oypryday y^{man} 15p ron CS

A NEW MAGAZINE

BRINGING A FASCINATNG

 HOBBY TO EVERYONE
PROJECTS EASY TO CONSTRUCT THEORY SIMPLY EXPLAINED
 PROJECTS EASY TO CONSTRUCT

STICK DOWN WIRING

RAIN WARNING ALARM

ADCDLA Soldering Instrumenis add to your efficiency

 THE NEW 'INVADER' ADCOLA L. 646
for Factory Bench Line Assembly

A precision instrument-supplied with standard $3 / 16^{\prime \prime}$ (4.75 mm) diameter, detachable copper chisel-face bit*.
Standard temp. $360^{\circ} \mathrm{c}$ at 23 watts.
Special temps. from $250^{\circ} \mathrm{C}-$ $410^{\circ} \mathrm{C}$.

*Additional Stock Bits
 (illustrated) available

COPPER

Don't take chances. We don't. All our ADCOLA Soldering Instruments are of impeccable quality. You can depend on ADCOLA day after day. That's why they're so popular. You get consistent good service . . . reliability . . . from our famous thermally controlled ADCOLA Element and the tough steel construction of this ideal production tool.

ADCOLA PRODUCTS LTD..
(Dept. Y), ADCOLA HOUSE, GAUDEN RD., LONDON, S,W.4.
Talephone: 01-622 0291/3 - Telegrams: Soljoint London Telex - Telex: Adcola London 21851

safebloc of robust construction

Safe, quick and secure it connects 2 -core and 3 -core bare-ended flexible leads to the mains (A.C. only).
The concept was pioneered by Rendar, and introduced to the market 13 years ago.
Safebloc saves time. No need to fit a plug for tests. No danger, as no current can pass with the lid open. invaluable for testing and demonstrations in industry and shops, the work bench and the home.
Ask for Safebloc at your local stockist - or you can order it direct from the manufacturer.
If ordering by post, send cash with order.
PRICE $£ 2.60+10$ p P.\&P. EACH
Special bulk order wholesale and industrial rates on application

Rendar Instruments Ltd., Victoria Road, Burgess Hill,Sussex.Tel. Burgess Hill 2642

FELSTEAD (EE4) ELECTRONICS

LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE SK8 4EE Selection from our list, sent free for stamped addressed envelope. (Free overseas): Cash with Order only-No COD or Caller service. Chsrges (Min. 6p.) in brackets after al items apply to G.B. \& Eire only. Regret Orders under 2 ap. plus charges unaccep RECORDING TAPE: Finest quality/value British Mylar available: STANDARD $\overline{5}$. 6001
 (7 p p on 5 and 5 ", 9 p ou 7). Other sizes, Cassettes and accessories in list. CARTRIDGES All with standard fittinge and stylii, Mono GP67 85p; Stereo-compatible Mono GP91/8C £1.10; STEREO GP93 £1-40; Stereo Ceramic GP94 £1-95. (6p) Comparatives shown in list with more types incl. Sonotone 9TAFC Goldring sc. at lowest prices DIAMOND STYLII: Eingle tip types: Acos GP37, GP59, GP65/67, GP71. BSR TC8/L.P/ST: COLLARO O, P and DC284: GARRARD GC2, GC8, GC/12, GCS10; RONETTE BF40, O, P and T: PHILIPS 3301 (3060, $3066,3302,3304$) $3010(12,13,16)$; 8ONOTONE 19T/20T. A LL AT
40 y each (6 p). Double-tin turnover types (78 sap, on other side). For Acos GP73. GP91 40p each (6p). Double-tir turn-over types (78 sap. on other side). For Acos GP73, GP91
(for cartridgen GP93, GP94 \&c.) GP918C (for stereo-compst. typea) GP104, BSR
 ($3310,3224,3228 / 22$, (GP280) GARRARD GCM21, 22, GCS23, GKI25 and 26, GCM21T and $22 \mathrm{~T}, \mathrm{GKM} 24 \mathrm{~T}, \mathrm{GCS231}$, GKS25T \& 26 T GCM31, GC836, GCS35, GCB38, KS40A, KB41B, etc. ALL AT 75p (6p). DOURLE DIAMOND STYLII: (Same dia, tip each side: no 78) for all typer $£ 1-50$ (6p). PICK-UP WIRE: Super thin twin flex screened, sheathed, 6 p per yart. (TIp to 6 yds, 6 p, over charges paid.) All rapphires \ln list, MICROPHONES: CR WGTAL: LAPEL $1 \mathrm{~h}^{\prime \prime}$, clip/hand, lead 3.5 mm jack plug $32!p$ (61). CM20 Cream Plastic hand $521^{\circ} p$; CM21 Grey Plastic Hand/Deak 821 p ; both have 3.5 mm jack plug adaptor for stands $81-471$; "MIO 91 "* hand/desk 81 p ; "MIC $45^{\prime \prime}$ ' Carved metal hand grip £1.00. All with leads (all 9p). MICROPBONE INSERTS Diam. 1.75 or 0.9 elther size 27 ip (Up to 6 for 6p.) DYNAWIC: 209 Cardjoid Ball, $50 \mathrm{~K} / 800 \Omega$, buit + in volume control on/oft switch, special 20 it lead, the best value anywhere $£ 6 \cdot 30$; ÚD130, unt-dir. mesh bali $50 \mathrm{~K} / 600 \Omega$ jack plug, cable, alaptor, 44.50 : DM160, omnt-dir. ball meah, 50 K , cable adaptor, jack plug $£ 3-87 \frac{1}{2}$ ($27 \frac{1}{2}$ p each). SPEAKERS, Still very popular 12" ROUND, fitted tweeter, 3 or 15 ohma (State which) $£ 187$ (27 p) or pair for stereo 24.25 chargea paid SMALL \&t 3Ω or 8Ω, state which 37 io (6 p). More speakers in list. HEADPHONES High remistance 2000Ω adjustable 92% p (71 p). EARPIECES with lead and min. 2.5 mm or 3.5 mm (state which) Jack plug, MAGNETIC 9p. CRYSTAL (3.5 mm ylug only) 24 p (up to 3 for 6p. any type). SOLDERING IRON, Slim, modern, British high speed, $8 \frac{1}{}{ }^{\prime \prime}$, all parts replaceable, highest quality fully guaranteed $11-171$ (10p). TRANSFORKERS: Sub-min $11 \times 11 \times 12 \mathrm{~mm}$, OUTPUT (3Ω for OC72, \&c.) 14 p , or DRIVER 15p (up to CORE 14p. FLEXIBLE or SUPER THIN for transiator wiring de. either 16p. (Any pack fi) RETRACEABLE FLEXIBLE LEADS. (CURLIES): With phono plug ea. end 6 it $23 \mathrm{p}, 12 \mathrm{ft} 38 \mathrm{p}$. With phono plug/phono socket other end 6 ft 25 p . 12 ft 421 p (6 p lead any type)
 USA, 20p. 12V 7-pin, synch. (128R7) $2 z^{2}$ ex plns 821 p ($61 p$ any type). TRANSISTORS ke. AC/126 12tp, AF115 20p, AF116 16p, AF117 20p, OA5 10p, OA10 10p, OA81 10p,
 OC171 121p, BY100/800piv 14p. Many more incl. power types, thyristors, dec, in Hat. MAINS NEONS, fy leads 10p. NEON SCREWDRIVER (pocket tester) $171 p$ (6 p either). MAINS BATTERY ELIMINATOR. Input 240 V AC, Oatput $3,6,71$ and 9 V DC by switch selector, On/off switch, pilot lamp, leads, plug, adsptor to suit most transistor sets and cassette recorders. Suitable for model use: £3-15 (24). OUR CURRENT LIST (see heading) includes more detalls of all above plus cartridg repiaceinent table, many unrepeatable spechal Oro, and panel and Test meters and equipment, Multimeters, min. motors, test prods, switchespotary togie side cabinet, lamp electrolytics, erminals, Veroboari, valve holders extending seriais for cars and portsble sets, ind. lamps and bulbs, dials, mikes, telephone ampliflers and pick-ups, drive cord, inter-coms, capacitance and resistance testing boxes stereo headphones etc., etc.

CALL AT No. 240 London Rd., Mitcham

If you live within easy reach of Mitcham or are in the area at any time do call on us. We are almost opposite Mitcham Baths. We open 9 a.m. every weekday. On Wednesdays we close 1 p.m. and all other days, includirig Saturdays, 5.30 p.m. On Saturdays we have extra staff to deal with queries. We carry a vast stock of components, and 999 times out of a 1,000 we can immediately lay our hands on the particular item required.

and ORDER BY MAIL OR TELEPHONE

Although we are kept busy selling "over the counter" we supply even more by Mail Order. You can telephone any time of day or night, Sundays included. If you ring out of office hours a recording machine takes your message for us to deal with as soon as we open shop again. Our number is 01-648 8422. If you wish to order by post our address is in the panel at the top of the page. We deal with all orders promptly.

Post this Coupon with Cheque or PO for 70p

WHICHEVER WAY YOU

 CHOOSE you need the Home Radio Catalogue In its 315 pages are listed over 8,000 components, over 1,500 of them illustrated. Each copy contains 10 Vouchers, each worth 5 p when used as instructed. Free Supplements are supplied regularly to keep you up-to-date. The Catalogue costs 50 p over the counter, or 70 p including postage and packing.The price of 70p applies only to catalogues purchased by customers in the U.K. and to BFPO addresses.

We began our Credit Account Service about 18 months ago and it has proved extremely popular. Little wonder! Our customers find it a very simple and convenient way of purchasing all their radio and electronic needs. We supply pre-paid envelopes and order forms and no matter how many orders you send us you make only one payment per month. There are several other advantages with our Credit Account Service. Please write or phone for details.

DRILL CONTROLLER NEWIKW MODEL Electronically changes $\begin{array}{cc}\text { *peed from approxi- } \\ \text { mately } \\ 10 & \text { revo tio }\end{array}$ SPEEDS

vhaxituani. Pull power at ail speeds by finger-tip parts, case, everything and full inntructions. 81.50 plue 13 p pont and tosurance. Made up $13 p$ post and p.
MAINS OPERATED CONTACTOR $220 / 240 \mathrm{v}$. 50 cycle solenoid with laminated core no very silent in operation, Clonen Extremely well made by flerman Filectrical Company 21 each

NEED A SPECIAL SWITCH
Double Leat Contact. Very slight presmure closes each, bop doz. Plastic puish-
rod sultable for operating
5 p each, 45 p toz.

AUTO-ELECTRIC

 CAR AERIALwith dawhboaril control switch-full eztendable to 40 ln . or fully retractable Suitable for 12 v . positive or negative earth. Supplied complete with atttry Instruct lonn and realy wired dashbowril switch. 26 plus 250 poet and ins.

TOGGLE SWITEH

MICRO SWITCH
5 amp. changeover contacta, 9 p 10 p each or 81.05 doz .
minlature
WAFER SWITCHES

3 pole, 2 way- pole, ${ }^{2}$ waypole, 4 way-3 pole. 4 way- 2 pole
6 way-1 pole, 12 way. All at 189 each, $81-80$ dozen, your assortment.

26 yaris length 70W
26 yaris leng th 70W. Self-regulating
temperature control, 50 post free.

BLANKET SWITCH
Double pole with neon let into side so luminous is dar Ideal for dark room Ifiht or for platic case 30 p ench. 3 heat model 40 p .

SNAP ACTION SLIDE SWITCHT

 Rated 5a. 240 v . Made by Arrow. Type vecuaras, etc. 8 p esch, 10 for 45 p .
NUMICATOR TUBES

For digital instruments,
timers, clocks, etc. Hi-vac XN, j Price $\$ 1.45$ each, 10 for 218.

12 WAY SUB-MINIATUR

MULTI-CORE CABLE

7.0076 copper cores, each core P.V.C. Innulated and of different colour. P.V.C. covered overall and approx. $3 / 16 \mathrm{in}$. thick. Price 80 p per faed.

LIGHT CELL
Almost zero realstant in sunIn dark or dall lishe Opors La dark or dull lighe, epory Bated at 500 MW , whe ended. 430 with circuit.
 wise ended. $43 p$ with circuit.

0-8 AMMETER

Sin. mquare full vision fot flush mounting. Moring iron Inatrument. Ifeal for charger. Prier 43p rach 10 for $\mathbf{2 3 . 9 0}$.

2

THE FULL-FI STEREO SIX

 The smpiliteYou will be amazed the the fullaesk of reproduction and at The wided qualities your records or tuncr aill reproduce. Hail Inke metal eabinet elcganty wiyled in simulated teak fininbei to blend with morlern furoishings, tbin anplifier use an Integrated solld state circuit Flith an output power of 6 watis R.M.g. split over the twn chatanelf. The ampliter is ideal for use with normat prek-upe and controly-alao swltching. for Mono to 8tereo. tuner or plak-up. Other oontrol taclude "treble lift and cut" "halance" and neparate mainn on/of switch. UNBEPEATABLE PRICE in 29 plun 3Rp prat and innurance

DISTRIBUTION PANELS

Just what you need for work bench or lah.

standard 13 amip tured plugn and unfor uwlich whth nem Earnine light, guppled complete with 7 fect of heavy cable. Wirel up reaiy to work, \&e lens plug 28.25 with Atted 13 amp plug; 82.40 with atted 15 amp glug. plum 23 p P. \& 1

THIS MONTHS SNIP

8 miths 24 hoar gon/80f Time swith thin th the popular model, an uned In the Automet and Morphy \quad licharrls time switches. Only needs a came and. an output Price 89.76 p .

TANGENTIAL HEATER UNITS

 This hester unit is the very latest type, mos efficient, sind quiet running. Is as fitted in Hoover and blower heaters corting 515 and more. We have © few oniv, Coruprises motor, impeller, 2 kW element and 1 kW element allowing siliching 1 and 3 kW and with thermal safety cutoout. Can be fitted Into any metal line rase or cablnet. Onlyneed control awitch. 88.50 . 2 kW Model sa sbove except 2 kllowstte 88.50 . Don't mian this. Control g=itch 85p. P. \& P. 40p. mian this.

POCKET CIRCUIT TESTER

Test continuity of asy low resiatance circuit, house miriug. cor olectrica. Teats polarity of dindea and rectibern, Almo ilea ize for conversion to slgnal injector (rireulf. supplied). 30 p or 2 for 50 p prost pald.

COMPUTER TAPE

2,400tt of the Beat magnetic Tape money can but-umera olaitn good reaults with Video mas sound. Ith. Wide 1100 plun 33p poo and insurance, wlih casmette. In wlde $51 \cdot 00$ plus 30 p post and insurance Tith cassette. $\mathbf{j \mathrm { h }}$. Wide 75 p plus 25 p pont and insuranc with esseette. Spare spools and casoptien- 1 in 76 p . 1 fa . 76 p each plus 20 p post and inaurance.

I HOUR MINUTE TIMER

Made by famous Bmatitus company, theme have a large
clear dial. size it $\times 3$, which can be met in oninuter up clear dias. aize 19×3, which can be net in minuter up to 1 hour. After preset period the beil rings. Ideal for proceasiog, a memory jogger or, by adding shmple inver. owltch $\$ 1.15$.

RADIO STETHOSCOPE

Easleat way to tault find-tracea algnal frmm aerial
to apeaker-when ilgnal stopn you've found the
tault. Use It on Redio, TV,
plete kit comprises two apecial plete kit comprisea two apecial ding probe tube and crystal earplece. twin stethoset instend of earplece 75p

extra post and ins. 20 p .

70 THINGS YOU CAN MAKE

gend B.A.E. today for lint of 70 conmeruc
alarms-counters-locks-redius, etc., eto

SOLDER GUN

 ance 20 p . BIR JOE 250 wati model 84.75 plus poet and Inm. 40 p . CAPACITOR DISCHARGE CAR IGNITION

aictronc mint

 This systeno which has proved in ba smazingly efficient and reliable was first demaribed in the Wirdiess World about o year ago. We can mupply kit of parts for Wircless, June). Price sent improved and even more efficient version (Proetical for positive or negative syatemun. Almo available, remby malf Ignition wynteris for 8 v , vehicien. 55.25 plua 20 .
TYPE 25 RELAYS

These are miniature relayn. Slae approz. I th inch high $\times 16$ wide $x 4^{\circ}$ deep. A change uver siliver/guld contacts. Contect rating lamp 100 v D.C. Fitted with a plantic cover. Coll operate approx. 250 Mw D.C. svallable with the following conle:
88 ohm for $4 \mathrm{v}-7.5 \mathrm{v}, 45 \mathrm{ohm}$ for $1 \mathrm{v}-2.5 \mathrm{v} \quad 52 \mathrm{ohm}$ for $4 \mathrm{gv-}$ 90 ohm for $5.5 v-11-5 v \quad 130$ ohm for $10 \mathrm{v}-15 \mathrm{v} \quad 530$ ohm for $17 \mathrm{v}-35 \mathrm{v}$ 75 p each. 10 for $26-75 \mathrm{p}$. Also one with 16,500 ohm cuil hut this hax only 2 beavy 7bp each. 10 for 26.75 p . Also one with 16,500

DRIVER ALERT WAA-WAA PEDAL RAIN SENSOR
and other features
To recelve theme kith prompty send approri change.

vizen. Pricen an follown

21
21
$\times 8$

47is

FLUORESCENT CONTROL KITS
Each kit compriaes seven ltems-Choke, 2 tub ends, starter, holder sind 2 tube cilps, with wiring instructions. Buitable for normal fluoreacent tube or the new "Grolux" tuben for fish tankn ara Indour plants. Chokes are super-ailent, moatly resin filled. Kit A- $16-20$ w. E1. Kit B- $80-10$ म 81. Kit C-80 w. 11-20. Kit E $\mathrm{E}=85$ w. $21 \cdot 0$ Kit F for 8it. 125 W . tube $81 \cdot 75$. Kit MP1 In for $6 \mathrm{in} ., 9 \mathrm{in}$. and 12 in . miniature tubes El . Kit MP Kits \mathbf{A} and B 23 p for one or two kits then 23 p o each itwo kits ordered. Kita C, D and E 23 D op each two kits ordered. Kits k , D and E 23 D on that kit then 18p for each kit ordered. Kit F 33 p first kit then 16 p on each two kita ordered.
Boz Bign for window Display, at heme, office or shop, 2 ft . wide $\times 14 \mathrm{ln}$. bigh \times Bin. deep. This 1 an Huminated box slgn made from sheet metal hammer finish enamel with a clear plaatic window You almply have your mesaage printed or written on ponter board or thick card. (Or use atick dow letters available at most stationers). You wil then have a box aign normally conting anything between £10-\&16. Klumination is by $2 f t$
foorescent tube whentrol gear enclosed. Measage card can be changed quite easily from hinged top back. Price 83 each. plus 650 post. etc Motivated Ilrminated Boz §ign, As prevloun liem but with geared motor moving the message making it change eight timea a minute. Very attentlon arresting. To use this for your own measages you would have to have each slgn written on card then cut this up in atrips which could be glued to the one supplled with the box sign. Price $84-50$ plus 6xp post and nervice.
Geared litotor with take ofl eocket. The gear trair Is driven by normal type induction motor and glves a final speed of 6 r.p.m. The motor 1 mounted behind a chrome plate through which the take of drive protrudes and was originaly intended to drive a apit for cooking. is also ideal for driving modein or for driving a colour changint Really well made assembly, Price 21.75 plus 25 p poat etc.

2tkW FAN HEATER Truree position switching to guil changes in the weather kw). switch down for hall hes (1 hiW), switch central blow cold for aummer coolingadjustable thermostat acts a out. Complete kit $28 \cdot 98$. out. Complete
Post and ins. 38 p .
PKITS FOR PREVIOUS PROJECTS
Kite of parts available as follows:-
HOME SENTINEL INT RUDER ALARM SNAP INDICATOR
All components but not case or battery 75 p. WINDSCREEN WIPER CONTROL
All oomponents including metal for chassit 22.00

RECORD PLAYER
All components, but not case, loudspenker,
record deck of pick-up es 50
DEMO DECK
All Componenta sa Isted 88.75 ASTRON RADIO ta less case es REMOTE TEMPERATURE All electronic parts less cese $\mathbf{\$ 4}$. 25 ELECTRO LAUGH Parts, less case $£ 2$ TRANSISTOR MICROPHONE

> Where poutage is not stated then orders over 25 are post tree. Below es add 20 p . Bemlconductors add Sp_{p} poet. Over E 1 poot free B.A.E. With enquirien please.
J. BULL (ELECTRICAL) LTD.
(Dept. E.E.) 7 Park Street, Croydon CRO IYD Calleyn toz $102 / 3$ Tamworth Road, CROYDON

Stereo amplifier with double wound mains transformer ($200-250 \mathrm{v}$. a.c.) ; $2 \times$ ECL82 valves giving $2 \times 2 \frac{1}{2}$ W; printed circuit ($10^{\prime \prime} \times 3 t^{\prime \prime}$) mounted on metal chassis. Ganged tone controls, sep. vol. controls; on-off switch; excellent channel separation. Output trans. for 3 -ohm speakers. For crystal, ceramic cartridges or radio tuner. Only £6.25 (post 40p).
Beautlfully finished teak or walnut wooden cabinets $10 t^{\prime \prime} \times 5 t^{\prime \prime} \times 7^{\prime \prime}$ deep, fitted $6^{\prime \prime} \times 4^{\prime \prime}$ speakers, 3 -ohm. $£ 8$ per pair (post 35 p). Cabinets only $£ 6$ palr (post 25 p). PACKAGE DEAL. B.S.R. autochanger C129 nitted stereo cart., two speakers in cabs. (above), amplifier (above). All for $£ 21$ (carr. £1-50) All necessary audio plugs and leads supplied

GLADSTONE RADIO

66 Elms Road, Aldershot, Hants. Telephone: 22240.

OTHER MODELS AVAILABLE
V-100 SINGLE SPEED
RB101 SINGLE SPEED BELT DRIVEN
P105 PICKUP ARM
POST COUPON OR WRITE FOR BROCHURE

VALEK LTD

LARK STREET, DARWEN, LANCS. Tel. 71889

NAME
ADDRESS \qquad
\qquad
\qquad

RUSSIA MERALISTHE DAYNOFA NEM ERA N RADO TECHNOLOGY:
 \qquad THE FABULOUS, ASTRAD (VEF)
 GE MAKNG SOML LOOK 1984 !
 PORTABLE RADIO\&
 communications
 23TRANSISTORS! ANDIIDES! WAVEBANDS:
 stanagai lugara menum: Plus 5stiont wavebandos PNIS ULITA SHORT WAVES

 MANS BATIEGY
 We couver tever misiompanice tuis nikice! RADIOS

Just think of the year 1084 and the "perfect radio" that might be produced then witb all the advenced qualities it conld ponilily bave-now place the lantantic ABTRAD (VEF) 17 in front of you and rwitch on, and yon'll nee for yourself that the incredible Rusbians bave done it all HERE AFD NOW: It's the radio perlectionist's dream come true! THIS ONE SUPERSEDES ALL EARLIER MODELS: Complete with optjonal battery eliminator for both battery and mains une were almost giving them a way at only E18.75-a Iraction of todey'm Runtan mairacle price! We challenge you to compare performance and value with that of c 75 radiom . You can't lome, refund If not astounded। Purer and aweeter tone than ever! Mucb wider band opread than hithorto, for absolute "pin-point" station selection. Plui "MAGIO EYE" tuning level indicator for ultra perfect tuning senuldalit! The Ruasians have really surpased themselves this thme, proving once again their fantaatic ablity in the theld of electronks and brilliantly reffecting their advanced miloro-circuttry techniques in the field of space communications. TES, EVERY WAVEBARD Instanty at your fingertipa, including Standard Long, Medium Short and Ultra Short Wavee to cover the foup corners of the earth 24 hours a day, including all normal transmisions VHP, AM. FM, MW, LW, USW, plas local of new stations not yet operational, and monasea from all over the world. Unique aide control waveband selection anit gives incredible eace of station taning 8 uperb, sweet tone-controlled from a whisper to a roar that will all a hall Genuine puah-pull output ON/OPF volume and separate Treble and Bams tone controls for perfection of reproduction and cone! Pren-button dial flluminstion: Rums economically on standard batterten (obtainable everywhere) or direct through battery ellminstor from 220/240v AC mains supply. Internal ferrite rod serial plus bullt-in "rotatable" teleacopic aerial extendiag to 3aim approx. It's also a tabalou CAR RADIO. Elegant Black and
 perfect service (UK service farllities and aparen available for yearn to come it ever necenary I). With WRITTEN GUARANTEE. Simple instructina and circuit diagram. ONLY $\$ 19.75$ (with mains battery eliminstor $\$ 1-30$ extra. POST, ETC. 50 p . Standard "longlife" batteriea plus extra sensitive earohone for personal listening 25p extra 11 required. Can alno be uned through extenaion ampliter, tape recorder or poblic addrean pyatem. (Sorry-we cannot change thewe new rallon for any earller models alreaty purchamerl.) Refund if not delighted.

MAKE NO MISTAKE-thin the EXPENSIVE model with "PIANO KETBOARD" CONTROL PAKEL and SPECLAL RECORDING LEVEL: SAVE \&13-88: Due to Price we cannot mention famous maker's name-but rest maurell yon're zetting ons of the BEST: Our latest cassette model-no ndding with awhwaril tape and reele. Juat"slap ta" a casetto and ofl you go? (takea 30+, 60 . and $90+$ minute standard Philipm Cangette tapen obtainable everywhere). Amazing performance ensures perfect tapings and auperb reproductiont Remote control micmphone. separate volume control Rapid Rewind Beautlful tone from a whisper to a ruarl Completely self-containedrecord everywhere. Separate facks for remote control microphone, etc. size 9^{*}.
 WRITTEA G'TEE and instractiong. Only $18 \cdot 99$, poat 30 p . ALgO AVAILABLE: SPISCIAL BATTERY/MAIRS AC/DC MODEL, rewly to plug in. $£ 3.50$ extra if required, Refund g'tee. BONUS one per castomer: Casette tape, set of Standard batteries and microphone stand all for $51 p$ extra if required.

SHOPERTUNITIES LTD.

Dept. EE/R/4, 164 UXBRIDGE ROAD (facing Bhepherdx Bush Grpen), LONDON W128AQ. (Thurt, 1. Pri. 7). Also $87 / 38$ ETGH HOLBORF (opporite (thancery Lane) LONDON. W.c.1. (Thuraday 7 p.m.). BOTH STORES OPEN.

FIND BURIED TREASURE!

Transistorised Treasure Lecator

This fully portable transis. and track and tracks down buried metal objocta-it signais exact loca tho phones aned) tranzistor radio uses any inside-no connectione needed InsidDs GOLD STIVED COINS JFwETEF ARCEAEOLOGYCAL PIECES ARCNAEOLOGEAL RIECES five, will signal presence several feet below ledge of radio or electronics required. Oan be buill with ease in one thort evening by anybody from nine vears of age upwards, with the Hlustrated instructiona-Uses standand PP3 battery. No moldering necensary. Kit $22 \cdot 37+27 \mathrm{p}$ p. \& p. (Sectlonal handle as illustrated 76p extra). Parta avallable

Eivesdrop on the exciting world on Aircraft Communications V.H.F. AIRCRAFT BAND ONLT CONVERTOR $!? .27$ Listen in lo AIRJETPLANES. Eavearrop on ground approach comtrod, airport tower, Bear for yourself the disefplined voices hiding with them when they have to take merve ripping decisiona in emergencies-Tune into the internstionsal distress frequency. Covers the aircraft frequency band facluding WAY PRESTWICK, ETC, LUTC OR MINGA BriLL. This fantastic fully transistorined inatrument can be buill by anyone over nine in undry two hours. No soldering necemary. Fully illustrated simple instructions take you step-by-step. Uses standard PP3 battery. All you do is extend rod aerial, place close to any ordinary medium wave radio (even ting portables). NO CONNECTIONS WHATEVER NEEDED. SEND ONLI $88 \cdot 37$ + 23 p p. \& p . tor kit including cane, nuta,巨crews, wire, etc. etc, (parta avaliable meparately).

SHORTWAVE
TRANSISTOR RADIO only £2:25

Anyone from 9 yearn up can follow the atep-by-Btep, easy as

eructions. 76 stations No soldering necesaary 76 atations logged on rod aerlal in 30 mins. Russia. Alrica, USA, Switzerland, olc, Experjence thrills of world wide news, sport, music, ctc. Gavendrop on unusual broad $\mathbf{1 1 ^ { \prime \prime }}$ Only $£ 2 \cdot 25+17 \mathrm{p}$ p. \& p. Klt Includes cabinet. screws, instructlons, etc. (Parts available separately).

INGENIOUS ELECTRONIC
SLEEP INDUCER
£?
CAN'TgLEEP AT NIGHTS? WAKEOUP IN THE NIGHT AND CANT GET OPF TO SLEEP AGAIN WOULD YOU LIEE TOBE GENTLY SOOTHED OFF TO SATISFYINGBLEEP EVERY NIGHT Then build this ingenious electrontc sleep inducer. It even aops by fterelf so you don's have to wemry about il being on all nighll The loudspeaker produces sonthing audiofrequency mounds, contlauously repeatedbut as time goes on the sound gradually becomes less and less-untul they eventually cease altogether, the effeet if has un peopls trol is provided for adjusting the length of trol is provided for adjusting the length of timer, etc., all transistor, can be buitt by
anyone over 12 years of age in about two hours. No knowledge of electronics or radio needed. Extramely simple, easy-to-follow, atep-by-step, fully Illustrated inatructions included. No saldering necessary. Works ofr atandard hatterlen, extremely economlcal. size only $3^{\circ} \times 43^{\circ} \times 11^{\prime}-$ take $1 t$ anywhere. Klt includes case, nuth, wire, merews, etc. SEND $82 \cdot 75+25 p$ p. \& p. (parta avallable meparately).

ELECTRONIC ORGAN
oxly $£ 2.75$
Doa't comfuar
imply blectronic organs ithat imply blowe air over nouth-organ typer reeds efe Fuliy tranaistorised. SELF CONTAINED
LOUSPEAKER. Fifteen separate keysspan wo full oetaves-play the "Yellowo Zose of Trexas" ", play "Silent Nigh", play "A uld Lam Syme" efe. etc. You have the thrill and excitement of building it together with the plearure of playtug a real, Hive, portable electronic organ. NO PREVIOUS KNOW LEDOE OF ELECTRONICS NEEDED. NO soldering necesary, Simple as ABC to make Anyone over nine years can build il easily in ore thorl even ing following the fully illustrated +2 sp p. \& p. for kit, including case, nats $+23 p$ p. \& p. for kit, inciuding case, nuta,
crews,
simple instructions, etc. Uses crews, stmple instructions, etc. Uses Have all the plessure of making it yourself finish with an exciting gitt for momeone.
Find buried treasure with this
READY BUILT \& TESTED
TREASURE LOCATOR
MODULE
onte $£ 4 \cdot 95$
FTLET
TORISED PRIM.
TED CLRCUTT
METAL DETEC
TOR MODULE. Ready bull

and leated-just plug in a PP3 bsttery and

 phones and it's working. Put it in a came PCrew h handle on and YOU RAVE A PORTABLE TREASURE LOCATOR EABIL WORTH ABOUT 520 ! Extremely senallive -penetrates through earth, mand, rock, GOLD, ELC.-EASELY LOCATES COINS, CAL RELICS, BURIED PIPES ETC SAL Rali exact location by "beep" plich Increasing as you near buried metallic objecta. So sensifipe it tofll defect certain objects burind SEVERAL FEET BELOW GROUND! GIVEG CLEAR SIGNAL ON ONE COIN I $44.95+30 \mathrm{p}$ carr. etc. (High quality Danlah Stethoscope headphones $82 \cdot 75$ extra if requirect.)EXAMINE AT HOME YOR 7 DAYS. TOUR MONEY REFURDED IN FULL IF NOT 100% DELIGHTED

BUILD 5 RADIO AND
ELECTRONIC PROJECTS
ane $\mathrm{f} \mid 97$

Amazing Radio Conatruetion set I Become a radir expert for 21.97. A com lete Home Radlo Course No experience needed Parte includiag simple tnatructions for each design. Illus trated step-by-step plans, all transiators, loudspeaker personsal phone knobs, ucrews, c. all you need. Presentation bos $37 p$ extra as fllus. (If required) (parts a vailable separately) no soldering necessary. Son $81 \cdot 87+23 p$ p. \& p.
SOOTHE YOUR NERVES, RELAX WITH THIS AMAZING

RELAXATRON

CUTS OUT NOISE POL NERVEA-JOOTHES YOUR NERVEs Don't under estimate the uses of thls fanRELAXATRON in braically a plink nolise generator. Bealdes being able to mask out exaneous unwanted wounds, properties. For instance. many people find a rainatorm part of this feeling of well-being can be drops! a well known type of pink noige F RACT YOU TEEL MENQED UYABLE TO RE LAX - then build this fantantic Relaxatron Once used you w!ll never want to be without It-TAKE IT ANYWHERE. Uses stan dard PP3 batterles (current usen so smal hat battery life is almant ahelf-life). CA BE EASILY BULLT BE ANYONE OVER 1 TEARS OF AGE using our unlque, step-by step, fulify hustrated plans., No solderin. necemary. Ad parts including case, a pai of crystal phonew. Components, nuts $82.25+26 \mathrm{p}$ p. etc. no moldering.
$22 \cdot 25+25 \mathrm{p}$ p. \& p. Parts availeble separately

CONCORD ELECTRONICS LTD. (EE 4) 8 Westbourne Grove, London, W.2. Callers welcome 9 a.m. -6 p.m. inc. Saturday

G. F. MILWARD 369 Alum Rock Road, Birmingham B8 3DR.

Tel. 021*327 2339

SPECIAL 50p PACKS. ORDER 10 PACKS AND WE WILL INCLUDE AN EXTRA ONE
RESISTORS, t/t watt

Unrepeatable Offer : : ! !
Surplus VEROBOARDS, $3 \frac{3{ }^{\prime \prime}}{4} \times 2 \frac{1^{\prime \prime}}{} \times 15^{\prime \prime}$
Only $10 p$ each or $\mathrm{f} 1 \cdot 00$ per dozen

TANTALUM CAPACITORS. COMPARE THE PRICE-ONLY IOp EACH ! ! ! !

NEW! NEW! NEW! NEW!

An aerosol spray providing a convenient means of producing any number of copies of a printed circuit both simply and quickly.
Method: Spray copper laminate board with light-sensitive spray. Cover with transparent film upon which circuit has been drawn. Expose to light. (No need to use ultra-violet.) Spray with developer, rinse and etch in normal manner.
Light sensitive aerosol spray
Developer spray
50p
G. F. MILWARD, Drayton Bassett, Tamworth, Staffs. Postage (minimum) per order ISp.

PREMIER STEREO BYBTEM "ONE" Conalist of the new Premier 800 and hansistor stereo amplifer, Garrard 2025 T/C avito manual record player wh hited stereo mono ceramic cartridge with diamond stylus and mounted apeaker aysh plinth with perspex cover and two matching teak Anish loud play. 800 umplifer heis an complete and supplied ready to plug in and ceramic and magnetic pick-utput of watts per channel whi hoputa and hesdphone socket. Controls: Base, Treble, Volume, Balance, felector, Power on/of. Mono/Btereo switch. Stereo Headphone mocket. Black leatherett cabinet with aluminium front panel. Size: $121^{\circ} \times 6 \frac{1}{\prime \prime}^{\prime} \times 24^{\circ}$. (Ampliter
a vailable separately if required 816.25 . Carr, 40 p).

PREMIER ATERBO SYBTEY "THREE", Thle coniaits of KLINGER KC003 stereo smpliber giving 6 wath rmap per chanoel with Buew, Treble. Volume and Balanco Controle. Inputs for Masenetic
 earphone sockect. Gararard 8 P25 Mk. HR in teak TTAHCD diamond Atereo artridea
 complete the matchiog system. ONLY 457.75 ${ }^{\text {completele }}$ Casi

SP25 MKIII SPECIAL!

Gabrard bpzs mi IIT BINGLR RECORD PLAYER FITTED KETIC BTEREO CAB: TRDDGE as arailible. COMPLETE TN TEAE Phintr with elaid prraper cover. otal lint price over ezs.
$£ 18.90$
P. \& P. 50 p .

HI-FI STEREO HEADPHONES
Designed to the higheat possible standard. Fitted 2 in speaker unita with sott padded ear mufts. Adjustable headband. 8 ohms impedsace, Complete with fift lead and

stereo atethoscope bet Low lmp, 11.25 MONO BTETHOBCOPE EET Low Imp. 52p. P. \& \& P. 10p. 10 p.

E.M.I. $13 \times 8 \mathrm{in}$ HI-FI SPEAKERS Fitted two 2 bin tweeters and crosoover network. Impedance 8 or 15 obm. Hazading
city 10 w . Brand new.
£3.47 ${ }^{\text {P. \& P. 40p }}$

NEW LOW COST PREMIER 800 STEREO AMPLIFIER

A truly high quality stereo amplifer-compare the apecitication, compare the price. Output: 5 watta per channel. Frequency response: $30-20,000 \mathrm{~Hz}=2 \mathrm{db}$. Distortion: 1\% Ortput Impedance 8 ohms noms. Inpnts equalised to R.1.A.A. Mrgnetic 4 mV . Ceramic 100 mV . Tuner 100 m . Tape oockets for inpute and outputs. Stereo headphone sociret. Atrachive sim fret with alaminlum front panel. Size $12 t^{\circ} \mathrm{z} 6^{\circ}{ }^{\circ} \mathrm{I}$ $2 \mathbf{t}^{*}$.

ONLY £16•25 Carr, 40 .

"Markeman" Soldering Iron. Lightweight ti" pencll bit Ideal for regular bench use and around the bome. 26 watth. 240 volt A.C. $\operatorname{Bi} 1.50 \mathrm{P}$ \& P $15 p$
£9-97

TAPE CASSETTES C60 ($\left.\begin{array}{c}60 \\ \text { min. }\end{array}\right) 37 p_{0}^{3 \text { for }} 81.05$ C90 ($\cos _{\min .}$) $62 p_{\substack{3 \\ 81.80}}^{\text {for }}$ C120 ($\left.\begin{array}{l}120 \\ \min .\end{array}\right) 87 p_{8.55}^{3 \text { ior }}$ P. \& P. bp .

FREE CASSETTE HEAD CLEANER with every 10 cassettes purchased.
All cassettes can be supplled with library cases at 3p. extra each
eady wired in teak plinth ith cover
Carriage and Insurance 50 p extra any item.

" VERITONE" RECORDING TAPE

greclally matufactured in o.s.a. prom extra strona PRE-BTRETCHED MATERIAL THE QJALTTY IS UNEQUALLED TENSLLISED to enaure the most permanent base. Highly reeimant to break age, molisture, heat, cold or humidify. High polisbed splice free finleh, smooth output throughout the entire avdio range. Double wrapped-at tractively boxed

 DTS 50 1200' POLYESTER 75 FAPE SPOOLS $8^{8} \mathrm{sp}, 5^{5}, 55^{\circ}, 7^{\circ} 9 \mathrm{pp}$,

PPMynivi fitolo HEAD OFFICE \& MAIL ORDER DEPT. 23,TOTTENHAM CT. RD. TEL:01-636 3451

Sinclair Q16/Micromatic

016 High fidelity loudspeaker

The Q16 employs the well proven acoustic principles specially developed by Sinclair in which a special driver assembly is meticulously matched to the characteristics of the uniquely designed cabinet. In reviewing this exclusive Sinclair design technical journals have justly compared the Q16 with much more expensive loudspeakers. Its shape enables the Q16 to be positioned and matched to its environment to much better effect than is the case with conventionally styled enclosures. A solid teak surround with a special all-over celiular foam front is used as much for appearance as its ability to pass all audio frequencies without loss.

This elegantly designed shelf mounting speaker brings genuine high fidelity within reach of every music lover.

Specifications:

Construction: Special sealed seamless sound or pressure chamber with internal baffle.
Loading: up to 14 watts RMS
Input Impedance: 8 ohms.
Frequency response: From 60 to 16,000 Hz . confirmed by independently plotted B and K curve.
Driver unit: Special high compliance unit having massive ceramic magnet of 11,000 gauss, aluminium speech coil and special cone suspension for excellent transient response.
Size and styling: $9 \frac{7}{4} \mathrm{in}$. square on face x $4 \frac{3}{4}$ in. deep with neat pedestal base. Black all over cellular foam front with natural solid teak surround

Price £8.98.

Britain's smallest radio

Considerably smaller than an ordinary box of matches, this is a multi-stage AM receiver brilliantly designed to provide remarkable standards of selectivity, power and quality for its size. Powerful AGC counteracts fading from distant stations: bandspread at higher,frequencies makes reception of Radio 1 easy. The plug-in magnetic earpiece provided, matches the Micromatic's output to give wonderful standards of reproduction. Everything including the special ferrite rod aerial and batteries is contained within the minute attractively designed case. Whether you build a Micromatic kit or buy this amazing receiver ready built and tested, you will find it as easy to take with you as your wrist watch, and dependable under the severest listening conditions.

Specifications:

Size : $36 \times 33 \times 13 \mathrm{~mm}(1.8 \times 1.3 \times 0.5 \mathrm{in}$.) Weight: including batteries, 28.4 gm (1 oz.)
Case: Black plastic with anodised aluminium front panel and spun aluminium dial.
Tuning: medium wave band with bandspread at higher frequencies (550 to 1.600 KHz)

Earpiece: Magnetic type.
On/off switching: By inserting and withdrawing earpiece plug.
Kit in pack with earpiece, case, instructions and solder $£ 2.48$.
Ready built, tested and guaranteed, with earpiece $£ 2.98$.
Two Mallory Mercury batteries type RM675 required from radio shops, chemists, etc.

Sinclair Radionics Ltd., London Rd, St. Ives Huntingdonshire PE17 4HJ.
Telephone St. Ives (048 06) 4311

For several years now you have been able to assemble your own high fidelity system to world beating standards using Sinclair modules. We have progressively improved these technically but hitherto the method of assembly at your end has remained the same - there has been no alternative to a soldering iron. Now for those who prefer not to solder, there is an alternative - Project 605.
In oné neat package you can now obtain the four basic Project 60 modules plus a fifth completely new one - Masterlink - which contains all the input sockets and output components you previously bought separately. Also in the Project 605 pack are all the inter-connecting leads, cut to length and fitted at each end with plugs which clip straight onto the modules, eliminating soldering completely. The pack contains everything you need to build a complete 3 C watt stereo amplifier together with a clear well illustrated Instruction Book. All you have to do is to arrange your modules in the plinth or case of your choice and then clip them together - the work of a few minutes.
Your hi-fi system will, as we said, match the finest in the world and you can add to it at any time to increase power or extend the facilities. For example a superb stereo FM Tuner unit is obtainable for only $£ 25$.

Buarantee If within 3 months of purehasing Project 605 directly from us, you are dissatistised with it, we will relund your money at once. Each module is guarameed to work perifectly and should any defect arise in normal use wa will service if at once and without any cost to you whatsoever provided that it is rerurnad to us within 2 years of the purchase date. There will be a small charge for service therealter. No charge for postage by surface mail, Air-mail charged al cost.

Sinclair Radiónics Lid., London Road. St. Ives, Huntingdonshire PE174HJ Telephone: St. Ives (04806) 4311

Specifications

Output- 30 watts music power (10 watts per channel R.M.S. into 3Ω).
Inputs-Mag. P.U. - 3mV correct to R.I.A.A. curve 20-25.000 $\mathrm{Hz} \pm 1 \mathrm{~dB}$. Ceramic pick-up -50 mV . Radio - 50 to 160 mV . Aux. adjustable between 3 mV . and 3 V .
Signal to noise ratio - Better than 70 dB .
Distortion - better than 0.2\% under all conditions
Controls - Press buttons for on-off, P.U., radio and aux. Treble +15 to -15 dB at 10 kHz . Bass +15 to -15 dB at 100 Hz . Volume. Stereo Balance.
Channel matching within 1 dB .
Front panel - brushed aluminium with black knobs. Project 805 comprises Stereo 60 pre-amp/control unit, two Z-30 power amplifiers, PZ-5 power supply unit, the unique new Masterlink. leads and instructions manual complete in one pack. Post free

£29.95

To Sinclair radionics lto., st. IVES. huntingoonshire peitahd
Please send Project 605 post free \square Details and list of stockists \square
Name
Address
for which I enclose $£ 29.95$ cheque/monev order/cash.
E.E. 48

BODINE TYPE N.C.I. GEARED MOTOR

 $\begin{array}{ccc}\text { (Type 1) } 71 & \text { r.p.m. } \\ \text { Torque } \\ \text { lolb. }\end{array}$ Torque 1016. inch.
$=$ Seversible. $1 / 70 \mathrm{th} \mathrm{h} . \mathrm{p}$.
So cycle, 0.38 amp (Type 2) 50 cycle, 0.38 amp (Type 2)
28 T.p.m. Torque 2016 $28 \mathrm{F.P} \mathrm{~m}$. Torque 2016 h.p. 50 cycle, 0.28 amp. "As new" condition. Input voltage of mozor former for $230 / 240 \mathrm{~V}$ a.c. input. Price, either sype $\mathbb{E} 3.15$ plus $35 \mathrm{p} P$. \& P. or less transformer 2.13 plus $27 \mathrm{p} P$. \& P.

12 VOLT DC MOTOR

 PowerfulVERSI VERSIBLE Speed 3,750 RPM complete with external train (ramovabla) gear fize $41^{\prime \prime} \times 21^{\prime \prime}$ dia. Price 95p inc. post.
$230 \mathrm{~V} / 240 \mathrm{~V}$ COMPACT SYNCHRONOUS GEARED MOTORS Manufactured by eizher Sangamo. Maydon or
Smith. Built-in gearbox Smith. Built-in gearbox. IR.P.M. cw 1 R.P.H. A/cw 10 R.P.H. A/cw
30 R.P.M. cw 2 R.P.H. cw
IS R.P.H. A/cw $\begin{array}{ll}30 \text { R.P.M. } \mathrm{cw} & 2 \text { R.P.H. } \mathrm{cw} \\ 60 \text { R.P.M. } \mathrm{cw} & 3 \text { R.P.H. A/cw } 20 \text { R.P.H.H. A/cw }\end{array}$ $\mathrm{cw}=$ Clockwise 6 R.P.H. Cw 30 R.P.H. cw cw= Clock wise. Fraction of makers' price. Allat: 75 p incl. P. \&P. raction of makers price. Allat isp inci. P. \&P. G.E.C. 12 WAY 15 AMP. CONNECTORS

NEW in maker's APyyef carton BAKELITE 11.25

 per doz.41-50 per doz. Post paid (Minimum I doz.)
PROGRAMME TIMERS
(Mfr. by 'Ma
$240 v$ A.C. 5 r.p. Crouzet motor. Drives 15 cams, each operating a 10 amp clo
micro switch. Cams are indi. vidually variable, allowing innumerable combinations. Ideally sulted for machinery control. utomation, etc. Also in the meld of enter etc. NEW PRICE: $\mathbf{6} \cdot 75$, P. \& P. 25p.
230v AC SOLENOID
Extromaly powerful with
pprox. 1416 pull, I" travel. fize: with mounting fee

230-250 VOLT A.C. SOLENOID
(Similar to above illustration). Approx. I $\frac{1}{2} \mathrm{~b}$. pull. Size of feet $11^{\prime \prime} \times$ I". Price 85 p incl. P \& P. Manulactured by Westool Led.
18-24 VOLT D.C. SOLENOID Size o.a.1. 3t x $1 t$ PRICE: 75 p incl. P. \& P. MINIATURE RELAYS
$9-12$ volf D.C. operation, 2 c/o, 500 M.A. contacts. Size only I
30-36 vole D.C. operation. $2 \mathrm{c} / \mathrm{o} 500 \mathrm{M}$. .. contaces. 3,200 ohm coil. Size only I in. x din, $x 1$ in. PRICE: 45p. Post paid.

VENNER Electric Time Switch

 200/250V Ex. GPO. Tested. Manually switch: 10 af every $\mathbf{2 4 h}$. Override 20 A \& 3.75. P. \& P. 200. Also avallable with solar dial ON dusk. OFF dawn. Prict as above
MICRO SWITCH

5 amp cjo contacts. push button removable Ex. P.O. 20 for Ell finc. post. (Min. offorer 20)

VARIABLE VOLTAGE TRANSFORMERS

INPUT $230 / 140 \mathrm{~V}$ a.c. $50 / 60$ OUTPUT
VARIABLE O.260V
All Types (and Spares).
rom $\frac{1}{2}$ to 50 amp from stock.
SHROUDED TYPE
5 amp, $67.00 \quad 2.5 \mathrm{amp}, 68.05$
10 amp, 17.75
15 amp, $122.50 \quad 20$ amp. 449.00 $37.5 \mathrm{amp} 25.0023 \mathrm{mmp}, 458.00$
All plus fi.00.00 where nor 9800
OPEN TYPE (Panel Mounsing) tamp 44.75

2.5 AMP

Superior vianity Preanson Tavio NEW POWER RHEOSTATS
100 WATT . 1 ohm, 10A: 5 ohm, 4-7A:
10 ohm, 3A: 25 ohm, 2A: 50 ohm, 1.4A:
$10 \mathrm{ohm}, 3 \mathrm{~A} ; 25 \circ \mathrm{hm}, 2 \mathrm{~A}: 50 \mathrm{ohm}, 1 \mathrm{4A}$
 $0.45 A ;$
mA . Diamerer 34 m . $\$$ haft length fin, dia. dsin. All at $\mathrm{Kl}-50$ each. P. \& P. 5 W. $1 / 10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2-5 / 5 \mathrm{k}$. All at EI 12 each. P. \& P. IIp.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1 / 1 \cdot 5 / 2 \cdot 5 / 3 \cdot 5 / 5 k \Omega$. All at 78p each. P. \& P. 15p.

STROBE! STROBE! STROBE!

Build a Strobe Unit, using the latest type Xenon whit light flash tube. Solid state timing and trigetrin ${ }^{2}$ CiPCuit. 23 I2SNTENE Operation.
Speed adiustable 1 to 36 Flash per sec. All electronic Xenon Tube and instructions $66 \cdot 30$, plus 25 p P. \& P. NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories, ete. Roller tin printed circuit. New erigger coil. plastic thyrlstor. Speed adjustable 1-80 f p.s. Price \&10.50. P. \& P. 50p. HY-LYGHT STROBE MK III
This strobe has been designed and produced for use in large rooms, halls and che photographic field and utilises a silica piusein tube for onger life expectancy, poil and output capacitor. Speed adiustable $0-30$ f.p.s coil and output capacitor. Speed adjustable 0-30 f.p.3. LIghe ourpur approx ${ }^{4}$ jouIEs. ULL METAL CASE. Including reflector. 44.00 P. \& P. 45p Post paid with kit.
THE 'SUPER' HY-LYGHT KIT
Approx, four times the light output of our well proven Hy-Lyghe strobe. Incorporating:

- Heavy duty power supply.

Variable speed from 1-23 flash per sec.
Reactor control circuit producing an intense white light. The brilliant lighe output of the "SUPER" HY-LYGHT gives fabulous effects with colour filte
Never belore a Strobe kit with so High an ourput at so LOW a price, ONLY E20 plus 75 P P. \& P. ATTRACTIVE, ROBUST, FULLY YENTILATEO METAL CASE specially designed Hy-Lyght Kit including reflector E7.00 P. \& P, 45p. 7-inch POLISMED REFLECTOR
Ideally suited for above Strobe kits. Price 53p, P. \& P. 13p or post paid with kits.

REAAYS New SIEMENS PLESSEY, etc. Miniature
 (1) Coil ohms: (2) Working de volus: (3) Coneracts. (4) Price (HD) Heavy Duty. All Post Paid. 12 VOLT D.C. RELAY
Three sets c/o contacts rated at 5 amps. 78p incl. P. \& P (Similar to illustration below.) 'DIAMOND M' 230 VOLT A.C. RELAYS (UNUSED)
Three sets cfo contacts rated at 5 amps, P\& P.)
-KEY SWITCH" 230 VOLT A.C. RELAYS
One set elo contacts rated at 7.5 amps . BOXED. Price: 40 p .

"HONEYWELL" LEVER

OPERATED MBCRO SWITCH
15 amps .250 volt
NEW c/o contaets
Carton. Price: 10
for $\mathbb{E} \mid 90$ incl, P \& P.

1230 VOLT A.C. SOLENOID

- OPERATED FLUID CONTROL VALVE Adjustable flow control, all metal construction, Will handle hot or cold liquids, water, oil, parainin, etc. Avaliable with
or t in, inler/outlet. Eicher type fl. 50 P. \& P. 20p

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space
Dept. E.E. 57 BRIDGMAN ROAD, LONDON. W4 5BB
Phone 01-995 1560
SHOWROOM NOW OPEN MON.-FRI.

Personal callers only. Open Sat. 9 LITTLE NEWPORT ST. LONDON WC2H 7JJ O1-4370579

Vary the strength of your lighting with a TWM251IICH

The DIMMASWITCH is an attractive and efficient dimmer unit which fics in place of the normal light switch and is connected up in exactly the same way. The ivory mounting piate of the DIMMASWITCH matches modern electric fittings. Two models are available, with the bright chrome knob controlling up to 300 w or 600 w of all lights except fluorescents at mains voltages from $200-250 \mathrm{v}, 50 \mathrm{~Hz}$. The DIMMASWITCH has built-in radio interference suppression:

600 Watt $-\mathbf{5} \mathbf{2 0}$. Kit Form $\mathbf{6 2} 70$
300 Watt- $\mathbf{2}$.70. Kit Form $\mathbf{1 2} 20$
All plus 10p post and packing.
Please send C.W.O. to:-

DEXTER \& COMPANY

5 ULVER HOUSE, 19, KING STREET, CHESTER CH1 2AH Tel: 0244-25883, As supplied to H.M. Government Departments.

E. 24020 watt 240 volts soldering iron fitted with $1 / 4^{\prime \prime}$ iron coated bit. Spare bits 3/32". 1/8" and 3/16" avallable. Can also be supplied for 220 and 110 volts. Price £1.80.
ES. 24025 watt 240 volts soldering iron fitted with $1 / 8$ iron coated bit and packed in a transparent display box. Spare bits $3 / 32^{\prime \prime}, 3 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$ avallable. Can also be supplied for 220 and 110 volts. Price £1.83

CN. 240/2 Miniature soldering Iron 15 watt 240 volts, fitted with nickel plated 3/32" bit and packed in transparent display box. Also available for 220 volts. Price $\mathbf{£ 1 . 7 0}$
CN. 240 Minlature soldering iron 15 watt 240 volts, fitted with iron coated $3 / 32^{\prime \prime}$ blt. Up to 18 interch angeable spare bits obtainable. This iron can also be supplled for 220, 110,50 or 24 volts. Price $£ 1.70$
G. 240 Miniature soldering Iron 18 watt 240 volts extensively used by H.M. Forces. Sultable for high speed soldering and fitted with iron coated $3 / 32^{\prime \prime}$ blt. Also available for 220 volts. Spare bits $1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$ and $14^{\prime \prime}$ are obtalnable. Price £1.83.

(ax) $(x)=(x)$ your solderins applance specialists.

CCN, 240 New model 15 watt 240 volts miniature soldering Iron with ceramic shaft to ensure perfect insulation (4,000 v A.C.). Will solder live transistors in perfect safety: fitted with 3/32" Iron coated bit. Spare bits $1 / 8$ $3 / 16^{\prime \prime}$ and $1 / 6^{\prime \prime}$ available. Can also be supplied for 220 volts. Price £1.80
CCN. $240 / 7$ The same soldering iron fltted with our new 7 -star high efficlency bit for very high speed soldering The triple-coated blts are iron, nickel and chromlum plated. Price $£ 1.95$

Price $£ 2.40$.

SK. 2
 SOLDERING KIT

This kit contains a 15 watt 240 volts soldering iron fitted with a $3 / 16^{\prime \prime}$ bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and $3 / 32^{\prime \prime}$, a reet of solder. Heat Sink, 1 amp fuse and booklet "How to Solder"

MES. 12
A battery operated 12 volts 25 watt soldering iron complete with 15' lead, two crocodile clips for connection to car battery and a booklet "How to Solder" packed in a strong plastic wallet Price $£ 1.95$.

SK. 1
SOLDERING KIT

The kit contains a 15 watt 240 volts soldering iron
fitted with a 3/16" bit, nickel plated spare bits of $5 / 32^{\prime \prime}$ and 3/32", a reel of solder, heat sink.
Price $£ 2.75$ clèaning pad, stand and booklet "How to Solder". Also available for 220 volts.

sign here to answer all your soldering problems.

from electrical, radio or car accessory shops or from Antex Ltd.. Freepost (no stamp required) Plymouth
PL1 iBR Telephone 0752 67377/8

Please send the Antex colour catalogue.
Please send the following:
\qquad Name
Address I enctose cheque/P.O./Cash (Giro No. 2581000)
\qquad
EE. 4
E. 4

TRANSISTORS

．29301	20 p	2N3404	32 p	40310	45p	BC212L	13p	B8x28	32 ${ }^{\text {P }}$	1 271p
29302	20p	2N3405	45p	40311	35p	BCT30	2710	B8X 60	82 1p	NKT401 87ip
2 CaOz	20 p	2N3414	$22 \dagger p$	40312	471p	BCY31	30p	B8X 61	621p	NKT402 80p
2G306	421p	2193415	22才p	40314	37tp	BCY32	50 p	B8X76	2210	NKT403 75p
2G308	30 p	2N3416	371p	40320	47tp	HCY33	25．p	B8x77	271p	NKT404 62 ${ }^{\text {d }}$
$2 \mathrm{C309}$	30p	2N3417	871p	40323	$32+0$	BCY 34	30 p	BSX78	271 D	NKT40ß ${ }^{750}$
29371	15p	2N3570	21.25	40324	47ip	BCY 38	40p	B8Y 10	271 P	NKT406 $62 \downarrow$
$2 \mathrm{C374}$	20p	2N3572	971p	40326	37 tp	BCY39	80D	B8Y11	278	NKT45 1 62tp
$2 \mathrm{G381}$	22］p	2N3605	2715	40329	30p	BCY 40	50D	B8Y24	15p	NKT452 $62 \dagger$ p
2N404	22tp	2 N 3608	271p	40344	271p	BCY42	15 p	88825	15p	NKT463 47／p
2N698	20p	2N3607	22］p	40347	57\％	BCY 43	15p	B8Y26	1719	NKT603F82 ${ }^{\text {d }}$
2N697	17p	2N3702	11 p	40348	52；	BCY84	3210	BSY27	17p	NK T613F 321 p
2N698	25 p	2N3703	10p	40360	42，p	BCY58	22 p	B3Y28	174P	NKT674F 30p
2N708	121p	2N3704	11 p	40361	47ip	BCY＇59	2210	B8Y29	1710	NET677F 30D
2N705A	12¢p	2N3705	10p	40382	57p	BCY60	971 P	B8Y 32	25p	NKT713 25p
2N708	16p	2N3705	00p	40370	32\％	BCY70	20D	B8Y 36	25p	NK T781 30D
2N704	62tp	2N3707	11p	40408	57p	BCY71	25p	B8Y37	$25 p$	NKT10419 30p
2N718	25p	2N3708	07p	40407	10p	BCY72	1710	88Y38	$22+$	NKT10439
2N72A	30p	2N3709	09p	40408	52 \dagger p	BCZ 10	27p	B8Y39	$22+\mathrm{p}$	37
2N727	30.	2N3710	$09 p$	40410	627	BC211	4etp	BSY 40	8210	19
2N914	17\％${ }^{\text {p }}$	2N3711	12p	40467A	67\％	BD116	21.12	BSY81	$32+\mathrm{D}$	321p
2N916	17t	2N3715	21.25	40468A	35D	BD121．	65，	B6Y52	32.0	20329
2N918	80p	2N3716	21.30	40800	57¢p	BD123	821p	BSY83	a7 ${ }^{\text {d }}$	
2N029	22\％${ }^{\text {d }}$	2N3791	22.08	AC 107	30p	BD124	60 p	BEY54	10D	39
2N030	871	2N 3819	35p	AC126	20p	BD131	780	B8Y56	90 p	3710
2N1090	281 p	2N3823	971p	ACl^{27}	${ }^{25 p}$	BD132	85p	B8Y78	71 ${ }^{\text {d }}$	0111
2N1091	2Rip	2N3854	27tD	ACl28	20 p	BDY10	21.97	B8Y74	Sp	776
2N1131	25.	2N3854A	27p	AC154	22.1	BDY11	21．62	B8Y8．	6210	KT80112
2N2132	25 p	2N3955	27 p	AC178	${ }^{25 p}$	BDY17	21.50	B8Y90	67.0	97\}p
2N1302	171p	2N3855A	30 p	AC187	62 ${ }^{\text {p }}$	BDY18	21.75	B8Y95A	1210	113
2N1303	171p	2N3856	30p	AC188	371 p	BDY19	21．97	B8W41	4210	1.
3N1304	2et ${ }^{\text {d }}$	2N3856A	85p	ACY17	27¢ ${ }^{\text {d }}$	BDY20	21－121	B8w70	271．	211
2N130s	22.1	2N3858	25p	ACT18	${ }^{25 p}$	BDY38	971 P	${ }^{\text {cher }} 11$	$75 p$	
2N1306	${ }^{20} 5$	2 N 3858 A	30p	ACY10	25 D	BDY80	11.25	C424	871	212
2N1307	250	2N3858	27 p	ACY20	250	BDY81	21.25	C425	55 p	
2N1308	80D	2N3859A	3210	ACY21	250	BD Y 62	11.00	C426	60 D	13
2 N 1909	80p	2N3880	80 p	ACY23	20 p	BF11s	25 p	C128	875	92 \ddagger
2N1507	1710	2N3868	21.50	ACY28	20 D	BF117	4719	C744	30p	14
2 N 1613	25 P	2N3877	40p	ACY 40	200	BF163	8710	D16P1	8710	921p
2N1631	85 p	2N3877A	40p	ACY 41	250	BF187	18p	D18P2	40 D	KT80216
2N1632	80 D	2N 3800	3710	ACY44	400	BF173	18p	D16P3	877	8810
2N1638	271．	2N3900A	40D	AD140	5210	BF177	${ }^{80}{ }^{\text {p }}$	D16P4	40p	NK T80\％18
2N1639	27.1	2N3901	971p	AD149	67\％	BF178	30 p	GET102	30 D	210
2N1871B	1.00	2N3903	35 p	AD150	6210	BF179	80 p	GET113	20 D	0c20．75p
2N1711	25D	2 N 3904	85p	AD161	3710	BF180	35p	GET114	20 D	OC2\％50p
2N1880	82］	2 N 3905	871p	AD102	8710	BF181	323p	GET118	20p	$0 \mathrm{OC23}$ 60p
2N1893	37p	2N3406	3710	AF106	421 D	BF184	25p	GET118	800	$\mathrm{OC2}^{14}$
2N2147	881P	2N4058	1710	AF114	25 p	BF18s	4210	GET120	821］	00^{25}
2N214月	5710	2 N 4059	10p	AF118	250	BF194	1710	GET873	1210	00^{06} 271p
3N2160	8710	2N4060	121p	AF116	25 D	BF195	15p	GET880	30D	0 CL 2 A 82 ${ }^{\text {d }}$
2N2193	10p	2N1061	1210	AF117	25 p	BF198	4210	GETB87	20D	0 C 29 62tp
2N2193A	423D	2N4062	1218	AF118	62tp	BF197	42！p	GET889	22tp	осаз 50p
2N2194A	800	2 N 4244	\＄710	AF119	200	BF198	421p	GET890	2210	0 C 36 62 ${ }^{\text {d }}$
2N2217	2719	2N4285	1710	AF124	22 ip	BF200	S2ld	GET896	291p	OC41 22ta
2N2218	23p	2N4288	1710	AF125	200	BF224	15	GET897	22tp	$0 \mathrm{CH2}$ 25p
2N2210	28 D	2N4287	17.1	AF126	80p	BP225	19p	GET898	22p	$0 \mathrm{C4} 4{ }^{\text {20p }}$
2N2220	25 p	2 N 4288	1710．	AF127	1710	BF237	23p	MJ400	E1．07	OC45 12to
2N2221	250	2N4289	171p	AF139	8710	BF238	28p	MJ420	11.12	0 CAF 15p
2 N 2222	800	2N1290	1710	AF178	4810	BF244	23D	MJ421	81.12	0×70 15p
2N2270	479	2N4291	171p	AF179	72ip	BFW81	471p	MJ430	21．02	0071 12tp
2N2207	807	2 N 429 y	1810	AF180	6219	BFX13	22\％p	MJ440	95p	0c72 12tp
2N2368	171．	2N4303	4710	AF181	421p	BFX 13		MJ480	978	0 C 74 824p
2N 2360	1710	2N5027	681 ${ }^{\text {d }}$	AF230	4210	BFX 29	30 p	MJ481．	4.25	$0 \mathrm{C75}$ 224D
2N2368A	17\％	$2 \mathrm{NSO28}$	67.19	AF279	478	BEX 30	30p	MJ490	21.00	0678 2ep
2N2410	4215	2 N6029	4710	AF280	6810	BPX42	37	MJ491	21．87	$0 \mathrm{C77} \quad 30 \mathrm{p}$
${ }^{2} \mathrm{~N} 2483$	2710	2 N 5030	4810	AF211	32.5	BFX 44	878	MJ1800	28.17	$0 \mathrm{C81}$ 200
2N2484	82\％${ }^{\text {p }}$	2N5172	121p	A8Y26	25p	BFX 68	87p	MJE340	$82 \cdot p$	$0 \mathrm{C81D} 22 \mathrm{p}$
2N2839	$22+5$	2N5174	8810	A8Y27	27 p	BFX84	25 p	MJE520	${ }^{60 \mathrm{p}}$	$0 \mathrm{C83}$ 25p
2N2540	22t9	2N5175	52.8	A8Y28	270	BFX80	$321 p$	MJES21		$0 \mathrm{C84}$ 25p
2N2613	${ }^{85}$	2N517	48	A8Y 29	27 p	BFX86	25 p	MPP102	42＋p	
2N2614	80p	2N5232A	808	A8Y36	250	BFX87	27 p	MPF103	37 p	00140 a2tp
2N2648	62tp	2N5243	45p	A8Y50	25 p	BFX88	25p	MPF104	37 y	0C170 30p
2N2698	8210	2N5248	421p	A8Y81	8215	BFX 89	62to	MPF105	37 ¢	$0 \mathrm{Cl71}$ 30p
2N2711	259	2N5249	6710	A8Y54	250	BFX93A	70p	MPS3638	327p	OC200 40p
2N2719	25 p	2N5265	［3．25	A8Y86	32 p	BFY10	$32 . p$	NKT0013	472p	OC201 60p
2N2713	2710	2N5268	¢2．75	AU103	21.25	BFY11	42ip	NKT124	4215	OC202 78p
2N2714	30 p	2N5267	£2．82	A8Z21	421 p	BFY17	22 p	NKT125	27 P	0 C 203 42才
2N2806	6240	2N6305	3710	BC107	10 p	BFY18	824p	NKT126	2718	OC204 42ip
2N2904	30p	2N5306	40p	BC108	10p	BFY19	32，p	NKT128	27ip	OC205 90p
2N2904A	82tp	2N5307	37 p	BC109	10D	BFY20	21.60	NKT135	271p	OC207 75p
2N2905	8710	2N5308	371p	BC113	15］	BFY21	12\％	NKT137	82？${ }^{\text {d }}$	OCP71 12ip
2N2905A	400	2N5309	62 p	BC115	15 p	BFY24	45 p	NKT210	30p	ORP12 50p
2N2906	25p	2N5310	48．95	BC116．	15 p	BFY25	25p	NKT211	30 p	ORP61 50p．
2N2906A	27 p	2N5354	${ }^{27} 1{ }^{\text {p }}$	8C118	10.	BPY26	20 p	NKT ${ }^{12}$	30 p	PR46A 22 ${ }^{\text {P }}$
2N2907	80 p	2N5355	274D	BC121	20 p	BFY 29	50 p	NET213	30 D	T1834 62tb
2N2923	15D	2N5356	32 ¢	HC122	20p	BFY 30	50 p	NKT214	221p	TIP43 27p
2N2924	15p	2N5365	47］${ }^{\text {d }}$	BC125	20p	BFY41	50 p	NKT215	294 ${ }^{\text {P }}$	TI844 20p
2N2925	15p	2N5366	32，${ }^{\text {p }}$	BC128	20p	BFY43	62 \dagger p	NKT216	37 p	TIB45 10p
2N2926		2N5367	6710	BC140	37 p	BFY50	28p	NKT217	121p	T1846 11p
Green	19p	2N5457	374p	BC147	10p	BFYal	20 p	NKT219	30p	T1847 11p
Yollow	12%	28005	75 p	BC148	10 D	BFY52	23 p	NKT223	27 p	T1848 ${ }^{1210}$
Orange	12tp	28020	12.00	BC149	12p	BFY53	17p	NKT224	25p	T1849 12 ${ }^{\text {p }}$
2N3011	300	28102	50 p	BC152	171p	BFY56A	57p	NKT225	22.1	T1850 17\％
2N3014	3218	$2 \mathrm{Cl03}$	25p	BC157	20p	BFY75	30p	NKT229	309	T1851 21／p
2N3053	18 p	28104	25p	BC188	11D	BFY76	42\}p	NKT237	35p	T1852 12＋p
2N3054	48p	28501	32，${ }^{\text {p }}$	BC159	12p	BFY77	57\％	NKT238	$25 p$	T1853 22 ${ }^{\text {d }}$
2N3055	62p	28502	35p	BC160	$621 p$	BFY90	67 \％	NKT240	271p	T1860 221p
2N3133	30 p	28503	27 p	BCl^{67}	11 p	BFWb8	27 p	NKT241	$27 . p$	T1861 25p
2N3134	30p	3N83	40p	BC1688	10 p	BFW59	250	NET242	20p	TI862 27！${ }^{\text {c }}$
2N3135	25p	3N128	70p	BCl88C	$11 p$	BFW60	$25 p$	NKT243	62／p	TIP29A 50p
2N3136	25p	3N140	77 ${ }^{\text {d }}$	BC169B	11p	BPX25	11．85	NKT244	171p	TIP30A 60p
2N3390	25p	3 N141	72tp	BC189C	12p	BPX29	21.80	NKT246	20D	TIP31A 62］d
2N3391	20 D	3N142	55p	BC170	12tp	BPY10	21.45	NKT201	20 D	TIP32A 75D
2N3391A	30p	3 N 143	671p	BC171	15 p	BRY39	871p	NKT262	30 D	TIP33A
2N3392	171p	3N162	875	BC172	15p	B8x19	1710	NKT264	20 D	21.02 ¢ ${ }^{\text {p }}$
2N3393	159	R．C．A．	52 p	BC175	$22+5$	B8X20	17p	NKT271	20 D	TIP34A 22.05
2N3394	15p	40050	55 p	BC1／${ }^{\text {a }}$	10p	B8x 21	3710	NKT272	20 p	TIP35A 28.90
2N3402	2210	40251	324 p	BC183	09p	BBX26	$4 \mathrm{Sb}^{\text {d }}$	NKT274	20p	TTP36A £3．68
2N3403	2210	40309	$32 / \mathrm{p}$	BC184	11p	B8X27	471 D	NKT275	20p	
	Ost 8								） 65	IN．）

Matching charge（audio transistors only）15p extra per

TTL．LOGIC I．C．NEW PRICES

	1－11 12－24		1－11 12－24				1－11	1
	fp	$1{ }^{1}$		Ep	fp		8 p	2
BN7400	0.80	$0 \cdot 18$	SN7433	0.80	0.75	8N7472	0.32	0.30
8N7401	0.20	． 0.18	8， 7437	0.84	0.06	SN7473	0.43	0.41
8N7402	0.20	0.18	8N7438	0.64	0.60	8N7474	0.43	0.41
8N7403	$0 \cdot 20$	0.18	SN7440	0.28	0.21	SN7475	0.45	0.44
8N7405	0.20	0.18	GN7441AN	0.87	0.88	8N7476	0.45	0.44
8N7406	0.80	0.75	8N7442	0.85	0.81	8N7480	0.70	0.88
8N7407	0.80	0.75	gN7443	2.88	2.70	SN7481	1.40	1.38
8N7408	0.20	0.18	gN7444	2.88	$2 \cdot 70$	SN7482	0.87	0.82
8N7409	$0 \cdot 80$	0.18	2N7445	$2 \cdot 50$	2.40	gN7483	0.87	0.82
GN7410	$0 \cdot 20$	0.18	SN7446	1.00	0.95	SN7484	$2 \cdot 00$	1.85
8N7411	0.23	0.21	AN7447	1.00	0.95	8N7485	3.62	$3 \cdot 40$
GN7422	0.48	0.48	8N7448	100	0.95	8N7488	0.33	0.80
8N7413	0.40	0－38	SN7449	1.00	0.85	GN7490	0.87	0.84
8N7420	$0 \cdot 20$	0.18	gN7450	0.20	0.18	8N7491AN	1－21	$1 \cdot 10$
9N7423	0.51	$0 \cdot 47$	8N7451	0.80	0.18	SN7492	0.87	0.84
8N7427	0.48	0.45	8N7453	0.20	0.18	SN7493	0.87	0.84
ON7428	0.80	0.75	SN7464	0.20	0.18	8N7494	0.87	0.84
SN7430	0.28	0.13	SN7460	0.20	0.18	SN7495	0.87	0.84
8N7432	0.48	0.42	8N7470	0.40	0.38	8N7496	0.87	0.88

MULLARD SUB－MIN ELECTROLYTIC
C425 renge axis！lead
Values：（ $\mathrm{H} / \mathrm{F} / \mathrm{V}: 0$ ： $0-64 / 64: 1 / 40: 1 \cdot 6 / 25 ; 2 \cdot 5 / 16: 2 \cdot 5 / 64 ; 4 / 10: 4 / 40 ; 8 / 64 ;$ Values：（ $\mu \mathrm{F} / \mathrm{V}$ ）： $0-64 / 64: 1 / 40 ; 1 \cdot 6 / 25 ; 2 \cdot 5 / 16 ; 2 \cdot 5 / 64 ; 4 / 10 ; 4 / 40 ; 5 / 64$
$6 \cdot 4 / 6 \cdot 4 ;(6 \cdot 4 / 25 ; 8 / 40 ; 10 / 18 ; 10 / 64 ; 12 \cdot 5 / 25 ; 10 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6.4$ $6 \cdot 4 / 6 \cdot 4 ; 6 \cdot 4 / 25 ; 8 / 40 ; 10 / 18 ; 10 / 64 ; 12 \cdot 6 / 25 ; 16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6 \cdot 4$
$25 / 25 ; 32 / 10 ; 32 / 40 ; 32 / 64 ; 10 / 16 ; 50 / 6 \cdot 4 ; 50 / 25 ; 50 / 40 ; 84 / 10 ; 80 / 2 \cdot 5$ 80／16； $80 / 25 ; 100 / 64 ; 125 / 10 ; 125 / 16 ; 200 / 6 \cdot 4 ; 200 / 10 ; 320 / 6.4$ ．

SILICON RECTIFIERS

PIV	80.	100	200	400	600	800	1000	1200
1A	8 p	9p	10p	11 D	12p	15p	20p	－
3A	$15 p$			22 ${ }^{\text {p }}$		80 p		
84			25p	80 p	82p	\％ 6	－	
10A	－	881p	5710	6.5 p	7718	－86\％0	0710	81.25
15A	－	871p	6210	$771 p$	P 90p	9710	21.80	21．67\％
35 A		800	900	11．00	\＄1．25	5 21．50	42． 50	
1 amp and 3 amp are plant $\mathrm{c}_{\text {c }}$ encapsulation．								
DIODES \＆RECTIFIERS								
IN34A	100	AA119	7		BAX16	12 ${ }^{\text {p }}$	FST3／4	2e1p
IN914	7 D	AA129	150		BAY18	17tp	OAS	170．
IN918	7 p	AAZ13	12p		BAY31	7p	OA10	200
IN4007	20 p	AAZ15	12p		BAY38	25p	OA9	10，
1844	7 p	AAZ17	10p		BY100	$15 p$	0 O47	8p
If113	150	BA100	150		BY103	22p	0 OA70	78
18120	120	BA102	$25 p$.		BY122	471p	OA73	100
18121	140	BA110	250		BY124	15p	OA79	70
18130	8 p	BA114	15p		BY126	15p	OAB1	8
18131	10p	Balls	70		BY127	17p	OA85	108
18132	18p	BA141	17p		BY164	67p	OAP0	7p
18920	70	BA142	17p		BYX10	281	OA91	70
18922	8 D	BA144	120		BYZ10	$30 p$	OA95	70
18923	12p	BA145	17p		BYZ11	32p	OA200	70
18940	5 p	BA154	12p		BYZ12	80p	OA202	10p
		BAX 13	6p		BYZ13	25p	TIV307	80p

TRIACS				BRIDGE RECTJFIERS			
$8 \mathrm{C36D}$	21－12	8C51D	81.95	A．PIV		A．PIV	
8 C 36 D	21.00	40430	9710	1100	4710	450	60p
8C40D	21．80	40486	950	1.4140	$52 \dagger$	4100	100
$8 \mathrm{sC41D}$	$21 \cdot 20$	40528	72.9	2.50	5	4300	950
SC45D	21．62	40430	21.30	250	85D	580	$62+1$
BC46D	81.481	40432	21.37	2200	70p	6200	$871 p$
BCs0D	28.05	\＄0812	\＄1．45	2400	80p	4400	8112t

THYRISTORS（SCR） $\begin{array}{llllll}\text { PIV } & 50 & 100 & 200 & 300 & 400 \\ \text { IA } & 25 p & 27 p p & 87 p & 40 \mathrm{D} & 47 \mathrm{p}\end{array}$
 Also 12 amp ． 100 PIV 75p 2 N 3526 at $\mathrm{E1.12} \mathrm{\nmidp}$

VEROBOARD

$\begin{array}{ccc} & 0.15 & 0.1 \\ & \text { Matrix } & \text { Matrix } \\ 2 \% \times 3411 & 171 \mathrm{p} & 20 \mathrm{p} \\ 2 \% \times 513 & 210 & 240\end{array}$
 $\begin{array}{lll}2 t \times 5 i n & 21 p & 24 p \\ 3 i \times 3 i \operatorname{in} & 21 p & 21 p \\ 34 \times 5 i n & 27 i p & 27 i p \\ 5 \times 17 i n \text {（Plalu）} & 850 & -\end{array}$

5×17 in（Plaln） 85 p
Vero Pins（Bag of 36 ） 20
Vero Cutter 45 p
Pin Inserition Tools（ -1 and -15
matrix）at 55 p ．

HEAT SINKS

$4.8 \times 4 \times \ln$ Finned for $T w 0$ To－ 8 Trana．，48p． $4.8 \times 2 \times 1$ in 33 p ．For so－1， $2 \nmid \mathrm{p}$ ．For TO．TO， Finned．

RESISTORS

Oarbon Film
t watt $5 \%, 1 \mathrm{p} . \quad$ IW， 1 W \＆ 2 W
t watt $5 \%, 1 \mathrm{p}$.
Watt $5 \%, 2 \mathrm{p}$ ．
w 2% M／O 4p．
watt $10 \%, 2 \nmid \mathrm{p}$.
watt $10 \%, 89$ ．

MULLARD C280 M／FOIL CAPACITOR
$0.01,0.022,0.033,0.047 \mathrm{8p}$ each $\begin{array}{ll}0.068, & 0.10 \\ 0.16, & 0.22,0.33\end{array}$
0.47
0.88
$1 \mu \mathrm{~F}$
$1 \cdot 5 \mu \mathrm{~F}$
$2 \cdot 2 \mu \mathrm{~F}$
WIRE－WOUND RESISTORS
$2 \cdot 5$ wate 5%（up to 270 ohrue δ only）． 7 p （uatta 5%（op $8-2 \mathrm{k} \Omega$ only）． 9 p 10 watt 8%（up to $25 \mathrm{k} \Omega$ only）． POTENTIOMETERS
Carbon：
Log．and Lin．，less awitch，16p． Log．and Lin．With swlich， 25 p ．
Wire－wound Pots（3W）．38p． Twin Ganged

PRESETS（CARBON

0.1 Watt 6p VERTICA	0.2	Watt
0.3		

THERMISTORS
R53（8TC）21－27t VA3705 95p K151（1k）18p VA1077 $20 p$
Mullard Thermistory also in

Tel．01－452 0161／2／3 Telex 21492

Monlicsulyfor davs The'New Picture-Book'way of learning BASC ELECTRICITY(5vols)
 You'll find it easy to learn with this out-
 the latest research into simplified learning

standingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

Thie carefully pianned series of manuals has proved a valuable course in training technicians in Electricity Electronics, Radio and Telecommunications.

WHAT READERS SAY

"T.V. ENGINEER"

"So in two years I have come from a labourer on a building site to a T.V. Engineer, with the help of your books.
C. G., Sheppey.
"OUT OF DATE"
"These books make all other publications out of date with their simplicity and interest."

To The SELRAY BOOK CO., 80 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT UBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid. in good condition within 7 days or send the following amounts. BASIC ELECTRICITY $£ 4.50$ Cash Price, or Down Payment of $£ 1.00$ followed by 4 fortnightly payments of $£ 1.00$ each. Total $£ 5.00$. BASIC ELECTRONICS £5.40 Cash Price, or Down Payment of $£ 1.00$ followed by 5 fortnightly payments $£ 1.00$ each. Total $\mathbf{£ 6 . 0 0}$. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order; prices as above.
Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS Prices include Postage and Packing.

Signature
(If under 21 signature required of parens or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS
"You can add my blessings to your already long list of praise
about your Basic publications."
P.J.J. Rustington.
POST WOW FORTHIS OFFER!!

NOW BUILD ON! - WITH LST

FEATURING SOME OF THE MANY COMPONENTS FROM THE FREE LST CAT. HAVE YOU SENT FOR YOURS YET?!?

TRANSISTORS
We stock all popular types but how about our INTRODUCTION KIT 61 -consisting of: OC71, OC44, OC45, AC128, 8C107, 2N2926, OC72 incl. data and connection chart. ORDER AS PACK NO: EEI

DIODES INTRODUCTION KIT 50p
$2 \times$ OABI, $2 \times$ OA200 $4 \times($ N 4001 (All recently used in EE projects) ORDER AS PACK NO: EE2.

ZENER DIODES Consisting of a I Watt and a 400 PACK 50p Zener (or regulator) diode plus FREE 24 page circuit book.
ORDER AS PACK EE 3

CAPACITOR PACK

10 popular values of capacitor inclup polyester and alestrolytion including Normal Cat. price over 65 p

PACK 50p

VEROBOARD

x) consisting

36 square inches to of 1 and .15 matrix ORDER AS PACK VIO:

ORDER AS PACK EE4

PHOTORESISTOR ORPI2
Price includes data sheet. (German LDR03 type)
ORDER AS PART NO: LDR03

NEON PACK
50p
Consisting of 10 miniature neon indicator bulbs 65 Vac 90 Vdc . Use 270 k resistor for mains use.
ORDER AS PACK: EES

BOOKS ETC:

Designers Guide to British Transistors: Data on 1000's of common types $\mathrm{E1}$ - 40 110 Semiconduetor Projects.
Marvellous book for the enthusiast: 61.35

HOW TO ORDER: Cut out whole advert. Tick boxes for packs required.
Fill out name and address enclose payment. ALL ITEMS THIS AD. POST FREE.

PLEASE NOTE: Our "Experimenters Bargain Pack Q."-(Last months ad.) now withdrawn. All orders despatched day of receipt. Spares for all packs in our FREE catalogue.

> LST ELECTRONIC COMPONENTS LTD., DEPT. E.E.,
> 7 COPTFOLD ROAD, BRENTWOOD, ESSEX.

FROM:-
NAME

ADDRESS

ENCLOSED/CASH/CHEQUE/PO. \& ρ

PLEASE PRINT CLEARLY TICK $80 X \rightarrow$ FOR CAT. ONLY

everyday electronics

THEORY AND PRACTICE

Many an enthusiastic and impatient beginner has no doubt pondered about the importance of theoretical knowledge to the would-be constructor: just how deeply need one go into the seemingly abstruse subject of circuit theory before starting to build electronic projects?

Well, the honest answer is that if one confiines oneself to building simple designs, such as described in this magazine, then there is no reason at all why one should not do just this, straight away. The detailed diagrams we provide certainly leave little if anything to doubt; the position of every component is indicated and all wiring connections are clearly shown. The accompanying components list gives in each case all the information necessary when asking for or writing for these items. Yes, it should be possible for most beginners to tackle our projects without delay, even though the technical explanations of the circuit operation may not be comprehensible at this stage.

Provided that proper components have been used and wiring connections made exactly as depicted in the diagrams, correct results should be obtained first time. (The value of checking and rechecking the, wiring before connecting the power supply cannot be over emphasised.)

PRACTICAL VALUE

All the above is quite true, yet it must not be interpreted as encouragement to turn a blind eye to theory, to ignore fundamental principles entirely.

There is a perfectly sound and strictly practical reason for acquiring a knowledge of at least the basic principles of electronics as soon as possible. If something does go awry with a project due to a faulty component, even an elementary knowledge of the circuit operation will assist in tracking down the defective part. The remedy, likely as not, will then be simple to effect. But without that certain amount of basic knowledge one is of course confronted with an enigma that defies solution.

A BIGGER VIEW

Apart from facilitating fault-finding, an appreciation of the manner in which the circuit operates adds greatly to the general enjoyment one can derive from this hobby. The more advanced one's knowledge, the more attractive electronics becomes. An ever extending vista of interesting and tempting applications is seen as understanding of electronic fundamentals grows.
So, beginners, by all means have a go with the project of your choice. But do also take advantage of our tutorial series Teach-In. Then in a short while those circuit descriptions will become less mysterious and each circuit diagram will have its own interesting story to tell.

Our March Issue will be publlshed on Frlday, February 18

EDITOR F. E. BENNETT - M. KENWARD - B. W. TERRELL B.Sc.
ART EDITOR J. D. POUNTNEY - P. A. LOATES - S. W. R. LLOYD
ADVERTISEMENT MANAGER D. W. B. TILLEARD

[^0]
EASY TO CONSTRUCT SIMPLY EXPLAINED

VOL. I NO. 4

FEBRUARY 1972

CONSTRUCTIONAL PROJECTS

AUTO ALERT The motorist's "dead man's handle" by David C. Dick 190
RADIO CONTROL MONITOR For testing transmitter function by F. G. Rayer 195
RAIN WARNING ALARM Protect the washing by Frank Brown 208
WAA-WAA PEDAL Musical effect for guitars and argans by P. J. Tyrrell 214
GENERAL FEATURES
EDITORIAL 188
RUMINATIONS by Sensor 194
DIGITAL COMPUTERS by C. N. Seal and A. Smith 198
TEACH-IN Part 4 : Power by Mike Hughes 203
USING STICK DOWN WIRING 212
ACTION! An evening class visited 218
MEMORY STORE Retrieval by Dick Railion 221
ABBREVIATIONS 221
SHOP TALK Component buying by Mike Kenward 222
READERS' LETTERS 225

The approximate cost of components given, for constructional articles, in the box shown opposite is an estimated cost compiled from suppliers current catalogue and advertised prices. Parts for some projects may work out more expensive while others may be cheaper than our quoted price, depending on where the components are purchased.
We would llke to point out that we, as publishers, cannot supply kits of parts or individual items for any of the publlshed designs.

Mililill for motorway DRIVINE By David E. Dick

Approximate cost of components $\left\{\begin{array}{l}\text { (2) } \\ \square \\ 2.50 \text { inclusive }\end{array}\right.$

Fig. 1. Complete circuit diagram of the Auto Alert. S1 is the push button or footswitch that resets the unit.

Components....

Resistors

R1	100Ω
R2	560Ω
R3	$1 \mathrm{k} \Omega$
R4	$1 \mathrm{k} \Omega$
R5	$3.3 \mathrm{k} \Omega$

Shop Talk Refers

R5 $3.3 \mathrm{k} \Omega$
All $\frac{1}{2}$ Watt $\pm 10 \%$ carbon
Capacitor
C1 350μ F elect, 15 V
Transistor
OC71 Germanium pnp

Switches

S1 Single pole double throw micro-switch or push button (see text)
S2 Double pole single throw car type toggle Relays
RLA G.P.O. 3000 type, 2,000 ohm coil with single pole normally closed contacts
RLB G.P.O. 3000 type, 2,000 ohm coil with heavy duty single pole normally closed contacts

Miscellaneous

LP1 12 V bulb and holder
Car switch panel-two hole type (see text)
Metal brackets (2 off see text)
10 way connecting strip, hardboard, connecting wire and 4BA fixings
Materials for foot switch if used (see text and Fig. 5)
light on the Alert will come on and the driver should press the switch to reset the Alert. If, due to lack of concentration, the driver fails to notice the light and does not press the switch then, after a further short interval, the car horn will sound to warn the driver.

Thus a regular check is kept on the concentration of the driver and any tendency to lose concentration will be noticed before it gets to the eyelid drooping or daydream driving stage.

It is important that the unit is not regarded as an automatic "waker-upper". The first time that the horn operates the driver must take the warning, pull off the road and not drive again until he is sure that he is sufficiently alert.

CIRCUIT OPERATION

Assume the circuit (Fig. 1) to be in the "normal" condition with Cl fully discharged. When voltage is applied TR1 will be passing current due to the voltage at its base being the same as at the collector. As Cl gradually charges up TR1 will slowly turn off and the current passing through the relays will diminish. As resistor R5 is fitted across the coil of RLA the current flowing through RLA at any time will be less than that flowing through RLB; thus RLA will drop out before RLB.

When RLA contacts close lamp LP1 will light and, unless this is noticed within approximately 20 seconds, RLB contacts will also close and sound the car horn. If, however, the light is noticed and the reset button pressed, the circuit will return to the "normal" position (Cl fully discharged) by the following method.

With Sl in the reset position Cl , which is now charged up, provides the collector voltage. To discharge Cl, TR1 must conduct and it does so because R1 and R2 form a potential divider across the supply so that a negative voltage is applied to the base. Capacitor C 1 then discharges through TR1 and R2. During the "reset" time current passing through R1 and R2 will keep both relays energised, so preventing the horn from sounding and extinguishing the warning lamp LP1.

Variation of the value of Cl will alter the time interval-increase Cl to increase the time and decrease Cl to decrease the time.

CONSTRUCTION

The design of the unit was drawn up to enable it to be constructed with only a minimum of skills. First, take a two-hole car switch panel; this is available from any car accessories shop and already has two holes drilled in the outer face with two smaller holes drilled in the top lip. The two larger holes in the face will be used for mounting the switch S2 (see Fig. 3) and the lampholder for lamp LP1. The next components to be fitted are the two metal brackets. The brackets used in the prototype were bought

Fig. 2. (top left) Mounting bracket for relays RLA and RLB.

Fig. 3. (above) Showing how the mechanical parts fit together.

Fig. 4 (left) Layout and wiring of all components except SI. The wire from position 2 on the connecting strip goes to the centre contact of SI.

Fig, 5 (below) Construction of the foot switch.

Prototype Auto Alert. Switch S1 and some of the wiring has been slightly modified.
ready.drilled from Woolworths for a few pence each. If these are not available they can be made from the measurements given in Fig. 2.

Using two 1 inch long bolts, bolt together the switch panel and the two brackets. The longest legs of the brackets are placed under the top lip of the switch panel (see Fig. 3) and the bolts are placed up through holes " a " in the brackets. The excess length of these bolts will be used later to secure the entire completed unit to the underside of the car dashboard.

A sheet of hardboard measuring 4 inches by 51_{2} inches is next bolted to the brackets using the remaining small holes "b" in the brackets (see Fig. 3). The hardboard will act as a baseboard for the circuitry and as a dust cover for the relay contacts and other components. A ten-way screw connecting strip is bolted across the bottom of the baseboard as in Fig, 4. This connecting strip is' used to mount the components in preference to a conventional tag strip as this makes for easier fitting of the complete unit into the car. If constructors have facilities for soldering in the car (a 12 volt soldering iron or an extension mains lead, for example) then they may prefer to use a normal tag strip and solder all the connections.

We are now ready to mount the components. The lampholder and switch S 2 should be mounted on the switch panel, and the two relays are fixed to the brackets.

RELAYS

At the end of the relay next to the coils and spring set tags, there is a square of paxolin with three holes drilled in it. Through the two outer holes are screws which are normally used for the mounting of the relay. These two screws and the paxolin square can be removed as they will not be used. This leaves a circular nut which is used to hold the coil core to the relay frame. This nut should be undone and the bolt from the relay coil passed through the remaining hole in the bracket. The nut should then be screwed back on using a washer. Both relays are thus held
securely to the unit. See Figs. 3 and 4.
The relays purchased for the prototype were fitted with further contacts; in this case the unwanted layers of spring contacts should be removed otherwise the relay will not operate at the low current necessary. Relay RLB is used to switch the horn and as the horn takes a substantial current it is considered necessary to fit heavy-duty relay contacts. to handle the current. It should be remembered, however, that the relay should hardly ever be used to switch on the horn and therefore heavy-duty contacts are not essential.

WIRING

The wiring should be carried out as in Fig. 4. Where more than one wire goes into one hole of the connecting strip it is a good idea to solder the wires together before screwing down. This will improve future fault liability.

Remember to connect the electrolytic capacitor in the correct polarity. Also it is important to connect the transistor in the manner given in the diagram. The red spot of the transistor body is at the side.next to the collector lead and the base connection is the middle lead. If the leads are reversed the unit will not work and it is probable that the transistor will be destroyed. If you construct the unit using a tag strip or solder the connections affix the transistor after completing the wiring and hold each lead in a small pair of pliers while soldering to prevent overheating and thus damaging the transistor.

RESET SWITCH

Either a footswitch or a dashswitch can be used for S1. The cover illustration depicts a dash-mounted push-button and lamp. If such an arrangement is required the on/off switch and the unit can be placed in the car dash panel and the lamp and push-button can be mounted remotely in a convenient position or with the on/off switch in the panel. A micro-switch is probably best used with the footswitch design given and a normal change-over push-button (momentary contact type) used for a dashmounted button.

THE FOOTSWITCH

The construction of the footswitch is shown in Fig. 5. The micro-switch is held between two strips of wood, each strip being approximately 1_{2} inches long and of the same height as the micro-switch body. This means that the operating plunger of the micro-switch will protrude above the level of the wood strips. It was found sufficient to glue the pieces together with Evo-Stik, and this gave a permanent joint. The completed piece can then be glued to the base section. The base section is 2 inches square and can be constructed from any kind of material; in the prototype a piece of hardboard was used. The base should have two holes drilled in it as in Fig. 5, these holes will be used later for fixing the switch to the car floor.

Next, a piece of foam rubber, 1_{2} inch thick and $1^{1}{ }_{2}$ inches square, should be glued across the wood strips, a hole being cut in the foam around the micro-switch plunger. On top of the foam rubber another piece of hardboard 1_{1} inches square is glued, this piece of hardboard is covered with rubber to prevent slipping. The footswitch is now complete and can be screwed to the car floor with self-tapping screws.

FITTING

Before fitting carefully check the wiring for any mistakes. Two holes should be drilled in the underside of the car dashboard and the two bolts from the unit pushed through the holes and secured with nuts, preferably using spring or serrated washers. The wiring from the footswitch should now be brought up to the unit and screwed into the connecting strip at the appropriate points. To make the wiring inconspicuous, it can be taken up under carpets, where this is convenient. Wires can now be taken from the unit to the horn wiring and to the supply.

The two leads from the unit to the horn push are connected across the push, the polarity does not matter (one side of the push may be connected to earth). Supply wiring will depend on the earth polarity of the car and this should be checked before connecting the unit. The live supply can be taken from the ignition switch.

Once the wiring to the car is complete the unit is ready for use, press the reset button and hold it pressed until the unit is turned on, then release and check the function of the unit. Remember do not keep your foot on the reset button all the time and do not use the Alert to keep you awake.

Ruminations
 By Sensor

An Act of Charity

I thumped the television set on the top right hand corner. That was two months ago and since then it has behaved itself. There was a shift in the tuning position of the three programmes, but the set has remained stable. I did not strike it in anger, although in the circumstances one might have been forgiven for doing so, for it had developed an intermittent fault that caused it to go out of tune, losing sound and vision, usually during the news or when Bamber Gascoigne was giving the answer to one of the "University Challenge" questions. The trouble never occurred during the advertisements. such behaviour could not be allowed to continue, I had to act.

The set is on rental. I ought to have sent for the service engineer, but I know from my own experience that intermittent
faults are the most time consuming and frustrating aspects of a serviceman's life, or indeed, of anyone concerned with the reliability and maintenance of electronic equipment. Such faults often fail to appear when the engineer is called but can be depended upon to show up when his van has turned the corner.

Even if the fault does appear in the presence of the serviceman the slight disturbance created by the action of removing the back of the set or of connecting a test meter will often cause it to disappear again. Many of these intermittent faults are caused by "dry" joints (badly soldered connections which develop into high resistance joints after a period of time) and although there are techniques that can aid the serviceman, the diagnostic procedure is largely a matter of poking, prodding, tapping and on occasion, "thumping" various parts of the set, coupled with a keen visual inspection of the soldered joints.

This last is far from easy when the set has been in use for some time and has accumulated a thick layer of grime over the component boards.' The idea
behind the tapping and thumping business is to cause the fault to appear so that it can be diagnosed by conventional methods; this is why I thumped my television-to present the serviceman with an easier job! However, I achieved a temporary "cure" instead. How long it will last is anyone's guess.

An Uplifting Experience

Low insulation resistance can cause strange and sometimes dangerous faults to develop. An acquaintance of mine who worked for the electricity board was sent to investigate a complaint made by the trustees of an old chapel. It was alleged that ladies using the chapel toilet had received electric shocks.

My acquaintance, rather daringly, poured a bucket of water down the toilet and was rewarded for his boldness by a mild but stimulating electric shock. It was discovered that the insulation of some nearby cable had deteriorated and an earth leak had developed via the concrete floor. Users of the toilet thus formed a parallel path for the leakage current, with disconcerting but fortunately not disastrous results.

RADIO CONITROL MONTIOR

Provides a quick check on radio control transmitter function. Pocket size and self powered for ease of operation "in the field."

By F. G. Rayer, A.I.E.R.E.

THE 27 MHz radio frequency (r.f.) band used for the control of models by radio, extends from $26 \cdot 96 \mathrm{MHz}$ to $27 \cdot 28 \mathrm{MHz}$; transmissions for this purpose may consist of an unmodulated carrier wave, or a carrier wave which is modulated by one or more audio frequency tones. Signals which are radiated by the transmitter can be checked with a monitor.

The simple monitor described here is self powered and of compact size, so it can readily be carried out of doors, with the transmitter, model and other equipment. It allows a quick check of normal carrier-wave power and frequency, and of any audio modulation tones which may be used.

CIRCUIT

The complete circuit is shown in Fig. 1. A coil consisting of three windings, L1, L2 and L3 forms the basis of the circuit. L1 is the tuned winding, and the operating frequency is set to that of the transmitter by means of the trimmer C1. With the coil and trimmer described, the whole of the model control band is easily covered. When the transmitter and the tuned circuit (L1 and C1) are set to the same frequency, and the monitor is held in a position where it picks up sufficient r.f. (radio frequency) energy, Ll absorbs some of the power from the transmitter. The monitor has two indicating devices, operated by the power absorbed.

Winding L2 is inductively coupled to L1 and when L1 absorbs r.f. power this is induced in L2 and provides current for the small lamp LP1. Resonance between the transmitter and monitor frequencies is shown by maximum brightness of this lamp. The brightness of the lamp also shows that the transmitter is producing its normal r.f. power.

Winding L3, with the diode Dl and earpiece TLl, give audible monitoring of the tones produced by the transmitter. So the control and tone-producing circuits of the transmitter can be immediately checked, by listening with the earpiece. The diode acts as a detector to extract the audio signal from the amplitude modulated r.f. signal that the transmitter provides.

Some changes in components will not unduly affect the circuit. The earpiece TLl can be between 35 and 250 ohms impedance, of the kind used with transistor radio receivers. It would also be quite possible to use a different wire gauge or tube size for the coil, although some experiment with the number of turns would then be necessary.

The lamp must be a low-consumption type; a 6 volt 0.04 amp bulb, as used for cycle dynamo rear lamps, is most suitable, but a 6 V 0.06 A could be used. Bulbs which take the smallest current will give the more sensitive indication.

CONSTRUCTIONAL DETAILS

The monitor is constructed to the details shown in Fig. 2, then inserted in a $3^{1}{ }_{2}$ inch long by $1^{1}{ }_{4}$ inch diameter paxolin tube.

A piece is $1 / 16$ inch thick paxolin 31_{2} inches long is cut to such a width that it is a tight fit inside the $1^{1_{4}}$ inch tube. For part of its length the paxolin is further reduced in width, so that it fits tightly inside a 1 inch diameter paxolin tube. The paxolin sheet is best cut slightly oversize, and then filed to fit.

The 1 inch diameter tube that is the coil former is 1 inch long. All windings are of 24 s.w.g. enamelled copper wire, wound side by side. Drill six 1/16 inch holes in the tube as shown in Fig. 2, thread the wire through hole A, smear part of the tube with Bostik 1, or similar adhesive or cement, and wind on nine turns to form L1,

Approximate cost of components

R.C.MONITOR

Fig. 1. Complete circuit diagram of the Radio Control Monitor.

Fig. 2. Constructional details showing the complete unit without the case. The three views show the top, side and underside of the unit. SK1 is mounted through the outer case.
finishing by pulling the end through hole B. Make L 2 (two turns) and L3 (three turns) the same way.

The tube is then cemented in place on the panel, with the wire ends running back (as shown in Fig. 2) identified with coloured 1 mm p.v.c. sleeving. The lamp LP1, is a screw fit in a hole drilled through the panel. Leads C and D are soldered to its side and end pip. Since, with careful use, the bulb should never need replacing, this method of fixing is suitable. Two 8BA bolts hold the trimmer, and the miniature jack socket is fitted through a hole in the outer tube.

TESTING

To test the monitor, set the trimmer about half open, using a non-inductive trimming tool, and bring the monitor coil into the field of the transmitter aerial (tank) coil. Rotate the trimmer with the trimming tool to tune L1 to resonance with the transmitter; this is shown by maximum brilliance of the lamp. At the same time move the monitor away from the transmitter coil, as required, so that the bulb only glows dimly.
If the transmitter is of a type producing audio tones, plug in the earpiece, operate the transmitter, and listen for the audio signals.

Slight re-adjustment of the trimmer is necessary after the monitor has been fitted in its protective case. The tubular case has a 1_{4} inch hole for the jack socket, a similar hole through which to see the lamp filament, and a third smaller hole allowing the trimmer to be adjusted with a trimming tool. Both ends of the tube are closed with paxolin discs cemented on. The tubular case must not be made of metal of any type.

METHOD OF USE

The monitor is held by the jack end, and its coil brought near the power amplifier or tank coil of the model control transmitter. The trimmer is adjusted with a non-inductive trimming tool, and tuning should be quite sharp. Move the monitor slightly away from the transmitter, so that LP1 filament only just glows at the correct tuning point. This gives the sharpest resonance indication, and avoids blowing the filament.

If the transmitter is totally enclosed in such a way that the tank coil cannot be approached, a loop consisting of one or two turns of insulated wire can be placed in the aerial connection, and the monitor approached to this.

If the transmitter has variable frequency tuning, as with self-energised oscillators, a check on transmitter frequency can be made by noting that its tuning agrees with maximum brilliance of the lamp, keeping coupling loose.

Where the transmitter has tuning adjustments which govern the output power, note that these are set so that the lamp lights with its usual brightness. For tone transmitters, plug in the earpiece and listen in turn for each normal tone. Lack of any indication at all will show that the transmitter has failed.

Soil Moisture Meter

Don't kill your plants by over-watering-plants of different species have their own requirements. This meter measures soil moisture at root depth.

Darkroom Timer

Do your own printing? Then this timer is for you; it has switched positions to cover the range of times normally used for exposures in the darkroom.

Signal Injector

For fault finding in radio's and amplifiers.

ALL FEATURED IN THE

 March ISSUE OFOn sale
Friday February 18.

Many aspects of modern life use a computer; more and more of us find that computers have become part of our everyday lives. We feel their effect most in the management of our financial affairs. Our cheques are processed by computers which read magnetic ink patterns printed on the cheques; internal banking transactions, such as transfers from one account to another, are performed by computer. Our salaries, with bonus, overtime, and other remunerations, are calculated by computers which also deduct tax, National Insurance contributions, and so on. Details are then printed onto our payslips and salary cheques.

Invoices are processed and printed by computers which also calculate and subtract discounts, and prepare all necessary bills. Large scale industrial control can be performed continuously by computers in places such as oil refineries, steel mills, breweries, car manufacturing plants, and so on.

Any of you that have travelled by air would probably have had all details of your booking stored in a computer. At each booking point there would be a computer terminal-a link between the booking clerk and the computerwhich indicates details of any flight, and in particular, whether there are any spare seats available.

Computer terminals are not confined to airline booking offices. Many small companies with a
need for computer aid, but without the necessary funds to own their own computer system, utilise a time-sharing process. These users each have a remote terminal linked to the central computer system via the Post Office telephone lines.

The computers used for these systems are capable of processing several different user's programmes, apparently simultaneously. This is called multiprogramming. The link between the terminal and the computer is made after the operator has dialled the correct number on a conventional telephone. The time taken for processing the customers programme is recorded, and is consequently used to determine the cost.

DEFINITION

A computer may be defined as a device capable of automatically accepting data, applying a sequence of processes to the data, and supplying the results of these processes to its user. There are basically two types of electronic computer; analogue and digital.

Heading photograph. Magnetic discs and tapes can store massive amounts of information. Each of the disc drives in the foreground can store 18.4 million characters of data, enough to. store the entire contents of the Bible twice. The tape drives at the rear can store 14 million characters. (Honeywell Information Systems Lid.)

An analogue computer is a machine in which the value of a signal is proportional to the value which it represents. Such a signal is continuously variable, and may take any one of a large number of possible values. For instance, a car engine tachometer reading reflects the changes in the engine rotational rate. The indication is analogous to engine speed.

In contrast to the analogue signal, the digital signal has a discrete numerical value. It either exists and has one value, or it does not exist and has another value. This gives us the two "states" we require for use in the digital computer. A positive signal can represent the figure one, and no signal can represent zero.

DIGITAL COMPUTER

For the purposes of this article we shall only consider the digital computer. To understand digital computer functioning we must first appreciate the number system used for making the calculations.

The earliest system resulted from man's desire to know "how many." To answer.this he used the tally system; for each item counted he made a mark, or tally. Whilst providing some means of measuring, this system proved very limited and unwieldy for even comparatively small numbers.

For convenience we now use the decimal system which runs through a cycle of ten symbols before any are repeated. It is said to have a base of ten. Any decimal number can be broken down into a number of tens, a number of tens of tens (hundreds), and so on.

Although the decimal system is logical and consistent, it requires the use of ten digits which makes it unsuitable for electronic representa-

The cleanliness of the modern computer room can be seen here. The girl operator is using the keyboard to enter information into the computer memory. (International Computers Ltd.)

An operator uses a console to write instructions directly into the main or control memory areas of the computer. (Honeywell Information Systems Ltd.)
tion. We must, therefore, study an alternative system which we call binary.

In the binary system the base number is two, and each binary digit, or bit, can only have one of two possible values, zero or one. The rules for the construction of this system are similar to those for decimal, as also are the rules for addition and subtraction; we just carry when the count becomes greater than one, or borrow two instead of ten.

As the numerical value increases, the number of bits required to represent it also increases. In the computer we must restrict the number of bits per character or per work to keep the calculations manageable. Usually computers confine the length of a character or a word to between six and forty bits.

SOFTW ARE

Software is a term describing the programme of instructions, usually supplied by the computer manufacturer, to enable communication with the computer and control of its operation. So great is the importance of software that investment in its production represents a high percentage of funds allocated for design, development, and marketing of computer systems. Indeed, computer sales can depend on the availability and versatility of the software, and not on the hard-ware-the mechanical and electronic parts of a computer.
Software includes all manner of operating procedures and programmes, such as assemblers or compilers-programmes which convert programmes written in symbolic languages such as FORTRAN and COBOL into the machine code required by the computer.

Other types of programmes include Execu-tives-programmes which control the operation

A pair of visual display units are shown here against a background of magnetic tape drives. Information is shown on the face of a cathode ray tube, as in a television set. (Burroughs Machines Ltd.)
of other programmes; Subroutines-programmes designed to perform routine calculations; and Diagnostic Routines-programmes used by the service engineer to facilitate fault finding, and to indicate whether the system is functioning correctly.

Assemblers, Executives, and Subroutines form part of a processing package-a software package enabling the user to fulfil his data processing requirements. This package is normally called an Applications Package, and is software written especially to the users own requirements.

As previously mentioned, hardware comprises the physical units in a computer system-the mechanical and electronic assemblies.

HARDWARE

Computer system hardware consists of two main areas. The first is the Central Processor, more commonly called the C.P. which performs all the major calculative and control functions. We shall consider C.P. operation later in this article. The second area embraces the peripherals commonly called input/output devices.

PERIPHERALS

To place a programme and the associated data into the C.P., we must have some form of reading, or input device. The commonest input device is the operators keyboard, or console, which enables direct manual communication with the C.P. It is generally used to instruct the C.P. to read data from an input source, or to input parameters and additional data during programme runs.

The information typed into the keyboard, or console, may be printed on paper, or displayed on a television monitor type unit which presents
the information on the screen of a cathode ray tube.

There are basically four methods of supplying new data to the computer. The most common method is probably the punched card.

PUNCHED CARD

This is a card containing rows and columns punched with holes in the required code. Punched card readers can have either optical or mechanical reading arrangements.

Optical readers contain lamps and photocells arranged so that the card passing between them causes a pulse of light for each hole detected.

In the mechanical systems, the card passes between a set of contacts and metal fingers which press lightly against the card. When a hole passes a contact the finger is allowed to press against the contact and complete the circuit.

Speeds of card readers vary between 400 and 1,000 cards per minute, with about 800 cards per minute being typical. The cards are relatively cheap, easy to sort, and in some cases the data contained on the card is printed along the top edge allowing the card to be read visually. However, they are bulky, making them difficult to store. They are affected by atmospheric conditions, particularly humidity, and are easily damaged.

PUNCHED TAPE

Punched paper-tape is another common input medium. The tape is normally a one inch wide strip of paper-tape on a spool. The data is contained in rows, or frames, punched in a computer readable code. Tape is often produced by other devices, such as a typewriter or cash register. Tape readers are normally optical devices, operating similarly to the optical card reader.

Tape readers can operate at speeds of between 300 and 2,000 frames per second, with around 1,000 frames per second being typical. Paper tape is inexpensive, but because the data is punched serially it cannot easily be amended.

MAGNETIC INK READERS

Magnetic ink character readers enable cheques and similar documents to be read. Each cheque contains a series of numbers printed in magnetic ink. The reader senses the shape of the magnetic field emitted by each character. Cheque readers can process up to 1,600 cheques per minute.

OPTICAL READERS

Optical character readers have not yet been fully developed as a method of reading handwriting, such as signatures, but most in use are able to read standard shaped letters of the alphabet, using a photoelectric cell to scan characters

This illustrates the general organisation of a typical computer system. Major data and control paths are indicated. A system may use some, or all of the input and output devices, and in the case of the file holding devices, the system may utilise a number of each type.
printed in ordinary black ink.
The devices mentioned so far have been input devices, supplying data to the computer. Punched cards and paper tape can also be used to take data from the computer. Card and tape punches are, however, rather slower than the readers.

OUTPUT

The commonest output device is the high speed line-printer. This is a machine which types the data onto paper in complete lines, instead of a character at a time. Speeds vary from 300 lines per minute to around 1,500 lines per minute, with 650 lines per minute being typical. A line can be up to 132 characters wide.

These high printing speeds are extremely useful where large quantities of information are required. A line-printer is considered essential for all commercial computer applications, for presentation of report and analysis details, and financial statements.

A finance company uses this large computer installation for the maintenance of the accounts for customers and dealers. The system uses a variety of peripheral devices, including a high speed printer, magnetic tape drives, magnetic disc drives and a paper tape reader. (The National Cash Register Company Ltd.)

STORAGE

The third group of peripherals are known as storage, or file holding devices, and are input and output devices. These peripherals operate on similar principles to the domestic tape recorder, by placing a pattern of magnetic fields on a ferrous oxide surface.

Magnetic recording tape is similar to domestic recording tape, but has a finer grade of oxide coating enabling a higher density of data to be held. It is also wider than domestic tape, 1_{2} inch being a standard.

The data is recorded in serial form, and consequently, if some data near the end of the tape is required, some time is taken to reach it-this is called the "data access" time. This is ideal for storing information used in a serial form, such as programmes.

Magnetic discs, another storage device and much faster access time than any other type, look similar to a stack of records on an autochanger spindle. Both side of each disc are coated with oxide. Read/write heads project into the gaps between pairs of discs and can read from, or write to, both discs.

The magnetic discs revolve at a very high set speed, and by synchronising the head position, information can be read, or written. This type of device is called a direct access device because any item of data can be found easily and quickly.

Magnetic drums are cylinders coated with ferrous oxide on the outside. Read/write heads are spread along the length of the drum, and as the drum rotates at a set speed, data is transferred to, or from the required area of the drum.

An engineer uses a light pen to amend an engineering diagram. This system is used in the development of printed and integrated circuits. (Digital Equipment Company Ltd.)

CENTRAL PROCESSOR

The central processor unit, or C.P. is the nerve centre of a computer operation. It is here that all calculative and control functions are performed. To do this the C.P. must contain four essential circuit areas. These are; memory, control, arithmetic, and input/output.

When we make any sort of calculation we must have some means of retaining the facts required to arrive at the solution. We use our brain when doing this manually, or perhaps a pencil and paper for the more complex operations. The combination of these could be called our memory unit. The computer memory performs this type of function. It is simply an area in which it can store the data, the programme to process the data, and the results obtained.

MEMORY

The computer memory is like a large electronic filing system. It contains hundreds of "memory locations", each with an exclusive address, and each capable of containing one data statement, or a programme command.

Each location consists of a number of magnetic cores, which are minute ferrous oxide impregnated rings. Each binary bit is stored in one of these cores, and can be read in less than one microsecond.

The programmer arranges his programme so that the instructions occupy a sequential block of memory locations. When the programme is run the address of the first location is entered into a programme counter. As each instruction is executed the counter is incremented, and therefore contains the address of the next instruction. Consequently the machine can complete all the required calculations automatically.

An instruction to the computer does not contain the data that is to be processed, but the address of the location in the memory.

When executing the instruction, the computer
control takes the data from memory, and moves it to the arithmetic area for modification as prescribed by the instruction.

ARITHMETIC UNIT

The arithmetic unit of the C.P. is the workhorse area in which all calculations are carried out. It consists basically of an accumulator, or a number of accumulators, and an adding network.

To add two numbers together the machine takes the first number from memory and places it in the accumulator. The second number is then removed from memory, added to the accumulator and the sum of the two is retained in the accumulator. The result may then be stored in a new memory location to leave the arithmetic unit free to continue other processes.

CONTROL UNIT

All the data movements and manipulations must be correctly sequenced and routed. This is the task of the control unit which acts as switching device. As each programmed instruction is extracted from the memory it is translated into a series of actions which direct the memory and arithmetic units to supply and process the appropriate data. The control unit also directs the input/output unit when an instruction requires action on the part of a peripheral device.

THE FUTURE

Future developments look towards the building of smaller computers. Increased use of integrated circuits has already caused the central processor to become one of the physically smaller units of a system.

It appears that the domestic computer may soon become a reality. Industry and commerce will be able to draw data from central banks via a world-wide computer network, using satellite communication systems.
Computer usage is not restricted to office and factory. Here, a small computer is mounted on an experimental potato picking machine. The use of this computer Is to control and evaluate the performance of the machinery. (Digital Equipment Company Ltd.)

ELECTRONIC CIRCUITS-
IN THEORY and PRACTICE

By Mike Hughes M.A.

-

AST month when we connected the 10 kilohm resistor in series with a lmA meter, the reading in milliamps had the same numerical value as the voltage that was driving the current. Go back to using the single 10 kilohm in series with the meter and change the voltage of the battery to 4.5 volts. The current will be 0.45 mA . Thus by changing the scale of the meter, we have a simple voltmeter which can measure up to 10 volts full scale. By putting two 10 kilohm resistors in series we have a voltmeter with a full scale reading of 20 volts. A two range voltmeter is shown in Fig. 1.

Make yourself a simple voltmeter using these principles. Initially it can be made up on the Demo Deck but if desired a separate meter could be bought and a separate instrument made.

A voltmeter of this type will usefully measure voltages in many electronic circuits but it suffers from a problem. This problem is that it has a resistance that in itself can "shunt" the circuit which is providing the voltage to be measured.

Fig. 1. A two range voltmeter. The numerical value of the current (in milliamps) gives the voltage value being measured.

This upsets the balance within the circuit and an erroneous voltage will be measured which will always read lower than actual. This means that the meter lacks sensitivity.

SENSITIVITY
The sensitivity of a meter is rated as the number of ohms the meter presents for every volt it measures. The unit we have just made is 1,000 ohms per volt and is fairly poor; more typically one requires a meter having a sensitivity of at least 10,000 ohms per volt. To make this we would have to use a basic movement having a sensitivity of 100 microamps (a microamp is one millionth of an ampere) and all our resistors would have to be scaled up in value by a factor of 10 .

Test the effect of poor voltmeter sensitivity by connecting two 22 kilohm resistors in series across a 9 V battery, and then use our 1,000 ohms per volt meter to measure the voltage between one end of the resistors and the common junction of the two (Fig. 2), then do the same with two 1 kilohm resistors. The reading should be $4 \cdot 5 \mathrm{~V}$.

Justify in your own minds exactly what is happening and why the actual reading is less. The reason for this is that the 10 kilohm resistance of the meter has more shunting effect on the circuit using 22 kilohm resistors than with that using 1 kilohm resistors.

POTENTIAL DIVIDERS
The circuit of Fig. 2 is sometimes called a potential divider because the midpoint of two resistors has a potential which is based on the

Fig. 2. Circuit for demonstrating voltmeter sensitivity.

Fig. 3. The circuit diagram to be wired up on the Demo Deck to illustrate the function of a"potential divider."
potential difference across both resistors and the ratio of their values.

Substitute VR2 for the two resistors and use the wiper as the midpoint which can be varied in position to alter the ratio of the resistances either side of the wiper (Fig. 3). Measure the voltage between one end and the wiper as the knob is turned. You should get a smooth change from zero to 9 V . Now try the same experiment with VR3 and VR4.

There is a great deal one can say about the principles of resistor networks, but in this beginners guide we have covered just sufficient to be of use later.

POWER

We are all familiar with the term POWER when applied to electricity. In any context it is the ability to do work whether it be manpower, horsepower or electrical power. In the latter case it is usually associated with the ability to heat something, light something or move some-thing-the cone of a loudspeaker for example.

Driving voltage itself is not sufficient to do work-we must have current flow as well. Power is a function of both voltage and current and is measured in units of or fractions of a "watt".

Power measured in watts, $P=V \times I$
where V is the potential difference in volts and I is current flow in amperes. We can use this expression to calculate any one of the terms if the other two are known.

The current drawn by an electric fire of power $1 \cdot 5$ kilowatt (1.5 kW) running from 250 V mains

Fig. 4. The power dissipated in R1 is greater than in each of R2 and R3, but the total power dissipated in each. circuit is identical.
will be given by

$$
I=\frac{P}{V}=\frac{1500}{250}=6 \text { amperes }
$$

Most frequently we are concerned with calculating the amount of power required by or dissipated in a circuit. The power dissipated in a resistor shows itself as heat, and is calculated from the current flowing through the resistance and the potential difference across it. The "potential drop" is equal to the value of the resistor multiplied by the current flowing through it (Ohm's Law)- $V=I \times R$. We can substitute $I \times R$ for V in the expression for power and obtain
$P=I \times I \times R$ this is usually written $P=I^{2} \times R$
This means that we can calculate the power dissipated in any resistor purely from knowing the current flowing in the resistor and the ohmic value of the resistor.

Look at Fig. 4a. We have a 100 ohm resistor connected across a 9 V battery. What is the power dissipation in it? First of all calculate the current :

$$
I=\frac{V}{R}=\frac{9}{100}=0.09 \text { ampere }
$$

The power dissipated is therefore, $0.09 \times 0.09 \times 100=0.81$ watt.
Resistor R1 would have to be capable of dis-
Fig. 5. The ORP12, a typical photo conductive cell, shown in diagramatic form together with the circuit symbol and designation, PCC, for these devices.

sipating this amount of heat without undue rise in its temperature and the nearest commercially available type is a one watt device.
Fig. 4b shows two resistors in series across a 9 volt battery. Try calculating the dissipation in each resistor. First of all calculate the current flowing through the circuit as a whole then use this value of current in conjunction with the ohmic value of each of the resistors in turn. The answers are 0.08 W for R 2 and 0.73 W for R3. Note that, although they are in the same circuit there is considerable difference in their respective dissipation. To prevent overheating the nearest commercial grades that we would use are 's and 1 watt devices respectively.

L/GHT DEPENDENT RESISTOR

Some electronic components have their maximum rating specified in terms of power as opposed to current. This is usual when overheating is likely to cause irreparable damage to the component. A typical example of this is the photo conductive cell or light dependent resistor. This is a very interesting and useful component because it enables us to make a whole range of simple but fascinating circuits that are actuated by light.

As its name implies it is a resistor whose ohmic value varies as light falls on it. The one we shall be talking about is readily available

Fig. 6. (above) The circuit to demonstrate the action of a photocell. When bright light is incident on the cell, the lamp LP1 will light. (below) The wiring of this circuit on the Demo Deck.

Fig. 7. Graph showing the power dissipation in R1 for various values of resistance with R2 held constant at 100 ohms. This is a maximum when $\mathbf{R 1}=\mathbf{R 2}$.
and comparatively cheap-the ORP12. The appearance of the device is shown together with its symbol in Fig. 5; you can see that, like a resistor, there are two leads from it and the polarity of connection is not important.
There are several different types of this device (the ORP12 is perhaps the most common) but they can all be recognised by the distinctive interlocking fingers making contact with the photosensitive material-cadmium sulphide (CdS). Photographers will no doubt be familiar with the device because it is used as the sensor in CdS exposure meters.

The manufacturer of the ORP12 states that the resistance will typically vary from 10 Meg ohm in absolute dark conditions to approximately 75 ohm in conditions of extreme brightness. They also state that at no time may one dissipate more than 200 mW in the device nor may one operate it with a potential difference greater than 110 V across it.

EXPERIMENT

Use the Demo Deck to wire up the simple circuit of Fig. 6. Under normal room lighting conditions the resistance of the cell will be in excess of 500 ohm and this will prevent sufficient current to light the lamp. If you shine a very bright torch at the cell from close range you can make its resistance fall to approximately 75 ohm and the lamp will light up. You will probably be aware that the sensitivity of this circuit is poor because all the control is effected with extreme levels of light. This is because we are requiring the cell to pass quite a high current $(60 \mathrm{~mA})$ to light the lamp and it is rather difficult to make its resistance fall sufficiently to do this.

Try working out the power dissipation in the photo cell for various light levels and see if we are exceeding the manufacturer's rating. The resistance of the photo cell yaries typically from 5 kilohm down to 75 ohm for the range of lighting we are considering. Because the current

Table I: REFERENCE DATA AND CHARACTERISTICS OF THE ORPI2

Maximum power dissipation (ambient	
temp 25 degrees centigrade)	200 mW
Absolute maximum cell voltage	110 V
Cell resistance at 50 lux	2.4 kilohm
Sensitive area	$0.6 \mathrm{~cm}^{2}$
Typical resistance at 1000 lux with lamp	
colour temperature 2700 degrees	$75-300$ ohm
Kelvin	10 Megohm
Ultimate dark resistance at 110 V	75 mS
Nominal rise time of resistance	350 mS
Nominal fall time of resistance	

through the cell will change as its resistance changes we cannot say that the power dissipation will be the same for every condition, in fact it is quite definitely not the same.

Try calculating the power dissipation in the photo cell when it has the following resistance values: 5 kilohm, $200 \mathrm{ohm}, 100 \mathrm{ohm}, 75 \mathrm{ohm}$ and 50 ohm. To help you, assume that the bulb is simply a 100 ohm resistor.
You should find that when the photo cell resistance is 100 ohm the power dissipated is 202 mW and at either side of this resistance value the dissipation is less. This is very important to appreciate because it tells us that the power dissipated is a maximum when the resistance of the cell equals the resistance of the load (the bulb). Strictly speaking, we are overstretching the capabilities of the photo cell by about 1 per cent when its resistance is exactly 100 ohm . In practice, however, this condition is unlikely to be maintained for any considerable period of time and besides, the dissipation limitation has a safety factor on its side and a momentary stress in excess of the rating can be permitted.

SPECIFICATIONS

Sooner or later one will need to refer to the manufacturer's specifications regarding components. Through this series we shall give you the most important specifications of the components we are using. The ORP12 is quite easily specified-see Table 1.

The parameter "Lux" is a measurement of light intensity; 50 lux is that equivalent to a dimly lit room while 1,000 lux is an exceptionally bright light-the intensity to be obtained a few inches away from a 100 watt bulb. The only parameter which you might not understand at this stage is the rise and fall time. These indicate that it takes a period of time for the cell to respond to changes in light level-the times shown for the ORP12 are quite long by electronic standards and are due to the fact that the reaction within the cell is almost a photochemical effect. Some other types of photoelectric devices can respond to millions of changes of light per second!

EXPOSURE METER EXPERIMENT

We have already said that the light dependent resistor is used in cadmium sulphide exposure

Fig. 8. (above right) The circuit diagram for a simple ohm meter which can be calibrated for use as an exposure meter. (right) This circuit wired up on the Demo Deck.

meters so now we will use the Demo Deck to make a simple version of this. Fig. 8 shows the circuit. It is a simple ohm meter where the ORP12 is a resistor whose ohmic value we shall be constantly observing.

It is usual with ohm meters to have zero ohm reading full scale on the meter. We are using a 1 mA (f.s.d.) meter, so must arrange that when we short circuit the input to the meter (across points A and B) exactly 1 mA is permitted to flow. As we are using a 9 volt battery we must incorporate a limiting resistor.

This is calculated using Ohm's Law,

$$
\text { i.e. } \begin{aligned}
R=\frac{V}{I} & =\frac{9}{0.001} \mathrm{ohm} \\
& =9 \mathrm{kilohm}
\end{aligned}
$$

Because the battery voltage will vary a little with time we must make this resistor variable so that we can always set a zero ohm reading of full scale.

We could use a 10 kilohm potentiometer to do this but there is a danger that while adjusting it one might inadvertently reduce the resistance value to zero and pass excessive current through the sensitive meter. To prevent this happening we shall use a fixed resistor of $5 \cdot 6$ kilohm in series with VR2 (5 kilohm) on the Demo Deck. The combined effect of these two resistors will give us a variable range from $5 \cdot 6$ to $10 \cdot 6$ kilohm-ample to allow for battery variations but at the same time it will be impossible to pass more than abouit 2 mA through the meter (this would not cause any serious damage to the meter). With new batteries we should get our full scale zero ohms reading with VR2 set to almost maximum resistance.

METHOD

When set for zero ohm at full scale, disconnect the short circuit between points A and B and allow the ORP12 to come into circuit. We are now introducing extra resistance, thus the
current through the meter will fall. If a lot of light is falling on the cell its resistance will be low (say 100 ohm) and this will have very little effect on the total circuit resistance, hence the meter will still read fairly high up the scale If you prevent light falling on the cell, its resistance increases rapidly and the current displayed on the meter falls dramatically. Different levels of light between these extremes will give graded readings on the meter. For a given film speed one could carry out some trial exposures and experimentally produce a scale (or graph) which will convert the meter current reading into photographic light value numbers.

Next month : Capacitors

The device to be described will provide an alert when rain or snow is falling or when the atmosphere is saturated as when steam or mist is forming. It can serve as a water level alarm with no modifications to the sensor input and, as it is sufficiently sensitive to detect a human breath at a foat range, it could find use as a novelty item at parties.

Two alarm circuits are offered; an audio tone generator pitched at 2.5 kHz and a lamp flasher While a tone is to be preferred for remote hailing a flashing lamp would be preferable to a person hard of hearing or if the device is used in a party role.

COMPOUND PAIR

The transistors TR1 and TR2 in Fig. 1. are so arranged to very much magnify any small current that might appear at the base/emitter junction of TR1. This compound pair configuration is a cheap way of making up what is, in effect, a very high gain transistor with an amplification factor that approximates to the product of the individual transistor gains.

The small current to be amplified is produced whenever snow, rain or moisture bridges the copper strips of a 0.1 in . matrix veroboard sensor which appears in the input circuit.

These strips are so connected (Fig. 2.) as to make the whole board area moisture sensitive.

The load of the compound pair is the alarm circuit comprising TR3 and TR4. Since the smallest of input currents to TR1 is capable of switching TR2 hard on, this means that nearly
all of the line volts will appear at the junction of the collectors of the compound pair.

AUDIO ALARM

The audio alarm circuit consists of a pnp/npn free running multivibrator designed to produce a penetrating tone without recourse to a transformer

The Fletcher-Munson curves of equal loudness show that the human ear is most sensitive to sounds between 2 kHz and 4 kHz . Using the components specified, the alarm will produce a note of approximately $2 \cdot 5 \mathrm{kHz}$ and, although the power output from the alarm is relatively small the note produced is quite piercing.

With moisture completing the input circuit and TR2 switched on, Cl charges by way of R2, R3 and LS1 until the voltage it acquires is sufficient to switch on TR3 which, in turn, switches on TR4. The collector of TR4 is thus taken to a negative potential. The switching process is hastened by feedback through Cl so that TR4 is very rapidly battomed.

This change cannot immediately be followed

Approximate cost of components

1.80 excluding case

Fig. 1. Circuit diagram of the rain warning alarm.
by Cl which discharges via R3 and TR3 base/ emitter. Having R3 in circuit increases the discharge time constant and therefore, the mean d.c. level to the loudspeaker which, of course, means a greater sound output.

With the discharge of C1 both TR3 and TR4 are cut off and the oscillator recycles. The frequency at which the transistors are turned on and off and therefore the frequency of the tone generated depends on the value of Cl and the resistance of its charge path; an increase in either means a decrease in frequency and viceversa. The output waveform appearing across LS1 is shown in Fig. 1.

If at any time after the unit is built greater sound output is required a $0.47 \mu \mathrm{~F}$ capacitor connected across the loudspeaker will prove a simple expedient rather than experimenting with different values for R3. It must be realised that any increase in output will mean a heavier current drain. With the components given, consumption with the oscillator functioning worked out at around 15 mA .

LAMP FLASHER

Since this type of multivibrator circuit provides periodic short bursts of power (see output waveform) to a load it is ideal for flashing a lamp.

To change the alarm circuit of Fig. 1. for lamp operation means the change of only three components. A 6 V 0.06 A lamp replaces LS1, and R 2 and C 1 are changed to 470 kilohms, and $2 \cdot 2 \mu \mathrm{~F}$ respectively. If an electrolytic is used for C 1 , the positive side must be connected to the collector of TR4.

For the timing components given above the flash rate is about two flashes every second.

Since the flash interval is very brief battery power taken is small compared to the audio alarm.

CONSTRUCTION

The majority of components are mounted on a $2^{1}{ }_{2}$ inch x 1 inch, 0.15 inch matrix piece of

Components....

Resistors
R1 $100 \mathrm{k} \Omega$ (or $500 \mathrm{k} \Omega$ lin. potentiometersee text)
R2 $100 \mathrm{k} \Omega$
R3 $1 \mathrm{k} \Omega$
Shop Talk refers
All $\frac{1}{2}$ watt $\pm 10 \%$ carbon
Capacitor
C1 $0.01 \mu \mathrm{~F}$
Transistors
TR1, TR2, TR4 ZTX 300 silicon npn (3 off) TR3

OC71 germanium pnp
Loudspeaker
LS1 8Ω 2in diameter (or similar small speaker-see text)
Switch
S1 Single pole on/off toggle
Miscellaneous
B1 PP9 battery, 5 in $\times 4$ in $\times 2 \frac{1}{2}$ in aluminium chassis, Veroboard 16 holes $\times 7$ strlps 0.15 matrix (see text), 4in $\times 3$ in $\times 0.1$ in matrix (for sensor), wire, 4 BA fixings.

Prototype construction of the Rain Warning Alarm.

rain warning

Fig. 2. (above) Wiring of the Veroboard strips to form the sensor.
Fig. 3. (right) Layout and wiring of the components mounted on the Veroboard.
Fig. 4. (below) Layout and wiring of all parts mounted in the case.

The completed unit with the sensor

Veroboard (the same size as that given away with the first issue), with the speaker and switch arranged on a small aluminium case.

The circuit performance will not suffer from alternative forms of layout so tag-strip or Cir-kit can be used.

The Veroboard layout and wiring diagram is shown in Fig. 3. The size of the piece of board used could be reduced slightly if a very compact unit is required, however since the battery used should be fairly large for a long life, reduction in size of the Veroboard was not considered advantageous. Construct the board as shown in Fig. 3 taking care when soldering the transistors not to overheat them. This particularly applies to the OC71 which is a germanium device and which should be soldered in, using a heat shunt, after all other components and leads have been attached

After checking the board for mistakes, mount it in the case and connect up S1, LS1 B1 and the sensor (Fig. 4). Finally check the circuit and the battery polarity and switch on. A quick operational check can be made by touching the copper strips on the sensor with one finger, the unit should immediately give the warning signal. Test the sensitivity of the alarm by blowing on the sensor.

If required a small two-way socket may be included in the lead to the sensor (which is not polarity conscious) so that the sensor could be disconnected from the unit for installation.

When making up the Veroboard sensor simply solder on two lengths of wire at either end of a 4 inch $x 3$ inch piece of 0.1 inch matrix Vero-
board so that the wire bridges all the copper tracks. Then, with a spot-face cutter or twist drill, make breaks on either side to alternate tracks as in Fig. 2. If high sensitivity is not required the size of the piece of Veroboard used may be reduced. The $0 \cdot 1$ inch matrix board is however most suitable.

If other values of loudspeaker are to hand, such as 3 or 15 ohm types, these can be used but it will mean experimenting with the value of Cl since substitution will produce frequency change.

APPLICATIONS

When siting the sensor the only requirement is that it should be placed on a flat surface. The length of lead to the sensor will not affect circuit performance.

If a 500 kilohm potentiometer is substituted for R1 the input sensitivity can be made variable. Since the base/emitter breakdown voltage of the ZTX 300 is 5 V there is no danger of transistor destruction for the condition of maximum sensitivity with little resistance in the input line.

For use as a water level alarm the sensor should be arranged vertically with the lower two tracks at the required height. Obviously, rising water bridging these tracks will trigger the alarm.

As a novelty item the Veroboard could be attached to the top of the aluminium chassis. For this the lamp flasher circuit is used so that anyone breathing or blowing on the sensor literally blows the lamp on.

USIIG

The Waa Waa Pedal featured in this issue utilises stick down wiring ; this article describes how to use it.

THE series of photographs below show how to use stick down wiring; photographs (a) to (e) show the Waa Waa Pedal being built.

Stick down wiring or Cir-kit, to use its trade name, is available in two sizes ${ }^{1} 16$ and ${ }^{1} 8$ inch width, and can be used with either plain or perforated, mounting panels. The Waa Waa Pedal unit described in this issue utilises ${ }_{16}$ inch width Cir-kit with a perforated s.r.b.p. panel. The Cir-kit forms the connections in the same way that the copper on Veroboard or a printed circuit form connections for the components.

LAYING THE CIRCUIT

To use stick down wiring first design a component layout or use that provided in the article (Fig. 3 in Waa Waa Pedal), cut the circuit board to size using a hacksaw, drill any mounting holes

and de-burr the board. The Waa Waa Pedal design utilises Veroboard pins for the connection of flying leads and this practice is to be recommended when using Cir-kit. The pins provide firm anchorage points for the leads and hence no strain is put on the copper strips. The pins should be inserted by supporting the board under the pin and tapping the pin in gently until it is half-way through the board (a). Mark the position of each copper strip on the board using a felt tip pen. Once all the pins have been inserted and checked the Cir-kit can be laid.

Lay the copper strip along the first section marked and cut the strip to the required length for this section. Check the length and position and carefully peel off part of the white backing strip, taking care not to touch the self adhesive back. Position the strip, peel off the remaining

backing and lay the strip in place pressing the ends firmly down (b). Continue to lay each strip until all are in place, check the layout and firmly press all strips down; this can be done using the side of a pencil or a finger nail, run along each strip. If a strip is found to be incorrectly positioned it can be carefully removed, before pressing firmly down, and replaced.

Where there are bends in the strip cut the copper in sections so that each straight section can be laid with an overlap on the next straight section. Next go over the strips and bridge each corner with solder so that each strip forms a continuous electric circuit (c).

MOUNTING COMPONENTS

Mount all the components (except any diodes and transistors) drilling all holes in the appropriate positions first, if using plain s.r.b.p. board, holding the components in place by their leads bent over onto the copper strip (d). Check that all components are mounted in right positions and that any polarities are correct, e.g., on electrolytic capacitors. Cut off the excess wire so that only a small part is bent over the copper strip to hold the component and solder this part to the copper. Next cut some lengths of p.v.c. covered stranded connecting wire and, after stripping about ${ }^{3} 16$ inch of the covering off, twist the strands together and tin the end, connect these wires to the pins by wrapping them around the pin and soldering (e). Check the positions of the components and leads and each soldered

joint before continuing.

SOLDERING SEMICONDUCTORS

Finally, the transistors and diodes can be mounted and the board checked carefully. When mounting germanium transistors and diodes you must always use a heat shunt to protect them from the heat of the soldering iron and it is wise to carry out this practice when mounting silicon devices also.

The heat shunt, which can be a pair of long nosed pliers or a proper shunt sold for the purpose, is held between the component and the joint to be soldered, on the lead to which the soldering is being carried out. Keep the shunt on the wire until the joint has cooled down before transferring it to the next lead.

Transistors and diodes are mounted on the board and soldered in the same way as other components-checking position and polarity before cutting the leads and checking joints after soldering.

Once all the components and flying leads are mounted it is advisable to check the whole board against the circuit diagram, checking each joint of every component and making sure that no components link with any components or wires that they are not meant to.

ADVANTAGES

Stick down wiring has some advantages that are not apparent from the Waa Waa board design. The first of these advantages is that cross-overs of the strip can be made easily by making a "bridge" over one strip using insulation tape and laying the second copper strip over this (f). The copper strip may also be taken around the edge of the component board so that the circuit pattern can be continued on both sides of the board should this be required (f).

Finally a word of warning, when soldering to Cir-kit it is best to be as quick as possible as excess heat will affect the adhesive and eventually lift the copper away from the board. This point should be noted when fitting the components as any desoldering of those mounted incorrectly will hasten the peeling off of the strips. If this does happen another strip will have to be laid to replace the damaged one. \square

Photographs showing how to use stick down wiring.
(a) Inserting pins for fiying leads.
(b) Laying the copper strip.
(c) Joining the corners with solder.
(d) Mounting components-all except semiconductors.
(e) Fixing the flying leads.
(f) A cross-over and continuation of the strip on the other side of the board.

Add this exciting sound to your world of music

THE waa waa effect so often heard in "pop" music nowadays, is produced by passing the audio signal from a musical instrument such as an electric guitar or electronic organ through a filter network. Varying the characteristics of the filter generates the waa waa sound.

FILTER CIRCUIT

The filter employed in this circuit is comprised of components C2, C4 and L1 (Fig. 2).

If we plotted a graph of the output voltage level against the frequency of the input signal we would obtain the curve (a) shown in Fig. 1.

By varying any of the three filter components, it is possible to shift this curve along the frequency axis as shown by curves (b) and (c) thus varying the characteristics of the filter. By doing this smoothly and continuously the desired waa waa sound is produced.

Fig. 1. Filter characteristics.

COMPLETE CIRCUIT

The complete circuit diagram is shown in Fig. 2. The first stage containing transistor TR1 is a standard circuit configuration called an "emitter follower". This is merely a matching device which presents a very high input impedance, such as required by an eletric guitar, with
a low output impedance suitable for inputting to the waa waa generator.

The waa waa generator itself is made up of transistors TR2 and TR3 which are both connected in the "emitter follower" mode on either side of the filter network.

Feedback from the output of TR3 is through R7 and VR1 to the input of TR2. This is known as a "positive feedback loop".

The function of capacitors C3 and C5 is to prevent the passage of any d.c., only allowing the a.c. signal to pass unhindered.

The input signal to TR1 emerges at the emitter and is passed via capacitor C2 to the base of TR3 and at the same time applies a voltage to the B side of the inductor L1. The signal out of TR3 is fed back to the base of TR2 via the potentiometer VR1 (which is linked to the pedal) and a signal is caused to pass through the emitter circuit of TR2 applying a voltage to the A side of L 1 , the magnitude of this voltage being governed by the setting of VR1.

Thus, so far we have deduced that an input signal causes a potential difference to be set up across the inductor L1, and the magnitude of this potential difference is proportional to the amount of signal fed back to side B of L1 via VR1.

Thus by varying VR1, using the foot pedal, the potential difference across Ll can be varied. This variation of potential difference across LI causes the effective inductance of Ll to vary and hence alter the filter characteristic, producing the waa waa sound at the output.

Approximate cost of components
2.90 excluding case

Fig. 2. The complete circuit diagram of the waa waa unit.

Components....

Resistors

R1	$270 \mathrm{k} \Omega$	
R2	$10 \mathrm{k} \Omega$	Shop Talk
R3	$68 \mathrm{k} \Omega$	refers
R4	$100 \mathrm{k} \Omega$	
R5	$2 \cdot 2 \mathrm{k} \Omega$	
R6	$2 \cdot 2 \mathrm{k} \Omega$	
R7	$1 \mathrm{k} \Omega$	
R8	$27 \mathrm{k} \Omega$	
All 4 watt carbon $\pm 10 \%$		

Potentiometer VR1 $5 k \Omega$ linear

Capacitors

C1 $4 \mu \mathrm{~F}$ elect. 12 V
C2 $0.1 \mu \mathrm{~F}$
C3 $10 \mu \mathrm{~F}$ elect. 12 V
C4 $\quad 0.1 \mu \mathrm{~F}$
C5 $10 \mu \mathrm{~F}$ elect. 12 V
Transistors
TR1, TR2, TR3 OC71 Germanium pmp (3 off) Inductor

L1 10 mH (approx) 520 turns of $40 \mathrm{s.w.g}$. enamelled copper, wire wound on a ferroxcube pot core type LA1 or any other coil with an inductance of approximately 10 mH
Miscellaneous
S1 On/off switch JK1. JK2 standard Jack sockets (2 off) B1 9V battery and clip (PP9)
$0 \cdot 15$ inch matrix plain Veroboard (12 x 20 holes), Veropins, $\frac{1}{16}$ inch Cir-kit stick-down wiring, 20 s.w.g. aluminium sheet, case and pedal materials: ribbed rubber sheeting, $2 \frac{1}{2}$ inch door hinge, foam rubber, knob, small wood screws (10 off), $2 \times 6 \mathrm{BA}$ bolts for inductor fixing, Meccano parts: $3 \frac{1}{2}$ in. perforated strip, 2 in . perforated strip with boss at one end, 57 -tooth gear, 19 -tooth gear, 1 i in. perforated wheel, 1 in , rod to suit perforated wheel.

FIXING.TO THE BOARD

The main circuitry is built on a piece of 0.15 inch matrix plain Veroboard (12×20 holes) using Cir-kit stick-on wiring and Veropins. A full description of how to use this material is given on page 212 .

The component and Cir-kit wiring layout and drilling details are shown in Fig. 3 (a) and (b). The layout is not critical and can be rearranged if desired to suit individual requirements. Veropins are used for flying lead connections. They are indicated in Fig. 3 (b) by a circle around the black dot.

THE INDUCTANCE

The inductor is quite easily made by winding 520 turns of $40 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire on an LAl ferroxcube pot core to give an inductance of 10 millihenries (mH).
If you do not like the idea of winding your own inductor there are some available on the market with values near to 10 mH .
This inductor is attached firmly to the board by means of two 6BA bolts through locations E12 and I12 from below before fitting the other components.

Waa-Waa Pedal

Fig. 4. Side view showing pedal arrangements.

Fig. 5. The underside of the waa waa pedal showing positions of all components.

Fig. 6. The bracket dimensions for mounting VR1.

Fig. 3(a). Component layout on top side of board.

Fig. 3(b). Positioning of Cir-kit wiring on underside of board.

PEDAL POTENTIOMETER LINKAGE

In the prototype the pedal was linked to the potentiometer by means of some Meccano parts as shown in Figs. 4 and 5. A 19-tooth gear was drilled out and fitted on the shaft of the potentiometer, VR1, and a 57-tooth gear was mounted through the case (using a 1 inch length of rod, diameter ${ }_{3}{ }_{3}$ inch) using a perforated wheel screwed to the inside of the case which acts as a bearing.

Two perforated strips, dimensions in Fig. 4, complete the linkage mechanism.

It is not essential to use the above Meccano parts as brass strips, for example, will do equally well in place of the perforated Meccano strips. Also, the gears need not be as used in the prototype; any set of gears may be used so long as the up and down movement of the pedal moves the slider of VRl over the majority of its track.

CASE AND PEDAL

The case is shown in Fig. 7 together with its dimensions. The material used in the prototype was ${ }^{1} 4$ inch plywood. All joints were nailed and
glued and the completed case was covered in a self-adhesive plastic material with a wood grain finish to give a neat appearance.
The pedal itself was made from a piece of 1_{2} inch thick plywood and attached to the top of the case by means of an ordinary door hinge and a piece of wood as shown in Fig. 4. A piece of ribbed rubber sheet was glued to the top of the pedal to prevent slipping when in use.

ASSEMBLY

Begin by screwing the pedal to the case top and attach the linkages, bearing and large gear to the case.

Secure VR1 to its mounting bracket, shown in Fig. 6, and screw in position. Turn VRl fully clockwise, and with the pedal pulled up as far as possible, slide on the small gear and tighten in this position. Depressing the pedal will turn VR1 anti-clockwise.
The input and output sockets, JK1 and JK2, and switch Sl can now be fixed firmly in position. Screw the component board in position and connect up all the flying leads, Fig. 5.

Pieces of foam rubber should now be glued to the sides of the case where the battery will fit, and the battery placed in position. It can be held securely in this position by means of a strong rubber band across the battery fixed by wire clips as shown in Fig. 5.

Screw on the base and the unit is complete and ready for use. If desired four small rubber legs may be attached to the base to prevent slipping when in use.

Photograph of the prototype pedal. Coaxial sockets were originally used for the input and output socket.

USING THE UNIT

This unit was designed for use with an electric guitar but can be used with almost any device since its input impedance is high. It should be interposed between the guitar and the amplifier and the waa waa effect is obtained by moving the pedal up and down whilst playing.
Different rates of pedal movement alters the waa waa effect produced.
If it is to be used with an electronic organ, the first stage of the circuit can be deleted, thus inputting directly to capacitor C2.
 and District Adult Education Centre. We went along one Wednesday evening to the "advanced" beginners class-Mondays for beginners who, at the time, were all busy building Demo Decks!
The advanced class, eleven of them, come from varied spheres-everything from a quàntity surveyor to a printing firm director-a and when we took the photographs they were all busy building test equipment. Most of the students took up electronics just over a year ago when Mike first started a beginners class at the centre, they have been aided in their quest for knowledge by a cash allowance from the college to purchase test gear kits.

Reasons for joining Mike's first class varied from general interest in building a specific item to requiring more knowledge of the electronics now being used at work (paint chemist). All the students are keen to learn and some have already built ambitious projects of their own.

The "advanced" beginners class, they are (from left to right, back row first) M. J. Algeo, J. B. Leach, H. A. Fussell, G. E. Gill, R. Hierons, B. B. Cox, Mike Hughes (standing) and P. J. Acock. Between them they are building a range of test instruments for their own use and for demonstration to the beginners class; the class already has an oscilloscope built by Mike Hughes.

EI-PRE-PAK

TELEPHONE DIALS

Standard Post Offite type.
onir 50 p

NEW TESTED AND GUARANTEED PAKS			
$\underline{8}$	4	Phote Cells, Sun Bateeries 0.3 to 0.5 V .0 .5 to 2 mA .	50p
\% 79	4	In 4007 Sil, Rec. diodes. 1,000 PIV lamp plastic	$50 p$
BE1	10	Reed Swltches, mixed types large and smalif	50p
89	200	Mixed Capacitors. Approxquantity, counted by weighe	$50 p$
H4	250	Mixed Resistong Approx. Quantity sounted by weight	$50 p$
H7	40	Wirewound Resistors. Mined sypes and values.	50p
Ha	4	ByI27 Sil. Recs. 1000 PIV. I amp. plastic	50p
H0	2	OCP71 Light Sensitive Phote Transistor	50p
H12	50	NKT155/259 Germ. diodes, brand new seock clearance	50p
HIC	10	OC71/75 uncoded black tlass type PNP Germ.	50p
Hip	10	OCAI/BID uncoded white slass type PNP Germ.	50 p
H21	20	OC200/1/2/3 PNP silicon uncoded TO-5 ean	50 p
H2\%	20	OA47 zold bonded diodes coded MCS2	50 p

NEW UNMARKED UNTESTED PACKS

Es6	15	Germanium Di Min. glass sype	
B03	200	Trans. manufacturers rejects all types NPN, PNP, sil. and Germ	p
B64	100	Silicon Diodes DO-7 glass equiv. to OA200, OA202	50p
886	50	sil. Diodes sub. min. IN914 and IN916 Eypes	
888	50	Sil. Trans. NPN, pNP equiv. 20 OC200/1 2N706A, BSY95A, etc.	P
BI	50	Germaniym Transistori PNP, AF and RF	
H6	40	250 mW . Zener Diodes DO-7 Min. Glass Type	50p
मा०	25	Mixed volts, It wate Zeners Top hat type	p
Hi7	20	3 amp. Silicon Stud Rectifere, mixed volts	p
His	30	Top Hat Silicon Rectifiers 750 mA . Mixed volts	50p
H16	8	Experimenters' Pak of Integrated Cirevita. Daca supolied	p
	20	amp plastic. Mixed volts.	

MAKE A REV COUNTER FOR YOUR CAR
The 'TACHO BLOCK'. This encapsulated block will turn any
O-1mA meter into a linear and accurate rev. counter for any car with normal coil ignition Cleach

OUR VERY POPULAR 3p TRANSISTORS
TYPE "A". PNP Siliton alloy, TO-5 can.
TYPE " B " PNP Silicon, plastric encapsulation.
TYPE "E" PNP Germanium AF or RF.
TYPE "F" NPN Sillcon plastic encapsulation.

FULLY TESTED AND MARKED

 SEMICONDUCTORS\author{
ACI07
 AC126
 ACl 126
ACl 127

 AC178
ACl
 ${ }_{\text {ACY17 }}$
 AF239
 AFIB6
 AFI 19

BC154
 | AC154 |
| :--- |
| BC107 |
| BC1 |
| AF |

}

¢		$6 p$
0.15	OCI70	0.23
0.13	- C171	0.23
0.17	OC200	0.25
0.13	OC201	0.25
- 25	2 G 301	0.11
0.15	2G303	0.13
0.37	2N711	0. 50
0.50	2N1302-3	0.20
0.57	2 N 13045	0. 23
0.25	2N1306-7	0.30
0.13	2N1308.9	0.35
0.13	2N3日ISFET	0.43
$0-14$		
0.15	Power	
0.15	Transintors	
0-20	OC20	0-50
0.57	$\bigcirc{ }^{\circ} \mathrm{C} 23$	0.30
0.13	0 O 25	0.25
- 13	OC26	0.25
0.13	OC28	0.10
0.13	OC35	0.25
0.15	OC36	0.37
0.13	ADI49	0.10
0.13	Aurio	1.25
0.12	25034	0.25
0.13	2N3055	0.63
0.13	Dioden	
0.13	AAY42	0.10
0.13	OA95	0.10
0.20	OA79	0.00
0.13	OABI	0.09
0.17	IN9114	0.07

F.E.T. PRICE BREAKTHROUGH!

This field effect transistor is the 2N3823 In a plastic encapsulation, coded as 3823E; It is also an excel. lent replacement for the 2 N3819. Data sheet supplied with device. $1-1030 p$ each, $10-5025 p$ each, $50+20$ p each.

BULK BUYING CORNER

NPN/PNP Silicon P/anar Transistors, mixed, untesed, similar to $2 \mathrm{~N} 706 / 6 \mathrm{~A}, 85 \mathrm{Y} 26-29,85 \mathrm{Y} 95 \mathrm{~A}, \mathrm{BCY} 70$. etc. Stricon Planar NPN Plastic Transistors, untested, similar Slicon Planar NPN Plastic Transistorz, untested,
so 2 N3707-11, ete., $4 \cdot 2.5$ per $500 ;$ ar per 1,000 .

Silicon Planar Diodes, DO-7 Class, simllar to OA200/202. BAY34-36, $14-50$ per 1,000 .

NPN/PNP Silicon Planar Tramistors, Plastic TO-18, similar to BC113/4, BCI $53 / 4$, BFi53/160, erc., 44.25
per 500 : per 500; cer 1,000
OC44, OC55 Transiseors fully marked and cested, $500+$ at $3 p$ each; $1,000+$ at 60 each.
OC71 Transizters. fully marked and tested, $500+$ at
6 p each; $1,000+$ as 5 p each.
$3823 E$ Field effect Transistors. This is the 2N3823 in
Plastic Case, $500+$ IJo eachs $1.000+100$ each.
1 amp Miniazure Plastic Diodes
in $4001,500+$ at $4 p$ aach; $1.000+a \varepsilon 3 p$ each.
in $400 \mathrm{OH} .500+$ at Sp_{p} each, $1,000+$ at 5 F each
 FREE ${ }_{\text {ARD }}^{\text {catalogis }}$ AND LISTS FOR
 tRansistors, RECTIFIERS, DIODES, INTEGRATED CIRCUITS, FULL PRE-PAK LISTS \& SUBSTITUTION Charts

CLEARANCE LINES

COLOURT.V. LINE OUTPUT TRANSFORMERS
Designed to give 25kV when used with PL509
and PY500 valves. As ramoved from colou
receivers at the factory. NOW ONLY s0p each post and pocking $23 p$

Quansity

88105 Varicap Dlodes
OC71 or 72 Fully. Tested
Unmarked $\begin{array}{lll}1-10 & 10-50 & 50+ \\ 10 p & \end{array}$
-OC4 4 5p 5p
2-OC45's. Por Set. 25p 20p 15p
Matched Sets of OC45:
and 2nd IF
OA47 Gold-Bonded Diodes,
Marked and Tesced
I-wate Zener Diodes 7.5,
$24,27,30,36,43$ Volts
10 -wate Zener Diodes 5 .1,
$8-2,11,13,16,24,30^{\circ}$,
100 Volts
$\begin{array}{lllll}\text { Micro Switches, S/P, C/O } & 20 \mathrm{p} & \text { 17p } & \text { 15p }\end{array}$ $\begin{array}{lllll}\text { Micro Switches, S/P, C/O } & 25 \mathrm{p} & 20 \mathrm{p} & \text { 15p } \\ \mathrm{I} \text {-amp Bridge Rec' } 25 \text {-volt } & 25 \mathrm{p} & 22 \mathrm{p} & 20 \mathrm{p}\end{array}$

INTEGAATED CIRCUITS

SL4030 Audio Amp., 3 = Watts $2.00 \quad 1.95 \quad 1 \cdot 60$
$\begin{array}{llll} \\ 709 \mathrm{C} \text { Linear Opp. Amp. } & 3.00 & 1.95 & 1.60\end{array}$
709 C Linear Opp. Amp.
Gutes, Factory Marked and
Tested by A.E.I.
K. Flip-Flops Factory,

Marked and Tesced by
PA234 I-watt Audio Amp. 1.00 90p 30 p
UL914 Dual $2 \mathrm{j} / \mathrm{P}$ Gate 40 p 35p 30p
LOW COST DUAL INLINE J.C.
SOCKETS
14 pin eype at $15 p$ each
16 pin type at $16 p$ each.

BOOKS

We have a lare solection of Reforence and Technical Books in srock.
These are just two of our popular lines: B.P.I Transistor Equivalente and

This includes many, zhousands of British
U.S.A. European and C.V. equivalents.

The lliffo Radio Valve Transhetor
Data Book 9eh Edition:
Characteristics of 3,000 valves and tubes. 4,500 Transistors, Diodes, Rectifers and Integrased Circuizs.
Send for lists of these English publications.

R.C.S. PORTABLE PLAYER CABINET

Really amart appearance with space for E.C.S. Amplifiera and mont modern antochangort. Size $18 \times 15 \times 8$ in. Metal Aitunge. Carrying handle. Two-tone
roxine covered. Populgr colours. GARRARD SINGLE PLAY TA MKK II Ideal $£ 10$ Dincotheque or Hi-Fi. Stereo/Mono GARRARD PLAYERS with Somotone gTA Cartridgen Gtoreo Diamond and Mono Sapphire. BP25 Mir 1II 118 .
Model 8500 Storeo and Mono Autochanger \&14. Post 250 . -Iono Auloclanger R.C.8. TEAKWOOD BASE. Ready cut out $\quad 2.75$ Or mounke (blato player more and
62.25 R.C.S. PLABTIC COVERS FOR ABOVE BASE EMI PICK-UP ARM with mono xtal and stylua eli.25

E.M.I. WOOFER AND

S5.75 Post 85D

Comprising a Ane example of a Wooter $102 \times$ oHin. with masive Ceramic Alominin Cone Gaus 13.00 lmprove middilo and top reaponse. Also the E.MII. Tweeter $3 t$ ing. square has a apecial light-
weight paper cone and magnet dinz weight paper
Impedance Standard
Unoful Responve
Bate Resonance
...... 45 cps
RARW FIEHAD P50-TRANSISTOR COILS RARW Ferrite
O.e. P50/1AC.

1. P. P50/2cc $470 \mathrm{lc} / \mathrm{h}$.

P5111 of P51/8
${ }_{P 50 / 2 \mathrm{P}} \mathrm{P}^{51 / 11}$
3pare Cores
Driver Trans. iFpTu Drivor Trane. LyDT4 Printed Circuit, PCA Weyrad Booklet Potiv …......... 33D OPTI

Fernte Rod 8×3 in. $20 \mathrm{p}, \mathrm{B} \times 1 \mathrm{fn}$. 25p
VOLUME CONTROLS
800 hm Coax 4p. se Long apindiet. Midget Size LIN. L/S $15 p$. D.P. ${ }^{25 p}$. BRITISH AERIALITE BTEREO L/S 55 p . D. F .75 F . 40 AKIAL-AIR SPACE 40 yd. $81 \cdot 40 ; 60$ yd. 82 Wmal WOUND 3-WATT PO WLRE-WOUND 3 -WATT Valuet 10Ω to 80 K ., isp Carbon 30 K to 2 meg. $\quad 25 p$, 10 orms to $100 \mathrm{~K} .40 p$

EDGE CONNECTORS 16 way 25p; 24 way 38 p.
s.R.B.P. Board 015 MATRIX $2 \nmid 1 \mathrm{n}$. wide 8 p per 1 lin. atin. wide 4 p per 1 in.; 5 in. side $\delta \mathrm{p}$ por lin. (ap to 17 jn .) 8. R, B.P. undrilled thin, Board $10 \times 8 \mathrm{in} .16 \mathrm{p}$.

BLANK ALUMINIUM CRASSIS 18 e.w.g. Zin. sides, $7 \times$ fin $45 \mathrm{p}: 9 \times 7 \mathrm{in} .60 \mathrm{p} ; 11 \times 7 \mathrm{in} .70 \mathrm{p} ; 13 \times 8 \mathrm{in} .90 \mathrm{p} ; 14 \times 11 \mathrm{~m}$ ${ }^{95 p} ; 15 \times 14 \mathrm{in}$. $99 \mathrm{p} ; 11 \times 3 \mathrm{in}$. 50 p .
$10 \times 3 \mathrm{in} .16 \mathrm{p} ; 10 \times 7 \mathrm{in} .19 \mathrm{p} ; 12 \times 8 \mathrm{in} .20 \mathrm{p} ; 12 \times 8 \mathrm{in} \times 28 \mathrm{p}$ $16 \times 6 \mathrm{in}$. 28p; 14×8 in. 34 p ; $12 \times 12 \mathrm{in} 40 \mathrm{p}$.
If inch DIAMETER WAVE-CHANGE SWITCTIES 25 p . 2 p .2 -way, or 2 p .6 -way or 3 p . 4 -way 25 p each. 1 p . 12-way, or 4 p. 2 -way or 4 p. 3-way 25p.

 2 waler 90 p . Extra wsfers up to six 80 p each.
TOGGLE SWISCHES, $\mathrm{mp} .14 \mathrm{p} ; \mathrm{dj}$. $18 \mathrm{p} ; \mathrm{dp}$. dk. 23 p .
"THE INSTANT" BULX TAPE
ERASER \& HEAD DEMA GNETISER
Leaftet S.A.E. $120-35{ }_{15 p}^{\text {Posi }}$
R.C.S. STABILISED POWER PACK KITS All parti and instructiona with Zener Diode, Printed Circult, Bridge Rectiflers and Dooble Wound Mains Translormer input 200/240v. AC. Output valtages avails ble 6 or 9 or 12 or 15 or 18 or 20 v . DC at 100 mA or lea
PLEASE 8TATE VOLTAGE REQUIRED. PLEA8E 8 RA.
Details S.A.E.
GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE Ideal for Mike, Tape, P. U., Gultar, Car be uned with Bittery $9-18 \mathrm{v}$ or her. line $200-30 \mathrm{~V}$ D.c. oparation.

Frand new, Guaranteed. Detaila s.a.E. $90 \mathrm{P} \quad \begin{gathered}\text { Pont } \\ \text { 10p }\end{gathered}$

 $\begin{array}{llllllll}25 / 25 \mathrm{~V} & & 10 \mathrm{p} & 8+18 / 450 \mathrm{~V} & 20 \mathrm{p} & 350+50 / 325 \mathrm{~V} & 50 \mathrm{p} \\ 50 / 50 \mathrm{~V} . . & 10 \mathrm{p} & 16+16 / 450 \mathrm{~V} & 25 \mathrm{p} & 32+32+32 / 250 \mathrm{~V} & 48 \mathrm{p}\end{array}$ | $50 / 50 / 25 \mathrm{v}$ | 10 p | $16+168 / 50 \mathrm{~V}$ | 25 p |
| :--- | :--- | :--- | :--- |
| $100 / 22+32+32 / 360 V$ | 38 D | | |
| $32+32 / 350 \mathrm{~V}$ | 25 p | $100+50+50 / 350 \mathrm{~V} 48 \mathrm{p}$ | | SUB-MIN. ELECTROLYTICS. $1,2,4,5,8,18,25,80,50,100$ $200 \mathrm{mF} 16 \% 10 \mathrm{p} ; 500,1000 \mathrm{mP} 12 \mathrm{~V} 18 \mathrm{p} ; 2000 \mathrm{mF} 25 \mathrm{~V} 42 \mathrm{p}$

 FF $10 \mathrm{p} ; 2,200-5,800 \mathrm{pF}$ 20p; $6.800 \mathrm{pF}=001$, mid 30 p ; each TWIN GAKG. " $0-0$ " $208 \mathrm{pF}+176 \mathrm{pF}$, 85 p ; slow motion drive $385+885$ with $25+25 \mathrm{pFF}^{5}$ 50p 500 pF slow motion, itand ard 45p:small 3-gang 500pFsi.60
SHORT WAVE, SIKGLE. 10pF 80p; 25pF 65p: 60 pF 85 p GRROME TELESCOPIC AERELAL. SWivel bane. 23in. 20 p TUNING. Solid dielectric. $100 \mathrm{pF},{ }^{0} 0 \mathrm{p}$, 5 p . $100 \mathrm{p} \mathrm{F}, 150 \mathrm{p}$ $8 \mathrm{p} ; 250 \mathrm{pF}, 10 \mathrm{p} ; \quad 800 \mathrm{pF}, 10 \mathrm{p} ; 750 \mathrm{pF}$ 10p; 1250p\% 10 p .
 QECTIFIERS CONTACT COOLED WAVA BY 12730 D
 KEON PANEL INDICATORS 250 V AC/DC Red or Amber 20p
 HOE STABILITY. + w. $8 \% 10$ ohms to 1 mege, 10 D Ditto 5% Preterred values 10 ohms to 10 meg., $4 p$. WIRE-WOURD RESISTORS E Watt, 10 wati, 15 watt 10 ohme to 100K, 10 e each; 8 t wath, 1 ohm to $8-2$ ohmi 10 D

©GOD PI METAL PLINTH AND
 Cut out peady for Garrard or position. Latest desion. Covered in black leatheretto. Antimagnetic. $12 \frac{1}{2} \times 14 \frac{1}{2} \times 7 \frac{1}{2} \mathrm{in}$. high Including cover.
 Post 25p

MAINS TRANSFORMERS

 Ant POST $250-0-25080 \mathrm{~mA} .6-8 \mathrm{\nabla} .3 \cdot 5 \mathrm{~s} .6 .3$ v. 1 A. or 5 v. 2 s . 29.00 $350-0-85080 \mathrm{~mA} .8-8 \nabla \cdot 3.6 \mathrm{a} .6 .8 \mathrm{~F} .1 \mathrm{~s}$. Or 87.2 s . 22.00

 MINI MAINS $207,100 \mathrm{~mA}$. If \times it $\times 1 \mathrm{Hin}$ HEATER TRANS. 6-3v. 3 a
Ditto tapped sec. 1.4 ष., $2,3,4,5,8 \cdot 3 ~ \nabla .1+3 \mathrm{mp} . .$. GENERAL PURPOSE LOW VOLTAGE TApped Ontput at $2 \mathrm{smp} .3,4,5,6,8,9,10,12,15,18,24$ and 307 . $22 \cdot 00$
1 amp. $6,8,10,12,16,18,20,24,30,36,40,48,60,22.00$ $1 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60,28 \cdot 00$
2 AUTO TRAN8FORMERS 115v, to 230v, or 230v. to 116 v Input/Output. 150w. f2-00; 500 w . $250 / 100$
CEARGER TRARSFORMERS. Input 200/250\%,
 or 12 v. Outputh, $1 \% \mathrm{smp}$. $40 \mathrm{p} ; 2 \mathrm{smp}$. $65 \mathrm{p} ; 42 \mathrm{mp} .85 \mathrm{p}$. Ayl iranslormers Pootege R5p ortra.

E.M I. $13 \frac{1}{2} \times 8$ in. LOUDSPEAKERS Whth twin tweotert
and crossover, 10 watt. and crossover, 10 watt.
Stete 3 or 8 or 15 ohm. Post 15p With flared tweeter cone and ceramic
 Ylus 10,000 gaus. state 3 or 8 or 15 hm . - Post 15 g Recommendad Teak Cabinet
Size $16 \times 10 \times$ Bin. Post 25 p

IOW MINI-MODULE $\{3: 25$ LOUDSPEAKER KIT Pont 25D

Triple speaker system combining on ready cut bafle. 1 in. chiploard 15 in. $\times 8$ in. Separato Bass. Middle beavy duty 5 in. Bats Wooter unit has a low resonance cone. The mid-Range unit is apecially designed to add drive to the middle register snd the tweeter recreates the top end of the mnsical spectrum. Total reaponse $20-15,000$ ops. Yull inetructions for 3 of 15 ohm . TEAS VENEERRD BOOKSHELY ENCLOSURE. $16 \times 10 \times 9 i n$. Modern design with
Auted wood tront. Highly recommended. Post 25 p

ALL MODELS "BAKER SPEAKERS" IN STOCE	
BAKER 2In. MAJOR E9	
	80-14,500 c.p.E., 12 in . double cone, woofer and (weeter cone torether whe BAKER ceramic magnel assembly havina a Aux dencity of 14,000 reuss and a tutal fur of 145,000 Marwella. Bass resonance 40 c.p.s. Rated 80 watti. Voice coils 8 or 8 or 15 ohms. Poat Proe
	Module 1nt. $80-17,000$ c.p.I. with tweeter, crosever, bs file and Instruetions. Ell. 50
- Group 25'	$\begin{aligned} & \hline \text { GOOUND" SPEAKERS } \\ & \text { "Group } 35 \text { " Group 50' } \end{aligned}$
$12{ }^{12}$ inch watt 67	
3 or 8 ur 15 ohm	8 or 8 or 15 ohm 8 or 15 oh
TEAR III-FI SPEAKER CABINETS. Fluted wood tront	

GOODMANS $6 \frac{1}{2}$ ins. HI-FI WOOFER 8 ohm, 10 watt. Large ceramic marnet. 8 pecial Cambric cone surround. Frequency Kilfi Enclosures syatoms, otc.

ELAC CONE TWEETER

The moving coil diaphragm giver a sood radiation pattern to the higher frequencioe and a smooth extension of total renpoase
 3. X 2in. deep. Rating 10 wath. 8 ohm
or 15 ohm modele. ≤ 1.90

Horn Tweeters $2-16 \mathrm{ke} / \mathrm{s}, 10 \mathrm{w} 8$ ohm or $15 \mathrm{ohm} 31-50$ Do Lure Horn Tweters $2-18$ Kc/a, 15 w , 8 ohm 28. TWO-WAY 3000 cps CROSSOVERS 8 ot 8 or 16 ohm $98 p$.

 15 ohm, 8 ifin. dit.; $7 \times 4 \mathrm{in}$.; 8×5 in.
 8×2 tin. $90 \mathrm{p} ; 8 \mathrm{sin} .21 .75: 10 \times 6 \mathrm{in} .21 .90$.

$$
\text { SLAC 10in. 10W. Da Iura Caramic. \& ohm, है } 4 \text { hm. } 11 \cdot 80
$$ ELAC 10in. 10W. De Luxe Ceramic, 8 ohm. E4.

RIGHARD ALLAN TWIN CONE LOUDSPEAERRS.

OUTPUT TRAMS. ELS34 etc. R5D: MIKE TRARS. $50: 126$ P. GOODMAN'S OUTPUT TRANGFORMER S WEtt Dush-puli for valves EL84 otc., 3,8 and 150 hms 85 p . Post 20 p .
BAEERR 100 WATT ALL
AMPLIFIER
4 inputs apeech and music.
Mixing Iacilities. Responte
$10-30,000 \mathrm{cpp}$. Matches
aill
loudapeazeri. A.C.
200/2507. Separate Treble
and Bass controls

ALL EAGLE PRODUCTS

BARGAIN AM TUNER. Modium Wave.
Tranistor 8uperhet. Ferrite serial. g volt.
Tranelator 8 operhef. Ferrite serial. 8 volt.
BARGAIT 4 CRANNEL TRANBIBTOR HONO MIEER Add musical highlighte and sonnd effecte to recorditux Will min Microphone, records, tape and tuner
with reperato controlif into single output. 8 volt. STEREO VERSION OF ABOVE 24-25.
BARGAIN FM TURER 88-108 Me/s Six Trancistor. 9 volt Printed Circuit. Calibrated allide dial tuning. ± 10
BARGAN FM TUYER as above lest cabinat E7.50
AARGAIM 3 WATT AMPLEPER. 4 Transintor £3.50

COAXIAL PLUG 6p. PAKEL SOCEETS 6p. LIKE 18p. COAXIAL PLUG 6p, PAFEL SOCKETS 6p. BALANCMD TWIN FEEDERS 5 p Yd. 80 ohmi or 300 ohme JACK SOCEET 8td. open-circuit $14 p$, closed ctrent $23 p$ Chrome Lead Socket 45 p . Phono Plugt Sp. Phono Socket Sp. SOCKEXB Chessir 8 -pin 10 p ; $3-\mathrm{pin} 10 \mathrm{p}$. DIN SOCKETS Load $3-\mathrm{pin} 18 \mathrm{p} ; 5$ 5in 25p. DIN PLUGS 3-pin 18p; 5-pin 25p VALVE TOLDERS, sp; CERAMIC 8p; CAN's 5 p .
E.M.I. TAPE MOTORSPost 15 p .

 120%. of 240%. A.C. 1.200 F.p.m. A pole

MEMORY STORE

Retrieval By

Dick Railton

ELECTRONICS today offers reward in so many different areas of our lives that it is difficult to remember clearly those times when it hardly existed at all, and then only in the form of the mysterious "wireless". Perhaps it became my hobby because of the thrill experienced the first time I heard an identifiable voice in a pair of uncomfortable headphones attached to my very own "crystal set".
The greatest single item then in favour of wireless was that a boy, with the aid of normal workshop tools, a lump of the magic crystal, tuning condenser (now called a capasitor) and headphones, could achieve results equal to the best minds of the century-almost
anyway. Thus the sense of power which could grow from this may well be the key, though I think not.
To me, my hobby went hand-inhand with Wells, Huxley and Willy Von Braun, long before Peenmunde, Flash, Gordon and the slowly growing ranks of Science Fiction writers. Our faith in journeys through space to conquer the Universe could only be supportive of and by our hobby. It may be easy to say, but hindsight has shown the dreams of youth to be true. After all, it is not a question now of "Is there life elswhere in the Universe?", it is more a case of where and how much.
The war itself gave tremendous impetous to the growing electronics industry and, via the Government surplus stores, the hobby benefited accordingly. Here, in fact, electronics began to emerge as something applicable outside mere wireless. Slowly it produced applications in medi-
cine, industry, the cinema, the theatre and the home. Examples abound.
The most successful valve amplifier ever is undoubtedly the Williamson, designed by the man of the same name-an amateur/ professional. The equipment was largely amateur-proved before commercial adoption. The same can be said of the Dinsdale solidstate equipment and the LindsayHood class A equipment. All these are audio equipments and represent only a tiny part of electronics as a hobby. You can't ask much more of any hobby than that it allows you to be amongst the first to do something and that at the same time you enjoy the doing.
The person coming to electronics for the first time nowadays has far more scope in real terms than was available years ago. Thus it seems difficult to me to see how anyone cannot be interested.

ABBREVIATIONS

The following is a list of abbreviations used in the text of articles and in components lists. Only the direct meaning of the abbreviations is given, no attempt has been made to describe the meaning of the words in full. For further information and full descriptions readers should follow the Teach-In series.

a.c.	alternating current
a.f.	audio frequency
a.f.c.	automatic frequency control
a.g.c.	automatic gain control
a.m.	amplitude modulation
BA	British Association (nut and bolt sizes)
cm	centimetre
d.c.	direct current
d.p.d.t.	double-pole double-throw
elect.	electrolytic
e.h.t.	extra high tension
e.m.f.	electromotive force
f.e.t.	field effect transistor
f.s.d.	full scale deflection
f.m.	frequency modulation
ft.	feet
g.	gram
h.t.	high tension
i.c.	integrated circuit
in.	inch
l.d.r.	light dependent resistor
lin.	linear
log.	logarithmic

I.t.	low tension
m	metre (measurement of length)
mm	millimetre
$\mathrm{m} . \mathrm{w}$.	medium wave
npn	$\left.\begin{array}{l}\text { transistor structure } \\ \text { pnp }\end{array}\right\}$
oz	(two types) p.i.v.
ounces (avoirdupois)	
p.eak inverse voltage	
r.f.c.	polyvinyl chloride
radio frequency	
r.m.s.	root mean square
s.p.s.t.	single-pole single-throw
s.r.b.p.	synthetic resin bonded paper
s.w.g.	standard wire gauge
t.r.f.	tuned radio frequency
u.h.f.	ultra high frequency
u.j.t.	unijunction transistor
v.h.f.	very high frequency
$\%$	per cent
A	ampere (amp)
dB	decibel
F	Farad
H	Henry
Hz	Hertz (cycles per second)
Ω	ohm
V	volt
W	watt
p	pico $(\div 1,000,000,000,000)$
μ	micro $(\div 1,000,000)$
m	milli $(\div 1,000)$
k	kilo $(\times 1,000)$
M	Mega $(\times 1,000,000)$

0NE or two readers have made enquiries as to substitute components that can be used in our circuits. There are some points concerning substitutes that will probably be useful: first resistors. In general we use ± 10 per cent, 1_{4} watt carbon types; ± 10 per cent is now a more common tolerance than ± 20 per cent and this is often the reason for quoting the lower figure. If you wish to use ± 5 per cent (or better) types by all means do so. A similar point can be made with wattages, 1_{4} watt types are common but you can use 1_{2} watt, 1 watt or even larger types provided they will fit on the component board. Never use a lower wattage type than that specified.

Capacitors

Capacitors are more difficult to lay down rules about, electrolytic types often have tolerances of -10 per cent to +100 per cent or -10 per cent to +50 per cent so you can see that substitution by a similar value to that which we quote should not unduly affect the circuit e.g. for a $25 \mu \mathrm{~F}$ capacitor having a -10 per cent to +50 per cent tolerance its value could be anything between $22 \cdot 5 \mu \mathrm{~F}$ and $37 \cdot 5 \mu \mathrm{~F}$ so you could probably use values between $20 \mu \mathrm{~F}$ and $40 \mu \mathrm{~F}$ without seriously affecting operation of the circuit. Voltage of electrolytics is more important and you should not use types having a lower voltage rating than that given-higher ratings may be used but it is a good idea to stay within four
times the specified voltage e.g. for a 12 V electrolytic you could use capacitors having working voltages from 12 V to about 50 V .

With most other types of capacitor we do not state a tolerance or working voltage and often no specific type. In these cases the general rule is buy the cheapest available and do not worry about working voltage unless we state it. Incidentally condenser is the old term for capacitor-motor mechanics and some "behind the times" firms still use condenser, don't be put off by it.

Auto Alert

The G.P.O. type relays used in the Auto Alert may be expensive if new ones are purchased, there are plenty of shops selling second hand ones in good condition for about 50 p and this could save as much as $£ 2$ when buying both. It is important that each relay only has one set of normally closed contacts, if the one you buy has more, undo the mounting screws and remove the unwanted contacts. You must make sure that the coils on the relays are 2000 ohms, there are other values.
If a dash mounted push button is used remember that it must be a push to changeover and release to restore type; there are various types available from the larger suppliers. The micro-switch used with the footpedal is of a similar operational type-this is standard for most micro-switches so buy a cheap one, the current rating is not important.

Radio Control Monitor

"Powerless", pocketable and very useful, the Radio Control Monitor is also easy to build. Variable capacitors may vary slightly (sorry about that) but most types will be satisfactory. Any trouble with the tube can be overcome by a good look at all the catalogues you bought.

It is possible to make up the tube with paper and varnish, wrapped around suitable formers but it may be a bit messy.

Rain Warning Alarm

The loudspeaker used in the Rain Warning Alarm is not critical either in size or impedance. The 8 ohm impedance, 2 inch diameter speaker specified could be slightly increased in size and still fit inside the case described. However,
as stated in the text, any small 3 to 15 ohm speaker could be used if these are more easy to obrain. The power rating of this speaker should be between 50 mW and 1 W .
As stated in the text the Veroboard sensor should be made from $0 \cdot 1$ inch matrix. If you have some $0 \cdot 15$ inch matrix board to hand, this could be used but the sensitivity of the alarm will suffer.

Waa Waa Pedal

The inductor will probably be the most difficult part to obtain for the Waa Waa Pedal. The Ferrox cube pot core is available from some of the larger suppliers and may also be in local shops. If you buy this you will have to take it apart (quite a simple process) and wind the 500 odd turns on the bobbin inside. Although this takes some time it is a simple process. However, we have seen some inductors of about 10 millihenries ($8-12 \mathrm{mH}$ will suffice) advertised in the catalogues. These are wound on ferrox cores similar to that specified and they are probably cheaper than buying the cube and the wire and winding your own.

Meccano parts for the gears and pedal linkage are available from most toy and model shops.

Cir-Kit, the stick down wiring, that is used on the Waa Waa component board is available from most of the component shops. The ${ }^{1}{ }_{16}$ inch wide type should be used as this fits between the holes on the perforated board.

New Products

Very little new products information has found its way into the office this month, in fact the only worthwhile new product for amateurs is a 12 V 35 W soldering iron shown below with its bayonet fitting metal transit cover.

The iron is fitted with 12 ft of lead and 25 amp battery clips to enable easy connection to a car battery. Just the job for soldering in the car projects that we give designs for, such as the Auto Alert in this issue. The heat shroud enables the iron to be packed away immediately after use. Manufactured by Solderstat Limited the "Motorist Pack" costs £2-87.

28 watts, r.m.s. 40 Hz to $40 \mathrm{kHz} \div 3 \mathrm{~dB}$

Viscount III Audio Suite complete

There are two stereo amplifiers-the R100 for ceramic cartridges, the R1OI for magnetic and ceramic. Both incorporate FETs (FIELD EFFECT TRANSISTORS), just like top-priced units. FETs give you more of the signal you want, and almost none of the background hiss. you don't. Both units have a jack socket to plug in headphones and there's a separate output for tape recorder. Filters (an unusual feature in this price range) and tone controls give a wide range of bass and treble adjustment which compensate for input deficiencies and domestic acoustic conditions.

PRICES SYSTEM
Viscount 111 R101 amplifier $\quad £ 22 \cdot 00+90$ p p\&p $2 \times$ Duo Type II speakers, $\quad £ 14 \cdot 00+£ 2 \mathrm{p} \& \mathrm{p}$ Garrard SP25 Mk. III with MAG.
cart ridge plinth and cover $\frac{£ 23 \cdot 00}{} \frac{£ 1 \cdot 50}{\text { p\& }}$
Total
$£ 59.00$
Available complete for only $\mathbf{E 5 2} \cdot 00+\mathbf{6 3} \cdot \mathbf{5 0}$
SYSTEM 2

Viscount RIOI amplifier $2 \times$ Dio Type III speakers Garrard SP25 Mk. Ill with cartridge, plinith and cover	122.0 C32. MAG. $£ 23.00$
Total	$677 \cdot 00$

Available complete for $\mathbf{~} 69+\varepsilon 4 \mathrm{p} \& \mathrm{p}$
SYSTEM 3
Viscount III Amplifier R100 £17.00+90p p\&p $2 \times$ Duo Type II speakers, pair $£ 14 \cdot 00+£ 2$ p\&p Garrard SP25 Mk. III with CER. diamond cartridge, plinth and cover $£ 21 \cdot 00+£ 1 \cdot 50$ Total $\overline{\mathrm{E52.00}} \mathrm{p} \& \mathrm{p}$
Available complete for only $\mathbf{£ 4 9} \cdot 00+\mathbf{6 3} \cdot \mathbf{5 0}$
p\&

SPEAKERS Duo Type II
Size approx $17^{\prime \prime} \times 10^{\frac{2}{4}} \times \times 6 \frac{t^{\prime \prime}}{4}$. Drive unit $13^{\prime \prime} \times 8^{\prime \prime}$ with parasitic tweeter. Max. power 10 watts. 3 ohms. Simulated Teak cabinet. £14 pair $+£ 2$ p\&p.
Duo Type III Size approx $23 \frac{1^{\prime \prime}}{} \times 11 \frac{1^{\prime \prime}}{} \times 9 \frac{1^{\prime \prime}}{2}$. Drive unit $13 \frac{1^{\prime \prime}}{2} \times 8 \pm^{\prime \prime}$ with H.F. speaker. Max. power 20 watts at 3 ohms. Freq. range 20 Hz to 20 kHz . Teak veneer cabinet. $£ 32$ pair $+£ 3$ p\&p.

SPECIFICATION RIOI

14 watts per channel into 3 to 4 ohms. Total distortion @ 10 W @ $1 \mathrm{kHz} 0.1 \%$.P.U.I (for ceramic cartridges) 150 mV into 3 Meg. P.U. 2 (for magnetic cartridges) 4 mV @ 1 kHz into 47K. equalised within $\pm 1 \mathrm{~dB}$ R.1.A.A. Radio 150 mV into 220K. (Sensitivities given at full power). Tape out facilities; headphone socket, power out 250 mW per channel. Tone controls and filter characteristics. Bass: +12 dB to $-17 \mathrm{~dB} @ 60 \mathrm{~Hz}$. Bass filter: 6 dB per octave cut. Treble control: treble +12 dB co-12dB@ 15 kHz . Treble filcer: 12 dB per octave. Signal to noise ratia: (all controls at max) RIOI-P.U.I and radio-65dB. P.U.2. -58 dB . Rl00 same as R101 but P. $\cup .2$ (for crystal cartridges) 450 mV into 3 Meg. Cross talk better than -35 dB on all inputs. Overload characteristics better than 26 dB on all inputs. Size approx $13 \frac{7}{2 "}^{\prime \prime} \times 9^{\prime \prime} \times 3 \frac{3^{\prime \prime}}{}$.

techincal training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the Industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the speclalized training so essential to success. ICS have helped thousands of ambltious men to move up into higher paid jobs-they can help you tool Why not fill in the coupon below and find out how?

Many diploma and examination courses avallable, Including expert coaching for:
C. \& G. Telecommunication Techns. Certs.

Radlo Amateurs' Examination
General Radiocommunications Certificate.
C. \& G, Radio Servicing Theory.

General Certificate of Education, etc.
Now available, Colour T.V. Servicing
Examination Students coached until successful
NEW
SELF-BUILD RADIO COURSES

Learn as you bulld. You can learn both the theory and practice of valve and transistor clrcuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, all under expert tultion. Transistor Portable avaliable as separate course.

POST THIS COUPON TODAY

for full details of ICS courses In Radlo, T.V. and Electrónics

INTERNATIONAL

 CORRESPONDENCE SCHOOLSDept. CA26, Intertext House, Stewarts Road, London, SW8 4UI
Please send me the ICS prospectus-free and without obllgation.
(state Subject or Exam.).
NAME.
. AGE............
(Block Capitals Please)
ADDRESS

Member of the ABCC Accredited by the CACC

SONY - LEAK • SIMCLAIR • TELETON • ARMSTROMG THORENS • PHILIPS • K.E.F. • TEAC • ROGERS PIONEER

SPECIAL OFFER

Garrard SP25 Mk. 11 Goldring G800H Teak plinth and tinted cover. Please add $\mathrm{Cl} \cdot 25$ for post and packing.

TURNTABLES

All prices correct at time of going to press. charge.

Dept.E.E. 4174 Pentonville Road, London, M1. Telephone 01-278 1769 Or: 4 High View Parade, Redbridge Lane East, Woodford Avenue, Ilford, Essex. Tel: 01-5501086.

Open Monday to Saturday 9.30 a .m. 10

6 p.m. LATE NIGMT FRIDAY 7 p.m. MAIL ORDERS: Order with confidence. Sena Postal Order. Cheque. Mail. CALLERS: Please note that cheques can only be accepted rogetner Mail. CALLERS: Please note that cheq
with cheque cards (not Barclay Card).

2 minutes from KING'S CROSS. EUSTON \& ST. PANCRAS
on main road leading to the East and West Country

Projects

Congratulations (if not too late) on your new magazine Everyday Electronics. I never thought this magazine would interest the "whole family" and now we look forward to the next edition to arrive.

My reason for writing is to ask if you intend to print in future editions any projects like intercoms? My three children are always asking me to install an intercom unit in their three bedrooms. Will this be a future project? If not would you be so kind as to advise me where to obtain the necessary diagrams etc.

Peter Pleydell
Coventry.
I am writing to you on behalf of my colleagues and myself to ask if you have any circuit diagrams concerning high power amplifiers suitable for electric guitars. I would be most grateful if you could send me a circuit diagram for an amplifier of about 100 watts. I have made the $F u z z$ Box you described in issue 2 of Everyday Electronics. I found it most enjoyable and interesting to make and results were very pleasing.

It think that many people would enjoy making a treasure locator and I suggest that this would be a very interesting constructional project for a future edition.

Philip Crossland, Derek White Yorkshire.

Unfortunately we cannot supply circuit diagrams or designs other than those published. The 100 watt amplifier is rather too complicated to form an E.E. project. However the other suggestionsthe intercom and treasure locator will almost certainly be dealt with in future issues.

Binders

May I make a suggestion? Offer self binders indexed volume by volume attractively produced and gold titled to grace a modern library shelf to hold your issues as they appear and keep them in good clean reference order.

Price today? Havent a clue; perhaps $£ 1 \cdot 25$ to $£ 1 \cdot 50$ each, the cheaper the selling price that can be maintained, the better.
L. F. Tearry Kent.

We have already thought of making binders available and when we know what they will look like and how much they will cost, we will publish a notice giving full details-so watch the next few issues.

Clear Fuzz

First, congratulations to you and your staff on a first class magazine. I am so pleased with it that I shall soon be placing a subscription order to ensure that I don't miss an issue.
Secondly, with reference to your Fuzz Box project; I am a keen follower of any electronic music developments so I decided to build this project for experimentation purposes. I have never used Veroboard before, but I have managed to get the entire circuit onto the piece provided in the No. 1 edition. An even bigger surprise was the fact that it worked first time. In fact this is the first time this has ever happened to a project I have built.
The unit is now in use by a professional pop group, one of who is a friend of mine, and has proved excentionally reliable even under overload. As suggested I included the bypass footswitch to switch the effect in and out.
I, however, take none of the credit for this as it is due to you for a well laid out, easy-to-understand way of going about the various projects.

C. A. Bradberry
 West Dulwich.

Although you are well satisfied with your Fuzz Box some readers have had problems. With the circuit as published there is a danaer of damaaing transistor TR2. To avoid this a 10 kilohm resistor should be placed between the potentiometer VR1 and the positive line. Also, if a footswitch is fitted, the unit should be made to turn of when the input and output are shorted together.

Reversed Sentinel

May I take this opportunity to tell you that I look like being an ardent fan of Everyday Electronics, for a long time to come. Having had, for a long time, the urge to "have a go" at something in the electronics field, but always being beaten due to the lack of knowledge on the subject, I was delighted when your magazine came out. It looked at last as if even 1 was going to be able to tackle something with some hope of success, and after the clear concise way you are presenting the projects, 1 had every confidence this would be the case.
But alas, no. I have just completed the Home Sentinel and let me say right away-but the wrong way round.
With light falling on the cell face the relay is pulled in, when the light is interrupted, the relay clicks out. Following the instructions in the article, with light on the cell face, I backed off the variable resistor until the relay clicked out, but when the light is cut off to the cell, the relay will not pull in, and no amount of adjustment will make it function as it was intended to. I must say, even in its present state, I am highly delighted to think I have been able to make it, and to have it function at all.
Could you please suggest what could have gone wrong with it. I am afraid that if it will involve the use of test equipment, I will have to be content with it.
A suggestion I would like to make, that 1 am sure a lot of other readers in the same position as myself will endorse, would be the inclusion in the magazine of a readers "Questions and Answers" section. In this way, someone always asks the question that has been bugging everyone else, and then they all have the answer

Another suggestion is that once a month is too long to wait for the next issue, please let us have an issue once a week, or at worst. once a fortnight.

If you could spare the time to answer my query, I would be extremely grateful.

D. Hill Leeds.

The contacts on your relay are obviously normally open typesthe use of normally closed contacts would solve the problem. If the relay you have does not have normally closed contacts then reverse the positions of PCCl and R1 and all will be well.

Once a month may well be too long for some readers but we often find it too short a period in the editorial offices-one reason why some readers are still waiting for replies to their letters.

YatES ELIGTRONIGS
 (FLITWICK) LTD

RESISTORS

W iskra high stability carbon film-very low noise-capless construction. W Mullard CR25 carbon film-very small body size $7.5 \times 2.5 \mathrm{~mm}$. 4 W Erie wire wound. +W 2% Electrosil TR5

OEPT. E.E.
ELSTOW STORAGE DEPOT, KEMPSTON HARDWICK, BEDFORD.
C.W.O. PLEASE. POST AND PACKING, Catalogue which contains data sheets for most of the componencs listed will be sene free on request stamp appreciated.
10% DISCOUNT TO ALL CALLERS ON SATURDAYS

MULLARD POLYESTER CAPACITORS C296 SERIES

400V: $0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}, 2 \mathrm{t} \mathrm{p}, 0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}$ $0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 3 \mathrm{p} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 4$ p. $0.15 \mu \mathrm{~F}, 6 \mathrm{p} .0 .22 \mu \mathrm{~F}, 73 \mathrm{p}$ $0.33 \mu \mathrm{~F}$. $11 \mathrm{D} .0 .47 \mu \mathrm{~F}$. 13 p .
$160 \mathrm{~V}: 0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 3 \mathrm{p}, 0.1 \mu \mathrm{~F}$ 3 $\frac{1}{2} \mathrm{p}, 0.15 \mu \mathrm{~F}$

MULLARD POV ESTER CAPAC F 0 O
$\begin{array}{lll}250 \mathrm{~V} \text { P.C. mounsing: } & 0.01 \mu F, 0.015 \mu F, 0.022 \mu \mathrm{~F}, & { }^{3} \mathrm{p}, 0.033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}\end{array}$ $3+\mathrm{p} .0 \cdot 1 \mu \mathrm{~F}, 4 p \cdot 0.15 \mu \mathrm{~F}, 0 \cdot 22 \mu \mathrm{~F}, 5 \mathrm{p} \cdot 0.33 \mu \mathrm{~F}, 64 \mathrm{p} \cdot 0.47 \mu \mathrm{~F}, 8+\mathrm{p} .0 .68 \mu \mathrm{~F}, 11 \mathrm{p} .1 .0 \mu \mathrm{~F}, 13 \mathrm{p}$
$1.5 \mu \mathrm{~F}, 20 \mathrm{p} \cdot 2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$. $1 \cdot 5 \mu \mathrm{~F}, 20 \mathrm{p} \cdot 2 \cdot 2 \mu \mathrm{~F}, 24 \mathrm{p}$

MYLAR FILM CAPACITORS IOOV, CERAMICDISCCAPACITORS $0.001 \mu F_{0} 0.002 \mu \mathrm{~F}, 0.005 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 0.02 \mu \mathrm{~F}$ $2 \frac{1}{2}$ p. $0.04 \mu \mathrm{~F}, 0.05 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 3 \frac{1}{2} p$.
DEVELOPMENT PACK
0.5 watt 5% Iskra resistors 5 off each value 4.7Ω se $\mathrm{IM} \Omega$

12 pack 325 resistors E2.40, E24 pack 650 resistors $44 \cdot 70$
POTENTIOMETERS
Carbon track $5 \mathrm{k} \Omega$ to $2 M \Omega$, log or linear $(\log +W$, lin +W$)$,
Single, 12p. Dual gang (stereo), 40p. Single D.P. switch 24p.
SKELETON PRESET POTENTIOMETERS
Linear: $100,250,500 \Omega$ and decades $205 \mathrm{M} \Omega$. Herizontal or vertical P.C. mounting (0.1 matrix).

SEMICONDUCTORS							
AC126	12p	BFY52	22p	OC81	$12 p$	2N3055	72p
AC127	12p	BSY56	30p	-C82	12p	2N3702	15p
AC128	12p	B5X21	25p	ORP12	48p	2 N 3703	14p
ADI40	40p	BY124	$7 \frac{1}{2}$	IN400\|	$7 \frac{1}{1} p$	2N3704	1712p
AFIIS	20p	BYZ10	20p	IN 4002	10 p	2N3705	15p
AFI 17	20p	$8 \mathrm{YZ13}$	20p	IN4003	$11 p$	2N3706	12p
BC 107	10p	OA85	7 p	IN4004	12p	2N3707	181p
BC108	10p	OA91	5p	IN4005	$13 p$	2N3708	10p
BC109	10p	OA202	$7 p$	IN4006	$13 p$	2N3709	$11 p$
BFY50	22p	$0 \mathrm{C71}$	12p	iN4007	13p	2N3710	12p
BFY51	22p	OC72	12p	2N2926	$11 p$	2N3711	14p
IENER DIODES $400 \mathrm{~mW} 5 \% 3 \cdot 3 \mathrm{~V}$ to $30 \mathrm{~V}, 15 \mathrm{p}$.				LINEAR IC's(D.I.L.)			
				709a	50p	741	$50 p$
				710 a	50p	748	50p

BRUSHED ALUMINIUM PANELS
$12 i n \times 6 i n=25 p ; 12 i n \times 2 \frac{1}{s}=10 p ;$ in $\times 2 i n=7 p$.

ELECTROLYTIC CAPACITORS-MULLARD C426 SERIES
ELECTROLYTIC CAPACITORS,MULLARD C426 SERIES \quad, $\mu \mathrm{F} / \mathrm{V}) 10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5,160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$, each $(\mu / / 4,10 / 2 \cdot 5,40 / 2 \cdot 5,80 / 2 \cdot 5 \cdot 160 / 2 \cdot 5,320 / 2 \cdot 5,500 / 2 \cdot 5,8 / 4,32 / 4,64 / 4,125 / 4,250 / 4$. $125 / 10,200 / 10,2 \cdot 5 / 16,10 / 16,20 / 16,40 / 16,80 / 16$, $125 / 16,1.6 / 25,6 \cdot 4 / 25,12 \cdot 5 / 25$, 25/25. $50 / 25,80 / 25,1 / 40,4 / 40,8 / 40,16 / 40.32 / 40,50 / 40,0 \cdot 64 / 64,2 \cdot 5 / 64,5 / 64,10 / 64$ 20/64, 32/64.

MULLARD C437 SERIES
$100 / 40,160 / 25,250 / 16.400 / 10,640 / 6 \cdot 4,800 / 4,1000 / 2 \cdot 5,9$ p. $100 / 64,160 / 40,250 / 25$, $20116,64010,1250 / 4,1000 / 6 \cdot 4,1600 / 2 \cdot 5,12 \mathrm{p}$. $160 / 64,250 / 40,400 / 2 \cdot 5,640 / 16$, $1600 / 10,2500 / 6 \cdot 4,4000 / 2 \cdot 5$, 18 p .

ELECTROLYTIC CAPACITORS Miniature P.C. mounting $(\mu \mathrm{F} / \mathrm{V})$: $10 / 12,50 / 12,100 / 12,200 / 12,5 / 25,10 / 25,25 / 25,100 / 25$.

VEROBOARD

$2 \frac{1}{2} \times 3 \frac{3}{4}$
$\begin{array}{ll}2 \frac{1}{2} \times 3 \frac{1}{2} & 24 \\ 2+5 \\ 3+34 & 24 \\ 3 & 24\end{array}$
$\begin{array}{ll}3 \frac{1}{2} \times 5 \\ 17 \times 2 \frac{1}{2} & 28 \\ 17 \times 15\end{array}$
$17 \times 3 \frac{1}{2}$
17×5 (plain)
17×5 (plain)
17×32 (plain)
17×34 (plain
$17 \times 2 \frac{1}{2}$ (plain)
$2 \frac{17}{2} \times 5$ (plain)
$2 \% \times 3$ (plain)
$2 \frac{1}{2}$ (plain)
Pin insertion tool 52p
5pot face cutter 42p
Pke. 50 pins

JACK PLUGS AND SOCKETS
Standard screened $18 \mathrm{p} \quad 2.5 \mathrm{~mm}$ insulated Standard insulated 12 p 3.5 mm insulated Stereo screened $\quad 35 \mathrm{p} \quad 3.5 \mathrm{~mm}$ screened Standard socket $15 p \quad 2.5 \mathrm{~mm}$ socket 5tereo socker $18 \mathrm{p} \quad 3.5 \mathrm{~mm}$ socket D.I.N. PLUGS AND SOCKETS 2 pin, 3 pin, 5 pin $180^{\circ}, 5$ pin $240^{\circ}, 6$ pin Plug 12p. Socket 8p 4 way screened cable 15 p/metre

BATTERY ELIMINATOR \qquad 9 V mains power supply. Same size as PP9 batcery.

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing. etching, gousing, shaping. Precision power for the enthuslast. Shockproof. Completely portable power from $4 \frac{1}{3}$ vols external bastery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 4. 50 p.p. 13 p. D. Luxe Prulessional Kit
with 17 tools 47 p.p. 23 p.

GEW PANEL METERS

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS
LOW COST QUICK DELIVERY OVER 200 RANGES IN STOCK

EW	"SEW	-	
CLEAR	PLASTIC	BAKEL	
	METERS	METERS	
	TYPE SW. 100	TYPE S-80	
	$100 \times 80 \mathrm{~mm}$.	square fronts	
	30v	${ }_{\text {¢ }}^{\text {80, }}$	
$\left.\right\|_{100} ^{500}$	$\begin{array}{lll}30 \mathrm{~V} . \mathrm{D} . \mathrm{C} . . & 28-10 \\ 300 \mathrm{~V} . \text { D.C. } & 83 \cdot 10 \\ 1 \mathrm{amp} \text { DC } & 8-10\end{array}$		退 8.80
(10)		(1)	
(1)			A.c.

"SEW" CLEAR PLASTIC METERS

$50 \mu \mathrm{~A}23-60$	150 V. D.C. 82.80
60-0-50 $\mu \mathrm{A}$ ($83 \cdot 10$	300V. D.C. 22.80
100 HA . . . 88.10	15V. A.C. . 48.80
100-0-100 A A 8.00	$300 \mathrm{~V}, \mathrm{~A} . \mathrm{C} .12 .80$
$300 \mu \mathrm{~A}$. . . 23.00	8 Meter 1 mA 82.87
$500 \mu \mathrm{~A}$. . . 22.90	VU Meter.. 83.60
$500-0-500 \mu \mathrm{~A} 22.80$	1 amp A.C. 28.80
1 mA 22.80	5.a11p. A.C. ${ }^{\text {ct }}$. 80
1-0-1mA . . 28.80	10 mmp A.C. 22.80
5 mA 22.80	20 amp . A.C. $28 \cdot 80$
$10 \mathrm{ma} . .$. . 2280	30 mmp . A.C. 2280

$50 \mu \mathrm{~A}$	$28 \cdot 10$	10V. D.C. . . 5800
50-0-50 -14	88.60	20V. D.C. . . 22×00
$100 \mu \mathrm{~A}$	12.80	50 V . D.O. . . $22-00$
100-0-100 μ	22.50	300 V. D.C. 82.00
$500 \mu \mathrm{~A}$	28.30	15V. A.C. .. $28 \cdot 10$
1 mA	82.00	300 V . A.C. $82 \cdot 10$
5 mA	12.00	8 Meter 1 mA 22-10
100ha	82-00	V U Meter . . 8 8-20
50 mA	1200	1 amp . A.C.* 28-00
100 mA	12.00	5 mmp A.C.* 82.00
500 mA	82.00	10 mmp A.C. $\times 2.00$
1 smp.	28.00	20 anp. 4.C.* 22.00
5 amp .	82-00	30 arnp. A.C.*£ 00
Type MR.65P, 3tin. \times 3tin. Fronts.		
$50 \mu \mathrm{~A}$	£3.37	10V. D.C. . . 28.20
$50-0-50 \mu A$	82.76	20V. D.C. . . 28.20
$100 \mu \mathrm{~A}$	28.75	50V. D.C. . . 22.20
100-4-100 μ	12.85	150V.D.C.. . 22.20
$200 \mu \mathrm{~A}$	28-66	300V. D.O. 22.20
$500 \mu \mathrm{~A}$	12-40	$15 \mathrm{~V}, \mathrm{~A} . \mathrm{C} . . .22 .30$
$500-0-500 \mu \mathrm{~A}$	28-20	50 V . A.C... $£ 2.30$
1 mA	22.20	150 V. A.C. 82.30
5 mA	2.20	300 V . A.C. ± 2 - 30
10 mA	12.20	500V. A.C. 88.30
50 mA	22.20	\$ Meter 1mA $52 \cdot 37$
100 mA	42.20	VU Meter . . $83-37$
500 mA	2-20	$50 \mathrm{~mA} \mathrm{A.C}. \mathrm{*29-20}$
1 amp.	£2-20	$100 \mathrm{~mA} \mathrm{A.C.*} 22.20$
5 amp .	22.20	$200 \mathrm{~mA} \mathrm{A.C}$.
10 ansp.	22.20	$500 \mathrm{~mA} \mathrm{A.C}$.
15 amp .	¢2.20	1 amp A.C.* 22.20
20 amp.	22.20	5 mmp A.C.* $22 \cdot 20$
30 amp .	28.30	10 mmp A.C. * $22 \cdot 20$
50 amp.	22.50	20 mmp A.C. *220
6V. D.C.	22.20	30 mmp A.C. *28-20

*MOVING IRON-
 ALLOTHERS MOVINGCOIL
 Please add postage

SEW EDUCATIONAL

 METERSType ED.107. Size $90 \mathrm{~mm} \times 108 \mathrm{~mm}$ A new range of h ig quality moving col instruments Ideal lor school experi ments and other 3° mirror scale. The $3^{\prime \prime}$ mirror scale. The
 in the following ranges:

$50 \mu \mathrm{~A}$	55.00	20 V d.c. . . . 44
$100 \mu A$	24.65	50 V d.c. 4440
1 mA	84.40	300 V d.c. . . . 54.10
50-0-50 $\mu \mathrm{A}$	8.65	
1-0.1mA.	84.40	Dual range
1Ad.c.	£4.40	$500 \mathrm{~mA} / 5 \mathrm{~A}$ d.c. $24 \cdot 65$
5A d.e.	84.40	5V/50V d.c. . . 4485
10 V d.c.	4	

EDGWISE METERS

Type PE.70. 3 17/38in. $\times 1$ 15/321n.

$50 \mu \mathrm{~A}23 \cdot 10$	50
$50-0-50 \mu \mathrm{~A}$ E3.00	1 mA
$100 \mu \mathrm{~A}$ … 53.00	300
$100-0-100 \mu \mathrm{~A} £ 2.80$	v0

Send for illustraled brochure on SEW Panel Metera discounta for quantities

MULTIMETERS for GVERY purposel

ROUND SCALE TYPE PENCIL TESTE MODEL TS 68.

Completely portable, nimple to use pocket sized tester. Ranges $0 / 2 / 30 / 300 \mathrm{~V}$
and DC at 2,000 Resistance 0-20K ohm ONLY $\mathbf{8 1 . 9 7} \mathbf{P}$. \mathbf{P}. 13 p
MODEL TE-90 50,000
protection. $0 / 3 / 12 / 60 / 300 / 600 /$
1,200 ₹. D.O. 0/6/30/120/300/
1,200 v. A.C. $.03 / 6 / 60 / 600 \mathrm{~mA}$.
D.C. $16 \mathrm{~K} / 160 \mathrm{~K} / 1.6 / 16 \mathrm{MEGA}$ -20 to +63 db . $£ 7.60$ P. \& P. 16 p.

SEYWOOD 8W-500 $50 \mathrm{~K} \Omega /$ Volt. Mirror acale DC Volts DC Current 20uA/6 $10 \mathrm{~K} / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10$ $10 \mathrm{~K} / 100 \mathrm{~K} / 1 \mathrm{Meg} / 10$ Meg. Decibelif -20 P. 1 P, 16 p

370 WTR MULTI-
Fentures A.C. curren
ranges. 20,000 o.p.v.
$0 / 5 / 2 \cdot 5 / 10 / 50 / 250 / 500$
1000 y $0 / 2 \cdot 5 / 10 / 50 / 250$
$0 / 2 \cdot 5 / 10 / 50 / 250 / 500 /$ 0/50uA/1/10/100MA/1/10
$0 / 100 \mathrm{MA} / 1 / 10 \mathrm{Amp}$ AC
$0 / 5 \mathrm{~K} / 50 \mathrm{~K} / 500 \mathrm{~K} / 5 \mathrm{MEQ}$ BOMEG.
215, P. \& P. 25p
FTC-401 TRANSISTOR TESTER Full capabllitiee for tneauring A, B and ICO NPN or PNP. Equally adaptable for checking diodes. supplled com plete with instructions, 8.97 P . P

AG76 AUDIO GENERATOR
Portable, malna overated sine wave 20 to 200,000 Hz.
Bqu
Equare wave 20 to 30,000
Output voltage Sine 17V
P/P. Bquare 21 V P/P
17.60 1 P

TE-200 AF SIGNAL GENERATOR

 Accurate wile range sig $\begin{array}{ll}\text { nal } \\ 120 & \mathrm{Kcnerator} \\ \mathrm{Kc} \\ \mathrm{s} 00 \\ \mathrm{Mc} / \mathrm{s} & \text { on }\end{array}$ 6 bands. Directly calibrated Variable R.F attenuator, audio output. Xtal socket for callbre: tion. $220 / 240 \mathrm{~V}$. A.C. Brand new with instructions. 815 . Carr. 371 p.
size $140 \times 215 \times 170$ slze
mm.

BELCO DA-20 SOLID STATE DECADE AUDIO OSCILLATOR

New high quality port-
able instrument. glae able instrument. 8 gine
1 Hz to 100 KHz . 1 Hz to 100 KHz .
Square 20 Hz to 20 KHz . Square 20 Hz to 20 KHz .
Output max +10 dB $\begin{array}{ll}\text { Outpat max } \\ \text { (} 10 & \mathrm{~K} \text { ohms). Opers } \\ \text { on }\end{array}$ Size 215 mm 150 mm 120 mm .
240° Wide Angle 1 ma Meters MW1-6 60 mm square $\quad 23-97$) P. \& P. extra

TRANSISTORISED L.C.R. A.

A new portable cellent range and
chating ex accuracy at low cost. Ranges: R. 6 Rangen $\pm 1 \%$ HRNRYS 6 Ranges $2=\% 0.10 \mathrm{pF} \pm 1110 \mathrm{mFd}$. 6 Ranges $\pm 2 \%$. TURNS RATIO $1: 1 / 1000$ 1:11100. 6 Rangen $\pm 1 \%$. Bridge voltage at 1,000 cps. Operated from 9 volts. $100 \mu \mathrm{~A}$. Heter mizicasion Atractive P. \& P. 25 p

UM. 049 MULTIMETER 20.000 O.P.V. overload protection $0 / 3 / 30 / 60 / 300 / 600 / 8000$ v DC $0 / 6 / 60 / 120 / 600 / 1200$ V AC. 0/60uA/12/300 MA. DC. $0 / 60 \mathrm{~K} / 6 \mathrm{MEG} .-20+83$ th
$\mathrm{EA} \cdot 30$, P. P .15 p .
 METES-100TR•MULTJTESTER TOODOOSTOR MIRROR SCALE OVER. LOAD PROTECTION $0 / \cdot 12-6 / 3 / 12 / 30 / 120 / 800$ 0/6/30/120/600 V. AC $0 / 12 / 600 \mathrm{nA} / 12 / 300 \mathrm{MA/IL}$ $0 / 10 \mathrm{~K} / 1 \mathrm{MEO} / 1 \mathrm{~m} \mathrm{MER}$
$-2010+50 \mathrm{~d}$
Transintor tester meanuren Alpba, beta allol Ico. Complete with batteries, instructions: TMK KODEL TW-50K 46 ranges, mirror meste, $50 \mathrm{~K} / \mathrm{Vol}$ D.C. 5 K JVolt A.C. D.C.: $25,50,125,250,500,1000 \mathrm{~V}$. A.C. Volta: $1.5,3,5,10,25$. , 125, $25,50 \mathrm{uA}, 2 \cdot 6,5,25$ $50,250,500 \mathrm{~mA}, 5,10 \mathrm{amp}$ Reslitance: $10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{MEG}$, 10 MEG Ω. Declbels: -20 to UULTI-METER
HTLOOBA MULTI-METER Features A.C. current
ranges. 100,000
$0 . p . v$. Mirror Bcal
protectlon.
$0 / 5 / 2 \cdot 5 / 10 / 50 / 250 / 500 /$ $0 / 2 \cdot 5 / 10 / 50 / 250 / 1000 \mathrm{~V}$

$0 / 10 / 250 \mathrm{uA} / 2 \cdot 5 / 25 / 250$

10 Amp AC . $0 / 20 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{MEO} / 20 \mathrm{MEC}$
$20+62 \mathrm{db} .12 \cdot 50$, P. \& P. 25 p.
RUSSIAN 22 RANGE MULTIMETER Model U437 10,000 o.p.v. Atrument inanutactured in U.8.8.R. to the highent standards, Ranges: $2 \cdot 5 / 10 /$
$50 / 250 / 500 / 1000 \mathrm{v}$ D. $2-5 /$ $50 / 250 / 500 / 1000 \mathrm{v}$ D.C. $2-5 /$
$10 / 50 / 250 / 500 / 100 \mathrm{v} / \mathrm{AC}$. DC Curreat. 100 w A/1/10/ $100 \mathrm{~mA} / 1 \mathrm{~A}$. Resistance 300 ohms/S/30/300K/3M Ω. Complete with batterien.
test leads, instructiona and
sturdy steel carrying case.
OUR PRICE \&5. 87 P. \& P.

FONETWELL
DIGITAL
VOLTMETER
VOLTMETER
VT. 100
Can be panel or
Basic meter mea.
sures 1 vole DC

but can be used to measure a wide rumge ol AO and DC volt, current and ohme with optional plug in carifs. Speclficstion: Accuracy: $\pm 02, \pm 1$ digle. Reaolution: 1 mV . Number of digits: 3 plus fourth overzangr digit. Overrange: 100% (up to 1-999). Input Impedance: 1000 Meg ohm. Meanuring cycle 1 per mecond. Adjustment: Automatic zeroIng, full wcale adjuatment againat an internal reicrence volage. Orerioad: to 100\%. D.C. Input: Fully floating (3 polen). Input power $51 \mathrm{~m} . \mathrm{x} 213 / 16 \mathrm{~m} . \mathrm{x} 83 / 16 \mathrm{im}$. AVAILABLE TEED AT APPROX. HALF PRICE.
489.97. Carr. 50p.
G. W. SMITH
\& CO (RADIO) LTD
Also see next two page

SEMI-CDNDUCTORE/VALVES

ALL DEVICES BRANDNEWAND FULLY GUARANTEED

RECORD DECKS

寓s.R.

Mini Monot 24.97 Clu9t 587 MP60
10 810 £11 29.65

234.47 MP60 TPD1 117.65 MP60 TPD2 215.85 10 T.P.D. 1 ego.97 10 T.P.D.I. 218.76 | H.T.70 |
| :--- |
| 18.85 |
| 18.55 | H.T. 70 Package

Lse. 50 THORENS TD125 25885 TD125AB EQ4.25 TD150AII $\quad 34.50$ TD150ABII 234.65 TX11 28.77
 \dagger Mono 8tereo Cartridfe Cartiage 50 pestra any nodel BECORD DECK PACKAGES
Decks supplied
ready wired in
plinth and cover
Atted with cart. Idge. Gerrard
2025 T/C with Bonotone 9TAHCD 13.95 Garrard EP25 Sonotone 9TABCD Garrard SP25III Goldring O800 iarrard AP76 Goldring G800 Garrard Spe25III/Ehure M75 Carrard AP7 A/ghure M75-6 She mp6 A udia rechnics AT. oldring GLT5 Goldring G800 Goldring GL75 Goldring G800E
 THANSTORISED FM TUNER

 13.95 | e15.95 |
| :--- |
| 18.95 | 280.95

19.95 | 9.95 |
| :--- |
| 0.95 |

ORIOT AM/PM STEREO TUNER AMPLI GPER WITE MATOHIHG PAIR OF SPEAKER SYSTEMS. Output 4 wiste per MPY . MPX. Cer/XTAL Input. Total Liat 280.25 Alno avallable with Garrard $2025 \mathrm{~T} / \mathrm{C}$ Record Changer, Plinth, cover and atereo cartridge. Ready wired $£ 86 \cdot 50$. Carr. $£ 1 \cdot 00$.
LAPAFETTE LA. 324 8TEREO
AMPLIFIER

 Matt E.M.8. Tape Inputs. Ercellent per formanca Compares with ampliflers up OUR PHICE £24. Carr. s7ip.

TAPE CASSETTES

Top quallty in plastic library bozen
$\mathrm{C} 90 \quad 60 \mathrm{~min} 97 \mathrm{pp}, 8$ for 81.05 $060 \quad 90 \mathrm{~min}$ 60p, 3 for $21-65$ Cassette Head Cleaner s6p. Pout Extre

TE-40 HIGH SENSITIVITY
 A.C. VOLTMETER 10 meg. input 10 ranges: $01 / \cdot 003 / \cdot 1 / \cdot 3 / 1 / 3 / 10 / 30 / 100 /$
 Supplied brand new complete With leadia sind inntructlons. Operation
Carr. 25 p .
2 I Z30 amplitier, stereo 60 pre-anip, PZ5 power supply, 216.75 Cart. 37p, Or with inplifier, stereo 60 pre-amp, PZ8 power supply, 280.25 . Carr, 37 ip .
Tranaformer for PZ8. $£ 2.971$ extrn.
Add to any of the above 84.871 for sctive filter unlt and 818-90 for pair of Q1s apeakers. Project 60 FM Tuner 820.25 . Cerr, 371 p . All other Rinclair products in atock. 53150 Amp 22.76 Carr. 37tp.i 3000 Amp Carr. 37 Ip IC10/IC12 22.50

NEW PROJFCT 605 - $280 \cdot 97$, Carr. 37p.

LATEST CATALOGUE
Our naw sth edition gives full detalls of a
comprehensive range of tiI-FI EQUIPMENT, COMPONENT8, TEST EQUIPMENT and COMMUNICATIONA EQUIP-

PRS-2 PEOTO ELECTRIC RELAY Inexpenalve warning or countlig warning condisting of an enciter and relay unit. Reley unit has Yartable sen sitlvity control and toveble infra rea Alter Enciter andt has removable infra red filter counters. etc. 240 V AC. Complete wilt cables and Instructions. 89.97 P . \& $\mathbf{P}, 25 \mathrm{p}$. HOMER INTERCOMS

Ideal for hotme, office, atores, fac-
tories, etc. Bupolied complete with bat teries, cable and free instructions.
28 8tation 28.97, P. \& P. 15p.
1 8tation 25.25, P. \& P. 15p.
$\frac{\text { EMI LOUDSPEAKERS }}{}$

EMI LOUDSPEAKERS
Model 350.13° I 8° with single tweeter/crossover.
$20-20,000 \mathrm{~Hz}$. 15 wati $20-20,000 \mathrm{~Hz}$. 15 watt
RMF. Avallable 8 or 15 RMA. Avalable 8 or 15
obms. 87.50 each. P. \& Phins. 37
Model 450 . $13^{\circ} \times 8^{\circ}$ wlth twin tweeters/crossover.
$55-13,000 \mathrm{~Hz} g$ watt RMS. Avallable of or 15 ohms. es - 80 each. P. \& P. 26p.

TE 1018 DE-LDXE MONO EIOR IMPE DARCK HEADSET Benpitive, goft earpad adjustable headband. Magnetic, Iropedance 2,600 ohms.

 5 microphone in:
puts each with individusi controls enabling

H12 MULTMETER
Extremely sturdy inatrunuent for genera $0 / 3 / 1.5 / 7.5 / 30 / 60 / 750 / \mathbf{0} 0$ $0 / 3 / 1 \cdot 5 / 7 \cdot 5 / 30 / 60 / 150 / 300 /$
$800 / 800$ VDC and 75 m $0 / 3 / 1.5 / 7.5 / 30 / 60 / 150 / 300$ $0 /-3 / 1 \cdot 6 / 7 \cdot 5 / 30 / 60 / 150 / 300$
$600 / 900 \mathrm{VAC}$ 600/900VAC.
$0 / 300 \mathrm{u} / 1-5 /$ $0 / 300 \mathrm{uA} / 1 \cdot 5 / 6 / 50 / 60 / 150 /$
600MA/1.5/6 АMP 0/1.8/6/15/60/150/600MA $1.5 / 6$ AMP. AC 0/200 Д/3K/30K Accuracy.DC 1\%, AC1.5\%. Knife, edge polinter, mirror scale. Complete with sturdy metal carrying case, leado plus P. \& P. 25 p .

UR-1A SOLDD STATE COMMURICATION RECEIVER
 8. Meter, Variable BFO for gsB, Bullti-10
 $220 / 240 v . ~ A . C . ~ o r ~$
Brand new with Inatructions. \& 25 . Cart. $377^{\circ} p^{\circ}$.

LAFAYETTE HA-600 8OLD STATE
EECEIVER General coverage $\mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$. FET froat end. 2 mech. illters, produot
detector, variable B.F.O. noise limi

Areilitles. Battery operated. $9 \frac{1}{*}^{\prime}$ y $\mathrm{g}^{\circ} \mathrm{I} 3^{\circ}$. Inputs Mics: $3 \times 3 \mathrm{mV} 50 \mathrm{~K} ; 2$ I 3 mV 600 ohm . 100 mV 1 meg. Ontput 250 mV 100K.
HOSIDEN DH-02S STEREO HEADPHONES
 Wonderful value
and excellent per: and excellent per.
formance combinei. Adjuatable head. band. 8 ohm fm . pedance. 20-12,000 cpas Complete with plug. ONLY 28 87). P. 12力p.
 headphone nocketn, $6^{\circ} \times 4^{\circ} \times 2 \frac{1}{4}^{\circ}$. $88 \cdot 25$. P. \& P. 15 D . BH828 STKREO HEADSET
Outstending value. Boft earpads. adjustable head band. 8 . Comple
$20,000 \mathrm{~Hz}$. Complete with cable and atereo jack
 ad. RF Gain. 15" I
 Brand new-with inatruct lone. 245. Carr. 50p.

TO-2 PORTABLE OSCILLOSCOPE A gemeral purpose low
cont economy oscllloscope for everyday use. Y amp. Inpat tmp or Inpat imp. 2 meg $\Omega 25$ 21n. tube. $115 \times 180 \times$

thome and lesils. 27-87t. P. \& P. 20 p .
BUSSIAN C1-16 DOUBLE BEAM
5 MHz Pass Band. Separate $\mathbf{Y 1}, \mathbf{Y} 2$ ampljfiete. Callbrated triggered aweep from -a sec: to $100 \mathrm{milll} \mathrm{sec} / \mathrm{cm}$. supphed complete with sll sccessorles and

POWER RHEOSTATS

Bligh quallty ceranilc construction. Windings embedded in witreous enamel. Heary duty brush wiper. Continuous rating. Whde range
ax-stock. gingle hole fixig. fin, dia. ahafts. Bulk quantities available. 26 WATT. $10 / 28 / 50 / 100 / 250 / 800 / 1040 / 1500 / 2500$ or 5000 ohma, 72 tp. P. \& P. 7 \&р 50 WATT. $10 / 25 / 50 / 100 / 250 / 800 / 1000 / 2500$ or 5000 ohms, 11 -05 P. \& P. 7 PP.
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms, \&1-371 P. \& P. 7 Pp.
"YAMABISHI" VARIABLE VOLTAGE TRANSFORMERS
 1 Amp

280B Panel Nountin $\begin{array}{r}27-00 \\ \hline 8.05\end{array}$ ALL Mopmisge INPUT 230 VOLT OUTPUT VARIABLE 0-260 VOLTE. special diecounts for quintit

Everyday Electronics Classified Advertisements

RATES: 7p per word (minimum 12 words). Box No. 7 p . extra. Semi-display- $£ 4.50$ per single column inch. Advertisements must be prepaid and addressed to Classified Advertisement Department, "EVERYDAY ELECTRONICS," I.P.C. Magazines Ltd., Fleetway House, Farringdon Street, London EC4A 4AD.

RECEIVERS and COMPONENTS

NEW GUARANTEED DEVICES

ORDER WITH CONFIDENCE

MICROCIRCUITS

SN76013 (like IC12) £1.50; 709 35p; 741 36p; PA230 90p; PA234 84p; PA237 £1-50; SL702C 40p.

TRANSISTORS:

2N2926 Grn 8p; 2N3055 50p; BCl07B 9p BC108C 9p; BC109C 9p; BFX86 15p 1 AMP RECTIFIERS: $50 \mathrm{~V} 3 \mathrm{p} ; 100 \mathrm{~V} 4 \mathrm{p} 200 \mathrm{~V} 5 \mathrm{p} ; 400 \mathrm{~V} 6 \mathrm{p}$ BRIDGES: $50 \mathrm{~V} 30 \mathrm{p} ; 100 \mathrm{~V} 31 \mathrm{p} ; 400 \mathrm{~V} 33 \mathrm{p}$ PRINTED CIRCUIT RESIST PEN: 80p Discounts begin at 10 off.
JEF ELECTRONICS (E.E.2)
York House, 12 York Drive, Grappen hall, Warrington, WA4 2EJ. Mail Order Only. C.W.O. P' \& $P 7 p$ per order. Overseas 65p.

Money back if not satisfied

> List free on application.

DO-IT-YOURSELF... we stock a large range of audio and electronic components at very competitive prices, e.g.: Chassis speakers, cross over networks. hi-ni speaker klss (Wharfedale * Peerless), BAF sound sbsorbent, speaker erille fabrics, inductors, resistors, electrolytics (reversible and polarised), transistors, etc. Send for FREE lise. ($2 \times 3 p$ stamps for Iabric sarroles.) Mail-order ONLY. No callers please.:
 A UDIOSCAN Depl. EE2:9 a.F日NCES SCLADE, MARDEEATE, YORKS.

FOLYSTYRENE CAPACITORS 125 v Values from 150 p to $0 \cdot 015$ (No 4700ph 18p dozen, nont SD. IC'M ON PANRL8 7400 Serlea at leant $10-75 \mathrm{p}$, pont 10 p with detalla COMPUTER PANELS, 5 -BCI 10p. AMERICAN PANELS total at leant 30 translintors, frst grade componentn, details brovided s55 p , post 10 p . PANELS with $10 \times$ B8X26, 500 Meg Bificon PNP 85 p , post 5p. MIXED PANELS 8 for 81 , pont 15p, no midget panels, plenty of components, st least To tranalatorm. FERRITE ROD $7 x \neq 12 \mathrm{p}$, post 8 p each, 27 p tor B . LA2 POT CORES ex equipment, 20 p pof pmid ORP12 on panel ex equipt. 35 p poat paid. COPPER CLAD PAXOLIN single sided 13 I 111 , $80 p$ post $8 p$ each COMPUTER RELAY8 DPDT 700 ohm coll, welgh $\&$ oz almo weigh $\frac{1}{5}$ ox, carry 2 amp and 5000 ohrm coll weigh weigh 11 on. asp port pald. SMALL SYNO:RONOUS
 TROLYTICS 5,000 mitd 25 s 40 p post paid.
ASEORTED PANELS WITH RES. CAPS, DIODES. INDUCTORS.
3 lb .750 pont paid.

J.W.B. RADIO

75* HAITIELD ROAD, SALFORD B, LAKCS. MALL ORDER ONLY

SERVICE SHEETS

SERVICE SHEETS (1925-1971) for Televisions, Radios, Transistors, Tape Relevisions, Radios, Transistors, Tape return post, with free Fault-Finding Guide. Prices from 5p, Over 8,000 models available. Catalogue 13p. Please send S.A.E. with all orders/ enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex. Telephone: Bexhill 7097.

HOLIDAYS

HOLIDAY FOR BOYS. $14 / 16$ years, Summer 1972. Tuition and practical work in electronics (and tape recording), engineering (Karting), photography. 11 days in Norfolk-ci6. Write for free brochure: Inter-School Christian Fellowship. c/o 1 Hubbard Road, London SE27 9PJ.

PRINTED CIRCUITS

MAKE YOUR OWN printed circuits. Industry use etched printed circuits boards because they are the cheapest and most flexible method of mounting components. Now you can make your own. Send $£ 1 \cdot 20$ for your kit today (FREE two circuit diagrams for experimenting) to SPECIALIST ELEC menting
TRONICS,
to O. Box 39,2 Woodland TRONICS P.O. Box 39, 2 Woodland
Avenue, Brentwood, Essex.

EDUCATIONAL

TECHNICAL TRAINING in Radio, TV \& Electronics through world-famous ICS. For details of proven home-study courses write: ICS (Dept. 566), Intertext House, London, SW8 4UJ. Accredited by the CACC.
ENGINEERS-get a technical certificate. Exam and Certificate Postal Courses in all branches of Engineering, Electronics, Radio \& TV, Computers, Draughts, Building, etc. Write for helpful FREE BOOK: B.I.E.T., (Dept. H.23), Aldermaston Court, Reading RG7 4PF.

MISCELLANEOUS

UNIMIXER 4S mono/stereo mixing unit $£ 45$. Recent reviews specs. from manufacturers; Soundex Ltd., 18 Blen. heim Road, London, W4 lES. RECORD TV SOUND using our loudspeaker isolating transformer. Provides safe connection to recorder. Instructions included. $70 \mathrm{p}+10 \mathrm{p}$ P\&P. CROWBOROUGH ELECTRONICS (E.E.), Eridge Road, Crowborough, Sussex.

Beat Power Curs, 12 ins a watt Tube, ideal for Caravan. Tent, Emergency Lighting, etc. Fully Translstorised, Low Bastery Drain.
With ON/OFF Switch and 12 V Socket to With ON/OFF Switch and 12 V Socke
run other Lights or 12 V Equipment.
Unbeatable at 83.30
or in kie form $\$ 2.90$
Eosy to construct
SALOP ELECTRONICS Callers welcome 23 Wrle Cop
Shrowsbury, Shropshire Large S.A.E. for liste

EHROMASTNOE electronics 1972 CATALOG UE

10p post free
56 FORTIS GREEN ROAD, LONDON M10 3HN

FASCIA PANELS, DIALS, NAME-
PLATES etc. (single or multiples) in etched aluminium to individual specification. Hardware supplies for constructors, s.a.e. detalls and list.
R. A. Marsh.

29 Sholbourne Road,
Stratford on Avon, Warwke.

$$
\begin{aligned}
& \text { The components you want } \\
& \text { for EE designs plus good } \\
& \text { service, prompt delivery } \\
& \text { \& attractive discounts }
\end{aligned}
$$

EIECTROVILTE Electronic Component Specialists

THIS MONTH'S SELECTION OF POPULAR ITEMS FROM THE ELECTROVALUE CATALOGUE

TRANSISTORS

\author{
No.
2N687
 $2 N 687$
$2 N 1804$
 2N1305
2 N 2848
 2N2648
 2N292
2×3055
 2N3055
2N3702
 2N3702
2N3704
 2 N 3704
ACl 28
 AC128
AC128
 AC128
AD148
A0178
 A0178
AD161
 AD161
AD102
 BC108
 BC109
BC108
 BC168
BC169
 BC169
 BFY 51
 OA90
 OA90

0 OAP
 8D1
 W02
 | Type | Purpose |
| :---: | :---: |
| 84. NPN | General |
| Ger. NPN | ., |
| PNP | |
| 84. UJT | Onclilator, 8CR driver |
| NPN | gmall afg. anty |
| NPN | High power |
| PNP | Low power |
| NPN | Low power |
| Ger. PNP | Small sig./driver |
| PNP | Low power |
| PNP | High power |
| NPN | Low power |
| NPN | Med. Jower |
| PNP | Med. power |
| gil. NPN | Sinall algnal |
| NPN | Low notse |
| NPN | Smanll signa! |
| NPN | Low noine |
| NPN | RF amp. |
| NPN | Med. current |
| (ter, dionle | RP detector |
| " " | General |

(Sil. =Silicun. Uer.- Germanium)

CAPACITORS

RESISTORS

t watt and t watt, all at Ip each in the following values (in ohms) :-
$10,12,15,18,22,27,33,34,47,56,68,82$ and all values in this series up to 10 Megohms.

Power Resistors
3 watts-7p each: 7 watts-9p each.
Values as for thate series, but up to 10 Kohms only.
Many other types and values available, Full details in catalogue.

VEROBOARD

The universal circuit bullding board Unclad, $0.1^{\prime \prime}$ matrix
$2^{\prime \prime} \times 3.75^{\prime \prime} \quad 10 p$ $2.5^{\prime \prime} \times 3.75^{\prime \prime} \quad 15 p$ $5^{\circ} \times 3.75^{\prime \prime} \quad 25 p$ \qquad
Copperclad Veroboard also in stock in all standard sizes and matrices; also edge connectors, pins, etc.

PEAK SOUND ENGLEFIED 840

Brilliantly designed hi-fi amplifier with facility to take add-in stereo FM tuner. Superb per. formance. $20+20$ watts RMS into 8 ohm speakers. As advertised $£ 49 \cdot 50$. Brand new, and guaranteed in maker's carton
£33-50
(+75p carr in U.K.)

MISCELLANEOUS ITEMS

INDICATOA LAMPS

NEON chrome bezel, round red NR/R, 24p; chrome bezel, round amber NR/A, 24p: chrome bezel, round clear NR/C 24p. Neon, square red eype LS5C/P, 18p; amber sype LS5C/A. 13p; clear type LS5C/C. IBp. All bove are for 240 V mains operation. Fllamont types: $6 \mathrm{~V}, 0.04 \mathrm{~A}$ square red sype LS5C/R-6V. 30p, 6 V 0.04A amber type L55C/A-6V, 30p: 6V 0.04A clear type LS5C/C-6V, 30p: 6V 0.04A green type LS5C/G-6V, 30p; 12V 0.04A L55C/R-12V, 34p 34V 0.04A LSSC/R-28V. 45p.

COLVERN 3 watt Wire-wound Potentiometers. 10Ω. $15 \Omega, 25 \Omega, 50 \Omega, 5100 \Omega$, 500Ω, ${ }^{W} \mathrm{H}$ K, $50 \mathrm{~K}, 32 \mathrm{p}$ each DIN CONNECTORS

overseas CUSTOMERS WELCOME

Thञ IOP CATALOGUE FREE WITH ORDERS FOR \& 1.00 OR MORE
The Electrovalue catalogue (64 pages and cover, $8 \frac{1}{2} \times 5 \frac{1}{2}$ ins) is crammed with money saving items, and illustraced technical information. FREE with orders for $\mathbf{E} 1$-00 or more. Sent separately it costs you l0p post free. Write yeur order on a sheet of paper with coupon attached

ELECTROVALUE

28 ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY,

Hours 9-5.30: Sat. 1.0 p.m.
Telephone; Egham 5533 \& 4757 (STO 0784-3)
Telex : 264475

COMPONENTS DISCOUNTS

allowed on all items other than those at net prices.

$$
10 \% \text { on orders for }
$$

15% on orders for
POSTAGE \& PACKING FREE on orders for $\mathbf{6 2}$.00 or more. Please add 10p if under.
Overseas orders weleomed. Prices subject to alteration without prior notice.

To ELECTROVALUE, ENGLEFIELD GREEN, EGHAM., SURREY
Please send a Goods to value of C................. as detailed on sheet attached, plus FREE copy of catalogue.
b Copy of catalogue.
(strike out item which does not apply)
NAME
ADDRESS

Enclosed please find \mathbb{E}
.cash/cheque/money order.
EE. 3

CRESGENT muntion
 MAIL ORDER DEPT. No. 11 MAYESRD. LONDON $11 \& 40$ MAYES ROAD. LONOON NR2 OTL asa 3206 N 22 6 TL

MIDGET FLEX CONNECTOR Approx. 2 amp rating. Two - pin non - reversible miüget tlex connector. Approx, aize: 2 in . $\times \mathrm{in}$. Ideal for houdspeaker connections, etc. 8p plus 2p P. \& P.	N3055
	POPULAR POWER TRANBISTOR
	Now at our Low Price 80 p each
MAINS TRANSFORMER	
Fused Primaryary 220 V (G) $50 \mathrm{M} / \mathrm{A}$. Becond- 3 V ,	
COMPONENT BARGAIN	
$132+16 \mathrm{mFd} 275 \mathrm{~V}$ Capacitor; 1 Speaker Output Tranmormer; 2 B9A Valve Eolders: 1 4,700 pF Capacitor; 1175 ohm W/W Resistor; 1330 ohm, IW Resistor: $112 \mathrm{k} \Omega \mathrm{iW}$ Resistor. All mounted on a hmail Amplliter Panel. Only 38p. P. de P. iree.	
STEREO HEADSET 8 ohm impedance, complete with plug and 5 th lead. A very confortable phone set. Listen to steren without noise interrupting the pleasure. Wonderful value. $£ 2.50$ plus 10 p P. \& P. SINGLE EARPIECES Crystal or magnetic plua lead and $3.6 \mathrm{~m} / \mathrm{m}$ or $2.5 \mathrm{~m} / \mathrm{m}$ plug. Please state which one requir-	
BARGAIN BOARDS	TOGQLE SWITCHE
Componentagalore for the	
	Please include
	OUDSPEA
Ex computer boarils with:	
Resistors,	d. ${ }^{\text {P }}$
Capacitors and useful Transistors - at least transistors per boarl\}.	E. M.I. 350 met
	£7.50 plua 38p. P. \& P
Bargain price 30p per board.	mini loudspeake
© BOARDS 21-20. P. \& P. Free	$3^{\circ} 8 \mathrm{ohm} 40 \mathrm{p}$ 21. 75 ohm 38 p
on this ftem.	Plus 3p. P. \& Pren on each Min Speaker.

BATTERY ELIMINATOR

Plug your Transistor Ralio, Amplifler. Casaette, etc., into the s.c. malma $2 \operatorname{lin} \times 2 \operatorname{in} \times \cdot 3 \operatorname{in}$ apact $2 \mathrm{inn} \times 2$ in $\times \cdot 3 \operatorname{in}$ approz
6 V \&1.50, $9 \mathrm{~V} 81.50,7 \frac{1 \mathrm{~V}}{}$ complete with cable and plug for Philips Cas. sette. 62 plus 8 p . each

D.P.D.T. SLIDE
SWITCH

1 pole 12 way 2 pole 2 way
2 pole 3 way 2 pole 3 way 2
2 pole 6 way
2 pole 6 way 3 pole 4 way 3 pole 4 way rity 4 pole 3 way
22 p each. Please inc. 22 p esch. Please inc.
5 P . P . Up to 3
switches. switches.

POTENTIOMETERS All types $1^{\prime \prime}$ and leps dlameter. SINGLES DUAL 5K Log or
10K Lin Less

10 K ${ }_{25} 25 \mathrm{~K}$ Lin Less ${ }_{20} 10 \mathrm{~K}$ Less | 50 K Switeh 80 K Less 5 witch |
| :--- |
| 100 K |
| $17 \mathrm{pea}, 100 \mathrm{~K}$ | 250K Double ${ }_{200 K}^{150 K} 45$ p. 500 K Pole 500 K each ${ }_{2}{ }_{2} \mathrm{M} 5$ witch 1 M

25pea,
Up to 3 Pots. Please add 5p. P. \& P. We stock all recognised valuen of resistors all at 10% or closer tolerance. We regret we can only
mail then in lots of ten. You can mail them in lots of ten.
send for mixed values. All Midget typer.

3 watt lote of $10-13 \mathrm{D}$
1 watt lote of $10-15 \mathrm{D}$
Please include 3 p $10-25$. \mathbf{P} each 10 resistors.

£2.63

+5 p P. \& P

EX COMPUTER PRINTED CLRCUIT PANELS
SPECIAL BARGAIN PACE, \#s lwarim for 51 ,
709C operational amplifier tos
250 MIXED RESISTORS t t \& witf.
150 MIXED HI STABS 62p t. \& \& I uatt is"es indter.
QUART2 HALOGEN BULBS provectura, wis. SOp wach.
GPO EXTENSION TELEPHONES - "fith ilial but withuml hill. 85 p rach.
BARGAIN RELAY OFFER
KEYTRONICS mail order only 44 EARLS COURT ROAD
ONDON, W. 8

INSTRUMENTAL AUDO EFFECTS

SUPER "FUZZ" UNIT KIT. CONNECTS BETWEEN GUITAR \& AMPLIFIER. OPERATES FROM 9v BATTERY (not supplled). ALL COMPONENTS AND PRINTED CIRCUIT BOARD WITH FULL INSTRUCTIONS. KIT PRICE: $£ 2.60$ post pald.

CREATE 'PHASE" EFFECT ON YOUR RECORDS, TAPES ETC., UNIQUE CIRCUITRY ENABLES YOU TO CREATE PHASE EFFECT AT THE TURN OF A KNOB. OPERATES FROM ov BATTERY (not supplied) COMPLETE KIT OF COMPONENTS WITH PRINTED CIRCUIT BOARD \& FULL INSTRUC. TIONS. KIT PRICE: ع2.60 poit pald.

MAIL ORDER ONLY.
S.A.E. ALL ENQUIRIES.

DABAR ELECTRONIC PRODUCTS

98a, LICHFIELD STREET,
WALSALL, STAFFS. WSI 102

Build yourselfa TRANSISTOR RADIO

NEW! ROAMER 10 WITH VHF INCLUDING AIRCRAFT

10 TRANSISTORS. 9 TUNABLE WAVEBANDS, MW1, MW2, LW, SW1, SW2, SW3, TRAWLER BAND, VHF AND LOCAL STATIONS AND AIRCRAFT BAND Bullt in Ferrite Rod Aerlal for MW/LW. Retractable, chrome plated 7 section Telescopi Aerial, can be angled and rotated for peak short wave and VEF listening. Push Pul output using 600 mv Transistors. Car Aerial and Tape Record sockets. Ewleched Earpiece Socket complete with Earpiece. 10 Transiators plus 3 Diodes. 5 heavy duty speaker Air spaced ganged Tuning Condenser with VEF section. Volume on/on, Wave Chang and Tone Control. Attractive Case in black with siver blocking. size bulld plans 30 p (EREE w fth parts).

Total building cost £8.50
P. P. \& Ins. 50 p

Overseas P \& P \&

ROAMER
 (8) (6) 8 EIGHT Mk I
 NOW WITH VARIABLE
 TONE CONTROL

Tunable Wavehands: MW1, MW2, LW, sW1, SW2, W3 and Trawler Band. Built in Ferrite Rod Aeria or MW and LW, Retractsble chrome pisted rete600 mW transistors. Car aerial and Tape record sockets, Selectivity switch. Switched earpiece mocket complete with earpiece. 8 transistors plus 3 diodes. 7in. $\times 4 \mathrm{in}$. Speaker. Air ppaced ganged tuning condenaer. Volume/ on/off, tuning, wave change and tone controls. Attractive cane in rich chestnut shade with gold blocking. Size $9 \times 7 \times 4 \mathrm{in}$. spprox. Easy to follow instructions and diagrams. Parts Price-List and Easy Build Plan's 25p (FREE with parta).
Total building cost
(Overseas P, \& P. \&1)

POCKET FIVE

3 Tunable Wavebands:
MW, LW, Trawler Band with extended M.W.
band for easier tunin
7 atages- 5 transistors and 2 diodes, supersensitive ferrite rod aerial, fine tone moving coll speaker. Attractive black and gold case. Bize of $\times 1 \frac{2}{} \times 3$ in. Easy bolld pland and parts price list 10 (FzEE With parts). Earpiece with plug and switched socket for private listening 30p

Total building costs \quad (Overseas P. \& P. 63p)
\qquad

Exclusive to readers of "EVERYDAY ELECTRONICS' "EVERYDAY SEVEN"

MEDIUM and LONG WAVE PoRTABLE. gned circuit for easy contruction in corporating 7 transistors and 2 diodes, air apacitor push pull output using 600 mw transistors, heavy duts toudspeaker for quality sound and room flling volume, internal Ferrite Rod aeriai, Volume/on/off control, tuning control and wave change switch. Mandsome, strongly made wooden case, size $11 t^{\circ} \times 77^{\circ} \times 31^{\circ}$ with carrying handle and black knobs with spun silver inserts. The dea radio for those who are comparatively inexperienced in electronic construction. Easy separately for 25 p
Total bullding costs
(Overseas Post $\& 1$)
ROAMER

SIX

6 Tunable Ware bands: MW, LW 8W1, SW2, Trawler band plus an extra M.W. band for easier tuning of Luxembourg etc. Sensitive fer Fite rod aerial and for Ghort Waves. 3 in. Speaker. 8
stages- 6 transistors and- 2 diodes including MicroAlloy R.F. Transistors, etc. Attractive black case with red grille, dial and black knobs with polisbed metal and parts price list 15p (FREE whih parts). Earplece with plug and switched socket for private listening 30p extra.
Total building costs SOB (Oversess P. \& P. \&

ROAMER EIGHT Mk I

NOW WITH VARIABLE (b)

年

7 Tunable Wavebands: MW1, MW2, LW, SW1, SW\% or MW and LW. Retractable chrome plated Telescopic aerial ior Short Waves. Pusb pull output usiag 600 mW transistors. Car aerial and Tape record sockets. electivity кwitch. Swhiched earplece socket complete With earplece. A transistora plus 3 diodes. 5 heavy duty peaker. Alspace ganged tuning condenser. Volume/ on/oIf, tuning, wave change and tone controls. blocking. Size $9 \times 7 \times 4 \mathrm{in}$. approx, Easy to follow instructions and diagrams. Parts Price List and Easy Build Plans 25p (FREE with parts).

TRANSONA FIVE
 Now with 3in SPEAKER

3 Tunable Wavebands: MW, LW and Trawler Band. 7 stage- 5 transistors and 2 diodes, ferrite rod aerial.
tuning condenser volume control, fine tone 3 in. tuning condenser volume control, Ane tone 3 in.
moving coil apeaker. Attractive case with red speaker grille. 8 ize of x if x itin. Easy build plans and plug and switched socket for privatelistening 30 pextra. Total building costs $2=5-5\left(\begin{array}{l}\text { P. P. \& } \\ \text { (Overseas P. \& P. } 63 \mathrm{p} \text {) }\end{array}\right.$
Ins. 22 p

NEW! "EDU-KIT"

BUILD RADIOS, AMPLIFIERS, ETC
FROM EASY STAGE DIAGRAMS, FIVE UNITS INCLUDING MASTER UNIT TO CONSTRUCT.
COMPONENTS INCLUDE:
Tuning Condenser: 2 Volume Controls: 2 Alider Switches: 4"x21" \&peaker: Terminal Strip: Ferrite Rod Aerial: 3 Plugs and Sockets: Battery Clips; 4 Tag Roards: Balanced Armsture Unit: 10 Transintors: Units once constructed Tare f" Knobs. from Master Tnit, enabling them to be stored for future use Ideal bo Schools, Educational Authorities and all those interested in radio construction
All parts including ? 5 - 51 P. P. \& Case and Plans
(Overseas P. \& P. \&1)

FULL AFTER

 SALES SERVICE
RADIO EXCHANGECO

61 HIGH STREET, BEDFORD.
Tel. 023452367
 ROAMER TEN \square EVERYDAY SEVEN ROAMER EIGHT \square TRANS EIGHT TRANSONA FIVE \square ROAMER SIX POCKET FIVE \square EDU-KIT
Parts price list and plans for

HENRTS RADO LIMTS ENGLAND'S LEADING ELECTRONIC CENTRES

STEREO HEADPHONES

HI-FI TO SUIT EVERY
POCKET

10,000

Stock lines at Special
Low Prices and EFully Guaranteed

PIUS! FIVE 10 p VOUCHERS

FOR USE WITH PURCHASES

Send to this address-Henry's Radio Led., (Dept. PW), 3 Albemarle Way, London, E.C.I-for caralogue by post only

A NEW HENRY'S CATALOGUE IS A MUST FOR ELECTRONICS TODAY!

HOME EQUIPMENT
AF105 50k/V multimeter (illus.)
Price 18.50, p.p. 20p. Leather case €1.42 $200 \mathrm{H} 20 \mathrm{k} / \mathrm{V}$
Price E3-87, p.p. 20p. Case 62p.
$50030 \mathrm{k} / \mathrm{V}$ multimeter.
Price $68 \cdot 87$,
THL 332 k
Pr
TE65 Valve voltmeter
Price f17.50, p.p. 40p SE250B Pocker pencil signa injecto
15p.
SE500 Pocket pencil signal tracer. Price El-50, P.P. ${ }^{15 p_{\text {p }}}$

TE22D Matchintor. Price \&15, p.p. 40p.
p.p. 40p.

TO3 Scope 3 in, tube. Price $12 \cdot 50$. P.p. 40p

TE22 Audio Generator. Price C17, P.p. 40p.
CI-5 Pulse Scope. $£ 39 \cdot 00$, p.p. 50 p .
4341 AC/DC Multitester and transister testor. AC \& DC Currant. In steel caye. Price $10 \cdot 50$, p.p. 15 p .
TMK $50030 \mathrm{k} / \mathrm{y}$ Multitester. Price $88 \cdot 87$, P.p. I3p. Leather case 1.98.

LARGEST RANGE of Panel Meters, Edge Meters and Test Equipment of every sore. Full detalls in latest catalogue-see bove

POLISHED CABINETS FOR I50, I50TC and 450 ¢4.50. SPEAKER KITS
WHARFEDALE 4-8 ohms. PEERLESS 8 ohm System Unit 3. 8 $8^{\prime \prime} 15 \mathrm{~W} \leqslant 10.20$. 20-2 $8^{\prime \prime} 30 \mathrm{~W} \leqslant 11 \cdot 25$. $\begin{array}{ll}\text { Unit 4. } 12^{\prime \prime} 25 \mathrm{~W} \text { \& } 13.50 . & 20-38^{\prime \prime} 40 \mathrm{~W} \& 16 \cdot 75 . \\ \text { Unit 5. } 12^{\prime \prime} 35 \mathrm{~W} .419 \cdot 50 . & 4-30 / 1212^{\prime \prime} 40 \mathrm{~W} \& 22.75 .\end{array}$ GOODMANS DIN 20 KIT 20W 4ohm 110.75 ost 30p.
arriage are. 50p or 75 p per pair for Kiss.

SAVE 40% ON LIST PLUSFREE 'BIB'Groov-Kleen Record Cleaner Value $\mathrm{fl} \cdot 99$ ROTA 1500 . S 45 watts. Garrard 2025TC with 9TAHC diamond ceramic. Plinth/ Speakers. Size $16 \times 9+\times 64^{\circ}$ Speak
SAVE
TELETON '206' G2 £2 SP25 Mk. III, Goldring G800 Series Cart., Plinth/Cover New 15 wate Quality SDLJ Bookshelf Speaker Systems, all leads ete SAVE 654.95 £ 30.00 Carr TELETON F2000, Med Amplifier, Garrard 2025 TC Amplifier, Garrard 2025TC Type 60 Speaker Systems Type 60 Speaker Systems SAVE $\$ 56.95^{5}$ Carr © 36 ER $2 \times 5 A 125$ Speaker 648.95 Carr. 12

ROTA $220010+10$ Watt

 Garrard SP25 III/G800H Plinth/Cover. New 15 watt SDL2 Twin Speaker Systems, all leads, etc. 62.50 CarrSAVE 632
\&2
LOW PRICES PLUS 12 MONTHS GUARANTEE
DEMONSTRATIONS FREE
LATEST SPECIAL PRICE STOCK LIST \& STEREO SYSTEMS Ref. 16/17

FREE BROCHURES P.A., DISCO and LIGHT-
ING No. IB
TRANSISTORS, I.C.'s No. ${ }_{36}$ TRANSISTORS, I.C.'s No.

20 WATT I.C. AMPLIFIER Toshiba 20 watt Power AmpliToshiba Pre-Amplifier I.C. © 1.50.
Data and suggested circuits
No. ${ }^{42,10 p}$ p.
SL403D 3 watt I.C. with 8 page data and circuits \&1-50. IC12 6 watt I.C. 22.50
TEXAS PRE-AMPLIFIERS I-100w AMPLIFIERS Circuits, layout
El 1.25 post paid.

NIXIE TUBES (post 15p Rer order)
XN3 or XN13 $0-9$ side view with data sheet, 85 p each. GN4 end view 0-9 with socket and data, 41.75. All
l.C.'s for Digital Clocks in l.C.'s for Digital Clocks in
stock. HENRY's CLOCK

5 MILD THIS VHF FM TUNER BAND-WIDTH PRINTED CIRCUIT HIGH FIDELITY REPRODUCTION MONO AND STEREO.
A popular VHF FM Tuner for quality and reception of mono and stereo There is no doubt about it-VHF FM separately. Free Leaflet No. 3 \& 7
 Tuning meter © Cl . 7
Mains unit (optional) Model PS900 42.47
Mains unit for Tumer and Decoder PSI200 -62
HIGH QUALITY SILICON AMPLIFIERS AND

$$
\cos 5
$$

PRE-AMPLIFIERS
 E. ${ }^{\text {- }}$ Self powered Silicon-FET Pre Amplifiers. Push button selectors, tape record/play,
adjustable levels, drive up to $4 x$

FET 9

SPECIAL OFFER $£ 10.50$

 CIRCUIT No. 29/2 15p.PA 2525 watts into 8 ohms E7. 50 .
PA 5050 watts into 4 ohms 69.50
MU442 Power Supply for I or 2 PA 25 's or 1 only PASO, © $6 \cdot 00$. FREE BROCHURE No. 25 ON REQUEST. NO SOLDERINGFREE BROCHURE NO. 25 ON REQUEST. NO SOLDERING-
ALL UNITS INTERCONNECTING, ON DEMONSTRATION ALL " $356^{\prime \prime}$ "

TERRIFIC SAVINGS!

GOLDNING

CONNOISSEUR

 CHASSIS (P) (less cartridge) SP25 Mk III £11. 30° $\begin{array}{ll}\ddagger \text { AP76 } & \text { ¢ } 19.97 \\ \text { MP60 } & £ 11.30\end{array}$ $\begin{array}{ll}\text { MP60 } & \text { MP611.30 } \\ \text { MT70 } & \text { £ } 15.15 \\ \text { HT } & \text { 16.60 }\end{array}$ CHT70 $\quad 16.60$ $\begin{array}{lr}\text { GL75 } & \text { E22.95 } \\ \text { GL7 } & 82.97\end{array}$ASSEMBLED (P) cartridge, with cover
MP60(TDIP) $617 \cdot 75$ CHASSIS WITHCARTRIDGE (P) SPECIAL PRICE WITH 2025TC/9TAHCD $\quad 49.50$ CARTRIDGE - ADD 3000/9TAHCD
TEAK *PI/TI Std
PLINTH BNI Delux
WITH \$P4/T4 Std. COVER \ddagger BN4 Delux State P6/T6 Std. 83.50
deck) BSRDeluxe E6.25

Cost etc.: Chassis 50 p, with plinth/cover 70p, Plinth/Cover 30 p
300 mW TRANSISTOR AMPLIFIER MODEL 4-300 Fully as sembled 4 TR Amplifier. Size $5 \frac{1}{2} x$ $11 x$ in. 1.10 mV adjustable sensitivity Output 3-8 ohms. Fitted Vol. control 9 volt operated. Thousands of uses plus
Price $£ 1.75$, p.p. I 5 p (or 2 for $43 \cdot 25$,
ASSEMBLED (with cart. P \& C 2025TC/9TAHCD SP25/3-G800H S25/3-G80.9 AP76-G800 19.95 HT70PCIG800 HTTOPC/G800 $\$ 29.95$ All magnetic - Recom mended Y940 ($=A D$ 76K) $63 \cdot 25$; AT66 E4.95 G850 £4.25; AT21 69.60 G850 $87 \cdot 25$; A 800 H E6.55

SINCIARPROIEC 60PACKAGEDEALS -SAVE POUNDS1
$\begin{array}{cc}2 \times 230 & \text { amplifier, } \\ \text { stereo } & 60 \\ \text { pre-amp, }\end{array}$
PZ5 power supply, $£ 16.75$,
surr.ly i . $18 \cdot 25$. Carr. 40 p . 2×250 ampli
supply $118 \cdot 25$. Carr. 40p. 2×250 ampliTransformer for PZ8 $£ \mathbf{Z} .45$ extra. NEWi Prolect ' 605^{\prime} ssereo system 220.97 . Any of the above with Active Filter unit add \&4.75 or with pair Oif speakers add fi6. Also new FM Tuner (20-25. 2000 Amplifier ©23-75, p.p. 50p. 3000 Amplifier ©31-50. Also ICl2 E2-50.
"BANDSPREAD" PORTABLE TO BUILD

Printed circuit all transistor design using Mullard RFIF Module. Medium and Long Wave bands plus Medium Also slow motion or ext uning, 600 mW push-pull output, fibre glass'PVC covered cabinét, car aerlal. Actractive TOTAL COST TO BUILD
p.p. 32p (Battery 22p) All parts sold separately Peafle. 9.9 7T, PORTABLE (as). All parts sold separakely Lealee No. 2 stock-Leaflet No. I.

Tel: 01.402 4736

High Fidelity Sales \& Demonstrations Centre 354 EDCWAR = ROAD, LONDON, W.2.
Tel: 01-402 5854
P.A.: Disco
\& Lighting Centre
309 EDCWARE ROAD,
LONDON, W.2.
Tel: 01-723 6963

Mail Orders, Special Bargain Shop, Industrial Sales 303 EDCWARE ROAD, HONDON, W.2. Tel: 01-723 1008/9

[^0]: (6) IPC Magazines Limited 1972. Copyright in all drawings, photographs, and articles published in EVERYDAY ELECTRONICS is fully protected, and reproduction or imitations in whole or part are expressly forbidden.

 All reasonable precautions are taken by EVERYDAY ELECTRONICS to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it, and we cannot accept legal responsibility for it. Prices quoted are those current as we go to press. Subscription Rates including postage for one year, to any part of the world, $£ 2-35$.
 Everyday Electronics, Fleetway House, Farringdon Street, London, E.C.4. Phone: Editorial 01-634-4452; Advertisements 01-634-4202.

