An exciting hobby.... for everyone

Accol.a suderinin Instruments add to your efficiency

THE NEW 'INVADER'

ADCOLA L. 646 for Factory Bench Line Assembly
A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable codper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{c}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}$ $410^{\circ} \mathrm{c}$.
*Additional Stock Bits
(illustrated) a vailable
COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.
 bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. Invaluable for testing and demonstrations in industry and shops, the work bench and the home.

Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order. PRICE E $2.60+10 p$ P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill, Sussex. Tel. Burgess Hill 2642

BARGAIN PRINTED CIRCUIT OFFER

Circuit Board with all holes drilled, $7 \mathrm{f}^{\prime \prime} \times 51^{*}$ inc. central hole $1 \mathbf{H}^{\circ}$ for speaker magnet and cut out lor PP9 batt. ; Rocker w/change switch and mounting bracket; 2 gang tuning capac.; 3 I.F.B.-, Osc. Coll, Ferrite rod with colls and, holder, Potenti meter and knob; Cincuit Booklet showing component values and positions.
All for $£ 1.76$ (25 p Post). Worth 25 .

BATTERY CHARGER

$51^{*} \times 3^{\circ} \times 3^{*}$ with Axing feet; 12 V 2 Amp . On-off Indicator, 2 yd . Mains and 2 yds. Battery Leads; Battery Clips. $£ 1.50$ (25 pp . Post).
PANEL METERS- 70 mm square. Minus 10A. to Plus 20A. D.C. $£ 1$ (15 p Post): Ditto 0-25V. A.C. and D.C. $\frac{11}{}$ (13 p . Post); $2 t^{\circ}$ dis. $0-40 \mathrm{~V} . \mathrm{D.C}$.50 p (15 p Post); ELECTROSTATIC VOLTMETER 32^{*} dia. $0-1000 \mathrm{~V}$. $£ 2$ (15 p Post).

STEREO AMPLIFIER Type SHV- 2×3 watts Fully buill. Separate vol., bass and treble controls each channel; $12 \times 4 \times 6$ in high EZ80, ECC83 $2 \times$ ECL 86 valves. O.P. trans. for 3 -ohm speakers. Donble wound mains trans. suitable for crystal. magnet cartridge, tuner, etc. $200-250 \mathrm{~V}$. A.C. main. 87, 50p P. \& P.

MONO GRAM CHASSIS 3 WATT
3 Wave band long.med. short , Gram, $200-250 \mathrm{~V}$. A.C. Ferrite aerial. Chassis $13 \times 7 \times 5$ in. Dial 13×4 in. Double wound mains transformer E valves ECH81, EF89, EBC81, EL84, EZ80. Price $£ 10 \cdot 63$. (37p P. \& P.) Output trans, for 3 -ohm speaker. Some elightly tarnighed at $£ 10$ carr. pd.

MAINS TRANSFORMERS (240-250V Input)

Postage in brackets. 6.3 V at $21 \mathrm{~A} .40 \mathrm{p}(15 \mathrm{p})$
$280-0-280 \mathrm{~V} 60 \mathrm{MA}, 6.3 \mathrm{~V} 21 \mathrm{~A}, 6.3 \mathrm{~V} \quad 700 \mathrm{~mA}$ \&1 (27 p)
250 V at 50 mA and 6.3 V at $1+\mathrm{A}$. 50 p (20p)
22 V at $1 \mathrm{~A}, 6-3 \mathrm{~V}$ at 2 A and 250 V at 50 mA . 75 D (25 p)
90 V at 20 mA and 1.4 V at 250 mA . 50 p (15 p)
Deduct 10 per cent from total bill for more than one transformer,

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, HANTS.
(2 mins. from station and Buses). FULL GUARANTEE. Aldershot 22240. CLOSED WEDNESDAY. S.A.E. for enquiries please.

Would YOU pay 50 pencef fora components catalogue?

A components catalogue is so vital to any keen constructor that it simply does not pay to make do with less than the best. True, the best may cost a little more . . . but it's the cheapest in the end. So invest in a Home Radio Components Catalogue, listing over 8,000 items, more than 1,500 of them illustrated. If you call at our shop the catalogue is yours for just 50 pence. If you order by post-70 pence, including postage and packing. You also get 10 Vouchers, each worth 5 pence when used as instructed-so you can get the cost of the catalogue back in any case!

Ask for details of
our Credit Account Service.

24-hour
Phone
Service.
Ring
01-648 8422
 COUPON with your cheque or postal order for 70p

The price of 70 p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

FOR RAPID SERVICE

 GARLAND BROS. LTD

 GARLAND BROS. LTD DEPTFORD BROADWAY, LONDON, SEE GAN

 DEPTFORD BROADWAY, LONDON, SEE GAN}

ZENER DIODES

From 2 to 33 vol
400 mW , 15p; 1.5W, 221p

SILICON BRIDGE
RECTIFIERS
40 P.I.V., 1.5A

FUSES AND HOLDERS

1 tin slat -210
$1 \cdot 25,1 \cdot 5,2,2 \cdot 5,3,5,7 \cdot 5,10,15 \mathrm{amp}$

Anti-surze 1 tin in ${ }^{2}$
250, $500,750,850 \mathrm{~mA}$.
amp. Anti-surge 20mm-5p
$80,125,200,315,400,500,630$, 800 mA ; $1,2 \mathrm{mp}$.

PANEL FUSEHOLDERS

For It infuses
For 20 mm fuse

CONTROLS, Log. or Lin
single, less switch, 150
Tandem, less switch, to
$5 \mathrm{ka}, 10 \mathrm{kO}, 25 \mathrm{~kg}, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$. $250 \mathrm{kn}, 500 \mathrm{k} \Omega, 1 \mathrm{Mn}, 2 \mathrm{Mn}$

RESISTORS

Carbon, high-stability, E12 values. th, If: $1 W, 4 p$; $2 W, 6 p$ Wire-wound 5W, 10p: 10W, 12p

ELECTROLYTICS

$1 \mu F$	$450 V$	$19 p$
$2 \mu F$	$500 V$	$20 p$
$4 \mu F$	$350 V$	$14 p$
$8 \mu F$	$450 V$	$16 p$
$16 \mu F$	$450 V$	$17 p$
$25 \mu F$	$50 V$	$8 p$
$32 \mu F$	$450 V$	$24 p$
$50 \mu F$	$50 V$	$10 p$
$100 \mu F$	$25 V$	$10 p$
$100 \mu F$	$50 V$	$10 p$
$250 \mu F$	$25 V$	$12 p$
$250 \mu F$	$50 V$	$17 p$
$500 \mu F$	$25 V$	$18 p$
$500 \mu F$	$50 V$	$25 p$

$1,000 \mu \mathrm{~F}$	25 V
$1.000 \mu \mathrm{~F}$	50 V
$2.000 \mu \mathrm{~F}$	25 V
$2.000 \mu \mathrm{~F}$	50 V
$2.500 \mu \mathrm{~F}$	25 V
$2.500 \mu \mathrm{~F}$	50 V
$3,000 \mu \mathrm{~F}$	25 V
$5.000 \mu \mathrm{~F}$	25 V
$5,000 \mu \mathrm{~F}$	50 V
$8-8 \mu \mathrm{~F}$	450 V
$8-16 \mu \mathrm{~F}$	450 V
$16-16 \mu \mathrm{~F}$	450 V
$16-32 \mu \mathrm{~F}$	450 V
$32-32 \mu \mathrm{~F}$	450 V
$50-50 \mu \mathrm{~F}$	350 V

27p
39p
36p
53p
45p
60p
48p
55p
98p
18p
20p
27p
63p
49p
18p

MINIATURE ELECTROLYTICS

VEROBOARD

VARIABLE POWER SUPPLY

Input: 240V
Output: Switched $3,4 \cdot 5,6,7 \cdot 5, £ 4 \cdot 20$
9,12 voles dec. as 500 mA

CASSETTE OWNERS!
For Philips and similar cassette recorders. Power unit for connection to $12 V+$ or

- Ear electrical systems, giving $7 \nmid V$, stabilised ourput.
PP75 Mains power supply, output $\mathbf{S} \| .95$ Both units are complete with cable and 5 pin D.I.N. plug

BONDED ACRYLIC FIBRE

B.A.F. wadding, 18 in wide, lin thick. The deal lining for speaker enclosures. 25p per yard

MISCELLANEOUS ITEMS

81A valve bases, 20
5 kn edge control, fits most small, imported radios. 7 p
20 n volume control for 3 n speakers, 20 p Antex CN240, 15 W miniature soldering iron. \& 1.70
Valve and Transistor Data book, 9th edition, P
Transistor equivalent book, BPI, 400

PLUGS

Car aerial
D.I.N. 2 pin (speaker) DIN. 3 pin
DIN. 5 pin, 180
D.I.N. 5 pin, 240

DIN. 6 pin
Jack, $2 \pm \mathrm{mm}$ unscreened Jack, $2 t \mathrm{~mm}$ screened Jack, 31 mm screened Jack, tin unscreened Jack, tin screened Jack, stereo, unscreened Phons, stere, screened
Phono, plastic top Phono. plated meta Phone, fitted 4 ft lead Wander. red or black

LINE SOCKETS

Car aerial

D.I.N. 2 pin (speaker)
D.I.N. 3 pin
D.I.N. 5 pin. 180
DIN. 5 pin. 240

Jack, $3 \frac{1}{2} \mathrm{~mm}$
Jack, tin screened
Jack, stereo, screened
Phon, plated metal
MAIL ORDERS: C.W.O. only. Please include MOp P. \& P. (Air mail extra). S.A.E. with all enquiries please.

$15 p$
50
$6 p$

LOW-OHM RESISTORS

Rt. watt wire-wound. 1Ω
$1.80 .2 .7 \Omega, 3.3 \mathrm{O}, 3.9 \Omega, 4.7 \mathrm{n}$ 5.6日. 6.8 日, 8.2 n

SHOPERTUNITIES LTD. SIL

DOpt. EE 7, 164 UXBRIDGE ROAD, LONDON W $128 A Q$ (facing Shepherds Bush Green) (THURSDAY I'FR1OAY 7). Both stores opon from MONDAY-SATURDAY 9 a.m. $-6 \mathrm{p} . \mathrm{m}$.

for fast, easy

reliable soldering
Ersin Multrcore Solder contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux is required.

IDEALFOR HOME CONSTRUCTORS

Size 1 cartons all at $25 p$ each in 40/60, 60/40.
or Savbit alloys in 7 gauges.

EASY-TO-USE DISPENSERS

Size 5
(Savbit) 18swg, $18 p$ (illustrated) Size 19A (60/40 alloy) 18swg. 18p
Size 15
(60/40 alloy)
22swg. 22p

KANP:A

16 SEYMOUR ROAD TILBURY
ESSEX RMI8 7AP
Would you believe it, some people still house their constructed projects in catty looking cases bashed our

No need for this any more I!
We can supply cases in kit form to house most of your Everyday Electronics proiects which will give them a zouch of professionalism and a modern appearance with a mirror-like finish. Our cases, which are fabricated from colours), are supplied in kit form, their construction beins quick and easy and involving the minimum amount of work. Included with the kits are comprehensive assembly details and diagrams. Take the hard work out of making your cases and go MODERN with KASPEX. ASTRON EI.40 SOIE MOISTURE METER \&I.00* RAIN ALARM $\mathbf{1 0 . 9 0}$ BABY ALARM (pair) ≤ 1.50 * Stote diameter of meter cut-out required when ordering

All prices include post and packing.
Mall Order only-Cash with order

SERIOUS AMATEUR CONSTRUCTORS

need components of professional quality. Our Catalogue shows practically the entire range marketed by R.S. Comporients Ltd. ALL of these comamateur constructors.

CATALOGUE, by return of post-only 25 p, post free
Some popular examples from our range: 12 vole secondaries $\mathbb{1 5} 1 \cdot 10$ each
 39B. Capacitors, paper and polyester 1000 vole $0.001,0.0022$, 1.95 each 611. Small perforaced phenolic resin boards, $172 \times 133 \times$ 22peach 61C. Small turret tags, to suit above boards, 144 per box... 95 p per box 85C. Plastic cable wrap spiral, lin to secure up to fin cable 24 p each 860. Insulated 4 mm socket terminals, in colours Black. Red. 24p each Green, Blue, White, Yellow,
86E. Banana plugsto fit above terminals. Colours is above.... I4p each All prices Post Free. Minimum Order 50p. Mail Order only from CELECTRON-E

MAIL ORDER ELECTRONIC COMPONENTS
P.O. BOX NO. I, LLANTWIT MAOR, GLAMORGAN CF6 IYN

CN.240/2 Miniature soldering iron 15 watt 240 volts, fitted with nickel plated $3 / 32^{\prime \prime}$ bit and packed in transparent display box. Also available for 220 volts. Price $£ 1.70$
CN. 240 Miniature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\prime \prime}$ bit. Up to 18 interchangeable spare bits obtainable. This iron can also be supplied for 220 . 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering iron 18 watt 240 volts extensively used by H.M. Forces. Suitable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ bit Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $14^{\prime \prime}$ are obtainable. Price $£ 1.83$.

CCN. 240 New model 15 watt 240 volts minlature soldering iron with ceramic shaft to ensure perfect insulation ($4,000 \vee$ A.C.). Will solder live transistors in perfect safety: fitted with $3 / 32^{\prime \prime}$ iron coated bit. Spare bits $1 / 8^{\prime \prime}$ $3 / 16^{\prime \prime}$ and $1 /{ }^{\prime \prime}$ available. Can also be supplied for 220 volts. Price £1.80
CCN.240/7 The same soldering iron fitted with our new 7 -star high efficiency bit for very high speed soldering The triple-coated bits are iron, nickel and chromium plated. Price $£ 1.95$

SK. 1
SOLDERING KIT

The kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder, heat sink cleaning pad, stand and booklet "How to Solder". Also available for 220 volts.

SK. 2

SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reel of solder. Heat Sink.
Price £2.40.

1 amp fuse and booklet "How to Solder"

MES. 12
A battery operated 12 volts 25 watt soldering iron complete with 15° lead. two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet. Price $£ 1.95$.

wiriv wive sivict electrovalue ATTRACTIVE DISCOUNTS
 ELECTROVALUE-an independent company since its establishment in 1965

 Electronic Component

 Electronic Component Specialists

SEMI-CONDUCTORS

1 B 40 K 10	175p 2 N2925
1 N 914	50 2N2926
1 N 316	10 p 2 2 3053
1N1763A	24p 2 N 3054
1-3754	20 p 2N3055
1Nb399	21p 2 N3325
1N5402	280 2 N 3405
1N6407.	45p 2 N 3663
1844	9p 2 N 3702
18940	8p 2N3703
2N696	17p. 2N3704
2N697	18p 2 N 3705
2N706	12D. 2 N 3706
2 N 930	21p 2N3707
2N1131	29p 2 N3708
2N1132	29p. 2 N3709
2 N 1302	18p 2 N 3710
2N1303	19D 2 N 3711
2N1304	26p 2 N 3731
2N1305	26p 2 N3794
2N1306	33 p 2N3819
2N1307	33p 2 N 3820
2N1308	38 p 2 N 3904
2N1309	38 p 2 N 3906
2N1896	108p 2N 4036
2N1599	122p 2 N4058
2N1613	23p 2 N4059
2N1711	260. 2 N 4060
2N1898	54 p 2N4061
2N2147	95p 2 N 4062
2 N 2218	34 p 2 2 N 4124
2N2218A	44p 2 N 4126
2N2219	38p/2N4284
2 N 2219 A	53p 2 2 4286
2 N 2270	62p 2 N 4289
2 N 2369 A	19p/2N4291
2N2483	35p 2 N4292
2N2484	42p 2N 4410
2N2846	47p 2N 4443
2N2904	38p 2N4906
2 N 2904 A	42p 2N4915
2N 2905	44p 2N4991
2 N 2905 A	47p 2N5062
2N2924	20p12N5088

Brand new, guaranteed to spec. No seconds or surplus.

1972 ELECTROVALUE CATALOGUE

$45 p$$25 p$
25 p dreds of itemest edition yek-packed with hun and diagrams posefree 10p

COMPONENT DISCOUNTS

allowed on all items other than those at NET 10% onordersfor 15% onordersfor POSTAGE \& PACKING FREE on orders for £2.00 or more. Please add 10 p if under Overseas orders welcomed. Prices subject to alteration without prior notice. Terms of business-C.W.O. as in catalogue

ELREMCO SOLDERSTAT SOLDERING WOLF SOLINIAT IRONS A popular and beautifully made lightweight example from a wide and versasile range o HMS for 16 or 24 wates, A.C. mains. $\$ 1.70$

Minitron DIGITAL INDICATOR

TYPE 3015F Severi segment indicator compatible with standard logic modules and power supplies. Figs. 0-9 from well illuminated filament segments to give character of 9 mm height plus decima per segmene. Allmited number of alphaperical symbols also available. In 16 lead dil case
12.00

Suitable BCD decoder driver type S|.35 Dil Socker: 16 lead 30p. No. 3015G showi

CAPACITORS

SIEMENS 5% POLYCARBONATES
HANDBOOK OF
RESISTORS-10\%, 6\%,2\% $0.010 .012 \mathrm{to} 0.1 \mathrm{mF}: 100 \mathrm{~V} 0.1 \mathrm{mF}$ and above 0.033 . $0.039,0.045,0.056,0.068,0.082$ $0 \cdot 033,0.039,0 \cdot 04,0 \cdot 056,0$
$0.010 \cdot 12,0 \cdot 15,0 \cdot 18,0 \cdot 22$
 0.68, 15p, 1.00 i 3p

MULLARD polyester C280 series $250 \mathrm{~V} 20 \%: 0.01,0.022 .0 .33,0.0473 \mathrm{p}$ each $0.062,0.1,4 p$ each; $0.15,4 p ; 0.22,5 p .10 \%$ $0.33,7 p ; 0.47 .8$
$21 p ; 2$. 2 .

MULLARD SUB-MIN ELECTROLYTICS C426 range, axiallead 6p each
Values (μ FIV): 0.64/64;1/40:1.6/25;2.5/16; 2.5/64;
$4 / 10 ; 4 / 40: 5 / 64: 6 \cdot 4 / 6 \cdot 4 ; 6.4 / 25: 8 / 4 ; 8 / 40: 10 / 2.5 ;$ $10 / 16 ; 10 / 64$; $12.5 / 25 ; 16 / 10 ; 16 / 40 ; 20 / 16 ; 20 / 64$ 25/6.4; 25/25; 32/4; 32/10; 32/40; 32/64; 40/16 $\begin{array}{ll}40 / 2 \cdot 5 ; 50 / 6 \cdot 4 ; 50 / 25 ; & 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 2 \cdot 5 ; \\ 80 / 16 ; & 80 / 25 ; 100 / 6 \cdot 4 \quad 152 / 4 ; \\ 125 / 10 ; & 125 / 16 ;\end{array}$ $80 / 16 ; 80 / 25 ; 100 / 6 \cdot 4 \quad 152 / 4 ; 125 / 10 ; 125 / 16 ;$
$160 / 2 \cdot 5 ; 200 / 6 \cdot 4 ; 200 / 10 ; 250 / 4 ; 320 / 2 \cdot 5 ; 320 / 6 \cdot 4 ;$ $160 / 2 \cdot 5 ; 200 / 6$.
$400 / 4 ; 500 / 2 \cdot 5$.

LARGECAPACITORS

High ripple current types: 1000/25, 28p; $1000 / 50$ $41 \mathrm{p}: 1000 / 100,82 \mathrm{p} ; 2000 / 25,37 \mathrm{p} ; 2000150,57 \mathrm{p}$; $5000 / 25,82 \mathrm{p} ; 5000 / 50, \mathrm{K1} \cdot 10 ; 5000 / 100$, 22.91 .

Simple to Build, Astoundingly Good IOW/85 Ω BAXENDALL SPEAKER As originally designed by P. J. Baxeridall and
described in Wireless World io loudspeaker with equallser rieework speaker unit and specially designed cat inet in kis form. $t 036 \mathrm{~V}$. 15 p each; $1 \mathrm{~W}, 6.8 \mathrm{~V}$ to $82 \mathrm{~V}, 27 \mathrm{p}$ ouch; $1.5 \mathrm{WW}: 4.7 \mathrm{~V}$ to size when built approx. $18^{*} \times 12^{*} \times 10^{\circ}$. Price $75 \mathrm{~V}, 60 \mathrm{p}$ each.
inic. carriage paid in U.K. Nett 13.90 .

TRANSISTOR QUIVALENTS. 40p. HANDBOOK TRANSISTOR TRANSISTOR CIRCUITS (H . Nest), WOp RADIO Colour codes Colour codes \& data WNG chart, 15p ENGINEERS REFERENCE
HANDBOOK HANDEOO
TABLES 20p.
Add 3p. for postage on each of above if bought separasely.)
 $\begin{array}{ll}W W \\ \text { Codes: } C= \\ = & \text { carbon fllm, high seability, low noise. } \\ \end{array}$ $\mathrm{MO}=$ metal oxide. Electrosil
$\mathrm{WW}=$ wire wound, Plessey.
Values:
E12 denotes series: $10,12,15,18,22,27,33,39,47,56$, E24 dencses series: as E12 plus II, 13, 16, 20, 24, 30, 36, E24 dencres series: as E 12 plus 11 ,

CARBON TRACK POTENTIOMETERS, long spindles. Double wipers log.4.7K Ω to $2 \cdot 2 \mathrm{M} \Omega$. 12 p ; Dual gang linear $4 \cdot 7 \mathrm{k} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ 42 P ; Dual garig log, $4: 7 \mathrm{~K} \AA$ to $2 \cdot 2 \mathrm{M} \Omega, 42 \mathrm{p}$; Lo flansilog, 10 K $47 \mathrm{~K}, 1 \mathrm{M} \Omega$ only $42 \mathrm{p} ;$ Dual antilog, 10 K only, 42 p . Any type with A D.P. mains switch, 12 p extra.
Only decades of 10,22 \& 47 avaifable in ranges quoted.
DUAL CONCENTMIC in any combination of above values 60 p ; with s wisch. 72 p .

CARBON SKELETON PRE-SETS
Small high quality, type PR, linear only: $100 \Omega, 220 \Omega, 470 \Omega$
$1 \mathrm{~K}, 2 \mathrm{K2}, 4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{Mz}, 5 \mathrm{M}$. $10 \mathrm{M} \Omega$. Vertical or horizonital mounting, 5 p each.

ZENER DIODES 5% full range E24 values: $400 \mathrm{~mW}: 2.7 \mathrm{~V}$
Clip to inerease 1.5 W rating to 3 watts (type 266F). 4 p .

Transistors and PCB for one channel, c6.46. Rs
and Cs for one channel, $£ 1.95$. Power Supply
3OW BAILEY AMP. PARTS MAIN LINE AMPLIFIER KITS
70 watt power amp. module kle. (12.60 nett. 70 watt power amp; module klt. © $12 \cdot 60$ nett.
Power suppuy kit, is:00 nett. Matching pre-amp kit, $\mathbf{1 3} \cdot \mathbf{3 0}$ nett. (Above prices for mono.) Stereo Kit. 2 power amps. pre-amp kit, power supply kit and matched controls for building inso your own cabinet, $138 \cdot 40$ nets.
S-DeC, C1.44; Four pack, $\mathbf{6 5 \cdot 1 0}$. DeCSTOR pack, C2. 88, T-Dec, may be temperature cycled 1208
points), E2.88. $\mu \mathrm{DecA}$ ©3.18. $\mu \mathrm{DecB}$, $\mathbb{S} .94$. Also Integrated circuit carriers.
THERMISTORS
THERMISTORS
CA 1039 , VA1040, VA1055, VA1066, VA1077, CZ-6, K151-IK, VA1100, 15p. R24, R53, R54, INSULATED SCREW TERMINALS in range of seven colours, each 12p. Matching
plugs: 2 mm , each $5 p ; 4 \mathrm{~mm}$, each 7p. plugs: 2 mm , each $5 p$; 4 mm , each 7p.
Plugs, sockets, hardware. Veroboard.
Plugs, sockets, hardware, Veroboard, edge con-

BUDGET HIGH-FIDELITY STEREO SYSTEMS

FREE
LEADS AND PLUGS SUPPLIED WITH ALL SYSTEMS

PREMIER STEREO SYSTEM "ONE" Consists of the new Premier 800 all transistor stereo ampither, Garraril 2025 T/C autu manual record player unit fitted stereo mono ceramic certridge with diamond stylus and mounted In teak finjah plinth with M00 amplifier has an output of 5 watts per channel with inputs for ceramic and magnetic pick-up, tape and tuner and po tape nutput socket and headphone socket. Controls: Basa, Treble, Volume, Balance, Selector, Power on/onf. Mono/Stereo awltch. Atereo Heatphone mocket. Black leatherette cabinet with aluminium tront panel. Size: $12 f^{\circ} \times 69^{\circ} \times 2 \xi^{\prime \prime}$. (Amplifier available \cdots parately if required $\mathbf{1 1 6 \cdot 2 5}$. Carr. 50 p).

METER BARGAINS

MODEL GT-80 MULTIMETER A precision made pocket sized test meter, Ideally suitted for teating electronic clrcults or eleetronic a appliances. Supplled complete with teat leas a and batertes. RANGES-DC Voltages: 10 ,
$50,250,1,000 \mathrm{~V}(1,000 \mathrm{ODV}) \mathrm{AC} \mathrm{Volt-:}$ $50,250,1,00 \mathrm{~V}$ (1,000 op V. AC Volt-
age: $10,50,250,1,000 \mathrm{~V}$ (1,0000pY) age: $10.50,250,1,000 \mathrm{~V}$ ($1,0000 \mathrm{p} V$): 0.150 K ohms. Decibel: $=10+22 \mathrm{db}$ (at

MULTIMETER 20,000 O.P.V.
Featurea large easy-to-read meter, wide choloe of ranges. With test leadn, batteries and nianual. Alize $45^{\circ} \times 31^{\circ}$天1". RANOESD.C. Voltages $0-5-25-50-$ $250-500-2500 \mathrm{v}$. A.C. Voitages $0-15-50-$ 100-500-1000v. D.C. Current: $0-50 \mu \mathrm{~A}$ $2-5 \mathrm{~mA}-250 \mathrm{~mA}$. Resiatance : $0-6000$ ohms $0-6$ megohma (300 ohms and 30 Kohms, at centre meale). Capacity: $10 \mu \mu \mathrm{f}$ to $\cdot 001 \mu 1,001 \mu$ to 1μ. Decibels $=20$ to
+22 dB . $88 \cdot 90$. P. $\&$ P. 25 p .

MODEL CT-62 MULTITESTER RANGES-DC Voltages: 0, 5, 25, 100. $500 / 1,000 \mathrm{~V}(20,000 \mathrm{ohma} / \mathrm{V})$. AC Volt ages: $0,5,25,100,500,1,000 \mathrm{~V}(10,000$
olams/V). DC Current: $0,50 \mu \mathrm{~A}, 0$ obms $/ \mathrm{V})$. DC Current: $0,50 \mu \mathrm{~A}, 0,5$,
$50,500 \mathrm{~mA}$. Resietence: $0,6 \mathrm{k}, 600 \mathrm{k}$, $50,500 \mathrm{~mA}$. Resistance: $0,6 \mathrm{k}, 600 \mathrm{k}$.
$6 \mathrm{M}, 60 \mathrm{M}$ ohms, Decibels: $=20 \mathrm{db}$ to $6 M, 60 \mathrm{M}$ ohms. Decibels: $=20 \mathrm{db}$ to
+62 db in $\$$ ranges. $\& 588, \mathrm{P} . \& \mathrm{P}, 25 \mathrm{p}$

WELLER "EXPERT" SOLDER GUN. daves time and simplibes soldering in the home and service dual heat $100 / 140$ trigger given instant dual heat. $100 / 140.3-95$, P. \& P.
"Markaman" Solderiag Iron. Tightmelsht a" pencll blt Ideal for regular bench use and around the home. 25 watts. 240 volt A.C. $81 \cdot 50$ P. \& P. $16 p$

VERITAS V-313 TAPE HEAD DEFLUXER
 A must for all tape users ! Tape heads become permanently magnetized with constant une; that prevents perfect recordings. Simply applied to recording head the V813 any tape head in seconds.
£1•72
P. \& P. 15p.

PREMIER HI-FI OFFERS
Rogers Ravensbrook II Stereo Amplifier in teak case (List $\mathbf{6 5 2} .50$)
Rogers Ravensbourne Stereo Amplifier in teak case (List E64) Metrosound ST20E Stereo Amplifier in teak case (List E39-50) Thorens TDI50A/II turntable with arm Garrard SP25 III with Goldring G800 cartridge (List E28.35)

SP25 MKIII SPECIAL!

G800, ready wired to 5
pin Din in plinth with cover
Garrard Ap76
less cartridge
Garrard 401
Transcription Unit
List $£ 40 \cdot 15)$

Garrard 2025 T/C with Stereo Ceramic Cartridee Garrard 2025 T/C with Stereo Ceramic Cartridge ready wired in teak plinth

GARRARD GP25 MK III BINGLE RECORD PLAYER FITTED GOLDRING 800 MAG. NETIC STEREO CARTRIDGE. COMPLETE IN TEAK PLINTH Total COVER PREMIER PRICE £18.90
P. \& P. 50p. £9.97 £12.45 £38.50 £49-00 £28.50 £31.00 £15.50

PREMIER 800 STEREO AMPLIFIER

A truly high quallty stereo ampllfer-compare the speclecation, compare the price. Output: 5 watts per channel. Frequency response: $30-20,000 \mathrm{~Hz}-2 \mathrm{db}$. Dlatortion: 1% Output Irupedance 8 ohms nom. Inputs equallsed to R.I.A.A. Magnetic 4 mV . Ceramic 100 mV , Tuner 100 mV . Tape 100 mV . Tape out 150 mV . Din pockets for inputs and outputs. Controls: Bass, Treble,
Volume, Balance, Selector. Mono/Stereo switch. Volume, Balance, selector. Mono/stereo switch. black leatherette cablnet with aluminlum front panel. Stze 12$\left.\}^{\prime \prime} \pm 6\right\}^{\circ} \pm 2 t^{\circ}$

ONLY 316.25 carr. 50 p .

MI-FI STEREO HEADPHONES Designed to the higheat porajble standard. Fitted ain. spesker units with of padded car murn. Adustable headband lete with eft lesd and tereo Jack plug.

STEREO STETHOBCOPE 8ET Low imp. \&1.25 P. ©P. 10p MONO \&TETHOSCOPE SET Low imp. 52p. F. \& P. 10p

E.M.I. $13 \times 8 \mathrm{in}$.

HI-Fi SPEAKERS
Fitted two 2ifin tweeters and crosoover net work. Tmped ance 8 or 15 ohm. Handiling capa. city 10 W. Brand new.
£3.47 ${ }^{\text {P. \& P. 40p }}$
VERITAS V-149 MIXER
Battery operated 4 -channel audio mlser providing four separate Inputs. 81 ze $6 \times 3 \times 2 \mathrm{ln}$. vultable for crystal micro phone low impedance microphone, with tranaformer,
radlo, tape, etc. Max. Input 1.5 v . Max. output 2.6 v , Gatn 6 dB. Standard jack plug socket inputs, phonopiugs output. Attractlve
wood grain finiab
MONO
MODEL
STEREO
MODEL
K

"VERITONE" RECORDING TAPE
SPECIALLY MANOFACTURED IN U.S.A. FROM EXTRA STRONG PRE-STRETCHED MATRRIAL. THE QUALITY IS UREQUALLED. TENBILISED to ensure the most permanent base. Highly realstant to breakage, moisture, heat, cold or humility. High polished spilice free inish. Smooth

Priandix:
23,TOTTENHAM COURT ROAD, LONDON, W. 1 Tel:01-636 3451

$1 \div$ OXFORO $5 T$

ILsekIIIITS

Garrard SP25 Mk. Teak plinth and rinted cover. wired for immediate use.

TURNTABLES

Plase add $75 p$ for P.
 Garrard SP25 Mk. 111

Garrard AP76
Garrard SL6SB
Garrard 401 100 (Auto)
Garrard Zero 100 (Single)
Garrard SL72B
Garrard SL95B
BSR MP60
Goldring GL72
Goldring GL72/P
Goldring GL75
Goldring GL75/P
Wharfedale Linton \& cart.
Thorens TDI25
Thorens TD125AB
Thorens TOI 50 Mk. ${ }^{\prime \prime}{ }^{\text {Thorens TDI }} 11$ Mk.

AMPLIFIERS

Please add 75 p. P. ${ }^{\text {a }}$ P. Amstrad 8000 Mk. II Amstrad IC2000
Alpha Highgate 212
Alpha Highgate FA300
Alpha Highgate fA400 Cambridge P100 Cambridge P40
Ferrograph F307 Mk. II (Wood cased)
Ferrograph F307 Mk. II (Meral cased) Leak Delta 70
Metrosound ST20E
Metrosound ST60
Pioneer 5 A600
Pioneer 5 A 700
Pioneer SA800
Pioneer SA9900
Pioners R/brook (Chassis)
Rogers R/brook (Cased)
Rogers R/bourne (Cased)
Sinclair PRO60 $2 \times 230 / P Z 5$
Sinclair PRO $602 \times 230 / P Z 6$
Sinclair PRO60 $2 \times$
Z50/PZ8/Trans Sinclair 605
Sinclair $2000 \mathrm{Mk} . ~ I I$
Sinclair 3000 Mk I!
Sugden A21/11,
Sugden ASIIC5I
Goodmans Max Amp
Teleton SAO206B
Teleton SAQ306B
Europhon $10+10$
69.95

にム
$177-00$
670.95
$C 39.95$
$C 37.25$
624.00
826.00
626.00
$835-00$
810.00
622.50

त्ष
in

$228-00$
631.75

C16.95
 .95 .95
 243.95 625.00
 227.95 $c 31.95$
 116.00 665.95
 $\stackrel{i}{i}$
 | 88 |
| :--- |
| ni |
 856.00
 624.75 647.25 $8 \cdot 25$ 8.50
 .95 .00
 94.00 63500 63700 641.50 646.50 $E 15.25$
 621.75
 64.40 618.75
 221.75 29.75
 629.75 651.50
 $102 \cdot 00$ 639.95
 839.95 637.95 621.50 672.95
 822.95 816.95

Dept. (PE7) 174 Pentonville Road; London, M1. Telephone 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue,

Open Monday to Saturday 6 o.m. LATE NIGMT FRIDAY 7 p.m. MAIL OROERS: Ordor with confidence. Seno Postal Orocr. Cheque. Mail, CALLERS: Please note that cheques can only be acceptod fogether 2 minutes from KING S CROSS. EUSTON \& ST PANCRAS

TRANSISTORS $\&$ DIODES

A Selection From Our Wide Range

AC107		BF163 35p	MPF102	42p	OC201	60 p	2N1307	84
AC128	\%0p	BF167 18p	MPF103	$35 p$	OC202	75 p	2N1308	300
AC127	25p	BF173 19p	MPF104	87p	OC203	40 p	2N1309	30 D
AC128	20 p	BF177 25p	MPF105	40p	OC204	40p	2N1507	23p
AC151	$18 p$	BF178 31p	NK T124	30 p	OC205	75 p	2N1613	150
AC152	15p	BF180 35p	NKT155	40p	OC206	90p	2N1711	15p
ACl5	$10 p$	BF181 35D	NKT128	870	OC207	$75 p$	2 N 2147	75p
A0176	25 p	BF184 20p	NKT128	$25 p$	OCP71/M	42 p	2N 2148	80 p
A0187	2bp	BF185 25p	NKT211	250	ORP12	50 p	2N2160	670
AC188	$25 p$	BF194 17p	NKT212	25p	ORP60	40 p	2N2388	17p
ACY17	27p	BF193 16p	NKT213	250	ORP61	40 p	2N2369	170
ACY18	8 Crg	BF196 15p	NKT216	46p	P346A	$19 p$	2N2369A	19p
ACY19	809	BF200 35p	NKT217	300	SL403D	\&1.50	2N2646	470
ACY20	$20 p$	BFX13 25p	NKT218	25 p	ST140	15 p	2N2904	4 p
ACY21	10 p	BFX29 25p	NKT219	25 p	8 S141	20 p	2N2904A	49p
ACY22	10 p	BFX84 25p	NKT223	27p	TIP31A	62p	2N2905	85p
ACY40	15 p	BFX85 34p	NKT271	18p	TIP32A	749	2N2906A	76 p
ACY 41	15 p	BFX86 25p	NKT2\%2	17 D	TIE88A	45 p	2N2806	49 p
AD140	55 p	BFX87 30p	NK T274	18p	UL900	40 p	2N2906A	340
AD149	50 p	BFX88 24p	NKT275	20p	UL914	40 p	2N2926 a	
AD161	36 p	BFY50 22p	NKT279A	12p	UL923	40 p	colours	100
AD162	30p	BFY51 18p	NKT281	29p	V405A	46p	2N3053	20p
AF106	24 p	BFY52 20p	NK T403	65 D	ZTX108	112	2N3084	500
AF114	25 p	BFYS3 17p	NKT404	60 p	ZTX300	13 p	2N3055	60 p
AFl15	25 D	BFY90 67p	NKT451	58p	ZTX302	18 p	2N3702	100
AF116	25p	B8X19 16p	NKT452	54 p	ZTX303	18p	2N3703	10p
AF117	25 p	B8X20 16p	NKT713	29p	ZTX304	27 p	2N3704	110
AF118	44p	B8X21 20p	OA5	20 p	ZTX 214	11p	2N3705	10p
AF124	25 p	BSY27 20p	OA10	25 p	ZTX320	30 p	2N3706	98
AF196	17 p	B8Y29 25p	OA47	8 p	ZTX330	18 p	2N3707	11 p
AF139	30 p	B8Y95A 12p	OA70	8 p	ZTX500	16p	2N3708	7
AF186	40 p	BY100 15p	OA73	8 p	ZTX501	$16 p$	2N3709	9 p
AF239	${ }^{36 p}$	BY127 15p	OA79	8 D	ZTX502	20 p	2N3710	90
AF279	47 p	$\begin{array}{ll}\text { BYZ10 } & \text { 35p }\end{array}$	OA81	8 P	ZTX503	17 p	2N3711	9p
AgY26	25 p	BYZ12 80p	OA85	8 D	ZTX504	40	2N3819	350
ASY27	30 p	BY813 20p	OA90	8 8	IN914	7 p	2N3820	80p
ASY28	22p	BZY88	OA91	8 p	IN 4001	7 p	2N3826	30 p
ASY29	30 p	C3V3 15p	OA95	8 p	IN 4002	7 p	2N 4088	15.
$\mathrm{ABZ21}^{\text {d }}$	37 p	C3V6 ${ }^{\text {che }}$	OA200	10 p	IN 4603	10 p	2N 4060	12p
BC107	10 p	C3V9 15p	OA202	10 D	IN4004	10 p	2N4061	12p
BC108	10 p	C4V3 16p	OC19	870	IN4005	18p	2N4062	12p
BC109	10 p	C4V7 15p	OC20	97 D	IN 4006	15 p	2N4289	15p
BC147	10p	C5V1 15p	OC22	47 D	2N5756	95p	2N4871	40p
BC148	9	C5V6 15p	OC23	800	IN 4007	$20 p$	2N5245	45p
BC149	10p	C6V2 15p	OC24	609	1N4148	7	40250	55.
RC158	$11 p$	C6V8 15p	0 O 25	37 p	2 C 302	19 p	40309	33 p
BC167	$11 p$	C7V5 $\quad 15 p$	OC26	33 p	20371	15 p	40310	45p
BC168	10 p	C8V2 15p	0 C 28	80 p	20374	25 p	40312	48p
BC169	11p	C9V1 15p	OC29	60 p	2N174	800	40320	47 p
BC169C	15p	C10 15p	OC35	50 p	2N385A/	50 p	40360	43p
BC182	10p	C11 15p	OC36	635	2N388A	500	40361	470
BC182L	10 p	C12	$0 \mathrm{OC41}$	250	2N 404	23p	40362	550
RC183		C13 15p	OC42	30 p	2N696	$15 p$	40406	56 p
BC183L	10 p	C15 15p	OC44	150	2N697	17 p	40407	39 p
BC184	18 p	C16	OC45	12 D	2N698	80 p	40408	810
BC184L	12 p	C18 150	$0 \mathrm{C71}$	18 p	2N706	10p	40409	54 p
$\mathrm{BC}^{\text {cl2 }}$	12p	C20 15p	OC72	12 p	2N708A	12p	40410	62p
BC212L	129	C22 16p	0 C 75	239	2N708	16p	40468 A	35 p
BCY 30	$25 p$	$\mathrm{C} 24 \quad 15 \mathrm{p}$	OC78	25p	2N711	37 p	40600	58 p
BCI 31	48p	$\mathrm{C} 27 \quad 15 \mathrm{p}$	OC7t	409	2N711A	37 p	40601	350
BCY32	50 p	C30 $\quad 15 \mathrm{p}$	OC81	20 p	2N911	$50 p$	40602	40p
BCY 33	20 p	CR1/051C 40p	0 O 81 D	$80 p$	2N914	20p	40603	49 p
BCY34	$25 p$	CR1/401C 60p	OC812	55 p	2N918	42p	40488	950
BCY 38	30 p	CR8905AF	OC82	25p	2N1090	30p	40430	97p
BCY70	15 p	fl-08	OC82D	150	2N1091	338	40432	¢1.87
BCY71	802	CR83/40AF	OC83	23p	2N1131	30 p	40512	81.45
BCY72	16 p	41.53	OC84	25 p	2N1132	30 p	40576	\$1.70
BD124	75 p	D13T1 45 p	OC139	25 p	2N1302	17p		
BD131	75 p	MJE520 50p	OC140	35 p	2N1308	17 p		
BD132	$75 p$	MJ480 97p	OC170	25 p	2N1304	28p		
BDY20	81.05	MJ481 21.25	0 Cl 17	30 p	2N 1305	22p		
BFils	23 p	J491 £1-35	200	40p	2N1306	24p		
TERMS: Retail Mail order subject to SOp minimum order. Cash with order only.								
Postage: 10 p inland: 25 p Europe ; elsewhere-send plenty. willrefund.		10p inland: 25p Europe; elsewhere-send plenty, will						
Manulacturers' warranty.								

LST Cetrove LTD

Mail Order Dept. (EE)
7 COPTFOLD ROAD, BRENTWOOD, ESSEX.

GEmpdell melir

USED EXTENSIVELY BY INDUSTRY，GOVERNMENT DEPARTMENTS， EDUCATIONAL AUTHORITIES，ETC

QUICK DELIVERY OYER 200 RANGES IN STOCK
OTHER RANGES TO ORDER
－LOW cosT

＇SEW＂CLEAR PLASTIC METERS

Type MR．85P．4tin．$\times 4 \frac{1}{2} 1 \mathrm{n}$ ．Ironta．

${ }^{5} 0 \mu \mathrm{~A}$ ．

$0-0-60 \ldots$.年 88.10 | $100-0-100 \mu \mathrm{~A}$ | $23 \cdot 100$ |
| :--- | :--- |
| 3 | | $200 \mu \mathrm{~A}$ … $\$ 8.00$

 $\begin{array}{ll}1 \mathrm{ma} \ldots \ldots . . & 88 \cdot 80 \\ -0-1 \mathrm{~mA} & \text { ．} \\ \varepsilon 2 \cdot 80\end{array}$ mA．．

＊MOVING IRON－ ALLOTHERS MOVING COIL

Please add postage

SEW EDUCATIONAL

METERS

Type ED．107．Size

 $0 \mathrm{~mm} \cdot x$ $90 \mathrm{~mm} \times 108 \mathrm{~mm}$ ． A new range of high quality moving coll lor achool expert－ ments and other bench applications． 3^{*} mirror scale．The neter movement to easlly accessible to emonstrate internal working．Available a the following ranges：$50 \mu \mathrm{~A} \quad . . .$.

$50-0-50 \mu \mathrm{~A}$
$1-0-1 \mathrm{~mA}$ ．
1A d．c．
6Ad．e．
10 V d．c．

Type MR．38P． 1 21／82in．square Ironta．

	$200 \mathrm{~mA} . .$. £1－6u
	$300 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.
	800 ma A ．．．． $81 \cdot 80$
	750 mA ．．．．$£ 1.80$
	1 manp．．．．． $21 \cdot 60$
	2 amp．．．．．\＆1－60
	6 amp．．．． 81.60
	10 amp．．．$£ 1 \cdot 60$
$50 \mu \mathrm{~A}$ ．．．． 22.10	3V．D．C．．． $21 \cdot 60$
$50-0-50 \mu \mathrm{~A} \quad 31.80$	10V．D．C．．． 21.60
$100 \mu A \quad \ldots . .81-90$	15V．D．C．． 21.60
100－0－100رA 81.75	20V．D．C．．．\％1－60
$200 \mu \mathrm{~A} \quad \cdots .21 .75$	100V．D．C． 81.60
$500 \mu \mathrm{~A}$ ．．． 21.65	150V．D．C．\＄1．80
$500-0-500 \mu \mathrm{~A}+1+40$	300 V ．D．C． 1.60
$1 \mathrm{~mA}$.	500 V．D．C．$£ 1.60$
1－0－1mA ．．81－80	750 V ．D．C．$\quad \mathbf{1 1} 60$
2 mA ．．．．． $81 \cdot 60$	15V．A．C．．．$£ 1.70$
5 mA ．．．．． $21-60$	60 V．A．C．．． 21.70
$10 \mathrm{~mA} \mathrm{...} 21-$.	150V．A．C． $\mathrm{E1} \cdot 70$
20 mA ．．． $21-60$	300 V ．A．C． 81.70
80 mA ．．．．21－80	500 V．A．C．$£ 1.70$
$100 \mathrm{~mA} . .$. ． 21.60	8 Meter lma ¢ 1.70
250mA ．．．． 81.60	VT Meter ．． 28.10
Type MR．	aquare lronts．
$50 \mu \mathrm{~A}$ ．．．．．． 82.85	5 amp．．．． 1 170
$50-0-50 \mu \mathrm{~A}$ E2．10	10 V ．D．C．．． 81.50
$100 \mu \mathrm{~A}$ ．．．．$£ 2.10$	20V．D．C．．． 1150
100－0－100 μ A $£ 1.87$	60 V, D．C．．． 81.50
$200 \mu \mathrm{~A}$ ．．．．$£ 1.87$	300 V ．D．C． 21.50
$500 \mu \mathrm{~A}$ … 81.75	15 V．A．O．．． 21.80
$500-0-500 \mu \mathrm{~A} 51.70$	$300 \mathrm{~V}, \mathrm{~A} . \mathrm{C}$ ．$£ 1.80$
$1 \mathrm{~mA}18170$	S Meter $\ln \mathbf{A} \mathbf{A 1} \mathbf{1 8 5}$
5 mA ．．．．．$£ 1.70$	VU Meter．． 28.25
10mA ．．．．£1．70	1 amp A．C．${ }^{\text {a }}$ 21．70
50 min ．．．． 81.70	5 smp A．C．＊ 1.70
100 mA ．．． $21 \cdot 70$	10 amp ．A．C．$£ 1.70$
$500 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{}$.	20 mmp A．C．+21.70
1 amp ．．．．$£ 1.70$	30 mmp A．C．${ }^{21} \cdot 70$

＇SEW＇BAKELITE PANEL METERS
 TTD MB 65，34in

	$1 \mathrm{smp}21 .85$
	$2 \mathrm{mmp}81 .06$
	$5 \mathrm{amp} . . .$. ．$£ 1-95$
	$15 \mathrm{amp}81 .85$
	$30 \operatorname{mp}$ ．．．．．$£ 1.95$
	50 anip．．．．．± 1.95
	5V．D．C．．． 21.95
	10V．D．C．．． 21.95
	20 V ．D．O．．． 21.95
	50 V. D．C．．． 81.95
	150 V．D．C．$£ 1.95$
$25 \mu \mathrm{~A}$ ．．．．．$\$ 3.50$	300 V ．D．C． 21.06
$50 \mu \mathrm{~A}$ ．．．．． 2 ． 2.76	30 V ．A．C．＊$\$ 1-95$
50－0－80んA 22.35	50V．A．C． 21.85
$100 \mu \mathrm{~A} \ldots .$. £2．35	150V．A．C．－ 21.95
100－0－100 μ A 22.25	300 V ．A．C．＊ 21.96
$500 \mu \mathrm{~A}$ ．．． 52.20	$500 \mathrm{~mA} \mathrm{A.C}$. －$£ 1.95$
1 mA ．．．．． 81.95	1 mmp ．A．C．＊ 21.95
1－0－1mA ．． 21.05	5 amp．A．C．${ }^{\text {¢ }}$ \＆ 1.95
5 mA ．．．．．． 1.95	10 mmp A．C．${ }^{\text {a }} 1.95$
$10 \mathrm{~mA}+\cdots .81 .95$	20 amp．A．C．－ 21.95
$50 \mathrm{~mA} \quad \cdots . .81 .05$	30 amp A．C．${ }^{\text {c }}$－1．95
$100 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{§1}$.	50 mmp A．C．${ }^{\text {e }} 1.95$
500 mA ．．．． 1.05	VU Meter ．． $83 \cdot 10$

EDGWISE METERS

Type PE．70． 3 17／8\＆in．$\times 1$ 15／68in．

 $50 \mu \mathrm{~A} . \ldots .{ }^{2} 3-10 \mid 500 \mu \mathrm{~A} . . .182 .75$ $\begin{array}{ll}50-0-50 \mu \mathrm{~A} & 83.00 \\ 100 \mu \mathrm{~A} & 1 \mathrm{~mA} \ldots . . \\ 52.00\end{array} \quad 35$ $100-0-100 \mathrm{~A}$ 处9．90 300V．A．C．起－45 $200 \mu \mathrm{~A} \ldots . .52 \cdot 90$ VU Meter ．． $\mathbf{8 2 - 4 0}$Send for illustrated brochare on SEW Panel Motert－diecounts for quantitics

MULTIMETERS for GVERY purposel

MODEL LT． 1011000 O．P 0／10／50／250／1000 V．D．C． $0 / 10 / 50 / 250 / 1000$ V．A．C． $0 / 1 / 100 \mathrm{M} . \mathrm{A} .0 / 150$

MODEI PL436

 $20 \mathrm{k} \Omega / \mathrm{Volt}$ D．C 8 \＆Ω / V oltMirror scale．
－6／3／12／30／120／600v D．C． $3 / 30 / 120 / 600 \mathrm{~V}$ A．C． $50 / 600 \mathrm{~mA} / 60$ $1 \mathrm{Meg} / 10 \mathrm{Meg}$
 MODEL $5025 \quad 57$ Ranges Giant 5hin．Meter，Polarity Sensitivity： $50 \mathrm{~K} /$ Vole D．C SK／Volt A．C．D．C．Voits： $-125,-25,1-25,5,10,25$ A．C．Volta： $1 \cdot 5,3,5,10,25$ D．C．Carrent： $25,50 \mathrm{IA}, 2 \cdot 5,5,25,50,250$ 500mA， $5,10 \mathrm{amp}$ ．Resistance： $2 \mathrm{~K}, 10 \mathrm{~K}$ 100K，1MEG， 10 MEG ．Decibels：-20 to +85 dB ． $218 \cdot 50$ ．P．\＆P．171D

H1OKI MODEL 700X 100,000 O．P．V．Overlobr $-3 / 6 / 1 \cdot 2 / 1 \cdot 6 / 8 / 6 / 12 / 30 / 60 /$ $120 / 300 / 600 / 1200 \mathrm{VDO}$ $1 \cdot 5 / 3 / 6 / 12 / 30 / 60 / 150 / 300 / 600 /$ 1200 V．A．O．
$15 / 30 \mu A / 3 / 6 / 30 / 60 / 150 / 300 \mathrm{~mA}$ 6／12 AMP．DC．2K $/ 200 \mathrm{~K} / 2$ Meg／20 Meg ohm -20 to
$+63 \mathrm{db} \$ 13.50$ ．P．\＆P． 20 p ROUND SCALE TYPE PENCIL TESTER MODEL TS． 68

Completely porisble，simple to une pociet sized tester． Ranges $0 / 3 / 30 / 300$ Resistance 0 －200 ONLY \＆1－97 P．\＆P．${ }^{13} \mathrm{p}$ TMK MODEL 117 P．E．T．ELECREONIC FOLTMETER Battery operated，
11 meg Input， 26 ranges．Large 41° nalror racale．slze
 1200V．AC VOLTS S－300VRM8．8．0－ R00V P－P．DC CUR－ RENT $12-12 \mathrm{MA}$ ．
000M ohm．Decibels Kesistance up to 2000 m ohrm．Decibels
-20 to +51 db Complete with leadis／iustruc． tions．217．50，P．\＆P．20p．

TE－20D RF SIGNAL GENERATOR

Accurate wide range sig－
nal generator covering
$120 \mathrm{Kc} / \mathrm{s}-500 \mathrm{Mc} / \mathrm{s}$ on ${ }_{6}$ bands．Directly call－ brated Variable R．F st－ tenuator，andio ontput． tion， $220 / 240$ V．A．C．
Brand new with inatruc－ Brand new with inatruc－
tions． 815 ．Carr．37tp． Size 140 mm ．
TE22 SINE square wave AUDIO GENERATORS

Sine： 20 cpa to 200 Syuare：20cpa to
$30 \mathrm{kc} / \mathrm{s}$ ．Out put imperiance $\delta, 000$ ohtns， $200 / 250 \mathrm{~V}$.
A．C．operation． new and krazan－ tlon manual and leads． 817.50 ．Carr． $37 \pm p$ TE－20RF SIGNAL GENERATOR
\qquad
 ing $120 \mathrm{kc} / \mathrm{s}-260$ Mols on 6 bends． Directly calibrated tenuator．Operation 200／240v．A．C． Brand new wlth in－ P．\＆P． 37 pl ． P．A．E．for details．

TRANSISTORISED L．C．R．A．C．
 EASURING BRIDGE

 bridge ofterlng ex－ celient range an cont．Ranges： R ． 6 Ranges $\pm 1 \%$ HENRYS 6 Rangea $2=\% \mathrm{C} .10 \mathrm{pF} \pm 1110 \mathrm{mFd}$ 6 Rangea $\pm 2 \%$ TURNS RATIO $1: 1 / 1000-$ $1: 11100.6$ Ranges $\pm 1 \%$ ．Hridge voltage at
$1,000 \mathrm{cps}$ ．Operated from 9 volts． $100 \mu \mathrm{~A}$ ． $1,000 \mathrm{cps}$ ．Operated from 9 volts． $100 \mu \mathrm{~m}$ ． Meter indicatlon．Attractlve 2 tone meta
ease． $81207 \frac{8}{8} \times 5 \times 212.220$ ．P．\＆P． 25 p

MODEL TE－300．30，000 O．P．V．Mirror scale，overload protection $0 / 6 / 3 / 18 / 60 / 300 /$ 1．200v．D．C． $0 / 6 / 30 / 120 / 600 /$ $60 \mathrm{~mA} / 300 \mathrm{~mA} / 600 \mathrm{~mA}$ ． $0 / 8 \mathrm{~K} /$ $80 \mathrm{~K} / 800 \mathrm{~K} / 8 \mathrm{meg}$, ohm -20 k +63 db .85 .97 ．P． \mathbf{t} P． 15 p
 MODEL TE－200 20,000 O．P．V． Mirror gate，overioad protec tion． $0 / 5 / 23 / 125 / 1,000$ V．D．C．
$0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ ．A．C．O／50 $0 / 10 / 50 / 250 / 1,000 \mathrm{~V}$ ．A．C．O／50
$\mathrm{xA} / 250 \mathrm{~mA} .0 / 60 \mathrm{~K} / 6$ meg Ω ． $\mathrm{xA} / 280 \mathrm{~mA} .0 / 60 \mathrm{~K} / 8 \mathrm{meg} \Omega$.
$\mathrm{P}_{\mathrm{o}} \& \mathrm{P}_{+} 15 \mathrm{p}$.

TMK MODEL MD． 120 hirror acale． $20 \mathrm{k} /$ Volt D．C． $600 / 3,000$ V．D．C． $6 / 120$ 1.200 V．A．C． | 300 mA. | $0-60 \mathrm{~K} / 0-6$ |
| :---: | :---: | $\mathrm{Meg} \Omega$ $=20$ to +63 dB．£4．62t．

P．\＆P．15p．
 MODEL 50080,000 O．P．V with overload protection
mirror scale $0 / \cdot 5 / 2 \cdot 5 / 10 / 25 /$ 100／250／500／1，000 V．D．C $0 / 25 / 10 / 25 / 100 / 250 / 500$ $1,000 \mathrm{~V}$ ．A．C． $0 / 50 \mu \mathrm{~A} / 5 / 80$ 0／60／K／6 Meg．／80 Meg Ω ． \＆8．871．Port pald． TMK LAB TESTER 100，000 O．P．V． $61 / \mathrm{in}$
Scale Buzzer Short Cir
 cult Check．Bensitivlty 100.000 O．P．Y．D．C． 5 K ； －\＄， $2 \cdot 5,10,50,250,1,000$ V．A．C．Volta： $3,10,50$ ，
60， $250,500,1,000 \mathrm{~V}$ ．
D．C．Gurrent： $10,100 \mathrm{~A}$ D．C．Current： $10,100 \mu \mathrm{~A}$ $10,100,500 \mathrm{~mA}, 2.5,10$
$=1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{MEG}$, smp．Resistance： $1 \mathrm{~K}, 10 \mathrm{M}, 10 \mathrm{~K}, 10 \mathrm{MEG}$ Plastlc Case with Carrying Einnde．Size 7 in．$\times 6$ in．$\times 3$ in． $218-90$ ．P．a P． $25 p$
D4312 M ULTIMETER
Extremely stardy instrument for genera $0 / 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$ ／3／－ $5 / 7-5 / 30 / 60 / 150 / 300$ $600 / 500$ VAC．
0／300uA／ $1 \cdot 5 / 6 / 50 / 80 / 150$ 500MA／1－5／6 AMP．D．C． $0 / 2 \cdot 6 / 6 / 15 / 60 / 100 / 600 \mathrm{MA}$ 1．6／6 AMP．AC． $0 / 200 \Omega / 3 \mathrm{~K} / 30 \mathrm{~K} \Omega$ Accuracy DO 1% AC 1．5\％．
 scale．Complete with sturiy metal carrying ease，lests
and inatructions．$\& 9.50$ plus P．\＆P． 25 p．

RUSSIAN 22 RANGE MULTIMETER Mode！U437 10，000 o．p strument manufactared in U．s．S．R．to the highest standards，Ranges： $2 \cdot 0 / 10 /$
$50 / 250 / 500 / 1000 \mathrm{v}$ D． $2 \cdot 5 /$ $10 / 80 / 250 / 500 / 10000 \mathrm{v}$ A．C DO Current 100 wA／1／10 $100 \mathrm{~mA} / 1 \mathrm{~A}$ ．Resistance 300 ohms $/ 3 / 30 / 300 \mathrm{~K} / 3 \mathrm{M} \Omega$ ． Complete with batterlen sturdy steel carrying case OUR PRICE 5 －97 P．d P．

HONEYWELA

DIGITAL VOLTM
Can be panel
bench mounted．
Basic meter mes
sures 1 volt D．C．
but can be used to messure a wide range of AC and DC volt，current anil ohnas with optional plug in cards．Spectacation：Accu－ racy：± 0.2 ，± 1 digit．Resolution： 1 mV ． Number of digits： 3 plus fourth overrange diglt．Overrange： $\mathbf{1 0 0} \%$（up to 1.999 ）．Inpat 1 per second．Adjustment：Automatic zera－ lag，full scale adjustrment agrinst an interal reference voltage．Overlosd：to 100 v ．D．C． Input：Fully flosting（3 poles），Input power： $110-230$ ．A．C． $\mathrm{B} 0 / 60$ cycles．Overall size： EHin．x 2 13／16in．x $83 / 1 \operatorname{lin}$ ．AYATLABLE BRAND NEW AND FULLY GTARAN－
TEED AT APPROX．HALF PRICE． 448－97t．Cart． 50 p

G．W．SMITH
\＆CO（RADIO）LTD．
Also see next two pages

SEMI-CONDUCTORS/VALVES

ALL DEVICES BGAND NEW AND FULLY GUARANTEED

Transistors $\left|\begin{array}{ll}2 N 3415 & 22 p \\ 2 N 3416 & 37 \mathrm{p}\end{array}\right| \begin{aligned} & 2 N 5458 \\ & 2 N 5459\end{aligned}$ Trans
2630
2030

255
250
BC11
BC1

$$
0
$$

が

ated F

HIFFI EQUIPMENT SAVE UPTO 33з\% OR MORE SEND S.A.E. FOR DISCOUNT PRICE LISTS AND PACKAGE OFFERS!

RECORD DECKS

BSR UA50 Monot $£ 4.97$ C129 \dagger MP80.
610 $£ 4.87$
86.50
810.40 610........ . . 814 .07 $810 .$.
810.
 t Mono Sterco Cartridge All other models less Cartridge
Carriage b0p extra any model. RECORD DECK PaCKAGES Decks aupplled with artridge ready wired in teak ven
eered plinth with cover.
Garrard 2025 TC/PTAFCD. Garrard 8P25 IIl/日TAHCD Garrard SP25 III/G800. Garrard 8Pe5s III/M4 Garrard 8P25 III/M44-8 Garrard SP2s III/G800 (Play on
PIInth and Cover) Carrard AP76/G800 Garrard AP76/M75-6 Garrard AP76/M55E Garrard AP76/M75EJ BER McDonald MP60/AT53 Goldring GL72/G800 Goldring GL75/G800 oldring $12 \mathrm{~L} 75 / \mathrm{GROOE}$ Carriage 50p any ltem.

812.95
 216.95 818.50

218.50
118.50
220.35
218.75
829.50
230.25
£32.95

£34.00

818.25
$£ 34.50$
238.70
8
$\$ 44.15$

* TRANSISTORISED FM TUNER
 FM TUNE

\qquad 6 TRANBISTOR
HIGH QUALITY TUNER, $8 I Z E$
ONLY $6 \times 4 \times 2 y \ln$. Double tuned dis output to feed most V put to feed moss ampliners. Operates on 9 battery. Coverag atc var for Stereo multiplex adaptors 84.971
NS.1600W STEREO AMPLIFIER
 budget prlce amplifier. All allıHandsome nut case. Switch separate balance, volume, treble, basp con trole, Output 2×6 W RMS. Inputs Mag. Tape
Xtal. Tuper, Tape Out. 814.75 . Carr. 37 p .

LATEST CATALOGUE

Our new 6th edition gives full details of MENT, COMPONENTE, TEST EQUIP MENT an COMMUNICATIONR EQUIP
$M E N T$ FRFE DIGCOUNT COUPONS MENT. FRFE DIECOUNT COUPONS
VALUE 50p

TELETON SAQ-206B STEREO AMPLIFIER

Tatest exciting releane. Brand new model. tape. Volume rms, Inputa for mag. Ebal aux suratch filter and Ioudness controls. OUR PRICE $£ 18$-50 Carr. 37p.
TELETON F. 2000 AMIFM STEREO TUNER AMPLIFIER

Probsbly the most popular budget Tuner/ Amp. and now offered at a ridicalous low price. 5 watts r.m.s. per channel. Tape/Cer
phono in puts. AFC/Buitt-in MPX. List $£ 51$ OUR PRICE 128.75. Carr. 50p.
F.2000, Garrard 2025T/C Changer fitted atereo cartridge, with plinth and cover and pair of O.W.S. Speakers. Total Rec.
297.731. OUR PRICE E52.95. Carr. \&1.

HA 10 STEREO AEADPHONE
AMPLIFIER AMPLIFIER istor smplifier oper ater from magnetif ceramic or tuner inputs with twin stereo headphone outputs and separate volume hattery. Inputs $5 \mathrm{MU} / 100 \mathrm{MU}$. Output 50 MW 85.07. P. \& P. 15p.

SINCLAIR EQUIPMENT

©

Project 60. Packace offer power sumply er, stereo 60 pre-amp, PZ PZ6 power amplifler, atereo 60 pre-amp, PZ8 power supply. 220.25. Carr. 371 p . Tranaformer for PZ8. £2.97\% extra. Add to any of the above 24.45 for actjve Project 60 FM Tuner $\mathrm{E16.05}$. Carr. 37 All other Sinclalr products in stock.
2000 Amp $£ 23.50$ Carr. $371 \mathrm{p} . ; 3000 \mathrm{Amp}$ $£ 30.95$ Carr. 37tp.: Neoteric Amp $£ 43.95$

BH.OO1 HEAD-

 MICROPHONE Moving colt. Ideal for language teaching, com-munlcations. Head mp. 16 ohrus. Micro phone imp. 200 ohm £4.82. P. \& P. 15p.

230 VOLT A.C. 50 crcLes RELAYS
Brand new. 3 sets o
changeover contacts at changeover contacts at
5 amp rating. 50 p each AP. 10p (100 lot 840) Quantities available

E.H.T. TESTER O-30KV

RPR14 REGULATED POWER SUPPLY Solld state. Variable output 0-24V DC up to 1 amp. Dual scale meter to monitor \rightarrow - \rightarrow voltage to monito

PS. 1000 B REGULATED POWER SUPPL
The first tuner in the world to use the phase lock loop principle as used for receiving ignass from opsce craft becsuse of its vantly
Improved signal to noise ratio. Provides fantastic results even in difteult sFeas, Tuning range 87.5 to 108 MHz atomatlc stereo Indicator. Sensitivity: 2uV. APC range $\pm 200 \mathrm{KBz}$. Slgnal to nolse ratio 65 dB . Output volhage $2 \times 150 \mathrm{mV}$. Operating voltage $25-30$ V. D.C. Slze: $93 \times 40 \times$ 207 mm . REC. LIST PRICE 225 .
OUR PRICE E16.95
Unrepeatable ottep-buy now and rave over \&s Model S-100TR MULTITFSTER 100,000 MIRROR SOALE/OVER LOAD PROTECTION $0 / \cdot 12-6 / 3 / 12 / 30 / 120 / 600$ 0/6/30/120/600 V. AC.
0/12/600uA/12/300MA/1
Amp. DC

0/10K/1 MEG/100 MEO.
-20 to $+50 \mathrm{db} .0 .01-2 \mathrm{mid}$.
Ico. Complete with hatterj
leads. $\$ 13.50$. PIP 25 p .

MCA. 220 AUTO. MATIC VOLTAGE STABILISER

Input 88-105 VAO or 176 250VAC. Output 120 VAC or $240 \mathrm{VAC}, 200 \mathrm{VA}$ ratlng.

BELCO AF-5A SOLID STATE SINE SQUARE WAVE C.R. OSCILIATOR SQUARE WAVE C.R. OSCILLATOR

Bridge T. Impedance 600Ω range $(0.1 \mathrm{~d}$ is Bridge T. Impedance 600Ω range ($0.1 \mathrm{~dB} \times$
$10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$. Frequency: i.c. to 200 k 隹 $(-3 \mathrm{aB})$. Aceur Maximum input less than 4 W (50 V). Bullt in foo Ω load resintance with internalixternal

POWER RHEOSTATS

High quality cerainic construction. Windlage embedded in ritreous enamel. Seavy duty brumh wiper. Single. hole fixing, in. dia. shafta. Bulk quantlties avallable 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms, 721p, P. \& P.
50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, $21 \cdot 05$ P. \& P. $7 / \mathrm{P}$.
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 hams, $21-37$ P. \& P. 71 p

"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS

 Excellent quality W-260 General $\begin{gathered}\text { Surpose Bench } \\ \text { Mounting }\end{gathered}$ Q 0 MII Mounting 1 Ainp
 S-260B Panel Mounting
 Pease add postage ANPUT 230 VOLTE, OUTPUT VARIABLE Special discounts for quantits

everyday electronics

 THEORY.
FOR ALL SEASONS

Our cover this month has quite an outdoor touch. Of course, you don't have to be an apiarist to sense that things are beginning to buzz in the outside world. Spring is now well advanced and thoughts are likely to be turning towards all kinds of pastimes and occupations for the coming summer months.

It is an appropriate time to point out that doityourself electronics has no closed season. Outdoor activities like gardening, touring, camping, sporting events, and so on, present many unique opportunities for putting electronics to effective use. So we advise, take stock now, anticipate your needs and start building to remedy any deficiencies in this respect.

GOOD COMPANION

The Constructors Companion given free with every copy of this month's Everyday Electronics is small and compact. It has been designed for your pocket, so that wherever you go you can have essential facts constantly at hand. Compiled with the beginner particularly in mind, this booklet will prove a valuable aide-memoire for the more experienced constructor as well.

Those still feeling their feet will be glad of the technical back-up they can instantly call upon
when confronted with a choice of allegedly alternative or equivalent parts when shopping personally for components.

READY ACCESS

Our regular readers will already appreciate the amount of important and useful information they are accumulating, as the months go by. True, not everyone will have an immediate need for every project described. But a word of advice: do not discard back numbers. You never know when circumstances may arise that create a definite need which some previously described project would satisfy exactly.

This leads us on to another common problem:. how to store numerous copies of a magazine so that ready access may be made at any time to one particular article. The only really satisfactory solution is to keep copies of the magazine in the binder specially designed to hold 12 issues of Everyday Electronics. and which is now available.

Our June issue will be published on Friday, May 19
EDITOR F. E. BENNETT - M. KENWARD - B. W. TERRELL B.Sc.

ART EDITOR J. D. POUNTNEY - P. A. LOATES - S. W. R. LLOYD
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 7 MAY 1972
CONSTRUCTIONAL PROJECTS
AUDIO TONE GENERATOR Suitable for making electronic music by F. C. Judd 358
BEE COUNTER An electronic eye for the hive by G. A. Cozens 376
METAL LOCATOR Detects and locates metal objects underground by D. Bollen 382
GENERAL FEATURES
EDITORIAL 356
SHOP TALK New products and this month's constructionals by Mike Kenword 362
MAKING ELECTRONIC SOUNDS AND MUSIC Using the Audio Tone Generator by F. C. Judd 363
please take note 367
THEY MADE THEIR MARK No. I-Introduction By J. E. Gregory 368
TEACH-IN Part 7-Semiconductors: Transistors by Mike Hughes 369
RUMINATIONS by Sensor 374
TEACH-IN HALF TERM TEST ANSWERS See how well you did 389
READERS LETTERS Your news and views 390, 393

EE binders...

Your copies of Everyday Electronics deserve a permanent Home!

An Easi-Binder is now available handsomely finished in orange de luxe Balacron with black lettering on the spine. It holds 12 issues of Everyday Electronics.

Order your binder from Binding Dept., IPC Magazines Ltd., Carlton House, 68, Great Queen Street, London W.C.2. The price is 88 p , including postage and packing.

Fig. 1. Complete circuit diagram of the Audio Tone Generator.
ratio will be 1 to 1 or the mark and space will be of similar duration (Fig. 2). If we now change one of the controlling values-in this case VR1both the frequency and mark to space ratio will be altered.

If we increase the value of VR1 the frequency will decrease as C2 will take longer to charge, and the mark to space ratio will alter for the same reason (see Fig. 3). Thus frequency control is achieved by VR2 and the total frequency range is approximately 50 to $2,000 \mathrm{~Hz}$.

The waveform has a mark to space ratio of 1 to 1 at approximately $1,500 \mathrm{~Hz}$ at all lower frequencies the mark to space ratio increases becoming about 1 to 20 at the lowest frequency (Fig. 3).

The output from the multivibrator is taken from the emitter of TR2, through R6 to the base of TR3. Transistor TR3 is switched hard on and off by the output from TR2 and thus ensures a completely square output at its collector. The output level from TR3 is continuously variable from 0 to approximately 7 volts by VR2.

SAWTOOTH OUTPUT

The square wave output from TR3 can also be switched via S2 through an integrating network, C5 and R8, to provide an approximately sawtooth waveform (Fig. 4) of about 1 volt peak-to-peak maximum output, instead of the square-wave.

One of the major differences between a square wave and a sawtooth wave is the harmonic content and hence the tonal quality, when either are made audible via an amplifier and loudspeaker. The square wave contains only odd harmonics, in addition to its fundamental,
whereas a sawtooth wave consists of both odd and even harmonics plus the fundamental.

Audibly the square wave has a sound rather like that produced by a clarinet particularly in the region of middle C (261 Hz approx.). The sawtooth wave has a sound rather more like a

Fig. 2. A square wave with a 1 to 1 mark to space ratio.

Fig. 3. A square wave with a 1 to 20 mark to space ratio.

Fig. 4. A sawtooth waveform.

Audio Tone Generator

Fig. 7. Wiring of the final unit. The tinted area is the component mounting board as shown in Fig. 6.

Fig. 6. Top and underside views of the component board. The transistor connections between the two diagrams are viewed from the underside.
flute. Both waveforms are used extensively in electronic organ voicing and for electronic music.

CONSTRUCTION

The prototype unit was housed in a box made from universal chassis parts. The pieces used assemble into a box measuring 5 by 4 by 3 inches. The sides and top and bottom can be assembled leaving one plate for the front panel and one for the rear. The plate used for the front panel is drilled as shown in Fig. 5 and is used to mount all the components.

If the layout and assembly of the generator is as shown there is just room in the case for a PP9 9 volt battery. Even if you spread the layout a little there should still be room for a slightly smaller 9 volt battery. The circuit board is 0.15 inch matrix plain perforated veroboard and is mounted on a 2 inch length of 3_{8} by 3_{8} inch aluminium angle.

Components....

Resistors

R1	$2 \cdot 2 \mathrm{k} \Omega$
R2	$47 \mathrm{k} \Omega$
R3	$4.7 \mathrm{k} \Omega$
R4	$3.2 \mathrm{k} \Omega$
R5	100Ω
R6	$4.7 \mathrm{k} \Omega$
R7	$4.7 \mathrm{k} \Omega 2$
R8	$15 \mathrm{k} \Omega$
All $\frac{1}{6} \mathrm{~W}$	$\pm 10 \%$ carbon

SEE SHOD TAHK TALK

Capacitors

C1	$50 \mu \mathrm{~F}$ elect. 12 V
C 2	$0.05 \mu \mathrm{~F}$
C3	$0.01 \mu \mathrm{~F}$
C 4	$50 \mu \mathrm{~F}$ elect. 12 V
C 5	$0.1, \mu \mathrm{~F}$

Transistors
TR1 NKT 274 germanium pnp
TR2 NKT 274.germanium pno
TR3 NKT 274 germanium pno
Potentiometers
VR1 $1 \mathrm{M} \Omega \log$ carbon
VR2 $2 k \Omega$ lin carbon
Switches
S1 S.P.S.T. slide
S2 S.P.D.T. slide

Miscellaneous

SK1 Phono socket
B1 PP9 9V battery
Control knobs (2 off) Eagle type F10, case $5 \times 4 \times 3$ in made from universal chassis panels or a similar size case, battery connector, aluminium angle $2 \times \frac{\frac{3}{8}}{} \times \frac{3}{3} \mathrm{in}$. Veroboard $5 \times 4 \times 0 \cdot 15$ in matrix plain perforated, earth tag, connecting wire, 48A fixings.

Commence wiring of the component board by inserting all components except the transistors, and the wire link on the top of the board as shown in Fig. 6. Turn the board over and connect up the two supply lines along the two sides of the board using 18 or 22 s.w.g. tinned copper wire. Next connect up the remaining components using the component leads where possible and connect the flying leads.

Finally insert the transistors checking carefully the lead connections with the underside view shown in Fig. 6, and solder them to the other components using a heat shunt on each lead as it is soldered. After checking the circuit board mount the board on the aluminium angle bracket and mount this on the front panel together with the remaining components.

Wire up all the components to the circuit board as shown in Fig. 7 and check the completed unit carefully before connecting the battery and switching on.

Continued on page 386

This month we have one item which many readers will prabably wish to construct but which is not given in the form of a constructional project. It is the simple passive mixer that is described and drawn up in the Making Electronic Sounds and Music feature.

Since this is really a bonus that will be useful to those follow. ing the article we have not given full constructional details or a components list. All the component values are given on the circuit diagram and the wiring diagram shows how they are put together. The three sockets can be any type suitable for use with your particular tape recorderthe types we have shown are phono sockets.

The complete unit can be mounted in any small case. No battery or power supply is necessary. We would like to emphasise that this is a simple passive mixer and will not be able to cope with all inputs.
A more advanced type of mixer may form the subject of a future article. However this simple mixer should be suitable for use with the Audio Tone Generator that is also described in this issue.

Audio Tone Generator

There should be very few buying problems for the Audio Tone Generator. As described above the sockets could be changed to any suitable type if your equipment does not use phono sockets or if you already
have other types. Once again the case for this project can be any type that is available in a suitable size.

Bee Counter

We find it difficult to comment on the availability of cedar wood -not after-shave-but apparently this wood must be used or the bees will not accept it!

As far as the remaining components for the Bee Counter go make sure that the resistors you buy are of adequate wattage. The lamp and holder should be of the miniature type so that they can be accommodated in the wooden base panel. Since the current drawn by this circuit is fairly large the section in the article concerning the battery should be noted.

There are a number of Post Office type counters available so make sure you get the right one -4.2 ohms coil resistance is the important thing.

Metal Locator

The Metal Locator is a project which we are sure will create great interest but please remember that this is a simple onetransistor design and cannot be expected to out-perform a $£ 30$ unit. The use of Perspex or Paxolin is recommended for the locator head as these materials are not affected by damp or water.

All remaining components for the locator should be readily available. The use of a subminiature switch is recommended since only a small hole then needs to be cut in the plastic beaker. Any $50 \mu \mathrm{~A}$ moving coil meter could be used in the locator provided it will fit the beaker lid. The one specified is probably the cheapest.

Finally do not forget the operating licence and don't say we did not tell you!

New Products

Two products from one goahead firm have been introduced this month. Both in the audio field, possibly the most outstanding is the Unisound 505 as Radio and T.V. Components call their do-it-yourself $£ 25$ stereo system. This competitively priced unit comes as a complete kit and only needs two screwdrivers to put together. All the electronics are in module form and are supplied
with wiring looms that only need connecting up using a screwdriver supplied with the kit.

The large EMI speakers are housed in attractive cabinets again put together with only a screwdriver. It is said that anyone who can wire up a mains plug can put the system together in one evening. The system utilises modified Mullard Unilex modules, has an output of 3.7 watts continuous sine wave r.m.s. per channel; and frequency response of 40 Hz to 20 kHz at the 3 dB down points. It would be very difficult to buy the individual components -including Garrard 2025TC deck, cartridge, plinth and cover and build a unit to match this one for $£ 25$, excluding the two speakers and cabinets.

The second unit from RT-VC is a $£ 7$ push button car radio kit, slightly more difficult to construct but any reader who has some experience of soldering should be able to build a working unit.

The kit is of good quality and uses the same push button tuning unit as radios costing three or four times the price. These features ensures good sensitivity and the pre-aligned i.f. (intermediate frequency) module and tuner avoid complicated alignment.

The kit is suitable for 12 V positive or negative earth operation and readers may like to note that an after sales serviceto repair any item not functioning correctly-is operated by RT-VC for all their kits; cost about $£ 2$ depending on the fault.

Simple experiments with a tape recorder

THE term "electronic music" almost defies explanation because it is not the music that is electronic but the equipment and methods of ereating it.

Its origin goes back many years, in fact to the invention of the thermionic valve and even as early as 1921 a "concert" of electronic music was performed in Paris by an Italian, Luigi Russolo, who used what was then called electrical sound generating and reproducing equipment.

Electronic music was difficult to perform directly from sound generators, etc., because composition required arranging the sounds in a given order and even changing the order, and sometimes the sounds, at a later time.

MODERN METHODS

Magnetic tape recording finally provided the ideal medium for composition. The sounds required could be recorded and rearranged afterwards by simply cutting out the pieces of tape containing them and splicing these together again in the order required. This technique paved the way for composers who, with both electronics and magnetic tape at their disposal, could produce new kinds of music with tonal qualities never before possible.

More recently of course the music synthesizer has taken over the task of tone generation, etc., and electronic music composers can now programme a synthesizer, couple it to a tape recorder and produce "instant" electronic music.

Nevertheless there is much that can be accomplished by the amateur with an ordinary domestic tape recorder, an audio tone generator (like the one described on page 358) and some splicing tape. The techniques are simple and you can get a good deal of fun out of experimental electronic music and "science fiction" sounds.

Your efforts need not be wasted either because you can enter them for the experimental music and sounds section of the annual British Tape Recording Contest (details later).

EQUIPMENT

An ordinary spool to spool tape recorder is the main requirement and if you have a stereo recorder with provision for recording independently on either track or you can get together with a friend and use two tape recorders, so much the better. A tape recorder with track-totrack or duoplay facility is also advantageous especially if it permits echo effects.

It is not possible to lay down procedures for specific makes and types of tape recorder but you will find that most of the techniques described can be applied.

Note that cassette or cartridge tape recorders are of limited use for creative recording of this nature which requires fairly extensive tape cutting and splicing.

Most modern spool to spool tape recorders are designed for stereo operation employing half or quarter track on standard quarter inch wide tape. If the tape recorder has a track-totrack recording facility it will have separate recording and replay heads, thus allowing a recording on one track to be copied on to another together with other signals.

Some stereo recorders may only have a common record/replay head which will not normally allow track-to-track copying but may have a facility for making separate recordings on each of two tracks. Information concerning such facilities should be given in the tape recorder instruction book. If in doubt, you should contact your dealer or the manufacturer for such information.

AUDIO TONE GENERATOR

An audio tone generator is not absolutely essential but is most advantageous. The simple Audio Tone Generator described on page 358 is quite suitable as it covers a wide enough frequency range and will deliver a square-wave or a nearly sawtooth-wave output signal, thus providing two basic sounds.

Sounds picked up by a microphone can also be used because these can be reshaped by tape cutting and splicing and by certain recording techniques. Magnetic tape will be required of course and for initial experimental work low priced brands will suffice.

Some splicing tape and blank leader tape will also be required. Do not use ordinary plastic sticky tape, such as Sellotape, for splicing as

Fig. 1. (a) Original waveform of the recorded sound (b) The sound recorded and shown in (a) played in reverse.

(a)

(b)

Fig. 2. Waveform of a sound which starts instantly and slowly dies away.
this may damage the tape and will not give a long lasting joint. Small kits of coloured leader and proper'splicing tape are readily available. A small tape splicer is also a very useful, though not essential, tool.

FIRST EXERCISES

It is important to know the extent to which your tape recorder can be used. If it has two or three speeds, as most of them do, record some musical sounds, whistling will do, at all three speeds and then play them back at one speed only, say the highest.

The sounds recorded at the lower speed(s) will be raised in pitch, by one or two octaves, depending on the speed. If the replay speed is double that of the recording speed the pitch is raised one octave and the sounds will occur faster but if the replay speed is half the recording speed, the pitch will be reduced by one octave and the sounds will occur slower. This is one of the most simple but most used techniques.

REVERSE REPLAY

Now, if your recorder is a stereo machine try turning the tape over (reverse the spools) and see if you can obtain replay on another track in reverse, i.e., the sounds will be going backwards. This technique is also commonly used for electronic music because it alters the nature of the sound completely by placing what was the beginning of the sound, i.e., its attack, at the end as illustrated in Fig. 1 in which (a) is the sound as recorded and (b) as played in reverse.

If you cannot play sounds in reverse try this exercise; connect a tone generator, or if this is not available record whistles through a micro-

Photograph showing the use of a tape splicer to join up a number of sounds.

Recording various sounds, using the microphone, to form a composition.
phone. Start with the recording level control at the maximum, set the tape running to record the sound but then almost simultaneously slowly turn the record level control to zero.

On replay you will have a sound that starts instantly and then slowly dies away as in Fig. 2. With a little practice you will be able to get various dying away or decay times depending on the speed at which the recording level control is turned off. Now try the reverse procedure; gradually increase the sound whilst recording and then quickly stop it.

TAPE CUTTING EXERCISES

Now try some tape cutting; first use the highest tape speed and record a few sounds of different pitch, i.e., from a tone generator, or whistles via the microphone, each one lasting two or three seconds.

Locate the beginning of each sound on the tape by carefully feeding the tape across the head and then cut the tape about two inches in front of the sound. Run off the remainder until you reach the beginning of the next sound; cut the tape here and splice to the end of the piece containing the first sound. Cut and join pieces of the remainder of the sounds.

On replay you will have a series of short sounds each rapidly following the other. Now try a similar exercise but this time insert pieces of blank leader tape between each sound.

mUSIQUE CONCRÊTE

Finally a variation of the two previous exercises. Record a few sounds each at a different tape speed. These should preferably be musical sounds, such as whistles or tones, or sounds produced by tapping a wine glass for example. Cut one or two pieces of each from the tape and assemble them at random with pieces of blank leader between groups. The pieces may be long or short.

Try replaying the assembled tape at different speeds and note the effect. You are well on the way to a form of composition known as "musique concrête" which is the creation of abstract forms of music out of real sounds. The same technique can, however, be used for abstract forms of electronic music in which the main sound source is an audio tone generator.

USING A TONE GENERATOR

The exercises outlined above demonstrate how almost any recorded sound can be altered by tape cutting and by recording and replay at different tape speeds. Electronic music does not normally include natural sounds recorded via a microphone and therefore the sound sources are electronic, i.e., from tone generators of one kind or another. The recording and tape cutting techniques, however, remain the same.

If you have a full range audio signal generator then tones can be recorded at the pitch required. The simple generator described on page 358 has a frequency range of approximately 50 to 2000 Hz .

If frequencies outside the range of the generator are required it is simply a case of recording and replaying at different tape speeds for example; if a frequency of around 4000 Hz is required, record the highest pitch of the generator (approximately 2000 Hz) at a tape speed of $3^{3}{ }_{4} \mathrm{in} / \mathrm{sec}$ (inches per second) and replay at $71_{2} \mathrm{in} / \mathrm{sec}$.

If a very low pulsing sound is required at say 20 to 25 Hz record a square-wave signal from the generator at its lowest pitch and then replay the recording at half the speed. Some experiment in this direction will soon reveal the tonal and pitch ranges that can be obtained simply by recording and replaying at various tape speeds.

Once this has been done, further experiment with the audio tone generator can be carried out in order to discover the type of sounds that can be produced. Start by recording a continuous note and while recording this vary the frequency and output controls on the generator, try this for both the square and sawtooth outputs (note that the output in the sawtooth position is much lower than in the square wave position).
Try cutting and reversing the sounds recorded to obtain various effects. You can also try making recordings at a distorted level by turning up the record level control, this will distort the original sound and produce yet another effect. Try switching from one output waveform to the other whilst recording-you can vary frequency and output at the same time-and also try switching the generator on and off while recording, again you can vary the output and frequency whilst turning on and off.
Edit the sounds produced by cutting and splicing and experiment fully with all possible

Fig. 3. Circuit diagram of a passive mixer that can be used for making electronic music.
effects. Once you have done this and feel fully conversant with the various effects that the generator is able to produce you can start to add one effect to another.

SIGNAL MIXING

Recording from track-to-track or using two separate tape recorders may necessitate mixing signals that are to be recorded and re-recorded i.e., signals from a recording already made to be mixed with signals from another source such as the tone generator.

Some recorders have built-in mixing facilities whilst others may permit a form of mixing by using the track-to-track recording facility or by superimposing one sound on another previously recorded. Again the tape recorder instruction book will provide information of this nature.

However, it is possible to build a very simple mixing circuit as shown in Fig. 3; Fig. 4 shows the construction. This is known as a passive mixing network, but will alow two signal sources to be mixed at different levels and coupled to a common input on a tape recorder (Fig. 5).

TAPE LOOPS

Another interesting technique widely used for electronic music is the tape loop. This is the use of a small endless loop of tape containing recordings which are played continuously to produce repeating rhythm patterns.

Record a few natural sounds, or low pitched tones from an audio generator, of quite short duration, one immediately after the other. Cut a piece of the tape containing the sounds, about 18 inches long, and splice the ends together so as to form a complete loop. Place the loop in the recorder so that it runs past the tape heads when the machine is set to replay. You can hold the loop under tension by one of the methods shown in the photographs. Try running the loop at different speeds and, if possible, reverse the direction.

Record some percussion sounds, e.g., sounds produced by knocking together empty boxes, etc. Cut out pieces and make up a loop consisting of the various sounds and blank leader tape.

Fig. 4. Constructional details of the circuit shown in Fig. 3. Shop Talk refers to this figure.

For the first attempt use only two or three sounds and two or three pieces of leader.

You can make up an almost endless variety of fascinating rhythm patterns by this method and if you use two tape recorders the rhythm loop can be copied from one to the other whilst other sounds are added.

MULTIPLE RECORDING

If you have a tape recorder with a track-totrack recording facility the scope is much wider as sounds may be recorded on one track and then re-recorded on to another track whilst adding more sounds. If your tape recorder can produce the echo effect this too can be used in various ways to produce those echoing science fiction sounds. Try allowing the echo to build up into a crashing roar and see if you can play it in reverse.

Now that you have discovered the variety of sounds and rhythms available using the facilities you have it is up to you to put these together to form an interesting "musical" passage. It may take some time before you achieve the required effect.

By combining even a few of the techniques outlined the number of permutations possible are fantastic. Instructions on composition cannot be given because no rules exist. Your ideas must come solely from imagination and experiment.

Fig. 5. Using the passive mixer to combine two signals for recording purposes.

The three photographs on the left illustrate various methods of using a tape loop. The top photograph shows a reversed loop held under tension by passing it around a pencil ; this is only suitable for short periods.
The centre photograph shows a reversed loop held under tension by a small spool hanging over a table edge; this is only suitable for fairly large loops.
The lower photograph shows a system that can be used for any size loops by routing the tape around suitable objects-batteries are shown. This photograph also shows a cardboard tape holder used to keep recorded sections of tape in the order required.

COMPETITION

Finally, why not try an entry for the "technical experiment class" of the annual British Tape Recording Contest. It is open to anyone and the closing date for the 1972 contest is not until June 30. The Technical Experiment class allows for tapes of up to 4 minutes duration and includes; sound composition, electronic music, musique concrête, multi-track music and experimental sound recordings. The prizes are worthwhile and you can get an entry form free by writing to The Secretary, British Amateur Tape Recording Contest, 33 Fairlawnes, Maldon Road, Wallington, Surrey, and enclosing a stamped addressed envelope. You may also be interested to know that the special "Tape of the Year" award for 1971 was for an experimental class entry.

Every tape entered is carefully assessed by the expert judges and their comments are passed to the contestant concerned when the tape is returned. Thus you will know how to make an even better tape next time.

PAEAE NOTE

The approximate cost of components given in the Simple Calculator article last month was incorrectly shown as $£ 1 \cdot 20$. This should have been $£ 2 \cdot 20$.

The probe flying lead in the Signal Injector article (March issue) should be soldered to Y3 not $Y 2$ as stated in the text.

The Normatest 2,000 multi-range test meter mentioned in Shop Talk last month is avallable from: Croydon Preclsion Instrument Company, Hampton Road, Croydón, CR9 2RU.

TH MADE THEIR MARK NO1 Introduction By J. E. Gregory

ELECTRONICS is an internationally uniform world of symbols. Look at any advertisement or study the simplest circuit diagram in Everyday Electronics and you will be confronted with strange symbols of every shape. Magical signs used to signify basic units of physical quantity; Table 1 lists some of them.

Although electronics is regarded as a modern science and hobby many of these units are named after pioneers, scattered throughout the world, whose accumulated research spans hundreds of years.

This series sets out to explain the symbol, and perhaps more important something of the man who gave his name to it. But let's begin our potted history of electronics at the beginning

THE GREEKS HAD A WORD FOR IT

Take the word electronics itself, for that we must go back in time to ancient Greece. To the ladies of Greece passing time by decorating their spinning wheels with amber, found on shores, in the far north. They observed that the amber when contacting the threads would draw the threads to itself as they separated from the wool, and then push them away in a frictional force. The

Greek word for amber was elecktron, from the verb elkein to attract. Although this phenomenon was observed and noted by several of the great Greek philosophers we have to jump two thousand years to the early 1600 's and to the reign of Good Queen Bess, who was persuaded by her physician William Gilbert, to attend a demonstration of a frictional electric machine based upon the power of amber to attract. This power he called electricity.
It was soon realised that the crackling and sparking of Gilbert's electric machinte were the same phenomena on a minute scale, as thunder and lightning, but how to prove it?

THE KITE FLYER

One of the first to try was the fifteenth child of an English immigrant; born in Boston Massachusetts in the year 1706, this was the well known American statesman and philosopher Benjamin Franklin (see illustration above).

His historic but dangerous
experiment trying to capture electricity from the sky accurred during a thunderstorm in the summer of 1752 , when accompanied by his small son, he flew a kite with an iron door key. During the storm, he saw that sparks sprang from the key to his wrist, what he didn't realise of course was that if the lightning had actually struck the kite he would have been killed.

The study of natural phenomena had to take second place to his other activities, but he came to the conclusion that thunderstorms were simply the levelling of opposed electrical potentials, between one cloud and another or between a cloud and earth.
It was Franklin who introduced the positive and negative signs for electric charges, realising there are two kinds which neutralise each other.
Next month we move from America to 18th Century Italy and a scientist, Alessandro Volta, after whom the Volt, the measurement of electrical potential is named.

Photograph: Sclence Museum. London.
Table I FUNDAMENTAL UNITS

unit symbol	name of unit	Physical quantity
\mathbf{A}	Ampere	Electric Current
\mathbf{V}	Volt	Electric Potential
F	Farad	Electric Capacitance
Ω	Ohm	Electric Resistance
\mathbf{W}	Watt	Power
Hz	Hertz	Frequency
\mathbf{H}	Henry	Inductance,

These basic units are often inconveniently large or small and the units are prefixed with the following symbols:

p	pico	$\div 1,000,000$ million
n	nano	$\vdots I, 000$ million
μ	micro	$\vdots I$ million
m	milli	$\vdots i, 000$
k	kilo	$\times 1,000$
M	mega	$\times I$ million
G	giga	$\times 1,000$ million

Hence $5 k V=5,000$ Volts ; or $5 \mathrm{mV}=0.005$ Volt

ELECTRONIC CIRCUITS-
IN THEORY and PRACTICE

By Mike Hughes M.A.

THis year sees the twentieth birthday of the component most responsible for bringing electronics within the scope of do-it-yourself enthusiasts; it has greatly simplified design and construction and has also brought about terrific reductions in costs. It is the "transistor".

As a replacement for the valve, it allows us to use low voltages and removes the arduous task of having to assemble valve bases and massive transformers on tank like chassis. Connections to a transistor are few and the basic way it operates in a circuit is quite easy to understand.

PNP-NPN
The transistor is a member of the semiconductor family and is basically a sandwich of different types of either silicon or germanium. The "filling" of the sandwich can either be p- or n-type material; we can clad a p - type filling with n type material giving what we call an $n p n$ transistor. Alternatively a pnp device is made by filling a p - type material with an n-type.

One encounters both types in practice but nowadays $n p n$ devices made from silicon predominate, the reason being that they are easier to make and hence cheaper!

Fig. 1(a) shows a diagramatic cross-section of both types of transistor, $p n p$ and $n p n$. One end is heavily doped and is called the "emitter"; the other end is lightly doped and called the "collector".

The filling material is very thin in practice (usually one or two microns; 1 micron is a
millionth of a metre) and is called the "base". In its simplest form you can think of an $n p n$ device as two diodes connected together by their anodes (back-to-back), and facing each other in a pnp device, Fig. 1(b).

(a)

(b)

(c)

Fig. 1. (a) Schematic diagram of the internal make-up (b) equivalent representation and (c) circuit symbol for (top) npn transistor and (bottom) pnp transistor.

BASE CONNECTIONS

All the transistors you will come across have connections brought out from the emitter, base and collector. A very common silicon npn device is the BCl 08 and we shall be referring to this frequently in this series.

Fig. 2 shows what it looks like. If you have one handy see if you can identify which lead is which.

Fig. 2. Top and underside views of the BC108 npn transistor showing lead connections. The metal case is internally connected to the collector.

The emitter is the one closest to the spigot on the side of the can, the collector is diametrically opposite, and the base is between the two but set off to one side. This is a metal can transistor and the can is electrically "live"-in actual fact it is connected to the collector as well as the lead out wire.

Different types of transistor may have different shaped cans and some are in plastic encapsulations. Always make sure you know which lead is which before you start using a transistor.

Most constructional projects in Everyday Electronics give you lead designations for the transistors specified, but if you want to experiment with alternative types make sure you know the correct base lead connections.

SIMPLE TEST

Use the $\mathrm{BC108} \mathrm{npn}$ transistor to identify the effect of the two diodes connected back-to-back. First of all make an ohmmeter on the Demo Deck. Use a 4.5 V battery (not 9 V) in series with a $2 \cdot 2$ kilohm resistor and VR2 (5 kilohm). Complete the circuit and set VR2 to give zero ohms at full scale deflection and then connect the leads of your ohmmeter between the base and emitter connections of the transistor-to do this it is best to solder the transistor on to three adjacent pins of the Demo Deck and use crocodile clips on the leads from the meter.

If you connect the meter so that the lead coming directly from the negative terminal of the battery goes to the emitter, the meter needle will move to almost full scale showing there is little resistance in the transistor. Now reverse the leads so that the base is more negative than the emitter-you should see that no current
flows (indicated by meter needle not moving). Thus the base-emitter junction is a diode and follows the same rule that we saw last month.

Now leave the lead on the base and transfer the one from the emitter to the collector-again no current flows but reverse the leads and current flows between the base and collector.

If you connect the leads between the collector and the emitter no current should flow whichever way you have them because in both connections, the current would have to pass through a reverse biased diode.

This simple experiment can be used as a rough and ready test to check if a transistor is likely to be in working order, and provided you remember the rule "make p stand for positive for current to flow" you can use it to identify $n p n$ and $p n p$ transistors.

REVERSE VOLTAGE LIMITS

Like all diodes, the junctions of a transistor have reverse voltage limits. These are usually specified with abbreviations. For the BC108 the reverse emitter-base voltage ($V_{\text {ebo }}$) is 5 V -i.e. you must never make the base more than 5 volts negative with respect to the emitter (this is why we had to use 4.5 V for our ohmmeter instead of the 9 V we have been used to). Likewise the reverse base/collector voltage ($V_{\text {cbo }}$) is 30 V . You might expect the reverse voltage between the emitter and the collector to be equal to the highest of the other two but this is not the caseit is lower-for the $\mathrm{BCl} 108 V_{\text {reo }}$ is 20 V .

The " 0 " in the suffixes of the reverse voltage characteristics indicates that the third terminal is "open circuit" i.e not connected.

HOW THE TRANSISTOR WORKS

Let's see what a transistor actually does by using the circuit of Fig. 3(a). Now that we are using the transistor in a real circuit it is important to note the polarity of the supply volt-age-for an $n p n$ transistor the collector must always be kept more positive than the emitter (the converse applies to pnp devices). We are going to make the transistor work like a tap and control the amount of current flowing through R1. You can see this happening if you follow the details through on the Demo Deck.

VR1 is a 300 ohm potentiometer working as a potential divider giving us a variable supply at its wiper.

Wire up the circuit of Fig. 3(a) on the Demo Deck as shown in Fig. 3(b), but do not connect R2 to the base of the transistor just yet.

Resistor R3 and the 1 mA meter makes a 10 V range voltmeter in the usual way. Connect the negative lead to the emitter of the transistor. All voltages we measure will be relative to that of the emitter.

First measure the power rail at point X-it should, of course, be +9 V ; now measure the potential at the collector of the transistor (point Y) it should be $+8 \cdot 2 \mathrm{~V}$. This is what is expected because no current can flow through the back-toback diodes of the transistor, but the meter will draw some! If you had a high sensitivity meter (say 20 kilohm per volt) this current would be negligible and you would see +9 V at both points, X and Y .

Now set VR1 so that the potential on its wiper is zero (with respect to the emitter) and connect R2 to the base of the transistor. VR1 potential is measured by attaching the crocodile clip from the meter to point Z. Again measure the potential at the collector-it should not have changed.

We shall now see what happens if we increase the potential at the wiper of VR1. Do this in 0.5 V increments (use crocodile clip at point Z) and for each setting measure the collector potential. You should see that once the potential of the wiper exceeds 600 mV , the potential at the collector falls, and continues to fall towards zero as the controlling voltage is increased. Once the collector potential reaches almost zero no more
control can be effected. We say that the transistor is now fully conducting between collector and emitter. This state is called "saturation."

Record your results and plot a graph of collector voltage versus voltage at the wiper. A graph should be obtained similar to that of Fig. 4.

Fig. 4. The graph obtained by plotting the recorded results of experiment using circuit of Fig. 3(a), i.e. voltage at point Y versus voltage at point Z.

Control of the collector/emitter current is brought about by passing a current through the forward biased base/emitter junction. The more current we pass into the base in this way, the more current we can control between the collector and the emitter. The controlling current is called "base current," (I_{b}) and the controlled current "collector current," (I_{c}).

Base current is set by the potential difference between the wiper of VR1 and the emitter of the transistor, acting through the resistance R2

Fig. 3(a) (left). The circuit diagram used for investigating some of the properties of a BC108 transistor.

Flg. 3(b) right. The circuit of Fig. 3(a) wired up on the Demo Deck.

and any internal resistance between base and emitter. The latter is small and can be neglected at this stage. We must, remember, however, that the base must be made at least 600 mV positive with respect to the emitter before any current can flow (this is the usual forward voltage drop for any silicon junction).

We can thus calculate the current flowing into the base by measuring the potential at the wiper of VR1, subtracting the base emitter forward voltage drop $(600 \mathrm{mV})$ and dividing by the value of R2.

GAIN

If you do this for your experiment you will find that the base current ranges from 0 to $0 \cdot 084 \mathrm{~mA}$. The range of collector current we are controlling was from 0 to 9 mA . It can be seen that the transistor enables us to use a very small current to control a larger one. We call this effect "current amplification." The factor that governs the ratio between I_{b} and I_{c} is called "gain" and although it increases with I_{c} it is pretty well constant for any given transistor. It can, however, vary widely between different types of transistor and even between devices having the same type number! Provided you take a combination of base and collector currents within the controllable region (this is called "linear region") you can calculate the gain of the transistor you are using.

It would be best to increase the potential at VR1 until the collector potential is approximately 4 V . This reduces the shunting effect of our voltmeter.

Use the precise values of voltage measured to calculate the current through R2 and R1 then use the ratio of these values to calculate the gain.
gain $=$ collector current \div base current $=I_{0} \div I_{b}$
For the BC108 transistor it should be approximately 200 , but as we have said, will vary from device to device.
Example To calculate the gain from your plotted curve (similar to the one of Fig. 4) select a convenient point. on the linear region such as point P of Fig. 4.

The base current, I_{b} is given by the voltage difference between the base and emitter divided by the base resistor.

$$
\text { i.e. } \frac{3-0 \cdot 6}{100.000}=0.024 \mathrm{~mA}
$$

Now the voltage drop across the collector resistor Rl is $(9-4) \mathrm{V}=5 \mathrm{~V}$. Therefore, collector current $I_{\text {s }}$ is $(5 \div 1000)=5 \mathrm{~mA}$.

Substituting these values for I_{c} and I_{b} in equation (1) gives the gain $=(5 \div 0: 024)=208$.

There are various ways of describing current gain for a transistor so we shall define that measured above a little more precisely-it was the d.c. current gain. This is sometimes abbre-
viated to the designations β (beta) or $h_{\text {Fe. }}$ The latter is rather a strange type of designation but is one of a range of what are called " h " para-meters-we need not worry ourselves about these in this series except for the term $h_{\text {PE }}$ which is usually used in manufacturer's data sheets. Do not confuse h_{Fe} with h_{te}, the latter is called the small signal current gain and we shall not be dealing with this until later.

The gain equation above can be rewritten: $I_{\mathrm{c}}=h_{\mathrm{FR}} \times I_{\mathrm{b}}$

Remember that the experiment we have just done has been using a silicon npn device. We could have used one made from germanium having $n p n$ structure and obtained a similar effect-except that the base/emitter forward voltage drop would have been only about 200 mV and h_{PE}, in general, would have been lower.

We could also have used a silicon or germanium pnp device but would have had to reverse the battery connections so that the collector was negative with respect to the emitter. The same rules would have applied and we could have still calculated a value for $h_{\text {PE }}$.

If you are a little confused by the difference between $n p n$ and $p n p$ devices do not worry too much as this stage-most of the early experiments in Teach-In will use $n p n$ devices and when you have got used to these you will find it quite straightforward to switch over to $p n p$ devices when necessary. The most important thing to remember is the polarity of battery voltage when using one type or the other. An aid to remembering what the polarity ought to be is to bear in mind the direction of conventional current flow;

Fig. 5. Circuits showing major current flow directions for (a) npn and (b) pnp transistor. I_{b}-base current, I_{c}-collector current, I_{e}-emitter current.
the arrow on the emitter of the symbol points in the direction of current flow, i.e. it points away from positive and towards negative. See Fig. 5.

Whether using $n p n$ or $p n p$ devices an aid to remembering how to turn collector/emitter current "on", is to make the potential at the end of the resistor connected to the base tend towards the same polarity voltage as applied to the collector; the more you move towards this voltage, the more I_{b} increases, and I_{0} will increase in direct proportion.

When the potential feeding the base rises towards the supply voltage the voltage at the collector falls towards the emitter voltage. This is called "inversion."
In Fig. 3 R1 is called the "collector, load." The limit of $I_{\text {e }}$ control is set by the value of this resistor; if it has a high value then it does not matter how much base current you apply, you cannot control more collector current than that given by the collector supply voltage divided by the value of collector load. On the other hand, if the load is too low you might find yourself trying to force more collector current than the construction of the transistor can handle. Thus one of the specifications of a transistor is the maximum collector current it can handle without "blowing". This is called $I_{\text {emax }}$ and for the BC108 is 100 mA .
A final parameter we must deal with is the power rating of a transistor. As current is passing through it a certain amount of heat is dissipated. We already know that too much heat can spoil the properties of a semiconductor so it must be limited. The limit is set by the maximum power dissipation parameter, $P_{\text {emax }}$. It is easy to calculate what the power dissipation is likely to be; it is the dissipation you would get if you replaced the transistor in the circuit with a resistor having the same ohmic value as the collector load.
Table 1 gives you some typical values of parameters for some common transistors of varying types, powers and polarities.

Table 1: THE MORE IMPORTANT CHARACTERISTICS OF SOME COMMON TRANSISTORS

		300 mW				100	
92	np	200 m	18 V	18	5 V	100	150
	$n p n$	800 m	60	60	6 V	IA	70
$\times 13$	pnp	300 mW	-20V	$-15 \mathrm{~V}$	-5V	100 m	120
3702	pnp	360 mW	-40V	-25V	-5V	200 m	60
ACl26	pnp	500 mW	-32V	-32V	-10V	10	00
	$p \mathrm{p}$	125 mW	-16V	-16V	-3V	125 mA	50
	pnp	12W	- 16	16	-10V	3.5A	
	pnp	30	-			10A	

Fig. 6(a) (below). The circuit diagram of the "Electronic Candle" which illustrates positive feedback.
Fig. 6(b) (right). The circuit of Fig. 6(a) wired up on the Demo Deck. Ensure that PCC1 is close to LP1.

ELECTRONIC CANDLE EXPERIMENT

We shall now make a simple working circuit using the circuit diagram of Fig. 6(a). This is wired up on the Demo Deck as shown in Fig. 6(b). Connect the ORP12 (light dependent resistor) very close to the LP1 on the Demo Deck as shown below. Set VR2 to zero ohms. The potential at the base of TR1 will be zero, therefore no current will flow between collector and emitter. Now, in a reasonably lit room, increase the value of VR2. At a certain point the potential at the base will reach 0.6 V (set by the potential dividing effect of PCC1 and VR2) and the transistor will start to conduct (the bulb will glow dimly).

Continue to increase the resistance of VR2; the current flowing through PCC1 will now pass into the base/emitter circuit of the transistor in preference to the higher resistance path through VR2. This base current will cause TR1 to pass more collector current until the bulb is fully illuminated.

When you reach this point (the minimum value of VR2 that will give full illumination) try casting a shadow over PCC1, the lamp will go dim and ultimately go out altogether as I_{b} reduces due to the resistance of PCC1. We did a similar sort of thing in Teach-In Part 4.
The difference is that we now have a circuit that is much more sensitive to small changes in light level which is brought about by the transistor amplifying the current from the photo resistive cell.
If you place the cell very close to the bulb in a dimly lit room you can set the value of VR2 so that the ambient lighting does not turn the transistor on, but the light from the bulb will.

Break the light path between the bulb and the cell and the bulb goes out and stays out. Now use a match or lighter to provide a stimulus of light. Bring it close to the bulb/cell assembly and the bulb lights up; you can now remove the match and the bulb will stay on because its own light output is holding the transistor on. This is called "positive feedback" and in this circuit will provide an amusing party trick-especially if assembled to look like a candle.

A bit of practice at "snuffing" the candle with the fingers (actually you are breaking the light path between the bulb and the cell) will make the effect even more astounding.

Photograph of the Demo Deck set up for the Electronic Candle Experiment showing the lamp being "lit" by the light emitted from the lighter.

TEACH-IN PART 6-ERRATA

Fig. 4(b) last month shows a lead connected wrongly. The lead from the junction of R3 and the negative meter terminal should go to the negative end of VR1 (not the wiper as shown) i.e. the one connected to the battery negative.

Next month: Multivibrators. The components needed for next month in addition to those already acquired are: resistors 22 kilohm (2 off), 100 ohm (1 off); capacitors $0.1 \mu \mathrm{~F}$ polyester (2 off), $500 \mu \mathrm{~F}$ elect. 12 V (1 off); transistors BCI 08 (I off); diodes OA91 (I off).

Ruminations By Sensor

Not so Clever

The coal miners' strike has shown how dependent we are, in this age of high technology, on the efforts of men who work in damp, dirty and often dangerous conditions.

I find it difficult to comprehend that on one hand the semiconductor industry owes its existence to the ability to obtain and to process materials with an impurity content of less than ten parts in a thousand million, and to operate with tolerances down to one millionth of a metre, while on the other hand men have still to dig fossil trees out of the earth (albeit with mechanical assistance) so that these fossilised remains can be burnt to boil water in order to raise steam
and to generate electricity! Without coal and electricity there would be no semiconductor industry; truly our idol has feet of clay!

Let There be Light

Have you heard about the old lady who telephoned the C.E.G.B. to complain that, during the power cut, the buses were passing her house with all their lights on? She also said that she could manage to get along quite well without the electricity, except for the little light in the hall, and could they please leave that one switched on.

Many people must have been irritated, in the early days of the strike, to see street lights blazing all day and switched off at night, due to their electric clock switch mechanisms getting umpteen hours behind. To the electronics man the answer to this problem is so simple-a light operated switch, either using discrete components or in integrated form.

A recently introduced inte-
grated circuit provides the necessary photo cell, level sensor and time delay all on one tiny chip of silicon and complete with lens. It could operate a relay or, better still, work into a switching transistor controlling the street lamp directly.

Some years ago, I was shown around a large generating station, where, tucked away in a dusty corner there was a cast iron box about the size of a domestic cooker. This apparatus was installed at the station about twenty five years ago and its purpose was to switch on all the electric street lamps in the town.

When switched on it produced a ripple which was superimposed on the mains. Sections of street lighting were grouped together under the control of master switches, spread throughout the town, which were operated by switching on the ripple equipment. The system had been in use but for some reason, unknown to my guide, had been discontinued. It would have been a blessing during February 1972.

Use this 'electronic eye' to monitor the busyness of your bee-hives

C

MODERN research calls for accurate measurement and comparisons, and with this in mind this device was designed to help the beekeeper assess the performance of his beehives more definitely, and to compare the different strains of bees under the same working conditions and so help to breed a strain which will produce the most honey under all the difficulties encountered in our changing climate without the rather nasty habit of the English bee, of attacking the bee-keeper as soon as he appears anywhere near the hive.

The Bee Counter is an instrument which records the number of bees entering the hive, and used in conjunction with other devices such as a wind speed indicator, a wind direction indicator, an air temperature thermometer, a maximum/minimum thermometer, a rain gauge and a sunshine recorder, then some degree of assessment can be made, and some basis established for the bee-breeder to work upon his main goal-lots of honey from a reasonably good tempered, busier bee.

The Bee Counter makes use of the fact that bees are highly organised in their habits, and utilises the bees sense of sight and smell. These bee "characteristics" are used in the design of the cabinet housing all the circuitry which is described later in full detail.

THE CIRCUIT

The complete circuit diagram of the counter is shown in Fig. 1 and is basically an amplifier which works as follows.

The lamp LPI, which is always "alight" when

Fig. 1. The complete circuit circuit diagram of the Bee Counter.
the unit is switched on, illuminates the light dependent resistor, PCC1, and causes its resistance to be at a low value, about 100 ohms.

The l.d.r. and R2 form a potential divider circuit and under "illuminated conditions" of the l.d.r., a positive voltage with respect to the emitter, is applied to the base of TR1 causing it to be in a conducting state.

With TR1 conducting, a negative voltage is applied to TR2 base with respect to the emitter and consequently TR2 is "off" (not conducting).

When the light path between LP1 and PCC1 is broken, the resistance of PCCl increases considerably (to about 100 kilohm for complete "blackout"). This causes the potential at TRI base to go negative and turns it "off". This state of TR1 causes the voltage applied to the base of TR2 to go more positive and causes it to switch "on" i.e. conduct-current flows through TR'2.

When current flows through the emitter leg of TR2 containing the relay coil in the counter, the relay is energised.

When the light to PCCl is restored, TR2 switches "off" and the counter is de-energised and springs back to its off position, and in doing so mechanically adds "one" to the counter readout.

The arrangement of LP1 and PCC1 in the case is so devised that the bee, on entering the hive, breaks the light path between these devices and its entry is thus recorded.
The $13-20$ ohm 3 watt resistor, R5, in the collector circuit of the power transistor, TR2, is to prevent damage to the counter or the transistor if the entrance passage to the hive should become blocked, as once happened in the prototype. when a drone got stuck in the narrow part.

A heavy duty battery is required to operate the Bee Counter since current drain is substantial -250 mA when TR2 is "off" and 400 mA when TR2 is "on" at 12 V . A car battery is therefore recommended to supply the power. The cost of this battery is not included in approximate cost.

The voltage is fairly critical as it must be sufficient to operate the counter, but not high

Components....

Resistors

R1 20-56S2 3 watt
R2 68ks2
R3 $1 \cdot 2 \mathrm{k} / 2$
R4 $1.2 \mathrm{k} \Omega$
R5 $13-20 \Omega 3$ watt
All $\frac{1}{2}$ watt carbon SEE stated
10% unless otherwise
ransistors
TR1 OC72 (or similar) germanium pnp TR2 OC26 germanium pnp

Light Dependent Resistor PCCI ORP12

Micellaneous

LP1 12-14V 0.75 W bulb and holder
PL1, PL2 Wander plugs, 1 red 1 black (2 off) SK1, SK2 Sockets to suit plugs PL1, PL2 B1 12V battery-heavy duty rechargeable type (Not accounted for in cost box.)
Counter: Post Office type 14C $4 \cdot 2 \Omega 4$ figure readout. Cedar wood, Perspex and adhesive, Paxolin, wood screws, 4 B.A. nut and bolt, wood glue.
enough to cause overheating of TR2 or the counter coil in the event of the passage being blocked for long.

If the apparatus is disconnected every night the battery will last at least a week on one charge.

Fig. 2. The layout of the components on both sides of the Paxolin board. Veropins are used for attachment.

Variations in performance can be dealt with in several ways. The lamp should be bright enough to turn off the amplifier, but not any brighter than necessary. This is best adjusted by altering the series resistor R1, which may be increased to as high as 56 ohms.

Also, the size of the light hole can be varied, or a part of the l.d.r. painted over so that it has less area exposed, until the instrument is sufficiently sensitive, but positive in its action.

THE COUNTER

The electromagnetic counter used is a Post Office type. It has a four digit readout and can thus count up to 9,999 . The maximum count rate is ten per second.

COMPONENT WIRING

Most of the components of Fig. 1 are mounted on a piece of Paxolin size $4^{1}{ }_{2} \times 1^{1}{ }_{4}$ inches with a cut-out as shown along one side to accommodate the light dependent resistor, PCC1.

Both sides of the board containing the components are shown in Fig. 2.

Veropins are used for mounting the components in position and small holes should be drilled where indicated to accommodate these pins.

Three more small holes of the same size should be drilled to take the leads of TR1 as shown.

Drill the component board fixing hole and the four holes for transistor TR2; (see reverse side of component board Fig. 2); ${ }^{1}{ }_{8} \mathrm{in}$. diameter holes will do for all five holes.

Begin assembly by pushing in all the Veropins and then attach TR2 to the board using two small nuts and bolts.

The connection to the collector of TR2 is via its casing, so a solder tag should be attached to one of the securing bolts to enable this connection.

Attach and solder all the components, link wires and flying leads as detailed in Fig. 2 making sure a heat shunt is used when soldering in TR1, which incidently should be the last component connected.

The l.d.r. should be attached to the board via 6 in . long flexible leads.

The flying leads to the counter should be about 4in. long.

The two wander sockets used for battery connection to the counter, are attached to the end of the case which is made from a piece of Paxolin, dimensions are given in Fig. 3.

The connection wires from the wander sockets to the component board should be about 4 in. long.

Connection to the battery is made via two wander plugs and a length of twin flex

Fig. 3. Dimensions of the end made from Paxolin to accommodate the wander sockets for battery connection, and counter readout.

A photograph of the prototype with top and tunnel lid (which holds PCC1 in position) removed. The photograph clearly shows the entrance and exit tunnels (labelled IN and OUT respectively). The take-off platform, made from Perspex, is located just beneath the exit cut-out, and is glued in position with Perspex adhesive.

EXIT AND ENTRANCE GEOMETRY

As said before, this device and its design utilises the bees' senses of smell and sight: From inside the hive, the exit from the hive appears as a bright opening to the outside world and so the exit path through the instrument must be a tunnel with transparent sides and top to allow this condition to be fulfilled.

In the instrument this tunnel slopes upwards so that when the bee emerges, it finds itself on a platform of Perspex, about ${ }^{3}$ in. wide, situated above the hive base, and flies away.

When it returns, it will land on the hive base (landing/alighting board) and walk towards the hive.

The entrance to the hive is now through the Bee Counter which is a tunnel painted matt black; when the bee walks along the front of the instrument and reaches this tunnel it will enter.

On entering, the tunnel becomes narrower and at the same time slopes upwards until it is just wide enough for a single bee to pass.

There is a lamp under the narrow part, with a hole in the floor of the tunnel, made up to the level of the floor with Perspex cement so that light can shine up through it.

The light dependent resistor is situated in the
roof of the tunnel and as the bee walks between this and the lamp, the light beam is cut and the circuit activated.

Positions of the "electronics" within the case.

CONSTRUCTION OF CASE

Cedar wood should be used to construct the case as this material will be readily acceptable to the bees.

Cedar wood will also withstand the weather without the need for painting but it is well to remember that if the counter is to be used in exposed outdoor conditions, weather protection becomes an important consideration, whereas in laboratory conditions it is not so.

The best compromise for an outdoor installation is a shelter which will keep off the rain.

First of all make all the wooden parts of the case as detailed in Fig. 4.

Now solder the two thin flexible covered wires to the bulb holder tags and screw in the bulb. These wires are led out through the top of the base and the bulb assembly is glued in position.

It is not likely that the bulb will need replacement because it is "under run" and there is a 20 ohm resistor (R1) in series with the bulb which reduces the light and heat dissipated in the bulb.

When the glue has set, fill up the light hole with Perspex cement so that it comes flush with the passage floor.

Glue down the two sides of the tunnel so that the width of the narrowest region is ${ }_{4} \mathrm{in}$. Paint the tunnel top, bottom and sides a matt black.

The light dependent resistor should be a push fit into a hole in the tunnel roof.

Glue and screw the front and back to the base and glue the exit ramp in position. Drop the tunnel roof into position indicated. The other parts of the case are made from Perspex and their dimensions are given in Fig. 4.

With these made we can proceed with the assembly.

ASSEMBLY

Begin by screwing the Perspex side and top windows in position as indicated. Glue the Perspex platform to the front and place the Perspex exit guide in position.

Now solder the two wires from the bulb holder to the component board as detailed in

Fig. 2, push the l.d.r. in position and then attach the board to the back of the case by means of a 4 B.A. nut and bolt. This bolt should be countersunk into the back so the back is flush with the front of the hive. If there is a gap here, the bees will try to go in or out through the smallest crevice.

Attach the wander sockets to the Paxolin side and solder to the appropriate flying leads from the component board. Next screw the Paxolin side to the case.

When the flying leads to the counter have been connected, fit the counter into its locating holes, (one end in the Paxolin and the other in the bracket on top of the Perspex exit guide) and secure with nuts. The counter digits should be visible through the slot in the Paxolin side.

Screw the top on and the unit is complete.

CAPACITY AND POSITION OF CASE

The single entry counter (as this is) is only suitable for a three or four frame hive, since with a full scale hive the returning bees would sometimes overload the tunnel capacity.

The maximum a single entry counter can handle is about 60 per minute.

For a full scale hive a three entry counter is necessary. This means the entry tunnel is divided into three passages, each with its own light beam arrangement, amplifier and counter.

Whereas the single entry model is only $6{ }_{4}{ }_{4} \mathrm{in}$. wide, which is about right for most observation hives, it is better to make the three entry model $16{ }^{1}{ }_{2}$ in. wide so that it takes up the whole width of a Standard National hive.

When the counter is put in front of the hive the hive should be moved back by a distance equal to the depth of the Bee Counter, in this case $3^{1}{ }_{4} \mathrm{in}$. so that the point of entry is exactly as it was without the counter.

When this is done the bees will soon get used to the new conditions and will be using the exit and entry passages without any confusion.

A simple, easy to construct selfcontained locator giving a meter indication of buried metal.

By. D. Bollen

Approximate Itcomponents... £ 4:00 plus case

The metal locator described in this article was designed for simplicity and ease of operation. A single transistor circuit is used to give a clear meter indication of the presence of buried metal without the need for headphones or a nearby portable radio as used by some locators. Under typical operating conditions the instrument will detect a 2 p coin at a depth of about 1 inch.

CIRCUIT OPERATION

The complete circuit of the metal locator is shown in Fig. 1. Transistor TR1 acts as a common base oscillator with positive feedback between collector and emitter controlled by trimmer C4. Search coil inductor L1 is tuned by C 2 to give an oscillation frequency of 100 kHz .

When the circuit is functioning, Ll will induce eddy currents in nearby metal and this transfer of energy causes an increase of TR1 emitter current. Although small, the accompanying change of d.c. voltage across R3 can be detected by a sensitive null (or zero registering) voltmeter.

In Fig. 1 the d.c. null voltmeter consists of R3, R4, R5, R6 and. ME1. Capacitor C5 is included

10 (2) AT (as) (2)

to remove unwanted a.c. from the voltmeter input, and diodes D1 and D2 protect the meter movement against overload.

At a certain setting of C4, the d.c. voltage at TR1 emitter will equal the voltage at the junction of R5 and R6 so that no current flows through ME1; this can be taken as the normal operating point for the circuit. If metal is brought close to L1, the emitter voltage of TR1 will rise by several millivolts in relation to the voltage at the junction of R5 and R6, and the meter will read.

Full scale sensitivity of the null voltmeter is around 150 millivolts. Metal Locator response is shown in Fig. 2, where meter reading is plotted against depth for three weights of metal.

CONSTRUCTION

Commence construction by cutting a piece of 0.1 inch matrix plain perforated circuit board to a size of $3 \cdot 1$ by 1.4 inches, and drill holes to take C4, VR1, and S1 (see Fig. 3).

Cut two brackets from a length of 1_{2} inch aluminium angle and drill to accept the meter terminal screws and 6B.A. circuit board mounting screws.

Bolt the brackets to the circuit board, complete with solder tags, and insert all terminal pins in the positions shown in Fig. 3.

With C4, VR1, and S1 in place on the circuit board, proceed to mount and solder the remaining components in the following order; resistors, capacitors, wire links and leads, diodes and the transistor, using a heat shunt to protect the diodes and transistors while soldering them.

Obtain a plastic beaker with lid (of minimum dimensions 5 inches high by $2^{1}{ }_{2}$ inches diameter) and cut away the centre of the lid to accept the meter MEI. Next, drill holes in the beaker for L1 leads, woodscrews, and to allow access to the circuit board controls, see Fig. 4.

When following the step-by-step instructions in Fig. 5, for making up the search coil L1, ensure that the pile windings can slide easily off the 5 inch diameter former. Short strips of insulating tape, placed sticky side out around the former, will hold the turns together and facilitate removal of the coil. Do not use Sellotape for this purpose as it is likely to damage the wire.

The metal locator frame (Fig. 4 and 6) consists of a chipboard or plywood handle, a 5_{8} inch diameter dowel pole, and two s.r.b.p. or Perspex sheets for the search head. Screw and glue the handle to the pole and then glue the other end of the pole to the search head top board, this assembly can then be painted.

To complete the construction, screw the

Fig. 1. Circuit diagram of the Metal Locator. The search coil L1 is mounted in the locator head and the dotted lines are the connecting wires to the circuitry.

Fig. 2. Response curves of the Metal Locator.
plastic beaker to the pole opposite the handle, securely clamp the search coil between the boards, run twin leads from L1 to the beaker, and position the battery.

In the prototype, the battery was held in place behind the meter with a rubber band, as shown in the photograph, but it could equally well be fixed inside the beaker with a small clip or elastic band.

SETTING UP

Adjust VR1 to mid track, C4 to minimum capacitance (unscrewed), and switch on. The meter pointer should go beyond full scale. With the search coil well away from metal objects, screw in C4 until the meter reads somewhere between zero and full scale. Trim for a zero reading with VR1.

OPERATING LICENCE

The Metal Locator described in this article is designed to operate in the frequency band specified by the Ministry of Post and Telecommunications (16 to 150 kHz). The circuit design of the locator should not be altered in any way that may affect the operating frequency.

A licence must be obtained before using the locator; this costs 75p for 5 years. An application form for a licence is obtainable from the Ministry of Post and Telecommunications, Waterloo Bridge House, Waterloo Road, London, S.E.1.

If the meter fails to read, or no response is obtained from adjustment of C 4 , check for wiring errors.

A certain amount of drift will be evident immediately after the locator has been switched on, therefore allow the circuit to settle down and then readjust C4 and VR1. Locator response can then be checked with metal weights and compared with Fig. 2.

Increased sensitivity can be achieved by reducing the value of C 3 to $0 \cdot 15 \mu \mathrm{~F}$, but this will enhance circuit drift to the point where frequent adjustment of VR1 is necessary. Conversely, drift and sensitivity will be reduced if C3 is increased in value.

$3 / 4$ THICK CHIPBOARD OR PLYWOOD handle screwed and glued to pole

Fig. 4. Construction and assembly of the beaker and handle.

Fig. 5 (a). Coil wound on former (b) Coil removed from former and bound with tape (c) Shaped coil.

Components

Resistors

R1	$100 \mathrm{k} \Omega$
R2	$1 \cdot 2 \mathrm{k} \Omega$
R3	470Ω
R4	470Ω
R5	$1 \mathrm{k} \Omega$
R6	$1 \mathrm{k} \Omega$
All $\pm 10 \%$	SEE
watt carbon.	

Capacitors

C1 $0.22 \mu \mathrm{~F}$ polyester 250 V
C2 $5,600 \mathrm{pF}$ polystyrene
C3 $0.22 \mu \mathrm{~F}$ polyester 250 V
C4 500 pF mica compression trimmer
C5 $1 \mu \mathrm{~F}$ elect. 12 V

Semiconductors

TR1 BC108 silicon npn
D1 OA81
D2 OA81

Meter

ME1 $50 \mu \mathrm{~A}$ f.s.d. moving coil. SEW type MR 38P

Switch

S1 S.P.S.T. sub-miniature toggle
Miscellaneous
VR1 $10 \mathrm{k} \Omega$ miniature carbon T.V. type preset B1 PP3 battery. Circuit board 3.1 inch by 1.4 inch plain, perforated 0.1 inch matrix Veroboard and Veropins. 26 s.w.g. cotton covered or enamelled copper wire, plastic beaker (see text), connecting wire, wood and screws for assembly, $\frac{1}{2}$ in aluminium angle for brackets.

USE

The locator is now ready for use and can be used for beachcombing or searching the back garden or waste ground. The locator may be subjected to damp and the pole, in particular, should be painted for protection if nothing else.

Photograph showing the construction of the circuit board and meter mounted on the beaker lid.

Continued from page 361

Fig. 8. Approximate output frequency for various control settings.

FINAL ASSEMBLY

Final assembly amounts to attaching the front panel to the box frame with self tapping screws, fitting the battery inside and fitting rear panel.

The generator can be connected to the input of any amplifier but the signal output level should be adjusted in accordance with that required by the amplifier input. To comply with the calibration chart given in Fig. 8 turn VRI fully anti-clockwise and fix the frequency control knob to read zero. The output control knob is fixed in the same way i.e., to read zero with VR2 fully anti-clockwise.

The Audio Tone Generator is now ready for use and can be tried out in conjunction with a tape recorder.

BRAND NEW GUARANTEED

LARGEST SELECTION OF SEMICONDUCTORS COMPONENTS

TRANSISTORS											
29301	20p	2N3404	32 ${ }^{\text {p }}$	40310	45p	BC212L	13p	BSX 28	32／p	NKT281	p
$2 \mathrm{G302}$	20 D	2N3405	45p	40311	85p	BCY30	271p	Bsx 60	82 p	NKT401	871°
2 C 303	20p	2N3414	22\}p	40312	4710	BCY31	30p	BSX 61	62¢p	NKT402	90 p
2 C 306	421p	2N3415	22．p	40314	3710	BCY32	60p	B8X 76	$22 \pm \bar{\square}$	NKT403	75p
20308	${ }^{30 \mathrm{D}}$	2N3416	371．	40320	471p	BCY33	25p	BSX 77	271p	NKT404	82／b
2G309	${ }^{30 p}$	2N3417	371 p	40323	$32 / \mathrm{p}$	BCY 34	30 p	BEX78	27\％	NKT405	75p
$2 \mathrm{C371}$	15p	2N3570	21．25	40324	4710	BCY38	40p	BSY10	271p	NK T406	82\％${ }^{\text {D }}$
20374	20p	2N3572	97\％p	40326	3710	BCY 39	60p	BSY11	$271 p$	NKT451	82 p $^{\text {p }}$
29381	2210	2N3605	27 bp	40329	30p	BCY40	50 p	BSY24	15p	NXT452	62 ${ }^{\text {p }}$
2N404	22 b	2N3606	2710	40344	2710	BCY42	15 y	BSY25	15D	NKT453	47\％
2N696	20p	2N3607	22］ p	40347	67 p	BCY 43	15p	BSY26	17¢p	NKT603F	F32 ${ }^{\text {p }}$
2N697	17p	2N3702	11	40348	681 p	BCY54	32 ${ }^{\text {p }}$	BSY27	171p	NKT613F	F 32 ${ }^{\text {d }}$
2N698	25p	2N3703	10p	40360	42］${ }^{\text {d }}$	BCY58	22.0	B8Y28	171p	NKT674F	$\mathrm{F}^{30 \mathrm{p}}$
2N706	124p	2N3704	11 p	40361	4719	BCY59	22］p	B8Y29	17．p	NKT677F	F 30p
2N705A	12\％p	2N3705	10p	40382	$87 / \mathrm{D}$	BCY 60	974p	BSY 32	25p	NKT713	25p
2N708	15p	2N3706	09D	40370	3210	BCY70	20p	BSY 36	25p	NKT781	
2N709	62 p	2N3707	11.	40406	671 ${ }^{\text {d }}$	BCY 71	25p	B8Y37	25p	NKT10419	19 30p
2N718	25p	2N3708	07p	40407	40p	BCY72	171p	B8Y 38	$22 \ddagger p$	NKT1043	
2N725	30p	2N3709	09p	40408	32］p	BCz10	27 1p	B8 Y 39	22 ${ }^{\text {p }}$		371p
2N727	30p	2N3710	09p	40410	827	BCZ11	421p	BSY40	32 p	NKT1051	19
2N914	171p	2N3711	12p	40467A	67］p	BD116	21－12	B8Y51	32¢p		32 ${ }^{\text {p }}$
3×916	171p	2N3715	21.25	40468A	35p	BD121	85D	BSY52	$32 \cdot \mathrm{p}$	203	
2N918	30p	2N3716	11.30	40800	${ }^{57}$ P	BD123	82\}p	788Y53	37 p		
2N929	224p	2N3791	82.08	AC 107	30 p	BD129	60p	BSY54	40 p	NKT20338	
2N930	271p	2N3819	35p	AC128	20 p	BD131	75p	BEY56	80 p		87 ｜D
2N1090	22］p	2 N 3823	9710	AC127	25p	BD132	85p	BEY78	474 ${ }^{\text {d }}$	NKT80111	
2N1091	22，${ }^{\text {d }}$	2N3854	2710	AC128	200	RDY10	21．371	BSY79	45p		77
2N1131	25D	2 N 3854 A	${ }^{271 p}$	AC154	221 p	BDY11	${ }^{11.624}$	B8Y82	58\％p	KT8011	
2 N 1132	25p	2N8955	$271 p$	AC176	25p	BDY17	81.50	BSY90	57 ${ }^{\text {p }}$		97ip
2N1302	17%	2N 3855 A	30p	AC187	621p	BDY18	81.75	BSY90A	12¢p	NKT8011	
2 N 1303	17tp	2N3856	30 D	AC188	8710	BDY19	ع1．97	B8w 11	42		11.12
2 N1304	22tp	2N3856A	A 35p	ACY17	2710	BDY20	\＆1－12	Bsw70	27 ip	NKT8021	
9N1305	22 p	2N3858	25 p	ACY18	${ }^{25 p}$	BDYs8	97tp	${ }^{\text {C111 }}$	75p		
2N1306	25D	2 N 3858 A	A 30p	ACY19	25 p	BDY 6	21.25	C424	27\％${ }^{\text {b }}$	T8021	
2N1307	25 D	2N3858	27b	ACY20	${ }^{25 p}$	BDY61	£1．25	C425	55 p		82tp
2N1308	30D	2 N 3859 A	32］	ACY21	250	BDY62	21.00	C426	40p	NKT8021	
2N1309	30p	2N3860	${ }^{30 p}$	ACY22	20p	BF115	25p	C428	3710		
2N1507	1710	2N3866	\＄1．50	ACY 28	20 p	BF117	47¢ ${ }^{\text {d }}$	C744	${ }^{30 \mathrm{D}}$		
2N1613	${ }^{2.5 p}$	2N3877	40p	ACY 40	20 p	BF163	37］p	D16P1	37.1		
2N1631	350	2N3877A	40 D	ACY 41	25p	BF167	18p	D16P2	40 p	NKT8021	
2N1632	30D	2N3900	3710	ACY44	40p	BF173	19p	D16P3	3710		82ip
2N1638	2710	2 N 3900 A	40p	ADI40	$52 \ddagger$	BF177	${ }^{30 p}$	D16P4	40 p	NKT8021	
2N1639		2N3901	97 fp	AD149	67\％${ }^{\text {P }}$	${ }^{\text {BF178 }}$	${ }^{30 p}$	GET102	${ }^{30 D}$		21p
2N1671B	11．00	2N3903	35p	AD150	621p	BF179	${ }^{30} \mathrm{p}$	GET113	20p	20	75p
2N1711	25p	2N3904	35p	AD161	371p	BF180	35 p	GET114	20 D	$\mathrm{OC2}^{2}$	0 p
2N1889	3210	2 N 3005	37.18	AD162	37 \＄D	BF181	32 h	GET118	20 p	0 C 23	${ }^{60 p}$
2N1893	37.10	2 N 390 B	37 pp	AF106	42 ${ }^{2} \mathrm{P}$	BF184	25 p	GET119	20 D	${ }^{\text {OC2 }}$	${ }^{60 p}$
2N2147	8810	2N4058	17\％${ }^{\text {d }}$	AF114	25 D	BF185	421 p	GET120	521p	${ }_{0}^{0} 23$	50 p
2N2148	8710	2N4059	10p	AF115	25 p	BF194	17］p	GET873	12！${ }^{\text {d }}$	${ }^{0} \mathbf{0} 26$	971
2N2160	3710	2N 4060	12\％p	AF116	250	BF195	15 p	GET880	${ }^{30 p}$	$\mathrm{OCP}^{8} 8$	820
2N2193	10p	2N4061	12¢p	AF17	25p	BF196	421 p	GET887	20 D	0029	821 p
2N2193A	421p	2N4062	221p	AF118	62 ¢ ${ }^{\text {d }}$	BF197	42 ¢	GET889	221 p	OC35	
2N2194A	30p	2N4244	47\％${ }^{\text {d }}$	AF119	200	BF198	42］p	GET890	2210	${ }^{0} \mathrm{C} 36$	62ヶp
2N2217	27p	2N4285	171p	A F124	22.1	BF200	521 p	GET896	221	0C41	22 p
2N2218	23p	2N4286	171p	AF125	20 p	BF 224	14 p	GET897	22tp	OC42	2p
2N2219	23p	2N4287	17\％p	AF126	20p	BF225	19p	GET889	2219	OC44	20p
2N2220	250	2N 4288	171p	AF127	171p	BF237	23p	MJ400	21．071	0 C 45	12\％p
2N2221	25p	2N4289	171p	AF139	37 ¢p	BF238	23p	MJ 420	21.181	$\mathrm{OC}^{\text {C }} 6$	${ }^{5 p}$
2N2222	30 D	2N4290	1710	AF178	4210	BF244	23p	MJ421	E1．121	0 C 70	15p
2N2270	4710	2N4291	17 ${ }^{\text {p }}$ p	AF179	72 p	BFW81	471 p	MJ430	81.021	0 C 71	12ip
2N2297	30p	2N4292	181p	AF180	52% D	BFX12	2210	MJJ40	95p	OC72	$12 \ddagger p$
2N2368	1710	2N4303	47 LD	AF181	42 p	BFX13	$22+\mathrm{p}$	MJ480	8718	${ }^{0} \mathrm{CO} 75$	${ }^{32}+\mathrm{p}$
2N2369	17 10	2N5027	52 p	AF239	42\％	BFX29	${ }^{30 \mathrm{D}}$	MJ481	21.25	${ }^{0} 785$	224 p
2 N 2369 A	171p	2N5028	57／p	AF279	47 ¢p	BFX 30	300	M．4490	¢1．00	${ }^{0} \mathrm{C} 76$	22！p
2 N 2410	421p	2N5029	471］	AP280	62 D	BFX42	8710	MJ491	21．37	$0 \mathrm{C77}$	30 p
2N2483	27¢p	2N5030	42 p	AF2Il	32， p	BFX44	871 p	MJ1800 2	28．171	0 c 81	20p
2N2484	32 ${ }^{\text {p }}$	2N5172	12．p	A8Y26	26p	BFX 68	871］	MJE340	62t．	$0 \mathrm{C81}$	22ヶp
2N2539	22tp	2N5174	$52 . p$	A8Y27	371 P	BFX84	25p	MJES20	${ }^{80 \mathrm{D}}$	$0 \mathrm{OC83}$	25p
2N2540	22¢p	2N5175	$52+\mathrm{p}$	A8Y28	27%	BFX85	3210	MJE521	73p	OC84	25p
2N2613	35p	2N5178	45p	A8Y29	27 ¢p	BFX86	${ }^{25}$	MPF102	422 ${ }^{\text {2 }}$	OC139	${ }^{321 p}$
2N2614	30p	2 N 5232 A	A 30p	Asy 36	25 D	BFX87	2710	MPF103	37 p	$0 \mathrm{Cl140}$	321p
2N2646	62 ${ }^{\text {d }}$	2N5245	45p	A8Y50	265	BFX88	25p	MPF104	${ }^{371 p}$	OC170	30 p
2N2696	$32 \cdot \mathrm{p}$	2N5246	42］p	ASY51	321 D	BFX89	62.5	MPF105	37 p	0 O 171	30 p
${ }^{2 N} \mathbf{2 N 2 7 1 1}$	${ }_{250}^{25 p}$	${ }_{2 \text { N } 5285}$		A8Y54		${ }_{\text {BFX }}{ }^{\text {Bra }}$			32 ${ }^{\text {P1 }}$		
$2 \mathrm{~N}_{2}^{2713}$	${ }_{2710}^{250}$	${ }_{\text {2N6268 }}^{\text {2N5 }}$	${ }_{82.75}^{23.25}$	A8Y86	32．${ }^{3}$	BFY ${ }^{\text {BFI }}$	$321 p$ $42 p$	NKT001	429p	－C202	${ }^{60 p}$
2N2714	309	2N6287	£2．62t	A8Z21	481 D	BFY17	2210	NKT125	2710	OC203	$42+\mathrm{D}$
2N2865	62¢p	2N5305	374 p	BC107	10 p	BFY18	32 p	NKT126	275	${ }^{\text {OC204 }}$	2， $\mathrm{p}^{\text {p }}$
2N2904	30p	2N5306	400	BC108	10 D	BFY19	8210	NKT128	27ip	OC205	0 p
$2{ }^{2} 2904 A$	32 ${ }^{\text {p }}$	2N5307	37 p	BC109	10 D	BFY20	21.60	NKT135	27 p	$\mathrm{OCO}^{\text {O }}$ O7	75 p
2N2905	3710	2N6308	371 D	BC113	150	BFY21	42 p	NKT137	32 p	ocre7	42：p
2N2905A	40p	2N5309	621 p	BC115	15 p	BFY24	${ }^{45 p}$	NKT210	30 p	ORP12	50p
2 N 2906	25p	2N5310	$4{ }^{4} \frac{1}{}{ }^{\text {D }}$ D	BC118A	150	BFY25	25p	NKT211	300	ORP81	50p
2N2906	27p	2N5354	27.1	BC118	100	BFY26	20 p	NKT212	30 p	P346A	221 D
2N2907	30p	2N5355	$27 . \mathrm{P}$	BG121	20 p	BFY29	50 p	NKT213	30p	T1834	$62{ }^{\text {\％}}$
2N2923	15p	${ }_{2}^{2 N 5356}$	32.1	$\mathrm{BCl2}^{\text {a }}$	${ }^{200}$	BFY30	500	NKT214	${ }^{224}$	TIS43	${ }^{279}$
2N2924	$15 p$ 150	${ }_{2}^{2 N 5365}$	${ }^{47}$ p		200	${ }_{\text {BFY }}{ }^{\text {BFY }} 4$	\％${ }_{60 \mathrm{p}}$	${ }_{\text {NKT218 }}$	294p	T1844 T1845	109 109
2N2928	150	${ }^{2 N 63687}$	${ }^{87 \%}$	$\underset{\text { BC140 }}{ }$	${ }_{370}$	BFY ${ }^{\text {BFY }}$		NKT218	${ }_{\text {42，}}{ }^{\text {d }}$	T1846	110p
Green	14p	2N5457	3710	BC147	10 p	BFY51	2 n	NKT219	${ }^{30 p}$	T1847	12 p
Yeilow	12．p	25005	75 p	BC148	10p	BFY52	23p	NKT223	27 P	T1848	124 p
Orang	12 ${ }^{\text {p }}$	28020	22．00	BC149	12p	BFY53	171p	NKT224	20，	T1849	12 p
2N3011	30 p	${ }_{28103}$	${ }^{50 \mathrm{p}}$	BCL^{2}	1710	BFY56A	67.5	NKT225	221P	TI850	$17 / \mathrm{p}$
2N3014	${ }^{32} 18$	${ }^{28103}$	${ }^{25}$	${ }_{\text {BCl }}{ }^{\text {B7 }}$	${ }^{20 p}$	${ }_{\text {BFY75 }}$	${ }_{4}^{30 p}$	NKT229	${ }_{35}^{301}$	T1831	12p
2N3053	18 p	28104	250	BC158	11 p	BFY78	42¢p	NKT237	35 p	T1832	12．p
2N3054	48p	28501	32 j	BC159	12p	BFY77	57p	NKT238	25p	TI853	29 ［
2N3055	${ }^{\text {a2p }}$	${ }_{2}^{28502}$	${ }^{35 \mathrm{p}}$	BC160	62.1	BFY90	${ }^{67 \%}$	NKT240	271 p	TI860	224
2 N 3133	30 p	${ }^{28503}$	2710	${ }^{\mathrm{BC} 167}$	11.	RFW58	27.1	NKT241	${ }^{271 p}$	${ }_{\text {T1882 }} 181$	${ }^{251}$
2N3134	30 p	3N83	40 p	BC168B	100	BFW69	25p	NKT242	${ }^{20 p}$	T1882	2710
2N3135	25 p	3N128	70p	RC188C	11p	RFW60	25 p	NKT243	${ }^{624}{ }^{17}$	T1P29A	50 p
2N3136	25p	3N140	7710	BC169B	11.	BPX25	81.85	NKT244	17id	Tip30a	${ }^{60 p}$
2N3390	25 p	3N141	72.5	${ }^{\text {BCl } 690}$	12p	BPX29	${ }^{21-80}$	NKT245	20p	TIP31A	${ }^{621 p}$
2N\＄391	20 p	3N142	55p	BC170	12.0	BPY10	81.45	NKT261	${ }^{20 p}$	TIP32A	759
${ }^{2 N 3391 A}$	30p	3N143	${ }^{87} 7$	BC171	15 p	Bry39	37ip	NKT282	30 p	TIP33A	
2N3392	17ip	3N152	87.1	BC172	100	B8x19	17p	NKT264	200		02］p
2N33893	${ }^{15 p}$	R．C．A．	52pp	${ }_{\text {BC182 }}$	$226 p$ $10 p$	B8X20	$171 p$ 3760	NKT271	20 p	TIP35A	82.05 $£ 2.90$
	5	40251		${ }_{\text {BC182 }}$	${ }_{09 p}$	B8X26	$4{ }^{4} 5$	NKT274	${ }_{80 \mathrm{p}}$	TIPソ6A	
	$22 \mid$	40309	32 \＄	BCI84	11p	X27	471p	NKT275	20p		
Post \＆Packing 13p per order． Matehing eharge（audio											

TTL．LOGIC I．C．NEW PRICES

	1－11 12－24			1－11 12－24			1－11 12－24	
	Ep	Ep		ip	2p		Ep	\＆p
SN7400	0.20	0.18	SN7433	0.80	0.75	8N7472	0.32	0.30
gN7401	0.20	0.18	8N7437	0.84	0.08	SN7473	0.43	0.41
SN7402	0－20	0.18	gN7438	0.84	060	8N7 ${ }^{\text {7 }}$（	0.43	0.41
SN7403	0.80	0.18	SN7440	0.23	0.21	SN7475	0.45	0.44
SN7405	0.20	0.18	SN7441AN	0.87	0.83	8N7476	0.45	0.41
gN7406	0.80	0.75	8N7442	0.85	0.81	EN7480	$0 \cdot 70$	065
SN 7407	0.80	0.75	EN7443	2.86	$2 \cdot 70$	SN7481	1.40	$1 \cdot 38$
SN7408	0.20	0.18	gN7444	2.86	2－70	8N7482	0.87	082
SN7409	020	0.18	8N7445	2.50	$2 \cdot 40$	SN7483	0.87	082
8N7410	0.20	$0 \cdot 18$	gN7446	1.00	0.95	SN7484	2.00	1.85
8N7411	023	021	8N7447	1.00	0.95	SN7480	$3 \cdot 62$	3.40
gN7412	0.48	0.48	gNT448	1.00	0.95	8N7486	0.33	030
8N7413	0.40	0.38	SN7449	1.00	0.85	SN7430	0.87	0.84
gN7420	0.80	0.18	SN7450	0.20	0.18	8N7491AN	1.21	$1 \cdot 10$
\＄N7423	0.51	0.47	8N7451	0.20	0.18	SN7492	0.87	0.81
gN7427	0.48	0.45	BN7453	0.20	0－18	SN7493	0.87	0.84
8N7428	0.80	0.75	SN7454	020	0.18	SN7494	0.87	0.84
¢N7430	0.23	0.15	SN7460	0.20	0.18	8N7495	0.87	0.84
8N7432	0.48	0.42	SN7470	040	0.38	SN7496	0.87	0.84

MULLARD SUB－MIN ELECTROLYTIC
 $6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8140 ; 10 / 1$ A；10／64； $12 \cdot 5 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4$ 25／25； $32 / 10 ; 32 / 40 ; 32 / 64 ; 40 / 16 ; 50 / 8 \cdot 4 ; 50 / 25 ; 50 / 40 ; 64 / 10 ; 80 / 2 \cdot 6$ 80／16：80／25；100／6．4；125／10；125／16；200／10；320／6．4．

SILICON RECTIFIERS

PIV	50	100	200	400	600	800	1000	1200
1 A	8 p	9p	10p	13 p	12p	15p	20p	－
3 A	15p			22ip		30 p		
${ }^{64}$			25 p	${ }^{30 p}$	32 p	35 p		
10A	30p	35p	40p	47D	56 D	66 p	75p	
15A	${ }^{36 \mathrm{p}}$	45 p	48 D	55p	${ }^{\text {asp }}$	75p	87 p	
$35 \mathrm{~A} \quad 70$		80 p	90 p	£1．00	£1．40	¢1－70	22．76	
1 amp	3 an	are p	tie e	prulat				

DIODES \＆RECTIFIERS

IN34A	10p	AA119	7p	BAX16	121p	P9T3／4	22pp
IN914	70	AA129	15p	BAY18	178	OAS	17p
IN916	7p	AAZ13	12 p	BAY31	7p	OA10	20p
IN4007	20p	AA715	12p	BAY38	25 D	OA，	10p
IS44	7p	AAZ17	10p	BY100	15p	OA47	8
18113	15p	BA100	15p	BY103	22 D	OA70	7p
18120	12p	baloz	25p	BY122	471p	OA73	10p
18121	14 D	BA110	25p	BY124	15p	OA79	7p
18130	8 p	BA114	15p	BY128	15p	OA81	8
IS131	10D	BA115	7p	BY127	17p	OA85	10 p
Is132	12p	BA141	170	BY164	57	OA90	7p
18920	7 D	BA142	17p	BYX 10	22p	OA91	7p
18922	8 D	BA144	12p	BYZ10	35	0495	7
18923	12p	BA145	17p	BYZ11	32p	OA200	7p
18940	$5{ }^{5}$	BA154	12p	$1 \mathrm{YYZ2}$	30 p	OA202	10 p
		BAX 13	5p	HYz13	25p	TIV307	50p

＂SCORPIO＂CAP
DISCHARGE IGNITION
SYSTEM
（As printed in P．E．Nov．
＇7I）．Complete kit \＆ 10.00
P．\＆P．SOD．

BRIDGE RECTIFIERS

THYRISTORS（SCR）

THYRISTORS（SCR）	MULLARD C2
	CAPACITORS
1 L	$0.01,0.022,0.033,0.04738$ each
4 A	
	$0.15,0.22,0.33$ ．．
TIC4 70.6 amp ． 200 PIV E5p．	$0.47{ }^{0.60,}$
Almo 12 amp ． 100 PIV 76 p	0．68 $\quad \therefore \quad \cdots \quad \cdots \quad \cdots \quad 11 p$
2N3525 at E1．12kp	$1 \mu \mathrm{~F}$
	$1 \cdot 5 \mu$
OBOARD $0.15 \quad 0.1$	$2 \cdot 2 \mu \mathrm{~F} \quad . . \quad . . \quad .$.
Matrix Matrix	
$24 \times 31 \mathrm{~mm}$ 178 230	WIRE－WOUND RESISTORS
$2{ }^{21} \times 5 \mathrm{in}$ 25p 25 p	2.5 watt 5\％（up to 270 ohrus
$3 \mathrm{~m} \times 3 \mathrm{ftm} \quad 25 \mathrm{p} \quad 25 \mathrm{p}$	onls）． 7 p
3 ¢ $\times 5$ in $30 \mathrm{p} \quad 29 \mathrm{p}$	5 watta 5%（up to 8．2k ${ }^{\text {only }}$ ）， 9 p
$5 \times 17 \mathrm{~lm}$（Plain）${ }^{83 \mathrm{p}}$	10 watt 5%（up to $25 \mathrm{k} \Omega$ only），
Vero Pins（Bas of 36）80p	10 p
Vero Cutter 45	
Pin Insertion Tools（ 11 and $\cdot 15$	POTENTIOMETERS
matrix）at 55p．	Car
OPTOELECTRONICS	log．and Lia．．，with switch， 25 p．
NITRON 3015F SEVEN	Wire－wound Pots（3W），38p
SGMENT INDICATOR 22.00	Twin Ganged stereo Pots，Log．
209 LIGAT EMITTING	
DIODE（RED） 0.35 p ．	PRESETS（CARBON）
0	
	0.2 Watt 6n OR
RESISTORS	0.3 Watt 7ip horizontal
watt $5 \%, 1 p$ ．E2	THERMISTORS
＋watt 8% ， $1 \ddagger$ p．	R53（STC）21．27t VA3705 950
W 2% M／O 4 p ．	K151（1k）12p VAl077 20p
	Mullard Thermintora also in
2 watt 10% ，6p．E13 Beries．	stock．Please enquire．

Tẹ．01－452 0161／2／3 A．MARSHALL \＆SON Telex 21492

28 CRICKLEWOOD BROADWAY，LONDON，N．W． 2
CALLERS WELCOME
HRS．$\quad{ }^{9}-5.30 \mathrm{MON} . \mathrm{FFRI}$ ．

In just 2 minutes, find out how you can qualify for promotion or a better job in Engineering

That's how long it will take you to fill in the coupon below. Mail it to B.I.E.T. and we'll send you full details and a free book, B.I.E.T. has successfully trained thousands of men at home-equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost B.I.E.T. Home Study Course gets results fast-makes learning easier and something you look forward to. If you'd like to know how just a few hours a week of your spare time, doing something constructive and enjoyable, could put you out in front, post the coupon today. No obligation.

WHICH SUBJECT WOULD INTEREST YOU?

Mechanical

A.M.S.E. (Mech.)

Inst. of Enginecrs
Mechanical Eng.
Maintenance Eng
Welding
General Diesel Eng.
Sheet Metal Work
Eng. Inspection
Eng. Metallurgy
C. \& G. Eng. Crafts
C. \& G. Fabrication

Draughtsmanshid
A.M.I.E.D.

Gen. Draughtsmanship Die \& Press Tools Elec. Draughtsmanship Jig \& Tool Design Design of Elec. Machincs Technical Drawing Building

Electrical \& Electronic A.M.S.E. (Elec.) A. M.S.E. (Elec.) C. \& G. Elec. Eng. Installations \& Wiring Electrical Maths, Electrical Maths,
Electrical Science
Computer Electronics Computer Elect

Radio \& Telecomms. C. \& G. Radio Servicins C. \& G. Radio Servicing Radio Amateurs' Exam. Radio Operators Cert. Radio \& TV Engineering Radio Servicing
Practical Teicvision
TV Servicing
Practical Radio \&
Electronics (with kit)

Auto \& Aero
A.M.I.M.I.

MAA/IMI Diploma
C. \& G. Auto Eng. General Auto Eng. Motor Mechanics
A.R.B. Certs.

Gen. Aero Eng.
Management \&
Production
Computer Programming
Inst. of Marketing
A.C.W.A.

Works Management
Work Study
Production Eng.
Storekeeping
Estimating
Personnel Management
Quality Control
Electronic Data Processing Numerical Controi Planning Engineering Materials Handling Operational Research Metrication

Constructional
Constructional
A.M.S.E. (Civ.)

Road Enginecring Road Engineering Civil Eng
Air Conditioning
Heating \& Ventilating
Carpentry \& Joinery
Carpeniry \& Joiner
Clerk of Works
Building D
Surveying
Painting and
Decorating.
Architecture
Builders' Quantities

General
C.E.I.

Petroleum Tech
Practical Maths
Refrigerator
Servicing
Rubber Technology
Sales Enginecr
Timber Trade
Farm Scienc
Agricultural Eng.
General Plastics
General Certificate
of Education
Choose from 42
' \mathbf{O} ' and ' A ' Level
subjects including:
English
Chemistry
General Sctence
Geology
Geolozy
Mathematics
Technical Drawing
French
Grenchan
Rerman
Russian
Spanish
Spanish
Biology and its
B.I.E.T. and its
associated schools
associated schools
have recorded well
over 10,000 G.C.E.
successes at ' O ' and
WE COVER A WIDE
RANGE OF TECHNICAL
AND PROFESSIONAL
EXAMINATIONS
Over 3.000 of our Students have obtained City \& Gullds Certificates. Thousand.
other exam successes.

> 7ree!
> Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). We'll send you full details and a FREE illustrated book. No obligation and nobody will call on you . . . but it could be the best thing you ever did.
> BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY Dept B3I, Aldermaston Court, Reading RG7 4PF

Solder Absorbing Wick 4 feet for 40 p Orientation Ltd

mayfield, COVERACK
COANWALL

B.H. COMPONENT FACTORS LTD.

F or Eagle, Sinclair, Data Books and Components. tw 5% resistors 1 p , or $50 \mathrm{p} / 100$. Electrolytic C426 4/40, $8 / 40,10 / 18,32 / 10,25 / 25,100 / 6 \cdot 4$, all 4p. IN $9146 \mathrm{p}, 100 \mathrm{v}$ 1A Brldge 50p. Panel neon 15p. Mains Transformers 32-0-32@150 mA 50p. 150v (3) 25 mA and 8 v @ 650 mA 75p. Electrolytic $100 / 50 \quad 10 p, 500 / 50 \quad 12 \mathrm{p}, 1000 / 1212 \mathrm{p}$. Free list, C.W.O. p.D. U.K. 10 p. Discount £10-10\% Money back guarantee. Brand new to spec.
P.O. BOX 18, LUTON, BEDS, LU1 1SU

NEW
 1511 arth Hi ifi £3.75

TTRANSISTORS-GUARANTEED

 PRINTRD CIRCUIT - TRSTTEDDISICN :TILT INETRUCTIONS
A great new 15 watt HiFi amplifer lo now availisble at the low cost of e3.75. Just look at the specification -Power 15 Watts R.M.S., frequency reaponse $15 \cdot \mathrm{cs}$ 19000 ca . Signal to noise ratio better than 70 db , Harmonic diatortion 0.1%, Input aenaitivity 750 mv into 2 k . These factors make the H Electronica HiPi amplifier the beat at ita price-order now.

HELECTRONICS.

105,Grange Road, London. S.E. 25

\footnotetext{
EX COMPUTER PRINTED CIRCUTT PANELS $2 \operatorname{in} \times 4 \mathrm{in}$ packed with semi-conductora and top quality resistors, capacitorg, dlodea, etc. Our minimum of 36 translators. Data on transtator meluded.

SPECIAL BARGAIN PACE. 25 boards for 21. P. \& P. 18p. With a gusranteed minimum of 85 translators. Data on transistora included

PANELS with 2 power tranzistors similar to OC28 on each board-components 2 hoards $(4 \times 0 \mathrm{C} 28$) 50 p, P. \& P. 6p.

9 OAS, 3 OA10, 3 Pot Cores, 26 Resistors, 14 Capacitorn, 3 GET 872 GET 872 B , 1 GET 875 All long leaded on panels $13 \mathrm{in} \times 4 \mathrm{in} .4$ for El ,
P. \& P. 25 p .

709C OPERATIONAL AMPLIPIER TO5
8 lead I.C. 1 off 50 p . 50 off 35 p .

250 MIXED R \ddagger and \ddagger watt.	62p
I50 MIXED HI STA 4. \ddagger and 1 watt 5% and	62
QUARTZ HALOGEN BULBS With long lesils. 12 V 55 W for car spot lights,	
GPO EXTENBION TELEPHONES elth dial out without 2, P. $\&$ P. 50 p .	
BARGAIN RELAY OFFER P. \& \mathbf{P}. .	
KEYTRONICS mail order only	
44 EARLS COURT ROAD	
NDON, W. 8	$01-4788$

TREABHIN Half term test ATSMTHR

Last month we posed some problems under the heading Teach in Half-Term Test. We will now answer those problems and try to show how we arrived at the answers. If you have got some of them wrong do not worry, just try and follow our explanation and see where you went wrong.
(1) They flow from negative to positive in reality. Although we assume that conventional current flows from positive to negative the actual electrons flow from negative to positive.
(2) (b) $\mu \mathrm{A}($ microamps), (e) $\mathrm{A}(\mathrm{amps})$
(3) 22 volts. $V=I R$ hence $V=0.01 \times 2.2 \times 1,000=22 V$
(4) It does not matter. All the resistor does is to limit the current; this can be done at any point around the circuit.
(5) 2.8 mA . Total resistance is $2.2 \mathrm{k} \Omega+1 \mathrm{k} \Omega=3.2 \mathrm{k} \Omega$. Current flow $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{9}{3.2 \times 1,000}=2.8 \div 1,000 \mathrm{~A}=2.8 \mathrm{~m} \mathrm{~A}$
(6) R1 and R3 $\frac{1}{2}$ W, R2 1 W . Total circuit resistance $R_{T}=R 1+\frac{R 2 \times R 3}{R 2+\bar{R} 3}=10+33 \cdot 3=43 \cdot 3 \Omega$.
Total current $I \Rightarrow \frac{V}{R}=\frac{9}{43.3}=0.21 \mathrm{~A}$
Dissipation of $R 1=1^{2} R=0.21 \times 0.21 \times 10=0.44 \mathrm{~W}$. The nearest commercial rating is $\frac{1}{2} W$. Next calculate the voltage drop across $R 2$ and $R 3$ together $V=I R=0.21 x$. $33 \cdot 3=7 \mathrm{~V}$.

We know that $W=I^{2} R$, but $I=\frac{V}{R}$ therefore
$W=\frac{V}{R} \times \frac{V}{R} \times R$ and, cancelling $W=\frac{V^{2}}{R}$
Dissipation in $\mathbf{R} 2=\frac{\mathrm{V}^{2}}{\mathbf{R}}=\frac{7 \times 7}{50}=\frac{49}{50}=0.98 \mathrm{~W}$
Dissipation in R3 $=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{49}{100}=0.49 \mathrm{~W}$
(7) 0.4 W or 400 mW . Maximum dissipation occurs when the value of VR1 equals that of R1 i.e. 50S. When both resistors are of equal value the voltage drop across each is half the voltage drop across both, therefore, maximum dissipation in VR1

$$
=\frac{V^{2}}{R}=\frac{4.5 \times 4.5}{50}=\frac{20.25}{50}=0.405 \mathrm{~W}
$$

(8) (a) $4 \cdot 7 \mathrm{k} \Omega \pm 10 \%$
(b) $22 \mathrm{k} \Omega \pm 5 \%$
(c) $100 \mathrm{k} \Omega \pm 10 \%$
(9) (b) $20 \mu \mathrm{~F} 40 \mathrm{~V}$. In most applications using electrolytic capacitors the capacitance must be greater than a certain value; the tolerance of a normal $16 \mu \mathrm{~F}$ would encompass $.20 \mu \mathrm{~F}$. The important thing is that the working voltage is the same or greater.
(10) Reject it politely. He has given you a $120,000 \mathrm{pF}$ or $0.12 \mu \mathrm{~F}$ capacitor. Check to see If he has the precise value and, if he does not, you may as well take this one, since it should be near enough to use as a substitute.
(11) C1 will charge up the fastest as it has the lowest value and is being charged through the lowest value resistor.
(12) C2 will take the longest time to charge, as it has the highest value and is being charged through the highest value resistor.
(13) Forward biassed. The conventional current flows from positive to negative and can thus flow through the diode in the direction of the arrow.
(14) 100 V and 100 mA . Peak reverse breakdown voltage will be the battery voltage. Since in the reversed blassed condition there is negligible current flowing R1 will not drop any voltage and the full supply voltage will appear across D1. In the forward biassed condition the diode can be assumed to be a short circuit thus only R1 can limit the current flowing hence

$$
1=\frac{V}{R}=\frac{100}{1 \times 1,000}=0.1 \mathrm{~A} \text { or } 100 \mathrm{~mA}
$$

(15) (d) $100 \mathrm{~V}, 150 \mathrm{~mA}$. Both ratings given are minimum ratings, $0.1 \mathrm{~A}=100 \mathrm{~mA}$.
(16) (b) 0.6 V . As the diode is forward biassed the voltage would be 0.6 V . There is always a voltage drop of approximately 600 mV across silicon diodes due ta the "knee" in the characteristic.
Well, how did you fare? If you got them all right that is excellent, if you did not the important thing is that you understand where you had difficulties. We suggest that you re-read the relevant sections of the Teach-In series.

We hope that you found the questions a challenge and at the same time they have opened your eyes to some calculation methods-particularly the calculation of dissipation. If you used $W=I^{2} R$ instead of deriving $W=\frac{V^{2}}{R}$ this does not matter but it may pay to look for an easier way next time.

Bias Value

Having been a subscriber to P.E. and P.W. "off and on" for about 10 years I came across the January issue of Everyday Electronics, which had my instant approval and now joins the rank of my other magazine's culminating in an endless and very informative pile on top the piano.

I find it is a magazine not only of theoretical enthusiasm but of great practical interest to the "everyday handyman" and certain to be a book for beginners, especially the very helpful facts "projected" by Mike Hughes, M.A.

I would hope in the future that perhaps Mr. Hughes could give reference to finding values of bias resistors, etc., needed for the satisfactory operation of different transistor parameters, and also relevant circuit operation of thyristors, unijunction and field effect transistors and other very useful flexible types of semiconductors.

Noticing other readers' troubles referring to the Electro Laugh, I also constructed this article and it worked first time owing to the way I adopt when working on, or constructing any project, I always check the finished article with the actual circuit diagram thus finding our little friend Q7 and P7.

Unfortunately the only earphone I had was a high impedance crystal type, but by connecting a resistor in the region of 250 ohms in parallel with it, it brought the overall impedance down to a satisfactory level with a slight reduction in volume.
J. Mason
S. Wales

We doubt if Teach-In will be able to meet all your needs as it will finish after 12 months. However we will be publishing further series that should help.

Another Bug

Naturally, I was quite flattered to discover that you had found my letter sufficiently interesting for inclusion in Readers Letters (March issue), however, I must admit that my pleasure was mixed with large helpings of disappointment and frustration due to your editing of the letter.

I am not complaining at all about the amount of space allocated to my comments-I realise you have the right to include only that which in your wisdom you decide is worthy of publication.

My complaint is that you have entirely neglected to make even a brief reference to what was after all the main point. of my letter-the difficulty of obtaining items advertised in your magazine. By omitting any reference to this frustrating situation, my letter as printed is sailing under false colours-the few minor constructional queries were in fact, sorted out by trial and error once I got going. The real reason for being unable to get cracking was not so much mounting components, as actually getting hold of them!

The fact that you completely ignored my comments regarding suppliers leads me to two conclusions:
(One) That you accepted my comments to be an exaggeration of a somewhat hysterical nature, and were not a true picture of the real situation, or
(Two) That you accepted my statements as correct, but did not wish to offend your advertisers whose business you must obviously wish to retain.

With regard to the former, I feel I. must now justify my remarks by quoting a few of the more deplorable examples of SERVICE, and leave you to form your own conclusions. These examples are on a separate sheet herewith enclosed.

Regarding (Two), whilst I
realise that you are not to be held responsible for goods or services advertised in your columns, you do, however, have a moral responsibility to your readers. After all, it is you that place these offers before us, the readers, and if for example, I had not seen a certain item offered in your magazine, then I would have been saved the trouble and frustration that followed when the item failed to 'arrive, and all attempts to obtain satisfaction are largely ignored.

However, I have now found a couple of very good suppliers whose friendly, courteous, and extremely efficient service have allowed me to obtain some of the pleasure that I had hoped would be derived from my new hobby (Galleon Trading Co. and Radio Exchange Co.).

To date I have completed several very efficient radios, some from kits; also the Astron, a general purpose amplifier, and one or two other gadgets, and success rate so far is quite satisfactory, so the situation is not too black after all.
J. G. Richards

Sale, Cheshire
The above correspondent supplied us with details of orders placed with four different advertisers, none of which had been expediently dealt with, at the time of writing.

We have investigated all of these cases on behalf of our reader. The delays, regrettable as they are, seem to be unavoidable and can be largely attributed to the phenomenal success of this magazine's declared intention to popularise the hobby of electronics!

As a consequence, our advertisers are sometimes overwhelmed by a flood of orders, and delays do therefore sometimes arise. But we know all our advertisers make determined efforts to clear their back-log of orders as quickly as possible.

We, on our part, will always investigate any serious and reasonable complaints, on behalf of our readers.

Cell Life

I have just read the March issue of Everyday Electronics and thoroughly appreciated the Ruminations by Sensor where he mentioned the tin saw and how much damage could result to a \& 15,500 r.p.m. shaft is $\$ \mathrm{ln}$. dia meter 230/240v. Its speed may be further controlled with the use of our Thyrister controller. Very powerful and useful motor size approz. 2 in . dia. $\times 5$.in. long. Price $88 p$
insurance

RESETTABLE FUSE

How long does it take you to renew a fuse? Thime yourself when next one blows. Then reckontong your time at \&1 per bour see how quickly our rill pay for ltself Price only fl beaker will pay for Itself. Price only el each or \&11 per dozen, speel

MAINS TRANSISTOR POWER

 PACKDesigned to operate transistor sets and amplifiers. Adjustable output $8 \mathrm{v} ., 9 \mathrm{v}, 12$ volts for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PPB, PP7, PPG and others. KIt comprises: mains tranaformer rectifter, smoothing and load resiator,
condensers and instructions. Real snip at only 88p, plus 20p postage.

MICRO SWITCH

smp. changeover contacth, ip each, 11 doz. 15 amp .
10 p each or 1.05 doz .

EXTRACTOR FAN Cleans the alr at the rate of 10,000 cuble ft. per hour. Suitable for kitchens, bathrooms, factories, changing rooms, etc., It's 40 quiet it can cassing with $5 \mathfrak{z}^{\prime \prime}$ fan blades. Kist comprises motor, fan blades, sheet steel casling, pull witch. mains connector, and frlog brackets, 28 plus 36 p post and ins.

MAINS MOTOR

ePrecision made-as used in recond decks and tape recor-
ders-ldeal also for extractor fan, blower, heaters, etc. New and perfect. Snip at 80 p . Postage $\mathbf{1 5 p}$ for flrat one then $6 p$ for each one ondered.

THERMOSTAT
Continuously variable $30^{\circ}-90^{\circ} \mathrm{C}$. Hen sensor bulb connected by 33 in . of flexible tublag. On operation a 16 amp 250 volt switch is opened and in addition a plunger moves through approx In. This could be used to open valve os ventilsto
plus 23 p g. $\& \mathrm{ins}$.

5A 3-PIN SWITCHED SOCKETS
An excellent opportunity to make needed or to stock up for future jobs. This month we offer 6 British made (Hicraft) bakellte flush mountins shuttered awitch mockets for only 60 p plua 18ppast and insurance. (20 bozes post free).

MAINS OPERATED SOLENOIDS
Model 778 -rmall but power.

 plus 20p post and insurance.

TELESCOPIC

 AERIALfor portable, car radio or tranmmilter. Chrome platedsix sections, extends from 71 to 47in. Hole in bottom for 6BA ncrew. 88p. KNUCKLED MODEL FOR F.M. 60p.
3 STAGE PERMEABILITY TUNER
 This Tuner ts a precision matriment made by the famous 'Cyldon' Company for the equaily famous Radiomobile Car Radlo. It is a medium wave tuner (but set of longwave colls available
25 p) with a frequency coverage 1620 With a irequency coverage tended to operate with an I.F. value of $470 \mathrm{Kc} / \mathrm{s}$. Extremely compact (alze only 2 a $\times 2 \times 1$ ins. thlch) with reduction gear for tine tuning. Snip price this for car radio or as a general purpose tuner for use with Amplifier. Post free.

CAPACITOR DISCHARGE CAR IGNITION This ystem which has proved to be amszingly etricient. We onter kit of parts as PW circuit 25.85 plos 20 p p. ${ }^{\text {\& }}$ p. De-luxe model with prepared ctrcuit for positive or negative systems.

RADIO STETHOSCOPE

Easiest way to faut and-traces sinnal from aerial o speaker-when signal atops you've found the fault. Use it on Radio, TV, amplifer, anything - com plete kit comprises two apecia transiators and all parta including probe tube and crystal earpiece. etwin stetho aet instead of earpiece 75 p extra' post and ins. 20 p .

STANDARD WAFER SWITCHES Btandard size 11^{*} water-silver-plated 6 -amp contact, gtandard $8^{\prime \prime}$ apindle 2^{*} long-with locking weaher and nut.

THYRISTOR LIGHT DIMMER

For any lamp up to 200 watt. Mounted on switch plate to fit in place of atandard switch. Virtually no radio interferences. Price 81.88 plus 20 p post and insurance.

THIS MONTHS SNIP
1 HOUR MINUTE TIMER. Made by Bmiths complete with control knob and calibrated dial. This month's special bargain at 50 p . Useful in the Kitehen, Office and Dark-room etc.

MULLARD AUDIO AMP LIFIER

 MODULE

Usen 4 transiators, and has an output of 750 mW into 8 ohma speakers. Input suitable for crystal mic. or pick-up. 9 volt battery operater. Slze $2^{\prime \prime}$ long $\times 15^{\prime \prime}$ wli $\times{ }^{2} \mathrm{Chigh}$. special silip Price 80p each. 10 for 25.

POCKET CIRCUIT TESTER

Test continulty for any low resiatance circuit, house wiring, car electrics. Test polarity of diodes and rect iters. Also ldeal size for converaion to signal
Injector (clacult supplied), 80 p or 2 for 50 p . Post paid.

METAL LOCATOR AUDIO TONE GENERATOR BEE COUNTER
 To receive details on these kits send s.a.e. for parts last.

MULLARD I.F. MODULE

This la a fully acreened intermediate frequency module for amplifiestion and detection of t-m. algnals at 10.7 MH and a.m. signals at 470 kHz . The Arst stage is used as an i.f. amplifer for f.nh, and aself oscilating external oselllator coll. 75 p each. 10 for 86.75. 100 for 868.50 . With connection dia.

DISTRIBUTION PANELS
Just what you need for work bench or lab. $4 \times 13 \mathrm{amp}$ sockets in metal box to take standard 13 amp tueed pluge and on/off switch wilh neon warning light. Iupplied complete with 6 feet of flez cable. Wired up ready to work, $28 \cdot 28$ plus 23 p P, \&

BATTERY CONDITION TESTER

Made by Mallory but auitable for all batteriea made by Fiver Ready and others, most of whlch are zinc carbon ypes but aloo mercury mangancse-nlead-silver oxide and alkaline batterles may be tested. The tester puts a dummy load on the battery and the meter scale indicatea the condition depending upon which section the polnter
reats. The section reads "replace" "weak" or "good". The tester is complete in its case, size $34^{\circ} \times 64^{\circ} \times 2^{\circ}$ With leads and prods. Price $1 / 75$ plus 20p postage.

Thermostat with Probo. Made by the famous Ranco Thermostat Co. Covers the raage from approx, $0^{\circ}-20^{\circ} 0 \mathrm{C}$. variahle by a control spindle bandles currents up to 16 mmps . Length of capillary and sensor tube approx. $3^{\prime} 6^{\circ}$. These are ldeal for ovens and as a general purpose hmall Tuning Condenger as or 10 for 44.50 . mall cuaing Condenser as fitted to many 1 m ported japanene and Hong Kong radios. 2 gang bout 200 PF per gang. Size approx. $1^{\circ} \times 1$ 25p each or 10 for 52.25. op each or 10 for $22 \cdot 20$
beat Sink. Small type as used with OC81 etc. Price $5 p$ each or 10 for $45 p$.
pectacle Frames. (No lenses) with bullt-in hearing aids. The amplifier and battery being housed in the arms. Although these are complete hearing aids we are selling them purely for the sub miniature components they contain. We give oo guarantee that they are in working order slso these may be secondhand. Price 2850 each. Foot Switch. Twin levers each of which operates 10 amp QMB changeover switch. Price 90 p each. Programmers. 8 Revi per minute. Made by Magnetic Devices Ltd. The contacts may be set to trigger anywhere around the shaft, Ideal for motivated lighting displays, sequential switching he. Drve molors are 200-240V 5012. Model A bsa o change orel Ballint Cooker Bings As fited to Trid
many other popular conkers. We to Tricity and These are copper clad to tubular construction Both modela having an external diameter of 61° and the elements have been slightly fiattened o incresse radiation.
Becker Model 7D1 MrII again 2000 watta rated but $230-240 \mathrm{v}$, has no cover over element ends. Price 65 p each or 10 for $25 \cdot 85$.
slide 8 witch. 2 pole change over panel mounting by two 6 BA screws. Slze approx, 1 . \times rated 250 v lamp, $8 p$
each. 10 for 54 p .100 for $25 \cdot 10$. 500 each. 10
or 224.
As a brve but for printed circult 5 p each, 10 for $18 \mathrm{p}, 100$ for 84.25 .
obb Miniature slide switch. DPDT 19 mm (f° epprox.) between fixlng centres. 18p each or 10 or 81 -08.

KITS FOR PREVIOUS PROJECTS
Onless otherwise tated, kits contain elec.
tronic parta only. The case and ppeclal tems can be obtained locally. Alan batteries are not lacluded. Klts may he returned for refund If construction has not been started. We reserve the right to subatitute romponents ahould deliveries be protracted
at as to avold undue delay.
EOME SENTIGBL IATRUDER ALARM
Electrontc Components with suitsble case 85.75
SNAP INDICATOR
WIHDSCREEN WIPER CONTROL
Components Including metal for chasis $t 8$ case, loudspeaker, recond deck or pick-
DEMO DECK 8675 POST PAID
PUZZ BOX PROTOGRAPRIC coLOUR
TEMPERATURE METER
ASTRON RADIO
REMOTE TEMPERATURE
COMPARATOR
COMPARATOR
ELECTRO LAUGE
ELEAREO LAUGE MOR MICROPRONE
AURTO ALEET
All electronic parta and met
All electronic parta and metal bracket $22-50$
All electronic party and chasnis
WA-WA PEDAL
DAREROOM TMER
BIGNAE INJRCTOR
SOL MOISTURE METER
SIMPLE CALCULATOR
D.O. POWER SUPPLY

BABY ALARM

Mains Tranalormer. Primary 240v. tapped 220 v . Becondary 20 v . amp. Price 60 p each or 10 for $85-40$.
Dial Thermometer-reading from 200-525F used on Tricity and other cookers. This has a flange and can bo mounted through a 11° hole or alternatively it can fust be reated on the object whose tempersture. it ls required to measure. Bize $2 \times$ overall diameter. Depth 8 below
and is above mountigg panel. Prlce $80 p$ each and 10 for 87.20 p .
or

24.HOUR TIME

SWITCH

Made by Bmitha, these are AC mains opersted, NOT CLOCKWORK. Ideal for mounting on rack or shel or can be built into bor with 13 a socket. 2 com-
pletely adjustable pletely djustable time perlods per 24 hours, o amp changeover contacte will switch clrcult on or ofl during these periods. 50 p pair.

[^1]
J. BULL (ELECTRICAL) LTD.

(Dept. E.E.) 7 Park Street, Croydon CRO IYD
TRANSSOIS
A SELECTION FROM OUR LIST

HENRY'S ${ }_{\text {coss }}$ INTEGRated Clirouits

BRAND NEW FULL SPECIFICATION TTL74 SERIES BRANDED FAIRCHILD, I.T.T. AND TEXAS

QUANTITY
OFFERS:
FROM STOCK
beginner's enthusiasm.
When I read about the Signal Injector by Alan Jardine I was reminded of the poor beginner.

Following the instruction to solder the leads direct on to the cell will result in heating up the electrolyte and a very short life for the cell.

Perhaps this is not important as the choice of a push-on/pushoff switch allows no easy means of knowing if the thing is on or off. Very few beginners will remember to test each time, and cell life will be short it is expected. A push button perhaps?
The blind cannot be expected to lead the blind, and beginners are usually short of experience.
R. Quorn

Sussex
Of your two points concerning the Signal Injector, the first is a bit exaggerated. It is true that the cell life will be reduced by applying heat (from soldering iron) to the battery terminals but this is only negligible for the time required to execute the connection.

To install a holder to suit this type of battery would increase the cost by about 40 per cent.

We agree that it will be difficult to tell if the unit is on or off when not in use, but it can be determined; when the unit is "on" the push button will feel "loose" but in the "off" position this looseness disappears.

If this proves unsatisfactory a push-to-make release off type can be substituted.

Wore Accurate Timer

May I thank you for publishing another article combining the hobbies of electronics and photography (ref. Darkroom Timer, March issue).

Although of excellent design, I feel it must be stated that a timer with only a 5 second timing intervals is not nearly accurate enough for the demands of the high quality black and white or well balanced colour prints that are required. However, with a small modification, I have found that the timer may be converted to an accurate piece of equipment having a timing range of 5 to 45 seconds in one second steps.

The modification requires four extra components, which are a 5 position two-pole switch (S4), VR5, VR6 and VR7 which are
skeleton presets of the values, 5 kilohm, 10 kilohm and 20 kilohm respectively.

These components form an additional timing circuit which is connected in series with the original (\mathbf{R}_{t}).
Position 1 of the switch has no further resistance and acts as a short circuit; position 2 connects VR5 into circuit, whilst position 3 connects VR6; position 4 connects VR5 and VR6 and position 5 connects VR7 into circuit.

Each position of the new switch is to represent a further one second delay.

Position 1 of course, has no further delay, position 2 however, will give a one second delay, position 3 two seconds etc. when the presets are set as they were in the original timing circuit.

Now, any time, in one second steps may be selected from 5 to 45 seconds by selecting the required 5 second range, plus the required extra time (if any) on the new switch.
D. G. Smith
Emsworth, Hants.

Components

Let me say first of all how much I enjoy your magazine and as a newcomer to electronics I find your Teach-In articles very interesting and also Shop Talk, etc. However, I wonder if I may make a suggestion?
I constructed your Demo-Deck and find that in following this series for a month or so there is a list of the more minor components used in the experiments and I wondered if it would be at all possible, either, preferably, if you could publish the list of all the components that would be required for the rest of this series in one complete list or if possible broken up into the individual months during which they will be required.

The reason I say this is, that I,
like many of your other readers no doubt, have no local supplier of components in my immediate vicinity and it usually means a trip to Edinburgh or Glasgow to purchase these components.
However, if I could have a full list this would make things much easier for me. It would also make it much easier to send off a full list by post to a mail order firm rather than asking for two or three small components every month or so. I wonder if this could be done.

I am very grateful to you and wish you every success for your future publications.

R. L. Grant

 ScotlandIt was our intention to publish an advanced list and in future we shall be publishing, at the end of each Teach-In every month, a list of components additional to those you have already acquired.

Calling Gloucester

Now that I'm receiving your magazine on regular order and greatly enjoying it, I feel that I ought to go a stage further in order to get any lasting benefit from your guidance.

Can I please find out through your pages how many people in the Gloucester area are willing to ask for, and attend, an evening class on useful, basic "everyday electronics"?

Should anyone be interested, could they please write to me at the address given, then provided enough wish it, our local Education Authority can be approached with evidence that the need for such a class does exist.

Many thanks for giving me a chance to ask for these people through your very sensible magazine.
E. L. Payn

82 Innsworth Lane,
Longlevens,
Gloucester
GL2 0DE

MAKE A REY COUNTER FOR YOUR CAR
The 'TACHO BLOCK'. This oncapsulated block will turn any accurate per. counter for any car with normal coil ignition system.
£1 each
OUR VERY POPULAR 3p TRANSISTORS
TYPE "A"" PNP Silicon alloy, TO-5 can.
TYPE "B" PNP Silicon, plastic enc cossulation. TYPE "F" NPN Silicon plastic or RFs.

COMPLETE TELEPHONES

EX-G.P.O. NORMAL HOUSEHOLD TYPE

3	4	Photo Calls, Sun bateries.	50p
B79	4	IN\&007 Sil. Rec. diodes. 1,000 PIV lamp plastic	50p
8日1	10	Reed Switehes, mixed \&ypes larite and smalf	50p
-99	200	Mixed Capacitors. Approx. quantity, counted by weight	50p
H4	250	Mixed Resintorn quancity Approx counted by	50p
H7	40	Wirewound Resistors. Mixed types and values.	50p
H8	4	ByI27 Sil. Rees. 1000 PIV. 1 amp. plastic	50p
н9	2	OCPT Lisht Sensitive Photo Tronsiztor	50p
H	50	NKTI55/2.59 Germ, diodes, brand new stock clearance	50p
H18	10	Oc71/75 uncoded black elass type PNP Gorm.	50p
मां	10	OCBI/81D uncoded white glass type PNP Germ.	50p
H28	20	OC2001/2/3 PNP silicon uncoded TO. 5 can	50p
H29	20	OA47 Eotc bonded dioder codod MCS2	50p

NEW UNMARKED UNTESTED PACKS

36	150	Germanium Diodes	50p
Be3	200	call croe	50p
814	100		50p
886	50	sil. Diodes sub. min . IN914 and IN9I6 type	50p
B88	50	Sil. Trans. NPN, PNP 	50p
$\overline{81}$	50	Germanium Transitors	50p
н6	40	$\begin{aligned} & \text { 250mW. Zeneí Doiodes } \\ & \text { DO-7 Min. Glass Tyos } \end{aligned}$	50p
Н10	25	Mixed volis, it wast Zeners Top hat type	50p
मा\%	20	3 amp. Silikon Stud Rectifiers. mixed volss	50p
H13	30	Top Hat Silicon Reccifiers, 750 mA . Mixed valts	50 p
साठ	8	Experimenters" Pah of incesrated	Op
H20	20	By126/7 Type Silicon Rectiflars I amp plascic. Mixed volts.	p

FULLY TESTED AND MARKED SEMICONDUCTORS

	80	-	5
Ac107	0.15	-ciro	0.23
${ }^{\text {ACP }} 126$	0.15	-c171	0.23
${ }^{\text {ACPI } 127}$	0.17	OC200	0.25
${ }_{\text {A }} \mathbf{C} 128$	0.15	OC201	0.25
${ }^{\text {ACl7 }} 1$	0.20	26301	0.13
Acri7	$0 \cdot 20$	26303	0.13
A239	0.30	2N7II	0.50
AFIP6	$0 \cdot 20$	$2 \mathrm{~N}^{1102}$-3	0.15
AFF39	0.30	2N1304-5	0.17
BC154	$0 \cdot 20$	2 N 130067	0.20
BC107	- 10	${ }^{2 N 1308-9}$	0.23
${ }^{8 \mathrm{BCClOg}}$	$0 \cdot 10$	2NJB19FET	. 45
${ }_{\substack{8 C 109 \\ \text { BFI94 }}}$	\bigcirc	Powar	
${ }_{81274}$	0.20	Tranziesors	
beyso	0.15	OC20	0.50
BSY25	0.13	OC23	($\begin{aligned} & 0.30 \\ & 0.35\end{aligned}$
BSY26	0.13	-0.26	- 0.25
${ }^{\text {Bran }}$	0.13	\bigcirc	0.30
${ }^{\text {BrY28 }}$	\bigcirc	OC35	0.25
${ }_{\text {BSYOSA }}$	- 0.10	OC36	0.37 0.30
OCA1	0.13	${ }^{\text {A OUY } 10}$	-
OC44	- 0.13	25034	0.25
Oct	- 0.10	${ }^{2} \mathbf{N 3 0 5 S}$	0.50
$\mathrm{OC7}$	0.10	Diodas	
ося	0.13	MY42	0.10
${ }^{\circ} \mathrm{OC810}$	0.13	OAM95	0.09
${ }^{\circ} \mathrm{CB3}$	0.18	OA79	0.09
OC139 0 0	-	ON814	- 0.00

F.E.T. PRICE BREAKTHROUGH!!

This field effect transistor is the 2N3823 In a plastic encapsulation, coded as $3823 E$. te is also an excelData sheet supplied with device. $1-1030 \mathrm{p}$ each, $10-5025 \mathrm{p}$ each, $50+20 \mathrm{p}$ each.

BULK BUYING CORNER

NPN/PNF silicon Planar Trannistors, mixed, untested, similar to $2 \mathrm{NFOS} / 6 \mathrm{~A} / 8$. BSY26-29, BSY95A, BCY70, oce. 42 per 500,
Silicon Planar NPN Plastic Transistors, untested. similar to 2N3707-1 1, etc:, 44-25 per 500; 6 per 1,000.

Silicon Planar Diodes. DO-7 Glass, vimiliar to OA200/202. BAY31-36, 4.50 per 1,000

NPN/PNP Silicon Planar Tranuivtora, Plaxtic TO-18, similar ${ }^{\text {to }} \mathrm{BCII} 3 / 4, \mathrm{BCI} 53 / 4$. BFI53/160. etc., e $4-25$

OC44, OC55 Transistors fully marked and tessed,
$300+$ at Ap each; $1,000+$ at $6 p$ ench.
OC71 Transistors, fully marked and eested, $500+$ as 6 each; $1,000+$ at $5 p$ each.
3823E Field effect Transistors. This is the 2N3823 in
Plastic Case, $500+13 p$ each; $1,000+10 p$ each.
I amp Ministure Plastic Diodas:
 N4004, $500+$ at $5 p$ each, $1,000+284 p$ each.

FREE ${ }_{\text {for }}^{\text {catalogue }}$

transistors, RECTIFIERS, DIODES, INTEGRATED CIRCUITS, FULL PRE-PAK LISTS

(1) RELAYS FOR VARIOUS TYPES = P\& ${ }^{25} \mathbf{p}$
 COLOUR T.V. LINE OUTPUT
 Designed to give 25 kV when used with PL509
 and PY500 valves. As removed from colour
 receivers at the factory. NOW ONLY 50 p each
 Now ONLY 50 ench post and pocking $23 p$.
 Quantity B8105
 B8105 Varieap Diodes
 OC71 or 72 Fully Tested
 Unmarked
 $\begin{array}{ccc}1-10 & 10-50 & 50+ \\ 10 p & 8 p & 6 p\end{array}$
 Matched secs 1-OC44 and 5p 5p 4p
 0447 Gold-Bonded Diodes 25p 20p 15p
 OA47 Gold-Bonded Diodes, Marked and Tested
 Marked and Tested
 $$
3 p
$$
 24, 27, 30, 36, 43 Volts
 10 -watt Zener Diodes 5.1 .
 $8.2,11,13,16,24,30$.
 100 Volts
 $\begin{array}{lll}20 p & 17 p & 15 p \\ 25 p & 20 p & 15 p\end{array}$
 $\begin{array}{lllll}\text { Micro Switches, S/P, C/O } & 25 p & 20 p & 15 p \\ \text { f-amp Bridge Rec's } & 25 \text {-vale } & 25 p & 22 p & 20 p\end{array}$
 INTEGRATEO CIRCUITS
 SL403D Audio Amp.3-Wat ts 2.00 $\quad 1.95 \quad 1.80$ 709 C Linear Opp. Amp. 25p 20p 15p Gates, Factory Marked and Tested by A.E.I.
 J. K. Flip-Flops Factory.
 Marked and Tested by
 A.E.I. Decade Counser
 L914 Dual 2 I/P Gate
 $\begin{array}{lll}20 p & 18 p & 13 p \\ 50 p & 45 p & 40 p\end{array}$ $\begin{array}{lll}30 p & 45 p & 40 p \\ 40 p & 35 p & 30 p\end{array}$

LOW COST DUAL INLINE I.C.
SOCKETS
14 pin type at $15 p$ each
16 pin type at 16 p each

BOOKS

We have arge selection of Reference and
Technical Books in stock.
These are iust two of our popular lines:
B.P.I Transiszor Equivalente and

This includes many thousands of British U.S.A., European and C.V. equivalents.

Da Book gach Edition:
Data Book 9th Edition;
Characteristics of 3,000 valves and tubes,
4.500 Transistors, Diodes, Rectifiers and Integrated Circuits
Send for lists of these English publications.
lease send me the FREE bi-Pre-Pok Catalague.
NAME.
ADORESS

MINIMUM OROER 50p. CASH WITM ORDER PLEASE. Add 10 p pose and packing p

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder, there is an alternative - Project 605.
In one neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 30 watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase.power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.

Guarantee II within 3 months ol purchasigg Project 605 directly trom us, you are dissatisfiad with it, we will-refund your money at once. Each module is graranteed to wort perfectly and should any defect arise in normal use wa will service it at once and without any cost to you whatsoever provided that it is returnad to us within 2 years of the purchase date. There will be a small charge for sevice thereatrer. No charge lor postage of surface mail, Air-mail charged al coss.

Sinclair Radionics Lid., London Road., St. Ives, Huntingdonshire PE1 74 HJ . Telephone: St. Ives (04806) 4311

Specifications

Output-30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inputs-Mag. P.U. - 3mV correct to R.I.A.A. curve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio -50 to 150 mV . |Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Better than 70dB.
Distortion - better than 0.2% under all conditions.
Controls - Press buttons for on-off, P.U., radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 io -15 dB at 100 Hz . Volume. Stereo Balance.
Channel matching within $1 \mathrm{d8}$.
Front panel - brushed aluminium with black knobs.
Project 605 comprises Stereo 60 pre-amp/control unit, two Z-30 power amplifiers. PZ-5 power supply unit, the unique new Masterlink, leads and instructions manual complete in one pack. Post free
£29.95

To SINCLAIR RADIONICS LTD., ST. IVES, HUNTING DONSHIRE PE174HJ
 Please send Project 605 postfree \square Details and list of stockists

Name.
Address.1 .
for which I enclose $£ 29.95$ cheque/money order/cash.
E.E.7B

FIND BURIED TREASURET
Transistorised Treasure Locator This fully portable transia torised metal locsto detects and trecks down buried meta ton with loud andible sound (no phones used)-unes any (no phones used)- unea any inside-no connectlons needed. FIHDS GOLD, SILVER, COIAS, JEWELLERY, ETV. ETC. Rxiremely sensi tive, will signal prevence

- certair abjects bupted
ledg oround No Know buitt with eass in one short evening by anybodt from rine veart of age upwards, thith the clluntrated instructions- Ioca standard PP3 bettery. No soldering necessary. KI fincludes nota, screws, wire, etc. OHLT $88 \cdot 85+25 p$ p. \& p. (Bectlonal handle a separately. Msde up looks worth $\mathbf{1 1 5}$.
Edvesdrop on the exciting world of Aircraft Communications
RCRAFT BAND ORLY
CONYERTOR
Listen in to AIR. Liaten in to ALk: PLAMES, JETPLANES. Eawesdrop on ground approach control, air port towes, Hear for vourself
the disciplined poices hiding tenseness on talk downe. Be With them when they have to take nerve ripplog decisions in emergencies Tune into the international distress frequency. Covers the afrcraft frequency band inciuding HEATHROW, GATWICK, LUTOR, RINGWAE, PRESTWICX, ETC. ETC. CLEAR A8 A BELL. This fantastic fully trabisistorised instrument can be buils oy anyone ober nine Fally illustrated simple instructions take you Ftep-by-step. Uses standard PP3 battery. All you do is ertend rod acrial, place close to any ordinary medium wave radio (even tiny portables). NO COHFECTIONS WHATEVER NEEDED. SEND ONLY $22 \cdot 86$ + 20 p . \& p. for kit including care, nuta, screws, wire, etc. etc, (parts avallable

ELECTRONIC ORGAN
onse f3.25
Don'l confues
wild ordinary -imply blow air over moulh-argan type reeds etc. Fully tranaistorised. sELT COWTAINED LOUDSPEAKER. Fifleen aeparate keye span Two full oetaves-play the "Yellow Rose of Treras", play Sileni Nigh", play "Awld Lang Syme" ete. ete. You have the thrill and excitement of building it together with the plearure of playing peal, live, portable electronic organ ELETRONICS REEDED. No solderiog necessary, Simpio as ABC to make. Anyome over nine years can buikd it easily in one shorl stening following the fully illuatrated
 +25 p p. \& p. for kit, including case, nuts, screws, simple instructions. etc. Une atandard battery (parts avallable neparately). Have all the pleasure of making it yourself, onish with an exciting gift for romeone.
READY BUILT \& TESTED TREASURE LOCATOR MODULE
NSISTOR RADIO fi. 9.75
Anyone from 9 reara up can follow the BC fully illustrated in. structions. No soldering necesaary. 76 atations logged on rod aerial in 30 mins. Rusia, Atrica, 08A, 8 witserland, atc Experience thrills of world wide news, sport cuate, Uses PP3 battery, gize only $3^{\prime \prime} \times 41$ z $11^{\circ} 0$ aly $22 \cdot 76+20 \mathrm{p}$ p. \& p. Kit include coblnet, screws, instructioms, etc. (Parts available separately).

INGENIOUS ELECTRONIC

SLEEP INDUCER

CAN'T BLEEP AT NIGHTS WAKE UP IN TEE NIGET AND CANT GET OFF TO SLEEP. AGAINP. WOULD YOU TO SATIBFYING SLEEP EVERYNIGET Then build this ingeolous electronic sleep inducer. It even stops by iftelf 10 you don' have to worry about il being on all night! The loudspeaker produces soothing audiofrequency sounds, continuously repeatedbut as time goes on the sound gradually becomes less and less-until they eventuaily ceave altogether, the effect if has on people If amazingly werv similar to hypmosis. A con trol is provided for adjusting the length of times, etc., sll tranaiator, can be buift by hours. No knoriedge of electronles or radlo needed. Extremely almple, essy-to-follow step-by-atep, fully llluptrated instructions included. Wo soldering recessary. Workn ofi atandami battertes, extremely economical. Size only $3^{\circ} \times 41^{\circ} \times 11^{\prime \prime}$-take it anywhere. KIt includes casc, nuts, wire, merewh, etc. separately).
 f3.25

Y OL L I

 TORISED PRIN. TED CIRCUIT METAL DETEC TOR MODULE. Roady brile
and teated-just plug in a PP3 battery and 'phones and it'n working. Put it fo a case, Bcrew a handle on and YOU HAVE A PORTABLE TREASURE LOCATOR EASILT WORTA ABOUT 8RO! Extremely sensitive -penetrates through earth, sand, rock,
 CAL RELTCG, BURIED PIPES ETC Bignals eract location by "-beep" pitch Increasing as you near buried metallic objects. So tevsitise it seils delect errtain objeets buried SEYERAL FEET BELOW GROUND! GIVES CLEAR SIGNAL ON ONE COIN $44 \cdot 95+30 \mathrm{p}$ cart. etc. (High quallty Danish Stethoncope heacphones 28.75 extra if required.) EXAMINE AT EOME FOE 7 DAYS. YOUR MONEY REFUNDED IT FULL IF NOT 100% DELIGETED.

CONCORD ELECTRONICS

BUILD 5 RADIO AND ELECTRONIC PROJECTS £2:45
Amaztng Radio Conatraction set! Become a radio expert for $22 \cdot 45$. 4 com lete Home Radio Course o experiesce needed. Parts includiog simple instructions for each deslgn. Hustrated step-by-step plass; all transistore, loudspesker, personal phone, knobs, screws, ecc. all 500 need. Presentation box 45p axtra an illus. (tif required) (parts available $42 \cdot 45+20$ p p. \& p.

SOOTHE YOUR NERYES
RELAX WITH THIS AMAZING

RELAXATRON

CUTS OUT NOIGE POL.

 LUTION-8OOTEES YOUR NEBVES! Don't undereatimate the unes of thais ian RELAXATRON is basically a plak nolse generator. Bealdes extraneous unwanted sounds, it has other very interesting propertles. For Instance, many people find a rainstorm
YATES ELICTRONICS

(flitwick) Lid

AESISTORS

W lakra high stability carbon film-very low noise-capless construction. W Mullard CR25 carbon film-very sm
Erie wire wound. $\frac{1}{2} \mathbf{W} 2 \%$ Electrosil TR5.

Quantity price applies for any selection. Ignorefractions on total order

DEPT. E.E.
ELSTOW STORAGE DEPOT,
KEMPSTON HAROWICK. BEDFORD.
C.W.O. PLEASE. POST AND PACKING,
PLEASE ADD IOP TO ORDERS UNDER 2 . Catalogue which contains data sheers for mose of the components listed will be sent free on request. 5p stamp appreciated. 10\% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYESTER CAPACITORS C296 SERIES
 $0.33 \mu \mathrm{~F}, 11 \mathrm{p}, 0.47 \mu \mathrm{~F}, 13 \mathrm{p} .02 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p} .0 .1 \mu \mathrm{~F} 3 \pm \mathrm{p}, 0.15 \mu \mathrm{~F}$,
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu, 0.022$
 250 V P.C. mounting: $0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$, Jp. $0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}$ $3+$ p. $0.1 \mu \mathrm{~F}, 4 \mathrm{p} .0 .15 \mu \mathrm{~F}, 0.22 \mu \mathrm{~F}, 5 \mathrm{p} .0 .33 \mu \mathrm{~F}, 6 \frac{1}{2} \mathrm{p} .0 .47 \mu \mathrm{~F}, 84 \mathrm{p} \cdot 0.68 \mu \mathrm{~F}, 11 \mathrm{p} .1 \cdot 0 \mu \mathrm{~F}, 13 \mathrm{p}$ MYLAR FILM CAPACITORS IOOV, MYLAR FILM CAPACITORS 100 V
$0.001 \mu F, 0.002 \mu \mathrm{~F}$,
$0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$,
$0.02 \mu \mathrm{~F}$ $2 \ddagger \mathrm{p} .0 .04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \downarrow \mathrm{p}$.

CERAMICDISC CAPACITORS

100pF to $10,000 \mathrm{pF}$, 2p each.
ELECTROLYTIC CAPACITORS-MULLARD CA26 SERIES
$6 p$ each
 $400 / 4,6 \cdot 4 / 6 \cdot 4,25 / 6.4,50 / 6 \cdot 4,100 / 6 \cdot 4,200 / 6 \cdot 4,320 / 6 \cdot 4,4 / 10,16 / 10,32 / 10,64 / 10$
$125 / 10,200 / 10,25 / 16,10 / 16,20 / 16,40 / 16,80 / 16,125 / 16,1-6 / 25,6 \cdot 4 / 25,12.5 / 25$, $25 / 25,50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40,32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ $25 / 64,32 / 64.20 / 25,1 / 40,4 / 40,8 / 40,16 / 40,3 / 4,5 / 40,0.64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$
Carbon track $5 k \Omega$ to $2 M \Omega$, log or linear (log $\ddagger W$, lin $\ddagger W$).
Single, 12 p . Dual gang (stereo), 40 p . Single D.P. switch 24 p .
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades to $5 \mathrm{M} \Omega$. Horizontal or vertical P.C. mounting (0.1 matrix).
Sub-miniature $0.1 \mathrm{~W}_{\text {, }} \mathrm{sp}$ each. Miniature 0.25 W , op each.

SEMICONDUCTORS									
AC107		BC108	10p	BF	22p	OC71.	12p	IN4006	12p
AC 126	12p	8C109	10p	BY127	12p	$0 \mathrm{C72}$	12p	IN4007	12p
AC127	12 p	BC147	13 p	BZY10	20p	OC81	12 p	2N2926R	9
AC128	12 p	BC148	13p	BZY13	20p	OC82	12 p	2N29260	9
AC131	12 p	BCI49	13p	OAB5	7p	OC82D	12p	2N2926Y	9 p
ADI40	50p	BC157	14 p	OA90	5 p	ORP12	50p	2N2926G	10p
AFII4	20p	BC158	14 p	OA91	$5 p$	IN40NI	6p	2N3055	60p
AF1 15	20p	BC159	14p	OA202	7 p	in4002	10p	2N3702	13p
AF116	20p	BFI79	32 p	OC26	45p	IN4003	10 p	2 N 3703	$11 p$
AF117	20p	BFY50	22p	OC44	12p	IN4004	10p	2N3707	13 p
BC107	10p	BFY51	22p	OC45	12p	IN4005	12p	2N3711	10p
ZENER DIODES$400 \mathrm{mWW} 5 \% 3.3 \mathrm{~V}$ 80 $30 \mathrm{~V}, 15 \mathrm{p}$.				$\left.\left\lvert\, \begin{array}{\|lll\|l}\text { LINEAR IC's (DIL) } & \text { DIL SOCKET } \\ 709 & 50 \mathrm{p} & 741 & 50 \mathrm{p} \\ 710 & 50 \mathrm{p} & 748 & 50 \mathrm{p}\end{array}\right.\right)$					

[^2]

Really amart appearance with space for R.C.S. Amplitera and most modern autochangers. Size $18 \times 16 \times 8$ in Two-tone rexine corered.
GARRARD SINGLE PLAY TA HK II Complete with <10 itereo/mono plug in head. Ydeal Discotheque or $\mathrm{Hj}-\mathrm{Fi}: 10$
Garrard adtochangers with sonotone Cartridses Model 8500 stereo end Wo sapphe

B8R JUNIOR SINGLE PLAYER
rato pick-up
<4.50
EMI PICK-OP ARM with mono xtal and stylus 81.25 . Pil-FI PICK-UP CARTRIDGES, Diamond LP/Btereo 8tereo/Mono 9TA £2.50; GP94 29-50; GP93 $£ 2 \cdot 00$ Sapphire Mono GP91 $\& 1 \cdot 50$; Power-point LP/78. 60
E.M.I. WOOFER AND

〔5.75 Post 25p

omprising a fine example of a Woofer $101 \times 81 \mathrm{in}$. with massive Ceramic fagnet, 4roz, Gaubi 18,000 haes. Aluminium Cone centre to improve midale and top renponse. Alo the F.in.l.
 wetr arm. square har special heg. woight paper cone and magnet Anx 0,000 lines.
mpedsnce Stendsrd
8 ohms
2 watis
Maximum Powe
85 to $18.000 \mathrm{cp1}$
Base Resonance
SUITABLE ENCLOSURE $20 \times 13 \times 9 i n$

1., 19 POST 25p

WEYRAD P50-TRANSISTOR COILS
RA2W Ferrito Aerial. BC. P50/1AC . P50/2CC $470 \mathrm{re} / \mathrm{s}$. rair. Psopscc P50/3V $33 p$
$38 p$ Bpare Cores …...... 3p Driver Trana. LPDT4 Printed Circuit, PCA1 W.B. Taning Gan OPTI OR.
\times in. 20 p .
Mallard Fertite Rod 8×1 VOLUME CONTROLS Long opladles. Midget 8ize İ. ohmil to 2 Mer. LOG or IN. L/S $15 \mathrm{p} . \mathrm{D}, \mathrm{P}$. 25p. Edge SK, S.P. Tranglitor 25p

8in ELAC

HI-FI SPEAKERS

asi cone plastictred roll urround, Larre ceramic mea renonance 55
pa. 8 ohm fm-
pedance. 10
… niol £4•80
800hm Coax 4p. yd BRITISE AERIALITE AERAXIAL-AIR SPACED PRINGE LOW LOSS
Idem 625 and colowr.

BLANK ALUMINIUM CEASsis $18 \mathrm{a} . \mathrm{w} . \mathrm{g}$. Rin. Biden. $7 \times 4 \mathrm{in}$. $45 \mathrm{p} ; 9 \times 7 \mathrm{in} .60 \mathrm{p}: 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 13 \times 9 \mathrm{in} .90 \mathrm{p} ; 14 \times 11 \mathrm{n}$. $95 \mathrm{p}: 15 \times 14 \mathrm{in}$. $99 \mathrm{p} ; 11 \times \mathrm{sin}$. $50 \mathrm{p} ; 16 \times 10 \mathrm{in}$. 1
 $14 \times 3 \mathrm{in} .18 \mathrm{p} ; 10 \times 7 \mathrm{in} .10 \mathrm{p} ; 12 \times 3 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} .28 \mathrm{p} ;$

$1 \pm$ inch DIAMETER WAVE-CEANGE 8WITCEEES 25p. 2 p .2 -wsy, or $2 \mathrm{p} . \mathrm{b}_{\text {-way }}$ or 3 p. $\frac{4}{}$-wey 25 p each. 1 p. 12 -way,
TOGGLE SWITCHES, 3 p .14 p ; dp. 18p; dp. dt. 23 p .
"THE INSTANT" BULK TAPE

ERASER \& HEAD DEMAGNETISER

$200 / 250 \mathrm{r}$. A.C. 22.35 Post
Leaflet 8. A.E.
HI-FI STOCKISTS RETURN OF POST DESPATCH
RADIO COMPONENT

R.C.S. STABILISED POWER PACK KITS All parts and fintractions with Zener Diode, Printed Circuit, Fridge Rectifiers and Double Wound Mains Trans!ormer 12 or 15 or 18 or 20 v . DC voltages available 100 mA or lest 9 or PLEASE STATE VOLTAGE REQULRED. $?$ POST | Petaila 8.A.E. Size $\$ 1 \times 11 \times 1$ in. 22 POST |
| :--- |

GENERAL PURPOSE TRANSISTOR

 PRE-AMPLIFIER BRITISH MADE Ideal lor Mike, Tape P. U., Guitar, Oau be aued with Battery or 12v or H.T. Hine $200-300 \mathrm{v}$ D.C. operation. | For use with valve or transistor equipment. $\quad 90 p$ Post |
| :--- |
| Full instructions supplied. Detalli S.A.E. | NEW TUBULAR ELECTROLFTICS OAN TYPES

 \begin{tabular}{ll|llllll}
$8 / 350 V$ \& 14 p \& $1000 / 25 \mathrm{~V} .$. \& 35 p \& $32+32 / 260 \mathrm{~V}$ \& \ldots \& 18 p

$18 / 450 \mathrm{~V}$ \& 1 pp \& $1000 / 50 \vee \ldots$ \& 47 p \& $32+82 / 450 \mathrm{~V}$ \& \ldots \& 33 p

$32 / 450 \mathrm{~V}$ \& 80 p \& $8+8 / 450 \mathrm{~V}$ \& 18 p \& $350+50 / 895 \mathrm{~V}$

\hline

$25 / 25 \mathrm{~V}$ \& 10 p \& $8+18 / 450 \mathrm{~V}$ \& 20 p \& $32+32+32 / 350 \mathrm{~V}$

$50 / 50 \mathrm{~V} .$. \& 10 p \& $16+16 / 450 \mathrm{p}$ \& 25 p \& $100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$
\end{tabular} $100 / 25 \mathrm{~V} \quad 10 \mathrm{p} \mid 32+32 / 350 \mathrm{~V} \quad 25 \mathrm{p}$

OW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30,50,100,200 \mathrm{mF} .16 \mathrm{~V} .10 \mathrm{p}$.
$300 \mathrm{mF} .12 \mathrm{~V}, 15 \mathrm{p} ; 25 \mathrm{~V} .20 \mathrm{p} ; 50 \mathrm{~V} .20 \mathrm{p}$.
$1000 \mathrm{mF} .12 \mathrm{~V} .17 \mathrm{p} ; 25 \mathrm{~V} .35 \mathrm{p} ; 50 \mathrm{~V} .47 \mathrm{p} ; 100 \mathrm{~V} .70 \mathrm{p}$.
 2500 mF . 50 V . $82 \mathrm{p}, 3000 \mathrm{mP}$. 25 F . 47 p ; 607 . 85 p . $000 \mathrm{mF} .6 \mathrm{~V}, 25 \mathrm{p} ; 12 \mathrm{~V}, 42 \mathrm{D} ; 25 \mathrm{~V}, 75 \mathrm{p} ; 35 \mathrm{~V}, 85 \mathrm{p} ; 50 \mathrm{~V} .95 \mathrm{p}$.

CKRAMIC 1pF to $0.01 \mathrm{mP}, 4 \mathrm{p}$. 8ilver Mic 2 to 5000 pF , 1 p PAPER 350V-0.1 4p. 0.8 13p; 1mF 15p; 2mF 150V 15p. 00V-0.001 to 0.05 4p; $0.15 \mathrm{D} ; 0.25 \mathrm{8p} ; 0.4725 \mathrm{p}$.
SILVES MICA. Close tolersuce 1% 2.2-500pP 8p; 500-2-800 pF $10 \mathrm{p} ; 2,700-5,600 \mathrm{p}$ F $20 \mathrm{p} ; 6.800 \mathrm{p} \mathrm{F}=0.01$, mild 30 p ; each. TWIM GAYG. "0-0" $208 \mathrm{pF}+178 \mathrm{pF}$, 65p; Slow motion dsive $65+365$ with $25+25 \mathrm{pF}$. 50 p 500 pF alow motion, Itandard 5 p ; ma all 3 -yang 500 pF El 1.90
SHORT WAVE, SINGLE, 10pF 30p; 25pF 55p: 60pF 55p. NEON PANEL, INDICATORS 250 V AC/DC Red or Amber 20p. RESISTORS, + w., $\frac{1}{}$ w., $20 \% 1 \mathrm{p} ; 2 \mathrm{w} .5 \mathrm{p} 10$ ohme to 10 meg EIGR 8 TABILITY. $\% .8 \% 10$ ohm to 1 meg. 10 p. Ditto 6% Pseierred values 10 ohms to 10 mer., 4 p . WIRE-WODKD RESISTORS 8 wath, 10 watt, 15 wat

DECCA DECCADEC GARRARD

 MOTOR UNIT MKIISingle play Stereo Mono Dersm hesd and arm head snd arm 101 in . turntsble. Anti-t amble filter Biss companse tion.

METAL PLINTH \& PLASTIC COVER Cut out foady for Garrard or positlon Latest desion £5•50 Covered In black leatherette. Antimagnotlc, $12 \frac{1}{2} \times 14 \frac{1}{2} \times 7 \frac{1}{5 l n}$. Post $25 p$
ALSO AVAILABLE IN SOLID NATURAL MAHOGANY ALSO AVAILABLE
WAX POLISHED FINISH AT SAME PRICE

MAINS TRANSSORME:S AL POsT
250-0-250 $80 \mathrm{~mA} .8 \cdot 3$ ₹. 4 amp. $21 \cdot 50$

 $300-0-300$ ₹. $120 \mathrm{~mA},, 8 \cdot 3$ ₹. 4 s. C.T.; 6.3 т. 2 \&... MIDGET 220 . $45 \mathrm{~mA}, \theta \cdot 3 \mathrm{~F} .8 \mathrm{~s}$. $2 \% \times 24 \times 2 \mathrm{in}$ MINIMAINS $20 \mathrm{~T}, 100 \mathrm{~mA}$. $11 \times 1: \times 11 \mathrm{~m}$. BEATER TRANS, $8 \cdot 8 \% .3 \mathrm{~s}$. Ditto tapped rec. 1.4 ve, $2,8,4,5,6 \cdot 3 \mathrm{~F}, 11$ amp. GENERAL POEPOSE LOW FOLTAGE. Tapped O 80 p t $2 \mathrm{smp} .3,4,5,8,8,9,10,12,16,18,24$ and 80 ₹. 28.25 1 amp., $6,8,10,12,16,18,20,84,30,36,40,48,60, ~ £ 2 \cdot 25$
2 amp. $8, ~ 8, ~ 10, ~ 12, ~ 18, ~ 18, ~ 20, ~ 84, ~ 34, ~ 38, ~ 40, ~ 48, ~ 80, ~$ 8.95 $5 \mathrm{amp} .6,8,10,12,18,18,20,24,80,88,40,48,60.28 .76$ AUTO TRANSFORMERS 115v, to 230 v . or 230\%. to 116 F . $150 \mathrm{w}, 52-25 ; 500 \mathrm{w} . £ 6-25 ; 750 \mathrm{w}$. $210 ; 1000 \mathrm{w}$. 214. CEARGER TRANSFORMERS. Inpat 200/250v.
 PUL WAVE BRDGE CRARGER RECTIFIERS

ALL MODELS "BAKER SPEAKERS" IN BTOCK
BAKER I2in. MAJOR $£ 9$
$30-14.500$ c.p.s., $1 \% \mathrm{~m}$. double cone, wooler and tweeter cone torether with a BAKER ceramic megnet asembly having a fiax density of 14,000 gause and a tetal tux of $145,000 \mathrm{Ma}$ [welin, Bass remonance 40 c.p.a. Rated 3 or 8 or 15 ohms. Post Free Module lit, $30-17,000$ c.p.e with iweeter, cromover, Datfle and
instructions. $|\mid \cdot 50$
BAKER "BIG-SOUND" SPEAKERS
"Group 25" "Group 35' "Group 50"
 3 or 8 ut 15 ohm 3 or 8 or 15 ohm 8 or 15 ohm TEAK RI-FI SPEAKER CABINETS. Fluted wood tront For 12 in , or 10 in, din. spesker $20 \times 12 \times 9 \mathrm{iu}$. 89 . Post 25 p For $18 \times 8 \mathrm{in}$. or 8 in . speaker $16 \times 10 \times 9 \mathrm{in}, \quad 35$. Post 85 p

GOODMANS $6 \frac{1}{2}$ in. MIFI WOOFER 8 ohm, 10 watt. Large ceramic magnet. 8pwcial Cambric cone surroama, Frequencs respimenclosures syriems, etc. \&

ELAC CONE TWEETER
The moving coil liaphragm giver a good radistion pattern to the higher Irequenciel and a amooth extension ol tokal respone $3 \mathrm{from} \times$ \&in. deep. Rsting 10 wstta .3 ohm oz 15 obm models. ≤ 1.90 Postiop.

SPEAEER COVERING MATERIALS, SAmplen Larte 8.A.E Horn Tweeterl $2-16 \mathrm{kc} / \mathrm{s}, 10 \mathrm{~W} 8$ ohm of 16 ohm 81.50 De Lure Horn Tweetern $2-18 \mathrm{Kc} / \mathrm{s}, 15 \mathrm{~W}, 15 \mathrm{ohm} 83$ TWO-WAY 3000cpl CROss0VERS or 8 or 15 ohm $86 p$ SPECTAT OFFER! 80 ohm $2 t \mathrm{fn}$; 2tin. 35 ohm . 2in.; 3in $85 \mathrm{ohm}, 21 \mathrm{in}, \mathrm{dia} ; 81 \mathrm{in}$ dia. $; 6 \times 4 \mathrm{in} . ; 8 \times 5 \mathrm{in}$. f EACE $15 \mathrm{ohm}, 3 \mathrm{~g} \mathrm{in}$. dis.; $6 \times 4 \mathrm{in}$. $7 \times 4 \mathrm{in}$.
8 uhm. $81 \mathrm{in} .8 \mathrm{in} .5 \times 3 \mathrm{in}$
LOUDSPEAKERSP.M 3 OHMS. $7 \times 4 i n .21-25 ; 61$ in 21.60 ; 8×3 in. $21.60 ; 8 \times 21 \mathrm{in} .90 \mathrm{p} 8 \mathrm{in} .51 \cdot 75 ; 10 \times 61 \mathrm{n} .2180$. EICEARD ALLAN TWIK CONE LOUDSPEAKERS 8 in . dis. 4 watt; 10in. dia. 5 watt; 12in, dia
VALVE OUTPUT TRAES. 85p; MIKE TRAIS. 5091 25p 5 WATT MULTI-RATIO, 3,8 and 16 ohme 80 p .
BAKER 100 WATT
ALL PURPOSE TRANSISTOR
AMPLIFIER
4 inpats apeoch and mutic. Mixing facilities
 Garsinteed. Details S.A.E.

BARGAIS CEARIEL TRAMSISTOR MONO TXER Add musical highlighta and sound affecte to recordinge. Wt1 mis Microphone, records, tape and tuner $\quad \mathbf{~ W} 50$
with separate controli into single outpat. 9 volt. with separate controli into single outpat.
STEREO VERSION OF ABOVE 24.50 .
BARGAIN FM TUNER $88-108 \mathrm{Mc} / \mathrm{s}$ Six Trangimor. 9 volt Printed Circult. Calibrated alide dial tnning.
Walnut Cabinet. Size $7 \times 5 \times 4.50$
$4 i n c h$ BARGATH FM TUNER as above less cabinet〔8.85

COAXIAK PLUG 6p. PANEL SOCKETS 6p. LIHE 18p. OUTLET BOXES, SURFACE OR FLUBH 25p.
BACARCED TWTN FEEDEERS Sp Yd. 80 ohme or 300 ohms. Chrome Lead Socket 46p. Phono Plagi 5p. Phono gocket 5 p . Chrome Lead Socket Chp. Phono Plaga 5 p . Phono gocket 5 CD . SOCEET8 Chaesis 3 -pis 10p; 5 -pin 10p. DIN SOCEETS Lead
 VALVE HOLDERS, 5D; CERAMIC 8p; CANS 5p.
E.M.I. TAPE MOTORSPont 18y. 120 v. of 840 v . AC. 1.200 r.D.m. t pols
 BALFOUR GRAM MOTORS 120 v . of 240\%. A.C. 1.200 z.p.m. $\$$ pole

Everyday Electronics Classified Advertisements

RATES: 7 p per word (minimum 12 words). Box No. 7p. extra. Semi-display - $£ 4.50$ per single column inch. Advertlsements must be prepaid and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House Farringdon Street, London EC4A 4AD.

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SWB 4UJ.

MEN! You can earn 550 p.w. Learn computer operating. Send for FREE brochure-London Computer Operators Training Centre G22 Oxford House, 9-15 Oxford Street, London, W.1.
 cribes the easiest way to pass A.M.S.E., A.M.I.M.I., City \& Guilds (all branches), Gen. Cert., etc., and gives details of courses in all branches of engineering Mechanics, Electrical, Civil, Auto, Aero, Radio, TV, Building, etc. You must read this book.

Send for your copy today-FREE!
B.I.E.T. B125, Aldermaston Court, Rearling, RG7 4PF
Accredited by the Councll for the Accreditation of Correspondence Colleges BRITISH INSTITUIE OF ENGINEERING TECHNOLOGY

SERVICE SHEETS

SERVICE SHEETS (1925-1971) for

 Televisions, Radios, Transistors, Tape Recorders, Record Players, etc., by return post, with free Fault-Finding return post, with free Faut-Finding Guide. Prices from 5 p. Overmodels available. Catalogue
mp models available. Catalogue 13p. Please send S.A.E. with all orders/
enquiries. HAMILTON RADIO, 54 enquiries HAMILTON RADIO, 54
London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

RECEIVERS and COMPONENTS

Send now for our
ILLUSTRATED COMPONENT EQUIPMENT CATALOGUE
SLIDE AND ROTARY LAMP
DIMMER CATALOGUE
10p each-post free
YOUNG ELECTRONICS
54 Lawford Rd., London, NW5 2LN 01-267-0201

COMPUTER PANELS 5BC108, diodes, 4-50p post 10p. PANELS WITH SILICON AND GERMI TRANS. at least 50 . $6-\Sigma 1.00$ post 15 p . UNIT WITH 4LAL POT CORES + 112% CAPS 50 D post 15 p . ICs 7400 SERIES ON PANEL(S) 10 - 75 p post 10p. FALLOUTS 5-130. ORP12 on panel
ex equlpt. 350 CD. BANK 20 WIRE ENDED NEONS ex equipt. 35 p cp. BANK 20 WRE ENDED NEONS PANELS ETC
7LB ASSORTED COMPONENTS $ع 1 \cdot 30 \mathrm{cp}$.
J.W.B. RADIO

75 HAYFIELD ROAD SALFORD 6 LANCS MAIL ORDER ONLY

FOR SALE

ELECTRONIC COMPONENTS for sale, cheap clearing laboratory, write for detafls. G. Smith, 3 Hart Road, Old Harlow, Essex.

MISCELLANEOUS

BEFORE BUYING Hi-Fi equipment; buy Audio Supply's new 105 page photographically illustrated catalogue (60 p). Fair cash terms and service. Our associates manufacture records Our associates manufacture records from customers' tapes. Specify require-
ments to Sound News, 18 Blenheim Road, London W4 1ES.

AUDIBLE CONTINUITY AND

 VOLTAGE TESTERSType D65. Suitable for Circults up to 2.5 ohms. $£ 2.50$ each

Type D67. Suitable for Circuits up to Type 10 k ohms. $£ 3.50$ each.
Type D71. from $10 \mathrm{k}-5 \mathrm{~m}$ ohms. $£ 4.55$ each
plus 10p Packing and Pastage. Coventry Controls Limited, 49. Allesley Old Road, COVENTRY. CV5 8BU.

UNIMIXER 4 S mono/stereo mixing unit $£ 52$. Recent reviews, specs, from manufacturers; Soundex Ltd., 18 Blenmaim Road, London W4 IES.

12 VOLT FLUORESCENT LIGHTS

 Bear Power Cuts, 12 ins 8 wate Tube, ideal for Caravan, Ten, Emergency Lighting, ese. fully Transistorised, Low Batrery Drain. Fully Transistorised, Low Batzery Drain, With ON/OFF Switch and 12 V Socket to run other Lights or 12 V Equipment.
 Unbeatable at $\$ 3.30$
 pose paid
 or in kit form $£ 2.90$
 Easy to construe
 SALOP ELECTRONICS Callers welcome 23 Wyle Cop
 Shrewsbury, Shropshire Large S.A.E. for lists

CHROMASONIC ELECTRONICS is well and living at 56 Fortis Green Road, London N 103 HN . 40 page illustrated catalogue 20 p post free.

JOHN SAYS...

RING MODULATOR by Dewtron is professional, eransformerless, 5-transistor, has adjustable F1/F2 rejection. Module 67 . Unit 88.90 . WAA-WAA Pedal kit of all parts, incl. all mechanics \& instr. Only 62.95. AUTO RHYTHM from Dewtron modules. Simple unit for waltz, foxtrot etc. costs $\mathbf{E} 18.00$ in modules. SYNTHE SISER MODULES and other mlracles. Send $15 p$ for illust. list.
D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.

NO NEED TO WORRY ABOUT A TRANSMITTING LICENCE
because this GPO approved transmitter/ recelver kit does not use R.F. and you can get one easily. Your transmissions will be virtually SECRET since they won't be heard by conventional means. Actually It's TWO KITS IN ONE because you get all the printed-circult boards and components for both the transmitter AND recelver. You're going to find this project REALLY FUN-TO-BUILD with the EASY-TO-FOLLOW instructions. An extremely flexible design with quite an AMAZING RANGE-has obvious applications for SCHOOL PROJECTS, LANGUAGE, LABORATORIES, SCOUT CAMPS, etc.

GET YOURSI SEND $£ 5 \cdot 50$ NOW
S.A.E. for detalls

TO: BOFFIN PROJECTS' DEPT. KEE.
4 CUNLIFFE ROAD,
STONELEIGH, EWELL, SURREY

FLICKDIM SWITCH. Dim up to 500 watts at a flick. A must for TV, children's bedrooms, etc. White unit easily replaces lighting switch. Only 70p with money back guarantee. 5 p postage. E. Griffiths, 6 Stanway Close, Alkrington, Middleton, Manchester.

PLEASE BE SURE

то
MENTION
EVERYDAY ELECTRONICS
when replying to
advertisements

RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included. £1 post free. Instructions included. £l post free. CROWBOROUGH ELE CTRONICS
(E.E.), Eridge Road, Crowborough, Sussex.

SOUND SUPPLIES
 LOIGHTON) CO. LTD.

The DIMMASWITCH is an attractive and efficiene dimmer unit which fies in place of the normal lighe switch and is connected up in exactly the same way. The ivory mounting plate of the DIMMASWITCH matches modern electric fittings. Two models are available, with she bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $\mathbf{2 0 0 - 2 5 0} \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Wast $\mathbf{£ 3 \cdot 2 0}$. Kit Form $\mathbf{£ 2 . 7 0}$
300 Watt- $\mathbf{2 2} 70$. Kit Form $£ 2.20$ All plus 10p post and packing. Please send C.W.O. to

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883,
As supplied to H.M. Government Departments.

INSTRUMENTAL AUDIO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v BATTERY (not supplied). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: $\mathbf{E 2} \cdot 60$ post paid.

CREATE "PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY enables you to create phase EFFECT AT THE TURN OF A KNOB. OPERATES FROM 9v BATTERY (not supplled) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULL INSTRUC-

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

98a, LICHFIELD STREET WALSAIL, STAFFS. WSI IUZ

BODINE TYPE N.C.I. GEARED MOTOR
VARIABLE VOLTAGE TRANSFORMERS
OUT 230/L40V a.c. $50 / 60$ OUTPUT
 $230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS
 Smith. Built-in either R.PM cw Rearbox. 50 RPM 2 R.P.H. Gw I5 R.P.H. A/cw cw=Clockwise.
A/CW $=$ Anti-clockwise rotation
Fraction of makers' price. Allat $75 p$ incl. P. \& P. CONSTANT SPEED, PRE. CISION MADE 6 VOLT D.C. GOVERNED MOTOR
Seven pole armature, ballrace bearing. 2, 750 r.p.m. Length 24, Dia. H, Shaft length físhaft dia. 40 mA . Normal load 350 mA . Ideal for portablo recorders, etc. etc. Price $61 \cdot 25 p$ \& (Mfr. by 'Magnetic Devices Led.) "Crouzer' moror. Drives 15 cams each operating a 10 amp miero switch. Cams efo
 nations. Ideally suited for machinery control, automation, etc. Also in the field of entercainment, for chaser lights, animated displays, eec. NEW PRICE: 65.75. P. B P. 25p.

ELECTRONIC

 organ KitEasy to build. Solid State. Two full octave (less sharps and flats). Fitted hardwood case. Powered by two of parts including speaker. etc. together with full instructions and 10 tunes. Price 63-00. P. \& P. 22p. 50 in I ELECTRONIC PROJECT KIT
50 easy to build Projects. No solder ing, no special tools required. The
kit includes Speaker. Meter. Relay, Transformer, plus a host of other components and a 56 -page instruction leaflet. Some examples of the 50 possible Projects ara: Sound Level Meter 2 Transistor Radio, Amp
etc. Price $\mathbf{8 7} 75$. P. \& P. 30p.

CRYSTAL RADIO KIT
Complete set of parts, including: Crystal Diode, Ferrite Aerial, Drilled Chassis, and Personal Ear Piece. No soldering, easy to build, full step by
step instruction. $\& 1.75$ inc. post.
\qquad
VENNER Electric Time Switch
$200 / 250 \mathrm{~V}$ Ex. GPO. Tested. Manually set 2 on, 2 off every 24 h . Override
switch: $10 \mathrm{~A} \quad 62.75,15 \mathrm{~A} \quad \mathbf{3}-25$, 20A E3.75. P. \& P. 20p. Also available with solar dial ON dusk,
D.c. AMMETERS $\overline{\text { NEW! }}$

IA, 5A, I5A, 20A, \&1.75.
$0-300 \mathrm{~V}$ a.c. 11.90 , incl. P .

"HONEYWELL" LEVER

OPERATED MICRO SWITCH 15 amps. 250 vole NEW in maker's NEW in maker's

INPUT 230/L40V a.c. 50/60 OUTPUT
VARIABLE 0.260 V
All Types (and Spares)
from $\frac{1}{2}$ to 50 amp from stock. SHROUDED TYPE
1 a mp, $57.00 \quad 2.5 \mathrm{amp}$ m 48.05 5 a mp, 611.75 $10 \mathrm{amp}, \mathrm{cz2} \cdot 50 \quad 20 \mathrm{amp} .449 \cdot 00$ $15 \mathrm{amp}, 625.00 \quad 25 \mathrm{amp}, 658.00$ 37.5 amp. CB2.00 50 amp, 898.00 OPEN TYPE (Pand Mounting) $\frac{1}{2}$ amp. ©4.85.

NEW POWER RHEDSTATS

100 WATT. I ohm, 10A; 5 ohm, 4 7 AA: 10 ohm, 3A: $25 \mathrm{ohm}, 2 A ; 50 \mathrm{ohm}, 1.4 \mathrm{~A}$: $100 \mathrm{ohm}, 1 \mathrm{~A} ; 250 \mathrm{ohm}, 0.7 \mathrm{~A}$; 500 ohm ,

 each. P \& P. 4 in Shaft length fin, dia. Hin. All at $6 l-65$ 50 WATT. I/5/io/25/50/100/250/500/1/1-5/2.5/5kR. All at 25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 \mathrm{k} \Omega$. All as 90peach. P. \& P. 7 tp

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon whit light flash tube. Solid state siming and eriggering EXPERIMENTERS EEONOMY KIT
Speed adjustable I to 36 Flash per sec. All electronic components including Veroboard 5.C.R. Unijunction Xenon Tube and instructions 66.30, plus 25p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, etc. Roller tin printed circuit. New trigger coil, plastic thyristor. Speed adjustable $1-80$ f.p.s. Price \&10-50. P. \& P. 50p. HY-LYGHT STROBE MK I\|I
This strobe has been designed and produced for use in large rooms, halls and the photographic field and utilises a silica plug-in tube for longer life expectancy, printed circuit for easy assembly, also a special trigger coil and output capacitor. Speed adjustable $0-30$ f.p.s. Light output approx. 4 joules, $¢ 12.00$. P. \& P. 50 p . MPETAL CASE, Including reflector. E4.00 P \& P. 450 Post paid with kit including reflector. 84.00 P. \& P. 450

THE 'SUPER’ HY-LYGHT KIT

Approx. four times the light output of our well proven Hy-Lyght strobe. Incorporating:
Heavy duty power supply.
Variable speed from 1-23 flash per sec.
The brilliant lighe output of the "SUPER" HY-LYGHT gives fabulous effeets wish colour filser
Never before a Strobe Kit with so HIGH an output at so LOW a price. ONLY 20 plus $75 p$ P. \& P. METAL CASE specially designed for the super Hy-Lyght Kit including reflector 87.00 P. \& P. 2. 45 p . 7-inch POLISHED REFLECTOR
Ideally suited for above Strobe kits. Price 53 p, P. \& P w.

RELAYS ${ }^{\text {New }}$ RIIEMENS PLESSEY, etc. Minioture
 (i) Coil ohms; (2) Working d.e. volts; (3) Contracts; (4) Price
(HD) Heavy Duty. All Pose Pald. 12 VOLT D.C. RELAY
Three sets clo contacts rated at 5 amps. 78p incl. P. \& P (Similar to illustration below.)
'DIAMOND H' 230 VOLT A.C. RELAYS 는 (UNUSED)
Three sets $/ 10$ contacts rated at 5 amps. P \& P.)
"KEY SWITCH" 230 VOLT A.C. RELAYE "\#DI. UU One set c/o contacts rated at 7.5 amps. BOXED. Price: 40 p . P \& P 5p . (100 lots $\$ 32.00 \mathrm{incl}$. P \& P.)

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
Dept. E.E. 57 BRIDGMAN ROAD, LONDON, W4 5BB Phone 01. 7951560

CRESGENT munt MAIL ORDER DEPT.
 No. II MAYES RD.
 LONDON
 $11 \& 40$ MAYES ROAD. LONDON NR2 GTL 8883206
 ONDON N 22
 6 TL
 FOR THE HOME CONSTRUCTOR OUR SHOPS ARE OPEN ALL DAY FROM 9 A.M. TO 6 P.M. 6.30 P.M. ON FRIDAY (WE CLOSE ALL DAY THURSDAY) 13 SOUTH MALL, EDMONTON, N•9 8031685

F Yulvit Fill fow Tons

The'New Picture-Book'way of learning BASC ELECTRICITY(5vols)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning rechniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gainiag mastery over these subjects.

TO TRY IT, IS TO PROVE IT

Thle carcfully p:anned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications.

WHAT READERS SAY

"A MATHEMATICAL IDIOT"

They have an easy approach to learning that a mathematical idiot like myself can easily understand. K.L. Y., Ashon-u-Lyme.

"WAS AMAZED"

I was amazed how easy it was to read and learn. L. Y.C., Addington.
"FIRMEST RECOMMENDATION"
You have my firmest recommendation in favour of this method of Self Teaching. B.W., Blackburn.

To The SELRAY BDOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT 8 R2 7Hp Please send me WITHOUT UBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY $£ 4.50$ Cash Price, or Down Payment of $£ 1.00$ followed by 4 fortnighly payments of $£ 1.00$ each. Total $£ 5.00$. BASIC ELECTRONICS £5.40 Cash Price, or Down Payment of $£ 1.00$ followed by 5 fortnightly payments $£ 1.00$ each. Total $£ 6.00$. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS \square
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

Build yourselfa TRANSISTOR RADIO

NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND, VHF AND LOCAL STATIONS AND AIRCRAFT BAND
Bulle in Ferrite Rod Aerial for MW/LW. Retractable, chrome plated Telescopic Aerial, for peak short wave and VHF Istening. Puah Pull output using 600 mw Transistors 10 Transistors plus 3 Diodes. $8^{\circ} \times 21^{\circ}$ Spesker. Air Spaced ganged Tunins Condenser with VHP ection Polume of - tht silver blocking size $9^{7} \times 7^{0} \times 4^{\circ}$. Easy to follow instructions and diagrama Warta price list and easy buld plans 30 p (FREE with parts).

(0 versess P. \& P. \&1)

Total building cost £8.50

Band. Extra Medtum waveband provides easier tuning of Radio Luxembourg, etc. Bailt In ferrite rod aerial for MW and LW. Retractable 4 section 24!n. chrorne plated telescopic aerial for BW. Bocket for Car Aerial. Powerful push-pull outpat. 7 transistors and 2 diodes, Including Micro-Alloy R.F. Translators. $\left.8^{\circ} \times 2\right)^{\circ}$ speaker. Alr spaced ganged tuning condenser. Volumel on/of, tunling and wave change controls. Attractive case 下ith carrying handle. Size o $\times 7 \times 4 \mathrm{in}$. mpprox. kany to follow instructions and diagrama. Parta price Hist and eany baild plans 15 D (FREE with parts). liatening, 30 p extra.

TRANSONA FIVE

5 TRANSISTORS AND 2 DIODES

3 Tunable Wavebands: MW, LW and Trawler Band. 7 stage- 5 transistors and 2 diodes, ferrite rod aerial. tuning condenser volume control, fine tone moving coll apeaker. Attractive case with red speaker grille. Size $61 \times 4 \frac{1}{4} \times 1 \frac{1}{6} i n$. Eany bulld plans and
parta price 1 lst 100 (FREE with parth). Earplece with plug and switched socket for private lintening 800 extra
Total building costs
(Overseas $\mathbf{P} . \& \mathrm{P}_{\mathrm{I}} 63 \mathrm{p}$)

ROAMER SIX

6 Tunable Wave bands: MW, LW 8W1, SW2, Traw ler brind plus an extra M.W. hand of Lasier tuadn etc. Sensitive ler rite rod aerial and telescopic aerial
for Bhort Waven.
$3 \ln$. Speaker. 8
3 in . Apeaker. 8
stages-6 transistors and 2 diodes including Micro Alloy R.F. Transistors, etc. Attractive black case with red grille, dial and black knobs with polished metal Inserts. Size $9 \times{ }^{5!} \times 2 \operatorname{lin}^{2}$ approz. Easy build plans and parts price ist plug and switched socket for private listenfag with plug
30 D extra.
Total building costs
(Overseas P. P. \&1)

hands: MW, LW BW1, SW2, 8W3 and Trawler Band.
Senaltive ferrite zod aerial for M.W. and L.W. Telescople serial for short Waves. 3 in . Speaker. 8 improved type transistors plua ${ }^{3}$ diodes. Attractive case in metal insertif. Size $9 \times 64 \times 2 / 1 \mathrm{in}$. approx. Push pull output. Battery economiser witch for extended bat ter life. Ample power to drive a larger opeaker. Part price list and easy bulld plans 25 p (FAEE with parts). Earplece with plug sad switched socket for private listening $80 p$ extra.
Total bullding costs $=4,4, \begin{aligned} & \text { P. P. d } \\ & \text { (Overseas P. \&P. } 41 \text {) }\end{aligned}$

RADIO EXCHANGECO

NEW! "EDU-KIT"

BUILD RADIOS, AMPLIFIERS, ETC., FROM EASY STAGE DIAGRAMS. FIVE UNITS INCLUDING MASTER UNIT TO COMPONENT'S INCLUDE
Tuning Condenser: 2 Volume Controla: 2 slider Gwitches: "nden $^{-1}$ Apeaker: Terminal Strip; Ferrite Rod Aerial: \& Plugn and Bockets: Battery Clipa: \& Tag Boards: Balanced Armature Unit: 10 Transistors: a: Resistors: Capacitors: Three $\dagger^{\prime \prime}$ Knobs.
Units once constructed are detachable Units once constructed are detachable from Master Unit, enabling them to be stored for future use. Ideal for Schools, Educational Authorities snd Bchools, Educational Authorities and All parts including se B P P. P. Case and Plans (Overseas P. \& P. \&1)

Euhtrin

61 HIGH STREET, BEDFORD.
Tel. 023452367
I enclose f
please send items marked

ROAMER TEN		
ROAMER EIGHT		
TRANSONA FIVE		
\square	ROAMER SEVEN	\square
TRANS EIGHT	\square	
POCKET FIVE \square	EDU-KIT	\square
arts price list and plans for		
ame		

(Dept. E.E.7.)

HENRTE RA 11 MMMTE1 ENGLAND'S LEADING ELECTRONIC CENTRES

$20+20$ WATT I.C. STEREO AMPLIFIER (As featured by "Proctical Wireless" MaylJune 1972) DEVELOPED BY "TEXAS" ENGINEERS FOR PERFORMANCE, RELIABILITY AND POWER FEATURES INCLUDE: Low profile with specially designed Gardners Transformor. 6-1.C's, 10 Transistors, 4 Diodes, 2 Zenes. DiN input/outpur. pample chassis work. Stabilised FUNCTIONS: Separate Ṫreble/Bass/Volume/Balance controls. Input selector, Mas. pu, Radio, Tape in and out. Headphone ocket. Seratch and rumble filters. Mono/Stereo switch,
SLIM DESIGN WITH SILVER TRIM-Chassis size overall $14 \frac{1}{2} \times 6^{\prime \prime} \times 2^{\prime \prime}$ max
TOTAL COST TO BUILD © 28.50 . Post 45p
(Optional Teak sleeve available July/August)
Menry's ere sola U.K. trad and resail suppliers of the Texan-anquiries Invited
TEXAS-HENRY'S VALUE \& PERFORMANCE

LATEST EDITION catalogue

Fully

detailed and lustrated
covering ev covering every tronics-plus data, circuies and infor mation

PRICE POST PAIO
(40p FOR (40p fOR PLUS! FIVE $1 O_{p}$ VOUCHERS' FOR USE WITH PURCHASES
Send to this address-Henry's Radio Ltd., (Dept. EE). 3 Albemarle Way, London, E.C.I-for catalogue by post only.

All other mall and callers to " 303 ", see below

PUBLIC ADDRESS, LIGHTING \& DISCOTHEQUE EQUIPMENT

 DJl05S 30 watz rms Amplifier, 4 inputs, master cone and volum controls etc. 8 ohm output. Cased portable, €33.50. Post 40p.
D) 70570

Post 40p

DISCOAMP 100 wate rms to 8 ohms, 4 inputs, separate bass and treble controls, PFL, etc. Cased for cabinet or rack mounting $667 \cdot 50$. Post 40p.
MCDONALD MPGO fitted to plinth with cover, CSMO cartridge to match above amplifiers. $£ 17.25$ Polt $70 p$.
D)30LII ${ }^{3}$ channel lisht control unit for above amplifers. $3 \times 1 K$ Watt. Treble, Bass and Mid rango. E28.50. PFFECTS PROJECTORS-Coloured rotating light patterns
OISCO-COLT 150w Tungsten $\mathbf{6 2 2} 50$
LIOI 50-50 ware Q.I. $\$ 32.50$
LIQI $150-150$ watt Q.I.
$\$ 50.00$ Huge range in stock-too much to list hare. It's all in the latert catalogue-pricespaciffcacions etc. Also Panel Meters and Edge Meters GARRARD McDONALD GOLDRING TURNTABLES CHASSIS (Post 50p) SP25/3 110.50 HT70 \& 15.00 MP60 $\$ 10.40$ MP610 \&14.15 AP76 \&18.85 Zero 100S

With PLINTHICOVER MPG0 PC $\begin{gathered}\text { (Post 70p) } \\ \text { © } 17.20\end{gathered}$
$\begin{array}{ll}\text { MPG0 PC } & \notin 17.20 \\ \text { HL75 PC } & \mathbf{3} 35.25\end{array}$
$\begin{array}{ll}\text { HT70 PC } & \mathbf{1 2 1 . 6 0}\end{array}$
GL72P E29.26
CART/PLINTHICOVER
GL72PC/G800 70D) HL)AP76/G800 HT70 PC/G800 MP60 PCISC5M HL)SP25/3/G800H HL 2025 TC19TAHCD $£ 18.95$ ULTRASONIC
Operate at $40 \mathrm{kc} / \mathrm{s}$ up to 100 yds.- Ideal remote switching and signalling. Complete with data and circuits.
PRIC PAIR \&S.90 Post 10p POWER INTEGRATED CIRCUITS
data, layouts \& circuits 8 plige 50 P.C. Board 60 p; Heat Sink i4p C12-6 watt with data and circuits El .80
TH9013P-20 watt Power Amp Module $\{4.57$ TH9014P-IC Preamplifler \& 1.50
Data Circuits Book for above No, 42 10p
TEXAS PUBLICATIONS -100 watt Amplifiers and C1. 25 (Price list No.48A FREE) 700 page IC Data Book (No. 2) 420 (All TTL IC's) 60p 420 pase Transiztor Data
(No. 3) 60 Pransistor Data (No. 4) 60 p (Post evc. 20p each.)
7 SEG \& NIXIE TUBES (Post 15p per 1 to 6) XN3, XNI3, GN6 0-9. Sid View with date 85p.
GNP-7, GNP-8 0-9. Side view with decimal points and data 35 P15F $^{3} 7$-Segment 47 per 4 with data. Now Digital Clocks Circuit:, Nixle and 7 sezment. Ref 31 13p
SEE EARLIER PAGE FOR TRANSISTORS \& DIODES, etc. FREE LIST NO. 36 ON

SPEC|ALII Anti-Feedback Microphone designed and made for Henry's for all PA/Disce Equipment. LIGHT GUIDE 64 fibres sheathed \& 1 peryd. Mono $\left(0.01^{\prime \prime}\right)$ \&I 50 per 25 metre reel. Call, write or phone for detalls and lists. FI - LARGEST RANGE IN STOCK-BIGGEST DISCOUNTSFREE 12 Page STOCK LIST Ref $16 / 17$

TEST EQUIPMENT 89.95

MORE OF EVERYTHING AT LOW PRICES AIWAYS AT HENRYS

LOW COST HI-FI SPEAKERS

 Post 300.

HIGH POWER AMPLIFIER MODULES

Qualtity transformerless low noise amplifiers
suitable for all Audio, PA and Hi-Fi use.
Modern compact designs, PA25 and PA50 suoplied wish det desgns. PA25 and PA50 MU442 Power Supply. MPA $2 / 318 \mathrm{v}, 0.8$. 12 W .3 .4 ohm. 44.50 MPA $12 / 15$ 30v. 0.5 A . 12 W . 12 -16 ohm C5.25 $24 / 40$ Mains unit for 1 or 2 MPA12/3 or 15. ©4.50

PA25 22-0-27 | PA25 $22-0-22 v . ~ I A, ~ 25 W, ~$ | 8 |
| :--- | :--- |
| PA50 | 22-0-22v. 2A. 50 w | MU442 Mains unit for 1 or 2 PA25 or 1 onlv PAS0. 68.00 unit for 1 or 2 PA25 or 1 only Pose

ALL SILICON-FET PREAMPLIFIER AND MIXFR SELF POWERED

PRICES $10.50^{\text {Pont }}$	All inputs. Adjustable input and output. DIN sockets. Tape in and ous. Micro phone mixing. Suitable up to 4-PA25 or 2-PA50.

300 mW TRANSISTOR AMPLIFIER MODEX 4-100 Fully assembled 5 TR Amplifier. Size $5 t x$ Output j-8 ohms: Fitted Vol. control. 9 volt operated. Thousands of uses plus Price \&1.7
Price ©1.75, P.p. 15p
(or 2 for 1.25 P.p.
AUILD THIS VHF FM TUNER 5 TRANSISTORS $300 \mathrm{kc} / \mathrm{s}$ BAND. FIDELITY REPRODUCTION, MONO AND STEREO
A popular VHF FM Tuner for quality and recoption of mono and stereo. There is no doubt mbout it-VHF FM gives she REAL sound. All parts sold separately. Free Leaflet No. 3 \& 7.

TOTAL 66.07, p.D. 20p. Decoder Kit E5.97.
Tuning meter unit fill
Mains unit (optional) Model PS900 62.47. Post 20p
Mains unit for Tuner and Decoder PS 1200 <2-62. Post 20p
SINCLAIR PROJECT 60 MODULES
-SAVE POUNDS
$Z 30 \quad 63.57$
250 64.37
$\begin{array}{ll}\text { STEREO } & \text { PZ5 } 63.97 \\ 60 \text { C7.97 } & P Z 8<4.77\end{array}$
$\begin{array}{ll}626 & 66 \cdot 37\end{array}$

Transformer for PZ8 12.95 Active Filter Unit 44.45 t16.95 Cl2 \&1.80; Q16's 415 pr Post etc. 20 p per item
ALSO IN STOCK $2000 £ 23 \cdot 50 ; 3000 \quad € 30.95$

Posr 50p each

"BANDSPREAD" PORTABLE TO BUILD

Printed circuit all transistor design using Mullard RFJIF Module. Medium and Long Wave bands plus Madium Wave Bandspread for extra selectivity. Alo slow motion geared cuning, 6 保 covered cabinet, ear anrial. Aetractive
TOTAL COST TO BUHLD \quad © 9.98 , P.p. ${ }^{32 p . ~(B a t t e r y 22 p) . ~ A l l ~ p a r t s ~ s o l d ~ s e p a r a t e l y-L e a f l e t ~ N o . ~} 2$. THED WAVE PORTABLE (as proviously advertised) $£ 6.98$, p.p. 35p from stock-Leaflet No. 1 .

SLIDER CONTROLS. TOpquality 60 mm sereke alnglee and ganged. With knobs, (Post I-S 15p; 6 or mor 20p) $5 \mathrm{~K}, 10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 500 \mathrm{~K}, ~ I ~ M e g, ~ L e g ~ a n d ~ L i n ~ 45 p ~ e a c h ~$ $10 \mathrm{~K}, 25 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$, Log and Lin ganged.

PACKAGE DEALS
2×230. Scereo 60, PZ5 §15.95 2×230, Stereo 60, PZ $6 \mathbb{2} 18.00$ 2×250, Seereo 60, P28 E20.25
Post 25p extra on a bove itoms Transformer for PZ8 $£ 2.95$ NEW PROJECT 605 KIT $\$ 30.95$
Post 25 p
-
P.A. Disco \& Lighting Conire 309 EDGWARE ROAD. LONDON, W.2. Tel: 01-723 6963

Mail Orders. S.pecial 8 argain
Shop, Industrial Sales
303 EDGWARE ROAD, LONDON, W.2.
Tel: 01-723 1008/9

Electronic Components,
Audio and Test Gear Centre
356 EDCWARE ROAD,
LONDON, W.2.
Tel: 01-402 4736

High Fidelity Sales \& Demonstrations Centre 354 EDCWARE ROAD. LONDON, W.2. Tel: 01-402 5854

[^0]: © IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $\mathbb{E 2 \cdot 3 5}$.
 Everyday Electronics, Fleetway House, Farting don Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

[^1]: Where poutage is not stated then orders over es are post free. Below e5 add 80 p. Semiconductors add 5 p post. Over 11 post free. S.A.E. with enquirion pleare.

[^2]: BRUSHED ALUMINIUM PANELS

