# ETI 

## ELECTRONICS

 TODAY INTERNATIONAL
## GETTING TO KNOW

 SURFACEMOUNT TECHNOLOGYYou canmake smaller boards af home

## DIY PC

Putting togetherro moderin PC from componemt paris

## TN-LINE MAJNS MONTJOR

Prodeation from power failure for essential equipment

# Electronics Principles 5.0 'A COMPLETE PC BASED ELECTRONICS COURSE 

If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you. Now includes the PC16C84 \& PC1/16C71 hardware and instuction set.


Electronics Pinciples 5.0 is a significant upgrade of our popular electronics educational soliware. Now containing even more analogue, digital and microcomputer theory. PLUS over a hundred new mathematics topics to further your understanding of formuloe and calculations. Telephone for a comprehensive list or upgrade details.

This software has been developed to teach electronics and is suited to both the complete novice and the more advanced student or hobbyist wanting a quick revision and access to hundreds of electronics formulae. It is extremely easy to use. Just select a topic, which is always presented as a defauit diagram (no blan. screens!) and input your own values. Alternatively, use those from any standard electronics text book to see the results as frequency response curves, calculations, logic states, voltages and currents etc.

Graphics presentation has been enhanced and speeded-up with new menus and indexing which enables a quicker access and more informative description of the extended range of five hundred and sixty electronics and mathematics topics.

The PIC16C84 microcontroller hardware and instruction set has been introduced and brought to life through coloufful interactive graphics where you can study the architecture of this device by changing the data values to simulate all of the registers, direct/indirect addressing, program/data memory and input/output port configuration. Along with those analogue to digital functions of the PIC16C71. If you would like to learn more about the princlples of these popular microcontrollers then it could not be made easier.

Electronics Principles software is currently used in hundreds of UK and overseas schools and colleges to support City \& Guilds, GCSE, Atevel, BTEC and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.


EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008. sales@eptsoft.demon.co.uk http://www.eptsoft.demon.co.uk *UK and EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by retum.
Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

## Contents

## Volume 27 No. 7 Features Projects

Next Issue 17th July 1998


## Regulars

## Getting to Know Surface Mount Technology

DIY construction with surface mount components is becoming increasingly popoular. Robin Abbott describes the basic processes and with two circuits to build, plus an insight into industrial big-machine surface mount techniques.

## Getting MORE out of PICs (Part 2)

Robin Abbott continues his new series on more advanced PIC programming. This month: diagnostics, interrupts, and background communications, with a development board for the 16C74 and other 40-pin PICs, on which the interrupt driven serial routines will work.

## In-Line Mains Monitor

Power cuts and accidental unpluggings can be drastic for critical appliances like freezers and computers. Wire this monitor by Terry Balbirnie into your equipment to provide on-the-spot battery backup.

DIY PCs
PC-construction expert Robert Penfold starts a short series on building a PC at home. This month: the basics of buying compatible parts and putting them together. "Simpler than it used to be - but look out for the boobytraps."

## A High Quality 100W Mosfet Power Amplifier (Part 1)

47David White has researched mosfets and bipolar junction transistors to design his new 100W power amplifier, and decided on the latter. Properly selected and designed, Mosfets allow a high quality response without multiplying costs up out of reach.

## Contemporary Logic Design for Test

The logic design in some ics is so complex that new techniques must be found to test them reliably. Andrew Armstrong describes the Boundary Scan technique.

## Timing in Electronics (Part 2): More About Astables 57

Timing signals are used in many electronic systems, and can vary from the very accurate to the approximate. Here Owen Bishop examines variations on the astable circuit, and build an astable on a different principle.

## Aquaprobe

Designed by Bob Noyes as a low cost project that would be both useful and the focus of some electronics principles, and not raise any political correctness or health and safety issues! Except the health of your potted plants - the Aquaprobe will tell you when they are drying out.

| News | 4,5,6,7 $\& 8$ |
| :--- | ---: |
| ETI PCB Service | 66 |
| PCB foils | $\mathbf{6 8 - 6 9}$ |
| Practically Speaking | 73 |
| Terry Balbirne continues a set of short articles on fuses. <br> case-mounted and PCB fuse holders. | This month: chassis-mounted, |



## World's fastest PC-based 16-bit A/D system runs at 10 msps

Strategic Test has brought out the CompuScope 1016 PCcompatible ISA bus card, the world's first and fastest 16 -bit AD system capable of sampling at speed of 10 msps on one channel with a bandwidth of 5 MHz , while maintaining an $85-\mathrm{dB}$ spuriousfree dynamic range (SFDR). No other product on the market, say the makers, including stand-alone scopes, VXI or VME cards, can digitise analogue signals at 10 MHz with a 16 -bit resolution.

At the sampling rate of the 1016 is faster than the ISA bus can handle, the AD data is stored in on-board memory, which can hold up to 8 million sampies, to be read by a PC tater. The multiple record mode allows "stacking" of data from successive triggers. This mode is ideal for high Pulse Repeat Frequency (PRF) systems in which data cannot be downloaded to the PC's memory in between triggers.

Compuscope comes a standard with the award-winning GageScope software which enables users to operate the card like an oscilloscope without writing a line of programming code. Users can store, analyse and print their data and convert is to an ascii format for export to spreadsheets and mathematical software packages.

Software drivers are available for-all popular operating system and are supplied with sample programs demonstrating use. Sample programs are provided in source code. CompuScope does not need a GPIB or IEEE 488 interface to transfer data to the IBM PC environment. The on-board memory is mapped into the $80 \times 86$ processor's memory map. Data can be transfered from CompuScope 1016 to the PC extended memory at up to 500 ksps on a Pentium system using software drivers.

Listed key features of the device Include, among others:

- True 16-bit analogue to digital conversion
- Up to 10 msps sampling
- Ǘp to 8 Mega-samples on on-board memory - Multipie record mode for optimising the on-board memory - Free Gagescope 'scope emulating software - drivers in DOS, QNX, Windows 31, '95 and NT - Support for LabView, HP VEE, LabWindows CV and MATLAB Numbered among the typical applications listed are infra-red imaging, radar, lightning testing, cellular communications, ultrasonic testing, vibration analysis, laser diode charactenisation, etc.

For further information contact Bob Giblett, Strategic Test and measurement Systems Ltd., 11 Ashton Road, Wokingham, RG41 1HL. Tel 01189795950 fax 01189795951 email BobG@strattest.co.uk


## Electronics technicians offered topo

 prizes in Top Technician competitionValuable prizes are being offered this year to the UK's top technicians in industrial electronics. The winner of the Top Technician in Industrial Electronics competition will win a top-of-the-range laptop PC and will represent the UK at the International Youth Skills Olympics in Canada in 1999.

With the help of sponsorship from the DTI Sector Challenge, and industrial sponsorship from British Aerospace, Racal, Oxford Instruments, Defence Evaluation Research Agency (DERA), Farnell and Vision Engineering was well as SME (small and medium sized enterprise) sponsors Chemotronics and Celab, all competitors will take prizes away from the contest.

Director of the Federation of the Electronics Industries and Chairman of the Top Technican Board Brian Arthur said: "All the technicians who enter the skills contest are winners because they represent the very best of the UK industry's skills and training. This year we shall be able to recognise that, by giving really good prizes to all of the competitors, not just the winners."

The 1998 Top Technician contest will hold five regional
finals in Scotland, Northern Ireland, Wales and the North and South of England on the 1st and 2nd of July, with the winners going on to the Electronic Components Industry Fair ' 98 which will once again host and sponsor the UK final as a major event in the exhibition. Brian Arthur says that this year's stand will be a high-tech design reflecting the important status of the electronics industry.

The competition is co-organised by the Engineering Training Authority (EMTA), The Federation of the Electronics Industry (FEI), The Institution of Electrical Engineers (IEE), and the new Institution of Electronics and Electrical Incorporated Engineers (IIE), and is recognised by UK Skills as part of the national framework of skills competitions covering every industry sector.

Suitably qualified technicians seeking to enter the competition should contact The Competition Organiser, IEE, Michael Faraday House, Six Hills Way, Stevenage, Herts SG1 2AY. Tel 01438767283 fax 01438742856 email sstewart@iee.org.uk

Companies wishing to support and benefit from the contest should contact Brian Arthur, Director Components and Manufacturing, FEI, Russell Square House, 10-12 Russell Square, London WC1B 5EE. Tel 01713312004 fax 01713312056 email barthur@fei.org.uk

## Monitor specs are being looked into by Sony

Early news comes that Sony is working on "monitor glasses" that can display the image of a 30 -inch monitor screen about four feet in front of the wearer.

No doubt it will be some time before these very useful devices appear on the market. Following that, we shall require glasses that display our favourite telly channels just to the left or right of any monitor screen we are supposed to be working with, preferably without anyone else noticing!

## Sub-credit-card sized RF smart card incorporates its own coupler and antenna

The Micro680 contactless smart card reader from Gemplus is smaller than a credit card. The reader is designed for use in small devices such as handheld card readers, card reloading terminals and vending machines, as well as larger devices such as bus validators and ticket machines. The Micro680 is based on the widely accepted MiFARE contactless standard.

Contactless card technology is becoming more widespread and is not starting to appear in new card applications such as teleticketing, toll collection, access control and electronic purse systems.

As well as small size, the Micro680 is easier to instail because it is in a single piece, combining the coupler and antenna, and occupies less space in the hardware.

Contactless smart cards do the same work as protected memory cards, but use RF technology to communicate with the card reader instead of being inserted into the reader.

BT one-handset phone system for home and mobile to launch this autumn
British Telecommunications will launch this autumn the first telephone service which merges a GSM mobile handset with a domestic telephone line at a single number for members of the public. The business version of BT's OnePhone was introduced last year after on-site trials in June 1997.

Around the house, the OnePhone logs onto the fixed phone network like any digital cordless phone. Once outside its 300 -metre home range, the phone switches to a GSM mobile network to act as a fully functional cellular phone. Users can have a new, single number that reaches the phone in either mode.

BT is pleased that the release gives it (and the UK) a lead over the rest of the world in integrated phone networks. Swedish company Ericsson has been working with BT's own research laboratories to develop the technology. The OnePhone service will gradually be

## RD Research B2Spice Agents in UK

SPICE circuit simulation B2SPIce and B2Logic (mentioned by Owen Bishop in Spiced Circuits part 7, ETI 4/1998) is available in the UK directly from the UK agent, RD Research. For more information and prices, contact RD Research at Research House, Norwich Road, Eastgate, Norwich NR10 4HA. Telefax 01603872331 email rd.research@paston.co.uk

RD Research also handle computer modelling, network and Internet products and Year 2000 date compliance.

The card transmits transaction data, and records data received when passed within 8 to 10 cm of the reader. Contactless cards can reduce transaction times by 20 or 30 times compared to insertion cards.

For more information contact Lisa Coley at Gemplus Ltd., New Lane, Havant, Hants PO9 2NR. Tel 01705 486444 fax 01705472 081. Website www.gemplus.com

developed to include further services such as access to email, fax and the Internet.

BT Mobility Solutions General Manager Eric Guilloteau said at the release: "Up to now, the emphasis has been on making products smaller. We are now moving to an exciting, practical new dimension - we're making them fewer."

BT's new style service follows closely in the wake of many mobile users who have given up using fixed-line telephone services altogether, preferring to rely on their mobiles. Around the house, it has long been known that the old Rabbit ex-cellular digital phones, used as home cordless systems, provide a much higher quality than most domestic cordless phones.

For more information about the BT OnePhone please contact Band \& Brown Communications, tel 0171419 7000 fax 01714196969 email martin@bbpr.com

## Smaller and lower cost from crystal suppliers

Advanced Crystal Technology are featuring "the first genuine surface mount voltage controlled crystal oscillator (VCXO)" (shown) as well the smallest real-time clock module (both by Epson) and the lowest-cost crystals for surface mount in their list of product on show in the first half of 1998.

ACT maintains one of Europe's largest stocks, and is currently extending its range of Epson products, including technical data and price information in its enquiry response information, to provide quick quotations, competitive pricing and technical support.

For more information contact Wayne Axten, Advanced Crystal Technology L.td., 9 Kingfisher Court, Hembridge Rd., Newbury, Bertks RG14 5SJ. Tel. 01635 52820 fax 01635 528443. Email info@dryden.co.uk


## Multi-channel graphics card can handle a mixture of monitor sizes

Specialist display technology and digital video company Imagine Graphics has announced the Jeronimo J3 series of multi-channel graphics cards for PCs. This release follows the 1997 introduction of the Jeronomo J2 series, which has been quickly superseded by the J3 series. The new series cards start at $£ 470$ plus VAT for a 2 -channel, 2 MB per-channel card to $£ 925$ plus VAT for a 4 -channel, 4MB per-channel card.

The Jeronimo J3 cards use the high-performance 64-bit Laguna 2D and 3D graphics processors from Cirrus Logic. These address directly ultra-fast 2- or 4-MB rdram memory with a bandwidth of 450 MHz . The card will display up to $1600 \times 1200$ resolution at 75 Hz refresh with 4 MB of memory per channel fitted. A bridge chip from Digital ensures that the Jeronimo cards are fully compatible with the latest Pentium II motherboards compliant with the PCl 2.1 standard.

Special driver and utility software HydraVision is supplied with the cards, enabling users with Windows '95 and NT4 to control precisely the positions and sizes of multiple windows on multiple screens. HydraVision also enables different resolutions and refresh rates to be set up for each monitor, so that a mix of monitor sizes and makes can be used on the system - a feature which Imagine Graphics announce as unique to the Jeronimo family. Up
to 16 screens can be driven from four Jeronimo J3 cards In one PC. Drivers for Windows 98 and NT5 will be available on the formal release of these new operating systems.

Imagine Graphics has developed special $16 \times 9$ drivers for the Jeronimo cards to drive wide-screen CRT and flat panel plasma displays for use in public information and dealing-room applications.

For further information contact Norman Garland, Managing Director, Imagine Graphics, Lancaster House, 61 Lancaster Road, St. Albans AL1 4ER, UK. Tel 01727 844744 fax 01727811660 email ngarland@imagine-g.com website www.Imagine-g.com


## Incorporated Engineers get a new

 Institute from merged threesomeThree engineering institutions representing incorporated engineers and engineering technicians are to be merged into one engineering institution.

Minister for Science, Engergy and Industry John Battle launched the new Institution of Incorported Engineers in electronic, electrical and mechanical engineering (IIE) in April. The new institution is merged from the Institution of Electronics and Electrical Incorporated Engineers (IEEIE), the Institution of Mechanical Incorporated Engineers (iMechIE) and the Institution of Engineers and Technicians.

It is hoped that with the increasing demand for engineers at incorporated (IEng) level a new combined Institution will provide incorporated Engineers and

Engineering Technicians with a unified and enhanced voice in the engineering community.

Incorporated Engineers are seen as maintaining and managing the application of current and new
technologies, and help to drive technology-led changes in Industry and business.

The President of the new institution is Dr. A A Denton CBE FEng, and the Secretary and Chief Executive is P F Watson BSc(Eng) CEng, FIEE FIMechE FIMgt. Copies of the IIE's promotional literature can be obtained from the Membership Secretary, The Institution of Incorporated Engineers in electronic, electrical and mechanical engineering, Savoy Hill House, Savoy Hill, London WC2R OBS. Tel 01718363357 fax 01714979006 Email iie@dial.pipex.com Not to be confused with the IEE (Institution of Electrical Engineers).

## Higher memory-density flash memory cards from Hitachi

Two new units have been added to Hitachi Europe's range of flash memory cards. The 45-MB HB286045C3 CompactFlash card and the $150-\mathrm{MB}$ ATA format HB286150A3 ATA format card provide very fast transfer rates of up to 8 MB per second to and from the host, and exceptionally low power consumption of only 150 mW .

This style of flash memory reflects demand for greater storage capacity in applications such as handheld PCs and digital cameras. Higher density is a particularly important factor for these applications. A picture taken with a "megapixe)" digital camera, for example, can take up to 1 MB of memory.

Hitachi now offers CompactFlash cards with $8,15,30$ and $45-\mathrm{MB}$ capacities and ATA cards with $8,15,30,45,60,75,90$ and 150MB. All the cards are based on Hitachi's 64-Mbit ANDFlash device and single-chip microcontroller, which combines high programming speed of 400 kblts per second, high capacity and very low power consumption.

Hitachi is the only company that designs and manufactures the flash memory chips, the controller and the component packaging in-house, allowing it to optimise speed, power and capacity.

The very low power consumption offered is important to extend battery life in portable applications. The third generation HB2860XXC3 and HB286XOXA3 series dissipate 150nW, 40
percent less than the previous generation of flash cards.
The company expect that reduced manufacturing costs and higher density will widen the applications field to including applications like network hubs and routers, Point of Sale systems, text and measurement equipment and LCD projectors. All the cards are available ex-stock in small quantities.

For more information contact Vince Pitt, Hitachi Europe Ltd., Whitebrook Park, Lower Cookham Road, Maidenhead, ' Berks Si6 8YA. Tel 01628585163 fax 01628585160.


## Year 2000 PC analysis software from Maplin

Maplin have brought in a software package, Prove It 2000, to help with the Year 2000 date problem that is likely to affect many computer systems at the turn of the Millenium or sooner.

A recent independent survey rated the 2000 test product best out of 16 tested. It is suitable for us on all IBMcompatible PC hardware and runs on a single floppy disk so that the operating system and hard drive applications are not interfered with. The user is guided through eight
tests, including checking the real time clock, the BIOS and the operating system, as well as leap year and non leap year compliance. A hardware report gives a clear indication of pass or fail, will a full explanation of each test. In many cases, the BIOS problem will be automatically fixed.

The disk also has a help file with additional manufacturers' phone numbers and website URLs. Technical support and advice is supplied by Softbank Services Group.

Prove It 2000 costs $£ 34.99$ from Maplin stores and mail order catalogue. For further information call 01702554155.

## LCD controller takes a messages in many languages via Windows 95

"User Interface Magic" - Lascar Electronics has launched the DMX C4 LCD character display controller to allow panel builders, even those with a modest level of electronics and programming skills, to integrate a message display into their products with a minimum of time and complexity.

The DMX C4 is deisgned to work with most industrystandard 1-, 2- and 4-line LCD character displays, and can safely store up to 100 messages, each up to 80 characters long, in permanent memory. The card combines a character display controller with a message storage area. The storage area can be divided into language pages, allowing the end-product to be easily reconfigured for a particular country or language region without the need for reprogramming.

Messages stored in the DMX C4 can be recalled on the character display via the card's serial or parallel port, or by connecting microswitches or sensor switch outputs to the card.

No specialist software is needed, as all text messages are written on-screen and downloaded into the card via the Windows 95 built-in HyperTerminal package. A separate programming cable is available to connect the card to a Windows 95 PC.

For more information contact the manufacturers, Lascar Electronics, Module House, Whiteparish, Salisbury, Wiltshire SP5 2SJ. Tel 01794884567 fax 01794884121.


## New version of pro UK-developed SPICE simulator

Newbury Technology have released V2 of their analogue simulation package SIMetrix, The new version offers Monte Carlo analysis, components sweeping and a set of advanced post analysis features such as automatic rise and fall time calculation.

Based on Spice 3, SIMetrix is developed in the UK and features a full integrated schematic editor with multi-level undo, comprehensive waveform analysis capabilities such as FFTs, schematic cross-probing and real time waveform display. It also supports transient, dc, dc sweep, ac, noise and transfer function analyses while device support includes lossy transmission lines, arbitrary sources and Gaasfets. Newbury Technology have carried out further development of the simulator core and claim much improved convergence performance allowing a wider range of circuits to be analysed than other PC-based packages.

Other features supported include a full-featured Basic-like scripting language allowing automation and
customised post simulation analysis; user definable keys and menus; annotation of schematic with bias point voltages, and a new Mosfet model designed for vertical devices with non-linear gate-drain capacitance.

A model library containing around 1500 devices is supplied, comprising bipolar transistors, diodes, Mosfets and simple logic devices. In addition, a number of op-amp models from various semiconductor manufacturers are also provided.

Full support by phone, fax or email from the developers of the software is provided free of charge. Newbury Technology maintain a web page providing the latest information on the package including new version releases, FAQs (frequently asked questions) and Internet sites for manufacturers' device models.

The package was marketed at $£ 295$. A free demo version of the full working program with some more advanced features disabled and a simulation run-time limit is available on CD-rom

For more Information contact Newbury Technology Ltd. Tel 01635866395 fax 01635868322 email jrw@newburytech.co.uk

## OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

## Getting to Know



> DIY construction with surface mount components is a definite option these days. Robin Abbott describes the basic processes and offers a couple of useful examples for experimentation.

Surface Mount Technology (SMT) is a relatively recent development that is now almost universal in manufacturing industries. Traditionally surface mount has been ignored or avoided by the nonindustrial press because surface mount
technology has a reputation of being a "black art", too difficult to handle by manual techniques. In this article I shall look at various forms of surface mounting, and the techniques that can be used by the amateur constructor with surface mount components. I hope to show that it is quite possible to use surface mount technology for projects and not just in commercial production.

Traditionally, printed circuit board technology has been based on through-hole mounted components. This type of component has a limitation on its minimum size, because it is mounted on its wire connectors, and these must be strong enough to support the component body. Further restrictions on how close one hole can be to another also limits the minimump distance between component wires, and so also limits the minimum component size. With surface mount technology, the components, which may be made as small as possible, are mounted directly on to the copper side of the printed circuit board. As components do not necessarily require wire connections, but simply a termination built into the component body, they can be made much smaller than through-hole components.

Because the components are mounted on the surfaced of the pcb, and not through it, different sets of components can be mounted on each side of the board. Component densitles can be more than doubled just by this method.

The primary reason for using surface mount technology is this reduction in board area. Smaller boards can be built, or greater functionality achieved in the same area. The smaller board size, together with the lower materials cost for surface mount components, reduces production costs. For some semiconductors the very high pin count required can only be achieved by using surface mount techniques.

## Surface mount components

Most two-lead surface mount passive components fit into rectangular packages, where the termination of the components is formed around each end of the package. Figure 1 shows a typical package.


Figure 1: two-leaded surface mount package
These component package sizes are normally described in the form xxyy, where $x x$ represents the length of the component in hundredths of an inch, and $y y$ is the width of the component in hundredths of an inch. A popular surface-mount resistor size is 1206, giving a package 12 hundredths of an inch long, and six hundredths of an inch wide. In metric dimensions, this is approximately 3 mm by 1.5 mm . The height is usually so low that it is not normally quoted in the package type.

Resistors are supplied in a number of package types, with 1206 as the largest, and 0805 quite common. Smaller devices such as 0603 and 0402 are also available, with 0201 being used for very specialised applications, mainly in Japan. Components smaller than 0603 probably too small to handle manually reliably, even by the most dextrous constructor.

Resistors normally have their value printed directly on the package. The value is given as a three digit number, the first two numbers being the first significant digits of the value, and the last number being the power of 10 to which the first digits
are multiplied. For example a 10 k resistor will be printed with the value "103", and a 470R resistor with the value 471. The resistor value can be very hard to read without a magnifying glass, and on the very smallest components it is not printed at all. You know the value by reading the packet (usually a plastic strip supplied in a roll). Once the component is separated from its packet, it has no readable identlty. Keeping a junk box of used surface mount components is pretty thankless.

Capacitors come in a similar package to resistors, but can be bigger for the higher values and the height may be greater than a resistor for the same length and width. Electrolytic capacitors are much bigger than resistors, reflecting the increased complexity of construction. Larger electrolytic capacitors are becoming more widely available, particularly in tantalum form, however, there are a number of circuits which still use through-hole techniques for large capacitors, with surface mount for the rest of the board. Surface mount capacitors can be much more sensitive to board flexing, and thermal effects, than the through hole versions. Capacitors are also rarely marked with their value, and it is important to keep track of capacitor values from the moment they are bought.

## Transistors and semiconductors

The majority of small transistors are supplied in SOT23 packages. This package type has three leads (Figure 2). The leads of a SOT23 package are formed already bent over, and are soldered flat to the board.


Figure 2: SOT-23 transistor/diode package
The larger packages used for surface mounted semiconductors have a lead spacing half the width used for through-hole components. The leads are usually on a pitch of 1.7 millimetres, or one-twentieth of an inch. The width of the package is half the width of the normal through-hole package, so is 3.8 millimetres, or 0.15 of an inch. These packages are also soldered to the board using the gull wing leads (figure 3).

Some larger semiconductors are supplied in square packages which have leads on each side of the package. The connections can be gull wing, J lead, or simply small copperplated connection points on the side of the package (figure 4). These packages types are Quad Flat Pack (QFP), or PLCC (Plastic Leaded Chip Carrier). The PLCC package may be fitted into a socket which mounts on to a PCB using conventional through hole technology, or may be fixed using solder paste.

The largest semiconductors are now supplied in ball grid arrays (BGA), which have small solder connection points on the


Figure 3: SOnnn ic packages
underside of the ic package, and it is the heating of the board which melts the solder connections of the ic directly to the board. The connections are not visible once the package has been soldered. These package types are PBGA, CBGA, and TBGA, standing for Plastic, Ceramic, and Tape Ball Grid Arrays respectively. The different types of package have different melting temperatures and therefore can require different handling techniques.

There are becoming available even smaller packages for smaller semiconductors, described as VSO (very small outline) packages. These packages have lead spacings of less than one millimetre.

Companies such as Maplin normally only supply the smaller components in quantities of 25 or more. Components come in tape camiers with a peel-off plastic seal. The seal prevents the components from being affected by atmospheric contamination, and components should only be removed from the tapes immedlately before for use (this also helps to prevent them getting lost). Not only are many surface mount components not marked, but a number of SOT23 tape camiers are labelled not with the component type, but with the manufacturer's code, or a date. For this reason it is worth labelling all tapes as soon as they are purchased.

## SM for small production projects

Currently the majority of components are still available in through-hole as well as surface mount packages. This situation seems likely to continue for some time to come, due to the large number of existing equipments which still use throughhole technology, as well as the equipment currently in use which still requires maintenance. In addition it is still far easier to build and maintain prototype circuits built using through-hole technology than it is to use surface-mount. The largest semiconductor packages in the square packages are the only components generally available in surface mount form only, because there are no through-hole technologies sultable for the very large number of connections required by these devices. Even here there are sockets and adapters available to allow the devices to be mounted on a through-hole board.

It is possible that in future some devices will only be available in surface mount form, and when this time comes then it will be necessary for amateur and educational constructors to become more familiar with surface mount techniques.

The other time when it is essential to use surface mount components for non-production projects, is when the advantages of gained in the small physical circuit size are the only way in which components may be fitted into a certain
space: In this article we shall look at two simple projects which fall into this category. At present it is almost certainly not worth using surface mount components for any other use than in commercial production.

Even with this constraint it is still the case that for clrcuit development where designs are to be tested, or where functionality is not certain then prototypes must still be built using through hole techniques, and once operating successfully can be transferred to surface mount.

## Obtaining SM components

Maplin now stock a variety of surface-mount components, and are a good source. Surface-mount components are usually available more cheaply than their through-hole versions, because they are simpler to make and contain less material. For hand assembly it is usually worth getting the larger* packages. For example 1206 resistors are reasonably easy to solder by hand, but smaller devices can be very difficult. Surface-mount components with a lead pitch of one 20th of an inch are probably the smallest that it is a feasible to fit reliably by hand.

Please note that surface-mount resistors and capacitors are not usually available in the same tolerances and voltages as their through-hole equivalents. Care must be taken to make sure that the surface mount components are sufficiently highly rated for the task.


Figure 4: chip connections

## Designing SM boards

Although surface-mount prototyping boards are available, the most sensible method of construction for surface-mount is a printed circuit board. The prototype board loses the advantages of small component sizes when the components have to be wired together with leads which require larger pads to connect them to the board.

PCB design for surface mount is different from designing for a through-hole board. The lead spacing of components is much smaller than for through-hole, and it is usually not possible to run
the pcb tracks between the leads of components with the same ease as on a through-hole design. However surface-mount designs have the advantage that there is no drilling required except for through connections between the sides of a board.

The ability to place some circuit areas on one side of a board, and others on the opposite side, allows for circuit designs not previously possible. For amateur construction of through-hole pcbs it has normally been very difficult to get registration between the images on both sides of the board. With a double-sided surface-mount board this may not be so important. For example a radio receiver may be constructed with the RF/F sections on one board side, and the audio amplifier sections on the other side of the board. Connections between the two sides of the board are limited to power and the audio connection.

I have constructed surface-mount boards using both photographic techniques, and the Press'n'Peel system. For those who are unfamiliar with the Press'n'Peel system, this is a proprietary method of producing printed circuit boards without having to go through a photographic process. The pcb track is printed in mirror image on to a special sheet using a laser printer or photocopier. The image is then transferred directly on to blank pcb material by carefully lroning the reverse side of the sheet. It may then be etched in the normal way.

The photographic technlque is considerably harder, but results in a cleaner board constructlon. The Press'n'Peel technique requires less equipment, is considerably faster, but'I have found that it results in slightly more ragged tracks.

PCB design is possible by hand, but for surface-mount it is almost essential to use a computer due to the smail size of the component pads and tracks. I have found that tracks as narrow as one point, or 0.35 mm , are the smallest that can be used with simple photographic techniques, or the Press'n'Peel system. The component pad size can be extremely small, in fact it is possible to use component pads which are the same size as the termination on the component. However, it is better to allow a small area, 0.5 millimetres typically, around the component termination to ensure a good joint. Figure 5 shows pad slzes, which are shown at the very minimum size, for a number of component types. PCB design packages normally have surface-mount outlines in libraries supplied with the package. You are not restricted to CAD. I have successfully used drawing packages, including Micrographx Designer and CorelDraw, for designing surface-mount boards.

## Constructing SM by hand

Probably the most important tool for the construction of a surface-mounted board is a good soldering iron with a fine tip. It is a very hard to remove a component once two or more leads have been soldered to the board, and it is only too easy to destroy a component by attempting to remove or replace it. A small hand-operated vacuum holder is very useful for placing the component, and a component is lot easier to manoeuvre using a vacuum holder than a pair of tweezers (which will also take heat away from the component leads).

I recommend the following technique for hand assembly of a surface-mount clrcuit board:
if the board is not tinned, tin the connections on the board for your component using a very small amount of solder. If the solder forms a small bump above the board surface, use a solder pump to remove the excess solder. Now the component may be positioned using a vacuum holder or pair of tweezers. it is very difficult, if not impossible, to manipulate a component using your fingers.


Figure 5: outlines for use in laying out pcbs. Minimum sizes are shown: in practice, real outlines for hand soldering are best made somewhat larger than the dimensions shown

Now use the soldering iron to solder the component's first lead to the tinned board. Usually there is sufficient solder to ensure that the component is firmly fixed to the board. If the component is not correctly positioned, then reheat the joint with the soldering iron, while carefully and precisely repositioning the component using the tweezers. Once the component is correctly soldered to the board by one of its leads, then the other leads may be soldered to the board using fine solder, and the briefest application of the iron. Once this has been completed successfully, then the first lead may also be re-soldered to ensure that it is properly fixed.

Let me warn you again that it is almost impossible to reposition a component reliably once two or more connections have been soldered. Position the component correctly while soldering only one connection, then do the other connections.

If you are using solder paste, this is normally supplied in a syringe. The paste may be applied to each of the component pads, using a small amount - sufficient just to stick down the


## Semiconductors

$\begin{array}{ll}\text { IC1 } & \text { 74HCT573M1R Maplin AE95 } \\ \text { LED1-10 } & \text { SMD Red LEDs Maplin CJ72 } \\ \text { Q1-Q3 } & \text { BC846A NPN SMD Maplin VR79 }\end{array}$

## Resistors

R1-8,R10,R12 330R 1206 Maplin DJ09
R9,R11,R13,R14 10k 1206 Maplin DJ17
Capacitor
C1
100nF 1206 ceramic Maplin DJ00
Miscellaneous
20-pin IC test clip
Surface mount switch
Maplin JB70
Maplin DC71
$4 \times$ Veropins
PCB
component and squeeze a small amount of paste around the connection. The soldering iron may then be used to melt the paste on each pin. This technique has the advantage that components may be positioned more accurately before soldering, as the paste holds them in position quite well, but make sure that the component is not "riding up" on a blob of paste, or it may float out of position when soldered). Also, using this technique, several components may be placed first and then soldered at the same time.

It is quite possible to mix through-hole and surface-mount techniques on the same board, but care must be taken to ensure that pads are large enough for the through-hole components. This construction technique allows through hole and surface mount components to overlap on different sides of the board.

## Example projects

There are two surface-mount projects presented as examples of surface-mount technology. The first is a 20-channel logic probe, the second is also a diagnostic tool for PIC projects.

## The logic probe

This is a simple logic probe for (through hole!) ics of up to 20 pins. Although it is a simple circuit without many components it may find use in diagnosing circuit problems, and demonstrates the use of surface mount technology using capacitors, resistors, transistors, an ic and LEDs.

The logic probe consists of an ic test clip with a small circuit board soldered to the top of the clip. There is one LED for each pin of the clip. The middle 8 pins of each side of the ic are latched, and normally the level-triggered latch is enabled, so the LEDs show the state of the pin, however, a latch input may be used to hold the state of the LEDs when it is taken low.

In practice the clip is attached to the top of a chip, and the power leads connected to a suitable 5 V supply on the board. The LEDs will light to show those pins which are high. To hold the state of the pins the button may be pressed. Alternatively there are two hold inputs (one hold low, one hold high). The hold inputs may be connected to any pin on the circuit so that the LEDs will show the state of the pins when the hold pin is in a specific state. This is
useful to check the output pins of a device when the clock is triggered for example. One board may be connected to each side of the clip if it is required to examine both sides of a chip simultaneously.

The circuit diagram is shown in figure 6. The heart of the circuit is a surface-mounted HCT573 device. This is an 8 -bit level-triggered octal latch. It is used here because its pinout has the latch outputs on exactly the opposite side of the chip to the input, which allows the pcb design to be more straightforward. An HCT device is used instead of the HC device because it has TTL compatible inputs as well as accepting standard CMOS levels. The outputs of the chip are sufficient to drive LEDs at about 13 mA through resistors R1 to R8. The two end pins (one of which will normally be a power pin) are not latched, and simply drive LEDs through transistors Q1 and Q2. The latch input of IC1 is pulled high by a 10 k resistor so that it is normally enabled. It may be disabled by pushing button 1 , by pulling the pin directly to ground, or by pulling R14 high which disables the latch input through transistor Q3.

The circuit board overlay is shown in figure 7. Note that IC1 is an SO16L package 10 mm wide, which makes it easier to handle than smaller devices. The first component to be soldered is IC1. Carefully tin the pad for pin 1, and position the device on the board. Now solder pin 1 . If it is not exactly placed, melt the solder again and carefully manoeuvre it into position. Now hold the device so that all pins are exactly over the pads, and solder pin 11 into place. Ensure that the device is now correctly positioned on all sides, and then solder the other pins. If solder shorts out two pins then the iron may be replaced, and a solder pump used to remove and clean the tracks.

Follow this by soldering in the resistors, C 1 , and the transistors. Check any component connections which run close to adjacent tracks with a multimeter to ensure that there are no short circuits as each device is soldered. Finally the LEDs may be fitted. Note that LED 9 and LED 10 are fitted in the opposite direction to LEDs 1 to 8 . Note also that the cathode of the LED (which on a traditional round LED is marked with a fat) is marked with a small indentation on the corner of the square LED package. This indentation should be to the right for LEDS 1 to 8, and to the left for LEDs 9 and 10 .

Finally, solder the board to the top of the IC test clip. The board is powered from two flying leads which should have miniature test clips on the end to the 5 V supply on the board. The board has very little to go wrong, and provided that there are no short circuits will operate immediately.

## A serial diagnostic tool

The second project is the diagnostic serial interface used in this issue's Advanced PICs series. Surface mount technology is used to fit a small circuit with eight components on to a board just 13 millimetres square. The circuit diagram is shown in
figure 8. This is a straightforward circuit and is not described here. Its use is described in the PIC article in this issue. The board is intended to be fully fitted into a 9-pin D connector case with four leads which connect to the circuit under test using crocodile clips.

Figure 9 shows the board layout. This style of construction is used to achieve the minimum size for the project. All the components are surface-mount devices except for C 1 which is a 100uF capacitor mounted externally. The board is mounted by pads which are directly soldered to three of the pins of the nine-way serial socket.

Note that this board is considerably tighter than that for the first project, and greater care must be taken in its construction. The pcb can be made by photographic or Press'n'Peel techniques. Ensure that the tracks are separated with a sharp knife after etching.

The gap between the rows of pins is narrower than the width of the pcb, so the end of the circuit board which is soldered to the serial connector must be carefully filed, or pared with a knife, to reduce its width so that the board can fit between the pins as shown in figure 10.

The surface-mount components may be placed and soldered first, the order of construction is not important. This board is quite hard to build, and it is worth checking all the connections for short circuits with a multimeter before continuing.

Pin number 1 of the 9 -pin socket should be cut off with a wire cutter so that it does not touch any of the components of the board. The board may then be soldered to the serial socket. Note that the three pads on the board are soldered to pins 2,3 and 5 of the socket. C1 may now be wired between the ground connection and the capacitor connection of the board. Note that the ground wire is soldered into the same hole as C1, and therefore it may be better to twist the lead of C 1 and the ground wire together before inserting into the ground hole.

There are four wire connections to the board, two power connections, and two data connections. For the prototype tests leads with a crocodile clip at each end were used, cut in half before soldering them to the board. The board may be tested (as described in the Advanced PICs article in this issue), and then fitted into the connector shell. The best way to fix the wires and board into the shell is to fill it with potting compound, or to glue the wires into the case using silicone rubber, or epoxy cement.



## Commercial SM techniques

Production lines make use of highly automated assembly tools to construct circuit boards very rapidly. PCBs for production equipment may be double sided, or for very high density applications may have a number of buried track layers to ensure connectivity without the need for wire links and jumpers. As for a normal through-hole board, the surfacemount pcb will be plated and printed with a solder mask.

However, the surface-mount board will then be screen printed with solder cream on the component terminations. The components may be placed on to the board and held in place by the solder cream, which is slightly sticky. For bigger components, glue may be used as well. Once all of the components have been placed on the board, it is passed through a hot oven which melts the solder cream and


Figure 7: the logic probe component layout
simultaneously solders all the components on the board at once. As the components have a low mass, and a lower density than solder, they tend to float into position on the solder pads pulled into place by surface tension. This is known as the self-centering effect, or "swim-in". It actually pulls larger components such as Ball Grid Arrays into place as well.

At the heart of an automated surface mount production line is the pick and place machine.
These machines can automatically place thousands of components per hour onto boards. Component placement rates of 8 to 10,000 pieces per hour are not uncommon. The pick and place machine has at its heart one or more vacuum placement heads which pick up components from a cassette tape, move the board as necessary, and place the components to an accuracy which can exceed 0.5 micrometers in the more advanced machines. Typically there may be up to 150 tapes for a pick and place machine. Where there are more component varieties than this, pre-sorting of more than one component type per tape is required.

Some pick and place machines include optical recognition systems which are capable of determining the exact orientation and position of a component as it is lifted from a cassette. This allows a wider variety of components to be recognised and used. For example, figure 11 shows the wide variety of component types which can be placed by the Panasonic NM2544,2545 pick and place machine. Most of these components are too specialised to be available to the small scale constructor. Figure 12, on the other hand, shows some SM components that are available to the home constructor - life size.


Figure 8: the diagnostic serial interface circuit

## Reworking and maintaining SM bôards

Clearly with the smaller component sizes used in surface-mount, specialist tools are required when reworking boards to replace failed components, or to make modifications. The twoleaded components are relatively easy to remove provided that both ends of the component can be heated at the same time. It is virtually impossible to remove surface mount components by using a desoldering pump, as there is nearly always residual solder under the component which holds it in


Figure 10: fitting the board to the socket
place.

Semiconductors and other components with a large number of legs are much more difficult to remove. Components with gull wing legs can usually be removed by heating each leg in turn and bending it up from the board with a sharp knife. However, this is much easier if it is permissible to destroy the component in the process. A hot air gun may be used to mett the solder on all the legs of a component at once, at which point it may be removed. However, a hot air gun can be indiscriminate. One of the snags with surface mount assembly (and this is true for


Figure 9: the diagnostic serial interface component layout
industrial machinery as well as small scale construction) is that it is only too easy to disturb surrounding components when treating a small area.

PLCC or QFP devices can be removed with a special soldering tool incorporating a frame which fits around the entire device heating all the terminations simultaneously. The complete device may then be lifted complete from the board.

Ball Grid Array devices are much harder to remove as the solder connections are hidden under the device. Figure 13 shows a rework station for BGA components, in this case the Weller WQB 2000. At the heart of the device is a vacuum head with a hot air soldering tool. There is also an infra-red heater in the base plate of the unit. A board containing a BGA for repair is placed on the base unit and heated through the board. The BGA is also heated from above by the soldering tool. After a predetermined time the vacuum pump is activated and the BGA is automatically lifted from the board. Both the BGA and the board are then thoroughly cleaned, and a stencil is used to apply solder paste to both the BGA and the board in exactly the right positions. The BGA may be heated with a hot air gun to reform the solder balls, and then all the processes are reversed to resolder the device.

Ball Grid Arrays are a relatively new development, and are only used on the most expensive eqipment. For these reasons, the manual rework process is still cost effective.


Figure 11: component types used with the Panasonic Panasert NM2544/2545 component placement machine


Figure 12: Life-size surface mount SOT23 and SOT223 transistors plus 1206, 0805 and 0603 resistor packages. The 0603s can be soldered by hand - but we don't recommend it for first timers

## Further information

The purpose of this article has been to demystify surface mount technology, and to show that in the right place surface mount is straightforward to design and use. I recommend that interested constructors build one of the example projects just to assist in familiarisation with the technology.

The surface mount components for the projects described in this article are all avallable from Maplin: PO Box 3, Rayleigh, Essex SS6 8L. Tel 01702 554161. Press'n'Peel etching supplies can also be obtained from Maplin.
(1) WQB C Time Control Module: Time data taken from temperature profiling of a component is stored to control the temperature during the reworking process. 6 parameter steps and up to 20 process programmes can be stored in this module
(2) WQB P Pre-Heating Plate Supply. Analogue temeprature control gives Infinite variable temperature settings betweel 50450 degrees $C$.
(3) WQB A Hot Gas Unit powers the hot gas temperature and gas flow (compressed air or inert nitrogen) to the rework nozzles.
(4) Base plate with substrate pre-heating plate. The infra-red induced pre-heating plate has an output of up to 280 W , allowing heavy duty boards to be reworked.
(5) Tool selector. Three vertical slides adjust the soldering tool onto the requried reflow zone
(6) WQB V soldering head with rapid-change toof holder and vacuum lift. After the required reflow time, the component is raised automatically from the PCB inside the nozzle housing
(7) Enclosed Hot Air Nozzle casing design ensures that the required heat is guided precisely to the area to be reflowed. Nozzles are interchangeable for component size
(8) Alignment templates, vacuum nozzle and printing templates. A BGA alignment template is fixed to the board in the gap left by the removal of the defective component. The new component is dropped into the template; a vacuum nozzle then lifts and retains it while the solder paste is printed within the alignment template area. The vacuum nozzle then lowers the component into the exact position for reflow soldering.


Figure 13: The Weller WQB 2000 BGAVQFP, an industrial solder reworking system for ball grid array and fine pitch SMT components. Difficult repair processes: desoldering, printing a new solder paste layer, component placement and resoldering are carried out on a preheated base table. Exact repositioning of the component is achieved with a vacuum pick-up nozzle that lifts and lowers the new component before and after the solder paste printing process.

# $30 \%$ discount for ETI readers 

## on a digital multimeter

## Features:



- 3.5 digit 44 ranges
- $A C$ \& DC volts
- $A C \& D C$ current to 10 A
- Resistance \& capacitance
- Frequency to 20 MHz
- Diode, continuity \& transistor test
- Logic test
- Auto power off, data \& peak hold
- Overload protection
-     - Input warning beeper
- Gold plated switch contacts - long life
- Protective rubber holster


## LP310 £49 including vat \& delivery

Vann draper is offering over 30\% discount to readers of Electronics Today International on their LP310 digital multimeter.

The professional quality LP310 normally sells for £69.33 but for readers of ETI the price is just £49 fully inclusive of vat \& delivery.

The meter is supplied ready to use complete with test leads, rubber holster, battery, instructions and a 12 month guarantee.

To order simply post the coupon to Vann Draper Electronics Ltd at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL. Alternatively tel 0116 2771400, fax 01162773945 or e-mail sales@ vanndraper.co.uk

## Key specifications

DC volts $\quad: 0.2,2,20,200,1000 \mathrm{v}$ basic accy $0.25 \%$ AC volts $\quad: 0.2,2,20,200,750 \mathrm{v}$ basic accy $1.2 \%$
DC current : 200uA, $2 \mathrm{~m}, 20 \mathrm{~m}, 200 \mathrm{~mA}, 2 \mathrm{~A}, 10 \mathrm{~A}$
AC current : 200uA, 2m, 20m, 200mA, 2A, 10A
Resistance : 200, 2k, 20k, 200k, 2M, 20M, 2000M
Capacitance : 2n, 20n, 200n, 2u, 20uF
Frequency
Continuity
: $2 \mathrm{k}, 20 \mathrm{k}, 200 \mathrm{k}, 2 \mathrm{M}, 20 \mathrm{MHz}$ auto ranging
Protection : <300hms
: 500 v resistance ranges
: 2A \& 10A fuses on current ranges

## Vann Draper Electronics Ltd

The test \&measurement specialists www.vanndraper.co.uk

## Use this coupon for your order

Please supply me :
..........LP310 multimeter(s) at $£ 49$ inc vat \& del
Name
Address :

Tel No
Total £
Cheques payable to Vann Draper Electronics Ltd or debit my visa, mastercard or switch card:

Card type :
Card No. :
Expiry date :
Switch iss No. :
Signature :
Overseas readers can still obtain this discount but carriage charges vary according to country. Please telephone, fax, email or write to Vann Draper.

## WIND GENERATORS 380 WATT

1,14 meje dia blades, carbon matrox biscoss, 3 yeer wamenty, 12 vidc output 24 v version availabie, convol electronics inchuoed. buushiess reodymium cubic curve atternator, only wo moving parts. maimernance Tree, simple rood top installation, start up speed 7 moh, max outpur (30mph) 300w. £499 rel AN1

## HYDROPONICS

## DO YOU GROW YOUR OWN?

We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test equipment etc
Ring for your free copy.
PORTABLE $X$ RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home $X$-ray mechine! Effective device, $X$-ray sealed assemblies canbe usedfor expenmental purposes. Not a toy or for minors! $£ 6 / \mathrm{sec}$ Ref F/XP1.
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no trown apparent means or cause produces positive motion and effect Excelionf for science projects magic shows, perty demonstrations or serious research \& deveicoment magic shows, perty demonstrabons or senous resean

## Ealiset Ref FTKKE1.

ELECTRONIC HYPNOSIS PLANS \& DATA This deta shows several ways to put subjects under your control included is afuli volume velerence text and several construction pians that when assembed can produce higny enectrve sumul. This maternal must be those experienced in to use $£ 15 / \mathrm{sel}$ Ref $\mathrm{F} / \mathrm{f}-\mathrm{H} 2$.
GRAVITY GENERATOR PLANS This unique plan demonstries a simple efectrical phenomena that produces an anti-gravity effect You can actualiy build esmall mock spaceship out of simple materiais and WORLDS SMALLEST TESLA COILLIGHTENING WORLDS SMALLEST TESLA COILLIGNTENING
DISPLAY OLOBE PLANS PTOduces up to 750,000 volts of DISPLAY OLOBE PLANS Produces up to 750,000 woths of
discharge, experiment with extraordinary HV effects, "Phasma in a jar" St Elimo's fire, Corona, excelient science profect or corversabion piece E5iset Ref F/BTCINGS
COPPER VAPOUR LASER PLANS Produces 100 mm of vasible green fight High coherency end spectral quairity wimilar to Argon raser but easier and tess costy to build yot far more efticiem This particutar design was developed at the Atomic Energy Commation of NEGEV in israel $£ 10$ set Rel FKCVI.
VOHCE SCRAMBLER PLANS Mineture solid state 5 ystom fums speech sound into indecipherable notise that cannot be understood without a second matching unit Use on telephone to prevent third perty listening and bugging £E/set Ref FNSS.
PULSED TV JOKER PLANS Lithe hand held device ubilises pulse techniques that wil completety disrupt iV picture and sound worts on FM toot DISCRETION ADVISED £8set Ral FTTJ5
BOOYHEAT TELESCOPE PLANS Highly directional long range device uses recent tecinology to defect the presence of living bodies, werm and hot spots, heat leaks etc. Intended for security, lew enforcomemt, research and develooment. etc. Excellent security dence or very interesting science project $£ 8 /$ set Ref $/$ /Brtit.
BURNING, CUTTING CO2 LASER PLANS Projects an invisible boum of heat capabie of buming and meiting moteriats over a $10 \%$ input power into useful output Not onty is this device a worktorse in welding. cutting end heat processing materiais but $h$ is also a alkely candidate as an effecture dircicted onergy beam weapon against candidate as an efrective dirccted bnergy beam weapon against utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other particies the device is easily applicable to burning and etching wood, cutting. plestics, textlies otc E12iset Rel FAC7.
DYNAMO FLASHLIOHT interesing concept, no batteries needed just squeeze the trigger for instant light apparentity evin works under watein an emergency athough we havent thed il yetl 6698 rel SCi52 ULTRASONIC BLASTER PLANS Latormory source of somc shock waves Blow hotes in metal, produce "cold' steam, atomize lquides Many cleaning uses for PC boards, fewliery. coins, small parts liquides Many cieaning
ANTI DOG FORCE FIELD PLANS Highly effective circuit aroduces time variable pulses of accoustical energy that dogs cannot olerate EGNee Ref FDOG?
LASER BOUNCE LISTENER SYSTEM PLANS Alows you to hear sounds from a premises without gaining access $\$ 12 /$ set Rel FI LISTI
PHASOR BLAST WAVE PISTOL SERIES PLANS Handhetd, has large transducer and battery capacity with externai controls. £6iset Ref FIPSP4
INFINITY TRANSMITTER PLANS Tewothone line grabber room monitor. The ultimate in homeloffice security and safetyl simple to usal Cal your home or office phone, pust a secret tone on your Existing corvarsation with bruak-in capsoitity for entergency messenges £ Rel FITELEGRAB
BUG DETECTOR PLANS is that someone getung the goods on you? Easy to construct device locates any hidden source of radio energyl Snifts out and finds bugs and other sources of bothersome interference Detects low, high and UHF frequencies $£ 5 / \mathrm{s}$ set Ref FI BD1.
ELECTROMAGNETIC GUN PLANS Projects a motwobject considerabie distance-requires adult supervision f 5 rel F/EML2 TOUCH OF YOUR HAND! $£ 5 / \mathrm{het}$ Ref F/EMA1
SOLAR POWERED WND UP RADIOS BACK IN! These FM/AM reciot
of SOLRAD
PARABOLIC DISH MICROPHONE PLANS Listen to distan sounds and vaces. open windows. sound sourges in 'hard to oer or
orste premises. Uses satallite technotogy to gather distant sounds and focurs them to our ultra sensitive efectronics Plans also show an aptional wreless link system £8/set ral F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VOC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments. $£ 10$ Ref FAMMMII TCL4.


## COLOUR CCTV VIDEO CAMERAS,

BRAND NEW AND, CASED, FROM $\$ 99$.
Works with most modern video's, TV's, Composite monitors, video grabber cards. Pal, iv PPP, composite, $760 \mathrm{hm}, 1 / 3^{\prime \prime} \mathrm{CCD}, 4 \mathrm{~mm} \mathrm{F2.8}$, 800x 882 . 12 vdc , mounting bracket, auto shutter, $400 \times 50 \times 480 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 449$ ref XEF160, 1 or more $£ 99$ ea $100+£ 89$
clicicunt-picks Paciss of 35 cucuit diagrams covering lasers, SW redioe. geigers, bugs, char efe Pack 1, PuckR, Pack3 $£ 4.99$ each SMOKE ALARMS Mains powered, made by the famous Gemt company, easy fit next to light fitungs, power point £499 ref Sukx CONVERT YOUR TV INTO A VGA MONITOR FOR E25I Convents a colour TV into a besic VGA screen Complete with buill in psu, leed end stware ideal for laptops or a cheep upgrade Supplied in lot form for home assembly. SALE PRICE EZS REF SA34 -15 WATT FM TRANSMITTER AIreedy assembled but some RF knowedge will be usefil for setting up. Preamp recd. 4 stage 80 . 108 mkz . 12-18wdc, can use ground plene yegl or dipote f 69 ref 1021 -4 WATT FM TRANSMITTER KIT Small but cowerful FM 1028

YUASHA SEALED LEAD ACID BATTERIES $12 \% 15 A H$ £18 ret LOT8 and below spec ov 10AH at E5 a pair ELECTRIC CAR WINDOW DE-CERS Complete with cabie. plug ete SALE PRICE JUST E4.g5 REF SAZ8
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug 12 v 2watt $£ 42.99$ REF AuG10p3. SOLAR POWER LAB SPECIAL You get 267600130 mA colls, 4 LED's, whe, buzzer, switen +1 relay or motor. E7.99 REF SA27
SOLAR NICAD CHARGERS $4 \times$ AA size 9999 rel 6P476. $2 \times$ C size ce 89 ref 6P477
GIANT HOT AIR BALLOON KIT Build a 4.5 m circumfrence, fulty functioning balloon can be launched with home made burner efc Reusable (until you loose $\mathrm{mi}^{\prime}$ ) $\mathbf{1} 2.50$ ref HA1
AIR RIFLES 22 As used by the Chinese army for training puposes, so there is ath aboul £3996 Ref EFTh. 500 pelhets 84.50 ret EFBO.

## REGISTER FOR OUR ELECTRONIC NEWSLETTERS BULL-ELECTRICAL.COM

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX
BN3 5 QT. (ESTABLISHED 50 YEARS). AIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $£ 5.00$ PLUS VAT.
 accrss vis, swich American krpress phone orders : 01273203500

FAX 01273323077
Sales@bull-electrical.com

NFRA RED FILM $\sigma$ square piece of fexibte infra red fitm that wil only atiow IR light through Perfect for comverting ordinary torches. ights, headights efc to infra rect output only using standard light bulbs Easily cutt to shape. $6^{\text {E }}$ square $£ 15$ ref IRF2
HYDROGEN FUEL CELL PLANS Loeds of information on mydrogen storage and production Prectical phans to build a Hydrogen vel cell (good workshoo facithees required) a8 set tef FCP9
STIRLING ENGINE PLANS interesting information pack covering alf aspects of striling engines pictures of home made ugines made from an aerosot can unning on a candlel E12 rei STIR2 12V OPERATED SMOKE BOMBS Type 3 is a 12 v trigger and smoke cannisters, each cannister whil fill a room in a very shori space of timel $£ 1499$ ref S83. Type 2 is 20 smalier cannisters (Butable for mulated equipment fres etc) and 1 tingger module for $£ 29$ rel $\mathrm{SB2}$ Type 1 is a 12v trigger and 20 large cannisters $£ 49$ rel 581 HI POWER ZENON VARIABLE STROBES Useful 12 V PC8 fited with hi power wooe tube and control electronics and speed control potentiometer, Perfect for interesting projects etc $70 x 55 \mathrm{~mm}$ 12udc operation. £6 ea ref FLS1, pack of 10 £ 49 rel FLS2 RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the workll ring for colour brochure NEW LASER POINTERS 45 mm 75 mete range hand held runs on two AA batteries (supplied) 870 mm E29 ref DEC49 HOW TO PRODUCE 36 BOTTLES OF WHISKY FROM A SACK OF POTATOES COmprehensive 270 page book covers all aspecis of spint production from everyday matenals includes construction detaris of simple stills etc £12 ref MS3 NEW HIGH POWER MINI BUG With erange of up to 800 netres and 3 days use from : PP3 this is our top selling bugl less than 1" square and a 10 m voice pickup renge $£ 28$ Rel LOTice BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step guide to building wind generators and propeliors Armed with this pubication and cood local scrap yard could make vou self sufficient in electricity' £12 ref LOTSI NEW LOW COST VEHICLE TRACKING TRANS MITTER IIT E29 range $1.5-5$ miles, 5,000 hours on AA battenes, transmits info on car direction. lent and night turns, stan and stop informabon Works whit any good FM radio $£ 29$ fef LOT101a
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12v 100 mA auto electronic shutter, 36 mm F2 tens. CCIR, $512 \times 492$ mets wdeo outour is iv op ( 75 chm ) Worios directly into a scart of ideo input on a No or video IR sensitve $£ 7995$ ref EF 137. IR LANP KIT Suitable for the above camera, enabies the camera 0 be used in total dankiess! E 6 NEF138
UK SCANNING DIRECTORY As supplied to Police, MOD,M15 ard $G C H O 1$ coverers everything from secrei government fiequencies. ye in the shy, prisons, mititry avision elc $£ 1850$ re/ SCANB INFRA RED POWERBEAM Handheld battery powered lamp. 4 inch refiector, gives out powerfur pure infrared ligite' perfect for $O C T V$ 2e, nightigithe etc f29 ror PB1.
SUPER WIDEBAND RADAR DETECTOR Detects both tar and laser XK and KA hand speed comeras and all known racar and laser, $X K$ and KA benos, speed cameras, and all known
searwavequides $1.1^{\circ} \times 7^{\circ} \times 4 \sigma^{\circ}$ fits on sun visor or dash $£ 149$ re
CHIEFTAN TANK DOUBLE
LASERS 9 WATT +3 WATT+LASER OPTICS
Could be adapted for laser listener, long range communications atc Doubte beam units designed to ftin the gun barrel of a tank, each unit has wo semi conductor lasers and motor dive units for alignement. 7 mile range, no circurt diagrams due to MOD , new prce $£ .50,000$ ? us?
 $\times 3$ watt, 900 mm wovoengith $20 \mathrm{dtc}, 600 \mathrm{nk}$ pulse irequency. The om targets £199 for one. Ref LOT4
NEW LOW PRICED COMPUTERWORKSHOP/HIFI RCB UNITS Complete protection from faulty equipment for everybodyl inline unit fits in standard IEC lead (extends it by 750 mm ). itted in less than 10 saconcs. reseltest bution, i04 rating E6 99 each ref LOTS. Or a pack of 10 at £49 90 ref LOT6. If you want a box 100 you can have one for $£ 250$ :
DIGITAL PROPORTIONAL B GRADE RADIO CONTROLLED CARS Ffom World famous manuffacurer these are returns so they will noed attention (usually physical damage) chasp way of burn $T X$ and $P \times$ plus servos etc for new profects etc E20 each sold as seen ref LOT2DP.
MAGNETIC CREOIT CARD READERS AND ENCODING MANUAL $\varepsilon 9.95$ Cased with tyleads, designed to read standard credit cards! complete with control elctronics PCB and manual overing everything you could want to know about whits hidden in that magnetic strip on your card just $£ 9.95$ ref BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN DEA? We MAKE SOWE MONEY STUCK FOR AN formation have colated 140 buemess manuais chat give you our leisur on settong up different busmesses. You peruse the is the
 as you likel E 14 rel EP74

HICH POWFR DC MOTORS, PERMANENT
MAGNET
12-24v operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ outpur shaft with a machined flat on Foxing is simpte using the two threaded bolts protuding from the tront


## £22ea REF mot4

# In-Line Mains <br> <br> Monitor 

 <br> <br> Monitor}

## Are you unplugged? Have you blown a fuse? Find out first with Terry Balbirnie's warning circuit.

1his monitor emits a loud pulsing sound if the supply to a piece of equipment fails. One obvious use would be for kitchen appliances such as fridges or freezers. However, you will no doubt find other applications such as for video recorders and possibly for computer and security items. It could also be handy for office equipment such as fax machines and answerphones.

This is a mains control project. If you do not have much mains construction experience, seek advice from a more experienced constructor before building this project.

## Cut off

Although the mains supply in urban areas is generally reliable, people living in rural places might experience the power cuts due to overhead power lines coming down during storms. Having said that, the most usual reason for failure is that someone has unplugged the appliance - for instance, to plug in a vacuum cleaner - and forgotten to replace the correct plug afterwards. The fuse also occasionally fails inside the UK-type plug simply due to old age. Readers with an RCD (residua) current device) in their household mains feed may experience the odd "trip" for no apparent reason and not notice it during the day when no lights are on.


appliance are connected to a piece of screw terminal block inside the unit. The system is suitable for use with items up to 6A rating (about 1400W on a 230 V supply). In practice, this means that most pieces of equipment which could benefit from being monitored may be connected.

## Pulsed operation

The piezo buzzer used in the prototype unit has a very low current requirement ( 10 mA maximum) and the red LED requires a similar smali current. Since their operation is pulsed, it effectively reduces the total average current to around 10 mA , and the specified nickel-cadmium batteries will provide a full-power waming for at least 10 hours. They will then give a signal at reduced power for much longer. The prototype unit maintained a weak signal for more than 24 hours and for some time after the battery

## Loud warning

Whatever the reason for an interruption to the supply, this monitor will make a loud noise, and a red LED will flash when it happens. This should attract attention before any damage has been done. The warning will continue for several hours until power is restored. If there is no prospect of an early restoration, the audible warning can be swtiched off. The fault condition is then indicated by the flashing LED. When power is restored, the buzzer sounds continuously to remind you to switch to "normal" again. Then (you will be relieved to hear!) it falls silent once more.

The monitor will sound if one of the fuses on its own circuit board blows (providing the batteries are in reasonable state of charge). In this case the appliance will be observed still to be functioning, so it will be clear that the fault is in the monitor itself. However, it is most unlikely that the fuses in a well constructed monitor will fail.

Remember that it is the mains that it being monitored, so the monitor will not give a warning if a fault develops after it, for example, if the appliance itself is switched off or if one of its internal fuses fails.

The Mains Monitor is wired in line with the equipment being used. The incoming mains feed and wire leading to the
voltage had fallen to the point where the LED went out. Obviously, the full-power operating time depends on exactly which sounder is used and the state of charge of the battery when the fallure occurs. Readers wishing to double the operating time could omit the red LED. There is also a way of extending the period even further but at some expense of loudness. More will be said about this later. When the mains supply is restored, the warning is cancelled and the batteries charge ready for the next time.

## How it works

The circuit diagram for the Mains Monitor is shown in figure 1. Providing a mains supply exists, transformer T1 gives a nominal 18 V AC output by connecting its twin 9 V windings in series. The result is converted to direct current by bridge rectifier REC1 and smoothed by capacitor C1. This gives an on-load supply of some 20 V . The mains and low-voltage sections of the circuit are protected by fuses FS1 and FS2 respectively.

The input of regulator IC1 is connected to the nominal 20 V supply. The output then provides a fixed 12V.C2 and C3 are necessary to ensure stable operation. The output operates the monitor's green on/off indicator LED1, with its current limited


Figure 1: the circuit of the Mains Monitor

PINHOLE CAMERA MODULE WITH AUDIO! Supert board
 mierophone) idealifr covert sumveilance Can be hidden inside anythtig oven a matchboxl Complefer
connnectors $\mathrm{E73.95}$ ref CC6
BAC SELECTORS WITH SMART CARD SLOT AND VIDEO CRYPT itmeressong new them in this week is this Selector. Oiginalily made for the BBC to send encypted video films to your VCR at night bime The profect ssems to hove failed Very complex units consissing of a sman

 of the unf is a scart socket plus U UHF input and outpot A.channee tuning
control numberect 28 to 40 and an IR socker inside is s comprehensine
 tuner section smant carc reader mechanism and consrol pert bonims we
plus a power supply secton. These units are solo as strippers pius a pover supply seccon. imaine you could use one to conver a monitor into a TV or mayte use imagine you could use one to conver a monitor into a Nor mapte une
 INLINE RCB UNITSThis in line minature earth leakage unn instantly shur off the mains supdy in the event of any currem foomng
 utomate safery air when wortong on electronic equiprnenx computers etc As these units are fitted with on in-the IEC plug on one end and socket on the othen than could even be used ib extend stancard IEC Computer leads Pack of 3 E9.99 ref LOTSA
THE ULTIMATE ENCLOSURE for your propects must be one of theseswell made ABS screw tooether beige case measumng $120 \times$
$150 \times 50 \mathrm{~mm}$ Atready finted wit nuber feet and fom mourted LED. inside is a pcb fired with other bits and piecess you may find useful Sold erther as a peck of five for $£ 10$ ref MO1. peck of 20 for $£ 19.95$ ref MO2 17 WATT 12 V SOLAR PANEL A solar panel designed to give a nominal 12. The solar cells are laminated mithin a high quaily resin Mounted on tempered excessiont proxection against UV and hosuminum frame The panel is deat for charging sealed lead acid batteries and a protection diode in the crrcuit prevents reversed current how. Mounting is by four adiustable hooks and connection is by screw terminats Max power 17 wattrs, 35
coils, 17vdc peak, $433 \times 402 \times 15 \mathrm{~mm}, 1000 \mathrm{~mA}$ max 1.9 kg Solar panol \& $\$ 115$ ref sous
SOLAR POWERED AM/FM RADIO A COMDSCL AWFM mONO radiocomplete with earphone and a solar panel that recharges the builin.
in beftery when placed in direct sunigigh or under s strong lamo il in bettery when placed in direct sunimgh of under a strong lamp it
 and sockel for external $3 V D C$ supply Solar Radio $E 7, s \%$ ree $S R 23$ MOTOR CYCLISTS RADAR OETECTOR NEW in is the Whistier 1560 Laserfiadar delector complete with a speaker for motorcycle helmets Super wid oand covering XK and Ke plus lasers at $950 \mathrm{mm+1}$ -10 mm 360 deg total Donmeter protection, delects laser, rodar and VG-

MAGIC EAR Unilike provious sound-magnifiers' wo have offered. Magic Ear fits unoberusswaly behind the ear itseff. Magic Ear's micro
 condtions In use Magic Ear is strivtingly effective mil helpyou to follow every word d converysbon even $x$ a distance, and enjoy theaste.
cinems or live music with stunning new sound Comes fred with 3 long Iffe bateries, a trose travel pouch, pius a choce of 3 difierent ear pieces designed to fit all shapes of ear. Magic ear E16.99 ref MAGE3 RADIO METER Pertaps the best of the screentic knick-knaciss of the past and well overdue for revivall Fascinating, soothing and educatonal in the vecuum inside the imverted buibl ilke containe the vales
 SATELLITE NAVIGATION \&119 The GARMIN-GPS 38 - is the one namigational troit tor the great outocoors that offers bip features in
 To the safery of your starting poinl using our all - neww TracBack feeture
The GPS 38 shows you exactly where you ane. where youlo been and Where youre going The GPS 38 features easy, one elhumb operation and weights only 2559 There's a resettabie tip ocomete, graphic
compass' and inghway steenng guidance And it provides up to 20 hours of use on a sel of 4 AA batreries The GARMIN GPS 38 . The affordable way to bring you beck $£ 119$ ref GPS1
DIFFERENTIAL THERMOSTAT KIT An electronic sell assembty ict designed for use in solar heating systems, heat reccuery
systerns ecc The princide of the kn is that thas tho themistors that are placed on the terms to be measured mppically a solar panel and water storage tank) the controller then operates a rolay all the time one temperature is higher than the other. The temperature difierence is adjustable A typical use would be to operate a pump all the time a
sclay panel was at nigher temperature than the water storege tonk.
 Differential thermostat ktt $£ 29$ rof LOT93
10 WATT SOLAR PANEL Amorphous silicon panel fitted in :
 pump in fill sunnight athough we would recommend that for oppomum pertormance two panels would be prefereable 3 I $\boldsymbol{\tau}$ solat panel ESS rof MACAS
IVV SOLAR POWERED WATER PUMP Perfect for many 12 DC uses, ranging from solar fountains to hyoroponics Small and compect yer powertul Win work direct from our 10 watt solar panel in oright
sunight Max head $\Pi$ M Max fow rate : 81 pm Current: $15 A$ (Ref ACB) sunight
£18.99
BOOST CELL PHONE RECEPTION ON THE MOVEI Compared to high-powered carphones, hand-portable mobile phones don't awways wrint 100 wall in moving vehicies Sorneitimes the signat drops out during a call ather bmes there's too much interterence to get
through at all However, the aflorcable Cell Patch provides a maior improvernent dramatcilly Doosting signal reception without wires or batteries The $95 \times 95 \mathrm{~cm}(3.3 \times 337$ microthn anterna adheres io your car window sumisor, , deally whin $61-122 \mathrm{~cm}$ (2-4) of the handsel. or can be carried in a pocker Works with all trpes of portabie cellular
phone Cell Patch f 11.99 ref Ccel phone Cell Patch F 11.99 rel Cel 1
CAT SCARER produces a blanket d ingh sonic and low utrasonic sound. which is inaudible to humans, birds and fish - sol is woal where
you want to pronect your bird abtie of fish pond against feline predatiors tr willd deter cats from your garden and onew protectec areas 11 witl aiso deter foxes mains operated 10 m of cable Running cost will be approximately 1 p per day Garden watcher $£ 42.45$ ref GW2

VIDEO PROCESSOR UNITST/6V 10AH BATTS/2AV 8A TX Not too sure what the function of these units is but they certainhy make good stripoorsh Measures $300 \times 320 \times 120 \mathrm{~mm}$, on the front are controts for scan speed. scan deliay, scan mode, hasds de connections
 24 v torroidie: transtorneer (mains in), sold as seen, may have
two broken knobs etc duv io poor storage. £9 96 rel VP2X
two broken knobs etc dwe to poor storage. $£ 95$ rel VP2X which run quita happoty on voltages from3-12wect We have tried one on our ov amorphous $\sigma^{-}$panels and you can run them from tre sunl 32 mm dia 20 mm thick E 1.50 each
TELEPHONES Just it this week is a huge delivery of telephones all brand new and boxed Two prece construction with the following features- lliuminated keypad. nice clear easy to use keypad, tone or pulse (switchable), reacall redial and pause, hightiow and of fingen swnch and quality construction. Each telephone is finished in a smart of winte colour and is suppled with in standard international haad (same as US or modem card sockets) If rou wish to have a BT heed supplied to corvert the phones these are also avallable ati. 1.55 each rel BTUX Phones 4.99 each ref PH2
INFRARED CAR PHONE KIT 87.99 Interesting bor $\alpha$ goodiesil this hat was destigned to corver car phones to enabith hands tree dialing, the wh contains the following terns 1) A keypad designed to mount in the centre of the steering wheel. R Requires a $9 \mathrm{PPP3}$ Oattrery and transmits the numbers using tiree on boarcd high power intra red LED $140 \times 120 \mathrm{~mm} 2$ ) An infla red receiver module containing a $\mathbb{R}$ photo diove, R Fifer and contsol alectornies $80 \times 30$ $\times 15 \mathrm{~mm}$ (cased) 3) Control box (nice case) $100 \times 170 \times 35 \mathrm{~mm}$ which we understand is the interface between the infor red and the car the same timel made for Phillips car phones (but we dont know the modeê) Coruphect by 1857.99 ref CP1
Hil power 12v xenon strobe varrable rate hasher modules and tubes $£ 6 U$ Selut 12VPC8 fited with control electronics and a powerful Xenon tubel just apply $12 v D C$ to the input and the tube will fash on the board is a small potentbometer which can be used to vary the hash ratl PCB measures just $70 \times 55 \mathrm{~mm}$ and doutd be incorporated into WANT TO MAKE SOME MONEY? Stuck for an iban? We have coliated 140 business manuulis that give you information on sefting up difierent ousinnesses. you peruise these at your leasure using the text editor on your PC Also included is a ceerficicate enabing you to reproduce the manuals as much as you likelf 14 res EPTA TALKING WATCH Yes, if actualy tells you the time at the push of a button Also features a voice alarm that wakes you up and tells you of bution Also features s wics alamm tha wokes you up
what the time ist Lithium cal included $£ 899$ Iof EP26A
POWERBEAM INFRA RED LIMmp.AI lis immpgives out is infla red
 equipment Most mono CCTV ndeo cameras are intra red sensitive so used in confinncton with this lamp would greesty enhance their operabing performance Water resistant case and rubber covered swich make this unìk perfiect for all weathers Kypton ouib 40 celis required Powerbeam lamp Eas rof PB1
GIANT SCREEN VIEWERTUM your TV picture into s supersize screent This high precision Fresnei lens corverts even the smaliest screen up to high prectision Fresne lens comentis avere al a traction of the conte of a big TV. Easinty fited $m$ minutes, Asso idesi for PC ot the cose of a big TV. Easity fly
montors etc $£ 2698$ rel SVGA2
NOGALIGHT NIGHT VISION $£ 129$ Open up a new word of adventures and expenences widife enthusiasts and adventurers in the widerness amateur astronomers humiers, wargamers. pivivite eves on surveilence, all find Nightspy modispensable for their use. Nighspy's unique leatures include a special tube protection dence. to eliminate over exposure. and inffrated illuminator ussed in total The Nightspy is figm and hand held, or can be moumted on a standard tripod h i uses two standard AA battenes and can be operated by len.
 Range 25 cm to infinty objective Focal Lengoth 50 mm FN 1.6 Cropter Range +1 3 Mechanical Length 182 mm With 65 mm Height 100 mm Werght 700 g . Electricat Power Source 3 VDC .2 AA battenes Battery Life 40 hours infra-red Illuminator buith-in Imaging


## Register with us at

www.bull-electrical.com for your free e-mail NEWSLETTERS!

DRILL OPERATED PUMP Fits to any drill in seconds, uses standard garden hose, will pump up to 40 gallons per hour! $£ 8.99$ ref DRL 3
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASF, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT.

24 HOUR SERVICE 55.00 PLUS VAT
OVERSEAS ORDERS AT COST PLUS E1.50
(ACCESS,VISA, SWITCH, AMERICAN EXPRESS)
phone orders: 01273 203500
FAX 01273323077
Sales@bult-electrical.com

STEREO MICROSOPES BACK IN STOCK RUSSian, 200x complete with lenses. lights, filters etc etc very comprehensme microscose inst would normaly be around the K 700 mark, our SECOND GENERATION NIGHT SIGHTS FROM $£ 748$ RETRON Russian night sight $1.8 x$ infra red lamp. 10 m -int, standard MA2 lems. 1.1 kog £ 349 ref RET1
MA2 lens, 1.140 . $\varepsilon 349$ Tef RET1
MAINS MOTORS 180 RPM $90 \times 70 \mathrm{~mm}$, $50 \times 5 \mathrm{~mm} 50 \times 5 \mathrm{~mm}$ MAINS MOTORS 180 RPM Sox 70 mm
output shart start cap included. EZZ ref MGM1

PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OUR CHOICE, BARGAIN AT 8 PSU'S FOR $£ 9.89$ REF XX17

LOW COST CORDLESS MIC 500 range $90 \cdot 105 \mathrm{mHz} .115 \mathrm{~g}$. $193 \times 26 \times 39 \mathrm{~mm}$. 9 P PP3 battery required. E 17 rel MAG15P1 JUMBO LED PACK 1510 mm Dicolour leos, plus 5 giant ( 55 mm ) seven segment disolays at on a pcb $\mathrm{C8}$ ret JLMM1. Pack of 3055 mm seven seg displays on pcbs is $£ 19$ reff LED4, pack of 50 C31 ref LEDS 12VDC 40 MM FANS MADE BY PANAFLO, NEW. £4. REF FANI
ELECTRONIC SPEED CONTROLLER KTT For The above
 RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE motai construction, bultt in igitít mirror ete Russian shimp formi) group vieming screen, bots of accessosies $£ 29$ ret ANAMT.
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.59$ ref QaR34 RUSSIAN NIGHTSIGHTS Mocel $72 S 4$ with infra red illuminator: vaus up to 75 merres in full daricress in intrared mode. 150 m range. 15 mm lens, 13 dog angle of vew. focussing range 1.5 m bo irfinity 2 A batenes requird $\operatorname{\text {SIQUID}}$ CRYSTAL DISPLAYS Bargain prices.
20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SMC2024A
16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC 1640 A
TAL-1,110MM NEWTONIANREFLECTOR TELESCOPE Russian Supert astronomicail 'scope, everything you need for somme senous star gazingl up to 169 x magnification. Send or fax for further informaton. 20 Kg . $885 \times 800 \times 1850 \mathrm{~mm}$, ref T T $\mathrm{H}-1$, £249 YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY COMPrethensive plans with loads of info on designing syzzems, panets, control electronics etc $£ 7$ rw PVI PHOTOMULTIPLIER TUBES Boxed and Unused straigm from the ministry of defence Made by EMI with a MOD pert no of 10 CV I 5114 and packead almost 30 years 290 I Do you have a use? do you want to coumt hamt pertcices? They would look nice on the mante plecelofered to you at $£ 15$ each (we think the MOO peis more than thes is 19584 E15 each ref PM3
CLOCK CAMERA WITH AUDIO Discrefely monitor living rooms, reception, office, tills $\alpha$ any other area Fully wortong clock houses an invesble spy camera complete with audio Complete sefup includes clock camera, microphone, clock battery 15 metres of cable power supply adiater for ether scarreor phono Everrting you need no solderng required Full instructions inctuded Easily yinstatied in fust

AUTO RECORD KIT This automatic system will instivet your VCR to stant recording when moverment is detected va the PRR Recording will stoo 30 seconas ather your vietor has lef which saves hours of tapes as the nideo only records what you watt to see Compiete systom with PRR, will work with all remote control wideo recorders 589 rel CVC2
TELEPHONE VOICE CHANGER Changes your voice to a new or unfamiliar one Simply place over the teleophone mouth piece and speak hito the changee, Fulty yodustable for difierent voices Supplied complete mith batteries, ready to 90 . Unit measures $90 \times 50$ x20 mmen Telephone voice changer E 1.9 s ree $\mathrm{CC3}$
EXTERNAL CAMERA introducing the Bulidog mosel 4 vandial resistam camera in heasy stapel case for interior or extenor use Top quality case housing a 420 line camera module Each camorr. sup
 or TV (phono or scart) Bargain price E89. os rel CC1 GIANT INSULATORS Just in this weok are some giant cormmic insularoros, each one measures 130 mm high and abour 170 mm diameter. Finished in a tigh gloses brown and d black glaze in the base of monfroom peeco enread it you are into shorwave radio. crystal sets or high vortage expeniments then these are for you. Weve got one as a door stool Not too sure what their original purbose was all we know is they were made for expor about 25 years ago, never ex. ported and been in store since then Price is 88 each ref INSX NATO RAOIATION MONITORS interesting new limet These are small modules that strap on your wist (strap supplied) and mont. tor radiaton We have stripped one apart and they contain a smail piece of "cnsstal" this could De something like Naphthaiene or any other rare radiation sensifive cnstal When radiation strikes the erystal a scintilitases and asmall amourt of ighe is produced in the crsstal in reaction to the radiston exposure That tigm is then pliked up by a micro pr cell measuing aboun 2 mm squarel Also in the unit is a sheet of toil. a circular metal plate insultoron Detween the mol) and asmail
 buy one they are just $E 3$ eact rel NATOX

## WE HAD 38,000 'HITS' ON OUR WEB SITE <br> IN FEBUARY'98 <br> BULL-ELECTRICALCOM See our live camera!

by R1. Current also flows through D1, fixed resistor R3 and preset VR1. This allows a small current to "trickle charge" battery pack B 1 . B1 consists of two 4.8 V nickel-cadmium units connected in series giving a nominal terminal voltage of 9.6 V . When fully charged, this will rise to some 11.2V. D1 reduces the voltage available for charging to 11.3 V . When the batteries are fully charged, their terminal voltage will therefore almost match that of the supply. The current will then drop to a very low value which may safely flow contInuously.

When the batteries are poorly charged, their terminal voltage will be less than 9.6 V and there will be a considerable difference between this and the supply voltage. This will result in a relatively large charging current. RV1 will be adjusted at the end to limit it to a suitable value. D1 also prevents current flowing back from the battery into IC1 and LED1 when the supply fails, as the voltage at IC1 output would then be zero.

## Astable pulses

If the buzzer is off, a small current flows from the supply to power CMOS timer IC2. This current may be regarded as negligible and will have virtually no effect on the battery charging aspect of the circuit. IC2 is configured as an astable that is, it provides a string of pulses from its output, pin 3, providing there is a supply to pin 8 and its reset input (pin 4 ) is high (that is, close to positive supply voltage). However, while a mains supply exists, no pulses will be given, because R2 allows current to flow dlrect from the regulator output to the base of transistor Q1, turning it on. The collector therefore goes low and keeps IC2 reset input low also. This inhibits the operation of the astable.

When the mains fails, a supply is established by the battery pack. No current enters Q1 base because the path to R2 is blocked by D1, and R4 keeps it low. The collector, hence IC2 reset input, is maintained high by resistor R5. This enables operation, the output delivers pulses and red LED2 connected to it flashes. R8 limits its operating current to a safe working value. If SW1 is in the position shown, the buzzer will also sound.
quieter signal, so such a diode is best used only if it is essential to extend the operating time.

To cancel the buzzer, switch SW1 to its other position. When the mains supply is restored, the buzzer is connected direct to the regulator output, and sounds continuously. This is the prompt to return the switch to "normal".

## Construction

The Mains Monitor board is a single-sided PCB on which all components are mounted except for two pieces of screw terminal block, TB2 and TB3. More will be said about these later. The full component layout is shown in figure 2.

Begin by drilling, the four mounting holes. Then solder the transformer, fuseholders, switch, terminal block TB1 and the ic socket in position. If the switch is not of the specified type, solder short pieces of wire to its three pads so that it can be mounted off-board instead. Note the two unconnected pads near the edge of the pcb. These simply provide anchorage when using the specified switch.

Solder the other components, but do not solder the batteries or LEDs in yet and do not insert IC2 into its socket. Check the orientation of bridge rectifier REC1, capacitor C1, regulator IC1, diode D1, transistor Q1 and the buzzer. The flat face of the specified regulator will be the one closest to the top edge of the PCB. Then solder the LEDs in position taking care over the polarity. Bend their end leads so that the tops are level and aligned with the centre of the switch bush. This will give a neat layout on the front panel. Adjust RV1 to approximately one-third of its total clockwise rotation (as viewed from the top edge of the PCB). If you wish to minimise the current requirement as mentioned above, connect a 1 N4148 diode in parallel with R7 using the pads on the PCB. The cathode (striped) end should be connected to the lower pads, leading to IC2 pin 6.

Time period
The astable time period depends on the values of C4, R6 and R7. With the specified components this will be about 0.7 Hz - that is, rather more than once per second. No adjustment is provided as the exact rate is not important. There is space on the pcb to add a diode in parallel with R7. This would reduce the mark/space ratio of the pulses so that the "on" period would be much shorter than the "off" one, reducing the current requirement markedly. This also give a


Figure 2: the component layout for the Mains Monitor


## possibly touch mains connections.

Place the pcb on the base of the box and support it on pieces of scrap wood of suitable thickness. It will be best if the face of the buzzer ends up near the lid of the box when this is in position, as this will give the loudest sound. Mark the positions of the holes needed in the front panel for the switch and LEDs. Remove the pcb again and drill these holes through. Hold the PCB in place and check that the switch and LEDs locate correctly in their holes. Make any adjustments as necessary so that the layout looks neat. Mark the pcb mounting holes, remove the pcb again and drill them through. This will be easier if the pcb is not actually mounted in position yet.

## Fuse arrangements

Insert the fuses in their holders. Note that the highrupture ceramic type must be used in the mains fuseholder, FS1, and a plastic cover fitted to it. This will make it impossible to touch any mains connections on the topside of the circuit panel.

Solder the batteries in place (each one is labelled " $1 / 2$ $\mathrm{B} 1^{\prime \prime}$ ) taking care over the orientation. Be careful to avoid short-circuiting them, because they are likely to contain some charge and a large current could flow. A short circuit could cause a piece of wire or pcb track to overheat and burn your fingers, as well as damaging the batteries. Solder pieces of wire to the pads marked "test wires" - the battery circuit will not be complete until these have been connected together later. For the moment, do not allow this to happen by using the 2 -section piece of 2 A screw terminal block, TB3, without the link wire.

## Making holes

Note: This project must be housed in an earthed metal case.

Drill holes for the strain relief bushes in the rear of the box as shown in the photograph. Drill a hole for the solder tag and attach it. Make holes for mounting terminal blocks TB2 and TB3 and attach them. TB2 consists three sections of 15A rating. TB3 has two sections of 2 A rating and should be already connected to the test wires Make sure TB3 is at least 20 mm clear of any mains connections. It is essential to use TB3 (and not simply tape over the test wires) because it makes certain that they cannot find their way under the pcb and

## Finishing off

Refer to figure 3. Make up the input and output leads and fit them through their holes using strain relief bushes to prevent them breaking free in use - pull on the wires to check that they are secure. Wire up terminal block TB2 using 3-core wire appropriate to the load. Using a piece of mains-type earth wire, connect


Figure 3: wiring connections to the mains
the mains earth to the solder tag making sure that it is securely attached. Make the mains connections between TB1 on the pcb and TB2 noting that the live wire is connected to the right-hand terminal of TB1. Fit a mains plug on the end of the input lead and insert a fuse appropriate to the equipment being connected.

Mount the PCB using plastic insulators on the bolt shanks. Make certain all soldered connections on the underside are at least 10 mm clear of the metalwork - remember, mains voltage is carried on the transformer primary and FS1 tracks. Insert IC2 in its socket taking care over the orientation. Since this is a CMOS device, it could be damaged by touching the pins if static charge existed on the body. To prevent this happening, touch something which is earthed (such as a water tap) before handling it. Measure the position of the buzzer on the PCB and drill a hole in the lid of the box to correspond. This should be rather larger than the hole in the buzzer itself.

Terminal block TB3 allows the charging current to be measured. For the moment, simply connect its two sections together using a link wire (see figure 3). Providing the batteries are sufficiently well charged, the LED will begin to flash and, if the switch is on (upper position), the buzzer will sound. The warning operates because the circuit interprets the lack of a mains supply as a fault.

## Testing

Do not connect the circuit to the mains unless the PCB is mounted securely in position and all checks have been carried out to make certain that it is impossible to touch any mains connections. As a precaution, switch off and unplug the unit from the mains whenever touching anything inside the case.

Plug the unit into the mains - the green LED will light up, the red one will stop flashing and the buzzer will stop sounding. If the batteries are flat, leave the supply switched on for an hour or two so that they receive enough charge to work.

You may now check the charging current by connecting a multi-tester, set to a suitable current range, to TB3. If you do not have a multi-tester, leave things as they are. To measure the current, remove the link wire and connect the multi-tester probes instead. Plug the unit into the mains and switch on. When the batteries are discharged, the current should not exceed 11 mA . However, it may be as high as 20 mA or so as long as it drops to 11 mA or less for most of the charging cycle and remains cool. When the batteries are fully charged, the current should not exceed 1.1 mA . Adjust RV1 if necessary and re-test - clockwise rotation reduces the current. When satisfied that the charging aspect of the circuit is satisfactory, replace the link wire again.

The batteries should last for several years. It will do them good, and prevent any "memory effect", to allow them to discharge completely, say, twice a year. This would also allow a check to be made on the operating time to see if there has been any deterioration. After a long period of use they will need to be replaced.

If the circuit is not to be used for a long time or the supply is going to be off for a few days, disconnect it and remove the link wire at TB3.

## Resistors

| R1, R8 | 680 R |
| :--- | :--- |
| R2 | 470 k |
| R3 | 390 R |
| R4 | 1 M |
| R5 | 47 k |
| R6 | 100 k |
| R7 | 10 M |
| RV1 | 2 k 2 vertical preset |

## Capacitors

| C1 | 220u 25V electrolytic |
| :--- | :--- |
| C2 | 220 n metallised polyester, 5 mm |
|  | pin spacing |
| C3 | 470n metallised polyester, 5 mm <br> pin spacing |
| C4 | 100n metallised polyester, 5 mm <br> pin spacing |
|  |  |
| Semiconductors |  |
| IC1 | LM78L12ACZ |
| IC2 | ICM7555IPA |
| Q1 | ZTX300 |
| D1 | 1N4001 |
| D2 | 1N4148 (only if required - see |
|  | text) |
| REC1 | W005 bridge rectifier |
| LED1 | 3 mm green LED |
| LED2 | 3mm red LED |

Miscellaneous
T1 PCB-mounting mains transformer 2VA rating, 230 V primary and twin 9 V secondaries. Maplin KU95D FS1 $\quad 20 \mathrm{~mm}$ chassis fuseholder, plastic cover and 1A ceramic mainstype fuse.
FS2 20 mm chassis fuseholder, plus 200 mA fuse to fit.
B1 $2 \times 4.8 \mathrm{~V} 110 \mathrm{mAh}$ PCB-mounting nickel cadmium batteries Maplin BN19V
SW1 PCB-mounting SPDT toggle switch, vertical action. Maplin FA70M
BUZ1 PCB-mounting dc piezo sounder, 10 mA maximum, 90 bB output at 12 V.
TB1 2 sections of PCB-mounting screw terminal block, 10 mm spacing.
TB2 3 sections of 15A screw terminal block.
TB3 2 sections of $2 A$ screw terminal block.
Metal box. PCB materials. 8-pin dil socket. Strain retief bushes. Solder tag.
Components for the prototype were ordered from Maplin, but most are widely avaliable.

## LOW COST PC＇S

## SPECIAL BUY

＇AT 286＇

40 Mb HD＋3Mb Ram

Induastrial grade 12Mhz HI GRADE 286 systems Made in the USA to an industrial specification，the system was designed for total relia．
bility．The compact case houses the motherboard，PSU and EGA video card with single $5 y^{\prime \prime} 1.2 \mathrm{Mb}$ foppy disk drive \＆Integral 40 mb
hard ditk drive to the front．Real time clock with battery backup is provided as standard．Supplied in 900 d used condition complele with
enhanced keyboard， $640 \mathrm{k}+2 \mathrm{MB} \mathrm{RAM}$ ，DOS 4.01 and 90 DAY Full Guarantee．Ready

Ordor ss HIGRADE 236 ONLY $E 99.00$（E | Optionel Fitted extres：VGA graphics card | $£ 29.00$ |
| :--- | :--- | :--- |
| 1．4Nb 3y／2＂floppy disk drive（instead of 1．2 MB） | $£ 19.95$ |
| Wordperfect 6.0 or Dos－when $3 y^{4}$ FDD option ordered | $£ 12.50$ |
| NE2000 Ethemet（thick，thin or twisted）network card | $£ 29.00$ |

INTEL 486DX－33 SYSTEMS Fully featured with standard simm connectors 30 a 72 pin．Supplied with keyboard， 4 Mb of RAM，
Fully tested and guaranteed．Fully expandatis
Many other options avallable－call for detalls．$£ 199.00$（E）

## FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

Massive purchases of standard $5 \%^{\circ}$ and $312^{\circ}$ drives enables us to
present prime product at industry beating low pricesl AB units（uniess present prime product at industry beating low pricesl AB units（uniess
stated）are BRAND NEW or removed from often brand new equip－ ment and are fully tested，aligned and shipped to you with a full 90 $31_{2}^{*}$ Panasonic JU363／4 720K or equivalent RFE
$£ 24.95(\mathrm{~B}$
$\varepsilon 25.95 \mathrm{~B}^{2}$

## $3 y^{\prime \prime}$ Mitsublshl MF355C－L \＄．4 Meg．Laptops onh

 Table top case with integral PSU for HH $5 \%^{\circ}$ F
$8^{\prime \prime}$ Shugart $8108^{\circ}$ SS HH Brand New
$8^{\circ}$ Mitsubiehi M2894－63 double sided NEW


## Dual $8^{\circ}$ ca

## HARD DISK DRIVES


$314-$ FUNI FK－309．26 20 mb MFM IF RFE
$31 k^{-}$CONNER CP 302420 mb IDE VF（or equiv．）RFE
$31^{*}$ CONNER CP3044 40 mb IDE I／F（or equiv．）RFE
$3 k^{\circ}$ RODIME RO 3057 R 45 mb SCSI IVF（Mac \＆ACOm）
$312^{-2}$ QUANTUM 40 S Prodrive 42mb SCSI IFF，New RFE
$3 \%^{\circ}$ WESTERN DłGTAL B50mb IDE I／F New
$5 \%^{\circ}$ MINISCRIBE 342520 mb MFM I／F（or equiv．）RFE
$5 \%^{\circ}$ SEAGATE ST－238R 30 mb RLL UF Refurb
$5 \%^{\circ}$ CDC $94205-5140 \mathrm{mb}$ HH MFM UF RFE tested
$5 x^{\circ}$ HP 97548850 Mb SCSI RFE tested
HP C3010 2 Gbyte SCSI differential RFE tested
NEC D2246 85 Mb SMD interface．Now
FUJITSU M2322K 160 Mb SMD IF
FUJISU M2392K 2 Gb SMD IF RFE lested
the amazing telebox

##  <br>  <br> 

The TELEBOX is an attractive fully cased mains powered unit，con－
taining all electronics ready to plug into a host of video monitors made by makers such as MICROVITEC，ATARI，SANYO，SONY， COMMODORE，PHILPS，TATUNG，AMSTRAD ele．The composite
video output wifl also plug directly into most video recorders，allowing video output wifl also plug directly into most video recorders，allowing
reception of TV channets not normally recelvable on most teiovt secent recelvers．（TELEBOX MB）．Push button controls on the front panel allow reception of 8 fully funeable＇off air UHF col VHF and UHF including the HYPERBAND as used by most cabie TV operators．A composite video output is located on the rear panel for direct connection to most makes of monitor or desktop computer video systems．For complete compatibility－even for monitors with－
out sound－an Integral 4 watt audio amplifter and low level Hi Fi audio output are provided as standard．
TELESOX ST for composite video inpu
TELEBOX STL as ST but fited with integna monitors
E36．95 TELEBOX MB Multiband VHF／UHF／Cable／Hyperband tuner $£ 89.95$ For overseas PAL versions state 5.5 or 6 mhz sound specrication．
＂For cable／hyperband signal reception Telebox MB should be con－

## DC POWER SUPPLIES


suppl

## IC＇s－TRANSISTORS－DIODES

## OBSOLETE－SHORT SUPPLY－BULK

## 6，000，000 Items EX STOCK

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see At this price－Don＇t miss it！－

元
 ARCH MEDES and APPLE Many Haturas Etored
 GGA cable tor Bm PC holuctec

Only £119（E）Mrss－svGA Extemel cables for other types of conpuitras CALL

As Now－Ex Demo
$17^{*} 0.28$ SVGA Mitsubishl Diamond Pro monitors Full multisync etc．Full 90 day guarantee．$£ 325.00$（ $($ ）
Just In－Mlcrovitec $20^{\circ}$ VGA（ $800 \times 600$ res．）colour mont
PHIUPS HCS35（same style as CM8833）attractively styled 14 colbur monitor with beth RGG end standard composito 15.825
 Will connect direct 10 Amige and Atart BBC computers．Ideal for ail Video monitoring／security applications with direct connection


PHILPS HCS31 Uitra compace 9 colour video monitor with stan－ dard composhe 15.625 Khz video input via SCART socket Ideal for all monitoring／security applications．High quality，ex－equipment
fuly tested \＆guarantied（possibite minor screen bums）．In atrac tive square black plastic case measuring W $10^{\circ} \times 4=40^{\circ} \times 13 k^{\circ} \mathrm{D}$ ． Only $\mathbf{E 7 9 . 0 0}$（D）
KME 10－15M10009 high definnion colou



## Only $£ 125$（E）

$20^{\prime \prime} 22^{\prime \prime}$ and $26^{\prime \prime}$ AV SPECIALS Supproty made UK manulacuure．PIL all solld state colour monitors， complete with composthe video \＆opttona／sound mpur．Atractive
teak style case．Perifect for Schools，Shops，Disco，Clubs，etc．In EXCELLENT Ittle used condition with full 90 day guarantee．
 SPECIAL INTEREST ITEMS

## MWW to 400 kWW － 400 He 3 phaee power eources．ex stock

IBM 8230 Type 1 Token ring base unit driver
TBM 8230 ype 1
Wayne Kert RA 53 F5501 Token Ring ics 20 port tobe modules
IBM MAU Token ring distribution panel 8228－23－5050N
Trend DSA 274 Data Analyser with $\mathrm{G703}(2 \mathrm{M}) 64 \mathrm{Vo}$
Marconi 6310 Programmable 2 to 22 GHz sweep generato
HP16508 Logle Analyser
HP3781A Pattem generator \＆HP3782A Error Detector
HP6621A Dual Programabl GPI日 PSU
HP6621A Dual Programmable GPI日 PSU 0－7V 160 walts
HP6264 Rack mount variable O －20V 20A met
HP54121A DC to 22 GHz four channel lest set
HP54121A DC to 22 GHz four channel lest set
HP7580A A1 8 pen HPGL high speed drum plotter
F\＆B Wardrobe size，insurance spec 1 hour rated fire sate
View Eng．Mod 1200 compulenised inspection syste
Sony DXC－3000A High quality CCD colour TV camera
CSZ VERY Large 3 cavity thermal shock chamber Phillps PW1730／10 XRAY generator with accessories Kolthley 590 CV capacitor／voltage analyser
Recal ICR40 dual 40 channel voice recorder system Fiskers 45 KVA 3 ph On Line UPS－New batteries CI R5030UV34 Cleanline ultrasonic cleaning systern
Mann Tally MT645 High speed line printer
InteI SBC $486 / 133$ SE Multibus 486 system．
Intel SBC $486 / 133 S E$ Multibus 486 system． 8 Mb Ram
Intel SBC 486／125C08 Enhanced Muribus（MSA）NEW
Zota 3220－05 AO 4 pen HPGL fast drum plothers
Motorola VME Bus Boards \＆Components List．SAE／CAL
Trio 0－18 vodc linear，metered 30 amp bench PSU．New
Fujlteu M3041D 600 LPM printer with network interface
Perkin Elmer 2998 Infrared spectrophotometer
Perkin Elmer 597 Intrared spectrophotometer
VG Electronics 1035 TELEIEXT Decoding Margin Meter
UghtBand 60 output high spec 2 u rack mount Video VDA
Sekonic SD 150 H 18 channel digital Hythd
System Video 1152 PAL waveform monitor

## 19＂RACK CABINETS



Superb quality 6 foot 40 U Virtually New，Ulitra Smart Less than Half Price！ Top quality 190 rack cabinets made in UK by
OptIma Enclosures Lid．Units feature
 designer，smoked acryic lockabie front door， and louvered removable side panels．Fully adjustable unternal fixing sints，ready punched plus ready mounted integral 12 way 13 amp these racks some of the most versatlle we have over sold．Racks may be stacked side by side and therefore equire only two side panels to stand singly or in multiple bays． OPT Rack 1 Complete with removable side panels． 2345.00 （G） Over 1000 racks，shelves，accessories $19^{\prime \prime} 22^{\prime \prime}$ \＆ $24^{\prime \prime}$ wide 3 to 46 U high． Available from stock ！！．

## 32U－High Quality－All steel RakCab


constructed of double walled he tont door deslgner style＇smoked acry
panel，yet remain unobrrusive．In
members t
quipment．The two movable vertical fixing strut
cage nuts＇．A malns distribution panel intemat－
in Euro sockets and $1 \times 13 \mathrm{amp} 3$ pin switched
utillity sockel
willy touvered back door and double skinned top
with top and side lourres．The top panel may be removed for fitting Integral fans to the sub plate eic．Other features inciude：fitted castors and floor levelers，prepunched utility panel at lower rear for
cable／connector access etc．Supplied in excellemt，slightly used condition with keys．Colour Royal blue．Exiernal dimensions

A superb buy at only $£ 245.00$（G）
BATTERY SCOOP－ $50 \%$ off II
BATTERY SCOOP－50\％off ！！
the most amazing savings on these ulira high spec 12v DC 14 Ah rechargeable battenes．Made by Hawker Energy Ltd，type SBS15 aed 15 year service life．Fully BT \＆BS6290 approved．Supplied
 ach Our Price $£ 55$ each（c）or 4 for $£ 99_{(0)}$

## RELAYS－200，000 FROM STOCK

Save kees＇s by chooaing your stocks covering types such as－Milltary，Octal，Cradie， Hermetlcally Sealed，Contactora，Time Dolay，Roed，Mercury YOUR NEEDS．Many obsolete types from stock．Save ExEf＇s

## LOW COST RAM \＆CPU＇S

INTEL＇ABOVE＇Memory Expanslon Board．Full length PC－XT and PC－AT compatible card with 2 mbytes of memory on board． and above）memory．Full data snd drlver dilsks supplied．RFE． Fully tested and guaranteed．Windows compatible．$£ 59.95$ nemory either 256 k in RAM above 640k DOS lmit．Complete with data． SIMM SPECIALS
 FUL RANGE OF CO－PROCESSOF＇S EX STOCK－CALL FOR EFE MOTOROLA 25 Mhz 68040 （XC68040RC25M）CPU＇S $£ 59.00$

## SOFTWARE SPECIALS

NT4 WorkStation，complete with service pack 3
Specla Packice ONL Y $£ 99.00$
Microsoft－Windows for Workgroups 3．11 \＆DOS 6．22．Suppliad
on $31 /{ }^{\prime \prime}$ disks with license $\&$ documentation documentation


Visit our London shop for a full range of Test Equipment and other bargains

ALL MAIL \＆OFFICES
LONDON SHOP
Dept ETI， 32 Elggin Way
Upper Norwood

## HOW DOES YOUR EQUIPMFNT MFASURE UP? AT STEWART OF READING THERE'S ALWAYS 'SCOPE' FOR IMPROVEMENT!



## STEWART of READING

110 WYKEHAM ROAD, READING, BERKS. RG6 1PL
Tetephone: ( 0118 ) 9268041 . Fax: ( 0118 ) 9351696
Caliers Wetcome $\theta$ am .530 pm Monday to Frichy (ather fines by arangement)


Used Equipment - GUARANTEED. Manuals supplied
This is a VERY SMAL SAMPLE OF STOCK SAE or Telephone for lists. Please check availability before ordering. CARRIAGE all units £16. VAT to be addec to Total of Goods and Carniage.

## New Easy-PC

## Professional CAD

 for Windows 95 and NT

## Number One Systems

- Produce Complex Designs Faster
- Revolutionary Time Saving Features Dramatically Improve productivity.
- Track and Component Editing - a dream!
- Full links to our Analogue, Digital and Electromagnetic Simulators.
- NO pin, net or layer limits!
- Powerful, high speed Shape based Autorouters available.
- Very Competitive Pricing.

UK/EEC:
USA:
Ref: ETI, Harding Way, St.Ives, Cambridgeshire, PE17 4WR, United Kingdom Tel: $01480461778 \quad$ Fax: 01480494042 International: +441480461778 / 494042 Ref: ETI, 126 Smith Creek Drive, Los Gatos, CA 95030 Tel/Fax: (408) 395-0249

# Getting MORE 

 out of PICs
## Part 2


#### Abstract

This month Robin Abbott looks at Diagnostics, Interrupts, and Background communications - some PIC functions that give programmers difficulty.


$T$his month we shall take a look at a method of determining what is happening within a program while it is running on a real circuit. I shall also take a look at interrupts, and finally look at the use of interrupts on PICs which have USART support built in to perform serial communications while the main program is still running.

This month also includes a development board for the 16C74 and other 40-pln PICs on which the interrupt driven serial routines will work. All the programs given in last month's article will run directly on one of the two development boards given in this series.

## Diagnostics

The PIC series (like most other microcontrollers) has comprehensive simulation support for the PC in the MPSIM and MPLAB programs. Simulators are also available from a number of third party suppliers. These are normally useful for checking program functionality, and for spotting common PIC programming errors such as stack errors, paging errors, or timing mismatches. However, simulators can never replicate the operation of real hardware such as IIC devices, or devices which operate using the SPI bus. When attempting to debug programs which use these devices, it is necessary to simulate the operation of the external devices using specific simulator mechanisms such as injection files, which operate to place bytes in to PIC memory at speclfic points during the simulation. However this technique cannot assist in debugging a program which does not write correctly to the external device.
in this circumstance is necessary to use alternative methods of debugging. For most amateur developers the cost of a true in-circuit emulator is impractical, and pseudo-emulators do not often replicate all chip functions exactly. In this case the developer is left to debug the program by trial and error, or by using a development system such as the Basic Stamp, or the Forest Electronics BASIC system to develop programs in an environment which offers greater debugging capabilities before translating to assembler.

Last month we looked at a serial interface capability for the PIC. We can make use of a serial interface to assist in
debugging PIC programs. We shall develop three macros which may be inserted anywhere in the PIC program, and which will transmit information over a serial port to the PC while the program is running. This can be a great help in debugging. The serial port does not have to be included on the application circuit - by use of surface mount techniques, it is possible to put the complete serial interiace circuit which was presented last month into a 9-way D-Connector shell. The power supply, and the transmit and receive connections to the serial circuit are then made through four wires which connect to the application circuit using test clips. In practice it is only necessary for the PIC to connect to the serial interface circuit using the transmit llne as communication can be one way. This debugging technique can be undertaken on any circuit where the PIC has at least one spare input/output connector for the serial interface.

The three macros are called _DUMP, _EXECUTION, and $\perp$ SENDNUMBER. They are used as described below:


Figure 1: the circuit of the diagnostic serial interface

## DUMP

This macro sends a number of bytes from PIC memory to the PC. It is used in the program with a start address and a length. For example:
_DUMP 0,0×30
This macro will send the 48 bytes from PIC memory starting at address 0 . Therefore it can be used to determine the values of internal registers, and program variables during execution. In practice it is best to use this macros sparingly, as the complete program will stop for a period of 500 microseconds for each byte transmitted. I have used this macro in two ways: the first is to send variable information at specific trigger points during a program, such as when a measurement has been made. The second method is to use the macro at the start of the program before any other actions are undertaken. This is very useful for determining the values of variables at any time during a program's execution by resetting the processor (achieved by taking the reset pin to ground). Although all of the internal PIC registers will have been reset, the programs variables will hold the values they had when the processor was reset, and these values are the ones sent to the PC.

## EXECUTION

This macro has no parameters. It is called as follows:

## EXECUTION

It simply sends the program address from where the macro has been executed. It is most useful to determine where a program fails. By placing a number of _EXECUTION macro calls at various points in the program, it is possible to show which points have been executed, and which have not. Therefore it is possible to find out where a program may have crashed or failed.

## Semiconductors

Q1 BC846A NPN SMD transistor Maplin VR79
Q2 BC856B PNP SMD transistor Maplin VR18
D1 BAW56 SMD diode Maplin VR84

## Resistors

R1,R2,R5 10k Size 1206 Maplin DJ17
R3
R4 2k2 Size 1206 Maplin DJ13P

Capacitor
C1 100 uF 16 V sub-miniature electrolytic
Miscellaneous
PL1 9 pin D connector socket Leads and crocodile clips $\times 4$ 9 way metallised D connector shell Maplin JB68Y PCB

## SENDNUMBER

This macros has one parameter. It is called as follows:
EXECUTION Number
When the macro is hit, the number defined is sent to the PC:

## Setting up the diagnostic program

There are three component parts for serial diagnostics. The first is the serial interface, which is the only hardware necessary. The second is the diagnostic macros, which must be included within the test program. These macros use approximately 50 words of program memory, plus up to seven words of memory for each call of the macros. If the program already requires a serial interface, then some of the program memory may be reused in the main program. The last component of the diagnostics is the PC program, which takes information sent from the PIC and displays it on of the PC.

## The serial interface

The serial interface is the same as that shown in last month's article. The circuit diagram is shown in figure 1. The circuit may be constructed on Veroboard, or the Development Board from last month's article may be used. The left hand area of the board is the serial interface. In both cases the board should be constructed with four flying leads, each of which should terminate in a small test clip. The board is connected to the application circuit by attaching the power supply leads, and the transmit ( $T \times$ Out) lead to one of the pins of the PIC.

Alternatively, the circuit may be bullt using surface mount tectniques, and in this case may be fitted in to a 9-way connector shell. This tectnique is a very neat. The circuit board and its construction are described in the article on Surface Mount Technology to be found elsewhere within this magazine. The components used within the circuit are not critical, and any general purpose transistors may be used.

## Incorporating the macros

To use the macros within a program, it is necessary to include an additional header file at the start of the program, and one additional code file at the end of the program.

The information transmitted by the PIC is preceded by two header bytes, and one indicator byte which shows which macro has been executed. This information is used by the PC program to a show the type of information sent by the PIC. The two header bytes are $0 \times 19$ and $0 \times B 6$. This format ensures that diagnostic information can be separated from normal program information sent by the PIC if a common serial interface is in use. Table 1 shows the information sent by the PIC for each macro type.

Figure 2 shows the header file (SERDIAG.INC), which should be included at the start of the program, and which defines the macros. There is nothing special in this file. The processor frequencies and the bit rates to be used on the serial interface are defined in this file. The DELAY macro is that shown in last month's article. The spare pin to be used for serial transmission is also defined in this file using the serport and txbit values. There are 9 bytes of program memory required by the macros, and so these are defined by the code block at the end of the header file. Please note that the code clock has no address shown, and therefore the memory variables follow those used by the application program. The application program must therefore use a code block itself, as is illustrated in the test program.

Figure 2: serial diagnostic header - SERDIAG.INC


This macro returns the current execution address

| EXECUTION | maczo |
| :--- | :--- |
|  | movwf_Savew |
| moviw $(\$-1) \gg 8$ |  |
|  | movwf_Length |
|  | movlw $\$-3$ |
|  | call_SendExec |
| endm |  |

This macro sends a number

| _SENDNUMBER | macro Number |
| :--- | :--- |
| movwf Savew |  |
| movlw Number |  |
| call_SendW |  |
|  | endm |

endm


The additional code file (SERDIAG.ASM) is shown in figure 3. This includes the routines to transmit single bytes, and the routines to action the macros. Please note that the macros preserve all of the registers (including W), but leave memory addresses in page 0 , and leaves the transmit pin in a low impedance driving state.

Figure 3: serial diagnostic code - SERDIAG.ASM

Transmit and receive routines

At 4 MHz one cycle is lus. For these routines we will use a serial rate of 19200 bps . So the time per bit is 52 cycle
wait for a byte to be received

These routines are commented out because they are not needed for the Serial Diagnostic, uncomment if you want your own Serial Recieve routines


```
TxW movwf Temp
    movlw }
    movwf Templ
    bcf STATUS,C ; first bit is start bit
YxLoop btfss STATUS,C ; 1/2 Set output bit
    goto 2Bit : 2
    bsf SerPort,T*Bit ; 1
    goto NBit ; 2
ZBit bcf Serport,TxBit ; 1
nop ; 1 Make both arms of loop equal
NBit DELAY (BITTIME-9) ; Wait for next bit
    rrf Temp ; 1
    decfsz Templ ; 1
    goto TxLoop ; 2
    bsf SerPort,T\timesBit ; 1 stop bit
    DELAY BITTIME ; 50 stay idle after Transmit
    return ; 2
Delay routines
Insert a delay of up to 772 Cycles
; Loop time = 5+ 3*(W-1), minimum 5
; Call Delay }1\mathrm{ to add 1 cycle
Call Delay 2 to add 2 Cyc
Remember it takes 2 cycles to call this routine,
    and 1 cycle to load }W\mathrm{ before calling it
```



Figure 4 shows a test program which executes all three macros when the processor is reset. This program uses bit 3 of port A for transmission. This program may be run directly on a PIC16C84 or PIC16F84 on last month's development board.
*ifndef _PICDE
Processor 16F84
include "pl6f84.inc*

The information sent by the diagnostic program is useless if it cannot be interpreted by the PC. Version 3 of the PICDESIM rial program to display the execution point in the correct source window.

For those who do not have PICDESIM, an alternative is presented here using BASIC. Figure 5 shows the BASIC program which interprets the information sent by the diagnostic macros. Enter this program using a text editor, save it to the filename "DIAGNOSE.BAS", load it using the command line QBASIC DIAGNOSE and press Shift and F5 to execute it.

Figure 5: the Basic diagnostic program

```
DECLARE SUB Number ()
S SUB Execution ()
```



```
DECLARE FUNCTION GetSer: ()
CLS
PRINT "Press a key to terminate the program"
WHILE }
    IF (last = 25 AND in = 182) THEN
    BEEP
    IF (dtype = 224) THEN DUMP
    IF (dtype = 225) THEN Execution
    IF (dtype = 226) THEN Number
last = in
WEND
```

Figure 7: context-saving during an intermpt

## SUB DUMP

PexLine $=4$
Length $=$ GetSer -1 : Address $=$ GetSer
PRINT
PRINT *Received Memory Dump from : \$*; HEX\$ (Address);
" $\mathbf{L O}$ \$"; HEXS (Address + Length)
PRINT
FOR $i=$ Address TO Address + Length
IF (PerLine $=4$ ) THEN PRINT : PerLine $=0$
x = GetSer
PRINT "\$* HEX\$(1); ": \$* HEX\$(x),
PerLine $=$ PerLine +1
NEXT
PRINT
END SUB

SUB Execution
Address $=$ GetSer: Address $=$ Address + GetSer * 256
PRINT
PRINT "Execution Address hit - \$"; HEXS(Address)
END SUB
FUNCTION GetSer

```
WHILE LOC(1) < 1
```

    IF INKEYS <> *. THEN CLOSE : END
    WEND
as = INPUTS(1, \#1)
GetSer $=$ ASC (as)

END FUNCTION

```
SUB Number
    PRINT
    PRINT "Number received - $*; HEX$(GetSer)
END SUB
```

Figure 6 shows the screen dump output from this program when working with the test file of figure 4 on the PIC16F84.

Figure 6: a screen dump from the Basic diagnostic program


## Interrupts

As this series is reviewing some techniques for the advanced use of PIC microcontrollers, the basic use of interrupts will not be considered here, however, in this brief section we shall look at some of the issues which arise with the use of interrupts in more complex programs.

The first issue is that of saving registers during an interrupt. Figure 7 shows the standard method of saving the $W$ register for the $16 \mathrm{C} 73 / 74$. Although Microchip identify the need for the variable W_TEMP to be defined both in bank 0 and bank 1 (and banks 2 and 3 for the 76/77 devices), this is not shown in their sample code.
org 4
MOVWF W_TEMP ;CODY W to TEMP register, could be
SWAPF STATUS,W
BCF STATUS,RPO

MOVWF STATUS_TEMP
: (ISR)

SWAPF STATUS_TEMP,W ; SWap STATUS_TEMP register into W ; (sets bank to original state)
MOVWF STATUS ;Move W into STATUS register
SWAPF W_TEMP, F ;SWap W_TEMP
SWAPF W_TEMP,W ; SWap W_TEMP into W
bank one or zero
; Swap status to be saved into $W$ ; Change to bank zero, regardless of current bank
;Save status to bank zero STATUS_TEMP register RETFIE

A bigger omission is that Microchip have not pointed out that the state of the PCLATH register on the occurrence of an interrupt is critical. PIC programs for the larger devices use the PCLATH register to define the top bits of the address used in goto and call instructions. For small programs this is not an issue - the PCLATH register will always point to the bottom program memory page. For larger programs the PCLATH register will be changed by the program to point to the program memory page being currently used. On interrupt the program will jump to location 4. Any jump or call made within an interrupt will cause a crash if the PCLATH register points to the wrong program memory page.

Figure 8: complete context-saving during an interrupt


## 

## DISTANCE LEARNING COURSES in:

## Analogue and Digital Electronic

 Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics- Courses to suit beginners and those wishing to update their knowledge and practical skills
- Courses are delivered as self-contained kits
No travelling or college attendance
Learning is at your own pace
. Courses may have BTEC Certification and Tutoring

For information contact:
NCT Enterprises (Quote ref: ETi)
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

## didinglg

## GUBEGRM: 2 G GANE WHTC EREGHiROMICS D): =

Our subscription deals just get better and better - ne you can save almost £20 if you subscribe today!

EII, code: 0215
Electronics Today Intemationol - The Project Magazine for oll Electronics Construttors.
The single source guide to electronis for todey and tommorrow, parked with numerous projects for enthusiosts of all obilifies. The detailed features and up-to-the-minute news items keep oll readers folly informed of the latest, exciing developments in this ever changing hobby, whilst the equipment reviews ensure that you alvays know exactly what to buy.
15 issues for the prike of 13
UK: NOW ONIY £35.75 YOU SAVE £5.50
Europe: $£ 43.42$, Overseas: $£ 47.84$, USA: $\$ 79.00$
30 issues for the price of 26
UK: NOW ONIY £71. 50 YOU SAVE £13.75 Europe: £86.84, Overseas: £95.68, USA: \$158.00.

ACORN ARCHIMEDES WORLD, code: 0215 In the constonlly changing world of IT , it is vitol to keep abreast of all the latest trends and developments. Of rourse, this is cassier soid thon done. However, you CAN keep fully informed by reading Acom Archimedes World, Britoin's most resperted compuring magazine devoted to all Acorn 32 .bit RISC OS systems. The wide ranging editorial brings you indepth hardware and solitiore reviews, evoluotes new produts and forecosts what will happen next, and intudes o dedicated educotionol section. Eoch issue also comes with a free covermounted disx, ohten containing complete, usable programs as well as workuble and playgble demos.
I5 issues for the price of 13
UK: NOW ONIY E51.35 YOU SAVE E7.90
Europe: £60.45 Overseas: £66.56, USA: $\$ 109.00$
31 issues for the prike of 26


UK: NOW ONIY £102.70 YOU SAVE £19.75
Europe: $£ 120.90$, Overseas: £133.12, USA: $\$ 218.00$

REMEMBER, it's olwoys cheoper to subscribe- and you avoid future cover price increases!
All savings are based upon buying the same number of issues from your newsagent, UK only.

## BINDERS

Keep your favourite magazines in mint condition in one of our sturdy binders.
Each binder will hold up to 13 issues.
Code: bind 02
£7.50 U.K. £8.00 Overseas
BINDERS AVALLBALE

- EII O ARCHIMEDES WORLD

'Electronics Direct' is the One Stop Shop for all your computing, electronics and amateur radio needs from Nexus Direct. We are offering some sensutional deals on Subscriptions, Books \& Reader Offers - all available direat by mail order. Remember, all our prices indude postage and packing - so there are no hidden extras to add! You can order by phone, fax or use the coupon.


## SAVINCS ON BOOKS



## AN INTRODUCTION TO ROBOTICS.

A fascinoting and unique book that breaks new ground by exploring the exciling world of roboliss in a dear and roncise way. Both the theoretical ond proctiral ospets are presented in on uncomplikoted foshion using everyday English, whirh mokes this on ideal book for the amaleut.
Divided into two sections, the firss port exploins how and why robols work and are controlled, while the second shows you how to make a simple two legged humonoid robol that con be progrommed to walk. There are no complicated Pormulos or equations 10 gropple with or incomprehensible circuit diagroms to decipher - his roboi con be buill on your kirchen toble and con be run from any personol compuler! All you need are model aeroplone servos, o controller, o power supply ond some plywood - ond all parts ore easity availoble in the UK and the USA. This is a book thot will te of inerest to modellers ond everyone with o fascinotion for things mechonicol ond electronic.
Code: NB299
ONLY £11.95 UK $£ 12.95$ Overseos


## ETI BOOK OF ELECTRONICS

This is the perfect book for beginners, offering o dear ond concise introduction to both the theories and pringiples of electronits. Each chapier olso allows you to put this theory inlo proctire with on eosy to follow project to moke, induding a loudspeoker dividec, continuity Iester, brown out' alorm, freezing dorm, toudspeaker, mini-omplifier ond a burglor alorm.
Code: NB214
ONLY £12.95 UK $£ 13.95$ Overseas


## SCANNERS 3 - PUTTING SCANNERS INTO PRACTICE

This is the fourth revised ond completely updoled edfition of Sconners, the compiete VHF/UHF rodio listeners guide, contoining everything you need to know to put your scamer to better uss. There is a greol deal move informaion than ever before on frequency listing in particulor, octuod frequencies used by cosstal stolions, giffields ond the emergency services. Ako indeded for the first time is o section on the HF (shorl wowe) band as many sconners now cover this ronge. Code: NB217
ONLY £11.95 UK
£12.95 Overseas

## SCANNERS 2 INTERNATIONAL

The componion took to 'Sconners' provides even more information on the use of VHF and UHF communioction bonds, and gives details on how to construct accessories to improve the performance of scamning equipment. The book is imeternotionol in its scope and contoins frequency oilocations for ofl three ITU regions, intuding counlry-by-country voriations.
Code: NB216
ONLY $£ 11.95$ UK
£12.95 Overseos

## आughy

please order all your goods using the coupon below ensuring you fill in all sections OR simply use our order hotline. Thank you.


## METHOD OF PAYMENT

The total value of my order is $\Sigma$
I enclose a Cheque/P.O. made payable to
Nexus Special Interests Ltd. or please debit my Mastercard/Visa/AMEX account


Please tick this box \#you do not wish to receive direct mail from other companies $\square$
 Express Order Hotline 01322616300

9am-5pm Monday - Friday

Figure 8 shows a more complete interrupt routine which includes PCLATH saving and which should be used for all large programs including goto/call within the interrupt routines.

Another issue which should be examined carefully is the depth of the call stack. The 16Cxx PIC processors have a call stack which is only eight levels deep. In view the limited stack depth, coupled with lack of any capability to push and pop data to and from the stack is a major limitation with the PIC - it makes compiler writing considerably harder and limits the flexibility of assembler programs. In practice the limited call stack implies that calls should be restricted as far as possible within an interrupt routine, and preferably only nested to one level. When calculating stack call depths, always assume that an interrupt may occur within the lowest level of call nesting in the main program, the interrupt will use one further stack level, and any calls within the interrupt routine will use further stack locations.

Never enable interrupts within an interrupt - on any processor recursive interrupts can be difficult to handle, but on the PIC they are virtually impossible. Every interrupt call uses up all the temporary registers used to store status and W registers, and so a recursive call will overwrite previously stored values.

Finally, it probably goes without saying that an interrupt routine must not modify variables or registers modified by the main program (for example FSR), and if it does these values must be stored in temporary registers during the interrupt routine. More subtly, the main program may well read varlable values which are being changed by the interrupt routine. For example, consider two variables set by the interrupt which are interdependent (for example a flag showing a new measurement has taken place and a counter of the number of values recorded). If the main program reads one value and then dependant on its value reads the second then consider what would happen if an interrupt occurred between the two reads - often program operation will be unpredictable. In this type of situation disable interrupts whilst both values are read.

## Interrupt-driven serial communications

So far all of the applications that we have examined have been based on those PICs which have no built-in serial communications support. Our final look at serial communications will examine a full interrupt driven serial communications program which will run on any of the devices which have a built in USART.

The code for this program is too big to be included in this magazine article, but is available either from the ETI web site, or on the disk avallable from the author at the end of this series. See the note at the end of the article for details.

Within this article we shall look at the routines available, the set-up of the serial communications program, and its use in a very simple demonstration program.

## Operation

While the interrupt-driven serial communications program operates in the background, the main program can run and perform normal operations, while bytes are transmitted and received from buffers automatically. There are two buffers, one for information which has been received, and one for information which is to be transmitted. As each byte is received it causes an interrupt, the interrupt routine reads the received byte from the hardware and write it to a circular buffer. Similarly as the main program requests a byte to be transmitted, it is added to the end of the transmit buffer, and is
sent in turn with any other bytes due for transmission.
There are only four routines (apart from the interrupt handler) to be used within the main program. They are documented in the source code.

The first two routines return the size of the receive and transmit buffers, so that it is possible to tell if one or more bytes have been received, and if there is room to add one or more bytes to the transmit buffer. The other two routines return the next byte from the received buffer, and add a byte to the transmit power. If there is no byte waiting in the receive buffer then the routine waits until one is received, and similarly if there is no room in the transmit buffer then the transmit routine waits until a byte has been transmitted before returning.

The routines operate using Xon/Xoff signalling. This type of flow control operates using two special characters, the Xon and Xoff characters (code $0 \times 11$ and $0 \times 13$ ), to stop and start transmission from the other end of the serial link. The Xoff character is sent when the receive buffer is three quarters full, and the Xon character is sent when the buffer becomes three quarters empty.

To enable the Xon and Xoff characters to be sent and received in the data stream, these characters are sent using a simple protocol. If an attempt is made by the program to send Xon, Xoff, or Escape (code 0x1b) characters, then an Escape character is sent followed by the correct character with the top bit set. The receiving routine decodes the correct character whenever an Escape character is received.

The buffers used for transmission and reception are circular buffers. This type of buffer has two pointers to address it. The pointers rotate seamlessly around the buffer so that there is no end or beginning - for example, if a buffer was 4 bytes in length the address would run in sequence $0,1,2,3$ and then 0 again. The first pointer is called the head, items to be added to the buffer are added at the address pointed by the head and the head is then incremented. The second pointer is called the tail, items to be taken from the buffer are read from the address pointed by the tail, and the tail is then incremented. When the head and the tail are the same, the buffer is empty. When the head is at an address which is one less that the tail, the buffer is full.

## Using the serial communications program

There are two files to be included within the main program. The first is "serial.equ", which should be included after all other include files. This file will need to be modified for the application, and is shown in figure 9.

Figure 9: Serial.equ - include file for interrupt-driven serial routines

| PROCFREQ | equ | . 4000 | - Processor frequency in kHz |
| :---: | :---: | :---: | :---: |
| BITRATE | equ | . 19200 | ; Baud rate |
| XON | equ | . 17 | ; XON and XOFF bytes |
| XOFF | equ | . 19 |  |
| ESC | equ | . 27 |  |
| RXBUFSZ | equ | . 32 | ; Maximum number of bytes in rx buf - Power of 2 |
| TXBUFSZ | equ | . 32 | ; Maximum number of bytes in tx buf - Power of 2 |
| rxtab | equ | ObOh | ; Received character buffer RXBUFSZ in length |
| txtab | equ | Odoh | 㮩- Fransmit character buffer TXBUFSZ in length |

[^0]SPHIGH equ (PROCFREQ*.1000)/(BITRATE*.16)-1
if SPLOW>. 25
DEFSPBRG equ SPLOW , Serial port bit rate generator BRGHVALUE equ 0
telse DEFSPBRG equ SPHIGH , Serial port bit rate generator BRGHVALUE equ 1
*endif
; Variables used in serial routines
cblock 20h
sertemp ; Temporary variable, may be used elsewhere
rxhead ; Pointer to head of receive buffer
rxtail ; Pointer to tail of receive buffer
txhead ; Pointer to head of transmit buffer
txtail ; Pointer to head of transmit buffer
serflags ; Serial flags register
intw ; stores $W$ in interrupt -
intflags ; stores flags in interrupt -
DO NOT USE ELSEWHERE
tempint ; Temporary store used in interrupt routine
DO NOT USE ELSEWHERE DO NOT USE ELSEWHERE
endc
; Flag bit definitions within the serflags byte
xOFFSENT
XOFFRX SENDXON SENDXOFF ESCRX

equ 1 ; An XOFF has been received
equ 2 ; Command tx routine to send xON now equ 3 ; Command $t x$ routine to send XOFF now equ 4 ; An escape character has just been received
$\begin{array}{lll}\text {; Serial } & \text { transmit and } \\ \text { t } & \\ \text { txv } & \text { equ } & 40 \mathrm{~h} \\ \text { rxv } & \text { equ } & 80 \mathrm{~h}\end{array}$

The processor frequency in kHz , and the bit rate in bits per second are entered in the lines which start PROCFREQ and BITRATE. In the example these are set to 4 MHz and 19200bps respectively.

The receive and transmit buffer sizes are set up by using RXBUFSZ and TXBUFSZ. These buffers must be a power of 2 in size. Typically the transmit buffer may be 8 bytes and the receive buffer 32 bytes (note that if a PC is used with a receive buffer of less than 128 bytes, the buffer size at which the XOFF character is sent may need to be changed to one-third of the buffer size as the PC serial card has a built-in buffer of 16 bytes which may be sent even after the PC receives an XOFF character).

The start addresses of the receive and transmit buffers must also be defined using the rxtab and txtab lines. These may be in the upper memory page.

The demonstration program is included with the sample files and is called demo.asm. The main loop of the program is only three words long and simply neceives bytes and transmits them straight back to the PC. The main loop is:

| infloop:call waitrx <br> call addtx <br>  <br> goto infloop | Wait fransmit it |
| :--- | :--- |
|  |  |

## Development board for the 16C74

The demonstration serial intemupt program operates on the 16 C74 device. Last month we presented a development board for the 16C84, this month we shall show a board for the 16C74, which includes a serial interface for communications


Figure 10: the circuit diagram of the 16 C 74 development board


Figure 11: the pcb layout of the 16 C 74 development board
using the built in USART, and two sockets for IIC devices. This board was originally presented as part of the ETI Basic Controller series in 1995.

Figure 10 shows the circuit diagram of the 16C74 development board. Port $C$ is used on the processor for the support circuitry, as this is the port used by most of the peripherals on the 16C74. The 16 C 74 uses the upper bits of port C for the serial interface to connect to the internal USART.

The IIC devices (IC2 and IC4) are an eeprom and a static pam supported on port C pins RC3 and RC4, however any IIC devices with the same pin-out could be supported on this port. A later article in this series will show the use of the IIC port in PIC controllers. The static ram is an 8 pin device, the Philips $8570,256 \times 8$ static rams. The eeprom IC2 is connected to be at address 0 on the I2C bus, and the static ram is at address 1 . This is achieved by using the A0, A1 and A2 pins of the I2C devices.

The brown-out reset circuit based on Q1 is provided to protect against errors caused by voltage drops in power up and power down and has an external reset capability. If the reset pin is taken high then the MCLR pin of the processor will drop to ground and reset the processor. If the pin is taken low, the brown-out reset circuit will be disabled.

There are three external connectors for I/O. PL4 is a 16pin dil socket which hosts all five bits of port A and the three bits of port E together with the external reset line and power supply pins. PL3 is the 20-pin IDC connector which hosts port $B$ and port $D$ together with the external RTCC input for the 8 -bit internal timer (TMRO) on pin RA4. PL3 also has power supply pins. Finally a 3 -pin header (PL5) supports the bottom three bits of port C . These bits can support an external crystal oscillator for Timer 1. This is shown on the circuit diagram, but not tracked on the PCB.

R3 is provided to allow for hardware mode programming. It can be connected in one of two positions, low or high, and the state can be read during start-up before the serial port is initialised. In normal use it may be left open circuit.

## Construction and testing

Figure 11 shows the PCB overlay. Use sockets for IC1, IC2 and IC4. There are four links to be fitted first, one under IC1, one under IC2, and the others to the left of IC1. Foilow the links with the horizontally mounted resistors, then the IC sockets, the other resistors, capacitors, IC3, and the remaining components and connectors. IC3 is the power regulator. A 78L05 or 7805 may be used depending on the power consumption of the peripheral circuitry, and a heatsink may be fitted to the 7805 if required. IC3 may be
removed altogether if an external regulated supply is available.

Before inserting any ICs, connect the power supply and check the voltages on the power supply pins of IC1, IC2 and IC3. Power down and insert those ICs which are to be used (note that the orientation of IC2 is opposite to that of IC4), power up, connect to the PC as shown in previous articles and use the serial interrupt software to confirm the operation of the module.

## Next Month

In next month's article we shall look at driving LED displays - both multiplexed and non-multiplexed - directly from the PIC, and using specialist driver devices to ease the task.

## Obtaining software

The Software listings for this month's and last month's articles are available from the ETI web site at www.aaelectron.co.uk, and will be available on a disk from the author at the end of the series.



THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)
WI POWER RATMGS RMS. INTO 4 OHMS, BOTH CHANNELS DRIVEN
FEATURES: \#Independent power supplies with two toroidal transtormers * Twin L.E.D. Vu meters * Level controts \& liluminaled on/oflswikh \# XLR connectors \$ Sianderd 775 mV inputs * Open and short circuit distorion \& Aluminium cases \& MXFF60 \& MXF 9 goo tan cooled with D.C. Ioudspeater and thermal prolection. USED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

SIZES:- MXF200 W10"xH3 ${ }^{1 / \mathrm{s}^{\prime \prime}}$ (2U)xD11"


PRICES:-MXF200 £175.00 MXF400 £233.85 MXF SPECIALIST CARRIER DEL. $£ 12.50$ EACH

## OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER



Advanced 3-Way Stereo Active Cross-Over, housed in a $19^{-1}$ a 14 case. Each channel has itree ievel controis bass, mid $\frac{1}{\text { lop . The removable front fascia allows access } 10 \text { the programmable DIL switches to adjust the }}$ cross-over trequency: Base-MId $250 / 500 / 800 \mathrm{~Hz}$. Mid.Top $1.8 / 3 / 1 / \mathrm{KHz}$, all al 24 dB per octove Bass invert swi Price £117.44 + £5.00 P\&P
STERIEO DISCO MIXER SDJ3400S *ECHO \& SOUND EFFECTS*
STEREO DISCO MIXER with $2 \times 7$ band
 FEATURES:- including Echo with reppet a apeed control, of Mic with tellk-over switch, 8 Channels with individeual tadors plus cross fade, Cue thendphone Montior. 8 Sound Enects. Ureful combination of the fotlowing inputs:- I turntables (mugg),
mics, $B$ Line for CD, Tmpe, Video etc.

## Price $1144.99+$ E8.00 P\&P



## PIERO ELECTRIC TWEETERS - MOTOFOLA

Join the Piezo revolution! The fow dynamic mass (no voice coll) of a Piazo tweeter produces an improved transienl response with a lower distortion level than ordinary dynamic tweelers. As a crossover is not required these units can be added to existing zpester syalems of up to 100 wet
EXPLAMATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER. TVPE ' $\mathcal{N}$ (KSN1036A) $3^{\circ}$ round with protective wire mesh. Ideal for bookshell and medlum sized Hi-Fi apeakers. Price $\mathbb{E} 4.90+50 \mathrm{p}$ P:P. TYPE 'g' (KSN1005A) $31{ }^{\circ}$ super horn for general purpose speakers disco and P.A. systems etc. Price $\mathbf{8 5 . 9 9}+\mathbf{5 0 p}$ PaP,
TYPE ' $C^{\prime}$ ' $K S N 1016 A$ ) $2^{\circ} \times 5^{\circ}$ wide dispersion horn lor quaslity Hi-Fi sys

TYPE ' $D$ ' (KSN1025A) $2^{\prime \prime} \times 6^{\circ}$ wide dispersion horn. Upper trequency response retained extending down to mid-range $(2 \mathrm{KHz})$. Suitable for high quality Hi-Fi systems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P\&P
YYPE ' E ' (KSN1038A) $3^{33} \mathbf{4}^{\prime \prime}$ horn tweeter with attractive silver finish trim. Sultable for Hi-Fi monitor systems etc. Price $\mathbf{C 5 . 9 9}+50$ p P4P
LEVEL. CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{C 4 . 1 0}+50 \mathrm{p}$ P\&P.

## EDFLIGHT CASED LOUDSPEAKERS

A new range of quality loucspeakers, designed to take advantage of the latesi speaker tochnology and enclosure designs. Both models utilize studio quality 12 cast aluminium loudspeakers with lactory fitted grilles. wide dispersion constant directivity horns, extruded aluminium corner protection and sleel ball corners, complimented with heavy duty black covering The enclas.
are fitted as standard with lop hats for optional loudspeaker slands.

POWER RATINGS QUOTEOIN WATTS RMS FOR EACH CABINET FREOUENCY RESPONSE FULI RANGE $45 \mathrm{~Hz}=20 \mathrm{KHz}$
ibl FC 12-100WATTS (100 dB) PRICE E 189.00 PER PAIR ibl FC 12-200WATTS (100dB) PRICE C175.00 PER PAIR SPECIALIST CARAIER DEL. E12.50 PER PAIR
OPTIONAL STANDS PAICE PER PAIR 49.00 Delivery $\mathbf{\Sigma} 6.00$ per palr

## IN-GAR STEREO BOOSTER AMFS



THITE SUPERZ HIGHPOWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS (75 Bridged Mono 250 WATTS $(125+125)$ Stereo, 250 W $\left.\begin{array}{l}8 \text { ridged Mono } \\ 400 \text { WATMS }(200\end{array}+200\right)$ Stere0, 400 W Bridged Mono ALL POWERS INTO \& OHMS Features:

* Stereo. oridgable mono *Choice o high \& low level inputs ot $L R$ level controis thermal orotection.

OMP MOS-FET POWER AMPLIFIER MODULES SUPPLIED READY BUILT AND TESTED.

 pic. When comparing prices. NOTE that all modele include toroidsl power supply, Integral he
drive drcults lo 10 power compotible Vu meter. All modets are open and shorl circuit proot.
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS


OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Damping Factor $>300$, Slew Rate 45 V US T.H.D. typlcal $0.002 \%$, Input Sensitivity 500 mV , S.N.R. 110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$ PRICE $£ 40.85+83.50$ P

OMP/MF 200 Mos-Fel Output power 200 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3 dB , Oamping Factor $>300$, Slew Rate $50 \mathrm{~V} / u \mathrm{~S}_{\text {, }}$ T.H.O. typical $0.001 \%$, Input Sensitivity 500 mV , S.N.R. 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$. PRICE $£ 64.35+¢ 4.00$ PAP


OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor $>300$, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical $0.001 \%$, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$.
PRICE E81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ .3 dB , Damping Factor $>300$, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.O. typical $0.001 \%$, Input Sensilivity 500 mV , S.N.R. -110 dB , Fan Cooled. D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE E132.85 + E5.00 PIP

OMP/MF $\mathbf{1 0 0 0}$ Mos-Fet Outpul power 1000 watts R.M.S. Into 2 ohms, 725 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor $>300$, Stew Rate $75 \mathrm{~V} / \mathrm{US}$, T.H.D. typical $0.002 \%$, Induut Sensitivity 500 mV , S.N.A. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
ARICE $259.00+$ E12.00 PAP
NOTE MOSFIT MODULES ARE AVAILABLE IM TWO VLRSIONS STANDARO-INPUT SENS SOOMV, GAMD WIDTH TOOKHE PEC (PROFISSIOMAL LOUIPMINY COMPATIBLS) - IMPU
77 MV, BAND WIDTM SOKHZ OROER STANDAHD OR PEC.

## LOUDSPEAKERS

ARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINOS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIOH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. ( 60 P STAMPED) FOR COMPLETE LST.
McKenzie and Fane Loudspeakers are also avallable.

## SMINENCE:- INSTRUMENTS, P.A.. DISCO. ETC

ALL IMINENCE UNITS 8 OHMS IMPEDANCE
A" 100 WATT P S. MEB-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO. RES. FREO. 72 Hz , FREQ. RESP. TO 4 HHz . SENS 97 dB . O" 100 WATT R.M.S. ME $10-100$ GUTTAR, VOCAL. KEYBOARD, OISCO, EXCELEENT MID RES. FREQ. 7 THz, FREQ. RESP. TO 7 KHz , SENS97dB. PRICE ©33. 74 + $\mathbf{C 2} .50$ PEP $10^{\prime \prime} 200$ WATT R.M.S. ME10-200 GUITAR, KEYB'D, DISCO, VOCAL, EXCELLENT HIGH POWER MID. RES. FREO. 65 Hz , FREO. RESP. TO 3.5 KHz . SENS 99 dB . $18^{\prime \prime} 100$ WATT R.M.S. ME12-100LE GEN. PURPOSE, AES. FREO. $49 H z$, FREO. AESP. TO 6 KHz , SENS 100 dB . II.F $12^{-1} 100$ WAT R.M.S. MEE12-100LT (TWIN CONE) WIDE RESPONSE, PA, VOCAL STAGE

MONITOR. RES. FREQ 42 Hz , FREQ. RESP. TO 10 KHz , SENS $98 d B$ $12^{\circ} 200$ WATT R.M.S. ME $12-200$ GEN. PUAPO8E, G
RES. FREO. 58 Hz . FREO. AESP. TO 6 KHz , SENS $98 d B$. RES. FREQ. SAHz. FAEO. AESP. TO 6 KHZ , SENS 98 CB .
$12^{\prime \prime} 300$ WATT R.M.S ME $12 \cdot 3000 \mathrm{P}$ HIGH POWER B RES. FREQ. 47 Hz , FRES. RESP. TO 5 KHz , SENS 103 dB . $15^{2} 200$ WATT R.M.S. ME1E-200 GEN. PURPOSE B RES. FREO. 46 Hz , FREO. RESP. TO 5 KHz , SENS $99 \mathrm{~A} B$ $15^{\circ} 300$ WATT R.M.S. WE 15-300 HIGH POWER BASS
SS, LEAD GUIT
S. INCLUDINGS, IN
CLUDING RES, FREO. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB

## EARBENDERS:- HI-FI. STUDIO, IN-CAR ETC

ALL EARBENDER UMITS 8 OHMS (Encept Esse-50 EB10-50 which are dual) BASS, SINOLE CONE, HIGH COMPLIANCE, ROLLED SUAHOUNO $B^{2}$ EOWATt EB8-5O DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAR
RES. FREO. 40 Hz , FREO. RESP. TO TKHz SENS 97 dB . $10^{\circ}$ SOWATT ER $10-50$ DUAL IMPEDENCE, TAPPEO $4 / 8$ OHM BASS, HI-FI, IN-CAR. RES. FREQ, 40 Hz , FREQ. RESP. TO 5 KHz , SENS. 99 dB . 10' $100 \mathrm{~W} A T$ EB10-100 EASS, MI-FI, STUDIO. RES. FREO. 35 Hz , FREQ. RESP. TO 3 KHz , SENS 96 dB . 12* 100WATT EB12-100 BASS, STUDIO, HI-FI, EXCELLENT DISCO. RES. FREQ. 26 Hz , FREQ. RESP. TO 3 KHz , SENS 93 dB CONE, HIGH COMPLIANCE ROLLED SURROUND $3 v^{" \prime}$ 6OWATT EBS-GOTC (TWIN CONE) HI-FI, MULTI-ARRAY OISCO ETC. RES. FREQ. 63 Hz, FREO. RESP. TO 20 KHz , SENS $92 d 8$.
$6 \vartheta_{2}^{\prime \prime}$ GOWATT EB6-6OTC (TWIN CONE) HI-FI, MULTI-ARRAY OISCQ ETC RES. FREQ. 38 Hz , FREQ. RESP. TO 20 KHz , SENS 94 dB . $8^{\prime \prime}$ 6OWATT EB8-6OTC (TWIN CONE) HI-FI, MILTI-ARRAY DISCO ETC. RES. FREO. 40 Hz , FREQ. RESP. TO 18 KHz , SENS 89 dB . $10^{\circ}$ GOWATT EB1O-60TC (TWIN CONE) HI-FI, MULTI ARRAY DISCO ETC. RES. FPEO. 35 Hz , FREO. RESP. TO 12 KHz , SENS 98 dB .

RICE $\mathbb{C} 13.65+\mathbf{C 2} .50$ PEP
PRICE $\mathbf{C} 30.39+$ E3.50 PAP
PAICE C42.12 + E3.50 PEP

PRICE $\mathbf{C} 9.09+\mathbf{~} 1.50$ PEP PRICE C10.00 + 1.60 PEP PRICE E12.90 $+\mathbf{C 1 . 5 0 ~ P E P ~}$ PRICE $c 16.40+$ e2.00 PEP TRANSMITTER MOBGY KITS
PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTEO CIRCUIT BOARO ANO HIGH QUALITY COMPONENTS COMPLETE WITH CIRCUIT AND INSTRUCTIONS 3W TRAMSMITTE W-1DOUHE, VAAICAP COMTROLLED PROFESSIOMAL PERFORMANCE, RANGE UP TO 3 MLES, SZE 312123 mm . SUPPLY IZV © O SAMP PRICE C14.85 + 81.00 Pa
FII MICRO TRAMSMITTER $100-108$ MHz, VARICAP TUNED COMPLETE WTH VEAY SENS FET MIC. AANGE $100-300 \mathrm{~m}$, SIZE 56 x Hmm, SUPPLY YV BARTERY. PRICE $¢ 8.80+51.00$ PMP

MOTO: JW PA TRANSMITYMR

UNITS 1 \& 5 COMET WAY SOUTHEND-ON SEA. ESSEX SS2 GTR 527572 Fax: 01702420243


$\rightarrow 4$

## Homebuilding a PC today could be described as "easy - but with boobytraps". Robert Penfold starts this month with the basics of buying compatible parts and fitting them together.

At one time custom, do-it-yourself PCs were very much the domain of the computer enthusiast, and not at all for the average PC user. Things have changed in recent years, and a fair percentage of PCs today are either home-built or upgraded by theirowners to the point where they have what is virtually a homeassembled PC. Some PC market surveys seem to put home builders as a whole roughly on a par with some of the major PC manufacturers for numbers of PCs produced in the last year or two! Building up your own PC is simpler than it used to be, and the general level of computer competence has increased over the years. There are now many more people with the basic competence to undertake this type of thing.

This is not to say that anyone can successfully build and set-up their own PC. The bad news is that PC systems are not quite so "plug and go" as they are sometimes described. Actually building the computer is not very difficult at all. PCs have progressed well beyond the stage where you could seriously set about building your own circuit boards. Building a PC now is truly a matter of bolting ready-made circuit boards into a ready-made case. It is a simple assembly job that often requires nothing more than a screwdriver, and is probably easier than putting together some screw-it-yourself furniture. The skill required lies in selecting suitable components, and in getting the finished computer correctly set up and running your applications. DN PCs are not really a practical proposition for those who are new to PCs, or even for those of limited experience. Someone who has been using PCs for a few years can sort out the minor difficulties that will inevitably arise. The same problems would probably baffle a new user.


Modern motherboards have integrtaed parts of various types. Make sure th board is supplied complete with a basic set of matching cables

It is only fair to point out the realities at the start. Some people undertake this task in the hope that they will save money. With careful buying from discount mail order suppliers, a DN PC might be somewhat cheaper than a ready assembled equivalent. It should certainly cost no more. Some of the saving is because you are not paying someone to spend a few hours putting the thing together. Not paying for helplines and other customer support accounts for much of the saving but, bearing in mind that the first rule of buying PCs for the uninitiated is "buy from somewhere that provides support", you will be largely on your own if things go wrong.

> Note: DIY computer building is not a suitable project for a complete novice, and also involves mains handling and static handling of expensive parts. Seek help from a more experienced colleague before undertaking any processes you are not sure about.

You might think that, if you choose reputable components, nothing much could go wrong, but this would be putting trust in optimism over experience! PCs are complex system and, despite increasing standardisation, they are still notorious for obscure hardware incompatibility problems. Putting together a set of perfectly functional components will not necessarily produce a totally functional PC. If you should run into this kind of problem, the supplier of the component that is giving you difficulty will almost certainly deduct a testing and restocking fee from any refund offered. If the offending part works when tried in their test computers, they will be unlikely to accept it as faulty. It is helpful if the DIY PC builder already has at least one reasonably modern PC. I recently ran into problems with memory modules that seemed to be faulty, but worked fine when tested by the supplier. When I swapped the memory from the new computer with the memory from an existing PC, they both worked finel Juggling the components of two PCs will often banish obscure incompatibility problems.

## The right stuff

I reckon that most PC builders fall into two basic categories: those who put a PC together from whatever they can get cheaply at the time, and those who select the components carefully for their ideal PC. Either way, but particularly with the cheap approach, you must plough quite a bit of effort into buying components that will work properly together. This is a list of the components needed to produce a fully operational multimedia PC:


This gigabyte motherboard uses the standard AT layout. The large ZIF socket is for the CPU.

There are two distinct types of Intel Pentium processor. These are the standard MMX processors, which fit into a square holder on the motherboard known as "Socket 7", and the Pentium II processors which fit into a connector that looks rather like a large memory module socket, and is known as "Slot 1". The two types of processor are not hardware-compatible, and motherboards take only one or the other. The normal Pentium II processors operate at speeds of $233,266,300$, and 333 MHz . Two higher speed versions operating at 350 and 400 MHz have just been announced, but these chips require special motherboards that operate at 100 MHz (and a correspondingly fast memory), as opposed to the 66 MHz of the earlier Pentium II processors. The new processors and motherboards are not in the shops as I write. but the latest "turbo" technology is best left to the experts and is not really a suitable starting point.
Intel is expected to kill off its "socket 7 " processors by the end of this year, and replace them with low-cost Pentium II processors (the "Celeron" processors) that lack the added 512 K of memory cache of the normal Pentium lis. At the moment it is unclear how much this will affect their performance, but full Pentium II processors look like a better bet if you need any kind of high performance. Socket 7 MMX processors are an attractive proposition at present if you can get by with less than the ultimate performance. The processors and motherboards are available at very low prices, and they will run virtually all current software properly (but check when buying). Also, they use well-tried and tested technology that is less likely to produce any unpleasant surprises for the DIY PC builder.

Any modern Pentlum motherboard should work with Intel $166 \mathrm{MHz}, 200 \mathrm{MHz}$, and 233 MHz MMX processors, but if you opt for a compatible processor make sure that you do buy a motherboard that can operate with it. MMX processors operate with twin supply voltages, and the genuine Intel chips need a potential of 3.3 volts for the circuits that connect to the outside world. The main circuit of the processor requires a core voltage of 2.8 volts. Processors from other manufacturers malnly use different core voltages.


Most CPU fans tap power from a disk drive

## Over-clocking

There are also differences in the clock speeds used for non-Intel processors. The subject of clock speeds often confuses newcomers to PC assembly, and one reason for this is that there are actually two clock rates within the PC. The processor operates at a clock frequency that is several times higher than the clock frequency used for the motherboard. For example, an Intel 200 MHz MMX processor operates with a motherboard clock rate of 66 MHz and so-called $\times 3$ operation. In other words, the processor is clocked at a rate that is three times higher than the motherboard clock frequency. Note that the clock speeds quoted for the IBM/Cyrix processors are not the actual clock frequencies used, but are given as a guide to the effective speed when running typical applications. For instance,


SDRAM in the form of 168 -pin DIMMS (top) are now replacing 72-pin EDO SIMMs (bottom) the IBM/Cyrix 200 MHz MMX chip is actually clock at 150 MHz , but runs applications at a speed which is comparable to an Intel 200 MHz MMX processor. Rather unhelpfully, some of these chips exist in two versions operating with different clock speeds and (or) core voltages. Where appropriate, the chips themselves or normally marked with details of the required clock rates and operating voltages.

The choice of processor depends on the processing power you require and how much you are prepared to pay, but you clearly need to be careful that the motherboard you obtain is fully compatible with your processor. This is especially important with the IBM/Cyrix chips, because some of them require high motherboard clock rates that are not supported by all recent motherboards. There is a slight problem with processors that require board frequencies of more than 66 MHz , which is simply that Intel $\mathrm{VX}, \mathrm{HX}$ and TX support chipsets do not support these higher frequencies. There are alternative support chipsets, but many boards use the Intel chips together with so-called over-clocking. In other words, the chips are used beyond their designed maximum operating frequency. The manuals for these boards explain how to set the higher board frequencies, but usually include a disclaimer advising against doing so. In other words, you can use these boards at high clock rates if you like, but the manufacturers accept no responsibility if things go wrong. If you are going to use a processor that requires a high motherboard clock frequency, and especially if you are using one of the new Socket 7 chips that operate at more than 233 MHz , the safe option is to buy the processor and motherboard as a package. Get a guarantee that they will operate properly together.

There are three normal methods of setting up the board to operate with the appropriate processor. The two old-fashioned ways are to use either jumper connectors or DIP switches. The manual for the motherboard should show how to set up the available clock frequencies and core voltage options. in most cases the settings required for each supported processor would be provided, making it easy to set up the board correctly for your chosen processor. The modern alternative is for the motherboard to automatically detect the type of processor fitted and to provide the correct settings for you. Manual control is still possible via the BIOS set-up program. I think there is no doubt that the automatic detection method. is
the most convenient, and I would guess that before too long practically all motherboards will use it. Incidentally, the same three methods of control are used with Slot 1 motherboards to set the clock frequencies.

All Pentium class processors consume a fair amount of power and require a heatsink and fan to prevent overheating. In general, the higher the clock frequency the larger the heatsink required. The IBM/Cyrix chips, despite their lower actual clock frequencies, require larger heatsinks than equivalent chips from other manufacturers. It is advisable to buy the heatsink and fan together with the microprocessor and an assurance from the supplier that the heatsink is adequate for the particular processor you are using. Modern motherboards have a 12-volt output for the fan, but most heatsink fans take the alternative route of taking power from one of the supply's power connectors for a 5.25 -inch drive. A pass-through lead is normally included, so that the connector can supply power to both the fan and a drive.

## Where it's AT

These days PC cases are normally supplied complete with a power supply unit of a fairly generous power rating of around 230 watts. Various styles of case are available, and the best type is largely a matter of personal preference. However, I would not recommend using the smallest types because these are often difficult to work on, and they can also be rather limiting due to their small number of drive bays. In the catalogues you will find AT and ATX cases listed, and it is important to understand the differences between them. AT cases are what I suppose could be regarded as the traditional. PC cases, and they are equipped with standard PC power supply units. Most modern cases of this type will only accept "baby" AT motherboards, but the full-size variety is either not manufactured any more, or has become extremely hard to find; a situation which should make buyers cautious. AT cases will not normally accept ATX format motherboards.

ATX cases are primarily intended for use with ATX style motherboards, but in most cases they will also accept standard AT boards. With an AT motherboard the voltages required by the processor are provided from the +5 volt supply by an on-board voltage regulator. The power supply of an ATX

SIMM SOCKET


Figure 1: SIMMS must be inserted from the correct side of the socket
case has a 3.3 -volt output, which reduces the need for regulators on the motherboard. Note that the standard AT and ATX power supply units use different connectors, so there is no risk of connecting the wrong type to the motherboard. Modem AT motherboards mostly have both types of connector so that they can be used with either type of supply.

Apart from differences in the power supply requirements, ATX boards differ from standard AT types in other respects. Modern motherboards have one parallel and two serial ports as standard. With AT boards, leads connect the board to the port connectors fitted on the rear of the case. Most cases have ready-made cut-outs for these connectors, but it is often more convenient to mount then in special blanking plates which can be fitted in place behind any unused or "dummy" expansion slots. In fact most motherboards are supplied complete with a basic set of leads, which inctudes serial and parallel port leads with connectors ready fitted into blanking plates. In most cases there is no difficulty in removing the connectors from the plates and fitting them on the rear of the case instead. This is all academic with ATX boards, since they have the serial and parallel port connectors on the rear of the motherboard, and these match up with cut-outs in the rear of the case, much like an ordinary PC keyboard connector. The interior of a PC tends to be a mass of cables, and the ATX approach eases this problem somewhat.

Another major difference between AT and ATX motherboards is that ATX boards have a totally redesigned layout. There is a slight problem when the traditional layout is applied to modern PCs with heatsinks and fans fitted to the processors. These appendages effectively increase the height of the processor, and can make it impossible to fit some of the tonger expansion cards into certain of the expansion sockets. The situation is worse with Pentium II computers due to the large size of the processor, which looks more like a videocassette than an integrated circuit. The ATX layout places the microprocessor to the side of the expansion slots where it will not get in the way. The ATX layout is also supposed to make it easier to get at the memory sockets, but in practice things do not always seem to work out this way.

So far, ATX boards and cases have not been very popular, which is probably due to their relatively high cost. The price differential between AT and ATX components is now quite small, and an ATX case and motherboard probably represents the most practical choice, particularly if you are building a Pentium II computer. If you are building a PC based on a Socket 7 processor it is still probably worth using an ATX motherboard. Unless you are working on a really tight budget, it is worthwhile buying a board based on the TX support chlp
set, which should offer USB support and so on. Incidentally, Pentium II motherboards operating at up to 333 MHz are normally based on the LX chipset, but some early designs are based on the old FX chips. It is definitely advisable to buy one of the latest LX boards, which should have "all mod cons".

## Assembly

Assembling all the components should be reasonably straightforward but will be fiddly. Having nimble fingers is an asset! Bear in mind that the motherboards, processors and many of the expansion cards are static-sensitive, and that they require the same handling precautions that you would use when dealing with MOS integrated circuits in a normal project. Due to the relatively high cost of PC components it is only prudent to take more care than normal. It is probably not worthwhile paying out for expensive anti-static mats, wristbands, and so on, but it is essential to have an earthed metal worktop so that you can work safely on the motherboard. Something as basic as a large piece of metal cooking foil on the worktop is all that is needed. You can use a crocodile clip lead to earth the foil to the earth output of a bench power supply, to the metal case of a mains powered project, or any gadget that has an earthed case. It is a good idea to touch the foil occasionally, and before handling any PC components, so that any static build-up in your body is discharged to earth before it has a chance to do any harm.

It is a good idea to do as much work on the motherboard as possible before it is fixed inside the case, because the board will be much less accesslble once it is in the case. Don't find out the difference the hard way if you can help it! Each situation must be taken on its own merits, but the preliminary work on the motherboard will normally include fitting the processor and memory modules, and where appropriate setting up any jumpers or DIP switches.

If you are building a Pentium II computer the motherboard will only accept DIMMs (dual in-line memory modules), but it will probably work with both EDO and SDRAM versions of these modules. There is no point in using EDO DIMMs, as they are more difficult to obtain, are likely to be more expensive, and will give inferior performance. Sockets 7 motherboards mostly have provision for four SIMMs (single in-line memory modules) or two DIMMs. The SIMM sockets will usually accept fast page memory or EDO memory, but as EDO memory is cheaper and faster there is no point in considering the fast page variety. In fact there is probably no point in using any form of SIMM memory, because SDRAM DIMMs are likely to cost no more but will give slightly better performance. Note that unbuffered, not buffered, SDRAM DIMMs are required, but this is the only
type offered by most suppliers.
Fitting DIMMs is very easy, and it is impossible to fit them the wrong way round because a polarising key is cut in the circuit board. From this, and the matching bar in the DIMM socket, it is easy to determine which way around the module should go. The module simply drops into place vertically and as it is pressed down into position the plastic levers at each end of the socket should start to close up. Pressing them both into the vertical position should securely lock the module in place. Virtually all Pentium motherboards require SIMMs to be used in pairs, but DIMMs can be used singly.

SIMMs are slightly more awkward to fit and, although in theory it is impossible to fit them the wrong way around, in practice it does happen. There is the usual polarising notch in the module and key in the socket, but they are small and only slightly off-centre. Note that Pentium motherboards are only compatible with $72-\mathrm{pin}$ SIMMs and that they will only take the old 30 -pin variety via adapters. With the current low cost of memory there would seem to be little point in using these adapters, which have a reputation for problems. When fitting SIMMs orient the motherboard so that the sides of the sockets, which have the metal clips, are facing towards you and the plain sides are facing away from you (figure 1). Take a SIMM and fit it into the first socket (the one that Is furthest away from you), and note that it must be leaning toward you slightly and not fully vertical. Once it is right down into the socket it should lock into place when it is raised to the vertical position. If it will not fit Into position properly it is probably the wrong way round. Turn it through 180 degrees and try again.

Unlike some previous Intel processors, the Socket 7 chips can only be fitted the right way round. If you look at the socket you will notice that one corner does not have a hole for a pin whereas the other three do. Similarly, the processor itself has a "missing" pin in one corner, and this corner of the chip is usually marked on the top surface by a dot. But be very careful when handling the processor, as getting even one pin slightly bent will prevent it from fitting into the holder. There is a large lever at one side of the socket and this must be raised to the vertical position before the processor can be fitted into place. Once aligned with the socket, the processor should drop easily into place. Once the processor is properly seated in the socket, return the lever to the horizontal position to lock it in place. The heatsink and fan have spring-clips that fit onto plastic lugs on the socket. The heatsink will sometimes be a rather lose fitting, but you will probably find that the clip can be adjusted to an alternative height setting that gives more reliable
results. It is essential that the heatsink fits securely onto the socket, because the processor could easily be destroyed if the heatsink comes lose in use. Some motherboards have built-in processor temperature monitoring and safety circuits, but this is by no means a universal feature. Pentium II processors simply plug into a polarised socket that is rather like an ordinary expansion slot.

## Stand-off

It is generally easier if the motherboard is fitted into the case first, and then the drives are fitted. The case should be supplied complete with fixings and stand-offs for the motherboard. In most cases there will be one or two holes in the motherboard which do not match up with fixings in the case, but provided the board is supported at about five or six points there should be no problems. Every case seems to use a slightly different mounting arrangement, so you have to use a little ingenuity (or guesswork) here. With modern cases there is no need for any mounting rails on the drives. They simply slide straight into the bays and are bolted in place using the screws supplied with the case.

Connect the power supply cables, drive cables, and sc on before fitting the expansion cards, because the cards tend to severely restrict access to the interior of the case. The 3.5- and 5.25 -inch drive power connectors are polarised and can not be fitted the wrong way round. The same is true of ATX motherboard power connectors. AT motherboards have two polarised power connectors, but be careful not to get them swapped over. The convention is for the four ground (black) leads to be in the middle of the line of 12 leads. The floppy drive controller is integrated with the motherboard, and the board should be supplied with a "twisted" lead for two drives. This is connected in the manner shown in figure 2 . The two drives have the same set-up, and it is the twist in the cable that determines which is drive A and which is drive B. If only one floppy drive is fitted, simply leave the drive B connector unused. Computer data leads are made from grey ribbon cable that has a red lead at one end. The convention is for this lead to carry the pin 1 connection. The instruction manuals will indicate which pin on each connector is pin 1, but this information is usually marked on the motherboard and drives as well.

Modem motherboards have two IDE connectors that will each take two IDE devices such as hard drives and CD-ROM drives. There will probably be just one IDE data lead provided with the motherboard, but this will have connectors for two


Figure 2: a twist in the data cables determines which floppy disk drive is A , and which is drive B .
drives. It does not matter which drive connects to which connector, as it is the drive settings that determine which one is the master and which is the slave. The hard drive would normally be set as the master with the CD-ROM drive its slave device. The drives' instruction manuals will give details of the jumper settings required. In theory there could be a slight advantage in buying a second data cable and installing the CD-ROM drive as the master device on the second IDE port. In practice this does not make any obvious difference in performance.

Where appropriate, the serial, parallel port and (possibly) mouse port connectors should be fitted to the case, and connected to the motherboard. The ribbon cables attached to these connectors follow the normal rule of having the red lead carry the pin 1 connection. If not marked on the motherboard itself, pin 1 of each connector should be indicated in a diagram in the manual. There are various switched and LEDs fitted to the case that must also be connected to the motherboard. These include such things as power and hard drive LEDs, and the reset switch. It is unlikely that the miscellaneous facilities of the motherboard will precisely match those of the case. The case may have a "turbo" switch and LED, but these are not usually implemented on motherboards (or do not actually do anything it they are). Some leads may therefore have to be left unconnected. Provided the computer has the power and drive LEDs, the reset switch and the loudspeaker connected, it should be perfectly usable. There may be " + " marks on the leads and motherboard connectors to indicate the LED polarities, but it is sometimes necessary to use the "suck it and see method" to get them connected the right way round. No damage will occur if you get it wrong at the first attempt.

Finally, add in the expansion cards, and if you have one, fit the audio lead that connects the CD-ROM drive to the audio bnard. With the mouse, keyboard, monitor, and power leads connected, the computer is ready for testing. However, before switching on it would be a good idea to give everything a final check. Also, you may wish to use cable-ties or double-sided adhesive pads to stop loose cables from flapping around inside
the case. Make quite sure that there is no risk of any cables jamming in the CPU's cooling fan. Due to the large number of leads going here, there, and everywhere, it is difficult to make the interior of the unit look really neat. Anyway, it is best not to overdo it when fixing cables to the case as this can make life difficult if you wish to make changes to the computer later on.

## The BIOS

When you switch on the computer it should produce the usual start-up messages, but you should exit the start-up sequence and go into the BIOS Setup program by following the appropriate on-screen instruction (which usually tells you to press the "Del" key). A modem BIOS provides control over all manners of things, but to a large extent it is just a matter of setting the time and date, and specifying the floppy drive or drives present. The BIOS can auto-detect things like the hard drive type and the amount of memory fitted. You might have to indicate the type of memory fitted, and it might be possible to make a few improvements to the settings later on, but initially it is a good idea to let the BIOS use what it considers to be the optimum settings.

The hard disk will be supplied with the low level formatting completed, but it will need high level formatting and the operating system added. We will look at hard disk drives in detail in a subsequent article dealing with PC upgrading, but the process is quite easy. Some hard disks are supplied with software that simplifies the process, and it clearly makes sense to use this software if it is available. If not, you will need an MS/DOS or Windows 95 boot disk, which also contains the Format and Fdisk programs. Use the disk to boot-up from dive A , and then run Fdisk. This is used to partition the disk, and to set the active partition (the one that the system will boot from). Note that you must still run Fdisk even if the disk will only have a single partition, because the operating system will not accept the presence of the hard disk until Fdisk has done its stuff. When using Fdisk you simply choose the required option and follow the on-screen Instructions.

Once Fdisk has processed the


The interior of the finished PC tends to be cluttered with leads. Take particular care to secure any leads that might get into the fan disk it can be high level formatted using the Format program, using the /s option to transfer the system files to the disk. It should then be possible to boot from the hard disk. Once the drivers for the mouse and CD-ROM drive have been installed it is possible to run the installation disk for Windows 3.1 or Windows 95. Obtaining Windows 95 for your new computer can be difficult because the full Windows 95 program (as opposed to the upgrade version) is only sold with hardware. The important point to note here is that "hardware" does not necessarily mean a complete computer and it should be possible to obtain the full version when buying the motherboard or the processor. Once your selected operating system is installed, it is just a matter of spending a few hours installing your applications software, and the new PC is then ready for use.

## COAST ELECTRONICS

12 BIT PRINTER PORT A/D INTERFACE WITH WINDOWS 95 SOFTWARE.

2V5 INPUT RANGE. USES 10x SCOPE PROBE TO GIVE $25 V$ RANGE.

40 MHz SAMPLE RATE MIN. (PENTIUM).
COMES WITH SCOPE/METER/DATA LOG. GER/SPECTRUM ANALYSER SOFTWARE

## ON CD-ROM. £80

PENTIUM 2 AGP VGA CARD AMEG EPSON 100 MEG ZP DRIVE
PENTIUM
COMPUIERS MAINBOAROSPROCESSORS/SIMMSTOMMMS SCANNER 30 BT A4 FLATBED PRINTER POR CD-ROM DRIVE 32 SPEED IDE INTERNAL CO-ROM WRITERREWRITER SCSI INTERNA HARD DISK DRIVE UDMA IDE 84 GIG VGA CARD PCI 304 MEG PC SOUND CARD 16 BIT ISA PC MAINBOARD NON MMX PENTIUM
TRIPLE OUTPUT TENS UNIT
PIC16C74A. 10 P
DPM LASCAR DPMECO
PC EXTENDER CARD ISA AT
PE CARD ISA PC
${ }^{12}$ PA LOUDSPEAKER 40 HMM 200 W
STEREO PREAMP BOAROKIT
MONO PAEAMP BOARD KIT
PRESSURE UNIT TENSYM SCCOSON PRESSURE UNIT SENSYM LXO6OO2D
STEPPER DRIVER IC LZ9AN
${ }_{87 C 752}$ OR 751 EPROM MICRO
CRYSTAL OSC MODULE TMHZ
SOLID STATE RELAY 3A 24OVAC
$1281 T$ NDIC AD574
12 BIT BCH ND C LTCI2s0
7 SEGMENT RED LEDS 1 NCH MAINS FAN 24OVAC TOW STO 8Omm FI 100 WATT MOSFET AMPLIFIER KIT

Minimum order....15. Carriage..small orders $£ 2.50$ large thems $£ 5$ next day $£ 10$ VAT to be added to total of goods \& carriage. Phone/ fax' visit the web site or email us (llstecoastel.demon.co.uk) for a larger current slock list. We also offer design PCB layou gas analysers programming services.



oTr
ITEM 2NBTO TRANSISTOR 2N3702 TRANSISTOA 2N3703 TRANSISTOA
2 N3704 TANSISTOR 2N3705 TRANSISTOR 2 N3TOT TRANSISTO 1 A DIP RECTIFIER LM $334 Z$ IC TEMP SENS CROC REDBLK LEADS TRIAC TIC253M NTC TEMP PROEE LE BCD THUME SWITCH 1N5404 3A RECTIFIER KBUAD 4 A BRIDGE 1 IBM BACK PANELS GAl I6VEA-15LNC IC GYIGA $1.8 A$ BRIDGE 100 FF POLY CAPS z2OOF POLY CAPS BNC T.PIECE BNC BULKHEAO JACX 50 100n 160V POYY AP 270 O 250 V POY YAP 3300160 O PSTY CAP
SP0 SPDO256 SPEECHIC
3V PCA NI.CAO

COAST ELECTRONICS
48 SUNDRIDGE DRIVE WALDERSLADE KENT MES 8 HT TEL:01634 660157 FAX:01634 672093 WWW.COASTEL.DEMON.CO.UK

## Video Surveillance



Pinhole Board Camera (B\&W) 12v
DC, 0.1LUX,
380 TV Resolution
Size: $35 \mathrm{~mm} \times 35 \mathrm{~mm}$
£35.00
Pinhole Board Camera (Color) 12v DC, 0.5 LUX 420 TV Resolution 2 board foldable £190.00

Audio/Video Transmitter module 12v DC, 4 Channel Selection $900 \mathrm{Mhz}-1200 \mathrm{MHz}$, FM Modulation £120.00

4 Channel Receiver + Switcher
12v DC, Composite Audio/Video
Output
$£ 150.00$


TFT 4" Colour Monitor 12v DC
$£ 150.00$

We also stock
Time \& Date Generator, Minature PIR etc.
Confidential Communications LImited
344 Kilburn Lane, Maida Vale
London W9 3EF
Tel (44)(0) 1819680227 Fax: (44)(0) 1819680194 Email: 106075.276@ Compuserve.com

## CROWNHILL ASSOCIATES LIMITED <br> The Old Bakery, New Barns Road, <br> Ely Cambs. CB4 7PW <br> Tel: +44 (0)1353 666709 Fax: +44 (0) 1353666710

Low cost professional quality Smart Card Systems
GWIFDRIVE EXTEFN
intelligent programmer for Smart Cards using the International Standard $T=0$ or $\mathrm{T}=1$ protocols also Memory and Secure Memory using Ir ${ }^{2}$, 2-wire \& 3 -wire intertaces
Supplied whith sottware to read and write to most popular secure smant cards . inc GSM. PAY PHONE and ACCESS CONTROL cards.
$\mathrm{T}=0$ or $\mathrm{T}=1$ - 3.579 MHz RS232 © $9600-11500 \mathrm{bps}$ Internal Supply / Ni-MH Size: $100 \times 70 \times 80 \mathrm{~mm}$ Weight 860 Gram
Supplled with CardServer API tor easy evelopmert of SmartCard Applications using Visual Basic. Delphi or C+4 Secure Smart cards

CE Compliant
£69 + VAT
£7.50 P\&P

http://www.towitoko.co.uk http://www.crownhill.co.uk http://edsim.cambs.net


Driver and application software is available for the CHIPDRIVE family of terminals including the command set DLL for Windows $3.11 / 95 / \mathrm{NT}$, easy to use 16 and 32 Bin DLLs with just one function call to the "CardServer", a powertul? Background task which relieves the application programmer from device and card administration. Featuring automatic protocol and card type detection. Allowing several applications to access one terminal dependent on the type of card inserted. Supplied on CD ROM containing cardserver.dil, applications and source code examples.
$£ 29.95$ + $£ 5$ P\& ${ }^{2}+$ VAT

SMARTCARDS Available from Stock:
GemPlus, Atmel, Xicor, Siemans. SGS Crownhlll and more. CPMIO3, GFM1K, 2K.4K, GPM416. Phone Cards, Loyalty Card

## THE SMARTEST SOLUTION

Crownhlll can offer moad range of smart cards from Just E1.00. and Smart Card sockets for lust 玉1.45 ea. PIC Mfcrochip based Smart Cards now avallable at just £4.50 ea........DEVELOP YOUR OWN SMART CARD ! Crownhlll can supply over 150 different types of IC from more than 12 sillcon suppliers, which can all be incorporeted info smart card format. Some cards are avallable from stock, most are manufactured to the customers' specification.

TELNET

T8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702 Fax: 01203650773 Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)



MISCELLANEOUS




EIP 545 - Frequency counter 18GHz.

Farnell TSV-70 MKil Power Supply ( $70 \mathrm{~V}-5 \mathrm{~A}$ or $35 \mathrm{~V}-10 \mathrm{~A}$ )
Farnell DSG-1 Synthesised Signal Generator
Farnell ESG-1000 Synthesised Signal Gener
Farnell ESG-1000 Synthesised Signal Generator 1GHz (as new)
Flure 5100A - Caltorator.
Guildinne 9152 - T12 Battery Standard Cell.
Hewlett Packard 331 A - Distortion Analyser
£ …….......... $\quad$ £50
ewiett Packard 3336C - Synthesised Signal Generator ( 10 Hz - 21MHz)........................... \&1000
Hewlett Packard 3437A System votmeter
Hewlett Packard 3456A Digital voltmeter.
Hewlett Packard 3438A Digital mulumeler....

Hewlett Packard 3711 A/3712A/37916/3793B MAcrowave Link Analyser ........................................................................

Hewlett Packard 3455A 61/2 Digit MM Heter (Autocal)
Hewlett Packard 3586A - Selective Level Meter.
Hewlett Packard 3776A - PCM Terminal Test Set
Hewlett Packard 3779A/3779C - Pnimary Mux Analyse
(
Hewlett Packard 37900D - Signalling Test Set (No 7 and ISDN) ........................................................................................
Hewlett Packard 37900D - signaliting
Hewlett Pockard 4275A - LCR Meter (Muiti-Frequency)


# High Quality 100W Mosfet Power Amplifier 

## Mosfets used in power amplifiers give rise to fewer and less severe distortion products for the designer to eliminate. As a result, a moderately complex design like this one by David N J White can perform superbly.

$T$he original motivation for this project came from my decision to upgrade my 20 -year-old hi-fi. I am still perfectly happy with my source players and loudspeakers. The rest of the system consists of a preamplifier of my own design and construction and a pair of Blomley 30W power amps. The amplifier and loudspeakers still sound fine, but the relentless improvements in semiconductors and other devices over the years prompted me to think that I could probably improve on these components in my system. An additional goad was the fact that I didn't design the power amplifiers and loudspeakers myself. I get a lot of satisfaction from the use of things that I design and build. As designing and building loudspeakers is much more difficult and expensive than doing the same for power amplifiers, I decided to tackle the amps.

My plan was to build a reasonably simple power amplifier to give excellent sonic and measured results. Using large numbers of semiconductors in pursuit of high performance is all very well, but multipie components, and complex, double-sided pcbs push up costs. I wanted another solution.

## Mosfets or bjts?

My next decision was whether to use bipolar junction transistors (bjts) or mosfets as the output devices. The arguments either way are finely balanced. Power mosfets have a much better high frequency response, are easy to drive from simple voltage sources, and are not prone to thermal runaway. Power bjts suitable for high quality audio are cheaper, and give a higher


Figure 1: a simple discrete-component power amp
power output in the emitter-follower mode than an audio mosfet in the source-follower configuration, unless recourse is made to expensive multi-rail power supplies. This is because the power mosfet gate would need to rise to around $8-10$ volts above the mosfet power supply voltage in order to turn the mosfet fully on. Power bjts saturate when Vbe is around 2-3 volts at high collector currents. The output of emitter follower bjts can therefore swing closer to the power supply rails than the output of source follower mosfets, and so deliver more power into the load.

The measured performances of power amplifiers with mosfet and bjt output stages do not seem to differ greatly, so the only remaining consideration is: do they sound different? I made up a pair of the Maplin 150 W/4-ohm power amplifiers (these are very creditable performers considering their simplicity and low price) and compared them in listening tests to my bjt outputstage Blomleys. To my non-golden, but still pretty effective, ears the differences were small. The Maplins sounded a little brighter than the restrained smoothness of the Blomleys. I think this has. more to do with the Maplins' wide-open bandwidth compared to the sensibly limited Blomleys than with any inherent differences in bit and mosfet sound.

Power mosfets seem to produce power amplifier output stages that give good measured results, sound good, and have other advantages mentioned previously. I therefore decided to go with the power mosfets despite the lower cost of the roughly equivalent bjts.

## What's gone before

Having decided to use power mosfets, my next step was to choose a circuit topology. It is always profitable to look at semiconductor manufacturers' application notes and other published designs before embarking on a new one. Mosfet power amplifier designs frequently use an arrangement similar to that in figure 1. The input long-tailed pair, Q1 and Q2, is followed by a voltage amplifier stage, Q3, with a bootstrapped collector load, R8/R9 (bootstrapping increases the effective impedance of the collector load, which leads to better linearity). As the power mosfets are voltageoperated devices with a high-input impedance, they need almost no input current and can be driven directly from the low-current voltage amplifier stage (but this is not quite true, as we shall see later). The variable resistor RV1 between the gates of the mosfets is adjusted to give a current drain of around 100 mA through the mosfets, which blases them for class $A B$ operation.

Although the circuit in figure 1 gives reasonable performance and probably sounds OK, there is room for a number of improvements. The current through the input longtailed pair is better set with a constant current source (Q1 in figure 2) than the simple resistor R2 shown in figure 1. The open loop gain can be increased, and the linearity improved, by using a pair of modern high voltage "super" transistors, Q4 and Q5 (hfe of 300-500 as a long-tailed pair voltage amplifier stage) in figure 2, rather than the single standard high-voltage transistor Q3 (hFE in the 50-200 range) in figure 1. This increase in open loop gain leads to a reduction in the closed loop distortion of the power amplifier. Loading the voltage amplifier pair with a constant current source/current mirror, D1/Q6, gives a higher collector load impedance than the bootstrapping of figure 1 and leads to a further improvement in linearity.

The biasing of the power mosfets can be improved by replacing the RV1 in figure 1 with the "amplified diode", Q , in figure 2. Driving power mosfets directly from the voltage amplifier transistor is not a good idea because of the relatively high input capacitance of power mosfets (of the order of 4001000 pF ). These capacitances will take a relatively long time to charge and discharge in the power amplifier of figure 1 because of the limited current drive available from the voltage amplifier transistor. These long charge/discharge times lead to an increase in distortion at higher frequencies. Its much better to use individual driver transistors, Q8 and Q9, interposed between the collector of the voltage arnplifier transistor and the gate of each power mosfet, as shown in figure 2. The driver transistors should have high gain, so as not to load the voltage amplifier transistor; good high frequency response; low input capacitance, and a reasonable current drive capability (around $100 \mathrm{~mA})$. This circuit arrangement also has the incidental advantage that the power mosfets are no longer operating as
source followers, and so the power output will be greater than for the figure 1 circuit with the same power supply voltage.

If all these improvements are implemented, we end up with the circuit shown in figure 2. A number of designs similar to figure 2 have been published and are capable of very good performance if properly constructed. The question remains: can we improve on the circuit of figure 2 ? Yes, we can, but here things start to get complicated, with refinements such as complementary pairs of long-tailed pairs on the input, complementary cascode voltage amplifier stages, and so on, until the circuit begins to look like a commercial highperformance op-amp. So why not use an op-amp for the input and voltage amplifier stages of the power amplifier?

## Integrated or discrete?

Why not indeed? The op-amp analogue of the power amplifier in figure $\mathbf{1}$ is shown in figure 3. How good is the figure 3 power amplifier? Once again, with the right op-amp, it is capable of very good performance at very low cost, but it has a number of shortcomings and limitations. One reason you don't see many high-quality audio power amps with op-amp voltage amplifier stages is that, until relatively recently, common op-amps were not up to the job. Most of the currently available op-amps were not designed for audio, and are deficient in one or more of the following areas: gain bandwidth product, slew rate, harmonic distortion, noise and output swing. However, the op-amp manufacturers have noticed the market and given us modestly priced (around $£ 1.00$ each) op-amps such as the TLO71, NE5534, LF351 and LF411, which all have gain bandwidth products (gbwp) of around 10 MHz , slew rates of around 10 V/us, distortion of around 0.01 percent, reasonably low noise, and an output swing of around $+/-13 \mathrm{~V}$. The best of all the low cost "audio" op-amps, however, is the OPA604 with 20 MHz gbwp, $25 \mathrm{~V} / \mathrm{us}$ slew rate, 0.0003 percent distortion, 10


Figure 2: an improved discrete-component power amp
$\mathrm{nV} /$ [square root H Hz of noise and an output swing of $+/-13 \mathrm{~V}$.
Using one of these op-amps in the circuit of figure 3 will give you a good power amplifier, with some easily remedied drawbacks. Driving the power mosfets directly from the op-amp is not a good idea, for the same reason that driving the power mosfets directly from the voltage amplifier transistor, as in figure 1 , is not a good idea in a high quality power amplifier. The opamps generally do not provide enough output current to charge and discharge the power mosfet input capacitances quickly enough at high frequencies, leading to the previously mentioned increase in hf distortion. The remedy is the same: use driver transistors. The resistors R6 and R7 (figure 3) which connect the output of the op-amp to the +ve and -ve power rails will load the output of the op-amp and give rise to slightly increased distortion. Replacing the resistors with high dynamic impedance, constant current sources reduces the load on the op-amp, and consequently reduces the distortion.

The one remaining problem with the circuit of figure 3 concerns power output. If the op-amp has an output swing of $+/-13 \mathrm{~V}$, corresponding to approximately 9 V rms with a sinewave input, then the theoretical maximum output power into an 8 -ohm load is 9 [squared]/8 or about 10 W ! Obviously we would prefer a higher power output, which could be achieved by using an op-amp with a higher output swing, such as the $+/-35 \mathrm{~V}$ obtainable from the OPA445. But this would still only give us about 75 W/8-ohm output at the price of increased distortion, because the OPA445 is not optimised for low distortion. Also, the OPA445 costs around $£ 8$ and is not commonly available. Maplin have now stopped selling them, and most other distributors favoured by hobbyists never did. The solution is to use one of the high-performance restricted output-swing op-amps mentioned earlier, together with an output stage which has a voltage gain of around five. This will give us a theoretical maximum output power of about 250 W/8R, which is much more satisfactory. However, we won't actually get that much out, because we are only using a power supply of $+/-50 \mathrm{~V}$, rather than the $+/-65 \mathrm{~V}$ necessary to get 250 W/8R. In any case, the power mosfets we're going to use would not handle that much power without using pairs of devices.

## The final circuit

The final circuit incorporates all the refinements discussed previously (figure 4). The main features are as follows: the input capacitor C1 is composed of between one and four luF stacked film capacitors, depending on the desired bass response and depth of pocket (the caps are 50p each). I have deliberately chosen not to use an electrolytic in this position because they give a marginally different and inferior sound compared to polymer film capacitors (they actually give marginally poorer distortion measurements, too). I tend to come down faity heavily on the engineering side of the measurement/subjectivist debate, but I believe the subjectivists may sometimes be correct, and this is one of those instances. Thou shalt not put eiectrolytics in the signal path R1 and C4 form an input low pass fitter to restrict the bandwidth of the input signal and reduce intermodulation distortion. The $+/-15 \mathrm{~V}$ power supply for the op-amp IC1 is provided from the main $+/-50 \mathrm{~V}$ supplies by the resistor/zener diode combinations R3/ZD1 and R4/ZD2 and is smoothed and decoupled by C9 and C10.

The resistors R7 and R8 together with C12 ensure that the bases of the upper and lower driver transistors Q4 and Q5 see the same signal. C12 also helps to iron out small changes in the


Figure 3: a simple op-amp power amp
bias voltage developed between the emitter and collector of the "amplified diode" bias transistor Q2. Notice the way that the preset, used to set the power amplifier quiescent current, is connected into the circuit. If the slider of RV1 doesn't make contact with its cermet track for any reason, the bias voltage and quiescent current will fail-safe to zero. If the open end of the cermet track is connected to the slider, as is often seen, failure of the preset's slider will result in a quiescent current of several amps. Not desirable!

The high impedance load for the op-amp is provided by the complementary constant current sources R6/R10/C11/LD1/Q1 and R9/R12/C13/LD2/Q3. Note the use of LEDs as voitage references. These give better temperature compensation than a pair of silicon diodes, and generate less noise than zener diodes. The configuration of the driver transistors Q4 and Q5 is fairly standard and the voltage developed across their collector load resistors R13 and R16 provides the gate drive for the output mosfets Q6 and Q7. The gain of the output stage is set to approximately five (R19+R20)/R20) by negative feedback via the resistors R19 and R20. C15 serves to roll off the high frequency response of the output stage before the MHz region (this is not, after all, a radio transmitter).

R18 and R21 are "stopper" resistors which help to prevent high frequency oscillation in the output mosfets. All mosfets are prone to high frequency oscillation because of their extended frequency response. The zener dlodes ZD3 and ZD4 provide a measure of short circuit protection for the power mosfets by limiting the gate/source potential difference to 7.5 V , and so limiting the maximum drain current to a little under 8 amps . This is usually enough to prevent destruction of the output devices (prolonged shorts are handled by a fuse).

The Zobel network R22/C18 and the small inductor L1 enable the power amplifier to deal with awkward (that is, heavily capacititive ) loads while maintaining stability and low distortion. The power supply lines are heavily decoupled by C2/C7/C16/C19 and C3/C8/C17/C20. The polyester film decouplers are necessary because the impedance of large electrolytic capacitors, while close to zero at low frequencies, is not low enough at high frequencies.

The overall gain of the power amplifier is set to approximately 20 by negative feedback via R5 and R17 (gain = (R5+R17)/R5) while the overall bandwidth (excluding the input filter) is determined by C14. The values of the various feedback resistors R5, R17, R19, R20 may be lower in value than those you are used to seeing (a gain of approximately 20 is often set


Figure 4: the final op-amp power amp circuit
by a $22 \mathrm{k} / 1 \mathrm{k}$ resistor combination), but this is deliberately done to reduce high frequency distortion. The only penalty for using low value feedback resistors is the requirement to use high power devices for the larger resistor in each feedback pair, because of the magnitude of the ac current that flows around the feedback loops at high power outputs. In fact the amplifier would not fry R17 and R19 at full output even if they were the standard 0.6 W devices, rather than the specified 2 W , although they would get hot at full power. However, the constantly changing temperature of the smaller resistors with real programme material played at high volume would continually alter the value of the resistor and so modulate the gain of the power amplifier. Not desirable! Using a higher power resistor than is strictly necessary is equivalent to fitting a heatsink on a lower power device, reducing the gain modulation to insignificant proportions.

## Construction

The prototype for this design was originally made on stripboard, but I would strongly recommend the use of a glass fibre pcb, and that is the design given here. If you do use stripboard it is essential either to solder thick copper wire, or to run solid solder, along the tracks which carry heavy currents, such as the power rails, between the drains of the power mosfets, to the Zobel network, to the output inductor, and so on. If you make your own pcbs you will need to use the component layout shown in figure 5 to place your parts. If you use the boards that I have had commercially manufactured, you
will have a component overlay silk screened onto the pcb. Take care to orient the transistors, zeners, leds, and particularly the electrolytic capacitors, the correct way round. Electrolytics will pop open and spread their messy contents all over the place if they are inserted with the wrong polarity (tantulum capacitors explode like small firecrackers if you mistreat them in this way, with all the risks entailed).

Construction is fairly straightforward and follows the usual customs: solder in the small discrete components first, then small actives, followed by larger discretes, and finally large actives. Be careful not to let polystyrene capacitors and active components get too hot when soldering. I find that the best kind of soldering iron for delicate (such as small surface mount parts) and general electronic assembly is a high wattage ( 50 W ) type with a fine tip. This can get plenty of heat to the soldering site very quickly and complete a joint in under a second. With a low wattage iron it takes much longer to get enough heat into the pcb and component to melt the solder properly, and all the time the heat is damaging your components.

If you intend to experiment with various types of op-amp then it is best to solder an 8-pin IC socket in the IC1 position. I have tried a number of moderately priced op-amps (and some expensive ones) for IC1 and recommend the TL071 as the best cost/performance compromise, or the slightly more expensive OPA604 for the highest performance. IC1 is probably the most important single component as far as good measured and audible performance is concemed.

The constant current loads for the op-amp will track
changes in temperature much better if Q1 is in close thermal contact with LD1, and Q3 is in close thermal contact with LD2. Q1/LD1 and Q3/LD2 are adjacent to each other on the pcb, and each transistor/diode pair should be clipped together either with a cable tie or a short length of copper strip. (Cut a 5-10 mm wide hoop from a length of 15 mm copper water pipe, cut the hoop to make a narrow strip, cut the strip to the correct length, and wrap the strip around the devices). Alternatively stick them together with a blob of quick setting epoxy adhesive. Only fix the devices together with adhesive when you know the power amplifier works and that you are not going to tinker or experiment with the constant current loads, as getting the devices apart without damage once the epoxy has set is almost impossible. Best performance is obtained if Q1, Q3 and LD1, LD2 are matched for Vbe/hfe and Vf respectively, but this is more expensive than using randomly picked parts. You would need to buy 5 or 10 of each component to be reasonably sure of getting a match (and even that is not guaranteed). The performance degradation as a consequence of using randomly chosen parts is very small, and matching is really only for perfectionists (like me!).

The quiescent current is most stable with temperature if Q2, Q4, and Q5 are in thermal contact. This is easlly arranged by putting a suitably drilled aluminium strip (use the pcb as a template) on the pcb, putting greaseless semiconductor insulators on top of the aluminium strip, and putting the horizontally mounted transistors on top of the insulators. The transistors, aluminium strip, and pcb are then fixed together with $3-\mathrm{mm}$ nuts and bolts. Finally the transistors are soldered to the pcb. The aluminium strip is not a heatsink, as the driver transistors barely get warm even at high power outputs.

There are various possibilities for Q4 and Q5. The cheapest and most readily available are the MJE340/MJE350 complementary pair which have reasonable hfe, but fairly low ft ,


Photo 1: the 100 W power amplifier built on a manufactured printed circuit board
whlle the less readily available, and slightly more expensive, 2SA968/2SC2238 pair (available from Viewcom or Grandata) have similar hfe but much higher ft , which leads to better highfrequency performance. Using a matched pair of driver transistors will give the best performance, but once again there is only a very small penalty for using randomly chosen pairs. If you use the MJE340/MJE350 pair (TO126), they must be mounted on the pcb with their metal faces up, followed by the insulating pads and the aluminium strip on top of the pads. If you use the 2SA968/2SC2238 pair (TO220), the aluminium strip goes on the pcb first, followed by the insulating pads, and then the transistors, with their metal sides down. These different arangements are necessary to accommodate the different pinouts of the TO126 (ecb) and TO220 (bce) transistors.

Q2 need not be a power transistor. I used one as the easiest way to ensure good thermal contact between Q2, Q4 and Q5. You can use just about any small signal npn plastic transistor (such as the BC184L, flat face down) with epoxy adhesive to


Figure 5: the component layout for the 100 W power amplifier

Maplin order codes are given, but equivalent parts from other suppliers are equally acceptable.

Resistors

| R1, R11 |  |  |
| :--- | :--- | :--- |
| R2 | 2.2 k | Mapin M2K2 |
| R3, R4, R17, R19 | 47 k | Maplin M47K |
| R5, R18, R21 | 2.2k 2W | Maplin D2K2 |
| R6, R9 | 100R | Maplin M100R |
| R7, R8, R20 | 330R | Maplin M330R |
| R10, R12 | 470R | Maplin M470R |
| R13, R16 | 15k | Maplin M15K |
| R14, R15 | 1k | Maplin M1K0 |
| R22 | 10R | Maplin M10R |

## Capacitors

C1a,b,c,d
C2,C7,C9,C10,C11,C13,C16,C19 C3,C6,C8,C12,C17,C18,C20
C4
C5
C14
C15
$4 \times 1$ UF polyester layer Maplin WW53H 100uF 63V electro Maplin AT81C 100 nF polyester film Maplin DT98G 680 pF polystyrene 220 uF 50 V HF electro 47pF polystyrene 22pF polystyrene Maplin BX34M Maplin JL51F Maplin BX26D Maplin BX24B

## Semiconductors

| IC1 | TLO71CN | Maplin RA67X |
| :--- | :--- | :--- |
| Q1 | 2 N5401 | Maplin UL37S |
| Q2, C4 | MJE340 | Maplin QH54 |
| Q3 | 2N5551 | Maplin UL36P |
| Q5 | MJE350 | Maplin WQ51F |
| Q6 | ECF10P16 | Maplin AY54 J |
| Q7 | ECF10N16 | Maplin AY56L |
| LED1, LED2 | 3 mm red led | Maplin WL32K |
| ZD1, ZD2 | $15 \mathrm{~V} \mathrm{1.3} \mathrm{~W}$ | Maplin QF57M |
| ZD3, ZD4 | 7.5 W 1.3 W | Maplin QF50E |

## Miscellaneous

L1
RV1
Heat transfer bracket
TO3 semiconductor insulators
Vertical pcb spade tabs
Lucar push-on receptacle
Push-on recptacle covers
Pcb 2-way latching plug
Pcb latching socket housing
Pcb terminals
Enamelled copper wire
Heatsinks type MK

10R 3W W/W (see text) Maplin W10R
5k cermet trimpot Maplin WR41U Maplin GA29G Maplin CH04E Maplin AS33L Maplin HF10L Maplin FE65V Maplin RK65V Maplin HB59P Maplin YW25C Maplin BL26D Cirkit 21-08035

## Single Power Supply

| T1 | $2 \times 35 \mathrm{~V} 160 \mathrm{VA}$ toroidal mains transformer | Maplin YK21X |
| :---: | :---: | :---: |
| ER1 | 200 piv 10A bridge rectifier | Maplin AR83E |
| C1,C2, ${ }^{\text {c }}, \mathrm{C4}, \mathrm{C5}, \mathrm{C6}$ |  |  |
|  | 4700 uF 63 V snap-in radial electro | Maplin AU3iJ |
| FSt | $20 \mathrm{~mm} \mathrm{3.15} \mathrm{~A} \mathrm{time} \mathrm{delay} \mathrm{glass} \mathrm{fuse}$ | Maplin GL64U |
| FS2 | $20 \mathrm{~mm} \mathrm{3.15} \mathrm{~A} \mathrm{time} \mathrm{delay} \mathrm{glass} \mathrm{fuse}$ | Maplin GL64U |
| FS3, FS4 | $20 \mathrm{~mm} \mathrm{3.15} \mathrm{~A} \mathrm{fast} \mathrm{acting} \mathrm{glass} \mathrm{fuse}$ | Maplin GJ94C |
| Chassis mounting 20 mm fuseholders $\times 2$ |  | Maplin KC01B |
| Double p | hed and fused mains iniet filter | Maplin CT82D |

## Dual Power Supply

| T2 | $2 \times 35 \mathrm{~V} 300$ VA toroidal mains transformer Maplin YK22Y |  |
| :--- | :--- | :--- |
| FS1 | $20 \mathrm{~mm} 5 A$ time delay glass fuse | Maplin GL65V |
| FS2 | $20-\mathrm{mm} 5 A$ time-delay glass fuse | Maplln GL65V |
| All other parts as per singlo power supply |  |  |

All other parts as per singlo power supply
glue it to the alluminium strip between Q4 and Q5.

L1 is made by wrapping 10 turns of 0.9 mm enamelled copper wire around the body of a $3 W$ wirewound resistor (the square cross-section, white ceramic body variety) and soldering each end of the wire to the corresponding resistor lead.

If you intend to drive low impedance loads such as 4 -ohm loudspeakers at high levels with this power amplifier, you might prefer to use Exicon ECF20N16/ECF20P16 power mosfets with 250 W of dissipation capacity rather than the 125W ECF10N16/ECF10P16 pair specified. The voitage rating of $\mathrm{ZD3}$ and ZD4 should then be increased to 8.2 V . There are undoubtedly other power mosfets which would work reasonably well in this design (such as BUZ900/BUZ905). I have not tried them myself, because none have specifications as good as the Exicon parts, and all are more expensive. Exicon mosfets are designed and manufactured in the UK specifically for hi-fi audio power amplifiers.

The power mosfets are bolted onto a pcb-mounting, thermal transfer bracket which is then bolted onto the heatsink proper (usually with the case back panel in between). I would recommend that you enlarge the holes fixing the thermal transfer bracket to the heatsink to take M5 nuts and boits. Insert the central, locating M3 nut and bolt first when mounting the power mosfets onto the thermal transfer bracket and pcb. Then insert the power mosfets on top of their greaseless insulating pads and bolt them bosely to the thermal transfer bracket and pcb with M3 nuts and bolts. Put an ordinary washer (not a lock washer, they'll chew up the pcb) under each nut on the pcb side. At this point, check that the power mosfet cases and pins are not in electrical contact with the thermal transfer bracket. This shouldn't be a problem if you are using a pcb, but extra care is required if you are using a stripboard layout. In the latter case, use the thermal transfer bracket as a drilling template. When the power mosfets are properly seated, all the nuts and bolts can be tightened up. I usually then solder the nuts in place on the bolts; they often need a bit of scraping before they will take soider. Soldering ensures that the nuts and bolts don't work loose due to the inevitable thermal cycling of the power mosfets and thermal transfer bracket. If you ever need to remove the power mosfets, the solder on the nuts and bolts can be removed


Figure 6a: a suitable power supply circuit for a single power amplifier
with a solder sucker or solder wicking braid. When finally bolting the power amplifier to the heatsink or case back panel/heatsink, use heat transfer grease between the themnal transfer bracket and heatsink, or between the thermal transfer bracket and case back panel, as well as between the case back panel and heatsink. Photograph 1 shows a completed power amplifier built on a manufactured pcb.

The power mosfets can be mounted directly onto a heatsink and connected to the pcb by wires if desired. Keep the wires as short as possible. Although not quite as elegant as using the themal transfer bracket, direct mounting probably provides better heatsinking. The heatsinks are usually chosen to fit in with the power amplifier casing, which is a matter of individual taste, but shouid be rated at no more than 2.0 degreesCN for domestic use or no more than 1.3 degreesC $W$ for continuous sinewave use.

I used a 2 U 19-inch rackmount case from Maplin (order code

XM68Y to house a stereo pair of power amplifiers together with their associated power supplies and protection circuitry (of which more later) in conjunction with 1.8 degreeC $W$ heatsinks from Sirkit (Stock Number 21-08035) for domestic use. I used white drytransfer paint lettering (availabie from most good art supply shops), followed by three coats of water-based spray vamish, to annotate the power switch and indicator lights on the front panel.

One final point concems the gain of the amplifier, which was set to 23 to work with my relatively high-output preamplifier. This may be a little low for some users and may be increased to 30 by reducing $R 5$ from 100 to 75 ohms , at the expense of a very slight increase in distortion.

Figures 6a and b show two suitable power supply circuits The power supply, loudspeaker protection and testing will be discussed in the next issue, and the source and price of the professionally made PCBs will be given. See you next month.


Figure 6b: a sultable power supply circuit for dual power amplifiers

# Contemporary logic design for test 

## The logic system in some modern products is so complex that traditional design approaches do not work and new tactics must be found, as Andrew Armstrong describes.


ogic design is relatively simple, right? There is none of that complicated undefined stuff about analogue levels, biasing, frequency response, and so on. You can revel in the simplicity of ones and zeros, where the exact voltage does not matter.
Even so, sometimes logic designs don't work first time. At least occasionally, you will find that a small logic design with only a dozen 74 HC series chips in it will not work, because somebody overlooked the result of what would happen if a clock pulse occurs too close to the clear line going inactive.

Still, it is normally fairly simple to discover what is going wrong by, for example, finding a short negative glitch in the signal between IC4 and IC5. In a commercial environment you might use a logic analyser with glitch capture turned on to examine a number of signals at once and track down the problem in one step.

## A question of scale

What would happen if you could not attach probes to the logic signals? Clearly you would use a simulator before building anything. This would help you to avoid the kind of mental glitch which causes you to overlook things that you know perfectly well, if only you ask the right question. Still there are problems which may not be discovered in this way.

An example of this happened to me when using a pulse resynchroniser designed as part of an AMD MACH-family (big brother to programmable array logic) chip. Incorrect operation could occur only when an arbitrarily timed pulse was timed close enough to the 500 kHz clock to set the flip-flop into a metastabie state. An easy mistake to make, I would contend, even if it looks silly in retrospect. Fortunately there was enough spare capacity in the MACH to add an extra flip-flop to remove the problem.

The cause of the problem was not immediately obvious. Just about the only way to find it was to think through each step of the operation, and ask what could possibly go wrong. The flip-flop was not accessible from the outside of the MACH, though it might have been possible to design it so that it was. The only reason to do that would have been as an aid to test - had it been clear that access to that point would provide a useful test signal.

The above problem occurred in a fairly simple piece of logic, at least by comparison with some of the asics (application specific integrated circuits) designed into fancy bits of mass produced consumer hardware. There, a more advanced test technology is needed, both for development and production testing.

With complicated logic designs, there are at least two major categories of test requirement. It is necessary to be able to test large logic devices, both for design verification and for production test; and it is necessary to be able to test the pcb on which the chips reside, particularly for production test.

## Boundary Scan

One important test technology is called Boundary Scan, a technology strongly supported by JTAG (the Joint Test Action Group - look at http://www.jtag.com ). This is the application of a scan path at the boundary (that is, the $/ / O$ ) of ics so that test signals can be applied and measured through scan operations.
Figure 1 illustrates this idea. Here an IC is shown with an application-logic section and its input and output, with a boundary scan cell interposed between the application logic and the data input and output pins. Extra connections for test data input (TDI) and test data output (TDO) are also added.

In normal operation, the BSCs are transparent, and signals flow through freely. However, during boundary test the following operations are possible:

A test word can be shifted in and fed out from each boundary scan cell output (NDO).

A test response can be latched at each boundary scan cell input (NDI) and shifted out for inspection.

Connecting tracks and neighbouring ICs on a board assembly can be tested by this means. Also, the application logic internal to the chip can be tested by applying test stimulus from the input BSCs and capturing test response at the output BSCs. This can enable quick and efficient testing of items which would otherwise be difficult or impossible to access.

Of course, programming the test signal sequence could easily turn out to be a major task in itself, but nevertheless it is much more economic than employing skllled technicians to spend long periods manually checking signals, and it can find faults which the technician could not.


Figure 1: the principle of Boundary Scan


Figure 2: Boundary Scan architecture
The simple example of figure 1 is the simplest possible implementation of a boundary scan system. A more useful example is shown in figure 2. Here data is shifted into and out of the boundary scan cells, so that an extra test pin for each input or output is not actually needed, as might have been implied by figure 1. Figure 2 shows the IEEE 1149.1 architecture (the IEEE is the USA Institute of Electrical and Electronic Engineers).

The architecture comprises an Instruction Register, a Bypass Register, a Boundary-Scan Register (the tinted area in figure 2), an optional User Data Register, and the Test Access Port (TAP). The boundary scan register is a set of serially accessed test cells at the input and output boundaries of the application part of the ic.

The instruction reglster and data registers are separately accessible, so that the test access port can load instructions and data independently.

## Design for test

Another advantage of boundary scan is that, if a reasonable proportion of the chips on a pcb incorporate boundary scan, other non-boundary scan chips can also
be tested to a worthwhile extent. To make this work well, it is necessary-to look at the board level design from the polnt of view of being able to probe as many as posslble of the necessary point to prove that each part is working, via the boundary scan system.

A more vital part of design for test is to structure the logic of asics, as far as possible, so that there are no logic nodes inaccessible to the outside world which cannot quickly be tested. So, if a particular logic node inside a complicated asic can be stuck at 1 or at 0 , and this cannot be discovered by applying signals to and testing the response from the ic pins, then we need either a test connection which can determine the fault, or a redesign of the internal logic to minimise the node-checking test sequence. This is a very complicated subject, and, in order to do this in a practical way, EDA (electronics design automation) tools incorporate tools to simulate the logic, and even to generate sequences of test signals (often called "test vectors").

In order to bring very complex-logic controlled products, often containing one or more processors embedded somewhere in the logic, to market while there is still a demand, a carefully structured design process is needed. There is a heavy reliance on various types of simulation, to minimise the costly and timeconsuming stages of physlcal prototyping. Figure 3 illustrates a view of the modern digital design process.

## HDL

It is not practical to design complex logic asics by the traditional methods used for small arrays of 74 -series combinational and sequential logic chips. The complexity would defeat most or all designers' abilitles to understand and check. The favoured design approach in many cases is to use a hardware design language, or HDL. This looks rather like computer code, but it Is compiled to logic circuitry rather than to an executable. binary file.

The HDL code can be run on a simulator, to see what it will do as written. A chip design can be produced, and that can be simulated to find out what real hardware will do. Although the HDL code specifies the operation of the logic, it is possible that timing constraints on the actual chip will prevent it from functioning as first designed. The procedure then is the rewrite the relevant part of the HDL code into something which will compile to a different logic structure - one which will avoid the particular timing problem identified by the asic simulation. The HDL and asic simulation processes continue in parallel until all works correctly in simulation.

Timing requirements identified during this simulation phase will very likely impact on the layout of the pcb. which will be carried on in parallel because of the need to bring products to the market swiftly. EDA tools now in use in this sort of design environment can simulate the effects of delays in tracks, signal coupling between tracks, and suchlike electromagnetic phenomena. This area of concern is often referred to as signal integrity, and it is closely related to the requirements of electromagnetic compatibillty mandated by European law. In effect, proper attention to signal integrity issues will take care of many of the requirements for a pass at the EMC testing stage.

As an aside, it is strange to note that hardware designers are being obliged to work more in the manner of programmers. I would hazard a guess that this may limit the design flair which, for many engineers, seems to arise from visualisation of the problem. It is a strange irony that, as hardware designers start to use what looks like computer code (perhaps because the design tools are written by programmers), some programmers are starting to use diagrammatic programming, because it is more intuitive, and easier to see what is happening.

## Processor testing

Development and test of complex processor based designs adds extra requirements. Emulators have long been used as an aid to code development. An emulator generally offers many useful aids to debugging, such as real time trace, and breakpoints set in to the code without interfering with execution. The ability to single step through a program, and to change the contents of a register then continue, can also be valuable.

The increasing speed of processors has made it more difficult to build emulators. It is relatively easy to make a dil-pluggable module which can run all the problems of a simple 8 -bit 4 MHz processor in real time, while allowing break points to be set and sending information up the cable to the main body of the ernulator. To do that for a processor running at well over 100 MHz is much more difficult, not least because the shortest connection avaiiable between the emulator module and the pcb is likely to add too much delay for it to work at full speed.

Many fast modern processors now have a debug port, by means of which some of the functions of an emulator can be carried out by the chip itself. It is still necessary to have a module which connects to the processor connections on the pcb, but now the processor is connected, and the module communicates with the debug port and monitors bus activity etc.

Even that imposes some problems, because connecting such a load to the bus outputs of the processor constitutes adding an unterminated transmission line. At the high frequencies at which modern processors work, it is necessary to view connections as transmission lines, unless they are extremely short.

To make this approach work, space must be deliberately left to permit the interface to be connected to the processor. With conventional surface mount packages, approximately 10 mm around the processor will normally permit connection to the debug port and the bus by means of a probe adaptor designed for the purpose. The outputs from this can be connected to logic analysers, oscilloscopes, or whatever is needed.

In some cases it is better to design in a processor connection, in which case it must be decided in advance which pins need to be accessible. Usually the debug port, address bus, data bus, and control/status lines will need to be avallable. This can be used both to debug the code at the system integration phase, and as an aid to test in production.

## In conclusion

You may wonder why all this test complexity is needed. In complex logic designs, the effect of certain faults can be very subtle and hard to find rapidly by other means. In one batch of nominally identical PC motherboards, there was one which would run any operating system correctly except Window 95, and would run Windows 95 in safe mode only, while all the others worked correctly with any system. Perhaps these advanced test technologies could have identified and eliminated this problem before the motherboard wasted over half a day testing the installation before identifying the motherboard as the source of the problem.


Figure 3: an ASIC development timeline

## Part 2: More about astables

Timing signals are used in many electronic systems, and can vary from the very accurate to the approximate. Here Owen Bishop moves from RC oscillators of limited accuracy to much more accurate and stable crystal oscillators.


Figure 1: a pair of diodes are used with the 555 ic for obtaining mark:space ratios of 1 or less

If you remember, our old and dear friend the 555 was used in the first episode of this series last month to illustrate the two basic types of timing circuit:

Monostables for producing a single output pulse of precise length.

Astables for producing a pulse train of precise frequency.
The monostable circuit is limited for many purposes because it is difficult to produce a pulse several seconds or minutes long with reasonable precision. For timing long periods, it is usually easier to use an astable to produce a train of pulses, and then count the number of pulses. We will look into circuits of this type in the next episode. For now, we will examine variations of the astable circuit, look at another monostable, and build an astable which operates on a different principle.

## Duty cycle

The 'duty cycle' of an astable describes the relative lengths of the periods during which its output is high and low. This is also known as the mark:space ratio, where the 'mark' is the duration of the high output, and the 'space' is the duration of
the low output. We saw last month that the basic 555 astable circuit necessarily has a mark-to-space ratio greater than 1. Now we can examine ways of obtaining different ratios.

The reason the basic astable has a ratio greater than 1 is that the capacitor charges through two resistors (with output high) but discharges through only one of them (with output low). We can avoid this situation by using diodes to direct the current through different resistors, depending on whether the capacitor is charging or discharging. Figure 1 shows a circuit that does this. When the capacitor is charging, current flows through R1 and D1 to the capacitor C1. The duration of the high period thus depends only on R1 and C1. To be more precise, $t_{\text {trgh }}=0.69 R_{1} C_{1}$.

When the capacitor is discharging, current flows from the capacitor through R2 and D2 to pin 7 of the ic. The duration of the low period depends only on R2 and C1. The duration of the period is the same as for the simple astable, that is, tlow = 0.69 R2C1. The values of R1 and R2 can be chosen independently, making it possible to obtain any mark:space ratio, whether greater or less than 1.


Figure 2: another way to obtain mark:space ratios of less than 1 is to use an inverter


Figure 3: a flip flop converts a signal with any mark:space ratio to a signal at half the frequency and a ratio of exactly 1


Figure 4: the waveforms of the circuit in figure 3
Another approach to obtaining a mark:space ratio of less than 1 is to invert a signal that has a ratio that is greater than 1. This is particularly convenient when working with digital circuits, as there is often a spare INVERT, NAND or NOR gate that can be used for the inversion (figure 2). The main snag of this is that a logic gate sources or sinks much less current than the 555 timer. For example, a standard TTL gate can source 16 mA and sink only 0.4 mA . Gates of other logic families sink or source less than this. This compares very unfavourably with the 555 , which can sink or source 200 mA ( 100 mA for the cmos versions). However, this is not a problem if the inverter is being used to provide input only to subsequent logic circuits.

Often we need a mark:space ratio of 1 exactly. This can be done using the circuit in figure 1 , with resistors of equal values, but a simpler way is to use a toggle flip-flop (figure 3). Toggle flip-flops, as such, are not manufactured, but can be made from a D or J-K flip-flop, as shown in the figure. Figure 4 shows the waveforms; the flip-flop changes state (toggles) on every rising edge of the astable, and therefore has a mark:space ratio of 1 . The frequency of its output is half that of the astable, so the astable is set up to run at twice the frequency required.

## Other timing circuits

The 555 is purpose-designed for precision timing but there are other ways generating reasonably good single pulses or chains of pulses. Figure 5 shows a monostable built from two crossconnected transistor switches. The transistors operate so that when one is ON the other one OFF. Beginning with Q1 OFF and Q2 ON, the output is low. The trigger input is normally high (figure 6) but a short negative-going trigger pulse momentarily turns Q2 OFF, by making its base voltage fall rapidly from about +0.7 V to about -8 V . Turning off Q 2 makes the output at its collector rise to +9 V . The increase in voltage at the collector of Q2 also causes Q1 to be turned ON, so pulling down the voltage at the collector of Q1. The low-going pulse at the


Figure 5: cross-connected transistor switches are used to build a monostable
collector of Q1 is passed through the capacitor, holding Q2 OFF even though the trigger pulse has ended.

The next stage is that current flows through R3, gradually charging C1 and raising the voltage at the base of Q2. Figure 6 clearly shows the exponential rise of voltage across the capacitor. As soon as this reaches about $0.7 \mathrm{~V}, \mathrm{Q} 2$ begins to turn ON again, pulling down the voltage at its collector, which turns Q1 OFF, which raises the voltage at its collector, and turns Q2 more fully on. The effect is cumulative and results in the circuit rapidly returning to its original state. The output falls to zero.

Summing up, a low level on the trigger causes a high output pulse, the length of which is the time taken for the current through R3 to charge C1 from -8.3 V to 0.7 V . The length of the pulse depends on the values of R3 and C1, approximately:

```
t=0.7R3C
```

With the values showr in figure 5 , the pulse length is:
$0.7 \times 5.6 \mathrm{k} \times 100 \mathrm{u}=590 \mathrm{~ms}$

Note that this monostable produces an inverted output from the collector of Q1, a feature that may be useful in some applications.

Taking this circuit apart, it can be seen as a pair of inverting sub-circuits based on the two transistors. The inverters are cross-coupled. The output of one inverter (Q2) is coupled through the R4 to the input of the other (Q1). The output of the Q1 inverter is fed through a capacitor to the input of Q2. This configuration can be used to build monostables from other types of inverter. But if we are going to start using logic gates or op amps to provide these, we might just as well go back to the 555 , which gives precision, and freedom from the effects of power supply variations,

Astables too may be built from pairs of logic inverters by coupling each of them to the other one with a capacitor, as in
figure 7, which uses transistor switches as inverters. The circuit now has two capacitors. A trigger input is not needed because, owing to slight asymmetries in the circuit caused by slightly differing values of nominally identical components, the circuit will always go straight into one of its two states at switch-on, with one transistor fully ON and the other fully OFF. From then on it continues indefinitely, alternately charging and discharging the capacitors.

The charging time for each capacitor depends on the value of the capacitor and the resistor through which it is charged. The two capacitors and resistors may be made equal in value to obtain a mark:space ratio of 1 , or may be unequal if a mark:space ratio greater or less than 1 is required.

Output is high while Q2 is OFF and C 1 is charging through R2, so that:
$t_{\text {magh }}=0.7 R_{2} C_{i}$

Conversely output is low when Q2 is ON and C 2 is charging through R3, so that:
$t_{\text {tow }}=0.7 R_{3} C_{2}$
Combining these two equations we obtain:
$f=1.4\left(R_{2} C_{1}+R_{3} C_{2}\right)$.


Figure 6: the voltage levels in figure 5 following a triggering pulse
Figure 8 is another astable based on inverters. This time we have only one capacitor because the action of this circuit is to charge the capacitor in one direction, then discharge it and recharge it in the opposite dlrection. This circuit is a very useful one for producing clock pulses to drive logic circuits. R1 and C 1 are the timing components and the period is 2.2R, $\mathrm{C}_{1}$. R2 should be approximately ten times the value of R1. Its function is to counteract the effects of the diodes that protect the gate inputs from static charges. Without R2, the frequency of the astable is more dependent on supply voltage and the output has rounded corners. The third gate is not an essential part of the astable. It is used as a buffer to prevent the driven circuit from loading the astable and altering its timing.

## Crystal oscillators

All the timing circuits we have described so far rely on the timing of one particular physical process, the charging and discharging of capacitance. This is a convenient process to use because it can be directly coupled to electronic counting and display circuits. The period of swing of a pendulum is physical process that has been used by clockmakers for centuries because a long pendulum can be made with sufficient precision for accurate timing. Thermal contraction and expansion can be compensated for in various ways. It only remains to couple the pendulum to some kind of mechanism which (1) provides a regular input of energy to keep the


Figure 7: two cross-connected transistor switches form an astable. Compare this with figure 5
pendulum swinging, (2) counts the number of swings, and (3) displays the result on a dial, in terms of the elapsed time. In a purely mechanical clock there is an escapement to release the energy stored in the hanging weights or in a coiled spring, swing by swing. The energy is also used to drive a system of gear wheels. The gears have hands attached and move them over a circular dial. A mechanical watch has much the same mechanism, but with a balance wheel rotating to and fro instead of a pendulum. The energy to keep this in motion comes from the mainspring. Another spring, the hairspring, attached to the balance wheel, alternately stores and releases the rotational energy of the balance wheel as it continually rotates in one direction and then reverses. Such mechanisms can be coupled to electronic circuits, usually by electromagnetic means.

Another mechanical device for timing is the tuning fork. A tuning fork is used by musicians as a convenient and portable way to produce of note of precisely known frequency. A tuning fork may be used as the basis for timing in a clock or watch. The fork is made to vibrate continuously by supplying it with energy, usually by an oscillating electromagnetic field. The fork vibrates at its own natural frequency (not necessarily in the audio range) which is detected electromagnetically and used to drive a counting circuit and hence a display.

For present-day clocks, except for those of the highest precision, pendulums, balance wheels and tuning forks have been replaced by another more compact and more convenient mechanical device, the crystal. This is usually a crystal of that very common and durable material, quartz. A quartz crystal consists of atoms of silicon and oxygen arranged in a regular three-dimensional lattice. Forces exist between the atoms, and some of these are electrical forces of attraction and repulsion. The total effect of these forces is very strong. They hold the atoms of the crystal into a firm and solid shape. All matter is known to consist of relatively small atoms with large amounts of empty space between them, but this may be hard to believe when one has just accidentally hit one's head on a low branch of a tree.

The inter-atomic forces in a quartz crystal hold the atoms in position in the lattice, but the lattice is not completely rigid. There is some elasticity, and they are free to move a certain amount, like a three-dimensional trampoline, when the crystal is subjected to mechanical force from outside. A sudden force will set the crystal vibrating for a while. Compression of the crystal squashes the atoms closer together. The result is an imbalance of the electrical fields within the crystal which causes a potential difference to develop between opposite faces of the crystal.


Figure 8: an astable may be built from two logic inverters, with a third inverter as an output buffer


Figure 9: the astable of figure 8 is used here with a crystal to control its frequency. This is the parallel circuit

## Temperature coefficient

The frequency of a crystal is dependent on temperature, the tempco (temperature coefficent) usually being of the order of 30 ppm per degreeC. The average tempco of the crystals used in cheap watches is about 200 ppm . This is usually of no concern, as the tempco varies with temperature and is almost zero at about 25 degrees $C$, which is close to the temperature at which most digital clocks and watches are called upon to operate. For lowest tempco and minimal resonance at harmonic frequencies the best quality crystals are those cut at an angle of 31.35 degrees from the axis of the lattice. This is known as the AT-cut and most crystals (except those used in most clocks and watches) are cut in this way. For the highest precision the crystal is cut as accurately as cutting techniques allow, then put thorugh a sealing process in a thermostatically-warmed container or 'oven'. This eliminates the effects of tempco, and the best of such clocks have an accuracy of 0.0003 seconds a year.

Reference to clocks and watches raises the matter of finding a suitable frequency of vibration. All crystals vibrate at high frequencies, usually several megahertz, so a timer requires a digital frequency divider to produce a signal capable of driving a display. For the majority of timekeepers we use a crystal cut to vibrate at 32.768 kHz . The significance of this figure becomes apparent when we realise that 32768 is equal to $2^{15}$. The signal from the oscillating crystal is passed through a 15 -stage binary divider and emerges as a 1 Hz signal, all ready for timing in seconds. Below we describe a practical project which uses this system. Two further stages of division, both by 60 , give us minutes and hours. An alternative time source is a 4.194304 MHz crystal followed by a 22 -stage divider. Many other crystal frequencies are available off the shelf, including 6.5522 MHz for driving TV video circuits and a range of crystals with high frequencies used for driving microprocessors and timing the operations of their peripherals, and other crystals generating accurate carrier frequencies for radio transmitters.

Crystals are cut for operation in one of two differeñt


Figure 11: the series circuit for a crystal oscillator

Figure 10: this network is the electrical equivalent of a piezo-
electric crystal

This is known as the piezo-electric effect, and it the basis of the action of crystal microphones and similar transducers. It is detected by evaporating a thin metal film on opposite faces of the crystal and measuring the changes in the potential difference between them. Mechanical energy is converted to electrical energy by this means. Perhaps the simplest example is the piezo-electric gas-lighter, which produces a spark when we press the trigger lever.

The piezo-electric effect operates in the reverse direction too. If we apply a voltage between opposite sides of the crystal, we reinforce some of the intermolecular forces and weaken others, causing the crystal to change shape. Electrical energy is thus converted to mechanical energy. This effect is used in piezo-electric sounders, including some used in security sounders capable of emitting ear-piercing shrieks.

The piezo-electric effect is widely used in electronic timing devices. The heart of these is a small quartz crystal, cut from a larger synthetic crystal of pure quartz to such a size and shape that it will vibrate most strongly at one particular frequency. This is equivalent to adjusting the period of a pendulum by carefully adjusting its length. Fortunately, it is easy to machine a crystal with a very high degree of precision. Inexpensive crystals are readily available with tolerances as small as 15 parts per million. In a cheap digital watch or clock, this is equivalent to about 40 seconds a month, far surpassing the performance of a mechanical watch or clock of comparable price.



Figure 12: a 1 Hz clock module deriving its frequency from a digital watch crystal
modes. Crystals for parallel operation are used in circŭits such as figure 9. This circuit makes use of two logic inverters and is very similar to the oscillator in figure 8. The values of R2, C1 and C2 are chosen so that the circuit resonates at the specified crystal frequency. The essential point is that the output of the resistor-capacitor network being fed back to the input of inverter 1 is exactly 180 degrees out of phase with the input to the network taken from the output of the inverter. The output of the inverter is always 180 degrees out of phase with its input so there is resonance. Without the crystal it is an oscillator in its own right, but at a frequency dependent on the rather imprecise values of the resistor and capacitors. The addition of the crystal forces the circuit to resonate at the crystal's own natural frequency. It is rather the same as jumping on a trampoline. You can leap higher if you time your actions to its natural frequency. The oscillations of the circuit cause the crystal to vibrate but it will only vibrate strongly at a frequency very close to its natural frequency.

We say that the crystal has a very high Q .
To explain the matter of $Q$, figure 10 shows the electronic equivalent of the crystal. There is a capacitance Co between its leads and between the electrodes on opposite faces of the crystal. Then there is the equivalent of a series RCL resonant circuit due to the response of the crystal lattice to mechanical deformation. In this, $C$ is low but $L$ is high and, since:
$Q=\omega_{\mathrm{c}} L / R$
where $\boldsymbol{\omega}_{c}$ is the resonant frequency of the crystal (high too), we obtain quality factors up to 100000 . High $Q$ results in high selectivity, that is, strong resonance at a given frequency and a sharp fall-off at frequencies on either side. The result is that the crystal dominates the circuit, forcing it to resonate at the crystal's own frequency. If C2 is a variable capacitor, it is possible to use it to tune the circuit more finely and compensate for


Figure 13: the stripboard layout of the clock module


Figure 14: the reverse of the stripboard layout, showing the cutouts
tolerance errors in the crystal, but only small deviations from the crystal's frequency are possible.

The parallel circuit is suitable only for use with highimpedance devices such as the cmos gates we use in our project below. Its main disadvantage is that it takes an appreciable time (a second or more) after power-up for oscillations to build up to maximum amplitude. This does not matter in a digital watch or clock which runs for years once powered, but there are applications in which almost instant oscillation is essential, for example, a microprocessor clock should be active at switch-on. For this purpose we use the series circuit (figure 11). This takes more current than the parallel circuit.

## A Practical Crystal Clock

This is a 1 Hz clock (figure 12) based on dividing the output of a 32.768 kHz crystal by a 15 -stage binary counter. A convenient way of doing this is to use the CMOS 4060 which has a built-in oscillator circuit and 14 stages of division. A 4013 fip-flop is added to this as the fifteenth dividing stage (figure 12). The clock circuit is uses an inverter which is inside the ic and has its terminals at pins 10 and 11. R1 provides feedback so that the inverter snaps sharply from one state to the other. The drive to the crystal goes by way of R2. It may be necessary to use a resistor of lower or higher resistance than 56 k . If the resistor has too low a value the oscillator may not start, so try other values if your oscillator produces no output. C1 and C2 provide with XTAL1 a tuned circuit. C1 should be around 15 pF normally, depending on the load specified for the crystal. The circuit works best If C1 has the specified value, but we have found that it works well enough with a value reasonably close to this. C2 should be two or three times

the value of C 1 . If you prefer you can substitute a miniature variable trimming capacitor here (maximum of 65 pF ), to allow fine tuning of the frequency. Pin 12 of the ic is the reset pin which must be held at OV for the divider to run.

The output of IC1 is taken from the fourteenth stage, and runs at 2 Hz . This is fed to a D-type latch (there are two in IC2) wired with its Q-bar output fed back to its data input. This converts it to a toggle flip-flop, which changes state on every rising edge of the signal from IC1. The output at pin 13 of IC2 is a 1 Hz signal. A small part of this is shunted off through R3 to switch an LED. This is optional but it is often helpful to have an indication that the timer is working properly.

Figure 13 shows a suggested stripboard layout. The components of the oscillator are soldered close together and with short leads to minimize lead capacitance. The capacitors used in this circuit were both sub-miniature ceramic types with NPO dielectric. This has a tempco of zero, so the effect of temperature is limited to the tempco of the crystal which is about $-0.04 \mathrm{ppm} /$ degrees $C$ when ambient temperature is 25 degreesC. This is small enough to be ignored. Note that the strips beneath the board are cut at various places, but NOT at F8. There are important cuts at H23 and J22. Solder blobs are used to make connections beneath the board, particularly where pins 2 to 8 of IC2 are all grounded by solder to inactivate the unused flip-flop. The parts are all straightforward to get hold of.

In this and the previous parts we built two astable modules. In the next and subsequent parts we wiff build them something to drive.

Politically correct, environmentally sound and kind to green growing things: Bob Noyes' aptly-named Aquaprobe lets you know when your potted plant is gasping for water.

$T$he Aquaprobe was designed in response to a local school's request for a low cost project that would be both useful and the focus of some electronics lessons on understanding the principles. There were other conditions as well: the project must not be sexist or have anything to with gambling or religion; and to cap it all, if it were to fail (not totally unknown with school-built projects!) there must be no health or safety implications. Oh yes ... and it had to be an all-year-round project, because different groups of pupils would be building it throughout the year.

After a few days of head scratching and furrowed brows Aquaprobe was born. It is a device that detects when a potted plant needs watering. Aquaprobe sits in the soil, minding its own business, until it detects that the plant requires water, which Aquaprobe indicates by a pulsing sound and a flashing LED.

Because of the financial limitations, the good old PP3 power source was ruled out. This had me thinking: one of the reasons that projects become expensive is the box; the bigger the box the bigger the bill just to house the battery; so ... we can make the battery small, but this will mean changing it too often. To keep battery life to an acceptable level the residual current consumption had to be minimal; this meant CMOS in order to work at low voltages well below 9 V and have a long battery life.

It also meant that for most of the time nothing in the way of sound or light could be produced - no ON LED. When anything happened, it had to be low power in terms of watts but high in terms of volume. This meant PIEZO. A plezo sounder can be loud but it consumes minimal power. Because the sound would have to be given out in very short bursts with a long break in between, to keep power consumption low the problem of having several of these things going off and
wondering which plant is in distress lead me to include a LED (sorryl). Athough LEDs can consume significant amounts of power, if they pulse with an extremely low duty cycle, consumption can be made acceptable. So now we had a device producing very short pulses of sound and light. As can be seen, the constraints of cost, size and power consumption set the design - and that is what electronics is all about.

## Cost strikes again

When starting the design I noticed that there is a specialist chip on the market designed as a water detector; this chip has two disadvantages: the cost, which is well out of our price range and the need for a stable supply of above 10V. So, back to the drawing board.

In the end a standard CMOS nand Schmitt was chosen, the 4093, which has an extremely low current consumption as well as the capacity to be configured into the design blocks required to function as a dampness detector. And all it was cheap.

The supply then had to be finalised. To keep the size down hearing aid batteries were chosen. These are reasonably priced and at about 500 mAh each, will give an acceptable battery life as well as being quite small.

The next thing to sort out was the box. On many occaslons cheaper boxes could have been used if the dimensions of the PCB had been slightly different, so in this project the PC8 has been designed to fit the box, rather than the other way round. The box chosen was $75 \times 56 \times 25 \mathrm{~mm}$, costing around $£ 1$ (cheaper if bought in bulk).

Now we had the box, the supply and method of sound and light output, and all we needed was the circuit. Figure 1 gives the full circuit, comprising basically three stages:


Figure 1: the circuit of the Aquaprobe. The probe sleeve and tip apply if a jack plug is used as the probe.


Figure 2a: the Probe in high resistance mode. In dry soil IC1a pins 1-2 see junction as a low, giving a high out on pin 3.


Figure 2b: the Probe in low resistance mode. In damp soil IC1a pins 1-2 see junction as a high, giving a low out on pin 3.

1. Input buffer and inverter.
2. Mark to space generator and inverter.
3. Output stages sound and light.

## InDut Buffer and Inverter

The principle used in this project is that damp soil conducts electricity more readily than dry. To sample the soil a probe is required; the easiest and cheapest is the humble jack plug which is normally made from some sort of brass material that will not rust. It is pushed into the soil, and the resistance of the soil is taken between the sleeve or screen and the tip. This soil resistance is then used in a potential divider with RV1 to determine if the soil is moist enough. D1 and D2 are used as protection devices to ensure that stray electrical interference, such as nearby mobile phones and any electrolysis, do not interfere with the clrcuit's operation. R1 prevents any possibility of a direct short across the supply if the probe is shorted out and RV1 is at minimum setting.

The junction of the potential divider, soil resistance $R X$ and RV1, is fed into the input of a NAND Schmitt gate. ICla pins 1 and 2, as with all Schmitt devices, have two threshold trigger points, rising edge 60 percent and falling edge 40 percent. With RV1 set at about 1 meg (about half way) the resistance of the soil must rise above 1.5 meg to active the threshold point of 40 percent high to low and when watered must fall to below 666 K or 60 percent low to high threshold. See figures 2 a and


Ra CHARGES AND DISCHARGES

OUTPUT WAVEFORM


Figure 3a: oscillator waveform: normal 1:1 mark to space


2b. As can be seen, these resistance figures change if RV1 is altered.

Assuming the soil is dry and above 1.5 megohms, the input to IC1a will be read as a low and the output pin 3 will be a high, enabling the mark to space generator. If the soil is damp, that is, below 666 kilohms, the input will be read as a high, consequently the output pin 3 will be low, not enabling the mark to space generator.

## Mark to space generator and inverter

From the previous stage we now have a digital output low if the soil is damp, high if dry, that is, make a sound and light output.

The problem is that both sound and light (LED) outputs


Figure 4: the component layout
to charge CA as well as discharge it. This charging and discharging is only between the two trigger points of 40 percent and 60 percent of rail. If two resistors could be used, one to charge CA and one to discharge it and they were of different values then the mark to space would alter accordingly.

This is basically what is happening in figure 3b. C1 is charged only by R2, 4M7. R3 cannot pass charge current because D3 is reversed biased, but when C1 is charged both R2 and R3 help discharge it. R3 is much smaller than R2, so it is discharged much more quickly. This is how the output waveform is generated and, in this case, has a duty cycle of around $40: 1$. Because of the PCB layout of the circuit this waveform is inverted to the one required by the output devices. This inverted waveform is brought back to the correct orientation by IC1d, an inverter (both input pins 12 and 13 connected together). The waveform, when triggered by dry soil, is normally low pulsing high with a duty cycle of around 40:1.
consume power and with two small hearing aid batteries we have a limit on the length of time this can be maintalned. The solution is to pulsate the outputs; if a $1: 1$ mark to space output was used the outputs would be off for as long as they were on (in dry conditions only), effectively doubling the active output life. The trouble is that even this would not be enough, so a duty cycle of around $40: 1$ is used. This increases the output life approximately 40 -fold.

The heart of this mark to space generator is $\mathrm{ICl} b$, see figures 3a and 3b. Figure 3a shows the basic oscillator circuit, which gives a 1:1 mark to space ratio as RA is used


Figure 5: the built PCB mounted in the box

## Output sound and light

The sound output consists of an oscillator built around IC1c. This time the mark to space ratlo required is $1: 1$, so only one resistor, R4, is used to charge and discharge C3. The sound output device is a passive piezo sounder which comes in a range of sizes and styles. In this project, because it is going to be mounted above the PCB, a piezo with wire leads is used. It can be connected directly to the output of IC1 pin 10 which most of the time is high (while the soil is damp). Sound is only produced when this point goes low at a frequency set by R4, C3. The value of R4 can be changed either up or down; down increases the frequency and increasing R4 decreases it. This is a little hard to judge, because it is on for such a short period of time. If the +ve of C1 is temporarily shorted to the +ve rail with a link and the probe connections are open, the oscillator will operate continuously, making it easier to select an alternative value for R4.

While this is being done, it is a good idea to remove LED1 from the circuit as this draws significant current if left on. Remember it will be on continuously while the oscillator is on. Once a better value has been found for R4 that effectively makes the output sound louder, that is, nearer to its resonant frequency, the temporary link from C 1 +ve to +ve rail can be removed and the LED re-fitted. This adaptation is purely optional, as 22 k will work for R 4 .

The light indicating that the soil is dry is also powered from the mark to space generator but, as it draws more current, requires a transistor Q1 to provide this boost. The best type

GII
ETI can supply printed circuit boards for most of our current projects - see the list below for boards available. For recent boards not listed, check the constructional article for an atternative supplier.

Please use this order form or a copy of lt . Check that all relevant information is filied in, Including the Unit Order Code, and that you have signed the form if sending a credit card number, Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in \& sterling only, payable to Nexus Special Interest Limited. Please allow 28 days for delivery. Access/Visa orders may be made on 01442266551 (ask for Readers Services).

Only boards listed here are available from our PCB Service. For past issues of magazines, or binders, please see page 74 or contact Readers Services for information. This department remains at Hemel Hempstead until further notice.
Name and issue of profect Unit colte o Price

the list


## Ell lswue 71898

 PIC 16C74 Development Board Surface Mount Diagnostic intertica* Mains Monitor AquaprobePIC Developmen
Signal Generator Headlight Delay Unit


G-Interval Games nime-
$\qquad$

UHF Transmitter (DS)
UHF Transmitter Encoder
UHF Receiver Front End (DS)
UHF Receiver IF stage (DS)
Fridge Thermometer AVR Controller
AVR Controller
27C16 Eprom Programmer Guardian Light

| AVR Controller | $E / 598 / 6 \quad £ 5.50$ |  |
| :---: | :---: | :---: |
| 27C16 Eprom Programmer | $\begin{aligned} & \text { E/6e3/7 } \\ & \text { E/598/9 } \end{aligned}$ | $\{7.87$ <br> $\$ 6.22$ |
| Guardian Light |  |  |
| EDI ksue 11998 |  |  |
| LED Voitmeter E5.64 |  |  |
| B RargepControl Boa | 5/498/2 | £6.22 |
| E 3 Ranger Score Board | E/498/3 |  |
| the-Up Oscillator with | E/498/4 |  |
| Thuthe Toe | E/498/5 | 58.44 |
| Fll ksuat |  |  |
| Medium Wave Loop | E/39 | $\underline{5.64}$ |
| AA Cell Eliminator | E/3s/2 | ¢7.32 |
| PIC Based Double Bass Tun | E/39 | £5.64 |
| 5 Range Capacitor Meter | E/398/4 |  |
| MIDI Drum Pads | E/398/5 | 4.5 |
| Ell lsera 21988 |  |  |
| Smartcam main board | E/298/1 | £5.09 |
| Smartcam opto-sensor board | E/298/2 |  |
| Both smartcam boards | E/29 | £7.00 |
| Switched Mode Internal Power Supply | E/298\%5 |  |
| Auto Cupboard Light | E/298/3 |  |
| Enl |  |  |
| Control Centre Desk-Top Unit | /0198/1 | 58.90 |
| Control Centre Main Section | E/0198/2 | ¢7.87 |
| Ell iseva 131997 |  |  |
| 4-Go Rocket Launcher - meim board | E/1397/1 | $\underline{5.64}$ |
| 4-Go Rocket Launcher - relay board | E/1397/2 | £6.22 |
| Mighty Midget | E/1397/3 | 29.54 |
| Ell kswe 121997 |  |  |
| PC Phonecard Reader: ITT Cannon only | E/1297/1 | $£ 6.22$ |
| Minute Minder | E/1297/2 | $\underline{13.98}$ |
| Medium Wave Receiver - RF board | E/1297/3 | £11.76 |
| Medium Wave Receiver - Tuning board | E/1297/4 | $¢ 5.09$ |
| Medium Wave Receiver - Audio board | E/1297/5 | $¢ 5.09$ |
| Medium Wave Receiver - PSU board | E/1297/6 | £6.77 |
| EII kssua 111897 |  |  |
| Total Harmonic Distortion Meter | E/1197/1 | \$13.43 |
| Alphanumeric Morse Touchkey | E/1197/2 | £5.09 |

(2)

Ell Issuo 101997


Prices are inclusive of post and packing in the UK. Overseas Post and Packing (ff applicable): Add $£ 1$ per unit

## Name

$\qquad$

## Address



1 enclose payment of $£$ $\qquad$ (cheque/PO/money order in $£$

## Sterling only) to:

PCB Service, READERS SERMCES DEPARTMENT, Nexus Spocial Interests Ltd.,
Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST UK.


Signature:


Figure 6: the front of the Aquaprobe case. Tip: you can use an old piece of Veroboard as a guide to get the holes lined up
of LED is the clear plastic type. These come in red or green, and normally can be found in bulk buy offers. The normal red or green ones only brighten up when on and always retain their colour when not on, but the type I suggest change from clear to red or green when they light up, making it easier to see when they are ON under low current conditions.

## Construction

When the PCB has been built (figure 4) and tested and the piezo mounted on 2.5 mm bolts above the PCB it can be installed in the box (figure 5); it may need to be filed down to
size, care being taken not to damage any of the tracks. When the PCB fits, the position of the hole for the probe can be found, directly below the holes in the PCB for the probe connections. Remember to allow enough room for the PCB when marking the hole position; a little too near the lid is better than pushing into the PCB. Remove the PCB before drilling. Ideally the hole should provide a snug fit for the jack plug probe; it if is a little loose a couple of blobs of glue gun glue will hold it in place. The lid of the box is drilled to expose the top of the LED and a few holes drilled over the piezo to allow the sound out. One tip is to use a scrap piece of Veroboard to position the holes in a pattern (figure 6). Keep these holes small, 2 mm , as they look neater and do not let in leaf debris and so on.

This project has proved very popular, with some students making more than one Aquaprobe for other members of the family.

When it is bullt and the batteries are fitted it will bleep and the LED will flash. A jack socket can be used with the tip and sleeve connections shorted, which will stop the output until required. When required the jack socket is removed and the Aquaprobe should bleep and flash because the probe is only in contact with the air, which has a very high resistance. Once you have confirmed that it is working the probe can be pushed into the soil in such a way that the body of the device is just above it. If the soil is damp Aquaprobe will stop bleeping and the LED stop flashing.

We noticed that with very sandy soil Aquaprobe worked better with RV1 set to higher than mid way (more anticlockwise), and with peaty soil the setting should be a little lower, that is, further clockwise. Some soils "hang onto" damp better than others; this is found by trial and error.

## NEW FROM NEXUS!

## An Introduction to Robotics

A fascinating and unique book that breaks new ground by exploring the exciting world of robotics in a clear and concise way. Both the theoretical and practical aspects are presented in an uncomplicated fashion using everyday English, which makes this an ideal book for the amateur. Divided into two sections, the first part explains how and why robots work and are controlled, while the
second shows you how to make a simple two legged humanoid robot that can be programmed to walk. There are no complicated formulas or equations to grapple with or incomprehensible circuit diagrams to decipher, - this robot can be built on your kitchen table and can be run from any personal computer! All you need are model aeroplane servos, a controller, a power supply and some
plywood - and all parts are easily available in the UK and the USA. This is a book that will be of interest to modellers and everyone with a fascination for things mechanical and electronic.
This is the way of the future, stay one step ahead and order your copy today!
Only \& 11.50 UK \& $\{12.50$ Overseas (Includes Postage \& Packing).

## Telephone orders: 01442266551 and ask for Nexus Direct

Please send me........... copies of NB299 @............
I enclose my cheque/PO for $£ . . . . . . . . . . .$. made payable to Nexus Special Interests $O R$ please debit my Access/ Visa.


Expiry date $\qquad$ Signature. $\qquad$ Name.

Address.

Post code $\qquad$ Telephone No.
Complete details and return coupon to: Nexus Direct, Nexus House, Boundary Way,


Hemel Hempstead, Herts, HP2 7ST. If you do not wish to receive malling from other companies, please tick box. <br> \title{
FOILS FOR THIS <br> \title{
FOILS FOR THIS ISSUE
} ISSUE
}


100W Mosfet Power Amp


Mains Monitor

## FOILS FOR THIS ISSUE

Surface Mount Serial Diagnostic Interface


Surface Mount Logic Probe


PIC 16C74 Development Board



MarkColyer
01322660070
Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Azalea Drive, Swanley, Kent BR8 8HY
Lineage: 85p per word (+VAT) (minimum 20 words)
Semi display: (minimum 3 cms )
$£ 12.50$ + VAT per single column centimetre
Ring for information on series bookings/discounts.
All advertisements in this section must be pre-paid
Advertisements are accepted subject to the terms and conditions
printed on the advertisement rate card (available on request).

## FOR SALE

## Broadcast Warenouse <br> FM TRANSMITTERS \& ACCESSORIES

FM radio kits. Prebuith kits. Custom builh and Professional FM broadcasi equipment. In use by broadcasters worldwide. We also ship worldwide and accept major credit cards Equipment hire and R.S.L. consultation service available. All equipment is fully guaranteed for 12 months

call for your free brochure.
PHONE / FAX: 01812880192

an 8 wat $23.95+50 \mathrm{p}$ p p
230V AC BALLAST KIT
For other 6 m . $\operatorname{Sin}$ or 12 in lubes 28 OS $\& 21.40$
Pabl (E8.75 inc VAT)
The abova Iubet a.: 350044000 angst $\langle 350$.
OHer wiviting 8 Cremicu mpplications.
Other Wave Langths of U.V. TUBE aramole
Ploase retephone your ino applical
400 WATT BLACK LGATT BLUE UV LAM
GES Mercury Vapour mmp surable ior use
Whe a 400 W PF. Batas
12V D.C. BILGE PUMPS

Niso now svalubite 24 V D.C. 7750 GPH 15 H
As desgned to be uted womerped PFACES INCLLUOE PAP P V VA
SUPER NY-LKGHT STROBE KTT
Desped for Disco. Thastrical usen eic
$+23.00 \mathrm{psp}$
Case ind reffector cest.00 + 23.00 plop ( 1631.73 inc VA

VARIABLE VOLTAGE TRANSFORMERS
220.240V AC 50 output 0.260V PANEL MOUNTING
. 5 KVA 2.5 amp max $£ 33.00 \quad$ ¢ 5.00 ( $£ 55.83 \mathrm{he}$ VAT IKVA 5 amp max $\quad$ E45.25 57.00 ( 25139 me VAI) 0.5 KVA 2.5 mp max $\frac{5 H R O U D E D}{\Sigma 1.00}$ E6.00 ( $547.00 \mathrm{inc} V A T$ ) IKVA 5 amp max $£ 46.25$ §7.00 (£62. 57 ine VAT)
 $\begin{array}{lll}3 \text { KVA } 15 \text { amp max } & \text { E65. } 50 & \text { E3. } 60 \text { ( } £ 111.63 \text { inc VAI) } \\ \text { KKA } 25 ~ a m p ~ m a x ~\end{array}$ 10 KVA 45 amp max $\mathrm{m00} .00$ Pus Carrage \& VAT SKVA 3 PHASE Star Tzos.00 Pus Carriepe \& VAT
Suy dread from the imporiars. Keenest polion in the country
TRANSFORMERS-LTHSOLATION \& AUTO
M10.240V A.sio transter eiterer casec win American socke and
mans ind el open riame tpe A Araluble for mmedate colvery 500 VA ISOLATION TRANSFOAMER



## RANGE OF XENON FLASHTUBES

 Write/Phone your enquires
## ULTRA VIOLET BLACK LIGHT FLUOAESCENT TUBES



|  | SERVICE TRADING CO <br> 57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BE TEL 0181-995 1560 FAX 0181-995 0549 ACCOUNT CUSTOMERS MIN, ORDER $£ 10$ | YISA |
| :---: | :---: | :---: |
|  |  | ${ }^{\text {Ample }}$ Pationg Spmos |

SKVA ISOLATION TRANSFORMER - As New Ex equipment fully shrouded Line Noise Suppression, Ullua isolation Transiomper win tormine
cowers and Knock-ouk cable entries Pimary $\$ 20240 \mathrm{~V}$ Secondary 120240 V 5060 Hz .003 pF Capectance Size $L .37 \times$ W. $19 \times$ H. 86 cm Weight 42 Kion. PRICE $\$ 120.00$ +VAT

Camige on request
24V OC SIEMENS CONTACTOR
 comtacts Screw or Din Rail fixing. Size H $120 \times$ W $45 \times$
0.75 mm . Brand New Price 57.63 incl. Pad and VAT.
240 V AC WESTOOL SOLENIODS
 strake Sbles pill approx TTB Mod i Rat 2 Max stroke 1/B
 E8.81. SERIES 400 E7.84.

## AXIAL COOLING FAN

230 V AC 120 mm square $\times 38 \mathrm{~mm} 3$ blede 10 watl Low
Notse tan Pitce $\Sigma 7.29$ ind. P\&P and VaT. Other voltages and sizes availabie from srock. Please tevechone your encuines.
INSTRUMENT CASE
Brand new Manut by imind L31 x H18 \& 19 cm deep Removeabio tront and rear panei for easy assembly of componeras Grey finith complete with case feet
PRCE 148.45 INCI P\&P SVAT 2 of 2882 Inclueive.

DE CAST AL UMINIUM BOX
 50 mm
incl 230 V AC SYNCHRONOUS GEARED MOTORS Brand new Ovoid Gearbox Crouzel type molors
$H 65 \mathrm{~mm} \times W 55 \mathrm{~mm} \times \mathrm{D} 35 \mathrm{~mm} 4 \mathrm{~mm}$ die shaft $\times$ 10 mm kong. o RPM anti cw E 9.99 ind plop \& VAT. 20 RPM anti cw Depth 40 mm £ 11.16 mcl p\&p \& VAT.
SOLIO STATE ENT UNTT
input 230240 V AC, Outpul approx 151KV. Producing 0 mm spark Bu'-in 10 sec umer. Easily modited tor 20sec, 30
sec to continuous Designed for boitior loniton. Dazens of uses in the fielc of physics end electronics eg suppying

EPROM ERASURE KII
Buld your own EPROM ERASURE for a traction of the will 2537 Angst Tube Qaskast unit pair of tudes 12 in -oon mocator, onoff satch unit, pair of ti-pin leads. crow $\mathrm{E15.00}$ - E2.00 pAp (E19 98 nc VAT)
WASHING MACHINE WATER PUMP Brand new 240 V AC tan cooled. Can be used lor a variety


TRANSMITTERS, AMPLIFIERS, STEREQ, R.D.S., ANTENNA'S \& MUCH MORE
1 WATT LC.D. PLLL. TAANSMITTER ONLY 884.99 (KIT FORM


Professional $88-108 \mathrm{MHz}$ FM Broadcasting Kits

we revisumos o mais and
accert mano chem canos
Contact Us Now For A Free Brochure
Tel 01274883434 Fax 01274816200 email veronicafflegend co. uk is vetoun st. ouvanemery www.legend.co.uki-veronical ersotroid 80k3 4AR


## SWC

 SCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114
## QUARTZ CRYSTALS

QUARTZ CRYSTALS 100 KH2 100 MHZ at low cost. Full list available and technical advice. Electronic Design Associates. Tel: 0181-391-0545. Fax: 0181 391-5258.

Classifieds Gets Results Fast


## PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7, Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

## TRANSFORMERS

VIT
Variable Voltage Technology Ltd

## TRANSFORMERS

For valve and transistor circuits HT Filament chokes high \& low voltage Standard and custom design large and small quantities Unit 24E, Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO31 7LP Tel 01983280592 Fax 01983280593


## ATTENTION ALL NORTH AMERICAN READERS!

Did you know that you can order an annual subscription to this magazine direct from our official U.S. subscription representative?
For more information and rates contact:
Wise OwI Worldwide Publications
4314 West 238th Street, Torrance, CA 905054509 Tel: (310) 3756258

## c/c CHELMER VALVE COMPANY

If you need Valves/Tubes or RF Power Transistors etc. ...then try us!

We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.


Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road, Chelmsford. Essex CM2 ORG. England.
Tel: 44-01245-355296/265865 Fax: 44-01245-490064


## CONTROL \& from Milford ROBOTICS Instruments

BASIC Stamps-<br>- Re-Programmable<br>- BASIC language<br>- RS232 Serial ports<br>- 8 or 16 I/O lines<br>SPI/DTMF<br>- Fast development



## Scenix

- Fastest 8 -bit micro
- 50MIPS
- Flash Eprom
- 18/28 pins PIC16C5x pin replacement


## Serial LCDs

- RS232 Serial interface

2×16 to $4 \times 40$

- Simple 3-pin connection
- Integral Keypad option
- Large Numerics option
- Driver chips available for OEM use

3-Axis Machine

- Stamp 2 based
- Drills PCBs
- 3-Axis movement
- Stepper drive
- 4 thou resolution


Robotics


Milford Instruments 01977683665 www.milinst.demon.co.uk

## ADVERTISERGINDEX

Agar Circuits.... 70 Mauritron ............... 71 Ambys Lid … $\quad 7 \quad$ Milford Instruments .................. 72
B.K. Electronics. $\quad 37$ NCT.
Broadcast Warehouse $\quad . \quad 70$ No Nuts. ..... 32
Bull Electrical 18,21 Plancentre Publications ..... 70
Chelmer Valves............71 Scientific Wire C 0 ..... 70
Confidential Communications. 45 Service Trading Co . ..... 70
Crown Hill Associates .45 Stewarts of Reading ..... 26
Display Electronics 25 Telnet ..... 46
EPT Eductional Sotware IFC Variable Vollage Technology Ltd
EQT7270
Equinox. IBC Veronica FM. ..... 70
ESR Electronic Compponentsts... 38 Wilson Valves ..... 70
JPG. .72 Van Draper ..... 17
Labcenter Electronics ..... OBC

# PRACTICALLY SPEAKING 

## TERRY BALBIRNIE

Last month we were looking at the topic of fuses, and I shall continue with it here. It is very important to choose the right fuse for the application.

## Choose your fuse

If you are selecting a fuse for a new circuit, you must first determine the maximum current which will flow through it. This can often be found by calculation, but otherwise it will need to be measured. A suitable fuse is then chosen to have a value slightly greater than this figure. If there are components which introduce a significant current surgé when the circuit is switched on, such as transformers, large value capacitors, motors and filament lamps, it may be necessary to use a time delay (slowblow) fuse rather than the ordinary quick-blow type.

You will also need to decide the physical size of fuse and whether it is to be of the glass or ceramic tube type. The high-rupture ceramic type must be used where it is to be wired directly into the mains. This is because, under short-circuit conditions, a current of several hundreds of amps could flow for a short time. This would result in the fuse blowing very violently, and a glass tube would shatter. The most convenient fuse length for amateur circuits is 20 mm . Such fuses are used throughout Europe and are available in a wide range of values from about 50 mA to 10A. They are also manufactured in standard and quick-blow variants and with glass or ceramic tube construction. In some pieces of equipment you will find $1.25-\mathrm{in}(31 \mathrm{~mm})$ fuses with a diameter of $0.25 \mathrm{in}(6.35 \mathrm{~mm})$. These are popular in the USA and Canada.

## Fuseholders

You will also need to choose a fuseholder. There are three main types - chassis, pcb-mounting (which looks very like a chassis fuseholder, but has downward-facing pins) and panel-mounting. These are available to suit $20-\mathrm{mm}$ and $31-\mathrm{mm}$ fuses. A chassis type is used when the fuses are mounted on the circuit board or fixed inside the case. However, the lid of the enclosure must be removed to replace it, and this will be inconvenient if the fuse blows more than occasionally. Some chassis and pcb fuseholders are of the self-contained (fuse block) type. Others consist of a pair of clips, which are soldered on to the PCB the correct distance apart. Clips save money and some space but are less convenient than fuse blocks. Fuse blocks can accept an insulating cover, which is


On the left is a panel fuseholder, mounted through a hole in the case and changeable without opening the case up. On the right is a pcb-mounted fuseholder.
absolutely essential when the fuse is used in the mains supply.

Some fuses do not require holders at all - they are simply "wired in" directly like a resistor. These are useful where space is at a premium and, of course, where it is not expected that they will blow very often. These are available in values from around 100 mA to 10 A and may be purchased in standard and slow-blow variants. A panel fuseholder is mounted through a hole drilled in the case, allowing the fuse to be removed from the outside. The end can be removed either by turning with the fingers or by using a coin or small screwdriver to allow the fuse to be replaced easily.

## Inherently safer

When a fuse is used in the mains supply, it is always connected in the live wire. This is to ensure that, when the fuse blows, it is the live that will be disconnected, and this is inherently safer than if the neutral was the disconnected one. A further point is that when wiring up the mains supply to a panel fuseholder, the bottom connection is soldered to the incoming wire and the side connection is taken on to the circuit. Of course it would work if it the connections were interchanged, however, this method is safer because if someone was foolish enough to probe a metallic object such as a screwdriver into the fuseholder while the mains was connected it would be more likely to touch the side contact first. Also, if the object was pushed right in, it would probably cause a short-circuit and a fuse further down the line would blow. However, the rule is this: before replacing a mains fuse always unplug the circuit from the mains socket (do not just switch off) first.

## Round the

AsI write this, a lawsuit has just been announced against Microsoft, and there are many opinions as to what it will mean in the long run. My immediate reaction was that if the Windows development path is seriously derailed, it will make my life more difficult. In fact, I shall start to be mildly inconvenienced as soon as my beta test version of Windows 98 reaches its valid time limit.

This is not to comment on the rights or wrongs of the situation, simply the knock-on effect of what is now a widespread standard in personal computing.

No doubt there are alternative and better ways to design an operating system. Users of Macs and other Apple machines think that Apple have just that. However, the fact remains that there is more electronics software availabie for the PC than for other personal computers. Most new software is being written to run on a 32-bit version of Windows, which means Windows '95 or NT. From the user's point of view, a prime significance of Windows is that it is a standard. If one program can use your monitor at full resolution, so can all others, without the need for a custom video driver for each program to run on each available graphics card. Been there, done it. Not in a hurry to do it again.

Even the user interface is similar, which speeds up the learning process on a new program.

The case against Microsoft has been compared to the break-up of AT\&T, the aim of which was presumably to open up a monopoly to competition. Competition is known to drive improvements in service and cost reductions.

However, to get people using new technology in meaningful numbers, standards are needed. The ownership of VCRs rose after it became clear that VHS was likely to stay the dominant system. I personally thought that V2000 and Betamax showed more technical promise at the time,
but I believe that it is more useful to most people to have one video system which works pretty well, than to have a multiplicity, some of which are supert, but with recorded and blank tapes expensive and limited in availability.

With VCRs, many manufacturers can make compatible tapes and recorders, so this is a standard without a monopoly. It has simply been selected from several competing standards by quick marketing and public preference.

Digital cellular phones are another example of a situation where a good standard is more useful than many competing ones. The standard is determined by an official body, and the result to date is that most cellular telephones can operate anywhere in Europe.

In the United States there are more different systems, and compatibility poses more of a problem. If AT\&T, with its massive research resources, had not been broken up, the monopoly might plausibly have introduced standard cell 'phones across the United States. The benefits of improved competition probably outweigh a few compatibility problems, but a high grade of technical standards body might have been able to work round this downside to the company being broken up. A melee of competing standards is certainly better than a poor technical standard designed by bureaucrats proud of their lack of technical knowledge, but we do have examples of sensible standards which are largely beneficial. ( 1 am hoping that the final digital television broadcasting system turns out well.)
Meanwhile, back on the question of Microsoft, I do not know what the right answer is, but I hope that the principle of standardising on a system which people find easier to leam is retained. Perhaps it will all be resolved by the time this reaches the newsagents, but equally it could take years. Will it affect most of us significantly? Yes! How? I doubt that anyone knows.

## Next Month

Volume 27 no. 8 of Electronics Today International will be In your newsagents on 17th July 1998 ... Stephen Fleetwood has a practical Programmable Logic Control application to describe, along with the basics of Ladder Logic and programming ... Bart Trepak's digital electronic security lock keeps unauthorised users out of your equipment ... A sinewave generator by Mark Roberts that plugs into your PC printer port gives you an onscreen display ... Terry Balbirnie's micro-trafficlights circuit can be fitted nearly anywhere .. plus all the regulars and more surprises.

Contents are in preparation but are subject to space and availability.


## PROFESSIONAL AVR ${ }^{\text {TM }}$ MICROCONTROLLER STARTER SYSTEM

## System Contents

- Combined Serial \& Parallel Device Programmer - Evaluation module for 8,20 \& 40 -pin DIL devices - In-System Programming (ISP) Cable
- Integrated Windows ${ }^{\text {™ }}$ Development Environment
- AVR ${ }^{\text {TM }}$ Basic LITE (1k bytes code) Compiler
- AVR ${ }^{\text {TM }}$ Assembler
- Mains Power Supply Adaptor
- PC Serial Cable (Connects to PC COM Port)
- Atmel CD-ROM Datbook
- One AT9051200 DIL Microcontroller


## WRTTE IN BASIC RUN IN A FLASH

## AVR BASIC

- Compiled BASIC generates ight AVRTM machine code - Not a Run-Time Interpreter NO code overhead! Target speeds comparable with assembler
Breaks the cost barrier for small projects
- deal for educational, hobbyist and professional use



## FLASH 8051 Professional Starter System

System Contents

- Combined Serial \& Parallel Device Programmer
- Evaluation module for $20 \& 40$-pin DIL devices
- In-System Programming (ISP) Cable
- Keil PK51-2K Integrated Windows ${ }^{\text {™ }}$ Development Environment (2K code limit). Includes C-Compiler, Macro Assembler, Linker, Hex Greator, Editor \& Simulator
- Mains Power Supply Adaptor
- PC Serial Cable
- Atmel CD-ROM Datboo
- One AT8958252 40-pin DIL Microcontroller System fayout shown in Fig $f$ above Only. (3124.95


## Micro-ISP

Serial Programming


Typical In-System Programming (ISP) Scenario shown below:
Supports: Atmel 89S, 89LS, 905(AVR)


The Embedded Solutions Company i Atlas House 5t Georges Square Bolton BLI 2 HB England

For sales tel: $\mathbf{+ 4 4}$ (0) 1204529000 , fax: $\mathbf{+ 4 4}$ (0) 1204535555, e-mail: sales@equinox-tech.com, Web Siter www.equinox-tech.com
 cun

 Cown


## Schematic Capture

NEW Version IV


- Produces attractive schematics llke you see in the magazines. - Netlist, Parts List \& ERC reports. OHierarchlcal Design. ©Full support for buses including bus pins. Extensive component/model libraries. Advanced Property Management. - Seamless integration with simulation and PCB design.


## Simulation




- Non-Linear \& Linear Analogue Simulation. Event driven Digital Simulation with modelling language. - Partitioned simulation of large designs with multiple analogue \& digital segtians. Graphs displayed directly on the schematic.


Write, phone or fax for your free demo disk, or ask about our full evaluation kit. Tel: 01756753440. Fax; 01756752857. EMAIL: info@labcenter.co.uk 53-55 Maln St, Grassington. BD23 5AA. WWW: http:/www.labcenter.co.uk

Fully interactive demo versions available for download from our WWW site, Call for educational, multi-user and dealer pricing - new dealers always wanted. Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.


[^0]:    - Calculate the values of BRGH bit, and SPBRG

    SPLOW equ (PROCFREQ*.1000)/(BITRATE*.64)-1

