTRE COVER
SIze $\left.20^{\prime \prime} \times 13\right\}^{\prime \prime} \times 4^{\prime \prime}$ CIear
 and special packlng $\mathcal{E 2}$.
25
AMP. O.C. METERS
Flush panel mounting, wide anole, extra long, 320° ecale
mado for G.P.O. Really beautiful Instrument, brand new in original cartons. Limlied quantity only so no discounte. Price ELOWER (Less than half maker'e prlce.)
Driven by $1 / 10$ H.P. malns motor but compact and quiet
running. This is ideal for air condtioning, fume extractlon, pressurizing and many other applicatlons. Overall $i / 2$
 carrlage 83 . Note this is the largest of our 'Snall' shaped
blowers, we have smaller ones rlght down to 10 watt motors blowers, we have smaller ones rlaht down to 10 watt motors
with outlete as small as $2^{\prime \prime} \times 2^{\mu}$, In fact we can cover almost any application and weicome your enquirles. Prices are from is complete whth motor.
DOLLS HOUSE SWITCH
Time ls fast approaching when you may be thinking of making toys. Small surface mounting switches are offen a problem
and thls is why we are now ofering thle plastic bodied rotary switch ultable for low voltage applictations. Price 10 fo E1.50 + 22P.
CASSETT' STORAGE CASE
With duat cover, holds 5 cassettes and comes complete to suli youraelf. Price $50 \mathrm{p}+7 \ddagger \mathrm{p}+50 \mathrm{p}$ post or ten for $84+$ TELLEPHONE ANSWERINO MACHINES Grade 2 machines are in stock ready for Immediate despatch firet). For the benefit of new readers we supply these machines on the understanding they are broken up or at least not used for their original purpose. The machlnes are secondhand
but so far as we can see they are complete and quite possibly but so far as we can see they are complete and quite possibly
In good worklng order. We do not tewt them but guarantee to replace any part of the machine should it be mlesing or faulty, providing we ars notified withln 7 daye of recelpt.
prices for the machines are as follows: Grade 2 that le In Prices for the machines are as follows: Grade 2 that is In
very oood condition $£ 15 \cdot 50+£ 2 \cdot 25$, and Grade 1 which are top grade machines and are our very best almost perfect
$£ 20 \cdot+\boldsymbol{+}$ each, but there is likely to be one month's walt To these prices muat be added E2.50 to cover cartase Manine power Pack In Plastic Case for Tolephone Anaworing Mac
OT CORES
We now have good otocks of Ferrite pot cores. These are
ox unused equlpment and contaln the bobblin and have been opened pulady to vee. $\left.\begin{array}{cccc} & \text { Dismeter } & \text { Thleknase } & \text { Prlce } \\ \text { FX } 2243 & 4.5 \mathrm{~cm} & 3.0 \mathrm{~cm} & 75 p+12 p \\ \text { FX } 2242 & 3.5 \mathrm{~cm} & 2.3 \mathrm{~cm} & 60 \mathrm{p}+9 \mathrm{p} \\ \text { FX.2240 } & 2.5 \mathrm{~cm} & 1.6 \mathrm{~cm} & 50 \mathrm{p}+7 \mathrm{p}\end{array}\right\}$ perpal COMPONRNT CM ARD 421
Agaln from unused equlpmen
Again from unused aqulpment, major liome on these are
two power ellicon tranietors, Motor Rola Ret. SJ 5433 , mounted on a heat slak with mica Insulatore, also bohind the

MULLARD UNILEX

A malns operated $4+4$ etereo
system. Rated ona of the
finest pefformere in the tereo field tha would make a won-asy-to-assemble modular form - io complote wlith a pair of epeakers this should selh at about $£ 30$-but due to aspecial bulk-buy and as an Incentlve
for you to buy this month we ofrer the bystem complete at only e4s Ineluding VAT and
 potage.

SHORTWAVE CRYSTAL SET
Although this uses no battory li glve
really amaz
 Satione over the 10, 28, 29,31 metro pandil and all the parts Ez:30-crratal earchene
postade.

RADIO STETHOSCOPE

Easleat way to fault find, traces, signal stops you've found the fault. Use It on Radlo, TV, ampllfier, anything. KIt comprises tranelstore and parte inE4.60.

windscreen

 WIPER CONTROLVary epeed of your wiper to eult
condition. All parte and Inetructione to make £4.25.

DRILL CONTROLLER
 maximum, Full power at all
spoedo by Angor-tip control. everything and full instructions. E. $3 \cdot 75$.

SOUND TO LIGHT UNIT

WIt proved clrcult flashen up to 750 watte of lamps.
Complete kif! Includes S.C.P. mains Input leads, all parte Complete hit Includes S.C.P. mal
and very neat plastlc case $\mathbf{5 . 4}$-95.

CASSETTE OUTFITS

Complete mechanisme with record/playback and erase pald. Note these are all cased up ready to use but case may be silghtly uncomplete, cracked or broken.

VARICAP POCKET RECEIVER CHASER DISPLAY

To quickly recelve parts for these and other E.E. prolects, send the approximate cost as hown. Any cash adjustment can be made later.

MINI-MULTI TESTER

Amazing. deluxe pocket elze precrelled bearings -1000 opymirrored scale.
1 Instant ranges meagure:OC volte 10, 50, 250,1000 AC volts 10,50, 280, 1000 Continulty and resiletance $0-150 \mathrm{~K}$ Chmb.
Complete with insulated probes, eads, battery, clrcult dlagram
Unbellevable value only 5 ef $30+800$ post and Insurance.
FREE Amps ranges klt onable you to read DC current from quickly end EI-50.

TERME: Cash wlth order-but orders under $£ 6$ must add BULK ENQUIRIES INVITED. PHONE: 01-888 1833
ACCESS \& BARCLAYCARD ACCEPTED

J. BULL (EEECTRICAL) LTD
 (Dopt. E.E.), 103 TAMWORTH RD., CROYDON CR8 $18 G$

HEAVY OUTY 3 CORE APPLIANCES LEAD
15 amp wire bit. long, convantlonal yellow green, brown and blue cores, orey PVC outer, prepared onds, thla flex normally
selle 300 ner metre, 10 leade for $£ 2 \cdot 50+40$. Post $£ 1 \cdot 50$.H.T. MAINS TRANSFORMER
putputvoltage 4 -gkv 3mA. These tr P.S.U.'A. Prlce $62+30$, pont 40 D .
LOUD SPEAKER GRILL

Good quallty rigld plastic, Ideal for use in car or home
extenolon speakers. Two sizes avaliable: $12^{\prime \prime} \times 12^{\prime \prime}$, price

Coll voltage 48 D.C. or $115 v$ A.C., currant 100 mA approx. Price E1.95 + 30 p.
10 DIGIT SWIT h PAO
Made we bellive for G.P.O. push button telephones, each
button operates 2 pole witch which returns auter button opspates 2 pole ewltch which returns automatically
 MAINS BLOWER
Real bargaln thls month is a blower made by Smithe, the malns motor ls let rloht Into the furbulator and takee up the minimum of space. Overall slze of the blower is $7^{\prime \prime}$ ola. $\times 22^{\prime \prime}$ DIAL INDICATOR
As used in tool making and other precision masauring operatlons, the famous John Bull accurately showa differ

Ideal for greanhouse or outdoor, plastic body. Price $00 p+9 p$.
CAR SPEAK
 TIL 302, lie.d. com, anode-cliaracter slze 4" approx. Ppice C1. 15 + 16 p .
We do not normally offer second hand equipment for breaking down but this partlcular fiem contains 80 many us elul pleces that we have declded to break our rule. The unit fa in fact a wlde by $t^{\prime \prime}$ thlek by $51^{\prime \prime}$ deep, Ideal size to fit Into the top lacket pocket. Case comes apart by undolng two screws inslde le prlnted clrcult board upon which are mounted a miniature loud speaker, three recharoeable nicads dlac type $150-4$ ferplie potted colls, thres of which are tunable,
4 " lerrlte rod. Mercury tilt switch on when case is upilater 4 electrolytic condensors, one micro switch, 8 transisiors all with usable length leade, 4 polystyrene capacitors, 2 pin plug for chargine batterlea without uncasing and approximately 4 dlodes and approximately 30 various capacltors and
resistors, most oi the resistors being it watt fype, truly reaisiors, most of the reststors being t watt fype, truly a
very useful unit afthough secondhand, atill in peasonable condition, Price E1.50 +282.
25 WATT SPEAKER
Comprielng $8^{\prime \prime}$ woofer and $3^{\prime \prime}$ tweetar with crossover and
terminal connectlon panel, all mounted In good auallt terminal connectlon panel, all mounted In good quality non-resonant cablinet. Theas are extremely good quallty Cabinet olze approx, $20^{\prime \prime}$ hloh, fot" wlde and $8 \psi^{\prime \prime}$ deep, heavy
cablnet made of thick blockboard. Price $\mathbf{£ 2 5}+\boldsymbol{£ 3} 75$ the cablnet made of thick blockboard. Price $\mathbf{C 2 5}+\mathbf{6 5}$. 75 the pali, well worth your coming to collect, but If you
collect thoy are atil worth this $£ 5$ extra for carrlage.
TWIN PADOED FLEX
5 amp Ideal for some electrlc irons and eppliances that
require very flexdble lead, 10 metre lengths. Prlce $\mathrm{fi}+15 \mathrm{p}$. POAI ${ }^{\text {45 }}$ PHERMOSTAT
Sultable for high temperatures up to $550^{\circ} \mathrm{F}$. This is adjustable elther at the head or remotely by a lengit of flexible drive.

In aerosol can for easy application and for puting lubplcant at about half the ortoinal llst prlce can cannot reach. Offered or 12 cons for $£ 4+80 \mathrm{p}$. posi Ef .50 . The lubricant lis l.C.I. F3 MICROSWITCH
Popular ewlech with 10 amp 250 volt changeover contacts. hangesyer contacts $£ 20$ Der 100 or $£ 180$ per 1000 with 15 amp ASSORTED MICROSWITCHES
10 dlfferent small, medum and large sizes to suit most proects and repal lobs. Price $\mathcal{E 1} \cdot 50+22 \mathrm{p}$. If thls pack does nof contaln the one you want, glve us a ing, we may have it.
PUSH SWITCHES That really stand out. Its large dished knob alto makee thls extra easy to operate, sprung to return to normal when pressure is removed, 40 amp 250 voli changeover contacts. Type 1 ,
$1 \mathrm{c} / 040 \mathrm{p}+\mathrm{tp}$. Type $2,2 \mathrm{c} / 0 \mathrm{sop}+9 \mathrm{p}$. Type 3, 3 c/o $80 \mathrm{p}+12 \mathrm{p}$. Light Tracer and Strobe for deco's or partles, 2 running Hoht patterns and a strobe. Was described with full cons structional detalls In September Everyday Electronlcs. Our price for complete kit Including case \&14 +
SPRING LOADED ROCKER SWITCH
Made originally for car dash. Thls is a slmple on/off for up to 10 amps. Prlce $25 p+4 \mathrm{p}$.
OP PANEL
Arco made. This is a handsome awltch, it has a long flatanded toggle, black and chrome finlsh, Rated 2 amps at 250 volts and double-pole On/
PUSH BUTTON SWITCH
Sultable malns, audlo or RF. Each switch rated at 250 volts 15 amps. 1st (black push buttion) closes 2 circulfs; 2 nd (white pugh button) operates one changeover: 3 rd (white push button) operates one changeover; 4 th (white push button) down untli cleared by the 5th (red button). Further note It a a relatluely easy lob to alter the position of the tags hus making the swltches sult your clreulf. Fitted with 3 white, 1 red and 1 black button. Price $7 \$ \mathrm{p}+11 \mathrm{p}$.
COMBINATION SWITCH
om inarion swirch
olned In banks of 3 and mounted on frame with four ditites humbered thumb wheels and a removable lever for locking the thumb wheel, the thumb wheel operates 3 banks. Over 4,000 combinations are poselble, by rewirling the swittch pogsible. If you are making equlpment whleh hould not be switched on accidentally or without authorlty, then thls is switch to consider. If can be used as a coding swltch for
 BALANCE ARMATURE INBERTS
600 ohm Impedance, Use as elther speaker or mike. Price

Firat class maker, wlll reepond to light or Infra-red. © for
$£ 1+1 \$ 8.100$ for $£ 15+£ 2 \cdot 20.1000$ for $£ 125+£ 18.75$. CONTACT STAT
This 1a a akeleton thermostat with control knob callorated
$90^{\circ} \mathrm{F}-10^{\circ} \mathrm{F}$. Put it Into a box and you have callbrated wall etat or fix its fiat base in close contact with the Item to be controlled, for Instance, bolt it to the casing of an alectrle
motor, heat sink of seml conduetop or other device which must not be allowed to overheat oristrap it to we water tank otc, ste. The swltch wlli make and breail is amps at normal ete. ste. The awlteh will make an
main voltage. Price if $50+22 \mathrm{p}$.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.B. LOUDEPEAKER BARGAINS

$3 \mathrm{hm} .6 \times 4 \ln , 51 \cdot 50.7 \times 4 \ln \mathrm{E1} \cdot 50$. $8 \times 5 \mathrm{in}, \mathrm{E} 2 \cdot 50.6 \mathrm{in}$. E1.80. Bin. \&2. 80 . 101 ln . Es, 12 in , Ed

 10in. es. 12 in , \&4. 10×61 n. $£ 3.50$.
 $1,2,4,8,8,18,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$. $00 \mathrm{mF} 12 \vee 1 \mathrm{p} ; 25 \vee 20 p ; 50 \vee 20 \mathrm{p}$
2000 mF oV $25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p}: 420 \mathrm{mF} / 500 \mathrm{~V} \mathrm{E} 1.30$. 500 mF 50 V 2p; $3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{D} ; 50 \mathrm{~V} 55 \mathrm{p}$. $390 \mathrm{mF} 100 \mathrm{~V} \& 1 \cdot 40.4700 \mathrm{mF}$ 63V $\& 1 \cdot 20.2700 \mathrm{mF} / 78 \mathrm{~V}$ ह4 5000 mF \& $25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} / 78 \mathrm{~V}$ © $\cdot 75$.

HIOH VOLTAOE ELECTROLYTICS $8 / 350 \vee 22 \mathrm{p} \quad 8+8 / 450 \mathrm{~V} 30 \mathrm{p} \quad 50+50 / 300 \mathrm{~V} 59 \mathrm{p}$ $\begin{array}{llll}18 / 350 \vee & 30 \mathrm{p} & 8+16 / 450 \vee 50 \rho & 32+32 / 480 \vee \\ 32 / 500 \mathrm{~V} 75 \mathrm{p} & 18+18 / 450 \mathrm{~V} 50 \mathrm{p} & 100+100 / 275 \mathrm{~V} & 65 \mathrm{p}\end{array}$ $\$ 0 / 500 \mathrm{~V} \mathrm{E1} \cdot 20 \quad 32+32 / 350 \mathrm{~V} 50 \mathrm{p} \quad 150+200 / 275 \mathrm{~V} 70 \mathrm{D}$
MANY OTHER ELECTROLYTICS IN STOCK
BHORT WAVE 100pf alr epaced gangable tuner, 950. TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}, 15 \mathrm{p}$. CERAMIC, 1 pF to 0.01 mF , Sp. SIlver Mica 2 to 5000 oF , Sp. PAPER 350V-0.170: $0.513 \mathrm{p}, 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{P}$; 2 mF 150 V MP: 500V-0.001 to 0.0512 P : 0.1150 ; 0.25 23p: 0.4735 P . UR.MIN MICRO 3 WITCH, 25p. Single pole change over, TWIN GANG. $385+3850 \mathrm{FF} 9 \mathrm{p}$ i 500 pF low motion 75_{p}. $385+385+25+25 \mathrm{pF}$. Slow motion drive ${ }^{35 \mathrm{p}}$. 7 , 7 p . 1200F TWINGANG, 50p: 3650F TWIN GANG, 73D. NION PANELINDICATORS 250 V . Amber or red **p. ILLUMINATEO ROCKER SWITCH, Single pole, Red isp. RESISTORS, 10Ω to 10 M . ${ }^{2} \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{~W}, 20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 19 \mathrm{p}$. HIGH STABILITY. W $2 \% 10{ }^{\circ} \circ \mathrm{hms}$ to 1 meg.. 12 p . Ditto 5%. Preferred values 10 ohm to $10 \mathrm{meg}, \mathrm{Sp}$. ELANK ALUMINIUM CHABEIS. 8×4 - $5 p_{i} 8 \times 6-$ ¢1.40; 10 $\times 7-E 1 \cdot 53$; $12 \times 8-$ E1.70; $14 \times 0-81 \cdot 18$; 18×8
 ALUMINIUM PANELS. $8 \times 4-24 \mathrm{p} ; 8 \times 8-380 ; 14 \times$ $3 \times{ }^{3} p_{i} 10 \times 7-54 p_{i} 12 \times 8-70 p_{i} 12 \times 5-44 p_{i} .16 \times 8-70 p_{;}$ PLABTIC AND ALI EOXES IN STOCK. MANY SIZES VARICAP FM TUNER HEAD with clrcult \& connections. Some technleal knowied ge required E4.g5.
TAPEOSCILLATOR COIL. Valve type. 35p.
SRIDGERECTIMER ZOOV PIV : Omp 50 . 8 amp 22.50 TOGGLE SWITCHES SP 300. OPST 40D. DPOT 50p. WANY OTHIRTOGGLES INSTOCK. Please onquire. PICK-UP CARTRIOGEs ACOS, GP94 62-6. GR SONOTONE 9TAHC DIamond EA.75. Magnett 87 watt isp. CABEETTE MOTOR, 8 volt \&i RADIO COMPONE

BAKER
50 WATT AMPLIFIER
£65 Post $\boldsymbol{E l}_{1}$

Superior quality ldeal for Halis/PA eystems. Disco'e and Groups, Two inputs with Mixer Volume Controls. Master speaker outlets 4, $8,16 \mathrm{ohm}$. AC 240 V (12 nV avallable). Blue wording on black cablnet.
BAKER 150 Watt AMPLIFIER 4 inputs $£ 85$. ORILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to bulld kitt. Controle up to 480 watts AC mains. $\quad £ 3 \cdot 25$ STEREO PRE-AMP KIT. All parts to bulld thls pre-amp. 3 Inputs for high medlum or low gain per channel, with volume control and P.C. Board. Can be ganged to make
multi-way stereo mixera.
Post 35 p

R.C.S. SOUND TO LIGHT DISPLAY MK 2

Complete kit of parts with R.C.S. printed circult. Three channels. Uo to 1,000 watts each. Will operate from
200 MV to 100 watis signal source. Sultable for home $\mathrm{HI}-\mathrm{Fl}$ and all Olsco Amplifiers.
Cabinet extre \&f-90.
$£ 18$
200 Watt Rear Reflecting White Llght Bulbe. Ideal for Olaco Llghts. Edison Serew 75p each or 8 for 54 . Or
12 for $£ 7.50$.
MAINS TRANSFORMERS ${ }^{\text {Pois }}$
$250-0.250 \mathrm{~V} 70 \mathrm{~mA}, 8 \cdot \mathrm{BV}, 2 \mathrm{~A}$ 75p $250-0-250 \mathrm{~V} 80 \mathrm{~mA}, 8 \cdot 3 \mathrm{~V} 3.5 \mathrm{~A}$ A, 8 亿尹 ï $300-0-300 \mathrm{~V} 180 \mathrm{~mA}, 2 \times 8.3 \vee 2$ A $\mathrm{C} . \mathrm{T}, ; 5 \vee 2 \mathrm{ZA}$ $220 \mathrm{~V} 45 \mathrm{~mA} .8 \cdot 3 \mathrm{~V} 2 \mathrm{~A}$... HEATER TRANSFORMER. 6 - 3 V tamp $E 1 \cdot 34 . . .3$ amp $£ 2 \cdot 2$ GENERAL PURPOSE LOW VOLTAGE, TApped outouts $2 \mathrm{amp}, 3,4,5,6,8,9,10,12,15,18,25$ and 30 Vfs.

 10-0-10V 2 amoE1.50 $30 \mathrm{~V}, \mathrm{~s} \mathrm{amp}$ and $40 \mathrm{~V}, 2 \mathrm{amp}$ $20 \mathrm{~V}-0-20 \mathrm{~V}, 1$ $30 \mathrm{~V}-0-30 \mathrm{~V}, 12 \mathrm{mp}$ $0,17 \mathrm{~V}-0-17 \mathrm{~V}, 2 \mathrm{mp}$ $0,6,8,10,16 \mathrm{~V}$, tamp ...e2, 50
 $\begin{array}{ll}30 \mathrm{~V}, 8 \text { ampes. } 50 & 12-0.12 \mathrm{~V}, 2 \mathrm{amp} \\ 30 \mathrm{~V}, 11\end{array}$ $30 \mathrm{~V}, 11 \mathrm{mp}$
20 V, 28
$28+28 \mathrm{amp}$
28 $28+28 \mathrm{~V} 1 \mathrm{~A}$
$32-0.32 \mathrm{~V} .8 \mathrm{~A}$

BAKER SPEAKERS Pi pas "BIG SOUND"
 Robustly contricted to atand up to long periode of electronic powe Useful response 30-18,000 CD
 GROUP 45-12
 12in. is watt 4,8 or 18 ohms.
 GROUP 75-12
 12in. 78 W professlonal model. 4,8 or 18 ohms 54 Response $30-18,000$.
 ence dome GROUP 100-15 $£ 35$
 15 in .100 watt
 £15
 Send for leafleta on Disco, P.A. and Group Gear.

E.M.I. $13 \frac{1}{2} \times 8$ 8in SPEAKER SALE! With tweeter. And crossover 10W. State 3 or 8 ohm 15 W model 8 ohms Bass unit only. GOODMANS 20 Watt C. 25
Post 75p Size $12 \times 10 \mathrm{in} .4$ ohms. Rubber cone surround. Mi-F1 Bass unit. GOODMANS TWIN AXIOM 8

R.C.S. MINI MODULE HI-FI KIT I. 5×8 in 3 -way Loudspeaker System, EMI Sin, Bass Sin, Middle 3in. Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to $20,000 \mathrm{cps} 12$ watt RMS. 8 ohm. 10.95 per kit.
Two kits 20.
Postage © One or two kits.

What's new from Heathkit?

IM 2212 - Auto Ranging DMM

IO 4105-Single Beam 5MHz Oscilloscope

IM 5217 - Portable Multimeter

Plus
*GD 1290 - VLF Metal Locator
${ }^{*}$ HX 1681 -CW Transmitter

* IR 5201-XY Recorder
* CI 1525 - Car Temperature Indicator

These brand new self-assembly kits are designed to the highest specification.

The step-by-step instructions make them easy to build at your leisure in your own home.

And first class quality makes them excellent value for money.

Details of the full Heathkit range are
 available in the Heathkit catalogue. Send for your copy now.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-6367349) and at Bristol Road, Gloucester (0452 29451).

What you see above is a kit of parts that builds into a fully working oscilloscope.

No toy, this vital piece of functional equipment can be found in any professional electronics workshop. It is a valuable instrument of true professional qualitv.

By building the oscilloscope you will be taking the first steps to a rewarding hobby that knows no bounds.
Each constructional stage is a complete lesson
in the basics of electronics practice and carefully designed to be understood by those with no previous knowledge. Once built, this instrument can be used to complete a course of practical study and experimentation that will reveal the secrets of printed circuitry, testing and servicing of T.V. and radio and the vast majority of electronic equipment. Invaluable knowledge that pays big dividends. Send to day for the free colour brochure and start

growing a new hobby.
 and grows.

1. Build an oscilloscope.

As the first stage of your training. you actually build your own Cathode ray oscilloscopel This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct expers., ents on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

(EE/A/11/79

NAME
ADDRESS
4. Free Gift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.
\qquad

A TGOM
bring you the new chinaglia

The best instrument tor the workshop, school, toolbox, T.V. shop and anywhere accurate information is needed quickly and simply

IT OFFERS:
t SIngle-knob range selection
5. 110 Full-view mirror scale and fine llne polnter

太 Clear unamblguous teales

* A well-damped cyllndrleal magnet movement with resillent bearings - 102.5 A d.c. 25 mA to 12.5 A a.c. $10 \mathrm{k} \Omega \mathrm{mV}$ to 1.5 kV d.c.; 7.5 V to 1.5 kV a.c. $50 \mu \mathrm{~A}$ panges.
* Accuracy $\pm 2.5 \%$ d.c. $\pm 3 \%$ a.c. and 2% resistance.

For detalls of thls and other excliting Alcon Instruments please write or phone:-

VHF/UHF FETS 800 MHz Type BF 256 C at 4 for 75p.
100 mW ZENERS unmarked Good. $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$ $33 \mathrm{v}, 36$ volt. All at 10 for 40 D
ELECTRET MICROPHONE INSERTS with FET PIe-AMD 国 E1-35.
STRIPLINE TRANSISTORS NPN BF 362 (3) 25p, BF 679 PNP © 25p
LED'S -2" Red (a) 45p, Green (a) 18p, TIL 209 (a) 15p.
50 PIV 21 Amp WIRE ENDED DIODES at $7 \mathrm{p}, 6$ for 25 p .
DIE CAST ALLOY BOXES $6^{\prime \prime} \times 3.3 / 16^{*} \times 2^{\prime \prime}$ (9) E4-15, 3 for E 2 s -3.
50. BC 107-8-9 TRANSISTORS assorted untested (2) 60p.
50. PLASTIC PNP TRANSISTORS untested for 60p.
50. PLASTIC NPN TRANSISTORS Ilke 8C 107-8-9 untested @ 60p
50. AC 128 TRANSISTORS Branded but untested for 60 p.

 1uf 35v.w., 2.2uf 35v.w., 3.3uf 16v.w., 4-7uf 16v.w., 4.7uf 35v.w., 6.8uf 35v.w., 10uf
 150uf iov.w., 330uf 3.v.w., All at 2Sp.
VERNITRON 10.7 MHz FILTERS at $50 \mathrm{p}, 3$ for C 1
3 PIN PLUG-SOCKET EUROPEAN TYPE with 2 metre of Cable © 75 p .
WIRE WOUND POTENTIOMETERS $2 \mathrm{~K}, 10 \mathrm{~K} 2$ watt, 5 K 4 watt, 100 K 4 watt All 25 p each.
DAU TRIMMERS 2 TO 9 pf, 7 To 35pf; 6 TO $45 p 1,8$ TO 125pf, 8 To 140pf. Allat $45 p$ ench MINIATURE CERAMIC TRIMMERS 2 TO $6 \mathrm{pl}, 3$ TO $10 \mathrm{pf} ; 4.7$ TO $20 \mathrm{pt}, 6$ TO 35 pf VHF T

TRIMMERS 3pf, 6pf, @ 10p. 18pi © 15p
SPECIAL VHF TETFER TRIMMER 100 @ 18 p each
AL $10 \times 10 \mathrm{p}$ AIRSPACED TRIMMERS \% 2\%
EDDYSTONE VHF TRANSMITTING VARIABLE $30 \times 30 \mathrm{pf}$ © $\mathbf{e} \mathbf{2} \mathbf{2 0}$.
COIL FORMERS $3 / 16$ Dla, with core. 6 for $25 p$.
CLOSE TOLERANCE CAPACITORS 12880f. 1670pf, 5979pf, 19569pf. All 1% @ sp each. 'iuf 2%. Tluf 1\% Both ip each
MANS TRANSFORMERS 240 volt Prim. Type 1. 24 volt Tapped at 14 volt 1 amp amp © E4-50 (P\&P) 95p. Type 4. 20 volt 1 amp Twice 10 volt 1 amp Twlee @ $\mathrm{E4}$. 50 (P\& P85p). Type 5. 45 volt 2 amp, 45 volt $500 \mathrm{~mA} @ \$ 3.50$ ($\mathrm{P} \mathrm{\& P} 85 \mathrm{p}$). Type 6.16 volt 2 amp (ब) E1.60 (P\&P 25p). Type 7. 24 volt 1.75 amp E E1.75 (P\&P 250).
(8) 28p, 400 PIV \& 55p, 800 PIV (i) $65 p$ MURATA CERAMIC 455 KHz FILTERS Type 1. (). 30p, Type 2. (e) 55 p . HIGH SPEED SILICON DIODES BZW 62 at 12 for $35 p$
ERIE RED CAP SUB-MINIATURE CERAMICS - 01 uf 100v.w. ©s 5p each.
MINIATURE NON POLARISED CAPACITORS Iuf 63v.w., (ब) 5D, 4.7ul 63v.w., (a) 10p, 10 ui 63v.w., 1215 p
ASSORTED PACKS OF CRYSTALS 10XAJ. 30 for $£ 1 \cdot 20$. FT 241A 20 for $£ 1 \cdot 20$, £1-60.

Please add 200 for post and packing, unless otherwlse stated, on U.K. orders under \&2. Overseas postage charged at cost.

J. BIRKETT
RADIO COMPONENT SUPPLIERS
25 The Strait, Lincoln LN2 1JF Tel. 20767

19 MULBERRY WALK, LONDON SW3 6DZ. TEL: 013521897

AUTUMN SALE

ALL COMPONENTS ARE BRANO NEW ANO TO MAN UFACTURERS SPECIFICATION. ADO VAT AT CURRENT RATE TO ABOVE PRICES PLUS 25p PEP. MAI ORDER-CALLERS WELCOME BY APPOINTMENT.

> 4. 2 CROS 106 STUDLEY GRANGEROAD
> LONDON W7 2LX. TEL. Ol-579 9794

- Q- VALVE MAIL ORDER CO. (EE11) CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6D
 SPECIAL EXPRESS MAIL ORDER SERVICE

TRANSFORMERS
 Continuous Ratings
 30 VOLT RANGE
 + VAT 15\%

Pri 220/240 sec 0-12-15.20-24-30V Voltages avallable $3,4,5,6,8,9,10$,
$12,15,18,20,24,30 \mathrm{~V}$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$ and ${ }^{15} \mathrm{~V}$-0-15V.

END OF LINE OFFERS

Ref				
30-1801ator $240 \mathrm{~V}: 240 \mathrm{~V} 200 \mathrm{VA}$				
32 -Isolator $240 \mathrm{~V}: 240 \mathrm{~V} 250 \mathrm{VA}$ 				
M1020-0-240V 12-0-12V @ 50ma M1185-115-240V; 14V 50 ma			¢2.90	
			75p	p
$\begin{aligned} & 12 \text { OR 24V OR } 12-0-12 \mathrm{~V} \\ & \mathrm{Prl} 220-240 \text { volts } \end{aligned}$				
Ref	12 V	24		
${ }_{211}^{111}$	0.5 1.0	${ }_{0}^{0.25}$	2. 2.4	0.
71	2	1	3.51	
18	4.	2	4.33	
85	0.5	2.5	5.00	0
㖪	8	3	- 5	0
108	8	4	$7 \cdot 42$	
12	10	5	8.12	
116		${ }^{6}$		
17	16	8	10.72	
115		10	13.08	
187	30	15		
226	60	30	36.74	
TEST METERS P\&P $\mathbf{1} 1 \cdot 1515 \%$ VAT				
AVO 8 MK5				
AVO Mms minor				
Wee Megger				

70D each COMPONENT PACK8
85 tW Metal Oxide 102000 ml 25 V Capact Rewletore. ReslW Meial Oxide 150 Mixed Value Capacltors. 11 Read Switches. Reslstors. tors. 25 Assorted presets. 503 tag terminal strips. Hardw Hard

ELECTRONIC CONSTRUCTION KIT Home electronlc atarter. Start slmply and pro-
oress to a TRF radio or electronlc organ. No gress to a TRF radio or eloctronic organ. No
soldering. All parts Included In presentation box, Full Inetructione, El-28. P \&P 96p VAT
15%.

OHIO SCIENTIFIC Superboard assembled 8K basic 4 K ram $£ 188+$ vat £149, pfm 200 £52-£69, case $£ 3.40$, adaptor E3•40, connector kit £11-27. Mlerovislon EV 291, adaptor $\mathbf{E 6}$-88. pdm35 £29.76, daptor £.3.40, case £.3.40. dm350 £71-42, dm450 $£ 102 \cdot 17$, dm235 £52.68, rechargeable enterprise prog calculator + accessorles
E23.27. 7 £01. chess challenger $10 £ 152 \cdot 50$. Volce challenger £239. Checker challenger 2 E4G, Atari v COMPONENTS 1N4148 1.4p. IN4002 3.1p. 741 16p. be182, be184, be212, be214, bc548 5p. resistors 1 W 5% E12 1OR to electrolytics $\cdot 5,1,2,5,10,22 \mathrm{mf} 5 \mathrm{p}, 100 \mathrm{mf}$ tp, 1000 mf 10 p . 1 lb FeC1 £1-30. Dalo pen 44 p .40 sq ins pcb 66 p . Polystyrene capacitors E12 63 V 10 to 1000 p 3p. in2 to 10 n 4 p . Ceramlc capacitors 50 V EG 22pi to 47 n 2 p .
Zeners 400 mW E 242 y to 33 y 7 p . Preset pote submin 0.1 W 100 to 4 M 7 Fp .
TV GAMES AY-3-8500 + kit E9.53. RIfle k|t $£ 5 \cdot 27$. AY-3-8600 $+\mathrm{kIt} £ 12 \cdot 98$. Stunt cycle chip + kit E16-72. AY-3-8603
TRANSFORMERS $6-0-6 \mathrm{~V} 100 \mathrm{ma} 78 \mathrm{p}$.

11a $£ 2 \cdot 60.9-0-9 \mathrm{~V} 75 \mathrm{ma} 76 \mathrm{p}, 1 \mathrm{a} £ 2 \cdot 22,2 \mathrm{a}$
 £2.08. JC20 10W E3.14. BATTERY ELIMINATORS 3-way type $6 / 71 / 8 \mathrm{v} 300 \mathrm{ma} £ 3 \cdot 14.100 \mathrm{ma}$ radlo ype with press-studs 9 v
convertor 12 v
Input,
Int. output convertor 12 V input, output 41/6771/9
800 ma .2.68. BATTERY ELIMINATOR KITS 100 ma
 6 v
$£ 1 \cdot 49,9 \mathrm{v} £ 1 \cdot 49,4 \mathrm{Z}+4 \mathrm{iv} £ 1 \cdot 92,6+6 \mathrm{v}$
$£ 1 \cdot 92,9+9 \mathrm{£} £ 1 \cdot 92$. Stabilized 8 -way types $£ 1 \cdot 92,9+9 \mathrm{y} £ 1 \cdot 92$. Stabilized 8 -way types
$3 / 4 \mathrm{j} / 8 / 71 / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma}$ £2.50, 1 Amp $\mathrm{E} 5 \cdot 10$. Stabillzed power klts $2-18 \mathrm{~V}$, 100 ma £2-98, 1-30v 1A £5.95, 1-30v 2A £11-24. 12V car convertor $6 / 7 / 9 \mathrm{~V} 1 A \mathrm{E} \cdot 35$.
T-DEC AND CSC BREADBOAR dec £3.79, t-dec £4.59, U-deca $£ 4.5{ }^{\circ}$ U-dect $£ 7 \cdot 16,16$ dil adaptor $£ 2.31$, expeb £2.64, exp300 £6.61, exp350 £3.62, exp325 BI.PAK AUDIO MODULES $\$ 450$ £24.03. AL60 £4.07. pa100 £17.33. spm80 AL30 £4-04. pal2 £7•77. p812 £1-42. ma60 £36-23.
DeDL.EEANLEY ELECTRONICS Post 30 , 32 Goldsel Rd., 8wanley, Kent. stated Oflcial Prices include VAT untess come. Lists 24p post free

24 TUNE DOOR CHIMES

T.V. GAMES

PROGRAMMABLE E29.50 + VAT COLOUR CARTRIDGE T.V. GAME.
The TV gante can be compared to an audin casserte deck and is programmed to play a mulkitude of ditterent games in COLOUR, using various plug in canridges At long last a TV game is avalable which will keep pace with improving technology by allowing you to extend yout library ol games with the purchase of addrional cantridges as new games are developed Each carmage coniains up to nitn anters games is included tree with the console Other carridges games is included free with me conscte olner carriges Gre currenty avalable to enable you to play suct garmes as Furiher canridges are to be released later this year induding Tank Barte Hint the Sub and Targer. The console comes complere with iwo removable ioystick olayer controls to enable you to move in all fout directions lupldowninghluetu and buith into these payssick controis are ball serve and larget fire buttons. Onter leatures include several difficulty eption switches, automatic on screen digral scoring and colour coding on scores and balls. Lifelike sounds are rransmitted through the TV's speaker. simulating the actual game being played Manulactured by Waddinglon's Vodeomaster and guaranteed for one year.

CHESS COMPUTERS

STAR CHESS - 655.09 + VAT.
PLAY CHESS GGAINST YOUR PARTNER. using your own TV to display the board and preces. Slar Chess is a new absorting game tor 1 wo players, which wir socket of you TV set and displays the board and pieces in full cobur lor black and whinel on yout IV screen. Based on the moves of chess it adds even more excinement and interest to the game. For those who have never plaved. Slar Chess is a novet introduction to the chassic game of chess for the experienced chess plaver, there are whole new dimensions of unpredictablity and chance aoded 10 the strategy of the game. Not onty ton pieces be taken in canventional thess type moves. bu each piece ton also exchange rodet fire with is opponents The unit comes comolete with a tree 18V mains acrapor, full insiructions and iwelve months guarantee
CHESS CHALLENGER $7=\mathbf{8 8 5} .65+$ VAT PLAY CHESS AGAUNST THE COMPUTER. The styilsh. compact. panable console can be set to play al seven different leves of abilay from beginner to expen indudng "Mate in two" and "Chess by mar". The compuret rules Casting on passant, and promoting a pawn are al included as pant of the compurer's programme it is possible to entrer any given problem trom magaines of possible to enfer any given problem from magaines or
newspapers of ahernatively estabist your own boaro position and watch the computer react. The posinions of at pieces can be verifed by using the computor memony recal button.
Price includes unit with wood gramed housing, and Staunton desion chess pieces Compuner plays black or white and aganst itsell and comes complete with a mans adaptor and 12 momhis guaramee.
OTHER CHESS COMPUTERS IN DUR RANGE INCLUDE:
CHESS CHAMPION-6 LEVELS $647 ; 39+$ VAT. CHESS CHALLENGER - 10 LEVELS $\&$ J $38-70$ t VAT. MULTI-LEVEL TALKING DISPLAY BORIS - MULTI-L

$$
163 \cdot 04+\text { VAT. }
$$

ELECTRONIC CHESS BOARD TUTOR $£ 17$ • 17 + Vat.
A special buik purchase ol these amazing chess teacting macthines enables us 10 olter them at only $[17.47$ less than half recommended retail price The eiectronic chess tutor is a simple battery operated machine that can actually reach anvone to piay chess and improve then game night up to championstip leve. This machine is not only for total beginners but also for established players wanting to play bemer chess Unit conains the electronic chessboard with 32 chess pieces. a 64 page explanatory booldet and a set of 32 progressive programime cards incloding 6 beginnets cards, if check mate positions, 9 miniature games. openings. 3 end games, 28 chess problems and 2 master
paries garies

DRAUGHTS COMPUTERS

| CHECKER |
| :--- | :--- |
| CHALLENGER | The draughts compurer enablies you 10 sharpen your skills, improve you game. and pay whenevet vou wam. The compuner incopporates a sophisticted, teliabte, decision Thinking ability enables it to eespond with its hest counter moves like a stiled human poponent You can select offence or defence and change piaying difliculty lievels at any time Positions can be verified by comouner memory recall. Machine does nol permililegal moves and can solve set probiems. Compurer comes complete with instructions. mans adaparor and fweve momhs guarantee.

met

FOR FREE BROCHURES - SEND S.A.E

For FREE Allustraed brochures and revews on TV and chess gannes please send a stamped addressed envelope, and state which paricular ganes vou require intormation on
Cailers welcome ar our sthop in Welling - demonstrations daty - oden from Sam 5.3 bom Mon Sar Igani-1par Wed. To order by reiephene please quore your name. address and Access Barclaycard number. Postage and Packing FREE
AJD DIRECT SUPPLIES LIMITED, Dept. EE11 102 Bellegrove Road, Welling, Kent DA16.30D. Tel: 01-303 9145 (Day) 01-850 8652 (Evenings)

ELECTRDTIVKTT DENSHI KITSSPECIAL OFFER

朝

 II 1 d

". . . fun and entertainment
as well as education"(EVERYDAY ELECTRONICS mag.)

The SR-3A kit (over 100 circuits) and the SR-3A de luxe kit (over 105 circuits) are available again, at little more than their 1977 prices
Circuits are constructed by plugging the encapsulated components into the boards provided, following the instruction manual. Technical details are also given concerning each project. The components are used over and over again and you can design your own circuits too, or use the kit as a useful testing board.
No previous experience of electronics is required but you learn as you build-and have a lot of fun too. The kits are safe for anyone.

SR-3A KIT
 £29.95

(illustrated $16 \frac{1}{2} \times 10 \times 2 \frac{1}{2}{ }^{\prime \prime}$)
Bulld over 100 projects including 3-TR pefiex radio recelver, 3-TR radio recelver with RF amplifier, 2-TR reflex radlo recelver, 3-TR ampllfer for crystal mike, 3-TR amplifier for speaker/mble, 3-TR signal tracer, Morse Code tralner, 2-TR electronle organ, electronic metronome, electronic bird, electronic cat, electronic siren, electronic gun, 2-TR sleepling ald, hloh voltage generator, discontinulty warning device, water supply warning device, photoelectrlc alarming device, 3-TR burglar alarm, 3-TR water supply warning device, 3-TR water level warning device, 3-TR photoel ectric alarminp device, Morse Code trainer with sound \& llght, discontinulty warning device with sound \& IIght, water level warning device with sound \& light, electronic matronome with sound \& light, buzzer with sound \& light, wireless mike, wireless tetegraph set, wireless discontinuity warning device, wireless water level warning device, wireless water supply waming device, wireless photoel ectrlc warning device etc. etc.

SR-3A de luxe KIT
 $£ 39.95$
 $\left(16 \times 14 \times 3 \frac{1}{2}{ }^{\prime \prime}\right)$

Similar to SR-3A, more components including solar cell and additional Speaker unit plus sophisticated control panel.
All kits are guaranteed and supplled complete with extensive construction manuals PLUS Hamiyn's "All colour" 160 page book "Electronics" (free of charge whilst stocks last).
Prices inciude batteries, educational manuals, free book, VAT, P\&p (in the UK), free introduction to the British Amateur Electronics Club.
Cheque/P.O./Access/Barclaycard (or 16p. for illustrated Ilterature) to DEPT. EE.

ELECTRONI-KIT LTD.
RECTORY COURT, CHALVINGTON, E.SUSSEX, BN27 3TD (032 183 579)

Electronics
 Makeajob-or hobby-ofit.....
 The opportunities in electronics, today, and for the future

 are limitless - throughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.We give modern training courses in all fields of electronics. practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from . . .

KITS FOR E.E. PROJECTS

Assorted Ceramic Capacitors. Exceptionally good selection (no rubbish) 300 for $£ 1$ - 70.
Connecting Wire, assorted colours. 25 yds for 85 p.
Reed Ineerts 28 mm . normally open gold contacts, $\$ 0$ for $\mathbf{£ 1} \mathbf{- 1 5}, 100$ for $\mathbf{E 8} \mathbf{5 0}$. ALL PRICES INCLUDE V.A.T.
BARCLAY/VISA/ACCESS CARDS ACCEPTED.
MINIMUM TELEPHONE ORDERS \&S.00.

T. POWELL

306 ST. PAUL'S ROAD, LONDON N.I 04-226-1489

MAIL ORDER PROTECTION SCHEME

The Publishers of Everyday Electronics are members of the Periodical Publishers Association which glves an undertaking to the Director General of Fair Trading to refund moneys sent by readers in response to mall order advertisements, placed by mall order traders, who fall to supply goods or refund moneys owing to liquidation or bankruptcy. This arrangement does not apply to any fallure to supply goods advertised in a catalogue or In a direct mall solicitation.
In the unhappy event of the fallure of a mail order trader readers are advlsed to lodge a claim with Everyday Electronics wlthin three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mall order advertising is defined as:- 'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods belng delivered. 'Classified and catalogue mail order advertising are excluded.

上-

The NEW logic/ mlcroprocessor prototype wire threading system

* Versatile, suitable for all types of circuit board.
* Fast, economical and efficient in use.
* Accepted and approved by leading industrial, research and educational establishments.
\star Compact, high quality, low profile finished results.
* Ideal for microprocessor development.
* Designed for all prototype and pre-release applications.

DRAMATICALLY REDUCES DEVELOPMENT COSTS

Roadrunner Wire Threading System

Special Offers

Oryx 50 Temp Cont. Irón £12-50 Microshears £3•15. Tweezers 90p. Conductive Paint £2-35
Prices include P \& P. Please add 15\% VAT.

For further information please write to:

T, JI BRINE ASSOCIATES

116 Blackdown Rural Industries, Haste HIll, Haslemere, Surrey.

Buying Time? sates mancs suw th ccaio

New 3 - 5 year Lithinm batteries onthast most solar watches
From Casio's New Collection comes one of the most sophisticated executive watehes available today,

THE 8ICS-36B ALARM CHRONOGRAPH

LC Display of hours, minutes, seconds, day And with day, date, month and year perpetual automatic calendar

4-5 YEAR BATTERY
1/100 second chronograph to 7 hours.
Net, lap and first \& 2nd
place times.
User optional 12 or
24 hour display.
24 hour alarm.
User optional hourly
chime.
Backlight.
Mineral glass.
Stainless steel case.
Water resistant to RRP $£ 39.95$
100 ft (3 at.)
$£ 35.95$
E NEW FROM CASIO
HQ. 21 CALCULATOR AND CLOCK
LC Display of hours, minutes and seconds. 8 digit calculator with full memory, \%. Very long battery life.
(RRP \&12.95) $\mathcal{L} 10.95$
NEW SCIENTIFICS
FX-310 £17.95
FX-510
£19.95
FX-2600
$£ 19.95$
FX-3200
£21.95

HAND HELD COMPUTER GAMES

We have selected the best available
GRANDSTAND 4-IN-1. Calculator/ Auto Race/Code Breaker
(as Mastermind)/Blackjack
GRANDSTAND Solitaire
GRANDSTAND Destroyer
UFO Master Blaster Station (more
sophisticated than Destroyer)
$£ 22.95$ E14.95 sophisticated than Destroyer) £22.50 Amaze-a-Tron. Maze game
Large S.A.E. for details (specify interest).

HONGKONG WATCHES

Most low cost watches come from Hongkong. In our experience these are proving to be extremely unreliable, particularly those with multi-function modules, with failure rates up to 60% or more. Repairs can take as long as three months and replacement parts are not always available.
Compare this with Casio, Citizen and Seiko, whose failure rate is typically under 1% and Casio's service time of 2-3 weeks and we ask you:
ISN'T IT WORTH PAYING A LITTLE
MORE FOR OUALITY AND RELIABILTY? Fully guaranteed for 12 months.

CASIO CHRONOGRAPHS

CASIO 950S-31B

4 YEAR BATTERY $1 / 100 \mathrm{sec}$. chrono to 7 hours. Dual time. 12 or 24 hour. Stainiess steel encased. Water resistant to 66 feet (2 at). RRP $\{29.95$
$£ 23.95$

CASIO 95CS-31B
5 YEAR BATTERY. $1 / 100$ sec. chrono to 7 hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water resistant to 100 (3 at.). RRP $\{34.95$
$£ 29.95$
Both have new Lithium batteries which outlast most SOLAR watches. Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour). Dual time (12 or 24 hr). Automatic day, date. month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.

CASIO F-200 Sports chrono

Hours, minutes, seconds, am/pm; and with day, date and month auto calendar. $1 / 100 \mathrm{sec}$ chrono to I hour.
Net. lap and 1st \& 2nd place times.
Resin case and matching strap.
Mineral glass.
Water resistant to
66 ft (2at.).
Silver oxide battery. $\mathcal{L} 15.95$
$R R P £ 17.95$
RRP 817.95 DIGIT TIME/DATE WATCH

CASIO F-8C
3 YEAR BATTERY 8 digit display of hours, minutes, seconds and date, with day \& am/pm. Auto calendar. Backlight.
Resin case and matching strap. Mineral glass. Water resistant to 66 n (2 at.). RRP $£ 12.95$ Real quality and value for money 210.95

Most CASIO products available from stock. Send 25 p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

Prices include VAT, P\&P, cheque/PO or phone your ACCESS or BARCLAYCARD number to:
TEMPUS
Dept. E.E. Beammont Centre, $164-167$ East Rosd, Canibridge CBI 1DR.

Telephone 022367503

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 5 \cdot 00$ per single column centimetre (minimum 2.5 cm). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

Publishers Announcement

Due to increases which may have taken effect since this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

Record Accessories

STYLI, CARTRIDGES FOR MUSIC CENTRES \&c. FREE List No. 29. For S.A.E. includes Leads, Mikes, Phones, etc. FELSTEAD ELECTRONICS (EE), LONGLEY LANE, GATLEY, CHEADLE, CHES SK8 4EE.

Receivers and Components

 TURN YOUR SURPLUS capacitors, transistors etc. into cash. Contact COLES. HAMDING \& CO, 103 South Brink, Wisbech, Cambs, 0945 4188. Immedlate settlement.| SPECIAL OPFERS EY MAIL ORDER | |
| :---: | :---: |
| Flahing Red L.E.O.E Atp | Small ${ }^{\text {Reed Swlich 40p }}$ |
| TIL200 Oreen L.E.D.* 22p | Large Reed Swith ip |
| TIL209 RED 4ip CIIpe 3p | Changeover Type 35p |
| Large Red L.S.D.e 200 | Magnets 70, 70 |
| Large Graun Yallow ${ }^{28} \mathrm{p}$ | Key Switch \& Keyet - 20 p |
| Oblong Red/Grean enp | Mero Swltch en Coln Operated 4tpopdt 25p |
| 741 30p. OIL Skt 12p | GPO4 Oiglt Counter |
| 7400 49p. 8kt 48p | |
| BC107/80 14p. OfP 12740 | Rubber Mate 110 |
| | so Astd Springe 30D |
| 800 Speaker 2\% 31p | 80 Untasted OAP1 250 |
| Plastlc Syringe 160 | ${ }^{25}$ Untested I.C.E $30 p$ |
| Reslatord IW 5\% ip ea | 80 Asatd Resletore Mp |
| Prices Include VAT. Add 80p | |
| GRIMSBY ELECTRONICS
 ©s Lambert Road, Grimby, B. Humberside | |
| | |

100 ASSORTED COMPONENTS 115p, 100 resistors $75 \mathrm{p}, 10$ mains neons $50 \mathrm{p}, 20$ micro. switches $150 \mathrm{p}, 50$ reed switches 200 p . Add 25p p\&p. DURRANTS, 9 St. Mary's Street, Shrewsbury, Salop.

J.W.B. RADIO

2 Barnfleid Creseent, 8ale, Cheshire M33 INL
200 COMPONENTS \&4 10. Red L.E.D.s $0 \cdot 125$ 90p. Lists 15p, Sole (E. E.), 37 Stanley Street, Ormskirk, Lancs L39 2DH.
DISCOVER ELECTRONICS. Build forty easy projects including: Metal Detector; Breath. alyser; Radios; Stethoscope; Lie Detector; Touch time-switches; Burglar Alarms, etc. Circuits, plans all for $£ 1 \cdot 29$ including FREE circuit board, Mail only. RIDLEY PHOTO/ ELECTRONICS, Box 62, 111 Rockspark Road, Uckfield,Sussex.

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{8 1 0 - 7 0}$ plus 25p P. \& P
'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pocket-sized 'lightning flashes'. vari-speed, for discos and parties. A mere E4-50 $^{\circ}$ plus 25 p P. \& P. Experiment with a psychedelic DREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. $£ 5$ each plus 25 p P. \& P.

LOTS MORE! Send 25p for lists. Prices include VAT.

BOFFIN PROJECTS
4 CUNLIFFE ROAD, STONELEIGE
EWELL, SURREY. (E.E.)

Service Sheets
 SERVICE SHEETS from 50p and SAE.

 Catalogue 25p and SAE. Hamilton Radio, 47 Bohemia Road, St, Leonards, Sussex.BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. £1 plus SAE. sheets of Radio, TV Service Manuals on request. Colour TV Service Manuals on request.
SAE with enquiries to BTS, 180 King'a Rd, Harrogate, N. Yorkshire. Tel: 042355885.

Books and Publications

INTRODUCTION TO MICROPROCESSORS and Computing. 50 pages of diagrams and explanation to get you started. Price $£ 2 \cdot 30$ plus 45 p postage. EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 1LU.

\section*{| For Sale | |
| :---: | :---: |
| NEW BACK 1 Issues of "EVERYDAY | | ELECTRONICS". Available 65p each Post Froe, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 180 Kings Road, Harrogate, Yorkahire. Tel: (0423) 65885.
 OSCILLOSCOPE 7 cm C.R.T. D.C. inputs 250 mV per cm , £45. Tel: Upminster 26364}

C15 10 MHz SCOPE. Complete with probes and accessories, plus spare parts. Excellent condition, hardly ever used, £50. Tel: $051-3344574$.

Situations Vacant

If your hobby is electronics why not consider doing it as a full-time job working in the SE1 area of London? We have a vacancy for a young person with an electronics backpround (experience or academic) to join our Maintenance team working on some very sophisticated machines. Salary c£3500 p.a.

Interested? then write in confidence to:-
The Laboratory Manager,
Colorama Processing Laboratories Ltd
44/50 Lancaster Street, London, SE1 ORP

Miscellaneous

AERIAL BOOSTERS

Improves weak VHF radio \& television reception.
B45-UHF TV, BII-VHF RADIO. B11 A-2 metres.
For next to the set fitting.
PRICE £6. S.A.E. FOR LEAFLETS.
ELECTRONIC MAILORDER LTD.
Ramsbottom, Bury, Lancs, BLO 9AG.

VERY STYLISH BLACK mini-project boxes. Approx $80 \times 60 \times 20 \mathrm{~mm}$. Hinged leather grained lid. Sample 50p. Five $£ 2 \cdot 00$ post paid. W. L. Hampson, 221 Hodges St, WIgan. BUILD 25 PROJECTS with our multipurpose kits, details supplied. Send $£ 15 \cdot 00$ to Major Oak Services, 33 Lillian Avenue, London W3.

TUNBRIDGE WELLS COMPONENTS ballard's, 108 Camden Road, Tunbridge Wells, Phone 31803. No lists, enquiries S.A.E.

DIGITAL WATCH BATTERIES. State type or send old battery. 60p each, 2 for 81.20 p.p 10p. Discount for larger quantities. F. S. Butler. 511 Fulbridge Road, Peterborough PE4 6SB.

> ELECTROLYTIC CAPACITORSMODERN MINIATURE TYPE
voice Simulatore. Send Large s.e.e. and yop for liste of
range of Phone, write or call et:
QUAADITYNQUIRIES WELCOME-

FOR COMPUTER OPERATORS. TI PROgrammer. Hexadecimal, octal, decimal calculator/converter for computer programmers. Performs arithmetic in any of three number bases. 15 sets of parentheses for complex problems. Independent memory and constant. Price $£ 44.85$ including VAT and P \& P Or s.a.e, for details- R \& E Marketing, Long Acre, The Ride, Ifold, Billingshurst, Sussex.

LIGHT STRINGS

Ideal for use with Chaser Light Circuit (EE Sept '76). KIt LS1 contains all Electrical ltem to conatruct 4×40 Klt LSI coniai
Lamp Siring. 200 Lamps (50 ea Red, Blue, Green, Yellow). 200 Cut and Strlpped Wires, 400 Sleeves eft FULL INSTRUCTIONS. ONLY £10.00 cwo (VAT and P\&P Incl).
J. H. ABSOCIATES LTD.'

LCO ALARM CHRDNOGRAPH All usubl features Perpetual calendar. day. date, month and vear. onvoth Indication with $1 / 10$ second chronograph lap and first and second place times. Oual time zone facilty- Night ligh 12 -month guarantel. ONLY $\mathbf{£ 1 7 . 9 5}$ (inc. VATP PGP)	BIGGEST RANGE OF VIDEO GAMES - EX STOCK FULL DETAILS ON fequest	
		VTO4 SOLAR LCO 9 mm thick CHRONOGRAPH

COMING!

PROFESSIONAL ELECTRONICS
'The Ultimate in Quality'

A Phenomenal NEW

 Mail Order Company the likes of which YOU'VE NEVER SEEN BEFOREProviding the most PROFESSIONAL Electronics Equipment on the market for YOU!

Please

mention

Everyday

Electronics
when
replying
to
advertisements

INDEX TO ADVERTISERS

> I.L.P. Electronics
intertext (ICS) ..
752, 753

Magenta Electroni
755

AS SEEN IN JUST CHECK THE SPEC'S.
P.E. AUGUST, SEPTEMBER OCTOBER 1979 OCTOBER 1979

The Compukit UK 101 has
everything a one board 'superboard' should have

- Uses ullra-powerful 6502 microprocessor \#S 50 Hz Frame retresh for steady clear picture results in uttery displays) * 48 chars by 16 lines
system providing high speed access io screen display enabling animated games and graphs
* Extensive 256 character sel which inclüdes full upper and lower case alphanumerics. Greek symbols for mathematical constants and numerous graphic characters enabling you to form almosi any shape you desue anywhere on the screen
* Video output and UHF Highgrade modulator (8M2 Bandwidth) which connects direct to the aerial socket of your TV Channel 36 UHF
* Fully stabilised 5 V power supply including trans. ormer on board
* Standard KANSAS city tape inlerlace providing high reliability program slorage - use on any standard domestic tape or cassette recorder
* 4 K user RAM expandable to 8 K on board $£ 49$ extra.
* 40 line expansion interface socket on board tol disk controller (Ohio Scientific compatible).
* 6502 machine code accessible through powerful

2K machine code montor on board. mounted on sockets

- Prolessional 52 Key keyboard in 3 colours - soll. decoding done in soliwate all debouncing and key

COMMANOS
CONT LIST NEW NULL RUN
STATEMENTS
CLEARDATA DEF DIM END FOR GOTO GOSUB IF GOTO IF THEN INPUT LET
NEXT ON GOTO ON GOSUB POKE PRINT REAC NEXT ON GOTO ON GOSUB POKE PRINT REAC
REM RESTORE RETURN STOP REM RESTORE RETURN STO

EXPRESSIONS

OPERATORS
VARIABLES
A.B.C Z and two letter variables
the above can all be subscripled when used in an atray String vartables use above names plus $\$$.e 9 A

- 8K Microsolt Basic means conversion to and from Pet. Apple and Sorcerer easy. Many compatible programs already in print SPECIAL CHARACTERS
© Erases line being typed, then prövides carriage return, line teed

Erases last character typed.
CR Carriage Return - must be at the end of each line.
Separates statements on a tine.
CONTROLC Execution or printing of a list is interrupted at the end of a line.
BREAK IN LINE XXXX is printed, in dicating line number of next statement to be execuled or printed.
CONTROLIO No outputs occur until return made to command mode. It an Input state. ment is encountered. either anothe Equivatent to PRINT ${ }^{\text {an }}$

COLOUR ADD-ON CARD AVAILABLE SOON

Enables you to choose your foreground the background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form

THE ATARI VIDEO COMPUTER SYSTEM

Atari's Video Computer System now offers more than 1300 different game variations and options in twenty great Game Program ${ }^{\text {TM }}$ cartridges! Have fun while you sharpen your mental and physical coordination. You can play rousing, challenging, sophisticated video games, the

Simple Soldering due to clear and consise instructions compiled by Dr. A.A. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT 'RETURN' AND GO.

Build, understand, and program your

USR(I)

LEN(XS) MIDS(X5.I.J)
VAL(XS)
own computer for only a small outlay.

> KIT ONLY $\mathbf{£} 219$ + VAT
> including RF Modulator \& Power supply.
> Absolutely no extras.

Available ready assembled and tested, ready to go for $£ 269$ +ivat

FUNCTIONS

FRE(X) INT(X)
$\operatorname{SGN}(X) \operatorname{SIN}(X)$
SIRING FUNCTIONS
ASCIXS) CHR\$S(I) FRE(XS) LEFTS(XS.I) RIGHTSIXS.I

FRE(XS) LEFTSIXS.I)
STRS(X)
TAB(I) TAN(X) (

Touch operated rhythm generator, the 'Drumsette'. Construction details 25p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A massive new
catalogue from Maplin that's even bigger and bevter than before if you - ever buy electronic the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and
illustrations and illustrations and
page after page of invaluable data.

[^2] special otters and , the the latest news from Mapin.

A range of highly attractive knobs is described in our catalogue. Our prices are very attractive too!

The 3800 synthesiser build it yourself at a fraction of the cost of one readymade with this specification. Full details in our catalogue.

A pulse width train controller for smooth slow running plus inertia braking and acceleration. Full construction details in our catalogue.

Speakers from $1 \frac{1}{2}$ inch to 15 inch; megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex.
(Closed on Monday).
Telephone: Southend (0702) 554000.

[^0]: HRH The Prince of Wales will present the "Young Engineer for Britain 1979" awards at the national final to be held at the Wembley Conference Centre on October 25.
 A record entry of over 300 youngsters with some 180 pro jects joined the trail to become "Young Engineer for Britain 1979". Following regional finals which were held around the country during June and July, 38 projects have been selected to appear at the national final. These cover a wide range of applications from a wind tunnel to a leaf raking machine and from a signature reproducing machine to an emotionally active robot.

[^1]: MANCHESTER DISCO CENTRE, 237 DEANS. GATE, MANCHESTER. CALLERS ONLY (061) 8328772 -COMPLETE UNITS ONLY

[^2]: Our bi-monthly newsletter contanns guaranteed prices

