

ELECTRONICS

 today international

1）水边 cojdicolif

 （1）

AT1 nup

等
おり1j心
 oii a Pctirst

plusELECTRONIC A－Z Wordyames，Joker and Dise

Electronic Ding／Dony

Fust fivers
Mityher Degrees in Hedromiks

Vol 26 Issue： 9 I5 August $1997 \quad £ 2.50$

PROTEUS

Schematic Capture

The $V^{\text {in }}$ cencrition

Now Features
 Gomponem Auto-Placer Pinswan/Gateswap Ontimizer Background Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Gontrol of Schematic Anpearance Extensive New Component tibraries

Available in 5 levels - prices from $£ 295$ to $£ 1875$ + VAT. Call now for further information \& upgrade prices.

OProduces altractive schematid the you see in the magazines CNEtlist Parts List \& ERC reports. WierarchicalDesign. DFull suppor for tuses indwaing bus pins. © Extensine componentmodet Horaries oAdvanced 'Pricily Managemant - Seamiess trregratior win simulation and CB Cesion

Simulation

aNon-Limear 8 Linear Anahoque Simulation oEvena driven Digital Simutation with modelling tanguage PPartioned simulation of large deciens thit mutiple analogue \& digital sections eGraphs displayed drectiy on the schematic.

- Avtomatic Component Placement oRip-Up \& Retry Avtoroutar with lidy pass. oPinswap'Gateswap Optimizer \& Beokannotation. $\bullet 32$ bit high resotution database. OFull DRC and Connectivity Checking oshape based gridless power planes. -Gerber and DXF tmpont capability

4PBOTJUS

is parcisulanty (e)!

EWW January 1997

Labcenter
 Elecironics

Write, phone or fax for your free demo dist, or ask about our full evaluation kit Tel: 01756753440 . Fax: 01756 752857. ByAlL: Hdo@mbenter.co.uk 53-55 Main St Grassington, BD23 5AA. Whi. St Whaticenter.couk

Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged

Contents

Volume 26 No. 9

Next Issue 12th September 1997

SETI and the Amateur Radio Astronomer
H. Paul Shuch argues that Amateur Radio Astronomers are now in the front line of the search for communications signads from space beyond our Solar system, and describes the sky-search work of the SETI League
Take a letter - an Electronic A to Z 27

Given twenty-six letters you could play nearly any word-game that your imagination
could devise, says Roy Bebbington (and he adds some suggestions). The A to Z
has a joker and dice function as well.
Higher Education Special 33

A proportion of electronics students graduating successfully from a first degree
course are opting to return for one to three years to pursue a higher degree.

ETl looks at three research and higher degree prospectuses for UK universities.

Digitally Controlled Power Supply

Robert Penfold's power supply with PIC-controlled stability will not suddenly provide a high voltage if you make the classic mistake of connecting the supply to a low-voltage circuit without turning it down first.

64K Eprom Emulator

Following the popular ETI Eprommer, Keith Wardill's matching eprom Emulator allows software to be written and compiled on a host computer, downloaded to the emulator and tested before burning into the eprom

Quickroute Systems CAD competition

We have $£ 2500$-worth of high quality PCB Computer Aided Design software for the winners of our competition - just answer three simple questions about QS software.

Electronic Ding Dong Door Chimes

Tery Balbirnie's electronic chimes have a major advantage over the two-bar electrical type - you can set them to repeat only as often as you want them to:

Fast Fivers - A Musical Booby-trap (5)

If you have a bottle of Victorian port to protect, "Twinkle twinkle, little star" may do the trick, says Owen Bishop.

Sorry - Part 2 of Speed Control in DC Motors and Part 2 of the Valve Characteristic Tester have had to be held over this month. We'll aim get them in the next issue.

Regulars

News	8,11
PCB foils	69,71
ETI PCB Service	71
Round the Corner	74

ORDER CODE: CM3900A PRICE: 2900p

| CM3920 DIGITALMETER WITH |
| :--- | :--- |
| TEMP MEASUREMENT |

8 Way Preprorrammed Universal Remote Control
A single remote control to
operate Television, Videos
and Satellite Receivers. Plus
Auxilary Options!l

- Replaces up to 8 remotes
with one
- Simple 4 digit setup routine
- Controls 1000's of models
- Teletext functions with
Fastext

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES

GRANDATA LTD
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND HA9 OHB Telephone: 0181-900 2329 Fax: 0181-903 6126

OPEN Monday to Saturday.
Times: Mon-Fri 9.00-5.30 Sat 9.00-2.00

Please send £1 P\&P and VAT at 17.5%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for dellvery. Prices quoted are subject to stock availability and may be changed without notice.

TV and video parts sold are replacement parts.
Access \& Visa Card accepted
WE STOCK TV AND VIDEO SPARES, JAPANESE TRANSISTORS AND TDA SERIES. PLEASE RING US FOR FURTHER INFORMATION.

Ons	RICE	CODE	PRICE	CODE	+65	20n碞	730
SATPSU1	650p	SATPSU6	650p	SATPSU11	835p	SATPSU16	730p
SATPSU2	650 p	SATPSU7	650 p	SATPSU12	1735p	SATPSU17	850 p
SATPSU3	650 p	SATPSU8	730p	SATPSU13	3125p	SATPSU18	1175p
SATPSU4	650p	SATPSU9	900p	SATPSU14	3135p	SATPSU19	650 p
SATPSU5	650p	SATPSU10	1230p	SATPSU15	77.5p		

PACE SATELLITE TUNERS		
MODELS	CODE	PRICE
PRD800, MSS200 (2GHZ) (221-2077062)	YUNER01	16500
PRD900, MSS500, MSS1000 (2Ghz) (221-2177012)	TUNER02	1650 p

MODELS	CODE	Paver
PACE9000	PACE9000	800 p
PACEPRD800, PRD900	PRD800	550p

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYSTEMS. THE SATMETER CAN BE USED AS STAND ALONE METER WITH POWERING THE LNB AS WELL AS IN LOOP. THROUGH OPERATION WITH SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm
MAX.INPUT SIGNAL: -10 DBM

LED INDICATOR: VERTICALHORIZONTAL
POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO - 10 DBM ORDER CODE: TOOL 22 PRICE: 8500p

SATELLITE LNB'S					
			BAKE \& Moriat		
Cambridge AEELAE5 0.80 B standard $10.95-1.70 \mathrm{GHz}$ Gotd Range	LNB1	2160p	Cambridge AE, Twin O/P H+V Both Enhanced	LNB7	40000
Cambridge AE14 Universal LNB 10.7-11.7/11.7-12.75 GHz	LNB2	2500p	Cambridge AE2 Duai OPP H-V Separate Enhanced	LNB8	$3550 p$ 26000
Cambridge AE2 1/AES Single O/P Switching LNB 1.0dB Standard	LNB3	2050p	Grundig Super Universal 'Anis' 10.7-12.75 GHz 0.8dB	LNB9	2600 p 22500
Cambridge AE19/AE6 Single OP Switching LNB 1.0dB Enhanced	LNB:	2050p	Grundig Universal 'Anis' 10.7-12.75 GHz 1.0dB		
Cambridge AE23/AE12 0.8dB Enhanced 10.7-11.8GHz Gold Range Cambithe AEB Dual OP H.V Separate Enhanced	LNB5	2160p 4000 p	Cambndge AE1 Twn O/P H+V Both Standard		

FUSES

	TIME LAG (20MMM)		QUICK BLOW	(20MM)
CURPENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75p	FUSE37	60P
160 mA	FUSE01	75p	FUSE17	$60 p$
250 mA	FUSE02	75p	FUSE18	60 p
315 mA	FUSE03	75p	FUSE19	60 p
400 mA	FUSE04	75p	FUSE20	60p
500 mA	FUSE05	75p	FUSE21	60 p
630 mA	FUSE06	75p	FUSE22	60p
800 mA	FUSE07	$60 p$	FUSE23	60 p
IA	FUSE08	60p	FUSE24	60 p
1.25A	FUSE09	60p	FUSE25	60 p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE11	50p	FUSE27	60p
2.5A	FUSE12	50p	FUSE28	60p
3.15A	FUSE13	55p	FUSE29	50p
4A	FUSE14	55p	FUSE30	50 p
5A	FUSE15	60 p	FUSE31	50 p
6.3A	FUSE16	60 p	FUSE32	50 p

NB.
ALL FUSES ARE MADE IN THE UK AND FULLY MEET
BS4265 \& BS1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

CERAMIC PLUG TOP

CUARENT RATING	ORDER CODE	PRICE
3A	FUSE33	1009
$5 A$	FUSE34	100 p
13A	FUSE35	$100 p$

20 mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	PRICE
6.3A	FUSE38	100 p
8A	FUSE39	100 p
10A	FUSE40	100 p
3.15 A	FUSE41	$85 p$
4A	FUSE42	$85 p$
5A	FUSE43	$85 p$

38mm CERAMIC TIME LAG

CURRENT RATING	ORDER CODE	PAICE
10A	FUSE48	$815 P$

32 mm CERAMIC SLOW BLOW

CURRENT RATING	ORDER CODE	PभM
8A	FUSEAA	$185 P$
10A	FUSE45	$185 p$
15A	FUSEE46	$185 p$
20A	FUSE47	$210 p$

RANSISTORS

DESCRIPTION	VOLUME	CODE	PRICE	DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75ML	SP01	180p	EXCEL POLISH 80	250ML	SP18	150p
VIDEO HEAD CLEANER	200ML	SP27	250p	ADHESIVE 120	400 ML	SP19	190p
SWITCH CLEANER	176ML	SP02	180p	LABEL REMOVER 130	200ML	SP20	240p
SUPER 40	400ML	SP15	250p	REFURB 140	400 ML	SP21	240 p
SILICONE GREASE	200 ML	SP03	210p	TUBE SILICON GREASE	50 GRAMMES	SP11	220p
FREEZE IT	170ML	SP04	320p	TUBE TUBE SILICON			
FREEZE IT	400ML	SP16	600p	SEALANT WHITE	75ML	SP22	280p
FOAM CLEANER	400 ML	SP05	200p	TUBE SILICON SEALANT			
ANTI STATIC	200 ML	SP06	190p	CLEAR	75ML	SP23	280p
AEROKLEANE	200ML	SP07	220p	TUBE HEAT SINK COMPUND	25 GRAMMES	SP12	150p
AERO DUSTER	150ML	SP08	310p	DRIVE CLEANER	200ML	SP24	150P
AERO DUSTER	400 ML	SP17	550p	SCREEN CLEANER	200ML	SP25	150p
PLASTIC SEAL	200ML	SP09	250p	COMPUTER CARE KIT		SP26	2100p
GLASS CLEANER	250ML	SP10	160p	ANTI STATIC FOAM CLEANER	400ML	SP28	175p
COLDKLENE	250ML	SP13	230p	AIR DUSTER	400ML	SP29	450p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILI BE CHARGED AS FOLLOWS: 300P FOR 5 CANS
450p FOR MORE THAN 5 CANS

16-bit microcontroller with on-chip flash memory

Hitachi has extended its range of F-ZTAT microcontrollers with on-chip flash memory with its first 16-bit device. Based on the $\mathrm{H} 8 / 300 \mathrm{H}$ CPU core with a 125 nanosecond instruction cycle, the new H8/3048 has 128 Kbytes of flash memory, system support functions and a mix of peripherals.

The on-chip flash memory enables engineers to reprogram the microcontroller in the system, avoiding the need to remove and replace the device for software changes. Manufacturers can also build uncommitted production units and program the flash memory just before delivery. This can be used, for example, to set different languages in units destined for different countries. The flash memory also allows units to be reprogrammed in the field in incorporate new standards or product upgrades.

The $\mathrm{H} 8 / 300 \mathrm{H}$ CPU core has 32-bit internal architecture with sixteer 16 -bit general purpose registers and a concise instruction set designed for speed. Other on-chip functions include up to 4 Kbytes of ram, a 16-bit integrated timer unit, a programmable timing pattern controller, a watchdog timer, two serial comms interfaces, an 8-channel, 10-bit AD converter, a 2-channel, 8-bit DAC, 78 I/O pins, a DMA controller and a refresh controller. The H8/3048 series is supported by development software and a low-cost evaluation kit including a
development board with the device, a flash programming board and software, a GNU C compier and C debugger, a Windows debugger and a CD-POM with full documentation and tutorials.

The H8/3048 is also avazhe with prom or masked rom memory.

For further information contact Vince Pitt, Hitachi Europe Ltd., Whitebrook Park, Lower Cooktem Rd., Maidenhead, Berks SL6 8YA. Tel. 01628585163 Fax 01628585160.

MODSMODSMODSMODSMODSMODS

Issue 21997 Low Cost Digital Frequency Meter. In figure 2, D2 1N4148 should be the other way round. In figure 3, R15 should appear between X1 and pin 15 of IC1. Figure 4, the component layout, is correct.

Computer AutoSwitcher Issue 51997 In the bottom left hand corner of figure 2, a connection is shown between the neutral line and the 0 tap of T1 secondary. The connection should be between the 0 tap and the earth line immediately above it on the diagram. The PCB, and the component overlay shown in figure 3, are correct. A sheet listing the published MODS from the September 1996 issue of ETI onward's is available from Nexus House (see page 74) for an SAE or International Reply postal coupon.

Eprommer Eprom Programmer (Issue 7 1997). In figure 9 on page 55, the component labelled C15 should be IC13, the 317LP voltage regulator, with three connections, not two as marked. The tracks and pads on the PC8 foils are correct. In figure 6, page 54, the two "blank" pads just to the left of R3 are for an extra 10 nF spike-precaution capacitor between pin 28 of the eprom socket and ground. The references to figure 6 (the main component overlay) and figure 8 (case construction) are a little scrambled, but fortunately the two diagrams are not easily confused. In figure 6 , the through holes are marked by single pads with a black dot, not by an X as in the text.

PCB supplies for hobbyists

Etch-Tech Boards, PCB manufacturers specialising low volume PCB manufacture and services for hobbyists, have expanded by introducing a range of PC-based PCB design packages, as well as traditional artwork preparation materials. This means, says Etch-Tech, that they can offer a total PCB service to hobbyists who want to make their own boards, from the supply of PCB software and artwork materials, through to artwork generation and PCB manufacture.

For more information, write to Etch-Tech Boards, PO Box 1566, Salisbury, Wilts SP1 3XX.

Antique Wireless 155

The Antique Wireless Newsheet is out and about again. Editor Tudor Gwilliam-Rees, formerly of The Vintage Wireless Co. Ltd., is publishing news of manuals, magazines and service data from Savoy Hill Publications, 50 Middon St., Bideford, The Little White Town, North Devon EX39 2EQ. Tel/Fax 01237 424280.

Subscriptions are UK $£ 5$ for 12 issues, overseas $£ 7.00$ for 12 issues. Recognised clubs, magazines and societies, please write and enquire.

TODAY

The magazine for amateur radio
New equipment, scanners, packet radio, construction, dub news, views and much more.

This month in HRT:

On Test: Tiny handhelds

Yaesu VX-IR dual band and Alinco DJ-CI (vhf) and DJ-CA (uhf) transceivers. Chris Lorek gets to grips with the latest miniature franscelvers.

Study for the RAE on your PC

Paul Simpson GORUR reviews the Ludd Radio Amateur Examination Tutorial software by George Butler GABXU.

A Stomo $\mathbf{4 0 0 0}$ scanning modification

Gary Franklin G4GHD describes a simple drauit far a scanning function that automatically increments through programmed channels, stopping when it finds a busy channel. This could quite easily be used to give a scan function in any set which has an up/down button for channel changing.

Pyromid Eletronics Receiver Trainer

The edtionial team reviews a receiver trainer which contains all the building blocks required to build radio receivers.

All In A Day's Work

Harry Leeming GSLIL continues his series on a day in the life of an amateur radio repair shopkeeper.

PLUS

Radio Taday, Scanners for listeners, great value radio Software Offers, free readers' ads, band reports and more.

OUT NOW!

All confents are currently planned, but may alfer hatred oy Nexus Special interests Lid. Hemel thempstaad UK Newstrade Distibution by Comag Magazne Marketrog, Tavislock Road. Wes Draylon. Modessex UB7 $70 E$. 1e. 01895444055 . SubscriptorsiBack issues available tron: Nexas Subsciption Senices. Tower Houed Sovereign Park, Lathwill Street, Markot Harborought, Leicestershme LE 16 ger. Tel OIB58 435344.

The leading vintage wireless magazine INCLUDING IN THE AUG/SEPT ISSUE...

- A Lafayette HE-30 revived - Photography for collectors -
- Japanese transistor radios - a mini-history ${ }^{-}$
- The Grimeton dinosaur -
the last Alexanderson alternator transmitter Annual subscription (6 issues) $£ 18.50$ in the UK, $£ 19.50$ to Europe; $£ 23.75$ the rest of the world, by airmail, or send $£ 3.25$ or a US\$5 Bill for a sample

Also from the publishers of Radio Bygones ... books for the vintage collector and enthusiast
Watchers of the Waves by Brian Faulkner
A history of Maritime Coast Radio Stations in Britain over the past 100 years. 128 A4 pages with over 80 photos and 24 drawings.
Price $\mathbf{£ 1 3 . 5 0}$ to UK, $\mathbf{£ 1 4 . 2 0}$ elsewhere.
The Racal Handbook by Rinus Jansen
A review of Racal communications equipment - receivers, transmitters and ancillaries - from 1956 to 1975, mainly based on Racal technical sales literature. 102 A4 pages, with 59 photos and 24 drawings, plus specifications. Price $£ 13.00$ to UK, $£ 13.75$ elsewhere.

Comprehensive Radio Valve Guides

Facsimile reprints of books published by Bermards/Babani in the 1950s and ' 60 s. Among the most comprehensive and user-friendly valve data ever published, the five books deal respectively with valves produced during 1934/51, 1951/54, 1954/56, 1956/60 and 1960/63. English, European, American, USSR and Japanese types are covered. Each book contains between 40 and 56 A5 pages. Price $£ 2.95$ each to UK, $£ 3.25$ elsewhere, or the complete set of five for $£ 14$ to UK, $£ 15.50$ elsewhere. Handbook of Radio, TV, Industrial \& Transmitting Tube \& Valve Equivalents A companion to the above Valve Guides, listing commercial and military equivalents and comparables from both sides of the Atlantic. 60 A5 pages.
Price $\mathbf{£ 2 . 9 5}$ to UK, $£ 3.25$ elsewhere.

The Story of the Key by Louise R. Moreau

A reprint of a popular and profusely illustrated series from Morsum Magnificat magazine. 60 A5 pages.
Price $£ 3.95$ to UK, $£ 4.25$ elsewhere.
Wireless for the Warrior - Vol. 1 by Louis Meulstee A technical history of radio communication equipment in the British Army from Wireless Set No. 1 to No. 88.360 A‘4 pages with over 150 photos and 300 drawings.
Price $£ 27.75$ to UK, $£ 28.65$ elsewhere.
Wireless for the Warrior - Volume 2 (with more detailed information on WS $18,19,22,29,31,38,42,46,48$, $52,53,62,68$ and 88) is expected to be published towards the end of 1997. If you would like to be sent further details as soon as they are known, write to the address below.

All book prices include postage. Overseas prices are for airmail despatch to Europe, surface mail elsewhere.
Airmail rates to the rest of the world available on request.
Please make all cheques payable to G C Arnold Partners
G C Arnold Partners (E9), 9 Wetherby Close, Broadstone
Dorset BH18 8JB, England. Telephone/FAX: 01202658474

E1 BARGAIN PACKS

1,000 Hems appear in our Bargain Packs List request one of these when you next order. 12 V STEPPER MOTOR. 7.5 degree, pack of 1. Order Ref: 910
SCREWDRIVERS. Pack of 10. Order Ref: 909.
REELS INSULATION TAPE. Pack of 5. Order Ref: 911.

10A 40V BRIDGE RECTIFIER. Pack of 1. Order Ret: 889
LIGHTWEIGHT STEREO HEADPHONES. Moving coil so superior sound. Order Ref: 896.
25W CROSSOVERS. For 40 ohm loudspeakers, pack of 2. Order Ref: 22.
REED RELAY KITS. You get 8 reed switches and REED RELLAY KITS. You get 8 reed
2 coil sets. Pack of 2 Order Ref: 148 .
$12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ GVA MAINS TRANSFORMER. P.C.B. mounting. Order Ref: 938.
MINI MONO AMP. 3W into 4 ohm speaker or IW into 8 ohm . Order Ref: 495.
MINI STEREO 1W AMP. Pack of 1. Order Ref: 870.

0-1mA PANEL METER. Full vision face. 70 mm square. Scaled 0-100, pack of 1. Order Ref: 756. 12 V SOLENOID. Has good $1 /{ }^{\prime \prime}$ pull or could push if modified. Order Ref: 232.
6 V 1A MAINS TRANSFORMERS. Upright mounting with fixing clamps, pack of 2. Order Ref: 9. VERY FINE DRILLS. For PCB boards etc. Normal cost about 80p each, pack of 12. Order Ref: 128. MOTORS FOR MODEL AEROPLANES. Spin to start so needs no switch. Pack of 5. Order Ret: 134.

MICROPHONE INSERTS. Magnetic 400 ohm, also act as speakers, pack of 6. Order Ref: 139. NEON INDICATORS. In panel mounting holders with lens. Pack of 6. Order Ref: 180.
12 V ALARMS. Makes a noise about as loud as a car horn. All brand new, pack of 4 . Order Ref: 221 .
cat Car horn. All brand new, pack of 4. Order Ref: 221. OBLONG PUSH SWITCHES. For bell or chimes,
these can switch mains up to 5 A so could be these can switch mains up to 5A so could be
footswitch if fitted in pattress, pack of 2 . Order Ref: footsw
263.
MIXED SILICON DIODES. Pack of 50 . Order Ref: 293.

SHADED-POLE MAINS MOTOR. $\%^{*}$ stack, so quite powerful, pack of 1. Order Ref: 85. 5" ALUMINIUM BLADES. Could be fitted to the above motor, pack of 2. Order Ref: 86 .
LUMINOUS ROCKER SWITCHES. 10A mains, pack of 4. Order Ref: 793 .
BATTERY MODEL MOTORS. Tiny, medium and large, pack of 3. Order Ret: 35.
TEST PRODS FOR MULTIMETERS with 4 mm sockets. Good length, very flexible lead. Order Ref: D66.
PAXOLIN PANELS, size $8^{\prime \prime} \times 6^{\prime \prime}$, approximately $\%_{0^{\circ}}$ thick, pack of 2. Order Ref: D103.
PIEZO BUZZER with electronic sounder circuit, 3V to 9V DC operated. Order Ref: D76.
ROTARY SWITCH. 6 -pole 6-way, small size and 1/4"spindle, pack of 2. Order Ref: D54.
FERRITE RODS. $7^{\prime \prime}$ with coils for long and medium waves, pack of 2 . Order Ref: D52
DITTO but without the coils, pack of 3 . Order Ret D52.
SLIDE SWITCHES, SDPT, pack of $\mathbf{2 0}$. Order Ref: D50.
TELESCOPIC AERIAL, Chrome Plated, extendable and folds over for Improved FM reception. Order Ref: 1051.
MES LAMP HOLDERS. Slide on to $\%$ tag, pack of 10. Order Ref: 1054

PAXOLIN TUBING. 1_{10} intemal diameter. Pack of 2, 12" lengths. Order Ref: 1056.
HALL EFFECT DEVICES. Mounted on small heatsink, pack of 2 . Order Ref: 1022.
PAXOLINPANEL $12^{n} \times 12^{\circ}$. Order Ret: 1033
WHITE PROJECT BOX with rocker switch in top left-handed slde, size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted. Order Ret: 1006.
NEON PILOT LIGHTS. Oblong for front panel mounting, with intemal resistor for normal mains operation, pack of 4. Order Ref: 970.
WANDER PLUGS. Pack of 10. Order Ref: 986.
ANOTHER PSU. Mains operated, output 15 V AC at 320mA. Order Ref: 989.
230 V ROD ELEMENTS. 750 W Terminal-ended, 10° long, pack of 2. Order Ref: 943.
LOUDSPEAKER, 4° circular, 60 hm 3 W , pack of 2. Order Ref: 951.
PROJECT CASE. $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with removable lid, held by 4 screws, pack of 2 . Order Ref: 876.
SOLENOIDS, 12 V to 24 V , will push or pull, pack of 2. Order Ref: 877.

CROCODILE CLIPS. Superior quality, flex can be attached without soldering, 5 each red and black. Order Ref: 886.
$12 \mathrm{~V}-0 \mathrm{~V}-12 \mathrm{~V}$ IOW MAINS TRANSFORMER. Order Ref: 811 .
$18 \mathrm{~V}-\mathrm{VV}-18 \mathrm{~V}$ 10W MAINS TRANSFORMER. Order Ref: 813.

TOROIDAL MAINS

TRANSFORMERS

All with $220 / 240 \mathrm{~V}$ primary windling. $0-6 \mathrm{~V}+0.6 \mathrm{~V}$ at 50 VA would give
you 6 V at 8 A or 12 V at 4 A , you 6 V at 8 A or 12 V at 4 A ,
price $£ 5$. Order Ret: 5 PG 1.0 $30 \mathrm{~V}+0.30 \mathrm{~V}$ at 120VA would give you 30 V at 4 A or 60 V at 2A, price £8.
Order Ref: 8 PG2. $0-110 \mathrm{~V},+0.110 \mathrm{~V}$ at 120VA would give you 110 V at just over 8 A or 220 V at $1 / \mathrm{A}$, price $£ 8$. Order Ret: $8 \mathrm{PG} 3.0 .35 \mathrm{~V}+0$ 220 V at $1 / \mathrm{A}$, price $£ 8$. Order Ref. $8 \mathrm{PG} 33.0-35 \mathrm{~V}+\mathrm{O}$ -
35 V at 150 VA would give you 35 V at 4 A or 70 V at 35 V at 150 VA would give you 35 V at 4 A or 70 V at
2 A . Price $£ 8$. Order Ret: $8 \mathrm{PG} 9,0-35 \mathrm{~V}+0.35 \mathrm{~V}$ at 2A. Price $£ 8$. Order Ret: $8 \mathrm{PG} 9,0-35 \mathrm{~V}+0.35 \mathrm{~V}$ at
220 VA would give you 35 V at $6 \% \mathrm{~A}$ or 70 V at 3 KA . 220 VA would give you 35 V at $61 / \mathrm{A}$ or 70 V at 3 KA ,
price $£ 9$. Order Ref: $9 \mathrm{PG} 4,0-110 \mathrm{~V}+0-110 \mathrm{~V}$ at price $£ 9$. Order Ref: $9 P G 4,0-110 \mathrm{~V}+0-110 \mathrm{~V}$ at
220 VA would give you 110 V at 2 A or 220 V at 1 A . price $£ 10$. Order Ref: $10 \mathrm{PG} 5 \cdot 0.45 \mathrm{~V}+0.45 \mathrm{~V}$ at 500 VA would give you 45 V at 11 A or 90 V at $51 / 2 \mathrm{~A}$. Price £20. Order Ref: 20PG7. 0-110 +0.110 V at 500 VA would give you 110 V at 5 A or 220 V at nearly 3A. price £25. Order Ret: 25 PG7.
SUPER WOOFERS. A $10^{*} 40 \mathrm{hm}$ with a power rating of 250 W music and normal 150 W . Has a very heavy magnet and is beautifully made and finished by Challenger. Normal selling price for this is $£ 55+$ VAT, you can buy at $£ 29$ including VAT and carriage. Order Ref: 29P7. The second one is a $8^{\circ} 40 \mathrm{hm}, 200 \mathrm{~W}$ music, 100 W normal. Again by Chatlenger, price \&18,
Order Rei: 18P9. Deduct 10% from these prices if you order in pairs or are all brand new in maker's packing. SOLDERING
SOLDERING IRON

Super mains powered with long
life ceramic element, heavy duty 40 W for the extra special job. Complete with plated wire stand and 245 mm lead, £3, Order Ref: 3 P221.
DIGTAL THERMOMETER. Suitable for outdoors or indoors, has an extra wide temperature range $-50^{\circ} \mathrm{C}$ to +700 C , complete with heavy duty battery which should last several years. Its sensor can be outside, but with the read out inside, \&4, Order Ref: 4 P104.

12V RECHARGEABLE BATTERY. The Yuasa 2.3AH. whose regular price is $£ 15$, you can buy for $£ 3.50$ and with the normal 12 month guarantee. We understand these batteries have never really been used but have simply been installed as a reserve. Order Ref: 3.5P14, or 10 for $£ 30$, VAT and camage paid.
CHARGER FOR YUASA BATTERIES (the 12 V one which we are selling for $£ 3.50$). This battery charger plugs into a 13A socket, charges at approximately $\$ \mathrm{KA}$ so it would charge the battery ovemight Complete with croc clips, ready to go. 55. Order Ref: 5P269

DYNAMIC MICROPHONE. 600 ohm , plastic body with black mesh head, on/off switch, good length lead and terminated with audio piug, £2. Order Ref $2 P 220$.

ANOTHER 7 FERRITE ROD AERIAL. This is an extra special K° diameter with long and medium wrve cols. Price \&1 each. Order Ref: D203.
FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Secarate fixing base is ircluded so unit can be put away il desirable. Price $£ 5.00$, Order Ret. 5P267.
15W E* \& OHM SPEAKER AND 3" TWEETER. Anstrad made for their high quality music centre, E4 per par Order Pet. 4P57
LOCTITE METAL ADHESIVE, tube and some accessories 2 Order Ref. 2P215.
HIGH RESO UTHON MONITOR
HIGH RESOLUTION MONITOR, 9^{*} by Phillips, in metal frame for easy mounting. Brand new, offered at less than the price of the tube alone, $£ 15$, Order Ret. 15P1.
LCD 3x DIGIT PANEL METER. This is a multirange vormetor ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Suppled with full data sheet. Special snip price of \&12 Order Ret: 12P19.

SMART HIGH QUALITY ELECTRONIC KITS

All kits are complete with PCB and other components in a blister pack. We feel that most readers will know these kits but if you want more information about them, then we have copies of the illustrated Smart catalogue available, price $£ 1$, deductible if you order kits to the value of $£ 20$.

Cat. No.	Description	Price	Cat. No.	Description	Price
1003	5 watt electronic siren	2.53	1086	Musce-bo-light for your car	4.60
1005	Touch switch	2.87	1089	L.e.d. hasher 555 tester	1.61
1008	SF function generator	6.90	1090	Stress meter	3.22
1010	5 -input stereo mixer, with monitor		1093	Windscreen wiper controller	3.68
	output	19.31	1094	Home alam system	12.42
1016	Loudspeaker protection unit	3.22	1098	Digital therrnometer with I.c.d.	
1023	Dynamic headphone preamp	2.50		display	11.50
1024	Microphone preamp	2.20	1100	2×18 watt integrated amplifier	18.39
1025	7 watt hi-fip power amplifier	2.53	1103	Le.d. power meter	1.84
1026	Running lights	4.60	1106	Thermometer with l.e.d.s	6.90
1027	Nicad battery charger	3.91	1107	Electronics to help win the poois	3.68
1029	4 -sound electronic siren	3.00	1112	Loudspeaker protection with delay	4.60
1030	Light dimmer	2.53	1113	2×18 watt power amplifier	5.98
1035	Space sound effects	2.30	1115	Courtesy light delay	2.07
1039	Stereo VU meter	4.60	1118	Time swich, with triac, $0-10 \mathrm{mins}$	4.14
1041	25 watt hi-fi power amplifier	4.60	1123	Morse code generator	1.84
1042	AF generator $250 \mathrm{~Hz} \cdot 16 \mathrm{KHz}$	1.70	1124	Electronic bell	2.76
1043	Loudness stereo unit	3.22	1125	Telephone lock	2.68
1047	Sound switch	5.29	1126	Microphone preamplifier	4.60
1048	Electronic thermostat	3.68	1127	Microphone tone control	4.60
1050	3 -input hi-fi stereo preamplifier	12.42	1128a	Power flasher 12 v d.c.	2.53
1052	3 -input mono mixer	6.21	1133	Stereo sound-to-light	5.26
1053	Electronic metronome	3.22	TERMS Send cash, PO, cheque or quote credit number - orders under $£ 25$ add $£ 3$ service charge.		
1054	4-input instrument mixer	2.76			
1056	8-20V 8A stabilised power supply	12.42			
1057	Cassetto headphone preamplifier	3.22			
1058	Electronic car ignition	7.82			
1059	Telephone amplifier	4.60			
1060	+40V 8A power supply	8.28			
1062	5 V 0.5 A stabilised supply for TTL	2.30	Pilgrim Works (Dept E.E.)		
1063	12 V 2 A +12 V 0.5 Fer stabilisply supply	2.30 3.22			
1067	Stereo vu meter with leads	9.20	Stairbridge Lane, Bolney,		
1068	18 V 0.5 A stabilised power supply	2.53	Sussex RH17 5PA		
1070 1085	Video signal amplifier	2.76	Tel: 01444881965		
1085	D.C. converter. 12 V to 6 V or 7.5 V or 9 V	2.53		(Also fax but phone first)	

Crocodile migrates to Windows and Mac

Crocodile Clips circuit simulation software, widely used in UK schools for National Curriculum courses in Science and Technology, is now available for Apple Macintosh computers, and for Windows running on PCs.

Users can design and test their own circuits on screen with a range of components, in effect providing a software-based breadboarding system before real components are brought into use. Packages are also avaitable to allow the user to import Crocodile Clips circuits and use them to design PCB layouts.

The makers of Crocodile Clips believe that the software, which has proved useful in schools and industrial training, is also useful to constructors designing and making their own projects and PCBs.

Demonstration versions are available from the web site www.crocodile-clips.com/education/
or by calling 01312261511.

Police get one-touch computer comms in-car

Police in Lincolnshire are putting into action a county-wide installation of mobile data terminals with satellite-based location detection. This will allow the Force to pinpoint the exact location of their patrol cars, and allow Police Officers to access the Police National Computer from patrol cars.

The system, designed for Lincolnshire Police by systems integrators APD Communlcations of Aylesbury and Havantbased data storage and networking manufacturers Xyratex in partnership, will provide officers in up to 120 vehicles with direct live connection to central criminal records and car registration details, via purpose-designed ruggedised personal computers.

Superintendent Duncan Gerrard of Lincolnshire Police said, "Not only do officers have effortless access to key data on suspect vehicles and their drivers, but they can obtain this information directly from the PNC, within seconds, combined with direct despatch to incidents from the command and control system, linked to a full GIS mapping system. This speeds up their throughput, and dramatically decreases the number of voice request for information to the control centre, freeing up those operators to deal with other urgent requirements."

The in-car Mobile Data Terminal, deisgned and made by Xyratex, is a full-spec portable comuter capable or running all standard PC DOS and Windows-based applications. The Police units also have a new manoeuvrable LCD 7.4 in touch-screen mounted on the vehicle dashboard. The touch screen allows single-touch commands for one-man police vehicles, and can be angled to prevent visibility to others. The system has been rigorously tested to make sure that it is shock-proof, rugged and able to withstand extremes of temperature.

Tony Waddington, Special Accounts Manager at APD Communications, who designed the system, said, "This is the first operation system in the UK which offers fully-
integrated mobile data and vehicle location to a police force by utlising their own existing private mobile radio network."

For more information contact Damion D'Souza at Xyratex Tel. 01705486363 or Greg Wale at APD Communications Tel. 01296435831

GAS HOBS standard domestic units, new and boxed, 3 bumer yousehold gas, brown. Bargain lut $£ \mathbf{E} 12.95$ rol BAR316 INFRA RED FIL M 8^{*} square phen of faxobie intro red fim thet witit only ailow IR light through. Perfect for converting ordinary torches. ights, heedights etc to infra rec output only using standerd hight bube Easily cut to shape. 6 " square £15 ref IRF2 HYDROGEN FUEL CELL PLANS Loads of information on hydrogen storage and production. Prectical plans to build a Hydrogen fued cell (good workshop facilites required) E 8 set rel FCP1 STIRLING ENGINE PLANS interesting information peck covaring all aspects of Stirting engines, pictures of home made angines made from an eerosol can running on a candiol E 12 rof STR2 12V OPERATED SMOKE BOMES Type 3 ma 12 v trigger and 3 moke cannisters, each cannister will fill a roomina very ahort spece of timel E14.99 rel SB3. Type 2 is 20 imetor cannisters (sunable for simulated equipment fires otc) and 1 trigger modute for $£ 29$ rof SB 2 Type 1 in a 12 v trigger and 20 iarge cannisters E49 raf SB1 HI POWER ZENON VARIABLE STROBES Usetui $12 v$ PCB fitted with his power strobe tube and control electronics and speed control potentiometer. Perfect for imeresting projects atc $70 \times 55 \mathrm{~mm}$ 12 vdc operation. 58 ea ref FLS1, peck of 10 EAS M FLS2 NEW GEIGER COUNTERS IN STOCK Hand held Unit with CD screen, auto ranging, low battery alarm, audible 'licick' output. New and guarameed. 129 rof GE
RUSSIAN BORDER GUARD BINOCULARS $£ 1799$ Probably the best binocutars in the worldi ing for colour brocture RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER. Exceptional coverage of 9 wave bands, (5 thort. 1 LW, FM. 1MW) intermal fernte and external telescopic eorime. mainal Entiery. E45 rel VEGA
NEW LASER POINTERS $4.5 \mathrm{mw}, 75$ motre range, hand heid unit runs on two AA batteries (supplied) 670 nm . $£ 29$ rof OECA 9 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehentive 270 pege book covers all aspocts of spirt production fromeverydiry meterieie inctudes construction details of simple stilis etc £.12 rof MS3
NEW HIGH POWER MINI BUG Win a range of up to 800 metres and a 3 days use from a PP3 this in our top seling bugl lees than 1" equere and a 10 m voice pickup range. E28 Ref LOT102 BUILD YOU OWN WINDFARM FROM SCRAP Now publication gives step by step guide to bulding wind genarmors and propellors. Armed wht this publication and a good local scrap yard could make you soll eufficient in evectrictyl $£ 12$ ref LOTA
PC KEYBOARDS PS2 connecior, top querity suitabie for an $288 /$ 386/486 etc £ 10 rof PCKB. 10 for £65
NEW LOW COST VEMICLE TRACKING TRANSMITTER KIT £29 range 1.5-5 miles, 5,000 hours on AA betteries, transmiks info on car dirsction, wen and right tums, start and stop informetion. Worke whit any good FM radio $£ 29$ ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brind new tafion lock and latch assembly with both Yrie type lock (keye
*NEW HIGH POWER WRELESS VIDEO AND AUDIO BUG KTT $1 / 2$ MILE RANGE Transmits video and audio signals from a minature CCTV camera (included) to any standard tetevisiont Supplied whth telescopic serial $£ 189$
CCTV PAN AND TILT KITMotorize your CCTV camere whit this simple 12 vock kit. 2 hermontically sealed DC inear servo motors 5 mm threeded oulput 5 sece stop to stop, can be stopped any whers, 10 mm travel, powerful, $£ 12$ ref LOT125
CCTV CAMERA MODULES $48 \times 70 \times 29 \mathrm{~mm}, 30 \mathrm{grams}, 12 \mathrm{v}$ 100 mA . quto eiectronic shutter, 3.8 mm F2 Iens. CCIR. 512×492 pixate, video oulput is $9 \mathrm{vp} \mathrm{p}-\mathrm{p}(75 \mathrm{ohm})$. Works directly into ascart o video input on a tv or video. IR sensitive, $£ 79.95$ rof EF137 IR LAMP KIT Suhbbis for the above camera, enebles the camera to be used in totel danknesel E8 rol EF138
UK SCANNING DIRECTORY As supplied to Police, MOO,M15 and GCHOL coverers everything from secren govemment frequencies oye in the eky, prisons. mitiary aviation etc $£ 18.50$ rer SCANB INFRA RED POWERBEAM Handheld battery powered lamp, inch reflector, gives out powerful pure infrered lightl perfect for CCTV use, nightrights etc. £29 ref P81.
SUPER WDEBAND RADAR DETECTOR Detects both redar and laser, X K and KA bends, speed camerts, and all known

CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER OPTICS

Doublo beam unit fer taser hatener, long range communications elc has two semi conductor lasers and motor dive units for aifonemem? mile range, no circuit diagrams due to MOO , now price $£ 50.000$ us? C198. Eech unk has two getlum Arsenide injection lesers. 1×9 watt 1x 3 watt, 900 nm waveiength. $28 \mathrm{vdc}, 600 \mathrm{hz}$ piter frequency. The unith aiso contain en electronic receiver to detect refected signats from targeta. £198 for one. Ref LOT4.
NEW LOW PRICED COMPUTERWORKSHOP/HIFF RCB UNITS Complete protection from faulty equipment for overybody! Intine unit fits in standard IEC lead (extends il by 750 mm) fitted inl less than 10 socondes, reselrest buttion, 10 A rating. 88.99 each ref LOTS. Or a pack of 10 at $£ 49.90$ ref LOTQ. If you want a box of 100 you can have one for $£ 2501$
TWO CHANNEL FULL FUNCTION E GRADE RADIO CONTROLLED CARS From Word famous manutacturer these are rotums so they will need attention (usualy physical domaga) cheap way of buying 7 X and RX plus sorvos etc for new projects etc. $£ 12$ eech sold as seen rel LOT2.
MAGNETICCREDIT CARDREADERS AND ENCODING MANUAL 59.95 Cased with tyeeds, designed to read utandard credit carda! complete whit controt elctronica PCB and manual covering overthing you could want to know ebout whats hididen in than magnetic ethp on your awrd! just $£ 9.95$ rof BAR31
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collored 140 business manuils that give you information on setting up different ousinesses, you peruse these
your hisure using the text editor on your PC. Also inctudisd is the contincas enabing you to reproduce (and seil) the manustr as much an you likel E14 rel E97
HIGH POWER DC MOTORS, PERMANENT MAGNET 12-24v aperation, probably about $1 / 4$ horse power, body meazures 100 mx 75 mm with a $60 \mathrm{~mm} x 5 \mathrm{~mm}$ output shef whit a mechined 4 - on Fiang is simple using the two threaded bots protuding from fie fron of the molor $4 \mathrm{~mm} \times 12 \mathrm{~mm}$). These mators are perfect for mode ongineering tot they may oven be suilable as a cycle motor? We exper high dernand so iy you woudd like one or think you may require one in the IECTROMIC SPEED COMTROL 10 pack $£$ ies ru motse ELECTRONIC SPEED CONTROLLER KIT For the above motoris £19 تIMAG17. Savef5 if youbury them both together, 1 motor plus speed controlier Tp is E41, offer price $£ 38$ ref MOTSA RUSSIAN 900 X MAGNIFICATION ZOOM MICROSCOPE metas condruction, buit in light, mirror cte. Rustian shrimp farml, group viewing screen, lots of accessories £29 rel ANAMT
AA NICAD PACK Pack of 4 tegged \mathcal{M} niceds $£ 2.99$ rol BAR34 RUSSIAN NIGHTSIGHTS Model TZSA whith infra red luminetor, views up to 75 metres in full derknoss in infrared mode. 150 m range. 45 mm lens, 13 deg angte of view, focussing range 1.5 m to infinity. 2 A atteries required 950 g weight. $£ 199$ ref BAR61. 1 yoers werrumy LIQUID CRYSTAL DISPLAYS Bargain prices, 20 character 2 line, $83 \times 19 \mathrm{~mm} £ 3.99$ ref SMC2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC1640A TAL-1, 110 MM NEWTONIANREFLECTOR TELESCOPE Russien. Supert astronomical 'scope, everything you need for some Rusaim. Supert astronomica 'scope, everything you need for some senous star gazingl up to 189x megnificabon. Send or YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprethenatve plans wath loads of info on designing systems, panets, control electronics otc $£ 7$ fef PVI

COLOUR CCTV VIDEO CAMERAS, BRAND NEW AND. CASED, FROM E99 Works with most modern video's, TV's, Composite monitors, video grabber cards etc Pal, iv P-P, composite, $750 \mathrm{hm}, 1 / 3 "$ CCD, $4 \mathrm{~mm} \mathrm{F2.8}$, $500 x 582$, 12 vdc, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ monthe warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$
YUASHA SEALED LEAD ACIDS FROM $£ 2.50$ 12v 6.5Ah ex equipment batteries to clear at just $£ 9.99$ for a pack of four! ref $X X_{1}$

A MAGNET THAT LIFTS 33 KILO'SI

Just in this week are these incredible magnets that lift 33 killo'sl Price is $£ 14.99$ ref MAG33 25 SQUARE FOOT SOLAR ENERGY BANK KIT 1000 50° 8v Amorphous 100 mA paneis, 100 diodes, connection details etc to bunde \& 25 square foot solar coll for fust £99 rol EF 112 CONVERT YOUR TV INTO A VGA MONITOR FOR £25! Converts a colour TV into a besic VGA screen. Complote with builit in pau, ead end a ware. Ideal for laplops 0 a cheap upgrede. Suppliod in kif form for home assembty, SALE PRICE $\{25$ REF SA34 -15 WATT FM TRANSMITTER Aroedy ensombled but some RF knowiedge will be usoful for serting up. Preamp rea'd, 4 atage $80-$ 108mhz, 12-12vocc, can use ground phene, yapier dipote $£ 69$ rod 1021 - 4 WATT FM TRANSMITTER KIT SMall Dut powofu FM Trensmitter het 3 RF stages. mic 8 audio preamp induded c24 row 1028 YUASHA SEALED LEAD ACID BATTERIES 12V $15 A H$ \& E18 rof LOTB and below spec 6 V 10AH Et 5 a per ELECTRIC CAR WNDOW DE-ICERS Complete with cable plug otc SALE PRICE JUST E4.99 REF SA28 AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ zolar ponel wht diode end 3 metre lead fixed with a clgar plug. 12v 2wmit. E12.04 REF AUG1OP3. SOLAR POWER LAB SPECIAL You get $28^{-} \times 8^{-}$6v 130 ma cenls, 4 LEO's, wirs, burzer, switch +1 rotay or molor, $\mathbb{\text { C7 } , 9 9 \text { REF SA27 }}$ SOLAR NICAD CHARGERS $4 \times$ MA sce $£ 9.99$ ret 6 P470, $2 \times$
BULLELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 SQT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUI WITH ORDER PLUS 53.50 Pap PLUS VAT. 24 HOUR SERVICE £4.50 PLUS VAT. overseas orders at cost plus e3.50
'phone orders: 01273203500
(access, visa, swicib, american exprrss)
FAX 01273323077
E-mail bull@pavilion.co.uk

Cstre 59.99 nf 6 4 477
GIANT HOT AR BALLOON KIT buid a 4.5 m drcumfrence. fuly functioning beloon can be launched with home mede bumer etc Reutabie (untel you loose il) £ 12.50 rel HA1
AR RIFLES. 22 As used by the Chinese army for training puposes, so there ie a lot about £39.95 Ref EF78. 500 peltots 54.50 rof EF80. -NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT. Trememies both audio and video signele from either a video cervera, vimo recorder, TV or Computer etc to any standerd TV set in a 500 m renged oune N to channei 31) 12vDC
9. Phe is £6S REF: MAG15 12v psu is £5 extra REF: MAGSP2 - MINA TURE RADIO TRANSCEIVERS A peir of walkie taikies mierenge uplo 2 kmin open country. Units measure 22x52x155mm. modving cases and earpcas. 2xPP3 req'd. £37.00 pr REF: MAO30
-FIM TRANSMITTER KTT moused in \& standerd morking 13A atyont! tow bug nome directly off the mains so tasts foreveri why pay E7con or phice ib E16 REF: EF82 (kUt) Transmite to any FM radio. But end hered verion now avaidable at E45 ref EXM34
-FM BUG BUILT AND TESTED supentor design to thi Supplied so denctio cincine Iv boltery req'd. E14 REF: MAG14 GAT AR PISTOL PACK Compiete with pistal, dents and pellots

MEAT PUAMPS Theee are manse operated er to air units that consist ef a eturinum pise (coolng side) and a rediator (warming side) connsoledtopether with eompres kor . The plate if inserted into water athanae Probenty chovi 3-400 wetts so could produce 1 kwinideal
3 FOOT SOL AR PANEL Amorphous siticon. 3^{3}. 1^{\prime} housed in on

SOLARWND REGULATOR Prevents betteries from over Sheite Onfactingenpecity the regutetor diverts excess power into nues evoding samege. Max power is 60 wetts. 227,99 rel SICA11-105 4×28 TELESCOPIC SIGHTS Sutable for all et niles, ground

NICAD CMURGERS AND BATTERIES Standard universel mopectore takes 4 butz +1 PP3, £ 10 rof PO11D.

PHOTOGRAPHIC RADAR TRAPS CAN COST YOU YOUR LICENCE! The new mutibend 2000 radar defector can provert even the mopt responsitio of onvers from losing then licence! Ahn. b entem whit fieahing leds gives instant warning of
 reore cones Dwocis $X K$ and Ka bands, 3 mile range, 'over the $n i$ Can pey for entis ht ono doy $£ 89$ ref EP3.
STEREO MCROSOPES BACK IN STOCK Ruseian, 200x congly witas fiterl atc very comprehonaive maroccope sax moud nomily be around the $£ 700$ mank, our price
 SECOND GENERATION NIGHT SIGHTS FROM £748 RETROM Rumien nien sight 1.8 x , infra red lemp, 1 om-inf, stendard M2 man s.tng E349 wr RET।
MWNS MOTORS 180 RPM $90 \times 70 \mathrm{~mm}, 50 \times 5 \mathrm{~mm} 50 \times 5 \mathrm{mmoutput}$ shat mor ons notuen Eza ref MGM1
PC POWER SUPPLIES, CUSTOMER RETURNS, ALL FAN COOLED, OURCHOICE, BARGAIN AT 8 PSU'S FOR £9.99 REF XX16

LOW COST CORDLESS MIC SOO renge . $90-105 \mathrm{mhz}$. 115 g . 183 n 28 n 3 JUMBO LED PACK 1510 mm bloctour leds. pluas 5 gient (55 mm)
 eevin seg en pebe E19 ref LED 4 , pack of 50 E31 rel LED50 1ZVDC 4OMM FANS MNE BY PANAFLO, NEW.E4.REF FAN12

WIND GENERATORS 380 WATT

1.14 mave die biedees. carron matrux bladee. 3 yeer warranty, 12 vdc arpue. 2 av verion avaliolio control eiectronics included, brushtess neodyrinencitic curve atiemitor, onty yomoving parts, maintenence thes impte root top instelletion, stan up speed 7 mph . max outpen (30 mph) 380 w . £499 ref A|R1

Check out ourWEB SITE
 full colour interactive
 1997 catalogue

http://www.pavilion.co.uk/bull-electrical
FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
SURPLUS STOCK LINE 0802660335

SETI and the
 AMATEUR RADIO

Astronomer

The Search for Extra-Terrestrial Intelligence is now in the hands of Amateur Radio astronomers. H Paul Shuch describes the aims and the sky-search activities of the SETI League

The electromagnetic Search for Extra-Terrestrial Intelligence (SETI) has been the subject of considerable interest and attention within the amateur radio astronomy community, ever since the United States Congress terminated the NASA SETI
program in 1993. I am going to discuss the more tangible aspects of amateur SETT, emphasising the similarities and differences between a SETI station and a typical radio telescope. It will become clear that amateur radio astronomers aready possess much of the equipment and expertise necessary to mount a scientifically credible SEll effort. Just as optical astronomers are responsible for the discovery of most comets, the amateur radio astronomer should be in an ideal position to be the first to detect coherent signals from distant, technologically developed civilisations.

Early SETI

The notion of humankind's uniqueness in the universe had been challenged by philosophers since before Copemican times. Nevertheless, it is only within the twentieth century that the existence of other technologically advanced cimilisations in space has become a possibility accepted within the scientific establishment, and far more recently still that the feasibility of detecting such other civilisations has entered mainstream thinking.

The first scientific paper seriously contemplating surveying nearby stars for intelligently directed microwave signals, Searching for Interstellar Communications by Cocconi and Morrison was published in 1959 (Nature 184 pp 844-846, 19 September 1959). Unbeknownst to the authors, as they were writing their pivotal paper, a young radio astronomer was preparing to perform the very experiment that they were describing. That scientist, Dr. Frank Drake, launched his Project Ozma search from the National Radio Astronomy Observatory (NRAO) facility at Green Bank, WW in 1960, ushering in the era of modem SETI.

Project Ozma must be considered the very first SETl study: it surveyed two nearby sun-like stars, for just a few weeks, at just one frequency, and detected no extra-terrestrial intelligent signals. Nevertheless, Ozma served as a model for dozens of later SETI projects.

The world's first SETI meeting was convened at Green Bank by Dr. Drake in 1961. As the agenda for that conference, Drake drafted an equation for estimating the number of possible communicative technologies in the cosmos. The Drake Equation is today the primary probabilistic tool whereby SETI scientists assess their prospects of success. Drake himself considers it a way of quantifying our ignorance. The exact equatlon is worthy of a chapter of its own, and in fact whole books have been written about it. Suffice it to say that its seven factors encompass cosmology, planetology, atmospheric science, evolutionary biology, psychology, technology, and sociology. Thus SETI is possibly the most interdisciplinary of all sciences.

In the nearly four decades between that first meeting and today, of the order of fifty different SETI projects have been conducted around the world, with frequency coverage extending throughout the microwave, millimetre-wave, and optical spectra. These searches have been attempted by Govemment agencies, educational institutions, non-profit scientific organisations, and, more recently, by amateurs.

Although no definitive proof of extraterrestrial intelligence has yet been received, SETI has achieved scores of tantalising hints that such signals might indeed exist. Many candidate signals have been attributed to terrestrial, aircraft and satellite interference, others to equipment malfunction and natural astrophysical phenomena, but a few defy explanation. Since these signals have failed to repeat or otherwise eluded our attempts at verification, we can draw no conclusion save that there is much to be learned about the universe we inhabit.

The Sky Survey - Amateur SETI's Rightful Role

Before its funding was terminated by Congress in 1993 NASA's SETI program consisted of two distinct but complementary research elements: a targeted search of nearby sun-like stars, and an all-sky survey for interesting signals of unknown origin. The former, which involves aiming at likely candidate stars for long periods of time, is well suited to large, steerable dishes with their narrow beam-widths and high sensitivities. If we guess right as to which stars constitute likely candidates, the targeted search will provide us with the greatest likelihood of immediate

Figure 1: block diagram of a typical amateur SETI station, by SETI league member Daniel 8 Fox

Smaller antennas can see more sky within their beam patterns, but have correspondingly less gain. We achieve reasonable sensitivities throvign A digital signal processing, but the antennas need to remain fixed on their targets for relatively long integration times. Fontunately, when used in meridian transit mode, small antennas, with their relatively wide beam-widths, provide us with far greater signal acquisition time than do the larger antennas typically used for targeted searches.
The sky survey approach seems ideally suited to the community of amateur radio astronomers desiring to pursue SETI. The non-profit, membership-supported SETI League, Inc. has designed and initiated just such a sky survey. A grass-roots effort which will ultimately grow to thousands of amateur radio telescopes worid-wide, the SETI League's Project Argus sky survey was initiated in April of 1996. When fully deployed early in the next century, it will provide (for the first time ever) real time full-sky coverage, looking in all directions at once, across all four pi steradians of space.

Selecting the magic frequency

Our Earth is currently surrounded by a sphere of microwave radiation roughly fifty light years in radius, which is readily detectable over interstellar distances utilising technology such as is today available to amateur radio astronomers. This radiation, emanating primarily from our planet's UHF TV transmitters and long range search radars, would mark our planet as inhabited to any similar technological society within fifty light years. Within that range are found hundreds of stars, tens of which are sufficiently sun-like to probably host one or more habitable planets.

The distance over which we are detectable is limited only by the time since we first began transmitting sufficiently strong signals in the appropriate frequency range. Fifty years from now, we will be detectable out to 100 light years distance. At that point our signals will have engulfed thousands of stars, including hundreds of potential life sites. With every successive doubling of elapsed time (out to 1,000 years or so), the number of civilisations which our radlation signature can potentially reach goes up by a factor of eight. Sooner or later, our signals may well reach a distant radio telescope.

SETI hypothesises that other technological civilisations are similarly surrounded by a detectable sphere of microwave radiation, the radius of which will be limited only by the length of time such civilisations have possessed sufficiently advanced radio technology. We depend upon our ability to intercept and recognise (though not necessarily decode) such a radiation signature to achieve the existence proof of other intelligent civilisations which SETI seeks.

The problem with seeking incidental radiation is that the unknown factors exceed the known. We can only guess as to where physically to point our antennas, when to listen, and on what frequency. The time dimension is resolved by starting to look now, and continuing until we detect something noteworthy. A large enough number of coordinated stations, effectively looking in all directions at once, resolves the pointing uncertainty. And we can narrow the search space in the frequency dimension by recognising the range of frequencies which are least attenuated by planetary atmospheres and the interstellar medium. This, however, leaves us with most of the microwave spectrum, and much of the optical, as likely frequencies.

Since there are no "wrong" frequencies to search, The SETI League has avoided establishing a policy of dictating search frequencies to Project Argus participants. One person's guess is as good as another's, so whatever frequency at which you can assemble a workable radio telescope is fair game. Amateur radio astronomers have long explored the $406 \mathrm{MHz}, 610 \mathrm{MHz}, 1.42 \mathrm{GHz}$ and 10.6 GHz radio astronomy bands, and I can think of no good reason why they should not pursue SETI in those spectral regions as well.

The foregoing, however, applies only to the problem of scanning for incidental radiation from the distant civilisation. What if another intelligent race were making a deliberate, concerted attempt to signal its presence to its interstellar neighbours? Is there a particular frequency, or range of frequencies, which would be self-evident to the receiving clvilisation? Can we narrow the search space?

Cocconi and Morrison thought so when they published their 1959 Nature article. They reasoned that 1420.405 MHz , the precession frequency of neutral hydrogen atoms, was a good place to start looking for deliberately beamed interstellar beacons. This frequency, which falls in the quietest part of the radio spectrum, is marked for all to see, by nature herself There is nothing geocentric about hydrogen radiation; perhaps, they reasoned, selecting it for interstellar communication is a mark of intelligence, in and of itself

Drake had arrived at the same conclusion independently, and indeed monitored a narrow band of frequencies encompassing the hydrogen line (also known as H 1) during his Project Ozma search. Today, nearly four decades later, the hydrogen line region still looks like a good bet to many SETI professionals.

Fortunately for amateur SETI, much amateur and professional radio astronomy already goes on at the hydrogen line. Equipment for use at this frequency is abundantly available, and much of it can be readily adapted to SETI use. There are indeed other likely "magic frequencies" which are being scanned for signals of possible intelligent extraterrestrial origin, and once again, one person's guess is as valid as another's. Nevertheless, many of the world's amateur radio astronomers are already scanning the hydrogen line for natural astrophysical phenomena, and it's a small step to make their receivers search for artificial signals as well. The following sections discuss the hardware, software, and human considerations of amateur SETI.

Figure 3: The business end of the first Project Argus radiotelescope. The VDU is showing a hydrogen line weak signal source (visible in the photo) for system testing. The Icom 7000 receiver, and a multimedia laptop computer for digital signal processing are also part of the station. (Photo: Gerry Fleming)

Figure 4: An anomalous signal detected by SETI League members Trevor Unsworth and Ken Chattenton at 1472.5 MHz using a home-made 3.5 metre dish. The signal exhibited digital modulation, with a 270 Hz bandwidth. Its Doppler shift of -25 $\mathrm{Hz} / \mathrm{min}$ marks it as RFI from a low earth orbit (LEO) satellite. Though clearly not of extra-terrestrial origin, this signal gave Project Argus its first real workout, testing both the sensitivity of our receiving stations, and our ability to recognise terrestrial and satellite interference. (Image by Trevor Unsworth GOECP, by permission.)

What is The Drake equation?

Is there a way to estimate the number of technologically advanced civilisations that might exist in our Galaxy? While working at the National Radio Astronomy Observatory in Green Bank, West Virginia, Dr. Frank Drake conceived a means to mathematically estimate the number of worlds that might harbour beings with technology sufficient to communicate across the vast gulfs of interstellar space. The Drake Equation, as it came to be known, was formulated in 1961 and is generally accepted by the scientific community.

$$
N=R^{*} \text { fp ne fififc } L
$$

where
iN = The number of communicative civilisations $\mathbb{R}^{*}=$ The rate of formation of suitable stars (stars such as our Sun) ïfp = The fraction of those stars with planets. (Current evidence indicates that planetary systems may be common for stars like the Sun.) ïne = The number of Earth-like worlds per planetary system ifl = The fraction of those Earth-like planets where life actually develops iffi = The fraction of life sites where intelligence develops ifc = The fraction of communicative planets (those on which electromagnetic communications technology develops) i . = The "lifetime" of communicating civilisations.

Frank Drake's own current solution to the Drake Equation estimates 10,000 communicative civilisations in the Milky Way. Dr. Drake, who serves on the SETI League's advisory board, has personally endorsed SETI's planned all-sky survey.

Quoted by permission of Steve Ford, WB8IMY, from QST, August 1995, page 38.

SETI with a radio telescope

"I already own a sensitive radio telescope," many an amateur radio astronomer has noted. "Why can't I use it for SETI?" The short answer is, you canl. An antenna and preamplifier adequate for radio astronomy might potentially detect intelligent signals from space. To achieve this adequate sensitivity, we design the preamplifier circuitry so as to generate minimal device and thermal noise.. And we design the antenna so as to minimise the noise contributions of our warm planet, instead responding primarily to the cold sky above. Most any successful radio telescope meets these conditions. But for SETI, we also need to pay special attention to the receiver, and the post-detection hardware and/or software, if we are to maximise our admittedly slim chances of success. This section will deal with receiver considerations. Signal processing is addressed in the section which follows.

Any amateur (or professional) radio astronomer pointing a sufficiently sensitive radio telescope at the sky will encounter a wide variety of naturally occurring radio phenomena. Prominent among these will be solar vadiation, or sun noise, which spans the spectrum. All stars emit this broadband signal, though it will be most pronounced, and most easily detected, from our nearest stellar neighbour. In addition to solar noise, Hi radiation emanates from the rougtly one hydrogen atom found per cubic centimetre of intersteHar space. While concentrated at the $21 \mathrm{~cm}(1420 \mathrm{MHz})$ line, t is Doppler shifted both up and down in frequency by the random motion of the interstellar medium.

Though hydrogen domnates all of space, countless other atoms and molecules, both inorganic and organic, permeate the interstellar medium, and many emit characteristic signals which are símilarly Doppler shifted across the spectrum. These natural emissions, the signats which radio astronomy seeks, are present in receivers pursuing SETI as well, but in this case represent not signals at all, but potential interference.

Fortunately, all known naturit radio phenomena emanating from space are inherently broadband in nature, none being narrower than a few hundred $\mathrm{ld}-\mathrm{lz}$. Intelligently generated microwave signals, on the other hand, are characterised by their relative spectral purity or coherence, and (depending upon their modulation mode and information content) might be very narrow band indeed. So spectral coherence is one of the hallmarks of artificiality which SEII seeks, and which helps us to distinguish between a SETl signal and natural "noise."

Most microwave receivers used for classical radio astronomy tend to be relatively broadband. If the signal energy we seek represents a natural astrophysical phenomenon (which we can expect to occupy a broad slice of spectrum), then it makes good sense to employ broadband receivers, so as to intercept as much as possible of the signal energy. Such is not the case for SETI.

Narrow band "bins"

SETI tends to utilise extremely narrow-band receivers \{only at the post-detection level. That is, our radio frequency (r f $)$ circuitry might scan wide spectral expanses, but we process the received signals in some way, into very narrow channels or "bins", in search of artificial phenomena. These bins tend to be tens of Hertz to tenths of Hertz wide. This has significant implications if we try to adapt existing (presumably broadband) radio telescopes to SETI.
We could, for example, modify any superheterodyne radio astronomy receiver for narrow-band reception, simply by adding a narrow if (intermediate frequency) filter. But unless the

DIFFERENTIAL THERMOSTAT KIT P erfect for heatrecovery. soter systems. botter efficiency otc. Two sensors will operate a relay E29 ret LOT93

PC POWER SUPPLIES PACK OF 8 FOR $£ 9.95$

Thats rightd 8 power supplies for $£ 9.951$ These are all fan cooled (usually 12v) our choice of specs etc, and are sold as seen. But worth it for the fans alonel ref XX17
MANS POWER SAVER UK made plug in unk, mted inseconds, can reduce your energy consumption by 15\%. Works with mages soldoing mons, convertional bulbs etc. Max $2 A$ rabing $\varepsilon 9$ each ref LOT11, peck of 10 £80 rel LOT72
DC TO DC CONVERTERS
ORM58 mpun $10-40$ vade output $5 v 8$ \& $£ 15$ DRM 128 input 17 - 40 valc
 DRM248 input $29-4$ OVdc output 24 V BA $£ 12$ ORS 123 inpun $17-4$ Ovdc outpout 12 V 3 A £10 ORS 153 input $20-40 \mathrm{vdc}$ cutput $15 \mathrm{~V} 3 \mathrm{~A} £ 20$ DR $\$ 243$ input $29-40 \mathrm{vdc}$ output 24 v 3 A EB
HITACHI LM225X LCD SCREENS $270 \times 150 \mathrm{~mm}$, wanderd 12 way connectar. 640×200 dots, tec spec anver. \&15 eech rel LM2 HOME DECK CLEARANCE These units must be cleareor
 UHF moduiato, a standard 120077 BT Epproved modem ano loads of chipe, capections, diodes. resistors etc all for hest £10 ref BAR33 PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simpleand cheap way to buid a home X-ray mectina! Effective dovico, X-ray ymied assembties cmin be uvedor experimema

TELEKINETIC ENHANCER PLANS My aty and amaze your friends by creating motion with no known apparant means or cause. Uses no etsctricicl or mechenical connectione. no speciel gimmicks ye produces positive motion and effect Excetent tor science profects, megic show. party demonsureforns or revious research \& developmen of this strange and amazing phycric phenorrenon.
EAser Ref FTTKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data ahows soverd wayato puts ubjects under your controt includedi a a full volurne reference text and severay construction plans ther when easemblec can produces highly elfective stimuli Thib materiai must be

GRAVITY GENERATOR PLANS Tils unlque plan demenstrates a simple efiecticai phenomene the produces an antrgravity offect You can sctuany buitd 1 amal mock spaceship out or simple materiess and whour ny veito means-cause l lo lovitate. E10/sol Rel F/GRA9
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Procuces up to 750,000 volis of discharge, experiment with extreordinery HV effects.'Plasma in a jer. St Empis fire Corons, excement acence proied or converseston pinco E5/sel Rof F/BTC1 $G 5$
COPPER VAPOUR LASER PLANS Produces 100 mm of visibie green light. High coherency und apectral quatity yimiler to A rgon taser but easier and less costy to butd yer tar more enciont This particuiar dosign wes developed at the Atomice Energy Commwion of NEGEV i isreed E. $10 / \mathrm{zel}$ Rod FICVL 1.
VOICE SCRAMBLER PLANS Mindure sobd stete system tums speech sound intoindodipherwile nase the cervot bs underzood without a second melching unit Use on weiephone to provert third perty fireening and bugging. fB/ sel Rel FNSe.
PULSED TV JOKER PLANS Linte hand ned device utives pute techniques the will completely dierupt TV pativa and soun works on FM Iof DISCRETON ADVISED. Esivel Re FITJ5
BODYHEAT TELESCOPE PLANS Mimaty arectione long range device uses recent technology to dered the prosence of thing bodies, warm and hot spots heat leaks me Imended for securty, lew or verco intersting science profoct. E\&/sel Ref F/BNT1.
BURNING, CUTTING CO2 LASER PLANS Profects an invisibie beam of hearicapable of buming and moting mererias over a considerable dissance. Thim laserferene of the most emiciem, converting 10% inpur power into usef wi Outpur Not only is this device a worthorse in welding. Cutting and hem processsing materises but ith theo a ikely candidete as an effective dirscted energy boem wespon apsinst miseites, sirctraf, ground-to-ground, etc. Peritice beams may very woil
 onergy stream of neutrons or other perticien The coevice in easiny apolicabie to buming and etching wood. Cutting, plasilck, bxtibes etc E12/sol Rof FnC7
OYMAMO FLASHLIGHT Interesting concept, no bationes needed just squeeze the trigger for instant light apparenthy even works under wart in an emergency athough wa havent tried hyet! 8899 rol SC152 ULTRASONIC BLASTER PLANS Laboratory source of conic hock waves Blow hotes in mena, produce cold' syeam, meomize ofc EB/Bed Ref F NLBI.

Water pump motors, mains powered, $165 \times 75 \mathrm{~mm}, 5 \mathrm{~mm}$ shaft. £ 6 ea ref MM10.

Pack of $\mathbf{3}$ for $\mathbf{1} 12$ ref MM11.

ANTI DOG FORCE FIELD PLANS Highly effective circum roduces time variabie pulses of accoustical energy that dogs cannot oierate £6/set Ref FIDOG2
LASER BOUNCE LISTENER SYSTEM PLANS Alows you ohear sounds from a premises without geining access. $£ 12 / \mathrm{sel}$ Ref FI LLIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has terge transducer and bertery capacty whe exteme controis. £6/mer Rel F/PSP4
INFINITY TRANSNITTER PLANS Teleptione ine grabberi rom monitor. The ulbimate in homelofice securtly and satery! simple to usel Cal your horne or office phone, puah a secred tone on you elephone to access either. A $\mathbf{~ O n}$ premises sound and voices or B) Existing conversetion whit break-in cepabiliy for emergency meeseges. $\Sigma 7$ Ref FITELEGRAB.
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of redio mergy! Snifts out and finds bugs and other sources of bothersome merterence Defects low, high and UHF frequencies $£ 5 /$ set Rof F BD1.
ELECTROMAGNETIC GUN PLANS Proiects a metat object Consider distanco-requires aduil supervision E 5 ref FIEML. 2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HANDI E5/set Ref F/EMAI
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows. sound sources in 'hard to get' or hostile promises Uses satelihe technology to gather distant mounde and focus them to our utra sensitive electronica. plans aiso show an optional wireless link system. £8/set ref F/PM5
2 FOR 1 MUL TIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDCOUTPUT GENERATOR PLANS Operates on $9-12 \mathrm{vdc}$. many possible experments. £ 10 Ref FA-MM7I TCL4.
MEGA LED DIS LAYS PCB fitted whth 5 seven segment displays each measuring $55 \times 38 \mathrm{~mm}$. 55 ref LED 5 .
MOD TRANSMITTING VALVES 5.J180E $£ 80$ ref LOT112 SWTCHED MODE PSU'S 244 wet, $+532 A,+126 A, 50.2 A$, 120.2 A . There ie also an optional 3.3 v 25 A rill avaicobe $120 / 240 \mathrm{~V} \mathrm{~V}$ P. Cased. $175 \times 90 \times 145 \mathrm{~mm}$. IEC intor Suitable for PC use (8 d/dive connectors 1 mboord) £15 rel LOT135

VIDEO PROCESSOR UNITSTI6V 10AH BATTSI24V 8A TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the from are controls for scan spesd, scen delay, scan mode, loeds of connections on the rear, inside $2 \times 6 \mathrm{v} 10 \mathrm{AH}$ soaled leed acid beits, peb's end a 8A? 24 v torolidial transformer (mains in). sold as spen, may heve one or two broken knobs etc due to poor storage $£ 1599$ rel VP2 MINI FM TRANSMITTER ITT Vory high gain proamp, suppled complete with FET electrel microphone. Dewigned to cover 88-108 Mhz oul esesty chenged to cover 63-130 Mirz Whorks with a common 9 v (PP3) battery. 0 2W RF. ©9 Red 1001.
3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use Short dircun protected, sultecte for profesional or emateur use 24v 34 transformer is needed to complete the kit $£ 14$ Ref 1007. I WATT FM TRANSMITTER KIT Supplied with plezo eectic mic. 8 -30vdc. At $25-30 \mathrm{v}$ you will ger nearty 2 watta! $£ 15 \mathrm{rel} 1009$. FW/AM SCANNER KIT Wef not quite, you have to tum the knot your sait but you wil hear things on this redio that you would not hear on nordinemy radio feven TM Covers $50-160 \mathrm{mhz}$ on both AM and FM an ordinary radio feven inc speaker. £ 18 ref 1013.
3 CHANNEL SOUND TO LIGHT KIT Wreless sytum, maine coerated separate sonsitivity adjustment for each channel 1.200 w

BULL ELECTRICAL
250 PORTL,AND ROAD, HOVE, SUSSEX
BN3 $50 T$. (ESTABLISHED 50 YEARS)
MAIL ORDER TERMS: CASH, PO OR CREQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $: 4.50$ PLUS VAT. overainas orderesat coar hus his (ACCESS,VISA, SWITCH, AMERICAN EXPRESS) 'phone orders: 01273203500 FAX 01273323077
E-mail bull@pavilion.co.uk

Install a coin box telephone at home

for less than $£ 5$

By using our phone box, you get everything you need to conver any standerd tetephone imo a coinbox telephone. You simply open the box, tug your telephone into econnector inside and then plug the coinbox pughourtephone inio cont Is then implat There are one or two cuches however.
Catch one that the lock and hinges my be demaged/broken, thim anartreaty matter because you could reptace the hinges easity ind chance the lock or you could remit the from penel orto a box of your own hoosing.
Catch two we that the three coinslots accept $£ 1,50$ pand 10 p 's this is fine except that the 100 stot is tor the cider 10 p piece so you would need tee except hal piece of plastic ecross the bottom of the slot on the incide the wery coinbox Bargain price E4.99 ref CET1
4 WATT FM TRANSMITTER KIT Smal but powerful FM ranmititer, 3RF stages, microphone end audio preampincluded. $£ 24$ Rof 1028.
STROBE LIGHT KIT Adjustable from $\$-60 \mathrm{hz}$ (s lot faster than onventional etrobes). Mains operated. £17 Rel 1037
COMBINATION LOCKKIT 9 key, programmable, compifte wth kayped, will switch $2 A$ mains. ov ac operation. $£ 13$ rel 1114.
PHONE BUG DETECTOR KIT This dovice will wath you somebody is eavesdropping on your line. £8 ref 1130 .
ROBOT VOICE KIT Interesting circuit that dissorts your voicel adjustable, answer the phone whin a difierent volcel 12vdc£9 rivi 1131 TELEPHONE BUG KIT Small bug powered by the 'phone fine terts transmitting as scon as the phone is picked up! £12 Ref 1135. 12V FLOURESCENT LAMP DRIVER KIT Light up 4 foo lubes from your car batteryl iv 2a transformer ateo required. £8 ref 1088
VOX SWITCH KIT Sound activated switch lded for making bugging tape recorders etc, adjustable senstivity. £10 rof 1073. SOUND EFFECTS GENERATOR KIT Produces sound anging from bird chips to sirens Complete with spoeker, sod sound Affects to your projects for just $£ 9$ ref 1045.
16 WATT FM TRANSMITTER (BUILT) \& stage high power, WAF FM TR 19Ne can useground plene yeploropen dipole preamprequil
HUMIDITY METER KIT Bullds into a precision LCD humidily meler, 9 ic design. pcb, lod display and all components included. E20 PC TIMER KIT Four chennel output controlled by your PC, will owtch high current mains whit reieys (supplied). Sof ware supplied so you can progrem the chennets to do what you want whenever you wam Misimum system conflogeration is 288, VGA. 4.1, 640k, seriei port. her difve with min 500 k free £24.99
NICKEL PLATING KIT Profiesional electropteting the thet with transform rusting parts into showpeces in 3 hoursl Will plate onto steel, iton, bronze. gunmetel copper, weiced, siver solidered or brazed joints. Kit incluctes enough to plate $\$, 000$ sq inches. You wiw aso noed s 12 v supply, a comtaher and $2 \mathbf{1 2 v}$ ligrt bube £ 45 ref N1K39 Minature adjustable timers, 4 pole clo output 3A 240 v, HY1230S, 12vDC adjustable from $0-30$ secs. $\mathbf{£ 4 . 9 9}$ HY1260M, 12 vDC adjustable from $0-60$ mins. $\& 4.99$ HY2405S, 240 V adjustable from $0-5$ secs. 84.99 HY24060m. 240v adjustable from 0-60 mins. £6.99 BUGGING TAPE RECORDER Smal voice activeted recorder uses micro cassonte complete whit heedphones 526.99 ret MAR29P1 POWER SUPPLY tuly cased with mains and of leads $17 \mathrm{~V} O C$ 900 mA output. Bargein price $£ 5.99$ rel MA GAP9
COMPOSITE VIDEO KIT. Convarts composite video imo seps rate H sync. V sync. and video. 12v DC. E12.00 REF: MAGAP2. VENUS FLY TRAP KIT Grow your own camivorous plant wht this simple kit E 3 ref EF34.
$6^{\prime \prime} \times 12^{\prime \prime}$ AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA Baromin prico just $£ 5.99$ ea REF MAG6P 12.
FIBRE OPTIC CABLE BUMPER PACK 10 motres for EA. 08 FIBRE OPTIC CABLE BUMPER PACK 10 motres ior $£ 1.88$ rel MAGSP13 ideal for oxpenmenters 30 m for $£ 12.98$ rol macton ELECTRONIC ACCUPUNCTURE KIT Buids into an electronic
version insteed of needlesl good to experiment with. Es ral 7P30 SHOCKING COIL KIT Buind this lifte bamery operated device into at sorts of things, also gets worms out of the ground £9 ref 7P36. HIGH POWER CATAPULTS Hinged arm brace for stability, mompersed steel yoke, super strength lotex power bands Depsiture speed of ammurition is in excess of 200 miles per hourl Range of over speed or ammurnion 500 Ref 9 .
COMPAQ POWER SUPPLIES WITH $12 V$ DC FANS EX quioment psu's some oik some not but worth it for the fen aionel propent psu's, some ok some not but worth it for the fon rel CQ1 $9-0-9 V$ 4A TRANSFORMERS, chassis mount $\varepsilon 7$ rof LOT19A. FRESNEL PERSPEX SCREENS $11^{\prime \prime} \times 11^{\prime \prime} \times 316^{\prime \prime}$ as used in overthead projectors etc. New. $\mathbf{\Sigma 1} 1$ ref FRESN

MEGA LED DISPLAYS Build your seff a clock or something with heve mega 7 seg dispieys 55 mm high, 38 mm wide. 5 on a pcofor juet 4.99 ref LOT16 or a bumper peck of 50 diapleys for just E 29 ref LOT17.
SOLID STATE RELAYS
CMP-OC-200P 3-32valc operstion, 0-200vde 1A C2.50
SMT 20000/3 3-24vdc operation, 28-2BOVec 3A £4 50

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK FOR CASH
SURPLUS STOCK LINE 0802660335

Figure 5: sample block diagram: the Mini-Meta spectral and temporal analysis receiver, a typical SETI receiver

Figure 6: the new SETI League hydrogen line $(1420 \mathrm{MHz})$ to 2 meter (144 MHz) downconverter, first demonstrated at the Annual Meeting in March 1997. At the Southeastern VMF Conference two weeks later, the prototype measured in at 1.85 dB noise figure and 49 dB conversion gain. This converter gives over 50 dB image rejection and 30 dB spurious rejection and will be offered in kit form by Down East Microwave (See References)

LO (local oscillator) used to downconvert the incoming signal frequency is sufficiently stable, the signal may not stay within the if passband long enough to process. Thus the radio astronomy receivers which hold most promise for SEll applicatlons will be those with crystal-controlled LO chains. And to reduce thermal drift, an oven-stabilised crystal is highly ${ }^{\prime}$ desirable. (See also figure 5.)
Many of the more capable microwave receivers employ digital frequency synthesis of the local oscillator frequency. Synthesisers generally provide us with ample frequency stability, in that they involve phase-locking a free-running oscillator to a highly regulated, temperature-controlled crystal reference oscillator. Unfortunately, all but the most sophisticated synthesisers suffer from marginal spectral purity. This is because synthesisers tend to generate a plethora of phase-noise sidebands only a few tens of $d B$ weaker than the desired LO frequency.

Phase noise limits the SETI receiver's ultimate sensitivity, by adding noise prior to the detector. But it has an additional detrimental effect, in that noisy LOs might generate spurious receiver responses, giving us multiple opportunities for a false indicatlon of a coherent signal where none is in fact present. A high level of falsing can be expected for SETI anyway, due to the polluted nature of our planet's Mr environment. Why complicate the situation with receiver-generated false hits? It is probably better to avoid synthesised receivers, unless they have been designed for the lowest possible phase noise.
Another LO concern deals with long-term stability. In order to maximise the sensitivity of a SETI receiver, it might be necessary to integrate the signal (in either hardware or software) for many minutes. The LO must hold still so that the received signal remains in the bin width for the entire integration period. All but the most carefully designed oscillator circuits will exhibit excessive long-term drift.
In summary, radio telescope receivers may prove useful for SETl, with modification. A narrower bandwidth if fiter is usually called for, and it is often necessary to employ an external, crystal-controlled and temperature regulated LO chain exhibiting the very highest possible frequency stability, and the very lowest possible phase noise. Such an LO is the most critical element of a sultable SEII receiver.

Signal processing considerations

OK, so we've come up with a radio telescope which employs an acceptable LO, ample if filtering, and adequate sensitivity to recover the weakest of signals. We're still not done. We now need to process the recovered signals into narrow bins, and identify within them those signals which might emanate from distant technological civilisations.

The earliest SETI receivers employed filter-bank technology. That is, the if was split into multiple filters, each with a bandwidth of a few kHz , on adjacent frequencies. Each filter drove its own square-law detector circuit, and any signal which appeared at the output of one filter channel, but not the adjacent ones, was considered narrow enough in bandwidth to

THIS MONTH'S SELECTION FROM OUR VAST EVER CHANGING STOCKS wanted for cash!

LOW COST PC's

SPECIAL BUY AT 286
$40 \mathrm{Mb} H D+3 \mathrm{Mb}$ Ram

LMTTED QUANTITY only of these 12Mhz HI GRADE 286 systems esigned for fotal reliability. The compact case houses the motheromve \& integral 40 Mb hard disk drive to the front. Real time clock condition complete with enhanced keyboard, $640 \mathrm{k}+2 \mathrm{Mb}$ RAM Order as HIGRADE 286 ONLY ≤ 129.00 (E)

LOW COST 486DX-33 SYSTEM

 Fulty leatured with standard simm connectors 30 \& 72 pin. Supplied ntegral 120 Mb IDE drive with single 1.44 Mb
FLOPPY DISK DRIVES $31 / 2^{\prime \prime}-8^{\prime \prime}$

$51 / 4$ " or $3^{1 / 21}$ from only $£ 18.95$!

\section*{ ment and are fully tested, aligned and shipped to you with a 90 day $32=$. Panasonic JU363/4 720 K or equivalent RFE

The TELEBOX is an attractive fully cased mains powered unt, con-

 made by makers such as MICROVITEC, ATARI, SANYO, SONY, video output will also plug directly into most video recorders, allowing sion receivers" (TELEBOX MB). Push button controts on tele telolpanel allow reception of 8 fully tuneable off air' UHF colour television VHF and UHF including the HYPERBAND as used by most cableTV operators. A composite video output is located on the rear panel ior direct connection to mosi makes of monitor or desktop computer

$$
\begin{aligned}
& \text { TELEBOX ST for composite video input type monitors } \\
& \text { TELEBOX STL as ST but fitted with integral speaker }
\end{aligned}
$$

DC POWER SUPPLIES

Virtually every type of power

suppl
0,000

IC's -TRANSISTORS - DIODES

6,000,000 items EX STOCK

VIDEO MONITOR SPECIALS
One of the highest specification monitors you will ever see At this price - Don't miss it!! os
 0.28 dot pitch tube and resclution of 1024×768. A
variety of inputs alows connection to a host of comput
ers inctuding IBM PC's in CGA EGA VGA \& SVGA
modes, B8C, COMMODORE (incucing Amiga 1200),
ARCH MEDES and APPLLE. Many teatures. Etched
taceptate, text swithing and LOW RADIATON MPP
specification. Fully guaranteed, supolied in EXCEL. in \& Swivel Base $\varepsilon 4.75$ Only $£ 119_{\text {(日 }}^{\text {Mrids }}$ MVGA Excemal cables for other types of computers CALL

As New - Used on film set for 1 week onlyll
$15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors.
Swlvel \& tilf efc. Full 90 day guarantee. 1145.00 (E)

Good SH condition - from £299-CALL for Info PHILIPS HCS35 (same style as CM8833) attractively styled 14 colour monlitor with both RGB and standard composite 15.625 Khz video inputs vis SCART socket and separate phono jacks. Wilt connect direct to Amiga and Atari BBC computers. Ideal for all to most conttoring / security applications with direct connection

used condition - fully tested - guaranteed Dimensions: W14 $4^{\circ} \times \mathrm{H} 121^{\circ} \times 151^{\circ} \mathrm{D}$.	(E)

PHILIPS HCS31 Uhra compact $9^{\prime \prime}$ colour video monitor with stan-
dard composite 15.625 Khz video input via SCART socket. Ideal
for all monitoring / dard composite
for all monitoring / security applications. High quality, ex-equipment
fully lested \& guaranteed (possible minor screen bums). In attrac240 V AC mains powered. Only $\mathbf{\$ 7 9 . 0 0 (D)}$
KME $10^{\circ} 15$ M10009 high definition colour monity
plith. Sueperb clarliy and modern styling.

Only £125 (E)
20" 22° and 26" AV SPECIALS

MIS. 2KW to 400 kW - 400 Hz 3 phase power sources - - x stoc IBM 8230 Type 1 . Token ring base unit driver

IBM $53 F 5501$ Token Ring ICS 20 port lobe modules
1BM MAU Token ring distribution panel $8228-23-5050 \mathrm{~N}$ AIM 501 Low distortion Oscillator 9 Hz to 330 Khz . IEEE
Trend DSA 274 Data Analyser with $\mathrm{G} 703(2 \mathrm{M}) 64 \mathrm{Vo}$ Marconi 6310 Programmable 2 to 22 GHz sweep generat HP16508 Logic Analyser HP3781A Pattem generator \&
HP APOLLO RX700 system
HP APOLLO RX700 system units
HP6621A Dual Programmable GPIB PSU 0.7 V 160 watts
HP3081A Industrila workstation clw Barcode swipe reade
HP6264 Rack mount variable 0-20V © 20A metered PSU HP54121A DC to 22 GHz four channel test set EG+G Brookdeal 95035C Precision lock in amp View Eng. Mod 1200 computerised inspection system
Uing Dynamics 2 kW programmable vibration test system Computer controlled $1056 \times 560 \mathrm{~mm} \times \quad$ isble system Keithley 590 CV capacitor / voltage analyser Racal ICR40 dual 40 channel voice recorder system
Fiskers 45 KVA 3 ph On Line UPS. New batts ICI R5030UV34 Cleanline ultrasonic cleaning system 1995 Mann Tally MT645 High speed line printer Intel SBC 486/133SE Multibus 486 system. 8Mb Ram Zeta 3220-05 AO 4 pen HPGL fast drum plotters Notor ila VME Bus Boards \& Components List. Trio 0-18 uóc linear metera 30 mpench PSUE / CAL Fulitsu M3041R 600 LPM band printer
Furkin M3041D 600 LPM pinter with network Interface VG Electronlcs 1035 TELETEXT Decoding Mater Andrews LARGE 3.1 m Satelite Dish + mount (Fo Voter Sekonic SD 150H 18 channel digital Hyorid chart recorder TAYLOR HOBSON Taltysurf amplifier/recor
System VIdeo 1152 PAL waveform montor
Test Lab - 2 mtr square quietised acoustic test cabinats

$19^{\prime \prime}$ RACK CABINETS

Superb quality 6 foot $40 U$ Virtually New, Ultra Smart Less than Half Price!

have ever sold. Racks may be stacked side by side and therefore require only two side panels to stand singly or in multiple bays.
Overall dimensions are: $7712^{\circ} \mathrm{H} \times 3212^{\circ} \mathrm{D} \times 22^{\circ} \mathrm{W}$. Order as: 32U - High Quality - All steel RakCab rack features all steel
side, front and back doo
hinged for easy acces hinged for easy access and all
five secure 5 lever barrel locks.
constructed of double walled steel with panel, ye
leatures
members to take the heaviest quipment. The two movable vertical fixing struts cage nuts'. A mains distribution panel internal pin Euro sockets and 1×13 amp 3 pin switched utlity socket, Overafl ventilation is provided with top and side fouvres. The top panel may be removed for firting castors and floor lovelers, prepunched uther features include: fitted ondition with keys. Colour Royal blue. External dimensions
Sold at LESS than a third of makers price !!
A superb buy at only 2195.00 (G)

Over 1000 racks - 19" 22" \& 24"wide

 3 to 44 U high. Available from stock !! Call with your requirements. TOUCH SCREEN SYSTEM
The ultimate in 'Touch Screen Technology" made by the experts - MicroTouch - but sold at a price bstow cost II System consists of

connected to an electronic controller PCB. The controller produces

a standard serial RS232 or TTL output which continuously gives
where a finger is'ouching the panel - as the finger moves, the data
instantly changes. The X \& Y information is given at an Incredible
nection to a PC for a myriad of applications including: control pan-
els, pointing devices, POS systems, controllers for the disabled of 'Windows', instead of a mouse il (a driver is indeed available i) The applications for this amazing product are onty fimited by your Imagination!/ Complete system including Controller, Power Supply
and Data supplied at an incredrble price of only: $£ 145.00$ (8)
Fu\# MICAOTOUCH sonwen support pack

LOW COST RAM \& CPU'S

INTEL 'ABOVE' Memory Expansion Board. Fultilength PC-X
and PC-AT compatible card with 2 Mbytes of memory on board
and above) memory. Full data and driver disks supplled AFE. Fully tested and guaranteed. Windows compatible. $£ 59.95$ (A1 Half length 8 bit memory upgrade cards for PC AT XT expands
memory either 256 k or 512 k in 64 k steps. May also be used to fill in RAM above 640k DOS limit. Complete with data. $1 \mathrm{MB} \times 9$ SIMM 9 chip $\frac{\text { SIMM }}{120 \mathrm{~ns}}$ SPECIALS
1 MB $\times 9$ SIMM 3 chip 80 ns $£ 19.50$
1 MB $\times 9$ SIMM 9 chip 80 ns $£ 21.50$
4 MB 70 ns 72 pin SIMM - with parity
INTEL 486-DX33 CPU 555.00 INIEL 486 -DX66 CPU $£ 69.00$ (A1)
FUL RANGE OF CO-PROCESSOR'S EX STOCK-CAL FOR E9E
FANS \& BLOWERS
EPSON DO4 $1240 \times 40 \times 20 \mathrm{~mm} 12 \mathrm{v}$ DC
PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{v} D \mathrm{C}$
MITSUBISHI MMF-D6D12DL $60 \times 60 \times 25 \mathrm{~mm} 12 \mathrm{~V}$ DC
MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 \mathrm{v}$ MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 v$ DC $£ 4.9510 /$ / 42 MITSUBISHI MMF-09B12DH $92 \times 92 \times 25 \mathrm{~mm} 12 \mathrm{VDC}$ ©5.95 $10 / \varepsilon 53$ PANCAKE 12-3.5 $92 \times 92 \times 18 \mathrm{~mm} 12 \mathrm{VDC} \quad \mathrm{E} / .9510 / \mathrm{E} 69$ or 240 v E6.95. $80 \times 80 \times 38 \mathrm{~mm}$ - specity 110 or 240 V E .95
IMHOF B26 1900 rack mnt $3 U \times 19^{\circ}$ Blower $110 / 240 \mathrm{~N}$ NEW $£ 79.95$

Issue 13 of \mathcal{D} isplay News now available - send large SAE - PACKED with bargains!

				01816794414
				$018 \operatorname{FAX}_{0181}^{679} 97927$

Figure 7: a design simulation of a type of microwave bandpass filter suitable for SETI use. (Compare this with figure 6)
constitute a SETI candidate. This is the very scheme employed at the Ohio State University Radio Observatory in 1977, when the so-called "Wow!" signal (the most tantalising SETI candidate signal to date), was detected.

Fortunately, our technology has advanced significantly since then. Today the favoured tool for SETI signal analysis is digital signal processing (9SP), employing computers executing fast Fourier transform (FFT) algorithms. Implementing such techniques in custom, dedicated DSP microcircuits, the SETI research community has for some time concentrated on developing sophisticated multi-channel spectrum analysers (MCSAs) capable of scanning milllons of bins, over hundreds of megahertz of spectrum, in real time. The current state of the art in MCSA technology is probably BETA, developed at Harvard University by physicist Dr. Paul Horowitz, with funding from the Planetary Society and other private and corporate donors. BETA now analyses several hundred million bins, each less than one Hertz wide. Such technology is, unfortunately, well beyond the reach of the amateur SETI community at present. But we can learn from it, and emulate it on a small scale.

Personal computer technology today makes it possible for the amateur radio astronomer to scan thousands of bins, over tens of kilohertz, at virtually negligible cost. The audio output from a SETl receiver must first be digitised for signal analysis, and this is accomplished in any of a number of inexpensive computer sound cards. SETI League members have developed a variety of shareware FFT programs to sort this audio output into bins, and display the results on the computer monitor as histograms, waterfall displays, or any number of alternative formats.

Early amateur SETI systems are digitising a 12.5 kHz audio bandwidth, and applying DSP software to break it down into 1024 individual bins, each about 12 Hz wide. It remains to be seen whether these values are optimal, but the beauty of the PC-driven DSP approach is that the search parameters are readily changed in software. As faster personal computers and more advanced sound cards become available, it becomes possible to reduce the width of individual bins, increase the total number of bins scanned, or increase the bandwidth of the audio spectrum which is being monitored.

Since sensitivity of radio telescopes increases with the square root of integration time, small-aperture amateur
instruments generally time-average a very large number of observations to achieve reasonable performance. Long integration would similarly improve the sensitivity of amateur SETI systems, but with a complication. We are observing the heavens from a rotating platform, which imposes on all received signals a characteristic Doppler shift related to the Earth's motion. Depending on frequency and declination angle, this Doppler shift can be ten to hundreds of Hertz during the time it takes a signal to transit the antenna's beamwidth. For wideband radio telescopes, the Doppler shift is minute compared to the signal bandwidth, hence we can integrate for the entire transit time. Narrow-band SETI receivers, on the other hand, are integration-limited by Doppler to the time it takes the signal to drift between bins. Given, for example, a 10 Hz bin width, and a Doppler rate due to the Earth's rotation of $10 \mathrm{~Hz} / \mathrm{min}$, we would be limited to only one minute integration periods. Beyond that, the signal would find itself in the next bin of the digital signal processor. This Doppler phenomenon significantly limits the maximum integration time we can utilise, hence the maximum sensitivity we can achieve.

There is a partial solution to the above problem. The same computer which performs signal analysis can compute the Doppler rate, as a function of the frequency scanned and the co-ordinates of the antenna. Many microwave receivers can be tuned if the receiver's local oscillator is properly chirped (that is, tuned slowly in frequency) at exactly the Doppler rate, the effects of the Earth's rotation can be nullified, and longer integration becomes possible.

Unfortunately, chirping the receiver's LO only compensates for the rotation of our own planet. A valid SETI signal would most likely be emanating from a similarly rotating planet, which would impose a Doppler shift on the transmitter which we can in no way predict. It is hypothesised that any civilisation producing a deliberately beamed interstellar beacon would solve the problem for us, by dritting their transmitter's frequency so as to compensate for their own Doppler. However, we can expect no such assistance in the case of intercepting a civilisation's leakage radiation, hence our practical integration times are likely to be limited.

Dr. H. Paul Shuch attempts to measure sun noise with a portable radio telescope. This system serves as a test-bed for the hardware and software to be used for the Project Argus allsky survey. The actual antennas used for SETI are much larger.

From the Microcontroller Professionals:

Program PIC Microcontrollers: We now have 3 programmers for PIC's !

Original - This is our original programmer for 16C5X, 16C55X, 16C6X, 16C7x, 16C8x, 16F8X devices. Price : $£ 40$ for the kit, or $£ 50$ ready built.
Serial - This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also In-Circuit programming. Price : $£ 40$ for the kit, or $£ 50$ ready built.
Introductory - This programmer is intended for the smaller user, or newcomer to PIC's. Will program 8 pin and 18 pin devices: 16C55X, 16C61, 16C62X, 16C71, 16C71X, $16 \mathrm{C} 8 \mathrm{X}, 16 \mathrm{~F} 8 \mathrm{X}, 12 \mathrm{C} 508$, and 12C509.
Price $\mathbf{£ 2 2}$ for the kit (not available ready built).
Note : All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4).
No hard to handle parallel cable swapping ! All programmers are supplied with full instructions, Windows programming software, MPASM, MPSIM and PICDE - the Windows based PIC assembler environment. (offers all features of PICDESIM below without the simulator).

Forest Electronic Developments

10 Holmhurst Avenue, Christchurch,
Dorset, BH23 5PQ. bup $/ /$ www lakewood. win-uk. nevfed htm 01425-270191 (Voice/Fax)

Windows Based PIC Development: PICDESIM - the Windows based development environment.

PICDESIM allows you to develop your PIC projects in one Windows program.
Incorporate multiple files, view help file information directly from the code, edit within the project, build, and track errors directly in the source, then simulate.
Simulator allows addressed, conditional and timed breakpoints, follow your code in the source editor window, set a breakpoint directly in the code. Run your program, or single step, or step over subroutines. Track variable values and trace them for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program examine frequently called routines which are timed and use the information to optimise out bottle necks.
Trace Analyser allows any register or port value to be examined in analogue (graphical), waveform, or numeric values, check your program directly against your predicted waveforms.
Runs up to 50 times faster than MPSIM !
NEW !- 32 bit version allows full use of Windows ' 95 and Windows NT 4.0 facilities.
Cost $£ 30.00$, or $£ 25.00$ for existing and new purchasers of any of our programmers. Please specity Windows 3.1, or Windows '95 (32 bit) versions of PICDESIM.

PIC BASIC

FED's PIC BASIC products - straightforward, capable, powerful, rapid development.
In a Windows Development Environment our modules need no assembler or UV eraser to program your PIC's, and operate from a serial link to your PC.

The 16C74 module features - 8 k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 AD inputs, Interrupt driven serial RS232 interface, Peripheral $I^{2} \mathrm{C}$ bus interface, LCD display driver routines, up to 178 bytes for variables and stack, extendible with optional external ram and all the standard 16C74 features.

Compiler - The FED PIC BASIC compiler for the 16C74. It produces hex code to program your 16C74 directly with no need for external EEPROM. Compatible with the EEPROM versions of PIC 16C74 BASIC modules develop on an EEPROM based module then compile and program your PIC chips directly.

[^0]Prices are inclusive, please add $£ 3.00$ for P\&P and handling to each order.
Cheques/POs payable to Forest Electronic
Developments, or phone with credit card
details. Serial Cables - $£ 7.50$.

PIC Training
 Our new training course introduces PIC's painlessly with a practical emphasis.

Our training package includes

- Full introductory manual to the PIC series including use of assembler, peripherals and interrupts for the 12 bit and 14 bit controllers.
- Video introducing the PIC, and showing use of PICDESIM
- Development board with PIC16F84, and all components required to develop 3 practical projects, including LED driving, handling delays and serial communications to a PC.
- PICDESIM - the Windows based Simulator (see left)
- Microchip MPSIM and MPASM programs

Training Course $\mathbf{£ 8 0 . 0 0}$
Training Course with pre-built Introductory PIC programmer $£ 99.00$

Development Boards

Development boards allow simple prototyping of projects.

Our 18 pin development board includes a simple serial interface to a PC, 18 pin socket for any 18 pin device, 4 MHz resonator and power regulator components. All instructions components, and circuits supplied. Includes a $16 \mathrm{~F} 84-10 \mathrm{MHz}$ version of 16 C 84 with an additional 32 bytes of RAM for programs.

Development board with all components for serial inteface, power supply, oscillator and 16 F84 device $£ 20.00$.

Coming soon...

Look out over the next few months as we expand our PIC BASIC range and extend our microcontroller support to another major manufacturer.

Software is currently under development to automate the signal analysis and verification process, by alerting the operator (and through the Internet, other SETI participants) when a signal meets a set of user-programmed criteria. Terrestrial and satellite interference have already generated false alarms for our early participants. But through the application of artificial intelligence (AI) techniques, it is expected that the system will ultimately learn from its false detections, so that in time, it will only respond to those signals which represent the most viable candidates for SETI success.

Assembling a prototype system

Let's start by defining the minimum equipment necessary to do a credible job at microwave SETI, as depicted in the typical system block diagram developed by SETI League member Dan Fox (figure 1). You will want to acquire, at a minimum, a dish antenna and feed horn, a low-noise preamplifier, a microwave receiver, and a suitable computer running some kind of digital signal processing software. A number of useful accessories will round out the SETI station. There are sections in the SETI League Technical Manual corresponding to each of these areas, but the choices are so diverse as to boggle the mind. Is there anything we can do to narrow things down a bit?

In fact, there is. I can tell you exactly what hardware and software I used in the first Project Argus station at SETI League headquarters. I didn't go with the least expensive choices in each category, or necessarily the best. I opted for expediency in order to get a station on the air in time for our April 21, 1996 launch ceremonies and, yes, I cut a few corners in the process. You probably won't want to duplicate my station exactly as I implemented it, but at least this will give you a starting point. As more stations come on the air, better solutions to the problems of amateur SETI will make themselves known. Some of these will come from you, and I hope you'll share them with your fellow League members.

The headquarters station is depicted in figures 2 and 3. Though just about any surplus satellite TV dish in the 3- to 5meter diameter range would suffice, the antenna we chose for our first system is a Paraclipse Classic 12, with horizon-tohorizon mount. This 3.7 meter diameter dish has a focal length to diameter ratio which makes it easy to illuminate with a simple cylindrical waveguide feed horn from Radio Astronomy Supplies of Atlanta. Feed efficiency is on the order of 50 percent. As the antenna is slightly under-illuminated, sidelobes and antenna noise temperature are reduced. We are exploring the possibility of adding a choke ring to this feed horn in the future, to improve both illumination efficiency and sidelobe performance. The robust Paraclipse mount and chain-drive rotor were modified for meridian transit mount with full 180 degree elevation rotation.

A SETI League-designed GaAs MMIC (gallium arsenide monolithic microwave integrated circuit) low-noise amplifier, as manufactured by Down East Microwave, is mounted directly on the feed with a male-to-male type N coaxial adapter. The next generation preamp, now in the design phase, will employ a GaAs PHEMT (pseudomorphic high electron mobility transistor) device in front of the existing MMIC stage, for a significant reduction in front-end noise. At present, no bandpass filter is being used behind the preamp, although in Mr polluted areas it might be wise to add one. Though not yet commercially available, a microstrip filter such as the one described in the Technical Manual is probably a good bet. Wê expect to add such a filter to our station at a later date.

Twenty-five feet of RG-8 coaxial cable, with type N connectors installed, connect the L.NA to an Icom 7000 microwave receiver. (Production of this receiver has been discontinued in favour of the new model 8500. At time of writing the SEI league has not evaluated the new design, but it should perform at least as well as the model 7000 series. We had considered replacing this receiver with a homebrew downconverter driving a VHF scanner, although the Icom is performing so well that we would be hard pressed to recommend any other approach at this time. Receiver audio output is applied to the microphone input of a Texas Instruments model 560CDT multimedia laptop computer, which uses a 75 MHz Pentium CPU. In fact, much less costly computers of the 486DX variety would be perfectly acceptable, at a fraction of the price. The DSP software we are currently using is a commercial product called Spectra Plus, although any of the low-cost shareware programs listed in the Appendix are certainly worthy of consideration. We have yet to obtain suitable SETI logging software, so at present one must stare at a computer screen and evaluate the incoming signals. This is a weakness in the first Argus systems which we hope our members will help us to overcome.

It must be emphasised that this station is not the only, indeed not necessarily the best, approach to amateur SETI. It does, however, achieve all design objectives in terms of frequency coverage, stability and sensitivity. If all components are purchased new, it can be duplicated in its entirety at a cost of about $\$ 7,000$ US. (Although half of that cost is tied up in the particular multimedia laptop computer we chose.) This is certainly quite a bit more than one need spend for an effective SETI station. In fact, using a more modest computer and dish, the price quickly drops in halt for no discernible difference in performance. And if one uses an existing computer, a surplus dish, and builds some of the RF hardware from kits rather than purchasing it assembled, then the basic design is duplicable for well under \$1000 US. Thus, the system just described should be considered as a proof-of-concept effort, nothing more.

Search coordination and verification

The search space for SETI involves temporal, directional, and frequency dimensions, and it's probably unrealistic to expect any search to encompass all possibilities.
Nevertheless, the greater the number of participants, the more frequencies and directions we can hope to monitor per unit time. Thus The SETI League has concentrated its efforts on devising a global network of thousands of participating stations. The publication of these pages constitutes a part of that effort. But an infinite network will avail us little if all members end up searching on the same frequency, in the same direction, at the same time.

As discussed in the Magic Frequencies section above, there are good arguments against dictating frequency coverage at present. Sky coverage, on the other hand, can be readily co-ordinated. If all the amateur radio telescopes being devoted to SETI are operated in meridian transit mode, then by judicious assignment of declination angles, full shy coverage becomes a feasible goal. Based upon the beam-widths typical of amateur radio telescopes, scanning all four pi steradians of sky in real time will require something on the order of 5,000 participants. This goal seems elusive, when viewed from the perspective of around 24 active stations. But The SETI League Is adopting a

ROBOTICS!

ROBOTIC ARM KR. five axis movon wing gripper Contol from any serial port Uses R/C servex for grod repestabiay anc accuracy. Ki inquies precut am components, hectronks

STAMP BUG

'STAMP' Dased insect kit lustrates bask waiking mechansurs. iWh feeters detect obyects causing to reprogramme |neecis Stamp programming pack|. to reprograme fneecis stamp progamming pack.
powertul 3 semo constuction cames payoads up to 250 gms and up 103 hours motion from the on-ooard NiCach $20 \times 15 \times 5 \mathrm{~cm}$

MUSCLE WIRES

Fascinating wites that CONTRACT WMEN ELECTRICALLY HEATED producing a useful amount of force (Up to 0.9 kg f for 250 um wrel Require $0.3 \mathrm{~V} / \mathrm{cm}$ and currents from 100 ma to iAmp . Choose trom four gauges of wre |50.100.150 and 250 umा dia) Detailec Daka anc Project Book (128 pages) aso avawatle separacly and with Dehox Wire "kit surable for 13 projects

SERVO - IR - LCD CONTROLLERS

A range ox kow cost concoser wis RJC senvos fup to semos oer warc- simple Ro 232 com mands from your PC nota setwo in posion unpl voaxed etc.
LCD display ofrivers 仯 stancard Piach convoder ypes up to 4×20 characuers- RO232 noput IR programmable recelvers 17 output channele. accept any TVMAFi controller- up to 25 mA outpas per channel- programritible toggle/momentary switching actoonl

Please call to recerve further details on any of the athove products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds
01977683665 , Fax 01977681465

The Summer '97 Edition brings you:

- Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.
- WIN! a 15° CTX SVGA Monitor in our easy to enter competition.
- 100's of new products including; Books, Connectors, Entertainment, Test Equipment, Security, Speakers, Satellite Equipment and Tools.
- A full range of Aver Multimedia products for PC and Mac.
- $£ 25$ worth discount vouchers.
- 232 Page main Catalogue, plus 40 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.
- Get your copy today!

Cirkit Distribution Ltd

Park Lane • Broxbourne • Hertfordshire • EN10 7NQ Tel: 01992448899 • Fax: 01992471314 Email: mailorder@cirkit.co.uk

Improved SETI feedhorn incorporating a scalar choke ring. The position of the choke ring along the waveguide feedhorn can be varied to optimise performance for maximum gain, or minimum noise temperature, as the user requires. The feed can be readily optimised for dishes with a wide range of focal length to diameter (F/D) ratios.
longer view. If we provide the necessary co-ordination between participant stations, we can hope to achieve full sky coverage early in the next decade.

A major concern of SETI professionals is whether amateur radio astronomers have the training and discipline to separate the electromagnetic wheat from the cosmic chaff That is, will we be fooled by astrophysical phenomena and manmade interference which might masquerade as intelligently generated extra-terrestrial signals? The concern is a valid one; even professionals are sometimes fooled by their equipment or the environment. When Frank Drake first swung his Project Ozma dish toward Epsilon Eridani, he was excited to be greeted by a strong, stable, clearly artificial signal. "Can it really be this easy?" he wondered. It took several days of repeat observations for Drake to figure out that he was being tantalised by manmade interference, most likely from a military aircraft or spacecraft.

Every subsequent SETI study has encountered similar false alarms. Our planet is now encased in a shell of orbiting communications and navigation platforms, all generating signals across the microwave spectrum which could easily be mistaken for interstellar communications. The Project Phoenix targeted search has received hundreds of these false alarms, and has had to employ a sophisticated followup detection mechanism involving. the use of two widely separated radio telescopes, in order to eliminate interference from consideration The SETI League has been similarly fooled by our increasingly rf-polluted environment.

Our Project Argus sky survey kicked off on 21 April 1996 initially with a mere five participating stations. Less than three weeks later, on 10 May, two of our members in England reported receiving a candidate signal in the 1.4 GHz
band (figure 4). Follow-on analysis indicated that the signal's Doppler shift was far too rapid to be explained by the Earth's rotation, but was consistent with that expected from a lowEarth satelilte orbit. It appeared that the SETI League's search had fallen prey to what Frank Drake calls Spectral Gridlock.

Fortunately, we have a variety of tools in our arsenal to guard against such false alarms. If we employ computercontrolled receiver tuning as outlined in the previous sections, then such satellite interference as experienced in England will spread itself across several adjacent DSP bins, and be essentially ignored by the computer. But we can envision interfering signals which emulate even the Doppler signature of interstellar communications, and must take steps to guard against drawing false conclusions.

The Follow-Up Detection Device (FUDD) approach utilised by Project Phoenix, to which we alluded earlier, holds promise for amateur SETI as well. Just as the professional SETI community can pair up spatially disparate researchgrade radio telescopes for signal verification, so can amateur SETI pair up two widely separated lesser telescopes. If properly co-ordinated, they can form what I call a "zerothorder" interferometer.

The idea is for two member stations, displaced in longitude by several hundred kilometres, to both view the same celestial co-ordinates, at the same frequency, all the time. Linked through the Internet, the two stations can continually compare notes. Any signal detected by only one of the stations is deemed terrestrial interference. Any signal which fails to exhibit the precise (and readily calculable) differential Doppler signatures which a true interstellar source would generate at the two particular observing sites is dismissed as aircraft or spacecraft interference. Only if the amplitude and frequency patterns match those calculated for the two locations is a signal deemed a viable SETI candidate.

Unfortunately, in order to achieve full sky coverage by stations working in pairs, it now becomes necessary to recruit not 5,000 , but rather 10,000 participants. Such numbers, though daunting, are not altogether unprecedented. The various radio amateur satellite (AMSAT) organisations, for example, boast in excess of 10,000 members worldwide. They provide, however, a service to the radio amateur community: the design, construction, launch and operation of a network of communications satellites, which permit members to better pursue their hobby. It remains to be seen whether a sufficient number of SETI enthusiasts will similarly regard the co-ordination of a giobal search as a service worthy of their involvement and support.

Sadly, In recent years the Search for Extra-Terrestrial intelligence has been attacked not just in the halls of Congress, but in the electronic hobbyist press, as being a waste of time and money. There may be a grain of truth to this, especially if SETI efforts ultimately fail to achieve positive results. An important consideration of a "privatised" search, however, is that no government entity is wasting the time and money of its citizens. Rather, it is our individual members who choose to waste their own time and money, to varying degrees, for their individual purposes.

Besides, by definition, doesn't "waste of time and money" properly describe all pastimes? (Serious scientific research undertaken in this area has concluded (I paraphrase) that life would be a waste of time and effort without the presence of personal pastimes.- Ed.)

The SETI Institute's Project Phoenix targeted search of nearby sun-like stars resumed in May 1997, from the National Radio Astronomy Observatory, Green Bank WV. In addition to the 140 foot NRAO radio telescope, the group is employing this 100 foot dish at Georgia Tech's Woodbury Research Facility, as a follow-up detection device, or FUDD.

Conclusions

The world's amateur radio astronomers are in a unique position to make major contributions to the ongoing Search for ExtraTerrestrial Intelligence (SET). Their radio telescopes already contain much of the hardware and software which comprises a credible SEII station. By paying careful attention to LO stability, if filtering and DSP techniques, they can achieve sensitivities adequate to detect signals of likely power level out to perhaps several hundred light years.

Our signal analysis capabilities are presently limited primarily by the power of our computers. But that's a very good place to be limited. Computer power has been roughly doubling every year for the past few decades. If the technological trend continues, within ten years our available computers will be about 1,000 times as powerful as the ones we use today. At that point, there may well be no place in the Milky Way galaxy which evades our gaze.

Lacking a concentrated, Government-sponsored SEII program, success will most likely require thousands of individual stations in a co-ordinated effort. The SEII League is one organisation willing to provide the needed co-ordination. But discipline on the part of the participants is also crucial. Fortunately, the optical astronomy community has already showed us that amateurs have the discipline necessary to make significant scientific contributions. Why should it be otherwise in the radio spectrum?

Those amateur astronomers interested in pursuing the SETI challenge are invited to join the non-profit, membership-supported SEII League, Inc. The SEII League maintains an extensive Intemet presence; publishes quarterly newsletters, how-to manuals, and other technical documents; assists its members in locating equipment and software, as well as setting up their SEII stations; provides co-ordination of frequency and sky coverage; and provides a medium of communications for participants in its Project Argus all-sky survey.

Contacting SETI

Our best information contact (and membership details) are on our Web site at http://wuw.setileague.org/, by email from join@setileague.org. Our postal address is The SETI League Inc., PO Box 555, Little Ferry, NJ 07643, USA. Tel (Fax only) (US) 201 641 1771. H. Paul Shuch, PhD is Executive Director of The SETI League, Inc.

Within the USA you can call the League's toll-free membership hotline, $1(800)$ TAU-SETI.

References

The SEII League Technical Manual
(ISBN 0-9650707-2-7) Avallable for a \$10 US contribution (\$12 for foreign delivery) to The SETI League, Inc.

Equipment suppliers

These are sources for the equipment used to assemble the SETl receiving station described in this article. The list is by no means exhaustive; it merely serves to document one particular prototype system. For additional hardware and software sources, the SETl League Technical Manual, or refer to our World Wide Web site mentioned above.

Feedhom:
1.4 GHz Cyl

Radio Astronomy Supplies, 190 Jade Cove Drive, Roswell, GA 30075, USA. Tel 7709924959

Antenna:

Classic 12
Paraclipse Inc., PO Box 686, Columbus, NE 68602, USA. Tel 4025633625 Fax 4029963702

Preamp:
SETI-LNA
Down East Microwave, 954 Route 519, Frenchtown, NJ 08825, USA Tel 9089963584 Fax 9089963702

Receiver:

IC-R7000, IC-R7100, IC-R8500
Icom America, 2380 116th Avenue NE, Bellevue, WA 98004, USA Tel 2064548155 Fax 206454 - 1509.

Software:

FFTDSP
Mike Cook, 501 E Cedar Canyon Rd., Huntertown, IN 46748, USA 2196373399.

SETIFOX

Daniel B. Fox, 911 E Miller Dr., Bloomington, IN 47401 Tel 812 3368238.

DSP Blaster

Brian Beezley, 3532 Linda Vista Dr., San Marcos, CA 92069, USA Tel 6195994962.

QST

American Radio Relay League, 225 Main Street, Newington, CT 06111, USA. Tel 8605940200 Fax 8605940259 email qst@arrl.org

To call the US from the UK, add the UK intemational dialling code 00 and the US country code 1, followed by the numbers given. US toll-free lines do not normally work outside the USA. UK readers wishing to make dollar purchases should consult their bank for the best means of delivering the appropriate sum overseas.

Photographic images used in connection with this article are SETI League photos, used by permission. This article will also appear independently in the USA.

©iven twenty-six different letters you could write a best-seller - or a symphony for twelve letters, if you can arrange them in the right order. Perhaps this is too tall an order, but the Electronic A-Z has some more realistic mind-bending challenges to offer with its series of random letters at the touch of a button. Many popular TV quiz shows and board games call for a random selection of letters; for instance, 'Countdown', 'Catchword', 'Lexicon', Scrabble, and so on. Although a number of alphabetic characters can be electronically displayed using eye-catching 7 -segment displays, it is not easy to reproduce the full alphabot in this way.

Figure 1: Electronic A to Z - the front panel layout

This project describes a simpler A to Z selector, achieved by using single LEDs, one for each letter. Figure 1 shows a suggested front panel layout. The five vowels can be selected separately, and an electronic dice (or die, to be strictly correct), is also 'thrown-in' as a bonus; it is useful in many board games and saves all that scrabbling about with conventional dice that never seem to stay on the board. Besides the 26 letters of the alphabet, a 'joker' is included, which is useful in some word games to represent any letter - like the blank tile in 'Scrabble'!

At switch-on, the display LEDs flash through the selected characters repeatedly at a rate determined by the position of the SPEED control. When the FREEZE button is pressed, the display will pause on the particular character that is being scanned at that instant. On release, the LEDs will resume flashing. The circuit consumes only 6 mA at 9 V .

Take a letter - any letter. Add a joker and you have a recipe for an evening of popular word games. By Roy Bebbington

Figure 2: the block diagram

The block diagram

The block diagram (figure 2) consists basically of an oscillator providing clock pulses to a counter circuit that drives LED displays representing the alphabetic characters. The popular 555 timer and two 4017 decade counter cmos ics are used in this A to Z version to activate 27 LEDs (all 26 letters of the alphabet and the "joker'). You are probably thinking that, mathematically, something doesn't add up if we expect to scan 27 characters from two decade counters - we don't! All 27 characters, in three groups of nine LEDs, are actually scanned by one decade counter, the second counter merely switching the groups into circuit in the correct sequence. The available characters are selected by the MODE SELECT switch S3, operating broadly as follows:

In the 'A to Z' position, all 27 LEDs, arranged in three groups of nine on the outputs of the first counter IC2, are activated to run in sequence. The second counter, IC3, clocked by the 'carry' output (pin 12), operates three transistor switches TR1-TR3 in sequence to turn on the three groups of LEDs in the right order (D1-D27), In the 'vowel' position all 5 vowel LEDs on the first five outputs of the counter, are activated in sequence. In addition, the reset (pin

15 of IC2) is connected to the sixth output pin (IC2-1), which causes the counter to reset after the first five outputs are scanned so that only the five vowels are selectable

In the 'dice' position the link from the reset (pin 15 of IC2) is switched to the seventh output pin (IC2-5). This causes the counter to reset after the first six outputs are scanned; as the five vowels and the first consonant M are also labelled 1 to 6 , a dice facility is available.

The circuit

The 555 stage, IC1, provides the rectangular clock pulses to operate the counter stages, IC2 and IC3. A potentiometer RV1 has been included in the timing circuit, designated SPEED, to allow adjustment of the scan speed of the LEDs (approximately 2 to 14 Hz). If the speed selected is slow, then it could be possible to anticipate and 'freeze' a letter (or number) of your choice - a useful
facility for some games, especially when handicapping is needed. The timer IC1 is connected in the astabie multivibrator mode and positive-going output pulses are available on output pin IC1-3. The speed is determined by the setting of RV1 and the values of R1, R2 and C1. These timing pulses are applied to input pin IC2-14 to 'clock' the counter IC2. The MODE SELECT switch S3 determines which outputs from the counter are activated and therefore which LEDs are available for display. The functions have been briefly covered in the block diagram description, but the details are now discussed with reference to the circuit diagram in figure 3.

A to Z mode

When the A to Z mode is selected on S 2 , the nine outputs from counter IC2 go high in sequence at a speed determined by the clock pulses. Cycling continues because the clock enable pin

Figure 3: the circuit

(IC2-13) is held low via R7, and the reset pin (IC2-15) is connected via S 2 to the tenth output pin (IC2-11), which gives a reset pulse when it goes high.

The second counter, IC3, in conjunction with the three transistor switches Q1, Q2, Q3, selects the three groups of LEDS in sequence, that is, D1-D9, D10-D18, D19-027, to provide a continuous running display of the 27 letters in this mode. The divide-by-ten output pin (IC2-12) is used as the clock input to IC314 to provide three outputs (IC3-3, IC3-2, IC3-4) to switch the three transistors in sequence. These transistors provide the OV retum, via R6, to activate the three groups of LEDs. This resistor limits the current through the LEDs and also allows IC2-15 to go sufficiently high to achieve reset in the vowel and dice modes. In the A to Z position, the mode select switch S3b returns IC3-15 to IC3-7 output to reset the counter after the third output, so that all 27 LEDs are scanned sequentially.

Resistors

R1	$56 R$
R2	$2.2 R$
R3,R4,R5	10 k
R6	680 R
R7	100 k
RV1	1 M lin pot.(SPEED)

Capacitors

C1	500 nF polyester
C2	24.7 FF 10 V radial elect

Semiconductors

IC1
IC2, IC3
Q1 to Q3
D1 to D5
D6 to D26
D27

Switches

S1 spst (ON/OFF)
S2 push-to-make (FREEZE)
S3 2-pole, 3-way rotary (MODE SELECT)

Miscellaneous

Suitable project box eg Maplin MB5 ($145 \times 95 \times$ 57.5 mm); stripboard (36 strips $\times 24$ holes), 9 V battery (PP3); dil holders (8-pin, 2×16-pin), connecting wire, solder, etc.

The clock enable pins of the IC2 and IC3 are normally held to OV by resistor R7. However, when the FREEZE pushbutton S2 is operated, +9 V is applied, the clock is disabled and the LED activated at that instant is displayed, while the S2 button is held down. To guard against the 'button-jabbers', who may release S2 before the selected character has been observed, a small circuit modification is suggested. An electrolytic capacitor can be wired in parallel with resistor R7 to continue the freeze action momentarily after S 2 is released. A 10uF capacitor holds the selected LED on for a further second before sequencing resumes. Obviously, this modification is effective in all modes.

Vowel/dice mode

In the vowel and dice modes, only the first group of LEDs requires to be activated so that the 5 or 6 characters (vowels or dice) can run continuously in sequence. This means that only transistor switch Q1 needs to be in circuit, so S3b now returns IC3-15 to IC3-2 output to reset counter IC3 after the first output.

In the vowel mode, IC2-1 is connected to IC2-15 to provide a reset after five outputs when this output IC2-1 goes high. Similarly, in the dice mode, a high logic level on IC2-5 is routed to IC-15 after six outputs.

The LED pattern

To enable the vowels and dice to be switched separately, it is necessary that they are assigned to the first group of LEDs (D1 D6) as shown. The ' Y ' character, $D 6$, has been included as the sixth output as it could be useful in some games as a pseudo vowel. Apart from these characters, the rest of the consonants and the joker (D7-D27), could be labelled either as indicated on the front panel, or as desired. The running order of the LEDs will be from D1 through to D27; that is, according to the three wiring groups shown in figure 3, independent of the physical positions allocated.

Construction

A

As mentioned, the suggested front panel layout in figure. 1 can be adapted to suit individual requirements. The panel can be photocopied or rubdown lettering used to annotate the LEDs. Calibrate the SPEED control in pulses per second if desired, as a game 'handicap' facility.
A stripboard layout (36 strips $\times 24$ holes) is given in figure 4, which also shows the interconnections from the PCB to the 27 LEDs and the switches. Use multi-strand wire to keep these connecting links flexible. Only the component side is shown; the breaks in the copper strips on the underside are Indicated by crosses (x). Make sure that no whiskers of copper are left, and there are no excess blobs of solder to cause short-circuits. The integrated circuits should preferably be mounted in dil sockets to avoid overheating and should be retained in their original wrapping until required, that is, fitted last, to avoid the nisk of damage by static charges.

Word games

Many of the popular word games are well-known, but here's a reminder of some of them and a few new suggestions for using your Electronic A to Z.

The popular TV game Countdown offers the random selection of a mixture of nine letters, choosing vowels and consonants to make the longest possible word with bonus points for a nine-letter word. This allows plenty of scope for variations, such as a limited word-length for children and a slower speed for capturing your favourite letters.

Catchword, on the other hand, selects three consonants that are used to form as many words as possible in a given time that

Figure 4: the stripboard layout

start with the first letter and include the other two in the given order. For example, LND could produce LINED, LOANED, LAMINATED, and so on, a bonus being given for the longest word, In this game, any vowels displayed could be ignored, but the joker could be used to advantage to stand for any desirabie consonant.

Another game is called Well-known Initials. A pair of letters can be selected in the A-Z mode to see whether contestants can conjure up famous, or infamous, initials of people in history, films, music, TV, sport, etc. For example, Winston Churchill, Mickey Mouse, Russ Abbot, Andy Cole.

The game Word Chain consists of selecting a sequence of letters in the A-Z mode, which are written down by the contestants. Like the proverbial typewriting monkeys, this chain of letters will mostly produce jibberish, but occasionally a word will be formed. A contestant scores points if a word is spotted before the next letter is selected.

In Wordsmith, the skill is to make as many words as possible from six or seven letters chosen at random. It will be necessary to select a couple of voweis if none is forthcoming from the A-Z mode. As an elegant variation, one of the consonants may be chosen as the key letter, which must occur in all the words.

Finally, don't forget the pencil and paper game of Categories where, starting with a chosen letter, lists are made by each contestant of such categories as a girl's name, boy's name, town, county, country, animal, flower, fish, TV star, and sport. The difference is that with the Electronic \mathbf{A} to \mathbf{Z}, a different starting letter can be randomly selected for each category. Players score 2 for a suitable category name not duplicated by any other player, and one if another player (or more) shares the same answer.

TELNET

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203650702
Fax: 01203650773

Mobile: 0860400683

(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

OSCILLOSCOPES

Beckman $9020-20 \mathrm{MHz}$ - Dual Channe
Cossor $3102-60 \mathrm{MHz}$ Dual Channel

SPECAAL OFFER	
HITACHI V212-20MHZ DUAL. TRACE	E180
HITACHI V222-20 MHZ DUAL TAACE + ALTERNATE MAGNIFY	1200

SPECTRUM ANALYSERS	
Advantest $4131-10 \mathrm{KHz-3.5GHz}$ (G.P.I.B.)	£4500
Advantest $4131 \mathrm{~B}-10 \mathrm{KHz}-3.5 \mathrm{GHz}$. $£ 4750$
Advantest $4133 \mathrm{~B}-10 \mathrm{KHz}-20 \mathrm{GHz}(60 \mathrm{C}$. 57250
Ando AC8211-Spectrum Analyser 1.76Hz	. 2950
Eaton/alitech $757-20 \mathrm{KHz}-22 \mathrm{GHz}$. 2750
Hewlett Packard 3580A - $5 \mathrm{~Hz}-50 \mathrm{KHz}$	$£ 995$
Hewlett Packard 182T with 8559A (10MHz-21GHz)	. 3750
Hewlett Packard 35601A - Spectrum Analyser Imerface	. 11000
Hewlett Packard 141T $+8552 \mathrm{~B}+8555 \mathrm{~A}-(10 \mathrm{MHz}-18 \mathrm{GHz})$.	$\underline{1600}$
Hewlett Packard 3562A Dual Channel Dynamic Sig Analyser.	. 87500
Hewlett Packard 8505A - Network Analyser 500KHz - 1300 MH	£3950
Hewlett Packard 853A + 85588-0.1 to 1500 MHz	. 23250
Hewlett Packard 1827 $+85588-0.1$ to 150	. 22750
Hewlett Packard 8565A - 0.01 - 22GHz	. 23750
Hewlett Packard 8754A - Network Analyser $4 \cdot 1300 \mathrm{MHz}$	£2500
Hewlett Packard 8591 E (HP + 18) -9KHz - 1.8 GHz (calibrated)	¢6500
Marconi 2370-110MHz	c995
Marconl $2371-30 \mathrm{KHz}-2000 \mathrm{MHz}$. 1250
Meguro MSA 4901-1-300GHz (AS NEW)	. 11995
Meguro MSA 4912-1-1GHz (AS NEW)	£3000
Polrad 641-1-10 ${ }^{\text {ch }}$ - -18 GHz .	$\underline{81500}$
Rohde \& Schwarz - SWOB 5 Polyskop $0.1-1300 \mathrm{MHz}$	¢2500
Takeda Riken 4132 - 1.0 GHz Spectrum Analyser	. $£ 2750$
Tektronix 7 L 18 with mainframe $\langle 1.5 \cdot 60 \mathrm{GHz}$ with externa)	2000

 Hewlett Packard 4927A - Lan Protoco Analys Hewlett Packard 5335A - 200MHz High Peftormance Syslems Counter... Hewlett Packard 5314A - (NEW) 100 AAHZ Universal Counter. Hewiett Packard 5183- Waveform Recorder
Hewlett Packard 5238A Frequency Counter 100 MHz
Hewlett Packard 5238A Frequency Counter 100 MHz
Hewiett Packard 5370A - 100 MHz Unversal Timer/Counter (950 Hewlett Packard 5385A Frequency Counter - 1GHz - (HP18) with OPTS 001/003/004/005.... 5995
Hewlett Packard 6031 A - 1000W Autoranging p.s.u (20v - 120A) Hewlett Packard 6034-60V - 10A Systerv Power (20v-120A) Hewlett Packard 6253A Power Supply 20V - 3A Twin Hewlett Packard 6255A Power supply 40V-15A Twin.
Hewlett Packard 62668 Power Supply $40 \mathrm{~V}-5 \mathrm{~A}$
Hewlett Packard 6271 B Power supply $60 \mathrm{~V}-3 \mathrm{~A}$
Hewlett Packard 6034A - O-60V - 10A System P.S.U
Hewlett Packsard 7475A - 6 Pen Plotter, A3/A4
Hewlett Packard 7550A - 8 Pen Photter A3/A
$\mathbf{\Sigma} 450$
HEWLETT PACKARD 6261B

Hewlett Packard 8350 - - Sweep Oscinator Mainirame (vanous Plug-Ins available) extra $£ 2650$

Hewlett Packard 8180 A - Data Generator
Hewlett Packard 8182A - Daia Anatyser
Hewlett Packard 83554A - Wave Source Mod 26.5 to 40GHz
Hewlett Packard 83554A - Wave Source Modve 26.5 to 40 GHz … ... 5500
Hewlett Packard 8684A 5.4GHz to 12 5GHz Sig-Gen --..
Hewlett Packard 8620 C Sweep osollator mantrane -
Hewlett Packard 8656 - - Synthesised Singal Generator
Hewlett Packard 86568 - Symthesised Signal Generator
Hewlett Packard 8750A S1

Hewlett Packard 8901A -
Hewlett Packard 8920A - AF Comm Test Sex.

Hewlett Packard 16500A - Fithd wiol 16510~16515N16530N16531A - Logic Analyser $£ 4000$

Krohn-Hite 2200 Lin/log Sto
Krohn-Hite 5200 Sweep. Func
Krohn-Hite 6500 Phase Meter

Marconi 2432 A 500 MHz dighal trec meter
Marconi 2610 - True RMS
Marconl 2955-Aario Comm Analyser
Marconl 2950A - Aadio Comme Test Set wnicentar Maptor -... 51000
Marconl 6960 - Power Meter \& Sensor -
Marconi 6960 - Power Merer s Sensor -
Phillps PM 5167 MHz function
Phillps PM 5167MHz funclion os.
Philips 5190 L.F. Synthesiser (Ca.P. . BR-
Phillps PM5519.- IV Panem Genevator
Philips PM5667 - Vectorscope

 Prems $4000-6$ \% Digit Mummater (NEM).

```
Racal Dana \(9081 / 9082\) Symen sig gen 520M1H2
```


Racal Dana 9084

£450
$\mathbf{~} 650$

Hacal Dana 9302A AFF froquency meter 560 MHz _-a
Racal Dana 9082 Synutheso amvim kig gen (520 MHz).
Racas 9301A - True RMS RFF Mutiontimeter

Aohde \& Schwarz SMFP2 = 1GHz Aadio Comms T/set.
Aohde 8 Schwarz UPSF2 - Video Nose Meter...........
Aohde \& Schwarz URE - FiNS Volmater ($10 \mathrm{~Hz} \cdot 25 \mathrm{MH}$)
Ronde \& Schwarz URE- RIMS Vonmeter (10t
Rohde of Schwar SUF 2 Nadoo Code Test Senerator

Schaffner NSG 222A interterence Simulator
Schaffner NSG 223 interference Generator
Schaffner WSG 431 Electrostatic Discharge Simulator
Schlumberger 4923 Radio Code Test Set..............

waveform generator
Systron Donner 6030

Sy
Telequipment CTTI Curve Tracer
Tektronix TM5003 $\&$ AFG 5101 Arbikrary Function Gen.
Tektronix 1240 Logic Analyser

PG508. FG504, FG503, TG501, TR503 $~+$ many more
Tektronix 577 Curve Tracer
Tektronix AM503 + TM501 + P6302 - Current Probe Amplifier \quad..................................... 1150

Tektronix 577 - Curve Tracer M/F - Programmable Distortion Anatyser .. $£ 2500$
Time 9811 Programmabte Resistance
Time 9814 Vohage Cahtorator

Wayne Kerr 4225 - LCA Bridge
Wayne Kerr 6425 - Precision Component Analyser
$\Sigma 600$
$-\quad £ 275$

Wavetek 3010 - 1.1 GHz Signal Generator...................
Wiltron 6620 S - Programmable Sweep Generator $(3.6-6.5 \mathrm{GM}$)

Higher Education in electronics

SP=CHL

Postgraduate Studies and Research

Students considering an advanced Degree in Electronics or Computing need toplevel qualifications, but have a wide choice of research departments to apply to.

IIn our last issue, this feature had a look at some of the courses for students of electronics engineering and computer science up to Degree level.

It's well know that the number of students taking college courses has risen over the last couple of decades as formal quaiifications have become important to employers. Some people blame this effect on lower academic standards (on one hand) and insufficient on-the-job training by industry (especially the lack of apprenticeships) on the other hand. A revival of apprenticeships, and the arrival of NVQs (National Vocational Qualifications) in recent years are beginning to address the latter criticism. But the trend to more higher education has seen a sharp rise in the number of postgraduate students people with degrees or equivalent higher qualifications opting to continue or return to their studies at an even tigher level - in the last five years.

One reason for this has been the difficult employment situation in the UK over the economic recession period of the early 90 s - which has by no means entirely passed away. Many already well-qualified and/or experienced people found themselves in a situation where their best option was to return to higher education for one, two or three years in the hope of making themselves more competitive in a difficult job market, or simply of using their time constructively. Many students emerging from first degree courses were in the same position, and so more of those with good results (and access to some financial resources) decided to continue their studies and research.

UK graduates can generally obtain a grant for one or two years of further accredited vocational training, but it is less easy to get financial help for Masters or Research studies. Some colleges have a limited number of scholarships or bursaries to help students in some subjects, usually those with strong industrial links, but in general postgraduates doing a Masters or Research degree will have to find most or all of their own finance. More higher degree students, for instance, take

regular paid work throughout their degrees, in the American style, than do undergraduate students, who are still often actively discouraged from working while studying, for obvious reasons. Once at Postgraduate level, not only is it acknowledged that the student is likely to be beyond resources often available to younger people (like financial help from parents), but the older student is expected to have sufficient experience of study be ready to balance research with some other obligations. Many working people are also studying, but on a part time basis. Full time research does not mix with heavy work obligations, so the postoraduate student must be ready to take our further student loans, or have other resources.

Anyone thinking of studying for a further degree is advised to look carefully at where their studies could apply to industry, and what industrial and commercial support there is for their field within the colleges they are applying to. Strong links with the "outside worid" are valuable to everyone concerned, both during study and research, and when the student enters a commercial environment full-time.

Imperial College, London

Imperial College of Science, Technology and Medicine is one of the best-known specialist colleges in the United Kingdom. The reputation - and the staff - of the coilege is international, and Imperial has had strong links both with industry and government from its earliest days in the late 19th and early 20th century. Imperial is part of London University. Like Oxford and Cambridge, the individual colleges of the University are known simply by their "college" names, but unlike Oxford and Cambridge, where the colleges are mainly accommodation and tutoring establishments, sharing many
academic resources and departments, London colleges are complete establishments each with its own departments or faculties.

Imperial College's Department of Electrical and Electronic Engineering offers postgraduate education through both taught courses - leading to an MSc degree of the University of London and the Diploma of the Imperial College (DIC) - and research programmes, leading to the DIC, MPhil (Master of Philosophy) or PhD (Doctor of Philosophy). The MSc courses on Communications and Signal Processing, and Control Systems, are both currently accepted by the Engineering and Physical Sciences Research Council as suitable for tenure of its Advanced Course Studentships. The course on Physical Sciences and Engineering in Medicine is run with the Centre of Biological and Medical Systems, and is taught by their staff; the course in Semiconductor Science and Technology is run by the department jointly with the Departments of Materials and of Physics. There are two new MSc courses, in Analogue and Digital Integrated Circuit Design, and in Power Engineering: Control and Optimisation. These are all 12 -month full-time courses requiring a first or good second class Honours degree in Electrical Englneering, or an equivalent to quality for entry.

Research in the Department is conducted through a number of sections. In outline, the current sections include Analogue and digital circuit design; Biomedical systems engineering; Control and instrumentation; Digital communication; Energy and electromagnetics; Information engineering; Intelligent communications systems; Neural systems engineering; Optical and semiconductor devices, Signal processing; Solid state electronics and Thin films. Full details of the current programmes can be obtained from the Department, which produces a detailed Research Report. The normal qualification for research tralning is a First or Upper Second Class Honours Degree in Electrical Engineering.

The Department of Computing offers two full-time courses, both leading to an MSc degree of the University of London and/or the Diploma of the Imperial College. These are Computing Science (primarily a conversion course for graduates without computing) and Advanced Computing, training in IT research which also acts as an introduction to research degree study in the Department. Research in the Department is based in two centres, IC Parc, and Imperial College/Fujitsu Paralliel Computing European Research Centre.

The research sections are Advanced Language and Architectures; Applied Systems and Decision Support;

Distributed Software Engineering: Logic and Automated Reasoning; Logic Programming; and Theory and Formal Method. The booklet Postgraduate Study in Computing describes the options in more detail and can be obtained from the Assistant Registrar (Admissions).

The University of Southampton

The Department of Electronics at the University of Southampton was established in 1947, the first in any UK university, and combined with the Department of Computer Studies in 1986 to form the Department of Electronics and Computer Science as part of a major expansion in Information Technology - at a time when IT was beginning to gain public notice - within the University. It is the largest department of its kind in the UK, with over 50 academic staff and teaching and research covering every aspect of electronics and computer science, including the fabrication of integrated circuits, parallel processing and computer systems, signal processing, program and algorithm design. Alone among universities, Southampton was chosen by the Engineering and Physical Sciences Research Council (EPSRC) to host a microelectronics fabrication facility, that also provides advice and fabrication facilitles to industry and other academic institutions.

Southampton also hosts the Institute of Transducer Technology, a Transputer Support Centre and an Interdisciplinary Research Centre (IRC) concerned with optoelectronic technology. An unusual feature of the Department of Electronics and Computer Science is that it is a department within the Faculty of Engineering and Applied Science. They are separate from the Department of Electrical Engineering and the Faculty of Mathematical Studies, which in many universities are the location for studying electronics and computer sclence respectively. Here, electronics is taught as a discipline in its own right, and Computer Science is taught from the standpoint of software engineering with a strong emphasis on working software systems. There is a greater degree of specialisation available. The Department also has close links with industry, with a number of engineers from industry providing specialist teaching to support courses from a commercial viewpoint.

The Department runs advanced MSc courses in four areas: Microelectronics Systems Design, Radio Frequency Communication Systems, Instrumentation and Transducers, and Optical Fibre Communications. The basic courses take one year to cover, and may be studied full-time or part-time (over two years). The normal entry requirement is a Second Class Honours Degree in an appropriate subject (normally physics, maths, engineering (including electronic) or computer science, although the University will look at applicants with other applicable qualifications (for instance, the Engineering Council Part 2 examination) and/or experience. The department issues pre-course reading lists to applicants to make sure that they are up to speed if they are accepted for a course, and specifically warns against expecting to undertake part-time employment to support themselves while attending a full-time course. The college, like most institutions of higher education, will also advise on possible sources of grants and other funding, but prospective students must remember that grants and scholarships for higher studies are the exception, rather than the rule, for students who do not already have industrial sponsorship.

Research at Southampton is organised into research groups usually consisting of academic staff, fully time research staff (usually with industrial experience) and research students. As

Interested in Electronic Engineering?

Leaving School?

Unemployed and Job Seeking? Changing Career?
Looking for Promotion? Resident outside of the United Kingdom?
If this is you, then one of the listed colleges may be able to help
Several sources have indicated that there is a national shortage of highly skilled Electronics and Telecommunications Engineers in Britain so if Electronics is an interest or hobby, why not make it your career?
A wide variety of training programmes are available covering many branches of electronics such as:

- Computer \& Office Equipment Servicing
- Electrical Engineering
- Electrical Installations
- Electronic Engineering
- Marine Radar, Navigation \& Electronics
- Marine Radar \& GMDSS GOC
- Mobile Radio \& Radio Engineering
- Microprocessor Programming and Interfacing
- Optoelectronics
- Telecommunications Engineering
- Television \& Video Servicing

Training Programmes are available for:

School Leavers, Job Seekers, Employed, Employers, Overseas Employers and Students

Member Electronics Colleges are all over Britain

1 Aberdeen College, Aberdeen, AB25 1BN. BIll Thow. Tel: (01224) 612000 Fax: 612001
2 Blackburn Coliege, Blackburn, BB2 1LH. Peter Smith. Tel: (01254) 292348 Fax: 681755
3. Bournemouth \& Poole College of FE, Poole, BH14 OLS. John Gosling. Tel: (01202) 205654 Fax: 205313
4 City College Norwich, Norwlch, NR2 2LJ. David Warner. Tel: (01603) 773320 Fient 773016
5. Clty of Livarpool Community College, Liverpool L19 30R. David Jones. Tel: (0151) 2524749 Fax: 4279179
6 Ealing Tertiary College, London, W3 8UX. Denis Thomson. Tel: (0181) 2316332 Fax: 9932725
(7) Glasgow College of Nautical Studles, Glasgow, G5 9XB. John Hercus. Tel: (0141) 5652660 Faz: 5652599
8 Grimsby College, Grimsby, DN34 5BQ. Richard Summerfield. Tei: (01472) 315540 Fax: 879924
(9) Hull College, Hull, MU1 3DG. Steve Brett. Tel: (01482) 598806/329943 Fax: 598733
(10) Jewel \& Esk Valley College, Edinburgh, EN15 2PP. Derek Landells. Tel: (0131) 6577288 Fax: 6572276
(11) Lancaster \& Morecambe Coliege, Lancaster, LA1 2TY. Gary WIlkinson. Tol: $\mathbf{(0 1 5 2 4) 6 6 2 1 5 \text { Fax:843078 }}$
(12) London Electronics College, London, SW5 9SU. M.D. Spalding Tel: (0171) 3738721 Fax: 2448733
(13) Matthew Bolton College, Birmingham, 85 70B. Cllve Nill. Tel: (0121) 4464545 Fant 4463105
(14) Newbury College, Newbury, RG14 1PQ. Martin Rice. Tel: (01635) 37000 Fax: 41812
(15) Plymouth College of FE, Plymouth, PL15QB. Mr D J Turner. Tel: (01752) 385398 Fax: 385399
16 South Tyneside College, South Shlelds, NE34 6ET. David Johnson. Tel: (0191) 4273500 Fax: $\mathbf{4 2 7 3 5 3 5}$
17 Southampton Institule, Southampton, SO14 OYN. Roger Forster. Tel: (01703) 319333 Fax: 334441
18 Stoke on Trent College, Burslem, ST6 1JJ. Ken Burgess. Tol: (01782) 208208 Fex: 603103
19 Tresham Institute (Northants) of F\& ME, Corby, NN17 10A. John Dizon. Tel: $(01536) 413307 / 402252$ Fax: 402252

To find out exactly what the college of your choice can offer, please felephone directly or use the no obligation Enquiry Coupon below for a brochure.

ENQUIRYOOUPON

Please send details of your electronics courses to:
Name
Address
\qquad
\qquad
Tel No. and area code
Fax number and area code
Age (if under 18)
Preferred type of course?
they succinctly describe it: "The normal method of progress is for a supervisor in the first year to tell you what to do, in the second year you discuss the project together, while in the third eyar to tell your supervisor what he or she is doing!". Initially research students are registered for a Master of Philosophy degree. After 12 to 18 months and a successful thesis, this can be re-registered as a PhD (Doctor of Philosophy, the highest standard degree qualification level) which is normally expected to take three years to complete.

The current Research Groups in the department include Communications (digital cellular mobile systems), Design Automation (simulation, synthesis and testing techniques underlying CAD systems); Concurrent Computation (parallel processing) and Image Speech and Intelligent Systems (ISIS). These are only a sample of the research groups currently in progress.

De Montfort University, Leicester

De Montfort University offers MPhil (1-2 years full-time, 2-4 years part-time) and PhD ($2-3$ years full-time, 3-5 years parttime) qualifications, with the option to register for MPhil with the possibility of transfer to PhD after 18 months. Research at the University is conducted in partnership with, or on behalf of, large and small industrial and commercial concerns, as well as public sector organisations. The development of European and international links allows research to be carried on with organisations outside the UK through European initiatives such as BRITE/EURAM.

The University's recently opened Science and Engineering Research Centre (SERCentre) currently supports the work of several research units, and assists the carrying-on of multidisciplinary and cross-disciplinary research among the teams. Separately, a Research Unit exists to carry out the administration for registered research degree students throughout the university.

There are a number of research schools that may have courses of interest to people with a background in electronics, computing or physics, including Applied Sciences, Computing Sciences, Engineering and Manufacture (which includes the department of Electronics and Electrical Engineering) and the Science and Engineering Research Centre (SERCentre). The School of Applied Sciences, for instance, has the Solid State Research Centre, dealing with cross-disciplinary Physical and Materials Science Research. Computing Sciences supports research programmes in computing, information systems, mathematical sciences and medical statistics. The Department of Electronics and Electrical Engineering, in collaboration with engineering giant Lucas, the Rutherford Appleton Laboratory, and Daresbury (part of the Engineering and Phusical Sciences Research Council) is one of the leading institutions in microengineering. A number of the research activities are interdisciplinary and the research groups have a commitment to applied and strategic research.

The Science and Engineering Research Centre includes research groups in Emerging Technologies (microelectronics), water software systems, computer imaging, communication networks and systems engineering. There are also a numiber of MSc programmes offered in the University.

What research?

Students moving on from first degrees to higher degrees will need to think carefully about whether they want to go more deeply (that you are going in deeply goes without saying) into the area they are interested in, or whether they are more

Below: An electrodynamic shaker is shown being used to identify mechanical resonances in a disk drive. (Neville Miles LRPS)

interested in pursuing interdisciplinary aspects. Some colleges and research groups concentrate more on one than the other. It is normally safe to assume that all research groups have contacts with industry and interests outside the academic sphere, but you may want to know more about which industries and bodies are involved with the area you are interested in.

Nearly all research activity is sponsored by industry or government bodies, except in the rarer cases where the college is its own sponsor. There is not a completely open choice of areas in which to research. Certain research programmes are taking place at any time, and it is for these that the institutions are considering research applicants. A positive aspect of this is that your research should per se have practical relevance to a career path.

Some colleges routinely consider applicants with first degrees only, while others prefer PhD applicants to have obtained an MSc first, but all will consider applicants with any high-level qualifications even if these do not exactly fit their normal entrance requirements. All colleges will refer applicants to bodies who may offer grants, but the number of grants is limited. Also, the most demanding full time courses do not in practice allow for financing by working, and it would be unwise to plan on doing so.

Resources

Some of the useful books that we mentioned last month are listed below, but students already at college will find more information in their college careers advice office. The Registration departments of the colleges in question often produced more detailed literature about higher degrees for prospective students and, (where available), subject booklets provided by specific departments

The Times Good University Guide edited by John O'Leary (Times Books)

The Big Official UCAS Guide to University and College Entrance (Letts Study Guides with The Independent) Which Degree 1997 - Volume 2: Engineering, Technology and Geography and Volume 3: Science, Medicine and Mathematics CRAC Student Guide (Hobson's Publishing)

To obtain prospectuses from the colleges above, contact The Assistant Registrar (Admissions), Imperial College of Science, Technology and Medicine, London SW7 2AZ. Tel 0171589511 Fax 01715948004.
(imperial College also publishes Postgraduate Study in Electrical and Electronic Engineering, Research Report '95-'96' and Postgraduate Study in Computing.)

The Prospectus Enquiries Office, University of Southampton, SO17 1BJ. Tel 01793592379 Fax 01703 593037.

De Montfort University Leicester, The Gateway, Leicester LE1 9BH. Tel 01162551551 FAx 01162550307.

MSc/Diploma in Information Engineering

This postgraduate course offers a set of integrated courses with a common theme in information acquisition and processing, systems and control with specialisations in Electronic Digital Systems and Communications, Control Engineering, Measurement and Instrumentation, Biomedical Computing, Instrumentation and Informatics.

The course is taken 12 months full-time, or over 24 months part-time, principally on a day release basis. A major feature of the MSc is an extended (5 months) project period.

See http://www-eeie.city.ac.uk or telephone 01714778135 for further details. Department of Electrical, Electronic and Information Engineering.

Teaching and research excellence in London

DISTANCE LEARNING COURSES in:

Analogue and Digital Electronics Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics
Inll Courses to suit beginners and those wishing to update their knowledge and practical skills
In Courses are delivered to the student as self-contained kits
n 5 No travelling or college attendance is required
E Learning is at your own pace

For information contact:
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

PRINTED CIRCUITS IN MINUTES DIRECT FROM LASERPRINT

1. Laserprint or Photocopy circuit image onto P-n-P
2. Press on using a standard household iron
3. Peel off
4. Etch

Everything you need to manufacture your own PCBis.
Copper clad laminate, Etchant, all ancillary products.
Individually priced or complete kits from $£ 4 \mathrm{D}$ For R\&D and prototyping facilities we can supply a Hot Roll Laminator and Bubble Etcher plus all the products required to make a PCB straight from your CAD System.

NEW PRODUCT

Press-n-Peel Decorative Laminate.

Make your own pictures, certificates, signs etc with our Copper Clad black decorative laminate for a fantastic effect.
15% DISCOUNT ON PRESS-N-PEEL. FILM ORDERS OF £25 OR OVER.

All prices quoted are subject to VAT and carriage

Press-n-Peel Etching Supplics Service
18 Stapledon flood. Otion Southgote, Peterborough, Combs. PE2 OID Tel: (01733) 233043 fox: (01733) 231096

B^{2} Spice \& B^{2} Logic £199

- Design and test analogue and digital circuits quickly and easily
- Incorporates a dedicated model editing package
- Fast 32 bit SPICE 3F5 engine
- Windows 3.1/95/NT
- Mac version also available
- CD ROM or $3.5^{\text {n }}$ disk

Fully integrated and interactive

Build the circuit on the screen and sel up the simulations by choosing aptions from menus and dialogues. Then run the simulation and view your results.

Flexible Visualisationof Results

in B^{2} Spice results can be displayed in graphs, tables or directly in voltmeters and ammeters. Change from typical to worsi case analysis and include the effectsof temperature on componente. You can customise everything. right down to the colour of an Individual trace so you see just what you need. B̀ Spice and B^{2} Logic let you export data to other applications.

Versatillity

A plethora of components include resistors capacitors, inductors, mutual inductors transtormers, controlled sources, bipolar function transistors, zener diodes, power MESFETs, JFETs, MOSFETs, vothage regulators, operational amplitiers, optocouplers, voltage comparalors, quartz crystats, tBIS VO buffers and switching matsix connectors and much more All devices and model parameters can be edilfed to suil your needs. Implement hierarchical circuits in your designs quickly and easily

No LImits

With 8^{2} Spice and 8^{2} Logic there is no limit on the number of components in the circuil.

Models

There are fiterally thousands of them.. The complete Berkeley SPICE model library as well as commercial ibraries from manulacturers such as. Motorola, Texas Instruments, Burr-Brown, Maxim, Netional Semi, APEX Comilinear, AMP, Elantec, Linear Tech, and many more. Included with BSpice is a full model and symbol editing package so you can create. imporf and odit custom models.

Commands

B^{2} Spice supponts AC trequency sweep. DC operating point, transient analysis, fast fourier Noise, sensitivity distortion; Tl small signal transter.

Simulation Optlons

Added facility for sub-circuls (macro-models). You can set all simulation options.
Allows you to set initial condiftions at all nodes. Allows you to sel initial guess at nodes for simulation.
Allows "not given" state for all vatues,

Total Control

B^{2} Spice gives full access to Berkeley SPICE simulation control options. For example you can set giobal delauts for transistor channel lengths and wioths! Plus much more.

Waveform Analysis

Display and compare multiple response curves in a single graph at the same time. ÉSpice simulation results can be selectively displayed and analysed graphically and in numerical format as well as exported to other applications. All of B^{2} Spice and B^{2} Logic's display capabilties are completely flexible.

Devices \& Stimulus for Simulation

In B^{2} Spice sinusoidal. constant, perlodic pulse, exponential, single frequencyFM. AM DC voltage, $A C$ voliage, VCO, VCC, piecewise lineat exponential, polynomial /arbitrary source, vollage-controlled volage, voltagecontrolled current. current-controlled voitage. current-controlled current, Lossy and ideal transmission line, MESFET unitorm RC, current and voltage swithes are all available.

Cross Probing

Cross probing allows you to display waveform results simply by marking pins, wires and devices on the circuit drawing. Monitor results while the simulation is in progress then piot anslogue resuits on linear or log scales.

Graphs

in B^{2} Spice analogue traces may be displayed as raw vollages and current values or further processed using artihmetic expressions. lunctions and Fast Fourter Transforms. High quality graphs let you see just what you need to, clearly and easily You can also display muttiple simulations in one graph. Multiple graphs can then be aligned and compared.

Data Analysis

Position detection with mouse for data points. Import and export data to and from other industry standard SPICE programs. \& Spice supports Polac Smith and Nyquist charts.

Digital Options.

B Logic is completely fiexibie. Sel up ROM, RAM and PLA to your own requirements. Shrink a whole circuit to a block and use it as a component in a new design. Run the simuiations in real time or step by step. Customise rise and fall time of all components. Results displayed in a logic analyser or table. Select parts from all major logic families. Create your own custom libraries. Create and run pre-programmed simulations.

Design engineers need software that produces results they can rely on. Anything less is a liability. B^{2} Spice \& B^{2} Logic will give you the accurate results you need fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do... risk free for 30 days.

We guarantee you will be 100% satisified with the results or your money back.

To order your copies to try for 30 days call: 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

VIEA

RD Research

Research House, Nonwich Road, Eastgate, Norwich. NR10 4HA Postage \& packing £4.50. Prices quoted are ex VAT Af tradersiks ere acknowed

Digitally Controlled

 Power

 Power}

Robert Penfold's power supply with PIC-controlled stability will not suddenly provide a high voltage on switch-on if you forget to readjust it

When using a varlable voltage bench power supply unit you need to take due care to avoid the classic mistake of connecting the supply to your latest circuit, switching on, and then discovering that your 5 volt logic circuit is being supplied with about 20 volts! Some up-market power supply units avold this possibility by having the supply always start at its minimum output voltage at switch-on. In most cases this means that the supply always starts with zero output voltage, and therefore fails to supply any output signal at all until the user has set the required output potential.

Although this feature is normally only found on expensive digital bench power supply units, it can be included on relatively low cost power supplies. In fact it does not require the use of digital electronics and can be provided using an analogue circuit. However, it is difficult to obtain really good stability using an analogue design which has to rely on a capacitor "remembering" the set output voltage. Even using the highest quality components together with the usual precautions such as earth rings does not guarantee good results. Over a period of time the output voltage will change slightly, and over a period of hours if it is likely to change quite radically.

For a reasonably simple power supply that will start from zero and provide good stability, it is necessary to use some basic digital electronics. This power supply unit has a simple digital control circuit that is basically just a PIC microcontroller that acts if as a
form of up/down binary counter. At switch-on the counter it is set at zero which in turn sets the output potential at zero. The output voltage is controlled via four pushbutton switches, and two of these enable the output potential to be increased. The difference between the two is that one changes the voltage quite rapidly while the other gives a much slower change in the output voltage. Using the "fast" button enables the user to rapidly set an approximation of the required output potential, and the "slow" button is then used to set precisely the required voltage. The other two pushbutton switches provide the same basic function but enable the output voltage to be reduced.

The output voltage range of the supply is zero to 20 volts with a maximum output current of 1.4 amps . The output voltage can actually be set as high as 25 volts, but at output potentials of more than about 20 volts the maximum output current is less than 1.4 amps . The maximum output current is typically only about 250 milliamps with the output at 25 volts. The circuit is protected against overloads by output current limiting that prevents the output current from exceeding more than about 1.8 amps even with a short circuit on the output. When testing low current circuits the current limiting can be set to a lower level of about 180 milliamps. An analogue voltmeter monitors the output voltage so that the required output potential can be set, and this also provides a warning lf an overload should occur. The output noise is less than 500 uV at most output voltages and currents, and the output regulation is extremely good.

Envira Man

Temperature / Humidlty
Logger \& Alarm System
EnviroMon has many applications in: food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospltals - accurate monitoring of temperature sensilive items.

> Vonitors up to 30 channels of temperature over a 400 m . distance.
> $\nabla-55$ to $100^{\circ} \mathrm{C}$ temperature range (typicica laccuracy $\pm 02^{\circ} \mathrm{C}$.
> ∇ Data can be downloaded to PC.

EnviraMan

Starter Kit from £393.00
3 temperature Sensors on 5 m lead, 3 channel Converter, Enviromon Logger, cables \& fittings. Expandable at any time for around $£ 50$ / channe

TC-08

8 channel Thermocouple to PC Converter
Simple to use thermocouple to PC interface.
\checkmark Connects to serial port no power supply required.

- Supplied with PicoLog data logging software.
- Resolution $0.1^{\circ} \mathrm{C}$.
TC-08 £199.00
Supplied with serial cable and adaptor.
Calibration certificate $£ 25.00$.
Thermocouple probes available

TM-03 3 channel

Thermistor to PC Converter

∇ Connects to serial port no power supply required.

- PicoLog data logging software.
$\nabla-55$ to $105^{\circ} \mathrm{C}$ temperature range
∇ Resolution $0.01^{\circ} \mathrm{C}$.

TH-03

$£ 79.00$
Supplied with serial cable and adaptor. Thermistor sensors available.
Call for free demo disk or download our web site: http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0)1954 211880 E-mail: post@picotech.co.uk

Figure 1: the block diagram for the Digitally Controlled PSU

System Operation

The hardware is greatly simplified by the use of a PIC processor to provide the basic up/down counter function. The block diagram of figure 1 shows the basic arrangement used in this power supply unit. A digital to analogue converter is fed with the eight-bit output from the PIC processor and it provides an output voltage that is equal to 10 milivolts (0.01 volts) per $1 s b$. The maximum count from an eight-bit counter is 255 (decimal), but in this case we require the count to go no higher than 250 so the maximum output voltage is 2.5 volts. After amplification by a factor of 10 , this provides an output voltage range of 0 to 25 volts with a resolution of 0.1 volts. The PIC software is used to restrict the count to no more than 250 . The counter and converter stages are power from the main 30 volt supply via a 5 volt regulator, but the rest of the circuit is powered from the unregulated 30 volt supply.

A buffer amplifier at the output of the $\times 10$ amplifier enables the circuit to handle high output currents, but a standard current limiting circuit pulls the output voltage lower if an excessive output current is detected. This limits the output current to a safe level even with a short-circuit across the output terminals. The negative feedback loop to the $\times 10$ amplifier is taken from the output of the circuit so that the feedback compensates for the voltage drops through the buffer amplifier and current limiting circuit. An analogue voltmeter is used to monitor the output potential, and enables the output voltage to be set with good accuracy.

Circuit Operation

Figure 2 shows the main circuit diagram for the Digitally Controlled PSU, but the circuit for the unregulated supply generator is shown separately in figure 3. Taking figure 2 first, IC1 is the PIC processor, and this is a $16 \mathrm{C} 84-04$. This is the 4 MHz version of the chip, and in this circuit it is used with a C - R clock generator that has R1 and C1 as the discrete timing components. These set the clock frequency at about 14 to 15 kHz , but the exact clock frequency is not critical in this application. The C-R clock mode is therefore perfectly adequate.

Port A of IC1 is set as inputs and used to read the four pushbutton switches (S1 to S4). These inputs are normally taken low by pull-down resistors R2 to R5, but operating on of the pushbutton switches takes its respective input high. Port B is an eight-bit type, and it is used to drive the digital to analogue converter. There is a minor problem in that the Port B lines default to the input mode at switch-on, and there is a short delay before the program sets them as outputs. During this time they tend to drift high, producing a brief output signal at 25.5 volts. This could obviously prove fatal for any low voltage clrcuit connected to the
output of the unit at switch-on. Resistors R6 to R13 act as pulldown resistors on IC1's outputs, and these ensure that the outputs remain low while the program goes through its setting up routine.

The analogue to digital converter is a Ferranti ZN426E (IC2), and this has a built-in precision voltage generator. IC2 requires discrete load resistor R14 and decoupling capacitor C2, but is otherwise self-contained. IC3 is a low power monolithic voltage regulator which provides a stabilised 5 volt supply to the counter and converter circuits. Series resistor R16 is used at the input to IC3 to reduce its input voltage. This helps to keep the dissipation in IC3 down to an acceptable level, and ensures that it is not fed with an excessive input voltage.

IC4 acts as the $\times 10$ amplifier, and this is atmost a standard non-Inverting mode amplifier circuit. It only differs from the standard configuration in that no negative supply rail is used.

Figure 3: the circuit diagram for the rectifier and smoothing stages of the unit

This is acceptable because the operational amplifier used for IC4 is a type which can operate with its inputs and output at potentials virtually down to the 0 volt supply potential. Most other operational amplifiers will not work in this circuit, and I would not recommend trying to use anything other than a CA3140E for IC4. The closed loop voltage gain of IC4 is controlled by R15, VR1, and R17, which form a conventional negative feedback circuit. VR1 is adjusted to give a closed loop voltage gain of precisely ten.

Figure 2: the main circuit diagram for the Digitally Controlled PSU

Q1 acts as the buffer amplifier, and this is a Darlington power device used in the emitter follower mode. The very high current gain of Q1 (typically about 5000) ensures that it can easily provide output currents of an amp or more despite the fact that IC4 can only provide output currents of up to a few milliamps. The current limiting circuit uses R19 or R20 in series with the output to sense the output current. The larger the output current, the higher the voltage developed across the selected resistor. This voltage is fed to the base-emitter junction of Q2, and will forward bias Q2. Voltages of less than about 0.6 volts are insufficient to switch on Q2, and the current limiting circuit then has no significant affect on the circuit.

At higher voltages Q2 starts to conduct and pulls the output voltage of IC4 lower. This also pulls the output voltage lower, and resists any increase in the output current. The lower the load resistance across the output, the lower the output voltage is pulled. Even with a short circuit across the output, the output current will be kept at a safe level, and the output potential will be reduced to virtually zero. With R19 switched into circuit the output current is limited to around 1.8 to 1.9 amps. This is low enough to ensure that the circuit is not damaged in the short term, but it is high enough to ensure that the maximum output current of 1.4 amps can be delivered without the current limiting starting to operate. The higher value of R20 gives a lower limit current of around 180 to 190 milliamps.

R18 is the output load resistor, and it ensures that the output current is always high enough to keep the output circuitry functioning properly. ME1 is used in a simple analogue voltmeter circuit that has a full scale voltage of 25 volts. VR2 is set to give the voltmeter the correct sensitivity.

The basic 30 volt supply is provided by the circuit of figure 3 , and this is a conventional full-wave circuit having bridge rectification provided by D1 to D4. C6 is the smoothing circuit, and fuse FS1 protects this circuit if a fault should occur in the control and regulator circuitry. A separate earth socket (SK3) is provided so that either output rail can be earthed, or the unit can be used as a "floating" supply with neither output rail earthed. However, for safety reasons the chassis of the unit must be permanently (and reliably) earthed to the mains earth lead.

Software

The PIC software first sefs up port B as eight outputs, and leaves port A as four inputs. A value of 0 is written to port B initially so that all eight outputs are set low, and zero volts is produced at the output of the unit. The program then goes into a loop which reads port A and tests each bit in turn. The programs loops until it detects that an input line has gone high (one of the pushbutton switches has been operated), and it then goes to the appropriate one of four subroutines.

Two of these subroutines increment the value stored in the COUNT register, and then output the new value to port B. However, a check is made first to determine whether the count has reached OXFA (250 decimal). The subroutine is aborted if this value has been reached. Both subroutines finish with a delay loop, but one provides a much longer delay than the other. This gives the fast and slow increments of the output voltage, but note that both routines provide full resolution and differ only in their rate of change. Basically similar routines are used to decrement the output voltage, but these check to see if the count has reached zero, and abort the subroutines if it has. Again these two routines only differ in the length of the delay provided at the end of the routines.

The Low Cost Contro Fecitures

The K-307 Module provides the features required for most embedded applications Analogue

- 4 Channels in 1 Channel out Digitol - 36 Digital in or out \& Timers Senial
- RS-232 or RS-485 plus I2C Disploy
- LCD both text and graphics

Keyboard

- Upto 8×8 matrix keyboard

Memory

- >2 Mbytes available on board

Low Power

- Many modes to choose from

Development

The PC Starter Pack provides the quickest method to get your application up \& running
Operoting System - Real Time Multi Tasking
Longucges . 'C', Modula-2 and Assembler Exponsion - Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

P込

Units 17-18 Zone 'D'
Chelmsford Road Ind Est Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com

Phone 01371875644

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 ($100 \mathrm{~W}+100 \mathrm{~W}$) MXF400 ($200 \mathrm{~W}+200 \mathrm{~W}$) MXF600 (300W +300 W) MXF900 ($450 \mathrm{~W}+450 \mathrm{~W}$)
FEATURES: \#independent power supplies with two toroidal translormers \& Twin L.E.D. Vu meters *
 prool . Lalest Mos-Fels lor siress free power delivery into virtually any load High siew rate . Very low
distortion Aluminium cases $\$ \mathrm{MXF600}$ \& MXFgo0 fan cooled wih D.C. Ioudspeaker and thermal prolection.
ISED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.
SIZES:- MXF200 W 19^{*} H $33^{1 / 2 "}(2 U) \times D 11^{\prime \prime}$ MXF400 W $19^{-} \times \mathrm{HS}^{4} 4^{-}(3 \mathrm{U}) \times \mathrm{OD}^{\prime \prime}$

PRICES:- MXF200 \&175.00 MXF400 £233.85 MXF600 \&329.00 MXF900 \&449.15 SPECIALIST CARRIER DEL. E12.50 EACH
OMP XO3 STEREO 3-WAY ACTIVE CROSS-OVER

 Cass, mid 8 top. The removable front lascie allows arcess to the programmable Oil swilches to adjust the on esch bass channel. Nominal 775 mV input/output. Fully compatible with OMP rack ampllier and modules.

$$
\text { Price } £ 117.44+£ 5.00 \text { P\&P }
$$

PIELO ELECTRIC TWEETERS - MOTOROLA

Join the Piezo revolution! The low dynamic mass (no voice coll) of a Plazo weeter produces an improver in
these units can be added to exisfing speaker sysiems of up to 100 walts (more if iwo are put in series. FRE EXPLAMATORY LEAFLETS ARE SUPPLIED WTTH EACH TWEETER.

TYPE ' A ' (KSN1036A) 3" round with protective wire mesh. Ideal for bookshelf and medium sized HI-Fi apeakers. Price $£ 4.90+50$ p PAP. TYPE 'B' (KSN1005A) $31 /{ }^{2}$ " super horn for general purpose speakers, disco and P.A. systems etc. Price $\mathbb{5} 5.99+50$ p P\&P.
TYPE 'C' (KSN 1016A) ${ }^{2} \times 5^{\prime \prime}$ " wide dispersion horn for quality Hi-Fi sye lems and quality discos etc. Price $£ 6.99+50$ p P\&P.
TYPE ' D ' (KSN 1025A) 2 " $\times 6^{\circ}$ wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Sultable for high quality HL-Fi systems and quality discos. Price $£ 9,99+50 \mathrm{p}$ P $\&$ P. TVPE ' $E^{\prime}($ KSN 1038A $) 3^{3}{ }^{3}$." hom tweeter with attractive silver finish trim Suitable for $\mathrm{Hi}+7 \mathrm{l}$ monitor syslems etc. Price $£ 5.99$ + 50 p P\&P. LEVEL CONTROL Combines, on a recessed mounting plate, level contro and cabinet input jack \&ocket. $85 \times 85 \mathrm{~mm}$. Price $£ 4.10+50$ p P\&P.

EDIFLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers. designed to take advantage of the lales speaker technology and enclosure designs. Soth models utitize studio quasity
12^{-1} casi aluminium loud speakers wilh factory finted grilles, wide dispersion constant directivity horns. extruded aluminium corner protection and steel ball corners, complimented with heavy duty black covering. The enclos ures are litted as standard with top hats for optional loudspeaker stands
POWER RATINOS QUOTED IN WATTS RMS FOR EACH CABINET FREOUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$
 ibl FC 12-200WATTS (100 dB) PRICE E175.00 P ER PAIR SPECIALIST CARRIER DEL. E12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR $£ 48.00$ Delivery $£ 6.00$ per pair

PAICES: 150W E49.99 250W E99.99 400 W £ 109.95 PaP $£ 2.00$ EACH

THREE SUPERE HIGH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS 175 Bridged Mono
250 WATTS Bro Watts $(125+125)$ Stereo, 250 W
Bridged Mona Bridged Mona
400 WATTS $(200+200)$ Stereo, 400 W Bridged Mono ALL POWERS INTO 4 OHMS Features:
Titoreo, brldgable mono $*$ Cholee of high $\&$ low level inputs $t i \& A$ level controls \&emote on-ot \& Speaker \&
thermalorotection.
 R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Faclor >300, Slew Rate $45 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensilivity 500 mV , S.N.R. -110 dB . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE \& $40.85+$ E3.50 P\&P

OMP/MF 200 Mos-Fel Outpul power 200 watts R.M.S. Into 4 ohms, trequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. -110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$. PRICE £64.35 + E4.00 P\&P

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, irequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$, T.M.D. typical 0.001%, Input Sensitivity 500 mV , S.N.R. T.110 dB. Size $330 \times 175 \times 100 \mathrm{~mm}$. -110 d 2. Size $330 \times 175 \times 100 \mathrm{~mm}$
PRICE E81.75 + E5.00 P\&P
OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, input Sensitivity 500 mV , S.N.R. -110 dB, Fan Cooled, D.C. Loudspeaker Protection, 2 Second Antl-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE £ $132.85+$ E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Irequency response 1 Hz - 70 KHz -3dB, Damping
Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typlcal Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{US}$, T.F.D. typlcal
0.002%, Input Sensifivity 500 mV , S.N.R. 110 dB , Fan 0.002%, Input Sensifivity 500 mV , S.N.R. $\mathbf{1 1} 10 \mathrm{~dB}$, Fan
Cooled. D.C. Loudspeaker Protection, 2 Second Cooled. D.C. Loudspeaker Protection,
Anll-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$. PRICE E259.00 + £ 12.00 P\&P

MOTE MOS-FET MOOLLES ARE AVARLABLE IN TWO VERSIONE,
NOTE MOS-FET MOOLES ARE AVARLBLE IN TWO VE
TANOARO-TMPUT SEN S SOOMV, BAHO WIUTH 100KHE PEC (PROFESSIOMAL EOUIPMENT COMPATIELI). INPUT
TYSTV, RANO WIDTM SOKMZ OROER STANOARD OR PEC.

LOUDSPEAKEIS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60 P STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also available.

SMINENCEF INSTRUMENTS, P.A., DISCO, ETTC

ALL EMINENCE UNITS 8 OHMS IMPEDANCE
$8^{\prime \prime} 100$ WATT R.M.S. ME8-100 GEN. PUAPOSE, LEAO GUITAA. EXCELLENT MID, DISCO. RES. FREO. 72Hz, FREO. RESP. TO 4KHz, SENS 97 IBB. 10" 100 WATT R.M.S. ME $10-100$ GUITAR, VOCAL, KE YBOARD, OISCO, EXCELLENT MID. RES. FREO. 73 Hz , FREO. AESP. TO 7 KHz , SENS 97 d8. \quad PRICE $833.74+$ E 2.50 PaP $10^{\circ} 200$ WATT R.M.S. ME $10-200$ GUITAR, KE YB D, DISCO, VOCAL, EXCELLENT HIGH POWER MID. RES. FREO. 65Hz, FREQ. RESP. TO 3.5KMz. SENS 9908. RES FREO AMH2. FPE. RESP-12 RES. FREQ. 19Hz, FREQ. RESP. TO 6KHz, SENS 100d8. 12100 WAT R.W.S. ME12-100 TT (WIN CONE) WIDE RESPONSE PRIC $35.64+$ 〔3.50 PaP MONITOR. RES. FREO 42 HZ . FREQ, AESP. TO 10 KHz , SENS $98 \subset \mathrm{~B}$. 12^{-200} WATT R.M.S. ME 2 -200 GEN. PURPOSE, GUITAR, DISCO, VOCAL, EXCELLENT MID AES. FREO. 58 Hz . FREO. RESP. TO 6 KHz , SENS 98 dB .
12300 WATT R.M.S ME 12 -3000 P HIGH POWER BASS. LEAD GUTTAR RES. FREO. 47Hz, FREO. RESP. TO 5 KHz , SENS 103 dB . PRICEAS71 73.50 Pe KEYBARDD, DISCO ETC. $15^{\circ} 200$ WAT R.M.S. ME1 5 -200 GEN. PURPOSE BASS. INCLUDING BASS GUITAR. RES. FREQ. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99dB. PRICE $£ 50.7$ 15^{-3} 300 WATT R.M.S. ME $15-300$ HIGH POWER BASS, INCLUDING BASS GUITAR.
PRICE $£ 73$.

PRICE $573.34+$ C4.00 Pap

EAFTBENDERS:- HI-FI. STUDIO, IN-CAR, ELC

ALL EAREENDER UNITS B OHMS (ExCep EBE-SO\& EB10.50 which aro dun BASS, SINGLE CONE, HIGH COMPLIANCE, ROLLED SURROUND $8^{\circ} 50$ Watt EB8-5O DUAL IMPEDENCE. TAPPED $4 / 8$ OHM BA5S. HI-FI, IN-CAR RES. FREO. 40 Hz , FREO. RESP. TO 7 KHz SENS 97 dB . TO SOWAT EB 1O-50 DUAL IMPEDENCE. TAPPED $10^{\text {i }} 100$ WATT EB 10-100 BASS, HIFI, STUDIO.
RES. FREO. 35 Hz , FREO. RESP. TO 3 KHz , SENS 96 dB .
12. 100WATT EB12-100 BASS, STUDIO, HL-FI, EXCELLENT DISCO RES. FREO. 26 Hz , FREQ. AESP. TO 3 KHz , SENS $93 d 8$.
FULL RANOE TWIN CONE, HIOH COMP LIANCE, ROLLED SURROUND
S4: 60 WATT EB $5-$-BOTC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC. RES. FREQ. 63 Hz , FREO. RESP. TO 20 KHZ , SENS 92 dB . 64,2" OOWATT EEBG-GOTC (TWIN CONE) HI FFI. MULTAARRAY DISCO ETC AES, FREO. 3BHz, FREO. RESP. TO 20KH2, SENS 94d8. RES. FREO. 40 Hz . FREO. RESP. TO 18 KHz , SENS 89 dB , AY OISCO ETC. 10. $\mathbf{6 0 W A T T ~ E B 1 0 - 8 0 T C ~ (T W I N ~ C O N E) ~ H I - F I , ~ M U L T I ~ A R R A Y ~ D I S C O ~ E T C ~}$ RES. FREO. 35 HZ . FREO. RESP. TO 12 KHZ , SENS 98 dB .

VRANSMITTER HOBEY KITS

PROVEN TRANSMITTER DESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD ANO MIGH OUALITY COMPONENTS COMPLETE WITHCIRCUIT ANO INSTRUCTIONS 3W tramsmitter so-100MH2 Maricap CONTROLLED professiomu

FI MICAO TRANSMITTER $100 \cdot 100 \mathrm{MHz}$ VIARICAP TUNED, COMPLETE WTH VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$ SIZE 56 I 4 Smm. SUPPLY VV BATTERY.

UNITS 1 \& 5 COMET WAY, SOUTHEND ON SEA. ESSEX. SSE GTR
Tel 0170e 527572 Fax 01702-420243

Construction

Details of the printed circuit board are provided in figure 4. Although this project is not particularly difficult to construct, there are a number of points that are worthy of note. One of these is simply that this is a mains powered project, and as such it is not suitable for beginners. The mains supply is potentially lethal, and only those with the appropriate experience should undertake projects that connect to the mains.

The 16C84-04 (IC1) and CA3140E (IC4) are both MOS devices, and as such they require the normal anti-static handling precautions. Use holders for both devices, but do not plug them into circuit until the unit is in other respects finished. They should be supplied in some form of protective packing, and they should be left in this until it is time for them to be fitted in the holders. Try to touch their pins as Iittle as possible when fitting these components into the holders, and keep them well away from any known sources of static electricity. The ZN426E used for IC2 is not a MOS input device, but it is not particularty cheap either, so it is also advisable to use a holder for this component as well.

Smoothing capacitor C6 will only fit onto the printed circuit board if it is a modern type such as the Maplin "HC Series SnapIn Radial Electrolytic" used on the prototype. It is possible to use a large "can" type electrolytic, but it would have to be fixed on the case using a suitable mounting clip, and then hard wired to the circuit board. Make absolutely certain that rectifiers D1 to D4 are fitted with the correct polarity, as mistakes here could cause costly damage. They could even be dangerous.

As ever with mains projects, take particular care and seek assistance from an experienced constructor if you yourself do not have mains construction experience.

Fuse FS1 is mounted on the printed circuit board by way of two 20 millimetre fuse clips (Maplin "Type 1" or similar). Alternatively, FS1 can be fitted in a panel mounting fuse-holder fitted on the rear panel of the case and hard wired to the printed circuit board. Do not overlook any of the link-wires. There are five of them, including one immediately above IC1, and one immediately below IC2.

Power transistor Q1 has to dissipate quite large amounts of power when the supply is used with low output voltages and high output currents. This results in the generation of a fair amount of heat, and Q1 will quickly be destroyed unless it is mounted on a substantial heatsink. The cheapest option is to mount Q1 on the metal case which then acts as a large heatsink. If the unit is likely to be used for long periods to supply low voltages and high currents, it would be advisable to fit a large heatsink having a rating of about 1.8 degrees per watt or less to the rear panel of the case. Q1 is then mounted on this, and hard wired to the circuit board via leads which pass through holes drilled in the heatsink and the rear panel of the case.

Whether Q1 is mounted on a heatsink or direct onto the case, it must be Insulated from the heatsink and (or) case using a

TO220 insulating kit. This consists of a thin mica or plastic washer which fits between Q1 and the heatsink or case, and a plastic bush which fits over the M3 or 6BA mounting bolt. The washer insulates Q1 from the case/heatsink, and the bush insulates Q1 from the mounting bolt (which is not insulated from the case). The side view of figure 5 shows how everything fits together. Make sure that the hole for the mounting bolt is properly deburred, because the thin washer is easily pierced. Once Q1 is in place,

Figure 4: the component overlay for the PCB

use a continuity checker to ensure that it is property insulated from the case. A break in the insulation could result in a short-circuit on the unregulated 30 volt supply, but FS1 should "blow" and prevent any major damage if this should occur.

As this project is mains powered it must be housed in a metal case, and it is essential that the case is earthed to the mains earth lead. A soldertag fitted on one of T1's mounting bolts provides a strong and reliable chassis connection point. A metal instrument case about 250 millimetres wide and at least 75 millimetres high should comfortably accommodate everything. T1 is mounted on the base panel of the case, as far to the right as possible, so that there is sufficient space for the printed circuit board to its left. The printed circuit board can be mount using plastic stand-offs, or it can be bolted to the case. If it is bolted in place, use spacers at least 6 millimetres long to hold the underside of the board well clear of the metal case. A hole for the mains lead is drilled in the rear panel of the case near to T1, and this hole must be fitted with a grommet to protect the cable.

Capacitors

C1	1n5 polyester, 7.5 mm lead
Spacing	
C2	10u 25 V radial elect
C3,4,5	100 n ceramic
C6	$4700 \mathrm{u} \mathrm{35V}$ radial elect

Semiconductors

IC1	PIC16C84-04 (see text)
IC2	ZN426E
IC3	UA78L05
IC4	CA3140E
TR1	TIP121 or TIP122
TR2	BC337
D1-D4	1N5402

Miscellaneous

SK1	Ped 4 mm socket
SK2	Black 4 mm socket
SK3	Green 4 mm socket
S1-S4	Non-locking push-to-make
	switches
S5	SPDT min toggle switch
S6	Rotary mains switch
T1	Standard mains primary, 20V
	$2.25 A$ secondary
ME1	50 UA moving coil panel meter
FS1	1.6 A 20 mm "quickblow" fuse

The front panel layout is not critical, but try to use one that is reasonably neat and practical. The only minor difficulty when fitting the components on the front panel is that the meter requires a large circular cut-out. For a normal 60×45 millimetre component a cut-out some 38 millimetres in diameter is required. This can be cut using an Abrafile, fretsaw, coping saw, miniature round file, etc., but it is advisable to cut just inside the perimeter of the required cut-out. The hote can then be enlarged to precisely the required size using a half round file. Atternatively, most DIY superstores now stock a device which is simply called a "hole cutter" (but is also known as a "tank cutter"). This is used in a brace, and can be set to produce a wide range of hole sizes. This tool produces reasonably neat and almost instant results.

Details of the hard wiring are provided in figure 6 , which is used in conjunction with figure 4. The mains transformer (T 1) should have a 20 volt secondary voltage and a current rating of at least 2.25 volts (a rating of at least 50VA). The modern trend is for mains transformers to have twin secondary windings which can be wired in series or in parallel. In this case either twin 10 volt secondaries wired in series, or two 20 volt secondary windings connected in parallel are required. In practice the only option is likely to be two 20 volt secondary windings connected in parallel, and this is the method of connection shown in figure 6. Note that parallel connection of secondary windings should only be used with transformers that are designed to be used in this manner. With other transformers it could result in one winding driving a large current through the other winding.

Adjustment

With a mains powered project such as this it is essential to thoroughly check all the wiring before connecting the unit to the mains and switching on. Once you are sure everything is as it should be, set VR1 and VR2 at roughly middle settings and then switch the unit on. Initially the meter should indicate zero volts, but by operating the four pushbutton switches it should be possible to vary the output voltage. If there is any sign of a mallunction, switch off at once, disconnect the unit from the mains, and recheck the wiring, etc.

In order to give VR1 the correct setting, use a multimeter to measure the output voltage, and use the pushbutton switches to set the unit for maximum output potential. Then adjust VR1 for an

output voltage of 25 volts. Next VR2 is adjusted to give a reading of 25 volts on ME1, and the unit is then ready for use. The 0 to 50 scale on ME1 is easily converted into a voltage reading, but you might prefer to recalibrate the meter's scale. With most modern panel meters the front simply unclips, and removing two small screws then frees the scale plate. The existing numbers can then be carefully scraped off or painted over so that new figures can be added using rub-on transfers. Atternatively, the new figures can added immediately above the existing ones.

:Digitally Controlled PSU Program	
STATUS	EQU 03
Z	EQU 02
BDIR	EQU 06
PORTA	EQU 05
PORTB	EQU 06
STORE	EQU OC
COUNT	EQU OD
DELAY	EQU OF
BSF	STATUS,5:Select page 1
CLRW	
MOWWF	BDIR ; Sets Port B as outputs
BCF	STATUS,5 : Select page 0
CLRF	PORTB :Sets Port B to zero
CLRF	COUNT ;Sets count at zero
LOOPMOVF	PORTA, 0 ;Read Port A
MOWWF	STORE ; Store result
BTFSC	STORE,0 ;Reads S1
CALL	FASTUP
BTFSC	STORE, 1 ;Reads S2
CALI	SLOWUP
BTFSC	STORE, 2 ;Reads S3
CALI	FASTDOWN
BTFSC	STORE, 3 ;Reads S4
CALI	SLDOWN
GOTO	LOOP
FASTUP	MOVF COUNT,0
BCF	STATUS,Z
XORLW	OxFA ;Limits count to 250
BTFSC	STATUS,Z
REIURN	
INCF	COUNT, 1
MOVF	COUNT,O
MOWWF	PORTB
MOVLW	50
MOWWF	DELAY

```
DELOOP NOP
    DECFSZ DELAY,1
    GOTO DELOOP
    RETURN
SLOWUP MOVF COUNT,O
    BCF STATUS,Z
    XORLW OXFA ;Limits count to 250
    BIFSC STATUS,Z
    RETURN
    INCF COUNT,1
    MOVF COUNT,O
    MOWWF PORTB
    MOVLW OxFF
    MOWWF DELAY
DELOOP2 NOP
    NOP
    NOP
    NOP
    DECFSZ DELAY,1
    GOTO DELOOP2
    RETURN
FASTDOWN BCF STATUS,Z
    MOVF COUNT,O
    BTFSC STATUS,Z ;Aborts if count at zero
    RETURN
    DECF COUNT,1
    MOVF COUNT,O
    MOWWF PORTB
    MOVLW 50
    MOWWF DELAY
DELOOP3 NOP
    DECFSZ DELAY,1
    GOTO DELOOP3
    RETURN
SLDOWN BCF STATUS,Z
    MOVF COUNT,O
    BTFSC STATUS,Z ;Aborts if count at zero
    RETURN
    DECF COUNT,1
    MOVF COUNT,O
    MOWWF PORTB
    MOVLW OXFF
    MOWWF DELAY
DELOOP4 NOP
    NOP
    NOP
    NOP
    DECFSZ DELAY,1
    GOTO DELOOP4
    RETURN
END
```

:10000000831600018600831286018D0105088C008D :100010000C1811208C181F200C1930208C193D2031 :1000200006280D080311FA3A031908008D0A0D0875 :10003000860050308F0000008F0B1B2808000D0831 : 100040000311 FA3A031908008D0A0D088600FF30E3 :100050008F0000000000000000008F0B292808001E :1000600003110D08031908008D0300088600503098 :100070008F0000008F0B3928080003110D080319A9 :1000800008008D030D088600FF308F00000000007F :OA009000000000008FOB4628080056 :00000001FF

:lactronics Principles 4.0

 For Windows 3.1, '95 \& NT. If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the software for you.

Electronics Princlples 4.0 now has an even more comprehensive range of fully interactive analogue and digital topics. From current flow and dc circuits through switching and transisfor operation to passive and active filters. Logic begins with simple gates through binary, hex and octal number conversion, addifion and subiraction to Boolean algebia. Plus, microprocessor and microcomputer operation, registers, arithmetic and logic unit, ROM, RAM. Addressing modes and full instruction set which can be simulated on the screen. All version 3.0 topics are covered within this program
Currently used in hundreds of UK and overseas schools \& colleges to support GCSE, A-level, BTEC, City \& Guilds and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronlcs princlptes.

Mathematics Principles 3.0

 Study or revise mathematics in what we believe is an interesting andenjoyable way. Nearly two hundred graphics presentations, to enable leaming by exploration. including the GCSE syliabus.

The popular Electronics Principles 3.0

£49.95*
Contains nearly 300 fully interactive analogue and digital topics. Electron current fiow, transisfor operation and biasing, MOSFET enhancement and depletion modes. Frequency and tuned clrcuits, Logic gates, counters and shift registers to binary arithmefic. To list justa few of those avaliable

- All inputs \& outputs use electronics symbols.
- Hundreds of electronics formulae avallable for circuit investligation.
- Ideal for students and hobbyists who require a quick and easy way to get to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current levels or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.

A fully interactive 'textbook' on the screen OHP slides and student handouts within minutes. Multi-user network version available.

Tuned Cacuen Bandmunth

R.C.L Parallel Impedance.

Calculations.
$I R=\frac{50}{100}=.5=500 \mathrm{~mA}$
$I C=\frac{50}{31.83099}=1.570796=1.5708 \mathrm{~A}$
$\mathrm{IL}=\frac{50}{157.0796}=.3183099=318.3099 \mathrm{ma}$
$1=\sqrt{.5+(1.570796 \cdot .3183099)^{2}}=1.3486=1.34864$
$0=\tan ^{-1} \frac{1.570796 \cdot .3183099}{5}=68.2378^{\circ}$
$Z=\frac{100 \times 157.0796 \times 31.83099}{\sqrt{157.0796^{2} \times 31.83099^{2}+100^{2} \times(157.0796 \cdot 31.83099)^{2}}}=37.0755 \mathrm{R}$

EPT Educational Sofiware. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Tel/Fax: 01376514008. e-mail sales@eptsoft.demon.co.uk * UK \& EC countries add $£ 2$ per order for post \& packing. VAT should be added to the total. Outside Europe $£ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational software.

64K Eprom

EMULATOR

Following out popular ETI Eprommer in Issue 7, Keith Wardill has produced a matching eprom emulator

It is useful when developing software for a new design to be able to modify and then test the software quickly. One way to do this is with an Eprom Emulator. This is a block of random access memory (ram) which can be loaded with program data from a host computer and connected to the target circuit under development, where it acts as read only memory (rom). This allows software to be written and compiled on a host computer, downloaded to the emulator and tested in the development circuit before finally burning the software into the eprom.

This Eprom Emulator connects to a host computer serial port from which the program data under development can be downloaded into the emulator. The emulator has a second interface to the target system, so that the development system can only read the emulator memory, and therefore 'sees' the emulator as an eprom. The emulator memory is 64bytes in size, so will emulate standard $27 \times X$ series eproms up to type 27512.

There is not room to reproduce all the relevant software here, but a disk is available (see end of article), and some constructors will be able to work on their own adaptations.

Operating protocol

1 The emulator is designed so that when it receives a data byte from the host computer, it will answer with a data byte. Thus, in LOAD mode, the program data is sent to the emulator and written into the emulator memory. Then the emulator will 'echo' the same byte to the host computer, as a prompt to send the next byte. In READ mode, it is possible to read the contents of the emulator memory back to the host computer. To do this, a dummy byte is sent to "the emulator to prompt it to read a byte of data from memory and transmit it to the host computer.

After a byte has been sent to the emulator, the Emulator Address Counter is incremented. If the RESET switch is pressed to zero the Address Counter before starting, then, by repeatedly sending data, the Emulator memory can be stepped

EDWin nc

TEACHERS... STUDENTS HOME USERS... etc.

Your opportunity to save feffe's

With this non commercial version of our software produced for single users, this is your dream come truel

Software as you are probably aware has no real material value, but is priced to recover the enormous costs of development. The software house tries to evaluate how many units will sell at a specific price to generate the amount needed and produce a healthy profit.

As the electronics marketplace shrinks, due to expanding competition, it means that, in reality, powerful user friendly software, such as EDWin, must be very highly priced and therefore remains inaccessible to the individual and small businesses.

Until today ... Norlinvest, one of the biggest software houses in the electronics sector, has decided to put onto the market a "Non Commercial version of their EDWin software, which is known worldwide.

This is the first truly seamlessly integrated suite of software running in all Windows formats. simulation, schematics and PCB design. At last allowing amateurs, teachers, students, ... in a work "individual" to take advantage of current technology, without any restriction.

To avoid misunderstanding - there is no difference between the industrial version of the software and our Non-commercial version, except the price. In other words; industry is subsidising the development cost and now the individual can take full advantage of this.

Computer Compatibility

To run the program you will need:

- Windows 3.x, Win95 or Win NT,
- a min. 386 processor ($486+$ rec.)
- 8 mb of RAM
- CD-ROM Drive

This offer also applies to all academic institutions minimum order two systems.

Card Price

1. EDWinNC Basic: Schematics, PCB Layout with Basic Autorouter and Postprocessing. Max. 100 component database and 500 symbol Device Library. $£ 49.00$

The De Luxe 1 version has the above, but also includes Professional Libraries and unlimited database components. $\mathbf{E 7 9 . 0 0}$

De Luxe 2 is the same as the basic version, but with Professional Libraries and adds Mix-mode Simulation. £79.00

De Luxe 3 all the above plus the Arizona Autorouter. $£ 114.00$

Options: Professional Libraries $£ 24.00$
Professional Database
(Unlimited components) $£ 24.00$
Mix-mode Simulation $£ 24.00$
Arizona Autorouter $£ 24.00$
EDSpice Simulation $£ 49.00$
Thermal Analysis $£ 19.00$
Post and Packing $£ 5.00$ UK. Overseas £10.00 Prices include VAT

All Major Credit Cards Accepted Yrs A

ELECTRONIC DESIGN FOR WINDOWSNON COMMERCIAL.

YES! Please Rush Me My EDWIN NC Program. Swift Designs Ltd., Dept.ETI, Business \& Technology Centre, Bessemer Drive, Stevenage, Herts, SG1 2DX.

Name:
Address:

Postcode:
Tel: (Day)
(Evening)
Version Required: Basic De Luxe 123 (please circle)
I enclose $£+$ p.p. $£ 5.00$ UK (p.p. $£ 10.00$ outside UK)
Cheque/P.P./Credit Card: Visa/Access/Mastercard:

Signature:

System Features

Complete End-to-End CAE/CAD system. Simultaneous Schernatic and Layout generation. Automatic Front and back annotation.
Intuitive hierarchical menu structure.
Mouse or keyboard commend activation.
Macro operations.
Real-time display of: ratsnest, active nodes,
single line or true trace width.
On-line help
Auto reconnect.
Full Integration of Schematic and Layout.
Automatic file backup.
User definable text sizes.
DXF in and output.
Screen hardcopy.
Library viewer with editing possibility.
Switching onvoff possibility for tool and scroll
Visible schematic and PCB symbols by editing. Monochrome mode for better print resolution. Blimap support for loading logos,
documentation, etc. Can be used in hierarchical
as well as in simple schematic or PCB design. Maximum number of nets: 16,000 .
Maximum number of nodes: 32,000 .
Maximum number of bend points: 64,000 . Maximum number of connections: 64,000 . Maximum number of symbols: 32,000 . Maximum number of components: 32,000 Maximum number of multi-segment traces: 32,000 , with a total of 64,000 trace segments. ANSUEC libranes
Full Gerber, NCD, pic and place output
Schematic Capture
Up to 100 schematic sheets.
Up to $64^{*} \times 64^{n}$ sheet size.
Industry standard sheet sizes.
Rotate, scale and mirror symbols
Reai-time dragging of components and wires.
Automatic package and pin assignment.
Orthogonal and free mode manual routing. Automatic bus annotation.
Block save, load. move and delete. Direct access to mixed mode simulation. Autorouting of connections.
Merging and splitting of nets possibility. Definable line width, atso for bus-lines. Swapping of component positions. Autornatic component renumbering by swapping.
PCB Layout
32 layers 28 route layers, 2 silik-screen layers firont and back), 2 soldermask layers (front and back)).
User definable trace sizes.
User definable pads.
Curved traces.
1 mil grid resolution - Fine grid 10 micron. SMT, fine line, analog support. Component repeat, rotate and mirror. Components "Move by name".
Component, gate and pin swap.
Automatic component renaming.
Trace repeat.
On-line, multi-layer routing with automatic via insertion.
Pin-to-pin, free or 45 degree routing. Change segment side and width, trace side and width.
Fast interactive generation of ground planes with user definable cross-hatch or solid fill. Automatic ground plane with thermal relief insertion.
Automatic DRC with user specified parameters. Electrical connectivity checking.
Linear rotation of symbols.
Gerber input read and use possibility.
Buitt-in interface for Spectra 6.0. Max route 6.0
and Arizona Autorouter.
Bitrnap functions (logos, drawings, ...).
Sophisticated database viewer.
Mixed Mode Simulation
$A C$ analysis (Frequency domain),
DC analysis (Linear/non-linear).
TD analysis (Time domain).
Diagram generator.
Dynamic parameter definition of active and passive components.
Output graphs displayed on screen, hardcopy or placed on schematic.
Oscilloscope function.
DLL based analog/digital simulation primitives, modelling language and library creation tools. Built-in model generator for discrete devices.

Please Note: Some of the above are ONLY provided on the De Luxe 3 Version. EdSpice and Thermal Analysis are available as bolt-on extras.

Figure 2: Eprom emulator control
through and programmed or read. It is the responsibility of the host computer to send the correct number of programming bytes or dummy bytes to allow reading.

If the Emulator is switched to EMULATE mode, the data and address interface to the target system is enabled, and the emulator memory acts as the target's eprom. The interface uses 74 HC devices, which have rise times of the order of less than 20 nanoseconds. If the 62256 ram memory used in the Emulator has a 100 ns access time, and the interconnection cable to the target system is kept short, then the Emulator can easily replace devices with access times of 120 ns .

Operation: the serial interface

The serial computer interface (figure 1) uses a MAX232 RS232 converter, IC1, which converts sẹrial RS232 levels to and from the computer to standard TIL for the emulator.
The Transmit and Receive Data signals are connected to a 6402 UART, IC2, which carries out seriai/parallel conversion. This is an industry standard device, and is easy to use because it can be configured by connections to its pins, rather than writing control data to it from a CPU. In this application, it is set up to operate with 8 bits, no parity, and 2 stop bits. This IC also has a number of status and handshake signals, which are used by the Emulator, as described later.

The Transmit and Receive clocks are generated by the 2.4576 MHz crystal oscillator IC3C and D. Dual binary divider IC4 divides the output to produce four clock outputs. The UART has an internal divider, and requires a clock which is 16 times the required baud speed. Thus if it is to operate at 9600 baud, the clock frequency will be:

$$
16 \times 9600=153600 \mathrm{~Hz} .
$$

The divided outputs available correspond to baud rates of 2400, 4800, 9600 and 19200 selected by a DIP switch. Normally, the highest speed can be used, unless a long cable is used to connect the emulator to the computer. Note that no RS232 handshakes, software or hardware are used, so the cable for the computer connection need only be a simple three core type, carrying Tx and Rx Data, and Ground. It is advisable
to use the highest speed practical, because sending one byte and receiving its acknowledgement at 9600 baud takes approximately 2 ms , so to download 64 Kbytes takes approximately 140 seconds.

The divider IC4 also provides a SYNC signal of 9600 Hz to the emulator control.

The reset circuit around NAND gate IC7B provides a switch-on reset, by means of C8, and a manual reset, with S1. This resets the eprom Address Counter, as well as the UART.

LOAD mode

In the following sections on emulator control (figure 2), please note that / Q means 'not Q ', and so on.

Before any LOAD operation, the RESET button must be pressed to set the Address Counters to zero. When switched to LOAD, the RRD (Receive Register Disable) signal to the UART is pulled low, placing received data on the internal data bus.

Before data has been recelved by the UART, its DR (Data Ready) output on pin 19 is low. This is applied to the input to D-Type flip-flop IC5B. The SYNC signal will ensure that IC5B remains in its 'reset' state with its /Q output on pin 8 high. The high Q output keeps IC6B in its 'reset' state. DR goes high when a data byte is received, and the next positive edge of the SYNC signal at IC5B clock input sets the /Q output of IC5A low, releasing the 'reset' on IC6B.

Counter IC6B can now count negative going edges of the SYNC signal. On the first edge, the Q1 output of IC6B goes high. This removes the 'reset' input from IC5A, and is also applied to the D input of IC5A. The next positive going SYNC edge will clock IC5A, such that its Q output goes high, and the /Q output goes low.

The high level on IC5A pin 5 is inverted by IC7D, and the resulting low signal provides a Write Enable signal, writing the data on the Emulator internal bus into the RAM. The next SYNC edge will increment the counter IC6B, Q1 will go low, and IC5A will be forced back into its 'reset' condition.

The low /Q output from IC5A is fed back to the UART pin 23. TRBL (Transmit Buffer Load). Since the Receive Buffer is enabled by RRD being low, the byte just received is now loaded into the Transmit Buffer. When IC5A is reset, TRBL will return high. This causes the UART to 'echo' the byte received back to the host computer, which may then transmit the next byte. When the data byte is loaded into the UART Transmit Buffer, the UART outputs TRE (Transmit Register Empty). This goes low when the byte is loaded, and is used to clock the Address Counters IC11 and IC12. TRE will retum high after the byte has been transmitted.

Study of the timing diagram figure 4 , will make this operation clear.

READ mode.

Before any READ operation, the RESET button must be pressed to set the Address Counters to zero. If the Emulator is switched to READ the inputs to IC7A are held high by R1. This is connected to the UART RRD input
(Receive Register Disable), forcing the

Figure 4: the timing diagrams

READ MODE OPERATES AS ABOVE, EXCEPT THAT WE ON IC7D IS HELD HIGH
AND OE ON ICTA 3 IS LOW. ENABLING THE RAM DATA OUTPUTS.
RRD TO THE UART IS ALSO PULLED HIGH BY RI. DISABLING THE UART RECEIVE BUFFERS

COMPETITION

ETI in association with QUICKROUTE SYSTEMS LTD.

WWW hftp://www.quickroute.co.uk

Quickroute 3.6 is the latest version of the integrated schematic \& PCB design software from Quickroute Systems Ltd. Quickroute 3.6 is available in 3 different versions which are DESIGNER, PRO, and PRO + All versions include schematic capture (turns a circuit diagram into a PCB rats-nest automatically at the touch of a button), auto-routing (automatic placing of copper tracks) and design checking. The more advanced PRO+ version includes copper 'flood' fill, net-list \& CAD/CAM file import/export, Engineering Change, DXF and WMF file export, links to a variety of simulators, a wide range of symbols, and many others features.

A new addition to the product line is SMARTRoute 1.0. This offers "powerful and flexible" 32 -bit auto-routing and works with any version of Quickroute 3.6.A FREE demonstration pack is available from Quickroute Systems Ltd, or from the Quickroute web site.

1st Prize (1 of)
Quickroute 3.6 Prot - Integrated Schematic \& PCB system SMARTRoute $1.0 \quad 32$ bit automouter
Library Packs 1 and 2
recommended retail price (Including VAT) of abone illems
hought separately is $\$ 689.73$
2nd Prize (3 of)
Quickroute 3.6 Designer • Integrated Schematic \& PCB system SMAR'IRoute $1.0 \quad \bullet 32$ bit autorouter Library Packs 1 and 2
recommended retail price (Including VAT) of abore items
bought separately is $\$ \neq 41.80$
3nd Prize (5 of)
Quickroute 3.5 Personal - Integrated Schematic \& PC,B system
recommended netall price (Including VAT) of above flems
bought separatety is $£ 9228$

Toval recommended Retail Price of all abote items bougbt separately (Including VAT) is $£ 24$ 7h. 28

PLEASE CIRCLE YOUR ANSWER

Question 1

Do all versions of Quickroute 3.6 include schematic capture, auto-routing and design checking?

> YES NO

Question 2
Is SMARTRoute compatible with all versions of Quickroute 3.6?
YES NO

Question 3

Which version of Quickroute 3.6 includes Copper Fill and Engineering Change support?

> DESIGNER PRO PRO+
... AND RETURN, WITH YOUR NAME AND ADDRESS, TO TIEE ADDRESS BELOW
Quickroute Competition, ETI Magazine, Nexus Special Interests, Nexus House, Boundary Way, Hemel Hempstead, Herffordshire, HP2 7 ST.

Competition rules: Entries must arrive at Nexus House on or before $9^{\circ \prime}$ September 1997. Winners will be notified by post following the judging. The judges' decision is tinal and no communication will be entered into conceming the results. Emptoyees of Nexus Special Interest Lid. and Quickroute Systems Lid., associated companies and family members are not eligible to enter. Muttiple entries witt not be accepted. The prize is as stated in the description of the competition. No other goods, services or expenses will be supplied in connection with the competition, No communications can be entered into regarding the competition.

SUBSCRIBE AND SAVE UP TO $£ 9$
 ... and LET THE POSTMAN DO THE WORK!

Now this just has to $b \in$ a good deal! Not only will you save a considerable amount of money. but your postman will also deliver the next 13 issues of your favourite electronics magazine directly to your door - with no fuss, no hassle. and no future price increases.
So go on, subscribe now. save your shoe leather, and up to 70p per issue. Here's why YOU should subscribe
to either ETI. Ham Radio Today or Acorn Archimedes World:

- FREE home delivery in the UK.
- A saving of up to $£ 9$ a year.
- Price protection - you won't pay any more if the cover price goes up.
- Guarantee receiving every issue.

This is one deal where you really can't lose. REMEMBER. it's always cheaper to subscribe!
E.T.I. PRICE FREEZE OFFERI 13 issues
UK: WAS £32.50, NOW £27.00, YOU SAVE $£ 5.50$,
Europe: $£ 40.00$, Overseas:
£41.80, USA: $\$ 64.00$
The cover price of ETI has now risen to $£ 2.50$ BUT you can still subscribe at the old price - if you order today! After this issue we will have to charge
a new, higher rate - so take advantage of this offer nowl

All savings are based upon buying the same number of issues from your newsagent. UK only.

SUBSCRIPTION ORDER FORM

YES, I would like to subscribe to (please tick):

Your Details:
Name: Mr/Mrs/Miss Initial:.............Surname:
Address: \qquad

Figure 3: Eprom emulator power supply

Receive Register outputs into a high impedance state and disconnecting them from the Emulator internal data bus. The low output from IC7A Is applied to the rams as Output Enable, so the ram data is placed on the internal data bus. This low output is also applied to IC7D pin 13. This forces the output of IC7D high, preventing any Write Enable signal reaching the rams.

If now a data byte is received by the UART, DR again goes high, and the same sequence takes place as for LOAD, except no data is written to the rams. However, the data echoed by the UART is the ram data, rather than the byte just received. The Address Counters are incremented by TRE as described above, so by sending 'dummy' bytes, the host computer can read the entire ram memory.

EMULATE Mode

If the emulator is switched to EMULATE mode, the output of IC3B goes high. This forces the 74HC541 Address Buffers IC12 and IC14 into high impedance state, disconnecting the internal Address Counters from the ram. The Target Address Buffers IC9 and IC10 are enabled, so now the rams are addressed from the Target circuit. Similarly, Target Data Buffer IC8 is enabled, allowing the ram data to be read by the Target when the appropriate Chip Select and Output Enable Signals are received by IC3A. The emulator is connected to the Target Circuit by means of a flat cable about 30 cm long fitted with a 28 pin DIL Header. This DIL Header plugs into the socket on the target Circuit which will eventually accommodate the eprom. A led is driven by the buffer enable signal via TR1, coming on when the emulator is in EMULATE mode.

Power Supply

The power supply (figure 3) uses a straightforward bridge rectifier with capacitor smoothing to produce a stabillsed +5 V supply via IC12 for the logic. Please note that this is a mains device. Seek assistance if you have little mains experience.

Mechanical construction

General construction is shown in figure 5. The PCB layout shown is double-sided: normally this requires through-hole plating to connect from one side of the board to the other. This is virtually impossible to do if you make the board yourself (as I do), and it is expensive if you have it made. To get round this, some of the 'through' connections are made by soldering the ic sockets on both sides of the PCB. It is strongly recommended that good quality turned-pin ic sockets be used. These stand slightly clear of the PCB
when fitted, and it is possible with a steady hand to solder to pads on the component side of the board under these sockets, and on the 'copper' side of the board, thereby creating a through connection. (See figure 6). Be warned: a steady hand, good eye, and small, hot soldering iron is essential for this. It is possible to do without the ic sockets, and solder directly to the pins of the ics, but this is not recommended, because testing and replacement becomes extremely difficuit once the chip is soldered in, and could result in mechanical damage.

There are also a number of through connections made by wire links soldered on both sides of the PCB and also a number of the resistors and capacitors are soldered on both

Figure 7: the component layout
sides. The through links are shown on figure 7, the component layout, by an ' X '. Fit all these links first, because some must go under ic sockets, followed in sequence by the other components, the ic sockets, and the crystal. A small blob of glue gives added security for the crystal XL1. Check carefully to see which components require soldering on both sides of the PCB.

The power supply board is a straightforward type: it is a single sided board with no through connections. This is a mains board, so seek experienced assistance if you are not used to mains construction. Observe the polarities of the bridge rectifier and electrolytic capacitor when fitting them. Check also that no 'whiskers' of copper remain around the connections to cause short circuits. It is wise to check operation of the PSU before connecting to the main board (see under 'Testing').

It is difficult to give mechanical design instructions for the box, since not everyone can lay hands on the same box, or has the same skills. However, figure 5 shows how the original was mounted in its box, with the PCB mounted under the top with plastic spacers and the 9 pole D-type

RS232 connector protruding through a hole cut in the rear panel. If you have problems finding plastic spacers, short pieces cut from a plastic ballpoint pen barrel are ideal. The interface cable between the emulator and the target consists of a piece of flat cable about 30 cm long, fitted with a 28 pin DIL Header at each end (note carefully which is pin 1). One end of this is plugged into the Target Interface socket on the main PCB, and the other is fed out of the box via a small slot cut into. the edge of the front panel. It can then be plugged into the target circuit, again observing the correct orientation. The length of this cable should be kept as short as is reasonable, to prevent noise pickup affecting operation.

The Reset Switch, Mode Switch and Mode LED are mounted on the front panel, connected to the PCB with short lengths of multicore wire. I used a piece of flat cable, as this keeps things tidy. The power switch and fuse are mounted on the rear panel, and the power cable is routed through a notch cut in the edge of the rear panel.

The PSU was bolted into the base of the box, again using short M3 bolts and plastic spacers.

tre Autorouter tor EASY.PC Pro' ${ }^{\prime \prime}$

EE Product News "Products of the year" Award Winner (USA Magazine)
"The Best Autorouter that I have seen costing less than $£ 10,000$!" R.H. - (Willingham, UK)

- Uses the latest Shape Based, 32 Bit, Multi-pass, Shove-aside and Rip-up and Re-try Technology
- AutoRoute very large and complex boards
- User Controllable,

User Configurable

- 100\% Completion where other autorouters fail
- 100\% Autorouted 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- Could Easily Pay For Itself On The First Project

MultiRouter - only £295/\$475!

Integrated Electronics CAD

Analogue \& Digital Simulation

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From 275	8145
MultiRouter: 32bit Multi-pass Autorouter for EASY-PC Professional XM	From \$475	5295
LAYAN: Electro-Magnetic Layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	\$950	$\mathbf{2 4 8 5}$
PULSAR: Digital Circuit Simulator	From \$195	$\Sigma 98$
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	£98
FILTECH: Active and Passive Filter Design program	From $\$ 275$	$\Sigma 145$
STOCKIT: Comprehensive Stock control program for the small or medium sized business	From $\$ 275$	$\Sigma 145$
EASY-PC: Award Winning PCB and Schematic CAD.	\$145	275
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From $\$ 275$	$\Sigma 145$
We operate a no ponalty upgrade pollcy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

For Fult Information and Demo' Disk, please write, phone, email or fax:-

Number One Systems

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

GREENWELD
 Greenweld has been established for 23 years specialising in buying and selling surplus job lots of Electoonic Components and Finished Goods. We also keep a wide range of new stock regular lines. Why not request our 1997 Catalogue and latest Supplement - both absolutiely FREE!
 BECOME A BARGAIN LIST SUBSCRIBER TO SEE WHAT'S ON OFFER BEFORE IT'S ADVERTISED GENERALLY

Standard Bargain List Subscription

For just $£ 6.00$ a year UK/BFPO ($£ 10.00$ overseas), we'll send you The Greenweld Guardian every month With this newsletter comes our latest Bargain List giving details of new surplus products available and details of new lines being stocked. Each issue is supplied with a personalised Order Form and details of exclusive offers available to Subscribers only
Our stores (over 10.000 sq. ft.) have enormous stocks. We are open 8.00 $\mathrm{am}-5.30 \mathrm{pm}$ Monday to Saturday. Come and see us!

Gold Bargain List Subscription
For just $£ 12.00$ a year ($£ 20.00$ overseas) the GOLD Subscriber category offers the following advantages:
\square The Greenweld Guardian and latest Bargain List every month, together with any brochures or fiers from our suppliers
I A REDUCED POSTAGE RATE of $£ 1.50$ (normally $£ 3.00$) for all orders (UK only) and a reply paid envelope
[5\% DISCOUNT on all regular Catalogue and Bargain List items on orders over $£ 20.00$

So Don't Miss Out - Subscribe Today!

$27 E$ Park Road. Southampton
 SO15 3UQ TELEPHONE: 01703236363 FAX: 01703236307

 INIERNET: http://www.herald.co.uk/clients/G/Greenweld/greenweld.html

c/c

CHELMER VALVE COMPANY
If you need Valves/Tubes or RF Power Transistors etc. ...then try us!

We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road, Chelmsford, Essex CM2 ORG. England.
Tel: 44-O1245-355296/265865 Fex: 44-01245-490064

Visible Sound Limited

are proud to announce our new "Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor. 20 individual digital word ID outputs on IDC header. Each output with an 'on' word and 'off' word giving you up to 99% speaker dependant recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word lists are stored in non volatile memory $£ 55$ Automatic gain control on microphone jack H1384 input. Runs off $9-12$ volt de supply via 2.1 mm plug

Pic Programmer:

H137A £25 Programs PIC 16C71, PIC 16C84 and the new 8 pin PIC 12 C 508 and PIC 12C509. Connects to parallel port. Kit K137A £24 PC compatible software F.O.C. when supplied with programmer.

Components - PICs
$12 \mathrm{C} 508 / \mathrm{JW}$ £13.50, $12 \mathrm{C} 508-$ 04/P £2.30 12C509/JW £15, $12 \mathrm{C} 509-04 / \mathrm{P}$ £2.70, 16C71/ JW £25, 16C17-04/P £6.99, 16С84-04/P £6.

We also have available a full range of PC $1 / O$ cards and accessories, Call for details.

ALL Prices INCLUSIVE of vat and delivery (UK Oaly) Same day despatch.
151-4. The Exchange Emildiner Motems Stuant Square, Cardif. CFI 6 EB.

Figure 8: the power supply component layout

Testing

Connect 230 V ac to the PSU, and switch on, taking great care not to touch the high voltage points -230 V ac is lethal! Seek experienced assistance with building and testing if you are not used to constructing with mains power.

With a voltmeter, check that the +5 V supply is available, If this appears OK, switch off, connect the main PCB without inserting the ICs, and switch back on. Check that +5 V is available on the appropriate pin of any ic socket. If not, switch off and look for the probable short-circuit on the main PCB.

When all is well, insert the ics. If you have access to an oscilloscope, then the oscillator can be checked, and the baud rate divisor. If the UART is not fitted, then a link can be fitted between pins 24 and 17 of the UART socket. This connects a clock signal to the Address Counters, which can be checked for correct operation at the ram sockets.

Conclusion

The Emulator is not restricted to use on an IBM compatible PC. There is no reason why it should not be used on any machine with a serial port, providing the user can produce the appropriate software. I have tested the prototype with an Atari ST machine, as well as 386/486/Pentium-based PCs running at various speeds.

The software.

Because the Emulator responds to a byte, and returns a byte, it is not possible just to use a simple terminal program and transmit a data file to the Emulator. The software must be able to check that each byte has been received and acted on by getting a response. The original software was written in QBasic supplied with the later versions of DOS. The problem here is that it is not possible to compile an executable program, although it can be done with the stand-alone versions of QBasic. The full QBasic listing is too long to reproduce here. However, two annotated listings are given: these show how to download data to the emulator, and how to read data. These are very much 'bare-bones'

Resistors

(0.25 watt 5 percent)

R1, R2, R3, R4, R7	$4 k 7$
R5	10 M
R6	100 k
R8	120 R
R9	$2 k 2$
R10	$10 k$

Capacitors

C1, C2...
...C3, C4, C5 22uF/35V radial electro AT56L
C6, C7 10pF ceramic WX44X
C8 $14 F / 63 \mathrm{~V}$ radial electro A 73 Q
C9 $\quad 1 \mathrm{nF}$ ceramic WX68Y
C10 470uF/25V radial electro AT51F
Cd 1-3 \quad to0 nF polyester DT98G
Cd 4 47uF/16V radial electro AT39N

Semiconductors

IC1	Max 232CPE FD92A
IC2	6402 UART QQ04E
IC3	74HC02 Quad $2 \mathrm{I} / \mathrm{P}$ NOR UB01B
IC4, IC6...	
...IC11, IC13	74HC393 dual binary divider
	AE600
IC5	74HC74 dual 'D'-Type flipflop UB19V
IC7	74HC132 quad 2 I/P NAND
	Schmitt UBOOA (if difficult to obtain, use 74 HC 00)
IC8, IC9, IC10	74HC245 octal bus transceiver
	UB67X
IC12, IC14	74HC541 octal bus driver UB93B
IC15, IC16	$6225632 \mathrm{~K} \times 8$ bit static ram
	UH40T
Q1, Q2	BC107 QB31Jj
IC17	L78M05CV QL28F
BR1	Bridge rectifier $50 \mathrm{~V} / 1 \mathrm{~A}$,
	Type W005 AQ94C
XL1	2.4576 MHz crystal FY81C

Miscellaneous

T1 Transformer 230Vac/12Vac -
F1 Chassis mount fuse holder 100 mA RX96E
S1 Reset switch Momentary push to make FF98G
Power switch 2 pole on-off FHO4E
Mode switch 1 pole/3 position FH018
Serial connector 9 pin ' D ' type plug PCB mounting FG66W
Baud rate switch 4-pole DIP switch JH08J
14 pin ic sockets (7 off) Use 'Turned pin' type FJ64U
16 pin ic socket (1 off) FJ65U
20 pin ic sockets (5 off) FD90X
28 pin ic socket (1 off) FJ6BY
40 pin ic sockets (2 off) FJ69A
28 pin ic header (2 off) JP40T
28 -way flat cable about $30-40 \mathrm{cms}$
Box $(H \times W \times D) 6.5 \times 13 \times 13 \mathrm{cms}$
All part number given are for Maplin, PO Box 3 ,
Rayleigh, Essex SS6 8L. Tel. 01702 554161. Most parts are widely available.

Eurocard + Soldermask + Position print

Ilstings: you are encouraged to expand these and write your own software: it realiy is not difficult. An executable program in Visual Basic 3 for use with Windows 3.1 or Windows 95 has been developed, and a small application which sends a selected number of bytes to the emulator to check the operation of the emulator on a 'one-shot' basis, and to confirm the operation of the Address Counter

Programming the Emulator

The following addresses apply to standard PCs, and can be declared as constants.

Constant Name	Port COM2	Port COM1 Function	
txport	$\& H 2 F 8$	$\& H 3 F 8$	Tx Buffer
report	$\& H 2 F 8$	$\& H 3 F 8$	Rx Buffer
intenreg	$\& H 2 F 9$	$\& H 3 F 9$	Interrupt Enable Reg.
intident	$\& H 2 F A$	$\& H 3 F A$	Interrupt Identification
linecont	$\& H 2 F B$	$\& H 3 F B$	Line Control

In the following description the actual program instructions generally come first, and the remarks in the listings themselves are preceded by 'a single quote. \&HFF is the QBasic convention for showing hexadecimal data, in this case hex FF. The following variables must be initialised in your program:
workfile[percent] integer containing the active filenumber.
byte[percent] integer containing the databyte. workfile\$
counter\& long integer used as an index. emulatorsize\& size of the EPROM in use in bytes available $=4$

Port Setup.

Before using the emulator, your program should set up the PC port to be used to match the UART settings. This requires a divisor to be loaded to set the baud rate (in this case, 9600 baud), and the appropriate stop blts, parity and handshakes must be set:

OUT linecont, \&H80 set up baud rate: enable baud rate
OUT txport, \&HC baud rate division
($1843200 /$ baudrate $\times 16=8 \mathrm{HOC}$)
OUT intenreg, \&HO
OUT linecont, 3
no parity, 1 stop bit, 8 bits/char, no handshakes
OUT intenreg, 1 enable data available interrupt

Writing data to the emulator from file

This assumes that a file of data exists to be written to the emulator.
counter\& $=1 \quad$ 'initialize the counter OPEN workfile\$ FOR BINARY AS workfile[percent] 'Now loop until all the data is read from file and sent to Emulator.
do
GET workfile[percent], counter, byte[percent] 'QBASIC reads 2 bytes from file
byte[percent] = byte[percent] AND
\&HFF 'so reduce it to 1 byte
OUT txport, byte[percent] 'then send it to the
Emulator
'now wait until the Emulator echoes the data
'wait for 'data available' interrupt
TIMER ON 'switch timeout watchdog on
ready $=$ INP(intident) AND available
LOOP UNTIL (ready = available)
TIMER OFF 'exit when data received
counter \& $=$ counter $\&+1 \quad$ 'increment the counter loop until counter\& [right arrow] emulatorsize\& 'and loop if not completed
close workfile[percent] "close the file when finished

Reading data from Emulator to file

If data is received by the PC, it sets a bit in the Interrupt Identification Register. The read process enters a loop until this bit is set, then reads the waiting byte of data and writes it to file.
counter\& = 1 'initialise the counter
OPEN workfile\$ FOR RANDOM AS workfile[percent] LEN $=1$
FIELD \#workfile[percent], 1 AS databyte\$
'Now loop until all data read from Emulator and written to file.
do
OUT txport, \&HFF 'prompt Emulator to return data DO 'loop until 'data available' interrupt occurs. TIMER ON 'switch timeout
wafchdog on
ready $=\operatorname{INP}$ (intident) AND available
LOOP UNTIL (ready = available)
TIMER OFF 'exit loop when data received
rxbyte[percent] $=\operatorname{INP}($ rxport $) \quad$ 'then read returned data
LSET databyte\$ = LEFTS(MKIS(rxbyte[percent]), 1) 'convert number to a 1 -char string
PUT \#workfile[percent] 'and put it in the file
counter $\&=$ counter $\&+1$ 'increment the counter loop until counter\& [right arrow] emulatorsize\& 'and loop if not completed
close workfile[percent] 'close the file when finished
Any data may be sent to the emulator as a prompt in read mode (I used FF). It may also be worth noting that if the emulator fails to return a byte for any reason, this routine will stay in the loop forever waiting for data. You should include a check on the timer value, and exit after a short period, noting this is a Timeout Error. The remainder of the program is left up to you.

Software

A disk containing the Eprommer software is available from ETI advertisers Forest Electronic Developments, 10 Holmehurst Ave., Christchurch, Dorset BH23 5PQ, priced $£ 5$ inclusive of post and packing. A kit may be available in the future - please enquire at FED at the address above.

ELECRONIC Door Chimes

An adjustable modern replacement for the traditional ding-dong. By Terry Balbirnie

When operated, this circuit will make a sound very similar to that of a traditional set of metallic door chimes. However, there are several advantages in using this, compared with the old electromagnetic variety. This unit can be used as a replacement for a failing set of chimes, or for a new installation. The continuous standby current requirement is only 150UA so a pair of AA size cells will be sufficient to operate the circuit for at least one year in normal use.

The chimes unit is built in a small plastic box. This contains the circuit panel, batteries and a small loudspeaker. On the front is a matrix of holes for the sound to pass through. The speaker provides enough sound to be heard around the average house. However, it is possible to connect an additional "repeat" speaker so that the chimes may be heard in, say, a workshop or garage. It may also be useful to fit an additional speaker in the lounge so that the sound can be heard above that of the TV.

Hold off

With the traditional type of door chimes, the "dong" is delayed until the bell push is released. Some people, especially children, keep the button pressed to give a prolonged "ding". With this unit, two regular "ding-dongs" will be given however the bell push is used. Also, after operation the circuit will be inhibited for a preset time so that it cannot work again for up to 1 minute. This prevents multiple operations which some people like to give in an effort to attract your attention but which usually prove annoying. There is
provision, however, for those people who prefer to allow more than one operation (so that friends and family members can announce their arival by a pre-arranged code of "ding-dongs").

A significant advantage of this circuit is that, in use, the bell push caries a current of only a few microamps. In traditional chimes, a large current - some 1A or more - flows through the bell push and its associated wiring. Any high resistance due to an excessive length of wire or poor contact will result in the chimes not working. Bell pushes are prone to moisture entering the body and causing corrosion of the contacts resulting in a significant resistance when they "make". This leads to unreliable or intermittent operation. With this unit, the low current means that operation is much less affected by the condition of the contacts or the length of interconnecting wire.

Preset controls on the circuit panel allow the unit to be customised so that it provides a quality of sound according to the user's preference. It is fun to experiment with these at the end. A further preset control sets the hold-off time between 2 and 60 seconds approximately.

Traditional arrangements

At this point it seems appropriate to give a quick description of a conventional door chimes arrangement. The unit itself consists of a solenoid (coil of insulated copper wire) wrapped on an insulating tube and a moveable soft iron core. The core is able to slide into the tube and is held loosely in its rest position with a spring (not shown) - see figure 1. There are two metal bars attached to rubber mountings - one on each side of the coil. These are normally kept out of contact with the core. They are tuned to emit certain sound frequencies (musical notes). When struck in turn, the chimes therefore emit the characteristic ding-dong tone associated with these units. Musicians would say that they sound in thirds. The rubber mountings prevent the sound from decaying too quickly when the bars are sounding.

When the bell push is operated, current flows from a battery or mains transformer via the bell push contacts through the coil. A magnetic field in produced by the coil and this pulls the core into the tube. However, it tends to overshoot the central position due to its inertia and the left-hand end strikes the smaller metal bar. This therefore emits the higher of the two musical notes (the

Figure 1: traditional electromagnetic door chimes
"ding"). It then centralises and takes up a position in the coil out of contact with either metal bar. When the bell push is released, the magnetic field collapses and the iron core is returned by the spring. However, as before, it tends to overshoot and strikes the lower-frequency (larger) bar (the "dong") before returning to its rest position. It makes no difference whether ac or dc is used since either a steady or atternating magnetic field will be generated in the coil and the core will be pulled inside the tube whichever is used

The chief disadvantage of such a mechanical system is the large current requirement of the solenoid. Thus, for battery operation, the celis will need to be of the heaw-duty type (eg C or D size alkaline cells) and will not give a very long period of service when used several times per day. There is a second disadvantage that, after a long period of use, the core sometimes sticks and the unit works intermittently or not at all.

How it works

The complete circuit for the Electronic Door Chimes unit is shown in figure 2. The nominal 3 V supply is derived from two 1.5 V cells which comprise battery B1. There is no on-off switch since there seems to be no reason why the unit should ever be switched off. IC2 is a dedicated "chimes" device, while IC1 is a timer ic configured as a monostable. This latter component provides the "hold off" aspect of the circuit. Ignore this for the moment. When

IC2 pin 1 is made high momentarily its output, pin 5 , gives two "ding-dong" signals with a short space between. If pin 1 is maintained in a high condition, the signals will be repeated indefinitely. The output is of a low level so it is amplified by feeding it into the base of npn transistor Q1. This, in conjunction with pnp transistor, Q2 forms a high gain amplifier. The boosted signal then flows through loudspeaker, LS1. While pin 1 is left unconnected it assumes a low state and the significance of this will be seen presently.

The parallel arrangements of resistors and capecitors connected between IC2 pins 2 and 3 and the OV line also the resistance appearing between pins 6 and 7 determine the operating characteristics of the circuit. Each of these is made vaniable by means of the presets RV2, RV3 and RV4, and these will be adjusted at the end of construction to produce a tone which suits the user's requirements.

Monostable

The monostable circuit based on IC1 operates in the following way. When triggered by a low pulse applied to pin 2 , the output (pin 3) goes high for some preset time then reverts to low. The bell push connected between pin 2 and the OV line provides the necessary low state when operated. No matter how it is pressed, the monostable will be triggered and the output will go high for the preset time. This time depends on the values of R2, RV1 and C 2 and RV1 is used to adjust it as required at the end. Once triggered, a high state will be transferred momentarily via capacitor C 3 to IC2 input, pin 1 . The loudspeaker will therefore emit the chimes sound as described previously. However, while the monostable is active and pin 3 remains high, further operations of the bell push will have no effect. Eventually, IC1 times out and pin 3 reverts to low. Capacitor C3 then discharges very quickly since both sides of it (connected to IC1 pin 3 and IC2 pin 10) are in a low state. The circuif then becomes active again and ready to respond to further operations of the bell push. IC2 pin 2 is kept normally hight through resistor R1 and this prevents false triggering. Capacitor C1 bypasses ac signais which tend to be induced in long runs of bell-push wiring from nearby mains equipment. Without this there could also be a tendency to false triggering.

The chimes ic is designed to operate from a nominal 3 V dc supply such as will be provided by a pair of AA size cells. This is

Figure 2: the circuit of the electronic door chimes

Figure 3: the component overlay
also suitable for operating IC1. Do not use a higher voltage than this because the maximum allowed supply voltage for IC2 is 3.3 V . Do not under any circumstances attempt to operate this circuit from a mains transformer.

Construction

The PCB component layout is shown in figure 3. Begin by drilling the fixing hole and soldering the two ic sockets in position. Follow with all capacitors and resistors (including presets RV1 to RV4). Solder the two transistors noting which is which and taking care over their orientation - the flat faces should be adjacent to one another. Solder 10 cm pieces of stranded connecting wire to the two sets of pads labelled "speaker" and "bell push". Solder the positive (red) PP3-type battery connector wire to the pad labelled " +3 V " and the negative one to the 0 V pad of the battery holder is of that type - otherwise solder pieces of wire for its solder tags). Adjust the wipers of RV2, RV3 and RV4 to approximately midposition and RV1 fully clockwise as viewed from the top edge of the PCB (for minimum hold-off time).

Resistors	
R1	1 M
R2	47 k
R3	220 k
R3	470 k
R4	RV1, RV2
RV3, RV4	1M

Capacitors

C1
100 nmin . metallised polyester, 5 mm pin spacing
C2 $47 \cup$ PCB electrolytic
C3 220 nmin . metallised polyester, 5 mm pin spacing - see text
2.2u PCB electrolytic 10 u PCB electrolytic

C5, C6

Semiconductors

Q1	ZTX300
Q2	ZTX500
IC1	7555
IC2	HT2811

Miscellaneous

LS1 Miniature 8 ohm loudspeaker diameter 66 mm approx B1 $2 \times$ AA alkaline cells and holder 8 -pin dil sockets (2 off), PP3-type battery connectir (if required); 2 -section piece of 2 A screw terminal block. Plastic box size: $138 \times 76 \times$ 25 mm internat.

The HT2811 ic is available from Maplin, as are all other components for the chimes unit.

The positions of the PCB, speaker and cell holder are shown in the photograph. Note that everything is mounted on the lid section of the box. If using the specified case, the PCB will be a close fit and cannot rotate even though only one fixing hole is used. Drill this hole through the plastic but do not attach the PCB yet. Drill the hole for the bell push wires and a matrix of holes in the lid for the sound to pass out from the speaker. Drill a hole in the rear to secure the unit to the wall. Attach the speaker itself using a little quick-setting epoxy resin adhesive around the rim. When the adhesive has hardened, attach the circuit panel using a short insulating spacer on the bolt shank and solder the speaker leads in position. Secure the battery holder using adhesive fixing pads and connect it to the circuit.

Testing

Insert two AA size alkaline cells in the holder. Since capacitor C1 begins in a discharged condition, it sometimes triggers IC1 as the supply is estabished. There may therefore be two "ding-dongs" emitted by the speaker. Check that the circuit may be operated by touching the two "bell push" wires together for an instant. Wait for a second or two between operations to be sure that the monostable has timed out. If this only sometimes works, raise the value of C3 slightly. This should not be necessary and the specified value (220n) was found to give reliable results in the prototype unit. Check the effect of RV2 adjustment. Basically, this sets the rate at which the "ding-dong" is delivered. By varying it, the pitch and speed of the sound may be changed from a slow deep tone to a fast highpitched one. This is rather like changing the speed of the record in an old (analogue) record player. Adjust it according to personal taste.

Experiment with the effects of RV3 and RV4. RV4 sets the time taken for the signal to decay and RV3 sets the quality of the sound. Adjust these in conjunction with RV2 for the best overall effect. The setting of RV4 is fairly critical. If it is set for too long a decay time, the sound will be suddenly clipped at the end. Once the setting of RV2 has been decided, adjust RV4 for as long a decay time as possible without clipping. Note that the full volume and range of effects are only heard at their best when the unit is mounted on the wall which then behaves as a sounding board. To simulate this during testing, press the unit on a hard surface such as the table top.

If the hold-off aspect of the circuit is not required (to allow multiple operations), leave RV1 as it is. If, however, some degree of inhibition is needed, set it accordingly. If an additional speaker is fitted, connect it in series with the first one. Each will sound only a little less loudly than with one. Use a similar speaker to that in the main unit and mount it in a suitable box.

Wire up the bell push to the unit using light-duty twin wire. Note that an illuminated bell push is not suitable - a standard type must be used. The illuminated type has a filament bulb connected in parallel with the contacts and this would maintain IC1 pin 2 in a low condition.

A slimline storage oscilloscope and digital voltmeter with a sampling rate of up to 20 MHz . Inclusive software enables the recorded signals to be displayed simultaneously on a PC screen. Sample Rates: From 50 ns to 1 ms . Purveyors of Quality Input Voltage: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$. Trigger: \pm Internal, \pm External, Auto. Voltmeter: AC and DC. Electronic Thingies at
Very Friendly Pricos Supply Voltage: 9 V to 13 V DC, 13 mA , external. Trigger, ground, power \& serial cables included.

Liffited

 2 Chase coitage's. New.Road, Aldham Essex CO6 30T Tel. \& Fax 01206213322Also Available;
3 mW Laser Pointers $£ 26$ CCD Camera Modules from $£ 60$ Pinhole camera in wall clock $£ 80$ Colour CCD modules from $£ 170$ Please add £2 p\&p to all orders.

Protect Your Microchips

 from STATIC OSCHARCEI \square
Use an SSE grounding kit.

Kit includes:

- static dissipative solder resistant - rubber mat.
- wrist strap
- ground lead
- earth plug

Mat size $70 \times 30 \mathrm{~cm}$-offer price $£ 16.55$ per kit + VAT - Ref: AGK1 Mat size $25 \times 20 \mathrm{~cm}$ - offer price $£ 12.55$ per kit + VAT - Ref: AGK2
STATIC SAFE ENVIRONMENTS
127 Hagley Road, Birmingham $3168 \times \mathrm{U}$
Tet: 01214548238 Fax: 01216252275

Payment by CHEQUE / ACCESS
VISA/MASTERCARD Catalogue available

British 3 pin plug top power supplies with transformer. rectifier, smoothing capasitor and regulator huilt in. The input is 230 v and the
output is 6 v at 100 mA . The unit has a 1.2 m output lead to 2.5 mm power plug. f 1.50 each Thyristor models type IRKT $2612,1200 \mathrm{v}$ at 25A. $\mathbf{5 7 . 0 0}$ each
Stud rectifiers type MRF7535, 35v al 60A. $1 / 4^{\text {" }}$ UNF, less nuts. $£ 1.25$ cach.
Transistors Type 2N3055E 60p each.
2N6290. NPN, TO202, 65W. 40p each.
BD240. PNP. TO 220, 30w, 30p each.
CMOS Low Power Timer IC Type TLC5ss,
CMOS Lo
40 each.
Bridge rectifier rype WO8. 800v at 1.5 E £ 1
for 10
Regus Type IN4007. Ikv at IA. \&1 for 50 Regulators $\mathrm{LM} 723 \mathrm{CN}+2 \mathrm{v}$ to 37 v . 150 mA .

LM317K. TO3, +1.2v to $+37 \mathrm{v}, 1.5 \mathrm{~A}, ~ £ 2$ each LM790SCT, $-5 \mathrm{v}, 1.5 \mathrm{~A}$. 36 p each
LM340A. 48 p each.
LM7815CT, 15v, IA. TO220, 42p each
UA7812. 12v. +0p cach.
240 Pixcl Size. 132×103 Overall. \& 5 each

B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT,
CAMBS CB6 1 10e.
Phone: 01353860185 Fax: 01353863245
Densltron Liquid Crystal Displays, 5 Digit, Type LSH5060RP. £1 eazh.
Bridge Rectifier Type W0IG. 100v at I.SA. $\mathrm{E}_{\mathrm{C}} \mathrm{P}$ for 10 .
Power Diodes Type IN5392. I00v at I.5A. £1 LTC1062CN8. 5th Order Low Pass Filter, 8 pins, $£ 2.25$ each.
CDu040BCN CMOS IC, 20 each. T1.082, Dual Bi-FET Operational Amp. 8 pin, 30p cach
LM1324N Quad Op-Amp, 14 pin. 20p Zenner Diode 270v at $3 \mathrm{~W}, 20 \mathrm{p}$ each. Proximity switches for doors and windows. surface mount. $£ 1$ each

MAIL ORDER ONLY

DELIVERY FREE, MIN ORDER $£ 10$. NO VAT

Printed Circuits in Minutes Diract from LascrPrint!

8. 1/2" $\times 11$ - Or Photocopy - Use standard houschold iron or P-n-P Press.

Use Standard Copper Clad Board
5 Sheets $£ 12.50,10$ Sheets $£ 25.00+$ VAT. Add $£ 2.50$ postage Complete kits to manufacture your own PCB's from $£ 40.00$, or individual hems of material, chemicals, etchant etc. PRESS-N-PEEL ETCHING SUPPLIES 18 Stapleton Roade Orton - Southgate Peterborough PE2 6TD - Tel: 01733233043

RADIO + TELECOMMUNICATIONS CORRESPONDENCE SCHOOL

AT OUR NEW OFFIC
2 SOMERSET PLACE, TEIGNMOUTH DEVON TQ14 8EP

START training now with the specialists for the following courses
Telecomms Tecb CG 2720, Radio Amateur Licence "A" or "B", Micnó Processor and introductionito Television.

FOR our FREE Brochures write to the above address or call 01626772414

ACTIVE MICRO DESIGNS

We can
design or re-design any piece of Analog or Digital Equipment to your Spec Software included with PC-based hardware

Tel: 01772816228 Fax: 01772816304

Active Micro Designs

HIRE - SALES SERVICE - INSTALLATION 34 Sutton Avenue • Tarleton Preston PR4 6BB England

RTVCOME WIDEBAND SCANNER AERIAL

 (2n)

THE "RECCONE" IS THE UK's ORIGINAL QUALITY DISCONE
VHF/UHF MOBILS AERILIS
 "NOMAD" Portable scammer aerlal
 nowling. wim Am coox 8 BHC cing. E17.95.
acive "nomad"

SCANNER AERAL FITEE

 IWW marivence, 3 KC comertors E28.95

Wime, phone ar fax tor las
Cullers by appointment only, please.
NI PRCFS HCCUDE UK CARRUGG AHD WIN N 17.5%
VISA
GAREX ELECTRONICS
Unit 8 Sandpiper Court Harrington Lane Exeter EX4 8NS Phone: (01392) 466899 Fox: (01392) 466887

10\% DISCOUNT TO ALL ETI READERS
$1 . \quad 0-12^{\circ}(300 \mathrm{~mm})$ Digital LCD Callipers $£ 99.95 £ 89.95 \mathrm{inc}$

$00^{\prime \prime}(150 \mathrm{~mm})$ Digital LCD Callipers $£ 49.95 £ 44.95 \mathrm{inc}$ -3 AUTO TURN OFF
MEASURE INSIDE, OUTSIDE AND DEPTH. ZERO ANYWHERE ON THE SCALE, CONVERTS METRIC TO IMPERIAL AND VICE VERSA
BOTH THESE CALIPERS MEASURE TO A RESOLUTION AND REPEATABILITY OF $0.01 \mathrm{~mm} 0.0005^{\circ}$ AND ARE POWERED BY ONE STANDARD 1.5 v SILVER OXIDE BATTERY,
THE PRICES INCLUDE A FOAM LINED CARRY CASE, VAT, POST AND PACKING
IF YOU ARE NOT COMPLETEEY SAISTEO WTH YOUR PURCHASE SIMPD,Y AETURNIT TO US WTHIN $3 O$ DAYS
POR AN MMEDATE NO QUBBLE REFUWO. THS OFFER DOES NOT AFFECT YOUR STATUTORY RIGHTS

40LTD STEVENAGE
Protessional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services:
PCB Assembly (Conventional and Product Design/Consultation Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $31 / 2^{2}$ disc
Cable Harness Assemblyhoom
Manufacture
Card Cage and Module Wiring
Full Inspection
Full Procurement Service PCB Test \& "Bum in" Facilities Enclosure Design \& Manufacture PCB Artwork Manufacture Circuits Drawn Professionally Kit Procurement \& Supply
Component Sales
Refurbishment a speciality Top Quality Work at Reasonable

Phone Steve on (01438) 360406 or fax details of your requirements to us
on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

Past ราทลก

Adaptable, affordable - handy circuits for around £5. By Owen Bishop

5. A musical booby trap

The idea for this 'Fiver' came from a Victorian port decanter which is an helrloom in our family. Instead of locking up the port and sherry in a tantalus, the decanter is left on the sideboard protected by a booby trap. Whether it was actually thought of as a booby trap in the days of Queen Victoria we do not know, but there have always been boobies and there have always been traps, even if the combined term had not then been invented. The port decanter, beautifully engraved, has its base shaped into a dome, to provide a groove to catch the lees which precipitate with age (this was before the days of lees-free supermarket port). But the dome has another purpose. Beneath it is concealed a musical box triggered by a small brass knob projecting downward from the base of the decanter. When the decanter is in its proper place on the sideboard the knob is pressed upward by the weight of the decanter and prevents the musical box from working. However, when an unwary person lifts up the decanter to sample the contents, the pressure on the knob is released and the music sounds loudly. It is no good hastily replacing the decanter for, once started, the tune is played through to its end, leaving the embarrassed booby to 'face the music'.

This project uses a UM66 music ic to provide the tune, and a timer ic to turn on the power for long enough to let the tune play once through. Once the circuit has been triggered, the melody plays all the way toits end, even if the pifferer replaces the booby-trapped object. The circuit is adaptable to a wide range of applications, which we leave to the reader's imagination and ingenuity.

How it works

The music ic (IC2) is one of a series available with different pre-programmed tunes ranging from 'Twinkle twinkle little star' to 'White Christmas'. The one in our prototype plays 'Love me tender' which is no longer in the catalogue, so perhaps, like the Victorian decanter, it is a collector's piece. This is connected in the drain circuit of a 2N7000 mosfet, actually a package containing a Darlington-connected pair of mosfets for greater gain. The gate of the mosfet is connected to the output of a 7555 cmos timer ic, wired as a monostable. Normally the output of the 7555 (pin 3) has a low (OV) output: Its trigger input (pin 2) is normally kept high (+3 V) by the button or switch S1 being held closed. If S1 is opened, even for an instant, the voltage at pin 2 is pulled low by R1, triggering the ic into action. Its output swings sharply high and stays high for a period of time determined by the value of R2 and C1. What happens is that the voltage across C 1 is detected by internal circuits connected to pin 6 . In the untriggered state this is held at one third of the supply voltage (at 1 V , in this circuit). Surplus current flowing through R2 is diverted into pin 7 and through the ic to ground. When the ic
is triggered and the output goes high, current is no longer allowed to flow into pin 7. It flows to C1 and the charge on C1 gradually increases. This continues until the charge on C1 reaches two-thirds of the supply (that is, 2 V). This voltage is sensed by pin 6, and the output is switched low. At the same time current flows again though pin 7, rapidly reducing the charge on C 1 to 1 V once more. Thus the length of time that the output is high depends on how long it takes to charge the capacitor from 1 V to 2 V . This depends on the resistance R of R2 and the capacitance C of C 1 . The formula is:

$$
\mathrm{t}=1.1 \mathrm{RC}
$$

t is in seconds, R in ohms and C in farads. In this project we need to give the music ic time to complete its tune. Ours required 30 seconds and, with the values shown in figure 1:

$$
t=1.1 \times 3.3 \times 10^{6} \times 10 \times 10^{-6}=36.3 \text { seconds }
$$

One of the good features of the 555 and 7555 timer ics is that the timing depends on charging from $1 / 3$ of supply to $2 / 3$ of supply. It is independent of the actual voltage of the supply. If the battery goes a little flat this does not affect the timing.

When it is in the resting or quiescent state (waiting to trap the unwary), the only current used is that flowing through R1 and the small amount going through the timer. These total only 60 uA , so a small battery of two AAA alkaline cells lasts several months.

Construction

There are two points to consider before you begin. One is the mounting of the loudspeaker. We used one of the smallest available low-cost speakers, but a larger one can be used. Smaller types are obtainable from suppliers specialising in surface-mount devices. To obtain a reasonably loud sound it is essential that the speaker is mounted firmly on a baffle. The function of a baffle is to prevent the sound waves emitted from the back of the speaker coming round and cancelling out the sound waves emitted from the front. In practical terms, the speaker needs to be mounted in an aperture cut in a box or enclosure. Small speakers can usually be fixed in place by a layer of adhesive around the rim. The kind of box you use depends on your application, but the more substantial its construction the better. If your plumber can supply a piece of plastic pipe of the right diameter, you could fit the speaker into one end, enclose the circuit board in the pipe and fit the switch at the other end. Which brings us to the switch. Essentially, you need a switch with a light spring in it, so that it can be held in the on position by the weight of the project plus whatever it is attached to. Use a mini microswitch, or a lightly sprung pusthbutton, or possibly you could make up a switch from pieces of springy brass strip. We used a keyboard-switch; these come in various designs and most of them are lightly sprung. Some have a click-action which gives a more definite response.

Another possibility is to use a tilt-switch. This is a sealed metal tube containing two wire electrodes and a small quantity of mercury. When it is the upright position the mercury rests in contact with the electrodes and completes the circuit. When the switch is tilted, even by as little as 10 degrees, contact is broken and the circuit is triggered. Another version of this is the vibration switch (though this is more expensive and will take the cost of the

Resistors

R1 100 kilohm
R2 $\quad 3.3$ megohm

Capacitor

C1 10uF electrolytic, 16 V , axial

Semiconductors

Q1 2 N7000 Fetlington mosfot
IC1 7555 CMOS timer
IC2 UM66 musical ic
Miscellaneous
S1 Switch (see text)
LS1 Loudspeaker 64 -ohm
8 -pin dil ic socket, $40 \mathrm{~mm} \times 27 \mathrm{~m}$ stripboard (10 strips $\times 15$ holes); 1 mm terminal pins; battery box for $2 \times$ AAA cells.

Figure 2: the stripboard layout

project above the $£ 5$ limit). This is normally open when still but closes with any vibrations. To use this you will need to alter the switching circuit as shown in figure 3 . This way of connecting the switch can be used for any other kind of switch which is normally open and closes when disturbed.

The circuit is assembled on a small scrap of stripboard, stuck to the bottom of the battery box with double-sided adhesive foam strip. You could alternatively use a resin such as Araldite. The layout is compact so as to make it easier to fit the device into a restricted space. It you have any particular application in mind, you may need to adapt the layout to a differently shaped board.

First cut the strips beneath the board at E4, F3, G5 and D10G10, as shown in figure 2. Assemble the timing circuit (IC1, R1, R2, S1), connecting the positive side of the switch to the pin at A1. Use a multimeter to test the output at pin 3 . This is normally OV but rises to 3 V for just over 30 seconds when triggered. Next assemble the remainder of the circuit, connecting the positive side of LS1 to the pin at A1. Note that IC2 faces the opposite way to Q1. When we assembled the prototype we put IC2 the wrong way round. It still produced a tune with the correct beat but the notes were in a strangely minor key! You might like it better than the usual rendering, but possibly the ic might bum out eventually. Assembly is now complete and the circuit should play its complete jingle every time it is triggered. If it cuts off too soon, increase the length of the timed period by increasing R2 to, say 2.7 megohms.

COMPONENT SIDE

SOLDER SIDE

EPROM EMULATOR: COMPONENT \& SOLDER SIDES

DIGITALLY CONTROLLED POWER SUPPLY

PIC DEVELOPMENT

PROCRAMINER PIC EEZE- \mathbf{V}^{2}

Program/read/verify 16C54/55/56/57/58/61/62/620/621/622/63/ 64/71/73/74/84/Serial EEPROMs. Expansion port. Built and Tested Only $£ 52.95$

PROGRAMMIER/CE PIC FEZE-V3

As above but with In-Circuit Emulation Capability. Built and Tested Only $£ 72.95$
Both systems have ZIF sockets already fitted and expansion ports for current and future developments!
Other PIC developments. Learning pack for beginners, demonstration pack, PIC basic (Tel/write for details).

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS

Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 OHD U.K.
Tel: (+44)01243545111/2
Fax: (+44)01243542457
CATALOGUE AVAILABLE

ADVERTISERS INDEX

ACAP CIRCUITS 73	kPL
ACTIVE AUDIO VISUALS 66	LABCENTREIFC
B BAMBER ELECTRONICS ... 65	LENNARD RESEARCH 70
BETA LAYOUT 60	MANCHESTER
BK ELECTRONICS 44	METROPOLITAN UNI 26
BULL ELECTRICAL12,17	MAPLIN ELECTRONICS OBC
CMS 43	MILFORD INSTRUMENTS 23
CHELMER VALVE 58	NCT
COOKE INTERNATIONAL 70	N01 SYSTEMS
CIRKIT DISTRIBUTION 23	NO NUTS
CITY UNIVERSITY 37	PARTRIDGE ELECTRONICS
CROWN HILL ASSOCIATES . . . 70	Plan Centre publications
DISPLAY ELECTRONICS 19	$\text { .37. } 66$
ELECTROMAIL 43	PICO TECHNOLOGIES 40
EPT EDUCATIONAL SOFTWARE 42	RADIO AND
EQUINOXIBC, 72	TELECOMMUNICATIONS 66
EQT 66	R.D. RESEARCH
ESR ELECTRONIC COMPONENTS	RSGB
FOREST ELECTRONICS . 21	SERVICE TRADING
F.K. ELECTRONICS $.72$	SHEFFIELD SURPLUS
GAREX ELECTRONICS 66	SSE
G. C. ARNOLD PARTNERS 9	STEWART OF READING
GRANDATA 4, 5, 6,7	SWC
GREENWELD ELECTRONICS . . 58	SWIFT DESIGNS50,72
EDUCATION SPECIAL	TECHNOLOGY EDUC
COLLEGE GUIDE 35	INDEX
JJ COMPONENTS 65	TELNET
JPG 23	VERONICA FM
J+N FACTORS 10	VISIBLE SOUND 58

an

ELECTRONICS
TODAY INTERNATIONAL

ET/ can supply printed circuit boards for most of our current projects - see the list below for boards available. For recent boards not listed, check the constructional article for an alternative supplier.

Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make
cheques/POs/money orders, in $₹$ sterling only, payable to Nexus Special Interest Limited. Please allow 28 days for delivery. Access/Nisa orders may be made on 0144266551 (ask for Readers Services).

Only boards listed here are available from our PCB Service. For past issues of magazines, copy articles or binders, please see the admin panel (page 75) or contact Readers Services (see below) for information.

Name and issue of project	Untt code	Price
ETI Issue 9 1997		
Eprom Emulator	E/997/1	$£ 16.49$
The Power Supply	E/997/2	$£ 5.09$
Electronic Door Chimes	E/997/3	$£ 5.09$
Digital Power Supply	E/997/4	$£ 10.11$
ETl Issue 8 1997	E/897/1	$£ 5.09$
The Brake Light Tester	E/897/2	$£ 5.64$
The IQ Tester		
DC Motors (3 experimental boards)	E/897/3	$£ 5.09$
DC Motors: The first Control Unit	E/897/4	$£ 5.09$
DC Motors: The 4046 Circuit	E/897/5	$£ 5.09$
DC Motors: The Crystal Drive Circuit	E/897/3/4/5	$£ 11.50$
All three DC Motors boards		

MORE PCB FOILS

ELECTRONIC DOOR CHIMES

EPROM EMULATOR: POWER SUPPLY

Terms of trade
Terms strictly payment with order. We cannot supply credit orders, but will supply a proforma invoice if requested. Proforma orders will not be processed until payment is received. All boards are manufactured from the foils that appear in the ETI Foils Pages for the appropriate issue. Please check that our foils are suitable for the component packages you intend to use before ordering as we cannot supply modified boards or replace boards that have been modified or soldered. Boards are only supplied in the listed units. Sorry, we cannot break units. Prices and stock may be altered without prior notice. Prices and stock listed in this issue supersede prices and stock appearing in any previous issue. ETI, Nexus Special Interests and their representatives shall not be liable for any loss or damage suffered howsoever arising out of or in connection with the supply of printed circuit boards or other goods or services by ETI, Nexus Special Interests or their representatives other than to supply goods or senvices offered or refurid the purchaser any money paid in respect of goods not supplied.

Please supply:

Quantity Project Unit Order Code Price Total price

Prices are inclusive of post and packing in the UK. Overseas Post and Packing (ff applicable): Add $£ 1$ per unit

Name

Address
\qquad
\qquad

I enclose payment of $£$ \qquad (cheque/PO/money order in £ Sterling only) to:

PCB Service, READERS SERMCES DEPARTMENT, Nexus Special interests Lid., Nexus House, Boundary Way, Heme' Hempstead, Herts HP2 7ST UK.

Signature

Card expiry date:

Findy Forder 0144266551

Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 75p per word (+ VAT) (minlmum 15 words) Semi display: (minimum 2.5 cms) E 10.50 + VAT per single column centimetre
Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

\wedge Veronica $88-108 \mathrm{MHz}$ FM Veronica

 Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.18 Victoria St, Queensbury, BRADFORD, BD13 1AR
Tel 01274816200 Email veronica@legend.co.uk

TELEPHONE BUGGNG?
 "STOP IT NOW:!" WITH
 THE NEW BUG X TERMINATOR.

Blocks all phone taps \& telecorders, keeps phone calls and fax's private. For details send a S.A.E. or Tel/Fax: Write for details with S.A.E. to: F.K.Electronics services, Northgate house, St. Marys Place, Newcastle Upon Tyne, NE1 7PN.

SWC
SCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW
FAX 01815591114

£50 BT INSTRUMENT FOR ONLY $£ 7.50$

 4 ramese of $O C$ rats up io 500,3 ranges of milimens and ane SA rave and 3 roper of risiture Mase ue in pertiot concition hore hoo nery inite se. if myy iveded ond haly

Pastoge 13 undess yarar arder is 225 end ovem
IENFoctas
Depi til, Pilgrin Worts, Staitridge lome, Bolmey. Sussex, RH17 SPA Teiepopone: $(0144) 881965$

> Scrap Electronic and Mainframe Computer Equipment Wanted Can dismantle and collect Tel: 01142853327 Sheffield Surplus 870 Pennist $2 A$ Hillborough, Sheffield S6 2DL

CLEAR-OUT SALE of components, equipment and kits accumulated over 15 years. £120. Dower Road, Sutton Coldfield. Phone 01213081685.

PRINTER CIRCUIT BOARD

TM? PCBDENGW ONERLOAD???

- EDWIN -
- EED3 -
- CAPSTAR -

We couid be the answer.
Contact Swift Designs Ltd
Email:
Designs@SwiftDesigns.co.uk
Phone:
01438310133 - 01438821811 Web:
www.swiftdesigns.co.uk

5KVA ISOLATION TRANSFOAMER

 As New Ex - oquipment fully shrousted Line Noise Suporestion. Uhra Isolation Trenstormer with terminalcovers and Knock-out Cable emtries Primary 120240 V Covers and Knock-out cable emtnes Primary 120240 y
Secondary $120240 \mathrm{~V} 50,60 \mathrm{~Hz}$. 005 of Capectance See L. $37 \times$ W. $19 \times \mathrm{H} .18 \mathrm{~cm}$ Wight 42 Kidos . PRICE $\$ 120.00$ - VAT
ava
2AV DC SIEMENS CONTACTOR Type 3TH8022 D8 $2 \times$ NO and 2 I NC 23OV AC 10A contacts Screw or Din Rail thing Size H $120 \times$ W 45 a.75ms 72 MoO 4 S 2 AC WESTOOL SOLENIODS aroke 5bos p I Max stroke 1/4 in. Base mounting $1 / 2 \mathrm{in}$. in Frones mounting $1 / 2 \mathrm{~m}$. From mountion $1 / 2$ in sime Stibs pul approx Price ind. p8p \& VAT. TT2 5588 TTB E8 81. SERIES 400 โ7.8A.

AXIAL COOLING FAN

 230 V ac izamm squars $x 38 \mathrm{~mm} 3$ blade 10 wath Low and sizes availatie from stock Prease teleohone your enquinesINSTRUMENT CASE Semoveatis Mant by tmhot L3i \times H18 $\times 19 \mathrm{~cm}$ doep components Gromy and reat compiete wor case leer. PIICE 11.45 INCL. PAP AVAT 2 of 228.20 inclusive.
die cast alumanium box with internal PCB guides internal scze 265 \& 165 x
50 mm drep Pnce E 9.90 ind pep \& VAT. 2 off $\varepsilon 1780$ 50 mm
hnol.
mol.
230 V AC SYNCHRONOUS GEARED MOTORS Brand new Ovoid Geartox Crouzel type motors
H $65 \mathrm{~mm} \times \mathrm{m} 55 \mathrm{~mm} \times \mathrm{D} 35 \mathrm{~mm} 4 \mathrm{~mm}$ die shat $\times 2$.
 20 RPM anti CW Depth 40 mon £ 11.16 ma plop \& VAT.
SOLID STATE EMT UNTT
 spark. Built-m 10 sec tmer Eassy modtived tor 2osec. 30 uses in the fietd of prysics and electroncs. en suppling neon er arpon hooes otc Pnce uss case

EPROM ERASURE KIT
Buid your own EPROM ERASURE for a lraction of the
 neon indicator, onvof swith, salety microswlet and cricut $£ 15.00 \div £ 2.00 \mathrm{p} \& \mathrm{p}$ ($£ 1938 \mathrm{inc}$ VAI)

WASHING MACHINE WATER PUMP Brand now 240 VAC tan cocted Can be used lor a variety VAT. $£ 11.20$ acch or 2 for [20.50 indtuve.
SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 $58 B$
TEL 0181-995 1560 FAX 0181-995 0549
open ACCOUNT CUSTOMERS MIN, ORDER £10 Ample

PROGRAMMES

MIORO - ISP

In-system 8051 Programming in a FLASH!

Now supports the AVR Microcontroller Family

Code development for the 8051 family could not be easier. Simply plug the "Socket Stealer Module" into your existing 8051 socket and then use the Micro-ISP Programmer to download code (and data) to your target microcontroller without even removing it from the target socket.

EQUINOX

The Embedded Solutions Company
For further details watch this space next month:
Sales: 01204492010 Technical: 01204491110 Fax: 01204494883 Visit our web page at: www.equinox.tech.com

Email: sales @ equinox.tech.com

1,000 's of people
are reading this.
So do not miss
your opportunity
to promote your
business

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7 Old Wharf Industrial Estate Dymock Road, Ledbury, Herefordshire, HR8 2HS.

To Advertise call ANDY FORDER
now on 0144266551 or fax us on 0144266998

ELECTRONIC TODAY INTERNATIONAL CLASSIFIED ADVERTISEMENT DEPARTMENT NEXUS HOUSE, BOUNDARY WAY, HEMEL HEMPSTEAD HP2 7ST

As a member you would receive RadCom, the 100 page colour magazmodethered to your door every month

We are the national society for radio angateurs and if you are interested in electronics we can help you
Radio Soriety of Great Britain (Depf En19) Lambda flouse Cranborne Road Potters Bar Herts EN6 3JE Tel: 01707659015 Fax: 01707 645105;
e-mail: sales@rsgb.org.uk

C Around the
 Real improvements in electronic devices continuè, though as ever they are less widely reported than the latest PC software.

 ornerFor several years IGBTs (insulated gate bipolar transistors) have been heralded as a better type of switching device for switched mode applications. IGBTs, invented about 15 years ago and designed to cary serious wattages, can be viewed roughly as a combination of a power mosfet and a bipolar transistor. Conduction can be maintained without a continuous base current flowing, but at high currents they have a lower voltage drop than comparable power mosfets, as well as having a lower gate capacitance to charge and discharge.

IGBTs have not previously been relevant for switched mode power supplies of the most familiar type, because of their low switching speed. A year ago I recall seeing in a catalogue a switching frequency of 10 kHz heralded as fast for an IGBT. This is certainly useful for some things, but switched mode supplies used for desktop computers and applications of much larger loads run at frequencies of 50 kHz to 500 kHz .

Recently, International Rectifier have announced IGBTs with ratings up to 150 kHz at 50 A and 600 V . Clearly these devices can now be considered for high power off-line switchers, and will probably soon see service in high power supplies, power factor correctors, and welders.

The problem with high-speed switching arises because the bipolar part of the device switches off by recombination of minority cariers in the base region. IR have found a way to reduce the carnier lifetime without the severe side effects, such as higher on-state voltage and, if lifetime-killing (as this process is now known) is taken too far, a negative resistance characteristic that makes the device useless.

Now, for off-line switched mode supplies operating below 150 kHz , IGBTs can be used with a power saving - there are still higher switching losses than power mosfets, but with lower conduction losses, and requiring a much smaller chunk of silicon to achieve all this.

Nevertheless, while everything else gets smaller and smaller with every passing season, traditionalists will be happy to know that it may be a while before we see surface-mount versions of this kind of device.

Rob Bebbington MISTC

A few weeks ago I wrote to author Roy Bebbington with a minor query on a project he had submitted. Shortly afterwards, we received the news that Roy had died suddenly. Roy was a technical author before his retirement, and continued to design and build projects afterwards. He was not a young man, but from his project designs he was clearly young in spirit, and would have continued in his hobby for many more years had an untimely heart attack not carried him off. We at Ell extend our sympathy to Roy's family with the thought that his name, like the names of all dedicated designers, will be immortaised in the project collections of many ETl readers for a long time to come.

Say EEEEEE!

One of our readers in the manufacturing business kindly returned a couple of comments on Controlling DC Motors (Part one) in last month's EII. We do not know precisely what our correspondent is experimenting with, other than the fact that it involves moving quantities of toothbrushes. Perhaps he is delivering or even testing toothbrushes. Either that, or some startling developments in electric tooth-brushing techniques have yet to reach the public ear.

Next Month...

Volume 26 no. 10 of Electronics Today International will be in your newsagent on 12 th September 1997 ... Tim Savage has been working on a Mk II AutoChecker for continuity checking around the car and house ... Pei An describes a radio digital data control system which can be used for home automation applications ... At last, Terry Balbirnie's mock alarm flasher offers a very low cost safety feature for cars ... all the regulars, and more ... PLUS Buy issue 10 of ETI and save money on your PCB packs from our Beta Layout Promotion.

Contents are in preparation but are subject to space and availability.

Published by Nexus Special Interests Limited Nexus House. Boundary Way
Hemel Hempstead, Herts HP2 7ST Tel: 0144266551 Fax: 0144266998

Editor Helen Armstrong
Administration Assistant Lynn Bugden
Consultant Andrew Armstrong
PRODUCTION Designer Dan Sturges
Technical illustrator John Puczynski
Production Executive (Copy control) Marie Quilter Printed By Wiltshire Led., Bristol Origination by Atelier, St. Austell

Advertisement Manager Andrew Forder 0144266551×331

Group Sales Manager Jason Wollingron
MANAGEMENT
Divisional Managing Director John Bridges
Business Manager Stuart Cooke
Circulation Manager Willlam Pearson
Marketing Manager Jason Doran
Copy Sales Manager David Pagendam

	uk:Orders 01858 43534 Enquines 01858433332 est 238th Street, Torrance. CA9005 A. For VISAMastercard orders phon 6258 Fax. $(310) 375$ 05 48 Pacific Ti 9pm weckdays $10 a \mathrm{~m}$ - 6 pm wecken
READERS SERVICES Back issues(last 12 months) $\mathbf{\$ 3 . 0 5}$ per issue i availabie. Older issues: photocopies of whole articles often available. Write to The Phorocopy Service. Readers Services Department, at Nexus Housc. Boundary Way, Heme HP2 7ST. HP2 7ST.	

"THE COMPLETE PROGRAMMING SOLUTION FOR 8051 MICROCONTROLLERS \& MUCH MORE"

The Ans 8051 fLASH microcontroller fomily

\triangle KELI integrated Development Environment - C compiler + Assembler output restricted to

C51 MHerocontroller Starter System

- Adapicors available for users other package types

Order code: MPW.SYS $£ 149.00 \mathrm{~A}$

[^1]

More

 than
18,000 top

quality products

 bound
for the

enthusiast

£3.45

BRITAIN'S BEST-SELLING ELECTRONICS CATALOGUE

Available from Ist September 1997

The 'must have' tool for DIY enthusiasts, hobbyists and students, amateurs and professionals in the world of electronics.

- Over 25 years experience
- 42 stores nationwide
- Same day despatch
- Order 24 hours a day
- Free technical support on 01702556001
- Free delivery on orders over £30.00
- Over £50 worth of discount vouchers

Order now on 01702554000

Available at: WH Smith, John Menzies or your local Maplin Store.

[^2]
[^0]: 16C57 Module Kit (8k EEPROM, 4MHz) £27.00, Pre-built $£ 33.00$ 16 C 57 Module Kit (8k EEPROM, 10MHz) £31.00, Pre-built $£ 37.00$ 16C74 Module Kit (8k EEPROM, 4MHz) £35.00, Pre-built £42.00 16 C 74 Module Kit (8k EEPROM, 20MHz) $£ 40.00$, Pre-built $£ 46.00$ 16C84 chip programmed with BASIC - £25.00
 Compiler - $£ 60.00$, or $£ 50.00$ when ordered with a module

[^1]:

[^2]: (Add 50p for P\&P). Orders outside the UK please send $£ 8.45$ or 21 IRCs for Airmail in Europe or surface mail outside Europe. Send $£ 16.00$ or 37 IRCs for Airmail outside Europe to:
 Maplin MPS, PO Box 777 Rayleigh, Essex, England SS6 8LU.

