

PROTEUS

Schematic Capture

NEW Version IV

oP-oduces attractive schematics tike you see in the nagazines. - Notist, Parts List \& ERC reports. OHierarchics: Design. ©Full support for buses including bus pins. Extensive component/model libraries. OAdvanced Propery Management. -Seamless integration with simulation and PCB design.

Simulation

- Von-Linear \& Linear Anałlogue Simulation. © Event driven Digital Simulation with modelling language. ©Paritioned simulation of large designs with multiple anai jgue \& digital sections. OGraphs displayed directly on the schematic.

The $V^{\text {th }}$

 cencrition
Naw Features

Gomponent Auto-Placer Pinswap/Gateswap Optimizer Backgrouni Regeneration of Power Planes Enhanced Autorouting with Tidy Pass Full Gontriol of Schematic Appearance Exansive New Component thraries

Available in 5 levels - prices from $£ 295$ to $£ 1875$ + VAT. Call now for further information \& upgrade prices.

MFBOTEUS
ts pariticulariy © O ! !

EWW January 1997

Write, phome or fax for ycur free demo disk, or ask about our fill evaluation kit. Tel: 01756753440 . Fax: 01756752857. EMAK: Inte@labcenter.caut 53-55 Main SL, Grassington. BD23 5AA. WWW: htp J/wwwlabcenter.co.uk

[^0]
Volume 26 No. 8

Next Issue 15th August 1997

The Secret of the Machines 11
Artificial intelligence is gradually moving into many corners of modern life. Could artificial intelligence is designed to be self-teaching - could it learn to out-think mankind? Douglas Clarkeson looks at the evidence.

Digital Voice Modulator

Robert Penfold's 'voice-box' is based on the HT-8950 voice modulator chip. You can add three levels of pitch-shift, up and down, and a 'robot voice' for machinemen, with added vibrato if you want it. There are mic and line inputs, and operation from long-life HP7 batteries.

Brake Light Checker
Functioing brake-lights are arguably even more important on a trailer or caravan than they are on a car. Terry Balbirnie's self-test system warns if caravan and trailer brake lights fail to work when they are needed.

Higher Education Special

if you are a school leaver - or just want to new direction in your career - now is the time to decide whether to dedicate the next few years to Higher Education, and where. EII looks at some established college courses in Electronics and offers some advice about applying.

Speed Control in DC Motors - Part one
David Ponting's gift reel-to-reel high-quality tape recorder was absolutely free all he had to do to put it in working order was create a constant-speed capstan motor drive suitable for both sides of the Atlantic. So began the experiments to find the best control circuit.

Ham Radio Today
All the best for Radio Amateurs
Valve Characteristic Tester - Part One
Now that valves are popular again in audio amplifiers, pre-amplifiers and filters, Peter Kenyon has designed is a portable unit which helps with matching valve pairs and checking on valve characteristics.

Fast Fivers - A Process Timer (4)
This is the Egg Timer of the Future, says Owen Bishop. It can time up to three consecutive stages of a process, a multistage process lasting for half-an-hour or (for a bit more dosh) to seven stages or more.

Regulars

News 8, 9, 69
Practically Speaking 37
Terry Bablirnie goes back to basics on Ohm's Law
PCB foils 70
ETI PCB Service 71
Round the Corner 74
Tor

DIGITAL MULTIMETERS

CW2400Y DIGITAL MULTMETEA WITH TEMP MEASUFEMENT FEATURES:

- 3.5LCD DISPLAY
- MAXIMUM READING 1999
- MAXIMUM READING 1999
- 10A DC CURRENT TEST
- 10A DC CURRENT TEST - ac volate 200/750V.
- DC CURRENT $0.2 \mathrm{~mA} / 200 \mathrm{~mA} 20 \mathrm{~mA} 200 \mathrm{~mA} / 20 \mathrm{~A}$ - RESISTANCE $20082 / 2 \mathrm{~K} \Omega / 20 \mathrm{~K} \Omega / 200 \mathrm{~K} \Omega / 2 \mathrm{M} \Omega$ - SUPPLIED WITH TEST PROBES - TEMPERATURE MEASUREMENT - CONTINUITY TEST
- DIODE TEST \& CONTINUITY CHECK - ALL RANGES OVERLOAD PROTECTED ORDER CODE: CM2400T PRICE: 1450p

FEATURES:

- large lcd display
- HEIGHT 18 mm

MASIMUM RミADING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR AUTO POWER OFF (APPROX 15 min) - DIODE TEST FUNGTION - all ranges overload protected - SUPPLIED WITH TEST PROBES - DC VOLTAGE: $200 \mathrm{~m} V / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V}$ 700 V ACCUFACY $\pm 0.5 \%$ - AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ - DC CURRENT A 200μ A $20 \mathrm{~mA} / 200 \mathrm{~mA} 2 \mathrm{~A} 20 \mathrm{~A}$ - AC CURRENT A: $200 \mu \mathrm{~A} / 20 \mathrm{~mA} 200 \mathrm{~mA} / 2 \mathrm{~A} 20 \mathrm{~A}$ - RESISTANCE : $20002 / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{Ms} 2 / 20 \mathrm{Ms} 2$
$200 \mathrm{M} \Omega$

ORDER CODE: CM3900A PRICE: 2900p

FEATURES: | - 3.75 LCD D SPLAY WITH $J \equiv$ MAL PJINT |
| :--- | - 33 SEGMEIT BARGRAPM IC.P_AT

- overrange indicatou
- ROTARY SWITCH FOR F Jryion

SELECTION

- AUTO POVER OFF (APPQI $\bar{X} 15 \mathrm{~nm} 3$) - auto polarity witr imilizatcia - DIODE TEST \& CONTINUITY TEST WiTH BUZZER
- All RANGE.S overload platected - LOW BATTERY INDICATIIJN
- SUPPLIED NITH TEST PROBES - DC VOLTAGE: $320 \mathrm{mV} / \approx 2 \mathrm{Z} / 32 \mathrm{~V} / 320 \mathrm{~V} / 500 \mathrm{~V}$ - DC CURRENT $320 \mathrm{mV} / 3.2 \mathrm{~V} / 32 \mathrm{~V} / 320 \mathrm{~V} 600 \mathrm{~V}$
- 320mAloa
ac cura
- AC CURRE
320 ma IIOA

320 mA 10 A A. 320 AA - RESISTANGE: $320323.2 \mathrm{~K} 2 / 32 \mathrm{~K} \mathrm{~L}_{3} 320 \mathrm{~K} \Omega$

ORDER CODE: CM 2700
PRICE: 4050p

FEATURES

- 3.5 LCD DISPLAY
- MAXIMUM READING 1999
- CAPACITANCE 9 RANGES FROM 2000F 20000 $\mu \mathrm{F}$
- MEASURING FROM 1pF - 20000 $\mu \mathrm{F}$ - SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION ZERO ADJUST KNOB

8. Way Prepro ampea Universal Remote Control

A single remote control to operate Television, Videos and Satellite Receivers. Plus Auxilary Options!!

- Replaces up to 8 remotes with one
- Simple 4 digit setup routine
- Controls 1000's of models
- Teletext functions with Fastext
- Clear (large key) layout
- Code Search Facility
- Stylish and easy to operate
- Replace broken or lost remotes
- Original Remote note required

Order Code: 8 WAY Price: 1450P + VAT

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send £ P\&P and VAT at 17.5%. Govt, Colleges, etc
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts. Access \& Visa Card accepted
WE STOCK TV AND VIDED SPARES, JAPANESE TRANSISTORS AND TDA SERIES. FLEASE RING US FOR FURTHER INFORMATION.

SATELLITE POWER SUPPLY REPAIR KITS

ECHOSTAR	CODE
SR5500 EARLY PSU WITH ADJ	SATPSU12
6500, SR7700, SR8700	SATPSU13
Finclsem	Caber
SRD 5, SRD16	SATPSU1
SRV1	SATPSU2
SRDE4	SATPSU11
ETILDX	CODE
SR5700	SATPSU12
GOODMANS	CODE
ST700	SATPSU1
CMYNOIG	COEE
STR1	SATPSU1
GIRD200, FIRD3000	SATPSU2
MANHATTAN	CODE
850,950	SATPSU1
MAspro	CODE
SRE250S/1, SRE350S/1	SATPSU1
SRE250S, SRE350S, SRE450S	SATPSU2

MIMTEC	CODE
SOPRENSON TYPE PSU ONLY	SATPSU15
METWOHK	CODE
9000,9200	SATPSU2
SAKYA	CQDE
SAT1500	SATPSU2

PACE	CODE
PRD80, PRD900, PSR800, PSR900	SATPSU1
MRD920, SS9000, SS9010, SS9200,	SATPSU2
SS9210, SS9220	
D100, D150,	SATPSU6
MSS100	SATPSU8
APOLLO, MSS200, MSS300	SATPSU9
MSS500, MSS1000	SATPSU10

FHILIPS	COFE
STU802/05M	SATPSU11
STU801	SATPSU2
THOMSON	CODE
SRS4	SATFSU2
TGATAE	
SAT99, TU-SDU200	COGF

CODE	PP\|ck	Cll	PFPICE	COME	PRICE	CODE	PAICE
SATPSU1	650p	SATPSU6	650p	SATPSU11	835p	SATPSU16	730p
SATPSU2	650p	SATPSU7	650 p	SATPSU12	1735p	SATPSU17	850p
SATPSU3	650p	SATPSU8	730p	SATPSU13	3125p	SATPSU18	1175p
SATPSU4	650p	SATPSU9	900p	SATPSU14	3135p	SATPSU19	650p
SATPSU5	650p	SATPSU10	1230p	SATPSU15	$77.5 p$		

PACE SATELLITE TUNERS			PACE SWITCH MODE TRANSFORMERS		
Modets	CODE	PRICE	MODELS	CODE	Pratce
PRD800, MSS200 (2GHZ) (221-2077062)	TUNER01	1650p	PACE9000	PACE9000	800p
PRD900, MSS500, MSS1000 (2Ghz) (221-2177012)	TUNER02	1650p	PACEPRD800, PRD900	PRD800	550p

SATMETER

THE SATMETER IS A PROFESSIONAL PORTABLE SATELLITE STRNGTH METER DESIGNED FOR THE INSTALLATION AND MAINTENANCE OF SATELLITE TV SYStems. The satmeter can be used as stand alone meter with powering the Lnb as well as in loop. Through operation with SATELLITE RX POWERING THE LNB.

ACOUSTICAL SIGNAL: ON SIGNAL STRENGTH INPUT IMPEDENENCE: 75 Ohm
MAX.INPUT SIGNAL: -10 DBM

LED INDICATOR: VERTICAL/HORIZONTAL POWER AMPLIFIER: 18 DB

FREQUENCY RANGE: 900 TO 2050 MHZ DETECTION RANGE: -60 TO -10 DBM ORDER CODE: TOOL 22 PRICE: 8500p

SATELLITE LNB'S					
Malk Mrapen	Onawncena	Patame	Wencturan	Ordiancone	Eata
Cambridge AE22/AE5 0.8dB standard 10.95-11.70 GHz Gold Range	LNB1	21600	Cambridge AE7 Twin O/P $\mathrm{H}+\mathrm{V}$ Both Enhanced	LNB7	4000p
Cambridge AE14 Universal LNB 10.7-11.7/11.7-12.75 GHz	LNB2	2500p	Cambridge AE2 Dual O/P H-V Separate Enhanced	LNB8	3550p
Cambridge AE21/AE5 Single O/P Switching LNB 1.0dB Standard	LNB3	2050p	Grundig Super Universal 'Anis' 10.7-12.75 GHz 0.8 dB	LNB9	2600p
Cambridge AE19/AE6 Single O/P Swithing LNB 1.0dB Enhanced	LNB4	2050p	Grundig Universal 'Anis' 10.7-12.75 GHz 1.0dB	LNB10	2250p
Cambridge AE23/AE12 0.8 dB Enhanced $10.7-11.8 \mathrm{GHz}$ Gold Range	LNB5	2160 p	Cambridge AE1 Twin O/P H+V Both Standard	LNB11	4000p
Cambridge AE8 Dual O/P H-V Separate Enhanced	LNB6	4000p			

			FUSES	
	TIMELAG		QUICK BLOW	MM)
CUARENT RATING	ORDER CODE	PRICE	ORDER CODE	PRICE
100 mA	FUSE36	75p	FUSE37	60P
160 mA	FUSE01	75p	FUSE17	60p
250mA	FUSE02	75p	FUSE18	60p
315 mA	FUSE03	75p	FUSE19	60p
400 mA	FUSE04	75p	FUSE20	60p
500mA	FUSE05	75p	FUSE21	60p
630 mA	FUSE06	75p	FUSE22	60p
800 mA	FUSE07	60p	FUSE23	60 p
IA	FUSE08	60p	FUSE24	60 p
1.25A	FUSE09	60p	FUSE25	60p
1.6A	FUSE10	60p	FUSE26	60p
2A	FUSE11	50p	FUSE27	60p
2.5A	FUSE12	50p	FUSE28	60p
3.15A	FUSE13	55p	FUSE29	50p
4A	FUSE14	55p	FUSE30	50p
5A	FUSE15	60p	FUSE31	50p
6.3A	FUSE16	60p	FUSE32	50p

NB.
ALL FUSES ARE MADE IN THE UK AND FULLY MEET BS4265 \& BS1362 SAFETY STANDARDS AND SHOULD NOT BE COMPARED WITH CHEAP IMPORTED TYPES.

CERAMIC PLUG TOP

CUIRENI RAIING	ORDER CODE	PRICE
3A	FUSE33	100 p
5 A	FUSE34	100 p
13 A	FUSE35	100 p

20mm CERAMIC TIME LAG

CURAENT RATING	OROER CODE	PRICE
6.3 A	FUSE38	100 p
8A	FUSE39	10 p
10A	FUSE40	100 p
3.15 A	FUSE41	85 p
4A	FUSE42	85 p
5A	FUSE43	85 p

38mm CERAMIC TIME LAG

CUREENTAATING	ORDEA CODE	PRICE
10 A	FUSE48	815 P

32mm CERAMIC SLOW BLOW

CURRENT RATHO	ORDEF CODE	PRICE
8 A	FUSE44	185 P
10A	FUSE45	185 p
15A	FUSE46	185 p
20A	FUSE47	210 p

TRANSISTORS

SERVICE AIDS

DESCRIPTION	VOLUME	CODE	PRICE	DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75ML	SP01	180p	EXCEL POLISH 80	250ML	SP18	150p
VIDEO HEAD CLEANER	200ML	SP27	250p	ADHESIVE 120	400ML	SP19	190p
SWITCH CLEANER	176ML	SP02	180p	LABEL REMOVER 130	200ML	SP20	240p
SUPER 40	400ML	SP15	250p	REFURB 140	400ML	SP21	240p
SILICONE GREASE	200ML	SP03	210p	TUBE SILICON GREASE	50 GRAMMES	SP11	220p
FREEZE IT	170ML	SP04	320p	TUBE TUBE SILICON			
FREEZE IT	400ML	SP16	600p	SEALANT WHITE	75ML	SP22	280p
FOAM CLEANER	400ML	SP05	200p	TUBE SILICON SEALANT			
ANTI STATIC	200ML	SP06	190p	CLEAR	75 ML	SP23	280p
AEROKLEANE	200ML	SP07	220p	TUBE HEAT SINK COMPUND	25 GRAMMES	SP12	150p
AERO DUSTER	150ML	SP08	310p	DRIVE CLEANER	200ML	SP24	150P
AERO DUSTER	400ML	SP17	550p	SCREEN CLEANER	200ML	SP25	150p
PLASTIC SEAL	200ML	SP09	250p	COMPUTER CARE KIT		SP26	2100p
GLASS CLEANER	250ML	SP10	160p	ANTI STATIC FOAM CLEANER	400ML	SP28	175p
COLDKLENE	250ML	SP13	230p	AIR DUSTER	400ML	SP29	450p

ALL THE ABOVE ITEMS ARE MANUFACTURED BY SERVISOL

IF YOU PURCHASE MORE THAN ONE SERVISOL PRODUCT POSTAGE \& PACKING WILL BE CHARGED AS FOLLOWS: 300P FOR 5 CANS
450p FOR MORE THAN 5 CANS

PLEASE PHONE US FOR TYPE NOT LISTED HERE AS WE ARE HOLDING 30,000 ITEMS AND QUOTATIONS ARE GIVEN FOR LARGE QUANTITIES
Please send E1 P\&P and VAT at 17.5\%. Govt, Colleges, etc.
Orders accepted. Please allow 7 days for delivery. Prices quoted are subject to stock availability and may be changed without notice. TV and video parts sold are replacement parts.

New semiconductor design centre

Fears expressed over decline in science students

Cypress Semiconductor Corporation is making a multimillion pound investment in one of the largest microchip design centres in the UK, in Basingstoke, Hampshire. The new centre will design various semiconductor products including SRAMS, CPLD and FCT logic chips. Working with Cypress design centres in North America and Asia the UK centre will participate in the company's $24-h o u r$, round-theclock design projects. At the end of one working day, a project can be handed over to another centre in a different time zone. As many as 60 new design posts will be created. Cypress is working with educational establishments in the UK to encourage the training of future electronics design engineers. Fears have been expressed that a decrease in the number of good science students will have an adverse effect on recruitment in the UK where there have traditionally been high levels of expertise in semiconductor design. "This is particularly important in the light of falling numbers of school pupils studying subjects such as physics," says design centre director David Rees. "When young people are thinking about their future career paths, we need to be sure that the understand the advantages and opportunities available to engineering graduates."

David Rees of Cypress Semiconductor: concern about school leavers

Cypress Semiconductor's product lines include static rams, eproms and specialty memories; programmable logic devices (PLDs), data communications products and persenal computer chipsets, timing devices and USB micrccontrollers. The company has a World Wide Web site at $\mathrm{http}: / / \mathrm{www} . c y p r e s s . c o m$.

Free licenses for Radio Amateurs under 21

The Radiocommunications Agency has announced that Amateur Radio Licences will be issued free of charge to all qualified users under the age of 21 from 1st July 1997. New applicants registered on or after 1st July will be issued free of charge, and existing licence holders will not be charged this year providing their expiry falls on or after that date.

Technology Minister John Battle said: "The Agency has taken this step to encourage more young people into amateur radio. Radio in its many forms has made a massive impact this century on all aspects of our life. We should do all we can to help young people develop an interest in one of the key technological areas for the next century."

There is widespread concern that the attractions of home computing, and also the falling standards that many fear have taken place in education, have combined to discourage younger people from taking up amateur radio. Another factor is that miniaturisation and integration have made high level radio electronics now inaccessible to most Amateurs, even with higher qualifications, so that amateur radio's contribution to the cutting edge of radio has been shifted to experimental or low power areas, and out of what many see the mainstream.

The Novice Licence was launched in 1991 to help young people enter Amateur Radio in easier stages. In 1996 the Radio Society of Great Britain (RSGB) announced that it was to concentrate on keeping prices down and extending services to encourage Amateurs to pursue their hobby. The saving of the $£ 15$-per-year License fee will help younger people who are not earning or earning low wages. Amateur radio has also been a major factor in bringing youngsters into Electronics.

For more information contact the Radiocommunications Agency Tel. 01712110158.

Old PCB retirement scheme in Basingstoke

Crasle-to-Grave electronics Capital of the UK, Basingstoke is now the home of a new recycling schəme aimed at recovering and reprocessing valuable electronic parts instead of allowing their wasteful disposal in landfill sites. The electronics take-back scheme is launched by Project Integra, the waste management strategy, in conjunction with Intex Logistics of Horndean, and local firm PW Recycling. Electronic scrap will be collected and stripped down to recover re-useable ics and other components before the PCBs are refined for their residual value of tin, lead, copper, gold and other metals. The plastic casings will alsc be analysed for type and then broken down for re-sale to the plastics industry. If the trial is a success, a similar scheme could be set up countrywide.

OVERSEAS READERS

To call UK telephone numbers, replace the initial 0 with your local overseas access code plus the digits 44.

The World's first 5 GB laptop disk drive

IBM have produced a laptop hard disk drive not much bigger than the palm of a child's hand, but able to hold a recordbreaking 5 billion bytes (5.1 gigabytes) of data.
The IBM 2.5 in Travelstar 5GS can store 50 years' worth of a typical daily newspaper, or about 1 million printed pages - a stack of paper as tall as a 62 -story building. (No wonder newspaper libraries are looking at compact data storage.)

Whereas the Travelstar 5GS, which is about two-thirds of an inch (17 mm) thick, will go into premium notebook computers. Aimed mainly at notebook users who don't want to store their newspaper collection, the compact drive will allow users to take advantage of space-demanding applications such as long multimedia presentations, games with advanced graphics and video conferencing. The main contributor to this compact storage is IBM's new MRX (magneto-resistive extended) drivehead technology. No bigger than the head of a pin, the MRX head component sends out stronger signals than older heads, enabling it to reach and write larger volumes of information. "MRX is a major step beyond the older-generation magnetoresistive head technology," said Bob Scranton, vice president of technology at IBM/s Storage Systems Division.

Another IBM 2.5 in disk drive with MRX head technology sets a new density record, storing the most data per square inch of any disk drive: 2.64 billion bits. The Travelstar 4GT is only half an inch (12.5 mm) thick and it destined for new ultraportable laptops. The 4GT is also designed to be the most rugged 2.5 in disk drive, based on its non-operational shock rating. (This is the measurement of how much force is applied to the drive before it no longer functions fully.)

IBM expects to ship the drives to OEMs (Original Equipment Manufacturers) in July, and manufacturers including Dell Computer, Gateway 2000 and IBM expect to have them on the market in treir notebook computers this year.

Robot builders can now obtain the Mondotronics Robot Store catalogue no. 13, "The World's Biggest Collection of Miniature Robot Kits, Books, Parts and More".

The current catalogue features touching and seeing robots, programmable robots, robot muscle wires, many gear and motor kits, and the MicroBench (tm) Pic-driven 24-channel user-definable I/O workbench, able to take downloaded programs and run independent of the main computer. Also new this time is the Soccer'bot Kit, six-legged football-playing robots. No soldering with this kit.

For a catalogue with more information contact Mondo-tronics Inc., 524 San Anselmo Ave. 107-13, San Anselmo CA 94960. Tel. (USA) 4154559330 Fax 4154559333 email info@mondo.com. Web site: wwwIRobotStore.com.

Maritime radio is handed over by the RA

Responsibi ity for maritime radio operator exams and certificatior, maritime radio performance specifications and type approval of maritime radiocommunications equipment, including compliance with the Electromagnetic Compatibility Directive, has been transferred frorr the Radiocommunications Agency to the Marine Safety Agency of the Department of Transport as of 30 June 1997.

Announcing the changes, Minister for Science, Energy and Industry Mr. John Battle said: "This transfer will bring a number of benefits to the maritime community and marine radio incustry, including rationalisation of seafarer training and cerification in the UK. It will also allow rescurces to be better used and aid consistency in decisicn taking through single Agency participation in specificat on-seting work at European level."

Parliamentary Under-secretary of State for Transport Gler da Jacksor said, slightly more succinctly: "This tranisfer represents a rationalisation of the functions carried out by the two Agencies, resulting in a 'one-stop shop' for manufacturers of radio equipment and mariners wisting to become qualified in seafaring competencies."

The MSA will also take over the power to revoke an Author ty tc Operate held by an individual. The RA will conlinue to be responsible for licensing of maritime radio use under the Wireless Telegraphy Act 1949, the enforcement of licence conditions, and investigation of repcrts of radio interference.

OIFFERENTIAL THERMOSTAT KIT Perfect for heat recovery, solar systems, boile efficiency etc Two sensors will operate and pcb E 29 ref LOTITS
MAGNETIC RUBBER TAPE Selfadhesive 10 metre reel, 8 mm wide perfect for all sorts of applications1 $£ 15$ ref LOT87
MAINS POWER SAVER UK made plug in unit, fitted inseconds, can reduce your energy consumption by 15%. Works with fridges, soldering irons, conventional bulbs etc. Max $2 A$ rating. $£ 9$ each ref LOT71, pack of 10 £ 69 ref LOT72
YUASHA SEALED LEAD ACID Batteries, ex equipment but ok
 DC TO DC CONVERTERS
DRM58 input 10-40Vdc output 5 V 8 A £15 DRM1 28 input 17 -40 Vdc output $12 \mathrm{~V} 8 \mathrm{~A} £ 18$ DRM158 input 20 -40Vdc output $15 \mathrm{~V} 8 \mathrm{~A} £ 18$ DRM248 input 29-40vdc output 24v 8A £12 DRS 123 input 17 -40vac utput 12v 3 A $£ 10$ DRS153 input $20-40$ DRS243 input $29-40 \mathrm{vdc}$ output $24 \mathrm{v} 3 \mathrm{~A} £ 8$
HITACHI LM225X LCD SCREENS $270 \times 150 \mathrm{~mm}$, standard 12
way connector, 640×200 dots, tec spec sheet, $£ 15$ each ref LM2
VARIABLE CAPACITORS Dual gang, $60 \times 33 \times 45 \mathrm{~mm}$, reduction gearing, unknown capacity but probably good quality (miltary spec) general purpose rado tuner. $£ 9$ ref VCI
ELECTRONIC FLASH PCB Small pcb fitted with components including a flash tube. Just connect 12vdc and it flashes, variable speed potentiometer. $£ 6$ ref FLS1
THIEF PROOF PEN! Amazing new ball point pen fitted with a combination lock on the end that only you knowl $£ 2.49$ ref TP2 JUMBO BI COLOUR LEDS PCB with 15 fitted also 5 glant seven segment displays (55 mm) 88 ref JUMM
HOME DECK CLEARANCE These units must be cleared! eads, a n infra red remote qwerty keyboard and recever, a standard UHF modulator, a standard $1200 / 75$ BT approved modem and loads of chips, capacitors, diodes, resistors etc all for just $£ 10$ ref BAR33. 6.8MW HELIUM NEON LASERS New units. £65 ref LOT 33 COINSLOT TOKENS You may have a use for these? mixed bag of 100 tokens $£ 5$ ref LOT20.
PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to build a home X-ray machinel Effective device, X-ay sealed assemblies. can be used for
purposes. Not a toy or for minors! $£ 6 /$ set Ref FIXP1
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creating motion with no known apparent means or cause. frends by creating motion with no known apparent means or cause. yet produces positive motion and effect Excellent for science projects, magic shows, party demonstrations or serious research \& development of this strange and amazing phychic phenomenon.
£ 4 /set Ref FTTKE1
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows severalways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used cautiously it is for use as entertainment at parties etc only, by those expenenced in its use. $£ 15 / \mathrm{set}$ Ref FIEH2
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an antigravity effect You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate. E10/set Ref F/GRA1
WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar', St Elmo's fire, Corona, excelient science project or conversation piece. $£ 5 /$ set Ref FIBTC1/LG5
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light High coherency and spectralqualitysimilarto Argon laser but easier and less costly to build yet far more efficient This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. $£ 10 /$ set Ref FICVL
VOICE SCRAMBLER PLANS Minature solid state system tums speech sound intoindecipherable nosse that cannot be understood without a second matching unit Useon telephone to prevent third party listening and bugging $£ \in /$ set Ref FNSS.
PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and soundl works on FM tool DISCRETION ADVISED. E8/set Ref FTJ5. BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc. Intended for security, law enforcement. research and development, etc. Excellentsecurity device or very interesting science project $£ 8 /$ set Ref FIBHT1
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capabie of buming and melting matenals over a considerable distance. This laser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing matenals but t is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-grounc, etc. Particle beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high energy stream of neutrons or other patticles. The device is easily applicabie to burning
MYSTERY ANTI GRAVITY DEVICE PLANS Uses simple concept Objects fioat in air and move to the touch Defies gravity. concept Objects float in air and move to the touch Defies gravity, amazing gitt, con
FRUIT POWERED CLOCK Just add a fresh orange, tomato, banana or any other fruitplug in the probes and the clock worksl $£ 9.95$ banana or an
OYNAMO FLASHLIGHT Interesting concept, no batteries needed just squeeze the trigger for instant light: apparenty even works under water in anemergency atthough wehaven't tried it yet $\mathbf{\text { E6.99}} \mathbf{\text { ref SC1 }} 152$ ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize

```
liquides Many cleaning us
etc \(£ 6\) set Ref \(F\) NULB1
```

ULTRA HIGH GAIN AMPISTETHOSCOPIC MIKEI SOUND

AND VIBRA TION DETECTOR PLANS Ultrasensitive device enables one to hear a whole new world of sounds. Listen through walls, windows, floors etc. Many applications shown, from law enforcement nature listening, medical heartheat, to mechanical devices. $£ 6 /$ set Ref FIHGA7

WOLVERHAMPTON ELECTRONICS
 STORE NOW OPEN IN WORCESTER ST TEL 0190222039

ANTI DOG FORCE FIELD PLANS Highiy effective circuit produces time variable puises of accoustical energy that dogs cannot tolerate $£ 6$ /set Ref FIDOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. £12/set Ref F/ LLIST1
LASER LIGHT SHOW PLANS Do it yourseif plans show three methods $£ 6$ Ref FRLSI
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with external Handheld, has large transdu
controls. $f 6 /$ set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber! room monitor. The ultimate in home/office security and safety! simple to usel Call your home or office phone, push a secret tone on your telephone to access either; A) On premises sound and voices or B) Existing conversation
£ Ref
FTELEGRAB
E7 Ref FTELEGRAB
BUG DETECTOR PLANS is that someone getting the goods on BUG DETECTOR PLANS is that someone getting the goods on
you? Easy to construct device locates any hidden source of radio you? Easy to construct device locates any hidden source of radio
energyl Snifts out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencies. $£ 5 /$ set Ref F/
BD1
ELECTROMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $£ 5$ ref F/EML 2 ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! $55 / \mathrm{set}$ Ref FIEMA1
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open windows, sound sources in "hard to get or
hostile premises. Uses satelite technology to gather distant sounds hostite premises. Uses sateilite technology to gather distant sounds and focus thern to our ultra sensitive electronics. Plans also show an optional wireless link system $£ 8 /$ set ref FIPM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12Vdc, many possible experiments. £10 Ref FHHVM7 TCL4.
MEGA LED DISPLAYS PCB fited with 5 seven segment displays each measuring $55 \times 38 \mathrm{~mm} . \mathrm{f} 5$ ref LED5
MOD TRANSMITTING VALVES $6 \mathrm{~J} 180 \mathrm{E} \mathbf{£ 8 0}$ ref LOT112 SWITCHED MODE PSU'S 244 watt, $+532 \mathrm{~A}+126 \mathrm{~A},-50.2 \mathrm{~A}$, 120.2 A There is also an optional 3.3 v 25 A rail available, $120 / 240 \mathrm{~V} \mathrm{~V}$ P Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Suitable for PC use (6 didrive P Cased, $175 \times 90 \times 145 \mathrm{~mm}$. IEC inlet Suit
connectors $1 \mathrm{~m} / \mathrm{board}$) $£ 15$ ref LOT135
HYDROGEN FUEL CELL PLANS There is a lot of interest in using Hyrogen as the fuel of the future. Hydrogen is easy to produce using Hyrogen as the fuel of the future, Hydrogen is easy to produce using chemicals and surplus solar generated electricity. Tis also easy
to store with little or no loss. Hyrogen fuel cells are designed to store hydrogen and weight for weight will hold twice as much energy as a full petrol tank Our plans give you loads of information on Hyrogen production, storage and practical plans to build your own Hydrogen fuel cell! you will need access to a well equiped workshop for this but full constructiondetails and drawings are included. Ful cell plans $£ 9$ ref $H Y 1$ VIDEO PROCESSOR UNITS?/6v 10AH BATTS/24V BA TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$, on the front are controls for scan speed, scan delay, scan mode, loads of connections
on the rear. Inside $2 \times 6 \mathrm{~V} 104 \mathrm{H}$ sealed lead acid batts, pcb's and a $8 A$? on the rear. Inside 2×0 V
24 v torroidial transformer (mains I I). sold as seen, may have one or two 24 V torroidial transformer (mains in). sold as seen, may ha
broken knobs etc due to poor storage. $£ 15.99$ ref VP2
RETRON NIGHT SIGHT Recognition of a standing man at 300 m in $1 / 4$ moonlight, hermatically sealed, runs on 2 AA batteries, 80 mm F1.5 lens, 20 mw infrared laser included. $£ 325$ ref RETRON MAKE YOUR OWN CHEWING GUM KIT Everyting you need to make real chewing gum, even the bowl and treesap from the Sapodilla tree $£ 7.99$ ref SC190
MINI FM TRANSMITTER KIT Very high gain preamp, supplied complete with FET electret microphone. Designed to cover $88-108 \mathrm{Mhz}$ but easily changed to cover $63-130 \mathrm{Mhz}$. Works with a common ov (PP3) banery. 2.2 RF E9 Ref 1001
3-30V POWER SUPPLY KIT Variable, stabilized power supply for lab use. Short circuit protected, suitable for profesional or amateur use 24 v 3 A transformer is needed to complete the kit $£ 14$ Ref 1007 . 1 WATT FM TRANSMITTER KIT Supplied with piezo electric mic. 8-30vdc. At $25-30 \mathrm{v}$ you will get nearly 2 wattsl $£ 15$ ref 1009 .
FM/AM SCANNER KIT Well not quite, you have to turn the knob FM/AM SCANNER KIT Well not quite, you have to tum the knob
your self but you will hear things on this radio that you would not hear on your seif but you whll hear things on
an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on both AM and FM. an ordinary radio (even TV). Covers $50-160 \mathrm{mhz}$ on
Buit in 5 watt amplifier, inc speaker. $£ 18$ ref 1013
3 CHANNEL SOUND TO LIGHT KIT Wireless system, mains
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX
BN3 5QT. (ESTABLISHED 50 YEARS)
MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT.

24 HOUR SERVICE E4.50 PLUS VAT. OVERSEAS ORDERS AT COST PLUS E3.50 (ACCESS,VISA, SWITCH, AMERICAN EXPRESS)
phone orders : 01273203500
FAX 01273323077
E-mail bull@pavilion.co.uk
power handling, microphone included. $£ 17$ Ref 104
4 WATT FM TRANSMITTER KIT Small but powerful FM ransmitter, 3RF stages microphone and audio preamp inciuded $£ 24$ Ref 1028
STROBE LIGHT KIT Adjustable from $1-60 \mathrm{hz}$ (a lot faster than conventional strobes). Mains operated. £ 17 Ref 1037 COMEINATION LOCK KIT 9 key, programmable, complete with keypad, will switch 2A mains. 9y dc operation. §13 ref 1114 PHONE BUG DETECTOR KIT This device will wam you if somebody is eavesdropping on your line. $£ 9$ ref 1130
ROBOT VOICE KIT interesting circuit that distonts your voicel djustable, answer the phone with a different voice! $12 \mathrm{vdc} £ 9$ ref 1131 TELEPHONE BUG KIT Small bug powered by the 'phone line tarts transmitting as soon as the phone is picked upl $£ 12$ Ref 113 3 CHANNEL LIGHT CHASER KIT 800 watts per channel speed and direction controlssupplied with 12 LEDS (you can fit triacs instead to make kit mains, not supplied) 9-12vdc £17 ref 1026.
12V FLOURESCENT LAMP DRIVER KIT Light up 4 foot tubes from your car batteryl ov 2a transformer also required. $\mathbf{£ 8}$ te 1069.

HELPING HANDS Perfect for those fiddly jobs that need six hands, 6 ball and socket joints, magnifier. $\mathbf{£ 7 . 9 9}$ ref YO57A
VOX SWITCH KIT Sound activated switch ideal for making bugging tape recorders etc, adjustable sensitivity $£ 10$ ref 1073 . PREAMP MIXER KIT 3 input mono mixer, sep bass and treble comtrols plus individual level controis, 18 vd c , input sens $100 \mathrm{~mA} £ 95$ comtris P
ref 1052.
SOUND EFFECTS GENERATOR KIT Produces sounds ranging from bird chips to sirens Complete with speaker, add sound effects to your projects for just $£ 9$ ref 1045
15 WATT FM TRANSMITTER (BUILT) 4 stage high power, preamp required 12-18vdc, can use ground plane, yagior opendipole. 69 гef 102
HUMIDITY METER KIT Bulds into a precision LCD humidity meter, 9 ic design, pcb, Icd display and all components included. $£ 29$ PC TIMER KIT Four channel output controlled by your PC, will switch high current mains with relays (supplied). Software supplied so you can program the channels to do what you want whenever you wan Minimum system configeration is 286 , VGA, 4.1,640k, serial port, hard drive with min took free $£ 24.99$
MAGNETIC MARBLES They have been around for a number of ears but still give rise to curiosity and amazement. A pack of 12 is just 3.99 ref GIVR20

NICKEL PLATING KIT Proffesional electroplating kit that will ransform rusting parts into showpleces in 3 hours! Will plate onto steel, ron, bronze, gunmetal, copper, welded,siver solderedor brazed a 12 V supply, a container and 212 V light bulbs. £ 45 ref Nik 39
Minature adjustable timers, 4 pole clo output 3 A 240 v HY1230S, $12 v D C$ adjustable from $0-30$ secs. $£ 4.99$ HY $1260 \mathrm{M}, 12 \mathrm{vDC}$ adjustable from $0-60$ mins. $£ 4.99$ HY2405S, 240 v adjustable from $0-5$ secs. $£ 4.99$ HY24060m, 240v adjustable from $0-60$ mins $£ 6.99$ BUGGING TAPE RECORDER Small voice activated recorder, uses micro cassette complete with headphones $£ 28.99$ ref MAR29P1 POWER SUPPLY fully cased with mains and o/p leads $17 \mathrm{~V} D C$ POWER SUPPLY filly cased with mains and
900 mA output. Bargain price $£ 5.99$ ref MAG6P9
S0OMA output Bargain price $£ 5.99$ ref MAG6P9
COMPOSITE VIDEO KIT. Converts compos
COMPOSITE VIDEO KIT. Converts composite video into sep FUTURE PC POWER SUPPLIES Thes REF: MAG8P2 FUTURE PC POWER SUPPLIES These are $295 \times 135 \times 60 \mathrm{~mm}$ 4 drive connectors 1 mother board c
inlet and on/off switch. $£ 12$ Ref EF6.
VENUS FLY TRAP KIT Grow your own camivorous plant with this VENUS FLY TRAP
simple kt $£ 3$ ref EF34.
simple kt £3 ref EF34. 6"X12" AMORPHOUS SOLAR PANEL $12 \mathrm{v} 155 \times 310 \mathrm{~mm}$ 130 mA . Bargain price just $£ 5.99$ ea REF MAG6P 12
FIBRE OPTIC CABLE BUMPER PACK 10 metres for $£ 4.98$ ref MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG13P ROCK LIGHTS Unusual things these, two pieces of rock that glow when rubbed together! belived to cause rainl£3 a pair Ref EF 29 . 3^{\prime} by $1^{\prime \prime}$ AMORPHOUS SOLAR PANELS $14.5 \mathrm{v}, 700 \mathrm{~mA} 10$ watts, aluminium frame, screw terminals, $£ 55$ ref MAG45. ELECTRONIC ACCUPUNCTURE KIT Builds imtoan electronic version instead of needlesl good to experiment with. $£ 9$ ref 7P30 SHOCKING COIL KIT Build this little battery operated device into all sorts of things, also gets worms out of the groundl $£ 9$ ref 7P36. HIGH POWER CATAPULTS Hinged arm brace for stability tempered steel yoke, super strength latex power bands. Departure speed of ammunition is in excess of 200 miles per hour' Range of over 200 metres1 $£ 8.99$ ref R/9
COMPAQ POWER SUPPLIES WITH 12 V DC FANS EX equipment psu's, some ok some not but worth it for the fan alonel probably about 300 watt PC unit with IEC input $£ 3.50$ each ref CQ1 BALLON MANUFACTURING KIT Britsh made, small biob blows into a large, longlasting balioon, hours of fun! $£ 3.99$ ref $\mathrm{G} / \mathrm{E} 998$ $9-0-9 V 4 A$ TRANSFORMERS, chassis mount $£ 7$ ref LOT19A MEGA LED DISPLAYS Build your self a clock or something with these mega 7 seg displays 55 mm high, 38 mm wide 5 on a pcb for just 4.99 ref LOT 16 or a bumper pack of 50 displays for just $£ 29$ re OT4.
SOLID STATE RELAYS
CMP-DC-200P $3-32 \mathrm{vdc}$ operation, 0 -200vdc 1 A $£ 2.50$
SMT $20000 / 3$ 3-24vdc operation, $28-280 \mathrm{vac} 3 \mathrm{~A} £ 4.50$

FREE COLOUR CATALOGUE WITH EVERY ORDER

WE BUY SURPLUS STOCK
FOR CASH
SURPLUS STOCK LINE 0802660335

of the Machines

Artificial intelligence is a rapidly expanding component of our society. As an integral component of economic competitiveness, market economies prosper by utilisation, for example, of industrial robots in car assembly lines. There are so many issues raised, for example, by Professor Kevin Warwick's book March of the Machines that it is difficult to know where to begin in sampling its many messages. Also, the work of Professor Warwick's group at Reading University tends to handle topics in a constructive way - finding ways and means to develop a specialist wheelchair for the disabled. There are indications, however, within the world military sector, of massive investment and development of 'intelligent systems' to wage war. This means that by no means all R \& D is communicated to the public at large.

Professor Warwick's book is deliberately slanted to be read by someone with no background in science, so its technical and scientific content is deliberately limited. This can be something of a disappointment for those able to find their way around publications with more technical content.

Professor Warwick, shown with one of the 'Seven Dwarls' in figure 1, has in a way singled out identity in a particular aspect - autonomous units, each with an apparent identity of its own - in order to isolate and demonstrate the potential for machine independence and development. Books like March of the Machines are more perhaps designed to stimulate a debate than provide definitive predictions about the future. The book airs several key questions - none more important than an understanding of the Nature of Self.

The nature of Self

A central question in the study of machine intelligence relates to the nature of human consciousness. There are expressions of belief that the human brain is no more than a complex telephone exchange which is connected across various interfaces to a higher energy or non physical spiritual force. There is also the viewpoint that 'neurons are us' - we are no more and no less than our vast tangled web of brain cells. This is the viewpoint of 'strong' Artificial Intelligence, which maintains that, if the human identity is no more than a complex collection of miniature electrical circuits, then it should eventually be able to copy this and replicate human faculties. Also, according to this theory, even circuits of intermediate

Figure 1: Professor Warwick shown with one of the current generation of the Seven Dwaris.

complexity would have some degree of human type characteristics.

According to the belief in the higher spiritual force theory of consciousness, or 'magic' theory, it will never be possible to develop a 'self aware' robotic machine because the element of higher human development - will and consciousness cannot be replicated in purely physical form. It is in the progression of machine 'cleverness', however, that many in this field anticipate an apparent attribute or mimic of machine self awareness. It will, however, be a clever deception.

The mind of the mathematician

The Artificial Intelligence community is too busy designing, programming and training Al systems to spend much of their time engaging in philosophical thought of the nature of awareness and consciousness. But they do prompt mathematicians like Roger Penrose to put a shot across the bows of the barge of 'strong Al' - that bastion of belief that considers that consciousness is no more than the activation of vast arrays of neural connections in our brain. Twinned with this belief is the assumption that if a connected system can be made to process algorithms as complex as those taking place in the human brain, then it too will be conscious. Penrose's book, the Emperor's New Mind is effectively a move back to the common sense approach that consciousness is something quite separate and different from simulated sensory spikes in silicon.
In tracing through observations across diverse fields of mathematics, physics, neurophysiology and computing, Professor Penrose presents some interesting observations.

One of these is that in identification of the 'road map' of sensory mappings in the brain, where, for example, the area is activated that causes the right arm to move, this will be done without the wish to move the left arm being aroused. In one conscious patient, the right arm in fact tried to stop such 'involuntary' motion taking place.

While the site selected was the origin of nerve pathways to control the arm, it was not the centre which controlled the 'will' to undertake such activity.

Figure 2: Differences is response of 'willed' action and 'automatic response' action in movement of finger. The 'willed' response is spread over a greater period of time.

Another subtle observation is that of anticipated action such as wiggling a finger compared with moving a finger in response to a buzzer or a light signal. The differences in response are indicated in figure 2, where the 'willed' action takes place over a longer time period that the 'response' action. This is perhaps an indication that more interesting differences could be detected by separating actions originating in 'will' and those originating in 'reflex' and 'response'?

One very interesting observation of general interest is the phenomenon of 'blindsight'. Where the retinal function is intact but damage occurs to the visual cortex so that vision is lost over part of the visual field, some sensory awareness can in fact be retained since visual data is also routed to other centres in the brain. This was proved by a patient with this problem correctly 'guessing' simple geometrical shapes presented in the visual field that was 'missing'. This suggests therefore, that the brain is undertaking some sort of image assessment and characterisation that is not directly related to seeing objects.

Leastways, Professor Penrose gives us plenty to think about. It is an indication that the pendulum is moving steadily away from a Newtonian model of the universe and with it strong artificial intelligence concepts of the nature of human consciousness. Professor Penrose, however, has not actually stepped outside the stockade of 20th century physics, though he has climbed its highest tower and gazed into new territories yet to be discovered.

The march of popular science

The area of machine consciousness and emerging theories of cosmology is very much the core material of an expanding core of books appearing under 'Popular Science'. One interesting contribution is 'Who's Afraid of Schrodinger's Cat' by lan Marshall and Darah Zohar, which acts like a road map of old, transitional and new theories. The Life of the Cosmos by Lee Smolin provides a perspective on Newtonian Science and
emerging views of cosmology and related matters. Goodbye Descartes by Keith Devlin continues in the same vein. In a reinforcement of an earlier book, Hubert Dreyfus has recently published What Computers Still Can't Do to remind us that computers in the 1990s are fundamentally not really any smarter than they were in the 1970s. Are these titles evidence that thinking on artificial intelligence is really moving away from equating all human faculties to that of connected neural circuits? Most book publishers at least must think so.

The heightened debate on machine intelligence comes also at an interesting phase in science which, while fascinated as ever with the diversity of the physical world is giving some space to more esoteric topics. The Big Bang is one thing and the first three minutes was a very interesting time, but now the attention of physicists is being directed on conditions before the Big Bang. Why did it take place? This takes science into a plane of thought rather than into a profile of measuring observables. Once science sets forward questions to be asked, it tends to be persistent and not let go of them. In looking for new answers, physicists have been fundamentally influenced by their discoveries in quantum physics.

Concepts of Self Awareness

There are, however, some problems in basic understanding of sensory awareness. It is one thing to understand how the eye retina - visual cortex can process a series of nerve impulses, quite another to understand how this is transformed to something that we can see. Seeing is just not a process of receiving a processed series of nerve signals - it is about an awareness of seeing. Likewise with hearing - yes, we can understand how the cochlear microphonic signal is created. The question is really: how are these signals translated into an awareness of hearing? It is this awareness of the senses awareness of being - that remains a stubborn question and is really at the core of machine 'awareness' studies.

To thus make references to machines becoming self-aware touches on some very deep philosophical issues that certainly deserve to be addressed diligently. It is quite convenient to dismiss the whole argument and say that human beings have no real awareness of themselves and that what the human brain can do machines will one day do better.

There is also a paradox in being self-aware. The possession of self-awareness may provide, potentially, awareness of a more expansive world beyond our own immediate awareness. Thus while we are aware of ourselves, and go about our business, there is also the interaction, albeit at a subconscious level, with more expansive dimensions. So the question of self awareness on a non physical level has massive implications for future theories of Everything.

The question, however, is how can scientific diligence be extended to areas that as yet have no formal acknowledgement. We must leave that, however, to new generations of scientists to grapple with. It is certainly a paradox, however, that we may know more of the existence of black holes in distant spiral galaxies billions of light years distant than we do of our own inherent nature - self-mind-brain nature.

The drive for self-awareness

It should be borne in mind, however, that homo sapiens has primarily through genetic development acquired a highly developed sensory processing system to allow him to cope and survive in his environment. As the prime rivals and threats to his existence possessed roughly equivalent systems, but were perhaps stronger, faster or had bigger
teeth, his compliment of senses was adequate for the job. It has been argued that this trend has resulted from the need to be successful, to stand a greater chance of surviving.

Another viewpoint on this process is the interpretation that one of the prime drives of evolution appears to be the creation of species that are increasingly self aware. This is a fact noted in evolution that brain sizes have increased across numerous species including our own. One attribute of mankind's handiwork has been to seek to manifest a degree of sophistication and complexity in his technological creations. There is now even the theory that the physical constants of the universe have been so devised that life forms - such as us - can exist within it. The Anthropic Cosmological Principle by John Barrow and Frank Tippler is a book very much for the physicist and which provides a conducted tour of physical laws and relationships to provide some perspective on what they all add up to in this context.

The Higher Self model

When commentators reference the 'magic' theory, this is usually without a great degree of specificity of detail. It is described almost as a factor X which may be present in some way but, its attributes are not distinct. This does not help us try to work out in some way how consciousness may operate. By trawling through mainstream esoteric philosophies, it is possible to be slightly more specific about what this could entail.

This particular model, highlighted in figure 3, is a condensation of various esoteric traditions, some quite ancient, some more relatively recent which try to place the real human identity in some perspective.

The physical body is well known to us. According to the 'magic' theory, this is considered to be directly linked to the

Figure 3: Summary of the 'higher self' model of human makeup. Elements of 'will' and 'awareness' and 'conscience' would originate at higher than physical levels. emphasis on trying to understand the nature of things.
etheric body, which due to its vibrational characteristics is generally invisible to us. There is also a body elemental, a structure closely linked to the needs of the physical body. This aspect has also been linked in some instances to the emotional makeup.

There are other vibrational states above the etheric which are similarly invisible. Energy is applied to the etheric body at various points of contact - the chakras - with the principle ones identified on the crown of the head, the brow, the throat, the heart, the solar plexus, the spleen and the base of the spine.

Various classification schemes may include additional centres. In this context, the physical body is very much a system sustained by energy systems which for most individuals are apparently undetectable.

A key aspect of the 'magic' theory interpretation is the interaction between the brain and etheric body and higher components. Thus an expression of will which originates above the etheric, for example, to move a finger is communicated through the etheric interface to the brain which in turn duly activates the neurons in the brain to move the finger. This level of control requires the correct part of the brain to be stimulated to undertake the required action.

Scientists have been able to use techniques such as PET (Positron Emission Tomography) and MRI (Magnetic Resonance Imaging) to identify brain activity associated with a range of processes such as reading aloud or squeezing a rubber ball. In this aspect, however, there are two paths of information. One is to cause the stimulation to take place and the other is the sensory feedback resulting from the stimulus. It is quite simple, to stimulate muscles by activating elements of the cerebral cortex. This is in fact the way in which a 'road map' of the brain's mapping system is determined. This excitation, however, does not activate the will to initiate the various motor responses only the action.

It would be quite interesting, therefore to seek to map the points of contact of the will within the brain.

Human Sensory Extensions

A favourite topic of science fiction writers is the concept of machines more directly participating in our neural or sensory processes. One of the most direct approaches to this is that of the cochlear implant, where external sounds are detected by conventional microphone and processed and fed along the pathway of the Organ of Corti within the cochlea where electrodes make contact with nerve fibres which in turn are connected to auditory centres in the brain. There is in fact, no direct connection between the outside world and the inner ear. This is achieved by inductive coupling.

This development is therefore very much showing the way forward. While various groups are working on the artificial retina, this is still several years away at best.

The Robots at Reading

The optimising of neural network parameters can be directly considered as a learning process. Robots developed at Reading, however, have generally a low number of effective neurons - the latest generation of the Seven Dwarfs with the equivalent of 500 .
The topical third generation of Seven Dwarfs robots at Reading University, shown in a group in figure 4, have been established with the following attributes:

Figure 4: Group of current generation of the Seven Dwarfs (the third).
a) avoid obstacles as determined by two front sensing ultra sound detectors
b) dock in a recharge bay when power is required c) opt to be a 'leader' robot if no other robots near d) follow the 'leader' signal of greatest strength if not already a 'leader'

In their design, the left and right rear wheels can move independently. On top of each unit is located a mini array of infra red transmitters with infra detectors on the front portion of the unit. Each robot is provided with its own carrier frequency on which is superimposed pulses of information. A left and right side ultrasonic detector is used to provide two independent object locating signals.

An early version of Bashful is shown in figure 5.
The relevance of this set of robots is that their sensory systems, number of neural network processing elements and desired behaviour are all in balance so that they form a system that trains towards a 'smart' conclusion.

Elma is a six legged walking robot which has evolved from the previous design of Walter. Elma has sensors on her legs which allows her to detect the weight distribution along her frame. These signals are in turn routed to her processing brain which contains around 100 neurons and which maintains her stability. Elma is much more stable in walking than apparently Walter ever was. At present Elma is controlled by radio link with directions being sent to her for example to make for a given location but to avoid certain areas of the immediate area.

At present the self learning modes of neural network training is being used to train Elma to walk to that she can negotiate difficult surfaces. It is anticipated that the command system will be fully incorporated within future versions of Elma. Thus wherever Elma goes, she learns

Figure 5: Close up of Bashful when he was first given a new 'neural' brain that could be simply plugged in.

Figure 6: View of Elma, which is at present controlled remotely but which learns through training of neural network circuits to walk over difficult terrain.

LOW COSTPC'S

SPECIAL BUY

LOW COST 486DX-33 SYSTEM

$51 / 4^{\prime \prime}$ or $31 / 2^{\prime \prime}$ from only $£ 18.95$!

Abstract

guarantee and operate from stand Size. All are IBM-PC compatible

$1 / 2^{\prime \prime}$ Panasonic JU363/4 720K or equivalent RFE
1/2" Mitsubishi MF3

"Mitsubis

\qquad
\qquad
"" BRAND NEW Mitsubishi MF501B 360K

Shugart 800/801

' Shugart 8108
Shugart $8518^{\prime \prime}$ doub Brand New
年 8 8" sided refurbished \& tested

HARD DISK DAIVES

End of line purchase scoop! Brand new NEC D2246 $8^{" 4} 85$ Mbyt
drive with industry standard SMD interface, replaces Fujitsu

THE AMAZING TELEBOX

3x:ximem Hige TV SOUND: VIDEO TUNER

 The TELEBOX is an atractive tully cased mains oowered unit con made by makers such ac MICROVTIEC, ATARA, SANYO, SONY年eo output will also plug directly into most video recorders, allowing panel allow recept TELEBOXMB \checkmark operators. A composite video output is located on the rear pane video systems. For complete compatibility - even for monitors withELEBOX ST for composite video input type monitor£36.95 ELEBOX MB Multiband VHF/UHF/Cabled speaker \quad £39.50

DC POWER SUPPLIES

Virtually every type of powe

supp

ICIS-IRANSISTORS - DIODES

OBSOLETE - SHORT SUPPLY - BULK

6,000,000 items EX STOCK

VIDEO MONIOR SPECAAKS
One of the highest specification Monitors you will ever see

Mitsubishl FA3415ETKL 14" SVGA Multisync colour monitor with fine

 Tift \& Swivel Base £4.75 dition.
P4. 75

As New - Used on film set for 1 week only! $15^{\prime \prime} 0.28$ SVGA 1024×768 res. colour monitors. Swivel \& tilt etc. Full 90 day guarantee. $£ 145.00$ (E

 Just In-Microvitec 20" VGA (800×600 res.) colour monitors. PHILIPS HCS35 (same style as CM8833) attractively styled 14 colour monitor with both RGB and standard composite 15.625Khz video inputs via SCART socket and separate phono jacks Integral audio power amp and speaker for all audio visual uses Will connect direct to Amiga and Atar BBC computers. Ideal tor al video monitoring / security applications with direct connection Only $\mathbf{\Sigma 9 5}$
\qquad dard composite 15.625 Khz vldeo input via SCART socket. Idea fuliy tested \& guaranteed (possible

24	

20" $22^{\prime \prime}$ and 26" AV SPECIALS

complete with Composite video \& optional sound input. A teak style case. Perfect for Schools, Shops, Disco, Club EXCELLENT litle used condition with full 90 day guarantee
 20"....£135 22"....£155 26"....£185(
 SPECIALINTEREST ITEMS

MITS. 2 FA3445ETKL $14^{\prime \prime}$ Industrial spec SVGA monick 2kW to $400 \mathrm{~kW}-400 \mathrm{~Hz} 3$ phase power sources -ex stock

IBM 8230 Type 1, Token rin
IBM $53 F 5501$ Token Ring ICS
IBM MAU Token ring ding ICS 20 port lobe modules AlM 501 L
Trand DS
Marconi 6310 Pragrammable 2 to 22 GHz sweep generator $£ 6500$ HP1650B Logic Analyser
HP3781A Pattem generator \& HP3782A Erior Detector
HP 6621 A Dual Programmable GP
HP3081A Industrila workstation clw Barcode swipe reader
HP6264 Rack mount variable $0.20 \mathrm{~V} @ 20 \mathrm{~A}$ metered PSU HP54121A
HP7580A
EG + G Brookdeal 95035 C Precision lock in
View Eng. Mod 1200 computerised inspection system
Ling Dynamics 2 kW programmabie vibration test system
Kelthley 590 C
Racal ICR40 dual 4
Fiskers 45KVA 3 ph On Line UPS - New batts Dec. 1995
ICI R5030UV34 Cleanline
Mann Tally MT645 High speed line printer
Intel SBC $486 / 133$ SE Multibus 486 system. 8 Mb Ram
Nikon HFX-11 (Ephiphot) exposure control unit
Motorola VME
Ephiphot) exposure control unit
Fujitsu M3041R 600 LPM band printe
Fujitsu M3041D 600 LPM printer with network interface
Perkin Elmer 2998 infrared spectrophotometer
VG Electronics 1035 TELETEXT Decoding Margin Meter
Andrews LARGE \qquad
Sekonic SD 150H 18 channel digital Hybrid chart
TAYLOR HOBSON Tallysurf amplifier/recorder
System Video 1152 PAL waveform monitor
\qquad

19" RACK CABINETS
Superb quality 6 foot 40 U Virtually New, Ultra Smart Less than Half Price!
ave ever sold. R equire only two side panels to stand singly or in muitiple bays

$$
\text { OPT Rack } 1 \text { Comolatanitb }
$$

32U - High Quality - All steel RakCab

designer cted of doubla
enable status indicators to

take the heaviest of 19 rack

\qquad

cage nuts. A mains distribution panel interna

utility socket.
with top and side louvres. The top panel may be removed for fitting
astors and floor levelers, prepunched utility panel at lower rear for
Sold at LESS than a third of makers price !!
A superb buy at only $\mathcal{E} 195.00$

Over 1000 racks - 19" 22" \& $24^{\prime \prime}$ wide 3 to 44 U high. Available from stock! Call with yqur requirements.

TOUCH SCREEN SYSTEM

The ultimate in 'Touch Screen Technology

\qquad

\qquad
\qquad
\qquadImaginatlon!! Complete system including Controller. Power Supply
and Data supplied at an incredible price of only: $£ 145.00$ (B)
Full MICROTOUCH sonware support pack

FANS \& BLOWERS

PAPST TYPE $61260 \times 60 \times 25 \mathrm{~mm}$ 12v DC \quad| $\mathbf{7} .9510 / £ 65$ |
| :--- |
| $8.9510 / £ 75$ |

MITSUBISHI MMF-08C12DM $80 \times 80 \times 25 \mathrm{~mm} 12 \mathrm{VCC} \mathrm{C5.25} 10 / £ 49$MITSUBISHI MMF-09B12DH $92 \times 92 \times 25 \mathrm{~mm} 12 \mathrm{~V}$ DC $\mathrm{E5.95} 10 / \mathrm{E} 53$
$\mathrm{E} 7.9510 / £ 69$EX-EQUIP AC fans. ALL TESTEDspecify 110 or 240 V $£ 5.95$
Blower $110 / 240 \mathrm{NEW}$ §79.95

Issue 13 of $\mathcal{D i s p l a y ~ N e w s ~ n o w ~ a v a i l a b l e ~ - ~ s e n d ~ l a r g e ~ S A E ~ - ~ P A C K E D ~ w i t h ~ b a r g a i n s ! ~}$

LONDON SHOP
Open Mon- Satis:00-5:30
South Norroocd
 Slez5 5
how to walk better and is more prepared for awkward terrain that may be encountered in the future.

Elma, shown in figure 6, and also on the front cover of Professor Warwick's book, could have practical applications in working in dangerous environments - such as decommissioning nuclear power stations, mapping minefields and autonomous vehicles for space exploration, for example on the surface of Mars. European Space Agency, please take note. In a mechanical sense, Elma is considerably more complex than the Seven Dwarfs. The relevance of a device such as Elma is that it learns to cope with problems of the real world, by adapting its neural network to cope with real problems.

Neural networks and learning

It is the 'self learning' mode of neural network interaction that has principally been developed at Reading. Figure 7 indicates a typical neural network, with a row of inputs feeding forward through intermediate lines to a line of outputs. A training set of data is required to establish the function of the network. With initially random weights added, in the example of one of Professor Warwick's robots, the robot will move about, encounter other robots and other objects. Each of the lines indicated represents a specific value of weighting - with 50 defines in this particular example.

Figure 7: Typical neural network, with input layer, intermediate layers and outputs.

In time through a series of interactions with its environment, the robot will learn not to bump into things. The parameters of the weightings will tend to stabilise, for a particular robot and environment, at a given value. If after a process of learning, all the weightings are reset to the same initial set of random values, and the robot begins to learn all over again, then the final set of weightings will be comparable but not identical since the weightings will reflect exactly what happened to the robot on its way. It is also possible to reset one weighting to a random value and then observe the robot make mistakes as it relearns a more appropriate value of the weighting.

Of course, it is possible to load a set of learned parameters from one robot, transfer these to an identical but untrained robot and the new robot will behave as if it had been trained. By networking robots either in physical close proximity or, for example, across the Internet, it is possible to collate and speed up the learning process. This training across the Internet has in fact been demonstrated successfully.

Raising the Al Profile

The work at Reading has in some ways been centred on developing autonomous devices - self powered through batteries. This has allowed observation of learning modes of such devices and with also the added bonus that such devices are fun to watch and excellent for demonstrations. To the public, one inspection of the robots at close hand is worth hours of lectures on the technology of such devices. One of the achievements at Reading has been to make such technology much more visible and allow it to be captured by today's 'sound byte' media brigade, hungry, as ever, for unusual images.

In conventional approaches to design and construction of electronic systems, the unit is designed, tested and usually after a few minor modifications put into use. In the way that neural networks are developing, more complex development systems are able to adapt their network design to cope with improved power of problem-solving within a given framework. There is not only an ability to solve problems within a given framework, but there is scope to improve the power of the problem solving algorithm. This can involve optimising neural network topologies. This level of self driven enhancement within a framework of increasing complexity of function is seen also as a component of the ability of machine smartness and effectiveness to be enhanced.

So far at Reading we have the aspect of small autonomous objects responding to a very basic subset of environmental requirements and directives, really demonstrating potential usefulness rather than actual usefulness itself.

Elements of Control

In this sense, robots will remain extensions of our will. If some deranged individual develops a highly developed technology which is designed to inflict death and destruction on fellow human beings using robot technology, then this is not because the systems that wreak the havoc are self-aware and know what they are doing. As any software designer knows, however, the more complex systems become, the more liable they are to develop or manifest errors. So there is also the finite possibility that a system developed with positive intent could fail or become unsafe simply through error in its design at some level.
There is also a paradox here. If systems become self adapting and modify their neural network topology to increase complexity and general processing ability, then can such changes be validated as they take place to ensure system integrity? In this sense, the more it modifies its design to do things in a more efficient way, the more there is a potential risk of error.

Al Propaganda

There is also a discrete psychological approach to the development of robotic technology. This tends to demonstrate that after all, homo sapiens is nothing startling. Only a few generations of applied technology will produce machines that are much better at everything we have been trying to do.

A sober warning from Professor Warwick is that before long we will lose control of our robot inventions and they will become our masters. All things are possible. If you look carefully, however, at the vast legislative bureaucracy of the European Union, taking extreme care to define the limits of milk content in 'ice cream' then it would be unlikely that the EU would readily sanction the development and release of super robots that would dominate us.
there is one danger you can't see, hear, SMELL OR FEEL-ITS RADIATION. THERE ARE OVER 10,000 SHIPMENTS OF RADIOACTIVE MATERIAL IN THE UK EVERY YEAR BY ROAD AND RAIL! WOULD ANYBODY TELL YOU OF A RADIATION LEAK? NEW GEIGER COUNTER IN STOCK Hand held Unit with LCDscreen, autoranging, low battery alarm, audible 'dick' output. New and guaranteed. £129 ref GE1
RUSSIAN BORDER GUARD BINOCULARS £1799 Probably the best binoculars in the worldl ring for colour brochure. RUSSIAN MULTIBAND WORLD COMMUNICATIONS RECEIVER, Exceptional coverage of 9 wave bands, (5 short, 1 LW 1FM, 1MW) internal ferrite and extemal tetescopic aerials, mains battery. £ 45 ref VEGA
NEW LASER POINTERS $4.5 \mathrm{mw}, 75$ metre range, hand held unit runs on two AA batteres (supplied) 670 nm £29 ref DEC49 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers all aspects of spirit production from everyday materials includes construction details of simple stills etc $£ 12$ ref MS3
NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! less than 1" square and a 10 m voice pickup range $£ 28$ Ref LOT 102 BUILD YOU OWN WINDFARM FROM SCRAP New publication gives step by step gunde to building wind generators and propellors Armed with this publication and a good local scrap yard could make you self sufficient in electricity! $£ 12$ ref LOTB
PC KEYBOARDS PS2 connector, top quality suitable for all 286 386/486 etc $£ 10$ ref PCKB 10 for $£ 65$
NEW LOW COST VEHICLE TRACKING TRANSMITTER KIT £29 range $9.5-5$ miles, 5,000 hours on AA batteries, transmits info on car direction, left and right turns, start and stop information Works with any good FM radio. $£ 29$ ref LOT101a
HIGH SECURITY ELECTRIC DOOR LOCKS Complete brand new Italan lock and latch assembly with both Yale typelock(keys inc) and 12v operated deadlock $£ 10$ ref LOT99
*NEW HIGH POWER WIRELESS VIDEO AND AUDIO BUG KIT $\mathbf{1 / 2}$ MILE RANGE Transmits video and audio signals Supplied with telescopic aerial. $£ 169$
CCTV PAN AND TILT KITMotorize your CCIV camera with this simple 12 vdc kit 2 hermentically sealed DC linear servo motors 5 mm threaded output 5 secs stop to stop, can be stopped any where 10 mm travel, powertul. $£ 12$ ref LOT125
GPS SATELLITE NAVIGATION SYSTEM Made by Garmin the GPS38 is hand held, pocket sized, 255g, position, altitude, graphi compass, map builder, nitro filled. Bargain price just $£ 179$ ref GPS1. CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 v 100 mA . auto electronic shutter, 36 mm F2 lens, CCIR, 512×492 pixels, video output is iv p-p (75 ohm). Works directly into a scart or video input on a tv or video. IR sensitive. $\mathbf{E 7 9 . 9 5 \text { ref EF137 }}$
IR LAMP KIT Suitable for the above camera, enables the camera to be used in total darkness! £6 ref EF138
INFRA RED POWERBEAM Handheld battery powered lamp, 4 inch reflector gives out powerful pure infrared light! periect for CCTV use, nightsights etc. £29 ref PB1
SUPER WIDEBAND RADAR DETECTOR Detects Doth rader and laser , XK and KA bands, speed cameras, and all know

$1.1^{\prime \prime} \times 2.7^{\prime \prime} \times 4.6$ " fits on sun visor or dash $£ 149$ ref

CHIEFTANTANK DOUBLELASERS

 9 WATT+3 WATT+LASER OPTICSCould be adapted for laser listener. long range communications etc Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drve units for alignement 7 mile range, no circuit diagrams due to MOD, new price $£ 50,000$ us $£ 199$. Each unit has two gallium Arsenide injection lasers, 1×9 watt. also contain an electronic reiver to detect reflected signals from targets. $£ 199$ for one. Ref LOT4.
EASY DIYIPROFESSIONAL TWO WAY MIRROR KIT Includes special adhesive film to make two way mirror's) $u p$ to $60^{\prime \prime} \times 20^{\circ}$. (glass not included) includes full instructions. $£ 12$ ref TW 1
NEW LOW PRICED COMPUTER/WORKSHOP/HI-FI RCB UNITS Complete protection from faulty equipment fo everybodyl Inline unit fits in standard IEC lead (extends it by 750 mm) fitted in less than 10 seconds, resettiest button, 104 rathg. £6.99 each ref LOTS. Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100 you can have one for $£ 250^{\prime}$
TWO CHANNEL FULL FUNCTION B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are returns sothey will need attention (usually physical damage) cheap way of buying TX and RX plus servos etc for new projects etc $£ 12$ each sold as seen ref LOT2
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL $£ 9.95$ Cased with fiyleads, designed to read standard credit cards! complete with control elctronics PCB and manual covering everything you could want to know about whats hidden inthat magnetic strip on your cardl just $£ 9.95$ ref BAR3

FREE 10\%
 DISCOUNT VOUCHER
 CUT OUT AND INCLUDE THIS CORNER WITH YOUR ORDER
 AND DEDUCT 10\%
 FROM ALL THE ITEMS IN THIS
 ADVERT!
 ETI

WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuals that give you information on setting up different businesses, you peruse these at your leisure using the text editor on your PC. Also included is the certificate enabing you to reproduce (and sell) the manuals as much as you likel $£ 14$ ref EP74
RUSSIAN 900X MAGNIFICATION ZOOM MICROSCOPE metal construction, built in light, mirror etc. Russian shnmptarm! group newing screen lots of accessories $£ 29$ ref ANAYLT
AA NICAD PACK Pack of 4 tagged AA nicads $£ 2.99$ ref BAR34 RUSSIAN NIGHTSIGHTS Model TZS4 with infra red Illuminator news up to 75 metres in full darkness in infrared mode, 150 m range 45 mm lens, 13 deg angle of view, focussing range 15 mto infinity. 2 A batteries required. 950 g weight. $£ 199$ ref BAR61. \uparrow years waranty LIQUID CRYSTAL DISPLAYS Bargain prices, 16 character 2 line, $99 \times 24 \mathrm{~mm} £ 2.99$ ref SM1623A 20 character 2 line, $83 \times 19 \mathrm{~mm}$ £3.99 ref SM2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} £ 5.99$ ref SMC 1640 A TAL-1, 110 MM NEWTONIAN REFLECTOR TELESCOPE Russian. Superb astronomical 'scope, everything you need for some serious star gazingl up to 169 x magnification. Senc or fax for further information. $20 \mathrm{~kg}, 885 \times 800 \times 1650 \mathrm{~mm}$ ref TAL-1, $£ 249$ YOUR HOME COULD BE SELF SUFFICENT IN ELECTRICITY Comprehensive plans with loads of info ondesigning systems, panels, control electronics etc $£ 7$ ref PVI

COLOUR
 CCTV

 VIDEO CAMERAS, BRAND NEW AND, CASED, FROM £99.
PERFECT FOR SURVEILLANCE, INTERNET,VIDEOCONFERENCING, SECURITY, DOMESTIC VIDEO

Works with most modern video's, TV's, Composite monitors, videograbber cards etc Pal, 1v P-P, composite, $750 \mathrm{hm}, 1 / 3^{\prime \prime} \mathrm{CCD}, 4 \mathrm{~mm}$ F2.8 $500 \times 582,12 \mathrm{vdc}$, mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$
MICRO RADIO Its tiny, just $3 / 8$ " thick, auto tunning, complete with headphones. FM $£ 9.99$ ref EP35
25 SQUARE FOOT SOLAR ENERGY BANK KIT 100 6"X6" 6V Amorphous 100 mA panels, 100 diodes, connection
build a 25 square foot solar cell for just £99 ref EF112 CONVERT YOUR TV INTO A VGA MONITOR FOR 95 Converts a colour $T V$ into a basic VGA screen. Complete with built in psu, lead and s/ware.. Ideal for laptops or a cheap upgrade. Supplied in psu, lead and sMare.. Ideal for laptops or a cheap upgrade.
kit form for home assembly SALE PRICE $£ 25$ REF SA34
*15 WATT FM TRANSMITTER AIready assembled *15 WATT FM TRANSMITTER Already assembled but some
RF knowiedge will be useful for setting up Preamp req'd, 4 stage $80-1$
108 . 12 -18vdc, can use ground plane yagi ordipole $£ 69$ ref 1021 $108 \mathrm{mhz}, 12$-18vdc, can use ground plane, yagi or dipole $£ 69$ ref 1021 -4 WATT FM TRANSMITTER KIT Small but powerful FM transmitter kit. 3 RF stages. mic $\&$ audio preamp included $£ 24$ ref 1028 YUASHA SEALED LEAD ACID BATTERIES 12v 15AH at $£ 18$ ref LOT8 and below spec ov 10AH at $£ 5$ a pair ELECTRIC CAR WINDOW DE-ICERS Complete with cable, plug etc SALE PRICE JUST $£ 4.99$ REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12v2watt. E12.99 REF AUG10P3 SOLAR POWER LAB SPECIAL You get $28^{\circ} \times 6^{\circ}$ ov 130 mA cells, 4LED's. wre, buzzer, switch +1 relay or motor. $\mathbf{8 7 . 9 9 \text { REF SA27 }}$ 12 V DC MOTOR SPEED CONTROL KIT Complete with PCB etc. Up to 30A. A heat sink may be required. £19.00 REF: MAG17 SOLAR NICAD CHARGERS $4 \times$ AA size $£ 9.99$ ref 6 P476, $2 \times$ C size $£ 999$ rel 6 P477
MEGA POWER BINOCULARS Made by Helios, $20 \times$ magnification, precision ground hully coated optics, 60 mm objectives. shock resistant caged prisms, case and neck strap. £89 ref HPH9 GIANT HOT AIR BALLOON KIT Build a 4.5 m circumfrence, fully functioning ballioon, can be launched with home made burner etc Reusable (until you loose itl) $£ 1250$ ref HA1
AIR RIFLES . 22 As used by the Chinese army for traning puposes, so there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellets $£ 450$ ref EFBO *NEW MEGA POWER VIDEOAND AUDIO SENDER UNIT Transmits both audio and video signals fom either a video camera, video recorder, TV or Computer etc to any standard TV set in a 500 m range' (tune TV to channel 31) 12v DC
OD Price is $£ 65$ REF: MAG15 12 V pSU is $£ 5$ extra REF: MAG5P2 *MINATURE RADIO TRANSCEIVERS A pair of walkie talkies
BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS £3.50 P\&P PLUS VAT. 24 HOUR SERVICE £4.50 PLUS VAT. OVERSEAS ORDERS AT COST PLUS $£ 3.50$ 'phone orders: 01273203500 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) FAX 01273323077 E-mail bull@pavilion.co.uk
with a range up to 2 km in open country Units measure $22 \times 52 \times 155 \mathrm{~mm}$ ncluding cases and earp'ces. $2 \times \mathrm{PPP}$ req'd. £37.00 pr.REF: MAG30 FM TRANSMITTER KIT housed in a standard working 13 adapterll the bug runs directly off the mains so lasts foreverl why pay $£ 700$? or price is $£ 18$ REF. EF62 (ktt) Transmuts to any FM radio Bult and tested version now available of the above unit at $£ 45$ re EXM34
*FM BUG BUILT AND TESTED superior design to kit. Supplied to dective agencres $9 v$ battery req'd. $£ 14$ REF MAG14
GAT AIR PISTOL PACK Complete with pistol, darts and pellet 14.95 Ref EF82B extra pellets (500) $£ 450$ ref EF80.

HEAT PUMPS These are mains operated air to air unts that consis of a aluminium plate (cooling side) and a radiator (wartning side) connected together with a compressor. The plate if inserted into wate will freeze it. Probably about $3-400$ watts so could produce 1 kw in ideal conditions $£ 30$ ref HP1
3 FOOT SOLAR PANEL Amorphous silicon, $3^{\prime} \times 1^{1}$ housed in an aluminium frame, 13 v 700 mA ouput $£ 55$ ref MAG45
SOLAR/WIND REGULATOR Prevents batteries from ove charging. On reaching capacity the regulator diverts excess power int heat avording damage. Max power is 60 watts $£ 2799$ ref SKCA11-105 FANCY A FLUTTER? SEEN OUR NEW PUBLICATION? Covers all aspects of horse and dog betting, systems etc and gives you betting system that should make your betting far more profitable! $£$ a copy ref BET 1
FIBRE OPTIC CABLE BUMPER PACK to metres for £4.99 ref MAG5P13 ideal for experimenters! 30 m for $£ 12.99$ ref MAG $13 P$ 4×28 TELESCOPIC SIGHTS Suitable for all air rifles, ground lenses, good light gathering properties. £24 95 ref R/7
GYROSCOPES Remember these? well we have found a company that still manufactures these popular scientific toys, perfect gift or for ducational use etc $£ 6$ ref EP70
NICAD CHARGEFS AND BATTERIES Standard universa mains operated charger, takes 4 batts +1 PP3, $£ 10$ ref PO11D Nicads- AA size (4 pack) $£ 4$ ref 4 P44, C size (2 pack) $£ 4$ ref 4P73, D size (4 pack) $£ 9$ ref 9P9
RECHARGE ORDINARY BATTERIES UP TO 10 TIMES With the Battery Wizardl Uses the latest puise wave charge system to charge all popular brands of ordinary batteries AAA, AA, C, D. four a a time! Led system shows when batteries are charged, automatically rejects unsuitable cells, complete with mains adaptor BS approved Price is 52195 ref EP3
PHOTOGRAPHIC RADAR TRAPS CAN COST YOU
YOUR LICENCE! The new multiband 2000 radar detector can prevent even the most responsibie of divers from losing their licencel Adjustable audible alarm with 8 flashing leds gives instant warning of adar zones. Detects X, K, and Ka bands, 3 mile range, 'over the hill 'around bends' and 'rear trap tacities micro size just $425^{\prime \prime} \times 5^{\prime \prime} \times 75^{\circ}$ Can pay for itself in just one day! $£ 89$ ref EP3
3" DISCS As used on older Amstrad machines, Spectrum plus3's et $€ 3$ each ref BAR400
STEREO MICROSOPES BACK IN STOCK Russian, $200 x$
complete with lenses, lights, fiters etc etc very comprehensm microscope that would normally be around the £700 mark, our price is just $£ 299$ (full money back guarantee) full detaits in catalogue. SECOND GENERATION NIGHT SIGHTS FROM £748 RETRON Russian night sight, 1.8 x infra red lamp, 10 m -inf, standard M42 lens, 1.1 kg . $£ 349$ ref RET
LOW COST CORDLESS MIC 500 range, $90-105 \mathrm{mhz}, 1150$ $193 \times 26 \times 39 \mathrm{~mm}, 9 \mathrm{VPP} 3$ battery required. $£ 17$ ref MAG15P
HI POWER SURVEILLANCE TELESCOPE Continuous zoom control from 20 times to an amazing 60 times magnification. 60 mm full coated objective lens for maximum light transmission, complete with ripod featuring micro elevation control. $£ 75$ ref $Z T 1$
JUMBO LED PACK 1510 mm bicolour leds, plus 5 giant (55 mm) seven segment displays all on a pcb $£ 8$ ref JUM1. Pack of 3055 mm seven seg displays on pcbs is $£ 49$ ref LED4, pack of 50 £31 ref LED50 12VDC 40MM FANS MADEBY PANAFLO, NEW. E4. REF FAN12 HELP WANTED WITH MOTORS We have thousands to lear at rock bottom oricesl bumper pack of 20 motors (our choice) is ust $£ 19.951$ Some of these will be 5 " or maybe largerl
HELP WANTED WITH MULTI RAIL POWER SUPPLIES Again we have thousands available, most with fans, mosty cased, sold as seen, condition may vary, some working some not. Pack of 10 is $£ 19.9$
HELP WANTED WITH TELEPHONE COIN BOXES Need we say, thousands availablel these are units designed to convert an ordinary phone into a coinbox phone. They have damaged cases bu the electronics and coinslots are ok Speech chip on the board talks to you as you program itl Pack of 10 is $£ 19.95$
HELP WANTED WITH EXTERNAL MICRO TAPE STREAMERS 10,000 in stock, space neededl brand new cased units with loads of interesting bits (motor, tape heads, PCB etc etc. Very smart plastic case useful for projects etc. Pack of 20 is 29.95 ref MD2 LEAD ACIDBATTERIES About 10 pa Hets full just inside warehouse no 21 pack of 5 for just $£ 19.95$ also some below spec © 10 aH at $£ 19.95$ for a pack of 8

Check out ourWEB SITE
 full colour interactive 1997 catalogue

https//www.pavilion_couk/bull-electrical
FREE COLOUR CATALOGUE WITH EVERY ORDER

SURPLUS STOCK LINE 0802660335

ICCII-POOL

TRIED \& TRUSTED STRAIGHT FROM GERMANY

CONTOUR?

MULTILAYER?
NO PROBLEM!

Eurocard + Soldermask + Position print

Beta LAYOUT Ltd. IRELAND PCB-Brokerage 6 College Grove Ennis - Co. Clare

My adress/Fax number
,

Security

Although it was not a key remit of Professor Warwick's book, the greatest threat to the efficiency of such systems in present circumstances is to break their security and subvert their software. As disaffected groups feel resentful of the increased level of bureaucratic control of social and economic infrastructure, key computer systems may become even more a 'soff' target and one that, mistakenly, such groups could accept as justifiable. It would appear also more satisfying to subvert such systems than to destroy them.

The Really Useful Robot

It is perhaps useful to guess what a Really Useful Robot Company could develop in the future. It would be possible to program in some directives to autonomous machines. For free moving units, these could be described as:-
> do not run out of power
> do not get lost
> do not run into objects
> always take note of external commands
> undertake tasks efficiently
> fail safely in event of malfunction
> do not present a risk to other objects
> keep a log of everything that has taken place

At a level below this is the computational power to address all these issues. Such systems are becoming smarter, as increasing processing power becomes available. In terms of the effects of such systems on our society, the fact they may or may not be self aware is irrelevant. The coming reality that machines are going to get relatively smarter and smarter.

Sensory superiority

On the sensory side, with modern technology, a vast array of additional attributes can be bundled into a robot. Thus we can add equipment to detect and resolve in different parts of the electromagnetic spectrum outside the relatively narrow band of 380 nm to 720 nm . We can add x-ray spectrometer, gamma ray spectrometer, ultra violet detectors, infra red detectors. We can even add sensors via Doppler technology to determine if objects are coming towards us or going away from us. Also, as technology becomes more compact and efficient, it becomes even easier to extend the sensory armament.

Thus robots can be developed with significantly enhanced sensory systems. It is recognised, however, that the human retina/visual cortex is vastly superior in the processing of visual information compared to any machine. In its limited set of sensory inputs, the human 'machine' does exceptionally well.

Machine Profiles

While it may not be possible for a machine to experience selfawareness, it is entirely possible to provide it with sophisticated algorithms for it to operate within well defined guidelines. The general structure of an autonomous system are outlined in figure 8.

It is clear that the system would in fact be a mix of digital systems and also probably neural network components. The digital systems would provide the goal directive and components to tell how the system should respond in given circumstances. The system would require to verify its function so that it could report faults or move itself into a safe mode if required. It would require levels of security to sanction receipt of data from various sources and also security to transfer data to specific remote

Figure 8: Possible general functional blocks of an autonomous robot.
systems. An event history could be either transmitted continuously or stored on line in order to be able to monitor system integrity or locate faults in event of failure.

Examples have been cited of robots talking to each other over the internet. The security aspects of this would have to be looked at much more closely if it ever became commonplace. With modern processing speeds of 200 MHz , the potential data handling of such systems would be significant indeed. Technological advances with equivalent speeds of say 2000 MHz systems say in 10 years time gives even more scope to develop useful functionality.

It must be recognised, however, that the fundamental breakthrough with neural networks came about when it was realised how they could be trained. This was barely some ten years ago. While all the time incremental progress is being made in this discipline, it is quite conceivable that there are several major breakthroughs still to be experienced in this field which will allow the structuring and effective training of vastly more complex networks.

It must certainly mean that in a physical environment, smart machines will be doing physical things. To a very large extent robotic systems are already building the next generation of robots. Processes of chip manufacture and development are now so demanding that the most delicate stages of manufacture and design were long ago taken over by automated methods.

A safer society

There is no doubt that our dependence on machines will increase. So far, however (and hopefully) all these systems are very much under the control of their masters. It is our collective responsibility to ensure that this remains so. It is the complexity of our society that is pushing for increased computerisation. In the example of control of aircraft in national airspace, the trend is increasingly to hand more and more over to computers to monitor and direct flight paths. As we make such systems work harder, process more data, make more calculations per second, access data archives which expand rapidly, yes we are giving these systems a more important role in our society. This is primarily, however, because society is itself changing rapidly and these systems are being introduced to respond to this rapid technological change.

In fact key areas for additional implementation of computer/robotic technology are very clearly in evidence. They have a critical role in managing inherently unsafe systems such a transportation systems, nuclear power plants and many procedures processing dangerous chemicals. One argument could say that without the appropriate use of such technology the future would be a more dangerous and unsafe one.

Figure 9: Possible mode of training of systems across a network.

Distributed Training of Machines

The collection of Reading robots presents an example where the small robots are moving about, learning about their environment and refining the training of their neural networks. With the high connectivity of computers today, it is relatively easy to anticipate how systems as networks can learn collectively.

Consider neural networks linked across numerous computers and which have access to a large flow of training data for the local neural networks, as shown in figure 9.

If all of these systems have an optimising algorithm where each system can receive its own training data set locally and also link to the network structure and input/output of other PCs, then the level of training of the PCs begins to increase as weighting factors are developed for the individual PCs and with dialogue from other systems. In this scenario it is imagined that

Figure 10: Scope of optimising local neural networks as part of larger problem solving system.
all these systems are configured exactly the same in their neural network configuration. The network of PC's can be considered to be increasing in smartness over the network.

As part of the 'connected' nature of the system, it would be possible for validation of the effectiveness of each local system to be checked against a reference benchmark in order to rank the systems and allow the systems to select in some way the best training data set available across the network.

If however, things are taken a stage further where each local system is given an individual autonomous task where it can optimise the internal connected structure for effective functioning. In this scenario, each local neural network has well defined input/outputs relating to physical parameters. If these are cascaded together across another layer of processing in another layer of local neural networks, as shown in figure 10, again where inputs and outputs are independently defined and have real significance, then training of these local systems can be undertaken.

An so as a thought experiment in neural network development, these systems can be considered to optimise their own internal design to solve the particular problem assigned to them - assuming the physical problem assigned to them can be split up into such local processing modules. By linking these systems in a network, they can be informed of the states of processing in the other systems. One layer would be trained at a time before the next layer was trained from the outputs of the first section. If this model is established in principle, then it is simply a case of expanding it up according to the resources of hardware and software available. This is shown as a two dimensional problem, but it could equally well be developed in three dimensions.

Systems could therefore evolve where each 'box' represents an autonomous 'smart system'. Also, the network connectivity could be superseded by an optimising 'supervisory' system to monitor the functionality of the system and make adjustments to optimise performance.

Figure 11: Evolution of connected local neural network units to form a complex connected system.

If a system such as this is to evolve 'organically', then it may require to be associated with a component of trial and error, where some configurations are abandoned while others are retained as they add efficiency to the solution. This would be a role, therefore for some aspect of genetic algorithms in the optimisation of such a system. A complex network could be developed in this way would approach the complexity of the structure of figure 11 where each cell is a relatively complex local neural network implementation. Once 'cell' could for example be a complex spoken language/command interface. Another could be a system for recognition of images.

Such a system, however, is not just a neural network. It is more like some system that has a natural property to make sense out of data, to order it by means of complex training techniques which are in the domain of conventional digital programming. This level of design requires wholly new design structures compared with conventional digital processing scenarios. No doubt this is the scenario which many in this field are seeking ways to implement. It is perhaps not the element of sheer computing power that is the daunting factorit is the model of connectivity which is the key.

All the hard programming is in the optimising of the network and in the training. Once the network is trained, the inputs are presented and relatively simple programming feeds forward the results. At this stage, operating the network, is a relatively mechanical process. The result of the training procedures and any elements of system configuration would have been achieved
through highly advanced programming. Even if this process is driven to some sort of logical conclusion, where millions of neurons are trained together in a vast association of elements, all interconnected appropriately either with weightings in software or in on chip representations, does this represent machine self awareness? Probably not.

It would, however, represent a distillation of a vast amount of data and experience of the physical world. Such a system could be made to appear uncannily like a human being in various of its responses since this is an area in which training of some patterns of human behaviour would be relatively easy.

Does this also mean that much of the 'intelligence' of the brain is very much its sheer physical organisation. Once everything is set up, using it is very much like clockwork, as inputs feed forward through complex neuronal interconnections. After all, when we go for a walk, this is done without any conscious effort of what we are doing - it is all preconnected. The human brain, however, is very adaptable. It learns new skills. It links to new memories. If part of it become damaged, it seeks out other functional pathways. We have yet to fully understand how it achieves this.

Socio-economic implications

Today manufacturers scour the world for sources of cheap labour. Plants are established, for example, in China, not with highly developed state of the art automated technology but where products are largely built by hand. The economics of this are still attractive, and the capital investment costs will be lower compared with setting up a highly automated production line. But with increasingly cost effective automation, there will be less demand, anywhere, for manufacturing labour. This could set in train global changes of a very unpleasant type - much more threatening to the status quo than the scenario of berserk robots. In this scenario, low skill/low labour cost economies will be particularly vulnerable to such technological change.

It is not in question that more 'smart' machines will play an increasingly important role in the future as techniques of production change the balance of people and technology. Whole new product ranges, however, will probably emerge to counter balance this trend.
There are issues of safety as more and more critical systems are controlled by high technology. There are employment issues as long term established industries fade rapidly away as technological change catches up with them. It is a measure of our loss of control of technology that we are adapting our social structure to cope with technological change rather than controlling technology to serve our social needs.

The new applications

Government agencies are very interested in advances in technology to intercept and monitor all manner of modern communications. Machines could, for example, be trained to be efficient at intercepting and assessing voice and data communications and especially Internet sites which may be undesirable.

It is therefore necessary to be constructive in how this technology will be used. David Brown, in his book Cybertrends, maps out some potential pitfalls and ways forward for the future.

Perhaps, more importantly, it is the debate over how such technology will be used that is of more relevance.

Summary

The media interest in the Reading Robots has arisen not because the technology of the Seven Dwarfs was complex or in any way revolutionary, but because they provided a means of communicating to the onlooker the potential of robotic technology for the future.

At the same time, mixed in with this message was the implied reality that one day such robots will surpass us in 'intelligence'.

While it is accepted that robots are set on an evolutionary path of their own and this will affect the nature of our society in fundamental ways, there is plenty of current and indeed increasing scientific opinion which indicates that the 'thinking' or 'conscious' machine will never materialise. The leading edge of scientific thinking is chasing much bigger issues than the cognitive potential of silicon.

In conclusion as a contrast, perhaps it is relevant, however, to contemplate the calmness reflected in some of the larger granite carvings of Ancient Egypt, where material progress was very basic and there was greater emphasis on trying to understand the bigger picture of things.

References

March of the Machines:why the new race of robots will rule the world, Kevin Warwick, 1997, Century.

The Emperor's New Mind, Roger Penrose, Vintage, 1990.
Who's afraid of Schrodinger's cat?, Ian Marshall and Darah Zohar, Bloomsbury, 1997

Cybertrends, David Brown, Viking, 1997
The Anthropic Cosmological Principle, John D Barrow and Frank Tippler, Oxford Paperbacks, 1996

Goodbye Descartes, Kevin Devlin, John Wiley, 1997.

Program PIC Microcontrollers:

We now have 3 programmers for PIC's !
Original - This is our original programmer for 16C5X, 16C55X, 16C6X, 16C7x, 16C8x, 16F8X devices. Price : $£ 40$ for the kit, or $£ 50$ ready built.
Serial - This programmer programs the newest PIC devices in a single 40 pin multi-width ZIF socket. Will program: 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, PIC 14000. Also. In-Circuit programming.
Price : $£ 40$ for the kit, or $£ 50$ ready built.
Introductory - This programmer is intended for the smaller user, or newcomer to PIC's. Will program 8 pin and 18 pin devices : 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X, 12C508, and 12C509.
Price $\mathbf{£ 2 2}$ for the kit (not available ready built).
Note: All our programmers operate on a PC, using a standard RS232 serial interface (COM1, 2, 3, or 4). No hard to handle parallel cable swapping !
All programmers are supplied with full instructions, Windows programming software, MPASM, MPSIM and PICDE - the Windows based PIC assembler environment. (offers all features of PICDESIM below without the simulator).

Forest Electronic Developments

10 Holmhurst Avenue, Christchurch,
Dorset, BH23 5PQ. http//www.lakewood win-uk.net/fed htm 01425-270191 (Voice/Fax)
Windows Based PIC Development: PICDESIM - the Windows based development environment.
PICDESIM allows you to develop your PIC projects in one Windows program.
Incorporate multiple files, view help file information directly from the code, edit within the project, build, and track errors directly in the source, then simulate.
Simulator allows addressed, conditional and timed breakpoints, follow your code in the source editor window, set a breakpoint directly in the code. Run your program, or single step, or step over subroutines. Track variable values and trace them for display on the Trace Analyser. Input stimuli include clocks, direct values and asynchronous serial data. Profile your program examine frequently called routines which are timed and use the information to optimise out bottle necks.
Trace Analyser allows any register or port value to be examined in analogue (graphical), waveform, or numeric values, check your program directly against your predicted waveforms.
Runs up to 50 times faster than MPSIM !
NEW!-32 bit version allows full use of Windows '95 and Windows NT 4.0 facilities.
Cost $£ 30.00$, or $£ 25.00$ for existing and new purchasers of any of our programmers. Please specify Windows 3.1, or Windows '95 (32 bit) versions of PICDESIM.

PIC's

PIC16C74/JW Erasable 20MHz £24.00 PIC16C556 (14 bit versn 16C56) $£ 4.50$
$\begin{array}{llllll}\text { PIC16C74-04POTP } & 4 \mathrm{MHz} & £ 8.00 & \text { PIC16C74-20P OTP } & 20 \mathrm{MHz} & £ 11.00\end{array}$ PIC16C57-04POTP PIC16C84-04P PIC16F84-04P $\begin{array}{llll}4 \mathrm{MHz} & £ 5.00 & \text { PIC16C57-10P OTP } & 10 \mathrm{MHz} \\ 4 \mathrm{MHz} & £ 6.00 & \text { PIC16C84-10P } & 10 \mathrm{MHz} \\ 4 \mathrm{MHz} & £ 7.00 & \text { PIC12C508-04P OTP } 4 \mathrm{MHz}\end{array}$ PIC14000-04P OTP $4 \mathrm{MHz} \& 10.00 \quad$ PIC14000/JW Erasable $E 6.00$ $£ 8.00$ PIC12C508-04P OTP $\mathbf{4 M H z} \quad £ 2.70$ Ask about other chips!

PIC BASIC

FED's PIC BASIC products - straightforward, capable, powerful, rapid development. In a Windows Development Environment our modules need no assembler or UV eraser to program your PIC's, and operate from a serial link to your PC.
The 16C74 module features - 8 k EEPROM, up to 2000 lines of BASIC, 27 lines of programmable I/O, 8 AD inputs, Interrupt driven serial RS232 interface, Peripheral $I^{2} C$ bus interface, LCD display driver routines, up to 178 bytes for variables and stack, extendible with optional external ram and all the standard 16C74 features.

Compiler - The FED PIC BASIC compiler for the 16C74. It produces hex code to program your 16C74 directly with no need for external EEPROM. Compatible with the EEPROM versions of PIC 16C74 BASIC modules develop on an EEPROM based module then compile and program your PIC chips directly.
16C57 Module Kit (8k EEPROM, 4MHz) £27.00, Pre-built $£ 33.00$ 16C57 Module Kit (8k EEPROM, 10MHz) £31.00, Pre-built £37.00 16C74 Module Kit (8k EEPROM, 4MHz) £35.00, Pre-built $£ 42.00$ 16 C 74 Module Kit (8k EEPROM, 20MHz) £40.00, Pre-built £46.00 16C84 chip programmed with BASIC - £25.00
Compiler - $\mathbf{£ 6 0 . 0 0}$, or $£ 50.00$ when ordered with a module

Prices are inclusive, please add $£ 3.00$ for $\mathrm{P} \& \mathrm{P}$ and handling to each order.
Cheques/POs payable to Forest Electronic
Developments, or phone with credit card
details. Serial Cables - $£ 7.50$.
 PIC Training Our new training course introduces PIC's painlessly with a practical emphasis.
Our training package includes

- Full introductory manual to the PIC series including use of assembler, peripherals and interrupts for the 12 bit and 14 bit controllers.
- Video introducing the PIC, and showing use of PICDESIM
- Development board with PIC16F84, and all components required to develop 3 practical projects, including LED driving, handling delays and serial communications to a PC.
- PICDESIM - the Windows based Simulator (see left)
- Microchip MPSIM and MPASM programs

Training Course $£ 80.00$
Training Course with pre-built Introductory PIC programmer $£ 99.00$

Development Boards
 Development boards allow simple prototyping of projects.

Our 18 pin development board includes a simple serial interface to a PC, 18 pin socket for any 18 pin device, 4 MHz resonator and power regulator components. All instructions components, and circuits supplied. Includes a $16 \mathrm{~F} 84-10 \mathrm{MHz}$ version of 16C84 with an additional 32 bytes of RAM for programs.
Development board with all components for serial inteface, power supply, oscillator and 16 F 84 device $\quad £ 20.00$.

Coming soon...

Look out over the next few months as we expand our PIC BASIC range and extend our microcontroller support to another major manufacturer.

Digital Voice Modulator

Based on the HT-8950 voice modulator chip, Robert Penfold's 'voice-box' can add pitch-shift and vibrato to voice signals, with a 'robot voice' for would-be metal men!

IIhis simple project is based on a single integrated circuit, but it provides a number of interesting voice effects that are generated using some basic digital signal processing. The pitch of the input signal can be shifted up or down, and in each case three levels of shift are available. A robot voice effect can also be produced, but this effect is quite strong and it can sometimes be difficult to understand what is being said. It is still a useful facility though, and will appeal to those who do not like to do things by halves. Frequency modulation (vibrato) can be added to both the pitch and robot effects. The audio quality is not in the hi-fi category since the system has only eight-bit resolution and uses a sampling rate of 8 kHz . The quality is adequate for a speech signal, though, and this project is only intended for "fun" applications such as producing sound effects for amateur dramatics productions.

The unit is economic to run as it is powered from a couple of HP7 size batteries that have an extremely long operating life. Inputs are provided at line and microphone levels, and the unit should work well with any low impedance dynamic or electret microphone. Outputs at line and microphone levels are available from separate sockets, and adding the unit into practically any set-up should therefore be very straightforward. The desired effect is selected using three pushbutton switches. One of these toggles the vibrato, and the other two cycle through the available effects in opposite directions. A front panel LED acts as a simple audio level indicator and makes it easier to obtain a suitable drive level, especially when using the unit with a microphone.

Ups and downs

There are two basic approaches to providing a shift in the pitch of an audio signal. One method involves using the heterodyne principle to raise or lower the pitch of every frequency component by an anount that is controlled by an oscillator. This method is rather like generating a single sideband radio signal and deliberately demodulating it using the wrong carrier frequency. However, this method does not necessarily involve the use of high frequencies, and the desired effect can be produćed using balance mixers, high quality audio filters, and phasing techniques. Although this system provides a very

"clean" output signal it has a slight drawback in that it alters the harmonic relationship of the components in the processed signal.
For example, an input signal at 1 kHz might contain harmonics at 2 $\mathrm{kHz}, 3 \mathrm{kHz}, 4 \mathrm{kHz}$, etc. If these are all raised in frequency by 500 Hz , the fundamental frequency would become 1.5 kHz but the first harmonic would be at 2.5 kHz . In other words, the first harmonic would no longer be at twice the fundamental frequency, and the other harmonics would be even further adrift from their correct frequencies. This would not be of importance in all applications, but it gives some "heavy metal" sounds when applied to a singing voice! Another problem with the heterodyne method is that it can only provide a very limited amount of downwards shift. This is simply because a large shift results in the lowest input frequencies being taken below OHz , which is obviously not possible. In reality the signal just becomes scrambled

The second method involves recording the signal and then playing it back at the wrong speed. A higher playback speed proportionately increases the pitch of all the components in the signal, and a lower playback speed proportionately reduces the frequency of all the components. An advantage of this method is that it leaves the harmonic relationship of the individual frequency components intact. The main drawback is that it is very difficult to obtain a really "clean" output signal from a system that works in real-time. In a real-time system the input signal has to be recorded for a short period and then played back at a different speed. If the playback speed is faster than the recording speed, the playback time is shorter than the recording time. This leaves the problem of how to fill in the gaps in the output signal. A reduction in pitch gives the opposite problem with the output signal having a longer duration than the input signal. This means that some of the input signal has to be cut out in order to keep the duration of the output signal equal to that of the input signal. No matter how cleverly the sets of output samples are spliced together you can always "hear the join."

HT-8950

The chip used in this project is the HT-8950 voice modulator which is contained in a standard 18 -pin DiL encapsulation (figure 1). While this device is not exactly dirt cheap, it costs very little when you consider the amount of circuitry it contains. As can be seen from the simplified block diagram of figure 2 , it contains analogue to digital and digital to analogue converters as well as static RAM, an input amplifier, and a substantial amount of control logic.

The input amplifier is actually an operational amplifier that has a built-in bias circuit, and can be used in the inverting mode. This feeds into a comparator that forms part of the analogue to digital converter. The data sheet for the HT-8950 does not specify which type of conversion is used, but it is presumably a successive approximation converter. A block of static RAM is used to temporarily store the samples produced by the converter, and

Figure 1: Pin assignments for the HT-8950 voice modulator chip
then they are output to the digital to analogue converter via a data latch. Of course, the samples are clocked out to the digital to analogue converter at a higher or lower rate than they were recorded, so that the required change in pitch is obtained.

A timebase generator is included in the chip together with all the necessary control logic. An oscillator can be used to frequency modulate the timebase circuit during playback so that the vibrato effect is generated. The mode of operation is governed by seven inputs to the control logic circuit. These really break down into two groups of inputs, and one of these groups (S0, S1, and S2) is intended to provide electronic control of the chip. In this case we require manual control and it is therefore the other four inputs that are used. These inputs are at pins 15 to 18, and they have internal pull-up resistors. In use they are connected to ground via pushbutton switches. Operating the switch connected to pin 15 toggles the vibrato effect on and off. The switches connected to pins 16 and 17 enable the chip to be cycled up or down through the available modes, and the list provided below shows the order that is used. The chip defaults to the robot mode at switch-on incidentally.

Up 2
Up 1.6
Up 1.33
Normal
Down 0.88
Down 0.8
Down 0.66
Robot

Figure 2: the block diagram for the HT-8950

Figure 3: the full circuit diagram for the digital voice modulator

To get to the Up 1.33 mode after switching on you would therefore either press the "down" switch three times, or the "up" switch five times. Operating the switch connected to pin 18 enables the chip to be instantly switched into the robot mode, but this facility is not normally required.

Circuit operation

The full circuit diagram for the digital voice modulator is shown in figure 3. In order to provide inputs for both microphone and line levels the operational amplifier at the input of IC1 is used as a summing mode mixer. Resistor R3 is the feedback resistor and R1 plus R2 are the input resistors. The relatively high value of $R 1$ results in a voltage gain of only 3.3 at the line input, but with an input impedance of 100k. The input amplifier mainly acts as a buffer stage for input signals at line level. R2 has a much lower value, which produces an input impedance of only about 1 k , but this is well suited to a low impedance dynamic or electret microphone. The voltage gain at this input is much higher at about 330 , but tris higher gain is needed due to the low output level from a low impedance microphone. Even with this much higher level of gain the microphone may have to be used quite close to the user's
mouth. Capacitor C5 is the decoupling capacitor for the internal bias circuit for the input amplifier.

Resistors R4 and R5 are part of the built-in oscillator circuits. R4 controls the vibrato frequency, and the specified value gives an operating frequency of about 8 Hz . R5 is part of the main timebase generator circuit. Switches S1 to S3 are the mode control switches. A switch on pin 18 to provide a shortcut to the robot mode has not been included, but it could easily be added if desired. The digital to analogue converter is a type that provides an output current rather than a voltage, but load resistor R6 effectively converts the output stage to normal voltage operation. The audio output signal from pin 9 is a digitised type which requires the usual lowpass filtering to remove the high frequency components. Q1 is used as an emitter follower buffer stage in a third order lowpass filter that has a cut-off frequency of about 3.5 kHz . This bandwidth is adequate for a voice signal, and is approaching the absolute maximum bandwidth supported by the sampling frequency of 8 kHz . Resistors R10 and R11 form the emitter load for Q1, and they also act as an attenuator which provides the microphone level output. This output is at about - 40 decibels compared to the line output level, which should be high enough to fully drive any microphone input, but low enough to avoid overloading.

The total current consumption of the circuit is approximately 2 mA , but it increases to about two or three times this level when audio level indicator D1 is operating brightly. Each set of two HP7 batteries should last about 500 to 1000 hours. Note that the maximum operating voltage for the HT-8950 is just 4 volts, and that the absolute maximum supply rating is just 5.5 volts. Do not use a supply potential of more than 3 volts as this could cause a malfunction, and could even damage the HT-8950.

Construction

Figure 4 shows the component layout for the stripboard panel, which measures 32 holes by 24 copper strips. This is not a standard size in which stripboard is sold, and a larger piece will therefore have to be trimmed to size using a hacksaw. Then drill

Figure 4: the component layout for the stripboard panel
the two 3.3 millimetre diameter mounting holes which will accept either metric M 3 or 6BA mounting bolts. Next the breaks in the copper strips are made using either the special tool, or a handheld twist drill bit of about 5 millimetres in diameter will do the job quite well.

The board is then ready for the components and link-wires to be added. The HT-8950 is a CMOS device and it therefore requires the standard anti-static handling precautions. As this chip is not particularly cheap it is a good idea to follow these precautions "to the letter." The most important one is to use a holder, and not to fit IC1 into the holder until the board and all the hard wiring have been completed. Until you are ready to fit IC1 into its holder it should be left in its anti-static packaging. When fitting it in place try not to touch the pins any more than is really necessary, and you should obviously keep well away from any known sources static charges.

Apart from IC1, the exact order in which the components and link-wires are fitted to the board is not too important, but it is best to work methodically rather than just fitting components at random. One or two of the link-wires are fairly long, and in order to avoid accidental short circuits they must either be kept quite taught or they must be insulated with PVC sleeving. Fit singlesided solder pins to the board at the points where connections to the off-board components such as the switches and sockets will be made. One millimetre diameter pins are needed for normal 0.1 inch matrix stripboard.

The prototype is housed in a plastic and metal instrument case which measures about 170 millimetres wide, but this is substantially larger than is really necessary. In most respects the general layout of the unit is not too critical, but the leads which connect the input sockets to the component panel must either be very short or screened cable must be used. Even when using a slightly oversized case it can be difficult to find space for everything on the front panel. It is probably better to move some or all of the sockets to the rear panel rather than cram everything on to an overcrowded front panel.

Details of the hard wiring are provided in figure 5 , which should be used in conjunction with figure 4 (eg point " A " in figure 4 connects to point " A " in figure 5). I used 3.5 millimetre jack sockets for JK2 and JK3 and phono sockets for JK1 and JK4, but you can obviously use any audio connectors that match the equipment you will use with the voice modulator. A plastic holder is used for the two HP7 batteries and the connections to the holder are made by way of an ordinary PP3 style battery clip. LED indicator D1 is not driven at a particularly high average current and it is therefore advisable to use a high efficiency type. The cathode (k) terminal is usually indicated by having that lead shorter than the anode lead.

S1

D1

JK2

54

JK3

JK4

JK1

Figure 5: details of the hard wiring (use in conjunction with figure 4)

Testing and use

Mistakes are relatively easy to make when using stripboard, so it is a good idea to thorijughly check the finished unit before connecting the battery and trying it out. A good way of giving the unit an initial check is to monitor the line output using a crystal earpiece, with the input signal being provided by a microphorie. At switch-on you should obtain the robot effect, and with or without the added vibrato, as you talk: into the

Resistors (All 0.25W 5 percent cal	
R1,4	100k
ค2	1k
R3	330k
R5	47k
R6	560R
R7,8,9	3 k 3
R10	2k2
R11	22R

Capacitors

C1 100u 10V radial elect
$\mathrm{C} 21 \quad 100 \mathrm{n}$ ceramic
C3 $\quad 22 n$ polyester
C4
C5
C6
C7
Св
C.9,10

1450 V radial elect
4 u 50 V radial elect
$33 n$ polyester
68 n polyester
330 p ceramic plate
10 u 25 V radial elect
Semiconductors
IC1 HT-8950
Q1 BC549
D1 Red panel LED

Miscellaneous

JK1,4
JK2,3
S1,2,3
S4
B1
Standard jack or phonc socket
3.5 mm jack socket

Push to make, non-locking pushbutton switch
SPST min toggle switch 3 volt ($2 \times$ HP7 size cells in holder)
Small metal or plastic case, 18 -pin DIL holder, 0.1 inch pitch stripbaard measuring 32 holes by 24 copper strips, PP3 type battery connector, wire, solder, etc.

T E L N E T

8 CAVANS WAY, BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF
Tel: 01203650702
Fax: 01203650773
Mobile: 0860400683
(Premises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M42, M45 and M69)

OSCILLOSCOPES	
Beckman $\mathbf{9 0 2 0} \mathbf{- 2 0 M H z}$ - Dual Channel ..1	
Cossor 3102-60MHz Dual Channe	¢25
Gould $1602-20 \mathrm{MHz}$ D.S.O. with printer	11
Hewlett Packard 54100D-1GHz Digitizing.	£29
Hewlett Packard 54501A - 100 MHz - Digitizing 4 channel	
Hitachi VC6265-100 MHz Digit	£22
Hitachi V152FN302B/N302FN353FN550B/V650F...from ¢125	
Intron 2020-20 MHz Digital Storage (NEW)	¢650
Iwatsu SS $5710 / \mathrm{SS} 5702-20 \mathrm{MHz}$.	
Kikusui COS $6100-100 \mathrm{MHz}$, 5 Channel, 12 Trace	£475
Nicolet $3091-$ L.F. D.S.O......Panasonic VP5741A - 100 MHZ D.S.O. with Digital readout - waveform analysis - TV Signal Analysis	
Function-G.P.I.B.	
Scopex 14D-15-15MHz - Dual Channel.	
Tektronix $434-25 \mathrm{MHz}-2$ Channel. Analogu	
Tektronix $454-150 \mathrm{MHz}-2$ Chann	¢
Tektronix $2213-60 \mathrm{MHz}$ Dual Channel	
Tektronix 2215 60MHz dual trace.. $\mathbf{\Sigma 4 5 0}$	
Tektronix 2235-100MHz-Dual trace.	
Tektronix 2236-100MHz Dual Channel with Counter/Timer	
Tektronix 2335 Dual trace 100 MHz (portable).	$¢ 750$
Tektronix $2445 \mathrm{~A}-150 \mathrm{MHz}-4$ Channel	$¢ 165$
Tektronix 2465-350MHz - 4 channels..2500	
Tektronix 2225-50MHz dual ch.	£4
Tektronix $485-350 \mathrm{MHz}-2$ channel	¢90
Other scopes available too	
SPECIAL OFFER HITACHI V212-20 MHZ DUAL TRACE £180 HITACHI V222-20 MHZ DUAL TRACE + ALTERNATE MAGNIFY $£ 200$	

Hewlett Packard 4952A
Hewlett Packard 4952A - Protocol Analyser (with interfaces)
Hewlett Packard 435A - Protocol Analyser
ewlett Packard 432A - Power Meter (with 478 A Sensor)......................
Hewlett Packard 435A or B Power Meter (with 8481A/8484A) $\begin{array}{r}\mathbf{2 5 7 5 0} \\ \mathbf{~} \mathbf{2 7 5} \\ \hline\end{array}$
Hewlett Packard 4271B - L.C.R. Meter (Digital)
Hewlett Packard 4279A - 1MHZ, C-V Meter......
Hewlett Packard 4948A - (TIMS) Transmission impairment M/Set
Hewlett Packard 4972A - Lan Protocol Analyser
Hewlett Packard 5420A Digital Signal Analyser..
mance Systems Counter
Hewlett Packard 5183 - Waveform Recorder
Hewlett Packard 5238A Frequency Counter 100 MHz .
Hewlett Packard 5370A - 100 MHz Universal Timer/Counter...
Hewlett Packard 5385A Frequency Counter - $1 \mathrm{GHz}-(\mathrm{HP} 1 \mathrm{~B})$
with OPTS 001/003/004/005......................................
Hewlett Packard 6253 A Power Supply 20V-3A Twin..
Hewlett Packard 6181C D.C. current source
Hewlett Packard 6255A Power Supply 40 V - 15A Twin
Hewlett Packard 6266 B Power Supply 40V-5A
Hewlo
Hewlett Packard 6271B Power Supply 60V-3A
Hewlett Packard 6034 A - $-60 \mathrm{~V}-10 \mathrm{~A}$ System P.S.U.
Hewlett Packard 7475A - 6 Pen Plotter.........
Hewlett Packard 7550A - 8 Pen Plotter A3/A4

HEWLETT PACKARD $6261 B$

Power Supply 20v-50A 2450 Discount for Quantities
Hewlett Packard 8349B - Microwave Broad Band Amplifier
Hewlet Packard 83555A - Millimeter - Wave Source Module 33-50GHz
Hewlett Packard 8015A - 50 MHz Pulse Generator....
Hewlett Packard 8403A - Modulator
Hewlett Packard 8405A - Vector Voltmeter
Hewlett Packard 8165A - 50 MHZ Programmable Signal Source
Hewlett Packard 8350B - Sweep Oscillator Mainframe (various Plug-Ins available) extra
Hewlett Packard 8158B - Optical Attenuator (OPTS 002
Hewlett Packard 83554A. Wave Source Module 26.5 to 40 GHz
Hewlett Packard 8620C Sweep oscillator maintrame ...
Hewlett Packard 8684A 5.4GHz to 12.5 GHz Sig -Gen

Hewlett Packard 8750A Storage normaliser $20 \mathrm{~Hz}-100 \mathrm{KHz}$)
Hewlett Packard 8958A - Celtular Radio Interface..
Hewlett Packard 8901A - Modulation Analyser.
Hewlett Packard P382A Variable Attenuator)
Hewlett Packard 16300 - Logic Analyser (43 Channels)

Hewlett Packard 11729B - Carrier Noise Test Set................ $\mathbf{E} 2000$
Krohn-Hite 2200 Lin/Log Sweep Generator
Krohn-Hite 4024A Oscillator
Krohn-Hite 5200 Sweep, Function Generator
Marconi $2019-80 \mathrm{KHz}-1040 \mathrm{MHz}$ Synthesised Sig. Gen
Marconi $2019 \mathrm{~A}-80 \mathrm{KHz}-1040 \mathrm{MHz}$ - Synthesised Signal Generato
Marconi 2022A-10KHz-1GHz AM/FM Signal Generator
Marconi 2432A 500 MHz digital freq. meter
Marconi 2610 - True RMS Voltmeter.
Phllips PM 5167 10MHz function gen....
Philips 5190 L.F. Synthesiser (G.P.I.B.)
Phllips PM5519- TV Pattem Generator

Phllips PM6673-120MHZ High Resolution Universal Counter .. $\mathbf{£ 5 0}$

Racal Dana 9303 R/F Level Meter \& Head..............................
Racal Dana 9917 UHF frequency meter 560 MHz ..
Racal Dana 9302A R/F millivoltmeter (new version)
Racal Dana 9082 Synthesised arn/fm sig gen (520 MHz) ...
Racal 9301 - True RMS R/F Millivolitmete
Racal 9921 - 3GHz Frequency Counter
Rohde \& Schwarz AMF 2 - TV Demodulator
Rohde \& Schwarz LFM 2. 60 Mhz Group Delay Sweep Gen
Rohde \& Schwarz SMFP2 - 1 GHz Aadio Comms T/Set
Rohde \& Schwarz UPSF 2 - Video Noise Meter ...
Rohde \& Schwarz - Scud Radio Code Test Set........
Rohde \& Schwarz SUF 2 Noise Generator
Rohde \& Schwarz UPGS - Psophometer...
Rohde \& Schwarz UPGS - Psophometer....
Schaffner NSG 203A Line Voltage Variation Simulator..
Schafffer NSG 222A Interferance Simulator
Schaffner NSG 223 interferance Generator
Schatfner WSG 431 Eiectrostatic Discharge Simulato
Schlumberger $4031-1 \mathrm{GHz}$ Radio Comms Test Set
Schlumberger 27201250 MHz Frequency Counter

Stanford Research DS $\mathbf{3 4 0}-15 \mathrm{MHz}$ Syntesized Function (NEW)
and arbitrary waveform generator..................................
Telequipment CT7. Curve Tracer.............................
Tektronix TM5003 + AFG 5101 Artitrary Function Gen
Tektronix 1240 Logic Analyser
Tektronix DAS9100-Series Logic Analyser
Tektronix - Plug-ins - many available such as SC504, SW503, SG502,
PG508, FG504, FG503, TG501, TR503 + many more
Tektronix 577 Curve Tracer....
Tektronix AM
S
ektronix PG506 + TG501 + SG503 + Yrorammable Distortion
Tektronix AA5001 \& TM 5006 M/F - Programmable Distortion Analyser
Tektronix 577 - Curve Tracer..
Time 9811 Programmable Resistance
Time 9814 Voltage Calibrator.................................
Toellner 7720 - Programmable 10 MHz Function Gen (AS NEW)
Valhaila Scientific - 2724 Programmable Resistance Standard
Wayne Kerr 3245 - Precision Inductance Analyer.
Wayne Kerr 4210 -LCR M eter.
Wayne Kerr 4225 -LCR Bridge
Wayne Kerr 4225 -LCR Bridge
Wayne Kerr 6425 - Precision Component Analyser
Wavetek 171 - Synthesised Function Generator
 Wavetek 184-Sweep Generator- 5 MHZ ..
Wavetek 3010 - 1 - 1 GHz Signal Generator.............................
Wiltron 6620 S - Programmable Sweep Generator (3.6 - 5 M)

SEND LARY MORE ITEMS AVAILABLE- - FA.E. FOR LIST OFEQUIPMENT ALL EQUIPMENT IS USED PLEASE CHECK FOR AVAILABILITY BEFORE ORDERING - CARRIAGE \& VAT TO BE ADDED

microphone its effect on your voice should be very obvious indeed. The data sheet for the HT-8950 does not give any precise details on how this effect is produced, but it apparently uses a "chopping" technique. Together with the vibrato this produces a sort of super "Dalek" effect! Remember that in any operating mode, pressing S 1 toggles the vibrato effect on and off.

By operating S1 and S3 it should be possible to cycle the unit through all the available effects. Once again, the effects are very obvious, especially when using a large shift in pitch. In general it is best to move high pitched voices downwards and low pitched voices upwards. Moving a high pitched voice higher in pitch tends to take many of the voice frequencies outside the bandwidth of the modulator, and gives an output that can be dificult to understand. Similarly, shifting a low pitched voice even lower in pitch can give very poor intelligibility, and a very odd sound!

The input stage operates as a simple summing mode mixer, and the unit will work using microphone and line input signals simultaneously. However, using more than one input signal at a time might not give very good results, and the unit works best if it is only used with voice signals, and one signal at a time.

It is interesting to use the unit on the voices of the rich and famous. Try connecting the earphone output of a radio to the line input of the modulator, and then search the bands for victims. Results can sometimes be surprising, with the voice of someone famous being turned into the voice of someone else who is famous. Shifting the voice of John Major down a couple of notches produces a very good impersonation of Sir Edward Heath! No doubt many other interesting transformations are possible.

Figure 6: the stripboard reverse

Surplus Electronic Components at competitive prices I.C.'s, Transistors, Diodes, Regulators, etc.

Write, Fax or phone for full list:

Harrison Electronics

Century Way, March, Cambs. PE15 8QW Tel/Fax: (01354) 651289

A self-test system for caravan and trailer brake lights by Terry Balbirnie

IIhe law requires flashing indicators on towed vehicles to have some sort of built-in check to show the driver that they are working. This often takes the form of a small dashboard light which blinks in time with the car indicators if the corresponding one on the trailer is operating. Some systems use a buzzer instead.

Self-check

There is no such checking requirement for the brake lights. However, these are also very important - especially when the lamps on the towing vehicle cannot be seen by the driver behind. The present circuit fulfils this need by checking that the stop lights are both working. Under normal conditions of use nothing happens. However, when there is a fault, a high-pitched bleeping will be given each time the brakes are applied. This will probably be unlike any other sound in the car and, being highpitched, will be easily heard above engine and other noises. As well as failure of one or both bulbs, faults which will trigger the unit include poor connections at the towbar plug and socket, broken wires, corrosion in cables or at the lampholders and bad earthing. Note that the unit will not operate in the event of a fault which would cause the brake lights on the car itself to fail. An example of this would be the fuse feeding them having blown. Since this fuse carries an additional load of 100 percent, it is necessary to follow the manufacturer's recommendation regarding uprating it if necessary.

How it works

The complete circuit for the Brake Light Checker circuit is shown on figure 1. The principle components are magnetic reed switch, S1, coil L1 and integrated circuit IC1. A complete description will be given presently.
\square

B^{2} Spice \& ${ }^{2}$ Logic £199

- Design and test analogue and digital circuits quickly and easily
- Incorporates a dedicated model editing package
- Fast 32 bit SPICE 3F5 engine
- Windows 3.1/95/NT
- Mac version also available
- CD ROM or 3.5" disk

Fully integrated and Interactive

Build the circuit on the screen and set up the simulations by choosing options from menus and dialogues. Then run the simulation and view your results.

Flexible Visualisatlonof Results

In B^{2} Spice results can be displayed in graphs, tables or directly in voltmeters and ammeters Change from typical to worst case analysis and include the effectsof temperature on components. Ku can customise everything, right down to the colour of an individual trace so you see just what you need. B Spice and B^{2} Logic let you export data to other applications

Versatility

A plethora of components include resistors capacitors, inductors. mutual inductors. transformers, controlled sources, bipolar junction transistors, zener diodes. power MESFETs, JFETs, MOSFETs, voltage regulators, operational amplifiers, optocouplers, voltage comparators, quartz crystals, IBIS I/O buffers and switching matrix connectors and much more All devices and model parameters can be edited to suit your needs. implement herarchical circuits in your designs quickly and easily

No Limits

With B^{2} Spice and B^{2} Logic there is no limit on the number of components in the circuit.

Models

There are literally thousands of them... The complete Berkeley SPICE model library as well as commercial libraries from manufacturers such as. Motorola, Texas Instruments, Burr-Brown, Maxim, National Semi, APEX Comlinear, AMP, Elantec, Linear Tech, and many more. Included with BSpice is a full model and symbol editing package so you can create. import and edit custom models.

Commands

B^{2} Spice supports $A C$ frequency sweep. DC operating point, transient analysis, fast fourier Noise. sensitivity distortion, Tf small signal transfer.

Simulation Options

Added facility for sub-circuits (macro-models) You can set all simulation options.
Allows you to set initial conditions at all nodes Allows you to set initial guess at nodes for simulation.
Allows "not given" state for all values.

Waveform Analysis

Display and compare multiple response curves in a single graph at the same time. Bspice simulation results can be selectively displayed and analysed graphically and in numerical format as well as exported to other applications. All of B^{2} Spice and B^{2} Logic's display capabilities are completely flexible.

Devices \& Stimulus for Simulation

 In B^{2} Spice sinusoidal, constant, períodic pulse, exponential, single frequencyFM, AM, $D C$ voltage, $A C$ voltage, VCO, VCc, piecewise linear, exponential. polynomial /arbitrary source. voltage-controlled voltage, voltage controlled current, current-controlled voltage, current-controlled current. Lossy and ideal transmission line, MESFET, uniform RC,
uurrent and voltage switches are all available.

Cross Probing

Cross probing allows you to display waveform results simply by marking pins, wires and devices on the circuit drawing. Monitor results while the simulation is in progress then plot analogue results on linear or log scales.

Graphs

In B^{\prime} Spice analogue traces may be displayed as raw voltages and current values or further processed using anthmetic expressions. functions and Fast Fourier Transforms. High quality graphs let you see just what you need to, clearly and easily You can also display multiple simulations in one graph. Multiple graphs can then be aligned and compared

Data Analysis

Position detection with mouse for data points. Import and export data to and from other industry standard SPICE programs. EB Spice supports Polar, Smith and Nyquist charts.

Digltal Options.

B^{2} Logic is completely flexible. Set up ROM. RAM and PLA to your own requirements. Shrink a whole circuit to a block and use it as a component in a new design. Run the simulations in real time or step by step. Customise rise and fall time of all components. Results displayed in a logic analyser or table. Select parts from all major logic families. Create your own custom libraries.
Create and run pre-programmed simulations.

Design engineers need software that produces results they can rely on. Anything less is a liability. B^{2} Spice \& B^{2} Logic will give you the accurate results you need fast.

The best way to find out if a package is really what you need is to try it, which is what we're giving you the chance to do... risk free for 30 days.

We guarantee you will be 100% satisified with the results or your money back.

To order your copies to try for 30 days call: 01603872331

http://www.paston.co.uk/spice email: rd.research@paston.co.uk

VISA

RD Research

Research House, Norwich Road, Eastgate, Norwich. NR10 4HA Postage \& packing £4.50. Prices quoted are ex VAT. All trademarks are acknowledged.

Envira Man

Temperature / Humidity Logger \& Alarm System
EnviroMon has many applications in: food processing - storage and distribution, energy management - waste energy, heating and processing, agriculture - monitoring humidity in greenhouses, and in hospitals - accurate monitoring of temperature sensitive items.
V Monitors up to 30 channels of temperature over a 400 m . distance
$\nabla-55$ to $100^{\circ} \mathrm{C}$ temperature range (typical accuracy $\pm 0.2^{\circ} \mathrm{C}$)
∇ Data can be downloaded to PC.

Envira Mon

Starter Kit from £393.00

3 temperature Sensors on 5 m lead, 3 channel Converter, Enviromon Logger, cables \& fittings. Expandable at any time for around $\mathbf{£ 5 0 / c h a n n e l}$

TC-08

8 channel Thermocouple to PC Converter
Simple to use thermocouple to PC interface.
∇ Connects to serial port no power supply required.

- Supplied with PicoLog data logging software.
(2) Resolution $0.1^{\circ} \mathrm{C}$

TC-08 £199.00
Supplied with serial cable and adaptor. Calibration certificate $£ 25.00$.
Thermocouple probes available

TH-03 3 channel

Thermistor to PC Converter

∇ Connects to serial port no power supply required
∇ PicoLog data logging software
$\boldsymbol{\nabla}-55$ to $105^{\circ} \mathrm{C}$ temperature range
∇ Resolution $0.01^{\circ} \mathrm{C}$

TH-03

$£ 79.00$
Supplied with serial cable and adaptor Thermistor sensors available.

Call for free demo disk

 or download our web site: http://www.picotech.com All prices exclusive of VAT. Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0)1954 211716 Fax: (0) 1954211880 E-mail: post@picotech.co.uk

Pico's virtual instruments emulate the functions of traditional instruments such as Oscillscopes, Spectrum Analysers and Multimeters. Controlled using the standard Windows interface, the software is easy to use with full on line help

ADC-200

Dual Channel High Speed

- 100,50 or $20 \mathrm{MS} / \mathrm{s}$ sampling.

V 50,25 or 10 MHz spectrum analysis.
∇ Advanced trigger modes - capture intermittent one-off events.
∇ Less than half the cost of a comparable benchtop scope.

$$
\begin{array}{ll}
\text { ADC 200-100 } & £ 549.00 \\
\text { ADC 200-50 } & £ 499.00 \\
\text { ADC 200-20 } & £ 359.00
\end{array}
$$

Supplied with cables and power supply.

AOC-100

Dual Channel 12 bit resolution

The ADC-100 offers both a high sampling rate $100 \mathrm{kS} / \mathrm{s}$ and a high resolution. Flexible input ranges ($\pm 50 \mathrm{mV}$ to $\pm 20 \mathrm{~V}$) make the unit ideal for audio, automotive and education use.
40e-100
with PicoScope sotware $£ 199.00$
with PicoScope \& PicoLog sottware $£ 219.00$

40C-40/42

Single Channel - low cost

- $20 \mathrm{kS} / \mathrm{s}$ sampling.
$\nabla 10 \mathrm{kHz}$ spectrum analysis.
$\nabla \pm 5 \mathrm{~V}$ input range.
ADC-40 8 bit resolution $£ 59.00$
ADC-42 12 bit resolution $£ 85.00$

リCall for free demo disk
or download our web site:
http://www.picotech.com All prices exclusive of VAT.
Broadway House, 149-151 St Neots Rd, Hardwick, Cambridge. CB3 7QJ UK Tel: (0) 1954211716 Fax: (0) 1954211880 E-mail: post@picotech.co.uk

Figure 2: when the magnet is brought near the reed switch, the contacts close

A reed switch consists of a short glass tube containing two flat magnetic fingers which, under normal conditions, are held slightly apart by their own springiness (see figure 2). When a magnet is brought close to the device, the fingers, or "reeds", become magnetised with opposite polarity. They therefore attract and the switch contacts on them "make". They may be used to operate some external circuit although their currentcarrying capacity is quite small. Reed switches have an extremely long mechanical life (in excess of 100 million operations). Providing they carry only a small current, they will therefore have an extremely long life. Their chief drawback is that they are easily broken.

The magnet which operates the reed switch need not be a permanent one. A coil carrying a current produces a magnetic field similar to that of a bar magnet. Such a coil may be wrapped around the reed switch body and, providing it carries sufficient current, will cause it to operate. This is the principle on which the Brake Light Check circuit works. The higher the current flowing through the coil and the greater the number of turns of wire, the stronger the magnetic effect will be. The specified reed switch will operate at between 20 and 50 amp turns. To explain this, suppose a particular specimen of switch operates at 30 amp -turns. This means that a current of 1A flowing through 30 turns of wire would cause the contacts to close. Alternatively, a current of 2A flowing through 15 turns or $3 A$ through 10 turns would produce the same effect.

Watt was that?

The number of turns on the coil will be chosen so that the current for one buib is insufficient to operate the reed switch but the current for two will do so. The power rating of a standard brake light bulb is 21 watts. If this figure is divided by the nominal voltage of the car supply, ie 12 V , it will give the operating current - that is, 1.75 A . With both brake lights on, the current will be double this figure - 3.5A. If the reed switch operates with 30 amp-turns, the number of turns required so that the current for both bulbs will just cause the contacts to close will be 30 divided by 3.5 , which gives a figure of about 9.

Since reed switches of the same type operate with different numbers of turns, it may be necessary to adjust the coil at the end of construction to make it work. With the specified switch, the correct number will lie between 6 and 15 turns. Trials suggest that these switches usually operate at the low end of the tolerance. It is suggested that 7 or 8 turns are used as a starting point. In the unlikely event of the switch operating at the high end of the tolerarice, the coil will need to be rewound with more turns. Using the specified thickness of wire (22 SWG) its resistance will be negligible and with 3.5A flowing, the voltage drop will only be about $20 \mathrm{mV}(0.02 \mathrm{~V})$. This is too small to have any noticeable dimming effect on the bulbs. Also, the coil will remain cool in use.

Pulse train

Referring once.again to figure 1, the warning signal is given in the following way. IC1 is an integrated circuit timer configured as an astable. Assuming on-off switch SW2 is on, a supply will be provided from the 12 V car system when the brake pedal is pressed. Providing reset input pin 4 is high, a train of pulses will be produced at the output, pin 3. The pulse repetition frequency depends on the values of fixed resistors, R2 and R3 in conjunction with capacitor, C3. With the values specified, there will be several pulses produced per second. No adjustment is provided since the exact rate is not thought to be important. These pulses operate buzzer, BUZ 1 , which will switch quickly on and off to give a warbling tone. Capacitor C2 is needed to provide stability in the ic.

If both trailer brake lights are on, there will be sufficient current flowing in coil L1 to close the reed switch contacts and make pin 4 low. This disables the ic and no pulses will be produced. Capacitor C1 holds pin 4 low at the instant that the brake pedal is pressed and before the reed switch contacts take over. If insufficient current flows in L1 due to a faulty bulb or for any other reason, the contacts will fail to close. C1 will then charge through resistor R1 taking only a fraction of a second to do so. The voltage at pin 4 rises and the astable operates.

Dashboard switch SW2 prevents the circuit from working when a trailer is not being towed. Without this, the buzzer would sound each time the brakes were applied since the circuit would see the lack of trailer light bulbs as a fault..

Construction

Construction of the Brake Light Checker circuit is based on a single-sided printed circuit board (PCB) and the component overlay is shown in figure 3. Begin by soldering the ic socket in position and follow with all resistors and capacitors. Add the buzzer, observing the polarity - this is marked on the plastic body.

Prepare the reed switch by winding 7 or 8 turns of 22 SWG (0.71 mm) enamelled copper wire around it. This must be done with extreme care to avoid breaking the glass. The turns should touch the body but must not be tight. The wire should be wound in one layer and occupy the central part of the reed switch as shown in the photograph. After winding the coil, grip each end lead of the reed switch close to the body using the tip of fine-nose pliers and bend the lead carefully through right-angles. Do not do this without supporting the wire at the body, since any bending pressure transmitted through the wire will crack the glass.

Figure 3: the component layout

OMP MOS-FET POWER AMPLIFIERS HIGH POWER, TWO CHANNEL 19 INCH RACK

THOUSANDS PURCHASED BY PROFESSIONAL USERS

THE RENOWNED MXF SERIES OF POWER AMPLIFIERS FOUR MODELS:- MXF200 (100W + 100W) MXF400 (200W + 200W) MXF600 (300W + 300W) MXF900 (450W + 450W)

EATURES: \#independent power supplies wth two loroidal fransiormers \& Twin L.E.D. Vu meters * proct $\#$ Latest Mos.fets for siress tree power collvery into virtually any load \& High slew rale \& Very low distortion \star Aluminium cases $\#$ MXF600 \& MXF900 tan cooled with 0 .C. . loud speaker and thermal protection UISED THE WORLD OVER IN CLUBS, PUBS, CINEMAS, DISCOS ETC.

MXF400 W 19° "xH5 ${ }^{1 / 4, "(3 U) \times D 12 " ~}$

PRICES:-MXF200 \&175.00 MXF400 2333.85 MXF600 £329.00 MXF900 £449.15 SPECIALISTCARAIER DEL. E12.50 EACH

OMP X03 STEREO B-WAY ACTIVE CROSS-OVER

Advanced 3.Way Stereo Active Cross-Over, housed in a 19 " $\times 1 U$ case. Each channel has three level controls: bass, mid \& top. The removable front lascla allows access to the programmable DIL switches to adjust the
cross-over frequency: Bass-MId $250 / 500 / 800 \mathrm{~Hz}$. Mid-To $1.813 / 5 \mathrm{KHz}$ all at 24d on each bass channel. Nominal 775 mV Input/output. Fully compatible with OMP rack amplifter and modules. Price $£ 117.44+£ 5.00$ P\&P
STAREO DISCO NIXER SDJ3q0OSE \star ECHO \& SOUND EFFECTS* STEREO DISCO MIXER with 2×7 band LE A graphic equallsers with bar graph
LED Vu meters. MANY OUTSTANDING FEATURES:- meluding ECho with repeat a apoed control, ov Mic with talk-over swhich, 6 Channels with individual taders plus cross fade, Cue Headphone Montor, 8 Sound Effects. Useful combination of the mica, 5 Line for CD , Tape, Videe (mata

Price £144.99 + E5.00 P\&P

PTE2O ELECTRIC TWEETERS - MOTOROLA

Join the Piezo rovolution! The low dynamic mass (no volce coll) of a Plezo tweeter produces an Improved
transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not requre these unils can be added to exlsting speaker systems or dynamic tweeters. As a crossover is not require EXPLANATORY LEAFLETS ARE SUPPLIED WITH EACH TWEETER.

TYPE 'A' (KSN1036A) $3^{\prime \prime}$ ' round with protective wire mesh. Ideal for 1) bookshelf and medium sized Hi-Fi apeakers. Price $£ 4.90+50 \mathrm{PBEP}$. TYPE 'B' (KSN1005A) $31 / 2$ " super horn for general purpose speakers,
 TYPE 'C' (KSN1016A) $2^{\prime \prime} \times 5^{\prime \prime}$ " wide dispersion horn for quality Hi-Fi systems and quality discos etc. Price $\mathbf{£ 6 . 9 9}+\mathbf{5 0 p}$ P\&P.
TYPE ' D ' (KSN1025A) $2^{\prime \prime} \times 6$ " wide dispersion horn. Upper frequency response retained extending down to mid-range (2 KHz). Suitable for high quaility Hi.Fi syslems and quality discos. Price $£ 9.99+50 \mathrm{p}$ P CP . TYPE 'E' (KSN 1038A) ${ }^{3}{ }^{3}{ }^{4}$ " horn tweeter with attractive silver finish trim Suitable for Hi -Fi monitor systems etc. Price $£ 5.99+50 \mathrm{p}$ P\&P. LEVEL CONTROL Comblnes, on a recessed mounting plate, level control and cabinet input jack socket. $85 \times 85 \mathrm{~mm}$. Price $\mathbf{£ 4 . 1 0}+\mathbf{5 0}$ p P\&P.

HIDTLIGHT CASED LOUDSPEAKERS

A new range of quality loudspeakers, designed to take advantage of the latest speaker technology and enclosure designs. Both models utilize studio quality constant directivity horns, extruded aluminium corner protection and steel ball corners, complimented with heavy duty black covering. The enclosures are fitted as standard with top hats for optional loudspeaker stands.
POWER RATINGS QUOTEDIN WATTS RMS FOR EACH CABINET
FREQUENCYRESPONS EEULLRANOE $55 M Z-2 O K H z ~$ FREQUENCY RESPONSE FULL RANGE $45 \mathrm{~Hz}-20 \mathrm{KHz}$ tblFC 12-100WATTS (100dB) PRICE E159,00 PER PAIR
iblFC 12-200WATTS (100 dB) PRICE \& 175.00 PER PAIR SPECIALIST CARRIER DEL. £12.50 PER PAIR
OPTIONAL STANDS PRICE PER PAIR E49.00 Delivery $\mathbf{8 6 . 0 0}$ per palr

PRICES: 150 W E49.99 250 W ¢99.90 400W E109.95 P\&P E2.00 EACH

THREE SUPERB HIOH POWER CAR STEREO BOOSTER AMPLIFIERS 150 WATTS $(75+75)$ Stereo, 150 W Bridged Mono 250 WATTS (125 Bridged Mono 400 WATTS $(200+200)$ Stereo, 250 W Bridged Mono Bridged Mono
ALL POWERS INTO 4 OHMS Features: Wigh \& low level inputs $t L$ \& R R level
high high \& low level inputs \& \& A level
controls \& Aemote on-off \& Speaker \& thermal protection.

OMP MOS-FET ROWER AMPLIFIER MODULES SUPPLIED READY BUILT AND TESTED.
 etc. When comparing prices, NOTE that all modela inciude toroidel power supply, integral heat Eink, glass fibre P.C.B. and
drive circuits to power a compatible Vu meter. All models are open and shor circult
THOUSANDS OF MODULES PURCHASED BY PROFESSIONAL USERS

OMP/MF 100 Mos-Fet Output power 110 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ 3dB, Damping Factor >300, Slew Rate $45 \mathrm{~V} / \mathrm{US}$ T.H.D. fypical 0.002%, Input Sensitivity 500 mV , S.N.R. 110 dg . Size $300 \times 123 \times 60 \mathrm{~mm}$. PRICE $\mathbf{8} 40.85+83.50$ P\&P

OMP/MF 200 Mos-Fel Outpul power 200 watts R.M.S. Into 40 hms , frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $50 \mathrm{~V} / \mathrm{uS}$, T.H.D. Iypical 0.001%, Input Sensilivity 500 mV , S.N.R. 110 dB . Size $300 \times 155 \times 100 \mathrm{~mm}$ PAICE $£ 64.35+84.00$ P\&P

OMP/MF 300 Mos-Fet Output power 300 watts R.M.S. into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}$ $-3 \mathrm{~d} 日$, Damping Factor >300, Slew Rate $60 \mathrm{~V} / \mathrm{uS}$ T.H.D. typical 0.001%, Input Sensillvity 500 mV , S.N.R 110 dB . Size $330 \times 175 \times 100 \mathrm{~mm}$. PRICE $881.75+85.00$ P\&P

OMP/MF 450 Mos-Fet Output power 450 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}=100 \mathrm{KHz}$ -3 dB , Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.001%, input Sensitivity 500 mV , S.N.R. 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $385 \times 210 \times 105 \mathrm{~mm}$. PRICE $132.85+$ E5.00 P\&P

OMP/MF 1000 Mos-Fet Output power 1000 watts R.M.S. into 2 ohms, 725 watts R.M.S. Into 4 ohms, frequency response $1 \mathrm{~Hz}-100 \mathrm{KHz}-3 \mathrm{~dB}$, Damping Factor >300, Slew Rate $75 \mathrm{~V} / \mathrm{uS}$, T.H.D. typical 0.002%, Input Sensitivity 500 mV , S.N.R. - 110 dB , Fan Cooled, D.C. Loudspeaker Protection, 2 Second Anti-Thump Delay. Size $422 \times 300 \times 125 \mathrm{~mm}$.
PRICE £259.00 + E12.00 P\&P
NOTE MOS-FET MODULES AREE AVAILABLEIN TWO VERSIONS
STANDARD - INPUT SENS SOOMV, BAND WIDTH 1OOKHZ,
PEC (PROFESSIONAL EQUIPMENT COMPATEBLE) - INPUT
775 mV, EAND WIDTH SOKHz. ORDER STANDARD OR PEC.

LOUDSPEAKERS

LARGE SELECTION OF SPECIALIST LOUDSPEAKERS AVAILABLE, INCLUDING CABINET FITTINGS, SPEAKER GRILLES, CROSS-OVERS AND HIGH POWER, HIGH FREQUENCY BULLETS AND HORNS, LARGE (A4) S.A.E. (60p STAMPED) FOR COMPLETE LIST.
McKenzie and Fane Loudspeakers are also availabie.

EMINENCE:- INSTRUMENTS, P.A., DISCO, ETC

ALL EMINENCE UNITS 8 OHMS IMP EDANCE

Q" 100 WAT R.M.S. MEE-100 GEN. PURPOSE, LEAD GUITAR, EXCELLENT MID, DISCO RES. FAEO. 72 Hz, FREQ. AESP. TO 4 KHz , SENS 97 CdB . 10.100 WATT R.M.S. ME1 $0-100$ GUITAR, VOCAL,
RES. FREO. 71 Hz , FREQ. RESP TO 7 KHz , SENS RES. FREQ. FIHz, FREQ. AESP. TO 7KHz, SENS97dB,
 $12^{\prime \prime} 100$ WATT R.M.S. ME12-100LE GEN. PUAPOSE, RES. FREQ. 49 Hz , FREQ. RESP. TO 6 KHz , SENS 100 dB . $12{ }^{\prime \prime} 100$ WATT R.M.S. ME12-100LT (TWIN CONE) WIDE RESPO MONHTOR. RES. FREQ 42Hz, FREQ. RESP. TO 10KHz, SENS 98 dB $12{ }^{2} 200$ WATT R.M.S. ME12-200 GEN. PURPOSE,
RES. FREQ. 58 Hz , FREQ. RESP. TO 6 KHz , SENS $98 d \mathrm{~B}$. RES. FREQ. 58Hz, FREQ. RESP. TO 6 KHz , SENS 98 dB. 12" 300 WAT R.M.S ME 12-300GP HIGH POWER B
RES. FREQ. 47 Hz , FREQ. RESP. TO 5 KHz , SENS 103 dB 15 , 200 WATT R.M.S. MET 5 -200 GEN. PURPOSE B RES. FREO. 46 Hz , FREQ. RESP. TO 5 KHz , SENS 99 dB 15 " 300 WATT A.M.S. ME $15-300$ HIGH POWER BAS RES. FREQ. 39 Hz , FREQ. RESP. TO 3 KHz , SENS 103 dB .
kisco,

EARBENDERS:- HI-FI, STUDIC, IN-CAR, EIC

ALL EARBENDER UNITS 8 OHMS (Except EB8. 50 A EB10.50 which aro du
$8^{\prime \prime} 50$ watt EB8-50 DUAL IMPEDENCE, TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CAA
RES. FREO 40HE FREO RESP. TO ${ }^{\text {IKH }}$, 10 SOWATT EBE $10-50$ DUAL TMPEDENCE TAPPED $4 / 8$ OHM BASS, HI-FI, IN-CA RES. FREQ. 40 Hz , FREO. AESP. TO 5 KHz , SENS. 99 dB . RES. FREQ. 35 Hz , FREO. RESP. TO 3 KHZ , SENS 9 . 12" 100WATT EB12-100 BASS STUD HIF! EXC RES. FREO 25Hz FREO RESP TO 3 KHz SENS OUC
FULL RANGE TWIN CONE, HIGH COMPLIANCE, ROLLED SURROUND
5\%*" BOWATT EB5-60TC (TWIN CONE) HI-FI, MULTI-ARRAY DISCO ETC.
 RES. FREQ. 38Hz, FREQ. RESP. TO 20 KHz , SENS 94 dB .
$8^{\prime \prime}$ GOWATT EBE-60TC (TWIN CONE) HI-FI, MLITI-ARRAY DISCO ETC. RES. FREQ. 40 Hz , FREO. RESP. TO 18 KHz , SENS 89 dB , RES. FREQ. 35 Hz , FREQ. RESP. TO 12 KHz , SENS 98 dB .
TRANSMITTER HOBBY KITS
PROVEN TRANSMITTER dESIGNS INCLUDING GLASS FIBRE PRINTED CIRCUIT BOARD AND HIGH QUALITY COMPO
COMPLETE WITH CIRCUIT AND INSTRUCTIONS
3W TPAMSMITTER $80-108$ MHZ, VARICAP CONTROLLED PROFESSIONAL
PRICE E14.05 + E1.00 PAP
FM MICRO TRANSMITTER $100 \cdot 108$ MHz Y YARICAP TUNED, COMPLETE WITH
VERY SENS FET MIC, RANGE $100-300 \mathrm{~m}$, SIZE $56 \times 46 \mathrm{~mm}$, SUPPLY sV battery.

- $=$ UNITS $_{\text {PRIC }}^{2}$

Tel 01702 ESSEX. SSE GTR 527572 Fax: 01702420243

Cut each end of the coil wire to a length of 20 mm approximately. Gently scrape off the insulation from the ends using a blunt knife blade or sandpaper. Do not use a sharp blade because the wire may be nicked and will then break at that point sooner or later. Solder the reed switch and coil wires to the PCB in the positions indicated ("C" for the ends of the coil and "RS" for those of the reed switch). Note that the reed switch should be left standing about 5 mm above the panel (see photograph).

Solder 5 cm pieces of stranded connecting wire to the points labelled "lights", "+12V", and "gnd". Bend the "lights" and " +12 V " wires over the short pieces of track leading to the coil connections. Solder them in position so that the wire provides a re-enforcement. This will ensure that the tracks can carry the current for both bulbs without problems. Complete construction of the circuit panel by inserting IC1 into its socket taking care over the orientation.

Adjustment and testing

The circuit panel may be housed in any small plastic box which can accommodate it. Drill a hole in the side for the wires from the PCB to pass through. Drill two small holes and mount the 3-section piece of screw terminal block on the side. Pass the wires leading from the PCB through the hole and, shortening them as necessary, connect them to the terminal block leaving some slack inside. Keep a check on which wire is which and label the terminal block accordingly.

Think about how the PCB will be secured in the box. However, do not attach it permanently yet since it may have to be removed to enable the number of turns on the coil to be adjusted. The PCB may possibly be attached using adhesive fixing pads. Alternatively, a small hole may be drilled in the large copper land area (above the buzzer position) to accept a nylon nut and bolt. If this method is to be used, a short stand-off insulator or plastic washer will be needed under the circuit panel. This will keep the soldered connections on the underside clear of the base of the box. If this is not done, the PCB could be placed under strain when fixing it down and it might crack.

Installing

Decide on a suitable place for the unit so that the buzzer wifl be heard without difficulty by the driver. A 9 V battery may be used to make the circuit operate and this would be helpful in finding a good site. The positive and negative battery terminals should be connected to the " +12 V " and "gnd" positions respectively on the terminal block. Note that the buzzer will be a little louder when operated from the 12 V supply. Check that it can still be heard with the engine running. Now decide on a suitable position on the dashboard for on-off switch, SW2. This should be a proper auto-type switch with a rating of 5 A minimum.

Attention may now be given to the external details. Locate the wire leading from the car wiring harness to the brake light terminal on the drawbar socket. The conventional colour for this wire is red. Cut it at a convenient point and extend the free ends to reach the chosen position for the unit. Use proper auto-type wire of adequate rating and make the joints using "snap lock" connectors which are available from any car accessory store. Where the wires need to pass through a hole in metal, a rubber grommet must be used. The end leading to the drawbar socket should be connected to the "lights" position on the terminal block. The other end,

which will be live when the brake pedal is pressed, should be connected to one of the switch terminals. The other side of the switch should be connected to the " +12 V " terminal on the unit. The "gnd" connection should be taken to a convenient nearby earth point.

Finishing off

Do not connect up the trailer yet. Switch on S2 and the ignition (if necessary). Press the brake pedal. The buzzer should sound. If it does not, there is a circuit fault and this must be investigated before proceeding.

If all is well, plug in the trailer. With both trailer lamps working the buzzer should remain silent. Remove one of the bulbs to simulate failure and operate the brakes again. The buzzer should now sound. If the buzzer fails to work with one bulb connected, it will be necessary to remove a turn or two from the coil. With care, this may be done without desoldering the reed switch. If the buzzer sounds with both bulbs working, it will be necessary to remove the reed switch from the PCB and wind a new coil with more turns on it. However, this is unlikely. Check operation with the engine running since then the current rises slightly.

Measure the position of the buzzer and drill a hole in the lid of the box to correspond. This should be a little larger than the hole in the top of the buzzer itself. Secure the PCB inside the box and check that it cannot move in service. Fit the lid. Mount the completed unit in position and check for correct operation.

Final note

Always remember to switch on the circuit before a period of towing. This should be made part of the routine such as immediately after the plug has been inserted in the drawbar socket.

STEWART OFREADING How Wheham hoad iteonma, Berks ract pl
Tel: 01734268041 Fax: 01734 351696

 CHELMER VALVE COMPANY

If you need Valves/Tubes or RF

 Power Transistors etc. ...then try us!We have vast stocks, widespread sources and 35 years specialist experience in meeting our customers requirements.

Tuned to the needs of the Radio Amateur
Chelmer Valve Company, 130 New London Road. Chelmsford, Essex CM2 ORG. England.
Telf 44-01245-355296/265865 Fax: 44-01245-490064

ROBOTICS!

LYNX ARM

MUSCLE WIRES
ascindung wres that CONTRACT WHEN ELECTRJCAllY HEATED orociucing a useful amount c
 Detatea Data and Project Book (128 pages) also avatiable separtiely and with Detux Wire ki.

SERVO - IR - LCD CONTROLLERS

mands trom your PC hoid servo in pos sion untl Looattec eic).
LCD display drivers Ail stancaro Hitach controler vypes uo to 4×20 characiers RS232 inour
\mathbb{R} programmable receivers |] outpul cnannels - accept any :V/HFicicontrolle up to 25 mA
Please call to recerve further details on any of the above products

MILFORD INSTRUMENTS

Creative Products for Enquiring Minds 01977683665 , Fax 01977681465

fobotice
 $t d$

Robotic Arm Kits TOYBOT - EDUBOT
5 Axis open Kinematic Robotic arm kits with superb precision CNC machined parts, PC controlled with WINDOWS Software and fully programmable. Can be interfaced with four external devices or other robots.

PIC Servo Controller

Controls up to 8 Servo Fully Addressable
features two in and out ports
for interfacing with up to 4 external devices or other controllers

Phone for a brochure and price list

Robotica

3 Park gate, GLasGow, G3 6DL
TELEPHONE: +44 1413532261 FAX: +44 1413532614

Practically Speaking

BY TERRY BALBIRNIE
This month we go back for a refresher on Ohm's Law

This month we continue with some calculations used in electronics. We shall look at Ohm's Law and how it may be used during the testing and development of circuits. Ohm's Law is probably the most important calculation in this type of work. Even if your maths is very rusty, it is worth learning to use it because you cannot get very far without it.

Ohm is where a volt lives

Suppose you wish to know how much current is flowing through a resistor in some circuit. You may, for example, wish to know that the current is not too high and draining the battery too quickly. One method would be to disconnect one end of the resistor from the circuit panel and connect a multitester set to a current range between the free ends. This would give a direct result but it would be very inconvenient to do. A better approach would be to connect the multitester set to a voltage range across the resistor. From a knowledge of the value of the resistor (using the colour code) you could use Ohm's Law to calculate the current flowing through it.

This method does not require any de-soldering and resoldering and so is much quicker to carry out.

Two out of three

Ohm's Law is a way of finding either the current, the voltage or the resistance by knowing the other two. It is expressed mathematically in the following three ways. The appropriate one is then used, depending on whether it is the current (I), the voltage (M) or the resistance (R) that you wish to know.

To find the current I (as in the above example) we use: $\mathrm{I}=\mathrm{V} / \mathrm{R}$
This means current equals voltage divided by resistance.
If we wish to find V we use:
$V=1 \times R$
Which means voltage equals current multiplied by resistance.

If we wish to find R we use:
$\mathrm{R}=\mathrm{V} / \mathrm{I}$
Which means resistance equals voltage divided by current.
You can then work out the result using a calculator or, if the numbers are easy, in your head.

You must remember that the current must be expressed in amps (not milliamps or microamps), voltage in volts (not millivolts or microvolts) and resistance in ohms (not kilohms or megohms). You will therefore need to convert any milliamps into amps, kilohms into ohms and so on (Practically Speaking deal with this last time).

Examples

A resistor having a value $2 R$ is found to have a voltage of 12 V across it. The current flowing through it will therefore be 12 divided by 2 or 6 A .

A resistor of value 8 R has a voltage of 2 V across it. The current flowing through it will be 2 divided by 8 or 0.25 A . Note that here it is vital to divide 2 by 8 and not 8 by 2 .

A resistor having a value of 4.7 k has a current of 4 mA flowing through it. The voltage across it will then be 0.004 multiplied by 4700 (having been converted into amps and ohms respectively) giving 18.8 V

A resistor is found to have a voltage of 16.8 V across it. The current flowing is 2.5 mA . The value of the resistor is then 16.8 divided by 0.0025 or 6720 ohms.

Note: if the resistance is left in kilohms and the current in milliamps, the calculations work without conversion. It will also work where the resistance is in megohms and the current in microamps.

There is no problem measuring the voltage across a resistor when it is connected to the supply direct. However, most circuits are more complex and involve other resistors which appear in series with the one in question. In such situations, it is important for the meter itself to have a much higher resistance than that of the other resistors. This is because a negligible current must flow through the meter. If this were not so, it would seriously affect the result. A digital multitester generally has a resistance (usually called the impedance for reasons which will not be entered into here) of 10 M or so and this will usually enable it to measure the voltage very accurately.

Measuring the voltage across a resistor

Visible Sound Limited

are proud to announce our new "Voice Command Module"

Based on the Sensory Devices RSC neural network speech recognition processor 20 individual digital word ID outputs on IDC header. Each output with an 'on' word and 'off' word giving you up to 99% speaker dependant recognition. Simply train the module with up to 40 words.
RS232 identification output of recognised word, upload and download of word lists.
Automatic gain control on microphone jack
$£ 55$ input. Runs off $9-12$ volt dc supply via 2.1 mm

H138A plug

Pic Programmer:

H137A $£ 25$ Programs PIC 16C71, PIC 16C84 and the new 8 pin PIC 12C508 and PIC 12C509. Connects to parallel port Kit K137A £24 PC compatible software F.O.C. when supplied with programmer.
ALL Prices INCLUSIVE of vat and delivery (UK Only) Same day despatch.
151-s, The Exchange Buiding, Mount Stuart Square, Cardiff, CFI 6EB.
Tel (01222) 488417 Fax (01222) 625797 hup:liwww, vstiec, demonco.uk

Components - PICs
12C508/JW £13.50, 12 C 508 -
04/P £2.30 12C509/JW £15, 12C509-04/P £2.70, 16C71/ JW £25, 16C17-04/P £6.99, 16C84-04/P $£ 6$.

We also have available a full range of PC I/O cards and accessories, Call for details.

BTEC approved TUTOR supported

DISTANCE
LEARNING COURSES in:
Analogue and Digital Electronic Circuits, Fibres \& Opto-Electronics Programmable Logic Controllers Mechanics and Mechanisms Mathematics

Courses to suit beginners and those wishing to update their knowledge and practical skills Courses are delivered to the student as self-contained kits
2x No travelling or college attendance is required
Learning is at your own pace
For information contact
NCT Enterprises
Barnfield Technology Centre
Enterprise Way, Luton LU3 4BU
Telephone 01582569757 • Fax 01582492928

GAREX ELECTRONICS
 VHF PREAMPLIFIERS

 16 dB gain, boxed ready for use, powe AIRBAND PREAMP by internal battery or external $9-15 \mathrm{v}$ DC, BNC connectors VHF MARINE BAND PREAMP $\mathbf{1 5 6 - 1 6 2 M H Z} \quad \mathbf{£ 2 9 . 9 5}$
 Moctel GA4-B. Covers $25-1300 \mathrm{MHz}$, typical gain 12dB (at 500 MH)) ; (other details as Airband model). $£ 35.95$ Sults our preamps, Active "NOMAD", etc. $3 / 4.5 / 6 / 67 / 9 / 12 \mathrm{v}$ at 300 mA FLEXIRLE 1/4 WAVE AERIALS © 8.95 Discover a whole new world of signals full length $1 / 4$ waves are seyeasal dB better than "rubber VHF moders
UHF models UHF models.

> PMR SPARES

GAREX ELECTRONICS

Unit 8, Sandpiper court, Harrington Lane, Exeter EX4 8NS
 Phone: (01392) 466899 Fax: (01392) 466887

TRAIN TODAY FOR A BETTER FUTURE

Now you can get the skills and qualifications you need for career success with an ICS home Study Course. Leam in the comfort of your own home at the pace and times that suit you. ICS is the worl's largest, most experienced home study school. Over the past 100 years ICS have helped nearly to million people to improve therr job prospects. Find out how we can help YOU. Post or phone today for FREE INFORMATION on the course of your choice.

Motorcycle Maintenance

FREEPHONE 0500757375
Or write to: International Correspondence Schools, FREEPOST 882, 8 Elliot Place, Clydeway Skypark, Glasgow, G3 8BR. Tel. 0500757375 or Tel/Fax: Ireland 012852533 Please send me my Free Information on your Electronics Courses

BNAT ATES FOR THE HOME BREWER by Marc Ollosson

Higher Education in electronics

SPECLAL

If you are looking to go on to higher education in Electronics or Computer Science, this is the season to make up your mind what, where and how.

If you are one of ETI's younger, and maybe newer, readers you may be thinking about higher education, and whether to turn your main interest into a career.

You may not be studying electronics at school. The trend in recent years, especially in state schools in the UK, has been away from a few people doing elec:tronics at GCSE level and towards everyone taking National Curriculum Design and Technology, and Science, both of which inlcude some electronics.

The lack of a specialised electronics course at GCSE or ' A ' level is not a barrier to higher study in electronics, engineering or computer science, especially if you are already an active hobbyist reading and building projects. There are numerous courses open to students with no specialist qualifications, and as many colleges also run introductory or foundation courses leading to degree study in electronics and engineering, you can go all the way if you are willing to dedicate the time and effort.

Not long before time of writing, a major semiconductor manufacturer opening new plant in the UK and expressing confidence in British design expertise nonetheless expressed concern about the lack of students studying Physics at school - an important requisite for high-level design work. But it is possible to make up study in these areas during Higher Education - something that engineering students may want to look into as they choose their courses.

To get a clearer idea about what qualifications you might need to work in a certain area of electronics, or, perhaps, what kind of employment your study could lead to, the first stcp is your school careers officer. They should be able to give a broad view of what kind of employers are looking for elestronics and engineering qualifications. Following this, it is worth finding out which colleges run the kind of courses you want to pursue - some reference works are listed at the end of this article - and writing or phoning for prospectuses as soon as possible. This will not only give you an overview of what the college teaches, and the kind of course madules you can take, but some prospectuses give information about which areas of industry your study can lead to.

Once you are forming your ideas, it can be thoughtprovoking to identify companies that employ technicians, engineers and designers and writing to (or phoning) their personnel departments with a general enquiry asking what kind of qualifications they are looking for. With large companies it may be more appropriate to write. With smaller companies, you are more likely to get a response if you (or someone in your family) makes a phone call. Make it clear that you are only looking for information and not fishing for a job. Take notes and try to keep calls short and to the point; all companies, especially small one:s, avoid "time wasters". Of course, if you are lucky (or unilucky, depending on your view) you may get through to a boss who loves to tell people about the business. Possibly more than you ever knew there was to know!

Your school will introduce you to UCAS (Universities and Colleges Admissions Service), but if you are not at school, you can write after August 1 of the year you wish to enter college to UCAS, PO Box 28, Cheltenham, Gloucester GL50 3SA. You can also get assistance from your local Careers Office - look in your local phone book under, for instance, Careers Services. There are professiorial Careers Guidance companies, but look for local authority-run Careers Offices which will see you without charge.

Looking for a college

Higher education colleges offer a variety of courses distinct to each college, from foundation courses and GCSEs up to degree level and beyond. Which you are looking for depends on your qualifications and experience so far, the kind of work you hope to do and the amount of time you want to dedicate. Broadly, if you have ' A ' levels and can study for three to four years further, you can aim for a degree course. One criticism aimed at degree courses in the past was that while the student studied all-imporlant theory to a high level, practical experience and, particularly, experience of business and industry was often lacking. The Uriversities' answer was that students are expected to be bright and flexible enough to gain additional practical and business skills quickly when they go into employment. There is no substitute for practical experience on the job, but experience is not a substitute for an all-round education, either.

They need to complement each othe: However, many Universities are now more conscious of the reed for industrial awareness and take steps to irclude this. The other side of the argument is that for dedicated design engineers, an extensive grasp of mathematica: engineering principles is much more important than busiriess awareness, which they can gain in working life if they nave any aptitude for it. There is much truth in this view, high-level engineering is demanding. We would say, though that unless you are aiming for an esoteric career in academic elec:ronics or physics, that choosing a higher education course that shows an appreciation of industr! needs will give you a better grounding. There is nothing to beat having an understandirig of what is actually needed by your company's customers.

Wherever you hope to enter the higher education system, fird cut from your likely colleges what their attit u de to industry is and whether any out-piacements or industrial awareness motules are included in your course. This may help you in your final choice.

Highbury College

Among the prospectuses that ETI looked at this year, Highbury Ciallege in Portsmouth ciffers a range of technolegy courses from foundatica level up to predegree or a vocational tegree equivalent. Highoury's Engineering (Electronics) ETEC

GNVQ Intermediate cne-year course offers a brcad-based introduction to Electronic Engineering, including relevant GCSEs if required, tor students with no formal applications, leading straight to working life or on to A levels or the twoyear Advanced BETC GNVQ course - which itself leads the student into working life, or on to Degree or BTEC: Higher National Diploma level. The BTEC HND is a two-year course offering a combination of ajademic and practical study in partnership with Potsmouth University, requiring five GCSEs (grade C or above) ncluding Maths and a science, together with a relevant A or AS level pass, or the relevant BTEC Certificate or Diploma
These are quite stanciard entry qualifications for Degree level, and the BTEC HNC is roughly equivalent to a Deçree. A BTEC qualification is generally regarded as more vocational and less theoretically-based than a University; some employers may regard this as an advantage, but it you want to do design or research, or move into higher mariagement you should consider entering for a degree course rather than an HNC as soon as you qualify.

Highbury also offers a two-year BTEC National Diploma at a slightly higher level than the Advanced GNVQ as a preparation for Degree stucy or working life. There is also a one-year introductory course in Electronic and Microcomputer Tecrinology for unqualified applicants as a preparation for further study or trainee posts, including the Armed Forces. There is an Equivalent set of Mech:anical Engineering courses, as well as more general A lever, GCSE and University Foundation courses on the same site. Another advantage of technically-based colleges like Hightury is that if you want to try your hanc at video production (ar journalism!), or get your hair curled by a fellow-student, you are very likely to be able to do so. There is also plenty of provision for student guidance, careers informatior, etc. and the college is happy for prospective students to call or visit the Student Advice Centre for advice before apply.ng

University of Hertfordshire

The University of Herfordshire is based on several separate campuses in Hatfield Hertford, St. Albans and Watford in Hertfordshire, about 50 miles north of London. The Faculty of

Engineering is based at the Hatfield Campus in Hatfield, and offers several BEng degrees involving electronics studies, plus two BSc degrees, and several Masters (MEng) degrees. The engineering courses aim to meet the needs of project management and creative application of technical knowledge for useful ends, and students will undertake case studies, project work and laboratory work, as well as opportunities to work in teams with students from other disciplines. Many of the courses include an opportunity to study a European language, and there are some opportunities for industrial placements and study in Europe and the USA. There are alternative routes into engineering for people without standard entry

qualifications; several degrees are also offered as extended degrees with a preliminary year. The preliminary year also addresses important general topics such as teamwork. There are Electronics and Manufacturing programmes available within combined modular degrees, again for students who are not following a traditional maths and physics based route.

The University's BEng courses include BEng Honours Electronic Engineering, BEng Honours Communications Systems, BEng Honours Digital Systems, BEng Honours Electrical and Electronic Engineering, BEng Electrical Engineering, BEng Honours Electronic Engineering with Medical Electronics, BEng Honours Power Electronics and Control and BEng Honours Computer Aided Engineering, all of which either fully accredited by the Institution of Electrical Engineers (IEE) and lead towards Chartered Engineer status, or are accredited qualifications by the IEE. There is also a BSc Honours in Medical Electronics or Medical Electronics with German, which can lead towards Chartered Engineer status upon graduation, and a BSc Honours in Engineering Management, in combination with the University's Business School to train managers capable of handling the resources of modern manufacturing and engineering industries.

All these courses can be undertaken as an Extended Degree, and most of them have a required or (usually) optional Sandwich Year, with a paid industrial placement. A Sandwich Year provides practical experience in a real industrial environment, working with engineers, managers and technicians already case-hardened to the job and therefore with a somewhat different slant on it. Indeed, some feel that one benefit of college study is that students can acquire knowledge and experience without the pressures of commercial life - the two must in time be combined into a grasp of practical engineering.

The University of Hertfordshire also offers several computing BSc Honours degrees, mainly four-year sandwich courses, including Computer Science in Europe, currently based around German. Students learn German, do a six-month industrial placement and a year of study in Germany, and gain the Diploma Informatiker (German BSc.) as well as the UK BSc. As second language capability is now a very valuable asset in
building a career, courses of this type (which tend to have a limited number of places) are much sought-after.

The faculty of Information Sciences also does a number of two-year (three years if Sandwich) HND courses in computing, which can lead to a final year degree course for students with good passes. A network of approved NVQ assessment centres at the University give students the opportunity to gain recognition in areas such as management, business administration, information technology, etc. as complementary to their degree courses.

The University encourages people who may not have traditional qualifications to enquire about routes. As with many coileges, a certain amount of advice about grants, application, how to build up qualifications for a career, and so on can be given to prospective students, especially those who are not coming from school and may not have access to this information.

Aston University

Aston University in Birmingham has a well-established reputation for mathematics and engineering, and prides itself in particular on two benefits: its heavy investment in high-quality computing facilities for all its students, with IT integrated into all degree programmes - indeed, it is proud to be able to claim that students "cannot avoid developing high-level skills in computing and information technology" - and a graduate employment "second to none", with a higher proportion of graduates finding permanent employment within six months of graduating than any other British university. There is also an emphasis on optional Sandwich programs for practical professional experience.

Aston offers BEng degree courses in Electrical and Electronic Engineering, Electronic Engineering with Management studies, ElectroMechanical Engineering, Electronic Engineering and Computer Science, Communications Engineering and Electronics combined with a Business, Language, Science or Social Science subject. These are available as three year courses, or four years with a Sandwich year. Electrical and Electronics, and ElectroMechanical also have a foundation year (STEPS) available. The first year of all the Electronics and

Computer Science courses cover the fundamental principles of electronics engineering, physical science and computer science, so that whatever direction the student chooses to pursue in the second year and after, a grounding across all the related disciplines is firmly in place.

Arguably, as school courses become less specialised, firm grounding early in a degree course is increasingly necessary. As far back as the 1970s, when new math courses (some of them ill-fated) were being introduced into British schools, engineering students found that any gaps in their maths could not be filled by their University courses, and they had to make up lost ground as best they could. These days, good colleges are prepared to make certain that students are properly grounded during their course. A good study record at GCSE and A level, or any parallel qualifications offered, is still necessary for degree study at most Universities, but help can often be obtained in weaker subjects.

Aston's degree courses are accredited, as should be the case with good degree courses, by the IEE or the British Computer Society, or in the case of newer courses will be submitted for approval at the relevant body's next visit to the University. Aston has a further Open Day this year on Monday 29th September. University Open Days usually take place in late April/early May and September

Other factors

When you depart on a Higher Education course, you will be spending between two and four years of your life in the neighbourhood of your college. If you are leaving your family home for this first time, this may also be your first major change of environment. College is rightly seen as a half-way house to independence, especially if you are not living on the College campus (the site where most of the teaching faculties and living accommodation are) throughout your course. Of course your choice of the right course and college and course is the most important consideration, but your choice of environment is not trivial. There are likely to be a number of good colleges offering courses that you want to follow, so look at them and consider where you would personally be happy to live. If you are not keen on outdoor pursuits, you may feel cut
off on a campus deep in the country. If you are an outdoor type, you may feel equally cut off in the middle of a large city. Some people prefer to live away from the main campus (if one exists; in London, for instance, college accommodation is scattered throughout the city and suburbs); you may be expected to find your own living quarters for at least one year of your course, as there is still a shortage of college rooms. So it is a good idea to look for somewhere you will be happy to live - as long as the course takes priority.

Resources

Even small local libraries usually have reference books listing coileges and courses for the current or previous year. Some suggested sources are (usually to be found in the Reference section under Education - look under R378 and R370 for a start):

The Times Good University Guide edited by John O'Leary (Times Books)

The Big Official UCAS Guide to University and College Entrance (Letts Study Guides with The Independent)

Which Degree 1997 - Volume 2: Engineering, Technology and Geography and Volume 3: Science, Medicine and Mathematics CRAC Student Guide (Hobson's Publishing)

DOHE (Directory of Higher Education): How to Choose your Higher National Diploma Course edited by Eric Whittington (Trotman \& Co.)

Don't be daunted by the mass of information that some guides offer (the UCAS guide, in particular, is perhaps more suited to careers officers than new students), but use them to pick out the addresses and phone numbers of colleges offering courses that appeal to you, and then contact the colleges themselves for their Prospectuses, which will give you their up to date entrance requirements and other details in a format designed for students. The DOHE Guide is handy for pointing out which colleges offering HNDs also have "transfer" courses to degree level.

Next month

Next month we will be looking at some more colleges, including some Masters and other courses for postgraduates and people returning to college from working life.

To obtain prospectuses from the colleges above, contact Highbury College on 01705283373 or write to Highbury College, Cosham, Portsmouth PO6 2SA; contact the University of Hertford on 10707284000 or write to the University of Hertfordshire, Hatfield Campus, College Lane, Hatfield, Herts AL10 9AB; contact Aston University on 01213593611 or write to Aston University, Aston Triangle, Birmingham $847 E T$ (email prospectus@aston.ac.uk, Web Site http://www.aston.ac.uk.home.html

EDWI
 ELECTRONIC DESIGN FOR WINDOWE NON CCMMERCIAL
 TEACHERS... STUDENTS. HOME USERS... etc.

Your opportunity to save feffe's

With this non commercial version of our soft ware produced for single users, this is ycur dream come true!

Software as you are probably aware hás no real material value, but is priced to recaver the enormous costs of development. The software hcuse tries to evaluate how many units will ;ell at a specific price to generate the amount needed and produce a healthy profit.

As the electronics marketplace shrinks, cue to expanding competition, it means that, in rea ity. powerful user friendly software, such as EDWin, must be very highly priced and therefore remains inaccessible to the individual and small busir esses.

Until today ... Norlinvest, one of the bigjest software houses in the electronics secto; has decided to put onto the market a 'Non Commercial" version of their EDWin sofeware, which is known worldwide.

This is the first truly seamlessly integrated swite of software running in all Windows formas simulation, schematics and PCB design, At last allowing amateurs, teachers, students, . . in a work "individual" to take advantage of current lechnology, without any restriction.

To avoid misunderstanding - there is no difference between the industrial version of the scftware and our Non-commercial version, except the price. In other words; industry is subsidising the
development cost and now the individual can take full advantage of this.

Computer Compatibility

To run the program you will need:

- Windows 3.x, Win95 or Win NT,
- a min. 386 processor $(486+$ rec. $)$
- 8 mb of RAM
- CD-ROM Drive

Complete End-to-End CAE/CAD system. Simultaneous Schematic and Layout generation Automatic Front and back annotation. Intuitive hierarchical menu structure. Mouse or keyboard commend activation. Macro operations.
Real-time display of: ratsnest, active nodes,
single line or true trace width.
On-line heip
Auto reconnect.
Full Integration of Schematic and Layout.
Automatic file backup.
User definable text sizes.
DXF in and output.
Screen hardcopy
Library viewer with editing possibility. Switching on/off possibility for tool and scroll bars.
Visible schematic and PCB symbols by editing. Monochrome mode for better print resolution. Bitmap support for loading logos,
documentation, etc. Can be used in hierarchical as well as in simple schematic or PCB design. Maximum number of nets: 16,000 . Maximum number of nodes: 32.000 . Maximum number of bend points: 64.000 Maximum number of connections: 64,000 Maximum number of symbols: 32,000 .
Maximum number of components: 32,000
Maximum number of multi-segment traces: 32,000 , with a total of 64,000 trace segments. ANS//IEC libraries
Full Gerber, NCD, pic and place output
Schematic Capture
Up to 100 schematic sheets.
Up to $64^{\prime \prime} \times 64^{\prime \prime}$ sheet size.
Industry standard sheet sizes.
Rotate, scale and mirror symbols
Real-time dragging of components and wires.
Automatic package and pin assignment.
Orthogonal and free mode manual routing.
Automatic bus annotation.
Block save, load, move and delete. Direct access to mixed mode simulation. Autorouting of connections.
Merging and splitting of nets possibility. Definable line width, aiso for bus-lines.
Swapping of component positions.
Automatic component renumbering by swapping.

PCB Layout

32 layers (28 route layers, 2 silk-screen layers (front and back), 2 soldermask layers (front and back)).
User definable trace sizes
User definable pads.
Curved traces.
Curved traces.
1 mil grid resolution - Fine grid 10 micron. SMT, fine line, analog support.
Component repeat. rotate and mirror.
Components "Move by name"
Component, gate and pin swap.
Automatic component renaming.

Trace repeat.

On-line, multi-layer routing with automatic via insertion.
Pin-to-pin, free or 45 degree routing.
Change segment side and width, trace side and width.
Fast interactive generation of ground planes with user definable cross-hatch or solid fill. Automatic ground plane with thermal relief Automatic
insertion.
insertion. Automatic DRC with user specified parameters.
Automatic DRC with user specified parameters.
Electrical connectivity checking.
Linear rotation of symbols.
Gerber input read and use possibility.
Built-in interface for Spectra 6.0. Max route 6.0

and Arizona Autorouter

Bitmap functions (logos, drawings,
Sophisticated database viewer
Mixed Mode Simulation
AC analysis (Frequency domain).
DC analysis (Linear/non-linear).
TD analysis (Time domain).
Diagram generator.
Dynamic parameter definition of active and passive components.
Output graphs displayed on screen, hardcopy or placed on schematic.
Oscilloscope function.
DLL based analog/digital simulation primitives, modelling language and library creation tools. Built-in model generator for discrete devices.

Please Note: Some of the above are ONLY provided on the De Luxe 3 Version. EdSpice and Thermal Analysis are available as bolt-on extras.

ACORN ARCHIMEDES WORLD 13 issues UK: WAS £48.75, NOW £39.75, YOU SAVE £9, Europe: $£ 60.50$, Overseas: £62.50, USA: $\$ 100.00$

Now this just has to be a good deal! Not only will you save a considerable amount of money. but your postman will also deliver the next 13 issues of your favourite electronics magazine directly to your door - with no fuss, no hassle, and no future price increases.
So go on, subscribe now, save your shoe leather, and up to 70p per issue. Here's why YOU should subscribe to either GTI, Ham Radio Today or Acorn Archimedes World:

- FREE home delivery in the UK.
- A saving of up to $£ 9$ a year.
- Price protection - you won't pay any more if the cover price goes up.
- Guarantee receiving every issue.

This is one deal where you really can't lose. REMEMBER, it's always cheaper to subscribe!

All savings are based upon buying the same number of issues from your newsagent, UK only.

The cover price of ETI has now risen to $£ 2.50$ BUT you can still subscribe at the old price - if you order today! After this issue we will have to charge a new, higher rate - so take advantage of this offer now!

SUBSCRIPTION ORDER FORM
YES, I would like to subscribe to (please tick):
Acorn Archimedes World Ham Radio Today
E.T.I. for the next 13 issues (all subscriptions will start with the next available issue, unless extending).
The total value of my order is $£$. \qquad I enclose a cheque/PO payable to 'Nexus Special Interests', or please debit my Access/Visa/Mastercard/AMEX account:
Card No:

\square Signature
Your Details:
Name: Mr/Mrs/Miss Initial:............. Surname: \qquad
Address: \qquad
Post Code:
Tel no: \qquad
Please return, together with your payment, to: Nexus Subscriptions, Tower House, Sovereign Park, Lathkill Street, Market Harborough, Leics LE16 9EF

SPEED CONTROL in DC Motors

PART ONE

Abstract

When David Ponting gained possession of a high-quality reel to reel recorder, all he had to do was create a constant-speed capstan drive suitable for both sides of the Atlantic. So began the experiments to find the best control circuit.

IIt was a most magnificent machine and I was being given it for nothing! It seemed that no-one else even wanted to give house room to this ancient but truly beautiful Rolls Royce of a reel-to-reel tape recorder. It was in excellent condition.... except that the all-important capstan motor had burnt out. The other two motors which provide the spooling and tension functions were fine, but the capstan motor which has to turn at a very precise and constant speed under a varying load no longer existed.

The original motor was a synchronous 115 volt $A C$ type whose speed was locked to the American mains frequency of 60 Hz . So even if I could replace it with a new one, the tape recorder would still not operate properly in England: any recording made on it would be non-standard and could only be replayed on the same machine.

So I started to look for circuits which are designed to drive small AC or DC motors at very constant speeds. I tried electronics magazines, past and present. I searched through collections of circuits in numerous books. I found nothing. There were many circuit designs that allowed a potentiometer to control and set the speed of a motor to the required value, but I found none that then kept that speed constant as the loading on the motor changed. I began to think that I would have to fit

Figure 1: block diagram of a feedback loop
an excessively large motor whose power would hardly notice a small varying load.

But surely there must be a better answer than that? I decided that if there were no tried and tested circuits available, I would have to start from scratch.

It quickly became clear that some sort of feedback loop (figure 1) was going to be required.

The feedback loop

The speed of the motor has to be measured in some way, and that measurement has to be compared with a speed standard. For example, suppose we want a motor to rotate at exactly 1000 revolutions per minute. We switch the motor on, count the number of revolutions the motor is actually making, and then compare this with the required 1000. If the measured figure is 999 or smaller, we can use the difference from 1000 to speed the motor up; but if the measurement is 1001 or larger, we can use the error to slow it down. If the revolution counter is measuring exactly 1000, we can turn the power to the motor off and not turn it on again until the speed drops to 999 . We could arrange that the motor is braked if the speed exceeds 1000, but in practice loading and friction will automatically provide braking. So the power to the motor can be off both when the speed is exactly 1000 and when it is higher.

Having got that far in my thinking, I began to look around for what motors are available and soon discovered an advertisement which offered a DC motor with a fitted 'tach' (tachometer). In addition, the advertisement said that the motor operated from 6 to 21 volts, with a speed of 2900 rpm at 12 volts $(300 \mathrm{~mA})$ and 5300 rpm at 21 volts $(380 \mathrm{~mA})$. This told me that without any control circuit, the speed of this motor when unloaded depended directly on its supply voltage.

I responded to the advertisement and, when my motor arrived, I found that there were four connectors, two to power the motor and two which were the output of the 'tach'. Initially I was not sure what this output would be, and so I looked at it on an

Figure 2: the first control circuit

Figure 2a: the component layout for the first control circuit
oscilloscope. As I had suspected, it was a very regular sine wave whose peak-to-peak voltage was completely independent and floating with respect to the power supplying the motor. Clearly this tach was just a small AC generator driven directly by the shaft of the motor. The original advertisement had included the additional information that "the tach produced approximately 3.15 volts per 1000 rpm". I was able to confirm this experimentally when I found that at 1000 rpm the output of the tach was 3.2 volts rms .

Much more important than the value of this voltage is the fact that as the speed of the motor increased, the peak-to-peak AC tach voltage increased as weil. Clearly the size of this voltage is a measure of the speed of the motor.

So, if the tach voltage can somehow be compared to a fixed voltage which represents the required speed, our aim of a motor which rotates at constant velocity under varying loads is achieved. This led me to my first useable control circuit (figure 2 is the circuit and figure 2 a is the component layout for this board).

How it Works

As connected, the output of ICl , an ordinary LM 741 op-amp, is high (within a couple of volts of 24) as soon as the power to the circuit is applied Consequently Q is switched on via R4 and the motor starts to turn, drawing its power via R7.

Driven by the motor, the tach starts to generate an increasing $A C$ voltage. This is rectified by the bridge, smoothed by C5 and reaches pin 2 of IC1 via P2 and R2. At pin 3 of 1C2 is a fixed voltage set by P1.

Eventually, if the 24 volt supply is great enough, the motor will spin so fast that the rectified and smoothed DC from the tach into pin 2 of ICl will exceed the set voltage into pin 3 . When that happens, the output at pin 6 will go low (within a couple of volts of zero), Tl will switch off, and the motor will start to slow down until the voltage at pin 2 drops below that at pin 3 when the whole process repeats itself.

In effect, the motor is supplied by pulses of power resulting in its rotating at constant speed even when the loading on the motor changes. When that happens, the pulses just get longer, supplying the motor with greater power. The final speed of the motor can be controlled either by adjusting P1 or P2, or both.

R3, C2, C3 and C4 de-couple the supply to the motor from that to the control circuit. R7 is a 1 -watt current limiting resistor, and should be of a higher wattage if the current to the motor exceeds 1 amp . R6, CG and C7 limit the electronic noise produced by all switching circuits similar to this. DI is an important component as, with a highly inductive load like a motor, every time the power to the motor is switched off, a

Figure 3: the 4046 circuit

Figure 3a: the component layout for the 4046 circuit
reverse voltage is generated in the motor's windings, which would destroy the transistor if the diode were not there to clamp this voltage to the 24 volt rail.

Success and the first problem

Using this rather straightforward circuit, a very stable and relatively constant rotational speed can be achieved. For the tape recorder I was trying to restore, transporting the tape at the standard speed of 7.5 inches per second required the motor to rotate at 1800 rpm . Using this circuit, I could set the motor to 1800 rpm when it was unloaded (200 mA), and the
rotational speed was only reduced by 8 rpm when the motor was heavily loaded and close to stalling (greater than 1 amp). Further, driving the motor by this pulse method (which is called pulse-width modulation, or PWM), ensures that the motor starts readily, has a high torque as it starts to rotate, and continues to provide that high torque when it reaches its constant speed.

So this motor, driven by the above circuit, seemed to meet all my requirements for constant speed. But I quickly discovered that there was one major problem: if the motor was run for an extended period of time, its speed increased away from that set by the standard. In practice, starting from cold at a set 1800 rpm, the speed had increased to 1910 rpm after running for about an hour or so.

The reason for this is annoying but interesting. The current passing through the main windings causes the motor to warm up. This results in the windings of the tach coils also becoming warmer. When copper is heated, its resistance increases and the result is that the output voitage of the tach decreases. Consequently, the motor speeds up to produce a voltage to match the "standard". If the motor could be cooled so that it never became warmer, this circuit would provide the necessary accuracy to run a tape recorder. As it is, someone with perfect pitch would be only too well aware that the key of music played on the machine would increase in pitch by about a semi-tone after running for half an hour. However, if your need for (relatively) constant velocity is met by a motor whose speed variation is no more than about +6 percent after running for an hour and then remains more or less constant, the above circuit is for you. Unfortunately it was not sufficiently accurate for me.

So it was back to the drawing board.

AC frequency

It had occurred to me when first checking the tach on my motor that not only did the rms voltage increase as the motor's speed increased, but so did the frequency of the AC signal. To
date I had concentrated on the voltage increase because the comparison of two voltages is so much easier than the comparison of two frequencies. But the latter clearly became the route I was going to have to take since, unlike voltage at a given speed, the frequency of the tach output was independent of the temperature of the motor's windings.

By experiment I found that at a speed of 1800 rpm , the frequency of the AC output from the tach was (coincidentally) 180 Hz . Now I had to consider what I should use as a comparator and how I should obtain an adjustable frequency which would become my standard.

It was at that point that I remembered that I had recently done some work on a little used but useful 4000 series CMOS chip, the 4046 . This IC is generally employed as the basis for a phase-locked loop, a not-so-dissimilar function to what I wanted.

The 4046 effectively includes two independent exclusive-or gates, both having pins 3 and 14 as common inputs and pins 1,2 and 13 as outputs. Now both exclusive-or and exclusivenor gates can be thought of as frequency comparators. Consider the two-input, exclusive-nor gate: when both inputs are the same, the output is high, ie when the frequency and phase of each signal into the inputs are identical, the output is high; as soon as there is any difference between the two inputs, the output is low more often than it is high. It seemed like a promising start.

In addition, the 4046 has an on-board voltage-controlled oscillator, a VCO. With a couple of resistors and a single capacitor, a varying voltage into pin 9 will reappear at pin 4 as a corresponding variable frequency. I found that you get a similar effect if you fix the input voltage and vary one of the resistors.

How the 4046 circuit works

Looking at figure 3, the tach output eventually enters the 4046 at pin 14. Using this input, care must be taken to ensure that the signal here is noise-free. Consequently, to ensure a clean square wave, the output from the tach is processed through the two resistor/capacitor pairs of R4/07 and R2/C4, and the two gates, N4 and N3.

Input pin 3 on the 4046 is joined directly to pin 4, the output of the on-board oscillator. As described above, the frequency of this VCO is determined by the values of the two resistors into pins 11 and 12, the value of the capacitor joining pins 6 and 7 , and the DC voltage at pin 9.1 wanted the output of the VCO to have the relatively low value of 180 Hz , so pin 9 was held at zero volts and I then found that by adjusting the resistance of P1 at pin 12, I could achieve an output frequency of 180 Hz at pin 4.

The final output from the 4046 I took from pin 1 . This is essentially low when the frequency into pin 14 is less than that into pin 3 , is high when the two inputs receive equal frequencies, and is mainly high when the frequency into pin 14 exceeds that into pin 3. This represents the reverse of what 1 wanted, hence the use of gate N2 of 1C2, used here as an inverter. Gate N 1 is unused and so its inputs are tied low to prevent random switching.

The motor's power supply is switched by a mosfet transistor, type IFR 510, and the rest of the circuit around the motor helps to limit switching noise.

The positive supply to the motor's circuit is critical this should be set high enough so that the motor will speed the revolutions per minute required and there lock with the signal, but it should not be so high that the motor speeds through the locking point before it can be stabilised by the clock.

AN5521	1.35	STK73410/2	5.95	TEA2026C	4.50
AN5732	1.40	STK73605	4.50	TEA5170	1.40
AN6327	9.85	STR441	18.99	TUA2000-4	4.25
AN6677	8.50	STR45 \dagger	29.99	U884B	2.35
BA5114	1.55	STR3125	5.50	UAA1008	3.00
BA6218	1.85	STR42才1	5.50	UPC1178	1.05
BA6219	1.20	STR4090	11.15	UPC1182H	5.15
HA11423	1.65	STR20005	5.00	UPC1278H	2.20
HA13119	2.50	STR40090	4.00	UPC1420	4.50
KA6210	4.99	STR50103A	3.85	UPD1937	3.00
LA3220	0.60	STR54041	3.75	25A814	0.71
LA4183	1.35	STR58041	3.75	25A839	1.40
LA4445	1.90	STR80001	6.00	$25 A 1062$	1.00
LA4495	1.40	STR1706	4.75	ELECTRO	
LA4588	2.55	STRD1806	4.50		
LA7835	2.35	STRD6008	10.00	250 V Working	
LB1415	2.25	TA227	1.85	1UF (5/pack)	
LM301	0.25	TA7271	2.50	4.7UF (5/pack)	1.00 1.50
LM317T	1.50	TA7280	2.25	10UF (5/pack)	1.70
$\mathrm{M} 49 \pm \mathrm{BBI}$	4.75	TA7281	2.20	22UF (each)	0.40
M49BBI	6.75	TA7698	5.00	33UF (each)	0.56
M51393	5.95	TA8200	3.50	47UF (each)	0.65
M58655	3.30	TA8210	3.00	100UF (each)	1.28
MB3730	1.70	TA8214	3.00	400V Working	1.28
MB3756	8.00	TA8215	3.00	1 UF (5/pack)	
STK078	6.00	TA8205	3.95	4.7UF (5/pack)	1.10 1.50
STK435	4.00	TA8659	13.00	10UF (each)	0.70
STK461	10.50	TA75339	**	22UF (each).	0.75
STK2250	7.45	TDA3500	4.99	4.7UF (each)	1.40
STK4121/2	7.00	TDA3645	8.00	4.7UF (each)	1.40
STK4141/2	5.50	TDA3650	8.99	IC-DATABA	
STK4142/2	6.50	TDA3850	18.99	FLOPPY	
STK4162/2	6.25	TDA4400	1.75	The most important functions of 48000	$1 \text { data } 8$
STK4171/2	8.10	TDA4500	3.50	28 k Transistors / Tria	oppy ${ }^{\text {+ }}$
STK4191/2	8.50	TDA4505A	4.10	disk only £1	pavat
STK4352	6.20	TDA4505B	4.10	TEST CD2	
STK4372	5.65	TDA4505M	5.25	This CD can be used	rols CD
STK4803	7.05	TDA4505K	6.15	$\text { - Running lime } 30 \mathrm{~min}$	
STK4843	7.05	TDA4660	4.50	Reclangle/white \& pint	
STK5315	5.85	TDA4950	1.40	Complete with instruct	
STK5332	1.80	TDA5660P	2.50	TEST CD3	9 each
STK5338	3.25	TDA7072	3.99	With his CD a technic	
STK5361	4.15	TDA8370	14.00	control \& adjust the el	1 data
STK5372	2.85	TDA8405	8.00	of CD players in a min	of time
STK5372H	4.15	TDA8732	5.95	will inprove the repair	in
STK5412	3.75	TEA2018A	1.50	the laser unit.	9 each
STK5471	3.85	Please phone us for the types not Irsted. Please add 60.p post \& packing and men add 17.5. VAT to the total. Callers by appointment only			
STK6732	14.00				
STK7226	7.50				
STK7308	4.05				
STK7308	4.05	J.J. COMPONENTS			
STK7348	4.05	E The	Rear of 243247 Edgeware Road,		
STK7356	4.75		Collinda	London NW9	
STK7004	6.50		Tel: 01812059055		
STK73410	5.15	VISA			
ONE FOH OUR FF	ATALOCL				

A slimline storage oscilloscope and digital voltmeter with a sampling rate of up to 20 MHz . Inclusive software enables the recorded signals to be displayed simultaneously on a PC screen.
Sample Rates: From 50 ns to 1 ms . Purveyors of Quality Input Voltage: $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$.
Trigger: \pm Internal, \pm External, Auto. Voltmeter: AC and DC. Electronic Thingies at Very Friendly Prices
Supply Voltage: 9 V to $13 \mathrm{~V} \mathrm{DC}, 13 \mathrm{~mA}$, external.
Trigger, ground, power \& serial cables included.

N ${ }^{0}$ uts
 Limited

2 Chase Cottages, New Road, Aldham,
Essex CO6 3QT Tel. \& Fax 01206213322

5199-5390 Prices to suif your pocket

PARTRIDCE ELECTRONICS

Suppliers of approved equipment for use on P.S.N. or private circuits
56 Fleet Road, Benfleet ESSEX, SS7 5JN Phone:01268 793256 Fax: 01268565759

Printed Circuits in Minutes Direct from LaserPrint!
 8 1/2" $\times 11$
 * Or Photocopy
 **Use standard houschold iron or P-n-P Press.

 1. LaserPrint* 2. Press On**
 3. Peel Off 4. Etch
 5 Sheets $£ 12.50,10$ Sheets $£ 25.00$ + VAT. Add $£ 2.50$ postage Complete kits to manufacture your own PCB's from $£ 40.00$, or individual items of material, chemicals, etchant etc.
 PRESS-N-PEEL ETCHING SUPPLIES 18 Stapleton Road Orton - Southgate
 Peterborough PE2 6TD - Tel: 01733233043

EI BARGAIN PACKS

If you would like to receive the other four $£ 1$ lists and lot of other lists, request these when you order or send SAE.
TEST PRODS FOR MULITMETERS with 4 mm sockets. Good Length very flexible lead. Ref:D86
8 OHM PM SPEAKERS. size $8^{\prime \prime} \times 4^{\prime \prime}$, pack of two
These may be lightly rusty and that is why they are so cheap but are electrically OK, Ref:D102.
PAXOLIN PANELS, size $8^{\prime \prime} \times 6^{\prime \prime}$, approximately $1 / 18^{\prime \prime}$ thick, pack of two, Ref:D103
13A SOCKET, virtually unbreakable, ideal for trailing ead, Ref:D95.
PIEZO BUZZER with electronic sounder circuit, 3 V to 9 D.C. operated, Ref D76
DITTO but without intemal electronics, pack of two, Ref: D75.
LUMINOUS ROCKER SWITCH, approximately 30 mm sq. pack of tow, Ref: D64
ROTARY SWITCH, 9-pole 6-way, small size and $1 / 4^{\prime \prime}$ spindle, pack of two, Ref: D54.
FERRITE RODS, 7" with coils for Long and Medium
waves, pack of two, Ref: D52
MAINS DP ROTARY SWITCH with $1 / 4^{\prime \prime}$ control spindle, pack of five, Ref:D49.
ELECTROLYTIC CAP, $800 \mu \mathrm{~F}$ at 6.4 V , pack of 20 , Ref: 048.

ELECTROLYTIC CAP, $1000 \mu \mathrm{~F}+100 \mu \mathrm{~F}$ 12V, pack of 10. Ref: D47.

MINI RELAY with 5 V coil, size only $26 \mathrm{~mm} \times 19 \mathrm{~mm} \times$
1 mm , has two sets of changeover contacts, Ref: D42.
MAINS SUPPRESSOR CAPS $0.1 \mu \mathrm{~F} 150 \mathrm{~V}$ A.C., pack of ten, Ref: 1050.
TELESCOPIC AERIAL, chrome plated, extendible and olds over for improved F.M. reception, Ref: 1051.
MES LAMP HOLDERS, slide on to $1 / 4^{\prime \prime}$ tag, pack of 10 , Ref: 1054.
PAXOLIN TUBING, $3 / 16^{\prime \prime}$ intemal diameter, pack of two 12" lengths, Ref: 1056
ULTRA THIN DRILLS, 0.4 mm , pack of 10, Ref: 1042. 20A TOGGLE SWITCHES, centre off, part spring controlled, will stay on when pushed up but will spring back when pushed down, pack of two, Ref: 1043.
HALL EFFECT DEVICES, mounted on small heatsink pack of two, Ref: 1022
12V POLARISED RELAY, two changeover contacts Ref: 1032.
PAXOLIN PANEL, $12^{\prime \prime} \times 12^{\prime \prime} 1 / 16^{\prime \prime}$ thick, Ref: 1033.
MINI POTTED TRANSFORMER, only $1.5 \mathrm{VA} 15 \mathrm{~V}-0 \mathrm{~V}$ 15 V or 30V, Ref: 964.
ELECTROLYTIC CAP, $32 \mu \mathrm{~F}$ at 350 V and $50 \mu \mathrm{~F}$ section at 25 V , in aluminium can for upright mounting, pack of wo, Ref: 995.
PRE-SET POTS, one megohm, pack of five, Ref:998. WHITE PROJECT BOX with rocker switch in top lefthand side, size $78 \mathrm{~mm} \times 115 \mathrm{~mm} \times 35 \mathrm{~mm}$, unprinted Ref: 1006.
GV SOLENOID, good strong pull but quite small, pack of two, Ref; 1012
FIGURE-8 MAINS FLEX, also makes good speaker lead, 15m, Ref: 1014.
HIGH CURRENT RELAY, 24V A.C. OR 12 V D.C.
three changeover contacts, Ref: 1016.
LOUDSPEAKER, 8 Ohm 5W, 3.7" round, Ref: 962.
NEON PILOT LIGHTS, oblong for front panel mounting with internal resistor for normal mains operation, pack of four, Ref: 970.
3.5MM JACK PLUGS, pack of 10, Ref: 975.

PSU, mains operated, two outputs, one 9.5 V at 550 mA and the other 15 V at 150 mA , Ref: 988
ANOTHER PSU, mains operated, output 15V A.C. at 329mA. Ref: 989.
PHOTOCELLS, silicon chip type, pack of four, Ret 939.

LOUDSPEAKER, 5" 4 Ohm 5W rating, Ref; 946.
LOUDSPEAKER, $7^{\prime \prime} \times 5^{\prime \prime} 4$ Ohm 5W, Ref: 949 .
LOUDSPEAKER, $4^{\prime \prime}$ circular 6 Ohm 3W, pack of 2, Ref: 951.

FERRITE POT CORES, $30 \mathrm{~mm} \times 15 \mathrm{~mm} \times 25 \mathrm{~mm}$, matching pair, Ref: 901.
PAXOLIN PANEL, $81 / 2^{\prime \prime} \times 3^{1 / 2^{\prime \prime}}$ with electrolytics $250 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$, Ref 905
CAR SOCKET PLUG with P.C.B. COMPARTMENT, Ref: 917
FOUR-CORE FLEX suitable for telephone extensions, 10m, Ref: 918.
PROJECT CASE, $95 \mathrm{~mm} \times 66 \mathrm{~mm} \times 23 \mathrm{~mm}$ with remov
able lid, held by four screws, pack of two, Ref: 876.
SOLENOIDS, 12 V to 24 V , will push or pull pack of two, Ref: 877.
2M MAINS LEAD, 3-core with instrument plug moulded on, Ref: 879.
TELESCOPIC AERIAL, chrome plated, extendible,
pack of two, Ret: 884
MICROPHONE, dynamic with normal body for hand holding, Ref: 885.
CROCODILE CLIPS, superior quality flex, can be attached without soldering, five each red and black, Ref: 886.
BATTERY CONNECTOR FOR PP3, superior quality, pack of four, Ref: 887
LIGHTWEIGHT STEREO HEADPHONES, Ref: 898.
PRESETS, 470 Ohm and 220 kilohm, mounted on single panel, pack of 10, Ref: 849
THERMOSTAT for ovens with $1 / 4$ " spindle to take control knob. Ref: 857.
12V-0V-12V 10W MAINS TRANSFORMER, Ref: 811
18V-0V-18V 10W MAINS TRANSFORMER, Ref: 813. AIR-SPACED TRIMMER CAPS, 2 pF to 20 pF , pack of two. Ref: 818.
AMPLIFIER, 9 V or 12 V operated Mullard 1153, Ref: 823.

2 CIRCUIT MICROSWITCHES, licon, pack of 4, Ref: 825.

LARGE SIZE MICROSWITCHES changeover contacts pack of two. Ret: 826
MAINS VOLTAGE PUSHSWITCH with white dolly, through panel mounting by hexagonal nut, Ref: 829. POINTER KNOB for spindle which is just under $1 / 4^{n}$, like most thermostats, pack of four, Ref: 833

TOROIDAL MAINS

TRANSFORMERS

All with $220 / 240 \mathrm{~V}$ primary winding. $0-6 \mathrm{~V}+0.6 \mathrm{~V}$ at 50 VA would give you 6 V at 8 A or 12 V at 4 A , price $\mathbf{£ 5}$, Order Ref: 5PG1. $0-30 \mathrm{~V}+0.30 \mathrm{~V}$ at 120VA would give you 30V at 4A or 60V at 2A, price £8, Order Ref: 8PG2. 0$110 \mathrm{~V}+0-110 \mathrm{~V}$ at 120VA would give you 110 V at just over 8 A or 220 V at $1 / 2 \mathrm{~A}$, price £8, Order Ref: 8PG3. 0 $35 \mathrm{~V}+0-35 \mathrm{~V}$ at 150 VA would give you 35 V at 4 A or 70 V at 2A. Price £8. Order Ret: 8PG9. 0-35V $+0-35 \mathrm{~V}$ at 220VA would give you 35 V at $6^{1 / 2} \mathrm{~A}$ or 70 V at $3^{1 / 4 \mathrm{~A}}$, price £9, Order Ref: 9PG4. 0-110V $+0-110 \mathrm{~V}$ at 220VA would give you 110 V at 2 A or 220 V at IA, price $£ 10$, Order Ref: 10PG5. 0-45V $+0-45 \mathrm{~V}$ at 500VA would give you 45 V at 11 A or 90 V at $51 / 2 \mathrm{~A}$, price $\mathbf{£ 2 0}$, Order Ref: 20PG7. 0-110 + 0-110V at 500VA would give you 110V at 5 A or $\mathbf{2 2 0 \mathrm { V }}$ at nearly 3A, price $\mathbf{~ 2 5}$, Order Ref: 25PG7.

TWO MORE TOROIDAL TRANSFORMERS, Order

 Ref: 4P100 is 120 W and will give you 27 V at 4.5 A or 54 V at 2.5 A , price £4. An interesting thing about this transformer is that it is very easy to add turns, 4 tums will give you 1A. Order Ref: 1.5P47 is 25W and will give you 24 V at 1 A or 48 V at .5A, Price £1.50.SUPER WOOFERS. A $10^{\prime \prime} 40 \mathrm{hm}$ with a power rating or 250W music and normal 150W. Has a very heavy magnet and is beautifully made and finished by Challenger. Normal selling price for this is $\mathbf{£ 5 5}+$ VAT, you can buy at $£ 29$ including VAT and carriage. Order Ref: $29 P 7$. The second one is a $8^{\prime \prime} 40 \mathrm{hm}$, 200W music, 100 W normal. Again by Challenger, price £18, Order Ref: $18 \mathrm{P9} 9$. Deduct 10\% from these prices if you order in pairs or can collect. These are all brand new in maker's packing.

VENNER 75A TIME SWITCH. This is a top class instru-ment, costs probably around $£ 60$ new. Exelectricity board but taken out of service because they changed to solar control. These have 2 on/off per 24 hours, price $\mathbf{£ 8}$ each, Order Ref: 8P66.

12V MOTOR. $1 / 10 \mathrm{hp}$ with $11 / 4^{\prime \prime}$ spindle extending from each end. Motor body diameter is $3^{\prime \prime}$ and body length 5^{n}. Price £8, Order Ref: 8P65.

SOLDERING IRON. Super mains powered with long life ceramic element, heavy duty 40 W for the extra spe cial job. Complete with plated wire stand and 245 mm lead, £3, Order Ref: 3P221.

DIGITAL THERMOMETER. Suitable for outdoors or indoors, has an extra wide temperature range $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, complete with heavy duty battery which should last several years. Its sensor can be outside but the read out inside, £4, Order Ref: 3P222.

MINI AM/FM TUNING CAPACITOR. Only 1" square but has a good length of $1 / 4^{n}$ diameter spindle, with 4 variable preset caps for fine tuning. Price £1, Order Ref: D202.

ANOTHER 7" FERRITE ROD AERIAL. This is an extra special $1 / 2^{n}$ diameter with long and medium wave coils. Price £1 each, Order Ref: D203.

DYNAMIC MICROPHONE. 600 ohm, plastic body with black mesh head, on/off switch, good length lead and terminated with audio plug. £2, Order Ref: 2P220.

TELEPHONE EXTENSION LEAD, flat plug one end socket the other, 12M, £2, Order Ref: 2P338.

FIGURE-8 FLEX, mains voltage, 50m, £2, Order Ref 2P345.

NFRA-RED RECEIVER, as fitted TV receiver, £2, Order Ref: 2P304.

2A MAINS FILTER AND PEAK SUPPRESSOR, £2, Order Ref: 2P315.

45A DP 250 V SWITCH ON 6" \times 3" GOLD PLATE, $\mathbf{~} 2$ Order Ref: 2P316

LOCTITE MEDAL ADHESIVE, tube and some accessories. £2, Order Ref: 2P215.

35mm PANORAMIC CAMERA. Has super wide lens, ideal for holiday viewing, is focus free and has an extra bright and clear view finder. Brand new and guaranteed, individually boxed. £6.50, Order Ref: 3P188.

FLASHING BEACON. Ideal for putting on a van, a tractor or any vehicle that should always be seen. Uses a XENON tube and has an amber coloured dome. Separate fixing base is included so unit can be put away if desirable. Price £5.00, Order Ref: 5P267.

12V 2A TRANSFORMER, £2, Order Ref: 2P337.
12V-0V-12V TRANSFORMER, 35VA, £2.50, Order Ref: 2.5P13

HIGH RESOLUTION MONITOR, $9^{\prime \prime}$ by Phillips, in metal frame for easy mounting. Brand new, offered at less than the price of the tube alone, £15, Order Ref 15P1

15W 8" 80 hm SPEAKER AND 3" TWEETER.
Amstrad, made for their high quality music centre, £. 4 per pair, Order Ref: 4P57

INSULATION TESTER WITH MULTIMETER. Intemally generates voltages which enables you to read insula tion directly in Megohms. The multimeter has four ranges: A.C./D.C. volts; 3 ranges milliamps; 3 ranges resistance and 5 amp range. Ex-British Telecom, tested and guaranteed OK, yours for only $\mathbf{£ 7 . 5 0}$ with leads, carrying case $\mathbf{\Sigma 2}$ extra, Order Ref: 7.5P4. We have some of the above testers not working on all ranges, should be repairable, we supply diagram, £30, Order Ref: 3P176

LCD $31 / 2$ DIGIT PANEL METER. This is a multi-range voltmeter/ammeter using the A-D converter chip 7106 to provide five ranges each of volts and amps. Supplied with full data sheet. Special snip price of £12, Order Ref: 12P19.

MINI BLOW HEATER, 1 kW , ideal for under desk or airing cupboard, etc. Needs only a simple mounting frame, £5, Order Ref: 5P23.

MEDICINE CUPBOARD ALARM. Or it could be used o wam when any cupboard door is opened. The light shining on the unit makes the bell ring. Completely built and neatly cased, requires only a battery. £3. Order Ref: 3P155.

DON'T LET IT OVERFLOW! Be it bath, sink, cellar, sump or any other thing that could flood. This device will tell you when the water has risen to the pre-set level. Adjustable over quite a useful range. Neatly cased for wall mounting, ready to work when battery fitted. £4. Order Ref: 3P156

TERMS

Send cash, PO, cheque or quote credit card number orders under £25 add £3 service charge.

J \& N FAGTORS Pilgrim Works (Dept E.T.I.) Stairbridge Lane, Bolney, Sussex, RH17 5PA Telephone: 01444881965 (Also fax but phone first)

(a) IDEAL FOR STABLE RUNNING OF THE MOTOR. THE POWER TO THE MOTOR IS EFFECTIVELY REPRESENTED BY THE SHADED PARTS OF THE WAVEFORM

(b) THE GAPS GET NARROWER AS THE MOTOR IS LOADED. IF UNLOADED THE GAPS ARE THIS SMALL. THE $\overline{R E}$ IS LITTLE POWER IN RESERVE TO HANDLE INCREASED LOADING.

(c) THIS SHOWS A LOT OF POWER IN RESERVE AND PROVIDES A HIGH LEVEL OF TORQUE. HOWEVER, UNLESS LOADED, THE VOLTAGE MAY BE TOO HIGH AND THE MOTOR MAY LOSE LOCK AND RUN AWAY.

Figure 4: waveforms into pin1 of the mosfet transistor IFR510

Referring to Figure four, section (a) shows the ideal waveform into pin 1 of the mosfet when the motor speed is firmly locked to the clock frequency. The shaded part of the waveform is a representation of the power driving the motor. If you provide mechanical loading of the motor, you will see (section (b) that the shaded areas will increase in size horizontally, showing that the motor is working harder to hold its speed constant.

The same effect will occur if you just reduce the voltage to the speed-locked motor. Now the waveform will again look like Section (b) but there will be a smaller amount of potential power to cope with any increased loading. Indeed, as loading increases, the gaps may narrow until they disappear altogether and the motor may stall.

If the voltage applied to the motor is too high, Section (c), there is a greatly increased reserve of power, but if the shaded areas become too narrow, the motor may again become unstable, lose lock and speed up out of control.

The circuit in figure 3 meets many of the requirements I had for a replacement motor for my tape recorder. Unfortunately, the clock frequency in this circuit is very dependent on the stability of the 12 volt supply to the control circuit, and a 7812 voltage regulator chip was not quite stable and constant enough for my very high quality tape recorder. A more accurate clock seemed to imply some sort of crystal drive.

How the crystal drive circuit works

The clock is built around the 4060, a chip which not only permits the design of a crystal-driven oscillator, but also has a number of pins which allow the repeated division-by-two of the crystal's fundamental frequency, down to a level more useful for this application. When connected as shown in the diagram, the

Figure 5a: the component layout of the crystal drive circuit.

Figure 5: the crystal drive circuit

4060 produces a 1800 Hz signal at pin 15 . This is derived from the fundamental of the 1.8432 megahertz crystal by dividing it by 2 to the power of b.

The next IC in the chain is the 4017, used here as a decade divider. Consequently, the 1800 Hz . signal applied to the clock input at pin 14 is divided by 10 and emerges from pin 12 as a frequency of 180 Hz .

Clearly I did not chose this particular crystal at random. Knowing that I wanted a final frequency of 180 Hz and that divisions by 2 and 10 are easy, I worked backwards to try and find a suitable one. Only a small amount of trial and error was required to arrive at a fundamental of 1.8432 MHz . for which crystals are easily available.

Using this circuit does produce a very accurate and stable clock, but it also means that changes in the clock frequency, and hence variation of the "standard", are only possible by division.

An understanding of the workings of the rest of this circuit largely follows previous explanations. However there are perhaps one or two points which should be made.

The clock function of the previously used 4046 chip is no longer required, and so this IC is replaced by a 4077 which has four exclusive-nor gates on board. One of these, N 2 , is used as the comparator. These gates are more tolerant of noise at inputs than those of the 4046, but they do require a very exact 50 percent duty cycle (that is, equal high and low states in the waveform). Consequently, one side of the tach is joined to P1 which allows exact adjustment to 50 percent of the final waveform into pin 6 of N2. Gate N4 and the low pass filter R3/C6 square off the tach's sine wave and eliminate any spikes which might be present.

The rest of the circuit is similar to the previous one except that figure five does show how the two voltages are produced: 12 volts for the control circuit and eventually 20 volts to drive the motor. I say eventually 20 volts, because that is what the output voltage is when a total resistance of $3 k 3(R 7+R 8)$ is connected between pin 1 of the variable voltage regulator, LM 317 , and earth. But the inclusion of C9, a 1000 microfarad capacitor, means that on the first application of 24 volts to the input of LM 317, the initial output from pin 2 will be about 9 volts and will rise relatively slowly to 20 volts as C9 charges. This gradual increase in the voltage to the motor's drive circuit ensures that the motor will speed up gradually, allowing it to lock at the required speed and not race through that point. Incidentally, there is never any doubt when the shaft speed is locked: the motor will maintain constant rotation against powerful attempts to load the motor.

Care must be exercised in the construction and setting up of this circuit since mains hum can be a problem. Motor jitter can also be present as a result of comparing two similar frequencies which may "beat" together. However, the final circuit shown as figure five meets all the requirements for a constant speed motor to run my tape recorder.

But wouldn't it be nice if as well as a tape speed of 7.5 inches per second, I could also record and play tapes at other standard speeds?

In a following article I want to look at a motor with a different kind of tach, develop a circuit which uses as the standard clock the frequency of the mains (either 50 or 60 Hz . at the flick of a switch) and which allows the tape recorder to run at 3.75 and 15 inches per second as well as at 7.5 ips .

2 John Street, Larkhall, Lanarks, ML9 1HE Tel: 01698883334 | 884585 Fax: 884825 Send a S.A.E. for your FREE Catalogue \& Quote.

T.I.S.
Unconditional replacement or refund on any item if not as requested

TOP SELLING BOOKS Pract' TV or VCR Repairs-£ 16.95 (Both £ $£ 0$)	MANUALS
Buy/Sell/Serv'Repair Used Equipment :-	
CD. TV or VCR - $\quad £ 10.95$ each (All $3 £ 27$)	DESIGNER COLLECTIONS
Ref Manuals - $£ 12.95$ each	Comprehensive Circuits Collections of any make of CTV
Data Ref Guide - Identifies/ prices/ cross-refs data for most models - $\quad £ 9.95$ (3.5" Disk £5)	as requested, prices from $£ 8$ to $£ 49$ (IE. AlbalBush $£ 20$) Full list in Free Catalogue.
nergy \& Ovens - $£ 9.95$	Amateur Kit: 10 Service Manuals (as needed), Data Ref',
so	
The Giant Fault-Finding Guides:-	any 3 CTV Circ Collections. $£ 199$
£16.95/VCR's $£ 16.95$	Profassional Kit: As above + 10 Serv' Man's. Microwave
	E\&D, Buy/Sell/Serv' Collection \& 2 More CTV Circ's. $£ 370$

3 UNIOUE SERVICE MANUAL OFFERS guaranteed savings to you now!!
*LIBRARY Joining fee $£ 65.00$ You receive any Service Manuals, no matter how expensive, for $£ 10$ each, and you get a $£ 5$ credit for any you return.
*PRE-PAY MANUALS
You get 20 Service Manuals, as and when you need them; as many or few at a time as you want, for a one-off payment of $£ 185$.
*SERVICE MANUAL EXCHANGE
If you have a Service Manual we don't have and need another manual (ie. TV for TV, VCR for VCR), we will exchange it for FREE.

twe Autorouter tor EASY.pC Pro' xwu

EE Product News "Products of the year" Award Winner (USA Magazine)
"The Best Autorouter that I have seen costing less than $£ 10,000$!" R.H. - (Willingham, UK)

- Uses the latest Shape Based, 32 Bit, Multi-pass, Shove-aside and Rip-up and Re-try Technology
- AutoRoute very large and complex boards
- User Controllable, User Configurable
- 100\% Completion where other autorouters fail
- 100\% Autorouted 140 Components on a $210 \mathrm{~mm} \times 150 \mathrm{~mm}$ board in less than 10 minutes! (75 MHz Pentium)
- Could Easily Pay For Itself On The First Project

MultiRouter - only £295/\$475!

Integrated Electronics CAD

Analogue \& Digital Simulation

Prices from UK£75 / US\$145

Affordable Electronics CAD

EASY-PC Professional: Schematic Capture and PCB CAD. Links directly to ANALYSER III, LAYAN and PULSAR.	From \$275	£145
MultiRouter: 32bit Multi-pass Autorouter for EASY-PC Professional XM	From \$475	$\mathbf{£ 2 9 5}$
LAYAN: Electro-Magnetic Layout Simulator. Include board parasitics in your Analogue simulations. Links with and requires EASY-PC Professional XM and ANALYSER III Professional	$\mathbf{\$ 9 5 0}$	$\mathbf{£ 4 9 5}$
PULSAR: Digital Circuit Simulator	From \$195	$\mathbf{£ 9 8}$
ANALYSER III: Analogue Linear Circuit Simulator	From \$195	$\mathbf{£ 9 8}$
FILTECH: Active and Passive Filter Design program	From \$275	$\mathbf{£ 1 4 5}$
STOCKIT: Comprehensive Stock control program for the small or medium sized business	From \$275	$\mathbf{£ 1 4 5}$
EASY-PC: Award Winning PCB and Schematic CAD.	$\mathbf{\$ 1 4 5}$	$\mathbf{£ 7 5}$
Z-MATCH : Award Winning Smith-Chart based program for RF Engineers.	From \$275	$£ 145$
We operate a no penalty upgrade policy. US\$ prices include Post and Packing Sterling Prices exclude P\&P and VAT.		

For Full Information and Demo' Disk, please write, phone, email or fax:-

Number One Systems

UK/EEC: Ref: ETI, Harding Way, St.Ives, Cambridgeshire, ENGLAND, PE17 4WR. Telephone UK: 01480461778 (7 lines) Fax: 01480494042
USA: Ref: ETI, 126 Smith Creek Drive, Los Gatos, CA 95030 http://www.numberone.com

- TECHNICAL SUPPORT FREE FOR LIFE
- PROGRAMS NOT COPY PROTECTED.
- SPECIAL PRICES FOR EDUCATION.

Hertuonics Principles 4.0

 For Windows 3.1, '95 \& NT. If you are looking for an easy and enjoyable way of studying or improving your knowledge of electronics then this is the soliware for you.

Electronics Principles 4.0 now has an even more comprehensive range of fully interactive analogue and digital topics. From current flow and dc clicuits through switching and transistor operation to passive and active filters. Logic begins with simple gates through binary, hex and octal number conversion, addition and subtraction to Boolean algebra. Plus, microprocessor and microcomputer operation, registers, arithmetic and logic unit, ROM, RAM. Addressing modes and full instruction set which can be simulated on the screen. All version 3.0 topics are covered within this program.
Currently used in hundreds of UK and overseas schools \& colleges to support GCSE, A-level, BTEC, Clity \& Guilds and university foundation courses. Also NVQ's and GNVQ's where students are required to have an understanding of electronics principles.

Mathematics Principles 3.0
£49.95*
Study or revise mathematics in what we believe is an interesting and enjoyable way. Nearly two hundred graphics presentations, to enable learning by exploration. including the GCSE syllabus.

The popular Electronics Principles 3.0
£49.95*
Contains neary 300 fully interactive analogue and digital topics. Electron current flow, transistor operation and biasing, MOSFET enhancement and depletion modes. Frequency and tuned circuits. Logic gates, counters and shift registers to binary arithmetic. To list just a few of those available

- All Inputs \& outputs use electronics symbols.
- Hundreds of electronics formulae available for circult investigation.
- Ideal for students and hobbyists who require a quick and easy way to get to grips with a particular point.
- Explore the subject as the interactive graphics are redrawn showing phase angles, voltage and current levels or logic states for your chosen component values.
- Generate hard copies of graphics, text and calculations.

Schools and Colleges.

A fully interactive 'textbook' on the screen. OHP slides and student handouts within minutes.
Multi-user network version available.

R.C.L. Parallel Impedance.

Calculations.
$\mathrm{IR}=\frac{50}{100}=5=500 \mathrm{~mA}$
$I C=\frac{50}{31.83099}=1.570796=1.5708 \mathrm{~A}$
$\mathrm{IL}=\frac{50}{157.0796}=.3183099=318.3099 \mathrm{~mA}$
$1=\sqrt{.5+\{1.570796 \cdot .3183099\}}=1.3486=1.3486 A$
$\theta=\tan ^{-1} \frac{1.570796 \cdot .3183099}{5}=68.2378^{\circ}$
$Z=\frac{100 \times 157.0796 \times 31.83099}{\sqrt{157.0796^{2} \times 31.83099^{2}+100^{2} \times(157.0796 \cdot 31.83099)^{2}}}=37.0755 \mathrm{R}$

EPT Educational Software. Pump House, Lockram Lane, Witham, Essex. UK. CM8 2BJ. Täl/Fax: 01376514008 . e-mail sales@episoftdemon.co.uk * UK \& EC countries add £2 per order for post \& packing. VAT should be added to the total. Outside Europe $\$ 3.50$ for air mail postage by return. Switch, Delta, Visa and Mastercard orders accepted - please give card number and expiry date. Cheques \& Postal Orders should be made payable to EPT Educational sofitware.

VALVE CHARAGTERISTIC

Tester

PART 1

Peter Kenyon's valve tester assists in checking the essential characteristics of most types of electronic valve, and making up matched pairs.

IIhe increasing popularity of valves in new designs for audio amplifiers, pre-amplifiers and filters is creating the need for appropriate test equipment. This article describes a small portable unit (figure 1) which, with the aid of information from data
sheets and other sources, enables the essential characteristics of most types of electronic valve to be obtained. Where two or more valves of the same type have to be matched, this unit provides a fast and convenient method.

Valves which use the most popular bases, B7G, B9A and 10 (International Octal) are catered for. The less common
base types can be accommodated by constructing an adapter to be plugged into the 10 socket.

The specification of the Valve Characteristic Tester is as follows:

Anode voltage (Va): 75 to 300 volts at up to 100 mA Screen grid voltage (Vg2): Equal to Va and up to 200 volts less than V at up to 25 mA Control grid (Vg1): 0 to -6l volts
Heater voltage (Vh): 1.4 volts fixed and 4.0 to 20 volts continuously adjustable at up to 2.5 A

Readout of voltages, currents and mutual conductance (gm) is by a 34-digit LCD digital panel meter (DPM). Each of the set voltages can be read on the DPM before being applied to the valve under test.

Double valves can be tested one half at a time by means of the $A^{\prime} / A^{\prime \prime}$ switch.

Principle of operation

To obtain valve parameters, the voltage developed across a precision 100 ohm resistor is measured by the DPM. The 100ohm resistor is interposed in the anode circuit of the valve. Mutual conductance is measured by applying a 7300 Hz sine wave to g 1 of the valve. The resulting ac voltage developed across the lOohm resistor is then measured, and gives a direct reading of gm in mA per volt (mAN).

The DPM switch positions, starting from the anticlockwise position, lead the user logically from setting voltages to making measurements.

Operation is in the following order:
Vh
Set heater voltage
Vg1 Set control grid voltage
Va Set anode voltage

Vg2 Set screen grid voltage
la Measure anode current
gm Measure mutual conductance. A READ/CAL switch is included with this function.
The layout of the main PCB and heater regulator PCB are shown in figure 14 and figure 15 with the Parts List near the end of this article.

Pin assignment

Pin connections to the valve are made by plugging 2 mm plugs on short leads into sockets designated h (heater), k (cathode), g1 (control grid), g2 (screen grid), g3 (suppressor grid or beam plate) and a (anode). In most manufactured valve testers, these connections have been made with thumbwheel switches. So that size and cost can be kept low in this design, the plug and socket arrangement was thought preferable.

For optimum safety, it is recommended that a Residual Current Device (RCD) be used with this unit. The Valve Characteristic Tester is a mains powered, high voltage project, recommended for experienced mains constructors.

Figure 2: the HT supply circuits

Figure 3: the G1 negative supply circuit

Figure 4: the heater regulator circuit

HT Supplies

250 vac from T1 is rectified by BR1 and smoothed by C1 (figure 2). It is very important that C 1 and the other highvoltage capacitors used in this design are NOT substituted by lower-voitage capacitors. A lower voltage capacitor here would fail, very likely causing permanent damage to the equipment. It is recommended that the part numbers specified or an exact equivalent are used. This is a high-voltage circuit and must be treated as such.

Q1 is the pass transistor, controlled by IC1a. In this regulator the op-amps are "floating" at Va. Their +12 volt and 12 volt supplies are derived from a single 24vac transformer winding. This is rectified by BR4, regulated by 1 C 2 and the mid rail is derived by $1 \mathrm{C3}$, a TLE2426CLP. This device is basically an op-amp and voltage divider in one three-pin package. Its use obviates the need for centre tapped windings.

Zener diode D4 provides a reference for IC1a and IC1b and is +6.2 volts with respect to ($\mathbf{w r t}$) Va . IC1a, in normal op-
amp fashion, will act to keep a zero voltage difference between its two inputs. Since R4 is $6 \mathrm{k} 2,1 \mathrm{~mA}$ will flow through it and R5 and VR1 in series. IC1a will therefore drive the gate of Q1 to maintain 1 mA in R5 and VR1. The output voltage at C 8 is then proportional to VR1+R5 and is 1 volt per 1 k . D2 gives over-voltage protection for Q1 gate. When output current exceeds $100 \mathrm{~mA}, 0.7 \mathrm{~V}$ is developed across R1, turning on Q2 and robbing voltage from Q1 gate. The resulting current through Q2 lights LED1 to indicate that an over-current condition exists. This regulator sets the required anode voltage.

If a lower voltage is required for Vg2, VR2 is rotated anticlockwise. As with IC1a, IC1b will maintain a zero voltage difference between its two inputs. 1 mA will flow through R9, VR2 and R10 in series to OV. This type of regulator requires this 1 mA to flow under all load conditions. For the lowest voltage likely to be set, a value of 47 k is chosen for the minimum load. This regulator will maintain

Figure 5: the oscillator circuit

Figure 6: the precision rectifier circuit

Radio Bygones

The leading vintage wireless magazine INCLUDING IN THE AUG/SEPT ISSUE...

- A Lafayette HE-30 revived • Photography for collectors • - Japanese transistor radios - a mini-history -
- The Grimeton dinosaur -
the last Alexanderson alternator transmitter • Annual subscription (6 issues) £ 18.50 in the UK, $£ 19.50$ to Europe; $£ 23.75$ the rest of the world, by airmail, or send $£ 3.25$ or a US $\$ 5$ Bill for a sample

Also from the publishers of Radio Bygones ... books for the vintage collector and enthusiast

Watchers of the Waves by Brian Faulkner

A history of Maritime Coast Radio Stations in Britain over the past 100 years. 128 A4 pages with over 80 photos and 24 drawings.
Price $£ 13.50$ to UK, $£ 14.20$ elsewhere.

The Racal Handbook by Rinus Jansen

A review of Racal communications equipment - receivers, transmitters and ancillaries - from 1956 to 1975, mainly based on Racal technical sales literature. 102 A4 pages, with 59 photos and 24 drawings, plus specifications.
Price $£ 13.00$ to UK, $£ 13.75$ elsewhere.

Comprehensive Radio Valve Guides

Facsimile reprints of books published by Bernards/Babani in the 1950 s and ' 60 s. Among the most comprehensive and user-friendly valve data ever published, the five books deal respectively with valves produced during 1934/51, 195I/54, 1954/56, 1956/60 and 1960/63. English, European,
American. USSR and Japanese types are covered.
Each book contains between 40 and 56 A5 pages. Price $£ 2.95$ each to UK, $£ 3.25$ elsewhere, or the complete set of five for $£ 14$ to UK, $£ 15.50$ elsewhere.
Handbook of Radio, TV, Industrial \& Transmitting Tube \& Valve Equivalents A companion to the above Valve Guides, listing commercial and military equivalents and comparables from both sides of the Atlantic. 60 A5 pages.
Price $\mathbf{£ 2 . 9 5}$ to UK, $\mathbf{£ 3 . 2 5}$ elsewhere.

The Story of the Key by Louise R. Moreau

A reprint of a popular and profusely illustrated series from Morsum Magnificat magazine. 60 A5 pages.
Price $£ 3.95$ to UK, $£ 4.25$ elsewhere.
Wireless for the Warrior - Vol. 1 by Louis Meulstee A technical history of radio communication equipment in the British Army from Wireless Set No. I to No. 88. 360 A4 pages with over 150 photos and 300 drawings.
Price £27.75 to UK, $£ 28.65$ elsewhere.
Wireless for the Warrior - volume 2 (with more detailed information on WS18, 19, 22, 29, 31, 38, 42, 46, 48, $52,53,62,68$ and 88) is expected to be published towards the end of 1997. If you would like to be sent further details as soon as they are known, write to the address below.
All book prices include postage. Overseas prices are for airmail despatch to Europe, surface mail elsewhere.
Airmail rates to the rest of the world available on request.
Please make all cheques payable to G C Arnold Partners
G C Arnold Partners (E8), 9 Wetherby Close, Broadstone Dorset BH18 8JB, England. Telephone/FAX: 01202658474

The Summer '97 Edition brings you:
Even further additions to the Computer section extending our range of PC components and accessories at unbeatable prices.

- WIN! a $15^{\prime \prime}$ CTX SVGA Monitor in our easy to enter competition.
- 100's of new products including; Books, Connectors, Entertainment, Test Equipment, Security, Speakers, Satellite Equipment and Tools.
- A full range of Aver Multimedia products for PC and Mac.
- £25 worth discount vouchers.
- 232 Page main Catalogue, plus 40 Page full Colour Computer Catalogue, incorporating 24 Sections and over 4000 Products from some of the Worlds Finest Manufacturers.
- Available at WH Smith, John Menzies and most large newsagents, or directly from Cirkit.
- Get your copy today!

RADCOM ON CD-ROM = 199 EDITION

To meet the requests of many radio amateurs we have produced this first $C D-R O M$ which includes the editorial pages from every RadCom published in 1996 and, as a bonus, we have also included all the 1996 issues of $D-i-Y$ Radio as well! No longer will you have to rummage through all your back numbers to find that elusive piece of information - with our easy search operation you can find it easily and quickly.

Price £18.81* plus P\&P

THE PMR CONVERSION HANDBOOK

BY CHRIS LOREK, G4HCL
Once private mobile radio (PMR) equipment used by commerce and the emergency services is replaced by more advanced systems, it can be acquired very cheaply at rallies. Often it can be converted to amateur band usage quite easily and without expensive test equipment, giving high performance at a fraction of the cost of purpose-designed amateur gear. This handy book clearly shows you how to identify, choose and buy those PMR sets which are suitable for conversion and it gives step-by-step conversion instructions to help you all the way. Don't be without it at a rally!

Price E15.28* plus P\&P

YOUR FIRSTM PACKET STATION

BY STEVE JELLY, G6URJ
First of the brand new RSGB Pocket Guide Series of books, this explains in simple, easy to understand language, how to set up a packet radio network. For those of you who have often wondered how to expand their use of amateur radio to the world of data communications - then this simple guide will show you.
Price E5.74* plus P\&P
("RSGB Members' prices arailable on request)
To place your credit card order, telephone Julia or Emma on the RSGB Sales Hotline 01707 660888, or send your cheque/postal order to:

Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE 01707659015

The top panel with a valve in test
the same voltage difference between its input and output. Vg2 will therefore track Va regardless of the voltage set for Va , with the proviso that at least 1 mA flows through VR2. Q4 limits the current through Q3 to about 25 mA by robbing base current from Q3, lighting LED2 to show overload. Add a small flat heatsink 25 mm by 15 mm to Q3 to help heat dispersion.

Control grid negative bias supply

In the g 1 negative bias supply (figure 3), 48 vac is rectified by BR2 and smoothed by C10. The programmable zener TL431C (1C7) adjusts the current into its cathode to maintain 2.5 V at its control pin. From $I=E / R$, a current of 1.064 mA flows in R15 and R52. Q5 is in common gate mode, and this same current therefore flows in VR4, VR5 and VR6. Since this is a constant current, the voltage at the wiper of VR4 (47 k) will change with the settings of both VR5 and VR6. Thus, up to 1 volt can be added by VR6 (1k) and up to 10 volts can be added by VR5 (10k). D11 protects against flashover or other leakage in the valve under test.

Heater regulator

To minimise power dissipation, IC4, an LT1074CT switching regulator is used (figure 4). However, when 1.4 volts is required for battery valves, IC4 is a pre-regulator and IC5 (LM317T) brings the output down to 1.4 volts, preset with VR8. VR7 is a 22 k pot with integral DPST switch. In the "off" position, Q6 is biased on via R22 into saturation giving 1.4 voits at the output. When VR7 is rotated to the "on" position, contact ' a ' bypasses IC5 and contact ' b ' removes bias from Q6, thus isolating IC5 from the OV rail and

Figure 7: the DPM and function switch circuits

Figure 8: the calibration diagram
preventing damaging currents from flowing into its output. The heater voltage is now continuously adjustable from 4.0 volts up to 20 volts.

The oscillator

The oscillator (figure 5) is a Wien bridge type, amplitude stabilisation being provided by a light dependent resistor illuminated by an LED. The output signal at IC6a is amplified by IC6b and rectified by D13 and D14 to provide a dc control voltage at Q7 gate. The resulting current through LED4 illuminates LDR1 to control the negative feedback loop of IC6a. D15 and D16 provide forward bias for Q7 and simultaneously give temperature compensation. The change in output voltage is less than 2 percent for a temperature change of 15 degreesC. The preset VR9 sets the output level, while VR11 is the front panel CALIBRATE control.

Range switching

To measure ac volts a precision rectifier (figure 6), IC7, converts the ac signal across Rh to dc for measurement by the DPM. Since IC7 is only used in the anode circuit of the valve under test, it is powered by the same supply as IC1 and is, therefore, at Va above 0 volts. VR10 presets the gain of the precision rectifier.

A Maplin module (Catalogue reference GW01B) is used as the basis of the measurement system. This uses the ICL7106 dual ramp digital panel meter ic. SW1a and SW1b switch between the various measurement points in the valve tester. SW1c switches ranges while SW1d selects the appropriate decimal point. See figure 7.

A high pass filter comprising C21 and R41/R42 couples the signal voltage to IC7a. SW5 selects "gm HI" or "gm LO" for two ranges of mutual conductance. The "LO" range is likely to be the most commonly used range. SW4 is the "CAL/READ" switch. VR3 is an offset adjustment for the opamp so that the DPM will read zero when no signal is present. To simplify the wiring, the negative output from the precision rectifier is measured by the DPM.

Power for the DPM is obtained from a PP3 9V battery. A 15 vac winding on T 1 provides current for the opto-isolator IC12 and LED3 in series, IC10 acting as the on/off switch for the DPM. Since the DPM module current consumption is less than 1 mA , an alkaline battery life of at least 500 hours can be expected.

Calibration

Referring to the calibration diagram, figure 8, consider the hypothetical valve under test (VUT) to have a mutual conductance, gm, of 10 mA per volt. A signal at the control grid, g1, of 100 mV will develop an ac voltage of:

$$
E=(0.1 \times 10 \mathrm{mAN}) \times R a
$$

where $R a$ is the combined value of $R 11$ and $R 41+R 42$ in parallel, 9.011 ohms. Therefore, E equals 9.011 mV . (Remember that measurement of dc current is developed across R11 alone, while measurement of ac current is developed across R11 and R41 + R42 in parallel.)

This voltage of 9.011 mV is raised in level by IC7a and peak rectified by IC7b to read 100 mV on the DPM. The decimal point is positioned to show 10.00 .

Theoretically we could use our hypothetical valve to calibrate the Valve Tester, but since such a device does not exist, we use a combination of resistors to do the job. Thus, R38, R39 with R40 and R56 in parallel simulate the hypothetical valve.

To calibrate the Valve Tester, SW4 is moved to the "CAL" position and the front panel control VR11 is adjusted for a reading of 10.00 on the DPM. Switch SW4 back to "READ" and a real life valve can be measured.

Next month

In the second and final part of this project in the next issue, we will print the construction details, wiring, Parts List and pcb layouts for the Valve Characteristic Tester.

GAL PROGRAMMER $£ 89.95$

16V8 / 16V8A / 16V8Z / 20V8 / 20V8A / 20V8Z / 22V10

- Works on IBM PC / compatible / laptops/ Notebooks
- Plugs into Centronics printer port
- Fast and reliable programming
- Program protection fuses - prevent unauthorised copying
- Easy to use software - load/save in JEDEC format
- Supplied with PLAN Logic compiler software
- Stylish compact case with quality ZIF
- Complete with examples, connection lead, and PSU
- Full 12 months parts and labour guarantee

P87C51/2 PROGRAMMIER £79.95

Programs all makes of P87C51/2 and Atmel 89C51 Flash types Cased as above this unit plugs into serial port on any IBM PC or compatibles and comes complete with software, connection lead, PSU and full 12 months guarantee.

PIC PROGRAMMER $£ 69.95$

12C508, 509, 16C54, 55, 57, 58A, 61, 64, 65, 71, 75, 84, 620, 621, 622, MEMORY CHIPS, 24LC01, 02, 16, 32, 65 The enhanced Pic Programmer supports a large
 amounts of devices (listed above). Software supports Microchip, Intel Hex, binary format. Read / Write / Copy / Program fuses. Runs on IBM PC / compatible, connects to the Centronics port and requires $12-18 \mathrm{~V}$ AC/DC PSU. Full 12 months guarantee.

Postage / Packing not included. No VAT or Credit Card surcharge.

- Hi Resolution LCD Display 8192 pixels - scrolling window
- 16 Channels Display mode selectable - Truth Table Display Binary and Hexadecimal - Printer Output Truth table / graphical display
- Multi Trigger Options - positive / negative / combination / free run - Crystal Controlled Timebase - 18 ranges - 200ns to 0.5 a / division
- TTL and CMOS inputs - unitcan distinguish logic levels
- 8 Channel Pod Set - cased with spring loaded miniature clips
- External Clock Feature - up to $\mathbf{5 0} \mathbf{~ M H Z}$
- Complete System - with 9v AC PSU, printer lead, manual and pod set - Attractive Bench Case - fold away feet

The Logic Analyser (normally $£ 325$ _ comes with full 12 months guarantee. Second pod set available for $£ 19.95$.

MEGAPROM EPROM PROGRAMMER
EPROMS / EEPROMS / FLASH EEPROMS / I2C BUS EEPROMS Covers all devices from 2 K to 8 MEG This unit plugs into the Centronics port on any IBM PC or compatible. The easy-to-use software supports Bin, Intel Hex, Motorola S, and ASC file formats. Read / Edit / Verify / Reprogram etx - very fast programming and verification. Requires $12-18 \mathrm{~V}$ AC/DC PSU. The Megaprom comes with full 12 months guarantee.
$£ 99.95$

\qquad LEADING EDGE TECHNOLOGY LTD
'White Rose', Xintill Street, Tarxien, Malta visa Phone:(00 356) 678509 Fax:(00 356) 667484

SERVICE MANUALS \& Technical Books

Available for most equipment, any make, age or model. Return the coupon for your FREE catalogue

MAURITRON TECHNICAL SERVICES (ETI) 8 Cherry Tree Road, Chinnor, Oxon, OX9 4QY, Tel:-01844-35/694, Fax: 01844 352554 email:- mauritron @ dial.pipex.com Please forward your latest catalogue for which 1 enclose 2×1 st Class Stamps, or $£ 4.11$ inc. vat for the complete Service Manuals Index on PC Disc plus catalogue

NAME
ADDRESS

POSTCODE \qquad

LTD

stevenage

Professional Sub-Contract Manufacturing \& Suppliers to the Electronics Industry
Do you have a requirement for any of the following services: PCB Assembly (Conventional and Product Design/Consultation Surface Mount)
Wave \& Hand Soldering
Complete Equipment
Manufacture
Device Programming from hand written shts or PC $3^{1 / 2} 2^{11}$ disc
Cable Harness Assembly/loom
Manufacture
Card Cage and Module Wiring
Full Inspection
Phone Steve on (01438) 360406 or fax details of your requirements to us
on (01438) 352742
EQT LTD, Cromer House, Caxton way, STEVENAGE, HERTS, SG1 2DF

คลง アクワลァに

Adaptable，affordable－handy circuits for around £5．By Owen Bishop 4．Process Timer

IIn many instances，the Old Technology has advantages that we dici not appreciate at the time． We took them for granted．And often these advantages have not been carried forward into the New Technology．Take the hour－glass，for example． It may have been cumbersome and not all that precise，but it had one big advantage．At a glance you could tell（near enough） how much of the hour had elapsed（lower bulb）and how much time there was still to run（upper bulb）．Doing the same thing with a digital watch involves a load of mental arithmetic，which is prone to error if you are timing a telephone call and need to concentrate on the conversation．

This project is the New Technology equivalent of the hour－ glass，with the added advantage of being able to time up to three consecutive stages of a process．It can time a multistage process lasting for half－an－hour or so and，provided that you are willing to go beyond the $£ 5$ limit，you can increase the number of stages to seven，or even more．The design is flexible， allowing stages to be set to different lengths，and there is scope for variety in the LED display．

How it works

The circuit consists of two parts，a ramp generator or integrator （top left in figure1）and an array of comparators driving LEDs （right in figure 1）．The circuit employs a single ic，a TLO64CN，
which contains four operational amplifiers．One of the op amps is used for the ramp generator and the other three are used as comparators．The ramp generator is based on the principle of the building up of charge on a capacitor．As current flows into a capacitor，the charge increases and so does the voltage－it ramps upward．When a capacitor is charged from a fixed voltage source，the amount of current（and hence the charge） flowing into the capacitor depends on the voltage difference between the fixed source and the voltage across the capacitor． This difference becomes less and less as the capacitor charges， so current gradually falls and the rate of ramping decreases．A varying ramp rate is not usually suitable for tirring purposes，but there are ways to produce a constant ramp．This circuit relies on the fact that when the op amp is connected as in figure 1 its inverting（－）input acts as a virtual ground．This is because an op amp acts to keep both its inputs at the same potential，and the non－inverting $(+)$ input here is connected directly to the OV （ground）line．Thus，whatever charge there may be on the capacitor C1，point A in figure 1 stays at OV．Current reaches A from the network to the left．This consists of a Zener diode ZD1 wired so as to produce a constant voltage（ 3.9 V ）across R2 and VR1．We tap off a very low voltage（say 30 mV ）by adjusting VR1．This too is constant．If one end of R3 is at 30 mV ，and the other at OV ，a constant current flows through R3 and this current is equal to $0.030 / 10000000=3 n A$ ．

Figure 1：the Process Timer circuit

The current flowing arriving at A must go somewhere. Not much of it can enter the opamp because the opamp has FET inputs with an input resistance of about 10 (the the power of 12) ohms, that is, a million megohms. So the current flows into the capacitor and begins to charge it. But opint A must stay at OV. To make it possible for C1 to accept the charge, the potential at its other terminal must go down. As current enters the capacitor and a potential difference develops between its terminals, the output of the opamp goes negative by just the right amount to hold A at OV . A constant current of $3 n A$ carries charge into $C 1$ at the rate of $3 n C$ per second. For a capacitor, capacitance C, charge q, the voltage across its is $\mathrm{V}=\mathrm{q} / \mathrm{C}$. Thus the voltage across Cq increases by 3 nanocoulombs $/ 470$ nanofarads $=6.38 \mathrm{mV}$ per second, or approximately 0.4 V per minute. Putting it the other way round, the voltage output of $I C 1$ falls by 0.4 V per minute. This is the basis of the timing. A beneficial feature of this circuit is that quite long times are obtainable when using a capacitor of relatively small value. This is an advantage over circuits that require large-value electrolytic capacitors, which not only vary widely from their nominal values but also change in value with use and as they age.

The output of IC1 is fed to the (+) inputs of three op amps wired as comparators. A resistor chain consisting of VR5 and three preset resistors provides a series of voltages with which to compare the ramping-down output from IC1. The voltage across the chain is fixed at -5.1 V by another 3.9 V Zener diode, ZD2. The values used for R5 and VR2 to VR4 depend on the total process time and the times of the individual stages. It is as well to calculate these before you build the project as you may need different values for any or all of these. We will illustrate the calculations by taking an example
Resistors
($0.25 \mathrm{~W}, 5 \%$ tolerance or better; variable resistors are all miniature horizontal presets)

R1, R4	1 k
R2	100 k
R3	10 M
R5	2.7 k (for 5 -min period)
VR1	10 k
VR2 to VR4	1 k (or other values as required)

Capacitor

C1
470nF, metallised polyester, 100 V

Semiconductors

ZD1, ZD2 Zener diode, BZX79C, 3.9V
LED1 to LED3 Light-emitting diodes TLO54CN fet input quad op amp

Miscellaneous

S1
2-pole single throw switch S2 Push-to-make push-button Stripboard ($98 \mathrm{~mm} \times 40 \mathrm{~mm}, 15$ strips $\times 38$ holes) 1 mm terminal pins (5 off), PP3 battery clips ($2 \mathrm{o}^{-f}$), 14-pin dil ic socket.
of a telephone call timer. Suppose we want a total period of 5 minutes, subdivided into three periods, of lengths $1,3.5$ and 0.5 min . The first period is for indicating a reasonable limit for trunk calls. The middle period allows extra time for local calls. The final 0.5 min is the period for closing down the conversation prior to hanging up. It is a warning that time is nearly up. Maximum call time is 5 mirs:

Figure 2: stripboard layout for the Process Timer

Babcock Materials Management (Disposals Division)

Regional Marketing Contractor for Scotland and Northern Ireland on behalf of the Ministry of Defence (Disposal Sales Agency)

ELECTRONICS

SALE BY TENDER

(Tender closes 10 am on 1st August 1997)

Over 200 lots including Spectrum Analysers, Oscilloscopes, Signal Generators, Circuit Boards, General Test Equipment etc

Catalogues available by contacting our Sales Office 01383422258 or by fax on 01383423022

OPERATING \& SERVICE MANUALS

Cooke International

ELECTRONIC TEST \& MEASURING INSTRUMENTS
Unit Four, Fordingbridge Site, Main Road, Barnham, Bognor Regis, West Sussex PO22 OHD U.K. Tel: (+44)01243545111/2
Fax: (+44)01243 542457 CATALOGUE AVAILABLE

OMNI ELECTRONICS
174 Dalkeith Road,
EDINBURCH EH16 5DX
The following items are available until stocks are finished. MISCELLANEOUS

Microswitch Omron V4 1A button RF screened ABS box $150 \times 80 \times 50 \mathrm{~mm}$ PCB switches red, yellow, green \& blue Please state colour mix required.

30p/each £1.50/each 10p/each £1/pk 16 £5/pk 100
CAPACITORS

Ceramic	1 nF	50 Vdc	6 mm	$50 \mathrm{p} / \mathrm{pk} 10$
Ceramic	2 n 2	50 Vdc	5 mm	$80 \mathrm{p} / \mathrm{pk} 20$
Mono Ceramic	100 nf	50 Vdc	dil	$£ 1 / \mathrm{pk} 20$
Polyester	470 nF	63 Vdc	7.5 mm	$£ 1 / \mathrm{pk} 10$
Polyester	680 nF	100 Vdc	15 mm	$50 \mathrm{p} / \mathrm{pk} 10$
Polyester	330 nF	250 Vdcc	15 mm	$50 \mathrm{p} / \mathrm{pk} 5$
Bipolar (Rad)	6.8 uF	100 Vdc	7.5 mm	$30 \mathrm{p} /$ each
Axial Elec.	470 uF	25 Vdc	32 mm	$£ 1 / \mathrm{pk} 5$
Axial Elec.	220 uF	35 Vdc	22 mm	$£ 1 / \mathrm{pk} 5$
Radial Elec.	47 uF	10 Vdc	2.5 mm	$30 \mathrm{p} / \mathrm{pk} 10$
Radial Elec.	100 uF	10 Vdc	2.5 mm	$40 \mathrm{p} / \mathrm{pk} 10$
Radial Elec.	220 uF	10 Vdc	2.5 mm	$50 \mathrm{p} / \mathrm{pk} 10$
Radial Elec.	100 uF	25 Vdc	5 mm	$£ 1.25 / \mathrm{pk} 10$
Radial Elec.	47 uF	63 Vdc	5 mm	$£ 1 / \mathrm{pk} 10$
Radial Elec.	$105^{\circ} \mathrm{C}$		150 mm solder tails	
	$1,000 \mathrm{uF}$	16 Vdc	5 mm	$25 \mathrm{p} /$ each
Can Elec.	$4,700 \mathrm{uF}$	16 Vdc	$63 \times 25 \mathrm{~mm}$	$50 \mathrm{p} / \mathrm{each}$
Can Elec.	$3,300 \mathrm{uF}$	25 Vdc	$83 \times 25 \mathrm{~mm}$	$50 \mathrm{p} / \mathrm{each}$

[^1]
PIC DEVELOPMENT

PROGRAMMIDR PIC DIBADEV2

Program/read/verify 16C54/55/56/57/58/61/62/620/621/622/63/ 64/71/73/74/84/Serial EEPROMs. Expansion port. Built and Tested Only $\mathbf{£ 5 2 . 9 5}$

PROGRAMMIDR/CE RIC DFZEEV3

As above but with In-Circuit Emulation Capability, Built and Tested Only $\mathbf{£ 7 2 . 9 5}$
Both systems have ZIF sockets already fitted and expansion ports for current and future developments!

Other PIC developments. Learning pack for beginners, demonstration pack, PIC basic (Tel/write for details).

True PIC Real Time In
Circuit
Emulator

$8 \mathrm{~K} \times 16$ Emulation RAM

- Target Probes included. - Supports 8/18/28 pin PIC's.

Only $£ 149.95$
Test your code in a
'TRICE'

Calculations

We will assume that you have adjusted VR1 to produce a voltage of 30 mV at its wiper, so obtaining a ramp down of 0.4 V per minute (approximately, to make calculations easier). Pressing S2 sends the output of IC1 to OV at 0 min. At 1 min it will have fallen to -0.4 V , at 4.5 min (that is 3.5 min later) it will have reached -1.8 V , and at 5 mins it is -2.0 V .

Assume that the current through the chain is to be 1 mA . The voltage across $R 5$ is to be $5.1-2=3.1$. So the value of $R 5$ is $3.1 / 0.001=3100$ ohms. For convenience use 2.7 kilohms, and let the current be $3.1 / 2700=1.15 \mathrm{~mA}$. If t is the required length of a period, the resistance needed is $R=$ (time 0 $0.4) / 0.00115$. For periods of $1,3.5$ and 0.5 min the required resistances are 348,1217 , and 173 ohms. If you are not too worried about exact timing, you could use fixed resistors in place of the presets. Values of 330 ohms, 1.2 kilohms and 180 ohms would do. If you use presets, you need 1 kilohm or 470 ohm presets for VR2 and VR4, and a 2.2 kilohm or 4.7 kilohm preset for VR3. These are adjusted to the exact value as calculated.

For longer periods you can decrease the value of R5, or set VR1 to produce a voltage lower than 30 mV and hence a slower ramp.

Displays

With the circuit as shown in figure 1, all three LEDs come on when S2 is pressed. LED1 goes out at the end of the first period (in the example, after 1 min). LED2 goes out at the end of the second period (after 4.5 min) and LED3 goes out at the end of the third and final period (after 5 min). We used ordinary 5 mm red LEDs in our prototype but you can vary this by using

LEDs of different colours (red, yellow, green) or shapes. You can also use flashing LEDs. For example, if LED3 is a flashing type it effectively signals the imminent end of the process. It is also possible to wire the circuit for the reverse operation, with all LEDs off to begin with and all on at the end. Just reverse the input connections to the op amps.

Construction

Figure 2 shows the stripboard layout and connections to the main switch S1. The circuit is powered by two $9 \vee \mathrm{PP} 3$ batteries, using two battery clips. First assemble the ramp generator circuit, which includes everything on the board to the left of column 20. The ramp generator is best tested at this stage, using a meter with high-impedance input, for example a digital multimeter. A moving-coil meter will probably require too much current and give misleading low voltage values at the wiper of VR1. Check the voltage at the cathode of ZD1; it should be close to 3.9 V . Measure the voltage at the wiper of VR1 and adjust VR1 to bring this to 30 mV or any other value you have decided upon. Finally monitor the voltage at pin 1 of IC1. This should be OV when S2 is pressed and released, then fall steadily at a rate close to 0.4 V per minute. If you have decided upon the timing of the periods, have a seconds clock handy, press and release S2 and note the voltages (negative) as each of the period ends. These figures form the basis for calculating the resistances required in the resistor chain (see previous section).

Having decided on timings, the values of resistances and the types of LED, assemble the rest of the circuit. If you are using presets, switch off the power, connect a multimeter across each in turn and adjust each to its calculated value.

The K-307 Module provides the features required for most embedded applications
Analogue

- 4 Channels in 1 Channel out

Digital

- 36 Digital in or out $\&$ Timers

Seriol

- RS-232 or RS-485 plus I2C

Display
Keyboord

- LCD both text and graphics

Memory 8×8 matrix keyboard Low Power - >2 Mbytes available on board Development
The PC Starter Pack provides the quickest method to get your application up \& running
Operoting System - Real Time Multi Tasking
Longuages - 'C', Modula-2 and Assembler
Exponsion - Easy to expand to a wide range of peripheral cards

Other Features

Real Time Calendar Clock, Battery Back Up, Watch Dog, Power Fail Detect, STE I/O Bus, 8051 interface, 68000 and PC Interface

Cambridge Microprocessor Systems Limited

Units 17-18 Zone 'D'
Chelmsford Road Ind Est Great Dunmow Essex CM6 1XG E-mail cms@dial.pipex.com
Phone 01371875644

Construction Authors

Ifyou have designed and built any kind of electronics gadget for yourself, your home, your friends or your business, it may be suitable for publication in ETI.

Read on!

You may have a one-off project you would like to share; you may be a regular constructor with a new design you are especially pleased with, or you may be a pro designer trying out ideas and looking for feedback.

Your ideas may be simple or complex, analogue or digital, computer-related or rooted in tradition; elaborately cased or (in some cases) not cased at all You may be a private hobbyist, an engineer of
advanced standing, or a student. You may be yourself and a soldering iron, a club or a business.

ETI is looking for original project design for publication. "Original" simply means that you have designed the project for a particular purpose or to a general specification, and have worked out how you want to do it for yourself. You can be applying well-known and established techniques, or using the latest components in new applications, as long as the final result is your own design

For further details of authors' fees and how to write up a project for publication, please write to ETI for our Potted Project Production information sheet at PPP, ETI Nexus House, Boundary Way, Hemel Hempstead Herts HP2 7ST. A self-addressed envelope is always a help, but not a necessity.

Innovations on Internet

Mail-order catalogue Innovations has re-launched its Internet sales with an updated Web site, Innovations OnLine. The well known suppliers of gadgets and "problemsolving products", many of them electronic, is offering a 10 percent discount to purchases made through the Web site "to attract new consumers" to the innovation of Web shopping. The web site has been improved with better search facilities to graphics pages and more accessible What's New pages. Secure ordering facilities are available via Netscape or Explorer. The web site address is www.innovations.co.uk

Pro Handy Earth Tester

The Norma Handy Geo is a compact handheld batteryoperated professional-standard earth tester designed to measure 2-pole ad 3-pole earthing resistance and noise voltage. The Geo can detect external ac and dc voltage, automatically define probes and has an adjustable limit for measured values. Backlighting is switchable, and the unit comes with a full 3-year warranty.
For information contact the Professinoal Instruments
Distributors Association, 3 Brackenley Court, Embsay, N. Yorks BD23 6PX Tel 10756799737.

Advances in LCPs for component moulding

Chemical giant Hoechst, a world leader in the field of liquid crystal polymers (LCPs) are producing improved grades of their technical plastic Vectra to meet the demands of the continuing process of miniaturisation of electronic components in industry. The material has the property of a comparative increase in strength as the wall thickness declines, a benefit in the increasingly complicated, thin-walled component packages in use today. Likely applications are, for instance, components exposed to high mechanical and termal stress, such as intricate
connectors, smart card readers and moulded interconnect devices (MIDs).

One variety, Vecta E130i, is particularly suitable for long, thinwalled connectors. The high- temperature toleration of the material allows it to withstand all current soldering methods, and the self-reinforcing property of LCPs in thin structures allow component sizes to be reduced. Other varieties combine suitability for electrolytic/chemical metallisation with the ability to flow into intricate moulds, and low processing temperatures and freedom from corrosion, which allows low-cost moulding techniques to be used. The toughness of liquid crystal polymers coupled with the ability to remain dimensionally stable at high temperature means that electronic functions can be combined with mechanical functions in the same component.

Shorts...

Technical market research specialists Dataquest predict that the market for digital still (as opposed to video) cameras will remain firmly attached to the market for computer peripherals for at least the next three years, although it will expand to achieve nearly 6 million units by the year 2000, generating substantial sales for the digital still camera semiconductor industry. Research indicates that the higher price of digital cameras means that conventional film cameras (of which there are now a number of formats, some developing towards digital computer link-up in the future) will remain the most popular
format until digital prices become more competitive. Dataquest have produced a report "Digital Still Cameras Develop into a New Semiconductor Market", which can be purchased via Tel. 0800716089 ... The publication of consultation paper on the licensing of Trusted Third Parties for the provision of encryption services was announced in March by the Science and Technology Minister lan Taylor. According to the Minister, "the proposals involve licensing TTPs who offer encryption services to the public in order to facilitate the development of electronic commerce; to protect consumers; and to preserve the ability of the intelligence and law enforcement agencies to fight serious crime and terrorism.

π
 ELECTRONICS TODAY INTERNATIONAL
 TOMORROW'S TECHNOLOGY TODAY

FOLIS EOB His issue λ

DC MOTOR: THE 4046 CIRCUIT

ETI can supply printed circuit boards for most of our current projects - see the list below for boards available. For recent boards not listed, check the constructional article for an alternative supplier.
Please use this order form or a copy of it. Check that all relevant information is filled in, including the Unit Order Code, and that you have signed the form if sending a credit card number. Overseas customers please add postage appropriate to the number of units you are ordering. Make cheques/POs/money orders, in $£$ sterling only, payable to Nexus Special Intêrest Limited. Please allow 28 days for delivery. Access/Visa orders may be made on 0144266551 (ask for Readers Services).
Only boards listed here are available from our PCB Service. For past issues of magazines, copy articles or binders, please see the admin panel (page 75) or contact Readers Services (see below) for information.

Terms of trade.

Terms strictly payment with order. We cannot supply credit orders, but will'supply a proforma invoice if requested. Proforma orders will not be processed until payment is received. All boards are manufactured from the foils that appear in the ETI Foils Pages for the appropriate issue. Please check that our foils are suitable for the component packages you intend to use before \% ordering as we cannot supply modified boards or replace boards that have been modified or soldered. Boards are only supplied in the listed units. Sorry, we cannot break units. Prices and stock may be altered without prior notice. Prices and stock listed in this issue supersede prices and stock appearing in any previous issue. ETI, Nexus Special Interests and their representatives shall not be liable for any loss or damage suffered howsoever arising out of or in connection with the supply of printed circuit boards or other goods or services by ETI, Nexus Special Interests or their representatives other than to supply goods or services offered or refund the purchaser any money paid in respect of goods not supplied.

DC Motors (3 experimental boards)
DC Motors: The first Control Unit
DC Motors: The 4046 Circuit DC Motors: The Crystal Drive Circuit All three DC Motors boards

Name
Address

I enclose payment of Σ \qquad (cheque/PO/money order in $£$ Sterling only) to:

PCB Service, READERS SERVICES DEPARTMENI, Nexus Special Interests Lid., Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7 ST UK.

Signature

CTe Andy Forder 0144266551
Send your requirements to:
ETI Classified Department, Nexus, Nexus House, Boundary Way, Hemel Hempstead, HP2 7ST Lineage: 75p per word (+ VAT) (minimum 15 words) Semi display: (minimum 2.5 cms) $£ 10.50+$ VAT per single column centimetre Ring for information on series bookings/discounts. All advertisements in this section must be pre-paid. Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).

FOR SALE

Λ Veronica $88-108 \mathrm{MHz}$ FM TRANSMITTERS

Professional PLL transmitter, Stereo Coder, and Compressor/Limiter kits licensable in the U.K. Also very stable VFO transmitter kits. Prices from under $£ 10$ and a 'Ready Built' service is available. Contact us for a free brochure including prices and more detailed information.

18 Victoria St, Queensbury, BRADFORD, BD13 1AR
Tel 01274816200 Email veronica@legend.co.uk

SWCSCIENTIFIC WIRE COMPANY ENAMELLED COPPER WIRE TINNED WIRE SILVER PLATED COPPER WIRE SOLDER EUREKA WIRE NICKEL CHROME WIRE BRASS WIRE LI TZ WIRE BIFILAR WIRE MANGANIN WIRE TEFZEL WIRE NICKEL SAE BRINGS LIST 18 RAVEN RD LONDON E18 1HW FAX 01815591114

THEFPHONE

 BUCCING?"STOP IT NOW!!" WITH
THE NEW BUG X TERMINATOR.
Blocks all phone taps \& telecorders, keeps phone calls and fax's private. For details send a S.A.E. or Tel/Fax: Write for details with S.A.E. to: F.K.Electronics services, Northgate house, St. Marys Place, Newcastle Upon Tyne, NE1 7PN.

Call Our Friendly

Sales Team on 0144266551
\& ask for details

£50 BT INSTRUMENT FOR ONLY £7.50

We refer to the BT insulation fester ond muliti-meler with which you can reod insulation diredtly in megohims, A C yolts up to 230 , 4 ronges of DC vois up to 500, ronges of muliamps and one

SA ronge and 3 ronges of resistonce. These ore in perfert
condition, hove had very litte use, if any sested and fully
guaranteed. Complete with leads ond prods 57.50 . Order Ref 7.5P4. Carrying rose which will toke mall took os well £2 exto.

Postoge $£ 3$ unless your arder is $£ 25$ and over.
I\& N Foxiors
Dept ETI, Pilgrim Works, Stairbridge Laen, Bolmey Sussex, RH17 5PA
Telophone: (01444) 881965

Professional AUDIO TRANSFORMERS fREE 16 PAGE CATALOG AVAILABIE Fax Toll-Free 0800-96-7106 SESCOM, INC. sescom eanvne SESCOM, INC. SeSCOM Qanv.ne
2100 WARD DR., HENDERSON, NV s9015
 Office 702-565-3400 Fax 702-565-4828

WANTIED

TURN YOUR SURPLUS TRANSISTORS, ICS ETC INTO CASH immediate settlement. We also welcome the opportunity to quot for complete factory clearance Contact:

COLES-HARDING \& CO

Unit 58, Queens Road, Wisbech, Cambs PE13 7PQ
BUYERS OF SURPLUS INVENTORY
ESTABLISHED OVER 20 YEARS

Scrap Electronic and

 Mainframe Computer Equipment WantedCan dismantle and collect Tel: 01142853327

Sheffield Surplus 870 Penniston Road
Hillborough, Sheffield S6 2DL

5KVA ISOLATION TRANSFORMER
As New Ex-equipment fully shrouded Line Noise Suppression. Ulitra Isolation Transtormer with terminat Covers and Knock-out cable entiles. Primary 120/240V
Secondary $120 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} .005 \mathrm{pF}$ Capacitance. Size L. $37 \times$ W. $19 \times$ H. 16 cm Weight 42 Kilos. PRICE

$$
\text { £ } £ 20.00+V A T
$$

ype 3 TH8022 DB SIEMENS CONTACTOR contacts Screw or Dir Rail fixing Size 230 V AC 10 A 0.75 mm . Brand Now Price $£ 763$ incl P\&P 240 V AC WESTOOL SOLENIODS TT2 Mod 1 flat. 1 MAx stroke $1 / 4$ in. Base mounting $1 / 2$ in stroke 5lbs pull approx. TT6 Mod 1 Rat. 2 Max stroke $1 /$
 £8.81. SERIES 400 £7.64.

AXIAL COOLING FAN 230 V AC 120 mm square $\times 38 \mathrm{~mm} 3$ blade 10 watr Low and sizes available from stock. Please telephone your enquiries.

INSTRUMENT CASE
Brand new Manuf. by imhot $\mathrm{L} 31 \times \mathrm{H18} \times 19 \mathrm{~cm}$ deep. Removeable front and rear panel for easy assembly components. Grey finish complete with case feet. RICE $£ 16.45$ INCL. P\&P \&VAT 2 off £28.20 Inclusive.

SEWING MACHINE MOTOR Brand new 220/240v AC/DC SEW-TRIC 2 lead Brush Moior. Size L. $100 \mathrm{~mm} \times$ H. $70 \mathrm{~mm} \times W .55 \mathrm{~mm}$. Spindle $1 / 4 \mathrm{in}$. dia \times lin. long. 14.10 incl. P\&P \& VAT

GEARED MOTORS

 71 RPM 201 b inch torque reversable 115 V AC input including capacitor and transformer for 240 V A operation.Price inc VAT \& P\&p $£ 27.73$
SOLID STATE EHT UNTT Input $230 / 240 \mathrm{~V}$ AC, Output approx 15 KV . Producing 0 mm spark. Builitin 10 sec timer. Easty modified for 2osec. 30
sac to continuous. Designed for boller iontion uses in the field of physics and electronics, eg supplying neon or argon tubes etc. Pnce less case
£8.50 + £2.40 p\& p (E 12.81 inc VAT) NMM
EPROM ERASURE KT Build your own EPROM ERASURE for a fraction of the nce of a made-up unit kit of parts less case includes 121 watt 2537 Angst Tube Ballast unit, pair of br-pin leads, neon indicator, on/ol Switch , satety micros
crevut $£ 15.00+£ 2.00 \mathrm{p} \& \mathrm{p}(\mathrm{£} 19.98$ inc VAT)

WASHING MACHINE WATER PUMP Brand new 240 V AC. fan cooled. Can be used for a vanety of purposes. Intet 1 1/kin. outlet 1 in. dia. Price includes p\&p \&
VAT. $£ 11.20$ each or 2 for $£ 20.50$ inclusive.
SERVICE TRADING CO
57 BRIDGMAN ROAD, CHISWICK, LONDON W4 5BB
ACCOUNT CUSTOMERS MIN, ORDER $£ 10$
Open

PLANS

ELECTRONIC PLANS, laser designs, solar and wind generators, high voltage teslas, surveillance devices, pyrotechnics and com-puter graphics tablet. 150 projects. For catalogue, SAE to Plancentre Publications, Unit 7 , Old Wharf Industrial Estate, Dymock Road, Ledbury, Herefordshire, HR8 2HS.

TRANSFORMERS

VVIVariable Voltage Technology Ltd

TRANSFORMERS

For valve and transistor circuits HT Filament chokes high \& low voltage Standard and custom design large and small quantities Unit 24E, Samuel Whites Estate, Medina Road, Cowes, Isle of Wight PO317LP Tel 01983280592 Fax 01983280593

FAX your advert to us on 0144266998
In-system 8051 Programming in a FLASH!
Now supports the AVR Microcontroller Family
Code development for the 8051
family could not be easier. Simply
plug the "Socket Stealer Module"
into your existing 8051 socket and
then use the Micro-ISP
Programmer to download code space next month!
(and data) to your target
microcontroller without even
removing it from the target socket. \quad The Embedded Solutions Company

TO ADVERTISE IN THE NEXT ISSUE OF ETI CALL ANDY FORDER now on 0144266551 or FAX Us on 0144266998

Sphere Electronics

Unit 13 Stream Park Kingswinford West Midlands DY6 8HU
Tel/Fax 01384357526
Email: hardline@demon.co.uk.
Micochip Pic's
16C54 XT/P £2.00
16C55 XT/P £2.50
16C71 04/P £3.00
17C42 16/P £4.50
16 C 64 JW £15.00
16C74 JW £15.00
93LC46 £0.50
Pic Shareware Disk $£ 5.00$
All Orders Plus £1.00 P\&P Programming Available

ADVERTISERS INDEX		
BETA LAYOUT 18	GAREX ELECTRONICS 38	NO NUTS 49
BK ELECTRONICS 34	GRANDATA 4, 5, 6, 7	
BULL ELECTRICAL 10,17	GREENWELD ELECTRONICS . 60	OMNI ELECTRONICS 66
BADCOCK ROSYTH LTD 66		
	HARRISON ELECTRONICS . . . 29	PARTRIDGE ELECTRONICS . . . 49
CMS . 67		PRESS AND PEEL 49
CHELMER VALVE 36	ICS . 38	PICO TECHNOLOGIES 32
COOKE INTERNATIONAL 66		
CIRKIT DISTRIBUTION 59	JJ COMPONENTS 49	ROBOTICA 36
CROWN HILL ASSOCIATES . . . 63	JPG . 29	R.D. RESEARCH 31
	J+N FACTORS 50	RSGB . 60
DISPLAY ELECTRONICS 15		
	LABCENTRE IFC	STEWART OF READING 36
EPT EDUCATIONAL SOFTWARE	LEADING EDGE TECHNOLOGY	SWIFT DESIGNS 43
EQT 63		TECHNICAL INFORMATION . . 52
ESR COMPONENTS 27	MAURITRON $.63$	TELNET 29
	MILFORD INSTRUMENTS 36	
-FOREST ELECTRONICS 22		VISIBLE SOUND 38
	NCT . 38	
G.C. ARNOLD 59	NO1 SYSTEMS 53	

($八$ S SWift Desichas Licd ??? PCB DESIGN OVERLOAD ???
 EDWin - EED3 - CADSTAR
 we could be your answer

Swift design P.C.B. design bureau and Software house, can handle any overload that you might have, using the latest P.C.B. design software. Whilst all types of design are catered for, the company has specialised in the design of Loadboards and Testboards for both the Chip Manufacturing and computer Manufacturing Industries.

Using Visionics software, we have also been able to offer our customers a reverse engineering facility, which enables us to reproduce Printed Circuit Board databases from HPGL and Gerber files and also ultimately to reconstruct the original schematic circuity.
B.T.C, Bessemer Drive, Stevenage, Herts SG1 2DX. Tel: 01438310133 Fax: 01438722751

Email: Designs@Swiftdesigns.co.uk Web Page: WWW. Swiftdesigns. Co.uk

Around the orner

Published by
Nexus Special Interests Limited Nexus House, Boundary Way, Hemel Hempstead, Herts HP2 7ST Tel: 0144266551 Fax: 0144266998
EDITORIAL
Editor Helen Armstrong
Administration Assistant Lynn Bugden
Consultant
Andrew Armstrong
PRODUCTION
Designer Dan Sturges
Technical Illustrator John Puczynski
Production Executive (Copy control) Marie Quilter Printed By Wittshire Letd., Bristol Origination by Ebony, Liskeard

Advertisement Manager Andrew Forder 0144266551×331

Group Sales Manager Jason Wollington
MANAGEMENT
Divisional Managing Director John Bridges
Business Manager Stuart Cooke
Circulation Manager William Pearson

Marketing Manager Jason Doran
Copy Sales Manager David Pagendam

	SUBSCRIPTIONS
	UK:Orders 01858435344 Enquiries 01858435322 USA: Wise Owi Wortd'wide Publications, 4314 West 238th Street. Torrance, CA9005-45009 USA. For VISA Mastercard orders phone: (310) 375 6258. Fax: $\{310$) 375 0543. Pacific Time: Pam 9 pm weekdays 10 am -6pm weekends
	READERS SERVICES Back issues(last 12 months) $\mathbf{\$ 3 . 0 5}$ per issue if available. Older issues: photocopies of whole articles often availkle. Write to The Photocopy Service, Readers Services Department, at Nexus House, Boundary Vay, Hemel Hempstead, Herts HP2 7ST. Binders for ETI: $\mathbf{E 7 . 5 0}$ each including UK post and packing. Overseas please add $\mathbf{1 1 . 5 0}$. Cheques to Nexus Special Interest at Nexus House, or phone VISAMastercard orders to Readers Services Department 0144266551
	NEXUS (C) Nexus Special Interests Limited 1997 All rights reserved ISSN OI 42.7229
	The Publisher's written consent must be obtained before any part of this publication may be reproduced in any form whatsoever, including photocopiers, and information retrieval systems. While reasonable care is taken in preparation of magazine contents, the publishers, editors and their agents cannor be held legally responsible for loss howsoever arising from errors or other published material.

Next Month...

Volume 26 no. 9 of Electronics Today International will be in your newsagent on 15th August 1997 ... H. Paul Shuch will be scanning the heavens for signs of life as yet unknown ... Terry Balbirnie's mock alarm flasher offers a very low cost safety feature for cars ... We take a look at some more Electronics courses, including some postgraduate and research departments ... all the regulars, and more.

Contents are in preparation but are subject to space and availability.

Last Month's Competition Winners

Congratulations to our RIAT competition winners from issue 6. 15 pairs of complimentary tickets to the Royal International Air Tattoo at RAF Fairford, Gloucester, in July are winging their way to the winning entries.
taken care of in the mechanism, and when the power is switched off the heads are moved to a safe position. More effort is made to give each new generation of disc drives improved aerodynamics for the heads and ever smoother coatings for the platter to permit closer spacing between disc and head, so that we can read and rite ever smaller magnetic domains nat does this mean for portable oblem is that the heads must not chip the platter even when shock is applied while data is being written. Ideally, there should be no disruption to the data storage accuracy.

There is another less obvious problem: the platter is spinning very fast, and even a small tilt applied to it will generate strong precession forces (which can be illustrated with an ordinary gyroscope). This precession is a result of the conservation of angular momentum, so the faster the spin, the more change in angular momentum from a given tilt, and the more force. This force tries to flex the platter, and puts strain on the bearings. The whole assembly must be rigid enough so that the platter does not contact the head and use it like a lathe tool to machine pieces off.

When you consider all these factors, the production of a 5 Gigabyte hard disc (see News) for use in a portable computer is another modern marvel. which the head scraped the magnetic coating off the disc. This is still physically possible with modern hard discs, it doesn't happen often.

When 20 megabytes constituted a large hard disc, it was necessary to run a program to park the heads before moving the computer, to stop the heads clattering against the platter and chipping the magnetic coating off. Nowadays that is

Meno-Pno Tila simizo Features loslude - Miero-pro for Whadometa Programmer literface Software
 - FPGA hardware cnsures future device sypport
 - Supports most DIL devices up to 40 pins without an adejptor
 Atmel-89C, 895 (see table below) Philips/ntel 87C.51/52-fx Dallas - 87C520 Comes as standard
 NOW SUPPORTS
 $1 / 1 / D^{m}$

- Adsptors available for mayy other package types

Order code: MPW-SY5 $£ 149.00$ ム

C51 Microcontroller Starter System

$\begin{array}{ll}\quad \checkmark & \text { Optimising C Compiler } \\ \checkmark & \text { Macro Assembler } \\ \checkmark & \text { Software Simulator } \\ \checkmark & \text { Device Programmer } \\ \checkmark & \text { Evaluation Module } \\ \checkmark & \text { Atmel AT89CC251 } \\ \checkmark & \text { HardwarelSottware Doci }\end{array}$
\checkmark Hardware/Software Documentation PUS free Atmel CDROM data book Order code: AT-89C-2K-5T $£ \mathbf{1 9 9 . 0 0}$

STILL THE WORLD'S MOST

POWERFUL PORTABLE

PROGRAMMERS?

DATAMAN-48LV

Surely not.
Surely someone somewhere has DEVELOPED A PORTABLE PROGRAMMER that has even more features, even GREATER FLEXIbILITY AND IS EVEN better value for money.
Actually, no, But don't take our WORD FOR IT, USE THE FEATURE SUMMARY BELOW TO SEE HOW OTHER MANUFACTURERS' PRODUCTS COMPARE,

- Plugs straight into para lel port of PC or laptop
- Programs and verifies a: 2, 2.7, 3.3 \& 5V
- True no-adaptor programming up to 48 pin DIL devices
- Free universal 44 pin PLECC adaptor
- Built-in world standard गSU - for goanywhere programming
- Package adaptors available for TSOP, PSOP, QFP, SOIC and PLCC
- Optional EPROM emulazor

DATAMAN S4

- Programs 8 and 16 bit EJROMs, EEPROMs, PEROMs, 5 ard 12V FLASH,
Boot-Block FLASH, PICs, 3751
microcontrollers and mare
- EPROM emulation as standard
- Rechargeable battery pcwer for total portability
- All-in-one price includes emulation leads, AC charger, PC sottware, spare library ROM, user-friend y manual
- Supplied fully charged and ready to use

S4 FAL MODULE

- Prograns wide range of 20 and 24 pin lozic detices from the major GAL vendors
- Support: JEDEC filés from all popular compiless

SOPFORT

- 3 zear parts and labour guarantee
- Wndows'DOS software included
- Free tecilinical support for life
- Next daj delivery - always in stock
- Dedicated UK supplier r_{r} established 1978

Still as unbeatable as ever. Beware of cheap imitations. Beware of false promises. Beware of hidden extras. If you wan: the best, there's still only one choice - Da:aman.

Orde via čdit card hotline - phone todar, use fomorrow.

Alter ative \geqslant, request moré detailed information on these and other marketleading programming solutions.

MONEY-BACK 30 DAY TRIAL

If you do not agree that these truly are the most powerful portable programmers you can buy, simply return your Dataman product within 30 days for a full refund

Orders neceived by 4pm will normally be despatched same day. Order today, get it tomorrow!

Dataman Programmers Ltd, Station Rd, Maiden Newton, Dorchester, Dorset, DT2 0AE, UK Telephone +44/0 1300320719
Fax +44/0 1300321012
BBS +44/0 1300321095 (24hr)
Modem V.34/N.FCN.32bis
Home page: http://www.dataman.com FTP: ftp.dataman.com
Email: sales@dataman.com

[^0]: Fully interactive demo versions available for download from our WWW site. Call for educational, multi-user and dealer pricing - new dealers always wanted Prices exclude VAT and delivery. All manufacturer's trademarks acknowledged.

[^1]: Prices VAT inclusive. Add £1.25 P\&P
 Payment by cheque, PO, Switch, Amex, Visa, Mastercard We stock a wide range of electronic components. Catalogue $£ 2.00$

