5

ELECTRONICS TODAY INTERNATIONAL

RS232 I/O CARD FOR THE PSON 3
Makes your Organiser into A Controller
 LOORARPIA An adjustable - stand anterino for better-medium - wave reception

Flash mentory microcontrollers: move in

MIDI Drum Pads GCSE Bargraph Module Fast Fivers - A Digital Die

Electronics Principles 5.0

If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.

Now includues the PC16C848.PC16C71 hardware and instuction set.

Electronics Principles 5.0 is a signific upgrade of our popular electro: educational software. Now contair even more analogue, digital microcomputer theory. PLUS over hundred new mathematics topics further your understanding of formu and calculations. Telephone for comprehensive list or upgrade details.

This software has been developed teach electronics and is suited to both complete novice and the m advanced student or hobbyist wantin, quick revision and access to hundred: electronics formulae. It is extremely e to use. Just select a topic, which is alw presented as a default diagram (no bl screens!) and input your own valu Altematively, use those from any stand electronics text book to see the results frequency response curves, calculatic logic states, voltages and currents etc.

Graphics presentation has been enhanced and speeded-up with new menus and indexing which enables a quicker access and more informative description of the extended range of five hundred and sixty electronics and mathematics topics.

The PICl 6C84 microcontroller hardware and instruction set has been introduced and brought to life through colourful interactive graphics where you can study the architecture of this device by changing the data values to simulate all of the registers, direct/indirect addressing, program/data memory and input/output port configuration. Along with those analogue to digital functions of the PIC16C71. If you would like to leam more about the principles of these popular microcontrollers then it could not be made easier.

Electronics Principles software is currently used in hundreds of UK and overseas schools and colleges to support City \& Guilds, GCSE, ALevel, BTEC and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.

Still only £99.95*

4MPEDANCE: R.C \& L Paralle Impedance.
区
$\mathrm{IR}=\frac{50}{100}=.5=500 \mathrm{~mA}$
IC $=\frac{50}{31.83099}=1.570796=1.5708 \mathrm{~A}$.
$\mathrm{LL}=\frac{50}{157.0796}=.3183099=318.3099 \mathrm{nA}$
$1=\sqrt{5+(1570796 \cdot 3183099)}=1.3486=1.34668$.
$\theta=\tan \cdot \frac{1.570796-3183099}{5}=68.2378^{\circ}$
$Z=\frac{100 \times 157.0796 \times 31.83099}{\sqrt{1570799 \% \times 31.83099}+100 \times 1.157 .0796-31.83099 \mathrm{~F}}=37.0755 \mathrm{~F}$

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008. sales@eptsoft.demon.co.uk http://www.eptsoft.demon.co.uk *UK and EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return.
Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

Volume 27 No. 3 Features Projects

Next Issue 27th March 1998
AVR: The New Chip on the Block9Kevin Kirk describes a recent arrival on the microcontroller market, the AtmelAVR 1200, with Flash memory and a nanosecond instruction cycle time.
AA Cell Eliminator 19Reduce your AA battery throughput by powering your gadget collectionfrom the mains around the house and workshop with Terry Balbirnie'sdedicated battery eliminator.
Five Range Capacitance Meter25
Many capacitance meters have difficulty returning accurate measurements for low-value capacitors such as those widely used in radio and other high-frequency circuits. Robert Penfold's design uses close-tolerance components to give good accuracy down to very low values.
An RS232 I/O Card for Psion 3s and PCs
The Psion Organiser 3, 3A, 3C and Sienna conceal a general-purpose computer behind the popular electronic diaries. This interface card by Pei An enables you to program the palmtops for control or data logging.
Medium Wave Loop Aerial 47
Raymond Haigh's inexpensive aerial for the serious listener unit is designed to greatly improve reception on the medium wave band, especially under difficult conditions. The design includes a guide to building a compact wooden stand and casing.

GCSE Grounding: Bargraph Module

Terry Balbirnie continues a series of adaptable circuits for GCSE projects with a voltage-sensitive 10-LED Bargraph module with adjustable sensitivity, based on the LM3914 display driver.
Fast Fivers 8 - A Digital Die
Owen Bishop's electronic die shows all the faces from 1 to 6 , but won't roll under the sofa just as the game is getting exciting. The display uses red LEDs and is driven by a counter with a built-in oscillator.
Pic-Based Double Bass Tuner
Samuel Dick designed this portable tuning aid, based on the PIC 16C64, with the lower frequencies of the double bass in mind. It uses good quality earphones rather than a loudspeaker for better bass reproduction and portability.

Midi Drum Pads

Probably the easiest way to transfer rhythm to your computer or hardware sequencer is to use MIDI drum pads that can be hit with drumsticks. Tom Scarff designed this low cost unit around the PIC 16C84 microcontroller.

News	$\mathbf{4 , 5 , 7}$
ETI PCB Service	$\mathbf{4 6}$
PCB foils	$\mathbf{6 8 , 6 9}$
Practically Speaking	
Terry Balbirie tailors an analogue panel meter to read volts using just a resistor.	

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

Electronics Lessons on Video from the Maplin Catalogue

Maplin has launched a serious of electronics training videos in it Spring catalogue. The Ucando range of educational videos is described as providing comprehensive instruction on electronics theory, covering a wide range of topics including DC/AC circuits, semiconductors, amplifiers, power supplies and oscillators, digital electronics, radio theory, fibre optics and laser technology.

The hour-long videos use animation, text and commentary to make the learning material more eyecatching. Maplin sees them as particularly relevant to schools, colleges and industrial departments, as well as students follow distance-learning courses.

The tapes are available from the current Maplin catalogue and from Mondo Maplin superstores. For further information on ordering codes and store locations, call 01792554002

DSP Chip Brings Parametric EQ to Auto and Home Electronics

Medianix Semiconductor has introduced the MED25022 Digital Cross-ver; parametric Equaliser, a single-chip, multichannel digital filter ic that uses digital signal processing (DSP) to provide parametric equalisation and crossover filtering in a range of audio applications that includes car audio, home entertainment centres, multimedia computers, and audio engineering and mixing consoles.

This is the first time these functions have been made available in a single application-specific standard product. (ASSP).

The cmos chip provides five bands of parametric equalisation with up to 24 dB per octave crossover filtering for each of two audio channels. Devices can be used in parallel for more channels, or can be cascaded to achieve higher order filters. All the desired eq band amplitudes and filter cutoff frequencies are programmable. On-chip memory provides up to 35 microseconds of programmable digital delay that allows time alignment of audio signals from speakers that are different distances from the listener.

Filtering characteristics can be changed by changing the contents of a finite number of registers. The centre frequency, (the -3 dB bandwidth) and level of each of the five eq bands can be independently adjusted over a +/-

16 dB range by sending a 24 -bit world in three 8 -bit blaocks, or by calculation using formulae stored in the onchip rom. The cutoff frequencies of the crossover filters on each channel are digitally programmable at either 12 $\mathrm{dB} /$ octave or $24 \mathrm{~dB} /$ octave, and can create lowpass, highpass or bandpass filters as needed, providing very precise control. The chip allows dynamic system reconfiguration so that, for example, the performance of a car stereo in a convertible can remain optimised whether the top is up or down.

For more information, contact Medianix Semiconductor Inc., 100 View St., Suite 101, Mountain View, CA 94041 , USE. Tel +1 6509607081 ex. 225 Fax +16509600478. Web: www.medianix.com

ETI
 ELECTRONICS
 today international.

The Institution of Electrical Engineers (IEE) has produced a leaflet to warn embedded systems users and manufacturers about the "Year2000 problem", or the "Millenium problem" as it is sometimes known in a more apocalyptic vein. When the world's tinning devices click over to the year 2000, a proportion of them will not be able to interpret dates starting with 01/01/00, and may not be able to deal with operational cycles such as "do X every 100 days" under the new dates. The IEE leaflet flags with problem with a concise checklist of action for organisations that depend on computer systems to take, starting with "Get more information"; "Appoint a team" and "Investigate" to "Organise formal reporting and review." The IEE will be providing general guidance based on information supplied by industry and Government. The first line of access to this guidance is the IEE website at http://www.iee.org.uk/2000risk. Later in the year a guidance document for small and medium sized businesses will foliow. The IEE can be contacted via Alasdair Kemp, the Public Affairs Department, IEE, Savoy Place, London Wc2R OBL. Fax only 01714972143.

Orchid Vehicle Tracking uses GSM and DGPS

European Telecom and Racal Survey, world leaders respectively in the distribution of wireless communications products and the development of satellite positioning technology, have combined to launch a mobile telephonybased vehicle tracking, navigation and on-line driver information service, Orchid, under the joint venture name Global Telematics. Orchid will integrate GSM and digital technology, cellular telephone and satellite DGPS (Differential Global Positioning System) to provide telematic services using a voice-based system safety-compliant for motorists and fleet-operators, and expects to turn cellular telephony into a fast, accurate 24 -hour comms system.

Orchid has been launched in the UK and will begin its international launches with South Africa in early 1998. Starting, as have most vehicular cellular telephony systems, with the commercial fleet market, Orchid will allow entire fleet positions can be viewed at a glance, drivers contacted with updated information, and data sent to and from vehicles. Routes can be planned and re-planned and emergencies dealt with quickly.

Orchid is available now for all types of vehicle users, however, as the system expands more into private cars, vehicles are more likely to have the system as a factory fitted option, rather than retro fit.

Among other organisations already involved are the Automobile Association (A) which will provide a 24 -hour monitoring and information bureau service, and Vodaphone as

the mobile network carrier.

Current services include a 24 -hour year-round monitoring and information service; precise vehicle tracking; navigational assistance, route planning and real time traffic updates; roadside assistance and emergency service callout; locial service information such as hotels, restaurants, service stations and so on; fleet management packages with mapping and reporting facilities. Future services will include security vehicle tracking and authorised assisted recovery; remote vehicle diagnostics; remote lock and unlock capabilities and floating car data.

For more information or a tariff list, call 08007316677 or 0181974 1100, fax 01819741133.

Logging Goes Walkabout

Lascar Electronics have responded to customer demand and produced EI-Link-IR ās an easy cable-free short distance data transfer solution. The EI-Link-IR module allow easy construction of an infra red link for EasyLog or other instrumentation systems where a remote control is required. @B:It converts RS232 serial data into infra red, and vice versa. The El-Link-IR offers original equipment manufacturers (OEMs) "plug-\&-play" accessibility to \mathbb{R} serial communications, and has the added benefit of being totally self-contained in a 9-to-25-way adapter shell.
Needing no additional söftware, EI-Link-IR plugs straight into a PC serial COM port or a Psion Workabout. It uses the industry standard IrDA comms.standard to achieve half-duplex comms
over a distance of up to one metre. The El-Link-IR needs no external power supply, drawing the little current it consumes (approximately 2.5 mA) from its host equipment through the 9way D-type connector. The baud rate is preset to 9600 baud. El-Link-IR can be used with the El-2-IR module to form part of a wireless data logging system. It can be used with Panet-IR to provide infra red control capability. For more information, contact Lascar Electronics, Module House, Whiteparish, Salisbury, Wilts SP5 2SJ, UK. Tel. 01794 884567

LOW COST PC'S

SPECIAL BUY

'AT 286 40 Mb HD + 3Mb Ram

Industrial grade 12Mhz HI GRADE 286 systems Made in the USA to an industrial specification, the system was designed for total reliavideo card with single $51 / 4.2$. hard disk drive to the front. Real time clock with battery backup enhanced kayboard, $640 \mathrm{k}+2 \mathrm{Mb}$ AAM, DOS 4.01 and 90 DAY Order as HIGRADE 266 ONLY E 9.00 (E)

Optional Fitted extras: VGA graphics card	£29.00
1.4Mb 3 /4* floppy disk drive (instead of 1.2 Mb)	£19.95
Wordperiect 6.0 for Dos - when 31/2" FDD option ordered	$\underline{12.50}$
NE2000 Ethernet (thick, thin or twisted) network card	£29.00

INTEL 486DX-33 SYSTEMS

 Fumily featured with standard simm connectors 30 \& 72 pin. Supplied wilt keyboard, 4 Mb of RAM, SVGA monitor output, 256k cache and integral 120 Mb IDE drive with single $1.44 \mathrm{Mb} 3.5^{\circ}$ tloppy disk drive. Fully tested and guaranteed. Fully expandabieMany other options avallable - call for detalls. $£ 199.00$ ($\mathbf{(t)}$

FLOPPY DISK DRIVES 3112" - 8"

 present prime product at industry beating low pricest All units (unless stated) are BRAND NEW or removed from often brand new equipday guarantee. Cell for over 2000 unlisted drives for spares or repair3\%" Panasonic JU363/4 720 K or equivalent RFE
3\%/" Mitsubishl MF355C-L. 1.4 Meg. Laptops only
$3 \mathrm{~K}^{\prime \prime}$ Mitsubishi MF $355 \mathrm{C}-\mathrm{D} .1 .4 \mathrm{Meg}$. Non laptop

$5 y^{*}$ BRAND NEW Mitsubishi MF5018 360 K
Table top case with integral PSU for HH $5 \%{ }^{\circ}$.
Table top case with integral PSU Hor HH $5 \%^{\circ}$ Flopp or HD
" Shugart 8100°. SS HH Brand New
$8^{\prime \prime}$ Shugart 8518° double sided refurbished \& tested
$8^{\text {" }}$ Mitssubishi M2996-63-02U DS slimine NEW

£24.95(B) ع25.95 ع229.95(B

Dual 8" cased drives with integral power supply

HARD DISK DRIVES

21. TOSHIBA (19 mm H) MK2101MAN 2.16 Gb . Now 199.00

FUJIFK-309-26 20 mb MFM IF RFE

CONNER CP 302420 mb IDE $1 / / /$ (or equiv.) RFE
CONNER CP 304440 mb IDE $/$ (or RODIME RO3057S 45 mb SCSI $1 /$ F (Mac \& Acom) QUANTUM 40S Prodrive 42 mb SCSII/F, New RFE WESTERN DIGITAL 850mb ME /F Now SEAGATE ST-238R 30 mb RLI IF R Requib CDC 94205 - 51 40mb HH MFM I/F RFE tested
\%/ HP 97548850 Mb SCSI RFE tested
HP C30102 Gbye SCSI differentlal RFE tested NEC D2246 85 Mb SMD interface. Now FUJITSU M2323K 160 Mb SMD IF RFE tested FUJITSU M 2392 K 2 Gb SMD I/F RFE tested

THE AMAZING TELEBOX

The TELEBOX is an attractive fully cased mains powered unit, containing all electronics ready to plug into a host of video monitors made by makers such as MICROVITEC, ATARI, SANYO, SONY,
COMMODORE, PHILIPS, TATUNG, AMSTRAD etc. The composite video output will aiso plug directly into most video recorders, allowing recention or trianners not normally recelvable on most televipanel allow reception of 8 fully tuneable 'ot air' UHF colour television channels. TELEBOX MB covers virtually aill television frequencies TV operators. A composite video output is located on the rear cable for direct connection to most makes of monitor or desktop computer video systems. For complete compatibility - even for monitors with out sound - an integral 4 watt audio
TELEBOX ST for composite video input type monitors TELEBOX MB Multiband VHF/UHF/Cable/Hyperben, $£ 39.50$ For cable / hyperband signal reception 6 mHz sound specification.

DC POWER SUPPLIES

Virtually every type of power supply you can maglne. Over
0,000 power Supplles Ex Stock
Call for Infollist.

IC'S -TRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK

6,000,000 items EX STOCK

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see At this price Don't miss it!! -

IENT intle used oondtion. Ext calla for in PC inctuded. Only £119 (曰) MITSSESGA Extemel cables for other typee of computers CALL

As New - Ex Demo

17"0.28 SVGA MitsublshI Dlamond Pro monitors Full multisync etc. Full 90 day guarantee. $£ 325.00$ (E) Just In - Microvitec $20^{"}$ VGA (800×600 res.) colour monltors.

Good SH condition - from $\mathbf{E 2 9 9}$ - CALL for Info
PHILIPS HCS35 (same style as CM8833) attractively styled 14" Khz video integral audio power amp and spesker tor all audlo visual uses. Will connect direct to Amiga and Atari BBC computers. Ideal for a video monitoring / security applications with direct connection to most colour cameras. High quality with many features such as used condition - fully tested - guaranteed

Only $199_{(E)}$
PHILIPS HCS31 Ulira compact 9 colour video monitor with stan dard composite 15.625 Khz vidoo input via SCART socket. idea or all monitoring / security applications. High quality, ex-equipmen fuly tested \& guaranteed (possible minor screen bums). In attrac 240 VAC mains powered. Only $£ 79.00$ (D)
KME $10^{*} 15 \mathrm{M} 10009$ high definition colour monitors with 0.28° do pitch. Superb clarity and modern styling.
Operates from any 15.625 khz syme AGB vidao
source, with RGB analog and composite ssm,
such as Alari, Commodore Ampat. Acor
Archimedes \& BBC. Measures only $131 / 2^{*} \times 12^{\prime \prime}$
11^{n}. Good used condition. Only $£ 125$ (E)
$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS

Superly made UK manut) PL all solid stain colour

 Superbly made UK manutacture. PL all solid state colour monitors complete with composite video \& optional sound input. Attractive XXCELLENT little used condition with full 90 day guarantee.20"....£135 22"....£155 26"....£185 (F) SPECIAL INTEPESTITEMS
MITS. क. FA344SETKL $14^{\prime \prime}$ industrial spec SVGA monitors 1 KW to 400 kW - 400 Hz 3 phase power sources 8230 Type 1, Token ring base unit driver
Wayne Kerr RA200 Audio frequency response analyser IBM 53F5501 Token Ring ICS 20 port tobe modules
IBM MAU Token ring distribution panel $8228-23-5050 \mathrm{~N}$ AIM 501 Low distortion Oscillator 9 Hz to 330 Khz , IEEE Irend DSA 274 Data Analyser with G703(2M) 64 Vo Marcons 6310 Programmable 2 to 22 GHz sweep genera AP1650B Logic Analyser
HP3781A Pattem generator \& HP3782A Error Detector HP66264 Rack mount variable 0-20V © 20A metered PSU HP54121A DC to 22 GHz four channel test set HP7580A A1 8 pen HPGL high speed drum plotter F\&B Wardrobe size, insurance spec 1 hour rated fire sate EG+G Brookdeal 95035C Precision lock in amp
View Eng. Mod 1200 computerised inspection system
Sony DXC-3000A High quality CCD colour TV camera Sony DXC-3000A High quality CCD colour TV camera Chlipe PW L730 30 XRAY hermal shock chamber Khilps PW 590 CV capacitor 7 voltage analyser Racal ICR40 dual 40 channel voice recorder Racal CR40 dual 40 channel voice recorder system CI R5030UV34 Cleanline ultrasonic cleaning system Mann Tally MT645 High speed line printer
Intel SBC 486/133SE Multibus 486 system. 8Mb Ram
Intel SBC $486 / 125$ C08 Enhanced Multibus (MSA) NEW Intel SBC 486/125C08 Enhanced Multibus (MSA) NEW Zeta $3220-05$ AO 4 pen HPGL fast drum plotters
Nikon HFX-11 (Ephiphot) exposure control unit NIkon HFX-11 (Ephiphot) exposure control unit Motorola VME Bus Boards \& Components List. SAE / CAL Trio 0-18 vdc linear, metered 30 amp ber
Fulitsu M3041R 600 LPM band printer
Fujtsu M30410 600 LPM printer with network interface Perkln Elmer 2998 Infrarad spectrophotometer PerkIn Elmer 597 Infrared spectrophotometer VG Electronics 1035 TELETEXT Decoding Margin Meter UghtBand 60 output high spec 2 u rack mount Video VDA' Sakonic SD 150H 18 channel digital Hybrid
Taylor Hobson Tallysurf amplifier / recorder System Video 1152 PAL waveform monitor

19" RACK CABINETS
Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price! Top quality 19° rack cabinets made in UK b
Optima Enclosures Ltd. Units featur designer, smoked acrylic lockable front doo and louvered removable side panels. Full lus ready mounted intequipment mountin ocket switched mains distribution strip mak have ever sold. Racks may be stacked side by side and therefo require only two side panels to stand singly or in multiple bays
Overall dimensions are: 771/2" $\mathrm{H} \times 321 / 2^{\prime \prime} \mathrm{B} \times 22^{*} \mathrm{~W}$. Order as: verall dimensions are: 77/2" H x 321/2" $\mathrm{D} \times 22^{*} \mathrm{~W}$. Order as:

Over 1000 racks, shevess, accessorices Available from stock $!$.

32U - High Quality - All steel RakCab

 Made by Eurocraft Enclosures Ltd to the highest possible spec ack features all steel construction with removab hinged for easy access and all are lockable with five secure 5 lever barrei locks.s constructed of double walled steel with nable st style' smoked acrylic front panel to panel, yet remain unobtrusive internally the the members equipment. The two movable vertical fixing struts extras available) are pre punched for standard mounted to the bottom rear, provides $8 \times$ in Euro sockets and 1×13 amp 3 pin 8 witched ully louvered back door and double skinned ted with top and side louvres. The top panel may be remov of integral fans to the sub plate etc. Other features include: fitte castors and floor levelers, prepunched utility panel at lower rear to cable connector access etc. Supplied in excellent, slightly use

A superb buy at only $£ 245.00$ (G) 42 U version of the above only $£ 345$ - CALL

BATTERY SCOOP - 50\% off !!

he most amazing savings on these ultra high spec 12v DC 14

 rechargeable batteries. Made by Hawker Energy Ltd, type SBSt eaturing pure lead plates which otfer a far superior shelf \& guaran GRAND NEW and boxed. Dimensions 200 wide, 137 high, 77 dee each! Our Price $£ 35$ each (c) or 4 for $£ 99$
RELAYS - 200,000 FROM STOCK

Save efec's by choosing your naxt rolay from our Massiv stocks covering types such as - Military, Octal, Cradle Wetted Solld State, Printed Circult Mounting, CALI' US WI YOUR NEEDS. Many obsolete types from stock Save Eex.'s

Low cost ram \& cpus

INTEL 'ABOVE' Memory Expansion Board. Full leng and PC-AT compatible card with 2 Mbytes of memory and above) memory. Full data and driver disks suppledes and above) memory. Full data and driver disks supplied. R
Fully tested and guaranteed. Windows compatible- 559.95 Half tength 8 blt memory upgrade cards for PC AT XT expands memory either 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. SIMM SPECIALS

1 MB $\times 9$ SIMM 3
 4 MB 70 ns 72 pin SiMM ns 810.50 or 70 Ons $£ \mathbf{O n l y} £ 35.00$
 NTEL 486-DX33 CPU E19.95 NTEL 486-DX66 CPU 59.00

MOTOROLA 25 Mhz 68040 (XC68040RC25M) CPU'S £59.00
SOFTWARE SPECIALS
NT4 WorkStation, complete with service pack and licence - OEM packaged

Special Price ONL Y £99.00
M/crosorn with license s ingmentation documentation. Suppli DOS 5.0 on $31 / k^{\prime \prime}$ disks with concise books c/w QBasic. $£ 14.9$ shipping charges for software is code B

Visit our London shop for a full range of Test Equipment and other bargains

ALL B ENQUIRIES
1, 1 \& 4.44
omall admin edistel.co.uk
Al prices for UK Mainland. UK customers add 17.5% VAT to TOTAL order amount. Minimum order $£ 10$. Bona Fide account orders accepted from Government. Schoc
 and unbss satard

Dedicated Wireless Internet for Homes Before 2000?

DECT (digitally enhanced cordless telecommunications) technology will be at the heart of a wireless internet revolution in homes before the year 2000, according to Cambridge-based designers Symbionics.

The high-speed internet system will use technology similar to that in digital cordless telephones (like the former Rabbit cellular handsets, now in use as domestic cordless phones) to link PCs to a network of outdoor base stations with access to the internet. The base stations will link into the internet through fibre-optic cabling, copper wiring or microwave links. All three methods are capable of high-speed data transfer, and would operate separately from the telephone network.

At $550 \mathrm{kB} /$ second, DECT technology can already transfer data ten times faster than telephone wires that use analogue modems. Symbionics aims to increase this to $x 20$ over the next two years, using higher rate modulation schemes and equalisation technology. They say that the outdoor base stations will be accessible to PCs within a range of a few kilometres. The system will allow new operators without access to existing fixed-wire telephone lines to offer internet facilities. Connecting customers to the internet using DECT technology should prove cheaper than using telephone lines.

Italy will be the first country to adopt the system. Networks of DECT base stations are already being installed throughout the country's major towns and cities by telephone suppliers, who are expected to offer a service later in 1998. The new systems will handle voice mail, but significant demand for internet access and email is expected. Because internet and email will no longer tie up the telephone lines, it would be possible to use the PC and call out on the phone line simultaneously without installing a second line.

For more information contact Symboinics Ltd., St. Johns Innovation Park, Cowley Road, Cambridge CB4 4WS. Tel. 01223421025 Fax 01223421031.

Improved Resistor Paste Formula Doubles Pot Life

Manufacturer Omeg has doubled the life of its 20 mm potentiometers from 10,000 to more than 20,000 cycles. The life enhancement was achieved by improving and refining the conductive polymer resistor paste formulation used to make the resistive track.

The pastes contain hardwearing resins and polymers, solvents, lubricant, and carbon to provide the conductive/resistive properties. The track is made by screen printing the paste onto a paper based phenolic substrate, and then curing it in an over. The curing process removes all solvents, and allows the conductive polymer to polymerise and cross-link. This produces a hard wearing track with good stability in terms of temperature and electrical resistance during its working life.

The life of Omeg's 16 mm potentiometers has also been increased to more than 20,000 cycles, a boost of 33 percent. The new life expectancy figures apply to all potentiometers in the catalogue, and any non-catalogue

specials with resistances higher than 1megohm (linear) or 470 kilohm (non-linear).

For more information contact M. Grantham, Omeg Ltd., Imberthorne Industrial Estate, East Grinstead, W. Sussex RH19 1RJ, UK. Tel 01342410420 Fax 01342 316253. email: Omeg.Sales@Omeg.co.uk Web: www.omeg.co.uk/omeg/

Eurosoft (UK) have provided a solution to the "year 2000" computer date change known popularly as the "millennium problem". Their find-and-fix utility assists with the automatic date rollover of AT-style PCs and applications that were not originally programmed for the imminent 1999-to-2000 century year change. Using a small software utility, users can now automatically find out whether their PCs have the year 2000 date change problem, and fix the date change without adjusting the hardware setup. "Fix 2000 " identifies the PC's BIOS to reveal whether the date rollover is supported or not, and then performs the correction to update the stored century value. For more information, contact Sharon Richards, Eurosoft (UK) Ltd., Hanover House, 136 Old Christchurch Rd., Bournemouth, Dorset BH1 1NL. Tel. 01202297315.

E1 BARGAIN PACKS

If you would like to recelve the other four $£ 1$ ilsts and a lot of other \|lsts, request these when you order or send SAE.
TEST PRODS FOR MULTIMETERS with 4mm sockets. Good length very flexible lead, Ret: D86
8 OHM PM SPEAKERS, size $8^{n} \times 4^{7}$, pack of two. These may be sllightily rusty and that is why they are so cheap but are electrically OK, Ref: D102.
PAXOLIN PANELS, size $8^{n} \times 6^{n}$, approximately $1 / 18^{n}$ thick, pack of two, Ref: D103.
13A SOCKET, virtually unbreakable, ideal for tralling lead. Ref: D95. PIEZO BUZZER wIth electronic sounder clrcuit, 3V to 9V D.C. operated, Ref D76.
DITTO but without internal electronics, pack of two, Ref:D75.
LUMINOUS ROCKER SWITCH approximately 30 mm sq, pack of two, Ref D64.
ROTARY SWITCH, 9 -pole, 5 -way, small size $7 ?$ spindie, pack of two, Ref: D54.
FERRITE RODS, $7^{\text {¹ }}$ with colls for Long and Medium waves, pack of two, Ref: D52.
DITTO but without colls, pack of three, Ref: D52.
MAINS DP ROTARY SWITCH with $1 / 4^{" \prime}$ control splnde, pack of flve, Ref: D49.
ELECTROLYTIC CAP, 800 HF at 6.4 V , pack of 20 , Ref:D48.
ELECTROLYTIC CAP, $1000 \mathrm{HF}+100 \mathrm{HF} 12 \mathrm{~V}$, pack of10, Ref: D47.
MINI RELAY with $5 V$ coil, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times 1 \mathrm{~mm}$, has two sets of changeover contacts, Ref: D42.
MAINS SUPPRESSOR CAPS). 14 F 250 V A.C., pack of 10 . Ref: 1050 TELESCOPIC AERIAL, chrome plated, extendable and folds over for Improved F. M. receptlon. Ref: 1051
MES LAMP HOLDERS, slide on to $1 / 4^{n}$ tag, pack of 10 , Ref: 1054
PAXOLIN TUBING $3 / 16^{n}$ internal diameter, pack of two. $12^{\text {" }}$ lengths, Ref 1056.
ULTRA THIN DRILLS, 0.4 mm , pack of 10, Ref. 1042.
20A TOGGLE SWITCHES, centre off, part spring controlled, will stay on when pushed up but will spring back when pushed down, pack of two, Ref: 1043.
HALL EFFECT DEVICES, mounted on small heatslnk, pack of two, Ref; 1022.
12V POLARISED RELAY, two changeover contacts, Ref; 1032.
PAXOLIN PANEL, $12^{\prime \prime} \times 12^{\prime \prime} 1 / 8^{\prime \prime}$ thick, Ref: 1033.
MINI POTTED TRANSFORMER, only $1.5 \mathrm{VA} 15 \mathrm{~V}-0 \mathrm{~V}-15 \mathrm{~V}$ or 30 V , Ref: 964.

ELECTROLYTIC CAP, $32 \mu \mathrm{~F}$ at 350 V and $50 \mu \mathrm{~F}$ section at 25 V , in aluminium can for upright mounting, pack of two, Ref: 995. PRE-SET POTS, one megohm, pack of flve, Ref: 998.
WHITE PROJECT BOX with rocker switch In top left-hand side, size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted, Ref: 1006.
5 V SOLENOID, good strong pull but quite small, pack of two, Ref: 1012.

FIGURE-8 MAINS FLEX, also makes good speaker lead, 15 m , Ret: 1014.

HIGH CURRENT RELAY, $24 V$ A.C. of 12 V D.C., three changeover contacts, Ref: 1016
LOUDSPEAKER, $80 \mathrm{hm} 5 \mathrm{~W}, 3.7^{7 \prime}$ round, Ref; 962.
NEON PILOT LIGHTS, oblong for front panel mounting, with internal resistor for normal mains operation, pack of four, Ref: 970.
3.5MM JACK PLUGS, pack of 10, Ref: 975.

PSU, mains operated, two outputs, one 9.5 V at 550 mA and the ther 15 V at 150 mA , Ref: 968.
ANOTHER PSU, mains operated, output $15 V$ A.C. at 320 mA , Ref: 989.

PHOTOCELLS, sllicon chip type, pack of four, Ret: 939.
LOUDSPEAKER, 5" 40 hm 5 W rating, Ref: 939.
LOUDSPEAKER, 7" x 5" 40 hm 5 W , Ref: 949
LOUDSPEAKER, $4^{\prime \prime}$ clicular 60 hm 3 W , pack of 2, Ref: 951
FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching pair Ret: 901.

PAXOLIN PANEL, $81 / 2^{\prime \prime} \times 31 / 2$ width electrolytics $250 \mu \mathrm{~F}$ and 100^F, Ref; 905.
CAR SOCKET PLUG with P.C.B. compartment, Ref: 917.
FOUR-CORE FLEX sultable for telephone extensions, 10 m , Ref: 918 PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lld, held by four screws, pack of two, Ref: 876 .
SOLENOIDS, 12 V to 24 V , will push or pull, pack of two, Ret: 877 .
2M MAINS LEAD, 3-core with instrument plug moulded on, Ref: 879
TELESCOPIC AERIAL, Chrome plated, extendable, pack of two, Ref: 884.

MICROPH ONE, dynamic with normal body for hand holding, Ref: 885 CROCODILE CLIPS, superior quality flex, can be attached without soldering, flive each red and black, Ret:886
BATTERY CONNECTOR FOR PP3, superior quality, pack of four, Ref 887.

LIGHTWEIGHT STEREO HEADPHONES Ref: 898.
PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pack of 10, Ref: 849.
THERMOSTAT for ovens with $1 / \mathbf{4}^{\text {" }}$ spindle to take control knob, Ref: 857.

12V-QV-12V 10W MAINS TRANSFORMER, Ref: 811.
18V-QV-12V 10W MAINS TRANSFORMER, Ref: 813
AIR-SPACED TRIMMER CAPS, 2 pF to 20 pF , pack of two, Ref: 818.
AMPLIFIER, 9 V or 12 V operated Mullard 1153, Ref: 823
2 CIRCUIT MICROSWITCHES, licon, pack of 4, Ref: 825 .
LARGE SIZE MICROSWITCHES changeover contacts, pack of two. Ref: 825.
MAINS VOLTAGE PUSHSWITCH with white dolly, through panel mounting by hexagonal nut, Ref; 829.
POINTER KNOB for spindle which is just under 1.4", llike most thermostats, pack of four, Ref: 833 .

Brand new and boxed. Normal price $\mathfrak{£ 3 5}$, yours for $£ 15$, Order Ref: 15 P73.

TOROIDAL MAINS TRANSFORMERS

All with $220 / 240 \mathrm{~V}$ primary winding, $0.30 \mathrm{~V}+0.30 \mathrm{~V}$ at 120 VA , would give you 30 V at 4 A or 60 V at 2 A , price $£ 8$. Order 8PE2. Ordel Ref: 8PG2. 0.110 V + 0.110 V at 120VA would give you 110 V at just over 8 A or 220 V at $\mathbf{1 / 2 A}$, price
 £8. Order Ref: 8PG3. $0.35 \mathrm{~V}+0.35 \mathrm{~V}$ at 150VA would give you 35 V at 4 A or 70 V at 2A. Price $£ 8$. Order Ref: $8 P G 9.0 .35 \mathrm{~V}+0.35 \mathrm{~V}$ at 220 VA would give you 35 V at $61 / 2 \mathrm{~A}$ or 70 V at $31 / 4 \mathrm{~A}$, price $£ 9$. Order Ref: $9 P G 4.0 .110 \mathrm{~V}+0.110 \mathrm{~V}$ at 220 VA would give you 110 V at 2 A or 220 V at 1 A , price $£ 10$. Order Ref: $10 \mathrm{PG5}, 0.45 \mathrm{~V}+0.45 \mathrm{~V}$ at 500 VA would glve you 45 V at 11 A or 90 V at $51 / 2 \mathrm{~A}$, price $£ 20$. Order Ref: 20PG7. $0.110+0.110 \mathrm{~V}$ at 500 VA would glve you 110 V at 5 A or 220 V at nearly 3 A , price $£ 25$, Order Ref: 25PG7.

SUPER WOOFERS. A $10^{\prime \prime} 40 \mathrm{hm}$ with a power rating of $\mathbf{2 5 0 W}$ music and normal 150 W . Normal selling price for this is $£ 55+$ VAT, you can buy at $£ 29$ including VAT and carriage, Order Ref: 29P7. The second one is a $8^{\prime \prime} 40 \mathrm{hm}$. 200W music, 200 W normal. Again by Chatlenger, price $£ 18$, Order Ref: 18F9.
Deduct 10% from these prices if you order In paifs or can collect. These are all brand new in maker's packing.

SOLDERING IRON.
Super mains powered with long Ilfe ceramic element, heavy duty 40 W for that extra special job. Complete with plated wire stand and 245 mm leads, $£ 3$, Order Ref: 3 P221.

YOU SAVE £40
the Jap made 12 V 12A-SEaLed battery from regular suppliers costs $£ 50$, you can have one from us for only $£ 10$ including VAT if you collect or £12 if we have to send. Being sealed it can be used I sealed it can be used In any position and is maintenance free. All in tip top condition and fully guaranteed, Order Ref: 12!32. Or if you want a smaller one we have 12 V 2.3 AH , regular price $£ 14$, yours for only $£ 3.50$, Order Ref; 3.5P11.

FLASHING BEACON. Uses an XENON tube and has amber-coloured dome with separate bracket, $\mathbf{1 2 V}$ operated. Price only $\mathbf{5 5}$. Order Ref: 5P 267.
HIGH RESOLUTION MONITOR. 9^{n} by Philips, in metal frame for easy. mounting. Brand new, offered at less than the price of the tube alone, £15, Order Ref: 15P1.
15W 8^{n} SPEAKER AND 3^{n} TWEETER. Amstrad, made for their hlgh quality music centre. $£ 4$ per palr. Order Ret: 4P57.
INSULATION TESTER WITH MULTIMETER. Internally generates voitages which enables you to read insulation directly in megohoms. The multimeter has four ranges. AC/DC Volts, 3 ranges milliamps, 3 ranges resistance and 5 amp range. These instruments are exBritish Telecom but in very good condition, tested and guaranteed OK, probably cost at least $£ 50$, yours for only $£ 7.50$ with leads, carrying case $£ 2$ extra. Order Ref: 7.5P4.
We have some of the above testers but slightly faulty, not working on all ranges, should be repairable, we supply, diagram, £3, Order Ref: 3P176.
250W LIGHT DIMMER. Will fit in place of normal wall switch, only $£ 2$ each. Order Ref: 2P380. Note these are red, blue, green or yellow but will take emulsion to suit the colour of your room. Please state colour required.
LCD 31/2" DIGIT PANEL METER. Thls is a multl-range voltmeter/ammeter using the A-D converter chlp 7106 to provide flve ranges each of volts and amps. Supplied with full data sheet. Special snip price of $£ 12$, Order Ref: 12P19.
MINI BLOW HEATER. 1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, 55, Order Ref: 5P23.
MEDICINE CUPBOARD ALARM. WIII warn when cupboard door is opened. Light makes the bell ring. Neatly cased, requires only a battery, £3, Order Ref: 3P155,
DON'T LET IT OVERFLOW. Be it bath, sink, cellar, sump, etc., this device will tell you when the water has rlsen to the pre-set level. Adjustable, neatly cased for wall mounting, E3, Order Ref: 3P156. DIGITAL THERMOMETER. Suitable for outdoors or indoors, has an extra wide temperature range -50° to $+70^{\circ} \mathrm{C}$, complete wth heavy duty battery which should last several years. Its sensor can be outside, but with the read-out Inside, £4, Order Ref: 4P104.

SMART HIGH QUALITY ELECTRONIC KITS

All kits are complete with PCB and other components in a blister pack.
If you want more information about them, we have copies of the illustrated Smart catalogue available price £1.

Cat.	Description	Price	Cat.	Description	Price
No.		£	No.		£
1003	5 watt electronic slren	2.55	1089	L.E.D. flasher/555 tester	1.61
1005	Touch switch	2.87	1090	Stress meter	3.22
1008	SF function generator	6.90	1093	Windscreen wiper controller	3.68
1010	5 -input stereo mixer, with monitor output	19.31	1094	Home alarm system	12.42
1016	Loudspeaker protection unit	3.22	1095	Lead acld battery charger	3.45
1017	Linear CB 30W amp	4.70	1100	2×18 watt integrated amplifier	18.39
1020	0.5 min. time switch	4.70	1101	Dollar tester	4.70
1023	Dynamic headphone preamp	2.50	1103	L.E.D. power meter	1.84
1025	7 watt hi-fi power amplifier	2.53	1106	Thermometer with l.e.d.s.	6.90
1026	Running lights	4.60	1107	Electronics to help win the pools	3.68
1027	N\|Cad battery charger	3.91	1112	Loudspeaker protection with delay	4.60
1030	Light dimmer	2.53	1113	2×18 watt power amplifler	5.98
1032	Stereo tone control	3.55	1115	Courtesy light delay	2.07
1035	Space sound effects	2.30	1118	Xxxx-switch, with triac, 0.10 mlns	4.14
1039	Stereo VU meter	4.60	1119	Telephone line recording device	5.25
1042	AF generator $\mathbf{2 5 0 H z - 1 6 k H z}$	1.70	1123	Morse code generator	1.84
1043	Loudness stereo unit	3.22	1124	Electronic bell	2.76
1047	Sound switch	5.29	1125	Telephone lock	2.68
1048	Electronic thermostat	3.68	1126	Microphone preamplifier	4.60
1050	3-nput hiff stereo preamplifier	12.42	1127	Microphone tone control	4.60
1052	3 -nput mono mixer	6.21	1128a	Power fiasher 12V d.c.	2.53
1053	Electronic metronome	3.22	1133	Stereo sound-to-llght	5.26
1054	4 -input instrument mixer	2.76			
1056	$8 \mathrm{~V}-20 \mathrm{~V} 8 \mathrm{~A}$ stabilised power supply	12.42		TERMS	
1057	Cassette head preamplifier	3.22	Send	h, PO , cheque or quote credit card n	under
1059	Telephone amplifier	4.60		£25 add £ 3.50 service cha	
1060	+40V 8 A power supply	8.28			
1061	$12 \mathrm{~V} 1 / 2 \mathrm{~A}$ stabillsed power suppiy	3.36		\bullet - -	
1062	5 V 0.5 A stabillsed supply for T	2.30			
1063	12V 2A power supply	2.30		grim Works IDen	
1064	+12V 0.5A stabilised supply	3.22		grill Morks (Dep	
1067	Stereo VU meter with leads	9.20		Stairbridge Lane,	
1068	18V 0.5A stabilised power supply	2.53		Sussex RH17	
1070	HIFFl preamplifier	7.47		Sussex Rn17	
1085	D.C. converter: 12 V to 6 V or 7.5 V or 9 V	2.53		alephone: 01444	
1086	Music-to-light for your car	4.60			

AVR
 the new chip on the block

Development kit designer Kevin Kirk tells what he likes about the Atmel AVR 1200, the microcontroller with the nanosecond instruction cycle time.

ne of the fastest growing sectors of the electronics market is microcontrollers. In 1994 the market was quantified as 7 billion US dollars. It is now 14 billion US dollars, and is expected to be 20 billion US dollars in 1999 - and this is just the 8 -bit market. If you add the 4-, 16- and 32-bit markets you could double those figures at least. In the hobbyist sector, the best known microcontroller is the PIC, which finds its way into a good proportion of all projects published. The appeal of the PIC is obvious: it is cheap, small and has a low-cost starter kit that everyone can afford.

But the electronics industry moves on all the time, and now there is a plethora of microcontrollers available, some generalpurpose and others targeted at specific markets, such as the new Cypress CY7C63xxx microcontroller, designed specifically for USB bus applications.

We, the developers and end-users, are becoming more discerning. If we were to create a wish list for the ideal microcontroller, we would probably list the following muchdesired features:

Low cost
Low power consumption
High speed
A low-cost starter kit
Re-programmable hundreds of times

Interrupt capabilities

Re-programmable without removing it from the circuit into which it is soldered
Programming will not need any special programming voltages
At least some analogue capabilities
Easy to use
A rich instruction set
The option of an on-board clock for minimal component designs A watchdog timer (primarily for EMC purposes)
High level (C) language support
Substantial source and sink capabilities on each I/O pin (enough at least to drive an LED)
Some security features (such as lock bits) to ensure the onboard code cannot be read
Quite a tall order!
But we are the customers, and we are getting choosy. After a considerable amount of research we came up with only one
device that would fit the bill. You've guessed it - it was the Atmel AVR. Atmel, the manufacturers, are a bit coy about how their new offspring got its name. Suffice it to say that it is a RISC processor, and the design team leaders are called Alf and Vergard, so if you are any good at crossword puzzles you could probably make an estimate.

The internal architecture

Most microcontrollers perform their operations using some kind of central register, through which all the mathematics and Boolean operations are carried out. In the venerable old 51 series you had the ' A ' register. The PIC has its 'W' register. While this is fine for chip designers, it does create some problems for the circuit designer trying to shoehorn a multiple interupt operating system into the parsimonious amount of memory generously allocated by the manufacturers. Students of the history of computing will recognise the origins of this type of structure, for instance, the DEC PDP8. The designers of the AVR have decided to write their own story here, and have created a multiple register based system, of 32 registers (see the block diagram in figure 1), each of which is effectively capable of this task. So dealing with interrupts becomes easy: just use another register as your main working register. Then you can get out and away before comparable processors have finished shuffling data to let you get at the main register. So ISRs can be fast and neat.

While we're talking about speed, it is a good idea to look at exactly what a processor does with its clock pulses. The clock is the heart of the processor. Without the clock, you've just got a black slab of plastic with some shiny legs. The 51 , bless it, divides the clock pulses by 12 (called ' p ' states by intel and ' t ' states by the rest of the universe). It uses these time slots to perform various tasks like setting high byte memory addressing, low byte memory addressing; instruction fetches, instruction decoding and so on. So if you start with a clock of, say, 12 MHz , after the division the internal clock lumbers along at a sedate rate of 1 MHz . So an instruction cycle takes at least 1 microsecond. The PIC did better than this: there, the clock was divided by 4 and, if you count the fact that the processor actually performs a pre-fetch while executing the last instruction, then we could say that they have a divide-by-2 on the clock. But the AVR doesn't bother with dusty old divides - it just performs everything in one clock cycle. If your clock is 16 MHz , then your instruction cycle time is 62.5 nanoseconds. No other small, low

TEACHERS... STUDENTS. HOME USERS... etc.

Your opportunity to save fexff's
Now a proven piece of software, with over 10,000 single seat users thoughout the world, Edwin NC has come of age

This non - commercial version of our popular Edwin package has proven really popular with Academic institutions, students and Enthusiasts alike.

The package is currently on Version 1.52 and is updated on a regular basis, updates cost only $\mathbf{£ 3 5 . 0 0}$ $+p / p$, and this price is expected to hold for at least another 12 months.

Why not join the growing band of Edwin users, and be the owner of a CAD software package that we believe has no equal in htis price range. Software support is offered free by phone, fax and e-mail, and if we cannot help personally, we will try to get an answer direct from the software writers

Edwin is the first true seamlessly integrated Windows Electronics CAD package on the market, you choose whether you wish to work in layout or Schematic, whatever action is taken in either platform is automatically relayed to the other. FORGET front and back annotation, this is a thing of the past

Edwin also has extensive Gerber file manipulation, and the ability to automatically create split voltage planes and edit airgaps in copper. Full library edit features give you the opportunity to create your own working libraries.

Computer Compatibility

To run the program you will need:

- Windows 3.x, Win95 or Win NT.
- a min. 386 processor ($486+$ rec.)
- 8mb of RAM
- CD-ROM Drive

All Major Credit Cards Accepted

Deluxe 4 - THE LOT! - £199.99 inc. VAT Special Offer to the End of May 1998 WORTH £217.00

YES! Please Rush Me My EDWWIN NC Program. Swift Designs Ltd., Dept.ETI, Business \& Technology Centre, Bessemer Drive, Stevenage, Herts, SG1 2DX.

Name:
Address:

Postcode:

Tel: (Day)
(Evening)
Version Required: Basic De Luxe $\begin{array}{llllll}1 & 2 & 3 & 4 & \text { (please circle) }\end{array}$
I enclose $£+$ p.p. $£ 5.00$ UK (p.p. $£ 10.00$ outside UK)
Cheque/P.P./Credit Card: Visa/Access/Mastercard:
N :

Expiry Date: \square
Signature:

System Features
Complete End-to-End CAE/CAD system Simultaneous Schematic and Layout generatio Automatic Front and back annotation. Intuitive hierarchical menu structure. Mouse or keyboard commend activation Macro operations.
Real-time display of: ratsnest, active nodes, single line or true trace width.
On-line help
Auto reconnect
Full Integration of Schematic and Layout Automatic file backup.
User definable text sizes
DXF in and output
Screen hardcopy.
Library viewer with editing possibility. Switching on/off possibility for tool and scroll bars.
Visible schematic and PCB symbols by editing. Monochrome mode for better print resolution. Bitmap support for loading logos,
documentation, etc. Can be used in hierarchic as well as in simple schematic or PCB design. Maximum number of nets: 16,000 . Maximum number of nodes: 32,000 .
Maximum number of bend points: 64,000. Maximum number of connections: 64,000 . Maximum number of symbols: 32,000 . Maximum number of components: 32,000 Maximum number of multi-segment traces: 32,000 , with a total of 64,000 trace segments ANSIAEC libraries
Full Gerber, NCD, pick and place output

Schematic Capture

Up to 100 schematic sheets. Up to $64^{\prime \prime} \times 64^{\prime \prime}$ sheet size. Industry standard sheet sizes. Rotate, scale and mirror symbols. Real-time dragging of components and wires. Automatic package and pin assignment Orthogonal and free mode manual routing. Automatic bus annotation.
Block save, load, move and delete. Direct access to mixed mode simulation. Autorouting of connections. Merging and splitting of nets possibility. Definable line width, also for bus-lines. Swapping of component positions. Automatic component renumbering by swapping.
PCB Layout
32 layers (28 route layers, 2 silk-screen layers (front and back), 2 soldermask layers (front an back)).
User definable trace sizes.
User definable pads.
Curved traces.
1 mil grid resolution - Fine grid 10 micron. SMT, fine line, analog support.
Component repeat, rotate and mirror. Components "Move by name" Component, gate and pin swap. Automatic component renaming. Trace repeat.
On-line, multi-layer routing with automatic via insertion.
Pin-to-pin, free or 45 degree routing.
Change segment side and width, trace side ar width.
Fast interactive generation of ground planes with user definable cross-hatch or solid fill. Automatic ground plane with thermal relief insertion.
Automatic DRC with user specified parameter: Electrical connectivity checking. Linear rotation of symbols.
Gerber input read and use possibility.
Built-in interface for Spectra 6.0, Max route 6. and Arizona Autorouter.
Bitmap functions (logos, drawings, ...) Sophisticated database viewer.

Mixed Mode Simulation
AC analysis (Frequency domain).
DC analysis (Linear/non-linear).
TD analysis (Time domain).
Diagram generator
Dynamic parameter definition of active and passive components.
Output graphs displayed on screen, hardcopy placed on schematic.
Oscilloscope function.
DLL based analog/digital simulation primitives, modelling language and library creation tools. Built-in model generator for discrete devices.

Please Note: Some of the above are ONLY provided on the De Luxe $3 \& 4$ Versions. EdSpi and Thermal Analysis \& EDCOM'X are availablı as bolt-on extras.

Figure 1: the block diagram of the AT90S1200
cost chip comes close to this performance
Another way of speeding the beast up is to have a reduced instruction set, aka RISC. Essentially, microprocessors are fairly stupid animals: every time they get an instruction, they have to go and look up how to deal with that instruction. So, in theory, if you reduce the number of instructions then the processor will spend less time hunting through its internal library, and so it moves faster. The PIC is an excellent example of this. Its makers Microchip couldn't have reduced the instruction set more if they'd tried. And they probably did. That's a clever bit of work! If you study the instruction set of the AVR (see figure 2), you will immediately be struck by the fact that, with over 180 instructions it is hardly a reduced instruction set. However, if you root around in the binary structures of the instruction coding, you will find see that many of the instructions are actually duplicates under a different name. So, in reality, you are getting a RISC core with a CISC (complex) instruction set.

Reprogramming

OK, so now we've dealt with the speed issue. To many hobbyists this isn't an issue at all - getting the thing to work in
the first place is what matters. If you are one of those fortunate (or weird) people that can write code and get it to work first time, reprogramming the device is not something you need concern yourself about. To the rest of us it is of vital importance. If you belong to the 'masochist' school of designers, you will probably be happy with the EPROM version of a device that you can program, test and then spend 20 minutes waiting for it to erase. Microchip, with the 16C84, added some EEPROM on so that you could electrically erase the program memory and reprogram it up to 100 times.

Atmel have taken a different route and have stuffed Flash ram (see figure 3) in as their main program memory, which gives you at least 1,000 reprogramming lives. So even if you have the confidence of a Conservative candidate in the middle of the last Election Count, you are unlikely to use up that many programming lives. It also has ISP (In-System Programming) capability, which is a fancy way of saying that you can program the device even if its soldered into a circuit. Arguably, the PIC 16 C 84 has had this facility all along, and there have been some pretty neat circuits bandied around that let you do it. The problem is Vpp, which is the voltage you must apply to the

POWERAMPLIFIER MODULES-TURNTABLES-DIMMERS- BERVICE \& LARGELAA) A.AE, BOP BTAMPED FORCATALOOUE LOUDSPEAKERS-19 INCH STERED RACK AMPLIFIERS BERVICE*LARGELA4) B.A.E, B0p BTAMPEDFORCATALOGUE *

OWIP MOS-FET POWER AMPLIFIERS THOUSANDS PURCHASED
HIGH POWER. TWO CHANNEL 19 INCH RACK BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
 Level controls $\#$ Hlluminated on/off switch $\$$ XLR connectors $\$$ Standard 775 mV inputs \star Open and short circuit proof \& Latest Mos-Feis for sitress iree power delivery Into virtually any load \& High slew rate \# Very low USED THE WORLD OUER IM CLUBS, PUBS CIMEMAS, DISCOS ETC.

SIZES:- MXF200 W $19^{*} \times \mathrm{HB}^{1 / 2^{\prime \prime}}$ (2U)×D11"
XFF60 W ${ }^{\circ} \times \mathrm{HE}^{\prime \prime}$
$M \times F 500 W_{19} 9^{\prime \times H 5} 5^{\prime \prime}$
PRICES:- MXF200 \&175.00 MXF400 2233.85
MXF600 £329.00 NXF900 \&449.15
SPECIALIST CARRIER DEL. E12.50 EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER

advanced 3-Way Stereo Active Cross-Over, housed In a 19" $\times 1 \mathrm{U}$ case. Each channel has three level controls: dass, mid of top. The removable front fascia allows access to the programmable DIL switches to adjusi the
 V input/outpul Fuly compatibie wint OMP rack ampilfier and modules. Price $\mathbf{1 1 1 7 . 4 4 + 8 5 . 0 0 \text { P\&P }}$
STEREO DISCO MIXER SDJ34OOSE *ECHO \& SOUND EFFECTS *

TEREO DISCO MIXER with 2×7 band \& R graphic equalisers with bar graph
LED Vu meters. MANY OUTSTANDINO LATURES;- inctuding Echo with repeat 4 apeed control, DJ wie with takk-over whth, 6 channels with indivicual sackers隹 cross hade, Cue Headiphone Monitor. B Sound Effecta. Useful combination of the mice, 5 Line for $C D$, Tape, Videos (mag)

Price ع144.99 + £5.00 P\&P

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution! The low dynamic mass (no voice coll) of a Plezo tweeter produces an improved
 OXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE "A' (KSN1036A) 3" round with protective wire mesh. Ideal for bookshelf and medium sized Hi-Fi apeakers. Price 84.90 + 50p P\&P. YPE 'B' (KSN1005A) 31/2 super horn for general purpose speakers, Sco and P.A. systems etc. Price 85.99 + 50p P\&P.
TYPE 'C' (KSN1016A) 2"x5" wide dispersion horn for quality HI-Fl sys ems and quality discos etc. Price $\mathbf{5 6 . 9 9}+\mathbf{5 0 p}$ P\&P.
TYPE 'D' (KSN1025A) 2" $\times 6$ " wide dispersion horn. Upper trequency response retained extending down to mid-range (2 KHz). Suitable for high quality M1-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P.
TYPE 'E' (KSN1038A) $3^{3{ }^{3} 4^{n}}$ horn tweeter with attractive silver finish trim Suitable for Hi-FI monitor systems etc. Price $\$ 5.99+50 p$ P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50$ p P\&P.

कुन FLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the lates 2^{2} cast alumiogy and enclosure designs. Bo limed milize studio quality constant directivity horns, extruded aluminium corner protection and stee tall corners, comolimented with heavy duty black coverino The enclosure are fitted as standard with top hats for optional loudspeaker stands.

POWER RATINGS QUOTED IN WATTS RMS FOR EACH CABINET FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
bliFC 12-100WATTS (100 dB) PRICE $\{159.00$ PER PAIR thIFC 12-200WATTS (100dB) PRICE $£ 175.00$ PER PAIR SpECIALIST CARRIER DEL. 112.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR ع49.00 Delivery $£ 6.00$ per pair
[IN-CAR STEREO BOOSTER AMPS

PRICES: 150 W C49.09 250W 209.99

THREE SUPERB HIOH POWER 150 WATMEO BOOSTER AMPLIFIERS Bridged Mono 250 WATTS $(125+125)$ Stereo, 250 W Bridged Mono 400 WATTS $(200+200)$ Stereo, 400 W ALidged Mono into 4 OHMS Features:

* Steres, bridgabte mono tholce of high \& low level Inputs t \& A levei controls \# Remote

OMP MOS-FET POWER AMPLIFIER MODULES SUPPLIED READY BUILT AND TESTED.

 modelsa are avallable to suit the neads ot the profoessional and hobby markefl.al

THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S, into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$.
PRICE $840.85+\mathbf{6 3 . 5 0}$ P\&P
OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. into 4 ohms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$.
PRICE ©64.35 + \&4.00 PRP
OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times .100 \mathrm{~mm}$
PRICE E81.75 + E5.00 PRP

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE $£ 132.85+\mathbf{8 5 . 0 0}$ P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{LS}$, T.H.D. typical 0.002%, Input Sensltivity 500 mV , S.N.R. -110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE $8259.00+\varepsilon 12.00$ P\&P
NOTE: MOS-FET MODULES ARE AVAILABLEIN TWO VERSIONS: STANDARD - IMPUT SEME SOOmV, BAND WIDTH TOOKHZ PEC (PROFESSIONAL EGUIPMENT COMPATIBLE) - IMPU.
77 SmV , BAND WIDTH SOKHz, ORDER STANDARD OR PEC.

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudapeakers are also avallable.

EMINENCE:-INSTRUMENTS, P.A. DISCO. ETC

ALL EEINENCE UNITS 8 OHMS IMPEDANCE

$8^{\prime \prime} 100$ WATT R.M.S. ME8-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FREO. 72 Hz , FREQ. RESP. TO 4 KHz , SENS 97dB. 10100 WATT R.M.S. ME10-100 GUITAR, VOCAL,
RES. FREQ. 71 Hz , FREO. RESP. TO 7 KHz, SENS97dB. 10" 200 WAATR R.M.S. ME10-200 GUITAR, KEYB'D,
20. 10 200 WATT R.M.S. ME10-200 GUITAR, KEYB'D, D
RES. FREO. 65 Hz , FREQ. RESP. TO 3.5 KHz , SENS 99 I RES. FREO. 65Hz, FREO. RESP. TO 3.5 KHz , SENS 99dB.
12 . 100 WATT R.M.S. ME12-100LE GEN. PURPOSE, RES.FREO. 49 Hz , FREO. RESP. TO 6 KHz , SENS 100 d . $12^{\prime \prime} 100$ WATT RMS. ME12-100LT MONITOR, RES. FREO 42Hz, FREQ. RESP. TO 10 KHz , SENS $98 d B$ 12" 200 WATT R.M.S. MEE 12-200 GEN. PURPOSE,
RES. FREO. 58 Hz . FREQ. RESP. TO 6 KHz , SENS 98 dB . RES. FREO. 58 Hz , FREO. RESP. TO 6 KHz , SENS 98 dB 12" 300 WATT R.M.S. ME12-300GP HIGH POWER RES. FREQ. 47Hz, FREQ. RESP. TO 5KHz, SENS 103dB RES. FREO. 46 Hz , FREE. RESP. TO $5 K \mathrm{HE}$, SENS S 99 dB .
 TES FREQ. 39 Hz , FREO. RESP. TO 3 KHz , SENS 103 dB .

EGARBENDERS:-HI-FI. STUDIO. IN-CAR. ETC

ALL EARBENDER UNITS 8 OHMS (Encept EB8-50 \& EB10-50 which are dua $\mathbf{B}^{\prime \prime} 50$ watt EBB-5O DUAL IMPEDENCE, TAPPED 4/8 OHM BASS, HI-FI, IN-CA RES. FREO. 40 Hz , FREQ. RESP. TO 7 KHz SENS 97 dB .
10 " 50 WATT EB10-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI RES. FREQ. 40 Hz , FREO. RESP. TO $5 K H z$, SENS. 99 dB . 10" 100WATT EB10-100 BASS, KI-FI, STUDIO.
RES. FREQ. 35Hz, FREQ. RESP. TO 3 KHz , SENS 96 dB
12 100WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO.
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND
514_{4} GOWATT EBS-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC
RES, FREO. 63 Hz , FREO. RESP. TO 20 KHz , SENS 92 dB .
$6^{1 / 2}$ " SOWATT EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ET RES. FREO. 38 Hz , FREQ. RESP. TO 20KHz, SENS $94 d \mathrm{~A}$. 8" BOWATT EB8-6OTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC RES. FREO, 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . 10" 60 WATT EB10-60TC (TWIN CONE) HI-FI, MULTI A
RES. FREQ. 35 Hz, FREQ. RESP. TO 12KHz, SENS 98 dB .

TRANSMTTTER HOBEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH OUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TRAMSMITEA 8O-10BMHZ, VARICAP CONTROLLED PROFESSIONAL PERFORMANCE, RANGE UP TO 3 MILES, SRE $38 \times 12 \mathrm{~mm}$, SUPPLY 12 V @ 0.5 AMP PRICE $£ 14.85+81.00$ P\&P
FIM micRo Transmitter 100-108MHz, VARICAP TUNED, COMPLETE WITH

 TR
$01702-420243$

PRICE ¢32.71 + £2.00 PGP EXCELLENT MID PRICE $\{33.74$ + $£ 2.50$ PAP PRLLENT HIGH POWER MID.
PRICE $£ 43.47$ + ¢2.50 PGP SCO, STAGE MONTOR. PRICE £35.64 + £3.50 Pap NSE, P.A., VOCAL, STAGE PRICE £36.67 + ©3.50 PGP CAL, EXCELLENT MID. PRICE $£ 46.71+£ 3.50$ PGP , KEYBOARD, DISCO ETC. PRICE ©70.19 + £3.50 P\& P

PRICE $873.34+$ \&4.00 PAP
dance tapped @ 448 chm) PRICE
, $\operatorname{IN}-\mathrm{CAR}$. $\mathbf{2} .00 \mathrm{P}$ P PRICE ع13.65 + C2.50 PRP PRICE $\mathbf{8 0 . 3 9}+\mathbf{c 3 . 5 0}$ PhP PRICE ¢42.12 + C3.50 PAP PRICE $89.99+51.50$ PAP PRICE $510.99+1.50$ PAP PRICE $£ 12.99+\mathbf{C 1 . 5 0 ~ P G P}$ PRICE \&16.49 + C2.00 PAP

PNOTO: 3W FM TRANSMITTER

Mnemonics	Operands	Description	Flags
ADD	Rd, Rr	Add without Carry	Z,C,N,V,H
ADC	Rd, Rr	Add with Carry	Z,C,N,V,H
SUB	Rd , Rr	Subtract without Carry	$\mathrm{Z}, \mathrm{C}, \mathrm{N}, \mathrm{V}, \mathrm{H}$
SUBI	Rd, K	Subtract Immediate	Z,C,N,V,H
SBC	Rd , Rr	Subtract with Carry	Z,C,N,V,H
SBCI	Rd, K	Subtract Immediate with Carry	Z,C,N,V,H
AND	Rd, Rr	Logical AND	Z,N,V
ANDI	Rd, K	Logical AND with Immediate	Z,N,V
OR	Rd, Rr	Logical OR	Z,N,V
ORI	Rd, K	Logical OR with Immediate	Z,N,V
EOR	Rd, Rr	Exclusive OR	Z,N,V
COM	Rd	One's Complement	Z,C,N,V
NEG	Rd	Two's Complement	Z,C,N,V,H
SER	Rd, K	Set Bit(s)in Register	Z,N,V
CER	Rd, K	Clear Bit(s)in Register	Z,N,V
INC	Rd	increment	Z,N,V
DEC	Rd	Decrement	Z,N,V
TST	Rd	Test for Zero or Minus	$\mathrm{Z}, \mathrm{N}, \mathrm{V}$
CLR	Rd	Clear Register	Z,N,V
SER	Rd	Set Register	none
CP	Rd , Rr	Compare	Z,C,N,V,H
CPC	Rd, Rr	Compare with Carry	Z,C,N, V, H
CPI	Rd, K	Compare with Immediate	Z,C,N,V,H
R.JMP	,	Relative Jump	None
RCALL	k	Relative Call Subroutine	None
RET		Subroutine Return	None
RETI		Interrupt Retum	
CPSE	Rd, Rr	Compare,Skip if Equal	None
SBRC	Rd, b	Skip if Bit In Regster Cleared	None
SERS	Rd, b	Skip if Bit in Rrgister Set	None
SBIC	P, b	Skip if Bit in 1/O Register Cleared	None
SBIS	P, b	Skip if Bit in //O Register Set	None
BRBS	s,k	Branch if Status Flag Set	None
BRBC	s,k	Branch if Status Flag Cleared	None
BREQ	k	Branch if Equal	None
BRNE	k	Branch if Not Equal	None
BRCS	k	Branch if Carry Set	None
BRCC	k	Branch if Carry Cleared	None
BRSH	k	Branch if Same or Higher	None
BRLO	k	Branch if Lower	None
BRMI	k	Branch if Minus	None
BRPL	k	Branch if Plus	None
BRGE	k	Branch if Greater or Equal,Signed	None
BRLT	k	Branch if Less Than, Signed	None
BRHS	k	Branch if Half Carry Flag Set	None
BRHC	k	Branch if Half Carry Flag Cleared	None
BRTS	k	Branch if T Flag Set	None
BRTC	k	Branch if T Flag Cleared	None
BRVS	k	Branch if Overilow Flag Set	None
BRVC	k	Branch if Overilow Flag Cleared	None
BRIE	k	Branch if Interrupt Enabled	None
BRID	k	Branch if Interrupt Disabled	None
MOV	Rd, Rr	Copy Register	None
LD1	Rd, K	Load Immediate	None
LD	Rd, z	Load Indirect	None
ST	Z, Rd	Store Indirect	None
IN	Rd, P	In Port	None
OUT	P,Rd	Out Port	None
LSL	Rd	Logical Shift Left	Z,C,N,V,H
LSR	Rd	Logical Shift Right	Z,C,N, V
ROL	Rd	Rotate Left Through Carry	Z,C,N,V,H
ROR	Rd	Rotate Right Through Carry	Z,C, N, V
ASR	Rd	Arithmetic Shift Right	Z,C,N,V
SWAP	Rd	Swap Nibbles	None
BSET	s	Flag Set	SREG(s)
BCLR	s	Flag Clear	SREG(s)
SBI	P, b	Set Bit in //O Register	None
CBI	P, b	Clear Bit in V/O Register	None
BST	Rr,b	Bit Store from Register to T	T
BLD	Rd, b	Bit Load from T to Register	None
SEC		Set Carry	C
CLC		Clear Carry	C
SEN		Set Negative Flag	N
CLN		Clear Negative Flag	N
SEE		Set Zero Flag	2
CLZ		Clear Zero Flag	
SEI		Global Interrupt Enable	1
CLI		Global Interrupt Disable	1
SES		Set Signed Test Flag	S
CLS		Clear Signed Test Flag	S
SEV		Set Two's Complement Overfow Flag	V
CLV		Clear Two's Complement Overflow Flag	V
SET		Set T in SREG	T
CLT		Clear T in SREG	T
SEH		Set Half Carry Flag in SREG	H
CLH		Clear Half Carry Flag in SREG	H
NOP		No Operation	None
SLEEP		Sleep	None
WDR		Watchdog Reset	None

Figure 2: the AVR instruction set
device to allow it to go into programming mode. On the PIC, this is 12 volts, applied on the reset pin. On the AVR it is 0 volts; in other words, you only need to apply a low to the reset line, which then configures itself with a synchronous serial port into which you stuff your program code. So you really can solder it in and then program it (see figure 4 for details of the programming interface pin-outs) without the need for an extraneous Vpp supply rail.

This particular device has 1K bytes of program code space, which is a little disingenuous, as it uses two bytes per instruction, and 64 bytes of EEPROM data space. The EEPROM operation is self-timed, which is nice, and is good for over 100,000 erase/write cycles and the data will last for 100 years (That kind of specification always makes me want to ask: how do they know?). This particular version has no static RAM as such, as it uses the registers, but later versions of the family are surprisingly rich in program storage, RAM and EEPROM.

The main weakness on the AVR is the way you get to the I/O ports. The PIC treats the 1/O ports like registers, which makes them very easy to use. The AVR uses a different approach, which is to treat them as ports (it does sound logical when you put it like that, doesn't it?) using IN and OUT instructions, just like in a PC. Inevitably, this reduces the flexibility, as you should really have a shadow register set up to move bytewide data in and out of the port. Bit instructions like Test, Set and Clear are directly available on the port pins, however. The consolation is that it does have a slightly more flexible port-reading mechanism. You have two methods of reading the port: one is to go ahead and read the port pins, and the other is to read the output registers associated with that port pin. What's the difference? Look at it like this: imagine you are using the port to directly drive the base of a bipolar transistor. Basic transistor theory tells you that the base is not going to go higher than 0.7 volts (or thereabouts) with respect to the emitter. So, if you switch the transistor on by applying a 1 to the port, it actually goes up to 0.7 V and no further. If you then read the port, the processor reads this as a 0 . Now if you were doing a read/modify/write sequence of instructions, you would read all 8 bits of the port, twiddle them a bit, and then write them back. Unfortunately, because you read the port as a 0 it will write it back as a 0 and so the transistor will turn off. Therein lies madness! Of course, if you read the register, it will happily send back the 1 it is set to. The ports are, like the PIC but unlike the 51 series, true tri-state, and they can source up to 4 mA and sink a good 28 mA , which is enough for even the thirstiest LED. It could probably even drive a laser diode if you're not hoping to illuminate parts of the moon.

It really is handy having some sort of analogue capability on your microcontroller. A full-blown Analogue to Digital converter, with at least 10 bits of resolution, would be nice, but any analogue interface is useful. The AVR has a comparator. This may sounds boring, but you can create all sorts of neat tricks with one of these, particularly if it is tied to the interrupt structure and has a propagation delay of only 500 ns. Now, what if I promised ETI readers some projects using this facility to perform all sorts of clever little jobs?

The watchdog

Microcontrollers need to be able to perform control tasks on their own, which means that if they crash then they must be able to recover without recourse to human intervention. If your PC crashes when running Windows 95 then you can press reset and off you go, no harm done, except to your blood pressure and anything you forgot to save up to that point. If your microcontroller is controlling the nuclear fusion project you have

Figure 3: the AT90S1200 enhanced RISC architecture
in your basement, then it is annoying if it crashes and the reactor goes critical. The worst thing with a microcontroiler crash is that you usually don't know that it has happened. When Windows 95 crashes then it glares balefully at you and refuses to do anything. You may now know why, but at least you know. With a microcontroller, you may not have any user feedback at all, so it has to be self-sufficient. Atmel recognised this and included a watchdog circuit. The operation of a watchdog is suprisingly simple. Imagine you are sitting in your mother in law's house with her pet Pit Bull terrier. You need to tell it 'good boy' every couple of minutes, or it will sink its fangs into anything it can reach. You keep up the 'good boys' and everything is fine, but forget for a moment, or go to sleep and ... The watchdog on the microcontroller is very similar. It is a timer which must be reset by the processor at regular intervals. If the processor doesn't reset it (because it has crashed), then the timer times out and resets the processor.

A processor crash takes one of two forms. The first is that it leaps into a software loop from which there is no escape, which is usually because of poor software design, and the other is where it slips a cog and gets its operators and operands mixed up. In order for a processor to process an instruction, it needs details of both the instruction (the operator) and the register(s) on which it is to perform the operation and store the result (the operand). If it gets these two mixed up, usually because a glitch in the power has created a knot in its lingerie, then it tries to decode operands as
operators. The only way out of this is to reset the processor. Under the rules for EMC compliance, the system must be immune to electrical interference; put more bluntly, this means that if you zap the system with more volts than it wants for operation, then it should be capable of recovering itself and carrying on sweetly as before. Put very simply indeed, if you want to design microcontroller-based equipment with the (required) CE mark, then it must have a watchdog.

Pulse width modulation

This may be a good time to look at pulse width modulation and what it can do for you. If you've ever looked at hi-fi, you will be aware of the various classes of amplifier. First there is class A , in which the output stage is biased to the mid point in the device's swing. This means that the output device will conduct the whole of the waveform, so that distortion is lower. The problem here is inefficiency, as much of the power is wasted as it consumes power even in its quiesœent state. Next is class B, with two trànsistors (or valves) arranged such that one conducts on positive half cycles and the other on negative. During its quiescent stage both transistors are off, so that it is very much more efficient. The fact that you need to put about 0.7 V on the base of the transistor before it conducts means that there will be a point where both transistors are off during the crossover stage. This introduces crossover distortion. Class C is for RF applications, so l'll skip that.

Class D (or class E if vou happen to be Japanese) uses a

14 metre dia blades, carbon matrix blades, 3 year warranty, 12 voc output, 24 v version available, control electronics inciuded, brushiess neodymium cubic curve alternator, only twomovng parts, maintenance tree, simple roof top installiation, start up speed 7 mph , max output (30 mph) 380w. £499 ref AlR1

PLANS

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a nome X-ray machine! Effective device X-ray sealedassemblies. can be used for experimental purposes Not a toy or for minors! $£ 6 /$ set. Ref $F / X P 1$
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent mears of cause. Uses no electrical or mechanical connections, no special gimmicks yet produces positive motion and effect. Excelient for science projects, magic shows, party demonstrations or senous research \& development of this strange and amazing phychic phenomenon
£4/set Ref FTKKE1
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows severat ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembted can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use. $£ 15 /$ set. Ref $\mathrm{F} / E \mathrm{H} 2$.
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect. You can actually build a smail mock spaceship out of simple materials and without any visible means-cause it to levitate. £10/set Ref F/GRA1. WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOEE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', Si Eimo'sfire, Corona, excellent science project or conversation piece. S1 Elmo'sfire, Corona, ex
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. Hign coherency and spectral quality similar to Argon laser but easier and less costhy to build yet far more efficient. This particular design was developed at the Atumic Energy Commision of NEGEV in Israel. £ $10 /$ set Ref F/CVL 1
VOICESCRAMBLER PLANS Minature solio statesystem turns speech sound into indecipherable noise that cannot be understood without a second matchingunit Use on teiephone to prevent third party listering and bugging. E6/set Ref FNS9.
PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disfupt TV picture and so BODYHEAT TELESCOPE PLANS Highly directional tona range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for securty, law enforcement, research and development, etc. Excellent security device or very interesting science project $£ 8 /$ set Ref F/BHTT1.
BURNING, CUTTING CO2 LASER PLANS Projects an invisible bearn of heat capable of burning and metting materlais over a considerable distance. This laser is one of the most efficient, converting 10% input power into uselul output. Not only is this device a worknorse in welding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Particle beams may very well utilize a laser of this type to blast a channei in the atmosphere for a high energy stream of neutrons or other particles. The device is easily applicabie to burning and etching wood, cutting, plastics, textiles etc £12/set Ref F \mathcal{C} C7
DYNANO FLASHLIGHT interesting concept, no batteries needed just squeeze the trigger for instant light apparently even works under wate in an emergency athough we haven't tried it yetl £6. 99 ref SC152 ULTRASONK BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce cold' steam, atomize liquide6. Many cleaning uses for PCC boards, jewhery, woins, small parts etc. $£ 6 /$ set Ref F NLB 1 .
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot produces time variable pulses
tolerate $£ 6 /$ set Ref F FOOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. $£ 12$ /set Ref F/ LLIST;
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transcucer and battery capacity with external conitrots. £6/set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The uttimate in home/office security and safety! simple to use! Catl your home or office phone, push a secret tone on your (elephone to access either: A) On premises sound and voices or B) E7 Ref FTTELEGRAB
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidder source of radio you? Easy to construct device locales any hources of bothersome interference. Deterts low, nigh and UHF frequencies $£ 5 /$ set Ref FI interfer
BD1.
ELECTROMAGNETIC GUN PLANS projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F/EML2.

ELECTRIC MAN PLANS, SHOCK PEOPLE WTTH THE TOUCH OF YOUR HANDI E5/set Ref FIEMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in 'hard to get or hostile premises. Uses sateilite technorgy to gather distant sounds and focus them to our ultra sensitive electronics. Plans ako show an optional wireless link system. £8/set ref FPPM
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLLANS Operates on 9 12vac, many possible experiments. £10Ref

cOLOUR CGTV VIDEO CAMERAS,

BRAND NEW AND, CASED, FROM E99 Works with most modern video's, TV's, Composite monitors, video grabber cards etc
Pal, 1v P-P, composite, $75 \mathrm{ohm}, 1 / 3^{\prime \prime} \mathrm{CCD}, 4 \mathrm{~mm}$ F2.8, $500 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 149$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$

SUPERWIDEBAND RADAR DETEGTOR 360 deg COVERAGE

Detects both racar and laser, X, K, superwide $K A$ bands. LED signal strength display Audio and visual eterts, Alert priority, Rear and from facingoptical waveguides, Triplecheck verification, city mode, tutorial mode, dark mode, aux jack, volume control. These may be itlegal to use in certain countries.

1. $1^{1 \times 2} 27^{7 \times} \times 4.6^{\circ}$

Superband $\mathbf{1 4 9}$ ref RD2

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX.
BN3 $5 Q T$. (RSTABLISHED 50 YEARS).
MALL ORDER TERMS: CASH, PO OR CHEQUE
WITH ORDER PLUS E3.50 P\&P PLUS VAT. 24 HOUR SERVICE $£ 5.00$ PLUS VAT.

OVIERSEAS ORDERS AT COST PLus 53.50
(ACCESS, VISA, SWITCH, AMERICAN EXPRESS)
phone orders: 01273203500
FAX 01273323077
E-mail bull@pavilion.co.uk

BEIOS PNB-2 RUSSIAN BORDER GUARA OBSERTATMON BNOGUMAS sl793

Interided for the medium to kong range observation of air and ground targets and the determina tion of their anguiar co-ordinates. These glamt binoculars ase a tribute Russian optical ingenuity, with a performance that simply has to be seen to be believed. Alarge exit pupil diameter of 7.3 mm provides exceotional light passing power, which when combined with its high
magnification of $\times 15$ allows the user to view over vast distances with delightfully bright. crisp, high resolution images. Robust and able in construction incorporating an uncomplicated yet thoughtully designed mechanical layout ensuring ease of operation and quick precise targeting. These binuculars have a wide variety of applications and are suitable for use by coastguards, law enforcement organizations, cus toms, farmers etc.
Specifications
$x 15$ magnification, 110 mm objective, 6 deg angle of view, Field at $100 \mathrm{~m}=105 \mathrm{~m}$, focusing 10 m -inf, fully coated precision ground optics, orange and neutral filters, mubber lens caps, rapidtergetting hand grips, padded headrest, screw in silica get cartricges, wooden tripod, operating femperatures -40 c to +50 c , weight 25 kg . (15 kg without tripod), supplied in wooden carrying case.
Border guard binoculars $£ 1799$ ref PNB2

TRS4 INFRARED NIGHT SIGBT

One of our toomost selling night sights is this Russian TZSA This sight enable you to see in very low light levels, of with the aid of the buith in inffa red illuminator- in total darkness. In $1 / 4$ moonlight you would spot a man at 150 m , in total darkness at 75 m . Magnification 2.3 x , $240 \times 66 \times 190 \mathrm{~mm}, 0.9 \mathrm{~kg}$. focusing range 1.5 m -infinity, M42 camera mount included, runs on $2 \times A A$ batteries, foomm focat length, 8 deg illuminator divergence. 50 hrs continuous (no illumnator) 10 hrs with, carryingcase and strap.
TZS4 Nightsight e 199 ref BAR61

Figure 5: the AT90S1200 pin outs
different approach, which curiously enough was pioneered by Sir Clive Sinclair many years ago in his X10 amplifiers. This is a completely digital amplifier. We know that inefficiencies occur when you need to bias a bipolar transistor to On. It sits eating up current even at low revs. However, if we use it at either end of its conduction curve, in other words when it is turned hard on (saturated) or hard off, then it is very efficient. This can be proved using the power theorem. If the current through the device is 0 (we'll assume a perfect transistor with no leakage current), then the power dissipated across the device is $0\left(I^{2} \times R\right)$ similarly if the voltage across the device is 0 then again the power dissipated is 0 $\left(V^{2} / R\right)$. So if we could devise a system whereby the transistors can always be used only as switching devices, then we could achieve maximum efficiencies. To do this we use Pulse Width Modulation. In a nutshell, this means varying the mark (high) to space (low) ratio of a pulsed waveform, so that the mean power delivered to the load is based on the ratio between the 1s and the Os. The more 1s, the higher the output. To achieve this we need to provide some form of storage device to integrate the mean power. In a fi-fit this is easy; the speaker is just a type of inductor and naturally acts as an integrator. In a digital system, we can use a filter with a long time constant, in other words a capacitor charged via a resistor.

So what use is it in a digital system? The answer is that we can use it for digital to analogue conversion. If we need a voltage output, or we need to control the speed of a motor, then we can use the PWM output.

The relatives

At the time of writing there are three versions of the AVR in the family. The first off the line was the 1200 , which is the one I have been discussing up to now. That was followed by the 8515 , which has the same pin-out as the ubiquitous 51 series (see figure 5). Apart from all the features listed above, the 8515 has an asynchronous serial port (sometimes, wrongly, referred to as an RS232 port), a synchronous serial port, pulse width modulation, and the ability to use external data memory. This device was followed by another 20-pin device, the 2313, which has further program memory capability, PWM and an asynchronous serial port. Finally, there is an 8 -pin device called the 2313 , which is going to provide a bit of competition to the Microchip 1200 series. Further units, scheduled for early next year, include a part with 1 megabit of program memory and another with precision 10 bit A/D converters built in.

The outstanding feature of this device family is that it was designed around a high level C compiler. The C compiler manufacturer actually worked with the chip designers to create the chip, so that you can use C to write the code, instead of assembler, and the resulting code is fully optimised. So, unlike many processors, the compiled object code is very nearly as efficient as the code created by the native assembler. You also have access to the range of professional standard debugging tools that are, optionally, . supplied by the makers of the C compiler, IAR Systems. Atmel have commissioned a special version of the compiler for less than half the normal price. Contact numbers follow.

AVR Starter kit available from Maplin and Rapid Electronics AVR Training System (AVR Explorer) and a "Get Going with AVR" book are available from Maplin
AVR Devices available from Maplin, Rapid Electronics and Farnell
C Compilers available from Kanda Systems (demos available on request).
Programming software is available from Kanda's website www.kanda-systems.com
Free development tools are available from Atmel's website www.Atmel.com

Maplin: PO Box 3, Rayleigh, Essex SS6-8L. Tel 01702 554161.

Farnell Electronic Components: Canal Road, Leeds, LS12 2TU. Tel 01132636311.
Rapid Electronics: 40 Heckworth Close, Severalls Industrial Park, Colchester, Essex CO4 4TB. Tel 01206751166. Kanda Systems: PO Box 2, Ystrad Meurig, Ceregigion, UK SY25 6DX. Tel 01974282670.

Cover picture: Atmel's AT90S1200 is based on the AVR architecture, the world's first 8-bit RISC. The AT90S1200 combines an AVR core, 1 KB of Flash memory and 64 bytes of eeprom on a monolithic 20-pin chip.

Schematic Capture

 NEW Version IV
JIE 1 V/n cenerrujus」

Available in 5 levels - prices from $£ 295$ to $£ 1625$ + VAT. Call now for further information \& upgrade prices.
-Produces attractive schematics like you see in the magazines. -Netlist, Parts List \& ERC reports. Hierarchical Design. -Full support for buses including bus pins. Extensive component/model libraries. Advanced Property Management. - Seamless integration with simulation and PCB design.

- Non-Linear \& Linear Analogue Simulation. Event driven Digital Simulation with modelling language. ©Partitioned simulation of large designs with multiple analogue \& digital sections. Graphs displayed directly on the schematic.

PCB Design

- Automatic Component Placement. © Rip-Up \& Retry Autorouter with tidy pass. OPinswap/Gateswap Optimizer \& Backannotation. 32 bit high resolution database. ©Full DRC and Connectivity Checking. Shape based gridless power planes. -Gerber and DXF Import capablity.

MPSOUEUS
ds paramaming good waigh fiss [dीprypramdrrexry

EIectironics

Write, phone or fax for your free demo disk, or ask about our full ovaluation kit.
Tel: 01756753440 . Fax: 01756752857 . EMAlL: Info@labcenter.co.uk 53-55 Maln St, Grassington. BD23 5AA. WWW: https/www.labcentor.co.uk
Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

AA Cell Eliminator

Time to round up your AA-cell dependent appliances and save costs by running them from the mains. By Terry Balbirnie.

Uook around the house and you are bound to find several devices powered from two, three or four AA cells. All those radios, games, personal stereos, photographic equipment and computer add-ons that you haven't already thought of an energy-saving strategy for. They build up all the time, especially after Christmas. Many of these things need less than 300 mA , which puts them well within the scope of a mains-powered eliminator like this one. Mains electricity is about three thousand times cheaper than the equivalent power from alkaline "AA" cells. Where there is a mains supply, it makes sense to use it, especially if you have anything that you use forlong stretches of time.

Certain pieces of equipment, such as photoflash guns, require a large current for a relatively short time. My photoflash unit, for example, needs about 3A at the beginning of its operating cycle. This kind of item is not suitable to use with this battery eliminator.

Good substitute

Although this circuit was originally designed as a substitute for AA cells, there is no reason why it could not replace other batteries. In any event, you will need to look at the way in which the output will be connected to the terminals inside the battery compartment. You must also check that the equipment needs a maximum of 300 milliamps. For AA cells, the connections will possibly be made using a pair of dummy cells. More will be said about this later. Make sure that there is enough space inside the battery compartment for the wires. Also, check that it will be possible to file a small section out of the cover to allow the wires to pass through. A number of appliances have a separate cell holder inside the battery compartment to which connections are made via a PP3-type battery snap. If this is the case, the cell holder may be discarded. The eliminator output can then be linked to
the existing connector using a similar battery snap.
This eliminator provides the correct output voltage via the value of a single "program resistor" on the circuit panel. However, to make sure that the voltage is correct, you will need to use a voltmeter at the end of construction. The output voltage must not be taken on trust. The current limit (that is, the maximum current which the unit can deliver) is set by another resistor. This provides protection in the event of a short circuit or overload, and takes the place of a fuse in the output. In fact, such a fuse would be undesirable because of the rather large voltage drop across it.

This eliminator must not be used by children. Because it receives power from the mains, it must be regarded as potentially dangerous. This is an "adults only" circuit. For the same reason, it must only be used in a dry indoor location.

How it works

The circuit is shown in figure 1. The mains is applied to transformer T1 primary via the fuse, FS1. The secondary provides an ac output of about 12 V (with both 6 V windings

connected in series, that is, by connecting C to B as shown) or 6 V (with the link connecting C to A instead - this uses only one secondary section). For equipment designed for two cells, the latter is used. For three or four cells, both secondaries will be needed. The mains earth wire is connected to the case and also runs through to the negative (OV) output terminal.

The transformer output is connected to bridge rectifier REC1 and smoothed by C1. The result is an on-load dc supply of some 7 V (if one secondary has been selected) or 15 V (for two).LED1 glows to show that the circuit is on. The value of series resistor R1 will be chosen according to whether the higher or lower secondary voltage has been selected. This will enable it to draw the correct operating current.

The positive rail is connected to the input (pin 1) of voltage and current regulator IC1. The output is provided at pin 5. Current then flows through R2 to the positive output. The output voltage depends on the values of R3 and R4. These should be of the 1 percent tolerance type so that the voltage may be accurately predicted. Since R3 is fixed in value, the output is determined by R4 (the program resistor) alone. The value of this is chosen from Table 1 according to which voltage output is required. For two cells this will be 3 V , for three cells, 4.5 V and for four, 6 V . In fact, the voltages as calculated are slightly on the low side for safety. Capacitors C2 and C3 are necessary for stable operation of the regulator.

Table 1

For nominal	Use R4 value	
output		(0.1 percent)
3 V	33 R	
4.5 V	560 R	
6 V	1 k 1	

Voltage sensing

The maximum output current is controlled by the value of R2. With the current flowing through this, a certain voltage is developed across it according to Ohm's Law. As the current increases so does the voltage. This is sensed by pin 2 and if it reaches 0.4 V , the output is turned down so that it never exceeds this figure. Table 2 shows the value of R2 required to

produce various current limits up to the maximum of 300 mA . Note that these are not accurately determined and may only be regarded as nominal values.

Table 2
For current Use R2
limit (mA)value (ohms)
$50 \quad 8.2$
$100 \quad 3.9$
$150 \quad 2.7$
$200 \quad 1.8$
$250 \quad 1.5$
$300 \quad 1.2$
See also text.

The difference between the input and output voltage appears between IC1 pins 1 and 5 (less the small voltage developed across R2). This, multiplied by the current flowing in the circuit gives the power which must be dissipated by the device. This is converted into heat, and measures must be taken to release this into the air without causing overheating. The maximum normal (non-fault) power dissipation will occur when the highest allowed current $(300 \mathrm{~mA})$ is drawn and the circuit is configured for a 6 V output. If 15 V appears at pin 1 , there will be a voltage difference of some 9 V which, when multiplied by 300 mA , will result in a power a little under $3 W$. This will produce a small amount of heat which is easily dissipated by the aluminium box in which the circuit is housed (and to which IC1 is bolted). Many pieces of equipment require less than 300 mA and the heat developed will be correspondingly less. Under
short-circuit conditions, the power will be greater because the full 15 V will now appear across the ic. With a set limit of 300 mA , this will be in the region of 5 W . It will be safe, but the box may become quite warm especially if the short circuit is applied for a long period of time.

Construction

All soldered connections must be made with. care. In some circumstances where there is a faulty connection, the output voltage could rise to that at IC1 pin 1 causing damage to the equipment connected to the unit.

The PCB design, as given, connects both 120 V transformer primary windings in series for use with European (nominally 230 V supplies. Readers in the USA should make the following modifications: Cut away a section of track linking the Neutral (N) terminal on TB1 to the lower OV transformer pin. Hard wire the lower transformer 120 V pin to TB1 Neutral instead.

This project must be built in an earthed metal case. This provides sufficient mechanical strength and also acts as a heat sink for the ic. Drill holes for entry of the mains lead and for the output wires. Make these large enough for the strain relief bushes which are needed to hold them securely and prevent them from pulling free. Drill a small hole in the base close to TB1 position for a solder tag.

Drill the four mounting holes in the PCB. Four are necessary because the transformer is a heavy component and needs plenty of support. Mount the transformer, terminal blocks TB1 and TB2 also the fuseholder as shown in the photographs. Solder the link wire in position. This connects the common position (C) with either A (for 3 V or 4.5 V output) or B (for 6 V output). Solder R1 in place - if one transformer secondary is used, the correct value is 330R; if both are used, it should be 820R. Refer to Table 1, choose the correct program resistor (R4) and solder it in position. Refer to Table 2 and select the resistor required for R2 according to the maximum current required. Remember, a personal stereo draws more current when winding and re-winding the tape than when it is playing, so this must be allowed for. It is not prudent to set a higher current limit than is actually required.

Solder all remaining components taking care to mount the bridge rectifier and electrolytic capacitor C1 with the correct polarity. Solder short pieces of wire to the LED position and solder the LED to these observing the polarity. It should be arranged for the top of this component to take up a position about 2 mm higher that of the lid of the box when this is in position. It is important to sleeve the LED wires (including the extension) along their entire length so that they cannot touch one another or anything else. Heat-shrinkable sleeving is best

Figure 3: connecting the Live and Neutral wires to TB1
for the job. Solder the ic in position. Its metal backing is towards the right-hand edge of the PCB and should overhang it slightly. The pins will need to be bent slightly; this must be done with care, as they break off easily. Insert the fuse in the holder and fit the insulating cover.

Hold the PCB in position on the base of the box with IC1 pressing against the side and mark through the mounting holes. Drill these and attach the PCB using $8-\mathrm{mm}$ length minimum plastic stand-off insulators on the bolt shanks. Check carefully that all the soldered connections on the underside of the PCB remain at least 5 millimetres clear of the metal. Mark the hole in IC1 tab, remove the PCB again and drill this hole. Replace the PCB and bolt the ic firmly to the side of the box using a metal nut and bolt - heat transfer compound is not necessary, because the ic is being used well below its operating limit. The metal tab is connected internally to pin 3 which, in turn, becomes the negative (OV) output. Thus, the tab may make electrical contact with the case because this is at the same potential. Take care to ensure that pins of IC1 are not put under any strain, because they break easily. Measure the position of the LED and drill a small hole in the lid of the box so that it will protrude through it when the case is assembled. Make any adjustments as necessary. Attach the solder tag securely. Fit self-adhesive plastic feet to the bottom of the case to protect the work surface.

Testing

Note: For safety reasons, the lid of the case must be in position whenever the unit is plugged into the mains.

Make up an input lead using light-duty three-core mainstype wire. Fit a plug to one end and, if it is of the UK type, insert a 2A or 3A fuse. Pass the wire through the hole drilled for it and secure it using one of the strain relief bushes leaving a little slack. Make certain that the wire is tightly held. Connect the Live and Neutral wires to TB1 as shown in figure 3. Twist the end of the earth wire to a further short piece of mains earth wire. Hook the wires through the hole in the solder tag and solder them securely. Attach the short piece of earth wire to TB1 as shown. Make certain that the mains earth wires are securely attached to the solder tag. Make up an output wire. This should be kept as short as practicable to minimise voltage drop. This is especially important if a high current is being drawn. If a long lead is essential, use thicker wire. Secure this with the second strain relief bush and connect the wires to TB2. Note which colour is the positive. Just leave the other ends bare for the moment. Replace the lid of the case. Connect a voltmeter to the output and plug in the unit. The

LED should glow and the voltmeter reading should be slightly below the nominal voitage (say, 95 percent of it). As a guide, these are the actual off-load voltages given by the prototype: 2.81V (for 3 V), 4.25V (for 4.5V), 5.71V (for 6V). The voltage will fall a little according to the current drawn but it will still operate the equipment correctly. If it is found that 300 mA is needed and this cannot be obtained, reduce the value of R2 slightly. In the unlikely event of the voltage being higher than the correct value, reduce the value of R4.

Finishing off

If all is well; arrangements can be made to connect the output lead to the battery connector in the appliance. However this is done, make absolutely certain that the wires are applied with the correct polarity. Some pieces of equipment do not have an internal diode which protects them against incorrect connection. Check and double check this point before connecting the wires and switching on.

The dummy AA cells referred to earlier consist of a plastic body with the ends linked by a thin metal strip. Depending on the particular arrangements, it may not always be necessary to cut through the strips. However, it will be safer if you do. Remove a small section of strip from each "cel" so that the ends cannot retouch. The positive wire is soldered to the positive piece of link wire on one "cell" and the negative wire to the negative on the other. If the equipment uses three or four cells, it will be necessary to find which one makes the positive connection and which the negative. Only two dummy cells will normally be needed. However, some equipment relies on the mechanical support of all the cells to make a reliable connection, so more dummy units may be needed depending on the use. Careful inspection will reveal to which terminals the wires from the circuit panel inside are connected.

Due to safety regulations, this circuit must not be used to operate a battery-type electric razor in the bathroom.

After a long period of use, the case will become warm, especially if the maximum current is drawn.

SALE PRICE $£ 9.95$
VIDEO PROCESSOR UNITS?/GV 10AH BATTS/24V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controis for scan speed, scan delay, scan mode, foads of connections on the rear inside 2×0, $10 A H$ sealed lead acid batts. pcb's and a 8 A? $24 v$ torroidial transformer (mains in). sold as seen, may have one or two broken knobs etc due to poor storage. $£ 9.95$ ref VP2X

Dell switched mode psu $12 \mathrm{v} 15 \mathrm{amp} £ 9.95$
$140 \times 150 \times 90 \mathrm{~mm}$, fully cased with built in fan. +12 @ 13A, +5 @ 15A IEC power inlet, flylead output. $£ 9.95$ ref DEL2

UK made energy saving device that cangive you a 15% saving on the funning costs of fridges etc
Suitable for mains appliances fithed with a motor of up to 2 A rating We have tried the device on other things like soldering irons. conventional bulbs and still achieved a saving
One off price is $£ 9$ ref LOT7
Pack of 10 is 569 ref LOT72
Pack of 20 is $£ 119$ ref LOT73

SALE PRICE $£ 10$
These units must be cleared at the absurd price of just £10n you get loads of leads, an infra red remote keyboard and receiver, a standard uhf modulator, a standard bt approved modem 1200/75 and loads of chips, resistors, capacitors etc etc
all for just $£ 10$ ref bar33

Switched mode psu special offer $£ 2.99$
Brand new psu's giving 5vat 4.4Amps. Originally made for the Archimedes but obviously have many other uses. Fitted $42 \mathrm{~mm} . £ 2.99$ ref ARCHix

SALE PRICE $£ 2.50$

Customer returns, domestic telephone coin boxes, used to convert ordinary phones in to pay phones. ref CBT1X

The ultimate enclosure for your projects must be one of these!
Well made ABS screw together beige case measuring $120 \times 150 \times$ 50 mm . Already fitted with rubber feet and front mounted LED. inside is a pcb fitted with other bits and pieces you may find usetul. Sold either as a pack of five for $£ 10$ ref MD1 Or as a pack of 20 for $£ 19.95$ ref MD2

Order via our web site at www.bull-electrical.com

SOLAR PANELS

$3^{\prime} \times 1$ ' Amorphous silicon, 7 watt 12-14v output. Unframed. Ref SOLX

SALE PRICE 4 for $\mathrm{f}^{5} 9$

PC KEYBOARDS

sale price just $£ 2.99$
Standard ps2 type connector, 104 keys. ref PCX

Compaq
244 watt pc power supplies buy 2 for $£ 16$
Ex equipment but in full working order direct from one of the top manufacturers. $145 \times 175 \times 85 \mathrm{~mm}$ fitted fan and IEC iniet switch on flylead. Outputs are $3.3 \mathrm{vdc}+5 \mathrm{vdc},-5 \mathrm{vdc} .+12 \mathrm{vdc},+12 \mathrm{vdc}$. You may need to change the mother board connector so we have included another one with the power supply to help. $£ 16$ for 2 ref COM2
BULL ELECTRICAL 250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $\mathbf{5 . 0 0}$ PLUS VAT. OVERSEAS ORDERS AT COST PLUS 83.50 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders : 01273203500

FAX 01273323077

E-mail bull@pavilion.co.uk

12V FANS, EX EQUIPMENT COMPLETE WITH METAL CASES PACK OF 10 FOR $£ 9.95$

RCB UNITS $£ 2.99$

This in line minature earth leakage unit instantly shut of the mains supply in the event of any current flowing
between live and earth thus preventing a potentially lethal shock IEC plug one end, socket the other, fitted in seconds, reset button. The ultimate safety aid when working on electronic equipment, computers etc.
As these units are frtted with an in-line IEC plug on one end and socket on the other than could even be used to extend standard IEC computer leads.

Complete accounts system

for your PC for just $£ 9.95$
Unlimited companies, general ledger, muttiple cash books, deptors and creditors, stock, invoicing, purchasing, budgets, report writer, aoculator, wordprocessor, automated backups, on line help, Dort for 30 days from MAP computer product 0459679943 all for manual alone! ref SA12 3.5" disk version only. $£ 9.95$ ref PAS2

MAINS SMOKE ALARMS (GENT) NEW AND BOXED $£ 4.99$ ref SMKX

BBC selector videocrypt ' s ' tvtuner with smart card

sale price $£ 9.95$

Interestingnew item in this week isthis Selector. Originally made forthe BBC to send encrypted video films to your VCR at night time. The project seems to have failed.
Very complex units consisting of a smart card siot in the front plus several switches and an \mathbb{R} receiver. Fülly cased and measuring 230 $\times 430 \times 90 \mathrm{~mm}$, new and boxed.
On the back of the unit is a scart socket pius a UHF input and output A channel tuning control numbered 28 to 40 and an IR socket inside is a comprehensive tuner section, smart card reader mechanism and control electronics pius a power supply section..
These units are sold as strippers but we imagine you could use one to convert a monitor into a TV or maybe use the videocrypt side of things for something else. Supplied complete with manual and mains lead. Clearance price just $\mathbf{£ 9 . 9 5}$ ref BBC 1 X

Introducing our mega magnet that lifts 33 kilo's! an incredible 33 kio's! Each magnet has a threaded bolt protruding from the rear for easy fixing. 32mm diameter. £15 ref MAG33

cadence
SPECCTRA Autorouter

(2)Create the artwork for the PCB with WinBoard.. Quickly route boards on up to 16 layers.

Use SMD or through-hole components - or mix them for maximum flexlbility.
Unique pad-stack editor can create pads of virtually any size or shape.

Rotate components in 0.01° increments.

Tel 01819261161

The PC Solution, 2a High Road Leyton; London, E15 2BP. Fax 01819261160 http://www.thepcsol.demon.co.uk

HOW DOFS YOUR FQUIPMENT MFASURF UPP AT STEWART OF READING THERE'S ALWAYS 'SCOPE' FOR IMPROVEMENT!

The careful use of close-tolerance components on this meter gives good results for low capacitance values where many meters fail. By Robert Penfold.

An analogue capacitance meter can be very simple indeed, often consisting of little more than an oscillator and a monostable. Many designs of this type have been published in the past, and no doubt they all perform quite well.
The problem with the ultra-simple approach is that it usually provides a relatively confined measuring range. In particular, the accuracy at low values can be very poor, and it is often impossible to check components having values of less than about 50 to 100 pF . This is a serious drawback for anyone interested in radio circuits, or high frequency circuits in general, where a large number of low-value capacitors are used. Even in low frequency circuits, there is usually a sprinkling of small capacitors to provide frequency compensation and so on.

This analogue capacitance meter has five ranges with full scale values of $100 \mathrm{pF}, 1 \mathrm{nF}, 10 \mathrm{nF}, 100 \mathrm{nF}$, and 1 uF . Its coverage is less extensive at the high value end than some other designs, but high value capacitors are easily checked using a multimeter. Good results are provided at low values where the unit will happily measure values down to a few picofarads. Excellent accuracy is obtained on all five ranges provided close tolerance resistors are used in the range-switching circuit. The circuit is powered from a PP3 size battery, or a simple unregulated 9 V battery eliminator can be used if preferred.

Operation

The block diagram (figure 1) shows the general arrangement used in this capacitance meter. The first three stages generate a sinewave signal of pre-set amplitude. A simple C-R oscillator generates a low frequency triangular waveform, and lowpass filtering is then used to reduce the harmonic content of this signal. This

rounds the waveform to give a reasonable sinewave signal of adequate purity for the present application. A variable gain amplifier enables the amplitude of the output signal to be controlled, and this stage provides a small amount of additional lowpass filtering.

The sinewave output signal is fed to an operational amplifier which is used in an inverting mode circuit of sorts.

is therefore dependent only on the value of the test
component.
This method of capacitance measurement relies on the fact that the reactance of a capacitor is inversely proportional to its value. For example, at a given frequency a $10 n F$ capacitor will have a reactance that is ten times higher than that of a 100 nF component. Suppose that a 100nF test capacitor has a reactance that is equal to the selected feedback resistor. This gives unity voltage gain through the inverting amplifier, and an output level that is equal to the input level. The

What would normally be the input resistor is actually the capacitor under test, and the feedback resistor is one of five switched resistors (one for each range). The closed loop voltage gain of this modified arrangement is governed by the normal rules, and is simply equal to the feedback resistance divided by the reactance of the test capacitor. The reactance of the test capacitor is dependent on the applied frequency and the value of the capacitor. In this case the input frequency is fixed, and the reactance value
reactance of a 50 nF test capacitance would be double the value of the feedback resistor, giving a voltage gain of 0.5 . T.he output level from the inverting amplifier would therefore be half the input level. A 10nF test capacitor would have a reactance value some ten times higher than the value of the feedback resistor, giving a voltage gain of just 0.1. The amplitude of the output signal from the inverting amplifier would obviously be one tenth of the input level.

It should be apparent from this that there is a linear

Figure 2: the Five-range Capacitance Meter circuit diagram

TELLNET

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

SPECIAL OFFER	
SPECTRUM ANALYSERS	

	MISCELLANEOUS
	Adret 740A - $100 \mathrm{KHz}-1120 \mathrm{MHz}$ Synthesised Signal Generator .. $\mathbf{£ 2 0 0 0}$ ANRITSU ME 462B DF/3 Transmission Analyser.. $\mathbf{8 3 0 0 0}$
	Danbridge JP30A - 30KV Insulation Tester .. 15.
	Anritsu MG642A Pulse Pattern Generator ...1500
	Dranetz 626 - AC/DC - Multifunction Analyser .. 8850
	EIP 331 - Frequency counter 18GHz .. 100
	EIP 545 - Frequency counter 18GHz ...1500
	EIP 575 - Frequency counter 18GHz .. $£ 1750$
	Farnell AP70-30 Power Supply (0-70v/30A) Auto Ranging .. $¢ 750$
	Farnell TSV-70 MKII Power Supply (70 - 5A or 35V -10A) ... $£ 200$
	Farnell DSG-1 Syntheslsed Signal Generator ... 12.125
	Farnell ESG-1000 Synthesised Signal Generator 1GHz (as new).. 16.165
	Flure 5100A - Calibrator ... $\mathbf{\Sigma 2 5 0 0}$
	Gigatronics 8541 - Universal Power Meter..1500
	Guildline 9152 - T12 Battery Standard Cell .. 550
	Hewlett Packard 333A - Distortion Analyser ... 30.15
	Hewlett Packard 3314A - Function Generator.. $\mathbf{5 2 5 0}$
	Hewlett Packard 3336C - Synthesised Signal Generator (10Hz-21MHz).......................... $\mathbf{£ 1 0 0 0}$
	Hewlett Packard 3437A System voltmeter... 5350
	Hewlett Packard 3456A Digital voltmeter... 850
	Hewlett Packard 3438A Digital multimeter.. 200
	Hewlett Packard 35600A Dual Ch. Dynamic Signal Analyser... 53750
	Hewlett Packard 3711A/3712A/3791 B/3793B Mlcrowave Link Analyser £2250
	Hewlett Packard 3776A - PCM Terminal Test Set .. EOA $^{\text {a }}$
	Hewlett Packard 3325A - 21 MHz Synthesiser/Function Gen...81500
	Hewlett Packard 3488A - HP - 1B Switch control unit (various Plug-ins available)£650
	Hewlett Packard 334A - Distortion Analyser ... $£ 300$
	Hewlett Packard 3455A 6/2 Digit M/Meter (Autocal)... 8750
	Hewlett Packard 3478A - Multimeter (5\%/ Digit) + HP - 1B.. 5550
	Hewlett Packard 3776A - PCM Terminal Test Set ...
	Hewlett Packard 3779A/3779C - Primary Mux Analyser ..from £600
	Hewlett Packard 436A + Sensor ... from 1000
	Hewlett Packard 4275A - LCR Meter (Muiti-Frequency) .. $\mathbf{8 3 9 5 0}$
	Hewlett Packard 4338A - Millionmeter (As New) .. 52.1000
	Hewlett Packard 4342A 'Q' Meter... 9995
	Hewlett Packard 4952A - Protocol Analyser (with interfaces) ... $\mathbf{5 2 5 0 0}$
	Hewlett Packard 4953A - Protocol Analyser ..22750
	lett Packard 432A - Power Meter (with 478A Sensor) \qquad . 275

HEWLETT PACKARD 62618 Power Supply 20V-50A £450 Discount for Quantities

Hewlett Packard 8349B - Microwave Broad Band Amplifier ...
Hewlett Packard 83555A - Millimeter - Wave source Module
Hewett Packard $8015 \mathrm{~A}-50 \mathrm{MHz}$ Pulse Generator
Hewlett Packard 8405A - Vector Voltmeter ...able Signal Source
Hewlett Packard 8165 A - 50 MHz Programmable
Hewlett Packard 8350日 - Sweep Oscilator Malnirame (various Plug
Hewlett Packard 8152A - Optical Average Power Mot

Hewlett Packard 8180A - Dala Generaior

Hewlett Packard 8684A 5.4GHz to 12.5GHz Sig-Gen
Hewlett Packard 8656 B - Synthesised Signal Generator
Hewlett Packard 8750A Storage normaliser
Hewlett Packard 8756A - Scaler Network Analyser
Hewlett Packard 8903 A - Audio Analyser (20 Hz - 100 KHz)
Hewlett Packard 8958A - Cellular Radio Interfac
Hewlett Packard 8920A - R/F Comms Test S
Hewlett Packard P382A Variable Attenuator
Hewlett Packard 16500A - Fitted with 16510A/16515A/16530A16531A - Logic Analyser
Hewlett Packard 11729 B - Carrier Nolse Test Se
Krohn-Hite 4024A Oscillator....
Krohn-Hite 5200 Sweep, Function Generator
Krohn-Hite 6500 Phase Meter

Marconi $2019 \mathrm{~A}-80 \mathrm{KHz}-1040 \mathrm{MHz}$ - Synthesised Signal Generator...
Marconi $2022 \mathrm{~A}-10 \mathrm{KHz}-1 \mathrm{GHz}$ AMFM Signal Generator
Marconi 2432 A 500 MHz digital freq. mete
Marconi 2610 - True RMS Voltmeter.
Marconi 2871 Data Comms Analyser.
….. 1000

Marconi 6960 - Power Meter \& Sensor .. 8950
Marconi 6960A - Power Meter \& Sensor ... $£ 105$
Philips PM 5167 MHz function gen......
Phillps 5190 L.F. Synthesiser (G.P.I.B).
Philips PM5519 - TV Pattern Generator
Philips PM5667 - Vectorscope
Philips PM6670 - 120MH2 High Rmable High Resolution Timer/Counter....................................... $£ 90$
Philips PM6673-120MHz High Resolution Universal Counter
Prema 4000-6 $1 /$ Digit Multimeter (NEW)
Racal Dana $9081 / 9082$ Synth. sig. gen. 520 MHz
Racal Dana 9084 Synth, sig. gen. 104MH2
Racal Dana 9917 UHF frequency meter 560 MHz
Racal Dana 9302A R/F multivoltmeter (new version)
Racal Dana 9082 Synthesised am/fim sig gen (520 MHz)
Rohde \& Schwarz LFM2 -60 MHz Group Delay Sweep Gen
Rohde \& Schwarz SMFP2-1GHz Radio Comms T/set.
Rohde \& Schwarz UPSF2 - Video Noise Meter........)
Rohde \& Schwarz URE-RMS Voltmeter (10H
Rohde \& Schwarz Scud Radio Code Test Set
Rohde \& Schwarz SUF 2 Noise Generator
Schaffner NSG 203A Line Voltage Variation Simulator
Schaffner NSG 222A Interference Simulator
Schaffner NSG 223 Interference Generator
Schaffner WSG 431 Electrostatic Discharge Simulator
Schlumberger 4031 - 1 GHz Radio Comms Test Set
Schlumberger 2720 1250MHZ Frequency Counter.
Schlumberger 7060/7065/7075 Multimeters
Solartron 1250 - Freq. Response Analyser
Stanford Research DS $340-15 \mathrm{MHz}$ Synthesised Function (NEW) and arbitran
syaveform generator...
Tektronix TM5003 + AFG 5101 Arbitrary Function Gen
Tektronix 1240 Logic Analyser
Tektronix DASS9100 - Series Logic Analyser....................................
Tektronix - Plug-in - many available such as SC504, SW503, SG502,
Tektronix 577 Curve Tracer . P6302-Current Probe Amplifer
Tektronlx PG5506 + TG501 + +SG503 + TM503 - OScilloscope Calibrato
Tektronix AA5001 \& TM5006 MF - Programmable Distortion Analyser
Tektronix AA5001 \& TM5006
Tektronix 577 - Curve Tracer
Tektronix 577 - Curve Tracer
Time 9814 Voltage Cabibrat

Valhalla Sclentific - 2724 Programmable Resistance Standard
Wandel \& Goltermann PCM4 (+ options)
Wayne Kerr 4225 - LCR Bridge
Wayne Kerr 6425 - Precision Component Analyser
Wavetek 171 - Synthetised Function Generat
Wavetek 172 B Programmable Sig Source $(0.0001 \mathrm{~Hz}-13 \mathrm{MHz})$
Wavetek 184 - Sweep Generator - 5 MHz .
Wavetek 3010 - $1-1 \mathrm{GHz}$ Signal Generator
Wiltron 6620 S - Programmable Sweep Generator ($3.6-6.5 \mathrm{Gz}$)

MANY MORE ITEMS AVAILABLE
SEND LARGE S.A.E. FOR LIST OF EQUIPMENT
ALL EQUIPMENT IS USED
PLEASE CHECK FOR AVAILABILITY BEFORE
ORDERING - CARRIAGE \& VAT TO BE ADDED
TO ALL GOODS

$0|0| 2|5| 8 \mid 2$

Electronic DESIGNERS
know how to get their

PROTOTYPE PGBS

from their usual manufacturer for a

FRACTION :COST!

DO YOU?

STOP WASTIVG YOUR MONEY! CALL NOW: 003536566500

relationship between the value of the test capacitor and the amplitude of the output signal from the inverting amplifier. Feeding the output of the inverting amplifier to a precision rectifier and smoothing circuit produces a dc output voltage that is proportional to the ac output voltage from the inverting amplifier. This drives a moving coil meter which indicates the value of the test components, and has linear scaling. The gain control in the sinewave generator circuit enables the unit to be calibrated against a precision capacitor which should preferably have a tolerance of one percent or better.

The circuit

The full circuit diagram for the five range capacitance meter appears in figure 2. IC1 is used in a standard' triangular/squarewave oscillator of the type that uses an integrator (IC1a) and a trigger circuit (IC1b). In this case it is only the triangular output signal from IC1a that is required. The oscillator circuit has an operating frequency of about 115 Hz . The triangular output signal is fed to a conventional third order (18dB per octave) lowpass filter based on IC2. This filter has its cut-off frequency at approximately 100 Hz . It therefore allows the fundamental input frequency to pass with little attenuation, but severely attenuates even the lower order harmonics. IC3 is used in the variable gain amplifier, which is a simple inverting mode circuit. Its gain can be varied from approximately 12 with VR1 at minimum resistance, to just under two with VR1 set for maximum resistance. C6 applies increased feedback at high frequencies, which gives some additional lowpass filtering, and a slightly improved sinewave output signal.

The test capacitors are connected across SK1 and SK2. IC4 is the operational amplifier in the inverting mode amplifier, and R13 to R17 are the range resistors. These must have a tolerance of one percent or better if good accuracy is to be achieved on all five ranges. R13 is the feedback resistor on the 1uF range, running through to R17, which is the feedback resistor for the 100pF range.

The precision rectifier uses IC5 as (in effect) a noninverting amplifier with a voltage gain of about 5.5. However, IC5 is used without a negative supply, which means that it cannot provide negative output signals. The

CA3140E specified for IC5 is a type which can operate with its inputs and output at very low potentials, and the circuit therefore functions normally on positive input half cycles. This circuit therefore provides a half-wave rectified and slightly boosted output signal which is fed to the meter via the simple lowpass filter circuit comprising R22 and C9. Note that most operational amplifiers cannot operate with their inputs and output at less than about one or two volts above the negative supply terminal, so devices such as the TL071CP, LF351N, uA7.41C, and so on, will not work in the IC5 position of this circuit. It is also worth noting that the circuit operates from a five-volt supply, and that this is too low for many operational amplifiers. The úse of alternatives for IC1 to IC4 is not recommended, either.

Figure 3: the pcb component layout for the Five-range Capacitance Meter

It is essential that the circuit is powered from a stable supply, since the output level from the sinewave generator circuit varies with changes in the supply voltage. A stabilised five volt supply is derived from the nine volt battery supply by monolithic voltage regulator IC6. S2 connects the positive terminal of meter ME1to R22 and C9 in normal operation, but it can be set to the other position to check that the battery voltage is acceptable. The meter is then connected across the stabilised five-volt supply via R21, which effectively converts the meter to a simple voltmeter having a full scale value of 10 volts. If any "sagging" of the stabilised supply is evident, the battery is exhausted and must be replaced immediately.

The total current consumption of the circuit is about eight to 10 milliamps, and a PP3 size battery is just about adequate to supply this. Alternatively, any nine-volt battery eliminator should be able to supply such a modest current Due to the inclusion of IC6 it is not necessary to use a battery eliminator that has a built-in regulator circuit, but a supply of this type is, of course, perfectly suitable for use with this unit.

Construction

Most of the components are assembled on a printed circuit board, as detailed in figure 3, the component layout. Construction of the circuit board is largely straightforward, but there are a few points that merit amplification. Bear in mind that the CA3140E used for IC5 is a MOS input device which requires standard anti-static handling precautions. The most important of these is to fit the device in an ic holder, and not to plug the ic into place until the circuit board and all the wiring are otherwise complete. Before that it should be left in its anti-static packing. Try to handle IC5 as little as possible when fitting it into the holder, and
keep it away from any obvious sources of static charges. Although IC1 to IC4 all have fet input stages, they do not require any special handling precautions as they have jfet rather than mosfet input stages. However, it is still advisable to use ic holders for all four of these devices.

In order to fit neatly into this board layout the nonelectrolytic capacitors should be small printed circuit mounting types having 7.5 millimetre lead spacing. The only exceptions are C10 and C11 which are miniature ceramic capacitors having five millimetre lead spacing. VR1 must be a miniature (0.1 or 0.15 watt) horizontal mounting preset. Fit single-sided one-millimetre diameter pins to the board at the positions where connections will eventually be made to the off-board components such as the switches and ME1. Tin the tops of the pins with a liberal amount of solder

A metal instrument case measuring about 150 by 100 by 75 millimetres is adequate to accommodate this project. The exact layout is not critical, but try to use one that avoids having long connecting wires to SK1, SK2, and S1. Excessively long connecting wires can give problems with stray capacitance, causing reduced accuracy when

Figure 4: the hard wiring (use in conjunction with figure 3)

measuring very low value capacitors. On the prototype, SK1 and SK2 are one-millimetre sockets mounted about 15 millimetres apart. Many capacitors will plug straight into these, but a set of small test leads fitted with miniature crocodile clips must be made up so that small printed circuit mounting capacitors can be tested.

Fitting the meter on the case is slightly awkward because the meter requires a sizeable cut-out. A 38millimetre diameter hole is required for a standard 60 by 45 millimetre panel meter. This can be cut using an Abrafile or any other miniature round file. It is advisable to cut just within the perimeter of the required cut-out, and then carefully enlarge the hole using a large half-round file. A special tool for making large diameter holes is available from some do-it-yourself stores, and this represents the quickest and easiest way of making the mounting hole. These hole-cutters are also known as "tank cutters", and they are intended for use in hand drills or (preferably) a brace, as they must be used at very slow speeds. They can be adjusted to produce any size of hole from about 20 millimetres in diameter to 60 millimetres or more. The meter also requires four 2.5 millimetre diameter mounting holes for its built-in threaded mounting rods. The positions of these can be located using the meter itself as a sort of template.

Details of the hard wiring are provided in figure 4. In order to keep stray capacitance to a minimum the range resistors (R13 to R17) are mounted on SW1. I used a sixway two-pole switch for SW1, with its adjustable end-stop set for five-way operation, but a standard 12-way single pole switch is also suitable. There should be no difficulty in fitting the resistors in place provided the ends of the leadout wires and the tags of SW1 are tinned with solder first. Try to make the connections reasonably swiftly so that there is no danger of the resistors becoming overheated, and their accuracy being impaired. In other respects the hard wiring offers nothing out of the ordinary.

Calibration and use

A close tolerance (one percent or better) capacitor is needed in order to calibrate the unit, and this capacitor should ideally have a value that is equal to the full scale value of one of the capacitance meter's ranges. If a suitable component has to be bought specially it is advisable to calibrate the unit on the 100 pF or 1 nF range, because close tolerance capacitors with higher values tend to be quite expensive. To calibrate the unit, simply switch it to the appropriate range, connect the calibration capacitor across SK1 and SK2, and then adjust VR1 for the correct reading on ME1. The meter should then function with good accuracy on all five ranges.

In theory it is not possible to test small electrolytic capacitors using this meter because the test capacitor is fed with a pure ac signal that does not include a dc component. In practice though, accurate measurements seem to be obtained with electrolytic capacitors connected either way round. When using the unit, try not to touch either leadout wire of the test components, as this could result in noise picked up in your body being fed into the rectifier circuit. This could significantly inflate readings. This is especially important when testing low value components, as the tester is more sensitive to stray pickup on the 100pF and 1 nF ranges.

It is perhaps worth bearing in mind that the circuit
responds to the impedance across SK1 and SK2 at the test frequency. A capacitor that is faulty with a high leakage level might give a reading on one range of the unit, but the indicated value would be much higher than the marked value of the test component. If a high leakage level is expected, a quick test with a multimeter set to a resistance range will soon show whether or not the test component exhibits this fault.

One final important point is that with any practically any capacitance meter, it is courting disaster to test a capacitor that is charged to anything more than a few volts: If there is any risk of a test component having a significant charge voltage, discharge it prior to connection to the capacitance meter.

Now this just has to be a good deal! Not only will you save a considerable amount of money. but your postman will also deliver the next \mathbf{B} issues of your favourite electronics magazine directly to your door - with no fuss, no hassle. and no future price increases.
So go on, subscribe now, save your shoe leather, and up to 70p per issue. Here's why YOU should subscribe to either ETI, Ham Radio Today or Acorn Archimedes World:

- FREE home delivery in the UK.
- A saving of up to ± 9 a year.
- Price protection - you won't pay any more if the cover price goes up.
- Guarantee receiving every issue.

This is one deal where you really can't lose.
REMEMBER, it's always cheaper to subscribe!
All savings are based upon buying the same number of issues from your newsagent, UK only.
The cover price of ETI has now risen to $£ 2.50$ BUT you can still subscribe at the old price - if you order todayl After this issue we will have to charge a new, higher rate - so take advantage of this offer now!

SUBSCRIPTION ORDER FORM

YES, I would like to subscribe to (please tick):
\square Acorn Archimedes World
\square Ham Radio Today
\square E.T.I. for the next 13 issues (all subscriptions will start with the next available issue, unless extending).
 Access/Visa/Mastercard/AMEX account:
Card No: 1 Uل
Expiry........../.
Your Details:
Name: Mr/Mrs/Miss Initial:.............Surname
Address:
\qquad
\qquad
\qquad
\qquad
\qquad
Tel no:
Please return, together with your payment, to: Nexus Subscriptions, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Leics LE16 9EF Offer closes: 31/8/97 Code: 0210

An RS232 I/0 Card for Psion 3s and PCs

 The Psion Organiser can be more than an electronic diary. Using this interface byPei An, you can program it to control things for you, or work as a simple data logger.

he Psion series 3 , 3A, 3C and Sienna are palmtop computers.
Although they are packaged as personal organisers, they are really general-purpose computers. They are equipped not only with powerful built-in organiser applications like word processing, spreadsheet, agenda and database management (such as telephone and address books), but also contain a powerful built-in Basic-like programming language, the Organiser Programming Language (OPL). The latter allows the user to write sophisticated software for applications other than the ones that are built in. Psion organisers
have a comprehensive power saving scheme, which makes them excellent computers with the major benefits of compactness and long battery life. Psions also have an I/O port which allows them to be connected up to desktop computers, modems and printers. The I/O ports on the Psion 3 and 3A can be converted into a standard RS232 or a Centronics port by means of external plug-in devices. The Psion 3C/Sienna, however, already has an industrial-standard RS232 interface and an IrDA data communications port incorporated.

Like other PCs, the Psions can be used for computer interfacing applications. Using the RS232 port, external circuits can be connected up to form PC-based systems for applications such as data acquisition and control, which can be made truly portable and mobile owing to the compactness and low power consumption of the Psions.

This article describes a general purpose RS232 I/O card for the Psion 3C organiser as well as for PCs. It is connected
to the port by three wires, and offers eight digital inputs and eight digital outputs. Figure 1 shows the I/O system connected to a Psion 3C. The card itself is shown in one of the photos accompanying this article. It allows the user to explore the RS232 port and make use of the port for other PC interfacing applications using the Psion and PCs.

Fundamentals

The RS-232C port is an industrial-standard asynchronous serial data communications interface for passing serial data between two devices. It is included in almost all types of desktop and notebook PCs and is used mainly for connecting printers, modems, mice and other peripherals.

Serial data

Unlike a paraliel port, which normally has eight data lines and transmits one 8-bit byte in each go, a serial port only has one data line to transmit 8 bits. The byte is transmitted serially.

The RS232 I/O card from above

There are two serial data transfer schemes, synchronous and asynchronous. With synchronous data transfer, additional lines are needed to transmit handshake signals along with the data line to indicate when the next bit is to be transmitted. The advantage of this is that the receiver is able to respond to the clock rate of the transmitter automatically.

With asynchronous data transfer, the transmitted data itself contains the synchronisation information, and no handshake signal is needed. The transmitted serial data comprises a start bit, which indicates the beginning of a data transmission, followed by serial data bits and then stop bits indicating the end of the transmission. An optional parity bit can be added between the serial data bits and the stop bit for parity checking.
The receiver device detects the start bit and receives the subsequent data bits. This scheme requires that the transmitter and the receiver must have the same clock frequency. Asynchronous data transmission is used in most personal computers. The asynchronous standard is facilitated by a family of industrial peripheral ucs known as the UARTs (Universal Asynchronous Receivers and Transmitters). The card in this prohject employs a 6402 UART.

The format

The format of the serial data transmission generated by UARTS is in four parts: a start bit, data bits, one parity bit, and at least one stop bit (see figure 2). When no data is sent, the transmitting data line is in the high state ($2 \mathrm{~V}-5 \mathrm{~V} T \mathrm{~L}$ level). The beginning of a data transmission is indicated by the line going low (0-0.8V TTL level) for the duration of 1 bit. This the start bit. The data bits are then sent out one after another with the least significant bit sent first. The length of the data bit can be 6,7 or 8 . Following the data bits is the parity bit, which is used to check for errors occurring in the data transmission. The last bits are the stop bits. The data line goes high for at least 1 bit, to identify the end of the data transmission. The stop bit can be 1, 1.5 and 2 bits in length.

The serial data transmission format is generated by the electronics inside the transmitting UARTs. The electronics in the receiver detect the leading edge of the start bit. The chip then waits for one and a half bits before reading the data bit. The reading should therefore come exactly in the middle of the first data bit. Then it waits for one bit, and reads the second bit. This time the reading comes exactly in the middle of the second data bit. After completing the reading of the data bits, the electronics detects the parity of the received
data for error checking, and resets itself during the stop bit to wait for the next data transmission.

The rate at which data bits are sent is measured by the Baud rate. It is defined as $1 /($ the time between the shortest signal transition period) - see figure 2). The standard Baud rates for RS232 serial port are 110, 150, 300, 600, 1200, 2400, 4800, 9600 and 19200. Knowing the Baud rate, the number of characters (or bytes) to be transmitted per second can be calculated. For example, if the serial data transmission has 8 data bits, no parity bit and 1 stop bit, the total length of serial data bits is 10 . The transfer rate for characters is the Baud rate divided by 10; for example, a Baud rate of 9600 transfers 960 characters per second.

The parity check can be Odd, Even or None. The odd and even parity checks indicate that the total number of ones in the transmitted serial data is an odd number or an even one. This method is the simplest way of checking for errors during data transmission. However, it is only reliable for detecting single-bit errors. Errors with several bits may not be detected. The parity bit is generated by the electronics of the transmitting UART in such a way that the number of ones in the data bits plus the parity bit is odd or even as declared. Suppose we send a binary byte 01000011 (there are three 1s in the byte) from the computer to an external device and the parity has been declared as odd (the total number of ones is odd). The parity bit will be set 0 , since the number of ones in these nine data bits is already odd. At the receiver end, the receiver must also be configured to have an odd parity check. The electronics in the receiver UART will count the number of ones in the received data. If the data does not have an odd parity, an error signal is generated indicating thiat a transmission error has been occurred. If parity check is declared as None, the parity bit will not be generated and checked.

Line drivers and receivers for the RS232 link

The signal from the UARTs has a TTL level. A logic high corresponds to a voltage ranging from 2 V to 5 V and a logic low corresponds to a voltage between OV and 0.8 V . Signals of this voltage level cannot be transmitted reliably over a long distance. To solve the problem, RS232 transceivers are used to boost up the voltage of the transmit signal from the TTL level to the RS232 level, which is substantially higher than the former. Receivers are used in the receiving dexice to convert the RS232 voltage level to the TTL level. This arrangement enables the RS232 interface to communicate over a maximum distance of about 30 meters. The voltage conversion between TTL and RS232 is facilitated by a family of industrial RS232 transceiver ics. The current project uses a MAX232CPD. All the RS232 transceivers have an inverting action. A TTL logic high is translated to -3 V to -12 V at the RS232 side, and a TL logic low is translated to +3 to 12 V . It

A home-made Psion 3C serial cable

Figure 1: versatile RS232 I/O card connected to a Psion 3C palmtop

2s PINS OH COMPUTER	9PIMS OM COMPUTEF	COMNECTOR on Psion	$\begin{aligned} & \text { PPINS ON } \\ & \text { PSION CABEE } \end{aligned}$	Dincction	signas	DEscriplion
1				-1rPur	T	PROTECTIVE GROUND
2	3	4	2	OUTPUT	TX	COMPUTER TRANSMIITS DATA
3	2	8	3	INPUT	RD	COMPUTER RECEIVES DATA
4	7	2	8	output	RTS	fequest TO SEND
5	8	7	7	INPUT	CTS	CLEAR TO SEND
6	6	5	4	OUTPUT	DSR	DATA SET READY
7	5	15	5		GND	SIGNaL GROUND (COMMOM)
8	1	nc	1	INPUT	DCD	data carrien detect
20	4	3	${ }^{6}$	OUTPUT	DTR	DATA TERMMNAL READV
22 23	$\stackrel{\square}{9}$	6	9	INPUT INPUT	RI	RING indicator

Table 1: the pin functions of the RS232 ports on PCs and Psions
should be noted that, for IBM PCs, the voltage swing is from -12 V to +12 V , while for the Psion the output voltage swing is from -5 V to +5 V (not -12 V to +12 V). It can, however, receive an RS232 signal with a swing from -12 V to +12 V .

RS232 interfaces on Psion 3Cs and PCs

The RS232 port is a 15-pin male PCMCIA-type connector on the left-hand side of the Psion 3C/Sienna computers. Although it is not a standard version, the pins are the same as those in a standard RS232 port. As mentioned earlier, the voltage swing of the signal line is from -5 V to +5 V instead of 12 V to +12 V , but it does accept standard RS232 voltage levels.

A cable is used to connect a Psion 3C/Sienna to an external device. The cable is screened 15 -core with a 15 -pin PCMCIA female connector at one end and a 9-pin D-type female connector at the other. It can be purchased with the PsiWin software package, or you can make one up yourself (see the construction section). Figure 3 shows the pin-outs of the RS232 port on the Psion, and of the D-type connector. The RS-232 interface on computers is a 25-pin interface housed in a $25-$ pin male D-type connector. An abbreviated version is also commonly used on PCs: this is a 9-pin male D-type connector. The pin functions of the connectors are shown in figure 4. The pin functions of the RS232 ports on PCs and Psions are summarised in Table 1. The signal transmission direction is related to Psion or PC computers.

Operation of the RS232 port

Data is transmitted from the computer via the TX line, and the computer receives data from external devices via the RX line. Handshake lines are used to manage data flow between the computer and the external device. RTS (active high) is issued by the computer to instruct the external device to prepare for a data transfer from the computer. CTS (active high) is issued by the external device to tell the computer that the external device is ready to accept data. RTS and CTS are used as a handshake for data transfer. DCD (active high) is issued by the external device to tell the computer that it has detected the carrier signal. DSR is generated by the external device to inform the computer that it is switched on. DTR is a signal generated by the computer to tell the external device that the computer is switched on and is ready to communicate with the external devices. DSR and DTR are used to indicate an established connection between a computer and an external device.

A simple communication can be achieved between a computer and an external device using just three lines: TD, RD and GND. This simple communication scheme is the one adopted for the present project - all the handshake lines are not used; in fact, in order to use this scheme, the Psion and PC computers have to disable all handshake functions.

Hands-on experiments with the Psion 3C

Using a Psion 3C, users can conduct a simple experiment to find out how to use the RS232 port on the Psion 3C and to understand RS232 data transmission. The experimental setup is shown in figure 5. The Psion 3C continuously transmits the same byte from the TX line of the RS232 port. The waveform of the TX signal can be viewed using an oscilloscope. Figures 5 a to \mathbf{f} show the waveforms for output bytes of 0, 1, 2, 64, 128 and 255.

To output data from the RS232 port of a Psion 3C, use the following set-up: at the system screen (press the SYSTEM keypad), press MENU, then select SPECIAL and

(Baud rate: 9600, Data bit length: 8 , Parity: Even, Stop bit: 1) the waveform at the port connector pins is inverted

Figure 2: the format of a serial data transmission produced by UARTs

Figure 3: the pin-out of connectors on the Psion 3C/Sienna serial cable

COMMUNICATIONS. Next, make sure USE is set to either INFRARED or NONE (not LINK CABLE). This ensures that the series link is used solely by the user's program and is not used by other programs. If the serial port is used by the communication link, an error will appear when you run your program.

After this, you are in full control of the RS232 port from your own OPL program. An OPL program which repeatedly outputs the same byte from the RS232 port is given below. This program first configures the RS232 port to the following specification:

Baud rate: 9600; data bit: 8; stop bit 1; parity: none; handshake: none

Then the program continuously outputs a byte to the RS232 port. The program code must be typed in exactly as it appears here. A detailed explanation of the commands will be given later in the OPL programming section. When the program is running, the waveform of the TX signal can be viewed with an oscilloscope.

PROC RS232TX:
REM RS232 output test program
REM communication setting: None or Infrared

REM define local variables to be used in the program
LOCAL terms,baud\%, parity\%, data\%
LOCAL stop\%, hand\%, frame\%,srchar\% (6)
LOCAL err\%, dummy\%
LOCAL outbyte\%
REM open $\dot{\text { R }}$ S232 port
LOPEN "TTY:A"
REM define RS232 configuration parameters
REM RS232 setting: 9600, 8 bit, no parity, 1 stop, no handshake
baud\%=15 : parity[percent]=0 :
data [percent] $=8$
stop\%=1 : hand[percent] $=4$: term $\alpha=\& 0$
frame\%=dataz-5
IF stop\%=2 : frame\%=frame\% OR 16 : ENDIF
IF parity\% : frame\%=framezOR 32 : ENDIF
Srchar\% (1) =baud\% OR (baud\% * 256)
Srchar\% (2) $=$ frame\% OR (parity\% * 256)
Srchar\% (3) = (hand\% AND 255) OR \$1100
Srchar\% (4) =\$13

REM configure the RS232 port using the above parameters
err\%=IOW ($-1,7$, srchar [percent] (1), dummy\%)
Do

CLS	REM
clear screen	
FONT 8,8	REM

set fonts
PRINT "INPUT DATA = ",
INPUT outbyte\%

Unconditional replacement or refund on any item if not as requested

TOP SELLING BOOKS	SERVICE
Pract' TV or VCR Repairs- $£ 16.95$ (Both $£ 30$)	MANUALS
Buy/Sell/Serv'/Repair Used Equipment :-	
CD, TV or VCR - £ 10.95 each (All $3 £ 27$)	DESIGNER COLLECTIONS
6 Giant IC Ref Manuals - \quad E12.95 each	Comprehensive Circuits Collections of any make of CTV
Data Ref Guide - Identifies/ prices/ cross-refs data for most models - $£ 9.95$ ($3.5^{\text {n }}$ Disk $£ 5$)	as requested, prices from f 8 to f 49 (IE. Alba/Bush $£ 20$) Full list in Free Catalogue.
data for most models - ¢9.95 (3.5" Disk £5)	list in Free Catalogue.
Microwave Energy \& Ovens - £9.95	Amateúr Kit: 10 Service Manuals las needed), Data Ref',
3.5" Disk Drives - $£ 9.50$	
The Giant Fault-Finding Guides:-	any 3 CTV Circ Collections. £199
CTV's $£ 16.95$ /VCR's $£ 16.95$	Profossional Kit: As above + 10 Serr' Man's, Microwave
	E\&O. BuylSell\|Serv' Collection \& 2 More CTV Circ's. $£ 370$

3 UNIOUE SERVICE MANUAL OFFERS
GUARANTEED SAVINGS TO YOU NOW!!
*LIBRARY Joining fee $£ 65.00$
You receive any Service Manuals, no matter how expensive, for $£ 10$ each, and you get a $£ 5$ credit for any you return.
*PRE-PAY MANUALS
You get 20 Service Manuals, as and when you need them; as many or few at a time as you want, for a one-off payment of $£ 185$.
*SERVICE MANUAL EXCHANGE If you have a Service Manual we don't have and need another manual (ie. TV for TV, VCR for VCR), we will exchange it for FREE.

Please add $£ 2.50$ to all orders to cover Postage \& Handling WORLD'S LARGEST SERVICE MANUAL COLLECTION

Normal Prices Given (Some Manuals may be Cheaper or more Expensive)
VCR/VIDCAM - FULL MANUALS $£ 16.50$ - CIRCUITS $£ 8.00$ COMPLETE
CTV's / CD's - FULL MANUALS $£ 12.50$ - CIRCUITS $£ 6.00$ COMPLETE
AUDIO, CD, COMPUTERS, MONITORS, DOMESTIC / TEST EQUIP', ETC.. FROM £4.00

The Low Cost Controllem Ther's Easy To Use

The K-307 Module provides the features required for most embedded applications

Analogue

Digitol

- 4 Channels in 1 Channel out
- 36 Digital in or out \& Timers

Display
Keytoard
Memory
Low Power

- Upto 8×8 matrix keyboard
- $>2 \mathrm{M}$ bytes available on board
- Many modes to choose from

The PC Starter Pack provides the quickest method to get your application up \& running
Operoting System - Real Time Multi Tasking
languages
Expansion

- C', Modula-2 and Assembler
- Easy to expand to a wide range of peripheral cards

Other Fecitures
 Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface
 Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est
Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

CROWNHILL ASSOCIATES LIMITED
The Old Bakery, New Barns Road, Ely Cambs. CB4 7PW
Tel: +44 (0)1353 666709 Fax: +44 (0) 1353666710

SMART CARD EVALUATION SYSTEM

- Smart Card Reader/ Writer (Programming Interface)
- Smart Card Interrogation System, to identify the com mands accepted by any valid SmartCard and log them to disk for evalua tion.
- Will allow the user to "re send" known commands and monitor the result.
- Passive interface to allow the user to monitor the data flow between Card and host system.
- 244 page Hard Back reference book, covering all aspects of Smart Card design and programming

[^0]Other systems available for specific projects, credit / debit, access control, GSM etc etc AS SUPPLIED TO POLICE , GOV't \& GSM Operators

Intelligent programmer for Smart Cards using the International Standard $\mathrm{T}=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using ${ }^{12} \mathrm{C}$, 2 -wire \& 3 -wire interfaces. Supplied with software to read and write to most popular secure smart cards, inc GSM, PAY PHONE and ACCESS CONTROL cards.

CALL FOR FULL SPEC + CATALOGUE
$\mathrm{T}=0$ or $\mathrm{T}=1 @ 3.579 \mathrm{MHz}$ RS232@9600-11500 bps Intemal Supply / Ni-MH Size: $100 \times 70 \times 80 \mathrm{~mm}$ Wcight 660 Gram

CE COMPLIANT
$\mathbf{E 7 9 . 9 5}$ + VAT

READ - EDIT \& COPY DATA create your own MOTOROLA
NOW
NO $\begin{aligned} & 179.95+\text { VAT }\end{aligned}$
Complete system to read and write to all USER and SERVICE PROVIDER areas of GSM SIM CARDS. Available

NOW
NO $179.95+$ VAT
PIC 16C84 \& F84 development system \& programmer
all components, screen printed PCB, CIrcult diagram etc $1+\cdots 10.00+V A T$

GSM SIM CARD EDITOR / PROGRAMMER

NEW I - PIC PROGRAMMER KIT

Colour Brochures 1998 Catalogue available NOW OFFICIAL DISTRIBUTORS FOR LEADING EDGE TECHNOLOGY PIC DEVELOPMENT TOOLS AND PROGRAMMERS

New '98 manufacture direct from MICROCHIP PIC 16C84/04p or /04sm $£ 2.00$ each PIC16F84/04p or /04sm $£ 2.20$ each PIC 12C508 \& 509 /p $£ 1.15$ each

SMART CARDS
PIC 16C84/10 $£ 4.50$ each PIC 16F84 \& 24LC16 £9.00 each

PIC12C508/9 ICE and PROGRAMMER.
In Circuit Emulator and Programmer. Supplied with Software, Data sheets Manual, leads, 10 breadboard circuits which include DVM, StopWatch, Smoke Alarm, Sound \& Light

PIC ICE II

$£ 59.95$
In Circuit Emulator for 54/55/56/57/71/84 PICs. A/D emulated for 16C71. Supplied with leads, manual and hardware projects.

UNIVERSAL PIC PROGRAMMER

Read/Write/Copy PIC's 52, 54+A, 55, 56, 57+A, 58A, 61, 62, 64, 65, 71, 73+A, 74, 83, $84,554,558,620,621,622,14000.12 \mathrm{C} 508 / 9$. Memory $24 \mathrm{C} 01,2,16,32,65$. Universal ZIF socket, best value on the market. FREE Software upgrades.

SERIAL EEPROMMER

£34.95
Read/Write all 8 pin Serial EEproms. 24, 93, 85 series. 12C, MicroWire etc. Found in Satellite, Digital Dashboards \& TVs, Centronics port self powered.
EPROM EMULATOR
£59.95
128k by 8 bit or $2 \times 64 \mathrm{k}$ by 8 bit. Software to Read/Write when connected to target board. CPU's or Car EM Systems.

PICPOCKET

£39.95
Standalone D2mac/VC2.programmer, computer not required. Supplied with latest D2mac Code. Runs from 9 v Battery

[^1]
LEADING EDGE TECHNOLOGY LTD

WHITE ROSE HOUSE, XINTILL STR, TARXIEN PLA11 MALTA ORDER DIRECT: Tel: (00 356) 678509 Fax (00 356) 667484 SAME DAY DESPATCH

DELUXE SMARTCARD PROGRAMMER

$£ 79.95$
Read/Write/Copy ALL types of Smartcard ISO, Memory, PIC, GSM, VideoCrypt. Telephone, D2Mac, Mondex etc. Supplied with interesting Card information, and software. STANDARD ISO SMARTCARD PROGRAMMER
$£ 25.00$
Read, Program ISO7816 Cards (GSM, VC, Mondex etc). Supplied with ISO card information.
MEGAPROM EPROM PROGRAMMER $\mathbf{6 6 9 . 9 5}$
Programs up to 8 Meg devices (32pin), including EEprom, FLASH and 24X series. Built in Ram tester. Universal quality ZIF socket, free software updates.
GAL PROGRAMMER
and 22 V 10 NSC standard JEDEC files. Smart case with ZIF. Supplied with PSU, Manual \& Compiler software. P87/C51/2 PROGRAMMER
£39.95
Read/Write/Copy all makes of $87 \mathrm{C} 51 / 2$ including ATMEL flash 89 series. Universal 40 pin ZIF. Smart case user friendly.
CODEMASTER
Hand Held D2mac / VC2 programmer 32 Char LCD screen \& Keyboard. Store up to 7 Cards in unit. Supplied with Latest D2mac, VC2 Codes.

ALL PRODUCTS REQUIRE AN IBM PC TO OPERATE UNLESS OTHERWISE STATED.
FOR FURTHER INFORMATION SEE OUR WEB SITE OR TELEPHONE/FAX http:/LET.cambs.net/
johnmorr@mail.keyworld.net
We also manufacture DASH MASTER the handheld Digital Dashboard tool. Always in stock: Blank SmartCards \& PICs, Tel/Fax for current prices.

DISTRIBUTORS Telephone UK CROWNHILL 01353666709 SPAIN COELMA 003413290523 FRANCE MULTIPOWER 0033169301379

(a) 9 -pin male socket viewed from the back of the computer

(b) 25 -pin male socket viewed from the back of the computer

Pin functions of the RS232 connectors					
25 PIN 9 PIN NAME DIRECTION (FOR PCS) DESCRIPTION 1 Prot - Protective ground 2 3 TD OUTPUT Transmit data 3 2 RD INPUT Recelve data 4 7 RTS OUTPUT Request to send 5 8 CTS INPUT Clear to send 6 6 DSR INPUT Data set ready 7 5 GND - Signal ground (common) 8 1 DCD INPUT Data carrier detedt 20 4 DTR OUTPUT Data terminai ready 22 9 RI INPUT Ring indicator 23 DSRD IV Data signal rate detector					

Figure 4: pin-out and functions of the RS232 connectors on computers

Figure 5: experimental setup and waveforms of TX shown on the oscilloscope when outputting a binary byte from the RS232 port

PRINT "TRANSMITTING..."
PRINT "PRESS ANY KEY TO CHANGE NEW DATA" REM the following commands are repeated
until a key is pressed
DO
REM to output data from RS232 port LPRINT chr\$ (outbyte\%) ; REM output
a byte to RS232 port
UNTIL KEY\$=CHR\$(13 REM if key is
pressed, then stop
UNTIL outbyte\% [right arrow] $=256$

The RS232 I/O card

The circuit diagram of the RS232 card is shown in figure 6. In the diagram, IC1 (MAX232CPE) is the RS232/TTL transceiver; $\operatorname{IC} 2$ (CD4060) is the Baud rate generator and IC4 (CPD6402) is the UART. The card is connected to the RS232 interface via three lines: TX (transmit data), RX (receive data) and GND.

CPD6402 UART

The CDP6402 (Harris semiconductors) is a CMOS Universal Asynchronous Receiver/Transmitter for interfacing to asynchronous serial data channels. It has a programmable serial data format. It can have a length of $5,6,7$, or 8 bits. The parity check can be odd, even or none. Stop bits can be $1,1.5$ or 2 . The ic requires a power supply voltage of 4 to 10 volts. The quiescent supply current is 1.5 mA for a supply voltage of 5 V .

The pin-out and the internal block diagram are shown in figure 7. Pin 21 is the Master Reset (MR), which should be at the logic low state in normal operations. Pins 35 through 39 control the serial data format. To enable the control pins, pin 34 (Control Register Load, CRL) must be at logic high. A high level on pin 35 (Parity Inhibit, PI) inhibits parity generation and check. It also forces the Parity Error (PE, pin 13) pin to stay low. When PI is low, a high level on Even Parity Enable (EPE, pin 39) selects even parity. A low level on EPE pin selects odd parity. Pin 36 (Stop Bit Select) high selects 1.5 stop bits for 5 -character format and two stop bits for other data lengths. If it is low, one stop bit is selected. Pins 37 (Character Length Selected, CLS2) and 38 (CLS1) select the data length: CLS1=0, CLS2=0 for five bits; CLS1=1, CLS2=0 for 6; CLS1=0, CLS2=1 for seven bits and CLS1=1 and CLS2=1 for eight bits.

Pins 17 (Receiver Register Clock) and 40 (Transmitter Register Clock) are the clock inputs for the receiver and transmitter. The two inputs are driven by a clock which runs at 16 times the required Baud rate. They are normally connected together.

Pin 20 (Receiver Register Input, RRI) is the serial data input. The received data is stored in the receiver buffer registers which are accessed via pins 5 to 12 (Receiver Buffer Registers). Pin 4 (Receiver Register Disable, RRD) should be low. When a datum is successfully received and loaded into the receiver buffer registers, pin 19 (Date Received) goes from low to high. It can be set to low by making pin 18 (-Data Received Reset) low. This enables the UART to receive the new data. Pins 13 (Parity Error), 14 (Framing Error) 15 (Overrun Error) give the status of errors occurring during a data transmission and they are all high active. To enable these status outputs, pin 16 (Status Flag Disable, SFD) should be low.
Pin 25 (Transmitter Register Output, TRO) is the serial data output. Data to be sent is written into the transmit buffer registers via pins 26 to 33 (Transmitter Buffer Registers). When pin 23 (-Transmitter Buffer Register Load, TBRL) goes low, the data is loaded into the transmitter buffer registers and when it goes from low to high, it loads the data into the transmitter register and initiates the serial data transmission. Pin 22 is Transmitter Buffer Register Empty. A high level on this indicates that transmitter buffer register has transferred data into the transmitter register and is ready for new data. Pin 24 is Transmitter Register Empty. A high level on this pin indicates the completion of a serial data

Figure 6: circuit diagram of the TS232 explorer card
transmission.
A receive timing sequence is shown in figure 8a. Data is received at the RRI input. When no data is being received, the RRI input must be high. At stage A, a low level on -DDR clears the DR line. At stage B, during the first stop bit of the transmission, the data is transferred from the receiver register to the receiver buffer registers. An overrun error occurs when DR has not been cleared before the present character is transferred to the registers. At stage C , half a clock cycle after B, DR goes high, indicating that a new data is received. A logic high on FE indicates that an invalid stop bit has been received and a logic high on PE indicates a parity error. If the UART operates in a continuous mode, DDR can be pulled down to ground.

A transmit timing procedure is shown in figure $\mathbf{8 b}$. At stage A, Data is loaded into the transmitter buffer register from the inputs TBR1 through TBR8 at the high-to-low transition on the -TBRL input. Valid data must appear on TBR1-TBR8 before and after the rising edge of -TBRL. If the data bit length is less than 8 , only the least significant bits are used. At stage B, the rising edge of -TBRL clears TBRE, After a short delay, data is transferred to the transmitter register and TRE is low. TBRE goes to a logic high showing that the transmit buffer registers are empty. Output data is clocked out by TRC. The clock rate is 16 times the data Baud. At stage C, -TBRL goes from high-to-low-then-high again. This loads the second data to the transmit buffer register. Data transfer to the transmitter register is delayed until the transmission of the current character is complete. At stage D, Data is automatically transferred to the transmitter
registers and the transmission of the second data begins. In the present circuit, after the 6402 receives a valid data, DR goes high. The C9 is charged up and the output of the inverter, IC3, goes low. This resets the data receive register and enables the 6402 to receive new data. A low at -DRR also makes DR to become low. For transmitting data, -TBRL should be brought from low to high. -TBRL is programmable on the card using jumper wires. It can be connected to DRR, OUT-0, OUT-1... OUT7 or other signal sources. If TBRL is connected to -DRR, every time the 6402 receives a valid datum, it automatically transmits a byte. If it is connected to OUT-O, the 6402 will only transmit data if OUT0 goes from high to low and to high again.

Baud rate generator

The clock signal to the UART is generated by a circuit around a CD4060 (IC2) and a $2.4575-\mathrm{MHz}$ crystal. From pins $7,5,4$ and 6 of IC2, clock signals at 153.6 kHz , $76.8 \mathrm{kHz}, 38.4 \mathrm{kHz}$ and 19.2 kHz are generated which set a Baud rate of $9600,4800,2400$ and 1200 for the UART. The Baud rate is selected by a jumper selector J 2 .

RS232 driver

The conversion of the voltage levels between the RS232 and TTL is achieved by the MAX232CPD (IC1). This chip requires a single +5 V power supply and can produce the right voltage level specified by the RS232 standard.

Power supply

The power supply incorporates a $7805(1 \mathrm{~A}, 5 \mathrm{~V})$ voltage

Figure 7: pin-out and the internal block diagram of the 6402 UART
and RX, respectively. Pin 5 is the ground. If the card is to be connected to the serial cable of an IBM PC, pin 2 and pin 3 are the RX and TX. Pin 5 is the ground.

The Psion 3C serial cable used for the I/O card can be constructed by you. You need a 15-pin PCMCIA cable assembly, which is available from CPC. The assembly has a PCMCIA connector which is inserted into Psion's RS232. port. A 9-pin female D-type plug is connected to the assembly at the other end. Although the cable has 15 cores, only three lines (RX, TX and GND) are connected to the D-type connector. The connection details of these three wires are given in figure 10. All handshake lines are left unconnected.

//O programming using the Psion OPL

The Organiser Programming Language is a powerful Basic-like programming language: the program is fairly demanding to learn. There are about 260 keywords; on the other hand, the extensive instructions enable users to write sophisticated and professional window-driven programs quite easily. Details of the language are beyond the scope of this article, but they can be found in the programming manual of the Psion 3a.

The demo program listed below is a very simple program which allows user to type in a byte. Then the Psion 3C outputs the byte from the TX line of the RS232 port continuously. After each transmission, the Psion 3C reads data from the RS232 port and displays the data on the screen. Once the basic input and output through the RS232 port is realised, it is up to the reader's imagination to write programs for other applications.
regulator, which requires an 8-12V DC external power supply. The card consumes about 120 mA . An 800 mA fuse is used to limit the current usage by the external circuitry connected to the card. Figure $\mathbf{6}$ shows the circuit diagram of the power supply unit.

Construction

The I/O card is constructed on a single-sided PCB board. The component layout is given in figure 9. Before soldering the components on the PCB boards, a careful inspection of the PCB board must be excised to check if there are unwanted joints or cuts. Soldering may then begin. Components may be soldered onto the board in the following order: links, resistors, diodes, ic-sockets, capacitors, connectors, and so on. After soldering, another careful inspection must be carried out to check if there are some joins due to excessive use of solder and bad soldering points. Then ics can be inserted into the sockets. Before connecting the power supply to the board, check again that all the components are in the right place and the right orientation. This card does not require any adjustment, and should work straight away.

When making the connection from the Psion 3C serial cable to the I/O board, care must be taken to ensure the TX, RX and GND lines are connected correctly. Pin 2 and pin 3 of the D-type connector on the Psion 3C serial cable are TX

Psion 3C OPL program list, RS232IOTEST:

PROC RS232IOTEST:

REM PSION 3A OPL test program for RS232
port and i/o port
REM COPYRIGHT to Pei AN
REM communication setting: None or Infrared

REM define local variables to be used in the program

LOCAL terms,baud\%, parity\%, data\%
LOCAL stop\%, hand\%, frame\%, srchar\% (6)
LOCAL d1\%, dummy\%, err\%, ret\%, len\%
LOCAL outbyte\%

REM open the RS232 channel
LOPEN "TTY:A"

REM dedine RS232 configuration parameters REM RS232 setting: 9600, 8 bit, no parity, 1 stop, no handshake
baud\%=15 : parity\%=0 : data\%=8
stop\% $=1$: hand $\%=4$: term $\&=\& 04002400$
frame\% =data\%-5
IF stop\%=2 : frame\%=frame\% OR 16 : ENDIF
IF parity\% : frame\%=frame\% OR 32 : ENDIF
Srchar\% (1) =baud\% OR (baud\% * 256)
Srchar\% (2)=frame\% OR (parity\% * 256)
Srchar\% (3) = (hand\% AND 255) OR \$1100
Srchar\% (4)=\$13

REM configure the RS232 port using the above parameters
$\operatorname{err} \%=\operatorname{IOW}(-1,7, \operatorname{srchar} \%(1)$, dummy\%)

REM PSION output the outbyte\% from the port

REM PSION input data
DO

FONT 8,8
PRINT "INPUT NEW DATA
INPUT outbyte\%
CLS
PRINT "OUTPUT BYTE ",outbyte\%
DO
LPRINT CHR (outbyte\%) ;
REM
output data from PSION
len\%=1 REM number of data read $=1$
ret $\%$ IOW (
1,1,d1[percent],len\%) REM input data. It only read 1 data

REM and assign the data to d1\%

$$
\begin{aligned}
& \text { AT } 1,3 \\
& \text { PRINT "INPUT BYTE ", d1\% }
\end{aligned}
$$

REM display d1\% which is the data input to 3C via serial port

UNTIL KEY\$=CHR\$(13)

UNTIL outbyte\%>=256

BAUD baud \%	$\begin{gathered} 150 \\ 5 \end{gathered}$	$\begin{gathered} 300 \\ 6 \end{gathered}$	$\begin{gathered} 1200 \\ 8 \end{gathered}$	$\begin{gathered} 1800 \\ 9 \end{gathered}$	$\begin{gathered} 2000 \\ 10 \end{gathered}$	${ }_{11}^{2400}$	$\begin{gathered} 3600 \\ 12 \end{gathered}$	$\begin{array}{r} 4800 \\ 13 \end{array}$	$\begin{array}{\|c\|c\|} \hline 7200 \\ 14 \end{array}$	$\begin{aligned} & 9600 \\ & 15 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 19200 \\ 16 \end{array}$
PARITY parity\%	$\begin{array}{\|c} \text { none } \\ 0 \end{array}$	even 1	$\begin{gathered} \text { odd } \\ 2 \end{gathered}$								
DATA data\%	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	6	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$							
STOP BITS stop\%	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$									
HANDSHAKING hand\%	$\begin{gathered} \text { ALL } \\ 11 \end{gathered}$	$\begin{gathered} \text { None } \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XON} \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { RTS } \\ 0 \\ \hline \end{gathered}$	$\times O N$ 3	+RTS	$\begin{gathered} \text { DSR } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{r}15 \\ \\ \hline\end{array}$	JSR	$\begin{gathered} \text { RTS } \\ 8 \end{gathered}$	$+ \text { DSR }$
term\&	only used when reading data from the port										

Table 2: data for configuring various RS232 ports
ENDP

The 'IOW(handle\%, function\%, variable1, variable 2)' command is used to provide access to various devices inside the Psion

Figure 9: the component layout and I/O socket pin-out

Video Surveillance

Pinhole Board Camera (B\&W) 12v
DC, 0.1LUX, 380 TV Resolution
Size: $35 \mathrm{~mm} \times 35 \mathrm{~mm}$
£35.00
Pinhole Board Camera (Color) 12v
DC, 0.5 LUX, 420 TV Resolution 2 board foldable £190.00

AudioNideo Transmitter module 12v DC, 4 Channel Selection $900 \mathrm{Mhz}-1200 \mathrm{MHz}$, FM Modulation £120.00

4 Channel Receiver + Switcher $12 \vee$ DC, Composite Audio/Video Output $£ 150.00$

TFT 4" Colour Monitor
12vDC
$£ 150.00$

We also stock:
Time \& Date Generator, Minature PIR etc.
Confidential Communications Limlted
344 Kilburn Lane, Maida Vale London W9 3EF
Tel (44)(0) 1819680277 Fax: (44)(0) 1819680194 Email: 106075.276@Compuserve.com
osziFOX
A universal 20 MHz storage oscilloscope

A slimline storage oscilloscope and digital

 voltmeter with a sampling rate of up to 20 MHz . Inclusive software enables the recorded signals to be displayed simultaneously on a PC screen. Sample Rates: From 50 ns to 1 ms . Purveyors of Quality Input Voltage: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$. Trigger: Internal, \pm External, Auto. Voltmeter: AC and DC.Electronic Thingiss at
Vary Friendly Pricos
Supply Voltage: 9 V to 13 V DC, 13 mA , external.
Trigger, ground, power \& serial cables included.
(o
Limits
Limed
2 Chase Cottages,
New Road, Aldham,

Also Available;

CCD Camera Modules fróm $\mathbf{\varepsilon 6 0}$ Complete CCD Kits, with housing, cable and connectors. Ready to run. BN + Audio CCD Kit $£ 85$
Colour + Audio CCD Kit £150
Please add $£ 2$ p\&p to all orders.
 HV3-2405-E5 $5-24 \mathrm{~V} 50 \mathrm{~mA}$ regulator ic 18 -264vac input B

LM 555 timer ic $16 \mathrm{p}, 8$ pin DiL socket 6 p all products adide kits rechargeable batteries capactiors tools etc always in
 nighlands. Northem Irefland, Iste of Mañ, Iste of Wight and overseas may be sublect to higher P\&P for heary items, VAT included in all prices

276276 Cras Chesterield 540 204,
Access Visa Orders (01246) 211202 fax 550959

3C. It opens a device driver with handle\% and performs the I/O operation functions with two further arguments. The size and structure of these two arguments depend on the requirements of the particular device driver.

When configuring the RS232 port, the handle\% is -1 , the function\% is 7 , the first argument is the serial port characteristic parameters group, srchar[percent](1) to srchar[\%](5), and the second argument is dummy\%. After running this command, the RS232 port is configured in accordance with the parameters specified by srchar[\%](1) to srchar[\%](5). In the program list above, the srchar[\%](1) to srchar\%(5) are calculated from input variables: baudz, parity\%, data\%, stop\%, hand\% and term\&. To find the value for each RS232 characteristic, use Table 2.

When reading data from the serial port, handle\% is -1 and function\% is 1. A terminator mask (term\&) may be supplied. This parameter allows users to specify one or more characters to be treated as terminating characters. The number of bytes to be received should be also specified. A reading terminates if a terminating character is received or if the number of bytes read is exactly the number of bytes requested. If term\& is not supplied (that is, term\&=\&0), the 3C terminates only if the number of bytes read into the $3 C$ is exactly the number of bytes requested. In the present application, the input data is a binary data which could be any value from 0 to 255 . The terminating character cannot therefore be used. The number of bytes to be received has to be set to 1 . Consequently, the Psion 3C only reads one byte a time. Variable1 is the variable which stores the value of the byte read from the serial port. Variable2 is the number of data to be read. Every time, the command is issued, a byte is read from the serial port and is assigned to variable1. You could then process the data. In the above example, this data is displayed on the screen.

Testing

After soldering, check all the joints and connections to make sure there are no shorts due to excess solder. Do not connect the power supply to the card until you have checked thoroughly that the board is properly constructed. Since the card is simple to construct and involves no adjustment at all, it will work straight away if all the ics are functional and properly located. To test the output of the ports, connect the card to the RS232 port of the Psion or PC via the RS232 cable and run the sample program. A logic probe can be used for testing the logic level of the outputs. If a logic generator is at hand, the input function of the card can be also tested. By connecting the eight output bits to the eight input bits, a loopback test can be conducted. In this case, the data received by the Psion 3 C will be equal to that sent out.

Applications

Constructing the card and writing a software driver will enable you to understand the RS232 port in depth. After construction, you can use the card for various PC interfacing applications using the powerful Psion 3C palmtop computers:

Eight digital outputs, eight digital input lines and a regulated +5 V power supply $(800 \mathrm{~mA})$ are all available from the I/O expansion socket, J6. A ribbon cable is used to connect the card to your application circuit. Some applications ideas are given below:

A mobile data acquisition system with a PC link (the cable link or infrared); a mobile control system for home automation or
for controlling laboratory experiments; a mobile heart beat monitor and analyser, for example.

Technical support

All components are available from RS Electromail or Maplin Electronics except the PCMCIA assembly which is available from CPC, Component House, Faraday Drive, Fullwood, Preston PR2 9PP, UK. Tel+44 1772 654455, stock no. CNO0842. The Psion 3C serial cable and PsiWin software package are available from Psion dealers. The PCB board is available from the author at a price of $£ 9$ and the ready-made Psion 3C serial cable for the I/O card is also available at a price of $£ 16$. A kit including all the parts is available from me. Please address enquires to Dr. Pei An. 11 Sandpiper Drive, Stockport, Cheshire, SK3 8UL, U.K. Tel/Fax/Ans: +44 (0)1614779583, email: pan@fs1.eng.man.ac.uk.

Resistors

(Metal film,	0.25 W 1 [percent])
R1	4 M 7
R2	1k
R3	390 R

Capacitors

$\mathrm{C} 1-\mathrm{C} 5$	22 uF electro
$\mathrm{C}, 10,11,12$	100 nF ceramic disc
$\mathrm{C7}, 8$	22 pF ceramic disc
C 9	2 n 2 ceramic disc

Semiconductors

IC1	MAX232CPE single voltage
	RS232 transceiver ic
IC2	CD4060 binary counter
IC3	74LS14 Hex NOR gate ic
IC4	CDP6402 UART
IC5	$7805+5 \mathrm{~V}$ voltage regulator

Others

Links	0.6 diameter copper wire or
similar	
$\mathrm{J1}$	3-way PCB connector
J 2	4-way dil PCB pins
$\mathrm{J} 3,4,5$	2-way PCB connector
J 6	20-way PCB dil male connector
J 7	11-way PCB sil socket
J 8	Fuse holder
F1	800mA fuse
HS	Heat sinks for 7805 power
regulator	
XTR	2.4575MHz crystal oscillator
Thren	

Psion 3C/Sienna serial cable
Optional

LED	Standard LEDs
SW	Toggle switch
SK	2.5 mm power socket

Maplin: PO Box 3, Rayleigh, Essex SS6 8L. Tel 01702554161.
(RS) Electromail: PO Box 33, Corby, Northants NN17 9EL. Tel 01536405555.
CPC, Component House, Faraday Drive, Fullwood, Preston PR2 9PP. Tel 01772654455.

DISTANCE
 LEARNING COURSES in:

Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

Wharses to suit beginners and those wishing to update their knowledge and practical skills

- Courses are delivered as self-contained kits
䜌 No travelling or college attendance
Learning is at your own pace
(\% Courses may have
BTEC Certification and Tutoring
For information contact: NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

c CHELMER VALVE COMPANY

If you need Valves/Tubes or RF

 Power Transistors etc. ...then try us!We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road Chelmsford, Essex CM2 ORG. England
Tel: 44-01245-355296/265865 Fax: 44-01245-490064

GTl
 ELECTRONICS
 today international

ETf can supply printed circuit boards for most of our current projects see the list below for boards available. For recent boards not listed check the constructional article for an alternative supplier.

Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in $£$ sterling only, payable to Nexus Speclal Interest Limited. Please allow 28 days for delivery. Access/Visa orders may be made on 01442266551 (ask for Readers Services).

Only boards listed here are available from our PCB Sepvice, For past issues of magazines, copy articles or binders, please see to admin panel (page 74) or contact Readers Services (see belowi) for information

Medium Wave LOOP AERIAL

 Intended for the serious listener, Raymond Haigh's inexpensive unit will greatlyimprove reception on the medium wave band, especially under difficult conditions

Aloop aerial is a standard item for the serious medium wave listener. Although the design described here has been prepared with the 'High Performance Medium Wave Receiver' (published in ETI 12 and 13 of 1997) very much in mind, it should work well with most receivers that have provision for the connection of an external aerial and earth. It will also greatly enhance the performance of portables with internal ferrite rod aerials.

Loop aerials have been used for medium wave reception since the early days of radio. They fell out of favour for domestic table sets during the 30 s and 40 s, but the introduction of ferrite materials at the close of the next decade enabled good signal pick-up to be achieved with a very small coil, and loop aerials wound on ferrite rods became standard fitments.

Basic design

The most important attribute of the loop aerial is its directional properties; in particular, its ability to null out an unwanted station or interference. This is not very pronounced in loops wound on ferrite rods because of the form and very small dimensions of the coil, and a larger, air-cored loop is required for serious medium wave listening.

Maximum signal pick-up is obtained when the plane of the loop is at right angles to the advancing wave. When the loop is parallel to the wave front, equal and opposing voltages are induced in the loop windings and the output is, in theory, zero.

Figure 1: the response pattern of a loop aerial

The loop aerial from the front with the case assembled
It is this feature that enables it to null out a signal.
Figure 1 shows the response pattern of a loop aerial. The loop is viewed from the top or side, and it will be appreciated that the setting for a strong response to a signal is quite broad, but the null position is extremely sharp (in practice well within a degree of angular rotation).

Signal pick-up is directly proportional to loop area and the number of turns of wire wound on the loop. Number of turns is, of course, determined by the required frequency coverage, and care must be taken to keep the self-capacitance of the winding as low as possible or the tuning range will be excessively curtailed at the HF end of the band. A widely published loop design consists of six or seven turns of wire, wound to a 10 mm pitch on a 1 -metre square frame, and tuned by a 500 pF variable capacitor.

An aspect of loop design seldom touched upon is the need for it to tilt as well as rotate in order to obtain the deepest

The loop aerial from the front showing the loop and PCB assembled

The PCB and swtich assembly in the aerial

Detail of the tuning pots mounted on the case

Figure 2: a theoretical circuit of the ' Q ' multiplier
for the home constructor incorporate a tilting adjustment.

The sheer size of the standard 1-metre square loop militates against dual pivoting. Loops as large as this are certainly inconvenient to handle and rather out of place in a domestic setting.

Windings can be arranged solenoid fashion or spirally, and it is claimed that the optimum width-to-diameter ratio of the latter improves directivity. In practice, however, little or no difference can be discerned between the two types. What is crucial is the symmetry of the windings (there must be a whole number of turns) if the nulling properties of the device are to be realised.

Traditionally, loops are connected to the
possible null. Electromagnetic waves radiated by transmitters reach the receiver by a number of paths: directly (line of sight), reflected up from the ground, diffracted around the earth's surface, and reflected down from the ionosphere. Because of this, the vertical angles the advancing waves present to the loop vary considerably, and the positioning of the aerial in the vertical plane is often as critical as its horizontal bearing when searching for a null. Despite this, few, if any, designs published
aerial and earth terminals of the receiver via a single turn coupling winding and a short length of twisted flex or coaxial cable. This results in an imperfect match to the 50 ohm input impedance of modern communications receivers, particularly when a large loop with a main winding of only six turns is involved. Field effect transistors, configured in a differential amplifier circuit, are sometimes used to make the energy transfer more efficient. While some designers claim that this

Figure 3: the dimensions of the loop aerial

Detail of the stand showing the circular protractor and a hardboard pointer disc at the base
arrangement enhances the directional properties of the loop, others advise against the inclusion of active devices in the signal path between loop and receiver, suggesting that cross modulation and other spurious response problems can arise.

There is usually no wired connection between a loop and a transistor portable, the transfer of energy relying upon inductive coupling with the receiver's internal ferrite rod aerial.

Design details

Consideration of the above factors, and experiments with loops and associated circuits of various kinds, culminated in the design described here. At 380 mm diameter, this loop is easy to handle and reasonably compact, and provision is made for tilting. Although signal amplifiers have been avoided, the inclusion of a 'Q' multiplier circuit makes it possible to increase the signal output from the unit to a level where it is comparable to that of a much larger loop. Increasing ' Q ' enhances selectivity as well as sensitivity, and the reduction in bandwidth cuts the amount of atmospheric and man-made noise reaching the receiver (the wider the window is opened the more the dirt flies in). This feature is extremely useful in resolving weak signals under difficult conditions.

The circuit.

The circuit of the unit is given in Figure 2. The eighteen-turn

The stand before the rotating column, aerial case and counterweight are mounted
main winding, L1, is tuned by variable capacitor C2. An integral trimmer, C 1 , sets the upper limit on the HF coverage.
Field effect transistor Q1 buffers the signal voltage across the resonant circuit and feeds a portion back, in phase, via the single-turn feedback winding L3. This positive feedback, or regeneration, enhances the ' Q ' of the tuned circuit and signal magnification and selectivity are very considerably increased. Full control over the amount of feedback, from zero to the point of oscillation, is provided by potentiometer R3, which varies the voltage on the drain of Q1. Smoothing capacitor C5 eliminates potentiometer noise.

A low value coupling capacitor C3, together with C4 and R2, ensure that the action of the ' Q ' control is smooth and completely free from backlash. The value of C 4 has been determined experimentally to ensure that its setting is as constant as possible over the full swing of the tuning capacitor. R2 is pre-set to suit the characteristics of the particular FET used, and its adjustment is not critical.

Equipment of this kind can be inadvertently left switched on, and low-current LED, D1, makes use of the current flowing through the ' Q ' control potentiometer chain to provide a visual indication. Series resistor R4 sets the voltage across the potentiometer. On/off switch S1 controls the 9V supply.

The loop and associated circuitry are completely 'floating'. Connection to the receiver is via the single turn coupling loop L2.

Components

The only item requiring comment is the tuning capacitor. A component with a low minimum capacitance (not more than 10 pF) and a maximum capacitance of at least 365 pF is needed to secure full coverage of the medium wave band. An inexpensive Toko polyvaricon solid dielectric variable is fitted in
the prototype unit. With one of its FM and one of its AM gangs connected in parallel, a 10 to 365 pF swing is achieved.
Trimmer capacitor C1 is integral with this unit, which is retailed by Cirkit, who supply a suitable extender for the short spindle.

Front-end ' Q ' multiplying circuits can be microphonic when critically adjusted, and the solid dielectric in the Toko capacitor inhibits this tendency. (The prototype unit did not display any problems of this kind.)

The remaining components and construction materials are widely available.

Construction

Details of the loop are given in Figure 3 and the photographs. A $380-\mathrm{mm}$ diameter hardboard or MDF disc supports the windings. Cut 33 radial slots, each 25 mm deep, around the circumference to accommodate L1. (The slots are spaced a trifle less than 11 degrees, and 'tight' setting out to this angle should result in even spacing).

Drill 1-mm diameter anchor holes at the top and bottom of one of the slots, and wind on 18 turns of 22 SWG enamelled copper wire, weaving it 'in and out' of the slots, basket fashion. Keep the turns tight and space them as evenly as possible. This form of winding is necessary in order to separate the turns and reduce the self-capacity of the coil, and an odd number of slots must be cut to produce the basket-weave effect.

Draw an inner concentric circle, 70 mm in diameter, and drill twelve, 1 -mm diameter holes around its circumference. Thread 22 SWG enamelled wire 'in and out' of these holes to produce the coupling winding L 2.

Draw a $130-\mathrm{mm}$ diameter circle, drill eighteen $1-\mathrm{mm}$ diameter holes and repeat the process to produce feedback winding L3.

Drill a 6-mm diameter hole for the output leads, close to the ends of L2, and mount a three-way tag strip over it. Solder the ends of L2 to the outer tags.

Spacing the turns of L1

The upper frequency limit of the medium wave band is usually taken as 1600 kHz . However, in Europe, Africa and the near and Middle East, transmissions extend up to 1620 kHz . Australia boasts low powered transmitters working at 1720 kHz , and stations in the USA have, fairly recently, begun to operate at frequencies up to 1700 kHz . In the UK, cordless 'phones use channels between 1600 and 1700 kHz .
Notwithstanding the possibility of interference from this allocation, it is clearly desirable to extend loop coverage up to 1700 kHz .

This can only be achieved by carefully spacing the turns of L1 in order to reduce the self capacity of the winding. Using the tip of a small screwdriver, ease the winding segments on both sides of the disc apart, and take care to ensure that adjacent turns don't touch where they cross in the slots. Half an hour spent on this task increased the HF coverage of the prototype coil from 1600 to 1750 kHz .

Apply ribbons of Durofix or some similar general-purpose tube glue across the turns to keep them in place.

The ' Q ' multiplier.

Most of the components, including the loop tuning capacitor, are mounted on a small PCB. The layout of the component side of the board, and details of the off-board wiring, are given in Figure 4. Vero pins inserted at the lead-out points will ease the task of off-board wiring.

Initial testing

Loop and ' Q ' multiplier can be tested before being mounted on a stand. Check the PCB for bridged tracks and poor soldered joints, and check the orientation of D1, TR1, C1 and C2, and C5. If all is in order, set R2 to half-travel and connect up a fresh 9 V battery. Current consumption should be around 3 mA .

Connect the loop to the PCB and prop it in a vertical position. Connect $L 2$ to the receiver with a short length of twisted flex (not muich more than 1 metre), and tune the receiver to a station around the centre of the dial. Set C2 to resonate the loop at the same frequency.

Switch on the ' Q ' multiplier and advance R3. The increasing selectivity will expose any inaccuracies in the setting of the tuning capacitor, and it may have to be adjusted slightly to peak the output from the loop. Gently advance R3. If the transmission is reasonably strong, the 'S' meter pointer should be moving across the scale now. Band noise should reduce, then the upper audio frequencies will disappear and, finally, the audio will become muffled just before the onset of oscillation.

Set R2 to the highest possible resistance consistent with ' Q ' control R3 being able to just bring the system into oscillation at any setting of the tuning capacitor. Six different specimens of 2N3819 were tried in the prototype. All enhanced the ' Q ', but one failed to oscillate with the component values shown. If advancing R3 produces no increase in loop output, check that L3 has been connected, as shown, to inject positive feedback.

Tuning and hand-capacitance

The initial test will reveal that loop tuning is critical when the ' Q ' multiplier control is well advanced, and the tuning capacitor must be fitted with a reduction drive. Most loop aerials are prone to hand-capacity effects, but this unit is comparatively free from problems of this kind. An insulated extension (40 mm waste cut from a plastic potentiometer shaft), fitted to the tuning capacitor, almost eliminates the effect, even when ' Q ' is

Figure 4: the component layout of the PCB, and the offboard wiring

The aerial mounting used on the prototype, showing the angle adjustment and the counterweight

Figure 5: a side view of the aerial assembly, with dimensions
set high. Any residual traces when the loop is tuned to the HF end of the band can be eliminated by earthing the metal reduction drive and the case of the ' Q ' control potentiometer.

NB: no other parts of the loop or its circuitry should be earthed, or its performance will be impaired. The centre contact on the lead-out tag strip can be used to anchor the earth wire, and the earth connection made via the screening braid of the cable between loop and receiver.

Simple loop mountings

The loop cannot be used without an adjustable mounting. The method adopted will depend on the time and resources of individual constructors. It need not be complicated. A $50 \times 50-\mathrm{mm}$ softwood post, screwed to a $250 \times 250-\mathrm{mm}$ blockboard or chipboard base, and free to rotate, will act as a vertical pivot. The loop disc can be attached to the top of this post by a stiff hinge to provide a means of tilting it.

The 'Q' multiplier $P C B$, the various controls, and the battery must be mounted as close as possible to the loop and be rigidly fixed to it. A metal or plastic box could be used to house these parts, and it could be slung just beneath the loop on plastic or wooden battens. If a metal case is used, it should be earthed.

This basic arrangement was adopted for the initial testing, and it worked tolerably well. It soon became clear, however, that in order to make the most of the loop's potential, and maximise the pleasure of using it, a more elegant mounting is required.

Case construction

Figures 3, 5 and 6, and the photographs, show how the prototype loop is housed and mounted. A little more time and effort (but very little cash) will be required to duplicate these arrangements, and no doubt individual constructors will have some excellent ideas for improving on them. Bearing in mind that the only comparable commercial loop (which is somewhat smaller than this unit) retails in the UK for around $£ 350$, the extra time and effort spent on these refinements is worthwhile.

The loop case

The loop case consists of a hardboard tray with $35-\mathrm{mm}$ deep plywood sides. Back and sides are glued and pinned together: the front is held in place by screws to facilitate access. Softwood blocks permit the rounding of the corners, and the lower end is extended and tapered to accommodate the PCB and controls.

The loop is spaced off the back of the case by four softwood blocks, $15-\mathrm{mm}$ thick, and a compartment for the battery is accessed from the rear.

Because the loop sometimes has to be rotated away from the operator, the controls are best brought out through the lower end of the case rather than the front. Arranged in this way they can be operated fairly easily with the loop in any position. Dials are useful rather than essential. On the prototype, these were made from thick discs of ply cut out with an electric drill-powered hole-saw. Lids from small tins or jars would probably serve just as well.

The stand

The vertical pivot needs to be elevated if the loop is to rotate smoothly and without judder. It is formed at the top of a length of $25-\mathrm{mm}$ dowel or broom handle, which is glued into a substantial base. A plywood box column is pivoted on, and rotates around, the dowel. Use a bolt for the top pivot, and form the hole for the bottom bearing around the dowel with the hole saw. (This tool can also be used to form the dowel hole in the base.)

Some form of counterbalancing is required for the loop case, and a horizontal arm, comprising another box member, carries the
loop at one end and a counterweight at the other. Two bolts pivot the arm at the top of the column, and wing nuts control the friction of these bearings. Tapered battens strengthen the fixing between the arm and the back of the loop case. A burnt out mains transformer or a tin filled with scrap lead will act as a counterweight. (An old iron ball was used in the prototype. Located at a distance of 300 mm , the mass of metal did not affect the performance of the loop.)

Some means of measuring the horizontal and vertical position of the loop is helpful. Fix a circular protractor to the base and a hardboard pointer disc to the underside of the rotating column. There must, of course, be a millimetre or so clearance between protractor and pointer disc. Fine adjustment of the clearance can be made by placing washers on the top pivot bolt. If the centre of the protractor is drilled or cut so that it can rotate around the dowel or another hardboard disc, it can be set with 0 degrees pointing north to make bearing calculations easier.

Cut a semicircular protractor into two quadrants and sandwich a slip of paper between the pieces to produce a readable means of measuring the tilt angle. This is fixed at the rounded top of the rotating column, and a pointer is secured to the horizontal arm.

Plywood for the column, arm, and battens should be at least 9 mm thick, and parts should be glued and screwed, or glued and pinned, together.

Finishing the case

The loop case, plywood dials and hardboard pointer disc were sprayed satin black with car paint. The stand parts were stained and French polished, but a few coats of clear satin varnish would have served just as well. The tuning dial is best calibrated, after the final setting up process, by matching it to the receiver dial. Rubdown transfers were used to annotate the dial and form the pointers.

Connecting the loop

For best results, link the loop to the receiver by means of twin screened cable. The cable's inner cores connect the ends of the coupling coil $L 2$ to the floating input on the 'High Performance Medium Wave Receiver', or to the aerial and earth terminals on other receivers. The outer screen is connected to earth at the receiver.

The loop has been checked out on a high performance communications receiver with an unbalanced 50 ohm input, and it worked well. Damping caused by the low input impedance did not inhibit the operation of the ' Q ' multiplier. Experiments with impedance matching transformers wound on dust iron toroids did not reveal any discernible improvement over the direct connection of the coupling loop.

Portable receivers should be placed in close proximity to the loop with the coils on their intemal fernite rods parallel to it. Small portables can be rested inside the counterbalance arm.

Using the aerial

Loop tuning must, of course, be kept in step with main receiver tuning, and the ' Q ' multiplier control is best switched off while band browsing in order leave selectivity as wide as possible. When using the loop, always switch any aerial attenuators out of circuit.

It will be found that perfect nulls cannot be obtained on all signals (the BBC and commercial operators transmit the same programme material, on the same frequency, from a number of locations). Careful adjustment of the horizontal and vertical bearings of the loop will, however, usually result in a deep null when the signal is being received from a single source, and the drop of the ' S ' meter pointer will be sudden and pronounced.

Figure 6: a section through the vertical column of the aerial stand

Local electrical interference and interference from different stations on the same or adjacent channels can usually be nulled out, and this is the loop's main virtue. Sometimes, nulling out a strong signal will reveal a more distant station operating on the same frequency.

Selectivity is greatly increased by advancing the ' Q ' multiplier control, and bandwidth can be reduced to the point where the signal loses intelligibility, A slight shifting of loop tuning then enables clear reception to be obtained from one or other of the transmitted side bands. This sometimes improves reception under difficult conditions. Reducing bandwidth also improves the signal-to-noise ratio.

Signal magnification, that is, loop output, is greatly increased when the ' Q ' control is advanced, and weak signals can be lifted right out of the noise. When a station has been accurately tuned in, operation of the ' Q ' multiplier control is extremely smooth, completely free from back lash, and has no perceptible effect on the setting of the tuning control.

When ' Q ' is turned up, the loop will 'pull' the tuning of portables and simple receivers (that is, the loop, not the receiver, will determine, within narrow limits, what station is received).

Don't operate the loop in close proximity to computers, television receivers, fluorescent lights and other sources of radio interference. In this connection, it should be noted that the digital circuits driving the frequency displays of some communications receivers can radiate quite strong interference. (The internal circuits of the receiver are appropriately screened.) Bringing the front panel of the receiver close to the loop will expose any problems of this kind. Sometimes the arrangement of house wiring and metal conduits in the vicinity of the loop will impair its nulling properties. If this is suspected, try the loop in another room or, better, in the garden.

A compass to set the bearing protractor and conventional and great circle maps will assist in seeking out and identifying stations.

Bargraph Module

Terry Balbirnie continues a series of adaptable circuits for GCSE projects with a voltage-sensitive Bargraph module based on the LM3914 display driver

In this series we are describing some electronic modules that will be useful to students of GCSE Technology and those following similar courses at school or college. The circuits may be used as a basis for practical projects.
All the designs are given as a circuit diagram and a stripboard (Veroboard) layout. Details such as what the circuit is to be used for and how it will be built into a box are left for you students to apply to your needs.

Drawing a graph

This month we shall describe a Bargraph module. This responds to a voltage applied to its input, and lights up one of a row of LEDs according to the value of this voltage. The sensitivity is adjustable using a preset potentiometer on the circuit panel. The most sensitive setting is 0.125 V per LED that is, it requires 0.125 V to light the first one, 0.25 V for the second and so on up to 1.25 V for the last. With the component values stated, the least sensitive setting corresponds to about 3 V per LED - that is, the first one operating at 3 V and the last one at 30 V .

The display used in the prototype was a commercial package consisting of ten LEDs arranged in the form of horizontal bars, so that a small voltage will light up the first bar and increasing voltages will light up successive ones. It would also be possible to use separate LEDs. This would involve a lot more building work, but it would have the advantage that different colours could be used, so that the first LEDs to light could be green, followed by yellow, orange and red (for example).

The finished circuit could be used to indicate the output voltage of a power supply unit. It could also be used to check the voltage of a car-type battery to give an indication of its state of charge. It could also determine the state of standard throwaway batteries and nickel-cadmium cells. A further use would be to display sound levels by connecting the input to the headphone socket of a personal stereo. The circuit will respond to the positive peaks of the ac input. The negative excursions will have no effect.

A novel use for the circuit would be to sense position or movement by using the object to rotate the sliding contact of a potentiometer which would vary the voltage applied to the input. In that case, you would need to obtain the supply for the potentiometer from a voltage regulator, because the circuit responds to absolute voltage levels.

The circuit

The circuit for the Bargraph module is shown in figure 1. The device requires a supply of its own, and any battery having an output of between about 6 V and 9 V will be found to work well. Diode D1 provides protection to the circuit if the battery were to be connected with the wrong polarity, as it would then not

Figure 1: the circuit of the Bargraph module
conduct and no current would flow.
The circuit centres on IC1, an LM3914 bargraph driver ic. This is a complex device which contains a set of ten op-amps connected as voltage comparators. The inverting inputs are all connected together and receive a voltage from the external source applied to pin 5 . The non-inverting inputs are connected to a resistor chain. The top end of this is connected to a precision on-chip 1.25 V reference. The chain of resistors provide a set of potential dividers which apply fractions of the reference voltage to each of the ten op-amp non-inverting inputs. These fractions increase in 0.125 V steps. With no voltage applied to pin 5 , all non-inverting inputs are at zero voltage, so all the op-amps will be on. As the voltage applied to pin 5 increased form zero to, say, 1.3V, the non-inverting input voltage of each op-amp will exceed the voltage applied to its non-inverting input and the output will switch off. This will allow current to sink through the LED connected to it. This will happen at $0.125 \mathrm{~V}, 0.25 \mathrm{~V}, 0.375 \mathrm{~V}$ etc. up to the reference value of 1.25 V .

Pin 9 is the "mode pin". If it is left unconnected as shown, the display will be in "dot" mode. This means that as each successive LED bar lights up, the one before it will go out. In fact, there is a small crossover where two bars may be on at the same time.

By connecting pin 9 to supply positive, the display will enter "bar" mode. Here, the display will look rather like a thermometer. As each successive bar lights up, those before it will remain on. Although other approaches are interesting and possibly a subject for experiment, using a practical circuit in dot mode is strongly advised because it has certain advantages. The most important is that only the current for one LED is drawn from the supply at any time. If bar mode were used, with all ten bars lit, the current requirement would be considerable

and this would quickly drain the battery. A further point is that the power required for this could exceed the limit of IC1 (about 600 mW) and it could be destroyed.

The circuit would not be very versatile if the input voltage had to lie within the "basic" range set by $I \mathrm{C} 1$, that is, 0.125 V to 1.25 V . Preset potentiometer RV1 is therefore used to scale

Figure 2: the component layout of the Bargraph module

Figure 3: the back of the stripboard, showing cutouts
down the input voltage so that, with any voltage within range, it will apply the basic voltage to pin 5 .

Construction

The topside stripboard layout (component side view) is shown in figure 2. As shown, the LEDs will light from the top. It will need to be turned upside down if the bars are to progress from the bottom.

There are a large number of inter-strip links and a few track breaks needed in this circuit. Begin with the track breaks then solder the link wires in place. If the circuit does not work, it is almost certainly due to a strip not being properly broken, a break or link wire being left out or a blob of solder or particle of copper bridging adjacent copper tracks. Note how all strips to the righthand side of IC2 (pins 11 to 20) are connected together and taken to the positive supply rail. This is done by soldering a piece of connecting wire on the copper strip side of the circuit panel as shown in the diagram.

Solder the ic sockets and all other components in position. Take care to mount diode D1 with the correct orientation: Solder battery connectors to the " +9 V " and one of the " OV " points. Solder short pieces of wire to the " +Vin " and the other "OV" point. Adjust RV1 to approximately mid-track position, which will give medium sensitivity to start with.

Insert IC1, taking care over its orientation. This is a CMOS device and could be damaged by static charge on the body. To make sure this does not happen, touch something which is earthed - such as a water tap - before handling the pins. Insert the LED display (this is labelled IC2, although it only contains an array of LEDS). It seems that the only simple way of identifying which way round this should be placed is to look at the lettering on the side. This should be placed to the right. If the circuit does not work at the end, it may be that it is the wrong way round.

Capacitors C1 and C2 promote stability. They bypass the small amount of alternating current which could be induced in the wiring and this could cause several LED bars to flicker on at the same time.

Testing

Connect a 6 V or 9 V battery. Apply a 9 V battery to the "Vin" wire (positive) and the inner OV wire (negative). If the wires are connected the wrong way round, nothing will happen. You should see one of the bars light up. By adjusting RV1, it should be possible to make others do so. If more than two bars are lit at the same time, try increasing the value of $\mathrm{C} 1, \mathrm{C} 2$ or both.

The input is protected and no harm will result if the voltage being measured is either connected in the wrong sense or is too high. An applied voltage above the range will simply keep the tenth bar operating.

Resistor R3 determines the brightness of the LEDs, and this will hardly vary with changes in supply voltage. The value stated should work well.

Sensitivity adjustment

With RV1 sliding contact turned fully anti-clockwise (as viewed from the left-hand edge of the circuit panel), the circuit will be as sensitive as IC1 will allow - that is, 0.125 V per bar. Here, the input voltage is effectively connected direct to pin 5 via resistor R2. This resistor normally has virtually no effect. However, if an excessive voltage were to be applied to pin 5 , it would limit the current entering pin 5 and no harm would result up to a few tens of volts. With RV1 sliding contact rotated, a potential divider is formed which effectively scales down the voltage applied to pin 5. RV1 does not behave in a linear way but, with the values shown and with maximum rotation the sensitivity of the prototype was $3 V$ per LED.

Resistors

R1 4.7k
R2 39k
R3 1k
RV1
100k min vertical preset.

Capacitors

(2.5mm pin spacing)

C1
100n
C2
470n

Semiconductors

IC1	LM3914 bargraph display driver
IC2	10-segment bargraph display
D1	1N4001

Miscellaneous

0.1-in matrix stripboard; PP9 battery and cornectors; 18-pin dil socket; 20-pin dil socket.

DSP Comms Chip Requires Fewer Support ICs

The DSP16000 from Lucent Technologies Microelectronics Group is a new-generation digital signal processing core for applications such as cellular telephones, multi-channel modems and, in the case of the first device, the DSP16210, wireless base stations. The 16210, which has a large on-chip RAM and so requires no external memory, is expected to lower the cost of wireless base stations by reducing the number of chips required in future base stations.

Features of the DSP16000 core include dual 32 -bit access in one cycle, dual MAC in one cycle and mixed signal 16/32-bit ISA (instruction set architecture) for high performance with reduced code size. The core also has a system cache for ultra low power, extensive support for high-level languages, and is source code backwards-compatible with the Lucent DSP1600 range of comms DSPs. The core includes a dual MAC architecture, $62 \mathrm{k} \times 16$ SRAM, DMA on the host port (PHIF) and serial port (SIO). The peripheral mix includes DMA I/O and direct connection to E1, T1 and TDMA interfaces common in infrastructure architectures. The DSP16000 gives sufficient performance at 2.7 V , say Lucent, to implement at least four complex speech coders, such as GSM, HR or EFR), and many channels of error correction, equalisation or modems such as V.34.

Lucent Technologies designs, builds and delivers public and

private networks, comms systems and software, consumer and business telephone systems and microelectronic components. The R\&D arm of the company is Bell Laboratories.

For more information contact the Lucent Technologies Dataline at Tel 01189324299 Fax 01189328148 or Simon Cosgrove, Lucent Technologies Microelectronics Group, Microelectronics House, Broad Lane, Bracknell, Berks RG12 9GX. Tel 01344865910 Fax 01344865923 . Web www.lucent.com/micro

Fast Fivers

Adaptable, affordable - handy circuits for around £5. By Owen Bishop

8. A Digital Die

Here is a die that shows all the expected faces, from 1 to 6 , but does not have the irritating habit of rolling off the table and under the sofa just as the game is getting exciting. The die consists of a square black box bearing seven red 'dots' (actually LEDs). When battery power is supplied, the display of dots repeatedly cycles through all the conventional dot patterns, but runs so quickly that you have no time to recognise them. When the button is pressed the display halts at one of the numbers. Release the button and off it goes again.

How it works

The display is driven by a counter (IC1 in figure 2), which has a built-in oscillator. The counter has 14 stages but we use the outputs from only three of these, stages 5,6 and 7 . With the
given resistor and capacitor valứes, the outputs of these stages cycle through the binary states $0(000)$ to $5(101)$ at just about the right rate to make the display impossible to follow. The next part of the circuit consists of logic gates connected so as to light up the appropriate LEDs at each state. What we need to do is set out in the following table; figure 2 (the stripboard layout) shows the numbering of the LEDs:

Decimal	Binary	Display	LEDS to be
State	State	value	lit up
$\rightarrow-$	CBA		
0	000	1	4
1	001	2	1,7
2	010	3	1, 4, 7
3	011	4	1,2,6,7
4	100	5	1,2,4,6,7
5	101	6	1,2,3,5,6,7
6	110		

Reset to 1

Figure 1: the back of the stripboard layout
the
All the logic is done with two types of gate. The NAND gates (IC2) give a low output (1) when and only when both of their inputs are high. The NOR gates (IC3) give a high output when and only when both of their inputs are low. The function of the buffer gates (IC4) is to provide enough current to drive the LEDs. Because these are inverting buffers, they need a low input to turn the LEDs on.

The table shows that LEDs 1

Figure 2: the circuit of the Digital Die
and 7 always come on together, so we can control these from a single buffer. The same applies to LEDs 2 and 6, and LEDs 3 and 5. LED 4 operates on its own. The table shows that LED 4 is to be on when digit A is low. This makes the logic very simple; the buffer for LED4 (4b) is connected directly to the A logic line.

LEDs 3 and 5 are slightly more complicated. They are to be on only at state 5 . This state is distinguished by the fact that A and C are both high during this state, but not in any other state. 'Both high' implies using a NAND gate (2c). When A and C are both high, the output of $2 c$ goes low; this logic low is fed
to the buffer (4c), turning on LEDs 3 and 5.
LEDs 2 and 6 need even more elaborate logic. They are to be on for states 3 to 5 , that is when A AND B are high - OR when C is high. Gate 2d takes care of the A AND B logic, except that its output is low when this state occurs. We use gate 2 g with its inputs wired together to act as a INVERT (or NOT) gate and turn this low into a high. Then we use gate $3 c$ to $O R$ this with the state of C, to give a low when (A AND B) OR C occurs. The low supplied to buffer 4 a turns on LEDs 2 and 6.

LEDs 1 and 7 must be on when all outputs are low. To make use of the gates available, we take the opposite viewpoint and say that they must be on when A OR B OR C are high. Gate B looks for high B OR C and goes low when this happens. Gate 3d changes this to a high. Gate 3a goes low when it receives a high from gate 3d OR a high directly from A. The resulting low, arriving at buffer 4d, turns on the LEDs.

If we let the counter continue beyond stage 5 it goes through stages 6 and 7 giving us an extra 5 or 6 in each cycle. The die is loaded! To prevent this, we reset the counter immediately it goes into stage 6, as soon as both digits B and C are high. We detect this with the fourth NAND gate (2a), and use a buffer (4f) to invert its low output to give a high pulse to reset the counter.

Construction

The circuit is most conveniently assembled on a single piece of stripboard with the display at one end (figure 3). But you can adapt the design to put the display on a separate board. You can use larger, jumbo-sized LEDs, but we preferred 'dot' LEDs, which are cylindrical and 3 mm in diameter. The circuit is powered from a 9 V battery, such as 6 AA cells in a battery box or a 9V PP3 battery. It also runs at 6 V , in which case you need to reduce the value of R3-R6 to 270 ohms.

Begin with IC1, its associated resistors and capacitor and the push-button S1. Leave a few millimetres of the leads of C1 showing above the board, to make it easier to connect another capacitor in parallel with C1 when testing (see below). Note that some of the copper strips are NOT cut beneath the ics (though they are all cut beneath IC1) or between one ic and its neighbours. This helps reduce the number of wired connections required. Also note that we have used solder blobs in some places, to make connections between adjacent copper strips. The best technique is to build up a large blob on each side of the intended join, then let the blobs cool. Finally

touch the soldering iron to both blobs simultaneously and apply a little solder across the gap.

When IC1 is assembled, temporarily connect pin 12 (reset) to ground and use a testmeter or digital probe (from an upcoming

Fast Fiver, for instance) to check that the oscillator is working at a suitable rate. You should see the meter needle (yes, an oldfashioned analogue meter or a digital meter with analogue display is best for this kind of testing) flickering rapidly on all pins 4 to 6 .

Next assemble IC1 and IC2, including the inter-pin blobs at F34/G34 on IC2 and at E29/F29 on IC3. Remember that the pinout of the four gates in the 74 HCO 2 is entirely different from that in the 74 HCOO , so check back to the pin numbering in figure 1. IC4 comes next; gate 4 e is a spare and, in order not to leave it with its input floating, it is connected to the output of gate 4 c by means of the copper strip left uncut at H 19 .

At this stage you could use a testmeter or digital probe to confirm that everything is working properly. It helps to connect a larger-value capacitor (for example, a 10 microfarad electrolytic) in parallel with C1 to slow down the rate of cycling. Or you may prefer to carry on and complete the wiring of the resistors and LEDs before testing. A heat shunt is strongly recommended when soldering the LEDs. Unfortunately, not all manufacturers keep to a standard way of indicating which wire is the anode and which is the cathode. Before you begin to solder in the LEDS, test one with a 1.5 V cell or with a higher voltage and a series resistor (9 V and 470 ohms) to see which way round they should go.

The appearance of the display is improved by fitting a small square box around the LEDs, to make them look like the dots of a typical die. When all is ready, connect the battery and watch the LEDs flicker. To 'shake' the die, press and hold S1. There is no way of telling what stage the counter is at when the button is pressed so the 'throw' is in effect random.

Resistors

(All 5 percent, 0.25 W)
$\begin{array}{ll}\text { R1 } & 5.6 \text { kilohm } \\ \text { R2 } & 56 \text { kilohm }\end{array}$
R3 - R6 470 ohm (4 off)

Capacitor

C1
100 nF , polyester.

Semiconductors

IC1

IC2
IC3
IC4
LED1 - LED7

4060 CMOS 14-stage counter with oscillator 74HCOO CMOS quadruple 2input NAND gate 74HCO2 CMOS quadruple 2input NOR gate 4049 CMOS hex inverting buffer Light-emitting diodes, preferably 'dot'-shaped

Miscellaneous

S1 push-to-make push-button Stripboard $34 \mathrm{~mm} \times 124 \mathrm{~mm}$ (13 strips $\times 48$ holes), terminal pins (4 off), 14-pin dil sockets (2 off), 16-pin dil sockets (2 off), 9 V battery box or PP3 battery clip.

ETI Book of Electronics
 This book is both a theoretical and practical introduction to electronics. It clearly

 explains the theory and principles of electronics and each chapter includes a project for the beginner to make. The projects are a loudspeaker divider, continuily tester, 'brown-out' alarm, freezing alarm, loudspeaker, mini-amplifier and a burglar alarm. NB214 £12.45 UK £ 12.95 Overseas
Scanners 2 International.
 The companion book to Scanners provides even more information on the use of VHF

 and UHF communication bands and gives details on how to construct accessories to improve the performance of scanning equipment. The book is intermational in it's scope and contains frequency allocations for all three IUU regions, including country-by-country variations. NB216 E11.45 UK£11.95 Overseas
Scanners 3-Putting
Scanners into Practice
This is the fourth revised and completely updated edition of Scanners, the complete VHF/UHF radio listeners guide and contains everything you need to know to put your scanner to better use. There is vastly more information than ever before on frequency listing: in particular actual frequencies used by coastal stations, airfields and the emergency services. Also included for the first time is a section on the HF (short wave) band as many scanners now cover this range.
NB217 £11.45 UK £11.95 Overseas
Telephone orders: 01322616300 ask for Nexus Direct:
Expiry Date.............................Signature

Name.
Address.
Post code

Telephone Number

Complete details and return coupon to: Nexus Direct, Nexus House, Boundary Way, Hemel Hempstead, Herts, HP2 7ST, If you do not wish to receive mailing from other companies, please tick box. \square

\qquad
Please send me...............copies of NB
@.
Please send me...............copies of NB
@.
Please send me..............copies of NB

\qquadI enclose my remittance of $£$.

I encilose my cheque/PO for.......................mode payable to Nexüs Special Interests or please debit my Access/Visa.
$\square \square \square$

Samuel Dick wanted a small and portable tone-generating tuning aid, so he designed his own, with the help of the PIC 16C64.

K
eeping musical instruments in tune is an everyday task for musicians, so a simple tuning device is a welcome addition to their music bag. Commercial tuners usually have a visual indication of correct tuning - either a row of LEDs or an analogue meter is used to indicate pitch offset. These are electronically very convenient, but most musicians are more accustomed to tuning to a reference sound. For example, orchestras often tune to the first oboe, chamber groups to the keyboard instrument (a harpsichord, for example), if present, and string groups agree among themselves to tune up to one of their string instruments. So tuning by ear is a skill needed by both professional and novice musicians.

The simple tuner described in this article helps the aural
tuning process by generating the correct tones for - in this particular model - a double bass. To make the tuner as simple and as accurate as possible, a PIC microcontroller is used to do all the waveform timing. Using a microcontroller reduces the complexity of the project compared with a hard-wired logic design, and the microcontroller has features useful in battery-powered equipment, such as hibernation, that dedicated keyboard synthesiser chips lack.

One of the troublesome aspects of a double bass tuner is the need to reproduce very low notes. The lowest frequency needed is that of the E strong, at 82.4 Hz . Such a low frequency is not efficiently handled by the size of loudspeaker, up to around 50 mm in diameter, normally acceptable in a portable tuner, so this tuner uses good quality earphones instead.

Figure 1: the circuilt of the Double-Bass Tuner

Figure 2: the component layout of the Double-Bass Tuner

Timing

The heart of the tuner is a PIC 16C64 microcontroller which contains a 16-bit timer. In total, the microcontroller has three timer units. Timer-0 and Timer-2 are 8-bit counters; Timer- 1 is a 16 -bit counter, which is configured by the software to count pulses from the system's crystal oscillator and, when a particular value (stored in that counter's compare register) is reached, issue an interrupt request. When the microcontroller receives the interrupt request, it executes an interrupt service routine which toggles the state of two of the output pins on Port-B, one of the digital input/output ports.

The use of a 16 -bit counter combined with a fairly high system oscillator frequency (8 MHz , resulting in 2 MIPS performance) allows the tuner to be very accurate. The frequencies that can be generated by this technique are given by the simple equation $2 \times 106 / n$, where n is the number in the counter's compare register. A little experimentation with n will show that an 8 -bit counter ($0<=n<256$) cannot generate frequencies sufficiently accurate for use as a musical tuner.

When it is active, the PIC spends its time looking at the keypad (SW1a, b, c, or d), either waiting for a user to press one of the switches, or servicing an interrupt. When one of the note-selection keypad buttons is pressed, it clears its corresponding bit in Port-B (Port-B pins have an internal weak pull-up that is enabled in the software). When a keypress is detected, bit-test functions are used to determine which key was pressed. Timer-1's compare register is then loaded with the particular value needed to ensure that an interrupt is generated each half-cycle of the note requested, Timer-1 is cleared and enabled, and interrupts from Timer-1 are enabled. Timer-1's compare register is a 16 -bit register each half of which (the high and low bytes, CCPR1H and CCPR1L) is accessed independently.

For example, to generate an E with a frequency of 82.4 Hz and a cycle time of 12136 microseconds, the PIC needs to change the state of the output pin every 6068 us. A sinewave spends half its cycle positive and half negative, so the output pin spends half a cycle on, half a cycle off. Timer-1 is incremented every four systemoscillator periods, that is, steps of 0.5 us with an $8-\mathrm{MHz}$
system oscillator. So the Timer-1 compare register is loaded with 2F68h: every 12,136 steps (6068 us) an interrupt is generated that, in turn, calls the interrupt service routine to change the state of the output pin. Thus the output pin is high for 6068 us and low for the next 6068 us.

This scheme generates a squarewave at the correct frequency but, because of the many powerful harmonics in a squarewave, the note actually sounds to the ear as though it is perhaps one or two octaves higher. To filter out the harmonics, a simple high-cut filter (R2, C5, R3, C6) is placed between the microcontroller (IC1) and the earpiece (EP1).

Other features of the microcontroller are disabled by the software during the start-up process when power is applied or when the device wakes from sleep. Except when actually generating a note or hibernating, interrupts from all other sources within the microcontroller are disabled; when hibernating, only interrupts signalling that the keypad has been pressed are allowed; when generating a note, only interrupts from Timer-1 are allowed.

Sleep

The PIC 16C64 has a sleep facility which cuts power consumption down to a level typically less than the selfdischarge rate of a battery. The chip is powered-down by

issuing the SLEEP instruction which halts the crystal oscillator; the prototype's supply current drops to less than 1uA during sleep. By using the hibernation facility, no on/off switch is needed and the tuner cannot be left on accidentally.

The hibernation works as follows: as described above, the PIC's main task when producing a musical note is to switch two of the digital port pins on and off at a certain rate, according to which note has been requested. In the software, two of the RAM locations within the microcontroller are allocated to a counter which is set to zero when the note starts and which is incremented each time an interrupt from the PIC's Timer- 1 is serviced. Thus, whenever the PIC changes the state of the output pins, the counter has one added to its value.

After the counter has been incremented, its value is checked to see if it exceeds 4000 h and if so, the PIC executes the SLEEP command. The counter has to be a 16 -bit counter. For the highest note (196 Hz), an 8 -bit counter would roll-over in 1.3 seconds - too short a time for tuning! So two 8 -bit counters are used in series to make a 16-bit counter. When the first counter reaches 128 (bit 7 switching on), the second counter is incremented and the first counter cleared to zero. When the second counter reaches 128, it is cleared, the output pins are set to logic zero to minimise current drain through them during sleep, interrupts are disabled, and the processor is put to sleep. This scheme gives a time-to-sleep of about 40s for the highest note, which is adequate for tuning purposes but ensures that the tuner's battery life is long - a set of batteries should last for around a thousand tuning sessions with the 12 mA active current drain. The choice of a 128 count for both 8 -bit counters is somewhat arbitrary, but gives a sensibly long active period prior to hibernation; the natural roll-over 256 count of an 8 -bit counter would have given a 160 s active period which was judged to be needlessly long.

The PIC software clears the general interrupt-enable bit before hibernating so that, upon wake-up, it continues executing the software after the SLEEP instruction: it continues to watch the keypad for key presses.

How does the PIC wake-up? Although hibernating, the microcontroller can be stirred into activity by any one of a small number of events. For example, a master reset signal or some interrupts will trigger wake-up. Before the PIC is sent to sleep, the wake-up logic is configured so that a change in level of the voltage applied to bits 4 through 7 of Port- B will initiate wake-up. One of the keypad switches is connected to bit 4 of Port-B, so when that key is pressed, the microcontroller wakes up.

So the PIC normally sleeps. It wakes up when one of the keypad buttons (the G) is depressed, plays notes as requested by pressing momentarily any of the keypad buttons, and goes back to sleep some tens of seconds later. No on/off switch is required, and there is no need to remember to switch it off after use.

Miscellaneous

The PIC is powered by three N -size alkaiine-manganese batteries. The 4.5 V supplied from the cells is within the PIC's 3.0 to 6.0 V operating range and means that no voltage regulator device is needed. Because of the sleep feature, no on/off switch is necessary.

C 1 smooths any supply ripple due to the activity of the
microcontroller. R1 and C2 reset the microcontroller on power-up and X1, C3, and C4 function as the system oscillator.

The tuner is built into a small plastic box which has a hatch for access to the battery compartment. Normally, a PP3 9-volt battery would fit into the battery compartment but the three N -size cells that power the tuner can be held in three individual battery holders which, if placed at an angle of 45 degrees, will fit into the same space and will be accessible via the hatch. The earphones (wired in parallel to provide some redundancy should one of them go opencircuit) and the membrane keypad are connected directly to the circuit board, with their connecting wires requiring only small slits in the plastic case.

```
PIC-based Double-Bass Tuner - Code
; tuner program
list p=16c64,f=inhx8m
include "a:\pic\p16cxx.inc" ; definitions file
; variables
            opVal equ 0x20 ;output value
            cntrA equ 0x22 ;counter A
            ; timeout
            cntrB equ 0x23 ;counter B
                ; timeout
; start administration
            org 0x00
                                    ;reset/power-up
vector
            goto Start
            org 0x04 ;irq vector
            goto irqserv
            org 0x05
                                    ;program start
Start
    bsf STATUS,RPO ; switch pages to 1
    movlw 0x3F ;port-B b0..b5 as
input
    movwf TRISB
    bcf OPTION_REG,7 ;port-B pullups on
    bcf STATUS,RPO ; switch pages to 0
    bcf opVal,7 ;off - output bits
    bcf opVal,6
    movfw opval
    movwf PORTB
    clrf T1CON ;stop timer-1 &
initialise
Again
    movfw PORTB ;read port B
    btfss PORTB,1
    goto makeE ;82.4hz
    btfss PORTB,2
    goto makeA
    ;110hz
    btfss PORTB,3
    goto makeD
    ;146.8hz
    btfss PORTB,4
    goto makeG ;196hz
    goto Again
```


bsf PIE1,CCP1IE ;allow irqs
; disable irqs
internal osc/4,
; prescale=1
irq, cmp
;load ccp regs
movwf CCPR1
movlw 0x68
movwf CCPR1L
clrf cntra ;clear timeout
lrf cntrB
status Rp0 ; switch page
bcf STATUS,RP0 ; switch page
bsf INTCON,GIE ; enable irqs
be icon TMR1ON istart counting
T1CON, TMR1ON

MIDI

A neat way to get your rhythm tracks into your hardware. By Tom Scarff

Dave you got rhythm? Do you want to transfer that rhythm to your computer or hardware sequencer? Probably the easiest way of achieving this is to use MIDI drum pads that can be hit with drumsticks, and the data can be stored in real time with any errors corrected afterwards. While there are commercial units available, they can cost hundreds of pounds, so I designed and built this unit based around the PIC 16C84 microcontroller.

While this unit is cheaper, it does have some limitations. It provides MIDI data which has to be sent to a drum/synthesiser or sound module. The velocity byte is fixed at maximum volume and the drum selection and MIDI transmit channel are fixed at the time of programming. The software as it is written is set up for the drum sounds in the Creative Labs AWE64 or equivalent sound card on channel 10, but the drums can be mapped to suit any sound card or module. Even though the velocity bytes are fixed on record they can be edited afterwards in the sequencer software.

The MIDI data stream is a unidirectional asynchronous bit stream at $31.25 \mathrm{Kbits} / \mathrm{sec}$ with 10 bits transmitted per byte (a start bit, 8 data bits, and one stop bit). The MIDI interface on a

MIDI instrument will generally include three different MIDI connectors, labelled IN, OUT, and THRU. The MIDI data stream is usually originated by a MIDI controller, such as a musical instrument keyboard, or by a MIDI sequencer. A MIDI controller is a device that is played as an instrument, and it translates the performance into a MIDI data stream in real time (as it is played). A MIDI sequencer is a device that allows MIDI data sequences to be captured, stored, edited, combined, and replayed. The MIDI data output from a MIDI controller or sequencer is transmitted via the devices MIDI OUT connector.

Each MIDI bit is transmitted for 32 microseconds, and so the timing is fairly critical. In the software this is achieved by timing loops which are accurate to the fundamental frequency of the 10 MHz crystal divided by four which is 0.25 us. The real time clock counter (RTCC) would not be as accurate for the MiDI transmission of $31.25 \mathrm{Kbits} / \mathrm{sec}$ because of the overheads associated with the operation of the timing overflow and interrupt routines, but obviously works fine for lower baud rates.

The circuit

The circuit in figure 1 is based around the PIC 16C84

Figure 1: the circuit of the MIDI Drum Pads

Figure 2: the component layout for the Drum Pads PCB
microcontroller which scans the inputs on RB0 to RB7. When a high is detected the software transmits the equivalent noteon (and then the MIDI note-off after a short delay) for the required drum sound on the MIDI output on RAO.

The inputs are provided by the piezo-electric transducers which can provide up to $40 \mathrm{Vp}-\mathrm{p}$ depending on how hard they are hit. This voltage is reduced by the potential dividers R1 to R8 and R9 to R16 respectively. The values chosen reduce the input level by approximately a quarter, and it is further reduced by internal clamping inside the microcontroller. If different transducers are used on the input then the potential dividers may need to be adjusted. Note that the inputs float high so the resistor values R9 to R16 need to be reasonably low so that when the microcontroller software scans the inputs it reads them all as low, with no transducer triggered. Also the maximum input continuous injection current into an I/O is specified as $+/-500 \mathrm{uA}$, although it will sustain larger currents (more than 100 mA) for short periods of time.

The timing is generated from the 10 MHz crystal and associated capacitors C1 and C2.

The MIDI output is fed to the 1805 -pin DIN socket via two 220R resistors which provide the required 10 mA current loop. The power supply is a standard arrangement using a 9V-0-9V centre tapped transformer, which is rectified by diodes D1 and D2 smoothed by C3 and regulated to 5 V by IC2.

Software Operation

The software consists of initialisation of the variable addresses, the constants, the ports and the drum assignments. The drum assignments can be mapped for any drum module, in the original the bass drum is decimal 36 , the snare decimal 38 , and so on.

For the 16 C 84 the origin (org) is set to 00 h and the programme resets via the goto $\mathbb{N} I T$ where PortB is initialised as all inputs and PortA as all outputs. The main program section then polls the inputs and waits for a high input representing a drum being triggered. The particular triggered input is then detected using the "drum?" section, and is converted by the drum sound convert table. The value is
placed in the drum variable and the note-on subroutine called then the note-off subroutine is called which is required for some drum modules.

Construction

The layout of components on the board is shown in figure 2. The unit can be mounted in any suitable enclosure and only requires connections for a mains cable, via a rubber gland if a metal enclosure is used, the on/off switch, the $5-\mathrm{pin} \mathrm{DIN}$ connector and the 8 -input transducers. Originally I had the transducers mounted on the same metal panel, which worked if the transducers where hit accurately but if they were missed slightly and the panel hit instead then the incorrect drum could be triggered. To avoid this problem the transducers could be mounted in separate diecast boxes. Also each separate transducer could be mounted onto real drums and triggered when each drum is played separately.

MIDI DRUM PADS DRUMLIST1.ASM
 LIST $p=16 \mathrm{C} 84$

;Program to tx MIDI data with 10Mhz clock ;MIDI Drum-Pads
;PROGRAM: T. Scarff
;DATE: 03/12/97
;FILENAME: drm_lee1.asm
;ITERATION: 1.1
;NOTE: Channel 10 for drums is 09h

dlyreg	equ	$O C$
xcount	equ	$O D$
xmtreg	equ	$O E$
delay1	equ	$O F$
count	equ	10 h
timer	equ	11 h
clkdown	equ	12 h
drum	equ	13 h
value1	equ	14 h

Constant Assignments		
;**	*****	
CARRY	equ	00
MSB	equ	07
BORROW	equ	00
LED	equ	07
W	equ	00
F	equ	01
Z	equ	02
C	equ	00
Dx	equ	00

Port Assignments		
;*****		
PCL	equ	02
STATUS	equ	03
PORTA	equ	05
PORTB	equ	06

movlw . 22 ;This loop requires 65 cycles call delay2 $; 61+4$ so if $n=20$
nop
movlw . 25 ;This loop requires 80 cycles call delay2 $; 75+5$ so if $n=25$ return ; delay $=4+(n-1) * 3=76$

Initialise Software		
;************************************		
INIT	cliff	PORTB
	movlw	\#\$FF
	TRIS	PORTB ; make portB all inputs
	clif	PORTA
	movlw	\#\$00
	TRIS	PORTA ;make portA all outputs

Main Program Start
clrf PORTB
main movf PORTB,W
mownf value1
xorlw \#\$00
btfsc STATUS,Z
goto main
moviw \#\$00
movwf count
drum? incf count,F
rff value1
btfss STATUS,C
goto drum?
movf count, W
call convert
movwf drum
call noteon
call noteoff
goto main
note-on subroutine

noteon movlw \#\$99;note-on channel 10
movwf xmtreg
call txmidi
movf drum, W ; drum note
mowwf xmtreg .
call txmidi
moviw \#\$7f;max velocity
mownf xmtreg
call txmidi
return

```
note-off subroutine
```

noteoff movlw \#\$89 ;note-off channel 10
movwi xmtreg
call txmidi
movf drum, W ; drum note
movwf xmtreg
call txmidi
movlw \#\$7f ;max velocity
mownf xmtreg
call txmidi
return
Table to convert drum sound
convert addwf PCL
retlw drumo
retlw drum1
retlw drum 2
retlw drum3
retlw drum4
retlw drum5
retlw drum6
retlw drum?
retlw drum8

NEW FROM NEXUS!

An Introduction to Robotics

A fascinating and unique book that breaks new ground by exploring the exciting world of robotics in a clear and concise way. Both the theoretical and practical aspects are presented in an uncomplicated fashion using everyday English, which makes this an ideal book for the amateur.
Divided into two sections, the first part explains how and why robots work and are controlled, while the
second shows you how to make a simple two legged humanoid robot that can be programmed to walk. There are no complicated formulas or equations to grapple with or incomprehensible circuit diagrams to decipher, - this robot can be built on your kitchen table and can be run from any personal computer! All you need are model aeroplane servos, a controller, a power supply and some
plywood - and all parts are easily available in the UK and the USA. This is a book that will be of interest to modellers and everyone with a fascination for things mechanical and electronic.
This is the way of the future, stay one step ahead and order your copy today!
Only $\{11.50$ UK \& $\{12.50$ Overseas (Includes Postage \& Packing).

Telephone orders: 01442266551 and ask for Nexus Direct
Please send me............copies of NB299 @............
I enclose my cheque/PO for $£ \ldots$. made payable to Nexus Special Interests $O R$ please debit my Access/ Visa.
Post code. \qquad Telephone No \qquad
Complete details and return coupon to: Nexus Direct, Nexus House, Boundary Way,

Hemel Hempstead, Herts, HP2 7ST. If you do not wish to receive mailing from other companies, please tick box.
 \title{
FOILS FOR THIS
 \title{
FOILS FOR THIS SSUE
} SSUE
}

RS 232 I/O Card for Psion 3s

FOILS FOR THIS SSUE

Medium Wave Loop Aeriel

PIC Based Double Bass Tuner

FOR SALE

SKVA ISOLATKON TRANSFORMER

 As New Ex-equipment iuly shrouded Line NoiseSuppression, Ultra Isolation Transfomer with teminal covers and K, Ura isolation Transtormer with terminal Cecondary $120240 \mathrm{~V} 50 / 60 \mathrm{~Hz} 005 \mathrm{Fimary}$ 120/240V Secondary $120 / 240 \mathrm{~V} 50160 \mathrm{~Hz} .005 \mathrm{pF}$ Capacilance.
Size L. $37 \times \mathrm{W} .19 \times \mathrm{H} 16 \mathrm{~cm}$ Wiont Size L. 37 x W. $19 \times \mathrm{H} .16 \mathrm{~cm}$ Weight 42 Kios. PRICE £ 120.00 +VAT
ax-wanouse. Camage on request
24 V DC SIEMENS CONTACTOR Type 3TH8022 D8 $2 \times$ NO and $2 \times N C 230 \mathrm{NAC} 10 \mathrm{~A}$ 0.75 mm . Brand or Din Rail fixing. Size H $120 \times \mathrm{W} 45$ 240 V AC Westor 240 V AC WESTOOL SOLENIODS 112 Mod 1 flat. 1 MAx stroke $1 / 4$ in. Base mounting $1 / 2 \mathrm{in}$.
stroke 5 bs pull approx. TT6 Mod 1 Rat. 2 Max stroke $1 / 8$ inge Front mounting 1 Rin. Front mounting $1 / 2$ in. Stroke
in. 15ibs pulf approx. Price incl. p\& \& VAT. TT2 25.88 , TT6 28.81. SERIES 400 €7.64.

230 V AC 120 AXIAL COOLING FAN

 Noise 120 rmm square $\times 38 \mathrm{~mm} 3$ blade 10 watt Low and sizes available from stock. Please telephone your onquiries.INSTRUMENT CASE
Brand new Manuf. by Imhof L31 $\times \mathrm{H} 18 \times 19 \mathrm{~cm}$ de日p Removeable front and rear panel tor easy assembly of components. Grey finish complete with case teet.
PRICE $£ 16.45$ INCL. P\&P \&VAT 2 off $£ 28.20$ Inclusive. DEE CAST ALUMINIUM BOX with internal PCB guides. Internal size $265 \times 165 \times$ incl.
230V AC SYNCHRONOUS GEARED MOTORS Brand new Ovold Gearbox Crouzet type motors $\mathrm{H} 65 \mathrm{~mm} \times$ W $55 \mathrm{~mm} \times \mathrm{D}$ 20 RPM ant cw Dopth 40 mm £ 11.16 inci $\& \&$ \& \& VAT

SOLID STATE EHT UNIT spartk Built in 10 , Output approx 15 KV . Producing 0 mm sec to continu 10 sec timer. Easiy moditied for $20 \mathrm{sec}, 30$ uses in the field of physics and electronics, eg supplying neon or argon tubes etc. Price less case
£8.50 + £2.40 plep ($£ 12.81 \mathrm{inc}$ VAT) MMS
EPFOM ERASURE KTT price of a made-up unit kit of parts less case includes 12 in 8 wall 2537 Angst Tube Ballast unit, pair of bi-pin leads, neon indicator, on/off switch, safety microswitch and circuit $£ 15.00+\mathbf{~} 2.00$ p\&p ($£ 19.98$ inc VAT)

WASHING MACHINE WATER PUMP Brand new 240 V AC. tan cooled. Can be used for a variety of pupposes. Inlet $1 \mathrm{1} / \mathrm{in}$. outlitet 1 n . die Price inctudes p\&p \&
VAT. E 11.20 each or 2 for 220.50 incksive.

SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB
TEL 0181-995 1560 FAX 0181-995 0549

 ACCOUNT CUSTOMERS MIN, ORDER £10

PROGRAMMES

In-system 8051 Programming in a FLASH!
 Now supports the AVR Microcontroller Family

Code development for the 8051 family could not be easier. Simply plug the "Socket Stealer Module" into your existing 8051 socket and then use the Micro-ISP Programmer to download code (and data) to your target microcontroller without even removing it from the target socket.

EQUINOX
 TECHNOLOGIES

The Embedded Solutions Company
Sales: 01204492010 Technical: 01204491110 Fax: 01204494883 Visit our web page at: www.equinox.tech.com

Email: sales@equinox.tech.com

'C'
 FOR MICROCONTROLLERS

Phone: 01974282670 or Sales@kanda-systems.com KANDA
www. kanda-systems.com

BASIC COMPILER for PICS

The answer to your prayers!

Forget assembly language - use simple but poweriul Basic commands and then compile to hex code to program a
standard 18, 28 or 40 pin PIC chip.
The MEL PicBasic Compiler from Pineapple Presentations Tel (0115) 9031851 for details ($10.00+8.00 \cdot 7$ days)
http://www.melabs.com/mel/pbc.htm

Professional $88-108 \mathrm{MHz}$ FM Broadcasting Kits All Our Kits include Detalied Instructions with Schematit
High Qually Screen Pinted PCBs High Quallity Compenents
Pur Product Range includes
Transmitters from 0.06W to 220W
Fill Sterso Coders
Audio Compressor Limitere
Antennas RF Power Amps
Link Transmittore and Recelvers
Our Kits Are Also Available
Fully Assembled And Tested
we da mer wora. immat an
mcoter major cheort caros
Contact Us Now For A Free Brochure
Tel 01274883434 Fax 01274816200
email veronica@legend.co.uk is victorta $5 x$, Queenabury
www.legend.co.uk/-varonical Bractiond ED131AR

£50 BT INSTRUMENT FOR ONLY $£ 7.50$

We refer ta the 81 insulation tester ond madit-meter with which you con reod insulation difectly in mapohms, $A($ rolss up fo 230 , 4 ranges of OC vatts up to 500,3 ranges of mithamps ond one 5A range and 3 ranges of resistance. These are in porfers condition, have had very time use, if any tasted and fully puarunted Complete with leats and prods 57.50 , Order Rof
 Possinge $£ 3$ uniess your order i $£ 25$ cond over. \& N Factors
Dept EII, Pilginem Works, Stuirtridge Lane, Bomoy, Sessex, 勋175PA
Telophome: (01444) 881965

PRINTED CIRCUIT BOARDS

> DESIGNED \& MANUFACTURED ROTOTYPE OR PRODUCTION QUANTITIES - FAST TURNROUND AVAILABLE - PCBS DESIGNED FROM CIRCUIT DIAGRAMS - ALMOST ALL COMPUTER FILES ACCEPTED an / HPGL IDrawrax / CadStar - ASSEMBLY \& TEST AVAILABLE TELEPHONE 01232738897 Hagar

> Unit 5, East Bellast Enterrise Park
308Atberthrdge Road, Bellast, BT54GX

PRINTED CIRCUIT BOARDS

- EDWIN -
- EED3 -
- CADSTAR -

We could be the answer. Contact Swift Designs Ltd

Email:
Designs@SwiftDesigns.co.uk
Phone:
01438310133 - 01438821811
Web:
www.swiftdesigns.co.uk

QUARTZ CRYSTALS 100 KH2 100 MHZ at low cost. Full list available and technical advice. Electronic Design Associates Tel: 0181-391-0545. Fax: 0181-391-5258.

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact: Wise Owl Worldwide Publications 4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258

50

 LTD STEVENAGEProfessional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:

PCB Assembly (Conventional and Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $3^{1 / 2^{11}}$ disc Cable Harness Assembly/loom Manufacture
Card Cage and Module Wiring Card Cage and

Product Design/Consultation Full Procurement Service PCB Test \& "Burn in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply Component Sales Refurbishment a speciality Top Quality Work at Reasonable Rates

Phone Steve on (01438) 360406 or fax details of your requirements to us on (01438) 352742
EQT LTD, UNIT 5, First Floor, Caxton Point, Bessemer Drive, Stevenage HERTS SG1 2XT

WIDEBAND SCANNER AERIALS

"REVCONE" permium quolity British VHF/UHif Discone 16 eiement for dittound coverage, 50239 connector $\mathbf{E} 38.95$ or N -type connector for impioved UHF performonce $£ 39.95$. "REVCONE PLUS" with impioved low frequency coveroge $£ 48.95$.

THE "REVCONE" IS THE UK'S ORIGNAL QUALITV DISCOHE VHF/UHF MOBLLE AERIALS
RevCO premium quocity aeriols (estoblished 37 yeers) - tell ronge for Amotear bants. ASK FOR "AMCAT" "NOMAD" PORTABLE SCANNER AERIAL
Lightweight design using ribbon cable elementis: rolls into a small bundif for easse of tronsport, hong foom ony corvenient point, ided for troveling, with 4m coox \& BNC pug. £17.95.

ACTIVE "NOMAD"
 scanner aerlal fiter
Is you scernet useless due to breakktrough? Then this prodsct could solve you' problem: o specibily designed tunoble fifter to be fited ir
 WW interference, BNC conmettors E28.95

Wirite, phone of fox for lists.
Callers by appointment only, please.
QLL PRICES INCLUDE UK CARRIGGE ANO VTAT AT 17.5\%
VISA
GAREX ELECTRONICS
Unit 8 Sandpiper Court Harrington Lane Exeter EX4 8NS
Phone: (01392) 466899 Fax: (01392) 466887

Write in BASIC, Run in a FLASH

- Compiled BASIC generates tight AVR ${ }^{T M}$ machine code
- Not a Run-Time Interpreter; NO code overhead!
- Target speeds comparable with assembler
- Breaks the cost barrier for small projects
- Ideal for educational, hobbyist and professional use
- AVRTM BASIC LITE only supports the Atmel 9051200 RISC Microcontroller (512 words code)
- 8 K version also available to support entire family

SERVICE MANUALS \& Technical Books

Available for most equipment, any make, age or model.
Return the coupon for your FREE catalogue MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY,
Tel:-01844-351694, Fax: 01844352554 email:- mauritron @ dial.pipex.com Please forward your latest catalogue for which I enclose 2×1 st Class Stamps, or f 4.11 inc. vat for the complete Service Manuals Index on PC Disc plus catalogue. NAME \qquad
ADDRESS \qquad

ADVERTISERS INDEX

Agar Circuits 70	Lasertech 72
BETA Layout 28	Leading Edge 38
B.K. Electronics 12	Mauritron 72
Bull Electrical 15, 17	Milford lnstruments 45
Chelmer Valves 45	NCT 45
CMS 37	No Nuts 43
Cooke International71	Pineapple Presentation 70
Confidential Communications . . 43	Plancentre Publications 71
Crown Hill Associates 38	RSGB 45
Dataman Programmer Ltd OBC	Scientific Wire Co. 72
Display Electronics 6	Service Trading Co 70
EPT Educational Software IFC	Stewarts of Reading 24
EQT 72	Switt Designs 72,10
Equinox IBC, 72	Techno Info Services 37
ESR Electronic Components ... 18	Telnet 27
Garex Electronics 72	The PC Solution 24
J \& N Factors 8, 70	Variable Vollage Technology Ltd 71
JPG 43	Veronica FM 70
Kanda Systems 73	Wilson Valves 71
Labcenter Electronics 23	

ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?

For more information and rates contact:

Wise Owl Worldwide Publications 4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258

Practically Speaking

TERRY BALBIRNIE
 This month we continue with some of the calculations used in developing and testing circuits.

A single resistor, used to make the meter read in volts

BIn this edition and the next, we shall look at how the scale of a pointer-on-scale (analogue) panel meter may be "tailored" to suit the application you have in mind. This month we shall concentrate on making voltmeters, and next time we shall look at milliammeters and ammeters.

On the panel

These days, it seems that panel voltmeters are less common than those scaled in milliamps or microamps. Even where a voltmeter is available, it often has a scale that is not ideal for the purpose to which the meter is going to be used. For example, you might require a meter to monitor the voltage of a nominal 12 V lead-acid battery. When this is fully charged, its terminal voltage may approach 15 V . You will therefore need a voltmeter scaled $0-15 \mathrm{~V}$. It may be possible to buy one scaled $0-30 \mathrm{~V}$, but then half of the scale would be unused. To make a meter read up to 15 V would obviously be better.

Suppose your meter has a 0-500uA scale. From the manufacturer's or supplier's data, it is found to have a resistance of 430 ohms. You know that when 15 V is applied to a pair of teminals, 500uA must flow through the meter to make it read full scale. The solution is to connect a fixed resistor in series with the meter. Suppose the value of the required series resistor is R. For the moment, forget the resistance of the meter itself - pretend it is zero.

Using Ohms' Law, and remembering that a voltage of 15 V applied to the terminals results in 500uA flowing through the meter:
$R=V / I=15 / 0.0005=30,000$ ohms (30k).
(500uA is equal to 0.0005A)
However, the meter itself has a resistance of 430 ohms so, in theory, the value of the resistor will only need to have a value of 30,000 ohms minus 430 ohms, that is, 29,570 ohms. You will probably
decide to forget the difference and just use a 30 kilohm resistor since the error is only 1.4 percent. You will need to check the values of the resistors available from stock in the supplier's catalogue. These should be of the 1 percent tolerance metal film type to provide an accurate reading. In some cases, such as this one, the value is obtainable "off the shelf". The procedure is shown in

figure 1.

In many cases it will be necessary to use more than one resistor to make up the correct vaiue. Remember, to find the result of two or more resistors connected in series, you add the values. It is interesting to note that if the tolerance of the required resistor is 1 percent, then connecting any number of 1 percent tolerance resistors in series to obtain this value will still result in an overall tolerance of 1 percent.

Some readers will prefer to use Standard Form (Scientific Notation) when performing the calculations. In this form, 500uA would be called $5.0 \times 10^{-4} \mathrm{~A}$. Use of Standard Form will be the subject of a future Practically Speaking and will not be used here.

A further example will make this all clear.

Example:

You require a voltmeter to read $0-25 \mathrm{~V}$ and you have available a microammeter scaled 0-100UA and having a resistance of 3750 ohms.

Using Ohm's Law and remembering that 100uA is equal to 0.0001A:

$$
R=V / I=25 / 0.0001=250,000 \text { ohms }(250 \mathrm{k})
$$

in theory, you need only the difference between this and the resistance of the meter - 246,250 ohms. However, as in the last example, the error is very small (about 1.5 percent), so it is probably not worthwhile taking it into account. Since 250,000 ohms (250 kilohms) is not a stock item, you will need to use a 240 k resistor connected in series with a 10 k unit.

You will need to make a new scale for the meter. The old one is easily removed and may be sprayed matt white. The new numbering may then be applied using dry print lettering.

Figure 1: Using a series resistor to make the meter read volts

Microammeter
($0-500 \mathrm{LA}$)
$R=430$ ohms
$+$

15 V applied between the terminals gives full scale reading

Analogue or Digital?

mong electronics designers there seems to be a division between those who favour digital techniques and those who are happier with analogue. Sometimes it seems as if there are two different mindsets - but are they?

It is true that individual designers will think first of what they are most famillar with, a fact immortalised in the saying that to the man who has only a hammer, every problem looks like a nail (or simply looks insoluble). We have all seen examples of this - an expensive dsp used where an op-amp, two resistors, and a capacitor would do the job very well, or a complicated circuit of op-amps, diodes, and resistors to put in simple control sequencing that could be done easily with a single CMOS logic chip.

Of course, there is a place for this philosophy: if you have a microcontroller in the system, any amount of code added without actually increasing the prom size is cheaper in production than the cost of a single extra resistor.

Equally, the addition of a couple of diodes to an analogue system to avoid the need for a logic chip, possibly with a different supply voltage, is likely to be the best course. But everything depends on who makes the decision. To do this, the main requirement is to understand a wide range of electronics and, preferably, other engineering disciplines. This understanding need not be sufficiently detailed to undertake advanced design in every field there is always a time to call in somebody else who has the relevant expertise - but it is at least necessary to appreciate what can be done, approximately how it may be done properly and (of the greatest importance once you move above a single prototype) what the cost will be.

Returning to the area of dsp, who is more likely to design better dsp systems a designer who understands analogue,

Next Month
Volume 27 no. 4 of Electronics Today International will be in your newsagents on 27 th March 1998 ... Harprit Sandhu opens the door on DIY robotics and his walking robot design ... We have an unusual UHF model radio controller by Geoff Pike GiOGDP' in preparation ... Robert Penfold presents the capacitance meter for his inductancecapacitance pair ... PIC-driven Tic Tac Toe for gamesters by Rose and andy Morrell plus all the regulars, and more.
Contents are in preparation but are subject to space and availability.

sues: phococopies of older articles of iten availabie. Write ta Photocopy Service, Readers Services Department, at Nex House. Boundary
Binders for ETl: 17.50 each including UK post and packil Overseas please add $\mathbf{Z 1}, 50$. Cheques to Nexus Special Inte ar Nexus House, or phone VISAMastercard orders to Re Services Depaitment 01442266551
 NEXUS
(C) Nexus Special Interests Limited 1998 All rights reserved ISSN 0142-7229

The Publisher's written consent must be obtai before any part of this publication may be reproduced in any form whatsoever, includin photocopiers, and information retrieval syster All reasonable care is taken in preparation c
magazine contents, but che publishers, editors their agents cannot be held legally respons for loss howsoever arising from errors \& other published material.

NNR I The Ulimate 80 5 Misoconitolile Progammer

- Supports Atmel FLASH 89C +895,

Generic 87C51/52/FA/FB/FC
microcontroller derivatives

- FLASH \& E2 libraries also available as chargeable update
- $£ 125.00$ Order Code: MPW.SYS
(3051, 2, Starcer System For C5I Prolzat Developmentanin a FLASH Includers Programmerf aveluation module and PK51-2K

A $£ 199.00$ Order Code: AT-89C-2K-ST
$(n-5 y) t e m$
Prograiming (SPP)
NOCRO-FD
"Now yoy can program the 8051 or the $A V R^{\text {MM }}$ without removing the device from the socket!"
∇ Programmer Interface Software for Windows ${ }^{\mathrm{Im}}$

A Keil 8051 C compiler, Assembler,
Simulator (2K code), Windows ${ }^{\text {TM }}$ IDE

- £99.00 Order Code: PK51-2K

895 Socket Stealer Module

Simply plug this into your existing 8051 or AVRTM socket for INSTANT In-System Programming
NO Target
System
redesign
required.

The Embedded Solutions Company

ROVIDING TII:

 soluilionsio Your ProbilinsTel: +44 (0) 1204529000 Fax: +44 (0) 1204535555

For product information visit our web site at: www.equinox-tech.com
E-mail: sales@equinox-tech.com
3 Atlas House, St Georges Square, Bolton, BL1 2HB UK
(T)

From Only £24.95! • Ideal for educational, hobbyist and professional use

* AVR ${ }^{\text {TM }}$ BASIC LITE only supports the AT9051200 (512 words code)
* 8 K version also available

Order Code: AVR-BAS-LIT £24.95

- Compiled BASIC generates tight AVR ${ }^{\text {m }}$ machine code
- Not a Run-Time Interpreter; NO code overhead
- Target speeds comparable with assembler
- Breaks the cost barrier for small projects
 6644 EIRE Farnell +35318309277 FINL AND Farnell +35893455400 FRANCE Farnell +33474659466 Newtek +33146872200 GERMANY Farnell +498961393939 Inettek GmbH +49732193850 . MSC Vertriebs GmbH +4908994553212 GREECE Microlec +300
 0200 SPAIN Anatonic SA +3413660159 Farnell +441132310447 SWEDEN ACTE NC +4684452870 Farnell +4687705000 SWITZERLAND Anatec Ag +41417483241 Farnell +41112046464 UNITED KiNGDOM Abacus Po ar +441925626626 , Farnell +44

STILL THE WORLD'S MOST

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN-48LV

Surely not.
SURELY SOMEONE SOMEWHERE HAS
developed a portable programmer
THAT HAS EVEN MORE FEATURES, EVEN
GREATER FLEXIBILITY AND IS EVEN
better value for money.
Actually, no, But don't take our
WORD FOR IT. USE THE FEATURE
SUMMARY beLOW TO SEE HOW OTHER
manufacturers' products compare.

- Plugs straight into parallel port of PC or laptop
- Programs and verifies at $2,2.7,3.3 \& 5 \mathrm{~V}$
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLCC adaptor
- Built-in world standard PSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulator

DATAMAN 54

- Programs 8 and 16 bit EPROMs, EEPROMs, PEROMs, 5 and 12V FLASH, Boot-Block FLASH, PICs, 8751 microcontrollers and more
- EPROM emulation as standard
- Rechargeable battery power for total portability
- All-in-one price includes emulation leads, AC charger, PC software, spare library ROM, user-friendly manual
- Supplied fully charged and ready to use

S4 GAL MODULE

- Programs wide range of 20 and 24 pin logic devices from the major GAL vendors
- Supports JEDEC files from all popular compilers

SUPPORT

- 3 year parts and labour guarantee
- Windows $D O S$ software included
- Free technical support for life
- Next day delivery - always in stock
- Dedicated UK supplier, established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras If you want the best, there's still only one choice - Dataman.

Order via credit card hotline - phone today, use tomorrow.

Alternatively, request more detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

 If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders received by 4pm will normally be despatched same day. Order today, get it tomorrow!

Dataman Programmers L.td, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 OAE, UK
Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34N.FCN.32bis
Home page: http://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: - Sample program to read memory type Phone cards

 Data on NEW Visa Smart Cards
 Sample Smart Cards, Electronic Purse, Credit / Debit card, ID Card ¢169.95 + VAT

[^1]: All products manufactured in MALTA and carry 12 months Parts \& Labour guarantee.

