# CRAPHC ERUALISER. $25 W+25 W$ 

 MIF AMP. LOUDMESS CONLROL. SIMPLE STEREO. BASS :OOSTER. STEREO FM TUNER LINE AMP。 CUITAR ATTACK CONTROL. DUA
## ferpanted

 FROM $D$ ( $\triangle$ D $A$ MEFR THL SUPERTESTER. DCCHAL VOLTMETER CAR ALARM. TACHO TMMNC LCHT. COLOURORCAN. RADAR INTRUDER ALARM. BKKE SPEFDO: FLFCTRONIC ICNITON. AUTO-LUME. FLUORESCENT LIGHT DIMMER COMBINATON LOCK. DRLL SPEFD CONTROLFER LCHT DIMMERUULI:OARD,ELECTRONHC



The Henry's Group of Companies have been in the electronic, radio and TV component business for 30 years. And the Group is expanding all the time, with more and more engineers, buyers, and enthusiasts turning to Henry's for help with problems on all kinds of projects.

Whether you are involved with building a low-cost audio system for your home, or buying thousands of electronic components for your company's production line. Henry's can help you in so many different ways.

Henry's carry vast stocks of virtually every component in current use, and we supply trade. industrial, export, professional.

educational and do-it-yourself customers.
Take advantage of our expert advice - and remember, when you consult Henry's you are getting the benefit of our in-depth experience in electronic component marketing. Plus our reputation for reliability and service, as well as generous volume discounts.

In the world of high fidelity, Henry's are now No. 1 in the UK. But we don't intend to stop there! We've already opened up a large hi-fi center in Brussels, and plans for more outlets are well advanced.

Take the first step now to getting the best service out of the Henry's Group of Companies. Let us quote for all your electronic requirements.

## HENRY'S GROUP OF COMPANIES

Henry's Radio Ltd., Edgware Road, London W2. Tel: 01-402 8381 Henry's Home Entertainment Centres Lid., Edgware Road, Tottenham Court Road, London Branches in Middlesex, Oxford and Bristol

Retail Mail Orde', Caralogues

# ETI TOP PROJECTS: No. 3 

THE THIRD IN A SERIES OF SPECIAL ISSUES CONTAINING REPRINTS OF POPULAR ETI CONSTRUCTIONAL PROJECTS

## CONTENTS

AUDIO
GRAPHIC EQUALISER ..... 7
Superior stereo design gives full frequency control
INTERNATIONAL 25 STEREO AMPLIFIER ..... 14
Excellent quality - but.designed for easy construction ..... 24
Not Hi-Fi but excellent for an inexpensive record-player
NEW SOUND FOR YOUR GUITAR ..... 26
Gives really weird effects by reversing attack
30
30
BASS BOOSTER
BASS BOOSTER
4
LINE AMPLIFIER ..... 34
Boost microphone output with this low noise amplifier ..... 37
Simple passive circuit to add-on
FOR THE MOTORIST
ELECTRONIC IGNITION ..... 38
Advanced circuit designed for ultra-reliability
TACHO TIMING LIGHT ..... 48
Set your car's timing spot on
CAR ALARM ..... 52
Burglar-proof yo
AUTO-LUME ..... 54
Simply added to most cars
TEST GEAR
DUAL BEAM ADAPTOR ..... 56
Increase the versatility of your scope
AF METER ..... 60
Straightforward circuit me
IMPEDANCE METER ..... 63
A quality addition to your test gear
DIGITAL DISPLAY ..... 69
Used with our DVM and other ETI projects
DIGITAL VOLTMETER ..... 73
Save yourself pounds with this circuit
TTL SUPERTESTER ..... 76
Simple to build but with plenty of facilities
FOR THE HOME
FLUORESCENT LIGHT DIMMER ..... 80
Hard to come by circuit really works
RADAR INTRUDER ALARM ..... 85
Sophisticated design uses radar principles
COMBINATION LOCK89
Uses switches to give security
Build your own - save money and power90
MISCELLANEOUS
INTERNATIONAL FM TUNER ..... 92
COLOUR ORGAN ..... 101
The colours of the rainbow in sync with your music
BIKE SPEEDO ..... 107
Build your own electronic speedome
ELECTRONIC WINDICATOR ..... 110
Shows who is the ..... 111
PCB design for the experimenter
DRILL SPEED CONTROLLER ..... 112

## PUBLISHED MARCH 1976

EDITORIAL \& ADVERTISEMENT OFFICE 36 Ebury Street, London SW1W OLW. Tel. 01-730 8282.

HALVOR W. MOORSHEAD Editor

ROBERT C. EVANS
Advertisement Manager

STEVE BRAIDWOOD
Assistant Editor

## LES BELL

RON HARRIS
Editorial Assistants

JEAN BELL
Production

International Editions COLLYN RIVERS Editorial Director

Published by: Modern Magazines (Holdings) Ltd. 36 Ebury Street, London SW1W OLW. Electronics Today International is published on the first Friday in the month prior to the cover date

Distributed by: Argus Distribution Limited. Printed by: Q.B. Newspapers Limited, Colchester.

## International Associates:

Australia: Modern Magazines (Holdings) Ltd, Ryrie House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia.

France: Electroniques Pour Vous International, 17 Rue de Buci, Paris, France.

USA: ACP, Room 401, 1501 Broadway, New York, USA.

## SUBSCRIPTIONS TO ELECTRONICS TODAY

 INTERNATIONAL: Great Britain, $£ 5.00$ per year, Overseas '(Surface Mail), £5.50 per year, Canada $\$ 10.00$ per year. When ordering please state with which issue you want to start.COPYRIGHT: All material is subject to Worldwide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally.

$$
\begin{aligned}
& \text { Since the ETI Book Service started about nine months ago, it has } \\
& \text { achieved enormous popularity with readers. The books included } \\
& \text { in the list are selected for their likely appeal to ETI readers. The } \\
& \text { list includes many 'standard' works as well as the latest titles. } \\
& \text { This month we are listing about three times the normal num. } \\
& \text { ber to introduce readers to some less well-known titles and } \\
& \text { specialist books. } \\
& \text { It is our policy to quote an all-inclusive price in every case, } \\
& \text { there is nothing else to pay. }
\end{aligned}
$$

AUDIO/HI-FI
AUDIO ON WHEELS
V. CapelAUDIO TECHNICIANS BENCH MANUALbeals mELECTRONIC MUSICAL INSTRUMENTS. Crowhurat basic smple amplification to iotal music generationEXPERIMENTING WITH ELECTRONIC MUSICEverythingis in this single volume for today's generation of music buffs.HI-FI LOUDSPEAKERS AND ENCLOSURESA. D. Cohenin stereo sound including three element stereo and all in one enciosur
MODERN RECORDING TECHNIQUESR. Runstain ' Explains eowipment, controls and techriques in the modern studio.
SERVICING ELECTRONIC ORGANSM. Applebaum
PUBLIC ADDRESS HANDBOOK ..... 3.50CapelTAPE RECORDERSunde to the purchaser, what to look for and to assist in mainzalning equipmenTAPE RECORDING FOR FUN AND PROFITW. Salammos: out of your tape recorder plus equipment.
CALCULATORS99 WAYS TO KNOW AND USE YOURELECTRONIC CALCULATORSCIENTIFIC ANALYSIS ON YOUR POCKETCALCULATOR
COMPUTERS
BEGINNERS' GUIDE TO COMPUTER LOGIC
G. Stapiston
COMPUTER CIRCUITS AND HOW THEY WORK B. Wers Become acquanted with the various parts of a computer and its technology
COMPUTER TECHNICIANS HANDBOOKB. Wma
CONTROL ENGINEERING
This is the 2nomis is the 2nd edrionDIGITAL ELECTRONIC CIRCUITS AND SVSTEMSN. M. Morris.h.
INTRODUCTION TO DIGITAL LOGIC
A. PottonELECTRONIBS
ACTIVE FILTER COOKBOOKEveryhning you need to know to build and use active thiterELECTRONIC ENGINEERS REFERENCE BOOK -4th EDITIONA completely $n$new and up-to-date roterence book for atl engineers and students.
BASIC MATHS COURSE FOR ELECTRONICSH. Jecobowitz
Quick short cut
BEGINNERS GUIDE TO ELECTRONICS T. L. Squires
Shon cut for tha ..... £2.55
BEGINNERS GUIDE TO TRANSISTORSJ. A Reddihough
. A. Realdhough
OESIGNING WITH TTL INTEGRATED CIRCUITStexat instrumontCovers the enure far1.95$£ 3.40$$£ 2.05$$£ 1.75$
ELECTRONIC CIRCUIT DESIGN HANDBOOK EEEMAG ..... $£ 5.00$
ELECTRONIC MEASUREMENTS SIMPLIFIED C. Hellmark
Covers fust about every conceivable test or measurement you will need. ..... $£ 2.10$
ELECTRONICS POCKET BOOK ..... £4. 15
ELECTRONICS AND PHOTOGRAPHY ..... $£ 2.20$
Practicat circuit projects devoted to photography.
ELECTRONICS SELF TAUGHT
$£ 2.20$
Covers ba .....  2
ESSENTIAL FORMULAE FOR ELECTRICAL AND ELECTRONIC ENGINEERS ..... $£ 1.20$
HOW TO BUILD ELECTRONIC KITS
Instructs the kit buildet on how to check components. how to assemble and how to cure faults. ..... $£ 2.10$
FIRE AND THEFT SECURITY SYSTEMS 8. Well ..... $£ 1.90$
HANDBOOK OF IC CIRCUIT PROJECTS ..... $£ 1.75$J. Athe hi-fi
HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS ..... $£ 1.85$
HOW TO BUILD PROXIMITY DETECTORS AND METAL LOCATORS J. Shiatas ..... $£ 3.00$
HOW TO USE IC CIRCUIT LOGIC ELEMENTS J. Sireater ..... $£ 3.00$
INTEGRATED ELECTRONICS ..... $£ 5.25$U. Millman Using an IC approach this texal leads the reader step by step from semiconductor physics to-
INTEGRATED CIRCUIT POCKET BOOKR.C. Hibberd Technology and fabrication of unipolar and bipolar IC's are distussed. digital and linear IC's$£ 3.90$
IC OP-AMP COOKBOOK W. Jung
Covers the basic theory of IC op amps in great detail, also includes 250 practical circuit anolic amions ..... £7.50
INDEXED GUIDE TO MODERN ELECTRONIC CIRCUITS ..... $£ 2.25$
INTRODUCING AMATEUR ELECTRONICS The book for the complete novice of any age ..... $£ 1.60$
INTRODUCING ELECTRONIC SYSTEMS ..... $£ 1.75$1. A. SmelairINSTALLING AND SERVICING ELECTRONICPROTECTIVE SYSTEMSH. Swearer
Covers instalation and servicing of alf electronic security systems$£ 2.10$
LINEAR ELECTRONIC CIRCUITS AND SYSTEMS G. Biahop ..... £2.55
LINEAR INTEGRATED CIRCUIT APPLICATIONSA practical approach is emphasised throughout, encouraging the reader to try out devices nimselifC 4.90
LINEAR IC PRINCIPLES EXPERIMENTS AND PROJECTS ..... $£ 5.50$110 OPERATIONAL AMPLIFIER PROJECTS FOR THEHOME CONSTRUCTOROutines the essential charactoristics of op amps and presenis useful projects.110 SEMICONDUCTOR PROJECTS FOR THEHOME CONSTRUCTOR$£ 2.85$
110 COSMOS DIGITAL IC PROJECTS FOR THE
HOME CONSTRUCTOR
R. M. Marsion

110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR
R, M, Marstion
All the projects have been devised, butl and fully evaluated by the author.
110 THYRISTOR PROJECTS USING SCR's
R. M. Merston
the author's previous books
OPERATIONAL AMPLIFIERS DESIGN AND
APPLICATIONS (Burr Brown)
G. Tobey
Covers the enure field of operational amplitiers.
$£ 5.00$
PIN POINT TRANSISTOR TROUBLESIN 12 MINUTES $£ 2.85$
PRACTICAL TRIAC/SCR PROJECTS FOR THE
EXPERIMENTER
R. For Thyristor theory and practical circuits with low cost SCR TRIACs and DIACs.
£2. 15
PRINCIPLES OF TRANSISTOR CIRCUITS S. Amos
Generally aorepted as being
of cireuls using wansistors.

RAPID SERVICING OF TRANSISTOR EQUIPMENT
A. King Astematic guide to the servicing of transistor radio, television, tape and hi-fi equipment.

SEMICONDUCTOR CIRCUIT ELEMENTS
T. D. Towers
Gives readers an actount of all semiconductor devices commercially available.
it covers a peneral description, circuit diagram symbols and working principles.

SOLID STATE CIRCUIT GUIDE BOOK
B. Ward
Step by step instructions to design circtuits to your own specitications.

E2.15
TRANSISTOR CIRCUIT DESIGN
TRANSISTOR POCKET BOOK
Comprehensive guide to the characteristics and uses of various types.
TTL COOKBOOK
Complete and detailed guide wTTL. how it works, how to use it and practical applications.
UNDERSTANDING ELECTRONIC CIRCUITS
R. Sinclair
Describes
procedures

UNDERSTANDING ELECTRONIC COMPONENTS
R. Smelsis compo

UNDERSTANDING CMOS INTEGRATED CIRCUITS
Begins with basic digital ic:s. covers semiconductor physics, CMOS tabrication
UNDERSTANDING SOLID STATE CIRCUITS
N. Crowhurst
N. Crowhurt
Writien to sevice the inferests of anyone at sub-enguneering level.
sign.

RADIO
BEGINNERS GUIDE TO RADIO
This book will give a basic understanding of how and why radio recaivers work.
COMPLETE SHORT WAVE LISTENERS HANDBOOK H. Bennert
Complete and
G. Kind 10 SERVICING HANDBOOK
G. King
Servicing

FOUNDATIONS OF WIRELESS AND ELECTRONICS
(NOW 1975 edition)
$\begin{aligned} & \text { (h. G. Scroggie } \\ & \text { Covers the whole bast theory, no previous technical knowledge is assumed. }\end{aligned}$
NEWNES RADIO ENGINEERS POCKET BOOK
PRACTICAL AERIAL HANDBOOK
$\underset{\text { E. Satford }}{\text { RADIO CONTROL MANUAL }}$
$£ 1.60$

RADIO SERVICING POCKET BOOK £2.85

SERVICING TRANSISTOR RADIOS.
Complete gurde giving theory analysis and servicung techniques.
$£ 2.30$
WORLD RADIO TV HANDBOOK - 1976
SEMICONDUCTOR DATA
INTERNATIONAL TRANSISTOR SELECTOR
T. D. Towers
If it takes you longer than one munute to find out all about transistors, then you need a copy
of this book.
£3.45

POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE
£2.15
RADIO VALVE AND SEMICONDUCTOR DATA
$£ 2.50$
Characteristics of 1,000 valves, cathode ray tubes. transistors. diodes, rectifhers and optical semi-
conductors. This new edition (1975) is right up 10 date and over 450,000 copres hiave been sold
TRANSISTOR EQUIVALENTS DATA BOOK £3.00
DIODE EQUIVALENT DATA BOOK £2.65
TEST EQUIPMENT AND OSCILLOSCOPES
BASIC ELECTRONIC TEST PROCEDURES
$£ 2.35$
Shows how to get accurate measurement with VOMs meters and oscilloscopes.
$£ 5.00$
ELECTRONIC TEST EQUIPMENT

HOW TO TROUBLESHOOT AND REPAIR ELECTRONIC
TEST EQUIPMENT
£2.15
HOW TO TEST INSTRUMENTS IN ELECTRONIC SERVICING
£2.15
HOW TO USE VECTORSCOPES, OSCILLOSCOPES AND SWEEP SIGNAL GENERATORS
$£ 1.95$
A practical guide that tells how to use modern TV test instruments
HOW TO USE YOUR VOM VTVM AND OSCILLOSCOPE
M. Clitiord
Tremendous value in helping to select instruments best suited to individual needs.
THE OSCILLOSCOPE
E2.10
PRACTICAL TEST EQUIPMENT YOU CAN BUILD ..... £2.15
RADIO. TV AND AUDIO TEST EQUIPMENT ..... £4.95
TEST INSTRUMENTS FOR ELECTRONICS M. Clifford

## WORKING WITH THE OSCILLOSCOPE

A. Ssunders Includes workshop test projects with large size drawings
$£ 1.85$
SERVICING WITH THE OSCILLOSCOPE
(January 1976)
includes a unique series of photographs showing oscilloscope traces to be found in norma
$£ 5.00$
and faulty equipment, stereo radio, colour TV. Circuits servicing is dealt with.
 for new readers who missed out on the best of the previous projects. . . and with ETI's circulation growth that's a pretty substantial market.

You may not be an ETI reader, this may be the lirst you've ever seen of our magazine. Why not give ETI a glance; maybe you'll find out why our circulation is soaring (over $34 \%$ in 1975). Place a regular order with your newsagent or take out a subscription: $£ 5.00$ (UK), $£ 5.50$ (overseas), $\$ 10.00$ (Canada). Send to:

SUBSCRIPTION DEPT
ETI MAGAZINE, 36 EBURY STREET,
LONDON SWIW OLW




# GRAPHIC EQUALIZER 

A unit that compensates for speaker and room deficiences.

MANY audiophiles are discovering the advantages of graphic equalizers in domestic as well as professional sound systems. Unfortunately the, costs of such units have prevented them becoming as popular as warranted by the many advantages they offer.
The advantages of an equalizer are not generally well known but are as follows.
Firstly an equalizer allows the listener to correct deficiencies in the linearity of either his speaker system alone, or the combination of his speaker system and his living room.
As we have pointed out many times in the past, even the best speakers available cannot give correct reproduction in an inadequate room. It is a sad fact that very few rooms are ideal, and most of us put up with resonances and dips, sadly convinced that this is something we have to live with.
Whilst the octave equalizer will not completely overcome such problems, it is possible to minimize some non-linearities of the combined speaker/room system.
In a concert hall it is also possible to use the unit to put a notch at the frequency where microphone feedback occurs, thus allowing higher power levels to be used.
Thirdly, for the serious audiophile, an equalizer is an exceedingly valuable
tool in evaluating the deficiences in a particular system. One adjusts the equalizer to provide a uniform response, the settings of the potentiometer knobs then graphically display the areas where the speaker etc is deficient.

There is a snag, however, one must have an educated ear in order to properly equalize a system to a flat response. It is not much use equalizing to your own preference of peaky bass etc in order to evaluate a speaker.
Ideally, a graphic equalizer should



## GRAPHIC EQUALIZER

have filter at $1 / 3$ octave intervals, but except for sound studios and wealthy pop groups, the expense and size of such units are too much for most people.
Recently some excellent commercial units have become available with filters spaced at octave intervals. These are relatively inexpensive and cater for the needs of most professionals and domestic users. Such a unit is the Soundcraftsmen 2012 which we reviewed in February 1975 issue.
The Electronics Today Equalizer has been designed to provide nine filters spaced at octave intervals in each of two channels. It is simple to construct and should be available inexpensively in kit form in the near future.

Fig. 2. Component
overlay of the
equalizer fone
channel only)

## HOW IT WORKS ETI 427

This equalizer is basically similar to those used in the ETI Synthesizer and master mixer projects with the exception that it has nine filter sections per channel.
The equalizer stage is a little unusual in that the filter networks are arranged to vary the negative feedback path around the amplifier. If we consider one filter section alone, with all others disconnected, the impedance of the LCR network will be 390 ohms at the resonant frequency of the network. At either side of resonance the impedance will rise (with a slope dependant on the Q of the network which is 2.5 ) due to the uncancelled reactance. This will be inductive above resonance and capacitive below resonance. We can therefore represent the equalizer stage by the equivalent circuit below.


It must be emphasized that this equivalent circuit represents the condition with one filter only, at its resonant frequency. Additionally letters have been used to designate resistors to avoid confusion with components in the actual circuit.
With the slider of the potentiometer at the top end (Fig. A) we have 390 ohms to the OV line from the negative input of the
amplifier, and 1 k between the two inputs of the amplifier. The amplifier, due to the feedback applied, will keep the potential between the two inputs at zero. Thus there is no current through RVA. The voltage on the positive input to the amplifier is therefore the same as the input voltage since there is no current through, or voltage drop across resist or RA.


The output of the amplifier in this case is approximately the input signal times ( 3300 $+390) / 390$ giving a gain of 19 dB . If the slider is at the other end of the potentiometer, (Fig. B), the signal appearing at the positive input, and thus also the negative input, is about 0.11 (390/(3300 + 390) of the input. There will still be no current in the potentiometer and in RC, thus the output will be 0.11 of the input. That is, the gain will be -19 dB .
If the wiper is midway, both the input signal and the feedback signal are attenuated equally, and the stage will have unity gain.
With all filter sections in circuit the maximum cut and boost available is reduced, but $\pm 14 \mathrm{~dB}$ is still available.
Reverting back now to the actual circuit,
the amplifier consists of IC1, Q2 and Q3. The transistors help to reduce the effect of the noise in the IC and add gain at the high-frequency end. This additional gain is required because the negative feedback, due to the potentiometer between the two inputs, causes high-frequency roll off. This does not affect operation of the unit provided the open-loop gain is above 60 dB over the entire audio range. An overall closed-loop gain of about 15 dB is

maintained by R20/R19 with the filter potentiometer at mid position.
The output of the amplifier is decoupled to the output of the unit via C15, and C16/R22 provide a cutoff above 30 kHz .
The input signal is buffered by Q1 because the equalizer stage requires a low impedance signal source for correct operation. Potentiometer RV1 provides level control with 0 to -23 dB range which, combined with the equalizer characteristic, results in an overall level range of +14 to -9 dB .
The power supply used is a simple, full-wave bridge filtered by C17. Plus and minus supplies are derived by means of two 15 volt zeners in series fed via R24. The front-panel power indicator is an LED connected in series with the dropping resistor R24.


## CONSTRUCTION

All components, with the exception of the transformer and the slide potentiometers, are mounted on two printed circuit boards - one for each channel. Whilst the layout is not critical, any alternative construction method could be used, we strongly recommend the use of printed-circuit boards to ease construction and eliminate a possible source of faults.

The components should be assembled to the boards with the aid of the overlay Fig. 2. Carefully check polarities of ICs, capacitors and transistors, etc, before soldering in place. Attach lengths of wire and Coax of adequate length to the board before mounting in position by means of 13 mm spacers.
Due to the close spacing used for the slide potentiometers it is necessary to
mount the 9.6 mm spacers, to the potentiometer support-bars, before mounting the potentiometers. Use 6.4 mm long countersunk screws for this purpose.
The potentiometer assembly, and all other external components, (switches etc) can now be assembled to the chassis and the unit wired as shown in the interconnection diagram.
The circuits used have very high gains and it is necessary to take precautions
against mains hum-pickup. The transformer should be mounted in the position shown, and the 240 volt wiring, to the front power switch, should be run down the right-hand side of the chassis and along the front, in front of the potentiometer support brackets. If hum pickup does occur, it may be necessary to mount the transformer inside a metal box to shield it.
Due to tolerances of resistors variations in $V_{\text {be }}$ of Q 2 and Q 3 etc, the steady-state output of IC11 may be anywhere within plus or minus one volt of zero.
Hence it is desirable to determine the polarity of the steady state voltage at pin 6 of IC1 in order to determine which way round C15 should be inserted. If the output is positive insert as shown in Fig. 1. Alternatively C15 should be a non-polarized type.


Fig. 5. Individual filter responses for the unit. Boost at top and cut at bottom.


Fig. 6. Front panel artwork for the equalizer. Full size $336 \times 88 \mathrm{~mm}$.

Internal layout of the equalizer.


## GRAPHIC EQUALIZER



Fig. 7 Detail of the chassis.


Fig. 8 Metalwork details of the front panel.


Fig. 9 Drilling details for potentiometer support brackets.


Fig. 10. Constructional details of the cabinet.


The coils and capacitors for this project are available from Maplin Electronic Supplies, P.O. Box 3, Rayleigh, Essex. Maplin also produce a kit of this complete project except for the wooden cabinet.


## 



MEASURED PERFORMANCE OF THE INTERNATIONAL•25

POWER OUTPUT
FREQUENCY RESPONSE
$25+25$ watts into 8 ohms
$+0$
$-0.5 \mathrm{~dB} \quad 15 \mathrm{~Hz}-30 \mathrm{kHz}$
$+0$
$-3 \mathrm{~dB} \quad 6 \mathrm{~Hz}-80 \mathrm{kHz}$
$1 \mathrm{kHz}-46 \mathrm{~dB}$
HUM AND NOISE
(with respect to 25W)
Phono ( 10 mV )
Other inputs
INPUT SENSITIVITY
Phono
Other inputs
$2.5 \mathrm{mV} \quad 47 \mathrm{k}$
200 mV 47 k

## TOTAL HARMONIC DISTORTION

| Power | Frequency | One channel | Both channels |
| :--- | :--- | :--- | :--- |
|  | 100 W | $0.1 \%$ | $0.13 \%$ |
|  | 100 Hz | $0.08 \%$ | $0.16 \%$ |
|  | 1 kHz | $0.12 \%$ | $0.17 \%$ |
|  | 10 kHz |  |  |
|  |  |  |  |
|  | 100 Hz | $0.14 \%$ | $0.5 \%$ |
|  | 1 kHz | $0.12 \%$ | $0.6 \%$ |
|  | 10 kHz | $0.17 \%$ | $0.8 \%$ |
|  |  |  |  |
|  | 100 Hz | $0.5 \%$ | $5.2 \%$ |
|  | 25 W | 1 kHz | $0.6 \%$ |
|  | 10 kHz | $0.7 \%$ | $4.8 \%$ |
|  |  |  |  |

## TONE CONTROLS

| Bass | 12 dB boost at 50 Hz |
| :--- | :--- |
|  | 12 dB cut at 50 Hz |
| Treble | 9 dB boost at 10 kHz |
|  | 9 dB cut at 10 kHz |

DIMENSIONS $340 \times 88 \times 210 \mathrm{~mm}$
Fig. 1. Internal view of the INTERNATIONAL- 25
THE INTERNATIONAL 25 is a twenty-five watt per channel, high quality audio amplifier which is 50 easy to build that it is likely to set a standard for the amateur constructor which will remain unbeaten for years to come. ETi's top design team used some of the latest devices on the market to achieve this breakthrough.

WHEN designing this amplifier considerable effort was made to achieve, several, generally. incompatible, aims. These were to design an amplifier that gave high performance, was simple enough for the beginner to build BUT, was low in cost.
Since a high percentage of the cost of an amplifier is in the hardware, le.g. chassis, potentiometers, switches etch
and this cost does not vary greatly relative to amplifier power output, we aimed at the highest possible power for reasonable cost. Thus the amplifier gives 25 watts RMS per channel which is about as much as can be obtained without component costs increasing dramatically.
To gain the required simplicity we used a single printed circuit board, to hold as much as possible of the
electronics, thus keeping external wiring down to a minimum.

The result is a 25 watt-per-channel amplifier which is extremely easy to build and set up, which has a distortion of around $0.1 \%$ and costs about the same as a 12 watt per channel kit at present on the market that is much more difficult to build.
The single printed-circuit board

## 25 SHIMTilix



## KIT OF PARTS

A kit of parts for this project is available from Doram Electronics.
construction greatly. simplifies things for the beginner. A heatsink is attached to the rear of the board to hold the power transistors, and a bracket at the front holds the potentiometers. Before attaching these brackets assemble the components to the printed circuit board according to the component overlay.

Fig. 2. Power supply of the INTERNATIONAL• 25


Main text continues five pages forwards.
Fig. 3. Tone control characteristics.

Fig. 4. Circuit diagram of the INTERNATIONAL-25.

## HOW IT WORKS INTERNATIONAL. 25

## PREAMPLIFIER

In the preamplifier we have used two TCA220 integrated circuits each of which contain three identical operational amplifiers. These work similarly to the conventional op amp like the 709,741 or 301 except the output is an emitter follower and needs a pull down resistor. Fig. 1. for those interested. Frequency compensation is accomplished by a 390 ohm resistor in series with a 330 pF capacitor connected to the appropriate terminal. The maximum voltage allowed on this 1 C is 18 V . Since the output swing in the positive direction is less than that in the negative direction we have used +10 V and -6.6 V supplies.
The magnetic pickup used on most good turntables has a low output and also needs equalization to perform correctly. We used part of the TCA 220 (ICI-1 and ICI-2) to amplify this signal (about 60 times or 35 dB at 1 kHz ) and to provide the equalization required +13 dB at 100 Hz and -14 dB at 10 kHz referred to the gain at 1 kHz ). The output of this amplifying stage connects to the switch SWI which selects the desired input. The signal from the cartridge is amplified before the selector switch to improve the signal-to-noise ratio.

After the selector switch we have the balance control (RV1) which attenuates either left or right channel as desired. The signal is then amplified, by a factor of two, to recover what is lost in the balance-control network and also to buffer the signal to give a low impedance output. The output drives the tone-control network and also the tape-output sockets.
The tone-control section uses the last sections of the TCA220 (IC2/2, IC2/3) with the bass and treble controls in the feedback network. These controls. provide about 10 dB of boost and cut of both bass and treble. Resistors R27 and R33 set the limit of the treble boost and cut, while C21 controls the actual frequency where the treble control starts. Resistors R29 and R35 control the bass limits while C19 sets the frequency. The output of the stage is connected to the volume-control potentiometer RV4.

## POWER AMPLIFIER

The power amplifier is of conventional design using a differential pair Q1 and Q3 followed by a common-emitter amplifier stage, Q5, working at a constant current (5 mA ) supplied by Q11 and Q13. The output of Q5 is buffered by the output transistors Q15 and Q17. These are darlington transistors and have a current gain ( Hfe ) of over 750 at 3A. These transistors are biased
on slightly $(10 \mathrm{~mA})$ to remove cross-over distortion and the bias is set by measuring the voltage across R63 or $73(3 \mathrm{~V})$ while adjusting RV5. After bias adjustment is completed these resistors are shorted out to allow full power capability. Transistors Q7 and Q9 are physically joined onto Q15 and Q17 to provide accurate temperature indication and to ensure thermal stability.
The gain of the power amplifier stage is 100 and is set by the ratio of R55/R51. The earth reference for the power-amplifier input stage is supplied via the coax cables connecting to the preamplifier.

## POWER SUPPLY

The power supply is a full wave rectifier with a centre-tapped transformer supplying $\pm 28 \mathrm{~V}$ to the main amplifiers. The supplies for the preamplifier are obtained from a 10 $\checkmark$ zener ZD 2 and a 8.2 V zener ZD 1 . The actual negative supply to the preamplifier comes via the LED on the front panel and is about -6.6 volts ( 1.6 V across LED). A smooth -5 V is also derived from the -8.2 V and is used for the differential pair in the main amplifier.
The relay RLA is used to prevent the switch on transient reaching the speakers. After switch on there is a delay due to C38 of about 4 seconds before the speakers are connected. On switch off the delay is only about 1 second.



Fig. 6 The component overlay.


## FOR THE HOME

HIGH POWER STROBE
78
Simple and versatile -- suitable for parties, light shows, discotheques
LM 380 INTERCOM AND RECORD PLAYER82

Circuits to build using this inexpensive $3 W$ I.C
PRINTIMER88

Improve the quality of your photo prints
TEMPERATURE ALARM91

Under or over temperature will activate this alarm
TAPE / SLIDE SYNCHRONISER
Tone-operated circuit synchronises slide projector ro tape deck

## MISCELLANEOUS

## FAMILY FERRY

96Electronic version of an old gameNI-CAD BATTERY CHARGER98Universal charger handles most nickel-cadmium cellsAERIAL MATCHER100
Peak up your short wave signalsDIGITAL STOPWATCH102
Measure elapsed time electronically with this unit EARTH RESISTIVITY METER ..... 110
How to explore deep under the earth's surface
USING A RESISTIVITY METER ..... 121
Simplied method of interpreting earth resistivity data TECH-TIPS ..... 112

FILL IN THE COUPON BELOW TO RECEIVE YOUR COPY DIRECT FROM US. WE REGRET TOP PROJECTS No. 1 IS NO LONGER AVAILABLE.

## | To: ETI TOP PROJECTS No. 2 ETI MAGAZINE, 36 Ebury Street, London SW1 W OLW

IPlease send me a copy of Top Projects No. 2. Il lenclose a cheque/PO for 90 p (payable to ETII Magazine) which includes $15 p$ postage (applica-I ble surface mail world-wide). Canadian readers may send $\$ 2.00$
chruic ideas forthe experimenter

## INTERNATIONAL 25

Fig. 5. PCB design for the INTERNATIONAL-25.


The component overlay diagram, Fig. 6 , should be used when the components are soldered to the board. Do the linking wires first. There are two links which go under resistors R49 and R50 in the power amplifier and these should be insulated with sleeving. All other links may be tinned copper provided that they are kept straight and flat on the board.
Although the components can' be mounted in any order it is usually, easier to mount the smallest (lowest height) components first, ie, resistors and diodes. These should be mounted flush on the surface of the board. The capacitors may now be mounted taking care not to damage the small ceramic capacitors by bending the leads too close to the body of the device. Make sure that electrolytic capacitors are orientated correctly, i.e., the polarity is correct.

The transistors, apart from Q7,8,9,10,15,16,17 and 18 (which are on the heatsink) may now be fitted to the board.
The integrated circuits may now be installed making sure that brientation is correct as indicated by the mark on the $I C$ which is at the pin 1 end Then mount the relay by passing the pins through the holes provided in the board and then bend the leads flush with the copper and solder them to the tracks.
The chokes L1 and L2 are made by winding about 25 turns of 0.4 mm copper wire (insulated) onto the body of a 10 ohm 1 watt resistor terminating the ends of the wire on the resistor leads. These may now be mounted on the board.
The balance, treble and bass controls should now have lengths of copper wire soldered to each of the terminals. They are then mounted, by passing the leads through the holes in the board, but are not soldered in position as yet. The front bracket should now be attached to the component side of the printed-circuit board and the potentiometers mounted to the panel. The leads from the potentiometers should then be drawn through the board as far as possible and then soldered in position. Then mount the heatsink bracket to the rear of the board using 9.6 mm spacers and countersunk screws.
The output transistors have to be prepared in a couple of ways before installation. The leads are too close together, and since they are mounted: close to the board the transistors may be damaged if the leads are just pulled apart. Fig. 7 shows the lead bending process which should be done carefully with a pair of long nose pliers. After bending, a BC108 should
be epoxyed with flat side onto the face of these transistors.
It is preferable to use one of the slow dry epoxies as they appear to withstand the elevated temperature better. If such epoxy is dried in the $100-1300$ range it will normall dry in about 30 minutes. Before gluing, however, it is best to scratch the type number on to the side of the output transistor to aid later identification.
When dry, the transistors can be mounted using insulation washers and a smear of silicon grease if available. The leads of the BC108 have to be bent out a long way but they should be long enough. If a small soldering iron is used these transistors can now be soldered in without removing the heatsink.
The rotary switch and volume control can now be mounted on to the front bracket. There are four links from the board to the rotary switch as shown in Fig. 9, the rest of the connections going to the rear panel. There are also four links to the volume control and two coax cables which go from the volume control to the main-amplifier inputs.
The chassis can now be assembled by mounting the transformer (terminals on the outside), the front panel, the headphone socket, LED, speaker sockets, the phono sockets, the rubber feet, the grommet for the mains lead and the mains lead itself. The screw for the cable clamp also mounts one of the rubber feet.
The printed-circuit board module can now be temporarily installed. If the potentiorneters used have a long threaded portion (this depends on the brand) there may be room for extra nuts to hold the module and front panel on. If not, the nuts will have to
be removed and refitted on the outside of the front panel. The module is held in by the potentiometer and by two self-tapping screws into the heatsink from the underside. Due to the variations in alignment of the mechanical parts, the location of the holes in the heatsink cannot be accurately determined. Therefore these holes have been left undrilled and can now be marked through the holes in the chassis. The unit can now be removed to facilitate drilling these holes to a size suitable for the self tappers. Be careful not to damage the printed circuit board, and to remove any shavings during this process.
Connect coax cable from the phono input and the tape output, long enough to reach the rear panel socket. Leads to join the output of the main amplifier to the relay, and leads from the relay long enough to reach the headphone socket can be installed along with the lead from the speaker common and the LED leads. To facilitate the assembly pins should be installed to the board where the transformer is connected.
The 240 V input cable can now be joined to the switch and then to the transformer primary along with the capacitor C35. The earth wire should be bolted directly onto the chassis as shown. To prevent possible personal injury the switch and the transformer primary terminals should be taped up with insulation tape.

Detail of power transistor assembly and installation. Note compensation transistors glued to output transistors (see text) and mica insulators between power transistors and chassis. Care should be taken with cooling Q15 and Q17 (the two transistors on the left). If the amp is likely to be driven hard these will need individual heatsinks.
The leads from the compensation transistors may need careful bending.


## INTERNATIONAL • 25



Fig. 7. How to prepare the power transistor leads for installation.

(.) 2 holes 6 mm DIA.

6 holes 10 mm dia

Fig.13. Front panel details.


Fig. 14 . Potentiometer support bracket.


The printed-circuit board module can now be permanently reinstalled. The transformer secondary can now be connected and the rest of the wiring installed. The headphone socket along with R80 and R81 can be wired according to Fig. 6.
This completes the assembly of the unit which is now ready for testing.

## TESTING

Providing all components are in the correct place and all interconnections are correct the only adjustment is that to set the bias current in the output transistors.
Before switching on rotate the trim potentiometers, RV5 and 6, fully clockwise i.e. toward the transformer. Switch on without speakers connected and measure the voltage across R63 and adjust RV5 to give about 3 volts. Repeat the process with the other channel and R64 and RV6. The resistors R63, 64, 73 and 74 can now be shorted out lafter switching off) by short links of wire soldered onto the leads of the resistor.
If a fault exists in the output stage, either a transistor is shorted to the heatsink or the bias setting is taulty etc. In such a case the resistors R63, 64,73 and 74 will overheat and may burn out. This effectively protects the output transistors.

FAULT

## PROBLEM

R63 or R73 gets hot (only one)
R63 and R73 gets hot (both)
Bias current not adjustable down to within limits

Bias current too low or zero

Output voltage high (near supply rail)

Output voltage low

Main amplifier has no gain

Main amp appears OK but pre amp does not work

Fig. 16. Chassis details

## FINDING

## POSSIBLE FAULT AND CHECKS

shorted insulation on Q15 or Q17
bias current too high
Q7 and/or Q8 faulty or wrong polarity. Voltage between base of Q15. and base of Q17 should be about 2.3 Volts
check output voltage, if about 0 V then possible shorted Q7 or Q8
check current source Q11 is working Voltage across R61 should be about $0.65 V$. Check voltage across R 45 it should be almost 0 V (output high) if it is suspect Q 5 . If not check voltage at base of Q1 and Q3. Q3 should be higher than Q1 if so suspect Q1 or Q3
check voltage across R 45 should be about 0.7 V if $>0.7 \mathrm{~V}$ suspect Q 5 . If less than 0.5 V measure voltages at base of Q1 and Q3. Q3 should be lower than Q1 if so suspect Q1 or Q3

## faulty or disconnected C33, R51 or

 R53 wrong valuecheck supply voltages or pin 6 $(+10 \mathrm{~V})$ and pins 9 and $16(-6.6 \mathrm{~V})$ Check output voltage of each individual amplifier. They should all be about 0 V if not check components in local area.


Fig.17. Cover for the amplifier. This can be made from contiboard or from $1,6^{\circ}$ gauge aluminium.

# SIMPLE STEREO AMPLIFIER 

Ideal beginner's amplifier suits simple record players.
 stereo amplifier.


Loudspeaker impedance:
PPECIFICATIONS ETI 429
200 mV
150 k
2.5W RMS/channel 0.2\%

100 kHz (tone control flat) 8 ohm or 15 ohm

THIS SIMPLE stereo amplifier uses two LM380 IC's and a minimum of external components, it can easilv be assembled in only one or two evenings. It is designed to match the crystal cartridges found on most simple record players and gives surprisingly good results.

## CONSTRUCTION

Check the orientation of the ICs on the PC board with the aid of the component overlay and solder them in position first of all. Next cut four heatsinks from shim copper or tinplate as illustrated in Fig. 3 la rolled out tin can will do to make these).
Tin the tabs of the heatsinks and solder one to the centre three pins on either side of each IC.
Next mount the four diodes and the electrolytic capacitors, again checking orientation, as these devices are polarity conscious. Use shielded leads for the connections to the pickup cartridge and twisted pairs to the potentiometers.
Mounting position is not critical a general rule of thumb is to keep input circuitry away from strong ac fields such as found close to power transformers and motors. Keep all leads reasonably short and away from moving parts likely to foul them. Additionally keep the power transformer well away from the pickup arm and its signal leads.
If you mount the volume and tone controls as we have, on a wood base board, solder an earth wire to the cases of the pots. This will stop the amplifier buzzing every time you adjust the controls.


Fig. 3. Dimensions for the IC heatsinks. One is soldered to each side of the IC - to pins 3, 4, 5 and 10, 11, 12.


Fig. 4. Wiring to the volume and tone potentiometers.

| PARTS LIST ETI 429 |  |  |
| :---: | :---: | :---: |
| R1,R2 | Resistor 2 | $2.7 \Omega 1 / 2 \mathrm{~W}, 10 \%$ |
| C1,C2 | Capacitor 0 | $0.0033 \mu \mathrm{~F}$, mylar |
| C3,C4 |  | $\begin{aligned} & 10 \mu \mathrm{~F}, 25 \mathrm{~V} \\ & \text { electrolytic } \end{aligned}$ |
| C5,C6 | ", 0 | $0.1 \mu \mathrm{~F}$, mylar |
| C7,C8 |  | $470 \mu \mathrm{~F}, 16 \mathrm{~V}$ |
| C9 | 1 | $1000 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic |
| D1,2,3,4 | 3,4 Diode | 1 N4001 |
| $\begin{aligned} & R \vee 1 \\ & R \vee 2 \end{aligned}$ | Potentiometer | 2.2M LIN Dual 2.2M LOG Dual |
| $T 1 \quad T$ | Transformer | $\begin{aligned} & 240 \mathrm{~V}-12 / 15 \mathrm{~V}, \\ & 500 \mathrm{~mA} \end{aligned}$ |
| SW1 S | Switch | DPST 2A 240 V |
| PCB |  |  |
| Three core mains flex and plug, speakers ( 8 -15 ohm), hookup wire, knobs, 3 way mains terminal strip. |  |  |

Three core mains flex and plug, speakers
$(8-15$ ohm), hookup wire, knobs, 3 way mains terminal strip.


Fig. 5. Printed circuit board. Full size $97 \times 61 \mathrm{~mm}$.

The completed amplifier fitted below a con ventional record player. Transformer (not shownl is mounted well clear of signal leads.


## NEW SOUND FOR YOUR <br> The normal guitar sound begins with a sharp 'attack'. This device removes the attack effect, <br> producing a completely new and way-out sound, unlike that of any other instrument. <br> GUITAR

Every musical instrument owes its unique sound to a certain combination of inherent characteristics. For instance, the number of harmonics produced, combined with their magnitudes and phase relationships, play an important role in creating the instrument's distinctive sound
Another important characteristic is attack time - the speed with which sound is built up after a tone is initiated. Reed instruments such as the clarinet produce sounds which can be described as 'soft' because they have a relatively slow attack, caused by the time it takes for the reed to build up to its maximum vibration. On the other hand, instruments such as the guitar have a very rapid attack because maximum amplitude vibration is started as soon as the string is plucked or struck
By changing an instrument's attack, we can make it sound different and, at the same time, not like any other instrument. That is what the 'Attack Delay Unit' (ADU) does for the guitar. By slowing down the guitar's attack, a brand new sound can be obtained. The effect can also be produced by recording a guitar passage on tape and then running, the tape backwards through the player. Instead of sharp, clean tones, a hard-to-describe 'whoop' is heard for each note played. Although the note is on pitch, it doesn't sound like it belongs to any known musical instrument.
Using the ADU, attack can be delayed for a very short period so that only the sound of the pick hitting the string is èliminated, or it can be delayed so that the 'music builds up over the length of a run. A foot control switch makes it easy to delay particular notes selectively.
CONSTRUCTION. The circuit of the ADU, shown in Fig. 1, is fabricated on a printed circuit board whose foil


pattern is shown in Fig. 2. Once the board has been made (or purchased). install the components as shown in Fig. 3. Be sure to install the semiconductors and electrolytic capacitors correctly. Use a heat sink (such as long-nose pliers) on the transistor and diode leads while soldering to avoid possible thermal damage. Also, use a low-power 135 watts) soldering iron. Connect sufficiently long leads to the various external connection pads before mounting the board in the chassis.
Almost any type of metal chassis may be used as long as it will hold the PC board, the power transformer and the associated rectifier., and will permit the installation of four switches on the front and three phone jacks on the back
The choice of switches for S2, S3 and S4 should be made carefully. During use, it may be necessary to manipulate these switches rapidly in various combinations, so they should have large paddle-type handles and operate with a light pressure. Any type of DPST switch rated at 240 volts ac may be used for power switch S1.
Do not ground either side of the ac to the chassis
Mount the three capacitor-selector switches (S2, S3 and S4) on the front wall and three phone jacks ( J 1 , input; J2, foot control; and J3, output) on the rear wall.


Interior of unit, showing power supply at left, main circuit board at right. Jack sockets for input, output and foot control are seen on rear panel.

FIG. 2 (below, left): Foil pattern of printed circuit board (full-size).

FIG. 3 (below, right). Component layout on printed circuit board.


Mount the PC board on four $1 / 4^{\prime \prime}$ insulated spacers so that RV1 will be accessible from the side. Wire the complete circuit as shown in Fig. 1. Put four rubber feet on the chassis bottom to keep it from slipping around when in use.

SET-UP. Prepare the unit for operation by running a short length of cable from the output of the ADU to your amplifier input and plugging the instrument output into the ADU input. For the time being, do not use the foot control switch. Turn the ADU on and set the delay to 4 .
Since a certain minimum signal is required to operate the delay unit, the instrument's gain should be turned up almost all the way and the volume adjusted by using the amplifier's control
The only thing that needs adjustment in the ADU is potentiometer RV1. At one end of this potentiometer's rotation there is little or no delay in the instrument attack; with the opposite setting, there is no-sound for an instant and then the volume will come up full. Between these two extremes are a varietv of settings which can be selected strictly as a matter of personal taste. Ideally there should be very little or no sound when the note is first struck, followed immediately by a noticeable increase in volume with a smooth glide to maximum.

OPERATION. The three delay switches on the ADU can be used singly or in combinations to yield up to seven different delays. The numbers above the switches represent some arbitrary unit of delay (which varies with the setting of RV1) and may be added together to get the longer delays. For instance, if switches 2 and 4 are down, the attack delay is 6 times longer than if only switch 1 is down. Since the ADU requires a short, no-signal dead time for the circuits to reset, all strings on a guitar must be silenced before the next chord or note is struck. If single notes are being played, just lifting the finger from the finger board will ordinarily accomplish the deadening, but for chords with open strings it is necessary to deaden the strings with the palm of the strumming hand. The resetting time is actually very short (in the order of a tenth of a second), so very rapid runs can be played with the delay still occuring on each note.
The foot control switch is a single-pole, single-throw type and can be housed in a sturdy case of metal or a block of woud. The switch can be a push-on/push-off type, but experience has shown that a spring-loaded, normally closed switch works best. With this arrangement, selective delay can be accomplished, by pressing the switch when delay is desired and releasing it to sustain a note.



Fig. 1. This filter circuit can be used with on external amplifier.

Many economy hi-fi systems have adequate mid-range and treble response - but sound as if the bottom has fallen out of the amplifier when they come to some good solid bass

And when you calculate the amplifier and speaker capacity required for realistic bass response you begin to appreciate why

But all is not lost - for here is a modification that will reproduce the very deepest of bass, at levels practically guaranteed to infuriate your neighbours for life!

Unlike the higher audio frequencies, bass is largely non-directional, and, because of this, the positioning of a bass speaker is not at all critical.

The bass booster described in this project exploits this principle. Whilst
in no way affecting the normal output or stereo separation of the existing system the booster effectively combines the bass signals from the left and right hand stereo channels and, following amplification, reproduces them through a common bass speaker.

The system may be used in several different ways.

In its simplest form, the combining filter shown in Fig. 1 is connected to any spare mono or stereo amplifier (rated at 20 Watts or more) and played through a single speaker enclosure that has a good bass response

In another form the same arrangement is used together with the speaker system specifically designed for bass reproduction (shown in Figs. 6 \& 7).

But as few of us have spare
high-powered amplifiers lying around waiting for a project like this - we have designed a very simple yet effective amplifier especially for this project. Note, that for this latter arrangement the design of the filter has been changed slightly.

## CONSTRUCTION

If the booster is used in its simplest form - using a separate amplifier the filter should be constructed on a small piece of perforated board or tag strips. The circuit is shown in Fig. 1. The layout is not at all critical.

In the form shown in Fig. 2, the amplifier and filter are constructed as one unit. This complete unit may be mounted within the new bass speaker enclosure (as we did with our


Fig. 2. In this circuit the filter and amplifier are combined as one unit.


Modify your hi-fi system to provide some real bass performance.

prototype unit) or located in any readily accessible place
Construction of the one-piece unit is quite simple as most components are mounted directly on the printed circuit board - shown full size in Fig. 4. The main power transformer, output transistors and control potentiometer are mounted externally - and connections to and from these components are made via the points numbered on both the component layout diagram (Fig. 5) and the main circuit diagram (Fig. 2).
Make sure that all components are orientated correctly before soldering them into the circuit.
Transistors Q6 and Q7 are mounted on the heatsink - using insulating washers - and connected to pins 1,2, 3, 4 and 5 as shown in Figs. 2 and 5. If the amplifier is to be located within the speaker enclosure, the power transformer should be mounted on rubber.
The connections to the inputs and to the volume control should be made using screened cable.
When you are sure that all components have been wired correctly, set the wiper RV2 centre of its travel. Do not connect the speakers at this stage of the operation.

> This project is intended primarily to increase the bass response of economy hi.fi systems. There is little to be gained by using this system where adequate bass already exists.


Switch on the main 240 Volt supply and check the voltage across the speaker terminals. This should be less than 200 mV . If it is substantially higher than this, switch off and recheck all connections. (If a voltmeter is not available, connect one side of the speaker to one side of the amplifier and momentarily touch the second amplifier lead to the remaining side of the speaker. If all is well the speaker should remain practically silent or at most produce a slight 'click'. If the speaker cone tries to fly across the room - then switch of $f$ at once and recheck all connections).
Next, if a milliammeter is available; disconnect the lead to pin 2 and measure the current in this lead. Adjust RV2 until the current is approx. 40 mA . If no milliammeter is available, leave RV2 in mid-position.

Connect the leads from the exisțing speakers to the filter input and connect the bass speaker to the booster amplifier. The power may now be switched on and the complete system checked out. Remember that the sound from the bass booster will be grossly distorted if this unit is used


PARTS LIST ET 407
(combined filter/amplifier)



The output from each channel of the existing stereo amplifier is combined by resistors R1-R4. Resistors R5. R6 and RV1, together with capacitors C1, C2 and C3 form a low pass filter that has a cut-off frequency around 200 Hz and a final 18 dB per octave slope.

Capacitor C 4 provides a high pass filter of approximately $(30 \mathrm{~Hz}$ to protect the speakers from large transients and de levels. (The filter shown in Fig. 1 - intended for use with separate amplifiers - has a 20 dB attenuator incorporated before the output potentiometer - this protects the following amplifier against overloads).

The amplifier shown in Fig. 2 has a voltage gain of $23 \frac{(R 9+R 7)}{R 7}$, a power output of approx. 25 W atts into four ohms and a frequency response from OHz to approx. 50 kHz . How-
ever with the input filter incorporated, the frequency response of the amplifier is that of the filter - shown in Fig. 3.

The main voltage gain of the amplifier circuit is provided by IC1, Q2 and Q3, Q4 and Q5 provide the necessary current gain to drive the output transistors Q6 and Q7. Transistor Q1 stabilises Q2 and Q3 while D1 compensates Q4, D2 and D3 compensate Q5 and Q7.

Zener diodes ZDI and ZD2 protect Q2 and Q3 by limiting the output voltage swing of the IC.

The amplifier described in this project may also be used - without the filter - as a straightforward 25 Watt mono amplifier - in this case diode D2 or D3 (but not both) should be removed from its location on the printed circuit board and relocated on the heat sink.

Fig. 5. How the components are located on the printed circuit board.


Fig. 6. Constructional details of recommended speaker enclosure

Fig. 7. Exploded view of speaker enclosure.
alone - but when mixed with the sound from the existing two speakers in your stereo system it sounds just great.

## BASS SPEAKER ENCLOSURE

The enclosure tested for use with this system is shown in Figs 6 and 7. The speakers used were two 8 ohm Magnavox type 8 W connected in parallel, thus having an effective impedance of 4 ohms.
The inside of the speaker enclosure was lined on at least three non-facing surfaces (eg side, top and rear) with absorptive material such as felt.

Fig. 8. How the speakers are interconnected.


## LINE AMPLIFIER

## Boost microphone output with this low noise amplifier.



The completed line amplifier. Note the use of Cannon plugs and the gain switch on the side.


## PROJECT 430

MODERN high quality mierophones are low impedance units having a very low output voltage. To minimize noise, picked up on long leads, it is usually necessary to use special balanced and screened leads together with balancing transformers. An alternative approach is to use a low noise amplifier to boost the signal before passing it down the cable. The ETI 430 line amplifier, described here, is intended for this purpose.
Such a unit, when used with the ETI Master Mixer (described in April, May, June and July 1973) provides either 20 or $40 . \mathrm{dB}$ of gain prior to the mixer. This allows the mixer to be used on the low-sensitivity range. Thus the larger signal now available, effectively over-rides the inherent noise of the first amplifier in the mixer.

The overall effect of using such an amplifier is to vastly improve the signal-to-noise ratio of the particular microphone channel and to eliminate the need for an expensive balanced and screened cable and balancing transformer.
To reduce the possibility of mains hum pickup we have used a small nine volt battery to power the unit. Since the current drawn is a mere 0.5 mA , the batterv should last about three to

Fig. 1. Circuit diagram of the microphone line amplifier. Voltages shown are tyoical and as measured on our prototype.



Internal layout of the line amplifier.
four hundred hours before replacement is required.
The ETI line amplifier can of course be used to great advantage with any recording equipment where low noise operation is necessary. When used with the Master Mixer the low impedance input should be used but the terminating resistor (fitted across the mixer input socket) should be removed so that a 4.7 k input impedance is obtained.

## CONSTRUCTION

The circuit is not critical in any way hence, practically any construction method may be used. However, the use of the printed circuit board specified will considerably simplify construction.
We used an unbreakable plastic box (polycarbonate) to house our unit but if the unit is to be used in the proximity of power cables etc it would be advisable to mount the unit in a metal box (diecast or similar). This is especially so if an input impedance above 1 k is to be used as the higher the impedance the more likely is hum pickup.
If Cannon plugs are used, as in our prototype, pins 1 and 2 should be linked and used as the earth line. Pin 3 is then used as the active line.


Fig. 2. Printed circuit board layout for the amplifier. Full size $55 \times 42$ mm.


Fig.3. Artwork for the gain switch label. (Shown full size).


MEASURED PERFORMANCE

IMPEDANCE
Input
Output
Output

## GAIN

High
Low
OUTPUT VOLTAGE
Maximum
INPUT VOLTAGE
Maximum (high range)
Maximum (low range)
FREQUENCY RESPONSE
$10 \mathrm{~Hz}-30 \mathrm{kHz}$
EQUIVALENT INPUT NOISE
(referred to 1 mW into $600 \Omega$ )
High Range
Low Range
$-110 \mathrm{dBm}$
selectable up to 68 k max $\approx 1.5 \mathrm{k}$

40 dB
20 dB

3 volts

30 mV
300 mV
$+0-3 \mathrm{~dB}$
$-102 \mathrm{dBm}$

## DISTORTION

| Output Voltage | 100 Hz | 1 kHz | 6.3 kHz |
| :---: | :--- | :--- | :--- |
| 300 mV | $<0.1 \%$ | $<0.1 \%$ | $<0.1 \%$ |
| 1 V | $0.17 \%$ | $0.2 \%$ | $0.17 \%$ |
| 2 V | $0.5 \%$ | $0.5 \%$ | $0.5 \%$ |
| 3 V | $1.75 \%$ | $1.8 \%$ | $1.7 \%$ |

## LINE AMPLIFIER

## HOW IT WORKS ETI 430

The line amplifier is basically a two transistor amplifier having a selectable gain of either 20 dB (x10) or $40 \mathrm{~dB}(\mathrm{x} \mathrm{100)}$ ).
The input impedance of the amplifier (referring to Fig. 1) is determined by the combined values of R1, R3 and R4 - all in parallel. The parallel impedance of R3 and R4 is 68 k and this is therefore the upper limit of input impedance $(R=\infty)$.
For impedances less than 5 k the values of R3 and R4 may be ignored and R1 is set to the same value as the desired input impedance. Hence the circuit as shown matches microphones having 200 ohm output impedance.
Resistor R2, in conjunction with R3 and R4 determines the dc bias for transistor Q3 whilst capacitor C2 decouples the input bias network
from any supply rail noise. The output of Q2 is fed back to the emitter of Q1 thus providing negative feedback which as well as supplying a dc bias, sets the ac gain of the stage.
The gain of the amplifier may be calculated using the following formula (assuming ideal transistors).

Gain $=\underline{R 9+R 6+(R 7 / / R 8)}$
$R 6+(R 7 / / R 8)$

Thus for $\mathrm{R} 8=12 \mathrm{k}$ the gain is 11.2 or 21 dB . For $\mathbf{R 8}=\mathbf{0}$ the gain is 101 or 40 dB . The actual gain obtained is slightly lower than this due to the finite betas of the transistors used.
The value of capacitor C3 determines the upper 3 dB point of 30 kHz whilst capacitors $\mathrm{Cl}, \mathrm{C} 4$ and C5 all give individual break points at the low end of $5 \mathrm{~Hz}, 7 \mathrm{~Hz}$ and 1.5 Hz respectively.

## PARTS LIST - ETI 430



56 pF ceramic
Q1 Transistor BC109 ntc.
SW1 Switch 2 pole 3 position slide or 2 pole centre off toggle

PC board ETI-430
Cannon sockets (male and female)
Cord plugs $=$
Box to suit (pieferable metal), 9 V battery and clip input and output sockets etc.


It is reported that as office efficiency allegedly falls when the ambient noise level is low due to sounds such as telephone conversations, etc, becoming intrusive and thus impairing the concentration of nearby staff; electronic installations are being advocated to maintain a constant masking background noise . . . other methods might also suggest themselves.

This circuit, intended primarily for the experimenter, enables basic loudness control to be added to simple amplifiers.

THERE YOU ARE, sitting in the lounge room enjoying Beethoven's Fifth. All of a sudden your enjoyment is shattered by your wife - who insists that the music is far too loud, the neighbours five doors up are complaining, and the kids can't get to sleep. So reluctantly you turn the volume down - only to find that the music just doesn't sound the same, the bass has dropped-off badly and even the treble seems to be down:
It is to cater for situations like this, that amplifier manufacturers include 'loudness' controls.
'Loudness' is a subjective evaluation, primarily a function of a sound's intensity, but also strongly influenced by frequency. The keyword is of course 'subjective'. That is the response of the ear is non-linear both to changes in sound level and also frequency.
This is best understood by reference to the standard curves for the average ear. These curves, due to Robinson and Dadson, are now generally accepted as being more accurate than the classical ones generated earlier by Fletcher and Munsen (after whom the effect is called).
In essence, loudness controls compensate for the Fletcher Munsen effect, producing what is generally (but by no means universally) agreed to be a subjectively more pleasing sound at low listening levels.
Loudness circuits do this by progressively boosting bass - and to a lesser extent treble - as volume is reduced.
The objection to loudness controls is that the effect is totally artificial - as one moves further away from an original sound source bass and treble

Fig. 1.

will be attenuated more than midrange sounds. So if your penchant is listening to orchestras a hundred metres or so away then loudness controls are not for you!

Many modern high quality amplifiers have loudness controls built in. In most instances they are manually switched into circuit when required - in a few amplifiers the circuit is switched in at all times.
Nevertheless there are innumerable older or present-day low-priced amplifiers that are not fitted with loudness compensation - and it is for units such as these that this simple project has been designed.
The device shown in Fig. 1 is for a mono amplifier - two are required for stereo amplifiers. It can be very simply assembled on tag strips or matrix board, and, when completed connected between your pre-amplifier and main amplifier. If yours is an integrated unit it should be readily possible to break into the volume control circuit - just connect the unit in series with the slider terminal of the potentiometer. Screened leads may be necessary if long lengths are required.
We would like to emphasize that this

is a 'compromise' circuit. Ideally a loudness control must be designed specifically to suit the amplifier for which it is intended. Also the degree of loudness compensation should be related to the volume control setting.
This latter requirement involves replacing the existing volume control by a suitably tapped potentiometer a device that is not readily available "off the shelf" - so the circuit shown here introduces a fixed amount of compensation that is adequate for moderate listening levels.
This circuit will suit most amplifiers quite well - and in any case can be adjusted by minor variation of component values if required.

Switch SW1 should be a double-pole double-throw type if stereo operation is required.

# ELECTRONIC IGNITION SYSTEM 

Reliable CDI, tachometer and engine speed limiter - all in one unit!

## by Barry Wilkinson.

THE CONVENTIONAL electro-mechanical engine ignition system has been with us virtually unchanged since its development by Charles Kettering over fifty years ago.
It is simple in concept and fairly reliable in operation, but even if maintained in impeccable working order it's performance is only just adequate in vehicles of average performance used in moderate climates.
The Kettering system has characteristics that are very far from ideal. The voltage supplied to the spark plugs, for instance, is low during starting and also at high engine speeds - just when high output is most needed. Contact breaker point and distributor cam wear is quite rapid and cause efficiency to fall off alarmingly.
Even when new, it is rare indeed to find a Kettering system that is working correctly, (that is the reason why many people obtain better results than should otherwise be expected when they fit a CDI or other electronic system to their car).
Now the system's deficiencies have become more serious - our world has too little oil and too much pollution. Good fuel economy and low engine emission have becorne of greater importance than original engineering cost.
At first sight it seems a relatively


Normal (Kettering) ignition system.
simple job to convert a Kettering system to electronic operation. But there is far more to it than that, as many have found to their cost. And whilst there has been a plethora of electronic systems on the market for the past ten years, few indeed can even remotely match the conventional system's reliability.
As recently as August of 1974, one of our leading motoring magazines tested ten electronic systems made by leading European manufacturers. Incredibly, five of those systems failed within an hour and a half of installation! The reasons for the failure of these systems is discussed later in this article.
Nevertheless though, it is possible to design 'and construct sound reliable electronic ignition systems and these do have many advantages over Kettering systems.
At this point we might as well debunk a few myths - and probably lose the odd advertiser or two as well!
Unless your original ignition system is grossly maladjusted, there is no way in the world that an electronic system will improve power or fuel consumption by the $20 \%$ plus that many of their manufacturers claim.
What you can realistically expect is about three to five per cent better consumption and about the same increase in top end power - especiatly with small high revving engines. There is rarely any measurable difference with big lazy V8s, except that starting may be easier on cold mornings.
Distributor point life is greatly extended, spark plugs will last longer and the system will remain in tune for much longer periods.

## EARLY ELECTRONIC SYSTEMS

The first transistor systems came into use about ten years ago. These were rudimentary systems in which a transistor was used to switch the main current - so that a control current only passed through the contact breaker points.
These systems were effective in that they prevented point burning but were just as adversely affected by high-speed point bounce as the systems they replaced. Apart from that, only low-voltage rating ( 100 V )
transistors were generally available so special high ratio ignition coils were required. These special coils drew heavy current - as much as 12 amps was not uncommon.
The systems just described were not really electronic ignition systems rather they were transistor-assisted.

## CDI

Capacitor Discharge Ignition (CDI) was introduced some three years later.
In this system a capacitor (normally between $1.0 \mu \mathrm{~F}$ and $1.5 \mu \mathrm{~F}$ ) is charged to 400 V or so, and, when triggered, is discharged into the spark coil thus inducing the required high voltage by transformer action.
CDI systems can be made to work very well indeed, they have excellent characteristics, such as low current drain and almost constant voltage output.
But whilst they can be very effective, many CDI systems are very unreliable due mainly to designers not appreciating that many of the components are being run way beyond their design limits.

## DWELL EXTENDERS

A simple device called a dwell-extender made a brief appearance a few years ago. This operated by using an SCR to 'close' the points about half a millisecond after they opened thus allowing greater current build up in the coil. In effect, dwell extenders extended the 'effective rev range' of an ignition system by about $20 \%$.
At present the transistor assisted system is making a comeback and is just as common as CDI systems. There is also a trend towards breakerless (no contact points) systems - thus eliminating point bounce and ideally ensuring that each cylinder is fired precisely at the correct time something that rarely happens with Kettering systems due to manufacturing errors in the distributor cam.

## THE ETI SVSTEM

Many readers have asked us to design and publish a reliable up-to-date CDI system, so over a period we have investigated very many different types to see which would provide the optimum in performance and cost combined with total reliability.


Typical dwell-extender circuit

Since electronic components can fail suddenly and unexpectedly (usually at the most inconvenient times) we opted out of a contact-breakerless system or any system which could not be changed rapidly back to standard.
This latter constraint ruled out transistor assisted systems since these normally require a low inductance ignition coil which cannot be used with standard points.
Eventually we came back to the CDI technique, but then set about eliminating those aspects of earlier designs that compromised reliability.
Our starting point was to study existing CDI systems - to see just why they fail.
The circuit diagram of a conventional CDI system is shown below.
In this circuit the most likely component to fail is the discharge capacitor since peak currents of 10 to 20 amps flow during each cycle. Few capacitors will withstand this sort of treatment for long. To make matters worse, the charging voltage may under certain conditions reach 500 volts or more. Since $300-350$ volts is really all
that is required, this higher voltage causes the capacitor to operate at twice the energy density needed thus stressing the capacitor unnecessarily.
The SCR is also subjected to high current peaks and unless of adequate rating (as few are) it too may soon fail.
The inverter used to provide the high input voltage required by the CDI system is normally a self-oscillating saturating core circuit of the type shown. This type of circuit too has inherent failings. High currents are drawn at the moment of switching, thus causing high peak power dissipation in the transistors themselves, and as the output from the inverter is a square wave the rectifier diodes are subjected to very rapid changes in polarity.
Another failing common to many commercial units is that if the inverter is sufficiently powerful to deliver full power up to 5000 rpm to a V8 engine (i.e. operating frequency of plus 2 kHz ) the power dissipated in the diodes may eventually destroy them.
A final most annoying characteristic of otherwise satisfactory CDI systems is the hard-to-quieten whistle from the inverter transformer.
The new. ETI unit is more complex than most CDI's currently available - but all the above problems have been eliminated - and it has two further features that make it (we believe) unique.
Besides being a very good CDI unit, the circuit includes a tachometer output and an adjustable rev-limiting circuit.
The tacho has been included because most electronic tachos cannot be used in conjunction with a CDI system (to use the tacho function all that is needed is a suitably calibrated $0-1 \mathrm{~mA}$ fsd meter).

The rev limiter circuit is intended for


Transistor assisted ignition
engine overspeed protection only. It is of particular value with sporting cars in which safe engine rpm may be inadvertantly exceeded - and also in high power motor boats which frequently suffer engine damage due to the propellor jumping out of the water, thus unloading the motor sufficiently for engine speed to exceed a critical level.
Engine speed limiters are already fitted to a few vehicles (some Lotus cars for example) but these usually consist of a mechanically controlled electrical ignition cut-out. They work quite reliably but are prone to a 200 rpm or so hysterisis. If they cut out at, say 6500 rpm , then ignition will not be switched on again until the engine speed has fallen to 6300 rpm . In the meantime unburnt fuel has collected in the silencer where it will be ignited (with a bang) when ignition re-occurs.
The ETI electronic unit has virtually no hysterisis and operates smoothly and effectively.


# ELECTRONIC IGNITION SYSTEM 

The tacho/rev limiting circuit uses a dual timer (556). The first half of this IC operates as a monostable which is triggered when the ignition contact points open. This provides the tacho drive.
When the first delay period ends, the second monostable is triggered and this sets the limiter. If the next pulse from the points occurs before the completion of the second delay, the SCR is inhibited thus switching off ignition until the speed has fallen below the preset limit.
As the limiter has no real hysterisis, the motor will usually fire every second or third cylinder.
Any back firing that may occur takes place in the exhaust pipe near the cylinder head - not in the silencer.
We would like to emphasise once again that the limiting circuit is intended for motor protection only. It should not be used as a road speed limiter or governor.

## EARLY IGNITION SYSTEMS

The very earliest gas and oil engines used a flame or hot tube ignition system. The systems were basic yet reliable and effective. When ignition was required, a port in a reciprocating slide valve provided a passage between the burning flame and the mixture in the combustion chamber. Once the mixture was ignited, the port was mechanically closed.
The first electrical ignition system was devised by Sir Dugeld Clerk in the mid-1800's. The principle was similar to that of flame ignition except that an electrically heated platinum wire replaced the flame or hot tube. (This system is described in Sir Dugeld Clerk's classic work 'The Gas, Petrol and Oil Engine, Vol II.)

Break-spark ignition was used for a short time in the early days of motoring. In this system, a low voltage generator produces current in an inductive circuit. A spark is established within the combustion chamber at the required moment simply by mechanically separating two normally closed contacts. (This system is still used in a number of slow-speed stationary engines.)
The first high tension spark gap ignition was developed in France by Lenoir in 1860. Ten years before, a French mechanician, Ruhmkorff, had started to produce induction coils on a commercial scale. Lenoir based his system on the Ruhmkorff coil. His circuit was virtually identical to present day practice except that he used a trembler make and break on the primary side of the induction coil, instead of the mechanically operated synchronous switch used today.
The so-called 'trembler' ignition system was fitted to early Model 'T' Fords, and a few other (mainly American) vehicles, prior to 1920 or so. In this system, sixteen or so magnets were located around the engine flywheel. When the flywheel revolved, the magnets caused an alternating flux change in sixteen coils fixed to the engine main flywheel housing.
All sixteen coils were connected in series and provided an ac input to four separate trembler coils which in turn provided a high tension output, via a rotating distributor, to the spark plugs.

The system was not very reliable and later models used an orthodox Kettering system.


## HOW THE ETI UNIT WORKS

The block schematic drawing shows all functions of the ETI system.
The oscillator is based on a TTL device and runs at approximately 36 kHz . The output is frequency divided down to 9 kHz and can then be gated on or off by either of two control lines.
The output of the oscillator is used to drive an inverter which is simply a set of power transistors driving a centre-tapped transformer (no feedback windings are used).
The output of the transformer is rectified by high-speed diodes to provide about 500 volts with 14 volt input. This output is monitored by a detector. If the voltage rises above 350 volts the oscillator output is gated off which in turn shuts off the inverter. The oscillator restarts when the voltage drops below 325 volts. This circuit ensures that the output voltage (i.e. across the capacitor) is maintained at a constant level for input voltage changes from eight to 16 volts.
High voltage components consist of a $.1 \mu \mathrm{~F}$ or $1.5 \mu \mathrm{~F}$ capacitor and a 16 amp SCR. Due to the closely controlled drive voltage from the inverter, stress on these high voltage components is greatly reduced.
When the distributor points open, a $50 \mu \mathrm{sec}$ delay is initiated. This approximates the delay inherent in the normal mechanical system, thus the original distributor timing is maintained.
At the end of this $50 \mu \mathrm{sec}$ period, a monostable (half a NE556) is triggered. Its output is used for several purposes. The complete pulse is used to drive the tachometer ( 1 mA fsd) and the leading edge of the pulse triggers the SCR via a short monostable and signals the oscillator to switch off and remain off for a period long enough for the SCR to discharge the capacitor and turn off again. This prevents the inverter looking into a short circuit.
The trailing edge of this monostable output pulse triggers a second monostable comprising the second half of the NE556. This latter monostable is used for the rev limiting function. If its output has not returned to 'normal' before the contact breaker points re-open, the firing pulse to the SCR will be inhibited.
The rev limiting function is adjusted by simply connecting the output of the second monostable to the input of the first. The tacho meter will now indicate the maximum rpm before limiting occurs. Then, by adjusting the second delay, the desired rpm limit can be set.


## CONSTRUCTION

Construction of the unit is considerably simplified by the use of a printed circuit board and this is strongly recommended.
All components should be mounted on the printed circuit board in accordance with the component overlay diagram. Take particular care with the orientation of transistors, diodes, ICs and electrolytic capacitors. Wiring between the printed circuit board and external components is illustrated in Fig. 5. The switch used
in our prototype was mounted internally lit is only used in initial setting up) by soldering it onto the screws which mount the power transistors. If this method of mounting the switch is used, the screws to which it is mounted must be insulated (by insulated mounting washers on both sides of the transistor) from the transistor case. The other two transistor mounting screws should be insulated from the box lid but not from the transistors. When drilling the lid of the box check that the distance

## SPECIFICATION

SUPPLY VOLTAGE

Nominal
Maximum
CAPACITOR VOLTAGE
8 to 16 volt input
POINTS CURRENT
SUPPLY CURRENT*
RPM

| 8 cyl | 6 cyl | 4 cyl |  |
| :--- | ---: | ---: | :--- |
| 1500 | 2000 | 3000 | 1 A |
| 3000 | 4000 | 6000 | 2 A |
| 4500 | 6000 | 9000 | 2.8 A |
| 6000 | 8000 | $1.2,000$ | 3.2 A |
| 7500 | 10,000 |  | 4 A |
| 9000 |  | 4.4 A |  |
| ballast resistor of one ohm |  |  |  |

ELECTRONIC IGNITION SYSTEM

between the two mounting screws is the same as the hole spacing on the switch so that it will fit.
To facilitate easy change over, between standard and CDI ignition, an octal plug and socket is used to connect the unit, and a second socket for the standard system. Whilst our prototype may be seen to have both octal sockets mounted on the box, it is recommended that the second socket be mounted by a separate bracket on the car bulkhead, etc, so that the unit
may be removed completely if desired without interfering with normal operation of the car.

## CALIBRATION

This may be performed in either of the two ways:-

1. Obtain, or borrow, an accurate tachometer (one which will work with CDI systems). Connect and run the motor at a reasonably high rate and adjust RV1 to obtain the same reading as displayed on the master tacho.
2. Build either of the circuits shown in Fig. 4 and use together with a reference from the 50 Hz mains or a separate oscillator. If 50 Hz is to be used the second circuit is preferable as it gives a higher reading on the meter. To calibrate set RV1 such that the appropriate reading is obtained as detailed in the Table below.
Calibration against 50 Hz 4 cyl 6 cyl 8 cyl
Circuit A 15001000750
Circuit B 300020001500

If an oscillator is used the calibration may be performed at a point nearer the top end of the meter scale and the frequency to be used calculated as follows:-

## Input frequency $=$ RPM $\times \mathrm{NO}^{\mathrm{O}}$ of cyl <br> 120

(4 stroke only)
Using this method, the power to the inverter may be removed (detach the wire to pin 2 of the socket) which eliminates the need for connecting the ignition coil. Do not run the unit too long in this condition as resistors R10, $11,12,14,15$ and 16 run hot in this mode.
To set the rev limit, simply switch SW1 to SET (power should previously have been applied to the unit) and adjust RV2 to the desired limit as indicated on the meter.
itself draws virtually no current, therefore, the time to reach $1 / 3 \mathrm{Vs}$ is

 2


 IE SIIR? 여 sizanas pue $\Lambda 0$ of sdoip $\Lambda z \mathrm{I}+$




 normally held on due to R35/36, is

 is as follows.

[^0]
 activating the coil. If however the points have opened before the expiry







 'uo uonnusi inq 'paddols solou วч


This. ballast resistor allows the
transistor to fully saturate by limiting
 into the effective short circuit of the The output of the transformer is rectified by D3-D6 and C8 is charged
up via the primary of the ignition coil. This current is small (less than

 V using a 12 volt input, however, the


 3
0
0
0
0
0
0
0
0
0
0
0
0 state if the voltage falls below 325
volts. The reference for this circuit is the 5 volts supplied by the 7805 regulator which also supplies the TTL
circuitry. This effectively maintains constant voltage on the capacitor
over inputs from 8 to 16 volts.


 ignition coil primary. The
transformer action of the coil gives the required high voltage for the spark plugs. The inductor L1, along
with R19 and C7 protect the SCR from voltage transients which could

When the distributor points open
 point N rises over a period of about $50 \mu \mathrm{~s}$. When the points close the
 prevent point bounce. With SW1 in the run mode the rising voltage of the
points opening is coupled, via C10, to the input of 1C4/1. The output of
this IC is normally high $(+12 \mathrm{~V})$ and this IC is normally high ( +12 V ) and
 low until the voltage at pin 6 falls




## HOW IT WORKS ETI 312

The general block diagram and The general block diagram and
principle of operation was given last $\qquad$ greater detail.
Integrated circuits IC2/1 and IC2/2 form a multivibrator wutput of the multivibrator clocks the D-type
flip-flop IC $3 / 1$, the D terminal of flip-flop IC3/1, the D terminal of and the result is that the output is half the frequency of the input. This frequency division is necessary to provide an absolutely symmetric square wave which cannot otherwise
be guaranteed from the simple be guaranteed from the simple
oscillator used. The output of IC $3 / 1$ is divided again by 2 by IC3/2 reducing the frequency to about 6.5
kHz . The second division is used kHz . The second division is used
because we have two flip-flops available in the 7474 package and this allows us to use a higher
frequency oscillator and hence frequency oscillator and hence
smaller values for capacitors C3


 the gates IC2/3 and IC2/4. If the
control input (pin 3 and 6) is low

 however the control is high the
output of the two gates will be low irrespective of the other inputs.


 base of the appropriate transistor
 current will turn the transistor on.

 control is high then all transistors will turn off.

The transistors Q 4 and Q 5 control
the primary of the transformer whose centre tap goes to +12 volts via a ballast resistor. This resistor is either
the one fitted in the wiring-loom of the car, or, if not an additional one


## ELECTRONIC IGNITION SYSTEM



Fig. 2. Printed circuit board layout. Full size $149 \times 100 \mathrm{~mm}$.

## GETTING HOLD OF THE COMPONENTS

## SEMICONDUCTORS

The transistors and ICs are not unusual types and are all listed by more than one mail-order supplier and should present no problem.

The SCR must have a minimum voltage rating of 400 V and a current handling capacity of 15A. This is deliberately rated very generously as a failure is more serious in this type of equipment than in some others. A number of companies list SCR's by spec, others use manufacturers codings, however $400 \mathrm{~V} / 15 \mathrm{~A}$ types or better are widely listed.

Diecast boxes are available from Doram $(172 \times 121 \times 55 \mathrm{~mm})$ and Home Radio $(184 \times 114 \times$ 51 mm .

The printed circuit board is available from Ramar or Crofton.
C8 must be a high quality component. If a $1 \mu \mathrm{~F}$ is not available two $0.47 \mu \mathrm{~F}$ may be used in parallel. Marshalls and Doram however list $1 \mu$ Fcapacitors with working voltages over 600 V .

Many readers may not wish to wind their own transformers. Two companies market inverter transformers which have very similar electrical, though not physical, characteristics. Henry's Radio reference is IT3AT and Bi-Pre-Pak of Westcliff-on-Sea will supply the inverter transformer used in the previous ETI ignition System.

## INSTALLATION

A standard ignition system, illustrated in Fig. 6, usually has a ballast resistor which is either a separate wire-wound resistor, or is built into the wiring loom in the form of a resistive lead. In either case the power for the inverter must be tapped off the battery side of this resistor so that a solid +12 volts is obtained. If the resistor is in the wiring loom it may be easier to use another circuit (eg, reversing lights) which is only on when the ignition switch is on.
The connection socket should be wired into the standard circuit as shown in Fig. 7, If the car does not have a ballast resistor, then the power

is taken to pin 1 , and a one ohm, 20 W resistor connected between pins 1 and 2. In addition the standard ignition socket should use pins 1 and 3 rather than 2 and 3.
Mount the unit in the coolest possible place whilst at the same time not making the leads too long. The changeover socket should be mounted on the car in close proximity to the unit.

## USE OF REV LIMIT

The rev-limiter is designed to prevent engine revving beyond its safe operating speed. IT IS NOT INTENDED TO ACT AS A SPEED LIMITER. Nor should it be regarded as an infallible watchdog. It is intended solely to limit engine speed if the safe limit is exceeded inadvertently.
Clearly some people will use the device as a 'continuous limiter' racing and rally drivers, motor boat race drivers for instance. In such applications no engine damage should occur, but the silencer (if fitted) may be damaged as some fuel will be burnt in the tail pipe.
The device should never be used in this manner on the road. It wastes fuel and it is potentially dangerous as there is no reserve power available to cope with possible emergencies.

TABLE I
TACHO Value of C11

| Full scale | 8 cyl |
| :--- | :--- |
| 5000 | $0.027 \mu \mathrm{~F}$ |
| 6000 | $0.022 \mu \mathrm{~F}$ |
| 7000 | $0.022 \mu \mathrm{~F}$ |
| 8000 | $0.015 \mu \mathrm{~F}$ |
| 10000 | $0.012 \mu \mathrm{~F}$ |


| 6 cyl | 4 cyl |
| :--- | :--- |
| $0.039 \mu \mathrm{~F}$ | $0.056 \mu \mathrm{~F}$ |
| $0.033 \mu \mathrm{~F}$ | $0.047 \mu \mathrm{~F}$ |
| $0.027 \mu \mathrm{~F}$ | $0.039 \mu \mathrm{~F}$ |
| $0.022 \mu \mathrm{~F}$ | $0.033 \mu \mathrm{~F}$ |
| $0.018 \mu \mathrm{~F}$ | $0.027 \mu \mathrm{~F}$ |

REV LIMIT Value of C14

|  | 8 cyl | 6 cyl | 4 cyl |
| :--- | :--- | :--- | :--- |
| 4000 | $0.039 \mu \mathrm{~F}$ | $0.047 \mu \mathrm{~F}$ | $0.082 \mu \mathrm{~F}$ |
| 5000 | $0.027 \mu \mathrm{~F}$ | $0.033 \mu \mathrm{~F}$ | $0.047 \mu \mathrm{~F}$ |
| 6000 | $0.022 \mu \mathrm{~F}$ | $0.033 \mu \mathrm{~F}$ | $0.039 \mu \mathrm{~F}$ |
| 7000 | $0.022 \mu \mathrm{~F}$ | $0.027 \mu \mathrm{~F}$ | $0.033 \mu \mathrm{~F}$ |
| 8000 | $0.015 \mu \mathrm{~F}$ | $0.022 \mu \mathrm{~F}$ | $0.033 \mu \mathrm{~F}$ |

TABLE 2
Transformer Winding Details

| WINDING | TURNS | WIRE SIZE | NOTES |
| :--- | :---: | :---: | :--- |
| Secondary | 600 | $0.315 \mathrm{~mm}(30 \mathrm{swg})$ | layer wind <br> and use 0.05 mm <br> insulation every <br> 150 turns |
|  | interwinding insulation 0.25 mm <br> Primary 1 <br> Primary 215 $1 \mathrm{~mm}(20 \mathrm{swg})$ Bifilar wound <br> (i.e. wind both <br> primaries to- <br> gether as a pair) |  |  |

The best cores to use for this project are as follows:
CORE: E42 SIferrlt E cores, B66241-A0000-R026 or B66244-A0000-R026, two required. FORMER : Slemens B66242:A0000-M001, one required
ASSEMBLY: Insert cores into bobbIn after winding. Tape them together and then glue (epoxy) the cores onto the bobbin to hold them in position.
The $E$ cores and former are stocked by Electrovalue. An alternative is their ex-stock $47 \mathrm{~mm} \times 28 \mathrm{~mm}$ pot core (Ref B65631) with a single section bobbin, (Ref B65632-A0000 MOO1). The same wire gauge should be used but the primary windings are 10 turns each, the secondary 400 turns. Available from Electrovalue, 28 St. Judes Road, Englefield Green, Egham, Surrey.
CHOKE DETAILS: Approx 30 turns of $0.315 \mathrm{~mm}(30 \mathrm{swg}$ ) single layer wound onto a 1 W
resistor with a value over $1 \mathrm{k} \Omega$ (the resistor is only used as an inexpensive former).


Fig. 3. Component overlay.


Fig. 4. Two circuits which may be used to calibrate the unit if a reference tacho is not available. The second circuit should be used if a mains transformer is used to supply the 6.3 volts. (See text).



## Complete the coupon and we'll sendyou our complete,new catalogue.

The new Heathkit catalogue is now out. Full as ever withexciting new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now (enclosing a 10 p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading. And, if you happen to be in London or Cloucester, call in and see us. The London Heathkit Centre is at 233
Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Gloucester) Limited, Dept. ETI-P-26, Bristol Road, Gloucester, GL 26 6E. Tel: Gloucester (0452) 29451.

Digital electronic stop watch


AM/FM 60 watt r.m.s. stereo receiver


Digital rev counter


To: Heath (Gloucester) Limited, Dept. ETI-P-26, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose a 10 p stamp for postage.

Postcode

# TACHO TIMING LIGHT 



## Extended circuitry allows timing check over

full speed range.

This instrument incorporates a calibrated delay which gives a meter indication of the exact advance of the ignition in degrees - at any engine speed. It has a built-in tachometer so a serious enthusiast could check the complete distributor advance curve.

The use of such an instrument will allow checks on the correct operation of the distributor particularly with respect to mechanical and vacuum advance with increasing RPM.

## CONSTRUCTION

The layout and construction of the timing light will vary depending on the housing.
We purchased a cheap torch which takes four HP2 batteries.

Our layout and method of construction can be seen from the illustration but this can readily be varied to suit the housing used.

Most of the electronic components are mounted on a printed circuit board which can be assembled with the aid of the circuit diagram and the component overlay, Fig. 2. Check the polarity of diodes, capacitors and transistors etc before soldering. All external wiring to the PC board is numbered and interconnections from the PC board to external components should be made with the aid of the circuit diagram, note that C4 is mounted on the back of the meter and C12 on the rear of the reflector.

The inverter power transistors should be mounted on, but insulated from, a heatsink made from aluminium sheet

of at least 40 square centimetres area.
If the unit will not oscillate, (you will hear a 2 kHz whistle when it is oscillating) try reversing the feedback winding.
The secondary voltage is around 350 volts and care should therefore be taken to insert insulation as specified in Table 1, between the primary and secondary windings in the transformer, and to keep the windings separate on the matrix board.
The reflector of the torch may be modified to house the flash lamp in the following manner.
Remove the existing socket, using a pair of pliers or cutters, and file the

## WAFiNING

On some cars the fan blades rotate close to or at a multiple of the crankshaft speed. When strobed by the timing light, the fan may appear to be stationary or rotating slowly.
This is common to all strobe light timers and failure to remember this can result in serious personal injury, or a wrecked timing light.
ALWAYS - keep well clear of the fan, or remove the fan belt whilst timing the engine.

[^1]opening until it is large enough to accept the flash lamp with about one millimetre clearance all round. Insert the lamp from the front and use modelling clay at the rear of the reflector to hold the lamp and seal the opening. Then pour quick-dry epoxy cement into the reflector until there is sufficient around the base of the tube to secure it in place. Be careful not to get epoxy elsewhere on the reflector. When dry, remove the clay and use more epoxy to fill any recesses in the rear.

If and when the tube is to be replaced a hot soldering iron may be used to destroy the epoxy thus permitting removal.
The discharge capacitor C12 should be mounted on the rear of the flashtube/reflector assembly as shown in the photograph.

The pick-up coil is wound on a toroidal ferrite core, as shown in the photograph, using screened audio cable as follows. Remove about 0.8 metres of the inner cable from its shield and wind 20 turns of this around the ferrite core. Then solder the end of the inner conductor to the screen thus creating a complete loop.
The coil should also be shielded to prevent the magnetic field around nearby spark-plugs (other than number one plug) from triggering the timing light. To do this we cut strips of aluminium foil about 10 mm wide and sandwiched them between two layers of 12 mm wide cellulose-tape to produce a continuous strip of insulated foil 1 metre long. A length of wire should be connected to one end so that the strip may be connected to the screen of the coaxial cable. The foil is wrapped around the coil, in a similar manner to the coax, except that the ends of the foil must not touch. Should the ends touch, a shorted turn would be created which would prevent the transducer from operating at all. The coil should be completely covered and will appear as shown in the photograph.

## CALIBRATION

Two different methods may be used to calibrate the timing light. In method $A$, the preferred method, you will need an oscilloscope with a triggered and calibrated time base, and an accurate tacho. In method B you will have to. prevail on the local garage to allow you to calibrate your unit against their accurate (?) unit.

## Method A.

1. Connect the unit to the engine with the transducer over number 1 spark lead.
2. Switch the timing light to "tacho" mode.
3. Start the engine and adjust the sensitivity control to the minimum setting that allows the meter to move smoothly as engine revs are increased.
4. With the CRO monitor between the common line and the collector of Q4, the voltage should swing from zero to +9 volts and back to zero each time the number one plug fires.
5. Adjust RV2 such that the pulse width at Q4 collector is 1.67 milliseconds.
6. Remove the CRO leads and set the engine revs to 3000 with the aid of the accurate tachometer.
7. Adjust RV4 such that the meter reads 3000 RPM. This completes the calibration.

Method B.

1. Connect both your timing unit and the garage unit to the car.
2. Switch the unit to "timing" mode.
3. Start the engine and set the RPM to 3000 .
4. Now using your own unit adjust the sensitivity control as in step 3 method $A$.
5. Adjust RV1 until the timing marks coincide.
6. Adjust RV4 such that the same reading is obtained on meter M1 as on the garage unit.
7. Switch to tacho and adjust RV2 to read 3000 RPM.
Note that the engine must be held at constant speed throughout this process.

## USING THE UNIT

The workshop manual for most cars contains details of the timing changes with respect to engine RPM and vacuum. If an engine is to perform at maximum efficiency these characteristics need to be checked and corrective measures taken if out of tolerance.
To check mechanical advance:

1. Remove vacuum line to distributor.
2. Fit transducer over number 1 spark-plug lead.
3. Switch timing light to "TACHO"
4. Start engine and switch on timing light.
5. Adjust sensitivity such that meter indicates correct RPM over full range without undue jitter.
6. Set the idle speed as specified in manual.
7. Switch to TIMING and set "timing adjust" potentiometer until the flywheel mark corresponds with TDC mark on the crankcase. (If some other mark than TDC is
used, simply add the number of degrees the mark is BTDC (before top dead centre) onto the meter reading). If this is less than $2^{\circ}$ advance (minimum obtainable with delay) switch SW3 may be used to remove all delay.
8. Switch back to tacho and increase speed to next calibration point as detailed in the manual.
9. Whilst holding engine revs steady at this setting, switch back to "TIMING" and set "TIMING ADJUST" until the marks again coincide. The meter now indicates the number of degrees of advance. Note that engine revs must not change otherwise the reading will be in error.
10. Repeat 8 and 9 for all other specified calibration points.
To check vacuum advance:
The only points on vacuum advance that need checking are the maximum advance with vacuum and that a vacuum is held, ie no leaks in the distributor.
11. With the motor idling check the timing with the vacuum line disconnected.
12. Draw a vacuum in excess of the normal vacuum (sucking the line by mouth will be sufficiently effective) and check the timing advance against that specified in the manual.
13. Hold the vacuum in the line and check that the timing does not shift (due to leak in distribuitor vacuum mechanism).
If a more accurate check is required the sbove checks can be done in conjunction with a vacuum gauge.

| SPECIFICATION |  |
| :---: | :---: |
| Energy per flash | 0.2 joule |
| Maximum flash rate | $>50 / \mathrm{sec}$ |
|  | ( 6000 rpm ) |
| Trigger method | current trans- |
|  | former on No 1 |
|  | spark lead. |
| In put voltage | 10-14 volts dic |
| Timing meter range | $0.50{ }^{\circ}$ |
| Minimum delay | $<4^{\circ} / 1000 \mathrm{rpm}$ |
| $0^{\circ} \mathrm{O}$ is switchable |  |
| Maximum delay | $>40^{\circ} / 1000 \mathrm{rpm}$ |
| $50^{\circ}$ maximum |  |
| Tacho meter range | 0.5000 rpm |

Fig. 1. Circuit diagram of the Tacho Timing Light.



This picture shows how the transducer is wound with the inner core of screened cable. Aluminium foil shielding is wound over the completed coil as detailed in the text.
PARTS LIST
TIMING LIGHT
ETI 311

| R14 | Resistor | 335 W | 5\% |
| :---: | :---: | :---: | :---: |
| R4 |  | $120 \mathrm{~m} / \mathrm{W}^{\text {W }}$ |  |
| R7 | " | 180 maW | $\cdots$ |
| R3 | $\because$ | 470 H/4W | $\cdots$ |
| R12 | " | $4701 / 2 \mathrm{~W}$ | " |
| R13,15 | " | $1 \mathrm{k} 1 / 4 \mathrm{~W}$ | -' |
| R8 | " | $1.2 \mathrm{k} 1 / \mathrm{mW}$ | " |
| R5 | " | $1.5 \mathrm{k} 1 / \mathrm{WW}$ | $\because$ |
| R1,2,11 | 1 | $2.2 \mathrm{k} 1 / 4 \mathrm{~W}$ | $\because$ |
| R10 | "' | $8.2 \mathrm{k} \mathrm{H/4W}$ | $\cdots$ |
| R17 | " | 8.2k 5W | $\because$ |
| R6.9 | $\because$ | $15 \mathrm{k} 1 / 4 \mathrm{~W}$ | " |
| R16 | " | $1 \mathrm{M} 1 / \mathrm{WW}$ | " |
| R18 | " | $2.2 \mathrm{M}^{1 / 4 W}$ | ' |
| RV1 P | Potentiometer | 100k log |  |
|  |  | rotary |  |
| $R \vee 2,4$ | " | 10k trim VTU or s | type milar |
| RV3 | " | 20k lin rotary |  |
| C2,3 | Capacitor | 820 pF |  |
|  |  | ceramic |  |
| C10 | " | $\begin{aligned} & 0.001 \mu \mathrm{~F} \\ & 400 \mathrm{~V} \end{aligned}$ |  |
| Cll | " | $\begin{aligned} & \text { polyester } \\ & 0.022 \mu \mathrm{~F} \\ & 400 \mathrm{~V} \end{aligned}$ |  |
|  |  | polyester |  |
| C8,9 | " | $0.01 \mu \mathrm{~F}$ |  |
|  |  | polyester |  |
| C1 | " | $0.082 \mu \mathrm{~F}$ |  |
|  |  | polyester |  |
| C12 | " | $3.3 \mu \mathrm{~F} 500 \mathrm{~V}$ electrolytic |  |
|  |  |  |  |
| C6, 7 | " |  |  |
|  |  | electrolytic $25 \mu \mathrm{~F} 25 \mathrm{~V}$ |  |
| C5 | " |  |  |
|  |  |  |  |
| C4 | " | $220 \mu \mathrm{~F} 10 \mathrm{~V}$ electrolytic |  |
|  |  |  |  |
| Q1 | Transistor | $\begin{aligned} & 2 \mathrm{~N} 2647 \\ & \mathrm{BC} 108 \end{aligned}$ |  |
| Q4 | " | BC178 |  |
| Q5,6 | " | $2 N 3055$ |  |
| SCR1 | SCR | $\begin{aligned} & 2 N 6240 \\ & \text { C10601 } \end{aligned}$ |  |
|  |  |  |  |
| D1,2 | Diode | IN914 or |  |
|  |  |  |  |
| D3 | " | $3 \mathrm{~A}, 25 \mathrm{~V}$. |  |
| D4,5 | " | 1N4001 |  |
| D6,7 | " | 1N4004 |  |
| ZD1 | Zener diode | $\begin{aligned} & 82 \times 79 \mathrm{c} \mathrm{~V} 1 \\ & (9.1 \mathrm{~V}) \\ & 400 \mathrm{~mW}) \end{aligned}$ |  |
| T1 | Transformer see text Pulse Transformer |  |  |
| T2 |  |  |  |  |  |
| T3 | Pickup coil | " |  |
| LP1 | Flash tube |  |  |

PC board ETI-311
M1 meter 0.50 UA FSD
SW1 Switch 2 pole 2 position,
SW2, 3 switch single pole on-off
(There were already incorporated in the torch housing used in our prototype)
reflector, heatsink, housing for
electrọnics.

## HOW IT WORKS ETI 311

The flash tube used requires a supply of 300 to 400 volts. This is obtained by stepping up the vehicle 12 volts supply by means of an inverter.
Transformer T 1 , together with transistors Q5 and Q6 form a self oscillatory inverter. The frequency of operation, about 2 kHz on a 12 volt supply, is primarily determined by the core materials, the number of primary turns and the supply voltage. Protection against reversed-polarity supply leads is provided by diode D3.
The output from the secondary of transformer TI is voltage doubled by D6, D7, C6 and C7 to provide about 400 volts dc which is fed to the flash tube via R17. Capacitor C12, in parallel with the flash tube, charges to this voltage and thus stores the energy needed for the flash.
Capacitor C11 is also charged up via R16 and the energy stored in this capacitor is used to trigger the flash as follows. When the SCR is triggered by a pulse on its gate it conducts and rapidly discharges Cll through the primary of pulse transformer T2. The pulse of current through the primary of T 2 induces a 4000 volt pulse in the secondary winding which fires the flash tube.
When C11 is fully discharged the current through R16 is not sufficient to hold the SCR on and it turns off. Thus the flash is fired at a time determined by timing of the trigger pulse to the SCR.
The pulse from number 'one spark-plug lead is picked up by transducer T3 and used to trigger a monostable consisting of Q1, 2 and 3. Each time a spark-plug pulse occurs Q3 turns on and Q2 turns off, and remains off for a predetermined time before resetting. Whilst Q2 is off Cl charges via RV1/R2 (or RV2/R1) and when the voltage across it reaches about 6 volts the unijunction transistor Q1 fires, discharging Cl, producing a pulse which resets the monostable. By varying the setting of RV1 the time duration of the monostable pulse can be altered.


Fig. 2. Campont overlay for the Tacho Timing Light (this drawing has been placed sideways on the page to simplify checking against main circuit drawing).

Transistor Q4 simply inverts the output pulse train from Q3 and drives the meter M1. When Q3 is on Q4 is on and its collector is at +9 volts, and when Q3 is off Q4 is off and its collector at zero volts. Thus capacitor C4 will charge to a voltage which is proportional to the average of the on/off ratio, and this voltage is read by the meter. Zener diode ZD1 stabilizes the supply to Q4 at 9.1 volts.
The output of Q3 (Q4 in the no delay mode) is used to trigger the SCR. Since the SCR requires a positive pulse to trigger it, it will fire when Q3 turns off, that is, at the end of the delay period produced by the monostable. Since the output of Q4
is "inverted", when this output is selected the SCR fires the instant Q3 turns on, that is without any delay. In the timing mode the delay period is adjustable by means of RV1 so that the timing mark on the flywheel is aligned with that on the block. The meter MI will then read the number of degrees of spark advance. In the tacho mode the inverter is disconnected to disable the strobe and a preset delay of 1.66 msec is selected. The meter now reads RPM with full scale of 5000 RPM
The picture shows how the transducer is wound with the inner core of shielded cable. Aluminium foil shielding is wound over the completed coil as detailed in the text.


Fig. 3. Printed circuit board dimensions $74 \mathrm{~mm} \times 82 \mathrm{~mm}$ (full size).

## CAR ALARM



Protect your car with this simple but effective circuit.

ONE OF LIFE'S more devastating experiences is to walk out of your house in the morning and find that your car has disappeared!
But this need not happen to you, for an effective alarm system, as described here, may be quite easily constructed and installed at low cost.

The ETI 313 car alarm uses one single IC and a minimum of other components. It will, when actuated, blow the horn at one second intervals, and will continue to do so until deactivated by means of a key switch etc.
The alarm is triggered by any drop in

the battery supply voltage caused by an increase in loading on the vehicle's electrical system. Thus, if a door is opened, the interior light will be activated and the increase in electrical load will trigger the alarm.
This operating principle simplifies installation, for practically all vehicles have courtesy lights activated by switches on at least two of the doors and it is a fairly easy task to install further switches on the other doors if required.
Both the boot and under bonnet areas may be protected in a similar manner - indeed many vehicles have lights already fitted in these areas, if not, it is a simple matter to fit them into the circuit such that they come on when the boot lid etc is opened.
These lights are of course very useful apart from their alarm function, but remember - they must operate at all times, not just when the ignition is on.
The alarm is sensitive enough to be activated by anyone pressing the brake pedal - or even by opening the glove box (where a lamp is fitted of course).
The unit is designed for use with cars having 12 volt electrical systems. It may be used with either positive or negative earth systems without modification.
In addition to the power sensing alarm mode other precautions may be
taken by adding further alarm microswitches. For example microswitches may be fitted to the suspension such that if anyone tries to lift the car, in order to tow it away. the alarm will go off. If such switches are used they should be connected between terminal 2 or 3 of the alarm (see Fig 1 and 2), depending on whether the vehicle has a positive or negative earth system, and earth.

## CONSTRUCTION

Construction of the alarm is extremely simple and anyone capable of using a soldering iron should not have any difficulty. All components, including the relay, are mounted on a small PC board as shown in the component overlay diagram.
Note the polarity of electrolytic capacitors, the IC and diodes. In particular make sure that the germanium diode D2 is mounted in
the correct position and with the correct orientation. When soldering use a small, light-weight iron and preferably small gauge solder. Solder quickly and cleanly. Only apply the iron for sufficient time to cause the solder to flow around the joint. These precautions will ensure that components are not damaged by excessive heat. The unit should then be mounted in a small plastic, or metal, box.
Two different switching systems may be used to enable the alarm. Use either an external key switch mounted in a convenient, but not obviously seen location, or a two way system of concealed switches - one inside and one outside. The switch inside is used to enable the alarm (after opening the door) and the external one to disable the alarm before entering the car. This latter system has the advantage that anyone watching will not see where the external disable switch is located.


NOTE: After this article was publlshed, a number of readers experienced problems with the triggering being too sensitive. Two solutions are possible; increasing the value of R4 to 2.2 Mohm and changlng the value of C5 from $0.1 \mathrm{l} F$ to $10 u F$. On the main circuit, pin 14 of the IC should be shown connected to pin 4 , this is correct on the PCB nowever.


This PCB will probably have to be altered to suit the particular relay used. (Electrovalue do a $12 \mathrm{~V} 110 \Omega$ relay but this will not fit the PCB as shown).

## HOW IT WORKS

When a load, especially an incandescent lamp, is switched onto a battery the battery voltage will drop instantancously and then return to normal. The amplitude and duration of this negative going spike in the supply is dependant on the size of the lamp used but is of sufficient amplitude, oven with small bulbs, to trigger an alarm circuit.
The NE556 IC contains two NE555 timer ICs in a single case. One of the timer sections is used to detect the supply spike and to gate on the second timer which produces a one Hz optput to the relay and horn.

Each timer section contains two comparators, a LOW comparator set at $1 / 3$ supply and a HIGH comparator set at $2 / 3$ supply. These comparaturs set a flup-flop which provides an output.
When the power is first applied, the voltage at pin 6 (input to the low comparator) is mitially how for about half a second whist C2 charges via R5. This sets the output of the flip-flop to a high state where it will remain regardless of further excursion in the voltage at pin 6 .

The only way that the output may be set low again is for the input to the high compasator (pin 2) to be taken past its threshuld. This threshuld voltage is avallable at pin 3 , and by using a voltage divider ( R 3 , R4 and RV1) a slughtly lower voltage is derived from it. This is used as a reference level to the HIGH comparator input (pin 2) Capacitor Cl is used to bypass any fast transients which may appear at the input (pin 2).
If the supply falls, the voltage on pin 3 will also tall. If it falls below the voltage at pin 2 , the output will fall again to a low state and will stay there. The capacitor Cl will also be discharged via pin 1.
The second half of the IC is connected as a free-running multivibrator havng frequency determined by R6 and C5, of about 1 Hz . If the output of the first stage is high, the diode D1 will force the multivibrator to lock into the low state. When the output of the first stage goes low the multivibrator is freed to oscillate.
This one hertz output switches a relay which in turn controls the horn, or any other suitable device. The diodes across the relay prevent reverse vohages being generated which could damage the IC. This must be a germanium type for correct operation.


THIS UNIT is automatically operated by the level of general illumination, or the strength of light falling upon it. The most frequent uses of such a device include operating a child's night light, or switching on a light in a room, when darkness falls, as a deterrent to burglars, when leaving the house unoccupied.

The unit is operated from a.c. mains, and is adjustable to operate over a"wide range of light intensities. It switches on an external circuit when light fades below a set level, as in the evening and switches off this circuit when light increases, as with the arrival of morning.

## AUTO-LUME CIRCUIT

This is shown in Fig. 1. The resistance of the light-dependent resistor LDR rises as the illumination reaching it falls. This allows the base of 01 to move positive so that it conducts. Q1 emitter and 02 base also move positive, so that $\mathbf{Q} 2$ collector current rises. This current flows through the relay windings, closing the relay contacts.

RV1 is the sensitivity control, so that the device can be set to work at the desired light intensity. Spare contacts on the relay close to bring R5 into circuit, providing additional current through the winding. This means that the relay release current through Q2 is lower than the pull-on current, and avoids vibration or flicking on and off of the relay when darkness slowly comes and light has fallen to a level where the unit is about to operate.

A bell transformer or similar transformer T1 provides current, and the operating voltage is not very critical. The second set of relay contacts result in 5 V a.c. being available at the extension sockets EX, which does well for a child's night light equipped with a 6 V 3 watt or similar bulb. By changing the connections to T1 secondary, 3 V or 8 V may be obtained instead, if required.

To switch on a mains-voltage lamp, it is necessary either to use a mains-


The circuit.
voltage relay here, or to employ the extension circuit to control a relay which in turn switches on the mainsvoltage equipment. Normally, however, a 3 watt or 6 watt low voltage lamp will provide enough light for the purposes for which the unit will be used.

## TAG BOARD

The small components are assembled on a tag board as in Fig. 2. This also shows the positions of the leads of the semiconductors. A bracket bolted to the board allows it to be mounted vertically, and also forms the negative or metal chassis return.

Layout of the major components.




View of the tag board before mounting the relay.
Leads run from various tags to the relay and other components, and these connections are most easily added after the board is fitted in position.

Construction can be completed on a shallow chassis $7 \times 4 \mathrm{in}$. in dimensions, which will take the transformer, tag-board, and relay. The unit illustrated has a $9 \times 4 \mathrm{in}$. 'panel, fitting a case $9 \times 4 \times 4 \mathrm{in}$. The extension circuit sockets, sensitivity control RV1, and LDR are fitted to the panel. The LDR is cemented in a small hole, and its leads are extended to reach to the tags shown. All connections can be seen from Fig. 2.

## SETTING UP

The unit and lamp controlled must be
placed so that light from the lamp does not operate the LDR. The Auto-Lume is best placed near a window when to be controlled by daylight, or at a position near the room main light, when it is to take over automatically as the room light is switched off. The extension circuit can then run to the bulb to be controlled, situated clear of the Auto-Lume. The disposition of unit and bulb is in no way critical, provided they are sufficiently separated.

RV1 is then set so that the controlled must be placed so that light LDR is shaded with the hand, and sensitive control over a wide range of illumination values should be obtain-

| COMPONENTS |  |  |  |
| :--- | :--- | :--- | :---: |
| R1 | 470 k | $1 / 4 \mathrm{~W}$ |  |
| R2 | 15 k | $1 / 4 \mathrm{~W}$ |  |
| R3 | 1 k | $1 / 4 \mathrm{~W}$ |  |
| R4 | 2.7 k | $1 / 4 \mathrm{~W}$ |  |
| R5 | 470 ohm | $1 / 2 \mathrm{~W}$ |  |
| RV1 | 100 k linear pot. |  |  |
| C1 | $1000 \mu \mathrm{~F}$ | 16 V |  |
| C2 | $1000 \mu \mathrm{~F}$ | 16 V or 25 V |  |

LDR ORP60
Q1 BC109
Q2 BFY51
Relay, 100 ohm coil, double pole switch.
SR1 Selenium rectifier, 50 V 1 A or similar.
T1 Bell transformer, 200/250V, $3 / 5 / 8 \mathrm{~V}$ secondary, 1 ampere, or 8 VA , or as required for lamp.
Case, internal dimensions approx. $9 \times 4 \times 4$ in.
$7 \times 4 \mathrm{in}$. chassis (Universal Chassis flanged side, Home Radio).
Tag-board, knob, sockets, 3 -core mains lead, etc. ed.

When a low-voltage 3 watt, 6 watt or similar lamp is to be used with a conventional type table lamp, the latter should be fitted with a small bayonet cap or miniature Edison screw holder to suit, and a mains-type plug should not be used for connecting to the Auto-Lume extension sockets. This will avoid any chance of someone eventually plugging the lamp into a mains voltage outlet. Various small night-light lamps and similar lamps can also be easily adapted to take a suitable bulb.


# DUAL BEAM ADAPTOR 

Simple unit converts single beam CRO to dual beam operation.


THE oscilloscope, next to the multimeter, is perhaps the most useful test instrument. Indeed, for any serious experimental work an oscilloscope is indispensable. Unfortunately they are expensive beasts, and whilst an experimenter may well afford a simple, low-frequency single-beam type, a dual-beam version (at $£ 100$ or more) is usually beyond his means.
Nevertheless a dual-beam facility is most convenient, for it allows comparison of two different signals, for wave-shape or timing, and makes obvious, differences which otherwise would not be discernable.
The simple dual-beam adaptor described here, whilst not providing all the capabilities of an expensive dual-beam CRO, will however, cover most experimenter's requirements.
It is a low cost unit which allows two inputs of similar amplitude to be displayed simultaneously on separate -traces. Frequency response of the unit is sufficient to allow observation of signals up to about 1 MHz .

## CONSTRUCTION

Most of the components are mounted on a printed circuit board. However, if desired matrix or veroboard may be used.
Be careful to orientate the polarised components correctly, as shown on the component overlay. Wiring to the sockets and switches should be as short as possible. Note that C3 and C4 are mounted on the input switches and C5 is mounted on the output socket. Our prototype was mounted in a small aluminium minibox as illustrated. As individual requirements will vary, details of front panel layout and metalwork only are supplied.

## USING THE ADAPTOR

Connect the output of the adaptor to: the input of the CRO. The two adaptor inputs now become $A$ and $B$ trace inputs to the CRO. A triggering signal should be applied direct to the trigger input of the CRO as otherwise the CRO will tend to synchronize to the chop frequency and not to either input signal.
It is preferable that the two input signals have approximately the same amplitude as there is no input amplifier or range selection provided


Fig. 1. Circuit diagram of complete unit,

NOTES:
IC1 4001AE CMOS
IC2 4016AE CMOS
C3, C4 ARE MOUNTED ON SW 2 AND SW3
C5 IS MOUNTED ON THE OUTPUT SOCKET

on the adaptor. However there is an attenuator provided on each input so that some adjustment may be made.
If only one input is to be applied it is best to switch to that input only thus eliminating the second trace and any cross talk which may occur due to the high input impedances.
Two chopping frequencies are used, having widely different frequencies, so
that if the input signal is a harmonic of the chopping frequency, (see Fig. 4) choosing the other chop mode will prevent the chop frequency being visible.
Normally CHOP 1 would be used for high frequency inputs, and CHOP 2 for low frequency inputs. An ALTERNATE mode has not been included (entails obtaining an output

## SPECIFICATION

| Input Level |  |
| :--- | :--- |
| dc | $\pm 4$ volts max |
| ac | 2 volts RMS max |
| dc insula- |  |
| tion on ac | $\pm 400$ volts max |
| dc level shift $\pm 1.5$ volts |  |

## Frequency Response

-3 dB point $>1 \mathrm{MHz}$

## Chopping Frequencies <br> A $\quad 60 \mathrm{~Hz}$

Input Impedance
100 kHz
from the CRO of unknown level and availability) as the CHOP 1 mode is similar and almost as effective.
By means of the two shift controls traces $A$ and $B$ may be separated by up to $\pm 1.5$ volts.

## HOW TT WORKS - ET1 114

Switckes \$W2 and SW3 select dc or ac coupling, or inpure stotted, foz channel A and chanael 8 inpels respectively. The tyents are applied to the mantuciry potentiometers RV1 and RV2 and then tassed to 1C2/1 and 1C2/2 which solect one of the signals as an laput to sowree follower Q1.
 constant current (approximately 2.7 miA) by transistox Q 2 . and Q 3. Hence, there is about 3 volts somes RV3 and RV5, and this is unaffict by charges in inpux signal Evel. These potentiometers thexafore provide a levelshilt facility. When channel A is selected by $\mathrm{KC} / 1, \mathrm{IC} / 3$ selects RV3, and when channel B is selected by IC2/2, IC2/4 selects 異V4. Thus as each signti has an independant level shirt the two tracas may be separated when choppect.
The CMOS gates of KC 2 are thin: $n$ by the outputs, $A$ and $B$, the creviti:y associated with LC1, The drive circuit mode of operation is selected by SW1, a four pesition switch, such that chanati it only, chatnel B only, A and B chopped at 60 Hz or, A and B chopped at 35 kHz may be selected. The operation is as follows.
Integrated circuil 1 Cl forms a maltivibxator which can run as 60 Hz or 35 kHz , or be locked in A-kigh F-low, or A-low Ehigh output states. For example, If SWI selects -7 wolts, ICI pin 10 will be at +7 , ICI pin 11 will be at -7 , Cl pin 3 will be at +7 and ICl piat 4 will be at -7 wolts. The CMOS switches of $\mathrm{CC}_{2}$ will be "on" if the control voltage is at +7 volts and "off" if the control voltage is at - ? wolks. Thas when -7 rolts is sefected by SWL, "A" will be at +7 volts, and IC2/1 and IC2/3 will select channel A. Simitarly if + ? volts is selected by SWI, IC2/2 and IC2/4 will select channel B .
4. C2 and R2 are selected by SW1 the multivibrator will be free to zun at Fop Hz and chamnels A and B will br alternatriy selected at this frequency, Similarly if Cl and $\mathrm{R1}$ are selected, shantrels A and B will be alternately selecter at 35 kHz .
The power supply is a titiple full-wave bridge type which last two Zeners to provide the +7 and -7 volt supplies tequired.


Fig.2. Printed circuit board pattern for the adaptor. (Shown fullsize).


Fig.3. Component overlay.


Fig. 4a. Two signals, correctly displayed using the dual beam adaptor.

Fig. 4b. Use of incorrect chopping frequency for a particular input signal (chop frequency a harmonic of signall results in above effect. To cure use other chop frequency.

Layouts of components within the unit can be seen from this and accompanying photographs.



Fig.5. Artwork for front panel of the adaptor.

PAHTS LIST-ETI 114

| ค6 | Pesistor | 220 | 1/2W | 5\% |
| :---: | :---: | :---: | :---: | :---: |
| R7 |  | 470 | V/W | 5\% |
| R3.4 | \% | 1k | visw | 5\% |
| M6 | * | 10k | 1/2W | 5\% |
| H1 | * | 12k | 1/2w | $5 \%$ |
| R2 | * | 1 M | 3/2N. | 5\% |

AV1,2 Potentiometex $100 \mathrm{k} \log$ rotery AV3.4. Patantiometer 2.2 kin ratary
C5 Capacitor 100pF ceramic

| - | Cato | 0pf ceramic |
| :---: | :---: | :---: |
| C1 |  | $0.0015 \mu \mathrm{~F}$ polyester |
| C2 |  | 0.01 H prolyester | C34. $\quad 0.22 \mu \mathrm{~F} 400 \mathrm{~V}$ poly. C7s $10 \mu \mathrm{~F} 10 \mathrm{~V}$ efectrof in C6 H $1000 \mu \mathrm{~F} 35 \mathrm{~V}$

D:D6 Diode IN914 or similer D7-310 " 1N4001 or similaf ZD1,202 Zaner Oloda BZY88CV8. or similar

| Q1 Transistor | $2 N 5458$ |
| :--- | :--- |
| Q2,03 | B6108,BC548 |

or simitar
ICI Invegrated circuit 400 4 AE CMOS IC2 Integrated nircuit 4016AE CMOS T1 transformer $12,6 \mathrm{~V}-15 \mathrm{~V}$ a 300 mA PC Board ETI 114
SW1 switch one pola 4 position retary SW2,3 switch 3-position slida switch. SW4 switch 2 -pole on-off toggle 240 V rated
Minal box $130 \mathrm{~mm} \times 105 \mathrm{~mm} \times 80 \mathrm{~mm}$
3 sockets to suit CRO leads
Katbs for fromt panel.

# Audio frequency meter 

## Simple unit measures frequencies from 50 Hz to 10 kHz

ON MANY occasions it is useful to be able to determine the frequency of an audio signal. Of ten, the accuracy and expense of a commercial frequency meter is not justified.
This little circuit, using only a few components will provide an indication of frequencies from 50 Hz to 10 kHz with an accuracy primarily determined by the calibration of the instrument.
The audio signal - of which the frequency is to be established - is fed
into the input terminals of the unit and the calibrated dial adjusted until a 'null' is obtained whilst listening to the signal through a pair of headphones, or even a single crystal earpiece.
We suggest that the components be mounted in one of the small aluminium miniboxes which are available readily at low cost. Our prototype unit had a $4^{\prime \prime} \times 21 / 4^{\prime \prime}$ front panel, but a larger box will enable a larger frequency scale to be used hence
providing better resolution. Apart from this a larger box will allow input terminals and output socket to be mounted on the front panel together with the frequency-null controls.
Note that the dual potentiometer is a logarithmic type and is wired such that the frequency scale increases with anti-clockwise rotation. This results in a more linear scale (less cramped at the high end) than if wired conventionally. Any type of earpiece or headphone

## HOW IT WORKS

The circuit is that of a Wien bridge which when used for frequency measurement has the form shown below:-

$$
\begin{aligned}
& \text { If } \mathrm{C}_{\mathrm{X}}=\mathrm{C}_{\mathrm{s}}, \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{s}} \text { and } \mathrm{R}_{;} \\
& \text {then } \frac{1}{10^{6}} \\
& \mathrm{f}=\frac{1}{2 \pi \mathrm{C}_{\mathrm{S}} \mathbf{R}_{\mathrm{S}}} \text { or, } \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{s}}=0.628 \mathrm{f}
\end{aligned}
$$


where $c_{x}=C_{s}=0.1 \mu \mathrm{f}$. Our calibration chart was calculated from this last formula.
At the frequency where the reactance of $C_{s}$ equals $R_{s}$ and also $C_{x}$ $=\mathbf{R}_{\mathrm{x}}$, the series network has an impedance of 1.414 R and phase angle of $45 \%$. The parallel network has an impedance of 0.707 R and the same phase angle. The signal at point B will therefore be in phase with the input level, but attenuated to $1 / 3$ of that level. If $\mathbf{R b}=2 \mathbf{R a}$ the signal at $A$ will also be attenuated to $1 / 3$ of the input. Thus the bridge is balanced and the signals at A and B will be equal in amplitude and phase and a null will occur at that frequency.
At any other setting of the potentiometer the phase angle and, amplitudes will be such that an increased oulput is obtained.
The respective sections of the dual gang potentiometer never track each other perfectly and hence RVI has been included to obtain best null at any point on the scale


An internal view of the prototype
may be used to detect the null but best efficiency will be obtained with those having an impedance of around one thousand ohms.
The best way to calibrate your meter is to compare it with a good quality oscillator and mark your scale to suit. Remember that most potentiometers have a manufacturing tolerance of $\pm 20 \%$ and hence our front panel drawing may not be correct for your potentiometer.
If an oscillator is not available, but you do have an ohm-meter, then calibration may be carried out by measuring the settings of RV2 (disconnected from the circuit) and marking the scale as shown in Table I. To use the meter, couple the audio signal into the input terminals and adjust RV2 to a point where the signal drops off. Adjust RV1 to increase the null and .RV2 again for the final setting. The frequency of the incoming signal is then read from the front scale. What could be simpler?
Fig. 3 Front panel of our meter shown for information only - calibration may not suit all potentiometers

NULL. VOLUME


ETI FREQ. METER.


## 들 <br> B.H. COMPONENT FACTORS LTD. <br> Open 9-12.30. 1.30-5 p.m.. except SUNDAY \& WEDNESDAY

(EPB), LEIGHTON ELECTRONICS CENTRE, 59 NORTH STREET, LEIGHTGN BUZZARD, LU7 $7 E G$.
Tei Leighton Buzzard 2316 (Std code 05253)

# 6-Digit Digital Clock Kits 

12/24 HOUR
50/60 HERTZ
BRIGHT DISPLAYS
SLOW TIME SET FAST TIME SET TIME HOLD

$+90 p$ Airmail p\&p

If you have been considering buiding a digital clock kit but were discouraged by the high prices, we have just removed your last excuse. Why pay over $£ 12$ when you can get one for about half that price?

## KIT COMPRISES:

1 - National MM5314 Clock Chip, $12 / 24$ hour, $50 / 60 \mathrm{~Hz}$ option
6 - Bright red common cathode displays, $0.27^{\prime \prime}$ character height.
7 - NPN Segment driver transistors
6 - PNP Cathode driver transistors
9 - Carbon resistors
5 - Diodes
2 - Disc caps
1 - Electrolytic filter cap
3 - Switches for time setting functions
2 - Etched, drilled and plated p.c. boards.
1 - Illustrated assembly instructions manual
All you provide is a $9-12 \mathrm{vac} / 200 \mathrm{~m} / \mathrm{a}$ Transformer
and case of your choice.

## OPTIONAL JUMBO DISPLAYS

You can have $6-0.5^{\prime \prime}$ Jumbo displays with a suitable board instead of the $0.27^{\prime \prime}$ types. Clock kit with 6 jumbo displays $£ 10.95^{*}+90$ p airmail $p \& p$

## t ORDERING INFORMATION

The above prices shown in British Es are approximate equivalents of the following U.S. Dollar prices and should be used as a guide only.
Clock kit with $6-0.27^{\prime \prime}$ displays: U.S. $\$ 16.50$ post paid. Clock kit with $6-0.50^{\prime \prime}$ displays: U.S. $\$ 24.75$ post paid. Remittance by BANK DRAFTS or INTERNATIONAL MONEY ORDERS IN U.S. FUNDS. SENT ANYWHERE IN THE WORLD
P.O. Box 64683, Dallas, Texas 75206, U.S.A.

# IMPEDANCE METER 

Measure impedance directly with ETI's new impedance meter checks capacitance and inductance too!

THIS IS an unusual project - in that we started out designing one thing and finished up developing another!
We had intended to design an RLC bridge which is a very useful instrument and perhaps the next most commonly used after the multimeter, signal generator and scope.
But whilst it is useful to be able to measure the value of an individual component, on many occasions we are more concerned with the magnitude of the impedance than we are with the actual value of C or L .
For example assume that we require to know how the impedance of a speaker varies with frequency. Due to the effects of the crossover network it will not be known whether the speaker is inductive or capacitive in the crossover region. Additionally a speaker goes capacitive below its natural resonant frequency. Hence the use of an RLC bridge to plot impedance would be very tedious indeed. We would have to determine whether the speaker was capacitive or inductive, measure the actual value and then calculate the impedance for each point to be plotted.
With the ETI impedance meter impedance can be read directly as a function of frequency as shown in Fig. 7:
This is just one example of the many possible applications. In addition the meter may be used to measure component values by simply referring to a reactance chart or doing a simple calculation as detailed below.
Other applications include measuring the impedances of . microphones, filters, transformers and amplifier inputs etc. All can be measured as easily as one would measure a resistor using an ohmmeter. Simply by connecting the device to the input terminals of the meter and making the measurement as detailed in the "How To Use" section.
In most practical applications we require to know the magnitude of the impedance - we do not care whether the device is predominantly inductive or capacitive.
On the rare occasions that we do require to know reactance we can

ETI 116 Impedance Meter


RANGE


or of the impedance meter shows that it consists of an oscillator an amplifier and a meter circuit.
$\nabla$


## SPECIFICATION

| Impedance measuring range | $1 \Omega-1 \mathrm{Meg} \Omega$ |  |
| :---: | :---: | :---: |
| Frequency of test | $\begin{aligned} & 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ & 1 \mathrm{kHz} \text { or } 10 \mathrm{kHz} \end{aligned}$ | external internal |
| Range of inductance | $\begin{aligned} & 10 \mu \mathrm{H}-1000 \mathrm{H} \\ & 20 \mu \mathrm{H}-100 \mathrm{H} \end{aligned}$ | external internal |
| Range of capacitance | $\begin{aligned} & 100 p F-1000 \mu F \\ & 100 p F-100 \mu F \end{aligned}$ | external internal |
| Accuracy $\pm 5 \%$ |  |  |
| Voltage applied to unknown, max 1 V rms |  |  |
| When measuring items which are connected to the mains earth either the item, or the meter, must have the earth removed. |  |  |

measure the dc resistance as well as the measure the and calculate from the formula

$$
x=\sqrt{z^{2}-R^{2}}
$$

where $X=$ reactance inductive or capacitive at the frequency
$Z=$ magnitude of impedance (as measured on impedance
$R=d c$ resistance (as measured
by an ohmmeter).
MEASURING CAPACITANCE
The value of an unknown capacitor
 alt Gu!sn way pure aэuepadu! әц子 reactance chart. Or, it may be
calculated from the formula
$\mathrm{C}=\overline{2 \pi \mathrm{FX}}$ (with capacitors $\mathrm{X}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{c}}$ ) If the 10 kHz frequency is used this may be simplified to
$\quad C$ in microfarad $=\frac{16}{Z_{c}}\left(Z_{c}\right.$ in ohms $)$
and if 1 kHz 1 kHz $\frac{160}{Z_{c}}\left(Z_{c}\right.$ in ohms $)$
 1 ohm to 1 megohm this implies a кедлs aдaymasja paupe|dxa se ing
 or panjosad aq ueว дечł әכuet!oedes about 100 pF .
MEASURING INDUCTANCE


 value may be calculated from
(s!100 0 mol) $\frac{y^{42}}{\frac{z^{y}-z}{7} z=7}=7 \quad 10$

 UNKNOWN


ELI TOP PROJECTS - 3

Q2. Transistor Q4 is supplied with a constant current of 22 mA by QS, and OA , in conjunction with the
input pair, supplies the necessary input pair, supplies the necessary
overall gain. Transistors Q6 and Q7 buffer the output of Q4 and Q5 to provide the necessary current drive. The dc bias for the amplifier is provided by R17 such that an output voltage within $\pm 1.5$ volts of zero is
always obtained.

The meter drive circuitry consists of
741 IC with a meter, and half wave a 741 IC with a meter, and half wave
rectifier in series, connected in the feedback path. A second diode is
 saturated on the opposite-polarity 5

The current in the meter is half the current through R25 and, since this is
proportional to the difference between input and output voltages of
 voltage across the unknown
impedance. The meter scale is linear impedance. The meter scale is linear
and the IC effectively compensates for the diode drop. Capacitor C3
 ssaf sepurnbay te surition uәчM
 amplifier is set by the ratio of the ol Ienba s! pue '،x, iolstsal muarajar $\frac{\mathrm{Z}+\mathrm{R}}{\mathrm{R}} \quad \begin{gathered}\text { (where } \mathrm{Z} \text { may be } \\ \text { complex) }\end{gathered}$



 range selected. This provides a gain of
 output of the oscillator (or the external oscillator level) should be adjusted by
RV1 to obtain full scale deflection
 should also be selected before an open circuit may damage the


## HOW IT WORKS ETI- 116

 The basic format of the impedancemeter may be seen from the block diagram Fig.1. Firstly, we have an oscillator which may be switched to provide either 1 kHz or 10 kHz . Then е रpsel pue 'sourepodui! indu! y fit e
utput of the oscillator or an external frequency, as required, is jo indu! guturautuou aчp of passed


 ol jenba sкemie si y ssoior วseqjon

 Z 'ourepadu! unouxpu aqt ysิnory

 output voltage by using the input

 วч1 suminspau रोалпоауа are ам 'y

 se JI ItLe səsn pue adit əopuq ulo as the stabilizing element. The circuit

 respectively. Therefore, to change

 RV1 to approximately one volt.
 dool-uado ue sey 'peol e olu vu
 (u!̣es
An integrated circuit operational amplifier having the above
characteristics (at reasonable cost) is not available, hence, a discrete seven u!eiqo oL pasn sem uisisap rolsisuent




## IMPEDANCE METER

It should be borne in mind that we are determining impedances by using audio frequencies in this instrument hence components such as RF coils may well have a different impedance at RF frequencies (due to skin effect etc) than they do at audio. Additionally iron-cored coils have an inductance dependant upon the measuring frequency and upon dc
current flowing. Hence such coils should be measured under conditions as close as possible to those when in circuit. Further the inductance value, as measured, will only be accurate on coils having a Q greater than 10.

If the dc resistance is greater than one tenth of the measured impedance the second formula should be used.

## TURNS RATIO

To measure the turns ratio of an unknown transformer simply load the secondary with a value of resistance, $R$, which causes the impedance Zp (looking into the primary) to drop by $50 \%$ from the unloaded value. The turns ratio may then be calculated from

$$
\frac{N_{1}}{N_{2}}=\sqrt{\frac{Z_{p}}{R}}(N=\text { number of turns })
$$



[^2][^3] $(10 \mathrm{kHz}$ in brackets).

This calculation is based on the fact that an impedance in the secondary is transformed to an impedance in the primary that is proportional to the square of the turns ratio.
Many other applications can be devised for an impedance meter and the few mentioned here are indicative of the usefulness of such ar. instrument.

## CONSTRUCTION

Any accepted construction method may be used but the use of a printed circuit board will greatly simplify the procedure.
Components should be assembled onto the printed circuit board, with the aid of the component overlay Fig 4, making sure that all polarized components are orientated correctly. Capacitor C12 should not be fitted initially as the required polarity must be determined as follows.
Temporarily connect the transformer to the otherwise completed board and switch on the power. Measure the voltage from the amplifier at point H . This should be within $\pm 1.5$ volts of zero. If this voltage is negative reverse the polarity of C12 to that shown on the overlay. If the voltage is positive use the polarity shown. This variation of voltage at point $H$ is due to differences in the FET transistors Q1 and Q3.
Attach wires to all output cohnections of the printed circuit board allowing sufficient length to terminate them in their respective positions. Instal the board in position using 12 mm long spacers and countersunk screws. Countersunk screws are necessary as they will be covered by the lid of the box. Instal the power transformer and power lead, on the rear panel, together with the power-cord clamp and earth lug. Mount the slide switch to the front panel using countersunk screws.
Resistors R5 to R14 should be mounted on the rotary switch SW3 before mounting it on the front panel. If the $30,300,3 \mathrm{k}$ etc resistors are not available they may be replaced by a parallel combination; eg 30 ohms is obtained from 33 ohm and 330 ohms in parallel and 3 k from 3.3 k and 33 k in parallel.
The rest of the front panel components, except the meter, (for ease of wiring) should now be mounted together with the escutcheon. The wiring can now be completed and the meter installed and connected.

## USING THE METER

The meter should be used in the following manner:-

1. Switch the cal/impedance switch to cal.

Fig. 4. Internal view of the meter shows how the board and other components are positioned.


## 2. Switch on power.

3. Select the required test frequency. The meter should read full scale, if not, adjust RV1.
4. If an external oscillator is used set the frequency and adjust oscillator output level to obtain full scale reading.
5. Connect the impedance to be measured.
6. Select the one megohm range.
7. Switch the cal/impedance switch to impedance.
8. Reduce the range, if necessary, to obtain a readable deflection. This reading is the required impedance; eg 0.6 on the 10 k range is an impedance of 6 k .
9. If desired the external frequency may be varied to obtain a plot of impedance versus frequency.
10. Switch back to 'Cal' before removing the impedance being measured.

## TABLE 1

| Error | Resistance <br> (R2/R3) | Capacitor <br> (C1,C4) | Capacitor <br> (C2,C3) |
| :---: | :---: | :---: | :---: |
| $1 \%$ | 150 k | $0.001 \mu \mathrm{~F}$ | 100 pF |
| $2 \%$ | 68 k | $0.0022 \mu \mathrm{~F}$ | 220 pF |
| $3 \%$ | 47 k | $0.0033 \mu \mathrm{~F}$ | 330 pF |
| $4 \%$ | 39 k | $0.0039 \mu \mathrm{~F}$ | 390 pF |
| $5 \%$ | 27 k | $0.0056 \mu \mathrm{~F}$ | 560 pF |
| $6 \%$ | 22 k | $0.0068 \mu \mathrm{~F}$ | 680 pF |
| $7 \%$ | 18 k | $0.0082 \mu \mathrm{~F}$ | 820 pF |
| $8 \%$ | 18 k | $0.0082 \mu \mathrm{~F}$ | 820 pF |
| $9 \%$ | 15 k | $0.01 \mu \mathrm{~F}$ | 1000 pF |
| $10 \%$ | 13 k | $0.01 \mu \mathrm{~F}$ | 1000 pF |



## IMPEDANCE METER

## FREQUENCY CALIBRATION

The frequency should be within $10 \%$ of nominal if specified components are used. However, if a frequency meter is available the network can be trimmed to give the correct readings.

Measure both the 1 kHz and the 10 kHz and calculate the percentage errors. If either or both are low in frequency the resistors R2 and R3 can be paralleled with additional resistors to increase the frequency. Since this
will affect both ranges choose the one with the greatest error. Table 1 gives the correct resistance to use.

Re-measure the frequencies. One frequency should now be right and the other high. The capacitors C1 and C4 or C2 and C3 can be paralteled by the appropriate capacitors as selected from Table 1.

## LIMITATIONS

Due to stray capacitance, (about 15 pF) associated with the front panel terminals and the switches, the 1
megohm range is useful only up to about 4 kHz . The 300 k range is useful to about 10 kHz .
When measuring series LCR networks (where the impedance rises greatly off resonance) it is usually necessary to parallel a resistor across the network to stabilize it. Once at resonance, the resistor may be removed for the actual impedance measurement. The frequency can now be altered provided that the meter is not allowed to go off scale. The resistor used should be not more than 10 times the value of the network impedance at resonance.


Fig. 6. Layout of front panel. Full size is $152 \times 98 \mathrm{~mm}$.


Fig. 7. Impedance-versus-frequency plot for a two-way speaker box. Note the combined speaker/box resonance is 75 Hz . The crossover frequency was 2 kHz . A plot such as this would be extremelv difficult to generate using a conventional LCR bridge, but is very simply done using the ETI 116 impedance meter.

## DIGITAL DISPLAY



Three digit module for experimenters.

The ETI Digital Display has been used in a number of projects in the magazine including the Digital Voltmeter in this Project Book.

ALL digital instruments have a common assembly in the display system. Again, almost all instruments require decade counters, stores and decoder-drivers for the display.

Normal systems using TTL logic generally have a 7490 , a 7475 and a 7447 to drive each 7 segment LED display digit. Hence to build a three-digit display nine ICs are required in addition to three display ICs.
Complex logic functions are available in CMOS which allow a 3. digit display to be built using only two ICs - and such ICs are available at reasonable cost. One of the devices is a three-digit, decade-counter, store and the second is a three-digit decoder-driver. Thus three digit displays can be built which have the following advantages.
1.Small size
2. Low power consumption ( 120 mA compared to 600 mA in TTL)
3. Wide power supply range $(5-15 \mathrm{~V}$ unregulated).


## DIGITAL DISPLAY

4. Cost about same as TTL but rapidly decreasing.
5.1 mmunity to noise is greatly improved.

## Disadvantages

Maximum frequency about 1 MHz compared to 15 MHz for TTL..

## CONSTRUCTION

Construction is quite straightforward especially if the printed circuit boards described are used. Since both ICs are CMOS devices, they can be easily damaged by static charges. Hence they should be handled as little as possible, fitted to the board after all other components and soldered using a minimum of heat.
Using the component overlay assemble the three DL704 displays to the display board (533B). Next solder the links onto the copper-side of the


|  | PARTS LIST - ETI 533 |
| :---: | :---: |
|  | R1,2, 3,4 Resistor 100 k <br> R5-11 " see text. |
|  | C1 Capacitor $0.001 \mu \mathrm{~F}$ Polyester C2 " $0.01 \mu \mathrm{~F}$ Polyester |
|  | IC1 Integrated Circuit MC 14553 (CMOS) IC2 " " 14511 or 4511 (CMOS) |
|  | Q1,2,3 Transistor BC 178 or similar |
|  | DISPLAYS DL704 or similar three required PC boards ETI 533A and ETI 533 B IC1 and IC2 are available from Marshall's |



Fig. 3. Component overlay - display board.

Fig. 2. Component overlay-logic board.


Fig.4. Printed circuit layout for logic board. Full size $80 \times 42 \mathrm{~mm}$.

Fig. 5. Printed circuit layout for the display board. Full size $41 \times$ 35 mm .


## HOW IT WORKS - ETI533

The heart of the counter is ICI, this LSI CMOS chip contains a three-digit decade counter, three sets of latches, and a three-digit multiplexer with an internal oscillator. Cl is used to set the frequency of this oscillator.
The four input lines to ICl are used to control the operation of the counter. Since IC1 is a CMOS device R1-4 are used to protect its inputs. Pulses to be counted are fed to the clock input and on a negative transition the value in the counter is increased by one. The schmitt-trigger action of the clock input allows any value of transition time of the input pulse.
The counter operates when there is a low at the disable input (pin 11).
To ensure accurate counting the clock should be low when the disable is brought from a high to a low level. The strobe input controls the loading of the latch. When it is low, data can be accepted for display. However the strobe input has no effect on the counter, i.e, even with the strobe input high, the counter can still be incrementing.
A high on the reset input clears the counters (to a 000 state) and stops the internal multiplexing oscillation of IC2, and so - blanks the display. Returning the reset to a low allows the internal oscillator to start up and all zeros to be displayed. This feature could be used in portable equipment to conserve power.
All inputs are standard CMOS inputs and require a minimum voltage change of from $30 \%$ to $70 \%$ of supply volts. However it is recommended that a swing from 0 V to supply be used to give a satisfactory noise margin. Each input can be considered to be 100 k shunted by $8-10 \mathrm{pF}$. Voltage swing below 0 V and above supply are also to be avoided.
The one output available is the overflow (pin 14). This goes positive when the counter is 999 and the clock input is high. When the clock input goes low and advances the
counter to all zeros the overflow goes low. This is a CMOS output and will swing between supply rails. It is not recommended that the overflow output be used to drive TTL directly.
The internal multiplexer of IC1 allows considerable saving in parts and board space. It allows a three-digit number to be transmitted over a single set of lines and it does this by leaving each digit on the output lines for a short length of time, before replacing, it with the next digit. Then after presenting all the digits once, it starts over again and repeats the operation.
IC2 is a CMOS, latch BCD to seven-segment decoder and driver, however for this application the latch is not used. It converts the 4-bit BCD code into the seven-line code necessary to drive the display segments. It also provides sufficient current to drive the display. Although IC2 is coupled to all three displays, only one display is lit upat any one time. Thus when it is the turn of the most significent digit to be displayed ICI presents that number to IC2 which decodes the number and presents it to the three displays, but only Q1 is turned on, so only the left most display lights.
Note that ICl controls which number is being presented and which transistor is turned on. This is called multiplexing. The switching between displays occurs so quickly that to our eyes the light appears continous.
Resistors RS to R11 limit the current to each LED display to a safe level. Three different values have been given for these resistors. Select the value appropriate to the supply voltage that you decide to use, 68 ohms for $5 \mathrm{~V}, 330$ ohms for 10 V and 1 k for 15 V . Transistors Q1, Q2 and Q3 also act as current amps since only a limited amount of current can be taken from ICl.
Any voltage from 5 V to 15 V can be used to supply the counter, however, a supply voltage of 15 V allows the counter to operate at its highest speed.
display board and form them so that they are clear of other tracks by at least one millimeter.
Next fix lengths of tinned copper wire to each of the six holes on the bottom of the display board. Allow approximately 10 mm of wire to extend from either end of the holes. Bend each wire so that they lie parallel and flush to the surfaces of the display board - do not solder as yet.
On the main printed-circuit board (533A) fit resistors R7, 8, 9, 12, 3 and 4 and capacitors C1 and C2. Now mate the display board to the main board by inserting each of the previously
bent wires into its corresponding pair of holes on the main board.
Apply gentle force to the display board until its bottom edge fits snugly against the main board. Solder each of the wires to both the supply and main boards to make a sound electrical and mechanical support for the display.
Fit R5, 10 and 11 and, taking care to orientate them correctly, fit Q1, 2 and 3 and IC1 and 2.
Lastly check that all components have been correctly fitted and all solder joints are good. If possible get someone else to check your final circuit as a final safeguard.

BUILD THE
TREASURE TRACER


- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using. only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 22oz; handle knocks down to 17 " for transport.
Send stamped, self-addressed envelope for literature.

```
Complete kit with pre-built search coil
Plus 85 p P \& \(\mathbf{P}\)
``` Plus \(£ 1.00\) VAT ( \(8 \%\) )
Built, tested and Guaranteed \(5=00\)

Plus 85 p P \& P .
Plus £1.40 VAT (8\%)

\section*{MINIKITS ELECTRONICS,}

6d Cleveland Road, South Woodford, LONDON E18 2AN (Mail order only)


\title{
ELECTROVALUE
}
the good components service
with a still more up-to-date catalogue
In relatively few years. Electrovalue has risen to a position of pre-minence as mail-order (and industrial) suppliers of semi-conductors, components, accessories, etc. There are wide ranges and large stocks to choose from as well as many worthwhile advantages to enjoy when you order from Electrovalue

\section*{CATALOGUE 8 ISSUE 2}

Second printing now ready, revised and up-dated on prices etc. 144 pages. New items. Opio-electronics, Diagrams of cmponents, applicatoons. I.C circuits Posi free 40 p, including

\section*{DISCOUNTS}

On all C.W.O. mail orders, except for some items marked
NETT.
\(5 \%\) on orders list value \(\quad 10 \%\) on orders list value
FREE POST \& PACKING
On all C W O. mail orders in U.K. over \(£ 2\) list value. If under, add \(15 p\) handling charge.

\section*{PRICE STABILIZATION POLICY}
prices are held and then reviewed over minimum periods of 3 months, next review due April Ist

\section*{QUALITY GUARANTEE}

On everything in our Catalogue - No manufacturer's rejects, seconds or sub-standards merchandise

\section*{ELEGTROVALUE LTD}

Al/ comnnuications to: Section 5/4, 28 ST. JUDE'S ROAD, ENGLEFIELD GREEN. EGHAM, SURAEY TW20 OHB. Telephone Egham 3603 Telex 284475. Shop hours 9.6 .30 daily, \(9-1\) p.m Sats
NORTHERN BRANCH: 680 Burnage Lane, Burnage, Moncheater M19 1NA. Telephome (061) 432 4945. Shop hours daily 9.5 .30 p.m.; 9.1 p.m .Sats.

\section*{tecknowledgey in consumer ICs - and their applications. SGS Audio ICs \\ W上V®MOM \\ Modules \& Kits \\ New modules:}


The much heralded TDA2020 is here. And just to make sure that you don't go wrong, so is the SGS application test circuit PCB for a stereo \(15+15\) (RMS) Hi Fi amplifier.
\begin{tabular}{|c|c|c|c|c|}
\hline Prices & & IC & AUdio & DISCRETES \\
\hline tBab 10AS & +HS & 1.09 & ZTX107/8/9 & 14p \\
\hline TCA940E & +HS & 1.80 & ZTX413(LN) & 17 p \\
\hline TDA2020 & & 2.99 & ZTX212/3/4 & \(16 p\) \\
\hline FM LINEAR & & ICS & BD 535 npm & 7A/60V 520 \\
\hline MC1350 & & 0.70 & BD536 pnp & 3p \\
\hline CA 3089 & +0C & 1.94 & BD377 nom & 3A/50v 29 p \\
\hline TBA 120 & +QC & 1.00 & BD378 pnp & 2A/45v 270 \\
\hline MPX LINEAR & & ICS & BD516 pnpl & 30p \\
\hline MC1310P & +LED & 2.20 & BD609 niny & 10A/90v 70 p \\
\hline CA30904O & + LED & 3.75 & BD610 pnp & 102p \\
\hline
\end{tabular}

To accomodate expanded R \& D facilities, AMBIT has moved sales and administration to 25 High St . Brentwood. The existing 37 High Street premises are retaines for the engineering activities.
One of the first products of this move has been the development of a TV sound tuner, from an "off air" system, using its own varicap UHF TV suner, with ICIF amplifiers and block filters by TOKO. And then one of our best ever circuits - an electronic touch tuner, with ceanning mode, and facilities for 6 preset stations. The unit is suitahle for use with FM, and now AM of course, and offers a complete tuner system withour any moving parts. Selection is by means of touch tuning in all cases, with manual scan and preset switching automatically interlocked.

Our R\&D facilities are available for Our R\&D facilities are available for
general consultancy to OEMs: further - details on application. Standard project - detains on appelication. ind project evaluation comment data is \(£ 15.00\) pıyable in arvance.

8011 Totally touch tuned varicap controller built £14.99. 8005 Larsholt tunerset accesory unit, with pilot tone filter and audio stages, rectifier, IC stabilizer, meter driver circuits. \(£ 4.99\) (kit)
800155 kHz low oass filter ( mpx birdy filter) \(£ 2.35\) buil £ 1.75 (kit)
2001 Stereo scratch and rumble filter, with con tinuously variable oper ating frequencies, \(£ 5.80\) (built) \(€ 4.60\) (kit)
3000 Stereo control preamp - a wide dynamic range, low distortion AF preamp, with vol, bal, bass and treble controls. kit \(£ 5.78\)
2020k The TDA2020 stereo amp kit photographed on the
eft. £7.85
TV.off air UHF sound tuner - built \(£ 26.00\)
(4 preset stations)
9000 kit AM/FM mpx funer chassis, with mech. tuner \(\mathbf{E 1 7 . 5 0}\) 7004 kir MW/LW varicap tuner module, inc. ferrite rod \(£ 9.95\) 7252 HIFi MOSFET FM iuner module by Larsholt . \(£ 24.00\) 7253 HiFi FET FM zuner module inc decoder
5600 Hi Q MOSFET varicac tunerthead by TOKO
EC3302 FET tunerhead from TOKO
\(£ 24.00\)
\(£ 24.00\)
\(\begin{array}{lll} & \text { E24.00 } \\ £ 500\end{array}\)
Coodules. details SAE please Prices range from fai. fCo
Amongst our various accessories for entertainment electronics is a range of FM tuning, frequency and sig. strength meters with \(12 v, 50 \mathrm{~mA}\) bulb. \(£ 2.50 \mathrm{ea}\).

ambit international 25 high street, brentwood, essex. cm14 4rh.

Free price list with an SAE, catalogue of modules and parts \(40 p\)., including postage and VAT.
General Terms: CWO please, official bodies and companies please note min . invoice \(\mathrm{f7.50}\). PP for CWO orders 22 p per order. (UK and Eire). Overseas customers please include sufficient for postage. VAT is not included, and must be added at \(25 \%\), In stock orders despatched within 48 hours.

\title{
DIGITAL VOLTMETER
}

IAN ARTICLE elsewhere in this book details a simple, three-digit display module which is readily adaptable to a wide range of applications and is inexpensive to build. This month we provide details of the first of a series of modules specifically designed to interface with the ETI 533 display module.

The first of these modules is a simple, yet accurate, dc digital voltmeter. Fundamentally we have described it as a single range unit which is economical enough to be mounted within other equipment as a panel meter. However an input switch may be readily added to convert the instrument for use on ranges from one volt dc full scale to 1000 volts dc full scale.

We have not described the mounting of the unit in a cabinet or box as individual requirements will vary widely.


Inexpensive unit uses dual-slope technique

Fig.2. Circuit boards used for the converter.

\section*{TABLE I}

RANGE VALUE OF R 12
\begin{tabular}{lll}
1 V & \multicolumn{1}{c}{100 K} & \(5 \%\) \\
10 V & 1 M & \(5 \%\) \\
100 V & 10 M & \(5 \%\) \\
1000 V & 100 M & \(5 \%\) \\
& \((10 \times 10 \mathrm{M})\) &
\end{tabular}

For multirange meters R12 must be \(1 \%\) or adjustable.


Fig.3. Component overlay of the complete voltmeter.


Fig.4. How the voltmeter appears before final assembly.

The method of analogue-to-digital cenversion used is the popular dual-slope integration technique. A general explanation of this method was given last month in our multimeter survey and reference should be made to that artiche. We chose the dual-slope technique because it is relatively insensitive to component tolerances and gives very linear results with least amount of cireuit complevity. The technique was developed by Weston and henee is covered by putents, however, there is nothing to stop individual constructors from using it, nur are there any royalties involved.
The circuit consists of an integrator (IC4 and (3), a comparator (1C 5), an input selecior (IC3), an oscillator (IC6/1,2,3) an RS flip flop ([C7/1,2), pulse generators for the reset and strobe outputs (IC6/4, IC7/3,4), a voltage reference (ZD) and constant current source Qif, and (hist month's) digital display module.
The 5 kllc. out put of the isecillator. which runs continuously, is connected directly to the clock input of the display module and the conversion procecds as follows Ilip Fhop IC7/2, drives IC3 such that it selects cither the input voltage via R12 or the reference voltage via R13 The state of the tlip flop is determined by the output state of the comparator IC5 (output high sclects input voltage) and the overtlow output from the display modute (overilow selects reference voltage). If the input voltage is selected the output of the integrator will fall at a rate dependant on the input voltage, and, if the reference voltage is selected the input voltage will rise at a constant rate.
When the integrator nutput rises shove 5.1 volts the comparator output goes high cussing the output of IC6/4 to go low (as pin 5 of IC \(6 / 4\) is also high). After about \(10 \mu\) escoonds delay, due to R16 and C7. the tlip-flop changes state and the output of 1C6/4 goes high again Thus a pulse is senerated which is used as the strobe to transier whatever number is in the decade counters into the store. and hence, to the display. The strebe pulse also triggers a 15 microsecond monostable. IC7/3, the oufput of which is delayed by 10 microseconds and inverted by ICT/4. This new pulse acts as a reset pulse for the counters selting them to /ero.
As the flip flop has now reverted to its original state the input voltage is resefected and the integrator commences to ramp down dgain repeating the cycle.
Whilst the input voltage is selected clock pulses are gafed into the counter and after about 200 milliseconds (1000 clock pulses each 0.? mS ) the counter will be full. The overflow thus generated from the display changes the state of the flip flop and the reference voltage is

MEASURED PERFORMANCE OF PROTOTYPE

Number of digits
Overrange
Dual polarity
Ranges
Accuracy
Linearity
Power supply
Input impedance
Overrange Protection
1 V range
10 V range
100 V range

100 V range 100 V range

Reference

3
250\% (no indication on first digit) No
\(1,10,100\) and 1000 V dc As adjusted \(\pm 1\) digit
9.15 V dc at 120 mA isolated

100 k/V

100 V 500 V 500 V voltage rating of 2500 V* R12
*input switch permitting
5.1 volt zener at constant current.
selected. The voltage across the integatar (referenced to 5.1 volts) at this instant will be proportional to the input voltage. With the reference supply comrected the vutput of the integrator will rise at a predetermined rate and on crossing the 5.1 volt refeience level the strube and reset pulses are gencrated. the tlip thup logyled and the process started again.
The time taken to bring the integrator back to the reference level is proportional to the input voltage and hence the number in the decade counter at that instant is the required reading of input voltage.
The only cumponents which are required to have good subility, if accuracy is to be maintained, are R12, R13 and 2DI. All other compunents. provided their shoriterm stability is good, can be almost any tolerance. The integrator capacitor, for example. can have any value between 0.5 microfarad and 2.0 microfarads without affecting accuracy. However variations in the value of this capacitor will affect the over-range capability. The clock frequency may likewise be altered withour affecting accuracy however, if the time of 1000 clock pulses is a multiple of 20 milliseconds the voltmeter will automatically reject 50 \(\mathrm{H}_{2}\) ripple on the vollage being measured. This however was not considered of great enough importance to warrant special adjustment of the clock frequency which is preset by R15 and C4.
The reference supply is a 5.1 volt zener diode and a \(1 \%\) T connected as a constant current source. The 5.1 volis is used as the common and
hence, the 12 volt supply for the voltmeter must be left fluating and must not be connected to ground or to any other equipment.
Due to the simplicity of the circuit there are some fartures of the instrument which ate not desirable but do not gereatly affect the operation of the instrument. I-irstly there is no iver-range indication and thus if 15 volts is applied to the 10 volt range the instrument will read 5 volts. The unit renseins accurate evecept for the first digit which is lost) until the intsgrator clips on its negative swing fabout 250 '; of fult seale). The other point is that if the input voltuge is negative the comparator, ICS, will remain high and. no further strobe or reset pulses will be senerated. The effeet of this is to freeze the display at the hasi number. This is not normally at problem as the display goes to zero if the input is disconnected.

\section*{CONSTRUCTION}

The display-counter module ETI 533 should be built first.

Two additional boards are required to complete the voltmeter and the overlays and interconnections are given in Fig. 3. Check that all components, especially the metal case ICs are orientated correctly.

The interconnection wires should be long enough to allow the boards to fold together as shown above. The lower board ETI 533A has the components uppermost, the middle board ETI 117A has the components

\section*{DIGITAL VOLTMETER}



Pisplay Board Complete - Pralect ETI 533
downwards while the top board ETI 117B again has the components uppermost. It may be necessary to juggle the components slightly on the lower two boards to allow them to fit together closely enough. These two boards are spaced apart with 12 mm long spacers while the upper two boards are separated by 6 mm insulated spacers. A piece of insulation material should be fitted between the top two boards to prevent the solder joints touching.

Power, \(9-15\) volts dc, is supplied to the lower board while the input connects to the upper board.

The unit can be either installed in a suitable box or within a piece of equipment. If range switches are required simply change the value of R12 as per Table 1

\section*{CALIBRATION}

Unfortunately to calibrate any voltmeter a known voltage reference. or an accurate voltmeter is required for comparison. Two adjustments are provided; one for calibration and the other to compensate for the offset in the integrator IC. For input voltages of 10 V or more the offset potentiometer is not required as the error is within one digit.

This offset potentiometer should be adjusted first by applying a voltage of about one per cent ( 10 digits) of full scale and adjusting RV2 to give the correct reading. The calibration potentiometer RV1 can now be adjusted by applying an accurately known voltage near full scale.

The meter has a large overrange and voltages up to 250 per cent of full scale can be measured except that the first digit is lost and must be assumed, ie, if you are measuring a car battery on a 10 V range and it reads 3.52 V it is obviously 13.52 V .

\section*{TTL super test}


ORIGINALLY conceived as a tester for checking out disposals dual-in-linє T.T.L. integrated circuits, this device has also proven effective in the roles of logic trainer, breadboarding unit anc digital trouble-shooter.
Two SN7400 quad NAND integratec circuits, together with an NPN bipola transistor, have been adapted to perform the functions of multivibrator clock-generator, unipulser and pulsé lengthener/detector, each function being located on a sub-board and brought out to banana sockets on the front panel.
Three hook probes with banana plug terminations are provided. The use of banana sockets for probe entry frees the probes for use in conjunction with other equipment.
Logical ' I ' and ' O ' detection is available. Logic indication is by a red LED - alight for TRUE.
A 16 pin dual-in-line socket with base connections fanned to well spaced binding posts (Fig. 3B) is used for the testing of both 14 and 16 pin D.I.L. integrated circuits and also for



Fig.3. The component averlay.

\section*{BCD OPTION}

A useful addition to the Supertest project is a BCD readout facility consisting of four LEDs brought out through current limiting resistors to binding posts on the front panel.
The LED's, positioned in line and close together for easy interpolation, are fitted in the positions indicated on the layout diagram, using the islands provided on the front panel for mounting the associated resistors and binding posts. The posts should be clearly labelled ABCD and the LED's defined by their binary weightings of 1, 2, 4, 8 .
For those enthusiasts who find continuous operation of the clocking multivibrator objectionable, the clock may be inhibited by isolating pin 1 of gate B1 and connecting this point via a toggle switch to ground. When the ground is removed the clock will operate normally. This switch can be located conveniently inboard of the unipulser switch. With the clock inhibited the clock output at TP1 will be a 'low'.

\section*{MULTIVIBRATOR CLOCK}

The clock consists of a multivibrator formed by gates A4 and B1 and associated RC networks. The period of oscillation is about 0.8 seconds and the output is buffered by gate B4 to reduce loading effects.
The clock rate may be varied, if required, by altering the value of both capacitors. It is inadvisable to increase the value of the resistors beyond 2 k as this may result in unstable operation.

\section*{UNIPULSER}

The purpose of the unipulser is to provide a single, bounce-free pulse, at each depression of SW1, for use in testing counters etc.
The two gates A3 and B2 are interconnected to form a switched bistable (RS flip-flop). Normally pin 4 of B2 is grounded via SW1 and the resulting high at pin 6 is coupled directly to pin 9 of A3. As pin 3 of A3 is not connected, A3 sees both inputs as 'high' and its output will be 'low'.
When S 1 is depressed pin 10 is earthed and pin 4 gnes high. A3 output goes 'high' and this appears at pin 5 of B2. As both inputs of B2 are

\section*{HOW IT WORKS}
now high its output will transfer a 'low' to pin 9 of A3 causing its output to be locked into the high state regardless of any further bouncing of the switch contacts which would otherwise provide spurious input pulses to the counter under test.
Releasing SW1 causes the flip-flop to revert to the state where A3 output is low.

\section*{PULSE EXTENDER}

This simple circuit stretches very short pulses to about 100 milliseconds duration thus allowing them to be detected easily.
The two NAND gates A1 and A2, together with C3 and R6, form a monostable. Initially both inputs of A2 are held 'low' due to R6, its output is therefore 'high'. All inputs of A1 are thus 'high' and its output is 'low'.
If the input of A1 is driven 'low', by a short duration pulse, the output of Al will go 'high' transferring a high via C3 to the input gates of A2. Output of A2, and A1 input, will go 'low' holding A1 output 'high'. Hence the LED indicator will be alight.

Capacitor C3 now discharges via R6 and after approximately 100 milliseconds the input to A2 will revert to 'low' and hence A2 output and A1 input will go 'high'. If both inputs of A1 are now 'high' (pulse not present) Al output will go 'low' and the LED will extinguish. However if a pulse is present A1 output will remain 'high' and the LED lit.

As a 'low' is required to gate A1, an inverter is required for logical ' 1 ' detection. This is performed by Q1. Q1 also acts as a current amplifier allowing the logic probe to be of reasonably high impedance. Resistor R3 provides a light load, for the disconnected outputs of operating ICs, thus allowing logic levels to be observed. Resistors R3 and R4 also form a potential divider such that Q1 does not draw excessive current at normal logical ' 0 ' levels.

\section*{INVERTER}

The spare NAND gate, B3, is wired as an inverter. This allows inversion of the clock or unipulser outputs or 'low' logic detection using the logic probe.
breadboarding and training purposes.
The front panel is clearly labelled with carefully applied Letraset lacquered to increase durability - and housed on a small black plastic utility box to give the completed unit a professional appearance.
Thirteen short leads - approximately 230 mm long - twelve terminated with small insulated alligator clips and one with banana plugs, complete the test kit.
The unit is intended to operate from an external power source of 5 V and this is normally provided by the digital equipment under test. But for casual purposes a 6 V lantern battery, connected via two forward biased silicon diodes, is a satisfactory and economical power source. Current drain is about 30 mA .

\section*{CONSTRUCTION}

Prepare the sub-board from Veroboard by cutting the tracks as shown on page 53 and then commence wiring by fitting the resistors and links. Sleeve any long links with 'spaghetti'. Next mount the ICs taking particular care to orientate the notch (or dot) as shown in the overlay.
Mount the capacitors and Vero-pin terminal posts taking care to insulate the capacitor leads with spaghetti. As C1 and C2 are physically large, they should be laid on their sides and bound to the board with a length of spaghetti-sleeved wire.
After checking the board for errors, poor solder joints etc, it may be tested by temporarily wiring the LED between TP3 and TP7 - the lead closest to the flat on the LED being connected to the grounded terminal, TP7. The unit is then powered by applying +5 volts to TP8 (zero volts to TP7). The LED should flash briefly on application of power and then extinguish.
Connect TP2 to TP8 - the LED should light and then extinguish when the connection is broken. Observe that there is a pulse stretching action by flicking TP2 against TP8.
Connect TP2 to TP1. The LED should flash regularly at approximately 1 Hz . Now connect TP5 to TP7 and TP2 to TP4 in that order - the LED will be extinguished. Disconnect TP5 and connect TP6 to TP7 - the LED will light. Note that repeated disconnections of TP6 will have no effect on LED indication.
Disconnect TP6 and reconnect TP5 to TP7 - the LED will extinguish. Note that repeated interuptions of TP5 connection will have no effect on LED indication.


Connect TP9 to TP7 and TP2 to TP10 - the LED will be lit. Disconnect TP9 from TP7 - the LED will go out. Now connect TP9 to TP8 - the LED should still be out.

That completes testing of the sub-board. The banana sockets, IC socket, power terminals and unipulser switch should now be fitted to the front panel. Note that the common lead on SW1 is earthed to the panel ground-plane adjacent to the switch body.

Mount the LED using the plastic mounting clip provided, and solder the lead near the flat. side of the LED to the ground plane. Take care, when bending the leads from the LED, to hold the wire near the base of LED
with long nose pliers. Unless the strain is relieved as above, the leads are prone to break off at the base.
Mount four, half-inch insulated posts to the sub-board with screws and then, using 5 minute epoxy, cement the other end of the pillars to the front panel. When the glue is set unscrew the sub-board so that final wiring may be performed as follows.
Connect TP1 to B1; TP2 to B3; TP3 to LED; TP4 to B2; TP5 to NC SW1; TP6 to NO SW1; TP7 to GND; TP8 to +5 V ; TP9 to B5; TP10 to B4.
When all these connections have been made, the sub-board may be reinstalled on the front panel and the whole assembly mounted in the utility box.


ICA, ICB Integrated circuit SN7400
Q1, BC108 or similar
C1, C2 Capacitor electrolytic \(470 \mu \mathrm{~F} 16 \mathrm{~V}\) C3 Capacitor electrolytic RB \(100 \mu \mathrm{~F} 16 \mathrm{~V}\) C4 Capacitor \(0.22 \mu \mathrm{~F} 100 \mathrm{~V}\) tantalum R1, R2, R6 resistor 820 ohm \(1 / 4 \mathrm{~W}\) 10\% R5 resistor \(1 \mathrm{k} 1 / 4 \mathrm{~W} \quad 10 \%\)
R3, R4 resistor 33 k 1/aW 10\%
TB1, TB2 terminals
W1 DIL IC socket 16 pin
Veroboard . \(1^{\prime \prime}\) matrix, \(33 / 4^{\prime \prime} \times 31 / 8^{\prime \prime}\)
PCB, \(6^{\prime \prime} \times 3^{\prime \prime}\)

Veropins (.1"), 30
SW1 switch DPDT pushbutton, momentary action
LED TIL209
Probes (3 off), self gripping (Doram)
Banana sockets
Banana plugs
Crocodile clips, miniature, plastic covered, (24 off)
Solder, hook-up wire, sleeving, epoxy and insulating posts.
Box, \(190 \times 90 \times 50 \mathrm{~mm}\), or similar.


\title{
ADIMMER FOR
} FLUORESCENT LIGHTS

This 700 VA dimmer ensures smooth and almost flicker-free control of fluorescent lighting

AIthough. not recommended it is possible to dim fluorescent lights over a limited range using a dimmer that has been designed for incandescent lighting control.
But it is very probable that there will be severe flickering at low light levels.
Although this flickering can be reduced by various techniques, it is primarily caused by asymmetrical current flow in the tube, i.e. current in one half cycle is greater than current in the other half cycle, and unlike the 100 Hz flicker that is present at all times, asymmetry introduces a 50 Hz component that the eye can follow.
The most commonly used method of light dimming today is phase control, (described in detail in our article A Practical Guide to Triacs May 1972).
In this method the effective power input to the lamp is adjusted by varying the proportion of each half-cycle of the mains wave-form that is supplied to the load.
Most domestic dimmers sold today use this operating principle and have a circuit basically similar to that shown in Fig. 1
This circuit will control fluorescent loads fairly well providing the triqqering diode is selected for symmetrical operation, but triggering diodes are not generally sotd this way and \(10 \%\) asymmetry is not

uncommon. What this means is that the diode will trigger on one half-cycle at say, 32 Volts and on the next half-cycle at 29.5 Volts. And so at low light levels the diode may trigger the Triac only on alternace half-cycles. This causes flicker.
The same asymmetrical operation will also occur with incandescent loads, but due to the thermal inertia of the filament, the visual effect is much less noticeable.
The dimmer shown in this project overcomes the problem of asymmetry. it provides as nearly as possible an ideal and symmetrical waveform for fluorescent tubes.
Some flickering may still occur at very low light levels because the fluorescent tubes themselves may not be perfectly symmetrical. (The only way to achieve totally flicker-free operation is to use a variable frequency supply. The cost of this method would be enormous).
The maximum loading that can be placed. on the dimmer is 700 VA . Table 1 shows how the VA rating is calculated. It is also possible to use a combination of both fluorescent tubes and incandescent lamps and in this case the VA rating of the incandescent lamp is simply its normal wattage ie. 100 Watts equals 100 VA .

\section*{CONSTRUCTING THE DIMMER}

Construction is fairly simple, but remember that this unit is connected
to the main 240 Volt supply and follow our instructions carefully especially those sections concerning insulation.

The circuit diagram of the complete unit is showr in Fig. 2, and the foil pattern of the printed circuit board in Fig. 3. Metalwork drawings are shown in Fig. 4 and the complete assembly drawing in Fig. 5.
1. Mount the potentiometers on the chassis and cut the shafts to the required length. The minimum adjustment potentiometer should be cut short and slotted so that it may be adjusted with a screwdriver.
Insulated wires should now be soldered onto the respective terminals of the potentiometers ready for later attachment to the printed circuit board.
2. Any 6 A or 10 A rated triac without built-in diac and with PIV of 400 V will do. If you use a triac, such as SC41D, with the case forming the anode, follow the procedure in para 3 to mount the device.
3. Glue a piece of insulating material \(0.025^{\prime \prime}-0.035^{\prime \prime}\) thick and \(3 / 4^{\prime \prime}\) diameter to the back of the potentiometers.
Before mounting the triac a lead must be soldered onto the top edge (ie nearest the terminals). When doing this, place the triac on a piece of copper or aluminium to act as a heat sink, and use the minimum heat required to make a good joint.
\begin{tabular}{|l|c|}
\hline Tube Indicated Wattage & VA Rating \\
\hline 15,20 or 30 & 90 \\
40 & 100 \\
65 & 180 \\
80 & 210 \\
\hline
\end{tabular}


Cut a circle of mica \(3 / 4^{\prime \prime}\) diameter and \(0.002^{\prime \prime}\) to \(0.005^{\prime \prime}\) thick. This may be cut out of a T03 washer if required. Glue this mica washer to the side of the chassis, using epoxy glue. Then glue the Triac to the centre of the mica. The epoxy glue should extend completely over the top surface of the mica to prevent the mica splitting. The new 'five minute' epoxy glue is ideal for this purpose.
4. The rf choke (L1) should now be wound following the details shown in Fig. 6. Then wind the pulse transformer as shown in Fig. 7. Care must be taken with the insulation -
there is 240 Volts ac between the primary and secondary winding on this transformer.
5. The components can now be soldered onto the printed circuit board. Locate transistor Q 2 so that it is about \(3 / 16^{\prime \prime}\) off the board and transformer T1 so that it is about \(1 / 8^{\prime \prime}\) off the board. Capacitor Cl is mounted flat on top of the diodes. Fig. 8 shows the location of all components.
6. Glue the choke L1 on top of the 50 k potentiometer, and connect one lead to the 'cathode' of the Triac (larger of the two terminals).
7. Connect the lead, which is soldered to the case of the triac, and the second lead from the choke to the appropriate places on the printed circuit board.
8. The printed circuit board should now be mounted on the chassis using 6BA nuts and bolts and \(3 / 16^{\circ}\) insulating spacers. Make sure that the board is reasonably level and is not touching the Triac or the chassis.
9. The leads from the secondary of the pulse transformer should now be twisted together. One lead should be connected to the Triac gate and the second lead connected to the Triac 'cathode'.
10. Connect the leads from the potentiometers to their respective locations on the printed circuit board.
11. Insert two short lengths of 23/0076 240 Volt insulated wire through the slot in the chassis and solder one end of each to the appropriate solder lands on the printed circuit board.
12. Place a piece of insulating material over the back of the printed circuit board and fit the cover temporarily in position. When doing this make sure that no bare wires can touch any metal. The dimmer is now ready for testing.



\section*{PARTS LIST}

\section*{FLUORESCENT DIMMER}

C1 - capacitor 0.033 UF, 630 V
C2 - capacitor \(0.047 \mathrm{uF}, 100\) or 160 V
D1-D4 diodes 1 N4004
D5 - diode 1N 914
ZD1 - zener diode BZY 88 C30 or 1N972B
Q1 - Triac type SC41D
Q2 - programmable unijunction transistor type 2N6027
RV1 - miniature potentiometer 50k linear
RV2 - miniature potentiometer 2 Megohm
L1 - choke (see text) wound on ferrite plate \(7 / 8^{\prime \prime}\) long \(x\) \(19 \mathrm{~mm} \times 3.8 \mathrm{~mm}\)
T1 - pulse transformer (see text) wound on Neosid core type \(0.159 \times 0.375 / 2 \times B 6 /\) F 14
R1 - resistor 120k, \(1 / 2\) Watt, \(5 \%\)
R2 - resistor \(22 \mathrm{k}, 1 / 2\) Watt, \(5 \%\)
One on/off switch plate with switch mechanism and one spare terminal. Insulation material \(0.025^{\prime \prime}-0.035^{\prime \prime}\) thick, mica sheet, 6BA \(\times 1 / 2^{\prime \prime}\) bolts and nuts, \(3 / 16^{\prime \prime}\) spacers, insulated control knob, wire, epoxy glue etc. Metal work, printed circuit board ET 011.

Fig. 2. Complete circuit diagram of the light dimmer.



Fig. 6. How to wind the choke.


PULSE TRANSFORMER
CORE-NEOSID TYPE
\(.159 \times .375 / 2 \times\) B6/F 14
* \(3 / 8^{\prime \prime}\) wide cellulose tape recommended

Fig. 7. Details of the pulse transformer follow the construction exactly as shown.


The unit may now be glued to the front plate and the cover glued onto the chassis luse Araldite or other epoxy glue). Connect the two wires from the dimmer to the switch.

\section*{INSTALLATION}

Any modifications to the house wiring must preferably be carried out by a qualified electrician and the following


\section*{ADIMMER FOR FLUORESCENT LICHTS}

necessary to parallel a twin 20 Watt fitting and a single 40 Watt fitting - in this case use Figs. 13a and 13c.
No matter what combination of fluorescent tubes are used it will always be necessary to install the resistor (or incandescent bulb) as shown in Fig. 13 and explained in the fluorescent dimming article
Again, as explained in the fluorescent dimming article, filament transformers must be used. The correct type of transformer for each application is shown in Table 2.
Filament transformers may be ordered through your parts supplier or through an electrical wholesaler. Our experience is that most companies do not hold them in stock but will willingly obtain them against a firm order.

\section*{FILIAMENT TRANSFORMERS \& BALLASTS}

Transtar Ltd, Prince Consort Road, Hebburn, Co Durham stock the following filament transformers and ballasts in one can:

Single rapid-start tubes
20W: A20SCR
40W: A40SCR

Twin rapid-start tubes
\(2 \times 20 \mathrm{~W}: \dot{A} 20 T S C R\)
\(2 \times 40 \mathrm{~W}:\) A 40 TSCR


\section*{HOW IT WORKS}

The power circuit consists of Cl . L1, and Q1. Q1 is a Triac, which when triggered into conduction, remains so until the current through it falls to zero. The Triac is triggered at any required point during each half cycle to give a chopped sine-wave output.
The purpose of Cl and LI is to slow down the rise time of voltage and current to reduce radio frequency interference.
The diode rectifier bridge (D1 D4) supplies unsmoothed 240 Volts de to the control circuit. where R1 and ZDI supply 30 Volts to the gate of the PUT (Programmable Unijunction Transistor) Q2.

Capacitor C2 is rapidly charged via RV1 and D5 until the voltage set by RV1 is reached. Charging then continues via R2 and RV2. When the-
voltage across (2 enceeds the gate voltage (nominally 30 Volts) by about half a volt the PUT conducts and discharges C? into the primary of pulse transformer 11 This causes a pulse of energy to he fed into the gate of the Triac and to irigger it into conduction
The action of the Triac conducting removes all voltage from the control circuit until the nevt half cycle of the mains input waveform.
The point in each half cycle at which the PUT (and hence the Triac) is triggered is determined by the setting of RV1 and RV2. The range of the main control potentiometer RV2 may be varied by the prevel potentiometer RVI. and-so RVI is used to preset the minimum light level.
This circuit ensures symmetrical firing of each half cycle of the Triac

\title{
RADAR INTRUDER ALARM
}


This microwave unit will detect moving objects at ten metres range.

IN 1963 J B Gunn reported that he had obtained coherent oscillations by applying an electric field to a crystal of gallium arsenide, and that a power of 0.5 watt at a frequency of 1 GHz could be obtained by this means. Since that time a great deal of research and development effort has been devoted to producing a range of solid-state microwave generators with stable and predictable properties.
The Gunn effect oscillator is the first practicable solid-state microwave source. About five times cheaper than an equivalent klystron source (including power supply), the Gunn oscillator, because of its inherent efficiency, reliability and portability is finding wide use in contactless object detection and observation equipment. Applications include intruder detectors in security systems, aids for the blind, motor car anti-collision systems, contactless actuators and speed and rotation measuring equipments.
Microwaves have many advantages over light, infra-red and ultrasonic waves for such duties. Principal among these is the relatively "unpolluted" section of the spectrum in which they operate: few natural phenomena or electrical machines generate incidental microwaves. Additionally. conventional radio-signal processing techniques may be used to improve
the signal-to-noise ratio and the immunity to interference.
One of the latest devices to become available in this field, is the Mullard CL8960 radar module. This device is intended for short range doppler radar applications.
In essence it transmits a beam of very high frequency radiowaves - virtually anything intercepted by the beam will reflect some energy back to the unit. If the intercepted object is moving then the reflected energy will be at a frequency slightly different from the transmitted frequency (the difference depends on the speed and direction of the moving object).
Thus if there is a difference between the transmitted and the reflected signal frequencies (i.e. a Doppler shift)
then, by definition, a moving object must have caused it.
The CL8960 modules consists of a dual cavity and integral aerial assembly. A self-oscillating Gunn diode is mounted in one cavity and a microwave mixer diode in the other.
Hence the unit is self-contained, needing only a power supply and amplifier for the Doppler audio output.

\section*{CONSTRUCTION}

We did not attempt to miniaturize the unit as ultra-small physical size is unlikely to be required in intruder detection systems. Our prototype was therefore mounted in a \(185 \times 120 \mathrm{~mm}\) diecast box, the side of which makes

\section*{RADAR INTRUDER ALARM}


Flg. 1. (left) Circuit diagram of the radar alarm.
an ideal rigid support for the radar module.
Assemble the components to the printed circuit board with reference to the circuit diagram and the component overlay. Take particular care with polarization of components and watch for the differing connections of BC109 transistors (see connections at bottom of circuit diagram). The relay may be mounted by simply glueing it to the side of the box.
Do not remove the shorting strap. between the mixer diode and ground, until the module is completely wired into the circuit. The wires from the printed circuit board to the mixer diode should be twisted to minimize pickup - as there is a very low signal level at this point. After these are connected remove the strap by unwinding the end on the mixer diode with the aid of a pair of long-nose pliers and then disconnecting it from the earth terminal.

\section*{SETTING UP}

The only adjustments required are the setting of the +7 volts supply for the transmitter and setting the sensitivity control.

Initially the transmitter should be left disconnected and a resistor 1100 to \(1 k\) ohm) inserted from the +7 V line to ground as a simulated load.. Switch on and adjust RV1 to obtain exactly 7 volts output. Use some glue or nail polish to secure the potentiometer in this position, switch off, and reconnect the transmitter.
To set the sensitivity it is advisable

initially to link the unit for intermittent alarm operation. It may be changed to latching mode later if required. Mount the unit in its normal operating position and adjust the sensitivity such that the desired range is achieved without the unit being over-sensitive. Note that the 10.7 GHz transmitted will pass through timber
walls with almost/zero attenuation so movement outside the protected room could set off the alarm if the sensitivity is too high.
This characteristic can be valuable though as it enables the complete alarm to be concealed behind a plastic or wooden screen - or even inside the wall itself if desired.

\section*{PARTS LIST - ETI 702}


\section*{HOW IT WORKS ETI 702}

The intruder alarm consists of four main sections:
1) The Gunn diode assembly and associated power supply.
2) An amplifier for the output of the mixer diode.
3) A 5 -pole, low-pass filter.
4) A detector and relay driver.

The transmitter consists of a Gunn diode in a tuned cavity that requires a supply of 7 volts \(\pm 0.1 \mathrm{~V} \mathrm{dc}\) at about 140 mA . No other input is required and the diode automatically oscillates at 10.7 GHz . The regulation of this supply is critical as any variation will frequency modulate the Gunn diode. In security applications a 12 volt battery, together with a separate charger. will most commonly be used and the output of such a system will be anywhere between 11 and 15 volts. Hence we have used a series regulator which has a 5.6 volt zener as the reference element. Integrated circuit ICI compares the zener voltage to the voltage, as set by RVI and R4, and controls the series transistor Q1 to keep the relationship of output voltage constant with respect to the zener voltage. Thus RV1 controls the output voltage and is set to obtain 7 volts. A diode D1 is used in series with the input to prevent damage due to reversed polarity.
The mixer diode is in a second tuned cavity next to the transmitter
and receives two signal sources. The first of these is "spill" from the transmitter, constituting a local oscillator signal.
The second signal consists of energy reflected from all objects in the target area. If nothing is moving in the area the retlected signal will be of the same frequency as the transmitted frequency - so the output from the mixer will be the transmitted frequency only.
However a moving object in the area will doppler shift the reflected signal. The difference in frequency will be proportional to the objects velocity, in accordance with the following formula.
\(\mathrm{f}=71.3 \mathrm{~V} \mathrm{~Hz}(\mathrm{~V}=\) velocity in metres/ sec perpendicular to module)
This doppler frequency is ampliffed by Q2. connected as a common-base amplifier, and again by IC2/1 providing a maximum gain of some 85 to 90 dB .
Approximately 20 dB of gain control is provided by RV2. The collector load of Q2 (R1) provides the 35 micro-amp bias required by the mixer diode and R6, 9 and 10 provide the correct dc conditions for the combination.
The filter consists of two active sections, one three-pole and one two-pole, which together make a five-pole Chebyshev filter. The cutoff frequency is about 30 Hz and the
attenuation at 50 Hz is more than 40 dB .

An NE555 timer IC is used as a detector. This IC has two level detectors, one at two-thirds of \(\mathrm{V}_{\mathrm{S}}\) (input A ) and one at one third \(\mathrm{V}_{\mathrm{S}}\) (input B). However, by connecting the control voltage input (pin 5) to +7 volt these levels will be +7 V and +3.5 V respectively. If input B is less than 3.5 V the output will be high irrespective of input A. If input B is above 3.5 V and input A goes above 7 V , the output will go low until input B again goes below 3.5 V . The voltage at input A is normally held at 6.4 V by R21 and 22 and hence about 600 mV increase is needed to reach the trigger point.
On initial switch on, C16 will be discharged causing the output to be high and the relay unenergized. After about 10 seconds C16 charges to 3.5 volts and this allows input \(A\) to assume control of IC3. This initial period is required to prevent false alarms whilst the rest of the electronics stabilizes. If the resistor R22 is connected to the output of the IC (link B) the relay will reset itself after about 25 seconds. If it is retriggered within the next two minutes it will re-latch, however the on time will be less than 25 seconds. If link \(\mathbf{A}\) is used the initial 10 second delay still occurs, however once activated the alarm will remain on until power is removed.


\section*{LIMITATIONS}

The alarm has a filter which rejects all frequencies above 30 Hz . A person walking towards the unit at a reasonable rate generates frequencies in excess of 100 Hz . However parts of the body will be moving at different rates and there will be frequencies below 30 Hz as well. It may be possible to approach the unit from a distance at a high and uniform rate without setting off the alarm but the alarm will be triggered the moment one stops or changes pace.
Fluorescent lights, when operating, generate 50 Hz and 100 Hz noise. Whilst this is rejected by the filter the alarm may be triggered by the impulses generated when the lights are switched on, especially if switch-start types are used which flick on and off a few times when starting. This is not normally a problem as the lights will be left either on or off whenever the alarm is armed.

\section*{ABDUT MICROWAVES \\ Nature and properties}

Microwaves, as the name suggests, are high-frequency, short-wavelength electromagnetic waves. Being of short wavelength, their properties lie somewhere between those of normal radio and visible light waves. They can be focussed and directed by comparatively small structures, but being of high frequency they are more easily deflected and attenuated by solid objects. The high quantum energy involved with microwaves means that some precautions are necessary to avoid personal injury.
The microwave region of the electromagnetic spectrum is arbitrarily defined as lying between \(1000 \mathrm{MHz}(1 \mathrm{GHz})\) and the far infrared region beginning at 300 GHz . Over this range of frequencies, similar signal generating and processing techniques may be used. The wavelengths involved range from 30 cm to 1 mm , the location of the microwave region of the spectrum.
In most countries, radiation health regulations specify a safe limit of exposure to microwaves of \(10 \mathrm{~mW} / \mathrm{cm}^{2}\). however, under normal circumstances a maximum intensity of \(1 \mathrm{~mW} / \mathrm{cm}^{2}\) should be regarded as the limit for continuous exposure. The CL8960 output is only 8 mW . There is therefore no danger in using this device.

\section*{Guiding and Directing}

The high dielectric and skin losses, together with the small wavelengths, rule out the use of normal discrete components and transmission lines. Coaxial lines, if of low loss, may be employed at the low-frequency end of the region, but at frequencies above about 5 GHz wave-guides are usually employed. Where attenuation is unimportant, short lengths of coaxial line fabricated from copper tube and wire can be used. Careful attention should be paid to matching if stable, efficient performance is expected. Discontinuities, such as sharp bends, are undesirable.
Aerials for use at microwave frequencies may be made of high gain in small sizes, a 5 dB gain antenna is supplied with the CL8960.

\section*{Detection}

In low-power industrial practice, microwave signal-frequency amplification is seldom employed. Signals may either be detected directly, or converted to some lower frequency by a diode mixer, or Gunn effect mixer-oscillator,

\section*{USING THE CL8960}
1) The Gunn diode will be damaged if the supply voltage is reversed.
2) The mixer diode will be damaged by fonward current in excess of 10 mA .
3) The module is despatched with a shorting strap between the mixer a.f. terminal and \(-E\) terminal.
The mixer has a low junction capacitance and may be damaged by transients of very short duration. It is recommended that soldering irons be isolated from the mains and that the shorting strap should not be removed until all wiring is completed.
4) A 10 nF capacitor should be connected to, and between, the +7 volt terminal and \(-E\) terminal to suppress parasitic oscillations in the supply circuit.
5) Power supplies should have a low source impedance and be capable of supplying up to 250 mA at approximately three volts during the initial voltage rise following switch on.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{TABLE 1} \\
\hline \multicolumn{3}{|l|}{Attenuation of 10 GHz mierowaves by various materials.} \\
\hline Note: true ( 3 cm ). & ly for thicknesses gra & \(r\) than I wavelength \\
\hline material & attenutation fore way) & notes \\
\hline neavy rain & \(0,2 \mathrm{~dB} / \mathrm{km}\) & not significant in short range radar \\
\hline Conse fog & \(0.1 \mathrm{~dB} / \mathrm{km}\) & not significant in short range radar \\
\hline dry wood & 10 to \(50 \mathrm{~dB} / \mathrm{m}\) & very variable, greator when wet \\
\hline Moxiglas Perspex & \(15 \mathrm{~dB} / \mathrm{m}\) & methyl methaerylate type plastic \\
\hline polvethylene/ polystyrene & \(<1 \mathrm{~dB} / \mathrm{m}\) & dry surfaces \\
\hline expanded polyatyrefe & \(<1 \mathrm{~dB} / \mathrm{m}\) & dry and fresth \\
\hline gas & up to \(50 \mathrm{~dB} / \mathrm{m}\) & extremely variable \\
\hline pura water & approx. \(5000 \mathrm{~dB} / \mathrm{m}\) & \\
\hline
\end{tabular}

\title{
ELECTRONIC COMBINATION LOCK
}

There's only one chance with this unusual combination lock - any incorrect setting will sound an alarm!

THIS electronic combination lock is a simple device which may be used as a security device, or just for amusement. Very few parts are required and most of them will probably already be in the experimenter's junk box.
A total of 1000 combinations are provided by three, eleven-way switches, only one setting out of the possible 1000 will actuate the output relay (and hence any other device required to be operated). More combinations may be provided by simply wiring further switch banks in series with the existing three.
To prevent people from just rotating switches until the lock eventually opens, "lock" and "unlock" push buttons have been provided. Thus once a switch selection has been made the "unlock" button must be pressed to open the lock. Should any incorrect selection be made the alarm will sound. The lock push button must then be pressed to reset the alarm. There is therefore no way in which an intruder can test different combinations, without the alarm sounding, except in the 1 in 1000 chance of selecting the correct combination the first time.

\section*{CONSTRUCTION}

Construction is very simple. We built
our unit into a metal box, but if the unit is meant to prevent access to somewhere, or something, (such as the biscuit tin!! it could well be built directly into the lid or door etc.
Points to watch are the connections to the BC558 transistor, especially as there are two different base connections available, and that the alarm and relays have voltage ratings applicable to the selected supply voltage. The supply voltage may be anything convenient, up to a maximum of 30 volts, this being limited by the rating of the transistor specified.

\section*{PARTS LIST ETI 233}
\begin{tabular}{|c|c|}
\hline R1 & Resistor \(10 \mathrm{k} 20 \%\) \\
\hline 1 & transistor BC178, BC5 \\
\hline O1 & diode IN914 or similar \\
\hline PB1 & push button switch (normally closed) \\
\hline PB2 & push botton switch (normally open) \\
\hline \[
\begin{aligned}
& \text { RLA, } \\
& \text { RLB }
\end{aligned}
\] & relay double pole change-over, \\
\hline & used. \\
\hline 1 & Switches single pole 11 \\
\hline 2, 3 & position rotary. \\
\hline Alarm & - buzzer etc. to suit battery supply used. \\
\hline
\end{tabular}

\section*{HOW IT WORKS}

The three switches (SW1, 2 and 3) are prewired to some specific number. In our circuit diagram the switches are wired to unlock with 475 selected.
When the unlock push button is pressed, power is applied to Q1 and SW1. If the switches are set to the correct "UNLOCK" code, power is also applied to relay B causing it to close, RLB/1 contacts therefore close latching relay B on. The switches can now be altered without relay B opening.
If, however, when the "UNLOCK" pushbutton PB2, is pressed, the switches are not in the correct code position relay RLB is not actuated. Nevertheless, Q1 turns on due to base current flowing through the coil of RLB and R1, and RLA closes. Contacts RLA/1 therefore close, latching on RLA, and contacts RLA/2 change over disconnecting RLB and actuating the alarm. Only by pushing the "LOCK" button can the alarm be de-activated and a new combination tried. If desired the alarm-could be connected across the coil of RLA rather than in the position shown.
The switches should normally be left in the number 11 (blank) position. If in this position the unlock button is pressed the alarm will not be actuated. This prevents accidentally raising the alarm.


\title{
lifhtdimin 0
}

ALTHOUGH commercially made light dimmers have fallen considerably in price recently, they still usually command about £ 4.00 (though we have seen them advertised a bit cheaper). In addition to giving control over the brightness of a bulb, modern circuits using a Triac actually save electricity and will eventually. pay for themselves though we do not advocate them for this reason.

The circuit for a light dimmer is not complex, as will be seen from Fig. 1, nor are the components all that expensive. Including everything, we reckon the cost of this project at about \(£ 2.50\). The circuit overcomes a drawback in many of the commercial models: the Triac is protected against mains transients. Many versions do not come on until the control is rotated over half way, yet current is still being drawn; in our circuit the light comes on almost at minimum setting.

An unusual facility is also incorporated in the design which some readers might wish to take advantage of. A light dimmer is perfect for use with a TV set as neither viewing in full light or complete darkness is very pleasant. The circuit is so arranged that the switch can also handle a load which is not controlled by the dimmer circuitry. Thus, the TV can be switched on using the unit, but only the light will be controlled. The same arrangement also makes it possible to control only one light, leaving others unaffected.

The unit will handle 500W as shown, but with some modifications can easily be adapted to control 1 kW .

\section*{CONSTRUCTION}

Use of a printed circuit board (the pattern as shown in Fig. 2) is recommended. Veroboard can be used but mains voltages are present and many people will consider that the track spacing is a bit close.

First mount the terminals \(A-D\). These are taken from a small terminal connecting block. Each terminal is fitted to the component side of the board being held in place with à screw which can then be soldered to the copper track.

The choke L1 is made up from a piece of ferrite rod, \(1 / 4^{\prime \prime}\) diameter and \(11 / 8^{\prime \prime}\) long, wound with 55 turns of 28 s.w.g. enamelled copper wire, wound tightly and secured at each end by a strip of adhesive tape. Tin the ends of the wire and attach the choke to the p.c.b.. Now mix up some quick setting epoxy resin (Devcon etc.) and smear this over the windings, making sure that some will anchor the choke to the board. If there is any epoxy left over, smear this over the soldered terminals as this will help with rigidity.

The other components can now be mounted, the Triac should be fitted as close to the board as possible. The switch contacts of the pot must fit through the p.c.b. and should be fitted so that the back of the switch


Fig. 2. The p.c.b. pattern.


Fig. 3. Components layout, seen from the front of the p.c.b.


Fig. 1. The circuit of the dimmer.


Fig. 4. This shows the mounting of the terminals A-D. The mounting screws are soldered to the copper track.


Fig. 5. The completed unit, without faceplate and knob.
is firmly up to the board. Note that a double pole switch is used and both poles are wired up in parallel. This is done as the rating. of switch contacts in pots is usually about 2A, bringing it a bit close to our 500 W rating: doubling up gives a better margin.

Blank switch plates are available, made by M. K. Products, and a \(3 / 8^{\prime \prime}\) hole is necessary. As the plastic is rather brittle, it is best to drill a smaller hole and ream out the remainder. With the MK 3827 (used in the prototype) there is a moulded flange on the inside which requires a small slot to be filed to give clearance for the Triac.

For those wishing to use the unit at 1 kW it is necessary, for safety reasons, to use a separate switch from that in the pot. A suitable heatsink will also be necessary on the Triac and the wire gauge on L1 should be slightly heavier: 24 or 26 s.w.g. The greatest drawback when using the higher power is that RFI can be annoying. When used with a lower load, the radio interference is very low and could not be detected \(12^{\prime \prime}\) from the prototype, even with the radio's ferrite rod in line with the choke.


\section*{Howlt works}

As with practicilly all moder dimmer circuits, this one mates use of Triac for the power control.

A Trim can be regurded as an olectronic switch that is turned on ty a pulse at a predeterminad time in each half eycle and tums off attomatically at the end of the half cycle.

Contral of the Trise is of the simple resistor/capacitor and diat systam. By varying the resistance of potentiometer RV1, the tive complant of RV1/ C4 is so as to, change the phase.

The pulse the junction FV1/C4 is passed to the Diac through limiting resistor R3. The Dinc is connected to the gete of the Triac and as the Diac is in fact a bi-directional diode, both the poritive and negative pulses are applied to the gate.

Capacitor C1 and chote k 1 are for suppressing RF1 white A1 and C2 are used for trantient wupression.

Resistor R4 is fitted so as to allow full control of light while using RV1. The ideal value tor RVI if 150 k 2 but es this value is virtually impossible to obtain. it. is paralleled by R4 to give efiectively this value.

\section*{TEST AND OPERATION}

Warning: The circuit board has 240 V mains applied to and extreme caution should be used when installing the unit.

Before fitting the unit, it is worth testing on the bench, using a table lamp as a load. Connect this as follows. Terminal \(A\) : mains live, Terminals B and C: load, Terminal D: Mains neutral.

If all is well, the unit can be fitted in place of a modern switch fitted in a box. In very shallow boxes, there may not be room for the unit but extension mouldings are available from the same people who supply the switch plate itself.

If the facility for switching an uncontrolled load is not required (i.e. using it conventionally), a jumper wire should be fitted between Term. inals \(B\) and \(C\) and the two wires which normally connect to the switch that the dimmer replaces can be connected to \(A\) and D. The unit will work whichever way around the wires are connected but to keep as little of the p.c.b. live as possible, the live should be connected to \(A\).

\title{
INTERNATIONAL
}

\section*{INTERNATIONAL FM TUNER: SPECIFICATION}
\begin{tabular}{|c|c|}
\hline Sensitivity ( \(75 \mathrm{kHz}, 26 \mathrm{~dB}, 75 \Omega\) ) & \(1.2 \mu \mathrm{~V}\) \\
\hline Signal plus noise to noise ratio \((1 \mathrm{mV}, 75 \mathrm{kHz}, 400 \mathrm{~Hz})\) & 67 dB \\
\hline Stereo channel separation \((1 \mathrm{mV}, 75 \mathrm{kHz}, 1 \mathrm{kHz}\) ) & 40dB typical \\
\hline Alternate channel selectivity ( \(\pm 400 \mathrm{kHz}\) ) & 55dB \\
\hline AM suppression (FM-75kHz, AM-30\%, 1 mV ) & 60 dB \\
\hline Total harmonic distortion \((1 \mathrm{mV}, 75 \mathrm{kHz}, 400 \mathrm{~Hz})\) & 1\% \\
\hline AFC pulling range ( \(>10 \mu \mathrm{~V}, 75 \Omega\) ) & \(\pm 400 \mathrm{kHz}\) \\
\hline Aerial input impedance & 75 and \(300 \Omega\) \\
\hline Audio output impedance (both channels) & \(4.7 \mathrm{k} \Omega\) \\
\hline Audio output level ( \(>2 \mu \mathrm{~V}, 75 \mathrm{kHz}\) ) & 150 mV RMS \\
\hline Operating Voltage (ground neg.) & 12 V \\
\hline Operating current & 50 mA \\
\hline
\end{tabular}
operator controls. These carry only d.c. (except of course the transformer) and so wires to the front panel are in no way critical. It would not be correct to say that layout is not critical - it is - but if the p.c. board layout is used, all this work is, done for you already.

We have not attempted to build the tuner head, although the number of components included is. not high, the construction is highly critical and special techniques are needed to align it.

The design of an FM tuner was until quite recently, a major prob. lem: numerous coils and i.f. cans were required and the component count, if one had a stereo decoder, was high.

The components now available to the constructor however, make the building of an FM tuner, even' with a very high specification, hardly more complex than for a simple amplifier. Alignment was also a major problem and for decent quality, sophisticated equipment was necessary. 'Our design, the International FM Tuner has an excellent specification and is easy to build and can be lined up literally in seconds using only the meters which are an integral part of our design.

The design is greatly simplified. by the use of a single p.c. board which carries all the components other than the transformer and the

The International FM Tuner is a first class design with an excellent specification. It is designed as the 'brother' of the International 25


The International FM has facilities way beyond those normally found in any but the most expensive designs. Stations can be tuned in using the cursor in the usual way but also included is a preset module enabling any six stations to be preselected. A disadvantage with multi-turn presets of the type used here is that it is often difficult to know whereabouts in the FM band you are tuning: our design includes a frequency meter which registers the approximate frequency of each push-button. Also included in the design are a tuning meter - to tell you when are right on tune and a signal strength meter to register the relative strengths of the stations heard. These meters are also used in the very simple alignment . procedure.

A set of push buttons can select other facilities. There is of course AFC in the circuit and its capture ratio is so good that it has to be switched out for the reception of weak stations adjacent to strong local ones. Inter-station noise is annoying so a MUTE switch is included; once again this can be disabled for the reception of weak stations.

The 19 kHz (and residual 38 kHz ) on stereo transmissions can cause a

\title{
FM TUNER
}

whistle if it beats with the bias oscillator of a tape recorder but more serious, if there is a reasonable level of it, it can overload some amplifiers. It will not be heard at these frequencies but the amplifier can be overloaded and cause distortion as a result. To overcome this a pilot tone filter is included on the output.

We felt that this circuit design was so good that to cut corners in the final appearance could not be justified so considerable thought was put to the final shape and general appearance. There is a fair bit of metal bashing we admit but we think most readers will be happy to spend a hour or two to make the final product acceptable in the living room. A specially long slider pot has been chosen to give good resolution.

\section*{CONSTRUCTION}

As we have already said, the layout of the components is critical and we therefore strongly recommend the p.c.b. design shown. This carries the power supply (except the transformer) and all the active components. The need for a properly designed layout will be lappreciated when one considers that there is over 80 dB of i.f.


Fig. 1. The power supply circuit. Although not shown here the transformer should have two 12 V windings, one as awn, the other for applying 12 V a.c. to the panel and ter lights. The use of a voltage regulator is essential as varicap tuning is employed.
amplification in the main signal processing IC.

Room has been left on the p.c. board for the use of IC sockets and these are strongly recommended unless you always get things to work first time!

The components specified are all readily available from Ambit International who have cooperated closely with ETI in the circuit design.

A number of presets are used on the board: these should be the
horizontal types to fit onto the board. Ceramic filters are used in the i.f. stage. These come with various colour codings but this does not matter as long as the colours of both are the same

A voltage regulator (IC3) is used in the power supply. This is almost essential as the tuner relies on a stable and hum-free supply for the varicap diodes.

Note the lead-out connections of the BF224 - this is given on the circuit: as will be seen the lead-outs

The system is basically a single superhet VHF receiver. Signals in the range of \(88-104 \mathrm{MHz}\) are tuned at the R.F. stage of the front end, by means of the varicap diodes. These varicaps are simply silicon diodes whose capacity changes when a reverse bias voltage is applied.

Following the R.F. stage, the mixer converts the R.F. signal to the intermediate frequency of 10.7 MHz , by combining it with the signal from the local oscillator - which operates at the R.F. signal frequency plus 10.7 MHz .

After amplication provided by QI the resultant signals are then fed through the ceramic filter to provide the necessary selectivity to prevent interference from nearby transmissions, and thence to the main IF amplifier and detector I.C. - the KB4402 (a cheaper but direct equivalent of the CA3089).

The KB4402 contains some ninety transistors that amplify the signal from an input level of 12 microvolts, to a suitable level for the quadrature detector to operate. The amplification

\section*{HOW IT WORKS}
is 'limiting', i.e. amplitude variations are removed, since it is only the frequency variations that convey the necessary intelligence. In fact, by the time the signal is ready for detecting; it is almost a square wave - so extensivecapacitive decoupling is employed around the device to prevent unwanted R.F. feedback.
The quadrature detector compares with the IF signal with itself - by feeding a signal which has been shifted through a phase network known as the quadrature coil. The effect is similar to the mixer in an DSB generator, though in this instance the frequency variations are converted to the original amplitude variations, and thence fed via the muting circuit to the AF output pin. The muting circuit quietens the noise that appears when tuning between stations, by simply rectifying part of that noise and using it as the control for the audio gate.

A peak detector provides an output for the signal strength meter that is proportional to the signal level of the
incoming signal. After the audio detector, the multiplex stereo decoder selects the 19 kHz subcarrier, around which the basic stereo information of the L-R channel is encoded at the transmitter.
By matrixing the resultant signals, the decoder output returns the program to its original discrete form of left and right channels. The simplest analogy is to consider the decoder as switching at a rate of 38,000 times a second between left and right. A certain amount of the 19 and 38 kHz signal remains in the audio and has to be removed to prevent distortion in subsequent audio amplification - and also to prevent mixing with tape recorder bias oscillators, and thereby producing an audible whistle. A 19 kHz pilot presence detector provides a switch for the 'stereo-on' indicator.

Outside the main p.c.b., all the functions are strictly D.C. control voltages (other than audio). This permits flexibility in mounting, since no R.F. sensitive paths exist outside the main unit.
\begin{tabular}{|c|c|c|}
\hline \(\stackrel{\rightharpoonup}{\mathbf{R}} 1, \overline{7}, 9,16,2 \overline{1}\) & resistor & 10 k \\
\hline R2 & & 2k2 \\
\hline R3. 26 & " & 33k \\
\hline R4,31 & " & 330 ohm. \\
\hline R5,8 & " & 390 ohm \\
\hline R6 & . & 100 ohm \\
\hline R10,29 & " & 3 k 3 \\
\hline R11 1 & - & 470 ohm \\
\hline R12 & " & 68k \\
\hline R13,24 & . & 100k \\
\hline R14 & -' & 2k2 \\
\hline R15 & , & 5k6 \\
\hline R17 & " & 1 k 2 \\
\hline R18 & . & 3k9 \\
\hline R19.27 & . & 1 k 5 \\
\hline R20 & " & 22 k \\
\hline R22 & . & 15k \\
\hline R23 & . & 2k7 \\
\hline १25,28,30,33,34 & " & 4k7 \\
\hline 132 & ' & 1k \\
\hline
\end{tabular}

All resistors \(1 / 4 \mathrm{~W}, 5 \%\) types.
\begin{tabular}{lll} 
RV1 & Slider pot. & \begin{tabular}{l} 
50k linear-Rivlin \\
Preset, six position station \\
RV2-RV7
\end{tabular} \\
& & \begin{tabular}{l} 
selector module (Ambit)
\end{tabular} \\
RV8,RV11 & Preset & 10k skeleton type \\
RV9 & 100k skeleton type \\
RV10 & \("\) & \begin{tabular}{l} 
25k skeleton type
\end{tabular}
\end{tabular}

\section*{PARTS LIST}
\begin{tabular}{|c|c|c|}
\hline C1,2,3,4,6,19 & capacitor & 22 nF ceramic disc \\
\hline C5.12 & & \(4.7 \mu \mathrm{~F}, 12 \mathrm{~V}\) electrolytic \\
\hline C7,8,17,18 & " & 10 nF ceramic disc \\
\hline C9, 10 & \(\because\) & \(1 \mu \mathrm{~F}, 12 \mathrm{~V}\) electrolytic \\
\hline C11 & " & 47 nF ceramic disc \\
\hline C.13 & - & -470pF ceramic or polyester \\
\hline C14.15 & & 220 nF polyester \\
\hline C16 & . & 470 nF polyester \\
\hline C20,21 & ' & \(10 \mu \mathrm{~F}, 12 \mathrm{~V}\) electrolytic \\
\hline C22 & . & \(500 \mu \mathrm{~F} .25 \mathrm{~V}\) electrolytic \\
\hline C23 & " & \(100 \mu \mathrm{~F}, 16 \mathrm{~V}\) electrolytic \\
\hline C24 & . & 100 nF ceramic disc \\
\hline 01 & transistor & BF224 etc \\
\hline Q 2:4: & & BC 108 etc \\
\hline 03 & & BC178 etc \\
\hline 1 Cl & -integrated circuit & KB4402 (CA3089) \\
\hline IC2 & & KB4400 (MC1310) \\
\hline 1 C 3 & & 7812 (UC) voltage regulator \\
\hline D1,2 & diode & 1 N4148 \\
\hline D3-D6 & & 1 N 4001 (50V, 1A) \\
\hline LED & & TIL209 etc \\
\hline F1.2 & ceramic filter & CFS-10.7 (matched pair) \\
\hline F3 & pilot tone filter & BLR-3107N \\
\hline 11.2 & inductor & \(22 \mu \mathrm{H}\) choke \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Quadrature Coil}} & KACS-K586 \\
\hline & & EC3302 Toko (Ambit) \\
\hline M1 & \(400 \mu \mathrm{~A}\) & Frequency Meter scaled 88-104 \\
\hline M2 & \(400 \mu \mathrm{~A}\) & Signal Strength Meter scaled 0-10 \\
\hline M3 & 50-0-50 \(\mu \mathrm{A}\) & Tuning Meter, centre zero, scaled 3-0-0 3-0-3 \\
\hline \multicolumn{2}{|l|}{Transformer} & \(250 \mathrm{~V}: 12 \mathrm{~V}, 12 \mathrm{~V}, 250 \mathrm{~mA}\) each (one winding for panel and meter lights) \\
\hline \multicolumn{2}{|l|}{Push-button Assembly} & One mains \(O n\)-off, 4 single pole change-overs. \\
\hline \multicolumn{2}{|l|}{Coax socket,} & all individually operated (Ambit) \\
\hline \multicolumn{3}{|l|}{Balanced feeder terminals} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Stereo phono sockets (or DIN socket)
PCB}} \\
\hline & & \\
\hline Metalwork - det & isis next month. & \\
\hline
\end{tabular}



Fig. 3. PCB layout. Due to the high frequencies used this should not be changed.


Fig, 4. The component layout on the p.c.b.
are far from standard. The otner transistors have conventional leadouts and should create no problems.

The Toko EC3302 Tuner Head has no provision for AGC but if an alternative is used, ICl has an output for AGC to tuners with such provision (pin 15). For use with the EC3302 R7 and C5 are unnecessary but R9 should be left in even if the EC3302 is used.

To keep the leads as short as possible, the tuner head is mounted on the p.c. board. This has its own board with 15 holes all in line, eight of which are used. Holes 8 and 15 should be connected together with a short wire. The p.c. board of the tuner head sits about 3 mm above the main p.c.b. and four wires have to be run through both boards to carry the various connections. Three of the wires go directly to aerial connectors. If the p.c.b. pattern is followed exactly the holes in the two p.c.b.s will line up.

All take-off points on the boards are at the edges to neaten the wiring.


STATION SELECTOR HOLES 8 mm DIAMETER
SWITCH HOLES 12 mm DIAMETER
Fig. 5. The metalwork required on the front panel. Dimensions in millimeters.

\section*{THE METAL WORK}

The chassis is the same size as the INTERNATIONAL.25: \(335 \mathrm{~mm} \times 190\) \(\mathrm{mm} \times 84 \mathrm{~mm}\). We decided to mount the controls and meters on a support bracket to leave the front panel looking neat. In fact the only components mounted directly onto the front panel are the frequency meter and the LED, both of which are push-fit. Figure 5 shows how we cut the front panel.

Because of difficulties in bending the aluminium and in fixing the components we made the support bracket in two sections. These are bolted together after the slider pot has been mounted into the top section (see photo 2 ). Figures 7 and 8 give details. of the major cutting required in these sections. Because the meters are push-fit mounting types it is best to cut their holes a bit on the small side.

Figure 9 shows how to fix the cursor onto the slider pot. The cursor itself is made from 3 mm perspex cut to \(50 \times 28 \mathrm{~mm}\). Any scratches can be cleaned off with metal polish. The knob should be removed from the slider pot and the slider cut back so that it protrudes 8 mm from the slot. If the cursor and slider are carefully drilled they can be screwed and glued together (don't forget to scribe a line on to the back of the cursor).


Fig. 6. This shows how the support bracket is constructed in two sections. The top section holds the slider pot and two meters. The bottom section mounts the switches and selectors and the frequency meter.


Fig. 8. Drilling for lower section.



INTERNATHONAL•FM


Fig. 11. How to make a folded dipole antenna for FM reception. \(300 \Omega\) ribbon feeder is used for both dipole and feed.

Fig. 12. Hum in the tuning bias circuits can, be cured by decoupling Q2 as shown.


Fig. 10. Wiring up the board to rest of the tuner.

Mounting the slider pot itself requires removing the black plastic end covers so that the case of the pot fits flush with the support bracket. It will be necessary to drill a couple of holes in the case so that the pot can be mounted from beneath. We prepared the frequency scale by sticking down some dark green plastic and gluing strips of white paper to this.

The pcb is mounted, as shown in photo 2 , with the tuner head to the rear of the chassis. Figure 10 shows how the board is wired up to the rest of the tuner. The only wiring not shown in Fig. 10 is the mains wiring to the transformer via the on/off switch and the wiring to the meter lights.

A simple \(300 \Omega\) antenna can be constructed as shown in Fig. 11 and then you are ready to try the tuner according to the test procedure. If you find that there is a gentle hum this can be cured by decoupling the base of \(\mathrm{Q}_{2}\) with a \(10 \mu \mathrm{~F}(10 \mathrm{~V})\) capactior (see Fig. 12). There is sufficient room on the pcb to.fit this component easily.
A kit of this project is available from Ambit International, 25 High Street, Brentwood Essex.

\section*{THE METALWORK}

The three pieces of aluminium, cut to size and bent to our design, are available from H.L. Smith of 287 Edgware Road, London NW2.

1. Make certain all connections are sound, and that solder does not overlap any of the PCB tracks.
2. Double check the orientation of all components such as ICs, diodes and the 7812, where it is easy to make a mistake.
3. Switch on check:

Connect an audio amplifier with an input sensitivity of 100 mV (approx.) to the output of the tuner.
Switch off the mute and AFC, and switch to manual tune and stereo. Set the cursor to the high frequency end of the scale.
a) Switch on the mains, and check the PSU voltage to be 12 V . Some hiss should be audible at the output.
b) Peak this noise by adjustment of the quadrature coil (an RS type trimmer tool should be used to avoid damaging the core).
c) Now check the meter functions: the centre zero should be rough-
ly centred by the adjustment of the quadrature coil.
The signal strength meter should be set at zero in a blank section of the band, by adjusting RV10. The frequency meter can only be calibrated accurately by selecting a station on the main scale, and then setting RV9 for the meter to coincide.
d) Tuning around for a station will result in the signal strength meter travelling from the end stop. To finely set the quadrature coil tune the signal strength meter for maximum and then adjust the core for centre zero on the tuning meter.
e) To align the MPX decoder, tune to a station which is known to be in stereo, and then rotate the preset RV11 until the LED beacon lights. This will also be accompanied by an increase in the noise in the background of the transmission. Potate the pot across the entire range through
which the lamp stays lit, and then set the control to the centre of this arc.
f) The IF output coil of the tuner head may also be peaked, using the signal strength meter for guidance. This is the purple coloured core near the output termination.
The only coil to avoid in the tuner is that of the local oscillator. You will soon realize which this is, since a very minor adjustment will cause the station to disappear.
4. The most likely causes of trouble:
First incorrect assembly and soldering
-the LED may be the wrong way around for failure of the stereo.
-incorrect switch wiring. -it is very. unlikely that there is any component failure for manufacturer identified devices of established 'pedigree'.

\section*{Available from ETI Book Service}

\section*{HOW THE INFORMATION IS GIVEN (SHOWN HERE REDUCED SCALE)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline mamision \(^{\text {a }}\) & & & \({ }_{10}^{140}\) & \(\mathrm{vax}_{\text {Max }}\) & max & vis & & & rot & mmax & \({ }^{*}\) & \({ }^{\text {M }}\) & & , & & funv & ysion & 158 \\
\hline  & 96 & 103 & 126) & 300 & 254 & 250 25 & 3000. & \({ }_{\text {asc }}^{\text {asc }}\) & &  & \(\xrightarrow{2000}\) & Sow & nin & St \({ }^{\text {ces }}\) & & 29 &  & \\
\hline 2 m 30 & \(\cdots\) & ros & cif & 250 & & 230 & , & \({ }_{3}^{85}\) & (1) & 31900 & 3004 & Son & an & 5 & &  & \({ }_{\text {2n }}^{2111006}\) & \\
\hline  & \(\cdots\) & \({ }^{103}\) & 1048 & cos & 15 & 2, 2.5 & \({ }^{3000.4}\) & \({ }_{8}^{\text {asc }}\) & \({ }_{1}^{150046}\) & S. 310 & coun & som & 8 & 5 & &  & \({ }_{\text {2N1306 }}^{2 \times 1306}\) & \\
\hline  & :6 & 108
rose
rese & \({ }^{1} 13\) & 2501 & & 280 & 30048 & & \(\xrightarrow{\text { LSoper }}\) & - 180 & 20\%\% & Sow & & 5s or & & Asy29 & 2013 & \\
\hline  & & & [13 & Sov & & & & & come & &  & & & & & (entid &  & \\
\hline \({ }_{\substack{2 \\ 24.64}}\) & \(\cdots\) & \({ }_{\text {los }}\) & \({ }_{104}^{118}\) & \%v & & 20\% & \({ }^{29} 4\) & -3¢ \({ }^{\text {asc }}\) & 150wn & *00\% 300 & 201590 & & \({ }_{\text {cta }}\) & C & & 180112 & \(\substack{2 \times 1100 \\ 2 \times 20}\) & \\
\hline \({ }_{\substack{20}}^{2 \times 4044}\) & * & 109 & \({ }^{2} 108\) & is\% & & 10\% & \({ }_{\substack{25 m a}}^{25 m}\) & & \({ }_{\text {13, }}^{15}\) & -000 208 & \(20 / 30\) & & & & & & & \\
\hline \({ }_{2}\) & \(\cdots\) & 103 & 16 & 301 & & 10\% & & & & \({ }^{24} 4200\) & ,ohto & & & & & asp \({ }^{\text {a }}\) & 2n11304 & 1: \\
\hline  &  & & & & & & & & & & & 14\% & & & & & + & \\
\hline
\end{tabular}

We first saw 'Towers International Transistor Selector' when a copy was sent in for review. We were so impressed that we started to supply readers direct. If seems that you share our high opinion as several hundred have been sold to date.

This 142 -page book gives.comprehensive details of over 10,000 British, IJS, European and Japanese transistors including electronic and mechanical specifications, manufacturers and available substitutes.

\section*{ع3.40 \\ INCLUDING postage}

TO: TOWERS INTERNATIONAL TRANSISTOR SELECTOR ETI Book Service 25 Court Close, Bray. Maidenhead, Berks.
I Please find enclosed cheque/P.O.
for \(£ 3.40\) (payale 10 上।I)
I NAME
I ADDRESS

\section*{HOW WOULD YOU}

\section*{LIEE TO HAVE YOUR}

\section*{OWN MUSIC}

\section*{SYNTHESISER?}

The ETI 4600 Synthesizer - published in 1974 - has been widely acclaimed as a superb design but as with any sophisticated design component supply can be a problem. To overcome this ETI worked closely with Maplin Electronic Supplies. The interest even after the series was finished was so great that we worked together to bring out a reprint of the complete project. This is available from ETI for £1.50 plus 15p postage (payable to ETI Magazine).

ETI SPECIALS,
ETI MAGAZINE,
36 EBURY STREET,
LONDON SWIW OLW


\title{
COLOUR ORGAN
}


\section*{Produce all the colours of the rainbow in synchronism with your music!}

THE SUBJECTIVE appreciation of music may be considerably enhanced by adding a coloured light display. If the three primary colours, red, green and blue, are projected onto a translucent screen, or some other diffuse material, and selectively modulated by the instantaneous amplitude and frequency content of the music you are listening to, the three colours mix to produce all the colours of the rainbow (as well as white) in synchronism with the content of the music.
A difficulty arises when you try to determine what frequency a 'blue' note should be, or for that matter red, green or any other colour. Bass instruments predominate the frequency range below 220 hertz. Vocals cover the midrange to about 1200 hertz. The higher fundamental notes of wind and string instruments complete the treble register to about 4000 hertz. Harmonics of course extend well beyond this.
It is generally agreed that red should represent low notes, green mid range, and blue the high notes. After much critical listening to tone oscillators and recorded music, in conjunction with light displays our panel of discriminating 'muso's' agreed that 'red' notes should extend to \(A\) - an octave below middle C. Green over the
next three octaves and then followed by 'blue'. This is accomplished by dividing the frequency spectrum into three bands by means of filter networks. The amplitude content of each band is averaged and used to modulate the brilliance of the associated lamps.
For best effect, the direct light from the lamps should not be seen. It is not very stimulating, and in fact can be disturbing, to watch bulbs flashing on and off. However, the lights can quite readily be arranged to shine behind a translucent panel or be reflected off a wall. Alternately large diameter spheres made from crushed glass or plastic are available as standard lighting fixtures. We tried one that had been converted to accommodate three 100 watt coloured bulbs. Another simple effective arrangement we tried consisted of a cone which we made from a large sheet of translucent drafting film. This was positioned over our 250 watt floodlights mounted inside a five-gallon drum. Incandescent blue lamps are generally inefficient so we added an extra blue lamp in order to achieve colour balance. A lot of creative fun can be had trying different arrangements!
To keep this project as economical as possible we used only one control to vary the input sensitivity. Individual
controls however can easily be added if desired. This involves substituting a log potentiometer with an appropriate series resistor in place of each of the resistors R23, R24 \& R25.

\section*{CONSTRUCTION}

We wound the line filter chokes, L1, L2 \& L3, on three pieces of ferrite rod 30 mm long. These were cut from a 9 mm dia. aerial rod. To cut the rod, first file a \(V\) groove around the circumference of the rod at the point where it is to be cut. The groove need only be about 0.5 mm deep and can be cut with the sharp edge of a small triangular file.
Grip the rod in a vice, at the notch, being careful not to screw up the vice too tightly, as the materia! is also very brittle and shatters easily. Now give the rod a gentle tap and the rod will part cleanly. Wind the chokes as detailed in Table 1.
The trigger transformers are wound on put cores having split bobbins, again as detailed in Table 1.
The heat sink should be constructed from a piece of aluminium as shown in Fig. 4. Carefully follow the component overlay, when assembling the board checking that all diodes, transistors and electrolytic capacitors are inserted the right way around.
The line chokes are secured to the PC board by tinned copper wire looped

\section*{COLOUR ORGAN}


Fig. 1. Circuit diagram of the colour organ.


Fig. 2. Component overlay for the colour organ.


\section*{HOW IT WORKS}

Audio is fed to the input from the loudspeaker terminals of the amplifier. RV1 controls the input sensitivity and transformer T1 steps up the input voltage as well as providing safety isolation from the 240 volt mains on the remainder of the circuit. Transistors Q1 and Q2 provide a low impedance drive for the three filters and present a constant load to the transformer thereby keeping the level independant of varying frequency.
The 'red' channel is driven via a two stage 12 dB /octave low pass filter. The principal frequency determining components are R9, R11 \& C6, C9. Diode D4 rectifies the signal which is converted to an average dc level by R16, R19, R22, C12. This varies the bias on transistor Q7 which operates as a constant current source.
The instantaneous current is set by the applied bias, and by the value of Q7 emitter resistor R 25 . The resulting constant current charges C15 and when the voltage across C15 equals
round the grommets and then soldered to the board. As the triacs used are rated at 10 amps , the main limitation on the maximum load is the associated domestic wiring which would limit the
the reference voltage set at the anode gate terminal (ag) of the programmable unijunction transistor (P.U.T.) Q8, the P.U.T. fires discharging C15 through the primary winding of trigger transformer T4.
The resultant pulse, from the secondary of T4, fires triac Q11 thus switching power to the red lamp. The firing cycle of the P.U.T. is synchronised to the 50 Hz mains by the unfiltered supply derived from Zener diode ZD1. Diode D7 bypasses the reverse flyback pulse from the triac and ensures the pedestal voltage of C15 remains constant.
The operation of the green and blue channels is similar with the exception of the filters. Components C2, C5, C8, R4, R8 \& R10 form a bandpass filter for the green channel, whilst \(\mathrm{C} 1, \mathrm{C} 4, \mathrm{R} 3\) \& R6 make a high pass filter for the blue channel. Chokes L1, L2 \& L3 in combination with capacitors C16, C17 \& C18 are incorporated in order to reduce radio frequency interference.
total load to 2400 watts. We have designed the heat sinks with this in mind. If it is required to drive heavier loads the area of the heat sink should be increased and possibly triacs rated

How the unit is constructed

to carry higher current substituted. Of course then ordinary domestic power outlets should not be used.
A 300 millivolt input is sufficient to drive the lamps to full brilliance. At one hundred hertz the input impedance is approximately 12.5 ohms, accordingly any amplifier capable of delivering a watt or more would suitably drive the unit.
Set the amplifier volume control to the normal listening level, then adjust the input sensitivity control such that the lamps only light up to maximum brilliance on musical peaks. If this control is not set correctly the input level will be too high with the result that the lamps will all light up together regardless of the frequency content of the programme. If everything is working at this stage, you can now watch the changing moods and drift into happy ecstasy!


Fig. 3. Printed circuit board layout for the colour organ.
Full size \(127 \mathrm{~mm} \times 158 \mathrm{~mm}\).

\section*{TABLE 1 CHOKE WINDING DATA}

L1, L2 \& L3

Core Winding

Insulation
Mounting
30 mm length of \(3 / 8^{\prime \prime}\) dia ferrite rod. * 40 turns 0.63 mm ( 26 swg ) wound in two layers, each 20 turns, close wound using the centre 15 mm only of the core. two layers of plastic insulation tape over complete winding. use rubber grommet ( \(3 / 8^{\prime \prime}\) ID) over each end and join to PCB by looping turned copper wire around grommets and secured into holes provided.
- Made from an aerial rod - file a groove around it at the desired cutting point then snap off.

PULSE TRANSFORMER - WINDING DATA
TABLE 2
T2, T3, T4

\section*{Winding a double section bobbin}

Primary - 30 turns 0.40 mm (30swg) one section
Secondary - 30 turns 0.40 mm ( 30 swg ) second section Bring leads out at opposite ends of coil.
Winding a single section bobbin
Primary - two complete layers 0.40 mm ( 30 swg ) close wound
Insulation - two layers of plastic insulation tape
Secondary - two complete layers 0.40 mm (30swg) wire close wound
Bring leads out at opposite ends of coils.
For details on the care see box on the right.

\section*{GETTING HOLD OF THE COMPONENTS}

\section*{SEMICONDUCTORS}

Marshall's will be able to supply all the semiconductors for this project ( \(2 \times\) BC107, 3xBC177, 3x2N6027, 3xSC146D. \(7 \times 1\) N4004, \(1 \times B Z Y 88)\).

\section*{POWER OUTLETS}

Any matirs sockets will do, provided they can take the current. Marshall's have stocks of the Bulgin three-pin recessed power sockets in 2 sizes: the \(1^{\prime \prime}\) version socket and plug and the heavy duty P437.

\section*{INPUT TRANSFORMER}

This is used to step up the audio impedance and the current rating is not important. Any convenient \(240 \mathrm{~V}: 15 \mathrm{~V}\) transformer will do.

PULSE TRANSFORMER POT CORES
Problems may arise with these cores. The requirement is for a pot core with an AL value of 520 and a \(\mu\) e of something like 250. This can be achieved using the following Mullard components - core: LA1225; adjuster: LA1502; 2-section former: DT2281; ring: DT2356; tagboard: DT 2359 ; clips (4 required): DT2357.
A. Marshall and Son, 42 Cricklewood Broadway, London NW2 3HD.


Fig. 4. Dimensions and drilling details for heat sink bracket.

WARNING. All components on the board and the heat sink, upon which the triacs are mounted, are at mains potential. Use extreme care as you would with any exposed wiring carrying 240V. Avoid working on the unit whilst it is connected to 240 volt mains, make sure any test equipment you are using is isolated from earth, and that you yourself are well insulated from the floor by a rubber mat etc.

\title{
PULSAR,\&13.95
}

WE ARE REPEATING OUR SPECIAL OFFER ON THIS DIGITAL ALARM CLOCK. WHEN WE RAN IT LAST YEAR IT PROVED TO BE ONE OF OUR MOST SUCCESSFUL OFFERS EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING.

Pulsar shows the time 0.7 in high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing \((1 \mathrm{~Hz})\) colon shows that the alarm and clock are working.

A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc, until you switch the alarm off. The clock also features a mains-failure indicator.

We have a large number of units in stock for this offer but please allow \(\mathbf{2 8}\) days for delivery.

\section*{PULSAR OFFER} ETI MAGAZINE 36 Ebury Street. London SW1W OLW.

I enclose cheque/P.O. for £13.95 (payable to ETI) for a Pulsar Alarm Clock.

NAME
thoress.

Those not wishing to cut their magazine may order on their own notepaper.
Full size \(=5\) in across and \(31 / 2\) in deep.

\section*{}

\section*{Bargains in Semi-Conductors, components, modules \& equipment.}

\section*{B-P-P Patks}

Originated in 1959 by the Company's managing director, his ware the first semi-conductor and component pecks to be marketed in this country, and Industrial Pre-Packed Componentss'". Today, Bi-Pre-Pak Industrial Pre-Packed Componenis. Today, Bi-Pre-Pak supply of packs as well as a vastly extended range of products detailed in our latest 24 -page \(A .4\) gize free catalogue. Send 10p stamped large addressed onvelope for your copy by return.
IT'S ALL IN OUR FREE CATALOGUE

\section*{Bomponent Packs}


\section*{YOUR SUPPLIERS FOR}




\section*{Semi-Gondurtors}
- TESTED AND GUARANTTEED PACKS

\section*{SN7490 integrated circuirs. 14 pin duat in line TTL type. Decade counter. Get one FREE, these are 60p each in}
all the following are at gop each pack
TPG: \(\quad 5\) SN7400 integrated circuits. 14 pin dual in line TTL type. TP 102 Light dependant resisitors, 400 ohms light, 1 megohm TP11 10 Transistors \(\times 8102\) and \(\times 81\) Th equivalent io \(\mathrm{AC126}\), TP 12. 4 AC156. OC81/2. OC72 ertc. TP 13. 5 IECP7ifier. \({ }^{\text {IGht }}\) sensitive transistors
mp transistor, blach TP15 20 Olass type. TP 16 20 OCPPe. /1/2/3 transistors. PNP silicon TO-5, unmarked. TP18 20 2N3707/8/9/10 transistors. NPN silicon plastic.
TP19 100 unmarked. Diodes, mixture of germanium. gold bonded. siticon, etc., \&
useful selection of many types, marked and unmarked TP 2320 BFY \(50 / 1 / 2\), 2N696/7, 2N1613. etc. NPN silicon \(10-5\) TP24 20 Uncoded. COMPLEMENTARY TO PAK TP24.
BFV64.2N2904/5, ElC. PNP sihicon TO-5 uncoded TP24 20 BFY64, \(2 \mathrm{~N} 2904 / 5\), elc. PNP silicon TO-5 uncoded
COMPLEMENTARY to PAK TP 23 . TP30 20 NPN silicon planar transistors. TO. 18 simitar to BC 108 . TP31 20 PNP., silicon planar uansistors. TO-18 similar to BC 178 . TP32 202 N 2926 silicon plastic trans stors, uncoded and ungraded

UNTESTED PACKS - 60p each
Specially for keen bargain hunters
UT1 50 PNP germanium transistors, AF and AF.
UT2 150 Germanium diodes. miniature gless type.
UT5 40 Zener diodes, 250 mW OAZ240 range. average \(50 \%\)
\(\begin{array}{ll}\text { UT6 } & 25 \text { geod. } \\ \text { Zener diodes, } 1.1 / 2 \text { watt top hat type. mixed voltages. } \\ \text { UT9 } & 40 \mathrm{NPN} \text { silicon planar wansistors, of the } 2 \mathrm{~N} 3707.11 \text { range, }\end{array}\)
UT9 40 NPN silicon planar transistors, of the 2 N3707.11 range,
UTiO 15 Power transistors, PNP germanium and NPN silicon, IT13 mostly TO-3 but some plastic and some marked.
UT13 15 Integrated circuits. experimenters pak. dual in line. TO-5. TLL. DTL. marked and unmarked, some defenitely good

FOR FULL RANGES - SEE CATALOGUE
Singles
RRIDGE RECTIFIERS Plastic encapsulated


POWER TRANSISTORS
\begin{tabular}{|c|c|c|c|c|}
\hline & Vce & warts & 1 c Amps & Price \\
\hline 40 P 1 & 15 & 20 & 3 & \(30 p^{\circ}\) \\
\hline 40 N 2 & 40 & 40 & 4 & 30 p . \\
\hline 4082 & 40 & 40 & 4 & \(30{ }^{\circ}\) \\
\hline 90N1 & 15 & 45 & 4 & \(25 p^{\circ}\) \\
\hline \(90 \mathrm{P1}\) & 15 & 45 & 4 & 25 p . \\
\hline 90N2 & 40 & 90 & 8 & \(35{ }^{\circ}\) \\
\hline 90P2 & 40 & 90 & 8 & \(35 \mathrm{p}{ }^{\text {' }}\) \\
\hline
\end{tabular}

\section*{INTEGRATED CIRCUITS}

MM5314 Dual in line clock chip

\section*{hip}
audio amp.
14 pin \(15 p\);
with data. ot
\({ }^{63}{ }^{63}\)

\section*{Sundiry}

\section*{Signal generator}

For MW and if Covers 550 KHz to 1.6 MHz for MW and 400 to iobs (p/p 40p)
POCKET SIGNAL INJECTOR
Fountarn pen type. Invaluable for fault tracing in radio sets, amplitiers:
TVs. tape recorders. erc. Takes one HP7 battery. EX-G.P.O. 5in SIDECUTTERS
Not new but in pertect order. per pair
EX-G.P.O. \(\mathbf{6}^{\prime \prime}\) LONG NOSE PLIERS
Not new, but in perfect order, per pair
MAINS TRANSFORMERS
\begin{tabular}{|c|c|c|c|}
\hline MT6 & 6v 06 V 100 ma & & E1.22 \\
\hline MT12 & 12 v 012 v 5 mA & & E1.22. \\
\hline SST9/1 & \(9 \times 1 \mathrm{mmp}\) & & ¢1.67. \\
\hline SST12/1 & 12 v .1 mp & & E2.05 \\
\hline -SST18/1 & 18 v lamp. & & £2.50. \\
\hline SST25/2 & 25v 2 amo & & 63.00 \\
\hline SST30/2 & 30 v 2 mmp & & ¢4.25. \\
\hline SST35/4 & 35v 4 amp & & E5.50. \\
\hline \multicolumn{4}{|l|}{(P/P 50p any one)} \\
\hline PC EDGE CONNEC & TORS & & \\
\hline Typa & Sizes & Pitch & \\
\hline SSEC 6 way & 14\%" & .156" & \\
\hline SSEC 10 & \(12 / 4\) & .156" & \\
\hline SSEC 12 & \({ }^{\prime \prime \prime}\) & . \(156^{\prime \prime}\) & \\
\hline SSEC 16 & \(21 /{ }^{\prime \prime}\) & .156" & \\
\hline SSEC 18 & \(3^{\prime \prime}\) & 156" & \\
\hline SSEC 22 & \(312^{\prime \prime}\) & .156" & \\
\hline
\end{tabular}

UHF TUNER UNITS
Brand new by tamous manufacturer. 625 lines. Channels 21.65 Ideal
for use as FV sound receiver. With dara BOOKS
All free of VAT. We carry very large stocks of technical books by Babani \& Bernard Publishers, by Newnes and
Buttenworth as well as reference books from the Common Buttenworth as well as reference books from the Common
Market in English/German/ftalian. All detailed in our catalogue.

MONEY SAVER FOR CAR OWNERS
The "Super Spark" Capacty Discharge Ignition Unit, developed out of
our original EXI model (ot which we have sold well over 9.000 ) enables our original ETI model fot which we have sold well over 9.000 ) enables you to enjoy this system at a truly aconomic price. Facilities include
simpie adaption to pos.or neg earth. immediate switch back to
conventional conventional ignition, anti-burgiar immobolisation with all pants in totally enclosed sifong metal case. Very easy to fit and in stall. With full
nstuctions. ( \(P / P\) add 50 ) KIT E7.95* READY-BUILT E10.50

LOOK OUY NEXT MONTH
FOR THE NEW
STERLING
SOUND MODULES

X-44 POCKET SIZE R.F. CROSS HATCH GENERATOR noodel, of which thousands are in regula. use Sire \(150 \times 75 \times 50 \mathrm{~mm}\). stiong plastuc
case with handle \(/ \mathrm{stand}, 4\) push bution operation. 4 patterns. Solficontaned line
and trame generator and synchro pulse. ste-set Uadiust 4 alkatine type 1600 batts.
Blank raster facility. FOR COLOUR AND MONO. (P/P add 35p)



TERMS OF BUSINESS
VAT at \(25 \%\) must be added to total value of order. except for items marked or ( \(8 \%\) ), when
VAT is to be added at \(8 \%\). NO VAT on overseas orders. POST \& PACKING Add 30 , for UK VAT is to be added at 8\%. NO VAT on overseas orders. POST \& PACKING Add 30p for UK
orders ercept where shown otherwise. Minimum mail order acceptable - 11 . Overseas orders. add £1 tor postage. And difference will be credited or charged. PRICES Subject to alseration TO: BI-PRE-PAK, 220/222 WEST RD. WESTCLIFF-ON-SEA, ESSEX SSO 9DF

Please send for which I enclose

\title{
BICYCLE SPEEDOMETER
}

Be the first to have an electronic speedo on your bicycle!

BE THE FIRST to have an electronic speedometer on your, or your son's bicycle - calibrated in \(\mathrm{km} / \mathrm{h}\) too! The advantage of an electronic speedometer is that it doesn't take extra muscle power to drive it - as do those mechanical ones. The small amount of energy needed comes from a battery which is switched on only when a speed reading is required - this is obtained by pressing a bicycle horn hutton mounted on the handlehars.
This project was developed around a stripped down bicycle, hence the photographs show bare elements only. The indicator part of the speedometer is a 1 mA meter mounted in the lid of a suitably sized tin can, see Fig. 1. This is attached to the handlebar pinch bolt by means of a bracket fashioned from aluminium as can be seen in the photo.
The electronics are in four connected sections: the indicating section (Fin! 11 ; the switch, which is a push button

Fig.1. The meter section may be attached to the handlebars by a bracket held by the handlebar pinch bolt. Imeter dial is seen here before re-calibration).

mounted on the handlebar - a bicycle horn button is ideal; the photo transistor and resistor R2; and the lamp.

\section*{INDICATING SECTION}

The components of the indicating section are mounted on a very simple printed circuit board, shown full size in Fig.4. This is attached by bent brass strips to the meter terminals. Veroboard or tagboard enthusiasts can use their favoured technique and
save themselves the trouble of making a board if thev wish.
The battery, comprising six 1.5 V cells cells, is contained in a battery case also inside the tin box. Note that an extra wire has to be soldered to a connection of the battery case to provide the tap at the 6 volt point as shown.

\section*{LAMP AND PHOTOTRANSISTOR}

These items are mounted on the insides of the front forks of the bicycle. If this location is not available,


\section*{BICYCLE SPEEDOMETER}


Fig.2. Circuit diagram of complete unit.
due to the existence of brakes for example, then the rear forks or seat stay may be used as an alternative position. Whatever position is used it is important that the mounting brackets are attached securely so that they will not allow the parts to tangle with the spokes.

The photo transistor is attached to a small strip of phenolic board by means of a shaped brass clip. The resistor R2 is mounted on the opposite side of the board with its leads passed through small holes and bent to form an anchor. When the speedo is working properly this resistor may be covered with epoxy resin. The active portion of the photo transistor is shrouded
from unwanted light by a short length of black plastic tubing, cut from an empty ball pen, epoxied on to the board.

Directly opposite the transistor is a lens-end bulb (pen torch variety) in a lamp holder mounted on a suitable bracket. The bulb is shrouded with a piece of plastic conduit - mainly to keep dirt away. It is very important that the bulb selected should have its filament on the bulb axis - so that the bright spot formed by the bulb is in line with the bulb and can be directed on to the transistor. These two elements must be adjusted so that they are rigidly aligned.

\section*{CONNECTION}

Light twin flex such as speaker lead is suitable for connecting the various elements together

\section*{BARRIERS}

The barriers on the prototype were pieces of aluminium about \(90 \mathrm{~mm} \times\) 25 mm , actually cut from the aluminium plates used on office offset printers. Simply bending the ends of the strips around the spokes and pinching them is sufficient to keep them in place.
Constructors who can't obtain similar aluminium could use old

\section*{HOW IT WORKS}

The speedo is essentially a very simple tachometer which measures the frequency of pulses caused by interrupting a light beam shining on a photo transistor. Fig. 2 shows the circuit. The transistor and lamp are mounted on opposite sides of one of the bicycle wheels and the light from the lamp is interrupted by barriers between alternate pairs of spokes. Pulses of current flowing in the transistor circuit cause a pulsating voltage across the battery and load resistor R1. These pulses are fed to the 1 mA meter through a bridge rectifier circuit D1 - D4 in series with a capacitor (actually C 1 and C 2 in parallel). The rectified meter current is directly proportional to the size of the capacitor and pulse frequency. The variable resistor RV1 provides calibration adjustment.


Fig.3. This schematic drawing shows how the various bits are interconnected.


Fig. 4. Printed circuit board (shown full size).


Fig. 5. How the components are mounted on the printed circuit board. The completed board may be fixed rigidly to the meter terminals by two copper straps.

aluminium or tin cans flattened out and perhaps painted.

\section*{CALIBRATION}

A fairly accurate calibration may be made by attaching a piece of cardboard to the spokes so that it acts as a clicker as it passes the forks. Aim for a light click on one fork only so that the wheel is not slowed down too rapidly Then, spinning the wheel, counting clicks over say 30 seconds and reading the meter at the same time, provides enough data to work out speeds and calibrate. (Something to do with your new calculator!)
The meter should be adjusted by the calibrating pot RV1 so that it reads full scale at some convenient speed such as \(45 \mathrm{~km} / \mathrm{h}\). It may be hard to spin the wheel at this speed by hand, but the problem is overcome by driving it by a rope drive from a pulley fitted in the chuck of a drill. This works very well.
As the meter reads linearly, settings below full scale should be accurate enough using the divisions on the original meter scale.
Another possibility for calibration is for the bicycle to be paced by a car with a speedo of known accuracy, (remember that only a maximum full scale reading is required).
The meter scale should be fitted with

> PARTS LIST ETI 235
> R1 Resistor \(4.7 \mathrm{k} 1 / 4\) watt
> R2 Resistor \(22 \mathrm{k} 1 / 4\) watt
> Rvl potentiometer 500 ohm
> C1 capacitor \(1.0 \mu \mathrm{~F}\) plastic
> C1 capacitor 1.0 MF plastic
> C2 Capacitor 0.47 ur plastic
> silicon diodes
> Q1 photo transistor OCP71 or similar
> Sl push button switch normally open - bike horn type
> M O-1mA meter
> Lamp 3 volt lens end type as used in pen torches
> Battery - 61.5 V cells in case
> Aluminium tor barriers
> Aluminium or light steel for brackets Tin box
fresh numbers - Letraset figures stuck on white Contact background are ideal.

If there is any problem with getting a full scale reading the most likely causes are:- incorrect alignment of lamp and photo transistor, and a lamp which spreads out the light too much instead of concentrating it.

\section*{FINISHING TOUCHES}

When all is in working order the battery case should be taped up and then 'nested' in plastic foam inside the tin box. The tin box should be sealed against weather with plastic tape, and the lamp should be lightly soldered to the lamp holder to prevent its being loosened by vibration.

That's what newsagents have to say to potential ETI readers every month. You local newsagent may not carry ETI for display but he may well have some for regular customers. A newsagent will always be happy to obtain ETI if you place a regular order.

\section*{Electronic Windicator}

\section*{Circuit indicates which of two switches is first depressed.}

The circuit was originally designed for use in a game in which two players on command each try to press their respective switch before the other.
The first to do so causes 'his' bulb to light, and providing he keeps his button depressed his opponent cannot cause his own bulb to light until the circuit is reset by momentarily breaking the power input or by the winner releasing his button.
With minor modifications, the circuit may be used in quiz games and/or the lights replaced by buzzers (in the latter case diodes should be wired across the buzzers to protect the transistors from voltage spikes generated by the back emf).
Operating principle is simple. Assume switches SW1 and SW2 are open, both transistors Q1 and Q2 have their bases 'floating' - neither is turned on. Neither bulb is alight.
Now assume SW1 is closed. The voltage at the collector of Q 2 (which is high) will flow via R1 to O1's base. Transistor Q1 will now be switched on thus lighting L1. Although SW2 may now be depressed the voltage at Q1's collector is too low to bias on O2. So L2 cannot be energized.
One disadvantage of the circuit is that it is not self-latching. The winner must keep his button depressed until his opponent has conceded defeat.

\section*{SELF-LATCHING}

The modification shown here overcomes this disadvantage - at the cost of a slight increase in price.
Basically all that is required is to replace the two BC 108 transistors by

two small SCR's. Almost any low current devices will do - C106's for instance. SCR's are self-latching devices so the first bulb to be
illuminated will stay that way - even though the winner's button is released: - until the main power is momentarily broken.

\section*{HARDWARE - P REARDS}

We offer a comprehensive range of screws, nuts, washers, etc., in small quantities plus many useful Contractors' items. If you need sheet aluminium we can supply to individual requirements, punched and drilled, in addition to Fascia Panels in aluninium, dials and nameplates.

Ask us for PRINTED CIRCUIT boards for any of the ETI PROJECTS, also one-off specials and small runs. Machine engraving in metals and plastics, contour milling.

Send \(2 \times 51 / 2 p\) stamps for our catalogue


A versatile board for experimenters.

\section*{ETI UTILIBOARD}

THE CONSTRUCTION of any project is always simplified by the use of a proper printed-circuit board. The neat and tidy appearance of a well made printed-circuit board, full of components, gives a professional look and is most satisfying. There are however some drawbacks. Each design requires a different board and you need a reasonable degree of knowhow and time to make your own boards.

Quite often it may be felt that the cost of a ready made printed circuit board, for a simple project, is unwarranted or it is just too much of a hassle to send away for one.

There are several alternatives, such as Veroboard and Matrix board, and many people are now using specially designed general purpose boards which are specifically made for versatility in the construction of general circuitry.

This latter approach has several advantages. The finished board looks
neat and professional, fairly-complex circuits can be quickly assembled, and the large pads available allow experimental circuits to be debugged with ease. Such boards allow the builder to change the circuit of a particular project to suit his personal needs or, to use physically-larger components (eg junk-box parts) than those specified.

There are many of these boards available but many of them are quite expensive and some are lacking in versatility. Hence we decided to design our own board for use in simple projects.

\section*{USING THE UTILIBOARD}

On conventional printed-circuit boards the components are always mounted on the non-copper side of the board and all our previous overlays have shown components in this way.

However in experimental circuits it is more convenient to mount the components on the copper side. This allows components to be added, or shifted, without having to continually turn the board over.

Note that the board consists of four individual 16 -pin dual-in-line IC pad-groups, each pin of which has associated with it a large pad to which several component leads can be soldered without the need for holes.

The broad lines through the centre of the pads, and on either side, are suitable for supply or earth connections. They are continuous so that the group of pads can be used together or the board may be sawn up into single or 2 -way sections as required.

The broad line up the centre has indicator marks which point to pin I of an IC when it is mounted on the non-copper side of the board and the dot marker on the IC points to indicator-mark end of the board. Note that this central line is broad enough so that individual pads may be connected to it by solder bridging.

Of course any of eight, 14 or 16 pin DIL IC's can be mounted as required, or, discrete transistors may be inserted into appropriate holes. You will find this board extremely versatile and easy to use.


\section*{DRILL SPEED CONTROLLER}

\section*{Variable speed control maintains constant (adjustable) speed regardless of load.}

MOST HANDYMEN own a power drill.
There are tens of millions of them in use around the world - and they continue to be used for an ever greater variety of tasks.
Despite their popularity, many power drills have one major drawback
and this is that their speed is often too high for many applications.
This is so even with dual-speed models where even the slow speed, typically 300-750 RPM, is too fast for such jobs as drilling masonry or using fly-cutters on sheet metal etc.
The speed controller described here


525 DRILL SPEED CONTROLLER \(\bigcirc\)
allows infinite variation of speeds from zero to about \(75 \%\) of full speed, and is provided with a switch to allow normal full-speed operation without disconnecting the drill from the controller. The controller has built in compensation to maintain substantially constant speed regardless of changes in load.

\section*{CONSTRUCTION}

It. must be emphasized that the controller is connected directly to the mains without the use of an isolating transformer. Care must therefore be taken with the construction to ensure that there is no likelihood of any dangerous conditions arising.
As there are relatively few components used, no supporting tag strip or PC board is necessary. From Fig. 2 it can be seen that only two "mid air" joints need to be made, and these should be carefully insulated to prevent any possibility of short circuits.
The SCR used is a stud mounting type and is mounted by using the solder lug, supplied with it, soldered onto the centre lug of the switch. For loads up to 3 amps no other heat-sinking is required. If a plastic-pack SCR is used a hole may be drilled through the switch lug and the SCR bolted directly to it. However in this case it is advisable to insert a piece of aluminium (about \(25 \mathrm{~mm} \times 15 \mathrm{~mm}\) ) between the SCR and switch lug to act as a heatsink.

Remember that, since the unit operates at 240 Vac all external parts must be earthed. We used a plastic box with a metal lid. But we also used a cable clamp with a metal screw through the side of the plastic box This screw must be earthed, along with the lid and the earth terminal of the output socket. The earth wire should be continuous That is, it should go from one earth point through to the next and not by separate links. Two earth wires may be soldered to one earth lug. But under no account should two wires be secured under a single screw.
The aluminium lid on the (type UB3) box used is not strong enough for this application, especially when the hole for the output socket is cut. A new lid should therefore be made from 18 gauge steel or 16 gauge aluminium.
To further improve safety it is suggested a small amount of glue, lacquer or even nail polish, be used to secure each screw inside the unit.
With some SCRs it may be found that the trigger current supplied by R1 and R2 is insufficient. If this is the case an additional 10 k resistor should be placed in parallel with each resistor.


Fig. 2. Component lavout

\section*{PARTS LIST}
\begin{tabular}{|c|c|c|}
\hline R1, \({ }^{2}\) & Resistor potentiometer & 10 K 1 W
2.5
2.5 lin \\
\hline 01,2 & Dlodes & \begin{tabular}{l}
rotary \\
1N4004 or
\end{tabular} \\
\hline SCR1 & S.C,R. & \[
\begin{aligned}
& \text { similar } \\
& 2 \mathrm{~N} 4444 \text { or } \\
& \text { simar } \\
& (8 \mathrm{~A} / 10 \mathrm{~A}, 400 \mathrm{~V})
\end{aligned}
\] \\
\hline SW1 & Swltch & \\
\hline
\end{tabular}

\section*{USING THE CONTROLLER}

Plug the controller into the mains and the drill into the controller. Select either full speed or variable as required. Note that there is no ON/OFF switch provided on the unit and the normal switch on the drill is used for this purpose. When full speed is selected the drill will run normally and the speed control on the controller will have no effect.
When variable speed is selected, the control will adjust the speed anywhere between zero and about \(75 \%\) of full speed. There may be a dead zone at both low speed and high speed ends of the control. This is entirely normal and is due to different drill characteristics and component tolerances within the controller.

\section*{HOW IT WORKS}

\section*{ETI 525}

A universal motor, when running, produces a voltage which opposes the supply. This voltage, called the back EMF, is proportional to the speed of the motor. The SCR drill speed controller makes use of this effect to provide a certain amount of speed-versus-load compensation.
This controller uses an SCR (silicon controlled rectifier) to gate half-wave power to the drill motor. The SCR will conduct oniy when a anode (terminal A) is positive with respect to the cathode (terminal K ), b / when the gate (terminal G ) is at least 0.6 volts positive with respect to the cathode, and, \(\mathrm{c} /\) when about 10 mA of current is flowing into the gate terminal. By controlling the level of the voltage waveform to the gate we effectively control the time at which the SCR turns on in each forward half cycle. By this means we effectively control the amount of power delivered to the drill.
Resistor R1, R2 and potentiometer RV1 form a voltage divider which provides a half wave voltage of adjustable amplitude to the gate of the SCR. If the motor is stationary the cathode of the SCR will be at zero volts and the SCR will turn on almost fully. As the drill speed increases. a voltage develops across the drill thus reducing the effective gate-cathode voltage. Thus as the motor speeds up, the power delivered decreases until the motor stabilizes at a speed determined by the setting of RVI.
Should a load be placed on the drill, the drill will tend to slow down, but as the voltage acorss the drill also drops, more power is delivered to the motor since the SCR firing-time is automatically advanced. Hence the speed, once set, is maintained relatively-constant regardless of load. Diode D2 is used to halve the power dissipated in R1, R2 and RV1 by limiting the current through them to positive half-cycles only. Diode D1 protects the SCR gate against excessive reverse voltage.
In the full speed position the SCR is simply shorted out by SW1. Thus RVI loses control and full mains supply is applied to the drill.

At very low speeds it may be found that drill runs jerkily under no load. However as load is applied the speed will smooth out.
When using the drill at less than full speed the cooling of the motor will be considerably reduced las the cooling fan is on the armature shaft and also runs slower). Hence the drill will get hotter when used at low speeds, and extended periods of use in this mode should be avoided.

\section*{MADE TO MEASURE}


All electronics magazines have from time to time run a beginner's series. Well, ETI is no exception but ours has proved to be rather popular. So popular that new readers soaked up our back numbers until several were no longer available. To meet this demand we have brought out the first 13 parts in book form - volume 1 , and plan to bring out volume 2 , bringing readers up-to-date in the near future.

Electronics - It's Easy costs \(£ 1.20\) plus \(15 p\)
postage direct from ETI. Send orders
(payable to ETI Magazine) to

ETI SPECIALS.
ETI MAGAZINE

\title{
More than just a catalogune! PROJECTS FOR YOU TO BUILD
}

4-digit clock, 6-digit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components. e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers,' presets, relays; resistors (even 1\% types 1), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools; organ components, \(L\) keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.
Really good value for money at just 40p.


\section*{The 3600 SYNTHESISER}

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is particularly suitable for live performans? and portable lise.
Please send S.A.E. for our price list.

\section*{The 4600 SYNTHESISER}


We stock all the parts for this britliantly designed synthesiser, including all the PCBs, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior in most of today's models. Complete construction details in our booklet available now, price \(£ 1.50\), or S.A.E. please for specification.

\section*{GRAPHIC EQUALIZER}

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts lexcept woodwork) including all the metal work
drilled and printed as required
to suit our components and PCB's.
S.A.E. for price list or complete reprint of article - price 15 p.

\section*{ELECTRONIC ORGAN}

Build yoursetf an exciting Electronic Organ. Our leaflet MES51, price 15p. deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to iwo keyboards each with five voices and the extension by an octave of the organ's range.


Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35 p . (pre-publication price \(15 p\).)

\section*{NO MORE DOUBTS ABOUT PRICES}

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30 p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30 p and we'll put you on our mailing list - you'll receive immediately our latest price list then every two months from the starting date shown on that list vou'll receive details of our prices for the next GUARANTEED petiod before the prices are implemented! - plus details of anv new lines, soecial offers, interesting projects - and coupons to spend on components to repay your 30p
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super cataloguè is an essential first step.
Call in at our shop, 284 London Road, Westcliffon-Sea, Essex Please address all mail to


MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3 Rayleigh Essex SS6.8LR.

\section*{CROFTON ELECTRONICS LTD}

Please Note our NEW ADDRESS

The Crofton C.C.T. V. Camera
The high performance of the Crofton C.C.TV. Camera constructed from our comprehensive kit still surprises must consistretors and users.
Although initially designed for the educational market, it has, over the years. proved itsell a most reliable and competitive all purpose camera with an extrencly wide field of use. If you hate an application for a camera. come along and see it in actions we think you will like it, and what's more its ALL BKIIISH, APAKT I KOM TIL ILNS: and it will work with ally existing equipmem you have including Video recurders. With one of our U.H.F. Modulators it can be plugged directly into the back of a standard U.H.F. telesision receioer. A a ailable in separate modules. to suif any budget, or as a completely assembled camera for the non do-it-yourself user.


The Crofton PCB Service
The Crofton P.C.B. service has bean sel up to oller a service to both the small and medium sized electronies company.
Being fully aware of the pressures on most engineers today, we have set up a specialist operation capable of producing P.C.B. designs and boards from the most scanty information.

You give us the circuit and we will do the resi. Whether you want high quality or low price commercial boards we can olier you a competitive service. Prototypes can normally be provided within 2-3 ditys from receipt of artwork.
We will be pieased to send an engineer along to discuss your requirements, so next time boure in the market for this type of service just give efs at ring.


We are also able to offer all ETI Boards, the majority of them from stock.


Complete Kits of parts are available for some of the more popular ETI projects.```


[^0]:     n
    -
    0
    0
    0
    0
    0
    0
    0
    3
    3
    0
    0
    0
    0
    0
    0
    0

[^1]:    Assembly of the unit may be seen from this photograph.

[^2]:    FOR IMPEDANCES GREATER THAN $10 \Omega$ DIVIDE CAPACITANCE SCALE BY THE SCALING FACTOR AND MULTIPLY THE INDUCTANCE SCALES BY THIS FACTOR. e.g. A CAPACITOR WHOSE IMPEDANCE IS 6000 OHMS (SCALING FACTOR $\times 1000$ ) AT 1 kHz VALUE IS $27 / 1000=0.027 \mu \mathrm{~F}$

[^3]:    *FIGURES IN BRACKETS ARE FOR 10 kHz

    Fig. 5. Reactance chart for determining values of $L$ or $C$ from measur. ed impedance at 1 kHz

