Easy to build piojects for everyone = SEPT. 79 亿
 2

Iron out the little problems...

CTC 35 watt -

The TCSU1 soldering station with elther the XTC 50 watt - 24/26 volt soldering fron or the CTC 35 watt-soldering lron for
pin point precislon and exceptionally fast recovery time. pin point precision and exceptionally fast recovery time. We have put at least twice as much power mino irons which are already known for good recovery time. The temperature
control stops them from over-heating: the "fall-sate" el control stops them from over-heating: the "fail-sate" electronic TCSUI soldering station with XTC or CTC fron E41.54. including VAT (Nett to Industry). Postage extra.

Model SK3 KIt

E-	Contains both the model		With the model
	CX230		X25/240
	soldering Iron	Humer	general
	and the stand ST3. Priced		purpose Iron
			and the ST3
	at $£ 7.19$		stand, this
	inclusive of VAT and P \& P		kit is a mu for every
	It makes an		for every tootkit in
	excellent		ome. Pric
	present for the		at £7.1
	radio amateur		inclusiv
	modelmak		Va and
	or hobbyist.		\& P

A miniature iron with the element enclosed first in a cerami. shatt, then in a stainless steel. Virtually leak-tree. Only $7, / / 2$ long. Fitted with a $3 / 32^{\prime \prime}$ bit. $£ 5.18$ inclusive of VAT and " $\&$ \& P Range of 5 other bits available from $14^{\prime \prime}$ down to $3 / 64^{*}$
Model X25-25watts
 T

A peneral purpose fron also with a ceramic and steel shaft to pive you sougnness comoned with near-perfect insulation. Fitted with $1 / 8^{\prime \prime}$ bit and priced at $£ 5.18$ inciusive of VAT and $P \& P$. Range of 4 other bits available.

Model MLX Kit

AXNXXEX
Stocked by many wholesalers and retailers or direct from us if you are desperate.

...with Antex

The ANTEX multi purpose range of soldering equipment is fast becoming a must for every home. Built with precision for long life, each iron is fully tested and guaranteed.
ANTEX soldering irons are made in England to strict local and international standards

WATFORD ELECTRONICS
 35. CARDIFF ROAD, WATFORD, HERTS., ENGLAND
 MAIL ORDER, CALLERS WELCOME. Tel. Watford 40588/9

ALL DEVICES GRAND NEW, FULL SPEC. AND FULLY GUARANTEED ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ POOS OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS' OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORTINQUIRY WELCOME. PRP ADD 30p TO ALL OR POSTAGE AT COST. AIR/SURFACE.

VAT Export orders no V.A.T. Applicable to U.K. Customers only. Unless stated oth
We stock many more items. It pays to visit us. We are situated behind Watford Footbal Ground. Nearest Underground/BR Statlon: Watford Migh Street.
Saturday 9.00 am-6.00 pm. Ample Free Car Parklng space available.
POLYESTER CAPACITORS: AxIal lead type (Values are $\ln \mu$ F)
$400 \mathrm{~V}: 1 \mathrm{nF}, 1 \mathrm{n}, 2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n}, 10 \mathrm{~m}, 15 \mathrm{n} 9 \mathrm{p} ; 18 \mathrm{n} 10 \mathrm{p} ; 22 \mathrm{n}, 33 \mathrm{n} 11 \mathrm{p} ; 47 \mathrm{n}, 68 \mathrm{n} 14 \mathrm{p} ; 100 \mathrm{n} 17 \mathrm{p}$; 150n, 220n, 24p; 330n, 470n 41p; 680n 52p; 1 μ F 53p
$160 \mathrm{~V}: 39 \mu \mathrm{~F}$, $100 \mathrm{n}, 150 \mathrm{n}, 220 \mathrm{n} 11 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n} 19 \mathrm{p} ; 680 \mathrm{n}, 1 \mu \mathrm{~F} 22 \mathrm{p} ; 1 \mu 5,2 \mu 223 \mathrm{p} ; 4 \mu 736 \mathrm{p}$.
$1600 \mathrm{~V}: 10 \mathrm{nF}, 15 \mathrm{n}, 20 \mathrm{p} ; 22 \mathrm{n} 22 \mathrm{p} ; 47 \mathrm{n} 26 \mathrm{p} ; 100 \mathrm{n} 38 \mathrm{p} ; 470 \mathrm{n} 53 \mathrm{p} ; 1 \mu \mathrm{~F} 175 \mathrm{p}$.
 ELECTROLYTIC CAPACITORS: Axial lead type (Values are in μ F) $500 \mathrm{~V}: 1040 \mathrm{p} ; 4768 \mathrm{p}$;
$250 \mathrm{~V}: 10065 \mathrm{p} ; 63 \mathrm{~V} 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8,810,15,22 \mathrm{gp;} \mathrm{47,32,5012p;83,10027p}$
 $33014 \mathrm{p} ; 47016 \mathrm{p}$; $1000,150020 \mathrm{p}$; 2200 34p; 10V: 1006 p ; 64012 p ; 110014 p . TAG-END TYPE: 70VV:4700 $135 \mathrm{p} ; 64 \mathrm{~V}: 220089 \mathrm{p} ; 330099 \mathrm{p} .50 \mathrm{~V} ; 10,000255 \mathrm{p} ; 40 \mathrm{~V} ; 250065 \mathrm{p} ;$
$3300,470074 \mathrm{p} ; 15,000299 \mathrm{p} ; 24 \mathrm{~V}: 470079 \mathrm{p} ; 220048 \mathrm{p} ; 325 \mathrm{~V}: 200+100+50+100190 \mathrm{p} ; 32+32175 \mathrm{p}$
TANTALUM BEAD CAPACI-
TORS $35 \mathrm{~V}: 0.1 \mu \mathrm{~F}, 0.22,033,0.47$,

$0 \cdot 68,1 \cdot 0,2 \cdot 2 \mu \mathrm{~F}, 3 \cdot 3,4 \cdot 7,6 \cdot 825 \mathrm{~V}$ $1 \cdot 5,1020 \mathrm{~V}: 1 \cdot 516 \mathrm{~V}: 10 \mu \mathrm{~F} 13 \mathrm{p} \mathrm{each}$ 47, $10040 \mathrm{p} .10 \mathrm{~V}: 22 \mu \mathrm{~F}, 3320 \mathrm{p} 6 \mathrm{~V}$ 47, 68, 100, 30p $3 \mathrm{~V}: 68,100 \mu \mathrm{~F}, 20 \mathrm{p}$

MYLAR FILM CAPACITORS
$100 \mathrm{~V}: 0.001,0.002,0.005,0.01 \mu \mathrm{FF}$ 6p
$0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F} \quad 7 \mathrm{p}$
$0.1 \mu \mathrm{~F}, 0.29 \mathrm{p} \quad 50 \mathrm{~V}: 0.47 \quad 12 \mathrm{p}$

$$
\begin{aligned}
& \text { SLIDER POTENTIOMETER } \\
& 0.25 W \text { log and linear values } 60 \mathrm{~mm} \\
& 5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega \text { single gang }
\end{aligned}
$$

MINIATURE TYPE TRIMMERS

$$
\begin{array}{ll}
5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega \text { single gang } & 70 \mathrm{p} \\
10 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega \text { Jual gang } & 80 \mathrm{p} \\
\text { Self Stlck Graduated Bezels } & 25 \mathrm{p} \\
\hline
\end{array}
$$ $\begin{array}{ll}2-5 \cdot 6 p F, 3-10 \mathrm{pF}, 10-40 \mathrm{pF} & 22 \mathrm{p} \\ 5-25 \mathrm{pF}, 5-45 \mathrm{pF}, 60 \mathrm{pF}, 88 \mathrm{pF} & 30 \mathrm{p}\end{array}$

COMPRESSION TRIMMERS $3-40 \mathrm{pF}, 10-80 \mathrm{pF}$ 30p; 25-190pF 33p

$$
\begin{aligned}
& \text { PRESET POTENTIOMETERS } \\
& \text { Vertical \& Horizontal } \\
& 0-1 W 50 \Omega-5 M \Omega \text { MInlature }
\end{aligned}
$$ 100-500pF 45p

$$
\begin{array}{lr}
\text { Vertical \& Horizontal } \\
0-1 W 50 \Omega-5 \mathrm{M} \Omega \mathrm{Minlature} & 8 \mathrm{p} \\
0-25 \mathrm{~W} 100 \Omega-3 \cdot 3 \mathrm{M} \Omega \text { Horiz } & 10 \mathrm{p} \\
0-25 \mathrm{~W} 200 \Omega-4 \cdot 7 \mathrm{M} \Omega \text { Vert } & 10 \mathrm{p} \\
\hline
\end{array}
$$

POLYSTYRENE CAPACITORS

$$
\begin{aligned}
& \text { RESISTORS_Erle make } 5 \% \\
& \text { Carbon MInlature High Stabilliy, } \\
& \text { Low nolse }
\end{aligned}
$$

SILVER MICA (Values In pF) $3-3$,

$$
\begin{array}{lll}
\text { Low nolse } \\
\text { RANGE VAL } & 199 & 100+ \\
\text { 1W } 2-2 \Omega-47 M & \text { E24 } & 2 p \\
\hline
\end{array}
$$ $4-7,6-8,10,12,18,22,33,47$

$75,82,85,100,120150,180$
$220,250,300,330,360,390$ $220,250,300,330,360,390$,
600,820
$1000,1200,1800,2000$
16p each
20p each CERAMIC CAPACITORS: 50V
0.5 pF to 10 NF 3 p ; 22 n to 100 n 6 p . E.E. INTRUDER ALARM
All parts now available

$$
\begin{aligned}
& \text { POTENTIOMETERS : (ROTARY) } \\
& \text { Carbon Trach, O.25W Log \& } 0.5 \mathrm{~W} \\
& \text { Linear Value. } \\
& 500 \Omega, 1 \mathrm{~K} \& 2 \mathrm{~K} \text { (Lin. only) Single } 27 \mathrm{p} \\
& 5 \mathrm{~K}-2 \mathrm{M} \Omega \text { single gang } \\
& 5 \mathrm{~K}-2 \mathrm{M} \Omega \text { single with DP switch } 675 \mathrm{p} \\
& 5 \mathrm{~K}-2 \mathrm{M} \Omega \text { double gang }
\end{aligned}
$$

$$
\begin{aligned}
& 1 \% \text { Metal Film } 51 \Omega-1 \mathrm{M} 10 \mathrm{p} \\
& 100+\text { price applles to Resis } \\
& \text { each type not mixed values. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LW to M W Converter for Radio } \\
& \text { Complete kit of parts Inc. Instruc- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Complete kit of parts Inc. Instruc- } \\
& \text { tions. } \\
& £ 4.95 \text { inc. VAT }
\end{aligned}
$$

$$
\begin{array}{lll}
12 \mathrm{~V} & 7812 & 145 \mathrm{p} \\
15 \mathrm{~V} & 7815 & 145 \mathrm{p} \\
18 \mathrm{~V} & 7818 & 145 \mathrm{p}
\end{array}
$$

1 A	TO220 Plastlc Casing			
5 V	7805	80p	7905	90p
12 V	7812	80p	7912	90p
15 V	7815	80p	7915	90 p
18V	7818	85p	7918	90p
24 V	7824	85p	7924	90 p
100 mA	TO92	Plas	Casing	
5 V	78L05	30p	79L05	65p
6V	78L62	30p		-
8 V	$78 L 82$	30p		
12 V	78 L 12	30p	79 L 12	65p
15 V	$78 \mathrm{L15}$	30p	79L15	65p

$\begin{array}{lrllll}\text { CA3085 } & 95 & \text { LM323K } & 625 & \text { MVR5 } & 150 \\ \text { LM300H } & 170 & \text { LM325N } & 240 & \text { MVR12 } & 150\end{array}$

 $\begin{array}{llllll}\text { LM309K } & 135 & \text { LM327N } & 270 & \text { TBA625B } \\ \text { LM347K } & 350 & \text { LM723 } & 39 & \text { TDA1412 }\end{array}$

JACKSONS VA CAPACITORS

$\begin{array}{lll}\text { Dlelectrle } & 0 & 2 \\ \text { 365pF } \\ 100 / 300 \mathrm{pF} & \text { 140p } & \text { slow motion }\end{array}$ $\begin{array}{llll}500 \mathrm{pF} & 165 p & \text { Drive } & 325 p \\ 69 \text { Ball Drive } & 00208 / 176 & 285 p \\ \text { 2 } & & \text { with slow }\end{array}$ 4511/DAF 115 p mötlön drive 325 p

Dlal Drive 4103 \begin{tabular}{lll}
Dlal Drive 4103 \& motlon drive 325

$61 / 361$ \& 650 p \& $\mathrm{CBO4-5pF} 1015$

\hline

 $\begin{array}{llll}\text { Drum } 54 \mathrm{~mm} & 40 \mathrm{p} & 25.50 \mathrm{pF} & 175 \mathrm{p} \\ 0-1.365 \mathrm{pF} & 245 \mathrm{p} & 100,150 \mathrm{pF} & 250 \mathrm{p} \\ \mathrm{L} \cdot 3 \times 310 \mathrm{pF} & 495 p\end{array}$

0.1 .365 pF \& $245 p$ \& 'L' $3 \times 310 \mathrm{pF}$

002365 pF \& 275 p \& $00.3 \times 25 \mathrm{pF}$

\hline 0 \& 430 p
\end{tabular}

$61 / 361$ 650p	2550	of	175p	OA70	12	25 J	160	8 A 500 V	
Drum 54 mm 40 p	100,	50pF	250p	OA79	15			84600 V	5
0-1.365pF 245p	p 'L'3	$\times 310$	495p	OAB1	15	BRIDG		12 A 300 V	59
$002365 p F \quad 275 p$	p 00.3	$\times 25 \mathrm{p}$	430 p	OA85	14	RECTI		12 A 500 V	92
				OA90	7	(plastic		15A/700V	195p
DENCO COLLS	RDT		92 p	OA91	6	$1 \mathrm{~A} / 50 \mathrm{~V}$	20	2N444	140 p
- DP'VALVETYPE	PE RFC	5 cho	¢91p	OA95	8	$1 \mathrm{~A} / 100 \mathrm{~V}$	22	BT106	150
Range 1 to 5 Bl.,	, RFC	7 (19	H) $96 p$	OA200	9	$1 \mathrm{~A} / 200 \mathrm{~V}$	25	C106D	38
Rd., YI. Wht. 86p	P 1 F	13;	; 15;	OA202	8	$1 \mathrm{~A} / 400 \mathrm{~V}$	29	TIC45	25 45
6-7 B.Y.R. 75p	p 16, 1		86p	1914			34		45
1.5 Green 92p	p 1 FT	18/1.	99p	[N916	5	1a/60V	35	TRIACS	
'T' 1 to $5 \mathrm{BI} ., \mathrm{YI} .$,	, 1 FT	18/46	105p	IN4001/2	5	2A/50V	35	3 A 100 V	
Rd, Wht. ${ }^{\text {a }}$, ${ }^{\text {p }}$	- TOC		86p	IN4003		$2 \mathrm{~A} / 100 \mathrm{~V}$	44	3 3200V	49
B9A Valve Holder	r MW	5RR	82p	/N4004/5		$2 \mathrm{~A} / 200 \mathrm{~V}$	46	3 A 400 V	50
25p	- MW	LW 5	102p	[N4006/7	$\begin{aligned} & 7 \\ & \hline \end{aligned}$	2A/400V	53	8 84100V	54
VEROBOARD				1544	20	2A/600V	65	8 A 400 V	64
	(copper	clad)	alain)	$3 \mathrm{~A} / 100 \mathrm{~V}$		$4 \mathrm{~A}, 100 \mathrm{~V}$	72	8 8A800V	108 60
$21 \times 3 \frac{1}{4}$	${ }_{\text {46p }}$	39p	24p	$3 \mathrm{~A} / 400 \mathrm{~V}$		4A/200V	75	12A400V	70
21×5	55p	50p	31 p	3 3A/1000		4A/400V	79	12 A 800 V	130p
32×34	55p	50p	-	3A/1000		4A/600V	105	16 A 100 V	95
37 $\times 5$	62p	67p	43p			4A/800V	120	16A500V	150
21×17	169 p	135 p	92p			6A/100V	73	254800 V	5
$3 \mathrm{3} \times 17$	218 p	180p	120p			$6 \mathrm{~A} / 200 \mathrm{~V}$	78	$25 A 1000 \mathrm{~V}$	
42x $\times 17$	280p		183 p			6A/400V	85		$480 p$
Pkt of 35 pins Spot face cutler			30p $88 p$			BY164	86 56	DIA	

Pkt of face cutle

Ret.	ELECTRONIC BOOKS	Price		
126	Boys Book of Crystal Sets	25p	7400	14p
138	How to Make Aerlals for TV (Band 1-2-3)	25p	7404	18p
160	Coll Design and Construction Manual	75p	7408	20p
196	AF-RF Reactante-Frequency Chart for Constructors	15p	7410	${ }^{16 p}$
200	Handbook of Practlcal Electronle Musical Novettles	50	7413	32 p
201	Practical Transistorised Noveltles for HI-FI Enthuslasts	350	7420	p
202	Handbook of Integrated Clrcults (IC's) Equivalents and Substltutes	100p	7430 7447	17p
203	IC's and Tranalstor Gadgets Construction Handbook	600	7473	${ }^{36 p}$
205	First Book of H1-Fi Loudspeaker Enclosures	750	7490	p
206	Practical Translstor Clrcults for Modern Test Equipment		$\begin{aligned} & 7493 \\ & 74121 \end{aligned}$	p
207	Practical Electronic Sclence Projects	75p	CA3080	77p
208	Practical Stereo and Quadrophony Handbook	75p	CA3140	p
210	The Complete Car Radlo Manual	1000	ICL8038	370p
211	First Book of Dlode Characteristics Equivalents and Substitutes	95p	LM380	100p 24p
213	Electronic Clreults for Model Rallways (Reprint/ng)	100p	NE555	p
214	Audlo Enthusiasts Handbook	${ }^{85 p}$	TBA800	110p
215	Shortwave Clrcults and Gear for Experlmenters and Radlo Hams	85p		
216	Electronic Gadgets and Games	100p		
217	Solld State Power Supply Hanbook	85p		
218	Bulld Your Own Electronic Experimenters Laboratory	85p	DIL SO	
219	Solld State Novelity Projects	$85 p$	8 p	12p
22	Bulld Your Own Solid State $\mathrm{HI}-\mathrm{Fl}$ and Audio Accessories	\% 85p	14D	13p
221	28 Tested Transistor Projects	95p	16pln	$14 p$
222	Solld State Short Wave Receivers for Beginners	95p		
223	50 Projects Using IC CA3130	95p		
224	50 CMOS IC Prolects	95p		
225	A Practical Introduction to Digltal IC's	95p	Large range of components available Send SAE	
228	How to Bulld Advanced Short Wave Rece	120p		
227	Beginners Guide to Bullding Electronle Prolects	125p		
228	Essentlal Theory for the Electronlcs Hobbyist	125p		
RCC	Resistor Colour Code Disc Calculator	100		
BP1	First Book of Transistor Equivalents and Substltutes	50p		
BP2	Handbook of Radlo, TV \& Industrial \& Transmitting Tube \& Vaive Equivalents	600	ANTEX	
BP6	Englneers and Machinisis Reference Tables	50p	SOLDERING IRONS	
BP7	Radio and Electronic Colour Codes and Data Chart (Reprinling)	25p	IRONS C-15w	0p
BP	Practical Transistor Novelty Circuifs	400	CCN-15W	$\begin{aligned} & 460 \mathrm{p} \\ & 460 \mathrm{p} \end{aligned}$
BP14	Second Book of Translstor Equivalents and Subsiltutes	1100	X-25	460p
BP22	79 Electronle Novelty Clreuits	750		
BP^{23}	First Book of Practical Electronic Projects	75p		
BP	52 Prolects Using IC741	$95 p$		
BP25	How to Build Your Own Electronie and Quartz Controlle Watches \& Clocks		Spare blt Stand	$\begin{array}{r} \text { 54p } \\ \text { 170p } \end{array}$
BP26	Radio Antenna Handbook for Long Distance Receptlon and Transmisslon			
8P27	Giant Chart of Radio Electronle Semiconductor and Logl Symbols			
BP	Resistor Selection Handbook (International Edition)	600	0.1 Copperclad	
BP29	Major Solld State Audio HI-F\| Construction Prolects	850	31 $\times 24$	56p
BP30	Two Transistor Electronlc Prolects	p	3) $\times 31$	56p
BP31	Practical Electrical Re-Wiring and Repairs	850	$34 x$	70p
BP32	How to Bulld Your Own Metal and Treasure Locators	100p		
BP33	Electronic Caleulator Users Handbook	$95 p$		
BP34	Practical Repalr and Renovation of Colour TVs (Reprintling)	95p		
BP35	Mandbook of IC Audio Preamplifer and Power Amplifie Constructlon (Reprinling)		POCKET MULTIMETERS KRT100 580p	
BP36	50 Circults Using Germanlum, Sllicon and Zener Diodes		$\begin{aligned} & (1000 \text { ohme/V) } \\ & \text { LT26 } \end{aligned}$	
BP3	50 Prolects Using Relays, SCR's and TRIACS	110p		
8P38	Fun and Games with your Electronic Calculator	75p	Test Lead Kit ${ }_{1600}$	
BP39	50 (FET) Field Effect Transistor Prolects	125p	(Prode. Croc clips. bananas. Spades)	
BP40	Digital IC Equivalents and Pin Connections	2500		
BP49	Linear IC Equivalents and Pin Connections	275p	Croc CHp at eachend	
BP42	50 Simple L.E.D. Circults	75p		
BP43	How to Make Waikle-Talkles	125p		
BP44	IC555 Projects	145p		
BP45	Prolects In Opto-Electronics	125p		
BP46	Radio CIrcuits Using IC's	135p	EXPERIMEN-	
BP47	Moblle Discotheque Handbook	135p	BOARDS	
BP48	Electronic Projects for Beglnners	135p	(No solderingsultable for DiL	
BP49	Popular Electronlc Projects	145p		
BP	IC LM3900 Prolects	135p	For I IC Circult (up to 22pin)	
BP51	Electronic Music and Creative Tape Recording	125p	For up $103 \times 14 \mathrm{pln}$	
BP52	Long Distance Television Reception (TV-DX) For The Enthusiast	145p	DIL IC EXP350	
BP53	Practical Electronic Calculations and Forumlae	225p	For up to $5 \times 14 \mathrm{pln}$ DILICs	
BP54	Your Electronic Calculator and Your Money	135p	EXP300	
BP55	Radio Stations Gulde	45p	IC Test Cllps14 pin $285 p$18pIn2907pLagic Probe 1900 p	
BP55	Radio Stations Guide	145p		
TI	TTL Pin Configuration Guide	75p		

$20 p \mathrm{p}$ \& p per book
 $200 \mathrm{pt} @ 60 \mathrm{p}, 250+250+20+20 \mathrm{pf}$ @ $60 \mathrm{p}, 25+25+25 \mathrm{pf}$
$500+25+25 \mathrm{p}$ @ $60 \mathrm{p}, 250+250+20+20+20 \mathrm{pt}$ @ 75 p.
VERNITRON FM4 10.7 MHz FILTERS @ $50 \mathrm{p}, 3$ for $£ 1$.
50 OC 71 TRANSISTORS untested for 75 p .
50 BC 107.8-9 TRANSISTORS Assorted Untested @ 60 p
$3 / 16^{\prime \prime}$ COIL. FDRMERS WITH CORE at 6 for 25 p.
ALLOY DIE CAST BOXES $6^{\prime \prime} \times 3 \cdot 3 / 16^{\prime \prime} \times 2^{\prime \prime}$ at $£ 1 \cdot 15$, 3 for $£ 2 \cdot 85$.
MINIATURE $01 \mathrm{uf} 50 \mathrm{v} . \mathrm{w}$. DISC CERAMICS 20 p doz.
BOOKS By G. Dobbs. "Practical Test Equipment" @ 75p, "Slmple Short Wave Recelvers"@60p."Practlcal Electronle Projects"@ 75p. The Threa Books for $£ 1 \cdot 60$ 100 MULLARD C 280 CAPACITORSAssorted@60p.
ELECTRET MICROPHONE INSERTS With Fet Pre-Amp@ E1-85.
DUAL GATE MOS FETS LIKE 40673 @ $33 p, 4$ for $£ 1 \cdot 10$.
MULLARD 1 1 I $125 v . w$. POLYESTERCAPACITORS @ 20p doz. SOLDER.IN FEED THRU's 6:8pf, 300pf, 1000pf. All 20 p doz.

SUB-MINIATURE 3 GANG AIRSPACED VARIABLE $25+25+25$ pf @ $£ 1$. VHF TUBULAR TRIMMERS 6 pt at 10 p each,
FM TUNER FRONT END Sultable for Conversion to 144 MHz . WIth detalls @ ع $\mathbf{~} \mathbf{3}$, MULLARD I.F. STRIP 10.7 MHz with data for FM Front End @ £4,
250 mW AUDIO AMPLIFIER at $£ 2 \cdot 50$.
LED's TIL 209@ 6 for 50p, -2" LEDS Red @ 15p. Green@ 1sp 100 TUBULAR CERAMIC CAPACITORS for 60p.
WIRE WOUND POTENTIOMENTERS $2 K 2$ Watt, 10K 2 watt, 100K 4 waft. All 25 p each.
10 AMP S.C.R's 100 PIV@25p, 400 PIV@ 90 p, 800 PIV@ 00 p.
T05 NPN 100 VOLT 800 mA TRANSISTORS $2 N 657$ @ 25p.
FMI.C's CA 3089E@ \&1-20,TAA 661@50p.
WIDE BAND RADAR I.C. AMPLIFIERS 10 to 150 MHz with Data. Untested at
5 for 57 P . 5 for 57 p .
SILICON SOLAR CELLS $\cdot 5$ volt 5 mA at $45 p$ each.
3 PIN PLUG AND SOCKET LIKE RS EUROPEAN TYPE with 2 Metre of Cable @ 75p pair.
GENERAL PURPOSE VHF NPN TRANSISTOR to 18 Can. $400 \mathrm{MHz}, 100 \mathrm{~mA}$, 350 mW at 6 for 50 p .
TANTALUM CAPACITORS - fuf $35 \mathrm{v} . \mathrm{w} .,-22 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., $-33 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. . $-47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$.if
 NSF BIASED DPDT TOGGLE SWITCHES@ 25 p each.
MINIATURE TUBULAR TANTALUM CAPACITORS $4 \cdot 7$ Uf $10 \mathrm{v} . \mathrm{w}$. @ 6 for 25p. DAU SEMI-AIRSPACED TRIMMERS 2 to $9 \mathrm{pf}, 7$ to $35 \mathrm{pf}, 6$ to $45 \mathrm{pf}, 8$ to 125 pt . 8 to 140pi. All at 15p each.
10 ASSORTED PUSH BUTTON BANKS Less Knobs @ E1•30.
1 AMP TRIACS400 PIV@ 3 for E1.
POLYESTERCAPACITORS 1uf@5p,4•7uf@10p, 10uf@15p. All 63v.w.
MULLARD ELECTROLYTICS $2800 \mathrm{uf} 100 \mathrm{v} . \mathrm{w}$. © £1 each.
Please add 20p for post and packing, unless otherwise stated on U.K. orders under £2. Overseas postage at cost.

J. BIRKETT
 RADIO COMPONENT SUPPLIERS

25 The Strait, Lincoln LN2 1JF Tel. 20767

FIRST

and STILL BEST!

We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogueand for the service that backs it up. Experience both for yourself. Just send $£ 1 \cdot 25$ with the coupon and a catalogue will come by return of post.

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of slmple Credit Scheme.
home radio (Components) LTO.
Dept. EE, 234 -240 London Road, Mlitham, Surrey CRU 3HD

KITS FOR SOUND EFFECTS AND OTHER PROJECTS

GUITAR EFFECTS PEDAL (P.E. July 75) Modulates the attack, decay and filter characterisilies of an producing 8 different switchable effects that can be furthe modified by manual controls. Possibly the most interesting of all the low-prleed sound effects units in our range. Clrcult does not dupllcate effects from the Gultar Overdrive Unit.
Component set with speclal foot operated switches $£ 7.6$ Component set with speclal foot operated switches Pinted circuit board
GUITAR FREQUENCY DOUBLER
(P.E. Aug. 77)

A modified and extended version of the circuit published. GUITAR OVERDRIVE UNIT (P.E. Aug. 76) Sophisticated, versatile Fuzz unit, Including varlable and switchable controls affecting the fuzz quality whilst retaining The attack and decay and also provlding filtering. Does not dupilcate the effects from the Guitar Effects Pedal an Component set using dual rotary pot
Primied circult board
GUITAR SUSTAIN (P.E. Oct, 77)
Malntalns the natural attack whilist extending note duration Component set, PCB and foot switches
WIND AND RA:N UNIT
A manua
sounds.
sounds.
Component set (incl. PCB)
Component sel (incl. PCB) $£ 4.26$ COMPONENTS SETS include all necessary resistors, capacitors, seml-
conductors, potentiometers and gransformers. Mardware such as cases, sockets knobs, keyboards, efc, are not included but most of these mav be bought separately 10\% DISCOUNT VOUCHER (EE94) TERMS: Goods in current adverts \& lists over $£ 50$ goods value (excl. P\&P \& VAT).
Correctly costed. C W.O., U.K orders Correctly costed. C.W.O., U.K. orders Valld untll end of month on cover of E.E.

PHONOSONICS

£. 69
$£ 1.62$
MAIL ORDER SUPPLERS OF QUALITY PRINTED CIRCUIT BOARDS, KITS AND COMPONENTS TO A WORLD-WIDE MARKET.

VOICE OPERATED FADER (P.E. Dec. 73)

For automatlcally reducIng music volume during "talk-over
-particularly useful for Disco work or for home-movle shows. PHASING UNIT (P.E. Sept. 73)
PHASING UNIT (P.E. Sept. 73)
A simple but effective manualiy controlted unit for introducing
the phasing sound Into live or recorded music. the phasing sound Into live or recorded music.
Component set (Incl. PCB)
PHASING CONTROL UNIT (P.E. Oct. 74)
For use with the above Phasing Unit to automaticaliy control the rate of phasing.
54.74 Component sel (incl, PCB)
CREMOLO UNIT
Based upon P.E. Sound Deslgn circult
TREBLE BOOST UNIT (P.E. Apr. 76)
Glves a much shrlller quatity to audio signals fed through it The depth of boost Is manually adjustable
WAH-WAH UNIT (P.E. Apr. 76)
The Wah-W ah effect produced by this unlt can be controlled The Wandy or by the integral automatic controiler.
Component set (Incl. PCB)
Automatically produces Wah-pedal and Swell-pedal sounds each tlme a new note Is played, Component set, PCB, special foot switches
£4.26 Component set and PCB, wlit panet switches

FUZZ UNIT
Simple Fuzz unlt based upon P.E. "Sound Design" eircuit Component set (incl. PCB)
P.E. TUNING FORK (P.E. Nov. 75)

Produces 84 switch-selected frequency-accurate tones. A LED monitor clearly displays all beat note adjustments. Ideal for tuning acoustle or electronle musicat instruments

Main component set (incl. PCB)
YNTHESISER TUNINGINDICATOR $£ 6.28$
SYNTHESISER TUNING INOICATOR
(P.E. July 77)

A simple 4-0ctave frequency comparator for use with synthesisers and other Instruments where the fuil versatlity of the P.E. Tuning Fork is not required.
Component and PCB (but excl. sw.)
c7. 45
DYNAMIC RANGELIMITER (P.E. Apr. 77)
Automatically controls sound output to within a presel level.
Comoonent set (incl. PCB)
CONSTANT DISPLAY FREQUENCY
METER (P.E. Aug. 78)
A 5-diglt frequency counter for 1 Hz to 99999 Hz with a 1 Hz sampling rate. Readout does not count visibly or flicker due to display blanking.

Printed circuit board
£24.05*
MANY MORE KITS
for Syntheslsers. Rhythm Generators, Electronic Planos and other projects, big, small, simple or complex, are available, plus a range of keyboards, separate components and

Fuller detalls of shown In our lists.
CIRCUIT AND are supplled free with all PCBs unless "as published".

PHOTOCOPIES of texts for most of the
Klts are available-prices in our lists.
LIST-Send stamped addressed envelope wlth all U.K. requests for free list oiving fuller details of PCBs, klts and other components.

$$
\text { ADD } 15 \% \text { VAT }
$$ U.K. orders-Keyboards add $£ 2 \cdot 00$ each plus VAT. Other (or current rate If changed).

oods: under $£ 15$ add $25 p$ plus VAT, over $£ 15$ add 50 p Must beadded to full total of goods: under £15 add $25 p$ plus VAT, over £15 add 50 p Must be added to full total of plus VAT, Recommended; optional insurance agalnst goods. Discount, post \&
postal mishaps, add 50 p for cover up to $£ 50, ~ £ 1-00$ for handilng, on all U.K. orders. 100 cover, etc, pro-rata.
N.B.Elre,C.I.,S.F.P.O. an d other countries are subject
to hlgher export postage rates. Does not apply to Exports.
\qquad
\qquad .

TECHNICAL TRAINING IN ELECTRONICS AND TELECOMMUNICATIONS

ICS can provide the technical knowiedge that is so essential to your success: knowledge that will enable you to take advantage of the many opportunities open to you. Study in your own home, in your own time and at your own
pace and if you are studying for an examination ICS guarantee coaching pace and if you are studying for an examination ICS guarantee coaching
until you are successful.

City and Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting

POST OR PHONE TODAY FOR FREE BOOXLET

Hi
 To: International Correspondence
 Schools

1) unt I zas Intertext House, London

SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address
Tel: .
Age:

C-MORE 2in1 DASHBOARD INSTALLATION BATTERY CONDITION DISPLAY \& CHARGE RATE MONITOR TAKES ONLYA FEW MINUTES TO FIT. ONLY£6-20 INCLUDING VAT \& P\&P
The C-More mounts easily on the dash with adhesive pads (supplled), and connects to
earth and an ignifion wire through a quick connector (aiso supplied).
The battery voltage is electronically monitored immedlately the ignition is switched on, and presented through a LED display using a novel
spllt colour comparator.

Full fitting and operating instruetions even highlight probable cause of faults when they
oceur. Helps prevent those unnecessary and occur. Helps prevent the
expensive replacements.

2 YEAR GUARANTEE

HARVELEC 1 Formby Avenue, St. Helens Merseyside, WAlo JHW.

HARVELEC
 Dept. EE), 1 Formby Avenue, St. Helens

Merseyslde, WA10 3HW. (Registered no. 2121206
Please send............C-Mores at $\mathbf{\Sigma 8 - 2 0}$ ea. (inc.) (+ $\mathbf{2 5 \%}$ for export please) to

Cheque/P.O. Value:
I understand this order will be despatched within 4 days of recelpt, and that If I'm not fully satisfled I can return the units within 10 days for a full refund of the purchase price

- C VALVE MAIL ORDER CO. (EE9) CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA119	0.11	ASY26	0.43	BC159	0.11
AAY30	0.29	ASY27	0.43	BC167	0.14
AAY32	0.45	ASZ15	1.35	BC170	0.12
AAZ13	0.19	AS216	1.35	BC171	0.11
AAZ15	0.37	AS217	$1 \cdot 35$	8C172	0.11
AAZ17	0.29	AS220	1.62	BC173	0.13
AC107	0.65	AS221	2.16	BC177	0.16
AC125	0.22	AU110	1.84	BC178	0.15
AC126	0.22	AU113	1.84	BC179	0.17
AC127	0.22	AUY10	1.84	BC182	0.12
AC 128	0.22	BA145	0.15	BC183	0.11 0.12
AC141	0.27	BA14B	0.15	BC184	0.12
AC141K	0.38	BA154	0.10	BC212	0.14
AC142	0.22	BA155	0.11	BC213	0.14
AC142K	0.32	BA156	0.10	8 C 214	0.17
AC176	0.22	BAW62	0.06	BC237	0.10
AC187	0.22	$8 A^{\prime} \times 13$	0.07	8 C 238	0.14
AC188	0.22	$8 \mathrm{BAX}^{\text {8 }} 6$	0.10	BC301	0.27
ACY17	0.92			8 C 303	0.26
ACY1B	0.86	8 ClO	0.13	8C307	0.11
ACY19	0.81	$8 \mathrm{BC1} 109$	0.14	8 C 308	0.11
ACY20	0.76	BA113	0.13	8 C 327	0.23
ACY21	0.81	$8 \mathrm{8C114}$	0.14	BC328	0.21
ACY39	1.62	8 C115	0.15	8 C 337	0.21
AD149	0.76	BC116	0.17	8C338	0.19
AD161	0.49	8 C 117	0.19	8CY30	1.08
AD162	0.48	BC118	0.11	BCY31	1.08
AF106	0.49	8C125	0.18	BCY32	.1.08
AF114	0.81	8 Cl 126	0.23	8CY33	0.97
AF115	0.81	8C135	0.16	BCY34	0.97
AF116	0.81	BC136	0.17	BCY39	3.24
AF117	0.81	BC1	0.17	BCY40	1.08
AF139	0.43	BC147	0.10	BCY42	0.27
AF186	1.30	BC148	0.09	BCY43	0.27
AF239	0.49	8 Cl 149	0.10	BCY58	0.17
AFZ11	2.97	BC157	0.10	8 CY 70	0.16
AF212	2.97	BC158	0.09	8 Cr 71	0.18

VALVES				EL32 EL33 (Thom)	$\begin{aligned} & 1.69 \\ & 3.94 \\ & 2.48 \end{aligned}$
AZ31	1.24	ECC83	0.99	EL34 (M	llard)
C8L31	1.69	ECC84	1.34		$2 \cdot 52$
CL33	2.25	ECC85	1.35	El4 1	1.41
CY31	1.13	ECC88	2.03	EL42	1.97
DAF91	0.45	ECC91	7.45	ELB1	1.24
DAF96	1.13	ECC189	1.87	EL84	1.13
DF91	0.45	ECF80	1.22	EL86	2.43
DF96	1.13	ECF82	1.35	EL91	6.92
DK91	$1 \cdot 18$	ECH35	2.25	EL95	1.49
DK92	1.41	ECH42	1.29	EL360	5.98
DK96	1.24	ECH81	1.35	EMBO	1.24
DL92	1.24	ECH83	1.41	EMB1	1.13
OL94	$1 \cdot 35$	ECH84	1.44	EM84	$1 \cdot 13$
OL96	1.24	ECL82	1.13	EM85	1.41
OY86/7	0.72	ECL83	1.69	EM87	1.69
OY802	0.95	ECL86	1.35	EN91	2.76
E80CC	6.22	EF37A	3.94	EY51	1.97
EABC80	$1 \cdot 35$	EF39	3.09	EY86	0.95
EAF42	1.41	EF40	1.29	E240	1.41
EAF801	1.97	EF41	1.35	E241	1.41
EB41	2.25	EF42	2.25	E280	0.95
E891	0.95	EF50	1.69	E281	0.95
EBC33	1.97	EF80	0.90	EZ90	1.35
EBC41	1.41	EF83	1.97	G232	1.41
EBC81	1.24	EF85	0.90	G233	4.50
E8C90	0.96	EF86	1.71	G234	2.14
EBFBO	0.57	EF89	1.80	KT61	3.94
EBF83	1.41	EF91	2.03	KT66	7.03
E8F89	0.96	EF92	$5 \cdot 63$	KT88	9.00
E8L31	2.81	EF98	1.41	KTW61	1.97
ECC4O	1.41	EF183	0.90	KTW62	1.97
ECCB1	0.99	EF184	0.95	KTW63	1.97
ECC82	0.81	EH90	1.58	MU14	1.13

INTEGRATED CIRCUITS

WTERRATED			BRRITS			$\begin{aligned} & 7454 \\ & 7460 \end{aligned}$	0.19 0.19				
			7470	0.38							
7400	0.17	7412				0.28	7432	0.32	7472	0.36	
7401	0.17	7413	0.35	7433	0.39	7473	0.39				
7402	0.17	7416	0.35	7437	0.35	7474	0.43				
7403	0.17	7417	$0 \cdot 35$	7438	0.35	7475	0.58				
7404	0.18	7420	0.18	7440	0.19	7476	0.43				
7405	0.17	7422	0.22	7441 AN	0.92	7480	0.59				
7406	0.43	7423	0.35	7442	0.78	7482	0.81				
7407	0.43	7425	0.32	7447 AN	0.97	7483	0.97				
7408	0.22	7427	0.32	7450	0.19	7484	1.08				
7409	0.22	7428	0.46	7451	0.19	7486	0.38				
7410	0.17	7430	0.18	7453	0.19	7490	0.56				

$2 \mathrm{~N} 3442 \quad 1.19$ 2 N3614 1.62 $\begin{array}{ll}\text { 2N3702 } & 0.12 \\ \text { 2N3703 } & 0.15\end{array}$ $\begin{array}{lll}\text { 2N3703 } & 0.15 \\ \text { 2N3704 } & 0.15\end{array}$ $\begin{array}{lll}2 \text { N3705 } & 0.15 \\ 2 \text { N3706 } & 0.15\end{array}$ $\begin{array}{lll}2 \mathrm{~N} 3707 & 0.15 \\ 2 \mathrm{~N} 3708 & 0.11 \\ 2 N 3709 & 0.15\end{array}$ $\begin{array}{lll}2 \text { N3709 } & 0.15 \\ 2 \text { N3710 } & 0.11\end{array}$	2 N3711	
2	0.11	
2		$\begin{array}{lll}2 N 3772 & 2.16 \\ 2 \text { N3773 } & 3.24\end{array}$ $\begin{array}{lll}2 \mathrm{~N} 3819 & 0.41 \\ 2 \mathrm{~N} 3820 & 0.51\end{array}$ 2 N3823 0.62 $\begin{array}{lll}2 N 3863 & 0.62 \\ 2 \text { N3866 } & 0.81 \\ 2 \text { N39904 } & 0.15\end{array}$ $\begin{array}{lll}2 N 3905 & 0.1 \\ 2 N 39006 & 0.1\end{array}$ 2 N4058 0.16 $\begin{array}{ll}2 N & \text { N4060 } \\ \text { 2 N4061 } \\ 0.1\end{array}$

$2 \mathrm{~N}^{2} 4062$
$\begin{array}{lll}2 N 4126 & 0.18\end{array}$
$\begin{array}{ll}2 N 4286 & 0.23 \\ 2 N 4288 & 0.25 \\ 2 N 4289 & 0.27\end{array}$
$\begin{array}{ll}2 \text { N4288 } & 0.25 \\ 2 N 4289 & 0.27 \\ 2 N 5457 & 0.39\end{array}$
$\begin{array}{ll}2 \text { N5458 } & 0.39 \\ 2 N 5459 & 0.39\end{array}$

[^0]T8A920 3.13
$\begin{array}{ll}\text { TBA9200 } & 3.13 \\ 3.36\end{array}$ $\begin{array}{ll}\text { TBA9800 } & 3.36 \\ \text { TCA } & 3700 \\ \text { TCA } & 3.36 \\ \text { TCA } & 1.55\end{array}$ DIL Sockets

| 16 PIN | 0.16 |
| :--- | :--- | :--- |
| 16 PIN | 0.18 |

LGML

(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD)
PO Box 290
TELEPHONE:
CALLERS 8 Hampton Street
ELECTRONICS
ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

- ACCESS
 - BARCLAYCARD - CASH - CHEQUE

 from Siparkrite Sparknt CLIP ON capacitive discharge electronic ignition in KIT FORM
Smoother running
Instant all-weather starting
Continual peak performance
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds Optimum fuel consumption
Sparkrite X_{4} is a high performance, high quality capacitive discharge, electronic Ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mlns}$
Because of the superb design of the Sparkrite circuit it compleiely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breake burn is eliminated by reducing the current to about $1 / 50$ th of the norm. If dependent upon the dwell time of the contact breakers for recharging the sys Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated outpuif for greatly improved cold starting. The circuit includes built in static timing light, systerns function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed sink, coil mounting clips, and accessories. Top quality 5 year guaranteed
transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated grease. Full instructions
installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 4.25$ inc. VAT. post 8 packing Electronics Design Associafes, Dept. EE 5
Electronics Design Associases, Dept, EE S (D) 614791
12 Bath Street. Walsall, WSI 30E, Phone:

Electronics Design Associates
Dept.EE 9
82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791
Name
Address
Phone your order with Access or Barclaycard
Inc. V.A.T. and PP. (U.K. only.) QUANTITY REQ'D.

X4 KIT	
TACHO PULSE £4.25	
SLAVE UNIT \&.25	

Send SAE if brochure onty required
I endose chequel:'so's for
f
Cheque No.
PLEASE STATE POLARITY POS OR NEG EARTH.
Access or Barclaycard No.
EARTH.

Viscount IV unit in teak simulate cabinel Siviver finish rolary controls and
pushbutions with marching lascia, red mains indicictor, and stero jack socket.
Functions swich for mie magnetic and crystal pichops. Iqpe tuner and aurilian.
Rear panel feat ures fuse holder OMN speaker and linut sockess 20×20 wats RMS 40×40 walts peak for use with 8 to 15 ohm speakers
Site $144^{*} \times 3^{\prime \prime} \times 10^{-1}$ approx NE W teature-units now includes ≤ 31.90
\rightarrow buitit in four channel stereo sound facility.
13.00 p 8 p

30×30 WATT AMPLIFIER

IN KIT FORM
For the experienced constructor tomplete in every detail, same facilities as Viscount IV, but with 30×30 outpul. 60×60 watts peak. For use with 2.15 ohms speakers
$£ 31.50{ }^{\text {fospo }}$

SPECIAL OFFER

30×30 WATT AMPLIFIER KIT

 with BSR P200 belt drive deck and Shure $£ 57.00$M75 cartridge.
$+p \& p f 6.00$

BSR P200

Belt dive chassis turntatle unt semi
auntonalic
$\mathbf{2 5} 5.50$

$$
£ 7.95
$$

BSR

econd dech with auto telum and cuering lever. fited with slereo ceramit cartridge 2 speess wind or hom
spindie adaplor idealiy sutted for home or disco use
OUR PACE $£ 11.25{ }^{\text {p\& }}$ p ouv pace $£ 11.25$ fiz5

GARRARD DECK

 MODEL CC 10A Record changer with cueing devicefitted with slereo cer amic cartridge Sartolitio vaur omm pinht.

UNIT AUDHE STAMD

 Can be used with TV rool Finis in chrome with decorative wo Mini Mereor castors.$£ 3.95 \quad 11.50 \mathrm{p} 8 \mathrm{p}$

BARGAIN FOR PERSONAL SHOPPERS ONLY Altone UA4

Stereo System

Features 8 watt total output. Full size BSR manual turntable with cueing and auto retum. Socket for tape in and out and stereo headphones
complete wint speaters. $£ 35.25$
Micro Cassette Recorder
Pocket size--home or office use or
£14.25
Battery operated fluorescent camping lamp.
Runs off 8 U 2 batteries:
14.80

Mullard AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE PRICE \&
ATOVER

PER PACK SEEOURPRICES

PACK 1. 2 I LP1173 10w. RMS output power audio amp modules. +1 LP 1182/2 Stereo pre amp for ceramic and auziliary ingut. OUR PAICE
$p+p \int 1.00$
$£ 5.00$

2PACK 2. $2 \times$ LPI 173 10w RMS outout Dowet audio amp modules + 1 LP $1184 / 2$ Siereo pre amp for gnetic, ctramic and auriliary inputs
illus. ouramet
$£ 7.65$

ACCESSORIES

Two Way
Suitable mains power supply parts. consisting of manns transtormer, bridg
rectither, smoothing capacitor and set of tolan steteo controak for treble. ohm bass and two $3 h^{\prime \prime} 150 \mathrm{hm}$ mid.
 per stereo pai VAILABIE AISO TO PURCMASERS OF TME $10+10$ AMPLIFIEP KIT

$10+10$ AMPLIFIER KIT

An opportunity to buy a 10 watts per channet stereo
amplifter kit which is suitable for use with a ceramic cartridge. The amplifier utilises proven Mullard modules and is available at a very tompetitive price. The amplifiet kit comes complete with instructior.s and includes: a Mullard LP1 183 stereo preamplifier module, wo LP 1173 power amplifiers with integrat heatsinks, a power supply. Zobel networks, frent and back mounting panels, a finished a scia panel. all control potentiometers bass. treble. volume and balance), switches, input, output and he adphone to house the finished unit. Size approximatel
Amas $£ 12.25$

BARGAINS FOR PERSONAL SHOPPERS

 LCD Solar 5 function with backite$£ 7.40$
LCD Solar Chrono 9 function with backlite thanless steel finish case and strap
f9.55
Chrono stap wateh 9 lunction with back hite stanless steel finish case and strap.
Solar Alatm ICD
£21.95
AM/FM OIGITAL CLOCK
RADIO Accurate 4 Digh: Electronic Ciock wit
display Biszer and

125 wat Powe Amp Moule
Mans pomer supply to atoreve mit

votomastir Super Scaer fy Game
wh pistol mains opetation
PORTABLE RAOIO/CAS SETTE RECOROER, AM/FM with clock
LW. MW. SW. VHF mains/battery operation
$£ 42.90$
mic auto stop
f24.50

323 EDGWARE ROAD LONDON W2 21AHIGH STREET, ACTON W3 6NG ACTON: Mail Order only. No callers ALL PRICES INCLUDE VAT AT 15% All items subiect 10 availability. Price correct at
and subjoct to change without notice.
NOTE: Persons under 16 years not seived without parent's authorisation.

50 WATT MONO

 DISCO AMP £ 30.60
50 walts rms. 100 watrs peak ounput. $81 g$ features include two disc inpuls, both for ceramic cantridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independeni bass and trehle controls and master volume.

100 WATT

MONO DISCO AMP
Size approk
$14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%^{\prime \prime}$
Brushed alumunium

Five vertical slide controis, mas ter volume
lape level, mic level, deck level, PLUS INTEA OECK FADEA
tor perleci graduated change from record deck No 1 to Na. 2. or vicy versa. Pre fade level cont: of (PFL) lets YOU isear next dist before fading Dutput 100 watts RMS 200 watts peat

FOR PERSONAL SHOPPERS ONLY

DUO II SPEAKERS
Atractive teak tinish, modern de sign. incorporating 2 speaker units - 8 . approx wooter and 2 h " appron. weeter. 45 to 1800 Hz . Impedance 8 ohm. . Power 15 watts AMS
$184 \mathrm{H}^{\prime \prime} \times 13 \mathrm{~h}_{\mathrm{n}} \times 7 \mathrm{k}$ " Per siereo pair $£ 16.50$ f6.50 plop

FOR PERSONAL SHOPPERS ONLY

STEREO RADIOGRAM CABINET

finished in a natural teak veneer with opening top. Easily modified to accommodate stereo equipment of your choice.

Price $£ 10.95$

EDITOR

F. E. BENNETT

ASSISTANT EDITOR

B. W. TERRELL B.Sc.

PRODUCTION EDITOR

D. G. BARRINGTON

ART EDITOR

R. F. PALMER

ASSISTANT ART EDITOR

P. A. LOATES

TECHNICAL ILLUSTRATOR

D. J. GOODING

EDITORIAL OFFICES

Kings Reach Tower,
Stamford Street,
London SE1 9LS
Phone: 01-261 6873

ADVERTISEMENT MANAGER

R. SMITH

Phone: 01-261 6671

REPRESENTATIVE

N. BELLWOOD

Phone: 01-261 6865

CLASSIFIED MANAGER

C. R. BROWN

Phone: 01-261 5762

MAKE-UP AND COPY
DEPARTMENT
Phone 01-261 6618

ADVERTISEMENT OFFICES
Kings Reach Tower
Stamford Street,
London SE1 9LS

Projects...Theory ...

and Popular Features ...

The Citizens Band Radio lobby with influential support from its industrial backers has made a determined effort to convince the government that CB should be legalised in the UK. The Home Office is now actively considering the matter and a further announcement on the subject is expected in the coming months.

We believe there is considerable popular support for CB. Since, however, a decision to legislate in favour of such a service would be an irrevocable step, all the problems as well as the advantages of CB must be carefully considered beforehand. We must certainly heed the experiences of those countries which have legalised CB.

The "rights" of individuals freely to communicate with one another over the air has to be weighed carefully against the abuse of this facility that would certainly be indulged in by a minority. It might be asked, are we to suffer a new kind of vandalism? The work of the libertine with an aerosol paint can is all too permanently obvious in our cities and suburbs. Are we about to place in the hands of similarly irresponsible anti-social types quite sophisticated means whereby nuisance, if not actual offence, could be caused to ordinary innocent listeners in indescriminate fashion at anytime?

The authorities are unable to effectively police the Amateur Bands, where pirates are active, often in a most obnoxious way. Is it conceivable
that the authorities would be more successful in monitoring the vastly greater number of $C B$ transmitters that would soon be in operation? The administration machinery to "book" and prosecute offenders would be costly, to say the least.
The only alternative we can fall back upon is self-policing by CB users themselves. The acceptance of a code of conduct and the ostracising of deliberate and persistent offenders -these are vital educational matters to which the lobbyists for CB should now be directing their own attention. This much they owe to that large number of potential users of CB whose support they appear already to have secured.
Whether a "fun thing", a social amenity, an undoubted blessing for the lonely, or a swift bringer of aid in an emergency, the possibility of legalised two-way radio contact between members of the public is an attractive and appealing proposition. In today's permissive social climate, and recognising the "state of the art" in telecommunications design, it is hard to resist the demand of the ordinary individual to be freed from the virtual prohibition imposed on this form of communication for the past 75 years, ever since the first Wireless Telegraphy Act became law in 1904.

Our October Issue will be publlshed on Friday, September 21. See page 577 for detalls.

Readers' Enquiries

We cannot undertake to answer readers' letters requesting modifications, designs or information on commercial equipment or subjects not published by us. All letters requiring a personal reply should be accompanled by a stamped self-addressed envelope.

We cannot undertake to engage in discussions on the telephone.

Component Supplies

Readers should note that we do not supply electronic components for building the projects featured in EVERYDAY ELECTRONICS, but these requiremente can be met by our advertisers.
All reasonable precautions are taken to ensure that the advice and data given to readers are reliable. We cannot however guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press.
VOL. 8 NO. 9SEPTEMBER 1979
CONSTRUCTIONAL PROJECTS
VARICAP MW RADIO An unusual design using varicap tuning by R. A. Penfold 548
SIMPLE TRANSISTOR TESTER A quick gain and leakage tester by D. J. Edwards 553
MINI MODULE: 11-LOW POWER AUDIO AMPLIFIER Up to 1 W output by George Hylton 556
EE70 REFLEX LOUDSPEAKER A touch of luxury for your hi fi by R. F. Stephens 563
CHASER LIGHT Two running light patterns and a strobe-for discos and parties by J.R.W. Barnes 572
NICKEL CADMIUM BATTERY MONITOR End point voltage indicator for rechargeable batteriesby A. J. Adamson586
GENERAL FEATURES
EDITORIAL 546
COMPETITION RESULT Winners of the Antex soldering competition 555
DOING IT DIGITALLY Part 12: Concluding article. Parallel addition and analogue/digital sensing by O. N. Bishop 558
MICROPROCESSOR BASICS Part 7: Concluding article. Guide to choosing a home computer by R. W. Coles 568
COUNTER INTELLIGENCE A retailer comments by Paul Young 571
FOR YOUR ENTERTAINMENT A question of bugging, double exposure and off the record by Adrian Hope 578
EVERYDAY NEWS What's happening in the world of electronics 580
RUMMAGING AROUND Money saving ideas for the constructor by Keith Cadbury 582
RADIO WORLD A commentary by Pat Hawker 585
JACK PLUG \& FAMILY Cartoon by Doug Baker 587
SQUARE ONE Beginners Page: Putting together a project 588
SHOP TALK Retail news, products and component buying by Dave Barrington 590
CB for UK? An unbiased look into a burning question by F. C. Judd 593
CROSSWORD No. 19 by D. P. Newton 594
PROFESSOR ERNEST EVERSURE The Extraordinary Experiments of. by Anthony J. Bassett 597
READERS LETTERS Your news and views 599

Certain back issues of EVERYDAY ELECTRONICS are available worldwide price 70 p inclusive of postage and packing per copy. Enquiries with remittance should be sent to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. In the event of non-availability remittances will be returned. Binders
Binders to hold one volume ($\mathbf{1 2}$ issues) are avallable from the above address for $\mathbf{£ 3} \mathbf{~ 7 5}$ (home and overseas) inclusive of postage and packing. Please state which Volume. Subscriptions
Annual subscription for delivery direct to any address in the UK: $£ 8 \cdot 50$, overseas: c9.50. Cheques should be made payable to IPC Magazines Ltd., and sent to Room 2613 Kings Reach Tower, Stamford Street, London SE1 9L.S.
(c) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in EVERYDAY ELECTRONICS is fully protected, and reproductions or imitations in whole or in part are expressly forbidden.

-

Variable capacitance diodes (sometimes called varicaps) have been popular for use in the tuning circuits of f.m. receivers for a number of years now, but they are not used to anything like the same extent in a.m. sets. One reason for this is probably that all the early varicaps were only capable of fairly low capacitance swings, and were therefore unsuitable for tuning over the m.w. or l.w. bands in a single range.

USE IN F.M.

One of the main advantages of varicaps in f.m. receivers is that the tuning diode can be mounted near to the appropriate inductor while the tuning potentiometer can be as far away as one desires.

The wiring to v.h.f. tuned circuits has to be extremely short, and so an ordinary tuning capacitor has to be mounted very close to the associated inductor(s), which is often inconvenient. Finally, preset switched tuning is popular in f.m. sets where only a few stations are available and varicaps are ideal for this type of tuning.

NOVEL ALTERNATIVE

It must be admitted that in an ordinary a.m. radio varicap tuning has no real advantages. On the other hand it has no serious disadvantages either, and to the home-constructor a.m. varicaps offer a novel alternative to an ordinary tuning capacitor and have considerable interest value. Although the use of a varicap results in some increase in cincuit complexity, the rather high cost of tuning capacitors means that there is little difference in the cost of the two systems.

The simple varicap - tuned receiver described here provides coverage of the entire m.w. band and has an output which is suitable for a crystal earphone. It is reasonably compact with the case dimensions being only about $120 \times 65 \times$ 40 mm , and is easy to construct.

VARICAP BASICS

A capacitor merely consists of two plates of a conducting material separated by a thin insulating layer known as the dielectric. The value of a capacitor is governed by several factors, two of which are the effective plate area and the thickness of the dielectric. An ordinary variable capacitor provides a varying effective plate area to give an adjustable capacitance, as will be obvious if one of these components is carefully inspected.

A varicap uses a dielectric of variable thickness to provide an
adjustable capacitance, but this is not an effect which can be directly observed.

DEPLETION LAYER

Modern diodes are made frons two pieces of semiconductor material which are fused together. When reverse biased, connected so that the diode does not conduct, an insulating layer known as the depletion layer is formed between the two pieces of semiconductor.

In effect, the semiconductor materials form the two plates of the capacitor and the depletion layer acts as the dielectric. The thickness of the depletion layer varies with the level of the reverse bias, increased bias voltage producing greater thickness. This gives the diode a capacitance value which decreases with increasing bias voltage.

This effect is produced by all diodes, and the main difference between a varicap and any other diode is that it has been designed to give certain capacitances (within reasonable tolerances) from given bias voltages. In the case of an a.m. varicap it must also be designed to provide an unusually high capacitance swing.

BASIC CIRCUIT

The basic method of using a varicap diode is shown in Fig. 1. A stabilised voltage is applied to a potentiometer, and a variable voltage is available at the slider of this component. The input
voltage must be stabilised of course, as otherwise any voltage fluctuations due to battery ageing etc. would produce a shift in the tuning.

TUNING VOLTAGE

The tuning voltage is applied to the varicap via a high value resistor as there would otherwise be virtually a short circuit on the varicap at very low tuning voltages. This would not upset the operation of the varicap, but a low resistance in parallel with the tuning capacitance would almost certainly have a detrimental effect on the circuit being tuned. There are no significant losses through the resistor as the varicap does not conduct and only minute leakage currents flow through these two components.
The varicap must be connected to the main circuit via a d.c. blocking capacitor to ensure that the tuning voltage is not affected by d.c. potentials in the main circuit.

A MVAM115 varicap is used in the receiver described here, and the voltage versus capacitance graph for this device is shown in Fig. 2.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Varicap Medium Wave Radio is shown in Fig. 3.
The receiver is quite conventional apart from the method of tuning, and utilises the well known ZN414 i.c. Resistor R6 biases IC1 via the ferrite aerial coil, L1.

Fig. 1. Basic circuit for using a varicap diode.

Fig. 2. Graph showing how the capacitance varies with applied voltage.

Capacitor C6 provides an r.f. path to earth for the "earthy" end of L1.

The ZN414 provides an a.g.c. (automatic gain control) action as well as r.f. amplification and demodulation. Capacitor C8 provides r.f. filtering at the output of the device and the audio output signal is developed across R8.

A supply potential of about $1 \cdot 3$ volts is required for the ZN414 circuitry, and this is obtained from
the main 9 volt supply via the simple shunt stabiliser circuit which is comprised of R7, D5, D6, and C10. Diodes D5 and D6 are forward biased silicon diodes which each produce a voltage drop of about 0.65 volts, giving the required $1 \cdot 3$ volts in total.

The audio output from IC1 is fed to a straight forward high gain common emitter amplifier, TR2. The earpiece is driven direct from the collector of TR2, and no d.c. blocking capacitor is required for a crystal earpiece (other types are unsuitable for use with this set). Capacitor C11 provides r.f. filtering at the output and helps to prevent instability from developing.

TUNING CIRCUIT

The varicap tuning circuit is along precisely the same lines as Fig. 1, as should be apparent from reference to the two diagrams concerned. The only point which requires any further amplification is the tuning voltage source.

The highest stablised voltage which can be obtained direct from a 9 volt battery is about $7 \cdot 5$ volts, and a level of 6.8 volts is preferable as it will give better regulation and longer battery life. Unfortunately, such a voltage would not give a very high maximum to minimum capacitance ratio from a MVAM115 varicap, and although coverage of the m.w. band would be possible, this would be less than optimum conditions, and would leave no margin for error in the winding of the aerial coil, etc.

Fig. 3. Complete circuit diagram for the Varicap Medium Wave Radio.

Abstract

By means of an audio oscillator a stabilised voltage is generated which is higher than the normal supply. A proportion of this voltage is tapped off by the tuning control and applied to a voltage controlled tuned circuit. This part of the circuit contains rather a special device-a varicap diode. This device is able to alter its capacitance with voltage, thus varying a tuned circuit. The remainder of the circuit is conventional, changing the received radio frequency selected by the tuned circuit into audio, which is then applied to the earpiece.

OSCILLATOR

It is therefore preferably to step up the 9 volt supply to enable a higher tuning voltage to be obtained. In this case a potential of 13 volts is used, and this provides a swing of approximately 25 to 400 pF across the varicap, which is more than adequate.

The step-up in voltage is obtained by rectifying and smoothing the output from an a.f. oscillator.

The oscillator uses TRl in a conventional phase shift oscillator configuration. This oscillates sufficiently violently to produce a high output voltage swing provided the output is only lightly loaded, but does not oscillate so violently as to produce high frequencies which would cause radio interference, as would an astable multivibrator.

Capacitor C4 couples the output from the oscillator to the rectifier

COMPONENTS

Resistors

R1	$15 \mathrm{k} \Omega$	R6	$100 \mathrm{k} \Omega$
R2	$15 \mathrm{k} \Omega$	R7	$3 \cdot 9 \mathrm{k} \Omega$
R3	$1 \cdot 5 \mathrm{M} \Omega$	R8	680Ω
R4	$4 \cdot 7 \mathrm{k} \Omega$		$2 \cdot 2 \mathrm{M} \Omega$
R5	$2 \cdot 2 \mathrm{M} \Omega$		$5 \cdot 6 \mathrm{k} \Omega$
	$1{ }^{1} \mathrm{~W}$ carb	10\%	

Potentiometer
VR1 $2 \cdot 2 \mathrm{M} \Omega$ carbon lin.
Semiconductors
TR1 BC109C silicon non
TR2 BC109C silicon npn
IC1 ZN414 t.r.f. radio i.c.
D1 OA91 germanium
D2 OA91 germanium
D3 BZY88C13V 13 V 400 mW Zener diode
D4 MVAM115 varicap diode
D5. 1N4148 silicon
D6 1 N4148 silicon
Miscellaneous
S1 miniature single pole toggle
B1 9V PP3 battery
SK1 3.5 mm jack socket
L1 75 turns 32 s.w.g. enamelled copper wire on ferrite rod (see text) Stripboard 0.1 inch matrix 15 strips by 37 holes; Verobox or similar case about $120 \times 65 \times 40 \mathrm{~mm}$; ferrite rod $75 \times 9.5 \mathrm{~mm} ; 32 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire; PP3 battery connector; crystal earpiece with 3.5 mm plug; large round knob; connecting wire.

Capacitors

C1 $0.01 \mu \mathrm{~F}$ polyester
C2 $0.01 \mu \mathrm{~F}$ polyester
C3 $0.01 \mu \mathrm{~F}$ polyester
C4 $0.47 \mu \mathrm{~F}$ polyester
C5 $10 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
C6 $0.01 \mu \mathrm{~F}$ polyester
C7 560 pF ceramic plate
C8 $0.1 \mu \mathrm{~F}$ polyester
C9 $0.1 \mu \mathrm{~F}$ polyester
C10 10 $\mu \mathrm{F}$ 10V elect.
$\mathrm{C} 110.01 \mu \mathrm{~F}$ polyester
C12 $100 \mu \mathrm{~F}$ 10V elect.
and smoothing circuit which consists of D1, D2, and C5. This produces an output voltage of about 9 volts positive with respect to the positive supply rail, or 18 volts with respect to the negative supply rail. Zener diode D3 clips and stabilises the tuning voltage at a level of 13 volts.

Capacitor Cl 2 is a supply decoupling capacitor and is mainly needed to prevent the a.f. signal from TR1 being fed to the rest of the circuit and being audible in the earphone. The current consumption of the receiver is only about $3 \cdot 5 \mathrm{~mA}$ which results in the PP3 battery supply having an extremely long life.

FERRITE AERIAL

The ferrite aerial, L 1 is home made and constructional details are provided in Fig. 4. A ferrite rod measuring $75 \times 9.5 \mathrm{~mm}$ is required, and it is unlikely that a rod of this length is available. This makes :t necessary to cut down a longer rod to the required length.

Ferrite is very hard and cannot be cut right through using a hacksaw. However, if a fairly deep groove is cut right around the rod at the point where it is to be severed, as ferrite is a very brittle material it will then be possible to simply snap the rod in two. It is recommended that an old hacksaw blade is used while this grove is cut as the blade is likely to be severely blunted.

About 3 metres of 0.28 mm diameter (or 32s.w.g.) enamelled copper wire are required for the aerial coil. Start by taping the wire to one end of the rod using 19 mm wide insulation tape and leaving a leadout wire about 100 mm long. Then neatly wind 75 turns of wire around the rod with the turns closely spaced.

Finally, use another band of insulation tape to bind the free end of the wire to the rod, and then cut the remaining wire to leave a second leadout wire about 100 mm long. The ends of the lead-

VARICAP MW RADIO

INSULATING TAPE SECURING ENDS OF WINDINGS
 OPPER WIRE
(75 TURNS)
(75 TURNS) ALL DIMENSIONS IN mm
e OUT UNDERSIDE VIEWS

Fig. 4. Complete constructional details for the receiver. At top left is shown details for making the ferrite aerial. It is advisable to follow exactly the layout given here to prevent instability problems. Be careful when soldering in the varicap diode and the i.c.-both are sensitive to heat.

The completed circuit board for the Varicap Radio. The varicap diode can be seen in the top right corner.
out wires must be stripped of insulation and tinned with solder before they can be wired into circuit.

COMPONENT BOARD

Apart from the controls and battery, all the components are mounted on a $0 \cdot$ linch matrix stripboard which has 15 copper strips by 37 holes. Commence by cutting a suitable piece of stripboard to the correct size using a hacksaw and then clean up any rough edges using a small file.
The two 3.2 mm diameter mounting holes should be drilled in the board and the breaks in the copper strips made, see Fig. 4. Next the ferrite aerial is glued in position using a generous amount of epoxy adhesive, or some similar high quality adhesive.

The various components can now be soldered into position with the semiconductors being left until last. Be careful not to overheat diodes D1 and D2 when they are being soldered into circuit as these
are germanium types, and are more easily damaged by overheating than the other devices used in the receiver.
A Verobox is used as the housing for the prototype, but any similar non-metallic case should also be suitable. The general layout of the unit can be seen from the photographs and it is advisable to follow this layout carefully as otherwise it is quite possible that difficulty will be experienced in fitting all the parts into the case.

FRONT PANEL

The tuning control, VR1 requires a 10 mm diameter mounting hole and is mounted about 23 mm to right of centre on the front panel. SK1 is a 3.5 mm jack socket which is mounted low down on the left hand side of the front panel. The usual open construction sockets of this type require a 6.5 mm diameter mounting hole.

The on/off switch, Sl is mounted a little below centre on the right hand side of the case, and the size
of the required mounting hole will depend upon the make and type of switch used. Note that this must be a miniature switch if it is to fit into the available space.

When the component panel has been competed and the controls and output socket have been mounted, the remaining wiring can be completed. This is all illustrated in Fig. 4. Multistrand p.v.c. insulated wires about 100 mm long are used to connect the controls and SK1 to the component panel.

The Verobox has threaded mounting holes in the rear section, and the component board is mounted on the set of these at the top of the case using short M3 mounting screws. With other cases short M3 or 6BA mounting bolts with nuts can be used to hold the board in position. The PP3 battery fits into the space at the bottom of the case.

IN USE

It is not necessary to align or adjust the finished receiver in any way, and it is ready for immediate use. The unit will provide good reception of the usual BBC m.w. stations, and a few foreign stations as well after dark.

One advantage of the varicap tuning is that the cramped tuning which usually occurs at the high frequency end of the band is absent. This is because at the low capacitance end of its characteristic the MVAM115 diode produces only a relatively small capacitance swing for a given voltage change, as can be seen by referring back to Fig. 1. This provides a sort of bandspread effect at the high frequency end of the band.

The completed radio with cover removed showing rough posi-
tioning of battery and board.
The finished Varicap Radio showing front panel tuning control and an earpiece plugged into the set.

WHEN you are taking your first tentative steps in the exciting field of electronics there can be many pitfalls and experience is hard won.

The first thing the serious amateur should equip himself with is test gear. This need not be expensive or complicated equipment, but can be extremely useful and instructive in guiding you through the snags that dog most early attempts at electronic construction.

GO/NO-GO TESTER

A multimeter must be the first priority in this respect, followed by capacitance and transistor testers. It is unrealistic to attempt to build your own multimeter and there are many designs for simple capacitance testers, but there seems to be a vacancy to be filled for a simple GO/NO-GO type transistor tester.

There are many designs for transistor testers which can accurately portray the various parameters of transistors, and while these are undoubtedly excellent pieces of equipment they are somewhat expensive and complicated for the amateur, providing a vast array of functions, many of which are of no use to the beginner.

The circuit to be described will allow the simple test of transistors for gain and leakage and could be used to determine whether they
are $n p n$ or $p n p$ devices by means of the polarity switch, the position for maximum gain indicating type.

GAIN AND LEAKAGE

To find out if a transistor is working, you have to test two things, its gain and its leakage.
depends on the d.c. current gain (h_{FE}) of the transistor. The lower this figure, the smaller the current flow. For our purposes, however, it is sufficient to know that a current injected into the base will cause collector current to flow.

Leakage is quite simply the current which flows between the

Fig. 1. Measuring the gain of a transistor.

Fig. 2. Measuring the leakage of a transistor.

The gain of a transistor is a figure indicating by how many times the transistor amplifies current. The gain is found by applying a known current to the base and measuring current through the collector/emitter circuit (Fig. 1).

The transistor acts quite simply as a variable resistor, the amount of resistance between emitter and collector depending on the current flowing into the base. The larger this current, the lower the resistance of the transistor and consequently more current flows between collector and emitter.

Obviously therefore, for a given base current the collector current
collector and emitter of the transistor when the base is left "floating" (Fig. 2). How much current "leaks" depends upon the inherent resistance of the transistor.

REVERSAL SWITCH

These two tests give us the basis for a transistor tester for $n p n$ transistors. To test pnp transistors as well, we must add a polarity reyersal switch and this gives us our final circuit (Fig. 3). The inclusion of R2 is simply to provide some degree of protection to the meter if the transistor under test is short circuit.

construction staris hate

The construction of the author's unit can be seen in Fig. 4 but the layout is by no means critical. No circuit board is used as there are so few components and the components themselves can often be salvaged from scrap equipment.

VALVE SOCKET

The transistor test socket, it may be noted, is a nine-pin valve socket as opposed to the usual
three-pin transistor socket ff it is wired up as shown this wht provide facilities to test all the various types of transistor without having to twist their leads to fit a three-pin socket. It will also accept the Mullard range of Lockfit transistors such as BC148 and BF194 for example.

METER

Turning to the meter, it will be seen that this can be chosen from a wide range of moving coil instruments. A full-scale deflection (f.s.d.) of $200 \mu \mathrm{~A}$ to 10 mA is quoted, but this needs some clarification.

For testing silicon transistors, which are almost universally used nowadays, this range is fine. Silicon transistors have extremely low leakage (fractions of a $\mu \mathrm{A}$) and should not register at all, whatever sensitivity meter is chosen.

If you intend to test germanium transistors as well though, their leakage is usually a few hundred $\mu \mathrm{A}$ and if you're using a meter with a f.s.d. of 1 mA or less this can cause confusion between leakage and gain readings.
The author's unit in fact uses a tape recorder level meter with a f.s.d. of about $200 \mu \mathrm{~A}$; but after deciding that it would be an advantage to test germanium transistors also, this meter was shunted by a

Fig. 3. The final circuit diagram for the Simple Transistor Tester.

Note that this circuit arrangement differs from that in Figs. 1 and 2. The meter is connected in the emitter circuit and so reads (Ic + Ib) which is of little consequence.

Fig. 4. The layout and interwiring of the components in the case.

The completed prototype tester showing positloning of components. shunt resistor is shown connected across the meter terminals (see text).

COMPONENTS

Resistors
$\left.\begin{array}{ll}\text { R1 } & 820 \mathrm{k} \Omega \\ \text { R2 } & 3 \cdot 3 \mathrm{k} \Omega\end{array}\right\}$ see text
Miscellaneous
S1 Single-pole single-throw switch
S2 Double - pole double . throw switch
M1 Moving coil meter $200 \mu \mathrm{~A}$ to 10 mA f.s.d. (see text).
SK1 Nine-pin valve socket
B1 9V PP3 battery Battery connector. Aluminium box $102 \times 70 \times 38 \mathrm{~mm}$ approx., (AB3). Stand-off anchor tag. Knob for S 2.

resistor connected across it to decrease the sensitivity to about 2 mA .

RESISTOR SELECTION

After selecting your meter, the next thing to do is select R1 and R2.

To select R2 simply connect the meter in series with the battery and a 50 kilohm variable resistor. Set the latter to maximum resistance and then reduce its resistance gradually until the meter gives full scale deflection. Measure the resistance on a multimeter, subtract 20 per cent from this figure and replace the variable resistor with a final resistor having the nearest preferred value. This resistor, while offering some protection to the meter, will also allow the battery to continue being used towards the end of its life.

To select R1 (which must be selected after R2 has been installed) wire in its place a 2 megohm variable resistor, and insert a high gain transistor (such as BCl09
$\min h_{\text {PE }}$ 180) into the socket. With the function switch set to gain, the variable resistor is turned until a nearly full-scale reading is obtained on the meter. The resistance is noted at this point and the nearest preferred resistor is insalled.

This completes the construction of the tester.

USING THE TESTER

Apart from testing transistors and identifying polarity, the tester can in its present form give an indication of the $h_{\text {PE }}$ of unmarked transistors by comparison with known specimens.

By stabilising the supply voltage, installing a larger meter and applying a known current to the base, the gain could be read directly off the meter for more demanding purposes.

There are many cheap transistors to be had from bargain packs and scrap boards and this tester will help sort out the duds. And finally, it is a wise constructor

The finished unit showing front panel layout
who checks his components before he uses them in a circuit.

First Prize

Senders of this selection then took part in an eliminating contest to determine the winner of the first prize ... which goes to Mr. John Slater of Sheffield. Mr. Slater wins a special Antex Soldering Kit-comprising two soldering Irons, two stands, six iron-coated blts, solder and a heatsink.

Second Prize

The following six second prize winners are each awarded their choice between an Antex CX or X25 soldering Iron, plus a stand:
R. Hanson, Huddersfleld, F. Haydon, Maidstone, J. McDonnell, Hockley, M. Osborne, Flitton, A. Rae, Aberdeen, A. Wildgoose, Leeds.

Runners-up

A similar choice of soldering Iron goes to each of these 18 runners-up:
B. Carey, Bexhill-on-Sea, V. Clarke, Peterborough, B. Coggins, Melksham, K. Devereux, Hitchin, H. Evardson, Cleethorpes, B. Flatters, Thurlby, R. Foster, Hallfax, C. Handley, Birkenhead, P. Moyes, Enderby, K. Oldham, Hyde, G. Parker, Ware, C. Pepper, Stoke-on-Trent, D. Rose, Dawlish, A. Rushworth, East Molesey, A. Stansfield, Todmorden, J. Stone, Wordsley, D. Thomas, Porthcawl, K. Welsh, Macclesfleld.

In our April issue we featured a competition in which entrants were asked to place eight aspects of soldering in order of importance in getting the very best results.

Having considered all entries, the judges decided the best received were a small number of identical attempts listing the following selection:

1st-E; 2nd-C; 3rd-A; 4th-K;
5th-d; 6th-B; 7th-D; 8th-L.
current, except that since the two base-emitter junctions are in series across the bias source the bias voltage has to be doubled to 200 mV for the pair.

This 200 mV must be stable against current changes and should fall as the ambient temperature rises to give a measure of thermal stabilisation.

The answer is to derive the bias from a semiconductor. I found that almost any germanium $p n p$ alloy transistor develops the right bias when connected as a "transistor diode"; i.e., with its collector connected to its base to form the diode cathode, and its emitter used as the anode.

In the prototype the "bias diode" was an OC81 but the following types were tried and found satisfactory: ACY27, AC188, GET113, GET872, OC45, 0C71, 0C76, OC81Z, and OC306,
as well as some nameless germanium switching transistors salvaged from old "computer boards".

SETTING UP

The value given for R 5 (220kilohm) is correct for an average driver transistor, which should be BCI07B, BC108B or BC109B. The "B" signifies that the current gain is around 300 . There is however some danger that 220 kilohm may not be quite correct for your particular driver transistor because of the "spread" of current gain among different specimens of the same nominal type.

To check, measure the d.c. voltage between the emitters of the output pair and "earth" (battery negative). Do this with the loudspeaker connected or a 10 ohm resistor in its place. The voltage should be half the

Fig. 2. Component layout on a plywood base.

Components

Resistors
R1 $4.7 \mathrm{k} \Omega$
R2 $10 \mathrm{M} \Omega$
R3 $100 \mathrm{k} \Omega$
R4 $3 \cdot 3 \mathrm{k} \Omega$
R5 $220 \mathrm{k} \Omega$ (See text)
R6 $1 \mathrm{k} \Omega$
All carbon film, 5% or $10 \%+W$
Capacitors
C1 100 n $(0.1 \mu \mathrm{~F})$ polyester
C2 100 n $(0.1 \mu \mathrm{~F})$ polyester
C3 $220 \mu \mathrm{~F}, 250 \mu \mathrm{~F}$, or $330 \mu \mathrm{~F}$ 16 V elect.
C4 $\quad 1000 \mu \mathrm{~F} 16 \mathrm{~V}$ elect
Semiconductors
TR1, 2 BC107B, BC108B or BC109B
$\left.\begin{array}{l}\text { TR3 } \\ \text { TR4 } \\ \text { TR5 }\end{array}\right\}$ See text

Miscellaneous

Small piece of plywood for base. $\frac{1}{2}$-inch panel pins or 15 mm household pins. Cooling clips for TR4, TR5 (Most transistors specified take "TO-1" clips). Volumecontrol with on/off switch if required.
battery voltage. If it is out by more than half a volt full output power will not be obtained and a new R5 is advisable. To raise the measured voltage, increase R5 and vice versa.

CONSTRUCTION

The logical housing for the Mini Amplifier is inside the cabinet of whatever loudspeaker you use. For this reason no cabinet is specified here; but if you have a speaker but no cabinet it is easy to make one from wood.

The Mini Amplifier circuit itself can be assembled on a plywood base.

To suit my own loudspeaker cabinet I used a base measuring $105 \times 48 \mathrm{~mm}$. This enabled the components to be arranged as in Fig. 3. For anchorage points I used half-inch panel pins of steel. The alternatives are brass ones (which take solder better) or plated domestic pins: the 15 mm type known to stationers as Lills are very suitable.
To minimise the amount of heat to sensitive components connect and solder as you go, in this order: plain connections, resistors, capacitors and finally semiconductors. Remember
that germanium semiconductors are particularly vulnerable to overheating.

Unless your loudspeaker has a very high impedance (for example 80 ohms) a large battery will be needed because the drain can be quite heavy. This is especially true when the amplifier is driven continuously by a steady signal such as the sine waves used in compiling Fig. 2.
For speech and music the demand is more intermittent but will still peak to the sort of values indicated during loud continuous passages. Remember to leave space inside your speaker cabinet for a PP9 or similar large 9 V battery.

Because the power dissipated by the output transistors is comparatively high when a low-impedance loud" speaker is used some safety precautions are necessary when using loudspeakers of less than 10 ohms impedance.

The first is simply to restrict the input signals to speech and music, because these impose much less strain than continuous signals such as the output of an audio oscillator.

The second precaution is to fix TR3 so that it is in thermal contact with the output transistors so that if they get warm the bias transistor gets warm, too. Assuming that the output transistors are insulated from their cooling clips, the easiest way to ensure thermal contact is to cement TR3 to a cooling clip.

If you must use a low-impedance speaker with continuous signals then an extra precaution is needed: connect $3 \cdot 3$ ohms in each emitter lead of the output transistors, so that the output current passes through this on its way to or from C3. It is essential to use two separate resistors, one for TR4 and one for TR5, connected together at C3 only. Half-watt resistors are suitable.

VOLUME CONTROL

Although no volume control is included in the circuit it will generally be convenient to add one at the input and also to use a control with a combined on/off switch.

The slider is connected to Cl , and the input across the full resistance track, one end of which is earthed. Any value of resistance may be used, but remember that the resistance falls across the input and therefore reduces the effective input impedance.

This may be no bad thing because high input impedances invite hum and can make screening necessary. Reducing the input impedance reduces the hum, at the price of loss of sensitivity for signals which come from high impedance sources. A good compromise value which preserves a reasonably high impedance is 47 kilohms . A log. law potentiometer should be used.

Next Month: Universal Oscillator.

DONRE II IIGATALIII

(N THIS final part we develop a parallel adding circuit. We also look at ways in which TTL can be used in the measurement of continuously variable quantities, such as temperature, and design a practical digital thermometer.

PARALLEL ADDITION

Last month we used a one-digit adder, fed numbers into it one digit at a time, and recorded the sum a digit at a time. Readers probably found this serial addition a rather slow and tedious process and will be glad to hear that this month we are arranging for the i.c. to perform a larger share of the work

The added i.c. used this month, is the 7483 (Fig. 12.1) which adds two four-digit numbers simultaneously and all the carrying over between digits takes place within the i.c.

One of the numbers to be added is made the input to pins A_{1}, A_{2}, A_{3} and A_{4}, where A_{1} is the least significant digit, and A_{4} is the most significant digit. The other number is input to pins B_{1}, B_{3}, B_{3} and B_{4}.
If there is any carry-in from some previous stage of addition, there is an input pin for this, but for the adding circuit described here we shall simply ground the carry-in.
The output from the i.c. gives the sum in digits S_{1}, S_{2}, S_{3} and S_{6}, with any carry-out from m.s.d. appearing at C_{4}. We can consider C_{4} to be a fifth digit (becoming the m.s.d. if used) which appears in such additions as $1101+1001=10110$.

ADDING SYSTEM

The system for an adding circuit based on the 7483 is shown in Fig. 12.2a and wired up on the Test-Bed in Fig. 12.2b. The keyboard provides inputs to $A_{1}-A_{4}$, representing the first of the two numbers to be added.

Assuming that the flip-flops of the 7495 shift register (see last month's article) all have low output, the sum displayed is simply the number being held on the keyboard. Since we are working with all four digits at once, we are able to use the output from the adder as input to the 7447 i.c. of

By O. N. Bishop

Fig. 12.1. Pinning details of the 7483 i.c.

Fig. 12.2a (below). System for adding two 4 -digit binary numbers.

Fig. 12.2b (right). The circuit of Fig. 12.2a wired up on the Test-Bed.

one of the 7 -segment displays of the Test-Bed. Use the right-hand display because this shows " 0 " when the input is 0000 , whereas the left-hand display has zero-blanking and is totally blank when its input it 0000 .

Since we wish to add a second number to the one that is being displayed, we must next store the first number. This is stored in the shift-register by parallel entry, in the same way that we used for loading the register last month. Mode control must be high.

In practice, the input to mode control is at this stage disconnected, so it is effectively high. As the clock goes low, the number becomes registered in the flip-flops. Their outputs are the same as the original inputs from the keyboard, and are now fed to the B inputs of the adder.

At this stage the adder is receiving the same number twice, through its A inputs and through its B inputs. The sum outputs are thus double the number originally keyed and the display shows this doubled number. This state is only temporary, for as soon as the key is released the A inputs of the adder become zero and the display reverts to the original number.

Having stored the first number and having this number at the B inputs, we now need only press another number key to input the second number to the adder. The sum of this and the first number now appears on the display. This must be done before the clock goes low again.

It is best to run the clock at its slowest speed but, if you prefer it, you can feed the clock output through the latch on the the Test-Bed and use the latch control switch to interrupt the train of pulses from clock while you add in the second number.

A simple key is not suitable for interrupting the clock output train, for a series of multiple makes and breaks (switch contact "bounce") causes great confusion-sums are loaded, applied to the B inputs, new sumś obtained and loaded, and so on several times over. A clean-cut clock pulse is essential.

MAXIMUM SUM

With this adder the maximum sum obtainable is $9+9=18$, and there are many additions which have sums greater than 9. The 7447 decoder is not designed to work for numbers greater than 9 and if the total comes to 10 or more the display shows one of the strange characters shown in Fig. 12.3.
If the total comes to 16 (10000 in binary) or more, the carry lamp lights and the display shows $0(=16)$, $1(=17)$ or $2(=18)$. It is feasible to build an extra decoding circuit that takes over the decoding when the number is greater than 9 , to display

Fig. 12.3. The way numbers greater than 9 are displayed by the 7447 decoder i.c.

Fig. 12.4. Modification to adding circuit (Fig. 12.2a) to allow subtraction.
a 1 on the left-hand digit of the display, and to cause the correct digit to appear on the right-hand display. The decoding required only a handful of simple gates-the reader may like to try this as an exercise in logic design.

When addition is complete, the first number still remains on the shift register. The easiest way to remove this is to shift it out of the register. The serial input is grounded and, as the clock pulses arrive, the data is shifted out. It is replaced by zeros because serial input is permanently connected to ground. One of the spare keys can be used as a clear key. Use the lower left-hand key, that was used last month as a SHIFT key. When pressed, this grounds mode control input, causing data to shift and the registers to be cleared in four clock pulses.

SUBTRACTION

As explained last month, binary subtraction can be done by addition if we first take the complement of the number to be subtracted, add this to the number from which it is to be subtracted, then add 1 and, finally,
ignore the 1 that appears as the most significant digit. For example, to subtract 110 from 1101:

Ignore the 1 on the left, leaving the answer to the subtraction, 111. In decinnal, this is $(13-6)=7$.

To perform subtraction, the adding circuit is modified as in Fig. 12.4. The truth table for exclusive-or is below.

Table 12.1. Exclusive-OR truth table.

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}
0	0	0
0	1	1
1	0	1
1	1	0

Input A from the invert gate of IC3, is fed to all four exclusive-or gates. The exclusive-or output follows B if A is low, but is the inverse of B if A is high. If the output of the invert gate is low (its input is disconnected, effectively high) data from
the keyboard is passed through to the A inputs of the adder unaltered.

Also carry-in is low. In this condition the operation of the circuit is unaffected by the modification. But if we ground the input to the invert gate, its output goes high. This makes the exclusive-or gates pass inverted data to the adder-the adder receives the complement of the number keyed. At the same time carry-in becomes high, which provides for the addition of 1 , that this method of subtraction requires.

The routine for subtraction is to key the first number and wait for the clock to go low. This number is then stored in the register. Next key the number to be subtracted and at the same time ground the input to the invert gate. The top-left spare key (used last month as complement key) can be used for this. The complement of the second number will then be added to first number, and an extra 1 added in by way of the carry-in input. The display shows the answer, but unfortunately it does not ignore the first 1. So the result of a subtraction such as (1001-1000) is displayed as " 9 " (1001) when it should really be " 1 " (001). We need some way of applying a low D input to the display whenever the complement key is pressed, yet still allow the input to receive normal inputs at other times. A truth-table of the requirements is shown in Table 12.2.

Table 12.2. Required truth table for binary subtraction.
$\left.\begin{array}{l}\hline \begin{array}{c}\text { Function } \\ \text { Output } \\ \text { from INVERT }\end{array} \\ \begin{array}{c}\text { Inputs } \\ \text { D-digit } \\ \text { (rom } S_{4}\end{array}\end{array} \begin{array}{c}\text { Output } \\ \text { (Input to } \\ \text { of display) }\end{array}\right\}$

Three lows and one high in the output column indicate that either a NOR or an AND is required, but a straightforward nor of these two inputs would give 1 in the last line, not in the second line. If we invert the digit from S; before noring it, we obtain the correct function. To invert the S_{s} output we use the Nand gate of IC3.

DISCRETE GATE

There is no space left for a NOR i.c., so once again the best solution is to make up a gate from discrete components (Fig. 12.6), almost any $n p n$ transistor and any silicon diodes can be used. The modifications to the TestBed layout are shown in Fig. 12.7. Keyboard input now comes first to the 7486 and its former connections direct to the 7483 are removed. The grounding link to the carry-in of the 7483 (pin 11) is removed, as is the output

Fig. 12.5. Pinning details for the 7486 quadruple 2 -input exclusive-OR gates.

Fig. 12.6. NOR gate from discrete components.

from the 7483 to the display D input. The clear input wire from keyboard remains unaltered, as do all other connections shown in Fig. 12.2b.

TTL AND ANALOGUE DATA

TTL deals with data in digital form, as its name indicates, but there are many occasions when it would be useful if it could deal with data that is not just ones and zeros but has continuously variable values.

Quantities such as light intensity, temperature, humidity, voltage, length and weight, can vary smoothly over a given range. We call these analogue quantities. If these quantities can be represented in some digital way, they can be dealt with by TTL. Nowadays even a complex variable such as the waveform of sound is being converted into digital form, giving digitally re-
corded discs and tapes that can be played back to give high fidelity sound. A similar process is being used in telecommunications.

DIGITAL THERMOMETER

As an example of analogue-todigital conversion this series concludes with a circuit for a digital thermometer, that can be assembled on the Test-Bed and later built on a circuit-board as a permanent unit. The basic circuit is shown in Fig. 12.8a. The analogue-to-digital conversion takes place in the astable multivibrator, made from two nand gates.

A thermistor (RTH1) is a piece of semiconductor material, which can be in the form of a bead, a bar or a disc. Its special property (in this case) is that its resistance decreases as temperature increases. The effect of

Fig. 12.8a. Circuit for a digital thermometer; D1 is optional but is useful for visualising the effects of varying temperature.
this is that the frequency of oscillation of the multivibrator increases as temperature increases. To put it another way, in a fixed period of time, the number of pulses generated by the multivibrator is proportional to temperature.

The relationship between temperature and number of pulses is not linear, but is sufficiently close to linear over the small temperature range for which this circuit is designed.

With the component values shown, the multivibrator produces about 45 pulses in five seconds when the temperature is 20 degrees Celsius. If the temperature falls to 10 degrees Celsius, the pulse number falls to 35 pulses in five seconds. The pulse number falls by 1 pulse for every one degree fall in temperature. Thus if we run the oscillator for five seconds and it gives 39 pulses we can deduce that the temperature is 14 degrees

Fig. 12.9. Pin-out details for the 7475 i.c.
Celsius. This relationship applies within the 10 to 20 degrees Celsius range and a little outside it, so is very suitable for a domestic or greenhouse thermometer. A clock running at $0 \cdot 1 \mathrm{~Hz}$ (i.e. with a high period lasting

Fig. 12.8b. Layout for Fig. 12.8a on the Test-Bed.
five seconds) supplies the control signals.

When the clock is high, pulses can pass through the NaND gate (G1c) to IC4 and IC5, which are linked so as to count the number of pulses received. When the clock goes low, no more pulses are passed to the counters, and a high "reset" output is sent to the reset " 0 " inputs of the counters. The 100 ohm resistor delays this action very slightly. If this delay is not long enough, it can be lengthened by adding a capacitor, as
indicated by dotted lines in Fig. 12.8a.
At each high pulse from the clock, the counters count the number of pulses received and are then reset to zero. A latch i.c. is employed to record the final count from IC4.

The 7475 (Fig. 12.9) contains four latches, each similar in function to the built-in latch of the Test-Bed. These latches are controlled by clock inputs, one controlling latches 1 and 2, the other controlling latches 3 and 4. All four latches are controlled together by joining the clock inputs.

When the clock inputs are high (during pulse counting) the data entering the latches appears at the Q outputs. As inputs change, outputs change accordingly. At the instant that the clock goes low, outputs are latched and hold the input data unchanged until clock goes high again. The \bar{Q} outputs are the inverse of data, but we do not use these here.

The effect of the latch is to hold the maximum value reached by the units counter (IC4), so giving us five seconds to read the display while the clock is low. The delay resistor at Gld is to allow the latch to complete its action before the counter is reset and the count is lost.

Ideally there would be another 7475 to hold the "tens" count from IC5, but there is no room for this on the Test-Bed. Since the "tens" display changes fairly slowly it is not too difficult to tell what its maximum value was. Another suggestion on how to deal with this problem is given later.

SETTING UP

The initial layout on the Test-Bed is shown in Fig. 12.8b. The clock is used at its lowest frequency ($0 \cdot 1 \mathrm{~Hz}$) and if the room is at 20 degrees Celsius ($68^{\circ} \mathrm{F}$) the counters should record 45 pulses during each high pulse from the clock.

If you are banished to a cold attic for your favourite hobby, measure its temperature and work out what the count should be-add 25 to the temperature in degrees Celsius. If the number of pulses is incorrect, adjust the frequency of the multivibrator. For large changes alter the capacitors, for smaller changes replace the 1 kilohm resistor for one of different value. Check that the room temperature has not altered significantly during the test runs.

As a final check, immerse the thermistor in water at various temperatures. For this purpose, as well as for final use, the thermistor may be attached to a long lead without affecting the calibration. Thus it can be used for remote-reading. The thermistor could be in the greenhouse with the circuit and display indoors.

SCALE CONVERSION

The pulse count is equal to the temperature plus 25 . The reader might wonder why we do not make the multivibrator oscillate more slowly, so as to give 20 pulses at 20 degrees Celsius. This could easily be done, but then we find that it gives 15 or 16 pulses at 10 degrees Celsius, so calculation is no easier and precision is much less. We therefore need to subtract 25 from the number of pulses by cancelling the first 25 pulses that are counted. In other words we

Fig. 12.10a. Modifying the digital thermometer to reset the counters after 25 pulses.
reset the counters when they get to 25 . The modification for doing this is shown in Fig. 12.10b.

When $00100101(=25)$ appears on the counters the output of G3a goes low; clock is high at that stage so Gld goes high, resetting the counters. This makes low all the inputs to G3a and counting resumes from zero.

If on the rare occasions that we have a heat-wave and the thermometer displays a near-freezing temperature such as 4 degrees Celsius, it is obvious that the counters have been to 25 twice, so that 50 pulses have been subtracted. The actual temperature would be 25 degrees higherthat is 29 degrees Celsius. With this simple circuit we cannot cope with heatwaves.

In operation the display flickers rapidly for five seconds, during which it counts up to 25 , is reset back to zero and then counts up to its final count. The numbers change too rapidly to be read. After this the display shows the temperature in degrees Celsius for five seconds. Then it repeats the whole sequence for as long as it is switched on.

If you find it hard to read the "tens" digit because of the lack of a latch on this display, you could rely on the fact that indoor temperatures are most likely to stay in the range 10 to 19 degrees Celsius, so that the "tens" digit is nearly always 1 . Disconnect IC5 from the display inputs and wire the "tens" display to show " 1 " permanently. Simply ground pins B, C, and D, and connect pin A to $V_{c c}$.

PERMANENT UNIT

A permanent unit could use a 555 timer i.c. to provide the clock pulses. By suitable choice of time resistors the high period could be made very short-a few hundredths of a second. The capacitor values of the tempera-ture-controlled multivibrator would then have to be reduced considerably, so that we still obtained 45 pulses

Fig. 12.10b. Additional wiring (and removal) to layout of Fig. 12.8b to incorporate circuit of Fig. 12.10a. By replacing the thermistor by two metal prongs a few millimetres apart it could be used to measure and display a value for soil moisture content, again on an arbitrary scale.

The design problems are yours, for the purpose of this series is to leave the reader with the Test-Bed and an assortment of i.c.s and other components that can be used over and over again for trl designed projects.

It is hoped that the topics that have been dealt with here, even though some of them have only been briefly touched upon, will have given you some insight into the possibilities of TTL and the enthusiasm to try your hand at Doing It Digitally.

|N the July issue we described the construction of an inexpensive loudspeaker compatible with the Everyday Electronics 2020 Tuner Amplifier.

In order to cover the most exacting requirement of audiophiles this month a much more sophisticated (and more expensive!)loudspeaker design capable of a very high standard of sound reproduction is presented. It is also, the author believes, the first di.i.y. hi fi design of this kind to utilise a piezo electric treble unit.

POWER CAPABILITY

The EE70 loudspeaker system will handle a 70 watt r.m.s. continuous signal. This means, in practice, it is suitable for use with amplifiers delivering from 20 to 100 watts per channel and can be driven by the EE 2020 tuner amplifier.

The enclosure is fairly largeover 60 litres capacity-and is a reflex design using a 12 inch bass unit with Bextrene cone. The bass drive unit is the Dalesford D100/ 310, one of the smoothest bass units currently available and used in a number of "monitor" quality designs. The midrange unit is from the same manufacturer and is the model D50/153, a $6^{1}{ }_{2}$ inch Bex-trene-coned unit which appears as the bass/midrange unit in several manufacturers' compact designs. The third drive unit is a Motorola piezo electric tweeter.

SPECIFICATION

Three-way bass reflex enclosure: dimensions $640 \times 380 \times 355 \mathrm{~mm}$
Drive units: 12 inch bass, $6 \frac{1}{2}$ inch mid range, 6×2 inch horn treble tweeter
Frequency range: $\pm 3 \mathrm{~dB} 30 \mathrm{~Hz}$ to 20 kHz
Crossover frequencies: $500 \mathrm{~Hz} ; 3,000$ Hz
Impedance: 8 ohms
Recommended amplifier output: 20 to 100 watts per channel

PIEZO ELECTRIC TWEETER

Many readers may not be familiar with the piezo electric tweeter so a few words on this might not go amiss:

Nearly everyone is aware of the piezo-electric phenomenon as exhibited by a ceramic pickup cartridge. Displacement of the stylus by modulation of the record groove acts upon a lever which distorts a piece of piezo electric material which then generates an audio signal suitable for driving the first stage of an amplifier.

This phenomenon is reversibleapplying an audio signal across the piezo material will cause it to deform in accordance with the signal applied. This basic principle is used in the Motorola piezo tweeter.

Two thin slices of lead-zinconate-lead-titanate ceramic are bonded to a brass separator. These discs are polarised so that one expands
whilst the other contracts when an electrical signal is applied. This causes a "dishing" in and out in response to the audio signal.
This transducer is made in several different forms, both direct radiating and horn-loaded. For this loudspeaker design, the hornloaded version type KSN 6025A was chosen with a horn aperture of 2 inch $\times 6$ inch.
The piezo electric driver offers certain basic advantages over tweeters of conventional construction:
(1) Lower dynamic mass and therefore better transient response.
(2) Elimination of the magnet/ voice coil/pole piece assembly which means that there is no possibility of a "rubbing voice coil" and no gap to become contaminated.
(3) The piezo electric tweeter offers a very high impedance which falls with increasing frequency (but is still over 20 ohms at 40 kHz). This gives the effect of a built-in filter network and protects the unit from damage by bass frequencies.

It has always been difficult to quantify loudspeaker power handling and the problem is even greater with piezo electric units. Even under conditions of high sound output, the device accepts very little power and is hardly recognised as a load by the amplifier.

Piezo electric tweeters present a reactive load and are rated on voltage rather than wattage.
Whilst the unit is unlikely to sustain damage under all normal conditions, a high level (say 35 volts r.m.s.) of a very high audio frequency will cause the driver to overheat and this will deactivate the ceramic elements.
If used with an amplifier with very extended treble response (100 kHz plus, as is the vogue with some manufacturers) h.f. instability could destroy the piezo unit. However, a RC filter has been incorporated into the crossover network which gives complete protection against this problem.

REFLEX DESIGN

As mentioned earlier, the EE70 is a "reflex" or "ported" design. For the uninitiated, a brief explanation of the reflex principle:
If an enclosure is fitted with a port open to the atmosphere, there is a particular frequency at which the air in the port will resonate with the stiffness of the air in the enclosure. This effect can be used to utilise some of the sound energy radiated from the rear of the speaker cone and maintain bass output with reduced cone excursion in the region of the speaker cone resonance.

If the port size is small, the speaker works effectively as a sealed box apart from the lowest bass frequencies where the port is tuned to "come on song" and augment the output of the bass unit.
The port can be tuned to extend the useful bass response of the speaker system-in other words, a lower bass frequency can be achieved than would normally be the case with an infinite baffle enclosure of the same volume and driven by the same power.

LISTENING TESTS

The EE70 loudspeaker presents a very "kind" load to the amplifier, with the impedance not falling below 8 ohms, apart from the normal peak at bass driver resonance where the impedance reaches 24 ohms.

Apart from the usual anechoic (echo-free) chamber tests, subjective listening tests played a large part in the development of the design.
Three well-respected commercial designs were used for refer-

Fig. 1. Frequency response of EE70 Speaker System. Taken in small anechoic chamber. Actual h.f. response extends well beyond the 20 kHz limit of the measuring equipment used.

Fig. 2. Impedance/Frequency curve of EE70 Speaker System.
ence purposes-the Kef 104aB, the Bowers and Wilkins DM2 II and the IMF ALS40 II. These were used for A / B tests on different types of music-piano, violin, full orchestra and rock. The EE70 was felt to compare favourably with the reference speakers and to be a very good investment at $£ 150$.

PLACEMENT OF UNITS

It will be seen that the treble and midrange units are offset in the cabinet. This confers some acoustic advantages in the bass enclosure; furthermore if the cabinets are made as a mirror image pair, this also makes it possible to have two choices for the "width" of the stereo image.
If the domestic environment dictates that the enclosures are placed too close together for optimum results, the stereo angle can be widened by offsetting the treble units to the outside, and conversely, if the speakers are too far apart the image can be narrowed by putting the treble units towards the inside.

CROSSOVER NETWORK

The crossover network circuit is given in Fig. 3. 12dB/octave net-
works are used in the high-pass, band-pass and low-pass sections at frequencies of 500 Hz and 3000 Hz approximately. Compensation networks (R4, C5 and R5, C7) optimise the system response A treble unit protection filter (C2, R3) is incorporated.
A full size p.c.b. pattern is given in Fig. 4 and the layout of components is illustrated in Fig. 5. This arrangement is critical and should not be departed from.

Full details of the enclosure construction appear in Fig. 1.
Flooring grade 18 mm chipboard is used for the major part of the cabinet construction. The baffle board is made from good quality 18 mm plywood. If rebating the drive units presents a problem, the baffle board can be fabricated from 12 mm and 6 mm ply glued and

Fig. 3. Circuit of the EE70 crossover network.
screwed together. The specified speaker apertures are cut in the 12 mm baffle and the 6 mm ply is cut to the outside sizes of the bass and midrange units to provide a

6 mm rebate when the boards are fixed together. Note that the piezo tweeter is not rebated-the same size aperture must be cut in both boards.

(2) INPUT +

The midrange enclosure is a box of 12 mm plywood measuring $180 \times$ $210 \times 178 \mathrm{~mm}$ externally. It is filled with 80 grams of long fibre wool.

Sufficient glue should be used to ensure an airtight enclosure.

The cabinet is lined with laminated bituminous felt panels which stiffen the cabinet walls thus minimising the excitation of resonances at bass frequencies. These felt panels are fixed to the cabinet with Aquaseal No. 5 , which is obtainable from builders' merchants. The pads should be held in place with, say, panel pins to maintain a good contact with the cabinet whilst the Aquaseal dries.

Do not fit the bass and midrange drive units into the cabinet until the glue is dry and the cabinet clear of fumes. The fumes from some adhesives can attack the Bextrene cone material with somewhat dire results.

FRONT TRIM OPTIONS

In the prototype enclosures, acoustically transparent foam was used for the front trim. This has a pleasing appearance and a high level of acoustic transparency and is easily fixed with the single-sided Velcro made specifically for this purpose.

An alternative frontal treatment is also illustrated. This uses a panel of veneered 12 mm plywood as a surround for the treble unit.

Should conventional grille fabric be preferred, it will be necessary to make a grille frame and to use ordinary Velcro (hook and loop) for fixing this.

Fig. 4 (left) P.C.B. pattern for crossover network.
Fig. 5. Component layout for crossover network.

ce70-reflen LOUDSPEAKER

BAFFLE BOARD ASSEMBLY
The reflex tube has an internal diameter of 50 mm and a length of 70 mm . This can be fabricated from cardboard, or plastic tubing as used for plumbing purposes can be

COMPONENTS and MATERIALS

all quantities specified for one loudspeaker enclosure

Resistors
R1, $23 \cdot 9 \Omega 5 \mathrm{~W}$ (2 off)
R3 $10 \Omega 2 \mathrm{~W}$
R4, $5 \quad 8 \cdot 2 \Omega 5 \mathrm{~W}$ (2 off)

Capacitors

C1,4,5 $5 \mu \mathrm{~F}$ reversible electrolytic, 50 V ("Elcap") (3 off)
$\mathrm{C} 2 \quad 0.47 \mu \mathrm{~F}$ polyester
C3, $7 \quad 20 \mu \mathrm{~F}$ reversible electrolytic, 50 V ("Elcap") (2 off)
C6 $\quad 25 \mu \mathrm{~F}$ reversible electrolytic, 50 V ("Elcap")

Inductors
L1,3 0.64 mH 9 mm ferrite core (2 off)
L2, $4 \quad 3.5 \mathrm{mH} \quad 12 \mathrm{~mm}$ ferrite core (2 off)

Drive Units
LS1 6×2 inch horn piezo electric tweeter Motorola KSN 6025A
LS2 $6 \frac{1}{2}$ inch midrange unit Dalesford D50/153
LS3 12 inch bass unit Dalesford D100/310

MIscellaneous
Stripboard or p.c.b. for c/o unit. Four tyraps. Eight 2BA Thuts and bolts. Six No. $6 \times \frac{3}{4}$ in black japanned screws. Reflex tube 50 mm internal diameter $\times 70 \mathrm{~mm}$ long. Recessed connector panel or DIN loudspeaker socket. Eight laminated bituminous felt panels $13 \times 230 \times 270 \mathrm{~mm}$. Cable for
internal wiring $\mathbf{~} 0.75 \mathrm{~mm}^{2}$ for bass unit and from input socket to crossover). Acoustically transparent foam. Singlesided Velcro, $2 \cdot 25$ metres. Glue, screws, panel pins. Veneer for cabinet finish.

TIMBER CUTTING LIST

Cabinet

18 mm Chipboard
605×355 (2 off)

$$
380 \times 355 \text { (} 2 \text { off) }
$$

$$
605 \times 344
$$

$25 \times 25 \mathrm{~mm}$ batten 5 metres
Baffle Board
6 mm Plywood 605×344
12 mm Plywood 605×344
Midrange enclosure
Plywood 210×180
180×166 (2 off)
166×186 (2 off)
(all dimensions in millimetres)
A kit for a pair of EE70 loudspeakers is avallable from Wilmslow Audio Ltd., Swan Works, Bank Square, Wilmslow, Cheshire.
The kit comprises:
2 Dalesford D100/310, 2 Dalesford D50/153, 2 Motorola KSN 6025 A, 2 crossover networks, 2 yd. Acoustilux Wadding. 160 grammes long fibre wool. 16 T nuts and bolts. 12 black japanned screws. 2 DIN loudspeaker sockets. 2 reflex tubes. 2 badges.
Price: £150 including VAT Carriage and insurance $£ 5$.
in place. The crossover network can be screwed inside the bottom of the cabinet, preferably on to a piece of foam rubber to prevent rattles.

The cabinet is lined with 2 inch Acoustilux bonded acetate fibre (BAF) wadding (1 sq yd per enclosure). This must be done before fitting the baffle board to the cabinet. No fixing is required for the Acoustilux, it is sufficiently rigid to stay in place without any support.

Gaskets are supplied with the D100/310 and D50/153 drive units, but it is necessary to make a rubber or paper gasket for the Motorola piezo tweeter.

USING THE EE70 SPEAKERS

Careful siting of hi fi stereo speakers is an important factor in achieving optimum results. The domestic environment is usually far from perfect acoustically and the time spent in experimentation with different speaker positions will be well repaid.

If you are troubled with problem room resonances the quickest way of locating the best speaker position is to change places with the speakers! Listening to one speaker only, position this where you normally sit when listening to your hi fi equipment and position yourself where it is intended to site the speaker. Playing a record or tape which shows up the problem resonance (or easier still using a signal generator feeding the amplifier at low power) move around until you find the best position. Wherever your head is, that's the optimum position for the speaker! Repeat the process for the other channel.

Speaker leads should be of good conductor size - minimum 0.75 sq mm and preferably $2.5 \mathrm{sq} \mathrm{mm} /$ 79 strand (though this is rather expensive if a long run is required).

The enclosures should be mounted on stands for best results. Suitable types are Tannoy TS4 or Target TAP2, though no doubt there are a number of others which would be suitable.

Finally, remember that the better a loudspeaker, the more faithfully it will reproduce the audio information fed to it and by the same rule, the more it will show up deficiencies in the rest of the hi fi system.

MICROPROGESSOR Bnsicsorm wate

Whave now covered most of the ground necessary to gain a basic understanding of what microprocessor chips and systems are all about.

At this point many readers will no doubt be happy to leave the subject and return to their interest in the more traditional aspects of electronics. Microprocessors are certainly not everyone's idea of fun. They are, after all, so expensive, complex, fragile, and just plain difficult, that the sensible may be deterred from venturing any further down that slippery slope to micro-addiction!

But let's face it, there is something fascinating and compelling about the challenge of microprocessors, and there are some readers, I'm sure, who can't wait to get started.

CHOOSING A SYSTEM

It is vital to choose a first system carefully, since it could turn out to be the cause of much frustration (if you choose badly) or the cause of an awakening to the joys of home computing (if you choose well)!

The problem is, for most of us, the one of system cost. It's no use me saying that you will get on better with a $£ 500$ system than with a $£ 50$ system-I expect you have guessed that already! There is no easy answer to this problem of course, microprocessing is expensive, but it can be helpful to define at the outset just what you hope to gain from any system you buy. In this way you can soon discover whether you are being too ambitious for your available funds!

Having rejected the idea of buying a $£ 50$ system which can be programmed to beat Boris Spasky at chess, you can then work out just what is possible within your own budget!

TABLE

You may find Table 7.1 of some assistance to you when you come to choose a system. The table is an attempt to summarise what you can hope to achieve for a given outlay, using a "star rating" system. Down the left hand side are some of the possible uses to which a microprocessor system could be put, and no doubt you will be interested in more than one of these.

The table is split up into four columns each of which corresponds to a particular price range and system class. It is not intended to be an exhaustive or scientific analysis of available microprocessor systems. The table has been compiled subjectively and is intended only as a guide for those readers who are finding a choice difficult in the face of the bewildering variety of advertisements for microprocessor systems which can currently be seen in catalogues and hobby magazines.

The star rating system is selfexplanatory, but I should point out that an attempt has been made to
take account of cost-effectiveness. This means that alongside "Use for small dedicated control sys ${ }^{-}$ tems" the systems in the $£ 100$ plus class get the most stars, even though the $£ 300$ plus systems could do the job just as well from a functional point of view.

HEX OR ALPHA NUMERIC

The four columns can be split into two distinct groups, those systems which are machine code orientated, usually with hexadecimal keyboards and displays, and those which are capable of supporting a high level language and therefore having alphanumeric keyboards and displays.

The systems in the other two columns are often described as "Evaluation Cards" or "Microcomputer Cards" but I would prefer to call them Machine Code Systems.

The systems in the other two columns are usually referred to as "Home Computers" or "Personal Computers", and these are both fairly apt titles.

TABLE 7.1	MACHINE CODE SYSTEMS		HOME COMPUTERS	
	SINGLE BOARD HEX. KEYBOARD LOW COST $1240+1$	EXPANDABLE HEX. KEYBOARO ($£ 100+$)	(3) PACKAGED SYSTEM SINGLE BOARD (f $300+$)	(4) BUS ORIENTATED EXPANDABLE (E $1.000+$)
LEARN MICROPROCESSOR HARDWARE.	$\square \square \square$	$\square \square \square \square$	$\square \square$	$\square \square \square \square$
LEARN MICROPROCESSOR MACHINE CODE PROGRAMMING.	$\square \square$	$\square \square$	$\square \square \square$	
LEARN HIGH LEVEL LANGUAGE PROGRAMMING.		\square	$\square \square \square$	
USE FOR GAMES			$\square \square \square \square$	$\square \square \square 10$
USE FOR SMALL DEDICATED CONTROL SYSTEMS.		$\square \square \square \square$	\square	\square
USE FOR DATA PROCESSING APPLICATIONS.		$\square \square$	$\square \square \square$	$\square \square \square \square$
USE AS FOUNDATION OF EXPANDED SYSTEM.		$\square \square$	$\square \square \square$	$\square \square \square \square$
TOTALS	11	18	19	25

MACHINE CODE SYSTEMS

As you can see from the table, Machine Code Systems are more hardware orientated than the Home Computers, and they are also very much cheaper. A typical system of this sort would use an 8 bit microprocessor and would be supplied with less than 1 K byte ($\mathrm{K}=1,024$) of ram. The printed circuit card on which the system is assembled would normally support a seven segment l.e.d. display and a hexadecimal keyboard as well as all the electronic components, and the better systems would include a tape interface for storing data or programs on cassettes.

SOFTWARE

Software is provided in the form of a Monitor program stored in a rom or prom and this, in conjunction with the keyboard and display, allows the user to enter programs in hexadecimal (machinecode) format, to examine or modify them, and to run them when required.

Some input/output lines are usually provided for the addition of special peripheral circuitry, and system expansion can sometimes be achieved by extending the system buses, but the possibilities for adding extra facilities are often quite limited.

The low cost systems of this type (column 1) are the cheapest way to get into microprocessors but most people find the facilities provided by these systems rather limiting after a while, and expansion is usually difficult. A typical example in this class would be the Science of Cambridge Mk 14.

EXPANSION

By spending a little more (column 2) you can get a system which is still basically of the same type, but in this case the designers will have taken a little more care to provide easier expansion so that a more capable system can be built up in stages.

A good example in this class is the Commodore KIM-1 which has the companion boards KIM-3 (8 K ram) and Kim-4 (Motherboard to join KIM-1 to several KIM-3 boards) available for system expansion. Another example is the now famous NASCOM-1, which can be expanded to almost Home Computer standards.

PROGRAMMING

Programming in machine code can be a tedious (if fascinating!) business, and it is necessary to develop a very clear understanding of the internal operation of the microprocessor chip in order to program successfully. Looked at from a different point of view, this can mean that struggling with the intricacies of machine code programming will teach you a great deal about microprocessors!

When you have mastered the art, you should be able to write 256 bytes of successful program in about $10-20$ hours, so you can see why the ram size of these systems is usually not more than 1 K .
If you become interested in simple controller tasks-burglar alarms, model train controllers, car instrumentation and so onthen 256 bytes of program can do quite a lot for you, and you may be happy to continue with a simple system.

If, on the other hand, you relish the thought of writing pnograms to solve simultaneous equations, or you want to simulate spacecraft landing on Mars, or even produce graphics on a vdu screen, then the systems in columns 1 and 2 can provide little more than a general introduction to the subject of microprocessors for you. Eventually you will need to move on to columns 3 and 4 where the Home Computers are to be found!

HOME COMPUTERS

Home Computers are orientated towards software, and it is the availability of "System software",
as it is called, which sets these systems apart from the Machine Code Systems in both performance and price. The most fundamental Home Computer advantage is the provision of a High Level Language such as BASIC.

With the machine code or Hex Monitor prognams of the cheaper systems you have to talk to the microprocessor chip in its own language. The commands you can include in your programs are those listed in the micro' data sheet, and numbers must be in binary or the equivalent hexadecimal form. When using "Transfer of Control" or "Jump" instructions you have to work out the precise memory location to which you wish to jump, and then enter it in hex format-a tedious business!

BASIC

Using a High Level Language like BASIC things get much easier. Now you can type in program statements which are in English, numbers can be in decimal, and transfer of control is taken care of by using number references which are not direct memory addresses but the decimal numbers you have used to prefix each line of program. Here is an example:
10 PRINT "THIS PROGRAM ADDS TWO NUMBERS TO FORM A SUM"
20 PRINT "ENTER TWO NUMBERS A AND B"
30 INPUT A, B
40 PRINT " $\mathrm{A}+\mathrm{B}=$ " $\mathrm{A}+\mathrm{B}$
50 GO TO 20
60 END

This is a very simple program of course, and BASIC can do much better things than just adding two numbers together. This simple routine does, however, indicate the ease with which programs can be written in BASIC, and also shows how understandable the results can be, even for non-programmers!

At the heart of a Home Computer there lies exactly the same sort of microprocessor chip as can be found in a Machine Code System, but in this case someone has gone to a lot of trouble to write large, machine-code programs which can convert decimal numbers to binary, can interpret BASIC statements such as INPUT A, B into machine operations, and can even perform mathematical and trigonometric operations which could take you or I months to write in machine code.

INTERPRETERS

These programs are called Interpreters in the case of the BASIC language, and they can occupy between 8 K and 48 K bytes of memory, depending on their capability. A typical Interpreter for a Home Computer BASIC would occupy about 8 kilobytes, but there is a smaller Interpreter for a simplified language called TINY-BASIC which can fit into only 2 K bytes.

These Interpreters can be stored in rom or ram memory, although the latter possibility requires that you reload the interpreter, from magnetic tape for example, each time you turn on the power. Inputs and outputs are now completely alphanumeric, and so the
hex keyboard and seven segment l.e.d. displays of the cheaper systems have to go.

It is of course the cost of the large memory, alphanumeric keyboard, and vdu or printer output device which elevates the price of the Home Computer into a class of its own, but as shown in Table 7.1, there are dividing lines which can be dnawn within the Home Computer bracket.

PACKAGED SYSTEMS

The least expensive of the Home Computers come as oomplete packaged systems, and perhaps you have seen examples such as the Commodore PET or the Tandy TRS 80 which fall into this class. Features of these systems are the emphasis on low cost (about $£ 600$ and $£ 500$ respectively) the TV type display, the tape cassette drive for program loading and storage, and the provision of a BASIC Interpreter in rom.

These systems have become very popular in both the UK and the USA, although their relatively higher cost in the UK has made them more attractive for small business and scientific applications than for the "fun-and-games" they are often used for in the USA.

These systems are not easily expanded, although their sheer popularity has caused a number of hardware expansion features to be marketed along with a large quantity of software available on tape. I would have no hesitation at all in recommending these systems for hobby use, but would warn that they are hardly the best
foundation on which to build a future, much expanded, system.

BUS SYSTEMS

Better systems to buy as foundations for expansion are available as "Bus Orientated Systems." In this case you buy a box containing a microprocessor board, a ram board and an interface board, all plugged into a "Backplane" or "Motherboard" which has several unoccupied slots. To expand your memory or interfaces in the future, you have to do little more than plug in extra printed circuit boards containing the appropriate extra components.
Most professional computers are based on a Bus structure, but unfortunately it is a more expensive way to buy a small system because of the expensive connectors and the need to partition the boards into logical sub-systems.

S100 BUS

There is a special Home Computer bus standard called S100 by its designers who introduced it on the very first microprocessor based Home Computer worth the name, the MITS Altair 8800 launched in 1975. Since that time the S100 has become very popular, despite some criticism, and now there are literally hundreds of S100 board types which can be put together to form the system of your dreams!
Most S100 systems use a separate vDu and keyboard, or teletypewriter for communication, but the range of other peripherals which can be added is huge and

The Tandy TRS-80 model 11 microcomputer. One of the most popular home computers.
includes tape cassettes, floppy discs, line printers, speech synthesisers and modems. Examples of S100 systems are the Cromemco $\mathrm{Z}-2$ which is based on the Z 80 microprocessor, and of course the 8080 based 8800 which is still popular.

Perhaps the most useful feature of the S100 bus is that you don't have to buy a system as such. You can build up your own system from scratch by buying a motherboard and plugging in compatible cards to meet your own requirements.

You can even build your own boards if you wish because there are lots of S100 board kits, and also prototyping cards for those who wish to design their own memory or interface circuits.

FUTURE

The picture presented in Table 7.1 is that of a neatly ordered market which splits logically into four categories. Unfortunately it isn't quite that easy as you will discover if you carry out your own market survey! Some systems currently advertised could fit into two of my categories equally well, others don't seem to fit in at all.

All I can say is that introducing extra categories would make things a little too complicated for those who are new to the microprocessor "game!"

In the future we can expect to see prices falling dramatically and systems in the Home Computer columns becoming cost competitive with the Machine Code Systems. I think that it would be very unwise to suppose that there isn't a microprocessor lurking somewhere in your future, so why not come to grips with this steam-roller technology right now, before it comes to grips with you!

Retailer's dues

I have no doubt that you are all too aware of "Mother's Day", "Father's Day" and other American imports designed to promote the sale of cards and gifts among the more naive members of the community. I intend to add yet another; "Component Retailer's Day". This will be celebrated on mid-summer's day. I choose this day, because June is always the worst month businesswise (I can prove it by my records) and therefore the middle of the month is where the poor fellow reaches his nadir.
As he sees his cash flow dying down to a trickle and runs out of flnger nails, how nice it would be if his customers rallied round and gave him a few nice large orders (beautiful lady customers could give him a big kiss in lieu).

Go slow

To add to our misery this year, the Post Office decided to go slow, with the result there were over 30 million letters in the pipe-line, many were en-route to retailers like myself containing orders and money.

In a slightly more serious vein, I have said it before and | say it again, your Component Retailer is a dedicated chap, because he can not be in it for the money, he would make far more selling fish and chips and this should be a comforting thought to all our readers. I must confess however, that a number of component suppliers, including some big names, have fallen by the wayside. Fortunately, on the credit side, there still seem to be many new ones ready to fill the gap.

Static last word

Now a final word on the static conundrum. Mr. David Mayne has kindly sent me an article from an American magazine The Amateur Scientist dated March 1959. The author is talking about thunderstorms and makes the following observations, "A portion of the energy liberated by lightning takes the form of electromagnetic waves called sferics. These account for the familiar static heard on radio receivers"
He includes in his article a circuit for measuring these, the idea being that the results could be used for short term weather forecasts. The circuit uses valves but no doubt it could be redesigned to use transistors. I'm all in favour, but 1 would give this word of warning. It could be regarded as a fun thing only. because all one can say about short term forecasts, is that they are slightly more accurate than long term forecasts and just in case some of you are saying "What does old Paul Young know about meteorology?II", I will tell you.

I held a Commercial Pilot's Licence for ten years and one of the most difficult of the exams was Meteorology. Captain Young failed it twice, before he passed. The examinee who does that always knows ten times more about the subject than the one who passed first time. Finally another factor that would upset the forecasting is that thunderstorms invariably go round in circles! Well that just about winds up the case for static.

Most electronics enthusiasts at some stage in their life are amazed by disco lighting equipment. There is almost an air of secrecy surrounding the "black box", which creates this instant atmosphere.

This article removes the secrecy giving amateurs the chance to produce a unit which is equal to or better than a commercial equivalent costing several times more. Even if you are not interested in discos the heart of this circuit is very versatile and may answer some of your needs.

The unit described will drive a mains voltage display to a maximum of 750 watts per channel,
making it suitable for small discos or domestic parties. It offers three modes of flashing; two chases and a strobing function.

USE OF LOGIC

Over the years many designers have found uses or "mis-uses" for logic integrated circuits far fetched from their intended purposes. Most of these use gates and inverters, the main reason being that an i.c. can be cheaper than a single discrete transistor. The circuit to be described does not fall in this class, as the main i.c. performs a complex function enabling an almost impossible task,
when using discrete components, to be carried out with the greatest of ease, while at the same time leaving open many options.

This i.c., а смоs device, counts pulses using a decimal number system. But by connecting the reset pin to the output one above the maximum number required the counter can perform a "divide-by- $N^{\prime \prime}$ function. In this circuit the reset pin is connected to the fourth output so that upon application of clock pulses the i.c. will count from $0,1,2$ and then counts 3, but this returns the output to zero, giving rise to the overall pattern $0,1,2,0,1,2 \ldots$ etc., as the outputs go high sequentially.

The logic circuitry is used to control thyristors which in turn control the lights. Although thyristors only possess the ability to switch on during positive half cycles this has several advantages one being the reduced stress on the bulbs, therefore increasing the bulb life.

CIRCUIT DESCRIPTION

The complete circuit diagram of the Chaser Light is shown in Fig. 1. The circuit can be separated into five basic blocks, low voltage supply, clock oscillator, counter, selector switch, power switches.

Mains voltage enters the unit and is stepped down to $6 \mathrm{~V}-0-6 \mathrm{~V}$ by transformer T1. This alternating voltage is rectified by D1 and D2 and smoothed by C1. Unlike TTL

Fig. 1 (left and below). The complete circuit diagram for the Chaser Light.

i.c.s, смоs devices do not require a stabilised supply hence this simple arrangement is adequate.

CLOCK OSCILLATOR

The clock oscillator is based on 1C1, a 555 timer i.c. In this application the 555 is wired in its astable mode. When the voltage on C2 is less than two thirds the positive supply voltage pin 3 is at 0 V . The capacitor charges through R1, R2 and VR1.
When the voltage on the positive plate of C2 reaches two thirds of the supply, the internal circuitry resets and causes pin 3 to go high. Simultaneously the i.c. switches pin 7 to 0 V , hence C 2 discharges through R2 and VR1.
When the voltage drops to one third of the supply voltage the internal circuits reset and once again C2 is able to charge via R1, R2 and VR1. The cycles thus repeat giving a squarewave output at $\operatorname{pin} 3$.

The frequency of this oscillation is given by:

$$
f=\frac{1.44}{[R 1+2(R 2+\mathrm{VR} 1)] \times \mathrm{C} 2} \mathrm{~Hz}
$$

where the capacitance is in farads, and the resistance in ohms.

The maximum speed is obtained with VR2 at minimum and is equal to 14 Hz . Minimum speed (VR2 maximum) is 1.3 Hz .

In practice these values may be different due to the tolerance of the components.

The counter chip IC2 has ten outputs, only one of which is high at any one time. The high output pin is dependent on the number of pulses applied to the clock input. Only three of these outputs
are used in this circuit, these are taken from pins 2,3 and 4 of the 4017. A fourth output pin 7, is used to reset the counter.
The truth table shown below shows what is happening.

Table 1. Truth table for CD4017 with reset connected to fourth output

Clock	Q_{0}	Q_{1}	Q_{2}			
0	1	0	0			
1	0	1	0			
0	0	1	0			
1	0	0	1			
0	0	0	1			
1	1	0	0			
0	1	0	0			
1	0	1	0			
etc						

THREE MODES

The mode S2 selects to which of the outputs the thyristor gates are connected. In position 1 the thyristors are connected to two outputs, hence only when the third output goes high are they able to switch off, the lights therefore switch off sequentially, two lights being on at any one time.
In position 2 all the lights are controlled by one output of the counter, hence the lights flash simultaneously with a mark/space ratio of $1: 2$.
In the third position one thyristor is connected to each output, hence the lights come on sequentially, but different from position 1.

The thyristors behave like an open circuit until a voltage is applied to the gate terminal when
the thyristor then snaps into conduction thereby placing mains voltage across the associated bulb causing it to light. The light remains on until the voltage between the thyristor anode and cathode is reduced to zero i.e. at the end of every mains half cycle. Thus a train of pulses into the counter causes the lamps to flash on and off, the overall effect controlled by the position of S2. Panel neons serve to monitor the outputs.

CIRCUIT BOARD

Some of the small components are mounted on a piece of 0.1 inch matrix stripboard, size 19 holes by 34 strips as shown in Fig. 2, which also shows the breaks to be made on the underside. Begin by cutting the board to size. Make the necessary breaks in the copper strips and drill the mounting holes. At this stage it is advisable to clean the board with either some scouring cream or steel wool. This ensures that any grease and oxidation is removed and helps the solder flow.
Start construction by inserting the i.c. sockets, without the integrated circuits, and solder them in place. Next using these sockets as a guide insert the wire links. It is advisable to use coloured single cored wire, as this makes checking easier. At this stage the flying leads should be soldered in position; 20 cm of wire should be attached to each position. These can be trimmed to size during later stages of construction.
The leads from the transformer are connected followed by the remaining components taking care to get the electrolytic capacitors the right way round and not to overheat the diodes. Use of a heatshunt is recommended.
The prototype was housed in a Norman WB3 case, which is available from many retailers and is strongly recommended. With reference to Fig. 3, drill the mounting holes for the chassis mounting

parts. A piece of 16 s.w.g. aluminium $100 \mathrm{~mm} \times 35 \mathrm{~mm}$ is required for use as a heatsink for the transistor as shown in Fig. 3. The five mounting holes are drilled then the sheet is bent to shape.

THYRISTOR MOUNTING

It is essential that a mica washer and insulating bush is used when mounting each thyristor as the "tab" is internally connected to the anode of the device. Note that the tab of each thyristor needs to be bent at right angles to the body.

It is also recommended that a heatsink compound is used when mounting to produce good thermal contact. This compound could also be used at the bracket/chassis interface.

On the prototype two polarised four-pin sockets were mounted to take the output to the bulbs. The type used on the prototype are available from Maplin. Other types may be used such as octal or the commonly used Bulgin P551/P552 combination with minor adjustments to the layout of these sockets on the back panel.

COMPONENTS

Potentiometer
VR1 500 kilohm carbon lin.

Capacitors

C1 $\quad 470 \mu \mathrm{~F} 10 \mathrm{~V}$ elect.
$\mathrm{C} 2 \quad 1 \mu \mathrm{~F} 6 \mathrm{~V}$ elect.
C3 $\quad 0.022 \mu \mathrm{~F}$ polyester type C280

Semiconductors
D1, D2 1 N4001 or similar silicon rectifier diode (2 off)
D3 to D8 IN4148 or similar silicon diode (6 off)
IC1 NE555 timer i.c.
IC2 CD4017 CMOS decade counter/divider
CSR1,2,3 C106D or similar 500 V 6 A thyristor (3 off)

Miscellaneous

T1 Miniature mains primary $/ 6 \mathrm{~V}-0-6 \mathrm{~V} \quad 100 \mathrm{~mA}$ secondary (e.g. Eagle MT6)
S1 d.p.s.t. mains 6A toggle
S2 3-pole 3-way rotary switch
FS1,2,3 3A 20 mm plus chassis mounting fuseholders (3 off)
LP1,2,3 mains panel mounting neons, 1 red, 1 green and 1 clear (3 off)
SK1,2 4-pole panel mounting sockets (2 off)
PL1,2 4-pole plugs to suit SK1,2 (2 off)
Stripboard: 0.1 inch matrix, 34 strips $\times 19$ holes; mains cable grommet; 16 s.w.g. $100 \times$ 35 mm aluminium (thyristor heatsink); 6A 3 -core mains cable; case WB3 or similar, dimensions $200 \times 130 \times 50 \mathrm{~mm}$; mica washers and bushes for thyristors (3 sets); heatsink compound; 6BA fixings; control knobs (2 off); 6A insulated wire (power wiring).

Gifuler 4

Fig. 2 (left). The components mounted on the topside of the stripboard and the breaks along the copper strips to be made on the underside.

Fig. 3 (below). The case opened out to show component and board positions and complete wiring details. Also shows the thyristor heatsink and method of mounting the devices. Theruse of insulation sets on the thyrisfor is essential as the mounting tab is internally connected to the anode.

Should these be hard to find or their expense not be justified they can be replaced by a piece of insulated screw terminal strip, although the plugs and sockets are preferred for mobile use.

The rotary wafer switch is best wired up prior to being positioned inside the case. Once the sub-
 plete wiring details.

assemblies are completed they can be bolted to the case using countersunk 6BA nuts and bolts and shakeproof washers. The flying leads may then be soldered to their appropriate points. This should be followed by the heavier mains wiring. See Fig. 3 for com-

Once completed and thoroughly checked, not forgetting to make sure that the underside of the stripboard is not touching the case, the i.c.s may then be put into their sockets, taking special care with IC2 which being of cmos construction is sensitive to static electricity.

The circuit is now ready for testing; place S 2 to its central position, and VR1 set midway, plug in and switch on, if all is well the panel neons should all flash together. Turning VR1 should change the speed, clockwise to increase and anticlockwise to de-
crease. If that happens, turn S2 to the other positions to check the two modes of Chase.

LAMP HOUSING

Construction of this project does not finish with the control unit, "light boxes" need to be made. The choice of lamp housings is a matter of personal preference, to some extent being determined by one's woodworking skills and also by the amount of money available. The display may be simply three batten holders screwed to a length of wood.

Lamp and wiring details are given in Fig. 4 and the "light boxes" used by the author are shown in the photographs. These were designed so that the bulbs, 100 watt coloured spots, could be left in place during transit protected by a clip-on front panel. The exterior was covered with black vinyl giving a very durable and professional finish.

The lamp housings are connected to the control unit by 4-core mains wire, which was obtained from Tandy, who stock it for use with their aerial rotators.

By ADRIAN HOPE

Are you Bugged?

As a matter of policy most electronics magazines decline to publish constructional features on bugging or surveillance devices. What's more the use of bugging systems is usually illegal in Europe either beçause it involves unauthorised radio transmission or unauthorised tampering with a telephone.

This doesn't stop the sale of bugging devices and anyone with the inclination and the cash can usually find what they want. At a large European airport recently I noticed one of the most unsavoury of all bugging devices on open sale in the duty free shop for around £500.

For obvious reasons I am not going to identify in print (or by letter in reply to any reader's request) either the airport or the firm making the gadget. But a published description of what the gadget does should aid awareness of the risks we all now run and perhaps even help someone somewhere discover that they are already being bugged.

The $£ 500$ kit comes in two parts, both i.c. miniaturized modules, a monitor unit and a matching remote activator. The monitor unit is hidden inside a conventional telephone and is self powered by the voltage which is constantly on any telephone line. The monitor module contains a very sensitive microphone and amplifier which picks up sound from the room and outputs down the 'phone lines.

Normally the monitor unit is out of action but it can be activated remotely by a caller equipped with the matching module. The bugged telephone number is dialled and as the last digits register the activator module is held close to the mouthpiece of the calling telephone. The activator emits a high frequency tone which instructs the monitor module to prevent the called telephone bell from ringing and at the same time activates the monitor microphone.

Sound from the room is then relayed down the 'phone wires to the calling telephone. This can be across the road, the city or the world.

This particularly nasty gadget is not to be confused with the more conventional type of telephone bug which is a miniature transmitter hidden in a telephone and designed to pick up the sound of any calls made and transmit them by radio outside the room. The new device picks up sound from the bugged room while the telephone is still on its hook and it transmits no radio signals. It is thus much harder to detect than a conventional bug.

Double Exposure

A short while ago the two giant companies Xerox and IBM shook hands and dropped their accusations and cross accusations about infringements of no less than 27,000 patents. These all relate in one way or another, directly or remotely, to electrostatic copying or xerography.

As from now the two companies will work on the basis of a free mutual patent pool.

The strength of the Xerox patent folio has always been legendary and the original patents granted to Chester S. Carlson of New York have traditionally been regarded as the master patent foundation on which the whole Xerox copying monopoly was built. But history could well have been different if the existence of an obscure Belgian patent had been recognized.

Carlson's original patents date back to October 1937 and protect the basic concept of forming an image to be copied on a material which is an insulator in the dark and a conductor in the light. Carlson put an electrostatic charge on the material surface, exposed it to the image and then dusted the surface with black powder. The powder fell away from the areas discharged by the image light and stuck to the areas still charged, to
produce an instant copy image.
But the meticulous records of the Belgian Patent Office show that at 10 o'clock on June 11, 1932 a certain Monsieur Marcel Demeulenaere of Brussels filed a patent No. 389155 on a process for "Photocopying without Development". This involved charging a selenium surface, forming an image on the charged surface and dusting it with dark powder to form an instant copy picture.

The original Carlson patents are long since dead and the legal relevance of the Belgian document that anticipated them by a full five years is purely academic. It would, however, be historically interesting to know whether Carlson and Xerox knew of the potential risk to their patent monopoly which was gathering dust on the Belgian Patent Office shelves.

Paradoxically the early Belgian patent was never printed for dissemination round the world. But copies are now obtainable direct from the Belgian Patent Offce, thanks to the miracle of Xerox graphic copying.

Off the Record

Recently the Japanese musician Tomita, who specialises in synthesised music, was in the news because the Holst estate disapproved of his synthesised version of The Planets and had it banned here. But Tomita's Planets is available in Japan and when I was there recently with a group of British journalists they descended like vultures on the record shops to buy up every available copy, both for personal collections and gifts.

The latest Tomita album offers synthesised musical thoughts on the Bermuda Triangle, that area of tropical ocean where ships and aeroplanes have a nasty habit of disappearing without trace. Computer experts will be interested in Tomita's sleeve note for that album.

Encoded in the music, he writes, is a digital series of musical tones. If the memory of a micro-computer is interfaced with the output from a gramophone playing the Tomita 'record, then it will be programmed by these tones, in exactly the same way that a micro-computer is routinely programmed by interfacing it with a cassette tape on which are recorded a series of digital instructions.

The snag is that there are numerous standards for interfacing a cassette tape programme with a computer memory and Tomita has chosen Tarbell rather than the more commonly encountered CUTS or so-called "Kansas City" standard. I ploughed through a daunting pile of books in the Science Reference Library looking for details of the Tarbell transfer standard, but drew a blank.

Doubtless readers well versed in computer technology will be able to set us straight.

TT		7473	20p	74141	55p
		7474	22p	74145	55p
7400	10p	7475	25p	74148	90p
7409	10p	7476	20p	74150	55p
7402	10p	7485	55p	74151	40p
7404	12p	7486	20p	74154	65p
7406	22p	7489	135p	74157	$40 p$
7408	12p	7490	25p	74164	55p
7410	10 p	7492	$30 p$	74165	55p
7413	22p	7493	25p	74170	100p
7414	39p	7494	45p	74174	55p
7420	12p	7495	35p	74177	$50 p$
7427	20p	7496	45p	74190	50p
7430	12p	74121	250	74191	50p
7432	18p	74122	35p	74192	50p
7442	$38 p$	74123	38 p	74193	50 p
7447	$45 p$	74125	35p	74196	50p
7448	50p	74126	35p	74197	$50 p$
7454	12p	74132	$45 p$	74199	90p
CNOS		4020	50p	4050	$25 p$
		4022	50p	4060	80,
		4023	13p	4066	30p
		4024	40p	4068	13p
4001	13p	4025	13p	4069	13p
4002	13p	4026	90p	4070	13p
4007	13p	4027	28p	4071	13p
4009	30p	4028	45p	4072	13p
4011	13p	4029	50p	4081	13p
4012	13p	4040	55p	4093	36p
4013	28p	4041	55p	4510	60p
4015	50p	4042	55p	4511	60p
4016	28p	4043	50p	4518	650
4017	47p	4046	90p	4520	60p
4018	55p	4049	25p	4528	$60 p$
FULL DETAILS IN CATALOGUE!					

SKTS

Low profile by Texas

$8 p i n$	$8 p$	18pin	$14 p$	24 pin	$18 p$
14 pin	$10 p$	20 pin	$16 p$	$28 p$ in	$22 p$

PCBS

Size in. $\quad 0.1 \mathrm{in} .0 .15 \mathrm{in}$
$\begin{array}{lll}\text { Size in. } & 0.1 \mathrm{in}, 0.15 \mathrm{in}, & \text { Vero } \\ 25 \times 1 & 14 \mathrm{p} & 14 \mathrm{p}\end{array} \quad$ Cutter 80p $2.5 \times 3.75 \quad 45 p \quad 45 p$ $2.5 \times 5 \quad 54 p \quad 54 p$ $3.75 \times 5 \quad 64 p \quad 64 p$ $3.75 \times 17 \quad 205 p 185 p$
pins per 100
Top quality fibre glass copper board. Single sided. Size $203 \times 95 \mathrm{~mm}$. 60 p each
sided. Size $203 \times 95 \mathrm{~m}$
Five mixed sheets of Alfac. 145 p per pack.

OPTO

LED's 0.125 in .0 .2 in each $100+$ $\begin{array}{lrrr}\text { Red TIL209 TIL220 } 9 p & 7.5 p \\ \text { Green }\end{array}$ $\begin{array}{lllll}\text { Green } & \text { TIL211 } & \text { TIL221 } & \text { 13p } & \text { 12p } \\ \text { Yellow } & \text { TIL213 } & \text { TIL223 } & 13 p & 12 p\end{array}$ Clips 3p
DL. $704 \quad 0.3$ in.CC $\quad 130 p$ 120p $\begin{array}{lll}\text { DL707 } & 0.3 \text { in CA } & 130 p \\ 120 p\end{array}$

RESISTORS
 Carban film resist ors. High stabllit E12 series. 4.7 ohms to 10 M . Any mix $\begin{array}{llll} & \text { each } & 100+ & 1000 t \\ 0.25 W & 1 p & 0.9 p & 0.8 p\end{array}$ 0.5 W 1.50 .2p 10
 Special development packs consisting of 10 of each value from 4.7 ohms to 1 Meg METAL FILM RESISTORS
 Very high stability, low noise rated at $1 / \mathrm{WW}$ 1%. Available from 51 ohms to 330 k in E24 series. Any mix.
 0.25 W

PLEASE WRITE FOR YOUR FREE COPY OF OUR NEW 80 PAGE CATALOGUE OF COMPONENTS. CONTAINS OVER OVER 2500
stock items.

			TRANSISTORS	$\begin{aligned} & \text { 2TX500 } \\ & \text { 2N697 } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 160 \\ 122 \end{array} \end{aligned}$			
	170		48		${ }^{180}$			
${ }_{\text {ACl }}{ }^{\text {a }}$ 8	168	8	35p	2 N 3055	50p			
176	180	80139	350	2N3442				
161	${ }^{38 p}$	8 B 140	350					
AD162	38p	BFY50	15p		80			
$8 \mathrm{Cl107}$	8 p	BFY51	15p	${ }^{2} \mathrm{~N} 37704$	30			
BC108	${ }_{8 p}$		15p	2N3705	9 p			
108	10p	MJ2955	980	2 N 3				
109	8	MPSA	200	2N3	90			
(1)97	100	MPSA	20	2 N 37	\%			
147	70	T1P29	60	2 N 3819	5p			
148	70	T1P30	70	2 N 38				
177	140	T1P31	65p	2N3904	30			
178	14D	TIP32C	80	2 N 39	$3 p$			
	14 p	TIP2955	65	2 N	p			
182	10 D	TIP	55	2 N	p			
182L	10	21	14p		p			
184	10 p		140					
21×300 16p 2 N 5777 50p								
${ }_{8 C 214}$		DIODES						
${ }_{8 \mathrm{BCA}}^{817}$		1 1N9in4	3p in4006					
	190		4 p	1 N 4				
BC478 $8 \mathrm{CL548}$	19	1N4001 1N4002		BZY88 ser. 8 p				
$8 \mathrm{BCY48}$ 8 CY 70	${ }_{14}{ }^{1}$	ITT Full spec. product.1N4148-£1.40/100. $£ 11 / 1000$						
	14p							
LINEAR								
			800	NE53				
		Lm30	26	NE5	3p			
THIS IS ONLY A SELECTIONI		LM308	${ }^{600}$	NE5	${ }^{60 \mathrm{p}}$			
		LM3	750 450	NC4136				
709	35p	LM339	450					
747747	16p	LM378	2300		0p			
	45	LM379S		t8abios	p			
7487106	Op	LM380	75p	T0				
	850 p	LM3900	50\%					
7107	9000	LM	65p	T0	5p			
CA3046	550	Lмз919	100p	Un	p			
CA3130	700	MC	32 p	2N425E	\%			
	90p	MM5716	90p	2N1034E				

CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$
$1 \& 2.2 u F @ 35 V$
$4.76 .8,10 u F @ 25 V$
$22 @ 16 \mathrm{~V}, 47 @ 6 \mathrm{~V}, 100 @ 3 \mathrm{~V}$
MYLAR FILM
$0.001,0.01,0.022,0.03 ?, 0.047$ -
$0.068,0.1$
POL YESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$
$0.01,0.015,0.022,0.035,0.047,0.068,0.1 .5 p$
$0.15,0.22$ $\begin{array}{ll}0.15, & 0.22 \\ 0.33 & 0.47\end{array}$
$0.33,0.47$
0.68
1.0 uF

CERAMIC
Plate type 50 V . Available in E 12 series from 22pF to 1000 pF and E series from 1500 pF to RADIAL LEAD ELECTROLYTIC

63 V	0.47	1.0	2.2	4.7	10

CONNECTORS

JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	9 p	13p	7 p
3.5 mm	9p	14p	8 p
Standard	16p	30p	$15 p$
Stereo	23p	36p	18p
DIN PLUGS AND SOCKETS			
	plug	chassis	line
		socket	socket
2pin	7p	7p	$7 p$
3 pin	11p	$9 p$	14p
$5 \mathrm{pin} 180^{\circ}$	11p	10p	14p
$5 \mathrm{pin} 240^{\circ}$	13p	10p	16p

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuits, Red \& black. Plugs: $6 p$ each Sockets: $7 p$ each.
4 mm PLUGS AND SOCKETS
Available in blue, black, green, brown, red, white and yellow. Plugs: 11p each Sockets: 12 p each PHONO PLUGS AND SOCKETS
insulated plug in red or black
Screened plug
Double socket

STEVENEON Electronic Components

LOUDSPEAKERS

56 mm dia. $80 h \mathrm{~ms}$. $70 \mathrm{p} \quad 64 \mathrm{~mm}$ dia. 640 hms . 75 p 64 mm dia. 80 hms . $75 \mathrm{p} \quad 70 \mathrm{~mm}$ dia. 80 hms . 100 p Magnetic earpiece including 2.5 or 3.5 mm plug. 15p each Crystal earpiece including 3.5 mm plug.

30p each

TRANSFORMERS

All 240 V Primary.
$0-6,0-6$ @ 0.5A or 0-9, 0-9 @ 0.4A. 175p
$0-12,0-12 @ 0.5 A$ or $0-15,0-15 @ 0.4$ A 235p $0-9,0-9 @ 1.2 \mathrm{~A}$ or $0-12,0-12 @ 1 \mathrm{~A}$.
$0-12-15-20-24-30 \mathrm{~V} @ 1.5 \mathrm{~A}$.
$0-20-25-33-40-50 \mathrm{~V} @ 1 \mathrm{~A}$.
$0-20-25-33-40-50 \mathrm{~V}$ @ 2A 455p
$0-20-25-33-40-50 \mathrm{~V}$ @ 3A. 715p
Miniature type
$6-0-6,9-0-9,12-0-12 @ 100 \mathrm{~mA}$.
95p

SOLDERING IRONS

ANTEX $\times 25$ (25 W) or ANTEX CX (17W) 390p each Reel of solder (39.6M)

240p each

POTENTIOMETERS

Single gang Log or Lin $5 K-2 M 2$
Dual gang Log or Lin $5 K-2 \mathrm{M} 2$
$28 p$ each
Presets, sub min. type hor. orvert. $100 \Omega-2 M 2$ 6p each

CONTROL KNOBS

Ideal for use on mixers etc. Push on type with black base and marked position line. C
available in red, blue, green, grey, yellow and black. 14p

SWITCHES

Subminiature toggle. SPDT 70p. DPDT 80p Standard toggle. SPST 34p. DPDT 48p.

Slide switches (DPDT) miniature or standard 15p.
Push to make switch. 15p. Push to break switch. 20p.
Wavechange switches: $1 \mathrm{P} 12 \mathrm{~W}, 2 \mathrm{P} 6 \mathrm{~W}, 3 \mathrm{P} 4 \mathrm{~W}, 4 \mathrm{P} 3 \mathrm{~W} .43 \mathrm{p}$
BOXES
Folded construction complete with screws.
$\begin{array}{llllll}3 \times 2 \times 1 & 52 p & 4 \times 3 \times 2 & 70 p & 6 \times 4 \times 3 & 95 p \\ 4 \times 3 \times 2 & 64 p & 6 \times 4 \times 2 & 77 p & 8 \times 6 \times 2 & 125 p\end{array}$
We now offer one of the widest ranges of components at the most competitive prices in the UK. See catalogue for full details. We welcome callers at our shop in College Road, Bromley, from Mon - Sat, 9am - 6pm (8pm on Weds. and Fridays). Special offers always available.
We also provide an express telephone order service. Orders received before 5pm are shipped same day.
Contact our sales office now with your requirements.

TEL: 01-464 2951/5770

Quantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: $100+10 \%, 1000+$ 15%. Prices VAT inclusive. Please add 30p for carriage. All prices valid to April 1980. Official orders welcome.

BARCLAYCARD \& ACCESG WELCOME

Mail orders to: STEVENSON (Dept EE)

CONSUMER ELEGTRONIGS

TECHNICIANS PREPARE FOR MAJOR ADVANCES ON THE HOME FRONT

N
WWLY developed electronic equipment will present a challenge to those engaged professionally in installing and maintaining the latest consumer electronic products, for these are based on techniques not yet entirely familiar to the majority of service engineers and technicians.

To help start the urgently needed familiarisation process a four-day symposium on Consumer Electronics was held at the University of Essex in July. Organised by the Society of Electronic and Radio Technicians in association with the Incorporated Practitioners in Radio and Electronics, this meeting must have impressed the delegates with the advanced nature of the electronics that is beginning to invade the domestic market.
Large-scale integrated circuits and, of course, microprocessors, feature prominently in the new products, which include video recorders and home computers.

OFF-AIR RECORDING

PROBLEM

The technicalities of video recording were ably described by speakers from the BBC, JVC (UK) Limited and Philips Electrical yet none had the answer to that important and intriguing question is it legal to record TV material off the air.

The nearest to an answer was the belief that the recording of short extracts from programmes is allowed provided the recordings are to be used for educational or private study purposes only.

Clearly Copyright and Performing Rights are major matters that will have to be decided quickly, certainly before the sales of domestic video equipment takes-off, as expected.

Grumble-Grumble !

Why grumble about consumer goods prices in the UK? When Portugal goes to colour TV next year the average price of a colour set is expected to be $£ 480$. Experimental services on the PAL system will start in March 1980.

In East Germany where there are still no colour transmissions the cost of a medium - sized monochrome set is over $£ 500$ according to a recently returned visitor.

MICRO-CONTROL

An infrared remote control for TV receivers was described by an engineer from ITT Semiconductors. This is a fully digital pulse coding system providing up to 1,024 commands. The low power microcomputer incorporated permits the programming of TV viewing up to one week in advance. Beyond TV control, this system, it was claimed, is capable of many other control functions, in association with peripherals around the house.
A speaker from Intel Limited painted an exciting picture of the home of the future-run by a microcomputer of course. The catalogue of suggested functions was not new. Clearly manufacturers of chips are still kite flying. They, above all, need hosts of novel applications for their undoubted powerful and "intelligent" microprocessors. It's thinking up useful chores for these devices that is the really difficult part!

MOBILE PRINTER

A tiny electronic printer which can print pictures, text, maps and diagrams has been developed by English Numbering Machines. It will work in any position, even upside down, and as it is only 205 x 210 x 105 mm in size it can easily be fitted in vehicles. office use. microprocessor.

NO SINGLE MIND

The symposium revealed the interesting fact that experts are not of one mind concerning the best deployment of the microprocessor in home control systems.
Considering the cheapness of low power microprocessor chips, some held the view that most individual applications around the home should be run by a separate, independent, integral micro. Others favoured the "master" control approach with all peripherals tied into a central control computing unit.
These things will all come about - there's no doubt. Moving into a different scene, two fascinating developments in the radio field were described by research engineers from the BBC. Whether they will ever see the light of day seems problematical though.
One is the BBC Carfax Traffic Information Service. It involves a nationwide network of low power m.f. transmitters. A special low-cost receiver remains quiet until activated by the transmitter covering the area through which the motor vehicle is passing. This system is currently undergoing field trials.

RADIO OF THE FUTURE

The second development from the BBC seems even more futuristic, if viable at all. This is a scheme where broadcast radio signals would carry some form of identification or "data label". This

The police emergency services and the military are obvious "mobile" customers or with a keyboard it forms a useful low-cost printer terminal for general

The machine is multi-function through a built-in
information would be decoded by domestic radios of the future, and used in various ways. For example, it is suggested that digital logic and microprocessor techniques could be incorporated in radio receivers to operate the tuning (so dispensing with the traditional mechanical drive) and in addition display visually information regarding the station being received. An ambitious extension of the system is the proposition that Bar Codes could be printed in the Radio Times above each programme entry, and then by scanning this code with a Bar Code Pen attached to the receiver, the tuning would be automatically and accurately performed.
Citizen Band Radio seems a more likely bet when doing a spot of crystal gazing, and the speaker from Plessey was listened to with eager attention as he described a trans-mitter-receiver system based on his company's i.c.s which currently is being exported to certain countries where CB is "legit". The system described however is only of academic interest to citizens of the U.K., for it operates on 27 MHz v.h.f. If we are lucky (?) enough to have CB, all the experts tell us it will operate somewhere higher, like u.h.f.
In all, twenty technical papers were delivered by specialists from industry and other bodies who, in the main, described work they were personally involved in.
The Symposium was another notable success for the principal organisers, SERT, who have established a fine tradition in arranging gatherings such as this dealing with technical matters of the moment.

Author and script-writer Ted Willis and ex-TV broadcaster Peter Dimmock (now chief executive of BBC Enterprises) are among the seven new Fellowships awarded by the Royal Television Society.

At The BAZAAR

from the World of Electronics

BRIGHT SPARKS

The competition for "Young Engineer for Britain 1979" has had a record entry from over 300 youths of both sexes in the 14-19 age bracket. The best 40 projects will be judged at the national final on October 24 and 25 at the Wembley Centre. It is hoped that the Prince of Wales will present the awards.
The competition is sponsored by the Department of Industry as part of a programme to strengthen links between education and industry. It has been so successful that it has already been decided to hold another competition in 1980.

ANALYSIS

OUR CROOKED WORLD

Security, in its broadest sense, must surely be today's biggest growth area in electronics. And I don't mean just the enormous annual expenditure on equipping armies, navies and air forces throughout the world.
The present-day menace is internal, the growth in crime, either crude as in the case of a bank robbery at the point of a gun, or sophisticated as in computer fraud. And on top of the increase in ordinary crime are the activities of the politically-motivated terrorists.

I was reminded of this by a recent announcement by AI Security of Cambridge of an order worth close on $£ 1$ million for some 100 Entry-Scan walk-through explosive detection systems which are to be installed at every one of the 72 operational nuclear reactors in the United States. The Entry-Seans will sniff each person passing through and detect the slightest whiff of explosives vapour on the body. They will be installed alongside existing personnel indentification, metal-scanning and radiation-level checking systems.

But electronic security is big business wherever you look, in warehouses, supermarkets, banks, industrial complexes, in art galleries and museums, increasingly in our own homes.

The great problem with all electronic sensors is that the more sensitive you make them the more likely it is that they will give false alarms. Maybe a fault in the right directionbetter safe than sorry! But the police, for example, get very bitter about the time wasted on over-sensitive equipment when they find that the "intruder" detected by a doppler equipment is only the office cat.

So great ingenuity in recent years has been employed in systems which are "intelligent" in the sense of discriminating what is actually happening. Take a perimeter microwave "fence" with its invisible radio beam which triggers an alarm if it is interrupted by an intruder. By designing the antenna system to provide the right shaped beam it will ignore heavy rain or falling leaves, birds or small animals, but will respond to humans.

In microwave doppler systems used inside premises, the signals are analysed and no doppler change will activate the alarm unless it is fairly large and the object has moved some distance.

Infrared systems, which work by detecting the difference between the infrared radiation from a human body against the infrared background, may be arranged through their optical system to beam in a number of zones both vertically and horizontally so that an intruder may have to cross more than one zone before the alarm is triggered.

If you wonder why, when you have installed perimeter protection on the outside, you still need more of it inside, the answer is that the intruder at night may have secreted himself inside earlier in the day. These security specialists know so much about the habits of criminals that you might imagine that they had once been burglars' apprentices, but I am told not necessarily so.

Brian G. Peck.

ANYONE visiting "The Great British Electronics Bazaar" at Alexandra Palace, London (June 28-30), expecting in the words of the organisers "an amateur show of shows, a bazaar of bazaars", was in for a mild disappointment.
If you were among the fortunate ones who managed to find the public transport service running or came by car, then the disappointment of finding the Grand Hall sparsely populated with stands was not so great as the people who, if they survived, managed to walk to the summit of "Coronary Hill" as it will now be known by many visitors.

Although the shoulder-to shoulder atmosphere usually associated with bazaars was missing, the show was certainly hustling and bubbling on the opening day. Appropriately opened by the organiser's thirteen-year-old son it seemed to set the scene for the exhibition with most visitors in the younger generation age group.

Practically anything remotely connected with electronics was being sold from resistors and cases to professional test equipment to colour television sets; not forgetting publications.
Microprocessors were in prominence with many stands showing and selling complete home computers. Among them was Acorn Computers who demonstrated their microcomputer system which at $£ 65 \cdot 00$ (excluding VAT) for their basic kit must be one of the cheapest on the market. This does not include controllers or memory modules.
From industry, Fluke and Gould Advance exhibited their lower price range of instruments and both indicated reasonable sales.
Two stands which reported very good response and sales were Bi-Pak Semiconductors, who couldn't sell their bargain packs of assorted components quick enough, and OK Machine \& Tool (UK) limited whose wares included wire wrapping equipment, quality hand tools, screwdrivers, ribbon cable, i.c. sockets and breadboarding systems. Also doing brisk business selling television sets at $£ 50.00$ a time was West Midland TV Trade

Sales. They claimed that they had sold over $£ 1,000$ worth of sets in the first morning.
For our part, Everyday Electronics had many past, current and future projects on display. The theme of our display was "Electronics in the Home" and we had working models mounted on a house plan showing possible applications in the home, garden and car.
Judging from the remarks from visitors to our stand most people thought we had put on a good show and complimented us on our efforts. We also received a favourable response to our lecture delivered by Owen Bishop entitled "Getting Started In Electronics Construction".
Summarising on the show, to use the word "Great" in the title with the absence of so many possible exhibitors was, in our opinion, wrong. As also was the practice of numbering the stands up to 355 when there were only approximately 62 exhibitors and only approximately 90 stands shown on the plan in the catalogue.
Likewise it seemed wrong to charge an entrance fee to the sponsored lectures, particularly as the show was aimed at the amateur and was not run on a professional seminar basis where the fee usually includes papers which are kept by the participants.

Apart from the virtual inaccessibility by public transport, lack of the big names from industry and public services such as the P.O. the show was a Grand effort.
Let's hope that with a little more planning next year's show will be a truly Great British Electronics Bazaar!

with Keith Cadbury

|T would seem fair to assume that most electronics afficianados are, by the very nature of their hobby, quite practically minded: able and equipped to tackle many other constructional tasks around the home. It therefore follows that they will have stored various miscellaneous bits and pieces that "might come in useful one day."

COLLECTORS ITEMS

The writer's collection of junk is contained in thirty-three 2 litre ice cream cartons, a chest of drawers, two shelf units, 25 "Household"
matchboxes, 14 Cadbury's (who else?) Smash tins, two large tool boxes, seven cardboard boxes and four carrier bags. The stock includes seven small electric motors from cassette recorders; a few odd bits of Mecanno; some empty colour slide boxes; and various small offcuts of chipboard.

While recently "checking stock" (looking for inspiration for a project that could be built with existing junk), the thought occurred that with these aforementioned items it might be possible to make some sort of miniature drill for making holes in printed circuit boards.

To date the writer has drilled p.c.b.s with a Black \& Decker "Holgun," which is a very slow, geared-down, extra heavy duty electric drill intended for use with masonry drill bits, by builders and shopfitters. Not ideal for tiny delicate electronic work, but junk shop buyers can't be choosers.

The main thing against such a weapon, apart from its unwieldiness, is the screaming of the motor and gears. To protect one's ears during long drilling sessions, one has to wear headphones as earpads.

The one millimetre drill bit was held in the monster by a small extension chuck, called an "Eclipse No. 121

Pin Vice." This is about 6 mm diameter, 75 mm long, with a miniature chuck at one end. The other end was clamped into the large chuck on the Black \& Decker. These "Pin Vices" can be purchased from decent tool shops for under $£ 2$.

STICKY PROBLEM

A method of fixing the pin vice to a cassette motor had to be found, but the wonders of modern science solved the problem without recourse to once more calling on an aquaintance who owns a lathe, and rues the day he met the writer!

For some time now Cyanoacrylate adhesive has been a useful item to include on a workbench for all sorts of repair and constructional jobs. Superglue, as one brand is named, has once again proved its worth as the means of fixing the miniature chuck to the end of a cassette motor. To assist the super glue, by offering more surface for the adhesive to work on, a circular groove was "turned" into the top of the pulley on the motor spindle.

This was very simple, albeit slow. to effect, by the simple expedient of holding the end of a needle file to the pulley, whilst rotating the motor under power. So the obvious part to build first is the Power Supply.

MINIATURE ELECTRIC DRILL AND STAND

POWER SUPPLY
During experiments conducted with seven different cassette motors, pumping three times the recommend voltage in has resulted in very little, increase in speed, but an incredible reinforcement of power. Therefore a transformer giving 12 volts at 200 mA was used, with the usual 4×1 N4001 rectifier bridge, and a small capacitor of about $680 \mu \mathrm{~F}(25 \mathrm{~V})$, to provide a d.c. output of about 17 volts. See Fig. 1.

Any capacitor of about $330 \mu \mathrm{~F}$ or more, should suffice, so long as the working voltage is at least 25 volts d.c.
Smoothing is not critical with such a simple supply, and quite possibly a slight ripple in the d.c. current assists the motor in starting under load

The completed power supply unit was housed in a plastic container originally used for Agfacolour slides, but any sturdy plastic box of suitable size would be acceptable.
It is the writer's practice to always include a small d.c. power socket to any new p.s.u.s constructed for use on the bench, so that many different voltages are available for various experiments and repair jobs. If you feel this is
a good idea, then perhaps extracapa. citance would render the supply more suitable for occas ional alternative use. And if sensitive circuits are likely to be plugged in, a 100 nF capacitor across the output will reduce mains hum with audio applications. An inexpensive disc type, of suitable voltage rating, will suffice.

Having built the p.s.u. the cas. sette motor can be connected.

There will be more motor noise than the usual six or seven and-a. half volts produces, but the extra torque that is generated has to be felt to be believed. A drop of oil to the bearings is a good idea, in view of the extra wear and tear that may be expected.

Possibly some cassette motors are unsuitable for use with 17 volts, but the seven 6 V types tested by the writer and found O.K. include motors by Toshiba, Sankyo and Matsushita. Various other motors tested were not marked, but came from scrapped recorders that included Waltham, Monatone, Swan and Hong Kong DeLuxe (1)

TURNING THE GROOVF

Hold the motor by its outer casing firmly in one hand, and after connecting the voltage supply apply the end of a suitable needle file to the flat top of the pulley. Before commencing "turning" you will have made sure that the grub screws that hold the pulley to the motor spindle are tight.
Cut a circular groove into the end of the pulley, of a diameter and depth suitable to accept the end of the hollow shank on the vice pin. A snug fit is not the express intention here, but if such is possible with the tools you have to hand, all the better. The groove will take some time-twenty minutes or so-to cut to about 2 mm depth, but the deeper the groove, the more sturdy the finished result.
When you are satisfied with the depth and width of the groove,

switch of the motor and stand it on the bench, pulley uppermost. Apply two or three drops of Superglue to the groove, taking special care not to get glue into the bearings of the motor. Now press the shank of the pin vice into the groove, and rotate the pulley slowly to ensure a true fit. See Fig. 2. The importance of a neat groove now becomes apparent-with too much sideways play, the job of attaining accurate concentric placement becomes more difficult.

Apply downwards pressure, for ten seconds. If you have not used Cyanoacrylate glue before, be very careful. Ten seconds is all it takes to secure permanently practically anything to anything. Including human skin.

Perhaps the writer was very lucky, but his second attempt was so successful that when the motor is revolving, the pin vice is absolutely spot centre, with no vibration at all. The only slight anomaly is that the chuck jaws do not appear to be perfectly true, with the result that a 1 mm drill bit seems to oscillate over about a 1 mm circle.

Check that the drill is rotating in the proper direction for the bit to "screw in", if necessary reversing the connections from the power supply unit. If you prefer to use the drill handheld, you are now ready to go, but for real ease of operation, a simple drill stand is recommended. A stand will also enable boards to be drilled at great speed.

DRILL STAND

A stand can easily be constructed from Meccano, although metal. workers will no doubt be able to

Fig. 2. Section through motor drive pulley and pin vice.
improve upon the basic principal, with a more professional-looking result.

A cllp intended for vertical mounting of capacitors is used for clamping the drill body to the Meccano mechanism. Various diameters are available.

The clip should be bolted to the stand through a couple of rubber grommets, to avoid transmission of vibration and motor noise.

Illustrations show the idea of the drill stand, which can be ammended according to Meccano or other materials available.

A simple press button is needed, placed so that it can be operated by the hand that controls the downward motion of the drill. In the writer's case, an l.e.d., supplied through a 910 ohm resistor, was incorporated so that indication is given when the trans. former is switched on. As a double. pole change-over press switch was to hand, the l.e.d. has been
wired to glow only when the motor is not rotating.

AUTO LIFT DEVICE

An elastic band or coil spring is hooked between the top of the stand back board and the drill, so that the drill automatically rises when not held to the p.c.b.
The eight pivots of the stand are slightly oiled to assist in smooth operation, and the complete mechanism is mounted firmly to the back board. The back board should be screwed to the base board through four flat metal shelf brackets.
Once the whole device is con. structed, lower the drill, with drill bit inserted, to the board, to mark where it touches the base board. Now with a normal size drill and $\frac{1}{3}$ inch bit, drill right through the base board, using the small mark made by the 1 mm bit as the centre. This large hole ensures that the miniature bit is not damaged, and also allows swarf from p.c.b.s being drilled to fall away.
The base board should be mounted on four rubber feet.

IN USE

The finished drill in use is quick and surprisingly powerful. The slight deviation of the chuck jaws mentioned earlier is easily overcome by pressing the bit to the p.c.b. before operating the press button. After a little practice, the amount of pressure to apply is determined.
The over-run cassette motor may become warm in use, but the prototype was subjected to six hours' continuous bench test under torsion, with no ill effects other than an increase in temperature.

CB band-wagon

As someone who has written in favour of CB (Citizen's Band) radio for a period extending over at least 15 years, I must admit to being disturbed by some of the current, often ill-informed, lobbying on its behalf. There are many signs that much of the present pressure comes directly from industry concerned (as it has every right to be) far more with the value of the potential market for equipment than with the social benefits so confidently predicted.

Then there is the curious but widespread confusion between CB twoway radio and local community broadcasting, two totally different subjects except that both seek a share of the radio spectrum. There is also the belief that the opposition to CB stems from an unholy alliance of the Home Office Radio Regulatory Department and licensed "Hams".
It has always been my experience that there is no clear-cut consensus of opinion on CB within the amateurradio ranks, and that indeed very many amateurs would favour CB provided that it could be kept quite separate from their own hobby and was so organised that it would be unlikely to degenerate rapidly into an uncontrolled, poorly organised imitation of "ham radio" lacking the selfdiscipline and self-policing that stems from the desire not to lose a licence that has involved passing examinations.
In other words, there is undoubtedly an extremely strong case for extending the use of two-way radio systems to the public for mobile use, "companionship" and for the original concept of a low-priority communications service. But not, I suggest, as a service for those who have a real interest in the technical development of two-way radio.
The hobbyist should instead be encouraged into amateur radio, if necessary by introducing novice or beginner licences with a built-in incentive to progress to the more advanced licences. Unfortunately few countries have succeeded in setting up CB in such way that this distinction is made.
CB can (and does in some countries) work very well indeed; it can unfortunately also work badly, with hobbyists for instance using high-power linear amplifiers and showing no consideration for other users. It has all become a political argument with little concern for what CB is all about.

Geneva Plan

For many years the broadcasters in the UK have plugged away about the advantages of v.h.f./f.m. radio compared with m.f./a.m. (and not said overmuch about the few disadvantages of v.h.f./f.m.) but all to little avail. At any given time, something like over 80 per cent of the radio audience is still likely to be listening on medium or long waves, less than 20 per cent on v.h.f.f.m. Indeed with the BBC wavelength reshuffle last November, it almost seemed as though they had given up the struggle and accepted that listeners needed to use both systems.

Yet the problem of providing adequate coverage on m.f. from about an hour before sunset to an hour or so after sunrise seems bound to grow steadily more intractable during the next few years. The disastrous decision of the 1977 ITU Geneva conference to give every country what it had asked for, in effect abandoning any real attempt at planning for minimum interference, has still to make felt its full impact.
Many of the stations now registered by that Conference have yet to be built and similarly many of the power increases are still in the pipeline. So while good daylight coverage on m.f. is relatively easy, the situation from dusk to dawn (which in the UK extends up to almost 18 hours out of 24 in mid-winter) seems bound to grow steadily worse.
It is no good blaming any single broadcasting organisation or any single country: it is sheer collective madness. In effect the radio lemmings are rushing headlong over a cliff of intolerable m.f. interference. But will anyone ever persuade that 80° per cent of the audience that they will be forced to use v.h.f.ff.m. to obtain interference-free reception?

Super Sets

In the July issue, Adrian Hope in the For Your Entertainment column drew attention to the work of that great inventor of radio receiving systems, Howard Armstrong, and mentioned his develop...ent in 1921 of the high-gain "super-regenerative detector". Though he added that this is today forgotten by all but the most avid radio enthusiasts.
While this is certainly true, I have been interested to find that a New Zealand radio amateur, Nat Bradley,

ZL3VN, has been doing a considerable amount of experimental work to see if with modern components and devices there may not still be a role for the very simple super-regenerative receivers, particularly on v.h.f.
His conclusion was that this type of receiver remains a fascinating and unnecessarily maligned device. While almost all the circuits published in hobby magazines during the past 30 years or so have been of the "selfquenched" form of super-regen' detector, the New Zealander has shown convincingly that much improved results can be achieved using separately quenched detectors, that is to say where a separate oscillator is used to provide the supersonic quenching frequency that allows the regenerative detector to work at enormous gain.
He has also discovered that a sawtooth quenching waveform with slow-rise and fast-decay times provides superior results.
Provided that care is taken that super-regen' receivers do not radiate interference (and this is far less a problem with f.e.t. devices than used to be the case with valve super-regen' receivers), it is perhaps high time to take a fresh look at Armstrong's miracle system of 1921. Like all other forms of direct-conversion receiver they are much easier to build at home than high-performance superhet receivers.

Coloured Sounds

If I were a retailer of hi-fi music centres, or sound-reinforcement installations, or a designer of sur-round-sound systems, I would have one terrible oath, reserved strictly for such occasions as dropping a 100 watt amplifier on my toe, but never, never to be uttered in the hearing of potential customers: it would be "environmental acoustics"
Many years of straining my ears to catch announcements in railway stations, swimming pools, air displays or listening intently (in just the correct position) for the subtle effects of surround-sound have long convinced me that the sounds emanating from even the best amplifiers and loudspeakers can be hopelessly coloured by the local acoustics. Conversely medium-quality installations can provide very acceptable results when they have the room or hall going for them.
It is all very well the manufacturers providing us with response curves measured in an anechoic chamber. Who actually listens in such places?
Major changes in the quality of reproduced sound can be (and are) introduced by the acoustics of the studio and the listening room. But who would learn this from most hi-fi advertisements in the non-technical press?

NICKEL CADMIUM BATTERY $1 \mid+1$

By A. J. Adamson

Rechargeable nickel cadmium batteriès are now very widely used in such equipment as cassette recorders, radios, drills, etc. They are however expensive, and to ensure a reasonably long life should be treated with care.

This in simple terms means that the cells, during their normal working life should never be allowed to discharge beyond their "end point" voltage. Basically this voltage is a "once reached never to return" state, in which it is difficult to recharge the battery correctly.

In most cases however the batteries can still be recharged, but their life is drastically shortened.

END POINT VOLTAGE

The end point voltage is indicated by the cell voltage falling to $1 \cdot 1 \mathrm{~V}$ in the case of low discharge rates, and about 1 V in the case of heavy discharges. Normally however $1 \cdot 1 \mathrm{~V}$ is regarded as the norm. Unfortunately, the cell voltage varies by only $0 \cdot 1 \mathrm{~V}$ over about 80 per cent of its discharge.

The circuit here however is sensitive enough to detect the end point voltage from the falling cell voltage.

When incorporated in $\mathrm{Ni}-\mathrm{Cd}$ operated equipment this simple circuit gives an indication that the batteries need re-charging.
voltage with a reference voltage indicating this on a light-emitting diode.

The integrated circuit, IC1, is a 741 operational amplifier and is used as a differential amplifier. The non-inverting input, pin 3 is clamped at a reference voltage provided by the Zener diode Dl.

The inverting input, pin 2 follows a fixed fraction of the battery voltage, provided by the potential divider consisting of R2 and R3. The output, pin 6 drives an l.e.d. via a current limiting resistor R4.

When the battery is fully charged, pin 2 is positive with respect to the reference voltage on pin 3. The output of the i.c. is thus low and the l.e.d. unlit. As the battery discharges, the voltage on pin 2 falls until it becomes negative with respect to the voltage on pin 3. The output of the i.c. now goes high illuminating the l.e.d.

Table 1. Component Values.

Number of Cells	Battery Voltage	Zener Voltage	Resistor Values (kilohms) ${ }^{3}$			
			R1	R2	R3	R4
14	$5 \cdot 0$	$3 \cdot 92$	0.27	10	82	0.68
5	$6 \cdot 25$	$5 \cdot 12$	$0 \cdot 27$	$6 \cdot 8$	82	0.82
6	$7 \cdot 5$	$5 \cdot 6$	0.68	15	82	$1 \cdot 2$
7	$8 \cdot 75$	$5 \cdot 6$	$1 \cdot 2$	18	47	1.5
8	$10 \cdot 0$	$5 \cdot 6$	$1 \cdot 5$	39	68	$1 \cdot 8$
9	$11 \cdot 25$	$5 \cdot 6$	$2 \cdot 2$	43	56	$2 \cdot 2$
10	$12 \cdot 5$	$5 \cdot 6$	$2 \cdot 7$	47	47	$2 \cdot 2$

Notes: 1. Circuit is at its limit of range.
2. Lower Zener voltage needed despite better temperature stability of 5.6 V Zener. 3. All resistors are $\frac{1}{4} W$ carbon $\pm 5 \%$.

CIRCUIT DESCRIPTION

The full circuit for the Nickel Cadmium Battery Monitor is shown in Fig. 1. A number of components have not been given values, these will be explained later. Basically the circuit compares the battery

Fig. 1.. Complete circuit diagram of the Nicad Battery Monitor.

Thus a warning is given that the battery is in need of recharging.

The values of R2 and R3 are chosen so that switch-on occurs when the battery end point voltage is reached.

COMPONENTS

Resistors

R1-4 See text (Table 1)
Semiconductors
IC1 741 op-amp
D1 BZY88C Zener diode (See text for voltage)
D2 TIL209 red light emitting diode
D3 1N4148 silicon
Miscellaneous
Stripboard, 0.1 inch matrix 8 strips $\times 8$ holes; i.c. socket if required; connecting wire.

Approx. cost Guidance only

Fig. 2. Stripboard layout of the unit.

COMPONENTS

The circuit can be adjusted to monitor batteries with various nominal output voltages, using from four to ten cells.
Values for the components unmarked on the circuit diagram are chosen from the figures in Table 1. Thus for a battery with a voltage of 8.75 V the components values in line four are used.

CONSTRUCTION

The circuit is very easy to construct and should present no difficulty even for beginners. All the components are mounted on a small piece of 0.1 inch matrix stripboard, having 8 strips by 8 holes as shown in Fig. 2.

Remember to identify the correct numbering of the i.c. pins and also note the correct orientation of the l.e.d. A socket can be used for ICI but is not a necessity.

No on/off switch is required as the circuit is switched on and off by the switch in the equipment.

MOUNTING IN EQUIPMENT

The circuit has been designed specifically for mounting inside existing equipment. The first thing to do therefore is to find some space inside where the board can be fitted, and with no possibility of coming into contact with any metal work or other components.
The two connecting wires can then be connected into the equipment circuit. The wire from point C5 should be connected to the negative line of the equipment, while that from point H5 should be connected to the positive line after the equipment's on/off switch.

A small hole should also be drilled in a convenient position to allow the l.e.d. to be mounted. For this it might be necessary to extend the leads of the l.e.d. by lengths of connecting wire.

IN USE

When the equipment is first switched on, after an initial flash from the l.e.d. as the capacitors inside the equipment charge up, the l.e.d. should remain off, providing, of course, the battery is fully charged. If the l.e.d. remains illuminated then there is an error in the wiring and should be corrected before continuing.

To give a rough check on the operation of the circuit, connect a low value potentiometer, say 100 ohms across the on/off switch With the potentiometer set to its lowest value, and with the equipment switched on all should function correctly, with the l.e.d. remaining off.

Now increase the value of the potentiometer slowly. After a certain point the l.e.d. should suddenly come on. As the potentiometer is increased further, the l.e.d. should slowly fade and eventually go out as the voltage to the equipment falls. If this test is satisfactory then the circuit is functioning correctly.

For a very small outlay this circuit protects those very expensive Ni -Cd batteries against over discharge, which if continued for any length of time brings about rapid failure of the batteries.
The circuit takes about 10 mA , and so should have negligible effect on the life of the batteries. I

NICE MICROCHIME ISN'T IT? MIND YOU, I WOULD RATHER THE TUNE WAS ONE OF THOSE SAUCY RUGBY SONGS.

I THINK IT'S MORE A QUESTION OF WHAT I CAN DO FOR YOU. I'M THE NEW VICAR.

THE majority of the simpler battery operated projects described in Everyday Electronics are built according to a fairly standard pattern. Obviously there are variations in detail, since alternative items of electronic "hardware" are available from suppliers. The following information provides a simple general outline of what is involved in putting together an electronic project.

MOUNTING THE COMPONENTS

Electronic circuits are built by mounting the individual components upon a piece of non-conductive board, usually of a plastics material. (There are several different types of board used for this purpose. But for the present we can ignore details and discuss in general terms.)
The leads of the components are passed through holes in the board and soldered connections are made on the underside surface. See Fig. 1.

HOUSING THE ASSEMBLY

When completed, the circuit assembly is usually housed in a plastics or metal box. This box will also accommodate the layer type dry battery which powers the unit.
The board is made secure by a couple of small screws and nuts, for example No.6. BA or similar fixing. Care has to be taken that the screws do not make contact with "live" parts of the circuit board. Spacers can be fitted to the screws to provide clearance between the board and the box. This is especially advised where the box is made of metal. See Fig. 2.
The entire circuit of a project may be assembled on the one board. However, it is more usual for a few larger components, including those that have some mechanical functionsuch as volume controls and on/off switches-to be mounted directly on the box itself. Likewise, if a loudspeaker is involved this will probably be mounted on the top panel or lid.
The box thus must be drilled to receive such components before the circuit board is fitted.

Operating controls are usuálly variable resistors or "potentiometers". They have a standard diameter spindle and threaded bush and are secured to the case by a lock nut.
Switches, rotary or toggle, may also have threaded bushes, but some types

are secured by screws, and may require a slot for the moving part.

Drilling and cutting out is not difficult with plastic or aluminium cases. The larger holes can be easily made by enlarging a drilled pilot hole with a round "rat tail" file. Rectangular holes or slots can be made similarly but using a flat file.
type of battery connector must be fitted to the terminals. Ensure the leads to the battery are sufficiently long to permit battery removal without difficulty or damage to connections.

CONNECTING WIRE

Connecting wire is available in many types. For most general electronic work plastic-covered tinnedcopper wire is ideal. This is available in two forms:

1. Solid (or single) conductor.
2. Stranded conductor

The solid conductor allows neat wiring to be made, but because of its rigidity has disadvantages where the equipment may be subject to vibration. It should not be used where a flexible connection is needed, for example, the leads to a battery.

Stranded wire being flexible is easy to use, but it is important to examine the bared end before soldering in position. If necessary, twist the strands together to avoid leaving any

Fig. 1. Side view of circuit board showing component leads prior to soldering and clipping.

Fig. 2. Isolation of circuit board from case by "spacer".

Other materials, such as die cast aluminium and steel, do really need the proper tools.

WIRING UP

When the circuit board and all other components have been mounted, the final wiring up between circuit board and the case-mounted parts must be carried out.

Sometimes it is simpler to do this wiring before the parts are installed, but make sure the length of wire is adequate for the purpose, without any undue stretching. A small amount of slack is advisable and this allows the interconnecting leads to be "dressed" neatly when all other work is completed.
In general, arrange for long leads to travel (run) in straight lines, forming sharp angles when changing direction. This makes for a more attractive appearance than if wires "snake" all over the place.
The battery should be secured to the case with a metal clip or a plastic strap. It must not be allowed to float freely within the case. The proper
"whiskers" which could make contact with other nearby parts of the circuit.

Wire is specified as number of strands/strand diameter in mm . The following wires are sultable for most EE projects.

Solid conductor: $1 / 0.6 \mathrm{~mm}$
Stranded conductor: $7 / 0 \cdot 2 \mathrm{~mm}$
These wires are supplied in a variety of plastic-covering colours. It is a good idea to have a small selection of colours at hand, and to use these in some specific and preferably logical manner. For example: red covered wire for the positive supply line, black for negative, and possibly green or blue for signal circuits.

The essential point is to be consistent in the use of colours throughout the project. The colours will then prove of value whenever checking over the circuit at a later time. This is particularly so in the case of large and complex projects.

BEGIN HERE

The basic principles of electronic circuits will be dealt with in our forthcoming series Teach-In 80. This 12-Part Series will commence in the October Issue of EE.

Those who are new to electronics and who wish to study this subject at home should seize this opportunity. Naturally it is vital to start at the beginning-so remember TeachIn 80 Part One October issue.

Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER.
Low-cost hand held digital multimeter with a full $31 / 2$ digit LCD display. 0.5% basic accuracy, auto polarity operation. 10 Mohm DC input
impedance.
$\begin{array}{ll}\text { Reading to } \pm 1999 . & \text { Scales: } \\ \text { DC volts: }\end{array}$
1 mV to 1000 V
($1 \% \pm 1$ digit accuracte). AC volts:
1 mV to 500 V
($1 \% \pm 2$ digits accurate). DC current: $1 \mu \mathrm{~A}$ to 200 mA ($1 \% \pm 1$ digitaccurate) Resistance: 10 hm to 20 MO hms ($1.5 \% \pm 1$ digit accurate) Power source: 9 V battery or AC with optional adaptor. Size: $155 \times 75 \times 30 \mathrm{~mm}$, 22-198

PRICE 53.9

AC/DC 8 MHz OSCILLOSCOPE

A new approved 8 MHz version of last Specifications: years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in
laboratories and schools. Ideal for radio
and TV servicing, audio testing, etc.

You save because we design, manufacture sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made

LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

A portable, compact sized multimeter with a full $31 / 2$ digit LCD display. Auto polarity operation, low

CAT. No.	OESCRIPTION	PRICE
276-032	LED	$\begin{aligned} & 4 \text { for } \\ & 69 p \end{aligned}$
276-033	LED	$\begin{aligned} & 2 \text { for } \\ & 48 \mathrm{p} \\ & \hline \end{aligned}$
276-034	LED	$\begin{aligned} & 2 \mathrm{for} \\ & 59 \mathrm{p} \end{aligned}$
276-142	Infra-Red Emitter Detector Pair	£1.37
277-1003	12 VDC Automotive	£17.52
276-9110	$\begin{aligned} & 6 \text { pin edgeconnector } \\ & \text { for 277-1003 } \end{aligned}$	40p
276-1373	Power Transistor Mounting Hardware	50p
276-1363	TO-220 Heat Sink	60p
276-1364	T0-3 Heat Sink	81p

 Horlzontal axis: Deflection sensitivity better than 250mVIDVV. Vertical axis: Detilection sensitivity better than IOMVIDIV (IDIV- 5 mm). Bandwidh:
0.8 MHz 0.8MH2. Input impedance: IMOHm paraliel
capacitance 35 pF . Time base: Sween range: capacitance 35 pp. Time base: Sweep range,
$10 \mathrm{~Hz}-100 \mathrm{kHz}(4$ ranges). Syhhronization: Inter-100kH2 (4ranges). Synhronization: $220 / 240 \% 50 \mathrm{~Hz}$. 22 -9501.
 sign in your area.
The largest electronics retailer in the world.
offers subject to availability. Instant credit available in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

[^1]

Catalogue and VAT

This month we should like to add our congratulations to Stevenson Electronic Components on their approach to the Government news of the increase in the dreaded value added tax (VATI).

On hearing the news of the 15 per cent rate, they immediately decided to absorb these increases and announced that despite this all prices quoted in their catalogue would still remain valid until 31 April 1980. This is indeed good news for our readers.

On the subject of catalogues. Their new 1979/80 Components catalogue consists of 80 pages listing over 2500 "off-the-shelf" stock items.

Over 30 pages are devoted to semiconductor / microprocessor devices, including some audio circuits. Also listed are tools, cases, printed circuit board materials and cables. Quoted amongst the cables is the light-duty $10 / 0 \cdot 1$ cable called-up in the Low Cost Metal Locator published in our June issue which some readers seem to have had difficulty in obtaining.

Free copies of the Stevenson Components Catalogue can be obtained from Stevenson, Dept EE, 76 College Road, Bromley, Kent, BR1 3BR.

Solar Cell

Any alternative sources of energy are big news at the moment and fresh ideas for avenues of possible new approaches or aids in exploiting these needs are eagerly being sought by research establishments worldwide.

One area where schools, colleges, universities and even the dedicated amateur can take an active part is in the exploration of "solar power".

A new product that will certainly interest anyone engaged in solar power research has just beep an-
nounced by Ferranti Electronics.
They have developed and produced a silicon solar cell, designated ESC3 series, measuring only 76 mm in diameter capable of producing 0.9 A at 0.5 V under good sunlight conditions.

Physical protection is provided by a tough moulded case and by a Fresnel lens which also acts as a light collector. The output voltage is taken from metal pins on the rear of the case. Accidental short circuiting of the output will not damage the cell, also any number of cells can be arranged in series/parallel combinations to provide increased output.

Readers requiring further information should contact Ferranti Elec. tronics Ltd., at Dept EE, Fields New Road, Chadderton, Oldham, Lancs., OL9 8NP.

CONSTRUCTIONAL PROJECTS

EE70 Reflex Loudspeaker

The EE7O is a high quality enclosure design and being a costly project we suggest you use only top grade components throughout.

For those readers who do not wish. to shop around for their components a complete kit of parts is available from Wilmslow Audio for the sum of $£ 150$ (add £5 for p \& p and insurance). This does not include the woodwork which will have to be purchased from your local timber merchant.
Referring back the the EE2O Loudspeaker (July '79), please note that the front and back frames are recessed within the case so that the outer surfaces of the grille panel and back panel will be flush with the edges of the case. The published diagrams are correct.

Varicap Personal MW Radio

The only component that is likely to prove troublesome to obtain for the Varicap Personal MW Radio is the varicap diode D4, type MV AM115. Todate, we have only been able to locate two sources of supply and these are: Maplin Electronics and Watford Electronics.

Particular care should be taken when soldering the varicap and the integrated circuit on the circuit board as they are susceptible to heat. We recommend that you use a heatsink when carrying out this operation.

We understand that this month, Chromasonic Electronics are offering the ZN414 radio i.c. at a special discount. The price for two chips is $£ 1 \cdot 25$, including VAT and postage, and can be obtained from Chromasonic Electronics, Dept EE, 56 Fortis Green Road, Muswell Hill, London, N 10 3HN.

Chaser Light

The Chaser Light project should be very popular and only a couple of

New silicon solar cell from Ferranti
components require further mention.
The thyristors (CSR) devices can be any types rated at or above $400 \mathrm{~V}, 5 \mathrm{~A}$. If the unit is required to drive greater than the specified loads then obviously the thyristors will have to be uprated.

As the mounting tabs are internally connected to the anodes, it is most important to use mica washers and insulating bushes. We recommend heatsink compound when mounting the thyristors. These items are sold by most advertisers of semiconductors.

Be sure to use a heavy duty toggle switch for the mains on/off switch.

Doing It Digitally

In this months article for Doing It Digitally there is an experimental circuit for a "Digital Thermometer".

Looking at this circuit we can see that many readers may have difficulty in obtaining the specifled thermistor. This is a Siemens type rated at 1 kilohm at $20^{\circ} \mathrm{C}$ and the only supplier we have been able to locate is Electrovalue.

However, although we have not tried them, the 1.5 to 2 kilohm range at $25^{\circ} \mathrm{C}$ seem to be fairly common and we see no reason why one of these should not be used.

SImple Transistor Tester

The meter used in our model of the Simple Transistor Tester was one of the battery/level indicator type which are stocked by most component suppliers.

Apart from the meter the rest of the components for this project should be readily available.

The Nickel Cadmium Battery Monitor and this month's Mini Module-Low Power Audio Amplifier use standard easy to purchase components and no difficulties are expected to be encountered with these projects.

VAT

Due to the recent change of VAT rates readers are advised to check prices in advertisements before ordering any components.

SPECIAL MAIL ORDER PRICES

POST FREE ORDERING
NO STAMP REQUIRED

TEL：

Shoos at Election House， 39 erodod Ad．，Shipley．W．Yotks 801830
TERMS．PAP 250 antra，Export please add C5 to order iotul to cover carriage al administrolion．PRICES EXCLUDING VA
Please add 15% VAT．Payments by cosh．cheque，PO or Barclycard．All gooch subiect to avaifability．Shop prices may vary．
CAPACTITAR

GAFIS \＆BOXKS：

Rouctinis

TAYAISTURS \＆TRALACS

TMYRISTOAS				16A 600V（STUD）		12001180
0.64	100 V	（TO18）	300	ST106	14 roov	
14	50 V	（5039）	27.	C106D	3A 400V	490
14	400 V	（T039）	480	2N4443	5A 400V	89，
3 A	50 V	（T068）	$36 p$	Thiacs		
5A	400 V	（T066）	600	6 A 10	100 V	53.8
54	400 V	（1220）	．6up	6a 400	400 V	830
54	800 V	（T2201	900	10a	400V	1200
104	400 V	（STUD）	800	diacs		
10A	600V	（stuo）	1100	日R100		250

TRAMSHRW：15
GAINS TzPOV POTMEN

11

$0-4.50-4.5 \mathrm{~V}$
$0-60.6 \mathrm{y}$
75 mA
100 mA
210 ma

600 mA
500 ma

$\mathbf{4} 78$
6378
$\begin{array}{llll}0.60-6 V & 250 \mathrm{~mA} & \mathrm{czo0} & 0-120-12 \mathrm{~V} \\ 0-120-12 \mathrm{~V} & 150 \mathrm{~mA} & \mathrm{c} 200 & 0-150-15 \mathrm{~V}\end{array}$

$12-0-12 \mathrm{~V}$
$15-0-15 \mathrm{~V}$
$15-0-15 \mathrm{~V}$
$30-0-30 \mathrm{~V}$

$0-120-12 \mathrm{~V}$
$\mathrm{a}-150-15 \mathrm{~V}$
200 ma
50 ma
20
150 mA
2.22 A
150 1399
6399
6399

REEPOST，SHIPLEY，WEST YORKS．BD18 1BR

？

$9 \rightarrow$ smens

A－117k	30	BC178	160	81	${ }^{0}$		280
${ }^{4} 1123$	200	${ }^{8+179}$	${ }_{80} 18$		${ }_{280}^{200}$	${ }^{2 \times 1 \times 321}$	${ }_{20}$
$\mathrm{ACP}^{\text {acta }}$	10	边	100	$8 \times \times$	20，		200
${ }_{\text {actra }}$	20	b¢183	\％	arvso	200	2TX	${ }^{250}$
${ }_{\text {actiolk }}$	38.	Вс183¢	109	8fYS1	200	${ }_{\text {TX }}^{2 \times}$	${ }^{200}$
AC142	25	8 ¢194	\＄0	8FY52	200	27×500	56
${ }^{\text {a }}$ C178	200	${ }^{\text {BCLIP4 }}$	170	8RY79	100	${ }^{21} \times$	178
ACI78K	450	${ }^{8 \mathrm{BC}} 186$	270	8sx19	190	${ }^{2} 1 \times 5002$	15
${ }^{\text {ACI } 187}$	20	${ }^{\text {BClia }}$	270	－	170	${ }_{21 \times 3} 1 \times 3$	\％
${ }_{\text {acher }}$	200	${ }_{8 C 2122}$	110	8u10s	1390	2TX	240
	430	$8{ }^{\text {c2，} 21}$	1 p	puzos	1850	2 N	${ }^{350}$
Y17	350	${ }^{8,2134}$	110	${ }^{\text {Bu }}$	${ }^{1990}$	${ }^{2} \mathrm{NB}$	
${ }^{\text {acrib }}$	4	8c21，	10	ME5002	100	2N49	$4{ }^{0}$
${ }_{\text {a }} \mathbf{A c r r v o}$	4	8 ¢С 307 ¢	180	M mabl	1650	2 N	180
acrei	350	8 8c308	190	W2995	1650	2 N	190
${ }_{\text {acriz }}$	408	${ }^{8}$	120	M		2N914	310
${ }^{\text {acrue }}$	100	${ }_{8}^{81} 388$	120	MJE520	S40	2N919	${ }_{210}$
${ }_{\text {Acrua }}$	330	${ }_{\text {casal }}$	360	MJ 5521	740	2N920	，
${ }^{\text {AOPIMO}}$	170	${ }_{8}^{8 C}$	360	${ }_{\text {OCS } 25}$	${ }_{1240}$		170
${ }_{\text {ADOA }}$	600	${ }_{8 \text { cc54 }}$	120	OC28	1240	2N1132	220
40161	4.	acsa ${ }^{\text {a }}$	120	OC29	1550	2 N	${ }^{35}$
ADisin	102	8Cs59	120	OC35	${ }_{12700}^{120}$		820
${ }^{40162}$	420	8c557	120				
aflic	30.	${ }^{\text {BC558 }}$	200	$\mathrm{OCO}^{\text {che }}$	20	${ }^{2 N 1306}$	15
Aftis	300	8 cc 39	900	${ }^{\circ} \mathrm{C} 44$	310	2N1307	590
AFt	308	${ }^{\text {BCY\％}}$	15.	${ }^{\text {ocas }}$	780		420
ANㅏㅇ	5	${ }^{\text {a }}$	18	OC7	2，		\％
Afti2	55	80115	640	OC^{12}	300	2N2160	34\％
afirs	350	80127	78.	OC\％	150	2N2217	420
${ }^{\text {arlit }}$	14	B0， 23	80．	${ }_{0}^{0} 76$	750	${ }^{2 \times 2}$	270
Aflin	35	${ }^{\text {80，}}$	${ }^{5}$	OC81	58	2×2368	210
AFt｜	69	8018	450	Oc8？	390	${ }^{2123} 3695$	130
Aftiso	18	${ }_{\text {RLil3 }}^{\text {R0，}}$	3720	Oc83	40		220
${ }_{\text {AF } 238}$	12	${ }_{\text {HLJ }}$	50	Oc1\％	40	2N2903	220
Asvrs		4013）	350	OCir	400	2m200	${ }^{22}$
${ }_{\text {ASY }}$	5	${ }^{\text {84LIJ9 }}$	\％	－	509	${ }_{\text {2N }}$	220
вс10\％$^{\text {c }}$	100	8 O 140	356	T1930	${ }_{66}$	$2{ }^{2}$	230
	${ }^{100}$	${ }^{802145}$	${ }^{1895}$	${ }_{\text {TiP31A }}^{\text {T1P31 }}$	4	2N30	550
${ }_{8 C 1009}$	110	80\％17	900	${ }_{7}^{10318}$	37p	$2 \mathrm{NaO53}$	470
${ }_{\text {BC1098 }}$		EFis	270		\％		360
${ }_{8 c} 1090$	110	${ }^{\text {af }} 158$	780	${ }^{\text {T10328 }}$	690	${ }^{2 \times 3702}$	100
			200	${ }^{\text {T1P33 }}$	$7{ }_{7}^{7} 9$		
${ }_{8 C 115}$	18	af 17	20	tip 33 A	780	2 233	110
${ }_{8 C 118}$	18	${ }^{\text {af } 178}$	290	1197338	990	2 23706	10
${ }_{\text {BC17 }}$	19		\％o	${ }_{\text {T103 }}$	109	$2{ }_{2}$	110
${ }_{\text {aCc }}{ }^{\text {c }}$	${ }_{27}$		$3{ }^{3}$	tipsa	smp°		110
${ }_{8} \mathrm{BC} 134$	120	${ }^{\text {ef F } 182}$	${ }^{350}$	${ }_{\text {T1P336 }}$	1090	$2{ }^{2} 3$	110
	200	${ }_{8}^{\text {affisi }}$	3720	T194		${ }_{2}^{2 N 3}$	\％
aC， 13	180	8F199	120	tipata	590	2 N 372	120
${ }^{8 C 1} 38$	8	${ }_{\text {8F }}^{8196}$	120	Hipatc		${ }_{\substack{2 \\ 2 \times 3 \\ 2 \times 3}}$	${ }_{\text {210 }}$
BCH_{140}	30	${ }_{8197}$	140	tipaza	5		450
${ }_{3 \mathrm{BC} 143}$	78	${ }_{\text {ef } 190}$	17%	${ }^{\text {T1543 }}$	330	${ }^{2 \times 3903}$	700
	70	8r220	370	H15s9	${ }^{1250}$	2×3	178
${ }^{\text {8C，}} 148$	\％	F248	290	1x107	120		170
－		8856	500	${ }_{2 \times 108}$	120	mass	170
${ }_{8}$	150	85258	300	${ }_{8} 1 \times 212$	150		170
	100	${ }^{\text {Pr } 239}$	300	27x2，	140	${ }^{2 \times 10032}$	150
${ }_{9 C 159}$	110	Br590	400	2T×300	150	2 ms	${ }_{01}$
${ }_{8 C 150}$	420	BF595	370	217301	${ }^{150}$	45138	200
$\square_{\text {aciece }}$	110	beato	240	${ }_{2 T \times} 10303$	180		$3{ }_{30}$
BC189C	100	fars	250	27×304	200	，	40
（ectio	178	EfRes	230	${ }_{21}^{21 \times 310}$	170	${ }^{40032}$	${ }_{520}$
		885×29	200	${ }_{21}^{21 \times 3113}$	250		520

a $150-15 v$
$0-200-20 \mathrm{~V}$
$0-20 \mathrm{O}-2 \mathrm{y}$
$0-6 \mathrm{v}$
$\mathrm{g}-9 \mathrm{v}$
$0-12 v$
$0-18 v$
$0-24$
$0-24 \mathrm{v}$
$0-1 / 2 \mathrm{v}$
$0-18 \mathrm{a}$
$6-6-6 v$
$5-0-9 v$
$12-0-12 v$
TRANSHTTORS

30－a

CBronk?

 By F. C. Judd

 By F. C. Judd}

Abstract

A governmental decision concerning the legalising of two-way radio communication between members of the public is expected in the coming months.

This article discusses impartially the advantages and disadvantages of Citizens Band Radio.

|F you have not heard about "CB" it means "citizens" band" which is the facility of two-way communication by radio transmission and reception by any member of the public at large It is allowed in many countries but not in the UK where the use of radio transmitters in any part of the recognised radio frequency spectrum, except by specific and Home Office licenced services and users is positively illegal. At present there is no frequency allocation and no licence available in the UK for any so called CB equipment.

SPECULATION AND THE LAW

There is of course much speculation about CB radio being allowed but this depends entirely on whether the present or any future government in power can be moved sufficiently by demand from (a) the public as a whole, (b) the one or two existing CB pressure groups and (c) large commercial interests, to persuade the Home Office who have full control over the issue of all radio transmitting licences, to change their present dogmatic and negative attitude toward citizens band radio.

That is the situation at the moment and the several thousand who are at present operating CB transmitters in the UK are breaking the law and therefore run the risk of prosecution for doing so. The equipment these unlicensed operators are using is mostly for 27 MHz (used for CB in the USA and other countries) and is causing widespread and serious interference to other essential services as well as to the licensed users this frequency is allocated to, namely the radio controlled model enthusiasts, many of whom have already suffered the loss of expensive model aircraft and control equipment.

These illegal operators may well be assuming that by sheer weight of numbers they will force the issue of
legalising CB as has happened in Australia. This procedure is however not supported by existing and ostensibly genuine advocates of CB such as the Citizens Band Association.

THE BENEFITS OF CB

There are many more "for" CB than there are "against" of course; but on the other hand the valid reasons for allowing CB radio are more than equalised, if not completely outweighed, by reasons for not permitting its use in the UK.
The uses for CB, other than a means of purely social chit-chat and contact, are really rather limited. Most are already adequately and efficiently catered for by other services. However, the benefits of CB according to the CB Association and others are as follows. Based on studies by this association and the National Electronics Council in this country it is suggested that some 2,000 lives a year would be saved on the roads (in the UK) thus representing a monetary saving of $£ 100,000,000$ this being based on an estimate by the Road Research Laboratory of $£ 50,000$ per fatal accident.

FUEL SAVING

CB, they say, would also save up to $2 \cdot 5$ per cent nationwide on motor fuel by preventing wasted journeys. Further claims are the creation of some 15,000 new jobs and a licence and VAT revenue of around $£ 10,000,000$ per annum. We would of course have the use of CB for rescue work communication, when people get trapped in snow drifts in winter, or by floods, or on mountains or even adrift in pleasure boats as well as for large scale disasters although these are areas already well catered for by existing and properly organised emer. gency communication services with trained operating personel.

CB could and probably would be used extensively by business people and by employers to employees working at distances other than across the office or factory floor. The more "public" users of CB would presumably be expected to give way on frequency channels in use for any of the above. But would they?

RULES AND CODES OF PRACTISE

On paper the various "benefits" to be derived from CB radio may seem attractive and there is no doubt that lives might be saved by prompt and let it be underlined, efficient and disciplined communication, which means there must be rules and codes of practice.

This appears not to have been thought of by the advocates of CB. If everyone were allowed to drive a vehicle on the roads in a completely random fashion, ignoring all the rules, the result would be utter chaos. Free and random use of a very narrow band of radio frequencies without regard to others and without some form of disciplined operating could reduce all attempts at communication to virtually nil.

This is the reason why International agreements on codes of practice and frequency allocation etc, have to be made and why control over the various radio communication services within any country has to be maintained by an appointed authority.

OPERATING RANGE

Communication ranges with CB would normally be very limited, probably to a few miles unless, as is happening in some countries, very high power and large high gain aerials were used, albeit illegally. Since the band of frequencies allowed for CB would be very small indeed there would be only sufficient space for a limited number of stations to operate without interference to each other at any one time, even with the use of narrow band frequency modulation.

CB equipment will not, as the CB advocates might lead one to believe, be all low power mobile sets, that is used in vehicles or as small hand-held sets (walkie-talkies). There would be fixed stations having the advantage of high beam aerials and many would resort to the use of power in excess of that allowed.

TYPE APPROVED

All equipment intended for $C B$ transmitting would certainly have to be type approved as is virtually all equipment used by all other recognised and licensed services. CB equipment which will be used by millions of people without technical
knowledge would have to comply with tight specifications of performance with regard to frequency stability and power output and nonradiation on any frequency outside the allocated band, for example, harmonics which could cause interference to other services on other frequencies.
This is probably the most important requirement of all because any old home made or cheap jack manufactured CB sets would be potent sources of high level interference. In the USA last year there were over $1,000,000$ cases of television reception interference due to $C B$ activity.

THE PROBLEMS WITH CB

If $C B$ could be properly controlled by continuous monitoring, if the use of type-approved equipment only could be enforced and maintained, if swift and positive identification of all users licensed or otherwise could be established, if alt forms of abuse could be kept down to an acceptable minimum, then CB in the UK might be operationally viable and become a minor asset to the public.

RADIO VANDALS

The use of $C B$ radio for criminal and subversive activity might not amount to much, it would be too public a medium for communication by those who for one reason or another require secrecy. But what of the cranks who will jam up CB for miles around with continuous recordings of highly distorted pop music and
other obnoxious sounds, the mentally depraved types who will let forth endless transmissions of the vilest forms of obscenities, the "radio vandals" who by deliberate jamming, will wreck other users attempts at communication.

This is what licenced radio amateurs and other services are having to contend with now and attempts by the authorities to stop these offenders have so far proved completely ineffective. Such activity would be multiplied by more than a thousand times on a CB band.

But say the CB advocates, it would be quite easy to identify all CB operators licensed or otherwise because all CB sets could be fitted with an encoded identification generator. Could is the operative word. Such devices could and would be disconnected, changed or modified in minutes by anyone with some knowledge of electronics. The cost of continuous monitoring, dealing with cases of interference and administration generally would far exceed any income likely to be obtained from equipment VAT and licences.

PHYSICAL VIOLENCE

In many countries CB radio has been the cause of physical violence and even murder brought about by face to face confrontation between CB operators resulting from arguments over the use of channels and interference to television and other reception.

It should also be remembered that CB would involve not only millions of people but young children as well and
enticement by means of radio communication for the purpose of criminal assault would be far easier than by any other method. Young children with walkie-talkies would be at great risk in this respect. There is no need for the CB advocates to say this hasn't happened. It has!

A FLOOD OF IMPORTS?

The creation of thousands of new jobs for the production of and sales of $C B$ equipment might well apply to Japan where most large electronics and radio manufacturers are ready now to begin mass production of CB equipment at prices no UK manufacturer could ever compete with and almost regardless of type, frequency or power requirements etc. The writer recently spent four weeks in Japan with one of their largest manufacturers of communications equipment who could meet most of the total demand in the UK within a matter of weeks and with CB sets that would meet any type approval specifications.

There is little point in speculating on a frequency band that might be allocated for CB in the UK, or indeed on any other technical performance parameters that might be specified. Frequencies around 200 MHz have been mentioned largely because there is a band in this region claimed to be unused although in fact still allocated to the armed forces.

It remains for those who want $C B$ radio in the UK to first get it legalised, but once allowed it could never be stopped no matter what havoc it would almost certainly create.

ACROSS

1 Fruity layer, opaque to some wavelengths.
4 High conductivity harness.
\% What the DXer does when the signal comes in?
9 A neat Vesuvian cone (Anag.).
10 Component leg for line hanging.
12 Commonly bread but sometimes 10 across.
13 An underhand come-on filters through.
15 Friendly TV system.
17

19 Lit upon a cast-iron term.
20 Cassette button for tape expulsion.
23 Booze in the alternator.
24 Reflect on it Snell for a pulse (Anag.).
25 Cancel.

28 Its purpose is to spin.
30 Run towards.
31 To make a components' union $(6,2)$.
32 Network for reaching the heights of addition?
33 Eee, an occasional condition affecting reception.

DOWN

1 Plan a mast sight (6,4).
2 Pupil in a tone (Anag.).
3 It's not even evens.
4 Occupying a considerable width on the dial.
5 Between a part of interference.
6 Gives records and mass.
8 Celestial signal from earthly source $(3,4)$.
11 Five per cent band.
14 Shop for a memory unit?
15 Control backing.
16 Collapsible aerial.
18 Wheatstone's précis?

Solution on page 599
19 An easily-led circuit.
21 Greek tea makes tight.
22 Bug with dog connections.
26 Of some musical fame?
27 To exhibit strong influence in a pushy sort of way.
29 Inductive winding.

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-OUIBBLE 5 YEAR GUARANTEE

Of all the purpose-built power amplifer modules by I.L.P., the HY 50 is understandably the most popular with those wanting to bulld or up-grade a hl-fi system, run a small high quality P.A. system, amplity a musteal instrument (say for practise or small range use) or use It for lab work. Its us eful 30 watts RMS output into 8 ohms, Its rugged construction and freedom from heatsink worries make HY50 the Ideal all-purpose quallty power amp-and it is unconditionally guaranteed for five years. Ten of thousands are in use throughout the wortd
... and a spec that means what it says!
Encapsulated power amo with Integral fuil-rated heatsink. Input500 mv .
Output 30 watts RMS/8 Ω.
Load Impedance- 4 to 16Ω
Distortion- 0.04% from 100 mW to 25 watts at $1 \mathrm{KHz} / 8 \Omega$. Supply Voltage $\pm 25 \mathrm{~V}$. Slze $105 \times 50 \times 25 \mathrm{~mm}$. Inc. V.A.T. and postage In U.K.

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heat 5 Inks, encapsulated clrcultry, no-compromise production standards and true professlonal finish ensures world teadership for 1.L.P. Now we have upgraded output ratings and down-graded prices to bring I.L.P. within easler reach of all who want the best.

New production techntques enable us to reduce prices by an average of 20%, making l.L.P. a better buy than ever.
USE OUR FREE POST SERVICE for sending your orders, requests for information sheets etc. SImply address envelope. No stamps required.

FREEPOST 3
Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP Phone (0227) 54778

IT'S FREE

Our monthly Advance Advertising Bargains Llst gives detalle of bargalins arriving ar Just arrived-olt en bargains
which sell out before our advertisement can appear-lt's
 few of the Barpains stlll available from previous lines.
5000 WATT HEATER KIT
Why not make a standby heater, you never know oil, gas even coal could run out this winter so be prepared and in any case a big heater is a good thing to have for an emergency. We are offering the kit at a very special price untlil September
30 th only. The kit consists of:-wo metal bladed tangential 30 only. The kit consists ot:- iwo metal bladed tangential
blowers, two 2.5 kW mineral filled metal clad heatling elements, a three level switch, thermal safety cutout, trains and wring connector panel, all the necessary tag ended leads and last but not teast the wiring and assembly dlagram. You have to provlde the case materlal yourself, but our dla--
oram gives all the detalls-the specla off season price tis gram gives all the detalls- the speclal of season price is
$£ 7.95+£ 1.20$, carriage $£ 2$. Price after September 30 oth is $\varepsilon 11 \cdot 50+{ }^{+}$£1. $75+$ carrlage.
HUMIDITY or the amount of water held in the air-lit has a
big effect on many things-unless the humidity is fightit for instance-chicken eggs won't hatch-tomato fowers won't set-cigars aren't fit to smoke-iust to name a few, but most
important Is, we breathe the alr, so humldity has a big effect on our healith-air thats too dry makes us feel Ilstless and also damages lungs and resplratory pas sages-too damp can klll us and in fact it does, fog (humidity 100%) is responslble for premature deaths of may people during winter months.
Bearing in mind these facts its surprising that so few of us Bearing in mind these facts Itts surprising that so few of us
do anything to control humldity. This company sells a humdity controller switch made by Honeywell of U.S.A. price dajty controller switch made by Honeyweiliof U.S.A. price
$\mathrm{ci}+\mathrm{i} 5 \mathrm{p}$, this adjustable for varying humidies and if will switch to a mos at $2400-$ but $1 t 8$ juth a witch, and 11 one of our readers would desion a simple to make humldifler, we will reward him and pass his d
FLUORESCENT CHOKES
Another of season special offer. 80 wate chokes $£ 1 \cdot 75+$
270,65 watt $£ 1 \cdot 35+200,40$ watt $£ 1 \cdot 25+$ tip. Prices are based upon an order for minimum of 20 ehokes, but are sublect to a dlscount of further 15% if you order 100 choke:
Try to collect but if not then add 250 per choke for carrlage. Try to collect but if not then add 250 per choke for carrlage
Speclai Summer offer ends Sept. 31 st . Speclal Summer offer ends Sept
RECORD PLAYER MOTORS
As fitted to Magnavox, B. S.R.. Garrard etc. 2 pole motors
E1. $50+22 \mathrm{p}$, post 35p. 4 pole (note these are also fitted to some tape recorders) $\dot{E} 2+30 \mathrm{p}$ post 400 per motor. An interesting point about these motors is that they will replace a on can usually be replaced separately
A OOOR SWITCH
Near lubular pattern lor letting into door frame. All you have is a changeover switch, so can be used in opening or closing circuifs. PrIce 570 .
Crouzet ref. 319/C this a changeover swite with unlimited uses, contacts rated 10 amps stackable and very light welght, Snap action. Price 29P.
MINI DECADE THUMBEEL SWITCH
 before maxe contacts. Price $87 p$.
ROCKER SWITCH
Double pole 13 amp 250 v for hole size $1 \mathrm{y}^{\prime \prime} \times \mathrm{z}^{\prime \prime}$ while with nlekel piated surround. DOT ref. $82 / 631$. Price $41 p$.
VARIABLE AUTO TRANSFORMERS (Varlacs)
We have 12 only 8 amp variacs, these are unused being removed from new Ex Gov. power supplies-these variac enable normal $230 / 40$ mains to be varled smoothly from 0 volts to 270 volts in one volt steps. The current passing through the variac can be anything up to 8 amps continuous or 12 amps infermittent. These are ideal for dimming lighting
or heating speed control etc. and on the work bench for or heating. speed controm eic. And one up to date price in the trade catalogue is $£ 50+$ yat, but our price Is only $£ 34 \cdot 50$ MOTORS FOR VARIACS
Do you have a 1 b which calls for the remote control of yariacs-say the ralsing and lowering of the house lights stats set at different termeratures. If so you may like to know we have motorised cradles to take up to 4 variacs-mains operated, these drive the variacs backwards or forwards
and have llmit switches at the end of thelr 320° travel. Price E46+ carriage E5.
Can be operated by air flow, coins or other mmall weights so they have many aplications-SPDT silver contacts rated
at 250v 5 expected life of $10,000,000$ Operations. PrICe 52 .
LIGHT DEPENDENT RESISTOOR ORPII cadmium sulphide l.d.r. with clear end wind
reduces as light increases, dark reelistance 1 meg plus,
mest tun light resistance $100-200$ ohms. Price 87 p .
SUB MINI TRIMMING POTS
SUB MINI TRIMMING POTS
WIre leads suit
Wire leads suit 1 matrix board-top adjustling avallable in rollowing vaiues: 10 ohms, $10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$, 100k, 200k, 250 k ,
500 k and m meg. Price 740 each or 52 p 11 ordered in ten ol one MULTI TURN POT
$1 z^{\prime \prime}$ cermet-20 turn metal cased with three leads for p.c.b.-
mutili-contact suili-contact wiper ensures minimum noise and excellen Stab $152 \mathrm{k} \Omega$ Price 63 D .
thls
SPECIAL CABLES
In addition to the list glven in our May/June newsletter we have a few more to add-these have medlum duty 7.0076
copper conductors $P . V$. copper conductors P.V.C. Insulated and colour coded,
twitied into pairs, each palr bralded with a metal screen wisted into pairs, each palr bralded with a metal screen
hen all are laid together and covered, black pvc 4 screened palrs 45 p, 5 screened pairs $50 \mathrm{p}, 8$ screened pairs $60 \mathrm{o}, 16$
sereened pairs 95 p . All prices are per toot and subject to VAT and 60 p carriage Af order under E 6 .
 ono-mountable lrom tront or reat this extremely shaft ? in lact the writer could not stop it by hand. Price $£ 3.75+$
 Can make. Price f8.62 each, carr
STEREO HEADPHONE LEAD
Black curly 101 t apporox, terminatlons, stereo Jackplug one nd-miniature two pin plugs on other, Price 57p
MAINS OPERATED WATER PUM
MAINS OPERATED WATER PUMP
Most readers will know that we stock the Jabseo dril1 pump is F . was made to work with most portable drifls, the price them on a metal chassis and offer this as a general purpose pump. It is sultable for most liquids and certainly for water. The pump will lift the liquid up to
post 11.00 .
HEAVY DUTY MAINS REL.AY
With three c/o 15 amp contacts-fitted with plastic dus cover, this has push on lags for quick connectlons. Price
\&3.26.

MULLARD UNILEX

A malns operated $4+$ atereo
system. Rated on of the
finest perlormers in the stere field this would make a won-
derful oift for almost easy - to - assemble modular Torm and complete with a pair of speakers this should sell at about E30-but due to specla
bulk-buy and as an incentive for you to buy this month we orfer the system complete at
only E 15 Includ!ng VAT and postage.

SHORTWAVE CRYSTAL SET
Although thls uses no battery it glves
really amazing results. you will really amazing results. You will stations over the $10,25,29,31$ metre bands. Kit contalns chassis front panel and all the parts $\mathrm{E} 2 \cdot 30$-crystal earphone

WINDSCREEN

WIPER CONTROL
Vary speed of your wiper to sult
conditions. All parts and instruc tlons to make EA^{25}.

DRILL CONTROLLER
Electronically changes speed trom approximately 10 revs to
maximum. Full power at all speeds by Anger-tip control.
Kit Includes all parts, case,

SOUND TO LIGHT UNIT

WIII , yroved circuit flashes up to 750 watte of lamps Complete kit includes S.C.P. mains Inpu\& leade, all parts and very neat plastic case £4.95.

CASSETTE OUTFITS

 Complete mechanisms with record/playback and erase pald. Not these are all cased up ready tobe silghtly uncomplete, cracked or broken.

VARICAP POCKET RECEIVER CHASER DISPLAY

To quickly recelve parts for the se and other E.E. projects, send the approximate cost as shown. Any cash adjustment can be madelater.

MINI-MULTI TESTER Amazing. deluxe pocket slize ewelled bearings-1000 opvmirrored scale. OC volts 10,50,250, 1000 AC volts 10,50,250, 1000 DC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$ Conilinuity and resistance $0-150 \mathrm{~K}$ Compl
Complete with Insulated probes,
leads, battery, clicult dagram eads, battery,
Unbellevable value only $£ 6 \cdot 50+50 \mathrm{p}$ post and insurance.
FREE Amps ranges hit enable you to read DC current from $0-10$ amps, direclly on the $0-10$ ecale. It's free If you purchase quickly but if you already own a minitester and would like one send El. 50

ERMS: Cash with order-but orders under $\mathbf{£ 6 \text { must add }}$ Op to ofiset packing, etc.
BULK ENQUIRIES INVITED. PHONE: 01-688 1833.
J. BULL (EEECTRCAL) LTD
(Dept. E.E.), 103 TAMWORTH RD., CROYDON CR8 15G

LATCHING RELAY

This is in fact double relay, mechanlcally arranged so that when relay no. I closes it will stay closed untll no. 2 Is closed. Each relay has its own coll (50 v dc) and is own cio contacts, useful in burglar alarm and
DOUBLE ENDED MOTOR
Mains operated, capacitor run, power estimation at approx th.D., this has spindle coming out each side and should be very suitable for convering into a doubled ended pollsher it very easy to stand In the rlaht position and the speed although not high is adequate. We are offerling these with Capaeltor at £4-70, post £1-50.
THREE POSITION ROCKER SWITCH 10 amp changeover with a centre off standard size pushes
Into hole slze approx. $\mathbf{l}^{\prime \prime} \times 7 / 18^{\prime \prime}$. Speclal bargaln this month, WATERPROOF HEATING WIRE
As used for electric blankets etc. Thie has dozens of other fation are obyious uses, One unusual use sugeres customer is a 'grow' bag heater. The wire which conslsts of an element wound on plass fibre then covered by clear
PVC has a resistance of 60 ohms per yard. The price is 23 p FAS metre. RUNING OUT
The minlature 24hr timer module, with facillty lor 32 on offs and 16 amp contacis. If you want one of these send your order
this month or you will be too late. Price is $\Sigma 7.71$. Extra on thl s month or you will be too late. Price
of triggers E . 15 per set.
ANOTHER UNREPEATABLE BARGAIN
Which will soon be sold out, is the Sensitive Voltmeter Which will soon be sold out, is the Sensitive Voltmeter Rew offered at only about $1 / 10$ th of manulacturers price namely £8-93 and post $£ 1$. The $4 f^{\prime \prime} 1 \mathrm{~mA}$ movement alone is worth more than double this and we give a clrcult diagram of the non energy consuming relay HALF PRICE CABLE OFFERS
Copper clad-made to B.S.I. specification. Prices are only about half the present list prices so be clever buy now whlle stocks last.
size

ELECTRICAL ACCESSORIES SUMMER PRICES Waterproof cast metal thermostat box $£ 2 \cdot \mathbf{~ 4 7}+37 \mathrm{p}$ post 40 p .
Wall mounting Multiswitches metal box with front GEC. single switch 57 p , twin switch 60p $+8 p$. Architrave single 69p. Archlitrave double 86p.
Quad switch 87p, 6 switch £1. 15, 12 switch E1-73
5 amp 2 wey $40 \mathrm{D}, 2$ way and off 58 p .
13 amp sockels unswithed brown $34 \mathrm{p}+4 \mathrm{p}_{1}$ swltched brown 59 p.
June
Junction box 23 p.
Spurs while 40 p , with socket 65 p
Dim and full switch, 4 pole c/o with centre off 10 amps . \&1.15 Water heater swltch 20 amp 250 v flush 57 o . 10 amps . \& 15 5 amp 3 pin switched sockets, 5 for $\mathrm{f} 1 \cdot 70$, unswltched 5 for
3 Bank rocker switch, interlocked for blow heaters 57p.
Waterprool 5 amp single pole 250 v switch 32p.
Gardie condult 58 and
Mem. switch ref. 1613 52p.
Mem. switch ref. 1600 34p.
Mem . switch ref. 1600 34p.
Brown surface switch square or round 5 amp 250 V 41 p .
Brown surface switch square or round 5 amp 250 v 41 p.
Immerslon Heater $2 \mathrm{kw} £ 3 \cdot 45,3 \mathrm{kw} \mathbf{£ 4} \cdot \mathbf{6 0}$, thermostat $£ 3.45$. THERMOSTAT WITH REMOTE PROBE
This is a Satchwell thermostat using sensor connected to with control knob. Price $£ 2 \cdot 60$. WWAY CONNECTOR BLOCKS
Twing grub screw In PVC type, 10 blocks for $69 p+9 p$
For operating 12 v equlpment from 6 v car battery etc etc., based on circuit which appeared in a recent addition of the Wireless Worid this device fils an urgent need in that it
doubles a DC voltage (within the ilmits of the transistors doubles a DC voltage (within the limits of the transistors used). The ones we supply are sultable for operating up to
40 volts $\$ 0$ providing the final voltage does not exceed this then you can double any voltage you like (or you can treble power transistors, $1^{\prime \prime}{ }^{\prime \prime}$ ferrux pot core FX 2242, enamelled copper wire, electrolytic condenser for smoothing and heat COMPONENT BOARD Ret WOggs This Is
COMPONENT BOARD Ref. WOggs. This Is a modern ibre giass board which contains a muliftude of very useful including four 3 amp 400 V types (made up in a bridge), 8 translstors type BC 107 and 2 type BFY 51, electrolytic con-
densers, SCR ref. 2 N 5062250 uf 100 v DC and 100 ul 25 v DC, densers, SCR ref. 2N 5062250 uf 100v DC and foouf 25 v DC,
and over 100 other parts Including variable, fixed and wre and over 100 other parts Including variable, fixed and wirg
wound reslstors, electrolytic and other condensers. A real snlp at £I 15.
SUPER 24305
SUPER 2N3055
Transistor RCA 52360 , in our experience this does all the 3055 can do but does it better, we have good stock of these STICE SID. SPEAKER CABETS
Simulated teak finish, nice handy size $11^{\prime \prime} \times 8^{\prime \prime} \times 41^{\prime \prime}$ approx. modern blach sponge type front, price $£ 2 \cdot 36$, post $£ 1 \cdot 50$. White with black edge very modern looking plastlc with threaded studs for mounting seaker complete with bach,
price \&1. 75 , post 60 p . price $£ 1 \cdot 75$, post 60p.
For use on fluorescent lighting for power factor correction or as a voltage dropping device, these are very rugged and
will stand DC voltages Up to three ilmes thelr RMS voltage. A big purchase enables us to ofier these at about one third of the current manulacturers prlce, all are 300 V RMS working or higher and are in aluminium cans with tags or wire ends,
ollowing values: $1 \cdot 25 u f 40 \mathrm{p}, 1 \cdot 5 \mathrm{f}$, 52 p 3 f , 63 p , 4 uf 74 p , 7Uf 98p, 8uf 107P. 1541 £1-45p.
COMPUTOR COOLING FANS
The famous Plannair, these are a slx bladed 4 " " fan rotaling at approx. 3000 revs per minute, in a dle cast case size approx. but any not in perfect working order would be replaced. price $£ 5.75+40$ p post.
Fivorescent Fittings definltely the time to think of lighting. We are making a special offer of fluorescent fittings io cailers, complete with tubes, summ
Calculator Key pad Ex broken up calculators these are onfofi, divide, multiply, plus, minus butions as well few only left of these ${ }^{2} \mathrm{p}$.

The Extra ordinar Experiments

 of ProiessEvnest
Eversure

by Anthony John Bassett

T-om and Maurice are forming a Space Age Band with traditional instruments and electronic effects, plus as many unusual gadgets as they can lay their hands on. Last month we saw how the Prof. repaired a wah wah unit and suggested some unusual ways in which it could be used. Now he looks at a faulty spring line reverberation unit.

REVERB UNIT

"It seems there are a number of things wrong with this unit," the Prof. told Maurice, "not only electronic faults but also, from the way it rattled as you handed it to me, it seems there is a mechanical fault as well."

The Prof. examined the unit. "It works by means of springs which vibrate at audio frequencies and give the effect of very close echoes or "reverberation", and in some devices of this type a mechanical clamp is provided, to prevent the springs from vibrating when not in use, and especially when the unit is being transported.
"I see that this unit does not have such a clamp. Because of this it is unduly sensitive to vibration and knocks, and the end of one of the springs has become separated from its mounting."

MECHANICAL REPAIR

The spring mounting points were very delicate and not easily visible, so the Prof., after removing a small object from the loose end of the spring and leaving it to soak in a small glass jar containing some paint-remover, drew a sketch (Fig. 1).

Fig. 1. Detail of the spring mounting point for the spring line reverberation unit.
"This is what we find at each end of the reverberation springs," he told the boys. "The end of the spring is hooked on to a short length a phosphor-bronze wire, the other end of which is secured mechanically by means of a blob of solder at the end of a short length of brass tubing held in place by olamps.
"Part way along the phosphorbronze wire, a small magnetic bead is held in place by adhesive cement. The bead at one end of each spring is caused to vibrate by
the magnetic field produced by audio-frequency currents in a nearby coil driven by a small amplifier. The magnetic field is guided to the magnetic bead by means of softiron pole pieces.

REFLECTIONS

"These vibrations are passed onto the spring, and travel along it at the speed of sound, being reflected back and forth along it to produce reverberation. Even though the speed of sound in steel is several times greater than in air, the vibrations travel back and forth along the spring a great many times and may give a decay time of several seconds.
"Thus the spring and both magnetic beads continue to vibrate even after the original audio signal has ceased, and this is picked up by a coil near to the second magnetic bead and converted to a reverberation signal, which is a replica of the original repeated many times by reflection back and forth.
"In this reverberation unit, the phosphor-bronze wire has broken off right inside the brass tube probably due to a heavy knock caused by dropping the equipment."
"I see," said Tom, "all it needs is a new piece of phosphor-wire!"

Easier said than done!" remarked Maurice. "In our studies of mechanical science and engineering at school, I learned that there are numerous grades of phosphor-bronze. Some are soft and ductile, whilst others are hard and strong. We need to be sure to use the right one."
"That's OK, I've got some phosphor-ubronze wire of high tensile strength and almost the same gauge in the Laboratory Stores."

MAGNETIC BEAD

Bob used the Stores computer to locate the wire, and whilst he was cutting off a suitable length and carefully joining it to the end of the spring, the Prof. put on protective eye goggles and removed the magnetic bead from the jar of paint remover, which had successfully dissolved the cement which joined the bead to the old bit of wire. Being very careful not to get the paint solvent on his skin and clothes, he washed the magnetic bead in cold water, then in methylated spirit, which he allowed to dry before threading the bead onto the new length of phosphor-bronze wire which Bob had joined onto the spring.

The Prof. positioned the magnetic bead at the correct distance along the wire, then applied a couple of small blobs of quick-set adhesive to it, and also one to the point where the wire looped onto the spring. Leaving this to set, he applied a hot soldering iron to the solder at the end of the brass tube and removed most of the solder, so that the phosphor-bronze wire could now be threaded through the hole in the end of the tube.

LOW MELTING POINT

"That solder seemed to melt very quickly, Prof.," remarked Bob, "especially considering the bulk of the brass tube, which must surely act as a heat sink and take away some of the heat!"
"That's right, your sharp observation has scored again! It is low melting point-solder, so it melts very easily. We must use similar low-melting point solder to fix the phosphor-bronze wire into the brass tube. If the phosphor-bronze gets too hat, it becomes annealed and soft, loses much of its tensile strength and becomes liable to break again at exactly the same place."

Now Bob carefully threaded the end of the new piece of phosphorbronze wire through the brass tube. He stretched the spring until the magnetic bead was in the right place, between the pole-pieces of the coil, and held the wire with narrow snipe nosed pliers whilst the Prof. quickly and carefully soldered it into place in the end of the brass tube, using low melting point solder. When the solder had set, Bob cut off the surplus wire leaving about 1 cm of spare wire protruding from the end of the brass tube.
"Now we should need only to repair the electronic faults, to have a working reverb unit," the Prof, observed.

Fig. 3. The Prof's idea for a simple spring line unit.

The signal could be fed to one of the inputs of the amplifier to be heard from the speaker as a reverberation effect.

Fig. 2. The Prof's block diagram for explaining the operation of the spring line reverb.

SIMPLE REVERB

"Prof. I've been having some thoughts about spring line reverberation and I've got an idea I'd like to ask you about." Bob began to draw two sketches (Figs. 2 and 3).
"The first diagram, Fig. 2 shows very basically how I think the unit produces an electronic reverberation signal," he told the Prof.
"The original signal is fed into the 'drive amplifier' and the output of which causes the spring to vibrate through the drive coil as you described earlier.
"The pickup coil then feeds the electronic reverberation signal to the 'pickup amplifier' the output signal is then mixed with other signals and eventually fed to the loudspeaker.
"Now I've thought of a very simple and inexpensive way to build a spring line reverb unit with much less electronics" he indicated the next diagram, Fig. 3.
"My idea is to simply stretch a steel spring across the inside of a loudspeaker cabinet, and put a magnetic pickup near it. Any sound from the speaker will cause the spring to vibrate, and the pickup will then detect any reverberation signal from the vibrating spring.

The total cost to someone who already has an amplifier and speaker would be just the cost of a thin steel spring and a pickup!"
"That is a good idea, Bob, and it can be made to work quite well, however in order to get the best results it is necessary to position the spring carefully so as not to

Fig. 4. Obtaining a more complex reverberation by using a long spring in zigzag fashion. Replacing the spring with guitar strings will produce Sitar sounds.
pick up too much unwanted resonance. Also, the pickup must be positioned carefully in order to receive the best possible signal from the spring without picking up too much of the audio frequency magnetic field from the speech coil of the speaker. This could cause unwanted oscillations resulting in a howling or whistling sound.
"If a longer spring is used, stretched inside the speaker cabinet in zigzag manner with each portion being a different length, this should give a more complex reverberation sound and help to reduce dominant resonances." The Prof. drew another diagam, Fig. 4, to show this.
"Here several pickups can be tried at whichever points give the best results, and the signals from the various pickups can be mixed together.

A similar method can be used to deliberately boost a number of resonances, producing an interesting sitar-like effect.

SITAR SOUNDS

"The sitar-like effect may be accomplished by stretching a number of guitar strings across the inside of the loudspeaker cabinet, and tuning them to the various high pitches. By picking up the vibrations of these strings with the magnetic pickups and feeding them into an amplifier, weird overtones are heard, and may linger on noticeably as the playing changes.
"Once again it is necessary to position the pickups carefully to avoid magnetic feedback, and it is also helpful to feed them into a second amplifier and speaker,

I wonder also if I could ask you about a few further points which I am not sure about please. These are:
(1) The voltage at TA5 is 0.6 V approximately instead of the stated 7 V .
(2) The voltage at TR3a,b base is 3.6 V approximately instead of the stated 6.8 V .
(3) When using the mute switch the strong signals are unaffected but the weaker signals can't be tuned in.
(4) When tuning manually with a.f.c. selected, the station is held over a considerable section of the scale, i.e. the effect is to spread the station.
(5) When tuning to a weak signal which is adjacent to a strong signal on the scale, when a.f.c. is selected the strong signal is brought in in preference to the weaker one.
Finally I would like to tell you how delighted I am with the overall result. I have really enjoyed every hour spent working on it and I must say the sound coming from my speakers is of a very high quality Indeed.
My grateful thanks to yourselves and the brilliant Mr. Rule.
I. B. Morris, Liverpool.

Mr. Rule replies

I'm not sure why changing the 1 kilohm (R45) to 10kilohm should clear your other problem of distortion unless perhaps TR6 was faulty, in which case TR5 would work as an emitter follower and this could account for the need to change R45. It would be worth checking this part of the circuit again and making sure that TR6 is o.k. What you have done is all right except that if TR6 is not working the distortion through the stage will be higher than it should, although perhaps not enough to notice in practice.

The difference in voltages that you are getting on certain test points is almost certain to be due to the resistance of your meter effecting the readings. This often happens when measuring base voltages of transistors and the best way is to measure the emitter voltage and add on approximately 0.6 volts. This will then give you
rather than back into the amplifier which drives the experimental cabinet."

To be continued

Crossword No. 19-Solution

the actual base voltage, providing of course that the transistor is working.

The mute switch will only effect the weaker signals and the background hiss. Strong signals are not effected.
When using a.f.c., a nearby strong signal will pull the receiver away from a weak one if the strong signal is within the i.f. pass band; this is normal and the only answer is to leave the a.f.c. "off" when tuned to weak signals. When a.f.c. is "on" tuning along the scale will give the effect you mention of very broad tuning. This is also normal and in fact shows the a.f.c. is working-it is trying to correct the tuning error you have introduced by trying to detune the station with the normal tuning control.

From all your comments I would think that with the possible exception of TR6 your EE2020 is working correctly and I am very pleased to hear of your satisfaction with your efforts. The EE2020 was a large project compared with most and judging by the letters received, the staff of Everyday Electronics did a good job as there have been very few problems reported to me by constructors.
Should you have any further queries please let me know but in the meantime I wish you many hours of good hi-ft.

The front panel of the EE2O2O can be marked as follows: Roughen the surface of the aluminium, then clean thoroughty. Apply Letraset or "Blick" dry print. Spray with clear varnish-nail varnish will do -or hair lacquer.
This method is easy and economical and gives a "professional" finish. Engraving is certainly a rather costly process.
Regarding the tuning scale, you should be able to make a fair copy on white card from the published diagram. Incidentally the variations in dial markings are due to the non-linear capacitance/voltage relationship of the varicaps used in the tuning system; the overall calibration should be within + or -0.5 MHz which for a project of this type is quite good. If you have access to an f.m. signal generator you could of course calibrate the dial with better accuracy.

only $89.95+75 \mathrm{p}$ p\&

Comes complete with:

* TMS1000 Micro * Fully prepared PCB
* Superb cabinet * All semiconductors
* All R's \& C's * Loudspeaker
* Switches \& pots * Socket \& Hardware
* Fully detailed kit manual

TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.

New low price only $£ 4.95$ inc. p\&p (Only present 24 tune repertoire currently available.)

A COMPLETE KIT FOR THE

NEW MICRO

 CHIMEThis easy to build kit includes:

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!

SUPPLIED WITH MONEY BACK GUARANTEE
PLEASE ALIOW 7-21 DAYS FOR DELIVERY
Please send me:
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
ADDRESS

[^2]Signature
©GHROMATROAlCSS

Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

$$
\begin{aligned}
& \text { AUDAX BAKER BOWERS \& WIL- } \\
& \text { KINS CASTLE CELESTION } \\
& \text { CHARTWELL COLES DALESFORD } \\
& \text { DECCA EMI EAGLE ELAC } \\
& \text { FANE GOODMANS HELME OI.M.F. } \\
& \text { ISOPHON JR OURDAN WATTS } \\
& \text { KEF LEAK LOWTHER MCKENZIE } \\
& \text { MONITOR AUDIO O PEERLESS } \\
& \text { RADFORD RAM RICHARD ALLAN } \\
& \text { SEAS TANNOY Q VIDEOTONE } \\
& \text { WHARFEDALE }
\end{aligned}
$$

WILMSLOW AUDIO

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount Hifi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mall Order \& Export 0625529599 Hi-Fi 0625526213

BUILD A SYNTHESISER!

Using Devetron (Reg'd)

PROFESSIONAL MODULES

Over 20 different electronic modules to select what YOU want to build a synthesiser; simple or complex. Start simple and add to it as you can afford. New attractive prices for the long-popular, welltried range of Dewtron synthesiser and other effects modules. Send $\mathbf{2 5 p}$ for Musical Miracles Catalogue NOWI

D.E.W. LTD.

254 RINGWOOD ROAD, FERNDOWN, DORSET BH229AR

LOOK! Here's how you master electronics. the practical way.

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer. All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1. Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar plece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.

3. Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all ty pes of electronic equipment, radio, t.v. etc.

4.FreeGift.

All students enrolling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Post now, without obligation, to:-

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL

P.O. Box 156, Jersey, Channel Islands.

NAME

24 TUNE DOOR CHIMES

DOOR TUMES E15.4 + VAT

Waddungion's Videomaster annaunce a dociteel Ihat doesni go Birtinggg, Ding Dong or Brimm. Inslead it Davs 24 ditherent classizal and popular unnes It will play the Iune vou select for your mood. the season or the vistrot you are expecting to call. Door lunes is not only grear fun and a wondertul ice breaker, but is also very hunctionally and beauifidly designed to entriance rour home. Theie is somethang for Chistmas, something for your continenalab visiors or Your relations from the sates, and even
something for the Cueen. Door unnes is easy to wsiah and has separale conitols for wolume, tune and lemipo
T.V.GAMES

PROGRAMMABRE 579.50 + VAT

COLOUR CARTRIOGE T.Y. GAME

The TV ganve can be compared to an audin cassetre dect and o programmed to play a multitude of difterent games in Ccalouh, using various plug in carnidges. Al long lasi a TV game is avalable which will keep pace with inpopoving sechnuligy by aliowivg you to extend your hibrary of games whit die purchase of additional carridges as new games are developed Each carludge contans up 10 ten different aciun games and the first canidge coutrining ten sports games is inchuded tree with the console. Other cantudges are currently avalable to enable you to play such ganies as Grand Prix Moror Racing, Super Wipeout and Sunt Rider.
further cantridges are 10 be released Iater this vear. further cartisiges are 10 be released later this vear, induding lank Banle, Hum the Sub and Target. The console comes complete with iwo removable ioysuich
player convols 10 enable you to move in at four durctions olayer convols 10 enable you 10 move in af four drections lupidowninghthetil and buit into these ioysick consols are
bell serve and target lite buntons. OThes teatures nclude ball serve and target lire buntons. Ohther teazures nclude several difticulty option swithes, automalic on screen digita scoring and colour coding on scores and balis litelike sounds are iransminted through the FVs syeaker,
simulating the artual game being played. simulating the artual game being playe
Manutactured Manufactured by W
guaranieed for one үear,

CHESS COMPUTERS

STAR CHESS - 550.09 + VAT
PLAY CHESS AGAIMST YOUR PARTMER.
using your own TV 10 display the Doard and pieces Slar Chess is a new absortang game for two players, which will merest and excite all ages the unit plugs into the aenal socket of your TV set and displays the board and pieces in lut colour lor black and whitel on your TV screen. Based on the nimes of chess It adds even more excizement and ine noses of chess. It adds even more exciement and
interest to the game. for those who have never played, Star Chess is a novel inrrotuction to the classic garme of chess. for the experienced chess piayer, there are whole new dimensions of unpredictability and chance added to the srategy of the game. Not only can pieces be taken in conventional chess mpe moves, bur each piece can also exchange rocket fire with iss opponents. The urit comes complete with a free 18V mains adapior, fuli instuctions and iwelve monits guaranee.
CHESS CHALLENGER $7-$ - $88.65+$ VAT. PLAY CHESS AGAINSI THE COMPUTER.
The styish. compact. perrabie ronsole car be set "oo play al seven difierent levels of abliny fron, beginget to expen including "Mate in wo" and "Chess by mel". The compurer whil only make responses which obey international chass rutes Casthag, on passans, and promoting a'pawn are 'all included as pan of the compter's programme 't 'is possble lo enter any given problerr Irom magazines or
newspayers or athern newspapers or athernesively estatilish your own board posituon and watch ihe compurer react. The positions of alf pieces can be verihed by using the computor memory recall button. Price meludes unit with wood grained housing, and Staunton cesign chess pieces. Computee plars triack or white and against itself and corres complete with a mains adapror and 12 months guarantee.
QTHER CHESS COMPUTERS IN OUR RANGE INCLUDE: CHESS CHAMPION - 6 LFVELS 882.87 + VAT
CHESS CHALLENGER - 10 LEVELS - $\$ 103.06$ CHESS C

+ VAT.
BORIS - MULTI LEVEL TALKING DISPLAY E165.28

ELECTRONIC CMESS BOARO TUTOR E 19.75 inc. VAT. A special bulk purchase of these aniaing chess leaching machines enables us to ofter them at only $\$ 19.75$ less than half recommended resal price. The electronic chess turor is a simple battery operated machine thal can actually teach anyone to play chess and improve ther game right up to
championship level. This machine is championstip level. This machine is not onty for total beginners but also for established players wanting io play benter chess Unil chnos pieces a the elechonic chessboad win 22 chess pieces, B EA page explanatory bookiel and a set of 32 progresswe programane cards including o beginners
cards. 16 check migte postions, 8 miniature games, 5 cards. 16 check mare postions, operings
games

DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVEIS T4398 + VAT. LEVEAS F80.0S + VAT The draughis compuer enables you 10 sharpen your skills. improve your gamee, and play whenever you wanl The compuner ncorpbrates a sophisticated, retable, decision making microprocessor as ins brain. lis high level of ihinking abiliy enables it to respond with is bess counser moves bike a stiled human opponent You can select
offence of defence and change playing ofificulty levels at offence of defence and change playing dificulty levels at any lime. Positions can be verfifed by computer memony
recall. Machise does not permit ilegal moves and can solve recall, Mechise does not permit Alegal moves and can solve
set problems Compuiar cames complete with instructons. se1 problems. Compuiter cames complete with instructions,

FOR FREE BROCHURES - SEND S.A.E

Far FREE illustr ared brochures and revews on TV and chess ganies please send a stamped addressed envelope, and sraile which paricular ganies you require information on.
Callers wetconte at our shop in Welling - demonsitations daty - open from 9am 53 upn. Mon Sat I9ami 1pna Wedl To order by felephone please quote your name, address and Access Barclaycard nunibet. Postage and Packing FhEE
AJD DIRECT SUPPLIES LIMITED, Dept. EE6, 102 Bellegrove Road,
Welling, Kent DA16 30D. Tel: $01-3039145$ (Day) $01-8508652$ IEvenings/

S.\&R.BREWSTER
 LIMITED

WHY PAY MORE?

for Miniature Soldering Irons \& Accessories S. A. ...18 watt Soldering Iron available SPARE BITS No 20 bit $54.43+24 p$ No 19 size 15 mm or No. 20 size 3 mmor No 21 s12e 45 mm or No 22 size 6 mm
No $781 . \mathrm{C}$ Desoldering Bul No. 1920 L Long Life Bit
SAFETY STAND SOLDER

Savbit 20 Savbit 20
Savbil 10 Lowmell' 10
industrial/retail enouiries welcome for the above

We also Offer \& Recommend for Mail Order \& Personal Callers Only

lsotip duich enarge
Spaste tips tor above
Cabie $7 / 1.211$ Colou

Coppenc Claod boord single sided
Watchmakers side
Watchmakers side citiers
Warthmakers Pliers
Watch makers Ploirs
Tunator

OTHER ITEMS ALSO AVAILABLE ASK FOR LIST S.A.E. MAIL ORDER DEPT.
86-88 Union Street, Plymouth PL1 3HG Tel:(0752) 65011
 Please Quole vo
Number when今, A-

For your Guidance Value Added Tax

Unless otherwise shown, all prices in advertisements are inclusive of VAT.

Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.

Export orders are not subject to the addition of Value Added Tax.

> SINCLAIR PRODUCTS New 10 MHz scope poa, PFM200 £52.69, case $£ 3 \cdot 40$
adaptor $£ 3 \cdot 40$ connector k 1 t £11-27 Microvison TV UK model $£ 91 \cdot 44$, malns adaptor £6.88. PDM35 £29.76, mains adaplor $£ 3.40$, case $£ 3.40$. DM350 £77-82,
DM450 $£ 102.17$ DM235 $£ 52.65$, DM450 $£ 102 \cdot 17$, DM235 $£ 52 \cdot 66$, recharge-
able batts. $£ 7 \cdot 99$ malns adaptor $£ 3 \cdot 94$, -1. case £9. Enterprise prog. calculator with accessories $£ 23 \cdot 37$.
> COMPUTER GAMES Star chess E62. Chess champion 6 £94. Chess challenger 7 £91. Chess challenger $10 £ 152 \cdot 50$. Volce challenger poa. Checker challenger $2 £ 46$, checker chailenger 4 £88. Atarl video COMDUter COMA, cartidges $£ 14 \cdot 32$.
> COMPONENTS 1 N4148 1-4p. 1 N4002 $3 \cdot 1 \mathrm{p} .741$ 18p. bc182b, bc183b, bc184b,
bc212b, bc213b, bc214c 5p. Resistors $=\mathrm{W} W$ 5% E12 10R to 10M 1p, 0.8 p for $50+$ of one value. 16 V electrolytics $5 / 1 / 2 / 5 / 10 / 22 \mathrm{uf}$ $5 p_{\text {, }} 100 \mathrm{uf} 6 \mathrm{p}, 1000 \mathrm{u} 10 \mathrm{p}$, 1 lb FeCl Ei - 20 . Dalo pen 84p. 40 sa Ins pcb 64 p. Poly-
styrene capacitors E12 63 V 10 to 1000 p 3 p , in2 to 10 n 4 p . Ceramic capactiors 50 V E6 22 pi to 47 p . Ceramic Rapacitors Zeners 400 mW E24 $2 v 7$ to 33 V 7 p . Preset pots submin 0.1 W
100 to 4 M 77.2 p . 100 to 4M77.2p.
> TV GAMES AY-3-8500 + kIt $£ 9.53$.
RIfle kA $£ 5.27$. AY-3-8610 RIfle kIt $£ 5 \cdot 27$. AY-3-8610 + kIt $£ 16$-51.
Stunt cycle chip + kI8. $£ 16.72$. AY-3-8603 chip E9.4.

TRANSFORMERS 6-0.6V 100 ma 76p,
 IC AUD10 AMPS with pcb. JC12 8 W SATTERY ELIMINATORS 3-way typ BATTERY ELIMINATORS 3-way type $6 / 71 / 9 \mathrm{v} ~$
300 ma $£ 3-14.100 \mathrm{ma}$ radio type
with press-studs 9 V £3.57.9V +9 V £ 79 . Car convertor 12 v input, output $4 \frac{1}{2} / 6 / 7 \frac{1}{1} / 9 \mathrm{y}$ 800 ma E2.66.
BATTERY ELIMINATOR KITS ro0ma radio types with press-studs $4 \frac{9}{\mathrm{~V} V} \mathrm{£1} \cdot 49$,
 /4를/6/7/1/9/92/15/18v $100 \mathrm{ma} £ 2 \cdot 98$, 1 Amp E6.E1. Stabilized power klts $2-18 \mathrm{v} 100 \mathrm{ma}$
 $12 v$ car convertor $6 / 7 \frac{1}{2} / 9 \mathrm{~V} 1 A$ E1-44.
T-OEC AND CSC BREADBOARDS -OEC AND CSC BREADBOARDS
 exp300 £6.61, exp $350 £ 3 \cdot 62$ exp 325 £1-84. BI-PAK AUDIO MODULES S450 £24.03. AL60 £4-97. PA100 £17-33. spm80
 MA60 £36.23.
SWANLEY ELECTRONICS Dept. EE, 32 Goldsel Rd., Swanley, Kent Post 30 p extra. Prices include VAT, Official and overseas orders welcome.
Lists 200 post free.

Head office and mail order to DEPT EE
 A. Marshall (London) Ltd.
 Kingsgate House, Kingsgate Place, London NW6 4 TA
 Tel: 01-624-0805 Telex 21492
 Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2 also 325 Edgware Road, W2. Tel: 01-723 4242 Glasgow: 85 West Regent Street, G2 2QD Tol: 041-332 4133 and Bristol: 108A Stoke's Croft, Bristol. Tel: $0272426801 / 2$.

$\begin{array}{lllll}\text { Dlaplays } 7 \text { seg } & \text { LEDS } & \text { Red } & \text { Gr } & \text { Yell } \\ \text { Com anode or cath } & \text { Sml } \\ \text { Red }\end{array}$ Com anode or cath Large
Red
8 mm \&1.50 Extra

RAACO STORAGE BOXES

Strong durable high impact polystyrene boxes with

LINEAR (See catalogue for full range)					
LM339N	0.80	LM1828N	1.90	CA3025	0.70
LM340T-5	0.88	LM1830N	1.90	CA3028A	
LM340T-12	0.88	LM1845N	1.50		25
LM340T-15	0.4	LM1848N	1.98	CA30	0.75
LM3401-24	0.88	LM1850N	1.90	CA3029A	- 90
LM341P-5	0.56	LM1889N	2.50	CA3030	1.50
LM341P-12	0.56	LM1890N P	O.A.	CA3030A	
LM341P-15	0.56	LM2907N-8	1.80	CA3	
LM341P-24	0.56	LM2917N-8	1.80	CA3	
LM345K	8.97	LM3301N	0.60	CA303	1.95
LM348N	0.95	LM33C2N	0.53	CA3036	1.21
LM350k	6.50 0.60	LM3401N	0.55	CA3038	2.90
LM358N	0.60	LM3900N	0.68	CA3038A	$4 \cdot 10$
LM360N	3.00	LM3905N	1.15	САЗ	
LM370N	$3 \cdot 30$	LM3909N	0.78	C. 43040	
LM371H	2.35	LM3911N	1.10	$\mathrm{CA}^{\text {a }}$	65
LM373N	3. 35	LM3913N	P. 0.	CA3042	1.65
LM374N	3.35	LM3014N	${ }^{2} 79$	CA3013	2.20
LM377N	1.80	LM4250CN	1.30	CA3045	5
LM378N	2.40	LM78L05CH	0.85	CA3046	
LM379S	4.25	LM78L12C	0.05	CA30	
LM380N-8	0.96	LM78L15C		CA3047	
LM380N	1.08	LM78L24CH	0.85	CA3048	$2 \cdot 45$
LM381AN	2.70	LM7805KC	1.56	CA3049	1.98
LM381N	1.69	LM7812KC	1.56	CA3050	2.66
LM382N	$1 \cdot 32$	LM7815KC	$1 \cdot 56$	CA3051	82
LM384N	1.55	LM 7824KC	1.56	CA3052	1.78
LM386N	$0 \cdot 88$	LM78L05Cz	0.30	CA 3053	
LM387N	1.10	LM78L12	$0 \cdot 30$	CA3054	1.10
LM388N	1.00	LM78L15CZ	$0 \cdot 30$	CA3059	2.10
LM389N	1.00	LM78L24CZ	0.30	CA30	2.50
LM392N	0.87	MC667P	2.75	CA3062	75
LM7018	2.99	MC671P	1.75	CA3064	
LM701C	2.99	M C672P	1.75	CA30	1.10
LM702C	0.81	MC724P	$2 \cdot 10$	CA3068	3.80
LM703LN	1.15	MC789P	1.80	CA3070.	1.90
LM709CH	0.70	MC7700	3. 10	CA3071	90
LM709-8	0.50 0.40	MC798P	2.20	CA3072	90
LM709-14	0.49 0.87 0.8	MC799P	2.20	CA3075	
LM710CH	0.87	MС832P	0.70	CA3076	12
LM710-14	0.48		0.70	CA30	0.85
LM7110	0.48	MСө36P	0.02	CA3080A	2.10
LM716	1.00	MC837P	0.82	CA3086	0.50
LM723CH	0.62	M $\mathbf{C 8 3 8}$	2.35	CA3038F	1.87
LM723C-14	0.45	MC840P	1.65	CA3089E	9
LM741CH	0.50	MC844P	0.70	CA30900	40
LM741C-8	0.30	MC846P	0.70	CA31	1.06
LM741C-14	0.60	MC848P	1.10	CA3140	1.04
LM747CN	0.78	MC849P	0.70		2.25
LM748-8	0.50	MC857P	0.85	LF365N	0.80
LM748-14	-. 50	MC861P	0.45	LF356	0.80
LM900	0.50	MC1035P	1.90	LF357N	80
LM919	- 50	CA3000	3.30	LFI3201N	3.00
LM921	0. 50	CA3001	4.25	LFI3331N	
LM923	0.50	${ }^{\text {CA3 }} 3002$	3.36	LFI3741H	0.49
LM1303N	1. 1.52	CA33006	4.60	${ }_{\text {LFI3741 }}$	0.38 0.75
LM1304N	1.32	CA33007	4.15	LM114H	2.75 0.40
LM1307N	1-22	CA3012	1.65	LM301-8	0.30
LM1310N	2. 10	CA3013	1.85	LM804H	
LMI351N	1.30	CA3014	2.20	LM307N	
LM1458N	0.45	CA 3018	0.75	LM3	
LM149	0.87	CA3019A	1.16	LM	
LM180	1.94	CA3020	${ }^{2} \cdot 20$	LM309KC	1.55
LM1801N	2.25	CA3020A	2.50	LM317K	-3. 35 1. 35
LM1808N LM1912N	2.10	CA3021	2.40	LM317MP	1.35 2.20 2
LM1820N	1.16	CA3023	2.20	LM318N	2.45

TRANSISTORS (See catalogue for full range) 2N3402 - $\left.21\right|^{2 N 3567} \cdot 25 \mathbf{2 N}^{2 N 3704} \cdot \mathbf{1 4}^{2 N 4908} 3 \cdot 721^{2 N 5035}$

2N34
2N35
$2 N_{3}$
$2 N_{3}$
$2 N_{35}$
2N3563
2N3564
2N3565

TRIACS
POWER PRICES AT UNBEATABLE PRICES
TIC206D

TIC206D	Plastic TO66	400 v	4A
TIC250	Plastic TO66	400 v	$6 A$
TIC226D	Plastic TO66	400 v	$8 A$
TIC236D	Plaste TO66	400 v	12 A
TIC246D	Plastic TO66	400 v	16A
TIC253D	Plastic TO3	400 v	20 A
TIC263D	Plastlc TO3	400 v	25 A

40576
40569
40842
2N4444

THYRISTORS			
TYPE		ING	CASE
TIC44	0.6 A	30 V	TO18
TIC46	0.64	100 v	TO18
TIC47	0.6 A	200	TO18
2N5060	0.5 A	25 v	TO18
2N5061	0.5 A	50 V	TO18
2N5062	0.5 A	100v	T018
2N5063	0.5 A	150v	T018
2N5064	0.5 A	200 v	TO18
Bsti80246	4.7A	7000	Plastic
BY106		Stud	Mounting

BT120 (XK3139/3158; Silud
BT121 (XK

TTL (see catalogue for full range)

SN74H05N	$0 \cdot 60$	LS63N	1.	74LStid	$2 \cdot 70$
SN74H10N	0.56	74LS73N	0.42	74LS 189 N	3.74
SN74H11N	0.55	74LS 74 N	0.42	74LS 190 N	1.00
SN74H20N	0.55	74LS75N	0.58	74LS191N	1.00
SN74H21N	0.55	74LS 76 N	0.42	74LS192N	0.95
SN74H30N	0.55	74LS78N	0.42	74LS193N	0.95
SN75H40N	0.55	74LS83AN	0.90	74LS194N	0.70
SN74H51N	0.55	74LS85N	0.95	74LS195N	70
SN74H53N	0.56	74LS86N	0.44	74LS196N	0.80
SN74H54N	0.55	74LS90N	0.64	74LS197N	0.80
SN74H55N	0.55	74LS 91 N	$1 \cdot 20$	74LS221N	0.80
SN74H60N	0.55	74LS92N	0.70	74LS240N	1.50
SN74H62N	0.55	741593N	0.64	$74 . S 241 \mathrm{~N}$	1.50
SN74LOON	0.55	74LS95AN	0.90	74LS242N	25
SN74L02N	0.56	74 LS 96 N	1.35	74LS243N	$1 \cdot 25$
SN74L04N	0.60	74LS107N	0.42	74LS244N	$1 \cdot 50$
SN74L47N	$3 \cdot 10$	74LS109N	0.42	74 LS 245 N	Es
SN74L74N	0.90	74LS112N	0.42	74LS247N	1.09
SN74L85N	$2 \cdot 62$	74LS113N	0.42	74LS248N	1.09
SN74LO3.N	$2 \cdot 30$	74LS114N	0.42	74LS249N	09
74LSOON	0.26	74LS122N	0.02	74LS251N	1.00
74 LS 01 N	0.26	74LS123N	0.83	74LS253N	1
$74 \mathrm{LSO2N}$	0.26	74LS124N	$1 \cdot 70$	74LS257N	$1 \cdot 00$
74LS03N	0.26	74LS125N	0.60	74LS258N	00
$74 \mathrm{LSO4N}$	0.29	74LS126N	0.50	74LS259N	$1 \cdot 55$
74LSO5N	0.29	74LS132N	0.85	74LS261N	3.25
74LS08N	0.26	74LS136N	0.42	74LS266N	0.44
74.509 N	0.26	74LS138N	0.65	74LS273N	1-30
74LS10N	0.26	74LS139N	$0 \cdot 65$	74LS275N	20
74LS11N	0.26	74LS145N	$1 \cdot 30$	74LS279N	0.58
74LSI2N	0.26	74LS147N	1.65	74LS280N	
74LS13N	0.58	74LS148N	$1 \cdot 35$	74LS283N	$1 \cdot 20$
74LS14N	0.75	74LS151N	0.58	74LS289N	3.74
74LS15N	0.26	74LS153N	0.58	74LS290N	1.00
74LS20N	0.26	74LS154N	$1 \cdot 45$	74LS293N	
74LS21N	0.26	74LS155N	0.80	74LS295N	$1 \cdot 35$
74LS22N	0.26	74LS156N	0.80	74LS298N	1.35
74LS26N	0.32	74LS157N	0.80	74LS299N	
74LS27N	0.26	74LS158N	0.65	14LS323N	$3 \cdot 50$
$74 \mathrm{LS28N}$	0.29	74LSt60N	0.00	74LS324N	1.65
74LS30N	0.26	74LS161N	0. 85	74LS 325N	240
74LS32N	0.27	74LS162N	0.80	74LS326N	2.70
74LS33N	0. 29	74LS163N	0.85	74LS327N	2.55
74LS37N	$0 \cdot 32$	$74 \mathrm{LS164N}$	1-10	74L.S348N	1.10
74L.S38N	$0 \cdot 32$	74LS165N	1-15	74LS352N	1.07
74LS40N	0.26	74LS166N	1.65	74LS353N	1.07
74LS42N	0.80	74LS168N	1.45	74 LS 365 N	0.55
74LS47N	1.09	74LS169N	$1 \cdot 45$	74LS366N	0.55
74LS48N	1.00	74LS170N	1.90	74LS367N	0.55
74LS49N	1.09	$74 \mathrm{LS173N}$	$1 \cdot 10$	74LS368N	0.55
74LS51N	0.26	74LS174N	0.75	74LS373N	0.85
74LS54N	0.26	74LS175N	0.75	74LS374N	0.85
74LS55N	0.26	74LS181N	$2 \cdot 75$	415375 N	0.66

KNOBS for $f^{\prime \prime}$ spindies
(see catalogue for full ruge)
M1 $\begin{aligned} & \text { Black } \\ & \text { metal } \\ & \text { plastic with mach } \\ & \text { Insert } \\ & 25\end{aligned}$

M2 As Mi but 33 mm dia | E0. 25 |
| :---: |
| 15 |

pointer
Black plastlc with mach. Ined metal insert and shirt 36 mm dla. machined metal Insert and skirt 36 mm dia
Black plas machined metai
skirt 30 mm dia. c
w
wish with
tiand
$£ 0.33$ Black plastic body with Heavy metal matt E 0.18
inlay black Inlay compact and very siyllsh, diameter $\quad \begin{array}{ll}24 \mathrm{~mm} \\ & 0.52\end{array}$ Black plastlc pointer kno with white marker, $O D$
18 mm
(skirt)
pointer 31 mm
 and
-22 mm

CRESCENT RADIO LTD.

1. ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22. 4SJ. PHONE 01-888 3206

EUROSOLDERSUCKER

This 195 mm long, all metal, high suction, desoldering tool with re blaceable Teflon tip enables removal of molten solder from all sizes pf pcb pads. Primed and released by thumb, it incorporates an antiecoil system and built in safety guard. Only $£ 7.25$ inc. VAT \& P.P. TIU WROUR

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long tife (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms).
Easily removable, non-slip rubber backing allows damaged contacts to'be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for $2-$ inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

Push button heads or tails. Complete kit and full instructions supplied.
A pocket game.
Easy to build and great to play.
Kit priee- $\mathbf{6} \cdot \mathbf{2 5}+15 \%$ VAT. Post free.
4 OHM DOOR MOUNTING
CAR LOUDSPEAKERS

High performance, door mounting. $5 \frac{1}{6}$ inch units with smart front grill. 10 oz magnet, 12 watts, 4 ohms. In attractive see-through carton.
$£ 12 \cdot 60+15 \%$ VAT. per pair.

HEAVY DUTY XOVER
 2 WAY 8 OHM

A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt.
Fitted with serew terminals for input and a three position 'HF LEVEL' switch which selects either Flat, -3 dB or -6 dB .

ONLY $£ 3.00+15 \%$ VAT
A CRESCENT 'SUPERBUY'
Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with L/S chassis and has fixing holes with centres spaced at $5 t^{\prime \prime}$ (diagonally).

ONLY $45 \cdot 00+15 \%$ VAT

LOUDSPEAKERS
$2 \mathrm{t}^{\prime \prime}(57 \mathrm{~mm}) 8$ or 75 ohm
150 P VAT (please state impedance req ${ }^{\circ} \mathrm{d}$) PSI STABILISED POWER SUPPLY

240v AC input. Outputs: 3, 6, 7.5 and 9 volts DC at maximum 400 ma . Three switches: On-off, Polarity Reversing and Voltage Change. Regulated to supply exact marked voleages from no load up to maximum current. Dimensions: 127 | m $76 \times 57 \mathrm{~mm} . £ 6.50+15 \%$ VAT. |
| :--- |

PS2 12 VOLT HEAVY DUTY POWER SUPPLY
12 volt 1.5 amp suitable for using auto cassettes from domestic mains. Approx. size: $105 \times 100 \times 60 \mathrm{~mm} . \notin 10$ inc. VAT. CR4IIO DESOLDERING PUMP

ONLYE6 + 15% VAT

High suction pump with automatic High suction pump with automatic Teflon nozzle.
3 KILOWATT PSYCHEDELIC
LIGHT CONTROL UNIT
1000 W lighting per channel, max.
This 3 channel sound to light unit is housed in a robust metal case, with a sensitivity control for each channel i.e. Bass, middle and treble. Full instructions supplied. S.A.E. for spec. sheet. ONLY $£ 20 \cdot 00+15 \%$ VAT CR LVI
E12.00 12VDRILL
EI2.00 MADE "Versadrill" 15% VAT BRITI5H MADE "Versadrill", 12 volts DC. Compact battery operated power cool, sufficiently powerful to perform drills. Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.)

BAICLAYCARD 'P\&P' ORDERS UP TO E5, Add 30p

leome ae: 21 GREEN LANES, PALMERS GREEN, NI ersonal callers welcome ar: 21 GREEN LON GREEN, EDMONTON

MAIL ORDER PROTECTION SCHEME

The Publishers of Everyday Electronics are members of the Periodical Publishers Association which gives an undertaking to the Director General of Falr Trading to refund moneys sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund moneys owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.

In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Everyday Electronics within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:- 'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered. 'Classified and catalogue mail order advertising are excluded.

MULTIMETERS \& DMMs

CITO 38
AVO MULTIMINOR
AVO MOD 8
DOLOMITI SP
AVO DA116
PAN 2000

BzK 2810
UNIGORD 210
$\begin{array}{ll} & 4 \text { basic parts-no screws-owner replacement } \\ \text { PANTEC MINOR } \quad 2 \cdot 5 \mathrm{KV} \text { AC } 12 \cdot 5 \mathrm{~A} \text { AC } 20 \mathrm{~K} \Omega / \mathrm{V} 30 \text { ranges }\end{array}$ mirror scale
Peg board type select $1 \cdot 5 \mathrm{KV}$ AC/DC IA DC 10K $\Omega / 524$ ranges
Avo brand name 1000 V AC/DC IA DC $200 \mathrm{~K} \Omega / \mathrm{V} 19$ ranges
Top of range 3 KV AC/DC 10A AC/DC $20 \mathrm{~K} \Omega / \mathrm{V}$ Automatic cut out $1 \cdot 5 \mathrm{KV}$ AC/DC $5 \mathrm{AC} / \mathrm{DC} 20 \mathrm{~K} \Omega / \mathrm{V} 40$ ranges cut out protection
13 mm LCD $3 \frac{1}{2}$ digits $\cdot 5 \%$ Acc 1000 V AC $/ \mathrm{DC}$ 10A AC/DC Batt opp 500 hrs life 15 mm LCD $3 \frac{1}{2}$ digits $.3 \%$ Ace 1000 V AC/DC $2 \mathrm{~A} A C / D C+$ capacitance + option temp + signal inject facility 5% Acc 1000 V AC/DC 6 mm LED $3 \frac{1}{2}$ digit $\cdot 5 \%$ Acc 1000 V AC/DC IA AC/DC auto zero full overload protection 13 mm LCD $3 \ddagger$ digit $\cdot 2 \%$ Acc 500 V AC/DC $5 M \Omega$ resistance temp $+\mathrm{DB}+\mathrm{HV}$ optional

OSCILLOSCOPES ETC.

SCOPEX 4S6 SCOPEX 4D10B SCOPEX 4D25 METRIX 0X712. CSC 2001 CSC 4001 CSC LOGIC CSC LOGIC CSC LOGIC CSC LOGIC CSC MAX 50 CSC MAX 100

Single beam $6 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ display $8 \mathrm{~cm} \times 6 \mathrm{~cm}$
New style dual trace 10 MH
display $6 \mathrm{~cm} \times 8 \mathrm{~cm}$
Dual trace 25 MHz with signal delay display $8 \mathrm{~cm} \times 6 \mathrm{~cm}$ Dual beam $15 \mathrm{MHz} 10 \mathrm{MV} / \mathrm{cm}-5 \mathrm{~V} / \mathrm{cm}$ display $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ true Function generator $1 \mathrm{~Hz}-100 \mathrm{KHz} 5$ rangesrea Ace to $+5 \%$ of dial setting
Pulse Generator $0.5 \mathrm{~Hz}-5 \mathrm{MHz}-T \mathrm{TL}$
compatible--square wave mode etc etc Monitor LM1 input I MP $100 \mathrm{~K} \Omega$-input $2 \mathrm{~V}+0 \cdot 2 \mathrm{~V}$ input V range 4 V DC min 15 V DC max inpul freq 10 KHz
Monitor LM2 as LM1 but + power supply extending ranges + total independence Probe LP1 memory probe min detect pulse 50 ns Max input freq 10 MHz
Probe LP3 high speed memory probe as LP1 pulses as narrow as 10 nS -pulse trains to 50 MH Frequency Counter 6 digit $100 \mathrm{~Hz}-50 \mathrm{MHz}$ Gatetime 0.1 sec
Frequency Counter 8 digit $20 \mathrm{~Hz}-100 \mathrm{MHz}$

Gatetime 1 sec Acc +1 count + TB error 886.9 PANTEC TRANSISTOR TESTER Analogue type in situ testing 0-100 colour scale- 2 leakage ranges-gain to $100-1000 \mathrm{f38} \cdot 50$

BREADBOARDS \& PROTOBOARDS

QT SOCKETS
PROTOBOARDS CSC $\begin{array}{lllll} & £ 2.58 & \text { PB6 } & \mathbf{1 1 1} 15 & \text { PB102 }\end{array}$ $\begin{array}{lllllll}\text { QT18S } 36 \text { Terminal } & £ 3.75 & \text { PB100 } & £ 13.57 & \text { PB103 } & £ 39.61\end{array}$ QT 35S 70 Terminal QT 47S 94 Terminal QT 59S 118 Terminal 88.18 EXPERIMENTAL TM SOCKETS CSC EXP 32522 Terminal $\mathbf{£ 2 \cdot 5 0}$ EXP 65046 Terminal $£ 4 \cdot 70$ EXP 4B N/A EXP 30094 Terminal EXP 60094 Terminal $\begin{aligned} & \mathbf{8 7 . 2 0} \\ & \mathbf{£ 7 . 8 2}\end{aligned}$
$\begin{array}{lll}\text { PB100 } & \text { £13.57 PB103 } \\ \text { PR101 } & \text { P20.47 PB104 }\end{array}$

PROTOCLIPS IC TEST CLIPS $\begin{array}{llll}\text { PC } 14 & £ 3.45 & \text { PC } 24 & £ 6.21 \\ \text { PC } 16 & £ 3.75 & \text { PC } 40 & £ 9.66\end{array}$

All other CSC types in stock

MISCELLANEOUS

SCOPE LEADS/PROBE SET (specify type required)
IEC PROBES per set (2) safety Large im length
HIRSHMAN SAFETY PROBES
RING MAIN TESTER
HAND OPERATED 500 V MEGGER

ALL PRICES INCLUDE CARRIAGE \& VAT @ $\mathbf{1 5} \%$.
Trade enquiries and personal visits welcome.

For purchase please give name/address in block letters
Enclose cheque, postal order or credit card no. with exp. date or tel. giving Access or Barclaycard no. for immediate despatch.

Name
Address

Access or
Barclaycard No.

Minimum $£ 5$ order, Full 50 page catalogue on app, Precision Instrument Laboratories

Showroom \& Export 727 Old Kent Road London SE15. Tel. 01-639-4461

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathe matics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbrok en record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

NOTICE TO READERS

ensure:
(A) That you have clearly atated your requirements. (B) That you have enclosed the right remittance.
(C) That your name and address is written In block capltals, and
(D) That your letter is correctly addreased to the adil
This will assist advertlsers in processing and despatch ing orders with the minimum of delay.

Receivers and Components

NO LICENCE EXAMS NEEDED

To operate this miniature, solid-state Trans-mitter-Receiver Kit. Only $\mathbf{1 1 0 - 2 5}$ plus 25p P. \& \mathbf{P}.
'Brain-Freeze' 'em with a MINI-STROBE Electronics Kit, pucket-sized "lightning flashes" vari-speed, for discos and paries. A mere $£ 4-50$ plus 25 p P. \& P. Experiment with a psychedelic OREAM LAB, or pick up faint speech/sounds with the BIG EAR sound-catcher; ready-made multi-function modules. £5 each plus 25p P. \& P.

LOTS MORE! Send 25p for lists
Prices include VAT.

BOFFIN PROJECTS
4 CUNLIFFE ROAD, STONELEIGH EWELL, SURREY. (E.E.)

TURN YOUR SURPLUS capacitors, tran sistors etc, into cash. Contact COLES MARDING \& CO, 103 South Brink Wisbech Cambs, 0945 4188. Immediate settlement.
DISCOVER ELECTRONICS. Bulld forty easy projects including: Metal Detector; Breathalyser; Radios; Stethoscope; Lie Detector; Touch time-switches; Burglar Alarms, etc. Circuits, plans all for $£ 1 \cdot 29$ including FREE circuit board. Mail only. RIDLEY PHOTO/ELECTRONICS, Box 62, 111 Rockspark Road, Uckfield, Sussex.
SALE. Everything must go-most at half price. Transistors: general purpose BC109 etc. $6 p$; power from $20 p$, triacs from $30 p$, jack plugs and sockets sub-min DPDT 50p. Send your list and SAE for quotation. J.A.I. ELECTRONICS, 39 Balvernie Grove, SW18 5RR.
ELECTRONIC COMPONENTS and E.E project kits 1973 -now. Catalogue SAE, plus 30p Jadebond Ltd, Middridge Drift Ind. Est., Middridge, Shildon, Co. Durham. Tel Shildon (038 884) 3845.
COMPONENTS AT SLLLY PRICES! Mixed Resistors: $250 £ 1 \cdot 20,1,000 £ 3 \cdot 60$. Capacitors 100 £1, 500 £3-20. Transistors: BCl08, BC214, 1070 p, 100 £5.80. Mixed Components, Hardware, Boards, 101 l £3.50. S.A.E. lists. W.V.E., 2 Craigo Farm, Tintern, Gwent.

200 COMPONENTS $£ 4$ 10. Red L.E.D.s $0 \cdot 125$ 90 p. Lists 15p. Sole (E. E.), 37 Stanley Street, Ormskirk, Lancs L39 2DH

SMALL ADS

The prepaid rate for classified advertisements is 18 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 4 \cdot 40$ per single column centimetre (minimum $2 \cdot 5 \mathrm{~cm}$). All cheques, postal orders, etc., to be made payable to Everyday Electronics and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Everyday Electronics, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE1 9LS. (Telephone 01-261 5942).

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisemente are accepted subject to the conditions appearing on our current advertlsement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to reluse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerica: or printers" errors or thelr conse. quences.

J.W.B. RADIO

2 Barnfield Crascent, Sale, Cheshire M33 iNL

ELECTRONIC COMPONENTS. Send SAE for list. Special offers monthly. Radnor Supplies, 23 Arbury Road, Nuneaton, Warks.

Books and Publications

INTRODUCTION TO MICROPROCESSORS and Computing. 50 pages of diagrams and explanation to get you started. Price $£ 2 \cdot 30$ plus $45 p$ postage. EDUCATIONAL DATA AND TECHNICAL SERVICES, 59 Station Road, Cogenhoe, Northampton NN7 ILU

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS

A genulne opportunlty to success. LARGE PROFITS You ean't help but make money it you follow the easy step by step, Instructions in our fully illustrated Manual
showing how to rewind Electric Motors, Armatures and showing how to rewind Electric Motors, Armatures and
Fleld colls as used In Vacuum Cleaners, Electric Drlle and Power Toots. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the Manual covers In 13 Chapters, where to obtaln all the work you need, materials required, all Instructions rewind charts and how to take data, etc. A goldmine of Information. How to set up your home workshop and how to cost each lob
E4.00 plus 30 P P. \& P. U.K. CWO to:

INDUSTRIAL SUPPLIES
102 Parrswood Road, Withlngton, Manchester 20, Dept. EE

For Sale

NEW BACK ISSUES of "EVERYDAY ELECTRONICS". Available 65p each Pos Free, open PO/Cheque returned if not in stock. BELL'S TELEVISION SERVICES 190 Kings Road, Harrogate, Yorkshire. Tel: (0423) 55885.

EVERYDAY ELECTRONICS, No. 1, 1971 1978 (December) inclusive. Sensible offer Also Avo 8 Mk II, recently serviced, £45 Ely 2371, Ext. 372.

Record Accessories

STYLI, CARTRIDGES FOR MUSIC CENTRES \&c. FREE List No. 29. For S.A.E. include Leads, Mikes, Phones, etc. FELSTEAD ELECTRONICS (EE), LONGLEY LANE, GATLEY, CHEADLE, CHES SK8 4EE.

Service Sheets

SERVICE SHEETS from 50p and SAE. Catalogue 25p and SAE. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex

BELL'S TELEVISION SERVICE for service sheets of Radio, TV etc. £l plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: 0423 55885.

Educational

COURSES-RADIO AMATEURS EXAMINATION. City and Guilds. Pass this important examination and obtain your G8 Licence, with an RRC home study course. For details of this, and other courses (GCE, pro. fessional examinations etc.), write or phone: THE RAPID RESULTS COLLEGE, Dept. JR1 Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or phone for a prospectus only, ring $01-9461102$ (24 hr recording service).

Miscellaneous

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells; Phone 31803. No lists, enquiries S.A.E

AERIAL BOOSTERS

Improves weak VHF radio \& television reception.
B45-UHF TV, BII-VHF RADIO. B11 A-2 metres.
For next to the set fitting.
PRICE \&5. S.A.E. FOR LEAFLETS.
ELECTRONIC MAILORDER LTD. 52 Bridge Street
Ramsbottom, Bury, Lancs, BLO 9AG.
BUILD 25 PROJECTS with our Multi-purpose kits, details supplied. Send $£ 19.00$ to Major Oak Services, 33 Lillian Avenue, London, W3

THE SCIENTIFIC WIRE COMPANY

PO Box 30, London E.4.
Reg. Office, 22 Coningsby Gardens.

ENAMELLED COPPER WIRE				
SWG	1 lb	8 ot	408	202
10-19	$2 \cdot 65$	$1 \cdot 45$	-75	60
20-29	$2 \cdot 85$	11.65	-90	70
30-34	3.05	1.75	1.00	75
35-40	$3 \cdot 40$	1.95	$1 \cdot 15$	84
41-43	4.55	$2 \cdot 55$	$1 \cdot 95$	$1 \cdot 30$
44-46	$5 \cdot 05$	3.05	$2 \cdot 15$	1.70
47	8.00	$5 \cdot 00$	3.00	1.80
48	15.00	9.00	6.00	$3 \cdot 30$
SILVER PLATED COPPER WIRE				
14, 16, 18	$18 \quad 4.50$	$2 \cdot 25$	1.44	- 90
20 \& 22	$5 \cdot 00$	$2 \cdot 85$	1.74	1.08
24.26	$5 \cdot 70$	3-31	2.00	$1 \cdot 22$
28 \& 30	6.67	$3 \cdot 86$	$2 \cdot 35$	1.44

Prices Inelude P\& Pand VAT
SAE brings Ilst of copper \& resistance WIres.
Dealer enquirles Invited.

AUDIO OSCILLATOR Sine - Square -

 R.I.A.A. outputs: 15 Hz to 200 KHz in four ranges. Thermistor stabilised. Assembled PCB ready to use. 9V supply required. SAE data. £16.30 inclusive. Quantec, 40 Aln Court, Ellington, Morpeth, Northumberland. Morpeth 860101.
GREENWELD

443D MILLBROOK ROAD, SOUTHAMPTON SO1 0HX All prices include VAT-just add 25p post. Tel (0703) 772501

PC ETCHING KIT MK III

Now contalns 200 sq. Ins. copper clad board, 1lb. Ferrle Chiorlde, DALO etchresist pen, abraslve cleaner, two minlature drill bits, etching dish and instructions. ${ }^{5} 4.80$

COMPONENT CABINET IDEAL FOR THE NEWCOMER TO ELECTRONICS

Contains hundreds of brand new resistors, capacitors, translstors dlodes and l.C.'s. All useful values, carefuliy chosen to heip the new finding himself short of some vital parts
All parts contained In clearly marked bags In a plastic sforage cabinet $232 \times 121 \times 165 \mathrm{~mm}$ wlth 9 drawers Into which all parts can be neatly located.
If bought individually parts plus case would cost over $£ 45$ but we are offering thls for ONLY $£ 31.95+£ 1$ p \& p. SImply send a cheque or P/O for $\mathbb{C 3 2} 95$ for Immediate despatch.
CONTENTS:
200 watt resistors
Wire wound resistors
Ceramic Capacitor
Mylor Capacitors
50 Polyester Capacitors
56 Electrolytic Capaeitors
61 Transistors
12 L.C.'s .
55 Dlodes and rectlflers
Altogether 614 components.
Price Inciudes current catalogue and Greenweld pen for reordering suppiles. Plus tree surprise gift.

AMAZING THE 1978-9 GREENWELD catalogue
features include:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement Reply Paid Envelope Priority Order Form - VAT inclusive prices PRICE $30 p+15 p$ POST

KITS OF BITS FOR EE PROJECTS

We supply parts for nearly all EE prolects-for a detalled components liat of this month's, and previous articles, please send SAE.
Examples from earlier issues
MW MINI $£ 2.67$
SOUND TO LIGHT UNIT £1.95 AIR FRESHENER $88 \cdot 50$ FUZZ BOX EA-25
TRANSISTOR TESTER £3.15 TREMELO UNIT $£ 7.44$ LOW COST METAL LOCATOR 53.47 ELECTRONIC CANARY £3.35 INE BOX DOING IT DIGITALLY E24.85

NO
BATTERIES
NO WIRES
ONLY
E32-99
PER PAIR

+ VAT 44.95

The modern wis tor 2 -way communcations supolied The modern wisy uf instant 2 -way communcations. suppliee Crybtal clear commuuscations from room to room. Range I-mple on the same mains phase. On/oft switch. Volume conirol. Dsefal as inter-office intercom, between office and ware-
house, in surgery anai in homes. P. \& P.99p.

£27•95

 Solve your communication problems with this 4 , itativu Transistor Intercons syal or wall mounting Culi talk listen from Master to subs to Master. Ideally suitable for Businens, Surgery, Schools, Hospitals and Office. Operates on ine 9V battery. On/ott switch. Volume control. Complete wit connecting wires each 60 tt. a Battery and other nccessorie. 10. \& P. 99p

Litest transistorised Tele phone Amplifier with de Plached ping the recelver on Placing the cradle aetivates a switch for immedlate two-way conversstion with out holding the handset at a time. Increase efficiency in office, shop, workshop. Perfect for confence" calls: leaves the user's hands free to make antes, consult filen. No long walting, saves time with long distance calls. On/oft switch, volume control $£ 1795+$ VAL $82 \cdot 69+\mathbf{P} \& \mathbf{P} 90 \mathrm{p}$ conversatlon recording model at $218 \cdot \theta$

DOOR ENTRY SYSTEM
No house/business/aurgery ghould be without a DOOR ENTRI SYSTEM in this day and age. The modern way to angwer the door in safety to unwinted callers. Talk to the caller and admit him only if satisfied by pressing a remote contro invalld, the aged and busy housewife. Supplied complete d.i.y. kit with one internal Telephone, outslde Speaker yanel, electric door lock release (for Yale type surface latch lock), mains power unit. cable (8.way) 50 ft and wiring diagram. Telephones $559 \cdot 95+$ VAT $£ 8 \cdot 99+$ P. \& P. $£ 1 \cdot 50$

10-duy price refund guarantee on all trons.
EETT LONDON DIRECT SUPPIIES (EE8)
169 KENSINGTON HIGH STREET, LONDON, W8

PLEASE

 MENTIONEVERYDAY ELECTRONICS

THE NEW CASIO CHRONOGRAPHS

Put most solar watches in the shade!
CASIO 95QS-31B
4 YEAR BATTERY 1/1000 sec. chrono to six hours. Dual time. 12 or 24 hour. Stainless steel encased. Water resistant to 66 feet (2 at). RRP $\mathbf{2 9 . 9 5}$
$£ 23.95$

CASIO 95CS-31B
5 YEAR BATTERY. 1/100 sec. chrono to six hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water resistant to looft (3 at.). RRP $£ 44.95$
$£ 34.95$

Both have new Lithium batteries which outlast most SOLAR watches, Constant LCD display of hours, minutes, seconds, am/pm and day, (12 or 24 hour). Dual time (12 or 24 hr). Automatic day, date, month and year calendar. Mineral glass face. Backlight. High quality s / s bracelets with easily removable links.

LATEST SCIENTIFICS

CASIO FX-68

LC Display. 37 scientific functions. Trigs. logs, Exponentiations etc. Standard deviations. Polar to rectangular R-P \& sexagesimal to decimal conversions. Pi, cube root, six levels of brackets. Full memory. 500 hrs battery.
RRP $£ 22.95$
$£ 19.95$

A very convenient $3 / 16 \times 21 / 8 \times 35 / 8^{\prime \prime}$. Wallet.
COLLEGE FX-80 POWERSHAVER!
Specification as above plus ENG key. 4000 hour battery life from two AA size batteries.
$3 / 4 \times 3 \times 57 / 8^{*} . \operatorname{RRP} £ 17.95$
$£ 15.95$
PROGRAMMABLES. FX-501P ($£ 64.95$) $£ 54.95$ FX-502P ($£ 84.95$) £74.95. FA-1 ($£ 24.95$) £19.95 MELODY 80 Now only $£ 23.95$ ($£ 25.95$)
UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS? Fully guaranteed for 12 months.

> Most CASIO products available from stock. Send 25 for illustrated brochures of this superb range of high quality watches or calculators. (BOTH ON REQUEST).

Prices include VAT, P \& P. Send cheque, P.O. or phone your ACCESS or BARCLAYCARD or phone

Deptaf. Beaumant Sutce. 164167 East Road Cambridge CBI IDB Telephone 0223312866

E.E. PROJECT KITS

Make us YOUR No. 1 SUPPLIER of KITS and COMPONENTS For E.E. Projects. We eupply carefully selected sets of parts to enable you to construct E.E. prolects. Appropriale hardware-nuts, screws, I.C. sockets are included; Each project kIt comes complete with lts
We supply-Youconstrict UNLESS OTHERWISE STATED. BATTERIES NOT INCLUDED. INSTRUCTIONS ONLY SUPPLIED AS EXTRA 39P EACH".

SOLDERING IRON BIT SAVER, JUly 79. £7-25. VOLTAGE SPLITTER. July ${ }^{79 .}$ £3-22.
DOLLS LIGHTS ECONOMISER. July 79. E4-30 no case.
79. EA. 30 no case.
DARKROOM TIMER. July 79. £2.55.
WATER LEVEL INDICATOR. July 79. £.4.92, Inc 1 extenslon unit.
TREMOLO UNIT. June 79, £10-87.
ELECTRONIC CANARY, JURE 79. £4. 50 .
LOW COST METAL LOCATOR. June 79. £5. 14.

Hande \& coll former parts extra £4.75.
METER AMPLIFIER. June 79. $£ 3.64$. METER AMPLIFIER. June 79. $£ 3.64$, QUAD SIMULATOR. June 79. £8.07.
INTRUDER ALARM. May 1979. E15.02 Less Ext. Buzzer \& Lamp and Loop Components.
SHO RT. WAVE CONVERTER. May 79. THERMOSTAT. 'PHOTO' SOLU. THONS. May 79. £14-03, Less sockef, tube and grease in VERTER. Aprll 79. $\$ 12.36$. TRANSISTOR TESTER. Aprll 79. E3.50. TOUCH BLEEPER. Aprit 79, £3.29. with Amplifier \& Headset. Less case. TIME DELAY INDICATOR. Mar. 79. E4•49.
79. RE. 10 . WARNING DEVICE. Apr. 79. \&6.66 case 78p.
AUDIO MODULATOR. Feb. 79. E1.58 less case and pins. Feb. 79. 26.02. THYRISTOR TESTER. Feb. 79. £3.28. ADJUSTABLE PSU. Feb, 79. £23 JM FIRST, Jan. 7\%. £3. 37 less cases LIGHTS REMINDER. Jan. 79. £4.58.
CONTINUITY TESTER. Jan. $79 . £ 3.20$ less case. VEHICLE IMMOBILISER. Inc. PCB.
Dec. $78 . £ 4.15$ Dec. 78. £4.15 WATER LEVEL ALERT. NOV. 78. $£ 5 \cdot 30$.
"HOT LINE" GAME. NOV. 78. £. $\mathbf{6 5}$ Jes case \& rod. 78. 3.03 inc . board,
SUBSCRIBERS TELE TEL METER.
Nov, $78 . £ 17.55$ case extra £4.13.
 MIC AMP. Dec. 78. £2. 41. 78. \&1-19.
LATEST KITS: S.A.E. OR 'PHONE FOR PRICES
C.MOS RADIO. Oct. 78. E8.57.
TREASURE HUNTER. Oct. 78. 216.98 less handle do coll former. E. 78 inc. p.c.b.
SOUND TO
TIGHT, Sept, $78, ~ £ 6.58$. SOUND TO L
FILTER, ET. 38
SLAVE FLASH. Aug. 78. £2.92 less SK1. LOGIC PROBE, July 78. £2.52.
IN SITU TRANSISTOR TESTER. June 78, £5-20.
VISUAL CONTINUITY CHECKER. June 78, £3.26 Inc, probes.
 and dinuser.
POCKET TIMER, AprII 78. ©3. 10.
WEIRD SOUND EFFECTS GENERATOR. Mar. 78. £4-00.
CHASER LIGHT DISPLAY. Feb. 78. CHASER LIGHT DISPLAY. Feb. 78.
E21.76 Inc. p.c.b. case extra \&3. 90. E21-76 Inc. p.c.b. Case extra $23 \cdot 90$.
AUDIO YISUAL METRONOME, Jan. 78 £4.64; DIODE CHECK. Jan. 78. £2.17. AUTOMATIC PHASE BOX, Dec. 77 $£ 10 \cdot 58$ Inc. p.c.b.
VHF RADIO. Nov. 77. $£ 12 \cdot 60$.
VHF RADIO NOV. $77 . \sum_{12 \cdot} \mathbf{~} 120$ CONTROL.
NOV./Dec, 77. £15:13.
TREASURE LOCATOR. Oct. 77. £9.65 case extra. $\mathbf{£ 2 \cdot 5 5}$. Less handle, etc. ELECTRONIC DICE. March 17 . E4- 67 SOIL MOISTURE INDICATOR. June 77. $£ 3$ - 49 inc. probe.
PHONE/DOORBELL REPEATER. July 77. £5.80. WAVE RECEIVER. Aug. 77. E12.09 case extra $£ 1 \cdot 64$.
CAR BATTERY STATE INDICATOR. Sept. 78. £1. 69 less case Inc. PCB. E16-B3 less case.
TRANSISTOR TESTER, Oct. $77 . £ 6 \cdot 98$ Case extra £.3.90. ELECTRONIC TOUCH SWITCH, Jan 78.
AD
AD. 59

ADD.ON CAPACITANCE UNIT, Sept. A.F. SIGNAL GENERATOR. Aug. 78
less dal. $£ 12 \cdot 10$.
QUAGMIRE. July 78. Es. 26 less case pins \& counters CATCH-A.LIGHT, Mar. 78, e7. 42. CAR SYSTEM ALARM, Feb. 78 , £5. 21.
HEADPHONE ENHANCER. Jan. 79. \&2.47.
PASSIVE MIXER. Oct. 78. £2-90.

1979 ELECTRONICS

CONSTRUCTORS CATALOGUE
CIRCUIT IDEAS FOR YOU TO BUILD.

MAGENTA gives youFAST DELIVERY BY FIRST CLASS POST OF QUALITY
COMPONENTS \& KITS. All products are stock IInes and are new \& full specticatlon We dive personal service \& quallty products to all our customers-HAVE YOU TRIED

LOW cost

METAL LOCATOR

E.E. June 79.

WE HAVE MADE UP A COMPLETE HAROWARE KIT FOR THIS PROject. with tubular plastic COLLAPSIBLE HANDLE, HAND GRIP, COIL FORMER, AND ALL SCREWS, NUTS, CLIPS, TAPE, OIL SPACERS etc.

Everything you need for the project Including electronics and case £9.89 Or separately:
Electronics \& Case £5. 14 Hardware Kit £4.75

DOING IT DIGITALLY

Complete kit IN STOCK NOW for FAST DELIVERY by FIRST CLASS POST. All top quality components as specified by EVERYDAY ELECTRONICS. Our kit comes complete with FREE TTL \& COMPONENT IDENTIFICATION SHEETS. $£ 25 \cdot 25$ for the TTL TEST BED. $£ 4 \cdot 13$ for ADDITIONAL COMPONENTS for first 6 months.

COMPONENTS FOR PARTS 7, 8, 9 \& 10.
 £10. 98

includes:- photocells, I.C.'s, Resistors, Capacitors, thermistors, Microphone, speaker, presets, etc.

MULTIMETER TYPE 1.1,000 o.p.v. with probes. $2^{\prime \prime} \times 3 \frac{t^{\prime \prime}}{} \times 1^{\prime \prime}$. E6.78. MULTIMETER TYPE 2. 20,000 o.p.v. with case and probes. $5^{\prime \prime} \times 3 \frac{1}{2 \prime}_{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} . \mathrm{ENP}^{14 \cdot 25}$ ANTEX $\times 25$ SOLDERING IRON 25 W deal for electronics, £4.45.
SOLDERING IRON STAND. Antex ST3. E2.03.
SPARE BITS. $2.3 \mathrm{~mm}, 3 \mathrm{~mm}, 4.7 \mathrm{~mm}, 65 \mathrm{p}$. DESOLDER BRAID. 69p.
HEAT SINK TWEEZERS. 15p
DESOLDER PUMP. Easy to use, $\mathbf{£ 6 . 5 8}$ F.M. INDOOR AERIAL. 57p. TELESCOPIC AERIAL. 120 c.m. $£ 2.08$ TELEPHONE PICK-UP COIL. 72p. CRYSTAL MICROPHONE INSERT 30.

SPEAKERS MINIATURE, 8 ohm 87 p. 54 ohm 88 o. 80 ohm E1. 28
PILLOW SPEAKER. 8 ohm E1-08p. $8^{\prime \prime}$ ROUND SPEAKER. 8 ohm , $5 \mathrm{~W} . \mathrm{s} 2 \cdot 18$ CABINET SPEAKER. 8 ohm, 5 W. $5^{\prime \prime}$ DEENTRANT HORN 8 ohm S.W. Horn dla. $5 \frac{y}{\prime \prime}_{\prime \prime}$, £5-27. EARPIECES. Crystal 48p. Magnetic $\mathbf{1 8}^{\mathrm{p}}$ STETHOSCOPE ATTACHMENT. FIts our earpleces 69p.
EUZZER. 6V 32p. 12V 55p.
MONO HEADPHONES. 2K. Padded Superior. Sensitive, £3-28.
STEREO HEADPHONES. 8 ohm
Padded. E4-24.
INTERCOM. 2 Station. Desk. £7-10. MICROPHONE DYNAMIC. 600 ohm Cassette type. Et-38.
DENTISTS MIRROR. AdJustable, £2.37 JEWELLERS EYEGLASS, ci•08p TRIPLE MAGNIFIER. $£ 1 \cdot 63$. HAND MAGNIFIER. 3^{μ} Lens. £3-28.
TEACH-IN-78
COMPLETE KIT \&I6.48
INCLUDES FREE COMPONENT IDEN-
TFICATION CHART. TEACHH-IN
REPRINTS EXTRA 39p EACH PART.
ALL 12 PARTS AVAILABLE.

TEACH-1N-78

COMPLETE KIT $£ 16.48$
INCLUDES FREE COMPONENT IDEN-
TIFICATION CHART. TEACHIN REPRINTS EXTRA 39p EACH PART ALL 12 PARTS AVAILABLE.

SPECTACLE MAGNIFIER. Clios on to spectacle frame. £.4-38
ILLUMINATED MAGNIFIERS. $1 \frac{11}{\prime \prime}$ lens E1-09. $3^{\prime \prime}$ lens $£ 3$-07.
SIGNAL INJECTOR. £5-48.
POCKET TOOL SET. 20 plece, \&4-09. SCREWDRIVER SET. Six plece, $\mathbf{\text { 2-18 }}$ O MAX PUNCH. I" £2.14. $\frac{1}{2}$ " £2.39 "E2.41. " $\mathbf{\text { E2. }} 50$.
DRILL 12V. Hand or stand use. £11.42. Stand $£ 7.57$.
CAPACITANCE SUBSTITUTION
 , connector. £5-83. PLUG IN POWER SUPPLY, 6, 7.5-9V SPRINGE SM.05.

ALL. 100 Asstd. C9-08. CROC CLIP TEST LEAD SET. 10 leads with 20 cllps. $61 \cdot 06$.
DIMMER SWITCH. 240V. 800W. £4.13 TRADITIONAL STYLE BELL. 3-8V , mm chrome gong. ©1,60.
UNDERDOME BELL. 4-10V. Smart. Dia 70 mm . 11.97 .
TOWERS INTERNATIONAL TRAN SISTOR SELECTOR. New edition 6.22.
F.M. TUNER CHASSIS. $88-108 \mathrm{MHz}$. 9 V d.c. 29.19.

MORSE KEY. High speed. £3•83
PANEL METERS. $60 \times 45 \mathrm{~mm}$. Modern style. $50 \mathrm{uA}, 100 \mathrm{uA}, 1 \mathrm{~mA}, 1 \mathrm{~A}, 25 \mathrm{~V}$ d.c NIGHT LIGHT, Plug type. Ci-08. CONAECTING WIRE PACK. $5 \times 5 \mathrm{y}$ colls. 55 p .
VERO SPOT FACE CUTTER. ©1.06. VERO PIN INSERTION TOOL. $0.1^{\prime \prime}$ E1 • 46. $0.15^{\prime \prime}$ \&1 $\cdot 45$
RESISTOR COLOUR CODE CALCU. LATOR. 21 p .
EVERYDAY ELECTRONICS FEB 79 G.P. POWER SUPPLY

VARIABLE 0-20V 0-1A WITH CALIBRATED VOLTMETER
AND AMMETERTAL COMPONENTS AND AMMETER ALL COMPONENTS

OFFICIAL ORDERS FROM SCHOOLS. UNIVERSITIES ETC. WELCOME. MAIL ORDER ONLY.

ALL PRICES INCLUDE 15% VAT AND FIRST CLASS POST, ADD 30P TO ORDERS INDER EIO EN-

MAGENTA ELECTRONICS LTD
EJ8, 98 CALAIS ROAD, BURTON-ON-TRENT, STAFFS., DE13 OUL. 0283-65435. 9-12, 2-5 MON.-FRI.

A range of highly attractive knobs. is described in our catalogue. Our prices are very attractive too!
working section for just over $£ 100$. Full specification in our catalogue.

Touch operated rhythm generator, the 'Drumsette'. Construction details 25 p. (Leaflet MES49). Specification in our catalogue.

Multimeters, analogue and digital, frequency counter, oscilloscopes, and lots, lots more at excellent prices. See cat. pages 106 and 183 to 188 for details.

61-note touch-sensitive piano to build yourself. Full specification in our catalogue.

A wide range of disco accessories at marvellous prices. Our catalogue, has all the details.

A very high quality 40 W per channel stereo amplifier with a superb specification and lots of extras. Full construction details in our catalogue.

A genuine 150W per channel stereo disco to build yourself. Full specification in our catalogue. megaphone. PA horns, crossovers etc. They're all in our catalogue. Send the coupon now!

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000. EE 979

[^0]: 92AV 8.60
 $95 A 1$
 15082
 5082
 5083
 50 Cz
 50 C 4

 4 CX 250 B 5.40
 ex equlpment.

[^1]: Access, 8 arclaycard and
 Trustcard welcome.

[^2]: I enclose cheque/PO value \mathcal{L} or debit my ACCESS/BARCLAYCARD account no.

